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Chapter 1

Introduction

The BCS theory, named after its founders Bardeen, Cooper & Schrieffer, explains con-
ventional superconductivity by the phonon-assisted coupling of electrons to a bosonic
ground state [I]. Because the coupling depends on the lattice dynamics, the critical tem-
perature for superconductivity to occur was found to be inversely related to the ion mass
of the lattice via T, \/mIm In 1964, Little suggested that charge carriers may form
a bosonic ground state via an exchange interaction mediated by the electronic polariza-
tion of functional side groups in a one-dimensional organic conductor. In this case, the
coupling dynamics were governed by the electron mass rather than by the ion mass and

accordingly, a rise in the superconducting transition temperatures would be expected [2].

Much effort was spent in the following years on the synthesis of one-dimensional organic
conductors, e.g. the prominent charge transfer salt Tetrathiafulvalene-Tetracyanoquinodi-
methane (TTF-TCNQ) with an electrical conductivity of up to 700S ecm™"! at room tem-
perature [3, d]. Instead of a superconducting state, a phase transition from a metallic
into a semiconducting or insulating state was observed upon cooling which has already
been predicted for a one-dimensional conductor by Rudolf Peierls in the 1950s [5]. It orig-
inates from a spatially modulated electron density, called charge-density-wave (CDW),
accompanied by a periodic distortion of the crystal lattice. This transition is often called
Peierls transition and is one of many intriguing examples of how physical properties
change in case of reduced dimensionalities. Further research led to the synthesis of many
more low-dimensional organic conductors with a variety of ground states, among them
Peierls insulators, Mott insulators and also superconductors based on two-dimensional
electronic structures [G]. However, none of these materials realized the superconducting
ground state via the coupling mechanism proposed by Little since the one-dimensional

systems are prone to undergoing a metal-insulator phase transition upon cooling |[4].

A prominent class of organic metals is constituted by radical anion salts based on the
Dimethyl-Dicyanoquinonediimine (DMe-DCNQI) acceptor molecule synthesized by the
group of Siegfried Huenig for the first time in 1984 at the University of Wiirzburg [8].
In combination with copper the molecule forms (DMe-DCNQI)2Cu single crystals which
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admit even higher electrical conductivities than TTF-TCNQ. Moreover, the material
is stable against the formation of a CDW and retains its metallic character down to
cryogenic temperatures by virtue of the pronounced 3d-m-hybridization of copper orbitals
and the lowest unoccupied molecular orbital (LUMO) of DCNQI. The crystals reach an
electrical conductivity of up to 5 x 10> Scm ™! at 1.5 K being on the order of pure copper’s
conductivity at room temperature [9]. In addition, the ground state of DCNQI radical ion
salts may be adjusted by chemical manipulation of the DCNQI molecule and by variation
of the counter ion. For example, even a partial deuteration of the molecule is sufficient
to induce a steep first-order CDW transition with tunable critical temperature [I0].
Although no one-dimensional superconductor emerged from the above research efforts,
organic conductors have been proposed for a variety of technological applications by virtue
of their rich phase diagrams and unconventional properties [L[1]|. For example, the CDW
transition in deuterated (DCNQI)2Cu may be driven by short laser pulses demonstrat-
ing the material as potential candidate for ultra-fast optical switches [I2]. Furthermore,
nonlinear conductivity phenomena have been observed in a variety of low-dimensional
molecular metals with distinctively different ground states |3, [4, I3, 16, 17|, including
the CDW state of (DCNQI),Cu |I8|. These effects might yield new devices based on
organic materials, such as organic thyristors converting a DC to an AC current |19, 20]|.
Other proposals include the utilization of thin films and nanocrystals based on organic

charge transfer salts to create resistive memories |21, 22|.

More recently, the potential of low-dimensional molecular metals for thermoelectric
applications has been discussed |23, 24, 25]. Thermoelectric generators (TEGs) have been
claimed as key technology to make use of the tremendous amount of available waste heat
constituting about 70 % of the primary energy consumed world-wide |26, 27|. To-date,
the efficiency of thermoelectric generators is rather limited, particularly in the temper-
ature regime below 100 °C where most of the heat is dissipated. Furthermore, the high
production costs as well as the energy intensity of conventional inorganic thermoelectric
materials limit a large scale application so far [28|. Chemically tunable organic thermo-
electric materials may resolve some of the challenges and have been on the rise in the
recent years |29, B0, BT, B2|. Prerequisites for an efficient thermoelectric material are a high
electrical conductivity, a large Seebeck coefficient as well as a low thermal conductivity.
Improvements on the electrical conductivity of organic polymers rendered a thermoelec-
tric performance possible advancing that of conventional inorganic thermoelectrics [33].
These materials exhibit a low thermal conductivity by virtue of their complex structure
in combination with their weak dispersive binding forces. Yet, their inherent disorder also

places restrictions on the charge carrier mobility. Low-dimensional molecular metals rep-



resent an alternative organic material class for thermoelectric applications. Their ordered
crystal structure allows for a high charge carrier mobility and a high electrical conduc-
tivity over macroscopic distances necessary for thermoelectric generators. Their Seebeck
coefficients surpass values of ordinary metals by one order of magnitude. (DCNQI)2Cu
is a material system of special interest because it marks one of the best n-type organic
conductors which are still lacking for all-organic thermoelectric devices. Furthermore,
owing to their reduced electronic dimensionality, fundamental restrictions on a material’s
thermoelectric performance, like the Wiedemann-Franz law, may be lifted in these solids.
Yet, a coherent investigation of the thermal conductivity in organic conductors is lacking
so far to evaluate their thermoelectric potential. Therefore, a consistent and thorough
characterization of the thermoelectric key parameters is of technological as well as of
fundamental interest. As the transport quantities are interrelated and depend sensitively
on the purity and the perfection of single crystals, one aim of this thesis was to develop a
setup to measure the Seebeck coefficient as well as the electrical and thermal conductivity
on a single specimen of (DCNQI);M (M=Cu,Li) radical anion salts in order to study

their correlation.

This thesis is divided into three parts. In the first chapter, the theoretical basics for
the work are laid out. Thermoelectric transport properties are discussed in general as
well as with focus on organic metals. The material class of organic conductors together
with their electrical and thermal properties are introduced using the archetypical example
of (DCNQI)2Cu. A short overview on the electronic ground states occurring in DCNQI
radical anion salts is given. The second part of the work mainly outlines the experimental
measurement setup designed and implemented in the course of my PhD work along with
its characterization and calibration. It also briefly describes the electrocrystallization pro-
cedure to grow high-quality single crystals. In the final chapter, the results obtained for
the (DCNQI)2M material system are presented. The novel setup allowed for a coherent
study of the electrical and the thermal transport quantities together with their relation
to the low-dimensional electronic structure. Especially the thermal conductivity data is of
unprecedented quality and enabled a detailed analysis of the Wiedemann-Franz law and
of the lattice thermal conductivity in molecular metals. Nonlinear conductivity effects in
(DCNQI)2Cu have been explained in terms of the charge carriers’ interaction with op-
tical phonons and an explanation for their universal occurrence in organic conductors is
provided. A study of latent heat across the CDW transition of chemically varied (R1,Rq,-
DCNQI)2Cu (R;=CHs, CDs3, Br) crystals facilitated a verification of the thermodynamic
model of the phase diagram based on charge, spin and lattice degrees of freedom [34]. Fi-

nally, the thermoelectric performance of the (DCNQI),Cu material system was evaluated

7
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to be of similar potential as compared to conducting polymers at room temperature. In the
temperature regime below 40 K a figure-of-merit outperforming even the best inorganic
thermoelectric materials was attained. Finally, a first prototypical TEG was built in com-
bination with the p-type organic conductor TTTsl3 (TTT: Tetrathiotetracene) achieving

specific power outputs unrivaled in organic thermoelectrics.



Chapter 2

Theory

2.1 Introduction to Thermoelectricity

In 1821, Thomas Johann Seebeck discovered that heating the junction of two metals in
an electrical circuit deflects a compass needle [33]. Initially, he explained this effect by a
thermally induced magnetism. Subsequently, it was realized that a thermoelectric effect,
or Seebeck effect, describing an electric field E generated under a temperature gradient

VT in a material

E=8-VT (2.1)

was responsible for the observed phenomenon and affected the magnetic needle due to
the associated current and Ampere’s law. The Seebeck coefficient S is a material property
in units of VK1, i.e. it is an intensive quantity independent of the sample dimensions.
It may take positive (p-type) and negative values (n-type) in the range of pV K™ to
mV K~1. Later on, Jean-Charles Peltier found a heating or cooling effect in the presence
of an electrical current flow through a similar junction [36]. The Peltier effect relates the
heat flow Jp to a charge flow .J, |37

—

Jo=T-7, (2.2)
with the Peltier coefficient II quantified in V. It was William Thomson (Lord Kelvin)

recognizing that the two effects are based on the same physical phenomenon and thus are

connected with each other by the so-called Kelvin relation [38]:

I
S== - (2.3)
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2.1.1 Basic Equations

The thermoelectric phenomena discovered by Seebeck, Peltier and Thomson are more

rigorously described by the following set of equations [3Y]:

J.=0E —apVT (2.4a)
Jo = BE —KVT . (2.4b)

The first equation states that an electric current density J, can either flow upon appli-
cation of electric fields and thermal gradients to a material. Its response to the external
stimuli is characterized by the electrical conductivity o and the Peltier conductivity ap.
Setting J. = 0 in Eq. 2424, the Seebeck coefficient S' is obtained with the help of Eq. Z7I:

s=22 (2.5)

g

According to Eq. P41, the same external perturbations further cause a heat flow fQ
with the corresponding thermoelectric coefficient 8 = ap - T and thermal conductivity &’
The above-mentioned thermoelectric effects are not only of technological importance for
temperature sensing, generating electricity or cooling applications. They also enable a
deeper understanding of charge carrier transport in solids because they are related to a
diffusion of electrons along a temperature gradient. However, a thermodynamic treatment
already gives a basic understanding of its origin without the inclusion of charge carrier

transport theory, as will be shown in the following.

2.1.2 Thermodynamic View on Thermoelectricity

In 1948, Herbert Callen published a thermodynamic treatment of thermoelectric phe-
nomena [40]. The starting point is a system of N particles with chemical potential p
at temperature 7" and pressure p in a box of volume V. An infinitesimal change of the

system’s free energy U is described by [3Y]

OU =T6X + pudN + pdV . (2.6)

For a system of constant volume the last term may be neglected. The free energy may
be enhanced by introducing new particles or by increasing the entropy . The chemical
potential y as well as the temperature 7' constitute the respective measures of the energy

gain. In a similar manner, the energy flux Ju in the system

10
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jU = Tjg + qu (27)

is connected to the entropy (Js) and particle flow (Jy) densities per unit area and
time. This means that energy can be transported in the system by displacing particles
being at chemical potential p or by changing the entropy at a given temperature 7'
The divergence of Eq. 224 defines the response of the system to any spatial variation in

temperature or chemical potential:

V-Jy=(VT)-Js+T(V-Jo)+ (Vi) - Iy +u(V-Jy) . (2.8)

To obey the energy conservation law, the flow of energy into and out of each region
of the box should be equal, i.e. v - jU = 0. Without the local generation of particles
(V- Jy = 0) Eq. 8 then reads

0=Js - (VT)+T5+ Jy -V (2.9)

§=V-Js defining the rate of change in entropy per volume. If no entropy is produced
(§' = 0), Eq. Z9 indicates that particles moving along a gradient in chemical potential
cause a temperature difference by virtue of an entropy flow. It is due to the particle’s
energy change which has to be balanced by the entropy flow. The direction and magnitude
of the temperature gradient are set by the energy gain of the particles upon moving along
the chemical potential. The effect occurs in any system with constant energy and particle
number and as such, does not depend on the particles obeying Fermi-Dirac statistics or
not. Furthermore, no particle scattering mechanism producing local entropy (§ # 0) is
required. The thermoelectric effect simply follows from the first law of thermodynamics
for a system with fixed particle number. Inserting an electrical current density J, = —e-Jy
for the particle flow and introducing the heat flow jQ =1T- fg, the well-known Peltier

effect emanates from Eq. 29, again for §=0:

. LT Vi -
Jo=T Jo=— L] . (2.10)
e VT
———
11

With the Peltier coefficient II = S - T', the thermodynamic derivation provides two

11



2. Theory

alternative definitions of the Seebeck coefficient |41

J; entro er carrier
§="2=_ by P ‘ (2.11a)
Je charge per carrier

g Jo _ heat per carrie:r 1 _Ca (2.11b)
Je-T'"  charge per carrier T e

The first definition explains the Seebeck coefficient as entropy per charge carrier and
was first pointed out by Callen [40]. The second definition relates the Seebeck coefficient
to the specific heat c.; carried by each charge carrier. Hence, the thermopower provides
experimental access to one of the thermodynamic state functions and may be used to

understand the electronic phase diagram of solids.

2.1.3 The Thermoelectric Generator

The Seebeck effect can be utilized to convert heat into electrical energy by means of
a thermoelectric generator. The corresponding layout is shown in Fig. E0a. It consists
of many p- and n-type thermoelectric legs which are electrically connected in series but
thermally parallelized. The principle of a single thermocouple in the generator is illustrated
in Fig. EZ0b. The electrical junction of the two materials is kept at a temperature T, > T7.
In the p-type material holes will diffuse from the hot to the cold side while in the n-type
leg electrons will move along the same direction.

The electric fields generated by the effective gradient in carrier density accumulate to

a voltage of [37]

Ve = (S, — Su)(Ty — 1) (2.12)

with positive p-type Seebeck coefficient S, and negative n-type thermopower S,,. The
voltages of many thermocouples connected in series will add up to the total open circuit

voltage of the thermoelectric generator |34]:

Voc = Z Vrci (2.13)

Connecting a load resistor R; to a single thermocouple with perfect contacts, the
generated current will be [37]
(Sp - Sn)(TQ - TI)

I= 2.14
R, + R, + R, (2.14)

where R, and R, are the resistances of the individual thermoelectric legs supplying

12



2.1. Introduction to Thermoelectricity

a ) Heat absorbed

Substrates ‘

Thermoelectric
elements

Figure 2.1: Concept and working principle of a thermoelectric generator. (a) A number of p- and n-type
thermocouples are connected electrically in series and thermally in parallel to transform the absorbed
heat into electrical energy. From: [22] (b) In a single thermocouple electrons (holes) drift from the hot to
the cold side in the n-type (p-type) thermocouple leg adding up to an electric potential and supplying
power P to a load Ry.

the overall power output of [37]

(Sp = Su) (T2 — T1)\?
w:( o ) R, . (2.15)

The heat ¢ supplied at the hot contact will on the one hand flow across the sample
via thermal conduction and on the other hand balance Peltier heating effects due to the

current flow [37]:

K; are the thermal conduction coefficients along the legs. The maximum efficiency of
the generator n = w/q amounts to [37]

- (T,—T)) VItzT—-1 217

Tl \/1+ZT+T2/T1

TNCarnot

where Nearot 18 the Carnot efficiency and 2T is the so-called dimensionless thermo-
electric figure of merit. For a single material of resistance R and thermal conductance K
it is defined as [37]:

S? o-S? PF

T — ) )
i R-K K’ K/

T . (2.18)

13



2. Theory

S, 0 and k denote the thermopower as well as the electrical and thermal conductivity
of the material, respectively. PF = o - S? defines the power factor. For a thermoelectric
generator made from a series of p- and n-type legs the maximum combined thermoelectric

figure of merit for optimized leg geometries reads [37:

(Sp B Sn>2T
(pp’% + Pn"@/n)

2T =

(2.19)

2.1.4 Waste Heat Recovery by Thermoelectric Generators

More than 70 % of the primary energy consumed world-wide is wasted, mostly in the form
of heat at temperatures below 100°C [27]. Thermoelectric energy converters have been
proposed as technological solution to recover a substantial amount of this energy into
electrical power [26]. However, high production costs and the lack of efficient thermoelec-
tric materials operating in this temperature regime have limited large-scale applications
to date. Fig. Z2a illustrates the maximum conversion efficiency of a thermoelectric gener-
ator calculated by Eq. 217 for different values of z7'. At high 2T values it approaches the
Carnot limit while state-of-the-art devices only reach values of 21" ~ 0.5 providing rather
inefficient energy conversion compared to other thermodynamic heat engines [43]. The
Curzon-Ahlborn limit represents a more realistic efficiency limit for thermodynamic heat
cycles taking into account irreversible processes. While conventional energy harvesting
systems are already close to this limit, there is plenty of room for the improvement of
thermoelectric generators. Much of the present research focuses on exploring new materi-
als with high 27" values.

Some characteristic figures of merit for conventional inorganic thermoelectric materi-
als are depicted in Fig. Z2b. At ambient temperature, BisTez and ShoTes are among the
most prominent p- and n-type materials, respectively. However, these materials contain
toxic elements and can only be efficiently used in a small and besides, rather high tem-
perature regime [42|. The need for new, sustainable materials providing high 27" values
in the mid-temperature range of about 400 K prompted a tremendous, ongoing growth
in scientific research activities in the last two decades. To maximize 27", and hence the
thermoelectric conversion efficiency, a material with high electrical conductivity and large
Seebeck coefficient but low thermal conductivity is desirable in order to achieve 271" > 1.
The interdependence of these quantities places severe restrictions on the optimization
strategies of zT'. The power factor may be maximized by optimum doping of semicon-
ductors [32]. A further reduction of the phononic contribution to the thermal conduction
by means of superlattice engineering on nanometer lengths scales facilitated enhanced 2T

values on the order of one |44, A5|. For BisTes, the best RT thermoelectric material to

14
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08
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Figure 2.2: Current state of research on thermoelectrics. (a) Power generation efficiencies of a thermo-
electric generator for different values of 2T compared to other thermodynamic power generation cycles.
For high values of 2T the efficiency approaches the Carnot limit. However, state-of-the-art commercial
thermoelectric generators only reach values of 21" &~ 0.5 making them rather inefficient compared to other
energy converters. From: [43] (b) Inorganic thermoelectric n- and p-type materials with 27" ~ 1 have been
found. Yet, most high-zT materials are only efficient in a small and besides, high temperature regime.
From: [27]

date, a value of 21" = 2.4 has been obtained in this way |24|. However, this result has not

been reproduced by other research groups yet.

To overcome the inherent limitation of three-dimensional materials on 27", a reduction
of the electronic dimensionality has been discussed [46]. This may not only favor a viola-
tion of the Wiedemann-Franz law [47, 48, 49| but could also enhance the thermoelectric
power factor due to attendant exotic properties observed in low-dimensional solids, such
as phonon drag contributions to the thermopower [50]. Zintl compounds [6I] and skut-
terudites [62] were also evaluated as good thermoelectric candidates by virtue of their
complex crystal structure facilitating low lattice thermal conductivity and tunability of
the electronic band structure. Yet, a tremendous amount of materials are unexplored with

respect to their thermoelectric properties, especially synthetic ones.

In recent years, the field of organic thermoelectrics based on conducting polymers
has been on the rise with high potential to tackle many of the challenges raised above
[29, B0, B3, B, B2]. In addition to their low-cost production and processability, they offer

15
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an intrinsic low thermal conduction while appreciable electrical conductivity and See-
beck coefficients can be obtained by tuning the oxidation state of polymers. Values of
PF =469 pW K2m™! and 2T = 0.42 have been reported for the polymer PEDOT:PSS
(poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate) as an example [33|, advancing
values obtained for BisTes. Some authors question the above results because the transport
quantities have been measured along different sample directions, neglecting the anisotropy
due to different intra- and interchain charge carrier conduction in polymers |63, 54|. Their
measurements on PEDOT:PSS only yield 27" = 0.01 but reliable values of 27" = 0.1 are
obtained for the polymer PEDOT:Tos (poly(3,4-ethylenedioxythiophene):tosylate) [b4].
In this thesis, the alternative material class of crystalline low-dimensional organic con-
ductors is addressed and the foundation for the implementation in thermoelectrics is laid.
Theoretical basics to understand their electrical and thermal properties are outlined in
the following, starting with possible electronic ground states established in this material

class.

16



2.2. Metal-Insulator Transitions

2.2 Metal-Insulator Transitions

Before introducing the transport theory to understand thermoelectric material properties,
the ground states of low-dimensional conductors will be reviewed. For many crystalline
materials, the treatment of valence electrons as free quasiparticles moving in the effective
periodic potential of the ions and other electrons is a good approximation. The ground
state with respect to the conduction properties is then based on the structure and filling
of the energy bands formed by the valence states of the constituting atoms. Materials with
partially filled bands are expected to reveal metallic behavior while an energy gap at the
Fermi level yields insulating or semiconducting properties, depending on the size of the
gap. This generalization does not necessarily hold for low-dimensional conductors. The
instability of 1D Fermi gases against the formation of a charge-density-wave as well as
the influence of larger electronic correlations in lower dimensions are therefore discussed

in this section.

2.2.1 1D Electron Gas Coupled to the Lattice

In organic crystals, electrons interact rather efficient with phonons due to the low energy
of the latter compared to inorganic crystal structures. While the details of the phonon
dynamics will be discussed in Sec. 24, the peculiar ground states emerging from the
efficient coupling of a low-dimensional electronic system to the lattice will already be

presented here.

Charge-Density-Wave Transition

Quasi-one-dimensional organic conductors are prone to undergo a metal-insulator transi-
tion called Peierls or Charge-Density- Wave (CDW) transition. The transition is caused by
a modulation of the charge density in space, triggering a periodic static lattice distortion
in the case of sufficiently strong electron-phonon coupling |b3]. In the following, a short,
theoretical introduction into the phase transition predicted by Rudolph Peierls shall be
given [b6]. A one-dimensional metallic system of electrons coupled to the lattice can be

described by the Frohlich Hamiltonian in second quantization [67]:

M= eaar+ Y hwblb,+ > geal.an(b’, +b,) (2.20)
k q k.q

The first term corresponds to an electron gas in one dimension, €, symbolizing the
electronic band dispersion in k-space, a.(a) being creation (annihilation) operators. The

second term describes the lattice vibrations with the phonon dispersion w, in the reciprocal
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g-space, with the phonon creation and annihilation operators bg and b,. The third term
accounts for electron-phonon interactions with the coupling constant g,. For small phonon
amplitudes as well as g independent of ¢, the electron-phonon coupling term leads to a

renormalized phonon dispersion [b5

292wq

h

where x(q,T) is the Lindhard response function. It characterizes the rearrangement of

Wren,g = Wy + x(¢,T) (2.21)

charge pinq in the presence of a time-independent potential ®(g):

pina(7) = X(¢, T)®(q) - (2.22)

By approximating a linear electronic dispersion close to the Fermi energy e, x(¢) can

be evaluated in one dimension |53

x(q) = — / (dk Ji~ g o —g(er)In

de, _ ¢
2m)4 €p — €y a

q+2]{}F
q — 2kp

: (2.23)

with the dimensionality d and the density of states per spin at the Fermi-level g(ep).
Eq. 223 diverges for |¢] = 2kr in one dimension making the electron gas at 7" = 0 un-
stable against the formation of a modulated charge density of period A\ = 27 /q = 7/kp.
The Lindhard response function, compared for different dimensionalities in Fig. PZ3a,
reveals a divergence at ¢ = 2kp only for the one-dimensional case. The major contribu-
tion to the integral in Eq. 2223 originates from electron-hole states that are degenerate in

energy and connected by a wave vector |q] = 2kr which is commonly called nesting vector.

For higher dimensionalities the number of nested states is reduced as illustrated in Fig-
ure Z3b. Whereas in one dimension the whole Fermi sheet at ¢ = +kr can be projected
onto each other by just one nesting vector (arrow), in two dimensions only the states along
the red line can be connected to the opposite of the Fermi cylinder, reducing the diver-
gent contribution to the integral in Eq. ZZ3. In 3D only two points can be connected by
a single nesting vector. Hence, perfect nesting only occurs for a one-dimensional system.
However, also slightly corrugated quasi-one-dimensional Fermi surfaces, as frequently ob-
served in organic conductors, may exhibit good nesting qualities as illustrated in Figure
23c. Evaluating the integral in Eq. 2223 at finite temperature and |g] = 2kr up to a cutoff
energy €, the renormalized phonon frequency in Eq. 221 yields |ba]:

29°n(ex)war 1.14¢q

The reduction of the phonon frequency by electron-phonon interaction is called phonon
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Figure 2.3: Fermi surface instability in low dimensions. (a) Comparison of the Lindhard response functions
for different dimensionalities: only in 1D a divergence at ¢ = 2kp occurs. (b) Nesting qualities in 1D,
2D and 3D: The number of electron and hole states (indicated red) on the Fermi surface that can be
connected by just one nesting vector § = 2EF is much higher in 1D compared to 2D. Only two states can be
connected on a Fermi sphere in 3D by a single nesting vector. (c) A quasi-one-dimensional warped Fermi
surface may still connect a significant number of electron-hole-states with one distinct nesting vector
yvielding good nesting quality. (d) Phonon softening upon approaching the transition temperature TA%, .
(e) One-dimensional crystal lattice of metallic ground state with the charge being equally distributed
over the entire lattice leading to a thirdly-filled band. (f) In the charge-density-wave ground state an
energy gap opens at the Fermi energy due to the trimerization of the lattice sites and the reduction of the
Brillouin zone. The system becomes semiconducting and the charge density varies periodically in space.
(a)-(d) Adapted from: [63]
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softening. At |¢] = 2kp, it vanishes on condition that [55]:

kpTME = 114€pe™ (2.25a)
2
with Ao SR e (2.25b)
heway,.

TME defines the transition temperature according to Mean Field Theory for which

a frozen-in distortion occurs. A denotes the dimensionless electron-phonon coupling con-
stant. The phonon softening at different temperatures is shown in Figure 223d. For
T > THE, the logarithmic divergence of the Lindhard response function is smeared-out
and the ordinary acoustic phonon dispersion is obtained. When T approaches T2, a dip
in the acoustic phonon spectrum occurs at |¢] = 2k with vanishing phonon frequency at
T = TME,. A frozen-in distortion at |g] = 2kr corresponds to a macroscopically occupied
phonon mode since no energy is required for an excitation. The new periodicity of the
charge density and the lattice also has significant impact on the electronic ground state

of the crystal.

Figure 2Z3e illustrates the band structure of a linear chain of atoms with lattice con-
stant ¢ each contributing 2/3 of an electron to the conduction band, resulting in occupa-
tion of states up to the Fermi wave vector kr = 7/3c at one third of the bandwidth. This
represents the situation for the investigated (DCNQI)2Cu compound at RT. The charge
density is equally distributed over the lattice and the system exhibits a metallic ground
state. A static distortion of the lattice by the wave vector |¢] = 2kp, as indicated in Figure
3f, corresponds to a modulation of atomic positions with periodicity A = 27/2kr = 3c,
meaning that a trimerization of the lattice takes place. The new lattice constant 3c results
in a back-folding of the Brillouin zone. The new Brillouin zone edge is now located directly
at the Fermi wave vector kg, giving rise to an energy gap 2A at the Fermi energy, thereby
causing an insulating or semiconducting ground state. The lattice distortion is accompa-
nied by a periodic modulation of the charge density. In the case of similar periodicity to

the underlying lattice it is denoted a commensurate Charge-Density-Wave [68].

Spin-Peierls Transition

Similar to the electronic degrees of freedom in a CDW, the coupling of spin excitations
to the lattice may result in a ground state of lower total energy. The Hamiltonian of a 1D

magnetic Heisenberg chain with alternating exchange interaction J reads [bY]

20



2.2. Metal-Insulator Transitions

N/2
H= —JZ (§2i§2i—1 + OZJ§2¢§2Z‘+1> ) (2.26)

with the spin vector 5’1 at site ¢ and the parameter a; = J5/J; defining the relative
strength of the exchange interaction between alternating lattice sites. Negative J portray

an antiferromagnetic behavior which will be exemplary assumed in the following.

R i e N < ki Tl
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-T/a 0 T/a -n/2a 0 T/2a

Figure 2.4: Mechanism of the spin-Peierls transition. (a) For a uniform antiferromagnetic Heisenberg
chain the spin excitation spectrum appears to be gapless. (b) A dimerization of the lattice alternates
the exchange interaction strength J; between adjacent lattice sites leading to a gap Ag in the magnetic
excitation spectrum which compensates for the elastic energy cost of the lattice distortion. From: [f]

For a uniform antiferromagnetic Heisenberg chain the exchange energy is homogeneous
(Ji = Jo = a = 1). It is illustrated in Fig. Eda together with its magnetic excitation
spectrum. The spin is alternating between equally spaced lattice sites and the excitation
spectrum is gapless at zero energy. Even in the zero temperature limit, this gives rise
to non-vanishing susceptibility by virtue of low-energy spin excitations with S = 1/2,
so-called spinons [7]. A dimerization of the lattice will alternate the exchange interaction
along the chain (o < 1) as clarified in Fig. Z4b. The resulting excitation spectrum reveals
a gap Ag at zero energy hindering spin excitations to take place. The gain in magnetic
energy can compensate for the elastic energy cost of the 2kp lattice distortion resulting
in a ground state of lowered total energy. In analogy to the electron-hole paring of the
CDW transition, the pairing of spins together with the 2k lattice distortion is called spin-
Peierls (sP) transition. The spin gap Ag separates the non-magnetic singlet ground state
(S = 0) from the triplet excited state with S = 1. Hence, the transition is accompanied

by a decrease in the magnetic susceptibility of the chain.
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2.2.2 Ground States in Correlated Metals

In three-dimensional electron gases, charge carriers are often treated as free quasipar-
ticles and their Coulomb correlation is neglected compared to the interaction with the
lattice ions and phonons. Upon reducing the dimensionality, their mutual interaction may
however not only increase the scattering of electrons but also may unfold new electronic
ground states. This part illuminates possible metal-insulator transitions emanating from

electronic correlation in low-dimensional conductors.

Mott Transition

Already in the 1930s, the semiconducting behavior of metal oxides with partially filled 3d
bands was discussed in terms of electronic correlations by Mott [60, 6I]. In 1963, Hubbard

developed a simple model to incorporate these effects into the traditional band theory [62]:

H=—t Z (aggajg + h.c.) + UZniTni¢ . (2.27)
<ij>,o i

Here, <75 > denotes the summation over all nearest neighbor pairs 7 and 7, o is the spin
index and n; = a}ai the number operator. The first term accounts for the kinetic energy
similar to Eq. with the hopping integral ¢ determined by the orbital overlap between
lattice sites. The on-site energy U, sometimes referred to as Hubbard U, quantifies the
energy cost for two electrons to occupy the same lattice site due to the Coulomb repulsion
of charge carriers. The meaning of ¢ and U is exemplified in Fig. 2Z3a.

The relevance of electronic correlation manifests in the relative strength of U and ¢.
It is intuitive to take a look at the two limiting cases for a half-filled energy band: First
of all, for U/t < 1, the Hubbard term may be neglected and Eq. E227 corresponds to a
simple band model resulting in a band of width W = 4t being half-filled. In this limit,
a metallic ground state will be established. In the opposite limit, i.e. for U/t > 1, the
energy cost for an electron to hop onto an occupied lattice site is large and electrons
tend to equally distribute and localize on the lattice sites. The band splits up into an
upper and lower Hubbard band (see Fig. Z3b) and no spectral weight is left at the Fermi
energy. Hence, such a material exhibits an insulating ground state, often called Mott-
Hubbard insulator. The bandgap equals the Hubbard U being the energy required to
add an additional electron to the chain of singly occupied lattice sites. A typical phase
diagram of Mott insulators, exhibiting U/t = 1, is depicted in Fig. Z3c. The ground state
can be tuned by the relative interaction strength as well as by the band filling, both of
which may be functions of temperature, pressure and chemical or field-induced doping. A

band filling of 1/2, featuring the smallest critical U/t value, most easily enables a Mott
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Figure 2.5: Theory of the Mott insulator. (a) 1D Hubbard chain: The Hubbard model is characterized
by the hopping integral ¢ as well as the on-site Coulomb repulsion U. The extended Hubbard model also
includes the nearest-neighbor intersite interaction V. (b) Two extreme limits of the Hubbard model for a
half-filled band: Negligible on-site Coulomb repulsion establishes an ordinary metallic ground state while
in the opposite limit, a bandgap of magnitude U is formed removing the spectral density at the Fermi
energy, i.e. the material becomes insulating. (c) Typical phase diagram of a Mott-Hubbard insulator: A
transition between metallic and insulating states may be tuned by band filling and relative interaction
strength.

insulating ground state. In the following, the influence of additional nearest neighbor

Coulomb interactions on quarter-filled band systems will be discussed.

4kp-Charge-Density-Wave Transition

The Mott insulating state is established for materials with half-filled bands in the strong U-
limit. In contrast, a quarter-filled band, corresponding to one charge-carrier per two lattice
sites, should reveal metallic behavior even in the case of a considerably large Hubbard U,
because charge carriers are able to hop onto the available free lattice sites. However, in
some cases not only the short-range Coulomb repulsion of electrons on the same lattice site
has to be taken into account, but even neighboring electrons repel each other to a sufficient
amount. The extended-Hubbard model accounts for the nearest-neighbor interaction V'

as well as the degree of lattice dimerization Ay by [[]:
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H= <—t[1 + (—1)'Agal a;, + h.c.> + UZniTnu +V Z niniz1 - (2.28)

<ij>,0

Fig. E@a illustrates the effect of V' for a quarter-filled 1D-chain. Neglecting dimeriza-
tion, for V//t > 1 the nearest-neighbor interaction inhibits a hopping of charge-carriers to
free lattice sites. The electrons will stay apart from each other and distribute equidistantly
among the available lattice sites. The charge density will be modulated with the period-
icity A = 2a relative to the lattice constant a. With the Fermi wave vector kr = 7/(4a) of
a quarter-filled band, this corresponds to a periodicity of ¢ = 27 /A = 7/a = 4kp in terms
of the Fermi wave vector [b9]|. Accordingly, the ground state is a 4kp-CDW but it is also
often denoted Wigner crystal as well as charge-disproportionate (CP) or charge-ordered
(CO) state [B3].

a) 4k-CDW Insulator: b) Dimer-Mott Insulator:

Acow = 22 Acpw = 22
¢ 00 ® A OT®
\ © ° ) U
a 2a >
Figure 2.6: 4k p-Charge-Density-Wave transition. (a) Charge-ordered state formed due to nearest-neighbor

Coulomb interactions inhibiting the hopping of charge carriers. The blue-shaded area corresponds to
electrons occupying a lattice site (gray dots). (b) Upon dimerization charges are localized in between
two dimerized atoms. For the effectively half-filled band, a Mott insulator is formed due to the on-site
Coulomb interaction U.

For some lattices it is energetically favorable to dimerize at quarter-filling. The effect
of dimerization on the ground state is captured in Fig. Z@b. The dimerization doubles the
unit cell of the crystal which back-folds the Brillouin zone similarly to the Peierls transi-
tion discussed above, i.e. the resulting sub-bands are now effectively half-filled instead of
quarter-filled. Charges localize in the bound state of the dimerized atoms but their ability
to move to the next dimer is limited by the on-site Coulomb repulsion, as discussed for
the Mott-Hubbard insulator in the case of half band filling. Hence, this type of ground
state is called dimer-Mott insulator [63]. Although going along with a lattice distortion
as well, the insulating behavior is caused by the on-site electron repulsion at one dimer
site in contrast to the electron-phonon coupling leading to the Peierls transition described

above.
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2.3 Organic Metals Exemplified by (DCNQI),M Radi-

cal Anion Salts

Organic charge transfer salts are composed of two organic compounds which exchange
charges when forming a crystal. If only one of the building blocks is organic one refers
to radical 1on salts. Together, both systems constitute the class of organic metals or
organic conductors by virtue of their extraordinary high electrical conductivity of up to
10*Sem™ at RT [64]. Below, distinct properties of these materials are presented with
special emphasis on (DCNQI)2sM (M=Cu, Li) radical anion salts following the theory

section of my diploma thesis [63].

2.3.1 Structural Properties

Crystal Binding

Molecular crystals usually consist of organic building blocks weakly bound by van-der-
Waals or static dipole interactions [568]. A different class of organic crystals, providing
much higher electrical conductivities, are charge transfer (CT) salts. In these crystals,
molecules often arrange in parallel, spatially adjacent stacks by reason of ionic interactions
and the mutual charge transfer may create mobile, delocalized charge carriers facilitating
high electrical conductivity. A charge transfer salt consists of an electron donor D,,, with
a low ionization energy I, and an acceptor molecule X,, with a high electron affinity A,
energetically favoring a fractional or even integer charge transfer from the donor to the

acceptor |[]:

(D] + [X,] = [Do]’ + [ X070 . (2.29)

Here m and n are integers and ¢ denotes the charge transfer ratio. This charge transfer

results in a potential energy gain of

AE=I—A—C<0 (2.30)

where C accounts for Coulomb, polarization and exchange energy contributions. The
mean number of mobile charges is governed by the charge transfer from the donor to
the acceptor and hence, is almost temperature-independent. Figure EZda shows the dis-
ubstituted 2,5-Dicyanoquinonediimine (R;,Ro-DCNQI) molecule. This compound is very
similar to the electron acceptor Tetracyanoquinondimethane (TCNQ) and also consists
of a quinone ring but with only two instead of four cyano groups attached to it. In addi-

tion, two functional groups R; may be linked to the ring. In this work three variations of
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the DCNQI molecule have been utilized. The molecule containing two functional methyl
groups (CHs), from now on referred to as DCNQI-hg or DMe-DCNQI, and its deuterated
analogue (CDs3) from now being referred to as DCNQI-dg. Both molecules have similar
electronic properties but the deuterated methyl groups are slightly less bulky compared
to CHj [I0]. Substituting one of the methyl groups by a bromine atom withdraws electron
density from the m-system of the molecule. Thereby, MeBr-DCNQI changes its alignment
and charge transfer in a crystal by a small amount compared to DMe-DCNQI [66].

a) b)
N N Pl
Sc c? cd
@
=)  R2 R1
c” ¢ NG
Z oS
N N //9(1)
N@)
TCNQ R,,R,-DCNQ LUMO DMe-DCNQ

Figure 2.7: Chemical structure and LUMO of the DCNQI molecule. (a) The DCNQI molecule consists of
one quinone ring with two cyano groups attached. The two functional groups R; are directly conjugated
to the ring. (b) Calculated LUMO of the DMe-DCNQI molecule: The cyano groups show a high density
of unoccupied states making the molecule a good electron acceptor. Adapted from: [67]

Figure E70b illustrates that the LUMO of the DMe-DCNQI molecule is m-conjugated.
The high density of unoccupied states located on the cyano groups yields good accep-
tor qualities. Charges transferred to the molecule are weakly bound and thus, delocalize
over the whole molecule. In combination with copper, DCNQI forms a radical anion salt
(DCNQI)2Cu of 1:2 stoichiometry [9]. The copper atoms in the crystal have a valency
of 6 = +4/3 resulting in an average DCNQI valence of —2/3 per DCNQI molecule [68].
The ionization energy of elementary copper amounts to Iy = 7.73eV [69] and the LUMO
energy level of DMe-DCNQI is located at Epyao = 2.42eV [7]. The relevant Coulomb
energy contribution C'is rather difficult to calculate due to the extension of the molecule
and the delocalization of transferred charges, i.e. its metallic character. Hence, the point
charge model employed to estimate the Madelung energy of simple ionic salts, such as
NaCl, is not applicable anymore. The DCNQI molecule also forms the radical anion salt
(DCNQI),Li where the valence electron of lithium is transferred to two DCNQI molecules,
each charged by —1/2e.
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Crystal Structure

In order to create highly conducting molecular solids, not only a sufficient number of
mobile charge carriers on the molecule is necessary, but also a delocalization along cer-
tain crystallographic directions is inevitable. Figure 2-8 shows the crystal structure of
(DCNQI)2Cu. The material crystallizes in space group 14;/a (space group No. 88) [6§]
which constitutes a tetragonal dipyramidal crystal system with a basal squared unit cell
(|@| = |b]) of height |&. The copper atoms and the DCNQI molecules arrange in spa-
tially separated, parallel stacks giving rise to highly anisotropic electronic properties.
Lined up on a chain, the copper atoms are nearly tetrahedrally coordinated by one of
the cyano groups belonging to the respective four adjacent DCNQI molecules. The al-
most planar DCNQI molecules are packed face-to-face with an intermolecular distance of
dr_r = 3.213 A |66] allowing for a substantial overlap of the 7*-LUMO orbitals.

Figure 2.8: Crystal structure of (DCNQI)2Cu perspectively viewed along the direction of high conduc-
tivity, viz. the crystallographic c-axis. With data from: [66]

Table P71 specifies the structural properties of several (DCNQI),M crystals at differ-
ent temperatures. All of the systems crystallize in the same space group with slightly
different lattice constants and coordination angles a., of the DCNQI molecule around the
metal ion. As will be outlined below, a,, is an important parameter with respect to the

dimensionality and the electronic ground state of the (DCNQI)2Cu system. Upon cooling
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it increases more significantly for the deuterated (DCNQI-dg)2Cu crystal compared to the
undeuterated compound. Even more drastic is the change in «., when just one methyl
group is replaced by bromine. In (DCNQI),Li, lithium atoms replace the copper atoms
in the lattice yielding similar lattice constants. This enables the synthesis of a miscible,
crystalline (DCNQI)2Cu,Li;_, alloy where copper and lithium atoms occupy equivalent

lattice sites and only a minimum distortion of the unit cell is introduced.

radical anion salt T K| | |@[A] | [A[A] | Vamir [A%] | coord. angle ao[°] | Ref.
(DCNQI-hg),Cu 300 | 21.606 | 3.8811 1811.7 124.8 [66]
(DCNQI-hg)2Cu 20 21.654 | 3.792 1778.0 126.3 |66
(DCNQI-dg)2Cu 300 | 21.619 | 3.8744 | 1810.8 124.8 |66
(DCNQI-dg)2Cu 20 21.693 | 3.776 1776.7 128.5 |66
(MeBr-DCNQI),Cu | 300 | 21.606 | 3.856 1799.2 125.5 ral]
(MeBr-DCNQI),Cu | 100 | 21.627 | 3.780 1768.0 128.2 ral]
(DCNQI-hg),Li 300 | 21.830 | 3.832 1826.1 |72

Table 2.1: Structural data of (DCNQI)2M crystals at different temperatures: The coordination angle a.,
(see Figure ZUe) increases more in (MeBr-DCNQI)2Cu and (DCNQI-dg)2Cu than in (DCNQI-hg)2Cu
upon cooling. (DCNQI);Li has a crystal structure similar to that of (DCNQI)2Cu.

According to the volume of the unit cell V,,,;: (see Table 21), the transferred charge of
§/2 = —2/3 e residing on each DCNQI molecule, the density of Z = 8 DCNQI molecules
per unit cell and by assuming transport only along the molecular stacks, the mobile charge

carrier density in the conduction band can be estimated to

7.9 8.2
2 = 3 =294 %10 em ™ (2.31)

n =
which is about one order of magnitude lower than for copper (ng, = 8.5 x 10*2 cm ™3
[73]) but still very high compared to e.g. neat polyaromatic hydrocarbons. For comparison,
the theoretical intrinsic charge carrier density for an organic semiconductor with a typical
bandgap of 2.5eV amounts about n;,; = Ny - e Fo/ksT) — 1em=3 at RT, taking Ny =
10 em™®. It is about ten orders of magnitude smaller than in Silicon [74]. Such ultra-
low values are not achieved in real molecular crystals where the charge carrier density is
limited by impurities [b8|. As already pointed out, in addition to free charge carriers a
large orbital overlap is required to obtain a highly conducting solid. Hence, the electronic
band structure of (DCNQI)2M crystals will be discussed next.
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2.3.2 Electronic Properties

Band Structure

Since (DCNQI)2M radical anion salts form densely packed crystals, the mobility of the
charge carriers is determined by the overlap of adjacent molecular orbitals rather than by
intramolecular delocalization like in polyacetylen [75] and thus, a band structure is formed
[7]. To understand the electronic properties and therewith the charge carrier transport,
it is necessary to calculate the band structure of the CT salts. Similar results have been
obtained for the (DCNQI).M system by tight binding methods [I0] as well as ab-initio

calculations [67], the latter are being presented here.

The band structure of (DMe-DCNQI)2Cu is depicted in Fig. Z8a and shows its
anisotropic character caused by the larger overlap of m-orbitals along the stacking di-
rection compared to the perpendicular axes. The bandwidth along the I'-Z direction,
corresponding to the stacking direction ¢ of the crystal structure, amounts to W, ~ 1eV.
The bandwidth calculated by a tight-binding model yielded slightly smaller values of
Wy = 792meV [10]. The band structure also reveals a significant dispersion along
the transverse I-X/Y directions of about 250meV characterizing (DMe-DCNQI);Cu
as an anisotropic organic metal with pronounced three-dimensionality (quasi-3D). As
a consequence, the material is resistant to metal-insulator transitions - as typical for
low-dimensional conductors - down to lowest temperatures of 50 mK |[76]. The three-
dimensionality can be understood from the 3d copper orbitals energetically located
between the HOMO and the LUMO bands of the DCNQI molecule. These orbitals hy-
bridize with the DCNQI pm-bands and contribute significantly to the density of states at
the Fermi level. Two of the LUMO bands are almost degenerate and can be regarded as
purely one-dimensional. They are also obtained in the tight binding model and result in
a flat Fermi surface FS1 as illustrated in Fig. Z9c. For the other bands the degeneracy is
lifted and the hybridized bands disperse along the transverse crystallographic direction.
While Fermi surface FS2 still has a dominating one-dimensional character but is slightly
corrugated, F'S3 is of three-dimensional, hole-like character. Due to the charge transfer of
d/2 = —2/3 ¢ onto each DCNQI molecule, the conduction band is filled-up to one-third
since two degenerate spin states are available. Accordingly, a metallic ground state is
established. The position of the wave vector corresponding to a thirdly filled LUMO band
is indicated by the arrows in Fig. Z9a.

The 3d,,-orbitals exhibit the smallest energy difference to the LUMO and accordingly,
they supply the largest spectral density of all copper orbitals at the Fermi energy. Their
share to the density of states is depicted in Fig. Z9b. Of major importance for the details
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Figure 2.9: Band structure and Fermi surfaces of (DCNQI)2M. (a) Energy bands of (DMe-DCNQI)2Cu
calculated by ab-initio methods together with the (b) projected density of states clarifying the contribu-
tion of Cu 3d,, orbitals to the density of states at the Fermi level. (¢) Corresponding Fermi surfaces (FS):
While FS1 is completely flat and thus 1D, FS2 is slightly corrugated due to the LUMO-3d,,-interaction
and FS3 possesses 3D topology. (d) In the band structure of (DBr-DCNQI)2Cu the 3d,, orbitals are
located at slightly lower energies due to the (e) larger tetrahedral distortion of the coordination angle a.,
and the resulting smaller wd-hydridization. (f) Accordingly, the band structure of (DCNQI).Li lacking
3d states between HOMO and LUMO is accordingly far more one-dimensional. From: [64, 74, [78].
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of the 3d-m-hybridization in the (DCNQI)2Cu system is the coordination angle a, of the
molecules around the copper atom, as depicted in Fig. Z3e. In a tetrahedrally coordinated
crystal field (o = 109°) the 3d,,, 3d,. and 3d,, orbitals are energetically degenerate
and contribute the same amount to the density of states at the Fermi energy and also
to the charge transfer. A distortion of the tetrahedral coordination angle (a., > 109°)
lifts this degeneracy and shifts the 3d,, energy closer to the LUMO compared to the
other two. In (DMe-DCNQI),Cu the value of o, = 124.8° deviates from the ordinary
tetrahedral coordination angle, enabling an efficient 3d,,-m-hybridization of orbitals. Yet,
tight binding calculations pointed out that the hybridization of the other 3d orbitals still
plays a key role in the dimensionality of (DCNQI),Cu [68)].

Upon further increase of o, the 3d,,-m-hybridization increases leading to a larger
charge transfer. In contrast, the contribution from 3d,. and 3d., orbitals may subse-
quently be neglected and the band structure becomes more one-dimensional and as such,
prone to Fermi surface instabilities. It also stabilizes a formal charge of Cu**/® (Cu*-
Cut-Cu?*) on the copper chain. In (DBr-DCNQI),Cu both methyl groups are replaced
by bromine atoms and the coordination angle amounts to a., = 125.3° at room tem-
perature [Z1]. The band structure at room temperature, as delineated in Fig. 29d, is
very similar to that of (DMe-DCNQI)2Cu but with slightly smaller dispersion along the
transverse direction by virtue of the smaller 3d.,,.-m-hybridization. Upon cooling below
a temperature of Tpr = 160K, the coordination angle increases and exceeds a critical
angle of aco it = 126.4° above which the hybridization is lifted. Thereby, the system’s
dimensionality is changed from quasi-3D to quasi-1D [66]. The quasi-1D (DCNQI)2Cu
system has a Peierls insulating ground state due to the thirdly filled band and hence,
the material instantly undergoes a Peierls metal-insulator transition. In contrast to the
second order metal-insulator transition as predicted by Peierl’s theory outlined in Sec.
27271, this transition is of first order due to the discrete modification of dimensionality.
The same distortion is obtained by replacing only one of the methyl groups with bromine.
(MeBr-DCNQI),Cu crystals investigated in this work undergo a Peierls transition at the

critical temperature Tpr = 155 K.

Even more subtle, the change in dimensionality can be reached by deuteration of the
methyl groups in the DMe-DCNQI molecule. The deuterated DCNQI-dg molecule is iso-
electrical with respect to its undeuterated equivalent. While the crystal lattice parameters
of (DCNQI-dg)2Cu at RT are quite similar to those of (DCNQI-hg)2Cu, the replacement
of methyl groups (CHs) by the deuterated ones (CDj3) of higher mass creates an inter-
nal pressure which leads to larger changes of ., upon cooling. At 20K, a, amounts to
128.5° for (DCNQI-dg)2Cu while it only increases to a, = 126.3° for (DCNQI-hg),Cu [66].
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Whereas (DCNQI-hg),Cu remains metallic down to cryogenic temperatures because of its
quasi-three-dimensionality, in (DCNQI-dg)2Cu the overlap between the 3d,.,.,-orbitals
and the LUMO is reduced and the system undergoes a Peierls transition at Tp ~ 73 K by
virtue of the reduced dimensionality, similar to the case for (DBr-DCNQI),Cu [66.

It is also interesting to compare the band structure of (DCNQI)2Cu with that of
(DCNQI)oLi illustrated in Fig. Z9f. This material crystallizes in a similar structure as
its copper equivalent and as a consequence, the resulting LUMO bands along the I'-Z
direction reveal a similar width and shape as the ones in Fig. Z9a. However, the lack of
3d valence states at the lithium counterion prohibits a hybridization of Li orbitals with
the LUMO of the DCNQI molecule and accordingly, a flat dispersion in the transverse
direction is obtained. Due to the smaller charge transfer in (DCNQI),Li, the LUMO
band is only quarterly filled and as a result, the ground state of the system is a 4kp
Wigner crystal undergoing a spin-Peierls transition at about Tsp = 60K [79] (compare
Sec. Z232). The pronounced one-dimensional character of the material manifests itself in

stronger electronic correlation effects as well as a higher anisotropy of the conductivity.

2.3.3 Phase Diagrams of (DCNQI);M salts

Phase Diagram of (DCNQI);Cu

In the previous sections the influence of different substituents at the quinone ring of the
DCNQI entity on the electronic and crystallographic structure of (DCNQI)2Cu has been
discussed. Based on these findings, the phase diagram of (DCNQI)2Cu as illustrated in
Fig. Z10d can be understood. In principle, three different ground states are known for
the variety of (Ri-Ro-DCNQI)2Cu compounds: a metallic, a Peierls (CDW) insulating
and an antiferromagnetic ground state. The latter only plays a role below 8 K and will
not be discussed in detail here [80]. At RT and ambient pressure, (DCNQI),Cu salts are
metallic with decreasing electrical resistivity upon cooling. Depending on the change of
the coordination angle ., upon cooling (see Fig. EI0e), they can be categorized into

three groups |78|:

e Group I salts stay metallic down to at least 50 mK with a coordination angle a., <
126.3° over the whole temperature regime, i.e. they keep their quasi-3D electronic
structure. One representative of this group is the undeuterated (DMe-DCNQI)2Cu
(also often denominated (DCNQI-hg)2Cu) for which the resistivity is depicted in
Fig. ZI0a-b.

e Group II salts exhibit a Peierls metal-insulator transition as the coordination angle

approaches a critical value of it = 126.3°. Due to accompanying lattice distor-
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Figure 2.10: Phase diagram of the (DCNQI)2Cu system. (a) Representative resistivity curves for the
(DCNQI)2Cu salts of group I and group II, resembling a metallic and a CDW ground state, respec-
tively. The (b) conductivity of group I salt (DCNQI-hg)2Cu reveals a metallic behavior down to lowest
temperature but a metal-insulator transition can be induced by deuteration of the methyl group, as in
(DCNQI-dg)2Cu which belongs to group II. The alloy (DCNQI-hg/ds)2Cu [70:30] undergoes a Peierls
transition but recovers its metallic state by a low-temperature re-entry transition typical for group III
salts. (¢) A similar re-entry transition is also observed for (DMe-DCNQI)2Cu crystals with smaller degree
of deuteration, e.g. (DCNQI-d2)2Cu. The transition occurs with hysteresis upon heating. (d) Phase dia-
gram of the (DCNQI)2Cu compounds: the position in the phase diagram can be tuned by the choice of the
substituents, isotopes, pressure and counter ion doping. This mainly influences the (e) coordination angle
Q¢ being crucial for the respective ground state. In the insulating Peierls state, not only a trimerization
along the DCNQI stack occurs but also a (f) charge ordering on the copper chain takes place leading to
localized Cu®" spins. From: |78, K1]

33



2. Theory

tion, the coordination angle shows a sudden increase by almost three degree at the
phase transition. By virtue of the drastic dimensionality change, the transition is of
first order revealing a jump in the resistivity curve, as depicted for (DBr-DCNQI)2Cu
and (DCNQI-dg)2Cu in Fig. ZTI0a-b which both belong to the group II salts.

e Group IIT salts are peculiar in a sense that they undergo a phase transition similar
to group II salts but recover their metallic behavior at even lower temperatures.
Their coordination angle o, jumps back to the initial value below a critical temper-
ature. The so-called re-entry transition has been observed for crystalline (DCNQI-
hg/dg)2Cu alloys, shown in Fig. EI0b, as well as for partially deuterated crystals,
such as (DCNQI-ds),Cu, depicted in Fig. ZI0c. For the latter compound, the hys-
teresis of the phase transition occurring between the cooling and the heating cycle
is shown in the figure, too. This hysteresis is characteristic for a first-order phase

transition.

As illustrated by Fig. EZ10d, the phase transition can be induced by the choice of
substituents as well as by external pressure. Tab. 222 lists the phase transition temper-
atures for certain (DCNQI)2Cu salts. The deuteration denoted for the (DCNQI-d,)2Cu
salts refers to the methyl groups. The influence of the deuteration has been discussed in
terms of an effective chemical pressure deduced from crystal structure data which are
also listed [I0]. The drastic influence of the coordination angle a., on the system’s di-
mensionality can be understood by X-ray photoemission spectroscopy (XPS) experiments
on the respective crystals [82]. The average valence of the copper atom was found to
slightly deviate from the expected value of 6 = +1.33 at RT, i.e. the charge transfer is
reduced according to the order of MeBr- (6 = +1.32) > DMe- (6 = +1.28) > DI-salts
(0 = +1.22) and depends on a.,. At a critical angle of a, ot = 126.3°, the charge transfer
is expected to lock into the value of 6 = +1.33 inducing a Cu?"-Cu*-Cu* Mott transi-
tion on the copper chains and an accompanying CDW transition on the DCNQI stacks
stabilized by its commensurability with the underlying lattice. The larger the deviation
from the commensurate charge transfer of 6 = 4/3 e, the harder it is to induce the phase
transition by applying a pressure or reducing the temperature. For example, the critical
pressure required to switch (DI-DCNQI);Cu into the Peierls ground state is more than
two orders of magnitude larger than for (DCNQI-hg)2Cu. The trimerization of the lat-

tice is reflected by the discontinuity of the coordination angle a.,, as depicted in Fig. ZIU0e.

Because the conduction of charge takes place on the DCNQI chains, the CDW tran-
sition mainly manifests itself in the resistivity jump. In addition, the Cu®* spins align in
the (ab)-plane, as illustrated in Fig. ZI0f. The Cu?" spins can be probed by AC suscepti-

bility measurements and by determining the anisotropic g-factor of the Zeeman splitting
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(DCNQI)QCU. salt TM_[ T[_M Pcrit Peff (bar)
(DCNQI-hg),Cu - - 100 bar 0
(DCNQI-d,)5Cu 55K | 21K 160
(DCNQI-dy),Cu 61K | 13K 192
(DCNQI-dg)2Cu 5K | - 480
(DCNQI—dg)QCH 80K - 512
(MeBr-DONQI)oCu | 155K | -

(DBr-DCNQI),Cu | 160K | -

(DI-DCNQI)2Cu - - ~ 15 kbar

Table 2.2: Critical temperatures for the Peierls metal-insulator (M-I) and the re-entry insulator-metal (I-
M) transition in different (DCNQI)2Cu compounds. The critical pressures to induce a phase transition in
(DCNQI-hg)2Cu and (DI-DCNQI)2Cu as well as the effective chemical pressures induced by deuteration
are also cited [7R].

by means of electron spin resonance experiments (ESR) [80, 83]. The simultaneous occur-
rence of two distinct phase transitions on the copper and the DCNQI chains, respectively,
has been incorporated into a phenomenological thermodynamic model of the phase dia-
gram by Nishio et al., taking into account the charge, spin and lattice degrees of freedom
[34]. By virtue of latent heat (1) measurements on selected deuterated (DCNQI-d,)2Cu
single crystals with varying Peierls transition temperatures 7p, they determined the en-
tropy difference A between the metallic and the insulating ground state, revealing a

linear relation [34]

where v* = 40mJmol ™' K=2 and S; = (kgNa/3)In2 = 1.9Jmol ' K~1. S; corre-
sponds to the Cu?' spin degrees of freedom implying a threefold-periodicity of Cu?*-
Cu'-Cu™ along the copper chains, i.e. one third of the copper atoms carry an electron spin
of 1/2, in agreement with magnetic susceptibility and ESR results [80, 83]. A similar value
was found in the latent heat analysis of the antiferromagnetic transition observed in fully
deuterated (DCNQI-dg)2Cu at 6.8 K, clearly identifying it as the spin contribution to the

entropy [34]. The value of v* = 40mJmol~* K2

significantly differs from the expected
and experimentally determined Sommerfeld coefficient 7, = 25mJmol~! K=2? deduced
from low-temperature measurements on the specific heat of (DMe-DCNQI),Cu [B4]. Tt
has been argued that an additional contribution ~;,; by the lattice increases the effective
Y* = Y + Miat- In general, the lattice entropy is expected to split into a configurational
and a vibrational part. The configurational entropy accounts for the change in the lattice
symmetry while vibrational contribution quantifies the repopulation of phonons across

the insulator-to-metal transition [84].
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For a system at constant pressure, the ground state of minimized Gibbs free energy
G = U — TX + PV is established. Considering only the energy difference AG between

metallic and insulating state, its total differential is given by [34]:

d(AG) = —AXdT + AVdP | (2.33)

At constant pressure the second term is neglected. With the entropy difference AY
given by Eq. EZ32, upon integration one obtains [34):

1
AG = —E’y*TQ + S]T + AGO(Peff) . (234)

Here, the integration constant AGq(P.ss) comprises the external and chemical pressure
dependence of the model. A phase transition will occur at temperatures fulfilling the

condition AG(T,) = 0, i.e. at a critical temperature of [34]

Depending on the value of the integration constant AGj, three different regimes may
be distinguished. For AGy < —S%/2v*, Eq. E233 has no real solution and AG is negative
for all temperatures. This models the case of group I salts remaining metallic over the
entire temperature regime. For intermediate negative values of —S%/2v* < AG, < 0,
two real solutions are obtained with Tp; > Tps, corresponding to the group III salt
behavior where two phase transitions are observed. Two critical temperatures also result
from positive AGq values. However, one of them is negative and hence, without physical
relevance. This situation represents the group II salts with one metal-insulator transition.

The effect of deuteration is considered by the integration constant AG, [34]

AGy = -Gy + PeffAV (236)

where P,r; characterizes an external or chemical (substituent-induced) pressure.
P.;r; = 0 corresponds to the (DCNQI-hg)2Cu crystal at ambient pressure. AV = 3.2 A’
is the volume difference of the unit cell between the metallic and the insulating state
[66]. Under these conditions, Gy remains the only free parameter for fitting. To ex-
plain the phase diagram qualitatively (see dashed black curve in Fig. E1T), a value of
Gy = 59Jmol~! had to be chosen. The figure also illustrates the phase diagram experi-
mentally determined from the phase transition temperatures of the selected deuterated
(DCNQI-d,)2Cu crystals |78|. Releasing the other fit parameters as well, the phase dia-
gram can be reproduced very well with v* = 95mJmol ' K=2 and S; = —3.5 Jmol ' K~

Both values are even larger than the experimentally determined ones. Still, due to the
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Figure 2.11: Phenomenological phase diagram calculated by the thermodynamic model described in the
text [84]. Dotted vertical lines separate the three groups of (DCNQI)2Cu salts. The diagram was de-
termined from the phase transition temperatures of selected deuterated (DCNQI-d,)2Cu upon cooling
(blue) and heating (red) together with the one calculated by combining Eqs. 2238 and EZ33 (dashed black
curve). Taking Gg as the only free fit parameter, the phase diagram can be reproduced qualitatively.
A better agreement between calculation and experimental data can be obtained from polynomial fits
(blue and red curves) according to Eq. E233, revealing a slightly larger v*. The model explains the phase
diagram on the basis of the competion between the spin entropy of localized Cu?* spins and the entropy
of free charge carriers while large v* values point to other degrees of freedom playing a certain role as
well. These might be the configurational and vibrational entropy of the lattice.

ambiguity in the determination of the effective pressure values, it is not possible to di-

rectly draw conclusions from these quantitative y*- and Sj-values.

To sum up, the phase diagram of (DCNQI)2Cu can be well explained by the depen-
dence of the Cu valency on the coordination angle a.,. A transition between metallic and
insulating state, characterized by a CDW on the DCNQI chains accompanied by a Mott
charge ordering on the Cu sites, occurs upon reaching a critical o, erit, enabling com-
mensurate conditions for the CDW transition. Thermodynamically, the phase transition
is mainly driven by the competition between spin and charge degrees of freedom while

contributions by the lattice are expected to be relevant as well [34].
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Phase Diagram of (DCNQI),Li

In spite of the similar crystal structure as compared to (DCNQI);Cu, the charge trans-
fer in (DCNQI),Li only amounts to 6/2 = 0.5e due to the lack of 3d valence states
leaving the one-dimensional band quarter-filled [85]. Mazumdar and Bloch showed that
the effective short range Coulomb interaction in organic conductors strongly depends on
the band filling [86]. While being negligible at a charge transfer of §/2 = 0.66¢, as ob-
served in (DCNQI)3Cu, it gains importance below §/2 = 0.55e. This is corroborated by
the occurrence of a 4kp-CDW at Ty, ~ 100K in the isostructural organic conductor
(DCNQI)2Ag which also reveals a charge transfer of §/2 = 0.5, giving rise to a quarter-
filled one-dimensional band structure |87|. At an even lower temperature of Tsp = 83K
the occurrence of a 2kr spin-Peierls transition was observed. As discussed in Ch. E222,
both ground states are driven by the Coulomb repulsion of charge carriers. The spin-
Peierls transition was also observed in (DCNQI)sLi at Typ = 52K — 63K [88, BY| and
accordingly, electronic correlation effects are expected to be of importance in this mate-
rial as well. Raman spectroscopy and the linewidth analysis of ESR signals furthermore
support the existence of a 4kp-CDW even far above T;p in (DCNQI),Li [90, 91]. In the
crystalline (DMe-DCNQI),Cu,Li;_, alloys, a spin-Peierls transition appears for samples
with < 0.3 and Tsp decreases with increasing copper content |79, 89|. For any copper

content above xz > 0.5 the material remains metallic down to 4 K.
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2.4 Lattice Dynamics in Crystals

Phonons play an important role in organic crystals due to their lower excitation energies,
the large number of atoms per unit cell and the lower Debye temperatures compared
to inorganic solids. The low energy relative to the electronic bandwidths along with the
strong electron-phonon coupling enables an efficient interaction of charge carriers with
phonons. Furthermore, the complex phonon spectra cause distinctively different thermal
properties in organic solids. Here, the general theory on phonons will be outlined based

on the atomic chain model which is consecutively extended to molecular solids.

2.4.1 Phonon Dispersion

Phonons are quantized coupled vibrations of the solid state lattice [92|. They do not
occur as isolated, local excitations but represent a collective motion propagating like
waves through the solid, transporting energy and interacting with one another as well
as other excitations. The vibrational energy of a crystal is defined by its anharmonic
interatomic potential as shown in Fig. E12a in which atoms can be displaced around
their equilibrium position at distance Ry from each other. For small displacements the
potential is well approximated by a parabola. This harmonic approrimation represents
the model of atoms joined by springs in a crystal as visualized in Fig. ZI2b for a one-
dimensional chain of a diatomic lattice with unit length 2a.

The displacement of atoms propagates as a linear combination of plane waves through
the lattice, each of the form Aexp|q- 7 — w(§)t], ¢ denoting the wave vector of propaga-
tion, A the amplitude and w(q) the angular frequency of the vibration. In the harmonic
approximation phonons are treated as non-interacting quasiparticles. Although the prop-
agating wave does not carry a net mass and hence, no momentum, a quasi-momentum hq
is associated with each phonon of quantized energy hw(q). The lattice dynamics are de-
scribed by the phonon dispersion w(q) relating energy and quasi-momentum of a phonon.
A lattice comprised of N atoms contains 3/N normal modes of vibration. Similar to the

quantum mechanic harmonic oscillator, the energy of the g, mode is given by |92

1
E,j = (n,;—f— 5) hwq (237)

where the average number of phonons in mode ¢ at temperature 7" is given by the
Bose-Einstein distribution in thermal equilibrium [92]:
! (2.38)
N> = . .
T explhw(q)/(kpT)] - 1

The population of phonon modes vanishes at 7' = 0, then rises exponentially in the
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low-temperature regime kg7 < hw and approaches a high temperature limit of ngy oc T'
for kT > hw.
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Figure 2.12: Phonons in crystals. (a) Interatomic potential together with its harmonic approximation.
(b) The harmonic model of a one-dimensional diatomic lattice chain with its constituents coupled by
springs results in a (c) phonon dispersion containing acoustic (blue) and optical (red) phonon branches.
Each branch contains one longitudinal phonon mode and two degenerate transverse phonon modes. (d)
Transverse phonon modes are characterized by atomic displacements perpendicular to the wave propa-
gation while for longitudinal modes atoms oscillate in the same direction. (e¢) Acoustic phonon modes
are characterized by neighboring atoms moving in-phase in contrast to the out-of-phase displacement of
optical phonon modes. Adapted from: [93, 92, B4, O3]

For a characterization of the lattice dynamics the phonon dispersion relationship w(q)
needs to be calculated. The dispersion relation of a one-dimensional diatomic chain, as
illustrated in Fig. ZZI2b with atoms of mass M > m connected by springs of force constant
A, reads [92]

1 1 1 1\? 4
w2:A<E+M)iA\/<E+M) —mMsian*-a : (2.39)

It is schematically depicted in Fig. EI2c¢ for the first Brillouin zone. The phonon
dispersion consists of two types of phonon branches, that of the acoustic and of the optical
phonons. The longitudinal acoustic (LA) branch starts at zero frequency in the mid of the
Brillouin zone and rises proportional to the velocity of sound vs = dw/0q7 at small ¢. Its
dispersion saturates at a frequency w; = \/W . In contrast, the longitudinal optical
(LO) phonon branch starts at non-zero frequency ws = 1/2A/(1/m + 1/M) in the mid
of the Brillouin zone reducing to wy = \/M at the boundary ¢ = m/a. In addition to

the longitudinal displacement along the propagation direction, the oscillation of atoms in

the other two perpendicular directions are also possible as clarified in Fig. ZT2d. These
additional polarizations result in two separate transverse acoustic (TA) and optic (TO)
branches which are doubly degenerate each. They are lower in energy due to the smaller

force constant A’ < A for transverse displacements as compared to longitudinal modes.
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The difference between acoustic and optical phonon modes is illustrated in Fig. ZT2e.
Acoustic modes of propagation displace neighboring atoms along the same direction while
in optical phonon modes adjacent atoms oscillate anti-phase-wise. Accordingly, the latter
are expected to be higher in energy. In case of ionic crystals, the dynamic dipole moment
of optical phonon modes allows for an excitation by electromagnetic waves, from which
the classification as optical phonon modes originates. In general, for a three-dimensional
lattice containing N atoms per unit cell 3 acoustic and 3N — 3 optical phonon branches

are obtained in the phonon dispersion spectrum.

2.4.2 Lattice Heat Capacity

The heat capacity relates the increase of a solid’s internal energy U by a temperature rise

of one Kelvin at constant volume [96]:

Cy = (%)V . (2.40)

A solid’s internal energy U mainly constitutes of the thermal energy E stored in lattice
vibrations of quantized energy, as outlined above. Neglecting the zero point energy, the

total energy accumulated in the phonon system follows from Eq. 237 [96]:

3
E= Z anﬂ,shwsj . (2.41)
qg s=1

Here, the sum runs over all phonon branches in the first Brillouin zone, each indexed
by its polarization s and wave vector ¢. To obtain analytical expressions for the heat

capacity of solids, some approximations on the phonon dispersion need to be made.

Einstein Model

Einstein assumed all atoms to oscillate independently of each other at a frequency w(q) =
wg [97]. The resulting phonon energy is independent of the wave vector ¢, as shown in Fig.
ZT2c by the dashed green line. Thus, it appears to be a rather good approximation for
optical phonon modes of flat dispersion. The total thermal energy of a crystal containing

N atoms including three polarization modes reads

3Nhwg
explhwg/(kgT)] — 1

and yields, with the help of Eq. 240, a molar lattice heat capacity of
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hwg

HE BGE/T
7)

2

Cy = 3N kg ( (2.43)

Here, N4 denotes the Avogadro constant and 0g = hiwg/kp the Einstein temperature.
For T' > 0, Eq. E43 reaches a constant limit of Cy, = 3N 4kp, also known as Dulong-Petit
law. In contrast, at low temperatures the Einstein model predicts Cy oc T2 exp[—0g /T
which does not accurately explain the experimentally observed heat capacities of most
solids. This is due to the large dispersion of acoustic phonon modes being not accurately

captured by the constant dispersion.

Debye Model

An improved model to better account for the dispersion of low-frequency acoustic phonon
modes was formulated by Peter Debye in 1912 [98]. For large N, the sum over ¢ in Eq.
2741 can be replaced by an integral yielding

P=% BURUEDS | dvslem@nm

which can be transformed into an integral over surfaces of constant energy S, by

introducing the phonon density of states g(w), defined as

o)~ o2 [ _ds.
T =8 | Vaow(@

for a three-dimensional crystal. Here, ) is the size of the unit cell and Ny the denotes

(2.45)

number of unit cells. Debye approximated the three acoustic phonon modes by a linear
dispersion w = vg - q, vg denoting the velocity of sound. The relation is depicted by the
orange line in Fig. ZT2c. The linear phonon branch contains all 3N states of the acoustic

phonon branches up to a cut-off frequency wp, i.e.

wp N()ng
d = D — 3N 2.46
| deate) = S (2.46)

which defines the Debye frequency

6m2N\ /3
Wwp = Vg ( N ) : (2.47)
0

With Debye’s approximation the heat capacity evaluates to

T 3 Op/T Z4€Z
= 9Nk dz—— 2.4
cv=onin () [ 2
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where 0p = hwp/kp is the so-called Debye temperature. It constitutes an upper limit
for the energy of acoustic phonons in a crystal. Eq. 48 reproduces the experimentally
observed Cy oc T2 behavior at low temperatures and merges into the constant value of
3Nkp at high temperatures as predicted by the Einstein model as well by the Dulong-
Petit law for an ideal gas. Consequently, it is expected to provide a better approximation

to describe the lattice specific heat of acoustic phonons.

2.4.3 Lattice Properties of Organic Crystals

The phonon dispersion of organic crystals is quite complex |[b8|. This is on the one hand
due to the weak intermolecular potential of the van-der-Waals bound crystals together
with the rather large mass of the molecules constituting the unit cell, resulting in low
phonon frequencies, Debye temperatures and sound velocities. Moreover, a molecule con-
tains additional rotational degrees of freedom compared to an atom and the large number
of atoms per unit cell further increases the number of optical phonon modes. Not all of
these modes are energetically as widely separated from the acoustic phonon modes as in
most inorganic solids of less complex unit cell. Tab. 223 compares some electronic and

thermal properties of the organic semiconductor naphthalene to silicon and the organic
metal TTF-TCNQ.

The complex phonon structure is reflected in larger molar specific heat values of or-
ganic materials. The large anharmonicity of the intermolecular potentials, characterized
by the Griineisen constant, results in thermal expansion coefficients being two orders of
magnitude larger than in inorganic solids. Weak binding forces may be inferred from the
low melting point of naphthalene, too. The crystal binding forces in TTF-TCNQ are
larger and under ambient conditions the compound decomposes at 492 K prior to the
melting of the crystal structure |[I09]. The distinct phonon structure of organic solids also
manifests itself in the electronic properties, such as the charge carrier mobility being two
to three orders of magnitude smaller than in silicon by reason of the more efficient in-
teraction with the numerous low-frequency phonon modes available in organic materials.
The electron-phonon interaction potential is often of similar magnitude to the narrow
electronic bandwidth in organic crystals.

The total number of phonon branches amounts to 3N, N denoting the number of atoms
per unit cell. Furthermore, in molecular crystals external and internal phonon modes have
to be distinguished [b8|. Internal modes refer to the atoms oscillating within the molecule
against each other. For a molecule of N,, atoms, there exist 3/V,, — 6 intramolecular
normal modes of vibration. In organic molecules composed of covalently bound elements

of small atomic number, the internal mode frequencies are rather high compared to the
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Naphthalene | Silicon TTF-TCNQ
Density [-] 1.14 2.328 1.62
Atomic Mass [amul] 128 28 408
Op (K] 1300 46517 90lm]
Sound Velocity [10° 2] 1-3 8 4[m07] 1 g.3[ms, o]
RT Specific Heat [giK] 1.3 0.7 1.5[m]
Thermal Expansion Coefficient [107° &] 12717 2.6 15017
Griineisen Constant 3-4[m0] 0.5[% 2.56[4]
Melting Temperature |[K] 353 1688 492 (dec. )™
RT Mobility 4 (e~ /h*) [2] 0.44/0.39 | 1500/450 4
Electronic Bandgap [eV] 5 1.1
Dielectric Constant e 3l 11.9

Table 2.3: Electrical and thermal properties of organic and inorganic materials. The archetypical organic
semiconductor naphthalene is compared to silicon and the organic conductor TTF-TCNQ. Unless oth-
erwise declared, silicon properties are cited from [IT1] and values for naphthalene and TTF-TCNQ are
taken from [IT2Z].
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2.4. Lattice Dynamics in Crystals

oscillation of complete van-der-Waals bound molecules in a crystal. Nonetheless, similar
low frequencies to external modes may also be attained for internal modes, e.g. for some
bending and breathing modes of the molecule involving more than two atoms. The energy
spectrum of internal phonon modes in a molecular crystal is very similar to the vibrational
spectrum of the single molecule. For example, naphthalene only contains carbon and
hydrogen atoms from the two upper rows of the periodic system. The vibrational frequency
of the antisymmetric C-C stretching mode at a wave number of v = 1595 cm™! is retained
when going from the vapor phase to the crystal [I13|. Yet, the vibrational spectrum also
contains an internal ring mode at a frequency of only v = 176 cm™" |I14].

External modes characterize the thermal movement of rigid molecules around their
equilibrium position in the lattice. Every molecule possesses three translational and three
rotational degrees of freedom. A crystal containing Z molecules per unit cell will ac-
cordingly exhibit 67 external phonon branches, 3 acoustic and 67 — 3 optical ones [6S|.
Sometimes, the external phonons derived from translational and rotational motions are

named translons and librons, respectively |IT3].
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Figure 2.13: Phonon dispersion in crystals. (a) Measured phonon dispersion of perdeuterated naphtha-
lene, (b) silicon and (c) the organic conductor TTF-TCNQ along the b-axis, i.e. the direction of high
conductivity. Adapted from: [[16, I177, T04].

In Fig. ZT3a the phonon dispersion measured for the organic semiconductor dg-naph-

thalene, crystallizing in a structure with Z = 2 molecules per unit cell, is shown [58]|. As
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expected, it consists of 3 acoustic and 9 optical external phonon branches. Optical phonon
modes already arise in a low frequency regime of about 2 THz. Above 5THz internal
vibrational modes begin to appear. The frequencies of the phonon modes are significantly
lower than in silicon, the dispersion of which is depicted in Fig. ZI3b for comparison |I17|.
It nicely demonstrates the lower sound velocity and Debye temperature in naphthalene.
The phonon dispersion of the organic metal TTF-TCNQ, which is delineated in Fig. ZT3c,
exhibits optical phonon modes to intersect with acoustic phonon branches at frequencies
as low as 0.5 THz. Furthermore, the LA phonon mode exhibits a Kohn anomaly at around
3| = 0.3 A~" indicating the Peierls state discussed in Sec. ZZI. The velocity of sound in
TTF-TCNQ takes values of v;4 ~ 3000ms~! and vyy ~ 1800ms~! for the longitudinal

and transverse mode, respectively [L04)].

Specific Heat in Organic Crystals

Specific heat measurements on naphthalene and silicon are illustrated in Fig. EZT4. The
data on silicon roughly agrees with the Debye model described by Eq. 248 but the Debye
temperature is a function of temperature and takes values in the range of 6p = 465—631 K
[TTR]|. The curve seems to approach a value close to Cy = 3N kg = 25 Jmol 'K~ in
agreement with the Dulong-Petit law at high temperatures. In contrast, the specific heat
of naphthalene exceeds the limit of Dulong-Petit by far due to additional thermal energy
stored in low-frequency optical phonon modes. Instead of a saturating behavior an upward
curvature is observed at high temperatures due to the increasing number of optical phonon
modes contributing. To model the specific heat per mole at constant pressure in organic

crystals, Sallamie and Shaw proposed a combined Debye-Einstein model of the form [ITY]:

T\? [00/T  pher
Cp= 18R — / ——dx 3 translational + 3 rotational modes
eD 0 (ex - ].)2
3Ny —6 2 .

- Op.i efei/T . .

+ R Z; ( T ) EE internal + external optical phonons

3RACpT .
+ —7 volume correction

(2.49)

The model consists of three terms: The first term accounts for three translational and
three rotational degrees of freedom which are approximated by Debye’s theory of lattice
heat capacity as described by Eq. Z48. R = Nakp represents the universal gas constant.
The six phonon branches are approximated by an averaged sound velocity vs and Debye

temperature 0p.
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Figure 2.14: Specific heat measured and modeled for (a) silicon as well as (b) naphthalene. Adapted from:
[T, TO0|

The red dashed line in Fig. EZIdb delineates the portion of heat contained in these
modes for naphthalene. It saturates at 50 Jmol ' K~!, i.e. at twice the value obtained
by the rule of Dulong-Petit according to the additional rotational degrees taken into
account. The second term accounts for all other internal and external optical phonon
modes being more appropriately represented by the flat dispersion of the Einstein model,
as outlined above. Approximating each optical phonon branch by an Einstein temperature
0p; = hwg/kp, the sum of Einstein oscillators represented by Eq. EZ3 runs over all
optical phonon frequencies. This term gives rise to the non-saturating, monotonously
rising contribution to the molar specific heat of organic solids because the number of
participating optical phonon modes increases with temperature, as shown by the green
dotted curve in Fig. EZIdb. The third term accounts for the large thermal expansion in
organic crystals. The specific heat is usually measured at constant pressure while the
Einstein and Debye model both assume constant volume conditions. The functional form
was derived from the Nernst-Lindemann equation by Pan et al. for linear macromolecules
[T20]. T, is the melting temperature of the solid and the constant Ay may be calculated
from the thermal expansion, compressibility and specific heat data, but a quite universal
approximation of Ag = 3.9 x 1073 K mol J~! was found from the analysis of 22 polymers.
The magnitude of the correction term is illustrated by the blue dot-dashed curve in
Fig. ZT4b. The correction term obviously gains importance at rather high temperatures,
explaining the upward curvature of naphthalene’s specific heat.

The combined Debye and Einstein model allows for an accurate description of the
experimental specific heat data for naphthalene as well as for other m-conjugated organic
molecules, such as coronene or perylene [IT9]. While it has not been employed for low-
dimensional organic metals so far, it should be equally valid for this material class by

virtue of the similar phonon spectra compared to the above organic semiconductors.

47



2. Theory

2.5 Charge Carrier Transport

The thermoelectric properties of solids are usually treated semiclassically by the Boltz-
mann transport theory which will be outlined following Refs. [39, I21]. Including several
charge carrier scattering mechanisms, the electrical conductivity of ordinary metals in
comparison to quasi-1D organic conductors is discussed. A brief introduction to the one-

dimensional Tommonaga-Luttinger liquid theory is given at the end of this section.

2.5.1 Boltzmann Transport Theory

Fermi-Dirac statistics quantify the number of occupied electronic states in a system of
non-interacting fermions in a solid. In equilibrium the average occupation number of a
single-particle state of energy e at temperature 7" is given by the Fermi-Dirac function
[T21]]

S (2.50)
eleFR)—ul/keT 4 |

with the chemical potential p being the energy necessary to add one electron to the
system. At T = 0 the chemical potential is equal to the Fermi energy er separating the
occupied states below from the empty states above this energy, i.e. the Fermi function is a
step function at fo = 1 for € < pand fo = 0 for € > u. The energy of an electron €(7, k, T)
depends on its wave vector E, its spatial coordinate 7 and temperature 7. Upon increasing
temperature the distribution smears out in an energy range of about 4kg7" around the
chemical potential. External perturbations of the electronic system cause a deviation from
the equilibrium distribution function which can be described by the semi-classical Boltz-
mann theory. In the presence of an external electric field E and a temperature gradient

VT, the steady-state linearized Boltzmann differential equation reads |[I21]:

0 0 0
I r,;fk - 7 (g—TkﬁTJr ei—%ﬁ) : (2.51)

Here, fg and f; are the equilibrium and non-equilibrium Fermi distribution func-
tions and ¥ and e denote the electron velocity and electron charge. The employed re-
laxation time approrimation assumes that scattering processes can be described by a
parameter 7;; specifying the time to equilibrate the electronic system after perturbation.
In order to calculate the charge current je = 8% fﬂ'];f,;dlg as well as the heat current
jQ = % [ efz-le— u]dE in response to external fields, the k-space integration can be

performed over surfaces of constant energy dk = dSdk, = 8m3hg(e)de leading to the
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respective energy representations by |[IT21]:

7i=2 [0 w01 () [£- 19u] a(one
+2¢ [ 60 @ o160 (%) 7| st (2:52)
To=e [0 @] ) (o ) e~ | E = L9 gle)i

+7 [ 150 @ e} (%i) E ;“r (~9T)g()de (2.52)

Here, g(e)de = ﬁ i 45 de defines the electronic density of states. By introducing

|71
the generalized transport integral with a separated material-dependent part I, of the

integrand [39]

K, =-2 /g(e) [U(e) ? v(e)] () [ex — 1]° %de ,s=0,1,2, (2.53)

/

Inrat

Eqgs. 2574 and 2528 may be further simplified to [39

-

J. = *KoEupp — %KﬁT (2.54a)

— — 1 —
Jo = eKiEepp = mKoNT (2.54D)

with the effective field Eeff —E— ﬁ,u/e acting on the charge carriers. The equation
system is similar to Eqs. Z4a-b and describes the thermoelectric transport phenomena
in a solid, allowing for a calculation of the material’s Seebeck coefficient S as well as its

electrical conductivity o and electronic thermal conductivity &' |T21]:

o = e*K (2.55a)
1 K,
S=F—— 2.55b
T K, (2.55b)
1 K?
= | K, — —L . )
R T [ 2 ]{b} (2 550)

Obviously, the parameters interdepend and thus, cannot be optimized individually.
A large electrical conductivity, for instance, necessitates a high density of states close
to the Fermi energy in contrast to the Seebeck coefficient which scales with the energy

difference of the transport level to the chemical potential. For this reason, high electrical
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conductivities as well as small Seebeck coefficients are observed in metals and, vice versa,
in semiconductors. The material-dependent part of the transport properties is represented
by the kernel I/, of the integrand in Eq. Z23. It depends on the material’s band structure

as well as the details of the electron scattering mechanisms.
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Figure 2.15: Material-independent part (e — u)s% of the transport integrand in Eq. 53 for s—=0,1,2 at
two distinct temperatures.

The remainder of the integrand only depends on the energy dependence of the Fermi
function and is illustrated for s=0,1,2 in Fig. EI3 at two distinct temperatures. While
the conductivity probes energetic states at the chemical potential, the thermopower and
the thermal conductivity are related to states slightly above and below. Only the Seebeck
coefficient can obtain negative values due to the integrand’s symmetry with respect to
the chemical potential. On decreasing temperature all three integrands become narrower
and probe states closer to the chemical potential. To analytically evaluate the transport
integrals in Eq. 253 several assumptions have to be made. Two distinct cases, namely the
approximations of a degenerate and a non-degenerate electron gas are being considered in
the following sections. The degenerate case treats the Fermi energy being large compared
to the thermal energy, i.e. ex > kgT'. The assumption is valid for metals, semimetals and
heavily doped semiconductors where the Fermi energy lies in the conduction or valence
band. The opposite, non-degenerate limit (e < kpT') generally applies for lightly doped

semiconductors [37].
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2.5. Charge Carrier Transport

2.5.2 Electrical Conductivity

Mobility and Scattering Rates

The electrical conductivity o (resistivity p) of a material can in principle be calculated
from Eqs. E55a and 2Z53. However, the calculation can become quite elaborate depending
on the complexity of the band structure and the scattering mechanism contributing to the
transport integral. Approximating the electronic band structure by a parabolic band, that
is for quasi-free electrons with effective mass m*, and assuming an energy-independent

relaxation time 7(¢) =~ 7(ep), it can be evaluated to

ne*r(ep)

*

o=e’Ky= —enp=p " (2.56)

where 7 is the number of mobile charge carriers and p = er/m* is the charge carrier
mobility depending on the relazation time 7 due to all present scattering mechanisms.
The renormalized, effective mass m* accounts for the motion in the periodic potential of
the lattice as well as for electron-electron correlation. By virtue of the charge transfer
process governing the band filling in the metallic state of organic conductors, the charge
carrier density is assumed to be independent of temperature. Therefore, the temperature
dependence of the conductivity is governed by the sum of the individual scattering rates
1/7; 39|

% = Z% . (2.57)

Scattering Mechanisms

The calculation of distinct electron scattering rates is a difficult task and several different
theories and approaches have been presented in literature [I21]. Since detailed calculation
procedures are beyond the scope of this thesis, only some results being relevant for organic
conductors and low-dimensional electron gases are briefly presented in the following. The
scattering time depends on the transfer integral and thus, is an anisotropic tensorial quan-
tity. In principle it depends on the energy of the charge carrier and it is often simplified

by assuming the form [39]

7(e) = co” (2.58)

r being the scattering parameter. For example, r = 1/2 is obtained for the interac-
tion of an electron with a single acoustic phonon mode in one dimension [I22]|. More

elaborate theoretical scattering rates with relevance for organic conductors are listed in
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Tab. 2. Two given scattering entities inside a crystal are impurities and defects. Their
temperature-independent scattering of electrons was found to scale with the degree of
alloying in metals [I23|. According to Eqgs. and 257, this leads to the idea of a
temperature-independent impurity resistivity pim, and a temperature-dependent scatter-

ing term pg.(7) [I21]

p(T) = Pimp T PSC(T) (2-59)

which is also known as Matthiessen’s rule. ps. depends on the distinct electron scat-

tering processes which will be briefly discussed below.

Scattering Process Abbrev. Scattering Rate [s7!]

Charged Impurities 39 T imp %g—,fZQF [%}

3D Normal-Phonon (P A (%)5 Js (42)

1D Umklapp-Phonon [122] T (%—Y)Q W

2 Phonons [123] e | () 2 (5) o' o
Optical Phonon [I23] To ot g(e)%e‘hwi/kBT

Mutual Acoustic Phonons |[IZ6] Trmep ZQSkfj\%giéax)Q 72(6_\?5(7221?2132
Electron (3D) [I24] Te__le73D Beesp - T?

Electron (1D) [I27] Te_—le,lD Beeap - T

Table 2.4: Several theoretical electron scattering rates. (Quantities and functions: n; - impurity con-
centration; Z: charge of impurity; Flz] = 2[ln(1 + z) — /(1 + x)]/2% krr - Thomas Fermi wave-
length; A = 97rh202\/W/(S\@ne%ngB@De;/Q); C - coupling constant; J,,(2) = [, z"e*/(e” — 1)%da;
Or - Bloch-Griineisen temperature; W - bandwidth; € - electron energy; u/6 - translational /rotational
molecular displacement; M/J - mass/inertia of molecule; w; - phonon frequency; ag - lattice constant;
fa(k,q,q") = 2[coskag — cos(k + q)agl; t - transfer integral; AJY = 2t(y £ 1)/v; v = 2e2ap/(addt/dx);
oy - polarizability; vy - carrier velocity; D - impurity scattering parameter.)

The scattering of electrons by phonons is one of the most important interaction mech-
anisms limiting the charge carrier mobility in single crystals. While the influence of the
periodic potential caused by the lattice ions is captured by means of the effective electron
mass, the oscillation of the ions represents an additional perturbation to charge carriers
due to the fluctuation of the transfer integral (deformation potential scattering). In or-

ganic crystals there exists a large number of thermally excited phonons due to the low
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"V

B.Z.

Figure 2.16: Normal vs. Umklapp scattering events. While Normal scattering processes only slighty change
the momentum of the charge carrier, Umklapp processes are very efficient in generating resistance due to
the large momentum transfer by scattering the electron out of the first Brillouin zone. From: [I21]

energy and dispersion of the phonon spectrum (compare Sec. Z4). In combination with
the strong electron-phonon coupling, scattering of electrons by phonons is generally very
efficient in these materials [I28]. The momentum conservation law for scattering of an

electron from the state k into the state &’ by one phonon ¢ requires [I21):

k+i=kF+G . (2.60)

Fig. 718 distinguishes two possible scattering processes in a crystal: For Normal pro-
cesses (N-processes) the involved reciprocal lattice vector G vanishes, i.e. K lies in the
same Brillouin zone as k. This process is ineffective in generating resistance due to its
small change in momentum. Contrarily, by Umklapp processes (U-processes) the electron
is scattered into the next Brillouin zone and can be mapped back into the first zone
by a reciprocal lattice vector G. This leads to a large momentum transfer now that the
scattered wave vector essentially points into the opposite direction than the incoming
one. Umklapp processes therefore are very effective in contributing to the electrical and
thermal resistance. To scatter electrons out of the first Brillouin zone, phonon states with
wave vectors ¢ of sufficient magnitude have to be excited, weakening this effect upon de-
creasing temperature. Hence, at low temperature normal processes may still dominate the

conduction in ordinary metals, leading to the established Bloch-Griineisen formula [T21):

5
T
TN /8 1244-A(L) [ T< g
p(T) = A (—) Js (—R) = ( R) (2.61)
O T

which has been validated for most ordinary metals. The Bloch-Griineisen temperature

93



2. Theory

fr commonly takes values between the Debye temperature #p and the longitudinal sound
velocity temperature g = vshkp/kp. Eq. EB1 predicts a linear temperature dependence
of the resistivity at 7" > 6g. Similar linear high temperature dependences have also been
predicted by scattering theories for one-dimensional organic conductors including Um-
klapp processes (see Tab. 24) due to the number of excited acoustic phonons increasing

with temperature.

A scattering process involving two translons or librons of wave vectors ¢ and ¢ has
been proposed in literature to account for the p oc 7% dependence frequently observed in
organic conductors [I24|. Being a second order process, it also explains the strong pressure-
dependence of the resistivity. In another theory, Casian et al. incorporated the mutual
cancellation of two interfering interaction mechanisms between electrons and longitudinal
acoustic phonons into their calculation of the scattering time for a strictly one-dimensional
model [I26]. In addition to the deformation potential scattering (i.e. the effective fluctua-
tion of the transfer integral t) described above, a polaronic interaction taking into account
the polarization and the accompanied shift of surrounding molecules by the excess elec-
trons is considered in their theory. A high relative strength v of the latter to the former
scattering mechanism predicts high mobility states inside the conduction band of the
quasi-1D organic conductor tetrathiotetracene-iodine (TTTsl3), as depicted in Fig. 214
When the polaronic interaction becomes comparable to the deformation potential scat-
tering (y>1), a small band of electronic states attains very high conductivity values due
to the divergent relaxation time. Whether a preferred polaronic interaction is achievable
is doubted by other authors because the theory neglects the rather high screening effects
limiting the polaronic interaction in organic conductors compared to semiconductors [I22)].
In addition to acoustic phonons, the interaction of optical phonons with charge carriers
may need to be considered. In Tab. 24 a scattering rate for nonpolar optical phonons is

therefore included, too.

The simple band description of charge transport in solids neglects the electrons’ mutual
interaction due to their Fermi character and the Pauli exclusion principle. At first glance,
this may seem contradictory in view of the quite strong Coulomb interaction between
charged particles. The influence of electron-electron interactions was incorporated into
the theory by Lew Landau’s approach on Fermi liquids introducing the concept of the
quasiparticle |[I29]. The idea is the following: In a gas of non-interacting fermions the
particles will behave free and independent of each other. Slowly turning on the interaction
between them is similar to increasing the density of the gas, mimicking the change from a
gas to a liquid. Landau showed that fermions in an interacting liquid can be treated similar
to the particles in an ideal gas but with renormalized effective mass m* and momentum

p. They are called quasiparticles. This concept has spread into other theories as well,
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2.5. Charge Carrier Transport

Figure 2.17: Theoretically calculated electrical conductivity of the organic conductor TTTsI5. When the
polarization scattering becomes comparable to the deformation potential interaction (y>1), a band of
electronic states attains very large relaxation times leading to high conductivity states. From: [I26]

e.g. in the description of lattice vibrations by phonons or of holes in semiconductors. In
a metal, a free charge carrier with energy e; will only be able to interact with states
close to the Fermi energy. As the interaction includes two particles, the scattering rate
7, ap(€e1) x (e1 — ep)? o< (T'/Tp)? results in a temperature-dependent resistivity of the
form |27

p=A-T? . (2.62)
This temperature dependence is found in ordinary metals at low temperatures vali-
dating their Fermi liquid behavior. On the other hand, a linear temperature dependence
is predicted for one-dimensional electron gases with strong electron-electron interaction
(2]
Electrical Conductivity in Organic Metals
For (DCNQI-hg)2Cu the resistivity between 1.5 K and 300 K was determined to follow a
power law |85
p(T)=po+A-T" | (2.63)

with a = 2.3 supporting the idea of an increased electron-electron scattering deter-

mining the charge carrier mobility. Yet, the assignment to a distinct scattering mech-
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anism is not straightforward [@]. There has been an intense discussion with regard to
the temperature-dependent conductivity of the related charge transfer salt TTF-TCNQ),
also revealing o = 2.3, and whether this exponent originates from strong electron corre-
lations or anomalous electron-phonon scattering [I22]. Mazumdar and Bloch calculated
short-range electron correlations as a function of band filling and concluded that, when
long-range electrostatic effects are included, a screening of the charge carrier’s Coulomb
repulsion becomes efficient at intermediate band fillings between 1/4 and 1/2. In these
cases electronic correlation effects are negligible [86]. Contrarily, for quarter- or semi-filled
bands the correlations are strong, resulting in a gap at the Fermi energy and therewith, to
a Mott-Hubbard transition, as outlined in Sec. Z2. TTF-TCNQ as well as (DCNQI)2Cu,
with charge fractions of drcng = 0.59 [I30] and dpongr/2 = 0.67 [68] residing on the re-
spective molecule, both give rise to band fillings of about 1/3. Therefore electronic correla-
tions should be of minor importance in these material systems. In contrast, the conduction
band of (DMe-DCNQI),Li is only filled to 1/4. The resulting stronger electronic correla-
tions are reflected in the semi-metallic transport properties above 60 K, corresponding to

a 4kr Wigner crystal (compare Sec. 272).

The generally quite large electron-phonon interaction with respect to the electronic
bandwidth in organic semiconductors intuitively marks charge carrier scattering by
phonons to govern the relaxation time in organic conductors as well. The two-libron scat-
tering processes discussed above scale the resistivity at high temperatures proportional
to T? because the distribution functions of two phonons are involved. It compares well
to the temperature dependence of many organic conductors. Yet, a preferred interaction
with two librons instead of one phonon is controversial. For example, inserting the calcu-
lated scattering time of 79 = 3 x 10 s™! for TTF-TCNQ into Heisenberg’s uncertainty
principle unfolds a bandwidth of 2eV being several times larger than the observed one
[[22]. On the other hand it may explain the huge pressure dependence observed for
the electrical resistivity of organic metals due to the higher-order process involved. In
contrast, a scattering rate following electron-electron interactions is supposed to be in-
dependent of pressure [I27]. Optical phonon scattering in TTF-TCNQ may also account
for a temperature dependence of p oc T?3, as calculations by Conwell have shown, taking

into the account the details of the phonon spectrum [I31].

An important point when comparing scattering theories to experimental data is that
all of them have been derived for constant-volume conditions. As the resistivity is generally
measured under constant pressure, the large contraction of organic conductors needs to be
considered when comparing to any theoretical prediction |I32]. For instance, the electrical
resistivity of TTF-TCNQ changes from a p o< T%3 to a p o< T* behavior when going

from constant pressure to constant volume conditions [[33], in agreement with a mobility
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limited by acoustic phonon scattering. Even more, the electron-electron scattering rate
in one-dimensional electron gases also predicts a linear temperature dependence of the
resistivity [127]. Hence, it is important to not only analyze the electrical resistivity of
organic conductors but to holistically investigate all electrical transport quantities which

is the aim of this thesis.

Tomonaga-Luttinger Liquid

The Tomonaga-Luttinger-liquid model (or often just called Luttinger liquid) describes
the properties of perfectly one-dimensional metals. In the strict one-dimensional limit,
some of the previous assumptions on the Fermi liquid, e.g. the negligible electron-electron
interaction and its transfer into renormalized parameters like the effective mass, do not
hold as a result of the reduced dimensionality. A Luttinger liquid is a paramagnetic one-

dimensional metal without Landau quasiparticle excitations [I34)].

Figure 2.18: Comparison of the momentum distribution predicted by Fermi and Luttinger liquid theory.
Whereas the Fermi liquid shows a sharp drop at kr at T' = 0 even for finite interactions, the Luttinger
liquid follows a power-law behavior. From: [[35]

Basic assumptions of the Luttinger liquid are the gapless spin and charge excitations
and their linear dispersion (w, = v, |q]) for low-energy excitations close to the Fermi wave
vector kr. In the absence of electron-electron interactions the velocity v, is equal to the
Fermi velocity vp for electron-hole excitations. When interactions are switched on, they
may cause a gap in the spin or charge excitation spectrum, indicated by a Mott insulator
or spin-density-wave. An energy gap in the charge carrier excitation spectrum will shift
the system to a band insulator. It is also possible that excitations of charges and spins
remain gapless but decouple from each other, with different velocities v, for spins and
charges [[35]. Compared to the Fermi liquid, the momentum distribution function of the
Luttinger liquid does not show a discrete step at kr for 7' = 0 but varies continuously
following a power-law n(k) o |k — ks|°, as indicated in Figure ZI8. The exponent ¢ is

connected to the Luttinger interaction parameter K, by [134]:

o7



2. Theory

1 1
=—|K,+——2 . 2.64
o=1 (Kt 5 -2) (264
K, characterizes the strength of electron-electron interactions with K, <1 (K, > 1)
referring to repulsive (attractive) electron-electron interactions and K, = 1 representing
the case of negligible mutual interactions. The temperature dependence of the conductivity
can be derived to [I34]

2
O'OCT3 n“K,

, (2.65)

with 1/n being the band filling. The Luttinger liquid theory only holds true for strictly
one-dimensional conductors but nearly all real sample systems do not exhibit perfectly
one-dimensional Fermi surfaces. This is especially the case for organic crystals in which
conduction occurs on spatially separated chains with finite coupling. Therefore, the Lut-
tinger liquid theory should only be of limited significance for this material class. However,
it was demonstrated that some quasi-1D organic conductors show rather Luttinger liquid-
like behavior at high temperatures [I36]. It was suggested that the corrugated Fermi
surfaces, originating from interchain coupling, smooth out for kgT > t,, with ¢, being
the interchain transfer integral characterizing the orbital overlap perpendicular to the di-
rection of preferred charge transport [I37]. As a result, a crossover from a Fermi liquid to

a Luttinger liquid is likely to occur.

Conduction in Semiconductors

In intrinsic semiconductors, the temperature dependence of the electrical conductivity
will not only depend on the mobility u(7") of charge carriers, but also on the number of

charge carriers n(7) excited across the energy gap €4, i.e. [3Y]

o(T) =n(T) - u(T) - e oc T~/ @FsT) (2.66)

An extrinsic semiconductor provides additional charge carriers from dopants at an
energy level of €; with respect to the transport band. In this case, the conductivity scales

according to:

o(T) =n(T) - u(T) - e xx T~ a/tksT) (2.67)

In some cases, even conducting states inside the energy gap may be formed. For in-
stance, disorder may create tails of localized energy states reaching into the bandgap
and contributing via hopping processes to conduction. The wvariable range hopping model

predicts a conductivity of [4T]
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_1
o(T) ox e~ To/T) e (2.68)

where d denotes the dimension of the crystal volume and Ae = kBTO(T/TO)lw%d is
the energy spread of the localized states. This contribution may gain importance at low
temperatures when the thermal energy to excite charge carriers across the bandgap is

small.

2.5.3 Nonlinear Conduction in Organic Conductors

In organic CT salts characteristic nonlinear conduction phenomena have first been re-
ported for the quasi-one-dimensional mixed-stack organic conductor Tetrathiafulvalene-
p-Chloranil (TTF-CA) [L3]. Subsequently, the characteristic nonlinear conduction phe-
nomena have been observed in a variety of organic charge transfer salts characterized by
different ground states, such as spin-Peierls systems like K-TCNQ |I4| or charge-ordered
states as in a-(BEDT-TTF),I3 [I38, [3Y]. The effects have been proposed for application
in organic thyristors, i.e. DC/AC converters, as well as resistive memories |19, 21]. Most
of the observed nonlinear phenomena seem to have in common, that the current volt-
age characteristics are S-shaped when current-driven with negative differential resistance
(NDR) above electric fields of about 102 —10*-%-. The nonlinear conduction only seems to
occur in a temperature range of strongly temperature-dependent resistivity. In materials
exhibiting an insulator-to-metal transition nearby this temperature regime, the effect is
further enhanced [20]. Experimentally, Iwasa et al. found a phenomenological relationship
between the current density J and the electrical conductivity o for organic CT salts |I40]
o=o1- exp_k% +o9 - J" (2.69)

in which the first term is the usual low-field conductivity and the second term describes
the nonlinearity with n ~ 1.5 — 1.8. In spite of the similar phenomenological description
by Eq. E69, the unambiguous microscopic origins of the nonlinear conduction are still
under debate and may vary for the different material systems under study [20, T41, 06,

139, [42, 14).

Electrothermal Model

The distinct nonlinear conduction effects observed in a variety of organic conductors with
different ground states call for a more uniform theoretical description. Mori et al. [T43] were
the first to emphasize the connection between the steepness of resistivity curves and the
electric threshold field for the onset of nonlinear conduction. Employing a phenomenolog-

ical electrothermal model, nonlinear current-voltage characteristics have been successfully
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simulated for a variety of organic conductors |42, 43|, including (DCNQI),Cu |I8|. The
model elucidates the temporal increase of a system‘s temperature 7" in the presence of the
Joule heating power P and thermal losses due to heat conduction, characterized by the

thermal conductivity & |I43]:

dT

nceffE =P-V {KVT} . (270)
Here, the effective heat capacity per volume nC.yy is distinctive for the subsystem the
electrical energy is transferred to. The supplied electrical energy reads P = o(T) - E? and
P = % for a two-probe voltage-driven and a four-probe current-driven setup, respec-
tively. E and J denote the electric field and current density while o(T') represents the
temperature-dependent conductivity of the material. Under the assumption of homoge-
neous current distribution in the sample and Newtonian cooling, Eq. EZ70 simplifies to

|T43]

dr

nceff% =o(T) E? —a* - {T — Ty} (2.71)
where the parameter o* is an energy transfer rate to the environment characterized
by the respective dissipation mechanism and sample geometry. Assigning the effective
specific heat to distinct microscopic origins of electronic or phononic nature, the energy
flow into the individual microscopic subsystems may be uncovered and conclusions on the
scattering mechanisms of charge carriers may be drawn. A value close to the specific heat
of the material discloses a uniform electrical heating of the sample while smaller values
indicate the non-equilibrium excitation of specific quasiparticles being unable to efficiently

dissipate the deposited excess energy to the environment or to other excitations.

By numerical integration of Eq. 271, the transient conductivity o(T'[t]) after applying
an electric field pulse may be calculated in case of known temperature-dependent con-
ductivity. Adjusting the parameters a* and nC.ss enabled Mori et al. to simulate the
experimental, nonlinear current-voltage characteristics at fixed pulse widths for a variety
of organic conductors. The temperature-independent values derived for nC.s are usually
small compared to the total specific heat of the materials and are taken to be indicative of
the electronic origin of the nonlinear conduction. In this context, the temperature 7' =T,
can be interpreted as a parameter for the population of excited electronic states which
may decouple from the lattice temperature 7. The energy flow proposed by the elec-
trothermal model is illustrated in Fig. 219. At first, the power provided by the electric
field increases the electronic energy. When the transfer of energy from the electronic to the
lattice system is insufficient, electrons begin to populate excited stated in the band which

is phenomenologically described by the electron temperature 7,. This non-equilibrium
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population of hot electron states implies a small electron-phonon interaction. Only subse-
quently, the electronic system is able to transfer its energy to the lattice which is usually

assumed to be in good thermal contact with the external environment, i.e. T, = Tj.

(" Electronic Lattice
heat capacity heat capacity
e T,
nC, nC, —=
dt dt T
Input power Hot electron LatticeT Ext -
—~ 2 xterna
EJ=ckL L, LR environment

2 ic
=J"/c oy -vaﬂ:,-TL)J-»a,,(T,:Ta

Figure 2.19: Microscopic interpretation of the electrothermal model proposed by Mori et al. [T43]. The
energy provided by the electric field is absorbed by the electronic subsystem. Due to ineffective energy
transfer from the electronic system to the lattice, electrons begin to populate excited energy states and
only subsequently thermalize. The lattice is in thermal contact with the surrounding heat bath but is
usually assumed to be at ambient temperature, i.e. Ty, = Tp. Adapted from: [T43)]

2.5.4 Electronic Specific Heat

Electrons in metals buffer not only electric but also thermal energy. The specific heat of

electrons treated as a free Fermi gas at constant volume reads [T44)]

1/3
m? mhk (ﬁ_n) P T 3nks _ T (272)

= (e AT = T2
cat = 5 9(er)ky 2\ 9 37T, 2

which is reduced compared to the value of %nk p expected for a classical free electron gas

2 T
3 Tp)

and theoretical Sommerfeld coefficients v of some metals are given in Tab. 2.

by a factor reflecting the quantum-mechanical nature of electrons. The experimental

Na | Al | Ag | Cu | CeCwsSil®™ | (DONQI),Cu
Yeap |=2%] || 1.38 | 1.38 | 0.65 | 0.7 1100 25059
e Min || ]96 | 148 | 1.38 | 1.00 100 4

Table 2.5: Experimental Sommerfeld coefficient -y of some metals compared to their theoretical predictions
from Eq. E72 [[44]. The thermal mass ratio of (DCNQI)2Cu was calculated from the density of states
published by Miyazaki et al. [67].
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The absolute values of the electronic specific heat are significantly lower than the lat-
tice specific heat contribution outlined in Ch. 22472 and only come into play at cryogenic
temperatures. For simple metals, the theoretical prediction by Eq. 2272 matches the ex-
perimental values quite good which are always larger due to the interaction of electrons
with the periodic lattice potential, phonons and each other. The deviation can be ac-
counted for by a higher thermal effective mass mj,. Some multivalent metals containing
f-electrons reveal very high thermal effective masses, an example of which is CeCuySis.
These are called heavy-fermion systems in which electron-electron interactions govern the
relaxation of the electronic distribution [I45]. For the organic conductor (DCNQI-hg)2Cu,
an enhanced effective thermal mass was found due to a high density of d-electron states at
the Fermi-level rather than electronic correlations [I46|. For electron-correlated materials,
v is related to the resistivity coefficient A.. in Eq. 262 by the unified Kadowaki-Woods-
Relation |47

81 1 ) ,
47Th]{7%€ ngz(EF) <U0x>2 62 7 ( )

for which the parameter £ takes values close to unity and the electron velocity (vo,)

€ee

is averaged over the Fermi surface.
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2.6 Seebeck Coefficient

In Eq. 23 the Seebeck coefficient was defined to scale the electric field caused by a
temperature gradient applied to a material. Employing the Boltzmann theory outlined
in the previous section, analytical representations of the thermopower for metals and
semiconductors will be given here. It will be shown that electronic correlation gives rise to
distinct thermoelectric effects. Finally, non-diffusive thermopower contributions gaining

importance in solids of strongly coupled electron and phonon systems are discussed, too.

2.6.1 Diffusive Thermopower

The electronic contribution to the Seebeck coefficient can be calculated in the framework
of the Boltzmann theory as outlined in Sec. Z33. From Eq. EZ55H, the Seebeck coefficient

of an isotropic 3D solid evaluates to [39]

= :Fiﬁ = Lfg(E) [6(6) ® U(E)] T(E _ u)aa—i)de = :Fif (6 — M)U/(E)de
el K, eT [ o6 [(e) @ 7(6)] T% de el [o'(e)de
o(©)
(2.74)

introducing the differential conductivity o’(e¢). Eq. EZ74 reveals the thermopower to
be determined in first approximation by the energy of the states contributing to the
charge carrier transport relative to the chemical potential. In metals the Fermi energy lies
within the band, i.e. the transport levels are close to the Fermi energy and the Seebeck
coefficient takes small values of about pVK™!. In contrast, the Fermi energy of non-
degenerate semiconductors is located in the bandgap of forbidden energy states causing a
large energy difference to the charge-carrying states, yielding large Seebeck coefficients on
the order of mV K~1. The two cases of the degenerate and non-degenerate approximation
for metals and semiconductors are treated separately in more detail below. In addition,
further implications from the correlated interaction of charge carriers and spins will be

presented.

Metals

For a degenerate conductor (kg1 < €p) with isotropic energy bands, the Seebeck coeffi-
cient can be worked out employing the relation K, = 72/3(kgT)?[0Ko(€)/0€|c=c, giving

rise to a linear temperature dependence of the form [I21]:
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S:

2.1.2 22
r2ek3T {3-}(0(6)} _ mkET {mm@} (2.75)

30 Oe 3e Oe

If a single band dominates the charge carrier transport, the thermopower can be ex-
pressed by [I48]
w2 kLT

S = :
3le|

cos 07 /2 7' (€)
211 —cos?67/2) ~ 7(e)

] 279

with the transport integral ¢ = W/4, the bandwidth W, the charge transfer ratio 6 and
the energy-depedent relaxation time 7(e) and its respective derivative 7/(€). A relaxation

time of the form 7 = coe” together with a Fermi energy of Er = W§/2 yields:

S:

2r° k3T {( cos O /2 T} (2.77)

— + —
3le|W 1—cos?dm/2) ¢
Deviations from a linear dependence can occur if the relaxation time strongly depends

on energy and temperature or if more than a single band contributes to the electrical

conductivity. In general, the Seebeck coefficient can be written as the sum of the individual

band thermopowers S; weighted by their respective conductivities o; [I49]:
S — Zl 0;5;
2.0

Eq. 2778 again emphasizes that only transport states of high conductivity contribute
to the Seebeck coefficient.

(2.78)

Semiconductors

Assuming a similar energy-dependent relaxation time as above, the Seebeck coefficient for

the isotropic, non-degenerate approximation (kg1 > Ef) reads [37]

. k EC/U_EF 5)
S—:Fe { T <r+2)1 (2.79)

where €./, denotes the position of the conduction or valence band relative to the Fermi
energy. For both, electrons and holes being present in the system, Eq. 278 applies and
the measurement of the Seebeck coefficient allows for the determination of the majority
carriers in semiconductors. Also, information on the Fermi energy in doped semiconductors
and the charge carrier scattering mechanisms may be obtained. In the case of incoherent
transport via variable range hopping processes as described by Eq. EZG8, the finite density

of states g(er) at the Fermi level determines the thermopower [41]:
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—1 T1/2 d - 3
Ae? KT (T ’
5 g(q;; e _ g(€F>€ BLo (T) x{ TV d=2 . (2.80)
0 const ,d=1

Similar to the conductivity it depends on the dimensionality d of the system.

Interacting Spins and Charges

The mutual interaction of charges as well as the coupling of spins to the magnetic moment
of ions can have significant effects on the Seebeck coefficient [41]. In Sec. 22, a one-
dimensional conductor close to half band filling was predicted to be an insulator in the
presence of strong electron-electron correlations. This is caused by the electrons repelling
each other and distributing almost equidistant among the respective lattice sites. In Eq.
21714, the thermopower was defined as the entropy per charge carrier. The entropy X of
a system of N electrons distributing among Ny, lattice sites is |21]

(2.81)

|
zz@m[ Ne: }

N!(Np — N)!
Taking the derivative with respect to N results in Heikes’ formula for hopping ther-

mopower [41]:

oY kp [1 - 5/2} 252)

S:a—N:—Mln —5/2

Here, ¢ again denotes the charge transfer ratio determining the band filling in organic

conductors. This historic formula does not take into account the Pauli exclusion principle

but only allows for one charge carrier per site due to the strong on-site Coulomb inter-

action. In the strong U-limit, the spin degeneracy is often lifted and the additional spin

entropy of kpln2 has to be added to Eq. 282, resulting in the Seebeck coefficient of a
Mott-Hubbard metal exhibiting strong Coulomb repulsion [21):

S |G O R

2.6.2 Nondiffusive Phonon Drag Thermopower

In addition to the purely electronic contribution, the so-called phonon drag can further
enhance the thermopower of a given material [41]]. Tt is caused by the phonon heat flow
forcing charge carriers along a temperature gradient due to electron-phonon coupling. It
can be deduced from the following picture. The charge carrier conduction is limited by

the interaction with impurities, defects as well as scattering by other quasiparticles such
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as phonons. If electrons and phonons were only interacting with each other, both would
eventually move at the same velocity because momentum is only transferred in between
them. In this situation the electrical conductivity of the sample would be infinite due
to momentum conservation. When receiving momentum from the electrons, the phonons
need to redistribute the momentum to other entities in order to give rise to resistivity.
These can be impurities, boundaries or other phonons via non-momentum conserving
scattering events (U-processes). The velocities of phonons ,, and electrons v,; are then
related by [41]

—1
Tph—e

+ 72k

other

(2.84)

Uph = Vel ——7
7-ph—e

with the phonon-electron relaxation rate TP_hl_e, the rate of phonon relaxation via other
channels 7., . Eq. 254 relates the resulting phonon heat flow [jph = CppTty, to the

electron velocity v, = J /ne giving rise to a Peltier heat flow proportional to the current
density. With the help of Eqs. 222 and 223 the corresponding Seebeck coefficient then reads

)

-1

Con Toh—
Sipag = —2 —Ph=t (2.85)
ne 7-ph—e + Tother
B

Cph, characterizing the specific heat per volume of the involved phonon modes and
n being the charge carrier density. Assuming a Debye-like specific heat as elaborated in
To

Eq. B8 and relative scattering rates of the form g = (T)U, one obtains an analytical

expression for the phonon drag thermopower:

INkgpaens {To\" (T \° /(’D/T Ze?
Sirag = o Bldens (20 7 de—"" 2.86
drag NeMmeol (T) (9D> 0 Z(ez—l)2 ( )

Here, pgens and my,, denote the volumetric mass density and the molar mass, respec-
tively. The phonon drag thermopower rises cubically in temperature for 7" < 0p, goes
through a maximum around 7" = 65 /5 and falls with 77" for high temperatures due to
the limiting non-momentum conserving scattering process. In case of Umklapp scattering,
v = 1 is to be expected. Moreover, the phonon drag effect is responsible for a reduction

of the phonon scattering part in the resistivity [21]:

-1 —1
7—e—ph + Tother

—1
T,
p=po+ Peph (1 - —”h> : (2.87)
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2.7 Heat Transport

A solid’s capability to transfer heat is not only of technological relevance in applica-
tions such as heat sinking, thermal insulation or thermoelectric energy generation, but
also enables a fundamental investigation of solid state transport properties. Heat can be
transmitted via charge carriers, phonons, spins, electromagnetic waves and various other
excitations. The total thermal conductivity x can be written as the sum of all these

contributions [T21]]

where C; is the heat capacity and [; = v; - 7; is the mean free path of excitation
1 with relaxation time 7; and velocity v;. Therefore, a detailed analysis of the thermal
conductivity provides insight into the fundamental excitations and their interaction in a
solid. Based on a combination of perturbation theory and Boltzmann equation, in the
following the contributions by charge carriers and phonons will be discussed, representing

the main contributors to heat transport in the investigated material class.

2.7.1 Electronic Thermal Conductivity

Electrons moving in an electric field do not only carry charge but also transport heat.
The electronic contribution to thermal conduction can be expressed with the help of Eqgs.
and 253 by [[21):

1 K? ST
K;:f[K_Fﬂ:Ke(l_ KZ ):lie(l—ZT) . (2.89)

The thermal conductivity &, relates the heat flow to a thermal gradient in the absence
of an electric field. It has to be distinguished from the thermal conductivity k. in the
absence of a charge current (J. = 0) and thus, the obtained thermal conductivity depends
on the measurement configuration used. However, for small values of 27" both thermal
conductivities can be assumed to be identical. In the following, specific approximations
to evaluate the transport integrals will be discussed and in particular, the case of the
degenerate and the non-degenerate electron gas as well as a delta function in the density

of states.

Electronic Thermal Conductivity in Metals

The transport integrals Ky can be expanded around the Fermi energy leading to an ap-

proximation of Ky for the degenerate electron gas where the Fermi energy lies within the

67



2. Theory

conduction band [39]:

2 k3T?
Ko = 3 e

Neglecting K2/Ky =~ O(kgT/er)?, Eq. reads

O’(EF) + (9(]€]3T/€F)2 . (290)

72 k3T
3 e?

which is the well-known Wiedemann-Franz law (WF law) relating the electronic ther-

Ky = Ke = o(ep) =Lo-o(ep)-T (2.91)

mal conductivity to the electrical conductivity o. It basically states that each charge car-
rier not only transports charge in an electric field but also energy. The proportionality fac-
tor Lo = 2.4453 x 1078 W Q K2 is called the standard Lorenz number. The Wiedemann-
Franz law is well obeyed in metals above the Debye temperature when scattering events
are elastic. At lower and intermediate temperatures it breaks down due to inelastic charge
carrier scattering [IZ1]|. For the specific case of an isotropic, degenerate electron gas it also
does not depend on the specific band structure. Similar to the derivation of the Bloch-
Griineisen formula for the electrical conductivity as given in Eq. 2561, the relaxation rate
for thermal perturbations taking into account scattering of electrons by acoustic phonons

is given by |21

Lo gt () Lo

22 \ qpT ) 272 J5(%2)

Lo (1) (%), | s
Tin  V8m*a3Mkgfpes \Op T

extending the previously discussed Bloch-Griineisen formula by two summands origi-
nating from differences in the relaxation times. The second term in the squared brackets
arises due to small angle scattering events being able to relax the thermally perturbed
Fermi distribution back into equilibrium. In contrast, small angle scattering processes do
not permit to equilibrate the field perturbation as illustrated in Fig. 2220. The third term
corrects for large angle scattering events which reverse the electron direction but leave the
thermal distribution unchanged, corresponding to a scattering event from + (-) region of
the thermally perturbed Fermi surface to the + (-) region on its opposite site in Fig. ZZ20.
The Lorenz number for a degenerate conductor reads with the help of Eqs. 2292, 261 and
[T21):

L=" -1, . <%>5 % <% . (2.93)
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Figure 2.20: Perturbation of the Fermi distribution by an electric field (left) or thermal gradient (right).
The electric field shifts the complete Fermi surface while the temperature gradient only smears out the
step function. To relax back to equilibrium, large scattering angles are needed for electric fields while
small angle scattering events may be sufficient to relax the distribution function in response to thermal
gradients. Thus the two relaxation times can differ. From: [[21]

In the high and low temperature limits of Eq. 293, the Lorenz ratio evaluates to [T21]

Lot T'=6p (2.94)
Lo e AR '

At high temperatures, the Wiedemann-Franz law is obeyed due to the dominance
of large angle scattering events determining both, the thermal and the electric field
relaxation time. Below the Debye temperature, the number of phonons with high wave
vectors necessary for large scattering angles is limited and small angle scattering processes
gain importance. These only provide a channel for the relaxation of thermal but not of
electric field perturbations. As the corresponding relaxation times begin to differ, the
Wiedemann-Franz law is violated due to the breakdown of the common relaxation time

assumption.

In order to take several scattering mechanisms into account, the thermal resistivities

emerging from the individual scattering mechanisms need to be added up |21

Rtot

1 1
= W,y = Z W, = — (2.95)
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Including impurity and acoustic phonon scattering, Eq. Z93 modifies to |T21)|

5
T T
Rtot pzmp/A + (g) J5 (5
L= T:LO 5 prE , (2.96)
o T
pimn/ A+ <%> % (%) X |1+ 5= (R — 7o J5(Z%)J
D

pimp being the electrical impurity resistivity. The normalized temperature dependence
of Eq. 798 is depicted in Fig. 22T for different impurity levels pj,,,,/A. It clearly shows the
reduction of the Lorenz number when going below the Debye temperature in an impurity
free sample. Upon increasing the impurity level, a common relaxation time for electric
field and thermal perturbations of the Fermi function is restored at low temperatures
and the Lorenz ratio approaches one again. The degree of purity is proportional to the
residual resistance ratio RRR = p(0K)/p(300K) in real samples. In pure copper wires,
the impurity parameter on the order of p;n,/A = 1072 has been improved by one order
of magnitude through sample annealing which is reflected in the temperature dependence
of the Lorenz number, as illustrated in Fig. ZZIb [I50].

1.0
0.8 @ Cold-drawn Cu wire h
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Figure 2.21: Temperature-dependent Lorenz ratio. (a) The temperature dependence of the Lorenz ratio
as given by Eq. B8 normalized to the Debye temperature 0p for different impurity concentrations
Pimp/A. The Wiedemann-Franz law is strongly violated below the Debye temperature but on increasing
impurity level a common relaxation time for thermal and electric field perturbations is restored at low
temperatures due to impurity scattering. (b) An impurity-dependent, low-temperature Lorenz number
has been qualitatively verified by increasing the perfection of a copper wire via annealing. Adapted from:

[Ta0]
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Electronic Thermal Conductivity in Semiconductors

In semiconductors the electronic part of the thermal conductivity may still have a sig-
nificant share in the total thermal conductivity. In the nondegenerate approximation, as-
suming an energy-dependent relaxation time 7 o< € as expressed in Eq. E58, the Lorenz

number according to Eq. reads [37]:

b (Y (0 3) s

The contribution from minority carriers is neglected in this approximation. When two
types of carriers contribute to the electrical conductivity, e.g. electrons and holes in an
intrinsic semiconductor, the total electronic thermal conductivity is given by the sum of

the carrier’s thermal conductivities x; and an additional bipolar diffusion term [I21):

2on(S. + Sp)?
= b+ g 4 LTS E ) (2.98)
Oc + Oy,

S; and o; representing the partial Seebeck coefficients and conductivities of the respec-
tive charge carrier. The additional term arises from the Peltier heat flow occurring in case
of more than just one type of charge carrier. It is most easily observed in small bandgap
intrinsic semiconductors where the partial conductivities of electrons and holes are high
enough for the effect not to be masked by other contributions, such as phonon thermal

conductivity.

Influence of Density of States

In general, the transport integrals and hence the Lorenz number depend on the material’s
density of states g(€). An interesting situation unfolds when the density of states takes the
form of a delta function at the Fermi energy, i.e. g(€) &< (e —€p). In this case no electronic
contribution to the thermal conductivity may be observed due to a vanishing Lorenz
number. While the realization in a solid is difficult, theories predict a huge enhancement in
2T for a material with delta-functional density of states |I51, I52|. The energy-dependent
scattering time takes an equivalent position in the transport integral of Eq. 223 like the
density of states. A narrow Lorentzian shape of the scattering time’s energy dependence, as
predicted in Sec. 25272 for the organic conductor T'TT,13, comes very close to the proposed
delta-functional form and similarly should lead to a violation of the Wiedemann-Franz
law [29].
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2.7.2 Lattice Thermal Conductivity

The lattice thermal conductivity describes the heat carried by phonons in a solid. It is also
sometimes called phonon thermal conductivity. Similarly to Eq. 288, the phonon thermal
conductivity may be expressed as a sum over the contributions from all phonon branches
i |21, 39|

1 1
Kph = g Z Cﬂ}ili ~ gcavslph (299)

with the mode-specific heat capacity per unit volume ¢;, the group velocity v; and
the phonon mean free path [;. More generally, the phonon thermal conductivity may
also be anisotropic and the exact phonon dispersion along the different crystallographic
directions needs to be considered. The majority of heat is carried by acoustic phonons
due to the small group velocity of optical phonon modes. It leads to the approximation
given in Eq. with the acoustic lattice specific heat per unit volume ¢,, the speed of
sound v, and the phonon mean free path l,, = v 7,, Tpn denoting the relaxation time of
the acoustic phonons. In the approximation above 7,, was assumed to be independent of
energy. Employing the Debye approximation for the lattice specific heat and taking the
speed of sound to be independent of frequency, Callaway applied the Boltzmann theory
to the perturbation of the phonon distribution function in order to calculate the lattice

thermal conductivity more rigorously [I53]

Kph =K1 + K2

. ]CB 27T]{ZBT Op/T e’ _re 4
K1 ~or2y, . Ttot 1) £z

2
k‘B <27Tl€BT) <f0 TtOtlAex(e —].> 2dl’)

0 Tto x xT —
OD/ “x4e (e* —1)~2dx

Ky = (2.100)

2
2%,

with the Debye temperature 6p and the total scattering rate [3Y]

1 1 1 1
R (2.101)
Ttot Ts N TUu

characterizing the phonon relaxation in the solid. A crystal with solely harmonic inter-
action potentials does not provide any phonon-phonon interaction mechanism and would
exhibit infinite thermal conductivity [I2I]. In real crystals the anharmonicity in the inter-
action potential between the atoms and molecules allows for phonon-phonon scattering.

Three interaction mechanisms are included in Eq. EZZI00. In addition to elastic scattering
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events described by the relaxation time 7g, normal processes (7x) and Umklapp processes
(1y) are distinguished. Similarly to the electron scattering theory, Umklapp processes
involve a reciprocal wave vector as the scattered phonon wave vector points out of the
first Brillouin zone of the crystal, in contrast to normal processes. Hence, the momentum
change is significantly larger for Umklapp scattering and results in higher thermal resis-
tivity. Normal processes only play a role at very low temperatures where the number of
phonons with sufficiently high wave vectors permitting Umklapp scattering is negligibly
small. In case of prevailing Umklapp processes, i.e. for 7y > 7y, k1 in Eq. ZZI00 dominates
the overall thermal conductivity while for N-processes ko gives the major contribution.
Several theories have been developed to calculate the phonon-phonon relaxation rate for

Umklapp scattering, the most widely applied one yielding |T21):

1
== A Te BvR (2.102)
Tu

Here, w denotes the phonon frequency while Ay and By are material-dependent con-
stants. In addition to the interaction with other phonons, the lattice vibrations can also be
scattered by impurities and at the boundary of the crystal. Boundary scattering becomes
important at very low temperatures when the phonon mean free path is comparable to
the crystal dimensions. It can be described by |TZ1]

1 112y,

Ty d

(2.103)

with the group velocity v, of the phonon mode and the dimension d of the crystal. In

addition, the interaction with impurities can be expressed as [TZ1]]

3
! Yo (AM) wt o (2.104)

Timp  4mv3 \ M

Vo denoting the effective volume of the impurity, M being the mass of all atoms in
a unit cell of the crystal and AM the mass difference between the substance and the
impurity. Depending on the relative concentration of impurities, boundary or impurity
scattering limits the phonon mean free path at low temperatures. Rarely, the effect of
N-processes is observed at very low temperatures as well |T2I]. At high temperatures
(T > 0p), the lattice heat capacity remains almost constant and the Umklapp-dominated
phonon scattering, as described by Eq. 102, together with Eq. P00 yields a k), oc 7!

dependence.

So far, the phonon thermal conductivity was discussed in terms of acoustic phonons
carrying the majority of heat. Yet, the phonon spectra in molecular crystals are signif-

icantly more complex due to the large number of molecules per unit cell and the low
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symmetry of the latter, leading to an increased number of optical phonon modes. Some
of these modes have frequencies of similar magnitude to the acoustic phonon branches
allowing for optical-acoustic phonon coupling. An expression for the resonant scattering
rate of acoustic phonon by localized optical phonon modes has been phenomenologically

derived from expressions for resonant defect scattering [I54]

1 wWiw?
— =NoD—52>—— 2.105
R 0 (wd — w?)? ( )

with the optical phonon frequency wy, the acoustic phonon frequency w, the coupling
strength D and density of scatterers Ny. These resonant phonon modes are often due to

disorder of molecular units.

2.7.3 Minimum Thermal Conductivity in Solids

In glasses, representing amorphous insulators without long-range order, phonons are still
the major carrier of heat but with a significantly reduced phonon mean free path [I21).
The thermal conductivity of glasses rises for very low temperature (<1 K) with x oc 7"
where the observed n ~ 2 has been attributed to the scattering of low-energy phonons.
Following the steep rise, a plateau is often observed which has been interpreted in terms
of several scattering mechanisms, such as structural disorder, tunneling interaction or
resonant optical-acoustic phonon coupling as described by Eq. EZTO5. Above about 20 K
the thermal conductivity of glasses rises again. At sufficiently high temperatures, Kittel
argued that the phonon picture of plane waves propagating through a crystal breaks down
for glasses by virtue of a phonon mean free path being on the scale of the disorder in the
material |I55]. It may be compared to charge carrier transport in organic crystals often
revealing a crossover from coherent band to incoherent hopping transport. When the
mean free path is set by the disorder, the thermal conductivity follows the heat capacity
which rises with temperature to a constant value, explaining the characteristic thermal
conductivity of glasses. The characteristic temperature-dependent thermal conductivity

of a glass is compared to the phonon thermal conductivity of a crystal in Fig. 2222.

The model of strongly-damped localized Einstein oscillators which transfer their energy
within half of an oscillation period 2/7g in a random walk can theoretically capture the

physics. Implementing the Einstein specific heat of optical phonons, a mean free path

1

corresponding to the interatomic spacing [ = n~*/% and a thermal velocity of vy, = 2I/7%,

the Einstein thermal conductivity yields [I57]
n~V3k20pa%e”

e wh(e* — 1)2 (2.106)
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103
— Crystal

---Glass

102 |
101 J
100 4

101 e -

Thermal conductivity (W m=TK™1)

1072 y
100 10 102

Temperature (K)

Figure 2.22: Schematic lattice thermal conductivity of a crystal and a glass. For a crystal the thermal
conductivity is limited by the phonon mean free path above the Debye temperature and by the heat
capacity at cryogenic temperatures, resulting in a pronounced maximum in between these limits. The
phonon mean free path of glasses is less temperature-dependent and the thermal conductivity increases
with temperature following the heat capacity. Adapted from: [T56]

with the Einstein temperature 0 and the reduced temperature z = 0g/T. A similar
result can be obtained by applying the Debye instead of the Einstein model. The general
approach is to consider different phonon modes contributing to the thermal conductivity
by [T21]

KMin = /000 %U(w)l(w)dw . (2.107)

Here, % denotes the specific heat per frequency. By applying the Debye model for the
specific heat and assuming the scattering length to be half of the phonon wavelength, a

minimum thermal conductivity per mode can be deduced from this approach [I57]

9 2/3 T 2 /9c 1267
in = ——n?3k - ———dx, 2.108
fMin = 948"t BT (90) o (er—12™ (2.108)
with the mode specific cut-off temperature 6, = W?W' For the total thermal

conductivity the two transverse and one longitudinal modes are summed up, resulting in
a high temperature limit (7" > 6p) of Eq. EZT0R [I57

1 2
o n2/3 2
RMin 248n k’B( Ut —|—"Ul) s (2109)

with the transverse and longitudinal speed of sound v; and v;.
Compared to other thermal properties, such as the heat capacity, theories on the ther-
mal conductivity do quantitatively not compare as good to the experimental data. On the

one hand this is due to the many simultaneous excitations giving rise to thermal conduc-
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tivity in solids which can be hard to distinguish. On the other hand the lack of coherent
data sets on high-purity samples of different material classes hinders a comprehensive
general understanding. For this reason, the presented theories are expected to predict a

certain behavior, trend and magnitude rather than agreeing in absolute values.
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Chapter 3

Experimental Methods

This chapter is intended to outline all relevant experimental methods employed in this the-
sis. Firstly, the details of the electrolytic crystal growth to obtain high-purity (DCNQI)sM
single crystals are presented. It follows the more detailed depiction in my diploma the-
sis |65 and was updated with respect to the latest advances of this procedure. In the
second part, the thermoelectric characterization setup is introduced. It was newly de-
signed, implemented and characterized in the course of my PhD work and allows for an
unprecedented, comprehensive characterization of all relevant thermoelectric quantities in
organic conductors. As such, it constitutes an integral part of the scientific achievement

accomplished by this thesis.
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3. Experimental Methods

3.1 Electrolytic Crystal Growth

Experimental Setup

The investigated (DCNQI)oM (M=Cu, Li) radical anion salts were grown by electrocrys-
tallization representing a well-established method to grow high-purity single crystals of

organic conductors. A typical electrolysis cell used in this thesis is shown in Fig. Ba.

Cathodes Anodes "

] | -CII immrsed in
+ 1 | ater-Filled Heat Bath

Figure 3.1: Experimental setup for electrocrystallization. (a) Scheme of the electrolysis cell used (adapted
from: [68]) and (b) photograph of the electrolytic growth apparatus.

The H-cell (or sometimes U-cell), made of glass with an additional tube connecting
the anode and the cathode region at the top, contains a glass filter (frit) at the bottom to
prevent diffusion of anode products to the cathode. The two rod-like platinum electrodes
have dimensions of 10 mm x 1 mm (length x diameter). The electrical feedthroughs are
molded into glass and the whole electrode is fixed onto the H-cell by a Quickfit screw plug
with a silicone-PTFE seal. Two inlets with valves allow to flush the filled cell with Argon
via the top bridge. As their positions slightly differ in height, filling Argon into the lower
inlet will push out the air in the cell due to its higher density, ensuring inert conditions
during crystal growth. Because of the sensitivity to impurities, the electrocrystallization

process needs to be preceded by a thorough cleaning procedure of all glassware used.

Cleaning & Preparation of the Cell

In a first step, all glassware was cleaned in an automated laboratory dish washer in an
alkaline cleaning detergent. Afterward, the glassware was filled with 0.02 M KMnO, and

was allowed to stand for one week. KMnQO, oxidizes most organic impurities leaving behind
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3.1. Electrolytic Crystal Growth

manganese dioxide. After removing the KMnO,4 and washing the cell with distilled water,
the residual manganese dioxide was dissolved by filling the glassware with concentrated
hydrochloric acid (37%) for one day. Next day, the glassware is rinsed again with distilled
water at least 5 times before it is baked-out in an oven at 420 K to remove water condensed
on the surface. Finally, the last step is repeated with dry acetonitrile which is used as
solvent in the crystallization process.

The electrolyte was prepared in a glovebox under nitrogen atmosphere. For this, a
screw top jar is taken out of the oven and transferred to the glovebox via a load-lock sys-
tem while still hot. DCNQI and a proper cation salt are dissolved in 50 ml of acetonitrile
at a concentration of 7mmol/l and 5.5 mmol/l, respectively. Cu(CH3CN),ClOy4 or LiClO,4
were employed as conducting salts, depending on the desired metallic counterion in the
final (DCNQI)2M (M = Cu, Li) product. The weigh-in and solvation procedure is directly
conducted in the purged jar to avoid any contamination from the usage of multiple glass
wares. The high-purity acetonitrile (99.9%, Sigma Aldrich) was additionally dried by a
molecular sieve of 3 A pore size before use. The resulting solution was retrieved from
the glovebox and outgassed in an ultrasonic bath for 20 minutes. In the mean time,
the H-cell is taken out of the oven, sealed and flushed with Argon while still hot. The
platinum electrodes are etched with aqua regia and washed with acetonitrile. In a last
step, the electrolytic solution is immersed into the H-cell in a counter flow of Argon and
the electrodes are inserted into the cell. The complete arrangement is finally flushed with
Argon after which the cell is sealed and immersed into a thermostat-controlled bath at
305 K. Lastly, a constant current between 5pA and 20 pA was supplied to the cell for
several days by means of an electrolysis cell controller (Elab 18/96). The full working
setup is illustrated in Fig. BTb.

Crystal Growth

The redox reaction occurring during the crystal growth are exemplary outlined for the
(DCNQI)2Cu crystals. DCNQI molecules are reduced to DCNQI™ at the cathode and
subsequently, they form (DCNQI)2Cu single crystals by the reaction with the Cu™ ions
of the copper perchlorate. Upon crystallization, an additional charge transfer process

between DCNQI™ and Cu™ takes place resulting in the formation of the final product:

DCNQI + DCNQI™ 4 Cut = (DCNQI~?/3),Cu™/? . (3.1)

Figure B2a illustrates the crystal growth of radical anion salts at the cathode. As one
can see, the crystals preferably grow at the edges of the cathode as they will offer a higher

local electric field as well as more structural inhomogeneities at the surface serving as
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nucleation sites. When the electrolysis is stopped too late, the crystals branch out due to

the diffusion-limited aggregation and do not show defined crystalline shape anymore.

Date :29 Sep 2016

Figure 3.2: Crystals grown by electrolysis. (a) Growth of needle-like crystals at the cathode of an elec-
trolysis cell. (b) (DCNQI)2Cu single crystal of several mm length and about 0.1 mm in diameter. (c) The
SEM image of a crystal was kindly taken by Stephan Braxmeier at the ZAE Bayern.

At the end of the electrocrystallization the cathode is pulled out of the electrolysis
cell and the crystals are swept off the electrode by ethanol onto filter paper. Thereafter,
the crystals are washed with diethylether, separated with an ultra-fine tweezer and stored
under inert conditions.

The dark-colored needle-like crystals attain thicknesses between 15pm and 200 pm
and lengths of up to 3cm. Their reflective surface indicates the metallic character of
the samples. Figure B2b depicts a photograph of a (DCNQI),Cu crystal. The crystalline
morphology with well-defined side faces and edges may also be inferred from the scanning
electron microscope (SEM) image in Fig. BZc. The crystal structure has been determined
by X-ray diffraction and was found to agree with the structures published previously
[71, 66]. The weak binding forces in organic crystals generally classify them as soft matter
and accordingly, the fragile samples tend to break easily when grabbed with the tweezer.
In order to minimize the defects induced by sample handling, they were transferred with

the help of a biopunch stamp to which the crystals adhere electrostatically.
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3.2 Electrothermal Characterization of Charge and

Heat Transport

The electronic and lattice properties of organic materials are very sensitive to the degree
of purity and crystal perfection |58, [28, I59]|. Moreover, the physical properties are most
often highly anisotropic due to the strong spatial variation of the electronic overlap. These
difficulties complicate a thorough thermoelectric characterization of new organic materials
since the relevant transport coefficients are interrelated [53]. An optimum thermoelectric
characterization of new materials is therefore conducted by measuring all three relevant
quantities - the electrical conductivity o, the thermopower S and the thermal conductiv-
ity K - on the same specimen and in the same spatial direction. In addition, contacting
the sample to wires or substrates easily imposes stress and effective pressures on the soft
materials, in particular upon cooling to cryogenic temperatures. The transport properties
in organic conductors are known to be highly pressure sensitive |I60, I61, [62|. Hence,
not only a measurement on the same specimen but also in the same contact configuration
and experimental environment is desirable. Here, the novel measurement setup created in
the course of this thesis is presented enabling a detailed temperature-dependent charac-
terization of all three thermoelectric quantities on a single organic crystal, on the same

sample holder in solely one experimental setup.

3.2.1 Measurement Setup

Cryostat

The transport measurements have been carried out in an Oxford Instruments He-flow
cryostat in a temperature range from 4 K to 300 K. The cryostat was rebuilt and in its
final version contains 16 electrical feedthroughs (4x Rigid BNC, 12x LEMO). An Oxford
ITC-4 temperature controller finely regulates a resistive heater at the heat exchanger. The
liquid helium flow through the heat exchanger is roughly adjusted for different temperature
regimes. The samples are cooled down to 4K at a rate smaller than 0.3 Kmin~!. Inside,
a rhodium-iron temperature sensor close to the heater monitors the base temperature of
the cryostat but for a more reliable temperature measurement, a silicon diode (Cryocon
S900-BB) additionally records the sample temperature. The diode is thermally coupled to
the sample holder base plate and is read out by a LakeShore 321 temperature controller.
For cooling, the sample chamber is filled with helium gas at a pressure of 1atm being in
thermal contact with the heat exchanger through which liquid helium is pumped. Before
cool-down, the sample chamber was flushed three times with pure helium gas to minimize

condensing vapors at low temperatures.
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For the thermopower and thermal conductivity measurements, heat losses to the en-
vironment via convection need to be minimized. These measurements are consequently
performed in vacuum and therefore, the sample chamber has been evacuated to 10~% mbar
utilizing a turbomolecular pump backed by a membrane pump (Pfeiffer HighCube Eco
80). The measurements are performed while heating the sample from 4 K to room temper-
ature (RT) in vacuum. As both, the thermopower and thermal conductivity measurements
cannot be performed directly just after another, the sample needs to be cooled down twice

to 4 K and the measurements are performed during subsequent temperature cycles.

Sample Holder & Preparation

As outlined in Ch. EZ33, organic crystals show a large thermal expansion coefficient
on the order of 107*K~! compared to inorganic materials (1079 K='-107>K~!). Thus,
temperature-dependent measurements should be performed on suspended samples of these
needle-like, fragile crystals in order to minimize the induced mechanical stress. Fig. B=3
schematically illustrates the sample holder following Chaikin et al. [I63]. It consists of a
copper base plate onto which the silicon diode is mounted to measure the base temper-
ature Ty. Onto the base plate two alumina blocks are glued with epoxy. Around each of
the alumina blocks a NiCr heater wire is wound eight times and embedded into Stycast
epoxy in order to establish a good thermal contact between the wire and the blocks. This
allows for a separate heating of each block by feeding a current on the order of 10—100 mA
through the NiCr wire. The temperature difference between the two blocks is measured by
a differential copper-constantan-copper (type-T) thermocouple glued on the top surface
with silver paint.

Next, four gold or copper wires with diameters between 20 — 100 pm are aligned par-
allel to each other across the blocks and glued to a respective block on opposite sides.
Furthermore, the ends of these wires are glued by silver paint to electrical contact posts
thermally grounded to the copper base plate in order to prevent the generation of para-
sitic thermoelectric voltages by contacts at different temperatures. Afterward, a drop of
graphite paint (Dotite XC-12) is applied to the middle of each wire in between the two
blocks and the needle-like crystal is placed onto the drops while being still wet. Under a
microscope it is checked that the graphite paint creeps around the crystal and establishes
electrical contact from all four crystal sides. In this way, contact resistances on the order
of 1 —10€2 at 4 KK have been achieved. The contact wires are cut at the end opposite to
the contact post leaving behind an organic crystal electrically contacted to free-standing
wires allowing for unhindered contraction and expansion. At its both ends, the sample
is thermally connected to individual alumina heating blocks to impose a temperature

gradient across the sample. As a last step, a radiative shield made of copper is screwed
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heater lead wires differential ’ sample
thermocouple = Cu wire
(type T) ® graphite paint
= silver paint

temperature
sensor (Si)

Figure 3.3: Scheme of the sample holder used for all transport measurements. To a copper base plate
with electrical contact posts and a temperature sensor, two alumina blocks are glued. By graphite paint
the sample is attached to four copper or gold wires which are thermally connected to the two different
alumina blocks on opposite ends of the crystal. These can be heated independently by NiCr resistive
heater wires wrapped around and glued on each block by thermally conductive Stycast epoxy. The
temperature difference between the blocks is monitored by a type-T differential thermocouple (Cu-CuNi-
Cu). The electrical contact posts are thermally grounded to the copper base plate to hinder spurious
thermoelectric voltages to occur.

onto the copper base plate (not shown). Its surrounding of the sample ensures stable and
reliable thermal conditions throughout each measurement. All subsequent measurements

were performed on the same sample mounted onto the sample holder described above.

3.2.2 Electrical Conductivity

The most straightforward measurement is that of the electrical conductivity by means of
a four-probe current-voltage measurement. With a Keithley 236 source measurement unit
(SMU), a current I is passed through the outer ones of four electrical contacts and the
voltage drop U at the inner two contacts is measured by an Agilent 34420A nanovoltmeter.
Under the assumption that the size of the graphite paint contacts is small compared
to the length of the crystal, no significant current flows through the voltage contacts
facilitating the determination of the electrical conductivity o without the influence of

contact resistances and lead wires by

12 T2
_RACS_UACS

where 2[ is the distance of the voltage contacts and A.s is the cross section of the

o (3.2)

crystal. The voltage can be measured to an accuracy better than 11V and the current is
applied with an error of less than 1 pA. The overall accuracy of the resistance measurement
has been determined to be better than about 1 m¢). Hence, for sample resistances on the

order of 1 — 102 the main uncertainty of o stems from the error of the cross section A,
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which is determined optically under the microscope.

3.2.3 Seebeck Coefficient

The Seebeck coefficient was measured following the method introduced by Chaikin and
Kwak where a differential temperature gradient is imposed on a sample thermally con-
nected to two heater blocks made of alumina [I63]. The temperature difference between
the two blocks is monitored by the Seebeck voltage of the differential thermocouple con-
nected to the blocks while simultaneously the thermoelectric voltage of the sample is

measured. Both voltages are recorded with an Agilent 34420A nanovoltmeter.

Seebeck Voltage [uV]

DT [K]

Figure 3.4: Typical curve obtained in the thermopower measurements. At first, block one is heated until
a temperature gradient of about 0.3K is established (0—1). Afterward, the heater is switched off and
the second block is heated until a similar temperature gradient of —0.3 K, i.e., into the other direction
is obtained (1—2). Finally, the first block is heated again until the temperature gradient is compensated
(2—3). This data was recorded on a (DMe-DCNQI)2Cu crystal at RT and the sample was connected to
copper wires.

A representative measurement curve is depicted in Fig. B4. By slowly heating one of
the blocks (0—1) a temperature gradient is imposed on the sample. When the temperature
difference amounts to about 0.3 K, the heater of the first block is switched off and block
two is heated until a temperature gradient of —0.3 K into the other direction is established
(1—2). Then, the heater of the second block is switched off and block one is heated again
until the temperature gradient vanishes (2—3). Slow heating rates of about 0.5 K min™!
are used to ensure sufficient heat transfer from the alumina blocks to the sample. Away
from the starting and turning points the slope of the measurement curve should be equal
into both heating directions. From the linear part of the slope AV /AT the thermopower

S can be determined by
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S = % + Sew (3.3)

where S, is the thermopower of the contact wires (Cu or Au) for which the mea-
surement has to be corrected. It is one to two orders of magnitude smaller than the
thermopower of the crystal and well-documented in literature |[I64]. At RT it amounts to
about 1.6 11V K™!. From Fig. B4, the Seebeck coefficient of (DCNQI),Cu at RT can be

determined to

S =-356pVK'+16pVK ! =—-34.0pVK™ (3.4)

being in good agreement with literature data [85]. The measured temperature differ-
ence refers to the surface of the two alumina blocks and any heat losses along the length
of the contact wires need to be minimized. Thus, measurements are performed in vacuum.
After the sample was cooled down to 4 K in helium atmosphere, the sample chamber in the
cryostat was evacuated to 1075 mbar. While heating the temperature of the sample holder
slowly to RT, measurement curves are recorded at temperature steps of 5—10 K to ensure
thermal equilibration in between each measurement cycle. Because cryogenic temperature
measurements in vacuum are prone to error, the sample temperature was evaluated in-
dependently from the sample resistance determined after each Seebeck measurement and

compared to reference measurements under helium atmosphere upon heating.

3.2.4 Thermal Conductivity

Compared to electrical transport measurements, determining the thermal conductivity
of a material is a challenging task since heat flow pathways are difficult to control. This
problem becomes even more dramatic when performing measurements on small specimen
of low thermal conductivity materials as the flow of heat through the sample is easily
disturbed by, e.g., sensors. Furthermore, the high surface-to-volume ratio in small samples
may lead to an overestimation of the thermal conductivity due to radiative heat losses,
especially at high temperatures. To circumvent these issues, a variation of the 3w method
has been applied to organic conductors for the first time in this thesis. It not only facilitates
an accurate determination of k£ but moreover, yields a comprehensive investigation of the

thermoelectric performance.

The 3w Method

The 3w method was developed by Cahill to measure the thermal conductivity of solid bulk

samples and thin films [I65]. The idea is straightforward: A periodic current of amplitude
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Iy and frequency w is applied to a Joule heater of resistance Ry causing a periodic heating

at frequency 2w:
1
P(t) = Rol]sin®(wt) = 53013 (1 — cos(2wt)) . (3.5)
In general, the resulting temperature oscillation AT caused by the periodic heating
power P(t) inside the heater is expressed by a thermal transfer function Z(w) |[I66, L67
AT(t) = P(t)® F ' Z(w)] , (3.6)

i.e. by a convolution of P(t) with the inverse Fourier transform of the complex transfer
function Z(w) characterizing the thermal response of the system. Employing the convo-
lution theorem, Eqs. B3 and B® lead to [I67]:

 RoIZ
2
Without including any boundary conditions, Eq. BZd describes the stationary heating

AT(#)

{Z(0) — Re[Z(2w)] cos(2wt) + Im[Z (2w)] sin(2wt)} . (3.7)

as well as the temperature oscillation at frequency 2w in a resistor driven by a sinusoidal
current of frequency w. The temperature amplitude is complex, meaning the respective
real and imaginary part to oscillate in-phase and out-of-phase with respect to the heating
power. If the resistance of the heater is temperature-dependent, the oscillating temper-
ature driven by the periodic current inside the heater will lead to a voltage drop of the

form |67

U= R(t) - I(t)
= {Ro+ RoxAT(t)} I sin(wt) | (3.8)

X = 0ln R/OT being the temperature coefficient of the heater’s resistance. With the
help of Eq. B it follows that |L67]:

U(t) = R()[() SiIl(CUt)

+ XR2I3 { (@ + —Re[sz)]> sin(wt) + —Im[i@w” Cos(wt)}

— xRAIE {w sin(3wt) + W cos(Bwt)} . (3.9)

The voltage drop contains two frequency components, one at the excitation frequency
w and a second phase-shifted one at 3w. Since the 3w voltage signal depends on the

system’s thermal response Z(w) and is related to the thermal losses from the heater to
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the environment, it enables a determination of thermal properties, such as the thermal
conductivity or the specific heat. Depending on the measurement geometry and boundary
conditions, the thermal properties of the environment or the heater itself can be measured
if a suited model of the thermal transfer function is applied. In the following, the thermal

transfer functions of two distinct measurement geometries are discussed.

Line Heater on Semi-Infinite Solid

The classical 3w method was developed for a metal strip heater of thickness t, width 20
and length 21 > t, b deposited onto a bulk material or film of thickness d > Ag, with the

thermal penetration depth |L6§]

Dg

\e =
o 2w

(3.10)

of a material revealing the thermal diffusivity Ds = kg/(paenscp). Here, kg denotes
the thermal conductivity, ¢, the specific heat per volume and pgens the density of the bulk
or substrate material underlying the metal strip heater. In the frequency regime where

b < As < d, the thermal transfer function Zg of such a system is approximated by [I63]

1 1 1 ib?
Z = ——1In(2 ——In{— A1
() = =g |~y 40— (50)] (3.11)

n = 0.923 being a material-independent constant. Eq. BI1 relates the complex 3w
voltage to the thermal conductivity of the bulk material. By measuring the frequency
dependence of the in-phase 3w voltage, the thermal conductivity can be determined by

linearly fitting Re[Us,] against In(2w).

Suspended Wire

In the recent two decades, the 3w method was further developed to measure the thermal
conductivity of small rod-like samples, e.g. carbon nanotubes or inorganic nanowires [I69,
[70]. In this situation, the sample itself is used a Joule heater and its thermal losses
are assumed to be governed by heat conduction to the electrical contacts. For a wire
of diameter d suspended between its voltage contacts at distance 20 > d, the thermal
transfer function has been evaluated to [I66]

(sinh 8 — sin B) + i{sinh § + sin 8 — $(cosh 8 + cos 3)}

Zsw(w) = 2fcw(cos B + cosh f3) ’ (3.12)

with 3 = y/wT and the characteristic thermal response time 7 = (2)?/D being related

to the thermal diffusivity D of the wire. The frequency dependence of Zgyy is similar to
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the response function of a lumped first-order RC system, i.e. Eq. BI2 is well-approximated

by the transfer function [I66]:
Ry, 1 —iwt/5
ZSW lum =— 3.13

swamp (W) = T3 57 76)2 (3:13)

The thermal resistance Ry, = 21/(kA.s) relates Z to the thermal conductivity  of the

wire of cross section A.s and length 2[. Fig. BXHa compares the frequency-dependence of

the real and imaginary part of Zgw jump and Zsw, indicating the good agreement between

the lumped approximation and the entire solution described by Eq. BI2.
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Figure 3.5: Thermal transfer function of a suspended wire. (a) Real and imaginary part of the thermal
transfer function given by Eq. BI2 and compared to the approximation in Eq. BT3. The abscissa is
normalized to a dimensionless frequency wy7/10, wy = 2w being the frequency of the heating power
P(t). (b) The temperature distribution along the wire oscillates between zero and finite value for low
frequencies (indicated by the striped area). As the excitation frequency approaches 5/7, the temperature
difference does not fully relax back to zero anymore but alternates between finite, non-zero values. In the
large frequency limit, the temperature profile corresponds to a DC heating of the crystal as the thermal
response of the sample can no longer follow the dynamics of the excitation. Adapted from: [I66, I6d]

The characteristic behavior can be understood in the following way: At small excitation
frequencies, the thermal response is fast compared to the periodic heating current. Hence,
the temperature oscillation follows the excitation power and oscillates in-phase while the
(imaginary) out-of-phase thermal response function vanishes. At zero frequency the real

part extrapolates to a constant value of

wr<l Ry B 21

12 12kA.° (3.14)

Re [Zsw,ump(w)]

being inversely proportional to the thermal conductivity . In this limit, the thermal
response function is independent of the material’s specific heat ¢ and allows for a charac-

terization of K without knowledge of the former. This is highly advantageous over other
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transient thermal conductivity measurements, such as laser flash [I21)|. The specific heat
comes into play via the thermal response time 7.

With increasing excitation frequencies, the thermal response will no longer be able to
follow the dynamic external stimulus and the thermal response occurs phase-shifted with
respect to the excitation power. This phase shift yields to an imaginary part contributing

to Zsw and peaking at a frequency

w=5/T . (3.15)

At this frequency, real and imaginary part of Zgy, are equal in amplitude being exactly
half of the low-frequency limit given by Eq. B-T4. The position of the peak in the imaginary
part allows for an experimental determination of the specific heat if the value of k, as

evaluated from the low-frequency in-phase signal, is known:

Mot * T * KR

mol — 3.16
Cmol pdens | (2[)2 ( )

Here, m,,,; denotes the molar mass of the material.
At even higher frequencies w > 5/7 both, the imaginary and the real part of the tem-
perature oscillation decrease leading to a DC heating of the crystal. The temperature
distributions along the wire for the three frequency limits are schematically illustrated
in Fig. B3b. At low frequencies (wr < 1) the temperature profile completely follows the
dynamic variation of the heating power, i.e. the temperature rise AT oscillates between its
maximum value and 0. With increasing excitation frequency the temperature amplitude
becomes smaller and does not completely vanish after each cycle. For the extreme limit of
wT — 00, the temperature cannot follow the excitation anymore but remains stationary

increased without generating a 3w voltage component. The absolute complex amplitude

of ZSW,lump

Ry, 1 wr>1 10 1
ZSWlum W) = — 7 C 3.17
’ 7 p( )| 12 1+ (UJT/5)2 24Acs(21)pdenscp w ( )
follows an w~!-behavior in the high-frequency limit and is independent of x. The
asymptotic limits indicate that the low frequency thermal response of the system is sen-
sitive to the thermal conductivity ~ while the high frequency part is conditioned by the
heat capacity c. Hence, measuring the low-frequency part wr < 1 with high accuracy is

crucial to extract the thermal conductivity from the experimental data.
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3w Measurement Setup

The setup to measure the frequency dependence of the 3w voltage Us, is depicted in
Fig. B8. The analog output of a simultaneously sampled 24-bit data acquisition card
(NI PXI-4461) is used to apply a sinusoidal voltage to the measurement circuit. A load
resistor Ry, about two orders of magnitude larger than the sum of sample and contact
resistance (Rg + 2R¢), is used to establish constant current conditions. The voltage drop
at the inner contacts of the organic crystal is connected to a Thomson bridge consisting of
four precision 10k (£0.01%) resistors. For sample resistances above 1k a home-built
subtractor circuit consisting of a dual INA 2128 instrumentation amplifier is used instead
of the Thomson bridge. Prior to each measurement, the bridge is automatically balanced
by a computer controllable resistance decade (Orbit Controls 642) which is connected in
series to the sample (Rp). The output of the balanced bridge reads U = Us, /2 + U,ise
because the bridge circuit evens out the 1w part of Eq. B9, typically being three to four
orders of magnitude larger than Us,, [T71].

o e e e e e M e e e e e e e e e e e e e e e e e e e e e e

Analog Out (DAQ):
0-10V, 0-3kHz

Thomson Bridge

24 bit

ASRSI.?.O NI DAQ PXI
mpfitier 4461 &

E2 4462

Computer Controlled
Resistance Decade
(Orbit Controls 642):
Rp=Rg

Digital
Lockin
Algorithm

Figure 3.6: Scheme of the Us,, measurement setup. A sinusoidal voltage from a 24-bit data acquisition card
(NI PXI-4461 DAQ) is applied to a series of load resistor Ry, sample resistance Rg and resistance decade
Rp. The load resistor is large compared to the sample resistance. The voltage drop at the sample is fed
into a Thomson bridge which is equilibrated by the resistance decade and subtracts the Uy, voltage from
the signal. The output of the bridge is amplified by a voltage preamplifier and digitized with the same
24-bit DAQ card the AC driving voltage was provided by. Finally, Us,, is extracted by a self-programmed
digital LockIn algorithm developed in Labview.

The bridge voltage is amplified with the help of a Stanford Research SR560 voltage
preamplifier by a factor of 103 —10% and afterward digitized with the same data acquisition

card the AC voltage is supplied by. The 3w voltage Us,, is extracted by a self-programmed

90



3.2. Electrothermal Characterization of Charge and Heat Transport

digital LockIn algorithm in Labview. The lw voltages at the sample and load resistor
are also digitized by an additional DAQ card (NI PXI-4461) in order to determine the
current and the sample resistance. To accurately determine x, these quantities should
always be measured together with Us, as Eq. B9 crucially depends on the relevant pa-
rameters. The simultaneous measurement of the sample resistance additionally allows to
balance the Thomson bridge for each frequency step, ensuring the rated accuracy also
for regimes with a pronounced temperature-dependent resistivity. The self-programming
approach was chosen over an experimental setup employing two commercial LockIn am-
plifiers in order to attain higher flexibility and automation in the measurement setup.
Measurements on the thermal conductivity are also performed as described for the ther-
mopower measurements, i.e. while heating up the sample from 4 K to RT in vacuum. The
measurements are not performed in the same cycle as the thermopower measurements to
avoid any temperature gradient from previous Seebeck measurements within the sample

holder. Thus, the sample needs to be cooled to 4 K for a second time.

Data Evaluation

Combining Eqgs. B9 and BI3, the real and imaginary part of the third harmonic voltage

evaluate to:

xRy Ef
2

Im[Us,(f)] = Bor A, 1+(Z P (3.18a)
CR2.(2D) - I3
Re[Us(f)] = X 41:‘ ,;_2208 Iy T (% i (3.18Db)

U3wz}=0)

Here, the frequency representation with f = w/(27) allowing for a straightforward
data evaluation is given. All voltage and current values in the thesis are amplitude and
not rms-values, as sometimes employed in literature and displayed by commercial LockIn
amplifiers. To extract the thermal conductivity and specific heat, the real and imagi-
nary part of the 3w signal were plotted against frequency. The imaginary part was fitted
to Eq. BI84 in order to determine the thermal response time 7 from the position of the
peak. Afterward, the real part was fitted by Eq. BZI8H with fixed 7 to obtain the amplitude
Us.,(f = 0) and hence k. The resistance R and current [y are determined from the average
over all frequency points. The measured resistance also enables a more accurate determi-
nation of the sample temperature from the previously measured temperature-dependent
resistivity. The measured temperature at the silicon diode was found to deviate up to 5 K

from the actual sample temperature when measuring in vacuum at cryogenic temperatures
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which might be due to temperature-gradients across the sample holder. The temperature
coefficient y was determined from the resistivity measurement at each ambient tempera-
ture. The thermal conductivity ~ as well as the specific heat at constant volume ¢, and

per mole ¢,,,; may then be evaluated by:

X R (20) - 1§

= 3.19
"R U (f=0)- A, (8-19a)
TR
Cp = 7org 3.19b
P (2l>2pdens ( )
Cmol = Cp " Mimol - (319C)

Setup Calibration

In order to validate the measurement principle, the designed setup was calibrated by
determining the thermal conductivity and specific heat of a stainless steel wire of 21 pm
diameter and several mm in length which was mounted to the sample holder as described
in Sec. B0 with an overall contact distance of 2l = 3.75 mm. These wire dimensions are
similar to typical sizes of the investigated organic single crystals. Moreover, the availability
of high-quality literature data on the thermal properties of stainless steel enables a sound

and appropriate setup calibration [I'72].

Ry | Iy X 2 | d | 7 |Un(f=0)

12 | [mA] | [107* K™Y | [mm] | [um] | 3] [nV]
Value 8.43 | 1.465 |  1.22 375 | 21 | 3.40 4.00
Abs. Err. 0.07 | 0.007 |  0.01 01 | 1 |0.03 0.02
Rel. Err. [%] || 0.8 | 0.5 0.8 2.6 | 47 | 0.9 0.5

Table 3.1: Experimental parameters to evaluate the thermal conductivity and specific heat of a stainless
steel wire with the help of Eqs. BETUd and BIY9H. The circular sample cross section is obtained from
the diameter d by A.s = 7(d/2)? and the density pgens = 7.9gcm ™! was taken without error from the
literature [I72].

In Fig. B70a the measured frequency dependence of the real and the imaginary ampli-
tude of Us, is shown together with the two fits of Eqs. BI8a and BI8H which agree very
well with the experimental data. The anticipated cubic current dependence of the total 3w
voltage has also been verified (see Fig. BZb). It demonstrates the measurement accuracy

of the 3w voltage to be better than 100 nV below which the signal becomes comparable
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Figure 3.7: Self-heating 3w method applied to a stainless steel wire as reference. (a) The frequency
dependence of the complex 3w voltage for a current of 1.46 mA at RT fits well to Eqs. BI8d and BIZH.
(b) The cubic current dependence of |Us,| at 0.1 Hz is also well established. (¢) From the temperature-
dependent resistivity the temperature coefficient x can be extracted, enabling the determination of (d)
the thermal conductivity ~ and specific heat c,. The measured values agree extraordinary well with
literature data over a broad temperature regime between 40 — 300 K ['72]. The deviation below 40 K can
be attributed to the flatness of the resistivity curve in this temperature range limiting the sensitivity and
accuracy of the 3w method.

to the flicker noise of the amplifiers causing a deviation from the I3-law. From the fit of
the frequency dependences, T as well as Us,(f = 0) can be determined which are cited
together with the other experimental values in Tab. BZl. They permit to determine the

thermal conductivity and the specific heat of the stainless steel sample:

Kmeas = (14.7£2.6) Wm K™
cp = (049 +0.08) Jg 'K

(3.20a)
(3.20b)

These values reproduce the literature measurements of kr; = 15.3Wm ! K~! and
¢y = 0.49Jg ' K~! |[I72] within their errors. From Tab. BT the origin of the significant
error instantly becomes clear. The ambiguity in the sample diameter as determined op-

tically under the microscope limits the absolute accuracy of the thermal properties. This
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problem constitutes a major challenge when measuring thin samples over macroscopic
transport distances. However, when evaluating the thermoelectric figure of merit 27" or
comparing the electrical to the thermal conductivity, the sample dimensions do not play
an important role as they both enter the calculation formula of the conductivities in the
same way and thus, cancel out each other. Hence, it is intuitive to look at the effective

errors not including uncertainties in the sample dimensions

Kmeas = (14.70 £ 0.62) Wm ™' K™ (3.21a)
c, = (0488 +0.025) Jg 'K | (3.21b)

for which we obtain relative standard errors of 4.2 % and 5.1 % for x and ¢,
respectively. This underlines the accuracy of the chosen experimental approach. The
temperature-dependent electrical resistivity p, thermal conductivity « and specific heat
cp are illustrated in Fig. BZc-d. The measured values of x and ¢, very well reflect the
literature data as provided by the National Institute of Standards and Technology (NIST)
[T72]. The deviation below 40K is caused by the flatness of the resistivity curve in this
temperature regime. The resulting small temperature coefficient limits the sensitivity of

the 3w approach.

Accuracy of the 3w Method

In the previous section, the validity of the measurement approach as well as the accuracy
of the setup were verified by means of a stainless steel sample. In the following, the
applicability of the suspended wire’s thermal transfer function Zgy, is evaluated with
special focus on the previously described sample holder and the material class of organic
conductors. One major assumption is that the contacts are at ambient temperature 7.
Zsw was originally derived for nanowires with electrical contacts on a substrate of large
thermal mass compared to the sample. In this case, the condition on temperature is easily
met. In the sample geometry applied here, the crystals are only connected via thin free-
standing copper wires of cross section A.s ¢ and length o to the two alumina blocks
serving as heat reservoirs. The heat flux from the sample of cross section A, s and length
2ls needs to be dissipated through the two contact wires, i.e.

Tria — Tco Te —1Th
_— = 2 = 2ACS . _—
(215) QC ,C ke

needs to be fulfilled. T,,,;4 corresponds to the temperature in the middle of the sample

Qs = Acs,s * Ks (3.22)

le

wire and T represents the temperature of the contact. This yields the condition for

negligible contact heating:
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Tmid - TC . Qlicd%«(le)
TC — TO N /isd%lc

> 1 (3.23)

for a sample (contact wires) of diameter dg (d¢) and thermal conductivity kg (k¢).
From Eq. B3 it is obvious that contact wires should be kept as short and as thick as
possible. On the other hand, the thicker the wires, the more stress they induce on the
fragile organic samples. For the measurement on the stainless steel samples the relevant
parameters 2lg = 3.6 mm, lc = 2mm, dg = 21 pm, dc = 50 m, kg = 15 Wm ' K~! and
ke = 380 Wm LK™ yield a %%TTOC = 422 > 1 satisfying Eq. B223 by far. For organic
samples with thermal conductivity values on the order of 1 Wm='K~! the condition is
even more easily met. Thus, it can be concluded that the Ansatz of using the suspended
wire model to describe rod-like organic conductors with thermal conductivities smaller

than 15 Wm~! K~! attached to free-standing wires is valid.

Secondly, the high surface to volume ratio facilitates radiation losses from the surface
imposing uncertainties on the measured . The radiation losses can be approximated by
the Stefan-Boltzmann law. To be neglected, the total radiation loss P,.q needs to be much
smaller than the heat flux ()5 conducted through the sample, necessitating the boundary

condition:

Prad o EUSBAsurf(2lS)Tg)(Tmid - TC) o 4€USB(QZS>QT5)
Qs ks (ds/2)*(Tia — Tc) Ksds

<1 . (3.24)

Here, Ay p = mds-(2lg) is the surface area of the crystal, € the emissivity of the material
and ogp the Stefan-Boltzmann constant. In the worst case, at an ambient temperature of
Ty = 300K and an emissivity of € = 1, the error for the stainless steel sample amounts
to % = 0.1 < 1. Taking into account a smaller emissivity and that most data has been
recorded at smaller temperatures, the condition in Eq. is considered to be satisfied.
However, for the organic samples this condition imposes a bigger challenge: A sample of
same geometry with kg &~ 1Wm ' K™! yields P,,q/Qs = 1.5 and the radiation error
dominates the measurement accuracy. Hence, the contact distance 2[g should be kept as
short as possible and the diameter dg of the rod-like sample may not be too small. For a
typical sample of 50 pm diameter and 2mm length, even with kg = 1Wm™' K1 an error
of only % = 0.2 is obtained, again assuming the worst case of € = 1 and Ty = 300 K.
Hence, the condition is generally also satisfied for the organic samples. Yet, the condition

should be checked for each sample under investigation.
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Finite-Element Simulations

To indepedently prove whether the assumptions made hold true or not, the temperature
and voltage response to sinusoidal current excitations have been simulated with the help
of the software Comsol Multiphysics by finite-element methods (FEM) for the organic
conductor (DCNQI)2Cu at RT. The applied measurement geometry was transferred to the
discrete model, as depicted in Figs. B8a&c with and without mesh. It consists of a rodlike
organic crystal attached to four copper wires by graphite paint. The literature properties,
as given in the Comsol material database, were used for copper and graphite while the
values for (DCNQI)2Cu were experimentally determined (see Tab. B2) by measurements
on a sample of same geometry. The simulated thermal response to an AC current is
illustrated in Fig. B8c for three excitation frequencies.

The temperature profiles between the current contacts along the needle axis (right
projection) are quasi-parabolic and, indeed, the voltage contacts at 4l almost remain
at ambient temperature, confirming a good thermal connection to the alumina blocks.
In the upper projection, the temporal evolution of the temperature in the middle of the
crystal is shown and compared to the oscillating current. At the excitation frequency
f = 0.01Hz <« 5/(277), the temperature oscillates in-phase with the current as an-
ticipated by the thermal transfer function in Eq. BTd. With increasing frequency, the
maximum amplitude of the temperature oscillation not only decreases but also phase-
shifts with respect to the current. The temperature difference does not fully <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>