
Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik

Institut für Informatik
Lehrstuhl für Mensch-Computer-Interaktion c

Enhancing Software Quality of
Multimodal Interactive Systems

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenscha en

der Fakultät für Mathematik und Informatik
der Julius–Maximilians–Universität Würzburg

vorgelegt von
Martin Walter Fischbach, M.Sc.

Betreuer: Prof. Dr. Marc Erich Latoschik

Acknowledgements

Der Weg ist das Ziel, sagte Konfuzius. Doch diesen Weg geht man nicht immer allein.
Liebste Anke, Du hast mich schon auf diesem Weg begleitet, bevor ich ihn bewusst be-

gonnen hatte. Vielen Dank dafür, dass Dumich aufgefangen und immer wieder aufgerichtet
hast. Dafür, dass Dumir Alternativen gezeigt und mich von anderen P�ichten entlastet hast,
wenn es darauf ankam. Und dafür, dass ich mich bei Dir immer anlehnen und fallen lassen
kann und konnte.
LieberMarc, danke, dass Dumir dieses Forschungsfeld gezeigt hast und esmir ermöglicht

hast meine eigenen Ideen zu verfolgen. Danke für Deine Anleitung und Motivation, aber
auch für Deine Kritik die mich stets vorangebracht hat.
Lieber Dennis, ohne einen verlässlichen Mitstreiter und guten Freund wie Dich wäre ich

an vielen Stellen nicht soweit gekommen. Danke für die vielen fruchtbarenDiskussionen, die
großen und kleinenHackathons, die Beteiligung an undMotivation zu Sport1 und bewusster
Ernährung sowie für Deine stetige Hilfsbereitscha auch bei vielen Quick Questions.
Auf dem letzten Abschnitt des Weges wuchs die Zahl der Wegbegleiter. Lieber Chris und

lieber Sascha, danke für die tollen gemeinsamen Projekte. Lieber Florian, lieber Jean-Luc,
lieber Dominik, lieber Ecki, (und Chris,) danke für die geführten Diskussionen und Euer
Feedback zu meinen Ideen. Liebe Sandra, lieber Kristof, lieber Eike, liebe Andrea, (liebe
alle zuvor genannten,) liebe HCI-Gruppe, danke für das tolle Miteinander und die immer-
währenden Prokrastinationsmöglichkeiten in der Ka�eeküche.
Zu guter Letzt möchte ich noch meinem kleinsten und wichtigsten neuen Wegbegleiter

danken. Lieber Konrad, schön, dass Du da bist, mir Freude bereitest und mir – in Zeiten, in
denen es mir unmöglich schien – gezeigt hast, dass es noch Wichtigeres gibt. Schön, dass es
Dich gibt.

1danke auch an Simon, Chris und Kristof

Abstract

Multimodal interfaces (MMIs) are a promising human-computer interaction paradigm. ¿ey
are feasible for a wide rang of environments, yet they are especially suited if interactions are
spatially and temporally grounded with an environment in which the user is (physically)
situated. Real-time interactive systems (RISs) are technical realizations for situated inter-
action environments, originating from application areas like virtual reality, mixed reality,
human-robot interaction, and computer games. RISs include various dedicated processing-,
simulation-, and rendering subsystems which collectively maintain a real-time simulation of
a coherent application state. ¿ey thus ful�l the complex functional requirements of their
application areas. Two contradicting principles determine the architecture of RISs: coupling
and cohesion. On the one hand, RIS subsystems commonly use speci�c data structures for
multiple purposes to guarantee performance and rely on close semantic and temporal cou-
pling between each other to maintain consistency. ¿is coupling is exacerbated if the inte-
gration of arti�cial intelligence (AI) methods is necessary, such as for realizing MMIs. On
the other hand, so ware qualities like reusability and modi�ability call for a decoupling of
subsystems and architectural elements with single well-de�ned purposes, i.e., high cohesion.
Systems predominantly favour performance and consistency over reusability andmodi�abil-
ity to handle this contradiction. ¿ey thus accept lowmaintainability in general and hindered
scienti�c progress in the long-term.
¿is thesis presents six semantics-based techniques that extend the established entity-

component system (ECS) pattern and pose a solution to this contradictionwithout sacri�cing
maintainability: semantic grounding, a semantic entity-component state, grounded actions,
semantic queries, code from semantics, and decoupling by semantics. ¿e extension solves
the ECS pattern’s runtime type de�cit, improves component granularity, facilitates access to
entity properties outside a subsystem’s component association, incorporates a concept to se-
mantically describe behavior as complement to the state representation, and enables compat-
ibility even between RISs. ¿e presented reference implementation Simulator X validates the
feasibility of the six techniques andmay be (re)used by other researchers due to its availability
under an open-source licence. It includes a repertoire of commonmultimodal input process-
ing steps that showcase the particular adequacy of the six techniques for such processing. ¿e
repertoire adds up to the integrated multimodal processing frameworkmiPro, making Sim-
ulator X a RIS platform with explicit MMI support. ¿e six semantics-based techniques as
well as the reference implementation are validated by four expert reviews, multiple proof of
concept prototypes, and two explorative studies. Informal insights gathered throughout the
design and development supplement this assessment in the form of lessons learnedmeant to
aid future development in the area.

Contents

Contents iv

1 Introduction 1
1.1 Multimodal Interaction . 1
1.2 Technical Realizations . 3
1.3 Problem Statement . 7
1.4 Objectives . 9
1.5 Structure and Results . 10

2 Use Cases 13

3 RelatedWork 17
3.1 Maintainability . 17
3.2 Multimodal Systems . 20
3.3 Real-time Interactive Systems . 34
3.4 Summary . 48

4 Multimodal Real-time Interactive Systems 49
4.1 Independent Multimodal System Usage . 49
4.2 Integrated Multimodal System Usage . 51
4.3 Summary . 52

5 Semantics-based Software Techniques 54
5.1 Semantic Grounding . 55
5.2 Semantic Entity-Component State . 56
5.3 Grounded Actions . 59
5.4 Semantic Queries . 61
5.5 Code from Semantics . 65
5.6 Decoupling by Semantics . 68
5.7 Summary . 70

6 Reference Implementation 71
6.1 Design Decisions . 71
6.2 Core . 76
6.3 Multimodal Input Processing . 99
6.4 Ancillary Contributions . 104
6.5 Summary . 107

iv

CONTENTS

7 Validation andMethod Exploration 110
7.1 Expert Reviews . 110
7.2 Proof of Concept . 115
7.3 Explorative Studies . 121
7.4 Informal Insights . 125
7.5 Summary . 127

8 Conclusion 128
8.1 Summary . 128
8.2 Future Work . 131

Bibliography 133

A System Availability 150

v

Chapter 1

Introduction

¿e interaction of humans with their environment (including other humans) is
naturally multimodal. We speak about, point at, and look at objects all at the
same time. We also listen to the tone of a person’s voice and look at a person’s face
and arm movements to �nd clues about his feelings. To get a better idea about
what is going on around us, we look, listen, touch, and smell. When it comes to
HCI, however, we usually use only one interface device at a time–typing, clicking
the mouse button, speaking, or pointing with a magnetic wand. ¿e “ease” with
which this unimodal interaction allows us to convey our intent to the computer
is far from satisfactory. An example of a situation when these limitations become
evident is when we press the wrong key or when we have to navigate through a
series of menus just to change an object’s color.

(Sharma, Pavlovic, and Huang, 1998)

1.1 Multimodal Interaction

¿is criticism aboutHuman-Computer Interaction (HCI) by Sharma et al. (1998)will soon be
two decades old. Since then, the set of common sensors and rendering technologies as well as
the available processing capabilities have been extended and improved due to technological
advances. Prominent examples are smartphones, tablets, and even personal computers in
combination with input devices for gesture detection, eye tracking, or markerless motion
tracking. However, the essential of the quote still stays valid: interfaces are more oriented
towards what can easily be detected, processed, and dealt with programmatically and less
towards human capabilities. ¿is is partly due to the fact that the human operator will utilize
her capabilities to learn the interface usage and accept it anyway.
¿e fundamental idea of MultiModal Interfaces (MMIs) di�ers at this point. ”¿e inter-

1

Chapter 1 Introduction

action of humans with their environment (including other humans) is naturally multimodal”
(Sharma et al., 1998). Besides speech, humans use a variety of non-verbal channels or rather
modalities for interpersonal communication: most importantly gestures, facial expressions,
gaze, and body movements. MMIs aim to migrate their utilization to human-computer in-
teraction. Two aspects of interpersonal communication are of special importance to this
migration. Firstly, not all communication is performed intentionally, i.e., so that the sender
is aware of the e�ect to the receiver in prior. While speech and gesture are the prime chan-
nels for intentional communication, eyemovements and changes in body posturemay let the
communication partner draw conclusions on one’s intentions and feelings. Secondly, com-
munication is context dependent. Shared experiences, prior communication contents, and
the surrounding environment have to be taken into account when interpreting communi-
cated signals. MMIs thus have to use adequate modalities. For instance, speech and gestures
to allow a user to intentionally give instructions to a system, supplemented by facial expres-
sions and gaze to infer her mood without explicitly asking. In addition, the relevant context
properties have to be made available for the computational analysis. By this means, current
ways of using systems can be replaced with forms of interaction speci�c to the human com-
munication capabilities (Latoschik, 2001b). ¿is explicitly includes multimodal input, e.g.,
speech, gestures, and facial expressions, as well asmultimodal output, e.g., visual display, au-
dio, and tactile feedback.
A large variety of advantages are achievable thisway. Sharma et al. (1998), Turk andRobert-

son (2000), Dumas, Lalanne, and Oviatt (2009), Oviatt (2012) summarize scienti�c contri-
butions in the �eld and describe primary potential bene�ts: multimodal interfaces increase
expressiveness, due to the fact that modalities can be used complementary to amplify, to
modify, or to disambiguate. For instance, speaking and pointing at objects instead of de-
scribing referents solely with words, i.e. “Give me [pointing] that bottle.” vs. “Give me the
green bottle le of the book in the second shelf from the bottom.”. ¿ey increase �exibility, by
utilizing the strengths of single modalities to compensate weaknesses of other. ¿is is well
exempli�ed by modern smartphones that o�er a natural language user interfaces for web
searches. In noisy environments or if it is inappropriate to speak, the user can switch to en-
tering queries using a keyboard displayed on the smartphone’s touch screen. ¿ey increase
reliability, due to the fact that modalities can be used redundantly to convey information. In
other words, considering multiple modalities from the same source—the human operator—
reduces uncertainty for decision making (Murphy, 1996; Hall & Llinas, 1997). Altogether,
these three advantages result in increased e�ciency, when using multimodal interfaces.
Additionally, a wide range of further advantages are identi�ed. It is easier to learn how

to use multimodal interfaces, since they derive from human to human communication be-

2

Chapter 1 Introduction

havior and rely on modalities naturally used thereto. ¿is contrasts with many traditional
human-computer interfaces, where system provided in- and output concepts have to be ac-
cepted and learned by the user. MMIs aim to shi complexity to the computer system. As a
consequence, they provide a preferably natural interface to the user and reduce the required
cognitive load while interacting. ¿e �exibility of multimodal interfaces can facilitate their
use even if certain constraints or impairments exist. For instance, the opportunity to use a
system with speech only, if the user is not able to use her hands. Altogether, ease of learning
and �exibility result in a widened spectrum of possible users.
Oviatt and Cohen (2015) complement these arguments by highlighting the superior apti-

tude of multimodal interfaces for handling errors as well as their potential to stimulate cog-
nition. ¿e reasons for superior error handling are threefold on the user’s side. Firstly, users
tend to selectmodalities that are less error prone in the current situation or context. Secondly,
the language supported by a multimodal interface is mostly simpli�ed compared to the full
extend of human communication. ¿is is especially true for intentional instruction-based
multimodal interfaces. ¿irdly, users typically switch modalities a er an error occurred, if
possible. ¿e potential to stimulate cognition is grounded on the higher expressive power of
multimodal interfaces compared to keyboard interfaces or analogous non-digital tools, like
pen and paper. For instance, Oviatt and Cohen (2015)’s studies targeting high-school learn-
ing show a variation in the communication behaviour of learning groups depending on the
interface of the digital tool they utilize to support learning (keyboard- and mouse-based PC
vs. pen- and speech-based tablet). ¿e authors conclude that these �ndings demonstrate the
direct relation beween language and thought.

1.2 Technical Realizations

MMIs are feasible for a wide range of environments, including traditional desktop and mo-
bile scenarios. However, they are especially suitable if interactions have to be spatially and
temporally grounded with an environment in which the user is (physically) situated. For
instance, pointing at an object as part of a speech-gestural instruction is easier than provid-
ing a similar information using a keyboard, since it utilizes the natural spatial referencing
of interpersonal communication. Situated interaction environments range from real (physi-
cal) spaces to so called Virtual Environments (VEs); respective application areas from smart
homes andHuman-Robot Interaction (HRI) toMixed Reality (MR) andVirtual Reality (VR).
MMIs are a promising alternative interaction technique for these environments (Latoschik,
2005; Ameri Ekhtiarabadi, Akan, Çürüklu, & Asplund, 2011; Cherubini, Passama, Fraisse, &
Crosnier, 2015), which will become increasingly pervasive in our daily lives (Turk & Robert-

3

Chapter 1 Introduction

Summon
[push] purgatory.

What is behind
[this] patch.

[Pointing] you move
[pointing] there.

Should I
turn on the light?

Figure 1.1.Examples ofmultimodal interfaces for situated interaction environments: a smart
physical environment comprising a robot as assistant (upper le , image from Eckstein &
B. Lugrin, 2016a), a collaborative augmented reality work station (upper right, image from
Seufert, 2013), a mixed reality real-time strategy game (lower le , cf. Link et al., 2016), and
a virtual reality spell casting game (lower right, cf. Fischbach et al., 2011). Terms in square
brackets denote gestures that are executed in synchrony with the subsequent word(s).

son, 2000). Figure 1.1 illustrates MMIs for situated interaction environments, realized using
contributions of this thesis.
¿eir prime distinguishing characteristic is the manner of feedback to the user. On the

one end, feedbackmeans altering the physical environment, for examplemoving a robot arm,
displacing an object, or switching on a light. On the other end, VEs simulate either a replica of
the real world or of a fantasy world andmake the user belief that it is real by providing stimuli
to her senses the same way the physical world does. ¿e resulting feeling of being present in
a non-real world is called immersion. ¿e achieved level of immersion is a major aspect of
VEs and depends, i.a., on the realization of interactions. In contrast to common interaction
metaphors based onWindows, Icons, Menus, and a Pointer (WIMP), multimodal interfaces
do not negatively in�uence immersion. To the contrary, they can even improve immersion in
VEs (Latoschik, 2001b, 2005). Moreover, they facilitate natural communication with virtual
agents and humanoid robots, e.g., enabling virtual agents as multimodal assistants (Kopp,
Jung, Leßmann, &Wachsmuth, 2003).
In terms of their technical realizations, however, situated interaction environments do not

di�er that much. Respective so ware platforms fundamentally comprise means to capture

4

Chapter 1 Introduction

HCI, Sociology, Psychology, Cognitive Science, Ergonomics

Software Engineering
Sensor Data Processing

AI Methods

Sensor Data
Processing

Physics Simulation
AI Methods

Acoustics
Graphics Design

Computer Graphics

A/D, Drivers
& SDKs

A/D, Drivers
& SDKs

A/D, Drivers
& SDKs

Analysis

Analysis

Analysis

Fusion Analysis Rendering

Simulation

A/D, Drivers &
SDKs

Input
Processing

Analysis

Fusion

Application
State

Application
State

Application
State

Application
State

Figure 1.2. Subsystems (solid boxes) typically required to realize a MMI for a situated in-
teraction environment. Involved research disciplines are emphasized using dashed boxes.
Red arrows indicate communication and state access. One or more global application states
are possible, depending on whether multimodal processing is done independently or is inte-
grated into the RIS.

and process relevant user behavior and physical environment changes, simulate a virtual en-
vironment, and provide coherent rendering output to the user. ¿ey consist of multiple com-
municating subsystems that manage internal states andmay also comprise global application
states accessible bymultiple subsystems. Performance is essential to the same extend as func-
tional requirements to guarantee low system reaction times and hence usability, immersion,
and security. Due to these requirements such systems are classi�ed as Real-time Interactive
Systems (RISs, cf. Wiebusch, 2016, pp. 6–8).
If complex input is to be analyzed by RISs or corresponding output to be generated, the in-

tegration of arti�cial intelligence (AI) methods as well as of a knowledge representation layer
(KRL, Cavazza & Palmer, 2000) are fundamental requirements too. For instance, the need to
handle symbolic concepts as well as relations between those concepts. RISs that ful�ll those
extra requirements are subcategorised as Intelligent Realtime Interactive Systems (IRISs, cf.
Latoschik & Tramberend, 2011), respective VEs as Intelligent Virtual Environments (IVEs,
Luck & Aylett, 2000). ¿eir additional capabilities are a necessity to analyze and generate
multimodal utterances, for instance input consisting of gestures and natural language. ¿e
processing of such input typically comprises modality individual analysis as well as com-
bined analysis that �nally derives a conjoint meaning. Figure 1.2 illustrates multimodal input
processing in conjunction with a typical RIS architecture.
AI methods increase the complexity of subsystem interplay in addition to what is already

implied due to the basic RIS simulation and -rendering functionality, i.e., interdependencies
between subsystem-internal state representations, mutual state access, overall synchroniza-

5

Chapter 1 Introduction

tion, and �ow of control. In combination with the necessary KRL, this poses high require-
ments to the system’s architecture. However, if the user input to be analyzed reaches a certain
complexity, AI methods and a KRL are inevitable for processing. MMIs for situated interac-
tion environments are consequently amongst the highest demanding application areas for
RISs. Yet, RISs are also applied for application areas with similar or lower requirements
(Wingrave & LaViola, 2010), such as 3D computer games (typically called game engines),
digital content creation or traditional Graphical User Interfaces (GUIs). Figure 1.3 gives an
overview of (I)RIS requirements and application areas.

C
om

pl
ex

ity
 o

f
Su

bs
ys

te
m

 In
te

rp
la

y

Complexity
of Input

Full Human
Communicative
Expressiveness

High

IRIS

• Interactive Surfaces
• VR Computer Games
• Scientific Visualization

• Multimodal VEs
• Natural HRI
• Multimodal Assistants

• 3D Computer Games
• Digital Content Creation
• Traditional GUIs

WIMP 3DUI MMITangible

Real-timeliness
Highest

High

Medium

Figure 1.3. (I)RIS requirements broken down by complexity of input, complexity of subsys-
tem interplay, and necessary real-timeliness. Dashed rectangles indicate a typical classi�-
cation of three groups of RIS application areas with increasing overall requirements. Mul-
timodal IRISs, the target area of this thesis (red), are characterized by high functional and
real-time requirements as well as complex input. Refer to the text for details.

6

Chapter 1 Introduction

1.3 Problem Statement

Since Sutherland’s (1964) visionary Sketchpad, new technical solutions for RISs have been in-
troduced for decades (see Figure 1.4). Similarly, platforms and demonstrators formultimodal
interfaces, so calledmultimodal systems (MMS), have been published since Bolt’s (1980) Put
that there (see Figure 1.5). In addition to these research systems, today commercial RISs (see
Figure 1.6) are widely used in scienti�c projects for the development and evaluation of appli-
cations and interfaces. Due to their closed source, however, they are less useful for improving
the so ware quality of RIS architectures.
Over the years, features as well as complexity have increased and di�erent application ar-

eas have been explored—promoting multimodal interface so ware to a mature technology
(Lalanne et al., 2009). ¿is can be stated for RISs accordingly, since they are deployed both in
large practical applications (e.g., RISs for computer games) and in the �eld of safety critical
systems (e.g., RISs for robot control). ¿is maturity, however, does not apply equally for all
application areas and so ware quality aspects.
Most of the latest systems support non-functional so ware requirements to counter the

negative impacts of ad-hoc tailored application-speci�c solutions. However, maintainabil-
ity, comprising modularity, modi�ability, and reusability, becomes more and more of an
issue the higher the overall functional requirements get. In the area of multimodal inter-
faces for situated interaction environments it is a major issue (Latoschik, 2005; Steed, 2008;
Lalanne et al., 2009; Latoschik & Tramberend, 2010; Latoschik & Fischbach, 2014; Fischbach,
2015). ¿emain problem is a requirement contradiction known for some time as the coupling
dilemma (Latoschik & Blach, 2008; Latoschik & Tramberend, 2010). On the one hand, low
coupling of subsystems, in terms of their mutual access, is paramount to satisfy modi�ability
and reusability. ¿is calls for abstract access to a common context representation, i.e. the ap-
plication state. On the other hand, utilization of highly speci�c data structures, management
of close temporal and semantic dependencies between many processing-, simulation-, and
rendering steps, and the satisfaction of so real-time constraints are major requirements too.
¿e severest consequences are low maintainability in the short term and, more impor-

tantly, hindered scienti�c progress in the long-term, due to limited repeatability and ability to
build on previous results. In the commercial sector this circumstance is o en compensated
by high expenditures to redo major parts of so ware platforms that actually just required
minor changes, e.g. a new 3D rendering subsystem. For the research community, which in
most cases lacks the necessary resources for such an approach, the maintainability issue is
highly problematic. In addition, poor API usability (Clarke, 2004; Daughtry, Farooq, My-
ers, & Stylos, 2009), comprising development e�ort and usability for developers, exacerbates

7

Chapter 1 Introduction

Figure 1.4.Research RISs over the last decades:MR Toolkit (le , image from Shaw &Green,
1993), VR Juggler (center, image from Cruz-Neira, Bierbaum, Hartling, Just, & Meinert,
2002), and SCIVE (right, image from Fröhlich, 2014).

Figure 1.5. Multimodal interaction research systems and demonstrators over the last
decades: ¿e Put that there demonstration (le , image from Bolt, 1980), the Quickset sys-
tem (center, image from Cohen et al., 1997), and the virtuelle Werkstatt (right, image from
Latoschik, 2005).

Figure 1.6. Current commercial RIS that are widely used in research: Unreal Engine 4 (le ,
image from EPIC GAMES, INC., 2017) andUnity 3D (right, image fromUnity Technologies,
2017).

8

Chapter 1 Introduction

reuse even more (Piccioni, Furia, & Meyer, 2013).
In the case of Latoschik’s work, the integration of amultimodal processing framework into

the RIS AVANGO (Tramberend, 1999) led to groundbreaking results, like the virtuelle Werk-
statt and the multimodal interface to the virtual agentMax (Latoschik, 2005). However, the
heavy dependency on AVANGO and its underlying, proprietary scene graph system (SGI’s
Performer) as well as the utilized scripting language, hindered long-lasting reusability (Kuck,
Wind, Riege, Bogen, & Birlinghoven, 2008). It prohibited researchers to build upon these re-
sults, since the virtuelle Werkstatt has no currently running build or successor. Even worse,
there is currently no RIS platform with explicit MMI support that is available for research
(i.e., the source code can be obtained and if it is running on current hardware platforms)
besides the contribution of this theses (cf. Fischbach, Wiebusch, & Latoschik, 2017).
¿e Entity-Component-System (ECS) pattern (Alatalo, 2011) has become a prominent ap-

proach to the coupling dilemma (e.g., used by Latoschik & Tramberend, 2011; Bueskens et
al., 2014; Unity Technologies, 2017). ¿is pattern organizes the data (the components) as-
sociated with subsystems (the systems) in an object-centered view (the entities) using com-
position over inheritance. ¿is composition greatly enhances decoupling. Problems arise
in cases where subsystems need mutual access to components outside of their primary data
association. ¿emajor reason for this requirement is the need of AI subsystems to re�ect the
overall application state, e.g., to provide inference capabilities or to perform reference reso-
lution during the analysis of a multimodal utterance. In fact, these issues do not only arise
when realizingMMIs for situated interaction environments but with virtually any other IRIS
subsystem combination. However, MMIs are particularly suited as use cases for develop-
ing solutions to the coupling dilemma, since they cover most of the its challenging issues:
real-time state access to information ranging from low-level numeric to high-level semantic
information (see Figure 1.2, le part) as well as adequate decoupling from the main simula-
tion loop to not compromise the overall performance (see Figure 1.2, right part).

1.4 Objectives

Considering the pontential of multimodal interfaces, the large amount of RIS application
areas, the coupling dilemma, and the lack of a research platform with explicit multimodal
interface support, the following research question drives the e�orts of this thesis:

What so ware techniques foster the maintainability of IRISs and also support the
realization of multimodal interfaces for situated interaction environments?

(revised from Fischbach, 2015)

9

Chapter 1 Introduction

¿e investigation of this research question is subdivided into �ve objectives that are elab-
orated in the process of this thesis.

O1 Analysis of (I)RIS maintainability issues, multimodal input processing requirements,
and suitable evaluation methods.

O2 Development of so ware techniques that counter the coupling dilemma.

O3 Implementation of O2, comprising typical multimodal input processing techniques.

O4 Evaluation of O2 and O3 with regard to maintainability.

O5 Implementation of proof-of-concept demonstrations accompanying the development.

Multimodal input is taken as primary use case for the development of solutions to the
coupling dilemma. ¿e resulting concepts are facilitating multimodal output generation too,
since both �elds heavily rely on the application of AI methods. Distinctive issues of multi-
modal output, however, are not addressed in this thesis.

1.5 Structure and Results

¿e thesis is divided into six remaining chapters subsequent to the motivation and problem
description in this chapter. A detailed multimodal interaction use case is described in chap-
ter 2 to support the analysis of issues, the identi�cation of requirements, and the presenta-
tion of results later on. Related literature about (I)RISs, MMSs, and suitable maintainability
evaluation methods is elaborated in chapter 3, followed by an analysis of the (I)RIS-MMS
combination in chapter 4 to detail and undergird the problem description of this chapter
and to further classify the contribution of this thesis (O1). chapter 5 presents six semantics-
based so ware techniques that address IRIS maintainability and jointly solve the coupling
dilemma (O2): semantic grounding, a semantic entity-component state, grounded actions,
semantic queries, code from semantics, and decoupling by semantics. ¿ese techniques ex-
tend the established entity-component-system (ECS) pattern and overcome its main de�cits
with respect to state access. ¿e reference implementation of the six techniques, comprising
an integrated multimodal input processing framework, is showcased in chapter 6 by means
of a walk-through of central implementation aspects and with the aid of the interaction use
case (O3). Withal, architectural design decisions and key implementation mechanisms that
further facilitate maintainability are highlighted. At the end of this chapter, a brief overview
of ancillary contributions to the reference implementation is given. Conducted evaluations
(O4) and proof-of-concept demonstrations (O5) are described in chapter 7. ¿e chapter in-
cludes a presentation of results obtained from the utilization of the reference implementa-

10

Chapter 1 Introduction

tion for student projects as well as for practical exercises in master level courses. chapter 8
concludes this thesis by summarizing and discussing achieved results and by pointing out
potential future research bene�ting for the presented contributions.
Most results of this thesis have been published at national as well as at international work-

shops, conferences, and journals. All relevant publications are listed in Table 1.1, each as-
signed to one or more aspects of this thesis that are adressed therein.

Table 1.1.Published results of this thesis, mapped to the following aspects addressed therein:
Motivation and Problem Description (M&PD), Analysis (A), Semantics-based So Ware
Techniques (SSWT), Reference Implementation (RI), Evaluation (E), Proof-of-Concept
(PoC), and Student Projects (SP).

Reference
Ad-
dressed
Aspects

Fischbach, M., Wiebusch, D., & Latoschik, M. E. (2017, April). Semantic entity-component state
management techniques to enhance software quality for multimodal VR-systems. IEEE
Transactions on Visualization and Computer Graphics, 23(4), 1342–1351

A,
SSWT,
RI

Fischbach, M., Wiebusch, D., & Latoschik, M. E. (2016, March). Semantics-based software
techniques for maintainable multimodal input processing in real-time interactive systems. In 9th
Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS)
(pp. 1–6). IEEE Computer Society

A,
SSWT,
RI

Link, S., Barkschat, B., Zimmerer, C., Fischbach, M., Wiebusch, D., Lugrin, J. L., & Latoschik, M. E.
(2016, March). An intelligent multimodal mixed reality real-time strategy game. In 2016 IEEE
Virtual Reality (VR) (pp. 223–224)

PoC, SP

Zimmerer, C., Fischbach, M., & Latoschik, M. E. (2016). Maintainable management and access of
lexical knowledge for multimodal virtual reality interfaces. In Proceedings of the 22nd ACM
Conference on Virtual Reality Software and Technology (pp. 347–348). VRST ’16. Munich, Germany:
ACM

PoC, SP

Fischbach, M. (2015). Software techniques for multimodal input processing in realtime interactive
systems. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction
(pp. 623–627). ICMI ’15. Seattle, Washington, USA: ACM

M&PD,
A

Latoschik, M. E. & Fischbach, M. (2014). Engineering variance: software techniques for scalable,
customizable, and reusable multimodal processing. In M. Kurosu (Ed.), Human-computer
interaction. theories, methods, and tools. hci 2014 (Vol. 8510, pp. 308–319). Lecture Notes in
Computer Science. Cham: Springer International Publishing

SSWT,
RI

Fischbach, M., Zimmerer, C., Giebler-Schubert, A., & Latoschik, M. E. (2014, September). [DEMO]
Exploring multimodal interaction techniques for a mixed reality digital surface. In 2014 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 335–336)

PoC, SP

Zimmerer, C., Fischbach, M., & Latoschik, M. (2014). Fusion of mixed-reality tabletop and
location-based applications for pervasive games. In Proceedings of the Ninth ACM International
Conference on Interactive Tabletops and Surfaces (pp. 427–430). ITS ’14. Dresden, Germany: ACM

PoC, SP

Giebler-Schubert, A., Zimmerer, C., Wedler, T., Fischbach, M., & Latoschik, M. E. (2013). Ein
digitales Tabletop-Rollenspiel für Mixed-Reality-Interaktionstechniken. In Virtuelle und Erweiterte
Realität, 10. Workshop der GI-Fachgruppe VR/AR (pp. 181–184). Informatik. Shaker Verlag

PoC, SP

Fischbach, M., Neff, M., Pelzer, I., Lugrin, J.-L., & Latoschik, M. E. (2013). Input device adequacy
for multimodal and bimanual object manipulation in virtual environments. In Virtuelle und
Erweiterte Realität, 10. Workshop der GI-Fachgruppe VR/AR (pp. 145–156). Informatik. Shaker
Verlag

PoC, SP

11

Chapter 1 Introduction

Reference
Ad-
dressed
Aspects

Fischbach, M., Treffs, C., Cyborra, D., Strehler, A., Wedler, T., Bruder, G., . . . & Steinicke, F. (2012).
A mixed reality space for tangible user interaction. In Virtuelle und Erweiterte Realität, 9.
Workshop der GI-Fachgruppe VR/AR (pp. 25–36). Informatik. Shaker Verlag

PoC

Fischbach, M., Wiebusch, D., Latoschik, M. E., Bruder, G., & Steinicke, F. (2012a). Blending real and
virtual worlds using self-reflection and fiducials. In Proceedings of the 11th International Conference
on Entertainment Computing (pp. 465–468). ICEC’12. Bremen, Germany: Springer-Verlag

PoC

Wiebusch, D., Fischbach, M., Latoschik, M. E., & Tramberend, H. (2012). Evaluating scala, actors,
& ontologies for intelligent realtime interactive systems. In Proceedings of the 18th ACM Symposium
on Virtual Reality Software and Technology (pp. 153–160). VRST ’12. Toronto, Ontario, Canada:
ACM

E, RI

Wiebusch, D., Fischbach, M., Strehler, A., Latoschik, M. E., Bruder, G., & Steinicke, F. (2012).
Evaluation von Headtracking in interaktiven virtuellen Umgebungen auf Basis der Kinect. In
Virtuelle und Erweiterte Realität, 9. Workshop der GI-Fachgruppe VR/AR (pp. 189–200). Informatik.
Shaker Verlag

PoC

Fischbach, M., Wiebusch, D., Latoschik, M. E., Bruder, G., & Steinicke, F. (2012b). smARTbox A
portable setup for intelligent interactive applications. In H. Reiterer & O. Deussen (Eds.), Mensch
& Computer 2012 — Workshopband: interaktiv informiert — allgegenwärtig und allumfassend!?
(pp. 521–524). München: Oldenbourg Verlag

PoC

Fischbach, M., Latoschik, M. E., Bruder, G., & Steinicke, F. (2012). smARTbox: out-of-the-box
technologies for interactive art and exhibition. In Proceedings of the 2012 virtual Reality
International Conference (19:1–19:7). VRIC ’12. Laval, France: ACM

PoC

Fischbach, M., Wiebusch, D., Giebler-Schubert, A., Latoschik, M. E., Rehfeld, S., & Tramberend, H.
(2011, March). Sixton’s curse – Simulator X demonstration. In 2011 IEEE Virtual Reality Conference
(pp. 255–256)

PoC

12

Chapter 2

Use Cases

¿ebasic demands described in the chapter 1 entail a set of further fundamental requirements
that (I)RISs have to ful�ll to support the implementation of common use cases. Since MMIs
are a particularly suited as use cases for developing solutions to the coupling dilemma, an
example interaction within such an interface is chosen to motivate those requirements and
to point out the bene�ts of the presented approaches later on (revised from Fischbach et al.,
2017):

A user furnishes a virtual room in an architectural modeling application via a speech- and
gesture interaction (cf. Figure 2.1). At �rst she utters “Put [deictic gesture] that green chair
near [deictic gesture] this table.” (cf. Bolt, 1980) followed by “Turn it [kinemimic gesture]
this way.” (cf. Latoschik, 2002).

For the realization of this use case, the physical- and the virtual environment needs to be
represented in the application’s state. ¿e physical environment comprises the user’s com-
municative utterances, e.g., posture and spoken words. ¿e virtual environment comprises
objects like the table and the chair, including properties like positions, orientations, veloci-
ties, textures, and bounding boxes. Information about the physical environment is captured
by sensors and provided via drivers or SDKs in di�erent abstraction levels, e.g., positions and
orientations from a tracking system or a text representation of spoken words from an Auto-
matic Speech Recognizer (ASR). ¿e application’s state has to be accessible by all or at least
be communicated to the relevant system parts. ¿ose parts have to be executed to be able
to process data, run simulations, and perform rendering that outputs a VE to the user(s). In
order to handle the multimodal utterance, some of the sensor data may have to be processed
before it can be used for a high-level combined analysis. For instance, meaningful gestures
have to be determined from the positions and orientations of the user’s joints over time or
uttered words have to be annotated with their lexical category. ¿e result of this processing
is typically event-like symbolic data.

13

Chapter 2 Use Cases

Select [pointing] that ball.
Put it [pointing] there.

Scale it like [indication of size] this.

Figure 2.1. Users furnishing a virtual room: in a VR setup using ray-casting as well as a
joystick for interaction (le , image from Kern, Kullman, Wiebusch, & Lugrin, 2016) and in
a prototypical semi-immersive setup comprising a stereoscopic display using a speech and
gesture interface (right, image fromKern, Kullman, Zöller, et al., 2016). Both demonstrations
are results of practical master level courses, realized using contributions of this thesis. ¿e
movement analysis and continuous mapping to virtual object orientations, though, is not
implemented to the full extend described by Latoschik (2002).

During multimodal analysis, is has to be checked if this data satis�es syntactic, temporal,
and semantic constraints. Syntactic correctness involves checking of allowed successions,
e.g., if a verb is followed by a noun phrase. Temporal correctness involves checking of co-
occurrence within and between modalities, as in “[deictic gesture] that”. Semantic correct-
ness involves checking if the meaning derived by analyzing onemodality con�icts with prior
analysis, with other modalities, and with the context. For instance, if the chair is movable or
if the object pointed at (gesture) really denotes a green chair (speech).
An analyzed utterance that proved valid has to result in an appropriate system behavior

that is perceivable by the user. For example, the chair should appear next to the table or rotate
as long as the user performs the respective gesture with her hand. In addition to deriving
and executing an instruction, it is desirable to provide feedback to the user at the time of
processing. ¿is could include presenting intermediate results, like highlighting the green
chair a er the �rst part of the �rst example has been uttered.
For properly processing the second utterance, two further requirements have to be consid-

ered. Firstly, former application states have to be (partly) available. On a coarse time scale,
this can be former utterances or rather the past discourse, e.g., the fact that the green chair has
been selected in the �rst utterance, in order to resolve the anaphora it . On a �ne time scale,
this is necessary to foster temporal correctness in the presence of varying processing time of
single multimodal channels. For instance, if the recognition of the pronoun that from the
audio input takes longer than the calculation of the user’s pointing direction from the latest
tracking data, it is necessary to access former pointing direction values. In concrete terms,
the pointing direction at the time that was uttered is has to be accessed to correctly deter-

14

Chapter 2 Use Cases

mine the user’s selection. Secondly, the realization of the kinemimic rotation gesture requires
a continuous mapping of posture features to a virtual object, i.e. the chair’s orientation.
Finally, all these functional requirements have to be ful�lled with respect to performance,

including latency between user actions and system reactions as well as overall data through-
put. A summary and speci�cation of the motivated requirements is listed below, subdivided
into requirements that apply for all RISs and requirements that are characteristic for IRISs as
well as formultimodal input processing. Figure 2.2 supplements this summary by illustrating
the requirements with the aid of the general system architecture presented in section 1.2.
¿e presented use case constitutes an instruction-based and intentional interface. It is

based on well known contributions in the �eld to show how these familiar interactions can
be implemented in a novel, e�cient andmaintainable way. However, the concepts developed
therefrom are not constraint to the presented use case, sincemany requirements also hold for
other interface types, like unintentional- or completely non-verbal ones. For instance, many
of the required system capabilities and processing steps are equally necessary to process social
signals. Mainly the �nal analysis step di�ers from speech-driven approaches.

RIS Requirements

Rex e System parts have to be executed to realize distinct aspects of the use case. ¿ese sub-
systems range from computationally light-weight threads of execution, e.g., for data
processing, to computationally heavy-weight threads of execution, e.g., for simulation
and rendering.

Rcom Subsystems have to be able to communicate results to other subsystems.

Rsta1 As an extension to Rcom , all virtual and physical objects that are relevant for more than
one subsystem may be collectively represented in a uniform mannar. ¿is collection
of predominantly numeric data is called application state. Subsystems may manage
additional internal states that are only relevant for their functioning.

Racc1 If Rsta1 is ful�lled, all subsystems shall have access to the application state.

Rper ¿e system shall react to changes of the relevant physical environment, by application
state changes and subsequent rendering output, at least so fast and regularly that the
application stays usable and secure. Ideally, end to end latency and jitter shall be so
low that a further decrease does not improve usability or security.

15

Chapter 2 Use Cases

Multimodal input processing
Numerical Data Numerical & Symbolic Data

Basic (I)RIS Loop
Numerical (& Symbolic) Data

Rexe

Rexe Rexe Rexe

Rexe

Rexe

Rexe

Rexe Rexe Rexe Rexe

Rexe

Rexe

Rexe

Rsta Rper

Rbeh

Rsyn RtmpRsem

Racc
Rcom

Figure 2.2. Fundamental requirements that IRIS have to ful�ll to allow the implementation
of typical MMI use cases. Refer to the text for details.

IRIS Requirements

Rsta2 In addition to Rsta1 , the application state shall also be able to represent symbolic data
and potentially relations between elements of the state.

Racc2 In addition to Racc1 , subsystems shall be able to query the application state to access
its elements based on their properties.

Rbeh Operations that are triggerable by the user via the interface and that alter the applica-
tion state in a way that can be perceived by the user, called actions, shall be represented
so that (input analyzing) subsystems can occasion their execution. Ideally those sub-
system can also query them and re�ect on them.

Multimodal Input Processing Requirements

Rs yn ¿e system shall provide means to de�ne syntactic structures that a succession of user
input has to feature as well as means to validate input according to these de�nitions.

Rtmp ¿e system shall provide means to de�ne temporal dependencies that user input (of
di�erentmodalities) has to feature as well asmeans to validate input according to these
de�nitions.

Rsem ¿e system shall providemeans to de�ne semantic constraints that a succession of user
input and the current application state have to feature as well asmeans to validate input
and application state according to these de�nitions.

16

Chapter 3

RelatedWork

In this chapter, relevant related work about MMSs, (I)RISs, as well as methods suitable to
evaluate their maintainability is presented, analyzed and discussed. ¿e chapter begins with
the subject maintainability to be able to build on corresponding terminology and �ndings
later on. Subsequently, terminology, applied methods, open challenges, and existing plat-
forms in the area of MMSs and (I)RISs are presented and discussed. ¿e chapter concludes
with a summary that emphasizes the combination of MMS- and (I)RIS functionality.

3.1 Maintainability

Hard- and so ware environments change over the years and let so ware age (Parnas, 1994).
Sensors, processing units, and output devices as well as operating systems, integrable frame-
works, and libraries with superior functionality, e�ciency, and e�ectiveness or lower price
get available; old ones become no longer produced or supported. Similarly, requirements
to and functional speci�cations of so ware systems change, due to opportunities created by
new hard- and so ware, sta� changes, or insights gained. ¿is is especially true for the area
of (I)RISs that heavily depends on a variety of complex hard- and so ware solutions and that
is applicable in various disciplines, which potentially introduce ever new research questions
and thus requirements for the underlying systems. Maintenance is thus essential if those sys-
tems are to be capitalized on in the long-term. ¿emaintainability of a system is the ”degree
of e�ectiveness and e�ciency with which [... it] can be modi�ed by the intended maintainers”
(ISO, 2011). It determines the resources and thus cost to keep a system useful. If these cost
get too high, systems are stopped to be maintained and ultimately get unusable. A major
problem, since researchers built on former achievements ever since.
According to the ISO/IEC 25010:2011 standard (ISO, 2011), maintainability consists of the

following sub-aspects:

17

Chapter 3 Related Work

Modularity ”Degree to which a system or computer program is composed of discrete compo-
nents such that a change to one component has minimal impact on other components.”

Modi�ability ”Degree to which a product or system can be e�ectively and e�ciently modi�ed
without introducing defects or degrading existing product quality.”

Reusability ”Degree to which an asset can be used in more than one system, or in building
other assets.”

Analysability ”Degree of e�ectiveness and e�ciency with which it is possible to assess the
impact on a product or system of an intended change to one or more of its parts, or to di-
agnose a product for de�ciencies or causes of failures, or to identify parts to be modi�ed.”

Testability ”Degree of e�ectiveness and e�ciency with which test criteria can be established
for a system, product or component and tests can be performed to determine whether
those criteria have been met.”

With respect to MMSs and (I)RISs, modularity o en corresponds to how the concerns
of di�erent simulation or analysis aspects can be separated, e.g., by a coarse subdivision of
the system into subsystems, but also by more �ne grained techniques and by such that af-
fect orthogonal aspects like data representation or execution models. Modi�ability includes
adaptation to new hard- or so ware parts with minimal e�ort to adapt the rest of the plat-
form and application. For instance, the possibility to exchange a visual rendering subsystem,
as motivated in the introduction. Reusability includes the utilization of an (I)RIS or MMS
for multiple applications, a typical trait of MMS- and (I)RIS platforms, but also the degree
to which so ware assets can be used in or for other MMSs and (I)RISs. Analysability and
testability concern the veri�cation of the above qualities. ¿eir level of di�culty is related to
the complexity of the system to be veri�ed.Moreover, they comprise the evaluation of system
qualities beyond maintainability, e.g., performance aspects like latency and jitter.¿e latter
aspects of analysability and testability, however, are not targeted by this thesis.
In addition to the sub-aspects de�ned by the ISO/IEC 25010:2011 standard, the usability

of a system’s programming interface for developers, i.e., its API usability (McLellan, Roesler,
Tempest, & Spinuzzi, 1998), plays a critical role in supporting maintainability (Clarke, 2004;
Daughtry et al., 2009; Piccioni et al., 2013; Myers & Stylos, 2016). It includes an API’s learn-
ability, the e�ciency and correctness with which a developer can use it, its quality to prevent
errors, its consistency, and its matching to the developers’ mental models. Most of these sub-
aspects center around the provision of appropriate functionality and ways to access it, i.e,
abstractions, a�ordances, and their perception by the developer. In addition to the concrete
design of interfaces and documentation, tools can foster the usability of so ware platforms in
general, e.g., autocompletion and refactoring support as part of development environments.

18

Chapter 3 Related Work

Assessment

Properly assessing or even comparing maintainability is a delicate endeavor with a limited
amount of methods and no obvious choices (Riaz, Mendes, & Tempero, 2009). Objective
maintainability assessment methods apply automated code analysis based on computable
qualitymetrics (e.g., themaintainability index proposed byOman&Hagemeister, 1992; Cole-
man, Ash, Lowther, & Oman, 1994). However, these approaches o en exhibit drawbacks
as being di�cult to exploit for maintainability improvement (Heitlager, Kuipers, & Visser,
2007). For instance, if an automated evaluation’s sole result is one number quantifying a sys-
tem’s maintainability, without revealing which sub-aspects should be revised and how this
could be done. Despite e�orts that are taken to counter this issue (e.g., by Heitlager et al.,
2007), there is little evidence on their e�ectiveness (Riaz et al., 2009).
Subjective maintainability assessment methods are based on expert judgment in the con-

text of reviews (Riaz et al., 2009; McIntosh, Kamei, Adams, & Hassan, 2016). Such expert
reviews are the most commonly applied form of evaluation (Riaz et al., 2009). In addition
to these predictive methods, maintainability can be assessed a posteriori, i.e., based on the
maintenance activity.
¿e limitation in e�ective methods similarly applies for API usability (Piccioni et al., 2013;

Myers & Stylos, 2016). Objective methods exist but are less commonly applied. For instance,
automated evaluations using guidelines that identify function signatures with too many pa-
rameters of the same type in a row or that check the consistency of parameter orderings.
Subjective methods are likewise the primary choice for API usability assessment. ¿ey com-
prise expert reviews based on (API usability) guidelines and user studies, such as think-aloud
usability evaluation, API peer reviews (McLellan et al., 1998; Ruiz, Chen, & Oviatt, 2010) or
questionnaires based on programming tasks (Piccioni et al., 2013). ¿ese assessment meth-
ods are typically supplemented with development processes that foster API usability in the
�rst place (Myers & Stylos, 2016), e.g., by requirement elicitation methods (e.g., natural pro-
gramming) or the use of guidelines. Moreover, commented code examples have proven ben-
e�cial for learning new APIs (McLellan et al., 1998).

Discussion

Despite the importance ofmaintainability andAPI usability, conducted evaluations forMMSs
and (I)RISs primarily focus functional subsystem qualities, performance and user interface
usability (see section 3.2 and section 3.3). ¿e lack of e�ective methods in this area is ad-
ditionally exacerbated by the complexity of the systems to be evaluated (Wiebusch, 2016;
Fischbach et al., 2017). All subjective measures exhibit one crucial requirement: develop-

19

Chapter 3 Related Work

ers that have su�cient knowledge of a system to solve complex tasks and to re�ect on non-
functional qualities. Getting a reasonable amount of such experts is problematic. At least, for
widespread commercial systems the availability of experts is moderate. Yet, those systems are
typically restrictive when it comes to profound system modi�cations, necessary to conduct
research on maintainability. Open-source research systems possess such �exibility, however,
they are o en used by only few developers.
Given these constraints, the most reasonable method to foster maintainability as well as

API usability are expert reviews (cf. Steed, 2008; Kuck et al., 2008). ¿ey require a low num-
ber of developers compared to other subjective methods and yield insights for actually im-
proving a system. Moreover, they can be iteratively applied to identify and correct de�cits.
¿is primary method can be supplemented by objective measures as well as by studies in-
volving developers that are system novices but available in higher numbers, e.g., master-level
students attending a dedicated course. Finally, tool support can be explored to implement
elicited requirements or identi�ed issues concerning API usability.

3.2 Multimodal Systems

¿e use case presented in chapter 2 showcases what kind of user interface is desirable and
which di�culties its technical realizations will likely have to face. Since so ware quality is
the main aspect of the motivated problem, systems dedicated to the realization of MMIs are
consequently researched �rst. ¿is section presents an overview of MMSs, beginning with
terms and concepts used in literature as well as applied methods. Subsequently, challenges
are summarized and concrete solutions, i.e., so ware platforms, are listed and discussed. For
comprehensive presentations of multimodal interfaces and -systems, targeting aspects alter-
native to the so ware quality focus in this thesis, youmay refer to the following publications:

• Multimodal Interfaces in General
Sharma et al., 1998; Jaimes and Sebe, 2007; Turk, 2014; Oviatt and Cohen, 2015

• Motivation
Turk and Robertson, 2000; Oviatt, Coulston, and Lunsford, 2004

• Principles, Models and Systems
Dumas, Lalanne, and Oviatt, 2009

• Fusion
Lalanne et al., 2009; Atrey, Hossain, El Saddik, and Kankanhalli, 2010

20

Chapter 3 Related Work

Terminology

¿is section speci�es the main terms related to MMIs relevant for this thesis. Besides MMI
itself, these are: modalities, the communication channels MMIs rely on, multimodal sys-
tems, technical realizations of MMIs, andmultimodal fusion, the process of jointly analysing
modalities.

Modality

Oneof themost central terms forMMIs ismodality. ¿ere are several points of viewonwhat a
modality can be. Johnston et al. (1997) describe it in general as ”... [a channel] through which
information may pass between user and computer”. Jaimes and Sebe (2007) view modality
from a human-centered perspective and concretize their de�nition by giving concrete exam-
ples:

”We use a human-centered approach and by modality we mean mode of com-
munication according to human senses and computer input devices activated by
humans or measuring human qualities (e.g., blood pressure). ¿e human senses
are sight, touch, hearing, smell, and taste. ¿e input modalities of many computer
input devices can be considered to correspond to human senses: cameras (sight),
haptic sensors (touch), microphones (hearing), olfactory (smell), and even taste.
Many other computer input devices activated by humans, however, can be consid-
ered to correspond to a combination of human senses, or to none at all: keyboard,
mouse, writing tablet, motion input (e.g., the device itself is moved for interaction),
galvanic skin response, and other biometric sensors.”

¿e authors supplement their de�nition by emphasizing a human- and a system perspec-
tive:

”[...] as we type, we touch keys on a keyboard to input data into the computer,
but some of us also use sight to read what we type or to locate the proper keys
to be pressed. ¿erefore, it is important to keep in mind the di�erences between
what the human is doing and what the system is actually receiving as input during
interaction.”

In analogy to Johnston, Cohen, McGee, Oviatt, Pittman, and Smith’s (1997) de�nition,
the channel through which information passes is essential. Such channels link, on the one
end, the human as actor and, on the other end, the computer as receiver. ¿ey are �ttingly
called human-action modalities and computer-sensing modalities by Sharma et al. (1998). ¿e

21

Chapter 3 Related Work

authors conclude that there is a large numer of potential (human-action) modalities that can
be considered forMMIs, since computers can sense human qualities that humans themselves
can not:

”[... It] is desirable that computers be able to interpret all natural human actions.
Hence, computers should interpret human hand, body, and facial gestures, human
speech, eye gaze, etc. Some computer-sensory modalities are analogous to human
ones. Computer vision and ASR mimic the equivalent human sensing modalities.
However, computers also possess sensory modalities that humans lack. ¿ey can
accurately estimate the position of the human hand through magnetic sensors and
measure subtle changes of the electric activity in the human brain, for instance.
¿us, there is a vast repertoire of human-action modalities that can potentially be
perceived by a computer.”

In the remainder of this thesis, the term modality refers to human-action modalities to
remain with the concept of migrating human-human interaction.

Multimodal Interface

A multimodal interface can thus be de�ned as an interface that ”[... aims] to recognize natu-
rally occurring forms of human language and behavior” (Oviatt, 2003) and that ”[... supports]
input and processing of two or more modalities [...]” (Oviatt & Cohen, 2015). Symmetrically,
multimodal interfaces may also comprisemultimodal output, i.e., may ”[use] di�erent modal-
ities, like visual display, audio, and tactile feedback, to engage human perceptual, cognitive, and
communication skills in understanding what is being presented.” (Turk & Robertson, 2000).
¿e research �elds associated to those two aspects ofmultimodal interfaces sharemanymeth-
ods and approaches, however, they also have to cope with distinct issues.

Multimodal System

Amultimodal system, in turn, is considered as a computer system that can be interacted with
via a multimodal interface. If the a�nity to natural human behavior is omitted and a mul-
timodal system is seen as ”[a system] that responds to inputs in more than one modality or
communication channel” (Jaimes & Sebe, 2007), a wider range of technical realizations �t the
de�nition; even a keyboard and mouse interface. However, the manner of modality utiliza-
tion is essential for a further classi�cation. Nigay andCoutaz (1993) propose to classifyMMIs
by means of three dimension: the levels of data abstraction, the temporal use of modalities,
and the presence of a combined analysis of modalities (fusion). In this design space the �rst

22

Chapter 3 Related Work

example interaction presented in chapter 2 (“Put [deictic gesture] that green chair near [deic-
tic gesture] this table”) would be classi�ed as follows: ¿emodalities speech and gestures are
used in parallel. In terms of data abstraction, raw numerical values as well as symbolic values
have to be processed. For instance, positions of the user’s hand over time for the detection of
deictic gestures (numeric) and recognized spoken words and detected gestures (symbolic).
¿emodalities require a combined analysis to facilitate the resolution of the sentence’s subject
and object, i.e., the pointing direction of the user has to be evaluated with respect to the time
the corresponding pronoun has been uttered. A multimodal system supporting such an in-
teraction is called synergistic. In the remainder of this thesis, the terms multimodal interface
and multimodal system refer to the synergistic use of modalities and to an a�nity to natural
human behavior. ¿is choice demands the highest system requirements of the design space,
whose solutions are certainly also suitable for less complex interfaces.
Coutaz et al. (1995) supplement MMI classi�cation by considering goals that a user can

reach within an application, e.g., causing an object to be selected or altering one of its prop-
erties to a speci�c value. ¿e types of modalities that she can utilize to reach a certain goal
as well as their temporal relationship is used to characterize an interface. ¿eir proposed
scheme is called the CARE properties (Complementarity, Assignment, Redundancy, and
Equivalence). Modalities can be equivalent if only one out of multiple choices is su�cient
to reach a certain goal. In contrast, one modality can be assigned if it is the only possible
choice to reach a certain goal. Modalities can be used redundantly if they are equivalent
and are nevertheless used sequentially or in parallel within a certain time window. Finally,
modalities can be used in a complementarymanner if they are used sequentially or in parallel
within a certain time window, but one of them alone would not be su�cient. ¿at is, if the
necessary information is communicated divided amongst di�erent modalities.
Both commands presented in chapter 2 require a complementary use of modalities, since

neither speech nor gestures could be skipped. In fact, complementarity is the dominant
theme for interactions inMMIs if users are le the choice, rather than redundancy (Oviatt &
Cohen, 2015). Its utilization in principle has obvious advantages. Information can be passed
using the most adequate modality for the user, e.g., speech for communicating actions, ob-
ject types as well as their properties and gestures for communicating spatial information. A
complementary use of modalities demands a synergistic multimodal system and thus entails
the highest system requirements.

Multimodal fusion

In order to realize synergistic multimodal systems, the input modalities have to be jointly
analyzed at some point of processing to derive a conjoint meaning ”most likely expressed by

23

Chapter 3 Related Work

the user” (P�eger, 2004). Lalanne et al. (2009) give a general de�nition that lists commonly
used terms for the process:

”¿e mechanisms used for combining information (whether it is received in a se-
quential or parallel way) have received di�erent names in the past. [¿is process
is called] combining [... ,] cooperation of modalities [... ,] integration [... ,] multi-
modal integration [..., or] fusion.”

In the remainder of this thesis the term multimodal fusion will be used, since it is most
widely used, especially amongst the lastet publications in the �eld.

Dimensions of Fusion

Fusion can be applied on various levels of abstraction. ¿ree levels of fusion have been iden-
ti�ed throughout the literature (Hall & Llinas, 1997; Sharma et al., 1998; Dumas, Lalanne,
& Oviatt, 2009; Hoste, Dumas, & Signer, 2011): data-level fusion, feature-level fusion, and
decision-level fusion (see Figure 3.1). ¿is classi�cation scheme is further re�ned by the term
semantic-level fusion, denoting fusionmethods at decision-level that explicitly combine (pre-
processed) semantic information from multiple modalities, which are loosely coupled with
respect to their temporal occurrence (Oviatt & Cohen, 2015). For instance, the �nal process-
ing required for the speech-gestural utterances of the interaction use case.

A/D, Drivers
& SDKs

A/D, Drivers
& SDKs

A/D, Drivers
& SDKs

Analysis

Analysis

Analysis

Fusion Analysis

Analysis

Fusion

Numerical Data Numerical & Symbolic Data

Data Level Feature Level Decision Level

Black box usage of fusion

Figure 3.1. Levels of fusion in multimodal input processing. MMSs potentially apply fu-
sion at data-, feature-, and decision level. Data-level fusion is o entimes used as black box
(dashed box), e.g., within SDKs or an integrated ASR subsystem. Fusion applied at feature-
level, decision-level, or in-between, is typically realized using the MMS’s architecture to ac-
cess requirements and to communicate results (red arrows, cf. Jaimes & Sebe, 2007).

24

Chapter 3 Related Work

¿e crucial part of a multimodal system realization is the fusion of information that is ob-
tained via multiple modalities into a semantically and temporally compatible interpretation.
¿is process evaluates the captured user behavior with regard to syntactic, temporal, and se-
mantic correctness (Rs yn , Rtmp , and Rsem) to derive the user’s intention. Atrey et al. (2010),
Oviatt and Cohen (2015) propose three central dimensions of multimodal fusionmethods to
structure the variety of approaches that can be applied: when to fuse, what to fuse, and how
to fuse. ¿ey are supplemented with the issue how to specify and detailed in the remainder of
this section:
When to fuse refers to the levels of fusion presented in Table 3.1. ”Finding an optimal fusion

level for a particular combination of modalities is not straightforward”, though (Sharma et al.,
1998).
What to fuse complements the levels of fusionwith appropriate data structures as shown in

Table 3.2. While data- and feature-level fusion gets along with modality-speci�c data struc-
tures, decision-level fusion requires uniform representation that can be used for all modali-
ties (Rsta).
How to fuse refers to concrete methods that can be applied for fusion. ¿eoretical founda-

tions underlying many of those methods, e.g., the general fusion model proposed by Sharma
et al. (1998), typically consider psychological and biological �ndings, such as neurological
models, evidence accruement, contextual dependency (cf. Stein &Meredith, 1993), or meth-
ods to deal with discordance (cf. Bower, 1974). Atrey et al. (2010) present a comprehensive
overviewof feature-level fusionmethods, categorized into rule-basedmethods, classi�cation-
based methods, and estimation-based methods. Amongst them, classi�cation-based meth-

Table3.1.Potential fusion levels inMMSs, clari�ed by listing conditions for their application,
characteristics, and examples (cf. Sharma, Pavlovic, & Huang, 1998).

Level Conditions Characteristics Example

Data • Observations of the same
type

• High level of synchroniza-
tion

• Sensitive to noise
• Direct use uncommon in
MMS

• More likely used within
drivers or SDKs

• Multiple cameras captur-
ing visual information on
one object

Feature • Preceding analysis
• Medium level of synchro-
nization

• Possibly large feature sets
• Common for MMS

• Speech and lip movement

Decision • Preceding mode decisions • Very common for MMS
• Prone to information loss
on lower levels

• Robust to noise

• ”Make [pointing] this box
white”

25

Chapter 3 Related Work

Table 3.2. Appropriate data representations for fusion levels, clari�ed by listing commonly
used data types as well as examples (cf. Jaimes & Sebe, 2007).

Level Data Common data structures Example(s)

Data • Raw sensor values • Floating point vectors • Pixel intensities
• Audio levels

Feature • Processed sensor values • Floating point vectors
• Strings

• Color histograms
• Positions, Velocities
• Audio features
• Raw speech tokens

Decision • Unimodal classi�cation re-
sults

• Results of data- or feature-
level fusion

• Frames
• Feature structures
• Typed feature structures

• Grounded speech tokens
• Classi�ed gestures
• Classi�ed facial actions

ods, like neural networks, hidden markov models, and support vector machines, are most
commonly applied. In addition to their utilization for feature-level fusion, many of those
methods can also be applied for unimodal classi�cation (Sharma et al., 1998). Decision-level
fusion methods found in literature can be categorized into statistical approaches (e.g., Wu,
Oviatt, & Cohen, 1999), approaches based on frames and (typed) feature structures (e.g., Co-
hen et al., 1997), uni�cation (e.g., Johnston et al., 1997; Lukas, Schwägerl, & Latoschik, 2010),
�nite-state transducers (e.g., Johnston & Bangalore, 2000; Bangalore & Johnston, 2009), tem-
poral Augmented Transition Networks (tATNs, e.g., Latoschik, 2002), and machine-learning-
based approaches (e.g., Ngiam et al., 2011; Martínez & Yannakakis, 2014). An outline of data-
level fusionmethods is omitted, since they are commonly utilized as black box within drivers
and SDKs, e.g., corresponding to ASRs and tracking systems.
¿e choice of a fusionmethod implies a certain functionality that has to be realized within

a system. Yet, this choice does not directly in�uence a systems general maintainability. Con-
crete implementations rather e�ect intra-subsystem qualities. Indirectly, however, the ne-
cessitated state access of these methods is a potential source for close coupling. Especially
decision-level fusion methods typically require to re�ect on potentially all application state
elements to validate semantic correctness (Rsem). In the context of the use case, for instance,
to check if one of the objects pointed at is really a green chair.
How to specify refers to the con�guration of fusion methods. At least at decision-level, a

distinction between valid utterances that shall trigger a certain reaction by the application
and invalid input is necessary. Machine-learning based approaches require annotated test
data. Other approaches require some kind of (formal) de�nition of valid multimodal utter-
ances and preferably amapping to actions of the respective application. Utilized de�nitions of

26

Chapter 3 Related Work

that kind range from idiosyncratic speci�cations in programming code, formatted text, and
domain speci�c languages (DSLs) to general multimodal interaction modeling languages,
like the Multimodal Integration Markup Language (MIML, Latoschik, 2002), the Synchro-
nized Multimodal User Interaction Modeling Language (SMUIML, Dumas, Lalanne, & In-
gold, 2010), or XMMVR2 (Olmedo, Escudero, & Cardenoso, 2008). Dumas, Lalanne, and
Oviatt (2009), Dumas et al. (2010) provide comprehensive overviews. As a guideline for the
development of amultimodal interactionmodeling language, Sire andChatty (2004) propose
ideal language features as the result of a requirements analysis. According to these authors,
a language shall

1. be modality agnostic,

2. provide a binding mechanism to link actions of the respective application,

3. provide explicit control structures,

4. provide extensible event de�nition mechanisms,

5. provide a sophisticated data modeling, and

6. consist of reusable components.

While formality and reusability is typically high for languages that use common external
formats, like XML, the call for explicit control structures and for a binding mechanism to
application reactions especially bene�ts internal (in-code) de�nition languages.

Challenges

With this repertoire of methods at hand it is possible to analyze information from multiple
modalities and also combine them into a common representation. Concrete implementa-
tions, i.e., multimodal systems, have to deal with a variety of challenges in doing so (Sharma
et al., 1998; Lalanne et al., 2009; Atrey et al., 2010; Turk, 2014; Fischbach, 2015). On the tech-
nical side, multimodal fusion implies the processing and communication of data (Rex e and
Rcom), with typical characteristics that a system has to deal with:

Timestamps Every chunk of data has to be associated with the time it was communicated
by the user (to be able to verify temporal constraints—Rtmp).

N-best results SDKs and processing steps o en do not provide one reliable option (out of
several) about what the user expressed at a certain point in time, but n-best guesses.

Con�dences Items of n-best results are providedwith ameasure that describes the certainty
that the represented information really complies with what the user expressed.

27

Chapter 3 Related Work

Formats ¿e formats of data obtained via di�erent modalities usually di�ers, especially at
data-level. It has to be fused into a compatible representation at lest at decision-level.

Rates ¿e rates with which data is provided to a multimodal system by sensors or rather
drivers usually di�ers between modalities. ¿is implies the requirement of suitable
processing capabilities (Rex e) as well as of su�cient performance (Rper).

In addition, system architectures have to cope with:

Context Fusion methods have be able to access current and past properties of the captured
physical environment (including user behavior) as well as of the virtual environment
that are relevant for the user’s multimodal utterances (Racc , cf. multimodal memory
Kopp, Bergmann, & Kahl, 2013; Bergmann, Kahl, & Kopp, 2014).

Processing times ¿e analysis and fusion of di�erent modalities may take substantially
varying amounts of time (Rex e).

Parallelism A concurrent execution model is required to fully exploit moden hardware ar-
chitectures, i.e., multiple cores and processing units (Rex e).

Asynchrony In addition to disparate capture rates, libraries that communicate with sensor
hardware via drivers may have to run asynchronously to each other (Rex e).

Finally, the realization of the fusion process itself entails challenges, like which modality
to capture, which features to extract, and which fusion method to apply (corresponding to
the design issues presented above).
Despite the stated maturity of the multimodal interface domain (Lalanne et al., 2009) that

may apply for certain sub-areas, other researcher conclude that ”[...] the �eld is still young”
(Dumas, Lalanne, & Oviatt, 2009). Pending grand challenges range from the improvement
of the fusion process itself (Jaimes & Sebe, 2007; Lalanne et al., 2009; Dumas, Lalanne, &
Oviatt, 2009; Latoschik & Fischbach, 2014), e.g., in terms of �exibility to cope with individ-
ual user characteristics and cultural context, and so ware quality issues of MMSs (Sharma
et al., 1998; Turk & Robertson, 2000; Latoschik, 2005; Jaimes & Sebe, 2007; Lalanne et al.,
2009; Dumas, Lalanne, & Oviatt, 2009; Latoschik & Tramberend, 2010; Latoschik & Fis-
chbach, 2014; Fischbach, 2015) to the qualitative comparison of fusion methods (Sharma et
al., 1998; Lalanne et al., 2009; Atrey et al., 2010; Fischbach, 2015) and considerations beyond
multimodality (Oviatt & Cohen, 2015), like the in�uence of MMIs on the users’ cognition.
Amongst those, so ware quality issues of MMSs are of particular importance for this thesis.
In the following sections, this challenge will be detailed, be means of a elaboration onMMS-
and RIS platforms and continued with an analysis of their combination.

28

Chapter 3 Related Work

Platforms

In this section, MMS platform architectures are reviewed with respect to the following as-
pects: applied engineering techniques, identi�cation of maintainability issues, and conduct
of respective evaluations. ¿is review completes the requirements elicitation for MMS and
constitutes a basis for analysing the combination ofMMS andRIS. Table 3.3 gives an overview
ofMMSs and shows which aspects are explicitly emphasized in the reference(s). ¿e fact that
an applied engineering technique, an identi�ed maintainability issues, or a conducted evalu-
ation is not emphasized, does not exclude that it was not performed or considered by the au-
thors. Not being emphasized in the main system presentation, however, re�ects signi�cance.
Moreover, if a system’s source code is not available to other researchers, these presentations
remain the only source of reference.
Bolt’s (1980) Put¿at¿ere demonstration is o en referred to as the �rst system that show-

cased the technical feasibility of an interface that uses natural human-action modalities, i.e.,
speech and deictic gestures. Demonstrations that followed present di�erent application areas,
modalities, as well as improved processing and performance capabilities. ¿eir commonality
is the dedication for a speci�c application and a �xed set of subsystems.
Pioneered by systems like Quickset and virtuelle Werkstatt non-functional so ware qual-

ities like reusability, modi�ability, and modularity as well as development e�ort then grew
important. ¿e result of this development are domain dependent multimodal system plat-
forms that provide di�erent sets of methods for multimodal processing and the necessary
means for the implementation of applications in one speci�c application area, e.g., desktop
or mobile applications, interactive surfaces, virtual environments, or robot control. ¿ese
systems consequently include subsystems required for realizing interactive applications, i.e.,
subsystems for simulation as well as for rendering, and usually provide means to develop
applications. ¿e concrete repertoire of available subsystems and particularly considered
non-functional qualities, like performance or security, are aligned with typical application
area requirements.
Finally, beginning with OpenInterface, another type of system emerged: independent mul-

timodal system platforms. ¿ese systems aim to further increasemaintainability, in particular
the reusability of multimodal processing and fusion methods that are implemented as part
of such systems, by not dedicating to a speci�c application area. ¿at is, by omitting means
for simulation and rendering.
So ware engineering techniques that are applied to realize the listed MMSs and that are

explicitly emphasized in the associated publication(s) can be categorized into: separation of
concerns, communication schemes, executionmodels, state representationmodels, and state

29

Chapter 3 Related Work

access schemes (see Table 3.3, column Techniques). ¿ese categories in principle correspond
to the basic RIS requirements identi�ed in chapter 2, which shows the similarity betweenRIS-
andMMS platforms. In fact, domain dependentMMS platforms overlap with RIS platforms,
since they provide means to implement interactive applications, i.e., to process multimodal
user input, to simulate an internal state, and to provide feedback to the user.

Separation of Concerns

• Component models, e.g., in ICARE/FACET, OpenInterface, and SSI

• Modularization, e.g., in Cubricon, i*Chameleon, and HCI^2

• So ware agents, e.g., in Quickset,Meanings4Fusion, and HephaisTK

ExecutionModels

• ¿e actor model inmiPro

• Data �ow graphs in virtuelle Werkstatt (attribute sequences)

Communication Schemes

• Events, e.g., in SSI,Mudra, and OpenInterface

• Messages, in Quickset andmiPro

• Pipelines, in SKEMMI and ICARE/FACET

• Publish/subscribe mechanisms, in HCI^2

• Routes, in virtuelle Werkstatt

• Streams, e.g., in SSI, OpenInterface, and Cubricon

State RepresentationModels

• Fact bases, inMudra

• Organization graphs and functional-semantic structures, in eXpert TRAnslator

• OWL, inMeanings4Fusion

• Semantic entities, in virtuelle Werkstatt

• A semantic entity-component state (an extension of semantic entities), inmiPro

• Typed feature structures, in Quickset

30

Chapter 3 Related Work

State Access Schemes

Explicitly through

• Interface de�nitions, in ICARE/FACET

• Semantic queries, inmiPro

Implicitly through

• Graphical tools, in OpenInterface and SKEMMI

• High-level description languages, e.g., in SSI, COLD, and virtuelle Werkstatt

• Rules, inM3I andMudra

Besides the early demonstrations, all of the related publications identify at least one aspect
of maintainability as a crucial system requirement, mostly driven by the aim to support the
reuse of once implemented processing and fusion techniques (see Table 3.3, column Issues).
All systems apply separation of concerns to foster modularity. In addition, the concretely
applied so ware techniques in�uence the maintainability of the MMS platform.
In order to foster maintainability and in particular to reduce the development e�ort for

the development of MMIs, many authors emphasize the importance of API usability. ¿e
main means applied are (graphical) tool support and (XML-based) high-level description
languages, including multimodal grammars (e.g., Latoschik, 2005; Dumas, Lalanne, & In-
gold, 2009), rules (e.g., Hoste et al., 2011; Möller, Diewald, Roalter, & Kranz, 2014), and in-
ternal DSLs (e.g., Latoschik & Fischbach, 2014; Fischbach et al., 2017). Both of which allow
to (implicitly) de�ne access to the application state.
A less identi�ed, but equally important system quality is its capability to support meth-

ods on all processing- and fusion levels (Hoste et al., 2011; Fischbach et al., 2017). Hoste,
Dumas, and Signer’s (2011) approach to achieve uni�ed multimodal processing builds upon
a central fact base, a declarative rule-based description language, and an inference engine.
¿e approach presented in Fischbach et al. (2017) and this thesis make use of an entity-based
application state, a uniform semantic access scheme to it, as well as of the actor model.
Besides proof of concept applications, an evaluation of non-functional system qualities

is rarely presented in literature, though (see Table 3.3, column Evaluation). Performance
measures and expert reviews are the most reasonable applied methods. In addition, pre-
studies and informal evaluations at least aim for getting a better intuition of achieved system
qualities. ¿is con�rms the lack of suitable evaluation methods identi�ed in section 3.1.

31

Chapter 3 Related Work

Discussion

Altogether, the prime achievements gathered by contributions over the years are abstract
�ndings like so ware engineering techniques, methods, algorithms, and even best practices
or lessons learned. Yet, it would be highly bene�cial if any (old) system in showcased in liter-
ature could still be used (see Table 3.3, column Available). Seven of the presented MMS plat-
forms are available for researches, which is owed to goodmaintainability as well as expended
e�ort and ressources to maintain the systems. However, very few publications provide in-
sight in the utilized execution model, a central system architecture characteristic, which af-
fects maintainability. In addition, most systems present state representation models that are
dedicated to decision-level fusion, leaving out that a real system somehow has to cope with
low-level numerical sensor data and potentially even with properties of VE objects as well cf.,
Hoste, Dumas, and Signer’s (2011). In combination with that lack of evaluations, this leaves
little scope to comprehend and improve maintainability issues. When it comes to applica-
tion areas that pose high system demands themselves, like situated interaction environments,
available solutions are rare, as discussed in section 4.1.

32

Table 3.3.Overview of MMSs categorized into demonstrations, domain dependent system platforms, and independent system platforms(extended from Fischbach et al.,
2017). System aspects explicitly emphasized in the reference(s) are summarized by identi�ed issues (Modularity, Modi�ability, Reus(e)ability, & API usability), applied
engineering techniques (Executionmodels,Communication schemes, State representationmodels, stateAccess schemes, and supportiveTools), and conducted evaluations
(Expert reviews, Pre-studies, Proof of Concepts, & Informal evaluations). Explicit RIS support is subdivided into support for VEs and RC. ¿e systems’ availability for
research is indicated if the source code can be obtained and if it is running on current hardware platforms (see Appendix A for details and chapter 4 for *).

Name Type
Emphasized system aspects

RIS
support Available ReferenceIssues Techniques Evaluation

M
od

u

M
od

i

R
us

e

A
PI

u

So
C

Ex
e

C
om St
a

A
cc

To
ol

Ex
p

Pr
e

Po
C

In
f

Put that There demo x no no Bolt (1980)

Cubricon demo x x x no no
Neal, Thielman, Dobes, Haller, and
Shapiro (1989)

eXpert TRAnslator demo x x x no no Wahlster (1991)
ICONIC demo x x yes (VE) no Koons and Sparrell (1994)
QuickSet dom. x x x x x no no Cohen et al. (1997)

SGIM & virtuelle Werkstatt dom. x x x x x x x x x x x yes no* Latoschik (2001a, 2005)
OpenInterface (OI) ind. x x x x x x x - yes Serrano et al. (2008)

SKEMMI (OI) ind. x x x x x x x - yes
Lawson, Al-Akkad, Vanderdonckt,
and Macq (2009)

Meanings4Fusion (OI) ind. x x x x x x x x - yes
Mendonça, Lawson, Vybornova,
Macq, and Vanderdonckt (2009)

i*Chameleon ind. x x x x x x x x x - no Tang et al. (2011)
Mudra ind. x x x x x x x - no Hoste et al. (2011)

unnamed system using COLD dom. x x x x yes (RC) no Ameri Ekhtiarabadi et al. (2011)
HCI^2 ind. x x x x x x x x x - yes Shen and Pantic (2013)

SSI ind. x x x x x x - yes Wagner et al. (2013)
M3I dom. x x x x x no yes Möller et al. (2014)

unnamed system dom. x x yes (RC) no Cherubini et al. (2015)

miPro (Simulator X) dom. x x x x x x x x x x x x† x x yes (VE) yes
Latoschik and Fischbach (2014),
Fischbach et al. (2017), † see chapter 7

Chapter 3 Related Work

3.3 Real-time Interactive Systems

¿e second essential aspect of the interaction use case presented in chapter 2 is the envi-
ronment in which it takes place. In contrast to traditional HCIs, the user is—in this case
virtually—situated within the interface; not in front of it. Objects that the user can see (pos-
sibly even hear or touch) can be used to communicate commands and intentions to the sys-
tem, e.g., they can be named, described or pointed at from the user’s current perspective. ¿e
technical realization of situated interaction environments is highly complex Steed (2008),
Wingrave and LaViola (2010), Wiebusch (2016), even without considering a MMI.
¿is section thus elaborates on RISs that constitute technical realizations of situated in-

teraction environments. In analogy to the previous section, terms and concepts used in the
RIS domain are presented �rst, followed by a brief summary of applied methods as well as
open challenges, and a �nal listing and discussion of existing systems. For a comprehensive
analysis of (I)RIS architectures with respect to reusability, you may refer toWiebusch (2016).

Terminology

Virtual Environment

¿e characterization of a user’s surroundings during (human-computer) interaction is typi-
cal for the domain of RISs. Two of the earliest established terms are virtual environment (VE,
Fisher, McGreevy, Humphries, & Robinett, 1987) and virtual reality (VR, Lanier, 1988), de-
noting a completely virtual surrounding. Milgram, Takemura, Utsumi, and Kishino (1995)
suggest a taxonomy formixing real and virtual words and de�ne aVE (a.k.aVR environment)

”¿e commonly held view of a VR environment is one in which the [participant] is
totally immersed in a completely synthetic world, which may or may not mimic the
properties of a real-world environment, either existing or �ctional, but which may
also exceed the bounds of physical reality by creating a world in which the physical
laws governing gravity, time and material properties no longer hold.”

Although the authors focussed on display technology for classi�cation, which disregards
input and other potential output modalities, they were the �rst to propose a uni�ed perspec-
tive on VEs and other, partially- or non-virtual, HCI environments:

”In contrast [to VEs], a strictly real-world environment clearlymust be constrained
by the laws of physics. Rather than regarding the two concepts simply as antitheses,
however, it is more convenient to view them as lying at opposite ends of a contin-
uum, which we refer to as the Reality-Virtuality (RV) continuum.”

34

Chapter 3 Related Work

Mixed Reality

All conceptual environments between a completely real- and virtual world are denoted as
mixed reality (MR) according to Milgram et al. (1995). MR includes two sub-concepts dis-
tinguished by the surrounding environment observed by the user: principally real environ-
ments, enhanced with virtual artefacts, are called augmented reality (AR) and principally
virtual environments, augmented with physical artifacts, called augmented virtuality (AV).
Characteristics features of MR environments can be adopted from Azuma’s (1997) later def-
inition of AR:

”¿is survey de�nes AR as any system that has the following three characteristics:

1. Combines real and virtual

2. Interactive in real time

3. Registered in 3-D”

¿e demanded real-timelines as well as the spatial registration between real- and virtual
content are essential requirements for situated 3D- and multimodal interaction techniques
too. ¿us, MR environments are per se suited for such interactions.

Situated interaction environments

With the aim of emphasizing environments that share the common characteristic of being
suitable for aMMI, the term situated interaction environment is used in this thesis. It denotes
environments in which the user is (physically) situated and that thus foster interactions that
are spatially and temporally grounded therein. Situated interaction environments comprise
VEs, MR environments, and physical environments and can be characterized by

1. being completely real (as in HRI),
combining real and virtual artefacts (as in MR),
or being completely virtual (as in VE)

2. being interactive in real-time

3. fostering interactions that are spatially and temporally grounded

¿e term builds onMilgram, Takemura, Utsumi, and Kishino’s (1995) and Azuma’s (1997)
de�nitions, emphasizes environments rather than systems or technologies, and explicitly in-
cludes environments that only allow physical feedback (e.g., moving a robot arm, displacing
an object, or switching on a light). It relates to the concept of situated interaction (cf. Schmidt,
Van de Velde, & Kortuem, 2000; Streitz, Röcker, Prante, Stenzel, & van Alphen, 2003; Bohus,

35

Chapter 3 Related Work

2014), which is more oriented towards physical environments, and adopts its use for VEs,
e.g., to describe the interaction with a virtual agent (cf. Kopp et al., 2003; Leßmann, Kopp, &
Wachsmuth, 2006; Salem, Kopp, Wachsmuth, & Joublin, 2010).

Intelligent Virtual Environment

Another source of complexity for VEs di�erent to the user interface can be its content. Luck
and Aylett (2000) propose the term intelligent virtual environment (IVE) as a

”¿is combination [AI, arti�cial life, VR, and VEs] of intelligent techniques and
tools, embodied in autonomous creatures and agents, together with e�ectivemeans
for their graphical representation and interaction of various kinds, has given rise to
a new area at their meeting point, which we call intelligent virtual environments.”

Although the authors focus on autonomous agents, the implied requirements of IVEs
mostly overlap with those of with those of multimodal input processing: integration of AI
methods and elaborated knowledge representation. Moreover, more complex VEs may also
call for adequate interaction techniques, making IVEs implicitly a target for MMIs.

Real-time Interactive System

As the counterpart to environments and concepts,Real-time interactive systems (RISs) denote
their (so ware) technical realizations. While the termRIS also includes concrete applications
and demonstrators, a RIS platform characterizes a generalized et of functionality dedicated
to the development of multiple applications within an application area. RIS platforms pro-
vide means for the execution of multiple subsystems as well as for communication between
subsystems. Optionally they provide a uniform data representation layer for all subsystems.
¿ey meet—some more or less strict—real-time constraints and are dedicated to the pro-
cessing of user input, the simulation of an internal state, and the provision of feedback to the
user. Typically RIS platforms already comprise implementations of commonly required sub-
systems, e.g., driver and SDK integrations for sensors and input devices, physics simulation,
and visual rendering. ¿ey allow the technical realization of situated interaction environ-
ments, including VR and MR environments, as well as of scenarios with lower requirements
(cf. Figure 1.3 in section 1.2).
Substantial contributions to (I)RIS so ware architectures have been encouraged by the

IEEE Virtual Reality workshop on So ware Engineering and Architectures for Realtime In-
teractive Systems (Latoschik, 2017, SEARIS). In its call for participation, the workshop de-
scribes RIS as (listing AR on one level with MR, in contrast to Milgram et al., 1995):

36

Chapter 3 Related Work

”[... RIS] span fromVirtual Reality (VR), Augmented Reality (AR), andMixed Re-
ality (MR) environments to novel Human-Computer Interaction systems (such as
multimodal or multitouch architectures) and entertainment applications in gen-
eral. ¿eir common principle is a strong user centric orientation which requires
real-time processing of simulation aspects as well as input/output events according
to perceptual constraints.”

Intelligent Real-time Interactive System

Intelligent Real-time Interactive Systems (IRISs) are a RIS subcategory and the technical real-
ization counterpart to IVEs, i.e., RISs that explicitly support the integration of AI methods
and provide elaborated knowledge representation, e.g., capable of handling symbolic and nu-
meric data. An alternative de�nition is given by Luck and Aylett (2000), which complements
their autonomous agents-focused IVE de�nition:

”In this work, themore comprehensive term Intelligent Realtime Interactive System
(IRIS) is used to denote a system that simulates a virtual environment the elements
of which support their utilization in intelligent ways. In this regard, an element
can be any part of the VE, including so ware modules that perform the necessary
simulations.”

Summary

¿e commonly used terminology in the RIS area overlaps in many aspects. Situated interac-
tion environment is a a conceptual hypernym for physical environments, the MR spectrum
(including AR), and for VEs. It promotes MMIs as promising human-computer interfcae
and is a basis for immersion in VR and MR. Depending on their content, situated interac-
tion environments can also be denoted as IVEs, e.g., if they comprise autonomous agents.
RISs are technical solutions for situated interaction environments. If they enable the re-

alization of MMIs, i.e., explicitly support the integration of AI methods and provide elab-
orated knowledge representation, they are denoted as IRISs. (I)RIS platforms are thus the
primary focus of this thesis. ¿e presented use case is chosen to be within a VE. An IRIS that
technically realizes it, however, should likewise suitable for realizing other forms of situated
interaction environments (cf. section 7.2).

37

Chapter 3 Related Work

Architecture Concepts

RIS architectures have to lay the foundation for the ful�llment of the fundamental require-
ments identi�ed in chapter 2. Rex e calls for the (parallel) execution of threads of execution,
ideally on all levels of granularity, i.e., for an execution model for submodules. Rsta and Racc

demand data representation and sharing. ¿is can be realized by a state representation that
is mutually shared and accessible by all subsystems (global application state). At a minimum,
this can also be realized by providing a communication scheme (Rcom) between subsystems
and by leaving the task of state representation to the subsystem developer (internal state). A
communication scheme is required in both cases, since access to a global shared application
state requires communication. Potential solutions to the above named demands have to be
in line with the performance requirement (Rper) of RISs and should be in line with themain-
tainability requirement motivated by this thesis. Maintainability can typically not be pinned
down to one speci�c engineering technique, however, its subaspect modularity is fostered by
separation of concerns in almost any system. ¿ese general categories match those of MMS
platforms identi�ed in section 3.2, since both, MMSs and RISs, realize interactive applica-
tions. Di�erences potentially emerge in their concrete realization.
Wiebusch (2016, pp. 33–37) identi�es the following (partly overlapping) common archi-

tecture concepts: component-based-, graph-based-, andmessage-based architectures as well
as event systems, entity models, and the entity-component system (ECS) pattern. Concrete
systems o entimes cannot be clearly categorized, since they mix multiple concepts. Yet, the
concepts can be mapped to execution models (exe), communication schemes (com), state
representation models (rep), state access schemes (acc), and separation of concerns (soc).
Component-based architectures partition threads of execution into components bymeans

of object-oriented programming constructs (soc). ¿ey do not de�ne an execution scheme.
Graph-based architectures partition threads of execution into nodes (soc). Nodes can pass

information to other nodes through routes (com) that connect �elds, i.e, in- and output ports
of nodes. Nodes can react on �eld value changes or be explicitly triggered. ¿e propagation
of �eld values through routes thus implicitly executes all behavior (exe), however, concrete
�eld propagation strategies may vary.
Message-based architectures support the transfer of messages between separate threads

of execution (com). Messages have to be addressed to one or more speci�c receivers. A
broadcast to every possible receiver may be supported. Message-based architectures do not
de�ne an explicit execution scheme. ¿ey are a suitable basis for other architecture concepts
and techniques, e.g., for graph-based architectures (realizing communication between node
ports), for event systems, or for client/server architectures.

38

Chapter 3 Related Work

Event systems are similar to message-based architectures since they support the transfer
of information between separate threads of execution (com). In contrast to messages, events
do not have to be addressed to speci�c receivers. ¿ey are emitted by event producers. Po-
tential receivers have the necessary means to indicate (request) that they are interested in
noti�cations upon the emission of certain events. Such an emission then triggers a reaction
de�ned by the receiver. ¿is can imply a central registry for event propositions and request,
which redistributes messages or conducts initial hand-shaking. Event systems do not de�ne
an explicit execution scheme.
Entity models are concepts that allow uniform state representation without relying on or

extending a data structure that is dedicated to a speci�c simulation or rendering aspect, in
contrast to, e.g., scene graphs. ¿e whole state to be represented is composed of entities, ”[...]
a ”thing” which can be distinctly identi�ed” (Chen, 1976). An entity, in turn, is composed of
its basic characteristics (Mannuß, Hinkenjann, & Maiero, 2008), i.e., is ”a set of [variables]
that represent its properties” (Wiebusch, 2016, p. 160). Examples of entities are virtual objects
that can be (visually) perceived by the user, but also input device- and user representations
or even subsystem con�gurations.
¿e entity-component system pattern is an extended entitymodel (rep) that also provides

a separation strategy for threads of execution. ¿reads of execution are called systems. En-
tities aggregate components, which comprise one or more entity property that systems need
for realizing a certain functionality aspect Alatalo, 2011; Wiebusch, 2016. Systems and entities
are thus related via components, as they de�ne on which entities a system operates and how
it can access the entity (acc). A component could be an entity’s aspect to be placeable, com-
prising properties like position and orientation, or its aspect to be a rigid body, comprising
properties like mass and velocity. ¿e ECS pattern originates from computer game architec-
tures (Bilas , Scott, 2002; Orchard, Leslie, 2013; West, Mick, 2007) and is consequently used
in many game engines (e.g., Unity Technologies, 2017; EPIC GAMES, INC., 2017).
None of these concepts cover all system requirements, so they have to be combined or

supplemented with additional techniques, e.g., processes as execution model. Some of the
concepts complement well, e.g., an entity model and the ECS pattern or an event system
implemented based on messages. ¿e �rst two constitute a subsystem agnostic and uniform
state representation approach. ¿ey are thus superior to approaches relying on central and
highly optimized—but subsystem dependant—models, like extended scene graphs (Kuck et
al., 2008; Latoschik & Blach, 2008). ¿e latter two are bene�cial for decoupling the execution
of subsystems and thus for the implementation of distribution capabilities (Steed, 2008).
What is le to realize are semantic dependencies between subsystems (Latoschik & Tram-

berend, 2010). For instance, what a speci�c message or event denotes (including its payload),

39

Chapter 3 Related Work

what properties an entity can have, and what they represent. Ultimately, this comes down to
interface de�nitions, i.e., an agreement on names and meaning for classes, functions, vari-
ables, etc., that systems have to specify.

Challenges

Concrete RIS architectures are combinations of these concepts, partly including idiosyncratic
solutions. ¿eir development is typically targeting onemore or less narrowly scoped applica-
tion area that determines requirement details. ¿e design, implementation, andmaintenance
of RIS, however, is accompanied by a number of challenges that apply to most systems. Steed
(2008), Wingrave and LaViola (2010), Taylor et al. (2010) re�ect on several years of RIS de-
velopment and summarize common issues, best practices, and lessons learned:

RISs necessitate high update rates to stay interactive, maintain immersion or
registration with the physical world, and thus guarantee usability and security
for the user. ¿is performance requirement con�icts with the typically complex,
functional RIS requirements.

Application development and evaluation challenges range from e�cient con-
tent creation over interface design issues, including usability support, user be-
haviour prediction, as well as the establishment of 3D interface metaphors and
guidelines, to the proper capturing of information relevant to conducted experi-
ments. A consequence, especially of the design issues, is that RISs require a high
amount of iterative prototyping.

Development e�ort can be countered by supporting developers with appropri-
ate tools, processes and abstraction layers, i.e., by fostering API usability. As-
pects highlighted by the surveys are learnability, complexity of con�guration and
building, support of common formats, and integration of common libraries.

In addition to its usefulness for realizing APIs, abstraction is also fundamental for a RIS ar-
chitecture itself. It fosters decoupling thus modi�ability and reusability. However, the reuse
of (parts of) applications and subsystems, respectively their substitution, is a pressing issue
(Ponder, Papagiannakis, Molet, Magnenat-¿almann, & ¿almann, 2003; Wiebusch, 2016).
¿e motivated endeavor for decoupling is opposed to the close temporal- and semantic cou-
pling required to achieve performance and to provide a coherent simulation (Latoschik &
Blach, 2008; Latoschik & Tramberend, 2010; Fischbach et al., 2017). ¿e resulting maintain-
ability issues are exacerbated by sparsely spread standards that foster the exchange of solu-
tions amongst the community. Maintaining RISs is associated with high costs. ¿ese costs

40

Chapter 3 Related Work

are undertaken nevertheless, due to the potential of these systems. Yet, they negatively e�ect
the durability of system and shorten the time until a system is no longer used. Steed (2008)
summarizes reasons from over 15 years of RIS development for why his group stopped using
a system:

1. ¿e systemwas perceived as being hard to program or lacking in capability, suggesting
a move to a similar, but potentially more powerful system

2. ¿e system was retired by the authors

3. Knowledge was lost (usually by the owner graduating)

4. ¿e system was no longer up to scratch (e.g. visually)

5. Lack of a critical facility (e.g. no cluster support)

6. Hardware or operating system support was no longer available

All of these reasons are consequences of low maintainability (1.–3.) or have not been re-
solved due to high maintenance costs (4.–6.).
Altogether, the implementation of a RIS is not straightforward (Kuck et al., 2008; Steed,

2008; Wingrave & LaViola, 2010; Taylor et al., 2010). RISs are complex, e.g., in terms of the
interconnections between subsystems, sometimes even chaotic due to hidden or unpredicted
dependencies. developers require a variety of skills from di�erent research disciplines as well
as intelligence and experience to be able to understand solutions and analyze malfunction.
¿e grand challenge for RIS developers is to handle this complexity Ponder et al., 2003.

Platforms

Many so ware engineering techniques are at the disposal to realize fundamental RIS require-
ments and about as many reference implementations have been presented for validation as
well as for practical application. In this section, RIS platform architectures of the last three
decades are reviewed (in the samemannar asMMS)with respect to the following aspects: ap-
plied engineering techniques, identi�cation of maintainability issues, and conduct of respec-
tive evaluations. Table 3.4 gives an overview of RISs and shows which aspects are explicitly
emphasized in the reference(s).
Similar to the historic development of MMSs, early contributions were rather demonstra-

tions than platforms with a �xed set of subsystems tailored for one speci�c application. ¿eir
main goal was to explore feasibility. Nevertheless, they (and all other systems) apply separa-
tion of concerns to foster modularity.

41

Chapter 3 Related Work

Systems likeMRToolkit andDIVEwhere then the �rst to shi the focus to the required de-
velopment e�ort, as one aspect of API usability, and to the modi�ability of the systems. Later
system presentations emphasized the e�ort to reuse so ware solutions, e.g., subsystems, in
di�erent system con�gurations or even in di�erent systems. ¿ese RIS platforms provide
fundamental functionality, like execution schemes, communication patterns, and data rep-
resentation models. ¿ey include a set of subsystem implementations that can be extended
by application developers. ¿ey are thus suited for the development of various applications,
in principle not limited to one area. A second principal feature of many RIS platforms is
the distribution of computing load to multiple threads, CPUs, or cluster nodes (Allard et al.,
2004), for instance implemented by MR Toolkit, DIVE, Avocado, VR Juggler, FlowVR, and
AvangoNG. Especially the early systems depended on this technique to cope with the high
computational demands ofVR andMRapplications. ¿e technical advance inCPUandGPU
hardware reduced the need of inter-node distribution. However, intra-node distribution is a
requirement of any RIS today and inter-node distribution is still necessary for special hard-
ware setups, like CAVEs, and computationally demanding application areas, like scienti�c
simulation.
IRIS publications again shi ed the focus to elaborated data and behavior representation

models as well as access schemes that are capable of uniformly covering any aspect of the
simulated environment and of the system. Besides numerical low-level properties commonly
represented in RIS, this especially comprises the high-level semantics of (virtual) objects and
actions relevant for an application. Two main use cases can be identi�ed: arti�cial agents
(SCIVE, ISReal, REVE, andMASCARET) and multimodal processing (SCIVE and Simulator
X).¿e �rst use case requires semantic information to allow arti�cial agents for the re�ection
of the environment it perceives, e.g., to derive possible actions it can take. ¿e latter use case
requires this information to be able to check semantic correctness during the analysis of a user
utterance (Rsem). IRISs certainly apply elaborated execution schemes and communication
patterns, however, most contributions do not detail on them, which may stem from that
these requirements are more su�ciently researched with enough suitable solutions available.
In addition to (I)RISs published by the research community, commercial RISs lately gained

popularity amongst researches that use RISs in the role of application or subsystem devel-
opers (e.g. Latoschik et al., 2016; J. L. Lugrin, Zilch, Roth, Bente, & Latoschik, 2016). ¿ese
systems typically o�er functionally rich implementations of common subsystem types (espe-
cially high quality visual renering), a high amount of ready-to-use assets, high performance
optimization, as well as low development e�ort due to good tool support and documenta-
tion. ¿ese advantages are made possible by a high amount of human ressources a succesful
company is able to invest; in contrast to common scienti�c scenarios. On the downside,

42

Chapter 3 Related Work

commercial RIS focus on the demands of the market, primarily the computer game industry,
and are protected by strict licences (EPICGAMES, INC., 2017) or are close-source altogether
(Unity Technologies, 2017). ¿e �rst drawback manifests in commercial RISs being rather
conservative about novel techniques and methods—from a researcher’s point of view—since
they have to guarantee reliability. If a feature desired for researchwas not anticipated by a RIS,
it is o entimes ine�cient or impossible to add it properly; rendering the basically low devel-
opment e�ort irrelevant. ¿e latter drawback either hinders the publication of results (due to
licence restrictions) or prevents the propper re�ection of system behavior that is potentially
in�uencing the research conducted with the system (due to restricted code access).
In terms of so ware quality, almost all RIS publications identify at least one aspect ofmain-

tainability as a crucial system requirement (see Table 3.4, column Issues). ¿e reduction of
development e�ort is mentioned most frequently, followed by reusability. All systems apply
separation of concerns to foster modularity. Further engineering techniques that are em-
phasized in the references of Table 3.4 can be categorized into: communication schemes,
execution models, state representation models, and state access schemes (in analogy to the
MMS overview of Table 3.3).
So ware engineering techniques that are applied to realize the listed RISs and that are

explicitly emphasized in the associated publication(s) can be categorized into: separation
of concerns, communication schemes, execution models, state representation models, and
state access schemes (see Table 3.4, column Techniques). ¿ese categories correspond to the
basic RIS requirements identi�ed in chapter 2. ¿ey are identical to the general so ware
engineering techniques applied by MMS (see section 3.2) due to the conceptual similarity
between RIS- and MMS platforms.

Separation of Concerns

• Modules, e.g., in bolio, VR Juggler (managers), andMASCARET (subsystems)

• Components, e.g., inMR Toolkit, I4D, and VHD++

• Nodes, e.g., in FlowVR (modules), Avango, and SCIVE

ExecutionModels

• Actors, in SCIVE and Simulator X

• Kernel, in VR Juggler, NPSNET-V, and VHD++

• Processes, e.g., in DIVE, Avango, FlowVR

43

Chapter 3 Related Work

Communication Schemes

• Data propagation, in FlowVR, Avango, and SCIVE

• Data sharing (concurrent data structures), inMR Toolkit, VHD++

• Events, e.g., in NPSNET-V, VHD++, and Simulator X

• Messages, e.g., in DIVE, I4D, and FlowVR

• Interfaces, e.g., inMR Toolkit, VR Juggler, and VHD++ (including RMI)

• State replication, e.g., in DIVE, Avango, and NPSNET-V

• WebSockets, in NPSNET-V

State RepresentationModels

• Databases, inWalkthrough

• Entities, e.g., in I4D & Unreal Engine (actors), REVE (items, as part of ECS pattern),
Avango (�eldcontainers), and NPSNET-V (intermixed with MVC pattern)

• HTML extensions, in ISReal

• Ontologies, in ISReal and Simulator X

• Semantic networks, in SCIVE

• UML extensions, inMASCARET

State Access Schemes

• Interfaces, e.g., in Avango and AvangoNG

• Semantic queries, in ISReal and Simulator X

• Semantic traverser, in SCIVE

In contrast to MMS publications, RIS presentations typically present and discuss the uti-
lized executionmodels (11 out of 17 RIS presentations listed in Table 3.4 emphasize the execu-
tion model vs. 2 out of 17 MMS presentations listed in Table 3.3). ¿is fosters the assessment
of maintainability.
IRISs built upon RISs and (additionally) focus on a globally shared, uniform, high-level

state- (Rsta) and behaviour (Rbeh) representation as well as on respective explicit access
schemes (Racc). In contrast, MMSs rather utilize inter-submodule communication to (incre-
mentally) process captured user input (see section 3.2). ¿is may be the case because MMSs

44

Chapter 3 Related Work

o entimes just conduct input analysis, while RISs have to realize applications in addition to
(less complex) input processing.
Tools that support the development of RIS applications are less emphasized than amongst

the presentations. Typical RIS tool support comprises compliance with external content cre-
ation applications, e.g., 3D modelling applications, monitoring tools (e.g., for VR Juggler),
and debugging tools (e.g., for Instantreality andMASCARET), including inspectors (e.g., for
REVE and Simulator X). Visual development tools (e.g., for I4D) are used to increase API
usability at the cost of considerable development e�orts. ¿is kind of tools are thus rather
available for commercial RIS, even in formof complete IntegratedDevelopment Environments
(IDEs) supporting visual programming (e.g., for Unreal Engine and Unity). Visual program-
ming surely eases �rst steps and the creation of simple applications, however, it is not evident
that its bene�ts for developers scale if applications become increasingly complex (Wiebusch,
2016, p. 217). In addition to tools, high level description languages (e.g., in SCIVE and Simu-
lator X) as well as scripting languages (e.g., Scheme in AVANGO, Python in AvangoNG, and
Tcl/Tk in I4D) are utilized to reduce the development e�ort.
Similar to MMSs, proof of concept applications are the primary method for veri�cation in

the reviewed contributions (see Table 3.4, column Evaluation). Performance measurements
are conducted second most. In terms of maintainability, some contributions present expert
reviews or lessons learned. As forMMSs, the evaluation of RIS is delicate and viablemethods
are rare (see section 3.1).

Discussion

With regard to so ware ageing, the presented RISs are slightly better available than the pre-
sented MMSs. Yet, some systems rely on nowadays uncommon operating systems, libraries,
virtualmachines, or hardware (e.g.,MRToolkit,VR Juggler,NPSNET-V, andVHD++), stalled
third party so ware (Avango Kuck et al., 2008), are closed-source (e.g., instantReality and
Unity), or are subject to strict licences (e.g., unreal engine). As forMMS, the overall availabil-
ity is not bad. Abstracted engineering techniques, methods, algorithms, best practices and
lessons learned have been accumulated and improved the �eld over time.
However, excessive costs for the replacement of central subsystems that are desired or re-

quired to be substituted limit the availability of older systems. ¿is situation is attributable
to close coupling caused by complex subsystem interdependencies and especially by the state
representation (Rsta) and access (Racc) requirement of RISs (Kuck et al., 2008; Latoschik &
Blach, 2008; Latoschik & Tramberend, 2010). O en times this coupling is a consequence
of inheritance used for state representation models—a primary method of so ware architec-

45

Chapter 3 Related Work

tures based on the object-oriented paradigm. Entitymodels and in particular the ECS pattern
favor composition over inheritance and thus have proven to be a good solution fostering low
coupling and hence increasing maintainability (Steed, 2008; Latoschik & Tramberend, 2011;
Unity Technologies, 2017, and cf. Table 3.4, columns EM and ECS). Yet, these approaches
possesses some de�cits, especially for multimodal RIS, as discussed in the next section.

46

Table 3.4.Overview of selected RISs categorized into demonstrations, research (I)RIS platforms, and commercial RIS platforms (extended from Wiebusch, 2016, p. 35).
System aspects explicitly emphasized in the reference(s) are summarized by identi�ed issues (Modularity,Modi�ability,Reus(e)ability, &APIusability), applied engineering
techniques (Execution models, Communication schemes, State representation models, state Access schemes, and supportive Tools), and conducted evaluations (Expert
reviews, Pre-studies, Proof of Concepts, & Informal evaluations). ¿e utilization of an EntityModel (EM) and of the Entity-Component-System (ECS) pattern is reported.
¿e systems’ availability for research is indicated if the source code can be obtained and if it is running on current hardware platforms (see Appendix A for details).
Additional information about cells marked with * is given in the text.

Name Type
Emphasized system aspects

EM EC
S

Available ReferenceIssues Techniques Evaluation

M
od

u

M
od

i

R
us

e

A
PI

u

So
C

Ex
e

C
om St
a

A
cc

To
ol

Ex
p

Pr
e

Po
C

In
f

Walkthrough demo x x x x no Brooks (1987)
bolio demo x x x x no Zeltzer, Pieper, and Sturman (1989)

MR Toolkit RIS x x x x x x x x limited* Shaw, Green, Liang, and Sun (1993)
DIVE RIS x x x x x x x x x no Carlsson and Hagsand (1993), Frécon (2004)

Avocado (Avango) RIS x x x x x x x* limited* Tramberend (1999)

VR Juggler RIS x x x x x x x limited*
Bierbaum et al. (2001), Allard, Gouranton,
Lecointre, Melin, and Raffin (2002)

I4D RIS x x x x x x x x x x x no Geiger, Paelke, Reimann, and Rosenbach (2000)
NPSNET-V RIS x x x x x x x* limited* Kapolka, McGregor, and Capps (2002)

VHD++ RIS x x x x x x x x x limited* Ponder et al. (2003)
FlowVR RIS x x x x yes Allard et al. (2004)

SCIVE IRIS x x x x x x x x x x x no
Latoschik, Froehlich, and Wendler (2006),
Fröhlich (2014)

AvangoNG RIS x x x x x x x x x x* yes Kuck et al. (2008)

ISReal IRIS x x x x yes
Kapahnke, Liedtke, Nesbigall, Warwas, and
Klusch (2010)

instantReality RIS x x x x limited* Behr, Bockholt, and Fellner (2011)
REVE IRIS x x x x x x x x* yes Anastassakis and Panayiotopoulos (2012)

MASCARET IRIS x x x x x yes Chevaillier et al. (2012)

Simulator X IRIS x x x x x x x x x x x x† x x x x yes
Latoschik and Tramberend (2011), Fischbach
et al. (2017), † see chapter 7

Unreal Engine 4 com. RIS — — — — — — — — — — — — — — x* x* yes* EPIC GAMES, INC. (2017)
Unity com. RIS — — — — — — — — — — — — — — x x limited* Unity Technologies (2017)

Chapter 3 Related Work

3.4 Summary

Over the years, abstracted �ndings like so ware engineering techniques, methods, algo-
rithms, and even best practices or lessons learned have been gathered in the areas of MMSs
andRISs. ¿ese are the prime achievementswhen it comes to repeatability and ability to build
on previous results. Yet, it would be highly bene�cial if any (old) system could still be used.
Excessive costs for the replacement of central subsystems that are desired or required to be
substituted indeed limit or even hinder the availability of older systems. Seven out of the pre-
sentedMMS platforms respectively twelve out of the presented RIS platforms are availability
for researches. When it comes to the combination of RIS- and MMS functionality, e.g., to
realize multimodal interfaces for situated interaction environments, available solutions are
rare. In combination with the shortage of suitable maintainability evaluation methods for
such complex systems, there is little scope to comprehend and improve the issues. In fact,
maintainability is o en assessed a posteriori, by developing a system and re�ecting on the
actually required maintenance e�ort.

48

Chapter 4

Multimodal Real-time Interactive
Systems

¿is chapter analysis the issues arising from the combination of RISs and MMSs and iden-
ti�es promising approaches to a solution that lead to the so ware engineering techniques
proposed by this thesis. ¿e implementation of a multimodal interface for a situated in-
teraction environment can be conducted by following one of two principal approaches. By
utilizing an independent MMS platform in combination with a RIS platform or by utilizing
a MMS that is integrated into a RIS platform. In the latter case, the underlying system will
likely be an IRIS, since integration of AImethods as well as a KRL is required for multimodal
processing anyway.

4.1 Independent Multimodal SystemUsage

IndependentMMS platforms (see Table 3.3) support the access of sensors capturing multiple
modalities, the processing of captured data, and its fusion (see le side of Figure 4.1). In
addition, these systems provide at least a communication scheme for passing results between
subsystems and a data representation model. Some system also provide a globally shared
application state (A), holding data that is relevant for more than one subsystem, in addition
to internal states that subsystems may manage. ¿e communication of �nal fusion results,
e.g., a user command that shall trigger an action (Rbeh), as well as relevant intermediate
results to the RIS platform is le to the application developer. Typical solutions comprise the
addition of a dedicated subsystem that forwards information, e.g., using sockets.
RIS platforms likewise provide an execution model for subsystems and at least one com-

munication scheme (see right side of Figure 4.1). Most systems also provide a global state
representation (B) that can be accessed by all subsystems as well as means to integrate SDKs
and drivers for sensor data access.

49

Chapter 4 Multimodal Real-time Interactive Systems

Subsystems

 Racc

Rper

Subsystems

Data
Level

Feature
Level

Decision
Level

Independent MMS (I)RIS

Application State
A

Rtmp

Rsem

Application State

B

Input
Processing Rendering

Rsem

Mapping
Continuous

Feedback

Management
Dialog

Management
Dialog

A B

A B

Simulation

Rtmp

Mapping
Continuous

Feedback

Racc

RbehRcom

Figure 4.1. Expectable architecture an independent MMS platform utilized in combination
with an (I)RIS platform. ¿e intra-system organization is simpli�ed with grey arrows indi-
cating the logical �ow. Solid boxes (blocks) illustrate relevant system parts. Dashed boxes
highlight which key requirements have to be considered where.

Since the state representation models of the chosen MMS and RIS will most likely not be
the same, the communication of (intermediate) results requires a conversion A → B. ¿e
concrete amount of required communication—and thus conversion—depends on the fea-
tures the application requires. Continous mapping requirements of user input to applica-
tion state elements exacerbate these communication needs. Moreover, some features require
more expressive communication protocols or alternatively the additional communication of
application state changes fromRIS toMMSB→ A, i.e., a state synchronization. For instance,
referents indicated by an inde�nite article or pronoun can be communicated as wildcards to-
gether with respective pointing directions or resolved within the MMS platform if relevant
application state properties are synchronized (to satisfy Rsem and partly Rtmp).
Access and synchronization of application states is crucial in terms of maintainability and

performance (red arrows in Figure 4.1). System-internal access is inevitable and less problem-
atic. Synchronization between systems, however, is a potential source for low performance,
due to the required serialization and conversion, as well as for ad-hoc implementations with
poor maintainability.
Even more importantly, some features can be realized within both systems (italic in Fig-

ure 4.1), e.g., a dialog management subsystem, or require adaptions in both systems, like
semantic constraint checks (Rsem), feedback at the time of processing, and continuous map-
ping (in the absence of state synchronization). ¿is distribution of functionality serving one
concern decreases coherence, adds additional complexity, and thus reduces maintainability.

50

Chapter 4 Multimodal Real-time Interactive Systems

4.2 IntegratedMultimodal SystemUsage

RIS-dependent MMSs (see Table 3.3) do not su�er from these issues. Basically such a MMS,
or rather such a RIS platform, comprises input analyzing subsystems devoted to multimodal
input processing, in addition to other typical RIS subsystems (see Figure 4.2). Semantic-
and temporal constraint checks (Rsem and Rtmp), feedback at the time of processing, and
continuous mapping can be coherently implemented, since all subsystems can communicate
or even access a uniform shared application state, without the need to convert representations
or to synchronize between platforms. Features that could be implemented either within an
independentMMSplatformorwithin a (I)RIS platform, can also bene�t from this coherence.
For instance, a dialog management subsystem whose functionality is also used for a virtual
agent realization. Still, actions have to be triggered as part of input analysis and subsequently
be executed, e.g., by the simulation subsystems.
¿ese combined systems (RIS-MMS), however, are especially prone to the coupling dilem-

ma. One main reason may be that a multimodal RIS implies a combination of two already
very demanding sets of functional- and performance requirements, which exacerbates the
simultaneous ful�llment of other so ware qualities, like maintainability. Besides the contri-
bution of this thesis, only one of the general RIS platforms was extended with explicit MMI
support: Avango as basis of the virtuelle Werkstatt (see Table 3.3 and Table 3.4). ¿e virtuelle
Werkstatt has no running build or successor, though. Other MMS platforms that explicitly
support RIS are either dedicated to a speci�c application (ICONIC) or strongly focus robot
control peculiarities.

Subsystems

 Racc

Rper

Data
Level

Feature
Level

Decision
Level

Application State

Rendering

Rtmp

Rsem

Mapping
Continuous

Feedback

Rendering

Simulation

Input
Processing

Dialog
Management

 Rbeh

Figure 4.2. Expectable architecture of a MMS integrated into a (I)RIS platform. ¿e intra-
system organization is simpli�edwith grey arrows indicating the logical �ow of control. Solid
boxes (blocks) illustrate relevant system parts. Dashed boxes highlight which key require-
ments have to be considered where.

51

Chapter 4 Multimodal Real-time Interactive Systems

4.3 Summary

¿e area of multimodal RIS lacks an approach that fosters maintainability and performance.
¿e utilization of an independent MMS has two principle drawbacks: (1) reduced coher-
ence for features that require functionality in both systems, (2) performance and potential
maintainability issues resulting from data management, especially due to the required syn-
chronization and conversion. ¿is thesis thus targets multimodal input processing within
an IRIS platform as well as a solution to the coupling dilemma. A uniform and subsystem
agnostic state representation and access, capable of handling symbolic concepts as well as
relations between those concepts, is key to a solution. ¿ere are many potential techniques,
ranging from direct variable access to centralized or external storages that are accessed via
a dedicated query language (Fischbach et al., 2017). Viable representatives of the former ap-
proach, e.g., graphs or hash-maps, provide high performance and the highest expressiveness,
due to being de�nedwithin the RIS platform’s programming langage. On the downside, these
kind of approaches promote high coupling, if no further means to eliminate the reliance on
speci�c variable or function names are applied. Representatives of the latter approach, e.g, an
in-memory SQL database, strongly promote decoupling, due to their intrinsic independence
from a speci�c RIS platform. Moreover, they facilitate semantic, i.e., symbolic, annotations
as well as the structuring of content by means of realtions, e.g., a database can be extended
to support Resource Description Framework (RDF) structures, e.g., by Sesame, Stardog, or
Apache Jena. At the same time, however, this characteristic implies the need of converting
queries into the dedicated query language, i.e., a performance overhead. In addition, modi�-
cation of data with such query languages is rather limited and mostly restricted to accessing
and updating contents. An ideal state representation should therefore have the bene�ts of
the above presented contrasts and at best none of their drawbacks.
Entity models and in particular the ECS pattern are in-code methods that have proven to

ease this dilemma and provide good performance (e.g., Lange, Weller, & Zachmann, 2016).
¿erefore they are a good foundation to build on. However, the ECS pattern does not explic-
itly specify (1) how to de�ne symbols that denote entity properties and components (types)
as well as symbols that represent entity properties (symbolic values), (2) how to represent
relations between entities, and (3) how to make entity property- and component type in-
formation available at runtime. If not addressed, these speci�cation gaps entail de�cits that
exacerbate the integration of AImethods: components fromdi�erent applications (andRISs)
are mostly incompatible with each other, due to a non-exportable symbol and type de�ni-
tion, and most importantly, access to entity properties outside a (sub-)systems’s associated
components is not supported, due to missing runtime type information. ¿e latter, in par-

52

Chapter 4 Multimodal Real-time Interactive Systems

ticular, is a major con�ict for methods that have to semantically re�ect the application state
and thus require to potentially access all properties of all entities. In the case of multimodal
processing, the veri�cation of semantic correctness (Rsem) requires this kind of access.
¿is thesis presents six so ware engineering techniques that base on the ECS pattern to

bene�t from its expressiveness and performance as an in-code solution and that extend the
pattern by intermixing it with common independent knowledge representation methods to
counter its prevalent de�cits. By this means, all fundamental state representation and ac-
cess requirements (Rsta and Racc) of multimodal IRISs are satis�ed without forfeiting per-
formance (Rper) and maintainability. Beyond that, the approach allows to uniformly de�ne
behavior (Rbeh) and to decouple threads of execution by semantic descriptions of their data
sinks and sources in the application state. ¿e techniques comprise the utilization of an ex-
ternal ontology facilitating the de�nition of concepts and relations as well as the automatic
generation of in-code equivalents. ¿us, even rendering a partial inter-RIS exchangeability
possible.
¿e utility of the techniques is showcased by means of a reference implementation, com-

prising an integrated MMS, that combines them with an execution model (Rex e) and a com-
munication scheme (Rcom). Moreover, it is illustrated how three technique independent de-
sign choices of this reference implementation additionally foster maintainability. A walk-
through of central implementation aspects of the motivated use case reveals how the real-
ization of typical multimodal processing requirements (Rs yn , Rtmp , Rsem) bene�ts from the
presented techniques and the taken design decisions. Finally, the six techniques as well as
the reference implementation are validated by applying all main methods found in literature
expert reviews, proof of concept prototypes, pre-studies, and informal evaluations.

53

Chapter 5

Semantics-based Software Techniques

¿is chapter presents the results of all so ware development and scienti�c discussion activ-
ities related to this thesis in their highest abstraction as six generalized concepts (Fischbach
et al., 2017). Due to their reliance on a semantic grounding of identi�ers, these concepts
are referred to as semantics-based so ware techniques. Each technique is showcased on the
basis of the interaction use case. Conclusive discussions emphasize maintainability bene�ts
arising from an utilization of the techniques within a RIS architecture. ¿e techniques are
independent from a speci�c programming language and not dedicated to other architecture
concepts, except the entity model. ¿us other researchers and developers can bene�t from
this techniques by implementing one or more of them in their own system(s).

Division of Labor

Besides the mentoring by the supervisor of this thesis, the presented semantics-based so -
ware techniques as well as the reference implementation elaborated in chapter 6 have been
developed with a team of three researchers: Stephan Rehfeld, Dennis Wiebusch, and Martin
Fischbach (the author). General architecture concepts have principally been advanced by all
team members. ¿e author’s share is emphasized by his conference and workshop publica-
tions and re�ected by the selection of so ware parts from the reference implementation that
are elaborated in the next chapter. ¿e devision of labor is a consequence of the di�erent
focus areas that each team member pursued. Stephan Rehfeld focussed on synchronization
an distribution concepts for IRISs (Rehfeld, 2017). Dennis Wiebusch focussed on the decou-
pling of simulation modules, application content, and application logic (Wiebusch, 2016).

54

Chapter 5 Semantics-based So ware Techniques

5.1 Semantic Grounding

¿e �rst technique is a grounding mechanism for elementary system aspects at the core level
of a system. ¿e most basic building blocks of this technique are symbols that signify con-
cepts that are relevant for APIs, like properties and behavior of (virtual) environment ele-
ments as well as of the system itself. ¿ey are utilized to facilitate a common ground for
communication and access, e.g., within interface de�nitions, and are thus called grounded
symbols. Grounded symbols can be used directly as values of properties. In order to describe
properties and parameters so called semantic types are utilized. A semantic type is a tuple
consisting of a grounded symbol and a data type, i.e., an assignment of meaning to a data
type. A concrete value of a semantic type is called a semantic value. It is a triple consisting of
a grounded symbol, a data type, and a value of that data type. Relations between the under-
lying concepts, mostly denoted by prepositions and mathematical operatiors, are modelled
as semantic functions that are associated with semantic types and -values. Grounded sym-
bols, semantic types, -values, and functions are meant to be de�ned as �rst class citizens of
the target programming language, separately from concrete implementations as well as from
concrete interfaces. Figure 5.1 illustrates the technique’s integration into a typical IRIS archi-
tecture, while Figure 5.2 shows principal implementation characteristics as well as example
de�nitions required for the interaction use case.
¿e semantic grounding technique enables the re�ection of properties and parameters even

if the target programming language does not support that level of self-inspection for their
data types. Moreover, it allows the consideration of the meaning of properties and param-

Application State

Semantic
Grounding

Subsystems

ValueData
Type

Grounded
Symbols

Semantic
Functions

Semantic
Values

Semantic
Types

Figure 5.1.An IRIS architecture utilizing semantic grounding (red block).

55

Chapter 5 Semantics-based So ware Techniques

annotate(with: GroundedSymbol): PositionType
apply (value: Vec3) : Position
from (t: Transformation) : Position

SEMANTICS = position
annotations = []

<<singleton>>
PositionType

annotate(with: GroundedSymbol): Position
- (p: Position) : Direction

SEMANTICS = position
value: Vec3
annotations: GroundedSymbol[*]

Position

<<bind>>
<T -> Vec3,
 S -> Position>

<<bind>>
<T -> Vec3>

GroundedSymbol
symbol: String

semantics: GroundedSymbol
value: T
annotations: GroundedSymbol[*]

SemanticValue
T

<<singleton>>
position

SYMBOL = "position"

apply(value: T): S

semantics: GroundedSymbol
annotations: GroundedSymbol[*]

SemanticType
T

S: SemanticValue<T>

<<instantiate>>

Figure 5.2. Object-oriented modeling of GroundedSymbols, SemanticTypess, and
SemanticValues. Semantic types can be combined with a concrete value (apply) to create
a respective semantic type. Both can be associatedwith one ormore annotations (annotate)
to re�ne their semantics. A concrete example is the representation of a Position in 3-
dimensional space. Semantic functions are associated with their return type or with a
semantic value, depending on their application in pre�x- or in�x notation, respectively.
For instance, the from function of class PositionType (pre�x) or the - operator of class
Position (in�x). ¿e counterintuitive inheritance relation between SemanticType and its
superclass SemanticValue is intended, since it allows concise de�nitions, e.g., in interfaces
where a certain property is desired and its value may be unde�ned (cf. Wiebusch, 2016, pp.
107–109 and the de�nition of class Statement in Figure 5.6).

eters at compile time, apart from their data types. A color property, for instance, can be
distinguished from a position property, even if both are represented by �oating point ar-
rays. Semantic functions are a means to describe relations between properties that allow
a procedural generation. ¿ey facilitate an automatic inference of properties, e.g., if a ra-
dius is speci�ed but a diameter is inquired, and further improve the suitability of semantic
types and -values as building block for internal DSLs. Ultimately, the semantic grounding
technique allows to decouple the agreement on identi�ers and their meaning from concrete
interface de�nitions, e.g., possible property names and types from the utilized state represen-
tation’s API. It thus serves as a basis for state- and behavior representation techniques (Rsta

and Rbeh) presented in the next sections. ¿e separate de�nition also facilitates the opportu-
nity to reuse grounded symbols, semantic types, and -values in multiple, possibly unrelated
applications or even RIS platforms.

5.2 Semantic Entity-Component State

¿e second technique re�nes the concept of semantic entities (Latoschik, 2005) by means of
semantic grounding. As in any entitymodel, every object that can be distinctly identi�ed and

56

Chapter 5 Semantics-based So ware Techniques

that is meaningful to the system or application is represented as an entity (Rsta). Entities can
represent virtual objects perceptible by the user, but also input devices, users, and subsystem
con�gurations. ¿e semantic entity-component state technique models entities as sets of
semantic values. Semantic values represent entity properties, which can be added, removed,
and accessed using semantic types and -values at runtime (Racc1). Entity properties include
relations to other entities, i.e., semantic values with underlying data type Entity.
¿is basic concept can further be complemented by incorporating the ECS pattern’s main

idea to gain a structuring mechanism for system and application logic (see Wiebusch, 2016,
pp. 73–86 for details). Semantic values can be grouped to correspond to the ECS pattern’s
component concept. Such components are identi�ed by a grounded symbol. In contrast to
many ECS-pattern implementations, these components only comprise descriptions of entity
properties, i.e., semantic types, rather than the values itself. Special subsystems realize the
ECS pattern’s system concept and, i.a., de�ne which components they operate on. Whenever
a component is added to or removed from an entity, e.g., at its creation or during its lifetime,
all associated subsystems are noti�ed. ¿ese subsystems primarily use entity properties cov-
ered by their associated components. However, they are not restricted to and can access any
property. Figure 5.3 illustrates the technique with the aid of the interaction use case.
An interface concept for accessing entity properties is shown in Figure 5.4. Entities are

globally accessibel, identi�ed by Universally Unique IDenti�ers (UUIDs), composed of Se-
manticValues, and additionally described by Components, which determine a part of the
entity’s properties. ¿e type of a Component is used by subsystems to indicate an association.
Entity properties can be set by means of SemanticValues. SemanticTypes are used to ob-
tain the value of an entity property, either once (get) or whenever it is changed (observe).
¿e latter access utilizes a Callback function that de�nes the reaction on a value change.
A similar approach is feasible for the de�nition of get, i.e., get(property, callback),
to enable the interface to be used together with synchronous as well as with asynchronous
execution schemes. Callback executions then either occur instantly or delayed. An supple-
mentary synchronization layer may be added to counter race conditions, which are inherent
to asynchronous global state access by multiple subsystems.
¿is technique utilizes separately de�ned �rst class citizens of a traget programming lan-

guage to realize the access to entity properties. It thus decouples the entity model imple-
mentation from the semantics of concrete applications and from concrete system aspects,
in contrast to implementations based on mutator methods or direct variable access. Due to
the traits of semantic types and -values, ECS pattern de�cits are countered: the externalized
de�nition fosters inter-application reuse, while the self-inspection capabilities facilitate the
re�ection on and access to entity properties outside a subsystem’s associated components.

57

Chapter 5 Semantics-based So ware Techniques

entity#42

userType

pointingGesture

entity#34HasPart

"that"Token

...

entity#34

Mat4(...)Transformation

rightChirality

handType

Vec3(...)Velocity

Ray(...)Pointing

...

entity#17

stoolType

Vec3(...)Color

"./stool.dae"Mesh

Mat4(...)Transformation

...

Subsystems

Semantic Grounding

Grounded
Symbol

Semantic
Type

Semantic
ValueSemantic Entity-Component State

Figure 5.3. Excerpt of an exemplary global application state (red block) representing the en-
vironment during the use case. Semantic values are the building blocks of entities and rep-
resent their properties. Semantic types are used to reference these properties. Grounded
symbols are used as entity property values denoting high-level symbolic concepts, like
pointing. Relations between entities are denoted by semantic values of data type Entity,
e.g., HasPart(entity#34). Physical-environment properties captured by sensors are rep-
resented uniformly to VE properties, e.g., a tracked joint of the user (entity#34) or her last
word spoken (Token property of entity#42).

ID: UUID
components: Component[*]
properties: SemanticValue[*]

Entity

execute(property: S)
Callback

T
S: SemanticValue<T>

type: GroundedSymbol
requiredProperties: SemanticType[*]

Component

set(entity: UUID
 property: SemanticValue<T>)
get(entity: UUID
 property: SemanticType <T,S>)
observe(entity: UUID
 property: SemanticType <T,S>,
 onChange: Callback <T,S>)

Subsystem

supportedComponents: GroundedSymbol[*]
ECS-Subsystem

Figure 5.4. Concretization of the semantic entity-component state technique. Refer to the
text for details.

58

Chapter 5 Semantics-based So ware Techniques

5.3 Grounded Actions

¿e third technique utilizes semantic grounding to describe application behavior, i.e., op-
erations that are triggerable by the user via the interface and that alter the application state
in a way that can be perceived by the user (Rbeh). Actions consist of a set of preconditions,
a set of parameters, and a set of e�ects. Each action is associated with a grounded symbol
that represents its meaning, promoting it to a grounded action. Parameters are de�ned by
semantic types that act as placeholders for semantic values, which have to be passed for an
execution. Preconditions and e�ects are de�ned by means of semantic values and -types,
specifying properties that entities have to possess, including relations to other entities. In
order to be usable, actions have to be bound to an implementation in the target program-
ming language that procures that the preconditions are transitioned into the e�ects using the
passed parameters.
Figure 5.5 illustrates the integration of grounded actions into an IRIS architecture and

shows an example action. Inside the behavior block, a concrete grounded action is illustrated,
representing the collocation of two objects in the context of the use case. It is associated with
the grounded symbol collocate. Its invocation requires two parameters of type Entity, anno-
tated with subject and object. ¿e preconditions require that the subject entity is Moveable
and that the target entity (object) has a Position property. Its e�ect is that the subject is near
the target, represented by a Near property of the subject entity that denotes a corresponding
relation to the object entity.
A concretization of grounded actions is sketched in Figure 5.6. ¿ey are comprised of

a GroundedSymbol describing their semantics, an implementation Callback, and an Ac-
tionDescription. ¿e latter speci�es parameters as SemanticTypes and preconditions
as well as e�ects as Statements. Annotations to semantic types are used to keep multiple
parameters of the same semantic type apart, e.g., by annotating two parameters that each
represent an entity with subject and object, respectively. Statements base on predicate logic
and comprise a subject entity, a predicate, and an object. Annotations speci�ed in the Ac-
tionDescription’s parameter set are used tomatch subject (and object) to passed semantic
values. Consequently, a parameter set has to contain at least one entity to enable the im-
plementation to yield its e�ects into the application state and to allow statement de�nitions.
Four types of statements are intended: (1) HasProperty denoting that an entity has a certain
property regardless of its value, (2) HasValue denoting that an entity has a certain property
with a constant value, (3) HasParameter-AsProperty denoting that an entity has a certain
property that is equal to one of the parameters (especially dedicated to de�ne e�ects), and
(4) HasRelation denoting that an entity has a certain relation to another entity. In order

59

Chapter 5 Semantics-based So ware Techniques

Parameters

State

Subsystems

Semantic Grounding

Entity
subject

Entity
object

Preconditions

HasValue
Entity
subject trueMovable

HasProperty
Entity
object

Transfor-
mation

Effects

HasRelation
Entity
subject

Entity
object

collocate

Behavior

Near

Annotation

Semantic
Type

Figure 5.5.¿e grounded action technique (Behavior, red block) complements the seman-
tic entity-component state representation (state), and builds upon the semantic grounding
technique. Refer to the text for details.

to verify a statement for a given set of parameters, these four statement types are mapped
to two entity property validators, called EntityFilter: HasProperty, checking if a con-
crete entity has a concrete property regardless of its value (directly matching 1) or HasValue,
checking if a concrete entity has a property with a concrete value (matching 2–4). In the latter
case, the concrete values are either constant for the statement (2) or have to be taken from the
parameters passed to validateFor (3 and 4). In case of HasRelation (4), the statement’s
predicate determines the entity property to check and the entity denoted as object its value,
e.g., Near(<objectEntity>) as showcased in Figure 5.5.
Altogether, grounded actions provide a means to semantically describe application and

system capabilities in consistency with the state description. ¿ey decouple description,
implementation, and invocation, which facilitates their reuse in other applications, if these
applications share the required semantic grounding. Subsystems can re�ect on grounded
actions, due to the explicit modelling of parameters, preconditions, and e�ects as well as
due to the semantic grounding. ¿is re�ection can be supported by the utilization of exist-
ing planning so ware, since action descriptions can easily be transformed into fragments of
common de�nition languages, like the Planning Domain De�nition Language (PDDL, Mc-
Dermott et al., 1998). For instance, if the preconditions of a grounded action are not com-

60

Chapter 5 Semantics-based So ware Techniques

execute(parameters: SemanticValue[*])

semantics: GroundedSymbol
description: ActionDescription
implementation: Callback

GroundedAction

parameters: SemanticType[*]
preconditions: Statement[*]
effects: Statement[*]

ActionDescription

execute(
 parameters: SemanticValue[*])

Callback

validateFor(
 parameters: SemanticValue[*]): Boolean

subject: SemanticValue<ST>
predicate: GroundedSymbol
object: SemanticValue<OT>

Statement

apply(e: Entity): Boolean
EntityFilter

object: SemanticType<T,S>
HasProperty

object: SemanticValue<T>
HasValue

object: SemanticType<T,S>
 HasParameterAsProperty

object: SemanticType<T: Entity,S>
HasRealtion

property: SemanticType<T,S>
HasProperty

value: SemanticValue<T>
HasValue

T

T
S: SemanticValue<T>

T: Entity
S: SemanticValue<T>

T
S: SemanticValue<T>

ST: Entity
OT

T

T
S: SemanticValue<T>

Figure 5.6. Concretization of the grounded action technique. Refer to the text for details.

pletely met, a planner can automatically infer a sequence of actions that lead to a state that
permits the execution. ¿us the realization of virtual agent behavior and declarative user
interfaces are facilitated. Alternatively to the latter, grounded actions are also bene�cial for
realizing instruction-based (multimodal) interfaces. Grounded actions are typically related
to concepts that denote verbs in those scenarios. During decision-level fusion, e.g., processed
verbal phrases can be utilized to select a corresponding grounded action. ¿e action’s pre-
conditions and parameters then serve as semantic constraints (Rsem) that have to be ful�lled
by the rest of the utterance. For instance, the grounded action collocate could correspond to
the verb to put and be retrieved when processing the respective token. ¿e analyzing subsys-
tem can trigger the action’s execution, if further processing of the user’s utterance yields an
entity that is movable and another entity that it can be moved to.

5.4 Semantic Queries

¿e fourth technique allows subsystems to perform state and behavior queries by means of
semantic descriptions, yielding semantic entities and grounded actions (Racc2). A specialized
subsystem serves as central registry for entities and actions. It can be queried by other sub-
systems (as an extension of the world interface presented by Wiebusch, Latoschik, & Tram-

61

Chapter 5 Semantics-based So ware Techniques

berend, 2010). Results of semantic queries shall be usable by subsystems without involving
the central registry again.
¿ere are three pragmatic methods to query a semantic entity, by means of: (e1) an associ-

ated grounded symbol, (e2) a logical combination of desired properties and property values,
and (e3) a grounded action, for which entities that satisfy the preconditions are sought. Con-
ceptually, all these three methods come down to semantic descriptions of desired properties
that are formalized by utilizing semantic types and -values in from of entity �lters. ¿ese
�lters are either custom-built (e1 and e2) or obtained from grounded action preconditions
(e3). Moreover, (e1) is a special case of (e2) if the grounded symbol that is associated with an
entity is modeled as one of its properties, e.g., of semantic type Type.
Similarly, grounded actions can principally be queried by means of: (a1) an associated

grounded symbol, (a2) a logical combination of desired e�ects, and (a3) a semantic entity,
for which actions are sought whose preconditions are satis�ed by the entity. (a1) comes down
to a simple lookup based on the grounded action’s associated grounded symbol (semantics).
(a2) implies the use of a planning algorithm if the queried e�ects do not completely match
one registered action’s e�ects. In this case, the answer to a query can contain a sequence of
actions, whose successive invocation leads to the desired e�ects, or can contain zero actions,
if no such sequence exists. (a3) is complementarily to (e3), in the sense that entity �lters are
obtained from the preconditions of all registered actions and are applied to identify matches.
Figure 5.7 illustrates semantic queries in the context of an IRIS architecture. Figure 5.8

details the technique by showing a concretized central registry interface. ¿e central reg-
istry subsystem holds references to all entities created by other subsystems as well as all
actions registred by them. Subsystems can inquire entities from the central registry using
EntityFilters by calling one of twomethods. (1) requestRegisteredEntities queries
all entity references for which an invocation of the passed entity �lter’s applymethod (pass-
ing the referenced entity) yields true. (2) observeRegisteredEntities registers the sub-
system to be noti�ed if an entity appears in the application state, for which an invocation of
the passed entity �lter’s apply method yields true. Subsystems can inquire actions from
the central registry by callingrequestRegisteredAction and passing aGroundedSymbol
that identi�es the action. EntityFilter correspond to those used for the grounded action
technique (cf. Figure 5.6), though they are extended by functions that allow their logical
combination to facilitate semantic query creation.
Figure 5.9 exempli�es an entity �lter in the context of the interaction use case. During

multimodal fusion, it can be used to retrieve the green chair the user pointed at by querying
all entities that represent a chair, have a Transformation property, are of color green, and
are near a given pointing ray. ¿e requirement of the transformation property as well as

62

Chapter 5 Semantics-based So ware Techniques

Behavior

Central Registry

State

Subsystems

Value
Access

Book-
keeping Execution

Semantic
Query

EntityEntity Entity
Action ActionAction

Semantic Grounding

(other)

Figure 5.7.¿e central registry (red block) is a special subsystem that observes application
state changes, especially entity creation and removal, as well as action registrations (book-
keeping). Other subsystems can request actions and entities by means of semantic queries
(red text). ¿e answer to such a query comprises references to concrete entities or actions
that match the query. ¿e typically much more frequent access to values of queried entities
and the execution of queried actions does not involve the central registry any more.

of the color value is realized by using the EntityFilters HasProperty and HasValue,
respectively. ¿e check for the entity being a chair (IsA) can be realized by using a HasValue
�lter if this entity characteristic is modelled accordingly, e.g., as a property of semantic type
Type. ¿e check for being near a given ray uses a dedicated EntityFilter that implements
the speci�c arithmetics.
¿e semantic query technique allows subsystems to use entities and actions without re-

quiring explicit references that are otherwise typically passed from creating- to using subsys-
tems. ¿is decouples subsystems in terms of their data sinks and sources as well as of their
utilization of application and system functionality. ¿us, it facilitates the reuse of subsystems
in other contexts or applications, as long as the required application state and behavior rep-
resentation elements exist. For instance, a subsystem that operates on the transformation of
the user’s right hand does not need the respective entity reference nor does it need to know
the subsystem that created this entity. A semantic query using an entity �lter that checks if
an entity has the properties Type(hand) and Chirality(right) can be used instead, e.g., upon
creation of the subsystem.

63

Chapter 5 Semantics-based So ware Techniques

entities: UUID[*]
actions: GroundedAction[*]

<<singleton>>
CentralRegistry

execute(
 entityRef: UUID)

Callback

requestRegisteredEntities(satisfying: EntityFilter) : UUID[*]
observeRegisteredEntities(satisfying: EntityFilter,
 onAppearance: Callback)
requestRegisteredAction (associatedWith: GroundedSymbol): GroundedAction

Subsystem

apply(e: Entity) : Boolean
and (f: EntityFilter): EntityFilter
or (f: EntityFilter): EntityFilter
not () : EntityFilter

EntityFilter

value: SemanticValue<T>
HasValue

T

property: SemanticType<T,S>
HasProperty

T
S: SemanticValue<T>

Figure 5.8. Concretization of the semantic queries technique. Refer to the text for details.

Has Value
0f,1f,0fColor

Has Property
Transformation

Is A
chairType

Is Near
Ray(...)Pointing

Combined Entity Filter (and)

Figure 5.9. Illustration of a logically combined entity �lter in the context of the interaction
example.

64

Chapter 5 Semantics-based So ware Techniques

Semantic queries facilitate entity lookup based on semantics. While (e1) and (a1) are rather
straight forward, the remaining access methods provide high �exibility for subsystems. (e2)
further counters the ECS pattern’s de�cit of unprovided access to entities outside a subsys-
tem’s component associations. Moreover, (a2) allows to retrieve grounded actions even if they
have been de�ned di�erently, e.g.,move and collocate, based on e�ect equality. ¿is is highly
bene�cial for the incorporation of AI methods and especially for decision-level multimodal
fusion. ¿e uniform access to actions allows fusion implementations to retrieve potential
actions based on the same elements that natural language is composed of: commonly ac-
cepted identi�ers, which, in turn, can be semantically re�ected due to the grounded action
technique (see section 6.3 for an example application). Beyond that, (e3) and (a3) allow to
interrelate state and behavior, allowing to question what can be done with a speci�c entity
and which entities permit a speci�c action. ¿e corresponding answers are likewise bene�-
cial for user interfaces, to be able to show a user what she can do and to what she can apply
commands, as well as for virtual agents that require a similar level of VE introspection.
Altogether, the technique is comparable to semantic query languages like SPARQL (W3C,

2017). However, it avoids parsing overhead due to being de�ned within the target program-
ming language. In addition, entity properties can be accessed and actions executed without
involving the central registry, thus avoiding a potential performance bottleneck.

5.5 Code from Semantics

¿e � h technique is a generalization and abstraction layer for the semantic grounding-,
the semantic entity-component state-, and the grounded action technique. Counterparts
to grounded symbols, semantic types, -values, -functions, components, and grounded ac-
tions are de�ned in external ontology �les and transformed into native code of a traget pro-
gramming language. ¿e thus generated �rst class citizens comprise a reference to their
corresponding external concept that facilitates lookups and reasoning within the ontology
at runtime. ¿e transformation process is intended to be integrated as an automated step
into the development toolchain and to be supported by appropriate tools. Figure 5.10 con-
cretizes the external modelling of concepts as well as the automatic code generation idea:
meta-concepts (red boxes) as well as grounded symbols (black boxes) are represented in the
ontology as classes, concrete occurrences of semantic types, components, and grounded ac-
tions are modelled as instances (ellipses). Relations between classes and instances de�ne the
remaining properties of the �rst-class citizens to be generated. Relations from instances to
classes (illustrated with a double �lled arrow) are chosen for the sake of clarity. Within con-
crete ontology implementations, they may be realized with the aid of additional constructs,

65

Chapter 5 Semantics-based So ware Techniques

like a representative instance of each GroundedSymbol subclass. During runtime, the gen-
erated language primitives can be unambiguously matched to their corresponding ontology
entry be means of an additionally generated Internationalized Resource Identi�er (IRI, red
text).
¿e code from semantics technique is an independent supplement to the other techniques,

since all generation results (e.g., classes) could also be de�ned manually. It enables the uti-
lization of the associated ontology at compile- and runtime, e.g., to access additional concept
relations or apply reasoning, due to the generated IRI for each primitive. ¿us, additional
facts can be inferred from existing information and be integrated into the application state or
be directly used. ¿is is bene�cial for checking semantic constraints (Rsem) during decision-
level fusion. For instance, the grounded action collocate can be retrieved from the central
registry by querying actions associated with the verb to put, since this relation is modelled in
the ontology (see lower le of Figure 5.10: to_put is an instance of classVerbwith a relation to
theCollocateAction instance). Later during the fusion process, the implementation of the IsA
�lter (cf. Figure 5.9) can apply a reasoning operation on the associated ontology to determine
the user’s intention, even if the application state does not contain an entity of type chair ful-
�lling all requirements, but rather one of type stool (see lower le of Figure 5.10: class Chair
is a subclass of class Stool). Moreover, the ontology can also be enhanced with application
state information to extend the reasoning capabilities, e.g., realized by a dedicated subsystem
that synchronizes (selected) application state changes into the ontology.
In terms of maintainability, the externalized agreement on names and meaning of classes,

functions, and variables that are used to de�ne interfaces for state- and behavior representa-
tion and -access, increases cohesion and further decouples data model, action descriptions,
and concrete subsystems. In addition, it facilitates communication between (I)RISs by en-
abling the reuse of interface de�nitions for other systems (see Figure 5.11). It thus overcomes
a limitation of ECS-pattern implementations. ¿is reuse is further facilitated, if the ontol-
ogy is split into several coherent parts that are joined by import mechanisms. Commonly
available knowledge source, e.g., an ontology of verbs, can hence be incorporated.
Altogether, the code by semantics technique facilitates fast access to application state and

-behavior (Rper), due to the generation of native code, as well as the utilization of elaborated
knowledge representation- and reasoning methods (Rsta2 and Rsem), due to the externalized
de�nitions. ¿e technique implies slightly longer building times, since the generation process
has to take place before compiling. Potential development overhead, e.g., for editing the
ontology, has to be countered by tool support to keep development e�cient. ¿is issue is
eased if the choice of the concrete ontology implementation also considers the existence of
suitable editing tools that can be used directly or extended to the development needs.

66

Chapter 5 Semantics-based So ware Techniques

SemanticTypeGroundedSymbol

ActionDescription

Component

PositionTypehas
Semantics

isInstance
Of

has
Subject

has
Precondition

has
Property

has
Parameter

has
Property

has
DataType

Vec3

Collocate
Description

RigidBody
Component

has
Semantics

anonymous
statement

ActionCollocate
Action

has
Semantics

has
Description

Position

Collocate

RigidBody

Statement

Subject

Programming Language

<<singleton>>
position

IRI = "Onto#Position"
symbol = "position"

IRI = "Onto#PositionType"
semantics = position
annotations = []

<<singleton>>
PositionType IRI = "Onto#RigidBodyComponent"

type = rigidBody
requiredProperties = ...

RigidBody

ActionDescription

GroundedSymbol

SemanticType

Component

IRI = "Onto#CollocateDescription"
parameters = ...
preconditions = ...
effects = ...

<<singleton>>
CollocateDescription

IRI = "Onto#CollocateAction"
semantics = collocate
description = CollocateDescription
implementation = ...

<<singleton>>
CollocateAction

GroundedAction

automated
code
generation

Stool Chair

isSubclass
Of

has
Property

has
Parameter

...

...

to_putVerb describes

Figure 5.10.¿e code from semantics technique exempli�ed by means of the interaction use
case: an ontology excerpt (lower part) suitable for generating grounded symbols, seman-
tic types, components, and grounded actions as �rst class citizens of a target programming
language (upper part). Semantic functions (not shown) are modelled similar to grounded
actions, devoid of preconditions and e�ects. Refer to the text for details.

67

Chapter 5 Semantics-based So ware Techniques

Programming Language Programming LanguageProgramming Language

Code from Semantics

Subsystems

BehaviorState

Semantic Grounding

Central Registry

Subsystems
(other)

State

Semantic Grounding

Central Registry

Subsystems
(other)

BehaviorState

Semantic Grounding

....

Ontologies

automated
code
generation

Figure 5.11.¿e code from semantics technique as basis of multiple (I)RIS architectures. Its
independence from a concrete programming language facilitates the reuse of de�nitions.

5.6 Decoupling by Semantics

All �ve techniques presented so far contribute to decoupling based on a semantic description
of interfaces. Technique six joins them to provide an abstraction layer for the de�nition of
subsystems. Entities and actions, required by subsystems, are referenced by describing their
characteristics, rather than by passing them as reference on creation or via callbacks. ¿ese
descriptions are intermixed with calculation rules that are to be evaluated in reaction to state
changes. ¿e abstraction layer includes a high-level API for de�ning processing steps, while
encapsulating the necessary management, e.g., execution of semantic queries and observa-
tion of entity properties. Figure 5.12 illustrates the technique by three exemplary multimodal
processing steps in the context of the interaction use case.
At data-level, a processing step may require the transformation of the (user’s) right hand

(Data-level, line 4) to extract its position. Transformation denotes a matrix-based represen-
tation that includes position information and that is typically used to describe kinematic
chains, like the human skeleton. ¿e entity representing the right hand is identi�ed by two
characteristics, being of type hand and of chirality right (Data-level, lines 1–2), which corre-
spond to entity �lters that can be combined to create a semantic query. On creation a hence
described subsystem, shall use this entity �lter to obtain a concrete entity reference and to
observe this entity’s transformation property. Whenever this property changes, the subsys-
tem shall evaluate the statement in curly braces and update the entity’s properties with the
result, i.e., the position extracted by means of a semantic function (Data-level, lines 5–7).

68

Chapter 5 Semantics-based So ware Techniques

Subsystems

BehaviorState

Semantic Grounding

Central Registry

Code from Semantics

Logical
Processing

Flow

decoupled by semantics

RightHand = Entity that
 HasValue(Type(hand)) and HasValue(Chirality(right))

Requires property Position from RightHand
Updates the properties of entity described by RightHand with {
 Position from (Transformation of RightHand)
}

1
2
3
4
5
6
7

User = Entity that HasValue(Type(user))

Requires property Position from RightHand
Is configured by NeuralNetworkConfiguration("pointing.xml")
Updates property PointingConfidence of
 entity describedBy User with {prediction}

1
2
3
4
5
6

Requires properties Token and Gesture from User
If observed Token is a verb then {

action = Lookup action associated with Token of User
...

}

1
2
3
4
5

D
at

a-
le

ve
l

Fe
at

ur
e-

le
ve

l
D

ec
is

io
n-

le
ve

l

Figure 5.12.¿e decoupling by semantics techniques applied to describe requirements and
e�ects of subsystems (right, red boxes). Some subsystems may still be associated with enti-
ties by means of the ECS-pattern’s component mechanism (black boxes). Human-readable,
high-level description sketches of three multimodal processing steps at data-, feature-, and
decision-level (le). ¿e descriptions utilize grounded symbols, semantic types, and -values
(blue). ¿ey follow Sire and Chatty’s (2004) proposal of ideal languages features and comm-
prise variables (purple text) and control structures. Refer to the text for details.

At feature-level, a processing step may embed a more complex evaluation based on a neu-
tral network that analyzes the trajectory of the right hand to predict a pointing gesture. Ad-
ditional description elements are used to reference an externalized con�guration (Feature-
level, line 4) required for such a specialized processing step. However, data sources (Feature-
level, line 3) and sinks (Feature-level, lines 5–6) as well as reactions to changes (Feature-level,
line 6) are described using the same elements as before.
At decision-level, a processing step may fuse speech and gesture and thus requires to ob-

serve spoken tokens and performed gestures (Decision-level, line 1). ¿e description con-
stitutes an excerpt of a typically more complex speci�cation that connects application state
changes to registred grounded actions (Decision-level, lines 2–5). Spoken tokens that are
identi�ed to be verbs can be used to inquiry associated actions at the central registry (Decision-
level, line 3). ¿e description of a thus obtained action can be used as semantic constraint,
i.e., the rest of the utterance has to �ll the de�ned parameters and to satisfy the preconditions.
If so, its execution can be occasioned. An example using this lookup is given in section 6.3.
Altogether, the decoupling by semantics technique is an approach to jointly utilize all pre-

viously presented techniques by means of high-level API that foster usability for developers.
It allows to de�ne interrelations between subsystems and the application state as well as be-
tween subsystems and the application behaviour based on semantic descriptions. On the one

69

Chapter 5 Semantics-based So ware Techniques

hand, it adds an alternative to the ECS-pattern’s component mechanism for decoupling sub-
systems and state that is more �exible, especially in terms of granularity. On the other hand,
it adds a novel mechanism to decouple behavior in a similar fashion. Due to the applica-
tion of semantic queries, subsystems can be reused in other contexts as long as the required
application state and behavior representation elements exist.

5.7 Summary

¿e six presented so ware techniques extend the ECS-pattern’s basic principle and provide
solutions to its runtime type de�cit as well as its incompatibility issues between RISs. More
importantly, the techniques improve component granularity, facilitate access to entity prop-
erties outside a subsystems component association, and additionally provide means to se-
mantically describe behavior as complement to the state representation. Ultimately, the six
techniques constitute solutions to the fundamental (I)RIS requirements (see Table 5.1). ¿ey
facilitate decoupling by means of semantic interface descriptions beyond common alterna-
tives, while providing additional bene�ts, like improved state access �exibility, a consistently
designed behavior representation, compatibility with common reasoning and planning ap-
proaches, the support of high-level APIs, and inter-RIS compatibility. ¿ey thus foster several
central aspects ofmaintainability while being especially suitable for AImethods. ¿e guiding
use case constitutes an instruction-based, intentional MMI.¿e six techniques, however, are
not limited to this scenario. Access to a state- and behavior representation based on semantic
descriptions as well as planning and reasoning capabilities may likewise facilitate the analysis
of unintentional non-verbal communication and the generation of multimodal output.
¿e presented techniques are independent of a concrete programming language. Develop-

ers can bene�t by integrating them in their own so ware or use them to enhance third-party
systems. ¿eir dependencies are listed in Table 5.1, in case a subset of them is required.

Table 5.1.Dependencies between the presented techniques and their contributions to solve
the fundamental (I)RIS requirements identi�ed in chapter 2. Each row represents a technique
and indicates which other techniques are required (r) or bene�cial (b) for its implementation
(Revised from Fischbach, Wiebusch, & Latoschik, 2017).

1 2 3 4 5 Contributes to
Semantic Grounding 1 Racc

Semantic Entity-Component State 2 r b Rsta

Grounded Actions 3 r b Rbeh , Rsem

Semantic Queries 4 r b b b Racc

Code from Semantics 5 r Rper , Racc

Decoupling by Semantics 6 r b b r b Rex e

70

Chapter 6

Reference Implementation

¿is chapter elaborates on a reference implementation of the semantics-based so ware tech-
niques presented in chapter 5. All respective development e�orts have contributed to the
current version of an IRIS platform called Simulator X (Latoschik & Tramberend, 2011; Fis-
chbach et al., 2017), which is available under an open-source licence Wiebusch, Fischbach,
Rehfeld, Tramberend, and Latoschik, 2016. It is dedicated to system architecture research
in the area of VR and MR with a special focus on multimodal interfaces. Consequently, the
platfom comprises an integrated multimodal input processing framework, calledmiPro. ¿e
presentation of the author’s share of the implementation e�orts is divided into the following
aspects: design decisions, core implementation, multimodal input processing, and ancillary
contributions. Taken architectural and practical design decisions that are not speci�ed by
the techniques are justi�ed �rst. ¿e implementation of each technique is detailed therea er,
jointly constituting the core of the Simulator X platform. ¿e utilization of this implemen-
tation for multimodal input processing is showcaed within the context of the interaction use
case. Finally, ancillary contributions are presented, including additional subsystems, applica-
tion development abstractions, as well as code examples that supplement the documentation
to support beginning developers.

6.1 Design Decisions

Some decisions that are essential for an implementation are le open by the presented se-
mantics-based so ware techniques: the choice of an execution model, of a communication
scheme, of an ontology, and of a programming language. In the case of Simulator X, the
former two are ensured by applying the actor model, making it three taken decisions that are
introduced and justi�ed in this section (cf. Wiebusch, Fischbach, Latoschik, & Tramberend,
2012).

71

Chapter 6 Reference Implementation

Actor Model

¿e actor model (Hewitt, Bishop, & Steiger, 1973) de�nes actors as independent �ows of con-
trol that communicate solely via messages. It thus constitutes a solution to the fundamental
execution and communication requirements of RISs (Rex e and Rcom) that uses actors as ba-
sic building blocks realizing concurrency. ¿e actor model follows the paradigm ”everything
is an actor”. Once created (by another actor), an actor exclusively can respond to a message
received by one of the following three theoretical actions:

1. send message

2. create further actors

3. change its reaction to future messages

All computations required in the context of an IRIS have to be performedwithin these the-
oretical constraints. In practice, however, callbacks from input device drivers are o entimes
additional triggers for sending messages as well as rendering is o entimes a further reaction
to amessage received. Besides obvious applications ofmessaging, e.g., for passing results, this
mechanism can also be used to realize instruction sequences that have to be repeated within
a certain time window, e.g., rendering an image every 10ms. To do so, an actor can send itself
a message upon reaching the end of such a loop. Actor model implementations may support
this implementation by providing a means to schedule the dispatch of a message.
¿e actor model is chosen, since it is a scalable execution model with an inherent support

for communication, thus facilitating distribution and event systems. ¿e former is highly
bene�cial for large-scale (I)RIS applications, e.g., VR, the latter for decoupling the execution
of subsystems (Steed, 2008). Its scalability mainly results from the paradigm ”everything is
an actor”. Actors can one-to-one realize the common coarse grained separation of compu-
tational aspects into subsystems, e.g., input processing, physical simulation, and 3D render-
ing. In addition, the model is especially designed to enable the concurrent use of actors for
�ne grained and occasionally necessary computations. One the one hand, this accommo-
dates the typical behavior of AI methods, where analysis, reasoning, or planning, has to be
performed sporadically with required processing times that are hard to exactly predict. On
the other hand, this �exibility allows to fully exploit available hardware capabilities, ranging
from multiple processing cores over CPUs to cluster nodes. Finally, the limitation to mes-
sage passing for communication—and thus for data sharing—avoids the necessity of com-
mon concurrency control mechanisms, such as mutexes. Synchronization mechanisms may
still be required and added at higher layers.

72

Chapter 6 Reference Implementation

Despite these bene�ts, some speci�c features of the actor model have to be considered
upon its utilization for a RIS. ¿e actor model makes no assumptions about message order-
ing. Actors run concurrently and message passing is asynchronous, thus this is obvious for
most of the communication. Yet, two messages sent in a speci�c order from one actor to
the same receiver could also overtake each other. One reason can be that the two actors are
running on two di�erent machines and are communicating via a network protocol that does
not guarantee ordering itself. However, such incidents must be excluded to enable correct
implementation of access and communication mechanisms building onmessage passing be-
tween actors (cf. Wiebusch, 2016, pp. 119–126). Most actor model implementations provide
message ordering between actors and guarantee that multiple messages from one actor to the
same receiver are processed in the order they are sent, e.g., by realizing the actor’s mailbox as
�rst-in-�rst-out data structure. In networked scenarios additional means are necessary, e.g.,
relying on a suitable network protocol, like TCP, or numbering messages.
Furthermore, the debugging and pro�ling of actor systems beyond local computations

is not straightforward. Common supportive tools are o en ine�ective. For instance, stack
traces by debuggers end in a thread managed by the actor model implementation’s sched-
uler without helping the developer to identify where a certain message went or came from.
Violated restrictions related to implementation particularities of the actor model lead to
malfunctioning that is hard to identify. Messages have to be immutable to not violate the
principle that actors exclusively communicate via messages. A nevertheless passed mutable
data structure may create a situation in which two actors mutually access a shared memory
unguarded, i.e., a race condition. ¿e resulting malfunctioning is typically di�cult if not
impossible to reproduce. Here, appropriate abstraction layers should hide implementation
particularities of lower layers if possible, avoid incorrect accidental misuse in the �rst place,
and thus increase API usability. ¿e concrete abstraction layers of the Simulator X platform
are presented in section 6.2. In addition, dedicated tool support not only assists developers
that are inexperienced with the actor model, but also further increases API usability as well
as analysability in general (cf. Rehfeld, Tramberend, & Latoschik, 2014).
Finally, the actor model does not specify the structure or meaning of messages. ¿us addi-

tional agreements are necessary to guarantee that an receiving actor understands a message,
i.e., is able to properly process it. ¿e semantic grounding technique speci�cally ful�lls this
requirement and complements the actor model in this regard.

73

Chapter 6 Reference Implementation

WebOntology Language

¿eWebOntology Language (OWL,W3COWLWorking Group, 2009) is a description lan-
guage for ontologies developed to serve as a long-term standard for representing knowledge
in the world wide web. OWL is formally based on description logics and is consequently ca-
pable of representing concepts (classes), individuals and their realtions. Due to its web ded-
ication, all resources are referenceable by IRIs. It thus ful�lls the basic requirements posed
by the code from semantic technique. Moreover, its applicability for describing state and
behavior within an IRIS has been shown by the ISReal framework (Kapahnke et al., 2010).
In addition to that, the choice of OWL is driven by further bene�ts. OWL ontologies can

be partitioned into multiple �les linked by import statements and IRIs, fostering modular-
ity and reusability. Sharing and collaboration are essential for OWL’s designated use in the
context of the world wide web as they are when it comes to the fostering of reusability for
IRISs. ¿e broad dissemination of OWL can, on the one hand, be exploited by incorporating
existing ontologies into applications (e.g., the Wordnet ontology by Miller, 1995, to facili-
tate reasoning about verbs and their mapping to actions during multimodal fusion). On the
other hand, existing tools can be potentially readily used or be extended to better match de-
velopment use cases. ¿ese tools include, graphical OWL editors, like Protégé (Musen, 2015)
and the Fluent Editor (Cognitum, 2015), as well as reasoning so ware, like HermiT (Glimm,
Horrocks, Motik, Stoilos, & Wang, 2014) and Pellet (Sirin, Parsia, Grau, Kalyanpur, & Katz,
2007). Finally, OWL promotes the RIS performance requirement (Rper) by supporting sub-
languages, called OWL pro�les, that trade expressive power for reasoning e�ciency. OWL
pro�les do not have to be explicitly speci�ed, but rather result form the language elements
used. ¿is performance bene�t can be further increased by utilizing ontology partitioning.
¿us reasoning can be more easily restricted to a certain relevant subset of the complete on-
tology in use, which typically results in a performance gain. Refer to Wiebusch (2016, pp.
47–48 and 55–98) for a comprehensive justi�cation of the OWL choice.

Scala

Scala (Odersky et al., 2004) is a general purpose programming language that provides object-
oriented as well as functional paradigms. Its source code is intended to be compiled to byte-
code for the Java Virtual Machine (JVM). Consequently, Scala can be easily intermixed with
Java libraries. At the time the decision for an programming language taken, a similar Scala
compiler yielding bytecode for Microso ’s .Net virtual machine was available. Its support,
however, is discontinued by now.
¿e choice for Scala bases on the following bene�ts of the language with respect to (I)RIS

74

Chapter 6 Reference Implementation

1 object Simple {
2 def main(): Unit = {
3 val ping = () => {println("ping")}
4 val pong = () => {println("pong")}
5 val pingPong =
6 Chain function ping andFunction pong
7 pingPong() //Executes the chained function
8 }
9 }
10

11 object Chain {
12 def function(f: () => Unit) = {
13 new SequenceOfFunctions(List(f))
14 }
15 }
16

17 class SequenceOfFunctions(functions: List[() => Unit]) {
18 def andFunction(f: () => Unit) = {
19 new SequenceOfFunctions(f :: functions)
20 }
21 def apply() = functions.reverse.foreach(_.apply())
22 }

Listing 1. Illustration of Scala’s syntax �exibility and support for internal DSLs. Keywords
are depicted in dark blue and local variables in purple. Singleton-like patterns can be de�ned
using the keyword object alternatively to class. ¿is way an exemplary main function
is de�ned (lines 2–8). A function is assigned to the variables ping and pong respectively
(lines 3 and 4). For that, two lambda expressions are used, each de�ning a function that
takes no parameters and prints to the console. Its return type Unit is analogous to Java’s
void. ¿e type of these variables is not speci�ed, it is implicitly determined by the type of
the statement right of the = operator by Scala’s type inference mechanism. ¿e result of an
internal DSL statement, i.e., the concatenation of ping and pong, is assigned to the variable
pingPong (lines 5–6) and executed a erwards (line 7). ¿e DSL statement makes use of
the option to omit the dot operator or the parentheses in certain cases. Its implementation
is shown below (lines 11-22). Object Chain de�nes a static function function that takes a
further function, like ping (lines 12–14). ¿is constitues the implementation of �rst part of
the DSL statement and can be alternatively called by Chain.function(ping). ¿e result
is a new instance of class SequenceOfFunctionswhich composites sequences of functions
(lines 17–22). SequenceOfFunctions de�nes a member function that allows to prepend
to the sequence (lines 18–20, using the :: operator of List) as well as a member function
apply that represents the () operator. ¿is operator is called in line 7. Its implementa-
tion reverses the sequence order to respect the DSL statement and then executes all stored
functions sequentially. Altogether, the statement in line 6 resembles a description in natural
language, however, it is still restricted to the Scala syntax, e.g., preventing the separation of
andFunction into and function.

75

Chapter 6 Reference Implementation

development. ¿e provided object-orient paradigm as well as Scala’s close relation to the
widespread Java programming language ease �rst steps for developers. ¿e interoperability
with Java makes a large amount of potentially useful libraries available for development. ¿e
compatibility with the JVM implicates platform independency. Furthermore, Scala comes
with a profound support for the actor model. Formerly included in the Scala standard li-
brary, it is now provided through the akka (Lightbend Inc., 2016) library, a widespread im-
plementation of this model. Finally, Scala’s syntax �exibility (see Listing 1) greatly facilitates
the maintenance of concise code as well as the creation of internal DSLs (see section 6.2).
¿is bene�ts come at one central drawback that has been traded o� against Scala’s gains:

reduced performance. Programming languages like C++ are assumed to provide higher per-
formance and are for that reason evenwider spread in the area of RIS development. ¿emain
cause is the manual memory management that these languages permit, enabling developers
to optimize time critical and frequent access. In contrast, the garbage collection meachnims
of the JVM may occupy hardware ressources in critical situations leading to compromised
user experience (Stau�ert, Niebling, & Latoschik, 2016), since it is not dedicated to RIS re-
quirements. However, manual memory management capabilities imply that memory has to
be manually allocated, potentially accessed, and freed using pointer arithmetics. A typical
source for high development e�ort. Scala, by contrast, hides this management from the de-
veloper. ¿e endeavour to provide a solution to the coupling dilemma and to increase main-
tainability in general primarily implies de�nitions of abstraction layers and interfaces that
may need to be rapidly prototyped. Both of these requirements called for Scala. In addition,
early proof of concept prototypes, which have been extensively continued (see chapter 7),
validated the feasibility of the choice. ¿e presented semantics-based so ware techniques
can still be implemented in C++. ¿e principally higher e�ort can be minimized by utilizing
the advantage of having a clear de�nition now.

6.2 Core

¿e actor model, the programming language Scala and the web ontology language are the
practical basis for Simulator X platform. ¿e result of their utilization for implementing the
semantics-based so ware techniques constitutes its core functionality. ¿is section empha-
sizes the keymechanisms applied to implement the platform’s core. ¿epresentation focusses
on interfaces as the primary means for decoupling and API usability.

76

Chapter 6 Reference Implementation

Semantic Grounding

¿e semantic grounding concept presented in section 5.1 is implemented utilizing the fol-
lowing key mechanisms:

• Scala’s object syntax

• Currying

• Implicit parameters

An implementation excerpt of the semantic value Position as well as of its associated
grounded symbol and semantic type is shown in Listing 2. Grounded symbols (lines 1–5)
are singleton wrappers for identi�ers, which are stored as member variable symbol (line
3). ¿ey are named a er the contained identi�er, beginning with a lower case letter. Just as
semantic types and -values, they correspond to de�nitions in an associated ontology, from
which they are automatically generated. ¿e link to the ontology is re�ected by a member
variable holding an IRI (lines 4,9, and 18).
¿e implementation of semantic types and associated semantic values exploits Scala’s syn-

tax for de�ning singleton-like patterns, called companion objectsor companionmodules, along-

1 object GroundedSymbols { /** auto-generated **/
2 object position extends GroundedSymbol(
3 symbol = "Position",
4 ontologyLink = new IRI("GroundedSymbols.owl#Position"))
5 /*...*/}
6 object SemanticTypes { /** auto-generated **/
7 object Position extends SemanticType[Vec3,Position](
8 semantic = GroundedSymbols.Position
9 ontologyLink = new IRI("SemanticTypes.owl#PositionType"))
10 {
11 def apply(value: Vec3) : Position = {/*...*/}
12 def apply(value: Vec3, timestamp: Long): Position = {/*...*/}
13 def from (t: Transformation)(implicit functions: SemanticFunctions): Position =
14 functions.positionFrom(t)
15 }
16 class Position(value: Vec3, timestamp: Long) extends SemanticValue[Vec3](
17 semantics = GroundedSymbols.Position
18 ontologyLink = new IRI("SemanticTypes.owl#PositionType"))
19 {
20 def -(p: Position)(implicit functions: SemanticFunctions): Direction =
21 functions.-(this,p)
22 }/*...*/}

Listing 2. Implementation excerpt of the semantic grounding technique within Simulator X,
reduced to its essentials. Concrete grounded symbols, semantic types, and -values are de-
picted in light blue. Refer to the text for details.

77

Chapter 6 Reference Implementation

1 object SemanticValue {
2 def example() {
3 val properties = new SemanticValueSet()
4 val transformation = Transformation(Mat4.Identity)
5 properties.set(transformation)
6 println(properties.get(Transformation).value)
7 }
8 /*...*/}
9 class SemanticValueSet() {
10 def set(property: SemanticValue[_]): Unit = {/*...*/}
11 def get[SV, ST <: SemanticType[_,SV]](description: ST): SV = {/*...*/}
12 /*...*/}

Listing 3. Example utilization of semantic values. Generic types are depicted in cyan.

side with a class. ¿us, a semantic type may be named identical to its associated semantic
value, e.g., the object Position realizing a semantic type (lines 7–15) and its associated se-
mantic value Position (lines 16–22). As de�ned by the concept, the semantic type allows the
instantiation of respective semantic values (lines 11–12). All semantic values contain a times-
tamp in addition to the raw value, to enable subsystems to check temporal constraints (Rtmp)
and to perform other time-based processing, like interpolation. If no explicit timestamp is
passed for the instantiation of an semantic value (cf. line 11), the implementation uses the
current time as default value. General functions, e.g., for annotation or value access, are de-
�ned in the super classes SemanticType and SemanticValue. Functions relating to other
semantic values, i.e., semantic functions, are de�ned in-situ (lines 13–14 and 20–21). Seman-
tic functions are curried: in addition to a set of parameters representing relation partners,
i.e., one or more semantic values, these functions take an additional set of parameters con-
sisting of one item (functions). A er passing the �rst parameter set, a semantic function
hence results in another function that takes a second parameter set. ¿e functions param-
eter realizes a reference to compatible implementations, which are called in the respective
implementations (lines 14 and 21). ¿e implicit keyword facilitates a concise syntax when
using semantic functions.
¿e utilization of semantic types, -values, and -functions is showcased in Listing 3 with

the aid of an related class for representing collections of properties, called SemanticVal-

ueSet. An exemplary utilization is shown in lines 2–7. Semantic values are instantiated
by passing a concrete value to the apply method of the associated semantic type (line 4).
Such values can be added to SemanticValueSets (line 5) and retrieved later on (line 6),
while preserving the semantic value type. In the context of the example, this means that
properties.get(Transformation) returns an object of type Transformation. Se-

manticValueSet is implemented by composition of a data structure that maps semantic

78

Chapter 6 Reference Implementation

1 object SemanticValue {
2 def example() { /*...*/
3 properties.set(Position from transformation)
4 properties.set(properties.get(Position) - properties.get(Position))
5 }
6 implicit object Implementations extends SemanticFunctions with Defaults {
7 def positionFrom(t: Transformation) = {/*...*/}
8 }
9 /*...*/}
10

11 abstract class SemanticFunctions { /** auto-generated **/
12 def -(minuend: Position, subtrahend: Position): Position
13 def positionFrom(t: Transformation): Position
14 /*...*/}
15 trait Defaults {
16 def -(minuend: Position, subtrahend: Position) = {/*...*/}
17 /*...*/}

Listing 4.Continuation of the exemplary use of semantic values in Listing 3, demonstrating
the application of semantic functions.

types, i.e., property descriptions, to semantic values, i.e., concrete property instances (lines
9–12). Its key features are amethod to store semantic values (set, line 10) and to retrieve them
based on semantic descriptions if existent (get, line 11). ¿e signature of the get method re-
�ects the association between semantic types and semantic values: the concrete semantic
type passed to the method (ST) determines the return type, that is, the associated semantic
value (SV). Semantic value sets are a possible implementation of entities, i.e., collections of
properties constituting objects relevant to the simulation.
Listing 4 continues this example and demonstrates the utilization of semantic functions

(lines 2–5). ¿e from function is used to extract the position from the previously de�ned
transformation, which is stored in the SemanticValueSet (line 3). ¿e application of from
is de�ned by making use of the option to omit dot operators and parathesis. ¿e statement
in line 3 only de�nes the �rst parameter set of the curried function from (cf. Listing 2). ¿e
second parameter set, consisting of one parameter of type SemanticFunction, is automat-
ically resolved due to its annotation with the implicit keyword. If implicit parameters are
not (explicitly) passed, the current scope is searched to �ll in missing values. Candidates are
objects of compatible type that are also annotated with implicit. In this case the object
Implementations (lines 6–8). It is compatible, since it inherits from the abstract class
SemanticFunctions (lines 10–13). SemanticFunctions de�nes all functions required for
semantic types as well as -values and is likewise generated from an associated ontology. Con-
crete implementations may be de�ned with regard to reuse (DefaultImplementations in
lines 14–15) and mixed in (keyword with in line 6) or de�ned locally (line 7). ¿e original

79

Chapter 6 Reference Implementation

statement Position from transformation can thus keep its concise shape while allow-
ing to bind di�erent implementations. ¿e second application of a semantic function (line 4)
demonstrates the in�x utilization of the - operator. At the same time, the preservation of
types a er accessing a SemanticValueSet is shown, since - is a function of the concrete
semantic value Position.
Altogether, the key mechanisms applied for the implementation result in the following

bene�ts. ¿e use of Scala’s singleton pattern syntax results in a concise notation for instan-
tiating and accessing semantic values. Currying in combination with implicit parameters
allows to separate the implementation of a semantic function from its de�nition, which facil-
itates the automatic generation from an ontology and the binding of alternative realizations.
Moreover, implicit parameters together with an implicit de�nition of semantic function
implementations in super classes further support conciseness for semantic function applica-
tions.

Semantic Entity-Component State

¿e implementation of the semantic entity-component state concept presented in section 5.2
provides globally accessible variants of semantic value sets, i.e., entities as a collections of
properties. ¿e implementation builds upon the following key mechanisms:

• State variables

• Implicit parameters

• Traits

At �rst sight, the concept of globally accessible state contradicts the actormodel principles,
which disallow direct access to other actor contexts. ¿e state variablemechanism solves this
issue by providing the illusion of globally accessible variables based on message passing (see
Listing 5). All subsystems are implemented as actors, including the application logic speci�-
cation. An exemplary actor that operates on a passed StateVariable is shown in lines 1–6.
¿is state variablemimics variable of type Vec3 that can be potentially passed to and accessed
by all actors. Setting a value is identical to common mutator method implementations (line
4). ¿e getter method, however, takes a callback function as parameter, instead of returning
the state variable’s value (line 3–5). Its signature is owed to the underlying implementation.
¿e state variable’s value may be not directly accessible by the executing actor, i.e., it may not
be within its context. Hence, message passing is required to instead inquire it from the actor
that manages the value. ¿e passed callback function is then executed delayed.

80

Chapter 6 Reference Implementation

¿e key aspects of Simulator X’s state variable implementation are shown in lines 7–19. A
StateVariable itself is solely a composition of an unique identi�er and a reference to an
actor that manages the access to the actual state of the variable, called owner (line 7). Besides
setting (line 8) and getting (lines 9–10) the value of a state variable, actors can register for
a noti�cation on changes to the variable’s value (observe, line 11) and deregister from this
noti�cation (ignore, line 12). ¿esemethods are part of the StateVariable class to model
a common variable interface. Concrete message passing, however, has to originate from an
actor. ¿e implementations of the methods in class StateVariable, consequently forward
all parameters to such an actor (lines 8 and 10, observe and ignore is implemented accord-
ingly). StateVariableHandling (lines 14–19) implements the required communication. It
inherits from SimulatorXActor that provides general means to register handlers for mes-
sages based on their types, including support for matching request messages to their associ-
ated answer. ¿e invocation of get and set shown in lines 3 and 4 exploits implicit pa-
rameters to improve conciseness. StateVariableHandling de�nes a constant implicit
variable (context) that holds an reference to itself (line 15). ¿us, to enable the use of state
variables inside actors, simply the StateVariableHandling trait has to bemixed in as part
of the actor’s de�nition (line 1). Invocations of StateVariablemember functions then do
not require the context parameter to be speci�ed, since it is automatically inferred to be
context de�ned in StateVariableHandling.

1 class ApplicationActor extends SimulatorXActor with StateVariableHandling {
2 def offset(position: StateVariable[Vec3], delta: Vec3) {
3 position.get{ value =>
4 position.set(value + delta)
5 }}
6 /*...*/}
7 class StateVariable[T](val id: UUID, val owner: StateVariableActor.Reference) {
8 def set(value: T)(implicit context: StateVariableActor) = context.set(this, value)
9 def get(callback: (T) => Unit)(implicit context: StateVariableActor) =
10 context.get(this, callback)
11 def observe(callback: (T) => Unit)(implicit context: StateVariableActor) = {/*...*/}
12 def ignore()(implicit context: StateVariableActor) = {/*...*/}
13 /*...*/}
14 trait StateVariableHandling extends SimulatorXActor {
15 protected implicit val context : this.type = this
16 def set[T](sVar: StateVariable[T], value: T) = {/* Send message to owner */}
17 def get[T](sVar: StateVariable[T], callback: (T) => Unit) = {
18 /* Request value from owner and store callback for when the answer is received */}
19 /*...*/}

Listing 5.¿e interface to the state variable implementation, reduced to its essentials. ¿e
underlying message passing strategy is elaborated by Latoschik and Tramberend (2011) and
Wiebusch (2016, pp. 168–170). Refer to the text for details.

81

Chapter 6 Reference Implementation

1 class ApplicationActor extends SimulatorXActor with EntityHandling {
2 def setPointingRay(hand: Entity) {
3 hand.get(Transformation){ t =>
4 hand.set(Pointing(new Ray(t.origin, t.zAxis)))
5 }}
6 /*...*/}
7 class Entity(val id: UUID, val owner: StateVariableActor.Reference) extends
8 StateVariable[Map[SemanticType[_,_],StateVariable[_]]](id, owner) {
9 def set(property: SemanticValue[_])
10 (implicit context: EntityHandling) = context.set(this, property)
11 def get[SV, ST <: SemanticType[_,SV](description: ST)(callback: (SV) => Unit)
12 (implicit context: EntityHandling) = context.get(this, description, callback)
13 def observe[SV, ST <: SemanticType[_,SV](description: ST)(callback: (SV) => Unit)
14 (implicit context: EntityHandling) = {/*...*/}
15 def ignore(property: SemanticType[_,_])
16 (implicit context: EntityHandling) = {/*...*/}
17 }
18 trait EntityHandling extends StateVariableHandling {
19 implicit val context : this.type = this
20 def set(e: Entity, property: SemanticValue[_]) =
21 {/* get entity value (map), add property if new, set property value */}
22 def get[SV, ST <: SemanticType[_,SV](e: Entity, description: ST, cb: (SV) => Unit) =
23 {/* get entity value (map), lookup property, perform get on property */}
24 /*...*/}

Listing 6.¿e interface to the entity model implementation, reduced to its essentials. Refer
to the text for details.

¿e implementation of the entity model combines the semantic grounding implementa-
tion with the state variable mechanism. Listing 6 demonstrates the key aspects of this combi-
nation. Management of entity properties is achieved bymeans of semantic types and -values.
¿e underlying state variables, however, are hidden, making entities the sole interface to
their properties (lines 2–5). Entities support mutator methods for their properties similar to
state variables, including observe and ignore. ¿eir signature thus includes an additional
parameter of type SemanticType, specifying which property is addressed. For example,
the transformation property of an entity can thus by requested by passing the semantic type
Transformation as well as an appertaining callback function (lines 3–5). Within the call-
back, the obtained transformation value t can be used. In this case, to add a new property
to the entity (respectively to update the property if it already existed) by invoking the set
method with a semantic value of type Pointing (line 4).
¿e Entity class itself is implemented as a special StateVariable, holding a data struc-

ture that maps property descriptions to concrete property instances (lines 7–8), similar to
SemanticValueSet. ¿us it can also be passed to and accessed by potentially all actors,
without violating the actor principles. ¿e de�nition of the Entity class’ mutator methods

82

Chapter 6 Reference Implementation

(lines 9–17) constitutes a combination of the respective signatures from SemanticValueSet

and StateVariable. ¿e set method (lines 9–10) takes a semantic value, i.e., a property
to be added to the entity or to update it. ¿e getmethod (lines 11–12) takes a semantic type,
i.e., a description of an entity property, as well as a function to be called when the value of
the described property is available. Similar to the signature of SemanticValueSet.get,
the concretely passed semantic type (ST) determines the single parameter of the callback
function—its associated semantic value (SV). ¿e observe method (lines 13–14) and the
ignore method (lines 15–16) enable to register or respectively deregister from a noti�ca-
tion upon value changes of a speci�ed entity property. ¿ey are implemented in analogy
to get and set. All four mutator methods take an additional implicit parameter of type
EntityHandling to forward the invocation to an appropriate actor. Concretemessage pass-
ing or rather state variable access is de�ned within the EntityHandling trait (lines 18–24).
Since entities are realized as state variables, their value, i.e., themapping beween property de-
scriptions and state variables, can be get, set, and observed. ¿e implementation of the set
method (lines 20–21) accesses this map and adds an entry mapping to a new state variable
if required or updates the respective existing state variable. ¿e implementation of the get
method (lines 22–22) also accesses this map to retrieve the state variable that holds the value
of the property described by the passed semantic type. ¿e getmethod of this state variable
is subsequently invoked by passing the callbeck cb. ¿emethods observe and ignore (not
shown) are implemented accordingly. In analogy to the StateVariableHandling shown
in Listing 5, EntityHandling de�nes an implicit reference to itself (line 19), to facilitate
concise de�nitions inside inheriting actors when using entity mutator methods. ¿at is, the
implicit parameter context can be omitted.
¿is basic entity model implementation is complemented with an ECS pattern implemen-

tation as proposed by the semantic entity-component state technique. It provides an entity
lifecyclemechanismbased on entity descriptions that are composed of components. Compo-
nents themselves describe aspects of entities and determine systems (special subsystems) that
realize associated functionality. Such subsystems are implemented as specialized Simula-

torXActors that report to a central registry upon creation and can thus be noti�ed if relevant
entities are created. A rigid body component, for instance, may require an entity to possess
(semantic value) properties, like mass, position, and velocity, and an associated physics sim-
ulation subsystem to be registered. ¿e complemented implementation also provides addi-
tional means to re�ect upon entities, e.g., check if an entity possesses a certain property. ¿us
an additional condition if(hand.has(Transformation)) could be prepended to line 3 in
Listing 6. A detailed elaboration of Simulator X’ ECS pattern implementation is presented in
Wiebusch (2016, pp. 126–138 and pp. 158–161).

83

Chapter 6 Reference Implementation

Altogether, the key mechanisms applied for the implementation result in the following
bene�ts. State variables provide the illusion of globally accessible variables without violating
the actor principles. Variable access is managed by the actor that holds the actual state vari-
able value (owner). Additional synchronization mechanisms, e.g., to set multiple state vari-
ables in an atomic operation, are intended to be added in higher so ware layers. Traits allow
to conveniently equip actors with a cohesive set of communication capabilities, e.g., required
to utilize state variables or entities. Implicit parameters complement the implicit de�ni-
tion of self-references in EntityHandling to foster a concise invocation of entity mutator
methods. ¿e underlying state variables are transparent to property access, making entities,
semantic types, and -values the primary interface to the application state. As a result, the
meaning of properties is directly accessible for re�ection purposes, since it is represented by
�rst class citizens linking to an associated ontology, i.e., grounded symbols, semantic types,
and -values. ¿is is an improvement over the common practice of encoding the meaning of
values in variable names, like position in lines 2–4 of Listing 5.

Grounded Actions

Technique three is implemented based on grounded symbols, semantic values, and -types.
Planning support is realized by the use of the PDDL and the library planning4j (AMIS group,
2017). A comprehensive elaboration is given by Wiebusch (2016, pp. 91–92 and pp. 174–175).
Listing 7 illustrates the interface for describing (lines 1–7) and registering (line 11) actions.

¿e processing of the interaction use case necessitates that two objects are collocated to each
other at some point, e.g., the green chair and the table. ¿e ActionDescription describes
this action by specifying a grounded symbol that represents its meaning (line 2), a set of pre-
conditions (lines 3–5), and a set of e�ects (line 6). Preconditions and e�ects are speci�edwith
the aid of an internal DSL. Each line describes a concrete instance of the Statement concept
proposed in Figure 5.6. ¿e action’s parameters are implicitly de�ned by the entities and se-
mantic values that are referenced within the preconditions and e�ects. In this case, the action
has two parameters of type Entity one annotated with the grounded symbol subject and
one with the grounded symbol target. ¿e preconditions require that the subject to pos-
sess a property Moveable with value true (line 3) as well as a property Transformation
of arbitrary value (line 4) and the target to also possess a property Transformation of ar-
bitrary value (line 5). ¿e e�ects are that there is a relation Near between subject and target,
i.e., both entities posses a property Near whose value is a reference to the other entity, re-
spectively. An implementation of this description is indicated in line 9. Its compatibility to
the description cannot be checked automatically. It is thus the developers responsibility to

84

Chapter 6 Reference Implementation

1 object Collocate extends ActionDescription(
2 identifier = collocate,
3 preConditions = Set(Entity named subject hasProperty Moveable(true),
4 Entity named subject hasProperty Transformation,
5 Entity named target hasProperty Transformation),
6 effects = Set(Entity named subject is Near the Entity named target)
7)
8

9 def collocateImplementation(parameters: SemanticValue[_]*){/*...*/}
10

11 registerAction(Collocate, collocateImplementation)
12

13 def collocateEntities(subj: Entity, tgt: Entity){
14 Planner.accomplish(subj is Near the tgt) }

Listing 7. Action description (lines 1–7), implementation (indicated in line 9), registration
(line 11), and execution (using a planning subsystem in line 13–14) of a grounded collocate ac-
tion thatmoves one entity (the subject) near an other (the target, revised fromFischbach,
Wiebusch, & Latoschik, 2017). ¿e action’s description, the access to the parameters col-
lection, as well as the action’s execution are based on grounded symbols and semantic types.
Refer to the text for details.

ensure that the implementation really transfers the preconditions to the e�ects. A er being
recorded at the central registry (line 11), the action can be used, e.g., with the aid of a planning
subsystem as shown in lines 13–14. Instead of calling an action directly, a desired state is de-
clared. In this case, the declaration matches the e�ects of the collocate action. Hence, the
planning algorithm may check the action’s preconditions. If satis�ed, the collocate action
can be executed. Otherwise, a sequence of other action leading to a satisfaction is inferred
and executed before, if existent.

Semantic Queries

¿e implementation of the semantic query concept presented in section 5.4 allows actors to
request entities and actions from a central registry. ¿is registry (world interfaceWiebusch,
2016, pp. 161–162) is a special kind of actor known to all other actors. It is noti�ed upon
entity as well as action creation and stores respective references. ¿e implementation of the
semantic query concept builds upon the following key mechanisms:

• Context Binding

• Delimited Continuations

• Traits

• Singleton Actors

85

Chapter 6 Reference Implementation

1 abstract class EntityFilter extends Function[Entity,Boolean@CPSRet]{
2 implicit var context: EntityHandling = null
3 def rebindContext(newContext: EntityHandling) =
4 { context = newContext }
5 def and(that: EntityFilter) = new EntityFilter {/*...*/}
6 /*...*/}

Listing8.¿ebase class for entity �lters, reduced to its essentials. Refer to the text for details.

Requests to the central registry use the entity �lter to describe desired entities. Its imple-
mentation is shown in Listing 8. In principle, an entity �lter is a function that takes an entity
and returns a boolean value, which speci�es if an entity matches the �lter (line 1). However, a
potential access violation has to be considered, since entity �lters are functions that will likely
access entity properties and at the same time are meant to be communicated between actors,
e.g., from a requesting actor to the central registry. Entity mutators utilize the surrounding
actor context when invoked (cf. section 6.2). If an entity �lter that applies a get operation, for
instance, is sent to the registry and invoked there without further precautions, it will still use
the requesting actor’s context. ¿is most likely leads to malfunction of both actors. To coun-
teract this issue, the entity �lter implementation de�nes an own implicit context variable
(line 2). If an entitymutator is used in an implementation of EntityFilter’s applymethod
(inherited from Function[Entity,Boolean@CPSRet]), it uses the innermost matching
implicit variable, i.e., the one de�ne in line 2. To allow the registry to set a received entity
�lter’s context to itself, EntityFilter de�nes a rebind method (lines 3–4). In addition to
this fundamental functionality, entity �lters can be logically combined, e.g., by means of the
and operation de�ned in line 5.
Concrete entity �lters have to to implement the apply method. If an entity property is

to be obtained with such an implementation, then using the get method of class Entity
(cf. Listing 6) is not a viable option, since its callback mechanism does not allow to directly
return a boolean value. Entity �lter implementations thus make use of an alternative get
variant based on delimited continuations (Wiebusch, 2016, pp. 150–152). ¿is use is shown
in Listing 9 by the HasValue implementation. HasValue is one of the basic entity �lters
proposed in section 5.3 and section 5.4. It checks if an entity possesses a speci�ed property
and if this property equals a speci�ed value. Consequently, its constructor takes a seman-
tic value for matching and extends EntityFilter (line 1). ¿e implementation of apply
�rst checks if the entity possesses the property and then retrieves its value using the alter-
native get variant (line 2–3). When using the normal get variant, the callback that is to
be invoked when the answer to the request is available is de�ned explicitly. With the al-
ternative variant it is de�ned implicitly by means of the shi and reset operators of Scala’s

86

Chapter 6 Reference Implementation

1 class HasValue[T](v: SemanticValue[T]) extends EntityFilter {
2 override def apply(e: Entity) =
3 { e.has(v.semanticType) && Result.of(e.get(v.semanticType)) == v }
4 }

Listing 9. A concrete entity �lter that checks if an entity possesses a speci�ed property and
if it equals a speci�ed value.

delimited continuations mechanism. Reset marks a slice of code that is rei�ed into a func-
tion. Shi is used inside the reset block to mark sections that become parameters to that
function. In the case of HasValue’s apply method reset could mark the complete line 3.
Shi is used within Result.of() and marks the get request. E�ectively, this leads an in-
version of control, where e.get(v.semanticType) is executed �rst. Its results, or rather
a received answer message, is then passed to the rei�ed function. In this case, result =>

e.has(v.semanticType) && result == v. Similar to the shi operation being hidden
within Result.of(), reset is hidden in SimulatorXActor, marking any message handler
completely. One consequence of this integration of delimited continuations into the gen-
eral message handling is that return types calculated by means of shi operations, have to be
specially annotated, like Boolean@CPSRet (line 1 of Listing 8).
An exemplary application of entity �lters for semantic queries is shown in lines 1–7 of List-

ing 10. ¿erein, an entity representing the user’s right hand is selected from the application
state and passed to a callback function that may process this entity further (line 2–6). It is
assumed that the application state is modeled as proposed in Figure 5.3. ¿e entity �lter
rightHandFilter is de�ned as a conjunction of two HasValue �lters, checking if an entity
possesses a property Type of value hand and a property Chirality of value right respec-
tively (line 3). ¿is �lter is applied together with the callback function to query the central
registry (lines 4–5). getRegisteredEntities is inherited from the SemanticQueries
trait (lines 8–13), which equips ApplicationActor with communication capabilities for
semantic queries in the same way as the EntityHandling trait does for state access. Be-
sides the getRegisteredEntities request (lines 9–10), this trait provides means to reg-
ister for a noti�cation on the appearance of matching entities in the application state in the
future (observeRegisteredEntities, lines 11–12). ¿e implementation of these two re-
quests basically consists of sending the passed entity �lters to the central registry actor and
handling the answer accordingly. However, a reference to this actor is required to do so.
To allow any actor to query the central registry without passing its reference on creation,

the singleton actor mechanism is applied (lines 14–19). A SingletonActor wraps a Simu-
latorXActor that is passed in form of a constructor function (line 14). Its prime interface is

87

Chapter 6 Reference Implementation

1 class ApplicationActor extends SimulatorXActor with SemanticQueryHandling {
2 def getRightHand(callback: (Entity) => Unit) {
3 val rightHandFilter = HasValue(Type(hand)) and HasValue(Chirality(right))
4 getRegisteredEntities(rightHandFilter)(entities => {
5 callback(entities.head)
6 })}
7 /*...*/}
8 trait SemanticQueries extends EntityHandling {
9 def getRegisteredEntities (f : EntityFilter)(cb: Set[Entity] => Unit) =
10 {/* query Registry singleton actor*/}
11 def observeRegisteredEntities(f : EntityFilter)(cb: Set[Entity] => Unit) =
12 {/* query Registry singleton actor*/}
13 /*...*/}
14 abstract class SingletonActor[T <: SimulatorXActor](constructor: => T){
15 def !(message : Any) = { self ! message }
16 def self : SimulatorXActor.Reference =
17 {/* Create instance if non-existent, return reference */}
18 private var reference : Option[SimulatorXActor.Reference] = None
19 /*...*/}
20 class Registry extends SimulatorXActor {/*...*/}
21 object Registry extends SingletonActor(new Registry)

Listing 10. An exemplary semantic query (lines 1–7) as well as the interface to the central
registry reduced to its essentials (lines 8–21). Refer to the text for details.

the standard operator for sendingmessages (the ! operator, line 15), which is implemented to
send a passedmessage to the single instance of the wrapped actor. Consequently, it creates an
instance of the wrapped actor and stores a reference to it on �rst access and returns the stored
reference on this �rst and all subsequent accesses (lines 16–18). ¿e central registry actor
Registry (line 20) is wrapped this way (line 21) and can thus be addressed by potentially
any actor without its reference being directly passed.
EntityFilters, the SemanticQueries trait, and the Registry actor provide means to

request entities based on an associated grounded symbol (1), a logical combination of desired
properties and property values (2), and grounded actions (3). ¿e �rst two request types are
both the direct use of entity �lters as showcased in Listing 10. More precisely, the �rst can be
realized by the application of �lters like val handFilter = HasValue(Type(hand)) if
the application state is modeled accordingly. ¿e third request type also utilizes the Seman-
ticQueries trait and the Registry actor, however, entity �lters are retrieved from action
descriptions. Similarly, actions can be queried by means of grounded symbols or by spec-
ifying a desired application state as well as by utilizing a planning algorithm (as described
by Wiebusch, 2016, pp. 175–179). An additional variant of inquiry by means of symbols is
showcased in Listing 11. Verbs and other parts of speech are listed within a dictionary and
mapped to semantic values and grounded actions. By using this dictionary, which is meant

88

Chapter 6 Reference Implementation

1 object Dictionary {
2 val verbs = Map("put" -> Collocate(), /*...*/)
3 val adjectives = Map("green" -> Green(), /*...*/)
4 val nouns = Map("chair" -> Chair(), /*...*/)}
5 object Chair() extends Noun { val entityReference = Type(chair) }
6 object Green() extends Adjective { val associatedProperty = Color(Constants.green)) }
7 object Collocate() extends Verb { val actionReference = collocate }

Listing 11.Mapping of parts of speech to semantic values and grounded actions (Zimmerer,
Fischbach, & Latoschik, 2016): verbs denote actions, adjectives entity properties, and nouns
entities.

to be automatically generated from the associated ontology, the central registry can also be
queried by string tokens, e.g., obtained from a subsystem wrapping an ASR.¿is translation
from natural language elements to entities and actions is especially bene�cial for decision-
level multimodal fusion incorporation natural language, as showcased in section 6.3.
Altogether, the key mechanisms applied for the implementation of semantic queries result

in the following bene�ts. Context binding provides the means for communicating functions
that access the application state between actors and thus enable the implementation of entity
�lters. Delimited continuations facilitate the implementation of concrete �lters by allowing
the �lter’s apply method signature to be kept straight forward, with no additional callback
functions involved. ¿eir use in the general application statemutator interfaces was refrained
from, since it necessitates the annotation of return types (e.g., @CPSRet) if results of such a
mutator application shall be passed to other functions or be stored in local data types. In the
case of entity �lters, this annotation is transparent below the EntityFilter base class. In
general use, this transparency could not be completely maintained, which was experienced
to be a greater source of errors than of improvement. Traits are utilized to equip actors with
communication capabilities necessary to query the central registry, which can be addressed
without reference passing due to the singleton actor mechanism.

Code from Semantics

¿e implementation of the code from semantics technique presented in section 5.5 deals with
OWL modeling and the actual generation of Scala code from OWL. It utilizes the following
key mechanisms:

• Tool Support

• Process Integration

89

Chapter 6 Reference Implementation

1 <!-- GroundedSymbols.owl -->
2 <Declaration>
3 <Class IRI="#Position"/>
4 </Declaration>
5 <SubClassOf>
6 <Class IRI="#Position"/>
7 <Class IRI="Core.owl#GroundedSymbol"/>
8 </SubClassOf>

Listing 12.OWL de�nition of the grounded symbol Position (adapted from Fischbach et al.,
2017).

1 <!-- SemanticTypes.owl -->
2 <Declaration>
3 <NamedIndividual IRI="#PositionType"/>
4 </Declaration>
5 <ClassAssertion>
6 <Class IRI="#SemanticType"/>
7 <NamedIndividual IRI="#PositionType"/>
8 </ClassAssertion>
9 <ClassAssertion>
10 <ObjectSomeValuesFrom>
11 <ObjectProperty IRI="#hasSemantics"/>
12 <Class IRI="GroundedSymbols.owl#Position"/>
13 </ObjectSomeValuesFrom>
14 <NamedIndividual IRI="#PositionType"/>
15 </ClassAssertion>
16 <ObjectPropertyAssertion>
17 <ObjectProperty IRI="Core#hasDataType"/>
18 <NamedIndividual IRI="#PositionType"/>
19 <NamedIndividual IRI="DataTypes#math.Vec3"/>
20 </ObjectPropertyAssertion>

Listing 13.OWL de�nition of the semantic type PositionType (adapted from Fischbach et al.,
2017).

Grounded symbols, semantic types, components, and grounded actions are modeled in
OWL as described by Wiebusch (2016, pp. 162–165). An example modeling of a grounded
symbol and a semantic type, based on the structure proposed in Figure 5.10, is shown in
Listing 12 and Listing 13, respectively. ¿e grounded symbol Position is an OWL class (lines
2–4) that is a subclass of the GroundedSymbol class (lines 5–8). ¿e semantic type Position-
Type is an OWL individual (lines 2–4) that is a member of class SemanticType (lines 5–8).
PositionType also belongs to an anonymous class that describes individuals which have the
semantics Position (lines 9–15). ¿is class assertion realizes the relation between individuals
and classes (proposed in Figure 5.10) by means of OWL’s ObjectSomeValuesFrom expres-
sion. ¿e ObjectProperty hasSemantics can thus be used like a predicate denoting the

90

Chapter 6 Reference Implementation

SemanticFunction

has
ReturnValue

has
Parameter

has
OpertaorType

has
Name

PositionFrom
Transformation

SemanticType

PositionTypeTransformation
Type

PrefixOperator
TypeOperatorType from

<<string literal>>

Figure 6.1.Modeling of a semantic function that represents an operation extracting the po-
sition information from a transformation matrix.

SemanticFunction

has
ReturnValue

has
Parameter

has
OpertaorType has

Name

<<Semantic
Function>>

SemanticType

<<SemanticType>><<SemanticType>>

<<OperatorType>>OperatorType <<string literal>>

1..1 1..1

1..11..*

Figure 6.2. Blueprint for semantic function modeling in OWL. Refer to the text for details.

relation between the individual PositionType and the class Position. Finally, PositionType has
a relation to another individual that represents a concrete Scala data type (lines 16–20).
Semantic functions build upon those de�nitions and describe relations between proper-

ties that allow a procedural generation (cf. section 5.1). ¿ey are modeled in OWL similar to
grounded actions, mainly di�ering in the fact that they possess no preconditions and e�ects.
Figure 6.1 shows an exemplary modeling of the semantic function PositionFromTransforma-
tion. ¿e function is an individual of class SemanticFunction with relations to semantic type
individuals that represent its parameterTransformationType and its return valuePositionType.
It possesses an additional relation to Pre�xOperatorType, an individual of classOperatorType
specifying that the function is used in pre�x notation, aswell as to a string literal data property
that speci�es the function’s name.
A general blueprint for semantic functions is illustrated in Figure 6.2. Semantic function

individuals have one or more parameters, exactly one return value, and exactly one operator
type. ¿ose properties are speci�ed by means of the OWL object properties hasParameter,

91

Chapter 6 Reference Implementation

Figure 6.3.¿eOWL editor protégéwith the dedicated plugin, showing the view for specify-
ing a semantic type. Data types can be entered directly or be selected from existing semantic
types. In the latter case, the user can select from a drop-down menu. Associated seman-
tics, i.e., grounded symbols, can also be selected via drop-down menus. Both menus can be
searched by typing while the menu is open.

hasReturnValue, and hasOperatorType. ¿e function’s one name is speci�ed by means of the
OWL data property hasName, which has to be of type string.
Jointly, the de�nitions speci�ed in OWL form the basis for the RIS implementation in

Scala. OWL editing thus is part of the development process implied by the proposed tech-
niques. However, the developer is not meant to edit raw OWL �les. Existing OWL tools ease
the modeling e�ort considerably. OWL ontologies associated to Simulator X applications are
best edited with protégé (Musen, 2015) using a dedicated plugin. ¿is plugin extends protégé
with views for specifying grounded symbols, semantic types, and -functions (see Figure 6.3).
It is implemented in Java according to protégé’s pluginmechanismusing theOWLAPI library
(Horridge & Bechhofer, 2011) as well as the JIDE library for Java Swing (JIDE So ware, 2017).

92

Chapter 6 Reference Implementation

All grounded symbols, semantic types, and -functions, components, and grounded actions
modeled in OWL are used to generate Scala �rst class citizens, including most code snippets
shown beforehand in section 6.2. ¿e so ware piece that performs this generation task is
written in Scala, also using the the OWL API library. It is integrated into the development
process bymeans of the build tool that is used to compile and run Simulator X applications in
general (sbt Lightbend Inc., 2017). ¿us the generation task is guaranteeing that all concepts
de�ned in OWL are truly available to the compiler.
Altogether, the application of tool support and process integration results in an improve-

ment of developer usability, particularly, in a reduction of development e�ort. Ignoring the
necessity of these mechanisms, e.g., intending the associated ontology to be edited with plain
protégé or even with a text editor, can easily lead to a situation where the development costs
and complexity prevent a utilization of the associated ontology at all. ¿e dedicated protege
plugin reduces e�ort by mapping concept blueprints to protégé views, like the one presented
for semantic functions. ¿e complexity of arbitrary OWL editing is thus hidden and erro-
neous de�nitions are prevented. Moreover, the implementation of the protégé views con-
stitutes an implicit formal de�nition of the blueprints, besides diagrams, just as the imple-
mentation of the code generation task. However, the usefulness of languages dedicated to
explicitly describe OWL structures should be researched in future work.

Decoupling by Semantics

¿e decoupling by semantics technique presented in section 5.6 is implemented utilizing the
following key mechanisms:

• Traits

• Semantic Entity References

• A Domain Speci�c Language

• Implicit parameters

• Local Histories

• Interpolation

¿e proposed processing steps are realized by actors that are equipped with specialized
functionality by means of the Processor trait, analogous to previously presented imple-
mentations. ¿e basic feature of Processors is the semantic entity reference mechanism
that allows to describe required entities semantically, in contrast to passing them on cre-
ation. Listing 14 shows the relevant implementation excerpt with the aid of an exemplary

93

Chapter 6 Reference Implementation

1 val RightHand = Type(hand) and Chirality(right)
2 class FeatureExtractor extends SemanticEntityReferences {
3 require(Transformation,RightHand)
4 }
5 trait SemanticEntityReferences extends SimulatorXActor with SemanticQueries {
6 type SemanticEntityReference = SemanticValueSet
7 class StateUpdate[T](e: SemanticEntityReference, newVal: SemanticValue[T]){/*...*/}
8 var requirements: List[SemanticEntityReference, SemanticTypeSet] = {/*...*/}
9 var localData: Map [SemanticEntityReference, SemanticValueSet] = {/*...*/}

10 def require(property: SemanticType[_,_], e: SemanticEntityReference) = {/*...*/}
11 def onRequirementUpdate(update: StateUpdate[_])
12 override def startUp()= {/*...*/
13 requirements.foreach(requirement => {
14 observeRegisteredEntities(requirement.reference.toFilter){ entities =>
15 val storage = new SemanticValueSet()
16 localData = localData.updated(requirement.reference, storage)
17 requirement.properties.foreach{ property =>
18 entities.head.observe(property){ value =>
19 storage.set(value)
20 onNewValueOfRequirement(requirement.reference, value)
21 }}}})}/*...*/}

Listing 14.¿e implementation of semantic entity references, reduced to its essentials. Refer
to the text for details.

application (lines 1–4). Essentially, a semantic entity reference is a semantic query that is
meant to identify one single entity. It is de�ned as a conjunction of HasValue entity �l-
ters (cf. Listing 10) with the actual implementation of the �lter being hidden from the in-
terface. What is le , is a set of semantic values, i.e., a SemanticValueSet, that an entity
has to possess. Line 1 shows a de�nition of such a SemanticValueSet with the aid of the
convenience function and. An actor utilizing the Transformation property of the entity
described by this semantic entity reference is de�ned in lines 2–4. ¿e included require

invocation (line 3) is executed during the construction of a new FeatureExtractor in-
stance, since it is outside any method de�nition (Scala’s practice to de�ne constructors). ¿e
respective implementation is shown in lines 5–21. ¿e SemanticEntityReferences trait
is a SimulatorXActor that mixes in SemanticQueries to be able to request entities from
the registry (line 5). ¿erein, required entity properties are observed automatically and their
latest values are stored locally to facilitate direct access during processing. ¿e representa-
tion of semantic entity references as SemanticValueSets is re�ected by the type de�nition
in line 6. Requirements are a tuple of a SemanticEntityReference, denoting an entity,
and a SemanticType, denoting a property. ¿ey are stored locally (line 8) upon the invoca-
tion of require (line 10). ¿e entity properties they denote are stored in a second local data
structure that holds a SemanticValueSet, containing the latest values of required prop-

94

Chapter 6 Reference Implementation

1 val RightHand = Type(hand) and Chirality(right)
2 class FeatureExtractor extends Processor {
3 Requires property Transformation from entity describedBy RightHand
4 Updates the properties of entity describedBy RightHand ’with’ {
5 Position from (Transformation of RightHand)
6 }}
7 trait Processor extends SimulatorXActor with SemanticEntityReferences {/*...*/
8 object Requires {
9 def property(requiredProperty: SemanticType[_,_]) =
10 { /* Updates the requirements list */ }
11 }
12 object Updates {
13 /* uses onNewValueOfRequirement to register an appropriate callback */ }
14 protected implicit val context : this.type = this
15 def of[SV, ST <: SemanticType[_,SV]](property: ST, e: SemanticEntityReference): ST =
16 { /* Accesses localData and returns the respective value */ }
17 /*...*/}
18 abstract class SemanticType[T, ST <: SemanticValue[T]] {/*...*/
19 def of(entity: SemanticEntityReference)(implicit context: Processor) =
20 context.of(this, entity)
21 }

Listing 15.¿e implementation of processing steps, reduced to its essentials. Refer to the
text for details.

erties, for all required entities (line 9). Upon startup of the SemanticEntityReferences
actor by the underlying actor system, i.e., a er construction, the necessary observe invoca-
tions are performed (lines 12–20). ¿e central registry is queried for each entity referenced in
the requirements (lines 13–14). Whenever an entity matching a requirement appears in the
application state, including already existing ones, the local data structure is extended with a
SemanticValueSet dedicated to store the latest values of its required properties (lines 15–
16). ¿e actual acquisition of these values is realized by means of the observe mechanism
of entities (lines 17–20). ¿e con�ict beween the observeRegisteredEntities signature,
potentially providing multiple matching entities, and the assumption of semantic entity ref-
erences, meant to identify one single entity, is here solved by using the �rst matching entity
(entities.head, line 18). ¿e complete implementation provides at least a warning and
can be con�gured to throw an exception, if multiple entities have matched. ¿is part of the
implementation is omitted for the sake of clarity. Whenever a required property changes, its
new value is stored in the respective SemanticValueSet (line 19) and a callback is triggered
(line 20). ¿is callback (line 11, also cf. line 7) has to be implemented by inheriting actors,
like the actual Processor trait shown in Listing 15.
Following the decoupling by semantic technique’s proposal, the Processor trait provides

an internal domain speci�c language that facilitates the de�nition of requirements as well as

95

Chapter 6 Reference Implementation

the de�nition of processing rules. An example is shown in lines 2–6, using the same semantic
entity reference as before (line 1). ¿e FeatureExtractor requires the Transformation
property from an entity described by the semantic entity reference RightHand (line 3). It
updates the properties of this entity with the Position extracted from the required Trans-
formation (lines 4–5). ¿e processing rule (line 5) is de�ned using the semantic function
from as well as an access mechanism to the local storage of the latest required properties
(Transformation of RightHand). It is executed whenever a new value of a required
property is sent to the actor. All statements of lines 3–5 are native Scala code, implemented
with the aid of the Scala syntax mechanisms presented in section 6.1, yet they are nearly as
readable as their natural language descriptions before. ¿e relevant excerpt of the underlying
implementation is shown in lines 7–21. Processor inherits from SemanticEntityRefer-

ences in order to use semantic entity references. ¿e implementation of the requirement
statement (lines 8–11) wraps the invocation of require, while the implementation of the up-
date statement (lines 12–13) stores a callback that is executed using onRequirementUpdate,
both shown in Listing 14. ¿e access mechanism to the local storage is again implemented
by means of implicit parameters. ¿e SemanticValue base class (lines 18–21) is extended
with the method of (line 19–20), which is invoked in line 5 to access the local storage. Its
implementation uses an implicit parameter to pass itself and the semantic entity reference
to the surrounding Processor (context, line 20), which accesses the local storage and re-
turns the respective value. In total, the utilization of the Processor trait (lines 2–6) shows
an example where one property is required. If multiple parameters are required, the process-
ing rule may not be invoked when the �rst value arrives, but only a er a value is available
for each requirement. Such considerations are taken be the complete implementation and
supplemented with error prevention and -handling features.
On top of thisDSL layer, Processors foster the handling of temporal dependencies (Rtmp)

by providing local histories together with an interpolation mechanism as a counterpart to
state variable histories stored by the state variable’s managing actor (Wiebusch, 2016, pp. 168–
170). Listing 16 presentes the implementation of these features. ¿e semantic entity references
RightHand and LeftHand are assumed to be de�ned in analogy to the previous examples.
Furthermore, the Processor trait is assumed to store histories of entity property values by
means of an extension of the SemanticValue base class (line 10). ¿e example actor (lines 1–
5) uses the extended access mechanism to acquire the Position property of the le - and
right hand entity to invoke the semantic function -. However, instead of using the local stor-
age accessmechanism as shown before, at Milliseconds(0) is appended (lines 3–4). ¿is
results in the two properties being retrievedwith the exact same timestamp, which is di�erent
from accessing the latest value of each if they are updated at di�erent intervals. ¿e speci�ed

96

Chapter 6 Reference Implementation

1 class FeatureExtractor extends Processor {/*...*/
2 Updates the properties of entity describedBy RightHand ’with’ {/*...*/
3 (Position of RightHand at Milliseconds(0)) -
4 (Position of LeftHand at Milliseconds(0))
5 }}
6 trait Processor extends SimulatorXActor with SemanticEntityReferences {/*...*/
7 implicit var sync: SyncTime = {/*...*/}
8 }
9 abstract class SemanticValue[T] {/*...*/
10 def appendToHistory(value: T, timestamp: Long) = {/*...*/}
11 def at(t: Milliseconds)
12 (implicit sync: SyncTime, interpolator : Interpolator[this.type]) =
13 {/* Applies the interpolator and returns a semantic value with no history */}
14 }

Listing 16. Handling of temporal dependencies using local histories and an interpolation
mechanism. Refer to the text for details.

time value is interpreted with respect to the latest timestamp at which data for all required
entity properties is available within the local storage. Milliseconds(0) denotes exactly this
latest timestamp; values greater than zero denote earlier points in time. If a property value
with a required timestamp is not available in the local data, a value is interpolated using the
two nearest available values. ¿e implementation of this access is showcased in lines 6–14.
¿e Processor trait de�nes and updates an implicit value representing a special point in
time (sync, line 7): the latest point in time at which a corresponding value for each required
property is present in the local storage. ¿is is the latest point in time at which required en-
tity properties can be accessed using at and with respect to which the time value passed to
at is interpreted. Updating sync accordingly guarantees that any access either directly hits
a stored timestamp-value pair or hits a point in time for which an earlier and a later stored
timestamp-value pair exist. Scenarios where extrapolation would be required are excluded.
¿e counterpart to the implicit value sync is the extension of the SemanticValue base
class (lines 9–14) with the method at (lines 11–13). Besides a time value, it speci�es two im-
plicit parameters: the said synchronization time and a suitable interpolator (line 12). Similar
to semantic functions, interpolator implementations are meant to be de�ned as implicit
in the actor’s scope. ¿e Processor does so for both, semantic functions and interpolators,
using default implementations. Inheriting classes still may de�ne re�nements.
¿e Processor implementation is complemented with the Producer trait that can be

used as clock generator for repeating tasks, like animations, as well as for testing proces-
sors. Listing 17 showcases the Producer trait as well as an auxiliary DSL syntax for correctly
starting actors (akka actors may not be directly created using new) and for creating simple
entities. ¿e semantic entity reference RightHand is assumed to be de�ned in analogy to the

97

Chapter 6 Reference Implementation

1 Start a new Producer { //that
2 Is named "Rotator"
3 Creates entity ‘with‘ properties RightHand named "RightHand"
4 Updates the properties of RightHand every Milliseconds(16) ‘with‘ {
5 val rawAngle: Float = math.radians(Context.elapsedTime / 10f)
6 Angle(rawAngle)
7 }}
8 Start a new Processor { //that
9 Requires property Angle from RightHand
10 Updates the properties of RightHand ‘with‘ {
11 val rawAngle = (Angle of RightHand).value
12 val rawPosition = Mat.rotateZ(rawAngle) * Vec3.UnitX
13 Position(rawPosition)
14 }}

Listing 17.A simple Producer used to supply a Processor.

previous examples. A Producer is de�ned in lines 1–7 and started using the Start a DSL
syntax, which wraps akka’s actor bootstrapping. It is assigned the name Rotator for debug-
ging purposes (line 2). Upon creation it creates an entity and assigns the properties speci�ed
by the semantic entity reference RightHand to it (line 3), instead of using the properties to
query amatching entity. Lines 4–6 de�ne a processing rule similar to the Processors shown
before. Its updates the Angle property of the entity (described by) RightHand with a con-
stantly increasing value. However, this rule is not triggered by a value change of a required
property, but rather every 16ms. ¿e truly elapsed time is accessed using the Context data
structure, de�ned and updated by the Producer base class. ¿e Processor de�ned in lines
8–14 reacts to the value changes caused by the Producer. It requires the Angle property
from the RightHand entity (line 9). Whenever the value of this property changes, it updates
the same entity’s properties with a Position, following a trajectory on the unit circle around
the origin according to the angle’s value.
Altogether, the implementation of the decoupling by semantics technique provides pro-

cessing chain like elements, to which data sinks and sources do not have to be passed upon
creation due to the semantic entity reference mechanism. ¿is facilitates their reuse in other
applications, as long as the required application state elements exist. A domain speci�c lan-
guage layer wraps the underlying state variable access and complements other concepts, like
semantic functions, resulting in Scala de�nitions that read almost as natural language. Since
it is de�ned within the programming language, IDE features, like autocompletion and static
code analysis, can be exploited without additional measures. In total, this facilitates API us-
ability. Automatically stored local histories of required properties together with an interpo-
lation mechanism foster the handling of temporal dependencies (Rtmp). Traits and implicit
parameters are utilized, similar to previously presented implementations, to equip actorswith

98

Chapter 6 Reference Implementation

functionality and conveniently facilitate access to surrounding contexts. ¿e presented ver-
sion of the decoupling by semantics implementation allows the utilization of semantic entity
references that denote exactly one entity. An extension of the DSL for handling descriptions
that match multiple entities is an obvious goal for future implementations.

6.3 Multimodal Input Processing

¿is section showcases the utilization of the reference implementation for multimodal in-
put processing. With the aid of the interaction use case, exemplary processing steps at data-,
feature-, and decision level are presented while emphasizing facilitations. Multimodal pro-
cessing methods that have been implemented to validate the underlying system core are thus
outlined. Jointly, they constitute the multimodal input processing framework miPro, inte-
grated into Simulator X.

Data-Level

At data level, higher-level information, relevant for analyzing the user’s behavior, has typi-
cally to be extracted from raw sensor data. ¿e latter is obtained via drivers or SDKs and
integrated into the semantic entity-component state as proposed in Figure 5.3. In the context
of the interaction use case, this could be the position and orientation of the user’s hands and
head, represented as transformation matrices obtained via a tracking system, as well as the
user’s utterances, represented as string tokens obtained via a microphone and preprocessed
by an ASR. Simple Processors can be applied to extract the position from these matrices
and subsequently calculate the hands’ velocities, as a basis for an gesture detection step. List-
ing 18 showcases such a simple Processor (lines 2–6). It requires the Transformation
property of the entity described by the semantic entity reference RightHand (line 3, cf.
line 1), which represents the user’s right hand. It updates the properties of this entity with the
Position extracted from the required Transformation using a semantic function, when-
ever the Transformation changes (lines 4–5).

1 val RightHand = Type(hand) and Chirality(right)
2 Start a new Processor { //that
3 Requires property Transformation from RightHand
4 Updates the properties of entity describedBy RightHand ‘with‘ {
5 Position from (Transformation of RightHand)
6 }}

Listing 18.A simple Processor for feature extraction at data-level.

99

Chapter 6 Reference Implementation

¿e listed de�nition of the Processor almost matches the description proposed in Fig-
ure 5.12, while still satisfying the native Scala syntax. Some Scala particularities, however, are
still visible, e.g., the fact that describedBy can not be written apart in this position and that
with has to be surrounded with quotation marks to not con�ict with the eponymous Scala
keyword.
Listing 19 showcases a second Processor that calculates the hand’s velocity from the ex-

tracted Position as well as an additional menas to foster reuse. Since the Processor DSL
is Scala internal, common means for generalization can seamlessly be applied. In this case,
the frequently required operation of calculating a velocity from a trajectory of positions is
bundled in a specialized Processor, named VelocityProcessor (lines 3–14). It is still
compatible with other DSL parts, i.e., it can be started as any other Processor (line 1). Its
implementation speci�es a semantic entity reference to be passed (line 4) as well as an op-
tional time delta (line 5) for the actual calculation. It requires the Position of the referenced
entity (line 8) and updates its properties with a Velocity property, whenever the Position
changes. As counterpart to the time delta, a position delta is calculated using the local storage
history access mechanism to subtract a Position value in the past (line 11) from the latest
available Position value (line 10). ¿e new Velocity is then the position delta divided
by the time delta (line 12). Processors de�ned that way, encapsulate calculation rules and
hence avoid redundancy. A collection of such de�nitions is a means to further foster the
reuse of common operations and provides developers with an appropriate toolset for data-
level processing.

1 Start a new VelocityProcessor(RightHand)
2

3 class VelocityProcessor(
4 entityWithPosition: SemanticEntityReference,
5 deltaT: Milliseconds = Milliseconds(60)
6) extends Processor
7 {
8 Requires property Position from entityWithPosition
9 Updates the properties of entity describedBy entityWithPosition ‘with‘ {
10 val deltaP = (Position of entityWithPosition at Milliseconds(0)).value -
11 (Position of entityWithPosition at deltaT).value
12 Velocity(deltaP / deltaT)
13 }
14 }

Listing 19.A generalization mechanism for Processors.

100

Chapter 6 Reference Implementation

Feature-Level

At feature-level, relevant features are assumed to be extracted. Processing steps typically
transfer multiple relevant features to more meaningful, e.g., symbolic, representations. For
this purpose, specialized Processors can be applied to wrap complex algorithms, like ma-
chine learning methods, that are o en implemented within external libraries. Listing 20
showcases this application by a simple gesture detection based on neural networks. Lines
1–5 de�ne a specialized Processor (SupervisedLearningProcessor) that performs a
classi�cation task. It is described by largely using the standard Processor DSL: it requires
the Position and Velocity property of the entity described by the semantic entity refer-
ence RightHand (line 3) and it updates the PointingConfidence property of the entity
described by the semantic entity reference User, whenever one of the requirements change
(line 4). ¿e additionally required con�guration of the underlying neural network is out-
sourced into an external �le. SupervisedLearningProcessor extends the DSL with a
new statement for its speci�cation (line 2). Similarly, SupervisedLearningProcessor
de�nes a method that triggers the evaluation of the neural network (prediction), which
constitutes the processing rule (line 4). ¿e inputs to the underlying network are automat-
ically fetched from the required properties. SupervisedLearningProcessor constraints
the Requires DSL syntax to only accept semantic types of �oating point-based data types.
All requirements are then sorted, rolled out if necessary (e.g., matrices are converted to �oat
arrays), joined to one �oat array, and used as input to the network. A minimum con�gura-
tion thus gets along with the de�nitions shown in the listing. In the context of the example,
a second specialized Processor classifying rotational gestures is assumed to be analogously
de�ned. A simple Processor can then be used to �nalize the classi�cation by selecting the
gesture with the highest activation value and by subsequently updating an entity property

1 Start a new SupervisedLearningProcessor { //that
2 Is configuredBy NeuralNetworkConfiguration("pointing.xml")
3 Requires properties (Position and Velocity) from RightHand
4 Updates property PointingConfidence of entity describedBy User ‘with‘ {prediction}
5 } // Assuming a similar processing step for ’rotate’ gestures
6 Start a new Processor { //that
7 Requires properties (PointingConfidence and RotateConfidence) from User
8 Updates the properties of entity describedBy User ‘with‘ {
9 if((PointingConfidence of User) > (RotateConfidence of User)) Gesture(pointing)
10 else Gesture(rotate)
11 }}

Listing 20. A specialized Processor realizing a simple pattern recognition by means of
supervised learning methods (revised from Fischbach, Wiebusch, & Latoschik, 2017).

101

Chapter 6 Reference Implementation

that represents the currently performed gesture (lines 6–11). ¿is Processor requires the
con�dence properties yielded by the SupervisedLearningProcessors (line 7). When-
ever one of the con�dences change, it updates the Gesture property of the entity User with
a grounded symbol representing the gesture with the highest con�dence value (lines 9–10).
¿e showcased SupervisedLearningProcessor implementation wraps the Java ma-

chine learning frameworkEncog (Heaton, 2015). It comprises automatic con�guration strate-
gies, e.g., for network topologies and input mapping, facilitating concise de�nitions, like the
one shown in this section. It is complemented with dedicated actor implementations and
tool support that provide means to record, annotate, and playback entity property changes—
a necessity for the training process of supervised learning methods. Altogether, it constitues
a further building block in the repertoire ofmiPro.

Decision-Level

At decision-level, miPro provides two multimodal fusion methods: a tATN (Zimmerer et
al., 2016; Zimmerer, 2016) based on Latoschik’s (2002) proposal as well as an uni�cation
approach (Link, 2017) based on Johnston’s (1998) proposal. ¿eir reference implementations
utilize the underlying semantics-based techniques of Simulator X to realize aspects of the
fusion methods if possible.
Figure 6.4 illustrates the concept of the tATN applied to the interaction use case. A tATN

de�nition comprises states (circles), transitions (black arrows) with constraints, and func-
tions that are executed if a transition is carried out (white arrows). Cursors (green) represent
active interim results. ¿ey �ll their associated register (orange) as they are traversed through
the tATN: relevant application state changes, e.g., speech recognition- and gesture detection
updates, trigger the evaluation of the cursors’ outbound transitions. Reaching an end state
(not shown) corresponds to a successful parse of a multimodal utterance and is assumed to
gather all data relevant for the invocation of an appropriate grounded action. Due to the
explicit de�nition of transition functions, the application state can be altered at any point
of analysis to give feedback to the user, e.g., by utilizing a Processor to continuously map
posture features to the chair’s orientation (as required by the interaction use case).
Semantics-based techniques are incorporated as follows: Registers are proposed as key-

value storages for interim results by the aATN concept. ¿ey can simply be implemented as
a map using string identi�ers. miPro’s tATN, however, uses a SemanticValueSet (blue)
for the register implementation, providing an interface that is uniform with the applica-
tion state access and that thus implies no obstructive conversion of representations. More-
over, the general advantages of the semantic grounding and code from semantics techniques,

102

Chapter 6 Reference Implementation

start verbisVerb

process
Verb process

Gesture

isPointing

...

mergewithin
500ms

Figure 6.4. Excerpt of a tATN capable of parsing ”Put [pointing] that” (Fischbach,
Wiebusch, & Latoschik, 2017, ©IEEE).

like introspection and reasoning support, can thus be exploited by transition constraints
and -functions. Semantic queries based on the Dictionary shown in Listing 11 as well
as grounded actions complement the means for the implementation of transition. Transi-
tion functions can hence map triggering state updates to semantic values, entity �lters, and
grounded actions to store them in their register. A cursor traversal through the tATN thus
gathers information related to a user utterance. ¿e structure of the network and the tempo-
ral constraints specify syntactic- and temporal correctness (Rs yn and Rtmp), respectively. Se-
mantic correctness (Rsem) has to be validated based on the contents of the register. Grounded
actions are a �tting means for realizing such a validation, especially in instruction-based sce-
narios as proposed by the interaction use case. Utterances in imperative mood start with a
verb that can bemapped to a grounded action. ¿is action is stored in the cursor’s register. Its
parameters serve as a frame that has to be completed during traversal, e.g., the collocate
action requires two entities. Its preconditions serve as semantic constraints that have to be
satis�ed. Finally, a successful traversal results in the execution of the action.
An alternativemethod for the joint analysis ofmultimodal input at decision-level provided

bymiPro is uni�cation-based fusion. In the context of this method, all relevant information
is represented by so called feature structures. A central uni�cation operation combines com-
patible feature structures and thus gathers all data relevant for the invocation of an appropri-
ate grounded action, while performing syntactic-, temporal, and semantic constraint checks
(Rs yn , Rtmp , and Rsem). Special feature structures serve as targets for the uni�cation process,
representing a valid user command with most properties being unde�ned and meant to be
completed by uni�cation operations (see Figure 6.5). A completed target feature structure
corresponds to a successfully parsed utterance and implies the executing of a correspond-
ing action. Feature structures basically are key-value sets, where values are either atomic or
another feature structure. ¿e utilization of semantic types and -values for an implementa-

103

Chapter 6 Reference Implementation

Name: collocate

Subject:

Target:

Time:

Confidence:

Command:

...

Constraint: Overlap:{ }{ }Time: 500L

...

Figure 6.5. A feature structure excerpt serving as target for parsing ”Put [pointing] that
[pointing] there”. ¿e underlying key-value concept is implemented by using semantic types
(blue) as keys and semantic values as values. Command represents one valid user utterance
and corresponds to an action referenced by the grounded symbol collocate. All other
properties of Command are still unde�ned. Additional contraints, relevant for the fusion pro-
cess, e.g., the temporal dependency between pointing gestures and determines (curly braces),
extend the feature structure concept (as proposed by Johnston, 1998).

tion results in bene�ts similar to those of the tATN: uniformity to the application state access
interface and introspection as well as reasoning support.
Besides this fusion method speci�c utility, both implementations bene�t from semantics-

based techniques as follows: Processors are an adequate means for the execution of the fu-
sionmethod. Relevant application state changes can then be speci�ed by de�ningProcessor
requirements, using semantic entity references as well as the DSL. ¿e implementations of
the fusion methods thus are decoupled by semantics, just as the specialized Processor im-
plementations shown before. In addition, both implementations may use semantic queries
and apply reasoning to resolve referents in the user’s utterance (cf. section 5.4). For instance,
a transition function of a tATN could use all semantic values gathered in its associated reg-
ister to create an entity �lter that matches all entities that are of color green and are near a
given pointing ray.

6.4 Ancillary Contributions

¿is section brie�y describes ancillary so ware parts that have been developed in the context
of this thesis to facilitate the implementation of proof of concept demonstrations as well as
to ease the utilization of Simulator X in student projects and lecture modules.

104

Chapter 6 Reference Implementation

Subsystems

¿e subsystems developed for Simulator X include a runtime editor for entity properties,
input integration subsystems, a physics simulation subsystem, as well as a subsystem that
facilitates the creation of 2D graphical user interfaces. In addition to that, Simulator X com-
prises further subsystems, predominantly developed by other authors, like for 3D rendering,
for sound rendering, for the integration of various input devices, for the integration of the
Virtual Reality Peripheral Network protocol (VRPN Taylor et al., 2001), and for incorporat-
ing the game engines Unity 3D and Unreal Engine 4.
¿e editor subsystem provides a graphical user interface allowing to inspect and alter the

properties of all entities in the application state during runtime. During startup, the subsys-
tem asks the central registry to be noti�ed upon any entity creation. Whenever it is noti�ed,
it starts observing all of the entity’s properties and stores them locally. User’s can browse
the editor’s interface and select entity properties. ¿e views that are used to present and set
properties are selected based on the property’s semantic type. For instance, if a user selects a
Color property, she can choose amongst all views able to present values of data type Vec3.
¿is selection may include a view simply displaying three �oating point numbers as well as
a view interpreting the Vec3 as a color and using it to �ll a square. Once chosen, a view is
utilized to visualize all entity properties of the same semantic type in future inspections. En-
tity properties are hence distinguished from other entity properties that have the same data
type by means of the semantic grounding technique. ¿e same mechanism is applied for
user interface elements dedicated to setting an entity property. Both, setters and views can
be extended by implementing an automatically-built skeleton, which can be altered even at
runtime. Altogether, the editor subsystem provides a means for inspecting and altering the
application state that is handy for debugging and is independent of concrete entity property
types, due to mechanisms applied for selecting and extending views and setters.
¿e developed input integration support comprises two subsystems. One wrapping the

leapmotion SDK (Leap Motion, Inc., 2017) and one wrapping a TUIO protocol client (Kal-
tenbrunner, 2017). ¿e former allows to access the data captured by an eponymous hand
tracking sensor. ¿e latter is a protocol to communicate inputs to interactive surfaces, such
as touch positions as well as positions and orientations of tangible user interface elements.
Both subsystems create and register entities representing the integrated data on startup. Af-
ter startup, they react to callbacks of the respective libraries, which are called as new input
is available. In these callbacks, the obtained information is converted if necessary and inte-
grated into the application state by updating the respective entity properties.
¿e physics simulation subsystem wraps the Java library JBullet (Dvorak, Martin, 2017).

105

Chapter 6 Reference Implementation

¿e implementation provides components that can be used for marking entities to be simu-
lated as rigid bodies, including spheres, boxes, and cylinders. Such components are typically
combined with components representing textured 3D meshes, provided by rendering sub-
systems, to create entities that account for the visible part of virtual environments. Content
creation is facilitated by enabling the de�nition of rigid body shapes bymeans of the 3D asset
exchange schema COLLADA (Khronos Group, 2017).
¿e creation of 2D graphical user interfaces is facilitated by a subsystem that serves as

an abstraction layer on top of basic 3D rendering functionality. For this purpose, the im-
plementation provides components representing common 2D GUI elements, like buttons,
labels, and icons. ¿ese components require to be combined with a 3D mesh component
for entity creation. ¿us created entities possess two subsets of properties: one describing
the 2D GUI element, comprising 2D positions and orientations as well as texts or images,
and one describing an underlying textured 3D quad. ¿e former is the interface to applica-
tion developer. ¿e latter is used by the 2D GUI subsystem to map changes within the 2D
element properties to the 3D quad. For instance, if the text and 2D position of a label is up-
dated, the 2D GUI subsystem generates a texture depicting this text, calculates the correct
transformation matrix for the quad to appear correctly on the screen (with respect to the
camera position), and sets the corresponding entity properties, e.g., Transformation and
Texture.

Application Layer

Bootstrapping, necessary for launching Simulator X applications, is gathered as a set of traits
and convenience functions. ¿ese tools jointly provide a layer that facilitates the development
of applications by hiding details predominantly relevant for subsystem or core development.
Listing 21 showcases the application layer bymeans of aminimal example. It consists of a gen-
eral entry point (lines 1–2) as well as an actor that is dedicated to spawn required subsystem
actors and run application logic (lines 4–11). ¿e trait SimulatorXApplicationMain (line
2) encapsulates the startup procedure for the �rst SimulatorXActor and provides the ac-
tual main function. It �nally spawns one instance of ProducerProcessingExample. ¿is
actor facilitates the de�nition of a set of subsystems that realize the ECS interface and poten-
tially provide components (lines 5–6, cf. Wiebusch, 2016). Upon its startup, the thus de�ned
subsystems are properly created and registered, including the awaiting of asynchronous boot-
strapping on their part. A er this process is �nished, the callback finishConfiguration
is invoked, allowing the application developer to create entities as well as Processors (lines
7–10). ¿e parameter subsystems (line 7) allows to send messages to counterpart actors of

106

Chapter 6 Reference Implementation

1 object ProducerProcessingExample extends
2 SimulatorXApplicationMain[ProducerProcessingExample]
3

4 class ProducerProcessingExample extends SimulatorXApplication {
5 def applicationConfiguration =
6 ApplicationConfiguration withSubsystem Editor(name = "editor")
7 def finishConfiguration(subsystems: Map[String, SimulatorXActor.Reference]) {
8 val RightHand = Type(Symbols.hand) and Chirality(chirality.Right)
9 /* Create entities and processors */
10 }
11 }

Listing 21.Aminimal example for creating an application within the Simulator X platform.

created subsystems, since it contains amapping between speci�ed name (e.g., "editor", line
6) and actor references. finishConfiguration could in this case consist of the Producer-
Processor pair shown in Listing 17. ¿e editor subsystem would then allow to inspect the
continuously changing values. Developers that are unexperienced with Simulator X would
thus be supported in comprehending the example, at best by also altering it and observing
the consequences in the editor’s GUI.

Code Examples

Supporting novice developers with examples is in general an e�ective means for assisting
them in learning a new API (McLellan et al., 1998). ¿e presented (specialized) processors as
well as the application layer are thus accompanied by code samples, which are brie�y listed
in the following. A package of basic examples introduces to the application layer and show-
cases some common subsystem con�gurations, including the combination of 3D rendering
and physics simulations as well as the combination of 3D rendering and 2D GUI subsystem.
A second set of code samples deals with Processors, Producers, and the associated DSL. It
includes, for instance, the code shown in shown in Listing 17. A third packages is comprised
of multimodal input processing examples utilizing simple and specialized processors. It in-
cludes con�gurations suitable for recording training data, annotating, and training a neural
network (cf. Listing 20) as well as simple decision-level fusion scenarios using the tATN
implementation.

6.5 Summary

¿is chapter presented the reference implementation of the semantics-based so ware tech-
niques proposed in chapter 5. ¿e taken design decisions as well as the key mechanisms

107

Chapter 6 Reference Implementation

applied for the implementation resulted in several advantages in addition to those inher-
ent to the techniques (see Table 6.1, design decisions). ¿e actor model provides a scalable
communication-, execution-, and distribution scheme, fostering modularity and reusabil-
ity. ¿e choice of OWL guarantees compatibility to a widespread set of existing ontologies
and tools. ¿e primary programming language Scala provides adequate means for realizing
usable APIs, due to its functional aspects and its syntax �exibility. Scala is platfom indepen-
dent and compatible with a large number of existing so ware libraries, since its programs are
compiled to bytecode for the Java Virtual Machine.
¿e emphasized keymechanisms serve two kinds of purposes (see Table 6.1, mechanisms).

Some realize or extend functionality that is conceptually demanded by the semantics-based
so ware techniques. State variables provide the illusion of global variables in accordance
with the actor paradigms (Rsta). Semantic entity references, in combination with singleton
actors and context binding, render the explicit reference passing unnecessary and decou-
ple subsystems by means of semantic descriptions (Racc). ¿e local storage of histories of
required entity properties in combination with an interpolation mechanism provides addi-
tional means for temporal synchronization (Rtmp).
Other keymechanisms foster API usability. Traits, implicit parameters, and Scala’s object

construct are utilized to maintain concise syntax when using the core API. ¿e internal DSL
makes de�nitions read almost as natural language descriptions while exploiting IDE sup-
port, like autocompletion and static code analysis. Tool support and development process
integration furter fosters API usability by reducing the development e�ort.
¿e implemented repertoire of common multimodal input processing steps, adding up to

themiPro framework, facilitates the creation of multimodal interfaces. ¿e implementation

Table 6.1. Taken design decisions (DD) and key implementation mechanisms mapped to
their contributions tomaintainability as well as to solve the fundamental (I)RIS requirements
identi�ed in chapter 2.

Applied measure Contributes to

D
D

Actor Model Rex e , Rcom , modularity, reusability
OWL Rper , API usability
Scala API usability

M
ec
ha
ni
sm
s

State variables Rsta

Semantic entity references, context binding, &
singleton actors Racc

Local histories & interpolation Rtmp

Internal DSL, tool support, implicit parameters,
Scala’s object syntax, delimited continuations,
currying, & traits

API usability

108

Chapter 6 Reference Implementation

of those processing steps showcases the application of Simulator X’s core API. Advantages
arise especially due to the uniform access scheme and the use of semantic queries for refer-
ent resolution during decision-level fusion. Two reference implementations of such fusion
methods are provided, one based on tATNs and one based on uni�cation. Both can be ap-
plied to check intentional multimodal inputs with respect to its syntactic-, temporal-, and
semantic correctness (Rs yn , Rtmp , and Rsem). ¿ey bene�t from an enhanced compatibility
to the system’s coreAPI, since their implementation is based on the semantic grounding tech-
nique as well. Simulator X andmiPro, however, are not limited to this use case. Processors,
for instance, can also be utilized to realize multimodal output generation steps as can feature
extraction and classi�cation steps be applied to unintentional non-verbal input.
¿e presented ancillary contributions complement the Simulator X platform by adding

functionality supporting development. Moreover, the abstraction layer for application de-
velopment as well as the code examples facilitate the utilization of Simulator X for teaching
modules and student projects.

109

Chapter 7

Validation andMethod Exploration

¿is chapter summarizes the results of all methods applied to validate functional and non-
functional so ware quality aspects of the presented semantics-based techniques as well as of
their reference implementation. Moreover, it presents all activities conducted to explore the
assessment and improvement of IRIS maintainability.
Expert reviews are chosen as primarymethod since they aremost reasonable and themost

commonly applied form of evaluation (see section 3.1). Proof of concept demonstrations,
pre-studies, and informal evaluations, the three (other) validation methods commonly ap-
plied for MMSs (see section 3.2) and RISs (see section 3.3), are utilized as follows. Several
proof of concept prototypes practically validate feasibility. Two pre-studies explore appro-
priate methodologies for assessing long-term API usability to counter the lack of e�ective
methods identi�ed in section 3.1. ¿ey yield helpful best practices for future full studies. Fi-
nally, informal insights gathered throughout the design and development are summarized as
lessons learned to support future development in the area.
In addition to the presented validation results, other authors speci�cally analyze the tech-

niques as well as the reference implementation with respect to reusability (Wiebusch, 2016,
pp. 185–208) and with respect to the application of the actor model with respect to perfor-
mance, latency, and concurrency (Rehfeld, Tramberend, & Latoschik, 2013, 2014, 2016).

7.1 Expert Reviews

Expert reviews are subjective assessment methods that are based on the judgment of pro-
fessionals and recorded on paper (Riaz et al., 2009; McIntosh et al., 2016). Contributions to
workshops, conferences, and journals are written by experts and reviewed by other experts in
a scienti�cally established process. Successful publications that analyze non-functional IRIS
qualities, like maintainability and API usability, thus constitue a valid and counterchecked
form of an expert review; including this very thesis. All conducted reviews of that kind, as-

110

Chapter 7 Validation and Method Exploration

sessing the reference implementation and the semantics-based techniques, are summarized
in the remainder of this section.

Scala, Actors, & Ontologies

¿e three design decisions taken for the reference implementation (the programming lan-
guage Scala, the actor model, and OWL ontologies) as well as the code from semantics tech-
nique are evaluated byWiebusch, Fischbach, Latoschik, and Tramberend (2012) with respect
to reusability and modi�ability.

Drawn conclusions

¿e application of the actor model is found to be bene�cial in terms of scalability and main-
tainability. Scalability is credited due to its support for intra- and inter-node concurrency
and �exibility in terms of actor granularity. Resulting in an e�ective utilization of available
hardware resources. Maintainability is credited due to its uniform message interface, thanks
to which the number of di�erent APIs that have to be maintained is reduced.
¿e code from semantics technique is concluded to foster decoupling and to increase

reusability and modi�ability. KRLs are a basic requirement for realizing IVEs that is com-
monly implemented by loosely coupling an ontology. Although such an approach is already
bene�cial in terms of reusability, it is restricted to the functionality accessible through the
API of the underlying (I)RIS. ¿e core-level integration proposed by the code from seman-
tics technique, however, minimizes the access restrictions between KRL and platform core.
It fosters uniformity as well as introspection (semantic re�ection) on all layers and hence
enhances decoupling and modi�ability. Moreover, loosely coupled solutions o en lead to
redundant de�nitions, since each subsystem may use its own ontology. ¿e uniformity of
the code from semantics technique implies coherence and avoids the necessity of ontology
synchronization.
Finally, abstraction mechanisms provided by a programming language as well as the suit-

ability of its syntax to write concise de�nitions are identi�ed to be of equal importance to an
IRIS implementation as performance is. ¿e review concludes that Scala facilitates reusabil-
ity and modi�ability and emphasizes the utility of its support for internal DSLs as well as its
functional aspects.

Adequacy for Multimodal Processing

A subset of the techniques, design decisions, and implementation mechanisms presented
in this theses are analyzed by Latoschik and Fischbach (2014) with respect to multimodal

111

Chapter 7 Validation and Method Exploration

processing: semantic grounding, code from semantics, and decoupling by semantics, as well
as the actor model, semantic functions, and the internal DSL.

Drawn conclusions

¿e reference implementation’s underlying communication- and execution scheme , the ac-
tor model, is identi�ed to be an adequate means for coping with the concurrency inherent
to multimodal utterances. ¿e actor model’s s �exibility in granularity and the concomitant
scalability are the most important aspects supporting this adequacy.
¿e utilized DSL is concluded to reduce the diversity of programming styles and thus to

increase code quality. ¿e realization of the DSL within the Scala language, allows to exploit
type- and syntax checks and thus further fosters API usability.
Semantic functions contribute to code quality, as they keep theDSL clean. In addition, they

pose a handy means to deal with variance due to individual user characteristics and cultural
context. With regard to multimodal processing, this implies that operations of the same
type may have to be handled di�erently with respect to the semantics of their operands. For
instance, equality between to time stamps relating speech and gesturesmay still be truewithin
a timewindow of severalmilliseconds, whereas other comparisons require true equality. ¿is
time window may vary between individuals and cultural context. Semantic functions allow
to adequately formalize this �exibility, especially due to their support for binding alternative
implementations.
¿e semantic grounding- and code from semantics techniques add to the internal DSL

mechanism by providing two of the DSL’s building blocks: semantic types and -values. In
combination with semantic functions, they facilitate semantic correctness on API level. Se-
mantic functions take semantic values as parameters. A Radius parameter, for instance, can
thus not be �lled with a Diameter value (in contrast a plain �oating point parameter). On
an algorithmic level, semantic grounding and code from semantics facilitate semantic cor-
rectness as well, by enabling the use of reasoning methods, e.g., during multimodal fusion.
All these measures add up to an early version of the decoupling by semantics technique,

which is identi�ed to be a customizable and reusable technical solution for reoccurring mul-
timodal processing tasks.

Semantic Entity-Component State Access and Grounded Actions

Fischbach,Wiebusch, andLatoschik (2016) analyse the techniques semantic entity-component
state and grounded actionswith particular regard to the coupling dilemma and thus to main-
tainability.

112

Chapter 7 Validation and Method Exploration

Drawn conclusions

¿e de�nition of entities and actions by means of semantic descriptions is identi�ed to eases
their reuse in di�erent multimodal applications. Semantic grounding fosters �exibility, since
it allows to specify based on semantic concepts. Underlying data types can be altered re-
quiring no changes in high-level DSL descriptions. ¿is process can be additional eased by
utilizing automatic type converters (as proposed by Wiebusch & Latoschik, 2012).
Grounded actions provide �exibility, especially in combination with the code from se-

mantics technique. For instance, verbs associated with an action can be easily adapted in the
ontology to extend the utterances an interface accepts, without requiring in-code changes.
In total, those bene�ts are concluded to support modi�ability and reusability.
¿e code from semantics technique itself, is analyzed to further facilitate reuse. One the

one hand, by enabling the use of existing tools and, on the other hand, by being an pro-
gramming language independant abstraction layer. ¿e former is especially bene�cial for
multimodal processing since it includes reasoning so ware. ¿e latter enables the reuse of
concepts between (I)RIS platforms.
Altogether, the analyzed techniques are concluded to realize close semantic subsystem in-

terrelations without implying close coupling. ¿ey are hence a suitable foundation for IRISs
realizing multimodal interfaces, which facilitates maintenance.

All Techniques and Complete Reference Implementation

Fischbach et al. (2017) present a comprehensive analysis of the techniques presented in this
thesis and re�ect on the complete reference implementationwith respect tomodularity, mod-
i�ability, reusability, and API usability. ¿e semantic entity-component state technique is
presented as part of the semantic grounding technique in their contribution.

Drawn conclusions

¿e semantic grounding technique is analysed to separate the agreement on identi�ers and
theirmeaning from their use in APIs and to decouple it from utilized datamodels. Moreover,
it provides introspection capabilities independant of the features of the target programming
language. ¿e ECS pattern’s component mechanism, which lacks this feature, is thus im-
proved by.
Grounded actions are concluded to provide additional �exibility for the de�nition of be-

havior, due to their compatibility with common planning approaches, like PDDL, and the
consequential possibility of specifying system behavior in a declarative way. ¿e uniform in-
terface amongst application state, grounded actions, and ontology-based planning (due to the

113

Chapter 7 Validation and Method Exploration

semantic grounding- and code from semantics technique) is especially bene�cial for mainte-
nance. In all, grounded actions decouple the description of operations that are triggerable via
the user interface, their implementation, and their execution. ¿ey thus complement the ap-
plication state concept of the ECS pattern by providing a means to de�ne reusable behavior.
Moreover, they are are especially bene�cial for multimodal processing, since they constitue
programmatic counterparts to command a user shall be able to trigger.
Semantic queries are analysed to facilitate the lookup of entities based on semantic de-

scriptions as well as on numeric properties. ¿ey realize a feature set commonly required by
AI methods, while avoiding the parsing overhead inherent to externalized approaches based
on semantic query languages, like SPARQL.¿e technique is used to extend the ECS pattern
with a mechanism, allowing subsystems to access entities that are not associated with one of
its supported components.
¿e code from semantics technique is reviewed to improve interface de�nitions by in-

creasing cohesion as well as decoupling and by facilitating their reuse even for other (I)RISs.
¿e associated code generation approach entails fast state access at runtime, while maintain-
ing the possibility to access the ontology. Potential development overhead is countered by
dedicated editing so ware. Its development is eased if existing ontology tools can be uti-
lized. ¿e potential to use reasoning so ware allows the enrichment of the application state
with inferable facts and facilitates the implementation of semantic constraint checks during
multimodal fusion.
Decoupling by semantics is analysed to decouple subsystems in terms of data sinks and

sources, which are then highly reusable. ¿e utilized high-level API is reviewed to foster us-
ability for developers. In this context, Scala proves to be an bene�cial choice that enables the
language-internal de�nition of this API and thus makes common IDE features exploitable.
Altogether, the semantics-based techniques are concluded to improve the ECS pattern by

extending introspection capabilities and by proposing amechanism for inter-system reuse. In
addition to revising the uniform semantic access scheme to the application state, they extend
the pattern by a technique for semantically describing behavior. ¿ey are thus a suitable basis
for implementing complex AI dependent RISs, e.g., realizing multimodal interfaces.
¿e design decisions that underly the reference implementation are reviewed as follows.

¿e actor model fosters scalability and extensibility while Scala’s syntactical �exibility facil-
itates the de�nition of APIs. ¿e usability of those APIs is evaluated and improved by the
application of the API peer review method proposed by Farooq and Zirkler (2010). ¿e re-
sults of this process constitute the code samples presented in the contribution (and in this
thesis). Readers can follow this review’s rationale and assess the API usability themselves on
the basis of those samples and the corresponding explanations.

114

Chapter 7 Validation and Method Exploration

Summary

Jointly, the four presented expert reviews assess all six semantics-based techniques, all three
design decisions, and implicitlymost implementation techniques, since they include an anal-
ysis of the reference implementation’s API. ¿e drawn conclusions state that the techniques
solve the ECS pattern’s runtime type de�cit, improve component granularity, facilitate access
to entity properties outside a subsystem’s component association, incorporate a concept to
semantically describe behavior as complement to the state representation, and enable com-
patibility even between IRISs. Furthermore, the three design decisions are assessed to meet
the identi�ed functional requirements while fostering so ware quality. ¿e actor model pro-
vides a scalable communication-, execution-, and distribution scheme. ¿e choice of OWL
guarantees compatibility to existing ontologies and tools. Scala facilitates realizing concise
APIs, is platfom independent, and compatible with a large number of existing so ware li-
braries. Ultimately, the four expert reviews con�rm the improvement of maintainability.

7.2 Proof of Concept

¿is section presents themost relevant implemented proof of concept demonstrations. ¿ese
demonstrations validate feasibility and the completness of captured requirements to support
the theoretical assessment of so ware qualities by means of expert reviews. ¿eir implemen-
tation accompanied the development process of the presented semantics-based techniques as
well as of Simulator X and supported the assessment and improvement of the process itself.
In the following, the demonstrations are brie�y summarized by highlighting aspects that are
primarily validated (see Fischbach, Wiebusch, Rehfeld, Tramberend, & Latoschik, 2016, for
illustrating media).

SiXton’s Curse

SiXton’s Curse (Fischbach et al., 2011) is the �rst demonstration of the Simulator X platform.
It validates the feasibility of the semantic grounding technique, the design decisions Scala
and the actor model, as well as the implementation mechanism state variables.
¿e demonstration realizes a virtual medieval village that is inhabited by ghosts. ¿e user

takes the role of a wizard, can explore the village, and cast spells to prevent the ghosts from
destroying it via a multimodal interface. Technically, it utilizes subsystems for input inte-
gration, physical simulation, 3D graphics- and sound rendering, path planning, as well as
multimodal processing. ¿e demonstration is meant to run in a CAVE-like (Cruz-Neira,
Sandin, DeFanti, Kenyon, & Hart, 1992) environment, equipped with sensors that enable to

115

Chapter 7 Validation and Method Exploration

Figure 7.1.¿e SiXton’s Curse demonstration. A user casting a �reball spell by uttering ”Sum-
mon [hands together in front of the body] purgatory [push gesture].”

track the position and orientation of (at least) the user’s head and hands as well as to record
her voice (see Figure 7.1).

smARTbox

¿e smARTbox setup is the technical basis for a series of four MR demonstrations devel-
oped using Simulator X. ¿e �rst two demonstrations in the series (Fischbach et al., 2012b;
Fischbach, Latoschik, et al., 2012) test the performance and scalability of the actor model in
combination with the state variable mechanism by means of a school behavior simulation of
�shes. ¿e third demonstration (Fischbach et al., 2012a) validates high throughput for entity
property changes. ¿e forth demonstration (Fischbach, Tre�s, et al., 2012) showed that Sim-
ulator X can be e�ectively used by novice (I)RIS developers by exploring application areas of
the smARTbox setup within a student project.
¿e setup itself is a low-cost interactive surface providing capabilities for stereoscopic pro-

jection, audio feedback, touch- and �ducial marker detection, as well as markerless track-
ing of the users’ upper body (Figure 7.2). ¿e school behavior is implemented (based on
Reynolds, 1987) so that the mapping between �shes to be simulated and actors perform-
ing simulations can be con�gured. At the extreme, this can be one-to-one mapping caus-

116

Chapter 7 Validation and Method Exploration

Figure 7.2.¿e smARTbox demonstration. A user interacting with a school of virtual �shes
via a tangible interface based on theWindowon aWorldmetaphor (Feiner,MacIntyre, Haupt,
& Solomon, 1993). ¿e perspective was registered with the camera for the photo. ©ACM

ing a high level of communication and forcing the actor scheduler to perform many context
switches. ¿e third demonstration in the series extends the virtual �shtank by a self-re�ection
feature, showing a virtual mirror image of the user on the surface. Its implementation uses
the video stream from the setup’s depth camera to generate a mesh of the user’s upper body.
¿is mesh is communicated to the rendering subsystem via a corresponding entity property.

Input Device Evaluations

¿e adequacy of Simulator X for input processing is validated in the context of two student
projects evaluating input devices for VEs (Wiebusch, Fischbach, Strehler, et al., 2012; Fis-
chbach et al., 2013). Fischbach et al. (2013) include multimodal processing in particular by
combining the examined tracking devices with speech input in a synergistic manner in one
part of the evaluated conditions.

XRoads

¿e Cross Reality On A Digital Surface project (XRoads Fischbach, Zimmerer, Link, Giebler-
Schubert, & Latoschik, 2016) aggregates two series of interactive tabletop game prototypes
that combine real and virtual elements. ¿e �rst series validates the feasibility of utilizing

117

Chapter 7 Validation and Method Exploration

Figure 7.3.¿e turn-based porting of the Quest board game. Up to four players collaborate
in a skirmish against another player.

Simulator X for interactive surface environments. ¿is includes the interplay of basic sub-
systems, like for 3D rendering, the integration of further input device wrappers and auxiliary
subsystems, like the 2D GUI subsystem, as well as Simulator X’s distribution capabilities.
¿e second series additionally validates the miPro framework, including the tATN imple-
mentation, for multimodal processing and -fusion as well as the grounded action technique,
including the planning subsystem, for executing high-level commands.
Series one is an iteratively extended turn-based porting of the traditional board game

Quest: Zeit der Helden (Pegasus Spiele, 2014) that explores interaction techniques for this
novel kind of games. ¿e initial version (Giebler-Schubert et al., 2013) combines touch and
tangibles, i.e., card and pawns, as input modalities. ¿e �rst extension adds speech and ges-
tures Fischbach et al., 2014. A dice shaking- and throwing-gesture allows the player to roll
a virtual dice that bounces o� the real pawns standing on the table. A simple speech inter-
face provides an alternative to the existing touch interface for all actions a player can choose
from at any point during the game. ¿e second extension adds a mobile device (Zimmerer
et al., 2014) that is incorporated into the gameplay by means of a location-based companion

118

Chapter 7 Validation and Method Exploration

[Pointing] you move
[pointing] there.

Figure 7.4.¿e real-time porting of the Quest board game. ¿e game master (le) can con-
trol one minion manually and all others using high-level commands that are transformed
into atomic actions. In this case a succession of move actions. ©IEEE

application (see Figure 7.3). All version utilize Simulator X’s distribution capabilities, since
speech- and gesture processing run on a separate node for these demonstrations, due to the
limited hardware ressources of the utilized interactive surface.
Series two constitutes an alternative approach for portingQuest (Link et al., 2016). Instead

of creating a faithful copy of the turn-based gameplay, this demonstration exploits the ca-
pabilities of the interactive system to realize an collaborative real-time strategy game. ¿e
requirement of the game master to control multiple pawns at the same time is realized by
implementing less important pawns as completely virtual, autonomous agents, in order to
avoid cognitive- and motoric overload. ¿ese virtual pawns can be instructed using high-
level commands via a speech and gesture interfcae. Such commands are transformed into
atomic actions according to the game rules by means of a planning algorithm. ¿us the
player can still control one tangible pawn manually, while conveniently commanding the
rest multimodally (see Figure 7.4).

Big Bang

¿e Big Bang demonstration (Zimmerer, 2016) validates Simulator X’s capabilities for real-
izing multimodal interfaces, with a special focus on decision-level fusion by means of the
tATN implementation.
It allows the user to create andmanipulate objects in the style of Bolt’s (1980) Put that there

119

Chapter 7 Validation and Method Exploration

Figure 7.5.¿e Big Bang demonstration. A user equipped withHTC’s VIVE hardware setup
(foreground) creating, modifying and removing plantes of a solar system (background) via
a speech and gesture interface.

(see Figure 7.5). ¿e demonstration can run in two con�gurations: using a CAVE-like hard-
ware setup including a combination ofmarkerless andmarker-based tracking as well as using
HTC’s hardware setupVIVE (HTCCorporation, 2017), i.e., a head-mounted display and two
motion controllers. In both con�gurations the user’s utterances are recorded with a clip-on
microphone. In the latter con�guration,HTC’sVIVE is driven by theUnreal Engine 4, which
in turn is loosely coupled to Simulator X (Wiebusch, Zimmerer, & Latoschik, under review,
2017). ¿is demonstration thus showcases that the realization of multimodal interfaces does
not con�ict with modi�ability and reusability qualities of the underlying techniques: the two
con�gurations basically di�er just in their subsystem con�guration, with no adaptions re-
quired to the implementations and de�nitions that account for the multimodal processing.

Utilization for Teaching

In addition to the validation achieved by proof of concept demonstrations, Simulator X was
and is utilized for practical exercises in master level courses (see Fischbach, Wiebusch, Re-
hfeld, et al., 2016, for selected course results). ¿is implies a certain maturity of the system,
since it has to be used by novice (I)RIS developers within a variety of di�erent hard- and
so ware setups. Concrete practical exercise topics included RISs in general, motion analysis
for interfaces using machine learning approaches, as well as decision-level fusion for MMIs.

120

Chapter 7 Validation and Method Exploration

Summary

Altogether, the presented prototypes validate several aspects of the semantics-based tech-
niques and the reference implementation: the interplay of basic subsystems, the distribution
capabilities, the techniques semantic grounding and grounded actions, the design decisions
Scala and the actor model, as well as the implementation mechanism state variables. More-
over, the XRoads series and the Big Bang demonstration focus on themiPro framework, par-
ticularly including the decision-level fusion by means of the tATN implementation and thus
implicitly the techniques semantic queries and decoupling by semantics. Moreover, the refer-
ence implementation’s API usability is informally assessed in the context of student projects
and practical exercises within a variety of di�erent hard- and so ware setups.
Speci�c claims about maintainability can not be drawn from proof of concept prototypes

alone. Yet, the prototypes indicated issues and positive qualities. For instance, a certain ma-
turity of the reference implementation, since complex applications could be realized even by
novice IRIS developers. More importantly, however, the proof of concepts complement the
theoretical assessment of maintainability by showing that its practically feasible to meet the
necessary functional requirements by applying the presented techniques to an IRIS platform.

7.3 Explorative Studies

Two explorative studies have been conducted in order to identifymethods that are reasonable
for assessing the API usability of IRIS platforms and to potentially generate hypothesis about
platform aspects that in�uence this so ware quality. ¿e explorative approach particularly
implies that no speci�c hypothesis are evaluated, yet, it allows to get a better intuition of the
usability of the reference implementation’s API.

Method

Both explorative studies were carried out in the context of practical exercises to master level
courses: a course on machine learning for user interfaces in summer term 2015 (ML15) and
a course on multimodal interfaces in summer term 2016 (MMI16). A comparatively large
number of potential participants, i.e., developers, could thus be addressed that were willing
to spend a su�cient amount of time to acquire enough experience with the system to solve
complex tasks and to re�ect on non-functional qualities.
In the context of both courses, participants were given tasks that involved the develop-

ment of so ware on basis of the Simulator X platform. ¿ese task were meant to be handled
in groups of 2 to 3 persons over the course of the whole term, i.e., during sixmonths. InML15

121

Chapter 7 Validation and Method Exploration

each group had to implement a specialized processor wrapping a neural network, realize a
simple gesture detection with it, and utilize it to let a user control a given application. In
MMI16 each group had to implement a simple multimodal interface in the manner of Bolt’s
(1980) Put that there, using the tATN implementation presented in section 6.3. Students
could attend a two-hour practical exercise session per week to get assistance by a supervisor
during the lecture time. During the rest of the term, the student groups had time to work on
the task on their own. At the end of the term, students that completed the task were asked
to answer questions about the API they used via an online survey platform. ¿e survey has
been adapted from Wiebusch (2016, pp. 197–206) to facilitate comparisons. It includes the
questionnaire for the subjective consequences of intuitive use (QUESI, Naumann &Hurtienne,
2010), the task load index (NASA-TLX,Hart, 2006), exhaustive additional questions concern-
ing the participants’ expertise in programming and RIS, as well as the opportunity to make
free form comments.

Results

InML15 14 participants were asked to answer the questions of which 12 replied (2 female, 10
male, aged 21–31). In MMI16 17 participants were asked to answer the questions of which 3
replied (1 female, 2male, aged 24–30). All participants have been noti�ed that the explorative
study is not used to assess their personal performance.
All qualitative free form responses have been analyzed and clustered into categories. ¿e

two most mentioned negative aspects are the extends of the general documentation (men-
tioned 7 times) and the amount of code examples (mentioned 3 times). ¿e two most men-
tioned positive aspects are the decoupling by semantics concept (mentioned 2 times), in-
cluding the Processor features, and the usefulness of the existing examples (mentioned 2
times). A summary of analysing QUESI and NASA-TLX (evaluated as Raw TLX, without
applying the weighting process) is depicted in Figure 7.6 and Figure 7.7, respectively.

Discussion

¿e primary goal of the conducted explorative study is the identi�cation of methods that are
reasonable for assessing the API usability of IRIS platforms. ¿e whole process is thus taken
as a basis for discussing best practices, rather than statistically analysing them.
¿e most prominent issue of the conducted evaluation process is the number of partic-

ipants. 14 respectively 17 participants may be low, however, considering the e�ort that is
demanded from the participants, these numbers are reasonable. Conducting the evaluation
process in the context of a practical exercise is a goodmeans to acquire participants willing to

122

Chapter 7 Validation and Method Exploration
Sc

or
e

1,00

2,00

3,00

4,00

5,00

QUESI sub-scales
W G L F E Overall

Figure 7.6.QUESI score means with 95% con�dence intervals, representing results ofML15
(blue) and of theMMI16 (orange). ¿e QUESI sub-scales are abbreviated as follows: subjec-
tive mentalWorkload (W), perceived achievement of Goals (G), perceived e�ort of Learning
(L), Familiarity (F), and perceived Error rate (E). Higher values are better.

Sc
or

e

0,0

25,0

50,0

75,0

100,0

TLX sub-scales
Mental Demand Physical Demand Temporal Demand Performance Effort Frustration

Figure 7.7. Raw TLX score means with 95% con�dence intervals, representing results of the
ML15 (blue) and of theMMI16 (orange).

123

Chapter 7 Validation and Method Exploration

take this high e�ort nevertheless. ¿e response rate for theML15 course is good. ForMMI16,
however, it is very low. ¿is execrates the elimination of confounding factors, lowers validity,
and makes these particular results almost un-exploitable.
A related issue is that it is not evident that all reported experiences completely originate

from the system’s API qualities. Although explicitly emphasized at the beginning of the sur-
vey not to do so, participants may have considered problems they had with the programming
language Scala, the utilized math library, RIS- as well as multimodal processing concepts in
general, and the teaching quality. Such confounding factors can be eliminated by keeping
them as equally as possible between two conditions that are then compared, besides acquir-
ing higher numbers of participants. With respect to an API usability study for an IRIS, this
ideally implies that a second IRIS written in Scala, utilizing the same underlying concepts,
had to be used during the same term to implement the programming task one more time.
¿is can be feasible for comparing two API versions of the same IRIS. For comparing APIs
of di�erent IRIS, it may only be feasible by accepting compromises.
Lastly, it is not evident how well the chosen questionaries assess API usability in the de-

scribed process. For instance, NASA-TLX is designed to be applied during or immediately
a er performing a task (Hart, 2006) and QUESI to assess end-user interfaces (Naumann &
Hurtienne, 2010). Yet, developing so ware with the aid of dedicated tools and APIs is a form
of using so ware provided by other parties via a human-computer interface too.
¿e secondary goal of the conducted explorative study is the potential generation of hy-

pothesis about platform aspects that in�uence this so ware quality. ¿e analysis of the qual-
itative free form responses indicates such hypothesis. For instance, that the decoupling by
semantics technique improves the API usability vs. using lower-level APIs to implement pro-
cessing steps and that code examples improve API learnability (a sub-aspect of API usability)
by complementing documentation. Moreover, the analyzed responses suggest thatmore gen-
eral documentation and more code examples should be provided.
Finally, the quantitate measures can be reviewed to get an intuition of the usability of the

reference implementation’s API. ¿e QUESI results show moderate to good assessment of
the perceived achievement of goals and poor values for the other sub-scales. ¿e NASA-TLX
results show a high mental demand, temporal demand, e�ort, and frustration as well as low
physical demand and low satisfaction with the subjective performance. Compared to the
long-term use of Simulator X presented by Wiebusch (2016, pp. 199–204), these results are
inferior. An interpretation, however, is delicate due to the above mentioned issues.

124

Chapter 7 Validation and Method Exploration

Conclusion

Altogether, conducting usability evaluations of IRISAPIswithin the context of practical exer-
cises to master level courses using questionnaires based on programming tasks (as proposed
by Piccioni et al., 2013) can be promoted as best practice, since it is a good means to acquire
participants willing to take the high e�ort nevertheless.
¿e utilized survey, however, was too long. It resulted in low response rates, including

partly �lled in surveys that had to be skipped, and potentially low diligence during survey
completion. ¿e NASA-TLX and QUESI questionnaires on their own are good candidates
when it comes to length. ¿eir combination with additional questions, though, should be
reconsidered for a full study. In addition, it should be considered tomix inmethods dedicated
for accessing API usability (as presented in section 3.1).
Furthermore, the study should be designed to have participants use identical hard- and

so ware environments, e.g., in computers labs, if existent. ¿is reduces the supervising e�ort
and further eliminates confounding factors.
In terms of task size, a breakdown into multiple milestone that can be evaluated individ-

ually may be bene�cial to likewise eliminate confounding factors and to shorten the time
between task performance and assessment. In addition, aspects of the API to be evaluated
should be narrowed down as closely as possible.
Finally, the e�ort of an IRIS API usability study should not be underestimated. Conduct-

ing it in accompany of two successive master level courses, to be able to revise the API and
validate improvements, requires at least to plan one year in advance. Supervising a pratical
exercise that basis on a research so ware platform implies technical support for a diversity
of issues that are raised due to its usage by several potentially unexperienced developers. If
those insights are exploited, i.e., bugs are �xed, common misconceptions are considered for
API revisions, and frequently demanded documentation is improved, the research so ware
platform is also enabled to reach a certain maturity.

7.4 Informal Insights

During the six years of development and throughout the various research- and student projects
as well as utilizations for teaching certain conclusions became apparent amongst involved re-
searches. ¿ese informal insights are summarized as four lessons learned (following Kuck et
al., 2008; Steed, 2008). ¿ey are particularly related to API usability and are ment to support
future development (revised from Fischbach et al., 2017):

125

Chapter 7 Validation and Method Exploration

Good work�ow, tool support, and IDE integration are essential.
¿is insight may improve the e�ciency of development and prevents misuse leading to poor
maintainability. It is key especially for realizing the code from semantics technique. With
respect to the development of Simulator X, the completion of the Protégé plugin marked the
actual beginning of a utilization as intended of the code from semantics technique by non-
core developers. However, the necessary context switches, from the IDE to Protégé, still seem
to be a too high barrier. ¿ey disrupt the work�ow so much that existing OWL de�nitions
are o entimes rather missused than �tting ones are de�ned. Further simpli�cations, e.g., an
integration of dedicated ontology editing into an IDE, thus seem to be a good measure to
attempt in the future.
¿e functional paradigm fosters a concise API that is tricky at �rst but bene�cial when used

longer and for non-trivial tasks.
Visual programming and the utilization of other popular paradigms are valid approaches to
ease the the entry into RIS development. ¿ey are especially exploited by commercial prod-
ucts. However, these approaches are not able to completely hide all di�culties inherent to
(I)RIS development. If projects reach a certain complexity they may even be hindering (cf.
Wiebusch, 2016, pp. 205–206). It thus pays of in the long-term to accept a certain familiari-
sation phase at the beginning.
Good code examples greatly ease the issue of missing documentation.

In research, ressources for improving the documentation of a so ware prototype are probably
evenmore limited than they are in economy. If prototypes have to be continuously advanced,
APIs hence continuously to be re�ned, and documentation to be updated, the issue is exacer-
bated. Taking the time to implement comprehensible examples, which are required anyway
for testing purposes, has proven to be a good tradeo�. ¿is measure should be supplemented
by the utilization of a management platfom for so ware projects that eases the contribution
and access to related ressources. For instance, by granting students access to a correspond-
ing issue tracker and by forcing relevant questions and bugs to be raised and answered there,
a searchable FAQ collection can be gradually created. ¿e overhead is minimal, since such
issues have to be answered anyway, if the prototype is basis for a pratical exercise or project.
API oversimpli�cation will result in decreased understandability.

Scala’s syntax allows to hide many de�nitions, e.g., using the implicit- and type inference
mechanism. Moreover, the _ wildcard allows to shorten lambda expressions by removing
the need to use named variables. ¿ese mechanisms allow developers to write truly concise
code. Within implementations, they should be used with caution to not yield code that is
incomprehensible, even by its author a er a few weeks. Within APIs, they should be used
consistently, based on a concept of what is to be made explicit to the API’s user and what not.

126

Chapter 7 Validation and Method Exploration

7.5 Summary

¿is chapter presented the results of all activities conducted to validate the proposed tech-
niques and their reference implementation as well as to explore the assessment and improve-
ment of IRISmaintainability. Four expert reviews evaluate the achieved decoupling and con-
�rm the improvement ofmaintainability. ¿ey are strengthened in signi�cance through their
publication in peer-reviewed international workshops and conferences. ¿is theoretical as-
sessment is complemented by multiple proof of concept prototypes that practically validate
feasibility. Two explorative studies analyse methodologies for long-term API usability as-
sessment and yield helpful best practices for future full studies. Finally, informal insights
gathered throughout the design and development are summarized as lessons learned to sup-
port future development in the area.

127

Chapter 8

Conclusion

¿is chapter concludes the thesis by summarizing the research motivation as well as the re-
sults and by pointing out future directions that promise to bene�t form the achievements.

8.1 Summary

MMIs are a promising alternative human-computer interaction paradigm, especially if in-
teractions have to be spatially and temporally grounded with an environment in which the
user is (physically) situated. IRISs that realize MMIs for situated interaction environments,
however, su�er from the coupling dilemma—a requirement contradiction that entails low
maintainability in the short-term and hindered scienti�c progress in the long-term. ¿is
thesis thus researched what so ware techniques foster the maintainability of such systems
guided by �ve objectives (O1−5).
Based on an comprehensive review of related contributions and with the aid of an interac-

tion use case, fundamental (I)RIS requirements have been identi�ed (see chapter 2 and chap-
ter 3): an execution model, a communication scheme, a state representation- and behavior
representation model, a state- and behavior access scheme, performance, as well as main-
tainability, including modularity, modi�ability, reusability, and API usability. A breakdown
of the combination of RISs and MMSs identi�ed the issues of independant MMS usage and
concluded that an integratedMMS usage as well as the established ECS pattern are promising
concepts to build on (see chapter 4). Jointly, these analyses ful�lled the �rst objective (O1).
Six semantics-based techniques that extend the ECS pattern are proposed in chapter 5

to meet the fundamental requirements, as the main contribution of this thesis: semantic
grounding, a semantic entity-component state, grounded actions, semantic queries, code
from semantics, and decoupling by semantics. ¿e techniques solve the ECS pattern’s run-
time type de�cit, improve component granularity, facilitate access to entity properties outside
a subsystem’s component association, incorporate a concept to semantically describe behav-

128

Chapter 8 Conclusion

ior as complement to the state representation, and enable compatibility even between IRISs.
Ultimately, the six techniques constitute a solution to the coupling dilemmawhile being bene-
�cial for multimodal processing (O2). ¿e guiding use case consists of an instruction-based,
intentional interface. ¿e six techniques, however, are not limited to this scenario. Access
to a state- and behavior representation based on semantic descriptions as well as planning
and reasoning capabilities may likewise facilitate the analysis of unintentional non-verbal
communication and the generation of multimodal output.
¿e six techniques are the furthest abstracted results of the thesis and hence those with the

highest value of re-utilization. ¿ey where developed to improve maintainability for multi-
modal IRISs and turned out to foster this so ware quality for RIS in general. ¿ey are inde-
pendent of a speci�c programming language. Other researchers can bene�t by integrating
the techniques in their own so ware or use them to possibly enhance third-party systems.
As a secondary contribution, the reference implementation Simulator X was presented

in chapter 6. It validates the feasibility of the six techniques and may be (re)used by other
researchers, due to its availability under an open-source licence Wiebusch et al., 2016. ¿e
reference implementation constitutes one of two fundamental approaches for bene�ting from
the semantics-based techniques: low-level system integration. Alternatively, (partly) closed-
source systems can be loosely coupled to a system like Simulator X and still exploit some of
the advantages (cf. Eckstein, Lugrin, Wiebusch, & Latoschik, 2016; Fischbach, Wiebusch,
Rehfeld, et al., 2016; Wiebusch et al., under review, 2017).
¿e reference implementation is based three design decision: the actormodel, the web on-

tology language OWL, an the programming language Scala. Furthermore, it applies several
implementation mechanisms to realize the proposed techniques: scala’s object syntax, cur-
rying, implicit parameters, state variables, traits, context binding, delimited continuations,
singleton actors, tool support, process integration, semantic entity references, an internal
DSL, local histories, and interpolation. Both, taken design decisions and applied implemen-
tationmechanisms, are means tomeet the identi�ed functional requirements while fostering
maintainability. ¿e actor model provides a scalable communication-, execution-, and dis-
tribution scheme, fostering modularity and reusability. ¿e choice of OWL guarantees com-
patibility to existing ontologies and tools. Scala facilitates realizing concise APIs (comprising
internal DSL) despite the extensive requirement of callbacks. Furthermore, it is platfom inde-
pendent and compatible with a large number of existing so ware libraries. ¿e emphasized
key mechanisms serve two kinds of purposes. Firstly, state variables, semantic entity refer-
ences, and local storage of histories realize or extend functionality, conceptually demanded
by the six techniques. Secondly, other key mechanisms foster API usability. Traits, implicit
parameters, and Scala’s object syntax are utilized to facilitate the use of the core API.¿e in-

129

Chapter 8 Conclusion

ternal DSL makes de�nitions read almost as natural language descriptions, while exploiting
IDE support, like autocompletion and static code analysis. API usability is further fostered
by reducing the development e�ort with the aid of tool support and development process
integration.
¿e reference implementation includes a feasibility validation for multimodal processing.

A repertoire of common multimodal input processing steps is adding up to the integrated
miPro framework, enabling the creation of multimodal interfaces. ¿is application of the
semantics-based techniques showcases their particular adequacy formultimodal processing,
i.e., improved state access �exibility, a consistent behavior representation, compatibility with
common reasoning and planning approaches, and the support of high-level APIs. miPro
comprises two reference implementations of decision-level fusion methods: one based on
tATNs and one based on uni�cation. ¿e integrated framework thus completes the realiza-
tion of identi�ed requirements, by providingmeans to checkmultimodal inputs with respect
to its syntactic-, temporal-, and semantic correctness.
Altogether, Simulator X closes a lack of IRIS platforms with explicit MMI support (O3).

To the author’s best knowledge, it is currently the only such platfom whose source code can
be obtained and that is running on current hardware platforms (cf. Table 3.3 and Table 3.4).
¿e six semantic-based techniques as well as the reference implementation have been as-

sessed by applying all mainmethods commonly applied in literature (see chapter 7). Four ex-
pert reviews have been conducted to evaluate functional and non-functional so ware quality
aspects (O4). ¿e expert reviews analyse the achieved decoupling and con�rm the improve-
ment of maintainability. ¿ey are strengthened in signi�cance through their publication in
peer-reviewed international workshops, conferences, and journals. ¿is theoretical assess-
ment is complemented by multiple proof of concept prototypes that practically validate fea-
sibility (O5). In addition, two pre-studies have been conducted to explore the assessment and
improvement of IRIS maintainability and to counter the lack of e�ective methods identi�ed
in section 3.1. Finally, informal insights gathered throughout the design and development
are summarized as lessons learned to support future development in the area.
¿e presented semantic-based techniques and Simulator X have been iteratively developed

for six years. During this time the reference implementation has been utilized for teaching
and various research- and student projects. Many of them are still ongoing (Fischbach, Zim-
merer, Link, et al., 2016; Eckstein & B. Lugrin, 2016a, 2016b; Zimmerer et al., 2016). ¿e
conceptual results of this thesis are is certainly not the perfect solution for all IRIS issues.
However, they reveal novel approaches that solve serious pending issues and that may con-
tribute to enhance future IRIS architectures. Right now, the reference implementation en-
ables to push the IRIS-using �eld by providing an available technical basis that facilitates the

130

Chapter 8 Conclusion

utilization of AI methods and in particular of multimodal processing. Research is thus facil-
itated beyond the idiosyncratic combination of game engines and independent processing,
analysis, and simulation frameworks.

8.2 FutureWork

Relating to the achievements of this thesis, this �nal section points out future research direc-
tions that either have been le unattended by the presented contributions or that are enabled
by them.
¿e strictness andmagnitude of real-time constraints varies amongst concrete application

areas. ¿ey should be highest in areas where security is essential, e.g., inHRI, and highwhere
synchronization between real- and virtual artefacts or immersion is crucial, e.g., in AR and
VR.However, they are o entimes not given the necessary attention. Azuma (1997) stated this
circumstance twenty years ago; a fundamentally still valid criticism. ¿e decision to use Scala
as target language was bene�cial for rapidly prototyping and exploring API styles. However,
its dependency on the JVM and the corresponding memory menagement may negatively
in�uence performance. ¿is issue is researched by Stau�ert et al. (2016), Rehfeld (2017), who
likewise conclude that more profound insights as well as supportive tools seem necessary.
¿e utilized internal DSL, the tool support for the code from semantics technique, and the

explorative studies presented in section 7.3 all constitue measures that have been applied to
improve and assess API usability. Furthermore, Simulator X is and has been used in many
projects and courses. Yet, getting familiar with this research platform takes some e�ort. Con-
sequently, API usability improvements should be continued to further facilitate the utiliza-
tion of the reference implementation. ¿is implies the implementation of identi�ed barriers
that disrupt work�ow and keep developers from using the system as intended. For instance,
by cleverly reusing further tools to close the usability gap to the convenience that developers
are used to by commercial system, especially in terms of content creation (cf.Wiebusch et al.,
under review, 2017). A full API usability study, planned base on the insights of the explorative
studies, would also contribute to complement the already identi�ed issues.
¿e integrated miPro framework comprises a repertoire of multimodal processing steps,

including two decision-level fusion methods. For many multimodal interface realizations,
both, the tATN-based implementation and the uni�cation-based implementation, could be
used. Practical evidence for what method to choose in general or under speci�c conditions
is largely unavailable. Simulator X, however, facilitates modi�cations like exchanging fusion
methods with one another and requires minimal changes to the surrounding application.
Simulator X and miPro thus constitute an ideal testbed for the comparison and evaluation

131

Chapter 8 Conclusion

of fusion methods—a necessary requirement for future research in the �eld of multimodal
processing Dumas, Lalanne, and Oviatt, 2009; Lalanne et al., 2009.
Finally, the contributions of this theses certainly enable research in �elds that do not de-

velop system architectures but use IRIS to build applications. ¿is is especially signi�cant,
since Simulator X is currently the only available platform of its kind. Being a RIS, Simu-
lator X can be utilized in a variety of application areas (see Figure 1.3). Areas that rely on
situated interaction environments, MMIs, and the application of AI methods will bene�t
the most. Promising directions that are already actively researched are the exploitation of
the code from semantics technique for implementing social robots in the context of smart
homes (Eckstein & B. Lugrin, 2016b), the utilization of multimodal interfaces for interactive
surfaces (Fischbach, Zimmerer, Link, et al., 2016), and the augmentation of existing appli-
cations (not built using Simulator X) with MMIs, by carrying on the inter-RIS compatibility
concept (Latoschik et al., 2016; Wiebusch et al., under review, 2017). Beyond that Simulator
X and miPro could be utilized to generate multimodal output, e.g., taking up the ideas of
the virtuelle Werkstatt and the virtual agentMax (Latoschik, 2005), and to consider uninten-
tional, non-verbal input, e.g., to support the analysis of intentional input (following the idea
of Freigang & Kopp, 2015).

132

Bibliography

Alatalo, T. (2011, September). An entity-component model for extensible virtual worlds.
IEEE Internet Computing, 15(5), 30–37.

Allard, J., Gouranton, V., Lecointre, L., Melin, E., & Ra�n, B. (2002). Net Juggler: running
VR juggler with multiple displays on a commodity component cluster. In Proceedings
IEEE Virtual Reality 2002 (pp. 273–274).

Allard, J., Gouranton, V., Lecointre, L., Limet, S., Melin, E., Ra�n, B., & Robert, S. (2004).
FlowVR: a middleware for large scale virtual reality applications. In M. Danelutto, M.
Vanneschi, & D. Laforenza (Eds.), Euro-par 2004: euro-par 2004 parallel processing
(Vol. 3149, pp. 497–505). Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer.

Ameri Ekhtiarabadi, A., Akan, B., Çürüklu, B., &Asplund, L. (2011). A general framework for
incremental processing of multimodal inputs. In Proceedings of the 13th International
Conference on Multimodal Interfaces (pp. 225–228). ICMI ’11. Alicante, Spain: ACM.

Anastassakis, G. & Panayiotopoulos, T. (2012, June). A uni�ed model for representing ob-
jects with physical properties, semantics and functionality in virtual environments.
Intelligent Decision Technologies, 6(2), 123–137.

Atrey, P. K., Hossain, M. A., El Saddik, A., & Kankanhalli, M. S. (2010). Multimodal fusion
for multimedia analysis: a survey. Multimedia Systems, 16(6), 345–379.

Azuma, R. T. (1997, August). A survey of augmented reality. Presence: Teleoperators and
Virtual Environments, 6(4), 355–385.

Bangalore, S. & Johnston, M. (2009, September). Robust understanding in multimodal
interfaces. Computational Linguistics, 35(3), 345–397.

Behr, J., Bockholt, U., & Fellner, D. (2011). Instantreality—A framework for industrial aug-
mented and virtual reality applications. In D. Ma, X. Fan, J. Gausemeier, & M. Grafe
(Eds.), Virtual Reality & Augmented Reality in Industry: ¿e 2nd Sino-German Work-
shop (pp. 91–99). Berlin, Heidelberg: Springer Berlin Heidelberg.

Bergmann, K., Kahl, S., & Kopp, S. (2014). How is information distributed across speech
and gesture? A cognitive modeling approach. Cognitive Processing, 15(1: Special Issue:
Proceedings of KogWis 2014), S84–S87.

133

Bibliography

Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., & Cruz-Neira, C. (2001, March).
VR Juggler: a virtual platform for virtual reality application development. In Proceed-
ings IEEE Virtual Reality 2001 (pp. 89–96).

Bohus, D. (2014, January). Situated interaction: opportunities and challenges. In Proceedings
of 5th International Workshop on Spoken Dialog Systems. Napa, California, USA.

Bolt, R. A. (1980, July). ’’Put-that-there”: Voice and gesture at the graphics interface. SIG-
GRAPH Computer Graphics, 14(3), 262–270.

Bower, T. (1974). The evolution of sensory systems. Perception: Essays in honor of James J.
Gibson, 141–152.

Brooks, F. P., Jr. (1987). Walkthrough—a dynamic graphics system for simulating virtual
buildings. In Proceedings of the 1986 workshop on interactive 3d graphics (pp. 9–21).
I3D ’86. Chapel Hill, North Carolina, USA: ACM.

Bueskens, C., Clemens, J., Eissfeller, B., Foerstner, R., Gadzicki, K., Peytavi, G. G., . . . Zach-
mann, G. (2014). Virtual reality for simulating autonomous deep-space navigation and
mining. In 24th International conference on Arti�cial Reality and Teleexistence (pp. 15–
16). ICAT-EGVE. ¿e Eurographics Association.

Carlsson, C. & Hagsand, O. (1993, September). DIVE Amulti-user virtual reality system. In
Proceedings of IEEE Virtual Reality Annual International Symposium (pp. 394–400).

Cavazza, M. & Palmer, I. (2000). High-level interpretation in virtual environments. Applied
Arti�cial Intelligence, 14(1), 125–144.

Chen, P. P.-S. (1976, March). The entity-relationship model—Toward a uni�ed view of data.
ACM Transactions on Database Systems, 1(1), 9–36.

Cherubini, A., Passama, R., Fraisse, P., & Crosnier, A. (2015). A uni�ed multimodal control
framework for human-robot interaction. Robotics and Autonomous Systems, 70, 106–
115.

Chevaillier, P., Trinh, T. H., Barange, M., Loor, P. D., Devillers, F., Soler, J., & Querrec, R.
(2012, March). Semantic modeling of virtual environments using MASCARET. In 5th
Workshop on So ware Engineering and Architectures for Realtime Interactive Systems
(SEARIS) (pp. 1–8). IEEE Computer Society.

Clarke, S. (2004). Measuring API usability. Doctor Dobbs Journal, 29(5), S1–S5.
Cohen, P. R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith, I., . . . Clow, J. (1997).

Quickset: multimodal interaction for distributed applications. In Proceedings of the
Fi h ACM International Conference on Multimedia (pp. 31–40). MULTIMEDIA ’97.
Seattle, Washington, USA: ACM.

Coleman, D., Ash, D., Lowther, B., & Oman, P. (1994, August). Using metrics to evaluate
so ware system maintainability. Computer, 27(8), 44–49.

134

Bibliography

Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., & Young, R. M. (1995). Four easy
pieces for assessing the usability of multimodal interaction: the care properties. In
K. Nordby, P. Helmersen, D. J. Gilmore, & S. A. Arnesen (Eds.), Human-computer
interaction: interact ’95 (pp. 115–120). Boston, MA: Springer US.

Cruz-Neira, C., Bierbaum, A., Hartling, P., Just, C., & Meinert, K. (2002). VR Juggler—An
open source platform for virtual reality applications. In 40th AIAA Aerospace Sciences
Meeting & Exhibit (p. 754). American Institute of Aeronautics and Astronautics.

Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., & Hart, J. C. (1992, June). The
CAVE: Audio visual experience automatic virtual environment. Communication of the
ACM, 35(6), 64–72.

Daughtry, J. M., Farooq, U., Myers, B. A., & Stylos, J. (2009, July). API usability: report on
special interest group at CHI. ACM SIGSOFT So ware Engineering Notes, 34(4), 27–
29.

Dumas, B., Lalanne, D., & Ingold, R. (2009). HephaisTK: a toolkit for rapid prototyping of
multimodal interfaces. In Proceedings of the 2009 International Conference on Multi-
modal Interfaces (pp. 231–232). ICMI-MLMI ’09. Cambridge, Massachusetts, USA:
ACM.

Dumas, B., Lalanne, D., & Ingold, R. (2010). Description languages for multimadal interac-
tion: a set of guidelines and ist illustration with SMUIML. Journal onMultimodal User
Interfaces, 3(3), 237–247.

Dumas, B., Lalanne, D., & Oviatt, S. (2009). Multimodal interfaces: a survey of principles,
models and frameworks. InD. Lalanne& J. Kohlas (Eds.),Humanmachine interaction:
research results of the mmi program (pp. 3–26). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Eckstein, B. & Lugrin, B. (2016a). Augmented reasoning in the mirror world. In Proceedings
of the 22nd ACM Conference on Virtual Reality So ware and Technology (pp. 313–314).
VRST ’16. Munich, Germany: ACM.

Eckstein, B. & Lugrin, B. (2016b). Dynamic context integration through modularized on-
tologies and semantic blueprints. In 5th international workshop on Human-Agent In-
teraction Design and Models. HAIDM 2016.

Eckstein, B., Lugrin, J. L., Wiebusch, D., & Latoschik, M. E. (2016). PEARS: Physics ex-
tension and representation through semantics. IEEE Transactions on Computational
Intelligence and AI in Games, 8(2), 178–189.

Farooq, U. & Zirkler, D. (2010). API peer reviews: a method for evaluating usability of
application programming interfaces. In Proceedings of the 2010 ACM Conference on

135

Bibliography

Computer Supported Cooperative Work (pp. 207–210). CSCW ’10. Savannah, Georgia,
USA: ACM.

Feiner, S., MacIntyre, B., Haupt, M., & Solomon, E. (1993). Windows on the world: 2D
windows for 3D augmented reality. In Proceedings of the 6th Annual ACM Symposium
on User Interface So ware and Technology (pp. 145–155). UIST ’93. Atlanta, Georgia,
USA: ACM.

Fischbach, M. (2015). So ware techniques for multimodal input processing in realtime
interactive systems. In Proceedings of the 2015 ACM on International Conference on
Multimodal Interaction (pp. 623–627). ICMI ’15. Seattle, Washington, USA: ACM.

Fischbach, M., Latoschik, M. E., Bruder, G., & Steinicke, F. (2012). smARTbox: out-of-the-
box technologies for interactive art and exhibition. In Proceedings of the 2012 virtual
Reality International Conference (19:1–19:7). VRIC ’12. Laval, France: ACM.

Fischbach, M., Ne�, M., Pelzer, I., Lugrin, J.-L., & Latoschik, M. E. (2013). Input device
adequacy for multimodal and bimanual object manipulation in virtual environments.
In Virtuelle und Erweiterte Realität, 10. Workshop der GI-Fachgruppe VR/AR (pp. 145–
156). Informatik. Shaker Verlag.

Fischbach, M., Tre�s, C., Cyborra, D., Strehler, A., Wedler, T., Bruder, G., . . . Steinicke, F.
(2012). A mixed reality space for tangible user interaction. In Virtuelle und Erweiterte
Realität, 9. Workshop der GI-Fachgruppe VR/AR (pp. 25–36). Informatik. Shaker
Verlag.

Fischbach, M., Wiebusch, D., Giebler-Schubert, A., Latoschik, M. E., Rehfeld, S., & Tram-
berend, H. (2011, March). Sixton’s curse – Simulator X demonstration. In 2011 IEEE
Virtual Reality Conference (pp. 255–256).

Fischbach, M., Wiebusch, D., & Latoschik, M. E. (2016, March). Semantics-based so ware
techniques for maintainable multimodal input processing in real-time interactive sys-
tems. In 9th Workshop on So ware Engineering and Architectures for Realtime Interac-
tive Systems (SEARIS) (pp. 1–6). IEEE Computer Society.

Fischbach, M., Wiebusch, D., & Latoschik, M. E. (2017, April). Semantic entity-component
statemanagement techniques to enhance so ware quality formultimodal VR-systems.
IEEE Transactions on Visualization and Computer Graphics, 23(4), 1342–1351.

Fischbach, M., Wiebusch, D., Latoschik, M. E., Bruder, G., & Steinicke, F. (2012a). Blending
real and virtual worlds using self-re�ection and �ducials. In Proceedings of the 11th In-
ternational Conference on Entertainment Computing (pp. 465–468). ICEC’12. Bremen,
Germany: Springer-Verlag.

Fischbach,M.,Wiebusch,D., Latoschik,M. E., Bruder, G., & Steinicke, F. (2012b). smARTbox
A portable setup for intelligent interactive applications. In H. Reiterer & O. Deussen

136

Bibliography

(Eds.), Mensch & Computer 2012 — Workshopband: interaktiv informiert — allgegen-
wärtig und allumfassend!? (pp. 521–524). München: Oldenbourg Verlag.

Fischbach, M., Zimmerer, C., Giebler-Schubert, A., & Latoschik, M. E. (2014, September).
[DEMO] Exploring multimodal interaction techniques for a mixed reality digital sur-
face. In 2014 IEEE International Symposium onMixed and Augmented Reality (ISMAR)
(pp. 335–336).

Fisher, S. S., McGreevy, M., Humphries, J., & Robinett, W. (1987). Virtual environment
display system. In Proceedings of the 1986Workshop on Interactive 3DGraphics (pp. 77–
87). I3D ’86. Chapel Hill, North Carolina, USA: ACM.

Frécon, E. (2004). DIVE on the Internet (Doctoral dissertation, University of Göteborg).
Freigang, F. & Kopp, S. (2015). Analysing the modifying functions of gesture in multimodal

utterances. In Proceedings of the 4th Conference on Gesture and Speech in Interaction
(GESPIN). Nantes, France.

Fröhlich, C. (2014). Semantische Modellierung virtueller Umgebungen auf Basis einer modu-
laren Simulationsarchitektur (Doctoral dissertation, Bielefeld University).

Geiger, C., Paelke, V., Reimann, C., & Rosenbach,W. (2000). A framework for the structured
design of VR/AR content. In Proceedings of the ACM Symposium on Virtual Reality
So ware and Technology (pp. 75–82). VRST ’00. Seoul, Korea: ACM.

Giebler-Schubert, A., Zimmerer, C.,Wedler, T., Fischbach,M., & Latoschik,M. E. (2013). Ein
digitales Tabletop-Rollenspiel für Mixed-Reality-Interaktionstechniken. In Virtuelle
und Erweiterte Realität, 10. Workshop der GI-Fachgruppe VR/AR (pp. 181–184). Infor-
matik. Shaker Verlag.

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., & Wang, Z. (2014). HermiT: an OWL 2
reasoner. Journal of Automated Reasoning, 53(3), 245–269.

Hall, D. L. & Llinas, J. (1997, January). An introduction to multisensor data fusion. Proceed-
ings of the IEEE, 85(1), 6–23.

Hart, S. G. (2006). Nasa-task load index (NASA-TLX); 20 years later. Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, 50(9), 904–908.

Heaton, J. (2015). Encog: Library of interchangeable machine learning models for Java and
C#. Journal of Machine Learning Research, 16, 1243–1247.

Heitlager, I., Kuipers, T., & Visser, J. (2007, September). A practical model for measuring
maintainability. In 6th International Conference on the Quality of Information and
Communications Technology (QUATIC 2007) (pp. 30–39).

Hewitt, C., Bishop, P., & Steiger, R. (1973). A universal modular ACTOR formalism for arti-
�cial intelligence. In Proceedings of the 3rd International Joint Conference on Arti�cial

137

Bibliography

Intelligence (pp. 235–245). IJCAI’73. Stanford, USA: Morgan Kaufmann Publishers
Inc.

Horridge,M. & Bechhofer, S. (2011, January). TheOWLAPI: a Java API for OWL ontologies.
Semantic Web, 2(1), 11–21.

Hoste, L., Dumas, B., & Signer, B. (2011). Mudra: a uni�ed multimodal interaction frame-
work. In Proceedings of the 13th International Conference on Multimodal Interfaces
(pp. 97–104). ICMI ’11. Alicante, Spain: ACM.

ISO. (2011). Systems and so ware engineering – systems and so ware quality requirements and
evaluation (SQuaRE) – systemand so ware qualitymodels (ISONo. ISO/IEC25010:2011).
International Organization for Standardization. Geneva, Switzerland.

Jaimes, A. & Sebe, N. (2007, October). Multimodal human-computer interaction: a survey.
Computer Vision and Image Understanding, 108(1-2), 116–134.

Johnston, M. (1998). Uni�cation-based multimodal parsing. In Proceedings of the 17th Inter-
national Conference on Computational Linguistics - Volume 1 (pp. 624–630). COLING
’98. Montreal, Quebec, Canada: Association for Computational Linguistics.

Johnston, M. & Bangalore, S. (2000). Finite-state multimodal parsing and understanding. In
Proceedings of the 18th Conference on Computational Linguistics - Volume 1 (pp. 369–
375). COLING ’00. Saarbrücken, Germany: Association for Computational Linguis-
tics.

Johnston, M., Cohen, P. R., McGee, D., Oviatt, S. L., Pittman, J. A., & Smith, I. (1997).
Uni�cation-based multimodal integration. In Proceedings of the 35th Annual Meet-
ing of the Association for Computational Linguistics and Eighth Conference of the Euro-
pean Chapter of the Association for Computational Linguistics (pp. 281–288). ACL ’98.
Madrid, Spain: Association for Computational Linguistics.

Kapahnke, P., Liedtke, P., Nesbigall, S., Warwas, S., & Klusch, M. (2010). ISReal: an open
platform for semantic-based 3D simulations in the 3D internet. In P. F. Patel-Schneider,
Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z. Pan, . . .B. Glimm (Eds.), The semantic web
– iswc 2010 (pp. 161–176). Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer.

Kapolka, A., McGregor, D., & Capps, M. (2002). A uni�ed component framework for dy-
namically extensible virtual environments. In Proceedings of the 4th International Con-
ference on Collaborative Virtual Environments (pp. 64–71). CVE ’02. Bonn, Germany:
ACM.

Koons, D. B. & Sparrell, C. J. (1994). Iconic: Speech and depictive gestures at the human-
machine interface. InConference Companion on Human Factors in Computing Systems
(pp. 453–454). CHI ’94. Boston, Massachusetts, USA: ACM.

138

Bibliography

Kopp, S., Bergmann, K., & Kahl, S. (2013). A spreading-activation model of the semantic
coordination of speech and gesture. In Proceedings of the 35th Annual Meeting of the
Cognitive Science Society (CogSci 2013) (pp. 823–828). Berlin, Germany: Cognitive
Science Society.

Kopp, S., Jung, B., Leßmann, N., & Wachsmuth, I. (2003). Max - A multimodal assistant in
virtual reality construction. KI - Künstliche Intelligenz, 4(03), 11–17.

Kuck, R., Wind, J., Riege, K., Bogen, M., & Birlinghoven, S. (2008). Improving the AVANGO
VR/AR framework—lessons learned. InVirtuelle und Erweiterte Realität, 5. Workshop
der GI-Fachgruppe VR/AR (pp. 209–220). Informatik. Shaker Verlag.

Lalanne, D., Nigay, L., Palanque, p., Robinson, P., Vanderdonckt, J., & Ladry, J.-F. (2009).
Fusion engines formultimodal input: a survey. In Proceedings of the 2009 International
Conference on Multimodal Interfaces (pp. 153–160). ICMI-MLMI ’09. Cambridge,
Massachusetts, USA: ACM.

Lange, P., Weller, R., & Zachmann, G. (2016, March). Wait-free hash maps in the entity-
component-system pattern for realtime interactive systems. In 9th Workshop on So -
ware Engineering and Architectures for Realtime Interactive Systems (SEARIS) (pp. 1–8).
IEEE Computer Society.

Latoschik, M. E. (2001a). A general framework for multimodal interaction in virtual reality
systems: PrOSA. In W. Broll & L. Schäfer (Eds.), Proceedings of the workshop ¿e
Future of VR and AR Interfaces - Multimodal, Humanoid, Adaptive and Intelligent at
IEEE Virtual Reality 2001 (Vol. 138, pp. 21–25). Yokohama, Japan: GMD.

Latoschik, M. E. (2001b). Multimodale Interaktion in virtueller Realität am Beispiel der
virtuellenKonstruktion.Dissertationen zur künstlichen Intelligenz. In�xAkademische
Verlagsgesellscha .

Latoschik, M. E. (2002). Designing transition networks for multimodal VR-interactions
using a markup language. In Proceedings of the 4th IEEE International Conference on
Multimodal Interfaces (pp. 411–416). ICMI ’02. Washington, DC,USA: IEEEComputer
Society.

Latoschik, M. E. (2005). A user interface framework for multimodal VR interactions. In
Proceedings of the 7th International Conference on Multimodal Interfaces (pp. 76–83).
ICMI ’05. Torento, Italy: ACM.

Latoschik, M. E. & Blach, R. (2008). Semantic modelling for virtual worlds a novel paradigm
for realtime interactive systems? InProceedings of the 2008ACMSymposium onVirtual
Reality So ware and Technology (pp. 17–20). VRST ’08. Bordeaux, France: ACM.

Latoschik, M. E. & Fischbach, M. (2014). Engineering variance: so ware techniques for scal-
able, customizable, and reusable multimodal processing. InM. Kurosu (Ed.), Human-

139

Bibliography

computer interaction. theories, methods, and tools. hci 2014 (Vol. 8510, pp. 308–319).
Lecture Notes in Computer Science. Cham: Springer International Publishing.

Latoschik,M. E., Froehlich, C., &Wendler, A. (2006). Scene synchronization in close coupled
world representations using SCIVE. ¿e International Journal of Virtual Reality, 5(3),
47–52.

Latoschik, M. E., Lugrin, J.-L., Habel, M., Roth, D., Seufert, C., & Grafe, S. (2016). Breaking
bad behavior: immersive training of class room management. In Proceedings of the
22nd ACMConference on Virtual Reality So ware and Technology (pp. 317–318). VRST
’16. Munich, Germany: ACM.

Latoschik,M. E. & Tramberend, H. (2010). Short paper: engineering realtime interactive sys-
tems: coupling & cohesion of architecture mechanisms. In Proceedings of the 16th Eu-
rographics Conference on Virtual Environments & Second Joint Virtual Reality (pp. 25–
28). Stuttgart, Germany: ¿e Eurographics Association.

Latoschik, M. E. & Tramberend, H. (2011, March). Simulator X: a scalable and concurrent
architecture for intelligent realtime interactive systems. In 2011 IEEE Virtual Reality
Conference (pp. 171–174).

Lawson, J.-Y. L., Al-Akkad, A.-A., Vanderdonckt, J., & Macq, B. (2009). An open source
workbench for prototyping multimodal interactions based on o�-the-shelf heteroge-
neous components. In Proceedings of the 1st ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (pp. 245–254). EICS ’09. Pittsburgh, PA, USA: ACM.

Leßmann, N., Kopp, S., &Wachsmuth, I. (2006). Situated interaction with a virtual human -
perception, action, and cognition. InG. Rickheit & I.Wachsmuth (Eds.), Situated com-
munication (pp. 287–324). Trends in Linguistics. Studies and Monographs [TiLSM].
Mouton de Gruyter.

Link, S., Barkschat, B., Zimmerer, C., Fischbach,M.,Wiebusch, D., Lugrin, J. L., & Latoschik,
M. E. (2016, March). An intelligent multimodal mixed reality real-time strategy game.
In 2016 IEEE Virtual Reality (VR) (pp. 223–224).

Luck, M. & Aylett, R. (2000). Applying arti�cial intelligence to virtual reality: Intelligent
virtual environments. Applied Arti�cial Intelligence, 14(1), 3–32.

Lugrin, J. L., Zilch, D., Roth, D., Bente, G., & Latoschik, M. E. (2016, March). FaceBo: Real-
time face and body tracking for faithful avatar synthesis. In 2016 IEEE Virtual Reality
(VR) (pp. 225–226).

Lukas, L., Schwägerl, F., & Latoschik, M. E. (2010). Uni�kationsbasierte Sprach-Gesten Fu-
sion für Multimodale VR/AR-Schnittstellen. In Virtuelle und Erweiterte Realität, 7.
Workshop der GI-Fachgruppe VR/AR (pp. 145–156). Informatik. Shaker Verlag.

140

Bibliography

Mannuß, F., Hinkenjann, A., & Maiero, J. (2008). From scene graph centered to entity
centered virtual environments. In Proceedings of the IEEE Virtual Reality Workshop
on So ware Engineering and Architectures for Realtime Interactive Systems (SEARIS)
(pp. 37–42). Shaker Verlag.

Martínez, H. P. & Yannakakis, G. N. (2014). Deep multimodal fusion: Combining discrete
events and continuous signals. In Proceedings of the 16th International Conference on
Multimodal Interaction (pp. 34–41). ICMI ’14. Istanbul, Turkey: ACM.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., . . . Wilkins, D.
(1998). PDDL—¿e Planning Domain De�nition Language (tech. rep. No. CVC TR-
98-003/DCS TR-1165). Yale Center for Computational Vision and Control.

McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2016). An empirical study of the impact
of modern code review practices on so ware quality. Empirical So ware Engineering,
21(5), 2146–2189.

McLellan, S. G., Roesler, A. W., Tempest, J. T., & Spinuzzi, C. I. (1998, May). Building more
usable APIs. IEEE So ware, 15(3), 78–86.

Mendonça, H., Lawson, J.-Y. L., Vybornova, O., Macq, B., & Vanderdonckt, J. (2009). A
fusion framework for multimodal interactive applications. In Proceedings of the 2009
International Conference on Multimodal Interfaces (pp. 161–168). ICMI-MLMI ’09.
Cambridge, Massachusetts, USA: ACM.

Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: a class
of displays on the reality-virtuality continuum. Proc. SPIE 2351, Telemanipulator and
Telepresence Technologies, 282–292.

Miller, G. A. (1995, November). WordNet: a lexical database for english. Communication of
the ACM, 38(11), 39–41.

Möller, A., Diewald, S., Roalter, L., & Kranz, M. (2014). Supporting mobile multimodal
interaction with a rule-based framework. CoRR, abs/1406.3225.

Murphy, R. R. (1996, January). Biological and cognitive foundations of intelligent sensor
fusion. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, 26(1), 42–51.

Musen, M. A. (2015, June). The Protégé project: a look back and a look forward. AI Matters,
1(4), 4–12.

Myers, B. A. & Stylos, J. (2016, May). Improving API usability. Communication of the ACM,
59(6), 62–69.

Naumann, A. & Hurtienne, J. (2010). Benchmarks for intuitive interaction with mobile
devices. In Proceedings of the 12th International Conference on Human Computer In-

141

Bibliography

teraction with Mobile Devices and Services (pp. 401–402). MobileHCI ’10. Lisbon,
Portugal: ACM.

Neal, J. G.,¿ielman, C. Y., Dobes, Z., Haller, S. M., & Shapiro, S. C. (1989). Natural language
with integrated deictic and graphic gestures. In Proceedings of the Workshop on Speech
and Natural Language (pp. 410–423). HLT ’89. Cape Cod, Massachusetts: Association
for Computational Linguistics.

Ngiam, J., Khosla, A., Kim,M.,Nam, J., Lee,H., &Ng,A. Y. (2011). Multimodal deep learning.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11)
(pp. 689–696).

Nigay, L. & Coutaz, J. (1993). A design space for multimodal systems: concurrent process-
ing and data fusion. In Proceedings of the INTERACT ’93 and CHI ’93 Conference
on Human Factors in Computing Systems (pp. 172–178). CHI ’93. Amsterdam, ¿e
Netherlands: ACM.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., . . . Zenger, M.
(2004).Anoverview of the Scala programming language (tech. rep.No. LAMP-REPORT-
2006-001). École Polytechnique Fédérale de Lausanne (EPFL).

Olmedo, H., Escudero, D., & Cardenoso, V. (2008). A framework for the development of ap-
plications allowing multimodal interaction with virtual reality worlds. In Communi-
cations papers: 16th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision WSCG’2008 (pp. 79–86).

Oman, P. & Hagemeister, J. (1992, November). Metrics for assessing a so ware system’s
maintainability. In Proceedings Conference on So ware Maintenance 1992 (pp. 337–
344).

Oviatt, S. (2003, September). Advances in robust multimodal interface design. EEE Com-
puter Graphics and Applications, 23(5), 62–68.

Oviatt, S. (2012). Multimodal interfaces. In J. A. Jacko (Ed.), Human Computer Interaction
Handbook: Fundamentals, Evolving Technologies, and EmergingApplications,¿ird Edi-
tion. Human Factors and Ergonomics. CRC Press.

Oviatt, S. & Cohen, P. R. (2015). The paradigm shi to multimodality in contemporary
computer interfaces. Synthesis Lectures On Human-Centered Informatics, 8(3), 1–243.

Oviatt, S., Coulston, R., & Lunsford, R. (2004). When do we interact multimodally?: Cog-
nitive load and multimodal communication patterns. In Proceedings of the 6th Inter-
national Conference on Multimodal Interfaces (pp. 129–136). ICMI ’04. State College,
PA, USA: ACM.

142

Bibliography

Parnas, D. L. (1994). So ware aging. In Proceedings of the 16th International Conference on
So ware Engineering (pp. 279–287). ICSE ’94. Sorrento, Italy: IEEE Computer Society
Press.

P�eger, N. (2004). Context based multimodal fusion. In Proceedings of the 6th International
Conference onMultimodal Interfaces (pp. 265–272). ICMI ’04. State College, PA, USA:
ACM.

Piccioni, M., Furia, C. A., & Meyer, B. (2013, October). An empirical study of API usability.
In 2013 ACM / IEEE International Symposium on Empirical So ware Engineering and
Measurement (pp. 5–14).

Ponder, M., Papagiannakis, G., Molet, T., Magnenat-¿almann, N., & ¿almann, D. (2003,
July). VHD++development framework: towards extendible, component basedVR/AR
simulation engine featuring advanced virtual character technologies. In Proceedings
Computer Graphics International 2003 (pp. 96–104).

Rehfeld, S. (2017). Untersuchung der Nebenläu�gkeit, Latenz und Konsistenz asynchroner In-
teraktiver Echtzeitsysteme mittels Pro�ling undModel Checking (Doctoral dissertation,
University of Würzburg). To appear.

Rehfeld, S., Latoschik, M. E., & Tramberend, H. (2016, March). Estimating latency and
concurrency of asynchronous real-time interactive systems using model checking. In
2016 IEEE Virtual Reality (VR) (pp. 57–66).

Rehfeld, S., Tramberend, H., & Latoschik, M. E. (2013, March). An actor-based distribution
model for realtime interactive systems. In Proceedings of the IEEE Virtual Reality 6th
Workshop on So ware Engineering and Architectures for Realtime Interactive Systems
(SEARIS) (pp. 9–16).

Rehfeld, S., Tramberend, H., & Latoschik, M. E. (2014). Pro�ling and benchmarking event-
andmessage-passing-based asynchronous realtime interactive systems. In Proceedings
of the 20th ACM Symposium on Virtual Reality So ware and Technology (pp. 151–159).
VRST ’14. Edinburgh, Scotland: ACM.

Reynolds, C. W. (1987, August). Flocks, herds and schools: a distributed behavioral model.
SIGGRAPH Computer Graphics, 21(4), 25–34.

Riaz, M., Mendes, E., & Tempero, E. (2009, October). A systematic review of so ware main-
tainability prediction and metrics. In 2009 3rd International Symposium on Empirical
So ware Engineering and Measurement (pp. 367–377). IEEE.

Ruiz, N., Chen, F., & Oviatt, S. (2010). Chapter 12 - Multimodal Input. In J.-P. ¿iran, F.
Marqués, & H. Bourlard (Eds.), Multimodal Signal Processing (pp. 231–255). Oxford:
Academic Press.

143

Bibliography

Salem, M., Kopp, S., Wachsmuth, I., & Joublin, F. (2010, October). Generating robot ges-
ture using a virtual agent framework. In 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems (pp. 3592–3597).

Schmidt, A., Van de Velde, W., & Kortuem, G. (2000). Situated interaction in ubiquitous
computing. In CHI ’00 Extended Abstracts on Human Factors in Computing Systems
(pp. 374–374). CHI EA ’00. ¿e Hague, ¿e Netherlands: ACM.

Serrano, M., Nigay, L., Lawson, J.-Y. L., Ramsay, A., Murray-Smith, R., & Denef, S. (2008).
TheOpenInterface framework: a tool formultimodal interaction. InCHI ’08 Extended
Abstracts on Human Factors in Computing Systems (pp. 3501–3506). CHI EA ’08.
Florence, Italy: ACM.

Sharma, R., Pavlovic, V. I., &Huang, T. S. (1998,May). Towardmultimodal human-computer
interface. Proceedings of the IEEE, 86(5), 853–869.

Shaw, C. & Green, M. (1993, September). The MR toolkit peers package and experiment. In
Proceedings of IEEE Virtual Reality Annual International Symposium (pp. 463–469).

Shaw, C., Green, M., Liang, J., & Sun, Y. (1993, July). Decoupled simulation in virtual reality
with theMR toolkit. ACMTransactions on Information Systems (TOIS), 11(3), 287–317.

Shen, J. & Pantic, M. (2013, December). HCI2 Framework: A So ware Framework for Mul-
timodal Human-Computer Interaction Systems. IEEE Transactions on Cybernetics,
43(6), 1593–1606.

Sire, S. & Chatty, S. (2004). The markup way to multimodal toolkits. InW3CWorkshop on
Multimodal Interaction.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: a practical OWL-DL
reasoner. Web Semantics: science, services and agents on the World Wide Web, 5(2),
51–53.

Stau�ert, J. P., Niebling, F., & Latoschik, M. E. (2016, March). Reducing application-stage
latencies for real-time interactive systems. In 9th Workshop on So ware Engineering
and Architectures for Realtime Interactive Systems (SEARIS) (pp. 1–7). IEEE Computer
Society.

Steed, A. (2008). Some useful abstractions for re-usable virtual environment platforms. In
Proceedings of the IEEE Virtual Reality Workshop on So ware Engineering and Archi-
tectures for Realtime Interactive Systems (SEARIS). Shaker Verlag.

Stein, B. E. & Meredith, M. A. (1993). The merging of the senses. ¿eMIT Press.
Streitz, N. A., Röcker, C., Prante, T., Stenzel, R., & vanAlphen, D. (2003). Situated interaction

with ambient information: facilitating awareness and communication in ubiquitous
work environments. In D. Harris, V. Du�y, M. Smith, & C. Stephanidis (Eds.), Human

144

Bibliography

Centred Computing: Cognitive, Social, and Ergonomic Aspects (pp. 133–137). Lawrence
Erlbaum Publishers.

Sutherland, I. E. (1964). Sketch Pad—Aman-machine graphical communication system. In
Proceedings of the SHARE Design Automation Workshop (pp. 6329–6346). DAC ’64.
New York, NY, USA: ACM.

Tang,W.W., Lo, K.W., Chan, A. T., Chan, S., Leong, H. V., & Ngai, G. (2011). I*Chameleon: a
scalable and extensible framework formultimodal interaction. InCHI ’11 ExtendedAb-
stracts on Human Factors in Computing Systems (pp. 305–310). CHI EA ’11. Vancouver,
BC, Canada: ACM.

Taylor, R.M., II,Hudson, T. C., Seeger, A.,Weber,H., Juliano, J., &Helser, A. T. (2001). VRPN:
a device-independent, network-transparent VR peripheral system. In Proceedings of
the ACM Symposium on Virtual Reality So ware and Technology (pp. 55–61). VRST
’01. Bani�, Alberta, Canada: ACM.

Taylor, R. M., Jerald, J., VanderKny�, C., Wendt, J., Borland, D., Marshburn, D., . . . Whitton,
M. C. (2010, April). Lessons about virtual environment so ware systems from 20 years
of VE building. Presence: Teleoper. Virtual Environ. 19(2), 162–178.

Tramberend, H. (1999, March). Avocado: a distributed virtual reality framework. In Pro-
ceedings IEEE Virtual Reality (pp. 14–21).

Turk, M. (2014). Multimodal interaction: a review. Pattern Recognition Letters, 36, 189–195.
Turk, M. & Robertson, G. (2000, March). Perceptual user interfaces (introduction). Com-

munication of the ACM, 43(3), 32–34.
W3C OWL Working Group. (2009, October). OWL 2 Web Ontology Language Document

Overview. W3C.
Wagner, J., Lingenfelser, F., Baur, T., Damian, I., Kistler, F., & André, E. (2013). The social

signal interpretation (SSI) framework: multimodal signal processing and recognition
in real-time. In Proceedings of the 21st ACM International Conference on Multimedia
(pp. 831–834). MM ’13. Barcelona, Spain: ACM.

Wahlster, W. (1991). Intelligent User Interfaces. In J. W. Sullivan & S. W. Tyler (Eds.),
(Chap. User and Discourse Models for Multimodal Communication, pp. 45–67). New
York, NY, USA: ACM.

Wiebusch, D. (2016). Reusability for intelligent realtime interactive systems (Doctoral disser-
tation, University of Würzburg).

Wiebusch, D., Fischbach, M., Latoschik, M. E., & Tramberend, H. (2012). Evaluating scala,
actors, & ontologies for intelligent realtime interactive systems. In Proceedings of the
18th ACM Symposium on Virtual Reality So ware and Technology (pp. 153–160). VRST
’12. Toronto, Ontario, Canada: ACM.

145

Bibliography

Wiebusch, D., Fischbach, M., Strehler, A., Latoschik, M. E., Bruder, G., & Steinicke, F. (2012).
Evaluation von Headtracking in interaktiven virtuellen Umgebungen auf Basis der
Kinect. In Virtuelle und Erweiterte Realität, 9. Workshop der GI-Fachgruppe VR/AR
(pp. 189–200). Informatik. Shaker Verlag.

Wiebusch, D. & Latoschik, M. E. (2012, March). Enhanced decoupling of components in
intelligent realtime interactive systems using ontologies. In 5th Workshop on So ware
Engineering and Architectures for Realtime Interactive Systems (SEARIS) (pp. 43–51).
IEEE Computer Society.

Wiebusch, D., Latoschik, M. E., & Tramberend, H. (2010). Ein kon�gurierbares World-
Interface zur Kopplung von KI-Methoden an Interaktive Echtzeitsysteme. In Virtuelle
und Erweiterte Realität, 7. Workshop der GI-Fachgruppe VR/AR (pp. 47–58). Infor-
matik. Shaker Verlag.

Wiebusch, D., Zimmerer, C., & Latoschik, M. E. (under review, 2017). Cherry-picking RIS
functionality – integration of game and VR engine sub-systems based on entities and
events. In 10th Workshop on So ware Engineering and Architectures for Realtime Inter-
active Systems (SEARIS). IEEE Computer Society.

Wingrave, C. A. & LaViola, J. J. (2010, April). Re�ecting on the design and implementation
issues of virtual environments. Presence: Teleoper. Virtual Environ. 19(2), 179–195.

Wu, L., Oviatt, S. L., & Cohen, P. R. (1999, December). Multimodal integration-a statistical
view. IEEE Transactions on Multimedia, 1(4), 334–341.

Zeltzer, D., Pieper, S., & Sturman, D. J. (1989). An integrated graphical simulation platform.
In Proceedings of Graphics Interface ’89 (pp. 266–274). GI ’89. London, Ontario,
Canada.

Zimmerer, C., Fischbach, M., & Latoschik, M. (2014). Fusion of mixed-reality tabletop and
location-based applications for pervasive games. In Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and Surfaces (pp. 427–430). ITS ’14.
Dresden, Germany: ACM.

Zimmerer, C., Fischbach, M., & Latoschik, M. E. (2016). Maintainable management and
access of lexical knowledge for multimodal virtual reality interfaces. In Proceedings of
the 22nd ACM Conference on Virtual Reality So ware and Technology (pp. 347–348).
VRST ’16. Munich, Germany: ACM.

146

Bibliography

Online Sources

AMIS group. (2017). planning4j. https://code.google.com/archive/p/planning4j/. Last
accessed 2017-04-23.

Bilas , Scott. (2002). A Data-Driven Game Object System. Game Developer Conference
(GDC) talk, http://gamedevs.org/uploads/data-driven-game-object-system.pdf. Last
accessed 2017-04-09.

Cognitum. (2015). Fluent Editor. http://www.cognitum.eu/semantics/FluentEditor/. Last
accessed 2017-04-12.

Dvorak, Martin. (2017). JBullet. http://jbullet.advel.cz. Last accessed 2017-02-17.
EPIC GAMES, INC. (2017). Unreal Engine 4. https://www.unrealengine.com. Last accessed

2017-02-17.
Fischbach, M., Wiebusch, D., Rehfeld, S., Tramberend, H., & Latoschik, M. E. (2016). Simu-

lator X. http://www.hci.uni-wuerzburg.de/projects/simulator-x.html. Last accessed
2016-12-09.

Fischbach, M., Zimmerer, C., Link, S., Giebler-Schubert, A., & Latoschik, M. E. (2016).
XRoads. http://www.hci.uni-wuerzburg.de/projects/xroads.html. Last accessed
2017-05-12.

HTC Corporation. (2017). VIVE. https://www.vive.com. Last accessed 2017-05-12.
JIDE So ware. (2017). JIDE Components. http://www.jideso .com. Last accessed 2017-04-

29.
Kaltenbrunner, M. (2017). TUIO. http://www.tuio.org. Last accessed 2017-05-05.
Kern, F., Kullman, P., Wiebusch, D., & Lugrin, J.-L. (2016). Project Results of the 3D User

Interfaces Course. https://youtu.be/jkbcIXtNK5k. Last accessed 2017-02-17.
Kern, F., Kullman, P., Zöller, J., Zimmerer, C., Fischbach, M., & Latoschik, M. E. (2016).

Project Results of theMultimodal InteractionCourse. https://youtu.be/6yb0AwsZzdU.
Last accessed 2017-02-17.

Khronos Group. (2017). COLLADA – 3D Asset Exchange Schema. https://www.khronos.
org/collada/. Last accessed 2017-05-05.

Lanier, J. (1988). A vintage virtual reality interview. Originally published at Whole Earth
Review, http://www.jaronlanier.com/vrint.html. Last accessed 2017-05-20.

Latoschik, M. E. (2017). IEEE VR Workshop on So ware Engineering and Architectures
for Realtime Interactive Systems (SEARIS). http : / /www.searis .net. Last accessed
2017-02-17.

Leap Motion, Inc. (2017). Leap Motion. https : / /www. leapmotion . com. Last accessed
2017-05-05.

147

https://code.google.com/archive/p/planning4j/
http://gamedevs.org/uploads/data-driven-game-object-system.pdf
http://www.cognitum.eu/semantics/FluentEditor/
http://jbullet.advel.cz
https://www.unrealengine.com
http://www.hci.uni-wuerzburg.de/projects/simulator-x.html
http://www.hci.uni-wuerzburg.de/projects/xroads.html
https://www.vive.com
http://www.jidesoft.com
http://www.tuio.org
https://youtu.be/jkbcIXtNK5k
https://youtu.be/6yb0AwsZzdU
https://www.khronos.org/collada/
https://www.khronos.org/collada/
http://www.jaronlanier.com/vrint.html
http://www.searis.net
https://www.leapmotion.com

Bibliography

Lightbend Inc. (2016). akka. http://akka.io. Last accessed 2017-04-12.
Lightbend Inc. (2017). sbt—¿e interactive build tool. http://www.scala- sbt .org. Last

accessed 2017-04-29.
Orchard, Leslie. (2013). Parsec Patrol Diaries: Entity Component Systems. https://blog.

lmorchard.com/2013/11/27/entity-component-system/. Last accessed 2017-03-21.
Pegasus Spiele. (2014, June). Quest - Zeit der Helden. Retrieved from http://www.pegasus.

de/quest-zeit-der-helden/.
Unity Technologies. (2017). Unity. http://www.unity3d.com. Last accessed 2017-02-17.
W3C. (2017). SPARQL Query Language for RDF. https://www.w3.org/TR/rdf- sparql-

query/. Last accessed 2017-04-02.
West, Mick. (2007). Evolve Your Heirachy. http://cowboyprogramming.com/2007/01/05/

evolve-your-heirachy/. Last accessed 2017-03-21.
Wiebusch, D., Fischbach, M., Rehfeld, S., Tramberend, H., & Latoschik, M. E. (2016). Sim-

ulator X on GitHub. https : / /github.com/simulator- x/simulator- x. Last accessed
2017-13-05.

148

http://akka.io
http://www.scala-sbt.org
https://blog.lmorchard.com/2013/11/27/entity-component-system/
https://blog.lmorchard.com/2013/11/27/entity-component-system/
http://www.pegasus.de/quest-zeit-der-helden/
http://www.pegasus.de/quest-zeit-der-helden/
http://www.unity3d.com
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/
https://github.com/simulator-x/simulator-x

Bibliography

Printed Sources

Link, S. (2017). Integration of an extended uni�cation approach into a real-time interactive
system. Master’s thesis, University of Würzburg. To be published.

Seufert, A. (2013). DasMagiColWindow – Umsetzung einerWindow-to-WorldMixed-Reality
Umgebung für kollaborative Arbeiten an verdeckten Infrastrukturen am Beispiel von
Leitungssystemen. Bachelor’s thesis, University of Würzburg.

Zimmerer, C. (2016). So ware techniques for decision-level multimodal fusion – enhancing
maintainability for multimodal real-time interactive systems. Master’s thesis, University
of Würzburg.

149

Appendix A

System Availability

Table A.1 and Table A.2 specify how available MMSs and RISs can be obtained. Authors of
systems with no (web) source have been contacted per mail. Systems whose authors did not
reply (within several months) are consequently listed as unavailable.

Table A.1. Sources for available MMSs as a supplement to Table 3.3.
Name Available Source Reference

Put that There no Bolt (1980)
Cubricon no Neal et al. (1989)

eXpert TRAnslator no Wahlster (1991)
ICONIC no Koons and Sparrell (1994)
QuickSet no Cohen et al. (1997)

SGIM & virtuelle
Werkstatt

no Latoschik (2001a, 2005)

OpenInterface (OI) yes
https:

//forge.openinterface.org
Serrano et al. (2008)

SKEMMI (OI) yes
https:

//forge.openinterface.org
Lawson et al. (2009)

Meanings4Fusion (OI) yes
https://kenai.com/projects/

meanings4fusion
Mendonça et al. (2009)

i*Chameleon no Tang et al. (2011)
Mudra no Hoste et al. (2011)

unnamed system using
COLD

no Ameri Ekhtiarabadi et al. (2011)

HCI^2 yes
http://ibug.doc.ic.ac.uk/

resources/hci2- framework/
Shen and Pantic (2013)

SSI yes
http://hcm- lab.de/projects/

ssi/download/
Wagner et al. (2013)

M3I yes http://www.eislab.net/m3i/ Möller et al. (2014)
unnamed system no Cherubini et al. (2015)

miPro (Simulator X) yes
https:

//github.com/simulator-x
Latoschik and Fischbach (2014),
Fischbach et al. (2017)

150

https://forge.openinterface.org
https://forge.openinterface.org
https://forge.openinterface.org
https://forge.openinterface.org
https://kenai.com/projects/meanings4fusion
https://kenai.com/projects/meanings4fusion
http://ibug.doc.ic.ac.uk/resources/hci2-framework/
http://ibug.doc.ic.ac.uk/resources/hci2-framework/
http://hcm-lab.de/projects/ssi/download/
http://hcm-lab.de/projects/ssi/download/
http://www.eislab.net/m3i/
https://github.com/simulator-x
https://github.com/simulator-x

Appendix A System Availability

Table A.2. Sources for available RISs as a supplement to Table 3.4.
Name Available Source Reference

Walkthrough no Brooks (1987)
bolio no Zeltzer et al. (1989)

MR Toolkit limited on demand (see mail) Shaw et al. (1993)

DIVE no
Carlsson and Hagsand (1993), Frécon
(2004)

Avocado (Avango) limited
https:

//github.com/vrsys/avango
Tramberend (1999)

VR Juggler limited
https://github.com/
vrjuggler/vrjuggler

Bierbaum et al. (2001), Allard et al.
(2002)

I4D no Geiger et al. (2000)

NPSNET-V limited
https://sourceforge.net/

projects/npsnetv/
Kapolka et al. (2002)

VHD++ limited
https://sourceforge.net/

projects/vhdplus/
Ponder et al. (2003)

FlowVR yes
http:

//flowvr.sourceforge.net
Allard et al. (2004)

SCIVE no
Latoschik et al. (2006), Fröhlich
(2014)

AvangoNG yes
https://github.com/vrsys/

avangong
Kuck et al. (2008)

ISReal yes
http:

//www.dfki.de/~klusch/
isreal/html/software.html

Kapahnke et al. (2010)

instantReality limited Behr et al. (2011)

REVE yes
Anastassakis and Panayiotopoulos
(2012)

MASCARET yes
http:

//svn.cerv.fr/trac/mascaret2
Chevaillier et al. (2012)

Simulator X yes
https://github.com/

simulator-x/simulator-x
Latoschik and Tramberend (2011),
Fischbach et al. (2017)

Unreal Engine 4 yes
https://www.unrealengine.

com/ue4-on-github
EPIC GAMES, INC. (2017)

Unity limited https://store.unity.com Unity Technologies (2017)

151

https://github.com/vrsys/avango
https://github.com/vrsys/avango
https://github.com/vrjuggler/vrjuggler
https://github.com/vrjuggler/vrjuggler
https://sourceforge.net/projects/npsnetv/
https://sourceforge.net/projects/npsnetv/
https://sourceforge.net/projects/vhdplus/
https://sourceforge.net/projects/vhdplus/
http://flowvr.sourceforge.net
http://flowvr.sourceforge.net
https://github.com/vrsys/avangong
https://github.com/vrsys/avangong
http://www.dfki.de/~klusch/isreal/html/software.html
http://www.dfki.de/~klusch/isreal/html/software.html
http://www.dfki.de/~klusch/isreal/html/software.html
http://svn.cerv.fr/trac/mascaret2
http://svn.cerv.fr/trac/mascaret2
https://github.com/simulator-x/simulator-x
https://github.com/simulator-x/simulator-x
https://www.unrealengine.com/ue4-on-github
https://www.unrealengine.com/ue4-on-github
https://store.unity.com

	Contents
	Introduction
	Multimodal Interaction
	Technical Realizations
	Problem Statement
	Objectives
	Structure and Results

	Use Cases
	Related Work
	Maintainability
	Multimodal Systems
	Real-time Interactive Systems
	Summary

	Multimodal Real-time Interactive Systems
	Independent Multimodal System Usage
	Integrated Multimodal System Usage
	Summary

	Semantics-based Software Techniques
	Semantic Grounding
	Semantic Entity-Component State
	Grounded Actions
	Semantic Queries
	Code from Semantics
	Decoupling by Semantics
	Summary

	Reference Implementation
	Design Decisions
	Core
	Multimodal Input Processing
	Ancillary Contributions
	Summary

	Validation and Method Exploration
	Expert Reviews
	Proof of Concept
	Explorative Studies
	Informal Insights
	Summary

	Conclusion
	Summary
	Future Work

	Bibliography
	System Availability

