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Chapter 1

Introduction

1.1 Quantum Mechanics

Quantum mechanics was originally conceived as a set of empirical rules to describe experi-
mental observations, which could not be explained by contemporary classical physics at the
beginning of the 20th century. The original such case, the one that triggered the subsequent
quantum revolution, was certainly Max Planck’s explanation of the black body radiation:
one knew from experiments that a black body at a fixed temperature emitted a certain
spectrum of electromagnetic energy. And one should, in principle, be able to derive said
spectrum from the theory of electromagnetism and thermodynamics. However, all attempts
at understanding the problem using classical physics failed and it took the radical idea
that the energy emitted from the black body at a certain frequency ν had to be an integer
multiple of [102]

E = hν

where h is the, today well-known, Planck constant. But despite providing the correct spec-
trum, the above postulate lacked any theoretical or physical explanation and Max Planck
himself described it as “an act of desperation”. It took a few years until Albert Einstein
built upon Planck’s postulate by proposing that not only the energy of the emitted electro-
magnetic radiation, but also the electromagnetic radiation itself is actually quantized. In
todays terms, one would say that light consists of photons and that E = hν is precisely the
energy of one photon, a statement that Einstein used to beautifully explain the photoelec-
tric effect [41]. These and related ideas were however not only used to explain experimental
results that classical physics could not, but also to solve some fundamental paradoxes such
as the stability of atoms: before quantum mechanics, atoms were thought of as consisting
of a positively charged core, which is circled by electrons. In this model however, the or-
biting electrons should continuously lose energy, and with that distance to the core, due to
synchrotron radiation. In conclusion, according to this model, atoms should not be stable,
which is drastically contradicted by reality. A solution to this paradox was proposed in the
form of the Bohr-Rutherford model, whose key feature is again, that the energy levels of
electrons orbiting the core cannot assume arbitrary values, but only a certain set of discrete
ones [14]. This new model also provided a theoretical explanation of the Rydberg formula,
which describes the spectral lines of the hydrogen atom.

These and many other results then culminated, largely from 1925 to 1928, in a proper
formulation of quantum mechanics. One of the most popular achievements of this era was the
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6 CHAPTER 1. INTRODUCTION

development of wave mechanics by Erwin Schrödinger with the Schrödinger equation [110]

i~
∂

∂t
ψ(x, t) =

(
− ~2

2m
∆ + V (x, t)

)
ψ(x, t) (1.1.1)

for a (non-relativistic) quantum mechanical particle of mass m in a potential V . For a
general quantum system, the differential operator (−~2/2m)∆ + V (x, t) has to be replaced
by another differential operator Ĥ, called the Hamiltonian (Ĥ then completely describes the
system through the Schrödinger equation). The interpretation of this equation requires a
plethora of novel and, unfortunately, unintuitive concepts. The most glaring one is certainly,
that instead of the particle having (time-dependent) position and momentum, it is described
by a complex-valued wave function ψ(x, t). In other words, the particle is no longer sharply
localized at a certain position but instead it is potentially spread out over a whole area of
space. Similarly, the momentum of the particle is replaced by the derivative of the wave
function and hence not localized either. The physical interpretation of the wave function
ψ(x, t) is then, that |ψ(x, t)|2 describes the probability density of the particle being found at
position x at time t 1. Or, formulated differently, repeatedly preparing identical systems and
measuring the position of the particle will result in the distribution of positions |ψ(x, t)|2.
This interpretation reveals one of the core principles of quantum mechanics, namely that
quantum mechanics is an inherently statistical theory. In general, the result of a single
measurement cannot be predicted. This, of course, starkly contrasts classical physics, where,
given sufficiently precise knowledge of initial conditions and computation power, all possible
measurement values can be predicted. On the other hand, quantum mechanics is not just
a statistical theory, like thermodynamics, either. The well-known Heisenberg uncertainty
principle illustrates this point: assuming a one-particle system, one can, over repeated
measurements, determine the expectation values of the components of the particles position
qk and momentum pi. But even more, as with any random variable, position and momentum
have associated higher statistical moments, such as variance, denoted by ∆qk and ∆pi
respectively. The statement of the uncertainty principle is then, that these variances satisfy
the inequality [64]

(∆qk)(∆pi) ≥
~
2
δki ,

which is a novel, purely quantum mechanical effect, that has no analogon in classical statis-
tical theories. The physical interpretation of above inequality can be understood as follows:
by trying to narrow down the position of the particle, i.e. by restricting it to a small box,
the uncertainty of the particles momentum increases. For the limit case, where the position
is pinned to a point, the momentum becomes completely indeterminate. One particular
insightful explanation for the Heisenberg uncertainty principle can be found in matrix me-
chanics (developed 1925 by Born, Heisenberg and Jordan), which was historically the first
consistent formulation of quantum mechanics and which was later shown to be equivalent
to Schrödinger’s wave mechanics. At the core of matrix mechanics lies the equation

d

d t
O(t) =

∂O
∂t

+
1

i~

[
O(t), Ĥ

]
(1.1.2)

governing the time-evolution of observablesO. The crucial point here is, that the observables
are no longer, as in classical mechanics, modelled as functions on a phase space. Instead,

1For |ψ(x, t)|2 to be interpretable as a probability density one has to require that ψ is normalized, that is∫
|ψ(x, t)|2dx = 1.
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at each point in time t, O(t) is a self-adjoint operator on a pre-Hilbert2 space (which
depends on the quantum system at hand). [ , ] is then the commutator with respect to
composition of operators and Ĥ is the Hamiltonian of the system. In this picture, the
Heisenberg uncertainty principle follows from the single fact, that the operators q̂ k and
p̂i corresponding to the position and momentum components do not commute [71]. More
precisely [19], [

q̂ k, p̂i
]

= q̂ kp̂i − p̂iq̂ k = i~δki (1.1.3)

holds, which in itself is a profound result revealing the noncommutativity of the algebra
of observables in quantum mechanics. One physical consequence of noncommutativity is,
that the order of measurements taken is now important: first measuring the position of
a particle and then its momentum will, in general, result in vastly different results than
first measuring its momentum and then its position. Of course, this does not only apply
to position and momentum observables, but to all observables, whose associated operators
do not commute. Coming back to the Heisenberg uncertainty principle, it should then
not be surprising that not only the variances of position and momentum measurements are
constrained, but that in fact the variances of all pairs of observables, whose operators do not
commute, are constrained in a similar fashion. Other interesting examples of noncommuting
observables include the angular momentum components Ĵk of a particle, for which [Ĵi, Ĵj] =

i~εijkĴk holds, and, especially important for particle physics, the energy and lifespan of
excited states. All these observations however beg one question. If quantum mechanics
is so drastically different to classical physics, why do we not observe quantum effects in
everyday life? From our experience one can, up to a certain precision, determine position
and momentum of a particle, which according to quantum mechanics, should not be possible.
The answer to this question lies, of course, in the inconspicuous looking phrase “up to a
certain precision”. Assuming that ~ is small compared to all other relevant quantities of
the same unit, the right-hand term in the uncertainty inequality (∆qk)(∆pi) ≥ i~δki can
safely be approximated to zero. But since variances are always non-negative, the inequality
is trivially satisfied and hence the quantum effect vanishes. A similar behaviour can be
observed for other quantum effects as well. In fact, this observation has been and continues
to be one of the guiding principles of quantum mechanics: classical mechanics should be
recovered from quantum mechanics by taking the limit case ~ ≈ 0, the so-called classical
limit of quantum mechanics. This establishes quantum mechanics as a generalization of
classical mechanics in the same way in which special relativity is a generalization of the
Newtonian equations of motion, which are recovered in the limit 1/c ≈ 0, where c is the
speed of light. Again, this approximation is valid in the case where all velocities are small
compared to c.

1.2 Quantization

As described in the previous section, the quantum world is governed by wave mechanics
or matrix mechanics. However, there is an important problem left for any practical appli-
cation. Both descriptions require the specification of a Hamiltonian Ĥ. While for simple
systems, such as the single-particle system, it might be feasible to guess a Hamiltonian and
then verify it through experimentation, more complex systems cannot be treated that way.
Furthermore, knowledge of only the Hamiltonian will only allow (in principle) to obtain

2Pre-Hilbert spaces are used to avoid analytical subtleties regarding unbounded operators. In order to compute
spectra of observables, completions are necessary.
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the wave function describing the system, but not to predict any measurements besides its
total energy. For this task, the operators associated to all other observables are needed
as well. Consequently it is highly desirable to have at least a set of guidelines, or better
a complete mathematical framework, called quantization, on how to obtain the Hamilto-
nian and the quantum description of all observables of any given quantum system. A first
hint as to the nature of such a framework is provided by the Schrödinger equation for
the free particle (that is the potential V in (1.1.1) is assumed to be zero). With the ansatz
ψ(x, t) = ψ0 exp{iS(x, t)/~}, for a function S, the Schrödinger equation produces the partial
differential equation [108]

∂S

∂t
+

1

2m
(∇S)2 = i

~
2m

∆S

for S. Taking the classical limit of this equation, that is setting the right-hand side to zero,
the remaining equation can be recognized as the Hamilton-Jacobi equation for a classical
particle described by the Hamiltonian function H(q, p) = p2/2m. Comparing this Hamilto-
nian function with the Hamiltonian operator Ĥ = −~2∆/2m suggests, that the latter could
be obtained by replacing the function p2 by the differential operator −~2∆. Or, as it is more
commonly known, by replacing the momentum components according to the rule

pi  
~
i

∂

∂xi
. (1.2.1)

This observation is the first in an extensive list of formal similarities between the Hamilto-
nian description of classical mechanics and quantum mechanics. In the former, a classical,
mechanical system is conceived as a symplectic manifold M together with a Hamiltonian
functionH ∈ C∞(M). A symplectic manifold is a smooth manifoldM together with a differ-
ential two-form ω which is closed with respect to the de Rham differential and nondegenerate.
Through ω one can define the Hamiltonian vector Xf field of a function f ∈ C∞(M) by
df = iXf ω and in turn equip C∞(M) with a Lie bracket via

{f, g} := ω(Xf , Xg) for all f, g ∈ C∞(M),

the so-called Poisson bracket, turning C∞(M) into a Poisson algebra. Both the symplectic
manifold M and the Hamiltonian function H can, at least for a large class of systems, be
obtained directly from analyzing the generalized coordinates and the Lagrange function
associated to the system. An important subclass of the former are the n-point-particle
systems with holonomic constraints and regular Legendre transform [108]. In such a system,
any point of M is physically interpreted as a possible state of the system. Observables
are then nothing but functions on M : if the system is in the state x ∈ M , measuring
any observable f ∈ C∞(M) will produce the outcome f(x). Of course, the positions and
momenta of all n particles are observables as well and they can be recognized precisely as
the Darboux coordinates {qi} and {pi} in each chart of M . By the Darboux theorem [30],
they satisfy {

qi, qj
}

= {pi, pj} = 0 and
{
qi, pj

}
= δij. (1.2.2)

Another special observable is the Hamiltonian function H, whose physical interpretation is
that of the total energy of the system. H also governs the time-evolution of any observable
f via

d

d t
f(t) =

∂f

∂t
+ {f(t), H}. (1.2.3)

Note that if the mechanical system described by H is autonomous, that is if H does not
explicitly depend on t, then the total time derivative of H vanishes: replacing f with H
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itself, the above equation implies that H is time-independent by the antisymmetry of the
Poisson bracket. Physically, this means that the total energy of the system is conserved.
Comparing the previous two equations with (1.1.3) and (1.1.2), there is a striking similarity:

{qi, pj} = δij  [q̂ i, p̂j] = i~δij
d
d t
f(t) = ∂f

∂t
+ {f(t), H}  d

d t
O(t) = ∂O

∂t
+ 1

i~

[
O(t), Ĥ

]
Namely, both correlations are compatible with the assumption that ̂ is actually a map,
assigning quantum observables to classical ones such that the rule[

f̂ , ĝ
]

= i~{̂f, g}

is respected. This is Dirac’s original idea for canonical quantization [34, 35]. Furthermore,
if the earlier replacement rule (1.2.1) is supplemented with the expression for q̂ i acting on
any wave function Ψ through

qi  
(
q̂ iΨ

)
(x, t) := xiΨ(x, t),

then the commutator of q̂ i and p̂j yields precisely (1.1.3) and is thus consistent with canonical
quantization. From all these motivational considerations, a set of sensible requirements for
any map deserving of the name quantization, can be extracted: first, the domain and
codomain of any such map must be the smooth functions C∞(M) on a symplectic manifold
and the operators on a pre-Hilbert space End(H), respectively. Secondly, any quantization
map should be injective, meaning that every classical observable has a quantum analogon.
The key point to remember here is that quantum mechanics should encompass classical
mechanics in the limit ~ −→ 0, hence all classical observables must be obtainable as a
classical limit of its quantum analogon. And thirdly, it certainly would be desirable for a
quantization map to respect the algebraic structures on both sides. Since C∞(M) together
with the Poisson bracket { , }, as well as End(H) together with the commutator [ , ] are
unital Poisson algebras, and since ̂ already respects the bracket structure, it seems natural
to require any quantization map to be a homomorphism of unital Poisson algebras. More
precisely, any quantization map Q should be linear and respect units, Poisson brackets and
multiplications. However, it is immediately clear, that the fourth condition can, in general,
not be satisfied. Indeed, since C∞(M), as an associative algebra, is commutative,

Q(f) ◦Q(g) = Q(fg) = Q(gf) = Q(g) ◦Q(f)

conflicts with the noncommutativity of End(H) for all pairs of noncommuting operators
f, g ∈ imQ. The most obvious example for two such operators is, of course, the pair of
position and momentum observables. So instead of requiring Q to be a homomorphism of
unital Poisson algebras, the fourth requirement must be dropped and hence Q is reduced to
a Lie algebra homomorphism that respects units:

Q(1) = 1

Q(λf + g) = λQ(f) +Q(g)

Q({f, g}) = 1
i~ [Q(f), Q(g)]

(1.2.4)

for all f, g ∈ C∞(M) and λ ∈ R.
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Remark From a purely mathematical standpoint, instead of the fourth, the third require-
ment could be dropped, leading to Q being a homomorphism of unital associative algebras.
However, specifically for position and momentum observables, the Heisenberg uncertainty
relation is experimentally verified, hence, physically, at least position and momentum oper-
ators must not commute, leaving the above contradiction still unresolved.

From a slightly different mathematical viewpoint then, a quantization map Q should be a
faithful Lie algebra representation of C∞(M) on H. But if, in addition, H is required to be
a Hilbert space and Q is required to be irreducible, then the famous Groenewold-van Hove
theorem [53,118] states that such a Q does not exist:

Theorem No faithful, irreducible representation of span{1, q1, . . . , qn, p1, . . . , pn} can be ex-
tended to a faithful, irreducible representation of Pol(R2n).

For discussions of the Groenewold-van Hove theorem in the context of unbounded operators,
consult e.g. [1,52] and references therein. This shows that, already for only polynomials on
the simplest symplectic manifold, a quantization map as required cannot exist. Furthermore,
a very similar, purely algebraic result from [120] states:

Proposition There is no unital, associative algebra A together with a Lie algebra isomor-
phism

Q : Pol(R2n) −→
(
A, 1

i~
[ , ]

)
where [ , ] is the commutator on A.

From the previous two results it is clear that the original proposal has to be weakened even
further. However, this time there is no obvious choice of how to do so. One popular ansatz
has been found in geometric quantization, first proposed by Kirillov [73], Kostant [80] and
Souriau [113]. The path geometric quantization takes can roughly be summarized as requir-
ing i~Q({f, g}) = [Q(f), Q(g)] to only hold on some suitable subset of all smooth functions.
A different approach, the one that will be the main theme of this thesis, namely deformation
quantization, originally due to Bayen, Flato, Frønsdal, Lichnerowicz and Sternheimer [7,8],
weakens the same requirement, but in a different direction:

Q({f, g}) =
1

i~
[Q(f), Q(g)] +O(~). (1.2.5)

So instead of requiring Q to respect the Lie brackets exactly, it is only required that the
Poisson bracket is mapped to the commutator up to terms of higher orders in ~. But
rather than elaborate on deformation quantization, which will be the subject of the following
sections, we would be amiss if, after detailing some of the formal similarities between classical
and quantum mechanics, we did not also touch upon some of the profound differences of
both physical theories. In fact, understanding these differences is essential in constructing a
consistent theory of quantization. This has already been seen in one instance: even though
the algebra of classical observables is commutative, the algebra of quantum observables is
not. On the one hand, noncommutativity provided insights into physical effects, such as the
Heisenberg uncertainty principle, but on the other hand, it poses obstructions to possible
quantization maps. Another such difference can be found in the nature of observables.
Given any proposition about a classical system, one can ask for all possible states of the
system, for which said proposition is true. As an example, consider a point particle moving
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on a line and the proposition P = “the particles position is contained in the interval [0, 1]”.
Then the collection of states for which P is true, clearly is q−1([0, 1]), the preimage of
the given interval under the position observable. So propositions about the system can
be encoded by subsets of its symplectic manifold. Furthermore, set-theoretic operations
such as intersections, joins and complements directly correspond to conjunction, disjunction
and negation of propositions. Consequently, propositions about classical systems have the
structure of a boolean lattice. Propositions about quantum systems on the other hand,
are represented by projections on the underlying Hilbert space. These projections admit
the same types of logical operations, however, the lattice of projections is, in general, not
distributive and hence only an orthocomplemented lattice, not a boolean one. A recent
attempt at reformulating quantum mechanics (see [22, 39, 68]) replaces the nondistributive
lattice of projections by a certain Heyting algebra. One of the physical ramifications thereof
is then the existence of propositions, which are neither true nor false.

1.3 Deformation Quantization

Deformation quantization is an approach to quantization, that falls into the broader category
of deformation theory. The core idea of deformation theory has been summarized very
succinctly by Moshé Flato, one of the founding fathers of deformation quantization in [47]
as follows:

What is a deformation? Mathematically one starts with an algebraic structure
which is e.g. a Lie algebra or an associative algebra and asks the question: does
there exist a 1 (or n) parameter family of similar structures that for an initial
value (say zero) of the parameter we get the structure we started with? If such
a field of structures exist, we call it a deformation of the original structure. In
particular, if for any value of the parameter, the structure is isomorphic with the
one we started with we call the deformation trivial.

One of the most prominent examples of deformation theory is certainly the interpretation
of special relativity as a deformation of Newtonian physics: one of the cornerstones of
Newtonian physics is the invariance of the Newtonian laws under spatial rotations, spatial
and temporal translations and uniform motion of spacetime. That is, the theory is invariant
under a certain type of coordinate transformations of absolute time and space R1×R3. All
of these transformations are encoded in the action of the Galilei group Gal(1, 3) on R1×R3.
Special relativity on the other hand, has, instead of the Galilei group, the Poincaré group
as its symmetry group. A connection between the two can be made thus: viewing the
speed of light c as a parameter of the Poincaré group, the Galilei group can be recovered
from the Poincaré group as the limit 1/c −→ 0. Conversely, the Poincaré group can be
viewed as a deformation of the Galilei group for the deformation parameter 1/c [47, 106,
112]. Obviously, this deformation is nontrivial, as the Galilei and Poincaré groups are not
isomorphic. Another remarkable aspect of this particular deformation becomes apparent by
considering the subsets of R of those values for the deformation parameter 1/c, for which the
deformed group is isomorphic to the Galilei group SG and for which it is isomorphic to the
Poincaré group SP. It turns out, that, topologically, SG is closed, in fact it is only a point,
while SP is open in R. But this means that, starting at the Galilei group, an arbitrarily
small displacement of the deformation parameter can be found such that a nonisomorphic
group is obtained. On the other hand, for sufficiently small displacements of the deformation
parameter the deformed group stays in the isomorphism class of the Poincaré group. One
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says that the Poincaré group is stable under small deformations, while the Galilei group
is not. So the transition from Newtonian physics to special relativity can be seen as a
transition to a theory more robust under small changes of its parameters. At first glance,
this may seem like purely mathematical sophistication, however, there is a physical argument
to be made as well: consider an experiment which is to decide whether reality adopted the
Galilei or the Poincaré group as its symmetry group. The deciding factor here would be the
precise value of 1/c. But physical measurements are only ever able to determine values up
to certain errors. So even if 0 is determined as the value of 1/c, no matter how precise the
measurement, the error range will always allow values of the deformation parameter in SP.
In contrast, if the measured value of 1/c is in SP, one can, in principle, achieve a sufficiently
high precision to be confident that reality is Poincaré invariant.

Coming back to quantum mechanics, the idea proposed in [7,8] is to view the algebra of
quantum observables as a deformation of the algebra of classical observables with ~ playing
the role of a deformation parameter. In fact, only the pointwise, commutative multiplication
µ0 of C∞(M) will be deformed into a noncommutative multiplication µ~. Of course, µ~ is
not any arbitrary multiplication. Instead, it must have µ0 as its classical limit. This is
guaranteed by the proposal that µ~ is actually a power series in ~ starting with µ0, that is

µ~(f, g) = µ0(f, g) +
∞∑
k=1

~kµk(f, g) for all f, g ∈ C∞(M) (1.3.1)

for any maps µk such that µ~ is an associative multiplication on C∞(M). One of the
inherent advantages of this approach becomes clear, if we consider the context of general
quantization maps from the previous section. Since the multiplications µ0 and µ~ operate
on the same underlying set, the quantization map Q can be taken as just the identity (as a
set morphism). And from there, the requirements for quantization maps (1.2.4) can directly
be translated into requirements for the deformed multiplication µ~: µ~ must be a bilinear
map and

µ~(1, f) = f = µ~(f, 1)

must be satisfied for all f ∈ C∞(M). But, as already mentioned in the previous section,
instead of requiring the third part of (1.2.4) to hold precisely, the condition is weakened as
displayed in (1.2.5). This weakened condition can be translated into a requirement for µ~
by calculating

1

i~
[f, g]µ~ =

1

i
(µ1(f, g)− µ1(g, f) +O(~))

!
= {f, g}+O(~),

where [ , ]µ~ is the commutator with respect to µ~, and concluding

i~{f, g} !
= µ1(f, g)− µ1(g, f)

for all f, g ∈ C∞(M). That is, the antisymmetric part of the first order of µ~ is completely
determined by the Poisson bracket. This realization already has some far-reaching conse-
quences: since the Poisson bracket on a symplectic manifold can never vanish identically
(assuming dimM > 0), the multiplication µ~ is always noncommutative. And with that, the
deformation of the classical observable algebra is always nontrivial, as commutative algebras
cannot be isomorphic to noncommutative ones. There is, however, an obvious problem with
the ansatz so far. Namely, the power series (1.3.1) may not converge for some observables.
In fact, according to [120], even for the simple case where the symplectic manifold is a
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cotangent bundle, that is M = T∗Q, there exist always pairs of observables for which the
series (1.3.1) has a radius of convergence of 0. Mathematically, the problem of convergence
can be circumvented by replacing the algebra of observables C∞(M) with its formal power
series C∞(M)J~K in the, now formal, parameter ~. Both, the original and the deformed
product, can then be extended ~-linearly to C∞(M)J~K where they are well defined. The
deformed product µ~ on C∞(M)J~K is then called a formal star product and written as
µ~(f, g) = f ? g. Using this approach, the problem of quantization has been split into two
parts: first, finding a formal product on the formal power series of observables deforming
the classical product and second, analyzing its convergence behaviour, i.e. finding suitable
subalgebras of C∞(M)J~K on which the formal product converges.

Remark The first part is accordingly called formal deformation quantization, while the
second is a subfield of strict deformation quantization. Generally speaking, strict deforma-
tion quantization deals with converging deformations of µ0, not necessarily using formal
deformations, see e.g. [13, 17, 82, 105]. This thesis will exclusively treat aspects of formal
deformation quantization.

Finally, let us note that we will only use a certain subclass of star products, namely those,
for which all maps µk in (1.3.1) are bidifferential operators. Differential operators have the
advantage of being local operators and with that, the multiplication µ~ can be restricted from
C∞(M)J~K to the observable algebra C∞(U)J~K on any open subset U ⊆M , implementing
a form of the locality principle in physics: objects should only be influenced by its immediate
surroundings. Conversely, if we only required the maps µk to be local, then they would, by
the Peetre theorem [100], at least locally be bidifferential operators. Under this restriction,
the notion of differential star products can be finalized:

Definition Let (M,ω) be a symplectic manifold with associated Poisson bracket { , }. A
differential star product on M is an associative, ν-linear product ? on C∞(M)JνK such that
for all f, g ∈ C∞(M) the product f ? g can be expanded as

f ? g = fg +
∞∑
k=1

νkCk(f, g)

with bidifferential operators Ck for all k ∈ N and the following equations hold:

1 ? f = f = f ? 1 and f ? g − g ? f = ν{f, g}+O(ν).

Note that µ~(f, g) := f ? g is a particular deformation of µ0. Also note, that the formal
parameter has been renamed from ~ to ν to emphasize its formal nature and to absorb a
factor i in order to ease notation. Furthermore, since all star products occurring in this
thesis will be differential, we shall drop the explicit qualifier. With the proper definition of
star products at hand, the first question to arise should be the following: do star products
exist? That is, given any symplectic manifold, can one find a star product on it? One of
the earliest known examples of star products, the Weyl-Moyal star product

f ?WM g :=
∞∑
r=0

1

r!

(ν
2

)r r∑
s=0

(
r

s

)
(−1)r−s

∑
i1,...,ir

∂rf

∂qi1 . . . ∂qis∂pis+1 . . . ∂pir

∂rg

∂pi1 . . . ∂pis∂q
is+1 . . . ∂qir
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already gives a positive answer onR2n and with that on any Darboux chart of any symplectic
manifold M . One of the first global results on the matter can be found in [91] wherein it
is shown that Weyl-Moyal star products on Darboux charts can be glued together if the
third de Rham cohomology of M vanishes. Subsequent publications then established the
existence of star products on trivial cotangent bundles [23], on all cotangent bundles [33]
and finally on all symplectic manifolds [32]. Additionally, a constructive proof of existence
has been given by Fedosov, see [42–45], in the so-called Fedosov construction, which will be
detailed in Section 3.1 and used extensively later on.

Remark It is imperative to note, that, whereas the definition of star products can imme-
diately be generalized to Poisson manifolds, the proofs mentioned above for their existence
cannot. One of the earliest results on the topic is the Gutt star product [58] on cotangent
bundles of Lie groups. The existence (and simultaneously classification) of star products for
any Poisson manifold has later been established through Kontsevich’s celebrated formality
theorem [76,77,79], see also [27,37]. An alternative proof can also be found in [78,116]

After their existence is guaranteed, the next problem is, naturally, the uniqueness of star
products. That is, given a symplectic manifold, how many inequivalent deformations of
the algebra of observables are there? Here the notion of inequivalent deformations must be
specified first. According to general deformation theory, two star products ?1 and ?2 are
equivalent, if the algebras (C∞(M)JνK, ?1) and (C∞(M)JνK, ?2) are isomorphic. In the con-
text of differential star products, however, one requires additionally, that the isomorphism
can be expanded as a formal series of differential operators starting with the identity:

Definition Let M be a symplectic manifold. Two star products ?1 and ?2 on M are said
to be equivalent, if there exists a formal series

T = id +
∞∑
k=1

νkTk

of differential operators Sk such that

T (f ?1 g) = T (f) ?2 T (g)

holds for all f, g ∈ C∞(M)JνK.

The additional requirement of Tk being differential operators is set in place in order to remain
inside the context of differential star products: if Tk were allowed to be any map, differential
star products could be equivalent to nondifferential ones. The task is then to describe the
set of equivalence classes Def(M,ω) of star products on M . One of the first results already
states that this set contains only a single element, if H2

dR(M) = 0, see [56,84]. In other words,
if the underlying symplectic manifold is topologically trivial enough, then star products are
unique up to equivalences. One of the surprising aspects of this result is then, that the
uniqueness depends neither on the symplectic structure ω nor on the differential structure
ofM , but instead only on the topology ofM , which will be a common thread throughout all
classification results. In fact, the above result has later been recognized to be the special case
of the complete classification, due to various authors [12,31,92,93,122], see also Section 3.2

Theorem On any symplectic manifold (M,ω) there exists a bijection

c : Def(M,ω) −→ [ω]

ν
+ H2

dR(M)JνK.
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So not only is the uniqueness of star products controlled by the topology of M , but all
equivalence classes are completely characterized by formal series in the second de Rham
cohomology of M . For any star product ?, the de Rham class c(?) is then called the
characteristic class of ?.

1.4 Symmetries of Star Products

As another case, consider that classical mechanical systems often come equipped with gauge
symmetries. Such symmetries are encoded in the context of symplectic geometry by sym-
plectic actions of Lie groups: given a Lie group G and a symplectic manifold (M,ω) together
with an action of G on M , the action is said to be symplectic, if the symplectic form ω is
invariant with respect to it, that is

g∗ω = ω for all g ∈ G.

Here g∗ω denotes the induced action on differential forms by pullbacks. Note then, that the
classical observable algebra also acquires an action of G induced by pullbacks and that the
pointwise product µ0 is equivariant with respect to that action as

g∗µ0(f, h)(x) = (f · h)(g . x) = f(g . x) · h(g . x) = µ0(g∗f, g∗h)(x)

holds for all f, h ∈ C∞(M), g ∈ G and x ∈ M , where we denoted by g . x the action
of g on x. Considering then, that G also acts, by ν-linear extension, on the algebra of
quantum observables C∞(M)JνK, it seems sensible to search for star products ?, which are
also equivariant with respect to that action, in detail, for which

g∗(f ? h) = (g∗f) ? (g∗h)

holds. In other words, the gauge symmetry of the classical system can be transferred to its
quantum mechanical analogon. These star products are called invariant star products.

Remark To be precise, invariant star products should, and later on will be, called G-
invariant star products, since there is also a Lie algebraic notion of invariance,

Lξ(f ? h) = (Lξf) ? h+ f ? (Lξh) for all ξ ∈ g,

where g is the Lie algebra of G. This condition is precisely the derived version of the
group theoretic requirement. Of course, if G is connected, both notions of invariance are
equivalent.

Obviously, the very same questions for existence and uniqueness of invariant star products
arise, just as in the case for general star products. And, just as in the previous case, both
can be answered together by a suitable classification theorem. To do so however, a suitable
notion of equivalences has to be established first. The common motivation is again, that,
by applying this subtype of equivalences to an invariant star product, it should not be
possible to obtain a non-invariant one. An easy way to guarantee this behaviour is to
require equivalences which commute with the group action. Such equivalences are then
called invariant equivalences and the set of equivalence classes of invariant star products
up to invariant equivalences is denoted by DefG(M,ω). The corresponding classification
theorem, due to Bertelson, Bieliavsky and Gutt [11], see also Section 3.3, then reads:
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Theorem On any symplectic manifold (M,ω) equipped with a symplectic G-action, there
exists a bijection

cG : DefG(M,ω) −→ [ω]G

ν
+ H2,G

dR (M)JνK.

So the cohomology theory parametrizing equivalence classes, which was formerly the de
Rham cohomology, has been replaced by the invariant de Rham cohomology.

Next, consider the case where a classical system has not only gauge symmetries, but
where those symmetries come with an associated momentum map: given a symplectic action
of a Lie algebra g, which may or may not be the derived action of a Lie group action, a
linear map J : g −→ C∞(M) is called a momentum map of said action, if

Lξf = −{J(ξ), f} and J([ξ, η]) = {J(ξ), J(η)}

hold for all ξ, η ∈ g and f ∈ C∞(M). The interpretation of the first equation is, that
the vector field, by which ξ ∈ g acts, is not only symplectic, but in fact Hamiltonian,
and that J(ξ) is a Hamiltonian for this vector field. The second equation then states that
J is a homomorphism of Lie algebras. This notion of momentum maps can, in a very
straightforward manner, be adapted to star products, see [90, 123]: a quantum momentum
map is a linear map J : g −→ C∞(M)JνK such that

Lξf = −1

ν
[J(ξ), f ]? and J([ξ, η]) =

1

ν
[J(ξ),J(η)]?

hold for all ξ, η ∈ g and f ∈ C∞(M)JνK. The motivation for this definition of quantum
momentum maps is immediately clear: all Poisson brackets in the definition of momentum
maps have been replaced by commutators. Pairs of an invariant star product and a quantum
momentum map of that star product are then called equivariant star products. Expanding
the defining equation in the lowest order of ν, it is obvious that J

∣∣
ν=0

is a classical momentum
map. Consequently, J is called a deformation of its lowest order. Notably, it is possible
to have multiple equivariant star products with the same underlying invariant star product
or even multiple quantum momentum maps deforming the same classical one. In fact,
given an equivariant star product (?,J), an easy calculation shows that TJ is, for any
invariant self-equivalence T of ?, again a quantum momentum map of ?. And since T
starts with id, both TJ and J deform the same momentum map. A similar result also
holds for invariant equivalences between two different invariant star products: quantum
momentum maps are mapped to quantum momentum maps under invariant equivalences.
This observation motivates the definition of equivariant equivalences. Two equivariant star
products, (?1,J1) and (?2,J2), are called equivariantly equivalent, if there exists an invariant
equivalence T between ?1 and ?2 such that TJ1 = J2 holds.

Denoting the corresponding set of equivalence classes deforming a given momentum
map J by Defg(M,ω, J), it has been recently shown by Waldmann and the author, that a
classification result similar to the former two holds, see [104] and Section 3.4:

Main Theorem I On any symplectic manifold (M,ω) equipped with a symplectic g-action
and momentum map J , there exists a bijection

cg : Defg(M,ω, J) −→ [ω − J ]g
ν

+ H2
g(M)JνK.
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Again, the cohomology theory parametrizing equivalence classes had to be modified in order
to accommodate for the more specialized setting. The cohomology appearing in the above
theorem is the cohomology of the Cartan complex Ωg(M) of equivariant differential forms,
which is discussed in detail in Section 2.3.2, see also [55]. An important property of the
Cartan complex is, that there is a canonical map H2

g(M) −→ H2,g
dR (M) to the g-invariant

cohomology, which allows for a particularly beautiful result on the existence of quantum
momentum maps, due to [60,62,90]: given a symplectic Lie algebra action with an associated
momentum map J and an invariant star product ?, then ? admits a quantum momentum
map deforming J if and only if the invariant characteristic class cg(?) lies in the image of
the above map.

As a final point, let us revisit the classical side once more. One consequence of a classical
system having gauge symmetries is, that the systems description is using more degrees of
freedom then strictly necessary. One of the prime examples here is the Kepler problem of two
massive bodies interacting through Newtonian gravity. Since Newton’s laws are invariant
with respect to Galilei transformations, it is always possible to find an inertial frame of
reference, where the barycenter lies at the origin of said reference frame. By doing so, the
spatial degrees of freedom of the system have been reduced from six (the positions of both
bodies) to three (the relative position of the two bodies) without losing any information
about the system. The question, in general, is then, whether it is always possible to find a
minimal set of coordinates. The space of such minimal sets of coordinates would be called
the reduced phase space. Given any system modelled by a symplectic manifold M with
gauge symmetries modelled as the action of a group G, the naive approach would be to
consider the quotient M/G. For general smooth Lie group actions however, this quotient is,
in general, no longer a manifold. And even if it is, it is in general only Poisson, not symplectic.
But, in the special case where the action on M admits a momentum map J , there is a well-
known symmetry reduction procedure, called Marsden-Weinstein reduction [85, 86], which
gives the reduced symplectic manifold as Mred = C/G, where C is the momentum-level-set
C := {x ∈M | ∀ξ ∈ g : J(ξ)(x) = 0}. Going back to deformation quantization then, there
are a priori two choices: finding a star product onMred, or finding (preferably an equivariant)
one onM . Physically though, since the transition fromM toMred only removed unnecessary
degrees of freedom, this choice should not matter. Or, at least, there should be a consistent
way of choosing a star product on M and one on Mred. In other words, given a star
product on M , there should be a preferred star product on Mred. And in fact, a reduction
map red : Starg(M,ω, J) −→ Star(Mred, ωred) from the set of equivariant star products on
M to all star products on Mred has been developed in [16, 61]. Such maps are commonly
referred to as quantum reduction. An easy calculation, see Lemma 4.3.1, then shows, that
the reduction map on star products induces a map on equivalence classes of star products
red : Defg(M,ω, J) −→ Def(Mred, ωred). The obvious question here is, given an equivariant
star product (?,J) on M , is there any relation between its characteristic class cg(?,J) and
the characteristic class of the corresponding reduced star product c(?red)? A partial, positive
answer to this question has already been given by Bordemann in [15]: denoting the inclusion
map of C into M by ι and the projection map from C onto Mred by π, the characteristic
classes of ? and ?red are related by

ι∗c(?) = π∗c(?red).

However, the above result does not take any quantum momentum maps into account. And
moreover, there are examples, where the second de Rham cohomology H2

dR(C) is trivial,
but neither H2

dR(M) nor H2
dR(Mred) are. Thus the above equation can only be a necessary
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requirement for ?red to be reduced from ?.
The novel result by the author, see [103] and Section 4.3, amends this result, by providing

means to explicitly obtain the characteristic class c(?red) from the equivariant class cg(?,J):

Main Theorem II Given a symplectic manifold M and an equivariant star product (?,J)
on M , there is a surjective map

K : H2
g(M) −→ H2

dR(Mred)

such that
K(cg(?,J)) = c(?red)

holds, if K is extended ν-linearly.

The map K in the above theorem is a Cartan-model analogue of the Kirwan map for
equivariant cohomology [74]. The full construction of K is detailed in Section 2.3.3. The
main idea however is quite simple: the map π∗ : H2

dR(Mred) −→ H2
dR(C) induced on de Rham

cohomology by the pullback with the projection π is, in general, not bijective. However, π∗
can also be viewed as a map from H2

dR(Mred) to H2
g(C), which turns out to be bijective. K

is then nothing but the concatenation

H2
g(M)

ι∗−→ H2
g(C)

(π∗)−1

−→ H2
dR(Mred).

One of the major features of K is its surjectivity, which has an obvious yet captivating
interpretation: every star product on Mred can, up to equivalence, be obtained as the
reduction of an equivariant star product on M . However, K is, in general, not injective, as
ι∗ is not.



Chapter 2

Homological Algebra

2.1 Homology and Cohomology of Chain Complexes

Homological algebra (or at least parts of it) will be a central tool being employed throughout
this thesis. Hence we shall provide a brief introduction to some of the necessary subtopics.
Excellent introductions to homological algebra include [107, 121] (we will primarily follow
the latter), while some very useful applications to geometric settings can be found in [20].
Generally, homological algebra concerns itself with the study of Abelian categories, which
for our purposes will always be categories of modules over rings1. Two of the central tools
to achieve this, are chain complexes and (their associated) homology/cohomology theories,
on both of which we will focus here. Let us begin by giving a proper definition for chain
complexes of modules over a ring:

Definition 2.1.1 (Chain complex) Let R be a ring. A homological chain complex (over
R) (C•, d•) is a sequence of R-modules . . . C−1, C0, C1, . . . together with homomorphisms
dk : Ck −→ Ck−1 such that dk−1 ◦ dk = 0 for all k ∈ Z. A cohomological chain com-
plex (C•, d•) is a sequence of R-modules . . . , C−1, C0, C1, . . . together with homomorphisms
dk : Ck −→ Ck+1 such that dk+1 ◦ dk = 0 for all k ∈ Z. The maps d• and d• are called
differentials.

Of course, the differentiation between homological and cohomological chain complexes is
merely a matter of choice and we can easily switch from one to the other by relabeling.
Henceforth we shall use the term chain complex to mean either. It should be mentioned,
however, that chain complexes usually come in pairs of a homological and a cohomological
chain complex: given a homological chain complex (C•, d•) over a ring R, one can construct
a cohomological chain complex through

Ck := HomR(Ck, R) and dk(f) := f ◦ dk (2.1.1)

for all f ∈ Ck. One prominent such pair is the singular chain complex of a topological
space together with it’s singular cochain complex. Also, we shall frequently refer to a chain
complex (C•, d•) just by C, if the grading and differential are clear from the context. As so
often in abstract algebra, the introduction of a new mathematical object demands a notion
of suitable morphisms between those objects. Here morphisms between chain complexes are
called chain maps or chain morphisms and defined thus:

1By the Freyd-Mitchell embedding theorem, all small Abelian categories can be fully-faithfully embedded into a
module category [49].

19
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Definition 2.1.2 (Chain map) Let (C•, d
C
• ) and (D•, d

D
• ) be chain complexes over a ring

R. A chain map f : C −→ D is a sequence of R-module morphisms fk : Ck −→ Dk such
that dDk ◦ fk = fk−1 ◦ dCk for all k ∈ Z.

Definition 2.1.2 can be pictorially summarized by requiring that all squares in the following
diagram commute:

. . . C−1 C0 C1 . . .

. . . D−1 D0 D1 . . .

dC−1 dC0 dC1 dC2

dD−1 dD0 dD1 dD2

f−1 f0 f1

Remark 2.1.3 We will often encounter chain complexes that are bounded on one side, that
is chain complexes of the form

. . .←− 0←− 0←− C0 ←− C1 ←− . . .

We shall notate such chain complexes by Cn for n ∈ N and understand to extend it implicitly
by zeros.

Often, notation can be simplified by not viewing chain complexes and chain maps as se-
quences of modules and homomorphisms respectively, but instead considering the direct
sums

C :=
⊕
k∈Z

Ck and d
∣∣
Ck

:= dk (2.1.2)

where d has been implicitly defined (by the universal property of the direct sum) as the
map, that restricts on each submodule Ck of the direct sum C precisely to the differential
dk. The equations dk ◦ dk+1 can then collectively be written as d ◦ d = 0 or, even shorter,
as d2 = 0. As hinted at earlier, every homological/cohomological chain complex has an
associated homology/cohomology. It is constructed after noticing that the requirement
d2 = 0 immediately implies

im(d) ⊆ ker(d).

This allows us to define the subquotients

Hk(C•, d•) :=
ker(dk)

im(dk+1)
and H(C•, d•) :=

⊕
k∈Z

Hk(C•, d•)

These quotients are called the homology (resp. cohomology) of the chain complex C. Since
for our purposes later on, mostly cohomological chain complexes will be important, we shall
only use the term cohomology here and implicitly understand to also mean homology under
a certain relabeling of indices.

Remark 2.1.4 Given a pair of a homological chain complex and a cohomological chain
complex over a ring R of the form (2.1.1), one can relate the homology of C• with the
cohomology of C• by the universal coefficient theorem for cohomology, which states that,
under certain conditions, there is a split exact sequence [121]

0 −→ Ext1
R(Hk−1(C•), R) −→ Hk(C•) −→ Hom(Hk(C•), R) −→ 0,

where ExtnR are the Ext-functors, that is the right-derived functors of HomR(A, •).
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One of the crucial aspects to note, is that chain complexes together with chain maps form
an Abelian category, and that cohomology is actually a functor from the category of chain
complexes to the category of modules. To see this, we only have to demonstrate that each
chain map f descends to a map on the cohomology quotient. This, however, follows directly
from the definitions: let f : C −→ D be a chain map and let c′ ∈ [c] ∈ H(C) for any
c ∈ ker(dC). Then, by

(dD ◦ f)(c) = (f ◦ dC)(c) = 0,

we see that f(c) ∈ ker(dD) and furthermore, from c′ − c = dCb for some b ∈ C,

f(c′) = f(c) + f
(
dCb
)

= f(c) + dDf(b)

and consequently f(c′) ∈ [f(c)] holds. Thus the map

H(f) : H(C) −→ H(D) : [c] 7−→ [f(c)] (2.1.3)

is well defined. H(f) is often denoted by just f . Of course, one has still to check, whether
H preserves identities and is compatible with concatenations, but this follows easily from
(2.1.3). The definition of H(f) allows to define a particular distinguished subset of chain
maps, the so-called quasi-isomorphisms:

Definition 2.1.5 (Quasi-isomorphism) Let f : C −→ D be a chain map. If the induced
map

H(f) : H(C) −→ H(D)

on cohomology is an isomorphism, then f is called a quasi-isomorphism.

Furthermore, H being a functor already enables one of the central applications of homol-
ogy/cohomology theory. Continuing the example of singular homology from earlier, assume
that we are given two topological spaces X and Y . If those spaces were homeomorphic,
that is there exists an isomorphism X −→ Y in the category of topological spaces, then
there also exists a bijective chain map between the singular chain complexes CSing(X) and
CSing(Y ) (the construction of singular chain complexes from topological spaces is a functor).
Finally, using the functoriality of H, one can conclude that there exists an isomorphism of
modules HSing(X) = H(CSing(X)) −→ H(CSing(Y )) = HSing(Y ). Consequently, whenever
X and Y are homeomorphic, their corresponding singular homologies are isomorphic. And
vice versa, whenever HSing(X) and HSing(Y ) are distinct, X and Y cannot be homeomor-
phic [63]. Thus singular cohomology can be used as a tool to distinguish topological spaces.
Unfortunately, the reverse is not true. Topological spaces with isomorphic singular homolo-
gies need not be homeomorphic. However, there are situations, where a homology module
completely classifies certain objects, that is two objects are isomorphic if and only if their
corresponding homology modules coincide. We will encounter three such situation later on
in the classification of various types of star products on symplectic manifolds.

Another frequent appearance of homology/cohomology modules is as obstructions to
certain problems. For a particularly accessible example, consider a group G acting on two
sets M and N and assume that we are given an surjective, equivariant map f : M −→ N
(equivariant means that f commutes with the group action). Then we can consider the sets
of invariants under the group action, denoted by MG and NG respectively. It is clear, that
f descends to a map fG : MG −→ NG. One could then ask the question, whether fG is still
surjective. As it turns out, fG is not surjective in general, however, it is surjective whenever
the first group cohomology H1(G) vanishes, that is H1(G) = 0 [121]. In such a situation,
one says that the first group cohomology is an obstruction to fG being surjective.
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Finally, let us turn towards a particular type of chain complexes, that will become im-
portant in the following parts. As seen in (2.1.2), chain complexes can be viewed as modules
themselves. Thus it is entirely possible to have chain complexes, where each component is
itself a chain complex, which are called double complexes. Consequently, such a chain com-
plex comes equipped with two differentials and one usually requires them to anticommute.
The complete definition in basic terms is then as follows [121]:

Definition 2.1.6 (Double complex) Let R be a ring. A double complex
(
C•,•, d

h
•,•, d

v
•,•
)

(over R) is a family {Cp,q}p,q∈Z of R-modules together with homomorphisms

dhp,q : Cp,q −→ Cp−1,q and dvp,q : Cp,q −→ Cp,q−1

such that dh ◦ dh = dv ◦ dv = dh ◦ dv + dv ◦ dh = 0. We will refer to p as the horizontal and
to q as the vertical degree of the double complex. Accordingly, dh is called the horizontal and
dv is called the vertical differential.

Remark 2.1.7 Of course, as in the case of chain complexes, one can easily relabel the
modules of a double complex to account for differentials that increase horizontal/vertical
degrees.

Remark 2.1.8 Instead of requiring the horizontal and vertical differentials to anticommute,
the vertical differential can be equipped with an additional sign

d̃vp,q := (−1)p dvp,q.

This immediately entails the identity dhp,q−1◦ d̃vp,q = d̃vp−1,q ◦dhp,q. Furthermore, using this sign
convention, one can identify the category of double complexes with the category of chain
complexes over chain complexes [121].

One of the most common types of double complexes are the first-quadrant double complexes,
which are distinguished by Cp,q = 0 for all p, q with p < 0 or q < 0, similar to bounded chain
complexes. We will frequently depict such a double complex as

...
... ...

C0,1 C1,1 . . .

C0,0 C1,0 . . .

and implicitly understand to extend it by zeros again. Starting with any double complex C,
there is a common construction to extract a chain complex from C, called the total complex:

(CTot)n :=
⊕
p+q=n

Cp,q dTot := dh + dv

And indeed, d2
Tot = 0 since

d2
Tot = (dv)2 + (dh)2 + (dvdh + dhdv) = 0
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by Definition 2.1.6. Accordingly, the cohomology of the total complex of a double complex
is called the total cohomology and is denoted by

HTot(C) := H(CTot, dTot).

One of the most important examples of the total cohomology of a double complex for this
thesis will be the cohomology of the Cartan (double) complex, see Definition 2.3.11. Another
prominent example from differential geometry would be the Čech-de Rham complex C(U,Ω)
of a good cover U of a manifold M . The leftmost column of the Čech-de Rham complex
is the complex of differential forms Ω(M), while the bottom row is the Čech-complex of
the cover. The remaining parts interpolate between both. It’s total cohomology is then
used to construct an isomorphism between the de Rham cohomology HdR(M) and the Čech
cohomology Ȟ(U) of M via [20]

HdR(M) ∼= HTot(C(U,Ω)) ∼= Ȟ(U).

2.2 Hochschild Cohomology

Since the beginnings of deformation quantization, Hochschild cohomology has been a cen-
tral tool and consequently we will be using it throughout the later chapters, especially to
obtain the most fundamental classification result for star products. As such, we shall give
a brief introduction and collect some necessary results on the topic. The general first part
will essentially follow the treatise in [121], while the specialized version of the Hochschild-
Kostant-Rosenberg theorem for manifolds is taken from [120]. Throughout this section we
will assume that k is a commutative ring, R is a unital k-algebra and M is an R-bimodule.
Using the shorthand notation R⊗n = R⊗ . . .⊗ R for the n-fold tensor product of R over k,
we define the Hochschild complex HC•(R,M) as

HCn(R,M) := Hom
(
R⊗n,M

)
HC0(R,M) := M HC−n(R,M) := 0

for all n ∈ N. On HCn(R,M) we define the following coface maps ∂i : HCn(R,M) −→
HCn+1(R,M) through

(∂if)(r0 ⊗ . . .⊗ rn) :=


r0 · f(r1 ⊗ r2 ⊗ . . .⊗ rn) for i = 0

f(r0 ⊗ . . .⊗ ri−1ri ⊗ . . .⊗ rn) for 0 < i < n

f(r0 ⊗ . . .⊗ rn−1) · rn for i = n

for all f ∈ HCn(R,M) and r0, . . . , rn ∈ R. The name coface map comes from the fact that
the ∂i together with the so called codegeneracy maps (σif)(r1 ⊗ . . .⊗ rn−1) := f(r1 ⊗ . . .⊗
ri⊗ 1⊗ ri+1⊗ . . .⊗ rn) forms a cosimplicial k-module M ⊗R⊗• (see [121]). We will however
only be interested in the associated cochain complex, given by HC(R,M) together with the
differential

∂ : HCn(R,M) −→ HCn+1(R,M) : ∂ :=
n∑
i=0

(−1)i ∂i

(the fact that HC•(R,M) together with the coface and codegeneracy maps is a cosimplicial
k-module guarantees that ∂ is a differential. One could also check this directly by an easy
combinatorial calculation). Accordingly, Hochschild cohomology HH•(R,M) is defined as

HHn(R,M) :=
ker
(
∂ : HCn(R,M) −→ HCn+1(R,M)

)
im
(
∂ : HCn−1(R,M) −→ HCn(R,M)

) .
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As usual, it is instructive to explicitly calculate HCn(R,M) for some small n. For n = 0 we
have HC0(R,M) = M and the coface maps are given by

∂0(m) = r 7−→ r ·m
∂1(m) = r 7−→ m · r

from which we can immediately conclude that HH0(R,M) is precisely the center Z(M) of
M :

HH0(R,M) = ker
(
∂0 − ∂1

)
= {m ∈M | rm = mr for all r ∈ R} = Z(M).

For n = 1 on the other hand, we have the three coface maps

(∂0f)(r0 ⊗ r1) = r0 · f(r1)

(∂1f)(r0 ⊗ r1) = f(r0 · r1)

(∂2f)(r0 ⊗ r1) = f(r0) · r1

and consequently

ker
(
∂0 − ∂1 + ∂2

)
= {f ∈ Hom(R,M) | f(r0r1) = r0f(r1) + f(r0)r1} = Derk(R,M)

where Derk(R,M) denotes theM -valued derivations of R. Furthermore, from the discussion
of HH0(R,M) we see immediately that

im
(
∂0 − ∂1

)
= {f ∈ Hom(R,M) | ∃m ∈M : f(r) = mr − rm for all r ∈ R}
= InnDerk(R,M),

where InnDerk(R,M) denotes the inner M -valued derivations of R. We see then that

HH1(R,M) =
Derk(R,M)

InnDerk(R,M)
.

One can show that in general HH•(R,M) can be calculated as a relative Ext [121]:

Lemma 2.2.1 Hochschild cohomology is isomorphic to relative Ext for the ring map k −→
Re = R⊗ Rop:

HH•(R,M) ∼= Ext•Re/k(R,M).

This description of Hochschild cohomology however, is in many cases still too complicated.
Fortunately, we will not need Hochschild cohomology in full generality, but only a slightly
different variant of it in the following very specific setting: let us assume for the remainder
of this chapter that k is a field, A a unital, commutative k-algebra and that R = M = A.
We begin by defining multidifferential operators on A of order K = (k1, . . . , kn) ∈ Zn for
any n ∈ N with values in A recursively by

DiffOpK(A⊗n,A) := 0

if ki < 0 for at least one 1 ≤ i ≤ n and

DiffOpK(A⊗n,A)

:=
{
D ∈ Hom(A⊗n,A)

∣∣ ∀a ∈ A∀i : La ◦D −D ◦ L(i)
a ∈ DiffOpK−ei(A⊗n,A)

}
,
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where we used K − ei := (k1, . . . , ki − 1, . . . , kn), denoted by La the left-multiplication with
a in A and by L(i)

a the left multiplication on the i-th tensor factor in A⊗n. Finally, denote
by

DiffOp•(A⊗n,A) :=
⋃

K∈Zn
DiffOpK(A⊗n,A)

the union of differential operators of all orders. We can now define the complex of smooth
Hochschild cochains HC•diff(A,A) (where we will shorten notation to HC•diff(A)) by

HCn
diff(A) := DiffOp•(A⊗n,A).

Clearly, HC•diff(A) is a subcomplex of HC•(A,A). We denote by HH•diff(A) the correspond-
ing smooth Hochschild cohomology. Specializing the above setting even further to the case
A = C∞(M) for any manifold M , one can obtain an explicit expression of the smooth
Hochschild cohomology by a variation on the famous Hochschild-Kostant-Rosenberg the-
orem [66, 120], which was first mentioned in [119], where we use the shorthand notation
X•(M) := Γ∞(Λ•TM) for multivectorfields on M .

Theorem 2.2.2 (Hochschild-Kostant-Rosenberg) The Hochschild-Kostant-Rosenberg
map

U : X•(M) −→ HC•diff(C∞(M))

given by
(UX)(f1, . . . , fn) := X(df1, . . . , dfn)

induces an isomorphism on cohomology (where X•(M) is equipped with the 0-differential)

U : X•(M) ∼= HH•diff(C∞(M))

Remark 2.2.3 There are different variants of the Hochschild-Kostant-Rosenberg theorem
that apply to different settings. For example, if A is a commutative algebra over a field k
subject to some technical conditions, then there exists an isomorphism [51,121]

Λ•Der(A,A) ∼= HH•(A,A)

between the exterior algebra of A-valued derivations on A and the Hochschild cohomology
of A. The similarity to Theorem 2.2.2 becomes apparent, once one recognizes vector fields
on M as C∞(M)-valued derivations of C∞(M) and uses the isomorphism Γ∞(Λ•TM) ∼=
Λ•Der(C∞(M),C∞(M)). Other variants of the HKR-theorem can be found e.g. in [2], [28],
[87] or [101].

Remark 2.2.4 X•(M) [97,109] and HC•diff(C∞(M)) [50] both come equipped with a differ-
ential graded Lie algebra structure (the latter even with a Gerstenhaber structure). However,
the HKR-map U from Theorem 2.2.2 is not a morphism of differential graded Lie algebras.
The celebrated formality theorem by Kontsevich [76] (see also [4, 25–27, 36–38, 77–79, 115])
extends the HKR-map to an L∞-quasi-isomorphism that has U as its first Taylor coefficient.

We will conclude this section with an application of the HKR-Theorem [57,98,119]:

Corollary 2.2.5 Any smooth Hochschild cocycle C ∈ HCk
diff(C∞(M)) can be written as

C(f1, . . . , fk) = ∂c(f1, . . . , fk) +X(df1, . . . , dfk)

with c ∈ HCk−1
diff (C∞(M)) and X ∈ X•(M).
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Proof: Consider [C] ∈ HHk
diff(C∞(M)) and denote its pre-image in Xk(M) under the HKR-

map for cohomology by XC . Then UXC and C are clearly cohomologous and hence there
exists a ∂-exact ∂c in HCk

diff(C∞(M)) such that

UXC − C = ∂c. �

2.3 Equivariant Cohomology

As mentioned briefly in Section 2.1, cohomology modules can play an important role in
classifying topological spaces and manifolds. During this thesis however, we will rarely be
interested in bare manifolds or topological spaces. Rather, our focus lies with manifolds
that come equipped with a smooth Lie group action. Similarly, for the motivational Sec-
tion 2.3.1, the main object of interest are topological spaces on which a topological group
acts continuously. In these situations, it is often the case that singular or de Rham coho-
mology do not capture as many features as one would like. Hence the need arises to find
cohomology theories more adapted to group actions. So one may, for example, use invariant
or equivariant cohomology, the latter of which will be detailed throughout the following
parts. First, however, for the convenience of the reader as well as to fix notations, we shall
give a brief introduction into the necessary concepts surrounding Lie group actions on man-
ifolds. For clarification, whenever we speak of actions, we will always implicitly mean left
actions (if not stated otherwise). Given any group action . : G × S −→ S for a group G
and a set S, we will frequently write g . s or just gs instead of .(g, s). We shall also omit
any mention of the action . itself, if it is clear from the context. We shall also agree, that
actions of Lie groups on manifolds are always smooth and that actions of topological groups
on topological spaces are always continuous. Also, since each g ∈ G can be viewed as an
automorphism of M through m 7−→ g .m, one always has an induced right action on tensor
fields t on M by the pullback with said automorphism, which we denote by g∗t. Of course,
there exists a plethora of types of actions, two of which will be particularly useful to us later
on. The first ones are free actions:

Definition 2.3.1 (Free action) Let . : G× S be an action of a group G on a set S. . is
called free if g . s = h . s implies g = h for all g, h ∈ G and s ∈ S.

One of the most commonly used property of free actions is then the following: let G be a
group, S1 and S2 sets and .i : G×Si −→ Si actions. We can combine both actions into one
by setting

. : G× (S1 × S2) −→ S1 × S2 : (g, s1, s2) 7−→ (gs1, gs2).

If either .1 or .2 is a free action, then so is .. In Section 2.3.1, the definition of equivariant
cohomology of topological spaces equipped with continuous actions of topological groups
relies heavily on this fact. The second important type is that of a proper action, which only
applies to continuous group actions:

Definition 2.3.2 (Proper action) Let . : G × M −→ M be a continuous action. . is
called proper, if the map

G×M −→M ×M : (g,m) 7−→ (gm,m)

is a proper map, that is if the pre-images of compact subsets are compact.
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In the later parts, we will often use smooth actions of Lie groups G on manifolds M that
are free and proper, for the sole reason, that the quotient space

M/G := {G .m | m ∈M}

is then again a manifold. Staying with Lie groups for the remainder of this section, there
are a few particularly important concepts special to smooth actions. So let G be a Lie group
acting on a manifold M and let g be the Lie algebra of G together with its exponential map
exp: g −→ G. For any Lie algebra element ξ ∈ g and point m ∈ M we can then define a
curve in M by

exp(−t · ξ) . m for t ∈ R. (2.3.1)
Furthermore, we can derive γ with respect to t in t = 0 to obtain a tangent vector at m.
Repeating this process for all m, one obtains a smooth vector field

Xξ(m) :=
d

dt

∣∣∣
t=0

(exp(−t · ξ) . m) (2.3.2)

on M , called the fundamental vector field of ξ. It is also commonly denoted by ξM . One
can then show, that the map

X• : g −→ X(M) : ξ 7−→ Xξ (2.3.3)

is a Lie algebra anti-homomorphism from g to the Lie algebra of vector fields X(M) on M .

Remark 2.3.3 Note, that the sign in the definition of fundamental vector fields is entirely
up to convention. If we used a plus in (2.3.1) and (2.3.2), then the map X• would turn out
to be a Lie algebra homomorphism. Both conventions are commonly used.

The definition of fundamental vector fields, and especially the homomorphism X•, then
directly motivates the concept of Lie algebra actions:

Definition 2.3.4 (Lie algebra action) Let g be a Lie algebra and M be a manifold. A
Lie algebra action of g on M is a Lie algebra anti-homomorphism

ρ : g −→ X(M).

We will frequently abbreviate the Lie derivative Lρ(ξ) to just Lξ, if the action ρ is clear from
the context. Via fundamental vector fields, we can always obtain a Lie algebra action from
a given Lie group action. The converse, however, is only true under special circumstances,
as detailed in a famous theorem by Palais [99] (see also [88, Thm. 6.5]):

Theorem 2.3.5 (Palais) Let G be a connected and simply connected Lie group with Lie
algebra g, M be a manifold and

ρ : g −→ X(M)

be a Lie algebra action. Then ρ integrates to a Lie group action . : G ×M −→ M if and
only if all X ∈ im(ρ) have a complete flow.

Instead of actions on pure manifolds however, we will mainly be interested in actions on
symplectic manifolds. And in this case, one requires the actions to be compatible with the
additional symplectic structure. A Lie group action is said to be symplectic, if pullbacks
with group elements preserve the symplectic two-form and Lie algebra actions are said to
be symplectic if the flow of all elements preserves the symplectic structure. We will refer to
symplectic manifolds equipped with symplectic Lie group or Lie algebra actions as G- and
g-spaces respectively:
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Definition 2.3.6 (Symplectic G-space) Let (M,ω) be a symplectic manifold, G a Lie
group and . a Lie group action of G on M . . is called symplectic if

g∗ω = ω

holds for all g ∈ G. The tuple (M,ω,G, .) is then called a symplectic G-space.

Definition 2.3.7 (Symplectic g-space) Let (M,ω) be a symplectic manifold, g a Lie al-
gebra and ρ : g −→ X(M) a Lie algebra action of g on M . ρ is called symplectic if

Lρ(ξ)ω = 0

holds for all ξ ∈ g. The tuple (M,ω, g, ρ) is then called a symplectic g-space.

As per our conventions, the explicit notation of the action in symplectic G- and g-spaces is
usually dropped. Also, recall that any vector field X ∈ X(M) on M is called symplectic, if
LXω = 0 holds. Hence the definition of symplectic Lie algebra actions could be reformulated
to require ρ to be a map g −→ Xsympl(M) into the symplectic vector fields instead of all
vector fields.

2.3.1 Equivariant Cohomology in Topology

Equivariant cohomology was originally devised as a tool to handle group actions on topo-
logical spaces for cases where the orbit space is not sufficiently “nice”. To elaborate, let X
be a topological space and G a topological group acting on X. Also, for this part only, let
G be compact. If in addition the action is free, the orbit space X/G usually turns out to
be well-behaved. For example, if X is Hausdorff, so is X/G. If X is a manifold and G
a Lie group acting smoothly on X, then X/G is again a manifold. With this background,
equivariant cohomology is a result from the search for a cohomology theory HEG that agrees
with singular cohomology HSing on quotients of free actions, but is better behaved in the
non-free case where singular cohomology is often pathological. So given any coefficient ring
R,

HEG(X,R) = HSing(X/G,R)

is required to hold whenever the action of G on X is free.

Remark 2.3.8 The notation HEG for equivariant cohomology is non-standard. We chose
it solely to avoid confusion with the cohomology of the Cartan complex.

The actual construction of HEG centers around two facts. For one, any two topological
spaces that are homotopy equivalent have isomorphic singular cohomology. And second,
the cartesian product of X with any topological space E with free G action is equipped
with the diagonal action of G which is free. So the main idea is to search for a contractible
topological space E with a free G action (contractability guarantees that X×E is homotopy
equivalent to X). Assuming the existence of such an E, equivariant cohomology can be
defined as

HEG(X,R) := HSing

(
X × E
G

,R

)
.

To show that HEG is well-defined, we employ a standard classification theorem, which can
be found in many textbooks on algebraic topology, i.e. [117].
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Theorem 2.3.9 Let G be a topological group. Then there exists a topological space BG (the
classifying space of G) and a natural isomorphism

ιB : [B,BG] −→ GBun(B,G),

where [B,BG] denotes the set of homotopy classes of continuous maps B −→ BG and
GBun(B,G) the set of isomorphism classes of numerable G-principal bundles over B.

We will not concern ourselves with the technical details of that theorem, however, one
particular consequence is the next theorem [55]:

Theorem 2.3.10 If E1 and E2 are contractible spaces on which G acts freely, they are
equivalent as G-spaces. In other words there exist G-equivariant maps

φ : E1 −→ E2, ψ : E2 −→ E1

with G-equivariant homotopies

ψ ◦ φ ' idE1 , φ ◦ ψ ' idE2 .

This immediately assures that HEG is indeed well-defined. As for the existence of a suitable
space E, one has to turn to the proof of Theorem 2.3.9, where a universal bundle EG −→
BG, called the classifying bundle of G, is constructed. The total space EG is then equipped
with a freeG-action and is contractible. In hindsight, one can view EG −→ BG as ιBG(idBG).
Finally, let us note that if G acts freely on X then the map

X × E
G

−→ X/G

induced by the projection onto the first factor is a homotopy equivalence and as such we
have

HEG(X,R) = HSing

(
X × E
G

,R

)
∼= HSing(X/G,R).

2.3.2 The Cartan Model of Equivariant Cohomology

As seen in the previous part, the very definition of equivariant cohomology requires finding
a contractible space on which G acts freely (i.e. the classifying bundle of G), which is
notoriously difficult. As such, one is highly motivated to find alternative constructions for
equivariant cohomology. One of these is the Cartan model. The Cartan model is defined via
differential forms and hence only applicable to the case of Lie group or Lie algebra actions on
smooth manifolds. We will start by defining the Lie algebraic chain complex of equivariant
differential forms, also called the Cartan complex [55]:

Definition 2.3.11 (Cartan complex) Let M be a smooth manifold, g a Lie algebra and
ρ : g −→ X(M) a Lie algebra action of g on M . The complex of g-equivariant differential
forms, or Cartan complex, Ωg(M) is defined as

Ωk
g(M) :=

( ⊕
2i+j=k

[
Si(g∗)⊗ Ωj(M)

]g
, dg := d + i•

)
.

Invariants are taken with respect to the representation

ξ . (p⊗ α) :=
(
− ad∗ξ p

)
⊗ α + p⊗ (−Lξα) for all p ∈ S(g∗), α ∈ Ω(M).

We will refer to k = 2i + j as the total, i the symmetric and j the exterior degree of any
α ∈ [Si(g∗)⊗ Ωj(M)]

g.
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Here we denoted by Ω(M) the de Rham complex of differential forms on M with de Rham
differential d, by g∗ the dual of g, by Si(g∗) the i-th component of the symmetric tensor
algebra over g∗, by i• the insertion of vector fields into the first component of the differential
form part, by − ad∗ the coadjoint representation of g

(− ad∗ξ α)(η) := α([ξ, η]) for all ξ, η ∈ g and α ∈ g∗

extended to S(g∗) as the tensor product representation and by [. . .]g the set of g-invariant
elements with respect to .. Obviously, . is also nothing but the tensor product of the
coadjoint representation − ad∗ on S(g∗) and −L• on Ω(M). A particularly useful point
of view on equivariant differential forms will be that of equivariant polynomials on g with
values in Ω(M): any α ∈ [Si(g∗)⊗ Ωj(M)]

g can be seen as a degree i polynomial map
α : g −→ Ωj(M) such that

(ad∗ξ α)(η) = −Lξ[α(η)]

holds for all ξ, η ∈ g. To complete Definition 2.3.11, we have to demonstrate that dg maps
again into the equivariant differential forms and that dg squares to zero. For the first part,
let α ∈ Ωg(M) and ξ, η ∈ g. Since Lξ commutes with d, we only have to show that i• is
equivariant:

−Lξ[(i• α)(η)] = −Lξ[iη α(η)] = i[ξ,η] α(η) + iη Lξα(η)

= i[ξ,η] α(η)− iη(ad∗ξ α)(η) =
[
ad∗ξ(i• α)

]
(η).

To conclude, let us show that dg is a differential. Using d2 = i2ξ = 0 for all ξ ∈ g, we can
calculate

[dgα](ξ) = d2α(ξ) + (d iξ + iξ d)α(ξ) + i2ξ α(ξ) = Lξα(ξ) = (− ad∗ξ α)(ξ) = 0. (2.3.4)

To explore some of the properties of Ωg(M), let us briefly note that Ωg can be expressed as
the following concatenation of functors

Ωg =
(
•G
)
◦ (S(g∗)⊗ •) ◦ Ω,

which immediately implies that Ωg is a functor. We will abuse notation a little bit here and
write

f ∗ = Ωg(f) : Ωg(M) −→ Ωg(N) : p⊗ α 7−→ p⊗ f ∗α

for any equivariant map f : N −→ M . Furthermore, it is possible to view Ωg as a double
complex with vertical differential i• and horizontal differential d, which will be important
later on. To be explicit, define

Ωi,j
g (M) :=

([
Si(g∗)⊗ Ωi+j(M)

]g
, dv := i•, dh := d

)
.

We use the standard convention that Ωj(M) = 0 for all j < 0. And indeed, the horizontal
and vertical differentials anticommute, which can be shown easily by using Cartan’s formula
together with the last part of (2.3.4)[

(dvdh + dhdv)α
]
(ξ) = [L•α](ξ) = Lξα(ξ) = 0.
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Remark 2.3.12 In the above definition, one might wonder about the fact that Ωi,j
g (M) has

Ωi+j(M) instead of Ωj(M) as the second tensor factor. This is done to match the double
complex conventions that the differentials map as

dh : Ωi,j
g (M) −→ Ωi,j+1

g (M) dv : Ωi,j
g (M) −→ Ωi+1,j

g (M)

If we had chosen the other variant, the vertical differential would map from Ωi,j
g to Ωi+1,j−1

g .
In the end, this convention is purely cosmetical in nature and will not impact any results.

Finally, let us turn towards equivariant cohomology. By this point it should come as no
surprise that equivariant cohomology in the Cartan model is defined as follows [55]:

Definition 2.3.13 (Equivariant cohomology) Let M be a smooth manifold and g a Lie
algebra acting on M . The equivariant cohomology of M with respect to g is defined as

Hg(M) :=
ker dg

im dg

.

In other words, using the standard cohomology functor H on chain complexes [121], we have
Hg = H ◦Ωg. Viewing the complex of equivariant differential forms as a double complex, we
can equivalently state that Hg = Htot ◦ Ω•,•g where Htot is the total cohomology functor on
double complexes. Especially the last two formulations immediately clarify the functoriality
of Hg. In addition, since d and i• are natural, we know that for any equivariant map of
manifolds f : N −→ M the pullback Ωg(f) : Ωg(M) −→ Ωg(N) on equivariant differential
forms descends to cohomology as

f ∗ = Hg(f) : Hg(M) −→ Hg(N) : [α]g 7−→ [f ∗α]g.

In complete analogy to the Lie algebraic case, there is a Lie group version of the Cartan com-
plex. Its definition, at its core, is nothing but Definition 2.3.11 with all formulas involving
Lie algebra elements integrated:

Definition 2.3.14 (Cartan complex) Let M be a smooth manifold and G be a Lie group
with Lie algebra g acting on M . The complex of G-equivariant differential forms ΩG(M) is
defined as

Ωk
G(M) :=

( ⊕
2i+j=k

[
Si(g∗)⊗ Ωj(M)

]G
, dG := d + i•

)
.

Invariants are taken with respect to the action

g . (p⊗ α) := (Ad∗g p)⊗ ((g−1)∗α).

Similarly to the Lie algebraic Cartan complex, it has to be established that dG maps into
the G-equivariant differential forms,

(dGα)(Ad∗g ξ) = dα(Ad∗g ξ) + iAd∗g ξ α(Ad∗g ξ) = d(g−1)∗α(ξ) +
(
(g−1)∗ iξ g

∗)((g−1)∗α(ξ)
)

= (g−1)∗(dGα)(ξ),

and that dG is a differential:[
d2
Gα
]
(ξ) = Lξα(ξ) = − d

d t

∣∣∣
t=0

exp(−tξ)∗α(ξ) = − d

d t

∣∣∣
t=0
α
(
Adexp(−tξ) ξ

)
= − d

d t

∣∣∣
t=0
α(exp(−t adξ)ξ) = − d

d t

∣∣∣
t=0
α(ξ) = 0.
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Note that every action of a Lie group G has an associated derived action of its Lie algebra
g by fundamental vector fields. If G is additionally connected, then any element α ∈
S(g∗) ⊗ Ω(M) is G-invariant, if and only if it is g-invariant, hence in this particular case,
the Lie algebraic Cartan complex Ωg(M) coincides with the group theoretic Cartan complex
ΩG(M). However, all results in Section 3.4 will be valid for all Lie algebra actions, even
those that do not arise as fundamental vector fields of a global action.

With all necessary definitions in place, it is now that we are able to make the originally
sought after connection to equivariant cohomology in the form of the following theorem,
originally due to [24], see also [55,69,96]:

Theorem 2.3.15 (Cartan) Let G be a compact Lie group acting on a compact manifold
M . Then equivariant cohomology and the cohomology of the Cartan complex are isomorphic.

HEG(M) ∼= HG(M).

It is vital to remark that for noncompact groups the above theorem generally fails.

Remark 2.3.16 Throughout this thesis we will use HEG exclusively for motivational pur-
poses. This will allow us to circumvent the cumbersome expression “cohomology of the
complex of equivariant differential forms” for Hg and HG, which we will instead just call
equivariant cohomology. One must be aware at all times that this terminology is not at
all justified, since we will be working with noncompact groups in general and hence Theo-
rem 2.3.15 may not apply. Even more, in the case of nonintegrable Lie algebra actions, see
Theorem 2.3.5, HEG simply cannot be constructed. Occasionally we will refer to HEG as
the topological or Borel model for equivariant cohomology.

2.3.3 Equivariant Cohomology of Principal Bundles

One main point of interest later on will be the equivariant cohomology ofG-principal bundles
for any connected, finite-dimensional Lie group G. Standard definitions of principal bundles
can be found in most books on differential geometry (e.g. [75]). For our purposes however,
another characterization of principal bundles [40] will prove to be tremendously useful, hence
we will elevate it to a definition

Definition 2.3.17 (Principal bundle) Let G be a Lie group. A G-principal bundle is a
smooth manifold P equipped with a free and proper action of G.

The connection to the standard definition is essentially that the canonical projection P π−→
P/G is a fibre bundle (which also implies that π is a surjective submersion). From the
topological model of equivariant cohomology we can already hypothesize as to what the
Cartan model of equivariant cohomology on principal bundles will turn out. Remember that
if G acts freely on a topological space X, one could construct an isomorphism HEG(X) ∼=
HSing(X/G). On smooth manifoldsM we can additionally employ the de Rham isomorphism
HSing(M) ∼= HdR(M) [20,89]. Combining both for the case of a principal bundle P −→ P/G
then yields

HEG(P ) ∼= HSing(P/G) ∼= HdR(P/G).

If the Lie group G and P/G were compact, then it immediately followed that there is an
isomorphism

HG(P ) ∼= HdR(P/G) (2.3.5)
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due to Theorem 2.3.15. However, since we do not restrict to compact Lie groups, the
situation is more complicated. We will devote the rest of this section to show that (2.3.5)
holds nevertheless.

We will be needing two additional definitions for the final result. One of them is the
notion of basic differential forms on a surjective submersion of manifolds:

Definition 2.3.18 (Basic differential form) Let π : M −→ N be a surjective submer-
sion between smooth manifolds. A differential form µ ∈ Ω(M) is called basic if

iY µ = 0 and LY µ = 0

for all Y ∈ ker(dπ). We will denote the complex of basic differential forms onM by Ωbas(M).

If we specialize the above definition for the case that M is a G-principal bundle P and N
the corresponding base manifold P/G then one can note that ker(dπ) = X(g) and thus
µ ∈ Ωbas(P ) is equivalent to

iξ µ = 0 and Lξµ = 0

for all ξ ∈ g (here we used the map X which maps lie algebra elements to their fundamental
vector fields). One easy lemma on basic differential forms is the following:

Lemma 2.3.19 Let π : M −→ N be a surjective submersion such that π−1(y) is a connected
submanifold of M for all y ∈ N . Then µ ∈ Ω(M) is basic if and only if there exists a unique
ν ∈ Ω(N) with

µ = π∗ν

Proof: We will directly define ν in two independent ways. First, given any point y ∈ N
and tangent vectors Z1, . . . , Zn ∈ TyN define

νy(Z1, . . . , Zn) := µp(X1, . . . , Xn)

for any tangent vectors X1, . . . , Xn ∈ TpM for which dπpXk = Zk holds for any choice of
p ∈ π−1(y). Such tangent vectors exist, since π is a surjective submersion. To show that
ν is well-defined, consider open neighbourhood U ⊆ N of y such that there exists a local
section σ : U −→ M (that is π ◦ σ = idU), which exists due to the constant rank theorem,
see e.g. [75, Lemma 2.2]. Evaluating σ∗µ at y for the tangent vectors Zk from above yields

(σ∗µ)y(Z1, . . . , Zn) = µσ(y)(dσyZ1, . . . , dσyZn)

and hence, by the identity dπσ(y)dσyZk = d(π ◦ σ)yZk = Zk, we conclude that σ∗µ agrees
with ν, as defined above, at y. This clearly establishes the independence of ν from the
choices of p ∈ π−1(y) and X1, . . . , Xn ∈ TpM . On the other hand, for any additional local
section σ̃ : V −→ M , σ∗µ and σ̃∗µ agree on the overlap U ∩ V since both yield ν at every
point in U ∩V . Hence for any open cover U with local sections {σU : U −→M}U∈U the local
differential forms {σ∗Uµ}U∈U can be glued together to a global differential form on N and
at each point, and thus globally, this differential form equals ν. Finally, we can calculate
pointwise for any q ∈M and Y1, . . . , Yn ∈ TqM

(π∗ν)q(Y1, . . . , Yn) = νπ(q)(dπqY1, . . . , dπqYn) = µq(Y1, . . . , Yn).
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The uniqueness of ν is clear from the injectivity of π∗. Conversely, given a differential form
µ = π∗ν for any ν ∈ Ω(N), and any Y ∈ ker dπ, µ is obviously basic. First, calculate

(π∗ν)p(Y,X2, . . . , Xn) = νπ(p)(dπpY, dπpX2, . . . , dπpXn) = 0 (2.3.6)

for any p ∈ M and X2, . . . , Xn ∈ TpM , to show that iY (π∗ν) = 0. To establish LY (π∗ν) =
0, use Cartan’s formula LY = d iY + iY d to see that d iY (π∗ν) = 0 by (2.3.6) and that
iY d(π∗ν) = iY (π∗dν) = 0 due to a similar calculation to (2.3.6). �

Since π∗ can be viewed as a chain map π∗ : Ω(N) −→ Ω(M), we immediately have the
following corollary:

Corollary 2.3.20 Let π : M −→ N be a surjective submersion such that π−1(y) is a con-
nected submanifold of M for all y ∈ N . Then π∗ induces an isomorphism of chain complexes

π∗ : Ω(N) ∼−→ Ωbas(M).

Note that for a connected Lie group G and a G-principal bundle P we obtain the chain
isomorphism π∗ : Ω(P/G) ∼−→ Ωbas(P ) (Corollary 2.3.20 applies since π−1(y) ∼= G for all
y ∈ P/G). The final ingredients will be principal connections [75]:

Definition 2.3.21 (Principal connection) Let G be a Lie group with Lie algebra g and
P a G-principal bundle. A principal connection on P is a g-valued one-form ω ∈ Ω1(P )⊗ g
such that

Adg ω = g∗ω and ω(Xξ) = ξ

for all g ∈ G and ξ ∈ g.

Given any G-principal bundle π : P −→ P/G for a connected Lie group G, we can choose a
principal connection ω ∈ Ω(P )⊗ g on P (for the existence of principal connections consult
e.g. [5, 75]) and define the following map for k ≥ 1

hω : Sk(g∗)⊗ Ω(P ) −→ Sk−1(g∗)⊗ Ω(P ) :

(
k∏
i=1

pi

)
⊗ α −→

k∑
j=1

∏
i 6=j

pi ⊗ (pj(ω) ∧ α)

where pj(ω) denotes the application of pj ∈ g∗ to the second tensor factor of ω ∈ Ω(P )⊗ g.
The significance of hω will become clear, once we consider the following augmentation of the
chain complex of equivariant differential forms Ω̃G(P )

...
...

...

0 Ω0,0
G (P ) Ω0,1

G (P ) Ω0,2
G (P ) · · ·

Ω0
bas(P ) Ω1

bas(P ) Ω2
bas(P ) · · ·

0 0 0

d

i•

d

i•

d

i•

d d d
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where the bottom row maps are the canonical inclusion of Ωi
bas(P ) = ker i• into Ω0,i

G (P ) =
Ωi(P )G. With the help of hω we can now show that the columns of this complex are
exact [103]:

Lemma 2.3.22 Let G be a connected Lie group and P a G-principal bundle. For all n ≥ 0
hω is a homotopy of the rows Ck := Ωk,n

G (P ) (with differential i•).

Proof: We have to establish two facts. First, that hω is an equivariant map and second
that it is indeed a homotopy. We will only prove the lemma for k = 1 since all other cases
essentially reduce to it. Let us begin with the equivariance. For all p⊗ α ∈ C1 we have

hω(g . p⊗ α) = hω
(
Ad∗g p⊗ (g−1)∗α

)
=
(
Ad∗g p

)
(ω) ∧ (g−1)∗α = p(Adg−1 ω) ∧ (g−1)∗α

= p
(
(g−1)∗ω

)
∧ (g−1)∗α = (g−1)∗(p(ω) ∧ α) = g . hω(p⊗ α).

As for the homotopy property, we notice that

iξ p(ω) = p(iξ ω) = p(ξ)

to finally show

i• hω(p⊗ α) = i• p(ω) ∧ α = (i• p(ω)) ∧ α− p(ω) ∧ i• α = p⊗ α− hω(i•(p⊗ α)). �

Using Lemma 2.3.22 it is clear that also the augmented complex Ω̃G(P ) has exact rows
since the bottom row was precisely defined to be the kernel of i•. We can now employ a
standard argument for double complexes with exact columns (see e.g. [20]) to prove that the
total cohomology of ΩG(P ), which is nothing but the equivariant cohomology in the Cartan
model, is isomorphic to the cohomology of the bottom row complex of the augmented
complex Ω̃G(P ), explicitly given by Ωbas(P )G with differential d, see [24,55,69,96]

Theorem 2.3.23 Let G be a finite-dimensional, connected Lie group with Lie algebra g and
P a G-principal bundle. Then

Hg(P ) ∼= HG(P ) ∼= H(Ωbas(P ), d).

Proof: First note that, since G is connected, Hg(P ) ∼= HG(P ) holds automatically. The
main idea is then to find for any [α]G ∈ HG(P ) a representative α′ ∈ [α]G such that
α′ ∈ Ωbas(P ), by successively reducing the symmetric degree of α using the exactness of the
columns of Ω•,•G (P ). To begin, we assume that α has total degree k and remember from
Definition 2.3.14 that we can write

α =
∑

2i+j=k

αi,j with αi,j ∈
[
Si(g∗)⊗ Ωj(P )

]G
.

In order for α to define a class [α]G ∈ HG(P ) we obviously need α to be dG-closed. In detail,
dG-closedness is equivalent to the following chain of equations:

dαi,j = i• αi−1,j+2

(with the express convention αi,j = 0 for i < 0 or j < 0). We can visualize those equations
for the example α = α2,0 + α1,2 + α0,4 as follows
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0

α2,0

α1,2

α0,4 0

i•

d

i•

d

d

i•

Since the total degree of α is finite, there must be a constituent αn,m with maximal symmetric
degree n ∈ N0 such that αn,m 6= 0. By dG-closedness of α we can immediately conclude
that i• αn,m = 0. But then, by exactness of the columns (see Lemma 2.3.22) there must
be a βn−1,m+1 ∈ [Sn−1(g∗)⊗ Ωm+1(P )]

G such that i• βn−1,m+1 = αn,m. Now consider α1 :=
α − dGβn−1,m+1. Clearly we have [α]G = [α1]G ∈ Hk

G(P ). However, by construction, the
symmetric degree n part of α1 vanishes. Repeating this process (possibly less than) n − 1
times yields αn ∈ Ωk(P ) with [α]G = [αn]G ∈ Hk

G(P ). The dG-closedness condition for αn
now reads dαn = 0 and i• α

n = 0. The second equation tells us that αn ∈ ker i• ⊆ Ωk(P )G.
Using the fact that the invariance of αn with respect to the action ofG implies that Lξα

n = 0
for all ξ ∈ g, we can immediately conclude that αn ∈ Ωk

bas(P ). Conversely, every d-closed
α ∈ Ωk

bas(P ) defines a class [α]G ∈ Hk
G(P ), concluding this proof. �

Remark 2.3.24 Since in Lemma 2.3.22 we not only showed that the rows of Ω•,•G are
exact, but even found a homotopy hω, we can explicitly construct a bijection HG(P ) −→
H(Ωbas(P ), d). Thereto consider the map

φ : Zk
G(P ) −→ Zk

G(P ) : α 7−→ α− dghω(α).

on the dG-closed equivariant differential forms ZG(P ). Obviously φ = idHkG(P ) on Hk
G(P ).

However, φ does implement the reduction of symmetric degree in the proof of Theorem 2.3.23
on representatives (the only difference is that φ possibly also alters parts of nonmaximal
symmetric degree). Finally, define the map

Φ :=
∞∏
i=1

φ : Zk
G(P ) −→ Zk

bas(P )

into the d-closed, basic differential forms Zbas(P ). There are no convergence problems since
on Zk

G(P ) the infinite concatenation
∏∞

i=1 φ stabilizes after at most k applications of φ. And
again, Φ = idHkG(P ) if viewed as Φ: Hk

G(P ) −→ Hk
G(P ).

2.4 The Homological Perturbation Lemma

As a last tool of the trade, before coming to deformation quantization, we shall provide
a brief exposition on the homological perturbation lemma. Roughly, the thrust of the
homological perturbation lemma is, that, given two homotopy equivalent chain complexes
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(of certain kinds), one can “perturb” the differential of one of them by a “small” amount,
such that there exists a perturbed differential on the second chain complex and that those
two new chain complexes are again homotopy equivalent. Even more, the homological
perturbation lemma provides explicit formulas for the perturbed objects. In this exposition,
we will follow [29], other applications and references can be found e.g. in [54,67,70,81]. We
begin by defining homotopy equivalence data, deformation retracts and special deformation
retracts:

Definition 2.4.1 (Homotopy equivalence data) A homotopy equivalence data (or HE
data) consists of two chain complexes (C, dC) and (D, dD) over a commutative ring R to-
gether with two quasi-isomorphisms

i : (C, dC) −→ (D, dD) and p : (D, dD) −→ (C, dC)

and a homotopy
h : D −→ D with idD − ip = dDh+ hdD

between idD and ip.

To shorten notation, we will throughout summarize any given HE data, such as in Defini-
tion 2.4.1, as

i : (C, dC)� (D, dD) : p, h.

Definition 2.4.2 (Deformation retract) A deformation retract (or DR) is a HE data,
such that additionally

pi = idC

holds.

Definition 2.4.3 (Special deformation retract) A special DR is a deformation retract,
such that additionally

hi = 0, ph = 0 and h2 = 0

hold.

Remark 2.4.4 Note, that in Definition 2.4.1 we are using a slightly different sign convention
compared to [29]. One can however easily pass from one to the other by replacing h with −h.
We chose this convention purely to better fit the application of the homological perturbation
lemma in Section 4.2.

Given any HE data (we will throughout use the notation from Definition 2.4.1), we will say
that any linear map δ : D −→ D with deg δ = deg dD and (dD + δ)2 = 0 is a perturbation of
the HE data. We will say that the perturbation δ is small, if (idD + δh) is invertible. One
particular case of perturbations that we will encounter later on is the following: Given any
HE data, consider the new HE data

(CJνK, dC)� (DJνK, dD), h (2.4.1)

where dC , dD, i, p and h are extended ν-linearly. Clearly CJνK and DJνK come equipped
with a filtration

FpCJνK := νpCJνK and FpDJνK := νpDJνK.
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Then, if we modify dD by adding any map δ of the same degree that strictly increases the
filtration degree, that is

δ : FpDqJνK −→ Fp+1Dq+deg dDJνK,

we see clearly that idD+δh is invertible as a formal power series by the von Neumann formula
(since h is ν-homogeneous, δh strictly increases the filtration degree). Thus we obtained a
small perturbation of the initial HE data (after extending as power series). Regardless of
the specifics of the small perturbation, the homological perturbation lemma states, that the
perturbed HE data is again a HE data [29]:

Lemma 2.4.5 (Homological perturbation lemma) Given any HE data

i : (C, dC)� (D, dD) : p, h

and any small perturbation δ of dD, then the following perturbed data

I : (C, dC)� (D, dD) : P, H

with
A := (idD + δh)−1δ dD := dD + δ dC := dC + pAi

I := i− hAi P := p− pAh H := h− hAh

is again a HE data.

Proof: We shall here, mostly for convenience, repeat the proof of the homological pertur-
bation lemma from [29], adapted to our sign convention and notation. We will drop most
indices, such as the ones of dD and dC , to simplify notation. To prepare, we will need three
auxiliary results, the first of which is

δhA = Ahδ = δ − A, (2.4.2)

that holds due to
(id + δh)A = δ ⇒ A+ δhA = δ

⇒ δhA = δ − A

and
δhδ = (id + δh)δ − δ ⇒ (id + δh)−1δhδ = δ − (id + δh)−1δ = δ − A

⇒ Aδh = δ − A.

The second result explicitly gives the inverse of (id + δh) and (id + hδ) as

(id + δh)−1 = id− Ah and (id + hδ)−1 = id− hA, (2.4.3)

what can be proven by explicitly calculating all four possible concatenations while using
(2.4.2):

(id + δh)(id− Ah) = id− δhAh− Ah+ δh = id + (δ − A− δhA)h = id

(id− Ah)(id + δh) = id + δh− Ah− Ahδh = id + (δ − A− Ahδ)h = id

(id + hδ)(id− hA) = id− hA+ hδ − hδhA = id + h(δ − A− δhA) = id

(id− hA)(id + hδ) = id + hδ − hA− hAhδ = id + h(δ − A− Ahδ) = id
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For the last relation
AipA+ Ad + dA = 0 (2.4.4)

we will make use of both (2.4.2) and (2.4.3):

AipA+ Ad + dA = A(id− dh− hd)A+ Ad + dA

= A2 + Ad(id− hA) + (id− Ah)dA

= (id + δh)−1
[
(id + δh)A2(id + hδ) + (id + δh)Ad + dA(id + hδ)

]
(id + hδ)−1

= (id + δh)−1[(A+ δhA)(A+ Ahδ) + (A+ δhA)d + d(A+ Ahδ)](id + hδ)−1

= (id + δh)−1
[
δ2 + δd + dδ

]
(id + hδ)−1 = 0.

The main part of the proof consists then in five steps, in which it is shown that the perturbed
data is again a HE data. In detail, one needs to prove that dC is a differential, that I and
P are chain maps, that H is a homotopy between id and IP and that I and P are quasi-
isomorphisms. We will go through these parts in order, by calculating

d2
C = (d + pAi)(d + pAi) = d2 + dpAi+ pAid + pAipAi

= dpAi+ pAid + p(−dA− Ad)i = 0

where we used (2.4.4), as well as the fact that i and p are chain maps, hence dp = pd and
id = di hold. Secondly, let us show that I is a chain map:

IdC − dDI = (i− hAi)(d + pAi)− (d + δ)(i− hAi)
= id + ipAi− hAid− hAipAi− di+ dhAi− δi+ δhAi

(2.4.2),(2.4.4)
= ipAi− hAid− h(−Ad− dA)i+ dhAi− δi+ (δ − A)i

= (ip+ hd + dh− id)Ai = 0.

Third, P is also a chain map:

dCP − PdD = (d + pAi)(p− pAh)− (p− pAh)(d + δ)

= dp− dpAh+ pAip− pAipAh− pd− pδ + pAhd + pAhδ

(2.4.2),(2.4.4)
= −dpAh+ pAip− p(−dA− Ad)h− pδ + pAhd + p(δ − A)

= pA(ip+ dh+ hd− id) = 0.

Fourth, H is a homotopy between id and IP :

IP + dDH +HdD − id

= (i− hAi)(p− pAh) + (d + δ)(h− hAh) + (h− hAh)(d + δ)− id

= ip− ipAh− hAip+ hAipAh+ dh− dhAh

+ δh− δhAh+ hd + hδ − hAhd− hAhδ − id

= −ipAh− hAip+ h(−dA− Ad)h− dhAh+ δh− (δ − A)h+ hδ − hAhd− h(δ − A)

= −(ip+ dh+ hd− id)Ah− hA(ip+ dh+ hd− id) = 0.

To show that I is a quasi-isomorphism is slightly more involved. First, it is clear from
id − IP = dDH + HdD that P is a right-inverse of I on cohomology, hence the induced
map I : H(D, dD) −→ H(C, dC) is surjective. To see that I is also injective on cohomology,
take any x ∈ C that is dC-closed and is mapped under I to 0 on cohomology, that is I(x)
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is (d + δ)-exact. Let furthermore y ∈ D be any element with dDy = I(x). Evaluating
dC = d + pAi on x then yields

(d + pAi)(x) = dC(x) = 0. (2.4.5)

Similarly, from the definition of y, we have

(i− hAi)(x) = I(x) = (d + δ)(y). (2.4.6)

An immediate consequence of (2.4.6) is

δi(x)− δhAi(x) = δd(y) + δ2(y) ⇒ δi(x)− (δ − A)i(x) = −dδ(y)

⇒ Ai(x) = −dδ(y).

By inserting this identity in (2.4.6) , one can easily observe that x−pδ(y) is d-closed through

0 = d(x) + pAi(x) = d(x)− pdδ(y) = d(x− pδ(y)).

On the other hand, reinserting the same identity into (2.4.6) produces

i(x) = −hdδ(y) + d(y) + δ(y) ⇒ i(x) = −(id− ip− dh)δ(y) + d(y) + δ(y)

⇒ i(x− pδ(y)) = dhδ(y) + d(y).
(2.4.7)

This last identity proves that i(x − pδ(y)) is d-exact. Furthermore, since i is a quasi-
isomorphism, there exists z ∈ C such that x − pδ(y) = d(z) holds. This in turn allows us
to deduce with the help of the first step in (2.4.7)

x = pδ(y) + d(z) ⇒ i(x) = ipδ(y) + id(z)

⇒ −hdδ(y) + d(y) + δ(y) = ipδ(y) + id(z)

⇒ (ip− id + dh)δ(y) + d(y) + δ(y) = ipδ(y) + id(z)

⇒ d(hδ(y) + y − i(z)) = 0.

Again, from i being a quasi-isomorphism, we can assume the existence of α ∈ C and β ∈ D
such that d(α) = 0 and i(α) = i(z)−(id+hδ)(y)−d(β) holds. Applying pA to this equation
then gives

pAi(α) = pA(i(z)− (id + hδ)(y)− d(β))

= pAi(z)− pδ(y)− pAd(β)

= pAi(z)− pδ(y)− p(−AipA− dA)(β),

from which pδ(y) = pAi(z−α) + pAipA(β) + pdA(β) follows directly. Finally, we can insert
this identity into the defining equation of z, to obtain

x = pδ(y) + d(z) = pAi(z − α) + pAipA(β) + pdA(β) + d(z)

= d(z + pA(β)) + pAi(z − α + pA(β))

= dC(z + pA(β)− α),

concluding that x is dC-exact and hence that I is injective on cohomology. But since we
established earlier that P is a right-inverse of I on cohomology, we know immediately that
P is actually the inverse of I on cohomology. �
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Remark 2.4.6 According to [29], perturbations of special deformation retracts are again
special deformation retracts. For deformation retracts, however, the perturbed data is again
a deformation retract, if and only if

p
(
Ah2A− Ah− hA

)
i = 0

holds.

Instead of the full homological perturbation lemma, we will only ever encounter a special
situation, namely that the complex C is concentrated in degree 0 and Dn = 0 for n < 0.
This situation can be summarized diagrammatically as

0 D0 D1 . . .

0 C0 0

dD

h1

dD

h0
p0i0

(2.4.8)

In this case, one can readily observe that, for a small perturbation δ, the corresponding
deformed HE data according to Lemma 2.4.5 is

I0 = i0 P0 = p0 − p0(idD + δ1h0)−1δ1h0 H = h− h(idD + δh)−1δh

or, simplified slightly,

I0 = i0 P0 = p0(idD + δ1h0)−1 H = h(idD + δh)−1, (2.4.9)

where we denoted by i0 : C0 −→ D0 the degree 0 component of i and analogously for p, I
and P . Of course, all other components of P and I are 0. Also note that, even though
deformation retracts are, in general, not preserved under deformation, in the case (2.4.8),
the additional condition of h0i0 = 0 is sufficient to guarantee that the deformed HE data is
again a deformation retract, as can be easily verified by

P0I0 =
[
p0 − p0(idD + δ1h0)−1δ1h0

]
i0 = p0i0 − 0 = idC .





Chapter 3

Classification of Star Products

As motivated in Section 1.3, deformation quantization is an approach to providing a mathe-
matical rigorous framework to quantize classical systems. The central notion of deformation
quantization is that of differential star products, which we repeat for convenience here:

Definition 3.0.7 (Differential star product) Let (M,ω) be a symplectic manifold with
associated Poisson bracket { , }. A differential star product on M is an associative, ν-
bilinear product ? on C∞(M)JνK such that for all f, g ∈ C∞(M)JνK the product f ? g can be
expanded as

f ? g = fg +
∞∑
k=1

νkCk(f, g)

with bidifferential operators Ck for all k ∈ N and the following equations hold:

1 ? f = f ? 1 = f and f ? g − g ? f = ν{f, g}+O(ν2).

Also remember, that we will use the term star product to refer to differential star products
throughout. The overarching goal of this chapter is to detail various classification results of
different types of star products. The first such result will be the classification of pure star
products in Section 3.2 by the de Rham cohomology. Building on top of that, Section 3.3
shows how invariant star products, star products compatible with a Lie group or Lie algebra
action on the underlying manifold, are classified by the invariant de Rham cohomology.
Finally, in Section 3.4, we present the contribution by Waldmann and the author to the field
in the form of a classification result of equivariant star products [104], invariant star products
together with quantum momentum maps, by equivariant cohomology (of the Cartan model).
Before approaching these classification results however, we shall display one of the main
tools used in the proofs shown here, which is the Fedosov construction of star products on
symplectic manifolds.

3.1 The Fedosov Construction

One of the central tools of formal deformation quantization certainly is the Fedosov construc-
tion [45] of which we will make extensive use. It provides one with the means to construct
star products on symplectic manifolds from very simple input data: a symplectic covariant
derivative and a formal series of closed two forms on the symplectic manifold. This fact
alone already gives a positive answer to the question whether or star products exist on any
symplectic manifold. Of course, we have to guarantee the existence of the input data first,
which is subject of the Heß-trick (see e.g. [120]):

43
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Proposition 3.1.1 Let ∇̃ be a torsion-free, covariant derivative on a symplectic manifold
(M,ω). Then the covariant derivative defined by

ω(∇XY, Z) = ω
(
∇̃XY, Z

)
+

1

3

(
∇̃Xω

)
(Y, Z) +

1

3

(
∇̃Y ω

)
(X,Z)

is a torsion-free, symplectic, covariant derivative.

One significant problem in deformation quantization on Poisson manifolds stems from the
fact that the proof of Proposition 3.1.1 relies on ω being a symplectic form. Even more,
in general there is no covariant derivative on a Poisson manifold with respect to which
the Poisson tensor is constant. Consequently one cannot use the Fedosov construction and
has to resort to more advanced means, as shown by Kontsevich [79] and Tamarkin [115].
For our purposes, the single most important result about the Fedosov construction is that
it constructs essentially all star products, meaning that for every (invariant, equivariant)
star product there is an (invariantly, equivariantly) equivalent one obtained by the Fedosov
construction. This will allow us to reduce problems about equivalence classes of star prod-
ucts to the equivalence classes of Fedosov star products (all those obtained by the Fedosov
construction).

Turning towards the construction itself, its main idea can be summarized roughly as
follows. Find a suitable CJνK-module W ⊗ Λ(M) that admits a noncommutative, associa-
tive algebra structure, and a subalgebra K isomorphic to C∞(M)JνK as CJνK-module. A
star product on M can then be obtained by pulling back the associative product on K
to C∞(M)JνK. Furthermore, we will be able to construct different star products through
different choices of K. Throughout this section we will be using notation from and following
the exposition in [94] and [120], while many proofs are based on [37]. The original reference
is, of course, [45]. To begin, let us define W ⊗ Λ

W ⊗ Λ(M) :=
∞∏
k=0

(
C⊗ Γ∞

(
SkT ∗M ⊗ Λ•T ∗M

))
JνK

as the formal power series with values in the cartesian product of the complexified spaces
of sections of the tensor product of the symmetric and the exterior vector bundle over the
cotangent bundle T ∗M of M .

Remark 3.1.2 At first it is not obvious whether W ⊗ Λ(M) can be viewed as the (formal
power series of) global sections Γ∞(W ⊗ Λ) for any vector bundle, since for the “obvious”
choice W ⊗ Λ =

∏
SkT ∗M ⊗ ΛT ∗M the fibres, and in turn the total space, would be

clearly infinite-dimensional and one would have to deal with subtleties regarding the smooth
structure on W ⊗ Λ. This can be done, as mentioned in [120], however, the whole Fedosov
construction operates solely W ⊗ Λ(M) and does not require an underlying vector bundle.
With the sheaf

C∞JνK : U 7−→ C∞(U)JνK

defined on all open subsets U ⊆M , it will suffice to say that

W ⊗ Λ: U 7−→
∞∏
k=0

(
C⊗ Γ∞

(
SkT ∗U ⊗ Λ•T ∗U

))
JνK

is a C∞JνK-module sheaf of associative algebras on M . Furthermore, since everything will
be compatible with restrictions to open subsets, we will frequently refer to W ⊗ Λ(U) for
any open U ⊆M just as W ⊗ Λ and similarly to C∞(U)JνK just by C∞JνK.



3.1. THE FEDOSOV CONSTRUCTION 45

W ⊗ Λ already comes equipped with an associative product: by the Serre-Swan-Theorem
[111, 114] we have for any k that Γ∞

(
SkT ∗M ⊗ Λ•T ∗M

) ∼= Γ∞
(
SkT ∗M

)
⊗ Γ∞(Λ•T ∗M).

Next, note that Γ∞(Λ•T ∗M) is a finitely generated and (again by Serre-Swan) projective
C∞(M)-module. As such • ⊗ Γ∞(Λ•T ∗M) is a right-adjoint functor [83], hence commutes
with limits and we have

∞∏
k=0

[
Γ∞
(
SkT ∗M

)
⊗ Γ∞(Λ•T ∗M)

] ∼= [ ∞∏
k=0

Γ∞
(
SkT ∗M

)]
⊗ Γ∞(Λ•T ∗M).

Both tensor factors on the right hand side already have an associative product: the sym-
metrized tensor product ∨ and the wedge-product ∧ respectively. So in conclusion, we can
equipW⊗Λ with the tensor product of these two, which we will denote by µ. Furthermore,
W ⊗ Λ already has various natural gradings. Given that any element of W ⊗ Λ can be
written as sums over factoring tensors a = (X ⊗ α)νk with X ∈ SlT ∗M , α ∈ ΛmT ∗M and
k ∈ N0 we define the corresponding degree maps by

degs a = la dega a = ma degνa = ka Deg = degs +2degν

to which we will refer to as the symmetric, the antisymmetric, the formal and the total
degree respectively. We will also occasionally denote by Wk ⊗ Λl the subspace of elements
a ∈ W ⊗ Λ with degs a = ka and dega a = la. Accordingly, we will denote the projection
maps onto symmetric, antisymmetric, formal and total degree k respectively by prsk, prak,
prνk and Prk respectively. Finally, we will say that an element a ∈ W ⊗ Λ is of, or has,
symmetric (antisymmetric, formal, total) order k if prsl a = 0 (pral a = 0, prνl a = 0, Prla = 0)
for all l < k and write os(a) = k (oa(a) = k, oν(a) = k, O(a) = k) if k is the minimal
number such that a is of symmetric (antisymmetric, formal, total) order k. The product
µ is clearly graded commutative with respect to the antisymmetric degree. Moreover µ is
independent of the symplectic structure on M . Recalling that any star product ? on M
is required to have [f, g]? = ν{f, g} + O(ν2) and that we aimed to pull back a product on
W ⊗ Λ to a star product on C∞(M)JνK, µ clearly seems ill-suited for the task. However,
we can use µ to define the following noncommutative product on W ⊗ Λ:

a ◦F b := µ ◦ exp
{ν

2
ωij is(∂i)⊗ is(∂j)

}
(a⊗ b), (3.1.1)

where ωikωjk = δij and is(X)a denotes the insertion of a vector field X ∈ X(M) into the
first component of the symmetric part of a ∈ W ⊗ Λ. Here a word of caution seems
appropriate. Strictly speaking, ◦F is only well defined on W ⊗ Λ(U) for coordinate charts
U ⊆M . However, since only pairings of ωij and two insertions of vector fields appear in ◦F,
it is invariant under coordinate changes. Hence for any covering of M by coordinate charts
{Ui}i∈I and sections a, b ∈ W ⊗ Λ(M) we have for all i, j ∈ I(

a
∣∣
Ui
◦F b

∣∣
Ui

)∣∣∣
Ui∩Uj

=
(
a
∣∣
Uj
◦F b

∣∣
Uj

)∣∣∣
Ui∩Uj

thus by W ⊗ Λ being a sheaf, there exists a global section s ∈ W ⊗ Λ(M) such that

s
∣∣
Ui

= a
∣∣
Ui
◦F b

∣∣
Ui

holds for all i ∈ I and we define a ◦F b := s. This definition is clearly independent of
the choice of cover of M . In the following we will frequently define objects or perform
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calculations locally, which can then be extended to W ⊗ Λ(M) by similar arguments. Here
let us briefly note that ◦F is dega graded, but neither degs nor degν graded. It is however
Deg graded: the two insertions of vector fields in the exponent of ◦F reduce the symmetric
degree by 2 and the factor ν raises the formal degree by 1. Since the latter is counted twice
in the total degree, the exponent is a map of total degree 0. Other essential parts of the
Fedosov construction will be the following operators on W ⊗ Λ

δ = µ
(
1⊗ dxi, •

)
◦is(∂i) δ∗ = µ

(
dxi ⊗ 1, •

)
◦ia(∂i) D∇ = µ

(
1⊗ dxi, •

)
◦∇∂i (3.1.2)

which we will henceforth abbreviate by dropping µ and writing

δ =
(
1⊗ dxi

)
is(∂i) δ∗ =

(
dxi ⊗ 1

)
ia(∂i) D∇ =

(
1⊗ dxi

)
∇∂i . (3.1.3)

Note that the explicit appearance of 1 is essential, since it distinguishes 1⊗dxi, where dxi is
viewed as an element in Λ1T ∗M , from dxi⊗ 1, where dxi is viewed as an element in S1T ∗M .
One can easily recognize δ and δ∗ to be differentials of (W ⊗ Λ, ◦F), which we will briefly
demonstrate for δ. First, δ is clearly a dega-graded derivation of µ: let X⊗α, Y ⊗β ∈ W⊗Λ,
then

δµ(X ⊗ α, Y ⊗ β) = [(is(∂i)X) ∨ Y +X ∨ is(∂i)Y ]⊗ dxi ∧ α ∧ β
= µ(δ(X ⊗ α), Y ⊗ β) + (−1)degaX⊗αµ(X ⊗ α, δ(Y ⊗ β)).

Since multiplication with (1 ⊗ dxi) commutes with symmetric insertions and symmetric
insertions commute with each other, we clearly have[

(δ ⊗ id), exp
{ν

2
ωij is(∂i)⊗ is(∂j)

}]
= 0 and

[
(id⊗ δ), exp

{ν
2
ωij is(∂i)⊗ is(∂j)

}]
= 0,

and thus δ is also a dega-graded derivation of ◦F. Finally, let us calculate

δ2(X ⊗ α) = is(∂i) is(∂j)X⊗dxi∧dxj∧α = − is(∂j) is(∂i)X⊗dxj∧dxi∧α = −δ2(X ⊗ α)

to see δ2 = 0. Similarly, δ∗ can be shown to be a dega-graded derivation of µ and ◦F with
(δ∗)2 = 0. δ and δ∗ themselves are also graded maps with respect to degs and dega:

[degs, δ] = −δ [dega, δ] = δ

[degs, δ
∗] = δ∗ [dega, δ

∗] = −δ∗

that is δ has symmetric degree −1 and antisymmetric degree +1 while δ∗ has symmetric
degree +1 and antisymmetric degree −1. Instead of δ∗ however, we will use a normalized
version defined on homogeneous elements a ∈ Wk ⊗ Λl as

δ−1a :=

{
1
k+l
δ∗a for k + l 6= 0

0 otherwise.

Together with the projection onto symmetric and antisymmetric degree 0

σ : W ⊗ Λ −→ C∞JνK

we can state a small lemma [37,120]:
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Lemma 3.1.3 The cohomology Hl(W ⊗ Λ•, δ) of the complex
(
W ⊗ Λl, δ

)
is given by

H0(W ⊗ Λ•, δ) = C∞JνK and Hl(W ⊗ Λ•, δ) = 0 for l ≥ 1.

Moreover we have
δδ−1 + δ−1δ = idW⊗Λ − σ.

Proof: We first show the second statement. Let a = X ⊗ α ∈ Wk ⊗ Λl and calculate

(δδ∗ + δ∗δ)a = is(∂i)
(
dxj ∨X

)
⊗ dxi ∧ ia(∂j)α + dxj ∨ is(∂i)X ⊗ ia(∂j)

(
dxi ∧ α

)
= δjiX ⊗ dxi ∧ ia(∂j)α + δijdx

j is(∂i)X ⊗ α
+ dxj ∧ is(∂i)X ⊗ dxi ∧ ia(∂j)α + (−1)1dxj ∨ is(∂i)⊗ dxi ∧ ia(∂j)α

= (degs + dega)a = (l + k)a

where we used

dxi ∨ is(∂i)X = degsX = k and dxi ∧ ia(∂i)α = dega α = l.

On the other hand, for a ∈ W0⊗Λ0 we know σ(a) = id(a) and δa = δ∗a = 0, thus δδ∗+δ∗δ =
id−σ follows trivially. Since both δ and δ∗ preserve the sum of symmetric and antisymmetric
degree, we obtain the statement for δ−1. This shows in particular that δ−1 is a contraction
of the complex W ⊗ Λ• everywhere except in degree 0, hence it follows immediately that
Hl = 0 for l ≥ 1. For l = 0 we know H0(W ⊗ Λ•, δ) = ker(δ : W ⊗ C∞JνK −→W ⊗ Λ1).
Now let a ∈ W ⊗ C∞JνK. Then δa = 0 is equivalent to is(∂i)a = 0 for all i what in turn is
equivalent to degs a = 0, concluding the proof. �

Remark 3.1.4 Strictly speaking, we are viewing Hl only as a presheaf since we will be
interested in the actual quotients (ker δ)(U)/(im δ)(U) for all open sets U ⊆M and not the
sheafification of the resulting presheaf. However, one can readily observe that Hl already
happens to be a sheaf since C∞JνK is a sheaf and Hl for l ≥ 1 is the constant trivial sheaf.

Turning to D∇ from (3.1.2) and (3.1.3), we see immediately that D∇ is a dega-graded
derivation of µ since the covariant derivative ∇∂i is a derivation of ⊗, ∧ and ∨. The
following multiplication with (1⊗ dxi) is then responsible for the grading, that is

D∇µ(a, b) = µ(D∇a, b) + (−1)dega aµ(a,D∇b)

for a, b ∈ W ⊗ Λ. Furthermore, D∇ obviously has symmetric, total and formal degree 0.
With a little auxiliary calculation for α ∈ Λ1 with local expression α = αidx

i and the
Christoffel-symbols Γkij corresponding to ∇

(1⊗ dxi)∇∂iα = dxi ∧
(
∂αi
∂xi
− αkΓkji

)
dxj = dα,

(what can be extended to all differential forms since both sides are derivations of ∧ and
ΛT ∗M is generated by one-forms) we can find a more approachable expression for D∇
acting on X ⊗ α ∈ W ⊗ Λ [120]:

D∇(X ⊗ α) = ∇∂iX ⊗ dxi ∧ α +X ⊗ dxi ∧∇∂iα = ∇∂iX ⊗ dxi ∧ α +X ⊗ dα.
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Using the curvature tensor R̂ of ∇∂i defined by

R̂(u, v)w := ∇u∇vw −∇v∇uw −∇[u,v]w

for any vector fields z, u, v, w ∈ Γ∞(TM) and its contraction R with the symplectic form ω

R(z, u, v, w) := ω
(
z, R̂(u, v)w

)
,

which is an element of Γ∞(S2T ∗M ⊗ Λ2T ∗M) ⊂ W⊗Λ , we will cite the essential properties
of D∇ from [120, Prop. 6.4.10]:

Proposition 3.1.5 D∇ is a dega-graded derivation of ◦F:

D∇(a ◦F b) = (D∇a) ◦F b+ (−1)dega aa ◦F D∇b for all a ∈ W ⊗ Λk, b ∈ W ⊗ Λ

Furthermore, the following equations hold

δR = D∇R = 0 [δ,D∇] = 0 D2
∇ =

1

2
[D∇, D∇] = −1

ν
ad◦F(R)

where [ , ] denotes the dega-graded commutator.

The central idea of Fedosov [45] was then to use δ and D∇ to construct a new derivation
on W ⊗ Λ that is a differential. We will later recognize that its kernel is isomorphic (as
a CJνK-module) to C∞JνK which will allow us to pull back ◦F to C∞JνK (since kernels of
derivations are subalgebras). For the actual theorem, we will need the following filtration
on W ⊗ Λ: define Wk := {a ∈ W | Deg a ≥ k}. Then we have

W =W0 ⊇ W1 ⊇ · · · ⊇ {0} and
∞⋂
k=0

Wk = {0}

W ⊗ Λ =W0 ⊗ Λ ⊇ W1 ⊗ Λ ⊇ · · · ⊇ {0} and
∞⋂
k=0

Wk ⊗ Λ = {0}.

Theorem 3.1.6 (Fedosov) Let Ω ∈ νZ2JνK be a series of closed two forms. Then there
exists a unique r ∈ W2 ⊗ Λ1 with

r = δ−1

(
D∇r −

1

ν
r ◦F r +R + 1⊗ Ω

)
. (3.1.4)

The Fedosov derivation D defined as

D = −δ +D∇ −
1

ν
ad◦F(r)

is a differential, that is D2 = 0, and has antisymmetric degree 1.

Proof: We will sketch the proof from [37, Thm. 2]. First, note that W⊗ Λ can be viewed
as a metric space, if equipped with the valuation

‖a‖ :=

{
2−maxk∈N0

{a∈Wk⊗Λ} for a 6= 0

0 for a = 0
(3.1.5)
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and the induced metric d(a, b) := ‖b− a‖. By counting the involved degrees, one then finds
that L defined as

L := δ−1

(
D∇ • −

1

ν
(• ◦F •) +R + 1⊗ Ω

)
: W2 ⊗ Λ1 −→W2 ⊗ Λ1

is a contracting map with respect to d, what enables us to employ the Banach fixed point
theorem [6] to obtain a unique solution of La = a, which proves the first part. For the
second part, we have to calculate D2:

2D2 = [D,D] =

= −[δ,D∇] +

[
δ,

1

ν
ad◦F(r)

]
+ [D∇, D∇]−

[
D∇,

1

ν
ad◦F(r)

]
+

[
1

ν
ad◦F(r),

1

ν
ad◦F(r)

]
− [D∇, δ] +

[
1

ν
ad◦F(r), δ

]
−
[

1

ν
ad◦F(r), D∇

]
=

1

ν

(
ad◦F(2δr)− ad◦F(2D∇r) + 2 ad◦F(R)− ad◦F

(
1

ν
[r, r]

))
= 2

1

ν
ad◦F

(
δr −D∇r +R− 1

ν
r ◦F r

)
= 2

1

ν
ad◦F

(
δr −D∇r +R− 1

ν
r ◦F r + 1⊗ Ω

)
.

(3.1.6)

Here we used that 1⊗ Ω is ◦F-central. Now consider C := δr −D∇r +R− 1
ν
r ◦F r + 1⊗ Ω.

Clearly σ(C) = 0 (all parts have antisymmetric degree of at least 1), and hence we have
from Lemma 3.1.3

C =
(
δδ−1 + δ−1δ

)
C = δ−1δC, (3.1.7)

since we can calculate with δ−1r = 0, that

δ−1C = δ−1

(
δr −D∇r +R− 1

ν
r ◦F r + 1⊗ Ω

)
= δδ−1r − r + δ−1

(
D∇r +R− 1

ν
r ◦F r + 1⊗ Ω

)
= 0.

Finally, applying δ to C yields

δC = δ2r − δD∇r + δR− 1

ν
δ(r ◦F r) + δ(1⊗ Ω) =

(
D∇ +

1

ν
ad(r)

)
δr

=

(
D∇ +

1

ν
ad◦F(r)

)(
C +D∇r −R +

1

ν
r ◦F r − 1⊗ Ω

)
.

In other words, δ acts on C just as the operator

K : W1 ⊗ Λ −→W1 ⊗ Λ: a 7−→
(
D∇ +

1

ν
ad◦F(r)

)(
a+D∇r −R +

1

ν
r ◦F r − 1⊗ Ω

)
.

Consequently we can write (3.1.7) as

C = δ−1KC.
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The significance thereof is that δ−1 has total degree 1 whileD∇ and 1
ν

ad◦F(r) do not decrease
the total degree. Hence δ−1K is contracting with respect to d and we can once again
use the Banach fixed point theorem to conclude that (3.1.7) has a unique solution. Of
course, we would like C = 0 to be the unique solution, as we could then conclude that
D2 = 1

ν
ad◦F(0) = 0. To that end we calculate with the help of Proposition 3.1.5 (see

also [120])

K(0) =

(
D∇ −

1

ν
ad◦F(r)

)(
D∇r −R +

1

ν
r ◦F r − 1⊗ Ω

)
= −1

ν
ad◦F(R)r − 1

ν
ad◦F(r)R +

1

ν
D∇(r ◦F r) +

1

ν
ad◦F(r)D∇r +

1

ν2
[r, r ◦F r] = 0

where we used that R has antisymmetric degree 2, r has antisymmetric degree 1 and D∇
increases the antisymmetric degree by one. �

Similar to the situation in Lemma 3.1.3, we again have a chain complex (W ⊗ Λ•,D) whose
cohomology we can compute (compare also [37, Thm. 3], [38]):

Lemma 3.1.7 The cohomology H(W ⊗ Λ•,D) of the complex (W ⊗ Λ•,D) is concentrated
in degree 0, that is

Hl(W ⊗ Λ•,D) = 0 for l ≥ 1.

Moreover we have
DD−1a+ D−1Da = a

for all a ∈ W ⊗ Λl with l ≥ 1. Here D−1(a) is defined as the unique solution of

D−1(a) = δ−1

(
D∇ −

1

ν
ad◦F(r)

)
D−1(a)− δ−1a. (3.1.8)

Proof: Let a ∈ W⊗Λ with Da = 0, define b := D−1(a) for brevity and note that δ−1b = 0,
since (δ−1)

2
= 0, and σ(b) = 0 since δ−1 increases the symmetric degree. To see that a = Db

we define C := a−Db. With the definition of D from Theorem 3.1.6 and Lemma 3.1.3 we
calculate

δ−1C = δ−1

(
a−D∇b+

1

ν
ad◦F(r)b+ δb

)
= δ−1a− δ−1

(
D∇ −

1

ν
ad◦F(r)

)
b+ b = 0.

Furthermore, we clearly have σ(C) = 0 and, from DC = Da − D2b = 0, also δC =(
D∇ − 1

ν
ad◦F(r)

)
C, showing that C is the unique solution of

C = δ−1δC = δ−1

(
D∇ −

1

ν
ad◦F(r)

)
C,

which obviously is C = 0. Now for any A ∈ W⊗Λk, D(A) is clearlyD-closed with degaA ≥ 1
and thus D(A) = (D ◦D−1 ◦D)(A) holds. Finally define B := A −DD−1(A) −D−1D(A).
Note that (

D−1
)2

(DA) = δ−1

(
D∇ −

1

ν
ad◦F(r)

)(
D−1

)2
(DA)

− δ−1

(
δ−1

(
D∇ −

1

ν
ad◦F(r)

)
D−1(DA)− δ−1(DA)

)
︸ ︷︷ ︸

0
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showing that (D−1)
2
(DA) is a fixed point of δ−1

(
D∇ − 1

ν
ad◦F(r)

)
of which 0 is the unique

one. Also use D2 = 0 from Theorem 3.1.6 to show that B is D-closed:

D(B) = D(A)−D2D−1(A)−DD−1D(A) = D(A)−D(A) = 0.

But then we can immediately conclude that B = DD−1(B) which entails

B = DD−1(B) = DD−1
(
A−DD−1(A)−D−1D(A)

)
= DD−1(A)−DD−1(A) = 0

and thus idW⊗Λ = D−1D + DD−1 on W ⊗ Λl with l ≥ 1. Hence D−1 is a contraction of
W ⊗ Λ• everywhere except in degree 0 and Hl(W ⊗ Λ•,D) = 0 for ≥ 1. �

Remark 3.1.8 Upon rearranging (3.1.8) slightly and noticing that id−δ−1
(
D∇ − 1

ν
ad◦F(r)

)
is invertible, since δ−1 increases the symmetric and hence the total degree by one and
D∇ − 1

ν
ad◦F(r) does not decrease the total degree, the homotopy operator D−1 can be

written as the following geometric series

D−1 =
1

id− δ−1
(
D∇ − 1

ν
ad◦F(r)

)δ−1.

Theorem 3.1.9 (Fedosov) The Fedosov-Taylor series

τ : C∞JνK −→ H0(W ⊗ Λ•,D) : f 7−→ f −D−1(1⊗ df)

is an isomorphism of CJνK-modules with inverse σ.

Proof: See [37, Thm. 3]. We first note, that, for any f ∈ C∞JνK, τ(f) clearly is the
unique solution of

τ(f) = δ−1

(
D∇ −

1

ν
ad◦F(r)

)
τ(f) + f. (3.1.9)

This shows immediately that σ(τ(f)) = f since δ−1 increases the symmetric degree. Fur-
thermore, we can directly observe that τ is linear, since for f, g ∈ C∞JνK and λ ∈ C we
have

τ(f) + λτ(g) = δ−1

(
D∇ −

1

ν
ad◦F(r)

)
(τ(f) + λτ(g)) + (f + λg)

and thus τ(f) + λτ(g) satisfies the defining fixed point equation of τ(f + λg). Defining
a := Dτ(f) we can use σ(a) = 0, Da = 0, or equivalently δa = D∇a− 1

ν
ad◦F(r)a, and

δ−1a = δ−1

(
D∇ − δ −

1

ν
ad◦F(r)

)
τ(f) = δ−1(D∇ − ad◦F(r))τ(f)− τ(f) + f = 0,

where we again made use of Lemma 3.1.3, to show

a =
(
δ−1δ + δδ−1

)
f = δ−1δf = δ−1

(
D∇ −

1

ν
ad◦F(r)

)
,

which once again has the unique solution a = 0. Hence we have τ(f) ∈ kerD ∩ W =
H0(W ⊗ Λ•,D). To conclude the proof, let a ∈ kerD∩W . Using Da = 0 and Lemma 3.1.3
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we show

Da = 0 ⇔ δa =

(
D∇ −

1

ν
ad◦F(r)

)
a

⇒ δ−1δa = δ−1

(
D∇ −

1

ν
ad◦F(r)

)
a

⇔ a = σ(a) + δ−1

(
D∇ −

1

ν
ad◦F(r)

)
⇔ a = τ(σ(a))

and thus σ is indeed the inverse of τ . �

Remark 3.1.10 Of course, τ depends on the choice of a connection and on the series of
closed two forms Ω ∈ νZ2JνK, just as r and D from Theorem 3.1.6 do. We will again assume
fixed choices throughout. If necessary, we will denote the dependency explicitly by τΩ.

Remark 3.1.11 One could have obtained the homotopy operator D−1 from Lemma 3.1.7
as well as the Fedosov-Taylor series τ from Theorem 3.1.9 by means of the homological
perturbation lemma, see Lemma 2.4.5. However, since we will be needing the internal
details of the Fedosov construction later on, it is shown explicitly.

Remark 3.1.12 Using the geometric series expression of D−1 according to Remark 3.1.8,
a small calculation shows that the Fedosov-Taylor series can be similarly written as

τ(f) =
1

id−
[
δ−1, D∇ − 1

ν
ad◦F(r)

]f
for all f ∈ C∞JνK.

We can briefly summarize most of what has been shown in this chapter so far by stating
that σ is a quasi-isomorphism of complexes of presheaves with values in CJνK-modules and
that τ is a quasi-isomorphism from the middle row to the bottom row complex inverse to σ
on cohomology:

0 W W ⊗ Λ1 . . .

0 C∞JνK 0

0 W W ⊗ Λ1 . . .

δ δ

D D

σ

σ τ

Using τ and σ we can then finally construct a star product on M , as the following two
results show:

Corollary 3.1.13 The following formula defines an associative product on C∞JνK:

f ? g := σ(τ(f) ◦F τ(g)) for f, g ∈ C∞JνK
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Proof: The Fedosov-Taylor series is an isomorphism C∞JνK −→ kerD
∣∣
W⊗Λ0 with inverse σ

by Theorem 3.1.9. Since kerD
∣∣
W⊗Λ0 is a subalgebra of (W ⊗ Λ, ◦F), the associative product

◦F can be pulled back to C∞JνK by τ . �

Lemma 3.1.14 The product from Corollary 3.1.13 is a star product.

Proof: See [120, Satz 6.4.22]. We only have to show that ? is, in each order of ν, given as a
bidifferential operator, that 1 ? f = f ? 1 = f for all f ∈ C∞JνK and that the antisymmetric
part of the first order in ν is given by the Poisson bracket, according to Definition 3.0.7. First,
from the Definition of τ in Theorem 3.1.9 one sees immediately that τ(1) = 1. Furthermore
1 is the neutral element for the product ◦F on W ⊗ Λ and hence the second part follows.
For the first part, one only has to recognize that solving all previous fixed point equations
with respect to the norm (3.1.5) means solving them order by order in the total degree.
Take the defining fixed point equation (3.1.9) of τ and write L := δ−1

(
D∇ − 1

ν
ad◦F(r)

)
+ f .

Then, by the Banach fixed point theorem [6], the unique solution of τ(f) = Lτ(f) is given
by limn−→∞ L

nf . Because δ−1
(
D∇ − 1

ν
ad◦F(r)

)
strictly increases the total degree, we can

calculate all parts of τ(f) of total degree at most k by Lkf . Finally then, by (3.1.1), for
any f, g ∈ C∞JνK the l-th formal degree part involves only parts of total degree smaller l
in both τ(f) and τ(g) where ◦F applies at most l insertions of vector fields. Given that all
constituents of L are differential operators of finite order, the l-fold application of L is again
a differential operator of finite order and consequently the concatenation with finitely many
insertions stays a differential operator of finite order. Hence, in each finite formal degree
of f ? g only a finite number of differential operators is applied. To conclude, we have to
calculate f ? g − g ? f for arbitrary f, g ∈ C∞JνK. By the previous discussion as well as the
definition of ◦F, we need only calculate the symmetric degree 1 and formal degree 0 part
of τ(f) and τ(g), which are given by δ−1D∇f = df ⊗ 1 and δ−1D∇g = dg ⊗ 1 respectively
(since r starts in formal degree 1). But then we clearly have

f ? g − g ? f = νωij [i(∂i)df ] [i(∂j)dg] +O(ν2) = ν{f, g}+O(ν2). �

Also, let us introduce some notation. First, denote by Star(M,ω) the set of all star products
on (M,ω). Then the Fedosov construction clearly defines a map

F : νZ2(M)JνK −→ Star(M,ω) (3.1.10)

and we will occasionally denote by ?Ω := F (Ω) the image of a given series of closed two-
forms Ω ∈ νZ2(M)JνK. If we want to stress the dependency of F on a symplectic, torsion
free connection ∇ on M , we will write F∇(Ω). An obvious consequence of the Fedosov
construction is then:

Corollary 3.1.15 Every symplectic manifold admits a star product.

Proof: Let (M,ω) be a symplectic manifold. We know 0 ∈ νZ2(M)JνK, hence F (0) is a
star product. �

3.2 Classification of Star products

As seen in the previous section, the Fedosov construction (3.1.10) provides us with the
existence of star products. However, at our current state of knowledge, it is unclear, whether
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or not the Fedosov construction produces even different star products for different inputs
and whether or not we obtain all possible star products on a given symplectic manifold. We
shall dedicate this section to finding answers to both of the previous questions. We begin
by showing that the Fedosov construction is injective, that is the map (3.1.10) is injective.
The proof will consist essentially in tracing how exactly the choice of a series of closed
two-forms Ω ∈ νZ(M)JνK propagates through the Fedosov construction, order by order in
ν (see [120, Lemma 6.4.9]):

Lemma 3.2.1 Let (M,ω) be a symplectic manifold, Ω ∈ νZ2(M)JνK and {Ck}k∈N the series
of bidifferential operators corresponding to the Fedosov star product ?Ω, that is

f ?Ω g = fg +
∞∑
k=0

νkCk(f, g) for all f, g ∈ C∞(M).

Denote further by Ωk for k ∈ N the formal degree k component of Ω. Then

i) Ck is independent of Ωn for n ≥ k.

ii) For all k ∈ N there exists a bidifferential operator C̄k+1 independent of Ωk such that

Ck+1(f, g) = −1

2
Ωk(Xf , Xg) + C̄k+1(f, g)

for all f, g ∈ C∞(M).

Proof: Let us begin with the easier first part. Since all operators used during the Fedosov
construction, including τ , D, D−1, D∇ and δ−1 are ν-homogeneous, we can show that the
lowest order contribution of νkΩk appears in formal degree k: recall the construction of
r ∈ W2 ⊗ Λ1 from Theorem 3.1.6

r = δ−1

(
D∇r −

1

ν
r ◦F r +R + 1⊗ Ω

)
.

Similar to the proof of Lemma 3.1.14, we can note that the operator δ−1
(
D∇ • − 1

ν
• ◦F•

)
on W2 ⊗ Λ1 strictly increases the total degree, hence Ωk only contributes to total degree
2k + 1 and higher (δ−1(1 ⊗ νkΩk) has total degree 2k + 1). Accordingly, the lowest total
degree contribution in τ(f) and τ(g) for f, g ∈ C∞(M)JνK appears in total degree 2k + 1,
as seen from the defining fixed point equation (3.1.9). But then the lowest possible formal
degree contributions of Ωk in f ?Ω g come from

σ(Pr2k+1τ(f) ◦F Pr0τ(g)) and σ(Pr0τ(f) ◦F Pr2k+1τ(g)). (3.2.1)

Clearly Pr2k+1τ(f) is of symmetric order 1 and hence the product with Pr0τ(g) contributes
at least one ν via ◦F (see (3.1.1)), resulting in a term of formal order k + 1. The same
argument applies to Pr0τ(f) ◦F Pr2k+1τ(g). For the second claim, note that the lowest total
degree contribution of Ωk in r is precisely given by δ−1(1 ⊗ νkΩk), that is we can write
Pr2k+1r = δ−1(1⊗ νkΩk) + r̄2k+1, where r̄2k+1 depends only on Ωl for l < k. By the defining
fixed point equation of τ from (3.1.9) we can extract explicitly the terms of low total degree
in τ(f) for f ∈ C∞(M):

τ(f) = f + df ⊗ 1 + δ−1

(
D∇ −

1

ν
ad◦F(r)

)
(df ⊗ 1) + . . .
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From here we can conclude that the lowest contribution of Ωk appears as δ−1 ad◦F(δ−1(1⊗
Ωk))(df ⊗ 1), which we can simplify by a local calculation to

ad◦F(δ−1(1⊗ Ωk))(df ⊗ 1) =
ν

2
ωij is(∂i)(dx

n ⊗ i(∂n)Ωk) · is(∂j)(df ⊗ 1)

=
ν

2
ωij(1⊗ i(∂i)Ωk) · (ωmj(Xf )

m ⊗ 1)

=
ν

2
⊗ (Xf )

i i(∂i)Ωk =
ν

2
⊗ i(Xf )Ωk.

It only remains to calculate

νk+1

2
δ−1(1⊗ i(Xf )Ωk) ◦F (dg ⊗ 1) =

νk+1

2
(dxn ⊗ i(∂n) i(Xf )Ωk) ◦F (dg ⊗ 1)

=
νk+1

4
ωij(δni ⊗ i(∂n) i(Xf )Ωk) · (i(∂j)dg ⊗ 1)

=
νk+1

4
Ωk(Xf , Xg)

for f, g ∈ C∞(M) and to conclude

νk+1

2
(df ⊗ 1) ◦F δ

−1(1⊗ i(Xg)Ωk) =
νk+1

4
Ωk(Xf , Xg).

Again, the previous two terms are the contributions of Ωk to τ(f) ◦F τ(g) of lowest total
degree. Hence we have shown that

Ck+1(f, g) = −1

2
Ωk(Xf , Xg) + terms independent of Ωk. �

We have an immediate corollary to Lemma 3.2.1.

Corollary 3.2.2 The Fedosov construction on a symplectic manifold (M,ω)

F : νZ2(M)JνK −→ Star(M,ω)

is injective.

Proof: Using Lemma 3.2.1 we can reconstruct the series of two-forms Ω ∈ νZ2(M)JνK
from a given Fedosov star product ?Ω. Let Ck ∈ DiffOp2(C∞(M)) for k ≥ 1 be the series of
bidifferential operators corresponding to ?Ω and let Ω(0) := 0 ∈ νZ2(M)JνK. Furthermore,
denote by C

(0)
k the series of bidifferential operators corresponding to F

(
Ω(0)

)
. Then by

Lemma 3.2.1 we have for all f, g ∈ C∞(M)

C2(f, g) = −1

2
Ω1(Xf , Xg) + terms independent of Ω1

C
(0)
2 (f, g) = 0 + terms independent of Ω

(0)
1

and hence
Ω1(Xf , Xg) = 2

(
C

(0)
2 (f, g)− C2(f, g)

)
. (3.2.2)

Since on a symplectic manifold the Hamiltonian vector fields span the tangent space TpM at
every p ∈M , we can recover Ω1 from (3.2.2). Next, assume that Ωk is known for k ≤ n and



56 CHAPTER 3. CLASSIFICATION OF STAR PRODUCTS

n ∈ N. Define Ω(n) :=
∑n

k=1 ν
kΩk, construct F

(
Ω(n)

)
and denote by C(n)

k the corresponding
bidifferential operators. Clearly then Ck = C

(n)
k for k ≤ n+ 1 since both are only dependent

on {Ωk}k≤n and we can recover Ωn+1 from

Ωn+1(Xf , Xg) = 2
(
C

(n)
n+2(f, g)− Cn+2(f, g)

)
.

The above construction gives a left-inverse

imF −→ νZ2(M)JνK

to F : νZ2(M)JνK −→ imF , hence F must be injective. �

Unfortunately, the Fedosov construction is, in general, not a bijection, that is it fails to be
surjective. To construct a non-Fedosov star product, start from any Fedosov star product ?
with corresponding bidifferential operators Ck and define T := id + νD for any differential
operator D of order at least two. Note that T is invertible as a formal power series in ν. It is
then well-known, see e.g. [18, Thm. 3.4], that the order of Ck in each argument is precisely
k (all Fedosov star products are Vey-type star products). However, we can obtain a new
associative product ?′ on C∞(M)JνK through f ?′ g := T−1(Tf ? Tg) for all f, g ∈ C∞(M)
and calculate its first order in ν as

T−1(Tf ? Tg) = fg + ν[C1(f, g) +D(f)g + fD(g) +D(fg)] +O(ν2)

=: fg + νC ′1(f, g) +O(ν2)

from which we can conclude several facts. First, ?′ is again a star product: clearly all orders
are differential operators, 1 is a unit of ? and the antisymmetric part of C ′1 is identical to
the antisymmetric part of C1, hence f ?′ g − g ?′ f = ν{f, g} + O(ν2) holds. Secondly,
contrary to the original Fedosov star product, the order of differentiation of C ′1 is at least
two, hence ?′ cannot be a Fedosov star product. But despite the Fedosov construction not
being surjective, we can show that it is essentially surjective, meaning for every star product
? on a symplectic manifold there exists a Fedosov star product ?Ω such that ? and ?Ω are
equivalent in the following sense:

Definition 3.2.3 (Equivalence of star products) Let (M,ω) be a symplectic manifold
and ?, ?′ star products on M . We say that ? and ?′ are equivalent if there is a formal series
of differential operators

T = idC∞(M) +
∞∑
k=1

νkTk

such that the following equation holds for all f, g ∈ C∞(M):

T (f) ?′ T (g) = T (f ? g).

Definition 3.2.3 implies that T is an isomorphism of algebras

T : (C∞(M)JνK, ?) −→ (C∞(M)JνK, ?′),

since T is clearly invertible as a formal power series and its inverse will again start with id
in formal degree 0, as shown by the von Neumann series

T−1 = (id− (id− T ))−1 =
∞∑
k=0

(id− T )k.

Using the notion of equivalence of star products from Definition 3.2.3, our first goal will be
to prove the following proposition from [10] [12, Prop. 5.7]:
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Proposition 3.2.4 Every star product on a symplectic manifold is equivalent to a Fedosov
star product.

Proof: First, let ? and ?′ be arbitrary star products on a symplectic manifold (M,ω) and
denote by {Ck}k∈N and {C ′k}k∈N the corresponding series of bidifferential operators. By
Definition 3.0.7, ? is an associative product on C∞(M)JνK and we can expand the equation
(f ? g) ? h = f ? (g ? h) in terms of Ck. One can easily check that the resulting equation is

(∂Ck)(f, g, h) =
∑
r,s>0
r+s=k

[Cr(Cs(f, g), h)− Cr(f, Cs(g, h))] (3.2.3)

where ∂ denotes the Hochschild differential. Now assume that ? and ?′ coincide up to
order n, that is for all k ≤ n we have Ck = C ′k. Then by associativity (3.2.3) we see that
Cn+1 − C ′n+1 is a differential Hochschild cocycle, that is

∂
(
Cn+1 − C ′n+1

)
= 0

since the right hand side of (3.2.3) only depends on Ck for k ≤ n. Using Corollary 2.2.5,
there exist c ∈ HC1

diff(C∞(M)) and B ∈ X2(M) with(
Cn+1 − C ′n+1

)
(f, g) = (∂c)(f, g) +B(df, dg) (3.2.4)

for all f, g ∈ C∞(M). Next, consider the commutator [ , ]? on (C∞(M)JνK, ?) with respect
to the product ?. Since ? is associative, the commutator satisfies the Jacobi identity, which
we can expand in terms of Ck

Cycf,g,h[{ACk(f, g), h}+ACk({f, g}, h)] = −Cycf,g,h

[
r+s=k+1∑
r,s>0

ACr(ACs(f, g), h)

]
,

where we denoted by Cycf,g,h the sum over all cyclic permutations in f, g, h of the argument
and by ACk(f, g) := 1

2
(Ck(f, g)− Ck(g, f)) the antisymmetrizer. The commutator with

respect to ?′ also satisfies the Jacobi identity and by subtracting both equations for k = n+1
we can conclude that

Cycf,g,h[{f,B(dg, dh)} −B(d{f, g}, dh)] = 0. (3.2.5)

Defining the two-form B[ by B[(Xf , Xg) := B(df, dg), one can easily recognize (3.2.5) to
be equivalent to dB[ = 0. Further, define an equivalence T through T := id + νn+1c with c
from (3.2.4) and a star product ?′′ by f ?′′ g := T−1(T (f) ?′ T (g)). Denoting by {C ′′k} the
corresponding bidifferential operators, we see that Ck = C ′k = C ′′k for all k ≤ n and

C ′′n+1(f, g) = (∂c)(f, g) + C ′n+1(f, g) = Cn+1(f, g)−B[(Xf , Xg).

Let us briefly summarize, what we have shown so far: for all star products ? and ?′ given
by {Ck}k∈N and {C ′k}k∈N such that Ck = C ′k for all k ≤ n for a given n ∈ N, there exists
a star product ?′′ equivalent to ?′ given by {C ′′k}k∈N such that Ck = C ′k = C ′′k for all k ≤ n

and Cn+1(f, g) = C ′′n+1(f, g) − B[(Xf , Xg) for a d-closed two-form B[. All that is left is to
combine this result with the Fedosov construction and especially Lemma 3.2.1. Let ?(0) be
any star product given by

{
C

(0)
k

}
k∈N

and let ?0 := F (0) given by {C0,k}k∈N. ?
(0) and ?0
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coincide up to formal order 0 (all star products do) and hence we can find a star product
?(1) equivalent to ?(0), given by

{
C

(1)
k

}
k∈N

, and a two-form B[
1 such that

C
(1)
1 (f, g) = C0,1(f, g)−B[

1(Xf , Xg).

Next define Ω1 := 2νB[
1 and ?Ω1

:= F (Ω1). But then we clearly have by Lemma 3.2.1

C
(1)
1 = CΩ1,1,

so in conclusion we have found a star product ?(1) equivalent to ?(0) such that the C(1)

coincide up to formal degree 1 with a Fedosov star product. Clearly we can iterate this
process to obtain a star product ?(∞) equivalent to ?(0) that coincides in all orders with a
Fedosov star product. �

Now that we have recognized that every star product is at least equivalent to a Fedosov star
product, the obvious remaining question would ask if we can classify equivalence classes of
star products. This question has been asked and answered already conclusively in the very
beginnings of deformation quantization, as seen in [12,31,32,46,59,92,93,122]. We split the
proof of the main theorem into three parts, beginning with an explicit construction from [94]
that will also be necessary later on.

Lemma 3.2.5 Let (M,ω) be a symplectic manifold and Ω,Ψ ∈ νZ2(M)JνK. If [Ω − Ψ] =
0 ∈ νHdR(M)JνK, then F (Ω) and F (Ψ) are equivalent.

Proof: We will throughout the proof assume that we have chosen one C ∈ νΩ1(M)JνK
with Ω = Ψ + dC. Our strategy for the proof is to use C to find a unique solution h ∈ W3

for the fixed point equation

h = C ⊗ 1 + δ−1

(
D∇h−

1

ν
ad◦F(r)h−

1
ν

ad◦F(h)

exp
{

1
ν

ad◦F(h)
}
− id

(r′ − r)

)
(3.2.6)

with σ(h) = 0, where r and r′ are the unique solutions from Theorem 3.1.6 constructed
from Ω and Ψ respectively. Similarly, we will denote by D, D′, τ and τ ′ the corresponding
Fedosov derivations and Fedosov-Taylor series. Note that σ = σ′, hence no distinction will
be necessary here. Existence and uniqueness of h can again be shown by counting involved
degrees. We will then show that

SC := σ ◦ Ah(C) ◦ τ with Ah := exp

{
1

ν
ad◦F(h)

}
(3.2.7)

is an equivalence between F (Ω) and F (Ψ). This construction has been adapted from [94,
Lemma 3.5.1], where it was used to construct equivalences between Wick-type star products,
to the current setting in [104]. To begin, note that SC is well-defined, since h ∈ W3 and thus
1
ν

ad◦F(h) strictly increases the total degree. Also, Ah is clearly invertible with inverse A−h.
Finally, 1

ν
ad◦F(h) is a graded derivation of ◦F, hence Ah is an automorphism of (W ⊗ Λ, ◦F),

that is Ah(a ◦F b) = Ah(a) ◦F Ah(b) for all a, b ∈ W ⊗ Λ. The bulk of the proof will now be
to show that Ah satisfies the following equation:

D′ = Ah ◦D ◦ A−h. (3.2.8)
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First, let us rewrite (3.2.8) using the explicit form of Ah from (3.2.7) to obtain

D′ = D− 1

ν
ad◦F

(
exp
{

1
ν

ad◦F(h)
}
− id

1
ν

ad◦F(h)
(Dh)

)
, (3.2.9)

where we used the fact that [ad◦F(h),D] = − ad◦F(Dh) holds as ad◦F(h) and D are graded
derivations of ◦F. From the construction of D and D′ in Theorem 3.1.6 one can immediately

recognize that (3.2.9) holds if r′−r− exp{ 1
ν

ad◦F (h)}−id
1
ν

ad◦F (h)
(Dh) is ◦F-central. A sufficient condition

therefor is

r′ − r −
exp
{

1
ν

ad◦F(h)
}
− id

1
ν

ad◦F(h)
(Dh) = 1⊗ C (3.2.10)

and we will show that the unique solution from (3.2.6) with σ(h) = 0 satisfies this equation.
To do so, we define

B :=
1
ν

ad◦F(h)

exp
{

1
ν

ad◦F(h)
}
− id

(r′ − r)−Dh− 1⊗ C (3.2.11)

and will show that B satisfies a fixed point equation whose unique fixed point is 0. Note
here that B = 0 is clearly equivalent to (3.2.10). At this point we will employ a technical
result from [94, Sect. 3.5.1.1] stating that there exists a linear operator Rh,r,r′ on W ⊗ Λ
that does not decrease the total degree and satisfies DB = Rh,r,r′B. It is in this calculation,
where Ω = Ψ + dC is necessary. Expanding the last equation and using Lemma 3.1.3 as
well as the definition of D from Theorem 3.1.6, we arrive at

B = δ−1

(
D∇B −

1

ν
ad◦F(r)B −Rh,r,r′B

)
.

By counting degrees, one can clearly see that this fixed point equation has the unique solution
B = 0. To conclude the proof, note that τ maps C∞(M)JνK into kerD, hence Dτ(f) = 0
for all f ∈ C∞(M)JνK. Consequently, using (3.2.8), we see that D′Ahτ(f) = AhDτ(f) = 0
and, furthermore, Ahτ(f) = (τ ′ ◦ σ)(Ahτ(f)) = τ ′Sh(f). But then we calculate

SC(f ?Ω g) = σ(Ahτ(f) ◦F Ahτ(g)) = σ(τ ′SC(f) ◦F τ
′SC(g)) = SC(f) ?Ψ SC(g)

for all f, g ∈ C∞(M)JνK. �

Remark 3.2.6 Since in Lemma 3.2.5 we were free to choose a one-form C ∈ νΩ1(M)JνK
with Ω − Ψ = dC, Lemma 3.2.5 actually gives, for any pair of equivalent Fedosov star
products F (Ω) and F (Ψ), a map from C + νZ1(M)JνK to the set of equivalences between
F (Ω) and F (Ψ).

The second lemma is an adaption from a more general result in [12].

Lemma 3.2.7 Let (M,ω) be a symplectic manifold and Ω,Ψ ∈ νZ2(M)JνK. If F (Ω) and
F (Ψ) are equivalent, then [Ω−Ψ] = 0 ∈ νH2

dR(M)JνK.

Proof: We will again use an inductive proof in the formal degree. So assume that ?Ω =
F (Ω) and ?Ψ = F (Ψ) are given by {CΩ,k}k∈N and {CΨ,k}k∈N respectively and that CΩ,r =
CΨ,r for all r ≤ n. Additionally, let T be an equivalence between F (Ω) and F (Ψ), that is

T (f ?Ω g) = T (f) ?Ψ T (g) for all f, g ∈ C∞(M) (3.2.12)
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and assume T = id+νsTs+O(νs+1) for some 1 ≤ s ≤ n. We will begin by showing that there
exists another equivalence T̃ between F (Ω) and F (Ψ) such that T̃ = id + νnT̃n +O(νn+1).
If s = n then this is already the case, so assume s < n. Now evaluate (3.2.12) in formal
degree s, to obtain

Ts(fg) + CΩ,s(f, g) = Ts(f)g + fTs(g) + CΨ,s(f, g) for all f, g ∈ C∞(M).

Since CΩ,s = CΨ,s, we have ∂Ts = 0 and can conclude that Ts is a derivation of C∞(M),
hence a vector field on M . In turn, evaluating (3.2.12) in formal degree s+ 1, we obtain

Ts+1(fg) + Ts(CΩ,1(f, g)) + CΩ,s+1(f, g)

= Ts+1(f)g + fTs+1(g) + CΨ,1(Ts(f), g) + CΨ,1(f, Ts(g)) + CΨ,s+1(f, g)

or, taking only the antisymmetric part in f and g and using CΩ,s+1 = CΨ,s+1:

Ts{f, g} = {Ts(f), g}+ {f, Ts(g)}.

In other words, Ts is even a symplectic vector field on (M,ω). And, since symplectic
vector fields are locally Hamiltonian, we can find an open cover U of M and functions
{tU ∈ C∞(U)}U∈U such that

Tsf
∣∣
U

=
{
tU , f

∣∣
U

}
for all f ∈ C∞(M) and U ∈ U.

Since tU
∣∣
U∩V − tV

∣∣
U∩V is constant on connected components of U ∩ V for all U, V ∈ U and

all CΩ,k vanish on constants, the following maps on all U ∈ U

DU
s : C∞(U)JνK −→ C∞(U)JνK : f 7−→ 1

2ν
(tU ?Ω f − f ?Ω tU)

yield a well defined global map Ds : C∞(M)JνK −→ C∞(M)JνK with Ds

∣∣
U

= DU
s . We

can show that Ds is a derivation of (C∞(M)JνK, ?Ω) by using the associativity of ?Ω and
calculating locally for f, g ∈ C∞(U):

DU
s (f ?Ω g) =

1

2ν
(tU ?Ω (f ?Ω g)− f ?Ω tU ?Ω g + f ?Ω tU ?Ω g − (f ?Ω g) ?Ω tU)

= DU
s (f) ?Ω g + f ?Ω D

U
s (g).

But then we have automatically that S1 := exp{νsDs} is an equivalence from ?Ω to itself
and consequently T 1 := S−1

1 ◦ T is still an equivalence between ?Ω and ?Ψ. The crucial part
of T 1 is then

T 1 = exp{−νsDs} ◦
(
id + νs +O(νs+1)

)
= id− νsDs + νsTs +O(νs+1)

= id +O(νs+1),

since for f ∈ C∞(U)
Ts
∣∣
U

(f) = {tU , f} = DU
s (f) +O(ν).

Clearly, we can iterate the above argument while s < n to finally obtain derivations
Ds, . . . , Dn−1 which we use to construct equivalences S1, . . . , Sn−s from ?Ω to itself. We
then assemble all those into an equivalence T̃ := S−1

n−s ◦ . . . ◦ S−1
1 ◦ T = id + νnT̃n +O(νn+1)

between ?Ω and ?Ψ. Next, we evaluate

T̃ (f ?Ω g) = T̃ (f) ?Ψ T̃ (g) (3.2.13)
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in formal degree n to see that T̃n is a vector field. This allows us to define a one-form A[

through A[(Xf ) := T̃n(f) for all f ∈ C∞(M). Evaluating (3.2.13) in formal degree n − 1
and taking the antisymmetric part finally yields

Ψn(Xf , Xg)− Ωn(Xf , Xg) = −T̃n({f, g}) +
{
T̃n(f), g

}
+
{
f, T̃n(g)

}
= −dA[(Xf , Xg)

(3.2.14)

where we used the formal degree expansions Ω =
∑∞

k=1 ν
kΩk and Ψ =

∑∞
k=1 ν

kΨk. To
briefly summarize, we have shown so far that if two Fedosov star products are equivalent
and coincide up to formal degree n, then the difference of the respective series of closed
two-forms is exact in order n + 1. To conclude the proof, write Ξ(0) =

∑∞
k=1 ν

kΞ
(0)
k := Ψ

and Ξ(∞) =
∑∞

k=0 ν
kΞ

(∞)
k := Ω. Then F (Ξ(0)) and F (Ξ(∞)) coincide up to formal degree 1,

hence there exists a one-form A[1 such that

Ξ
(∞)
1 − Ξ

(0)
1 = dA[1.

We can now define Ξ(1) := Ξ(0) +dA[1 and recognize that Ξ(∞) and Ξ(1) coincide up to formal
degree 1 (and hence F (Ξ(∞)) and F (Ξ(1)) coincide up to formal degree 2) and that F (Ξ(0))
and F (Ξ(1)) are equivalent by Lemma 3.2.5. Thus F (Ξ(∞)) and F (Ξ(1)) are also equivalent
and by iterating the above argument to obtain intermediate Ξ(n+1) := Ξ(n) + dA[n, we see
that the difference Ω−Ψ is exact in all formal degrees, hence [Ω−Ψ] = 0 ∈ νH2

dR(M)JνK.�

With Lemma 3.2.5 and Lemma 3.2.7 in place, we are prepared to state the full classification
theorem for star products. As we will see in Section 3.3 and Section 3.4, this theorem will
be an essential basis for more specific classification theorems in settings with symmetry.
Furthermore, it will be of central importance in Section 4.3, when we classify star products
obtained by Marsden-Weinstein reduction. The basic message of all classification theorems
presented in this thesis will be that we have a certain subset of the set of all star products
on a symplectic manifold (M,ω) and a suitable notion of equivalence inside that subset.
We will then show in three cases that the set of equivalence classes is in bijection with a
certain cohomology group, that only depends on the topology of the underlying symplectic
manifold (and, if present, a group action on said manifold). In this basic case, we consider
the set of all star products Star(M,ω) on (M,ω), the equivalence classes under the notion
of equivalence specified in Definition 3.2.3, which is denoted by Def(M,ω). Then one can
show that Def(M,ω) ∼= H2

dR(M)JνK [12, Thm 5.8], [59, Thm. 6.4], [95, Thm. 4.4]:

Theorem 3.2.8 (Characteristic class) Let (M,ω) be a symplectic manifold. There ex-
ists a unique map

c : Star(M,ω) −→ [ω]

ν
+ H2

dR(M)JνK

which descends to a bijection

c : Def(M,ω) −→ [ω]

ν
+ H2

dR(M)JνK

and is, on all Fedosov star products F (Ω) for Ω ∈ νZ2(M)JνK, given by

c(F (Ω)) =
1

ν
[ω + Ω]. (3.2.15)

Here we denoted by [ω] ∈ H2
dR(M) the de Rham class of ω.
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Proof: We take (3.2.15) as a definition and extend it to all star products, using Proposi-
tion 3.2.4. So let us begin by noting that c is well-defined on imF . Let Ω,Ψ ∈ νZ2(M)JνK,
then, by Lemma 3.2.5 and Lemma 3.2.7, F (Ω) and F (Ψ) are equivalent if and only if
[Ω−Ψ] = [Ω] − [Ψ] = 0 ∈ νH2

dR(M)JνK or, equivalently, [Ω] = [Ψ], hence c is well-defined
on imF . Next, let ? be any star product, choose (through Proposition 3.2.4) a Fedosov star
product F (Ω) equivalent to ? and define

c(?) := c(F (Ω)) =
1

ν
[ω + Ω].

To show that c(?) is well-defined, let F (Ψ) be another Fedosov star product equivalent
to ?. Clearly, by transitivity, F (Ω) is equivalent to F (Ψ) and hence Ω − Ψ is exact by
Lemma 3.2.7. But then we immediately have c(F (Ω)) = c(F (Ψ)). This argument also shows
the uniqueness of c. Finally, c is injective by Lemma 3.2.5 and surjective by construction.�

Remark 3.2.9 The result of Theorem 3.2.8 has been proven independently by Bertelson-
Cahen-Gutt [12], Deligne [31], Nest-Tsygan [92,93] and Weinstein-Xu [122]. The character-
istic class of Fedosov star products has been calculated explicitly in [95].

Remark 3.2.10 The terminology characteristic class of star products for c is justified by
[31] [59, Thm. 6.4]: given a star product ? on M and any diffeomorphism φ : M −→ M ′,
then f ?′ g := (φ−1)∗(φ∗f ? φ∗g) defines a star product on M ′. Denoting ?′ = (φ−1)∗?, the
characteristic classes of ? and ?′ then satisfy

c
(
(φ−1)∗?

)
= (φ−1)∗c(?).

Remark 3.2.11 The reason for c starting in formal degree −1 can be found in [31] [59, Thm.
6.4]: let ? be a star product given by bidifferential operators Ck and consider a change of
formal parameter

r : ν 7−→ ν
∞∑
k=2

νkfk

for any fk ∈ R and define a new star product

f ?′ g := fg +
∞∑
k=1

[r(ν)]kCk(f, g).

Then one has c(?) = c(?′) for the choice of [ω]
ν

as the formal degree −1 part of c, that is the
characteristic class of star products is equivariant with respect to such changes of formal
parameter. Writing the dependency of c explicitly, one has

c(?′)(ν) = c(?)(r(ν)).

3.3 Classification of Invariant Star Products

In physics, it is often the case, that a classical system has gauge symmetries such as the
Galilei symmetry in Newtonian mechanics. One class of gauge symmetries is modelled
mathematically by equipping the symplectic manifold (M,ω), which models the system itself,
with a smooth action of a Lie group G×M −→ M that respects the symplectic structure,
turning (M,ω,G) into a symplectic G-space, see Definition 2.3.6. We would certainly wish
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to reflect classical symmetries in quantizations of that system. In deformation quantization,
one approach is to consider so-called invariant star products: recall that, given a star product
? on M , the observable algebra of the corresponding quantum theory is (C∞(M)JνK, ?).
Viewed as sets, this is nothing but power series in the classical observable algebra C∞(M).
This allows to immediately transfer the induced pullback action

G× C∞(M) −→ C∞(M) : (g, f) 7−→ (g−1)∗f

to C∞(M)JνK by

(g−1)∗

(
∞∑
k=0

νkfk

)
:=

∞∑
k=0

νk
(
(g−1)∗fk

)
for all g ∈ G and fk ∈ C∞(M). Classically, the pullback action respects the pointwise
product of C∞(M) and hence the natural idea is to define invariant star products as those
star products, for which G acts by automorphisms [11]:

Definition 3.3.1 (G-invariant star product) Let G be a Lie group and (M,ω,G) a sym-
plectic G-space. A star product ? on M is called G-invariant if, for all g ∈ G and
f1, f2 ∈ C∞(M)JνK, the following equation holds:

g∗(f1 ? f2) = (g∗f1) ? (g∗f2).

Also recall, that for any Lie group action on M , there is an associated derived action of the
Lie algebra g of G by fundamental vector fields, see Definition 2.3.4 and (2.3.3). Standard
arguments from the theory of Lie groups then show that if ? is a G-invariant star product,
then

Lξ(f1 ? f2) = Lξf1 ? f2 + f1 ?Lξf2 (3.3.1)

holds for all ξ ∈ g and f1, f2 ∈ C∞(M)JνK. In other words, the Lie derivative is a derivation
of ?. However, we might also wish to consider Lie algebra actions independently without
referring to any global action of a Lie group, that is we consider symplectic g-spaces, see
Definition 2.3.7. Imitating (3.3.1), we can then define g-invariant star products [3]:

Definition 3.3.2 (g-invariant star products) Let g be a Lie algebra and (M,ω, g) a
symplectic g-space. A star product ? on M is called g-invariant if, for all ξ ∈ g and
f1, f2 ∈ C∞(M)JνK, the following equation holds:

Lξ(f1 ? f2) = Lξf1 ? f2 + f1 ?Lξf2.

Remark 3.3.3 For any connected Lie group G, symplectic G-space (M,ω,G) and star
product ? on M , ? is G-invariant if and only if ? is g-invariant with respect to X•. In
this case we will say that ? is an invariant star product. We will mostly be interested in
g-invariant star products throughout.

With this new subclass of g-invariant star products in place, naturally the same questions as
in Section 3.2 arise: Do g-invariant star products exist? And can we obtain a classification
of g-invariant star products similar to the previous results? Fortunately the answer to both
questions turns out to be positive and we shall give a brief summary of the main results in
this section. Of course, we will make extensive use of the Fedosov construction, hence the
first intermediate lemma will concern g-invariant Fedosov star products: [60,90]
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Lemma 3.3.4 Let (M,ω, g) be a symplectic g-space, ∇ a torsion-free, symplectic connection
on M and Ω ∈ νZ2(M)JνK. F∇(Ω) is g-invariant if and only if

[D∇,Lξ] = 0 and LξΩ = 0

for all ξ ∈ g.

The proof of Lemma 3.3.4 in [90] is based on a deformation of the usual Cartan-formula
Lξ = d iξ + iξ d, that relates the Lie derivative in the direction of symplectic vector fields
with the Fedosov derivation corresponding to Ω: [90]

Lemma 3.3.5 Let (M,ω, g) be a symplectic g-space, Ω ∈ νZ2(M)JνK, r the unique solution
of (3.1.4), D the corresponding Fedosov derivation, X ∈ Xsympl(M), θX := iX ω and D∇ :=
(dxi ⊗ 1)∇∂i. Then

LX = D ia(X) + ia(X)D− 1

ν
ad◦F

(
θX ⊗ 1 +

1

2
D∇θX ⊗ 1− ia(X)r

)
holds on W ⊗ Λ(M).

Using Lemma 3.3.4, one can immediately observe that the existence of g-invariant star
products revolves solely around the existence of invariant connections (those, that satisfy
[D∇,Lξ] = 0 for all ξ ∈ g). If one is able to obtain such, then F (0) clearly is a g-invariant
star product. Hence we will, in the following, always assume the existence of an invariant
connection and choose one such connection once and for all. So all that remains is the
classification of g-invariant star products. For this we will also use an adapted notion of
equivalence, namely g-invariant equivalence [11]:

Definition 3.3.6 (g-invariant equivalence) Let (M,ω, g) be a symplectic g-space, ? and
?′ g-invariant star products. ? and ?′ are said to be g-invariantly equivalent, if there exists
an equivalence T between ? and ?′ such that

Lξ ◦ T = T ◦Lξ

holds for all ξ ∈ g.

The following three results are then the direct analogues of Proposition 3.2.4, Lemma 3.2.5
and Lemma 3.2.7. The proofs are essentially the same, one only has to take care of the
g-invariance. For the G-invariant case, proofs can also be found in [11] (to obtain the
corresponding results replace all occurrences of g-invariance by G-invariance and the g-
invariant de Rham cohomology Hg

dR(M) by its G-invariant analogon HG
dR(M)).

Proposition 3.3.7 Every g-invariant star product on a symplectic g-space is g-invariantly
equivalent to a g-invariant Fedosov star product.

Lemma 3.3.8 Let (M,ω, g) be a symplectic g-space and Ω,Ψ ∈ νZ2(M)gJνK. If [Ω−Ψ]g =
0 ∈ νHg

dR(M)JνK, then F (Ω) and F (Ψ) are g-invariantly equivalent.

Lemma 3.3.9 Let (M,ω, g) be a symplectic g-space and Ω,Ψ ∈ νZ2(M)gJνK. If F (Ω) and
F (Ψ) are g-invariantly equivalent, then [Ω−Ψ]g = 0 ∈ νHg

dR(M)JνK.

It is noteworthy, that the equivalence SC constructed in Lemma 3.2.5 is g-invariant if the
one-form C is g-invariant [104]:
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Corollary 3.3.10 Let (M,ω, g) be a symplectic g-space, Ω,Ψ ∈ νZ2(M)gJνK with Ψ−Ω =
dC for C ∈ νΩ1(M)gJνK and h the unique solution of (3.2.6). Then

Lξh = 0

and
Lξ ◦ SC = SC ◦Lξ,

that is SC is g-invariant, for all ξ ∈ g.

Finally then, we can construct a characteristic class of g-invariant star products via the
Fedosov construction, similarly to Theorem 3.2.8. We will denote the set of g-invariant
star products on a symplectic g-space by Starg(M,ω) and accordingly the g-invariant equiv-
alence classes by Defg(M,ω). The corresponding classification theorem, the analogue to
Theorem 3.2.8, reads [11, Thm. 4.1]:

Theorem 3.3.11 (Invariant characteristic class) Let (M,ω, g) be a symplectic g-space.
There exists a unique map

cg : Starg(M,ω) −→ [ω]g

ν
+ H2,g

dR (M)JνK

which descends to a bijection

cg : Defg(M,ω) −→ [ω]g

ν
+ H2,g

dR (M)JνK

and is, on all g-invariant Fedosov star products F (Ω) for Ω ∈ νZ2(M)gJνK, given by

cg(F (Ω)) =
1

ν
[ω + Ω]g.

Here we denote by [ω]g ∈ H2,g
dR (M) the g-invariant de Rham class of ω.

Of course, we can again obtain the analogue result for G-invariant star products, see [11]. As
a last corollary, note that, since g-invariant star products are star products and g-invariant
equivalences are equivalences, we have a map Starg(M,ω) −→ Star(M,ω) that descends
to a map Defg(M,ω) −→ Def(M,ω). On the other hand, we have the inclusion of g-
invariant differential forms into all differential forms Ωg(M) −→ Ω(M) that descends to a
map Hg

dR(M) −→ HdR(M). This leads to:

Corollary 3.3.12 Let (M,ω, g) be a symplectic g-space. Then the following diagram com-
mutes:

Defg(M,ω) Def(M,ω)

1
ν
Hg

dR(M)JνK 1
ν
HdR(M)JνK

cg c

Proof: By construction of c and cg the diagram commutes on Fedosov star products and
hence everywhere. �
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3.4 Classification of Equivariant Star products

The last subclass of star products we wish to discuss, is that of equivariant star products.
The central classification result here has recently been published by Waldmann and the
author in [104], from where we will cite throughout. Once again, the motivational back-
ground comes from classical mechanics. Consider a system with symmetry, modelled by a
symplectic g-space (M,ω, g, ρ) for any Lie algebra g and ρ : g −→ Xsympl(M). Then one can
sometimes find a momentum map corresponding to ρ, that is a linear map J : g −→ C∞(M)
with

ρ(ξ) = XJ(ξ) and J([ξ, η]) = {J(ξ), J(η)} (3.4.1)
for all ξ, η ∈ g. That is, the images of ρ are not only symplectic vector fields, but Hamiltonian
ones (J chooses a Hamiltonian for each element ξ) and J is a Lie algebra homomorphism
from g to (C∞(M), { , }). If only the first equality in (3.4.1) is satisfied, we will say that
J is a Hamiltonian. Furthermore, we will call the quadruple (M,ω, g, J) a Hamiltonian
g-space if J is a momentum map. As an immediate consequence, one can see that for any
f ∈ C∞(M) we have

Lξf = −{J(ξ), f}. (3.4.2)
Remembering back that the principal idea of quantization was to replace the Poisson bracket
with a commutator in some algebra, one is lead to an analogue of Hamiltonians in the set-
ting of deformation quantization, namely quantum Hamiltonians, by replacing the Poisson
bracket in (3.4.2) by the commutator 1

ν
[ , ]? with respect to any g-invariant star product ?

on M . Additionally, in complete analogy to momentum maps, quantum momentum maps
are required to be Lie algebra homomorphisms

g −→
(

C∞(M)JνK,
1

ν
[ , ]?

)
.

Writing ad?(f)g := [f, g]? for any f, g ∈ C∞(M)JνK, one then arrives at the following
definition, which by now is completely standard [90,123]:

Definition 3.4.1 (Quantum momentum map) Let ? a star product on a symplectic g-
space (M,ω, g). A linear map J : g −→ C∞(M)JνK is called a quantum momentum map of
? if

Lξ = −1

ν
ad?(J(ξ)) and J([ξ, η]) =

1

ν
[J(ξ),J(η)]? (3.4.3)

hold for all ξ, η ∈ g. If only the first equality is satisfied, we will call J a quantum Hamilto-
nian.

Note that if a star product ? on (M,ω, g) admits a quantum momentum map, it is auto-
matically g-invariant, since Lξ = 1

ν
ad?(J(ξ)) is a derivation of ?.

Definition 3.4.2 (Equivariant star product) Let (M,ω, g) be a symplectic g-space, ? a
star product on M and J a quantum momentum map of ?. The tuple (?,J) is then called
an equivariant star product.

If we denote by J0 := J
∣∣
ν=0

the 0th formal degree of J, we can evaluate (3.4.3) in 0th
formal degree and recognize that J0 is a classical momentum map (classical Hamiltonian
respectively). Conversely, given any classical momentum map J , we say that a quantum
momentum map J deforms J if J0 = J . It remains to show if, and under which conditions,
star products admit quantum momentum maps, a question that has been answered fully
in [60,62,90] for Fedosov star products
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Lemma 3.4.3 Let (M,ω, g) be a symplectic g-space and Ω ∈ νZ2(M)gJνK. Then F (Ω) ad-
mits a quantum momentum map if and only if there exists a linear map J : g −→ C∞(M)JνK
such that

iξ(ω + Ω) = dJ(ξ) and (ω + Ω)(Xξ, Xη) = J([ξ, η]) (3.4.4)

holds for all ξ, η ∈ g.

With the additional small calculation

J([ξ, η]) =
1

ν
adF (Ω)(J(ξ))J(η) = − iξ dJ(η) = (ω + Ω)(Xξ, Xη)

we can show that any quantum momentum map J satisfies (3.4.4) and conversely, that any
J satisfying (3.4.4) is in fact a quantum momentum map of F (Ω). It is here that one can
recognize a useful interpretation of (3.4.4), namely that these two equations are precisely
the conditions for ω + Ω − J to be a closed element of the Lie algebraic Cartan complex
Ω2

g(M)JνK as defined in Definition 2.3.11. First, to show that ω + Ω − J is an element of
Ω2

g(M)JνK, we have to demonstrate that

J([ξ, η]) = − iξ dJ(η) and Lξ(ω + Ω) = 0 (3.4.5)

hold. The first equation however is satisfied since J is a quantum momentum map and the
second one by the assumption that Ω ∈ νZ2(M)gJνK and Xξ ∈ Xsympl(M). By the definition
of the differential dg = d + i• of the Cartan complex we see then that ω+ Ω− J is dg-closed
if

d(ω + Ω) = 0 and iξ(ω + Ω) = dJ(ξ) and iξ J = 0

hold. Here the first equation is satisfied by assumption (ω and Ω are d-closed), the second
equation is precisely the first equation in (3.4.4) and the third is trivial, since i• vanishes on
0-forms. Hence we can restate Lemma 3.4.3 in the following form:

Corollary 3.4.4 Let (M,ω, g) be a symplectic g-space and Ω ∈ νZ2(M)gJνK. Then F (Ω)
admits a quantum momentum map, if there exists a linear map J : g −→ C∞(M)JνK with

ω + Ω− J ∈ Ω2
g(M)JνK and dg(ω + Ω− J) = 0.

With these preliminary results at hand, we follow the example of Section 3.2 and Section 3.3
and aim to define a suitable notion of equivalence for equivariant star products, to show
that every equivariant star product is equivalent to an equivariant Fedosov star product and
finally, to construct an equivariant characteristic class with values in a suitable cohomology,
which will turn out to be the Lie algebraic equivariant cohomology. We begin with the
definition of equivariant equivalences [104]:

Definition 3.4.5 (Equivariant equivalence) Let (M,ω, g) be a symplectic g-space, and
(?,J) and (?′,J′) equivariant star products on M . A g-invariant equivalence

T : (C∞(M)JνK, ?) −→ (C∞(M)JνK, ?′)

is called equivariant if
T ◦ J = J′

holds.
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With this definition, we can immediately give a positive answer to the question of whether
every equivariant star product is equivalent to an equivariant Fedosov one. Unlike Proposi-
tion 3.2.4, where we had to expend a significant amount of work for the similar result, we
are able to use the invariant version Proposition 3.3.7 to directly write down the correct
equivariant Fedosov star product.

Corollary 3.4.6 Let (M,ω, g) be a symplectic g-space. Every equivariant star product on
M is equivariantly equivalent to an equivariant Fedosov star product.

Proof: Let (?,J) be any equivariant star product. Then by Proposition 3.3.7, there exists
Ω ∈ νZ2(M)gJνK and a g-invariant equivalence

T : (C∞(M)JνK, ?) −→ (C∞(M)JνK, F (Ω))

and we claim that T ◦J is a quantum momentum map of F (Ω). We only have to check that
(3.4.3) holds. So let ξ, η ∈ g and f ∈ C∞(M)JνK, then

adF (Ω)(TJ(ξ))f =
[
TJ(ξ), TT−1f

]
F (Ω)

= T
[
J(ξ), T−1f

]
?

= −νTLξT
−1f = −νLξf

and
(T ◦ J)([ξ, η]) = T

(
1

ν
[J(ξ),J(η)]?

)
= [TJ(ξ), TJ(η)]F (Ω). �

The goal of the remainder of this section will then be the full classification of equivariant
star products. We will prove the final result in three steps, following [104]. First, we shall
consider the special case of two different quantum momentum maps for the same star product
and investigate under which conditions equivariant equivalences exist here. Secondly, we
extend this result to arbitrary equivariant Fedosov star products and finally, we will define an
equivariant characteristic class similar to Theorem 3.2.8 and Theorem 3.3.11. Throughout
we will assume that all manifolds are connected. Otherwise we can just repeat arguments
on each connected component to obtain similar results.

Lemma 3.4.7 Let (M,ω, g, J) be a connected Hamiltonian g-space, ? a g-invariant star
product, and J and J′ quantum momentum maps of ? deforming J . Then there exists an
equivariant equivalence between (?,J) and (?,J′) if and only if J′−J ∈ Ω2

g(M)JνK is dg-exact.

Proof: The statement of the lemma contains an implicit assumption, namely that J′−J ∈
Ω2

g(M)JνK, which follows directly from (3.4.5). Also note that, since ad?(J(ξ)) = −νLξ =
ad?(J

′(ξ)) for all ξ ∈ g, we have ad?(J
′(ξ) − J(ξ)) = 0 and hence j := J′ − J must be a

map into constant functions on M , that is j : g −→ CJνK. This however implies that j is
dg-closed. We begin the actual proof by assuming that j is dg-exact, that is there exists a
θ ∈ Ω1

g(M)JνK such that j = dgθ = dθ + i• θ. Since Ω2
g(M) is the direct sum of invariant

two forms and invariant polynomials on g in one variable, j = dgθ is equivalent to the two
separate equations j = i• θ and dθ = 0. Use then that all closed differential forms are locally
exact to obtain an open cover U of M and functions {tU ∈ C∞(U)JνK}U∈U with dtU = θ

∣∣
U

for all U ∈ U. Since all dtU must agree on intersections of elements in U, we have

tU
∣∣
U∩V − tV

∣∣
U∩V ∈ CJνK for all U, V ∈ U,

where we assumed that U ∩ V is connected. Otherwise the above equality holds on all
connected components of U ∩ V . Hence the operators ad?(tU) agree on overlaps and

ad?(θ)
∣∣
U

:= ad?(tU) for all U ∈ U.
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defines a differential operator on C∞(M)JνK. By the very nature of ad?, ad?(θ) is also a
derivation of ? and thus

A := exp

{
1

ν
ad?(θ)

}
is a g-invariant automorphism of ?. Our goal will be to directly calculate AJ. We start with
the following auxiliary calculation

1

ν
ad?(tU)J(ξ)

∣∣
U

= LξtU = iξ dtU = iξ θ
∣∣
U

= j(ξ)
∣∣
U
,

which can be used to show

AJ(ξ)
∣∣
U

= exp

{
1

ν
ad?(tU)

}
J(ξ)

∣∣
U

= J(ξ)
∣∣
U

+ j(ξ)
∣∣
U

+ 0 = J′(ξ)
∣∣
U
. (3.4.6)

Conversely, assume that we are given an equivariant equivalence

A : (C∞(M)JνK, (?,J)) −→ (C∞(M)JνK, (?,J′)).

Then there exists a d-closed, g-invariant one-form θ ∈ Z1(M)gJνK such that

A = exp

{
1

ν
ad?(θ)

}
,

where ad?(θ) is defined locally as ad?(θ)
∣∣
U

= ad?(tU) for any tU with θ
∣∣
U

= dtU , as seen e.g.
in [120, Thm. 6.3.18]. We can now rewrite j locally as

j(ξ)
∣∣
U

= (AJ(ξ)− J(ξ))
∣∣
U

=

(
∞∑
k=1

1

k!

(
1

ν
ad?(tU)

)k−1
)

︸ ︷︷ ︸
T

1

ν
ad?(J(ξ)

∣∣
U

)tU . (3.4.7)

Note that T is a series of differential operators starting with id, thus T is invertible. We can
hence apply T−1 to both sides of (3.4.7) while using that j(ξ) is constant:

j(ξ)
∣∣
U

=
1

ν
ad?(J(ξ)

∣∣
U

)tU = LξtU = (dgθ)(ξ)
∣∣
U
. �

By applying Lemma 3.4.7 to Fedosov star products, we can already hint at the full clas-
sification result. Indeed, let Ω ∈ νZ2(M)gJνK and assume that F (Ω) admits a quantum
momentum map J, that is, as we have seen, ω + Ω − J ∈ Ω2

g(M)JνK is dg-closed. Now
assume that F (Ω) admits a second quantum momentum map J′. Then (F (Ω),J) and
(F (Ω),J′) are equivariantly equivalent if and only if J′− J is dg-exact, what we can rewrite
as

[J′ − J]g = [ω + Ω− J]g − [ω + Ω− J′]g = 0 ∈ H2
g(M)JνK.

From there it seems natural to take the educated guess that in general two equivariant
Fedosov star products (F (Ω),J) and (F (Ψ),J′) are equivariantly equivalent if and only if

[ω + Ω− J]g − [ω + Ψ− J′]g = 0 ∈ H2
g(M)JνK,

which will turn out to be true. However, we will be requiring a fair bit of preparation. First,
we cite a result from [90]:
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Lemma 3.4.8 Let (M,ω, g, J) be a Hamiltonian g-space, Ω ∈ νZ2(M)gJνK and (F (Ω),J)
an equivariant star product. Then the Fedosov-Taylor series of J is given by

τ(J(ξ)) = J(ξ) + θξ ⊗ 1 +
1

2
D∇θξ ⊗ 1 + ia(ξ)r

for all ξ ∈ g, where θξ := iξ ω, D∇ = (dxi ⊗ 1)∇∂i as in Lemma 3.3.5, and r is the unique
solution of (3.1.4).

Lemma 3.4.8 is surprising in the following sense: usually, one has no good handle on explicit
expressions of Fedosov-Taylor series for general functions. However, the Fedosov-Taylor
series of quantum momentum maps turn out to be almost completely determined by the
Fedosov star product alone. The actual quantum momentum map only determines the part
of simultaneous symmetric and antisymmetric degree 0, which is given by the quantum
momentum map itself. This very special behaviour allows us to calculate the effect of the
equivalences SC from Lemma 3.2.5 on quantum momentum maps, see [104]:

Lemma 3.4.9 Let (M,ω, g) be a symplectic g-space, Ω ∈ νZ2(M)gJνK, C ∈ νΩ1(M)gJνK
and let (F (Ω),J) be an equivariant star product. Then

SCJ(ξ) = J(ξ) + iξ C

holds for all ξ ∈ g, where SC is the g-invariant equivalence constructed from C in Corol-
lary 3.3.10.

Proof: All ingredients are given explicitly enough to calculate directly, using Lemma 3.3.5,
Lemma 3.4.8, (3.2.11), Corollary 3.3.10 as well as ia(ξ)h = 0 since dega h = 0:

1

ν
ad◦F(h)τ(J(ξ)) = −1

ν
ad◦F

(
J(ξ) + θξ ⊗ 1 +

1

2
D∇θξ ⊗ 1− ia(ξ)r

)
h

= (Lξ −D ia(ξ)− ia(ξ)D)h

= − ia(ξ)Dh

= ia(ξ)

(
1⊗ C −

1
ν

ad◦F(h)

exp
{

1
ν

ad◦F(h)
}
− id

(r′ − r)

)

= 1⊗ iξ C −
1
ν

ad◦F(h)

exp
{

1
ν

ad◦F(h)
}
− id︸ ︷︷ ︸

T

(J′(ξ)− τ ′(J′(ξ))− J(ξ) + τ(J(ξ))),

where J′ is any quantum momentum map of F (Ω−dC) (e.g. SCJ) and τ ′ the Fedosov-Taylor
series corresponding to Ω− dC. We first apply T−1 to both sides to obtain(

exp

{
1

ν
ad◦F(h)

}
− id

)
τ(J(ξ))− 1⊗ iξ C = J(ξ)− τ(J(ξ))− J′(ξ) + τ ′(J′(ξ))

and secondly σ and observe that, with σ(J(ξ)) = J(ξ) and στ(J(ξ)) = J(ξ), the right hand
side vanishes entirely and we are left with

SCJ(ξ)− J(ξ)− 1⊗ iξ C = 0. �

With Lemma 3.4.9 we are finally in a position to prove the classification result for Fedosov
star products we hinted at earlier:
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Proposition 3.4.10 Let (F (Ω),JΩ) and (F (Ψ),JΨ) be equivariant Fedosov star products
on a Hamiltonian g-space (M,ω, g, J) with Ω,Ψ ∈ νZ2(M)gJνK such that JΩ and JΨ both
deform J . Then (F (Ω),JΩ) and (F (Ψ),JΨ) are equivariantly equivalent if and only if

cg(F (Ω),JΩ)− cg(F (Ψ),JΨ) = 0 ∈ H2
g(M)JνK

holds, where cg(F (Ω),JΩ) is defined as

cg(F (Ω),JΩ) :=
1

ν
[ω + Ω− JΩ]g ∈

[ω − J ]g
ν

+ H2
g(M)JνK

Proof: We begin by assuming that (F (Ω),JΩ) and (F (Ψ),JΨ) are equivariantly equivalent,
that is there is a g-invariant equivalence

T : (C∞(M)JνK, F (Ω)) −→ (C∞(M)JνK, F (Ψ)) with TJΩ = JΨ.

But then we already know from Lemma 3.3.9 that [Ω − Ψ]g = 0 ∈ νH2,g
dR (M)JνK and hence

we can choose a C ∈ νΩ1(M)gJνK with Ω = Ψ + dC. Using C, we can construct another
g-invariant equivalence SC parallel to T from Lemma 3.2.5 and we can obtain another
equivariant star product ((F (Ψ), SCJΩ). Notice, that ((F (Ψ),JΨ) and (F (Ψ), SCJ) are
equivariantly equivalent by SC ◦ T−1, thus we can apply Lemma 3.4.7 to conclude

[TJ− SCJ]g = 0 ∈ H2
g(M)JνK.

From here we use Lemma 3.4.9 to calculate

νcg(F (Ω),JΩ)− νcg(F (Ψ),JΨ) = [Ω−Ψ + JΨ − JΩ]g = [dC + SCJΩ − JΩ]g

= [dC + i•C]g = [dgC]g = 0.

Conversely, assume that
cg(F (Ω),JΩ)− cg(F (Ψ),JΨ) = 0

holds. By Definition 2.3.11, this is equivalent to the existence of θ ∈ νΩ1
g(M)JνK =

νΩ1(M)gJνK such that

dθ = Ω−Ψ and iξ θ = JΨ − JΩ.

Consequently, we can, again from Lemma 3.3.8, obtain a g-invariant equivalence Sθ

Sθ : (C∞(M)JνK, F (Ω)) −→ (C∞(M)JνK, F (Ψ)).

Subsequently, Lemma 3.4.9 can be used to calculate

[JΨ − SθJΩ] = [Ω− dθ −Ψ + JΨ − JΩ − i• θ] = νcg(F (Ω),JΩ)− νcg(F (Ψ),JΨ) = 0.

This shows, together with Lemma 3.4.7, that there exists an equivariant equivalence A
from (F (Ψ), SθJΩ) to (F (Ψ),JΨ) and hence (F (Ω),JΩ) and (F (Ψ),JΨ) are equivariantly
equivalent through A ◦ Sθ. �

From here, it is an easy task to extend the above result to all equivariant star products,
similar to Theorem 3.2.8 and Theorem 3.3.11. For this we will denote by Starg(M,ω, J) the
set of equivariant star products on (M,ω) that deform a given classical momentum map J
and by Def(M,ω, J) the equivalence classes under equivariant equivalence.
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Theorem 3.4.11 Let (M,ω, g, J) be a Hamiltonian g-space. There exists a unique map

cg : Starg(M,ω, J) −→ [ω − J ]g
ν

+ H2
g(M)JνK

that descends to a bijection

cg : Def(M,ω, J) −→ [ω − J ]g
ν

+ H2
g(M)JνK

and is, on all equivariant Fedosov star products (F (Ω),J) for Ω ∈ νZ2,g(M)JνK given by

cg(F (Ω),J) =
1

ν
[ω + Ω− J]g.

Proof: Let (?,J) be any equivariant star product. By Proposition 3.3.7, there exists a
g-invariant Fedosov star product F (Ω) and a g-invariant equivalence

T : (C∞(M)JνK, ?) −→ (C∞(M)JνK, F (Ω)).

But then (F (Ω), TJ) is an equivariant Fedosov star product and clearly equivariantly equiv-
alent to (?,J). Hence we define

cg(?,J) := cg(F (Ω), TJ) =
1

ν
[ω + Ω− TJ]g.

To show that cg(?,J) is well-defined, assume that we chose a different equivariant equivalence
T ′ to a different equivariant Fedosov star product (F (Ω′), T ′J). Obviously, (F (Ω), TJ) and
(F (Ω′), T ′J) are equivariantly equivalent and thus cg(F (Ω), TJ) = cg(F (Ω′), T ′J) holds by
Proposition 3.4.10. �

Finally, note that, since every equivariant star product (?,J) is in particular a g-invariant
star product, we have a map Starg(M,ω, J) −→ Starg(M,ω). Since every equivariant equiv-
alence is also a g-invariant equivalence of the underlying g-invariant star products, the
previous map descends to a map Defg(M,ω, J) −→ Defg(M,ω). Simultaneously, by Defini-
tion 2.3.11, there is the projection

Ω2
g(M) = S1(g∗)g ⊕ Ω2(M)g −→ Ω2(M)g

onto the second summand, that descends to cohomology:

H2
g(M) −→ H2,g

dR (M).

We can state the following corollary [104]:

Corollary 3.4.12 Let (M,ω, g, J) be a Hamiltonian g-space. Then the following diagram
commutes:

Defg(M,ω, J) Defg(M,ω) Def(M,ω)

1
ν
H2

g(M)JνK 1
ν
H2,g

dR (M)JνK 1
ν
HdR(M)JνK

cg cg c
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Proof: The right rectangle commutes by Corollary 3.3.12. As for the left rectangle, it
commutes by construction on Fedosov star products and hence everywhere. �

Remark 3.4.13 Together with Lemma 3.4.3, the map pr2 : 1
ν
H2

g(M)JνK −→ 1
ν
H2,g

dR (M)JνK
allows for the following interpretation: any g-invariant star product ? on a Hamiltonian
g-space admits a quantum momentum map if and only if cg(?) lies in its image. Note that
? admits a quantum momentum map if and only if there exists an invariantly equivalent
Fedosov star product ?Ω which admits a quantum momentum map. But then Lemma 3.4.3
immediately states that this is the case if any only if Ω can be extended to an equivariant
differential form, that is cg(?) = 1

ν
[ω + Ω]g ∈ im pr2.





Chapter 4

Symmetry Reduction of Star Products

In classical mechanics, whenever a system has gauge symmetries, modelled as a Lie group
action on the underlying symplectic manifold (M,ω), one is actually describing the system
with more information than is strictly necessary, that is some parts of M and G are redun-
dant. As M describes the possible states of the system, if we take any of them, say p ∈M ,
then for any gauge transformation g ∈ G, the intuition is that p and g . p describe the same
state of the system. So while M certainly contains all possible states, some of the points of
M represent identical physical states. Of course, one can still work with M and G despite
that drawback. However, it is then imperative to keep in mind to correctly identify states.
Another approach would be searching for a truly non-redundant description of the system.
The process of obtaining this description from the initial data (M,ω) and (G, .) is called
symmetry-reduction and we will dedicate this section to it. The naive approach here is, of
course, to take the orbit space M/G to get rid of excess information. However, the main
problem one encounters is that this quotient may be very singular. This can occur even in
very simple examples, such as the 2-sphere with radius 1 acted upon by U(1) by rotation
around any axis. The resulting quotient is then easily seen to be the closed interval [−1; 1],
which is not a symplectic manifold anymore. So we obtain a unique description of the
physical states, but leave the framework of symplectic geometry. As usual, one can apply
some more sophisticated technology to the problem at hand: the symplectic manifold M
and the action of G on M can be combined into what is called the action-groupoid M oG
(see e.g. [65]). It is the category that has all points of M as objects and for any two points
p, q ∈M the set of morphisms from p to q is given by

HomMoG(p, q) = {g ∈ G | g . p = q}.

From M o G then, one can construct a differentiable stack [9], the quotient stack [M/G],
which still admits a lot of geometry (we are being deliberately vague here). However, ul-
timately, our goal would be to do deformation quantization on [M/G] and while there are
certainly advances in quantizing more algebraic objects e.g. in [21] or [124], in this thesis we
aspire to strictly stay in the setting of symplectic manifolds. Accordingly, our treatise of the
matter will be restricted to certain special cases, namely, we require G to be connected and
the action . to be Hamiltonian, that is it admits a momentum map. In this case, there is an
easier method of symmetry reduction, called Marsden-Weinstein reduction [85]. We shall
give a short overview on it in Section 4.1, followed by an exposition of a quantized version of
Marsden-Weinstein reduction from [16, 61] based on BRST cohomology in Section 4.2 and
finally present a classification of reduced star products by the author [104] in Section 4.3.

75
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4.1 Marsden-Weinstein Reduction

Marsden-Weinstein reduction applies to any Lie group G that acts on a symplectic manifold
(M,ω) and admits a momentum map J , that is it applies to any Hamiltonian G-space, see
(3.4.1) and (3.4.2). An equivalent view of momentum maps, one that is more suitable to
Marsden-Weinstein reduction, sees momentum maps as maps

µ : M −→ g∗ with X〈µ,ξ〉 = Xξ and µ(g . p) = Ad∗g−1 µ(p) (4.1.1)

for all ξ ∈ g, g ∈ G and p ∈ M together with the definition 〈µ, ξ〉(p) := µ(p)ξ and the
Hamiltonian vector field X〈µ,ξ〉 of the function 〈µ, ξ〉. The connection between both points
of view is made through the equation

J(ξ)(p) = µ(p)ξ. (4.1.2)

An easy calculation shows, if µ satisfies (4.1.1), then J defined via (4.1.2) satisfies (3.4.1) and
vice versa. We will also refer to any symplectic G-space together with a momentum map in
the sense of (4.1.1) as a Hamiltonian G-space and denote it by the quadruple (M,ω,G, µ).

Remark 4.1.1 Note that there exist various conventions about the terminology. Sometimes
the distinction between whether or not µ satisfies the right equality in (4.1.1) is made, and
µ is called an Ad∗-equivariant momentum map, if it does. Since this feature is essential
for Marsden-Weinstein reduction, we agree that all our momentum maps shall be Ad∗-
equivariant.

Remark 4.1.2 Since we will be switching frequently between both points of view (3.4.1)
and (4.1.1), we shall denote, given µ satisfying (4.1.1), by Jµ the dual version defined via
(4.1.2). And, analogously, denote by µJ the dual version of any J that satisfies (3.4.1).

Let us further assume that 0 is a value and regular value of µ, then C := µ−1({0}) is a
submanifold of M such that all physical motion (subject to the gauge symmetry conveyed
by G) that begins on C, stays constrained to C. Also, by (4.1.1), the action of G on M re-
stricts to C (we will, for convenience, also denote the action there by .). Marsden-Weinstein
reduction is then the following two-step process: first, pass to the momentum level C and,
second, take the quotient C/G, which, under suitable conditions, is guaranteed to be a sym-
plectic manifold. Since we will not be concerned with the intricacies of Marsden-Weinstein
reduction itself, we shall only cite the relevant result. For more detailed expositions consider
i.e. [86] or [120]. The original result is, of course, due to [85].

Theorem 4.1.3 Let (M,ω,G, µ) be a Hamiltonian G-space and let 0 be a value and regular
value of µ. If the action of G on C := µ−1({0}) is free and proper then the quotient
Mred := C/G is a symplectic manifold with symplectic structure ωred uniquely defined by

π∗ωred = ι∗ω,

where π : C −−�Mred is the quotient projection and ι the inclusion of C in M .

We will frequently summarize the complete setting as the following diagram

M
ι←−−↩ C

π
−−�Mred

and say that Mred is Marsden-Weinstein reduced from M via C by G.
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Remark 4.1.4 It is also possible to perform Marsden-Weinstein reduction with respect to
different momentum-level-sets Cξ := µ−1({ξ}) for any ξ ∈ g∗. However, one then has to take
the quotient with respect to the isotropy group Gξ = {g ∈ G | Ad∗g ξ = ξ

}
instead of the

full group G. The reduced manifold is then Mred = Cξ/Gξ. Marsden-Weinstein reduction
as described above is then the special case ξ = 0, for which one has trivially G0 = G.

4.2 The Reduction Scheme

Marsden-Weinstein reduction enables us to obtain a redundancy-free description of a given
classical system, if certain restrictions are met. So let us consider a symplectic manifold
(Mred, ωred) reduced from (M,ω). We can then certainly consider star products on M and
Mred separately. However, as we have seen in Theorem 3.2.8, Theorem 3.3.11 and Theo-
rem 3.4.11, depending on the topology ofM andMred, there may be a multitude of nonequiv-
alent star products on either. Since every star product is thought of as a quantization of
any given classical system, nonequivalent star products represent different quantizations of
said system. But then one immediately recognizes that an independent choice of ? on M
and ?red on Mred introduces too much ambiguity: just as the classical system is determined
completely by either M or Mred, at the moment, we should be able to fix a quantization of
the system by specifying either ? or ?red to completely specify a choice of quantization. In
short, we need an analogue to symmetry reduction for star products, which is commonly
referred to as quantum reduction. Quantum reduction should allow us to construct ?red

from a given choice of ? on M . To summarize, a first proposal for quantum reduction would
be, given

M ←−−↩ C −−�Mred,

we wish to construct a map

naive red : Star(M,ω) −→ Star(Mred, ωred).

However, using the set of all star products on M seems unnatural since there might be ones
that do not respect the given gauge symmetry on M and one would not expect to obtain
meaningful results on Mred from those. Since furthermore M already comes equipped with
a momentum map (in order to perform Marsden-Weinstein reduction at all), it seems more
natural to only use star products compatible with the given structures. In this case, given the
Hamiltonian G-space (M,ω,G, µ) and the Lie algebra g of G, we are lead to use equivariant
star products on M that deform the momentum map Jµ (see Remark 4.1.2). Consequently,
quantum reduction should be a map

red : Starg(M,ω, Jµ) −→ Star(Mred, ωred).

Since, in general,Mred need not have any further gauge symmetry, we can only map into the
set of all star products onMred. And indeed, such a map has been constructed in [16], which
we will present here, following largely the more compact exposition in [61]. But before, let
us fix some conventions. Throughout, we will assume that (M,ω,G, µ) is a Hamiltonian
G-space for a connected, finite-dimensional Lie group G and that the action . of G on M is
proper. Furthermore, we shall assume that the restricted action of G on C := µ−1({0}) is
free and proper (note that properness is not a restriction here, as all restrictions of proper
actions are again proper). Finally, we agree to reserve the symbols ι for the inclusion
ι : C ↪−−→ M and π for the surjective submersion π : C −−� Mred. The reason for working
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with connected Lie groups exclusively is to use Corollary 2.3.20 and Theorem 2.3.23 later on.
Contrarily, we will from the very beginning use the properness of . to apply the following
result [61], [16, Lemma 3]:

Lemma 4.2.1 Let (M,ω,G, µ) be a Hamiltonian G-space with proper action of G on M ,
assume that 0 is a regular value and value of µ, and define C := µ−1({0}). Then there exists
an open neighbourhood M̃ ⊆ M of C and an open neighbourhood Ũ ⊆ C × g∗ of C × {0}
such that:

i) There exists a G-equivariant diffeomorphism

Φ: M̃ −→ Ũ

where the G action on Ũ is the product .
∣∣
C
× Ad∗ of the restriction of . on C and the

coadjoint action on g∗.

ii) For each p ∈ C the set M̃ ∩ ({p} × g∗) is star shaped around {p} × {0}.

iii) The restriction of µ on M̃ is given by the projection onto the second factor of C × g∗:

µ
∣∣
M̃

= pr2 ◦ Φ

Since we will ultimately be interested in the quotient C/G and since star products (at least
the types considered in this thesis, see Definition 3.0.7), are inherently local objects on M ,
Lemma 4.2.1 allows us to assume that M = M̃ . Now one central object in this particular
quantum reduction scheme is the so-called Koszul complex, which comes in two variations:
a classical version and a quantum version. We begin by introducing the classical one.

Definition 4.2.2 (Koszul complex) Let (M,ω,G, µ) be a Hamiltonian G-space. The
classical Koszul complex is defined as

C•Koszul(M, g, µ) := C⊗ C∞(M)⊗ Λ•g with differential ∂ = iµ .

We will frequently abbreviate CKoszul(M, g, µ) to CKoszul(M) if g and µ are understood. We
will also drop the explicit complexification in the following.

Remark 4.2.3 G acts on the Koszul complex by the tensor product of the induced action
by pullbacks on C∞(M) and the adjoint representation of G on g. All later references to
equivariance of maps on the Koszul complex mean equivariance with respect to this action.

As a first proposition, we shall consider the cohomology H•Koszul(M) of the Koszul complex
and find, that the Koszul complex is acyclic and that one can even find an explicit contrac-
tion. Furthermore, by viewing C∞(C) as a C∞(M)-module via the prolongation map

prol : C∞(C) −→ C∞(M) : φ 7−→ (pr1 ◦ Φ)∗φ (4.2.1)

and the module structure (where one uses ι∗ ◦ prol = idC∞(C))

f · φ := ι∗(f prol(φ)) for all f ∈ C∞(M), φ ∈ C∞(C),

one can observe that the Koszul complex is a free resolution of C∞(C) as C∞(M)-modules
[61, Prop. 2.1], [16, Lemma 5,6], [48]:
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Proposition 4.2.4 Let (M,ω,G, µ) be a Hamiltonian G-space, g the Lie algebra of G and
{ea} a basis of g. Then the augmented Koszul complex with

C−1
Koszul(M) := C∞(C) and ∂0 = ι∗ : C0

Koszul(M) −→ C−1
Koszul(M)

is exact via the G-equivariant contraction h defined (for k ≥ 0) by

hk : Ck
Koszul(M) −→ Ck+1

Koszul(M) : (hkf)(p) := ea ∧
1∫

0

tk
∂(f ◦ Φ−1)

∂ξ∗a
(c, tξ∗) dt

and

h−1 : C−1
Koszul(M) −→ C0

Koszul(M) : h−1f := prol f

for all p ∈M with Φ(p) = (c, ξ∗) ∈ C × g∗ and ξ∗ = eaξ∗a for the dual basis {ea} of {ea}:
hk−1∂k + ∂k+1hk = id for all k ≥ −1

Proof: We shall, for simplicity of notation, assume M ⊆ C × g∗ and φ = idM for the
duration of the proof. For k = −1 then, take any f ∈ C∞(C). Since prol is right-inverse to
ι∗ and ∂0 = 0 we have automatically

(h−2∂0 + ∂1h−1)(f) = ι∗ prol(f) = f.

Note that, as per convention, the augmented Koszul complex and h are extended by 0 to
the left. For k = 0 take any f ∈ C∞(M) and note that

d

d t
[f(c, tξ)] = ξa

∂f

∂ξa
(c, tξ)

holds for all (c, ξ) ∈M , which, together with µ(c, ξ) = ξ, yields

(∂1h0f)(c, ξ) = (iµ(c,ξ) ea)

1∫
0

∂f

∂ξa
(c, tξ) dt =

1∫
0

ξa
∂f

∂ξa
(c, tξ) dt =

1∫
0

d

d t
[f(c, tξ)] dt

= f(c, ξ)− f(c, 0) = f(c, ξ)− (prol ι∗f)(c, ξ) = f(c, ξ)− (h−1∂0f)(c, ξ).

Finally, for k ≥ 1, let f ∈ C∞(M) and θ ∈ Λkg. By elementary calculations, one can show
that

ea ∧ iea θ = k · θ and
[
∂

∂ξa
iµ θ

]
(c, tξ) = iea θ

hold. With these, we can, similar to the case k = 0, derive the homotopy identity

[(hk−1∂k + ∂khk)fθ](c, ξ)

= ea ∧
∫
tk−1

[
∂

∂ξa
(f iµ θ)

]
(c, tξ) dt+ iµ(c,ξ)

[
ea ∧

∫
tkθ

∂f

∂ξa
(c, tξ) dt

]
= ea ∧

∫
tk−1 iµ(c,tξ) θ

∂f

∂ξa
(c, tξ) + f(c, tξ) iea θ dt

+ ξa

∫
tkθ

∂f

∂ξa
(c, tξ) dt− ea ∧

∫
tk iµ(c,ξ) θ

∂f

∂ξa
(c, tξ) dt

=

∫
tk−1

[
kθf(c, tξ) + tξaθ

∂f

∂ξa
(c, tξ)

]
dt

= θ

∫
d

d t

[
tkf(c, tξ)

]
dt = (fθ)(c, ξ)
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and conclude the proof. �

Viewed slightly differently, Proposition 4.2.4 states, that ι∗ (extended by 0 to higher degrees)
is a quasi-isomorphism with homotopy inverse prol

0 C∞(M) C∞(M)⊗ Λ1g . . .

0 C∞(C) 0 . . .

∂∂

ι∗ prol

In fact, the maps ι∗, prol and h constitute a deformation retract according to [29] (see also
Definition 2.4.2):

ι∗ ◦ prol = idC∞(C) idC∞(M) − prol ◦ι∗ = ∂h+ h∂

and one can additionally check that h0 ◦ prol = 0 holds (see e.g. [61]).

Remark 4.2.5 The unique symplectic structure on Mred from Theorem 4.1.3 can easily be
expressed using the prolongation map prol:

π∗{f, g}red = ι∗{prol(π∗f), prol(π∗g)} (4.2.2)

where { , } is the Poisson bracket on M .

Turning towards quantum reduction, we first consider the deformation retract

(C∞(C)JνK, 0) (CKoszul(M)JνK, ∂) h
ι∗

prol

where ι∗, prol and h have been extended ν-linearly. Of course, Proposition 4.2.4 still holds
order by order in ν. Now on CKoszul(M)JνK, one can define the so-called quantized or
deformed Koszul differential, see [16]:

Definition 4.2.6 (Deformed Koszul operator) Let (?,J) be an equivariant star product
on a Hamiltonian G-space (M,ω,G, µ) deforming Jµ and let κ ∈ CJνK. The deformed Koszul
operator d : CKoszul(M)JνK −→ CKoszul(M)JνK is defined by

df := iea f ? J(ea) +
ν

2
gcabec ∧ iea ieb f + νκ i∆ f

for all f ∈ CKoszul(M)JνK, where {ea} is any basis of g, {ea} its dual basis, gcab = ec([ea, eb])
are the structure constants of g and

∆(ξ) = tr ad(ξ) for ξ ∈ g

is the modular one-form ∆ ∈ g∗ of g.

Here we extended ? implicitly from C∞(M)JνK to CKoszul(M)JνK as (f ⊗ α) ? (g ⊗ β) :=
(f ?g)⊗α∧β on factorizing tensors (f ⊗α), (f ⊗ β) ∈ CKoszul(M)JνK = (C∞(M)⊗ Λ•g)JνK.
Since the precise value of κ in Definition 4.2.6 will not matter in the following, we will
henceforth assume that we chose a fixed value once and for all and omit all further mention
of it. Some basic properties of d can be found in [61, Lemma 3.4]:
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Lemma 4.2.7 Let d be as in Definition 4.2.6. Then d is a G-equivariant, left ?-linear
differential on CKoszul(M)JνK with classical limit ∂, that is

d
∣∣
ν=0

= ∂ and d2 = 0.

Lemma 4.2.7 implies that CKoszul(M)JνK together with d is a chain complex, which we will
call the deformed Koszul complex. Especially the classical limit of d will be important in
the following. It shows in particular, that δ := d − ∂ only starts in order 1 of ν, hence
(id− δh) is invertible as a formal power series. This will allow us to apply the homological
perturbation lemma (see Lemma 2.4.5) in order to find quasi-isomorphisms I∗ and Prol, as
well as a contraction H of (CKoszul(M)JνK, d) such that

0 C∞(M)JνK (C∞(M)⊗ Λ1g)JνK . . .

0 C∞(C)JνK 0

d

H

d

H

ProlI∗

(4.2.3)

is again a deformation retract with

I∗ = i∗
(
idC∞(M)JνK + δ1h0

)−1
Prol = prol H = h

(
idCKoszul(M)JνK + δh

)−1
,

see (2.4.9). Note that I∗ is not the pullback with any map I, the notation is chosen purely
to remind of its origins. One important feature of I∗ is the following [16, Lemma 27], [61,
Lemma 3.6]:

Lemma 4.2.8 There is a formal series of G-invariant differential operators S = id +∑∞
k=1 ν

kSk on M such that
I∗ = ι∗ ◦ S.

Moreover, S can be chosen such that S(1) = 1.

This statement is insofar peculiar, since the homotopy operator h, which appears in the
definition of I∗, is clearly non-local, whereas I∗ is. Finally, one follows the algebraic point
of view of symplectic reduction (see e.g. [72]), wherein, instead of a manifold Mred together
with a symplectic two-form ωred, the Poisson algebra of functions (C∞(Mred), { , }red) is
constructed directly via

C∞(Mred) ∼=
BC

JC
, (4.2.4)

where JC denotes the vanishing ideal of the submanifold C in C∞(M) and BC the normalizer
of JC in C∞(M):

JC = {f ∈ C∞(M) | ι∗f = f
∣∣
C

= 0
}

BC = {f ∈ C∞(M) | {f, JC} ⊆ JC}.

Let us quickly note that, by the exactness of the augmented Koszul complex, we have
JC = ker ι∗ = im ∂1. This expression can then be used to obtain analogues of the vanishing
ideal JC and its normalizer BC for the deformed Koszul complex, where we define

JC := im d1 ⊆ C∞(M)JνK
BC := {f ∈ C∞(M)JνK | [f,JC ]? ⊆ JC}.
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Note that, since d is left-?-linear, we automatically have JC ⊆ BC . This allows us to define
the following pair of maps

BC/JC −→ π∗C∞(Mred)JνK : [f ] 7−→ I∗f

π∗C∞(Mred)JνK −→ BC/JC : u 7−→ [prol(u)]
(4.2.5)

where the first map is well-defined since im d1 ⊆ ker I∗. But even further, one can show
that, as a direct consequence of (4.2.3) being a deformation retract, those maps are mutually
inverse: on the one hand we have I∗Prol = id and on the other [ProlI∗f ] = [f−d1H1f ] = [f ]
for f ∈ BC . Hence we have just demonstrated the quantum analogon to (4.2.4), namely

C∞(Mred)JνK ∼=
BC
JC

. (4.2.6)

Subsequently then, we will use this bijection to define a star product ?red on Mred, similarly
to (4.2.2), through

π∗(u ?red v) := I∗(Prol(π∗u) ? Prol(π∗v)) (4.2.7)

for all u, v ∈ C∞(Mred), as shown in [16,61]:

Proposition 4.2.9 Let (M,ω,G, µ) be a Hamiltonian G-space and (?,J) an equivariant
star product on M deforming Jµ. Then

π∗(u ?red v) := I∗(Prol(π∗u) ? Prol(π∗v))

defines a star product on (Mred, ωred).

The proof of Proposition 4.2.9 relies on the fact, that π∗ and Prol are maps of formal degree 0
and that I∗ can be expressed as the concatenation of another formal degree 0 map (namely
ι∗) with an equivalence of star products, due to Lemma 4.2.8. This clarifies that ?red is
indeed a formal series of bidifferential operators, as required for star products. Using the
definition of ωred from (4.2.2), one can immediately check that ?red deforms ωred.

Remark 4.2.10 Of course, ?red depends on the parameter κ from the definition of the
quantized Koszul operator d in Definition 4.2.6, which we omitted since then. One could
stress this dependency by denoting the reduced star product as ?(κ)

red.

With Proposition 4.2.9 then we achieved the goal we set out to, namely to obtain a reduction
map for star products

red : Star(M,ω, Jµ) −→ Star(M,ωred).

4.3 Characteristic Classes of Reduced Star Products

Having obtained a quantum reduction scheme for equivariant star products in the previous
section, we will now aim to combine symmetry reduction with the classification results of
star products from Section 3.2, Section 3.3 and Section 3.4, which has been achieved by the
author in [103]. The main question arising in this context is the following: As Theorem 3.4.11
gives a classification of all equivariant star products on M by the cohomology of the Cartan
complex through a bijection

cg : Starg(M,ω, µ) −→ [ω − Jµ]g
ν

+ H2
g(M)JνK
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and Theorem 3.2.8 gives a classification of all star products on Mred by the de Rham coho-
mology through a bijection

c : Star(Mred, ωred) −→ [ωred]

ν
+ H2

dR(Mred)

we are, at first glance, left with two characteristic classes, namely cg(?,J) and c(?red) for
any equivariant star product (?,J) on M . Is there any relation between those classes? One
would certainly expect there to be one, since ? and ?red are clearly not independent star
products on their respective manifolds. However, for any such relation to be meaningful in
the first place, we should examine, whether or not equivariantly equivalent star products on
M reduce to equivalent star products onMred. If this was not the case, then the classification
by equivariant cohomology would be to coarse for the problem at hand and we would have to
find a more fine-grained classification. Fortunately, we can use the defining formula for ?red

from Proposition 4.2.9 to explicitly give a reduced equivalence on Mred for any equivariant
equivalence on M [103]:

Lemma 4.3.1 Let Mred be Marsden-Weinstein reduced from M and let T : (?1,J1) −→
(?2,J2) be an equivariant equivalence. Then

Tred :=
(
(π∗)−1 ◦ I∗

)
◦ T ◦ (prol ◦π∗)

is an equivalence Tred : ?1
red −→ ?2

red.

Proof: We repeat the proof from [103]. First, note that π∗ : C∞(Mred)JνK −→ im(I∗)
is well-defined and invertible (see (4.2.5) and (4.2.6)). Next, observe that Tred, expanded
as a power series in ν, starts with idC∞(Mred), since T starts with idC∞(M), I∗ starts with
ι∗ and prol is right-inverse to ι∗. Also, by Lemma 4.2.8, Tred is a series of differential
operators. All that remains, is to show that Tred is well-defined as a map between the reduced
observable algebras C∞(M1

red) and C∞(M2
red). To do so, denote by J 1

C , J 2
C , B1

C and B2
C the

respective vanishing ideals and their normalizers (see (4.2.6)) and by (CKoszul(M)JνK, d1) and
(CKoszul(M)JνK, d2) the respective deformed Koszul complexes (see Definition 4.2.6). Note
here, that the momentum-level-set C as well as the underlying sets of the deformed Koszul
complexes are the same in both cases, since J1 and J2 deform the same classical momentum
map. Consider then the map

T ⊗ idΛ•g : CKoszul(M)JνK −→ CKoszul(M)JνK

and take any f ∈ CKoszul(M) to calculate

Td1f = T
(

iea f ?
1 J1(ea) +

ν

2
gcabec ∧ ieb f + νκ i∆ f

)
= iea Tf ?

2 J2(ea) +
ν

2
gcabec ∧ ieb Tf + νκ i∆ Tf

= d2Tf,

showing that T ⊗ id is a chain map between the deformed Koszul complexes. As such, T
can be restricted to J 1

C = im d1:

T
∣∣
J 1
C

: J 1
C −→ J 2

C .
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T being invertible then implies directly J 1
C
∼= J 2

C . And furthermore, for any j2 ∈ J 2
C ,

j1 := T−1j2 and f ∈ B1
C calculate

[Tf, j2]?2 = [Tf, T j1]?2 = T [f, j1]?1 ∈ TJ1 = J2

which establishes B1
C
∼= B2

C . Consequently, T induces a bijection on the quotients B1
C/J 1

C
∼=

B2
C/J 2

C and we can immediately conclude, by virtue of Proposition 4.2.9 and (4.2.5), that
Tred is an equivalence between ?1

red and ?2
red. �

One result connecting the characteristic classes of equivariant star products and their corre-
sponding reduced star products has already been given in [15], on which we shall elaborate:

Lemma 4.3.2 Let Mred be Marsden-Weinstein reduced from M via C and with principal
bundle projection π : C −→ Mred and inclusion ι : C −→ M . Additionally, let (?,J) be
an equivariant star product on M and ?red the corresponding reduced star product on Mred.
Then we have

ι∗c(?) = π∗c(?red).

Lemma 4.3.2 poses a very clear restriction to the possible combinations of values for cg(?,J)
and c(?red), confirming our initial suspicion. Note however, that Lemma 4.3.2 inherently
views equivariant star products as just star products, by using its characteristic class instead
of the equivariant characteristic class. Consequently, one is not able to differentiate between
star products, that have been reduced from equivalent equivariant star products which are
not equivariantly equivalent. Also, depending on the topology of the momentum level set
C, the condition ι∗c(?) = π∗c(?red) may become a tautology, as exemplified by the Hopf-
fibration

C
n+1 \ {0} ←−−↩ S2n+1 −−� CP

n.

Here one has H2
dR(S2n+1) = 0 and ι∗α = π∗β is true for all α ∈ H2

dR(M) and β ∈ H2
dR(Mred).

So for the remaining part, we wish to find a refinement of Lemma 4.3.2, which, on one hand,
takes equivariant classes into account and, on the other hand, circumvents possible trivial
cohomologies of C. One can even obtain hints on the nature of this refinement, once we
remember from Theorem 2.3.15 that, in the case of a compact, connected Lie group G acting
on a compact manifold M , the cohomology of the Lie algebraic Cartan complex is actually
isomorphic to the (topological) equivariant cohomology HEG(M) of M . Hence equivariant
star products are classified by HE2

G(M). But for (topological) equivariant cohomology of a
Hamiltonian G-space there is a well-known homomorphism from HEG(M) to the singular
cohomology of its symplectic quotient M �G := µ−1({0})/G, namely the Kirwan map [74]

K : HEG(M) −→ HSing(M �G),

whenever 0 is a value and regular value of µ. To obtain K, it is shown that the surjection
π : µ−1({0}) −→M �G gives rise to an isomorphism on cohomology, that is

π∗ : HEG

(
µ−1({0})

) ∼= HSing(M �G).

K is then constructed as the concatenation of ι∗ : HEG(M) −→ HEG(µ−1({0})) with (π∗)−1.
For the special case, where the restricted action of G on µ−1({0}) is free and proper, we see
immediately that M � G = Mred holds. Furthermore, since Mred is a manifold, we can use
the de Rham theorem (see e.g. [20]) to obtain a homomorphism
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HEG(M) ∼= Hg(M)

HEG(µ−1({0}))

HSing(Mred) ∼= HdR(Mred)

ι∗

(π∗)−1

K

By leaving out the middle cohomologies, one could suspect, that there is a direct map
K : Hg(M) −→ HdR(Mred), even in the noncompact case. Having such a map would provide
us with the means to compare cg(?,J) with c(?red) simply by comparing K(cg(?,J)) with
c(?red) in HdR(Mred), where we implicitly use the ν-linear extension of K. And indeed, we
can define a suitable map K with the preparations done in Section 2.3.3. More specifically,
let Mred be Marsden-Weinstein reduced from M via C by the action of a connected Lie
group G. If we then use the fact, that C ist a G-principal bundle with connected fibres from
Section 4.1, Corollary 2.3.20 states that π∗ : Ω(Mred) −→ Ωbas(C) is a chain isomorphism.
Accordingly, the induced map on cohomology

π∗ : H(Ω(Mred)) −→ H(Ωbas(C))

is also an isomorphism. Together with Theorem 2.3.23 we conclude then that π∗ can actually
be viewed as an isomorphism (see also Remark 2.3.24)

π∗ : HdR(Mred) −→ Hg(C).

All that is left from here on, is to concatenate π∗ with Hg(ι) : Hg(M) −→ Hg(C), which we
will for brevity also denote by ι∗, to obtain:

Lemma 4.3.3 Let Mred be Marsden-Weinstein reduced from M via C by the action of a
connected Lie group G. Then the map

K = (π∗)−1 ◦ ι∗ : Hg(M) −→ Hg(C) −→ HdR(Mred)

is well-defined and surjective.

Proof: In the preceeding discussion we have already demonstrated that K is well-defined.
To see that K is also surjective, it is sufficient to recognize that ι∗ is surjective, since π∗ is
already an isomorphism. For this, consider the prolongation map (4.2.1). Its very definition
extends immediately to a chain map on differential forms

prol : Ω(C) −→ Ω(M) : α 7−→ (pr1 ◦ Φ)∗α

and one can readily verify that the extended prol is a right-inverse to ι∗. But then prol is
also a right-inverse to ι∗ on cohomology and hence ι∗ must be surjective on cohomology. �

With K at hand, it is finally possible to tackle our initial problem by comparing K(cg(?,J))
to c(?red) in HdR(Mred) (see [103]):

Theorem 4.3.4 Let (Mred, ωred) be Marsden-Weinstein reduced from (M,ω,G, µ) via C by
the action of a connected Lie group G. Additionally, let (?,J) be an equivariant star product
on M and ?red the corresponding reduced star product on Mred. Then we have

K(cg(?,J)) = c(?red).
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Proof: The formal degree −1 parts of cg(?,J) and c(?red) are given by [ω− Jµ]g and [ωred]
respectively. Since Jµ

∣∣
C

= 0 by definition, we have immediately

ι∗(ω − Jµ) = π∗ωred

from Theorem 4.1.3 and hence K(c(?,J)) = c(?red) holds in formal degree −1. For the
remaining degrees, we will denote terms of formal degree higher than −1 with an index +,
e.g. c(?red)+ := c(?red)− [ωred] ∈ HdR(M)JνK. We start by choosing an equivariant Fedosov
star product (F (Ω),J′) on M equivariantly equivalent to (?,J) (see Corollary 3.4.6, [104])
and a Fedosov star product F (Ωred) on Mred equivalent to ?red (see Proposition 3.2.4, [12]).
Theorem 3.2.8 and Theorem 3.4.11 allow us then to use these Fedosov star products for all
calculations. And furthermore, those theorems allow us to state

ι∗cg(F (Ω),J′)+ =
1

ν

[
ι∗(Ω− J′+)

]
g

π∗c(F (Ωred))+ =
1

ν
[π∗Ωred].

Writing Ω̃ := K(cg(F (Ω),J′)) for brevity, we have ι∗cg(F (Ω),J′) = [π∗K(cg(F (Ω),J′))]g
from the very definition of K, which is equivalent to the existence of a θ ∈ Ω1(C)gJνK such
that

dgθ = ι∗(Ω− J′+)− π∗Ω̃ or equivalently ι∗Ω− π∗Ω̃ = dθ and i• θ = −J′+.

On the other hand, we know from Lemma 4.3.2 that ι∗Ω − π∗Ωred = dυ for some υ ∈
Ω1(C)JνK. From the previous two statements we can then conclude that

π∗Ω̃− π∗Ωred = d(υ − θ)

holds. Analyzing this equation, we see that the left hand side is a basic differential form
and that the right hand side is a d-exact differential form. Since furthermore Ωbas(C) is
isomorphic to Ω(Mred), we can infer the existence of a χ ∈ Ω(Mred)JνK such that Ω̃−Ωred =
dχ. Using Theorem 2.3.23 then shows that [π∗Ω̃]g = [π∗Ωred]g. Altogether we arrive at

ι∗cg(F (Ω),J′)+ =
1

ν
[ι∗(Ω− J′)]g =

1

ν
[π∗Ω̃]g =

1

ν
[π∗Ωred]g = π∗c(F (Ωred))+.

So the image of the equivariant characteristic class of (F (Ω),J′) under K agrees with the
characteristic class of F (Ωred). But this in turn directly implies that

K(cg(?,J)) = K(cg(F (Ω),J′)) = c(F (Ωred)) = c(?red). �

Theorem 4.3.4 taken together with Lemma 4.3.3 has a very appealing interpretation:

Corollary 4.3.5 Let Mred be Marsden-Weinstein reduced from M by the action of a con-
nected Lie group. Then for every star product ?̃ on Mred there exists an equivariant star
product (?,J) on M such that ?̃ is equivalent to ?red.

Or in other words, all star products on Mred can, up to equivalence, be obtained as a
reduction of an equivariant star product on M .
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