
Electrothermal Investigation

on Charge and Heat Transport in the

Low-Dimensional Organic Conductor (DCNQI)2Cu

Dissertation zur Erlangung des

naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universität Würzburg

vorgelegt von

Florian Hüwe

aus Münster

Würzburg, 2017



Eingereicht am: 2. Februar 2017

bei der Fakultät für Physik und Astronomie

1. Gutachter: Prof. Dr. Jens P�aum

2. Gutachter: Prof. Dr. Hartmut Buhmann

3. Gutachter: ................................

der Dissertation.

Vorsitzende(r): Prof. Dr. Jean Geurts

1. Prüfer: Prof. Dr. Jens P�aum

2. Prüfer: Prof. Dr. Hartmut Buhmann

3. Prüfer: Prof. Dr. Giorgio Sangiovanni

im Promotionskolloquium.

Tag des Promotionskolloqiums: 26.07.2017

Doktorurkunde ausgehändigt am ................................



Contents

1 Introduction 5

2 Theory 9

2.1 Introduction to Thermoelectricity . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Thermodynamic View on Thermoelectricity . . . . . . . . . . . . . 10
2.1.3 The Thermoelectric Generator . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Waste Heat Recovery by Thermoelectric Generators . . . . . . . . . 14

2.2 Metal-Insulator Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 1D Electron Gas Coupled to the Lattice . . . . . . . . . . . . . . . 17
2.2.2 Ground States in Correlated Metals . . . . . . . . . . . . . . . . . . 22

2.3 Organic Metals Exempli�ed by (DCNQI)2M Radical Anion Salts . . . . . . 25
2.3.1 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Electronic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Phase Diagrams of (DCNQI)2M salts . . . . . . . . . . . . . . . . . 32

2.4 Lattice Dynamics in Crystals . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Phonon Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 Lattice Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 Lattice Properties of Organic Crystals . . . . . . . . . . . . . . . . 43

2.5 Charge Carrier Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.1 Boltzmann Transport Theory . . . . . . . . . . . . . . . . . . . . . 48
2.5.2 Electrical Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5.3 Nonlinear Conduction in Organic Conductors . . . . . . . . . . . . 59
2.5.4 Electronic Speci�c Heat . . . . . . . . . . . . . . . . . . . . . . . . 61

2.6 Seebeck Coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6.1 Di�usive Thermopower . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6.2 Nondi�usive Phonon Drag Thermopower . . . . . . . . . . . . . . . 65

2.7 Heat Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.7.1 Electronic Thermal Conductivity . . . . . . . . . . . . . . . . . . . 67
2.7.2 Lattice Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . 72
2.7.3 Minimum Thermal Conductivity in Solids . . . . . . . . . . . . . . 74

3 Experimental Methods 77

3.1 Electrolytic Crystal Growth . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2 Electrothermal Characterization of Charge and Heat Transport . . . . . . . 81

3.2.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2.2 Electrical Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2.3 Seebeck Coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2.4 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 85



4 Results 103
4.1 Electronic Properties of (R1,R2-DCNQI)2M . . . . . . . . . . . . . . . . . . 104

4.1.1 Electrical Resistivity of (R1,R2-DCNQI)2Cu . . . . . . . . . . . . . 104
4.1.2 Thermopower of (R1,R2-DCNQI)2Cu . . . . . . . . . . . . . . . . . 110
4.1.3 Alloyed (DCNQI)2CuxLi1−x . . . . . . . . . . . . . . . . . . . . . . 122
4.1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2 Nonlinear Conduction in the Peierls Insulating State of (DCNQI)2Cu . . . 127
4.2.1 Nonlinear Current-Voltage Characteristics . . . . . . . . . . . . . . 128
4.2.2 Dynamic Resistive Switching . . . . . . . . . . . . . . . . . . . . . . 131
4.2.3 The Advanced Electrothermal Model . . . . . . . . . . . . . . . . . 136
4.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.3 Heat Conduction in (DCNQI)2M . . . . . . . . . . . . . . . . . . . . . . . 141
4.3.1 The Thermal Conductivity of (DCNQI-h8)2Cu . . . . . . . . . . . . 141
4.3.2 The Wiedemann-Franz Law in Organic Conductors . . . . . . . . . 142
4.3.3 Lattice Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . 151
4.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.4 Thermodynamic Investigation on the Phase Transition in (DCNQI)2Cu . . 157
4.4.1 Entropy Change from Latent Heat . . . . . . . . . . . . . . . . . . 157
4.4.2 Determination of the Electronic Entropy . . . . . . . . . . . . . . . 162
4.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.5 Thermoelectric Potential of (DCNQI)2Cu . . . . . . . . . . . . . . . . . . . 164
4.5.1 Thermoelectric Power Factor and Figure of Merit . . . . . . . . . . 164
4.5.2 The E�ect of Li-Alloying . . . . . . . . . . . . . . . . . . . . . . . . 167
4.5.3 Thermoelectric Properties across the CDW-Transition . . . . . . . . 169
4.5.4 All-Organic Thermoelectric Generator . . . . . . . . . . . . . . . . 170
4.5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5 Summary 175

6 Zusammenfassung 181

Bibliography 187

List of Figures 209

List of Tables 211

Acknowledgments 213



Chapter 1

Introduction

The BCS theory, named after its founders Bardeen, Cooper & Schrie�er, explains con-

ventional superconductivity by the phonon-assisted coupling of electrons to a bosonic

ground state [1]. Because the coupling depends on the lattice dynamics, the critical tem-

perature for superconductivity to occur was found to be inversely related to the ion mass

of the lattice via Tc ∝
√

1
mion

. In 1964, Little suggested that charge carriers may form

a bosonic ground state via an exchange interaction mediated by the electronic polariza-

tion of functional side groups in a one-dimensional organic conductor. In this case, the

coupling dynamics were governed by the electron mass rather than by the ion mass and

accordingly, a rise in the superconducting transition temperatures would be expected [2].

Much e�ort was spent in the following years on the synthesis of one-dimensional organic

conductors, e.g. the prominent charge transfer salt Tetrathiafulvalene-Tetracyanoquinodi-

methane (TTF-TCNQ) with an electrical conductivity of up to 700 S cm−1 at room tem-

perature [3, 4]. Instead of a superconducting state, a phase transition from a metallic

into a semiconducting or insulating state was observed upon cooling which has already

been predicted for a one-dimensional conductor by Rudolf Peierls in the 1950s [5]. It orig-

inates from a spatially modulated electron density, called charge-density-wave (CDW),

accompanied by a periodic distortion of the crystal lattice. This transition is often called

Peierls transition and is one of many intriguing examples of how physical properties

change in case of reduced dimensionalities. Further research led to the synthesis of many

more low-dimensional organic conductors with a variety of ground states, among them

Peierls insulators, Mott insulators and also superconductors based on two-dimensional

electronic structures [6]. However, none of these materials realized the superconducting

ground state via the coupling mechanism proposed by Little since the one-dimensional

systems are prone to undergoing a metal-insulator phase transition upon cooling [7].

A prominent class of organic metals is constituted by radical anion salts based on the

Dimethyl-Dicyanoquinonediimine (DMe-DCNQI) acceptor molecule synthesized by the

group of Siegfried Huenig for the �rst time in 1984 at the University of Würzburg [8].

In combination with copper the molecule forms (DMe-DCNQI)2Cu single crystals which
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1. Introduction

admit even higher electrical conductivities than TTF-TCNQ. Moreover, the material

is stable against the formation of a CDW and retains its metallic character down to

cryogenic temperatures by virtue of the pronounced 3d-π-hybridization of copper orbitals

and the lowest unoccupied molecular orbital (LUMO) of DCNQI. The crystals reach an

electrical conductivity of up to 5× 105 S cm−1 at 1.5K being on the order of pure copper's

conductivity at room temperature [9]. In addition, the ground state of DCNQI radical ion

salts may be adjusted by chemical manipulation of the DCNQI molecule and by variation

of the counter ion. For example, even a partial deuteration of the molecule is su�cient

to induce a steep �rst-order CDW transition with tunable critical temperature [10].

Although no one-dimensional superconductor emerged from the above research e�orts,

organic conductors have been proposed for a variety of technological applications by virtue

of their rich phase diagrams and unconventional properties [11]. For example, the CDW

transition in deuterated (DCNQI)2Cu may be driven by short laser pulses demonstrat-

ing the material as potential candidate for ultra-fast optical switches [12]. Furthermore,

nonlinear conductivity phenomena have been observed in a variety of low-dimensional

molecular metals with distinctively di�erent ground states [13, 14, 15, 16, 17], including

the CDW state of (DCNQI)2Cu [18]. These e�ects might yield new devices based on

organic materials, such as organic thyristors converting a DC to an AC current [19, 20].

Other proposals include the utilization of thin �lms and nanocrystals based on organic

charge transfer salts to create resistive memories [21, 22].

More recently, the potential of low-dimensional molecular metals for thermoelectric

applications has been discussed [23, 24, 25]. Thermoelectric generators (TEGs) have been

claimed as key technology to make use of the tremendous amount of available waste heat

constituting about 70 % of the primary energy consumed world-wide [26, 27]. To-date,

the e�ciency of thermoelectric generators is rather limited, particularly in the temper-

ature regime below 100 ◦C where most of the heat is dissipated. Furthermore, the high

production costs as well as the energy intensity of conventional inorganic thermoelectric

materials limit a large scale application so far [28]. Chemically tunable organic thermo-

electric materials may resolve some of the challenges and have been on the rise in the

recent years [29, 30, 31, 32]. Prerequisites for an e�cient thermoelectric material are a high

electrical conductivity, a large Seebeck coe�cient as well as a low thermal conductivity.

Improvements on the electrical conductivity of organic polymers rendered a thermoelec-

tric performance possible advancing that of conventional inorganic thermoelectrics [33].

These materials exhibit a low thermal conductivity by virtue of their complex structure

in combination with their weak dispersive binding forces. Yet, their inherent disorder also

places restrictions on the charge carrier mobility. Low-dimensional molecular metals rep-
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resent an alternative organic material class for thermoelectric applications. Their ordered

crystal structure allows for a high charge carrier mobility and a high electrical conduc-

tivity over macroscopic distances necessary for thermoelectric generators. Their Seebeck

coe�cients surpass values of ordinary metals by one order of magnitude. (DCNQI)2Cu

is a material system of special interest because it marks one of the best n-type organic

conductors which are still lacking for all-organic thermoelectric devices. Furthermore,

owing to their reduced electronic dimensionality, fundamental restrictions on a material's

thermoelectric performance, like the Wiedemann-Franz law, may be lifted in these solids.

Yet, a coherent investigation of the thermal conductivity in organic conductors is lacking

so far to evaluate their thermoelectric potential. Therefore, a consistent and thorough

characterization of the thermoelectric key parameters is of technological as well as of

fundamental interest. As the transport quantities are interrelated and depend sensitively

on the purity and the perfection of single crystals, one aim of this thesis was to develop a

setup to measure the Seebeck coe�cient as well as the electrical and thermal conductivity

on a single specimen of (DCNQI)2M (M=Cu,Li) radical anion salts in order to study

their correlation.

This thesis is divided into three parts. In the �rst chapter, the theoretical basics for

the work are laid out. Thermoelectric transport properties are discussed in general as

well as with focus on organic metals. The material class of organic conductors together

with their electrical and thermal properties are introduced using the archetypical example

of (DCNQI)2Cu. A short overview on the electronic ground states occurring in DCNQI

radical anion salts is given. The second part of the work mainly outlines the experimental

measurement setup designed and implemented in the course of my PhD work along with

its characterization and calibration. It also brie�y describes the electrocrystallization pro-

cedure to grow high-quality single crystals. In the �nal chapter, the results obtained for

the (DCNQI)2M material system are presented. The novel setup allowed for a coherent

study of the electrical and the thermal transport quantities together with their relation

to the low-dimensional electronic structure. Especially the thermal conductivity data is of

unprecedented quality and enabled a detailed analysis of the Wiedemann-Franz law and

of the lattice thermal conductivity in molecular metals. Nonlinear conductivity e�ects in

(DCNQI)2Cu have been explained in terms of the charge carriers' interaction with op-

tical phonons and an explanation for their universal occurrence in organic conductors is

provided. A study of latent heat across the CDW transition of chemically varied (R1,R2,-

DCNQI)2Cu (Ri=CH3, CD3, Br) crystals facilitated a veri�cation of the thermodynamic

model of the phase diagram based on charge, spin and lattice degrees of freedom [34]. Fi-

nally, the thermoelectric performance of the (DCNQI)2Cu material system was evaluated

7



1. Introduction

to be of similar potential as compared to conducting polymers at room temperature. In the

temperature regime below 40K a �gure-of-merit outperforming even the best inorganic

thermoelectric materials was attained. Finally, a �rst prototypical TEG was built in com-

bination with the p-type organic conductor TTT2I3 (TTT: Tetrathiotetracene) achieving

speci�c power outputs unrivaled in organic thermoelectrics.
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Chapter 2

Theory

2.1 Introduction to Thermoelectricity

In 1821, Thomas Johann Seebeck discovered that heating the junction of two metals in

an electrical circuit de�ects a compass needle [35]. Initially, he explained this e�ect by a

thermally induced magnetism. Subsequently, it was realized that a thermoelectric e�ect,

or Seebeck e�ect, describing an electric �eld E⃗ generated under a temperature gradient

∇⃗T in a material

E⃗ = S · ∇⃗T (2.1)

was responsible for the observed phenomenon and a�ected the magnetic needle due to

the associated current and Ampere's law. The Seebeck coe�cient S is a material property

in units of VK−1, i.e. it is an intensive quantity independent of the sample dimensions.

It may take positive (p-type) and negative values (n-type) in the range of µVK−1 to

mVK−1. Later on, Jean-Charles Peltier found a heating or cooling e�ect in the presence

of an electrical current �ow through a similar junction [36]. The Peltier e�ect relates the

heat �ow J⃗Q to a charge �ow J⃗e [37]

J⃗Q = Π · J⃗e (2.2)

with the Peltier coe�cient Π quanti�ed in V. It was William Thomson (Lord Kelvin)

recognizing that the two e�ects are based on the same physical phenomenon and thus are

connected with each other by the so-called Kelvin relation [38]:

S =
Π

T
. (2.3)
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2. Theory

2.1.1 Basic Equations

The thermoelectric phenomena discovered by Seebeck, Peltier and Thomson are more

rigorously described by the following set of equations [39]:

J⃗e = σE⃗ − αP ∇⃗T (2.4a)

J⃗Q = βE⃗ − κ′∇⃗T . (2.4b)

The �rst equation states that an electric current density J⃗e can either �ow upon appli-

cation of electric �elds and thermal gradients to a material. Its response to the external

stimuli is characterized by the electrical conductivity σ and the Peltier conductivity αP .

Setting Je = 0 in Eq. 2.4a, the Seebeck coe�cient S is obtained with the help of Eq. 2.1:

S =
αP

σ
. (2.5)

According to Eq. 2.4b, the same external perturbations further cause a heat �ow J⃗Q

with the corresponding thermoelectric coe�cient β = αP ·T and thermal conductivity κ′.

The above-mentioned thermoelectric e�ects are not only of technological importance for

temperature sensing, generating electricity or cooling applications. They also enable a

deeper understanding of charge carrier transport in solids because they are related to a

di�usion of electrons along a temperature gradient. However, a thermodynamic treatment

already gives a basic understanding of its origin without the inclusion of charge carrier

transport theory, as will be shown in the following.

2.1.2 Thermodynamic View on Thermoelectricity

In 1948, Herbert Callen published a thermodynamic treatment of thermoelectric phe-

nomena [40]. The starting point is a system of N particles with chemical potential µ

at temperature T and pressure p in a box of volume V . An in�nitesimal change of the

system's free energy U is described by [39]

δU = TδΣ + µδN + pδV . (2.6)

For a system of constant volume the last term may be neglected. The free energy may

be enhanced by introducing new particles or by increasing the entropy Σ. The chemical

potential µ as well as the temperature T constitute the respective measures of the energy

gain. In a similar manner, the energy �ux J⃗U in the system

10



2.1. Introduction to Thermoelectricity

J⃗U = T J⃗Σ + µJ⃗N (2.7)

is connected to the entropy (J⃗Σ) and particle �ow (J⃗N) densities per unit area and

time. This means that energy can be transported in the system by displacing particles

being at chemical potential µ or by changing the entropy at a given temperature T .

The divergence of Eq. 2.7 de�nes the response of the system to any spatial variation in

temperature or chemical potential:

∇⃗ · J⃗U = (∇⃗T ) · J⃗Σ + T (∇⃗ · J⃗Σ) + (∇⃗µ) · J⃗N + µ(∇⃗ · J⃗N) . (2.8)

To obey the energy conservation law, the �ow of energy into and out of each region

of the box should be equal, i.e. ∇⃗ · J⃗U = 0. Without the local generation of particles

(∇⃗ · J⃗N = 0) Eq. 2.8 then reads

0 = J⃗Σ · (∇⃗T ) + T ˙⃗s+ J⃗N · ∇⃗µ , (2.9)

˙⃗s = ∇⃗ · J⃗Σ de�ning the rate of change in entropy per volume. If no entropy is produced

( ˙⃗s = 0), Eq. 2.9 indicates that particles moving along a gradient in chemical potential

cause a temperature di�erence by virtue of an entropy �ow. It is due to the particle's

energy change which has to be balanced by the entropy �ow. The direction and magnitude

of the temperature gradient are set by the energy gain of the particles upon moving along

the chemical potential. The e�ect occurs in any system with constant energy and particle

number and as such, does not depend on the particles obeying Fermi-Dirac statistics or

not. Furthermore, no particle scattering mechanism producing local entropy ( ˙⃗s ̸= 0) is

required. The thermoelectric e�ect simply follows from the �rst law of thermodynamics

for a system with �xed particle number. Inserting an electrical current density J⃗e = −e·J⃗N
for the particle �ow and introducing the heat �ow J⃗Q = T · J⃗Σ, the well-known Peltier

e�ect emanates from Eq. 2.9, again for ˙⃗s = 0:

J⃗Q = T · J⃗Σ =
T

e
· ∇µ

∇T︸ ︷︷ ︸
Π

J⃗e . (2.10)

With the Peltier coe�cient Π = S · T , the thermodynamic derivation provides two

11



2. Theory

alternative de�nitions of the Seebeck coe�cient [41]:

S =
JΣ

Je
=

entropy per carrier
charge per carrier

(2.11a)

S =
JQ

Je · T
=

heat per carrier
charge per carrier

· 1
T

=
cel
e

. (2.11b)

The �rst de�nition explains the Seebeck coe�cient as entropy per charge carrier and

was �rst pointed out by Callen [40]. The second de�nition relates the Seebeck coe�cient

to the speci�c heat cel carried by each charge carrier. Hence, the thermopower provides

experimental access to one of the thermodynamic state functions and may be used to

understand the electronic phase diagram of solids.

2.1.3 The Thermoelectric Generator

The Seebeck e�ect can be utilized to convert heat into electrical energy by means of

a thermoelectric generator. The corresponding layout is shown in Fig. 2.1a. It consists

of many p- and n-type thermoelectric legs which are electrically connected in series but

thermally parallelized. The principle of a single thermocouple in the generator is illustrated

in Fig. 2.1b. The electrical junction of the two materials is kept at a temperature T2 > T1.

In the p-type material holes will di�use from the hot to the cold side while in the n-type

leg electrons will move along the same direction.

The electric �elds generated by the e�ective gradient in carrier density accumulate to

a voltage of [37]

VTC = (Sp − Sn)(T2 − T1) (2.12)

with positive p-type Seebeck coe�cient Sp and negative n-type thermopower Sn. The

voltages of many thermocouples connected in series will add up to the total open circuit

voltage of the thermoelectric generator [37]:

VOC =
∑
i

VTC,i . (2.13)

Connecting a load resistor RL to a single thermocouple with perfect contacts, the

generated current will be [37]

I =
(Sp − Sn)(T2 − T1)

RL +Rp +Rn

(2.14)

where Rn and Rp are the resistances of the individual thermoelectric legs supplying

12



2.1. Introduction to Thermoelectricity

a) b)

Figure 2.1: Concept and working principle of a thermoelectric generator. (a) A number of p- and n-type
thermocouples are connected electrically in series and thermally in parallel to transform the absorbed
heat into electrical energy. From: [42] (b) In a single thermocouple electrons (holes) drift from the hot to
the cold side in the n-type (p-type) thermocouple leg adding up to an electric potential and supplying
power P to a load RL.

the overall power output of [37]

w =

(
(Sp − Sn)(T2 − T1)

RL +Rp +Rn

)2

RL . (2.15)

The heat q supplied at the hot contact will on the one hand �ow across the sample

via thermal conduction and on the other hand balance Peltier heating e�ects due to the

current �ow [37]:

q = (Sp − SN)T1I + (Kp +Kn)(T2 − T1) . (2.16)

Ki are the thermal conduction coe�cients along the legs. The maximum e�ciency of

the generator η = w/q amounts to [37]

η =
(T2 − T1)

T1︸ ︷︷ ︸
ηCarnot

√
1 + zT − 1√

1 + zT + T2/T1

(2.17)

where ηCarnot is the Carnot e�ciency and zT is the so-called dimensionless thermo-

electric �gure of merit. For a single material of resistance R and thermal conductance K

it is de�ned as [37]:

zT =
S2

R ·K
· T =

σ · S2

κ′ · T =
PF

κ′ · T . (2.18)

13



2. Theory

S, σ and κ denote the thermopower as well as the electrical and thermal conductivity

of the material, respectively. PF = σ · S2 de�nes the power factor. For a thermoelectric

generator made from a series of p- and n-type legs the maximum combined thermoelectric

�gure of merit for optimized leg geometries reads [37]:

zT =
(Sp − Sn)

2T√
(ρpκ′

p + ρnκ′
n)

. (2.19)

2.1.4 Waste Heat Recovery by Thermoelectric Generators

More than 70 % of the primary energy consumed world-wide is wasted, mostly in the form

of heat at temperatures below 100 ◦C [27]. Thermoelectric energy converters have been

proposed as technological solution to recover a substantial amount of this energy into

electrical power [26]. However, high production costs and the lack of e�cient thermoelec-

tric materials operating in this temperature regime have limited large-scale applications

to date. Fig. 2.2a illustrates the maximum conversion e�ciency of a thermoelectric gener-

ator calculated by Eq. 2.17 for di�erent values of zT . At high zT values it approaches the

Carnot limit while state-of-the-art devices only reach values of zT ≈ 0.5 providing rather

ine�cient energy conversion compared to other thermodynamic heat engines [43]. The

Curzon-Ahlborn limit represents a more realistic e�ciency limit for thermodynamic heat

cycles taking into account irreversible processes. While conventional energy harvesting

systems are already close to this limit, there is plenty of room for the improvement of

thermoelectric generators. Much of the present research focuses on exploring new materi-

als with high zT values.

Some characteristic �gures of merit for conventional inorganic thermoelectric materi-

als are depicted in Fig. 2.2b. At ambient temperature, Bi2Te3 and Sb2Te3 are among the

most prominent p- and n-type materials, respectively. However, these materials contain

toxic elements and can only be e�ciently used in a small and besides, rather high tem-

perature regime [42]. The need for new, sustainable materials providing high zT values

in the mid-temperature range of about 400K prompted a tremendous, ongoing growth

in scienti�c research activities in the last two decades. To maximize zT , and hence the

thermoelectric conversion e�ciency, a material with high electrical conductivity and large

Seebeck coe�cient but low thermal conductivity is desirable in order to achieve zT ≥ 1.

The interdependence of these quantities places severe restrictions on the optimization

strategies of zT . The power factor may be maximized by optimum doping of semicon-

ductors [42]. A further reduction of the phononic contribution to the thermal conduction

by means of superlattice engineering on nanometer lengths scales facilitated enhanced zT

values on the order of one [44, 45]. For Bi2Te3, the best RT thermoelectric material to
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2.1. Introduction to Thermoelectricity

Figure 2.2: Current state of research on thermoelectrics. (a) Power generation e�ciencies of a thermo-
electric generator for di�erent values of zT compared to other thermodynamic power generation cycles.
For high values of zT the e�ciency approaches the Carnot limit. However, state-of-the-art commercial
thermoelectric generators only reach values of zT ≈ 0.5 making them rather ine�cient compared to other
energy converters. From: [43] (b) Inorganic thermoelectric n- and p-type materials with zT ≈ 1 have been
found. Yet, most high-zT materials are only e�cient in a small and besides, high temperature regime.
From: [42]

date, a value of zT = 2.4 has been obtained in this way [44]. However, this result has not

been reproduced by other research groups yet.

To overcome the inherent limitation of three-dimensional materials on zT , a reduction

of the electronic dimensionality has been discussed [46]. This may not only favor a viola-

tion of the Wiedemann-Franz law [47, 48, 49] but could also enhance the thermoelectric

power factor due to attendant exotic properties observed in low-dimensional solids, such

as phonon drag contributions to the thermopower [50]. Zintl compounds [51] and skut-

terudites [52] were also evaluated as good thermoelectric candidates by virtue of their

complex crystal structure facilitating low lattice thermal conductivity and tunability of

the electronic band structure. Yet, a tremendous amount of materials are unexplored with

respect to their thermoelectric properties, especially synthetic ones.

In recent years, the �eld of organic thermoelectrics based on conducting polymers

has been on the rise with high potential to tackle many of the challenges raised above

[29, 30, 33, 31, 32]. In addition to their low-cost production and processability, they o�er
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an intrinsic low thermal conduction while appreciable electrical conductivity and See-

beck coe�cients can be obtained by tuning the oxidation state of polymers. Values of

PF = 469 µWK−2m−1 and zT = 0.42 have been reported for the polymer PEDOT:PSS

(poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate) as an example [33], advancing

values obtained for Bi2Te3. Some authors question the above results because the transport

quantities have been measured along di�erent sample directions, neglecting the anisotropy

due to di�erent intra- and interchain charge carrier conduction in polymers [53, 54]. Their

measurements on PEDOT:PSS only yield zT = 0.01 but reliable values of zT = 0.1 are

obtained for the polymer PEDOT:Tos (poly(3,4-ethylenedioxythiophene):tosylate) [54].

In this thesis, the alternative material class of crystalline low-dimensional organic con-

ductors is addressed and the foundation for the implementation in thermoelectrics is laid.

Theoretical basics to understand their electrical and thermal properties are outlined in

the following, starting with possible electronic ground states established in this material

class.
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2.2. Metal-Insulator Transitions

2.2 Metal-Insulator Transitions

Before introducing the transport theory to understand thermoelectric material properties,

the ground states of low-dimensional conductors will be reviewed. For many crystalline

materials, the treatment of valence electrons as free quasiparticles moving in the e�ective

periodic potential of the ions and other electrons is a good approximation. The ground

state with respect to the conduction properties is then based on the structure and �lling

of the energy bands formed by the valence states of the constituting atoms. Materials with

partially �lled bands are expected to reveal metallic behavior while an energy gap at the

Fermi level yields insulating or semiconducting properties, depending on the size of the

gap. This generalization does not necessarily hold for low-dimensional conductors. The

instability of 1D Fermi gases against the formation of a charge-density-wave as well as

the in�uence of larger electronic correlations in lower dimensions are therefore discussed

in this section.

2.2.1 1D Electron Gas Coupled to the Lattice

In organic crystals, electrons interact rather e�cient with phonons due to the low energy

of the latter compared to inorganic crystal structures. While the details of the phonon

dynamics will be discussed in Sec. 2.4, the peculiar ground states emerging from the

e�cient coupling of a low-dimensional electronic system to the lattice will already be

presented here.

Charge-Density-Wave Transition

Quasi-one-dimensional organic conductors are prone to undergo a metal-insulator transi-

tion called Peierls or Charge-Density-Wave (CDW) transition. The transition is caused by

a modulation of the charge density in space, triggering a periodic static lattice distortion

in the case of su�ciently strong electron-phonon coupling [55]. In the following, a short,

theoretical introduction into the phase transition predicted by Rudolph Peierls shall be

given [56]. A one-dimensional metallic system of electrons coupled to the lattice can be

described by the Fröhlich Hamiltonian in second quantization [57]:

H =
∑
k

ϵka
†
kak +

∑
q

~ωqb
†
qbq +

∑
k,q

gqa
†
k+qak(b

†
−q + bq) . (2.20)

The �rst term corresponds to an electron gas in one dimension, ϵk symbolizing the

electronic band dispersion in k-space, a†k(ak) being creation (annihilation) operators. The

second term describes the lattice vibrations with the phonon dispersion ωq in the reciprocal
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q-space, with the phonon creation and annihilation operators b†q and bq. The third term

accounts for electron-phonon interactions with the coupling constant gq. For small phonon

amplitudes as well as g independent of q, the electron-phonon coupling term leads to a

renormalized phonon dispersion [55]

ω2
ren,q = ω2

q +
2g2ωq

~
χ(q, T ) (2.21)

where χ(q, T ) is the Lindhard response function. It characterizes the rearrangement of

charge ρind in the presence of a time-independent potential Φ(q⃗):

ρind(q⃗) = χ(q⃗, T )Φ(q⃗) . (2.22)

By approximating a linear electronic dispersion close to the Fermi energy ϵF , χ(q⃗) can

be evaluated in one dimension [55]

χ(q) = −
∫

dk⃗

(2π)d
fk⃗ − fk⃗+q⃗

ϵk⃗ − ϵk⃗+q⃗

d=1
= −g(ϵF ) ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ , (2.23)

with the dimensionality d and the density of states per spin at the Fermi-level g(ϵF ).

Eq. 2.23 diverges for |q⃗| = 2kF in one dimension making the electron gas at T = 0 un-

stable against the formation of a modulated charge density of period λ = 2π/q = π/kF .

The Lindhard response function, compared for di�erent dimensionalities in Fig. 2.3a,

reveals a divergence at q = 2kF only for the one-dimensional case. The major contribu-

tion to the integral in Eq. 2.23 originates from electron-hole states that are degenerate in

energy and connected by a wave vector |q⃗| = 2kF which is commonly called nesting vector.

For higher dimensionalities the number of nested states is reduced as illustrated in Fig-

ure 2.3b. Whereas in one dimension the whole Fermi sheet at q = ±kF can be projected

onto each other by just one nesting vector (arrow), in two dimensions only the states along

the red line can be connected to the opposite of the Fermi cylinder, reducing the diver-

gent contribution to the integral in Eq. 2.23. In 3D only two points can be connected by

a single nesting vector. Hence, perfect nesting only occurs for a one-dimensional system.

However, also slightly corrugated quasi-one-dimensional Fermi surfaces, as frequently ob-

served in organic conductors, may exhibit good nesting qualities as illustrated in Figure

2.3c. Evaluating the integral in Eq. 2.23 at �nite temperature and |q⃗| = 2kF up to a cuto�

energy ϵ0, the renormalized phonon frequency in Eq. 2.21 yields [55]:

ω2
ren,2kF

= ω2
2kF

− 2g2n(ϵF )ω2kF

~
ln

(
1.14ϵ0
kBT

)
. (2.24)

The reduction of the phonon frequency by electron-phonon interaction is called phonon
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2.2. Metal-Insulator Transitions

Figure 2.3: Fermi surface instability in low dimensions. (a) Comparison of the Lindhard response functions
for di�erent dimensionalities: only in 1D a divergence at q = 2kF occurs. (b) Nesting qualities in 1D,
2D and 3D: The number of electron and hole states (indicated red) on the Fermi surface that can be

connected by just one nesting vector q⃗ = 2k⃗F is much higher in 1D compared to 2D. Only two states can be
connected on a Fermi sphere in 3D by a single nesting vector. (c) A quasi-one-dimensional warped Fermi
surface may still connect a signi�cant number of electron-hole-states with one distinct nesting vector
yielding good nesting quality. (d) Phonon softening upon approaching the transition temperature TMF

CDW .
(e) One-dimensional crystal lattice of metallic ground state with the charge being equally distributed
over the entire lattice leading to a thirdly-�lled band. (f) In the charge-density-wave ground state an
energy gap opens at the Fermi energy due to the trimerization of the lattice sites and the reduction of the
Brillouin zone. The system becomes semiconducting and the charge density varies periodically in space.
(a)-(d) Adapted from: [55]

19



2. Theory

softening. At |q⃗| = 2kF , it vanishes on condition that [55]:

kBT
MF
CDW = 1.14ϵ0e

− 1
λ (2.25a)

with λ =
g2n(ϵF )

~ω2kF

= g′n(ϵF ) . (2.25b)

TMF
CDW de�nes the transition temperature according to Mean Field Theory for which

a frozen-in distortion occurs. λ denotes the dimensionless electron-phonon coupling con-

stant. The phonon softening at di�erent temperatures is shown in Figure 2.3d. For

T ≫ TMF
CDW the logarithmic divergence of the Lindhard response function is smeared-out

and the ordinary acoustic phonon dispersion is obtained. When T approaches TMF
CDW , a dip

in the acoustic phonon spectrum occurs at |q⃗| = 2kF with vanishing phonon frequency at

T = TMF
CDW . A frozen-in distortion at |q⃗| = 2kF corresponds to a macroscopically occupied

phonon mode since no energy is required for an excitation. The new periodicity of the

charge density and the lattice also has signi�cant impact on the electronic ground state

of the crystal.

Figure 2.3e illustrates the band structure of a linear chain of atoms with lattice con-

stant c each contributing 2/3 of an electron to the conduction band, resulting in occupa-

tion of states up to the Fermi wave vector kF = π/3c at one third of the bandwidth. This

represents the situation for the investigated (DCNQI)2Cu compound at RT. The charge

density is equally distributed over the lattice and the system exhibits a metallic ground

state. A static distortion of the lattice by the wave vector |q⃗| = 2kF , as indicated in Figure

2.3f, corresponds to a modulation of atomic positions with periodicity λ = 2π/2kF = 3c,

meaning that a trimerization of the lattice takes place. The new lattice constant 3c results

in a back-folding of the Brillouin zone. The new Brillouin zone edge is now located directly

at the Fermi wave vector kF , giving rise to an energy gap 2∆ at the Fermi energy, thereby

causing an insulating or semiconducting ground state. The lattice distortion is accompa-

nied by a periodic modulation of the charge density. In the case of similar periodicity to

the underlying lattice it is denoted a commensurate Charge-Density-Wave [58].

Spin-Peierls Transition

Similar to the electronic degrees of freedom in a CDW, the coupling of spin excitations

to the lattice may result in a ground state of lower total energy. The Hamiltonian of a 1D

magnetic Heisenberg chain with alternating exchange interaction J reads [59]
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2.2. Metal-Insulator Transitions

H = −J

N/2∑
i

(
S⃗2iS⃗2i−1 + αJ S⃗2iS⃗2i+1

)
, (2.26)

with the spin vector S⃗i at site i and the parameter αJ = J2/J1 de�ning the relative

strength of the exchange interaction between alternating lattice sites. Negative J portray

an antiferromagnetic behavior which will be exemplary assumed in the following.

Figure 2.4: Mechanism of the spin-Peierls transition. (a) For a uniform antiferromagnetic Heisenberg
chain the spin excitation spectrum appears to be gapless. (b) A dimerization of the lattice alternates
the exchange interaction strength Ji between adjacent lattice sites leading to a gap ∆S in the magnetic
excitation spectrum which compensates for the elastic energy cost of the lattice distortion. From: [7]

For a uniform antiferromagnetic Heisenberg chain the exchange energy is homogeneous

(J1 = J2 → α = 1). It is illustrated in Fig. 2.4a together with its magnetic excitation

spectrum. The spin is alternating between equally spaced lattice sites and the excitation

spectrum is gapless at zero energy. Even in the zero temperature limit, this gives rise

to non-vanishing susceptibility by virtue of low-energy spin excitations with S = 1/2,

so-called spinons [7]. A dimerization of the lattice will alternate the exchange interaction

along the chain (α < 1) as clari�ed in Fig. 2.4b. The resulting excitation spectrum reveals

a gap ∆S at zero energy hindering spin excitations to take place. The gain in magnetic

energy can compensate for the elastic energy cost of the 2kF lattice distortion resulting

in a ground state of lowered total energy. In analogy to the electron-hole paring of the

CDW transition, the pairing of spins together with the 2kF lattice distortion is called spin-

Peierls (sP) transition. The spin gap ∆S separates the non-magnetic singlet ground state

(S = 0) from the triplet excited state with S = 1. Hence, the transition is accompanied

by a decrease in the magnetic susceptibility of the chain.
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2.2.2 Ground States in Correlated Metals

In three-dimensional electron gases, charge carriers are often treated as free quasipar-

ticles and their Coulomb correlation is neglected compared to the interaction with the

lattice ions and phonons. Upon reducing the dimensionality, their mutual interaction may

however not only increase the scattering of electrons but also may unfold new electronic

ground states. This part illuminates possible metal-insulator transitions emanating from

electronic correlation in low-dimensional conductors.

Mott Transition

Already in the 1930s, the semiconducting behavior of metal oxides with partially �lled 3d

bands was discussed in terms of electronic correlations by Mott [60, 61]. In 1963, Hubbard

developed a simple model to incorporate these e�ects into the traditional band theory [62]:

H = −t
∑

<ij>,σ

(
a†iσajσ + h.c.

)
+ U

∑
i

ni↑ni↓ . (2.27)

Here, <ij> denotes the summation over all nearest neighbor pairs i and j, σ is the spin

index and ni = a†iai the number operator. The �rst term accounts for the kinetic energy

similar to Eq. 2.20 with the hopping integral t determined by the orbital overlap between

lattice sites. The on-site energy U , sometimes referred to as Hubbard U , quanti�es the

energy cost for two electrons to occupy the same lattice site due to the Coulomb repulsion

of charge carriers. The meaning of t and U is exempli�ed in Fig. 2.5a.

The relevance of electronic correlation manifests in the relative strength of U and t.

It is intuitive to take a look at the two limiting cases for a half-�lled energy band: First

of all, for U/t ≪ 1, the Hubbard term may be neglected and Eq. 2.27 corresponds to a

simple band model resulting in a band of width W = 4t being half-�lled. In this limit,

a metallic ground state will be established. In the opposite limit, i.e. for U/t ≫ 1, the

energy cost for an electron to hop onto an occupied lattice site is large and electrons

tend to equally distribute and localize on the lattice sites. The band splits up into an

upper and lower Hubbard band (see Fig. 2.5b) and no spectral weight is left at the Fermi

energy. Hence, such a material exhibits an insulating ground state, often called Mott-

Hubbard insulator. The bandgap equals the Hubbard U being the energy required to

add an additional electron to the chain of singly occupied lattice sites. A typical phase

diagram of Mott insulators, exhibiting U/t ≈ 1, is depicted in Fig. 2.5c. The ground state

can be tuned by the relative interaction strength as well as by the band �lling, both of

which may be functions of temperature, pressure and chemical or �eld-induced doping. A

band �lling of 1/2, featuring the smallest critical U/t value, most easily enables a Mott
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2.2. Metal-Insulator Transitions

Figure 2.5: Theory of the Mott insulator. (a) 1D Hubbard chain: The Hubbard model is characterized
by the hopping integral t as well as the on-site Coulomb repulsion U . The extended Hubbard model also
includes the nearest-neighbor intersite interaction V . (b) Two extreme limits of the Hubbard model for a
half-�lled band: Negligible on-site Coulomb repulsion establishes an ordinary metallic ground state while
in the opposite limit, a bandgap of magnitude U is formed removing the spectral density at the Fermi
energy, i.e. the material becomes insulating. (c) Typical phase diagram of a Mott-Hubbard insulator: A
transition between metallic and insulating states may be tuned by band �lling and relative interaction
strength.

insulating ground state. In the following, the in�uence of additional nearest neighbor

Coulomb interactions on quarter-�lled band systems will be discussed.

4kF -Charge-Density-Wave Transition

The Mott insulating state is established for materials with half-�lled bands in the strong U -

limit. In contrast, a quarter-�lled band, corresponding to one charge-carrier per two lattice

sites, should reveal metallic behavior even in the case of a considerably large Hubbard U ,

because charge carriers are able to hop onto the available free lattice sites. However, in

some cases not only the short-range Coulomb repulsion of electrons on the same lattice site

has to be taken into account, but even neighboring electrons repel each other to a su�cient

amount. The extended-Hubbard model accounts for the nearest-neighbor interaction V

as well as the degree of lattice dimerization ∆d by [7]:
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H =
∑

<ij>,σ

(
−t[1 + (−1)i∆d]a

†
iσajσ + h.c.

)
+ U

∑
i

ni↑ni↓ + V
∑
i

nini+1 . (2.28)

Fig. 2.6a illustrates the e�ect of V for a quarter-�lled 1D-chain. Neglecting dimeriza-

tion, for V/t ≥ 1 the nearest-neighbor interaction inhibits a hopping of charge-carriers to

free lattice sites. The electrons will stay apart from each other and distribute equidistantly

among the available lattice sites. The charge density will be modulated with the period-

icity λ = 2a relative to the lattice constant a. With the Fermi wave vector kF = π/(4a) of

a quarter-�lled band, this corresponds to a periodicity of q = 2π/λ = π/a = 4kF in terms

of the Fermi wave vector [59]. Accordingly, the ground state is a 4kF -CDW but it is also

often denoted Wigner crystal as well as charge-disproportionate (CP) or charge-ordered

(CO) state [63].

Figure 2.6: 4kF -Charge-Density-Wave transition. (a) Charge-ordered state formed due to nearest-neighbor
Coulomb interactions inhibiting the hopping of charge carriers. The blue-shaded area corresponds to
electrons occupying a lattice site (gray dots). (b) Upon dimerization charges are localized in between
two dimerized atoms. For the e�ectively half-�lled band, a Mott insulator is formed due to the on-site
Coulomb interaction U .

For some lattices it is energetically favorable to dimerize at quarter-�lling. The e�ect

of dimerization on the ground state is captured in Fig. 2.6b. The dimerization doubles the

unit cell of the crystal which back-folds the Brillouin zone similarly to the Peierls transi-

tion discussed above, i.e. the resulting sub-bands are now e�ectively half-�lled instead of

quarter-�lled. Charges localize in the bound state of the dimerized atoms but their ability

to move to the next dimer is limited by the on-site Coulomb repulsion, as discussed for

the Mott-Hubbard insulator in the case of half band �lling. Hence, this type of ground

state is called dimer-Mott insulator [63]. Although going along with a lattice distortion

as well, the insulating behavior is caused by the on-site electron repulsion at one dimer

site in contrast to the electron-phonon coupling leading to the Peierls transition described

above.
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2.3 Organic Metals Exempli�ed by (DCNQI)2M Radi-

cal Anion Salts

Organic charge transfer salts are composed of two organic compounds which exchange

charges when forming a crystal. If only one of the building blocks is organic one refers

to radical ion salts. Together, both systems constitute the class of organic metals or

organic conductors by virtue of their extraordinary high electrical conductivity of up to

104 S cm−1 at RT [64]. Below, distinct properties of these materials are presented with

special emphasis on (DCNQI)2M (M=Cu, Li) radical anion salts following the theory

section of my diploma thesis [65].

2.3.1 Structural Properties

Crystal Binding

Molecular crystals usually consist of organic building blocks weakly bound by van-der-

Waals or static dipole interactions [58]. A di�erent class of organic crystals, providing

much higher electrical conductivities, are charge transfer (CT) salts. In these crystals,

molecules often arrange in parallel, spatially adjacent stacks by reason of ionic interactions

and the mutual charge transfer may create mobile, delocalized charge carriers facilitating

high electrical conductivity. A charge transfer salt consists of an electron donor Dm with

a low ionization energy I0 and an acceptor molecule Xn with a high electron a�nity A,

energetically favoring a fractional or even integer charge transfer from the donor to the

acceptor [7]:

[Dm] + [Xn] → [Dm]
δ + [Xn]

−δ . (2.29)

Here m and n are integers and δ denotes the charge transfer ratio. This charge transfer

results in a potential energy gain of

∆E = I0 − A− C < 0 (2.30)

where C accounts for Coulomb, polarization and exchange energy contributions. The

mean number of mobile charges is governed by the charge transfer from the donor to

the acceptor and hence, is almost temperature-independent. Figure 2.7a shows the dis-

ubstituted 2,5-Dicyanoquinonediimine (R1,R2-DCNQI) molecule. This compound is very

similar to the electron acceptor Tetracyanoquinondimethane (TCNQ) and also consists

of a quinone ring but with only two instead of four cyano groups attached to it. In addi-

tion, two functional groups Ri may be linked to the ring. In this work three variations of
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the DCNQI molecule have been utilized. The molecule containing two functional methyl

groups (CH3), from now on referred to as DCNQI-h8 or DMe-DCNQI, and its deuterated

analogue (CD3) from now being referred to as DCNQI-d6. Both molecules have similar

electronic properties but the deuterated methyl groups are slightly less bulky compared

to CH3 [10]. Substituting one of the methyl groups by a bromine atom withdraws electron

density from the π-system of the molecule. Thereby, MeBr-DCNQI changes its alignment

and charge transfer in a crystal by a small amount compared to DMe-DCNQI [66].

Figure 2.7: Chemical structure and LUMO of the DCNQI molecule. (a) The DCNQI molecule consists of
one quinone ring with two cyano groups attached. The two functional groups Ri are directly conjugated
to the ring. (b) Calculated LUMO of the DMe-DCNQI molecule: The cyano groups show a high density
of unoccupied states making the molecule a good electron acceptor. Adapted from: [67]

Figure 2.7b illustrates that the LUMO of the DMe-DCNQI molecule is π-conjugated.

The high density of unoccupied states located on the cyano groups yields good accep-

tor qualities. Charges transferred to the molecule are weakly bound and thus, delocalize

over the whole molecule. In combination with copper, DCNQI forms a radical anion salt

(DCNQI)2Cu of 1:2 stoichiometry [9]. The copper atoms in the crystal have a valency

of δ = +4/3 resulting in an average DCNQI valence of −2/3 per DCNQI molecule [68].

The ionization energy of elementary copper amounts to I0 = 7.73 eV [69] and the LUMO

energy level of DMe-DCNQI is located at ELUMO = 2.42 eV [70]. The relevant Coulomb

energy contribution C is rather di�cult to calculate due to the extension of the molecule

and the delocalization of transferred charges, i.e. its metallic character. Hence, the point

charge model employed to estimate the Madelung energy of simple ionic salts, such as

NaCl, is not applicable anymore. The DCNQI molecule also forms the radical anion salt

(DCNQI)2Li where the valence electron of lithium is transferred to two DCNQI molecules,

each charged by −1/2 e.
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Crystal Structure

In order to create highly conducting molecular solids, not only a su�cient number of

mobile charge carriers on the molecule is necessary, but also a delocalization along cer-

tain crystallographic directions is inevitable. Figure 2.8 shows the crystal structure of

(DCNQI)2Cu. The material crystallizes in space group I41/a (space group No. 88) [68]

which constitutes a tetragonal dipyramidal crystal system with a basal squared unit cell

(|⃗a| = |⃗b|) of height |⃗c|. The copper atoms and the DCNQI molecules arrange in spa-

tially separated, parallel stacks giving rise to highly anisotropic electronic properties.

Lined up on a chain, the copper atoms are nearly tetrahedrally coordinated by one of

the cyano groups belonging to the respective four adjacent DCNQI molecules. The al-

most planar DCNQI molecules are packed face-to-face with an intermolecular distance of

dπ−π = 3.213 Å [66] allowing for a substantial overlap of the π∗-LUMO orbitals.

Figure 2.8: Crystal structure of (DCNQI)2Cu perspectively viewed along the direction of high conduc-
tivity, viz. the crystallographic c⃗-axis. With data from: [66]

Table 2.1 speci�es the structural properties of several (DCNQI)2M crystals at di�er-

ent temperatures. All of the systems crystallize in the same space group with slightly

di�erent lattice constants and coordination angles αco of the DCNQI molecule around the

metal ion. As will be outlined below, αco is an important parameter with respect to the

dimensionality and the electronic ground state of the (DCNQI)2Cu system. Upon cooling
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it increases more signi�cantly for the deuterated (DCNQI-d6)2Cu crystal compared to the

undeuterated compound. Even more drastic is the change in αco when just one methyl

group is replaced by bromine. In (DCNQI)2Li, lithium atoms replace the copper atoms

in the lattice yielding similar lattice constants. This enables the synthesis of a miscible,

crystalline (DCNQI)2CuxLi1−x alloy where copper and lithium atoms occupy equivalent

lattice sites and only a minimum distortion of the unit cell is introduced.

radical anion salt T [K] |⃗a|[Å] |⃗c|[Å] Vunit [Å3] coord. angle αco[
◦] Ref.

(DCNQI-h8)2Cu 300 21.606 3.8811 1811.7 124.8 [66]
(DCNQI-h8)2Cu 20 21.654 3.792 1778.0 126.3 [66]
(DCNQI-d6)2Cu 300 21.619 3.8744 1810.8 124.8 [66]
(DCNQI-d6)2Cu 20 21.693 3.776 1776.7 128.5 [66]
(MeBr-DCNQI)2Cu 300 21.606 3.856 1799.2 125.5 [71]
(MeBr-DCNQI)2Cu 100 21.627 3.780 1768.0 128.2 [71]
(DCNQI-h8)2Li 300 21.830 3.832 1826.1 [72]

Table 2.1: Structural data of (DCNQI)2M crystals at di�erent temperatures: The coordination angle αco

(see Figure 2.9e) increases more in (MeBr-DCNQI)2Cu and (DCNQI-d6)2Cu than in (DCNQI-h8)2Cu
upon cooling. (DCNQI)2Li has a crystal structure similar to that of (DCNQI)2Cu.

According to the volume of the unit cell Vunit (see Table 2.1), the transferred charge of

δ/2 = −2/3 e residing on each DCNQI molecule, the density of Z = 8 DCNQI molecules

per unit cell and by assuming transport only along the molecular stacks, the mobile charge

carrier density in the conduction band can be estimated to

n =
Z · δ

2

Vunit

=
8 · 2

3

1811.7Å3
= 2.94× 1021 cm−3 (2.31)

which is about one order of magnitude lower than for copper (nCu = 8.5× 1022 cm−3

[73]) but still very high compared to e.g. neat polyaromatic hydrocarbons. For comparison,

the theoretical intrinsic charge carrier density for an organic semiconductor with a typical

bandgap of 2.5 eV amounts about nint = N0 · e−Eg/(2kBT ) = 1 cm−3 at RT, taking N0 =

1021 cm−3. It is about ten orders of magnitude smaller than in Silicon [74]. Such ultra-

low values are not achieved in real molecular crystals where the charge carrier density is

limited by impurities [58]. As already pointed out, in addition to free charge carriers a

large orbital overlap is required to obtain a highly conducting solid. Hence, the electronic

band structure of (DCNQI)2M crystals will be discussed next.
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2.3.2 Electronic Properties

Band Structure

Since (DCNQI)2M radical anion salts form densely packed crystals, the mobility of the

charge carriers is determined by the overlap of adjacent molecular orbitals rather than by

intramolecular delocalization like in polyacetylen [75] and thus, a band structure is formed

[7]. To understand the electronic properties and therewith the charge carrier transport,

it is necessary to calculate the band structure of the CT salts. Similar results have been

obtained for the (DCNQI)2M system by tight binding methods [10] as well as ab-initio

calculations [67], the latter are being presented here.

The band structure of (DMe-DCNQI)2Cu is depicted in Fig. 2.9a and shows its

anisotropic character caused by the larger overlap of π-orbitals along the stacking di-

rection compared to the perpendicular axes. The bandwidth along the Γ-Z direction,

corresponding to the stacking direction c⃗ of the crystal structure, amounts to Wab ≈ 1 eV.

The bandwidth calculated by a tight-binding model yielded slightly smaller values of

Wtb = 792meV [10]. The band structure also reveals a signi�cant dispersion along

the transverse Γ-X/Y directions of about 250meV characterizing (DMe-DCNQI)2Cu

as an anisotropic organic metal with pronounced three-dimensionality (quasi-3D). As

a consequence, the material is resistant to metal-insulator transitions - as typical for

low-dimensional conductors - down to lowest temperatures of 50mK [76]. The three-

dimensionality can be understood from the 3d copper orbitals energetically located

between the HOMO and the LUMO bands of the DCNQI molecule. These orbitals hy-

bridize with the DCNQI pπ-bands and contribute signi�cantly to the density of states at

the Fermi level. Two of the LUMO bands are almost degenerate and can be regarded as

purely one-dimensional. They are also obtained in the tight binding model and result in

a �at Fermi surface FS1 as illustrated in Fig. 2.9c. For the other bands the degeneracy is

lifted and the hybridized bands disperse along the transverse crystallographic direction.

While Fermi surface FS2 still has a dominating one-dimensional character but is slightly

corrugated, FS3 is of three-dimensional, hole-like character. Due to the charge transfer of

δ/2 = −2/3 e onto each DCNQI molecule, the conduction band is �lled-up to one-third

since two degenerate spin states are available. Accordingly, a metallic ground state is

established. The position of the wave vector corresponding to a thirdly �lled LUMO band

is indicated by the arrows in Fig. 2.9a.

The 3dxy-orbitals exhibit the smallest energy di�erence to the LUMO and accordingly,

they supply the largest spectral density of all copper orbitals at the Fermi energy. Their

share to the density of states is depicted in Fig. 2.9b. Of major importance for the details
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Figure 2.9: Band structure and Fermi surfaces of (DCNQI)2M. (a) Energy bands of (DMe-DCNQI)2Cu
calculated by ab-initio methods together with the (b) projected density of states clarifying the contribu-
tion of Cu 3dxy orbitals to the density of states at the Fermi level. (c) Corresponding Fermi surfaces (FS):
While FS1 is completely �at and thus 1D, FS2 is slightly corrugated due to the LUMO-3dxy-interaction
and FS3 possesses 3D topology. (d) In the band structure of (DBr-DCNQI)2Cu the 3dxy orbitals are
located at slightly lower energies due to the (e) larger tetrahedral distortion of the coordination angle αco

and the resulting smaller πd-hydridization. (f) Accordingly, the band structure of (DCNQI)2Li lacking
3d states between HOMO and LUMO is accordingly far more one-dimensional. From: [67, 77, 78].
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of the 3d-π-hybridization in the (DCNQI)2Cu system is the coordination angle αco of the

molecules around the copper atom, as depicted in Fig. 2.9e. In a tetrahedrally coordinated

crystal �eld (αco = 109◦) the 3dxy, 3dyz and 3dzx orbitals are energetically degenerate

and contribute the same amount to the density of states at the Fermi energy and also

to the charge transfer. A distortion of the tetrahedral coordination angle (αco > 109◦)

lifts this degeneracy and shifts the 3dxy energy closer to the LUMO compared to the

other two. In (DMe-DCNQI)2Cu the value of αco = 124.8◦ deviates from the ordinary

tetrahedral coordination angle, enabling an e�cient 3dxy-π-hybridization of orbitals. Yet,

tight binding calculations pointed out that the hybridization of the other 3d orbitals still

plays a key role in the dimensionality of (DCNQI)2Cu [68].

Upon further increase of αco the 3dxy-π-hybridization increases leading to a larger

charge transfer. In contrast, the contribution from 3dyz and 3dzx orbitals may subse-

quently be neglected and the band structure becomes more one-dimensional and as such,

prone to Fermi surface instabilities. It also stabilizes a formal charge of Cu+4/3 (Cu+-

Cu+-Cu2+) on the copper chain. In (DBr-DCNQI)2Cu both methyl groups are replaced

by bromine atoms and the coordination angle amounts to αco = 125.3◦ at room tem-

perature [71]. The band structure at room temperature, as delineated in Fig. 2.9d, is

very similar to that of (DMe-DCNQI)2Cu but with slightly smaller dispersion along the

transverse direction by virtue of the smaller 3dzx/yz-π-hybridization. Upon cooling below

a temperature of TP = 160K, the coordination angle increases and exceeds a critical

angle of αco,crit ≈ 126.4◦ above which the hybridization is lifted. Thereby, the system's

dimensionality is changed from quasi-3D to quasi-1D [66]. The quasi-1D (DCNQI)2Cu

system has a Peierls insulating ground state due to the thirdly �lled band and hence,

the material instantly undergoes a Peierls metal-insulator transition. In contrast to the

second order metal-insulator transition as predicted by Peierl's theory outlined in Sec.

2.2.1, this transition is of �rst order due to the discrete modi�cation of dimensionality.

The same distortion is obtained by replacing only one of the methyl groups with bromine.

(MeBr-DCNQI)2Cu crystals investigated in this work undergo a Peierls transition at the

critical temperature TP = 155K.

Even more subtle, the change in dimensionality can be reached by deuteration of the

methyl groups in the DMe-DCNQI molecule. The deuterated DCNQI-d6 molecule is iso-

electrical with respect to its undeuterated equivalent. While the crystal lattice parameters

of (DCNQI-d6)2Cu at RT are quite similar to those of (DCNQI-h8)2Cu, the replacement

of methyl groups (CH3) by the deuterated ones (CD3) of higher mass creates an inter-

nal pressure which leads to larger changes of αco upon cooling. At 20K, αco amounts to

128.5◦ for (DCNQI-d6)2Cu while it only increases to αco = 126.3◦ for (DCNQI-h8)2Cu [66].
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Whereas (DCNQI-h8)2Cu remains metallic down to cryogenic temperatures because of its

quasi-three-dimensionality, in (DCNQI-d6)2Cu the overlap between the 3dyz/zx-orbitals

and the LUMO is reduced and the system undergoes a Peierls transition at TP ≈ 73K by

virtue of the reduced dimensionality, similar to the case for (DBr-DCNQI)2Cu [66].

It is also interesting to compare the band structure of (DCNQI)2Cu with that of

(DCNQI)2Li illustrated in Fig. 2.9f. This material crystallizes in a similar structure as

its copper equivalent and as a consequence, the resulting LUMO bands along the Γ-Z

direction reveal a similar width and shape as the ones in Fig. 2.9a. However, the lack of

3d valence states at the lithium counterion prohibits a hybridization of Li orbitals with

the LUMO of the DCNQI molecule and accordingly, a �at dispersion in the transverse

direction is obtained. Due to the smaller charge transfer in (DCNQI)2Li, the LUMO

band is only quarterly �lled and as a result, the ground state of the system is a 4kF

Wigner crystal undergoing a spin-Peierls transition at about TsP = 60K [79] (compare

Sec. 2.2.2). The pronounced one-dimensional character of the material manifests itself in

stronger electronic correlation e�ects as well as a higher anisotropy of the conductivity.

2.3.3 Phase Diagrams of (DCNQI)2M salts

Phase Diagram of (DCNQI)2Cu

In the previous sections the in�uence of di�erent substituents at the quinone ring of the

DCNQI entity on the electronic and crystallographic structure of (DCNQI)2Cu has been

discussed. Based on these �ndings, the phase diagram of (DCNQI)2Cu as illustrated in

Fig. 2.10d can be understood. In principle, three di�erent ground states are known for

the variety of (R1-R2-DCNQI)2Cu compounds: a metallic, a Peierls (CDW) insulating

and an antiferromagnetic ground state. The latter only plays a role below 8K and will

not be discussed in detail here [80]. At RT and ambient pressure, (DCNQI)2Cu salts are

metallic with decreasing electrical resistivity upon cooling. Depending on the change of

the coordination angle αco upon cooling (see Fig. 2.10e), they can be categorized into

three groups [78]:

• Group I salts stay metallic down to at least 50mK with a coordination angle αco ≤
126.3◦ over the whole temperature regime, i.e. they keep their quasi-3D electronic

structure. One representative of this group is the undeuterated (DMe-DCNQI)2Cu

(also often denominated (DCNQI-h8)2Cu) for which the resistivity is depicted in

Fig. 2.10a-b.

• Group II salts exhibit a Peierls metal-insulator transition as the coordination angle

approaches a critical value of αco,crit = 126.3◦. Due to accompanying lattice distor-
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Figure 2.10: Phase diagram of the (DCNQI)2Cu system. (a) Representative resistivity curves for the
(DCNQI)2Cu salts of group I and group II, resembling a metallic and a CDW ground state, respec-
tively. The (b) conductivity of group I salt (DCNQI-h8)2Cu reveals a metallic behavior down to lowest
temperature but a metal-insulator transition can be induced by deuteration of the methyl group, as in
(DCNQI-d6)2Cu which belongs to group II. The alloy (DCNQI-h8/d6)2Cu [70:30] undergoes a Peierls
transition but recovers its metallic state by a low-temperature re-entry transition typical for group III
salts. (c) A similar re-entry transition is also observed for (DMe-DCNQI)2Cu crystals with smaller degree
of deuteration, e.g. (DCNQI-d2)2Cu. The transition occurs with hysteresis upon heating. (d) Phase dia-
gram of the (DCNQI)2Cu compounds: the position in the phase diagram can be tuned by the choice of the
substituents, isotopes, pressure and counter ion doping. This mainly in�uences the (e) coordination angle
αco being crucial for the respective ground state. In the insulating Peierls state, not only a trimerization
along the DCNQI stack occurs but also a (f) charge ordering on the copper chain takes place leading to
localized Cu2+ spins. From: [78, 81]
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tion, the coordination angle shows a sudden increase by almost three degree at the

phase transition. By virtue of the drastic dimensionality change, the transition is of

�rst order revealing a jump in the resistivity curve, as depicted for (DBr-DCNQI)2Cu

and (DCNQI-d6)2Cu in Fig. 2.10a-b which both belong to the group II salts.

• Group III salts are peculiar in a sense that they undergo a phase transition similar

to group II salts but recover their metallic behavior at even lower temperatures.

Their coordination angle αco jumps back to the initial value below a critical temper-

ature. The so-called re-entry transition has been observed for crystalline (DCNQI-

h8/d6)2Cu alloys, shown in Fig. 2.10b, as well as for partially deuterated crystals,

such as (DCNQI-d2)2Cu, depicted in Fig. 2.10c. For the latter compound, the hys-

teresis of the phase transition occurring between the cooling and the heating cycle

is shown in the �gure, too. This hysteresis is characteristic for a �rst-order phase

transition.

As illustrated by Fig. 2.10d, the phase transition can be induced by the choice of

substituents as well as by external pressure. Tab. 2.2 lists the phase transition temper-

atures for certain (DCNQI)2Cu salts. The deuteration denoted for the (DCNQI-dx)2Cu

salts refers to the methyl groups. The in�uence of the deuteration has been discussed in

terms of an e�ective chemical pressure deduced from crystal structure data which are

also listed [10]. The drastic in�uence of the coordination angle αco on the system's di-

mensionality can be understood by X-ray photoemission spectroscopy (XPS) experiments

on the respective crystals [82]. The average valence of the copper atom was found to

slightly deviate from the expected value of δ = +1.33 at RT, i.e. the charge transfer is

reduced according to the order of MeBr- (δ = +1.32) > DMe- (δ = +1.28) > DI-salts

(δ = +1.22) and depends on αco. At a critical angle of αco,crit ≈ 126.3◦, the charge transfer

is expected to lock into the value of δ = +1.33 inducing a Cu2+-Cu+-Cu+ Mott transi-

tion on the copper chains and an accompanying CDW transition on the DCNQI stacks

stabilized by its commensurability with the underlying lattice. The larger the deviation

from the commensurate charge transfer of δ = 4/3 e, the harder it is to induce the phase

transition by applying a pressure or reducing the temperature. For example, the critical

pressure required to switch (DI-DCNQI)2Cu into the Peierls ground state is more than

two orders of magnitude larger than for (DCNQI-h8)2Cu. The trimerization of the lat-

tice is re�ected by the discontinuity of the coordination angle αco, as depicted in Fig. 2.10e.

Because the conduction of charge takes place on the DCNQI chains, the CDW tran-

sition mainly manifests itself in the resistivity jump. In addition, the Cu2+ spins align in

the (ab)-plane, as illustrated in Fig. 2.10f. The Cu2+ spins can be probed by AC suscepti-

bility measurements and by determining the anisotropic g-factor of the Zeeman splitting

34



2.3. Organic Metals Exempli�ed by (DCNQI)2M Radical Anion Salts

(DCNQI)2Cu salt TM−I TI−M Pcrit Peff (bar)
(DCNQI-h8)2Cu - - 100 bar 0
(DCNQI-d2)2Cu 55K 21K 160
(DCNQI-d4)2Cu 61K 13K 192
(DCNQI-d6)2Cu 75K - 480
(DCNQI-d8)2Cu 80K - 512
(MeBr-DCNQI)2Cu 155K -
(DBr-DCNQI)2Cu 160K -
(DI-DCNQI)2Cu - - ≈ 15 kbar

Table 2.2: Critical temperatures for the Peierls metal-insulator (M-I) and the re-entry insulator-metal (I-
M) transition in di�erent (DCNQI)2Cu compounds. The critical pressures to induce a phase transition in
(DCNQI-h8)2Cu and (DI-DCNQI)2Cu as well as the e�ective chemical pressures induced by deuteration
are also cited [78].

by means of electron spin resonance experiments (ESR) [80, 83]. The simultaneous occur-

rence of two distinct phase transitions on the copper and the DCNQI chains, respectively,

has been incorporated into a phenomenological thermodynamic model of the phase dia-

gram by Nishio et al., taking into account the charge, spin and lattice degrees of freedom

[34]. By virtue of latent heat (QL) measurements on selected deuterated (DCNQI-dx)2Cu

single crystals with varying Peierls transition temperatures TP , they determined the en-

tropy di�erence ∆Σ between the metallic and the insulating ground state, revealing a

linear relation [34]

∆Σ =
QL

TP

= γ∗TP − SI (2.32)

where γ∗ = 40mJmol−1K−2 and SI = (kBNA/3) ln 2 = 1.9 Jmol−1K−1. SI corre-

sponds to the Cu2+ spin degrees of freedom implying a threefold-periodicity of Cu2+-

Cu+-Cu+ along the copper chains, i.e. one third of the copper atoms carry an electron spin

of 1/2, in agreement with magnetic susceptibility and ESR results [80, 83]. A similar value

was found in the latent heat analysis of the antiferromagnetic transition observed in fully

deuterated (DCNQI-d8)2Cu at 6.8K, clearly identifying it as the spin contribution to the

entropy [34]. The value of γ∗ = 40mJmol−1 K−2 signi�cantly di�ers from the expected

and experimentally determined Sommerfeld coe�cient γel = 25mJmol−1K−2 deduced

from low-temperature measurements on the speci�c heat of (DMe-DCNQI)2Cu [34]. It

has been argued that an additional contribution γlat by the lattice increases the e�ective

γ∗ = γel + γlat. In general, the lattice entropy is expected to split into a con�gurational

and a vibrational part. The con�gurational entropy accounts for the change in the lattice

symmetry while vibrational contribution quanti�es the repopulation of phonons across

the insulator-to-metal transition [84].
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For a system at constant pressure, the ground state of minimized Gibbs free energy

G = U − TΣ + PV is established. Considering only the energy di�erence ∆G between

metallic and insulating state, its total di�erential is given by [34]:

d(∆G) = −∆ΣdT +∆V dP . (2.33)

At constant pressure the second term is neglected. With the entropy di�erence ∆Σ

given by Eq. 2.32, upon integration one obtains [34]:

∆G = −1

2
γ∗T 2 + SIT +∆G0(Peff ) . (2.34)

Here, the integration constant∆G0(Peff ) comprises the external and chemical pressure

dependence of the model. A phase transition will occur at temperatures ful�lling the

condition ∆G(Tp) = 0, i.e. at a critical temperature of [34]

Tp =

(
SI ±

√
S2
I + 2γ∗∆G0

)
/γ∗ . (2.35)

Depending on the value of the integration constant ∆G0, three di�erent regimes may

be distinguished. For ∆G0 < −S2
I /2γ

∗, Eq. 2.35 has no real solution and ∆G is negative

for all temperatures. This models the case of group I salts remaining metallic over the

entire temperature regime. For intermediate negative values of −S2
I /2γ

∗ ≤ ∆G0 ≤ 0,

two real solutions are obtained with TP,1 > TP,2, corresponding to the group III salt

behavior where two phase transitions are observed. Two critical temperatures also result

from positive ∆G0 values. However, one of them is negative and hence, without physical

relevance. This situation represents the group II salts with one metal-insulator transition.

The e�ect of deuteration is considered by the integration constant ∆G0 [34]

∆G0 = −G0 + Peff∆V (2.36)

where Peff characterizes an external or chemical (substituent-induced) pressure.

Peff = 0 corresponds to the (DCNQI-h8)2Cu crystal at ambient pressure. ∆V = 3.2Å
3

is the volume di�erence of the unit cell between the metallic and the insulating state

[66]. Under these conditions, G0 remains the only free parameter for �tting. To ex-

plain the phase diagram qualitatively (see dashed black curve in Fig. 2.11), a value of

G0 = 59 Jmol−1 had to be chosen. The �gure also illustrates the phase diagram experi-

mentally determined from the phase transition temperatures of the selected deuterated

(DCNQI-dx)2Cu crystals [78]. Releasing the other �t parameters as well, the phase dia-

gram can be reproduced very well with γ∗ = 95mJmol−1 K−2 and SI = −3.5 Jmol−1 K−1.

Both values are even larger than the experimentally determined ones. Still, due to the

36



2.3. Organic Metals Exempli�ed by (DCNQI)2M Radical Anion Salts

Figure 2.11: Phenomenological phase diagram calculated by the thermodynamic model described in the
text [34]. Dotted vertical lines separate the three groups of (DCNQI)2Cu salts. The diagram was de-
termined from the phase transition temperatures of selected deuterated (DCNQI-dx)2Cu upon cooling
(blue) and heating (red) together with the one calculated by combining Eqs. 2.36 and 2.35 (dashed black
curve). Taking G0 as the only free �t parameter, the phase diagram can be reproduced qualitatively.
A better agreement between calculation and experimental data can be obtained from polynomial �ts
(blue and red curves) according to Eq. 2.35, revealing a slightly larger γ∗. The model explains the phase
diagram on the basis of the competion between the spin entropy of localized Cu2+ spins and the entropy
of free charge carriers while large γ∗ values point to other degrees of freedom playing a certain role as
well. These might be the con�gurational and vibrational entropy of the lattice.

ambiguity in the determination of the e�ective pressure values, it is not possible to di-

rectly draw conclusions from these quantitative γ∗- and SI-values.

To sum up, the phase diagram of (DCNQI)2Cu can be well explained by the depen-

dence of the Cu valency on the coordination angle αco. A transition between metallic and

insulating state, characterized by a CDW on the DCNQI chains accompanied by a Mott

charge ordering on the Cu sites, occurs upon reaching a critical αco,crit, enabling com-

mensurate conditions for the CDW transition. Thermodynamically, the phase transition

is mainly driven by the competition between spin and charge degrees of freedom while

contributions by the lattice are expected to be relevant as well [34].
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Phase Diagram of (DCNQI)2Li

In spite of the similar crystal structure as compared to (DCNQI)2Cu, the charge trans-

fer in (DCNQI)2Li only amounts to δ/2 = 0.5 e due to the lack of 3d valence states

leaving the one-dimensional band quarter-�lled [85]. Mazumdar and Bloch showed that

the e�ective short range Coulomb interaction in organic conductors strongly depends on

the band �lling [86]. While being negligible at a charge transfer of δ/2 = 0.66 e, as ob-

served in (DCNQI)2Cu, it gains importance below δ/2 = 0.55 e. This is corroborated by

the occurrence of a 4kF -CDW at T4kF ≈ 100K in the isostructural organic conductor

(DCNQI)2Ag which also reveals a charge transfer of δ/2 = 0.5 e, giving rise to a quarter-

�lled one-dimensional band structure [87]. At an even lower temperature of TsP = 83K

the occurrence of a 2kF spin-Peierls transition was observed. As discussed in Ch. 2.2.2,

both ground states are driven by the Coulomb repulsion of charge carriers. The spin-

Peierls transition was also observed in (DCNQI)2Li at TsP = 52K − 63K [88, 89] and

accordingly, electronic correlation e�ects are expected to be of importance in this mate-

rial as well. Raman spectroscopy and the linewidth analysis of ESR signals furthermore

support the existence of a 4kF -CDW even far above TsP in (DCNQI)2Li [90, 91]. In the

crystalline (DMe-DCNQI)2CuxLi1−x alloys, a spin-Peierls transition appears for samples

with x ≤ 0.3 and TsP decreases with increasing copper content [79, 89]. For any copper

content above x > 0.5 the material remains metallic down to 4K.
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2.4 Lattice Dynamics in Crystals

Phonons play an important role in organic crystals due to their lower excitation energies,

the large number of atoms per unit cell and the lower Debye temperatures compared

to inorganic solids. The low energy relative to the electronic bandwidths along with the

strong electron-phonon coupling enables an e�cient interaction of charge carriers with

phonons. Furthermore, the complex phonon spectra cause distinctively di�erent thermal

properties in organic solids. Here, the general theory on phonons will be outlined based

on the atomic chain model which is consecutively extended to molecular solids.

2.4.1 Phonon Dispersion

Phonons are quantized coupled vibrations of the solid state lattice [92]. They do not

occur as isolated, local excitations but represent a collective motion propagating like

waves through the solid, transporting energy and interacting with one another as well

as other excitations. The vibrational energy of a crystal is de�ned by its anharmonic

interatomic potential as shown in Fig. 2.12a in which atoms can be displaced around

their equilibrium position at distance R0 from each other. For small displacements the

potential is well approximated by a parabola. This harmonic approximation represents

the model of atoms joined by springs in a crystal as visualized in Fig. 2.12b for a one-

dimensional chain of a diatomic lattice with unit length 2a.

The displacement of atoms propagates as a linear combination of plane waves through

the lattice, each of the form A exp[q⃗ · r⃗ − ω(q⃗)t], q⃗ denoting the wave vector of propaga-

tion, A the amplitude and ω(q⃗) the angular frequency of the vibration. In the harmonic

approximation phonons are treated as non-interacting quasiparticles. Although the prop-

agating wave does not carry a net mass and hence, no momentum, a quasi-momentum ~q⃗
is associated with each phonon of quantized energy ~ω(q⃗). The lattice dynamics are de-
scribed by the phonon dispersion ω(q⃗) relating energy and quasi-momentum of a phonon.

A lattice comprised of N atoms contains 3N normal modes of vibration. Similar to the

quantum mechanic harmonic oscillator, the energy of the q⃗th mode is given by [92]

Eq⃗ =

(
nq⃗ +

1

2

)
~ωq⃗ (2.37)

where the average number of phonons in mode q⃗ at temperature T is given by the

Bose-Einstein distribution in thermal equilibrium [92]:

nq⃗ =
1

exp[~ω(q⃗)/(kBT )]− 1
. (2.38)

The population of phonon modes vanishes at T = 0, then rises exponentially in the
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low-temperature regime kBT ≪ ~ω and approaches a high temperature limit of nq⃗ ∝ T

for kBT ≫ ~ω.

Figure 2.12: Phonons in crystals. (a) Interatomic potential together with its harmonic approximation.
(b) The harmonic model of a one-dimensional diatomic lattice chain with its constituents coupled by
springs results in a (c) phonon dispersion containing acoustic (blue) and optical (red) phonon branches.
Each branch contains one longitudinal phonon mode and two degenerate transverse phonon modes. (d)
Transverse phonon modes are characterized by atomic displacements perpendicular to the wave propa-
gation while for longitudinal modes atoms oscillate in the same direction. (e) Acoustic phonon modes
are characterized by neighboring atoms moving in-phase in contrast to the out-of-phase displacement of
optical phonon modes. Adapted from: [93, 92, 94, 95]

For a characterization of the lattice dynamics the phonon dispersion relationship ω(q⃗)

needs to be calculated. The dispersion relation of a one-dimensional diatomic chain, as

illustrated in Fig. 2.12b with atoms of massM > m connected by springs of force constant

Λ, reads [92]

ω2 = Λ

(
1

m
+

1

M

)
± Λ

√(
1

m
+

1

M

)2

− 4

mM
sin2 q⃗ · a⃗ . (2.39)

It is schematically depicted in Fig. 2.12c for the �rst Brillouin zone. The phonon

dispersion consists of two types of phonon branches, that of the acoustic and of the optical

phonons. The longitudinal acoustic (LA) branch starts at zero frequency in the mid of the

Brillouin zone and rises proportional to the velocity of sound v⃗S = ∂ω/∂q⃗ at small q⃗. Its

dispersion saturates at a frequency ω1 =
√
2Λ/M . In contrast, the longitudinal optical

(LO) phonon branch starts at non-zero frequency ω3 =
√

2Λ/(1/m+ 1/M) in the mid

of the Brillouin zone reducing to ω2 =
√

2Λ/m at the boundary q = π/a. In addition to

the longitudinal displacement along the propagation direction, the oscillation of atoms in

the other two perpendicular directions are also possible as clari�ed in Fig. 2.12d. These

additional polarizations result in two separate transverse acoustic (TA) and optic (TO)

branches which are doubly degenerate each. They are lower in energy due to the smaller

force constant Λ′ < Λ for transverse displacements as compared to longitudinal modes.
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The di�erence between acoustic and optical phonon modes is illustrated in Fig. 2.12e.

Acoustic modes of propagation displace neighboring atoms along the same direction while

in optical phonon modes adjacent atoms oscillate anti-phase-wise. Accordingly, the latter

are expected to be higher in energy. In case of ionic crystals, the dynamic dipole moment

of optical phonon modes allows for an excitation by electromagnetic waves, from which

the classi�cation as optical phonon modes originates. In general, for a three-dimensional

lattice containing N atoms per unit cell 3 acoustic and 3N − 3 optical phonon branches

are obtained in the phonon dispersion spectrum.

2.4.2 Lattice Heat Capacity

The heat capacity relates the increase of a solid's internal energy U by a temperature rise

of one Kelvin at constant volume [96]:

CV =

(
∂U

∂T

)
V

. (2.40)

A solid's internal energy U mainly constitutes of the thermal energy E stored in lattice

vibrations of quantized energy, as outlined above. Neglecting the zero point energy, the

total energy accumulated in the phonon system follows from Eq. 2.37 [96]:

E =
∑
q⃗

3∑
s=1

nq⃗,s~ωs,q⃗ . (2.41)

Here, the sum runs over all phonon branches in the �rst Brillouin zone, each indexed

by its polarization s and wave vector q⃗. To obtain analytical expressions for the heat

capacity of solids, some approximations on the phonon dispersion need to be made.

Einstein Model

Einstein assumed all atoms to oscillate independently of each other at a frequency ω(q⃗) =

ωE [97]. The resulting phonon energy is independent of the wave vector q⃗, as shown in Fig.

2.12c by the dashed green line. Thus, it appears to be a rather good approximation for

optical phonon modes of �at dispersion. The total thermal energy of a crystal containing

N atoms including three polarization modes reads

E = 3N~ωEnE =
3N~ωE

exp[~ωE/(kBT )]− 1
(2.42)

and yields, with the help of Eq. 2.40, a molar lattice heat capacity of
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CV = 3NAkB

(
~ωE

kBT

)2

nE(nE + 1) = 3NAkB

(
θE
T

)2
eθE/T

(eθE/T − 1)2
. (2.43)

Here, NA denotes the Avogadro constant and θE = ~ωE/kB the Einstein temperature.

For T ≫ θE, Eq. 2.43 reaches a constant limit of CV = 3NAkB, also known as Dulong-Petit

law. In contrast, at low temperatures the Einstein model predicts CV ∝ T−2 exp[−θE/T ]

which does not accurately explain the experimentally observed heat capacities of most

solids. This is due to the large dispersion of acoustic phonon modes being not accurately

captured by the constant dispersion.

Debye Model

An improved model to better account for the dispersion of low-frequency acoustic phonon

modes was formulated by Peter Debye in 1912 [98]. For large N , the sum over q⃗ in Eq.

2.41 can be replaced by an integral yielding

E =
∑
s

∫
d3q

N0Ω

8π3
~ωs(q⃗)ns(q⃗) =

∑
s

∫ ∞

0

dωsgs(ωs)~ωs(q⃗)ns(q⃗) (2.44)

which can be transformed into an integral over surfaces of constant energy Sω by

introducing the phonon density of states g(ω), de�ned as

g(ω) =
N0Ω

8π3

∫
dSω

∇q⃗ ω(q⃗)
(2.45)

for a three-dimensional crystal. Here, Ω is the size of the unit cell and N0 the denotes

number of unit cells. Debye approximated the three acoustic phonon modes by a linear

dispersion ω = vS · q, vS denoting the velocity of sound. The relation is depicted by the

orange line in Fig. 2.12c. The linear phonon branch contains all 3N states of the acoustic

phonon branches up to a cut-o� frequency ωD, i.e.∫ ωD

0

dωg(ω) =
N0Ωω

3
D

2π2v3S
= 3N (2.46)

which de�nes the Debye frequency

ωD = vS

(
6π2N

N0Ω

)1/3

. (2.47)

With Debye's approximation the heat capacity evaluates to

CV = 9NkB

(
T

θD

)3 ∫ θD/T

0

dz
z4ez

(ez − 1)2
(2.48)
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where θD = ~ωD/kB is the so-called Debye temperature. It constitutes an upper limit

for the energy of acoustic phonons in a crystal. Eq. 2.48 reproduces the experimentally

observed CV ∝ T 3 behavior at low temperatures and merges into the constant value of

3NkB at high temperatures as predicted by the Einstein model as well by the Dulong-

Petit law for an ideal gas. Consequently, it is expected to provide a better approximation

to describe the lattice speci�c heat of acoustic phonons.

2.4.3 Lattice Properties of Organic Crystals

The phonon dispersion of organic crystals is quite complex [58]. This is on the one hand

due to the weak intermolecular potential of the van-der-Waals bound crystals together

with the rather large mass of the molecules constituting the unit cell, resulting in low

phonon frequencies, Debye temperatures and sound velocities. Moreover, a molecule con-

tains additional rotational degrees of freedom compared to an atom and the large number

of atoms per unit cell further increases the number of optical phonon modes. Not all of

these modes are energetically as widely separated from the acoustic phonon modes as in

most inorganic solids of less complex unit cell. Tab. 2.3 compares some electronic and

thermal properties of the organic semiconductor naphthalene to silicon and the organic

metal TTF-TCNQ.

The complex phonon structure is re�ected in larger molar speci�c heat values of or-

ganic materials. The large anharmonicity of the intermolecular potentials, characterized

by the Grüneisen constant, results in thermal expansion coe�cients being two orders of

magnitude larger than in inorganic solids. Weak binding forces may be inferred from the

low melting point of naphthalene, too. The crystal binding forces in TTF-TCNQ are

larger and under ambient conditions the compound decomposes at 492K prior to the

melting of the crystal structure [109]. The distinct phonon structure of organic solids also

manifests itself in the electronic properties, such as the charge carrier mobility being two

to three orders of magnitude smaller than in silicon by reason of the more e�cient in-

teraction with the numerous low-frequency phonon modes available in organic materials.

The electron-phonon interaction potential is often of similar magnitude to the narrow

electronic bandwidth in organic crystals.

The total number of phonon branches amounts to 3N ,N denoting the number of atoms

per unit cell. Furthermore, in molecular crystals external and internal phonon modes have

to be distinguished [58]. Internal modes refer to the atoms oscillating within the molecule

against each other. For a molecule of Nm atoms, there exist 3Nm − 6 intramolecular

normal modes of vibration. In organic molecules composed of covalently bound elements

of small atomic number, the internal mode frequencies are rather high compared to the
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Naphthalene Silicon TTF-TCNQ

Density [ g
cm3 ] 1.14 2.328 1.62

Atomic Mass [amu] 128 28 408

θD [K] 130[99] 465[100] 90[101]

Sound Velocity [103 m
s
] 1-3 8.4[102] 1.8-3[103, 104]

RT Speci�c Heat [ J
gK

] 1.3 0.7 1.5[105]

Thermal Expansion Coe�cient [10−6 1
K
] 127[106] 2.6 150[107]

Grüneisen Constant 3-4[108] 0.5[92] 2.56[103]

Melting Temperature [K] 353 1688 492 (dec.)[109]

RT Mobility µ (e−/h+) [ cm
2

V s
] 0.44/0.39 1500/450 4

Electronic Bandgap [eV] 5 1.1

Dielectric Constant ϵ 3[110] 11.9

Table 2.3: Electrical and thermal properties of organic and inorganic materials. The archetypical organic
semiconductor naphthalene is compared to silicon and the organic conductor TTF-TCNQ. Unless oth-
erwise declared, silicon properties are cited from [111] and values for naphthalene and TTF-TCNQ are
taken from [112].
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2.4. Lattice Dynamics in Crystals

oscillation of complete van-der-Waals bound molecules in a crystal. Nonetheless, similar

low frequencies to external modes may also be attained for internal modes, e.g. for some

bending and breathing modes of the molecule involving more than two atoms. The energy

spectrum of internal phonon modes in a molecular crystal is very similar to the vibrational

spectrum of the single molecule. For example, naphthalene only contains carbon and

hydrogen atoms from the two upper rows of the periodic system. The vibrational frequency

of the antisymmetric C-C stretching mode at a wave number of ν = 1595 cm−1 is retained

when going from the vapor phase to the crystal [113]. Yet, the vibrational spectrum also

contains an internal ring mode at a frequency of only ν = 176 cm−1 [114].

External modes characterize the thermal movement of rigid molecules around their

equilibrium position in the lattice. Every molecule possesses three translational and three

rotational degrees of freedom. A crystal containing Z molecules per unit cell will ac-

cordingly exhibit 6Z external phonon branches, 3 acoustic and 6Z − 3 optical ones [58].

Sometimes, the external phonons derived from translational and rotational motions are

named translons and librons, respectively [115].

Figure 2.13: Phonon dispersion in crystals. (a) Measured phonon dispersion of perdeuterated naphtha-

lene, (b) silicon and (c) the organic conductor TTF-TCNQ along the b⃗-axis, i.e. the direction of high
conductivity. Adapted from: [116, 117, 104].

In Fig. 2.13a the phonon dispersion measured for the organic semiconductor d8-naph-

thalene, crystallizing in a structure with Z = 2 molecules per unit cell, is shown [58]. As
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expected, it consists of 3 acoustic and 9 optical external phonon branches. Optical phonon

modes already arise in a low frequency regime of about 2THz. Above 5THz internal

vibrational modes begin to appear. The frequencies of the phonon modes are signi�cantly

lower than in silicon, the dispersion of which is depicted in Fig. 2.13b for comparison [117].

It nicely demonstrates the lower sound velocity and Debye temperature in naphthalene.

The phonon dispersion of the organic metal TTF-TCNQ, which is delineated in Fig. 2.13c,

exhibits optical phonon modes to intersect with acoustic phonon branches at frequencies

as low as 0.5THz. Furthermore, the LA phonon mode exhibits a Kohn anomaly at around

|q⃗b| ≈ 0.3 Å−1 indicating the Peierls state discussed in Sec. 2.2.1. The velocity of sound in

TTF-TCNQ takes values of vLA ≈ 3000m s−1 and vTA ≈ 1800m s−1 for the longitudinal

and transverse mode, respectively [104].

Speci�c Heat in Organic Crystals

Speci�c heat measurements on naphthalene and silicon are illustrated in Fig. 2.14. The

data on silicon roughly agrees with the Debye model described by Eq. 2.48 but the Debye

temperature is a function of temperature and takes values in the range of θD = 465−631K

[118]. The curve seems to approach a value close to CV = 3NAkB = 25 Jmol−1K−1 in

agreement with the Dulong-Petit law at high temperatures. In contrast, the speci�c heat

of naphthalene exceeds the limit of Dulong-Petit by far due to additional thermal energy

stored in low-frequency optical phonon modes. Instead of a saturating behavior an upward

curvature is observed at high temperatures due to the increasing number of optical phonon

modes contributing. To model the speci�c heat per mole at constant pressure in organic

crystals, Sallamie and Shaw proposed a combined Debye-Einstein model of the form [119]:

CP = 18R

(
T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx 3 translational + 3 rotational modes

+R
3Nm−6∑
i=1

(
θE,i

T

)2
eθE,i/T

[eθE,i/T − 1]2
internal + external optical phonons

+
3RA0CPT

Tm

volume correction .

(2.49)

The model consists of three terms: The �rst term accounts for three translational and

three rotational degrees of freedom which are approximated by Debye's theory of lattice

heat capacity as described by Eq. 2.48. R = NAkB represents the universal gas constant.

The six phonon branches are approximated by an averaged sound velocity v⃗S and Debye

temperature θD.
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2.4. Lattice Dynamics in Crystals

Figure 2.14: Speci�c heat measured and modeled for (a) silicon as well as (b) naphthalene. Adapted from:
[119, 100]

The red dashed line in Fig. 2.14b delineates the portion of heat contained in these

modes for naphthalene. It saturates at 50 Jmol−1 K−1, i.e. at twice the value obtained

by the rule of Dulong-Petit according to the additional rotational degrees taken into

account. The second term accounts for all other internal and external optical phonon

modes being more appropriately represented by the �at dispersion of the Einstein model,

as outlined above. Approximating each optical phonon branch by an Einstein temperature

θE,i = ~ωE,i/kB, the sum of Einstein oscillators represented by Eq. 2.43 runs over all

optical phonon frequencies. This term gives rise to the non-saturating, monotonously

rising contribution to the molar speci�c heat of organic solids because the number of

participating optical phonon modes increases with temperature, as shown by the green

dotted curve in Fig. 2.14b. The third term accounts for the large thermal expansion in

organic crystals. The speci�c heat is usually measured at constant pressure while the

Einstein and Debye model both assume constant volume conditions. The functional form

was derived from the Nernst-Lindemann equation by Pan et al. for linear macromolecules

[120]. Tm is the melting temperature of the solid and the constant A0 may be calculated

from the thermal expansion, compressibility and speci�c heat data, but a quite universal

approximation of A0 = 3.9× 10−3 Kmol J−1 was found from the analysis of 22 polymers.

The magnitude of the correction term is illustrated by the blue dot-dashed curve in

Fig. 2.14b. The correction term obviously gains importance at rather high temperatures,

explaining the upward curvature of naphthalene's speci�c heat.

The combined Debye and Einstein model allows for an accurate description of the

experimental speci�c heat data for naphthalene as well as for other π-conjugated organic

molecules, such as coronene or perylene [119]. While it has not been employed for low-

dimensional organic metals so far, it should be equally valid for this material class by

virtue of the similar phonon spectra compared to the above organic semiconductors.
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2.5 Charge Carrier Transport

The thermoelectric properties of solids are usually treated semiclassically by the Boltz-

mann transport theory which will be outlined following Refs. [39, 121]. Including several

charge carrier scattering mechanisms, the electrical conductivity of ordinary metals in

comparison to quasi-1D organic conductors is discussed. A brief introduction to the one-

dimensional Tommonaga-Luttinger liquid theory is given at the end of this section.

2.5.1 Boltzmann Transport Theory

Fermi-Dirac statistics quantify the number of occupied electronic states in a system of

non-interacting fermions in a solid. In equilibrium the average occupation number of a

single-particle state of energy ϵ at temperature T is given by the Fermi-Dirac function

[121]

f 0
k⃗
(ϵ(r⃗, k⃗), T ) =

1

e[ϵ(r⃗,⃗k)−µ]/kBT + 1
(2.50)

with the chemical potential µ being the energy necessary to add one electron to the

system. At T = 0 the chemical potential is equal to the Fermi energy ϵF separating the

occupied states below from the empty states above this energy, i.e. the Fermi function is a

step function at f0 = 1 for ϵ < µ and f0 = 0 for ϵ > µ. The energy of an electron ϵ(r⃗, k⃗, T )

depends on its wave vector k⃗, its spatial coordinate r⃗ and temperature T . Upon increasing

temperature the distribution smears out in an energy range of about 4kBT around the

chemical potential. External perturbations of the electronic system cause a deviation from

the equilibrium distribution function which can be described by the semi-classical Boltz-

mann theory. In the presence of an external electric �eld E⃗ and a temperature gradient

∇⃗T , the steady-state linearized Boltzmann di�erential equation reads [121]:

fk⃗ − f 0
k⃗

τk⃗
= −v⃗k⃗ ·

(
∂f 0

k⃗

∂T
∇⃗T + e

∂f 0
k⃗

∂ϵk⃗
E⃗

)
. (2.51)

Here, f 0
k⃗
and fk⃗ are the equilibrium and non-equilibrium Fermi distribution func-

tions and v⃗k⃗ and e denote the electron velocity and electron charge. The employed re-

laxation time approximation assumes that scattering processes can be described by a

parameter τk⃗ specifying the time to equilibrate the electronic system after perturbation.

In order to calculate the charge current J⃗e = 2e
8π3

∫
v⃗k⃗fk⃗dk⃗ as well as the heat current

J⃗Q = 2
8π3

∫
v⃗k⃗fk⃗ · [ϵ− µ]dk⃗ in response to external �elds, the k-space integration can be

performed over surfaces of constant energy dk⃗ = dSdk⃗⊥ = 8π3~g(ϵ)dϵ leading to the
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respective energy representations by [121]:

J⃗e = 2e2
∫

[v⃗(ϵ)⊗ v⃗(ϵ)] τ(ϵ)

(
∂f 0

∂ϵ

)[
E⃗ − 1

e
∇⃗µ

]
g(ϵ)dϵ

+ 2e

∫
[v⃗(ϵ)⊗ v⃗(ϵ)] τ(ϵ)

(
∂f 0

∂ϵ

)[
ϵ− µ

T

]
(−∇⃗T )g(ϵ)dϵ (2.52a)

J⃗Q = e

∫
[v⃗(ϵ)⊗ v⃗(ϵ)] τ(ϵ)

(
∂f 0

∂ϵ

)
[ϵ− µ]

[
E⃗ − 1

e
∇⃗µ

]
g(ϵ)dϵ

+ T

∫
[v⃗(ϵ)⊗ v⃗(ϵ)] τ(ϵ)

(
∂f 0

∂ϵ

)[
ϵ− µ

T

]2
(−∇⃗T )g(ϵ)dϵ . (2.52b)

Here, g(ϵ)dϵ = 1
(2π)3~

∫
dS
|v⃗|dϵ de�nes the electronic density of states. By introducing

the generalized transport integral with a separated material-dependent part IMat of the

integrand [39]

Ks = −2

∫
g(ϵ) [v⃗(ϵ)⊗ v⃗(ϵ)] τ(ϵ)︸ ︷︷ ︸

IMat

[
ϵk⃗ − µ

]s ∂f 0

∂ϵ
dϵ , s = 0, 1, 2, (2.53)

Eqs. 2.52a and 2.52b may be further simpli�ed to [39]

J⃗e = e2K0E⃗eff −
e

T
K1∇⃗T (2.54a)

J⃗Q = eK1E⃗eff −
1

T
K2∇⃗T , (2.54b)

with the e�ective �eld E⃗eff = E⃗ − ∇⃗µ/e acting on the charge carriers. The equation

system is similar to Eqs. 2.4a-b and describes the thermoelectric transport phenomena

in a solid, allowing for a calculation of the material's Seebeck coe�cient S as well as its

electrical conductivity σ and electronic thermal conductivity κ′ [121]:

σ = e2K0 (2.55a)

S = ∓ 1

eT

K1

K0

(2.55b)

κ′ =
1

T

[
K2 −

K2
1

K0

]
. (2.55c)

Obviously, the parameters interdepend and thus, cannot be optimized individually.

A large electrical conductivity, for instance, necessitates a high density of states close

to the Fermi energy in contrast to the Seebeck coe�cient which scales with the energy

di�erence of the transport level to the chemical potential. For this reason, high electrical
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conductivities as well as small Seebeck coe�cients are observed in metals and, vice versa,

in semiconductors. The material-dependent part of the transport properties is represented

by the kernel IMat of the integrand in Eq. 2.53. It depends on the material's band structure

as well as the details of the electron scattering mechanisms.
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Figure 2.15: Material-independent part (ϵ− µ)s ∂f0

∂ϵ of the transport integrand in Eq. 2.53 for s=0,1,2 at
two distinct temperatures.

The remainder of the integrand only depends on the energy dependence of the Fermi

function and is illustrated for s=0,1,2 in Fig. 2.15 at two distinct temperatures. While

the conductivity probes energetic states at the chemical potential, the thermopower and

the thermal conductivity are related to states slightly above and below. Only the Seebeck

coe�cient can obtain negative values due to the integrand's symmetry with respect to

the chemical potential. On decreasing temperature all three integrands become narrower

and probe states closer to the chemical potential. To analytically evaluate the transport

integrals in Eq. 2.53 several assumptions have to be made. Two distinct cases, namely the

approximations of a degenerate and a non-degenerate electron gas are being considered in

the following sections. The degenerate case treats the Fermi energy being large compared

to the thermal energy, i.e. ϵF ≫ kBT . The assumption is valid for metals, semimetals and

heavily doped semiconductors where the Fermi energy lies in the conduction or valence

band. The opposite, non-degenerate limit (ϵF ≪ kBT ) generally applies for lightly doped

semiconductors [37].
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2.5.2 Electrical Conductivity

Mobility and Scattering Rates

The electrical conductivity σ (resistivity ρ) of a material can in principle be calculated

from Eqs. 2.55a and 2.53. However, the calculation can become quite elaborate depending

on the complexity of the band structure and the scattering mechanism contributing to the

transport integral. Approximating the electronic band structure by a parabolic band, that

is for quasi-free electrons with e�ective mass m∗, and assuming an energy-independent

relaxation time τ(ϵ) ≈ τ(ϵF ), it can be evaluated to

σ = e2K0 =
ne2τ(ϵF )

m∗ = enµ = ρ−1 (2.56)

where n is the number of mobile charge carriers and µ = eτ/m∗ is the charge carrier

mobility depending on the relaxation time τ due to all present scattering mechanisms.

The renormalized, e�ective mass m∗ accounts for the motion in the periodic potential of

the lattice as well as for electron-electron correlation. By virtue of the charge transfer

process governing the band �lling in the metallic state of organic conductors, the charge

carrier density is assumed to be independent of temperature. Therefore, the temperature

dependence of the conductivity is governed by the sum of the individual scattering rates

1/τi [39]

1

τ
=
∑
i

1

τi
. (2.57)

Scattering Mechanisms

The calculation of distinct electron scattering rates is a di�cult task and several di�erent

theories and approaches have been presented in literature [121]. Since detailed calculation

procedures are beyond the scope of this thesis, only some results being relevant for organic

conductors and low-dimensional electron gases are brie�y presented in the following. The

scattering time depends on the transfer integral and thus, is an anisotropic tensorial quan-

tity. In principle it depends on the energy of the charge carrier and it is often simpli�ed

by assuming the form [39]

τ(ϵ) = c0ϵ
r , (2.58)

r being the scattering parameter. For example, r = 1/2 is obtained for the interac-

tion of an electron with a single acoustic phonon mode in one dimension [122]. More

elaborate theoretical scattering rates with relevance for organic conductors are listed in
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Tab. 2.4. Two given scattering entities inside a crystal are impurities and defects. Their

temperature-independent scattering of electrons was found to scale with the degree of

alloying in metals [123]. According to Eqs. 2.56 and 2.57, this leads to the idea of a

temperature-independent impurity resistivity ρimp and a temperature-dependent scatter-

ing term ρsc(T ) [121]

ρ(T ) = ρimp + ρsc(T ) (2.59)

which is also known as Matthiessen's rule. ρsc depends on the distinct electron scat-

tering processes which will be brie�y discussed below.

Scattering Process Abbrev. Scattering Rate [s−1]

Charged Impurities [39] τ−1
e−imp

2niEFZ2

3~ F
[
4k2F
k2TF

]
3D Normal-Phonon τ−1

e−N
ne
m∗A

(
T
θD

)5
J5
(
θR
T

)
1D Umklapp-Phonon [122] τ−1

e−U

(
∂W
∂u

)2 kBT

~Mω2
0

√
ϵ(W−ϵ)

2 Phonons [124] τ−1
e−2Ph

(
∂2W

∂u2/θ2

)2
πg(ϵ)
32

(
kBT
M/J

)2 ∫ −2k+π/a0
−π/a0

f2
2

ω2
qω

2
q′
dq

Optical Phonon [125] τ−1
e−opt g(ϵ)4πa0C2

Mωi
e−~ωi/kBT

Mutual Acoustic Phonons [126] τ−1
map

2a20kBT (∂t/∂x)2

~Mv2kt
2

γ2(ϵ−∆s,p
0 )2+4t2D2√
ϵ(W−ϵ)

Electron (3D) [127] τ−1
e−e,3D Bee,3D · T 2

Electron (1D) [127] τ−1
e−e,1D Bee,1D · T 1

Table 2.4: Several theoretical electron scattering rates. (Quantities and functions: ni - impurity con-
centration; Z: charge of impurity; F [x] = 2[ln(1 + x) − x/(1 + x)]/x2; kTF - Thomas Fermi wave-

length; A = 9πh2C2
√
m∗/(8

√
2ne2a30MkBθDϵ

3/2
F ); C - coupling constant; Jn(z) =

∫ z

0
xnex/(ex − 1)2dx;

θR - Bloch-Grüneisen temperature; W - bandwidth; ϵ - electron energy; u/θ - translational/rotational
molecular displacement; M/J - mass/inertia of molecule; ωi - phonon frequency; a0 - lattice constant;
f2(k, q, q

′) = 2 [cos ka0 − cos(k + q)a0]; t - transfer integral; ∆
s,p
0 = 2t(γ ± 1)/γ; γ = 2e2α0/(a

5
0∂t/∂x);

α0 - polarizability; vk - carrier velocity; D - impurity scattering parameter.)

The scattering of electrons by phonons is one of the most important interaction mech-

anisms limiting the charge carrier mobility in single crystals. While the in�uence of the

periodic potential caused by the lattice ions is captured by means of the e�ective electron

mass, the oscillation of the ions represents an additional perturbation to charge carriers

due to the �uctuation of the transfer integral (deformation potential scattering). In or-

ganic crystals there exists a large number of thermally excited phonons due to the low
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2.5. Charge Carrier Transport

Figure 2.16: Normal vs. Umklapp scattering events. While Normal scattering processes only slighty change
the momentum of the charge carrier, Umklapp processes are very e�cient in generating resistance due to
the large momentum transfer by scattering the electron out of the �rst Brillouin zone. From: [121]

energy and dispersion of the phonon spectrum (compare Sec. 2.4). In combination with

the strong electron-phonon coupling, scattering of electrons by phonons is generally very

e�cient in these materials [128]. The momentum conservation law for scattering of an

electron from the state k⃗ into the state k⃗′ by one phonon q⃗ requires [121]:

k⃗ ± q⃗ = k⃗′ + G⃗ . (2.60)

Fig. 2.16 distinguishes two possible scattering processes in a crystal: For Normal pro-

cesses (N-processes) the involved reciprocal lattice vector G⃗ vanishes, i.e. k⃗′ lies in the

same Brillouin zone as k⃗. This process is ine�ective in generating resistance due to its

small change in momentum. Contrarily, by Umklapp processes (U-processes) the electron

is scattered into the next Brillouin zone and can be mapped back into the �rst zone

by a reciprocal lattice vector G⃗. This leads to a large momentum transfer now that the

scattered wave vector essentially points into the opposite direction than the incoming

one. Umklapp processes therefore are very e�ective in contributing to the electrical and

thermal resistance. To scatter electrons out of the �rst Brillouin zone, phonon states with

wave vectors q⃗ of su�cient magnitude have to be excited, weakening this e�ect upon de-

creasing temperature. Hence, at low temperature normal processes may still dominate the

conduction in ordinary metals, leading to the established Bloch-Grüneisen formula [121]:

ρ(T ) = A

(
T

θR

)5

J5

(
θR
T

)
=


124.4 · A

(
T
θR

)5
, T ≪ θR

A
4

(
T
θR

)
, T ≥ θR

(2.61)

which has been validated for most ordinary metals. The Bloch-Grüneisen temperature
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θR commonly takes values between the Debye temperature θD and the longitudinal sound

velocity temperature θS = vs~kF/kB. Eq. 2.61 predicts a linear temperature dependence

of the resistivity at T ≥ θR. Similar linear high temperature dependences have also been

predicted by scattering theories for one-dimensional organic conductors including Um-

klapp processes (see Tab. 2.4) due to the number of excited acoustic phonons increasing

with temperature.

A scattering process involving two translons or librons of wave vectors q⃗ and q⃗′ has

been proposed in literature to account for the ρ ∝ T 2 dependence frequently observed in

organic conductors [124]. Being a second order process, it also explains the strong pressure-

dependence of the resistivity. In another theory, Casian et al. incorporated the mutual

cancellation of two interfering interaction mechanisms between electrons and longitudinal

acoustic phonons into their calculation of the scattering time for a strictly one-dimensional

model [126]. In addition to the deformation potential scattering (i.e. the e�ective �uctua-

tion of the transfer integral t) described above, a polaronic interaction taking into account

the polarization and the accompanied shift of surrounding molecules by the excess elec-

trons is considered in their theory. A high relative strength γ of the latter to the former

scattering mechanism predicts high mobility states inside the conduction band of the

quasi-1D organic conductor tetrathiotetracene-iodine (TTT2I3), as depicted in Fig. 2.17.

When the polaronic interaction becomes comparable to the deformation potential scat-

tering (γ>1), a small band of electronic states attains very high conductivity values due

to the divergent relaxation time. Whether a preferred polaronic interaction is achievable

is doubted by other authors because the theory neglects the rather high screening e�ects

limiting the polaronic interaction in organic conductors compared to semiconductors [122].

In addition to acoustic phonons, the interaction of optical phonons with charge carriers

may need to be considered. In Tab. 2.4 a scattering rate for nonpolar optical phonons is

therefore included, too.

The simple band description of charge transport in solids neglects the electrons' mutual

interaction due to their Fermi character and the Pauli exclusion principle. At �rst glance,

this may seem contradictory in view of the quite strong Coulomb interaction between

charged particles. The in�uence of electron-electron interactions was incorporated into

the theory by Lew Landau's approach on Fermi liquids introducing the concept of the

quasiparticle [129]. The idea is the following: In a gas of non-interacting fermions the

particles will behave free and independent of each other. Slowly turning on the interaction

between them is similar to increasing the density of the gas, mimicking the change from a

gas to a liquid. Landau showed that fermions in an interacting liquid can be treated similar

to the particles in an ideal gas but with renormalized e�ective mass m∗ and momentum

p. They are called quasiparticles. This concept has spread into other theories as well,
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Figure 2.17: Theoretically calculated electrical conductivity of the organic conductor TTT2I3. When the
polarization scattering becomes comparable to the deformation potential interaction (γ>1), a band of
electronic states attains very large relaxation times leading to high conductivity states. From: [126]

e.g. in the description of lattice vibrations by phonons or of holes in semiconductors. In

a metal, a free charge carrier with energy ϵ1 will only be able to interact with states

close to the Fermi energy. As the interaction includes two particles, the scattering rate

τ−1
e−e,3D(ϵ1) ∝ (ϵ1 − ϵF )

2 ∝ (T/TF )
2 results in a temperature-dependent resistivity of the

form [127]:

ρ = Aee · T 2 . (2.62)

This temperature dependence is found in ordinary metals at low temperatures vali-

dating their Fermi liquid behavior. On the other hand, a linear temperature dependence

is predicted for one-dimensional electron gases with strong electron-electron interaction

[127].

Electrical Conductivity in Organic Metals

For (DCNQI-h8)2Cu the resistivity between 1.5K and 300K was determined to follow a

power law [85]

ρ(T ) = ρ0 + A · Tα , (2.63)

with α = 2.3 supporting the idea of an increased electron-electron scattering deter-

mining the charge carrier mobility. Yet, the assignment to a distinct scattering mech-
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anism is not straightforward [7]. There has been an intense discussion with regard to

the temperature-dependent conductivity of the related charge transfer salt TTF-TCNQ,

also revealing α = 2.3, and whether this exponent originates from strong electron corre-

lations or anomalous electron-phonon scattering [122]. Mazumdar and Bloch calculated

short-range electron correlations as a function of band �lling and concluded that, when

long-range electrostatic e�ects are included, a screening of the charge carrier's Coulomb

repulsion becomes e�cient at intermediate band �llings between 1/4 and 1/2. In these

cases electronic correlation e�ects are negligible [86]. Contrarily, for quarter- or semi-�lled

bands the correlations are strong, resulting in a gap at the Fermi energy and therewith, to

a Mott-Hubbard transition, as outlined in Sec. 2.2. TTF-TCNQ as well as (DCNQI)2Cu,

with charge fractions of δTCNQ = 0.59 [130] and δDCNQI/2 = 0.67 [68] residing on the re-

spective molecule, both give rise to band �llings of about 1/3. Therefore electronic correla-

tions should be of minor importance in these material systems. In contrast, the conduction

band of (DMe-DCNQI)2Li is only �lled to 1/4. The resulting stronger electronic correla-

tions are re�ected in the semi-metallic transport properties above 60K, corresponding to

a 4kF Wigner crystal (compare Sec. 2.2).

The generally quite large electron-phonon interaction with respect to the electronic

bandwidth in organic semiconductors intuitively marks charge carrier scattering by

phonons to govern the relaxation time in organic conductors as well. The two-libron scat-

tering processes discussed above scale the resistivity at high temperatures proportional

to T 2 because the distribution functions of two phonons are involved. It compares well

to the temperature dependence of many organic conductors. Yet, a preferred interaction

with two librons instead of one phonon is controversial. For example, inserting the calcu-

lated scattering time of τ2l = 3× 1015 s−1 for TTF-TCNQ into Heisenberg's uncertainty

principle unfolds a bandwidth of 2 eV being several times larger than the observed one

[122]. On the other hand it may explain the huge pressure dependence observed for

the electrical resistivity of organic metals due to the higher-order process involved. In

contrast, a scattering rate following electron-electron interactions is supposed to be in-

dependent of pressure [127]. Optical phonon scattering in TTF-TCNQ may also account

for a temperature dependence of ρ ∝ T 2.3, as calculations by Conwell have shown, taking

into the account the details of the phonon spectrum [131].

An important point when comparing scattering theories to experimental data is that

all of them have been derived for constant-volume conditions. As the resistivity is generally

measured under constant pressure, the large contraction of organic conductors needs to be

considered when comparing to any theoretical prediction [132]. For instance, the electrical

resistivity of TTF-TCNQ changes from a ρ ∝ T 2.3 to a ρ ∝ T 1 behavior when going

from constant pressure to constant volume conditions [133], in agreement with a mobility
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limited by acoustic phonon scattering. Even more, the electron-electron scattering rate

in one-dimensional electron gases also predicts a linear temperature dependence of the

resistivity [127]. Hence, it is important to not only analyze the electrical resistivity of

organic conductors but to holistically investigate all electrical transport quantities which

is the aim of this thesis.

Tomonaga-Luttinger Liquid

The Tomonaga-Luttinger-liquid model (or often just called Luttinger liquid) describes

the properties of perfectly one-dimensional metals. In the strict one-dimensional limit,

some of the previous assumptions on the Fermi liquid, e.g. the negligible electron-electron

interaction and its transfer into renormalized parameters like the e�ective mass, do not

hold as a result of the reduced dimensionality. A Luttinger liquid is a paramagnetic one-

dimensional metal without Landau quasiparticle excitations [134].

Figure 2.18: Comparison of the momentum distribution predicted by Fermi and Luttinger liquid theory.
Whereas the Fermi liquid shows a sharp drop at kF at T = 0 even for �nite interactions, the Luttinger
liquid follows a power-law behavior. From: [135]

Basic assumptions of the Luttinger liquid are the gapless spin and charge excitations

and their linear dispersion (ων ≈ vν |q⃗|) for low-energy excitations close to the Fermi wave
vector kF . In the absence of electron-electron interactions the velocity vν is equal to the

Fermi velocity vF for electron-hole excitations. When interactions are switched on, they

may cause a gap in the spin or charge excitation spectrum, indicated by a Mott insulator

or spin-density-wave. An energy gap in the charge carrier excitation spectrum will shift

the system to a band insulator. It is also possible that excitations of charges and spins

remain gapless but decouple from each other, with di�erent velocities vν for spins and

charges [135]. Compared to the Fermi liquid, the momentum distribution function of the

Luttinger liquid does not show a discrete step at kF for T = 0 but varies continuously

following a power-law n(k) ∝ |k − kf |ϕ, as indicated in Figure 2.18. The exponent ϕ is

connected to the Luttinger interaction parameter Kρ by [134]:
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ϕ =
1

4

(
Kρ +

1

Kρ

− 2

)
. (2.64)

Kρ characterizes the strength of electron-electron interactions with Kρ < 1 (Kρ > 1)

referring to repulsive (attractive) electron-electron interactions and Kρ = 1 representing

the case of negligible mutual interactions. The temperature dependence of the conductivity

can be derived to [134]

σ ∝ T 3−n2Kρ , (2.65)

with 1/n being the band �lling. The Luttinger liquid theory only holds true for strictly

one-dimensional conductors but nearly all real sample systems do not exhibit perfectly

one-dimensional Fermi surfaces. This is especially the case for organic crystals in which

conduction occurs on spatially separated chains with �nite coupling. Therefore, the Lut-

tinger liquid theory should only be of limited signi�cance for this material class. However,

it was demonstrated that some quasi-1D organic conductors show rather Luttinger liquid-

like behavior at high temperatures [136]. It was suggested that the corrugated Fermi

surfaces, originating from interchain coupling, smooth out for kBT > t⊥, with t⊥ being

the interchain transfer integral characterizing the orbital overlap perpendicular to the di-

rection of preferred charge transport [137]. As a result, a crossover from a Fermi liquid to

a Luttinger liquid is likely to occur.

Conduction in Semiconductors

In intrinsic semiconductors, the temperature dependence of the electrical conductivity

will not only depend on the mobility µ(T ) of charge carriers, but also on the number of

charge carriers n(T ) excited across the energy gap ϵg, i.e. [39]

σ(T ) = n(T ) · µ(T ) · e ∝ T−αe−ϵg/(2kBT ) . (2.66)

An extrinsic semiconductor provides additional charge carriers from dopants at an

energy level of ϵd with respect to the transport band. In this case, the conductivity scales

according to:

σ(T ) = n(T ) · µ(T ) · e ∝ T−αe−ϵd/(kBT ) . (2.67)

In some cases, even conducting states inside the energy gap may be formed. For in-

stance, disorder may create tails of localized energy states reaching into the bandgap

and contributing via hopping processes to conduction. The variable range hopping model

predicts a conductivity of [41]
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σ(T ) ∝ e−(T0/T )
1

1+d (2.68)

where d denotes the dimension of the crystal volume and ∆ϵ = kBT0(T/T0)
1

1+d is

the energy spread of the localized states. This contribution may gain importance at low

temperatures when the thermal energy to excite charge carriers across the bandgap is

small.

2.5.3 Nonlinear Conduction in Organic Conductors

In organic CT salts characteristic nonlinear conduction phenomena have �rst been re-

ported for the quasi-one-dimensional mixed-stack organic conductor Tetrathiafulvalene-

p-Chloranil (TTF-CA) [13]. Subsequently, the characteristic nonlinear conduction phe-

nomena have been observed in a variety of organic charge transfer salts characterized by

di�erent ground states, such as spin-Peierls systems like K-TCNQ [17] or charge-ordered

states as in α-(BEDT-TTF)2I3 [138, 139]. The e�ects have been proposed for application

in organic thyristors, i.e. DC/AC converters, as well as resistive memories [19, 21]. Most

of the observed nonlinear phenomena seem to have in common, that the current volt-

age characteristics are S-shaped when current-driven with negative di�erential resistance

(NDR) above electric �elds of about 102−104 V
cm
. The nonlinear conduction only seems to

occur in a temperature range of strongly temperature-dependent resistivity. In materials

exhibiting an insulator-to-metal transition nearby this temperature regime, the e�ect is

further enhanced [20]. Experimentally, Iwasa et al. found a phenomenological relationship

between the current density J and the electrical conductivity σ for organic CT salts [140]

σ = σ1 · exp
− ∆ϵ

kBT +σ2 · Jn (2.69)

in which the �rst term is the usual low-�eld conductivity and the second term describes

the nonlinearity with n ≈ 1.5− 1.8. In spite of the similar phenomenological description

by Eq. 2.69, the unambiguous microscopic origins of the nonlinear conduction are still

under debate and may vary for the di�erent material systems under study [20, 141, 16,

139, 142, 14].

Electrothermal Model

The distinct nonlinear conduction e�ects observed in a variety of organic conductors with

di�erent ground states call for a more uniform theoretical description. Mori et al. [143] were

the �rst to emphasize the connection between the steepness of resistivity curves and the

electric threshold �eld for the onset of nonlinear conduction. Employing a phenomenolog-

ical electrothermal model, nonlinear current-voltage characteristics have been successfully
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simulated for a variety of organic conductors [142, 143], including (DCNQI)2Cu [18]. The

model elucidates the temporal increase of a system`s temperature T in the presence of the

Joule heating power P and thermal losses due to heat conduction, characterized by the

thermal conductivity κ [143]:

nCeff
dT

dt
= P −∇{κ∇T} . (2.70)

Here, the e�ective heat capacity per volume nCeff is distinctive for the subsystem the

electrical energy is transferred to. The supplied electrical energy reads P = σ(T ) ·E2 and

P = J2

σ(T )
for a two-probe voltage-driven and a four-probe current-driven setup, respec-

tively. E and J denote the electric �eld and current density while σ(T ) represents the

temperature-dependent conductivity of the material. Under the assumption of homoge-

neous current distribution in the sample and Newtonian cooling, Eq. 2.70 simpli�es to

[143]

nCeff
dT

dt
= σ(T ) · E2 − α∗ · {T − T0} (2.71)

where the parameter α∗ is an energy transfer rate to the environment characterized

by the respective dissipation mechanism and sample geometry. Assigning the e�ective

speci�c heat to distinct microscopic origins of electronic or phononic nature, the energy

�ow into the individual microscopic subsystems may be uncovered and conclusions on the

scattering mechanisms of charge carriers may be drawn. A value close to the speci�c heat

of the material discloses a uniform electrical heating of the sample while smaller values

indicate the non-equilibrium excitation of speci�c quasiparticles being unable to e�ciently

dissipate the deposited excess energy to the environment or to other excitations.

By numerical integration of Eq. 2.71, the transient conductivity σ(T [t]) after applying

an electric �eld pulse may be calculated in case of known temperature-dependent con-

ductivity. Adjusting the parameters α∗ and nCeff enabled Mori et al. to simulate the

experimental, nonlinear current-voltage characteristics at �xed pulse widths for a variety

of organic conductors. The temperature-independent values derived for nCeff are usually

small compared to the total speci�c heat of the materials and are taken to be indicative of

the electronic origin of the nonlinear conduction. In this context, the temperature T = Te

can be interpreted as a parameter for the population of excited electronic states which

may decouple from the lattice temperature TL. The energy �ow proposed by the elec-

trothermal model is illustrated in Fig. 2.19. At �rst, the power provided by the electric

�eld increases the electronic energy. When the transfer of energy from the electronic to the

lattice system is insu�cient, electrons begin to populate excited stated in the band which

is phenomenologically described by the electron temperature Te. This non-equilibrium
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population of hot electron states implies a small electron-phonon interaction. Only subse-

quently, the electronic system is able to transfer its energy to the lattice which is usually

assumed to be in good thermal contact with the external environment, i.e. TL = T0.

Figure 2.19: Microscopic interpretation of the electrothermal model proposed by Mori et al. [143]. The
energy provided by the electric �eld is absorbed by the electronic subsystem. Due to ine�ective energy
transfer from the electronic system to the lattice, electrons begin to populate excited energy states and
only subsequently thermalize. The lattice is in thermal contact with the surrounding heat bath but is
usually assumed to be at ambient temperature, i.e. TL = T0. Adapted from: [143]

2.5.4 Electronic Speci�c Heat

Electrons in metals bu�er not only electric but also thermal energy. The speci�c heat of

electrons treated as a free Fermi gas at constant volume reads [144]

cel =
π2

3
g(ϵF )k

2
BT =

mk2
B

~2

(
π2n

9

)1/3

T =
π2

3

T

TF

3nkB
2

= γT (2.72)

which is reduced compared to the value of 3
2
nkB expected for a classical free electron gas

by a factor π2

3
T
TF
, re�ecting the quantum-mechanical nature of electrons. The experimental

and theoretical Sommerfeld coe�cients γ of some metals are given in Tab. 2.5.

Na Al Ag Cu CeCu2Si
[145]
2 (DCNQI)2Cu

γexp [ mJ
molK3 ] 1.38 1.38 0.65 0.7 1100 25[34]

γexp
γtheo

=
m∗

th

me
1.26 1.48 1.38 1.00 100 4

Table 2.5: Experimental Sommerfeld coe�cient γ of some metals compared to their theoretical predictions
from Eq. 2.72 [144]. The thermal mass ratio of (DCNQI)2Cu was calculated from the density of states
published by Miyazaki et al. [67].
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The absolute values of the electronic speci�c heat are signi�cantly lower than the lat-

tice speci�c heat contribution outlined in Ch. 2.4.2 and only come into play at cryogenic

temperatures. For simple metals, the theoretical prediction by Eq. 2.72 matches the ex-

perimental values quite good which are always larger due to the interaction of electrons

with the periodic lattice potential, phonons and each other. The deviation can be ac-

counted for by a higher thermal e�ective mass m∗
th. Some multivalent metals containing

f-electrons reveal very high thermal e�ective masses, an example of which is CeCu2Si2.

These are called heavy-fermion systems in which electron-electron interactions govern the

relaxation of the electronic distribution [145]. For the organic conductor (DCNQI-h8)2Cu,

an enhanced e�ective thermal mass was found due to a high density of d-electron states at

the Fermi-level rather than electronic correlations [146]. For electron-correlated materials,

γ is related to the resistivity coe�cient Aee in Eq. 2.62 by the uni�ed Kadowaki-Woods-

Relation [147]

Aee =
81

4π~k2
Be

1

ng2(ϵF ) ⟨v0x⟩2 ξ2
· γ2 ∝ m∗2 (2.73)

for which the parameter ξ takes values close to unity and the electron velocity ⟨v0x⟩
is averaged over the Fermi surface.
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2.6 Seebeck Coe�cient

In Eq. 2.1 the Seebeck coe�cient was de�ned to scale the electric �eld caused by a

temperature gradient applied to a material. Employing the Boltzmann theory outlined

in the previous section, analytical representations of the thermopower for metals and

semiconductors will be given here. It will be shown that electronic correlation gives rise to

distinct thermoelectric e�ects. Finally, non-di�usive thermopower contributions gaining

importance in solids of strongly coupled electron and phonon systems are discussed, too.

2.6.1 Di�usive Thermopower

The electronic contribution to the Seebeck coe�cient can be calculated in the framework

of the Boltzmann theory as outlined in Sec. 2.5. From Eq. 2.55b, the Seebeck coe�cient

of an isotropic 3D solid evaluates to [39]

S = ∓ 1

eT

K1

K0

= ∓ 1

eT

∫
g(ϵ) [v⃗(ϵ)⊗ v⃗(ϵ)] τ(ϵ− µ)∂f

0

∂ϵ
dϵ∫

g(ϵ) [v⃗(ϵ)⊗ v⃗(ϵ)] τ
∂f 0

∂ϵ︸ ︷︷ ︸
σ′(ϵ)

dϵ

= ∓ 1

eT

∫
(ϵ− µ)σ′(ϵ)dϵ∫

σ′(ϵ)dϵ
,

(2.74)

introducing the di�erential conductivity σ′(ϵ). Eq. 2.74 reveals the thermopower to

be determined in �rst approximation by the energy of the states contributing to the

charge carrier transport relative to the chemical potential. In metals the Fermi energy lies

within the band, i.e. the transport levels are close to the Fermi energy and the Seebeck

coe�cient takes small values of about µVK−1. In contrast, the Fermi energy of non-

degenerate semiconductors is located in the bandgap of forbidden energy states causing a

large energy di�erence to the charge-carrying states, yielding large Seebeck coe�cients on

the order of mVK−1. The two cases of the degenerate and non-degenerate approximation

for metals and semiconductors are treated separately in more detail below. In addition,

further implications from the correlated interaction of charge carriers and spins will be

presented.

Metals

For a degenerate conductor (kBT ≪ ϵF ) with isotropic energy bands, the Seebeck coe�-

cient can be worked out employing the relation K1 = π2/3(kBT )
2[∂K0(ϵ)/∂ϵ]ϵ=ϵF , giving

rise to a linear temperature dependence of the form [121]:
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S =
π2ek2

BT

3σ

[
∂K0(ϵ)

∂ϵ

]
ϵ=ϵF

=
π2k2

BT

3e

[
∂ lnσ(ϵ)

∂ϵ

]
ϵ=ϵF

. (2.75)

If a single band dominates the charge carrier transport, the thermopower can be ex-

pressed by [148]

S = −π2k2
BT

3|e|
·

[
cos δπ/2

2|t|(1− cos2 δπ/2)
+

τ ′(ϵ)

τ(ϵ)

∣∣∣∣
ϵ=ϵF

]
(2.76)

with the transport integral t = W/4, the bandwidthW , the charge transfer ratio δ and

the energy-depedent relaxation time τ(ϵ) and its respective derivative τ ′(ϵ). A relaxation

time of the form τ = c0ϵ
r together with a Fermi energy of EF = Wδ/2 yields:

S = −2π2k2
BT

3|e|W
·
[

cos δπ/2

(1− cos2 δπ/2)
+

r

δ

]
. (2.77)

Deviations from a linear dependence can occur if the relaxation time strongly depends

on energy and temperature or if more than a single band contributes to the electrical

conductivity. In general, the Seebeck coe�cient can be written as the sum of the individual

band thermopowers Si weighted by their respective conductivities σi [149]:

S =

∑
i σiSi∑
i σi

. (2.78)

Eq. 2.78 again emphasizes that only transport states of high conductivity contribute

to the Seebeck coe�cient.

Semiconductors

Assuming a similar energy-dependent relaxation time as above, the Seebeck coe�cient for

the isotropic, non-degenerate approximation (kBT ≫ EF ) reads [37]

S = ∓k

e

[
ϵc/v − ϵF
kBT

−
(
r +

5

2

)]
(2.79)

where ϵc/v denotes the position of the conduction or valence band relative to the Fermi

energy. For both, electrons and holes being present in the system, Eq. 2.78 applies and

the measurement of the Seebeck coe�cient allows for the determination of the majority

carriers in semiconductors. Also, information on the Fermi energy in doped semiconductors

and the charge carrier scattering mechanisms may be obtained. In the case of incoherent

transport via variable range hopping processes as described by Eq. 2.68, the �nite density

of states g(ϵF ) at the Fermi level determines the thermopower [41]:
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S =
g(ϵF )∆ϵ2

eT
=

g(ϵF )k
2
BT

2
0

e

(
T

T0

) d−1
d+1

∝


T 1/2 , d = 3

T 1/3 , d = 2 .

const , d = 1

(2.80)

Similar to the conductivity it depends on the dimensionality d of the system.

Interacting Spins and Charges

The mutual interaction of charges as well as the coupling of spins to the magnetic moment

of ions can have signi�cant e�ects on the Seebeck coe�cient [41]. In Sec. 2.2.2, a one-

dimensional conductor close to half band �lling was predicted to be an insulator in the

presence of strong electron-electron correlations. This is caused by the electrons repelling

each other and distributing almost equidistant among the respective lattice sites. In Eq.

2.11a, the thermopower was de�ned as the entropy per charge carrier. The entropy Σ of

a system of N electrons distributing among NL lattice sites is [41]

Σ = kB ln

[
NL!

N !(NL −N)!

]
. (2.81)

Taking the derivative with respect to N results in Heikes' formula for hopping ther-

mopower [41]:

S =
∂Σ

∂N
= −kB

|e|
ln

[
1− δ/2

δ/2

]
. (2.82)

Here, δ again denotes the charge transfer ratio determining the band �lling in organic

conductors. This historic formula does not take into account the Pauli exclusion principle

but only allows for one charge carrier per site due to the strong on-site Coulomb inter-

action. In the strong U-limit, the spin degeneracy is often lifted and the additional spin

entropy of kB ln 2 has to be added to Eq. 2.82, resulting in the Seebeck coe�cient of a

Mott-Hubbard metal exhibiting strong Coulomb repulsion [41]:

S =
∂Σ

∂N
= −kB

|e|

[
ln

(
1− δ/2

δ/2

)
+ ln 2

]
. (2.83)

2.6.2 Nondi�usive Phonon Drag Thermopower

In addition to the purely electronic contribution, the so-called phonon drag can further

enhance the thermopower of a given material [41]. It is caused by the phonon heat �ow

forcing charge carriers along a temperature gradient due to electron-phonon coupling. It

can be deduced from the following picture. The charge carrier conduction is limited by

the interaction with impurities, defects as well as scattering by other quasiparticles such
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as phonons. If electrons and phonons were only interacting with each other, both would

eventually move at the same velocity because momentum is only transferred in between

them. In this situation the electrical conductivity of the sample would be in�nite due

to momentum conservation. When receiving momentum from the electrons, the phonons

need to redistribute the momentum to other entities in order to give rise to resistivity.

These can be impurities, boundaries or other phonons via non-momentum conserving

scattering events (U-processes). The velocities of phonons u⃗ph and electrons v⃗el are then

related by [41]

u⃗ph = v⃗el
τ−1
ph−e

τ−1
ph−e + τ−1

other

(2.84)

with the phonon-electron relaxation rate τ−1
ph−e, the rate of phonon relaxation via other

channels τ−1
other. Eq. 2.84 relates the resulting phonon heat �ow U⃗ph = CphT u⃗ph to the

electron velocity v⃗el = J⃗/ne giving rise to a Peltier heat �ow proportional to the current

density. With the help of Eqs. 2.2 and 2.3 the corresponding Seebeck coe�cient then reads

[41]

Sdrag =
Cph

ne

τ−1
ph−e

τ−1
ph−e + τ−1

other︸ ︷︷ ︸
β

, (2.85)

Cph characterizing the speci�c heat per volume of the involved phonon modes and

n being the charge carrier density. Assuming a Debye-like speci�c heat as elaborated in

Eq. 2.48 and relative scattering rates of the form β =
(
T0

T

)υ
, one obtains an analytical

expression for the phonon drag thermopower:

Sdrag =
9NkBρdens
nemmol

(
T0

T

)υ (
T

θD

)3 ∫ θD/T

0

dz
z4ez

(ez − 1)2
. (2.86)

Here, ρdens and mmol denote the volumetric mass density and the molar mass, respec-

tively. The phonon drag thermopower rises cubically in temperature for T ≪ θD, goes

through a maximum around T ≈ θD/5 and falls with T−υ for high temperatures due to

the limiting non-momentum conserving scattering process. In case of Umklapp scattering,

υ = 1 is to be expected. Moreover, the phonon drag e�ect is responsible for a reduction

of the phonon scattering part in the resistivity [41]:

ρ = ρ0 + ρe−ph

(
1−

τ−1
e−ph

τ−1
e−ph + τ−1

other

)
. (2.87)
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2.7 Heat Transport

A solid's capability to transfer heat is not only of technological relevance in applica-

tions such as heat sinking, thermal insulation or thermoelectric energy generation, but

also enables a fundamental investigation of solid state transport properties. Heat can be

transmitted via charge carriers, phonons, spins, electromagnetic waves and various other

excitations. The total thermal conductivity κ can be written as the sum of all these

contributions [121]

κ =
∑
i

κi ≈
1

3

∑
i

Civili (2.88)

where Ci is the heat capacity and li = vi · τi is the mean free path of excitation

i with relaxation time τi and velocity vi. Therefore, a detailed analysis of the thermal

conductivity provides insight into the fundamental excitations and their interaction in a

solid. Based on a combination of perturbation theory and Boltzmann equation, in the

following the contributions by charge carriers and phonons will be discussed, representing

the main contributors to heat transport in the investigated material class.

2.7.1 Electronic Thermal Conductivity

Electrons moving in an electric �eld do not only carry charge but also transport heat.

The electronic contribution to thermal conduction can be expressed with the help of Eqs.

2.55c and 2.53 by [121]:

κ′
e =

1

T

[
K2 −

K2
1

K0

]
= κe

(
1− S2σT

κe

)
= κe (1− zT ) . (2.89)

The thermal conductivity κ′
e relates the heat �ow to a thermal gradient in the absence

of an electric �eld. It has to be distinguished from the thermal conductivity κe in the

absence of a charge current (Je = 0) and thus, the obtained thermal conductivity depends

on the measurement con�guration used. However, for small values of zT both thermal

conductivities can be assumed to be identical. In the following, speci�c approximations

to evaluate the transport integrals will be discussed and in particular, the case of the

degenerate and the non-degenerate electron gas as well as a delta function in the density

of states.

Electronic Thermal Conductivity in Metals

The transport integrals Ks can be expanded around the Fermi energy leading to an ap-

proximation of K2 for the degenerate electron gas where the Fermi energy lies within the
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conduction band [39]:

K2 =
π2

3

k2
BT

2

e2
σ(ϵF ) +O(kBT/ϵF )

2 . (2.90)

Neglecting K2
1/K0 ≈ O(kBT/ϵF )

2, Eq. 2.89 reads

κ′
e = κe =

π2

3

k2
BT

e2
σ(ϵF ) = L0 · σ(ϵF ) · T (2.91)

which is the well-known Wiedemann-Franz law (WF law) relating the electronic ther-

mal conductivity to the electrical conductivity σ. It basically states that each charge car-

rier not only transports charge in an electric �eld but also energy. The proportionality fac-

tor L0 = 2.4453× 10−8WΩK−2 is called the standard Lorenz number. The Wiedemann-

Franz law is well obeyed in metals above the Debye temperature when scattering events

are elastic. At lower and intermediate temperatures it breaks down due to inelastic charge

carrier scattering [121]. For the speci�c case of an isotropic, degenerate electron gas it also

does not depend on the speci�c band structure. Similar to the derivation of the Bloch-

Grüneisen formula for the electrical conductivity as given in Eq. 2.61, the relaxation rate

for thermal perturbations taking into account scattering of electrons by acoustic phonons

is given by [121]

1

τth
=

9πh2C2

√
8m∗a3MkBθDϵ3F

(
T

θD

)5

J5

(
θD
T

)
×

[
1 +

3

2π2

(
kF θD
qDT

)2

− 1

2π2

J7(
θD
T
)

J5(
θD
T
)

]
, (2.92)

extending the previously discussed Bloch-Grüneisen formula by two summands origi-

nating from di�erences in the relaxation times. The second term in the squared brackets

arises due to small angle scattering events being able to relax the thermally perturbed

Fermi distribution back into equilibrium. In contrast, small angle scattering processes do

not permit to equilibrate the �eld perturbation as illustrated in Fig. 2.20. The third term

corrects for large angle scattering events which reverse the electron direction but leave the

thermal distribution unchanged, corresponding to a scattering event from + (-) region of

the thermally perturbed Fermi surface to the + (-) region on its opposite site in Fig. 2.20.

The Lorenz number for a degenerate conductor reads with the help of Eqs. 2.92, 2.61 and

2.89 [121]:

L =
κ

σT
= L0

A
(

T
θD

)5
J5

(
T
θD

)
A
(

T
θD

)5
J5

(
T
θD

)
×
[
1 + 3

2π2 (
kF θD
qDT

)2 − 1
2π2

J7(
T
θD

)

J5(
T
θD

)

] . (2.93)
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Figure 2.20: Perturbation of the Fermi distribution by an electric �eld (left) or thermal gradient (right).
The electric �eld shifts the complete Fermi surface while the temperature gradient only smears out the
step function. To relax back to equilibrium, large scattering angles are needed for electric �elds while
small angle scattering events may be su�cient to relax the distribution function in response to thermal
gradients. Thus the two relaxation times can di�er. From: [121]

In the high and low temperature limits of Eq. 2.93, the Lorenz ratio evaluates to [121]

L

L0

≈

{
1, T ≥ θD
π2

3
( qDT
kF θD

)2, T ≪ θD .
(2.94)

At high temperatures, the Wiedemann-Franz law is obeyed due to the dominance

of large angle scattering events determining both, the thermal and the electric �eld

relaxation time. Below the Debye temperature, the number of phonons with high wave

vectors necessary for large scattering angles is limited and small angle scattering processes

gain importance. These only provide a channel for the relaxation of thermal but not of

electric �eld perturbations. As the corresponding relaxation times begin to di�er, the

Wiedemann-Franz law is violated due to the breakdown of the common relaxation time

assumption.

In order to take several scattering mechanisms into account, the thermal resistivities

emerging from the individual scattering mechanisms need to be added up [121]:

1

κtot

= Wtot =
∑
i

Wi =
∑
i

1

κi

. (2.95)
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Including impurity and acoustic phonon scattering, Eq. 2.93 modi�es to [121]

L =
κtot

σT
= L0

ρimp/A+
(

T
θD

)5
J5

(
T
θD

)
ρimp/A+

(
T
θD

)5
J5

(
T
θD

)
×
[
1 + 3

2π2 (
kF θD
qDT

)2 − 1
2π2

J7(
T
θD

)

J5(
T
θD

)

] , (2.96)

ρimp being the electrical impurity resistivity. The normalized temperature dependence

of Eq. 2.96 is depicted in Fig. 2.21a for di�erent impurity levels ρimp/A. It clearly shows the

reduction of the Lorenz number when going below the Debye temperature in an impurity

free sample. Upon increasing the impurity level, a common relaxation time for electric

�eld and thermal perturbations of the Fermi function is restored at low temperatures

and the Lorenz ratio approaches one again. The degree of purity is proportional to the

residual resistance ratio RRR = ρ(0K)/ρ(300K) in real samples. In pure copper wires,

the impurity parameter on the order of ρimp/A = 10−2 has been improved by one order

of magnitude through sample annealing which is re�ected in the temperature dependence

of the Lorenz number, as illustrated in Fig. 2.21b [150].

Figure 2.21: Temperature-dependent Lorenz ratio. (a) The temperature dependence of the Lorenz ratio
as given by Eq. 2.96 normalized to the Debye temperature θD for di�erent impurity concentrations
ρimp/A. The Wiedemann-Franz law is strongly violated below the Debye temperature but on increasing
impurity level a common relaxation time for thermal and electric �eld perturbations is restored at low
temperatures due to impurity scattering. (b) An impurity-dependent, low-temperature Lorenz number
has been qualitatively veri�ed by increasing the perfection of a copper wire via annealing. Adapted from:
[150]
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Electronic Thermal Conductivity in Semiconductors

In semiconductors the electronic part of the thermal conductivity may still have a sig-

ni�cant share in the total thermal conductivity. In the nondegenerate approximation, as-

suming an energy-dependent relaxation time τ ∝ ϵr as expressed in Eq. 2.58, the Lorenz

number according to Eq. 2.89 reads [37]:

L =

(
kB
e

)2(
r +

5

2

)
. (2.97)

The contribution from minority carriers is neglected in this approximation. When two

types of carriers contribute to the electrical conductivity, e.g. electrons and holes in an

intrinsic semiconductor, the total electronic thermal conductivity is given by the sum of

the carrier's thermal conductivities κi and an additional bipolar di�usion term [121]:

κ = κe + κh +
σeσh(Se + Sh)

2

σe + σh

T (2.98)

Si and σi representing the partial Seebeck coe�cients and conductivities of the respec-

tive charge carrier. The additional term arises from the Peltier heat �ow occurring in case

of more than just one type of charge carrier. It is most easily observed in small bandgap

intrinsic semiconductors where the partial conductivities of electrons and holes are high

enough for the e�ect not to be masked by other contributions, such as phonon thermal

conductivity.

In�uence of Density of States

In general, the transport integrals and hence the Lorenz number depend on the material's

density of states g(ϵ). An interesting situation unfolds when the density of states takes the

form of a delta function at the Fermi energy, i.e. g(ϵ) ∝ δ(ϵ−ϵF ). In this case no electronic

contribution to the thermal conductivity may be observed due to a vanishing Lorenz

number. While the realization in a solid is di�cult, theories predict a huge enhancement in

zT for a material with delta-functional density of states [151, 152]. The energy-dependent

scattering time takes an equivalent position in the transport integral of Eq. 2.53 like the

density of states. A narrow Lorentzian shape of the scattering time's energy dependence, as

predicted in Sec. 2.5.2 for the organic conductor TTT2I3, comes very close to the proposed

delta-functional form and similarly should lead to a violation of the Wiedemann-Franz

law [49].
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2.7.2 Lattice Thermal Conductivity

The lattice thermal conductivity describes the heat carried by phonons in a solid. It is also

sometimes called phonon thermal conductivity. Similarly to Eq. 2.88, the phonon thermal

conductivity may be expressed as a sum over the contributions from all phonon branches

i [121, 39]

κph =
1

3

∑
i

civili ≈
1

3
cavslph (2.99)

with the mode-speci�c heat capacity per unit volume ci, the group velocity vi and

the phonon mean free path li. More generally, the phonon thermal conductivity may

also be anisotropic and the exact phonon dispersion along the di�erent crystallographic

directions needs to be considered. The majority of heat is carried by acoustic phonons

due to the small group velocity of optical phonon modes. It leads to the approximation

given in Eq. 2.99 with the acoustic lattice speci�c heat per unit volume ca, the speed of

sound vs and the phonon mean free path lph = vsτph, τph denoting the relaxation time of

the acoustic phonons. In the approximation above τph was assumed to be independent of

energy. Employing the Debye approximation for the lattice speci�c heat and taking the

speed of sound to be independent of frequency, Callaway applied the Boltzmann theory

to the perturbation of the phonon distribution function in order to calculate the lattice

thermal conductivity more rigorously [153]

κph =κ1 + κ2

κ1 =
kB

2π2vs

(
2πkBT

h

)3 ∫ θD/T

0

τtot
x4ex

(ex − 1)2
dx

κ2 =
kB

2π2vs

(
2πkBT

h

)3

(∫ θD/T

0
τtot
τN

x4ex(ex − 1)−2dx
)2

∫ θD/T

0
τtot
τN

x4ex(ex − 1)−2dx
(2.100)

with the Debye temperature θD and the total scattering rate [39]

1

τtot
=

1

τs
+

1

τN
+

1

τU
(2.101)

characterizing the phonon relaxation in the solid. A crystal with solely harmonic inter-

action potentials does not provide any phonon-phonon interaction mechanism and would

exhibit in�nite thermal conductivity [121]. In real crystals the anharmonicity in the inter-

action potential between the atoms and molecules allows for phonon-phonon scattering.

Three interaction mechanisms are included in Eq. 2.101. In addition to elastic scattering
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events described by the relaxation time τS, normal processes (τN) and Umklapp processes

(τU) are distinguished. Similarly to the electron scattering theory, Umklapp processes

involve a reciprocal wave vector as the scattered phonon wave vector points out of the

�rst Brillouin zone of the crystal, in contrast to normal processes. Hence, the momentum

change is signi�cantly larger for Umklapp scattering and results in higher thermal resis-

tivity. Normal processes only play a role at very low temperatures where the number of

phonons with su�ciently high wave vectors permitting Umklapp scattering is negligibly

small. In case of prevailing Umklapp processes, i.e. for τN ≫ τU , κ1 in Eq. 2.100 dominates

the overall thermal conductivity while for N-processes κ2 gives the major contribution.

Several theories have been developed to calculate the phonon-phonon relaxation rate for

Umklapp scattering, the most widely applied one yielding [121]:

1

τU
= AUω

2Te−BU
θD
T . (2.102)

Here, ω denotes the phonon frequency while AU and BU are material-dependent con-

stants. In addition to the interaction with other phonons, the lattice vibrations can also be

scattered by impurities and at the boundary of the crystal. Boundary scattering becomes

important at very low temperatures when the phonon mean free path is comparable to

the crystal dimensions. It can be described by [121]

1

τb
=

1.12vg
d

(2.103)

with the group velocity vg of the phonon mode and the dimension d of the crystal. In

addition, the interaction with impurities can be expressed as [121]

1

τimp

=
V0

4πv3g

(
∆M

M

)3

ω4 , (2.104)

V0 denoting the e�ective volume of the impurity, M being the mass of all atoms in

a unit cell of the crystal and ∆M the mass di�erence between the substance and the

impurity. Depending on the relative concentration of impurities, boundary or impurity

scattering limits the phonon mean free path at low temperatures. Rarely, the e�ect of

N-processes is observed at very low temperatures as well [121]. At high temperatures

(T > θD), the lattice heat capacity remains almost constant and the Umklapp-dominated

phonon scattering, as described by Eq. 2.102, together with Eq. 2.100 yields a κph ∝ T−1

dependence.

So far, the phonon thermal conductivity was discussed in terms of acoustic phonons

carrying the majority of heat. Yet, the phonon spectra in molecular crystals are signif-

icantly more complex due to the large number of molecules per unit cell and the low
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symmetry of the latter, leading to an increased number of optical phonon modes. Some

of these modes have frequencies of similar magnitude to the acoustic phonon branches

allowing for optical-acoustic phonon coupling. An expression for the resonant scattering

rate of acoustic phonon by localized optical phonon modes has been phenomenologically

derived from expressions for resonant defect scattering [154]

1

τR
= N0D

ω2
0ω

2

(ω2
0 − ω2)2

(2.105)

with the optical phonon frequency ω0, the acoustic phonon frequency ω, the coupling

strength D and density of scatterers N0. These resonant phonon modes are often due to

disorder of molecular units.

2.7.3 Minimum Thermal Conductivity in Solids

In glasses, representing amorphous insulators without long-range order, phonons are still

the major carrier of heat but with a signi�cantly reduced phonon mean free path [121].

The thermal conductivity of glasses rises for very low temperature (<1 K) with κ ∝ T n

where the observed n ≈ 2 has been attributed to the scattering of low-energy phonons.

Following the steep rise, a plateau is often observed which has been interpreted in terms

of several scattering mechanisms, such as structural disorder, tunneling interaction or

resonant optical-acoustic phonon coupling as described by Eq. 2.105. Above about 20 K

the thermal conductivity of glasses rises again. At su�ciently high temperatures, Kittel

argued that the phonon picture of plane waves propagating through a crystal breaks down

for glasses by virtue of a phonon mean free path being on the scale of the disorder in the

material [155]. It may be compared to charge carrier transport in organic crystals often

revealing a crossover from coherent band to incoherent hopping transport. When the

mean free path is set by the disorder, the thermal conductivity follows the heat capacity

which rises with temperature to a constant value, explaining the characteristic thermal

conductivity of glasses. The characteristic temperature-dependent thermal conductivity

of a glass is compared to the phonon thermal conductivity of a crystal in Fig. 2.22.

The model of strongly-damped localized Einstein oscillators which transfer their energy

within half of an oscillation period 2/τE in a random walk can theoretically capture the

physics. Implementing the Einstein speci�c heat of optical phonons, a mean free path

corresponding to the interatomic spacing l = n−1/3 and a thermal velocity of vth = 2l/τE,

the Einstein thermal conductivity yields [157]

κEin =
n−1/3k2

BθEx
2ex

πh(ex − 1)2
(2.106)
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Figure 2.22: Schematic lattice thermal conductivity of a crystal and a glass. For a crystal the thermal
conductivity is limited by the phonon mean free path above the Debye temperature and by the heat
capacity at cryogenic temperatures, resulting in a pronounced maximum in between these limits. The
phonon mean free path of glasses is less temperature-dependent and the thermal conductivity increases
with temperature following the heat capacity. Adapted from: [156]

with the Einstein temperature θE and the reduced temperature x = θE/T . A similar

result can be obtained by applying the Debye instead of the Einstein model. The general

approach is to consider di�erent phonon modes contributing to the thermal conductivity

by [121]

κMin =

∫ ∞

0

dC

dω
v(ω)l(ω)dω . (2.107)

Here, dC
dω

denotes the speci�c heat per frequency. By applying the Debye model for the

speci�c heat and assuming the scattering length to be half of the phonon wavelength, a

minimum thermal conductivity per mode can be deduced from this approach [157]

κMin =
2

2.48
n2/3kBv

(
T

θc

)2 ∫ θc

0

x2ex

(ex − 1)2
dx, (2.108)

with the mode speci�c cut-o� temperature θc = ~
kBvi(6π2n)1/3

. For the total thermal

conductivity the two transverse and one longitudinal modes are summed up, resulting in

a high temperature limit (T ≫ θD) of Eq. 2.108 [157]

κMin =
1

2.48
n2/3kB(2vt + vl) , (2.109)

with the transverse and longitudinal speed of sound vt and vl.

Compared to other thermal properties, such as the heat capacity, theories on the ther-

mal conductivity do quantitatively not compare as good to the experimental data. On the

one hand this is due to the many simultaneous excitations giving rise to thermal conduc-
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tivity in solids which can be hard to distinguish. On the other hand the lack of coherent

data sets on high-purity samples of di�erent material classes hinders a comprehensive

general understanding. For this reason, the presented theories are expected to predict a

certain behavior, trend and magnitude rather than agreeing in absolute values.
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Chapter 3

Experimental Methods

This chapter is intended to outline all relevant experimental methods employed in this the-

sis. Firstly, the details of the electrolytic crystal growth to obtain high-purity (DCNQI)2M

single crystals are presented. It follows the more detailed depiction in my diploma the-

sis [65] and was updated with respect to the latest advances of this procedure. In the

second part, the thermoelectric characterization setup is introduced. It was newly de-

signed, implemented and characterized in the course of my PhD work and allows for an

unprecedented, comprehensive characterization of all relevant thermoelectric quantities in

organic conductors. As such, it constitutes an integral part of the scienti�c achievement

accomplished by this thesis.
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3.1 Electrolytic Crystal Growth

Experimental Setup

The investigated (DCNQI)2M (M=Cu, Li) radical anion salts were grown by electrocrys-

tallization representing a well-established method to grow high-purity single crystals of

organic conductors. A typical electrolysis cell used in this thesis is shown in Fig. 3.1a.

A n o d e sC a t h o d e s

H - C e l l s  i m m e r s e d  i n
W a t e r - F i l l e d  H e a t  B a t h

R e f r i g e r a t o r / H e a t
C y c l e  +  T h e r m o s t a t

C u r r e n t
S o u r c e s
( D C + A C )

b )a )

T e m p e r a t u r e
M o n i t o r

Figure 3.1: Experimental setup for electrocrystallization. (a) Scheme of the electrolysis cell used (adapted
from: [58]) and (b) photograph of the electrolytic growth apparatus.

The H-cell (or sometimes U-cell), made of glass with an additional tube connecting

the anode and the cathode region at the top, contains a glass �lter (frit) at the bottom to

prevent di�usion of anode products to the cathode. The two rod-like platinum electrodes

have dimensions of 10 mm x 1 mm (length x diameter). The electrical feedthroughs are

molded into glass and the whole electrode is �xed onto the H-cell by a Quick�t screw plug

with a silicone-PTFE seal. Two inlets with valves allow to �ush the �lled cell with Argon

via the top bridge. As their positions slightly di�er in height, �lling Argon into the lower

inlet will push out the air in the cell due to its higher density, ensuring inert conditions

during crystal growth. Because of the sensitivity to impurities, the electrocrystallization

process needs to be preceded by a thorough cleaning procedure of all glassware used.

Cleaning & Preparation of the Cell

In a �rst step, all glassware was cleaned in an automated laboratory dish washer in an

alkaline cleaning detergent. Afterward, the glassware was �lled with 0.02 M KMnO4 and

was allowed to stand for one week. KMnO4 oxidizes most organic impurities leaving behind
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manganese dioxide. After removing the KMnO4 and washing the cell with distilled water,

the residual manganese dioxide was dissolved by �lling the glassware with concentrated

hydrochloric acid (37%) for one day. Next day, the glassware is rinsed again with distilled

water at least 5 times before it is baked-out in an oven at 420 K to remove water condensed

on the surface. Finally, the last step is repeated with dry acetonitrile which is used as

solvent in the crystallization process.

The electrolyte was prepared in a glovebox under nitrogen atmosphere. For this, a

screw top jar is taken out of the oven and transferred to the glovebox via a load-lock sys-

tem while still hot. DCNQI and a proper cation salt are dissolved in 50ml of acetonitrile

at a concentration of 7mmol/l and 5.5mmol/l, respectively. Cu(CH3CN)4ClO4 or LiClO4

were employed as conducting salts, depending on the desired metallic counterion in the

�nal (DCNQI)2M (M = Cu, Li) product. The weigh-in and solvation procedure is directly

conducted in the purged jar to avoid any contamination from the usage of multiple glass

wares. The high-purity acetonitrile (99.9%, Sigma Aldrich) was additionally dried by a

molecular sieve of 3 Å pore size before use. The resulting solution was retrieved from

the glovebox and outgassed in an ultrasonic bath for 20 minutes. In the mean time,

the H-cell is taken out of the oven, sealed and �ushed with Argon while still hot. The

platinum electrodes are etched with aqua regia and washed with acetonitrile. In a last

step, the electrolytic solution is immersed into the H-cell in a counter �ow of Argon and

the electrodes are inserted into the cell. The complete arrangement is �nally �ushed with

Argon after which the cell is sealed and immersed into a thermostat-controlled bath at

305 K. Lastly, a constant current between 5 µA and 20 µA was supplied to the cell for

several days by means of an electrolysis cell controller (Elab 18/96). The full working

setup is illustrated in Fig. 3.1b.

Crystal Growth

The redox reaction occurring during the crystal growth are exemplary outlined for the

(DCNQI)2Cu crystals. DCNQI molecules are reduced to DCNQI− at the cathode and

subsequently, they form (DCNQI)2Cu single crystals by the reaction with the Cu+ ions

of the copper perchlorate. Upon crystallization, an additional charge transfer process

between DCNQI− and Cu+ takes place resulting in the formation of the �nal product:

DCNQI + DCNQI− + Cu+ 
 (DCNQI−2/3)2Cu
+4/3 . (3.1)

Figure 3.2a illustrates the crystal growth of radical anion salts at the cathode. As one

can see, the crystals preferably grow at the edges of the cathode as they will o�er a higher

local electric �eld as well as more structural inhomogeneities at the surface serving as
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nucleation sites. When the electrolysis is stopped too late, the crystals branch out due to

the di�usion-limited aggregation and do not show de�ned crystalline shape anymore.

Figure 3.2: Crystals grown by electrolysis. (a) Growth of needle-like crystals at the cathode of an elec-
trolysis cell. (b) (DCNQI)2Cu single crystal of several mm length and about 0.1mm in diameter. (c) The
SEM image of a crystal was kindly taken by Stephan Braxmeier at the ZAE Bayern.

At the end of the electrocrystallization the cathode is pulled out of the electrolysis

cell and the crystals are swept o� the electrode by ethanol onto �lter paper. Thereafter,

the crystals are washed with diethylether, separated with an ultra-�ne tweezer and stored

under inert conditions.

The dark-colored needle-like crystals attain thicknesses between 15 µm and 200 µm

and lengths of up to 3 cm. Their re�ective surface indicates the metallic character of

the samples. Figure 3.2b depicts a photograph of a (DCNQI)2Cu crystal. The crystalline

morphology with well-de�ned side faces and edges may also be inferred from the scanning

electron microscope (SEM) image in Fig. 3.2c. The crystal structure has been determined

by X-ray di�raction and was found to agree with the structures published previously

[71, 66]. The weak binding forces in organic crystals generally classify them as soft matter

and accordingly, the fragile samples tend to break easily when grabbed with the tweezer.

In order to minimize the defects induced by sample handling, they were transferred with

the help of a biopunch stamp to which the crystals adhere electrostatically.
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3.2 Electrothermal Characterization of Charge and

Heat Transport

The electronic and lattice properties of organic materials are very sensitive to the degree

of purity and crystal perfection [158, 128, 159]. Moreover, the physical properties are most

often highly anisotropic due to the strong spatial variation of the electronic overlap. These

di�culties complicate a thorough thermoelectric characterization of new organic materials

since the relevant transport coe�cients are interrelated [53]. An optimum thermoelectric

characterization of new materials is therefore conducted by measuring all three relevant

quantities - the electrical conductivity σ, the thermopower S and the thermal conductiv-

ity κ - on the same specimen and in the same spatial direction. In addition, contacting

the sample to wires or substrates easily imposes stress and e�ective pressures on the soft

materials, in particular upon cooling to cryogenic temperatures. The transport properties

in organic conductors are known to be highly pressure sensitive [160, 161, 162]. Hence,

not only a measurement on the same specimen but also in the same contact con�guration

and experimental environment is desirable. Here, the novel measurement setup created in

the course of this thesis is presented enabling a detailed temperature-dependent charac-

terization of all three thermoelectric quantities on a single organic crystal, on the same

sample holder in solely one experimental setup.

3.2.1 Measurement Setup

Cryostat

The transport measurements have been carried out in an Oxford Instruments He-�ow

cryostat in a temperature range from 4K to 300K. The cryostat was rebuilt and in its

�nal version contains 16 electrical feedthroughs (4x Rigid BNC, 12x LEMO). An Oxford

ITC-4 temperature controller �nely regulates a resistive heater at the heat exchanger. The

liquid helium �ow through the heat exchanger is roughly adjusted for di�erent temperature

regimes. The samples are cooled down to 4K at a rate smaller than 0.3Kmin−1. Inside,

a rhodium-iron temperature sensor close to the heater monitors the base temperature of

the cryostat but for a more reliable temperature measurement, a silicon diode (Cryocon

S900-BB) additionally records the sample temperature. The diode is thermally coupled to

the sample holder base plate and is read out by a LakeShore 321 temperature controller.

For cooling, the sample chamber is �lled with helium gas at a pressure of 1 atm being in

thermal contact with the heat exchanger through which liquid helium is pumped. Before

cool-down, the sample chamber was �ushed three times with pure helium gas to minimize

condensing vapors at low temperatures.
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For the thermopower and thermal conductivity measurements, heat losses to the en-

vironment via convection need to be minimized. These measurements are consequently

performed in vacuum and therefore, the sample chamber has been evacuated to 10−6 mbar

utilizing a turbomolecular pump backed by a membrane pump (Pfei�er HighCube Eco

80). The measurements are performed while heating the sample from 4K to room temper-

ature (RT) in vacuum. As both, the thermopower and thermal conductivity measurements

cannot be performed directly just after another, the sample needs to be cooled down twice

to 4K and the measurements are performed during subsequent temperature cycles.

Sample Holder & Preparation

As outlined in Ch. 2.4.3, organic crystals show a large thermal expansion coe�cient

on the order of 10−4K−1 compared to inorganic materials (10−6K−1-10−5K−1). Thus,

temperature-dependent measurements should be performed on suspended samples of these

needle-like, fragile crystals in order to minimize the induced mechanical stress. Fig. 3.3

schematically illustrates the sample holder following Chaikin et al. [163]. It consists of a

copper base plate onto which the silicon diode is mounted to measure the base temper-

ature T0. Onto the base plate two alumina blocks are glued with epoxy. Around each of

the alumina blocks a NiCr heater wire is wound eight times and embedded into Stycast

epoxy in order to establish a good thermal contact between the wire and the blocks. This

allows for a separate heating of each block by feeding a current on the order of 10−100mA

through the NiCr wire. The temperature di�erence between the two blocks is measured by

a di�erential copper-constantan-copper (type-T) thermocouple glued on the top surface

with silver paint.

Next, four gold or copper wires with diameters between 20− 100 µm are aligned par-

allel to each other across the blocks and glued to a respective block on opposite sides.

Furthermore, the ends of these wires are glued by silver paint to electrical contact posts

thermally grounded to the copper base plate in order to prevent the generation of para-

sitic thermoelectric voltages by contacts at di�erent temperatures. Afterward, a drop of

graphite paint (Dotite XC-12) is applied to the middle of each wire in between the two

blocks and the needle-like crystal is placed onto the drops while being still wet. Under a

microscope it is checked that the graphite paint creeps around the crystal and establishes

electrical contact from all four crystal sides. In this way, contact resistances on the order

of 1 − 10Ω at 4K have been achieved. The contact wires are cut at the end opposite to

the contact post leaving behind an organic crystal electrically contacted to free-standing

wires allowing for unhindered contraction and expansion. At its both ends, the sample

is thermally connected to individual alumina heating blocks to impose a temperature

gradient across the sample. As a last step, a radiative shield made of copper is screwed
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Figure 3.3: Scheme of the sample holder used for all transport measurements. To a copper base plate
with electrical contact posts and a temperature sensor, two alumina blocks are glued. By graphite paint
the sample is attached to four copper or gold wires which are thermally connected to the two di�erent
alumina blocks on opposite ends of the crystal. These can be heated independently by NiCr resistive
heater wires wrapped around and glued on each block by thermally conductive Stycast epoxy. The
temperature di�erence between the blocks is monitored by a type-T di�erential thermocouple (Cu-CuNi-
Cu). The electrical contact posts are thermally grounded to the copper base plate to hinder spurious
thermoelectric voltages to occur.

onto the copper base plate (not shown). Its surrounding of the sample ensures stable and

reliable thermal conditions throughout each measurement. All subsequent measurements

were performed on the same sample mounted onto the sample holder described above.

3.2.2 Electrical Conductivity

The most straightforward measurement is that of the electrical conductivity by means of

a four-probe current-voltage measurement. With a Keithley 236 source measurement unit

(SMU), a current I is passed through the outer ones of four electrical contacts and the

voltage drop U at the inner two contacts is measured by an Agilent 34420A nanovoltmeter.

Under the assumption that the size of the graphite paint contacts is small compared

to the length of the crystal, no signi�cant current �ows through the voltage contacts

facilitating the determination of the electrical conductivity σ without the in�uence of

contact resistances and lead wires by

σ =
1

R

2l

Acs

=
I

U

2l

Acs

(3.2)

where 2l is the distance of the voltage contacts and Acs is the cross section of the

crystal. The voltage can be measured to an accuracy better than 1 µV and the current is

applied with an error of less than 1 pA. The overall accuracy of the resistance measurement

has been determined to be better than about 1mΩ. Hence, for sample resistances on the

order of 1− 10Ω the main uncertainty of σ stems from the error of the cross section Acs
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which is determined optically under the microscope.

3.2.3 Seebeck Coe�cient

The Seebeck coe�cient was measured following the method introduced by Chaikin and

Kwak where a di�erential temperature gradient is imposed on a sample thermally con-

nected to two heater blocks made of alumina [163]. The temperature di�erence between

the two blocks is monitored by the Seebeck voltage of the di�erential thermocouple con-

nected to the blocks while simultaneously the thermoelectric voltage of the sample is

measured. Both voltages are recorded with an Agilent 34420A nanovoltmeter.
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Figure 3.4: Typical curve obtained in the thermopower measurements. At �rst, block one is heated until
a temperature gradient of about 0.3K is established (0→1). Afterward, the heater is switched o� and
the second block is heated until a similar temperature gradient of −0.3K, i.e., into the other direction
is obtained (1→2). Finally, the �rst block is heated again until the temperature gradient is compensated
(2→3). This data was recorded on a (DMe-DCNQI)2Cu crystal at RT and the sample was connected to
copper wires.

A representative measurement curve is depicted in Fig. 3.4. By slowly heating one of

the blocks (0→1) a temperature gradient is imposed on the sample. When the temperature

di�erence amounts to about 0.3K, the heater of the �rst block is switched o� and block

two is heated until a temperature gradient of −0.3K into the other direction is established

(1→2). Then, the heater of the second block is switched o� and block one is heated again

until the temperature gradient vanishes (2→3). Slow heating rates of about 0.5Kmin−1

are used to ensure su�cient heat transfer from the alumina blocks to the sample. Away

from the starting and turning points the slope of the measurement curve should be equal

into both heating directions. From the linear part of the slope ∆V/∆T the thermopower

S can be determined by
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S =
∆V

∆T
+ Scw (3.3)

where Scw is the thermopower of the contact wires (Cu or Au) for which the mea-

surement has to be corrected. It is one to two orders of magnitude smaller than the

thermopower of the crystal and well-documented in literature [164]. At RT it amounts to

about 1.6 µVK−1. From Fig. 3.4, the Seebeck coe�cient of (DCNQI)2Cu at RT can be

determined to

S = −35.6 µVK−1 + 1.6 µVK−1 = −34.0 µVK−1 (3.4)

being in good agreement with literature data [85]. The measured temperature di�er-

ence refers to the surface of the two alumina blocks and any heat losses along the length

of the contact wires need to be minimized. Thus, measurements are performed in vacuum.

After the sample was cooled down to 4K in helium atmosphere, the sample chamber in the

cryostat was evacuated to 10−6 mbar. While heating the temperature of the sample holder

slowly to RT, measurement curves are recorded at temperature steps of 5−10K to ensure

thermal equilibration in between each measurement cycle. Because cryogenic temperature

measurements in vacuum are prone to error, the sample temperature was evaluated in-

dependently from the sample resistance determined after each Seebeck measurement and

compared to reference measurements under helium atmosphere upon heating.

3.2.4 Thermal Conductivity

Compared to electrical transport measurements, determining the thermal conductivity κ

of a material is a challenging task since heat �ow pathways are di�cult to control. This

problem becomes even more dramatic when performing measurements on small specimen

of low thermal conductivity materials as the �ow of heat through the sample is easily

disturbed by, e.g., sensors. Furthermore, the high surface-to-volume ratio in small samples

may lead to an overestimation of the thermal conductivity due to radiative heat losses,

especially at high temperatures. To circumvent these issues, a variation of the 3ω method

has been applied to organic conductors for the �rst time in this thesis. It not only facilitates

an accurate determination of κ but moreover, yields a comprehensive investigation of the

thermoelectric performance.

The 3ω Method

The 3ω method was developed by Cahill to measure the thermal conductivity of solid bulk

samples and thin �lms [165]. The idea is straightforward: A periodic current of amplitude
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I0 and frequency ω is applied to a Joule heater of resistance R0 causing a periodic heating

at frequency 2ω:

P (t) = R0I
2
0 sin

2(ωt) =
1

2
R0I

2
0 (1− cos(2ωt)) . (3.5)

In general, the resulting temperature oscillation ∆T caused by the periodic heating

power P (t) inside the heater is expressed by a thermal transfer function Z(ω) [166, 167]

∆T (t) = P (t)⊗ F−1[Z(ω)] , (3.6)

i.e. by a convolution of P (t) with the inverse Fourier transform of the complex transfer

function Z(ω) characterizing the thermal response of the system. Employing the convo-

lution theorem, Eqs. 3.5 and 3.6 lead to [167]:

∆T (t) =
R0I

2
0

2
{Z(0)−Re[Z(2ω)] cos(2ωt) + Im[Z(2ω)] sin(2ωt)} . (3.7)

Without including any boundary conditions, Eq. 3.7 describes the stationary heating

as well as the temperature oscillation at frequency 2ω in a resistor driven by a sinusoidal

current of frequency ω. The temperature amplitude is complex, meaning the respective

real and imaginary part to oscillate in-phase and out-of-phase with respect to the heating

power. If the resistance of the heater is temperature-dependent, the oscillating temper-

ature driven by the periodic current inside the heater will lead to a voltage drop of the

form [167]

U = R(t) · I(t)

= {R0 +R0χ∆T (t)} I0 sin(ωt) , (3.8)

χ = ∂ lnR/∂T being the temperature coe�cient of the heater's resistance. With the

help of Eq. 3.7 it follows that [167]:

U(t) = R0I0 sin(ωt)

+ χR2
0I

3
0

{(
Z(0)
2

+ Re[Z(2ω)]
4

)
sin(ωt) + Im[Z(2ω)]

4
cos(ωt)

}
− χR2

0I
3
0

{
Re[Z(2ω)

4
sin(3ωt) + Im[Z(ω)]

4
cos(3ωt)

}
. (3.9)

The voltage drop contains two frequency components, one at the excitation frequency

ω and a second phase-shifted one at 3ω. Since the 3ω voltage signal depends on the

system's thermal response Z(ω) and is related to the thermal losses from the heater to
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the environment, it enables a determination of thermal properties, such as the thermal

conductivity or the speci�c heat. Depending on the measurement geometry and boundary

conditions, the thermal properties of the environment or the heater itself can be measured

if a suited model of the thermal transfer function is applied. In the following, the thermal

transfer functions of two distinct measurement geometries are discussed.

Line Heater on Semi-In�nite Solid

The classical 3ω method was developed for a metal strip heater of thickness t, width 2b

and length 2l ≫ t, b deposited onto a bulk material or �lm of thickness d ≫ λS, with the

thermal penetration depth [168]

λS =

√
DS

2ω
(3.10)

of a material revealing the thermal di�usivity DS = κS/(ρdenscp). Here, κS denotes

the thermal conductivity, cp the speci�c heat per volume and ρdens the density of the bulk

or substrate material underlying the metal strip heater. In the frequency regime where

b ≪ λS ≪ d, the thermal transfer function ZS of such a system is approximated by [165]

ZS(ω) =
1

π2lκS

[
−1

2
ln(2ω) + η − 1

2
ln

(
ib2

DS

)]
, (3.11)

η = 0.923 being a material-independent constant. Eq. 3.11 relates the complex 3ω

voltage to the thermal conductivity of the bulk material. By measuring the frequency

dependence of the in-phase 3ω voltage, the thermal conductivity can be determined by

linearly �tting Re[U3ω] against ln(2ω).

Suspended Wire

In the recent two decades, the 3ω method was further developed to measure the thermal

conductivity of small rod-like samples, e.g. carbon nanotubes or inorganic nanowires [169,

170]. In this situation, the sample itself is used a Joule heater and its thermal losses

are assumed to be governed by heat conduction to the electrical contacts. For a wire

of diameter d suspended between its voltage contacts at distance 2l ≫ d, the thermal

transfer function has been evaluated to [166]

ZSW (ω) =
(sinh β − sin β) + i{sinh β + sin β − β(cosh β + cos β)}

2βcω(cos β + cosh β)
, (3.12)

with β =
√
ωτ and the characteristic thermal response time τ = (2l)2/D being related

to the thermal di�usivity D of the wire. The frequency dependence of ZSW is similar to
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the response function of a lumped �rst-order RC system, i.e. Eq. 3.12 is well-approximated

by the transfer function [166]:

ZSW,lump(ω) =
Rth

12

1− iωτ/5

1 + (ωτ/5)2
(3.13)

The thermal resistance Rth = 2l/(κAcs) relates Z to the thermal conductivity κ of the

wire of cross section Acs and length 2l. Fig. 3.5a compares the frequency-dependence of

the real and imaginary part of ZSW,lump and ZSW , indicating the good agreement between

the lumped approximation and the entire solution described by Eq. 3.12.

Figure 3.5: Thermal transfer function of a suspended wire. (a) Real and imaginary part of the thermal
transfer function given by Eq. 3.12 and compared to the approximation in Eq. 3.13. The abscissa is
normalized to a dimensionless frequency ωHτ/10, ωH = 2ω being the frequency of the heating power
P(t). (b) The temperature distribution along the wire oscillates between zero and �nite value for low
frequencies (indicated by the striped area). As the excitation frequency approaches 5/τ , the temperature
di�erence does not fully relax back to zero anymore but alternates between �nite, non-zero values. In the
large frequency limit, the temperature pro�le corresponds to a DC heating of the crystal as the thermal
response of the sample can no longer follow the dynamics of the excitation. Adapted from: [166, 169]

The characteristic behavior can be understood in the following way: At small excitation

frequencies, the thermal response is fast compared to the periodic heating current. Hence,

the temperature oscillation follows the excitation power and oscillates in-phase while the

(imaginary) out-of-phase thermal response function vanishes. At zero frequency the real

part extrapolates to a constant value of

Re [ZSW,lump(ω)]
ωτ≪1

−−−−→ Rth

12
=

2l

12κAcs

, (3.14)

being inversely proportional to the thermal conductivity κ. In this limit, the thermal

response function is independent of the material's speci�c heat c and allows for a charac-

terization of κ without knowledge of the former. This is highly advantageous over other
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transient thermal conductivity measurements, such as laser �ash [121]. The speci�c heat

comes into play via the thermal response time τ .

With increasing excitation frequencies, the thermal response will no longer be able to

follow the dynamic external stimulus and the thermal response occurs phase-shifted with

respect to the excitation power. This phase shift yields to an imaginary part contributing

to ZSW and peaking at a frequency

ω = 5/τ . (3.15)

At this frequency, real and imaginary part of ZSW are equal in amplitude being exactly

half of the low-frequency limit given by Eq. 3.14. The position of the peak in the imaginary

part allows for an experimental determination of the speci�c heat if the value of κ, as

evaluated from the low-frequency in-phase signal, is known:

cmol =
mmol · τ · κ
ρdens · (2l)2

. (3.16)

Here, mmol denotes the molar mass of the material.

At even higher frequencies ω > 5/τ both, the imaginary and the real part of the tem-

perature oscillation decrease leading to a DC heating of the crystal. The temperature

distributions along the wire for the three frequency limits are schematically illustrated

in Fig. 3.5b. At low frequencies (ωτ ≪ 1) the temperature pro�le completely follows the

dynamic variation of the heating power, i.e. the temperature rise ∆T oscillates between its

maximum value and 0. With increasing excitation frequency the temperature amplitude

becomes smaller and does not completely vanish after each cycle. For the extreme limit of

ωτ → ∞, the temperature cannot follow the excitation anymore but remains stationary

increased without generating a 3ω voltage component. The absolute complex amplitude

of ZSW,lump

|ZSW,lump(ω)| =
Rth

12

1√
1 + (ωτ/5)2

ωτ≫1

−−−−→ 10

24Acs(2l)ρdenscp
· 1
ω

(3.17)

follows an ω−1-behavior in the high-frequency limit and is independent of κ. The

asymptotic limits indicate that the low frequency thermal response of the system is sen-

sitive to the thermal conductivity κ while the high frequency part is conditioned by the

heat capacity c. Hence, measuring the low-frequency part ωτ ≪ 1 with high accuracy is

crucial to extract the thermal conductivity from the experimental data.

89



3. Experimental Methods

3ω Measurement Setup

The setup to measure the frequency dependence of the 3ω voltage U3ω is depicted in

Fig. 3.6. The analog output of a simultaneously sampled 24-bit data acquisition card

(NI PXI-4461) is used to apply a sinusoidal voltage to the measurement circuit. A load

resistor RL, about two orders of magnitude larger than the sum of sample and contact

resistance (RS +2RC), is used to establish constant current conditions. The voltage drop

at the inner contacts of the organic crystal is connected to a Thomson bridge consisting of

four precision 10 kΩ (±0.01%) resistors. For sample resistances above 1 kΩ a home-built

subtractor circuit consisting of a dual INA 2128 instrumentation ampli�er is used instead

of the Thomson bridge. Prior to each measurement, the bridge is automatically balanced

by a computer controllable resistance decade (Orbit Controls 642) which is connected in

series to the sample (RP ). The output of the balanced bridge reads U = U3ω/2 + Unoise

because the bridge circuit evens out the 1ω part of Eq. 3.9, typically being three to four

orders of magnitude larger than U3ω [171].

Figure 3.6: Scheme of the U3ω measurement setup. A sinusoidal voltage from a 24-bit data acquisition card
(NI PXI-4461 DAQ) is applied to a series of load resistor RL, sample resistance RS and resistance decade
RP . The load resistor is large compared to the sample resistance. The voltage drop at the sample is fed
into a Thomson bridge which is equilibrated by the resistance decade and subtracts the U1ω voltage from
the signal. The output of the bridge is ampli�ed by a voltage preampli�er and digitized with the same
24-bit DAQ card the AC driving voltage was provided by. Finally, U3ω is extracted by a self-programmed
digital LockIn algorithm developed in Labview.

The bridge voltage is ampli�ed with the help of a Stanford Research SR560 voltage

preampli�er by a factor of 103−104 and afterward digitized with the same data acquisition

card the AC voltage is supplied by. The 3ω voltage U3ω is extracted by a self-programmed
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digital LockIn algorithm in Labview. The 1ω voltages at the sample and load resistor

are also digitized by an additional DAQ card (NI PXI-4461) in order to determine the

current and the sample resistance. To accurately determine κ, these quantities should

always be measured together with U3ω as Eq. 3.9 crucially depends on the relevant pa-

rameters. The simultaneous measurement of the sample resistance additionally allows to

balance the Thomson bridge for each frequency step, ensuring the rated accuracy also

for regimes with a pronounced temperature-dependent resistivity. The self-programming

approach was chosen over an experimental setup employing two commercial LockIn am-

pli�ers in order to attain higher �exibility and automation in the measurement setup.

Measurements on the thermal conductivity are also performed as described for the ther-

mopower measurements, i.e. while heating up the sample from 4K to RT in vacuum. The

measurements are not performed in the same cycle as the thermopower measurements to

avoid any temperature gradient from previous Seebeck measurements within the sample

holder. Thus, the sample needs to be cooled to 4K for a second time.

Data Evaluation

Combining Eqs. 3.9 and 3.13, the real and imaginary part of the third harmonic voltage

evaluate to:

Im[U3ω(f)] =
χ ·R2 · (2l) · I30

48 · κ · Acs

·
2πτ
5

· f
1 + (2πτ

5
· f)2

(3.18a)

Re[U3ω(f)] =
χ ·R2 · (2l) · I30

48 · κ · Acs︸ ︷︷ ︸
U3ω(f=0)

· 1

1 + (2πτ
5

· f)2
. (3.18b)

Here, the frequency representation with f = ω/(2π) allowing for a straightforward

data evaluation is given. All voltage and current values in the thesis are amplitude and

not rms-values, as sometimes employed in literature and displayed by commercial LockIn

ampli�ers. To extract the thermal conductivity and speci�c heat, the real and imagi-

nary part of the 3ω signal were plotted against frequency. The imaginary part was �tted

to Eq. 3.18a in order to determine the thermal response time τ from the position of the

peak. Afterward, the real part was �tted by Eq. 3.18b with �xed τ to obtain the amplitude

U3ω(f = 0) and hence κ. The resistance R and current I0 are determined from the average

over all frequency points. The measured resistance also enables a more accurate determi-

nation of the sample temperature from the previously measured temperature-dependent

resistivity. The measured temperature at the silicon diode was found to deviate up to 5 K

from the actual sample temperature when measuring in vacuum at cryogenic temperatures
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which might be due to temperature-gradients across the sample holder. The temperature

coe�cient χ was determined from the resistivity measurement at each ambient tempera-

ture. The thermal conductivity κ as well as the speci�c heat at constant volume cp and

per mole cmol may then be evaluated by:

κ =
χ ·R2

0 · (2l) · I30
48 · U3ω(f = 0) · Acs

(3.19a)

cp =
τκ

(2l)2ρdens
(3.19b)

cmol = cp ·mmol . (3.19c)

Setup Calibration

In order to validate the measurement principle, the designed setup was calibrated by

determining the thermal conductivity and speci�c heat of a stainless steel wire of 21 µm

diameter and several mm in length which was mounted to the sample holder as described

in Sec. 3.2.1 with an overall contact distance of 2l = 3.75mm. These wire dimensions are

similar to typical sizes of the investigated organic single crystals. Moreover, the availability

of high-quality literature data on the thermal properties of stainless steel enables a sound

and appropriate setup calibration [172].

R0 I0 χ 2l d τ U3ω(f = 0)

[Ω] [mA] [10−3 K−1] [mm] [µm] [s] [µV]

Value 8.43 1.465 1.22 3.75 21 3.40 4.00

Abs. Err. 0.07 0.007 0.01 0.1 1 0.03 0.02

Rel. Err. [%] 0.8 0.5 0.8 2.6 4.7 0.9 0.5

Table 3.1: Experimental parameters to evaluate the thermal conductivity and speci�c heat of a stainless
steel wire with the help of Eqs. 3.19a and 3.19b. The circular sample cross section is obtained from
the diameter d by Acs = π(d/2)2 and the density ρdens = 7.9 g cm−1 was taken without error from the
literature [172].

In Fig. 3.7a the measured frequency dependence of the real and the imaginary ampli-

tude of U3ω is shown together with the two �ts of Eqs. 3.18a and 3.18b which agree very

well with the experimental data. The anticipated cubic current dependence of the total 3ω

voltage has also been veri�ed (see Fig. 3.7b). It demonstrates the measurement accuracy

of the 3ω voltage to be better than 100 nV below which the signal becomes comparable
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Figure 3.7: Self-heating 3ω method applied to a stainless steel wire as reference. (a) The frequency
dependence of the complex 3ω voltage for a current of 1.46mA at RT �ts well to Eqs. 3.18a and 3.18b.
(b) The cubic current dependence of |U3ω| at 0.1Hz is also well established. (c) From the temperature-
dependent resistivity the temperature coe�cient χ can be extracted, enabling the determination of (d)
the thermal conductivity κ and speci�c heat cp. The measured values agree extraordinary well with
literature data over a broad temperature regime between 40− 300K [172]. The deviation below 40K can
be attributed to the �atness of the resistivity curve in this temperature range limiting the sensitivity and
accuracy of the 3ω method.

to the �icker noise of the ampli�ers causing a deviation from the I30 -law. From the �t of

the frequency dependences, τ as well as U3ω(f = 0) can be determined which are cited

together with the other experimental values in Tab. 3.1. They permit to determine the

thermal conductivity and the speci�c heat of the stainless steel sample:

κmeas = (14.7± 2.6)Wm−1K−1 (3.20a)

cp = (0.49± 0.08) J g−1 K−1 . (3.20b)

These values reproduce the literature measurements of κLit = 15.3Wm−1K−1 and

cp = 0.49 J g−1 K−1 [172] within their errors. From Tab. 3.1 the origin of the signi�cant

error instantly becomes clear. The ambiguity in the sample diameter as determined op-

tically under the microscope limits the absolute accuracy of the thermal properties. This
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problem constitutes a major challenge when measuring thin samples over macroscopic

transport distances. However, when evaluating the thermoelectric �gure of merit zT or

comparing the electrical to the thermal conductivity, the sample dimensions do not play

an important role as they both enter the calculation formula of the conductivities in the

same way and thus, cancel out each other. Hence, it is intuitive to look at the e�ective

errors not including uncertainties in the sample dimensions

κmeas = (14.70± 0.62)Wm−1 K−1 (3.21a)

cp = (0.488± 0.025) J g−1K−1 , (3.21b)

for which we obtain relative standard errors of 4.2 % and 5.1 % for κ and cp,

respectively. This underlines the accuracy of the chosen experimental approach. The

temperature-dependent electrical resistivity ρ, thermal conductivity κ and speci�c heat

cp are illustrated in Fig. 3.7c-d. The measured values of κ and cp very well re�ect the

literature data as provided by the National Institute of Standards and Technology (NIST)

[172]. The deviation below 40K is caused by the �atness of the resistivity curve in this

temperature regime. The resulting small temperature coe�cient limits the sensitivity of

the 3ω approach.

Accuracy of the 3ω Method

In the previous section, the validity of the measurement approach as well as the accuracy

of the setup were veri�ed by means of a stainless steel sample. In the following, the

applicability of the suspended wire's thermal transfer function ZSW is evaluated with

special focus on the previously described sample holder and the material class of organic

conductors. One major assumption is that the contacts are at ambient temperature T0.

ZSW was originally derived for nanowires with electrical contacts on a substrate of large

thermal mass compared to the sample. In this case, the condition on temperature is easily

met. In the sample geometry applied here, the crystals are only connected via thin free-

standing copper wires of cross section Acs,C and length lC to the two alumina blocks

serving as heat reservoirs. The heat �ux from the sample of cross section Acs,S and length

2lS needs to be dissipated through the two contact wires, i.e.

QS = Acs,S · κS
Tmid − TC

(2lS)
= 2QC = 2Acs,C · κC

TC − T0

lC
(3.22)

needs to be ful�lled. Tmid corresponds to the temperature in the middle of the sample

wire and TC represents the temperature of the contact. This yields the condition for

negligible contact heating:
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3.2. Electrothermal Characterization of Charge and Heat Transport

Tmid − TC

TC − T0

=
2κCd

2
C(2lS)

κSd2SlC
≫ 1 (3.23)

for a sample (contact wires) of diameter dS (dC) and thermal conductivity κS (κC).

From Eq. 3.23 it is obvious that contact wires should be kept as short and as thick as

possible. On the other hand, the thicker the wires, the more stress they induce on the

fragile organic samples. For the measurement on the stainless steel samples the relevant

parameters 2lS = 3.6mm, lC = 2mm, dS = 21 µm, dC = 50 µm, κS = 15Wm−1K−1 and

κC = 380Wm−1 K−1 yield a Tmid−TC

TC−T0
= 422 ≫ 1 satisfying Eq. 3.23 by far. For organic

samples with thermal conductivity values on the order of 1Wm−1 K−1 the condition is

even more easily met. Thus, it can be concluded that the Ansatz of using the suspended

wire model to describe rod-like organic conductors with thermal conductivities smaller

than 15Wm−1K−1 attached to free-standing wires is valid.

Secondly, the high surface to volume ratio facilitates radiation losses from the surface

imposing uncertainties on the measured κ. The radiation losses can be approximated by

the Stefan-Boltzmann law. To be neglected, the total radiation loss Prad needs to be much

smaller than the heat �ux QS conducted through the sample, necessitating the boundary

condition:

Prad

QS

=
ϵσSBAsurf (2lS)T

3
0 (Tmid − TC)

κSπ(dS/2)2(Tmid − TC)
=

4ϵσSB(2lS)
2T 3

0

κSdS
≪ 1 . (3.24)

Here, Asurf = πdS·(2lS) is the surface area of the crystal, ϵ the emissivity of the material
and σSB the Stefan-Boltzmann constant. In the worst case, at an ambient temperature of

T0 = 300K and an emissivity of ϵ = 1, the error for the stainless steel sample amounts

to Prad

QS
= 0.1 ≪ 1. Taking into account a smaller emissivity and that most data has been

recorded at smaller temperatures, the condition in Eq. 3.24 is considered to be satis�ed.

However, for the organic samples this condition imposes a bigger challenge: A sample of

same geometry with κS ≈ 1Wm−1K−1 yields Prad/QS = 1.5 and the radiation error

dominates the measurement accuracy. Hence, the contact distance 2lS should be kept as

short as possible and the diameter dS of the rod-like sample may not be too small. For a

typical sample of 50 µm diameter and 2mm length, even with κS = 1Wm−1 K−1 an error

of only Prad

QS
= 0.2 is obtained, again assuming the worst case of ϵ = 1 and T0 = 300K.

Hence, the condition is generally also satis�ed for the organic samples. Yet, the condition

should be checked for each sample under investigation.
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Finite-Element Simulations

To indepedently prove whether the assumptions made hold true or not, the temperature

and voltage response to sinusoidal current excitations have been simulated with the help

of the software Comsol Multiphysics by �nite-element methods (FEM) for the organic

conductor (DCNQI)2Cu at RT. The applied measurement geometry was transferred to the

discrete model, as depicted in Figs. 3.8a&c with and without mesh. It consists of a rodlike

organic crystal attached to four copper wires by graphite paint. The literature properties,

as given in the Comsol material database, were used for copper and graphite while the

values for (DCNQI)2Cu were experimentally determined (see Tab. 3.2) by measurements

on a sample of same geometry. The simulated thermal response to an AC current is

illustrated in Fig. 3.8c for three excitation frequencies.

The temperature pro�les between the current contacts along the needle axis (right

projection) are quasi-parabolic and, indeed, the voltage contacts at ±lel almost remain

at ambient temperature, con�rming a good thermal connection to the alumina blocks.

In the upper projection, the temporal evolution of the temperature in the middle of the

crystal is shown and compared to the oscillating current. At the excitation frequency

f = 0.01Hz ≪ 5/(2πτ), the temperature oscillates in-phase with the current as an-

ticipated by the thermal transfer function in Eq. 3.17. With increasing frequency, the

maximum amplitude of the temperature oscillation not only decreases but also phase-

shifts with respect to the current. The temperature di�erence does not fully relax back to

zero for vanishing current amplitude because the thermal response is too slow to follow

the excitation. At high frequencies, the temperature oscillation amplitude decreases with

ω−1 leading to constant cw-heating e�ects. This behavior qualitatively agrees with the

theoretical predictions outlined above.

σ [S cm−1] I0 [mA] χ [10−3 K] 2lel [mm] d [µm] τ [s] κ [ W
mK

] cm [ J
molK

]

1070 1.41 8.9 2.175 55.5 4.2 1.73 527

Table 3.2: Experimental values determined and used for the FEM simulations of a (DCNQI-h8)2Cu
crystal.

To check on the quantitative agreement, the 3ω-voltage was extracted from the sim-

ulation, as depicted in Fig. 3.9b. The real part amplitude at small frequencies compares

well with the measured curve validating the chosen approach to accurately determine κ.

The position of the peak in the imaginary part - corresponding to the frequency at which

the real part divides in half - slightly shifts toward smaller frequencies as compared to

the measurement. This e�ect can be attributed to the l2-dependence of τ . The thermal
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Figure 3.8: Finite-element simulations on the 3ω method. (a) Geometry used for the �nite-element mod-
elling. It comprises the crystal, four cuboid graphite paint contacts and four copper wires of 50 µm
diameter each. The temperature at the end of the copper wires was set to the ambient temperature of
the alumina blocks. (b) The measured and calculated 3ω-voltages for (DCNQI)2Cu at RT agree very
well, especially at low frequencies. This facilitates an accurate determination of κ because the thermal
conductivity is determined from the amplitude of the real part extrapolated to zero frequency while τ is
characterized by the position of the peak in the imaginary part. The cubic current dependence of the total,
experimental 3ω-voltage as anticipated by Eq. 3.18b is depicted in the inset for f = 0.1Hz. (c) Simulated
temporal evolution of the temperature distribution along the crystal pro�le in response to an AC current
of amplitude I0 = 1.41mA at three di�erent frequencies. The dynamic evolutions were normalized to the
period T = f−1 of the excitation current. From the upper projection, a shift and decrease in amplitude of
the temperature oscillation with respect to the current is observed toward higher frequencies. In the right
projection, the quasi-parabolic temperature pro�les as anticipated by Eq. 3.12 in between the voltage
contacts are demonstrated. The �nely-meshed model is also shown in the upper right.
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length involves some error due to the extension of the voltage contacts and their crude

approximation by cuboid boxes.

Figure 3.9: FEM-simulations of contact resistance e�ects. Contact resistivities of magnitude Rcont =
x · 10−7 Ωm2 disturb the (a) low-frequency temperature pro�les mostly at the current-injecting contacts.
The shaded gray areas mark the extended graphite contacts. The temperature pro�les for x = 0 and
x = 0.8 are also compared to the voltage pro�les along the crystal. The ideal temperature pro�le is given
by the parabola intersecting ∆T = 0 at the boundary of the graphite contacts, the latter being separated
by a distance 2lth. Contrarily, in the presence of contact resistances the voltage drops across a distance
of 2lel, quantifying the distance between the copper wires in the middle of each graphite paint contact.
It is the characteristic length scale to calculate the electric �eld and hence, the electrical conductivity.
The small e�ect of contact resistances on the temperature pro�le in between the voltage contacts is also
evidenced by (b) the simulated 3ω-signals deviating only slightly from each other. The constant o�set in
the imaginary part is accounted for in the �ts. The frequency position of the peak remains �xed.

The model incorporates a small electrical contact resistivity of 0.8× 10−7 Ωm2 at the

interface between crystal and graphite paint, corresponding to a contact resistance of

about 0.7Ω for each current injecting and of 1.8Ω for each voltage contact. To elucidate

the in�uence of the contact resistances, the temperature pro�les and 3ω-voltages were

simulated for di�erent values of the contact resistivity. The simulated temperature pro�les

illustrated in Fig. 3.9a become highly disturbed for large contact resistances due to the

Joule heat generated upon current injection. However, the temperature pro�le in between

the voltage contacts remains quasi-parabolic and almost undistorted. The temperature at

the graphite paint voltage contact at ±lel as well as the temperature oscillation in between
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the voltage contacts slightly increase with Rcont, as also evidenced by the rising values of

U3ω (compare Fig. 3.9b). Taken as a whole, this may lead to an underestimation κ.

Typical experimental contact resistivity lies in the range between 0.8× 10−7Ωm2 and

8× 10−7Ωm2 for which the resulting error was found to be smaller than 2% at room

temperature. Even for the very high value of 80× 10−7Ωm2 the relative error amounts to

only 6.8%. Hence, if contact resistances are kept small, the induced error in κ is negligible

but the e�ect should be kept in mind for samples of very low resistivity.

As another observation, the characteristic length of thermal and electric �eld modula-

tion deviate from each other for samples with extended voltage contacts of �nite resistance.

Again, the lower graph in Fig. 3.9a illustrates the temperature pro�le for the sample with

contact resistivity of 0.8× 10−7 Ωm2. The parabolic �t marks the temperature pro�le as-

sumed in the suspended wire model. Clearly, the parabola does not intersect ∆T = 0 at

±lel but rather at the boundaries of the graphite paint contacts at distance 2lth because

the temperature pro�le under the contacts appears to be rather �at. Accordingly, sample

length determining the thermal conductivity is assumed to be 2lth.

The graph also depicts the voltage pro�les along the crystal with and without contact

resistance. For zero contact resistance, the current will �ow out of the needle-like crystal

via the graphite paint contact, i.e. the potential under the voltage contact is �at due to the

high conductivity of the graphite paint. To accurately determine the sample's resistivity,

the length 2lth as obtained from the thermal pro�le is utilized. In contrast, already a small

contact resistance hinders the current to �ow out of the crystal at the voltage contacts,

leading to a constant gradient of the electric �eld under the voltage contacts. In order to

evaluate the electric �eld and the electrical conductivity, the voltage reading is divided by

the characteristic length of 2lel, being the distance between the copper wires positioned

in the middle of each graphite paint contact, as marked in the graph. Due to the contact

resistance being always present, thermal and electrical lengths were always separately

determined. Nevertheless, care was taken to prepare small contacts of (lth − lel)/lel < 0.1.

Taking a closer look at the simulated imaginary part in Fig. 3.9b, an o�set seems to be

induced by the contact resistivity which can be accounted for in the �t. Yet, the peak

position seems to remain at the same frequency. Therefore, the imaginary part was only

utilized to determine τ . The extrapolation U3ω(f → 0) was taken from the �t of the real

part which seems to be more robust and less prone to errors. The susceptibility of the

imaginary part to the contact resistance is due to time-delayed heat �ows from the outer

areas into the center of the crystal.

Another important aspect of thermal conductivity measurements is the error due to

neglected radiation losses. This in�uence was simulated by varying the surface emissivity

ϵ of the crystal. The temperature pro�le in Fig. 3.10a delineates a signi�cant reduction of
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the temperature oscillation due to the additional radiative heat loss channel. Unlike the

contact resistance, the radiative heat loss causes an overestimation of κ, as demonstrated

by the lowered imaginary and real part of U3ω in Figs. 3.10b-c. In this case, the error

amounts up to 10% for the worst case of an ambient temperature of 295K and ϵ = 1 but

will loose importance upon lowering the temperature as explained above. Considering the

smaller emissivity of real samples and that most data points are recorded at reduced tem-

peratures, radiation e�ects can be neglected in �rst approximation. Care has to be taken

for single crystal with small cross section for which the radiative heat loss might domi-

nate. Furthermore, in the imaginary part the peak position drifts to higher frequencies on

increasing radiative losses, resulting in speci�c heats underestimated by up to 10%.

Further simulations were conducted with more dense meshes to investigate the in�u-

ence of spatially anisotropic electrical and thermal conductivities. However, no signi�cant

e�ect was found on the measured quantities proving the method to be applicable for

materials of reduced electronic dimensionality.

Figure 3.10: FEM-simulations on radiative losses. The simulated (a) temperature pro�les along the crystal
axis as well as the (b) out-of-phase and (c) in-phase 3ω signals reveal a diminished temperature swing
upon increasing radiation losses which are characterized by the respective surface emissivity ϵ.

To sum up, the self-heating 3ω method for a suspended, needle-like sample proves

to be a powerful tool to accurately measure the thermal conductivity and speci�c heat

of fragile, single-crystalline, quasi-1D organic conductors. The largest uncertainties may

arise from radiative heat losses at high temperatures and contact resistance e�ects at

cryogenic temperatures. In temperature regimes of almost constant electrical resistivity

the method is expected to reveal some ambiguities. In the determination of absolute values

for κ the largest uncertainty stems from the determination of the crystal cross section.

In�uencing the electrical conductivity in the same manner, the described method allows

to investigate the correlation between σ and κ with an accuracy of better than 10%, a

precision unrivaled in all previous studies on the thermal conductivity of organic metals

[173, 174, 175]. This will be highly-advantageous for an accurate determination of the

thermoelectric �gure of merit in this material class.
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Data Analysis

The error analysis described above has proven the 3ω method to be a reliable technique

at RT. The radiative losses should furthermore lose importance on lowering the ambient

temperature. In contrast, the contact resistance may gain importance for samples of very

high conductivity at cryogenic temperatures. The thermally activated behavior of the

contact resistance can further lead to high-ohmic contacts in the low-temperature regime.

Fig. 3.11a shows the temperature-dependent behavior of κ and of cmol for (DCNQI-

h8)2Cu as measured by the 3ω method. In addition, the temperature-dependent literature

data on the speci�c heat of (DCNQI)2Li is illustrated [88]. This is the only data set

available for a (DCNQI)2M system that was obtained from a study on single crystals over

the entire temperature regime between 4K and 300K. It is regarded as the literature data

of highest con�dence. At least in the temperature regime above 20K studied here, it should

resemble the speci�c heat's temperature dependence of (DCNQI)2Cu quite accurately due

to the similar phonon spectrum of the two materials. The literature values are given in

arbitrary units and the curve has to be multiplied by a factor A to match the measured

speci�c heat at RT. In this case, a factor of A=1.354 was employed.

Figure 3.11: Applied data evaluation procedure to account for contact resistance e�ects. (a) The literature
speci�c heat data [88] measured in arbitrary units on a (DCNQI)2Li single crystal was multiplied by
a factor A to account for the unit transformation and to match the measured speci�c heat data of
(DCNQI)2Cu at RT. When satisfying agreement between the curves over a wide temperature regime
was obtained, all measured speci�c heat values were multiplied by a temperature-dependent factor B to
exactly match the literature curve. The measured κ values were adjusted by the same factor. While the
correction is small at high temperatures, it may be signi�cant in the cryogenic temperature regime. (b)
Summary of the whole data evaluation process.

Fig. 3.11 demonstrates the measured molar speci�c heat to be in good agreement with

the adjusted literature curve over a broad temperature range between 100K and 300K. It

should be noted that the absolute values of the molar speci�c heat at about 150K agree

well with values measured by Matsui et al. on pellet samples of (DCNQI)2Cu, too [176].

Below about 100K the contact resistance e�ect gains importance in the high conducting
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(DCNQI)2Cu crystal. This manifests in a sudden decrease of the thermal conductivity

as well as in a deviation of the measured cmol from the literature curve. Howbeit, the

simulations above demonstrated the measured thermal response time τ to be una�ected

by the high contact resistance and hence, any deviation of cmol ∝ κ/τ from the literature

curve is caused by erroneous κ readings. To account for this error, each data point of the

measured speci�c heat is adjusted to the literature curve by a factor B, ranging between

0.95 and 2.2 in this set of data. Multiplying each corresponding, experimental κ value by

the same factor results in a corrected measurement curve of the thermal conductivity, as

delineated in Fig. 3.11a as well.

E�ectively, in this temperature regime only the thermal response time τ has been used

to evaluate the thermal conductivity with the help of literature speci�c heat data. The

correction described above adjusts the literature data to the reliable, absolute data at

high temperature and only employs the former's temperature dependence. In this way,

the advantage of determining the electrical and the thermal conductivity on the same

sample volume is maintained and any error related to the probed dimensions is canceled

when calculating the temperature-dependent thermoelectric �gure of merit or the Lorenz

number. Hence, the thermal conductivity data below 100K is still of high quality. The

evaluation procedure has been conducted on all sets of data presented in this thesis un-

less otherwise stated. It is also viable to correct data in temperature regimes where the

temperature coe�cient of the resistivity changes drastically or where it is very �at, e.g.

near the occurring metal-insulator transitions.

102



Chapter 4

Results

The newly designed electrothermal transport setup was introduced and characterized in

the previous section. In the following, the measurement system has been employed to

determine the Seebeck coe�cient as well as the electrical and thermal conductivity in

(DCNQI)2M (M=Cu, Li) single crystals. It will provide new insight into the transport

of charge and heat in this material class (4.1 & 4.3). By application of an advanced

electrothermal model to the observed nonlinear conduction phenomena in the Peierls in-

sulating state of (DCNQI)2Cu crystals, a more detailed analysis of their origin could be

achieved (4.2). An entropy analysis of the di�erent ground states con�rms the thermo-

dynamic phase diagram based on competing spin, charge and lattice degrees of freedom

in (DCNQI)2Cu and extends its validity to temperatures above the Debye temperature

(4.4). Finally, the potential of radical ion salts for thermoelectric applications is evaluated

in terms of the power factor and the thermoelectric �gure of merit (4.5). The results of

Sec. 4.2 have been published in Physical Review B 92, 155107 (2015) [177]. Distinct parts

of the other sections have been merged into a Communication in Advanced Materials

(2017, accepted) together with data on the p-type organic conductor TTT2I3 provided by

Alexander Steeger.
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4.1 Electronic Properties of (R1,R2-DCNQI)2M

In this section, the electronic transport properties of disubstituted (R1,R2-DCNQI)2M

(R1/2=CH3, CD3, Br; M=Cu, Li) as determined by the electrothermal characterization

setup described in Ch. 3.2 will be analyzed. In the �rst part, the in�uence of di�erent

functional groups R1/2 on the electrical resistivity is discussed. This analysis is combined

with thermopower measurements in the second part. Finally, the in�uence of di�erent

counter ions M on both quantities is studied in the alloyed (DMe-DCNQI)2CuxLi1−x

single crystal reference system.

4.1.1 Electrical Resistivity of (R1,R2-DCNQI)2Cu

The temperature-dependent electrical resistivity data of four (DCNQI)2Cu salts recorded

during cooling is shown in Fig. 4.1a. All ρ(T )-curves reveal metallic behavior at room

temperature (RT) with decreasing resistivity upon cooling. The undeuterated (DCNQI-

h8)2Cu salt achieves electrical resistivities as low as ρRT = 9.3× 10−6 Ωm and represents

one of the best conducting organic materials [178]. Smaller electrical resistivities have

only been attained by few organic compounds. In very pure TTT2I3 crystals values of

1× 10−6 Ωm have been obtained [64]. In a recent study, a very low electrical resistivity

of 1.8× 10−6Ωm was demonstrated for the polymer PEDOT:Sulf-NMP [179]. Yet, both

materials are p-type organic conductors. Therefore, with the �lled conduction band emerg-

ing from the LUMO of the DCNQI acceptor molecule, (DCNQI-h8)2Cu marks the n-type

organic conductor of highest electrical conductivity, at least to my knowledge. With the

help of Eq. 2.56 and under the assumption of n = 2.94× 1021 cm−1, a RT mobility of

µRT = 2.3 cm2 V−1 s−1 is deduced, a value usually only obtained in organic single crystals

of highest purity [180]. This underlines the high quality of the single crystals grown and

characterized in this thesis.

(DCNQI-h8)2Cu remains metallic down to cryogenic temperatures because it retains its

quasi-3D electronic structure retarding any kind of metal-insulator transition frequently

observed in low-dimensional conductors. As discussed in Ch. 2.3.3, the metallic ground

state may be lifted by alternation of the functional groups attached to the quinone ring

in DCNQI. Replacing one of the methyl group by a bromine atom, a �rst-order Peierls

metal-insulator (MI) transition at TP,c = 156K is observed, as evidenced by the step-like

increase in the resistivity. Even more remarkable, already a deuteration of the methyl

groups is su�cient to induce a phase transition at TP,c = 82K. As a typical feature of

a �rst-order phase transition, the resistivity curves reveal hysteretic behavior between

the cooling and heating run. This is illustrated in Fig. 4.1b for (DCNQI-d6)2Cu with

the phase transition occurring at TP,c = 82K upon cooling and at TP,h = 90K upon
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Figure 4.1: Resistivity data of four di�erent (DCNQI)2Cu salts. (a) While (DCNQI-h8)2Cu stays metallic
down to lowest temperatures, the other three materials undergo a �rst-order Peierls metal-insulator
transition at di�erent TP,c which becomes manifest in a step-like increase of the resistivity. (b) Observed
hysteresis between cooling and heating run being common for a �rst-order phase transition, here shown
for (DCNQI-d6)2Cu. (c) The log-log plot reveals an anomalous hump at about 50K also in the purely
metallic sample which might be indicative of a phase transition occurring in some domains. (d) The free
energy has two local minima with respect to the order parameter of the phase transition and the global
miminum changes at the black solid line. A small energy barrier needs to be overcome to reach the global
minimum, causing the hysteresis in the phase transition between the cooling and the heating run. (e) The
temperature exponent α of the resistivity at high temperatures is decreased in materials with higher TP

as evidenced by a reduced slope of the linear �t. (f) When correcting the resistivity data for the thermal
expansion, the hump at 50K transforms into a kink. The resistivity may then be approximated by the
Bloch-Grüneisen formula with a characteristic temperature of θR ≈ 159K− 222K.

105



4. Results

heating the sample. The hysteresis may be understood from the free energy landscape

close to the transition points, as schematically illustrated in Fig. 4.1d. The coordination

angle αCO has been identi�ed as the order parameter for the Peierls phase transition in

(DCNQI)2Cu (compare Ch. 2.3, [66, 71]). The free energy has two local minima and the

global minimum changes with respect to the order parameter at the indicated black solid

line. Yet, additional energy is required to overcome the energy barrier in order to reach

the global minimum. Therefore, the transition occurs at a temperature TP,c below the

black line upon cooling and at a higher temperature TP,h upon heating. The excess energy

is provided by thermal �uctuations.

The critical temperatures of the other salts are stated in Tab. 4.1. The experimental

data agrees with values published in literature [85, 78, 9, 181, 182] and again con�rms

the excellent crystal quality. Alloying deuterated and undeuterated molecules in a single

crystal, as in (DCNQI-h8/d6)2Cu at a ratio of 70:30, the phase transition may be shifted

toward a lower temperature of TP,c = 54K. In literature, a re-entry behavior from the

insulating into the metallic state is observed at even smaller T but the exact transition

temperatures vary in literature [81, 182, 183]. The re-entry transition was not observed for

the crystals investigated in this thesis, probably due to a deviating ratio of deuterated and

undeuterated molecules as compared to the net weights used for crystal growth. However,

the slight deviation from the expected activation behavior of the resistivity curve below

40K presumably marks already the onset of the re-entry phase transition in some domains.

A more detailed comparison of the metallic part of the resistivity curves is shown in

the log-log plot of Fig. 4.1c. (DCNQI-h8)2Cu's purely metallic resistivity seems to obey

a power law ρ(T ) = ρ0 + A · Tα with an additional hump superimposed at around 50K

which has also been observed in literature before [184]. It may be indicative of a hidden

phase transition, i.e. that in the presence of time-dependent �uctuations some parts of the

sample already undergo a phase transition for the reason that (DCNQI-h8)2Cu is located

at the boundary between two phases (see Fig. 2.10d). Not only deuteration, but also

the presence of 13C carbon isotopes can promote a phase transition via steric distortion

causing an e�ective pressure [78]. The existence of small amounts of 13C in the starting

material has been veri�ed by mass spectrometry, pointing into this direction.

The temperature exponent of the resistivity amounts to α = 2.54 for (DCNQI-h8)2Cu

and is reduced in salts undergoing a phase transition. Fig. 4.1e magni�es the log-log-plot

of the temperature-dependent resistivity curves between 150K and 300K together with

the corresponding, linear �ts. The temperature coe�cients α obtained from the slope of

the �ts are given in Tab. 4.1. A clear reduction of α with increasing transition temperature

TP was found, suggesting that some domains already undergo a phase transition above
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TP . A reduced α may also be inferred from slight changes in the dimensionality of the

electronic structure of the di�erent compounds and a resulting gradual change of the

dominant scattering mechanism.

In all cases, α is close to the value of two which is commonly considered to be indicative

of either electron-electron scattering or electron-phonon scattering involving two librons or

optical phonons (compare Ch. 2.5.2). It also complies with the value of α = 2.3 obtained

by Mori et al. [85]. In order to compare α to scattering theories, pressure and thermal

expansion e�ects need to be taken into account. To transfer the resistivity measured at

constant pressure to a value at constant volume (for which theories usually apply), the

compressibility βc(T ) = − 1
V
(∂V
∂p
)T , the coe�cient of thermal expansion ς(T ) = 1

V
∂V
∂T

and

the pressure dependent resistivity ρP (P, T ) at each measured temperature T need to be

known. With respect to the resistivity value at T0, the other temperature-dependent values

may then be corrected by [136]:

ρcorr(T = T0 +∆T ) = ρP

(
ς(T ) ·∆T

βc(T )

)
. (4.1)

Unfortunately, the data is not available in the whole temperature range for (DCNQI-

h8)2Cu, but some estimates of the RT value relative to a base temperature of T0 = 100K

can be made by taking a compressibility of βc = 1.1× 10−3 kbar−1 [185], a pressure-

dependent resistivity of about ρP (300K, P ) ≈ ρ(300K,1 bar)

1+0.15 kbar−1·P [186] (both at RT) and a

thermal expansion coe�cient of ς = 70× 10−6 K−1 [187] being almost constant between

100K and RT. Employing Eq. 4.1, the RT resistivity is reduced by a factor of three

compared to its value measured at constant pressure. The volume-corrected resistivity at

RT is delineated in Fig. 4.1f together with the reference value at T0 = 100K as green dot.

The slope of the line connecting these two resistivity points (green) corresponds to

an exponent of α = 1.35 di�ering signi�cantly from the T 2 behavior expected for the

anomalous scattering mechanisms discussed above. Even more surprisingly, the tempera-

ture dependence of ρ between 50K and 100K is also very well reproduced by this slope.

In this temperature regime the thermal expansion slows down [188] and constant volume

conditions already might have been established. Hence, the hump at 50K might rather

represent a gradual change in the conduction mechanism of the crystal. For example, an

increased low-temperature contribution to the electrical conductivity by holes originating

from a 3D Fermi surface at the Γ-point has been suggested from the analysis of Hall,

magnetotransport and transient thermoelectric measurements [189]. The origin of the

holes at the Γ-point and their in�uence on electrical transport quantities will be discussed

in more detail in the subsequent analysis of the thermopower. A phonon drag e�ect could

also lead to a decreased electrical resistivity at cryogenic temperatures (compare Eq. 2.87).
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Applying the Luttinger liquid (LL) theory outlined in Ch. 2.5.2 to the corrected α =

1.35, Eq. 2.65 yields a Luttinger interaction parameter of Kρ = 0.48 < 1 suggesting

signi�cant electron-electron repulsion in the material above 50K. Similar values of Kρ

have been obtained in the quasi-1D organic metal (TMTSF)2PF6 [136]. Due to the quasi-

3D character of the band structure in (DCNQI-h8)2Cu, the applicability of the LL theory

may be challenged and the value of α close to one might rather imply acoustic phonon

scattering to be the dominant scattering mechanism (compare Ch. 2.5.2). In this view it

should be pointed out that the resistivity data below 100K, for which constant volume

conditions may be assumed, �ts fairly to the Bloch-Grüneisen formula (Eq. 2.61) with a

characteristic temperature of θR = 159 − 222K. The �ts are illustrated in Fig. 4.1f and

hint at a rather ordinary scattering mechanism similar to inorganic metals.

The Bloch-Grüneisen temperature θR usually takes values between the Debye tempera-

ture θD, representing the average upper energy limit of all three acoustic phonon branches,

and the temperature θS = vS~kF/kB [121] de�ning the upper energy limit of longitudinal

acoustic phonon branch. Here, the characteristic Bloch-Grüneisen temperature θR takes

signi�cantly higher values compared to the Debye temperature of θD = 82K [34] implying

e�cient interaction with additional high-energy optical phonon modes. To elucidate the

electrical conduction mechanisms in more detail, the complementary investigation of ad-

ditional transport quantities, such as the thermopower or the thermal conductivity, will

provide further insight within this thesis.

TP,c TP,h ρRT α ∆Eact 2∆

[K] [K] [µΩm] [meV] [meV]

(DCNQI-h8)2Cu - - 9.5 2.54 - -

(DCNQI-h8/d6)2Cu [70:30] 54 66 16.5 2.50 31-43 77

(DCNQI-d6)2Cu 82 90 12.8 2.24 34-55 79

(MeBr-DCNQI)2Cu 156 156 12 2.00 21-65 45

Table 4.1: Material parameters extracted from temperature-dependent resistivity measurements on four
chemically di�erent (DCNQI)2Cu salts.

Charge Carrier Transport in the Peierls State

In order to investigate the charge-carrier activation energies in the Peierls insulating state,

Fig. 4.2a plots the resistivities of the three Peierls insulating (DCNQI)2Cu compounds
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logarithmically against the inverse temperature. It neither follows the behavior of a con-

ventional intrinsic semiconductor, described by Eq. 2.66, nor does it represent the variable

range hopping model characterized by Eq. 2.68. In principle, the charge-carrier activation

energy ∆Eact may be estimated from the slope of the plots in 4.2a below TP . However,

the curves do not strictly but rather piecewise follow a linear behavior below TP . This is

illustrated for (MeBr-DCNQI)2Cu showing an activation energy of about ∆Eact = 65meV

just below TP which reduces to ∆Eact = 21meV at even lower temperatures. This may

indicate a temperature-dependent charge-carrier activation energy. However, a reduction

of the Peierls gap upon decreasing temperature seems counter-intuitive. More likely, the

relative mobility of electrons and holes changes in this temperature regime, leading to

an increased hole conduction at reduced ambient temperature. More evidence for this

interpretation will be provided by the analysis of the Seebeck coe�cient in the oncoming

part.
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Figure 4.2: Electrical resistivity in the Peierls insulating state. (a) Plotting the resistivity data against
inverse temperature indicates a piecewise linear behavior with a related temperature-dependent activation
energy ∆Eact in the Peierls state. (b) The energy gap 2∆ obtained from the jump in resistivity exceeds
the values obtained from the slopes in (a).

Alternatively, the energy gap may also be estimated from the jump of the resistivity

at the �rst-order Peierls transition. Extrapolating the resistivity data from just above

and below the transition temperature, exemplary depicted in Figure 4.2b for (MeBr-

DCNQI)2Cu, the energy gap 2∆ opening at the Peierls transition can be estimated to

ρmet

ρsem
= e

− 2∆
kBTP (4.2a)

→ 2∆ = −kBTP ln
ρmetallic

ρsem
. (4.2b)
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The estimation neglects the di�ering mobilities in the metallic and in the insulat-

ing regime and assumes only one type of charge carrier to be responsible for electrical

conduction in the semiconducting regime. By virtue of the higher band curvature and

the smaller electron-electron interaction at a reduced charge carrier density, the mobility

is expected to be larger in the semiconducting regime, i.e. Eq. 4.2b represents a lower

estimate of the energy gap [122].

In Tab. 4.1 the energy gaps estimated for the three (DCNQI)2Cu salts undergoing a

phase transition are compared to the activation energies obtained from the temperature-

dependent resistivity in the semiconducting regime. Except for temperatures just below

the phase transition, the activation energy ∆Eact is signi�cantly smaller than the energy

gap 2∆, i.e. the transport is governed by activation of charge carriers from shallow states

in the bandgap [182]. At su�ciently low temperatures, the activation energy is roughly

smaller by a factor of two as compared to the energy gap at the phase transition. This

might be indicative of solitons or polarons forming as charge-carrying entity [75]. In this

context, the soliton is an elementary domain wall pair excitation separating two degen-

erate lattice ground states in space. The domain wall usually extends over several lattice

constants and its activation energy is about half the Peierls gap [190, 191]. A polaron

describes a quasiparticle formed by a slow-moving charge carrier together with its polar-

ization of nearby lattice ions. The e�ective mass of a polaron is increased compared to the

free electron value and the e�ect is more pronounced in polar semiconductors. Due to the

ionic character of organic charge transfer salts, it may thus be of importance in the semi-

conducting regime of these materials. The polaron energy amounts to Ep = ∆/21/2 [75],

i.e. the polaron forms states in the electronic energy gap of a polar semiconductor. Yet,

the accuracy of the gap determination does not permit to directly assign the dominant

quasiparticle carrying the current in the semiconducting regime.

4.1.2 Thermopower of (R1,R2-DCNQI)2Cu

On the same samples discussed above, thermopower measurements have been conducted

in addition to the determination of the electrical resistivity. They are shown in Fig. 4.3a.

The step-like increase in the electrical resistivity caused by the Peierls transition goes

along with a jump of the thermopower at the corresponding critical temperature TP .

It should be noted that the Seebeck coe�cient is measured while heating the sample

from 4K to room temperature and accordingly, the transition temperatures correspond

to the ones in the heating cycle of the resistivity measurements. The metallic part of

the thermopower is magni�ed in Fig. 4.3b. All salts reveal negative Seebeck coe�cients

indicating electrons to be the majority charge carriers and electrical conduction to occur

110



4.1. Electronic Properties of (R1,R2-DCNQI)2M

mainly via bands formed by the LUMO of the DCNQI molecules. At RT, the Seebeck

coe�cient of (DCNQI-h8)2Cu is about S = −34 µVK−1 with its absolute value decreasing

upon cooling as expected for a metal. It can be �tted linearly with a constant o�set S0

between 200K and 300K:

S(T ) = S0 +
dS

dT
· T . (4.3)

For salts undergoing a Peierls transition, the absolute values of the RT Seebeck co-

e�cient SRT decrease in samples with higher transition temperature. In turn, the slope

of the �t seems to increase. The data extracted from the �ts are denoted in Tab. 4.2.

The bandwidth W was estimated from the slope with the help of Eq. 2.76, assuming an

energy-independent relaxation time and a charge transfer ratio of δ = 2/3.

Figure 4.3: Thermopower measurement on the four (DCNQI)2Cu salts. (a) The �rst-order Peierls transi-
tions manifest in a jump of the Seebeck coe�cient while the purely metallic (DCNQI-h8)2Cu reveals an
anomalous hump at about 35K. (b) Magnifying the metallic regime, a linear temperature dependence of
S, typical for metals, is observed. Slope and o�set of the linear �ts between 200K and 300K di�er for
the respective materials and are given in Tab. 4.2.

The calculated bandwidths of (DCNQI-h8)2Cu and (DCNQI-d6)2Cu di�er by 80%

and as such, are implausible due to the almost identical crystal and band structure of

both materials (compare Ch. 2.3.1 and 2.3.2). The extracted bandwidths also deviate

signi�cantly from the value of 792meV calculated by a tight-binding band structure

approach [10]. Additionally, the observed o�set is not predicted by the theory of simple

metals and takes rather large values of even opposite sign for the respective materials.

Accordingly, the simple band model description by Eq. 2.76 has to be revised for a con-

sistent estimation of the Seebeck coe�cient in the (DCNQI)2Cu system. Some extensions

on the model will be suggested in the following.

For the purely metallic (DCNQI-h8)2Cu a hump at about Thump ≈ 35K is observed,
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TP [K] SRT [µV
K
] dS

dT
[nV
K2 ] S0 [

µV
K
] W [meV]

(DCNQI-h8)2Cu - -34.0 -68.0±0.7 -13.8±0.2 480±6

(DCNQI-h8/d6)2Cu [70:30] 54 -32.7 -83.8±0.8 -7.7±0.2 390±4

(DCNQI-d6)2Cu 83 -31.3 -124±2 5.5±0.3 260±4

(MeBr-DCNQI)2Cu 156 -22.5 -101±1 7.6±0.2 320±3

Table 4.2: Material parameters extracted from the linear �ts of the Seebeck coe�cient for four chemically
di�erent (DCNQI)2Cu salts as delineated in Fig. 4.3b.

in agreement with studies published in literature [85, 192]. It has been discussed in terms

of a phonon-drag e�ect [85] as well as a hidden phase transition, i.e. in the presence of

time-dependent �uctuations a Peierls insulating state occurrs in partial domains of the

crystal [192]. The correlated hump in the resistivity measurement may favor the latter

explanation. Yet, the apparent hidden phase transition would occur about 15K above the

corresponding peak in the Seebeck coe�cient questioning this conclusion.

Rather, an additional non-di�usive phonon drag contribution to the thermopower, as

discussed in Ch. 2.6.2, seems plausible and may also explain the di�erent linear slopes

observed in the thermopower above 200K. The phonon drag e�ect is caused by phonons

pushing charge carriers along a temperature gradient by virtue of phonon-electron scat-

tering, giving rise to an additional contribution in the thermopower. According to Eq.

2.87, this e�ect also reduces the electrical resistivity and thus, the apparent hump in the

resistivity at about 50K may be due to the phonon drag coming into play at lower tem-

peratures. This is in good agreement with the thermopower peaking 15K below the hump

in the resistivity. To model the thermopower over the entire temperature regime studied,

Eqs. 2.77 and 2.86 may be combined to:

S = −2π2k2
BT

3|e|W
·
[

cos δπ/2

(1− cos2 δπ/2)
+

r

δ

]
︸ ︷︷ ︸

Sdiff

+
ρdens

nemmol

(
T0

T

)υ

cmol

(
θD/E

T

)
︸ ︷︷ ︸

Sdrag

. (4.4)

At small T , the temperature dependence of the phonon-drag thermopower Sdrag is

determined by the molar speci�c heat cmol(θD/E/T ) of those phonon modes interacting

e�ciently with electrons. Depending on the dispersion of the involved phonon modes

pushing electrons to the cold side of the sample, the speci�c heat can be modeled by

a Debye (Eq. 2.48) or an Einstein model (Eq. 2.43) with E = kBθD/E characterizing
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the relevant energy scale of the modes. For higher T , the relative strength of phonon-

electron scattering compared to other phonon-related scattering mechanisms limits its

contribution to the thermopower. The temperature dependence of this scattering factor

is phenomenologically captured by a power law β =
(
T0

T

)υ
.

Figure 4.4: Phonon drag thermopower in (DCNQI)2Cu. (a) The temperature-dependent Seebeck coe�-
cient of (DCNQI-h8)2Cu can be accurately �tted by Eq. 4.4 assuming an Einstein or Debye model for the
speci�c heat. (b) The metallic regime of all (DCNQI)2Cu salts �tted to an equation including a di�usive
(∝ T ) and a phonon-drag contribution (∝ T−1) as well as a constant o�set.

For the di�usive part Sdiff , Eq. 4.4 contains an energy-dependent relaxation time

τ = c0E
r. By reason of the one-dimensional band structure a value of r = 0.5 is assumed

(compare Ch. 2.5.2). Fig. 4.4a depicts the thermopower of (DCNQI-h8)2Cu together with

two �ts by Eq. 4.4, one assuming a Debye and the other an Einstein model for the

phonon mode dispersion. Both �ts are able to describe the thermopower over the complete

temperature regime while the Einstein model seems to capture the low-temperature data

slightly better. It should be noted that no constant o�set, as compared to the S0 parameter

in Eq. 4.3, had to be added to Eq. 4.4 in order to model the data for (DCNQI-h8)2Cu.

The corresponding �t parameters are stated in Tab. 4.3.

W=4t [meV] T0 [K] υ θD/E [K]

Debye Model 690±15 16.7±4.5 1.31±0.06 137±6

Einstein Model 710±7 13.7±1.0 1.18±0.02 85±1

Table 4.3: Parameters of the �ts by Eq. 4.4 to the data of (DCNQI-h8)2Cu in Fig 4.3a.

The obtained bandwidth of about W = 710meV for (DCNQI-h8)2Cu agrees signi�-

cantly better with the value of 792meV deduced from the tight binding band structure
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calculation [67]. The relaxation time of the form τ(ϵ) ∝
√
ϵ corroborates the �ndings from

the volume-corrected resistivity, i.e. that acoustic phonon scattering limits the charge

carrier mobility at high T . The value of υ = 1.18 is close to the expected value of 1

for phonon-phonon Umklapp scattering limiting the phonon drag at high temperature.

Slightly higher υ values have also been observed in thermal conductivity measurements of

various materials, also being limited by phonon-phonon Umklapp processes. It has been

explained in terms of lattice anharmonicity as well as by four phonon scattering scattering

events in addition to the ordinary three-phonon Umklapp process [92].

The Einstein temperature of θE = 85K agrees with the Debye temperature of

θD = 82K [34] determined by low-temperature speci�c heat measurements and indicates

that acoustic phonon modes with an upper energy of about E = kBθE ≈ 7meV are

predominantly in charge of the phonon-drag e�ect. It is surprising that, apparently, the

Einstein model works better than the Debye one for these modes. Presumably the com-

plex phonon spectrum in combination with the smaller dispersion and sound velocity in

organic materials facilitates an Einstein description of acoustic phonon modes, at least

far away from the very low temperature regime below 10K. The additional in�uence of

low-energy optical phonons, as depicted for the TTF-TCNQ phonon dispersion in Ch.

2.4.3, can furthermore promote an overall �at dispersion of the involved modes.

The Peierls transition prevents the other salts' thermopower from being modeled by

Eq. 4.4. However, a simpli�ed �t equation of the form

S = P · T + Y · T−1 + Z (4.5)

was used to �t the data in the metallic regime of all investigated (DCNQI)2Cu salts.

Here, the �rst term corresponds to the di�usive part Sdiff and the term scaling inversely

with temperature models the high temperature side of the phonon drag phenomena in

Eq. 4.4. In contrast to the previous phonon drag analysis of the thermopower in (DCNQI-

h8)2Cu, an o�set Z had to be added again in order to model all measurements by the

same equation, enabling a direct comparison of parameters. The �t results are listed in

Tab. 4.4. The bandwidth was again calculated from the slope P with the help of Eq. 4.4

assuming a charge transfer ratio of δ = 2/3 as well as r = 0.5.

As to be expected, the bandwidths obtained for (DCNQI-h8)2Cu and (DCNQI-

h8/d6)2Cu [70:30] are almost similar and the constant Z takes negligibly small values, in

agreement with the �t results obtained by Eq. 4.4 for (DCNQI-h8)2Cu. In contrast, the ap-

parent bandwidths of (DCNQI-d6)2Cu and (MeBr-DCNQI)2Cu di�er signi�cantly in spite

of the similar crystal and band structure compared to (DCNQI-h8)2Cu. This deviation

can be resolved by considering the large positive o�set Z. Apparently, a positive hole-like
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Material P [nV
K2 ] Y [mV] Z [µV

K
] W [meV]

(DCNQI-h8)2Cu -99.7±1.1 -1.93±0.02 1.98 ±0.35 690±8

(DCNQI-h8/d6)2Cu [70:30] -103.7±0.7 -1.28±0.02 2.47±0.25 670±5

(DCNQI-d6)2Cu -158.2±1.8 -1.76±0.05 20.94±0.64 440±5

(MeBr-DCNQI)2Cu -126.4±1.4 -1.51±0.07 20.07±0.63 550±6

Table 4.4: Parameters of the �ts by Eq. 4.5 to the data of (DCNQI)2Cu in Fig 4.4b. The errors are
estimated from the �t solely.

contribution to the thermopower appears in (DCNQI-d6)2Cu and (MeBr-DCNQI)2Cu.

The o�set amounts to about 20 µVK−1 for each of the two materials, but seems to be

temperature-dependent itself causing the high-temperature slope of (DCNQI-d6)2Cu and

(MeBr-DCNQI)2Cu to di�er from the other two salts. This leads to the apparent smaller

bandwidth derived from a single band model without holes. The hole-contribution ap-

pears more prominent in salts with higher Peierls transition temperatures indicating an

in�uence of the functional groups attached to the central quinone ring on the coordination

of the DCNQI molecule around the Cu counter ions.

(DCNQI-d6)2Cu is electronically equivalent to (DCNQI-h8)2Cu and therefore, the hole

contribution does not play a signi�cant role at high temperatures, as evidenced by the

similar absolute value of the RT Seebeck coe�cient in the deuterated and undeuterated

salt. On lowering the temperature, the subsequent change in the coordination angle αco

(compare Fig. 2.9e) causes the slope of the thermopower to become steeper in the deuter-

ated salt as compared to (DCNQI-h8)2Cu because the hole contribution increases. In

(MeBr-DCNQI)2Cu the hole contribution already diminishes the Seebeck coe�cient at

RT by about 10 µVK−1 (30%) and its contribution augments to the constant o�set of

20 µVK−1 at low T. Accordingly, the temperature slope has to be steeper as well com-

pared to (DCNQI-h8)2Cu, but not as much as for (DCNQI-d6)2Cu. The resulting e�ec-

tive bandwidth therefore comes closer to that of 690meV obtained for the undeuterated

(DCNQI-h8)2Cu.

Independent de Haas-van Alphen measurements [77] evidence a 3D hole pocket around

the Γ-point which has been theoretically explained by ab-initio calculations to originate

from hybridized 3dxy-π-orbitals [67]. Combined magnetoresistance and transient thermo-

electric measurements also suggest a hole contribution gaining importance at low temper-

atures, being consistent with the results above [189]. In combination with band structure

calculations, the concentration of holes at the Γ-point were found to be increased in
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(DCNQI-d6)2Cu as compared to (DCNQI-h8)2Cu at low temperatures. The above ther-

mopower measurements con�rm the strong in�uence on the hole contribution to charge

carrier transport by the functional groups attached to the quinone ring of DCNQI. The

groups vary the coordination angle αco of the DCNQI molecule around the copper ions

and consequently, they in�uence the degree of 3dxy-π-hybridization, leading to a sensi-

tive shift in the Fermi energy. The impact of this shift in Fermi energy on the Seebeck

coe�cient calculated by the Boltzmann theory is clari�ed in Fig. 4.5. According to the

Boltzmann theory, the Seebeck coe�cient is given by:

S = ∓ 1

eT

∫
g(ϵ) [v⃗(ϵ)⊗ v⃗(ϵ)] τ(ϵ)[ϵ− EF ]

∂f0

∂ϵ
dϵ∫

g(ϵ) [v⃗(ϵ)⊗ v⃗(ϵ)] τ(ϵ)∂f
0

∂ϵ
dϵ

. (2.74 revisited)

The density of states g(E) in the vicinity of the Fermi energy EF , derived from ab-initio

calculations of the band structure presented in Fig. 2.9a, is depicted in Fig. 4.5a (yellow

curve) together with the material-independent argument [ϵ − EF ]
∂f0

∂ϵ
in the nominator

of Eq. 2.74 (blue curve). Additionally, the energy dependency of the electron velocity

(v⃗(ϵ)⊗ v⃗(ϵ)) ∝ (ϵ − E0) and of the scattering time τ(ϵ) ∝
√
ϵ− E0 are combined to

(ϵ− E0)
3/2, as represented by the red curve, assuming the bottom of the energy band to

be located at E0 = −0.25 eV and neglecting their energy-independent prefactors. Multi-

plying the three curves with each other yields the integrand of the nominator in Eq. 2.74,

neglecting energy-independent factors which cancel out in the calculation of the See-

beck coe�cient, anyways. The integrand is delineated in Fig. 4.5b and the corresponding,

mathematical area underneath the curve determines the sign of the Seebeck coe�cient

and scales its magnitude. To calculate the absolute thermopower, the integral needs to

be normalized to the denominator of Eq. 2.74 (also neglecting energy-independent pref-

actors). Fig. 4.5b shows that the thermopower of (DCNQI)2Cu must be smaller than zero

according to the larger negative area above EF .

The density of states is quite symmetric around EF and hence, the sign of the ther-

mopower is mainly determined by the energy dependence of the electron velocity and scat-

tering time, emphasizing the contribution from states above the Fermi energy. The local

symmetry of g(E) around EF = 0, corresponding to the Fermi energy of (DCNQI-h8)2Cu

at RT, is lifted upon slightly increasing the Fermi energy by 40meV, as illustrated by the

green curves in Fig. 4.5a-b. A shift of the Fermi energy by 40meV roughly corresponds to

an increase of charge transfer by 0.1e and hence, is of reasonable magnitude when com-

pared to the charge transfer di�erence of about 0.03e between (MeBr-DCNQI)2Cu and

(DCNQI-h8)2Cu [82]. In this case, the density of states below the Fermi energy is higher

than above, leading to a pronounced contribution of holes to the integral. In turn, the

electron contribution is reduced. While the sign of the Seebeck coe�cient remains negative
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due to the energy dependence of the electron velocity and charge carrier scattering time,

its absolute magnitude reduces upon increasing the Fermi energy. The opposite e�ect, a

more pronounced electron contribution is anticipated for a decreased Fermi energy.

Assuming a temperature-dependent Fermi energy of the form

EF = EF (300K) + ∆EF ·
[
1− T

300K

]
, (4.6)

the temperature-dependent Seebeck coe�cients calculated by Eq. 2.74 are illustrated

in Fig. 4.5c for di�erent parameters EF (300K) and ∆EF . The shift is calculated relative

to the Fermi energy of EF (h8, 300K) = 0 for (DCNQI-h8)2Cu.

For EF = 0 at RT, a Seebeck coe�cient of about −37 µVK−1 is evaluated, in good

agreement with the experimental value of S = −34 µVK−1 for the (DCNQI-h8)2Cu salt.

The decrease in RT thermopower by about 10 µVK−1 observed in (MeBr-DCNQI)2Cu

can be explained by an e�ective increase of the Fermi energy to EF (300K) = 20meV.

The parameter ∆EF scales the temperature dependence of EF in Eq. 4.6 being caused

by the thermal contraction of the lattice which allows for a larger 3dxy-π-hybridization

upon cooling. This hybridization is expected to increase more signi�cantly upon cooling

in the deuterated salts as compared to (DCNQI-h8)2Cu, as proven by the occurrence

of the Peierls transition in the former. Hence, the deuterated (DMe-DCNQI)2Cu salts

gradually advance the Fermi energy level of (MeBr-DCNQI)2Cu upon cooling, thereby

yielding di�erent slopes in the Seebeck coe�cient since the e�ect is more pronounced

in (DCNQI-d6)2Cu than in (DCNQI-h8/d6)2Cu [70:30]. Extrapolating the linear slopes

above 200K to zero, the presented model is also able to explain the di�erent signs of

the o�sets for (DCNQI-h8)2Cu and (DCNQI-d6)2Cu at 0K. Fig. 4.5c-d compare the

calculated Seebeck coe�cients with the experimental data. Neglecting the superimposed

phonon drag e�ect in the experimental data, the di�usive thermopower, as anticipated

by the linear �ts in Fig. 4.5d, is qualitatively and quantitatively well explained by the

above introduced model for the (DCNQI)2Cu material system.

The in�uence of an increased Fermi level on the electronic structure is clari�ed in

Fig. 4.5e. The Fermi level shift ascertains the hole character of the quasi-3D band at the

Γ-point. The Fermi energy increases according to the order EF [h8] < EF [d6] < EF [MeBr].

A Fermi level rise is also induced by a reduction of the sample temperature. The increase

in EF goes along with an increased 3dxy-π-hybridization and a larger �lling of the quasi-

1D electron band. The larger hybridization is also corroborated by XPS measurements

conducted by Akaki et al. [82], indicating a larger Cu valence state of +1.32 in (MeBr-

DCNQI)2Cu as compared to +1.28 in (DCNQI-h8)2Cu. For a Cu valence state of +1.33

a commensurate Peierls metal-insulator transition is triggered on the DCNQI chain. In
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Figure 4.5: Boltzmann theory of the thermopower in (DCNQI)2Cu. Multiplication of (a) the energy-
dependent contributions by to the transport integral yields (b) the integrand of the nominator in Eq.
2.74, neglecting energy-independent prefactors. A shift in the Fermi energy lifts the local symmetry of
g(E) and causes an increased hole contribution to the thermopower. Assuming a temperature-dependent
shift of the Fermi energy, (c) the calculated Seebeck coe�cients reproduce the linear di�usive contribution
of (d) the experimental Seebeck coe�cients very well. The gray shaded area marks the linear �t regime.
(e) A schematic band model emphasizes how the commensurability condition kF = Q∗/2 is only ful�lled
for an upward-shifted Fermi energy relative to (DCNQI-h8)2Cu at RT. This explains the occurrence of a
CDW transition in (MeBr-DCNQI)2Cu, being already close to this commensurability condition above its
transition temperature TP = 155K, in contrast to its absence in the whole temperature regime down to
4K for (DCNQI-h8)2Cu. The Fermi level of (DCNQI-d6)2Cu at RT is similar to that of (DCNQI-h8)2Cu
but shifts toward higher values for T < 300K.
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this situation, the Fermi wave vector is increased to a value of kF = Q∗/2 to ful�ll the

commensurability condition. This critical value is easily reached in (MeBr-DCNQI)2Cu

causing the CDW transition at a rather high temperature of TP = 155K. In contrast, the

absence of a Peierls transition in (DCNQI-h8)2Cu indicates the Fermi wave vector to re-

main below this critical value in the whole temperature regime. For (DCNQI-d6)2Cu and

(DCNQI-h8/d6)2Cu [70:30] the transition occurs at intermediate temperatures. The XPS

measurements were only able to verify a sudden valence change across the metal-insulator

transition but not a temperature-dependent charge transfer preceding the occurrence of

the phase transition. However, from the analysis of di�erent (DCNQI)2Cu compounds the

coordination angle αco was veri�ed to depend on the copper valence state. Accordingly,

owing to the temperature-dependent αco [66, 71] the valence of Cu is expected to vary

with temperature, too. In this sense, the temperature-dependent thermopower analysis

conducted here is found to be more sensitive to the details of the electronic structure

around the Fermi energy than the XPS measurements.

The outlined Fermi level shift may also explain the lower electrical conductivity σ

obtained for (MeBr-DCNQI)2Cu as compared to (DCNQI-h8)2Cu because EF is moved

away from the local maximum of the density of states. Yet, the absolute values of σ

will also sensitively depend on the purity and defect density of the crystal as well as

the determined crystal cross section. Especially the MeBr-DCNQI molecule is harder to

synthesize [193] and di�cult to crystallize with copper [78] compared to DMe-DCNQI.

The di�usive thermopower is less prone to these errors because it represents an intense

quantity measured by a current-free technique.

Thermopower in the Peierls Insulating State

Fig. 4.6 plots the thermopower of the three Peierl insulators against the inverse tem-

perature. Complementary to the resistivity measurements in the previous section, the

simple S ∝ T−1 law expected by Eq. 2.79 for a semiconductor is not obeyed over larger

temperature regimes. In addition, the activation energies estimated from the linear parts

are considerably lower as compared to the activation energies extracted from resistivity

measurements. Furthermore, the absolute Seebeck coe�cients di�er signi�cantly between

the salts in spite of their common ground state. Tab. 4.5 compares the Seebeck coe�cients

at T = 50K of the di�erent salts together with the activation energy ∆Eact derived from

the conductivity measurement at this temperature in the previous section. Employing

∆Eact and an inferred scattering parameter of r = 0.5, the theoretical Seebeck coe�cient

Stheo was calculated by Eq. 2.79 and is also cited.
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Figure 4.6: Seebeck coe�cient in the Peierls insulating state. The thermopower is plotted against the
inverse temperature for the three (DCNQI)2Cu salts undergoing a Peierls metal-insulator transition. A
linear relation, as anticipated by the simple parabolic band model of Eq. 2.79, is not obtained over an
appreciable temperature regime. Hence, the linear �ts (dashed lines) are rather random and are only
shown to compare the activation energy to the values estimated from the resistivity data.

Apparently, the case of a simple semiconductor with isotropic, parabolic bands

and only one type of charge carrier does not apply in the Peierls insulating state of

(DCNQI)2Cu salts. Moreover, Eq. 2.79 cannot explain the Seebeck coe�cient going

through a maximum for (MeBr-DCNQI)2Cu and (DCNQI-d6)2Cu. In addition, the large

di�erence in the thermopower at 50K between (DCNQI-h8/d6)2Cu [70:30] and (DCNQI-

d6)2Cu is somewhat surprising taking into account their equivalent electronic structure

and the similar charge carrier activation energy obtained by the resistivity measurements.

The foregoing thermopower analysis of the metallic regime already suggested the pres-

ence of hole minority carriers gaining importance on lowering the temperature. The See-

beck coe�cient will crucially depend on the relative density and mobility of electrons and

holes, both of which may be temperature- and material-dependent. Because the 3D hole

Fermi surface may not be completely removed by the Peierls transition, holes will reduce

the absolute magnitude of the negative Seebeck coe�cient in the insulating regime, too.

In the metallic regime, the hole conduction was found to carry more weight for (DCNQI-

d6)2Cu compared to (DCNQI-h8/d6)2Cu [70:30] and accordingly, the Seebeck coe�cient

is more negative in the latter than in the former. The thermopower of (MeBr-DCNQI)2Cu

should be even more drastically reduced by virtue of its larger hole contribution together

with its lower charge carrier transport activation energy. However, the opposite is observed
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Sexp [
µV
K
] ∆ES [meV] ∆Eact [meV] Stheo [

µV
K
]

(DCNQI-h8/d6)2Cu [70:30] -80 ≈ 3.8 43 -601

(DCNQI-d6)2Cu -30 ≤ 6.5 43 -601

(MeBr-DCNQI)2Cu -108 4.6-51 24 -221

Table 4.5: Experimental vs. theoretical Seebeck coe�cients in the CDW state for the three investigated
(DCNQI)2Cu salts at 50K. Stheo is calculated by Eq. 2.79 assuming r = 0.5 and an activation energy
∆Eact as estimated from the temperature-dependent resistivity in the previous section. All values are
taken at T = 50K. The activation energies ∆ES , as deduced from the Seebeck coe�cients in Fig. 4.6, do
not compare well to ∆Eact, except for (MeBr-DCNQI)2Cu between 130K and 155K. Hence, the details
of the band structure have to be taken into account and the simple parabolic band model does not apply.

and (MeBr-DCNQI)2Cu yields a Seebeck coe�cient of −108 µVK−1. This is due to the

in�uence of the structural phase transition on the quasi-3D hole band. In the previous sec-

tion it was concluded that the hole contribution sensitively depends on the coordination

angle αco.

Literature XRD studies report a larger change in αco from 126.3◦ to 128.5◦ across the

phase transition in (DCNQI-d6)2Cu compared to an increase to only 128.0◦ in (MeBr-

DCNQI)2Cu [66]. The larger coordination angle in the insulating phase of (DCNQI-

d6)2Cu therefore promotes a larger hole contribution as compared to the Peierls state

in (MeBr-DCNQI)2Cu. Upon cooling, the hole contribution also regains importance in

(MeBr-DCNQI)2Cu as the Seebeck coe�cent passes through a negative maximum and

becomes smaller in magnitude again. The e�ect is more pronounced in (DCl-DCNQI)2Cu,

the thermopower of which becomes positive at 100K after undergoing a metal-insulator

transition at 210K and passing through a maximum at 160K [85]. In (DCl-DCNQI)2Cu

the RT coordination angle is 127.1◦, a value compellingly larger than the 124.8◦ [66]

and 125.5◦ [71] measured for (DCNQI-d6)2Cu and (MeBr-DCNQI)2Cu, respectively. This

supports the idea of an additional hole contribution to the electrical conduction and ther-

mopower also in the insulating regime.

Though having a lower hole contribution, Fig. 4.1a reveals the resistivity of (MeBr-

DCNQI)2Cu to be smaller by one order of magnitude compared to the other two salts in

the insulating regime. This may indicate charge carriers generated by impurity doping to

be of importance as well. More likely though, this is an additional evidence for the complex

density of states in (DCNQI)2Cu which allows thermopower and electrical conductivity

to probe distinctively di�erent states in the vicinity of the Fermi energy (see Ch. 2.5.1).
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4.1.3 Alloyed (DCNQI)2CuxLi1−x

The electronic properties of the (DCNQI)2M system may not only be varied by the choice

of functional groups attached to the quinone ring but also by the counterions used to form

the crystals. (DCNQI)2Li has a very similar crystal structure compared to (DCNQI)2Cu

(compare Ch. 2.3.1). However, the smaller lithium valency of +1 leads to quarter-�lled

metallic bands which are much more spatially anisotropic due to the lack of the 3d va-

lence states in Li, prohibiting a 3d-π-hybridization as observed in (DCNQI)2Cu. Hence,

the system is characterized as quasi-1D organic metal. Due to the similar crystal struc-

ture of the copper and the lithium radical anion salts and their capability of forming

mixed crystals across the entire concentration regime, the electronic properties can be

varied continuously in alloyed (DCNQI-h8)2CuxLi1−x compounds (from now on tagged

(DCNQI)2CuxLi1−x).

Crystals with varying composition have been grown and characterized. For each sample

of nominal copper content xnom, deduced from the net weights used in the crystal growth,

the ratio of elemental copper and nitrogen (Cu/N) was determined by energy-dispersive X-

ray spectroscopy in a scanning electron microscope (SEM-EDX). With four nitrogen atoms

per DCNQI molecule, (DCNQI)2Cu crystals are assumed to reveal a value of Cu/N =

0.125. Experimentally, a higher ratio of Cu/N = 0.168± 0.002 was determined for x =

1, probably due to a di�erent stoichiometric ratio of elements at the crystal surface,

redeposition of sputtered surface materials as well as inaccuracies in the scattering cross

sections assumed by the evaluation software. Yet, the Cu/N ratio is found to decrease

continuously with increasing lithium content. To determine the e�ective amount of copper

xeff incorporated into each crystal, the linear relation

Cu/N = 0.168 · xeff , (4.7)

illustrated in Fig. 4.7a, was assumed. From the measurement of the Cu/N ratio for each

nominal copper content xnom, the xeff values were determined from the linear relation, as

also depicted in Fig. 4.7a. It should be clari�ed that Fig. 4.7a is somewhat counter-intuitive

because the abscissa xeff = x is the quantity deduced from the quantities Cu/N and xnom

on the ordinate axes. Yet, the chosen graphic rendition allows for a direct comparison of

electrical resistivity and Seebeck coe�cient for the di�erent stoichiometric contents at RT

in Fig. 4.7b.

A continuous decrease in the RT electrical resistivity by one order of magnitude is ob-

tained when going from lithium to copper-rich crystals. Simultaneously, the thermopower

decreases in magnitude from about −72 µVK−1 to −34 µVK−1 at RT. The large decre-

ment in the electrical resistivity cannot simply be ascribed to the change in the charge-
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carrier density which only di�ers by a factor of 4/3. It is caused by the alternation of the

electronic band structure which is understood from the lack of copper 3d states (compare

Ch. 2.3.2). Thus, the associated large shift in the electrical conductivity underlines the sig-

ni�cant share of 3d states in the high electrical conductivity of (DCNQI)2Cu. The change

in the electronic states due to doping has also been observed in the spin-lattice relaxation

rate studied via nuclear magnetic resonance measurements [89]. Another aspect might be

the larger electronic correlation in the 1D system, in�uencing the charge carrier scattering

rate much stronger in (DCNQI)2Li due to its quarter-�lled band structure. This will be

discussed in more detail below when analyzing the Seebeck coe�cient.

Figure 4.7: Electronic properties of alloyed (DCNQI)2CuxLi1−x crystals. (a) The ratio of copper to
nitrogen is expected to vary linearly with the e�ective copper concentration xeff in the (DCNQI)2CuxLi1−x

samples. Measuring Cu/N (black dots) for crystals of various nominal copper content xnom (inferred from
the net weights used in the crystal growth procedure) by SEM-EDX allows to determine the e�ective
copper content xeff by assuming a linear relation Cu/N = 0.168 · xeff . It should be noted that the abscissa
values xeff have been determined for the varied ordinate quantity xnom in this graph. The SEM-EDX
data was kindly provided by Stephan Braxmeier from the ZAE Bayern. (b) Change of the electrical
resistivity and the Seebeck coe�cient with copper content at RT. Temperature-dependent (c) electrical
resistivity and (d) Seebeck coe�cient of alloyed (DCNQI)2CuxLi1−x crystals derived from interpolated
measurements. The dashed line indicates the expected spin entropy Sspin = −kB/e ln 2 of interacting
electrons in a quarter-�lled band (compare Eq. 2.83).

The temperature-dependent electrical resistivity of various (DCNQI)2CuxLi1−x single

crystals is depicted in Fig. 4.7c. Both, (DCNQI)2Li and (DCNQI)2Cu are metallic at RT

as indicated by the positive slope of the resistivity curve. While the copper-rich crystals

with x = 1, x = 0.89 and x = 0.85 stay metallic down to cryogenic temperatures,

(DCNQI)2Li is inherently unstable against a spin-Peierls transition at about TsP = 52K
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in agreement with values reported in literature [88, 89]. With increasing copper content

the transition shifts to lower temperatures, due to the deviation from the optimum quarter

band �lling which favors the spin-Peierls transition. For copper contents above x ≈ 0.4 the

material remains metallic in the whole temperature regime between 4K and 300K [79].

In spite of their metallic behavior at RT, Coulomb correlations seems to be important

in lithium rich samples as indicated by the almost constant Seebeck coe�cient of about

S ≈ −60 µVK−1 in (DCNQI)2Cu0.26Li0.74. This value corresponds to the spin entropy

Sspin = kB/e ln 2 = −59.6 µVK−1 of a Mott-Hubbard metal in the presence of strong

Coulomb repulsion, as given by Eq. 2.83 and indicated by the black dashed line in Fig.

4.7d. In this case, a charge transfer ratio of δ/2 = 1/2 was assumed. Similar observations

have been made for 1:2 organic charge transfer salts with the acceptor molecule TCNQ,

also revealing a charge transfer of δ/2 = 1/2 [194].

In the pure (DCNQI)2Li sample the thermopower is even higher. An increased �nite

temperature contribution to the thermopower in (DCNQI)2Li has been observed before,

although not as pronounced as in this study [195]. In the metallic regime it goes through

a maximum at Tmax = 95K and then continuously decreases with increasing temper-

ature. As a consequence, one may anticipate a constant value of S = −kB/e ln 2 for

(DCNQI)2Li far above room temperature as well. A contribution by orbital lattice site

degeneracy in addition to the spin degrees of freedom has been suggested as explanation

for the increased �nite-temperature thermopower in the quarter-�lled Coulomb correlated

conductor NaCo2O4 [196]. According to this theory, the temperature of the maximum cor-

responds to an orbital energy splitting of only kBTmax = 8meV being negligible compared

to the bandwidth of W ≈ 800meV in (DCNQI)2M salts. Hence, a contribution from or-

bital degeneracy might seem reasonable and is supported by the lack of degeneracy as

soon as the copper content of the crystal reaches x = 0.26.

Some literature measurements on (DCNQI)2Li reveal semiconducting behavior already

at room temperature [79]. This has been attributed to the formation of a 4kF -CDW at high

temperatures [197] which in turn might also in�uence the Seebeck coe�cient (compare

Ch. 2.2.2). In this sample, the resistivity starts to increase below 100K again, indicating

the onset of a possible 4kF -CDW transition. This temperature is close to the maximum in

the Seebeck coe�cient and accordingly, the anomalous Seebeck coe�cient of (DCNQI)2Li

compared to (DCNQI)2Cu0.26Li0.76 may rather be associated with the 4kF -CDW being

absent in the latter. Fig. 4.8 plots the electrical resistivity and Seebeck coe�cent of pure

(DCNQI)2Li against the inverse temperature. Within the insulating spin-Peierls regime

between temperatures of 35K and 50K, a similar activation energy of ∆E = 25meV is

observed in both quantities, as determined by Eqs. 2.66 and 2.79. This is in sharp contrast

to the copper salts where the 3d states seem to in�uence both quantities di�erently in
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Figure 4.8: Electronic properties in the spin-Peierls state of (DCNQI)2Li. The electrical resistivity and the
Seebeck coe�cient reveal the same thermally activated behavior in the spin-Peierls regime of (DCNQI)2Li
with an activation energy of ∆E ≈ 25meV.

the CDW regime. The consistency of the activation energies in (DCNQI)2Li is therefore

allegeable by the lack of copper 3d states, resulting in a more simple band structure as

compared to (DCNQI)2Cu. This again resembles an indirect hint to holes emerging from

3d copper states that signi�cantly in�uence the transport properties of (DCNQI)2Cu in

contrast to (DCNQI)2Li.

4.1.4 Conclusions

Within this subchapter, the electrical transport properties of (R1,R2-DCNQI)2M radical

anion salts have been analyzed and discussed in detail. Depending on the functional groups

R1/2 attached to the quinone ring, a Peierls metal-insulator transition can be induced in

(DCNQI)2Cu. An unambiguous identi�cation of the predominant charge carrier scattering

mechanism is not possible by the resistivity measurements due to large thermal expansion

e�ects of the underlying crystal lattice but an e�cient interaction with acoustic or optical

phonons is anticipated. The phonon drag e�ect is proposed to explain the anomalous low-

temperature peak in the thermopower and the reduction of the low-temperature resistivity

in (DCNQI-h8)2Cu. The thorough analysis of the resistivity and the thermopower as a

function of temperature suggests an additional hole contribution to the charge carrier

transport to emerge from the 3d copper states. It was demonstrated to crucially depend

on the coordination angle of the DCNQI molecules around the central copper atom in

the crystal, leading to a sensitive shift of the Fermi energy. In (DCNQI)2Li no indications

125



4. Results

of hole-like charge carriers were found, substantiating the above �ndings. Its Seebeck

coe�cient is governed by the spin entropy of correlated electrons, as described by the

Hubbard band model at quarter �lling. Moreover, by analyzing (DMe-DCNQI)2CuxLi1−x

mixed crystals a continuous variation of the electronic properties from a quasi-1D organic

metal with quarter band �lling and appreciable electronic correlation to a quasi-3D organic

conductor was possible. The RT electrical conductivity changed by more than one order

of magnitude by virtue of this band structure manipulation. This approach will enable a

more detailed analysis of the thermal transport and the thermoelectric properties of the

material systems later in this thesis.

126



4.2. Nonlinear Conduction in the Peierls Insulating State of (DCNQI)2Cu

4.2 Nonlinear Conduction in the Peierls Insulating

State of (DCNQI)2Cu

As discussed in Ch. 2.5.3, nonlinear conduction phenomena have been observed in a va-

riety of organic conductors and the electrothermal model proposed by Mori et al. has

also been applied to the nonlinear conduction e�ects in halogensubstituted (DCNQI)2Cu

radical anion salts [18]. The comparison of the simulated and measured nonlinear current-

voltage characteristics of (MeBr-DCNQI)2Cu is shown in Fig. 4.9. In order to reproduce

the experimental data, a speci�c heat of Ce ≈ 27 Jmol−1K−1 had to be assumed in Eq.

2.71. This value undermines the lattice speci�c heat by a factor of three to �ve and accord-

ingly, it was attributed to the electronic nature of the observed nonlinearities. However,

there are some doubts concerning this interpretation. First of all, the resistive switching

occurs on a time-scale of 10−4 s to 10−1 s being by far too long compared to the electron-

phonon relaxation times on the order of 10−14 s observed in organic conductors [198].

This discrepancy rather points toward a thermal e�ect of the lattice. Moreover, charge

carriers are, in principle, e�ciently scattered by low-energy phonons in low-dimensional

molecular metals as well as organic semiconductors [122, 128]. This is also corroborated

by the above-mentioned results on the electrical resistivity and thermopower. Therefore,

a small energy transfer rate αe between the electronic subsystem and the lattice seems

implausible and the current interpretation of the electrothermal model is highly doubtful.

Figure 4.9: Literature data on nonlinear conduction in (MeBr-DCNQI)2Cu. (a) Measured and (b) sim-
ulated two-probe current-voltage characteristics for (MeBr-DCNQI)2Cu. The electrothermal model de-
scribed by Eq. 2.71 is able to reproduce the observed nonlinearities and their temperature dependence
semi-quantitatively assuming a speci�c heat of Ce ≈ 27 Jmol−1 K−1. From: [18].

Nonetheless, the possibility to model nonlinear conduction e�ects for such a variety

of di�erent ground states proves the model by Mori to be a good starting point for

further investigation. Deuterated (DCNQI)2Cu radical anion salts are expected to enable
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a more detailed insight in the electrothermal model proposed by Mori et al. [143] and

its microscopic ingredients. Their ground state appears sensitive to the change in energy

when switching from the free electron gas in the metallic phase to localized electrons in

the insulating phase [34], i.e. a gain in the kinetic energy or a delocalization of electrons

by an applied electric �eld should be more likely to induce an insulator-metal transition

compared to other low-dimensional metals (see Ch. 2.3.3). Therefore, a distinct non-

equilibrium excitation of the electronic system by an applied electric �eld, as proposed

by the electrothermal model, may be more likely in (DCNQI)2Cu as compared to other

organic conductors.

Moreover, soliton-like charged domain wall pairs have been identi�ed as relaxation

channel by means of dielectric response measurements pointing toward collective elec-

tronic excitations being of importance in the semiconducting phase of (DCNQI)2Cu

[199]. Finally, the availability of high-quality literature data [176, 34] on the temperature-

dependent contributions of the electronic, acoustic and optical phonon excitations to the

speci�c heat allows for an identi�cation of the dominating microscopic mechanism causing

nonlinear conduction by the e�ective speci�c heat in the electrothermal model.

The results presented in the following section were published in Physical Review B 92,

155107 (2015) [177], to which the American Physical Society (APS) holds copyrights and

from which the content below was mainly adapted.

4.2.1 Nonlinear Current-Voltage Characteristics

Fig. 4.10a shows the resistance of a (DCNQI-d6)2Cu crystal contacted in two-probe ge-

ometry with silver paint (see inset). Care was taken to completely cover both ends of the

sample with the conducting paste to ensure uniform current injection. In contrast to the

four-probe measurement presented in Ch. 4.1.1, the two-probe resistance measurement

only reveals a jump by two orders of magnitude at the Peierls transition temperature of

TP,c = 85K, i.e. the contact resistance can be neglected in the Peierls insulating phase

but dominates the conduction behavior in the metallic phase. Upon heating the phase

transition occurs with a small hysteresis at TP,h = 89K similar to the four-probe measure-

ments presented in the subchapter above. In the metallic regime, the contact resistance

revealed an activation energy of about 10meV (�t not shown). Below TP,c, the resistivity

is thermally activated with a corresponding energy of about ∆E = (39± 5)meV between

35K and 75K in agreement with values obtained from four-probe measurements. The in-

terpolated two-probe resistance from the heating cycle of the sample with cross-sectional

area of (0.03)2 mm2 and length of 0.275mm was used for all subsequent simulations in

this section.
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Figure 4.10: Nonlinear conduction in (DCNQI-d6)2Cu. (a) Two-probe sample resistance during cooling
and heating run plotted logarithmically against the inverse temperature. The linear �t below the phase
transition corresponds to an activation energy of ∆E ≈ 39meV. The inset shows a microscope image
of the sample. (b) Measured (dots) and simulated (solid lines) nonlinear current-voltage characteristics
of (DCNQI-d6)2Cu between 35K and 75K in steps of 5K. (c) Simulated temperature transients after
applying a voltage pulse of 87V to the crystal at T0 = 40K. The respective transient P- and K-terms
(Eq. 4.8) contributing to the temperature rise dT/dt are also illustrated. (d) Setup used for the transient
resistance experiments. Adapted from: [177], c⃝American Physical Society

Current-voltage characteristics were recorded with single voltage pulses of 40ms length

and 0.2 − 100V amplitude at temperatures between 35K and 75K. Both, the applied

voltage and measured current, were recorded with a Keithley 236 source measurement unit

(SMU) and individual voltage pulses were separated by at least 0.5 s to ensure thermal

relaxation in between each data point. A load resistor two orders of magnitude smaller

than the low-�eld sample resistance was placed in series to the sample to avoid sample

degradation as a result of high current �ow after resistive switching. The voltage drop at

the load resistor was subtracted from the measured voltage.

Fig. 4.10b delineates the nonlinear current-voltage characteristics in the CDW state

of (DCNQI-d6)2Cu. Above a critical �eld Eth, negative di�erential resistivity similar to

Fig. 4.9 is observed in the sample. The critical �eld decreases with increasing temperature

while the associated critical current density jth exhibits the opposite behavior. To model

the experimental data by the electrothermal model including any e�ect of the load resistor,
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Eq. 2.71 was adjusted to the following form

dT

dt
=

mmol

{
U

1+RL/RS(T )

}2

ρdens · V · cm(T ) ·RS(T )︸ ︷︷ ︸
P-term

− mmol · α̃
ρdens · V · cm(T )

{T − T0}︸ ︷︷ ︸
K-term

. (4.8)

with the sample volume V , the density ρdens = 1.61 g cm−1 [66], the temperature-

dependent molar speci�c heat cm(T ) and the molar mass mmol = 444 gmol−1. U is the

voltage applied to the series of sample and load resistor (RS and RL) and α̃ is the absolute

energy transfer rate in [WK−1] to the environment. From now on, the �rst term on the

right hand side of Eq. 4.8 will be denoted as P-term and second one as K-term. Later, we

also will allow the speci�c heat to become temperature-dependent.

As demonstrated by the solid lines in Fig. 4.10b, the data can be accurately modeled by

numerical integration of Eq. 4.8 assuming cm = 55 Jmol−1 K−1 and α̃ = 9× 10−5 WK−1

to remain constant. The simulation is able to reproduce the current-voltage characteris-

tics and the temperature dependence of threshold �eld Eth and threshold current jth. The

reliability of the simulation can be understood by Fig. 4.10c where the transient temper-

ature evolution after applying a voltage pulse of 87V at T0 = 40K is shown. In this case,

after a short period of 1.1 ms a steady state (dT/dt = 0) is reached in the sample. This

will be the case for most of the data points in the current-voltage characteristics which

were recorded at a pulse width of 40ms. With the steady state solution of Eq. 4.8 being

independent of cm, the �nal temperature and resistance value will be determined by the

choice of α̃ as long as the value for cm remains moderate.

Fig. 4.10c also displays the separate contributions of the P- and the K-term to the

transient temperature rise dT/dt. The P-term governs the behavior on short timescales

until the K-term reacts on the temperature rise, leading to its steady state solution. It

has to be noted that in the present description both terms still depend on cm, i.e. until

the steady state is reached, the dynamic solution depends on cm and α̃. The applied value

of cm = 55 Jmol−1K−1 corresponds to the speci�c heat of (DCNQI-d6)2Cu at 30K [176].

In order to gain detailed insights into the dependence of the resistive switching on

microscopic contributions to the speci�c heat, shorter pulses are required or, even better,

the complete transient evolution of the sample resistance has to be analyzed. This will be

done in the following with the setup illustrated in Fig. 4.10d where the voltage applied by

the Keithley 236 SMU is recorded transiently with a Tektronix TDS 744A oscilloscope.

Recording the voltage drop at the load resistor RL enables a calculation of the transient

current and sample voltage, from which the transient resistance RS(t) can be derived.

Due to the high sample resistance in the Peierls insulating regime, a 100:1 passive probe
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of high input resistance Rin = 100MΩ was used to feed the applied voltage into the

oscilloscope. For the voltage drop at the smaller load resistance a 10:1 passive probe with

Rin = 10MΩ was su�cient.

4.2.2 Dynamic Resistive Switching

Transient Analysis of Nonlinear Conduction

Exemplarily, the measured dynamic sample resistances at T0 = 40K in response to volt-

age steps of U = 56V and U = 97V are displayed in Fig. 4.11a together with simulations

employing �xed values of cm and α̃. Within the range of milliseconds, the resistance of the

sample rapidly changes from a high-resistive to a low-resistive state. A kink can be seen

in the resistivity data as well as in the simulations for high voltages applied. It is caused

by the huge drop of the resistivity at the Peierls transition and marks the culmination of

the transition temperature, i.e. the melting of the CDW. After switching, the steady-state

values of measurement and simulation match for α̃ = (9± 1)× 10−5WK−1 in agreement

with the steady-state analysis in Sec. 4.2.1. The dynamic behavior is only fairly repro-

duced by the simulation, especially for large temperature increments on intermediate

time-scales. The deviation emanates from the inaccurate assumption of a temperature-

independent speci�c heat of cm = 55 Jmol−1 K−1. However, from the magnitude of cm it

can be concluded that the nonlinear conduction in (DCNQI-d6)2Cu is thermally driven,

thus making it reasonable to treat the temperature parameter in the electrothermal model

as the sample temperature.

For a direct determination of cm from the measurement data, an evaluation procedure

known from the transient electrothermal method was re�ned [200]. Neglecting the K-

term and assuming a constant heating power (RS = const), it is possible to extract

the speci�c heat by linearly approximating Eq. 4.8 on short timescales to ∆T = (P-

term) ·∆t. This method has already been proven to work reasonably well in measuring the

speci�c heat of rod-like samples, e.g. platinum wires, carbon �bres and carbon nanotubes

[200, 201]. Yet, the temporal resolution has to be su�cient to neglect the K-term which

often is problematic in samples of higher impedance. Therefore, the K-term is estimated for

short timescales and small temperature steps by assuming a constant average temperature

di�erence θ = T − T0 being half the temperature increase the transient linear �t extends

to (compare Fig. 4.11b). Furthermore, utilizing a constant e�ective heating power by

assuming RS(T ) = RS,eff = RS(T0 + θ) reveals a simple analytic solution of Eq. 4.8
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Figure 4.11: Transient analysis of nonlinear conduction in (DCNQI-d6)2Cu. (a) Dynamic resistance in
response to voltage steps of 56V and 97V at 40K together with the sample temperature (dashed line).
Measurement (solid line) and simulation (dotted line) agree only fairly. For high voltages applied, a kink
is observed in the measurement as well as in the simulations indicating the transition to the metallic
state. (b) Magni�cation of the initial temperature increment which was linearly �tted for each voltage
applied. The linear �t's slope Aeff exhibits a (c) quadratic voltage dependence and enables an accurate
determination of the (d) speci�c heat for each ambient temperature with the help of Eq. 4.10. The
literature data measured by Matsui [176] and the expected acoustic phonon contribution are displayed
for comparison. The data �ts well to an e�ective Einstein model described by Eq. 4.12. Adapted from:
[177], c⃝American Physical Society

∆T =
{

U2·mmol[1+RL/RS,eff ]
−2

ρdensV cm(T0+θ)RS,eff
− mmol·α̃·θ

ρdensV cm(T0+θ)

}
· t

= {B · U2 − C} · t = Aeff · t . (4.9)

From the voltage dependence of the slope Aeff ∝ U2 the speci�c heat of the system

under study can be determined reliably as the K-Term only represents a voltage inde-

pendent o�set. In order to employ Eq. 4.9, the dynamic resistance needs to be converted

into a transient sample temperature using the temperature-dependent resistance curve

exposed in Fig. 4.10a. The resulting curves are exemplarily delineated in Fig. 4.11a as

well. After zooming in, the voltage-dependent initial temperature rise is found to be lin-
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ear on short time-scales (see Fig. 4.11b) as anticipated by Eq. 4.9. The striped area in

Fig. 4.11b marks the �tting regime over the total temperature increase 2θ. The foreseen

squared voltage-dependence of the linear �ts' slope Aeff is veri�ed in Fig. 4.11c. Via Eq.

4.9 the molar speci�c heat can be extracted from the slope B = ∆Aeff/∆U2 by:

cm =
mmol

ρdensV BRS,eff [1 +RL/RS,eff ]2
. (4.10)

In the determination of cm the average resistance of the sample RS,eff = RS(T0 + θ)

during the initial temperature rise 2θ causes the largest uncertainty of about σR =

1/2 · (RS[T0 + 2θ]−RS[T0]). Eq. 4.9 also yields an estimate of α̃ = (7± 4)× 10−5WK−1

from the intercept C when �tting Aeff (U
2) linearly at various sample temperatures. It

is in good accordance with the value of 9× 10−5 WK−1 derived from the data on long

timescales above, especially considering the low sensitivity of the initial temperature rise

on α̃.

The e�ective molar speci�c heat cm determined at various sample base temperatures

is presented in Fig. 4.11d. The uncertainty bars originate from the errors of the e�ec-

tive resistance RS,eff and the slope B. Qualitatively, the temperature dependence and

the magnitude of cm comply with the speci�c heat data of high accuracy reported by

Matsui et al. [176]. Nevertheless, even including the conservatively estimated error, the

measurement systematically undermines the published data by an almost constant o�set

of about 40 Jmol−1K−1. An inaccuracy in the optical determination of the sample vol-

ume is incapable to account for this large deviation. In general, the speci�c heat can be

modeled by an additive contribution from acoustic and optical phonons as well as from

mobile electrons:

cm = Cac + Copt + Cel . (4.11)

The rather linear temperature dependence of the speci�c heat data with a slope of

(3.0± 0.2) Jmol−1K−2 (�t not shown) may be considered to originate from the electronic

speci�c heat, given in Eq. 2.72 and being proportional to T . However, the electronic

speci�c heat coe�cient γ = 0.025 Jmol−1K−2 [34] determined for metallic (DCNQI)2Cu

is two orders of magnitude smaller and even more, should be negligible in the investigated

insulating phase. As a result, the electronic e�ects, including other low-energy charge-

carrying excitations [202], are disregarded in the further interpretation of the e�ective

speci�c heat. In solids built up of molecules, each having three translational and three ro-

tational degrees of freedom, the speci�c heat contribution by acoustic phonons amounts to

twice the value predicted by the classical Debye model given in Eq. 2.48 for a monoatomic
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lattice (compare Eq. 2.49 [119]). Assuming a Debye temperature of θD = 82K [34], this

contribution to the speci�c heat is depicted in Fig. 4.11d (black curve). According to the

six degrees of freedom taken into account, the Debye speci�c heat originating from acous-

tic phonons approaches a high temperature limit of 6R ≈ 50 Jmol−1 K−1. While being of

similar magnitude as the experimental data, acoustic phonons may only account for up

to about 44 Jmol−1K−1, i.e. about half of the determined cm value, in the temperature

regime investigated. More noticeably, the variation between 35K and 75K is quite small

by means of the material's low Debye temperature. Considering the speci�c heat data to

be systematically lower compared to literature, the saturated contribution of low-energy

acoustic phonons to the speci�c heat does not seem to enable a transient heating of our

sample by inelastic scattering of charge carriers.

Additional degrees of freedom are available by optical lattice phonons which may be

characterized as external (intermolecular) or internal (intramolecular) vibrational modes.

Considering N = 22 atoms per molecule, the phonon spectrum consists of 3N − 6 = 60

internal modes and 6Z−6 = 30 external modes, Z = 6 denoting the number of molecular

entities constituting the unit cell of (DCNQI-d6)2Cu single crystals [58]. Subtracting the

calculated acoustic phonon part from the Matsui data, the estimated optical phonon

contribution to the speci�c heat in (DCNQI-d6)2Cu agrees very well with the e�ective

speci�c heat deduced from the transient resistance measurements. Because of their small

dispersion, the contribution by internal and external optical phonon modes to the speci�c

heat in molecular solids may be well described by a sum of independent Einstein oscillators

(Eq. 2.43) [119]. As a consequence, the e�ective speci�c heat is well modeled by an e�ective

Einstein model [203]

Copt = NER

(
θE
T

)2
eθE/T

(eθE/T − 1)2
, (4.12)

where NE is the number of oscillators with an e�ective frequency νE = kBθE/h of

the involved phonon modes, θE denoting the Einstein temperature. Best �t results were

obtained by modeling the data with an e�ective Einstein model solely, i.e. by neglecting

the electronic (Cel) and acoustic phonon (Cac) part of the speci�c heat and only taking

into account internal and external optical phonon modes. The number of involved optical

phonon modes amounts NE = 30± 3 and their average energy yields Eph = 19meV

according to the e�ective Einstein temperature of θE = (211± 9)K.

A Raman investigation on the optical phonon modes is illustrated in Fig. 4.12a, com-

paring the normalized Raman spectrum of (DCNQI-d6)2Cu to a measurement on pristine,

crystalline DCNQI-d6 powder. While low-frequency optical phonon modes are also present
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Figure 4.12: Raman investigation on optical phonon modes at RT. (a) Normalized Raman spectra of
crystalline DCNQI-d6 and its copper salt. (b) The same Raman spectra magni�ed at low frequencies
reveal signi�cant spectral weight in the vicinity of the estimated average phonon energy in the Einstein
model, indicated by the dashed vertical line at 19meV.

in the pristine powder due to its crystallinity, a clear shift of spectral weight from high fre-

quency internal modes between 1000 cm−1 and 2500 cm−1 to low frequency internal optical

phonon modes below 500 cm−1 is observed when going from the neutral molecular to the

radical ion salt single crystal. The magni�ed view on the low-frequency Raman spectrum

in Fig. 4.12b reveals signi�cant spectral weight in the vicinity of 19meV in the Raman

signal, corroborating the assumption of an Einstein model above. The e�ective number of

involved phonons equals the number of possible external modes, but it is most likely that

internal and mixed modes have their share as well [204]. The presence of low-frequency

optical phonon modes in the pristine DCNQI-d6 material might be indicative of this.

Thus, it can be concluded that intra- and intermolecular optical modes drive the e�ective

speci�c heat as derived from the electrothermal model in the investigated regime. The

improved description of this parameter by an e�ective Einstein model facilitates a more

accurate simulation of the complete dynamic resistance response which will be presented

below.

Simulated Dynamic Reponse

According to the temperature rise by several ten Kelvin within the sample in response to

the large electric �elds, the temperature dependence of cm should be taken into account

in the simulation by Eq. 4.8. This is achieved by utilizing the e�ective Einstein model

derived above. As a test, a latent heat contribution at the phase transition - similar to the

peak in the Matsui data at 85K in Fig. 4.11d - was added to the model, but found to be of
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Figure 4.13: Measured and simulated dynamic nonlinear conduction in (DCNQI-d6)2Cu. Measurements
(solid lines) and simulations are compared for (a) varying voltage pulses at T0 = 40K and (b) di�erent
ambient temperatures utilizing a constant speci�c heat of cm = 55 J/(mole K) (dotted lines) and the
e�ective Einstein model of the speci�c heat (dashed lines) as outlined in Sec 4.2.2. Adapted from: [177],
c⃝American Physical Society

minor importance in the temperature regime under study. It will only a�ect the response

at large temperature di�erences between sample and environment where the K-term of

Eq. 4.8 already dominates.

Fig. 4.13a compares the transient resistance at T0 = 40K in response to voltage

pulses of di�erent magnitude to two simulations, one employing a constant speci�c heat

of cm = 55 Jmol−1 K−1 (dotted line) and the other utilizing the temperature-dependent

Einstein Model (dashed line). The simulated transients are evidently improved by explic-

itly including the temperature dependence of cm in the simulations. More strikingly, the

transients at di�erent ambient temperatures reveal superior conformity compared to the

case of a constant speci�c heat (Fig. 4.13b). The small dip in the dynamic resistance af-

ter switching at temperatures above 50K is caused experimentally by the current limiter

of the pulsed voltage source, employed to prevent sample destruction and being with-

out physical relevance here. The exceptional good agreement between simulations and

measurements stress the validity of the methodical approach in the determination of the

e�ective speci�c heat described before.

4.2.3 The Advanced Electrothermal Model

The di�erence in the e�ective speci�c heat as compared to literature data may be ascribed

to the respective measurement principle utilized. First and foremost, instead of a steady-

state heat �ow into and out of the sample [176], the transient Joule heating of a sample at

intermediate to large electric �elds rather represents an out-of-equilibrium experimental

condition. While the temperature distribution inside the sample is expected to be irrele-
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vant on the short time scales used for the determination of cm, an inhomogeneous current

or �eld distribution inside the crystal might lead to an overestimation of the active cross

section for charge transport in the present analysis. The possibility of an inhomogeneous

high conduction state was already discussed by Mori and coworkers [143]. Flicker noise

studies also reveal a pronounced noise level enhancement in organic charge transfer salts

which was also ascribed to the presence of an inhomogeneous current �ow [205, 206],

backing the above perception. Moreover, the two-probe geometry with non-planar silver

paint contacts, used to achieve the high �elds necessary for the resistive switching, might

facilitate an inhomogeneous �eld distribution accompanied by local �uctuations of the

charge carrier density.

Nonetheless, the accuracy of the e�ective Einstein model explaining the e�ective spe-

ci�c heat solely based on optical phonon modes rather calls for an extension of the elec-

trothermal model as shown in Fig. 4.14. The model explicitly considers the separation of

the lattice system into an acoustic and optical phonon part.

Figure 4.14: Scheme of the advanced electrothermal model. Depending on the preferred charge carrier
scattering mechanism, the electrical energy can be deposited into the individual microscopic subsystems
of the material. Ine�cient electron-phonon scattering may lead to a direct excitation of charge carriers
or hot electrons by the electric �eld. E�cient interaction with optical phonons causes a non-equilibrium
population of optical phonon modes whose low group velocity inhibits a thermal relaxation to the en-
vironment. Hence, energy stored in the optical phonon system is available for excitation of additional
charge carriers in contrast to the heat stored in acoustic phonons dissipating quickly out of the sample.
The identi�cation of the microscopic system being out of equilibrium is possible from the e�ective speci�c
heat in the electrothermal model and allows for an understanding of the energy �ows in the system. From:
[177], c⃝American Physical Society
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At the beginning, the energy provided by the electric �eld is fed into the electronic

system. Depending on the electron scattering rate by acoustic and optical phonons (αe =

αe−ac + αe−opt) this energy can be transferred to the lattice system. If αe was small, hot

carrier generation or direct population of excited electron states would constitute the

preferred relaxation mechanisms of the energy supplied by the electric �eld. It would be

indicated by a low electronic contribution nCe governing the observed e�ective speci�c

heat. This case was originally discussed by Mori et al. when proposing the model and, in

this case, the temperature T = Te is assumed to be a parameter describing the population

of excited electronic states rather than resembling the crystal lattice temperature TL [143].

However, the identi�cation of optical phonons (nCopt) determining the e�ective speci�c

heat provides evidence for an e�cient interaction between charge-carrying excitations and

optical phonons, ruling out a hot electron e�ect via direct �eld excitation. The relative

strength of the electron scattering by acoustic and optical phonons moreover governs the

preferred excitation of a distinct phonon subsystem. Yet, optical phonon modes barely

contribute to thermal conduction due to their low group velocity, i.e. the continuous depo-

sition of energy into the optical phonon system causes its population density to shift far o�

equilibrium and its temperature to decouple from the temperature of the acoustic phonon

bath. This excess energy is available for quite a long time and enables the generation of

additional charge carrier excitations, leading to a multiplication e�ect. The mechanism

of nonlinear conduction originating from current-induced non-equilibrium optical phonon

population has already been demonstrated in quasi-1D single-walled carbon nanotubes

[207] as well as in 2D graphene [208]. The heat stored in acoustic phonons quickly dis-

sipates out of the system. Hence, the measured α̃ characterizes the process limiting the

energy transport out of the system. The activation energy of additional charge carriers

can be estimated from the slope of the DC conductivity in Fig. 4.10, yielding an energy

of about ∆E = (39± 5)meV slightly varying with temperature across the investigated

regime and being smaller than the expected Peierls gap of 2∆ ≈ 79meV as determined

and discussed in Ch. 4.1.1. The activation energy related to the electronic transport is

about twice as large as the average phonon energy of Eph = 19meV estimated by the Ein-

stein model, for which reason two-phonon processes might be involved in the excitation

of charge-carriers in the CDW state of (DCNQI)2Cu.

An excited charge carrier needs to be accelerated by the electric �eld to an en-

ergy of about Eph = 19meV to scatter inelastically with these optical phonons. Tak-

ing an e�ective electron mass of meff = 3.35m0 [209] and an applied electric �eld of

about E ≤ 3600V cm−1, the required mobility of the charge carriers must be at least

µ ≥ (2Eph/m)−1/2 · E−1 = 1200 cm2V−1 s−1. This high value is considered to be not un-

realistic taking into account the observed low-temperature Hall mobilities on the order
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of 105 cm2V−1 s−1 for one-dimensional organic conductors such as (TMTSF)2PF6 [210].

From the low-temperature electrical conductivity σ(50K) = 3.7× 104 S cm−1 of (DCNQI-

h8)2Cu (compare Sec. 4.1.1), a mobility of about µ = 80 cm2 V−1 s−1 may be anticipated

in the metallic state of (DCNQI)2Cu. It increases to µ = 1300 cm2 V−1 s−1 below 20K and

is expected to be higher in the semiconducting regime by virtue of a smaller e�ective elec-

tron mass caused by the stronger band curvature at the Fermi energy. Furthermore, the

saturated charge carrier velocity in the organic semiconductor naphthalene at cryogenic

temperatures and high electric �elds has also been related to optical phonon generation

via inelastic charge-carrier scattering [128].

Alternatively, soliton-like charged domain walls might constitute another possibility

for low-energy excitations of the electronic system, which have been proposed to explain

the low-frequency dielectric response in the CDW state of (DCNQI)2Cu [199]. Soliton-

like excitations are known to be of importance in the transport of commensurate CDW

systems like polyacetylene [211] as well as of various organic charge transfer salts, e.g. α-

(BEDT-TTF)2I3 [16]. The charge carrier activation energy amounting to half the Peierls

gap energy was also taken as indicator for soliton-like excitations in the previous sec-

tion. The relative coupling strength of solitons to optical and acoustic phonon modes is

characterized by a factor ξ/a, with a denoting the lattice constant along the chain direc-

tion and ξ the spatial extension of the soliton [212]. Therefore, a large spatial extension

of the soliton with respect to the molecular lattice spacing might facilitate a preferred

interaction with optical phonons, as indicated by the determined e�ective speci�c heat.

While the fundamental conduction mechanisms cannot be explicitely resolved by the con-

ducted electrothermal analysis, an e�cient interaction between optical phonon modes and

charge-carrying excitations seems to play a crucial role for the nonlinear conduction e�ects

occurring in (DCNQI)2Cu.

For the sake of completeness, the main heat loss mechanism to the environment can be

estimated by analyzing the α̃ parameter. If the energy was transferred to the surroundings

via convection or radiation from the crystal surface, the determined α̃ = 9× 10−5WK−1

would yield a surface heat transfer coe�cient of h = α̃/AS ≈ 3000Wm−2K−1 assum-

ing a surface area AS = 3× 10−4 cm2 of the sample. This heat transfer coe�cient exceeds

typical values for convection (hconv = 6−30Wm−2K−1 [213]) by far. The coe�cient of ra-

diative heat transfer can be estimated to hrad = σSB ·(T1+T0)(T
2
1 +T 2

0 ) = 0.07Wm−2K−1

[213], σSB being the Stefan Boltzmann constant, T1 = 90K the maximum crystal surface

temperature and T0 = 35K the minimum ambient temperature. Because of its small

magnitude it can also be neglected. The thermal conductivity κ of the sample limits the

conductive heat transfer to the contacts. It may be roughly estimated by κ ≤ α̃ ·l/(8 ·Acs),

with l denoting the length and Acs the cross-sectional area of the sample [214]. The ob-
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tained value of κ ≤ 3.4Wm−1K−1 agrees reasonably well with the thermal conductivity

of about 1.5Wm−1K−1 measured for (DCNQI)2Cu at 50K [174]. Together with its as-

signment to acoustic phonons, the rather constant thermal conductivity between 30K

and 90K con�rms the interpretation of our temperature-independent α̃ value. Thus, the

main energy loss mechanism in the crystal is the energy transfer to acoustic phonons which

transport the heat to the contacts via thermal conduction as indicated in the model in Fig.

4.14. The energy exchange with acoustic phonons can be accomplished via charge carrier-

phonon scattering (αe−ac) or scattering between optical and acoustic phonons (αopt−ac).

Both mechanisms seem to be insu�cient at high electric �elds facilitating the observed

nonlinear conduction e�ects.

4.2.4 Conclusions

The nonlinear conduction in (DCNQI-d6)2Cu single crystals at high electric �elds has

been analyzed in terms of the electrothermal model proposed by Mori et al. [143] and

discussed in Ch. 2.5.3. Compared to simulations of the current-voltage characteristics at

�xed pulse width, applying the electrothermal description to the entire transient resistiv-

ity yields a more detailed insight into the microscopic energy exchange processes taking

part inside the crystal. In contrast to the hot electron scenario proposed by Mori et al., the

simulations accurately reproduce the nonlinear conduction behavior by assuming only a

current-induced, distinct, non-equilibrium excitation of optical phonon modes at a mean

energy of about 19meV. This pinpoints to an e�cient scattering of charge carriers by

optical phonons at high electric �elds in this material class. By virtue of their small con-

tribution to the thermal conductivity, the energy deposited into the optical phonon system

remains within the crystal and thus, can generate additional charge carrying excitations,

leading to a thermally induced multiplication e�ect. Energy transferred to the acoustic

phonon system e�ciently dissipates via heat conduction to the contacts. The involved

optical phonon modes have an energy of around 19meV being about half the activation

energy of 39meV inferred from the DC conductivity studies, and therefore, an excita-

tion process including two phonons can be anticipated. Hence, the nonlinear conduction

in (DCNQI-d6)2Cu crucially depends on the charge carrier coupling strength to optical

phonon modes relative to that of acoustic phonons. The interplay of low-energy optical

phonon population, small transport activation energy, large mobility at low temperatures

and strong coupling between optical phonons and charge carriers seems to provide the fun-

damental ingredient for the occurrence of nonlinear transport phenomena in this material

class. These results bridge the gap between the phenomenological electrothermal model

and the microscopic origin of nonlinear conduction in (DCNQI)2Cu, and presumably also

in other low-dimensional molecular conductors revealing di�erent ground states.
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4.3 Heat Conduction in (DCNQI)2M

The extraction of thermal material properties from transient resistivity analysis at high

electric �elds facilitated an understanding of nonlinear conduction phenomena in the

previous section. In this part of the thesis, the more sophisticated analysis of the thermal

conductivity near equilibrium is presented by means of the 3ω measurement technique

delineated in Ch. 3.2. It enables an investigation of the Wiedemann-Franz law as well as

an examination of the lattice thermal conductivity in the (DCNQI)2M system, both with

unprecedented accuracy.

4.3.1 The Thermal Conductivity of (DCNQI-h8)2Cu

The temperature-dependent thermal conductivity of (DCNQI-h8)2Cu, as determined by

the 3ω method described in Ch. 3.2.4, is illustrated in Fig 4.15. At room temperature,

the thermal conductivity attains a value of

κRT = (1.73 + 0.32/−0.10) Wm−1K−1 . (4.13)

Figure 4.15: The thermal conductivity κmeas of (DCNQI-h8)2Cu determined by the 3ω method together
with its interpolation. The expected electronic thermal conductivity κWF according to the Wiedemann-
Franz law described by Eq. 2.89 is also shown. For the electronic part, a temperature-independent standard
Lorenz number of L0 = 2.44× 10−8 WΩK−2 was assumed and the electrical conductivity data of the
sample, as presented in Sec. 4.1.1, was taken into account.

According to the Wiedemann Franz (WF) law of Eq. 2.89, assuming a standard Lorenz

number of L0 = 2.44× 10−8 WΩK−2 and an electrical conductivity of 1070 S cm−1, the

electronic contribution to heat conduction can be estimated to κWF ≈ 0.76Wm−1K−1
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at RT. As indicated by the red arrow in Fig. 4.15, the remainder of κRT − κWF =

0.97Wm−1K−1 = κPhon is ascribed to the heat carried by phonons. This value compares

in magnitude to the lattice thermal conductivity data reported for crystalline organic

semiconductors, such as naphthalene (κ = 0.5Wm−1K−1 [215]) or needle-like crystals of

6,13-bis(triisopropylsilylethynyl)pentacene (κ = 1.6Wm−1 K−1 [216]).

Upon cooling the thermal conductivity of (DCNQI-h8)2Cu rises because both, the

electronic and the lattice contribution are expected to increase. Yet, the steep increase of

the electronic thermal conductivity anticipated by the WF law is not observed under the

assumption of a temperature-independent Lorenz number L0. Considering a rising amount

of heat to be carried by phonons upon cooling as well, the WF law seems to overestimate

the electronic contribution at low temperatures. Hence, a more detailed experimental

investigation of the Wiedemann-Franz law in (DCNQI)2Cu is presented in the following.

4.3.2 The Wiedemann-Franz Law in Organic Conductors

Organic conductors are known for their exceptional high electrical conductivity as well

as their reduced dimensionality owing to the anisotropic electronic structure. Often de-

noted as organic metals, the question arises whether fundamental relationships like the

Wiedemann-Franz law are as valid for this material class as for ordinary inorganic 3D

metals, such as gold or copper. By means of their anisotropic electronic structure, low-

dimensional conductors behaving as Luttinger liquids are expected to violate the WF

law [47], as evidenced by increased Lorenz numbers which diverge in the zero tempera-

ture limit. This has been experimentally demonstrated for inorganic metals of reduced

dimensionality, such as Li0.9Mo6O17 [217]. On the other hand, the complex and diverse

interaction mechanisms between electrons and phonons in organic conductors have been

theoretically predicted to render reduced Lorenz numbers possible [49, 218]. Hence, a com-

prehensive investigation of the WF law appears to be mandatory for understanding the

relation between thermal and electrical transport in low-dimensional organic conductors.

Considering the potential application of this material class in thermoelectric generators,

it is also of technological relevance.

(DCNQI)2Cu serves as a model system and enables an investigation of the Wiedemann-

Franz law by two methods: First of all, by attachment of di�erent functional groups to

the quinone ring of the DCNQI molecules, a �rst-order metal-insulator phase transition

can be induced with a tunable critical temperature. Monitoring the change in the thermal

conductivity concomitantly with the drop in electrical conductivity facilitates the deter-

mination of the Lorenz number at various transition temperatures. Secondly, the electrical

conductivity can be varied by the lithium content in (DCNQI)2CuxLi1−x crystals which

are isostructural to the pure copper compound (compare Sec. 4.1.3). Thus, comparing
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samples of di�erent lithium concentration permits to discriminate between the electronic

and the phononic contributions to thermal conduction. Performing simultaneous electrical

and thermal conductivity studies on a single sample, as enabled by the newly designed

measurement setup, is the essential requirement for obtaining the reliable data presented

in the following.

Phase Transition Analysis

The drastic change in the electrical conductivity at the Peierls transition should also

be re�ected in the thermal conductivity due to the reduced electronic contribution to

thermal conduction, like anticipated by the Wiedemann-Franz law in Eq. 2.89. The corre-

lated changes were investigated for (MeBr-DCNQI)2Cu, (DCNQI-d6)2Cu and (DCNQI-

h8/d6)2Cu [70:30] undergoing Peierls transitions upon heating at 155K, 90K and 65K,

respectively. The di�erent phase transition temperatures emerge from the in�uence

of the functional groups on the coordination angle αco and the consequential 3dxy-π-

hybridization, as outlined in Ch. 2.3.3 as well as in the discussion on the electronic

properties in Sec. 4.1. The reduction of the electrical and thermal conductivity in the

vicinity of the phase transition is delineated in Fig. 4.16 for all three compounds. The

phase transition a�ects both transport quantities as indicated by their �rst-order discon-

tinuity.

Figure 4.16: Wiedemann-Franz law in the vicinity of the Peierls transition. The change in electrical con-
ductivity and thermal conductivity across the Peierls transition for (a) (MeBr-DCNQI)2Cu, (b) (DCNQI-
d6)2Cu and (c) (DCNQI-h8/d6)2Cu [70:30]. Their respective extrapolations (dashed red lines) to TP

(dotted vertical line) are also included. Due to the measurement uncertainty several extrapolations were
made to estimate the error (not shown for the reason of clarity).

In close vicinity of the Peierls transition (shaded area) no meaningful determination

of the thermal conductivity is possible as the temperature coe�cient χ of the sample's
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resistivity is needed to evaluate κ from the measurement data (compare Eq. 3.18b). Since

both, the electrical conductivity and its temperature coe�cient are changing rapidly near

the phase transition, the relative error of κ in this temperature regime easily amounts to a

few hundred percent and explains its noisy behavior within the shaded areas of Fig. 4.16.

Nevertheless, a few Kelvin beneath and above the phase transition an accurate evaluation

of κ was possible. Extrapolating the measured κ and σ to the respective Peierls transition

temperature TP from above and below, the Lorenz number can be determined from both

changes ∆σ and ∆κ

L =
∆κ

∆σ · Tp

. (4.14)

The experimentally determined ∆σ and ∆κ together with the resulting Lorenz num-

bers for the three compounds at their transition temperatures are given in Tab. 4.6. The

errors include the uncertainty of ∆κ and ∆σ as well as the error in l by virtue of the

distinct electrical and thermal lengths of the crystal, as discussed in Ch. 3.2.4. The uncer-

tainty of the crystal cross section - usually one of the largest errors in the determination

of transport properties on the small needle-like organic single crystals [219] - was not

included as it introduces a similar inaccuracy in the thermal and electrical conductivity

under the assumption of heat and electrical transport occurring in the same volume. For

this reason, the approach presents the most accurate and coherent determination of the

Lorenz number in organic conductors to date.

TP [K] ∆κ [ W
mK

] ∆σ [105 S
m
] L [10−8WΩ/K2]

(MeBr-DCNQI)2Cu 155 0.58± 0.06 2.40± 0.20 1.57± 0.37

(DCNQI-d6)2Cu 90 0.42± 0.13 5.5± 1.5 0.86± 0.54

(DCNQI-h8/d6)2Cu [70:30] 65 0.56± 0.30 9.3± 1.5 0.92± 0.69

Table 4.6: Measured electrical and thermal conductivity drops at the Peierls transition of (MeBr-
DCNQI)2Cu, (DCNQI-d6)2Cu and (DCNQI-h8/d6)2Cu [70:30]. From the correlated changes the Lorenz
number was calculated.

As discussed in Sec. 2.7.1, the well-known form of the Wiedemann-Franz law with

a temperature-independent Lorenz number is strictly valid only in the high and very

low temperature limit by virtue of di�erent relaxation processes of the electronic sys-

tem upon electric �eld or thermal perturbations around and below the Debye tempera-

ture. This behavior is well re�ected by the signi�cantly smaller Lorenz numbers obtained

for (DCNQI-h8/d6)2Cu [70:30] and (DCNQI-d6)2Cu with Peierls transition temperatures
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TP . θD ≈ 82K [34]. Moreover, the high critical temperature of the metal-insulator tran-

sition in (MeBr-DCNQI)2Cu yields a unique opportunity to investigate the general appli-

cability of the Wiedemann-Franz law in low-dimensional organic conductors at high tem-

peratures T > θD. Deviating by 36%, the determined Lorenz number does not agree within

its error with the theoretically calculated value of L0 = 2.44× 10−8 WΩK−2 for isotropic

metals [121]. Hence, the data provides �rst evidence for a violation of the Wiedemann-

Franz law in low-dimensional organic conductors. The reduction of the Lorenz number

at phase transitions occurring below the Debye temperature furthermore indicates a pro-

nounced violation of the Wiedemann-Franz law. Yet, especially for (DCNQI-h8/d6)2Cu

[70:30] and (DCNQI-d6)2Cu the error in the measured Lorenz numbers is quite large. In

order to study the temperature dependence of Lmore reliably, the approach by Li-alloying

of (DCNQI)2Cu was chosen.

Analysis of Alloyed (DCNQI)2CuxLi1−x Crystals

To gain further insight into the WF law and the temperature-dependent Lorenz number in

organic conductors, alloyed samples of (DCNQI)2CuxLi1−x have been examined in which

copper atoms in the crystal lattice are partially substituted by lithium according to the

respective concentration x. The compound is isostructural and a similar lattice thermal

conductivity as in pure (DCNQI)2Cu is anticipated. In turn, the variation of the electrical

conductivity by up to one order of magnitude at RT upon alloying should be re�ected in

the electronic contribution to the thermal conductivity by virtue of the WF law, enabling

the detailed investigation of the latter.

In Fig. 4.17a the temperature-dependent electrical and thermal conductivities of dif-

ferently alloyed (DCNQI)2CuxLi1−x single crystals are shown. Plotting the interpolated,

measured thermal conductivity κ of the di�erent samples against their electrical conduc-

tivity σ enables the determination of the Lorenz number L at each ambient temperature

T , according to the linear dependence:

κ = κPhon + κel = κPhon + L · σ · T . (4.15)

The lattice thermal conductivity κPhon of (DCNQI)2CuxLi1−x corresponds to the y-

intercept of the �t with the ordinate. The κ-σ-graphs are illustrated in Fig. 4.17b at

six selected temperatures between 50K and 295K. The six temperatures are indicated

by dashed vertical lines in Fig. 4.17a as well. The upper error margin of each data point

contains an estimated 5% measurement error in addition to the uncertainty in the thermal

length of each sample, as discussed in Ch. 3.2.4. The relative error in the thermal length

was less than 10% for all crystals. For the lower error limit, besides the 5% measurement

error an uncertainty due to radiation losses according to Eq. 3.24 has been considered,
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taking into account the sample dimensions of each individual crystal and assuming an

emmissivity of ϵ = 0.6. The radiation error can be neglected below about 200K but it

may become appreciable above for very thin specimen, e.g. in the x = 0.85 sample with

a diameter of only d ≈ 10.7 µm.

Figure 4.17: Correlated electrical and thermal conductivity measured in alloyed (DCNQI)2CuxLi1−x

crystals. (a) Temperature-dependent electrical and thermal conductivity. (b) At six selected temperatures
the relation between thermal and electrical conductivity together with linear �ts are depicted. The gray-
shaded areas mark the respective �t's con�dence interval at one standard deviation. The lattice thermal
conductivity κPhon can be determined from the y-intercept of each �t with the ordinate while the slope
enables a determination of the Lorenz number.

Fig. 4.17b demonstrates the linear κ-σ dependence predicted by the WF law to be

reasonably ful�lled at temperatures above 100K. The shaded gray areas mark the one

standard deviation con�dence interval (68.2%) of each �t. At RT, the Lorenz number

may be calculated to

L = (2.48± 0.45)× 10−8 WΩK−2 (4.16)

which compares well to the standard Lorenz number L0 = 2.44× 10−8 WΩK−2 for a

degenerate 3D-metal [121]. The appreciable error in the determined L has to be valuated

in the context of scarcity of κ data, especially, in combination with electrical conductivity
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data on the same sample. So far, very little thermal conductivity data has been reported for

organic conductors at high temperature at all [220, 174, 175, 221, 219], none of which was

correlated with electrical conductivity. To date, the present analysis is the most accurate

examination of the WF law in low-dimensional organic metals and a relative error of

10-20% in the absolute value of L is bearable. A comparison of experimental Lorenz

numbers for di�erent metals at RT is shown in Tab. 4.7 together with their respective

Debye temperatures [96].

Cu Ag Au W Li0.9Mo6O17 (DCNQI)2Cu

L [10−8WΩ
K2 ] 2.23 2.31 2.35 3.04 18 [217] 2.48± 0.45

θD [K] 343 225 165 400 400 [222] 82 [34]

Table 4.7: Comparison of L obtained for (DCNQI)2Cu at RT with experimental Lorenz numbers of ordi-
nary metals [96]. The respective Debye temperatures θD are also given. The value for the one-dimensional
inorganic conductor Li0.9Mo6O17 is highly increased compared to the other materials and resembles a
prediction of the Tomonaga-Luttinger liquid theory [217].

In consideration of the assumptions and approximations made in calculating the the-

oretical L0 of isotropic metals, a deviation in experimentally determined Lorenz numbers

of about 10-15% is frequently observed in real materials, actually, also for inorganic met-

als for which the WF law is expected to hold. Taking the error of L into account, the

Wiedemann-Franz law can be taken as validated at RT. The few present studies on the

electronic contribution to thermal conduction in organic conductors have been lacking

the presented accuracy due to uncertainties in the sample cross section and were limited

to low-temperature measurements where impurity scattering dominates [221]. This result

con�rms the mostly common relaxation mechanism for thermal and �eld perturbation at

RT in (DCNQI)2Cu.

Of minor importance seems to be the electronic correlation in the material. In con-

trast to Fermi liquid theory, a strong electron-electron interaction in the strictly one-

dimensional Tomonaga-Luttinger liquid theory predicts a larger Lorenz number diverging

in the zero temperature limit [223]. This behavior has been observed in the inorganic

one-dimensional conductor Li0.9Mo6O17 with a room temperature Lorenz number of

L = 18× 10−8 WΩK−2 increasing by a factor of 5 upon cooling to 25K [217]. Electronic

correlation e�ects are also important in the (DCNQI)2Cu system as the CDW transi-

tion on the DCNQI molecules goes along with a Mott transition in the Cu 3d states

at the Fermi energy which has been demonstrated by photoemission spectroscopy [224].

However, the 3d states are hybridized with the pπ-states of the DCNQI LUMO result-

ing in a quasi-3D band structure. Thus, the absence of a Lorenz number enhancement
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in (DCNQI)2Cu is eventually not surprising because it has been predicted by the strict

one-dimensional Tomonaga-Luttinger model. Yet, the electronic dimensionality of organic

conductors is sensitive to temperature, especially for the (DCNQI)2Cu material system.

Hence, a temperature-dependent investigation of the WF law appears to be necessary to

take into account the relevant thermal e�ects.

Upon lowering the temperature the Lorenz number decreases. On the other hand the

error is signi�cantly larger at T = 75K compared to RT and a linear relationship between

κ and σ seems questionable at T = 50K. Therefore, prior to analyzing the temperature

dependence of L in detail, it is crucial to investigate the statistical signi�cance of the above

analysis. Deduced from the linear �ts between 36K and 300K, Fig. 4.18a depicts the

Pearson r, a correlation coe�cient characterizing the linearity between the two quantities

[225]:

r =
Cov(κ, σ)√

V ar(κ) · V ar(σ)
. (4.17)

Here, V ar(x) denotes the variance of the respective quantity x and Cov(x, y) the

covariance between two quantitites x and y. The Pearson r amounts to 1 for a perfectly

linear relationship with positive slope and yields −1 for a negative linear correlation. A

zero value indicates no correlation at all. For a linear �t through six data points, values

above 0.81 indicate a positive linear correlation with 95 % signi�cance. This con�dence

level, as marked by the horizontal, dashed, black line in Fig. 4.18a, is clearly met above

80K. Moreover, an analysis of variance (ANOVA) was performed to test the data against

a null hypothesis, i.e. whether a constant value might describe the data as good as a

linear �t. The resulting p-value de�nes the probability of a constant model with vanishing

slope to be applicable. Usually, a value below 5%, as indicated by the horizontal, dashed,

purple line in Fig. 4.18a, allows to reject the null hypothesis. Again, this con�dence level

is achieved above 80K where probability of correctly describing the set of experimen-

tal data by a constant model is less than 5 %. Both analyses point out the validity of

modelling the experimental data by a linear �t at temperatures higher than 80K while

a constant �t might be as good for lower temperatures. Hence, the extraction of the

temperature-dependent Lorenz number from the �ts is feasible in the high temperature

regime.

The temperature dependence of the normalized Lorenz number L/L0 is illustrated

in Fig. 4.18b. The �t error is marked as gray shaded area in the graph. In accordance

with the above statistical analyses, the relative error below 80K strongly increases, as

evidenced by the increased absolute error in Fig. 4.18b going along with smaller absolute
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Figure 4.18: Temperature-dependent Lorenz number in (DCNQI)2CuxLi1−x. (a) The statistical �t anal-
ysis reveals the liability of the linear �ts shown in Fig. 4.17b. Above 80K, the Pearson linear correlation
coe�cient r surpasses its 95% signi�cance value (dashed black line). By an analysis of variance (ANOVA),
the null hypothesis of a constant value data representation can be rejected attaining only 5 % signi�cance
above this temperature as well (dashed purple line). (b) The normalized Lorenz number L/L0 shows an
appreciable temperature dependence in the investigated regime. A �t by Eq. 2.93 to the data between
80K and 220K yields an anomalously high Debye temperature of θD = 700K (dashed red curve). A
theoretical model assuming the literature Debye temperature of θD = 82K [34] (blue curve) is in striking
contrast to the observed Lorenz number, even considering the error interval as marked by the gray shaded
area. The Lorenz numbers evaluated at the Peierls transition of three (DCNQI)2Cu compounds are also
delineated by the pink data points.

values of L. In spite of the perceptible error even above 80K, it is evident that the Lorenz

number reduces below its standard value L0 upon decreasing temperature. The Lorenz

numbers determined by the phase transition analysis above are also depicted in Fig. 4.18b

and corroborate the data obtained for the Li-alloyed samples.

The experimental data suggests di�erent relaxation times for thermal and electric �eld

perturbations of the Fermi distribution of electrons in (DCNQI)2Cu below RT. Following

the discussion in Ch. 2.7.1, a discrimination between the relaxation times is necessary

below the Debye temperature because thermal perturbations may relax via small angle

scattering events of long wavelength phonons while large angle scattering needs to take

place for the electric �eld relaxation. The latter is most easily accomplished by Umklapp

scattering events requiring phonons of high energy and wave vector to be excited. Eq. 2.93

takes the di�erent relaxation mechanisms into account in the calculation of the Lorenz

number and the blue solid curve represents the temperature-dependent Lorenz ratio as

anticipated for a Debye temperature of θD,Lit = 82K [34]. Clearly, the calculated behavior

does not resemble the experimental data (green curve). Yet, Eq. 2.93 may be �tted to the

data between 80K and 220K assuming a Debye temperature of θD,Fit = 700K (red dashed

curve) being one order of magnitude larger than the literature value. This anomalous high

value demands some discussion.
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First of all, the standard model for the Lorenz number assumes a Fermi sphere, rep-

resenting a 3D electronic structure that certainly does not re�ect the �at Fermi sur-

face characteristics of the low-dimensional DCNQI radical anion salts. Secondly, it as-

sumes dominant scattering of electrons by acoustic phonons whose energy is character-

ized by the Debye temperature. Yet, electrons might also interact inelastically with optical

phonon modes of higher energy, as implied by the deduced high Debye temperature of

θD,Fit = 700K. This value corresponds to a Debye energy of kBθD,Fit = 60meV but an

e�cient interaction with charge carriers is unlikely due to the low occupation density of

optical phonon modes of such high energy. Even the high-�eld nonlinear conduction ex-

periments performed in Ch. 4.2 indicated inelastic scattering by optical phonons having

a much lower energy of only 19meV. Consequently, this interpretation is disregarded.

Thirdly, the large temperature dependence of L/L0 may not only be caused by di�er-

ent relaxation times but also by probing di�erent electronic states in the electrical and

the thermal conductivity. According to the Boltzmann theory discussed in Ch. 2.5.1, the

heat is carried by charge carriers at higher energetic distances to the Fermi level com-

pared to the charges responsible for electrical conduction. The same e�ect has already

been taken into consideration for explaining the distinct values of the Seebeck coe�cient

in the (DCNQI)2Cu salts, as discussed in Sec. 4.1.2. The K2 transport integral of Eq.

2.55c, used to calculate the thermal conductivity, probes states of even further distance

to the Fermi surface as compared to the thermopower. The position of the maxima of the

material-independent integrand of K2 (see Fig. 2.15) depends on the temperature as well.

Therefore, the temperature-dependent Lorenz number may be caused by subsequently

probing di�erent energy states in the electrical and thermal conductivity measurements

when lowering the temperature. In line with the calculation of the Seebeck coe�cient in

Sec. 4.1.2, the Lorenz number can be evaluated according to Eqs. 2.55a-c and 2.53:

L =
1

T 2

∫
g(ϵ)v⃗ 2(ϵ)τ(ϵ)[ϵ− EF ]

2 ∂f0

∂ϵ
dϵ∫

g(ϵ)v⃗ 2(ϵ)τ(ϵ)∂f
0

∂ϵ
dϵ

. (4.18)

Assuming a temperature-dependent shift of the Fermi energy with ∆EF = 10meV/K,

as de�ned by Eq. 4.6 in Sec. 4.1.2 when analyzing the thermopower in (DCNQI-h8)2Cu,

the deduced Lorenz number is depicted in Fig. 4.18b as orange curve. In contrast to the

Seebeck coe�cient, the temperature-dependent Fermi energy is not able to explain the

observed behavior of the electronic thermal conductivity. Already in the discussion of the

electrical properties in Sec. 4.1, the di�culty in analyzing temperature- and pressure-

dependent charge transport quantities in organic conductors has been emphasized. The

contribution by 3D holes to the transport properties of (DCNQI)2Cu as well as their

absence in (DCNQI)2Li has been evidenced. Accordingly, both materials are expected
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to reveal distinct band structures and should yield di�erent Lorenz numbers, i.e. each

(DMe-DCNQI)2CuxLi1−x sample has a distinct Lorenz number L(x,T) depending on

the composition x and temperature T . This would also explain the very coarse linear

relationships illustrated in Fig. 4.17b. However, a variation of the temperature-dependent

Fermi energy as well as the calculation of L for (DCNQI)2Li revealed similar results

to the above calculation. As a consequence, the simple Boltzmann theory taking into

account the energetic states probed by electrical and thermal conductivity cannot explain

the temperature dependence of the Lorenz number. More elaborate DFT calculations of

the band structure based on the distinct, temperature-dependent electronic structures of

(DCNQI)2Cu and (DCNQI)2Li, respectively, as well as on their degree of electronic cor-

relation are currently under way. They could shed further light on this issue by resolving

more details of the electronic band structure of the mixed single crystals.

More likely than the above scenarios, the electronic dimensionality causes the deviation

from the classical Wiedemann-Franz law. The very large thermal conductivity in the Li-

rich samples at low temperatures may be understood in this context because (DCNQI)2Li

reveals a more pronounced one-dimensional Fermi surface compared to (DCNQI)2Cu.

The one-dimensionality may precipitate in increased Lorenz numbers diverging in the

zero temperature limit, as expected for a one-dimensional Luttinger liquid [47]. The in-

creased Lorenz numbers for the low-conductivity samples lead to an underestimation upon

their determination by the κ-σ-analysis presented above and thus, resolve the continuous

reduction of L toward lower temperatures. Yet, the deviation from the classical WF law

was also con�rmed by the phase transition analysis of the (DCNQI)2Cu salts. Hence,

another e�ect seems to be of importance. The additional ingredients being relevant for a

complete understanding of the WF law in the (DMe-DCNQI)2CuxLi1−x material system

might be the degree of electronic correlation and the nature of the scattering mechanism

which can di�er for (DCNQI)2Li and (DCNQI)2Cu.

4.3.3 Lattice Thermal Conductivity

In addition to the investigation of the WF law, the above analysis also allows for an

evaluation of the lattice thermal conductivity in (DCNQI)2CuxLi1−x, as determined by

the intercept of the linear �ts with the ordinate in Fig. 4.17b. Its temperature dependence

is plotted against the inverse temperature in Fig. 4.19a. Between 80K and 200K a linear

�t represents the data well and veri�es the κ ∝ T−1 behavior expected for phonon-

phonon Umklapp scattering limiting the heat transport across the lattice above the Debye

temperature (compare Ch. 2.7.2). To discuss the deviations at T > 200K as well as the

low-temperature characteristics, the linear temperature graph in Fig. 4.19b depicts the
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same data as Fig. 4.19a. While the linear �ts of the κ-σ-relation below 80K are prone to

errors with respect to their slope, the y-intercept, i.e. the phonon contribution to thermal

conduction, may be regarded as a good average on samples of di�erent structural order.

The above ANOVA analysis also indicated the validity of a constant value representation

due to the decreasing Lorenz number which would still provide a suitable determination

of the phonon thermal conductivity. Accordingly, the lattice thermal conductivity data

depicted in Fig. 4.19 is interpreted within its con�dence interval marked by the gray

shaded areas.

Figure 4.19: Lattice thermal conductivity κPhon in (DCNQI)2CuxLi1−x. Gray shaded areas mark the con-
�dence interval of κPhon. (a) Plotting κPhon against the inverse temperature, the linear relation expected
from phonon-phonon Umklapp scattering is veri�ed between 80K and 200K. (b) The full temperature
dependence of κPhon can be modeled by combining acoustic and optical phonon contributions.

A few things become obvious when analyzing the temperature dependence of κPhon in

Fig. 4.19b. Firstly, on the high temperature side the thermal conductivity saturates and

even slightly increases with temperature instead of obeying the neat T−1 law predicted

by Umklapp scattering of acoustic phonons. Furthermore, in the low-temperature region

a maximum at around Tmax ≈ 50K occurs, i.e. at a temperature being close to the

peak in the Seebeck coe�cient which was discussed in terms of a phonon drag e�ect.

Phonon drag, like lattice thermal conductivity, increases sharply with T in the cryogenic

regime following the heat capacity of acoustic phonons. After going through a maximum

at some fraction of the Debye temperature, it decreases upon increasing temperature due

to phonon-phonon Umklapp scattering placing restrictions on the relative momentum

transfer to electrons. Because the same physical quantities are expected to limit the heat

conduction by acoustic lattice phonons, a temperature dependence similar to that in the

phonon drag description by Eq. 4.4 was applied to the lattice thermal conductivity:

κac =
3NAkBv

2
sρdens

mmol

(
Ω

T

)υ (
θE
T

)2
eθE/T

(eθE/T − 1)2
. (4.19)
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Here, τU =
(
Ω
T

)υ
is the phonon-phonon Umklapp scattering time. As proven bene�cial

for the description of the phonon drag, an Einstein model was employed for the heat

capacity, in which the Einstein temperature θE characterizes the mean energy Eac = kBθE

of the acoustic phonon modes. Modeling the experimental data solely by Eq. 4.19 (not

shown) did not facilitate decent �t results, especially on the high temperature side. Also

adding a constant to Eq. 4.19 only marginally improved the accuracy. Instead, a good

agreement with the experimental data was found assuming an additional contribution to

thermal conduction by optical phonons of the form:

κopt = Kopt · T . (4.20)

The temperature dependence was chosen to re�ect the almost linear increase in the

lattice heat capacity above 30K in (DCNQI)2Cu due to an increasing number of optical

phonon modes becoming populated with temperature [176]. Fig. 4.19 demonstrates the

sum κPhon = κac + κopt of both contributions to re�ect the experimental data perfectly

within its errors. The individual contributions of acoustic and optical phonons are also

drawn separately and the �t parameters are given in Tab. 4.8. It is evident that optical

phonons account for up to 0.6Wm−1K−1 of the lattice thermal conductivity at RT being

almost twice as large as the heat carried by acoustic phonons. At high temperatures, the

phonon mean free path lph = vgτph becomes small and remains almost constant [92]. When

it reaches the length scale of the lattice spacing, the phonon concept is expected to break

down, similar to the minimum thermal conductivity of an amorphous solid discussed

in Ch. 2.7.3. The condition is more easily ful�lled for optical phonon modes by virtue

of their small group velocity vg [92]. The dispersion of optical phonon modes has been

comprehensively characterized in the organic semiconductor naphthalene [116], as shown

in Fig. 2.13a of Ch. 2.4.3. The dispersion was employed to estimate a reasonable group

velocity of vg ≤ 500m s−1 for optical phonons, yielding a characteristic temperature above

which the phonon theory breaks down for the optical modes [155]:

T opt
0 =

hvg
kBc

≤ 62K . (4.21)

Here, c = 3.8811Å marks the lattice constant along the heat transport direction.

Accordingly, the thermal conduction by optical phonons is mostly incoherent in the inves-

tigated temperature regime. In this situation, a constant mean free path for each optical

phonon mode is expected and correspondingly, the total heat carried by optical phonons

scales with the number of thermally excited optical phonon modes being almost linear in

temperature. Hence, the linear term assumed by Eq. 4.20 becomes justi�ed.

From the Debye temperature of θD = 82K [34], the group velocity of acoustic phonons
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(i.e. the sound velocity) can be estimated to vS = 2130m s−1 yielding T ac
0 = 260K. This

sound velocity compares well to the value of vS = 1800 − 3000m s−1 in TTF-TCNQ

which was determined by neutron scattering experiments [103, 104]. Hence, for the acous-

tic modes the phonon description remains valid almost up to RT and, as a consequence,

the dominant thermal conduction mechanism changes from coherent lattice heat trans-

port by plane-wave acoustic phonons to incoherent hopping transport by optical phonons

at some intermediate temperature. In general, an incoherent phonon heat conduction

with concomitant coherent charge transport is a good prerequisite to create an e�cient

thermoelectric material, but the large number of low-frequency optical phonon modes in

(DCNQI)2Cu still facilitates an appreciable heat to be carried by the lattice as a whole.

Accordingly, the total lattice thermal conductivity at RT

κlat(RT ) = (0.95± 0.06)Wm−1K−1 (4.22)

signi�cantly undermines values of 1.7Wm−1K−1 [226] determined for Bi2Te3, repre-

senting the best reference thermoelectric material at RT to date. Yet, it does not com-

pare to the low values usually obtained in complex crystal structures, e.g. in the ther-

molectric Zintl compounds with κlat = 0.45Wm−1 K−1 [51] or the experimental values

of κlat = 0.5Wm−1 K−1 for the organic semiconductor naphthalene [215]. Hence, the lat-

tice thermal conductivity still takes surprisingly high values by virtue of the large optical

phonon contribution.

Parameter Ω [10−9Ks1/υ] υ θE [K] Kopt [10−3 W
m
]

Value 6.77 1.14 134 2.04

Table 4.8: Parameters for the �ts of κPhon in Fig 4.19b to the experimental data.

The temperature coe�cient υ = 1.14 takes a similar value as in the �t of the phonon

drag e�ect (compare υdrag = 1.18 in Ch. 4.1.2), indicating a similar process limiting

both quantities. A value of υ = 1 is theoretically expected for phonon-phonon Umklapp

scattering but a slightly larger temperature dependence is commonly observed in thermal

conductivity measurements. It has been explained by thermal expansion of the lattice as

well as by higher-order phonon interaction processes (four-phonon processes) [92]. Fig.

4.20 delineates the phonon-phonon Umklapp scattering rate τ−1
U as calculated by Eq. 4.19

from the �t parameters in Tab. 4.8. The scattering factor β ≈ τ−1
ph−e/(τ

−1
ph−e+τ−1

U ) in Eq. 4.4

quanti�es the relative strength of phonon-electron to phonon-phonon Umklapp scattering

and was separately determined in the �t of the phonon drag thermopower in Ch. 4.1.2.

Employing τU from above, the phonon-electron scattering rate τ−1
ph−e may be resolved as
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4.3. Heat Conduction in (DCNQI)2M

well. This is illustrated in Fig. 4.20, too. It decreases with increasing temperature and

provides the reason for the low temperatures at which phonon drag is observed.

Figure 4.20: Phonon scattering rates in (DCNQI)2M. The phonon-phonon Umklapp scattering rate τ−1
U

was determined from the �t of the lattice thermal conductivity in Fig. 4.19b. In combination with the
analysis of the thermopower it also enabled a calculation of the phonon-electron scattering rate τ−1

ph−e

which is higher than the Umklapp rate at low temperature allowing for the phonon drag e�ect.

The Einstein temperature of θE = 134K is somewhat higher compared to the phonon

drag analysis (θE = 85K) and relative to the literature values on the Debye temperature

obtained from speci�c heat measurements (θD = 82K [34]). Yet, as the �t parameter θE
is sensitive to the sizable error of κPhon in the temperature regime below 80K, its similar

magnitude indicates the same phonon modes to be involved. Hence, strong evidence is

presented that both, the heat conduction by acoustic phonons as well as the phonon

drag thermopower are limited by the same phonon-phonon Umklapp process of acoustic

phonon modes. This also indirectly proves the phonon drag to precipitate the anomalous

low-temperature maximum in the Seebeck coe�cient.

4.3.4 Conclusions

For the �rst time, a consistent examination of the Wiedemann-Franz law for an organic

conductor above the Debye temperature θD has been achieved. The resulting Lorenz num-

ber takes similar values as obtained for inorganic metals at RT but decreases when the

temperature is lowered, already far above θD. Hence, the Wiedemann-Franz law in its

common form for 3D metals is invalid for (DCNQI)2Cu over a wide temperature range

and seems to depend crucially on the complex electronic structure of organic conductors

and their degree of electronic correlations. The analysis of the lattice thermal conductivity
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revealed a similar heat transport behavior as observed in the thermopower at low temper-

ature, indicating both processes to be limited by phonon-phonon Umklapp scattering of

acoustic phonons. With rising temperature, the contribution of optical phonons to lattice

thermal conduction increases and indicates a transition from a coherent to an incoherent

phonon transport.
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4.4 Thermodynamic Investigation on the Phase Tran-

sition in (DCNQI)2Cu

In Ch. 2.3.3, the phenomenological thermodynamic model by Nishio et al. [34] was dis-

cussed. It explains the phase diagram of the (DCNQI)2Cu copper system in terms of a

competition between spin and charge degrees of freedom contributing to the entropy in the

insulating and the metallic ground state, respectively. However, to quantitatively explain

the phase diagram and the latent heat measurements, a third non-electronic contribution

was proposed to come into play. A separate investigation of the individual contributions to

the entropy in the respective ground states is presented here. While the total entropy dif-

ference is estimated by the quantitative analysis of the latent heat at the �rst-order phase

transitions of (MeBr-DCNQI)2Cu, (DCNQI-d6)2Cu and (DCNQI-h8/d6)2Cu [70:30], the

neat electronic contribution may be determined from the temperature-dependent ther-

mopower.

4.4.1 Entropy Change from Latent Heat

It was already pointed out that a detailed evaluation of the thermal properties in the

close vicinity of the phase transition is barely possible by the 3ω method due to the large

uncertainty in the temperature coe�cient χ of the resistance. Nonetheless, it is worthwhile

to take a look at the thermal response time τ ∝ cmol/κ (as de�ned in Eq. 3.12), which can

be directly extracted from the measurement data without the necessity to input additional

quantities, such as R, χ or I0.

As illustrated in Fig. 4.21 for (MeBr-DCNQI)2Cu, τ reduces across the phase transition

at TP = 155K from about 4 s at 140K to 2 s at 170K. Here, TP corresponds to the phase

transition temperature in the heating run. The faster thermal response above TP is mainly

caused by the additional electronic contribution to κ. This interpretation is in line with

the thermal conductivity drop across the transition presented in the previous section.

However, just at the phase transition a drastic slow down in the thermal response of the

system is observed, as evidenced by the increase of τ from 4 s up to 8 s. This rise of τ can

only be caused by an increased heat capacity or decreased κ which shall be discussed in

more detail in the following.

Below TP , κ is mainly due to lattice thermal conduction because the electrical con-

ductivity is small in this temperature regime. Approaching TP from the low-temperature

side, the electrical contribution is expected to gain importance, thus increasing the overall

thermal conductivity. Additionally, more exotic low-energy excitations, such as solitons or

moving charged domain walls [199], might allow for an additional heat conduction channel
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Figure 4.21: Measured thermal response time τ across the Peierls transition in (MeBr-DCNQI)2Cu. The
increase in κ leads to a reduced τ above the phase transition temperature TP . The latent heat at the
phase transition, indicated by the blue area, causes a slow down of the thermal response.

close to the phase transition. All these e�ects would decrease the thermal response time

in contrast to the experimental observation. Neglecting changes in the population density

of phonons at this stage, the only possible e�ect leading to a diminution of κ close to the

phase transition might be a shortened phonon mean free path promoting a smaller lattice

thermal conductivity.

In proximity to TP , both metallic and insulating domains are known to coexist in

(DCNQI)2Cu. This has been evidenced by a correlated ESR, AC susceptibility and elec-

trical conductivity study [182]. Due to the lattice distortion in the insulating phase, the

crystal structure di�ers slightly as compared to the metallic state. The alternating in-

sulating and metallic domains impinge on the long-range periodicity of the crystal and

hence, reduce the phonon mean free path. This principle, i.e. the preparation of an arti�-

cial superlattice structure by means of an alternating layer growth, has also been applied

to reduce the lattice thermal conductivity in Bi2Te3 by a factor of 2.2 [44]. Yet, these

values have been achieved with superlattice structures on the order of 1 nm. The sizes of

insulating and metallic domains in (DCNQI)2Cu are expected to be at least several lattice

constants in order to establish an energetically favorable long-range trimerization of the

lattice. Additionally, the change in the lattice constants and the lattice symmetry is so

small across the phase transition that the crystal symmetry of the trimerized lattice has

never been completely resolved [66]. Consequently, this interpretation is disregarded.
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More likely, the increase in τ may be ascribed to the latent heat at the phase transition

due to the change in the electronic and lattice degrees of freedom. A similar peak has al-

ready been observed in previous heat capacity measurements close to the phase transition

in deuterated (DCNQI-dx)2Cu [176] and also for other organic conductors [227]. With the

help of Eq. 3.16, the molar latent heat of the phase transition can be estimated from the

experimental data by:

Qlat =

∫
∆cmol · dT =

10mmolκ

4πL2ρdens

∫
∆τ · dT (4.23)

Here, the integral corresponds to the blue shaded area in Fig. 4.21 characterizing the

increase in τ at TP . It has been determined by �tting a Gaussian peak on top of the linear

slope. Assuming a thermal conductivity of κ = (0.63± 0.05)Wm−1K−1 extrapolated

from beneath the phase transition, the latent heat can be calculated to

Qlat = (1.69± 0.38) J g−1 ≡ (950± 216) Jmol−1. (4.24)

The error includes the uncertainty in the determination of the area
∫
∆τ · dT due to

small number of data points in the vicinity of the phase transition. The slow-down of

the relaxation time emphasizes the anomalous �rst-order character of the Peierls transi-

tion in (DCNQI)2Cu. The classical Peierls theory predicts a second-order metal-insulator

transition for which no latent heat should be observed. The latent heat at the �rst-order

metal-insulator transition in α-(BEDT-TTF)2I3 was determined to Qlat ≥ 0.32 J g−1 ≡
368 Jmol−1 being of similar magnitude [227]. From the latent heat one can calculate the

entropy change when going from the insulating to the metallic state [34]:

∆Σ =
Qlat

TP

= (10.8± 2.5)mJ g−1K−1 ≡ (6.1± 1.4) Jmol−1K−1 . (4.25)

The latent heat was also extracted from the thermal response time of (DCNQI-

h8/d6)2Cu [70:30] and (DCNQI-d6)2Cu as depicted in Fig. 4.22. Here, the e�ect is not

as pronounced as before and the number of data points is very limited, i.e. quite large

experimental errors have to be expected. The extracted quantities are given in Tab. 4.9.

Plotting the estimated change in entropy across the phase transition ∆Σ against the

transition temperature TP , a linear relation similar to that obtained by Nishio et al. [34]

can be deduced, both being depicted in Fig. 4.23. From the linear slope an e�ective γ∗ =

(65.8± 8.7)mJmol−1 K−2 can be extracted. The large error bars indicate that an accurate

determination of γ∗ is hardly possible from the data. Nishio et al. have also analyzed the

latent heat by means of high-accuracy speci�c heat measurements for various degrees of

deuteration in (DCNQI-dx)2Cu undergoing the Peierls transition at di�erent temperatures
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Figure 4.22: Determination of the latent heat for (a) (DCNQI-h8/d6)2Cu [70:30] and (b) (DCNQI-d6)2Cu
with the same procedure as described for (MeBr-DCNQI)2Cu.

TP [K] κ [ W
mK

]
∫
∆τ · dT [K·s] Qlat [ J

mol
] ∆Σ [ J

molK
]

(MeBr-DCNQI)2Cu 155 0.63± 0.05 20.2± 3.0 950± 216 6.1± 1.4

(DCNQI-d6)2Cu 90 1.63± 0.05 1.80± 0.45 236± 73 2.62± 0.84

(DCNQI-h8/d6)2Cu 65 1.8± 0.1 0.34± 0.17 33± 30 0.50± 0.3

Table 4.9: Latent heat and entropy change determined from the thermal response time in the vicinity of
the Peierls transition of several (DCNQI)2Cu compounds with di�erent phase transition temperatures
TP .

TP [34]. As discussed in Ch. 2.3.3, they found a linear relationship ∆Σ = −SI+γ∗
Lit ·TP for

the entropy change across the phase transition. SI denotes the spin entropy of localized

Cu 3d electrons below the Peierls transition by virtue of the accompanying electronic

Mott transition on the copper chains.

It should be noted that a negative o�set of similar magnitude might also be explained

by a con�gurational lattice entropy di�erence of ∆Σ = −kBNA ln 3 = −9.3 Jmol−1 K−1

due to the tripling of the unit cell in the insulating Peierls regime. A negative o�set of

SI ≈ −(3.7± 0.6) Jmol−1 K−1 can also be seen in the presented data but an unambigu-

ous distinction between the con�gurational lattice and the spin degrees of freedom is not

possible as it does not agree with either of the expected values within its error. How-

ever, the additional low-temperature speci�c heat data on the antiferromagnetic phase

transition at 6K in (DCNQI)2Cu reported by Nishio et al. rather suggests the o�set of

SI = 1.8 Jmol−1K−1 to originate from the spin degrees of freedom. Their more reliably

determined γ∗
Lit = 40mJmol−1K−2 is larger than the expected Sommerfeld constant of

γel = 25mJmol−1K−2 obtained from low-temperature measurements on the speci�c heat
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Figure 4.23: Entropy change at di�erent phase transition temperatures. A roughly linear temperature
dependence of ∆Σ is obtained. In spite of the large error due to the low data point density and the
assumptions made on κ, the data is comparable to the linear relation published by Nishio et al. [34].

of (DMe-DCNQI)2Cu. The Sommerfeld constant relates the electronic entropy in the

metallic state linearly to the temperature. It was argued that an additional contribution

γlat from the lattice increases the e�ective γ∗ = γel + γlat. Thus, the determined higher

γ∗ of this study corroborates these �ndings. It should be pointed out that, in spite of

the large uncertainty in γ∗ and in SI , the magnitude of both quantities are closer to the

values of γ∗ = 95mJmol−1K−2 and SI = −3.5 Jmol−1K−1 determined by �tting the

thermodynamic model of Eq. 2.35 to the phase diagram of (DCNQI)2Cu in Ch. 2.3.3.

The lattice degrees of freedom have also been proposed to explain the thermodynam-

ics of the �rst-order metal-insulator transition in VO2 (Vanadiumdioxide) [228]. Similarly

to (DCNQI)2Cu, the phase transition has been discussed in terms of an electronic Mott

transition as well as a Peierls-driven lattice instability, i.e. both, the electronic and the

phonon degrees of freedom drive the phase transition. In addition, the reported large

entropy increase of 12.5 Jmol−1 K−1 across the phase transition [228] amounts to a mul-

tiple of the value expected for the electronic contribution as well. Recently, a thorough

experimental and theoretical determination of the phonon density of states in VO2 re-

vealed that lattice degrees of freedom account for up to two thirds of the entropy increase

across the insulator-to-metal transition [84]. This has been explained by a pronounced,

anharmonic lattice potential in the metallic state. The population density of low-energy

phonons changes across the phase transition, leading to a signi�cant contribution of vi-
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brational entropy to the latent heat. Their amplitude scales with temperature due to the

anharmonicity of the interatomic potential. By the shallow lattice potential in van-der-

Waals bound organic crystals, anharmonic e�ects can be expected to play a key role in

the thermodynamic description of the (DCNQI)2Cu phase diagram as well.

4.4.2 Determination of the Electronic Entropy

The above analysis of the entropy change across the Peierls transition considered two

separate contributions, one from the lattice and one from the charge carriers. However,

the interpretation relies on the electronic speci�c heat coe�cient γel = 25mJmol−1 K−2

measured at signi�cantly lower temperatures than the phase transition temperatures at

which γ∗ was determined. Furthermore, it was determined only for samples being metallic

at very low temperature, such as undeuterated (DCNQI-h8)2Cu [34]. In alloyed (MeBrx-

DMe1−x-DCNQI)2Cu crystals a signi�cant change in the electronic speci�c heat was ob-

served upon alloying [229]. Hence, a determination of the mere electronic speci�c heat

coe�cient for each individual material at high temperatures is required to validate the

proposed thermodynamic model.

Because both, electrons and phonons contribute to the speci�c heat, a direct separation

of the two fractions is not a priori possible from the latent heat analysis. Yet, the analysis

of the Seebeck coe�cient might yield further evidence for the above interpretation of the

entropy change. In Eq. 2.11b the Seebeck coe�cient was de�ned as the heat carried per

charge carrier. Utilizing the electronic speci�c heat per carrier given by Eq. 2.72, a Seebeck

coe�cient linear in temperature is anticipated

Sel =
q

e · T
=

cel · T
e · T

=
γel · ρdens
e ·mmol · n︸ ︷︷ ︸

P

·T , (4.26)

n being the charge carrier density, mmol the molar speci�c heat and ρdens the density

of the material. Thus, from the linear temperature coe�cient P of the thermopower in

Eqs. 4.5 and 4.26, the electronic speci�c heat coe�cient γel can be obtained. The metallic

charge carrier density nmet = 2.94 · 1021 cm−3 is determined by the charge transfer to the

DCNQI molecule and the crystal structure. The Seebeck coe�cients measured for (MeBr-

DCNQI)2Cu, (DCNQI-d6)2Cu and (DCNQI-h8/d6)2Cu [70:30] have been presented in

Sec. 4.1.2 and are illustrated in Fig. 4.4b. Thus, the respective electronic speci�c heat

coe�cients γel can be calculated by Eq. 4.26 from the �t parameters in Tab. 4.4 and are

stated in Tab. 4.10.

All values of γel determined in this way are substantially lower than both, γ∗ =

(65.8± 8.7)mJmol−1K−2 obtained from the previous latent heat analysis and γ∗
Lit =
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P [10−8 VK−2] γel [mJmol−1 K−2]

(MeBr-DCNQI)2Cu -12.64 15.5

(DCNQI-d6)2Cu -15.82 19.7

(DCNQI-h8/d6)2Cu [70:30] -10.37 12.7

Table 4.10: Electronic speci�c heat coe�cients γel determined from the linear term in Eq. 4.5 �tted to
the temperature-dependent Seebeck coe�cient in the metallic regime (compare Fig. 4.4b).

40mJmol−1 K−2 reported by Nishio et al. [34]. On the other hand, they are close to the

Sommerfeld constant of 25mJmol−1 K−2, i.e. to the value of the electronic speci�c heat.

The presented γel data has been determined from the high-temperature side of the phase

transition supplementing the values of γel,Lit = 22-25 mJmol−1K−2 which were deter-

mined by low-temperature speci�c heat measurements on samples retaining their metal-

licity down to cryogenic temperatures [34]. Hence, this approach independently veri�es

the model of an electronic and phononic entropy change driving the phase transition.

4.4.3 Conclusions

In this section the change of entropy across the metal-insulator transition in (DCNQI)2Cu

has been discussed. A detailed analysis of the latent heat at the �rst-order Peierls transi-

tion of three (DCNQI)2Cu compounds revealed an entropy change across the phase tran-

sition being large compared to the value expected from the neat electronic system. By

separately determining the electronic speci�c heat coe�cient from the Seebeck coe�cient,

it was possible to separate the electronic contribution from the overall entropy variation

across the phase transition. The signi�cantly lower electronic part implies an entropy con-

tribution from other non-electronic degrees of freedom, such as the lattice. Hence, these

results do not only provide further evidence for the metal-insulator transition being driven

by electronic and lattice degrees of freedom in (DCNQI)2Cu, as proposed by Nishio et

al. [34], but also prove its applicability to an extended temperature regime beyond the

Debye temperature of 82K. This emphasizes the robustness of the phase transition to-

ward higher temperatures. By the application of high (chemical or external) pressures,

the phase transition can be shifted toward technologically relevant temperatures near RT

[78]. The above results verify the underlying physics to remain the same. In this context,

the (DCNQI)2Cu material system might gain technological relevance upon utilizing the

external stimulation of the phase transition, e.g. by light or electrical pulses, in future

devices, such as ultrafast optical switches or infrared sensors [12].
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4.5 Thermoelectric Potential of (DCNQI)2Cu

As outlined in Ch. 2.1.4, organic thermoelectrics based on conducting polymers have

been of considerable scienti�c interest recently. In spite of their appreciable thermoelectric

performance, the inherent disorder in polymers places restrictions on the charge carrier

mobility and conductivity achievable, especially in real working devices operating over

larger length scales on the order of mm. On the basis of the transport coe�cients con-

sistently determined for the (DCNQI)2Cu material system in the previous subchapters,

the alternative class of low-dimensional molecular metals is evaluated with respect to its

thermoelectric performance in this �nal part of the thesis. (DCNQI)2Cu combines the

advantage of chemical variety and low-temperature processibility of conducting polymers

with a high charge carrier mobility of about 2.3 cm2 V−1 s−1 and a reduced electronic

dimensionality. In addition, its low speci�c weight together with its thermodynamic sta-

bility is a good prerequisite for portable device manufacturing with long-term usage. Also,

the large number of atoms per unit cell puts them on a list with other complex thermo-

electric crystals, such as skutterudites and Zintl compounds, permitting large �gure of

merits in principle. In comparison to polymers the availability of both, high-performance

p- and n-type organic conductors facilitates the construction of all-organic thermoelectric

devices.

4.5.1 Thermoelectric Power Factor and Figure of Merit

In Fig. 4.24a the temperature-dependent transport quantities σ, κ and S interpolated

from the measurement data presented in the previous subchapters are illustrated for

(DCNQI-h8)2Cu. The derived power factor and �gure of merit are shown in Fig. 4.24b.

(DCNQI-h8)2Cu reveals a RT power factor of PF (295K) = 110 µWK−2 m−1 be-

ing of similar magnitude as values obtained for the conducting polymers PEDOT:Tos

(324 µWK−2m−1 [54]) and PEDOT:PSS (469 µWK−2 m−1 [33]). The �gure of merit

reaches a decent value of zT = 0.02 at RT, exceeding values of ordinary pure met-

als by about two orders of magnitude. For example, copper's thermoelectric �gure of

merit only amounts to zT = 1.1× 10−4 at RT, assuming an electrical conductivity of

σ = 6× 107 Sm−1 [230], a thermal conductivity of κ = 380Wm−1 K−1 [230] and a Seebeck

coe�cient of S = 1.6 µVK−1 [164]. (DCNQI-h8)2Cu's thermoelectric �gure of merit falls

short by an order of magnitude compared to conducting polymers by reason of the higher

thermal conductivity. Values of zT = 0.11 [54] and zT = 0.42 [33] have been reported for

PEDOT:Tos and PEDOT:PSS, respectively. The determined κ = 1.73Wm−1 K−1 is larger

by about a factor of ten compared to the thermal conductivity of κpol = 0.24Wm−1 K−1
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4.5. Thermoelectric Potential of (DCNQI)2Cu

Figure 4.24: Thermoelectric properties of (DCNQI-h8)2Cu. (a) The electrical and thermal conductivity (σ
and κ) together with the Seebeck coe�cient S, interpolated from the measurement data of the previous
sections, result in (b) the temperature-dependent power factor PF and thermoelectric �gure of merit zT .

measured for PEDOT:PSS [33]. Yet, attention has to be paid when analyzing claimed

zT values of polymers since their thermal conduction is usually measured along the out-

of-plane direction of the �lm, i.e. along the normal of the substrate, while the electrical

conductivity is measured in the plane of the layer. A recent more consistent study on

suspended samples of PEDOT:PSS revealed in-plane thermal conductivity values of up

to κpol = 1.8Wm−1 K−1 [53]. Also, at RT only values of zT ≤ 0.005 were obtained in

this study. Electrical conductivity was also found to be very anisotropic and reduced by

almost two orders of magnitude in the out-of-plane compared to the in-plane direction

[231]. Reliable measurements on the �gure of merit for chemical variations of the organic

polymer PEDOT reach values between 0.01 ≤ zT ≤ 0.11 [54]. According to this data,

a competitive thermoelectric performance in comparison to conducting polymers can be

ascribed to the low-dimensional organic conductor (DCNQI-h8)2Cu at RT. Even more

important, (DCNQI-h8)2Cu is one of the best n-type organic thermoelectric materials

[32, 232].

While not reaching the thermoelectric performance of Bi2Te3 yet, the latter represent-

ing the best RT thermoelectric material with zT & 1 (compare Ch. 2.1.4) to date, the full
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potential of (DCNQI-h8)2Cu becomes clear when looking at the temperature-dependent

power factor and �gure of merit. Above 100K, both quantities remain rather constant

enabling a wide applicable temperature regime for device operation. At temperatures

below 100K, a steep increase in the power factor is observed enabling power factors of

PF (30K) ≈ 50mWK−2m−1 which exceeds RT values by more than two orders of mag-

nitude. Moreover, the power factor outperforms the values of nanstructured YbAgCu4,

marking the best thermoelectric material in this temperature regime to date, by a factor

of 5 [233]. The high power factor in (DCNQI-h8)2Cu originates from the proposed phonon

drag e�ect in the thermopower together with the anomalously high temperature depen-

dence of the electrical conductivity. High mobilities are attainable in organic conductors

at low temperature by freezing out the large number of phonon modes and thus their

scattering with charge carriers, facilitating the large power factor. The additional break-

down of the WF law at low temperature empowers a �gure of merit clearly exceeding

values of zT (< 40K) ≥ 0.15 which surpass the highest value of zT (42K) = 0.11 reported

for YbAgCu4 in the temperature regime below 77K [233]. Hence, low-dimensional or-

ganic conductors represent an alternative class of thermoelectric materials for cryogenic

applications, e.g. for Peltier cooling below the liquid nitrogen temperature of 77K.

Low-weight cryocoolers of high reliability are also needed for space applications [234,

235]. Large temperature gradients of several hundred degrees can occur between the sun-

faced and the eclipsed side of spacecrafts, the latter only experiencing heat transfer by

radiation to the cosmic background at 3K. This requires a highly e�cient thermal man-

agement inside satellites at cryogenic temperatures [236]. Moreover, infrared sensors are

used in space telescopes for mapping the cosmic background radiation in space telescopes

or attached to satellites' surface for earth observation purposes [236]. These sensors need

to be cooled or thermally stabilized for minimized noise levels. In spite of their appreciable

cooling power, thermoelectric coolers have been of limited use so far due to their rather

high operating temperatures [237]. Hence, new materials with decent low-temperature zT

values, like (DCNQI-h8)2Cu, might lead to further innovation in this �eld. The maximum

temperature di�erence achievable by a Peltier cooler is given by [37]:

∆T =
1

2
zT 2

0 (4.27)

Implying T0 = 35K and zT0 = 0.15 one obtains ∆T = 2.65K for (DCNQI-h8)2Cu,

a temperature range suitable for thermal stabilization of detectors. Thus, an eligible po-

tential for thermoelectric applications can be anticipated for (DCNQI)2Cu and other

low-dimensional organic conductors.

166



4.5. Thermoelectric Potential of (DCNQI)2Cu

4.5.2 The E�ect of Li-Alloying

Virtually all thermoelectric materials are low-bandgap semiconductors or semimetals.

The previous section demonstrated the outstanding thermoelectric potential of organic

metals in the cryogenic temperature regime which was achieved by a stoichiometric single

crystal without further optimization of the band �lling. A tuned charge-carrier density

via doping plays a key role in obtaining high power factors and thermoelectric �gures of

merit in semiconductors. In contrast, metals usually do not o�er a wide range of control

over the charge carrier density which is determined by the number of valence electrons of

the atoms constituting the solid. Some control can be gained via alloying which on the

downside will also create a signi�cant amount of disorder, at least at high concentrations,

and thereby, will reduce the mobility of charge carriers.

Figure 4.25: Thermoelectric properties of alloyed (DMe-DCNQI)2CuxLi1−x crystals at RT. (a) Depen-
dence of thermoelectric transport quantities σ, S and κ on the copper content at RT. (b) The derived
thermoelectric power factor and �gure of merit is also shown.

Organic metals may overcome these limitations. Conduction in quasi-1D radical ion

salts usually takes place via states of energy bands formed by the LUMO (HOMO) of the

acceptor (donor) molecule. The �lling of these energy bands is governed by the charge
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transfer process between the molecule and the counterion crystallizing in a separated stack

from the molecules, the latter �nally constituting the transport band. Thus, manipulations

on the counterion may a�ect the charge carrier density while only minor in�uence on the

orbital overlap, and hence the charge carrier mobility, in the molecular stack is expected.

In the (DCNQI)2CuxLi1−x system such a substitutional tuning is possible by alloying

copper and lithium counterions because (DCNQI)2Cu and (DCNQI)2Li reveal similar

crystal structures. This facilitates a continuous change of the band �lling from 1/3 in

(DCNQI)2Cu to 1/4 (DCNQI)2Li. A reduction of overall band �lling has been theoretically

predicted to enhance the thermoelectric performance of the p-type organic conductor

TTT2I3, exhibiting a quarter-�lled one-dimensional band structure [126] (compare Ch.

2.5.2). Fig. 4.25 illustrates the thermoelectric properties of (DMe-DCNQI)2CuxLi1−x at

RT depending on the copper content.

While the reduction of the copper content increases the Seebeck coe�cient S and

decreases the thermal conductivity κ, the diminution of electrical conductivity σ by one

order of magnitude impedes an improvement of the thermoelectric performance. This

large drop in electrical conduction cannot solely be explained by the change in charge

carrier density but points toward a variation in the scattering mechanism and its related

length scale or in the electronic band structure. Hence, a slight distortion of the lattice

when substituting Cu by Li might still occur. More importantly though, in (DCNQI)2Li

electronic correlations are expected to gain impact by virtue of the quarter band �lling

and probably, reduce the charge-carrier mobility. Apparently, as shown in Sec. 4.1, the

3d copper hole states lacking in (DCNQI)2Li contribute more signi�cantly to electrical

transport in (DCNQI)2Cu than expected. As a result, neat (DCNQI)2Cu is the superior

thermoelectric material at RT.

From the interpolated temperature-dependent experimental data on the transport

properties, as shown in Fig. 4.26a, the power factor and the thermoelectric �gure of

merit have been evaluated. Fig. 4.26b discloses that (DCNQI)2Cu retains its superior

thermoelectric performance over all alloyed systems under study in the entire temperature

regime investigated, although the Li-rich (DCNQI)2CuxLi1−x alloys (x = 0 and x = 0.26)

come close to its zT values between 150K and 200K. While this approach failed to

improve the performance of this speci�c material combination, the continuous variation

of thermoelectric properties by chemical doping has been demonstrated as a proof-of-

concept and thus, might pave the way for the optimization of other organic conductors,

such as TTT2I3.
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Figure 4.26: Temperature-dependent thermoelectric properties of alloyed (DMe-DCNQI)2CuxLi1−x crys-
tals. (a) Dependence of thermoelectric transport quantities σ, S and κ on temperature (b) together with
the derived thermoelectric power factor and �gure of merit for various copper contents x.

4.5.3 Thermoelectric Properties across the CDW-Transition

Another promising aspect considering the thermoelectric potential of quasi-1D organic

conductors is their reduced electronic dimensionality o�ering a manifold of di�erent

ground states. As extensively discussed in previous chapters, (R1,R2-DCNQI)2Cu salts

undergo a Peierls metal-insulator transition depending on the functional groups R1 and

R2 attached to the quinone ring. In (MeBr-DCNQI)2Cu, the CDW transition occurs

at a relatively high temperature of TP = 155K where the electrical conductivity drops

by more than one order of magnitude. Fig. 4.27a depicts the interpolated transport

properties of (MeBr-DCNQI)2Cu in the vicinity of the phase transition. In the shaded

area, no meaningful determination of κ was possible and the curve represents a simple

spline interpolation between the data from below to above the phase transition. Also

the Seebeck coe�cient changes rapidly in this temperature regime and is prone to error.

However, it is evident that the large drop in the electrical conductivity is accompanied by

a signi�cant increase in the Seebeck coe�cient and a reduction of the thermal conductivity.
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Figure 4.27: Thermoelectric properties in the vicinity of a Peierls transition. (a) Transport properties,
(b) power factor and �gure of merit in the vicinity of the CDW transition in (MeBr-DCNQI)2Cu at
TP = 155K.

Fig. 4.27b shows the evaluated thermoelectric power factor and �gure of merit across

the phase transition. Again, the shaded area is to be neglected for a detailed quanti�cation

of these properties. Furthermore, the inferior thermoelectric performance compared to

(DCNQI-h8)2Cu shall be of minor importance as it is partly due to a slightly more impure

MeBr-DCNQI starting material used in the crystal growth procedure [193]. The interesting

aspect is the doubling of the power factor just below the phase transition compared to the

value extrapolated from the metallic regime. The additional reduction of κ boosts the zT

value even by a factor of �ve at 140K. Hence, the exotic ground states observed in low-

dimensional organic conductors provide additional means to improve the thermoelectric

e�ciency if occurring at su�ciently high temperature.

4.5.4 All-Organic Thermoelectric Generator

A distinct advantage of low-dimensional molecular metals over conducting polymers is the

availability of n- and p-type conductors achieving comparable thermoelectric performance.

This enables the fabrication of all-organic thermoelectric generators, a prototype of which
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is displayed in Fig. 4.28a. It consists of a single junction made-up of (DCNQI-h8)2Cu

as n-type and TTT2I3 as p-type leg. The crystals were glued together by conducting

graphite at the hot junction which was thermally connected to a heating block utilizing

a copper wire. The temperature gradient across the copper wire was measured by means

of an alumel-copper-alumel di�erential thermocouple to calculate the heat input and to

estimate the e�ciency. The opposite ends of the crystals were thermally anchored to a

heat reservoir consisting of an alumina block and electrically contacted to measure the

current-voltage characteristics for a given temperature gradient from which the power

output curves are calculated.

The (DCNQI-h8)2Cu crystals have been thoroughly characterized in this thesis pro-

viding a power factor of PF = 110 µWm−1K−2 and a thermoelectric �gure of merit of

zT = 0.02. The dimensions of the n-type leg were 2mm x 0.035mm x 0.035mm (l x

w x h). The p-type TTT2I3 single crystals were grown and characterized by Alexander

Steeger and details of its material properties will be presented in his forthcoming PhD

thesis. The dimensions of the p-type leg were 1.75mm x 0.12mm x 0.009mm (l x w

x h). A TTT2I3 crystal from the same growth batch exhibited an electrical hole con-

ductivity of σ = 2.1× 105 Sm−1 and a Seebeck coe�cient of S = +42 µVK−1 at RT,

resulting in a power factor of PF = 387 µWm−1K−2. The measured thermal conductiv-

ity of κ = 3.7Wm−1 K−1 yields a �gure of merit amounting to zT = 0.03 at RT. This

value is similar to (DCNQI-h8)2Cu and leads to a combined thermoelectric �gure of merit

of about zTcomb = 0.026 according to Eq. 2.19.

Fig. 4.28b delineates the power output characteristics measured at various temperature

di�erences between the two heating blocks. The output power is increasing with applied

temperature gradient and a maximum value of 125 nW was measured for a single junction

at a temperature di�erence of 92K. It is intuitive to analyze the speci�c power output,

i.e. the output power normalized on the cross section of both crystals which constitute the

active area of the thermoelectic device. A high speci�c power output (per area) is crucial

in the application of thermoelectric generators for waste heat recovery. It was shown

that the costs-per-watt are largely determined by the power factor and the speci�c areal

power output of thermoelectric generators [238]. Accordingly, a smaller zT may even

be tolerated in materials of low production costs revealing larger areal power outputs.

Here, a value of 5mWcm−2 is reached. For comparison, thermoelectric devices built of

conducting polymers reach speci�c power outputs of about 3 µWcm−2 at ∆T = 30K

being three orders of magnitude smaller [32]. Thus, the thermoelectric characteristics

measured across macroscopic sample distances within this thesis may be more directly

translated to thermoelectric devices in comparison to conducting polymers. In the latter,

the thin �lms of only a few hundred nanometer thickness are unable to maintain an
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Figure 4.28: All-organic thermoelectric generator. (a) Scheme of the thermoelectric generator consisting
of the organic conductors TTT2I3 and (DCNQI-h8)2Cu as p- and n-type leg, respectively. (b) RT power
output characteristic at various temperature di�erences applied. (c) The thermo voltage under open
circuit conditions scales linearly with temperature gradient and the slope of 75µVK−1 corresponds to the
added Seebeck coe�cients of (DCNQI)2Cu and TTT2I3. (d) Measured e�ciency for di�erent temperature
gradients at RT.

appreciable temperature gradient in thermoelectric generators. In the present device the

thermo voltage measured under open circuit conditions at various temperature di�erences,

as depicted in Fig. 4.28c, corresponds to the subtracted Seebeck coe�cients

S = STTT − SDCNQI ≈ 76 µVK−1 (4.28)

of (DCNQI)2Cu and TTT2I3. Hence, the thermal gradient drops mainly across the

crystals rather than interfaces.

In Fig. 4.28d the conversion e�ciency of the thermoelectric generator is plotted against

the applied temperature di�erence. The e�ciency of the generator increases with temper-

ature gradient and saturates above ∆T ≈ 60K at about η ≈ 0.02%. This is due to a

degredation of the organic thermoelectric generator above ∆T = 30K which proved to be

irreversible and also manifested itself in the slope of the measured current-voltage charac-

teristics. The e�ciency data below ∆T = 20K was �tted to Eq. 2.17 yielding zT ≈ 0.006.

Though not reaching the theoretical combined �gure of merit zTcomb = 0.026 yet, it is
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of almost similar magnitude. The deviation is ascribed to an overall contact resistance

which so far has been optimized to R ≈ 23Ω. For the manufacturing of e�cient organic

thermoelectric devices a distinct contact engineering, similar to the work done on organic

transistors and light-emitting diodes [239], will be crucial in the future.

4.5.5 Conclusions

In this �nal part of the thesis, the thermoelectric application potential of the low-

dimensional organic conductor (DCNQI)2Cu has been evaluated with respect to its power

factor and its thermoelectric �gure of merit. At RT, both quantities attain values com-

parable to conducting polymers which have recently gained interest in the thermoelectric

community. Furthermore, (DCNQI)2Cu was demonstrated to be one of the best organic

materials with respect to the n-type thermoelectric performance.

At cryogenic temperatures below 40K, the thermoelectric �gure of merit exceeds

zT ≥ 0.15 due to the anomalously high power factor of PF (30K) ≈ 50mWK−2 m−1.

These unprecendented key �gures even outperform the best inorganic thermoelectric ma-

terial in this temperature regime. Di�erent routes for further optimization of the ther-

moelectric performance have been outlined. A control over the metallic electron density

has been achieved within a limited range via manipulation of the charge transfer between

the neighboring molecular and counterion stacks in the crystal. Moreover, in (MeBr-

DCNQI)2Cu the Peierls transition occurring at 155K was found to double the power

factor and to increase the zT value by a factor of �ve. Finally, a prototypical all-organic

thermoelectric generator was built by combining the n-type (DCNQI)2Cu conductor with

the quasi-1D molecular metal TTT2I3 o�ering p-type conductivity. Its speci�c power out-

put reached values of 5mWcm−2 which, at least to my knowledge, is unattained in organic

thermoelectric generators so far.
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Chapter 5

Summary

This thesis aimed at the coherent investigation of the electrical and thermal transport

properties of the low-dimensional organic conductor (DCNQI)2M (DCNQI: dicyanoquino-

nediimine; M: metallic counterion). These radical anion salts present a promising, new

material class for thermoelectric applications and hence, a consistent characterization

of the key parameters is required to evaluate and to optimize their performance. For

this purpose, a novel experimental measurement setup enabling the determination of the

electrical conductivity, the Seebeck coe�cient and the thermal conductivity on a single

crystalline specimen has been designed and implemented in this work. Here, the most

important key results obtained in the course of my thesis are summarized.

Electrothermal Characterization of Charge and Heat Transport

The presented, new methodological approach builds upon the experimental setup devel-

oped by Chaikin and Kwak [163]. It enables the determination of the electrical conductiv-

ity and the Seebeck coe�cient on fragile, rod-like organic single crystals of small diameter

by their attachment to free-standing wires connected to two independent heat sources.

This method was extended by an electrothermal technique on the basis of the self-heating

3ω method to measure the thermal conductivity as well as the speci�c heat of the sample

in the same contact arrangement [169, 166]. The thermal boundary conditions have been

veri�ed by �nite-element simulations and the setup has been thoroughly characterized by

a reference sample made of stainless steel. An overall measurement uncertainty of less than

10 % has been achieved for the thermal conductivity. The results are reproducible upon

thermal cycling in contrast to the temperature-dependent, experimental data available on

the thermal conductivity of organic conductors, hitherto [175, 174, 240]. Furthermore, the

approach facilitated a correlated investigation of electrical and thermal transport proper-

ties, independently of the error introduced by the cross section of the sample. As such,

the experimental setup established in this thesis allows for a systematic study of thermal

transport properties of organic conductors with unprecedented accuracy.
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Electronic Properties of (R1,R2-DCNQI)2M

The measured Seebeck coe�cients and electrical resistivities re�ect the low-dimensional

electronic structure of DCNQI radical anion salts to a large extend. (R1,R2-DCNQI)2Cu

crystals are metallic at room temperature (RT) revealing electrical conductivities as high

as σRT = 1070 S cm−1 and a negative Seebeck coe�cient of SRT = −34 µVK−1. As such,

it represents the organic conducting material of highest n-type conductivity to-date. De-

pending on the functional groups attached to the DCNQI molecule, the Fermi surface

may become unstable against the formation of a charge-density-wave (CDW) along with

a periodic lattice distortion upon cooling. This transition is of �rst order as evidenced by

the correlated discontinuous increases of the electrical resistivity and of the Seebeck co-

e�cient. The electrical resistivity reveals an anomalously large temperature dependence

following ρ(T ) = ρ0 + A · T 2.3 which to some extent is caused by the large thermal

contraction along the crystallographic axis of preferred electrical transport. Yet, hole-like

charge carriers emerging from the quasi-3D electronic structure of (DCNQI)2Cu have been

demonstrated to gain importance at low temperatures as well and may partly account for

the large temperature dependence of the resistivity, too. The Seebeck coe�cient shows

an anomalously large peak at about 35K which can be explained by a phonon drag e�ect

limited by phonon-phonon Umklapp scattering at high temperatures.

The increasing hole contribution to charge carrier conduction has been shown to emerge

from a shift of the Fermi energy by an increased 3dxy-π-hybridization, sensitively depend-

ing on the tetrahedral coordination of the DCNQI molecules around the central copper

atom in the crystal. This is in sharp contrast to the reference measurements done on

(DCNQI)2Li radical anion salts. Here, the hole contribution is absent due to the lack

of 3d valence electrons in lithium, leading to a rather pure quasi-1D band structure. In

this material electronic correlations come into play by virtue of the materials quarter

band �lling, as evidenced by the occurrence of a spin-Peierls transition as well as an

almost temperature-independent Seebeck coe�cient of about 59 to 80 µVK−1 for (DMe-

DCNQI)2CuxLi1−x salts with x ≤ 0.26. In crystalline (DMe-DCNQI)2CuxLi1−x alloys the

electrical conductivity may be controlled over one order of magnitude while keeping the

crystal structure conserved. Therefore, it facilitates to contrast the thermoelectric trans-

port properties of an anisotropic, quasi-3D organic conductor with a quasi-1D organic

metal revealing electronic correlations.

Nonlinear Conduction in the Peierls Insulating State of (DCNQI)2Cu

The deuterated (DCNQI-d6)2Cu radical anion salt exhibits a CDW insulating ground state

below TP = 82K which is accompanied by a Mott transition along the copper chain of

the lattice. Like many other low-dimensional organic conductors of other ground states, it
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reveals nonlinear conduction characteristics below the phase transition temperature. The

electrothermal model was proposed by Mori et al. to explain the universal occurrence of

nonlinear conduction in materials of quite distinct ground states [143]. Its key parameter

is the e�ective speci�c heat. By reason of its magnitude, it is commonly identi�ed as

electronic speci�c heat and therefore, the nonlinear conduction e�ects are believed to

originate from correlated electronic states, such as solitons or CDWs. In this work, the

temperature dependence of the e�ective speci�c heat has been determined for the �rst

time by a transient analysis of the nonlinear resistivity at high electric �elds. As a result,

the e�ective speci�c heat has been clearly attributed to the phonon system and hence,

the nonlinear conductivity is thermally driven. A non-equilibrium population of distinct

optical phonon modes at an energy of about 19meV is deduced which amounts to about

half of the charge carrier activation energy in this temperature regime. Therefore, the

universal nonlinear conduction in (DCNQI)2Cu is demonstrated to be caused by e�cient

interaction of charge carriers with optical phonons which provide an energy reservoir

for additional charge carrier excitation. This advanced electrothermal model is expected

to be valid also for other low-dimensional organic conductors, explaining the universal

nonlinear conduction e�ects by the e�cient interaction of charge carriers with low-energy

optical phonon modes inherent to this material class. The results of this section have been

published in Physical Review B 92, 155107 (2015) [177].

Heat Conduction in (DCNQI)2M

The novel measurement setup brought to operation within this thesis enabled a thor-

ough investigation of the thermal transport properties in the (DCNQI)2M system. The

thermal conductivity of (DCNQI-h8)2Cu at RT was determined to κ = 1.73Wm−1K−1.

By reducing of the copper content in isostructural, crystalline (DMe-DCNQI)2CuxLi1−x

alloys, the electrical conductivity has been lowered by one order of magnitude and

the correlated changes in the thermal conductivity allowed for a veri�cation of the

Wiedemann-Franz (WF) law at RT. A room temperature Lorenz number of L =

(2.48± 0.45)× 10−8 WΩK−2 was obtained in agreement with the standard Lorenz num-

ber L0 = 2.44× 10−8 WΩK−2 for 3D bulk metals. This value appears to be signi�cantly

reduced upon cooling below RT, even far above the Debye temperature of θD ≈ 82K, be-

low which a breakdown of the WF law is caused by di�erent relaxation times in response

to thermal and to electric �eld perturbations. While the violation of the WF law may

be partly ascribed to a composition-dependent Lorenz number caused by the di�erent

dimensionality of (DCNQI)2Li versus (DCNQI)2Cu, a similar temperature dependence

of L was extracted from the reduction of the thermal conductivity accompanying the

sudden increase in the electrical resistivity across the CDW transition of three (R1,R2-
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DCNQI)2Cu compounds. Therefore, the WF law in its conventional form seems to be

violated far above the Debye temperature in low-dimensional organic conductors and a

more elaborate theoretical approach to take into account the distinct band structure and

degree of electronic correlation is needed. The presented combination of electrical and

thermal conductivity data, measured on the same specimen in the same geometry, presents

the most accurate investigation of the Wiedemann-Franz law for low-dimensional organic

conductors, to date. It also enabled an investigation of the lattice thermal conductivity

in the (DCNQI)2M system. The heat carried by acoustic phonons is limited by phonon-

phonon Umklapp scattering above 50K, similar to the phonon drag e�ect observed in

the thermopower. However, the heat carried by optical phonons rises almost linearly with

temperature and accounts for up to two-thirds of the lattice heat capacity at RT. In

this sense, a transition from coherent heat conduction by acoustic phonons to incoherent

optical phonon transport can be anticipated at some intermediate temperature.

Thermodynamic Investigation on the Phase Transition in (DCNQI)2Cu

The change of thermal properties across the CDW phase transition in (DCNQI)2Cu also

provides the means to study the thermodynamic model of the phase diagram proposed

by Nishio et al. [34]. They explained the phase diagram by the competing spin, charge

and lattice degrees of freedom, causing an entropy di�erence between the insulating and

the metallic ground state of (DCNQI)2Cu. Similar to their approach, this entropy dif-

ference was deduced from the latent heat in the vicinity of the phase transition, obey-

ing a linear temperature dependence of ∆Σ = −SI + γ∗ · TP . The obtained value for

γ∗ ≈ 66mJmol−1K−1 is large compared to the electronic speci�c heat coe�cient de-

termining the electronic contribution to entropy. This suggests a second, non-electronic

contribution to the entropy in the metallic state, presumably by the lattice. This inter-

pretation was corroborated by determining the pure electronic part of the entropy in the

metallic state from the thermopower measurements to γel ≈ 13−20mJmol−1K−2 in vari-

ous (DCNQI)2Cu compounds. Therefore, the independent determination of the electronic

entropy substantiates the conclusions drawn by Nishio et al. [34]. By virtue of the large

Peierls transition temperature of TP = 155K for (MeBr-DCNQI)2Cu, the presented data

extends the validity of the thermodynamic model for above the Debye temperature. Hence,

even upon chemically tuning the DCNQI molecule to allow for higher CDW transition

temperatures, the underlying physics remain the same.

Thermoelectric Potential of (DCNQI)2Cu

The above mentioned experimental data enabled the �rst consistent evaluation of the

thermoelectric performance of (DCNQI)2Cu. The RT power factor of 110 µWK−2 m−1 is
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comparable to values obtained on PEDOT-based thermoelectric polymers [54]. The RT

�gure of merit amounts to zT = 0.02 which falls short by a factor of ten compared to the

best values of zT = 0.42 claimed for conducting polymers [33]. It originates from the larger

thermal conductivity in the organic crystals of about 1.73Wm−1K−1 in (DCNQI)2Cu.

Yet, more elaborate studies on the anisotropy of the thermal conductivity in PEDOT

polymers assume their �gure of merit to be zT = 0.15 at most, recently [54]. There-

fore, (DCNQI)2Cu can be regarded as thermoelectric material of similar performance to

polymer-based ones. Moreover, it represents one of the best organic n-type thermoelectric

materials to date and as such, may also become important in hybrid thermoelectrics in

combination with conducting polymers [32, 232].

Upon cooling below room temperature, (DCNQI)2Cu reveals its full potential attain-

ing power factors of 50mWK−2m−1 and exceeding values of zT > 0.15 below 40K. These

values represent the best thermoelectric performance in this low-temperature regime for

organic as well as inorganic compounds and thus, low-dimensional organic conductors

might pave the way toward new applications in cryogenic thermoelectrics. Further im-

provements may be expected from optimizing the charge carrier concentration by taking

control over the CT process via the counterion stack of the crystal lattice. The concept

has also been demonstrated in this work. Moreover, the thermoelectric performance in

the vicinity of the CDW transition in (MeBr-DCNQI)2Cu was found to be increased by a

factor of 5. Accordingly, the diversity of electronic ground states accessible in organic con-

ductors provides scope for further improvements. Finally, the prototype of an all-organic

thermoelectric generator has been built in combination with the p-type organic metal

TTT2I3. While it only converts about 0.02% of the provided heat into electrical energy,

the speci�c power output per active area attains values of up to 5mWcm−2. This power

output, de�ning the cost-limiting factor in the recovery of waste heat [238], is three orders

of magnitude larger than in conducting polymer devices and as such, unrivaled in organic

thermoelectrics [32]. While the thermoelectric key parameters of (DCNQI)2Cu still lack

behind conventional thermoelectrics made of e.g. Bi2Te3, the promising performance to-

gether with its potential for improvements make this novel material class an interesting

candidate for further exploration. Particularly, the low-cost and energy-e�cient synthesis

routes of organic materials highlight their relevance for technological applications. The

results on the thermoelectric performance of (DCNQI)2Cu and TTT2I3 are going to be

published in Advanced Materials (2017, accepted) soon.
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Kapitel 6

Zusammenfassung

Ziel der vorliegenden Arbeit war die umfassende Untersuchung der elektrischen und

thermischen Transportgröÿen von quasi-eindimensionalen, leitfähigen Radikalanionen-

salzen basierend auf dem Dicyanochinondiimin-Molekül (DCNQI). Diese kristallinen

(DCNQI)2M (M: Metallion) Verbindungen stellen eine vielversprechende, neuartige Ma-

terialklasse für thermoelektrische Anwendungen dar, weshalb eine konsistente Charak-

terisierung der thermoelektrischen Kenngröÿen von groÿem wissenschaftlichen Interesse

ist. Dafür wurde in dieser Arbeit ein neuer experimenteller Aufbau entwickelt und in

Betrieb genommen, der die Messung der elektrischen und thermischen Leitfähigkeit sowie

des Seebeck-Koe�zienten an einer einzigen Kristallprobe ermöglicht. Die sich daraus

ergebenden, zentralen Ergebnisse dieser Dissertation werden im Folgenden kurz zusam-

mengefasst.

Elektrothermische Charakterisierung des Ladungs- und Wärmetransports

Die experimentelle Charakterisierung der thermoelektrischen Kenngröÿen in organischen

Metallen basiert auf einem Messaufbau, der von Chaikin und Kwak zur Messung des

Seebeck-Koe�zienten sowie der elektrischen Leitfähigkeit nadelförmiger Einkristalle vor-

geschlagen wurde [163]. Zur Vermeidung thermisch induzierter mechanischer Spannungen

werden die dünnen, fragilen Proben an freistehenden Drähten in Vierpunkt-Geometrie

kontaktiert und zur Bestimmung der Thermokraft an ihren jeweils gegenüberliegenden

Seiten an ein Wärmereservoir gekoppelt. Dieser Ansatz wurde durch die elektrothermische

Bestimmung der Wärmeleitfähigkeit mittels der 3ω Methode erweitert. Hierbei wird der

Kristall mittels eines periodischen, elektrischen Stroms geheizt und die Temperaturoszilla-

tion innerhalb der Probe anhand des Spannungsabfalls gemessen, woraus die Wärmeleit-

fähigkeit ermittelt werden kann [169, 166]. Die Einhaltung der für die Analyse erforder-

lichen thermischen Randbedingungen wurde anhand von Finite-Elemente-Simulationen

veri�ziert. Der Messaufbau wurde eingehend an einer nadelförmigen Referenzprobe aus

Edelstahl kalibriert und für die bestimmte Wärmeleitfähigkeit konnte eine Messunsicher-

heit von weniger als 10% verlässlich bestätigt werden. Der Aufbau erlaubt zudem eine

Messung der temperaturabhängigen Wärmeleitfähigkeit in organischen Metallen, wobei

besonders die im Vergleich zu Literaturdaten hohe Reproduzierbarkeit der Messergebnisse
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6. Zusammenfassung

bei wiederholtem Abkühlen und Aufheizen der Probe hervorzuheben ist [175, 174, 240].

Auÿerdem wird durch die Messung an einer einzigen Probe mit de�nierten Dimensionen

eine bisher unerreichte Genauigkeit in der Korrelation von elektronischen und thermischen

Transportgröÿen ermöglicht.

Elektronische Eigenschaften von (R1,R2-DCNQI)2M-Kristallen

Die gemessenen Seebeck-Koe�zienten und elektrischen Leitfähigkeiten bilden die nieder-

dimensionale, elektronische Bandstruktur von DCNQI Radikalanionensalzen ab. (R1,R2-

DCNQI)2Cu Kristalle zeigen bei Raumtemperatur (RT) metallisches Verhalten mit einer

elektrischen Leitfähigkeit von bis zu σRT = 1070 S cm−1 und einer negativen Thermokraft

von SRT = −34 µVK−1. Sie sind damit bis heute das organische Material mit der höchsten

Elektronenleitfähigkeit. Je nach funktioneller Gruppe, die am DCNQI Molekül gebunden

ist, kann die Fermi-Fläche bei Abkühlung instabil gegenüber der Ausbildung einer La-

dungsdichtewelle werden. Diese geht mit einer periodischen Verzerrung des Kristallgitters

sowie einem Metall-Isolator Phasenübergang, auch Peierls-Übergang genannt, einher. Die

unstetige Erhöhung des elektrischen Widerstands sowie des Seebeck-Koe�zienten zeigt,

dass es sich dabei um einen Phasenübergang erster Ordnung handelt.

Im metallischen Bereich weist der spezi�sche Wiederstand eine ausgeprägte Tem-

peraturabhängigkeit der Form ρ(T ) = ρ0 + A · T 2.3 auf, welche sich zum Teil auf die

starke thermisch induzierte Kontraktion des Kristallgitter zurückführen lässt, jedoch

auch auf einen zusätzlichen Leitungsbeitrag durch Löcher aufgrund der komplexen quasi-

dreidimensionalen Bandstruktur von (DCNQI)2Cu hindeutet. Die erhöhte Thermokraft

bei tiefen Temperaturen von 35K konnte mit einem Phonon-Drag Modell erklärt wer-

den, dessen Beitrag bei höheren Temperaturen durch Phonon-Phonon Umklappstreuung

begrenzt wird.

Ein mit sinkender Temperatur erhöhter Beitrag der Lochleitung konnte durch eine

Verschiebung der Fermi-Energie in Abhängigkeit der quasi-tetraedischen Anordnung der

DCNQI Moleküle um das zentrale Kupferatom innerhalb der Kristallstruktur und der

daraus resultierenden Beein�ussung der 3dxy-π-Hybridisierung zwischen den Kupfer- und

den LUMO-Orbitalen des Moleküls erklärt werden. Letztere ist abhängig von der Tem-

peratur sowie den funktionellen Gruppen am DCNQI Molekül. In Referenzmessungen an

nahezu strukturgleichen (DCNQI)2Li Kristallen war diese starke Abhängigkeit aufgrund

der nicht besetzen 3d-Orbitale in Lithium nicht vorhanden, was auf eine deutlich ein-

dimensionalere, elektronische Struktur dieses Materials schlieÿen lässt. Aufgrund dieser

Eindimensionalität sowie des bis zu einem Viertel gefüllten Leitungsbandes spielt in die-

ser Verbindung wiederum die elektronische Korrelation der Ladungsträger eine deutlich

gröÿere Rolle. Diese zeigt sich beispielsweise im Auftreten eines Spin-Peierls-Übergangs
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sowie in einem nahezu temperaturunabhängigen Seebeck-Koe�zienten oberhalb von 70K.

In isostrukturellen, kristallinen (DCNQI)2CuxLi1−x Mischkristallen kann daher nicht nur

die Leitfähigkeit über eine Gröÿenordnung hinweg manipuliert, sondern ebenfalls die Di-

mensionalität der Bandstruktur sowie die elektronische Korrelation der Ladungsträger

kontrolliert eingestellt und damit deren Ein�uss auf die thermoelektrischen Kenngröÿen

untersucht werden.

Nichtlineare Leitfähigkeitse�ekte im Peierls-Grundzustand von (DCNQI)2Cu

Die deuterierten (DCNQI-d6)2Cu Radikalanionensalze bilden unterhalb von TP = 82K

eine Ladungsdichtewelle aus, welche mit einem Mott-Übergang der auf den Kupferatomen

lokalisierten Ladungsträger einhergeht. Wie viele andere niederdimensionale, organische

Leiter zeigt das Material unterhalb des Phasenübergangs ab einer gewissen Feldstärke

nichtlineare, elektrische Leitfähigkeitse�ekte. Das universelle Auftreten einer nichtlinea-

ren Leitfähigkeit in organischen Materialien mit unterschiedlichen Grundzuständen wurde

von Mori et al.mittels eines elektrothermischen Modells erklärt [143]. Die charakteristische

Gröÿe des Modells ist die e�ektive spezi�sche Wärme, deren Werte Aufschluss über die

mikroskopischen Ursachen der nichtlinearen Leitfähigkeit liefern können. Aufgrund ihrer

geringen Gröÿe wird dem nichtlinearen Transportverhalten meist ein elektronischer Ur-

sprung zugewiesen, z.B. die korrelierten, elektronischen Zustände wie Ladungsdichtewellen

oder Solitonen in diesen Materialien. Das Temperaturverhalten der e�ektiven spezi�schen

Wärme wurde bisher zur eindeutigen Identi�zierung ihres mikroskopischen Ursprungs je-

doch nicht bestimmt. In dieser Arbeit konnte die Temperaturabhängigkeit dieser charak-

teristischen Gröÿe zum ersten Mal durch eine transiente Analyse des nichtlinearen Trans-

ports bei hohen elektrischen Feldstärken ermittelt werden. Hierdurch konnte sie eindeutig

einem phononischen und somit thermischen Ursprung in Form einer Nichtgleichgewichts-

Population von optischen Phononenmoden mit Energien von etwa 19meV zugeordnet

werden. Dies entspricht der halben Aktivierungsenergie von Ladungsträgern im Peierls-

isolierenden Zustand von (DCNQI-d6)2Cu. Das Auftreten der nichtlinearen Leitfähigkeit

wird daher durch eine starke Wechselwirkung von Ladungsträgern mit diesen optischen

Phononen bei hohen Feldstärken verursacht, welche ein Wärmereservoir für die Anre-

gung zusätzlicher Ladungsträger bilden. Dieses erweiterte elektrothermische Modell kann

möglicherweise auch die Universalität der nichtlinearen Transportphänomene in organi-

schen Materialien mit unterschiedlichen Grundzuständen durch die Wechselwirkung von

Ladungsträgern mit spezi�schen, niederenergetischen optischen Phononen erklären. Die

Ergebnisse zur nichtlinearen Leitfähigkeit in (DCNQI)2Cu wurden in Physical Review B

92, 155107 (2015) publiziert [177].
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Wärmeleitung in (DCNQI)2M

Der neu etablierte Messaufbau ermöglichte eine grundlegende Untersuchung der Wärme-

leitfähigkeit in der (DCNQI)2M Materialklasse, wobei für (DCNQI-h8)2Cu ein Raumtem-

peraturwert von κRT = 1.73Wm−1K−1 ermittelt werden konnte. Durch eine Variation

des Kupferanteils in (DMe-DCNQI)2CuxLi1−x Mischkristallen konnte die elektrische Leit-

fähigkeit über eine Gröÿenordnung variiert und die korrelierten Änderungen der Wär-

meleitfähigkeit studiert werden. Dies erlaubte eine Bestätigung des Wiedemann-Franz

(WF) Gesetzes bei RT mit einer Lorenzzahl von L = (2.48± 0.45)× 10−8WΩK−2, wel-

che im Rahmen des Fehlers der nach dem Sommerfeld-Modell erwarteten Lorenzzahl

von L0 = 2.44× 10−8WΩK−2 für dreidimensionale Metalle entspricht. Unterhalb von

RT ist das Wiedemann-Franz Gesetz in seiner etablierten Form jedoch nicht mehr er-

füllt und unterschiedliche Relaxationszeiten für thermische und elektrische Störungen der

elektronischen Fermi-Verteilung treten bereits weit oberhalb der Debye Temperatur von

θD ≈ 82K auf. Zudem scheint die Lorenzzahl auch von der detaillierten Bandstruktur

der (DMe-DCNQI)2CuxLi1−x Mischkristalle abhängig zu sein, deren Dimensionalität sich

mit dem Kupferanteil ändert. Jedoch wurde ein Verstoÿ gegen das WF Gesetz unterhalb

von RT auch an den Phasenübergängen von quasi-dreidimensionalen (R1,R2-DCNQI)2Cu

Kristallen nachgewiesen. Hier wurden die korrelierten Sprünge der elektrischen und der

thermischen Leitfähigkeit über den Metall-Isolator-Übergang verfolgt, um daraus die Lo-

renzzahl zu bestimmen. Daher ist das Wiedemann-Franz Gesetz in den hier untersuchten

niederdimensionalen, organischen Metallen in seiner gewöhnlichen Form nicht erfüllt. Dies

verlangt nach einer genaueren theoretischen Beschreibung, welche beispielsweise die E�ek-

te der elektronischen Korrelation auf die Ladungsträgerstreuung sowie die Bandstruktur

mit einbezieht.

Es ist hervorzuheben, dass die hier präsentierte Untersuchung der elektrischen und

thermischen Leitfähigkeit die detailliertesten und zuverlässigsten Daten zum WF Gesetz

in organischen Metallen liefert. Die Messergebnisse erlaubten zudem eine Separation der

beiden phononischen Beiträge zur Wärmeleitung im (DCNQI)2M Materialsystem. Die

von akustischen Phononen transportierte Wärme steigt mit sinkender Temperatur und

wird oberhalb der Debye Temperatur durch die Phonon-Phonon Umklappstreuung limi-

tiert, ähnlich wie der Phonon-Drag Beitrag zur Thermokraft. An der Wärmeleitung des

Kristallgitters sind jedoch auch optische Phononen beteiligt, deren Anteil etwa linear mit

der Temperatur ansteigt und bei RT etwa zwei Drittel der Wärme transportiert. Dies

kann als Übergang von einem vorwiegend kohärenten Wärmetransport durch akustische

Phononen zu einem inkohärenten Hüpftransport durch optische Phononen bei endlichen

Temperaturen gedeutet werden.
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Thermodynamische Untersuchungen des Phasenübergangs in (DCNQI)2Cu

Die Analyse der thermischen Eigenschaften erlaubt ebenfalls eine thermodynamische Un-

tersuchung des Phasendiagramms, in Analogie zu der Studie von Nishio et al. [34], in

der das Auftreten des Metall-Isolator Übergangs durch die Spin- und Ladungsfreiheits-

grade des elektronischen Systems sowie einer zusätzlichen Gitterentropie erklärt wurde.

Diesem experimentellen Ansatz folgend wurde die Entropiedi�erenz zwischen dem isolie-

renden und metallischen Zustand aus der latenten Wärme am Phasenübergang für drei

repräsentative (DCNQI)2Cu Salze bestimmt.

Dabei weist die Entropiedi�erenz zwischen metallischer und isolierender Phase ei-

ne lineare Abhängigkeit gemäÿ ∆Σ = −SI + γ∗ · TP von der Phasenübergangstempe-

ratur TP auf. Die Proportionalitätskonstante γ∗ ≈ 66mJmol−1 K−1 ist deutlich gröÿer

als die Sommerfeld-Konstante der spezi�schen Wärme und deutet auf einen weiteren,

nicht-elektronischen Beitrag zur Entropieänderung am Peierls-Phasenübergang in den

(DCNQI)2Cu Kristallen hin, welcher vermutlich auf das Gitter zurückzuführen ist. Die-

se Schlussfolgerung wurde durch eine Abschätzung des rein elektronischen Beitrags zur

Entropie im metallischen Grundzustand auf γel ≈ 13 − 20mJmol−1K−2, d.h. γel < γ∗,

untermauert, welcher aus dem Seebeck-Koe�zienten für die drei (DCNQI)2Cu Salze be-

stimmt wurde. Die in dieser Arbeit gezeigte korrelierte Untersuchung der Entropiedi�erenz

der Grundzustände und des elektronischen Entropieanteils der metallischen Phase bestä-

tigt daher die thermodynamische Betrachtung des Phasenübergangs basierend auf den

Gitter-, Spin- und Ladungsfreiheitsgraden nach Nishio et al. [34]. Auÿerdem konnte die

Gültigkeit des thermodynamischen Modells durch die Analyse des Phasenübergangs von

(MeBr-DCNQI)2Cu bei TP = 155K auf Temperaturen oberhalb der Debye Temperatur

von (DCNQI)2Cu erweitert werden. Die physikalischen Ursachen des Phasenübergangs

bleiben daher auch bei hohen Temperaturen gleich, sodass eine hydrostatische oder che-

mische Verschiebung der Phasenübergangstemperaturen in einen technologisch nutzbaren

Bereich möglich erscheint. Dies könnte sich beispielsweise für ultraschnelle Fotodetektoren

als nützlich erweisen.

Thermoelektrisches Anwendungspotential von (DCNQI)2Cu

Die in dieser Arbeit gewonnenen, experimentellen Daten erlauben zum ersten Mal eine

konsistente Evaluierung der thermoelektrischen Kenngröÿen von (DCNQI)2Cu Radikala-

nionensalzen. Ein thermoelektrischer Leistungsfaktor von 110 µWK−2 m−1 konnte bei RT

nachgewiesen werden, welcher vergleichbar mit den zur Zeit besten organischen Thermo-

elektrika basierend auf dem lochleitenden Polymer PEDOT ist [33]. Die thermoelektri-

sche Gütezahl erreicht bei RT einen Wert von zT = 0.02, welcher aufgrund der höhe-

ren Wärmeleitfähigkeit von 1.73Wm−1K−1 in (DCNQI)2Cu etwa eine Gröÿenordnung
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schlechter ist als die höchste, publizierte Gütezahl für PEDOT:PSS [33]. Literaturwer-

te für leitfähige Polymere sind jedoch häu�g aufgrund der Anisotropie der Transport-

gröÿen überschätzt, wenn die thermoelektrischen Kenngröÿen nicht in einer einheitlichen

Probenrichtung gemessen werden [54]. Daher kann die thermoelektrische Leistungsfähig-

keit von (DCNQI)2Cu zumindest als vergleichbar betrachtet werden. Hinzu kommt, dass

(DCNQI)2Cu eines der besten organischen Thermoelektrika mit negativen Majoritätsla-

dungsträgern ist und deshalb für thermoelektrische Hybridgeneratoren in Kombination

mit lochleitenden Polymeren Bedeutung besitzt [32, 232]. Unterhalb von Raumtempera-

tur zeigen (DCNQI)2Cu Kristalle ihr groÿes thermoelektrisches Anwendungspotential mit

Leistungsfaktoren von bis zu 50mWK−2m−1 und Gütezahlen gröÿer als zT > 0.15 unter-

halb von 40K. Nach aktuellem Kenntnisstand stellen diese Werte einen Rekord im Nied-

rigtemperaturbereich dar, sodass niederdimensionale organische Metalle hier neue ther-

moelektrische Anwendungsfelder bei kryogenen Temperaturen erschlieÿen könnten. Eine

weitere Optimierung der thermoelektrischen Kenngröÿen sollte durch gezielte Einstellung

der Ladungsträgerdichte erreicht werden können, beispielsweise durch die Kontrolle des

Ladungstransfers von den Gegenionen auf das organische Molekül. Die Gültigkeit dieses

Konzepts wurde in der vorliegenden Arbeit ebenfalls demonstriert. Zusätzlich konnte eine

Verfün�achung der thermoelektrischen Gütezahl in der Nähe des Peierls-Phasenübergangs

von (MeBr-DCNQI)2Cu gezeigt werden. Die diversen elektronischen Grundzustände in

organischen Metallen stellen daher einen weiteren Ansatz zur Verbesserung der thermo-

elektrischen Leistungsfähigkeit dieser Materialklasse dar.

Abschlieÿend wurde ein Prototyp eines organischen, thermoelektrischen Generators

aus einer Kombination von elektronenleitendem, einkristallinen (DCNQI)2Cu und dem

niederdimensionalen, lochleitenden, organischen Metall TTT2I3 hergestellt. Obwohl der

aktuelle, nicht-optimierte Generator nur 0.02% der eingespeisten Wärme in elektrische En-

ergie umwandeln konnte, erreichte seine auf die aktive Fläche normierte Leistung bereits

Werte von 5mWcm−2. Diese übertre�en die Kenndaten vergleichbarer thermoelektrischer

Generatoren basierend auf leitfähigen Polymeren um drei Gröÿenordnungen [32], wobei

zu beachten ist, dass dieser Parameter einen groÿen Teil der Kosten in der thermoelektri-

schen Abwärmenutzung bestimmt [238]. Trotz der noch nicht erreichten Leistungsmerk-

male von konventionellen thermoelektrischen Generatoren basierend auf Bi2Te3 verdeut-

lichen die Ergebnisse für (DCNQI)2Cu dennoch das hohe Potential organischer Metalle

für die thermoelektrische Materialforschung, besonders unter Berücksichtigung der kos-

tengünstigen und weniger energieintensiven Herstellung dieser Materialien in Hinblick auf

technologische Anwendungen. Die Ergebnisse zur thermoelektrischen Leistungsfähigkeit

von (DCNQI)2Cu und TTT2I3 werden in naher Zukunft in Advanced Materials (2017,

akzeptiert) verö�entlicht.

186



Bibliography

[1] J. Bardeen, L. Cooper, and J. Schrie�er. Microscopic theory of superconductivity.

Physical Review, 106(1):162�164, April 1957.

[2] W. Little. Possibility of synthesizing an organic superconductor. Physical Review,

134(6A):A1416�A1424, June 1964.

[3] L. Coleman, M. Cohen, D. Sandman, F. Yamagishi, A. Garito, and A. Heeger.

Superconducting �uctuations and the peierls instability in an organic solid. Solid

State Communications, 12(11):1125�1132, June 1973.

[4] P. Grant, R. Greene, G. Wrighton, and G. Castro. Temperature dependence of the

near-infrared optical properties of tetrathiofulvalinium tetracyanoquinodimethane

(TTF-TCNQ). Physical Review Letters, 31(21):1311�1314, November 1973.

[5] R. Peierls. More Surprises in Theoretical Physics. Princeton University Press,

Princeton, 1991.

[6] D. Jérome and H. Schulz. Organic conductors and superconductors. Advances in

Physics, 31(4):299�490, July 1982.

[7] N. Toyota, M. Lang, and J. Müller. Low-dimensional molecular metals. Springer-

Verlag Berlin Heidelberg, Berlin, 2007.

[8] A. Aumüller and S. Hünig. One-step entry to N-Cyanimines and to N,N'-

Dicyanoquinonediimines, a novel class of electron-acceptors. Angewandte Chemie

International, 23(6):447�448, June 1984.

[9] A. Aumüller, P. Erk, G. Klebe, S. Hünig, J. U. von Schütz, and H. P. Werner.

A radical anion salt of 2,5-Dimethyl-N,N'-Dicyanoquinonediimine with extremely

high electrical conductivity. Angewandte Chemie International Edition in English,

25(8):740�741, August 1986.

[10] R. Kato, S. Aonuma, and H. Sawa. Selectively deuterated molecular conductor

(DMe-DCNQI)2Cu - phase diagram and dimensionality. Synthetic Metals, 70(1-

3):1071�1074, March 1995.

[11] J.-P. Farges, editor. Organic Conductors: Fundamentals and Applications. Marcel,

New York, 1994.

187



BIBLIOGRAPHY

[12] F. O. Karutz, J. U. von Schütz, H. Wachtel, and H. C. Wolf. Optically reversed

peierls transition in crystals of Cu(Dicyanoquinonediimine)2. Physical Review Let-

ters, 81(1):140�143, July 1998.

[13] Y. Tokura, H. Okamoto, T. Koda, T. Mitani, and G. Saito. Nonlinear electric

transport and switching phenomenon in the mixed-stack charge-transfer crystal

tetrathiafulvalene-p-chloranil. Physical Review B, 38(3):2215�2219, July 1988.

[14] R. Rommel, B. Hartmann, J. Brandenburg, J. A. Schlueter, and J. Müller. Nonlin-

ear electronic transport in the anomalous metallic state of quasi-2D organic super-

conductors κ-(BEDT-TTF)2X. Physica Status Solidi (B), 250(3):568�574, March

2013.

[15] T. Inada, I. Terasaki, H. Mori, and T. Mori. Giant nonlinear conduction from inho-

mogeneous charge order in rapidly cooled θ-(BEDT-TTF)2RbZn(SCN)4. Physical

Review B, 79(16):165102, April 2009.

[16] T. Ivek, B. Korin-Hamzi¢, O. Milat, S. Tomi¢, C. Clauss, N. Drichko, D. Schweitzer,

and M. Dressel. Collective excitations in the charge-ordered phase of α-(BEDT-

TTF)2I3. Physical Review Letters, 104(20):206406, May 2010.

[17] R. Kumai, Y. Okimoto, and Y. Tokura. Current-induced insulator-metal tran-

sition and pattern formation in an organic charge-transfer complex. Science,

284(5420):1645�1647, June 1999.

[18] H. Wakita, T. Ozawa, Y. Bando, and T. Mori. Nonlinear conductivity in

dicyanoquinonediimine complexes. Journal of the Physical Society of Japan,

79(9):094703, August 2010.

[19] F. Sawano, I. Terasaki, H. Mori, T. Mori, M. Watanabe, N. Ikeda, Y. Nogami, and

Y. Noda. An organic thyristor. Nature, 437(7058):522�4, September 2005.

[20] T. Mori and T. Kawamoto. Organic conductors - from fundamentals to nonlinear

conductivity. Annual Reports Section C (Physical Chemistry), 103:134, March 2007.

[21] R. Weitz, A. Walter, R. Engl, R. Sezi, and C. Dehm. New charge-transfer salts for

reversible resistive memory switching. Nano Letters, 6(12):2810�2813, November

2006.

[22] H. M. Yamamoto, Y. Kawasugi, H. Ito, T. Fukunaga, T. Suzuki, K. Tsuk-

agoshi, and R. Kato. Conduction properties of micro-crystals of 2,5-dimethyl-N,N'-

dicyanoquinonediimine metal (metal=Ag, Cu) complexes on SiO2/Si substrates.

Solid State Sciences, 10(12):1757�1761, December 2008.

188



BIBLIOGRAPHY

[23] A. Casian, Z. Dashevsky, H. Scherrer, V. Dusciac, and R. Dusciac. A possibility

to realize a high thermoelectric �gure of merit in quasi-one-dimensional organic

crystals. In Proceedings ICT'03. 22nd International Conference on Thermoelectrics

(IEEE Cat. No.03TH8726), pages 330�335. IEEE, August 2003.

[24] J. Wüsten and K. Potje-Kamloth. Organic thermogenerators for energy autarkic sys-

tems on �exible substrates. Journal of Physics D: Applied Physics, 41(13):135113,

July 2008.

[25] A. Casian and I. Sanduleac. Thermoelectric properties of tetrathiotetracene iodide

crystals: Modeling and experiment. Journal of Electronic Materials, 43(10):3740�

3745, October 2014.

[26] L. E. Bell. Cooling, heating, generating power, and recovering waste heat with

thermoelectric systems. Science, 321(5895):1457�1461, September 2008.

[27] C. Forman, I. K. Muritala, R. Pardemann, and B. Meyer. Estimating the global

waste heat potential. Renewable and Sustainable Energy Reviews, 57:1568�1579,

May 2016.

[28] S. LeBlanc, S. K. Yee, M. L. Scullin, C. Dames, and K. E. Goodson. Material and

manufacturing cost considerations for thermoelectrics. Renewable and Sustainable

Energy Reviews, 32:313�327, April 2014.

[29] O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and

X. Crispin. Optimization of the thermoelectric �gure of merit in the conducting

polymer poly(3,4-ethylenedioxythiophene). Nature Materials, 10(6):429�33, June

2011.

[30] O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-

Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W.

Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy,

M. Berggren, and X. Crispin. Semi-metallic polymers. Nature Materials, 13(2):190�

4, February 2014.

[31] C. Cho, K. L. Wallace, P. Tzeng, J.-H. Hsu, C. Yu, and J. C. Grunlan. Outstanding

low temperature thermoelectric power factor from completely organic thin �lms

enabled by multidimensional conjugated nanomaterials. Advanced Energy Materials,

6(7):1502168, January 2016.

189



BIBLIOGRAPHY

[32] Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, D. Qiu, and D. Zhu. Organic

thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-

ethenetetrathiolate)s. Advanced Materials, 24(7):932�937, February 2012.

[33] G.-H. Kim, L. Shao, K. Zhang, and K. P. Pipe. Engineered doping of organic

semiconductors for enhanced thermoelectric e�ciency. Nature Materials, 12(8):719�

23, August 2013.

[34] Y. Nishio, M. Tamura, K. Kajita, S. Aonuma, H. Sawa, R. Kato, and H. Kobayashi.

Thermodynamical study of (DMe-DCNQI)2Cu system - mechanism of reentrant

metal-insulator transition. Journal of the Physical Society Japan, 69(5):1414�1422,

2000.

[35] T. J. Seebeck. Ueber die magnetische Polarisation der Metalle und Erze durch

Temperaturdi�erenz. Annalen der Physik, 82(3):253�286, 1826.

[36] J. Peltier. Nouvelles expériences sur la caloricité des courants électriques. Annales

de Chimie et de Physique, 56:371�386, 1834.

[37] H. Goldsmid. Introduction to Thermoelectricity, volume 121 of Springer Series in

Material Science. Springer Verlag Berlin Heidelberg, 2nd edition, 2010.

[38] W. Thomson. On a mechanical theory of thermo-electric currents. Proceedings of

the Royal Society of Edinburgh, 3:91�98, January 1851.

[39] K. Behnia. Fundamentals of Thermoelectricity. Oxford University Press, Oxford,

2015.

[40] H. B. Callen. The application of Onsager's reciprocal relations to thermoelectric,

thermomagnetic, and galvanomagnetic e�ects. Physical Review, 73(11):1349�1358,

June 1948.

[41] P. M. Chaikin. An introduction to thermopower for those who might want to use

it to study organic conductors and superconductors. In Organic Superconductivity,

pages 101�115. Springer Science+Business Media, New York, 1990.

[42] G. J. Snyder and E. S. Toberer. Complex thermoelectric materials. Nature Materi-

als, 7(2):105�114, February 2008.

[43] A. Shakouri. Recent developments in semiconductor thermoelectric physics and

materials. Annual Review of Materials Research, 41(1):399�431, August 2011.

190



BIBLIOGRAPHY

[44] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn. Thin-�lm thermo-

electric devices with high room-temperature �gures of merit. Nature, 413(6856):597�

602, October 2001.

[45] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto,

D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren. High-

thermoelectric performance of nanostructured bismuth antimony telluride bulk al-

loys. Science, 320(5876):634�8, May 2008.

[46] L. Hicks and M. Dresselhaus. Thermoelectric �gure of merit of a one-dimensional

conductor. Physical Review B, 47(24):16631�16634, June 1993.

[47] A. Garg, D. Rasch, E. Shimshoni, and A. Rosch. Large violation of the Wiedemann-

Franz law in Luttinger liquids. Physical Review Letters, 103(9):096402, August 2009.

[48] N. Stojanovic, D. H. S. Maithripala, J. M. Berg, and M. Holtz. Thermal conduc-

tivity in metallic nanostructures at high temperature: Electrons, phonons, and the

Wiedemann-Franz law. Physical Review B, 82(7):075418, August 2010.

[49] A. Casian. Violation of the Wiedemann-Franz law in quasi-one-dimensional organic

crystals. Physical Review B, 81(15):155415, April 2010.

[50] J. Vavro, M. C. Llaguno, J. E. Fischer, S. Ramesh, R. K. Saini, L. M. Ericson,

V. A. Davis, R. H. Hauge, M. Pasquali, and R. E. Smalley. Thermoelectric power of

p-doped single-wall carbon nanotubes and the role of phonon drag. Physical Review

Letters, 90(6):065503, February 2003.

[51] S. M. Kauzlarich, S. R. Brown, and G. J. Snyder. Zintl phases for thermoelectric

devices. Dalton Transactions, (21):2099�107, June 2007.

[52] X. Shi, J. Yang, L. Wu, J. R. Salvador, C. Zhang, W. L. Villaire, D. Haddad, J. Yang,

Y. Zhu, and Q. Li. Band structure engineering and thermoelectric properties of

charge-compensated �lled skutterudites. Scienti�c Reports, 5:14641, October 2015.

[53] A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen,

X. Crispin, and L. Shi. Signi�cant electronic thermal transport in the conducting

polymer poly(3,4-ethylenedioxythiophene). Advanced Materials, 27(12):2101�2106,

March 2015.

[54] Z. U. Khan, J. Edberg, M. M. Hamedi, R. Gabrielsson, H. Granberg, L. Wågberg,

I. Engquist, M. Berggren, and X. Crispin. Thermoelectric polymers and their elastic

aerogels. Advanced Materials, 28(22):4556�4562, June 2016.

191



BIBLIOGRAPHY

[55] G. Grüner. Density Waves in Solids. Perseus Publishing, Cambridge, Massachusetts,

2000.

[56] R. Peierls. Quantum Theory of Solids. Oxford University Press, New York, 1955.

[57] G. Grüner. The dynamics of charge-density waves. Reviews of Modern Physics,

60(4):1129�1181, October 1988.

[58] M. Schwoerer and H. C. Wolf. Organic Molecular Solids. Wiley-VCH, Weinheim,

2007.

[59] S. Kagoshima, H. Nagasawa, and T. Sambongi. One-Dimensional Conductors, vol-

ume 72 of Springer Series in Solid-State Sciences. Springer Verlag Berlin Heidelberg,

1988.

[60] J. H. de Boer and E. J. Verwey. Semi-conductors with partially and with completely

�lled 3d-lattice bands. Proceedings of the Physical Society, 49(4S):59, August 1937.

[61] N. F. Mott and R. Peierls. Discussion of the paper by de Boer and Verwey. Pro-

ceedings of the Physical Society, 49(4S):72�73, August 1937.

[62] J. Hubbard. Electron correlations in narrow energy bands. Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 276(1365):238�257,

November 1963.

[63] H. Seo, C. Hotta, and H. Fukuyama. Toward systematic understanding of diversity

of electronic properties in low-dimensional molecular solids. Chemical Reviews,

104(11):5005�5036, October 2004.

[64] B. Hilti and C. W. Mayer. Electrical properties of the organic metallic compound

bis (tetrathiotetracene)-triiodide, (TTT)2I3. Helvetica Chimica Acta, 61(1):501�511,

January 1978.

[65] F. Hüwe. Growth and characterization of radical anion salt single crystals. Master's

thesis, Julius-Maximilian-University Würzburg, 2012.

[66] K. Sinzger, S. Hünig, M. Jopp, D. Bauer, W. Bietsch, J. U. von Schütz, H. C. Wolf,

R. K. Kremer, and T. Metzenthin. The organic metal (Me2-DCNQI)2Cu: Dramatic

changes in solid-state properties and crystal structure due to secondary deuterium

e�ects. Journal of the American Chemical Society, 115(17):7696�7705, August 1993.

[67] T. Miyazaki and K. Terakura. First-principles theoretical study of metallic states

of DCNQI-(Cu,Ag,Li) systems. Physical Review B, 54(15):10452�10464, October

1996.

192



BIBLIOGRAPHY

[68] A. Kobayashi, R. Kato, H. Kobayashi, T. Mori, and H. Inokuchi. The organic π-

electron metal system with interaction through mixed-valence metal cation: Elec-

tronic and structural properties of radical salts of dicyano-quinodiimine, (DMe-

DCNQI)2Cu and (MeCl-DCNQI)2Cu. Solid State Communications, 64(1):45�51,

October 1987.

[69] J. Sugar and A. Musgrove. Energy levels of copper, Cu I through Cu XXIX. Journal

of Physical and Chemical Reference Data, 19(3):527, May 1990.

[70] P. Erk, H. Meixner, T. Metzenthin, S. Hünig, U. Langohr, J. U. von Schütz, H.-P.

Werner, H. C. Wolf, R. Burkert, H. W. Helberg, and G. Schaumburg. A guidance for

stable metallic conductivity in copper salts of N,N'-dicyanobenzoquinonediimines

(DCNQIs). Advanced Materials, 3(6):311�315, June 1991.

[71] R. Kato, H. Kobayashi, and A. Kobayashi. Crystal and electronic struc-

tures of conductive anion-radical salts, (2,5-R1R2-DCNQI)2Cu (DCNQI = N,N'-

dicyanoquinonediimine; R1, R2 = CH3, CH3O, Cl, Br). Journal of the American

Chemical Society, 111(14):5224�5232, July 1989.

[72] S. Hünig and P. Erk. DCNQIs - new electron acceptors for charge-transfer complexes

and highly conducting radical anion salts. Advanced Materials, 3(5):225�236, May

1991.

[73] C. G. Garton. Charge transfer from metal to dielectric by contact potential. Journal

of Physics D: Applied Physics, 7(13):1814�1823, September 1974.

[74] W. Brütting, editor. Physics of Organic Semiconductors. Wiley-VCH, Weinheim,

2005.

[75] A. J. Heeger, S. Kivelson, J. R. Schrie�er, and W. P. Su. Solitons in conducting

polymers. Reviews of Modern Physics, 60(3):781�850, July 1988.

[76] H. Kobayashi, A. Miyamoto, R. Kato, F. Sakai, A. Kobayashi, Y. Yamakita, Y. Fu-

rukawa, M. Tasumi, and T. Watanabe. Mixed valency of Cu, electron-mass enhance-

ment, and three-dimensional arrangement of magnetic sites in the organic conduc-

tors (R1, R2-N,N'-dicyanoquinonediimine)2Cu (where R1, R2 = CH3, CH3O,Cl,Br).

Physical Review B, 47(7):3500�3510, February 1993.

[77] S. Uji, T. Terashima, H. Aoki, J. Brooks, R. Kato, H. Sawa, S. Aonuma, M. Tamura,

and M. Kinoshita. Coexistence of one- and three-dimensional fermi surfaces and

heavy cyclotron mass in the molecular conductor (DMe-DCNQI)2Cu. Physical Re-

view B, 50(21):15597�15601, December 1994.

193



BIBLIOGRAPHY

[78] R. Kato. Conductive copper salts of 2,5-Disubstituted N,N'-

Dicyanobenzoquinonediimines (DCNQIs): Structural and physical properties.

Bulletin of the Chemical Society of Japan, 73(3):515�534, 2000.

[79] T. Yamamoto, H. Tajima, J.-I. Yamaura, S. Aonuma, and R. Kato. Re�ectance

spectra and electrical resistivity of (Me2 -DCNQI)2Li1−xCux. Journal of the Physical

Society of Japan, 68(4):1384�1391, 1999.

[80] M. Tamura, H. Sawa, S. Aonuma, R. Kato, M. Kinoshita, and H. Kobayashi. Weak

ferromagnetism and magnetic anisotropy in cu salt of fully deuterated DMe-DCNQI,

(DMe-DCNQI-d8)2Cu. Journal of the Physical Society of Japan, 62(5):1470�1473,

1993.

[81] D. Gómez, J. U. von Schütz, H. C. Wolf, and S. Hünig. Tunable phase transitions

in conductive Cu(2,5-Dimethyl-Dicyanoquinonediimine)2 radical ion salts. Journal

de Physique I, 6(12):1655�1671, 1996.

[82] O. Akaki, A. Chainani, T. Takahashi, Y. Kashimura, and R. Kato. Temperature-

dependent core-level x-ray photoemission spectroscopy of the organic conductors

(MeCl-DCNQI)2Cu, (MeBr-DCNQI)2Cu, and (DI-DCNQI)2Cu. Physical Review

B, 57(19):11846�11849, May 1998.

[83] H. Kobayashi, R. Kato, A. Kobayashi, T. Mori, and H. Inokuchi. The �rst molec-

ular metals with ordered spin structures, R2R2-DCNQI2Cu (R1, R2 = CH3, CH3O,

Cl, Br) with Jahn-Teller distortion, CDW instability and antiferromagnetic spin

ordering. Solid State Communications, 65(11):1351�1354, March 1988.

[84] J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L.

Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. Mcqueeney, and O. De-

laire. Metallization of vanadium dioxide driven by large phonon entropy. Nature,

515(7528):535�539, November 2014.

[85] T. Mori, H. Inokuchi, A. Kobayashi, R. Kato, and H. Kobayashi. Electrical con-

ductivity, thermoelectric power, and ESR of a new family of molecular conduc-

tors, dicyanoquinonediimine-metal [(DCNQI)2M] compounds. Physical Review B,

38(9):5913, September 1988.

[86] S. Mazumdar and A. Bloch. Systematic trends in short-range coulomb e�ects among

nearly one-dimensional organic conductors. Physical Review Letters, 50(3):207�211,

January 1983.

194



BIBLIOGRAPHY

[87] R. Moret, P. Erk, S. Hünig, and J. U. von Schütz. X-ray scattering evidence for

dimerization (4kF ) and spin-peierls distortion (2kF ) in silver salts of dicyanoquin-

odiimine (2,5 MR-DCNQI)2Ag (R = CH3, Cl or Br, M = CH3). Journal de Physique,

49(11):1925�1931, November 1988.

[88] Y. Nakazawa, A. Sato, M. Seki, K. Saito, K.-i. Hiraki, T. Takahashi, K. Kanoda,

and M. Sorai. Spin-peierls transition of the quasi-one-dimensional electronic system

(DMe-DCNQI)2M (M=Li,Ag) probed by heat capacity. Physical Review B, 68(8):1�

8, August 2003.

[89] K.-I. Hiraki and K. Kanoda. Ground states of DCNQI-metal complexes, (R1, R2-

DCNQI)2M; (R1, R2 = CH3, I, M = Ag, Cu, Li1xCux). Molecular Crystals and

Liquid Crystals Science and Technology. Section A, 285(1):157�162, July 1996.

[90] M. Hiraoka, H. Sakamoto, K. Mizoguchi, T. Kato, and R. Kato. Charge transport

in the insulating state of (DMe-DCNQI)2Li above TSP : A possible fractional charge

soliton conduction with ±12e. Physical Review Letters, 91(5):056604, August 2003.

[91] T. Yamamoto, H. Tajima, R. Kato, M. Uruichi, and K. Yakushi. Raman spectra of

(Me2-DCNQI)2CuxLi1−x (0 ≤ x ≤ 1): The evidence for charge separation at room

temperature in a one-dimensional conductor having a quarter-�lled band. Journal

of the Physical Society of Japan, 71(8):1956�1964, August 2002.

[92] G. P. Srivastava. The Physics of Phonons. Taylor & Francis, New York, 1990.

[93] J. J. Quinn and K. Yi. Solid State Physics: Principles and Modern Applications,

chapter Ch. 2: Lattice Vibrations, pages 37�78. Springer Verlag Berlin Heidelberg,

2009.

[94] V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky. Handbook of infrared

spectroscopy of ultrathin �lms. Wiley Interscience, New York, 2003.

[95] Y. B. Band. Light and matter: electromagnetism, optics, spectroscopy and lasers.

John Wiley, Chichester, 2006.

[96] C. Kittel. Introduction to Solid State Physics. John Wiley and Sons, New York, 8th

edition, 2005.

[97] A. Einstein. Die Plancksche Theorie der Strahlung und die Theorie der spezi�schen

Wärme. Annalen der Physik, 327(1):180�190, 1906.

[98] P. Debye. Zur Theorie der spezi�schen Wärmen. Annalen der Physik, 344(14):789�

839, 1912.

195



BIBLIOGRAPHY

[99] A. Pertsin and A. Kitaigorodsky. The Atom-Atom Potential Method, volume 43 of

Springer Series in Chemical Physics. Springer Verlag Berlin Heidelberg, 1987.

[100] P. D. Desai. Thermodynamic properties of iron and silicon. Journal of Physical and

Chemical Reference Data, 15(3):967, 1986.

[101] T. Wei, S. Etemad, A. Garito, and A. Heeger. Low temperature speci�c heat of

(TTF)(TCNQ). Physics Letters A, 45(4):269�270, October 1973.

[102] J. J. Hall. Electronic e�ects in the elastic constants of n-type silicon. Physical

Review, 161(3):756�761, September 1967.

[103] T. Tiedje, R. Haering, M. Jericho, W. Roger, and A. Simpson. Temperature depen-

dence of sound velocities in TTF-TCNQ. Solid State Communications, 23(10):713�

718, September 1977.

[104] H. A. Mook and C. R. Watson. Neutron inelastic scattering study of tetrathiafulva-

lene tetracyanoquinodimethane (TTF-TCNQ). Physical Review Letters, 36(14):801�

803, April 1976.

[105] R. A. Craven, M. B. Salamon, G. DePasquali, R. M. Herman, G. Stucky, and

A. Schultz. Speci�c heat of tetrathiofulvalinium-tetracyanoquinodimethane (TTF-

TCNQ) in the vicinity of the metal-insulator transition. Physical Review Letters,

32(14):769�772, April 1974.

[106] R. Newnham. Properties of Materials: Anisotropy, Symmetry, Structure. Oxford

University Press, Oxford, 2005.

[107] A. Filhol, G. Bravic, J. Gaultier, D. Chasseau, and C. Vettier. Room- and high-

pressure neutron structure determination of tetrathiafulvalene-7,7,8,8-tetracyano-p-

quinodimethane (TTF-TCNQ). Thermal expansion and isothermal compressibility.

Acta Crystallographica B, 37(6):1225�1235, June 1981.

[108] V. K. Jindal and J. Kalus. Calculation of thermal expansion and phonon frequency

shift in deuterated naphthalene. Physica Status Solidi (b), 133(1):89�99, January

1986.

[109] C. de Kruif and H. Govers. Enthalpies of sublimation and vapor pressures of 2,2-bis-

1,3-dithiole (TTF), 7,7,8,8-tetracyanoquinodimethane (TCNQ), and TTF-TCNQ

(1:1). The Journal of Chemical Physics, 73(1):553, July 1980.

196



BIBLIOGRAPHY

[110] B. Schatschneider, J.-J. Liang, A. M. Reilly, N. Marom, G.-X. Zhang, and

A. Tkatchenko. Electrodynamic response and stability of molecular crystals. Phys-

ical Review B, 87(6):060104, February 2013.

[111] S. M. Sze and K. K. Ng. Physics of Semiconductor Devices. Wiley-Interscience,

New York, 3rd edition, 2007.

[112] M. Pope and C. E. Swenberg. Electronic Processes in Organic Crystals and Poly-

mers. Oxford University Press, New York, 2nd edition, 1999.

[113] G. C. Pimentel and A. L. McClellan. The infrared spectra of naphthalene crystals,

vapor, and solutions. The Journal of Chemical Physics, 20(2):270�277, February

1952.

[114] E. R. Lippincott and E. J. O'Reilly. Vibrational spectra and assignment of naphtha-

lene and naphthalene-d8. The Journal of Chemical Physics, 23(2):238�244, February

1955.

[115] R. Zallen and E. Conwell. The e�ect of temperature on libron frequencies in molecu-

lar crystals: Implications for TTF-TCNQ. Solid State Communications, 31(8):557�

561, August 1979.

[116] I. Natkanieq, I. Natkanieq, L. Bokhenkovt, L. Bokhenkovt, J. Kalus�, J. Kalus�,

U. Schmelzers, U. Schmelzers, E. F. Shekat, and E. F. Shekat. Phonon dispersion

in d$_8$-naphthalene crystal at 6 k. Journal of Physics C: Solid State Physics,

13(23):4265�83, 1980.

[117] M. Holt, Z. Wu, H. Hong, P. Zschack, P. Jemian, J. Tischler, H. Chen, and T.-C.

Chiang. Determination of phonon dispersions from x-ray transmission scattering:

The example of silicon. Physical Review Letters, 83(16):3317�3319, October 1999.

[118] P. Flubacher, A. J. Leadbetter, and J. A. Morrison. The heat capacity of pure silicon

and germanium and properties of their vibrational frequency spectra. Philosophical

Magazine, 4(39):273�294, March 1959.

[119] N. Sallamie and J. Shaw. Heat capacity prediction for polynuclear aromatic solids

using vibration spectra. Fluid Phase Equilibria, 237(1-2):100�110, October 2005.

[120] R. Pan, M. Nair, and B. Wunderlich. On the Cp to Cv conversion of solid linear

macromolecules II. Journal of Thermal Analysis and Calorimetry, 35(3):955�966,

May 1989.

197



BIBLIOGRAPHY

[121] T. Tritt, editor. Thermal Conductivity: Theory, Troperties, and Applications. Klu-

ver Academic/Plenum Publishers, New York, 2004.

[122] E. M. Conwell. Semiconductors and Semimetals: Highly Conducting Quasi-One-

Dimensional Organic Crystals. Academic Press. Inc, San Diego, 1988.

[123] A. Matthiessen. Ueber die elektrische Leitungsfähigkeit der Legirungen. Annalen

der Physik, 186(6):190�221, 1860.

[124] H. Gutfreund and M. Weger. Temperature dependence of the metallic conductivity

of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Physical Review B,

16(4):1753�1755, August 1977.

[125] W. Brütting, P. H. Nguyen, W. Rieÿ, and G. Paasch. dc-conduction mechanism

and peierls gap in organic and inorganic charge-density-wave conductors. Physical

Review B, 51(15):9533�9543, April 1995.

[126] A. Casian, V. Dusciac, and I. Coropceanu. Huge carrier mobilities expected in

quasi-one-dimensional organic crystals. Physical Review B, 66(16):165404, October

2002.

[127] M. Kaveh and N. Wiser. Electron-electron scattering in conducting materials. Ad-

vances in Physics, 33(4):257�372, January 1984.

[128] N. Karl. Charge carrier transport in organic semiconductors. Synthetic Metals,

133-134:649�657, March 2003.

[129] L. Landau. The theory of a fermi liquid. Soviet Physics JETP Letters, 3(6):920,

January 1957.

[130] J. S. Chappell, A. N. Bloch, W. Bryden, M. Max�eld, T. Poehler, and D. Cowan.

Degree of charge transfer in organic conductors by infrared absorption spectroscopy.

Journal of the American Chemical Society, 103(9):2442�2443, May 1981.

[131] E. M. Conwell. Mobility in tetrathiafulvalene-tetracyanoquinodimethane (TTF-

TCNQ). Physical Review Letters, 39(12):777�780, September 1977.

[132] J. R. Cooper. Comments on the metallic conductivity of tetrathiafulvalenium-

tetracyanoquinodimethanide (TTF-TCNQ). Physical Review B, 19(4):2404�2408,

February 1979.

[133] R. Friend, M. Miljak, D. Jérome, D. Decker, and D. Debray. Linear temperature

dependence of the constant volume resistivity of TTF-TCNQ. Journal de Physique

Lettres, 39(9):134�138, January 1978.

198



BIBLIOGRAPHY

[134] J. Voit. A brief introduction to Luttinger liquids. AIP Conference Proceedings,

544(1):309�318, October 2001.

[135] M. Dressel. Spin-charge separation in quasi one-dimensional organic conductors.

Die Naturwissenschaften, 90(8):337�344, August 2003.

[136] J. Moser, M. Gabay, P. Auban-Senzier, D. Jérome, K. Bechgaard, and J. Fabre.

Transverse transport in organic conductors: possible evidence for a Luttinger liquid.

The European Physical Journal B, 1(1):39�46, January 1998.

[137] T. Giamarchi. Theoretical framework for quasi-one dimensional systems. ChemIn-

form, 36(5), February 2005.

[138] K. Tamura, T. Ozawa, Y. Bando, T. Kawamoto, and T. Mori. Voltage oscillation

associated with nonlinear conductivity in the organic conductor α-(BEDT-TTF)2I3.

Journal of Applied Physics, 107(10):103716, May 2010.

[139] T. Ivek, I. Kova£evi¢, M. Pinteri¢, B. Korin-Hamzi¢, S. Tomi¢, T. Knoblauch,

D. Schweitzer, and M. Dressel. Cooperative dynamics in charge-ordered state of

α-(BEDT-TTF)2I3. Physical Review B, 86(24):245125, December 2012.

[140] Y. Iwasa, T. Koda, S. Koshihara, Y. Tokura, N. Iwasawa, and G. Saito. Intrinsic

negative-resistance e�ect in mixed-stack charge-transfer crystals. Physical Review

B, 39(14):10441�10444, May 1989.

[141] K. Okamoto, T. Tanaka, W. Fujita, K. Awaga, and T. Inabe. Charge ordering and

nonlinear electrical transport in quasi-one-dimensional organic chains with strong

electrostatic interchain interactions. Physical Review B, 76(7):075328, August 2007.

[142] T. Mori, Y. Bando, T. Kawamoto, I. Terasaki, K. Takimiya, and T. Otsubo. Giant

nonlinear conductivity and spontaneous current oscillation in an incommensurate

organic superconductor. Physical Review Letters, 100(3):037001, January 2008.

[143] T. Mori, T. Ozawa, Y. Bando, T. Kawamoto, S. Niizeki, H. Mori, and I. Terasaki.

Nonlinear dynamics of conduction electrons in organic conductors. Physical Review

B, 79(11):115108, March 2009.

[144] S. Hunklinger. Festkörperphysik. Oldenbourg Wissenschaftsverlag GmbH, München,

January 2009.

[145] G. R. Stewart. Heavy-fermion systems. Reviews of Modern Physics, 56(4):755�787,

October 1984.

199



BIBLIOGRAPHY

[146] S. Uji, T. Terashima, H. Aoki, R. Kato, H. Sawa, S. Aonuma, M. Tamura, and

M. Kinoshita. Fermi surface and absence of additional mass enhancement near the

insulating phase in (DMe-DCNQI)2Cu. Solid State Communications, 93(3):203�207,

January 1995.

[147] A. C. Jacko, J. O. Fjaerestad, and B. J. Powell. A uni�ed explanation of the

Kadowaki-Woods ratio in strongly correlated metals. Nature Physics, 5:422�425,

April 2009.

[148] P. M. Chaikin, R. L. Greene, S. Etemad, and E. Engler. Thermopower of an isostruc-

tural series of organic conductors. Physical Review B, 13(4):1627�1632, February

1976.

[149] D. MacDonald. Thermoelectricity: An Introduction to the Principles. John Wiley

and Sons, New York, 1962.

[150] R. L. Powell, H. M. Roder, and W. J. Hall. Low-temperature transport properties

of copper and its dilute alloys: Pure copper, annealed and cold-drawn. Physical

Review, 115(2):314�323, July 1959.

[151] G. D. Mahan and J. O. Sofo. The best thermoelectric. Proceedings of the National

Academy of Sciences, 93(15):7436�7439, July 1996.

[152] T. E. Humphrey and H. Linke. Reversible thermoelectric nanomaterials. Physical

Review Letters, 94(9):096601, March 2005.

[153] J. Callaway. Model for lattice thermal conductivity at low temperatures. Physical

Review, 113(4):1046, February 1959.

[154] V. Narayanamurti and R. O. Pohl. Tunneling states of defects in solids. Reviews of

Modern Physics, 42(2):201�236, April 1970.

[155] C. Kittel. Interpretation of the thermal conductivity of glasses. Physical Review,

75(6):972�974, March 1949.

[156] A. J. Minnich. Thermal transport: Naturally glassy crystals. Nature Nanotechnol-

ogy, 8(6):392�393, June 2013.

[157] D. Cahill and R. Pohl. Lattice vibrations and heat transport in crystals and glasses.

Annual Review of Physical Chemistry, 39:93�121, October 1988.

[158] M. Cohen, L. Coleman, A. Garito, and A. Heeger. Electrical conductivity of

tetrathiofulvalinium tetracyanoquinodimethan (TTF)(TCNQ). Physical Review B,

10(4):1298, August 1974.

200



BIBLIOGRAPHY

[159] C. Kloc, T. Siegrist, and J. P�aum. Growth of single-crystal organic semiconductors.

In G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, editors, Springer Handbook

of Crystal Growth, pages 845�867. Springer Verlag Berlin Heidelberg, 2010.

[160] Y. Kawasugi, H. M. Yamamoto, M. Hosoda, N. Tajima, T. Fukunaga, K. Tsuk-

agoshi, and R. Kato. Strain-induced superconductor/insulator transition and �eld

e�ect in a thin single crystal of molecular conductor. Applied Physics Letters,

92(24):243508, June 2008.

[161] H. M. Yamamoto, H. Ito, K. Shigeto, K. Tsukagoshi, and R. Kato. Direct formation

of micro-/nanocrystalline 2,5-dimethyl-N,N'-dicyanoquinonediimine complexes on

SiO2/Si substrates and multiprobe measurement of conduction properties. Journal

of the American Chemical Society, 128(3):700�701, January 2006.

[162] H. M. Yamamoto, M. Nakano, M. Suda, Y. Iwasa, M. Kawasaki, and R. Kato. A

strained organic �eld-e�ect transistor with a gate-tunable superconducting channel.

Nature Communications, 4:2379, August 2013.

[163] P. M. Chaikin and J. F. Kwak. Apparatus for thermopower measurements on organic

conductors. Review of Scienti�c Instruments, 46(2):218, February 1975.

[164] F. J. Blatt and R. H. Kropschotf. Thermoelectric power of dilute copper alloys.

Physical Review, 118(2):480�489, April 1960.

[165] D. G. Cahill. Thermal conductivity measurement from 30 to 750 K: The 3ω method.

Review of Scienti�c Instruments, 61(2):802�808, February 1990.

[166] C. Dames and G. Chen. 1ω, 2ω, and 3ω methods for measurements of thermal

properties. Review of Scienti�c Instruments, 76(12):1�14, December 2005.

[167] J. G. Kimling. Transport phenomena in thermoelectric and ferromagnetic nanos-

tructures. PhD thesis, Universität Hamburg, 2013.

[168] C. Dames. Measuring the thermal conductivity of thin �lms : 3 omega and related

electrothermal methods. Annual Review of Heat Transfer, 16:7�49, 2013.

[169] L. Lu, W. Yi, and D. L. Zhang. 3ω method for speci�c heat and thermal conductivity

measurements. Review of Scienti�c Instruments, 72(7):2996�3003, June 2001.

[170] B. Hamdou, J. Kimling, and A. Dorn. Thermoelectric characterization of bismuth

telluride nanowires, synthesized via catalytic growth and post-annealing. Advanced

Materials, 25(2):239�244, January 2013.

201



BIBLIOGRAPHY

[171] L. R. Holland. Physical properties of titanium. III. The speci�c heat. Journal of

Applied Physics, 34(8):2350�2357, August 1963.

[172] D. Mann. LNG materials and �uids. Technical report, National Bureau of Stan-

dards, Cryogenics Division, 1977.

[173] K. Torizuka, H. Tajima, Y. Kawamura, H. Sawa, and T. Yamamoto. Thermal

transport of organic molecular crystals (DMe-DCNQI)2Li(1−x)Cux and observation

of their super-lattice structure by means of synchrotron radiation X-ray. Journal of

Physics and Chemistry of Solids, 66(89):1575 � 1578, August 2005.

[174] K. Torizuka, H. Tajima, and T. Yamamoto. Thermal conductivity of (DMe-

DCNQI)2Li(1−x)Cux (x = 1 and 0.75): Anomalous temperature hysteresis depending

on Cu concentration. Journal of the Physical Society of Japan, 75(7):074604, August

2006.

[175] M.-Y. Choi, P. Chaikin, and R. Greene. Thermal conductivity of bis-

tetramethyltetraselenafulvalene perchlorate [(TMTSF)2ClO4]. Physical Review B,

34(11):7727�7732, December 1986.

[176] A. Matsui, Y. Takaoka, Y. Nishio, R. Kato, and K. Kajita. Thermal study of

DCNQI-Cu using a high accuracy speci�c heat measurement system. Journal of

Physics: Conference Series, 150(4):42120, 2009.

[177] F. Huewe, A. Steeger, I. Bauer, S. Doerrich, P. Strohriegl, and J. P�aum. En-

ergy exchange between phononic and electronic subsystems governing the nonlinear

conduction in DCNQI2Cu. Physical Review B, 92(15):155107, October 2015.

[178] J. Fraxedas. Molecular Organic Materials. Cambridge University Press, Cambridge,

2006.

[179] M. N. Gueye, A. Carella, N. Massonnet, E. Yvenou, S. Brenet, J. Faure-Vincent,

S. Pouget, F. Rieutord, H. Okuno, A. Benayad, R. Demadrille, and J.-P. Simonato.

Structure and dopant engineering in pedot thin �lms: Practical tools for a dramatic

conductivity enhancement. Chemistry of Materials, 28(10):3462�3468, May 2016.

[180] W. Warta, R. Stehle, and N. Karl. Ultrapure, high mobility organic photoconduc-

tors. Applied Physics A, 36(3):163�170, March 1985.

[181] S. Hünig. N, N'-dicyanoquinone diimines (DCNQIs): unique acceptors for conduct-

ing materials. Journal of Materials Chemistry, 5(10):1469�1479, 1995.

202



BIBLIOGRAPHY

[182] D. Bauer, J. U. von Schütz, H. C. Wolf, S. Hünig, K. Sinzger, and R. K. Kre-

mer. Alloyed deuterated copper-DCNQI salts: Phase transitions and reentry of

conductivity, giant hysteresis e�ects, and coexistence of metallic and semiconduct-

ing modes. Advanced Materials, 5(11):829�834, November 1993.

[183] T. Vuleti¢, M. Pinteri¢, M. Lon£ari¢, S. Tomi¢, and J. von Schütz. Non-ohmic

electrical transport in the Peierls-Mott state of deuterated copper-DCNQI systems.

Synthetic Metals, 120(1-3):1001�1002, March 2001.

[184] H. P. Werner, J. U. von Schütz, and H. C. Wolf. Radical anion salts of N, N'-

dicyanoquinonediimine (DCNQI): Conductivity and magnetic properties. Solid state

Communications, 65(8):809�813, February 1988.

[185] Y. Nogami, S. Hayashi, T. Date, K. Oshima, K. Hiraki, and K. Kanoda. High

pressure structures of organic low dimensional conductor DCNQI compounds. The

Review of High Pressure Science and Technology, 7:404�406, August 1998.

[186] S. Tomi¢, D. Jérome, A. Aumüller, P. Erk, S. Hünig, and J. U. von Schütz. Pressure-

induced metal-to-insulator phase transitions in the organic conductor (2,5 DM-

DCNQI)2Cu. (EPL) Europhysics Letters, 5(6):553, March 1988.

[187] R. Burkert, H. W. Helberg, and J. U. von Schütz. Longitudinal and transverse

conductivity in (2,5-Me2-DCNQI)2Cu �bres. Synthetic Metals, 56(1):2519�2524,

March 1993.

[188] H. Hild, J. U. von Schütz, and H. Wachtel. E�ect of tensile stress on the phase

transition in Cu(2,5-dimethyl-N,N-dicyanoquinonediimine)2 - correlation of crystal

length and conductivity. Solid State Communications, 101(8):563�567, February

1997.

[189] M. Sasaki, S. Tanaka, H. Negishi, M. Inoue, and R. Kato. Static and dynamic trans-

port studies of molecular conductors (DMe-DCNQI)2Cu. Journal of the Physics

Society Japan, 67(5):1693�1703, May 1998.

[190] J. Bardeen. Macroscopic quantum tunneling in quasi one-dimensional metals. II.

Theory. Physical Review Letters, 55(9):1010�1013, August 1985.

[191] J. L. Bredas and G. B. Street. Polarons, bipolarons, and solitons in conducting

polymers. Accounts of Chemical Research, 18(10):309�315, October 1985.

[192] D. Bauer, B. Maier, D. Schweitzer, and J. U. von Schütz. Thermopower of deuter-

ated and alloyed Cu-DCNQI-crystals - Evidences for a quite normal reentry of the

conductivity. Synthetic Metals, 71(1-3):1887�1888, April 1995.

203



BIBLIOGRAPHY

[193] I. Bauer. University of bayreuth. Private Communication, 2015.

[194] G. Beni, J. Kwak, and P. Chaikin. Thermoelectric power, coulomb correlation and

charge transfer in TCNQ salts. Solid State Communications, 17(12):1549�1551,

December 1975.

[195] T. Yamamoto, H. Tajima, R. Kato, M. Uruichi, and K. Yakushi. Thermoelectric

power and Raman spectra of (Me2DCNQI)2CuxLi1−x. Synthetic Metals, 133:291�

292, March 2003.

[196] W. Koshibae and S. Maekawa. E�ects of spin and orbital degeneracy on the ther-

mopower of strongly correlated systems. Physical Review Letters, 87(23):236603,

November 2001.

[197] H. Tajima, T. Yamamoto, J. Yamaura, S. Aonuma, and R. Kato. The study of 4kF
CDW in a one-dimensional system, (DMe-DCNQI)2Li1−xCux. Synthetic Metals,

103(1):2193�2194, June 1999.

[198] P. H. P. Nguyen, G. Paasch, W. Brütting, and W. Riess. Analysis of the dc conduc-

tivity of the quasi-one-dimensional charge-density-wave conductor (�uoranthene)2X.

Physical Review B, 49(8):5172�5181, February 1994.

[199] M. Pinteri¢, T. Vuleti¢, M. Lon£ari¢, S. Tomi¢, and J. U. von Schütz. Low frequency

dielectric spectroscopy of the peierls-mott insulating state in the deuterated copper-

DCNQI systems. The European Physical Journal B, 16(3):487�493, August 2000.

[200] J. Guo, X. Wang, and T. Wang. Thermal characterization of microscale conduc-

tive and nonconductive wires using transient electrothermal technique. Journal of

Applied Physics, 101(6):063537, March 2007.

[201] C. Xing, T. Munro, C. Jensen, and H. Ban. Analysis of the electrothermal tech-

nique for thermal property characterization of thin �bers. Measurement Science and

Technology, 24(10):105603, August 2013.

[202] J. C. Lasjaunias, K. Biljakovi¢, and P. Monceau. Time-dependent speci�c heat

below 1 K in the spin-density-wave state of (TMTSF)2PF6. Physical Review B,

53(12):7699�7703, March 1996.

[203] T. Wei, P. S. Kalyanaraman, K. D. Singer, and A. F. Garito. Low-temperature

speci�c heats of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) and its

derivatives. Physical Review B, 20(12):5090�5093, December 1979.

204



BIBLIOGRAPHY

[204] D. D. Dlott. Optical phonon dynamics in molecular crystals. Annual Review of

Physical Chemistry, 37:157�187, October 1986.

[205] L. A. Galchenkov, S. N. Ivanov, I. I. Pyataikin, V. P. Chernov, and P. Monceau.

1/f noise in conducting langmuir-blodgett �lms. Physical Review B, 57(20):13220�

13226, May 1998.

[206] J. Müller, J. Brandenburg, and J. A. Schlueter. 1/f noise in the quasi-two-

dimensional organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Physical Review B,

79(21):214521, June 2009.

[207] E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, and H. Dai. Negative di�erential

conductance and hot phonons in suspended nanotube molecular wires. Physical

Review Letters, 95(15):155505, October 2005.

[208] S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz. Electron

and optical phonon temperatures in electrically biased graphene. Physical Review

Letters, 104(22):227401, June 2010.

[209] S. Hill, P. S. Sandhu, M. E. J. Boonman, J. A. A. J. Perenboom, A. Wittlin,

S. Uji, J. S. Brooks, R. Kato, H. Sawa, and S. Aonuma. Magnetoelectrodynamics

of a three-dimensional organic conductor: Observation of cyclotron resonance in

d2[1,1;0]-(DMe-DCNQI)2Cu. Physical Review B, 54(19):13536�13541, November

1996.

[210] P. M. Chaikin, P. Haen, E. M. Engler, and R. L. Greene. Magnetoresistance and Hall

e�ect in tetramethyl-tetraselenafulvalene-phosphorus hexa�oride [(TMTSF)2PF6].

Physical Review B, 24(12):7155�7161, December 1981.

[211] W. P. Su and J. R. Schrie�er. Soliton dynamics in polyacetylene. Proceedings of

the National Academy of Sciences, 77(10):5626�5629, October 1980.

[212] K. Maki. Soliton di�usion in polyacetylene. I. Optical phonons. Physical Review B,

26(4):2181�2186, August 1982.

[213] F. Kreith, R. Manglik, and M. Bohn. Principles of Heat Transfer. Cengage Learning,

Stanford, 7th edition, 2011.

[214] J. W. Brill, C. P. Tzou, G. Verma, and N. P. Ong. Thermal conductivity of NbSe3.

Solid State Communications, 39(2):233�237, July 1981.

205



BIBLIOGRAPHY

[215] R. Ross, P. Andersson, and G. Bäckström. Thermal conductivity and heat capac-

ity of benzene, naphthalene and anthracene under pressure. Molecular Physics,

38(2):527�533, August 1979.

[216] H. Zhang, Y. Yao, M. M. Payne, J. E. Anthony, and J. W. Brill. Thermal di�usivities

of functionalized pentacene semiconductors. Applied Physics Letters, 105(7):073302,

August 2014.

[217] N. Wakeham, A. F. Bangura, X. Xu, J.-F. Mercure, M. Greenblatt, and N. E.

Hussey. Gross violation of the Wiedemann-Franz law in a quasi-one-dimensional

conductor. Nature Communications, 2:396, July 2011.

[218] M. Kaveh, H. Gutfreund, and M. Weger. Thermal conductivity of

tetrathiafulvalenium-tetracyanoquinodimethanide (TTF-TCNQ). Physical Review

B, 20(2):543�549, July 1979.

[219] S. Belin, K. Behnia, and A. Deluzet. Heat conduction in κ-(BEDT-TTF)2Cu(NCS)2.

Physical Review Letters, 81(21):4728�4731, November 1998.

[220] K. Torizuka, H. Tajima, and T. Yamamoto. Thermal conductivity of (DMe-

DCNQI)2Li1−xCux (0 ≤ x ≤ 0.14): Phonon propagation and the spin-peierls lattice

distortion. Physical Review B, 71(19):193101, May 2005.

[221] S. Belin and K. Behnia. Thermal conductivity of superconducting (TMTSF)2ClO4:

Evidence for a nodeless gap. Physical Review Letters, 79(11):2125�2128, September

1997.

[222] M. Boujida, C. Escribe-Filippini, J. Marcus, and C. Schlenker. Superconducting

properties of the low dimensional lithium molybdenum purple bronze Li0.9Mo6O17.

Physica C: Superconductivity, 153-155:465�466, June 1988.

[223] C. L. Kane and M. P. Fisher. Thermal transport in a Luttinger liquid. Physical

Review Letters, 76(17):3192�3195, April 1996.

[224] T. Takahashi, T. Yokoya, A. Chainani, H. Kumigashira, O. Akaki, and R. Kato. Co-

operative e�ects of electron correlation and charge ordering on the metal-insulator

transition in quasi-one-dimensional deuterated (DMe-DCNQI)2Cu. Physical Review

B, 53(4):1790�1794, January 1996.

[225] D. LeBlanc. Statistics: Concepts and Applications for Science, volume 2. Jones and

Bartlett Learning, Sudbury, Massachusetts, 2004.

206



BIBLIOGRAPHY

[226] J. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer. Thermal prop-

erties of high quality single crystals of bismuth telluride - Part I: Experimental

characterization. Journal of Physics and Chemistry of Solids, 49(10):1237�1247,

1988.

[227] N. Fortune, K. Murata, M. Ishibashi, M. Tokumoto, N. Kinoshita, and H. An-

zai. Calorimetric observation of the metal-insulator phase transition in α-(BEDT-

TTF)2I3. Solid State Communications, 79(3):265�269, July 1991.

[228] C. N. Berglund and H. J. Guggenheim. Electronic properties of VO2 near the

semiconductor-metal transition. Physical Review, 185(3):1022�1033, September

1969.

[229] Y. Nishio, K. Kajita, W. Sasaki, R. Kato, A. Kobayashi, and H. Kobayashi. Thermal

and magnetic properties in organic metals (DMe-DCNQI)2Cu, (DMeO-DCNQI)2Cu

and (DMe1−xMeBrx-DCNQI)2Cu: Enhancement of density of states. Solid State

Communications, 81(6):473 � 476, February 1992.

[230] E. A. Brandes and G. Brook, editors. Smithells Metals Reference Book. Butterworth-

Heinemann, Oxford, 7th edition, 1992.

[231] Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida. Recent progress on

PEDOT-based thermoelectric materials. Materials, 8(2):732�750, February 2015.

[232] K. Shi, F. Zhang, C.-A. Di, T.-W. Yan, Y. Zou, X. Zhou, D. Zhu, J.-Y. Wang,

and J. Pei. Toward high performance n-type thermoelectric materials by rational

modi�cation of BDPPV backbones. Journal of the American Chemical Society,

137(22):6979�6982, June 2015.

[233] M. Koirala, H. Wang, M. Pokharel, Y. Lan, C. Guo, C. Opeil, and Z. Ren. Nanos-

tructured YbAgCu4 for potentially cryogenic thermoelectric cooling. Nano Letters,

14(9):5016�20, September 2014.

[234] R. Ross. Requirements for long-life mechanical cryocoolers for space application.

Cryogenics, 30(3):233�238, March 1990.

[235] G. Walker. Cryocoolers: Part 2: Applications. Plenum Press, New York, 1983.

[236] A. K. Maini and V. Agrawal. Satellite Technology: Principles and Applications.

John Wiley and Sons, Chichester, 2nd edition, 2011.

[237] R. J. Moss and S. B. Gabriel. A critical review of space-cooling techniques. Advances

in Space Research, 17(1):119�122, 1996.

207



BIBLIOGRAPHY

[238] D. M. Rowe and G. Min. Evaluation of thermoelectric modules for power generation.

Journal of Power Sources, 73(2):193�198, June 1998.

[239] S. Lee, D. Khim, Y. Xu, J. Kim, W. Park, and D. Kim. Simultaneous improvement of

hole and electron injection in organic �eld-e�ect transistors by conjugated polymer-

wrapped carbon nanotube interlayers. Scienti�c Reports, 5:10407, May 2015.

[240] T. Lorenz, M. Hofmann, M. Grüninger, A. Freimuth, G. S. Uhrig, M. Dumm, and

M. Dressel. Evidence for spin-charge separation in quasi-one-dimensional organic

conductors. Nature, 418:614�617, August 2002.

208



List of Figures

2.1 Principle of a Thermoelectric Generator . . . . . . . . . . . . . . . . . . . 13

2.2 Current State of Research on Thermoelectrics . . . . . . . . . . . . . . . . 15

2.3 Fermi Surface Instability in Low Dimensions . . . . . . . . . . . . . . . . . 19

2.4 Mechanism of the Spin-Peierls Transition . . . . . . . . . . . . . . . . . . . 21

2.5 Theory of the Mott Insulator . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 4kF -Charge-Density-Wave Transition . . . . . . . . . . . . . . . . . . . . . 24

2.7 Chemical Structure and LUMO of the DCNQI Molecule . . . . . . . . . . 26

2.8 Crystal Structure of (DCNQI)2Cu . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Band Structure and Fermi Surfaces of (DCNQI)2M . . . . . . . . . . . . . 30

2.10 Phase Diagram of the (DCNQI)2Cu System . . . . . . . . . . . . . . . . . 33

2.11 Phenomenological Phase Diagram Calculated by a Thermodynamic Model 37

2.12 Phonons in Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.13 Phonon Dispersion in Crystals . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.14 Speci�c Heat of Naphthalene and Silicon . . . . . . . . . . . . . . . . . . . 47

2.15 Material-Independent Part of the Transport Integral . . . . . . . . . . . . . 50

2.16 Normal Vs. Umklapp Scattering Events . . . . . . . . . . . . . . . . . . . . 53

2.17 Theoretically Calculated Electrical Conductivity of TTT2I3 . . . . . . . . . 55

2.18 Comparison of the momentum distribution in Fermi and Luttinger liquids . 57

2.19 Microscopic Interpretation of the Electrothermal Model . . . . . . . . . . . 61

2.20 Perturbation of the Fermi Function by an Electric Field or Thermal Gradient 69

2.21 Theoretical Temperature-Dependent Lorenz Number . . . . . . . . . . . . 70

2.22 Lattice Thermal Conductivity of a Crystal and a Glass . . . . . . . . . . . 75

3.1 Experimental Setup for Electrocrystallization . . . . . . . . . . . . . . . . 78

3.2 Crystals grown by Electrolysis . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Scheme of the Sample Holder Used For Transport Measurements . . . . . . 83

3.4 Seebeck Measurement Curve . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Thermal Transfer Function of a Suspended Wire . . . . . . . . . . . . . . . 88

3.6 3ω Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.7 Self-Heating 3ω method on Stainless Steel . . . . . . . . . . . . . . . . . . 93

3.8 Finite-Element Simulations on the 3ω method . . . . . . . . . . . . . . . . 97

3.9 FEM-simulations of Contact Resistance E�ects . . . . . . . . . . . . . . . . 98

3.10 FEM-Simulations on Radiative Losses . . . . . . . . . . . . . . . . . . . . . 100

209



LIST OF FIGURES

3.11 Data Evaluation Procedure for the 3ω Method . . . . . . . . . . . . . . . . 101

4.1 Resistivity Data of Four Di�erent (DCNQI)2Cu Salts . . . . . . . . . . . . 105

4.2 Electrical Resistivity in the Peierls Insulating State . . . . . . . . . . . . . 109

4.3 Thermopower Measurement on Four (DCNQI)2Cu Salts . . . . . . . . . . . 111

4.4 Phonon Drag Thermopower in (DCNQI)2Cu . . . . . . . . . . . . . . . . . 113

4.5 Boltzmann Theory of the Thermopower in (DCNQI)2Cu . . . . . . . . . . 118

4.6 Seebeck Coe�cient in the Peierls Insulating State . . . . . . . . . . . . . . 120

4.7 Electronic Properties of Alloyed (DCNQI)2CuxLi1−x Crystals . . . . . . . . 123

4.8 Electronic Properties in the Spin-Peierls State of (DCNQI)2Li . . . . . . . 125

4.9 Literature Data on Nonlinear Conduction in (MeBr-DCNQI)2Cu . . . . . . 127

4.10 Nonlinear Conduction in (DCNQI-d6)2Cu . . . . . . . . . . . . . . . . . . . 129

4.11 Transient Analysis of Nonlinear Conduction in (DCNQI-d6)2Cu . . . . . . 132

4.12 Raman Investigation on Optical Phonon Modes at RT . . . . . . . . . . . 135

4.13 Measured and Simulated Dynamic Nonlinear Conduction in (DCNQI-d6)2Cu136

4.14 Scheme of the Advanced Electrothermal Model . . . . . . . . . . . . . . . . 137

4.15 Thermal Conductivity of (DCNQI)2Cu . . . . . . . . . . . . . . . . . . . . 141

4.16 Wiedemann-Franz Law in the Vicinity of a Peierls Transition . . . . . . . . 143

4.17 Electrical and Thermal Conductivity in (DCNQI)2CuxLi1−x crystals . . . . 146

4.18 Temperature-Dependent Lorenz Number in (DCNQI)2CuxLi1−x . . . . . . 149

4.19 Lattice Thermal Conductivity in (DCNQI)2M . . . . . . . . . . . . . . . . 152

4.20 Phonon Scattering Rates in (DCNQI)2Cu . . . . . . . . . . . . . . . . . . . 155

4.21 Thermal Response Time Across the CDW-Transition in (MeBr-DCNQI)2Cu158

4.22 Determination of the Latent Heat . . . . . . . . . . . . . . . . . . . . . . . 160

4.23 Entropy Change at Di�erent Phase Transition Temperatures . . . . . . . . 161

4.24 Thermoelectric Properties of (DCNQI-h8)2Cu . . . . . . . . . . . . . . . . 165

4.25 Thermoelectric Properties of Alloyed (DCNQI)2CuxLi1−x at RT . . . . . . 167

4.26 Temperature-Dependent Thermoelectric Properties of (DCNQI)2CuxLi1−x . 169

4.27 Thermoelectric Properties in the Vicinity of a Peierls Transition . . . . . . 170

4.28 All-Organic Thermoelectric Generator . . . . . . . . . . . . . . . . . . . . 172

210



List of Tables

2.1 Structural Data of (DCNQI)2M Crystals . . . . . . . . . . . . . . . . . . . 28

2.2 Phase Transition Temperatures in (DCNQI)2Cu . . . . . . . . . . . . . . . 35

2.3 Electrical and Thermal Properties of Organic and Inorganic Materials. . . 44

2.4 Several Theoretical Electron Scattering Rates . . . . . . . . . . . . . . . . 52

2.5 Sommerfeld Coe�cient of Some Metals . . . . . . . . . . . . . . . . . . . . 61

3.1 Thermal Properties Determined for Stainless Steel . . . . . . . . . . . . . . 92

3.2 Experimental Values for FEM-Simulations . . . . . . . . . . . . . . . . . . 96

4.1 Material Parameters Extracted From the Temperature-Dependent Resistivity108

4.2 Material Parameters From High-Temperature Seebeck Coe�cients . . . . . 112

4.3 Fit Parameters for the Thermopower of (DCNQI-h8)2Cu . . . . . . . . . . 113

4.4 Fit Parameters for the Extended Model of the Thermopower in (DCNQI)2Cu115

4.5 Experimental Vs. Theoretical Seebeck Coe�cients in the CDW State . . . 121

4.6 Electrical and Thermal Conductivity Drops Across the Peierls Transition . 144

4.7 Comparison of Di�erent Material's Lorenz Number . . . . . . . . . . . . . 147

4.8 Fit Parameter for the Lattice Thermal Conductivity . . . . . . . . . . . . . 154

4.9 Latent Heat and Entropy Change Across the Peierls Transitions . . . . . . 160

4.10 Electronic Speci�c Heat Coe�cient Determined from the Thermopower . . 163

211





Acknowledgements

I want to thank all people who made this work possible. First of all, I am grateful to my

parents and my family for their moral and �nancial support throughout my education.

My friends encouraged me to keep a sti� upper lip in every situation I felt stuck, too.

Thanks to all of you! Of course another person has to be mentioned. Dear Juliane, with

your even-tempered nature and your a�ection you always managed to smooth the ups

and downs between excitement and depression in science. Thank you for enduring my

moods.

Moreover, I would like to express my gratitude to Professor Jens P�aum for giving me

the opportunity to this work. The �nancial support by the DFG, the DAAD and the EU

is gratefully acknowledged, too. I also would like to thank Professor Vladimir Dyakonov,

André Thiem-Riebe and the whole EP VI, Roland Ebert and Cornelius Ziga from the

cryogenic workshop, as well as all the guys from the mechanical and the electrical work-

shops for providing the necessary infrastructure. The same applies for Stephan Braxmeier

from the ZAE for performing the SEM measurements. I was very happy to work with my

external project partners Professor Markus Schwoerer, Professor Peter Strohriegl, Irene

Bauer, Nicolas Erasmus, Bart Smit, Professor Simon Woodward and Ste�en Dörrich.

Thank you for the scienti�c support in all respects. In particular, I am indebted to Pro-

fessor Heinrich Schwoerer for giving me the opportunity to work in his laser laboratory

in Stellenbosch for almost half a year. Both from a personal and professional viewpoint,

it was an unforgettable, positive experience which I do not want to miss in my life.

Special thanks go to the whole AG P�aum for the academic support and even more,

for the great time we had inside and outside the lab. The tabletop football skills will

(hopefully) remain, independently of physics and science. Even more, we shared a lot

of great moments which I will surely keep in mind and heart. Verena, I really enjoyed

sharing the o�ce with you, keep going on the short remaining distance without me. There

is one more person I need to set apart from the others: My dear friend Axel! Without you

none of this would have ended well. I will miss to work by your side as scientist, singer,

bartender or puri�er.

213


	Introduction
	Theory
	Introduction to Thermoelectricity
	Basic Equations
	Thermodynamic View on Thermoelectricity
	The Thermoelectric Generator
	Waste Heat Recovery by Thermoelectric Generators

	Metal-Insulator Transitions
	1D Electron Gas Coupled to the Lattice 
	Ground States in Correlated Metals

	Organic Metals Exemplified by (DCNQI)2M Radical Anion Salts
	Structural Properties
	Electronic Properties
	Phase Diagrams of (DCNQI)2M salts

	Lattice Dynamics in Crystals
	Phonon Dispersion
	Lattice Heat Capacity
	Lattice Properties of Organic Crystals

	Charge Carrier Transport
	Boltzmann Transport Theory
	Electrical Conductivity
	Nonlinear Conduction in Organic Conductors
	Electronic Specific Heat

	Seebeck Coefficient
	Diffusive Thermopower
	Nondiffusive Phonon Drag Thermopower

	Heat Transport
	Electronic Thermal Conductivity
	Lattice Thermal Conductivity
	Minimum Thermal Conductivity in Solids


	Experimental Methods
	Electrolytic Crystal Growth
	Electrothermal Characterization of Charge and Heat Transport
	Measurement Setup
	Electrical Conductivity
	Seebeck Coefficient
	Thermal Conductivity


	Results
	Electronic Properties of (R1,R2-DCNQI)2M
	Electrical Resistivity of (R1,R2-DCNQI)2Cu
	Thermopower of (R1,R2-DCNQI)2Cu
	Alloyed (DCNQI)2CuxLi1-x
	Conclusions

	Nonlinear Conduction in the Peierls Insulating State of (DCNQI)2Cu
	Nonlinear Current-Voltage Characteristics
	Dynamic Resistive Switching
	The Advanced Electrothermal Model
	Conclusions

	Heat Conduction in (DCNQI)2M
	The Thermal Conductivity of (DCNQI-h8)2Cu
	The Wiedemann-Franz Law in Organic Conductors
	Lattice Thermal Conductivity
	Conclusions

	Thermodynamic Investigation on the Phase Transition in (DCNQI)2Cu
	Entropy Change from Latent Heat
	Determination of the Electronic Entropy
	Conclusions

	Thermoelectric Potential of (DCNQI)2Cu
	Thermoelectric Power Factor and Figure of Merit
	The Effect of Li-Alloying
	Thermoelectric Properties across the CDW-Transition
	All-Organic Thermoelectric Generator
	Conclusions


	Summary
	Zusammenfassung
	Bibliography
	List of Figures
	List of Tables
	Acknowledgments

