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Zusammenfassung

Mit der Vorhersage und der experimentellen Entdeckung von topologischen Isolatoren
wurde die Grundlage für eine vollkommen neue Art von elektronischen Bauelementen
geschaffen. Diese neue Klasse von Materialien zeichnet sich gegenüber herkömmlichen
Metallen und Halbleitern durch besondere Transporteigenschaften der Probenoberfläche
aus, wobei elektrische Leitung in Randkanälen an den topologischen Grenzflächen des
Systems stattfindet. Eine spezielle Form des zweidimensionalen topologischen Isolators
stellt der Quanten-Spin-Hall-Zustand dar, welcher in bestimmten Materialien mit starker
Spin-Bahn-Kopplung beobachtet werden kann. Die hier auftretenden eindimensionalen
Leitungskanäle sind von helikaler Natur, was bedeutet, dass die Orientierung des Spins
eines Elektrons und seine Bewegungsrichtung fest miteinander gekoppelt sind. Aufgrund
von Symmetrien wie Zeitumkehr ist elastische Rückstreuung an eventuell vorhandenen
Störstellen in solchen helikalen Kanälen verboten, sodass elektrische Leitung als nahezu
ballistisch betrachtet werden kann. Prinzipiell bieten sich dadurch neue Möglichkeiten zur
Konstruktion von energieeffizienten Transistoren, “Spintronik“-Bauelementen, oder zur
Erzeugung von speziellen Zuständen, die für den Betrieb eines Quantencomputers benutzt
werden könnten.
Die vorliegende Arbeit beschäftigt sich mit den allgemeinen Transporteigenschaften von
eindimensionalen, helikalen Randzuständen. Neben dem oben erwähnten topologischen
Schutz gibt es zahlreiche Störquellen, die inelastische Rückstreuprozesse induzieren. Die
wichtigsten davon werden im Rahmen dieser Dissertation beleuchtet. Entscheidend wirkt
hierbei oft die Rolle von Elektron-Elektron-Wechselwirkungen, welche in eindimensionalen
Systemen generell von großer Bedeutung ist.
Zunächst werden bewährte Techniken der Festkörperphysik wie etwa Abelsche Bosoni-
sierung (mithilfe derer Wechselwirkungen in einer Raumdimension exakt berücksichtigt
werden können), die Theorie von Luttinger Flüssigkeiten, oder die störungstheoretische Re-
normierungsgruppenanalyse rekapituliert. Diese Methoden werden im Weiteren benutzt,
um die Korrekturen zum Leitwert eines helikalen Transportkanals zu berechnen, welche
aufgrund von ausgewählten Störungen auftreten können. Ein Fokus liegt hierbei auf dem
Zusammenspiel von Wechselwirkungen und Rashba Spin-Bahn-Kopplung als Quelle inelas-
tischer Ein-Teilchen- oder Zwei-Teilchen-Rückstreuung. Mikroskopische Details wie etwa
die Existenz einer Impulsobergrenze, welche das Energiespektrum beschränkt, oder die
Anwesenheit von wechselwirkungsfreien Spannungskontakten, sind dabei von grundsätz-
licher Bedeutung. Die charakteristische Form der vorhergesagten Korrekturen kann dazu
dienen, die Struktur und die mikroskopischen Vorgänge im Inneren einer Quanten-Spin-
Hall-Probe besser zu verstehen. Ein weiterer grundlegender Mechanismus ist Rückstreuung
verursacht durch magnetische Momente. Aus der entsprechenden Analyse der Korrekturen
zur Leitfähigkeit ergeben sich interessante Übereinstimmungen mit aktuellen Experimen-
ten in InAs/GaSb Quantentrögen.
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Summary

The prediction and the experimental discovery of topological insulators has set the stage
for a novel type of electronic devices. In contrast to conventional metals or semicon-
ductors, this new class of materials exhibits peculiar transport properties at the sample
surface, as conduction channels emerge at the topological boundaries of the system. In
specific materials with strong spin-orbit coupling, a particular form of a two-dimensional
topological insulator, the quantum spin Hall state, can be observed. Here, the respective
one-dimensional edge channels are helical in nature, meaning that there is a locking of the
spin orientation of an electron and its direction of motion. Due to the symmetry of time-
reversal, elastic backscattering off interspersed impurities is suppressed in such a helical
system, and transport is approximately ballistic. This allows in principle for the realiza-
tion of novel energy-efficient devices, “spintronic“ applications, or the formation of exotic
bound states with non-Abelian statistics, which could be used for quantum computing.
The present work is concerned with the general transport properties of one-dimensional
helical states. Beyond the topological protection mentioned above, inelastic backscatter-
ing can arise from various microscopic sources, of which the most prominent ones will be
discussed in this Thesis. As it is characteristic for one-dimensional systems, the role of
electron-electron interactions can be of major importance in this context. First, we review
well-established techniques of many-body physics in one dimension such as perturbative
renormalization group analysis, (Abelian) bosonization, and Luttinger liquid theory. The
latter allow us to treat electron interactions in an exact way. Those methods then are
employed to derive the corrections to the conductance in a helical transport channel, that
arise from various types of perturbations. Particularly, we focus on the interplay of Rashba
spin-orbit coupling and electron interactions as a source of inelastic single-particle and two-
particle backscattering. It is demonstrated, that microscopic details of the system, such
as the existence of a momentum cutoff, that restricts the energy spectrum, or the presence
of non-interacting leads attached to the system, can fundamentally alter the transport
signature. By comparison of the predicted corrections to the conductance to a transport
experiment, one can gain insight about the microscopic processes and the structure of a
quantum spin Hall sample. Another important mechanism we analyze is backscattering
induced by magnetic moments. Those findings provide an alternative interpretation of
recent transport measurements in InAs/GaSb quantum wells.
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1. Introduction and motivation

In 1965, G. Moore, cofounder of the Intel corporation, observed that transistors develop
fast enough such that every year twice as many of them can be squeezed on a single chip
[Moo65]. As a consequence, both the computational speed and the memory of electronic
devices double in a comparable time interval, while at the same time the size of the de-
vices is shrinking. Due to continuous progress in the manufacturing process as well as
falling unit costs, Moore anticipated, that such an exponential growth of the transistor
count might continue for years to come. Indeed, this trend known as “Moore’s law” turned
out to reflect the technological progress very accurately. Chip developers, mostly dom-
inated by Intel, managed to keep pace with – or deliberately follow – Moore’s law up
to now. This constant increase of computational power helped to realize what in 1965
was imagined to be “wonders as home computers”, or “personal portable communications
equipment” [Moo65, Moo75] at a very short time scale. Transistors are at the heart of
computer architecture. A transistor is a basic semiconductor device with the function
of amplifying or switching currents in electronic circuits. Modern specimen are usually
metal–oxide–semiconductor field-effect transistors (MOSFET), based on silicon. Many of
such transistors, put together on a flat semiconductor plate (mostly silicon as well) in the
form of logical gates, form an integrated circuit, or “chip”. They are the fundamental
components of any advanced electronic device, such as (micro-)processors and memory
chips. In 2016, a cutting-edge commercial single-chip processor, such as for example the
Intel Broadwell-EP Xeon, contains up to 7.2 billion transistors with features of only a few
nanometers [Alc16].
This notwithstanding, the pursuit of Moore’s law is expected to hit a natural barrier, and
come to a halt very soon, approximately within the next decade [Wal16, Sim16]. This
is due to the fundamental problem of heat dissipation in the integrated circuits. With
transistors being more and more densely packed on the chip panel, waste heat is harder
to get rid of. Beyond a certain limit, energy leakage in the transistors will simply cause
the device to melt down. Also, at very small scales quantum effects come into play,
that in general render conventional transistors ineffective. In a pessimistic scenario, chip
technology then would stagnate in the near future. To prevent such a thing from hap-
pening, chip producers are eagerly searching for innovations to press ahead with current
computer technology. Present challenges demand for mostly mobile devices, supplied by
battery, that are expected to be long-lived, and to process an enormous amount of incom-
ing and outgoing information. Microchips of the next generation need to be faster, more
energy-efficient, and more compact. Concepts like autonomous driving, virtual reality,
intelligent wearables and implants, or also improved encryption or artificial intelligence,
will be slowed down drastically, if not even become impossible, without further technolog-
ical progress. In particular, the field of machine learning relies heavily on hardware-based
innovations, as employed techniques like the simulation of artificial neuronal networks are
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1. Introduction and motivation

very power-consuming. A number of recent achievements was possible owing to improved
chip technology. For instance, with the help of a newly developed custom chip, the Google
software “AlphaGo” was for the first time able to beat the world’s top Go-player in a
historical encounter in the spring of 2016 [Kni16, Fra16]. Similar learning algorithms are
used to create smart machines, that are already capable of outperforming humans in vi-
sually recognizing objects in photos and videos, or acoustically comprehend and translate
spoken language, at real time [Lin15]. To keep this successful trend going, new ideas of
boosting computer technology beyond Moore’s law have to be explored. Two paths to
achieve this, are to substantially advance the existing technology, for example, by the use
of novel materials or spintronic devices, or to change the paradigms of computing as a
whole, such as the idea of quantum computing. One class of materials which has appeared
to be a promising prospect for both the approaches mentioned above, is represented by
topological insulators. In a two-dimensional quantum spin Hall insulator, for instance,
one-dimensional helical edge states emerge, that are protected against elastic backscat-
tering by symmetry, and as a consequence, electronic transport is almost ballistic. With
heat dissipation minimized that way, one can imagine very energy-efficient circuits made
of suchlike topological materials, which in addition provide a high electron mobility. Fur-
thermore, the peculiar locking of spin and momentum of each edge electron allows, in
principle, to inject and control spin currents. A hypothetical spintronics device could then
operate with spin currents, where the information is transferred by accumulations of spins,
instead of electric charges. The basic concept of a spin transistor was hereby explored by
Datta and Das [DD90]. Parts of the running device with a zero net charge current, do
not radiate any magnetic fields, again boosting the energy performance. Eventually, when
combining topological insulators with superconductivity, exotic bound states can emerge
at the interfaces, that could in principle be used to perform quantum computing (see more
about this point at the end of this Thesis).

1.1. 2D QSH insulators

Matter is generally considered to be in a topologically non-trivial phase, if its electronic
surface and bulk properties are significantly different, in contrast to the topologically trivial
cases of conventional insulators, semiconductors or metals. In particular, a topological in-
sulator (TI) is characterized by an insulating bulk, and metallic states at its surface. Such
systems became first prominent by the experimental discovery and theoretical description
of the integer and fractional quantum Hall effect (QHE) [KDP80, Hal82, TSG82, Lau83].
The corresponding state of matter can be classified by means of topological invariants
[TKND82, MB07]. Starting from 2005, it was realized that similar topologically insu-
lating phases can arise even in the absence of magnetic fields (different from the QHE),
but from strong intrinsic spin-orbit interactions. The existence of metallic edge states
is hereby protected by the underlying symmetry of time-reversal (TRS), or by the crys-
tal symmetry itself [Fu11]. Such quantum spin Hall (QSH) insulators were predicted
[KM05b, KM05a, BHZ06, FK07, LHQ+08], and later experimentally observed in quan-
tum wells of HgTe/CdTe [KWB+07], as well as in InAs/GaSb bilayers [KDS11, SND+14].
In HgTe/CdTe-based systems, a topologically non-trivial state arises due to an inversion

2



1.1. 2D QSH insulators

Figure 1.1.: (Left hand side) Sketch of a 2D QSH system. At the 1D boundaries of the sample,
helical edge states emerge, with the electron spin locked to the direction of motion. They represent
the only transport channels if the Fermi energy is within the bulk band gap. (Right hand side)
Formation of a QSH state in HgTe/CdTe quantum wells. Reproduced from Ref. [QZ10], with the
permission of the American Institute of Physics. (a) If the central HgTe layer exceeds a given
width, a band inversion of the conductance and valence band leads to a topologically non-trivial
QSH state. (b) Edge states with an almost linear energy dispersion arise in the band gap. (c)
Those can be identified from the longitudinal conductance or resistance of the sample in a transport
experiment. For energies within the gap, one finds a small, and quantized resistance in the QSH
regime, compared to a very large resistance in the non-topological, insulating regime.

of conductance and valence bands, in case the central HgTe layer exceeds a critical width
(see Fig. 1.1). Here, we put the focus on two-dimensional (2D) quantum spin Hall in-
sulators, that feature one-dimensional (1D) edge states at the boundaries of the sample.
Note that also three-dimensional (3D) topological insulators, for instance represented by
materials such as Bi1−xSbx, have become the subject of intensive studies in the last years
[FKM07, HQW+08].
By virtue of spin-orbit interaction effects, the edge states of a 2D QSH system are of
helical nature, meaning that the spin of an electron is strongly coupled to its direction
of motion. In the absence of perturbations, the spin is quantized along an axis pointing
out of plane. This peculiar helical character, in combination with time-reversal symmetry,
results in a protection against elastic backscattering and leads to almost ballistic trans-
port properties (see a further discussion in Sec. 3.3). Furthermore, the energy dispersion
relation of the edge electrons is found to be almost linear in momentum, suggesting quasi-
relativistic physics. When tuning the Fermi energy such as to lie within the bulk band gap
of the 2D QSH system, electronic transport is carried only by the 1D helical edge chan-
nels, where each channel contributes the same quantum of e2/h to the total conductance.
The corresponding quantization of the latter can be observed in a transport experiment,

3



1. Introduction and motivation

and represents the most important signature of the topological state (see Fig. 1.1). As
we discuss in this Thesis, various types of inelastic backscattering mechanisms, that are
consistent with TRS, are expected to generate corrections to the quantized value of the
conductance in a realistic system, as a function of the applied temperature or the bias
voltage. In HgTe/CdTe quantum wells, such corrections have not yet been observed con-
clusively, but instead, the conductance was found to be almost constant with temperature
[KWB+07, RBB+09]. Some possible issues could be: (i) backscattering effects are sim-
ply too weak to be identified in the measurements, possibly due to an effective screening
of electron interactions in this material, (ii) the use of relatively high currents (bias volt-
ages) hides the temperature dependence of the conductance, (iii) conductance fluctuations
mask the measured signal. Those arise for instance from impurity scattering (quantum
interference), or potential fluctuations due to trap states and charge accumulations at the
interface layers. To overcome such experimental challenges, various approaches are taken:
Revised sample fabrication processes such as wet etching, material modifications in the
form of strain engineering (which can enhance the bulk band gap), or gate-dependent in-
terface gating can help to improve the quality of the measurement result [BKLB16].
For InAs/GaSb-based quantum wells, on the other hand, some promising observations of
correlated electron effects have been made [LWF+15], see more in Chap. 5.

1.2. Selected applications of TIs

To illustrate the potential capacities of topological insulators, we here give a few examples
for applications in future devices. First, let us understand how it is possible to generate
basic spin currents from all-electric fields in a 2D QSH sample with multiple terminals, as
was originally pointed out by the authors of Ref. [KM05a]. Under the assumption that
transport between the different contacts of the system is ballistic, one can make use of
the Landau-Büttiker formalism [Büt86, Büt88]. The charge or spin current, flowing out of
(positive sign) or into (negative sign) a terminal with label i and applied bias Vi, is given
by [DSS16]

I
S/C
i =

∑
j

(
G

S/C
ji Vi −GS/C

ij Vj
)
. (1.1)

Here, the superscripts indicate spin- and charge-related quantities, respectively. The trans-
mission between two contacts is given by the (spin or charge) conductance GS/C, where
time-reversal symmetry requires that GC

ij = GC
ji and GS

ij = −GS
ji. Let us first consider a

simple two-terminal setup, as depicted in Fig. 1.2, top panel. By inspection of the helical
conductance channels, and taking into account both the upper and the lower edge, we see
that

GC
ij = e2

h

(
0 2
2 0

)
ij

, GS
ij = 0. (1.2)

There is no net spin transport from the left to the right contact, as the sample provides the
same number of channels for both spin directions. Once a positive bias voltage is applied
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1.2. Selected applications of TIs

Figure 1.2.: Schematic of a two-terminal (top) and four-terminal (bottom) QSH sample. Edge
channels with the electron spins pointing upwards (downwards) are indicated by arrows with dots
(crosses). Framed numbers symbolize the terminal labels. Given the plotted voltage drops, a
charge current flows to the right in the two-terminal device. For the four-terminal setup, on the
other hand, not only a charge current runs from top to bottom, but also a spin current flows to the
right. Figure adapted with permission from Ref. [KM05a]. Copyrighted by the American Physical
Society.

to the left hand side contact, charge flows to the right, and we obtain with Eq. (1.1),

IC1 = −IC2 = 2e2V

h
,

IS1 = IS2 = 0.
(1.3)

Next, we take a look at the four-terminal device presented in Fig. 1.2, bottom panel. The
transmission matrices now have the form [KM05a]

GC
ij = e2

h


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


ij

, GS
ij = e

4π


0 1 0 −1
−1 0 1 0
0 −1 0 1
1 0 −1 0


ij

. (1.4)
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1. Introduction and motivation

Figure 1.3.: Idea of a TI-based transistor according to Ref. [CYO+12]. A 3D TI doped with a small
number of magnetic atoms is used as a transistor body. (a) If the Fermi energy is outside the band
gap, transport is carried out by plenty of bulk electrons, and the device behaves like an ordinary
metal. (b) If the Fermi energy lies within the bulk band gap, only the surface electrons contribute to
electronic transport. They then interact with the magnetic adatoms to form a ferromagnetic shell,
and a subgap opens in the energy spectrum. By tuning the gate voltage, the device can operate
in different modes, and act as a current switch or spin filter. Figure reprinted by permission from
Macmillan Publishers Ltd: [Wra12], copyright 2012.

Applying a bias voltage between the top and the bottom contact, we identify the outgoing
and incoming charge and spin currents to be

IC1 = −IC3 = e2V

h
,

IS2 = −IS4 = eV

4π ,

IC2 = IC4 = IS1 = IS3 = 0.

(1.5)

As expected, a charge current IC = e2V/h flows from top to bottom. Interestingly, at the
same time, a net spin current of IS = eV/4π runs from the left to the right terminal in
this setup. Due to spin-momentum locking of the material, and the presence of helical
edge states, the electric potential forces the spin-up electrons to accumulate at the right
hand side contact. With this basic idea, spin currents can not only be generated, but
also detected – a spin current injected between the left and right terminals will vice versa
induce a voltage bias drop between the top and bottom contacts.

This concept gives prospects to spintronics applications of topological insulators. In partic-
ular, combinations of 3D TIs with magnetic components have appeared to be a promising
approach [FW16]. Starting from the electrical detection of charge-current induced spin po-
larizations at the surface of 3D topological insulators [LvR+14], recent experiments have,
for instance, also confirmed the optical control of such spin polarizations [SBGV+16], or
the spin-charge conversion in topological surface states, where spin currents were injected
with the help of spin pumping techniques [SNK+14, RSOF+16].
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1.3. Scope of this Thesis

Eventually, let us briefly present the idea of a TI-based transistor, as it was for instance
pioneered in Ref. [CYO+12]. The authors there use a 3D TI, doped with a very small
amount of magnetic Manganese atoms, as a transistor body (see Fig. 1.3). The key idea
is the following: If the gate voltage is tuned such that the Fermi energy is outside the TI
band gap, bulk electrons are the dominant contributors to electronic transport, and the
device behaves like an ordinary semiconductor. As there is a great number of free electrons
in this case, the few magnetic impurities are effectively screened. On the other hand, if the
Fermi energy is tuned such as to lie within the band gap of the topological insulator, only
a small number of surface electrons remain available for transport. Those surface electrons
now become spin-polarized due to an interaction with the magnetic impurities, and form
a ferromagnetic shell. As a consequence, a small subgap opens within the band gap of
the TI (see right hand side of Fig. 1.3). From this analysis it can be understood, that
by variation of the applied gate voltage, the device can operate in an effectively metallic
or insulating mode, but also in an intermediate regime, where transport takes place via
spin-polarized surface states. The presented structure therefore meets all the requirements
for the versatile use as a conventional, or a spin transistor.

1.3. Scope of this Thesis

Motivated by the interesting and promising properties of 2D topological insulators, as
described above, this Thesis is dedicated to the study of the transport properties of one-
dimensional helical states. Despite the topological protection against elastic backscatter-
ing, we demonstrate, that various inelastic backscattering processes are possible, or even
inevitable at the helical edge. We investigate the corresponding corrections to the con-
ductance, or the breakdown of the latter for certain types of strong perturbations. All
the predicted effects on the conductance could in principle be observed in a transport
experiment. We furthermore discuss the microscopic sources to induce such backscatter-
ing mechanisms, and their behaviour in the presence of electron interactions. In contrast
to higher-dimensional systems, interactions in 1D have a great impact on the electronic
properties. At the same time, well-established techniques of many-body physics, such as
bosonization, allow us to obtain analytical results even for strong interactions. The anal-
ysis of transport in 1D helical liquids is therefore also about correlated electron effects.
As elastic backscattering is typically suppressed by TRS, the proper treatment of inelastic
electron interactions appears to be not only of quantitative, but also of qualitative impor-
tance. Those aspects are of crucial interest for the understanding of 1D systems, and for
future applications in real materials. For instance, by comparing experimentally observed
corrections to the conductance with theoretical predictions, one can obtain information
about the microscopic processes, and the structure of a material.
The Thesis is organized as follows: In Chap. 2 we review the theory of (helical) Luttinger
liquids, which describes 1D many-body systems including electron interactions, given that
the energy-momentum relation can be linearized around the Fermi points. In addition,
fundamental techniques such as bosonization, the operator product expansion, or the per-
turbative RG scheme are outlined. Subsequently, in Chap. 3, we turn to the calculation of
the conductance, as the fundamental transport signature of the systems under considera-
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1. Introduction and motivation

tion. The lowest-order generic backscattering processes in the helical liquid are discussed.
Chap. 4 is concerned with Rashba spin-orbit coupling (SOC) as a microscopic source of
inelastic backscattering. We study the effects of a single impurity, and many disordered
spin-orbit coupling impurities, and the respective corrections to the total conductance of
the system. The profound ramifications of a momentum cutoff in the model are high-
lighted. Another important source of backscattering, in the form of magnetic moments
(or Kondo impurities), is investigated in Chap. 5. There, we derive the explicit energy-
dependence of the conductance in the presence of weak electron interactions, and compare
it to a recent experiment in InAs/GaSb bilayers. Eventually, we conclude in Chap. 6, and
give a brief outlook on hybrid structures of 2D topological insulators with superconductors.
Throughout, we use simplified units by setting ~ = 1, as well as kB = 1.
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2. Luttinger liquid theory

Systems of interacting fermions are a notoriously difficult challenge in many-body physics.
In two and more spatial dimensions, such systems comply (in most cases) very well with
the predictions of Fermi liquid theory, first developed by Landau [Lan57b, Lan57a]. Sim-
ply speaking, it states that the low-energy properties of the Fermi electron gas remains
qualitatively the same in the presence or absence of interactions. The elementary excita-
tions of the system are long-living quasiparticles, which can be conceived of as individual
electrons dressed by particle-hole like excitations of the ground state. Such quasiparticles
are still fermionic in nature, and move essentially freely in the metal. This finding allows
to account for interactions in the Fermi gas by (diagrammatic) perturbation theory. In
one dimension on the other hand, the physical picture is drastically altered. Excitations
in 1D are always bosonic in nature, and interactions play a crucial role for the low-energy
properties of the system. In contrast to the individual quasiparticles, only collective modes
are possible, such as density waves or charge and current excitations. This can be under-
stood pictorially from the fact that no particle can propagate freely without pushing its
neighbor. Formally, perturbation theory fails due to a number of divergences of physical
quantities, such as the susceptibility in response to an applied electromagnetic potential
[Gia03]. As a consequence, there is need for a new model, the so-called Luttinger liquid
(LL) theory.
It was realized early on, that a many-body system of interacting (relativistic) 1D fermions
can be described, and solved exactly, by mapping it onto a model of free bosons [Tom50,
Lut63, ML65]. This transformation is commonly called (Abelian) bosonization. The key
idea was provided by Tomonaga in an article of 1950 [Tom50]. Here, the abstract states:
“The fact implied by Bloch several years ago that in some approximate sense the behavior
of an assembly of Fermi particles can be described by a quantized field of sound waves in
the Fermi gas, where the sound field obeys Bose statistics, is proved in the one-dimensional
case. This fact provides us with a new possibility of treating an assembly of Fermi parti-
cles in terms of the equivalent assembly of Bose particles, namely, the assembly of sound
quanta.” Tomonaga again refers to a much earlier article by Bloch from 1933 [Blo33], which
presumably makes Bloch one of the first to explore the concept of bosonization. The re-
sulting Tomonaga-Luttinger liquid model was later improved and refined significantly, by
contributions of Haldane [Hal81a, Hal81b] and many others. Even though bosonization
was primarily developed for one-dimensional systems, the concept can be generalized as
well to interacting fermions in two dimensions and higher. This technique was used to
demonstrate that there exist higher dimensional models, that, depending on the form of
the interactions, do not exhibit the typical Fermi liquid, but a Luttinger liquid behaviour
[Hal92, KHR93, YLD94].
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2. Luttinger liquid theory

2.1. Bosonization

2.1.1. General theory

We here recall the bosonization scheme for 1D spinless fermions, following the instruc-
tive Ref. [vS98], however, introducing both right- and left-movers from the beginning.
Subsequently, we discuss the relation to spinful and helical systems. The bosonization
transformation is generally based on a linearization of the energy dispersion, and the
assumption of an unbounded spectrum with infinitely many states. As the latter leads
to characteristic divergences of fundamental correlation functions, one accounts for this
point by the implementation of a cutoff. If the energy dispersion is strictly linear, both
the kinetic energy and the interaction terms will be mapped onto bosonic terms with yet
again a linear spectrum, which corresponds to (effectively) free bosons. An exact solution
of the free bosonic model is then possible. On the other hand, if the original fermionic
spectrum is non-linear, bosonization can only succeed in transforming the system into
another model of interacting bosons (meaning that bosonic excitations decay), and gen-
erally no significant progress is gained. Additionally, such non-linearities usually break
particle-hole symmetry. The linear spectrum, as a prerequisite for bosonization, is clearly
provided in a 1D gas of relativistic free fermions. In a many-body system of non-relativistic
free fermions, the parabolic spectrum needs to be linearized around the Fermi energy (see
Fig. 2.1.1). The validity of the model then is limited to a certain range of energy close to
this expansion point, which is nevertheless expected to correctly describe the low-energy
physics of interest. High energy states not compatible with this approximation have to be
excluded by introducing a momentum cutoff, that truncates the spectrum. Note that a
bosonization procedure in such a linearized system requires the introduction of “unphysi-
cal” positron states [vS98] that, however, do not change the low-energy physics. In order
to enhance the power of bosonization, some effort was made to include non-linearities into
the bosonization scheme perturbatively. Some findings are, that the low-energy properties
still remain the same [Hal81b], and more generally, the Luttinger liquid theory could be
considered a special case of a more fundamental non-linear theory [ISG12]. Here, we focus
on systems whose energy spectrum is fairly linear in momentum, such as the edge states
of 2D quantum spin Hall systems. In that case, there is no need for linearization and dif-
ficulties related to the influence of non-linearities do not appear. The implementation of
a high-energy cutoff nevertheless remains a physical requirement, as the linear edge states
exist only at energies inside the band gap of the topological insulator, while beyond, bulk
states will become dominant.
The linear (or linearized) spectrum consists of two branches of opposite slope (chirality)
±vF , the Fermi surface being two mere points ±pF (see Fig. 2.1.1). The kinetic energy is
then given by (we here suppress the spin index for the moment)

H0 =
∑
p

ε(p)c†pcp, (2.1)

with ε(p) = vF (±p− pF ). The sign identifies the two separated regions around the Fermi
points for p ≷ 0, respectively. Let us introduce the corresponding label r = ±1. We now
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2.1. Bosonization

Figure 2.1.: Energy spectrum of the Luttinger liquid, featuring the two branches R/L that indicate
right- and left-moving particles. The linear dispersion may either be given naturally (e.g. in the
gap of a 2D topological insulator), or emerge from linearization of a parabolic spectrum (right
hand side).

define a new momentum k by p = r(k + pF ), such that 1

H0 =
∑
k,r=±

εr(k)c†r(k+pF )cr(k+pF ) =
∑
k,r=±

εr(k)c†r,kcr,k, (2.2)

and simply

εr(k) = vFk. (2.3)

Importantly, we have here defined fermionic creation operators for two different species of
chiral fermions by the projection cr,k = cr(k+pF ), and in doing so assumed that |k| � pF .
This defines so-called right-moving and left-moving fermions, where we use equivalently
r = ± = R/L. Explicitly, c†R/L,k creates a fermion with momentum k at one of the branches
of chirality R/L. Note that in this notation, both right- and left-moving particles have the
same energy dispersion (and do not differ by a sign). As we consider a system of length
L, the momentum is in general a quantized number, 2 k = 2π

L (nk − 1/2) = Ω−1(nk − 1/2),
with the volume of the system Ω = L

2π and the integer nk ∈ Z. For large systems we are
1It is also common to use an alternative parametrization for k, such that εr(k) = rvF k ([Gia03] etc.).
Here, however, we follow closely the notation of Ref. [vS98]. In the later Sec. 4, we adopt a slightly
different notation in the context of fermionic perturbation theory.

2The term proportional to 1/2 stems from a choice of boundary conditions, which is an additional subtlety
(confer [vS98]). Quite generally, there are periodicities ψr(x) = ψr(x+nL), with n ∈ Z, in the definition
of ψr(x), which can be considered an effective boundary condition ψr(x + L/2) = ψr(x − L/2)eiπδb ,
δb ∈ {0, 1} and k = Ω−1(nk − 1

2δb). In many cases, and we shall do so here, one chooses somewhat
arbitrarily antiperiodic boundaries of the fermionic fields, δb = 1, in which case the bosonized free
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2. Luttinger liquid theory

free to perform the continuum limit
∑
k = Ω

∫
dk .

Next, we can define real-space fermionic fields

ψ(x) = 1√
Ω
∑
p

eipxcp = 1√
Ω
∑
r,k

eir(k+pF )xcr,k =
∑
r

ψr(x)eirpF x, (2.4)

ψr(x) = 1√
Ω
∑
k

eirkxcr,k. (2.5)

Here, ψ(x) is the total, physical field, while ψr(x) represents the chiral field. The physical
requirement of |k| � pF implies, that the decomposed fields ψr(x) vary slowly on a scale of
1/pF . For future reference, we also have cr,k = 1

2π
√

Ω
∫
dx e−irkxψr(x). The kinetic energy

of Eq. (2.2), in real space takes the form (here not yet normal-ordered, see below)

H0 =
∑

k,r=R,L
(vFk)c†r,kcr,k = vF

2π
∑
r=R,L

∫ L/2

−L/2
dx ψ†r(x)(−ir∂x)ψr(x). (2.6)

Importantly, the field operators fulfill the fermionic anticommutation relations 3

{cr,k, c
†
r′,k′} = δrr′δkk′ ,

{cr,k, cr′,k′} = {c†r,k, c
†
r′,k′} = 0,

{ψr(x), ψ†r′(x
′)} = 2πδrr′δ(x− x′),

{ψr(x), ψr′(x′)} = {ψ†r(x), ψ†r′(x
′)} = 0.

(2.7)

Here, we assumed |x|, |x′| < L/2. Note that the Dirac delta distribution only appears
in the case of an unbounded spectrum of momenta, as can be seen from Eq. (A.1). If a
momentum cutoff is introduced, the delta distribution will be smeared out and therefore,
strictly speaking, the usual anticommutation rules do not hold anymore in real space,
while in momentum space they remain well-defined. The above observation is a char-
acteristic consequence of introducing a momentum cutoff, and applies to both fermions
and bosons. As we show later, it can have physical implications in terms of backscattering.

Bosonization reorganizes the fermionic Fock space in terms of bosonic operators only. Let
us briefly sketch the general concept along the lines of Ref. [vS98]. Presume that the
vector | ~N〉 is an eigenstate of the system with eigenvalue ~N = (NR, NL), so it contains
exactly NR particles on the right-moving branch, and NL particles on the left-moving
branch. Any of the N = NR +NL particles can occupy one of the discrete energy levels,
given by the discretization of momenta at finite system length. The set of all such states
with the same eigenvalues is then called the N -particle Hilbert space H ~N . The entire Fock

Hamiltonian takes a slightly more simple form. On the other hand, this choice gives an (unimportant)
additional factor e−irπx/L in the bosonization identity of Eq. (2.12), which is usually dropped in the
limit or large L.

3In Ref. [vS98], the notation involves an extra factor of 2π, which comes down to the definition of the
volume Ω = L/2π. As a result, the fields ψr(x) are then normalized to 2π instead of one. See the
discussion of different notations below.

12



2.1. Bosonization

space F , spanned by all possible {c†r,k, cr′,k′} operators, can generally be rewritten as a
sum of N -particle Hilbert spaces F =

∑
⊕ ~N H ~N , where in each of the Hilbert spaces the

particle number is conserved. Importantly, the particles in a state | ~N〉 can be ordered in
an arbitrary way. If the system is in its energetic minimum, so only the lowest energy
levels are occupied, and excitations are absent, this defines the ground state | ~N〉0. For
a general | ~N〉, however, there will be excitations on each branch, that are particle-hole
like or bosonic in nature, since the chiral particle number for the state | ~N〉 is fixed. In
other words, one can in general write | ~N〉 = f({c†r,kcr,k′})| ~N〉0, where f only depends on
bilinear combinations of the fermionic operators. This understood, one realizes that the
Fock space can be reorganized in terms of particle-hole like operators, though it is still
far from trivial to show that for any state, instead of f({c†r,kcr,k′}), one can find another
function f̃({b†r,k}) or f̃({br,k}) that contains true bosonic operators, and that this set of
states is complete. An exhaustive proof can be found in Refs. [Hal81b, vS98].
We now define bosonic creation and annihilation operators, that include all particle-hole
like excitations of some positive momentum q > 0, and thus are of the form of density
fluctuations,

b†r,q = i
√
nq

∑
k

c†r,k+qcr,k,

br,q = −i
√
nq

∑
k

c†r,k−qcr,k.

(2.8)

Again, q = Ω−1nq > 0. Those operators satisfy the bosonic commutation relations

[br,q, b
†
r′,q′ ] = δrr′δqq′ ,

[br,q, br′,q′ ] = [b†r,q, b
†
r′,q′ ] = 0.

(2.9)

The derivation of the above commutator in terms of fermionic operators, using Eq. (2.8),
requires the careful treatment of normal-ordering (see below), and is related to the issue
of anomalous commutators. For the development of a bosonization scheme, however, we
can as well consider Eq. (2.9) the definition of a bosonic operator.
Such bosonic operators can eventually be used to define the bosonic field operators

ϕ†r(x) = −
∑
q>0

1
√
nq
e−iqrxb†q,re

−aq/2,

ϕr(x) = −
∑
q>0

1
√
nq
eiqrxbq,re

−aq/2,

φr(x) = ϕ†r(x) + ϕr(x) = −
∑
q>0

1
√
nq
e−aq/2(e−iqrxb†q,r + eiqrxbq,r).

(2.10)

The φr(x) are called chiral fields. In Eq. (2.10), we have introduced the parameter a as
a cutoff on large momenta q. It is a common procedure for Lorentz-invariant theories to
restrict the energy spectrum in order to regularize diverging sums and singularities of cor-
relation functions [GNT04]. In principle, the cutoff should be sent to zero at some point to
undo this modification. We will discuss later, however, that the existence of a cutoff is one
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2. Luttinger liquid theory

of the key characteristics of the bosonic theory. It is sometimes useful or even necessary
to keep the cutoff finite in order to obtain physically meaningful results. We also find that
the transport properties of the system can be affected by the presence of absence of a cutoff.

The bosonic fields are in general time-dependent. Assuming that the time-dependence
is governed by the free bosonic Hamiltonian in Eq. (2.6), one can use the Heisenberg
equation of motion to arrive at cr,k(t) = e−iε(k)tcr,k (and c†r,k(t) = eiε(k)tc†r,k). Bosons then
gain a time-dependence b†r,q(t) = eivF qtb†r,q (and br,q(t) = e−ivF qtbr,q). For the bosonic
chiral fields, we find a dependence only on the combination φr(x, t) = φr(rx− vF t).
Occasionally, we reformulate the model in imaginary time, τ = it. Let us define z = ix+vτ ,
as well as z = −ix+ vτ , to rewrite the chiral fields in terms of the new coordinates φL(z)
and φR(z). Here, we also abbreviate

zr = −i(rx− vt) = −irx+ vτ, (2.11)

so compared to the above notation it is z+ = z and z− = z.

To make a connection between fermionic and bosonic operators, we have to find an ex-
pression for the function f̃ in | ~N〉 = f̃({b†r,k})| ~N〉0. Such a bosonic reorganization of the
Fock space allows for the derivation of the so-called bosonization identity, which is found
to be [vS98] (we use kF = pF at times for convenience)

ψr(x) = Fr

(2π
L

)1/2
eir

2π
L

(Nr− 1
2 )xe−iϕ

†
r(x)e−iϕr(x)

= Fr

(1
a

)1/2
eir

2π
L

(Nr− 1
2 )xe−iφr(x) (2.12)

As was already observed in Eq. (2.7), the anticommutation rules for the fields defined in
Eq. (2.12), in real space hold strictly only in the limit of vanishing cutoff [vS98].
To go from the first to the second line in Eq. (2.12), we used the field commutator derived
in the next sections. Also note, that while the first line is normal-ordered, the second line
is not and therefore diverges in the limit of a→ 0 (see more details in the next section).
An additional object is introduced here in the form of the Klein factor Fr. Those factors
are crucial ingredients for bosonization, and act as ladder operators that connect Hilbert
spaces H ~N with different particle number, by raising (F †r ) or lowering (Fr) the r-type
fermion number by one. Klein factors are needed to ensure the correct anticommutation re-
lations and preserve the fermionic character of the operator. They fulfill the commutation
relations [vS98] {Fr, F †r } = 2δr,r′ , so FrF †r = F †rFr = 1 as well as {F †r , F

†
r′} = {Fr, Fr′} = 0

if r 6= r′. Klein factors by construction commute with all bosonic operators and fields,
which is why they are often considered of minor importance. Crucially however, they do
not commute with the particle number operator, as

|Nr, F
†
r′ ] = δrr′F

†
r′ ,

|Nr, Fr′ ] = −δrr′Fr′ .
(2.13)

As mentioned already, it is an inherent problem of bosonization that divergences may
occur. Usually, they result from the fact that there are sums over infinitely many single
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particle states. Such sums can be regularized by introducing a momentum cutoff, which
effectively corresponds to a short-distance cutoff in real space. To make sure that an
operator O is defined in a controlled way, it needs to be normal-ordered, denoted ∗

∗(. . .) ∗∗ ,
which is defined by

∗
∗O ∗∗ = O − 〈O〉0, if O ∈ {c†r,k, cr′,k′} or O ∈ {b

†
r,k, br′,k′}. (2.14)

The respective ground state expectation value is subtracted, which is defined by 〈. . .〉0 =
0〈~0| . . . |~0〉0 for operators that have the form of a product of fermionic creation and an-
nihilation operators, O ∈ {c†r,k, cr′,k′}, and 〈. . .〉0 = 0〈 ~N | . . . | ~N〉0 for bosonic operators
O ∈ {b†r,k, br′,k′}. The state |~0〉0 is hereby defined to be the vacuum state (Fermi sea),
with cr,k|~0〉0 = 0 for k > 0 and c†r,k|~0〉0 = 0 for k ≤ 0. The lack of normal-ordering
may be troublesome, for example, a shift of indices or relabelings in a momentum sum
can run into problems if the summand is not normal-ordered [vS98]. Note that |~0〉0 and
| ~N〉0 can contain infinitely many particles. Therefore the ground state average above
may diverge and normal-ordering is supposed to regularize the expression. For fermionic
operators, O ∈ {c†r,k, cr,k}, fermion normal-ordering corresponds to moving all cr,k with
k > 0, and all c†r,k with k ≤ 0, to the right of all other operators. For bosonic operators,
O ∈ {b†r,k, br′,k′}, we can still use the same notation ∗

∗(. . .) ∗∗ , since a boson normal-ordered
expression is automatically fermion normal-ordered and vice versa [vS98]. Generally, for
any such operators of this type, the average with respect to the ground state is 〈 ∗∗O ∗∗〉0 = 0.

Let us illustrate the importance of normal-ordering by deriving the essential commutator
of Eq. (2.9) in terms of fermionic operators. With Eq. (2.8), we have

[br,q, b
†
r′,q′ ] = δrr′

1
√
nqnq′

∑
k,k′

[c†r,k−qcr,k, c
†
r,k′+q′cr,k′ ]

= δrr′
1

√
nqnq′

∑
k

(
c†r,k−q+q′cr,k − c

†
r,k−qcr,k−q′

)
= δrr′

1
√
nqnq′

∑
k

(
∗
∗c
†
r,k−q+q′cr,k

∗
∗ − ∗

∗c
†
r,k−qcr,k−q′

∗
∗

+ 〈c†r,k−q+q′cr,k〉0 − 〈c
†
r,k−qcr,k−q′〉0

)
= δrr′δqq′

1
nq

∑
k

(
〈c†r,kcr,k〉0 − 〈c

†
r,k−qcr,k−q〉0

)
= δrr′δqq′ . (2.15)

Note that in the second line above, it is in general not correct to perform the momentum
shift k → k+q′ in the second term, in which case the whole expression vanishes. This is be-
cause the terms are not yet normal-ordered properly, and infinities would be subtracted in
an uncontrolled way [ML65, vS98, Gia03]. For q 6= q′, on the other hand, the products are
already normal-ordered, because then 〈c†r,k−q+q′cr,k〉0 = 0, and 〈c†r,k−qcr,k−q′〉0 = 0. The
only nonzero contribution therefore arises from the terms with q = q′. Within normal-
ordered expressions, a momentum shift can be performed safely, such that there is a partial
cancellation of terms. Eventually, the sum over the difference of ground state averages
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2. Luttinger liquid theory

yields a factor of nq.
Eq. (2.15) represents an example of a so-called anomalous commutator [GNT04, Fra13].
In general, this term is used for a commutator that is nonzero only for a system with
infinitely many particles, and zero otherwise. Anomalous commutators are behind alleged
paradoxa such as the “chiral anomaly”. Let us very briefly comment on the latter: In a
one-dimensional system of fermions, the response to an applied electromagnetic fields is
related to the retarded density-density correlation. In momentum space, this involves the
commutator [ρr(q), ρ†r′(q′)], where we use ρr(q) =

∑
k c
†
r,k−qcr,k, for the respective chirality

r. A naive derivation of this commutator, that does not account for normal-ordering of
the fermionic operators in a thorough way, gives zero, as one can directly observe from
Eq. (2.15). Obviously, this result can not be correct from a physical point of view. On the
other hand, when the system is described in terms of bosonic operators only, such diffi-
culties do not occur, as by definition, the bosons obey the commutation rules of Eq. (2.9).
The anomalous character of the involved commutators is therefore already built-in in this
framework.

Next, we derive the bosonized form of the most important physical quantities of the
Luttinger liquid. In the process, we recurrently encounter the normal-ordered particle
number operator Nr =

∑
k
∗
∗c
†
r,kcr,k

∗
∗ . The (chiral) density is calculated from Eqs. (2.8)

and (2.10), and takes the form 4

ρr(x) = ∗
∗ψ
†
r(x)ψr(x) ∗∗ = 2π

L

∑
q

eirqx
∑
k

∗
∗c
†
r,k−qcr,k

∗
∗

= 2π
L

∑
q>0

i
√
nq
∗
∗(eirqxbr,q − e−irqxb†r,q) ∗∗ + 2π

L

∑
k

∗
∗c
†
r,kcr,k

∗
∗

a→0= −r ∗∗∂xφr(x) ∗∗ + 2π
L
Nr. (2.16)

Note that the above identification is possible only at zero cutoff. This limit can be taken
safely, since the expression is normal-ordered and no divergences are expected. If a is
finite, this brings additional terms. Making a connection to the density, the bosonic field
φr can be interpreted as an ordering field of the particles of chirality r [Gia03].
In an analogous way, the kinetic energy in Eq. (2.6) can be bosonized to [Hal81b, vS98]

H0 =
∑

k,r=R,L
vFk

∗
∗c
†
r,kcr,k

∗
∗ =

∑
r

vFπ

L
N2
r +

∑
r,q>0

vF q
∗
∗b
†
r,qbr,q

∗
∗

=
∑
r

vFπ

L
N2
r +

∑
r

vF
2π

∫ L/2

−L/2
dx 1

2
∗
∗(∂xφr(x))2 ∗

∗ = vF
2π

∫ L/2

−L/2
dx 1

2
(
∗
∗ρ

2
R(x) + ρ2

L(x) ∗∗
)
.

(2.17)
The key point here is that even though H0 is quadratic in the fermion operators, it can as
well be expressed in a form, that is quadratic in bosonic operators (which means quartic
in fermions). How this comes about can be sketched in the following way. Acting with b†r,q
4Here, q = Ω−1nq was chosen, which implies periodicity of the bosonic fields, φr(L/2) = φr(−L/2), and
of the bosonic density. This is not in contradiction with the choice of antiperiodic boundaries for the
fermionic fields above [vS98].
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2.1. Bosonization

on a N -particle eigenstate of H0, produces another N -particle eigenstate of H0 (particle
number is conserved) with an additional particle-hole excitation, so the energy is increased
by vF q. In other words,

H0b
†
r,q|Nr〉 = (ENr + vF q)b†r,q|Nr〉, (2.18)

b†r,qH0|Nr〉 = b†r,qENr |Nr〉. (2.19)

Here, ENr is the total kinetic energy of state |Nr〉. The last line above holds trivially.
Combining the two equations, we find [H0, b

†
r,q] = (vF q)b†r,q, which implies that the kinetic

energy represented in bosonic operators only should read H0 ' (vF q)b†r,qbr,q.
The term including operators Nr in Eq. (2.17) stems from normal-ordering, and re-
flects the ground state average 0〈 ~N |H0| ~N〉0. There are additional terms proportional
to (NL∂xφL(x)−NR∂xφR(x)), that vanish after spatial integration due to the periodicity
of the bosonic fields.

2.1.2. Bosonized interactions

The great power of bosonization becomes evident if electron-electron interactions are in-
cluded. Interacting electrons of either chirality can be described by the operator [vS98]

Hint = 1
2π

∫ L/2

−L/2
dx 1

2
[
g2 ∗∗(ψ†Rψ

†
LψLψR)(x) ∗∗ + g4 ∗∗(ψ†Rψ

†
RψRψR)(x) ∗∗ + {L↔ R}

]
= 1

2π

∫ L/2

−L/2
dx

[
g2 ∗∗ρR(x)ρL(x) ∗∗ + 1

2g4 ∗∗(ρ2
R(x) + ρ2

L(x)
]
∗
∗ .

(2.20)
Here we use the common “g-ology” [Sól79, GS88, Gia03] for the two possible interactions
of particles of different (g2), or the same (g4) species. For simplicity, we assumed homo-
geneous and local (contact) interactions, which means constant g. Generally, the Pauli
principle forbids fully local terms of the form g4, but we shall keep the term here for
illustrating purposes (see further discussion in Sec. 2.2.2).
From Eqs. (2.17) and Eq. (2.20), the kinetic and the interaction term can be combined in
a simple form, coined the Luttinger liquid Hamiltonian HLL,

HLL = H0 +Hint = 1
2π

∫ L/2

−L/2
dx 1

4
∗
∗

[
vK(ρR − ρL)2 + v

K
(ρR + ρL)2

]
(x) ∗∗ , (2.21)

with the standard Luttinger parameters

v =
(
(vF + g4)2 − g2

2

)1/2
,

K =
(
vF + g4 − g2
vF + g4 + g2

)1/2
.

(2.22)

The parameter v can be considered a renormalized Fermi velocity, and K the effective
strength of electron interactions. We observe that the g4-term, associated with forward
scattering of the electrons, does not have any other physical effect than adding to vF .
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2. Luttinger liquid theory

Repulsive electron interactions are represented by 0 ≤ K < 1, while attractive electron
interactions correspond to K > 1.
It is useful to combine both chiral fields to more physical, non-chiral field operators, which
are related to the total charge and current density of the system. The Luttinger Hamil-
tonian of Eq. (2.21) then can be rewritten in terms of non-chiral fields by a Bogoljubov
transformation of the boson creation and annihilation operators,

HLL = 1
2π

∫ L/2

−L/2
dx vK ∗

∗(∂xθ(x))2 ∗
∗ + v

K
∗
∗(∂xφ(x))2 ∗

∗ ,

φ(x) = −1
2

∫ x

dx′ (ρR(x′) + ρL(x′)),

θ(x) = 1
2

∫ x

dx′ (ρR(x′)− ρL(x′)).

(2.23)

The non-chiral fields φ and ∂xθ/π have the form of canonical conjugate partners, as can
be seen from their commutation relation (see next section). In the non-interacting limit,
given by K → 1 and v → vF , one realizes that the above Hamiltonian recovers the one of
Eq. (2.17), as it should be.
Making a connection to the chiral fields in the interacting system, we obtain from Eq. (2.16),
φ(x) = 1

2(φR(x)− φL(x))− πx
L (NR +NL) and θ(x) = −1

2(φR(x) + φL(x)) + πx
L (NR−NL).

This means,

φr(x) = rφ(x)− θ(x) + r
2πx
L
Nr. (2.24)

In particular, with Eq. (2.16), the total charge density only depends of the field φ, whereas
the other field θ can be associated with the current density,

ρ(x) =
∑
r

ρr(x) =
∑
r

(− ∗∗∂xφ(x) ∗∗ + r ∗∗∂xθ(x) ∗∗) = −2 ∗∗∂xφ(x) ∗∗ ,

j(x) = vK
∑
r

rρr(x) = vK
∑
r

(−r ∗∗∂xφ(x) ∗∗ + ∗
∗∂xθ(x) ∗∗) = 2vK ∗

∗∂xθ(x) ∗∗ .
(2.25)

In the definition of the current density, we have used here the renormalized velocity vK
instead of the bare vF . This important detail follows from charge conservation, as mani-
fested in the continuity equation,

∂xj(x, t) + ∂tρ(x, t) = 0. (2.26)

It defines the current density

j(x, t) = −
∫ x

dx′ ∂tρ(x′, t) = 2 ∗∗∂tφ(x, t) ∗∗ = 2vK ∗
∗∂xθ(x, t) ∗∗ . (2.27)

Above, we have used ρ from Eq. (2.25), and in the last step anticipated the important
relation ∂tφ = vK∂xθ, that is derived with the help of the commutators in Eq. (2.61).
While the kinetic energy in the non-interacting case of Eq. (2.17) could be split into a
sum of a right-moving and a left-moving part, this seems not the case in the presence of
interactions. We see that in Eq. (2.23), when going back to chiral fields, the mixed terms
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2.1. Bosonization

of the form ∂xφR(x)∂xφL(x) do not vanish for finite interactions, K 6= 1, and the question
arises whether the physical nature of the system, in the form of a characteristic separation
into right- and left-movers, has been altered. This is not the case, as new chiral fields can
be introduced for instance by [Gia03] φr = Kθ−φ, including the Luttinger parameter K,
that will again allow for a chiral sum representation of the kinetic energy. Therefore, also
in the presence of interactions, there exist excitations that propagate solely to the left or
to the right.
These considerations reflect an important point we like to emphasize here. Via the elec-
tron densities, the non-chiral fields in Eq. (2.23) can be directly connected to the chiral
fermionic operators. On the other hand, the chiral fields are introduced in Eq. (2.10)
in terms of bosonic creation and annihilation operators, that can be defined in various
ways. Obviously, one has a certain freedom in defining such operators, since the functions
f̃({b†r,k}) to span the bosonic Hilbert space are not unique. Therefore, unfortunately, many
different notations of the chiral bosonized fields and the chiral version of the bosonization
identity exist (for instance [Hal81b, GNT04, KF92a]). Here, we are concerned only with
the nomenclature of Refs. [vS98, Gia03] and a slightly modified version that was used
in Refs. [CBD+12, Dol12, GCT14], and that we shall adapt in the following chapters.
The representation of physical quantities, such as the density or the current, in terms of
non-chiral fields remains the same.

2.1.3. Chiral fields – notation of this Thesis

So far, we have followed closely the notation of Ref. [vS98], which led us to the above
notion of the chiral fields φr(x). Let us temporarily put a label and write φDelft

r (x) to
mark the according source of notation. In the following, we prefer to use yet a slightly
different definition of bosonic operators, which results in new chiral fields φDelft

r (x) →
φnewr (x) = f(φDelft

r (x)) with some function f . Assuming that the new fields can eventually
be expressed in terms of the former ones studied above, we do not worry about the
intermediate fields at all. Fixing now and for all φr(x) = φDelft

r (x) to be the fields defined
in Eq. (2.10), a redefinition of bosonic operators then corresponds to the replacement
φr(x)→ f(φr(x)).
Following the Refs. [CBD+12, Dol12, GCT14], we here choose to use the redefined chiral
fields

φr(x)→ −rφr(x),
ψr(x)→ ψr(x)/

√
2π.

(2.28)

The last line above renormalizes the fermionic fields to match Ref. [Gia03], which results
in ρr → ρr/2π (e.g. in Eq. (2.21)), as well as g2 → g2/2π, g4 → g4/2π in Eq. (2.22). For
instance, we find then from Eq. (2.25),

ρ(x) = − ∗∗∂xφ(x) ∗∗/π,
j(x) = vK ∗

∗∂xθ(x) ∗∗/π.
(2.29)

With these redefined bosons, the density in Eq. (2.16) can be phrased as

ρr(x)→ ( ∗∗∂xφr(x) ∗∗ + 2π
L
Nr)/2π. (2.30)
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2. Luttinger liquid theory

Again, keep in mind that it is not the density, a physical quantity, that changes, but only
its representation in terms of redefined chiral bosonic fields. Moreover, the non-chiral
fields to reproduce the Hamiltonian Eq. (2.23) are then given in terms of the chiral ones
by φr(x)→ −φ(x) + rθ(x)− 2πx

L Nr, compare to Eq. (2.24). Explicitly, they read

φ(x) = −1
2(φR(x) + φL(x))− πx

L
(NR +NL),

θ(x) = 1
2(φR(x)− φL(x)) + πx

L
(NR −NL).

(2.31)

Finally, the bosonization identity in this redefined language becomes with Eqs. (2.12) and
(2.28),

ψr(x) = Fr

( 1
2πa

)1/2
eir(kF−

π
L

+ 2π
L
Nr)xeirφr(x)

= Fr

( 1
2πa

)1/2
eir(kF−

π
L

)xe−i(rφ(x)−θ(x)). (2.32)

The total fermionic field is then just ψ(x) =
∑
r ψr(x), since the factor of eirkF x is included

already in Eq. (2.32). 5 The notation here is similar to the one used in Ref. [Gia03], but
note some subtle differences (see App. B for details).

2.2. Spinless, spinful and helical Luttinger liquids

2.2.1. Kinetic energy and electron density

So far, we have considered the spinless Luttinger liquid, where the wavefunction ψ is a
scalar, and can be written as the sum of both chiral fields ψ(x) = ψR(x) + ψL(x) =∑
r ψr(x) (compare with Eq. (2.4), where oscillating factors are included in ψr). Occa-

sionally, the chirality is expressed in the form of components of a pseudo-spin, such that
ψ becomes a vector ~ψ(x) = (ψR(x), ψL(x))T , to emphasize the analogy to a 1 + 1 dimen-
sional Dirac particle [AS10]. We have to replace then, for instance, in the kinetic energy
of Eq. (2.6) the scalar r by the matrix σz. This notation, however, can be misleading, as
one observes best from the spinless electron density,

ρspinless(x) = ψ†(x)ψ(x) =
∑
r

ρr(x) + ψ†r(x)ψ−r(x). (2.33)

This is different from ~ψ†(x)~ψ(x) = ρR(x)+ρL(x) in the above pseudo-spin vector notation.
The last term in the density of Eq. (2.33) is called Friedel oscillations [Gia03, AS10].
Next, let us include an additional degree of freedom in the form of the electron spin, in
which case the wavefunction truly becomes a two-dimensional object. This is the spinor

~ψ(x) =
(
ψ↑(x)
ψ↓(x)

)
=
(
ψR,↑(x) + ψL,↑(x)
ψR,↓(x) + ψL,↓(x)

)
. (2.34)

5Note that from the previous definition in Eq. (2.12), using Eq. (2.24), we find the same identity in terms
of non-chiral fields, as expected.
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2.2. Spinless, spinful and helical Luttinger liquids

In addition to an index R/L, each field therefore has another index σ =↑, ↓= ±1/2, and
we can rewrite everything in terms of the two-index components ψr,σ(x). It turns out, that
most physical quantities can be expressed as a sum of two separate parts with opposite
spin, which hints at the phenomenon of spin-charge separation in a spinful LL [Gia03].
For instance, the kinetic energy of Eq. (2.6) in the spinful basis can be written as

H0 = H0↑ +H0↓ = vF
2π

∫ L/2

−L/2
dx ~ψ†(x)(−ir∂x)1~ψ(x)

= vF
2π

∑
r=R,L;σ=↑,↓

∫ L/2

−L/2
dx ψ†r,σ(x)(−ir∂x)ψr,σ(x), (2.35)

while the total density is given by

ρspinful(x) = ~ψ†(x)~ψ(x) =
∑
σ

ρσ(x) =
∑
r,σ

ρr,σ(x) + ψ†r,σ(x)ψ−r,σ(x). (2.36)

Here, we defined ρr,σ(x) = ψ†r,σ(x)ψr,σ(x).

In this work, we are concerned with a special case of a spinful Luttinger liquid, that
is the helical liquid. In such systems, the electron spin is strongly coupled to the direction
of propagation, such that particles propagating to the right and left have opposite spin.
The helical wavefunction then takes the form

~ψ(x) =
(
ψR,↑(x)
ψL,↓(x)

)
. (2.37)

Due to the locking of chirality and spin, one index is redundant, and can be dropped
eventually. We shall therefore at times use the equivalent notation ~ψ(x) = (ψR(x), ψL(x))T
for the helical spinor. This is why for a number of applications, the helical liquid is
considered an effectively spinless model. In general, however, the two have to be clearly
distinguished, as the basis of the helical liquid is a two-component spinor, while the one
of the spinless LL is a scalar (or a pseudo-spin vector). The kinetic energy in the helical
basis takes the form

H0 = vF
2π

∫ L/2

−L/2
dx ~ψ†(x)(−iσz∂x)~ψ(x) = vF

2π
∑
r=R,L

∫ L/2

−L/2
dx ψ†r,σr(x)(−ir∂x)ψr,σr(x).

(2.38)

Here, we wrote σr with σ+ =↑ and σ− =↓, to indicate spin-momentum locking. The
Eq. (2.38) indeed resembles the spinless version of Eq. (2.6) with an additional, redundant
index σr. On the other hand, we see that the total density of the helical liquid reads

ρhelical(x) = ~ψ†(x)~ψ(x) =
∑
r

ρr(x). (2.39)

As a genuine property of the helical liquid, Friedel oscillations of the density are absent,
in contrast to the spinless LL. Important differences are as well embodied in the form of
the electron interactions, as we discuss next.
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2. Luttinger liquid theory

2.2.2. Form of electron interactions

We expect Coulomb interactions between electrons to be present naturally in the 1D
Luttinger liquid. Two types of interactions, g2 and g4, were already introduced for the
spinless case in Eq. (2.20). Here, we would like to comment in more detail on the specific
form of the interactions in the spinful and helical case. A similar discussion is given in
Ref. [GCT15], App. A.
Quite generally, translational invariant two-body interactions among spinful electrons are
described by terms of the form

Hint =
∑

r,r′,r′′,r′′′,σ,σ′;
r+r′=r′′+r′′′

∫
dx dx′ ψ†r,σ(x)ψ†r′,σ′(x

′)U(x− x′)ψr′′,σ′(x′)ψr′′′,σ(x)

=
∑
r,σ,σ′

∫
dx dx′ U(x− x′)

[
ψ†r,σ(x)ψ†r,σ′(x

′)ψr,σ′(x′)ψr,σ(x)

+ ψ†r,σ(x)ψ†−r,σ′(x
′)ψ−r,σ′(x′)ψr,σ(x) + ψ†r,σ(x)ψ†−r,σ′(x

′)ψr,σ′(x′)ψ−r,σ(x)
]
,

(2.40)

with operators arranged in normal order [Hal81a, Hal81b, Sch97, BF04]. 6 We can identify
three types of interactions, that correspond to terms g4, g2 and g1 of the g-ology classifi-
cation, as we see below. Throughout, we assume that the total spin is conserved in the
interaction process, and moreover, conservation of chiral particle number stipulates that
r + r′ = r′′ + r′′′, leaving only the terms above. In the presence of a lattice, for exam-
ple, this requirement is relaxed and one can think of umklapp scattering (at half filling)
[Gia91, Gia03], with two right-movers scattered into two left-movers, and some momentum
absorbed by the lattice. Such processes can as well be considered a generic interaction
term.
For many-body systems containing plenty of electrons, we generally expect short-range
interactions due to screening effects. In Fourier space, this means that the interaction
potential only varies slowly with momentum. The parameters of the first two terms in
Eq. (2.40) are approximately given by the Fourier component U(q ≈ 0), which illustrates
the fact that such processes correspond to excitations within the same branch, whereas
the last term depends on U(q ≈ ±2pF ), indicating an excitation across the Fermi sur-
face. For simplicity, let us now assume contact (zero-range) interactions of the form
U(x− x′) = U0δ(x− x′), such that the interaction potential is constant in Fourier space.
In the usual g-ology classification, instead of U0, one introduces three independent param-
eters g4, g2 and g1 for the three interaction terms in Eq. (2.40). While for bare Coulomb
interactions, the interaction strengths are expected to be all equal, this is generally not
true anymore for a realistic system. For instance, coupling of the wavefunctions in the one-
dimensional edge states with states in the bulk of a 2D topological insulator, mediated by
spin-orbit coupling, or some spin-dependent screening mechanisms within the edge, may
cause different interaction potentials.

6If the fermionic operators are not arranged in a normal-ordered way but in the form of density-density
interactions, this corresponds to additional single-particle terms (with two fermionic operators after
anticommutations), a subtle difference that is usually ignored.
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2.3. Commutators and correlation functions

For general contact interactions, we thus rewrite Eq. (2.40) as Hint = H1 +H2 +H4, with

H1 = g1,‖/⊥
∑
r,σ,σ′

∫
dx ψ†r,σ(x)ψ†−r,σ′(x)ψr,σ′(x)ψ−r,σ(x), (2.41)

H2 = g2,‖/⊥
∑
r,σ,σ′

∫
dx ψ†r,σ(x)ψ†−r,σ′(x)ψ−r,σ′(x)ψr,σ(x), (2.42)

H4 = g4,‖/⊥
∑
r,σ,σ′

∫
dx ψ†r,σ(x)ψ†r,σ′(x)ψr,σ′(x)ψr,σ(x). (2.43)

Here, we have replaced, in each of the Eqs. (2.41) to (2.43), the constant U0 by the
prefactors g1,‖/⊥, g2,‖/⊥ and g4,‖/⊥, where the index ‖ indicates parallel spins σ = σ′ and
⊥ represents σ = −σ′. All the above processes are expected to be present in a generic
spinful LL.
A very important constraint is given by the Pauli principle: It manifests itself in forbidding
contact interactions of the type g4,‖, since in Eq. (2.43) ψr,σ(x)ψr,σ(x) = 0. Moreover, we
see that after fermionic anticommutation, g1,‖ is of the same form as g2,‖ but with a minus
sign. Therefore they cancel each other in case of equal magnitude, such that then all the
parallel interactions are absent in the spinful LL.
In the spinless system, for the very same reasons, g4 contact interactions are zero and the
only remaining term,

Hspinless
int = H2 +H1 = (g2 − g1)

∑
r

∫
dx ψ†r(x)ψ†−r(x)ψ−r(x)ψr(x) ' 0, (2.44)

vanishes as well if both couplings are of comparable strength. Therefore, we expect no
contact interactions at all in the spinless LL [KF92a, SMHG99, Mas05].
In the helical liquid, however, spin momentum locking implies that processes g4,⊥, g1,⊥
(and g1,‖, g2,‖) are absent. In particular g1-like interactions are suppressed, since it is
impossible to change the chiral branch and keep the same spin. Therefore, the only
remaining interaction term is proportional to g2,⊥ = g2,

Hhelical
int = H2 = g2

∑
r

∫
dx ψ†r,σr(x)ψ†−r,σ−r(x)ψ−r,σ−r(x)ψr,σr(x). (2.45)

If interactions are not contact but finite range, there will be as well interactions of the type
g4,‖ = g4. By inspection of Eqs. (2.44) and (2.45), we see that, importantly, the helical
liquid is only formally spinless, but there is a crucial difference when it comes to electron
interactions.

2.3. Commutators and correlation functions

2.3.1. Commutators

We here give some important commutation relations, using in general time-dependent
fields in the coordinates of Eq. (2.11), so zr = −i(rx − vt) = −irx + vτ . The most
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2. Luttinger liquid theory

fundamental commutation relation is derived from Eqs. (2.9) and (2.10), and reads

[
ϕr(zr), ϕ†r′(z

′
r′)
]

= δrr′
∑
q>0

1
nq
e−q(zr−z

′
r′+a) = −δrr′ log

[
1− e−

2π
L

(zr−z′r′+a)
]

L→∞= −δrr′ log
[

2π
L

(zr − z′r′ + a)−
(2π
L

)2
(zr − z′r′ + a)2 +O(1/L3)

]
.

(2.46)
Here, the identity

∑∞
n=1 y

n/n = − log(1 − y) was used. Whenever it is safely possible,
we take the limits L → ∞ and a → 0 for simplicity. The following two expansions of
Eq. (2.46) are frequently used,

e
[
ϕr(zr),ϕ†r(zr)

]
= L

2πa + 1
2 + aπ

6L +O((a/L)2), (2.47)

e−
[
ϕr(zr),ϕ†r(zr)

]
= 2πa

L
+O((a/L)2). (2.48)

With that, one can derive the essential normal-ordering relation for exponentials of bosonic
fields, so-called vertex-operators. In lowest order, we find

eirϕ
†
r(zr)eirϕr(zr) = eir(ϕ

†
r(zr)+ϕr(zr))er

2[iϕ†r(zr),iϕr(zr)]/2 ≈ eirφr(zr)
(
L

2πa

)1/2
. (2.49)

Since above the left hand side is boson normal-ordered, while the right hand side is not,
this equation defines a normal-ordering relation. With general coefficients λ, λ′, it is

∗
∗e
iλφr(zr) ∗

∗ = eiλϕ
†
r(zr)eiλϕr(zr) = eiλφr(zr)

(
L

2πa

)λ2/2
, (2.50)

∗
∗e
iλφr(zr) ∗

∗
∗
∗e
iλ′φr(z′r) ∗∗ = ∗

∗e
iλφr(zr)eiλ

′φr(z′r) ∗∗

(2π
L

(zr − z′r + a)
)λλ′

. (2.51)

Obviously, normal-ordering for vertex operators works in a way different from the one for
simple operators (compare to Eq. (2.14)). Analogously, we find normal-ordering relations
for the non-chiral fields defined in Eq. (2.31)

∗
∗e
iλφ(x,t) ∗

∗ = eiλφ(x,t)
(
L

2πa

)λ2/4
, (2.52)

∗
∗e
iλφ(x,t) ∗

∗
∗
∗e
iλ′φ(x′,t′) ∗

∗ = ∗
∗e
iλφ(x,t)eiλ

′φ(x′,t′) ∗
∗

(2π
L

√
(z+ − z′+ + a)(z− − z′− + a)

)λλ′/2
= ∗
∗e
iλφ(x,t)eiλ

′φ(x′,t′) ∗
∗

(2π
L

√
x2 + (vτ + a)2

)λλ′/2
. (2.53)

All the results are given in lowest order of a/L. The Eq. (2.53) can be understood as a
operator product expansion of vertex operators (see below).
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2.3. Commutators and correlation functions

The bosonic fields in general do not commute,

[φr(zr), φr′(z′r′)]
L→∞= δrr′ log

(
z′r′ − zr + a

zr − z′r′ + a

)
= −2iδrr′ arctan(i(zr − z′r′)/a)

a→0= −iπδrr′sgn(i(zr − z′r′)), (2.54)

[φ(x, t), φ(x′, t′)] = −iπ4
∑
r

sgn(i(zr − z′r)). (2.55)

We used Eq. (A.5), and sgn(x) is the sign function with sgn(x) = ±1 for x ≷ 0, and
sgn(0) = 0. Note that if both fields are at the same point in time, then

[φ(x, t), φ(x′, t)] = 0. (2.56)

Next, it is helpful to calculate the commutators[
∂xϕ

†
r(zr), ϕr′(z′r′)

]
=
[
−ir∂zrϕ†r(zr), ϕr′(z′r′)

]
= ir

2π
L
δrr′

1
e

2π
L

(z′
r′−zr+a) − 1

= irδrr′

(
1

z′r′ − zr + a
− π

L
+ π2

3L2 (z′r′ − zr + a) +O(1/L3)
)
, (2.57)

[
∂xϕr(zr), ϕ†r′(z

′
r′)
]

= irδrr′

(
1

zr − z′r′ + a
− π

L
+ π2

3L2 (zr − z′r′ + a) +O(1/L3)
)
, (2.58)

as well as

[
∂xφr(zr), φr′(z′r′)

]
= irδrr′

(
1

z′r′ − zr + a
+ 1
zr − z′r′ + a

− 2π
L

)

= irδrr′

(
2a

a2 − (zr − z′r′)2 −
2π
L

)
a→0= 2irπδrr′

(
δ(zr − z′r′)−

1
L

)
.

(2.59)

With that, we arrive at the important relation

[φ(x, t), ∂x′θ(x′, t′)] = i
π

2
∑
r

δ(zr − z′r)−
iπ

L
,

[φ(x, t), ∂x′θ(x′, t)] = iπδ(x− x′) +O(L−1).
(2.60)

In the first line, the term of order 1/L was kept, as it can be important. The two fields
have the form of canonical conjugates. If both fields are at the same point in time, and
sending L → ∞, we recover the well-known identity in the second line of Eq. (2.60).
Using the Heisenberg equation of motion and the above commutators, we can derive the
characteristic relation of the Luttinger liquid,

∂tφ(x, t) = i[HLL, φ(x, t)] = i

∫
dx′ 1

2πvK[(∂x′θ(x′, t))2, φ(x, t)] = vK∂xθ(x, t), (2.61)
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2. Luttinger liquid theory

with HLL given in Eq. (2.23). It can be interpreted as the continuity equation of the
system, see Eq. (2.26).
It is easy to see that moreover,[

∂xφr(zr), ∂x′φr′(z′r′)
]

= ∂x′
[
∂xφr(zr), φr′(z′r′)

] a→0= 2irπδrr′∂x′δ(zr − z′r′), (2.62)

Using the definition of ρr(x, t) in Eq. (2.30), the above equation is identified as the
bosonic version of the anomalous density-density commutator in real space (compare with
Eq. (2.15)). For the non-chiral fields of Eq. (2.31), this leads to the characteristic commu-
tation properties at equal times,

[∂xφ(x, t), ∂x′φ(x′, t)] = [∂xθ(x, t), ∂x′θ(x′, t)] = 0,
[∂xφ(x, t), ∂x′θ(x′, t)] = iπ∂xδ(x− x′).

(2.63)

2.3.2. Correlators

The correlation functions of the Luttinger liquid describe the decay of its elementary exci-
tations with space (and time). They typically display a power-law behaviour, depending
on the interaction strength K. There is an interesting connection to the Mermin-Wagner
theorem [AS10], which states that continuous symmetries cannot be spontaneously broken
in dimensions D ≤ 2. This can be reformulated in the way that for such low dimensions
“correlation functions of order parameters that transform under a continuous global sym-
metry cannot decay more slowly than as a power-law function of distance (or time)”
([Fra13], p.155). In that sense, one can say that the 1D system is at a quantum critical
point.
For simplicity, we give the correlation functions in the limit L → ∞, and use imaginary
time τ = it ∈ (−β, β], where β = 1/T is the inverse temperature. Of interest are the time-
ordered fermionic and bosonic Green functions with T being the time-ordering operator.
The latter is defined (for both real or imaginary time) by [BF04]

T (A(t)B(t′)) = A(t)B(t′)Y (t− t′)±B(t′)A(t)Y (t′ − t), (2.64)

where the ± sign applies to a bosonic/fermionic character of the operators A and B.
Furthermore, Y (x) is the step function with Y (x) = 1 for x > 0, and Y (x) = 0 for x < 0.
As the average is taken with respect to the kinetic energy (no interactions yet) given by H0
in Eq. (2.17), the basic fermionic and bosonic correlations read 〈c†r,kcr′,k′〉 = δrr′δkk′

eβvk+1 and
〈b†r,kbr′,k′〉 = δrr′δkk′

eβvk−1 . We then find with Ref. [vS98] the chiral fermionic Green functions, 7

GFr (x, τ) = 〈T ψr(x, τ)ψ†r′(0, 0)〉 = Y (τ)〈ψr(x, τ)ψ†r′(0, 0)〉 − Y (−τ)〈ψ†r′(0, 0)ψr(x, τ)〉

= δrr′
vβ
π sin(π(zr + σa)/(vβ))

T→0= δrr′

zr + σa
. (2.65)

In the process, a cutoff factor e−kσa with σ = sgn(τ) was introduced for the fermion fields
to regularize the divergence at zr = 0. This is equivalent to introducing a respective
7We denote here the time-ordered Green function in a slightly different way compared to Ref. [vS98],
such that our GF/Br (x, τ) equals −Grr′ (x, τ) of this reference.
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2.3. Commutators and correlation functions

cutoff already in the definition of the fermionic field in Eq. (2.4). Such a regularization
is not unique, and accordingly, alternative choices might slightly modify the form of the
correlations.
For the bosonic Green function, we obtain

GBr (x, τ) = 〈T φr(x, τ)φr′(0, 0)〉 = Y (τ)〈φr(x, τ)φr′(0, 0)〉+ Y (−τ)〈φr′(0, 0)φr(x, τ)〉

= −δrr′ log
(2vβ
L

sin(π(σzr + a)/(vβ))
)
T→0= −δrr′ log

(2π
L

(σzr + a)
)
. (2.66)

In particular, it is GBr (0, 0) = −δrr′ log
(

2vβ
L sin(πa/(vβ))

)
≈ −δrr′ log

(
2πa
L

)
in the limit

of small a. We may also write GF/Br (x, τ) = G
F/B
r (zr). The fact that the fermionic Green

function is proportional to the exponential of the bosonic Green function reflects the
connection between the two representations, as given in the bosonization identity. Note
that the sign σ is an artefact of the time-ordering of the correlation, so we can find the
bosonic greater (lesser) Green function G>,B (G<,B) from the time-ordered function GB by
simply taking σ = +1 (or σ = −1). This is because the bosonic greater and lesser Green
functions are related by G>,Br (x, τ) = G<,Br (−x,−τ), and thus, unlike their fermionic
counterparts, are not independent of each other. 8 The above correlation was calculated
making use of the Bose-Einstein statistics, which is possible in the non-interacting case
of separate single-particle energy levels. Another approach, which has to be taken in the
case of finite electron interactions, is to use Gaussian integrals, as explained for example
in Refs. [AS10, Gia03].
For the non-chiral fields of Eq. (2.31), we have

Gφφ(x, τ) = 〈T φ(x, τ)φ(0, 0)〉 = 1
4(GB+(z+) +GB−(z−))

= −1
4 log

((2vβ
L

)2
sin( π

vβ
(σz+ + a)) sin( π

vβ
(σz− + a))

)

= −1
4 log

((2vβ
L

)2
[sin2( π

vβ
(v|τ |+ a)) + sinh2(πx/(vβ))]

)
, (2.67)

Gθθ(x, τ) = 〈T θ(x, τ)θ(0, 0)〉 = Gφφ(x, τ), (2.68)

Gφθ(x, τ) = 〈T φ(x, τ)θ(0, 0)〉 = 1
4(−GB+(z+) +GB−(z−)) = 1

4 log
(

sin( πvβ (σz+ + a))
sin( πvβ (σz− + a))

)

= − i2 arctan
(

tanh( πvβσx)
tan( πvβ (σvτ + a))

)
= Gθφ(x, τ). (2.69)

Here we used Eqs. (A.4) and (A.7) to simplify the expressions, and wrote στ = |τ |, but one
should keep in mind that we employ imaginary time here. As the fields φ and θ only differ

8When comparing 〈[φr(z(1)
r ), φr(z(2)

r )]〉 ?= G>,Br (z(1)
r − z

(2)
r ) − G<,Br (z(1)

r − z
(2)
r ) from Eqs. (2.54) and

(2.66), one realizes that the two are equivalent only in the limits T → 0, L → ∞ or a → 0, L → ∞.
This is because for the correlations we have previously made some assumptions, in the form of L→∞
and finite temperature. When taking the limit of both infinite length and zero temperature, the actual
order of limits matters, an issue that is discussed in App. H of Ref. [vS98].
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2. Luttinger liquid theory

by signs, they have the same correlation with respect to the non-interacting Hamiltonian.
Note that the above correlations coincide with the one of Ref. [Gia03], taking into account
subtle differences in the notation (see App. B).
We are now able to evaluate correlations of vertex operators, which is the most important
part. First of all, it can be shown that for any operator linear in boson operators, B̃ =∑
q>0(aqb†q + a∗qbq), with c-number coefficients aq, the average with respect to the free

Hamiltonian in Eq. (2.17) obeys the relation [vS98]

〈eB̃〉 = e
1
2 〈B̃

2〉. (2.70)

Evidently, our fields φr, φ are exactly of the form of B̃. For instance, we find with
Eq. (2.66), that

〈eiλφr(zr)〉 = e−
λ2
2 〈φr(zr)φr(zr)〉 =

(2πa
L

)λ2/2
. (2.71)

With this and Eqs. (2.50) and (2.52) above, we see that normal-ordering of vertex-operators
can be defined by its average value,

∗
∗e
iλφr(zr) ∗

∗ = eiλφr(zr)
(
L

2πa

)λ2/2
= eiλφr(zr)

〈eiλφr(zr)〉
, (2.72)

∗
∗e
iλφ(x,t) ∗

∗ = eiλφ(x,t)
(
L

2πa

)λ2/4
= eiλφ(x,t)

〈eiλφ(x,t)〉
. (2.73)

One can immediately observe that 〈 ∗∗eiλφr(zr) ∗∗〉 = 1, as it should be.
As [B̃i, B̃j ] is a c-number, the product of several vertex operators can be phrased with the
help of Eqs. (A.3) and (2.70),

eB̃1eB̃2 . . . eB̃n = e
∑n

j=1 B̃je
1
2
∑

i<j
[B̃i,B̃j ], (2.74)

〈eB̃1eB̃2 . . . eB̃n〉 = e
1
2 〈(
∑n

j=1 B̃j)
2〉
e

1
2
∑

i<j
[B̃i,B̃j ] (2.75)

= e
1
2
∑n

j=1〈B̃
2
j 〉e
∑

i<j
〈B̃iB̃j〉. (2.76)

In the last line we used that (
∑
i B̃i)2 =

∑
i B̃

2
i +

∑
i 6=j B̃iB̃j , and further

∑
i<j [B̃i, B̃j ] =∑

i<j B̃iB̃j −
∑
i>j B̃iB̃j . Since the commutator is just a c-number, we can safely take its

average at any time. Eq. (2.76) is one of the most important formulas in this field, known as
the Debye-Waller relation, and has many parallels to Wick’s theorem. The above formulas
still hold for time-ordered products [Gia03, vS98], and the time-ordering will translate into
all averages in the exponentials according to the rules for ordered exponentials. 9 Note that
depending on the application, the form of Eq. (2.75) or Eq. (2.76) can be more convenient.
9In particular, no commutators appear from the addition of exponentials, since such an arrangement
is already taken care of by time-ordering [Col15]. One can also understand this by the fact that
T [φ(τ1), φ(τ2)] = 0 by construction of bosonic time-ordering. Keep in mind that the operation of time-
ordering is defined only for operators, so comparing T [φ(τ1), φ(τ2)] to Eq. (2.54) does not make a lot
of sense.
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2.3. Commutators and correlation functions

We are interested in operators of the form B̃i = iλiφr(z(i)
r ), with z

(i)
r = −irxi + vτi.

Therefore, we evaluate with Eq. (2.66) and σij = sgn(τi − τj),

〈T eiλ1φr(z(1)
r ) . . . eiλnφr(z

(n)
r )〉 = e

− 1
2
∑n

j=1 λ
2
jG

B
r (0)

e
−
∑

i<j
λiλjG

B
r (z(i)

r −z
(j)
r )

=
(2πa
L

) 1
2
∑n

j=1 λ
2
j

e
∑

i<j
λiλj log[ 2vβ

L
sin( π

vβ
(σij(z(i)

r −z
(j)
r )+a))]

= a
1
2
∑n

j=1 λ
2
j

(2π
L

) 1
2 (
∑n

j=1 λj)
2 ∏
i<j

[
vβ

π
sin( π

vβ
(σij(z(i)

r − z(j)
r ) + a))

]λiλj
. (2.77)

In the limit L→∞, the expectation value of a product of two or more operators is finite
only if

∑
j λj = 0. This important observation is also known as “neutrality rule”. It is

physically motivated by the fact that the correlator, just as the kinetic energy Hamiltonian,
should be invariant under a shift of φr → φr + const., which is the bosonic manifestation
of continuous chiral symmetry [vS98, Fra13]. What is frequently needed is the two-vertex
correlation,

〈T eiλφ(x1,τ1)e−iλφ(x2,τ2)〉 = e−
1
2 2λ2Gφφ(0)eλ

2Gφφ(x1−x2,τ1−τ2)

=
(
πa

vβ

)λ2/2 (
sin2( π

vβ
(v|τ1 − τ2|+ a)) + sinh2( π

vβ
(x1 − x2))

)−λ2/4
. (2.78)

In the limit of zero temperature (and normal-ordering), we recover Eq. (2.53), which
demonstrates the analogy of normal-ordering and averaging in this limit.

So far we have discussed averages taken with respect to the free Hamiltonian. The inter-
esting question now is what happens if we include interactions, so taking the average with
respect to the Luttinger liquid Hamiltonian in Eq. (2.23) instead of the non-interacting
one of Eq. (2.17). Using Gaussian integration, it is found that in this case the bosonic
averages become [Gia03]

Gφφ(x, τ)→ KGφφ(x, τ),
Gθθ(x, τ)→ K−1Gθθ(x, τ),
Gφθ(x, τ)→ Gφθ(x, τ).

(2.79)

Also, inside the correlations the velocity is renormalized by vF → v. Alternatively, to find
the interacting averages, one could rescale the two fields φ → φ

√
K and θ → θ(

√
K)−1,

a transformation that importantly preserves the commutation relation of the two fields
(see Eq. (2.60)). In this rescaled fields, the interacting kinetic energy Hamiltonian now
looks exactly like the non-interacting one, such that correlations are readily computed.
Quite generally, it can be helpful to realize that the interacting Hamiltonian exhibits the
symmetry of a simultaneous interchange of φ↔ θ and K ↔ K−1.

Via the correlation functions, the inclusion of electron interactions has important con-
sequences on the scaling dimensions and the normal-ordering of operators. The scaling
dimension ∆ of an operator is introduced in the next section by the long-distance scaling
of the two-point correlation functions (see Eq. (2.82)). This discussion anticipating, we
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2. Luttinger liquid theory

point out here, that while in the non-interacting case the scaling dimension of a fermionic
operator of either chirality is ∆ψr(x) = ∆

ψ†r(x) = 1/2, in the presence of interactions we find
∆ψr(x) = ∆

ψ†r(x) = (K +K−1)/4. The former we infer from the correlation in Eq. (2.65),
where 〈ψ†r(zr)ψr(0)〉 ∝ |zr|−1. For the latter, we observe using Eq. (2.32) and Eqs. (2.67)–
(2.69), that in the presence of interactions the long-distance scaling of the Green function
takes the form

〈ψ†r(zr)ψr(0)〉 ∝ 〈ei(rφ(x,τ)−θ(x,τ))e−i(rφ(0)−θ(0))〉

∝ eKGφφ(x,τ)+K−1Gθθ(x,τ)−2rGφθ(x,τ) ∝ |zr|−(K+K−1)/2. (2.80)

Here, we use that 〈φ(x, τ)φ(x, τ)〉 = 〈φ(0)φ(0)〉 and similar correlations are only numbers,
and do not contribute to the scaling. Furthermore, the mixed correlations are restricted by
|Gφθ| ≤ π/2 and therefore do not matter for the long-distance behaviour. The scaling of a
vertex operator e±iλφ(x,τ) changes with interactions from ∆exp(±iλφ(x,τ)) = λ2/4 (compare
Eq. (2.78)) to ∆exp(±iλφ(x,τ)) = Kλ2/4. Since the normal-ordering of a vertex operator
can be defined by its average, as given in Eq. (2.73), switching on interactions will as well
affect the normal-ordering relations. Explicitly, Eq. (2.73) is then altered to

∗
∗e
iλφ(x,t) ∗

∗ = eiλφ(x,t)
(
L

2πa

)Kλ2/4
. (2.81)

As we see later, this has interesting implications, related to the fact that normal-ordering
in the presence of finite interactions, K 6= 1, does no longer succeed in making the cutoff
a disappear.

2.4. Normal-ordering and point-splitting, OPE

Above, we have introduced the concept of normal-ordering, in order to regularize poten-
tially diverging expressions. The same can (in most cases) be achieved by a so-called
point-splitting procedure. To illustrate this, we first have to introduce the concept of op-
erator product expansion (OPE), as first described by Wilson and Zimmermann [WZ72].
The problem is, that products of quantum field operators at the same point will diverge in
a way that is uncontrolled. Simply speaking, an OPE is a rule that tells us what happens
if we bring two quantum field operators close together.
Let us first define a general quantum field operator. Suppose the system provides a
complete set of (local) quantum field operators in real space, {φn(x, t)}, with labels
n ∈ {1, . . . , N}, that can be of bosonic or fermionic nature. Such a complete set comprises
the operators necessary to go from any possible state |n〉 of the Fock space to another (with
possibly a different number of particles), for instance by fermionic creation and annihila-
tion operators and powers thereof, and importantly includes the unity operator. In general,
the fields φn can also have multiple components, for example in the case of Dirac fermions
with spin, we have the two-component field ~ψ(x, t) = (ψ↑(x, t), ψ↓(x, t))T . For brevity let
us write now φn(x, t) = φn(z) (for the other chirality one can simply replace z by z). From
such fields we can compose arbitrary local field operators Oi(z) = Oi(φ1(z), . . . , φN (z))
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2.4. Normal-ordering and point-splitting, OPE

with another label i. Adopting partly the notation of Ref. [WZ72], we include the hermi-
tian conjugates such that with Oi also the O†i are listed. For many applications [AS10],
such composed quantum field operators can be conceived of as arbitrary (normal-ordered)
polynomials in the fields and their space-time derivatives. With this in mind, we restrict
ourselves here only to such operators whose two-point correlations have a power-law decay
for large distances, |z − z′| → ∞, in the form of [Car96, Fra13]

〈Oi(z)Oi(z′)〉0 ∝ |z − z′|−2∆i ∀i ∈ {1, . . . , N}. (2.82)

Such a power-law behaviour applies for instance to fermionic annihilation/creation oper-
ators in 1 + 1 dimensions (see Eq. (2.65)). Above, we have defined the so-called scal-
ing dimension ∆i of the operator Oi. This number characterizes the respective field
operator, and will be important in the context of renormalization group theory (see
Sec. 2.5). Fermionic operators in the absence of interactions exhibit a scaling dimen-
sion ∆ψ(x) = ∆ψ†(x) = 1/2, since 〈ψ†(z)ψ(z′)〉 ∝ |z − z′|−1. Importantly, the scaling
dimension defined this way is not necessarily the same as the “physical” (also called
naive) scaling dimension ∆naive

i , that we obtain by a dimensional analysis of the respec-
tive Hamiltonian. For instance, as given above, the vertex operator has scaling dimen-
sion ∆exp(±iλφ(x,τ)) = λ2/4 (in the absence of interactions), though at the same time
∆naive

exp(±iλφ(x,τ)) = 0. The origin of this potential discrepancy is related to the fact, that the
cutoff itself is a dimensionful quantity [AS10].
As we state below, in Eq. (2.91), a power-law decay of the correlation function in Eq. (2.82)
follows naturally for many operators in the context of scaling theory, given that H0 is a
fixed point of the system and the Oi are scaling operators close to this fixed point. If the
distance of two fields Oi(z) and Oj(z′) is short, such that remote fields only have a small
influence, the following approximation is valid [Car96, vS98],

Oi(z)Oj(z′)
z→z′'

∑
k

cijkOk(z)
|z − z′|∆i+∆j−∆k

. (2.83)

Here, the cijk are c-numbers determined by normalization. The above equation is called
OPE. This operation has a fundamental connection to normal-ordering: The expansion
of two operators around the same center can be safely performed if the full product is
normal-ordered. Now suppose that both operators Oi and Oj of Eq. (2.83) are already
normal-ordered. To be able to perform the limit z → z′ we have to normal-order the
operator product, the terms emerging in the process will appear among the Ok in the
OPE. Therefore, in order to determine the unknown right hand side of Eq. (2.83), the
OPE practically means normal-ordering an operator product explicitly and subsequently
expanding around z ≈ z′. Let us assume that in the OPE the two coordinates are separated
by a very small number a, so |z − z′| = a, that plays the role of a short-distance cutoff.
Taking the average of Eq. (2.83), we recognize that the right hand side is nonzero only if the
normal-ordered operator Ok(z) is the unity operator (that we label with index one), given
that Ok is a normal-ordered non-vertex operator. Then, 〈Ok(z)〉 = δk,1 and O1(z) = 1

with ∆1 = 0. We can immediately see that the average diverges characteristically as a
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2. Luttinger liquid theory

power of a, since we get

Oi(z + a)Oj(z) =
∑
k

cijkOk(z)
a∆i+∆j−∆k

, (2.84)

〈Oi(z + a)Oj(z)〉0 = cij1
a∆i+∆j

. (2.85)

To handle the diverging expectation value, we have before used the concept of normal-
ordering, where the divergence was subtracted explicitly. Letting two operators approach
the same point, was safely possible in a normal-ordered product. Similarly, another ap-
proach to regularization is the so-called point-splitting, denoted by colons :(. . .):, where
a finite distance between two operators of the product is kept and the divergence in
Eq. (2.85) is subtracted. We define for a product of two operators [vS98] (compare defini-
tion of normal-ordering in Eq. (2.14))

:Oi(z)Oj(z): = Oi(z + a)Oj(z)− 〈Oi(z + a)Oj(z)〉0. (2.86)

On the right hand side, we see that point-splitting involves examples of OPEs. Note that
the short-distance cutoff a here is not necessarily the same as the momentum cutoff of
bosonic operators used before, however, the two should be identified with each other if one
tries to make a connection between point-splitting and normal-ordering. Doing so, it ap-
pears that point-splitting and normal-ordering are equivalent strategies of regularization,
for both fermionic or bosonic theories. This holds, however, only if the diverging part in
Eq. (2.83) is simply a c-number, such that the divergence can be subtracted properly. As
this is usually the case [vS98], we shall use in the following the notations :(. . .): = ∗

∗(. . .) ∗∗
as synonyms.
We illustrate this analogy for the density operator. From Eq. (2.16), we already know
the normal-ordered version ρr = ∗

∗ψ†r(zr)ψr(zr) ∗∗ = i∂zrφr(zr) + 2π
L Nr, with ∂zr = −ir∂x.

Now,

ψ†r(zr + a)ψr(zr) = 1
Ω
∑
k,q

e(k−q)(zr+a)e−kzrc†r,k−qcr,k = 1
Ω
∑
k,q 6=0

e(k−q)(zr+a)e−kzrc†r,k−qcr,k

+ 1
Ω
∑
k>0

ekac†r,kcr,k + 1
Ω
∑
k≤0

eka(1− cr,kc
†
r,k)

= ∗
∗ψ
†
r(zr + a)ψr(zr) ∗∗ + 1

Ω
∑
k≤0

eka = ∗
∗ψ
†
r(zr + a)ψr(zr) ∗∗ + 1

a
. (2.87)

First, because of 〈0|c†r,k−qcr,k|0〉 = 0 for q 6= 0, such products are already normal-ordered.
If q = 0, normal-ordering (in the present notation) corresponds to bringing the annihilators
to the right hand side for k > 0, and to the left hand side for k ≤ 0. The only term that is
not normal-ordered, is the last one, that diverges as 1/a. From Eq. (2.87), we infer that
〈ψ†r(zr + a)ψr(zr)〉0 = 1/a, in agreement with Eq. (2.85). Note that point-splitting makes
the divergence apparent and tractable. Once a product is regularized (normal-ordered),
we can safely send a to zero, so

:ψ†r(zr)ψr(zr): = ∗
∗ψ
†
r(zr + a)ψr(zr) ∗∗ ' ∗

∗ψ
†
r(zr)ψr(zr) ∗∗ = ρr. (2.88)
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2.5. (Perturbative) Renormalization group theory

Renormalization group (RG) theory is a fundamental and comprehensive method that can
not be explained exhaustively in the scope of this Thesis. Instead, with an eye towards
subsequent applications, we give here a short excerpt of the general theory of perturbative
renormalization group around a fixed point, following Refs. [Car96, AS10, Fra13]. For
more details, it is worthwhile to study for example Ref. [Sha94]. The general idea of
the RG is to gain physical insight from rescaling the operators of the model, while at
the same time integrating out high energy degrees of freedom. This way, one can learn
how operators behave when going to an effective low-energy theory. If a perturbation
grows upon RG, it is called relevant perturbation, and can have crucial impact on the
ground state of the system, such as transitions to localized phases and the breakdown
of transport. On the other hand, operators that shrink upon RG are called irrelevant,
and indicate weak perturbations. Terms that do not change upon rescaling, and therefore
possess the symmetry of scale-invariance, are called fixed points.
The physical properties of a system under consideration are represented by the partition
function Z. Oftentimes, one employs a path integral formulation to write Z in the form of
functional integrals. For this concept, we refer the reader to Refs. [AS10, Sha94, Fra13],
and, as far as the RG is concerned, focus on an operator-based real space approach,
following mostly Ref. [Car96].

2.5.1. Operator-based approach

We assume that the system is described by a Hamiltonian H = H∗ + H ′, where H∗ is a
fixed point of the theory, and H ′ is a small perturbation to the fixed point. In our model,
the fixed point will be given by the interacting Luttinger liquid Hamiltonian H∗ = HLL.
The perturbation can in general be time-dependent, H ′(τ) in imaginary time τ , with the
time-dependence governed by the Heisenberg equation of motion. The canonical partition
function then takes the form [Fra13]

Z = Tr(Te−
∫ β

0 dτ H(τ)) = Tr(e−βH∗Te−
∫ β

0 dτ H′(τ)). (2.89)

Here, T is the imaginary time-ordering operator. In the case of a time-independent per-
turbation, we recover the simple form Z = Tr(e−βH). The tracing operation has to be
understood as Tr(. . .) =

∑
n〈n|(. . .)|n〉, where we sum over a complete set of Fock space

states {|n〉}.
A complete set of (local) quantum field operators of the system H∗ at the fixed point shall
be given by {φn(~r)}, where now we write the vector ~r = (x, vτ) in 2D space-time, using
imaginary time τ = it. Importantly, we consider the operators φn to be scaling operators
(fields), which means that they transform homogeneously (or irreducibly) under rescaling,

φn(b−1~r) = b∆nφn(~r). (2.90)

Here, b 6= 1 rescales both components of ~r (isotropically), and ∆n is the scaling dimension
of φn. In other words, scaling operators do not mix under rescaling. Treating scale invari-
ance as a symmetry of the fixed point, one can always choose a set of operators such that
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2. Luttinger liquid theory

the φn transform irreducibly [Fra13]. It can be shown from general symmetry arguments
[Car96, Fra13], that at the fixed point the two-point correlations of scaling operators have
a pure power-law behaviour, and are even orthogonal in the scaling dimensions,

〈φn(~r)φn(~r′)〉∗ = |~r − ~r′|−2∆n ,

〈φn(~r)φm(~r′)〉∗ = δ∆n,∆m |~r − ~r′|−2∆n .
(2.91)

Now, let us again introduce more general operators {Oi(~r)}, labeled by the index i, that
are composed of the fields {φn(~r)}. We insist though, that the Oi are as well scaling
operators, and decay as a power law for large distances, so

Oi(b−1~r) = b∆iOi(~r),
〈Oi(~r)Oi(~r′)〉∗ ∝ |~r − ~r′|−2∆i .

(2.92)

Even though the above conditions seem quite restrictive, they will be fulfilled for most
of the important physical operators we consider. We now study the rescaling of a quite
general perturbation of the form [Fra13]∫

dτ H ′(τ) =
∫

dDr
∑
i

a∆naive
i −DλiOi(~r), (2.93)

where λi are coupling constants. Here, we have written an integral of general dimension-
ality D, which will be useful in the following. In the case of one spatial and one temporal
dimension each, we have D = 2 and d2r = vdx dτ . The power of a is introduced in order
to make the couplings dimensionless. In this introductory part, we shall for simplicity
assume that ∆naive

i = ∆i, meaning that the physical scaling dimension equals the long-
distance scaling dimension. For applications where this is not the case, the power of a can
be readily adapted, for instance by writing powers of a/L, as emerging in the process of
normal-ordering. Expanding Eq. (2.89) for small λi yields

Z = Z∗[1−
∫

dDr
∑
i

λia
∆i−D〈TOi(~r)〉∗

+ 1
2

∫
dDr dDr′

∑
i,j

λiλja
∆i+∆j−2D〈TOi(~r)Oj(~r′)〉∗ +O(λ3)].

(2.94)

Here, it is Z∗ = Tr(e−βH∗). The perturbative RG is now supposed to tell us, how the
couplings λi evolve, when going to an effective low-energy theory. A RG transformation
always contains the three following steps: (i) integrating out high energy modes, (ii)
rescaling and (iii) normalization of the operatorsOi.
We use a real space formulation and consider the integral

∫
r>a dDr , where r = |~r|. Here,

we have introduced the short-distance cutoff (minimum length scale) a, since correlations
potentially diverge for short separations in real space. In doing so, we by hand exclude
some degrees of freedom in the form of short distances from the full integral. Integrating
out further high-energy modes corresponds to increasing a, so a → ba with b > 1. In a
momentum space formulation, a high energy cutoff was instead given by excluding large
momenta, so in the integrals

∫ Λ
−Λ dDk , we can associate the momentum cutoff Λ ≈ 1/a
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2.5. (Perturbative) Renormalization group theory

with the short-distance cutoff. Λ then has to be reduced to integrate out high energy
degrees of freedom. Note, that now we have imposed an isotropic cutoff on both space
and time. In the second step, we rescale ~r → b~r in order to restore the original range of
the integral. In the third step, we normalize the operators Oi using the scaling properties
of Eq. (2.92). Studying the first-order term in Eq. (2.94), the three steps are∫

r>a
dDr

∑
i

a∆i−Dλi〈TOi(~r)〉∗
(i)→
∫
r>ba

dDr
∑
i

a∆i−Dλi〈TOi(~r)〉∗

(ii)→
∫
r>a

dDr bD
∑
i

a∆i−Dλi〈TOi(b~r)〉∗
(iii)→

∫
r>a

dDr
∑
i

a∆i−DbD−∆iλi〈TOi(~r)〉∗. (2.95)

After re-exponentiation of the expansion of Eq. (2.94), the effect of the (so far only first
order) rescaling can be attributed to a change of the coupling constant λi = λi(b), where
λi(b) = λib

D−∆i in Eq. (2.95). We use a new running parameter ` (instead of a), where
b > 1 means a small change in ` by d`, as b = ed` ≈ 1 + d` with d` � 1. For any
power we get bx ≈ 1 + xd`. Note that effectively, we then have a = a0e

`, with a bare
cutoff a0, and rescale a → ba ≈ a(1 + d`). In parameters ` only, this rescaling can be
written as λi(`)

`→`+d`→ λi(` + d`) = λi(`)e(∆i−D)d` ≈ λi(`)(1 + (∆i − D)d`). Using that
λi(`+ d`) ' λi(`) + d

d`λi(`)d`, we find in first order

d

d`
λi(`) = (D −∆i)λi(`). (2.96)

The right hand side of Eq. (2.96) (sometimes referred to as Gell-Mann-Low equation)
is called β-function. This order of approximation (first order), is usually called “tree-
level” [Fra13]. We see, that as long as the physical dimension and the scaling dimension
are equivalent, the first-order RG of Eq. (2.95) can as well be achieved by rescaling the
prefactor that compensates for the dimensions by a → a(1 − d`) (because the power
exponent has the opposite sign). In this case, the tree level RG can often be read off by
a simple inspection of the dimensions of the operator of interest.
It is readily checked that the Luttinger liquid Hamiltonian, given in Eq. (2.23), is indeed
a fixed point: From the correlators given in Eqs. (2.67)–(2.69) (e.g. at zero temperature),
we infer that 〈∂xφ(x)∂xφ(0)〉 ∼ 1/x2, therefore ∆∂xφ = 1, and analogously ∆∂xθ = 1. The
respective squared operators, making a appearance in HLL, thus have a scaling dimension
of two. Considering the Luttinger parameters, the coupling constants of the problem,
Eq. (2.96) tells us that they will not change under renormalization, as d/d`(vK)(`) = 0
and d/d`(v/K)(`) = 0, which is the definition of a fixed point.
As pointed out in Ref. [Car96], the cutoff a enters in the RG in several ways. Most
importantly, it appears explicitly in the form of prefactors a∆i−D, but also implicitly in
the form of potential short-distance divergences of the two-point correlation functions.
Moreover, the cutoff enters through dimensionless factors of a/L. Up to first order in the
coupling constant, renormalization effects can be studied simply by power-counting of a
(see Eq. (2.96)). Starting from second order in the couplings, however, cutoff-dependent
correlations need to be accounted for in the perturbative RG, as we shall see in the
following. With the OPE of Eq. (2.83), we can simplify the second-order term of Eq. (2.94)
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to
1
2

∫
|~r−~r′|>a

dDr dDr′
∑
i,j

λiλja
∆i+∆j−2D〈TOi(~r)Oj(~r′)〉∗

' 1
2

∫
|~r−~r′|>a

dDr dDr′
∑
i,j,k

λiλjcijka
∆k−2D〈TOk(~r)〉∗

(i)→ 1
2

∫
|~r−~r′|>ba

dDr dDr′
∑
i,j,k

λiλja
∆k−2Dcijk〈TOk(~r)〉∗

= 1
2

(∫
|~r−~r′|>a

−
∫
ab>|~r−~r′|>a

)
dDr dDr′

∑
i,j,k

λiλja
∆k−2Dcijk〈TOk(~r)〉∗. (2.97)

Anticipating divergences of the two-point correlation function, we restrict the distance of
coordinates by a short-distance cutoff. While the first term simply gives back the second-
order term in Eq. (2.94), the last term takes the form of the first-order contribution,
and thus renormalizes λ. We approximate the integral by putting [GS88, Fra13, Car96]
|~r − ~r′| = a on a shell of ad`. The integral over r′ then yields a factor SDaDd`, where
SD = 2πD/2/Γ(D/2) is the surface of a D-dimensional hypersphere, with Γ(x) being the
Euler gamma function.

− 1
2

∫
ab>|~r−~r′|>a

dDr dDr′
∑
i,j,k

λiλja
∆k−2Dcijk〈TOk(~r)〉∗

' −1
2SDd`

∫
dDr

∑
i,j,k

λiλja
∆k−Dcijk〈TOk(~r)〉∗. (2.98)

Comparing to the first-order term in Eq. (2.94), we have found a correction in second
order of λ. Note, that this contribution has a different physical origin (regularization of
the correlation functions) than the first-order contribution. With this, the RG equation
for the coupling λ now reads (“one-loop” β-function)

d

d`
λi(`) = (D −∆i)λi(`)−

1
2SD

∑
n,m

λn(`)λm(`)cnmi. (2.99)

We emphasize again, that above we have used an isotropic cutoff of the full space-
time vector ~r, as it is commonly done [Car96, Gia03]. Explicitly, in D = 1 + 1 di-
mensions, this means that we postulate the full space-time vector to be bounded by
r = |~r| =

√
x2 + (vτ)2 > a. On the other hand, one might imagine an anisotropic cutoff

to be imposed only on either of space or time. The choice of a cutoff can be important for
the resulting scaling, as we demonstrate later. It therefore remains to be clarified what
kind of cutoff should be imposed.

2.5.2. Meaning of the cutoff

According to Ref. [GNT04] (p.16), the cutoff a should be considered the “smallest pos-
sible interval between two points in (τ, x)-space”, which applies to both isotropic and

36



2.5. (Perturbative) Renormalization group theory

anisotropic choices. Whether or not the cutoff is chosen to be isotropic, also depends on
the physical meaning we assign to the cutoff, and the symmetries of the system.
First, Lorentz invariance of the system, which means invariance under space-time rota-
tions, implies isotropy of the cutoff. For instance, in the context of RG, we find ([Fra13],
p.65): “For simplicity, in what follows we assume that the rescaling is isotropic both in
space and in space-time. Thus, we are assuming that there will be an effective Lorentz
invariance in the system of interest.” Indeed, Lorentz invariance is present in the Luttinger
liquid model we study here. However, we like to point out, that introducing a cutoff it-
self breaks the translational, and therefore Lorentz invariance of the system. The same
appears, if any kind of impurity or disorder potential is introduced. In a suchlike realistic
system, we therefore do not expect global Lorentz symmetry.
In a discretized theory, the cutoff seems to have a natural physical meaning in the sense
of the minimal distance between two sites, while in a continuum field theory this is less
obvious. This point is, for instance, made in Ref. [Car96], in the context of potential
short-distance divergences of the integrals ([Car96], p. 88): “On the lattice, this would be
regulated by the lattice itself. In the continuum approach, it is more practical to intro-
duce a rotationally invariant cut-off, and to insist that all integrals should be restricted to
|ri − rj | > a. In the interacting gas picture, this corresponds to introducing a hard core
repulsion of radius a between the particles. This cut-off, although crude, is quite sufficient
for the first-order calculation of the renormalization group functions.” These arguments
make a case for a spatially homogeneous cutoff, but except for practical purposes, there
would be no reason to use a cutoff that is isotropic in space and time. On the other hand,
Haldane states that the regularization of momentum sums is more of a technical require-
ment, and should not be associated with a lattice spacing [Hal81b]. Nevertheless, it makes
sense to relate the cutoff to the effective energy bandwidth of the system [vS98, ZvD00].
We conclude, that any realistic system should provide a momentum cutoff, that we un-
derstand as the effective bandwidth of the (linear) energy spectrum. The isotropic choice
of a cutoff seems to be more a matter of convenience than a physical requirement. Based
on the original, regularizing purpose of the cutoff, it can be as well sufficient to impose a
cutoff only on one variable (space or time), depending on the application, as long as no
fundamental symmetries of the system are violated.
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3. Conductance of the helical liquid
Having set the stage in the previous chapter, we now turn to the actual transport signatures
of the helical liquid. Most importantly, the conductance of a system reflects the hindrances
for the electron flow. For a helical liquid with a single channel, the bare conductance has
a precise, universal value. This leads to the typical quantization of the total conduc-
tance, that is a hallmark of the quantum spin Hall state. Obstacles such as interspersed
impurities, generally induce backscattering processes, and thus reduce the conductance
in the form of characteristic power-law corrections, that depend on the temperature and
the applied bias voltage. At the helical edge, a peculiar protection mechanism (due to
time-reversal symmetry) prevents the particles from backscattering elastically. Therefore,
electron transport is robust up to corrections arising from inelastic backscattering pro-
cesses, which renders helical states particularly interesting for the analysis of correlated
electron effects. The goal of this Thesis is to examine such backscattering mechanisms,
the corresponding microscopic sources, and the explicit transport signature, that one can
expect in a realistic system. Hereby we study only backscattering within a single transport
channel (no inter-channel or inter-edge scattering).
In this chapter, we briefly review the general methods of calculating the conductance in
both equilibrium and non-equilibrium situations. The latter is typically given, if, of the
two usual energy scales, the bias voltage is greater than the temperature. Furthermore,
the influence of non-interacting leads, attached to the interacting LL, is discussed. Subse-
quently, we study the generic backscattering operators of the helical liquid. Generic here
means, that the explicit form of the operators is derived by a general symmetry analysis,
and not from microscopic processes. They can, or cannot, be present in a realistic mate-
rial, depending on the specific properties of the system. Corresponding physical sources of
backscattering, with a special emphasis on Rashba spin-orbit coupling, will be discussed
in the subsequent Chap. 4 and Chap. 5.

3.1. Equilibrium theory

3.1.1. Conductivity and conductance

Following standard methods [KF92a, Mas95, MS95, Mas05, Gia03], we compute the (first
position-dependent) conductivity σ of the system in equilibrium, at finite temperature.
The result holds approximately in a regime, where the bias voltage is small compared to
the temperature. Using the Kubo formula, we have

σω(x, x′) = ie2ω2
n

π2ω
Gωn(x, x′)|ωn→iω−ε, (3.1)

Gωn(x, x′) = Gωn(x− x′) =
∫ β

0
dτ 〈Tφ(x, τ)φ(x′, 0)〉e−iωnτ . (3.2)
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Here, Gωn is called the Matsubara Green function, whereas ωn are the Matsubara fre-
quencies (that generally depend on the temperature). The above correlator can as well
be related to the current-current correlation, using j = ∂tφ/π = −i∂τφ/π. Eventually, we
perform the analytical continuation ωn → iω − ε, with some positive infinitesimal ε, in
order to find the conductivity in terms of real frequencies.
In the absence of perturbations, we can find the free propagator G0

ωn from the correlation
functions given in Sec. 2.3. In the limit of small spatial distances, and low temperatures,
the relevant dc-contribution to Eq. (3.1) can be given by [MS95, Mas95]

G0
ωn(x, x′) =

∫ β

0
dτ 〈Tφ(x, τ)φ(x′, 0)〉0e−iωnτ '

Kπ

2|ωn|
. (3.3)

From the inspection of the Matsubara and the retarded Green function (in the real fre-
quency domain), one finds [Mas95], that the analytical continuation in the limit of ω → 0
results in G0

ωn(x, x′)|ωn→iω−ε = iKπ
2ω , such that the conductivity is real, as it should be.

As we are interested in the dc-transport properties, we eventually study the (position-
independent) conductance G, which is the quantity of physical interest, 1

G = lim
ω→0

1
L

∫
dx′ σω(x− x′). (3.4)

For instance, with Eq. (3.3), we obtain the free conductance G0 = e2K/(2π) per edge
channel. This leads to the well-known quantization of the total conductance in a 2D
topological insulating system. In the presence of sources of backscattering, we expect
corrections to the total conductance, such that (in the weak-coupling limit)

G = G0 − δG. (3.5)

Such corrections δG will be the subject to upcoming sections.
The above method relies on the assumption that the strength of the backscattering impu-
rities is small, which means that we are in the so-called “weak-coupling limit”. In order
to determine the corresponding corrections to the conductance, the operator average in
Eq. (3.2) can then be calculated perturbatively. On the other hand, if the impurity poten-
tial is very large at the energy scale under consideration, for instance because it is relevant
in an RG sense, we face the “strong-coupling limit”. In this case, a slightly different ap-
proach has to be employed (see more below).

3.1.2. LL with attached leads

As we have seen in the previous section, using an equilibrium framework, the free conduc-
tance per edge channel in the wire is found to be (see Eqs. (3.3) and (3.4))

G0 = e2 K

2π , (3.6)

1We defined here the position-dependent conductivity σω(x−x′), while the position-independent quantity
simply reads σ =

∫
dx σω(x−x′). Therefore, the relation G = σ/L holds, as it should be for 1D systems

(see e.g. [Gia03], Chap. 7).
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and thus depends on the interaction strength K. The technical reason is that the propa-
gator G0

ωn ∝ 〈φφ〉0 ∝ K in Eq. (3.3) is affected by the interactions in the channel [KF92a].
This result was shown to be in contrast to experiments, where the free conductance of
long, high-mobility GaAs wires did not exhibit any interaction-dependence [THS95]. The
experimental finding can be reproduced in the above model, when the conductance of a
system is computed, where the wire is attached to non-interacting leads, that play the
role of electron reservoirs [MS95, SS95, Pon95]. Such reservoirs are assumed to be higher-
dimensional, metallic objects of great extent. As screening can work more efficiently there,
than in the actual edge channel, it seems reasonable to consider the contacts as effectively
non-interacting. Making use of the boundary conditions at the wire-lead interface, the
free propagator G0

ωn is dominated by the lead properties, and K should be replaced by
the effective KLead ≈ 1 in Eq. (3.3), such that G0 = e2/(2π).
If a finite bias voltage is applied, creating different chemical potentials for the right- and
left-moving particles, the system is not expected to be in equilibrium anymore. In this
case, non-equilibrium techniques such as the Keldysh framework have to be employed
[Kel64] (see [Ram07] for a good review). We next discuss, how non-interacting leads that
change the initial distribution of right- and left-movers can be included into the Keldysh
model, following closely Ref. [PBW03], and later use this technique to calculate the non-
equilibrium conductance in the presence of such contacts, and a single SOC impurity.

3.2. Non-equilibrium theory

3.2.1. Keldysh operator average

A non-equilibrium approach is required, for instance, when dealing with a finite bias
voltage, that is expected to drive the system out of its thermal equilibrium. Let us
first review the idea of a quantum mechanical operator expectation value in conventional
equilibrium theory [BF04]. 2 Consider an operator O(t), that might have an explicit time-
dependence, in a system modeled by the Hamiltonian H(t) = H0 +H ′(t), where H ′(t) is
a small time-dependent perturbation. We define a general time evolution operator UX ,
which describes the time-dependence governed by the Hamiltonian X, by

UX(t, t0) = T e−i
∫ t
t0

dt′ X(t′)
, (3.7)

where T is again the time-ordering operator defined in Eq. (2.64). Explicitly, it is
UH0(t, t0) = e−iH0(t−t0). Furthermore, we abbreviate an operator, whose time-dependence
is governed by the Hamiltonian X, by

OX(t) = U †X(t, t0)O(t)UX(t, t0). (3.8)

Following a widely-used convention, the time evolution of an observable with respect to
the free system shall as well be denoted by OH0(t) = OI(t).
In the Heisenberg picture, the initial states |n〉 = |n(t0)〉 gain a time-dependence [BF04]

|n(t)〉 = UH0(t, t0)UH′I (t, t0)|n〉 = UH(t, t0)|n〉. (3.9)
2Note that in contrast to above, in the following we use a real-time formalism.
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3. Conductance of the helical liquid

In the last line we used the Dyson formula [Ram07] UH′I (t, t0) = U †H0
(t, t0)UH(t, t0).

Similarly, the density matrix of the free system, ρ0 = e−βH0 =
∑
n |n〉〈n|e−βEn , evolves as

ρ(t) =
∑
n |n(t)〉〈n(t)|e−βEn = UH(t, t0)ρ0U

†
H(t, t0). In the presence of the perturbation,

the time-dependent expectation value of the operator O(t) takes the form

〈O(t)〉 = 1
Z0

Tr(ρ(t)O(t)) = 1
Z0

Tr(UH(t, t0)ρ0U
†
H(t, t0)O(t))

= 1
Z0

Tr(ρ0U
†
H(t, t0)O(t)UH(t, t0)) = 〈OH(t)〉0, (3.10)

where we used the cyclic permutation properties of the trace. Z0 = Tr(ρ0) is the partition
function of the free system. To make a connection to the later Eq. (3.22), we note that
this can be rewritten again in the form of

〈O(t)〉 = 1
Z0

Tr(ρ0U
†
H′I

OI(t)UH′I ). (3.11)

The concept of equilibrium perturbation theory is based on the assumption, that the sys-
tem is unperturbed at an initial point in time, t0, and subsequently, the perturbation
is switched on adiabatically. The presence of the perturbation drives the system out of
equilibrium, however, if it is switched on in a sufficiently slow way, the system remains
approximately in its instantaneous eigenstate. This assumption is known as the “adiabatic
theorem”. It allows for particular simplifications, most importantly, the eigenstates of the
system at times t = ±∞ can only differ by a phase, |n(∞)〉 = eiφ|n(−∞)〉, with some
scalar φ [Mac07, Ram07]. The process of turning on the perturbation can for instance be
modeled by H(t) = H0 + e−ε|t|H ′, with a small positive number ε. Note that the term
“equilibrium” should not be confused with the notion of “steady state”, which simply
means that the system does not change with time.
In a non-equilibrium theory, such as the Keldysh-Schwinger framework [Sch61, KB62,
Kel64], adiabaticity is not expected to hold anymore. Instead, perturbations drive the
system out of equilibrium immediately after being switched on. The eigenstates of the
system at t = ±∞ then are not related in a simple way, however, one can avoid refer-
ence to the generally unknown state at t = ∞ by winding it back to t = −∞, using
Eq. (3.9), so |n(∞)〉 = UH(∞,−∞)|n(−∞)〉. This gives rise to a more refined time-
ordering structure, called the Keldysh contour, including a forward (+), and backward
(−) time branch. A more detailed description of the general theory can be found in the
literature, e.g. Ref. [Ram07]. Here, we mainly use the finding that the non-equilibrium
operator expectation value is given by [Mar05]

〈O(t)〉 = 1
2
∑
η=±

〈
TK

[
OηI (t)e−i

∫
K
dt′ H′I(t′)

]〉
0
. (3.12)

Here, η = ± is the Keldysh index representing the position of the respective operator Oη
on one of the two time branches of the Keldysh contour, and we used that

∫
K dt X(t) =∑

η′
∫∞
−∞ dt η′Xη′(t). The Keldysh contour is a closed time path, with the (+)-branch

going from t = −∞ to t =∞, and the (−)-branch going all the way back from t =∞ to
t = −∞. TK denotes the Keldysh time-ordering operator, which sorts operators according
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3.2. Non-equilibrium theory

to their position along the contour. Importantly, the (−)-branch is always “later” on the
contour than the (+)-branch and thus operators O− will be contour-ordered to the left
of all operators O+. Explicitly, the contour ordering of two operators A(t) and B(t′)
corresponds to [Ram07]

TKAη(t)Bη′(t′) =


T A(t)B(t′) if η = η′ = +,
±B(t′)A(t) if η = +, η′ = −,
A(t)B(t′) if η = −, η′ = +,
T̄ A(t)B(t′) if η = η′ = −.

(3.13)

The regular time-ordering T holds on the (+)-branch, while anti time-ordering T̄ takes
place on the (−)-branch. The upper (lower) sign in the second line of Eq. (3.13) applies
to bosonic (fermionic) operators A and B.
In general, the equilibrium and non-equilibrium expectation values in Eqs. (3.10) and
(3.12) are clearly different. However, in the lowest-order expansion of the perturbation
H ′, the linear response regime, the two expectation values coincide and one recovers the
well known Kubo formula [BF04]. To illustrate this, we compute Eq. (3.12) up to linear
order. For bosonic operators, it is

〈O(t)〉 ' 〈OI(t)〉0 −
1
2 i

∑
η,η′=±

∫ ∞
−∞

dt′ η′
〈
TKOηI (t)(H ′I)η

′(t′)
〉

0

= 〈OI(t)〉0 −
1
2 i
∫ ∞
−∞

dt′ 〈T OI(t)H ′I(t′) +OI(t)H ′I(t′)

−H ′I(t′)OI(t)− T̄ OI(t)H ′I(t′)〉0

= 〈OI(t)〉0 −
1
2 i
∫ ∞
−∞

dt′ 2〈[OI(t), H ′I(t′)]〉0θ(t− t′)

= 〈OI(t)〉0 − i
∫ t

−∞
dt′ 〈[OI(t), H ′I(t′)]〉0. (3.14)

This is exactly the Kubo expression, which can be obtained as well from a lowest-order
expansion of the equilibrium expectation value, taking t0 → −∞. For fermionic operators,
the commutator in Eq. (3.14) is replaced by the anticommutator.

3.2.2. Implementation of a voltage bias

Let us consider a system governed by H = H0 +H ′, with a perturbation H ′. Additionally,
we take into account, that the system is brought out of equilibrium by the application of
a bias voltage

HV = − 1
π

∫
dx

(
µ+ψ

†
+(x)ψ+(x) + µ−ψ

†
−(x)ψ−(x)

)
= eV

2 (N+ −N−). (3.15)

The bias represents a shift of the chemical potentials, µ± = ±eV/2. We see that it only
alters the zero modes, changing the ratio of right- and left-movers in the system. Defining
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3. Conductance of the helical liquid

H ′V = H0−HV , as well as ρV = e−βH
′
V , and ZV = Tr(ρV ), we assume that the operator

average takes the form

〈O(t)〉 = 1
ZV

Tr (ρV (t)O) = 1
ZV

Tr
(
ρV U

†
HOUH

)
= 1
ZV

Tr (ρVOH(t)) , (3.16)

where compared to Eq. (3.10), we have replaced ρ0 by ρV . The physical assumption behind
this approach is the following: Already in the initial, unperturbed state (time t → −∞),
the bias voltage changes the energy of right- and left-moving particles relative to each
other, such that the system is driven out of equilibrium. On the other hand, the contact
bias is a static constraint, which does not affect the time-evolution of the states. Using
that, [H0, HV ] = 0, we can absorb the bias voltage in a unitary transformation U of the
form

Uρ0U
† = Ue−βH0U † = e−β(H0−HV )eC = ρV e

C ,

U = exp
(
i
eV L

4vFπ
(f+ − f−)

)
= (F †+F−)eV L/(4vF π).

(3.17)

Here, we use an exponential notation of the Klein factors of the form F †± = eif± and
F± = e−if± . The f± still have the characteristic commutation properties with the zero
modes, as [Nη, fη′ ] = −iδηη′ , and [fη, fη′ ] = [Nη, Nη′ ] = 0, with η = ± [PBW03]. By
rewriting U in terms of the former F±, we see that such a transformation can be interpreted
as a change of the chiral particle numbers, proportional to the bias. Importantly, we
assumed in the definition of the shifting operator U in Eq. (3.17), that the zero modes
in H0 are proportional to the bare velocity vF , which corresponds to the assumption
of non-interacting leads (see below). Using U † on the particle number operators from
the left hand side, is equivalent to a voltage-dependent shift of N± → N± ± eV L

4πvF . An
unimportant constant C = β(eV )2L/(4πvF ) arises as well, that will cancel later on. With
that, Eq. (3.16) can be rewritten as (we now drop the explicit time-dependence for brevity)

〈O〉 = 1
Z0

Tr
(
Uρ0U

†U †HOUH
)

= 1
Z0

Tr
(
ρ0(U †U †HU)(U †OU)(U †UHU)

)
= 1
Z0

Tr
(
ρ0Ũ

†
HÕŨH

)
. (3.18)

We defined the operation of U on a general operator O by

Õ = (U †OU). (3.19)

We thus have to evaluate the modified time evolution ŨH . Using again Dyson’s equation,
we obtain

ŨH = U †UHU = (U †UH0U)(U †UH′IU) = UH0+HV e
CU(H̃′)H0+HV

. (3.20)

Note, that while (by definition) UUH0U
† = UH0−HV e

C , one finds U †UH0U = ŨH0 =
UH0+HV e

C . The simplifications in the second factor of Eq. (3.20) can readily be checked
[PBW03, GCT15]. Considering the bias a constituent of the free system, one might shorten
the notation by labeling again OH0+HV as OI , however, we shall refrain from doing so here
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3.2. Non-equilibrium theory

in order to not confuse the notation. Explicitly, the perturbation-dependent part of the
time-evolution reads

U(H̃′)H0+HV
= T exp

[
−i
∫ t

0
dt′ (H̃ ′)H0+HV (t′)

]
. (3.21)

Eventually, we get from Eq. (3.18)

〈O〉 = 1
Z0

Tr
(
ρ0U

†
(H̃′)H0+HV

ÕH0+HV (t)U(H̃′)H0+HV

)
. (3.22)

When comparing this finding to Eq. (3.11), we observe, that the implementation of the
bias corresponds to the effective substitution OI → ÕH0+HV and H ′I → (H̃ ′)H0+HV .
Because H0 and HV commute, and are both time-independent, such a replacement takes
the simpler form

O → ÕHV = ÕV ,

H ′ → (H̃ ′)HV = (H̃ ′)V .
(3.23)

3.2.3. Free conductance with leads

To give an example, we use this approach to calculate the free conductance of the system.
The free current, in the absence of perturbations, reads (putting back the elementary
charge e, [GCT15])

j0 = evF
L

(N+ −N−). (3.24)

This can be compared to the integrated current density, defined in Eq. (2.29),

jno contacts
0 = e

L

∫ L/2

−L/2
dx j(x) = e

L

∫ L/2

−L/2
dx

[
vK

2π ∂x(φ+(x)− φ−(x)) + vK

L
(N+ −N−)

]
= evK

L
(N+ −N−).

(3.25)
The particle-hole excitations, φr, do not contribute to the integrated current due to the
periodic boundary conditions of the bosonic fields, φr(L/2) = φr(−L/2). In Eq. (3.24),
only the bare Fermi velocity vF enters, instead of vK in the free current of Eq. (3.25).
This distinction is based on the following reasoning: In the former, we identify the zero
modes with the non-interacting contacts attached to the LL wire, while in the latter,
we did not assume any such leads. As mentioned above, in a composed system of leads
connected to the 1D edge channel (see Fig. 3.1), the contacts can be viewed as reservoirs
providing a large amount of electrons. Therefore, the particle numbers (zero modes) of
the full system will be dominated by the number of particles of the contacts, and thus, the
influence of the non-interacting leads can be incorporated in the decoupled zero-modes.
This assumption has been used implicitly already in the definition of U in Eq. (3.17). 3

3Implementing the bias was as well possible with interacting zero modes (no leads). Then, the trans-
formation U only affects the combination (N+ − N−)2 in H0, and we have to replace vF by vK in
Eq. (3.17). The free conductance remains independent of K, if, consistently, we use the definition of j
in Eq. (3.25).
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3. Conductance of the helical liquid

Figure 3.1.: Sketch of an interacting Luttinger liquid attached to non-interacting leads. The con-
tacts represent electron reservoirs, that provide electrons for the counterpropagating transport
channels. The energy of the particles depends on the applied bias voltage, which is proportional
to the difference of the chemical potentials.

The respective interaction-independence will directly translate into the free conductance
of the system. Alternatively to the definition of Eq. (3.4), the conductance can be given
by the dI/dV -characteristics,

G = d〈j〉
dV

. (3.26)

In the absence of a bias, the free current vanishes at thermal equilibrium, since right- and
left-movers are then equally numerous. Adding a bias voltage the way we described above,
we obtain with Eq. (3.23),

(j̃0)V = j0 + e2V

2π , (3.27)

G0 = d

dV
〈(j̃0)V 〉0 = e2

2π . (3.28)

G0 is the free conductance of the system, which does not depend on interactions here, in
agreement with the discussion in Sec. 3.1.2. We see that in this model, a voltage bias can
be conveniently introduced, resulting in a shift of operators as given in Eq. (3.23). This
approach turns out to be especially useful in bosonic language. Furthermore, it allows
to account for (non-interacting) contacts of the system by a simple modification of the
effective velocity of the zero modes.

3.2.4. Galilean invariance

Whether the conductance of the free system, with or without leads, depends on the electron
interaction strength, is fundamentally related to the distinction of the two velocities vK
and vF in the setup. Interestingly, these two parameters can be related by the symmetry
of Galilean invariance, in systems with an underlying parabolic energy dispersion, which
manifests itself in the requirement vK = vF . This was first pointed out in an article by
Haldane [Hal81a]. Let us briefly review the reasoning of this reference, applied to the case
of a helical liquid (instead of a spinless LL considered there).
The usual Luttinger Hamiltonian models a 1D system with a linear energy spectrum
of fermions. As we discussed before, it applies to both the scenarios of a truly linear
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3.2. Non-equilibrium theory

energy dispersion relation (such as the edge states of a 2D QSH sample), and a parabolic
dispersion that is linearized around certain points of interest. In the latter case, the
information about the underlying parabolic spectrum is seemingly lost, however, as we
explain in the following, it remains incorporated in the form of additional constraints.
With zero modes written explicitly, and in the presence of interactions, we have (compare
with Eq. (2.23)),

HLL = 1
(4π)2

∫ L/2

−L/2
dx

[
vK(∂xφ+(x)− ∂xφ−(x))2 + v

K
(∂xφ+(x) + ∂xφ−(x))2

]
+ 1

4L

[
vKJ2 + v

K
N2
]
.

(3.29)

Here, we temporarily defined the relative and total particle numbers

J = (N+ −N−),
N = (N+ +N−),

(3.30)

that are related to the density and the current in the form of ρ0 = N/L and j0 = vKJ/L
(see Eq. (2.29)). In lowest order (or zero temperature), bosonic particle-hole excitations
associated with the fields φ and θ are expected to be absent. We can then calculate the
total momentum operator of the helical liquid to be approximately

P =
∑
r

∫ L/2

−L/2
dx ∗∗ψ†r(x)(−i∂x)ψr(x) ∗∗ '

π

L
(N2

+ −N2
−) = π

L
NJ = πρ0J. (3.31)

Above, the same bosonization scheme as in Eq. (2.17) was used (note the immediate par-
allels between the momentum operator, (−i∂x), and the kinetic energy operator, (−ir∂x)
of the linearized spectrum). Importantly, the momentum operator here does not know
about the interactions in the system, as it simply sums up the momenta of the individual
particles.
We now study the term proportional to J2 in Eq. (3.29), which we can interpret as a net
(or current) energy of the system. With Eq. (3.31), we obtain

Enet = 1
4LvKJ

2 = vK

4π2ρ0

P 2

N
. (3.32)

This quadratic energy-momentum dependence is not in contrast with the fact that each
single particle has a linear dispersion in the Luttinger liquid model, since Enet comprises
the totality of all particles. It next seems intuitive to associate Enet with the net kinetic
energy of the system, which in the classical, non-relativistic case is given by the relation
Ekin = P 2/(2Nm). Here, m is the mass of a single particle, and thus Nm the total mass.
This allows for the identification

vK = 2π2 ρ0
m

= vF , (3.33)

meaning that the product vK is not affected by the electron interaction strength in the
Luttinger liquid (unlike v/K).
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3. Conductance of the helical liquid

With interactions present in the system, it is not a priori clear that the above identification
of Enet = Ekin is valid, so that Enet can be considered purely kinetic. As we demonstrate in
the following, this is only the case if the system features Galilean invariance. A Galilean
boost changes the momentum P → P ′, and therefore the difference of right- and left-
movers, J → J ′ (see Eq. (3.31)). We assume hereby that the bare density ρ0 remains
fixed. In the process, the kinetic energy of the system changes to Ekin = P ′2/(2Nm). For
illustration, consider a particle moving to the right with a small momentum (deep in the
Fermi sea). If we change the coordinate system by a Galilean transformation in the same
direction, and with a boost velocity that is greater than the one of the particle, the particle
effectively becomes a left-mover in the moving frame. Given that Galilean invariance is
present, such boosts can not change the model description of the system, and any two
states parametrized by J and J ′ can possibly be mapped onto each other by means of a
corresponding Galilean boost. In particular, any state characterized by a specific value of
J , can be conceived of emerging from a reference ground state with J = 0 in Eq. (3.29).
As a Galilean transformation does not induce interactions (alter the prefactor vK), but
only changes J , the energy Enet has to be purely kinetic, and vK a constant of the model.
Crucially, the above conclusion is based on the assumption of a constant electron mass
m. For electrons moving in a solid state system, the bare mass should generally be re-
placed by the effective band mass m∗, which can be deduced from the single-particle
energy dispersion ε(k) by [AM76] m∗ = (d2ε(k)/dk2)−1. Therefore, in a LL system with
an underlying parabolic energy dispersion, m∗ is indeed a constant, while in a truly lin-
ear spectrum, one finds a diverging band mass, and the above argumentation breaks down.

We conclude, that in 1D systems with an underlying parabolic spectrum, Galilean sym-
metry provides an additional constraint in the form of vK = vF . It is a well-known
problem, that this point is not automatically accounted for in Luttinger liquid theory,
since this model uses linearization of the energy spectrum as an indispensable prerequisite
for bosonization [SMHG99]. Therefore, when studying linearized models in an underly-
ing parabolic system, one faces the problem of artificially broken Galilean invariance. To
overcome this problem, different routes were suggested. For instance, it is possible to
redefine the Luttinger parameters v and K such as to fulfill vK = vF [SMHG99]. Alter-
natively, higher-order harmonics of the density functions can be included into the model
[CPG00, Mas05, IG09a, IG09b, ISG12].
On the other hand, for 1D systems with a truly linear energy dispersion, no such modifica-
tions are necessary, and the Luttinger liquid relation vK = vF [1 + (g4− g2)/(2πvF )] 6= vF
remains in general valid. This is, for instance, expected to be the case for the edge states
of a 2D topological insulator. Except for the influence of remote bulk bands, the energy
dispersion of both chiral branches within the gap is shown to be almost linear in momen-
tum. In such quasi-relativistic systems, Galilean invariance is replaced by an emergent
Lorentzian invariance. Note further that the parameter vK can as well be renormalized
by additional perturbative terms, such that ([Gia03], p. 221) “the effective v and K to
put in a low-energy theory can (and in general will) be different from vK = vF ”.
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3.3. Generic backscattering

3.3.1. Protection against elastic backscattering

One of the most important and genuine properties of the 1D helical liquid is the absence
of elastic backscattering. This is a consequence of the topological protection of the helical
state by time-reversal symmetry (TRS). Here, we denote time reversal by the anti-unitary
operator T , and since we deal with spinful particles, it is T 2 = −1. The general mechanism
can simplest be understood with the help of the following symmetry argument [XM06,
WBZ06].
Let |ψ〉 and |φ〉 be two single-particle states of fermions with opposite chirality, that are
time-reversal partners, |ψ〉 = T |φ〉. According to Kramer’s theorem, the two states are
then degenerate in energy. Next, we make use of the general relation

〈Tα|Tβ〉 = 〈β|α〉, (3.34)

which holds for any anti-unitary T and arbitrary states |α〉 and |β〉. With this, we show
that the backscattering matrix element of any time-reversal invariant perturbation H ′

vanishes,

〈ψ|H ′|φ〉 = 〈ψ|H ′φ〉 Eq. (3.34)= 〈TH ′φ|Tψ〉 [H′,T ]=0,|ψ〉=T |φ〉= 〈H ′Tφ|TTφ〉
T 2=−1= −〈H ′ψ|φ〉 = −〈ψ|H ′|φ〉 = 0. (3.35)

Therefore, the perturbation H ′ can not induce elastic single-particle backscattering at
the helical edge. As a consequence, electronic transport in such a system is very robust
compared to regular spinless or spinful 1D systems, where such a protection mechanism
is absent. 4

Importantly, the above argument involves wave functions that describe a single fermionic
particle. We can generalize this idea to multiple-particle states of n fermions, assuming
that the many-body wave functions |ψ〉 and |φ〉 remain time-reversal partners. States
containing an even number of particles have an integer total spin, and therefore T 2 = 1 in
this case, while for an odd number of particles it is T 2 = −1. We then obtain similar to
Eq. (3.35),

〈ψ|H ′|φ〉 = (−1)n〈ψ|H ′|φ〉. (3.36)

The above Eq. (3.36) states that backscattering of an even number of particles, such as
two-particle backscattering, is not forbidden by symmetry. Note that the latter requires
an inelastic exchange of momentum between the individual particles of the many-body
state, to be of nonzero rate. Otherwise, if no interactions are present, the diagram of
the corresponding (elastic) backscattering process is disconnected, and can be split into n
single-particle processes, that vanish by virtue of Eq. (3.35).

4There, two states of opposite chirality are not necessarily time-reversal partners (for example because
right-moving particles can have any spin-orientation).
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Despite the protection mechanism described above, backscattering in a truly one-dimen-
sional helical channel can occur for various reasons. In essence, those are: (i) time-
reversal symmetry might be broken, for instance due to an applied magnetic field, and
elastic backscattering is no longer suppressed, (ii) in the presence of spinful perturbations
(magnetic moments) coupling to the electron spins, the time-reversal constraints change
such that elastic backscattering is again possible, (iii) there can be inelastic processes. In
this case, kinetic energy is transferred between the individual particles of the many-body
state, which can be mediated, for instance, by electron interactions or phonons. Also the
inelastic backscattering of a single electron is compatible with TRS, since then the initial
and final states of the process are not Kramer’s partners, different from what was assumed
in Eq. (3.35). The corresponding correlated backscattering operators are studied in the
next section.

3.3.2. Generic backscattering operators

The generic, lowest-order backscattering operators of the helical Luttinger liquid [LOB12]
take the form of elastic and inelastic single-particle backscattering (SPB), as well as two-
particle backscattering (TPB). The latter is also called “umklapp”-scattering if being
uniform. When time-reversal symmetry is broken, this allows for an elastic term of the
form

Hm =
∫

dx gm(x)ψ†L(x)ψR(x) + h.c.

= F †RFL
v

a2

(2πa
L

)K ∫
dx g̃m(x):e2iφ(x): + h.c.. (3.37)

We refer to such a term as to a magnetic perturbation, since TRS could most naturally
be broken by a magnetic field. This mechanism is found to be structurally similar to the
backscattering off a simple electron-density impurity (or disorder) in the spinless LL, as
studied e.g. in the Refs. [KF92a, KF92b, FG96, AR82, GS88].
If time-reversal symmetry is present, only inelastic backscattering processes are possible.
The lowest-order terms then read [LOB12, WBZ06]

Hgeneric
1p =

∫
dx γ1p(x)

(
∂xψ

†
L(x)ψL(x)− ψ†R(x)∂xψR(x)

)
ψ†L(x)ψR(x) + h.c.

= F †RFLv

(2πa
L

)K ∫
dx γ̃1p(x):(∂2

xθ(x))e2iφ(x): + h.c., (3.38)

Hgeneric
2p =

∫
dx γ2p(x)ψ†R(x)∂xψ†R(x)ψL(x)∂xψL(x) + h.c.

= F †RF
†
RFLFL

v

a2

(2πa
L

)4K ∫
dx γ̃2p(x):e4iφ(x): + h.c.. (3.39)

These three types of backscattering processes are illustrated in Fig. 3.2. In contrast to the
simple (elastic) SPB, inelastic SPB involves backscattering of a single particle accompanied
by another particle-hole excitation in one of the branches. TPB represents the event of
two-particles being backscattered across the Fermi surface simultaneously. As we explain
in detail later, Rashba spin-orbit coupling in combination with electron interactions, for
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3.3. Generic backscattering

Figure 3.2.: The lowest-order generic backscattering processes in the helical liquid are (from left to
right) elastic SPB, inelastic SPB, and (inelastic) TPB. Note that elastic SPB requires broken time-
reversal symmetry. Adapted with permission from Ref. [LOB12]. Copyrighted by the American
Physical Society.

instance, gives rise to both inelastic SPB [SRvG12, KGCM14, GKT17] and TPB [SJJ10,
CBD+12, KGCM14, GCT14, GKT17]. TPB was as well shown to emerge from SOC
and phonon coupling [BDR11], or quenched disorder of anisotropic, Kondo-like spin-spin
interactions [WBZ06]. If the coupling potential is uniform, γ̃2p(x) = γ̃2pe

−4ikF x, umklapp
scattering is sometimes associated with the parameter g3 in the g-ology. As the oscillating
factors tend to zero the integral, such terms are expected to be present only at half filling,
kF = 0, or in the the presence of an underlying lattice and commensurate filling (where
4kF = 2π/a, with a being some lattice spacing) [Gia91, XM06, WBZ06].
In order to examine the effect of a localized perturbation (single impurity), inducing a
certain type of backscattering, let us for the moment define the couplings g̃m(x) = g̃maδ(x),
γ̃1p(x) = γ̃1paδ(x), and γ̃2p(x) = γ̃2paδ(x). This allows us to infer the scaling dimensions
of the respective operators in the interacting case, ∆m = K, ∆1p = K + 2 and ∆2p = 4K.
With effectively one, temporal dimension left, we find the tree-level RG equations

dg̃m
d`

(`) = (1−K(`)) g̃m(`),

dγ̃1p
d`

(`) = (−1−K(`)) γ̃1p(`),

dγ̃2p
d`

(`) = (1− 4K(`)) γ̃2p(`).

(3.40)

As we can see, the magnetic impurity is a relevant perturbation for all, repulsive interaction
strengths, and therefore, transport is expected to be blocked by even the weakest barrier
at low energies [KF92a, KF92b]. On the other hand, while the localized SPB impurity
is always irrelevant, its TPB counterpart becomes relevant at very strong interactions,
K < 1/4.
In the weak-coupling limit, when all the mentioned coupling constants are irrelevant, and
thus small, the correction to the conductance can be readily evaluated from the above
operators. Quite generally, it scales with the greater of the energy scales of the system,
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3. Conductance of the helical liquid

temperature and voltage bias, in a way that depends on the respective scaling dimensions
∆ of the generic operators. Defining the dominant energy scale by

E = max(T, eV ), (3.41)

the correction to the conductance (in the case of a localized impurity) is shown to take
the form of the power law [LOB12]

δG ∼ E2∆−2. (3.42)

In the limit of weak interactions, K → 1, this suggests a lowest-order correction of δG ∼
const. for the magnetic impurity, δG ∼ E4 for SPB, as well as δG ∼ E6 for TPB. However,
this is only the scaling of the generic, single impurity operators – if the generic expressions
are renormalized by a specific, microscopic source of backscattering, which has its own
scaling dynamics, this scaling can change accordingly, as we show below for the example
of a localized Rashba SOC impurity.
Note that such scaling predictions depend on the actual form of the perturbation profile.
Above, we have studied the case of a Dirac-like single impurity. In the case of uniform TPB
umklapp scattering (where γ̃2p(x) = γ̃2pe

−4ikF x), for instance, one obtains from Eq. (3.39)
the operator

Humklapp
2p = F †RF

†
RFLFL

v

a2

(2πa
L

)4K
γ̃2p

∫
dx e−4ikF x:e4iφ(x): + h.c.. (3.43)

Because of the additional spatial derivative in this case, and ∆um = ∆2p = 4K, we find
the RG flow

dγ̃2p
d`

(`) = (2− 4K(`)) γ̃2p(`), (3.44)

meaning that umklapp scattering is a relevant perturbation already for moderate repulsive
interactions K < 1/2, different from the single impurity case (compare with Eq. (3.40).
The expected correction to the conductance then takes the form δG ∼ E2∆um−4 = E8K−4.

3.3.3. Strong-coupling limit

If the impurity strength is large compared to the other length scales of the system, and
thus can not be treated perturbatively, we face the strong-coupling regime. This occurs for
coupling parameters that are relevant in a RG sense, such that they grow under renormal-
ization towards low energies. For a truly one-dimensional system, at zero energy, transport
is then expected to be fully blocked, and the conductance vanishes. Effectively, the system
undergoes a transition from a metallic to a (Mott) insulating phase, which is equivalent
to opening up a gap in the energy spectrum. In the process, time-reversal symmetry is
said to be spontaneously broken in the helical liquid [WBZ06]. This concept describes the
following effect: Even though all the constituents of the system might be invariant under
time-reversal, the system can possibly choose a configuration of its ground state, that is
not invariant under time-reversal anymore (for instance by opening a gap). Given that
suchlike relevant perturbations affect the system to its full extent, as it is assumed for

52



3.3. Generic backscattering

Figure 3.3.: Illustration of the (a) weak- and (b) strong-coupling limit. In the former, the conduc-
tance at zero energy is G0 > 0, and backscattering off the impurity yields corrections δG at finite
energy. In the latter, transport is blocked at zero energy – corrections δG are then provided by
tunneling processes at finite energy.

instance for strong disorder (see Sec. 4.6.3), the electrons in the wire become immobile,
and the physical state of the system can be described in terms of many-body localization
(or Anderson localization [And58] in the non-interacting case). Peculiar phases are as well
found at finite, but ultra-low energies. For instance, in the presence of strong electron
interactions and relevant TPB, the particles form a Wigner crystal in the ground state
of the helical LL [ZCT15], where the potential energy exceeds the kinetic energy of each
electron. For higher energies, a finite value of the conductance is generally restored.

In the 2D QSH sample, it is important to note that we consider one-dimensional edge
states embedded in a two-dimensional (bulk) system. The system then has two options
of how to react to a relevant perturbation, and the spontaneous breaking of TRS. First,
there can be a transition to a Mott insulating state, and the conductance vanishes, as
explained above. This is the case for a non-topological one-dimensional model. Second,
due to the peculiar nature of the topological QSH channel, the edge state can simply adapt
to the new boundary of the system, and penetrate into the bulk in order to bypass the
barrier. In this case, the spontaneous breaking of TRS is cured, and the remaining helical
edge channel provides a nonzero conductance of G0 = e2/h. Which of the two scenarios
occurs, depends on the form of the perturbation. For a spinless magnetic impurity in the
strong-coupling limit, the conductance vanishes, because TRS is then broken explicitly.
In the case of a relevant TPB perturbation, the situation is not fully clear, and both sce-
narios could in principle apply. The Refs. [XM06, WBZ06] suggest that the QSH state
is eliminated by relevant TPB. Moreover, in the presence of a relevant Kondo impurity,
the topological edge state is expected to be restored in the strong-coupling limit, as the
perturbation gets screened by the formation of a singlet state with another edge electron
(see discussion in Chap. 5).

Let us study the transport signature of elastic SPB and TPB processes in the strong-
coupling limit, under the assumption that no topological bypass mechanism takes place,
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3. Conductance of the helical liquid

and the edge conductance breaks down at zero energy. To model the situation of a single
impurity, we consider a helical edge that is cut into two disconnected pieces at the position
of the impurity (see Fig. 3.3). At finite energy, transport across the impurity is achieved
by particles tunneling between the two disconnected ends. Assuming that t(T, eV ) is the
tunneling (hopping) strength in the strong-coupling limit, with some energy dependence,
the conductance is proportional to [MLO+09]

G ∝ t2(T, eV ). (3.45)

We now examine the corresponding corrections for relevant magnetic and TPB backscat-
tering (inelastic SPB can never be relevant). Let us therefore define the tunneling am-
plitudes tm and t2p, respectively. An RG analysis shows, that those parameters scale as
[KF92a, KF92b, MLO+09, Gia03]

d

d`
tm(`) = (1− 1/K)tm(`),

d

d`
t2p(`) = (1− 1/(4K))t2p(`).

(3.46)

At the order of the temperature, ` = log(vβ/a0), and zero bias for simplicity, this leads to
a conductance correction of G ∼ t2m(0)E2/K−2 and G ∼ t22p(0)E2/(4K)−2. A summary of
the most important power laws related to the generic processes described in this section,
is given in Tab. 3.1.
Generally, the conductance provides the following transport signatures in the low-energy
limit: In the strong-coupling regime, we expect interaction-dependent power-law correc-
tions from G = 0, while in the weak-coupling regime, there are corrections from G0, which
exhibit a different power exponent. This behaviour is illustrated in Fig. 3.4. In the limit
of high energies, the conductance approaches its bare value, since such highly energetic
particles will be hardly affected by the perturbation. Typically, corrections to G0 in that
regime then are of logarithmic form (e.g. [MLO+09, CBD+12]). The distinct transport
mechanisms, in the weak and strong-coupling limit, is as well reflected in the transferred
effective charge, e∗, that can be estimated from the ratio of the average backscattering
current and the shot noise (see definition in Sec. 4.5.2). For TPB, the value of e∗ in the
strong-coupling regime can be derived as follows. In this phase, the bosonic field φ gets
pinned such as to adjust to the minima of energy. Using H2p ∝ cos(4φ), those are given by
φ = (2n+1)π/4, with n = (0,±1, . . .), and the difference in phase between two neighbour-
ing minima is consequently ∆φ = π/2. At finite energy, a nonzero conductance is restored
from tunneling processes of particles across the allowed configurations of the ground state.
Tunneling between two adjacent minima hereby corresponds to a change of the charge
by ∆Q = e

∫
dx ρ(x) = e∆φ/π = e/2, and therefore, we identify an effective charge of

e∗ = e/2 per tunneling event [MLO+09]. On the other hand, the effective (backscattered)
charge in the weak-coupling regime is e∗ = 2e. For the magnetic perturbation studied
above, due to the different periodicity of the cosine compared to the TPB impurity, the
effective charge in both the weak and strong-coupling regime reads e∗ = e.
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3.4. Many (dilute) impurities in the weak-coupling limit

Figure 3.4.: Schematics of the low-energy behaviour of the conductance (using E = max(T, eV )
as an energy scale). In the weak-coupling regime (upper curve), one expects power-law correc-
tions from the bare value G0 with a characteristic exponent µ(K), depending on the respective
backscattering mechanism (c is some constant). In the strong-coupling regime (lower curve), we
find a nonzero conductance at finite energies due to tunneling processes (see text). They gener-
ally come with a different power-law exponent µ′(K). For high energies, the bare value of the
conductance is restored.

weak coupling [µ(K)] strong coupling [µ′(K)]
elastic SPB 2K − 2 if K > 1 2/K − 2 if K < 1
inelastic SPB 2K + 2 –

TPB 8K − 2 if K > 1/4 2/(4K)− 2 if K < 1/4

Table 3.1.: Power-law exponents of the correction to the conductance at low energies, that is
generated by a single, localized perturbation inducing various types of (generic) backscattering
processes (cf. Fig. 3.2 and Eq. (3.42)). The exponents compare to the parameters µ(K) and
µ′(K) in Fig. 3.4. In the tabular cells, we also list the strength of the interaction parameter K,
that is required to reach the weak- or strong-coupling regime, respectively.

3.4. Many (dilute) impurities in the weak-coupling limit

Above, we have studied the case of a single, localized perturbation in the weak-coupling
limit. The effect of several of those perturbations (of the same type) can be accounted for
by summing up the single contributions, given that correlations between the impurities
are negligible. This is justified, if the distribution of impurities along the edge is suffi-
ciently dilute. Otherwise, interference effects resulting from coherent backscattering lead
to additional corrections of the form of weak (anti-)localization [AS87, GMP05, GMP07].
Importantly, the conductance of the system in the case of only a few impurities or many of
them takes a different form, respectively. For more than one perturbation, the resistance
quanta δR add up. In lowest order of δG, those can be expressed as δR = δG/G2

0 (e.g.
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3. Conductance of the helical liquid

[VGGG14]), where the weak-coupling limit implies that δG/G0 � 1, or δR� G−1
0 = R0.

Adding the contributions of a number of N uniform impurities leads us to a total resistance
of R = R0 +NδR. The total conductance is obtained by G = R−1, so

G =
(
G−1

0 +N
δG

G2
0

)−1
= G0

(
1 +N

δG

G0

)−1
. (3.47)

In the following, we can distinguish two scenarios. First, we refer to the case of only a few
impurities for NδG/G0 � 1. We then can approximate Eq. (3.47) by

G ' G0 −NδG. (3.48)

For a single impurity, N = 1, we obviously recover Eq. (3.5). On the other hand, the
1D-system can contain so many impurities, that the mere amount compensates for the
weak contributions of every individual perturbation. In this limit, we have NδG/G0 � 1,
and obtain

G ' G2
0

NδG
. (3.49)

As the impurities are distributed along the edge in a dilute way, this limit implies that
the system size L is large. This proportionality is as well expected to be observable in the
conductance, G ∝ N−1 ∝ L−1.
Note that the correction δG(E) generally depends on the energy E of the system. Hereby,
the weak-coupling regime is met for irrelevant impurities at low energies, and in particular
then δG(E → 0) = 0, and for relevant impurities at high energies, where then δG(E →
∞) = 0. We readily observe, that in the two limits mentioned above, the condition
NδG(E)/G0 � 1 can not be fulfilled, and therefore, Eq. (3.49) does not hold for very
weak coupling strengths. Instead, in the case of many impurities, we expect a crossover
energy defined byNδG(E)/G0 ≈ 1, where the weak-coupling behaviour of the conductance
changes from the dependence given in Eq. (3.48) to the one of Eq. (3.49). This point, for
instance, becomes apparent in the Kondo impurity problem we discuss in Chap. 5.
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4. Rashba spin-orbit coupling

4.1. Microscopic origin of SOC

Spin-orbit coupling emerges in quantum mechanics from a non-relativistic approximation
to the relativistic Dirac equation, in the presence of an electromagnetic potential [Sak67].
More precisely, one uses the assumptions of E ≈ mc2 for the electron energy E, as well
as |eV | � mc2, where m is the electron mass, V an (time-independent) electric potential,
c the speed of light and v the particle velocity, in order to perform an expansion in
terms of small (v/c)2. In lowest (zeroth) order, one simply recovers the non-relativistic
Schrödinger equation. In first order of (v/c)2, additional relativistic corrections to the non-
relativistic Hamiltonian are obtained, among which there is an effective operator coupling
the electrons spin to its momentum,

HR = −a~σ · (~p× ~∇V ) = −a~∇V · (~σ × ~p). (4.1)

Here, a is some constant and ~σ = (σx, σy, σz) the vector of Pauli matrices. The physical
origin of this SOC operator can be understood the following way: The electron, moving
with a velocity v in an electric field, feels an effective magnetic field that couples to its
spin. For a single atom, the electromagnetic force is for instance provided by the central
Coulomb force of the atomic core, and ~σ · (~p × ~∇V ) ∝ ~σ · (~p × ~r) ∝ ~σ · ~L, with ~L be-
ing the orbital angular momentum. Therefore, in the single atom, the electron energy is
shifted due to the coupling of its spin to an orbital degree of freedom (this is called fine
structure). In a crystalline solid state system, we have a large number of atoms, that are
arranged periodically in a lattice. The electrons motion and energy is now affected by the
total ensemble of atomic cores, and just like the kinetic energies transform from discrete
levels to energy bands, also the spin-orbit term feels the effect of all atoms, and trans-
forms into a “crystalline“ spin-orbit coupling, that one might imagine as stemming from
a “crystalline orbit”. Clearly, the symmetries of the lattice structure play an important
role, and determine the lowest-order coupling terms. For example, in a three-dimensional
zinc blende structure without inversion symmetry, this leads to the presence of a so-called
“Dresselhaus” spin-orbit coupling, while the term “Rashba” SOC is for historical reasons
used more for systems with uniaxial symmetry (one crystal axis different from the other
ones), like wurtzite crystals. Later, it was pointed out that the k-linear Rashba SOC in
such crystals is very similar to the spin-orbit splitting found in quasi 2D heterostructures
[BR84, Win03, BRW15]. Importantly, the potential V in Eq. (4.1) can not only originate
from the “intrinsic” atomic potentials of the crystal bulk, but also from external sources.
In a 2D heterostructure, those include: (i) a gate on top of the sample, that evokes an
electric field perpendicular to the system plane, (ii) effective fields arising at the interfaces
of two different materials, on the top or bottom surface of the sample (also called structure
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4. Rashba spin-orbit coupling

inversion asymmetry), or (iii) impurities merged into the system.
Here, we are concerned with one-dimensional states at the topological edges of quasi 2D
systems. In one dimension, the momentum vector is restricted to a specific direction,
say x, such that the above SOC operator becomes HR = −a[(~∇V )yσz − (~∇V )zσy]px.
The interesting term, that couples different spin species, is proportional to the electric
field in z-direction, which we define to be out of plane relative to the 2D system. As
the SOC coupling parameter can vary along the edge, we may write the general profile
α(x) = a(~∇V )z(x). The Hamiltonian reads in the helical basis, ~ψ(x) = (ψR(x), ψL(x))T ,

HR =
∫

dx ~ψ†(x)HR ~ψ(x) + h.c. =
∫

dx α(x)~ψ†(x)σypx ~ψ(x) + h.c.

=
∫

dx α(x)[(∂xψ†R(x))ψL(x)− ψ†R(x)(∂xψL(x))] + h.c., (4.2)

with px = −i∂x.
This “Rashba Hamiltonian” HR, as given in Eq. (4.2), is the lowest-order perturbation
(meaning that it entails the least fermionic operators), that corresponds to a backscattering
process and, at the same time, is invariant under time-reversal. However, it is crucial to
note that due to its elastic character, this term alone is not able to induce an effective
backscattering current in the helical system. Only in combination with another inelastic
component, such as Coulomb electron interactions, Rashba SOC can generate one of the
generic backscattering processes presented in Sec. 3.3, and alter the transport properties
of the system.

4.2. Bosonization

Let us take a look at the bosonized version of Eq. (4.2). Explicitly, with Eq. (2.32), one
finds [Dol12, CBD+12, BDR11]

(∂xψ†R(x))ψL(x)− ψ†R(x)(∂xψL(x)) = −i(∂zψ†R(z))ψL(x)− iψ†R(x)(∂zψL(z))

= −i
L
F †RFL(∂z + ∂z)enRze−iϕ

†
R(z)e−iϕR(z)e−nLze−iϕ

†
L(z)e−iϕL(z)

= −i
2πaF

†
RFLe

nRze−nLz((nR − nL)e−iφR(z)e−iφL(z)

+ (−i):∂zφR(z)e−iφR(z):e−iφL(z) + e−iφR(z)(−i):∂zφL(z)e−iφL(z):)

= −i
2πaF

†
RFLe

−2ix(kF− πL ):2∂xθ(x, t)ei2φ(x,t):. (4.3)

Here, ∂x = −ir∂zr , where we use z+ = z and z− = z (see Eq. 2.11), as well as nr =
(kF − π

L + 2π
L Nr). Point-splitting is not necessary here, since the two fermionic field

operators have opposite chirality. When taking the derivative of the exponential operators
above, factors of the form of ∂zϕ† or ∂zϕ are positioned right behind the corresponding
exponents, such that for this operation, normal-ordering of the full expression with respect
to the fields ϕ,ϕ† is preserved. Right- and left-moving operators can then safely be
combined, since the respective fields commute. The outer normal-ordering signs indicate
here, that the field ∂xθ is normal-ordered with respect to the exponential factors. For a
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4.3. SOC as a rotation of basis states

complete normal-ordering, however, we also have to order the factor e2iφ, which gives rise
to another factor of (2πa/L)K , according to Eq. (2.81). We eventually obtain

HR = −iF †RFL
(2πa
L

)K ∫
dx α(x)

πa
:∂xθ(x, t):ei2φ(x,t)::e−2ikF x + h.c.. (4.4)

In the limit of large system sizes, the term e2ixπ/L can be neglected. We see that even
though normal-ordering was performed carefully, the cutoff-dependence does not fully
disappear at finite electron interaction strength. To lighten the notation, one sometimes
drops the inner colons, which leaves the notation slightly ambiguous though. In the
following, we use the convention that even if inner colons are absent, we refer to the form
of HR as given here, in Eq. (4.4), unless explicitly stated otherwise. 1

4.3. SOC as a rotation of basis states

Before we continue with a perturbative analysis of the interacting Rashba problem, it
is worth emphasizing that Rashba SOC can as well be introduced in a different way, as
discussed below. The consequences, in terms of power-law corrections to the conductance,
are found to be qualitatively the same.

4.3.1. Basis transformation

In the Refs. [SRvG12, KGCM14], another approach was taken to implement SOC into
the helical LL model. Instead of using the perturbation operator of Eq. (4.2), spin-orbit
coupling is considered a rotation of the spin basis of the helical states. While the sz-
component of the wave functions is clearly conserved (and thus a good quantum number)
in the free helical liquid, this does not hold anymore in the presence of Rashba SOC, since
states of opposite chirality get mixed then. 2 This observation gives a motivation to define
SOC by a momentum-dependent, rotational matrix Bk, where(

ψ↑,k
ψ↓,k

)
= Bk

(
ψ+,k
ψ−,k

)
,

Bk ≈
(

1 −(k/k0)2

(k/k0)2 1

)
.

(4.5)

Here, the states ψ±,k are eigenstates of the system in the presence of SOC (where the
sz-component is not conserved), and form a new basis of the helical liquid. Importantly,
those states are still orthogonal and time-reversal partners. The parameter k0 quanti-
fies the strength of Rashba SOC. Note that the explicit form of the rotation matrix in
Eq. (4.5) is determined by the two constraints of TRS, implying Bk = B−k, and unitarity.
Applying this rotation to a system governed by H = H0 + Himp + Hint (see definitions
1Sometimes the bosonized Rashba Hamiltonian of Eq. (4.4) is written in terms of a cosine of φ. This,
however, is only possible in a notation where the Klein factors are either dropped, or chosen in a way
such that F † ' F , while in general the conjugate term is proportional to F †LFR = −FRF †L.

2Formally, Rashba SOC is proportional to HR ∝ kσy, which does not commute with σz.
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below in Eqs. (4.9)–(4.11)), including electron interactions, Hint, and an electron density
perturbation, Himp, will naturally induce inelastic single-particle backscattering.
To match the notation of Refs. [SRvG12, GKT17], we shall use for all fermionic calcu-
lations in this chapter a notation, that is slightly different from the one introduced in
Sec. 2.1.1 (compare also with App. B). We define

ψr(x) = 1√
L

∑
k

eikxcr,k, (4.6)

where r =↑, ↓= ±, as well as the energy dispersion relation of right- and left-movers,

εr(k) = rvFk. (4.7)

The fields obey the usual anticommutation rules

{cr,k, c†r′,k′} = δkk′δrr′ . (4.8)

Performing the SOC rotation introduced in Eq. (4.5), one finds in the new basis [SRvG12],

H0 =
∑
k,r

εr(k)c†r,kcr,k =
∑
k

vFk(c†+,kc+,k − c†−,kc−,k), (4.9)

Hint =
∫

dx dx′ U(x− x′)ρ(x)ρ(x′)

= 1
L

∑
k,k′,q

∑
α,β,α′,β′=±

U(q)[B†kBk−q]
αβ[B†k′Bk′+q]

α′β′c†α,kcβ,k−qc
†
α′,k′cβ′,k′+q

' U0
L

∑
k,k′,q

[(k2 − k′2)
k2

0
c†+,k+qc

†
−,k′−qc+,k′c+,k − {+↔ −}+ h.c.

+ (c†+,k+qc
†
−,k′−qc−,k′c+,k − c†+,k+qc

†
+,k′−qc+,kc+,k′) + {+↔ −}

]
, (4.10)

Himp =
∫

dx V (x)ρ(x) = 1
L

∑
k1,k2

∑
α,β=±

V (k1 − k2)[B†k1
Bk2 ]αβc†α,k1

cβ,k2

' V0
L

∑
k1,k2

(
1
2c
†
+,k1

c+,k2 + {+↔ −}+ (k2
1 − k2

2)
k2

0
c†+,k1

c−,k2

)
+ h.c.. (4.11)

Here, ρ(x) = ρ↑(x) + ρ↓(x) is the total electron density. The sign {+ ↔ −} denotes
the preceding term with reversed chirality. For simplicity, the respective potentials were
assumed to be localized in real space, so U(x − x′) = U0δ(x − x′) and V (x) = V0δ(x).
Furthermore, only the terms of lowest order in momentum are presented. We observe,
that while the kinetic energy is not affected by the unitary rotation, both the electron
interactions and the impurity perturbation generate additional backscattering terms. Here,
those are of second order in momentum, in contrast to the linear dependence of the generic
inelastic SPB term given in Eq. (3.38). At finite kF , however, the effective operators in
Eqs. (4.10) and (4.11) can be linearized to match the generic expression. As we see
later, the lowest-order momentum expansion of a backscattering operator quite generally
determines its leading-order transport signature.
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4.3. SOC as a rotation of basis states

4.3.2. Correction to the conductance – Fermi golden rule

Deviations from the perfect conductance, due to the effective operators given above, are
calculated perturbatively with the help of the generalized Fermi golden rule (FGR). Note
that this implies weak electron interactions, in contrast to a bosonic analysis. The average
backscattering current in this framework is given by [BF04]

〈δI〉 =
∑
if

Γf←i∆Nf←i,

Γf←i = 2π|〈f |T |i〉|2wiδ(Ef − Ei).
(4.12)

Here, wi represents the probability to find the (multi-particle) state |i〉 in the set of all
states, while ∆Nf←i is the backscattered charge per backscattering event. Ei and Ef are
the energies of the initial and final states |i〉 and |f〉, respectively, which are (unperturbed)
eigenstates of the free Hamiltonian H0. In this formalism, the transfer operator T takes
the form

T = H ′ +H ′G0T, (4.13)

and a perturbative solution can be found self-consistently. Energies of intermediate
states are measured relative to the initial or final state by the free Green function G0 =(
Ei/f −H0

)−1
. In our model, we consider the perturbation H ′ = Hint + Himp. At finite

bias voltage, we simply infer the correction to the conductance from the backscattering
current by δG = d〈δI〉/dV .
Let us briefly review the main results of the perturbative analysis of Ref. [SRvG12]. Be-
cause of the way SOC is introduced, even in the absence of impurities there is a joint,
inelastic backscattering effect of interactions and SOC. Therefore, in the first order of
T = Hint, one finds a contribution (using temperature as an energy scale)

δG ∼ L U2
0

k4
0v

7
F

T 5. (4.14)

This correction is of a higher power than the one expected from a generic inelastic SPB
operator, as Hint is quadratic in momentum. Implicitly, we used kF = 0 here. Since there
are no localized perturbations that break the translational invariance at the edge, the total
momentum is conserved, which translates into a linear dependence of the current on the
system size L.
To next order, the cross terms T = HintG0Himp + HimpG0Hint generate translationally
non-invariant single-particle backscattering (see more about the corresponding diagrams
in the subsequent section). Importantly, the authors of Ref. [SRvG12] now consider a
finite chemical potential, and use the fact that all momenta can be expanded around
kF 6= 0, to obtain an effective backscattering operator linear in momentum. This results
in a correction of lower power in the temperature,

δG ∼ Lnimp

(
V0U0
k6

0

)2 (kF
vF

)8
T 4, (4.15)
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4. Rashba spin-orbit coupling

if vF |kF | � T . The average density of impurities in the system is given by nimp, such that
Lnimp is independent of the system size. The contributions of each individual impurity
can simply be added up, if interference terms are small, and multiple impurity scattering
can be neglected. This holds approximately for T � vF /L [AS87]. The correction to
the conductance presented in Eq. (4.15) exhibits the same power-law exponent, that one
would expect from generic SPB, in the limit of K → 1 (compare with Tab. 3.1).

4.4. Fermionic perturbative analysis

4.4.1. Model description

In order to explore the combined effect of Rashba SOC and electron interactions in the
weak interaction limit, a perturbative analysis in terms of fermionic operators is per-
formed. This allows us to identify, under which circumstances single- and two-particle
backscattering processes generally arise, and to study the expected power-law corrections
to the conductance. Importantly, we find that the latter depend on the microscopic details
of the system, such as the presence, and the form of a momentum cutoff. The respective
results are as well presented in Ref. [GKT17].
Using the definitions in Eqs. (4.6)–(4.8), we consider a system modeled by the Hamiltonian
H = H0 +HR +H2 +H4, where

H0 = vF
∑
r=±

∫
dx ψ†r(x)(−ir∂x)ψr(x) =

∑
k,r=±

εr(k)c†r,kcr,k, (4.16)

HR =
∫

dx dx′ α(x, x′)
[(
∂xψ

†
+(x)

)
ψ−(x′)− ψ†+(x)

(
∂x′ψ−(x′)

)]
+ h.c.

= − i
L

∑
k,k′

αk,k′(k + k′)c†+,kc−,k′ + h.c., (4.17)

H2 = 1
2

∫
dx1 dx2 g2(x1, x2)ψ†+(x1)ψ†−(x2)ψ−(x2)ψ+(x1) + {+↔ −}

= 1
L2

∑
k1,k2,q,q′

g
(2)
q,q′c

†
+,k1−qc

†
−,k2+q′c−,k2c+,k1 , (4.18)

H4 = 1
2

∫
dx1 dx2 g4(x1, x2)ψ†+(x1)ψ†+(x2)ψ+(x2)ψ+(x1) + {+↔ −}

= 1
2L2

∑
k1,k2,q,q′

g
(4)
q,q′c

†
+,k1−qc

†
+,k2+q′c+,k2c+,k1 + {+↔ −}. (4.19)

Above, we introduce SOC (HR) and interaction terms (H2 and H4) that are generally
of non-local character. The respective potentials therefore depend on two spatial coor-
dinates. Non-localities in the SOC term are associated with higher-order derivatives, as
can be seen, for instance, from a symmetric expansion of the spatial coordinates around
a common center. Non-local electron interactions simply refer to the possibility of two
interacting electrons being separated in space. Going to momentum space, we define the
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4.4. Fermionic perturbative analysis

two-dimensional Fourier transforms of the SOC potential and the interaction profiles

αk,k′ =
∫

dx dx′ α(x, x′)e−i(xk−x′k′),

g
(n)
q,q′ =

∫
dx1 dx2 gn(x1, x2)ei(x1q−x2q′),

(4.20)

with n ∈ {2, 4}. Making use of the fact that the interaction potential is symmetric under an
exchange of particles, gn(x1, x2) = gn(x2, x1), we realize that g(n)

q,q′ = g
(n)
−q′,−q. Importantly,

time-reversal symmetry in combination with hermicity manifests itself in imposing the
following restriction on the SOC potential,

α(x, x′) = α(x′, x),
αk,k′ = α−k′,−k.

(4.21)

The physical character of an operator is recognized from the form of the respective po-
tentials. This translates from real space to momentum space in the following way: If a
potential f(x, x′), with f being either α or gn here, is local in the sense of f(x, x′) =
f(x)δ(x − x′), its Fourier transform only depends on the difference of the two momenta,
fk,k′ = fk−k′ . Likewise, a translationally invariant potential, f(x, x′) = f(x − x′), trans-
lates into fk,k′ = fkδ(k − k′). A profile that is local, and at the same time translationally
invariant, maintains its form upon Fourier transformation, so f(x, x′) = cδ(x − x′) leads
to fk,k′ = cδ(k − k′), where c is some constant.

4.4.2. Effective operators of SPB and TPB

We study a one-dimensional helical transport channel in the presence of spin-orbit coupling
and electron interactions, that are both weak and can therefore be treated perturbatively,
so H ′ = HR+H2 +H4 in the T -matrix in Eq. (4.13). The average backscattering current is
calculated using the Fermi golden rule, as given by Eq. (4.12). For single- and two-particle
backscattering terms, we hereby expand the matrix T up to first and second order in HR,
respectively.
First, we realize that in the absence of interactions no backscattering is possible. In the
above FGR formalism, this can be observed from the lowest-order terms (see Eq. (4.17))

HR = − i
L

∑
k,k′

αk,k′(k + k′)c†+,kc−,k′ + h.c.,

HRG0HR = − 1
2vFL2

∑
k1...k4

αk1,k′2
αk2,k′1

(k1 + k2 + k′2 + k′1)c†+,k1
c†+,k2

c−,k′2c−,k′1

+ h.c. + . . .

(4.22)

Once energy conservation is applied, the factors linear in k become zero in both expres-
sions, and there will be no contribution to the backscattering current. In the last line,
the dots indicate that there are more terms arising from the combination of HRG0HR,
however, they do not correspond to backscattering and are therefore not explicitly stated
here.
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4. Rashba spin-orbit coupling

k1

k2 k′
2

k′
1

g(2) + g(2) +h.c. g(2) + g(2) +h.c.

(a) (c)

g(4) + g(4) +h.c. g(4) + g(4) +h.c.

(b) (d)

Figure 4.1.: Single- (a,b) and two-particle (c,d) backscattering processes of lowest order involving
interactions of the type g2 (upper row) and g4 (lower row). Backscattering of a single particle is
accompanied by a particle-hole excitation, mediated by interactions. Dashed (full) lines indicate
left-moving (right-moving) particles. Rashba SOC and Coulomb interactions are represented by
crosses and wiggly lines, respectively. The two diagrams in (c) can be shown to be equivalent, but
are both given here for illustrating purposes.

Analyzing the transfer operator in Eq. (4.13), we next explore the possibility of correlated
single- and two-particle backscattering at nonzero electron interaction strength. Through-
out, we ignore diagrams that do not represent backscattering but merely renormalize in-
teractions, or the Fermi velocity. Moreover, operators involving more than four fermionic
operators are generally not considered here, in order to identify the lowest-order processes.

We find that SPB arises from the cross terms (see corresponding diagrams in Fig. 4.1a,b)

H2G0HR+HRG0H2 ∝ −
i

vFL3

∑
k1,k2,k′1,k

′
2,q

g
(2)
q,k2−k′2

× c†+,k1
(αk1,k′1−qc

†
+,k2

c+,k′2 − αk1+q,k′1c
†
−,k2

c−,k′2)c−,k′1 + h.c., (4.23)

H4G0HR+HRG0H4 ∝
i

vFL3

∑
k1,k2,k′1,k

′
2,q

g
(4)
q,k2−k′2

× c†+,k1
(αk1+q,k′1c

†
+,k2

c+,k′2 − αk1,k′1−qc
†
−,k2

c−,k′2)c−,k′1 + h.c.. (4.24)

Note that the linear momentum-dependence of the Rashba potential is exactly compen-
sated by the k-linear energy dispersion in the denominator of G0, allowing for a fairly
simple presentation of the terms in Eqs. (4.23) and (4.24). Combining the two expres-
sions, we conclude that Rashba SOC and interactions give rise to the effective inelastic
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4.4. Fermionic perturbative analysis

SPB operator

Heff
1p =

∑
k1,k2,k′1,k

′
2

P
k1k′1
k2k′2

c†+,k1
c†+,k2

c+,k′2c−,k′1 − (P ′)k1k′1
k2k′2

c†+,k1
c†−,k2

c−,k′2c−,k′1 + h.c.,

P
k1k′1
k2k′2

= − i

vFL3

∑
q

(
g

(2)
q,k2−k′2

αk1,k′1−q − g
(4)
q,k2−k′2

αk1+q,k′1

)
,

(P ′)k1k′1
k2k′2

= − i

vFL3

∑
q

(
g

(2)
q,k2−k′2

αk1+q,k′1 − g
(4)
q,k2−k′2

αk1,k′1−q
)
.

(4.25)

All these processes represent the backscattering of a single particle, accompanied by a
particle-hole excitation on the right- or left-moving branch. This mechanism has been
identified before [LOB12, SRvG12, KGCM14], and was found to generate a power-law
correction to the backscattering current.

Furthermore, TPB was proposed in Ref. [CBD+12] to emerge in lowest order in the form
of the third-order diagrams illustrated in Fig. 4.1c,d. These processes are contained in the
following T -matrix terms 3

HRG0H2G0HR ∝ −
1

v2
FL

4

∑
k1,k2,k′1,k

′
2,q,q

′

g
(2)
q,q′αk2+q,k′1αk1,k′2+q′

× c†+,k1
c†+,k2

c−,k′2c−,k′1 + h.c., (4.26)

H4G0HRG0HR +HRG0HRG0H4 ∝
1

2v2
FL

4

∑
k1,k2,k′1,k

′
2,q,q

′

g
(4)
q,q′

× (αk2−q′,k′1αk1+q,k′2 + αk2,k′1+q′αk1,k′2−q)c
†
+,k1

c†+,k2
c−,k′2c−,k′1 + h.c..

(4.27)

As a consequence, the effective operator of two-particle backscattering can be written as

Heff
2p =

∑
k1,k2,k′1,k

′
2

Q
k1k′1
k2k′2

c†+,k1
c†+,k2

c−,k′2c−,k′1 + h.c.,

Q
k1k′1
k2k′2

= − 1
v2
FL

4

∑
q,q′

(
g

(2)
q,q′αk2+q,k′1αk1,k′2+q′ −

1
2g

(4)
q,q′ [αk2−q′,k′1αk1+q,k′2 + αk2,k′1+q′αk1,k′2−q]

)
.

(4.28)
Both the operators in Eqs. (4.25) and (4.28) are expected to induce characteristic power-
law corrections to the conductance. Before studying the corresponding low-energy scaling,
we first demonstrate, that no backscattering is possible in the special case of only local
potentials, and no momentum cutoff. This property was pointed out in Ref. [XLCF16].

4.4.3. Suppression of terms with all-local potentials

From Eqs. (4.25) and (4.28), we find that there is zero backscattering if both the SOC
and the electron interactions potentials are local, and the momentum spectrum is not
3Note that due to energy conservation, G0 can be applied to the left or to the right in order to keep track
of the cancellation of the k-linear terms of the Rashba SOC, and the energy denominator.
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4. Rashba spin-orbit coupling

restricted. Formally, this is observed from the fact that we can then use shifts and re-
labelings of the internal momenta q and q′, such that the effective operators become
asymmetric with respect to the anticommutation of two fermionic fields. For instance, the
g2-part of the TPB operator in Eq. (4.28) reads, with local potentials,

Heff
2p ∝

∑
k1,k2,k′1,k

′
2,q,q

′

g
(2)
q−q′αk2+q−k′1αk1−k′2−q′c

†
+,k1

c†+,k2
c−,k′2c−,k′1 + h.c.

q→q+k1−k2
q′→q′+k1−k2=

∑
k1,k2,k′1,k

′
2,q,q

′

g
(2)
q−q′αk1+q−k′1αk2−k′2−q′c

†
+,k1

c†+,k2
c−,k′2c−,k′1 + h.c.

k1↔k2=
∑

k1,k2,k′1,k
′
2,q,q

′

g
(2)
q−q′αk2+q−k′1αk1−k′2−q′c

†
+,k2

c†+,k1
c−,k′2c−,k′1 + h.c.

= −
∑

k1,k2,k′1,k
′
2,q,q

′

g
(2)
q−q′αk2+q−k′1αk1−k′2−q′c

†
+,k1

c†+,k2
c−,k′2c−,k′1 + h.c. = 0.

(4.29)

Similar shifts are found individually for all the terms in Eqs. (4.25) and (4.28). The same
mechanism of momentum shifts can be used as well to illustrate, that terms involving
interactions of the type g4 generally vanish for local interaction potentials and arbitrary
SOC potential, as it should be, by virtue of the Pauli exclusion principle.
Importantly, if at least one of the two potentials is slightly non-local (for local SOC
and non-local electron interactions there is the additional constraint that interactions
are not SU(2)-invariant, see below), such an asymmetry is not provided anymore, and
we expect in general a nonzero contribution to the backscattering current. This point
can as well be understood in the following way. The generic operators of inelastic SPB
and TPB – for instance given in Sec. 3.3 – involve spatial derivatives associated with
products of field operators of the same kind. Such terms can be considered an OPE
of the form limx′→x ψ

†
r(x)ψ†r(x′) = ψ†r(x)ψ†r(x + ia) ' iaψ†r(x)∂xψ†r(x), with a minimal

distance a that can be interpreted as a short-distance cutoff. Due to the Pauli exclusion
principle, the operator product vanishes if a goes to zero. Operators that contain suchlike
products can therefore be viewed as non-local in nature. Thus, they are present only
if the underlying model provides a certain type of non-locality. It is then clear that
a contribution to these generic backscattering processes emerges only from microscopic
sources of the same, non-local character. Note that Rashba SOC itself (as defined in
Eq. (4.17)) is not intrinsically non-local in this sense, even though it contains a spatial
derivative, since there the derivative connects two operators of opposite chirality, and the
corresponding product can not be associated with a proper OPE.
Non-local effects in real space are as well induced by imposing a momentum cutoff, which
reflects the analogy of blurring in real space and confinement in momentum space. Such
a cutoff often appears naturally in realistic systems, in the form of a high-energy cut-
off. For instance, for 1D edge states of a 2D topological insulator, a momentum cutoff is
enforced by the presence of a finite bulk band gap. Generally, any restriction of the en-
ergy spectrum conceptually allows for non-local operators in real space, and consequently
for backscattering induced by the combination of Rashba SOC and interactions (for an
explicit calculation, see Sec. 4.4.8). A suppression of this effect is expected only in the
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4.4. Fermionic perturbative analysis

hypothetical case of an unbounded spectrum, and a specific choice of potentials.

The observation that an all-local combination of interactions and SOC does not induce
backscattering in the helical liquid, is in agreement with the findings of Ref. [XLCF16,
Dol17]. There, it was shown on general grounds that such a system can be mapped onto a
free bosonic model by the use of a suitable basis transformation. Let us briefly review the
line of reasoning of Ref. [Dol17]. The helical LL – in the presence of electron interactions
and a local Rashba SOC perturbation – is described by H = H0+HR, with the expressions
given in Eqs. (2.20), (2.38) and (4.2), respectively. The Hamiltonian can be phrased as
[Dol17] 4

H0 = vF

∫
dx ~ψ†(x)σzpx ~ψ(x) +

∫
dx1 dx2 g2(|x1 − x2|)n↑(x1)n↓(x2)

+ 1
2

∫
dx1 dx2 g4(|x1 − x2|) [n↑(x1)n↑(x2) + n↓(x1)n↓(x2)] ,

HR =
∫

dx α(x)~ψ†(x)σypx ~ψ(x) + h.c.,

(4.30)

where we use the notation ~ψ(x) = (ψ↑(x), ψ↓(x))T , and px = −i∂x like in Chap. 2, as
well as the electron densities nr(x) = ψ†r(x)ψr(x) with r =↑, ↓. If the electron interactions
are fully local in the sense of g2/4(|x1 − x2|) = g2/4δ(x1 − x2), terms of the type g4 are
suppressed by the Pauli principle, which is incorporated in the anticommutation relations
of the fermionic fields. Effectively, the parameter g4 can then be chosen in an arbitrary way,
for instance such as to render the interaction potentials SU(2)-invariant by g4 = g2 = g.
With this choice, the full expression reads

H = vF

∫
dx ~ψ†(x)σzpx ~ψ(x) + 1

2g
∫

dx n2(x) +
∫

dx α(x)~ψ†(x)σypx ~ψ(x) + h.c..
(4.31)

Here, the total density is denoted by n(x) = ~ψ†(x)~ψ(x) = n↑(x)+n↓(x). In order to absorb
the Rashba perturbation, a basis transformation to new fields ~χ(x) = (χ+(x), χ−(x))T can
be found, that takes the form [Dol17]

~ψ(x) = exp(iσxθR(x)/2)~χ(x),
θR(x) = arctan(α(x)/vF ).

(4.32)

The matrix exponential can be rephrased explicitly as(
ψ↑(x)
ψ↓(x)

)
=
(

cos(θR/2) i sin(θR/2)
i sin(θR/2) cos(θR/2)

)(
χ+(x)
χ−(x)

)
. (4.33)

Eventually, the Hamiltonian in the new basis is simply of the form of the free helical liquid,
but with a modified, position-dependent velocity,

H =
∫

dx v(x)~χ†(x)σzpx~χ(x) + 1
2g
∫

dx n2(x),

v(x) = vF

√
1 +

(
α(x)
vF

)2
.

(4.34)

4Note that interactions are not presented in a normal-ordered way here.
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Importantly, the SU(2)-invariant electron interactions are not affected by this unitary
basis transformation, as n(x) = ~ψ†(x)σ0 ~ψ(x) = ~χ†(x)σ0~χ(x), where σ0 is the unity op-
erator. The Hamiltonian in Eq. (4.34) can be mapped onto a system of free bosons by
the standard bosonization scheme, and as a consequence, no backscattering is expected
to arise from Rashba SOC, even in the presence of an electromagnetic field [Dol17]. Note
that this mapping procedure is well-defined only if α(x) varies smoothly in space. After
bosonization, one faces the helical Luttinger liquid with altered, inhomogeneous Luttinger
parameters. In particular, the effective interaction strength is then given by (compare
with Eq. (2.22))

K(x) =
(

1 + g

πv(x)

)−1/2
. (4.35)

4.4.4. Backscattering current

Given that the involved potentials are of non-local character, a finite backscattering current
can be generated from the effective operators in Eqs. (4.25) and (4.28). The contributions
are calculated with Eq. (4.12), choosing suitable initial and final states in the transition
matrix element.
The SPB current, induced by the operator in Eq. (4.25), entails the four terms

〈δI〉1p = 〈δI〉P,L→R1p + 〈δI〉P
′,L→R

1p − 〈δI〉P,R→L1p − 〈δI〉P
′,R→L

1p . (4.36)

Hereby, the separate contributions are of the form

〈δI〉P,R→L1p = 2πe/vF
∑

k1,k2,k′1,k
′
2

∣∣∣P k1k′1
k2k′2
− P k2k′1

k1k′2

∣∣∣2
× δ(−k′1 + k′2 − k2 − k1)f+(k1)f+(k2)(1− f+(k′2))(1− f−(k′1)), (4.37)

〈δI〉P,L→R1p = 2πe/vF
∑

k1,k2,k′1,k
′
2

∣∣∣(P ∗)k′1k1
k′2k2
− (P ∗)k

′
2k1
k′1k2

∣∣∣2
× δ(k′1 + k′2 − k2 + k1)f−(k1)f+(k2)(1− f+(k′2))(1− f+(k′1)), (4.38)

〈δI〉P
′,R→L

1p = 2πe/vF
∑

k1,k2,k′1,k
′
2

∣∣∣(P ′)k1k′1
k2k′2
− (P ′)k1k′2

k2k′1

∣∣∣2
× δ(−k′1 − k′2 + k2 − k1)f+(k1)f−(k2)(1− f−(k′2))(1− f−(k′1)), (4.39)

〈δI〉P
′,L→R

1p = 2πe/vF
∑

k1,k2,k′1,k
′
2

∣∣∣(P ′∗)k′1k1
k′2k2
− (P ′∗)k

′
1k2
k′2k1

∣∣∣2
× δ(k′1 − k′2 + k2 + k1)f−(k1)f−(k2)(1− f−(k′2))(1− f+(k′1)). (4.40)

The functions f±(p) = (e(ε±(p)±eV/2)/T + 1)−1 represent the Fermi-Dirac distributions
including a bias voltage eV .
On the other hand, the TPB current from the operator in Eq. (4.28) reads

〈δI〉2p = 〈δI〉L→R2p − 〈δI〉R→L2p , (4.41)
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where

〈δI〉R→L2p = 4πe/vF
∑

k1,k2,k′1,k
′
2

∣∣∣Qk1k′1
k2k′2
−Qk1k′2

k2k′1
−Qk2k′1

k1k′2
+Q

k2k′2
k1k′1

∣∣∣2
× δ(k1 + k2 + k′2 + k′1)f+(k1)f+(k2)(1− f−(k′2))(1− f−(k′1)), (4.42)

〈δI〉L→R2p = 4πe/vF
∑

k1,k2,k′1,k
′
2

∣∣∣(Q∗)k′1k1
k′2k2
− (Q∗)k

′
1k2
k′2k1
− (Q∗)k

′
2k1
k′1k2

+ (Q∗)k
′
2k2
k′1k1

∣∣∣2
× δ(k1 + k2 + k′2 + k′1)f−(k1)f−(k2)(1− f+(k′2))(1− f+(k′1)). (4.43)

As we can see from the explicit expressions of the average current above, the prefactors
P, P ′, Q in Eqs. (4.25) and (4.28), and likewise their low-energy expansions, have to exhibit
a certain symmetry under permutation of momentum indices, in order to give a nonzero
contribution to the backscattering current. Taking this point into account, we define the
relevant antisymmetrized combinations by P,P ′ and Q, with

Pk1k′1
k2k′2

= 1
2
(
P
k1k′1
k2k′2
− P k2k′1

k1k′2

)
,

(P ′)k1k′1
k2k′2

= 1
2
(
(P ′)k1k′1

k2k′2
− (P ′)k1k′2

k2k′1

)
,

Qk1k′1
k2k′2

= 1
4
(
Q
k1k′1
k2k′2
−Qk2k′1

k1k′2
−Qk1k′2

k2k′1
+Q

k2k′2
k1k′1

)
.

(4.44)

To identify the low-energy scaling of the SPB and TPB operators, we have to estimate
the momentum dependence of the antisymmetrized prefactors in Eq. (4.44). The Fermi
functions in Eqs. (4.37) – (4.43) confine the external momenta to a (small) energy window
of the range of the bias. For simplicity, we hereby take the limit of zero temperature.
The lowest-order scaling of the backscattering current will therefore be determined by
the lowest-order expansion of interaction and SOC potentials, that are contained in the
prefactors in Eq. (4.44), in those momenta.

4.4.5. General factorization

In the following, we aim not only at deriving the lowest-order scaling of the conductance
with energy, but also at analyzing the dependence of the current on the important length
scales of the system. One way to make them appear, is to assume a factorization of the
non-local SOC potential, defined in Eq. (4.17), into two separate functions of the form of
α(x, x′) = δl((x+x′)/2)α̃(x−x′). Here, δl describes the (generally inhomogeneous) profile
of the Rashba SOC potential along the helical edge, while α̃ reflects its non-local character.
Under the assumption that the SOC perturbation features a certain localization in real
space, as it applies for instance to the case of a single impurity, the typical decay length
of the modulating function δl is represented by the parameter l. For a translationally
invariant system, the edge profile becomes homogeneous in the limit l→ L. On the other
hand, the non-local character of the SOC potential here is supposed to be only weakly
pronounced, such that α̃ is a peaked function with a typical width of a (where a is a
small parameter, a ≤ l). With the above assumptions, we have introduced the additional
energy scales Vl = vF /l and vF /a into the model. Eventually, the physical properties of
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4. Rashba spin-orbit coupling

the system will depend on the competition of the energies eV and Vl, at zero temperature.
In momentum space, the factorized version of the SOC potential in Eq. (4.20) reads

αk,k′ = δl(k − k′)α̃(k+k′)/2. (4.45)

Evidently, δl takes the form of a delta function in Fourier space, if the edge profile is
translationally invariant (constant) in real space. Quite generally, we take δl(k) to be a
peaked function of height l and decay width 1/l (note that in momentum space δl is of
dimension length). Moreover, α̃ typically decays at a large scale of 1/a, and becomes a
constant if the SOC potential is local. On this part, according to Eq. (4.21), TRS imposes
the constraint

α̃k = α̃−k. (4.46)

Using the notation α̃′k = dα̃k/dk, we have α̃′k = −α̃′−k, and in particular α̃′0 = 0. Implic-
itly, we hereby make the assumption that the full Rashba SOC potential is an analytic
function, such that a Taylor expansion is well-defined at all points in momentum space.
Moreover, the nature of Coulomb interactions suggests to adopt a translationally invari-
ant form of the electron interaction potential, such that g(n)

q,q′ = g
(n)
q δ(q − q′). A regu-

lar behaviour of the (analytic) function gn(x1, x2) at short distances, results in a small-
momentum expansion of

g(n)
q = c

(n)
0 + c

(n)
2 (aq)2 +O(q4), (4.47)

with coefficients c(n)
i and a regularizing parameter a, which can be associated with a

short-distance cutoff (importantly, it is not a general cutoff on all distances here, but
only related to the interaction potential). This cutoff is not necessarily the same as the
decay width of the non-local part of the SOC potential given above, however, the two
parameters shall be identified here for simplicity. The expansion in Eq. (4.47) implies that
the electron interaction potential, that we associate with screened Coulomb interactions,
decays sufficiently fast for large separations in real space. Such an assumption prevents
diverging integrands in the later analysis, see for instance Eq. (4.53).
Eventually, using the factorization in Eq. (4.45), the effective prefactors of SPB and TPB
from Eqs. (4.25) and (4.28) can be rephrased as

P
k1k′1
k2k′2

= − i

vFL2 δl(2∆K)
(
g

(2)
k2−k′2

α̃(k1+k′1−k2+k′2)/2 − g
(4)
k2−k′2

α̃(k1+k2−k′2+k′1)/2
)
,

(P ′)k1k′1
k2k′2

= − i

vFL2 δl(2∆K)
(
g

(2)
k2−k′2

α̃(k1+k2−k′2+k′1)/2 − g
(4)
k2−k′2

α̃(k1+k′1−k2+k′2)/2
)
,

(4.48)

and

Q
k1k′1
k2k′2

= − 1
v2
FL

2

∫
dq δl(∆K + q)δl(∆K − q)

(
g

(2)
q+K/2α̃(k2+q+k′1)/2+K/4α̃(k1+k′2+q)/2+K/4

− 1
2g

(4)
q−K/2

[
α̃(k2−q+k′1)/2+K/4α̃(k1+q+k′2)/2−K/4 + α̃(k2+k′1+q)/2−K/4α̃(k1+k′2−q)/2+K/4

])
.

(4.49)
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4.4. Fermionic perturbative analysis

In Eq. (4.49), we performed the shifts q → q ± K/2, respectively, and made use of the
shortcuts

∆K = (k1 + k2 − k′2 − k′1)/2,
K = k1 − k2 + k′1 − k′2.

(4.50)

Note that the combination ∆K is proportional to the total momentum of both the opera-
tors in Eqs. (4.25) and (4.28). It further remains invariant under any of the permutations
of momenta, that are involved in the antisymmetrization of the prefactors in Eq. (4.44).

4.4.6. Low-energy expansion

To explore the low-energy transport properties of the system, we distinguish the two
scenarios of effectively translational invariant, and non-invariant SOC perturbations.
First, if V � Vl, the external momenta remain small compared to 1/l, and the full potential
αk,k′ can be expanded accordingly. In this case, the SOC profile changes considerably at
the energy scale of the bias, and we refer to this case as to a translationally non-invariant
Rashba potential. The antisymmetrized lowest-order contributions then take the form
(from Eqs. (4.48) and (4.49))

Pk1k′1
k2k′2
' − i

vFL2 δl(0)
[1
4c

(2)
0 (k1 − k2)(k′1 + k′2)α̃′′0

+ 1
2a

2(c(2)
2 − c

(4)
2 )(k1 − k2)(2k′2 − (k1 + k2))α̃0

]
, (4.51)

(P ′)k1k′1
k2k′2
' − i

vFL2 δl(0)
[1
4c

(2)
0 (k′1 − k′2)(k1 + k2)α̃′′0

+ 1
2a

2(c(2)
2 − c

(4)
2 )(k′1 − k′2)(2k2 − (k′1 + k′2))α̃0

]
, (4.52)

Qk1k′1
k2k′2
' − 1

4v2
FL

2 (k1 − k2)(k′1 − k′2)
∫

dq δl(q)δl(−q)

×
[
g(2)
q (α̃′q/2)2 + 2∂q(g(2)

q − g(4)
q )α̃′q/2α̃q/2 + ∂2

q (g(2)
q − g(4)

q )α̃2
q/2

]
. (4.53)

In the case of SPB, we find that the lowest-order expansion starts from second order in
momentum. For such processes, permutation symmetry generically allows also for terms
linear in momentum [LOB12], as one can see from

Hgeneric
1p =

∫
dx g1p(x)

(
ψ†+(x)∂xψ†+(x)ψ+(x)ψ−(x) + ψ†+(x)ψ†−(x)ψ−(x)∂xψ−(x)

)
+ h.c.

= − i

2L2

∑
k1,k′1,k2,k′2

g1p(2∆K)
[
(k2 − k1)c†+,k1

c†+,k2
c+,k′2c−,k′1

− (k′1 − k′2)c†+,k1
c†−,k2

c−,k′2c−,k′1

]
+ h.c.

' − i

2L2 g1p(0)
∑

k1,k′1,k2,k′2

[
(k2 − k1)c†+,k1

c†+,k2
c+,k′2c−,k′1

− (k′1 − k′2)c†+,k1
c†−,k2

c−,k′2c−,k′1

]
+ h.c.. (4.54)
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Here, we use the Fourier transform g1p(k) =
∫
dx g1p(x)e−ixk (and analogous for g2p be-

low). In the presence of a small bias voltages (or a very local perturbation), we can expand
g1p(k) ≈ g1p(0). Contributions linear in momentum such as in Eq. (4.54) arise as well in
our perturbative analysis, for instance in the form of P ∝ c

(2)
0 (k1 − k2)α̃′0δl(0). However,

they are suppressed by TRS, which enforces α̃′0 = 0. We therefore conclude, that under
the given assumptions, a generic SPB term as presented in Eq. (4.54) can not be induced
by Rashba SOC, at least to lowest order.
In the case of TPB, the lowest-order expansion with the correct permutation symmetry
is of second order in momentum as well. This is what we expect from a generic TPB
perturbation (after antisymmetrization, see also Sec. 3.3) [WBZ06, XM06],

Hgeneric
2p =

∫
dx g2p(x)ψ†+(x)∂xψ†+(x)ψ−(x)∂xψ−(x) + h.c.

= − 1
4L2

∑
k1,k′1,k2,k′2

g2p(2∆K)(k1 − k2)(k′1 − k′2)c†+,k1
c†+,k2

c−,k′2c−,k′1 + h.c.

' − 1
4L2 g2p(0)

∑
k1,k′1,k2,k′2

(k1 − k2)(k′1 − k′2)c†+,k1
c†+,k2

c−,k′2c−,k′1 + h.c.. (4.55)

Using that δl(0) = l and α̃′′0 ≈ a2α̃0 in Eqs. (4.51)–(4.53), we can estimate the scaling of
the backscattering current at zero temperature,

〈δI〉1p '
22π
315 ev

−3
F a4l2α̃2

0c
2(eV/vF )7,

〈δI〉2p '
128π
315 evFa

4l2n1(eV/vF )7.
(4.56)

Above, we defined c2 =
(
c

(2)
0
)2 +

(
c

(2)
2 − c(4)

2
)2 + c

(2)
0
(
c

(2)
2 − c(4)

2
)
, and the dimensionless

factor of n1 stems from the integration of q, given a general Rashba profile along the
edge. Note that by a dimensional analysis, integration of q generally yields a factor of
1/l. From the backscattering current, we simply infer the correction to the conductance by
δG = d〈δI〉/dV . Using Eq. (4.56), we find that both single- and two-particle backscattering
processes, induced by Rashba SOC in the translationally non-invariant regime, lead to a
correction to the conductance that scales as

δG ∼ a4l2 (eV/vF )6 . (4.57)

This is the power-law behaviour we expect from a generic TPB perturbation in the non-
interacting limit, K → 1 (compare with Sec. 3.3).

On the other hand, if V � Vl, the SOC profile appears to be effectively homogeneous at
the energy scale of the bias, and can therefore be considered as effectively translational
invariant (see Fig. 4.2). As the impurity decay length l now is very large compared to the
respective length scale of the bias, the edge profile is a sharply peaked function in Fourier
space. The expansion of the function δl in the external momenta then is not justified
anymore, whereas we can safely expand the slowly varying, non-local part α̃. The SOC
profile function characteristically depends on the total momentum ∆K, which is therefore
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4.4. Fermionic perturbative analysis

Figure 4.2.: Competition of the length scales associated with bias voltage (vF /eV ), impurity lo-
calization length (l), and system size (L). From top to bottom: the translationally non-invariant
(l � vF /eV ), effectively invariant (vF /eV < l < L), and invariant (l → L) regime. The SOC
profile along the edge is given by the function δl(x).

restricted to a small value of 1/l, in the same way as q. This observation manifests itself in
replacing one factor of eV by Vl, when integrating out the external momenta. While the
difference in the prefactors P and P ′ in this regime is captured by the simple replacement
δl(0) → δl(2∆K) in Eqs. (4.51) and (4.52), we find a slightly different expression for the
TPB low-energy expansion, from Eq. (4.49),

Qk1k′1
k2k′2
' − 1

16v2
FL

2 (k1 − k2)(k′1 − k′2)
∫

dq δl(∆K + q)δl(∆K − q)

×
(
c

(2)
0 q2(α̃′′0)2 + 8(c(2)

2 − c
(4)
2 )α̃2

0a
2
)
.

(4.58)

As a consequence, the resulting backscattering current takes the form

〈δI〉1p ' ev−3
F a4lα̃2

0c
2n2sgn(eV )(eV/vF )6,

〈δI〉2p ' ev−5
F a4lα̃4

0(c′)2sgn(eV )(eV/vF )6.
(4.59)

The factor c2 was defined below Eq. (4.56), while in the TPB term here, we find a term
of the similar structure (c′)2 = n3

(
c

(2)
0
)2(a/l)4 + n4

(
c

(2)
2 − c

(4)
2
)2 + n5c

(2)
0
(
c

(2)
2 − c

(4)
2
)
(a/l)2,

and different numerical factors n2 to n5. The correction to the conductance arising from
the effectively translationally invariant SOC perturbation, therefore displays the scaling

δG ∼ a4l (|eV |/vF )5 , (4.60)
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4. Rashba spin-orbit coupling

Figure 4.3.: The typical decay length l of the SOC impurity defines an energy scale Vl. For eV � Vl
(or eV � Vl), the perturbation appears translationally non-invariant (invariant), at the energy
scale of the bias voltage (compare with Fig. 4.2). With increasing energy, we expect a crossover
between the two regimes, which manifests itself in a change of the scaling of the backscattering
current (both SPB and TPB) from seventh to sixth power (see Eqs. 4.56 and 4.59). Note that
these characteristic power exponents can change in the presence of a non-analytic cutoff function
(see Sec. 4.4.8).

which is in agreement with the SPB scaling predicted in Ref. [SRvG12], for translational
invariance and kF = 0 (see Eq. (4.14)). By comparison with Eq. (4.57), we can directly
verify a crossover of scales at eV ≈ Vl, which represents the transition from the effectively
translational invariant to the non-invariant regime.
If the SOC impurity profile does not vary significantly over the entire size of system,
l → L → ∞, we reach the limit of true translational invariance (see Fig. 4.2). The cor-
rection to the conductance in Eq. (4.60) then becomes proportional to the system size,
reflecting its dependence on the effective region of backscattering. Consistently, the edge
profile part δl then takes the form of momentum conservation. Note that in the truly
translationally invariant system, a TPB contribution arising from contact interactions is
generally suppressed.
The results of the above analysis can be summarized the following way: Assuming that
either the SOC perturbation or the electron interactions are non-local, and given that
the potential functions are analytic, the scaling of the backscattering current is found to
be either of seventh or sixth power, depending on the competition of eV and Vl. Corre-
spondingly, the correction to the conductance is of sixth or fifth power in the bias voltage,
respectively. With increasing energy, we predict a crossover of scales, originating from
the transition of a translationally non-invariant to an effectively invariant edge profile (see
Fig. 4.3).

4.4.7. SU(2) symmetry

Some important aspects concerning the underlying symmetries of the system should be
noted. First, we realize that electron interactions of finite range, that exhibit SU(2) sym-
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4.4. Fermionic perturbative analysis

metry, can not induce backscattering in combination with a local Rashba SOC potential
(at least to this order of perturbation theory, compare also with Sec. 4.4.3 or Ref. [Dol17]).
This point can already be observed from the general prefactors in Eqs. (4.25) and (4.28),
choosing a local potential αk,k′ = αk−k′ . We then obtain

P
k1k′1
k2k′2

= (P ′)k1k′1
k2k′2

= − i

vFL3

∑
q

(
g

(2)
q,k2−k′2

− g(4)
q,k2−k′2

)
αk1−k′1+q,

Q
k1k′1
k2k′2

= − 1
v2
FL

4

∑
q,q′

(
g

(2)
q,q′ − g

(4)
q,q′

)
αk2+q−k′1αk1−k′2−q′ .

(4.61)

If electron interactions are SU(2)-invariant, meaning that they do not distinguish particles
of different chirality, the two potentials of the type g2 and g4 have the same momentum
dependence. After a cancellation of terms, effectively, we recover the situation of contact
interactions. As argued in the previous Sec. 4.4.3, such an all-local model does not generate
backscattering. A compensation of the respective coefficients can as well be observed in the
low-energy expansions of Eqs. (4.51)–(4.53) and Eq. (4.58). However, a finite contribution
to the backscattering current can arise from SU(2)-invariant interactions, in combination
with a non-local SOC potential. The latter can be associated with a breaking of “local
SU(2) gauge symmetry” of the SOC, as explained in the following. At the helical edge,
due to the conservation of the electrons sz-component, SU(2) symmetry is reduced to an
effective U(1) symmetry. When spin-orbit coupling is introduced, the conservation of the
sz-component is in general broken. Nevertheless, if the Rashba term contains a single
spatial derivative (which according to our definition in Eq. (4.17) means locality in real
space), it can be absorbed in the kinetic term by a local SU(2) transformation of the
spin basis (see Sec. 4.4.3). This is not possible anymore, if the SOC potential includes
higher-order derivatives (i.e. if it is non-local in real space). Therefore, the requirement
for nonzero backscattering off the Rashba impurity can as well be phrased in the way that
either the SU(2) symmetry of the interactions, or the local SU(2) gauge symmetry of the
SOC potential, must be broken. The table in Tab. 4.1 provides a summary of the above
findings.

4.4.8. Backscattering at finite cutoff

In the previous sections, we have demonstrated that a nonzero backscattering current is
generated by SOC perturbations involving non-local potentials in real space. Here, we
explicitly explore the possibility of backscattering off originally local potentials, but in the
presence of a momentum cutoff. As discussed above, this can be viewed as an alternative
way of inducing non-local effects in real space. Interestingly, the lowest-order scaling of
the correction to the conductance then depends on the form of the chosen cutoff.
A momentum cutoff can be imposed in various ways. In a systematic approach, we may
introduce a general cutoff function Fk already in the definition of fermionic creation and
annihilation operators, in the form of a general scaling factor [GKT17]

cr,k → cr,k
√
Fk. (4.62)
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SOC local SOC non-local

interactions local × X

interactions non-local
and SU(2)-symmetric × X

interactions non-local
and SU(2)-asymmetric X X

Table 4.1.: Occurrence (X) and absence (×) of inelastic backscattering according to the analysis
of this section: In the absence of a momentum cutoff, we expect a finite contribution to the
backscattering current, given that the model includes non-local potentials (except for non-local
but SU(2)-invariant interactions and local SOC). Importantly, if a momentum cutoff is present,
we generally find nonzero backscattering for all the cases above (see also discussion in Sec. 4.4.8).

This will alter the anticommutation relation of Eq. (4.8) to

{cr,k, c†r′,k′} = δkk′δrr′Fk, (4.63)

and in the real-space version of Eq. (4.63), the delta function is smeared out. The cutoff
function enters into the effective prefactors of SPB and TPB, in Eqs. (4.25) and (4.28),
respectively, in the form of

P
k1k′1
k2k′2

→ − i

vFL3 F̃
∑
q

(
g

(2)
q,k2−k′2

αk1,k′1−qFk′1−q − g
(4)
q,k2−k′2

αk1+q,k′1Fk1+q
)
, (4.64)

(P ′)k1k′1
k2k′2
→ − i

vFL3 F̃
∑
q

(
g

(2)
q,k2−k′2

αk1+q,k′1Fk1+q − g
(4)
q,k2−k′2

αk1,k′1−qFk′1−q
)
, (4.65)

Q
k1k′1
k2k′2
→ − 1

v2
FL

4 F̃
∑
q,q′

(
g

(2)
q,q′αk2+q,k′1αk1,k′2+q′Fk2+qFk′2+q′

− 1
2g

(4)
q,q′ [αk2−q′,k′1αk1+q,k′2Fk2−q′Fk1+q + αk2,k′1+q′αk1,k′2−qFk′1+q′Fk′2−q]

)
, (4.66)

where

F̃ =
(
Fk1Fk2Fk′2Fk′1

)1/2
. (4.67)

We observe that, in particular, the electron momenta that represent the internal lines
in the diagrams of Fig. 4.1, are restricted by the cutoff. In the following, we assume
translationally invariant and local interactions, g(2,4)

q,q′ = c
(2,4)
0 δ(q − q′), as well as local

Rashba SOC, to evaluate the low-energy scaling of the backscattering current at finite
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cutoff. This means we face simplified prefactors, where the antisymmetrized versions read

Pk1k′1
k2k′2

= − i

2vFL2 F̃ c
(2)
0 α̃0δl(2∆K)(Fk′1+k′2−k2 − Fk′1+k′2−k1), (4.68)

(P ′)k1k′1
k2k′2

= − i

2vFL2 F̃ c
(2)
0 α̃0δl(2∆K)(Fk1+k2−k′2 − Fk1+k2−k′1), (4.69)

Qk1k′1
k2k′2

= − 1
4v2
FL

2 F̃ c
(2)
0 α̃2

0

∫
dq δl(k2 + q − k′1)δl(k1 − k′2 − q)

×
(
Fk2+q − Fk2+q+k′2−k′1

) (
Fk′2+q − Fk′2+q+k2−k1

)
q→q+K/2= − 1

4v2
FL

2 F̃ c
(2)
0 α̃2

0

∫
dq δl(q + ∆K)δl(−q + ∆K)

×
(
Fq+∆K+k′1 − Fq+∆K+k′2

) (
Fq−∆K+k1 − Fq−∆K+k2

)
. (4.70)

We naturally expect, that the cutoff function Fk decays at a large typical scale of 1/a�
max(eV/vF , 1/l). Associating 1/a with the effective bandwidth of the system, this sug-
gests that the influence of remote bulk states can be neglected.

First, we consider the scenario of a smooth, analytic cutoff function. In this case, Fk can
be expanded safely in all the external momenta. We note that F ′0 = [dFk/dk]k=0 = 0,
since Fk has its global maximum at k = 0. This constraint suppresses terms linear in
momentum in the low-energy expansions of Eqs. (4.71) and (4.72) below. We find

Pk1k′1
k2k′2
' − i

2vFL2F
2
0 c

(2)
0 α̃0δl(2∆K)F ′′0 (k1 − k2)(k′1 + k′2), (4.71)

(P ′)k1k′1
k2k′2
' − i

2vFL2F
2
0 c

(2)
0 α̃0δl(2∆K)F ′′0 (k′1 − k′2)(k1 + k2), (4.72)

Qk1k′1
k2k′2
' − 1

4v2
FL

2F
2
0 c

(2)
0 α̃2

0(k1 − k2)(k′1 − k′2)
∫

dq δl(q + ∆K)δl(−q + ∆K)(F ′q)2.

(4.73)

Both the SPB and TPB contributions are of second order in momentum. The lowest-order
terms exhibit the same structure as the expressions we found before, employing non-local
potentials in the absence of a cutoff (compare with Eqs. (4.51)–(4.53)). Therefore, the
scaling of the backscattering current will be the same as in Eqs. (4.56) and (4.59), re-
sulting in corrections to the conductance of δG ∼ V 6 or δG ∼ V 5, for a translational
non-invariant or invariant perturbation, respectively.

The nature of a momentum cutoff implies, that the cutoff function is not necessarily
analytic in a realistic system. For instance, a simple way to model the cutoff is to truncate
the energy spectrum at a finite threshold 1/a. Such an approach reflects the general
idea of a RG analysis, where high energy degrees of freedom are excluded. Let us study
the effects of this type of hard cutoff on the transport properties of the system. From
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Eqs. (4.64)–(4.66), we derive

P
k1k′1
k2k′2

= − i

vFL2 c
(2)
0 F̃ α̃0[δl(2∆K)]− 1

a
≤k′1−(k2−k′2)≤ 1

a
= − i

vFL2 c
(2)
0 α̃0δl(2∆K), (4.74)

(P ′)k1k′1
k2k′2

= − i

vFL2 c
(2)
0 F̃ α̃0[δl(2∆K)]− 1

a
≤k1+(k2−k′2)≤ 1

a
= − i

vFL2 c
(2)
0 α̃0δl(2∆K), (4.75)

Q
k1k′1
k2k′2

= − 1
v2
FL

2 c
(2)
0 F̃ α̃2

0

∫
− 1
a≤k2+q≤ 1

a
− 1
a≤k

′
2+q≤ 1

a

dq δl(k2 + q − k′1)δl(k1 − k′2 − q)

= − 1
v2
FL

2 c
(2)
0 α̃2

0

∫ 1
a
−max(k2,k′2)

− 1
a
−min(k2,k′2)

dq δl(k2 + q − k′1)δl(k1 − k′2 − q). (4.76)

It is important to note that any combination of external momenta remains unaffected by
the cutoff constraints, given that 1/a � eV/vF (so e.g. F̃ = 1). As a consequence, the
SPB contribution vanishes,

Pk1k′1
k2k′2

= (P ′)k1k′1
k2k′2

= 0, (4.77)

Qk1k′1
k2k′2
' − 1

4v2
FL
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(2)
0 α̃2
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−1
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) [
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′
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′
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′
1)

−max(k1, k
′
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′
2)−min(k1, k

′
2)−min(k2, k

′
1) + min(k1, k

′
1)
]

= − 1
4v2
FL

2 c
(2)
0 α̃2

0δl

(1
a

)
δl

(
−1
a

) (
−|k2 − k′2|+ |k1 − k′2|+ |k2 − k′1| − |k1 − k′1|

)
.

(4.78)

To estimate the integral of finite range, we used the approximation given in Eq. (A.8).
With this, we arrive at the backscattering current [GKT17]

〈δI1p〉 = 0,

〈δI2p〉 ' 1.4πev−5
F α̃4

0δ
2
l (1/a) δ2

l (−1/a)
(
c

(2)
0

)2
(eV/vF )5.

(4.79)

A numerical factor of 3240116/2278125 ≈ 1.4 is obtained from the integration of the
external momenta. As before, we assume that the function δl(q), which is of dimension
length, is proportional to the SOC profile width l, such that correction to the conductance
scales as

δG ∼ l4(eV/vF )4. (4.80)

Next, we study another example of a non-analytic cutoff function, in the form of an
exponential damping Fk = e−a|k|. This type of cutoff is for instance widely used in
the bosonization scheme, in order to define bosonic fields with non-diverging two-point
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4.4. Fermionic perturbative analysis

correlations (see Eq. (2.10)). Starting from Eqs. (4.68)–(4.70), we obtain 5

Pk1k′1
k2k′2

= − i

2vFL2 c
(2)
0 α̃0δl(2∆K)

(
e−a|k

′
1+k′2−k2| − e−a|k′1+k′2−k1|

)
' i

2vFL2 c
(2)
0 α̃0δl(2∆K)a

(
|k′1 + k′2 − k2| − |k′1 + k′2 − k1|

)
, (4.81)

(P ′)k1k′1
k2k′2
' i

2vFL2 c
(2)
0 α̃0δl(2∆K)a

(
|k1 + k2 − k′2| − |k1 + k2 − k′1|

)
, (4.82)

Qk1k′1
k2k′2

= − 1
4v2
FL

2 c
(2)
0 α̃2

0

∫
dq δl(q + ∆K)δl(−q + ∆K)

×
(
e−a|q+∆K+k′1| − e−a|q+∆K+k′2|

)(
e−a|q−∆K+k1| − e−a|q−∆K+k2|). (4.83)

Since the cutoff function is non-analytic at zero momentum, its first derivative is ill-
defined. However, we can still expand Eqs. (4.81) and (4.82) for small values of a, while
in Eq. (4.83) this depends on the convergence properties of the integral.
For translationally non-invariant profiles, in order to deal with the integral in Eq. (4.83),
we argue that the dominant contribution stems from the large momenta of |q| ≥ |eV/vF |
[GKT17], in which case we can simplify

Qk1k′1
k2k′2
' − 1

4v2
FL

2 c
(2)
0 a2(k′1 − k′2)(k1 − k2)α̃2

0

∫
dq δl(q)δl(−q)e−2a|q|. (4.84)

With that, we find the backscattering currents

〈δI1p〉 = 191π
2880 ev

−3
F a2l2α̃2

0

(
c

(2)
0

)2
(eV/vF )5,

〈δI2p〉 = 128π
315 ev−5

F a4l2α̃4
0

(
c

(2)
0

)2
n6(eV/vF )7.

(4.85)

Here, n6 is numerical factor that depends on the particular form of δl. The leading-order
correction to the conductance at small bias voltages thus originates from SPB terms, and
exhibits the scaling

δG ∼ a2l2 (eV /vF )4 , (4.86)

while the correction due to TPB processes is proportional to δG ∼ a4l2 (eV /vF )6.
For effectively translational invariant perturbations, the profile function can not be ex-
panded in the external momenta. As we have seen before, one power of eV is eventually
replaced by Vl in the average current. The integral in Eq. (4.83) can be evaluated approx-
imately by taking the integrand at q = 0, on a range of 1/l. We then obtain

Qk1k′1
k2k′2
' − 1

4v2
FL

2 c
(2)
0 l−1α̃0δ

2
l (∆K)a2(|k′1| − |k′2|)(|k1| − |k2|

)
, (4.87)

and the resulting currents

〈δI1p〉 = 4πev−3
F a2lα̃2

0

(
c

(2)
0

)2
n7(eV/vF )4sgn(eV ),

〈δI2p〉 = 4πev−5
F a4lα̃4

0

(
c

(2)
0

)2
n8(eV/vF )6sgn(eV ),

(4.88)

5In lowest order, we have again F̃ ≈ 1.
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4. Rashba spin-orbit coupling

with numerical factors n7 and n8. The TPB terms induce a correction of the form δG ∼
a4l (|eV |/vF )5, whereas the dominant transport signature is given by the SPB processes,

δG ∼ a2l (|eV |/vF )3 . (4.89)

We observe that these scalings, derived from two different examples of non-analytic cut-
off functions, are in general different from the ones arising in the context of non-local
potentials in real space, see Eqs. (4.57) and (4.60). This is due to the fact that the low-
energy expansion here allows for terms linear in momentum, that come with an absolute
value, which prevents immediate cancellations upon antisymmetrization. In contrast, the
assumption of an analytic form of the SOC potentials suppressed the appearance of such
terms in the previous analysis, and the lowest-order contributions were found to be of
second order in momentum. By comparison of Eq. (4.85) and Eq. (4.88), we further state
that the specific choice of the cutoff generally affects the power-law scaling of the backscat-
tering current.

So far, we have analyzed the possibility of inelastic backscattering induced by Rashba SOC
in a fermionic scheme, where electron interactions were treated perturbatively. In the next
sections we turn to a bosonic approach, which bears the great advantage that interactions
can be included into the model exactly. This is of particular interest when studying phase
transitions between the regimes of weak and strong coupling, since those transitions usually
occur at intermediate or strong interactions. Note that in such a bosonic framework, the
presence of a finite momentum cutoff is in general essential to avoid divergences. We shall
explore two fundamental scenarios: the setup of a single, localized SOC perturbation,
possibly attached to external reservoirs, and the case of many, randomly disordered SOC
impurities.

4.5. Single Rashba impurity

Approaching actual realizations of a Rashba potential along the edge, the simplest idea
was to assume a single, localized perturbation, that we refer to as a “Rashba impurity”
(see Fig. 4.4). In an experiment, such a single barrier could be accomplished by placing
a local gate on top of the QSH edge. If the system contains many impurities of the same
kind, the single impurity contributions can be added up, given that interference effects
and multiple-scattering can be neglected (see discussion in Sec. 3.4).
We first review the single-impurity setup studied in Ref. [CBD+12], under the assumption
of finite temperature, without attached leads. Going beyond that analysis, we subsequently
consider a system composed of an interacting helical LL attached to non-interacting con-
tacts (and applied bias). As we see below, such a specification allows for an additional
single-particle contribution, that can be associated with broken Galilean invariance. This
result was published in Ref. [GCT15].
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4.5. Single Rashba impurity

Figure 4.4.: Sketch of a 2D QSH system with one-dimensional, helical edge states. The Rashba
SOC potential (blue curve) is here modeled in the form of a localized perturbation.

4.5.1. System without leads

Modeling the local potential by α(x) = α(avF )δ(x), with the dimensionless coupling con-
stant α, we find from Eq. (4.4),

HR = iF †+F−
αvF
π

(2πa
L

)K
:∂xθ(0)e2iφ(0): + h.c.. (4.90)

A scaling analysis reveals, that α is always an irrelevant perturbation: As the spatial
derivative increases the scaling dimension by one, we find ∆α = K + 1. Effectively, there
is only one temporal dimension in the problem, such that

d

d`
α(`) = −Kα(`). (4.91)

The transport signature of the above perturbation depends on the induced backscattering
mechanism. Using an OPE very similar to the one given in App. C, one finds that the
single Rashba impurity contributes in fourth order to a (local) TPB process, as defined in
Eq. (3.39). Explicitly, using γ̃2p(x) = γ̃2paδ(x), with a dimensionless coupling constant γ̃2p,
the local version of the TPB operator is proportional to H2p ∝ γ̃2pe

4iφ(0)/a. As explained
in more detail in Sec. 4.8, one accounts for the so-called missing piece in the course of
the RG by defining the (truly) inelastic contribution γ̃2p(`) = γ̃in2p(`)−α2(`)(1− 2K)/2K.
This leads to a renormalization of the form [CBD+12]

d

d`
γ̃in2p(`) = (1− 4K)γ̃in2p(`) +

(
1− 1

K

)
(1− 2K)α2(`). (4.92)

At zero electron interactions, K = 1, there is no Rashba-induced backscattering, as it
should be. The above renormalization can as well be derived in fermionic language
[CBD+12], where importantly, a momentum cutoff needs to be introduced in order to
recover the non-interacting limit of Eq. (4.92).
Integrating Eqs. (4.91) and (4.92) yields the solution

γ̃in2p(`) = γ̃in2p(0)e(1−4K)` + α(0)2
(

1− 1
K

)(
e(1−4K)` − e−2K`

)
. (4.93)
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K
1/4 1/2

irrelevant; γ̃in2p(`) ∼ e−2K`irrelevant; γ̃in2p(`) ∼ e(1−4K)`relevant; γ̃in2p(`) ∼ e(1−4K)`

Figure 4.5.: Relevance and dominant scalings of the local TPB coupling γ̃in2p(`) in the presence of
a single Rashba impurity (compare with Eq. (4.93)).

2 4 6 8

10-7

10- 6

10- 5

10- 4

0.001

0.010

Figure 4.6.: Log-Plot of the function γ̃in2p(`), cf. Eq. (4.93), using parameters γ̃in2p(0) = 0 and
moderately weak interactions, K = 0.7. We observe a crossover of scales at the threshold `∗,
transitioning from a scaling of γ̃in2p(`) ∼ e(1−4K)` to γ̃in2p(`) ∼ e−2K`. The limit of `→∞ corresponds
to low energies.

Importantly, the TPB operator becomes relevant for strong interactions K < 1/4. The
interesting limit of low energies is studied by sending the RG running scale, `, to infin-
ity. Depending on the interaction strength K, two different scalings of the TPB cou-
pling strength can dominate in this limit, and we identify a crossover of scalings from
γ̃in2p(`) ∼ e(1−4K)` for K < 1/2, to γ̃in2p(`) ∼ e−2K` for K > 1/2, which will translate into
corresponding corrections to the conductance. The Fig. 4.5 illustrates the scalings of the
TPB coupling parameter at low energies. For increasing temperatures (so decreasing `),
we observe yet another crossover between the two respective scalings (see Fig. 4.6). This
occurs at the critical value `∗ = 1/(2K−1) log[(4K−1)/2K], which we can associate with
the temperature T ∗ = (v/a0)e−`∗ .

The correction to the conductance can be calculated at finite temperature with a gener-
ating functional approach [BF04]. Essentially, we use Eqs. (3.2) and (3.3), as well as the
correlation functions given in Sec. 2.3, to obtain the contribution of lowest order in the
perturbation γ̃in2p. More details of the explicit calculation can be found in the Sec. 4.7.1
below. Here, we anticipate this discussion to state that the correction to the conductance
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is proportional to

δG ∝ e2β
2

a2

(
πa

vβ

)8K (
γ̃in2p(`)

)2
. (4.94)

Importantly, we can make use of the results of the RG analysis, assuming that γ̃in2p(`)
and a(`) are running parameters, and thus change upon rescaling. Note that compared
to Eq. (4.167) of the next section, the TPB operator employed here is roughly speaking
only half of the (double) TPB operator used in Eq. (4.142), which is why the conductance
is of second order in the perturbation (γ̃in2p(`))2, while we have a first-order contribution
proportional to γloc2p (`) in Eq. (4.167).
Scaling the cutoff up to the order of the temperature, `→ log(v/(Ta0)), we find that the
correction the conductance is simply given by the square of the renormalized TPB param-
eter. Therefore, in the regime of irrelevant TPB, the Rashba impurity affects transport in
the following way,

δG ∼
{

(Ta0/v)4K if 1/2 < K < 1,
(Ta0/v)8K−2 if 1/4 < K < 1/2.

(4.95)

In the limit of weak electron interactions, we find a power-law correction in fourth order
of the temperature. This is different from the expected correction (of sixth power) due
to a generic TPB perturbation (see Sec. 3.3), because here we consider TPB generated
by a Rashba impurity. The specific dynamics of the SOC perturbation have altered the
resulting scaling. In a transport experiment, this approach could be used to identify dis-
tinct microscopic sources of backscattering, that induce the same (generic) backscattering
mechanism.

4.5.2. Attached leads and shifted operators

In the following, we extend our model such as to include physical contacts, which are
assumed to be of non-interacting character (see discussion in Sec. 3.1.2). The energy scale
of interest is now the bias voltage, while temperature is set to zero for simplicity. To
understand better the physical implications, we compare the calculation to the analogous
scenario of a localized magnetic impurity (that breaks TRS). Its general form is given
in Eq. (3.37), where we use gm(x) = mvF δ(x), with the dimensionless parameter m, to
obtain

Hm = F †+F−
mvF
2πa

(2πa
L

)K
:e2iφ(0): + h.c., (4.96)

d

d`
m(`) = (1−K)m(`). (4.97)

In the last line, we repeated the tree-level RG equation already given in Eq. (3.40), using
that the scaling dimension of the perturbation operator is ∆m = K. Clearly, the scaling
behaviour of the two coupling constants α and m, as given in Eq. (4.91) and Eq. (4.97),
is quite different: With repulsive interactions, 0 < K ≤ 1, the single Rashba impurity is
always irrelevant in a low-energy theory. On the opposite, the magnetic impurity always
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4. Rashba spin-orbit coupling

grows upon renormalization, except for the non-interacting case, where it is marginal.
The backscattered current operator, resulting from the presence of such perturbations,
can be represented as [LOB12, GCT15]

j
R/m
bs (t) = − i

2vF

∫
dx

[
HR/m(t), j0

]
. (4.98)

The assumption of non-interacting leads, where j0 = evF
L (N+ −N−), was previously dis-

cussed in Sec. 3.1.2. As we are interested in the transport properties of this setup, we
calculate the correction to the conductance, which is directly related to the above current.
This approach becomes more clear, if we first define the current transmitted through the
system as the difference of the free, and the backscattered current, jtr = j0 − jbs. The
correction to the conductance (see Eq. (3.26)), is then determined by

δG = d〈δjtr〉
dV

= −d〈jbs〉
dV

, (4.99)

where we used the notation δjtr = jtr − 〈jtr〉0 = −jbs.
To discriminate between single- and two-particle backscattering, another useful quantity
besides the current is the shot noise at zero frequency. It is given by the symmetrized
current-current correlation function [Mar05],

S(ω → 0) =
∑
η

∫
dt2 〈TKδjtrη(t)δjtr−η(t2)〉 =

∑
η

∫
dt2 〈TKjbsη(t)jbs−η(t2)〉. (4.100)

In the weak backscattering limit, it can be related to the effective backscattered charge
e∗, or to the Fano factor e∗/e, by the Schottky formula [Sch18, BB00]

e∗ = S

2|〈jbs〉|
. (4.101)

Next, we implement a nonzero bias voltage, applied to the non-interacting leads, as ex-
plained in Sec. 3.2.2. In this formalism, the bias acts on the Klein factors and on the
zero modes of an operator, where the latter have so far been included in the fields φ, θ.
For the Rashba Hamiltonian in Eq. (4.90), for instance, the corresponding bias-induced
shift (see Eq. (3.23)) can be rephrased as a shift of the fields φ(x) → φ(x) + eV

2 t and
∂xθ(x)→ ∂xθ(x) + eV

2vF . With that, we arrive at

(
H̃R

)
V

(t) = i
αvF
π

(2πa
L

)K [
:
(
∂xθ(0, t) + eV

2vF

)
e2i(φ(0,t)+ eV

2 t): + h.c.
]

= αvF
2π

(2πa
L

)K [ 1
vK

:
(
∂te

2iφ(0,t)
)
:eieV t + 1

vF
:e2iφ(0,t):

(
∂te

ieV t
)

+ h.c.
]
,

(
H̃m

)
V

= F †+F−
mvF
2πa

(2πa
L

)K
:e2iφ(0)eieV t: + h.c..

(4.102)
Above, we made use of the identity ∂tφ(x, t) = vK∂xθ(x, t) (see Eq. (2.61)), to transform
one field into a time derivative. The structure of the backscattering current operator is
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similar to the perturbation itself, but note the opposite sign of the conjugate terms,(
j̃Rbs

)
V

(t) = −eαvF
π

(2πa
L

)K [
:
(
∂xθ(0, t) + eV

2vF

)
e2i(φ(0,t)+ eV

2 t):− h.c.
]

= ie
αvF
2π

(2πa
L

)K [ 1
vK

:
(
∂te

2iφ(0,t)
)
:eieV t + 1

vF
:e2iφ(0,t):

(
∂te

ieV t
)
− h.c.

]
,

(4.103)

and one finds an analogous expression for the magnetic perturbation.
A few comments about Eqs. (4.102) and (4.103) are in order. First, we observe that both(
H̃R

)
V

and
(
j̃Rbs

)
V

will be of the form of a total time derivative in the case of vanishing
interactions (v → vF and K → 1), Galilean invariance (vK = vF ), or a model with
interacting leads. As we see in more detail below, any of these conditions leads to a zero
average backscattering current, in lowest order. Generally, the neutrality rule ensures that
there is no such average current in any odd order of the impurity strength. Second, we
emphasize, that the Klein factors are essential to obtain the correct voltage bias shift.
Only after the bias is implemented, in Eqs. (4.102) and (4.103), the limit L→∞ can be
taken safely, and as a consequence, the zero modes disappear. Then, the Klein factors
commute with all remaining field operators, and can be dropped, since they will eventually
compensate in the averaged expression.

4.5.3. Backscattering current in second order

Using the Keldysh framework, we calculate the expectation value of the backscattering
current perturbatively in the impurity strength (weak-coupling limit). In lowest (second)
order, we find from Eq. (3.12) the expression (for details see Ref. [GCT15] and App. C
thereof),

〈jRbs〉 = 1
2
∑
η=±

〈
TK

[(
j̃Rbs

)η
V

(t)(−i)
∫
K
dt2

(
H̃R

)η′
V

(t2)
]〉

0

= 2iev
2
Fα

2

(2π)2

(2πa
L

)2K (Kv − vF )2

(KvvF )2 (eV )2
∫

dτ h(τ) sin(eV τ)

= eα2v2
F

2πΓ(2K)

(
a

v

)2K (Kv − vF )2

(KvvF )2 (eV )2K+1. (4.104)

Here, we denoted τ = t− t2, and further wrote (cf. Eq. (2.53))

h(τ) = 〈:e2iφ(τ)::e−2iφ(0):〉0 =
(2π
L

(ivτ + a)
)−2K

, (4.105)

using that 〈:e2iφ(t)e−2iφ(t2):〉0 = 1. Note that the assumption of zero temperature allows
us to restrict ourselves to ground state expectation values of vertex operators only. The
correction to the conductance can again be given by the dI/dV -characteristics,

δG = −(2K + 1) e2α2v2
F

2πΓ(2K)

(
a

v

)2K (vK − vF )2

(vKvF )2 (eV )2K . (4.106)
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In the non-interacting limit, there is no correction due to elastic backscattering, as it
should be. More interestingly, also in the case of Galilean invariance, when vK = vF (see
Sec. 3.2.4), the above contribution to the current is absent. The calculated shot noise takes
a form directly proportional to the average current, resulting in e∗ = e. This indicates,
that the physical mechanism captured above is indeed a single-particle process. Notably,
this setup (featuring non-interacting leads) generates a SPB backscattering correction of
a lower power – δG ∼ V 2 for weak interactions – than all the inelastic SPB processes
(without leads) analyzed before [SRvG12, LOB12, KGCM14], which predict a correction
of fourth or fifth power in the bias voltage. The mechanism described here, is therefore
expected to be of high relevance in a realistic scenario.
The current in Eq. (4.104) can as well be verified in a fermionic, perturbative approach
(see model description in Sec. 4.4). Assuming weak interactions, the lowest-order dia-
grams that contribute to SPB arise from the cross terms T = HRG0Hint + HintG0HR.
In Ref. [GCT15], the average backscattering current is evaluated numerically, using finite
system size. The findings are fully consistent with the above result: If processes featuring
any possible exchange of momenta, within the range of the bias voltage, are taken into ac-
count, the average current is zero due to a systematic cancellation of terms. On the other
hand, if all the elastic processes (q = 0 in Ref. [GCT15]) are excluded by hand, we obtain
a finite backscattering current, 〈jRbs〉 ∼ eα2g2

2(eV )3. Such processes are proportional to the
zero modes of the system. Given that those zero modes are non-interacting, they should
not contribute to the current. Excluding the corresponding terms is therefore equivalent
to the implementation of non-interacting leads. The scaling of the current matches the
one of Eq. (4.104) in the limit of weak interactions, K → 1. We further realize that
Kv − vF = g2/2π for contact interactions.

In comparison, for the magnetic impurity, we obtain in an identical fashion

〈jmbs〉 = em2v2
F

2πa2Γ(2K)

(
a

v

)2K
(eV )2K−1, (4.107)

δG = −(2K − 1) e2m2v2
F

2πa2Γ(2K)

(
a

v

)2K
(eV )2K−2, (4.108)

and the same effective charge e∗ = e. Note that we assumed weak backscattering off
the magnetic impurity, which, according to Eq. (4.97), applies only to high energies (or
K > 1), as m is relevant in the RG sense for K < 1. Therefore, the result in Eq. (4.108)
only holds for large values of eV (or attractive interactions). For small eV and repulsive
interactions, when m is large, the system is in the strong-coupling regime. As explained
in Sec. 3.1.1, the current effectively corresponds to the one in the weak-coupling limit
after the replacement K → 1/K. We then obtain δG ∼ m2(eV )2/K−2, which recovers the
main result of the seminal articles by Kane and Fisher [KF92a, KF92b]. For the Rashba
impurity, as α is always irrelevant, we never reach the strong-coupling regime.

4.5.4. Backscattering current in fourth order

In order to study TPB, we have to examine the backscattering current to fourth order
in the impurity strength. After contour time-ordering, the resulting expression exhibits
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multi-dimensional, coupled integrals, that in general defy an analytical evaluation. The
expectation value has to be understood as a mixture of diverse processes involving two
particles, coupled by interactions. The variety of arising terms does not allow to give an
exact result in this order, however, we can account for the physically most interesting
limits of (strongly coupled) two-particle backscattering, and single-particle backscattering
of two (weakly coupled) particles. Further details of the calculation are given in the App. E
of Ref. [GCT15].
Terms of fourth order in α arise in a third-order expansion of Eq. (3.12) in the impurity
Hamiltonian,

〈jRbs(t2)〉

= 1
2
∑
η2=±

〈
TK

[(
j̃Rbs

)η2

V
(t2) i6

∫
K
dt3 dt4 dt5

(
H̃R

)η3

V
(t3)

(
H̃R

)η4

V
(t4)

(
H̃R

)η5

V
(t5)

]〉
0

= − ev
4
Fα

4

4(2π)4

(2πa
L

)4K ∑
η2,η3,η4,η5=±

∫ ∞
−∞

dt3 dt4 dt5 Cη2,η3,η4,η5
0 (t2, t3, t4, t5)

×
(
C+

1 (t2, t3, t4, t5)− C−1 (t2, t3, t4, t5)
)
. (4.109)

The Keldysh contour ordering is performed according to Eq. (3.13). Here, we have fac-
torized the correlation function into two parts, C0 and C±1 . In this shorthand notation,
C0 captures the explicit time-ordering of the operators, and can be simplified with Wick’s
theorem,

Cη2,η3,η4,η5
0 (t2, t3, t4, t5) = η3η4η5

〈
TK :ei2φ

η2 (t2)::ei2φη3 (t3)::e−i2φη4 (t4)::e−i2φη5 (t5):
〉

0

= η3η4η5
∏
i<j

(i,j)∈{2,3,4,5}

〈
TK :e2iφηi (ti)::e−2iφηj (tj):

〉
0
. (4.110)

The second function C±1 is a voltage-dependent scalar,

C±1 (t2, t3, t4, t5) = ν−1(∂t2)ν−1(∂t3)ν−1(∂t4)ν−1(∂t5)

×


(
∂t2∂t3∂t4∂t5

)[
(h(2, 3)h(2, 4)h(2, 5)h(3, 4)h(3, 5)h(4, 5)) e±ieV (t2+t3−t4−t5)

]
(h(2, 3)h(2, 4)h(2, 5)h(3, 4)h(3, 5)h(4, 5))


∣∣∣∣∣∣∣∣∣
ord

.

(4.111)
For brevity, we used h(i, j) = h(ti, tj) = h(ti − tj), as given in Eq. (4.105), and i, j ∈
{2, 3, 4, 5}. In order to keep the notation compact, we further introduced the scalar
ν−1(∂t), postulating that ν−1(∂t)∂t:e2iφ(0,t): = (vK)−1∂t:e2iφ(0,t):, if the derivative acts
on the bosonic part, and ν−1(∂t)∂teieV t = (vF )−1∂te

ieV t, if on the other hand the tem-
poral derivative acts on the voltage part. As before, we argue that those contributions
where the temporal derivatives act on the vertex operators, vanish when taking the ground
state average at zero temperature. The index (. . .)|ord indicates, that C±1 is still implicitly
affected by time-ordering in the following sense: If the four time variables are ordered as
t2 > t3 > t4 > t5 on the contour, this label can be dropped in Eq. (4.111), while otherwise,
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4. Rashba spin-orbit coupling

the dependence of the functions h needs to be adapted accordingly.

We next study the limit of strongly correlated two-particle backscattering, which is a
subset of all terms included in Eq. (4.109). In this limit, we assume that the two particles
involved in the correlated backscattering process couple strongly together, and are thus
scattered to the branch of opposite chirality at almost the same time. In our model, such
contributions are dominated by the terms decaying the fastest in the differences y = t2−t3
and y′ = t4 − t5 (see for instance Eq. (4.110)). Those are the ones where the derivatives
in Eq. (4.111) only act on the functions h(2, 3) and h(4, 5). Integrating out short time dif-
ferences up to the order of the next higher energy scale, 1/eV , we encounter the integrals
[GCT15] ∫ 1/eV

0
dy (±ivy + a)2K−2 ' ∓ ia2K−1

(1− 2K)v + e±iπK(v/eV )2K−1

(1− 2K)v , (4.112)

and the same for y′. Given that a � v/eV , the first term is more relevant for K < 1/2,
while the second one dominates if K > 1/2, leading again to a crossover of scalings. The
remaining third time integral, on the other hand, contributes with a scaling of (eV/v)8K−1.
With this, we find the resulting backscattering current

〈jRbs〉 '
28K−1

K2Γ(8K)
eα4

π3

(
vF
v

)4
×
{

(a/v)8K−2 (eV )8K−1 if K < 1/2,
(a/v)4K (eV )4K+1(1− cot2(Kπ))−1 if K > 1/2.

(4.113)
The interaction-dependent factor of (1 − cot2(Kπ))−1 in the last line of Eq. (4.113) is
a relict of the approximations performed in the process of time contractions. It can be
interpreted though as to suppress the backscattering current in the elastic, non-interacting
limit.
The characteristic scaling of the correction to the conductance, in this TPB limit, takes
the form (we here fix the cutoff to a→ a0)

δG ∼ α4 ×
{

(eV a0/v)8K−2 if K < 1/2,
(eV a0/v)4K if K > 1/2.

(4.114)

It is therefore consistent with the finding of Ref. [CBD+12], presented in the previous sec-
tion. Strictly speaking, we have to restrict our analysis to interaction strengths K < 1/4,
since even stronger interactions allow for relevant TPB terms. Then, α is not necessarily
a small parameter anymore, and the present perturbation theory becomes invalid.
Moreover, the shot noise takes the form

S(ω → 0) = 4e〈jRbs〉, (4.115)

and hence we find an effective charge of e∗ = 2e. In addition to the expected scaling
with the bias, this verifies, that the contractions in time performed above have sorted out
pure TPB processes. In contrast to the SPB contribution, derived in Eq. (4.106), the
TPB current survives in the limit of vK → vF , and no particular consequences arise from
the fact that we implemented non-interacting leads. For systems featuring an underlying
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4.6. Random disorder – RG

Galilean invariance, a transport experiment should therefore observe a correction to the
conductance only due to TPB (see Eq. (4.114)), and a Fano factor of two. In the absence
of this symmetry, the leading-order correction is provided by SPB if K > 1/3, and the
Fano factor takes a value of one (for very strong interactions K < 1/3, TPB dominates
again over SPB). Thus, apart from the distinct power scaling, we identify the Fano factor
as a direct evidence for the presence of Galilean invariance in the regime of weak and
moderate interactions.
Note that in the case of a magnetic impurity, time contractions associated with the strongly
coupled TPB limit, such as performed above, are not justified, since the respective corre-
lation functions do not decay at all for large temporal distances. In other words, due to
the lack of derivatives in the Hamiltonian, this type of perturbation can not contribute to
TPB in second order.

The opposite physical limit is represented by two weakly coupled SPB events. To study the
respective terms, we contract time variables in pairs of two, that come with opposite signs
in the exponent of the vertex operators. This procedure requires to account for several
cases. Defining for instance relative and center of mass coordinates y = t2−t4, y′ = t3−t5,
Y = (t2 + t4)/2 and Y ′ = (t3 + t5)/2, the subsequent approximation y, y′ � Y, Y ′ models
the situation of two separated, decoupled SPB events. We find [GCT15]

〈jRbs〉 '
(vK − vF )4

(vK)4
α4e

16π2Γ(2K)2

(
a

v

)4K+1
(eV )4K+2, (4.116)

〈jmbs〉 '
m4e

16π2Γ(2K)2

(
a

v

)4K−3 (vF
v

)4
(eV )4K−2. (4.117)

The scaling of these contributions is exactly the square of the SPB currents in Eqs. (4.104)
and (4.107), indicating that we have selected terms that represent two individual single-
particle events. Clearly, this mechanism always has a higher scaling than the single SPB.
By comparison of Eqs. (4.116) and (4.113), we furthermore note that also the scaling of
the TPB contribution is lower for any interaction strength. Therefore, the above double
SPB process is expected to be of little relevance at low energies. An analysis of the shot
noise reveals in both cases e∗ = 2e, corresponding to the double backscattering of a single
charge. Therefore, on the level of the shot noise, we are not able to tell apart the two
physically distinct cases of correlated TPB, and uncorrelated double SPB processes.
Another way of sorting out SPB processes in the above integrals was to contract three times
altogether, which, by a scaling analysis, yields a contribution proportional to α4V 2K+1.
Such terms represent corrections to the single SPB processes, in fourth order of the impu-
rity strength.

4.6. Random disorder – RG

Following Ref. [GCT14], we next study a setup of randomly disordered Rashba SOC (see
Fig. 4.7). Such a scenario is motivated by the edge states of 2D topological insulator in
the presence of a fluctuating electric field along the edge, as it might occur naturally for
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4. Rashba spin-orbit coupling

instance due to free charge accumulations at the interfaces etc. In order to handle the
randomness of the potential functions, additional techniques such as the “replica trick”
need to be employed.

Figure 4.7.: Sketch of a 2D QSH system with one-dimensional, helical edge states. The Rashba
SOC potential (blue curve) is assumed to be randomly fluctuating along the edge to model disorder.
Reprinted figure with permission from Ref. [GCT14]. Copyright 2014 by the American Physical
Society.

4.6.1. Replica trick

Let us assume that Rashba SOC is the only perturbation to the Luttinger liquid system,
so H = H0 +HR. As given in Eq. (2.89), the partition function then takes the form

Z = Tr
[
Te−

∫ β
0 dτ H(τ)

]
= Tr

[
e−βH0U(β, 0)

]
, (4.118)

where U(β, 0) = T exp
(
−
∫ β

0 dτ HR(τ)
)
is the imaginary time evolution operator.

We now consider the Rashba profile α(x) to be a random function along the sample edge.
First, we explore the physical constraints on the form of the potential. If both α(x)
and the fields φ(x), θ(x) typically vary only on length scales much larger than the Fermi
wavelength, the integrand of Eq. (4.4) will average out upon integration, and we will miss
the interesting physics. In a helical Luttinger liquid, φ(x) and θ(x) are not necessarily
slowly varying functions compared to the oscillating factors e±i2kF x, since the chemical
potential may very well be close to the Dirac point, kF = 0. Directly at half filling, we may
think of a conceptionally interesting, though rather specific case of disorder-induced two-
particle backscattering of order α2. Away from half filling, one can compensate the factors
of e±i2kF x with the Rashba potential α(x), assuming that the combinations appearing in
Eq. (4.4),

η(x) = α(x)e−i2kF x, (4.119)

and η∗(x) = α(x)ei2kF x, are slowly varying. This is the situation we will address in the
following. Instead of α, we thus shall use the complex random functions η and η∗.

Dealing with disorder is a notoriously difficult task, and only a handful of analytical
methods are available. The one we chose here is based on the replica trick, and has
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4.6. Random disorder – RG

proven to be efficient for the study of 1D interacting electron gases in disordered potentials
[Gia03, AS10]. The (thermal) average of an arbitrary observable O = O(x, τ) is given by

〈O〉 = 1
Z
Tr
[
e−βH0U(β, 0)O

]
. (4.120)

Here, we have to take the average value with respect to a Hamiltonian, that depends on a
random variable. In the end we are interested in the average over both the thermal, and
the random disorder configurations. The latter average we denote by O, and phrase it in
the form of the functional integral

〈O〉 = 1
P

∫
DηDη∗ p(η, η∗)〈O〉, (4.121)

where the probability distribution of the random potential is given by p(η, η∗), while
P =

∫
DηDη∗ p(η, η∗) is a normalization constant. The functional Dη indicates that we

sum over all possible configurations of the functions η(x). In this model, we consider a
Gaussian probability distribution of the form p(η, η∗) = e−D

−1
η

∫
dx η∗(x)η(x), where now a

parameter Dη, that we associate with the disorder strength, enters as the weight of the
Gaussian statistics. We assume the random potentials to be short-ranged,

η∗(x1)η(x2) = Dηδ(x1 − x2), (4.122)

and with zero mean value, i.e. η(x) = η∗(x) = 0. With that assumption and Eq. (4.120),
we express Eq. (4.121) once more explicitly (using Eq. (4.120)),

〈O〉 = 1
P

∫
DηDη∗e−D

−1
η

∫
dx η∗(x)η(x) 1

Z
Tr
[
e−βH0T e−

∫ β
0 dτ HR(τ)O

]
. (4.123)

Since HR depends linearly on the random variable η, we realize that if it was not for
the denominator 1/Z, we could perform a Gaussian integration [Gia03] to average out
η. However, the partition function in the denominator makes the average in Eq. (4.123)
intractable. The replica trick now builds on the observation that Z−1 = ZN−1 in the
limit N → 0. We then express the denominator using N − 1 identical (replicated) copies
of the system. In a similar way, we can introduce N copies of the average 〈O〉, that are
trivially the same. Merging the two replicated expressions, we obtain from Eqs. (4.118)
and (4.120),

〈O〉 = lim
N→0

1
N

N∑
a=1
〈O〉(a) = lim

N→0

1
N

N∑
a=1

Tr
[
ZN−1e−βH0U(β, 0)O(a)

]

= lim
N→0

1
N

N∑
a=1

Tr
[
e−βH0,repUrep(β, 0)O(a)

]
, (4.124)

where H0,rep =
∑N
a=1H

(a)
0 and Urep(β, 0) = T exp

[
−
∑N
a=1

∫ β
0 dτ H(a)

R (τ)
]
. The replica

index labels copies of the same operator, and can as well be shifted to the operator
argument, e.g. O(a)(φ) = O(φa). Since it is not necessarily clear that the limit N → 0
is always well-defined, this method is only called the replica “trick”. Using Eq. (4.124)
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4. Rashba spin-orbit coupling

in Eq. (4.123), and subsequently interchanging replica sum and disorder average, we are
eventually free to perform Gaussian integration,

〈O〉 = lim
N→0

1
N

N∑
a=1

Tr
[
e−βH0,repU rep(β, 0)O(a)

]
. (4.125)

Now, the random SOC is absorbed in the disorder-averaged, effective evolution operator

U rep(β, 0) = T exp
[∫ β

0
dτ1 dτ2 Hdis(τ1, τ2)

]
, (4.126)

where

Hdis(τ1, τ2) = Dη

2
1

π2a2

(2πa
L

)2K N∑
a,b=1

∫ L

0
dx :∂xθa(x, τ1)ei2φa(x,τ1):

× :∂xθb(x, τ2)e−i2φb(x,τ2): + h.c..

(4.127)

Note that the Klein factors compensate in the effective disorder term. Importantly, due
to the assumption of short-range correlations in Eq. (4.122), one spatial integral dis-
appears, and the fields in Hdis are local in position, though in general, non-local in
time. For future reference, we also define the replicated version of the partition func-
tion Zrep = Tr

[
e−βH0,repU rep(β, 0)

]
. At small disorder strengths Dη, operator averages

can be calculated perturbatively in this effective action.
It remains to be clarified what happens to the replica indices, once the limit N → 0 is
performed. As it turns out, this limit corresponds to canceling disconnected diagrams
[Gia03, KGCM14], as we shall demonstrate in the following. Let us define for brevity
U rep(β, 0) = T exp(

∑
a,b S

(a,b)
dis ) with the effective disorder-averaged action

∑
a,b S

(a,b)
dis =∫ β

0 dτ1 dτ2 Hdis(τ1, τ2), where we write the replica labels explicitly. As an example, we
consider the time-ordered two-point correlation in the presence of disorder, up to first
order in Dη. It reads with the help of Eq. (4.125),

〈T O(τ1)O(τ2)〉 = lim
N→0

1
N

N∑
a=1

Tr
[
e−βH0,repT e

∑
b,c
S

(b,c)
dis O(a)(τ1)O(a)(τ2)

]

' lim
N→0

1
N

 N∑
a=1
〈T O(a)(τ1)O(a)(τ2)〉0 +

N∑
a,b,c=1

〈T S(b,c)
dis O(a)(τ1)O(a)(τ2)〉0


= 〈T O(τ1)O(τ2)〉0 + 〈T SdisO(τ1)O(τ2)〉0 − 〈T Sdis〉0〈T O(τ1)O(τ2)〉0.

(4.128)
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Hereby, the replica sums in the term of first order in Dη were evaluated by

N∑
a,b,c=1

〈T S(b,c)
dis O(a)(τ1)O(a)(τ2)〉0

= lim
N→0

1
N

N∑
a;

b=c=a

〈T S(a,a)
dis O(a)(τ1)O(a)(τ2)〉0 + lim

N→0

1
N

N∑
a,b;

b=c6=a

〈T S(b,b)
dis O(a)(τ1)O(a)(τ2)〉0

= 〈T SdisO(τ1)O(τ2)〉0 + lim
N→0

1
N

N∑
a

(N − 1)〈T Sdis〉0〈T O(a)(τ1)O(a)(τ2)〉0

= 〈T SdisO(τ1)O(τ2)〉0 − 〈T Sdis〉0〈T O(τ1)O(τ2)〉0. (4.129)

The average in the absence of disorder here was denoted by 〈(. . .)〉0 = Tr
[
e−βH0,rep(. . .)

]
.

Once there is only one replica index per average left, it can be dropped, and the replica
sum simply yields a factor of N . A few comments are in order about Eq. (4.129): As we
might think of operators with different replica indices as of physically distinct objects, it
is important to note, that only averages of operator products with the same replica index
are nonzero. It follows, that in the second line of Eq. (4.129), the labels b and c have to
be equal, and can be again equal or not to a. If b 6= a, the two averages factorize, and
there are N − 1 possible copies for b. The term proportional to N2 will vanish in the limit
of N → 0, and we are left with a combination of terms that is usually associated with a
connected diagram [Gia03].
When dealing with physical observables, we are interested in operator averages, and thus
the replica labels will eventually be eliminated. In a RG approach, however, where we
study only the scaling of operators, the replica indices remain. The perturbative expansion
will then be performed for the replicated partition function Zrep, which is the quantity of
interest. Even though the limit of N → 0 in general can not be performed in this case,
the RG still succeeds in capturing the important physics.

4.6.2. RG in first order of Dη

A disorder average always needs to be taken into account before the RG analysis, a fact
that renders the replica method especially useful. The reversed order of deriving flow
equations before self-averaging over disorder, will lead to unphysical results, as a special
configuration of disorder may break symmetries of the system. Simply speaking, this
would correspond to studying only a small piece of the full system, and assuming, that its
behaviour is representative for the full system [Gia03].
We next analyze the RG flow of the disorder parameter, defining the dimensionless coupling
constant D̃η = Dη/(av2). For clarity, let us repeat the disorder term of Eq. (4.127) in this
notation,

Hdis(τ1, τ2) = D̃η
v2

2π2a

(2πa
L

)2K N∑
a,b=1

∫ L

0
dx :∂xθa(x, τ1)ei2φa(x,τ1):

× :∂xθb(x, τ2)e−i2φb(x,τ2): + h.c..

(4.130)
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As discussed before, the Rashba operator ∂xθ exp(2iφ) has the scaling dimension K + 1,
and therefore the disorder-averaged operator in Eq. (4.130) exhibits two times this scaling
dimension, ∆dis = 2K + 2 (note that the physical scaling dimension is only ∆naive

dis = 2).
From the RG analysis of Sec. 2.5, Eq. (2.96), we infer directly that the first-order RG for
D̃η takes the form

dD̃η

d`
(`) = (1− 2K(`)) D̃η(`). (4.131)

Here, the effective dimension of the problem is D = 3, because of two temporal and one
spatial integration, so D−∆dis = 3− (2K + 2) = 1− 2K. Vice versa, disorder also renor-
malizes interactions, as the first-order expansion of the action contains the contribution
(see App. C)

T exp
[ ∫

dτ1dτ2Hdis(τ1, τ2)
]
'
(

2D̃ηv

π2K

)
(1−K)(1− 2K)d`

∫
dx dτ :(∂xθ(x, τ))2:.

(4.132)

This leads to the flow equations

dK

d`
(`) = −2D̃η(`)

π
(1−K(`)) (1− 2K(`)) ,

dv

d`
(`) = −2D̃η(`)v(`)

K(`)π (1−K(`)) (1− 2K(`)) .
(4.133)

The renormalization is derived along the general lines of Sec. 2.5, and involves OPE and RG
beyond tree-level. We give details of the calculation in App. C, following Ref. [GCT14].
The RG flow equations of Eqs. (4.131) and (4.133) are illustrated in Fig. 4.8a. In the
absence of electron interactions, K = 1, no effective interactions can be generated by
Rashba disorder in the course of the RG, as it should be: In first order of D̃η, disorder
is formally not able to produce an interaction term of the type g2 or g4, because of the
derivatives in the (fermionic) Rashba Hamiltonian.
From the above equations, we see that Rashba disorder is an irrelevant perturbation for
K > 1/2, and its effect on electronic transport is expected to be small in the low-energy
limit. At K = 1/2, we find a line of fixed points that separates the regimes of relevant
and irrelevant disorder, such that interactions of this strength appear to represent a quite
special case. For K < 1/2, on the other hand, disorder is a relevant perturbation and the
system flows towards strong coupling.

4.6.3. Question of localization in the strong-coupling regime

Let us briefly comment on the physics of this strong-coupling regime. In this case, our
perturbative RG analysis, that considered D̃η a small parameter, is not valid anymore,
since relevant disorder means that the disorder strength D̃η diverges in the low-energy
limit. Above, we explained that Rashba SOC alone does not cause backscattering, so
it is not clear yet whether D̃η can be associated with physical backscattering. In the
next sections, however, we will find that D̃η contributes in second order to the operator
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(a) (b)

Figure 4.8.: (a) Phase diagram of the RG flow of Rashba disorder D̃η, up to first order, versus
interactions K, see Eqs. (4.131) and (4.133). For comparison we give in (b) the first-order RG
flow of magnetic disorder D̃b in a helical liquid, according to Eq. (4.136). Note that we plot
here D̃b, not D̃1/2

b , as it is sometimes seen in the literature (e.g. Ref. [Gia03]). Arrows indicate
the variation of parameters upon increasing ` (going to lower energies). Thick lines represent
separatrices of regimes of irrelevant and relevant perturbations. For Rashba disorder in (a), this
separatrix is in addition a line of fixed points. The left hand side figure is adapted with permission
from Ref. [GCT14]. Copyrighted by the American Physical Society.

of (physical) two-particle backscattering, and the strength of TPB will diverge as D̃η

diverges. Therefore, via TPB, we can for now think of D̃η as of a parameter of physical
backscattering. Usually, a diverging backscattering parameter, such as D̃η for K < 1/2,
is an indication for a drastic change of the systems low-energy transport properties (see
discussion in Sec. 3.3.3): With backscattering becoming very effective, electrons can not
move freely anymore. Instead they localize, which leads to a breakdown of electronic
transport and the opening of an energy gap in the system. The system is then expected
to undergo a phase transition from a metallic to a (Mott) insulating state. This phase
transition due to disorder effects is called Anderson localization in the non-interacting
case [And58]. With electron interactions present, an analogous phase transition is usually
denoted many-body localization. Suchlike localization was predicted for backscattering
due to regular (scalar) disorder in a non-helical Luttinger liquid [GS88], even for arbitrary
repulsive electron interactions, a finding that represents one of the landmarks of the field
of interacting 1D systems. It can as well be adopted for magnetic disorder in a helical
liquid.
The question arises naturally, whether a phase transition due to Rashba disorder occurs
in the helical system. Indeed, the relevant disorder parameter in Eq. (4.131) for K < 1/2
suggests many-body localization in this regime. However, the situation is less clear than
in the case of regular disorder, as we shall explicate in the following.
Let us revisit the effect of magnetic disorder in the helical LL (similar to Ref. [GS88]). As
given in Eq. (3.37), a magnetic, time-reversal breaking impurity allows for a term

Hm =
∫

dx ξ(x)ψ†L(x)ψR(x) + ξ∗(x)ψ†R(x)ψL(x). (4.134)
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If ξ was a real function, the above operator could be rephrased as well as ~ψ†ξ(x)σx ~ψ. The
same term emerges in a spinless 1D electron liquid from a simple perturbation ψ†ξ(x)ψ,
in addition to a forward scattering part. 6 Therefore, the effect of magnetic disorder in a
helical liquid can be derived in direct analogy to the latter case, see Refs. [GS88, Gia03].
Proceeding as before, we bosonize and perform Gaussian disorder average, assuming again
short-range correlations ξ(x)ξ∗(x′) = Dbδ(x − x′). With the replica trick, we find that
magnetic disorder takes the form of the effective operator

Hm
dis = D̃b

v2

24πa3

(2πa
L

)2K N∑
a,b=1

∫
dx :e2iφa(x,τ1)::e−2iφb(x,τ2): + h.c., (4.135)

with the dimensionless parameter D̃b = 2Dba/(πv2). This leads to the RG equations in
first order of D̃b [Gia03],

dD̃b

d`
(`) = (3− 2K(`)) D̃b(`),

dK

d`
(`) = −1

2K(`)2D̃b(`),

dv

d`
(`) = −1

2v(`)K(`)D̃b(`).

(4.136)

The RG flow in theK-D̃b-plane is illustrated in Fig. 4.8b. We readily see, that the disorder
strength D̃b is a relevant parameter for interactions K < 3/2, a point that corresponds to
moderate, attractive interactions. Clearly, the non-interacting point, K = 1, lies within
the regime of relevant disorder, and the emergence of Anderson localization in a 1D dis-
ordered system, in the absence of interactions, is well-established [GS88]. Therefore, the
extended regime of relevant disorder (including the non-interacting point) can safely be
associated with a localized phase. On the opposite, in the case of Rashba disorder, the
non-interacting point is located in the regime of irrelevant disorder strength, and conse-
quently, the appearance of many-body localization in the strongly interacting phase of
K < 1/2 is not evident. Even though the relevance of the Rashba disorder operator is
a clear hint at localization, the question of finding the strong-coupling fixed point, and
whether it corresponds to many-body localization, remains open. This issue was discussed
in Ref. [SJJ10], where the authors make a case for a localized phase in the strong-coupling
regime, however, a conclusive proof is pending.

6The forward scattering term does not affect transport, and can be absorbed by a gauge transformation
[Gia03].
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4.6. Random disorder – RG

4.6.4. Second order of Dη – definition of local and non-local TPB

In second order of D̃η, we focus on the terms representing two-particle backscattering. As
we show in App. C, the OPE yields a contribution

T exp
[ ∫

dτ1 dτ2 Hdis(τ1, τ2)
]
' 1

2a4

(
D̃η

π2K

)2 (2πa
L

)8K∑
a,b

∫
dx dx′ dy1 dy2 (1 + 2d`)

×m
(
x− x′

a

)
T :e2iφa(x,y1)e2iφa(x′,y1)::e−2iφb(x,y2)e−2iφb(x′,y2): + h.c.,

(4.137)
with a dimensionless factor

m

(
x− x′

a

)
=

(1− 2K)−
(
x−x′
a

)2

(
1 +

(
x−x′
a

)2
)2−K


2

. (4.138)

Physically, the operator in Eq. (4.137) represents a double two-particle backscattering
event, where two particles are backscattered from left to right at a time τ1, but at slightly
different positions, and another two particles are backscattered from right to left at the
time τ2 (see Fig. 4.9). Note that even though the electron interactions and the SOC
Hamiltonian are defined in a local form, the disorder and RG procedures employed here
allow for the above TPB processes at finite separation, given that the cutoff is nonzero.
This non-local aspect could be suppressed by contracting the two spatial coordinates in
the course of the RG (see Eq. (4.140)). In general, however, we face the form factor
in Eq. (4.138), which incorporates the spatially non-local character of the two-particle
backscattering event. Of particular interest are the short- and long-distance limits,

lim
x−x′→0

m

(
x− x′

a

)
= (1− 2K)2,

lim
x−x′→∞

m

(
x− x′

a

)
∼
(
x− x′

a

)4K−4
,

(4.139)

as well as the non-interacting limit limK→1m((x− x′)/a) = 1. With m, we therefore find
a spatial modulation that is nontrivial only in the case of finite interactions, and decays
for long distances if K < 1 (see also Fig. 4.10). The smaller the cutoff and the stronger
the interactions, the sharper becomes the confinement around x = x′. This allows us to
identify the interesting mechanism of non-local two-particle backscattering, induced by
Rashba disorder [GCT14].
The limit of local TPB is readily obtained, assuming that we contract as well x and x′.
This yields another factor of 2a(1 + d`), and Eq. (4.137) then becomes

T exp
[ ∫

dτ1 dτ2 Hdis(τ1, τ2)
]
' 1
a3

(
D̃η

π2K

)2 (2πa
L

)8K
(1− 2K)2

× (1 + 3d`)
∑
a,b

∫
dx dy1 dy2 T :e4iφa(x,y1)::e−4iφb(x,y2): + h.c..

(4.140)

97



4. Rashba spin-orbit coupling

Figure 4.9.: Schematic of a non-local TPB process, as defined in Eqs. (4.137) and (4.141).
Reprinted figure with permission from Ref. [GCT14]. Copyright 2014 by the American Physi-
cal Society.
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Figure 4.10.: Form factor m of the non-local TPB (see Eq. (4.138)). The different curves depict
different interaction strengths, decreasing from K = 1 (top curve) in steps of 0.1, and the cutoff
is fixed to a = 0.01 here. The local minima at x = x′ for K > 1/2, as well as the ones away from
x = x′ for K < 1/2, result from the finite cutoff a of the model. Figure adapted with permission
from Ref. [GCT14]. Copyrighted by the American Physical Society.

Such a term was analyzed in Refs. [SJJ10, XM06]. The question sometimes arises, whether
a contraction procedure naturally results in such a local version of the TPB term. One
may argue, that a contraction should be performed only for two complete points in (1+1)-
dimensional space-time, and when contracting two times (see App. C) one should as well
contract the respective spatial coordinates. The underlying assumption then is that the
cutoff is isotropic, such that the modulus of the space-time vector as a whole is restricted by
a minimal length, and spatial and temporal distances change equivalently upon rescaling.
However, as we discussed in Sec. 2.5, the choice of such an isotropic cutoff does not seem
compulsory. Therefore, we emphasize that a spatial contraction is not generally required,
and Eq. (4.137) provides a more general manifestation of TPB. The issue of locality or
non-locality of the TPB process will make a difference in the RG analysis, as we show in
the following. For the physical TPB current though, this point is of less importance, since
the respective separations will be integrated out. As we shall see, the TPB processes at
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4.6. Random disorder – RG

small distances then provide the dominant contribution.
Motivated by the above findings, and the generic operator in Eq. (3.39), let us define the
local and non-local TPB operators,

H2p = γ2p
v2

a4

(2πa
L

)8K∑
a,b

∫
dξ dΞ m

(
ξ

a

)
× :ei2φa(Ξ+ ξ

2 ,τ1)ei2φa(Ξ− ξ2 ,τ1)::e−i2φb(Ξ+ ξ
2 ,τ2)e−i2φb(Ξ−

ξ
2 ,τ2):, (4.141)

H loc
2p = γloc2p

v2

a3

(2πa
L

)8K∑
a,b

∫
dx :e4iφa(x,τ1)::e−4iφb(x,τ2):. (4.142)

In the first line above, we introduced relative and center of mass coordinates ξ = x − x′
and Ξ = (x+ x′)/2. For the moment, we presume that both terms are generically present
in the helical liquid. Both the dimensionless parameters γ2p and γloc2p can in principle be
renormalized by Rashba disorder.

4.6.5. RG of local TPB

Next, a RG analysis is performed, using that the scaling dimension of both the above local
and non-local (double) TPB operator is ∆2p = 2(2 + 2)2K/4 = 8K.
First, we analyze the simpler case of local TPB. We find with Eqs. (4.142) and (4.140),

dγloc2p
d`

(`) = (3− 8K(`)) γloc2p (`) + 3
(
D̃η(`)
π2K(`)

)2

(1− 2K(`))2. (4.143)

The above equation does not yet exhibit the correct non-interacting limit, as it seems
that in the absence of interactions, K = 1, (inelastic) TPB can be generated by (elastic)
Rashba disorder. To overcome this problem, we have to implement the missing piece, as
explained in Sec. 4.8. With that, the strength of truly inelastic local TPB, say γloc, in2p , can
be defined by

γloc2p = γloc, in2p +
(
D̃η

π2K

)2

(1− 2K)2. (4.144)

Here, the missing piece was read off Eq. (4.140). Making use of the RG flow of D̃η, given
in Eq. (4.131), we find

dγloc, in2p
d`

(`) = (3− 8K(`)) γloc, in2p (`) + 4
(
D̃η(`)
π2K(`)

)2

(1− 2K(`))2(1−K(`)), (4.145)

which correctly preserves the non-interacting limit. To analyze the dominant scalings, the
above differential equation can be solved exactly, and we find (up to second order in D̃η),

γloc, in2p (`) = γloc, in2p (0)e(3−8K)` + 4(1− 2K)2(1−K)
π4K2(4K − 1) D̃2

η(0)
(
e(2−4K)` − e(3−8K)`

)
.

(4.146)
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K
1/4 3/8 1/2

irrelevant; γloc, in2p (`) ∼ e(2−4K)`relevant; γloc, in2p (`) ∼ e(2−4K)`relevant; γloc, in2p (`) ∼ e(3−8K)`

Figure 4.11.: Relevance and dominant scaling of the local TPB coupling γloc, in2p (`) in the low-
energy limit (large `), see Eq. (4.146). If Rashba disorder was absent, D̃η(0) = 0, the local TPB
would be relevant only for K < 3/8.

In the presence of disorder, γloc, in2p (`) is exponentially increasing with the running scale
for K < 1/2, as illustrated in Fig. 4.11. This threshold originates from the RG flow of the
Rashba disorder operator, that is itself relevant for K < 1/2, while the generic operator
of local TPB is relevant only for K < 3/8. Random Rashba disorder therefore shifts
the phase transition point towards weaker interactions. Moreover we find a crossover of
scalings at the point K = 1/4.

4.6.6. RG of non-local TPB

The situation for non-local TPB is slightly more complicated. Let us first keep the spatial
distance ξ as a parameter, and study the non-local coupling γ2p(l, ξ). As we focus on the
true, inelastic part of the process, we add the missing piece in Eq. (4.137) to define

γ2p(l, ξ) = γin2p(l, ξ) + D̃2
η/2π4K2. (4.147)

After some algebra [GCT14], we arrive at the following flow equation

d

d`
γin2p(`, ξ) = γin2p(`, ξ)

(4− 8K) + ξ

a(`)
m′
(

ξ
a(`)

)
m
(

ξ
a(`)

)


+ D̃η(`)2

2π4K2

(4− 4K) + ξ

a(`)
m′
(

ξ
a(`)

)
m
(

ξ
a(`)

)
 .

(4.148)

Here, we used that m
(
(1 + d`) ξa

)
' m

(
ξ
a

)
+m′

(
ξ
a

)
ξ
ad`, where m

′
(
ξ
a

)
= dm

(
ξ
a

)
/d
(
ξ
a

)
.

From the definition of m in Eq. (4.138), we can specify

(
ξ

a

) m′ ( ξa)
m
(
ξ
a

) = −4(1−K)
(
ξ

a

)2

(
−3 + 2K +

(
ξ
a

)2
)

(
1 +

(
ξ
a

)2
)(
−1 + 2K +

(
ξ
a

)2
) . (4.149)

This factor vanishes in the non-interacting limit, as it should be. Eq. (4.148) provides, in
principle, a full solution for the evolution of γin2p(l, ξ), depending on the ratio ξ/a(`) with
a(`) = a0e

`. We next consider the two limits of small, or large ratios of ξ/a. The cutoff a
starts at the bare value a0 and grows in the course of the RG, however, this flow should
be terminated once a reaches a comparable energy scale of the system, such as ξ, vβ or L
(where usually L→∞). In the following, we imply the following hierarchy, a0 � vβ ≤ L.
On the other hand, since we do not consider an isotropic cutoff here, ξ is not necessarily
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K
1/2

irrelevant; γin2p(ξ, `) ∼ e(2−4K)`relevant; γin2p(ξ, `) ∼ e(4−8K)`

Figure 4.12.: Relevance and dominant scaling of the non-local TPB coupling γin2p(ξ, `) in the low-
energy limit (large `), which is mainly governed by the contribution of short separations ξ � a,
see Eq. (4.150).

restricted by the cutoff, and we have 0 ≤ ξ ≤ L (as long as no regularization is required).
With this assumptions, the limit ξ � a is possible, in contrast to a scenario with an
isotropic cutoff. The rescaling of a is stopped by the lesser of ξ and vβ.
If ξ/a→ 0, Eq. (4.148) and its solution become

d

d`
γin2p(`, ξ � a) ' γin2p(`)(4− 8K) + D̃η(`)2

2π4K2 (4− 4K),

γin2p(`, ξ � a) = γin2p(0)e(4−8K)` +
D̃2
η(0)

π4K2
(1−K)
(1− 2K)

(
e(4−8K)` − e(2−4K)`

)
.

(4.150)

Again, γin2p grows upon rescaling for K < 1/2 (see Fig. 4.12). Note that γin2p(l, ξ → 0) does
not correspond to local TPB, as given in Eq. (4.145), since Eq. (4.150) then only describes
the local limit of the coupling of a conceptually non-local TPB term. This difference
is embodied in the factors of (4 − 8K) versus (3 − 8K) in Eq. (4.150) and Eq. (4.145),
respectively. We do recover the local TPB term from Eq. (4.141), once the additional
integration of spatial separations is taken care of, for instance, by a contraction of this
variable (see previous section).
On the other hand, in the limit ξ � a, we find

d

d`
γin2p(`, ξ � a) ' −4Kγin2p(`) + 12D̃η(`)2

2π4K2 (1−K)a(`)2

ξ2 .

γin2p(`, ξ � a) = γin2p(0)e−4K` +
3D̃2

η(0)
2π4K2 (1−K)a

2
0
ξ2

(
e(4−4K)` − e−4K`

)
= γin2p(0)e−4K` +

3D̃2
η(0)

2π4K2 (1−K)a(`)2

ξ2

(
e(2−4K)` − e−2−4K`

)
.

(4.151)

Since by assumption the ratio a/ξ is small, the last term can possibly be large only for
K < 1/2. Due to the decay of the factor m with large ξ, the effect of Rashba disorder
vanishes for a/ξ → 0, and TPB can not be generated by disorder at all in this limit. We
observe from Eqs. (4.150) and (4.151), that for all strengths of the electron interactions,
the coupling for small spatial separations grows faster (and shrinks slower) upon rescaling,
than the coupling for large separations. The dominant behaviour is therefore expected to
arise from TPB processes at short spatial distances, γin2p(`, ξ � a).
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4. Rashba spin-orbit coupling

4.7. Random disorder – conductance

4.7.1. Position-dependent conductance

In order to study the effects of non-local TPB on the transport properties of the system,
we here calculate the conductance in a perturbative equilibrium theory, as explained in
Sec. 3.1.1. To do so, one expands the correlation Gωn in Eq. (3.3), and obtains the first-
order correction,

δGωn(x, x′) =
∫ β

0
dτ

∫
dτ1 dτ2 e

−iωnτ 〈Tφ(x, τ)H2p(τ1, τ2)φ(x′, 0)〉0

= γ2p
a4

∑
a,b

∫ β

0
dτ e−iωnτ

∫
dΞ dξ dτ1 dτ2 m̃

(
ξ

a

)
× 〈Tφ(x, τ)ei2φa(Ξ+ ξ

2 ,τ1)ei2φa(Ξ− ξ2 ,τ1)e−i2φb(Ξ+ ξ
2 ,τ2)e−i2φb(Ξ−

ξ
2 ,τ2)φ(x′, 0)〉0.

(4.152)
Undoing the normal-ordering brings another ξ-dependent factor, that we absorb in a new
modulating function m̃, where

m̃

(
ξ

a

)
= m

(
ξ

a

)(
1 +

(
ξ

a

)2)−2K

=

(1− 2K)−
(
ξ
a

)2

(
1 +

(
ξ
a

)2
)2


2

. (4.153)

The correlation in the last line of Eq. (4.152) can be calculated using the generating
functions-approach [BF04], and upon averaging, the replica indices are taken care of.
Making use of the bosonic single-particle propagator G0

ωn(x, x′) in Eq. (3.3), the evalua-
tion of δGωn(x, x′) comes down to the correlator (for more details of the calculation see
Ref. [GCT14])

F (x1, x2, τ1, τ2) = 〈e2i(φ(x1,τ1)+φ(x2,τ1)−φ(x1,τ2)−φ(x2,τ2))〉0
= exp

[
− 2K

(
〈[φ(x1, τ1)− φ(x2, τ1)]2〉0 − 〈[φ(x1, τ1)− φ(x1, τ2)]2〉0

− 〈[φ(x1, τ1)− φ(x2, τ2)]2〉0 − 〈[φ(x2, τ1)− φ(x1, τ2)]2〉0
− 〈[φ(x2, τ1)− φ(x2, τ2)]2〉0 + 〈[φ(x1, τ2)− φ(x2, τ2)]2〉0

)]
.

(4.154)
Using variables ξ = x1 − x2 and τ = τ1 − τ2, we have (see correlations in Sec. 2.3)

〈[φ(x1, τ1)− φ(x2, τ2)]2〉0 =

1
4 log


(
sinh2

(
πξ
vβ

)
+ sin2

(
π
vβ (vτ − a)

)) (
sinh2

(
πξ
vβ

)
+ sin2

(
π
vβ (vτ + a)

))
sin4

(
πa
vβ

)
 . (4.155)

With Eq. (4.155), we can find an exact expression for the function F (x1, x2, τ1, τ2) =
F (ξ, τ). In general, the Fourier transform of the full, position-dependent correlation to
frequency space will be difficult though. Nevertheless, we can again keep ξ as a fixed
parameter, and consider the two limits of large and small separations, which are readily
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solvable.
In the limit of short and large separations, respectively, we obtain

F (ξ → 0, τ) =
(
πa

vβ

)8K (
sin
(
πτ

β

))−8K
,

F (ξ →∞, τ) =
(
πa

vβ

)4K (
sin
(
πτ

β

))−4K
.

(4.156)

As far as the Fourier transforms are concerned, we are only interested in terms linear in
frequency,

[Fωn=0(ξ)− Fωn(ξ)]ξ→0 = C0(K)
(
πa

vβ

)8K
β2ωn +O(ω2

n),

[Fωn=0(ξ)− Fωn(ξ)]ξ→∞ = C∞(K)
(
πa

vβ

)4K
β2ωn +O(ω2

n).
(4.157)

Here, C0(K) and C∞(K) are factors generated in the process of Fourier transformation.
Eventually, we arrive at the corrected two-point correlations 7

δGωn(x− x′, ξ ≈ 0) ' γ2p
(vβ)2

a4 LωnC
′
0(K)

(
K

2|ωn|

)2
(1− 2K)2

(
vβ

πa

)−8K
,

δGωn(x− x′, ξ →∞) ' γ2p
(vβ)2

a4 LωnC
′
∞(K)

(
K

2|ωn|

)2 ( ξ
a

)−4 (vβ
πa

)−4K
.

(4.158)

Some constants were absorbed in the new prefactors C ′0(K) and C ′∞(K). Due to the
approximation in Eq. (3.3), the result will not depend on the initial positions x, x′ anymore.
We note that δGωn(ξ) ∼ ω−1

n , and therefore the dc-limit of the conductivity is well defined.
This results in a (still position-dependent) correction to the conductance of

δG(ξ ≈ 0) ' γ2pe
2C ′′0 (K)L(vβ)2

a4

(
vβ

πa

)−8K
,

δG(ξ →∞) ' γ2pe
2C ′′∞(K)L(vβ)2

ξ4

(
vβ

πa

)−4K
.

(4.159)

As a check, the above scaling of the conductance with the temperature can be reproduced
with the results of the RG in Eqs. (4.150) and (4.151), assuming that γ2p → γ2p(`) becomes
a running coupling in Eq. (4.159). When taking only the bare parameters (so D̃η(0) = 0,
γin2p(0) > 0), and scaling up to a(`)→ vβ, we recover the same power-law decay. Note that
the conductance is suppressed as a power law for large separations ξ.

4.7.2. Position-independent conductance

Above, we have computed the backscattering current in the two limits of very small and
very large separations. A general solution for arbitrary ξ, however, which is the quantity
of physical interest, bears the problem of integrals that are too complicated to be solved
analytically. Our goal is thus to first find an approximate expression for a general δG(ξ),
7A factor of L appears simply from the integration of the center of mass coordinate Ξ.
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such that subsequently the position-independent correction to the conductance can be
evaluated by δG =

∫
dξ δG(ξ).

We first present a simple approximation, in order to illustrate the procedure. Second, we
give a slightly more refined estimate, that we assume to indicate the correct power-law
scaling. Let us in the following assume a hierarchy of length scales a0 � ξ � vβ, where
the lower limit is introduced again to regularize potential divergences.
The decay of the form factor m for large separations emphasizes the fact, that short-
distance backscattering events provide the dominant contribution, and suggests, that we
approximately ignore long-distance correlations in the current. In a first step, we therefore
approximate ξ ≈ 0 in the vertex operators, which leaves m(ξ/a) as the only ξ-dependent
factor. The non-local TPB operator in Eq. (4.141) (see also Eq. (4.152)) then factorizes
to

H2p = γ2p
v2

a4

∑
a,b

∫
dξ m

(
ξ

a

)∫
dΞ ei4φa(Ξ,τ1)e−i4φb(Ξ,τ2). (4.160)

Such an ansatz results in [GCT15] (also compare with Eq. (4.159))

δG(ξ) ' e2CLβ2
(
vβ

πa0

)−8K γ2p
a4

0
m

(
ξ

a0

)
, (4.161)

where C is a constant, and we now fix the cutoff to the bare value a0. Eventually, the
integration of ξ yields (with some constants c1 and c2)∫ vβ

a0
dξ m

(
ξ

a0

)
' a4−4K

0

(
c1a

4K−3
0 + c2(vβ)4K−3

)
, (4.162)

and we have

δG(simple) ∼ γ2p
L

a0
×
{

(vβ/a0)−1−4K if 3/4 < K < 1,
(vβ/a0)2−8K if K < 3/4.

(4.163)

As a consequence, in this simple approach, we find a crossover of scales at K = 3/4.

The approximation used here was based on the fact, that the modulation m carries all the
information about the spatial separations. Revisiting the origin of m, it is found to emerge
in the process of contracting two out of the four time variables (see App. C, Eq. (C.10)). It
turns out, that such time integrals can be treated in a more refined way, which results in a
lower (so more dominant) scaling of the conductance with the temperature. Rather than
to set them to zero on a shell of finite range, we can perform the integration explicitly,

m2

(
ξ

a0
,
β

a0

)
= a−4K+2

0

∫ vβ

0
dy (1− 2K)(y + a0)2 − ξ2

((y + a0)2 + ξ2)2−K

∫ vβ

0
dy′ (1− 2K)(y′ + a0)2 − ξ2

((y′ + a0)2 + ξ2)2−K

'
((

ξ

a0

)2K−2
−
(
vβ

a0

)2K−1)2

. (4.164)

Here, we used that a0 � ξ � vβ. The factor m2 then replaces the previous modulation
m in Eqs. (4.160) and (4.161). Note that we recover m from m2 if we approximate the
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integrals by putting both y and y′ to zero on a shell of a0. The two form factors m and
m2 have the same asymptotic behaviour for large separations, while in contrast to m, m2
has an explicit dependence on temperature for small separations. After integration, we
obtain the leading-order contributions∫ vβ

a0
dξ m2

(
ξ

a0
,
β

a0

)
' a2−4K

0

(
c3a

4K−1
0 + c4(vβ)4K−1

)
. (4.165)

The position-independent corrections to the dc-conductance now exhibit a crossover of
scales at K = 1/4, and we find (β = 1/T )

δG ∼ γ2p
L

a0
×
{

(Ta0/v)4K−1 if 1/4 < K < 1,
(Ta0/v)8K−2 if K < 1/4.

(4.166)

As a main conclusion, the scaling of the conductance for weak interactions in the disordered
system differs by one power from the one of the single impurity setup [CBD+12] (compare
with Eq. (4.95)). Furthermore, the scaling crossover point is shifted from K = 1/2 to
K = 1/4. This crossing point must not be confused with the critical threshold, that sepa-
rates regimes of relevant and irrelevant coupling parameters, which is still K = 1/2 (again
in contrast to the case of a single impurity, where it is K = 1/4). It is a consequence of
the fact that disorder itself can be a relevant operator, in contrast to the single Rashba
impurity strength.
The observation of a crossover of scalings results from the two different microscopic sources
of two-particle backscattering, that come with a distinct scaling. First, there is a generic
(for instance intrinsically present) contribution, and second, we have TPB induced by the
SOC potential. The latter naturally emerges in a form that depends on the spatial sepa-
ration (see Eq. (4.137)), and therefore allows for non-local backscattering. Consequently,
the fact, that the TPB process at hand can potentially be generated by Rashba SOC, is
embodied in the presence of the factor m(ξ/a). The resulting difference in scaling be-
comes apparent after spatial integration. If in the above approach, for instance, we drop
this factor and use instead the local version of TPB, as given in Eq. (4.142), the scaling
will simply read δG ∼ γloc2p (L/a0)(Ta0/v)8K−2, for a given cutoff and all K < 1. This is
the same power-law behaviour we find, when starting from a generic TPB operator only.
Clearly, no crossover of scalings is found then.
Another route to obtain the correct crossover, and one that is for instance chosen in
Ref. [CBD+12], is to combine the general expression for the conductance with the results
of the RG (see also Eq. (4.94)). In this case, one replaces the coupling constant γ2p above
by the respective running parameter γ2p(`). This is in general difficult here, since we do
not have an exact expression for γ2p(`, ξ) at hand (only for the limits of very small and
large ξ). However, the above results are recovered by the following estimate: Using the
local version of the TPB operator in Eq. (4.142), and the RG evolution of Eq. (4.146), we
find an (position-independent) expression for the conductance, analogous to Eq. (4.161),

δG ' e2C ′Lβ2
(
πa

vβ

)8K γloc, in2p (`)
a3 . (4.167)
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4. Rashba spin-orbit coupling

To obtain the above result, the correlation function F (ξ, τ) was approximately taken at
zero distance, as given in Eq. (4.157), and the spatial integral entailed inH loc

2p simply results
in a factor of L. Importantly, the cutoff a = a(`) is as well a running parameter here, in
contrast to the bare value a0 in Eq. (4.161). Furthermore, C ′ represents another constant.
The two microscopic sources of TPB now enter through the running coupling constant
γloc2p (`), where from Eq. (4.146) we understand that γloc2p (`) ∼ e(3−8K)` for K < 1/4, and
γloc2p (`) ∼ e(2−4K)` for K > 1/4. Rescaling the cutoff as a → vβ, or ` → log(vβ/a0), we
find in Eq. (4.167) the same crossover as given in Eq. (4.166). This argumentation reflects
once more, that the spatial integration of m(ξ/a) above, is dominated by the (local) terms
with vanishing separations.

4.8. Contractions and the missing piece

In this section, we explore the more technical issue of contracting two variables, in space
or time, in the context of a RG treatment. This process is closely related to the concept of
the missing piece of the RG, both ideas were mostly developed and studied in Ref. [GS88]
(see also Ref. [NH79]).
First, it is crucial to clarify that with “contraction” of two or more points, one means
more than a short-distance expansion, but the analysis, what happens at small distances
of the order of a when the cutoff is changed under rescaling. Here, we study the case of a
one-dimensional contraction. Assume we have the double integral of a function f(y1, y2),
that potentially diverges at small separations of its arguments, y1 − y2. We can then
regularize the integral by∫

dy1 dy2 f(y1, y2) =
∫
|y|>a

dY dy f(Y, y), (4.168)

where we employed relative and center of mass coordinates, y = y1−y2 and Y = (y1+y2)/2.
8 Anticipating divergences at zero distance, we restrict y to be at least of the order of
the cutoff. As a consequence, the integral now depends on this cutoff, and will therefore
change under rescaling. Possibly, the integration of short distances can be performed
exactly, however, this is not necessary if we are interested only in what happens upon
changing the cutoff. Similar to the analysis of the one-loop correction in Sec. 2.5, a
contribution arises from the short distances |y| ≈ a upon rescaling, as∫

|y|>a
dy f(Y, y) =

∫
|y|>a(1+d`)

dy f(Y, y) +
∫
a<|y|<a(1+d`)

dy f(Y, y). (4.169)

The last term has the potential to renormalize another quantity of interest, and is the
important one here. Therefore, the contraction selects this piece. With that, we are
able to write the following operation as a preliminary definition of a one-dimensional
contraction,∫

dy1 dy2 f(y1, y2)→
∫
a<|y|<a(1+d`)

dY dy f(Y, y) ' 2ad`
∫

dY f(Y, |y| → a). (4.170)

8For most situations we face here, time-ordering will ensure positive time-differences only, such that
usually f(Y, y) = f(Y, |y|).
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Above, the integration was estimated by putting |y| = a on the one-dimensional hyper-
sphere shell, S1ad` = 2ad`. Hereby, the surface of a general, n-dimensional hypersphere
is defined by Sn = 2πn/2/Γ(n/2), where Γ is the Euler Gamma function. Note that the
contraction, given in Eq. (4.170), represents rather an operation (sign “→”) than an ap-
proximation, as it anticipates a contribution of the integral that will emerge upon rescaling.
This is very clear from the presence of the factor d`. However, in the practice of an RG
analysis, one often indicates a contraction by a simple approximation sign. For instance,
in the first-order RG analysis in App. C, we used that (with time-ordering)∫ ∞

−∞
dy
(2π
L
||y|+ a|

)−2K
= 2

∫ ∞
y>a

dy
(2π
L
y

)−2K
' 2ad`

(2πa
L

)−2K
. (4.171)

Next, we discuss the concept of the “missing piece”, as explored in Ref. [GS88]. Its imple-
mentation is in general needed when working with a real-space RG, in order to discriminate
between elastic and inelastic scattering processes, and to obtain correct non-interacting
limits.
In Eq. (4.168), we have intentionally excluded times |y| < a for the purpose of regu-
larization. The absence of this part, coined the “missing piece”, can have important
consequences for the RG procedure, since it alters the character of the whole expression in
terms of elasticity. Due to the fundamental correspondence of time translation and energy
conservation, a purely elastic process generally corresponds to an unlimited integral, while
the introduction of a regularization, as given above, induces some artificial inelasticity
[GS88]. In the model we consider here, the elastic and inelastic character is directly re-
lated to the absence and presence of electron interactions. Therefore, the implementation
of the missing piece is crucial to obtain the correct non-interacting limit. In particular,
we expect no backscattering in this limit due to TRS protection. This difficulty can be
overcome by adding the extra piece P to the right hand side of Eq. (4.168), with

P =
∫
|y|<a

dY dy f(Y, y) ' 2a
∫

dY f(Y, |y| → a). (4.172)

To avoid potential divergences at zero distance, the integral was approximated by putting
|y| → a over the full range of 2a. Including the missing piece P , the one-dimensional
contraction in Eq. (4.170) now reads∫

dy1 dy2 f(y1, y2)→ 2a(1 + d`)
∫

dY f(Y, |y| → a). (4.173)

Simply speaking, the factor of d` has been replaced by 1 + d`.
When n one-dimensional contractions are performed separately (the same result up to
prefactors is obtained for one n-dimensional contraction 9), this generates a factor of
(1 + d`)n = 1 + nd` + O(d`2). The missing piece thus modifies the original coupling
constants upon rescaling. Eventually, to obtain the original (truly inelastic) constants,
9One then has to compare the surface area (times ad`) and the volume (the missing piece) of a n-
dimensional hypersphere of radius a. This ratio is again n, so a factor proportional to 1 + nd` is
obtained.
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4. Rashba spin-orbit coupling

usually labeled with an index λin, from the modified ones, λ, one needs to add the missing
piece

λ = λin ± P, (4.174)

where the sign depends on the RG flow of λ (see for example Sec. 4.6.4).
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Apart from Rashba SOC, backscattering at the helical edge can emerge from various other
microscopic sources. Because of their importance, let us briefly discuss charge puddles in
this context. Due to imperfections of the band curvature or additional doping, electronic
states (“puddles”) might exist in the bulk of an insulating solid state system, at energies
that are expected to be within the band gap. Edge electrons with a comparable energy,
can then tunnel from the edge channel into, or out of, the puddle. Assuming that such
puddles are typically of small spatial extent, it is reasonable to model them by quantum
dots. An electron that tunnels from a helical edge state into a bulk puddle, and stays in
there for a given time, in general loses its phase coherence with the other edge electrons,
and the spin orientation relaxes from its quantized value. In addition, various interac-
tions mechanisms with other particles in the puddle can possibly cause a spin relaxation,
or a spin flip, of the electron. At the 2D QSH edge, an effective backscattering process
can then occur as a series of the following, subsequent steps: Tunneling of a helical edge
electron into the puddle, a spin flip (or relaxation of the spin) in the puddle, tunneling
back into the edge channel of opposite chirality. Such processes were shown to lead to
power-law corrections to the conductance with temperature [VGG13, VGGG14]. If the
dwelling time of an electron in the puddle is long enough such that the information about
its original spin orientation is fully lost, and if the tunneling mechanism is very effective,
the conductance per edge channel is reduced to half its value. This is because an electron
can end up in any of the two counterpropagating channels, with about equal probability,
when tunneling from the puddle back into the edge states. Depending on whether there
is an even or odd number of electrons in the puddle, it can be considered an effectively
spinless or spinful perturbation, respectively. The latter resembles the case of a magnetic
impurity with an internal spin, or magnetic moment.
On more general grounds, in this chapter, we attend to study magnetic moments of spin
1/2 as an essential microscopic source of backscattering at the helical edge. Given a cou-
pling between the spin of the edge electrons and the impurity spin, elastic single-particle
backscattering processes are generated, similar to the ones discussed in Sec. 3.3, while
crucially, time reversal symmetry remains preserved. This mechanism was first explored
by J. Kondo, and succeeded in explaining the so-far puzzling increase of the resistivity
at low energies in dilute magnetic alloys [Kon64]. Usually, the general coupling term is
therefore coined “Kondo coupling”. At the helical edge, where transport is topologically
protected against (regular) elastic backscattering, magnetic moments represent one of the
fundamental sources of backscattering [WBZ06, MLO+09, TFM11, ESSJ12, KRB16]. We
here focus on the transport signature of a local, single magnetic moment in the pres-
ence of electron interactions. Note, that in contrast to the previous discussion of Rashba
SOC, electron interactions are not necessarily required for the backscattering process to
be nonzero, as the additional spin degree of freedom of the magnetic moment ensures com-
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5. Magnetic moments

patibility with TRS. However, a finite strength of electron interactions alters the expected
power-law exponent of the correction to the conductance. Our analysis will be extended to
the case of many dilute moments, in order to demonstrate the agreement of the theoretical
predictions with transport experiments in QSH samples, made of InAs/GaSb.

5.1. The diagonal Kondo model

The Kondo exchange coupling represents the spin-spin interaction between the electron
spin density ~s = (sx, sy, sz) at the edge, and another magnetic moment, ~S = (Sx, Sy, Sz).
As mentioned above, this model is appropriate to describe both spinful perturbations at
the helical edge, as well as bulk charge puddles with an odd number of electrons.
We now consider the Kondo model for a single magnetic moment of spin 1/2, that is
localized at a certain position x0 along the one-dimensional transport channel. The total
Hamiltonian is then given by H = H0 + HJ , with the Kondo interaction term, HJ .
Assuming that the moment interacts only with electrons in immediate proximity, we use
the electron spin density

~s(x0) = 1
2
∑
αβ

ψ†α(x0)~σαβψβ(x0), (5.1)

to define the Kondo coupling by

HJ =
∑

i,j={x,y,z}
JijSisj(x0). (5.2)

Here, the Jij are the matrix elements of the Kondo coupling strength. Both types of spin
operators (electron/impurity) obey the usual commutation relations, individually, while
commuting with the other sort of spin,

[si(x), sj(x′)] = iεijksk(x)δ(x− x′),
[Si, Sj ] = iεijkSk,

[si(x), Sj ] = 0.
(5.3)

For a general spin-spin exchange, all the elements Jij in Eq. (5.2) are different. To tackle
the Kondo problem, however, a first approximation is to assume that the coupling matrix
only has diagonal elements. Such a simplified model is explored in the next section.

5.1.1. The xxz-model – RG

Defining the spin flip operators s± = sx ± isy and S± = Sx ± iSy (from now on, let us
choose x0 = 0 and drop the position label), we find that

JxxSxsx + JyySysy = 1
2[(Jxx − Jyy)(Sxsx − Sysy) + (Jxx + Jyy)(Sxsx + Sysy)]

= 1
4[(Jxx − Jyy)(S+s+ + S−s−) + (Jxx + Jyy)(S+s− + S−s+)].

(5.4)
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5.1. The diagonal Kondo model

The spin quantization axis of the helical liquid here is pointing in z-direction. The x- and
y-axis span the 2D plane of the underlying physical system (e.g. the QSH sample), and the
respective coupling constants are expected to be of similar strength, Jxx ≈ Jyy = J⊥. On
the other hand, helicity of the system implies the general anisotropy Jz 6= J⊥. Our coupling
then takes the form Jij = diag(J⊥, J⊥, Jz)ij . This model is called xxz-model [EK92]. We
therefore define the Kondo Hamiltonian of the xxz-model, call it Hex [VGG16], as a
simplified version of the general Kondo exchange HJ in Eq. (5.2),

Hex = JzSzsz + 1
2J⊥(S+s− + S−s+)

= 1
L

∑
k,k′

JzSz
(
c†↑,kc↑,k′ − c

†
↓,kc↓,k′

)
+ 1

2J⊥(S+c
†
↓,kc↑,k′ + S−c

†
↑,kc↓,k′). (5.5)

The first term, proportional to Jz, can as well be absorbed by a unitary transformation
of the basis [EK92, VO11, ESSJ12]. Going to a bosonic representation, we find s± =
±i(2πa)−1e±2i

√
Kφ and sz = 1

2π
√
K
∂xθ, such that the exchange coupling is expressed as 1

Hex = J⊥
−i
4πa(S+e

−2i
√
Kφ − S−e2i

√
Kφ) + Jz

1
2π
√
K
Sz∂xθ. (5.6)

From the scaling dimension of the operators s± and sz, we directly infer, that the scaling
dimension of the Kondo couplings are ∆⊥ = K and ∆z = 1 (the impurity spin S does
not contribute to the scaling dimension). This means, that even if we choose an isotropic
coupling, J⊥ = Jz, at a given energy, the two operators will in general evolve differently
upon rescaling, in the presence of interactions, and some anisotropy J⊥ 6= Jz will be
generated inevitably. Therefore, for the Kondo Hamiltonian in Eq. (5.5), SU(2) symmetry
is in general replaced by an effective U(1) symmetry. In particular, to the order of tree
level, there will be no renormalization of the sz-component, as 1 − ∆z = 0. Going to
the next order of one-loop corrections, one can for instance use the poor man’s scaling
approach [And70, WBZ06, Nev15] to derive the RG equations 2

d

d`
J⊥ = (1−K)J⊥ + ρJ⊥Jz,

d

d`
Jz = ρJ2

⊥.

(5.7)

Here, ρ = 1/(2πv) represents the density of states per spin (branch) per unit length of
the edge [VGG16]. 3 The RG flow is illustrated in Fig. 5.1. Assuming that Jz(0) > 0,
1Note that different bosonization schemes lead to different expressions, compare with Refs. [MLO+09,
TFM11].

2What is the difference to the regular RG scheme? In essence ([Nev15], p.6), “the term poor man refers
to the fact that the bandwidth is not rescaled to its original size after each progressive renormalization.
This simplifies the matter as there is no need to rescale the Hamiltonian, eliminating the second
step in the renormalization group procedure. Nevertheless, the results obtained via this simplified
renormalization procedure are qualitatively accurate and correctly describe the low-energy behavior of
the Kondo model.”

3This is derived from the total density of states,

ρtot(E) =
∑
k,σ=±

δ(E − v(σk − kF )) = L

2π
∑
σ

1
|vσ|

∫
dk δ((E/v + kF )/σ − k) = L

πv
.
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Figure 5.1.: RG flow of the two couplings J⊥ and Jz of the xxz-Kondo model, see Eq. (5.7) (with
ρ = 1), for the two different interaction strengths (a) K = 1 and (b) K = 0.7. Arrows indicate
the evolution of parameters upon increasing ` (going to lower energies), while thick lines represent
separatrices of regimes of irrelevant and relevant perturbations. Such a separatrix is here given by
the two points (−1,K) and (K − 1, 0).

meaning that the coupling is antiferromagnetic, we find that both Jz and J⊥ are relevant
perturbations at all interaction strengths, such that the spin-impurity coupling diverges
towards low energies (Jz, J⊥ → ∞). In the limit of zero energy (` → ∞), the Kondo
coupling becomes as well isotropic, Jz ≈ J⊥.
Note, that we employed the perturbative RG only to second order, such that it is not yet
clear, whether higher-order terms change the strong-coupling behaviour. In fact, one finds
negative corrections to the β-function for instance in third order of the RG [Nev15]. It was
eventually proved with the help of a numerical RG scheme, that higher-order corrections
do not change the qualitative behaviour, and the strong-coupling fixed point is indeed
given by (Jz, J⊥ →∞) [Noz74, Wil75]. The ground state in the strong-coupling regime is
a singlet of the electron and the impurity spin.

5.1.2. Weak- and strong-coupling regime – definition of TK
For an antiferromagnetic Kondo coupling, by inspection of Eq. (5.7), we therefore expect
the system to be in the strong-coupling regime at low energies. According to the discussion
in Sec. 3.3.3, this can usually be interpreted in the sense that the conductance approaches
zero at zero energy. Indeed, in a 1D spinful liquid, the conductance vanishes for all K < 1,
and the transport channel is effectively cut into two semi-infinite pieces (this holds even
for both ferromagnetic and antiferromagnetic Kondo couplings)[FN94]. As the magnetic
moment binds a spinful edge electron in a robust singlet state, the electron is pinned,
and forms a barrier for the remaining particles in the transport channel. At the same
time, the impurity spin is fully screened. At the helical QSH edge, however, due to the
peculiar topological nature of the system, the edge state simply follows the new effective
shape of the boundary. Therefore, electrons can bypass the local Kondo singlet, and the
conductance at zero energy for a single channel is not zero, but G0 = e2/h [MLO+09].
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Note, that such a bypass mechanism does not occur for a relevant (spinless) magnetic
perturbation, as was discussed in Sec. 3.3.3, because the latter explicitly breaks time-
reversal symmetry, and a topological healing of the edge state becomes impossible.
A perturbative analysis in terms of the coupling constants is valid only in the weak-
coupling limit, i.e. if the corresponding coupling strengths are small. So far, we have
always discriminated between the strong- and weak-coupling regimes by studying the
evolution of coupling constants towards low energies, depending on the strength of the
electron interactions. As the Kondo coupling is relevant for all K < 1, we always are in
the strong-coupling regime at low energies. On the other hand, irrespective of electron
interactions, the Kondo coupling becomes smaller with increasing energy, such that at
sufficiently high energies we find ourselves in the weak-coupling limit as well. The typical
transition temperature between those two domains is called the Kondo temperature, TK .
Figuratively, it symbolizes the energy threshold, below which perturbation theory breaks
down. We can define the Kondo temperature by the condition [Nev15, Gia03]

ρJ(E → TK) ≈ 1, (5.8)

where for simplicity we approximate the coupling to be isotropic for the moment, so
J(`) = Jz(`) ' J⊥(`). To find an estimate for the Kondo temperature, we take K = 1 in
Eq. (5.7), such that the RG flow is indeed fully isotropic. This yields the solution

J(`) = J(0)
1− J(0)ρ`. (5.9)

Expressing ` in terms of energy, we have ` = log(a/a0) = − log(Ea0/v), where E =
max(eV, T ) is the dominant energy scale, and a0 the bare cutoff. As discussed before,
v/a0 ≈ Eg plays the role of the band gap Eg in the QSH system. With that, we find that
the running coupling strength decreases logarithmically with increasing energies,

J(E) = J(Eg)
1 + ρJ(Eg) log(E/Eg)

∼ log−1(E/Eg). (5.10)

Here, J(Eg) is the bare coupling strength (at very high energies). Assuming that ρJ(Eg)�
1, we use Eqs. (5.8) and (5.10) to estimate the Kondo temperature by

TK ' Ege−1/(ρJ(Eg)). (5.11)

For E � TK , the system is in the weak-coupling regime, while for E � TK , we reach
strong coupling.

5.1.3. Influence of interactions – definition of T ∗

The anisotropic xxz-Kondo model, as given in Eq. (5.7), entails two important scenarios
at finite electron interactions (throughout, we imply repulsive interactions, K < 1). A
transition between the two can be associated with another critical temperature, say T ∗.
First, if ρJz � (1 −K), we can drop the first term in the first line of Eq. (5.7), and the
RG flow is similar to the one of a non-interacting setup [VGGG14]. In this regime, both
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the couplings Jz and J⊥ evolve in a similar way, such that it seems reasonable to assume a
nearly isotropic coupling, as given in Eq. (5.9), that decays logarithmically with increasing
energies.
On the other hand, at energies where ρJz � (1−K), we find ourselves in a qualitatively
different regime, where the presence of interactions elicits new, interesting physics. In
this case, we can drop the second term in the first line of Eq. (5.7), and the evolution
of J⊥ is mainly governed by the tree level contribution d

d`J⊥ = (1 − K)J⊥. Note that
this approximation is possible even if interactions are weak (but finite), as long as ρJz is
sufficiently small. The RG solutions then take the form

J⊥(`) ' J⊥(0)e(1−K)`,

Jz(`) ' Jz(0) + ρJ⊥(0)2

2(1−K)e
2(1−K)`.

(5.12)

In terms of energy, we observe a power-law decay for increasing energies, that scales as

J⊥(E) = J⊥(Eg)
(
E

Eg

)K−1

,

Jz(E) = Jz(Eg) + ρJ⊥(Eg)2

2(1−K)

(
E

Eg

)2(K−1)

.

(5.13)

Similar to the definition of the Kondo temperature, we can identify the typical threshold
temperature, T ∗, by the condition [Gia03] ρJz(E → T ∗) ≈ (1 − K). With the help of
Eq. (5.13), we use this constraint to estimate(

a0T
∗

v

)−2(1−K)
= 2

(
(1−K)2

(ρJ⊥(Eg))2 −
Jz(Eg)(1−K)
ρJ⊥(Eg)2 + 1

2

)
' 2

(
(1−K)
ρJ⊥(Eg)

)2

,

T ∗ ' Eg

(
ρJ⊥(Eg)√
2(1−K)

) 1
1−K

. (5.14)

Here, we exploited that the solution of Eq. (5.13) implies ρJz(Eg)� (1−K). The isotropic
regime mentioned above (see Eq. (5.9)) corresponds to energies E � T ∗, while the solution
derived in Eq. (5.12) holds for E � T ∗.
In the following, we assume the hierarchy of energy scales T ∗ � TK , and focus mainly
on high energies E � T ∗, which defines the energy range of the weak-coupling regime,
where electron interactions can have interesting effects. In particular, at energies above
T ∗, electron interactions induce an anisotropy of the couplings J⊥ and Jz, while below
T ∗, this anisotropy is erased in the course of the RG. One should keep in mind though,
that the definition of T ∗ makes sense only in the presence of nonzero electron interaction
strength. A schematics of the energy-dependent evolution of the running Kondo couplings
of the xxz-model is illustrated in Fig. 5.2.

5.1.4. Backscattering current

In the free helical liquid, the spin component along the quantization axis, here sz, is
conserved. In the presence of the Kondo impurity, it is useful to introduce the total spin
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Figure 5.2.: RG flow of the anisotropic Kondo couplings J⊥ and Jz, as given by Eqs. (5.10) and
(5.13), in the presence of interactions. For E < TK , we are in the strong-coupling regime, where
perturbation theory breaks down. At energies TK < E < T ∗, we find a logarithmic decay of the
(weak) coupling constants, that is nearly isotropic, so Jz ' J⊥. Eventually, for E > T ∗, the Kondo
couplings exhibit a power-law dependence on the energy. Some anisotropy is generated, as J⊥ and
Jz evolve differently, with a power exponent α⊥(K) = 1−K, and αz(K) = 2(1−K), respectively.

of the system along the same direction by

Stot
z = Sz +

∫
dx sz(x) = Sz + 1

2(NR −NL). (5.15)

With that, the backscattering current at the edge can be defined by [VGG16]

δI(t) = −e∂tStot
z (t) = −ie[HJ(t), Stot

z (t)]. (5.16)

Note that we implied an additional contribution to the current from a potential flip of the
magnetic moment, instead of simply using δI(t) = −e∂tsz(t). The reasoning is that in
steady state, the spin of the impurity is bounded, and thus time-independent, such that
∂tSz(t) = 0. Therefore, the above definition of the backscattering current is well-justified
in this case. Importantly, we realize with the help of Eq. (5.3), that the z-component of
the total spin has the commutation properties [Stot

z , H0] = 0, as well as

[Stot
z , Hex] = 0. (5.17)

In the presence of a perturbation of the type Hex, Stot
z is still conserved, since the spin

flip of an electron is accompanied by the reversed spin flip of the impurity spin. As a con-
sequence, such a diagonal coupling alone will not induce any steady-state backscattering
current [TFM11].
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5. Magnetic moments

Let us next give an example of a simple Kondo perturbation, beyond the xxz-model,
that induces a nonzero backscattering current at the helical edge. First, we present a
simple calculation using the Fermi golden rule, in order to illustrate the correct power-law
scaling. In the subsequent sections, a refined approach is described, which can be used to
derive a more accurate result for backscattering off a general Kondo impurity.
To drive a current through the system, we apply a dc bias voltage, such that the full
system is given by H = H0 +HV +HJ , where

H0 =
∑
k,r

εr(k)c†r,kcr,k, (5.18)

HV = eV Stot
z , (5.19)

with the single-particle energies εr(k) = rvFk. As shown above, a xxz-like Kondo coupling
is not sufficient to induce backscattering. Instead, we can for instance study a perturbation
with diagonal couplings, that are all of different strength, Jxx 6= Jyy 6= Jzz. According to
Eq. (5.4), this gives rise to an additional, perturbative term, H ′, of the form

HJ = Hex +H ′,

H ′ = 1
4(Jxx − Jyy)(S+s+ + S−s−) = δJ(S+s+ + S−s−). (5.20)

The coupling Hex is defined in Eq. (5.5), and we assume that δJ � J⊥, Jz. Realizing that
[H ′, Stot

z ] 6= 0, the backscattering current is expected to be finite, and can be calculated
perturbatively in δJ . With the FGR approach described in Sec. 4.3.2, we find a lowest-
order backscattering current of the form 〈δI〉 =

∑
if 2π|〈i|H ′|f〉0|2wiδ(Ei − Ef )∆Nf←i,

where the unperturbed average, 〈(. . .)〉0, is taken with respect to the free system at finite
bias. The averages of the impurity spin and the electron spin density simply factorize,
such that we obtain

〈δI〉 = e2V π(ρδJ)2. (5.21)

It furthermore needs to be taken into account, that the coupling strength δJ changes with
energy as well. The corresponding RG flow of all the coupling constants of the Kondo
model is discussed in more detail in Sec. 5.2.3 and the App. D.3, for the two different
energy domains of the weak-coupling regime, respectively. Anticipating this analysis, we
identify the RG flow of the anisotropic perturbation in the case of E � T ∗ � TK to be
δJ(T, V ) = δJ(Eg)(E/Eg)K−1 (see Eq. (5.35)). This leads us to

〈δI〉 = e2V π(ρδJ(Eg))2
(
max(T, eV )

Eg

)2(K−1)

if max(T, eV )� T ∗. (5.22)

We have thus found a characteristic power-law correction to the current, caused by backscat-
tering off the magnetic moment. The resulting correction to the conductance has the same
exponent, δG ∼ E2K−2, that we expect from a single-particle backscattering off a (spin-
less) magnet impurity, as analyzed in Sec. 3.3. This is not a coincidence, since the Kondo
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5.2. Kondo model with non-diagonal couplings

backscattering mechanism here is the very same elastic SPB process, however, accompa-
nied by a simultaneous flip of the impurity spin. This modification renders the Kondo
backscattering time-reversal invariant, in contrast to the SPB off a magnetic impurity.
Note that in previous sections (e.g. Sec. 3.3), we have always considered the limit of low
energies. The question of being in the weak- or strong-coupling regime then was related
only to the electron interactions strength. With the Kondo coupling, we here discuss a
perturbation that is relevant at low energies and repulsive interactions (the same holds for
a TRS-breaking magnetic impurity). Nevertheless, by studying the system at high ener-
gies, E � TK , we find ourselves in the weak-coupling regime for K < 1. As a consequence,
the backscattering current can be calculated perturbatively in the impurity strength.
Finally, in the regime of TK � E � T ∗, the RG flow of the perturbation takes a different
form. The scaling behaviour can be read off Eq. (D.15), and we obtain

〈δI〉 ∝ e2V π(ρ2δJ(T ∗)J(T ∗))2 log2
(max(T, eV )

T ∗

)
if TK � max(T, eV )� T ∗. (5.23)

Here, J is the isotropic coupling strength of this regime, J(E) = J⊥(E) ≈ Jz(E). The
above FGR analysis can as well be performed for off-diagonal perturbations, with the
outcome remaining qualitatively the same as in Eqs. (5.22) and (5.23).

5.2. Kondo model with non-diagonal couplings

5.2.1. Backscattering current

Following the analysis of Ref. [VGG16], we next study the transport signature of a helical
LL coupled to a general Kondo impurity, that features as well off-diagonal elements. As-
suming that T ∗ is very small in a realistic setup, we here focus on the regime of E � T ∗

(and T ∗ � TK). Including a bias voltage, the full system is modeled by H = H0−HV +HJ

(here, the sign of the bias voltage was chosen such that the spin-up configuration has the
minimum energy at positive bias V ). The first two terms are the same as in Eqs. (5.18)
and (5.19), but the perturbative part of the Kondo coupling takes the more general form

HJ = Hex +H ′,

H ′ =
∑

i,j={x,y,z}
δJijSisj . (5.24)

Still, we assume that all the δJij � Jz, J⊥. Using Eqs. (5.16) and (5.17), the backscattering
current can be phrased as

δI(t) = −ie[H ′(t), Stot
z (t)] = e

∑
k,l,r,p={x,y,z}

(δJkrεrzl + δJplεpzk)Sk(t)sl(t)

= eSx(t) [(δJxy + δJyx)sx(t) + (δJyy − δJxx)sy(t) + δJyzsz(t)]
+ eSy(t) [(δJyy − δJxx)sx(t)− (δJxy + δJyx)sy(t)− δJxzsz(t)]
+ eSz(t)(δJzysx(t) + δJzxsy(t)).

(5.25)
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The time-dependence of an operator O in the interaction picture is hereby given as
O(t) = eiH0tOe−iH0t, where the impurity spin does not evolve with time, Si(t) = Si,
since trivially [Si, H0] = 0. We are interested in the thermal average of the backscatter-
ing current 〈δI(t)〉, taken with respect to the full Hamiltonian, so 〈(. . .)〉 = Tr(ρ(. . .))/Z,
where ρ = e−β(H0+HJ−HV ) and Z = Tr(ρ). This average can be calculated perturbatively
in the Kondo couplings, at sufficiently large energies. In the end, the unperturbed average,
〈(. . .)〉0, is taken with respect to ρ0 = e−β(H0−HV ).
Since Hex itself does not cause any backscattering, it was desirable to evaluate the corre-
lations exactly in H0 + Hex, and to consider only H ′ a perturbation to the free system.
However, unfortunately, the corresponding correlations are not feasible with standard tech-
niques. In the course of the following perturbation theory, we shall instead try to find a
way to take into account Hex in a more exact way than H ′, in order to justify the as-
sumption of δJij � Jz, J⊥. This is achieved by expanding two of our intermediate results
to lowest order in the couplings δJ (in the RG flow of the running couplings, and in the
Bloch equations, see below).
Next, we use the normal-ordered expressions of the spin densities to write :si(t): =
si(t)− 〈si(t)〉0, where

〈sx(t)〉0 = 〈sy(t)〉0 = 0,

〈sz(t)〉0 = 1
2L

∑
k

(f+(k)− f−(k)) = ρ
1
2eV.

(5.26)

The thermal (and bias-dependent) energy distribution is given here by the Fermi functions
f±(k) = (eβ(vk∓eV/2) + 1)−1. In a similar way, we find the unperturbed impurity spin
averages

〈Sx〉0 = 〈Sy〉0 = 0,

〈Sz〉0 = Tr(eβeV SzSz)
Tr(eβeV Sz) = sinh(βeV/2)

2 cosh(βeV/2) = 1
2 tanh(βeV/2).

(5.27)

At a high bias voltage (β|eV | � 1), the z-component of the magnetic moment will be fully
polarized, 〈Sz〉0 → ±1/2, while if temperature is the dominant energy scale (βeV → 0),
we have 〈Sz〉0 → 0.

The average backscattering current takes the form (see Eq. (5.25) with the explicit time-
dependencies dropped for brevity)

〈δI〉 = (δJyz〈Sx〉 − δJxz〈Sy〉)
1
2ρe

2V

+ e [(δJxy + δJyx)(〈Sx:sx:〉 − 〈Sy:sy:〉)] + e [(δJyy − δJxx)(〈Sx:sy:〉+ 〈Sy:sx:〉)]
+ e(δJyz〈Sx:sz:〉+ δJzy〈Sz:sx:〉 − δJxz〈Sy:sz:〉 − δJzx〈Sz:sy:〉).

(5.28)
The challenge is therefore all about the calculation of the spin correlations 〈Si:sj :〉 and
the steady-state averages 〈Si〉 in the above equation, given the presence of the Kondo
impurity. In the next section, we present a way how to handle the mixed correlations
〈Si:sj :〉 perturbatively, using approximations concerning the dynamics of the two types
of spin-spin correlations. Subsequently, building on this approximation, we are able to
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5.2. Kondo model with non-diagonal couplings

calculate the steady-state averages of the impurity spin, 〈Si〉, taking into account the
xxz-like Kondo couplings exactly. Because of this procedure, our result will eventually be
more than perturbative in Hex.

5.2.2. Spin-spin correlations

While the unperturbed product average 〈Sk(t):sl(t):〉0 factorizes and vanishes (because
〈:sl(t):〉0 = 0), the average 〈Sk(t):sl(t):〉 in the presence of the Kondo coupling is in general
finite. In App. D.1 we exploit the fact that the electron spin correlations decay faster than
the impurity spin average, in order to derive the following approximation (let us abbreviate
Jij = diag(J⊥, J⊥, Jz)ij + δJij for the moment),

〈Sk(t):sl(t):〉 ' −
∑
ij

Jij

(∑
n

εikn〈Sn(t)〉ReCjl + 1
2δikImCjl

)
, (5.29)

with the electron spin density-density correlations Cjl =
∫∞

0 dt′ 〈sj(0):sl(t′):〉0. The latter
can be calculated in the presence of interactions and a finite bias voltage, using standard
bosonization techniques and known integrals [Gia03, GR07]. Explicitly, the correlations
needed for the present analysis are found to be of the form [VGG16, Väy16]

ReCxx =
( 1

4πa

)2 (2πa
vβ

)2K β

2πB
(
K + i

βeV

2π ,K − iβeV2π

)
cosh

(
βeV

2

)
,

ReCzz = K
π

2 ρ
2β−1,

ReCxy =
( 1

4πa

)2 (2πa
vβ

)2K β

2πB
(
K + i

βeV

2π ,K − iβeV2π

)
sinh

(
βeV

2

)
cot(πK),

ImCxy =
( 1

4πa

)2 (2πa
vβ

)2K β

2πB
(
K + i

βeV

2π ,K − iβeV2π

)
sinh

(
βeV

2

)
.

(5.30)
The remaining correlations can be obtained using the symmetries Cxx = Cyy, Cxy = −Cyx,
and Ciz = Czi = δizCzz. Here, B(x, y) is the Euler Beta function. In the limits of very
large temperature or bias voltage, the correlations become pure power laws,

β1−2KB

(
K + i

βeV

2π ,K − iβeV2π

)
sinh(βeV/2)

' π

Γ(2K) ×
{

(eV/2π)2K−1 if βeV � 1,
Γ2(K)β2−2K(eV/2π) if βeV � 1.

(5.31)

Above, Γ(x) denotes the Euler Gamma function, and we have B(K,K) = Γ2(K)/Γ(2K).
Likewise, when sinh(βeV/2) is replaced by cosh(βeV/2) in ReCxx, the lower limit in
Eq. (5.31) becomes β1−2KΓ2(K)/Γ(2K), whereas the upper limit stays the same. Us-
ing those two asymptotes, the following approximation can be found [VGG16], that holds
particularly well for weak interactions, K ≈ 1,

β1−2KB

(
K + i

βeV

2π ,K − iβeV2π

)
sinh(βeV/2) ' eV

2Kβ2−2K B(K,K)
[1 +A(K)(βeV/2)2]1−K ,

(5.32)
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where we defined
A(K) = π−2Γ(K)2/(1−K). (5.33)

With the help of Eq. (5.29), the average backscattering current of Eq. (5.28) can be phrased
in terms of impurity averages 〈Sn〉 only,

〈δI〉 =
([
δJyz + J⊥δJzy

ReCxy
1
2ρeV

]
〈Sx〉 −

[
δJxz − J⊥δJzx

ReCxy
1
2ρeV

]
〈Sy〉

)
1
2ρe

2V

+ e
(
(δJxx − δJyy)2 + (δJxy + δJyx)2

)(1
2 tanh βeV2 + 〈Sz〉

)
ReCxx

+ e
(
[δJ2

yz + δJ2
xz] 〈Sz〉 − Jz [δJyz 〈Sy〉+ δJxz 〈Sx〉]

)
ReCzz

+ e
∑
i=x,y

δJzi

(1
2δJzi tanh βeV2 + J⊥ 〈Si〉

)
ReCxx.

(5.34)

5.2.3. Running couplings for E � T ∗

The expression for the backscattering current in Eq. (5.34) can be simplified significantly,
when using running couplings Jij(E), that have an implicit energy dependence. In the
previous section (see Eq. (5.7)), we have already discussed the RG flow for the two cou-
plings J⊥(E), Jz(E) of the diagonal xxz-Kondo model. The same RG analysis can be
employed to derive the behaviour of a general coupling constant Jij [ESSJ12, Eri13]. As-
suming temperatures above T ∗, we use that Jij = diag(J⊥, J⊥, Jz)ij + δJij to expand the
RG equations to lowest order in the perturbations δJ . We then obtain 4

d

d`
X = (1−K)X,

d

d`
δJzz = ρJ⊥(δJxx + δJyy),

d

d`
δJxz = −ρJ⊥δJzx,

d

d`
δJyz = −ρJ⊥δJzy.

(5.35)

Here, X represents any of the couplings δJxx, δJyy, δJxy, δJyx and δJzi with i ∈ {x, y}.
These couplings evolve in the same way as J⊥, and we can simply replace J⊥(E) by X(E)
in Eq. (5.13), so X(E) = X(Eg)(E/Eg)K−1. The solutions for δJiz and δJzz are slightly
different from the evolution of Jz, they read

δJiz(E) = δJiz(Eg)−
ρ

2
1

(1−K)J⊥(Eg)δJzi(Eg)
(
E

Eg

)2(K−1)

, if i ∈ {x, y},

δJzz(E) = δJzz(Eg) + ρ

2
1

(1−K)J⊥(Eg)(δJxx(Eg) + δJyy(Eg))
(
E

Eg

)2(K−1)

.

(5.36)

4Note that the coupling label is reversed compared to Ref. [Eri13], so we have Jij → Jji. This is due to
the different order of operators in the definition of the Kondo Hamiltonian.
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5.2. Kondo model with non-diagonal couplings

The RG scheme, which is a qualitative analysis, only yields the scaling with the maximum
energy E = max{eV, T}, where T ∗ < E < Eg = v/a0. In a realistic system, however, there
will be a crossover dependence of bias and temperature, that is in general more complicated
than the max-function. Inspecting the linearized versions of Eqs. (D.7)–(D.9), we infer
that more precisely, in the RG equations above, there should be the replacement (β = 1/T ,
and use Eqs. (5.30) and (5.31))(

E

Eg

)K−1

→
(

tanh eV
2T

eV
2T

ReCxx
ReCzz

)1/2

∼
{

(eV/Eg)K−1 if eV � T,

(T/Eg)K−1 if eV � T.
(5.37)

This function provides the correct scaling, as predicted by the RG analysis. It therefore
seems reasonable to assume that it models correctly the crossover between the two energy
scales. The squared function can be written as

(
tanh eV

2T
eV
2T

ReCxx
ReCzz

)
≈ −2

ρ(1 − K)ReCxy(T,V )
1
2ρeV

for 1−K � 1. Explicitly, we then obtain, for all running couplings up to second order in
J (from Eqs. (5.13), and (5.35)– (5.37)),

X(T, V ) = X(Eg)
(

tanh eV
2T

eV
2T

ReCxx
ReCzz

)1/2

' X(Eg)
(
Eg

2πT

)1−K ( B(K,K)
[1 +A(K)(eV/2T )2]1−K

)1/2
,

Jz(T, V ) = Jz(Eg)− J⊥(Eg)2ReCxy
1
2ρeV

,

δJiz(T, V ) = δJiz(Eg) + J⊥(Eg)δJzi(Eg)
ReCxy
1
2ρeV

if i ∈ {x, y},

δJzz(T, V ) = δJzz(Eg)− J⊥(Eg)(δJxx(Eg) + δJyy(Eg))
ReCxy
1
2ρeV

.

(5.38)

Here, X can be any of the couplings J⊥, δJxx, δJyy, δJxy, δJyx and δJzi with i ∈ {x, y},
and further we employed Eq. (5.32) to simplify. Note the difference between Jij(E) and
Jij(T, V ), where the latter includes a crossover function, that is more accurate than the
max-function. Using the above results of the RG in lowest order, we can now write the
current of Eq. (5.34) in terms of the running couplings Jij(T, V ). For brevity, we do not
write the label (T, V ) explicitly, but all the coupling strengths J in the following should
be thought of as running couplings, unless explicitly stated otherwise.

〈δI〉 = (δJyz 〈Sx〉 − δJxz 〈Sy〉)
1
2ρe

2V

+ e2V

2T
(
[δJxx − δJyy]2 + [δJxy + δJyx]2

)(1
2 + 〈Sz〉

tanh eV
2T

)
ReCzz

+ e
(
[δJ2

yz + δJ2
xz] 〈Sz〉 − Jz [δJyz 〈Sy〉+ δJxz 〈Sx〉]

)
ReCzz

+ e2V

2T
∑
i=x,y

(
1
2δJ

2
zi + δJziJ⊥

〈Si〉
tanh eV

2T

)
ReCzz.

(5.39)
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Eventually, we have to find a solution for the impurity spin averages 〈Si(t)〉. For a steady-
state current, this can be achieved with the help of the Bloch equations.

5.2.4. Bloch equations for impurity spin average

Via the Kondo coupling, the magnetic moment interacts with the helical edge electrons.
In the limit of large times, we expect the system to reach a steady state, such that the
impurity spin is aligned in a certain direction. This assumption leads us to a set of
equations (i = {x, y, z}),

d

dt
〈Si(t)〉 = i〈[HJ(t), Si(t)]〉 = −

∑
jk

Jkjεkin〈Sn(t)sj(t)〉

= −1
2ρeV

∑
kn

Jkzεkin〈Sn(t)〉 −
∑
jkn

Jkjεkin〈Sn(t):sj(t):〉 = 0. (5.40)

Using Eq. (5.29), this can be cast in the form of Bloch equations, which describe the
characteristic time evolution of a magnetic moment in a magnetic field,

d

dt
〈Si(t)〉 = (~h× 〈~S(t)〉)i − (γ〈~S〉)i + ci = 0. (5.41)

Here, ~h plays the role of an effective magnetic field, γ is a (3× 3)-matrix that determines
the relaxation of the impurity spin, and ~c is some offset. All those quantities depend
on the Kondo coupling strengths, and the thermodynamics of the system. The explicit
expressions, as well as the solutions for the 〈Si〉, are somewhat lengthy, and can be found
in the App. D.2. Importantly, 〈Sz〉 is finite already in the absence of perturbations δJ , as
given in Eq. (5.27). In contrast, the in-plane components 〈Sx,y〉 start from linear order in
δJ . The expressions for the impurity spin averages in Eq. (D.13) are obtained in lowest
order of δJ , in order to justify the assumption of δJij � J⊥, Jz. See also Fig. 5.3 for an
illustration of the time evolution of the average impurity spin.
Because of the way we introduced the voltage bias, HV = eV Stot

z , it plays the role of an
effective magnetic field here. In particular, we can associate the latter with the component
(see Eq. (D.10))

hz = 1
2ρeV (Jz + δJzz). (5.42)

On the other hand, the magnetic moment has a tendency to relax towards a non-ordered
configuration, associated with the matrix γ. We can use the diagonal in-plane component
γ

(0)
⊥ = (J2

⊥
(eV/2T )

tanh(eV/2T ) +J2
z ), see definition in the App. D.2, to identify the typical relaxation

rate, or Korringa rate [Kor50, VGG16],

τ−1
K = γ

(0)
⊥ ReCzz ∼

{
eV J2

⊥ if eV � T,

T (J2
⊥ + J2

z ) if eV � T.
(5.43)

A large relaxation rate corresponds to a fast relaxation out of the ordered configuration.
Quite generally, there will be a competition between the two parameters hz and τK . As we
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Figure 5.3.: Illustration of the time evolution of the impurity spin averages, 〈Si(t)〉, with i =
{x, y, z}, according to the left hand side of Eq. (5.41). The regimes of fast and slow relaxation
are demonstrated: In (a), we use eV = 1, T = 10, such that hz/τK ≈ 0.05 � 1, and observe a
fast relaxation. On the other hand, in (b), a slow relaxation follows from eV = 10, T = 1, where
hz/τK ≈ 17 � 1. In the limit of large times, t → ∞, we approach the steady-state solutions as
given in Eq. (D.13). Here, we have chosen only the perturbative couplings δJxx and δJyy to be
finite for simplicity. In this case, the respective steady-state averages of the in-plane components
are zero. However, this does not hold for a general coupling. Further parameters for both plots
are ρ = 1, J⊥ ≈ Jz = 0.02, δJxx = 0.008, δJyy = 0.001, 〈Sx(0)〉 = 〈Sx(0)〉 = 0.1, and 〈Sz(0)〉 = 0.

see below, this competition manifests itself in a (small) step of the backscattering current,
from one constant to another. We here give the resulting expression for the backscattering
current, using Eq. (D.13) in Eq. (5.39),

〈δI〉 = e
πK

4 eV ρ2
(
[δJxx − δJyy]2 + [δJxy + δJyx]2

)
+ e

πK

4 eV
1
2R(T, V )

∑
i=x,y

ρ2[δJzi + J⊥
Jz
δJiz]2.

(5.44)

The term in the first line above arises from the nonzero 〈Sz〉, and a similar expression could
be derived from a Fermi golden rule calculation (compare with Eq. (5.21)). In the second
term, we have introduced a function that contains the information about the in-plane
averages 〈Sx,y〉 (keep in mind that all the couplings are energy-dependent)

R(T, V ) =
Jz
Jeff

+
(
eV
2T

2
πKρJeff

)2

1 +
(
eV
2T

2
πKρJeff

)2 ≈
Jz(T,0)
Jeff(T,0) +

(
eV
2T

2
πKρJeff(T,0)

)2

1 +
(
eV
2T

2
πKρJeff(T,0)

)2 . (5.45)

Here, we have defined yet another, effective coupling

Jeff(T, V ) = γ
(0)
⊥

Jz(T, V ) =
J⊥(T, V )2

eV
2T

tanh eV
2T

+ Jz(T, V )2

Jz(T, V ) . (5.46)

The introduction of Jeff is motivated by the competition of the two quantities hz/τK =
eV/(πTρJeff). We can now distinguish the two cases of a fast and slow relaxation (see
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Fig. 5.3). The former is given by hz/τK � 1, so eV � TρJeff, and as a consequence,
we find R(T, V ) ≈ Jz/Jeff in this limit. On the other hand, for slow relaxations we have
hz/τK � 1, i.e. eV � TρJeff, and obtain R(T, V ) ≈ 1. As the bias-dependence only
plays a minor role in both cases, we can approximately neglect it on the right hand side
of Eq. (5.45). Note that at eV ≈ TρJeff, the function R, and therefore also the average
backscattering current, changes from one constant to another. This crossover should as
well be observable in a transport experiment, and could therefore be used to identify
backscattering induced by Kondo impurities.

5.2.5. Conductance in terms of bare couplings

In general, Eq. (5.44) provides a full solution for the average backscattering current, in
terms of the running couplings. Using the RG flow of Eq. (5.38), we can eventually
transform the running couplings back into the bare ones, in order to make appear the
explicit energy dependence. This brings us to the final result of our analysis,

〈δI〉 = e2V ρ2πK

4 δJ2
tot(Eg)

(
Eg

2πT

)2(1−K) B(K,K)
[1 +A(K)( eV2T )2]1−K

f(T, V ). (5.47)

We have denoted here

δJ2
tot(Eg) = (δJxx(Eg)− δJyy(Eg))2 + (δJxy(Eg) + δJyx(Eg))2

+ 1
2
∑
i=x,y

[δJzi(Eg) + δJiz(Eg)]2,

f(T, V ) =
b(T ) +

(
eV
2T

2
πρJeff(T )

)2

1 +
(
eV
2T

2
πρJeff(T )

)2 ,

b(T ) = 1−
(

1− Jz(T, 0)
Jeff(T )

) 1
2δJ2

tot(Eg)
∑
i=x,y

[δJzi(Eg) + δJiz(Eg)]2.

(5.48)

The function f(T, V ) replaces R(T, V ) with the modification of Jz(T )/Jeff(T ) → b(T ),
which has the following motivation. A more detailed analysis shows (see [VGG16] and
supplement thereof), that the temperature-dependence of the factors Jeff(T ) and the
ratio Jz(T )/Jeff(T ) only weakly influences the backscattering current in the regime of
T ∗ � T � Eg, where our model is valid. For typical values of the bare exchange cou-
plings, b(T ) is bounded by 2/3 ≤ b(T ) ≤ 5/6, and therefore, can effectively be replaced
by a constant.
Comparing our result of the backscattering current in Eq. (5.47) to the initial estimate
in Eq. (5.22), we note the following refinements. At a given temperature, the current
in Eq. (5.47) exhibits two separated crossover scales for the applied bias. First, at
eV ≈ TρJeff(T ) we find a crossover from one constant to another, that is associated
with the impurity spin dynamics. This point is fully entailed in the function f(T, V ).
Second, we find a crossover at eV ≈ T , when the bias starts to become the dominant
energy scale. Close to this point, one may set f(T, V ) ≈ 1 in Eq. (5.47), in which case we
reproduce the scaling of Eq. (5.22), however, with an accurate crossover between the two
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5.2. Kondo model with non-diagonal couplings

Figure 5.4.: Schematic of the conductance G(T, V ) in the presence of many, dilute Kondo im-
purities, using logarithmic scales. The energy dependence is given by Eq. (5.47) and G '
G2

0/(G0 + NδG), where throughout E � T ∗. Here, we fix T and vary eV . Note the follow-
ing characteristics: First, there is a (small) step in the conductance of 1/b(T ), at an energy where
eV/T ≈ ρJeff. This point marks the approximate crossover from fast (eV/T � ρJeff) to slow
(eV/T � ρJeff) relaxations of the impurity spin average (see text). Next, there is a crossover at
eV/T ≈ 1, when the bias voltage becomes the dominant energy scale. Beyond that point, we find a
power-law increase of the form G(V ) ∼ (δG(V ))−1 ∼ V 2−2K (with K < 1). When the temperature
is raised, the conductance generally increases.

energies. Typically, the second crossover occurs at higher energies, as ρJeff(T )� 1.
The correction to the conductance can easily be derived from the steady-state backscat-
tering current in Eq. (5.47), using δG = d〈δI〉/dV . Eventually, the energy-dependent
conductance G of the full system depends on the Kondo impurity distribution at the he-
lical edge. Here, we study the case of a large number of dilute impurities, N � 1, in
order to make a connection to the experiment by Li et al. presented in Ref. [LWF+15].
Assuming that NδG/G0 is not necessarily small, we calculate the conductance of the full
system by (see Sec. 3.4, Eq. (3.47)) G = G0/(1 +NδG/G0). Such an approach implies a
long extent of the QSH edge, as N ∼ L. A schematic plot of the conductance is shown
in Fig. 5.4, where we fix the temperature and vary the bias voltage, making sure that
throughout max(T, eV ) � T ∗. From the energy dependence of G(T, V ), we observe the
two crossovers at eV/T ≈ ρJeff and eV/T ≈ 1, as discussed above. In the typically quite
wide range of intermediate energies where eV/T ≥ 1, but NδG(T, V ) � G0, the con-
ductance scales as a power law, G ' G2

0/(NδG) ∼ (eV )2−2K . Note that the sign of the
exponent is opposite to the one of Eq. (5.22), since here G ∼ δG−1. The conductance then
grows with increasing energies, before saturating towards its bare value. 5

5Note that in the case of a single Kondo impurity, where G = G0 − δG, the conductance increases as
well with (high and) increasing energies. This is because even though the correction δG decreases with
energy (as a power law), the full conductance G increases, and approaches its bare value. However,
this increase then does not follow the same characteristic power law as in Fig. 5.4.
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5. Magnetic moments

5.3. Comparison with the experiment of Ref. [LWF+15]

The authors of Ref. [LWF+15] report on the observation of helical Luttinger liquid be-
haviour in two-dimensional InAs/GaSb quantum wells. Band inversion effects in these
material systems were predicted to result in a QSH insulating phase [LHQ+08]. Indeed,
transport measurements have demonstrated a conductance, that is quantized in terms of
e2/h, pointing at a topologically non-trivial QSH state, and the existence of helical edge
modes [KDS11, SND+14, DKSD15]. We therefore expect those materials to be suitable
candidate systems for the study of correlated backscattering effects in a helical liquid, that
typically manifest themselves in energy-dependent power-law corrections to the quantized
conductance. However, in the mentioned articles, edge transport was found to be inde-
pendent of the applied temperature (at fixed bias). It turned out though [LWF+15], that
this was due to the fact that the bias voltage in the experiments was much larger than
the temperature, even though the latter was varied in a wide range of 20mK < T < 30K.
In agreement with what we described in the previous chapters, the correction to the con-
ductance scales with the dominant energy scale, max(T, eV ), such that no temperature
dependence could be observed.
In a follow-up measurement published in Ref. [LWF+15], the fixed energy scale (temper-
ature or bias voltage) was chosen to be sufficiently small. Interestingly, the authors then
observed a power-law increase of the conductance with the complementary energy scale
(bias voltage or temperature, respectively), where also the crossing point of the two energy
scales can be clearly identified. The fitted power-law exponent hereby was fairly small,
δG ∝ V 0.37 (see inset of Fig. 4 in Ref. [LWF+15], also reproduced in Fig. 5.5), and suggests
an interpretation in the context of (strongly) correlated electron backscattering.
The authors of Ref. [LWF+15] attribute the observed power-law behaviour to relevant two-
particle backscattering at low energies. As discussed in previous sections (see for instance
Tab. 3.1), this leads to a scaling of G ∼ δG ∼ E2(1/(4K)−1) in the strong-coupling regime,
for electron interactions K < 1/4 [MLO+09]. Even though this reasoning appears to be
correct, we consider it problematic for the following reason. Matching the theoretically
predicted power-law exponent with the one observed in the experiment, one findsK ≈ 0.21.
This estimated value of (very strong) interactions is in immediate proximity to the critical
threshold of K = 1/4, which is required for the TPB, induced by a single or a few
impurities, to be relevant. As the authors state themselves, the Luttinger parameter K
is hereby related to the Fermi velocity of the system, and therefore controllable by fine-
tuning of the gate voltage. This understood, it seems improbable that the gate voltage
could be fine-tuned to such a stable value throughout the measurement, without crossing
the critical value of K = 1/4, in which case a very different power-law is expected, and
the above line of reasoning breaks down.
We here present an alternative interpretation of the observed power-law behaviour of
the conductance, in the context of magnetic moments. In the previous section, we have
shown that the transport signature of many dilute Kondo impurities at high energies,
E � T ∗, entails a power-law increase of the conductance, scaling as G ∼ E2−2K over
a wide energy range. Comparing to the experimental data, this yields K ≈ 0.82, which
corresponds to weak electron interactions in the system. Therefore, this explanation of
the measured backscattering effects misses the difficulties mentioned above. Note, that
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5.3. Comparison with the experiment of Ref. [LWF+15]

Figure 5.5.: Conductance versus applied bias voltage, as measured in a transport experiment in
InAs/GaSb bilayers. For an intermediate regime of energies with eV ≥ T , the conductance follows
a power-law behaviour which hints at correlated backscattering effects in the interacting helical
Luttinger liquid (see text). Reprinted figure with permission from Ref. [LWF+15]. Copyright 2015
by the American Physical Society.

also the full crossover function of the conductance, as sketched in Fig. 5.4, agrees very
well with the experiment (compare to the inset of Fig. 5.5). Given the relatively large
sample length of L = 1.2µm used in the setup, the assumption of a great number of
impurities seems justified. The origin of magnetic moments in the InAs/GaSb sample is
not known, however, even in the absence of magnetic impurities, charge puddles with an
odd number of electrons within the band gap (here Eg ≈ 40 − 60K), can act as such
[VGGG14, VGG16].
The two possible interpretations (TPB and strong interactions or magnetic moments and
weak interactions) have different zero-energy limits. While for the former, the conductance
should vanish at zero energy, we expect G→ G0 = 2e2/h for the latter. In the experiment
of Ref. [LWF+15], this limit can not be read off, as one of the two parameters T and
eV is always fixed. Moreover, since the values of TK and T ∗ are generally not known,
it is not clear, how far the energy should be lowered in order to observe a significant
increase of the conductance towards G0. The two models could as well be distinguished
in a shot-noise measurement, as we can expect distinct signatures from SPB and TPB,
respectively. which are able to tell apart single-particle and two-particle backscattering
processes. Furthermore, in the range of energies where a power-law behaviour is present, a
set of experiments with varying sample sizes should demonstrate a dependence on L of the
form of either G ∼ L (for a single or a few TPB impurities), G ∼ L−1 (for many magnetic
moments), or even an interaction-dependent power-law scaling of the conductance in L (if
v/L is the largest energy scale compared to temperature and bias voltage).
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6. Conclusion and Outlook

6.1. Conclusion

In the present Thesis, we have studied electronic transport in one-dimensional helical
states. First, the basic concepts of Luttinger liquid theory, and the employed analytic tech-
niques were reviewed. A special emphasis was hereby put on the derivation of the bosonic
field commutators and correlation functions, at nonzero electron interaction strength,
which are essential for the subsequent analysis of transport properties. We discussed the
question of introducing an isotropic or anisotropic cutoff, and illustrated, that this choice
can have an impact on the RG flow of coupling constants. In particular, using a general
anisotropic cutoff, we identified non-local TPB processes induced by randomly disordered
Rashba SOC impurities. Next, we investigated the conductance of the helical liquid, which
represents the most important transport signature observable in an experiment. We pre-
sented different approaches how to calculate this quantity in both an equilibrium, and a
non-equilibrium scenario, and used a RG analysis to derive the corrections to the con-
ductance, that are expected to arise from generic single- and two-particle backscattering
processes. As TRS forbids regular elastic backscattering, the corresponding backscatter-
ing mechanisms are inelastic in nature. Hereby, an exchange of energy is mediated most
commonly by nonzero electron interactions. The resulting corrections display a power-law
scaling with the energy, and come with a characteristic exponent, that depends on the
type of backscattering and the electron interaction strength. Importantly, the exponent
related to a peculiar generic backscattering mechanism can change, if backscattering is
induced by microscopic sources with a distinct scaling dynamics. This leads to crossovers
of the scaling of the conductance, which could be used to identify specific perturbations
in a given material. The above ideas were elaborated on for the combination of electron
interactions and Rashba spin-orbit coupling, in the form of a single impurity or random
disorder. An interesting contribution with a very low power-law exponent was found in
the case of a single impurity, and broken Galilean invariance taken into account. Fur-
thermore, the importance of a momentum cutoff was discussed. We find, that SOC and
finite electron interactions induce backscattering only if the underlying model features
non-locality, as the corresponding generic backscattering operators are as well of non-local
character. Non-locality can be introduced explicitly, for instance by employing non-local
potentials in a real-space description, or implicitly, by the implementation of a momentum
cutoff (as it is typically done in the scheme of bosonization). A nonzero momentum cutoff
renders real-space operators non-local, and is therefore of fundamental importance in this
context. Besides, the concept of a missing piece appears to be essential in order to obtain
the correct non-interacting limits of the inelastic backscattering corrections. Finally, we
discussed magnetic moments as another important microscopic source of backscattering.
Such perturbations generate elastic single-particle backscattering at the helical edge, even
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at zero interaction strength, but do not break TRS, because the spin of the magnetic
moment can flip as well. In the limit of very weak coupling, the equilibrium conductance
as a function of the involved energy scales can be estimated by a careful treatment of the
entailed spin dynamics. We find, that the result matches the behaviour of the conductance
observed in Ref. [LWF+15], and thus gives an alternative interpretation of the experiment
in terms of magnetic moments and weak interactions.

6.2. Outlook – superconductor hybrid systems

Giving a prospect of future research, let us point out that topological insulators, and their
peculiar surface states, have as well attracted a lot of attention in the context of exotic
bound states with non-Abelian statistics, such as Majorana fermions or parafermions.
Those could in principle be used to perform operations of fault-tolerant quantum comput-
ing [Kit03]. A key aspect hereby is the possibility to detect, and potentially manipulate
the respective bound state.
It was first realized, that pairs of Majorana bound states (MBS) can exist at the bound-
aries of a spinless p-wave superconductor (SC), forming localized edge states in a 1D chain
of atoms [Kit01]. A few years later, the discovery of new topological states of matter al-
lowed to study similar bound states in a plethora of other candidate systems. For instance,
MBS were predicted to appear in a 3D TI with proximity-induced s-wave superconduc-
tivity [FK08], or in 1D helical liquids with induced s-wave superconductivity, and in the
presence of a Zeeman field [ORv10]. A simple structure of fundamental interest is given
by the junction of a 1D helical liquid and an ordinary s-wave superconductor. When an
additional magnetic impurity is positioned in close vicinity to the superconducting inter-
face, a localized MBS emerges in between the magnetic and the superconducting domain
[FK09b, CTD14]. Backscattering off the ferromagnetic impurity, and Andreev reflection at
the superconductor boundary, then act as the two mirrors of a resonator, and confine the
MBS wave function (see Fig. 6.1a). To detect Majorana bound states in an experiment,
two general transport signatures are usually considered. First, tunnel current measure-
ments in a normal-metal-superconductor (N-S) junction are expected to show a zero-bias
peak, which reflects the existence of a MBS with zero energy at the interface [LLN09].
Second, in a S-N-S Josephson junction, a localized MBS leads to a 4π-periodicity of the
Josephson current [Kit01, FK09a]. Suchlike characteristic fingerprints have been observed
in recent transport experiments [MZF+12, DRM+12].
Non-Abelian fermions can in general be classified in terms of Zn parafermions [AF16],
where the Z2-case represents the Majorana fermion. Various parafermionic bound states
were for instance predicted to form in an fractional quantum Hall system, at the in-
terfaces of a Mott insulating (e.g. ferromagnetic) region and a s-wave superconductor
[LBRS12, CAS13]. The authors of Ref. [OTMS15] analyze the setup of a 1D helical
liquid, which is dominated by alternating sections of strong umklapp scattering and su-
perconductivity. At the section interfaces, Z4 parafermionic bound states are identified,
which could be detected by a 8π-periodicity of the Josephson current through the system.
Building on the above findings, an interesting setup is given by a N-S junction of a 1D
helical liquid with a s-wave superconductor, in the presence of a Rashba SOC pertur-
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Figure 6.1.: Illustration of a helical liquid – superconductor junction, in the presence of a single,
localized perturbation at a distance d from the SC surface. An incident particle is expected to be
Andreev-reflected at the interface, and a Cooper pair enters the superconductor. Electrons here
are denoted by full lines and full circles, while dashed lines and void circles represent holes. (a) In
the case of a ferromagnetic (FM) impurity, sequential elastic single-particle backscattering leads to
resonance (bound) states in the region between the impurity and the SC. Those can be shown to
obey Majorana statistics [FK09b]. (b) If the ferromagnetic impurity is replaced by a Rashba spin-
orbit coupling impurity, the mechanism of two-particle backscattering is induced. Importantly, the
latter requires finite electron interactions (or another mediator of inelastic momentum exchange).
We then expect the formation of a Z4-parafermionic bound state, similar to Ref. [OTMS15].

bation (see Fig. 6.1b). As the latter induces two-particle backscattering, we expect a
Z4-parafermionic bound state at the interface, similar to the analysis of Ref. [OTMS15].
Here, however, such a bound state could emerge even in the presence of a weak, single
Rashba impurity – a setup that seems more natural, and microscopically motivated. SOC
perturbations could as well be created in a controlled way by an external gate on top of the
QSH sample. Assuming that the superconducting gap is much larger than the energy of
an incoming particle, Andreev reflection is the dominant backscattering mechanism at the
SC interface. The presence of a superconducting domain then can simply be accounted for
by the use of effective boundary conditions of the system [BTK82, MSGL96]. Calculating
the current transmitted through the junction, in a bosonic framework, we find a char-
acteristic modulation of its amplitude, depending on the distance between the impurity
and the interface, and on the energy of the incident electron. The specific backscatter-
ing characteristics of the Rashba impurity, on the other hand, render the identification a
parafermionic bound state more challenging. Since the Rashba SOC impurity can only
induce inelastic backscattering, finite electron interactions need to be taken into account.
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In a suchlike interacting system, properties of the single-particle wavefunctions can not
be exploited easily, and the conclusive evidence of a parafermionic bound state remains
difficult. A demonstration of the existence of a bound state with non-Abelian statistics at
the interface, depending on the interaction strength, as well as its potential localization
and electric control, could therefore be an interesting subject of further investigation.
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A. Useful formulas

We here collect a few mathematical identities that are used occasionally. The Dirac delta
function has the Fourier representation

δ(x) =
∫ ∞
−∞

dk e−2πikx. (A.1)

For exponentials of operators, the Baker-Campbell-Hausdorff formula states that, with
C = [A,B],

exp(A) exp(B) = exp(A+B + 1
2C + 1

12[A,C]− 1
12[B,C] + . . .). (A.2)

If [A,C] = [B,C] = 0, we find

eAeB = eA+BeC/2 = eBeAeC ,

[A, eB] = CeB.
(A.3)

In order to simplify some correlation functions, we use the identities

sin(a+ ib) sin(a− ib) = sin2(a) + sinh2(b), (A.4)

arctan(x) = i

2 log
(1− ix

1 + ix

)
. (A.5)

With that, we can also simplify

log
(sin(a+ ib)

sin(a− ib)

)
= log

(
1− i tanh(b)(tan(a))−1

1 + i tanh(b)(tan(a))−1

)
, (A.6)

−2i arctan
(tanh(b)

tan(a)

)
= −2i arg (tan(a) + i tanh(b)) . (A.7)

Here, arg is the argument function.
In Sec. 4.4.8, we use the following approximation of an integral with finite boundaries,∫ 1/a+ε

−1/a+ε′
dq f(q) =

(∫ −1/a

−1/a+ε′
dq +

∫ 1/a

−1/a
dq +

∫ 1/a+ε

1/a
dq
)
f(q)

' −ε′f(−1/a) +
∫ 1/a

−1/a
dq f(q) + εf(1/a),

(A.8)

given that ε, ε′ � 1/a.
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B. Chiral fields – notation of Ref. [Gia03]

In this part, we make a connection to the notation of Ref. [Gia03], which can be considered
a redefinition of bosonic operators, analogously to the one of Sec. 2.1.3. The main point is
that in contrast to above, in Ref. [Gia03] the fermionic fields are defined from the start to
have the same x-dependence, as ψr(x) = 1√

L

∑
k e

ikxcr,k. The density in Eq. (2.16) then
reads for instance (in terms of the usual chiral fields of Eq. (2.10))

ρr(x) = (− ∗∗∂xφr(rx) ∗∗ + 2π
L
Nr)/2π. (B.1)

However, since on the other hand the energy dispersion is defined in the form of εr(k) =
rvFk (so p = k + pF , compare to Eq. (2.2)), we have the time-dependence cr,k(t) =
cr,ke

−irvF kt, and the two chiral fields depend on ψr(x, t) = ψr(x− rvt). Therefore, we also
have right- and left-moving fields.
The non-chiral fields are given in terms of the chiral ones by (e.g. [Gia03], Eq. D.7)

φ(x, t) = 1
2(φR(z+) + φL(−z−))− πx

L
(NR +NL),

θ(x, t) = 1
2(−φR(z+) + φL(−z−)) + πx

L
(NR −NL),

(B.2)

where zr = −i(rx − vt), as before. In other words, φr(rzr) = φ(x, t) − rθ(x, t) + 2πx
L Nr.

We can thus relate the notation in Sec. 2.1.1 to the one of Ref. [Gia03] by the replacement

φr(zr)→ rφr(rzr),
ψr → ψr/

√
2π.

(B.3)

The bosonization identity reads in this language,

ψr(x) = Fr

( 1
2πa

)1/2
eir(kF−

π
L

+ 2π
L
Nr)xe−irφr(rx)

= Fr

( 1
2πa

)1/2
eir(kF−

π
L

)xe−i(rφ(x)−θ(x)). (B.4)

Note the analogy to the notation in Eq. (2.32) in a non-chiral representation. The total
fermionic field is ψ(x) =

∑
r ψr(x), since the factor of eirkF x is included in Eq. (B.4).

135





C. OPE in lowest orders of the Rashba
SOC disorder strength

C.1. OPE in first order of Dη

In this section, we explicitly present the OPE used to derive the first-order RG flow of
Eqs. (4.131) and (4.133). Let us here introduce the time variables y = vτ , and further
abbreviate φ(x1, y1) = φ(1) and θ(x1, y1) = θ(1). Moreover, in HLL, we rescale the fields as√
Kθ → θ and φ/

√
K → φ. In order to make appear the renormalization of the Luttinger

parameters K and v due to D̃η, we expand the operator in Eq. (4.130) around a common
center in time. Normal-ordering the full expression yields, with general coefficients λ, λ′
(later we reinstate λ = 2

√
K),

:∂xθa(1)eiλφa(1):× :∂xθb(2)eiλ′φb(2): + h.c. = h(1, 2)
[
:∂xθa(1)∂xθb(2)eiλφa(1)eiλ

′φb(2):

− 1
2u(1, 2):

(
λ

2∂xθa(1)− λ′

2 ∂xθb(2)
)
eiλφa(1)eiλ

′φb(2): + 1
4s0(1, 2):eiλφa(1)eiλ

′φa(2):
]

+ h.c.,

(C.1)

with some functions h, u and s0 (see definition below), that are power-law functions in
x1 − x2 and y1 − y2. To perform the OPE, we used Eq. (A.3) and the commutator in
Eqs. (2.57) and (2.58). For instance, we calculate that[1

2 (∂xϕR(1)− ∂xϕL(1)) , e−i
λ
2 (ϕ†R(2)+ϕ†L(2))

]
= e−i

λ
2 (ϕ†R(2)+ϕ†L(2))

× λ

4

( 1
z1 − z2 + a

+ 1
z1 − z2 + a

)
. (C.2)

The explicit expressions in Eq. (C.1) read ([GCT14])

h(1, 2) =
(2π
L
|z1 − z2 + a|

)λλ′
2
,

u(1, 2) = 1
z1 − z2 + a

+ 1
z1 − z2 + a

= 2(y1 − y2 + a)
|z1 − z2 + a|2

,

u2(1, 2) = 1
(z1 − z2 + a)2 + 1

(z1 − z2 + a)2 = 2
(
(y1 − y2 + a)2 − (x1 − x2)2)

|z1 − z2 + a|4
,

s0(1, 2) = u2(1, 2)− λλ′

4 u(1, 2)2 =
2
(
(1− λλ′

2 )(y1 − y2 + a)2 − (x1 − x2)2
)

|z1 − z2 + a|4
.

(C.3)
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Away from half filling, only opposite signs λ′ = −λ are allowed due to the disorder-
averaging procedure. Next, we contract the time variables in Eq. (C.1), which is safely
possible in the normal-ordered expression. To do so, we go to relative and center of mass
coordinates, y = y1 − y2 and Y = (y1 + y2)/2, and expand the exponentials in normal-
ordering signs around small time distances y ≈ 0. We can simplify these expressions even
further, recalling that x1 = x2 = x. Given that suchlike time contractions can only be
performed for fields diagonal in the replica indices, we drop the replica index in the process
of the OPE. This short-time expansion reveals the following contributions,

:∂xθ(1)eiλφ(1):× :∂xθ(2)e−iλφ(2): + h.c. ' h(y):(∂xθ(x, Y ))2:

×
[
1− 1

2u(y)λ2(y + a) + 1
4s0(y)λ

2

2 (y + a)2
]
. (C.4)

With the help of the equation of motion, ∂Y φ(x, Y ) = −i∂xθ(x, Y ), we hereby used the
expansion

eiλφ(x,Y+y/2)e−iλφ(x,Y−y/2) ' 1 + iλy∂Y φ(x, Y )− 1
2λ

2y2(∂Y φ(x, Y ))2

= 1 + λy∂xθ(x, Y ) + 1
2λ

2y2(∂xθ(x, Y ))2. (C.5)

A regularization in the form of y → y + a was introduced in Eq. (C.4), anticipating
divergences for vanishing separations. Note, that since no term of the form (∂xφ)2 appears,
only the combination vK will be renormalized by the Rashba SOC, while v/K remains
unaffected. To identify the RG flow, we consider the action expanded up to first order in
D̃η, and use Eqs. (4.130) and (C.4), with λ = 2

√
K, to write

T exp
[ ∫

dτ1dτ2Hdis(τ1, τ2)
]
' D̃η

2

( 1
π2aK

)(2πa
L

)2K ∫
dx dY :(∂xθ(x, Y ))2:

× T
∫

dy
(2π
L
|y + a|

)−2K [
1− 4K +K (1 + 2K)

]
+ h.c.. (C.6)

Time-ordering makes sure that the time difference is positive, y ≥ 0. In addition to the
contribution that has the form of the kinetic energy, we face an integral over the time
distances y. Performing a contraction of y in the sense of Sec. 4.8, the above integral
transforms into a factor of 2ad` (2πa/L)−2K . Again, as explained in Sec. 4.8, such a
contraction embodies the effect of rescaling by an infinitesimal value d`. The missing
piece was dropped, because it only represents an unimportant correction here. If we
implemented it, instead of d`, we would get a factor of 1+d`. We find that upon rescaling,
the first-order expansion in Eq. (C.6) eventually provides a term (another factor of two
comes from the conjugate terms)

T exp
[ ∫

dτ1dτ2Hdis(τ1, τ2)
]
'
(

2D̃ηv

π2K

)
(1−K)(1− 2K)d`

∫
dx dτ :(∂xθ(x, τ))2:.

(C.7)

138



C.2. OPE in second order of Dη

In the last step, we went back to imaginary time by Y = vτ .
After re-exponentiation, the Rashba disorder thus contributes in first order to the renor-
malization of the product vK in HLL, as (note that the fields were transformed back to
θ →

√
Kθ),

−Kv(a(1 + d`))
2π = −Kv(a)

2π + 4D̃η

2π2 (1−K)(1− 2K)vd`,

d

d`
(Kv)(l) = −4D̃η

π
(1−K)(1− 2K)v. (C.8)

Using that v/K is not renormalized, the result can be rewritten in terms of K and v
separately, as done in Eq. (4.133).
Importantly, adding the missing piece (see Sec. 4.8) does not seem necessary here [GCT14],
as the RG already captures the correct non-interacting limit. A missing piece could still be
implemented though, which would result in some corrections to Eq. (C.8). Here, however,
we consider such corrections of minor importance, and Eq. (C.8) sufficient for the purpose
of analyzing the physical picture. The reason why no missing piece is required here to
obtain the correct limit, is again related to the fact that in first order, D̃η can not generate
interaction terms of the type g2 or g4. The effect of Rashba disorder, in this order of the
perturbation, can thus be understood as a renormalization of the effective Fermi velocity
only.
Interestingly, the contraction in first order of D̃η never allows for terms of the form of
generic inelastic SPB, proportional to ∂2

xθ(x)eiλφ(x). Formally, this is because we can not
keep the exponential factor and, at the same time, expand it to gain another derivative.
It therefore appears that to such a lowest order, Rashba disorder does not induce inelastic
SPB, similar to what we have observed in Sec. 4.4 within a fermionic perturbation theory.

C.2. OPE in second order of Dη

Expanding the disorder action up to second order in D̃η, we have with Eq. (4.130),

T exp
[ ∫

dτ1 dτ2 Hdis(τ1, τ2)
]

' 1
2D̃

2
η

1
(2π2a)2

(2πa
L

)4K N∑
a,b,c,d=1

∫
dx dx′ dy1 dy2 dy3 dy4

× T :∂xθa(1)eiλφa(1):× :∂xθb(2)e−iλφb(2):× :∂xθc(3)eiλφc(3):× :∂xθd(4)e−iλφd(4):,

(C.9)

where we used the notation x1 = x2 = x and x3 = x4 = x′. Clearly, the OPE contains
plenty of terms, but here we focus only on the possibility of TPB. Therefore, we aim at
contracting two out of the four time variables. Time-ordering now is important, since it
enforces a rearrangement of the operators. Focusing only on the terms mentioned above,
we perform the respective time contractions in the process of the OPE, which results in

139



C. OPE in lowest orders of the Rashba SOC disorder strength

(with general coefficients λ),

T :∂xθa(1)eiλφa(1):× :∂xθb(2)e−iλφb(2):× :∂xθc(3)eiλφc(3):× :∂xθd(4)e−iλφd(4):
= T :∂xθa(1)eiλφa(1):× :∂xθc(3)eiλφc(3):× :∂xθb(2)e−iλφb(2):× :∂xθd(4)e−iλφd(4):

' (2a(1 + d`))2h(x− x′)2 1
24T :e

iλφa(x,y1)eiλφa(x′,y1)::e−iλφb(x,y2)e−iλφb(x
′,y2):

×
[
s0(x− x′)2 + 2λ2s0(x− x′)(u(1, 2) + ũ(1, 2))2 + (u2(1, 2)2 + ũ2(1, 2)2)

+ 2λ
2

4 (u2(1, 2) + ũ2(1, 2))(u(1, 2) + ũ(1, 2))2 +
(
λ

2 (u(1, 2) + ũ(1, 2))
)4 ]

.

(C.10)

Both position variables x, x′ were kept, while contracting individually y3 → y1 and y4 → y2.
The power-law functions h, s0, ũ and ũ2 in principle take the same form as the functions
h, s0, u, u2 given above, however, they arise from different contractions, and come with
different arguments. Explicitly, we have (with Eq. (C.3)), h(x − x′) = h(1, 2)|λ′=λ, y1=y2 ,
s0(x−x′) = s0(1, 2)|λ′=λ, y1=y2 , and furthermore ũ(1, 2) = u(1, 2)|y1−y2→y, x1−x2→x−x′ and
ũ2(1, 2) = u2(1, 2)|y1−y2→y, x1−x2→x−x′ . In Eq. (C.10), the first term is expected to be the
most dominant one, since all other terms decay with increasing time distances y1−y2. In a
lowest-order approximation, we therefore take into account only this first term, identifying
a TPB-contribution of the form

T exp
[ ∫

dτ1 dτ2 Hdis(τ1, τ2)
]
' 1

2a4

(
D̃η

π2K

)2 (2πa
L

)8K∑
a,b

∫
dx dx′ dy1 dy2 (1 + 2d`)

×m
(
x− x′

a

)
T :eiλφa(x,y1)eiλφa(x′,y1)::e−iλφb(x,y2)e−iλφb(x

′,y2): + h.c.. (C.11)

Here, the missing piece is kept, and turns out to be essential for the correct non-interacting
limit. The dependence on the spatial distance is embodied in the form factor (λ = 2

√
K)

m

(
x− x′

a

)
=

(1− 2K)−
(
x−x′
a

)2

(
1 +

(
x−x′
a

)2
)2−K


2

. (C.12)

Rescaling φ such that λ = 2 in Eq. (C.11), we obtain Eq. (4.137) of the main text.
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D. Details about the calculation in
Chap. 5

D.1. Derivation of the mixed spin correlations in Eq. (5.29)

In this section, we give a derivation of the spin-spin correlation functions of Eq. (5.29) in
an equilibrium approach, following Refs. [VGG16, Väy16]. Generally, the average of an
observable O can be written as (compare Sec. 3.2.1) 〈O(t)〉 = Tr[ρ(t)O]/Z0. Here, ρ(t)
entails the full complexity of the system, as it evolves in time with the full Hamiltonian
H = H0 + HJ , where we use for now the most general Kondo coupling from Eq. (5.2).
Calculating the average with respect to ρ(t) will therefore be difficult, and we have to
think of some simplifications. The simplest option was obviously to expand ρ(t) in the
coefficients Jij , which to lowest order yields the Kubo formula. The solution for a general
ρ(t) can be found from the Heisenberg equation of motion,

∂tρ(t) = i[ρ(t), H]. (D.1)

Adapting to the notation of the above references, we now denote time-dependent operators
in the interaction picture by OI(t) = eiH0tOe−iH0t. In the interaction picture, we have
〈O(t)〉 = Tr[ρ(t)O]/Z0 = Tr[ρI(t)OI(t)]/Z0. In particular, ρI(t) = eiH0tρ(t)e−iH0t, where
we can use the fact that ∂t(ρI(t)) = [∂tρ(t)]I (t) + i[H0, ρ(t)] to obtain from Eq. (D.1),

∂t(ρI(t)) = i[ρI(t), (HJ)I(t)]. (D.2)

This, in turn, leads us to the formal solution for ρI ,

ρI(t) = ρ0 + i

∫ t

−∞
dt′
[
ρI(t′), (HJ)I (t′)

]
. (D.3)

For HJ , note the equivalency of (Sisj)I (t) = (Si)I(t)(sj)I(t) = Si(sj)I(t), since the impu-
rity spin remains time-independent. The time-dependent operator average then takes the
form

〈O(t)〉 = 1
Z0

Tr[ρI(t)OI(t)] = 〈O(t)〉0 + i

∫ t

−∞
dt′ Tr

([
ρI(t′), (HJ)I (t′)

]
OI(t)

)
/Z0

= 〈O(t)〉0 + i

∫ t

−∞
dt′

〈[
(HJ)I (t′), OI(t)

]〉
. (D.4)

In the last line, we used the cyclic permutation properties of the trace. The above ex-
pression is still exact, however, of a self-consistent form. Note that we arrive at the Kubo
formula (see Eq. (3.14)), if we approximated ρ(t) by ρ0 in the last term on the right hand
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D. Details about the calculation in Chap. 5

side of Eq. (D.4), such that 〈(. . .)〉 → 〈(. . .)〉0. We can use the general form of Eq. (D.4)
to write the spin-spin correlation function as

〈Sk(t):sl(t):〉 = i

∫ t

−∞
dt′

〈[
(HJ)I (t′), (Sk:sl:)I(t)

]〉
= i

∑
ij

Jij

∫ t

−∞
dt′
(1
2 i
∑
n

εikn
〈
Sn{(sj)I(t′), :(sl)I(t):}

〉
+ 1

4δik
〈
[(sj)I(t′), :(sl)I(t):]

〉 )
. (D.5)

Note that the unperturbed average vanishes, 〈Sk(t):sl(t):〉0 = 0, because of 〈:sl(t):〉0 = 0.
We used the commutation relations in Eq. (5.3), as well as [Sisj , Sk:sl:] = 1

2 [Si, Sk]{sj , :sl:}+
1
2{Si, Sk}[sj , :sl:], where {Si, Sk} = 1

2δik.
Next, two important approximations are made in order to obtain a practicable solution
for the above mixed correlation functions. First, we assume that the electron spin and the
impurity spin averages can be evaluated separately. Furthermore, the electron spin aver-
age is approximately taken with respect to the free system, which allows us to write above
〈Sn(t′){(sj)I(t′), :(sl)I(t):}〉 ' 〈Sn(t′)〉〈{(sj)I(t′), :(sl)I(t):}〉0. Formally, this is equivalent
to approximating the density matrix by a direct product, ρI(t′) = ρS(t′) ⊗ ρ0, where ρS
only acts on the magnetic moment S. Second, we estimate that 〈Sn(t′)〉 ≈ 〈Sn(t)〉, which
seems justified, as the electron spin correlations decay much faster with time than the
impurity spin average [VGG16].
Using these two approximations, we arrive at

〈Sk(t):sl(t):〉 ' i
∑
ij

Jij

∫ t

−∞
dt′
(1
2 i
∑
n

εikn〈Sn(t)〉〈{(sj)I(t′), :(sl)I(t):}〉0

+ 1
4δik〈[(sj)I(t

′), :(sl)I(t):]〉0
)

= −
∑
ij

Jij

(∑
n

εikn〈Sn(t)〉ReCjl + 1
2δikImCjl

)
, (D.6)

with a spin-spin correlation that takes the form of Cjl =
∫ t
−∞ dt

′〈(sj)I(t′):(sl)I(t):〉0 =∫∞
0 dt′〈(sj)I(0):(sl)I(t′):〉0. This is Eq. (5.29) of the main text (the index “I” is dropped
there for brevity, so (sj)I(t) = sj(t)).

D.2. Explicit form of the Bloch parameters

The parameters γ,~h and ~c, making an appearance in the Bloch equations for 〈~S〉 in
Eq. (5.41), take the form (here we use the general, and bare couplings Jij)

γ = −

 −
∑

k 6=x

(
(J2
kx + J2

ky)ReCxx + J2
kzReCzz

)
(JxxJyx + JxyJyy)ReCxx + JxzJyzReCzz
(JxxJzx + JxyJzy)ReCxx + JxzJzzReCzz

(JxxJyx + JxyJyy)ReCxx + JxzJyzReCzz (JxxJzx + JxyJzy)ReCxx + JxzJzzReCzz
−
∑

k 6=y

(
(J2
kx + J2

ky)ReCxx + J2
kzReCzz

)
(JyxJzx + JyyJzy)ReCxx + JyzJzzReCzz

(JyxJzx + JyyJzy)ReCxx + JyzJzzReCzz −
∑

k 6=z

(
(J2
kx + J2

ky)ReCxx + J2
kzReCzz

)
 , (D.7)
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D.2. Explicit form of the Bloch parameters

~h =

 1
2ρeV Jxz − (JzyJyx − JzxJyy)ReCxy
1
2ρeV Jyz + (JzyJxx − JzxJxy)ReCxy
1
2ρeV Jzz − (JyyJxx − JyxJxy)ReCxy

 , (D.8)

~c =

 (JzyJyx − JyyJzx)ImCxy
(JxyJzx − JzyJxx)ImCxy
(JyyJxx − JxyJyx)ImCxy

 . (D.9)

Assuming Jij = diag(J⊥, J⊥, Jz)ij + δJij , those quantities can be expanded for small δJ ,
given that δJij � J⊥, Jz. Hereby, we take into account only the lowest-order corrections to
the δJ ’s. Furthermore, we lighten the notation by writing the running coupling constants
Jz(T, V ), J⊥(T, V ), δJij(T, V ), according to the RG flow of Eq. (5.38). To linear order in
δJ , this leads, for instance, to (β = 1/T )

~h ' ~ez
(1

2ρJ0eV − J2
0ReCxy

)
+

 1
2ρeV δJxz + J0δJzxReCxy
1
2ρeV δJyz + J0δJzyReCxy

1
2ρeV δJzz − J0(δJyy + δJxx)ReCxy


= ~ez

1
2ρJz(T, V )eV + 1

2ρeV

 δJxz(T, V )
δJyz(T, V )
δJzz(T, V )

 . (D.10)

Here, ~ez is the unit vector in z-direction. Likewise, we find (for brevity we do not write
explicitly the energy-dependence of the couplings Jij(T, V ) in the following)

γ '


eV
2T

tanh eV
2T

J2
⊥ + J2

z 0 0

0
eV
2T

tanh eV
2T

J2
⊥ + J2

z 0

0 0 2
eV
2T

tanh eV
2T

J2
⊥

ReCzz

−


−2
(
J⊥δJyy

eV
2T

tanh eV
2T

+ JzδJzz

)
J⊥(δJyx + δJxy)

eV
2T

tanh eV
2T

J⊥δJzx
eV
2T

tanh eV
2T

+ JzδJxz

J⊥(δJyx + δJxy)
eV
2T

tanh eV
2T

−2
(
J⊥δJxx

eV
2T

tanh eV
2T

+ JzδJzz

)
J⊥δJzy

eV
2T

tanh eV
2T

+ JzδJyz

J⊥δJzx
eV
2T

tanh eV
2T

+ JzδJxz J⊥δJzy
eV
2T

tanh eV
2T

+ JzδJyz −2J⊥(δJxx + δJyy)
eV
2T

tanh eV
2T


× ReCzz , (D.11)

~c ' ~ezJ2
⊥
eV

2T ReCzz + eV

2T J⊥

 −δJzx
−δJzy

δJxx + δJyy

ReCzz . (D.12)

We used here, that ImCxy = ReCxx tanh eV
2T (see Eq. (5.30)). For simplicity, let us denote

by γ(0) the first part of Eq. (D.11), which is of zeroth order in δJ , and its components
γ

(0)
⊥ (γ(0)

z ) to be the first two (the third) term(s) on the diagonal. On the other hand,
γ(1) is the first-order correction in δJ , and represents the second term in Eq. (D.11). An
analogous notation holds for ~h(0) and ~h(1), as well as ~c(0) and ~c(1).
The steady-state impurity spin polarization, according to Eq. (5.41), eventually reads in
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D. Details about the calculation in Chap. 5

lowest order of δJ ,

〈Sz〉 = 1
2 tanh eV2T ,

〈Sx〉 = 〈Sz〉
h

(0)
z

(
h

(1)
x + δJzy

J⊥
γ

(0)
z − γ(1)

zy

)
+ γ

(0)
⊥

(
h

(1)
y − δJzx

J⊥
γ

(0)
z + γ

(1)
zx

)
(
h

(0)
z

2
+ γ

(0)
⊥

2
) ,

〈Sy〉 = 〈Sz〉
h

(0)
z

(
h

(1)
y − δJzx

J⊥
γ

(0)
z + γ

(1)
zx

)
− γ(0)
⊥

(
h

(1)
x + δJzy

J⊥
γ

(0)
z − γ(1)

zy

)
(
h

(0)
z

2
+ γ

(0)
⊥

2
) .

(D.13)

Note that 〈Sz〉 is nonzero even in the absence of δJ , and can be expressed as (c(0)
z /γ

(0)
zz ).

First-order corrections in δJ were thus neglected. In contrast, the averages 〈Sx,y〉 start
from first order in δJ (compare with Eq. (5.27)).

D.3. Running couplings for TK � E � T ∗

At energies TK � E � T ∗, the exchange coupling Hex becomes isotropic, J(`) = J⊥(`) ≈
Jz(`), such that the RG flow simplifies. Furthermore, as we observe from Eq. (5.44), only
certain combinations of the perturbative Kondo couplings enter into the average backscat-
tering current. Therefore, to linear order in the perturbation, the scaling behaviour of the
system can be fully described by the equations (compare with Eq. (5.7)) [Eri13]

d

d`
J = ρJ2,

d

d`
δJ = −ρJδJ,

(D.14)

where δJ can be any of the combinations (δJxx − δJyy), (δJxy + δJyx) and
∑
i=x,y(δJzi +

δJiz). In terms of energies, we obtain the solutions (see Eq. (5.10))

J(E) = J(T ∗)
1 + ρJ(T ∗) log(E/T ∗) ∼ log−1(E/T ∗),

δJ(E) = δJ(T ∗) + ρδJ(T ∗)J(T ∗) log(E/T ∗).
(D.15)

We now have to replace in the bare couplings Eg by T ∗, as the highest energy of the
effective model. Note, that while the isotropic coupling J decreases logarithmically with
the energy in this regime (see also Fig. 5.2), the perturbative couplings δJ actually increase
logarithmically with energy.
An analysis of the backscattering current similar to the one above (for E > T ∗), including
a more exact energy crossover, could be realized in this energy regime as well. However,
since the focus of interest is rather on the regime of high energies, we restrict ourselves
to the qualitative conclusion that the expected correction to the backscattering current is
proportional to a log squared, as was given in Eq. (5.23).
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Acronyms

1D one-dimensional
2D two-dimensional
3D three-dimensional
FGR Fermi golden rule
FM ferromagnetic impurity
LL Luttinger liquid
MBS Majorana bound state
N-S normal-metal-superconductor (junction)
OPE operator product expansion
QHE quantum Hall effect
QSH quantum spin Hall
RG renormalization group
SC superconductor
SOC spin-orbit coupling
SPB single-particle backscattering
TI topological insulator
TPB two-particle backscattering
TRS time-reversal symmetry
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