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Deutschsprachige
Zusammenfassung (Summary in
German Language)

Diese Dissertation besteht aus drei inhaltlich abgeschlossenen Teilen, die je-
doch ein übergeordnetes Thema zur Grundlage haben: Wie können Daten
über zukünftige Bedarfe zur Kapazitätsplanung und -steuerung genutzt wer-
den? Im Rahmen von Industrie 4.0 werden zunehmend Daten erzeugt und für
prädikative Analysen genutzt. Zum Beispiel werden Flugzeugtriebwerke mit
Sensoren ausgestattet, die verschiedene Parameter in Echtzeit ermitteln und
übertragen. In Kombination mit Flugplänen können diese Daten, unter Ein-
satz geeigneter Machine Learning Algorithmen, zur Vorhersage des Zeitpunkts
der nächsten Wartung und des Wartungsbedarfs genutzt werden. In dieser Ar-
beit werden diese Vorhersagedaten zur optimalen Planung und Steuerung der
Kapazität eines MRO (Maintenance, Repair and Overhaul) Dienstleisters ge-
nutzt.

Im ersten Artikel, ”Capacity Planning for a Maintenance Service Provi-
der with Advanced Information”, Kapitel 2 beziehungsweise Kurz (2016), wird
die aus mehreren Stationen bestehende Produktionsstätte des MRO Dienst-
leisters mit Hilfe eines Netzwerks aus GI/G/1 Warteschlagen beschrieben [25].
Durch Lösung eines Optimierungsproblems werden die Kapazitäten der ein-
zelnen Stationen so ermittelt, dass Kapazitäts- und Strafkosten für eine zu
lange Durchlaufzeit minimiert werden. Darüberhinaus wird untersucht, wie
Vorhersagedaten bezüglich des Eintreffens und Wartungsaufwands zukünfti-
ger Aufträge genutzt werden können, um die Gesamtkosten zu reduzieren.
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Deutschsprachige Zusammenfassung

Der Artikel ”Flexible Capacity Management with Future Information”,
Kapitel 3 beziehungsweise Kurz und Pibernik (2016), nutzt Informationen
hinsichtlich zukünftiger Wartungsbedarfe für die Steuerung einer flexiblen Ka-
pazität [27]. Die Produktionsstätte des MRO Dienstleisters wird als M/M/1
Warteschlange beschrieben, die zwischen einer Basiskapazität und einer er-
höhten Kapazität wechseln kann. Allesdings kann die hohe Kapazität nur
einen definierten Zeitanteil genutzt werden. In dem Artikel werden Politiken
entwickelt, welche die erwartete Warteschlangenläge minimieren, falls keine
Informationen bezüglich des Eintreffens zukünftiger Aufträge verfügbar sind
beziehungsweise alle Informationen in einem unendlich langen Zeitfenster vor-
liegen. Es zeigt sich, dass die erwartete Warteschlangenlänge drastisch redu-
ziert werden kann, falls Informationen über zukünftige Bedarfe genutzt werden
können.

Im dritten Artikel, ”Queueing with Limited Future Information”, Kapitel
4 oder Kurz (2016), wird neben der Steuerung einer flexiblen Kapazität auch
die Zulassungskontrolle behandelt: Welche Aufträge sollten umgeleitet wer-
den, zum Beispiel an einen Subdienstleister, falls ein definierter Anteil aller
ankommenden Triebwerke nicht angenommen werden muss [26]? Es werden
Politiken zur Steuerung der flexiblen Kapazität und für die Zulassungskontrol-
le entwickelt, die zukünftige Informationen in verschieden langen Zeitfenstern
berücksichtigen: keine Informationen, endlich und unendlich lange Zeitfenster.
Numerische Analysen zeigen, dass die Berücksichtigung von Informationen
über die Zukunft im Vergleich zu reaktiven Politiken zu einer Verringerung
der mittleren Warteschlangenlänge führt. Andererseits wird ersichtlich, dass
die Nutzung von kürzeren Zeitfenstern unter bestimmten Umständen vorteil-
haft sein kann.

Den inhaltlichen Rahmen dieser Dissertation bilden die Einleitung im fol-
genden Kapitel sowie ein Ausblick in Kapitel 5. Im Hauptteil nicht dargestellte
Beweise werden in den Anhängen A bis C zusammengefasst.
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1 Introduction

During the last years, digitization has gained significant importance and can
be observed in almost any area, from business to academia, politics to private
life. Especially enterprises have invested in technology to generate, store and
analyze data with sophisticated algorithms, and this trend is almost certainly
going to grow even faster in the future. The term analytics, as it is used
today, comprises the collection and analysis of data, using it to make predic-
tions and finally prescribe well-defined actions. A stylized analytics process is
illustrated in Figure 1.1. However, as found by McKinsey & Company (2016)

0

▪ Build decision support
models

▪ Determine actions/policies
using optimization
techniques

Predictive analyticsDescriptive analytics Prescriptive analytics

▪ Identify rules and patterns
within the data

▪ Find predictors

▪ Use relationships within
historical data to learn
predictive models

▪ Link real-time, new data
with the trained models in
order to predict values of
unseen instances

▪ Event data
▪ Technical information
▪ Meta data

Historical data

▪ Sensor data
Real-time data

▪ Unsupervised learning
▪ Supervised learning
▪ Reinforcement learning

Machine learning algorithm

Maintenance time

Service requirements

Spare parts requirements

…

Input

Prediction / forecasting

Output

!! Financial impact !!

Figure 1.1: Example analytics process.

and others, more attention is dedicated to the data itself, its analysis and pre-
diction of future events rather than prescriptions that have an actual impact
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1 Introduction

on economic performance [23, 29]. As an example: State-of-the-art aircraft
engines are equipped with sensors that measure a variety of technical param-
eters and transmit the resulting data to central data warehouses periodically.
Currently, a lot of effort is made towards developing algorithms to analyze the
newly available data and, by using the engines’ operation schedules, predict
the engines’ future conditions. Indisputably, this initiative improves flight
safety and, on the other hand, the average time on-wing. However, the link
towards using predictive information regarding the engines’ future overhaul
needs for the planning and control of the capacity of maintenance facilities is
still missing.

Thus, the objectives of this dissertation are to (i) investigate how infor-
mation about future jobs arriving to a service facility can be used for capacity
planning and control and (ii) to analyze the benefits generated by using these
information with respect to cost and waiting time. While trying to shed light
on this superordinate subject, the thesis is composed of three independent
parts that have been published as self-contained research articles. In the first
article, a framework describing the usage of predictive information is devel-
oped and the resulting benefits with respect to capacity and lead time-related
costs are investigated analytically and numerically. In the second and third
article, we define policies that use information about future jobs to control a
flexible capacity or divert jobs. Additionally, we investigate how predictive in-
formation impacts the queueing systems’ performance, i.e., mean queue length
or waiting time.

More specifically, the first article, ”Capacity Planning for a Maintenance
Service Provider with Advanced Information”, Chapter 2 or Kurz (2016),
solves the job shop-like capacity planning problem of an MRO service provider
which overhauls aircraft engines of multiple, potentially competing customers
[25]. First, the MRO’s production network, which consists of eleven worksta-
tions for two engine types—from disassembly to final testing and certification—
is modeled as a network of GI/G/1 queues. An algorithm based on the Queue-
ing Network Analyzer developed by Ward Whitt in 1983 is used to compute
the mean turnaround time per engine type, given service rate as well as service
and interarrival time variability per workstation [44]. A total cost function
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composed of capacity costs per work station and tardiness penalty costs for
not meeting contractually specified mean lead times is defined. The capacity
allocation problem minimizes this total cost function by choosing the optimal
capacity per workstation. Depending on the parameters of the system, three
ways to solve the optimization problem are distinguished: two cases where
the solution can be obtained by solving a system of equations (based on the
Karush-Kuhn-Tucker conditions for convex problems). For the third case, the
optimization problem must be solved numerically using a subgradient method.
The model is then used to investigate the implications of information about
future jobs arriving to the system on total costs. A framework demonstrat-
ing the usage of advanced information is developed and, as a result, mean
service requirements as well as service and interarrival time variabilities can
be reduced. Analytical and numerical analyses imply that total costs can be
reduced significantly if information about future jobs is available. Since the
MRO service provider serves multiple competing customers, cryptographic
methods such as Secure Multiparty Computation need to be used in order
to prevent leakage of private data. Thus, this part of the chapter provides
a decision-making tool for the investment case that needs to be considered
when deciding whether to invest in the technology required or not.

The second article, ”Flexible Capacity Management with Future Informa-
tion”, Chapter 3 or Kurz and Pibernik (2016), goes one step further [27].1 We
do not only consider the benefits of reduced service requirements or service
and interarrival time variabilities, but investigate how information regarding
the actual arrival times and service requirements of individual jobs (referred
to as future information) can be used for capacity control. We model the
service facility as an M/M/1 queue with a server that can switch between a
base and a high capacity by activating the contingent capacity. However, we
assume that the contingent capacity can only be used for a certain share of
the time. The objective of the article is to develop capacity control policies
minimizing the time-average queue length while taking different information
into account. The reactive threshold-type policy, which only relies on the

1This part of the dissertation is coauthored by Richard Pibernik.
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1 Introduction

current queue length and not on future information, serves as a proxy for the
performance of any kind of proactive policy. We develop a proactive policy
that combines reactive (static threshold) and forward-looking elements. Ba-
sically, the forward-looking part of the policy is also based on a threshold.
However, the threshold is dynamic and depends on the arrival times and ser-
vice requirements of jobs that arrive at the system in the future. We are
able to derive closed-form expressions for the time-average queue lengths for
the cases of no or infinitely long lookahead window. Also, asymptotic op-
timality of the proactive policy is proved as the arrival rate approaches the
time-average service rate. It is interesting to note that the mean queue length
converges to a finite value in this case, while it diverges if the reactive policy
is applied. Thus, the availability of future information leads to significantly
reduced waiting times. We do not develop policies for the case of finite looka-
head windows, but only provide some first analytical insights regarding their
implications and effects.

Therefore, this problem is approached in the third article, ”Queueing with
Limited Future Information”, Chapter 4 or Kurz (2016) [26]. We again model
the service facility as an M/M/1 queue. Besides flexible capacity, we also
consider diversion: Should a job be admitted to the queue or diverted? This
model corresponds to the situation where the service provider is using a sub-
contractor to mitigate demand spikes. Similar as to the flexible capacity case,
we assume that only a certain share of total arrivals can be diverted. This
problem has already been solved for no and infinite lookahead windows by
Spencer et al. (2014) and Xu and Chan (2016) [36, 49]. Thus, the objective
of the article is to develop proactive capacity control and diversion policies
minimizing the mean queue length given a lookahead window of finite length,
i.e., limited future information. Depending on the rate of job arrivals to the
system and the length of the lookahead window available, we characterize two
distinct regimes. In the first regime, sufficient future information is available
such that the proactive policies can be used as defined for a lookahead win-
dow of infinite length. The second regime corresponds to the case where the
lookahead window is not long enough, i.e., we have insufficient future informa-
tion. Therefore, we develop modified proactive capacity control and diversion
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policies such that feasibility of the policies is always guaranteed. However, for
both regimes, it is not possible to find analytic expressions for the mean queue
length. Thus, a numerical analysis based on three conjectures is performed to
shed light on the performance of the proactive policies given limited future in-
formation. The results suggest that the proactive and the modified proactive
policies lead to lower mean queue lengths than their reactive counterparts. It
is interesting to note that there exist parameter combinations where using less
future information can actually be beneficial in terms of mean queue length.

An overview of the scientific contribution of this dissertation is presented
in Table 1.1. For all three articles, queues have been used to solve capacity
planning and control problems. It has been shown that information regarding
future jobs has a positive effect on relevant performance indicators (total costs
or mean queue length). Therefore, this dissertation provides examples how
digitization and the ”fourth industrial revolution” can improve businesses’
operating and economic performance by prescribing actions on the basis of
newly available data. Although the thesis is motivated from the point of view
of an aircraft engine MRO (maintenance, repair and overhaul) facility, the
policies and insights developed are not restricted to this application. There
exist a variety of settings where advanced information can be used to plan and
control the capacity of a production or service facility: general make-to-order
/ make-to-stock production with pre-orders, the allocation of server capacities
for online applications or call centers. For call centers, e.g., advanced infor-
mation can be generated and used for capacity planning if customers have to
navigate through a menu indicating their inquiry before being connected to
an agent.

Finally, summary and conclusion as well as avenues for future research
are provided in Chapter 5. All proofs not stated in the main part of this
dissertation and additional information regarding the numerical analyses are
relegated to Appendices A to C.
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1 Introduction

Capacity planning
with adv. info.
(Chapter 2)

Capacity mgmt.
with future info.
(Chapter 3)

Queueing with
limited future info.
(Chapter 4)

Analytical
model
.
.
.
.
.

• Network of
GI/G/1 queues with
two job types
• Optimization
model: minimize
capacity and
tardiness penalty
costs

• M/M/1 queue
with flexible capacity
• Policy minimizing
mean queue length
given no / infinite
future information
.

• M/M/1 queue
with diversion or
flexible capacity
• Policies minimizing
mean queue length
given limited future
information

Methodological
contribution
.
.
.
.
.
.
.

• Reformulation of
the optimization
model to solve it
explicitly in two out
of three cases
• Investigation of
the effects of
advanced information
on total costs

• First article
considering future
information for
capacity control
• Derivation of
analytic expressions
for the mean queue
length
.

• First article
investigating the
effects of limited
future information for
diversion and
capacity control
• Development of
new methodology to
deal with insufficient
future information

Conceptual
findings
.
.
.
.
.
.
.

• Total costs can be
reduced significantly
if advanced
information is
available
.
.
.
.

• Future information
in an infinite
lookahead window
leads to low mean
queue length for all
possible arrival rates
• Proactive policy
outperforms reactive
policy

• Proactive policies
with limited future
information dominate
reactive policies
• Artificially
truncating the
lookahead window
can be beneficial for
certain parameter
combinations

Table 1.1: Overview of scientific contribution.
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2 Capacity Planning for a
Maintenance Service Provider
with Advanced Information

Analytical and iterative optimization techniques are employed to solve a job
shop-like capacity planning problem for a maintenance service provider with
contractually defined lead time requirements. The problem is motivated by a
real-life case example, namely the overhaul of airline aircraft engines through
an external service provider. The production network is modeled as a net-
work of GI/G/1 queues, where the service rates are the decision variables
and capacity costs and penalty costs for not meeting contractually defined
lead times are minimized. Additionally, we analytically investigate the effects
of collaborative maintenance management as a source of advanced informa-
tion regarding future maintenance demand. More specifically, we consider the
benefits of improved service rates and service and demand variabilities on pro-
duction capacities and total costs. Numerical examples are provided to verify
the proposed optimization procedure and illustrate the effects of collaborative
maintenance management.2

2.1 Introduction and Overview
Today, the rise of Cyber-Physical Systems and the Internet of Things fa-
cilitates real-time condition monitoring and condition-based maintenance of
technical equipment [50]. Combining real-time condition data with plans of

2This paper was published in the European Journal of Operational Research [25].
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2 Capacity Planning for a Maintenance Service Provider

future equipment usage makes it possible to predict future condition and
maintenance requirements. This is what we refer to as advanced informa-
tion. Huge data streams are collected, stored and used for the optimization
of maintenance schedules, production plans and supply chain operations. So-
phisticated technical equipment such as Rolls-Royce’s Trent aircraft engines
are equipped with sensors that measure different parameters and send the
data to data warehouses in real time [20]. For Trent engines, this data in-
cludes more than 20 parameters such as oil pressure, oil temperature, and
vibration levels that can be used for condition-based maintenance scheduling
and optimized planning of maintenance operations. However, data usage is
challenging in a service provider or contract manufacturer setting, as the data
is collected by the owner and oftentimes not shared with the supplier. This
can be, e.g., due to privacy concerns or potential loss of competitive infor-
mation. Especially if more than one customer is involved and information
from different parties needs to be considered, a sound analysis of potential
benefits is necessary in order to convince customers to participate and invest
in a collaborative planning system.

In this paper, we analyze the benefits associated with advanced informa-
tion for a maintenance service provider that can be obtained through col-
laborative maintenance management. More specifically, we investigate how
advanced information influences the optimal capacity allocations in a com-
plex maintenance and repair process, the associated capacity costs and the
potential penalties for tardiness. Since advanced information oftentimes re-
quires substantial investments, it is important to understand the relationship
between advanced information and the costs of the system. The results of
our analysis help supply chain partners to decide whether or not to invest in
advanced information technologies and collaborative planning systems. The
research described in this paper is part of a larger initiative whose objective
is to investigate potential applications of secure cloud-based computation in
supply chain management scenarios.3 While we focus on cost-optimal ca-
pacity planning for a maintenance service provider setting in this document
3PRACTICE - Privacy-Preserving Computation in the Cloud,

http://practice-project.eu
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2.1 Introduction and Overview

(highlighted in Figure 2.2), we also investigate the benefits of secure (data
privacy-preserving) collaborative demand forecasting with decision tree learn-
ing, spare parts management with advanced information, secure collaborative
arrival slot scheduling, and secure vendor managed inventory [51].

Our research is motivated by a practical use case, namely the overhaul
of aircraft engines of multiple airlines through an MRO4 service provider.
Airlines ship their engines to the service provider when they need to be over-
hauled. The service provider then processes the engines and sends them back
after completion. A typical MRO engine overhaul production system is illus-
trated in Figure 2.1. There are two sources of uncertainty in this system. One

Assemble 
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Assemble 
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𝑒 = 2 

Run bench 

test 
Certify 
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customers 

Engine 
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customers 

Figure 2.1: Engine overhaul production network (based ib [51]).

is that the engine arrival stream is a stochastic process where the interarrival
time between subsequent engines is a random variable. Second, the service
times at the work stations illustrated in Figure 2.1 are random variables and

4Maintenance, repair and overhaul
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2 Capacity Planning for a Maintenance Service Provider

depend on the required service, on worker skill, and on spare parts availability.
In this paper we seek to determine the capacities of the work stations in

the MRO production network such that total costs (capacity costs as well
as penalty costs for not meeting contractually defined turnaround times) are
minimized. Additionally, we investigate the benefits of advanced information
that can be obtained from a closer collaboration between the service provider
and its customers. Through information sharing and collaborative scheduling
of engine arrivals, the variabilities of engine interarrival and service times can
be reduced, and the mean time required for service at certain work stations
can be shortened. Investigating the influence of these effects on optimal ca-
pacity is a complex problem, as these parameters are interlinked throughout
all work stations in the network. Figure 2.2 illustrates a framework for col-
laborative maintenance management in the aerospace MRO business leading
to the aforementioned improvements.

Würzburg University  | Chair of Logistics and Quantitative Methods | 0 

D24.2 Section 3.1.1 Overview 

Descriptive analytics Predictive analytics Prescriptive analytics 
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Figure 2.2: A framework for collaborative aircraft engine overhaul manage-
ment.

While we focus on capacity planning (shaded in Figure 2.2), we briefly
explain the basic ideas of the other process steps in the collaborative mainte-
nance management framework.

Using historical and actual engine usage and condition data, it is possible
to predict when an engine will arrive at the service provider, and in what
condition (this is advanced information). If the service provider is able to use
this data, spare parts can be ordered such that service levels are improved.
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2.2 Literature Review

Additionally, the provider can plan for and prepare overhaul operations be-
forehand to optimize the activities carried out when the engine arrives. Both
improvements contribute to a reduction of mean service time and service time
variability. Once a forecast of future engine arrivals is available, actual en-
gine arrivals can be scheduled such that their interarrival time variability is
reduced.

These improvements are only possible through investments in a collabo-
rative planning system. On the one hand, aircraft engines need to be able to
report their usage and condition parameters (captured through sensors) to a
central data warehouse in a timely fashion. As the data reported by the indi-
vidual airlines is highly confidential, cryptographic methods are necessary to
prevent competitive information from being leaked. The goal of this paper is
to develop a tool that can estimate the benefits of different collaborative sce-
narios for the service provider and customer, so that they can decide whether
or not to invest in the collaborative planning system.

The remainder of this paper is structured as follows. Section 2.2 pro-
vides a review of the relevant literature. In Section 2.3, we model the service
provider’s production network as a network of queues. We employ analytical
and iterative optimization methods to find the optimal capacities per work
station in the network. In Section 2.4 we analyze the effects of advanced in-
formation on the queueing network and total costs. Structural insights are
supported by numerical analyses in Section 2.5. Section 2.6 provides con-
clusions and future outlooks. The proofs of propositions and the queueing
network parameter algorithm can be found in the appendix.

2.2 Literature Review
This literature review focuses on existing research regarding queueing net-
works for production capacity planning. Although this research area dates
back to the 1950s, many problems remain unsolved and the field is still sub-
ject to continuing research. Additionally, we provide an overview of the most
important publications dealing with the effects of advanced information ob-
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2 Capacity Planning for a Maintenance Service Provider

tained through supply chain collaboration. As this paper is motivated by an
aerospace case, relevant literature regarding the overhaul of aircraft engines
is also outlined.

We use a queueing network model to describe the service provider’s pro-
duction network. To date, most publications considering queueing networks
for production planning have dealt with the fundamental tradeoff between
capacity costs and lead time. They focus either on finding a cost-optimal
capacity allocation subject to a maximum lead time constraint [8, 31] or, vice
versa, finding a lead time-minimizing capacity allocation subject to a cost (or
budget) constraint [9, 14]. In contrast, we combine both capacity and lead
time penalty costs in the objective function in order to reflect the service
provider setting.

As exact analytical results for queueing network performance metrics such
as the sojourn (or lead) time can be computed only for a limited range of
queueing networks, approximate expressions were developed for more general
types of queueing networks (e.g., if the service and interarrival times at the
nodes are not exponentially distributed). In this paper we use the Krämer-
Langenbach-Belz approximation, published in 1976, to compute the number
of customers in a single GI/G/1 queue [24]. In order to approximate so-
journ times in a queueing network, Whitt proposed in 1983 to decompose the
network and evaluate each node separately [44]. In his Queueing Network
Analyzer (QNA) approach, Whitt developed iterative algorithms to describe
the queueing parameters at node level resulting from the network structure.
Adjustments and improvements to this approach are summarized in Bitran
and Morabito (1996) [5]. Lately, Wu and McGinnis (2012, 2013) developed
new methods to approximate cycle and waiting times in queueing networks
based on the intrinsic ration, especially suited for networks in heavy traffic
[46, 47].

In 1989, Bitran and Tirupati developed tradeoff curves between work-in-
process (WIP), lead time, and capacity (represented by the service rates at
the nodes) [8]. They formulated a convex program minimizing total cost of
capacity subject to a total lead time constraint for a general open network
of queues with Markovian or deterministic routing. Bretthauer and Côté
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(1996) developed nonlinear programming models for time-dependent capacity
planning in manufacturing systems [14]. They present two models, one to
minimize capacity costs under a WIP constraint and one to minimize lead
times subject to a capacity cost constraint. In 2002, Hopp et. al developed
an Optimized Queueing Network (OQNet) capacity planning tool to sup-
port the design and reconfiguration of queueing network-like semiconductor
production facilities [21]. Using a heuristic algorithm, they minimize facil-
ity costs such that specific volume and lead time targets are satisfied, while
these performance metrics are determined using the general open queueing
network approximations. More discussion regarding tradeoff curves between
WIP, lead time and capacity in this context, also using QNA approximations
and convex/MIP models for capacity planning of semiconductor manufactur-
ing networks, can be found in the review of Bitran and Morabito (1999) [6].
Da Silva and Morabito (2009) determine how to optimally allocate capacity
in a job shop-like queueing network of a metallurgical plant [31]. They use ap-
proximate parametric decomposition models to compute performance metrics
such as WIP and lead time and apply optimization models minimizing ca-
pacity costs. Finally, Morabito et al. (2014) study network routing decisions
for multicommodity flows. They provide and compare different performance
approximation approaches for generalized open queueing networks [30].

To the best of our knowledge, there have been no studies to date that
incorporate both capacity costs and lead time penalties in the objective func-
tion. This means that in existing publications, capacity costs or lead time are
constraints that must be fulfilled; in our setting, however, contractually de-
fined lead times can be exceeded if marginal capacity costs are more expensive
than marginal penalty costs. On the one hand, this best reflects the actual
business case motivating our research, but on the other hand it also allows
us to explore the effects of advanced information on total costs (capacity and
penalty costs). Additionally, whereas most other studies use heuristic algo-
rithms to solve the optimization problems, we are (depending on the problem
parameters) partially able to find explicit solutions.

The effects of advanced information have been explored in a variety of
settings. In the most general of terms, advanced information can be used
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to reduce uncertainty. In return, this lowers capacity or inventory require-
ments. For supply chain collaboration through information sharing, we refer
the reader to Poler et al. (2008) [33]. Collaborative scheduling of demand,
taking into account customer demand and supplier capacity information is
discussed, for example, in Chen and Hall (2007) [16]. In the MRO context,
collaborative planning leads to reduced variability of service and interarrival
times and finally to reduced costs. So far, this has not yet been explicitly
studied for service provider production networks.

Interesting publications regarding the overhaul operations of aircraft en-
gines include, for example, Stranjak et. al (2008) [39]. They present an agent-
based simulator to predict and schedule aircraft engine overhauls, motivated
by competitiveness considerations in a highly complex and dynamic business
environment. Additionally, Rolls-Royce recently published an online article in
which they explain how they use big data gathered by the sensors of the Trent
engines and advanced analytics to achieve cost-efficient engine maintenance
scheduling for their customers [20]. Reményi and Staudacher (2014) present
a simulation-based approach that is used to identify scheduling rules for air-
craft engine maintenance carried out by a MRO for multiple airlines [34]. For
more information regarding aircraft engine usage and condition parameters,
we refer the reader to Batalha (2012) [18]. We add to this stream of research
and literature by Taigel (2015) [43].

2.3 Optimized Queueing Network Model
We need to explicitly model the complex nature of the maintenance produc-
tion system to determine optimal capacities per work station and to highlight
how advanced information impacts both capacities and costs. Therefore, we
model the system as a queuing network where the service rates of the indi-
vidual work stations are chosen as optimization variables. The basic capacity
planning model for maintenance services is developed in Section 2.3.1. In
Section 2.3.2, we describe how to approximate sojourn times in the queueing
network. Finally, analytical and iterative solution methods for the optimiza-
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tion problem are detailed in Section 2.3.3.

2.3.1 Queueing Network Model for Maintenance Services

Within the service or production process, products (e.g., aircraft engines) pass
through successive work stations under an FCFS5 policy. In practice, service
providers or contract manufacturers and their customers often have contracts
specifying maximum lead times (also referred to as sojourn or turnaround
times) for service or production processes. Over a finite planning horizon,
the actual mean lead time is computed and compared to the contractually
defined maximum lead time per product family. If this time is exceeded, the
service provider incurs a penalty which increases with increasing mean lead
time. The objective of the capacity allocation model developed here is to
determine the capacity per work station such that total costs are minimized.
It is worth noting again that total costs are comprised of both capacity costs
(associated with the service rate) and penalty costs (incurred for not meeting
contractually defined maximum lead times). Before developing the mathe-
matical model to optimally determine production capacities, we summarize
the notation used throughout the next sections.

The production network consists of work stations j ∈ J = {1, . . . , J},
processing product families e ∈ E = {1, . . . , E}. Each product family e follows
a predetermined acyclic path Je ⊆ J through the network.

The decision variables of the optimization model are defined as µj, rep-
resenting the capacity or mean service rate at each work station j ∈ J . The
associated per unit capacity costs are denoted by cj. Let Sj(µj) denote the
service rate-dependent mean sojourn times at station j and let STe denote the
contractually defined maximum mean total sojourn time for product family e
after which a penalty is incurred.6 The tardiness penalty cost per time unit
for product family e is denoted by γe and is incurred for positive differences
of the actual total sojourn time minus the contractually defined maximum
sojourn time.

5First come, first served
6We assume the same penalty costs and parameters ST

e per product family for all customers.
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As we will see in Section 2.3.2, we need some additional parameters in
order to compute the sojourn times Sj(µj). We define λj as the mean arrival
rate of jobs at work station j (sum of the individual arrival rates of all product
families served at work station j). caj denotes the squared coefficient of
variation (ratio of the variance to the squared mean of a random variable) of
product interarrival times at work station j. Service time variability at the
work stations is captured as the squared coefficient of variation of service times
csj. Finally, Lj(µj) denotes the approximate expected number of products at
work station j given service rate µj.

The cost-optimal capacity allocation problem (CAP) can be written as
follows:

minimize C(µ) = c>µ+
E∑
e=1

γe

[ ∑
j∈Je

Sj(µj)− STe
]+
, (CAP)

where [·]+ = max{0, ·} and the domain of C is the open convex set

dom C = {µ | µj > λj, j = 1, . . . , J} ⊂ RJ
++.

The first term of the objective function represents the total direct capacity
costs increasing linearly with capacity. The second term accounts for total
penalty costs for all product families.7 The [·]+ operator ensures that a penalty
is only incurred for a product family e if

∑
j∈Je

Sj(µj) > STe .

The total costs function is developed to conform to the actual costs incurred
by the maintenance service provider of aircraft engines introduced in Section
2.1. The service provider can allocate capacity such that contractually defined
lead times are not met as long as marginal capacity cost reductions exceed
increased marginal penalty costs for a given product family.

The domain restriction µj > λj, ∀j ∈ J , assures that the network of

7We do not consider fixed cost and material cost as they are not influenced by capacity
changes in the presented setting.
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queues is stable. This means that the sojourn times Sj(t) (or queue lengths
Lqj(t)) at the work stations do not grow towards infinity as time approaches
infinity, limt→∞ L

q
j(t)/t = 0, ∀j ∈ J . Service rates are assumed to be contin-

uous variables, which is quite common in the context of production planning
with queueing networks; see e.g. Bitran and Tirupati (1989) and the refer-
ences therein [8].

Since the service rate-dependent mean sojourn times Sj(µj) determine
the penalty costs, they are the key performance measures in the production
network. However, computing the sojourn times in a queueing network is not
trivial due to the interdependencies of the individual nodes. Therefore, we
subsequently describe an approximation method based on various queueing
network parameters.

2.3.2 Sojourn Time Approximation for Queueing Networks

The individual work stations can be modeled as queues with independent and
generally distributed interarrival times, generally distributed services times,
one server, and infinite waiting room (abbreviated as GI/G/1/∞). This type
of queue allows us to account for all possible kinds of probability distribu-
tion functions for the interarrival and service times. We do not consider
M/M/1 queues first, but use GI/G/1 queues directly as this research is mo-
tivated by the MRO case where interarrival and service times are generally
not exponentially distributed. One could assume that interarrival times may,
without scheduling, be modeled as exponentially distributed random vari-
ables for each product family, resulting in a squared coefficient of variation
ca = Var[X]/E[X]2 = λ2/λ2 = 1. On the other hand, if we imply scheduled
arrivals as described in the introduction, interarrival time variability decreases
and interarrival times can become close to constant, ca ≈ 0.

We can use parametric decomposition to approximate the production sys-
tem as a network of J independent GI/G/1 queues, where each product family
e follows a predetermined acyclic path comprising work stations Je through
the network. We assume that the union of all product family-specific paths
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2 Capacity Planning for a Maintenance Service Provider

is equal to the set of work stations in the network, ⋃e∈E Je = J .8

The production network of the aerospace case described in Section 2.1 and
displayed in Figure 2.1 for two engine types, E = {1, 2}, can be schematically
illustrated as shown in Figure 2.3.
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Figure 2.3: Schematic illustration of example production network.

The Krämer-Langenbach-Belz approximation for GI/G/1 queues [24] ap-
proximates the steady-state mean number of products L at a given node with
a service rate µ as

L(µ) = λ

µ
+ (ca+ cs)λ2

2
1

µ(µ− λ)g(µ) (2.1)

where

g(µ) =

exp
{
−2(1−ca)(µ−λ)

3λ(ca+cs)

}
if ca ≤ 1

1 otherwise.
(2.2)

With Little’s law, L = λS, which also applies to GI/G/1 queues, and
assuming for all nodes that ca, cs ∈ [0, 1], the KLB approximation (2.1) for the
mean number of products in the system can also be used to approximate the
mean sojourn time (sum of expected waiting and service time per customer)
at a work station j,

Sj(µj) = 1
µj

+ (caj + csj)λj
2

1
µj(µj − λj)

exp
{
−2(1− caj)(µj − λj)

3λj(caj + csj)

}
, (2.3)

8For details regarding the decomposition approximation, the reader is referred to Shan-
thikumar and Buzacott [35], Whitt [44], Bitran and Tirupati [8] and Negri da Silva and
Morabito [31].
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for all j ∈ J . Equation (2.3) provides an approximation of the mean sojourn
times Sj(µj) for each work station in the production network. We can assume
to know the arrival processes to the system and the service time variabilities
csj for all work stations. However, although we assume independence of the
queues at the individual nodes, it is still necessary to determine the arrival
rates λj and their variability parameters caj for all work stations (except the
ones where the engines arrive), depending on the network structure. These
parameters are approximated prior to the optimization based on techniques
proposed by Bitran and Morabito 1996 [5]. While the arrival rates can be
found quite easily from the subsets Je, the interarrival time variability at a
work station is driven by the interarrival time and the service time variabil-
ity of the previously visited work station. The algorithms to determine the
queueing network parameters can be found in Appendix A.3.

We follow the approach proposed by several authors, e.g., by Bitran and
Tirupati 1989 [8], and use the following assumption.

Assumption 2.1. The effect of a change in service rate µj on the interde-
parture time variability cdj and therefore on the interarrival time variability
cai, i > j, can be neglected.

Therefore, λj and caj are computed for all work stations j ∈ J once for a
reasonable guess of µ ∈ dom C prior to the optimization routine. Sj(·) is
treated as a univariate function of µj. During optimization, all other parame-
ters are assumed to remain constant. Assumption 2.1 generally holds as long
as the service rates estimate is close to the optimal service rates. However, if
the service rates are hard to estimate for a certain problem, the shortcomings
of the assumption can be circumvented by iteratively solving the optimization
problem, taking the optimal service rates as initializing service rates for the
queueing network parameter algorithm and solving the optimization problem
again with the updated parameters.

2.3.3 Solution Procedure

With the definition of the approximate mean sojourn times we can derive
structural insights regarding the capacity allocation problem defined in Sec-
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tion 2.3.1.

Proposition 2.1. With Assumption 2.1 and ca+ cs > 0, the capacity alloca-
tion problem (CAP) is convex in dom C and has a unique optimal solution
µ? ∈ dom C.

Proof. See Appendix A.1.

Due to the [·]+ operator in the total cost function, C is generally not differ-
entiable in dom C. Therefore, a point µ? ∈ dom C is a minimizer of C if
and only if 0 ∈ ∂ C(µ?), where ∂ C(µ) denotes the subdifferential (or the set of
subgradients) of C at point µ ∈ dom C [10]. In order to construct ∂ C(µ), we
first note that the subdifferential of the pointwise maximum of differentiable
convex functions f1, . . . , fm is given as the convex hull of the union of the
gradients of the active functions,

∂ f(x) = ∂ max
i=1,...,m

fi(x) = Co ∪ {∇ fi(x) | fi(x) = f(x)}.

For the [·]+ operator as defined in the capacity allocation problem,

fe(µ) =
[ ∑
j∈Je

Sj(µj)− STe
]+
,

the subdifferential is therefore given by

∂ fe(µ) =


0 if ∑j∈Je Sj(µj) < STe

∇∑j∈Je Sj(µj) if ∑j∈Je Sj(µj) > STe[
0,∇∑j∈Je Sj(µj)

]
if ∑j∈Je Sj(µj) = STe .

(2.4)

Using this we can write the subdifferential of C for µ ∈ dom C as

∂ C(µ) = c> +
∑
e∈E>

γe∇
∑
j∈Je

Sj(µj) +
∑
e∈E=

γe

[
0,∇

∑
j∈Je

Sj(µj)
]
, (2.5)

with E>, E=, E< ⊆ E denoting the disjoint subsets of product families where

∑
j∈Je

Sj(µj) > STe ,
∑
j∈Je

Sj(µj) = STe and
∑
j∈Je

Sj(µj) < STe ,
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respectively. It is easy to see that E> ∪ E= 6= ∅ for the minimizer µ?, since
(2.5) reduces to ∂ C(µ) = c> 6= 0 otherwise. Furthermore, since ∂ C(µ) ∈ RJ ,
there must be enough product families with mean total sojourn time greater
or equal to the contractually defined maximum mean total sojourn time such
that all work stations are encompassed in their paths, ⋃e∈E>∪E= Je = J .

Figure 2.4 illustrates the total cost function as a one-dimensional curve for
different values of STe . The optimal point is indicated by the circle. Panel 2.4a
represents the cost curves for subsets E>, panel 2.4b the cost curves for subsets
E=.

Capacity

C
os

t

Capacity

C
os

t

(a) Low STe : Mean lead time is higher
than STe for the optimal capacity, a
penalty is incurred. The curve is dif-
ferentiable at the minimum.
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C
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t
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C
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(b) High STe : Mean lead time equals
STe for the optimal capacity, no
penalty is incurred. The curve has
a kink at the minimum.

Figure 2.4: One-dimensional illustration of total cost function C(µ) (—), com-
posed of capacity costs (· · · ) and expected penalty costs (· –).

As we are not able to solve 0 ∈ ∂ C(µ?) directly, we distinguish two limiting
cases that can be solved directly and a general case for any other solution
depending on the differentiability of (CAP). The two limiting cases are defined
such that all relevant penalty terms are either differentiable (corresponding to
panel 2.4a) or not differentiable (corresponding to panel 2.4b). The general
case applies if the penalty cost term is differentiable for only a part of the
product families. Due to the complex structure of the problem, it is a priori
not possible to determine which case applies for a given set of parameters.
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Therefore, we solve the optimization problem for all three cases using different
methodologies and determine the “true” optimal solution from their respective
outcomes. In formal terms, the three cases can be defined as follows.

• Case 1 : For given parameters STe , the optimal solution µ? ∈ dom C is
such that E> ∪ E< = E and E= = ∅, i.e., C is differentiable in dom C.

• Case 2 : For given parameters STe , the optimal solution µ? ∈ dom C is
such that E> ∪ E< = ∅ and E= = E , i.e., there exists no path Je, e ∈ E ,
where the penalty cost term is differentiable in dom C.

• Case 3 : For given parameters STe , the optimal solution µ? ∈ dom C is
such that E> ∪ E< 6= ∅ and E= 6= ∅. This means that there exist paths
Je, e ∈ E> ∪ E< where the penalty cost terms are differentiable and
paths Je, e ∈ E= where the penalty cost terms are not differentiable in
dom C.

For Case 1 and Case 2, the solution of the optimization problem (CAP) can
be found explicitly from the problem formulation as shown in Proposition 2.2
and Proposition 2.3, respectively. For the general case we use an iterative
optimization technique.

Case 1

In the following proposition we show that we can explicitly determine µ?1 ∈
dom C the first case directly from the problem statement.

Proposition 2.2. With Assumption 2.1, ca+ cs > 0 and if the contractually
defined maximum mean total sojourn times STe are such that the total costs
function C is differentiable at the Case 1-optimal solution µ?1 ∈ dom C, then
µ?1 can be found by solving at most J(E2 − 1) equations.

Proof. See Appendix A.1.

For each node in the queueing network, the equation to be solved is explicitly
given by

cj = −
∑
e∈Ej>

γe
∂Sj(µ?1j )
∂µj

, ∀j ∈ J , (2.6)
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where E j> ⊆ E> is the set of product families where node j is contained in all
paths, j ∈ Je, ∀e ∈ E j> (see equation (A.13) in Appendix A.2 for the explicit
derivative ∂µjSj(µj)). As an example, for the network depicted in Figure 2.3,
we only need to solve J equations as there is only one possible outcome of E>,
namely E> = E , due to the condition ⋃e∈E> Je = J .

Case 2

In the following proposition we show that the solution of the second case
µ?2 ∈ dom C can also be determined directly by a reformulation of the
problem and exploitation of duality properties.

Proposition 2.3. With Assumption 2.1, ca+ cs > 0 and if the contractually
defined maximum mean total sojourn times STe are such that there exists no
path Je, e ∈ E, where the penalty cost term is differentiable at the Case 2-
optimal solution µ?2 ∈ dom C, then µ?2 can be found by solving a system of
J + E equations.

Proof. See Appendix A.1.

Explicitly, the system of equations to be solved is given by

0 = cj +
∑
e∈Ej

ν?i
∂Sj(µ?2j )
∂µj

∀j ∈ J

0 =
∑
j∈Je

Sj(µ?2j )− STe ∀e ∈ E ,

with KKT multipliers ν?i as explained in the proof of the proposition given in
Appendix A.1.

As the negative slope of Sj increases with decreasing µj, it is obvious
that Case 2 becomes more likely to be the right way to solve (CAP) (as
compared to Case 1 ) for increasing STe . In other words, if the contractually
defined maximum mean total sojourn times are relatively high, then we define
capacity such that actual and contractually defined sojourn times coincide
(incremental penalty cost increases for capacity reduction are higher than
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incremental capacity cost savings).

Case 3

If µ? ∈ dom C is such that E> 6= ∅ and E= 6= ∅ for given parameters STe ,
there are paths for which the penalty cost term is differentiable and paths
where this is not the case. Thus, we need to solve the problem with an
iterative method for nonlinear and nondifferentiable optimization, e.g., the
subgradient method.

The subgradient method is applicable to unconstrained optimization prob-
lems. Therefore, in order to determine the solution of (CAP), we define the
extended-value extension C̆ with dom C̆ = RJ of the total cost function as
C̆(µ) = ∞, µ /∈ dom C and C̆(µ) = C(µ), µ ∈ dom C. Thus, we can
minimize C̆ with the subgradient method which deploys the iteration

µ(k+1) = µ(k) − αkg(k). (2.7)

The k-th iterate µ(k) and any subgradient g(k) ∈ ∂ C̆(µ(k)) are used to de-
termine the (k + 1)-th iteration, where αk > 0 denotes the k-th step size.
Although Equation (2.7) looks like the ordinary gradient method for differen-
tiable functions, it is different since it is not a descent method, meaning that
C̆(µ(k+1)) > C̆(µ(k)) can happen. In conclusion, after each iteration we set

C̆(k)
best = min {C̆(k−1)

best , C̆(µ(k))}, (2.8)

and i(k)
best = k if C̆(µ(k)) = C̆(k−1)

best , i.e., if µ(k) is the best point found so far. The
gradient g(k) can for example be computed as

g(k) = c> +
∑
e∈E>

γe∇
∑
j∈Je

Sj(µ(k)
j ) +

∑
e∈E=

rγe∇
∑
j∈Je

Sj(µ(k)
j ) ∈ ∂ C̆(µ(k)),

where r ∈ [0, 1] is a random number to reflect the convex hull property in
(2.5).

We have now introduced ways to compute the solution of the optimization
problem in each of the three possible constellations depending on the input
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parameters. To determine the “true” optimal solution of the problem, we
finally choose µ? = arg minµ{C(µ?1), C(µ?2), C(µi

(k)
best)}.

2.4 Benefits of Advanced Information
In the previous section we developed a queueing network model for a mainte-
nance service provider and a corresponding solution procedure that allows us
to determine the optimal capacities in the production system. This constitutes
the basis for an in-depth evaluation of the benefits associated with advanced
information that can be obtained through collaborative maintenance manage-
ment of the MRO service provider with his customers. More specifically, we
want to determine the cost benefits of collaborative demand forecasting, spare
parts management, and collaborative engine arrival scheduling as introduced
in Section 2.1. As explained in the subsequent subsections, collaborative
maintenance management may result in improved service rates and reduced
service and interarrival time variabilities.9

For all three effects, we want to investigate the behavior of total costs for
increasing improvement. That is, how does the slope of total costs evolve with
the improvements? Do the benefits obtained through improvements at multi-
ple work stations add up? What are the numerical effects on mean turnaround
time? Can we find bounds on capacities and cost improvements in order to
obtain good estimates of the minimum expectable benefits, even without solv-
ing the optimization problem? Are there interdependencies between the two
types of variability reduction and which effects yields the higher benefits?
These guiding managerial questions are answered as far as analytically possi-
ble for improved mean service rates and reduced service time variabilities in
Sections 2.4.1 and 2.4.2, respectively. The effect of reduced interarrival time
variabilities are explained in more detail in Section 2.4.2. A numerical study

9It is interesting to note that sole forecast information does not lead to a cost improvement.
This means that knowledge about future arrivals has no value as long as the information
is not used for service preparation, spare parts management, or scheduling overhaul time
slots. Without further processing of the information, the service rate is not improved and
service and interarrival time variabilities are not reduced (e.g., although we know future
arrivals, they are still Poissonian from a queueing network point of view).
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validating and enhancing the theoretical results is conducted in Section 2.5.

2.4.1 Mean Service Rate Improvement

In this section we want to determine the effects of improved service rates
on the production network. We provide managerial insights regarding the
benefits of capacity and penalty costs that can be expected as well as some
structural properties regarding the updated optimal capacity allocation.

Until now the service provider did not receive any information regarding
future engine arrivals and their condition. In the collaborative maintenance
management scenario, customers grant access to historic and real-time engine
usage and condition data that can be used as follows: Let us assume that
there exists for each engine a set of usage parameters xu ∈ RXu (e.g., trav-
eled distance or number of takeoffs since last overhaul) and a set of condition
parameters xc ∈ RXc (e.g., oil temperature, oil pressure, or vibration levels).
Using historic usage and condition data from overhauled engines and the asso-
ciated overhaul activities, we can use machine learning techniques to forecast
both the overhaul time and, based on the predicted condition parameters,
the service that needs to be executed. Therefore, we can use a regression
model and hard-time usage thresholds to forecast the overhaul time T and
the related usage parameters xTu given the actual data collected until time t,
(T, xTu ) = f(t, xtu). Additionally, let P ∈ [0, 1]Z be the set of probabilities that
part z ∈ {1, . . . , Z} needs to be replaced. With probabilistic decision tree
learning we can forecast the probabilities pz that spare part z will be needed
for replacement (accordingly, the probability of regular overhaul and repair is
given by p̄z = 1−pz) once the engine is delivered for overhaul given the actual
and predicted usage and condition parameters, P T = g(xTu , xTc ). With this
information, it is possible to optimize spare parts management and to prepare
the repair processes (e.g., guarantee that skilled personnel is available). This
may reduce the time needed for inspection, repair and assembly by a factor
ξj and hence increase the service rates at the affected work stations of the
network. For more information we refer the reader to Taigel 2015 [43] and
Zilli et al. 2015 [51].
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The queueing network model defined in Section 2.3 now allows us to inves-
tigate the effects of mean service rate improvement on optimal capacity and
total costs. We assume that the service rate improvement can be quantified
by the service provider ex ante. We define a matrix A ∈ RJ×J

+ to account for
the the service rate improvement. The elements on the main diagonal of A are
given by ξj ≥ 1, ∀j ∈ J , all other elements are zero. The factor ξj represents
the relative mean service rate improvement at work station j through collab-
orative forecasting of maintenance demand and preparation (ξj = 1 means
no improvement, ξj > 1 indicates an improvement at the respective work
station).

A myopic choice for the updated capacity vector would be µ̃ = A−1µ?,
i.e., dividing the original optimal capacities by the improvement factor. This
operation would yield the optimal updated capacity if the production system
consisted of a single work station and no penalty costs were incurred. However,
due to the network structure (an improvement at one node can induce a
change in the optimal updated capacities at preceding and subsequent work
stations) and the nonlinear penalty cost term in our optimization model, we
will later see that the myopic choice does not yield the optimal solution.
Nevertheless, as penalty costs would remain constant when choosing µ̃ =
A−1µ?, i.e., Sj(ξjξ−1

j µj) = Sj(µj),

∆C = c>µ? − c>A−1µ? =
∑
j∈J

cjµ
?
j(1− 1/ξj) (2.9)

provides a lower bound on total costs improvement.
In order to obtain the economically optimal capacity allocation, we define

an updated capacity allocation problem (UCAP) which is a simple variation
of the original (CAP) problem, thus enabling us to investigate the effects of
mean service rate improvements on all work stations in the network, capacity,
and penalty costs.

minimize C̃(µ) = c>µ+
∑
e∈E

γe

[ ∑
j∈Je

Sj(ξjµj)− STe
]+
, (UCAP)
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with dom C̃ = {µ | ξjµj > λj, j = 1, . . . , J}. Even without a formal
proof it is straightforward that total costs will be reduced for any service rate
improvement.

Proposition 2.4. If there is a mean service rate improvement at any node,
i.e., ∃ j ∈ J , ξj > 1, total costs will be reduced. Capacity costs are decreasing
in the improvement, c>µ̃ < c>µ?, and penalty costs are weakly decreasing in
the improvement,

∑
e∈E

γe

[ ∑
j∈Je

Sj(ξjµ̃j)− STe
]+
≤
∑
e∈E

γe

[ ∑
j∈Je

Sj(µ?j)− STe
]+
.

Proof. See Appendix A.2.

It is interesting to note that total sojourn times are only reduced if a penalty
was incurred for the original optimization problem’s solution. Additionally,
since penalty costs are weakly decreasing with improved service rates, a prod-
uct family (or engine type) originally incurring a penalty can “loose” the
penalty if the improvement is substantial.

As mentioned before, the updated optimal capacities do not correspond
to the original capacities divided by the improvement, and an improvement at
one work station can lead to a shift of the optimal capacity at a different node
in the network. Therefore, the following proposition provides some structural
insights regarding the updated optimal capacities.

Proposition 2.5. For optimization problems where a penalty is incurred for
all product families, capacities at work station without improvement will re-
main constant, µ̃j = µ?j . For optimization problems where no penalty is in-
curred for any product families, capacities at work stations without improve-
ment will be reduced, µ̃j < µ?j . In any case, updated optimal capacities at work
stations with improvement will be in the interval µ̃j/µ?j ∈ (1/ξj, 1).

Proof. See Appendix A.2.

From the proposition we can deduce some interesting results. If the solution
of the original optimization problem is such that a penalty is incurred for all
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product families, we can conclude that capacities remain constant at work
stations without improvement, µ̃j = µ?j , ∀j where ξj = 1. This is due to the
independence of the nodes when solving the Case 1 optimization problem.
As soon as at least one product family does not incur a penalty, the result
is generally no longer valid. For product families without penalty, increases
and reductions in service rate at the work stations will balance each other out
such that mean approximate total sojourn times still coincide with contractu-
ally defined maximum mean sojourn times. Mean service rates will increase
at work stations with improvement and decrease at work stations without
improvement, although this may be counterintuitive at first sight. Indepen-
dent of the penalty cost term, updated optimal capacities will always range
between the myopic updated capacity choice and the optimal capacity of the
original (CAP).

In Section 2.5.3 we conduct a numerical analysis of the structural proper-
ties of service rate improvements in order to provide further insights regarding
our guiding managerial questions.

2.4.2 Service and Interarrival Time Variability Reduction

In this section we explore the effects of reduced interarrival and service time
variabilities on the production network. We not only compare the impact
of both types of variability reductions on total costs, but also provide some
structural insights regarding the propagation of the effects through the net-
work.

As outlined in the previous section, optimized spare parts management
(i.e., higher service levels) and preparation of service (i.e., required material
and skilled personnel are available) lead not only to increased service rates, but
also to reductions in service time variabilities at the respective work stations.
Despite potential correlations between improvements of mean service rates and
service time variabilities, we can still investigate the sole effects of variability
reduction on queueing network performance as we model the GI/G/1 work
stations with the Krämer-Langenbach-Belz equation where service rate and
variability are independent variables.
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2 Capacity Planning for a Maintenance Service Provider

The scheduling of engine arrivals was another process step in the collabo-
rative maintenance management scenario introduced in Section 2.1. Assume
that all time slots of type e engine arrivals are labeled, .., Te,n−1, Te,n, Te,n+1, ..,
and the n-th engine just arrived. Without scheduling, the engine arrival pro-
cess is a stochastic process with high variance. For example, it could be
modeled as a Poisson process where the time between two arrivals δTe =
Te,n−Te,n−1 is described as an exponentially distributed random variable with
mean λe, P[δTe ≤ t] = 1 − exp{−λet}. The squared coefficient of variation
for exponentially distributed interarrival times is given by cae = λ2

e/λ
2
e = 1.

Now assume we can forecast the (n+1)-th engine’s arrival slot and determine
a discrete set of arrival slot options around the predicted slot resulting from
the aircraft-specific flight plan. Then we can schedule the arrivals such that
the squared coefficient of variation of the interarrival times vanishes, i.e., en-
gines arrive with constant interarrival times. It is unlikely that this process
could be managed on the customers’ side, as the service provider is likely to
have multiple customers with the same engine types, meaning that successive
engines could stem from different customers. For more information we refer
the reader to Zilli et al. 2015 [51].

Proposition 2.6. For a single work station j with constant service rate, the
following statements hold.

i) The sojourn time Sj(·) is strictly increasing in csj and caj.

ii) Ceteris paribus, the cost reduction through improved interarrival time
variability exceeds the cost reduction through improved service time vari-
ability.

Proof. See Appendix A.2.

Statement i) tells us that sojourn times are reduced if interarrival or service
time variabilities are reduced. Therefore, it is obvious that total costs will be
reduced by any improvement of service or interarrival time variability.

While the impact of a reduction in caj and csj on sojourn times and to-
tal costs is intuitive, an investigation of the strength of the two effects from a
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queueing network perspective yields some interesting insights. As stated in ii),
when we consider one work station in isolation, the cost reduction through re-
duced interarrival time variability exceeds the cost reduction through reduced
service time variability considering one work station in isolation.

On the other hand, if we consider two subsequent work stations j and
i = j + 1, assuming there is no superposition or splitting between the two
work stations, we can derive which properties drive the impact of service and
interarrival time variabilities from a queueing network perspective. If we take
the derivatives of the interdeparture time variability equation cdj = cai =
ρ2
jcsj + (1− ρ2

j)caj with ρj = λj/µj (see Appendix A.3 for further reference)
with respect to csj and caj, ∂cai/∂csj = ρ2

j and ∂cai/∂caj = 1 − ρ2
j , we find

that the effect of reduced service time variability at work station j on work
station i is larger than the effect of reduced interarrival time variability for
ρj >

√
0.5. The opposite holds if ρj <

√
0.5. Therefore, the traffic intensity

ρj is an important measure that determines the propagation of variability re-
duction through the network. Additionally, we observe that the benefits of
reduced interarrival time variabilities increase for lower service time variabil-
ities, meaning that maintenance demand forecasting and optimized planning
foster the benefits of scheduling.

Due to the interdependence of work stations in a queueing network, reduc-
tions of service or interarrival time variabilities will always have an impact on
the interarrival time variabilities of all successive work stations in the produc-
tion process. On the other hand, a reduction of the external interarrival time
variabilities has no influence on the service time variabilities at the nodes.
Because of the complexity of the queueing network performance parameter
algorithm detailed in Appendix A.3, in the subsequent section we numerically
illustrate how an improvement of the variabilities affects the capacities and
costs of the optimization problem. Subsection 2.5.4 contains a numerical anal-
ysis of the structural properties of variability reductions in order to shed some
light on the managerial questions defined at the beginning of this section.
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2.5 Numerical Analysis
The following numerical analysis sheds light on the actual numerical behavior
of the models introduced above. As we already derived some structural in-
sights, numerical examples validate those insights and provide a more detailed
evaluation of the actual performance and expectable benefits.

The experimental design of the numerical collaborative maintenance man-
agement scenario analysis is explained in the subsequent section. In Section
2.5.2 we define the reference case of our numerical analysis, including a com-
parison of the different solution methods introduced in Section 2.3. Numerical
analyses regarding the benefits of the collaborative maintenance management
scenario are provided in Section 2.5.3.

2.5.1 Experimental Design

After a more analytical treatment of the effects obtained through advanced
information in Section 2.4, we now conduct a series of factorial analyses in
order to answer some basic managerial questions.

For all three effects, we investigate the actual numerical behavior of total
costs for increasing improvement. We address managerial questions such as:
How does the slope of total costs evolve with the improvements? Do the bene-
fits obtained through improvements at multiple work stations add up? What
are the numerical effects on mean turnaround time? For improved service
rates, we are also interested in the total costs benefit in comparison to the
lower bound of cost improvement derived in Section 2.4.1. We also investigate
how capacities at the work stations change with improved service rates, and
check this against the structural insights provided in Proposition 2.5. Finally,
we conduct a factorial analysis regarding the effects of mutual dependence of
service and interarrival time variability improvements. Figure 2.5 depicts the
input and output parameters of our analysis.

Mean service rates are improved through advanced demand information
and increased spare parts service levels. If we consider the network shown in
Figure 2.1, the NDT (Non-Destructive Test) and inspection process steps are
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Figure 2.5: Input and output parameters.

accelerated, since more information is known in advance through continuous
sharing of real time sensor data. Optimized spare parts management and
service preparation lead to accelerated sojourn times of the repair and assem-
bly process steps. Therefore, we assume an improvement of the mean service
rates at work stations j ∈ {4, . . . , 9} in the range of ξj = [1, 1.5], whereas
ξj = 1, ∀j ∈ J \ {4, . . . , 9}.

Service time variabilities are also reduced due to optimized spare parts
management and service preparation. Therefore, we investigate the benefits
at the corresponding repair and assembly work stations j ∈ {7, 8, 9} with
ĉsj = [csj/2, csj].

Finally, we assume collaborative scheduling of engine arrivals such that
the interarrival time variabilities are minimized. As the improvement range
we select čae = [0.1, 1], ∀e ∈ {1, 2}. This means that we start with Poissonian
demand and end up with close to constant interarrival times.

In the following section we define the reference case used throughout the
numerical experiments conducted in Sections 2.5.3 and 2.5.4.

2.5.2 Reference Case

In this section we define the queueing network parameters used for the numer-
ical experiments. Additionally, we investigate the performance of the three
proposed solution methods for four different sets of sojourn time requirements,
one of which is chosen as the reference case for the factorial analyses conducted
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2 Capacity Planning for a Maintenance Service Provider

in the following section.
According to the production network of the service provider setting de-

picted in Figure 2.1, we use a queueing network with J = 11, i.e., 11 work
stations and two paths through the network, J1 = {1, 3, 4, 5, 7, 8, 10, 11} and
J2 = {2, 3, 4, 6, 7, 9, 10, 11} for engine types e ∈ {1, 2}, respectively. The
external arrival rates for the two engine types are given by λ1 = 5 and λ2 = 8.
The squared coefficients of variation of the external arrivals are given by
ca1 = ca2 = 1, as we assume Poisson processes without arrival scheduling.
As cost parameters we choose cj = 1, ∀j ∈ J , and γ1 = 20, γ2 = 22.

The queueing network parameters of the individual nodes resulting from
the computations described in Appendix A.3 are summarized in Table 2.1.
The values for caj were obtained using an initial guess of µ?j = λj + 2.

Node 1 2 3 4 5 6 7 8 9 10 11

λj 5 8 13 13 5 8 13 5 8 13 13

csj 0.044 0.044 0.044 0.117 0.064 0.064 0.753 0.283 0.283 0.028 0.028

caj 1.000 1.000 0.470 0.150 0.262 0.211 0.187 0.359 0.454 0.254 0.084

Table 2.1: Queueing network parameters used for the numerical analysis.

We start our numerical analysis by comparing the three solution ap-
proaches defined in Section 2.3.3. We evaluate four scenarios of the production
network with different contractually defined maximum mean sojourn times in
order to evaluate the performance of the solution methods depending on the
applying case. The numerical solutions are provided in Table 2.2.

Scenario Case 1 Case 2 Case 3

a) ST
1 = 0.7, ST

2 = 0.7 C(µ?1) = 150.3 C(µ?2) = 160.9 C̆(k)
best = 150.3

b) ST
1 = 1.4, ST

2 = 1.4 C(µ?1) = 135.7 C(µ?2) = 125.5 C̆(k)
best = 125.6

c) ST
1 = 0.7, ST

2 = 1.4 C(µ?1) = 143.4 C(µ?2) = 149.5 C̆(k)
best = 138.4

d) ST
1 = 1.4, ST

2 = 0.7 C(µ?1) = 142.7 C(µ?2) = 146.8 C̆(k)
best = 138.4

Table 2.2: Solution of the capacity allocation problem with different maximum
mean total sojourn times and methods (optimal solution highlighted in bold).

We see that Case 1 applies for low STe (where the objective function
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is differentiable), Case 2 applies for high STe (where the penalty cost term is
not differentiable on all paths), and the subgradient method produces optimal
results for partially low, partially high STe (where some paths are differentiable,
some not). As observable for the first scenario with ST1 = ST2 = 0.7, the
Case 1 -optimal solution and the solution of the subgradient method (with
diminishing step size rule) coincide. This is due to the fact the algorithm is
guaranteed to converge to the optimal value for differentiable functions, i.e.,
limk→∞ f(x(k)) = f ? [11].

Since the maximum mean total sojourn times STe are not considered in
Case 1, the actual Case 1 -optimal mean total lead times are constant through-
out all scenarios. Given the scenarios in Table 2.2, the mean total lead times
are given by ∑

j∈J1 Sj(µ?1j ) = 1.08 > ST1 and ∑
j∈J2 Sj(µ?1j ) = 1.02 > ST2 .

Knowing these values, we instantly see which case applies for which numeri-
cal values of STe . If ST1 ≤ 1.08 and ST2 ≤ 1.02, Case 1 applies. If ST1 > 1.08
and ST2 > 1.02, Case 2 applies. For all other cases where one contractually
defined maximum mean total sojourn time is smaller and one larger than for
the Case 1 -optimal solution, Case 3 applies. The scenarios and the respective
cases are illustrated in Figure 2.6.
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Figure 2.6: Parameter map with case boundaries and scenarios.

For all paths where STe >
∑
j∈Je Sj(µ?1j ), i.e., where the global solution is

not the Case 1 -optimal solution, the optimal solution µ? will always be such
that ∑j∈Je Sj(µ?j) = STe . This means that capacities are chosen such that
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capacity costs are minimal under the constraint that contractually defined
and actual mean total sojourn times coincide.

In order to investigate the effects of collaborative maintenance manage-
ment on total costs of aircraft engine overhaul services, we choose option a) in
Table 2.2 with ST1 = ST2 = 0.7 as reference scenario. Without improved spare
parts management and preparation, i.e., ξj = 1 and ĉsj = csj, ∀j ∈ J , and
without collaborative scheduling of engine arrivals, i.e., the arrival process is
assumed to be Poissonian with cae = 1, ∀e ∈ E , total costs are given by 150.3.
For the solution of the updated optimization problem we use the subgradi-
ent method-based procedure defined for Case 3 without any differentiability
requirements.

2.5.3 Mean Service Rate Improvement

In this section we investigate the effects of mean service rate improvement on
total costs. Figure 2.7 shows total costs for increasing service rate improve-
ment factors ξj. The lowest thick line in the interval C̃ ∈ [126.9, 150.3] is

1 1.1 1.2 1.3 1.4 1.5

130

135

140

145

150

˜ C

ξj

Figure 2.7: Numerical study for improved service rates ξjµj.

generated by increasing all factors for work stations j = {4, . . . , 9} from 1.0
to 1.5 simultaneously. The six upper thin lines represent total costs evolution
when only increasing the improvement factors for single nodes. Note that the
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lowest two of the thin lines correspond to work stations 4 and 7, which are
the only work stations in the subset which serve both engine types.

If we compare optimal service rates µ? and µ̃ for ξj = 1, ∀j ∈ J and
ξj = 1.5, ∀j ∈ {4, . . . , 9}, respectively, we obtain

µ̃./µ? = [1.00 1.00 1.00 0.69 0.72 0.70 0.70 0.72 0.71 1.00 1.00]>

where µ̃./µ? is the element-wise division. This verifies the structural insight
proposed in Section 2.4.1 for product families incurring a penalty: capacities
remain constant at work stations j without improvement, µ̃j = µ?j if ξj = 1,
whereas updated optimal service rates are in the interval µ̃j/µ?j ∈ (1/1.5, 1) =
(0.6̄, 1) for work stations j where an improvement ξj = 1.5 is imposed.

Total costs reduction for maximum improvements at all work stations is
given by ∆C = C(µ?)− C̃(µ̃) = 150.3− 126.9 = 23.4. If we compute the lower
bound (2.9) derived in Section 2.4.1, we obtain ∆C = 22.8. Therefore, we
can conclude that the lower bound is tight and provides an accurate initial
estimation of total costs reduction through service rate improvement.

2.5.4 Service and Interarrival Time Variability Reduction

Figure 2.8 shows total costs for improved service time variabilities. Again,

0.5 0.6 0.7 0.8 0.9 1

146

148

150

ĉsj/csj

˜ C

Figure 2.8: Numerical study for improved service time variability ĉsj.
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the thick line in the interval C̃ ∈ [145.9, 150.3] corresponds to the improve-
ment of ĉsj from cs to csj/2 simultaneously for all work stations j ∈ {7, 8, 9}
and the thin lines to the improvement at single work stations. The largest
improvement (i.e., the lowest thin line) is found at work station 7, since this
work station is visited by both product families and exhibits the largest ser-
vice time variability without improvement as presented in Table 2.1. Node
7 models the assembling work station, where spare parts delivered from ex-
ternal suppliers are needed. Through collaborative forecasting of spare parts
demand, the spare parts service levels can be increased, which explains the
imposed reduced service time variability at the work station.

Finally, Figure 2.9 displays the effects of reduced interarrival time vari-
abilities. The thick line corresponding to a simultaneous improvement of

0.2 0.4 0.6 0.8 1

138

141

144

147

150

čae

˜ C

Figure 2.9: Numerical study for improved interarrival time variability čae.

čae, ∀e ∈ 1, 2, from 1 to 0.1 shows the highest cost reduction, ranging from
139.0 to 150.3. When considering single engine types, the cost reduction
through improved ča2 is superior (the lower of the two thin lines) compared to
the cost reduction through improved ča1 as mean arrival rate and unit penalty
costs in the numerical example are comparatively higher, λ2 = 8 > λ1 = 5
and γ2 = 22 > γ1 = 20, respectively.

It is interesting to note that total cost reductions do not add up for im-
proved service and interarrival time variabilities. However, they do add up for
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improved service rates due to the independence of the nodes when solving the
differentiable optimization problem where penalties are incurred on all paths.
For improved service and interarrival time variabilities, the effect of reducing
variabilities at multiple work stations simultaneously exceeds the sum of the
effects when only reducing the variability at one work station (in our analysis
by approximately 4% for service and interarrival time variabilities).

2.5.5 Summary of Numerical Analysis

In order to investigate whether the three effects of advanced information sum
up, different combinations of specific improvements from the ranges defined
in Section 2.5.1 are summarized in Table 2.3. These are: mean service rate
improvements ξj = 1.5, ∀j ∈ {4, . . . , 9} in column Aµ, service time variability
reductions ĉsj = csj/2, ∀j ∈ {7, 8, 9} in column ĉs, and interarrival time
variability reductions with čae = 0.1, ∀e ∈ {1, 2} in column ča.

Aµ ĉs ča
∑

j∈J1
Sj

∑
j∈J2

Sj C̃(µ̃) Cost reduction

- - - 1.08 1.02 150.3 0%

• - - 1.00 0.94 126.9 16%

- • - 1.05 0.98 145.9 3%

- - • 1.01 0.92 139.0 8%

• • - 0.98 0.91 123.2 18%

• - • 0.94 0.85 116.3 23%

- • • 0.98 0.88 134.4 11%

• • • 0.92 0.82 112.5 25%

Table 2.3: Numerical analysis of combinations of improvements.

As already shown in Figure 2.7, an improvement in mean service rates has
the highest impact on total costs. As expected, with Proposition 2.6 in mind,
the collaborative scheduling of engine arrivals exhibits the second-highest cost
reduction. The reduction of service time variabilities has the smallest effect on
total costs. On the other hand, in many cases this improvement will happen
automatically when mean service rates are improved, and therefore requires
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little additional implementation costs. In the columns displaying the sums
of the approximate mean sojourn times on paths J1 and J2 we see that not
only total costs, but also mean turnaround times are reduced as stated in
Proposition 2.5.

Finally, it can be observed from the column showing optimal total costs
C̃(µ̃) that the benefits of the three effects of advanced information do not add
up. For any combination of mean service rate improvement with another ef-
fect, the sum of the individual improvements exceeds the improvement when
solving the optimization problem for the combination. In contrast, when solv-
ing the optimization problem for reduced service and reduced interarrival time
variabilities, the improvement is larger than the sum of the individual bene-
fits (15.9 versus 15.7, respectively). This supports our statement in Section
2.4.2 that maintenance demand forecasting and optimized planning foster the
benefits of scheduling.

2.6 Conclusion and Discussion
This paper solved the problem of determining the cost-minimizing capacity
in an acyclic production network for a service provider with contractually de-
fined lead time requirements and associated penalty costs. The production
network was described as a network of GI/G/1 queues, and we were able
to find analytical and iterative methods to solve the optimization problem
through classification of different cases distinguished by the differentiability
of the objective function. For differentiable objective functions we were able
to solve the optimization problem with the first-order necessary condition. If
the objective function is not differentiable on all paths products take through
the network, the problem can be solved with the Karush-Kuhn-Tucker condi-
tions of an equivalent reformulation of the optimization problem. Finally, we
developed a general near-optimal solution algorithm based on the subgradient
method capable of solving the problem with any properties.

Additionally, we considered a collaborative maintenance management sce-
nario in the aerospace business. In this scenario, the service provider and cus-
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tomers jointly employ advanced information collected by sensors measuring
aircraft engine parameters in order to further minimize maintenance costs. As
the associated collaborative planning systems are an investment for all parties
involved, we showed how to compute the expected benefits under improvement
assumptions such as improved service rates and reduced service and interar-
rival time variabilities. Numerical analyses illustrated the findings, allowed
us to derive further structural properties, and supported investment decisions
regarding a collaborative planning system.

With the information displayed in Table 2.3 and knowledge regarding im-
plementation costs of the collaborative planning system, the service provider
and his customers can now decide whether to consider the investment or dis-
card the opportunity. Of course, to do so, a benefit sharing scheme must
be developed to incentivize the individual players to participate: whereas ca-
pacity and penalty costs are reduced for the service provider, a fair share of
the benefits would need to be transferred to the customers through a price
reduction. The proposed methods allow the parties to establish a fair benefit
sharing rule (depending on the implementation costs per party) and to quickly
assess the cost-effectiveness of the collaborative planning system. Customers
also benefit from reduced mean turnaround times, which translates into a
reduction of the total number of engines needed for flight operations.

We provided some preliminary ideas regarding collaborative demand fore-
casting, spare parts management and engine arrival slot scheduling. We con-
tinue to work on more formal models for collaborative maintenance manage-
ment. Although this paper was developed specifically for the aircraft engine
MRO case, the models and insights apply to any similar service provider set-
ting.
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3 Flexible Capacity Management
with Future Information

We consider a maintenance service provider that overhauls aircraft engines
in a central service facility. The service provider can choose between a low
and a high capacity. However, the high capacity can only be used for a
certain share of the time. We model the service facility as a queue with
adaptable service rate and develop capacity control policies minimizing the
time-average queue length. The reactive threshold-type policy only considers
the current queue length and we show that the time-average queue length
diverges as the load of the system increases. State-of-the-art aircraft engines
are equipped with sensors permitting prediction of future maintenance needs.
Thus, the solely forward-looking policy is based on predicted arrival times
and maintenance requirements of engines arriving to the system in the future.
We show that the time-average queue length converges to a finite value as the
load increases. As the reactive policy outperforms the solely forward-looking
policy for low arrival rates, we combine both to a proactive policy. While
we assume that future information is available within an infinite lookahead
window when stating the policy, we derive conditions under which a proactive
capacity control policy can be employed and how the policy has to be modified
if the lookahead window is finite.10

10This paper has been submitted for publication [27]. It is coauthored by Richard Pibernik.
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3.1 Introduction and Outline
Variable, but predictable. The idea of Spencer et al. (2014) is that future
arrivals to a queue are variable, but that they can be predicted [36]. Informa-
tion regarding the arrival times and the service requirements of jobs arriving
to a queue in the future is referred to as future information. In this paper,
we investigate how to optimally use future information for the control of a
flexible capacity.

Our analysis is motivated by the capacity management problem faced by
a provider of maintenance, repair and overhaul services (MRO) for aircraft
engines. The MRO can switch between a low (base) and a high (base plus
contingent) capacity. Both the base and the contingent capacity have been
determined based on historical arrival rates of engines and their historical
service requirements. Furthermore, the contingent capacity can only be em-
ployed for a predefined share of time, such that the time-average capacity (or
service rate) is at most one. Engine arrivals, on the other hand, occur at a
rate of less or equal than one. Until now, the decision to employ the con-
tingent capacity has been taken in an ad-hoc manner, mainly based on the
current number of engines awaiting service and subjective judgments of the
operations managers. Future information in the aforementioned sense has not
been available for capacity control. This, however, is about to change. So-
phisticated technical equipment such as Rolls-Royce’s Trent aircraft engines
are equipped with sensors that measure different parameters and send the
data to data warehouses in real-time. For Trent engines, this data includes
more than 20 parameters such as oil pressure, oil temperature and vibration
levels that—in combination with usage data of the airlines—can be used to
accurately predict future maintenance needs, i.e., time of maintenance and
service requirements [25]. Thus, in future, engine arrivals will be variable, but
predictable. For the MRO, the question arises how to best utilize this future
information to effectively employ its flexible capacity. More specifically, the
task is to develop an optimal capacity control policy for variable, but pre-
dictable job arrivals and to assess its performance relative to a reactive policy,
which is currently applied. This is the objective of the research presented in
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this paper.
Following Spencer et al. (2014), we assume that (the amount of) future

information can be characterized by a lookahead window for which the com-
pany has perfect information about the jobs arriving to the system. Currently,
the company has a lookahead window of length zero, that is, the company has
no future information. Job arrivals are random and the decision to activate
the contingent capacity is based on the current queue length. A lookahead
window of infinite length would imply that the company knew all future jobs
arriving to the system when determining whether or not to employ the con-
tingent capacity. At a first glance it may appear rather simple to determine
the optimal (sequence of) decisions with respect to the contingent capacity
if all future jobs are known. Determining an optimal capacity control pol-
icy and the resulting time-average queue length in advance, however, is not
trivial. Although all future orders will be known at some point in time t0,
their exact realizations are not known when implementing a capacity control
policy (before t0). Thus, the task is to devise an optimal capacity control
policy for uncertain future arrivals of orders given that at some point in time
their realizations will be revealed. This reflects the notion of variable, but
predictable.

In this paper, we develop and study two capacity control policies for the
case of an infinite lookahead window. For a capacity decision at time t0,
the first policy (solely forward-looking policy) only utilizes future information
about engine arrivals. Based thereupon, we develop a second policy (called
the proactive policy) which utilizes both future information about engine ar-
rivals and the current queue length at time t0. We compare the performance
of these two policies with the performance of the reactive policy which only
uses information about the current queue length—the reactive policy serves as
a proxy for the MRO’s current practice. We assume that the MRO intends to
minimize the time-average waiting time of the customers for the completion
of their orders. Since it can be shown that the time-average waiting time is
directly linked to the time-average queue length, we use the latter as our per-
formance criterion to assess the different policies. As detailed in Section 3.4,
we observe that the time-average queue length diverges if no future informa-
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tion is available as the arrival rate approaches the time-average service rate.
On the other hand, if we assume to know future information until infinity, we
find that the time-average queue length converges as the load of the system
approaches one. However, as soon as the lookahead window is smaller than
infinity, the time-average queue length diverges as the arrival rate approaches
the time-average service rate.

Studying the extremes with respect to the availability of future informa-
tion (lookahead window of zero versus an infinite lookahead window) brings a
number of advantages: it allows us to i) develop analytically tractable prop-
erties of the different capacity control policies, ii) carry out performance com-
parisons and iii) shed light on the value of future information. Of course,
from a practical perspective, a finite lookahead window (the company only
knows order arrivals over a shorter period of time, e.g., the next four weeks)
is more realistic and relevant. Naturally, the performance of a capacity con-
trol policy that uses future information will strongly depend on the length of
the lookahead window. In this paper, we first focus on analytically tractable
operating modes, i.e., the reactive mode and the proactive mode with infinite
lookahead window. Based thereupon, we derive conditions under which a
proactive policy can be used for the case of a finite lookahead window. Also,
we provide insights how the policy could be modified if these conditions are
not met. Thus, our results establish a basis for the further development of
optimal capacity control policies with limited future information.

The remainder of this paper is organized as follows: We provide a lit-
erature review in Section 3.2. In Section 3.3, we define the basic queueing
model and some stochastic primitives. The reactive threshold-based policy is
developed in Section 3.4 and the solely forward-looking policy with infinite
lookahead in Section 3.5. Both policies are combined to a proactive policy
with infinite lookahead in Section 3.6. First insights regarding the effects of
limited future information are derived in Section 3.7. Finally, Section 3.8 pro-
vides concluding remarks and opportunities for further research. All proofs
not stated in the main part of the document are relegated to the appendix.
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3.2 Related Literature
Recently, the topic of queuing with future information has received increasing
attention. Spencer et al. (2014) consider information about future job arrivals
to determine optimal admission control policies for an M/M/1 queue in the
overload regime [36]. They show that a finite time-average queue length can
be achieved if future information is available in an infinite lookahead window,
also as the load of the system approaches one. This paper is the one most
closely related to our research. Xu and Chan (2016) use future information
to reduce waiting times in an emergency department via diversion [49]. They
combine an online and an offline policy to optimally divert patients for all
arrival rates. Additionally, they perform a numerical analysis and argue that
future information is also valuable if the information regarding future jobs
arriving to the system is noisy. Xu (2015) investigates the amount of future
information needed in order for the time-average queue length to converge as
the load of the system approaches one [48]. He finds that the amount of future
information needed increases with increasing arrival rate and a finite time-
average queue length for a system with a load approaching one can only be
achieved with an infinite lookahead window. Finally, Zhang (2014) develops
models to proactively serve jobs that have not yet arrived to the system but
can be observed in a finite prediction window. The focus of his work is on
M/M/1 and GI/G/1 queues in light traffic.

Queuing with adaptable service rates and without future information is
a problem that has been studied extensively. Bekker et al. (2008) develop
various models for M/M/1 and M/G/1 queues in which the server can work
at two different speeds, depending on the number of customers in the system
or the workload [3]. Bekker et al. (2011) study two models [4]: First, a
model that continuously adapts the service rate based on the waiting time of
the first customer in line. Secondly, a model with a primary server that is
supplemented by a secondary server if the waiting time of the first customer
in line exceeds a certain threshold. They derive the steady-state waiting time
distributions for both models. Lee et al. (2006) develop an (m,M) control
rule for M/M/1 and M/G/1 queues [28]. When the workload exceeds M , a
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higher service rate is used. When the workload falls belowm < M , the system
switches back to the lower service rate. Their approach avoids high switching
rates.

Flexible queuing architectures are also considered for make-to-stock and
make-to-order capacity management: Buyukkaramikli et al. (2013) model a
production system that operates under a lead time performance constraint
as M/M/1 queue with periodically adjusted service rate [15]. They find the
optimal capacity levels, the capacity control policy and compute the optimal
period lengths minimizing capacity costs while obeying a lead time service
level. Allon and van Mieghem (2010) develop a GI/G/1 inventory shortfall
model using dual-drift reflected Brownian motion to determine an optimal
base-surge capacity control policy (China versus Mexico sourcing–low cost
and slow versus high cost and fast) [1]. Similarly, Bradley (2004) develops
a capacity control policy for an inventory shortfall queue modeling in-house
production and a subcontractor, also based on reflected Brownian motion [13].

Finally, there is a stream of research considering (capacity planning for)
MRO service providers. Kurz (2015), for example, models a maintenance
service facility as a network of GI/G/1 queues and determines optimal capac-
ities with the objective of minimizing the sum of capacity costs and penalty
costs for not meeting contractually defined turnaround times [25]. In addi-
tion, Kurz (2015) investigates the effects of advanced information on service
requirements and service and interarrival time variability.

Our work contributes to the research in queuing theory that addresses the
problem of managing a flexible capacity. While our approach is inspired by
Spencer et al. (2014) who introduced the notion of variable, but predictable
job arrivals, we are, to the best of our knowledge, the first to develop flexible
capacity control policies incorporating future information.

3.3 Setup and Problem Definition
We model the facility of the service provider as an M/M/1 queue with ad-
justable service rate. With r ∈ (0, 1) and p > r, define the low and high service
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rates as µ1 = 1− r and µ2 = µ1 + p = 1− r+ p, respectively. The arrival rate
is given as λ ∈ (1 − r, 1], i.e., we are considering the overload regime.11 The
M/M/1 queue with flexible capacity is illustrated in Figure 3.1.
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Figure 3.1: Illustration of the flexible capacity model.

Let the capacity control policy be denoted as {π(t) : t ∈ R+}, π(t) ∈
{0, 1}. Then,

µ(t) =

1− r, if π(t) = 0,

1− r + p, if π(t) = 1,

and we can define the time share the high capacity is active as

Eπ = lim
T→∞

1
T

T∫
0

π(t) dt ∈ [0, 1].

In many practical applications, there exists an upper bound on the time the
contingent capacity can be used. For example, overtime is limited by labor
legislation or, if the capacity is sourced externally, amount and expected usage
are specified contractually. Thus, for the remainder of the paper, we will focus
on capacity control policies obeying the following capacity constraint.

Definition 3.1. A capacity control policy π is called feasible, if the time share
the contingent capacity is active Eπ does not exceed the ratio r/p. Π denotes
the family of all feasible capacity control policies.12

11Taking into account future information is especially interesting in the overload regime.
Although future information could also be used if the arrival rate was below the base
capacity, benefits would be limited as the time-average queue length of a system with low
load tends to be quite small anyways.

12We use this specific upper bound for simplicity and readability, however, without loss of
generality. All results can easily be transferred to cases where the upper bound is different
from r/p, as long as an upper bound is provided.
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With this definition, the time-average service rate can be at most 1,

lim
T→∞

1
T

T∫
0

µ(t) dt = (1− Eπ)(1− r) + Eπ(1− r + p)

≤ p− r
p

(1− r) + r

p
(1− r + p) = 1.

Clearly, any policy must be such that Eπ → r/p as λ → 1, which is the
most critical and therefore interesting regime. However, the performance, in
terms of the time-average queue length, of the flexible capacity management
policy can vary depending on when the contingent capacity is activated. If
we, for example, deploy the contingent capacity when the system is empty
or when the queue is already very long, performance may be worse than for
a static model with µ = 1. On the other hand, if we deploy the contingent
capacity during a time with a very large number of arrivals, we can minimize
the time-average queue length.

When developing capacity control policies, we will always try to minimize
the time-average queue length while obeying the feasibility constraint. Let
{Q[n] : n ∈ Z+}, Q[n] ∈ Z+, be a discrete-time queue length process of the
M/M/1 queue with flexible capacity.

Definition 3.2. Given a capacity control policy π,

Q(r, p, λ, π) = lim sup
N→∞

E
(

1
N

N∑
n=1

Q[n]
)

defines the time-average queue length, Q(r, p, λ, π) ∈ R+.

We try to minimize the time-average queue length because, especially in the
MRO business, turnaround times are extremely critical and long waiting times
may lead to high penalties, see Kurz (2016) for more details [25]. The time-
average waiting time is directly linked to the time-average queue length by
Little’s law. Thus, the company that motivates our research project has in-
stalled a costly contingent capacity. Now, we want to determine the ”best
usage” of this contingent capacity to minimize the mean waiting time of the
customers’ jobs.
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3.3 Setup and Problem Definition

Following Spencer et al. (2014), we define future information based on
a lookahead window: If we are at time t0, a lookahead window of length
w ∈ R+ implies that we know the exact arrival times and service requirements
(time needed to service the job) of all jobs arriving within the time interval
[t0, t0 +w]. Depending on the length of the lookahead window, we distinguish
four different operating modes and thus policies:

i) w = 0, no future information is known—capacity decisions are made
based on the current queue length (reactive policy).

ii) w = ∞, we have perfect information regarding all jobs arriving to the
system in the future:

a) Capacity decisions are made only considering information regarding
future jobs arriving to the system (solely forward-looking policy).

b) Capacity decisions are made based on the current queue length and
information regarding future job arrivals (proactive policy).

iii) 0 < w < ∞, future information is available within a finite lookahead
window—capacity decisions are made based on current queue length and
limited future information (proactive policy with limited future informa-
tion).

The research questions we try to answer in this paper can be summarized
as follows: What is the feasible capacity control policy minimizing the time-
average queue length of an M/M/1 with two capacity levels and a lookahead
window of length w? What is the resulting time-average queue length and
how does it behave depending on the arrival rate?

In the remainder of this paper we will not assign a specific size (service
time) to each job, but use a service token model to capture the randomness in
the service times of different jobs. In a service token model, jobs’ service times
are induced by the randomness of the speed of the server as an exogenous
process. This allows us to compute the time-average queue length without
considering the underlying workload process. In the service token model, jobs
wait in a queue with infinite waiting room. Once a service token is generated

53



3 Flexible Capacity Management with Future Information

by the server, it is consumed by the first job in line which then leaves the
system. Thus, the queue length coincides with the number of jobs in the
system, as illustrated in Figure 3.2. Additionally, the resulting queue length
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Figure 3.2: Illustration of the service token model: The figure on the left hand
side displays a standard M/M/1 queue, where one job is currently served at
the server. Thus, as this job is not accounted for as ”in the queue”, the
number of jobs in the queue is given as Q(t) = L(t) − 1, where L(t) ∈ Z+
denotes the number of jobs in the system. The right hand side represents the
equivalent service token-based M/M/1 queue. Here, all jobs are waiting in
the queue until a service token has been produced. Thus, L(t) = Q(t).

process is insensitive to the order in which jobs are completed.13 Xu and Chan
(2016) show via simulation that policies developed based on a service token
model perform well and the resulting time-average queue length serves as a
good approximation for settings with job-specific service times [49].

3.4 Reactive Capacity Control
We first consider the setting in which the company does not have information
about future jobs and the decision to deploy the contingent capacity is only
based on the current queue length. In the following, we develop an optimal
reactive capacity control policy and derive an expression for the corresponding
time-average queue length. The reactive policy will serve as a benchmark to
evaluate capacity control policies that incorporate future information.

If the current queue length is the only information available, the company
will naturally employ a threshold-type capacity control policy to decide when
13When having information about future arrivals and job-specific service times, the time-
average queue length could be further reduced by using scheduling rules, e.g., the shortest
remaining processing time discipline.
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to switch to the high capacity and back.

Definition 3.3. We call πKR a K-threshold policy if the contingent capacity
is activated if and only if the queue length at time t is larger than K.

It is well established that a threshold policy is the optimal stationary policy
when controlling a contingent capacity that can be added to a base capacity.
Crabill (1972) shows that a threshold policy is optimal if total costs, costs
depending on the number of jobs in an M/M/1 queue with infinite waiting
room and capacity costs, are being minimized [17]. However, an expression
for the optimal threshold value is not provided. By adjusting the cost factors,
this problem can easily be transferred to a setting where we do not try to
minimize total costs but the time-average queue length subject to the capacity
constraint stated in Definition 3.1. Thus, a K-threshold policy is optimal,
Q?Π0(r, p, λ) = infπ∈Π0 Q(r, p, λ, π) = Q(r, p, λ, πKR ), where Πw denotes the
family of reactive policies with lookahead window length w. The following
theorem characterizes the optimal feasible threshold policy.

Theorem 3.1. Fix r ∈ (0, 1) and p > r. Let

K(r, p, λ) =
⌈
log λ

1−r
K(r, p, λ) 1

1− λ

⌉
, (3.1)

with K(r, p, λ) = r(r−1)(λ+r−p−1)
pλ

. Then, πK(r,p,λ)
R is the optimal threshold policy

and feasible for all λ ∈ (1− r, 1].

Proof. See Appendix B.1.

The proof of the theorem is based on the continuous-time Markov chain il-
lustrated in Figure 3.3. An example of a queue length process of an M/M/1
queue in reactive mode is displayed in Figure 3.4. It can be observed that the
high capacity is used at all times t where Q(t) > K(r, p, λ).

Given the optimal threshold value, we can derive an expression for the
time-average queue length and investigate its behavior as λ→ 1.

Theorem 3.2. Given r ∈ (0, 1), p > r and K(r, p, λ), the time-average queue
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Figure 3.3: Flow diagram of an M/M/1 queue with reactive capacity control.
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Figure 3.4: Simulated queue length process (blue) with r = 0.2, p = 0.4 and
λ = 0.98 resulting in K(r, p, λ) = 8 (red). The yellow line corresponds to the
reactive capacity control policy πKR .

length can be computed as

Q(r, p, λ, πKR ) =
[

(K − 1)ρK+1
1 −KρK1 + ρ1

(ρ1 − 1)2 + ρ2 +K(1− ρ2)
(1− ρ2)2 ρK1

]
ν(0|πKR ).

(3.2)
As λ→ 1,

Q(r, p, λ, πK(r,p,λ)
R ) ∼ O

(
log 1

1−r

1
1− λ

)
, (3.3)

i.e., the time-average queue length diverges.

Proof. See Appendix B.1.

It is intuitive that the time-average queue length diverges at the same order
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as the threshold level. The queue length process always fluctuates around K
since the associated random walk has a positive drift at all times {t ∈ R+ :
Q(t) ≤ K} and a negative drift for all other times {t ∈ R+ : Q(t) > K}.
Thus, if we have no information about the future, the optimal time-average
queue length diverges at rate O(log1/(1−r)

1
1−λ), as λ→ 1.

For λ ∈ (1 − r, 1], the time-average queue length, the optimal threshold
and the time share the high capacity is active are illustrated in Figure 3.5 for
r = 0.2 and p = 0.4. We can observe that the time share the high capacity
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Figure 3.5: Performance of the reactive policy: time share the high capacity
is active (dashed line, left y-axis), time-average queue length (solid line, right
y-axis) and optimal threshold level (dashed line, right y-axis) versus arrival
rate.

is active, EπKR = P[Q > K(r, p, λ)], increases with λ until it reaches r/p (0.5
in the this example). In order for the policy to remain feasible, the threshold
then jumps to next higher positive integer and P[Q > K(r, p, λ)] to a lower
value in (r/p(1 − r), r/p]. The reactive policy performs very well if λ is low.
As λ increases to 1, the optimal threshold and the time-average queue length
grow exponentially.

Finally, we conclude by providing some insights regarding the effects of
choosing different values for p > r. While the time-average service rate is
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always less or equal than one, the policy’s performance depends on the choice
of p (in proportion to r).

Proposition 3.1. Fix r ∈ (0, 1). For any λ ∈ (1 − r, 1], the worst time-
average queue length, supp>rQ(r, p, λ, πKR ), is obtained at p ↓ r. If p ↓ r,
the time-average queue length corresponds to the time-average number of jobs
in an M/M/1 queue with a static service rate µ = 1. Thus, any reactive
K-threshold policy outperforms the static service rate model.

Proof. See Appendix B.1.

This is illustrated in Figure 3.6. The time-average number of jobs in the
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Figure 3.6: Time-average queue length for static service rate and different
values of p versus arrival rate.

system of an M/M/1 queue with static service rate and ρ < 1 is given as
E(LM/M/1) = ρ/(1 − ρ). We can observe that Q(r, p, λ, πKR ) converges to
E(LM/M/1) for small p, i.e., E(LM/M/1) provides an upper bound for the time-
average queue length of an M/M/1 queue with flexible capacity. Intuitively,
if the contingent capacity is in the order of r, it has to be applied for a
large fraction of time, EπKR → 1 as p ↓ r, and therefore the flexible capac-
ity management model approaches the static model with µ = 1. On the
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other hand, if p increases, the time-average queue length Q(r, p, λ, πKR ) de-
creases for all λ up to a certain level. We see that for p = {0.51, 0.61, 0.71},
min{Q(r, 0.51, λ, πKR ), Q(r, 0.61, λ, πKR ), Q(r, 0.71, λ, πKR )} is alternating between
the three contingent capacity levels over λ. Naturally, an M/M/1 queue with
µ = 1− r + p provides a lower bound for the time-average queue length of a
system with flexible capacity.

In conclusion, we find that the time-average queue length diverges in the
reactive mode as λ→ 1. However the results of Spencer et al. (2014) and Xu
and Chan (2016) for diversion suggest that there exists an optimal policy tak-
ing into account future information such that the time-average queue length
converges to a (relatively small) constant [36, 49]. This problem is subject of
the subsequent section.

3.5 Solely Forward-Looking Capacity Control
In this section, we assume to know future information regarding arrival and
service times of the jobs within an infinite lookahead window, w = ∞. The
decision to activate the contingent capacity at time t0 is made based on infor-
mation about all future arrivals, i.e., the realizations of the arrival times and
service requirements in the time interval [t0,∞).

After introducing some technical details, we develop the optimal policy
for this setting, prove its feasibility and derive an expression for the time-
average queue length. Based thereupon, we prove asymptotic optimality of
the policy as λ → 1. We then investigate further properties of the policy
and the resulting time-average queue length and provide numerical results to
illustrate and validate our results.

3.5.1 Solely Forward-Looking Policy

Job arrivals to the system occur according to a Poisson process {A(t) : t ∈
R+}, A(t) ∈ Z+, with arrival rate limt→∞A(t)/t = λ ∈ (1−r, 1]. When devel-
oping the solely forward-looking policy (with infinite lookahead window), we
assume to have perfect knowledge regarding the realization of this stochastic
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process. Define the service token generation process of the base capacity server
as a Poisson process with rate (1−r) as {S1(t) : t ∈ R+}, S1(t) ∈ Z+. We also
assume to have perfect knowledge regarding the realization of this stochastic
process. The number of jobs in the system {X0(t) : t ∈ R+}, X0(t) ∈ Z, is
therefore given as

X0(t) = A(t)− S1(t).

Since (1 − r) < λ, X0 is transient. Note that X0, also referred to as doubly-
infinite queue, can have negative values (if more service tokens are produced
than consumed), because the service token process is independent of the state
of the system. Given any doubly infinite queue X, the corresponding queue
length process {Q(t) : t ∈ R+}, Q(t) ∈ Z+, is defined as the reflected version
of X, where {Y (t) : t ∈ R+}, Y (t) ∈ Z+, denotes the reflection map or
regulator,

Q(t) = X(t) + Y (t) = X(t) + sup
0≤s≤t

[−X(s)]+.

Here, [·]+ = max{·, 0}. Thus, the initial queue length process, which is the
queue length process if only the base capacity is applied, is given as Q0(t) =
A(t)− S1(t) + Y0(t).

Future information means that, although interarrival and service times are
random variables, we know their realizations in the future. This is illustrated
in Figure 3.7. If we are now at time t0, no future information (w = 0) means
that we only know the initial queue length process from the past (upper chart).
Future information (w > 0) implies that we know the times when jobs arrive
and their service requirements (lower chart). Thus, we can compute the future
initial queue length process in the interval [t0, t0 + w] and we will focus on
effectively using this information in the remainder of the section.

The embedded discrete-time process of Q(t) is given by {Q[n] : n ∈ Z+},
where Tn ∈ R+ is the corresponding time of the n-th event in Q(t), i.e.,
a job arrival or a job departure after generation of a service token. The
values of Q[n] are well defined as the sample paths of Poisson processes are
right-continuous with left limits (RCLL) almost surely. Therefore, Q[n] =
Q(Tn+) = Q(Tn), where Tn+ = limε↓0 Tn + ε, and Q[n − 1] = Q(Tn−) =
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Figure 3.7: Illustration of future information with the initial queue length
process Q0.

Q(Tn−1).
With the solely forward-looking policy, we assume that the server gener-

ates service tokens according to a non-stationary Poisson process with rates
(1 − r) or (1 − r + p) if switched to high capacity. The service tokens are
either consumed instantaneously when the system is not empty or wasted if
the system is empty. Define Q2(t), X2(t) and Y2(t) as the corresponding pro-
cesses after applying the feasible solely forward-looking policy with infinite
lookahead window π∞F .

Lemma 3.1. With infinite lookahead window, there exists a feasible solely
forward-looking policy such that Y2(t) = Y0(t), for all t ∈ R+, resulting in a
time-average queue length which is finite almost surely as λ→ 1.

Proof. Since X0(t) is a transient random walk with positive drift on Z, its
all-time minimum −M = −maxt∈R+ Y0(t), where Y0(t) denotes the reflection
map of X0(t), is geometrically distributed with parameter (1− r)/λ < 1 and
thus finite almost surely. Y0(t) accounts for the total number of service tokens
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wasted until time t and is increasing. Therefore, if we consider the family of
solely forward-looking policies such that for the reflection map of the resulting
process Y2(t) = Y0(t) ≤ M, ∀t ∈ R+, i.e., no service tokens are wasted once
the all-time minimum −M of X0(t) has been reached, it follows instantly from
the functional strong law of large numbers (FSLLN) that there must exist a
feasible solely forward-looking policy with (1− r) + Eπ∞F p ≥ λ such that the
resulting time-average queue length is finite almost surely.

More specifically, there exists a policy such that if (1 − r) + Eπ∞F p = λ

and Y2(t) = Y0(t) ≤ M, ∀t ∈ R+, X2(t) has a drift of zero. The expected
difference between a stochastic process with a drift of zero and a finite lower
bound −M is finite. This concludes the proof.

In order to define a feasible solely forward-looking policy meeting the re-
quirements stated in Lemma 3.1, we need some further definitions. Given a
lookahead window size of w ∈ R+, define W (n) ∈ Z+ as the window size with
respect to the discrete-time initial queue length process Q0[n],

W (n) = sup{k ∈ Z+ : Tn+k ≤ Tn + w},

where Tn ∈ R+ denotes the time of the n-th event in Q0(t), i.e., all events in
A ∪ S1.14 For x ∈ Z+, define the set of indices

U(Q, n, x) = inf{j ∈ {1, . . . , x} : Q[n+ j] = Q[n]− 1},

yielding the first index n + j ∈ {n + 1, . . . , n + x} for which the process
Q[n + j] drops below Q[n]. Based on Spencer et al. (2014), we define the
no-job-left-behind (NOB) arrivals to the system with base capacity (1− r) as

Ψw = {n ∈ Φ(Q0) : U(Q0, n,W (n)) =∞},

where Φ(Q) = {n ∈ Z+ : Q[n] > Q[n − 1]} describes the locations of all
arrivals in the process Q[n] and Φ̄(Q) = Z+ \Φ(Q) defines all departures [36].
14Although we do not consider finite lookahead windows in first part of this section, we
introduce the notation now for completeness. More details regarding finite lookahead
windows will be given in Section 3.7.
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Define the NOB arrival process as

AwΨ(t) = |{n ∈ Ψw : Tn ≤ t}|,

where | · | denotes the cardinality. AwΨ(t) counts the number of NOB arrivals
until time t, is RCLL and increasing and ĀwΨ(t) denotes all non-NOB arrivals,
ĀwΨ(t) = A(t)− AwΨ(t).

The following lemma will be needed in order to obtain the time-average
queue length of the flexible capacity management model.

Lemma 3.2. Fix r ∈ (0, 1), p =∞ and λ ∈ (1−r, 1]. With infinite lookahead
window and if we switch to the high capacity at all NOB arrival instants,

π∞NOB(t) =

1, if t ∈ {Tn}n∈Ψ∞

0, otherwise,

the time-average queue length is given as

Q(r,∞, λ, π∞NOB) = 1− r
λ− (1− r) . (3.4)

Proof. The proof is based on Proposition 2 in Spencer et al. (2014) [36].
They consider future information in a setting where the server has capacity
(1 − r), arrivals occur at rate λ ∈ (1 − r, 1] and a fraction r of all arrivals
can be diverted. Due to the service token model, switching on the contingent
capacity p =∞ at a NOB arrival instant and thus instantaneously producing
a service token that is consumed by the first job in line corresponds to a
diversion of a NOB job in Spencer’s model. Therefore, as they derive that
the time-average queue length is given as the time-average number of jobs in
an M/M/1 queue with ρ = 1−r

λ
< 1, given in Equation (3.4), the same holds

for the flexible capacity management model with p =∞ and π∞NOB as defined
above.

Denote the queue length process obtained for the parameters defined in Lemma
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3 Flexible Capacity Management with Future Information

3.2 as Q1. It is given as

Q1(t) = Y0(t) + Ā∞Ψ (t)− S1(t). (3.5)

Furthermore, the queue length process Q2 with finite contingent capacity
p <∞ can be computed as

Q2(t) = Y0(t) + A(t)− S1(t)− S2($∞F (t)), (3.6)

where

$w
F (t) =

t∫
0

πwF (s) ds.

S2($∞F (t)) denotes the process counting the additional service tokens pro-
duced at the contingent capacity rate p when the contingent capacity is active,
i.e., π∞F (t) = 1. Finally, we can define the solely forward-looking policy.

Theorem 3.3. Fix r ∈ (0, 1) and p > r. Given a queue length process Q1,
define the solely forward-looking capacity control policy with infinite lookahead
window π∞F such that the contingent capacity is activated if and only if Q2(t) >
Q1(t),

π∞F (t) =

1, if Q2(t) > Q1(t),

0, otherwise.
(3.7)

The solely forward-looking policy π∞F is feasible for all λ ∈ (1 − r, 1]. More
precisely,

Eπ∞F = λ− 1 + r

p
≤ r

p
.

Before providing the proof of the theorem, we establish some intuition regard-
ing the queue length processes Q1 and Q2 as well as the solely forward-looking
policy π∞F .

First, we consider the definition of the queue length process with p = ∞
(3.5), which corresponds to a system with constant service rate and diversion
as described in Lemma 3.2. The non-decreasing process Y0 accounts for any
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3.5 Solely Forward-Looking Capacity Control

wasted service tokens until the first NOB arrival and thus remains constant
once the all-time minimum of the initial doubly-infinity queue X0 has been
reached, as stated in Lemma 3.1. Ā∞Ψ corresponds to the Poisson arrival
process without NOB arrivals. The NOB arrivals, which are all arrivals after
which the doubly-infinity queue X0 will not be smaller than its current value
again, are (virtually) deleted, thus leading to recurrence of the resulting queue
length process. The NOB arrival process A∞Ψ increases with step size one and
can be thought of as the drift of X0. Also, the NOB arrivals describe the
earliest arrivals such that, if they are deleted, no (more) service tokens are
wasted, i.e., if considering a system with job-specific service time, the server
is never idle. Spencer et al. (2014) use this result by comparing the queue
length process to one obtained using a greedy deletion rule to argue that the
NOB policy π∞NOB is asymptotically optimal as λ→ 1 [36].

Q1 serves as a lower bound for any queue length process obtained with
p < ∞, i.e., we want to find a feasible solely forward-looking policy such
that the difference between Q2 and Q1 is minimal. This is exactly what we
obtain with the definition of Q2 in combination with π∞F , (3.6) and (3.7). Y0 is
included in the definition of Q2 for the same reason as in Q1. But in contrast,
in Q2 we cannot delete arrivals, but need to produce a service token (at finite
generation rate) for each arrival. Thus, arrivals occur according to the original
Poisson process A. Once the low capacity is active, i.e., π∞F (t) = 0, service
tokens are produced according to S1. S2 is only increasing when π∞F (t) = 1
and constant otherwise, S2($∞F (t)).

The solely forward-looking policy is such that the server switches on the
contingent capacity as soon as a NOB arrival occurs (at NOB arrivals instants
Q2(t) must exceed Q1(t), as the arrival is not deleted) and only switches back
to low capacity once all NOB arrivals have been accounted for. Figure 3.8
illustrates the three different queue length processes. A simulated version of
the processes is shown in Figure 3.9.

Proof of Theorem 3.3: The proof is based on the amount of extra arrivals that
need to be served by the contingent capacity compared to the queue length
process obtained by deleting NOB arrivals. We can rewrite the queue length
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Figure 3.8: Illustration of the solely-forward looking policy: The upper pro-
cess illustrates the initial queue length process Q0. The little orange boxes
correspond to the NOB arrivals, i.e., all arrivals for which the queue length
process is not lower again. The process in the middle corresponds to the
process using the π∞NOB policy for p =∞. NOB arrivals are virtually deleted.
Finally, the lower process is the queue length process when applying the solely
forward-looking policy π∞F . NOB arrivals are not deleted, but compensated
for until Q2 coincides with Q1.

process with solely forward-looking capacity control as

Q2(t) = Q1(t) + [Q2(t)−Q1(t)] = Q1(t) + δQ(t).

By using the definitions (3.5) and (3.6) of the processes Q1 and Q2 we find
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Figure 3.9: Snapshot of a queue with solely forward-looking flexible capacity
control, where r = 0.2, p = 0.4 and λ = 1. Displayed are the processes Q1
(purple), Q2 (blue) and δQ (green) and the solely forward-looking policy π∞F
(turquoise). The yellow circles indicate NOB arrivals.

that

δQ(t) = Y0(t)− Y0(t) + A(t)− Ā∞Ψ (t)− S1(t) + S1(t)− S2($∞F (t))
= A∞Ψ (t)− S2($∞F (t)).

Therefore, the time share that the high capacity is active corresponds to the
probability that δQ > 0. From the FSLLN we can deduce the following
corollary.

Corollary 3.1. The time-average rate of NOB job arrivals is given as

lim
t→∞

A∞Ψ (t)
t

= lim
t→∞

A(t)− S1(t)
t

= λ− (1− r).

If the contingent capacity was always active, additional service tokens would
be produced according to a Poisson process with rate p, and we know from
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the FSLLN that
lim
t→∞

S2(1{t ∈ R+})
t

= p.

But, as the number of additional service tokens produced until time t by
the contingent capacity cannot exceed the number of NOB arrivals that have
occurred until time t, since otherwise Q2(t) < Q1(t) (δQ(t) < 0), and in the
long run both numbers are equal, it follows that

λ− (1− r) = lim
t→∞

S2($∞F (t))
t

= Eπ∞F p

=⇒ Eπ∞F = λ− 1 + r

p
.

This concludes the proof of the theorem.

From this theorem, we observe that the time share the high capacity is active
is linearly increasing in λ ∈ (1 − r, 1] and limλ↓(1−r) Eπ∞F = 0. This implies
that if the arrival rate approaches its lower bound, the contingent capacity is
not used any longer, and the system corresponds to an M/M/1 queue with
arrival rate λ = 1 − r and static service rate µ = 1 − r. Therefore, as it
can be found when analyzing the analytic expression for the time-average
queue length derived subsequently, the queue length process should become
transient as λ ↓ (1− r), limλ↓(1−r)Q(r, p, λ, π∞F ) =∞. Having the definitions
(3.5) and (3.6) of Q1 and Q2 in mind, we can assume that the time-average
queue length of the queue length process with solely forward-looking capacity
control Q2 will be of the following form:

Q(r, p, λ, π∞F ) = Q(r,∞, λ, π∞NOB) + x, (3.8)

where x ∈ R+. Formally, x is given as

x = lim sup
N→∞

E
(

1
N

N∑
n=1

δQ[n]
)
,

68



3.5 Solely Forward-Looking Capacity Control

where δQ[n] is the embedded discrete-time process of

δQ(t) = A∞Ψ (t)− S2($∞F (t)).

δQ(t) corresponds to the queue length process of an IPP/M/1 queue with
service rate p and time-average arrival rate λ−(1−r), as given in Lemma 3.1,
where IPP stands for interrupted Poisson process.15 The time-average queue
length of an IPP/M/1 queue can only be computed numerically using matrix-
analytic methods, see Ibe (2013), Section 12.5 [22]. However, as we already
have some insights regarding the limiting behavior of all three components in
equation (3.8), we can approximate x by a simple expression. First, assume
that λ ↑ 1 and p ↓ r, i.e., µ2 ↓ 1. Then, the high capacity will always be active
and the system corresponds to an M/M/1 queue with an arrival and service
rate of 1. Therefore, Q(r, p, λ, π∞F )→∞, and, since Q(r,∞, λ, π∞NOB) = (1−
r)/r, we can conclude that x→∞. Next, consider the case where λ ∈ (1−r, 1]
and p ↑ ∞. This corresponds to the M/M/1 system with diversion described in
Lemma 3.2, and since Q(r, p, λ, π∞F ) = Q(r,∞, λ, π∞NOB) = (1− r)/r it follows
that x = 0. The M/M/1 system with diversion provides a lower bound for
any system with finite contingent capacity. If p is larger than (and not to
close to) r and λ ↓ (1 − r), we know that Q(r, p, λ, π∞F ) → ∞. Since also
Q(r,∞, λ, π∞NOB)→∞, x can be any number in R+∪{∞}. Finally, if, for the
same system, λ ↑ 1 we know from Lemma 3.1 that Q(r, p, λ, π∞F ) ∈ R+ \{∞},
and since Q(r,∞, λ, π∞NOB) = (1− r)/r it follows that x ∈ R+ \ {∞}.

We know that the queue length process Q2 is larger than 0 when the
high capacity is active. The expected number of jobs present in a non-empty
M/M/1 queue with arrival rate β, service rate γ > β and load ρ = β/γ < 1

15An IPP is a Poisson process with an ON state where the rate is given as λON
IPP = λ and an

OFF state where λOFF
IPP = 0. The time spent in the ON state is exponentially distributed

with mean 1/(1−r) (idling period of an M/M/1 queue with arrival rate (1−r)). The time
spent in the OFF state has the same pdf as the busy-period distribution of an M/M/1
queue which involves a Bessel function of the first kind and has mean 1/(λ− 1 + r), see
Asmussen (2008), Section III.8c, Corollary 8.7 [2].
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can be computed as

E(L|L > 0) = E(1{L > 0}L)
P(L > 0) =

∑∞
i=1 i(1− ρ)ρi

ρ

= (1− ρ)
ρ

∞∑
i=0

iρi = (1− ρ)
ρ

ρ

(1− ρ)2

= 1
1− ρ.

Therefore, the busy-period queue length of a service token-based M/M/1 sys-
tem with arrival rate α = λ and service rate β = 1− r + p is given as

E(L|L > 0) = β

β − α
= 1− r + p

1− r + p− λ
.

By Theorem 3.3 we know that time share where the queue length process
Q2(t) > Q1(t) is given as Eπ∞F = (λ − 1 + r)/p. Thus, for all {t ∈ R+ :
π∞F (t) = 1}, i.e., where Q2(t) > Q1(t), the expected distance between Q2(t)
and Q1(t) can be approximated as the expected number of jobs in the system
in a busy-period of an M/M/1 queue with arrival rate λ and service rate
1− r + p,

x ∼ Eπ∞F · E(L|L > 0) = λ− 1 + r

p

1− r + p

1− r + p− λ
. (3.9)

Finally, we obtain the following: For r ∈ (0, 1) and p > r, the resulting time-
average queue length for the feasible proactive capacity control policy π∞F can
be approximated as

Q(r, p, λ, π∞F ) ∼ 1− r
λ− 1 + r

+ (λ− 1 + r)(1− r + p)
p(1− r + p− λ) .

As λ → 1, the time-average queue length converges to a finite value almost
surely,

lim
λ→1
Q(r, p, λ, π∞F ) ∼ 1− r

r
+ r(1− r + p)

p(p− r) .

Finally, it remains to be shown that the solely forward-looking policy is asymp-
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totically optimal for heavily loaded systems.

Theorem 3.4. Fix r ∈ (0, 1) and p > r. The solely forward-looking policy
π∞F is asymptotically optimal as λ→ 1,

lim
λ→1
Q(r, p, λ, π∞F ) = lim

λ→1
inf
π∈Π∞

Q(r, p, λ, π),

where Π∞ denotes the family of all feasible policies with infinite lookahead
window.

Proof. Spencer et al. (2014) show that the NOB policy π∞NOB for p = ∞ is
optimal by comparing the resulting queue length process when applying the
policy to the one obtained with a greedy algorithm minimizing the area under
Q1 [36]. Therefore, we only need to show that there exists no policy such that
the time-average excursion above Q1, i.e., the difference between Q2 and Q1,
is smaller than when applying the solely forward-looking policy π∞F .

Lemma 3.3. As λ→ 1, any feasible policy π ∈ Π∞ for which Q(r, p, λ, π) <
∞ almost surely must be such that S2($(t)) ≤ A∞Ψ (t) for all t ∈ R+.

Proof. See Appendix B.2.

The result presented in this lemma shows that, as λ→ 1, any feasible policy
π for which the time-average queue length converges to a finite value must be
such that no service tokens are wasted after the all-time minimum of Q0 was
reached. Therefore, A∞Ψ (t) is an upper bound of S2($(t)). When additionally
considering the solely forward-looking policy π∞F , we find the following lemma.

Lemma 3.4. As λ→ 1, S2($(t)) ≤ S2($∞F (t)) ≤ A∞Ψ (t) for all t ∈ R+.

Proof. See Appendix B.2.

The lemma tells us, for λ→ 1, that there exists no feasible policy π such that
the number of service tokens produced by the contingent capacity until time
t is higher than if the solely forward-looking policy π∞F was used. Therefore,
if we denote δQ†(t) = A∞Ψ (t)− S2($∞F (t)) and δQ‡(t) = A∞Ψ (t)− S2($(t)), it
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follows that

δQ†(t) ≤ δQ‡(t), ∀t ∈ R+,

=⇒ lim sup
N→∞

E
(

1
N

N∑
n=1

δQ†[n]
)
≤ lim sup

N→∞
E
(

1
N

N∑
n=1

δQ‡[n]
)
.

Thus, the time-average excursion above Q1 is minimal for the solely forward-
looking policy π∞F which proves the theorem.

More insights regarding the properties of the solely forward-looking policy and
a simulation study to verify the analytical results are presented in the next
section.

3.5.2 Properties and Numerical Insights

In the previous section we derived an exact expression for the time share the
contingent capacity is active and an approximation for the time-average queue
length. In this section, we provide numerical insights regarding the properties
of the solely forward-looking policy with infinite lookahead window.16 We first
simulate the system for a fixed base capacity (1− r), a contingent capacity p
and a variable arrival rate λ. Then, we fix r ∈ (0, 1) and λ = 1 and vary the
contingent capacity p > r.17

To simulate the performance of the solely forward-looking policy, we fix
r = 0.2 and p = 0.4, i.e., the contingent capacity can be used 50% of the
time. Figure 3.10 displays the time-average queue length versus the arrival
rate. The time-average queue length diverges as λ ↓ (1− r) which comes from
the NOB part of the approximation, limλ↓(1−r)Q(r,∞, λ, π∞NOB)→∞. We see
that the accuracy of the approximation decreases in this range, which makes
sense since in this limit the queue behaves like an M/M/1 queue with arrival
and service rate of (1 − r) and load limλ↓(1−r) ρ = 1−r

λ
= 1. For λ > 0.85,

there is practically no difference between the approximation and the results

16For the sake of conciseness, we restrict the comparison of analytical results and simulation
to this section, as the expression for time-average queue length for the solely forward-
looking policy is an approximation and all other expressions are exact analytical results.

17The simulation was performed with MATLAB.
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Figure 3.10: Time-average queue length for solely forward-looking policy with
r = 0.2 and p = 0.4: the dashed line corresponds to the analytical solution,
the solid line to the mean of 40 simulation runs per value of λ (with N = 5, 000
events each) and the gray area to the 80% confidence interval of the simulation.

of the simulation. As we are specifically interested in the limit λ→ 1, we can
conclude that the approximation performs very well if we fix both capacity
levels and vary the arrival rate. Figure 3.11 displays the corresponding results
for the time share the contingent capacity is active versus the arrival rate. We
see that the analytical results and the results of the simulation coincide for
all λ ∈ (1− r, 1].

Next, we fix r = 0.2 and λ = 1 and compare the analytical and simulated
results for varying p > r. Figure 3.12 illustrates the time-average queue length
versus the contingent capacity. We can observe that the approximation and
the simulated mean time-average queue length coincide for all p > r. Thus,
the approximation performs very well for fixed r and λ and varying p. As p ↓ r,
the time-average queue length diverges because we obtain an M/M/1 queue
with arrival and service rate of 1. On the other hand, the queuing system
with diversion (p =∞) provides a lower bound to the solely forward-looking
flexible capacity management policy. Finally, the corresponding results for
the time share the contingent capacity is active are displayed in Figure 3.13.
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Figure 3.11: According Eπ∞F for simulation displayed in Figure 3.10, where
the black line corresponds the the (mean) simulated result and the dashed
red line corresponds to the analytical result. The dark gray area corresponds
to the 80% confidence interval and the light gray region indicates the feasible
region.

We see that, again, the analytical result coincides with the mean of the sim-
ulated result. In conclusion, we observe that the approximate expression for
the time-average queue length and the exact analytical result for the time
share the contingent capacity is active are very accurate with respect to the
corresponding mean results of the simulation.

In the remainder of this section we will compare the performance of the
reactive and the solely forward-looking flexible capacity management policies.
Therefore, the analytical results are plotted in Figure 3.14 versus the arrival
rate. The first and most important difference we can observe is that the time-
average queue length converges for the solely forward-looking policy as λ→ 1,
while it diverges for the reactive policy. For lower arrival rates, however,
the reactive policy outperforms the solely forward-looking policy. This may
seem counter-intuitive at first; it makes sense, however, when considering the
trajectories of the time share the contingent capacity is active. The solely
forward-looking policy is strictly more efficient than the reactive policy: while
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Figure 3.12: Time-average queue length for solely forward-looking policy with
r = 0.2 and λ = 1: the dashed line corresponds to the analytical solution, the
solid line to the mean of 40 simulation runs per value for p (with N = 5, 000
events each) and the gray area to the 80% confidence interval of the simulation.
The horizontal dashed line is the lower bound obtained by taking p = ∞
(diversion). The horizontal black line is the corresponding simulated result.

service tokens are wasted when using the reactive policy, no service tokens
are wasted when applying the solely forward-looking policy. We can observe
that for all λ ∈ (1 − r, 1], EπKR ≥ Eπ∞F . The solely forward-looking policy is
constructed such that it is asymptotically optimal as λ → 1, but it does not
perform well for low arrival rates. Thus, in the next section, we will merge
the reactive and the solely forward-looking policy to obtain a hybrid policy.
This proactive policy will combine the advantages of both policies.

Finally, it is interesting to notice that the time-average queue length is
not monotonically decreasing in λ, i.e., the exists a distinct λ < 1 where
Q(r, p, λ, π∞F ) is minimal. When considering a queueing system with diversion,
i.e., p =∞, the time-average queue length is strictly monotonically decreasing
in the arrival rate. But since we need to add an additional term in the
approximation for the queueing system with finite contingent capacity, which
is strictly monotonically increasing in λ, the minimum is not necessarily always
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Figure 3.13: According Eπ∞F for simulation displayed in Figure 3.12, where
the black line corresponds the the (mean) simulated result and the dashed
red line corresponds to the analytical result. The dark gray area corresponds
to the 80% confidence interval.

obtained at λ = 1. Yet, the time-average queue length for the solely forward-
looking policy with finite contingent capacity is convex in λ.

We could also use traditional optimization tools, such as a greedy algo-
rithm, to determine when to use the contingent capacity (if we restrict the
lookahead window to some large finite value). We, however, have provided
a general policy and show that it is asymptotically optimal as λ → 1, inde-
pendent of the exact realization of the stochastic processes. Also, the policy
enables us to find an expression for the time-average queue length, which
is generally not possible if optimization is used. Additionally, our approach
needs less computational time than solving an optimization model. Spencer
et al. (2014) show that their policy, which determines which job should be
diverted based on future information, yields the same result as applying a
greedy algorithm [36]. The same holds for our problem: As λ→ 1, our policy
minimizes the queue length at any point in time while, on the other hand, en-
suring that no service tokens are wasted. Using the policy results in the lowest
possible realization of a queue length process such that no service tokens are
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Figure 3.14: Performance of the solely forward-looking versus the reactive
policy for r = 0.2 and p = 0.4. The red lines correspond to the reactive and
the blue lines to the solely forward-looking policy. dashed lines illustrated the
time share the high capacity is active (left y-axis). Solid lines correspond to
the time-average queue length (right y-axis).

wasted. Thus, as λ → 1, the result obtained by using the policy coincides
with the result obtained through optimization.18 Finally, as argued in Section
3.7, we can transfer the concepts developed in this section to settings with
finite lookahead windows, where optimization cannot yield the best results as
only a local minimum for the time interval considered can be achieved.

3.6 Proactive Capacity Control
Because the solely forward-looking policy is only asymptotically optimal as
λ→ 1, we propose a hybrid policy, referred to as proactive policy, combining
the reactive and the solely forward-looking policy such that the time-average
queue length is minimized for all λ ∈ (1−r, 1]. The idea of the proactive policy
is that the contingent capacity is activated if Q2(t) > Q1(t) (solely forward-

18The argument only holds for λ → 1, as the solely forward-looking policy is only asymp-
totically optimal.

77



3 Flexible Capacity Management with Future Information

looking part), but also if Q2(t) ≤ Q1(t) and Q2(t) > K̃(r, p, λ) (reactive part),
where K̃ ∈ Z+ denotes the proactive threshold that remains constant over
time. In this section, we still assume that the lookahead window is infinite,
w =∞. The feasible proactive capacity control policy is defined as follows.

Theorem 3.5. Fix r ∈ (0, 1), p > r and let

K̃(r, p, λ) =
⌈
log 1−r

λ

λ(λ− 1)(λ+ p+ r − 1)
pr(r − 1)

⌉
.

Then, the proactive capacity control policy

π∞P (t) =

1, if Q2(t) > min{Q1(t), K̃(r, p, λ)},

0, otherwise,

is feasible for all λ ∈ (1−r, 1]. More precisely, the time share the high capacity
is active is given as

Eπ∞P = λ− 1 + r + p

p
− ρ̃K̃+1

1 − 1
ρ̃1 − 1 ν̃(0|πK̃R ) ≤ r

p
,

with ρ̃1 and ν̃(0|πK̃R ) as defined below.

Proof. The contingent capacity is always active if Q2(t) > Q1(t). Thus, we
only have to look at the remaining part. The time share the contingent
capacity is active in the proactive mode can be stated as

Eπ∞P = Eπ∞F + P(Q1 > K̃).

In order to remain feasible and with Eπ∞F as known from the previous section,
we can conclude that the proactive threshold must be such that

P(Q1 > K̃) ≤ r

p
− λ− 1 + r

p
= 1− λ

p
.

Therefore, similar as in the proof of Theorem 3.1, we can compute the thresh-
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old as
K̃(r, p, λ) = min

{
n ∈ Z+ : P(Q1 > n) ≤ 1− λ

p

}
.

From Lemma 3.2 we know that the queue length process Q1 can be described
as the process keeping track of the number of jobs in the system of an M/M/1
queue with arrival rate (1 − r) and service rate λ. When introducing the
proactive threshold at which the contingent capacity is activated, the service
rate will change to (λ+ p) if Q1(t) > K̃. Therefore, with ρ̃1 = (1− r)/λ and
ρ̃2 = (1− r)/(λ+ p), we can solve

P(Q1 >
ˆ̃
K) = 1− ρ̃

ˆ̃
K+1
1 − 1
ρ̃1 − 1 ν̃(0|π

ˆ̃
K
R ) = 1− λ

p
(3.10)

with

ν̃(0|π
ˆ̃
K
R ) =

 ρ̃ ˆ̃
K
1 − 1
ρ̃1 − 1 + ρ̃

ˆ̃
K
1

1− ρ̃2

−1

directly and obtain the result stated for the proactive threshold in the theorem
with K̃(r, p, λ) = d ˆ̃

Ke. The time share the contingent capacity is active for
the proactive mode, Eπ∞P , follows directly from equation (3.10) and Theorem
3.3 and thus the proof is concluded.

With Theorem 3.2 and the approximation (3.9), the time-average of the queue
length process resulting from proactive capacity control with infinite looka-
head window can be determined as

Q(r, p, λ, π∞P ) =
(K̃ − 1)ρ̃K̃+1

1 − K̃ρ̃K̃1 + ρ̃1

(ρ̃1 − 1)2 + ρ̃2 + K̃(1− ρ̃2)
(1− ρ̃2)2 ρ̃K̃1

 ν̃(0|πK̃R )

+ (λ− 1 + r)(1− r + p)
p(1− r + p− λ) .

Thus, we can observe that limλ↓(1−r)Q(r, p, λ, π∞P ) = limλ↓(1−r)Q(r, p, λ, πKR )
and limλ↑1Q(r, p, λ, π∞P ) = limλ↑1Q(r, p, λ, π∞F ).

An illustrative example of the processes involved in the proactive mode is
displayed in Figure 3.15. We can observe that the activation of the contingent
capacity is triggered by NOB arrivals and if the queue length process Q2

79



3 Flexible Capacity Management with Future Information

t

Q
u
eu

e
le
n
g
th

0

5

10

15

Figure 3.15: Simulation of the queue length process with proactive control
with r = 0.2, p = 0.4 and λ = 0.95. The proactive threshold was computed as
K̃(0.2, 0.4, 0.95) = 6 (red line). The blue line corresponds to Q2, the purple
one to Q1 and the yellow circles to NOB arrivals. We see that π∞P (t) = 1
(green line) if Q2(t) > Q1(t) (left part) or Q2(t) > K̃(r, p, λ) (right part).

.

exceeds the threshold level K̃.

Proposition 3.2. For all λ ∈ (1− r, 1],

Q(r, p, λ, π∞P ) ≤ Q(r, p, λ, π∞F ),

i.e., the proactive policy dominates the asymptotically optimal policy.

Proof. See Appendix B.3.

When comparing the time-average queue length resulting from the proactive
policy to the one obtained with the reactive policy, it can be shown that, for
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all λ ∈ (1− r, 1],
( ˆ̃
K − 1)ρ̃

ˆ̃
K+1
1 − ˆ̃

Kρ̃
ˆ̃
K
1 + ρ̃1

(ρ̃1 − 1)2 + ρ̃2 + ˆ̃
K(1− ρ̃2)

(1− ρ̃2)2 ρ̃
ˆ̃
K
1

 ν̃(0|π
ˆ̃
K
R )

+ (λ− 1 + r)(1− r + p)
p(1− r + p− λ)

≤

(K̂ − 1)ρK̂+1
1 − K̂ρK̂1 + ρ1

(ρ1 − 1)2 + ρ2 + K̂(1− ρ2)
(1− ρ2)2 ρK̂1

 ν(0|πK̂R ).

Note that it is not always true that Q(r, p, λ, π∞P ) ≤ Q(r, p, λ, πKR ), ∀λ ∈
(1−r, 1], due to the ceiling function in the definitions of K(r, p, λ) = dK̂e and
K̃(r, p, λ) = d ˆ̃

Ke. Thus, there exist triples (r̄, p̄, λ̄), where r̄ ∈ (0, 1), p̄ > r̄

and λ̄ ∈ (1 − r, 1], such that Q(r̄, p̄, λ̄, π∞P ) > Q(r̄, p̄, λ̄, πKR ). However, the
overshoot of the time-average queue length obtained using the proactive policy
will always be small and occur for low arrival rates. Also, since the proactive
policy is more efficient than the reactive policy, meaning that less service
tokens are wasted on average, at arrival rates where these overshoots occur
we find that Eπ∞P (r̄, p̄, λ̄) < EπKR (r̄, p̄, λ̄). Finally, for high arrival rates the
proactive policy necessarily always dominates the reactive policy,

lim
λ→1
Q(r, p, λ, π∞P ) < lim

λ→1
Q(r, p, λ, πKR ),

for all r ∈ (0, 1) and p > r.
Finally, Figure 3.16 illustrates the performance of all three policies. We

find that, with r = 0.2 and p = 0.4, the proactive policy dominates the
reactive and the solely forward-looking policy for all λ ∈ (0.8, 1].

3.7 Finite Lookahead Windows
So far we assumed to know all future information, w = ∞, which is unlikely
the case with practical applications. Nevertheless, we can learn from the poli-
cies defined for infinite lookahead and modify them to work well in situations
with a finite lookahead, w <∞. However, in this case, we need to be careful in
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Figure 3.16: Performance of the proactive policy versus the reactive and the
solely forward-looking policy for r = 0.2 and p = 0.4. The think black, red
and blue lines correspond to the time-average queue lengths when applying
πKR , π∞F and π∞P , respectively (right y-axis). The dashed lines represent the
corresponding time shares the high capacity is active (left y-axis).

order to ensure feasibility of the policy (while achieving a finite time-average
queue length). In this section, we first provide insights regarding the effects
of a finite lookahead window. Based thereupon, we define a set of parameters
for which the proactive policy developed for infinite lookahead windows is also
feasible in case of finite lookahead windows. Finally, we provide some first
insights regarding potential modifications of πwP to ensure feasibility for all
λ ∈ (1− r, 1) given limited future information.

When using the proactive policy as defined in Section 3.6 for finite looka-
head windows, the number of arrivals that will be characterized as NOB ar-
rivals will exceed the number of NOB arrivals identified with infinite lookahead
window, i.e., with w <∞,

Ψ∞ ⊆ Ψw =⇒ |{n ∈ Ψ∞ : Tn ≤ t}| ≤ |{n ∈ Ψw : Tn ≤ t}|, ∀t ∈ R+.

All arrivals that are characterized as NOB arrivals using an infinite lookahead
window are also characterized as NOB arrivals if only a finite lookahead win-
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dow is available (real NOB arrivals). However, some additional arrivals will be
characterized as virtual NOB arrivals if the lookahead window is finite. Thus,
if we apply the proactive policy, the time-average number of NOB arrivals will
be larger than r as λ→ 1,

lim
λ→1

lim
t→∞

A∞Ψ (t)
t

= r < lim
λ→1

lim
t→∞

AwΨ(t)
t

= r + χ(w)

=⇒ EπwP >
r

p
,

where χ(w) > 0 if w < ∞. This implies that the proactive policy is not
feasible if w <∞ as λ→ 1.

Proposition 3.3. The time-average number of arrivals characterized as NOB
arrivals given a finite lookahead window of length w <∞ can be computed as

lim
t→∞

AwΨ(t)
t

= λ− (1− r)F1−r,λ(w), (3.11)

where

F1−r,λ(w) =
w∫

0

ρ
−1/2
1
x

e−(λ+1−r)xI1

(
2x
√
λ(1− r)

)
dx

denotes the cumulative distribution function of the busy-period of an M/M/1
queue with arrival rate λ and service rate (1− r).19

Proof. See Appendix B.4.

From this proposition we learn that the number of virtual NOB arrivals can be
computed as χ(w) = (1− r)[1− F1−r,λ(w)] and we find the following insights
regarding its trajectory: As λ→ 1, limw↑∞ χ(w) = 0, i.e., there are no virtual
NOB arrivals if the lookahead window is infinite, and limw↓0 χ(w) = 1 − r,
i.e., all arrivals are characterized as NOB arrivals if we apply the proactive
policy and have no information regarding the future. Now, define (wλ, λw) as
the feasibility double. Given an arrival rate λ < 1, it is possible to determine
the minimum length of the lookahead window wλ required for the proactive

19I1(·) denotes the modified Bessel function of the first kind of order one.
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policy to remain feasible,

wλ = F−1
1−r,λ

(
λ− r
1− r

)
, (3.12)

i.e., if w ≥ wλ, the policy πwP is feasible. We find that, as also shown by Xu
(2015), as λ→ 1, there exists no feasible policy yielding a finite time-average
queue length if w < ∞ [48].20 Equivalently, given a lookahead window of
length w, we can compute the maximum possible arrival rate λw such that πwP
is feasible for all λ ≤ λw by solving

λw − (1− r)F1−r,λw(w) = r (3.13)

Note that equations (3.12) and (3.13) can only be solved numerically.
Finally, we want to provide some first ideas regarding potential modifica-

tions of the proactive policy for the case where feasibility is not given, i.e.,
λ > λw or w < wλ. The contingent capacity is either activated at an ar-
rival instant if we know, by relying on limited future information, that it is a
critical arrival, or if the current queue length exceeds a static threshold level.
However, ”critical” arrivals, which were all arrivals we characterized as NOB
in the case of an infinite lookahead window, need to be defined differently
than in Section 3.5. We know that a policy is optimal if the rate of NOB job
arrivals does not exceed λ− (1−r) (Corollary 3.1). Thus, we impose a second
condition on NOB job arrivals to ensure that this rate is not exceeded given
limited future information: myopic NOB arrivals can be defined as

Ψw =
{
n ∈ Φ(Q0) : inf

s∈[0,w]
Q0(Tn + s) ≥ Q0(Tn) ∧Q0(Tn + w) ≥ Q0(Tn) + J

}
.

This means that an arrival, event n ∈ Φ(Q0), will be characterized as myopic
NOB arrival if the initial queue length process we can compute for the time
interval [Tn, Tn + w] is always larger than its current value (same condition
as for NOB arrivals with w = ∞) and if the initial queue length process at

20While Xu’s results are obtained considering an M/M/1 queue with future information for
diversion decisions, the results also apply for flexible capacity management.
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time Tn + w, i.e., at the end of our lookahead window, is at least J ∈ Z+

jobs larger than its current value. Thus, by appropriately choosing J , we can
ensure that the rate of myopic NOB job arrivals does not exceed λ− (1− r).

With this we have shown that the proactive policy can also be used for
finite lookahead windows if certain conditions are met. Additionally, having
defined a proactive policy for an infinite lookahead windows enables us to
derive a modified proactive policy given limited future information. However,
this policy, its properties and the resulting time-average queue length need to
be evaluated numerically and we leave this problem for future research.

3.8 Conclusion and Outlook
In this paper, we focused on deriving flexible capacity control policies taking
into account different information. The reactive policy only considers the
current queue length, while the solely forward-looking policy only takes future
information (in an infinite lookahead window) into account. Both policies are
(asymptotically) optimal with respect to the families of feasible policies given
no and full future information, respectively. We then combined both policies
to what we termed a proactive capacity control policy: a policy that activates
the contingent capacity depending on the current queue length and future
information.

While, when developing the proactive policy, we assumed to know fu-
ture information within an infinite lookahead window, we provided some first
insights regarding finite lookahead windows. We showed under which con-
ditions the proactive policy remains feasible and how it can be modified if
these conditions are not met. We see a detailed analysis of this problem as
an opportunity for future research.

In practice, if predictions regarding future job arrivals to a system are
available, those predictions may be noisy. Therefore, it could be interesting
to investigate the robustness of the capacity control policies developed in
this paper with respect to observational noise. Xu and Chan (2016) show
numerically that future information can still be valuable, also if it is noisy
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(to a certain degree) for an M/M/1 queue with diversion [49]. In light of
these results, it would be interesting to also analyze the robustness of flexible
capacity control policies.

Finally, our results are not only relevant for the development of optimal
control policies for a flexible capacity. Presumably, the optimal size of the
base and contingent capacities will change when (more) future information is
available. As our expression for the time-average queue length of the proactive
policy is a function of r and p, the capacity sizing problem can be solved by
minimizing a cost function and taking r ∈ (0, 1) and p > r as optimization
variables. We consider this a promising avenue for future research.

86



4 Queueing with Limited Future
Information

Predictive analytics foster accurate forecasting of the arrival times and service
requirements of customers or jobs arriving to a queue. For example, state-of-
the-art aircraft engines are equipped with sensors that transmit data in real-
time and thus allow prediction of the time an engine arrives at the maintenance
facility and the service requirements. In Kurz and Pibernik (2016), we develop
flexible capacity control policies taking into account future information for a
service provider who overhauls aircraft engines [27]. Spencer et al. (2014)
and Xu and Chan (2016) derive diversion policies taking into account future
information [36, 49]. However, so far all policies are tailored for the case of
infinite future information, i.e., with the assumption that future information
is available from now until infinity. In this paper, we investigate policies for
diversion and capacity control if future information is only available within
a finite lookahead window. First, we define reactive policies depending on
the length of the available lookahead window. Then, we perform a numerical
analysis to investigate the performance of the proactive policies with respect to
the resulting mean queue length. We find that future information is valuable,
also if only available within a short lookahead window. In comparison to their
reactive, static threshold-based counterparts, the proactive policies lead to a
reduction of the mean queue length by up to 71 % for diversion and 52 % for
flexible capacity. Contrary to expectations, our analysis shows that using less
future information than available can be beneficial in certain circumstances.21

21This paper has been submitted for publication [26].
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4.1 Introduction and Literature Review
Predictive analytics are on the rise in all domains where data is available. The
range of applications covers the prediction of individuals’ behavior to cyber-
physical systems. While a lot of research is focused on developing (machine
learning) algorithms to extract predictive information from data, the actual
usage of this newly available information is oftentimes not well-defined. Busi-
nesses capitalize only around 30 % of the financial potential of big data and
advanced analytics, as found by the McKinsey Global Institute in December
2016 [23]. In this paper, we try to bridge the gap between the availability of
predictive information and its employment, here for the control of queueing
systems. If information regarding arrival and service times of jobs arriving at
a service facility in the future, referred to future information, is available, we
can forecast the workload. Thus, proactive actions can be defined to avoid
demand peaks and therefore prevent the buildup of long queues. There exist
two fundamental operating modes to cope with demand peaks:

a) Diversion–should a job be diverted or admitted to the queue, given that
only a certain number of jobs can be diverted?

b) Flexible capacity–when should a contingent capacity be activated, given it
can only be used for a certain share of the time?

Diversion can for example be realized by using a subcontractor. A flexible
capacity can be achieved by employing temporary workers or using overtime.
Thus, we will develop policies for diversion and capacity control taking future
information into account.22

This research project was originally motivated by the overhaul of air-
craft engines. State-of-the-art engines such as Rolls Royce’s Trent engines
are equipped with sensors that continuously measure and transmit a variety
of parameters. This data can be analyzed to determine the engines’ current
condition and, when taking future flight plans into account, predict its future
condition. Therefore, it is possible to estimate the point in time where the
22We assume that either diversion or flexible capacity can be employed, not both at the
same time.
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engine needs maintenance and the services and spare parts required. Nieto
et al. (2015) develop an algorithm combining support vector machines and
particle swarm optimization to predict the reliability and remaining useful
lifetime of aircraft engines [32]. Sun et al. (2012) use a state space model in
combination with a sequential Monte Carlo method to determine a time-to-
failure distribution based on predicted degradation [40]. This newly available
data can now be used by the maintenance, repair and overhaul (MRO) service
provider to coordinate operations. Kurz (2016) provides more information re-
garding aircraft condition data and MRO operations [25]. In the paper, an
optimization problem is solved to cost-optimally allocate production capaci-
ties. Additionally, it is investigated how aircraft engine condition information
can be used to decrease total costs.

In general, forecasting the workload of queueing systems is a research
topic emerging from various applications. Gans et al. (2015) use parametric
forecasts (with updates) to estimate the arrival rate of incoming calls for a
call center [19]. Sun et al. (2009) and Boyle et al. (2012) develop models to
predict arrivals of patients to emergency departments [12, 41]. They show that
it is not only possible to forecast mean arrival rates for future time intervals,
but also make accurate predictions of the actual arrival counts for optimal
resource planning. Xu and Chan (2016) go one step further and consider the
actual arrival times on a single patient basis [49]. They develop admission
control policies based on information regarding future patient arrivals with
the objective to minimize the mean queue length. This paper advances their
approach.

The paper of Xu and Chan (2016) is based on Spencer et al. (2014) [36].
They were the first to introduce the notion of variable, but predictable arrivals
to a queueing system. The authors use future information to develop diver-
sion policies minimizing the mean queue length. However, they only provide
structural insights for the case where future information is available within
an infinite lookahead window. That is, they assume that they know the exact
arrival times and the speed of the server from now until infinity. Naturally,
reactive policies are used to benchmark the performance of diversion poli-
cies considering future information. There exists a body of work on Markov
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queueing admission control, where the decision maker makes dynamic admis-
sion / diversion decisions in order to optimize certain performance objectives.
Examples for online admission policies can be found in Stidham (1985, 2002)
and the references therein [37, 38].

Additionally, we also consider the control of a flexible capacity, i.e., the
service provider has a base capacity and can activate a contingent capacity
if required. Again, reactive or online capacity control is a well-established
problem, see for example Bekker et al. (2011) or Tadj and Choudhury (2005)
and the references therein [4, 42]. The first paper considering future infor-
mation for the proactive control of a flexible capacity is Kurz and Pibernik
(2016) [27]. The authors develop policies controlling a contingent capacity
such that the mean queue length is minimized given no future information or
a lookahead window of infinite length. Also, they provide some first insights
regarding finite lookahead windows and our analysis advances these insights.

Subsequently, we investigate the implications of finite lookahead windows
on proactive diversion and capacity control policies originally developed for
infinite lookahead windows as, in practice, future information until infinity
is never available. The setup of the diversion model, the capacity control
model and the problem definition are provided in the next section. We de-
velop diversion and capacity control policies depending on the length of the
lookahead window available in Section 4.3. We analytically distinguish two
regimes: sufficient future information, where the proactive policies can be used
without modification, and insufficient future information, where the policies
need to be modified. We are able to analytically derive the modified policies.
However, the mean queue lengths given limited future information cannot be
determined analytically. Thus, a numerical analysis performed to investigate
the properties of theÂ´ policies is summarized in Section 4.4. For diversion,
we find that the mean queue length can be reduced by up to 71 % if sufficient
and 59 % is insufficient future information is available (compared to the re-
active policy). With flexible capacity the improvements are 52 % and 32 %,
respectively. Furthermore, we find that using less future information can lead
to a lower mean queue length than using an infinite lookahead window. Fi-
nally, conclusion and opportunities for future research are provided in Section
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4.5. All proofs are relegated to Appendix C.1.

4.2 Setup and Problem Definition
We model the facility of the service provider as an M/M/1 queue with ad-
mission control or adjustable service rate. With r ∈ (0, 1/2), define the base
capacity or service rate of the system as 1 − r ∈ (1/2, 1). Jobs arrive at the
system at rate λ ∈ (1−r, 1), i.e., we are considering the overload regime.23 De-
note the discrete-time diversion policies as {πD[n] : n ∈ Z+}, πD[n] ∈ {0, 1},
and n as the n-th event, i.e., a job arrival or departure. A job arrival n is
diverted if and only if πD[n] = 1 and admitted to the queue otherwise.

Definition 4.1 (feasible diversion policies). A diversion policy πD is called
feasible if and only if the rate of diverted jobs does not exceed r.

This definition restricts the number of diversions that can be made. If, e.g.,
the service provider uses a subcontractor to avoid demand spikes, the mean
number of jobs that can be diverted to the subcontractor are usually contrac-
tually specified. Thus, the total service rate of the system is less or equal than
one.

The flexible capacity is modeled as a contingent capacity p > r that
can be added to the base capacity if needed, resulting in a high service rate
µ2 = 1−r+p. Define the continuous-time capacity control policies as {πC(t) :
t ∈ R+}, πC(t) ∈ {0, 1}. Then, the contingent capacity is active at time t if
and only if πC(t) = 1 and inactive otherwise.

Definition 4.2 (feasible capacity control policies). A capacity control policy
πC is called feasible if and only if the time share the contingent capacity is
active does not exceed r/p.

This definition restricts the time share the contingent capacity can be used
as it is often the case with practical applications. Overtime is limited by
labor legislation and the amount and expected usage of external contingent

23The benefits of future information are particularly substantial in the overload regime.
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4 Queueing with Limited Future Information

capacities are contractually specified. Again, the total service rate of the
system is less or equal than one. Both feasibility definitions coincide in the
sense that the number of jobs not served by the base capacity is less or equal
than r. Figure 4.1 illustrates the M/M/1 queue with diversion and flexible
capacity.
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Figure 4.1: Illustration of the queue with diversion (left) and the queue with
flexible capacity (right).

Let w ∈ R+ be the length of the lookahead window available. Future informa-
tion within a lookahead window of length w means that we know all arrivals
and their respective service requirements in the time interval [t0, t0 +w], if we
are currently at time t0. We distinguish three operating modes:

i) No future information is available, w = 0: Diversion and capacity deci-
sions are made based on the current queue length (reactive policies).

ii) We have perfect information regarding all jobs arriving to the system
in the future, w = ∞: Decisions are made based on the current queue
length and information regarding future job arrivals (proactive policies
with infinite lookahead window).

iii) Future information is available within a finite lookahead window, 0 <

w < ∞: Decisions are made based on current queue length and limited
future information (proactive policies with limited future information).

Xu and Chan (2016) and Kurz and Pibernik (2016) focus on operating modes
i) and ii). In this paper, we focus on mode iii), proactive control with limited
future information. When developing diversion and capacity control policies,
we aim at minimizing the mean queue length while obeying the feasibility
constraints. Thus, the main research questions of this paper can be stated
as follows: Given a finite lookahead window, how can future information be
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4.3 Diversion and Capacity Control

used to minimize the mean queue length of an M/M/1 queue with diversion /
flexible capacity, while obeying the corresponding feasibility constraint? And
how significant are the benefits with respect to mean queue length compared
to traditional reactive policies?

We use a service token model to derive the capacity control policies. In a
service token model, the randomness of the jobs’ service times are transferred
to the server. The server produces service tokens and the time between the
generation of two tokens is exponentially distributed with mean 1/µ. As soon
as one token has been produced, it is consumed by the first job in line (infinite
waiting room) which therefore leaves the system. Thus, the queue length
coincides with the number of jobs in the system, as illustrated in Figure 4.2.
The service token model allows us to compute the time-average queue length
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Figure 4.2: The left hand side illustrates a normal M/M/1 queue, where one
job is currently being served at the server. This job is traditionally not ac-
counted for as ”in the queue” and the queue length Q(t) ∈ Z+ is one less than
the number of jobs in the system L(t) ∈ Z+, Q(t) = L(t)− 1. The equivalent
service token-based M/M/1 queue is illustrated on the right hand side. In the
service token model, all jobs are waiting in the queue until the next service
token has been produced, i.e., L(t) = Q(t).

without considering the underlying workload process. For more information,
the reader is referred to Xu and Chan (2016) and Kurz and Pibernik (2016)
[27, 49].

4.3 Diversion and Capacity Control
We characterize reactive and proactive diversion and capacity control policies
in the first subsection. We then investigate the effects of finite lookahead
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4 Queueing with Limited Future Information

windows on these policies and define parameters for which the policies remain
feasible. Thereafter, we define modified policies if the feasibility parameters
are not met.

4.3.1 Reactive and Proactive Policies

We will first introduce reactive and proactive diversion policies, advancing
the policies derived by Xu and Chan (2016) [49]. We will then move on to
reactive and proactive capacity control policies as developed by Kurz and
Pibernik (2016) [27]. The policies are characterized as πj,wi , i ∈ {D,C}, j ∈
{L,K}, where the subscript D characterizes a diversion policy, C a capacity
control policy, L and K represent the associated optimal threshold levels of a
diversion or capacity control policy and w defines the length of the lookahead
window. Furthermore, Qj,w

i characterizes the queue length process obtained
when applying policy πj,wi .

For any proactive policy, the reactive counterpart serves as a benchmark
for its performance. That means, we want to show that the mean queue length
can be reduced by considering future information. The reactive diversion
policy πL,0D is a threshold policy, i.e., each arriving job that increases the
queue length such that it reaches the threshold level will be diverted.

Definition 4.3 (reactive diversion policy). πL,0D [n] = 1, an arriving job n is
diverted, if and only if QL,0

D [n] = L(r, λ, 0), and πL,0D [n] = 0 otherwise.

Thus, in order to achieve feasibility of the policy, we need to compute the
largest threshold level such that the mean number of diverted jobs does not
exceed r. According to Definition 4.1, a diversion policy is feasible if

EπD = lim
N→∞

1
N

N∑
n=1

πD[n] ≤ r

λ+ (1− r) .

The term λ + (1 − r) is needed since we count all events, arrivals as well
as departures from the queue. With this, the diversion rate is given as d =
EπD[λ + (1 − r)] ≤ r, i.e., the policy is feasible. As found by Xu and Chan
(2016), the optimal threshold level such that the policy is feasible for all
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4.3 Diversion and Capacity Control

λ ∈ (1− r, 1) is given as

L(r, λ, 0) = log λ
1−r

r

1− λ − 1.

Throughout this section, we will assume that threshold levels are integer to
avoid the excessive use of floor and ceiling functions. With the threshold, the
resulting mean queue length can be computed as

E(QL,0
D ) = r

λ− (1− r)L(r, λ, 0) + λ(1− λ)− r(1− r)
(1− λ− r)2 .

The drawback of this threshold-type policy is that diversion are only made
when the queue length is large. The threshold level and therefore the mean
queue length are increasing in the arrival rate and as λ→ 1, the mean queue
length diverges. However, this changes if we take future information into
account. Before stating the proactive diversion policy, we introduce some
notation used throughout the remainder of this section.

Let {A(t) : t ∈ R+}, A(t) ∈ Z+, be the Poisson process with rate λ ∈ (1−
r, 1) representing the arrivals to the queue. Let {S1(t) : t ∈ R+}, S1(t) ∈ Z+,
be the Poisson process representing the number of service tokens generated if
only the base capacity is active, i.e., µ1 = 1 − r. Now, let {X0(t) : t ∈ R+},
X0(t) ∈ Z, be the difference of the two Poisson processes,

X0(t) = A(t)− S1(t),

which is referred to doubly-infinite queue. Note that we know the past re-
alization of these processes and, with future information, know their future
realization within the time interval [t, t + w]. As X0(t) can have negative
values but the number of jobs in a queue cannot be smaller than zero, the
queue length process is computed as the corresponding reflected process,

Q0(t) = X0(t) + max
s∈[0,t]

[−X0(s)]+ = X0(t) + Y0(t)

= A(t)− S1(t) + Y0(t).
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4 Queueing with Limited Future Information

{Q0(t) : t ∈ R+}, Q0(t) ∈ Z+ is referred to as initial queue length process. Let
{Q0[n] : n ∈ Z+}, Q0[n] ∈ Z+ be the corresponding discrete-time version of
Q0(t). Let Tn denote the time of the n-th event of Q0 and let Φ(Q0) = {n ∈
Z+ : Q0[n] > Q0[n− 1]} be all events that are arrivals.

Definition 4.4 (w-critical arrivals). An arrival n ∈ Φ(Q0) for which

min
s∈[0,w]

Q0(Tn + s) ≥ Q0(Tn)

is called a w-critical arrival.

With this definition, the set of w-critical arrivals is given as

Ψw =
{
n ∈ Φ(Q0) : min

s∈[0,w]
Q0(Tn + s) ≥ Q0(Tn)

}
,

and the number of w-critical arrivals until time t can be computed as

AwΨ(t) = |{n ∈ Ψw : Tn ≤ t}|.

Equivalently, define ĀwΨ(t) = A(t) − AwΨ(t) as all non-w-critical arrivals. The
proactive diversion policy proposed by Xu and Chan (2016) can be character-
ized as follows.

Definition 4.5 (proactive diversion policy). For sufficiently large w, an ar-
riving job n is diverted, πL,wD [n] = 1, if and only if

i) QL,w
D [n] = L(r, λ, w), or

ii) the arrival is w-critical, n ∈ Ψw,

and πL,wD [n] = 0 otherwise.

We will come back to what ”sufficiently large w” means in the next section.
For now, we assume that the condition holds.

The continuous-time queue length process with the diversion policy stated
in Definition 4.5 and with

N (t) = max{n ∈ Z+ : Tn ≤ t}
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4.3 Diversion and Capacity Control

can be computed as

QL,w
D (t) = A(t)− S1(t)−

N (t)∑
n=1

πL,wD (Tn) + Y L,w
D (t)

= A(t)−
N (t)∑
n=1

I{n ∈ Ψw}︸ ︷︷ ︸
=AwΨ(t)

−S1(t)−
N (t)∑
n=1

I{QL,w
D (Tn) = L}︸ ︷︷ ︸
=SLD(t)

+Y L,w
D (t)

= ĀwΨ(t)− S1(t)− SLD(t) + Y L,w
D (t).

For πL,wD to be feasible we need

lim
t→∞

AwΨ(t) + SLD(t)
t

≤ r.

As shown by Kurz and Pibernik (2016),

lim
t→∞

AwΨ(t)
t

= λ− (1− r)F1−r,λ(w), (4.1)

with

F1−r,λ(w) =
√

1− r
λ

w∫
0

e−(λ+1−r)x

x
I1

(
2x
√
λ(1− r)

)
dx

being the cumulative distribution function of the busy-period of an M/M/1
queue with arrival rate 1−r and service rate λ.24 Thus, we need to determine
L(r, λ, w) such that

lim
t→∞

SLD(t)
t
≤ r + (1− r)F1−r,λ(w)− λ. (4.2)

As F1−r,λ(w) can only be computed numerically for all w < ∞, L(r, λ, w)
also needs to be computed numerically. The same holds for the mean queue
length. However, for w =∞, the rate of ∞-critical arrivals is given as

lim
t→∞

A∞Ψ (t)
t

= λ− (1− r),

24I1(·) denotes the modified Bessel function of the first kind of order one, I1(y) =∑∞
i=0

(y/2)2i+1

k!(k+1)! .
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4 Queueing with Limited Future Information

which corresponds to the drift of the initial queue length process Q0. Thus,
the right hand side of inequality (4.2) simplifies to 1 − λ and Xu and Chan
(2016) find that the threshold can be determined as

L(r, λ,∞) = log λ
1−r

r

1− λ − 1,

which coincides with the optimal threshold of the reactive policy, L(r, λ,∞) =
L(r, λ, 0). For the resulting mean queue length we obtain

E(QL,∞
D ) = 1− λ

1− λ− rL(r, λ,∞)− λ(1− λ)− r(1− r)
(1− λ− r)2 .

Figure 4.3 illustrates the diversion policies for w = 0 and w =∞. We observe
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Figure 4.3: Performance of reactive and proactive diversion policies with r =
0.2. The blue line corresponds to the mean queue length of the reactive
diversion policy, E(QL,0

D ), the red line to the proactive diversion policy with
infinite lookahead, E(QL,∞

D ), and the dashed black line to the threshold level
L(r, λ, 0) = L(r, λ,∞).

that the mean queue length diverges if no future information is available
while it converges for an infinite lookahead window. Also, it can be shown
that E(QL,∞

D ) ≤ E(QL,0
D ), for all λ ∈ (1− r, 1).
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Similar as for diversion, the reactive capacity control policy is a threshold-
type policy.

Definition 4.6 (reactive capacity control policy). The contingent capacity is
active at time t if and only if QK,0

C (t) > K(r, p, λ, 0).

This means that additionally service tokens are produced at rate p when the
queue length exceeds the threshold level. According to Definition 4.2, the
following inequality must hold for all feasible capacity control policies:

EπC = lim
T→∞

1
T

T∫
0

πC(t) dt ≤ r

p
.

As found by Kurz and Pibernik (2016), the optimal threshold level such that
the policy is feasible for all λ ∈ (1− r, 1) is given as

K(r, p, λ, 0) = log λ
1−r

r(r − 1)(λ+ r − p− 1)
pλ(1− λ) .

The resulting mean queue length can be computed as

E(QK,0
C ) = 1

λ− (1− r)

[
rK(r, p, λ, 0)− λ− r(1− r + p)

λ− (1− r + p)

]
.

Again, we can observe that the threshold and the mean queue length diverge
as λ→ 1.

Assuming future information is available, the proactive capacity control
policy developed in Kurz and Pibernik (2016) is defined as follows [27].

Definition 4.7 (proactive capacity control policy). For sufficiently large w,
the proactive capacity control policy is such that πK,wC (t) = 1 if and only if

i) QK,w
C (t) > K(r, p, λ, w), or

ii) QK,w
C (t) > Q∞,wD (t),

and πK,wC (t) = 0 otherwise.
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4 Queueing with Limited Future Information

Note that
Q∞,wD (t) = ĀwΨ(t)− S1(t) + Y ∞,wD (t),

i.e., diversions are only dependent on the forward-looking part of the policy
and the diversion rate is given as the rate of w-critical arrivals, equation (4.1).
The resulting queue length process when applying the capacity control policy
πK,wC is given as

QK,w
C (t) = A(t)− S1(t)− S2[$K,w

C (t)] + Y K,w
C (t),

where

$K,w
C (t) =

t∫
0

πK,wC (s) ds

accounts for the total time the contingent capacity has been active until t.
Feasibility requires

EπK,wC = lim
t→∞

$K,w
C (t)
t

≤ r

p
⇐⇒ lim

t→∞

S2[$K,w
C (t)]
t

≤ r.

The number of jobs that will be served by the contingent capacity due to the
overshoot QK,w

C (t) > Q∞,wD (t) is again given by equation (4.1). Therefore, we
again need to determine the threshold level by considering the remaining rate
of service tokens that can be generated by the contingent capacity. However,
the optimal threshold value can only be computed analytically for w =∞,

K(r, p, λ,∞) = log 1−r
λ

λ(λ− 1)(λ+ p+ r − 1)
pr(r − 1) .

Note that, unlike for diversion, the threshold levels for reactive and proactive
control do not coincide (although the difference is very small). The resulting
mean queue length is given as

E(QK,∞
C ) = 1

λ− (1− r)

[
(λ− 1)K(r, p, λ,∞) + λ+ 1− 2r + (r − 1)(p+ r)

λ+ p+ r − 1

]

+ [λ− (1− r)](1− r + p)
p(1− r + p− λ) .
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As shown by Spencer et al. (2014), the queue length process Q∞,∞D can be
interpreted as the process keeping track of the number of jobs in the system of
an M/M/1 queue with arrival rate 1− r and service rate λ [36]. Thus, Q∞,∞D

and Q∞,wD are recurrent random walks as Q∞,wD (t) ≤ Q∞,∞D (t).
Figure 4.4 illustrates the mean queue length for the reactive policy and

the proactive policy with infinite lookahead window. We see that E(QK,∞
C ) ≤
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Figure 4.4: Performance of reactive and proactive capacity control policies for
r = 0.2 and p = 0.4. The blue line corresponds to the mean queue length
obtained with reactive capacity control, E(QK,0

C ), the red line to the proactive
policy with infinite lookahead window, E(QK,∞

C ). The dashed blue and red
lines are the corresponding threshold levels K(r, p, λ, 0) and K(r, p, λ,∞),
respectively.

E(QK,0
C ) for all λ ∈ (1 − r, 1). Also, while the mean queue length diverges

for the reactive policy, the mean queue length remains finite for the proactive
policy also as λ → 1. However, this will change if future information is only
available within a finite lookahead window, as it is always the case with real-
life applications.
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4 Queueing with Limited Future Information

4.3.2 Feasibility Considerations and Sufficient Future
Information

In this section, we investigate the implications of limited future information,
w <∞, on proactive diversion and capacity control policies. We define a lower
bound for the lookahead window length given a specific arrival rate such that
the policies remain feasible for an appropriate choice of the threshold levels.

The proactive diversion and capacity control policies rely on w-critical ar-
rivals. When applying the proactive policies as defined in the previous section
with a lookahead window of finite length, more arrivals will be characterized
as w-critical arrivals than with infinite lookahead window. Thus, for high
arrival rates, the policies will become infeasible as more jobs will be diverted
or more service tokens will be produced by the contingent capacity as possible
for feasibility. In conclusion, given a specific arrival rate, there exists a min-
imum lookahead window length w(λ) such that π∞,w(λ)

D and π
∞,w(λ)
C remain

feasible.25

Proposition 4.1. Given an arrival rate λ ∈ (1−r, 1), the proactive diversion
and capacity control policies are feasible for appropriate choices of L(r, λ, w)
and K(r, p, λ, w) if and only if

w ≥ w(λ) = F−1
1−r,λ

(
λ− r
1− r

)
.

This is referred to as sufficient future information.

Proof. See Appendix C.1.

Given the expression stated in the proposition, we can also compute the max-
imum possible arrival rate given a lookahead window of length w. We provide
a numerical example of for the boundary of sufficient future information in
Figure 4.5. Note that, as λ ↓ 0.8, there exists a lowest possible lookahead win-
dow length given as limλ↓0.8w(λ) = 6.25.26 The minimum lookahead window
25If the threshold levels are set to infinity, all diversions and service tokens produced by
the contingent capacity will be due to w-critical arrivals.

26If we would set w = 0, all arrivals would be characterized as w-critical.
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Figure 4.5: Illustration of lookahead window lengths required for sufficient
future information for r = 0.2 and p = 0.4. The gray area represents the
feasible region.

length increases exponentially in the arrival rate and as λ→ 1, w(λ)→∞.
For finite lookahead windows, w <∞,

Ψ∞ ⊆ Ψw =⇒ (Ψ∞ ∩Ψw) = Ψ∞.

Consequently, all arrivals characterized as∞-critical are also characterized as
w-critical. As QL,∞

D and QK,∞
C are recurrent random walks, the queue length

processes QL,w
D and QK,w

C must also be recurrent.
Naturally, the threshold levels L(r, λ, w) and K(r, p, λ, w) need to be

adapted depending on the lookahead window and as w ↓ w(λ), L → ∞,
K → ∞. However, the threshold level cannot be determined analytically as
the result for the time-average queue length derived for the proactive control
with infinite lookahead is not valid anymore. Thus, L and K need to be
determined using simulation.

If sufficient information is available, i.e., the lookahead window is of length
w > w(λ), we can still decide how much future information we actually want
to use. This means, we can use any amount of future information in [w(λ), w].
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4 Queueing with Limited Future Information

We will investigate the effects of the choice of the lookahead window length
used for proactive diversion and capacity control in Section 4.4.

4.3.3 Modified Policies for Insufficient Future Information

Assume that, given an arrival rate λ ∈ (1 − r, 1), we do not have sufficient
future information. A lookahead window of length w < w(λ) is referred to as
insufficient or limited future information. We have to modify the policies de-
veloped in Section 4.3.1 and the modified policies and queue length processes
will be denoted as π̃L,wD and π̃K,wC , Q̃L,w

D and Q̃K,w
C , respectively.

Definition 4.8 (myopic w-critical arrivals). With J ∈ Z+, an arrival n ∈
Φ(Q0) for which

Ψ̃w =
{
n ∈ Φ(Q0) : min

s∈[0,w]
Q0(Tn + s) ≥ Q0(Tn) ∧Q0(Tn + w) ≥ Q0(Tn) + J

}
,

is called a myopic w-critical arrival.

This means that an arrival will be characterized as myopic w-critical, if the
known future trajectory of the initial queue length process Q0(Tn + s) is al-
ways larger or equal than the current value Q0(Tn) (as for w-critical arrivals,
Definition 4.4) and, additionally, the queue length at time Tn+w is at least J
jobs above the value at time Tn. Subsequently, J will be referred to as future
distance. Figure 4.6 illustrates the concept of myopic w-critical arrivals.

Let ÃwΨ(t) = |{n ∈ Ψ̃w : Tn ≤ t} be the process counting the number of
myopic w-critical job arrivals until time t.

Proposition 4.2. Given r ∈ (0, 1/2), λ ∈ (1− r, 1) and w < w(λ), the future
distance J(r, λ, w) such that limt→∞ Ã

w
Ψ(t)/t ≤ Λ ∈ [0, r] can be computed as

J(r, λ, w,Λ) = min {z ∈ Z+ : a(z) ≤ Λbc} , (4.3)
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Figure 4.6: In the upper two charts, the arrival n would not be myopic w-
critical, n /∈ Ψ̃w, because Q0(Tn + w) < Q0(Tn) + J in the first chart and
min0≤s≤wQ0(Tn + s) < Q0(Tn) in the second chart. In the lower chart, both
criteria are met, thus n ∈ Ψ̃w.

with

a(z) =
∞∑
k=z

(
λ

1− r

)k/2
Ik

(
2w
√
λ(1− r)

)
,

b =
∞∑
k=0

(
λ

1− r

)k/2
Ik

(
2w
√
λ(1− r)

)
,

c = [λ− (1− r)F1−r,λ(w)]−1,

and Ik(·) being the modified Bessel function of the first kind of order k.27

27The modified Bessel function of the first kind of order k, where Γ(x) is the gamma
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Proof. See Appendix C.1.

With this proposition, we can compute the future distance such that the rate
of myopic w-critical arrivals is given as Λ ∈ [0, r]. However, equation (4.3)
can only be solved numerically. If we set Λ = r, the rate of w-critical arrivals
will be the same as when using w(λ) in the previous section,

lim
t→∞

ÃwΨ(t)
t

= lim
t→∞

A
w(λ)
Ψ (t)
t

= r.

As illustrated in Figure 4.7, we find J = 0 for all w ≥ w(λ) (white area

Figure 4.7: Contour plot of J(r, λ, w,Λ) for r = 0.2 and Λ = r, different
lookahead windows w ∈ {0:10 :170} and arrival rates λ ∈ {0.8:0.005:1}. The
thick blue line corresponds to the lower bound of sufficient future information
w(λ). {x : y : z} denotes the set of numbers in the interval [x, y] with equal
spacing y, i.e., {1:2 :7} = {1, 3, 5, 7}.

above blue line), which follows instantly from our definition of sufficient future
information in the previous section. For w < w(λ), J increases as w decreases.
However, for the example displayed in the figure, J ≤ 2 for all λ ∈ (0.8, 1) and
w ∈ (0, 170] (red area), i.e., we only need a small future distance to ensure

function, is defined as Ik(y) =
∑∞

i=0
(y/2)2i+k

m!Γ(i+k+1) .
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4.3 Diversion and Capacity Control

that the rate of myopic w-critical arrivals is r.
In the previous section we found that QL,w

D and QK,w
C must be recurrent

if w ≥ w(λ). However, this does not hold if w < w(λ). Even if we choose
Λ = r, it could be the case that Ψ∞ * Ψ̃w =⇒ (Ψ∞ ∩ Ψ̃w) ⊂ Ψ∞. This
means that Q̃L,w

D and Q̃K,w
C must not be recurrent processes, i.e., we have

no insights regarding the relevance of the arrivals characterized as modified
w-critical for the overall development of the queue length process. Thus, we
limit the influence of future information and set Λ = λ− (1− r), which is the
rate of w-critical arrivals with w =∞ as detailed in Section 4.3.1. Figure 4.8
illustrates the numerically computed future distance versus the arrival rate
for different lookahead windows and Λ = λ − (1 − r). Note that the future
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Figure 4.8: Contour plot of J(r, λ, w,Λ) for r = 0.2 and Λ = λ − (1 − r),
different lookahead windows w ∈ {0 : 10 : 170} and arrival rates λ ∈ {0.8 :
0.005:1}. The thick blue line corresponds to w(λ).

distance between two contour lines is given as the lower value of both lines,
i.e., in the area between the contour lines 3 and 4, J = 3. On the first
sight the contour plot may seem counterintuitive as one could expect that J
needs be larger for high arrival rates. However, when looking at the figure,
we need to keep the rate of arrivals we want to characterize as w-critical in
mind. The rate of arrivals that will be characterized as myopic w-critical
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4 Queueing with Limited Future Information

is linearly increasing in λ, limt→∞ Ã
w
Ψ(t)/t = λ − (1 − r). Additionally, the

probability that the initial queue length process will drop below Q0(Tn) at
any time t > Tn + w is small if the drift of the initial queue length, i.e., the
arrival rate, is comparatively large. For high arrival rates λ → 1, the future
distance decreases with increasing lookahead window length and as w → ∞,
J ↓ 0.

Given Λ = λ − (1 − r) and J(r, λ, w,Λ), Figure 4.9 shows the result-
ing rate of myopic w-critical job arrivals for r = 0.2. We observe that
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Figure 4.9: Rate of myopic w-critical job arrivals for r = 0.2, different looka-
head windows w ∈ {0:10 :170} and arrival rates λ ∈ {0.8:0.005:1}.

limt→∞ Ã
w
Ψ(t)/t ≤ λ − (1 − r) for all λ and w. The kinks of the surface

originate from J being integer.

Proposition 4.3. The probability that a myopic w-critical arrival is also ∞-
critical is given as

P(n ∈ Ψ∞|n ∈ Ψ̃w) = 1−
(1− r

λ

)ϑ(r,λ,w,Λ)
,
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4.3 Diversion and Capacity Control

with

ϑ(r, λ, w,Λ) = J +
∞∑
k=J

(k − J)e−w(λ+1−r)
(

λ

1− r

)k/2
Ik

(
2w
√
λ(1− r)

)
.

Proof. See Appendix C.1.

The resulting probability is illustrated in Figure 4.10 for r = 0.2. We observe

1
0.95

0.9

λ

0.85
0.80

50

w

100

150

1

0.6

0.4

0.2

0

0.8

P
(n

∈
Ψ

∞
|n

∈
˜ Ψ
w
)

Figure 4.10: Probability that myopic w-critical arrivals is ∞-critical for Λ =
λ − (1 − r), lookahead windows w ∈ {0 : 10 : 170} and arrival rates λ ∈ {0.8 :
0.005:1}.

that the probability that a myopic w-critical arrival is ∞-critical increases in
the arrival rate and the lookahead window length. With J ∈ Z+, we find that

E[Q0(Tn + w)−Q0(Tn)|Q0(Tn + w)−Q0(Tn) ≥ 0]
≤ E[Q0(Tn + w)−Q0(Tn)|Q0(Tn + w)−Q0(Tn) ≥ J ]
=⇒ P(n ∈ Ψ∞|n ∈ Ψw) ≤ P(n ∈ Ψ∞|n ∈ Ψ̃w),

i.e., the probability that a myopic w-critical arrival is an ∞-critical arrival
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4 Queueing with Limited Future Information

cannot be less than for a w-critical arrival given the same lookahead window
length w < w(λ).

Finally, we can state the modified proactive diversion and capacity control
policies for limited future information.

Definition 4.9 (modified proactive diversion policy). For w < w(λ) and
given J(r, λ, w,Λ), a job is diverted, π̃L,wD (t) = 1, if and only if

i) Q̃L,w
D (t) = L(r, λ, w), or

ii) the arrival is myopic w-critical, t ∈ {Tn}n∈Ψ̃w ,

and π̃L,wD (t) = 0 otherwise.

The modified proactive diversion policy essentially remains the same as for
sufficient future information, only that we use myopic w-critical arrivals. The
reactive threshold level L(r, λ, w) needs to be determined numerically after
diverting the myopic w-critical arrivals.

Definition 4.10 (modified proactive capacity control policy). For w < w(λ)
and given J(r, λ, w,Λ), the modified proactive capacity control policy is such
that π̃K,wC (t) = 1 if and only if

i) Q̃K,w
C (t) > K(r, p, λ, w), or

ii) Q̃K,w
C (t) > Q̃∞,wD (t),

and π̃K,wC (t) = 0 otherwise.

The modified proactive capacity control policy is again composed of two
threshold levels. The dynamic threshold Q̃∞,wD , the queue length process if
all myopic w-critical arrivals are diverted and no reactive threshold is applied,
and the static threshold levelK(r, p, λ, w), which again needs to be determined
numerically as illustrated in the next section.

4.4 Numerical Analysis
In this section, we perform a simulation study to investigate (i) if limited fu-
ture information can be used to reduce the mean queue length when employed
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effectively and (ii) how high the benefit is. Three conjectures are formulated
to investigate the structural properties of the different policies developed and
summarized in this paper. More specifically, we want to verify if policies using
(limited) future information lead to a lower mean queue length than the reac-
tive policy. Additionally, we want to compare proactive policies with different
lookahead window lengths. Thus, we state two conjectures to compare the
proactive policy with limited but sufficient future information to the reactive
policy and the proactive policy with infinite future information. The third
conjecture compares the modified proactive policy for insufficient future in-
formation with the reactive policy.28 After explaining the experimental setup,
we analyze the results of the simulation to verify the conjectures and inves-
tigate the benefits of the policies with respect to the mean queue length in
numerical terms.

4.4.1 Expected Results

If sufficient future information is available, we expect that the mean queue
length is less or equal than if the reactive policy is applied.

Conjecture 4.1. Given any r ∈ (0, 1/2), p > r and sufficient future informa-
tion, w ≥ w(λ),

E(QL,w
D ) ≤ E(QL,0

D ) and E(QK,w
C ) ≤ E(QK,0

C )

for all λ ∈ (1− r, 1), i.e., the proactive diversion and capacity control policies
with limited future information outperform their reactive counterparts.

Thus, we want to show that future information is valuable, also if it is only
available within a finite lookahead window. Secondly, we want to investi-
gate the performance of the proactive policies for different lookahead window
lengths. Therefore, we compare the mean queue length obtained with infi-
nite lookahead with the one obtained using just sufficient future information,
w = w(λ). Intuitively, we expect that the policy using infinite future infor-
mation outperforms the policy using limited future information.
28Each conjecture considers diversion and flexible capacity.

111



4 Queueing with Limited Future Information

Conjecture 4.2. Given any r ∈ (0, 1/2), p > r and minimum sufficient future
information, w = w(λ),

E(QL,∞
D ) ≤ E(QL,w(λ)

D ) and E(QK,∞
C ) ≤ E(QK,w(λ)

C )

for all λ ∈ (1 − r, 1), i.e., the proactive diversion and capacity control poli-
cies with infinite lookahead window outperform the policies with limited future
information.

Thus, we want to investigate if ”the more information, the better” holds for
proactive queue control. Eventually, we want to investigate if the modified
proactive policies using insufficient future information outperform their reac-
tive, static threshold-based counterparts.

Conjecture 4.3. Given any r ∈ (0, 1/2), p > r and insufficient future infor-
mation, w < w(λ),

E(Q̃L,w
D ) ≤ E(QL,0

D ) and E(Q̃K,w
C ) ≤ E(QK,0

C )

for all λ ∈ (1−r, 1), i.e., the modified proactive diversion and capacity control
policies outperform their reactive counterparts.

As one would never use a modified proactive policy if w ≥ w(λ), we only need
to compare the resulting mean queue length with the one obtained using no
future information. This conjecture investigates the benefit of limited future
information given short lookahead windows.

4.4.2 Experimental Setup

The simulation was performed with MATLAB. Each simulation run contains
N = 10.000 job arrivals (approximately 2N events) and we use 50 simu-
lation runs per parameter combination (arrival rate and lookahead window
length). Thus, means and standard deviations per parameter combination
were obtained by first taking the average of the queue length process of one
simulation run and then averaging the 50 simulation runs.
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The numerical results provided for the diversion model in the next section
were obtained using r = 0.2, i.e., a base capacity of 1 − r = 0.8. Thus, as
demanded by Definition 4.1 for feasibility, the diversion rate must be d =
EπD[λ + (1 − r)] ≤ r = 0.2. We use the same base capacity for the flexible
capacity model and a contingent capacity p = 0.4. Therefore, according
to Definition 4.2, the time share the contingent capacity is active must be
EπC ≤ r/p = 1/2 for feasibility. Simulations with other parameter combinations
than r = 0.2 and p = 0.4 yield the same structural insights as presented in
the next section. In conclusion, we assume that the results can be generalized
for all combinations of r ∈ (0, 1/2) and p > r.

4.4.3 Results and Interpretation

We will first investigate the benefits of future information for diversion and
then move on to capacity control. To numerically investigate if Conjecture
4.1 is true for diversion, we compare the simulated mean queue lengths ob-
tained for the reactive policy and for the proactive policy with sufficient future
information. More specifically, we used w(λ) = 2w(λ) to obtain the results
displayed in Figure 4.11.29 The figure suggests that Conjecture 4.1 is true
for diversion: Using future information within a finite but sufficiently long
lookahead window dominates using no future information with respect to the
mean queue length, E(QL,2w(λ)

D ) < E(QL,0
D ), for all λ ∈ λ̂. More specifically,

the benefit of future information is smaller for low arrival rates (λ = 0.81:
mean queue length reduced by 39 %), but becomes substantial as the arrival
rate increases (λ = 0.99: improvement of 67 %). The right hand side of the
figure shows that both policies are feasible for all arrival rates considered, i.e.,
the diversion rate is always less or equal than 0.2. It is also interesting to note
that we used L(r, λ, 2w(λ)) = L(r, λ, 0) = L(r, λ,∞) for all λ ∈ λ̂.

Figure 4.12 illustrates the results for Conjecture 4.2 and diversion. For
each λ ∈ λ̂, we used the minimum lookahead window such that the policy
remains feasible if we set L(r, λ, w(λ)) =∞. The figure suggests that Conjec-

29For each λ ∈ λ̂, 50 simulation runs were used to compute the mean. The range of results
corresponds to the minimum and maximum value of these 50 simulation runs.
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Figure 4.11: Test of Conjecture 4.1 for diversion. The black line corre-
sponds to the analytical results for the reactive policy, the blue line to the
mean of the simulated reactive and the red line to the mean of the simu-
lated proactive policy with lookahead window w(λ) = 2w(λ) and λ ∈ λ̂ =
{0.81, 0.85, 0.9, 0.95, 0.99}. The thin dotted lines show the range of results
obtained for 50 simulation runs.
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Figure 4.12: Test of Conjecture 4.2 for diversion. The black line corresponds to
the analytical result for the proactive policy with infinite lookahead window,
the blue line to the mean of the corresponding simulated policy and the red
line to the mean of the simulated proactive policy with lookahead window
w(λ) = w(λ).

ture 4.2 is false for diversion: The mean queue length is lower if we use less
future information, E(Q∞,w(λ)

D ) < E(QL,∞
D ), for all λ ∈ λ̂. Table 4.1 displays
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the numerical results of the mean queue lengths for the different lookahead
windows. Indeed, we find that the mean queue length is increasing in the

λ w(λ) E(QL,0
D ) E(QL,w

D ) E(QL,2w
D ) E(QL,∞

D )

0.81 6.6 2.02±0.01 (2.02) 0.90±0.01 1.23±0.03 1.95±0.03 (1.98)

0.85 8.6 2.11±0.01 (2.12) 1.09±0.02 1.35±0.03 1.88±0.03 (1.88)

0.90 12.8 2.83±0.02 (2.84) 1.40±0.02 1.70±0.04 2.15±0.05 (2.16)

0.95 23.3 5.09±0.06 (5.10) 1.97±0.04 2.46±0.09 2.88±0.09 (2.90)

0.99 66.3 10.41±0.19 (10.43) 3.06±0.14 3.45±0.21 3.57±0.24 (3.57)

Table 4.1: Comparison of mean queue lengths for diversion policies with dif-
ferent lookahead windows. The numbers after the ± correspond to standard
deviation of the 50 simulation runs per λ ∈ λ̂. The numbers in brackets are
the analytical results if available.

lookahead window as long as w ≥ w(λ). We find two potential explanations
for this counter-intuitive result. First, as it can be seen when looking at the di-
version rates displayed in Figure 4.12, if we use a lookahead window of length
w(λ) and a threshold of ∞, the diversion rate is by definition always given
as d = r. On the other hand, due to the integer constraint for the threshold,
the proactive policy with infinite lookahead window but finite threshold can-
not always exploit all diversions that could theoretically be made. Secondly,
especially for low arrival rates, when using the proactive policy with infinite
lookahead window, only few diversions are made due to future information.
More specifically, the rate of∞-critical arrivals is given as λ−(1−r), while the
rate of diversions made because the queue length process reaches the thresh-
old level is given as 1− λ. However, if we use a lookahead window of length
w(λ), all∞-critical arrival are diverted plus others that are also critical when
considering a shorter period of time. Thus, all diversions made are based on
future information, also if the queue length process is low, and not only if the
queue length process reaches a (rather large) threshold level. However, note
that E(Q∞,w(λ)

D ) converges to E(QL,∞
D ) as λ → 1, since limλ→1w(λ) = ∞. If

we compare E(QL,0
D ) and E(QL,w

D ) for λ = 0.99, the mean queue length can be
reduced by up to 71 % if sufficient future information is available.
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Finally, Figure 4.13 illustrates the benefit of limited insufficient future
information. The figure suggests that Conjecture 4.3 is true for diversion:
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Figure 4.13: Test of Conjecture 4.3 for diversion. The black line corresponds
to the analytical results for the reactive policy, the blue line to the mean of
the simulated reactive and the red line to the mean of the simulated modified
proactive policy with lookahead window w(λ) = w(λ)/2. The black diamonds
correspond to the future distance J(r, λ, w,Λ) with Λ = λ− (1− r).

The mean queue length obtained when applying the modified proactive pol-
icy is less or equal than the one obtained when applying the reactive pol-
icy, E(Q̃L,w(λ)/2

D ) ≤ E(QL,0
D ), for all λ ∈ λ̂. It is interesting to observe that

J(r, λ, w,Λ) decreases in λ. This is due to our definition of Λ, which only
allows for a limited number of diversions based on future information for low
arrival rates and increases in λ. Thus, as the number of diversions made
based on future information is low for low arrival rates, the two mean queue
lengths coincide. However, with increasing arrival rate, the difference between
the two lines increases as more future information is used. For λ = 0.99 the
mean queue length obtained applying the modified proactive queue length
is 59 % lower than if the reactive policy is used. Note that we again used
L(r, λ, w(λ)/2) = L(r, λ,∞) = L(r, λ, 0).

In conclusion, the numerical analysis suggests that Conjectures 4.1 and
4.3 are true for diversion. However, Conjecture 4.2 is false, i.e., using less
future information than available can be beneficial with respect to the mean
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queue length.
We subsequently test the three conjectures for capacity control. Fig-

ure 4.14 shows the results for Conjecture 4.1. The results suggest that Con-
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Figure 4.14: Test of Conjecture 4.1 for capacity control. The black line cor-
responds to the analytical result for the reactive policy, the blue line to the
mean of the simulated reactive and the red line to mean of the simulated
proactive policy with w(λ) = 2w(λ).

jecture 4.1 is true: Using future information available within a limited but
sufficiently large lookahead window outperforms the reactive capacity control
policy, E(QK,2w(λ)

C ) < E(QK,0
C ), for all λ ∈ λ̂. The right hand side of the

figure shows that both policies are feasible, i.e., that the time share the con-
tingent capacity is active is always less or equal than r/p. Note that we used
K(r, p, λ, 2w(λ)) = K(r, p, λ,∞) to obtain these results.

Next, Figure 4.15 shows the results for Conjecture 4.2 and capacity con-
trol. Similar as for diversion, we can observe that the conjecture is false:
Using less future information can lead to a lower mean queue length than
using future information until infinity, E(Q∞,w(λ)

C ) < E(QK,∞
C ), for all λ ∈ λ̂.

The mean queue lengths for different arrival rates and lookahead window
lengths are also displayed in Table 4.2. As for diversion, we observe that
the queue length increases in the lookahead window as long as w ≥ w(λ).
The reasons for this counter-intuitive finding follow from the equivalent result
for the diversion policy. With a lookahead window of length w(λ) and no
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Figure 4.15: Test of Conjecture 4.2 for capacity control. The black line corre-
sponds to the analytical result for the proactive policy with infinite lookahead
window, the blue line to the mean of its simulated counterpart and the red
line to mean of the simulated proactive policy with w(λ) = w(λ).

λ w(λ) E(QK,0
C ) E(QK,w

C ) E(QK,2w
C ) E(QK,∞

C )

0.81 6.6 2.71±0.12 (2.68) 2.18±0.11 2.28±0.12 2.61±0.10 (2.62)

0.85 8.6 3.07±0.11 (3.07) 2.61±0.14 2.66±0.14 2.88±0.11 (2.75)

0.90 12.8 4.16±0.29 (4.16) 3.26±0.20 3.37±0.18 3.60±0.19 (3.41)

0.95 23.3 6.28±0.38 (6.28) 4.33±0.29 4.54±0.31 4.93±0.28 (4.77)

0.99 66.3 12.22±0.69 (12.21) 5.87±0.46 6.22±0.48 6.23±0.44 (6.29)

Table 4.2: Comparison of mean queue lengths for capacity control policies
with different lookahead windows.

threshold (K = ∞), the contingent capacity is active at time t if and only
if Q∞,w(λ)

C (t) > Q
∞,w(λ)
D (t). Thus, as Q∞,w(λ)

D (t) ≤ Q∞,wD (t), for all w > w(λ),
the contingent capacity is generally activated earlier if the lookahead win-
dow is shorter. Also, the amount of time the contingent capacity is active
due to future information is larger if the lookahead window is short and the
contingent capacity is not only activated if the queue length process reaches
a rather large threshold value. However, when comparing these results with
the results obtained for the equivalent diversion problem, we observe that the
benefits of using a shorter lookahead window are not as distinct for capacity
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control as for diversion. This is due to the tardiness of the flexible capacity
model. While a job is simply deleted from the queue if it is diverted, it needs
to be served in the flexible capacity model, and the rate of additional service
tokens produced by the contingent capacity is low, here p = 0.4. The largest
improvement can be observed if we consider E(QK,0

C ) and E(QK,w
C ), where the

mean queue length is reduced by 52 % for λ = 0.99 (versus 71 % for diversion).
Finally, Figure 4.16 displays the numerical results to validate Conjecture

4.3 for capacity control. Note that we used K(r, p, λ, w(λ)/2) = K(r, p, λ,∞),
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Figure 4.16: Test of Conjecture 4.3 for capacity control. The black line cor-
responds to the analytical results for the reactive policy, the blue line to the
mean of the simulated reactive and the red line to the mean of the simulated
modified proactive policy with lookahead window w(λ) = w(λ)/2. The black
diamonds correspond to the future distance J(r, λ, w,Λ) with Λ = λ− (1−r).

for all λ ∈ λ̂ \ {0.95}. Only for λ = 0.95 we used K(r, p, λ, w(λ)/2) =
K(r, p, λ,∞)− 1. As for diversion, we find that Conjecture 4.3 is true for ca-
pacity control: Using limited insufficient future information can be beneficial,
E(Q̃K,w(λ)/2

C ) ≤ E(QK,0
C ), for all λ ∈ λ̂. We see that the mean queue lengths

(more or less) coincide for λ ∈ {0.81, 0.85, 0.9}. Starting at λ = 0.95, the
mean queue length is lower for the modified proactive policy than for the re-
active policy. Again, the benefits of future information are not as pronounced
for capacity control as for diversion (an improvement of 37 % for λ = 0.99
versus 59 % for diversion), but still significant.
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In conclusion, we found that Conjectures 4.1 and 4.3 are true for capacity
control and diversion. However, for both operating modes, Conjecture 4.2 is
false. This means that proactive policies with limited future information can
outperform proactive policies with infinite future information. This interesting
result is good news for all practical applications of proactive diversion and
capacity control policies, as future information is never available within an
infinite lookahead window in real life.

We used r = 0.2 and p = 0.4 to obtain these numerical examples. How-
ever, the analysis sheds light on structural properties of the policies and the
same insights can be obtained for all other choices of r ∈ (0, 1/2) and p > r.

4.5 Conclusion and Outlook
We have shown that predictive information extracted from data can be used to
prescribe actions that lead to improved operating and therefore economic per-
formance. More precisely, future information can be employed to reduce the
mean queue length for diversion and capacity control, also if it is only avail-
able within a finite lookahead window (of sufficient or insufficient length).
Additionally, we found an interesting result: ”less can be more”, i.e., using
shorter lookahead windows can be better than using (infinitely) long looka-
head windows because the proactive policy then actually uses more of the
future information and does not rely on static threshold values, especially
for low arrival rates. Therefore, it can even be beneficial to artificially limit
the lookahead window length to obtain low mean queue lengths. Also, since
future information until infinity is never available in real life, this result in-
dicates that proactive diversion and capacity control policies can be valuable
for practical applications.

There exist multiple opportunities for future research regarding proactive
diversion and capacity control policies. First of all, the analytical treatment
of the proactive policies with limited future information and the resulting
mean queue lengths remain open for further analysis. Also, there could be
different policies yielding even better results as we did not investigate the
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performance of the policies with respect to optimality. Another opportunity
for future research is to integrate diversion and capacity control: How should
a system that allows for diversion and different capacity levels be controlled if
future information is available? Finally, it could be interesting to investigate
the robustness of the proactive policies with respect to observational noise as
future information will in practical applications mostly not be available with
infinite precision.
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5 Summary and Conclusion

This dissertation has aimed at investigating the effects of future demand in-
formation on capacity decisions. To this end, it has been shown that, if
used appropriately, predictive information can lead to significant cost and
waiting time improvements. As argued in Chapter 1, businesses in the age
of cyber-physical systems and digitization focus on acquiring and analyzing
data. However, they often miss to employ the data to prescribe actions that
help to improve their operating and economic performance. Therefore, in this
thesis, this last step of actually using data has been made: Motivated by an
aircraft engine MRO (maintenance, repair and overhaul) service facility, we
have investigated how information about future job arrivals can be used to
plan and control the capacity of the facility. Additionally, we have developed
insights regarding the benefits that can be expected if this newly available
data is used.

In the first part of the thesis, Chapter 2, the aircraft engine MRO’s facility
is described as a network of GI/G/1 queues. First, the optimal capacity per
workstation is determined such that total costs composed of capacity and
tardiness-related penalty costs are minimized. Furthermore, a framework for
collaborative maintenance management is developed that leads to advanced
information regarding future engine arrivals. We find that this information can
be used to reduce mean service times as well as the variability of service and
interarrival times, resulting in reduced total maintenance costs. The article
thus provides a decision-making framework whether a company should invest
in the required technologies that are needed to obtain advanced information
or not.

The second article, Chapter 3, deals with actually using information re-
garding the arrival and service times of specific future jobs for the control of a
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flexible capacity. We assume that the MRO can switch between a base and a
high capacity. Thus, proactive capacity control policies taking future informa-
tion into account are developed and compared to a reactive policy that relies
on a static threshold. It turns out that using future information can signifi-
cantly reduce the mean queue length, i.e., the jobs’ waiting time, especially
for high arrival rates. Thus, using future information available through cyber-
physical systems to prescribe capacity decisions leads to improved operating
performance. However, we assume that future information is available within
a lookahead window of infinite length, which is never the case with practice
applications.

Thus, the third article, Chapter 4, extends the second article for the
case of finite lookahead windows. Additionally, we do not only consider the
control of a flexible capacity, but also admission control: Which jobs should be
diverted, if a given number of jobs can be diverted? This corresponds to the
case where the MRO uses a subcontractor to avoid demand spikes. Proactive
diversion and capacity control policies that can also be used for limited future
information are developed. A numerical analysis suggests that the policies
relying on lookahead windows of finite length still outperform their reactive
counterparts. Interestingly, the results also indicate that using less future
information can be beneficial compared to using infinite future information,
especially for lower arrival rates.

In conclusion, all three parts of the thesis support the hypothesis that in-
formation generated by cyber-physical systems can be used to optimize oper-
ating and economic performance of enterprises if applied effectively. Although
the motivation of this thesis is a very concrete application, the models devel-
oped and theoretical insights gained are very holistic and can be applied to a
variety of settings where capacity decisions meet data.

There exist many opportunities for future research that can be categorized
in practical and more theoretical topics. On the practical side, finding suitable
applications and adapting the models presented here to meet the applications’
requirements could be one opportunity. Furthermore, it could be interesting
to solve a similar problem through appropriate optimization models rather
than queues. Given that information about future jobs is available, can we
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achieve the same or even better results using deterministic optimization tools?
Additionally, we have assumed that the information regarding future jobs
is perfect. Therefore, it could be interesting to investigate how robust the
policies are with respect to observational noise, which is almost always present
in practice.

On the theoretical end, integrating capacity control and diversion could be
an interesting avenue for further research. How can the service provider benefit
from future information if he can switch between two (or more) capacity
levels and divert jobs? In addition, given a proactive diversion or capacity
control policy, another opportunity is to determine optimal capacities or the
maximum diversion rate minimizing a cost function composed of capacity and
waiting costs?

Generally speaking, queueing with future information is a very recent and
still to a large extent unstudied topic that just started to gain attention.
Thus, since future information will become more and more available through
the snowballing use of predictive models, this topic will attract and be of
interest for an increasing professional and academic audience.
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A.1 Proofs of Section 2.3
Proof of Proposition 2.1. In the first part of the proof, we show that the mean
sojourn time approximation function S(µ), S : R 7→ R, as defined in (2.3) is
convex and strictly monotonically decreasing in dom S = {µ | µ > λ} ⊂ R++.
We start by showing convexity of g(µ) as defined in (2.2). For ca > 1, g(µ) =
1, convexity follows instantly. For ca ∈ [0, 1], since g(µ) = exp{h(µ)} is
convex if h(µ) is convex, we need to show that

h(µ) = −2(1− ca)(µ− λ)
3λ(ca+ cs)

is convex. With some reformulation, h(µ) can be rewritten as an affine func-
tion h(µ) = aµ+ b with

a = 2(ca− 1)
3λ(ca+ cs) and b = 2(1− ca)

3(ca+ cs) .

Since affine functions are always convex, h(µ) and therefore g(µ) are convex
for ca ∈ [0, 1]. Furthermore, since h(µ), h′(µ) ≤ 0 (h′ denotes the first-order
derivative of h) for ca ∈ [0, 1] and g(µ) = 1 for ca > 1, g(µ) is non-increasing
(or monotonically decreasing) in dom S.

Next, since the product of two convex, non-increasing functions on an
interval in R is convex, we show that f(µ) = 1/(µ(µ−λ)) is convex and non-
increasing in dom S. Convexity can easily be shown by checking the second-
order condition, ∇2f(µ) � 0, ∀µ ∈ dom S. Since f(µ) is a composition f =
h◦g of two scalar functions h(g) = 1/g and g(µ) = µ(µ−λ) in dom S ⊂ R++,
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the second-order condition can be expressed with the first- and second-order
derivatives f ′, g′, h′ and f ′′, g′′, h′′, respectively, as f ′′(µ) = h′′(g(µ))g′(µ)2 +
h′(g(µ))g′′(µ) ≥ 0,

f ′′(µ) = 2(2µ− λ)2

(µ2 − µλ)3︸ ︷︷ ︸
>0

− 2
(µ2 − µλ)2︸ ︷︷ ︸

>0

?
≥ 0.

In order for f ′′(µ) to be positive, the first term must be larger than the second
term for all µ ∈ dom S. By multiplying with (µ2 − µλ)3 on both sides and
some rearranging we end up with the inequality 3µ2 − λµ + λ ≥ 0 which
strictly holds since µ > λ and λ > 0. Therefore, f(µ) is strictly convex. As
the first derivative of f(µ) is negative,

f ′(µ) = − 2µ− λ
(µ2 − µλ)2 < 0 ∀µ ∈ dom S,

the function is strictly monotonically decreasing. Therefore, we can conclude
that 1/(µ(µ−λ))g(λ, µ, ca, cs) is convex and strictly monotonically decreasing
in µ.

Since the multiplication with a non-negative multiplier (ca+cs)λ/2 > 0 re-
veals convexity, the sum of two convex functions is convex and ∂2/∂µ2(1/µ) >
0, ∀µ ∈ dom S, we can conclude that the approximation function for the
mean sojourn time S is convex in dom S. Since ∂/∂µ(1/µ) < 0, ∀µ ∈
dom S, it also follows that S is strictly monotonically decreasing. This con-
cludes the first part of the proof.

The sum of separable approximations of the mean sojourn times Sj(µj)
is convex in dom C = ⋃

j∈J dom Sj since all functions (Sj(·))j∈J are convex
functions. For all e ∈ E , subtraction of a constant STe , application of the
max{0, ·} function and multiplication with a non-negative multiplier γe > 0
retains convexity. Therefore, with the linear convex left hand side of the
objective function, c>µ = ∑

j∈J cjµj, as well as the convex right hand side,
the objective function is convex in dom C.

Finally, since the left hand side of the objective function is strictly mono-
tonically increasing and the right hand side is monotonically decreasing (not
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strictly due to max{0, ·}) in dom C, at least one optimal vector µ? ∈ dom C
exists which concludes the proof.

Proof of Proposition 2.2. From the definition of Case 1 we know that E= = ∅,
i.e,

@ e ∈ E ,
∑
j∈Je

Sj(µ?1j ) = STe .

Taking this and relation (2.4) into account, the capacity allocation (CAP) can
be expressed as

minimize C1(µ) = c>µ+
∑
e∈E>

γe

[ ∑
j∈Je

Sj(µj)− STe
]

and the subdifferential (2.5) of C1(µ) simplifies to the ordinary gradient,

∂ C1(µ) = ∇C1(µ) = c> +
∑
e∈E>

γe∇
∑
j∈Je

Sj(µj).

In order to find potential solutions of the optimization problem, ∇C1(µ?1) = 0,
we need to find vectors µ?1 ∈ dom C that solve

c> = −
∑
e∈E>

γe∇
∑
j∈Je

Sj(µ?1j ) (A.1)

for all possible combinations of E>. Since E> 6= ∅ and we demand ⋃e∈E> Je =
J , this are at most E2− 1 possible combinations, each requiring the solution
of J equations. Therefore, we need to solve at most J(E2 − 1) equations in
total.

Since the solution of Equation (A.1) is independent of STe , we need to
check the conditions

∀e ∈ E>,
∑
j∈Je

Sj(µ?1j ) > STe

and
∀e ∈ E<,

∑
j∈Je

Sj(µ?1j ) < STe

in order to verify that a solution obtained through the approach above is a
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feasible minimizer of the problem. This concludes the proof.

Proof of Proposition 2.3. The proof is based on the Karush-Kuhn-Tucker
(KKT) conditions of a reformulation of the optimization problem. If the
minimizer of C is such that E= = E (i.e., E> ∪ E< = ∅), problem (CAP) can
be reformulated as the optimization problem

minimize c>µ (A.2)
subject to

∑
j∈Je

Sj(µj)− STe = 0 ∀e ∈ E (A.3)

λj − µj ≤ 0 ∀j ∈ J (A.4)

If we refer to the equality constraints (A.3) as he(µ), e ∈ E , the inequality
constraints (A.4) as fj(µ), j ∈ J , the objective function as f0(µ) = c>µ and
if we introduce the KKT multipliers ηj and νj, the KKT conditions of the
optimization problem are defined as

fj(µ?2) ≤ 0, ∀j ∈ J (A.5)
he(µ?2) = 0, ∀e ∈ E (A.6)

η?j ≥ 0, ∀j ∈ J (A.7)
η?j fj(µ?2) = 0, ∀j ∈ J (A.8)

∇f0(µ?2) +
J∑
j=1

η?j∇fj(µ?2) +
E∑
e=1

ν?e∇he(µ?2) = 0. (A.9)

We instantly see that η?j = 0, ∀j ∈ J from the complementary slackness con-
dition (A.8) and constraint (A.4). Therefore, condition (A.9) for the optimal
solution of the optimization problem can be expressed as

c> = −
E∑
e=1

ν?i∇
∑
j∈Je

Sj(µ?2j ). (A.10)

With this equation and condition (A.6) we get a system of J + E equations
which can be solved to obtain the primal and dual optimal points µ?2 ∈ dom C
and (η?, ν?), respectively (where η? = 0).
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From constraint (A.6) we know that E> = ∅. Another condition to verify
that the obtained solution is optimal is

cj ≤ −
∑
e∈Ej

γe
∂Sj(µ?2j )
∂µj

∀j ∈ J , (A.11)

where E j ⊆ E is the set of product families where node j is contained in all
paths, j ∈ Je, ∀e ∈ E j. This condition is necessary since µ?2 needs to be such
that there is a kink at C(µ?2) where 0 ∈ ∂ C(µ?2) (also, γe is not considered in
the optimization problem). This concludes the proof.

A.2 Proofs of Section 2.4
Proof of Proposition 2.4. We start by showing that the penalty cost term
is weakly decreasing in the improvement. On all paths without penalty we
instantly know that

∑
j∈Je

Sj(ξjµ̃j) =
∑
j∈Je

Sj(µ?j) = STe ∀e ∈ E=.

Therefore, we need to show that on all paths where a penalty occurs

∑
j∈Je

Sj(ξjµ̃j) <
∑
j∈Je

Sj(µ?j) ∀e ∈ E>

holds. Since Sj(·) is strictly monotonically decreasing we can prove the state-
ment by showing that ξjµ̃j > µ?j , ∀j ∈ J where ξj > 1.

Following the proof of Proposition 2.2 for the updated cost function C̃(µ)
as defined in (UCAP) we get

c> = −
∑
e∈E>

γe∇
∑
j∈Je

Sj(ξjµ̃j) (A.12)

for the solution of the differentiable optimization problem. Intuitively, when
comparing this result to Equation (A.1), one could think that the updated
Case 1 -optimal solution is given by µ̃ = A−1µ?1. Although we can simply
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replace µj by ξjµj to compute Sj(ξjµj), we have to explicitly evaluate the first-
order derivative of Sj(ξjµj) in order to compute the gradient of the updated
cost function. The original first-order derivative of Sj(µj) is given by

∂Sj(µj)
∂µj

=−
{

1
µ2
j

+ (caj + csj)λj
2µj(µj − λj)

exp
{
−2(1− caj)(µj − λj)

3λj(caj + csj)

}
(A.13)

·
[

2µj − λj
µj(µj − λj)

+ 2(1− caj)
3λj(caj + csj)

]}
.

The updated first-order derivative of Sj(ξjµj) = S̃j(µj) is given by

∂S̃j(µj)
∂µj

=−
{

1
ξjµ2

j

+ (caj + csj)λj
2ξjµj(ξjµj − λj)

exp
{
−2(1− caj)(ξjµj − λj)

3λj(caj + csj)

}
(A.14)

·
[

2ξ2
jµj − ξjλj

ξjµj(ξjµj − λj)
+ 2ξj(1− caj)

3λj(caj + csj)

]}
.

Since ∂µjSj(µj) and ∂µj S̃j(µj) are differentiable and strictly monotonically
increasing in dom C̃ we can show that ξjµ̃j > µ?j , ∀j ∈ Je, e ∈ E> where
ξj > 1 by inserting µj = µ?j/ξj in equation (A.14) and comparing it to equation
(A.13) with µj = µ?j . If

−
∂S̃j

(
µ?j
ξj

)
∂µj

> −
∂Sj(µ?j)
∂µj

(A.15)

holds we can conclude that µ̃j > µ?j/ξj or ξjµ̃j > µ?j . The substitutions yield

−
∂Sj(µ?j)
∂µj

= 1
(µ?j)2︸ ︷︷ ︸

(1a)

+ (caj + csj)λj
2µ?j(µ?j − λj)︸ ︷︷ ︸

(1b)

exp
{
−

2(1− caj)(µ?j − λj)
3λj(caj + csj)

}
︸ ︷︷ ︸

(1c)

·

 2µ?j − λj
µ?j(µ?j − λj)︸ ︷︷ ︸

(1d)

+ 2(1− caj)
3λj(caj + csj)︸ ︷︷ ︸

(1e)
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and

−
∂S̃j

(
µ?j
ξj

)
∂µj

= ξj
(µ?j)2︸ ︷︷ ︸

(2a)

+ (caj + csj)λj
2µ?j(µ?j − λj)︸ ︷︷ ︸

(2b)

exp
{
−

2(1− caj)(µ?j − λj)
3λj(caj + csj)

}
︸ ︷︷ ︸

(2c)

·

 2ξjµ?j − ξjλj
µ?j(µ?j − λj)︸ ︷︷ ︸

(2d)

+ 2ξj(1− caj)
3λj(caj + csj)︸ ︷︷ ︸

(2e)

.

When comparing the terms in the two equations we see that (2a) > (1a),
(2b) = (1b), (2c) = (1c), (2d) > (1d) and (2e) > (1e) if we assume ξj > 1.
Therefore, inequality (A.15) holds and the first part of the proof is concluded.

The second part of the proof is similar to the first part. In order to show
that c>µ̃ < c>µ? we show that µ̃j < µ?j , ∀j ∈ J where ξ > 1. This means,
following the arguments of the proof of the first statement, we need to show
that

−
∂S̃j(µ?j)
∂µj

< −
∂Sj(µ?j)
∂µj

. (A.16)

The substitution of µj = µ?j in S̃j(µj) yields

−
∂S̃j(µ?j)
∂µj

= 1
ξj(µ?j)2︸ ︷︷ ︸

(3a)

+ (caj + csj)λj
2ξjµ?j(ξjµ?j − λj)︸ ︷︷ ︸

(3b)

exp
{
−

2(1− caj)(ξjµ?j − λj)
3λj(caj + csj)

}
︸ ︷︷ ︸

(3c)

·

 2ξ2
jµ

?
j − ξjλj

ξjµ?j(ξjµ?j − λj)︸ ︷︷ ︸
(3d)

+ 2ξj(1− caj)
3λj(caj + csj)︸ ︷︷ ︸

(3e)

.

When comparing the terms in the two equations we see that (3a) < (1a),
(3b) < (1b), (3c) < (1c), (3d) < (1d) and (3e) > (1e) if we assume ξj > 1.
While the first three inequalities are easy to see the fourth inequality needs
some basic calculus which we do not show here for conciseness.

In order for inequality (A.16) to hold we finally have to show that the
influence of the last term (3e) > (1e) is insignificant in comparison to the four
other terms. Therefore, we multiply it with (3b) and (1b), respectively, and
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compare the products. With some rearranging we end up with

1− caj
3µ?j(ξjµ?j − λj)︸ ︷︷ ︸

(3b)·(3e)

<
1− caj

3µ?j(µ?j − λj)︸ ︷︷ ︸
(1b)·(1e)

which concludes the second part of the proof.

Proof of Proposition 2.5. For Case 1 problems, where a penalty is incurred
for all product families, we see from equation (2.6) that µ̃j = µ?j for all work
stations j where ξj = 1. For Case 2 problems, where no penalty is incurred for
any product family, we can conclude from the equality constraint (A.3) that
µ̃j < µ?j for all work stations j where ξj = 1 in order for the actual approximate
mean total sojourn times to be equal to the contractually defined maximum
mean sojourn times.

The lower and upper bounds for the updated optimal capacities at work
stations j where an improvement ξj > 1 is imposed, µ̃j/µ?j ∈ (1/ξj, 1), can be
found directly from the proof of Proposition 2.4 independent of the contrac-
tually defined maximum mean sojourn times determining the differentiability
of the total costs function in the optimum. This concludes the proof.

Proof of Proposition 2.6.

i) We need to show that Sj(·) is strictly monotonically increasing in csj,
i.e., ∂csjSj(µj) > 0, ∀µj ∈ dom C.

∂

∂csj

 1
µj

+ (caj + csj)λj
2

1
µj(µj − λj)

exp
{
−2(1− caj)(µj − λj)

3λj(caj + csj)

}
=
 λj

2µj(µj − λj)︸ ︷︷ ︸
>0

+ 2(1− caj)(µj − λj)
3λj(caj + csj)2︸ ︷︷ ︸

≥0

 exp
{
−2(1− caj)(µj − λj)

3λj(caj + csj)

}
︸ ︷︷ ︸

>0

> 0

The proof that Sj(·) is strictly monotonically increasing in caj is omitted
as it is similar to the preceding proof.
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ii) We need to show that ∂cajSj(·) > ∂csjSj(·), where

∂

∂caj

 1
µj

+ (caj + csj)λj
2

1
µj(µj − λj)

exp
{
−2(1− caj)(µj − λj)

3λj(caj + csj)

}
=
 λj

2µj(µj − λj)
+ 2(1 + csj)(µj − λj)

3λj(caj + csj)2

exp
{
−2(1− caj)(µj − λj)

3λj(caj + csj)

}
.

Therefore, the inequality simplifies to

2(1 + csj)(µj − λj)
3λj(caj + csj)2

?
>

2(1− caj)(µj − λj)
3λj(caj + csj)2

which is true since 1 + csj > 1− caj. This concludes the proof.

A.3 Queueing Network Parameter Analysis
The algorithm described here is a variation of the Queueing Network Analyzer
(QNA) algorithm described by Whitt 1983 in [44] and enhanced by Bitran
et al. 1996 in [5], modified to fit the requirements of this paper. We first
summarize the input parameters required for the network analysis and not
yet introduced in Section 2.3.

The external arrival rate to the system from customer type e is denoted as
λe. The squared coefficient of variation (ratio of the variance to the squared
mean, SCV) of the external interarrival times of customer type e is given by
cae. τj denotes the expected service time at work station j and qij the share
of the total arrivals at node i that are routed to node j.

Whereas some input parameters such as λe, cae, µj = τ−1
j , csj and qij

are given exogenously, the arrival rates λj and the according SCV need to
be computed prior to the network analysis. Since we assume deterministic
routing, the arrival rates λj can simply be calculated as the sum of the external
expected arrival rates of all engine or customer classes arriving at work station
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j,
λj =

∑
e∈E

∑
i∈Je

λe1{i = j}. (A.17)

In order to determine the variability parameters of the arrivals, we need to
consider three different processes: superposition of arrivals, departures from
nodes and (deterministic) splitting of departures.

Superposition of arrivals

With λij = λiqij, ρj = λjτj and with the interarrival time variability at node
j from node i, caij, the variability parameters of a superposition of arrivals
can be approximated as

caj = wj
J∑
i=1

λij
λj
caij + 1− wj, (A.18)

where

wj = 1
1 + 4(1− ρj)2(vj − 1) (A.19)

vj = 1∑J
i=1(λij

λj
)2
. (A.20)

Departures

The variability of the departure process from a node depends on the variability
of the arrivals and the service times. It can be approximated as

cdj = ρ2
jcsj + (1− ρ2

j)caj. (A.21)

Deterministic splitting of departures

For the deterministic splitting process, we do not use the approximation de-
veloped by Whitt 1983 in [44] for Markovian routing,

cdi = picd+ 1− pi, (A.22)
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but the convex combination developed by Whitt 1994 in [45] which is an
approximation of the complex Erlang numerical procedure proposed by Bitran
1988 in [7] for cai ≤ 1,

cd1 = p1cd+ p1(1− p1)ca2 + (1− p1)2ca1. (A.23)

Note that the subscript 1 denotes the currently observed customer class e1 ∈ E
while subscript 2 represents the superposition of all other classes present at
the node, E2 = E \ e1.

With these three approximations, all necessary parameters of the modified
KLB equations (2.3) are known which can then be applied to compute the
expected sojourn times in the queueing network.30

30Simulations with JMT’s JSIMgraph were used to verify the results computed with the
approximations. For the different scenarios described in Section 5, the average relative
devition between the total mean sojourn times computed using the QNA approximations
and the results obtained from the simulation was approximately 4%, and did never exceed
11% for any scenario. As found in Wu and McGinnis (2013), the QNA approximations
perform best for loads of around 80%, which is in the range of the loads in our scenarios
[47]. Therefore, if networks with higher system loads (heavy traffic) are considered, more
suitable approximations should be employed (e.g., algorithms using the intrinsic ratio
developed by Wu and McGinnis (2012, 2013) [46, 47]).
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B.1 Proofs of Section 3.4
Proof of Theorem 3.1: Since we model the facility of the service provider as
an M/M/1 queue, all interarrival and service times are i.i.d. exponentially-
distributed random variables. Thus, we can use find the optimal threshold
by considering the resulting continuous-time Markov chain. As our objective
is to minimize the time-average queue length, we want the threshold value
K to be as small as possible. Consequently, with Definition 3.1 in mind, the
optimal feasible threshold can be determined as

K = min
{
n ∈ Z+ : EπKR ≤ r/p

}
= min {n ∈ Z+ : P(Q > n) ≤ r/p} ,

since the expected time share the high capacity is active is equal to the prob-
ability that the queue length is greater than the threshold value,

EπKR = lim
T→∞

1
T

T∫
0

1{Q(t) > K(r, p, λ)} dt = P(Q > K).

As illustrated in Figure 3.3, we can model the queueing system as a
continu-ous-time Markov chain with different traffic rates at different nodes.
The balance equations are given as

ν(n|πKR ) = ρn1ν(0|πKR ), n = 0, 1, . . . , K − 1,
ν(n|πKR ) = ρK1 ρ

n−K
2 ν(0|πKR ), n = K,K + 1, . . . ,
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where ρ1 = λ/(1 − r) > 1 and ρ2 = λ/(1 − r + p) < 1. Since there is an
offset of one when comparing the number of jobs in the system L to the queue
length (the job being currently process is counted in the former, but not in
the latter), we can define P(Q > K) = P(L > K) = 1− P(L ≤ K). Since we
use service tokens to model the queue, the number of jobs in the queue is the
same as the number of jobs in the system, see Section 3.3. From the balance
equations we can therefore determine

P(Q > K) = 1− P(L ≤ K)

= 1−
K∑
n=0

ρn1ν(0|πKR )

= 1− ρK+1
1 − 1
ρ1 − 1 ν(0|πKR ). (B.1)

We compute the steady-state probability that the system is empty with the
normalization equation

K−1∑
n=0

ρn1ν(0|πKR ) +
∞∑
n=0

ρK1 ρ
n
2ν(0|πKR ) = 1.

Thus, we find

ν(0|πKR ) =
[
K−1∑
n=0

ρn1 + ρK1

∞∑
n=0

ρn2

]−1

=
[
ρK1 − 1
ρ1 − 1 + ρK1

1− ρ2

]−1

. (B.2)

Using the derived relations we can solve

P(Q > K̂) ≤ r

p

for K̂ directly, resulting in

K̂ ≥ log λ
1−r

r(r − 1)(λ+ r − p− 1)
pλ

1
1− λ.
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Therefore, with K(r, p, λ) = r(r−1)(λ+r−p−1)
pλ

and for integer threshold values,
K = dK̂e, we obtain the optimal feasible threshold as given in Equation (3.1).
This concludes the proof of the theorem.

Proof of Theorem 3.2: The time-average queue length Q(r, p, λ, πKR ) is related
to the mean number of states in the system as Q(r, p, λ, πKR ) = E(Q|πKR ) =
E(L|πKR ), i.e., the mean number of occupied states. With

E(Q|πKR ) =
K−1∑
n=0

nρn1ν(0|πKR ) +
∞∑
n=0

(n+K)ρK1 ρn2ν(0|πKR )

and by using some well-known geometric series relations we obtain

Q(r, p, λ, πKR ) =
[

(K − 1)ρK+1
1 −KρK1 + ρ1

(ρ1 − 1)2 + ρ2 +K(1− ρ2)
(1− ρ2)2 ρK1

]
ν(0|πKR ).

We next show that the time-average queue length is increasing in K. Fix
r ∈ (0, 1), p > r and λ ∈ (1− p, 1). We need to show that

Q(r, p, λ, πK+1
R )−Q(r, p, λ, πKR ) = E(L|πK+1

R )− E(L|πKR )

= KρK+2
1 − (K + 1)ρK+1

1 + ρ1

(ρ1 − 1)2 ν(0|πK+1
R )︸ ︷︷ ︸

1a

+ ρ2 + (K + 1)(1− ρ2)
(1− ρ2)2 ρK+1

1 ν(0|πK+1
R )︸ ︷︷ ︸

1b

− (K − 1)ρK+1
1 −KρK1 + ρ1

(ρ1 − 1)2 ν(0|πKR )︸ ︷︷ ︸
2a

+ ρ2 +K(1− ρ2)
(1− ρ2)2 ρK1 ν(0|πKR )︸ ︷︷ ︸

2b

> 0.

We first show that 1a > 1b,

KρK+2
1 − (K + 1)ρK+1

1 + ρ1

(ρ1 − 1)2 ν(0|πK+1
R )

?
>

(K − 1)ρK+1
1 −KρK1 + ρ1

(ρ1 − 1)2 ν(0|πK+1
R ). (B.3)
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With
ν(0|πKr ) = (ρ1 − 1)(1− ρ2)

(ρK1 − 1)(1− ρ2) + ρK1 (ρ1 − 1) (B.4)

we can reformulate inequality (B.3) as

KρK+2
1 − (K + 1)ρK+1

1 + ρ1

(ρK+1
1 − 1)(1− ρ2) + ρK+1

1 (ρ1 − 1)

≥ KρK+1
1 − (K + 1)ρK1 + 1

(ρK1 − 1)(1− ρ2) + ρK1 (ρ1 − 1)
?
>

(K − 1)ρK+1
1 −KρK1 + ρ1

(ρK1 − 1)(1− ρ2) + ρK1 (ρ1 − 1)

=⇒ KρK+1
1 − (K + 1)ρK1 + 1 ?

> (K − 1)ρK+1
1 −KρK1 + ρ1

=⇒ ρK1 (ρ1 − 1) > ρ1 − 1

Since ρ1 > 1, the inequality holds. Next, we show that 2a > 2b. With
Equation (B.4) we find that

ρ1[ρ2 + (K + 1)(1− ρ2)]
(ρK+1

1 − 1)(1− ρ2) + ρK+1
1 (ρ1 − 1)

≥ ρ2 + (K + 1)(1− ρ2)
(ρK1 − 1)(1− ρ2) + ρK1 (ρ1 − 1)

?
>

ρ2 +K(1− ρ2)
(ρK1 − 1)(1− ρ2) + ρK1 (ρ1 − 1)

=⇒ ρ2 + (K + 1)(1− ρ2) > ρ2 +K(1− ρ2).

Since ρ2 < 1, the inequality holds. With 1a > 1b and 2a > 2b it follows that
1a + 1b − 2a − 2b > 0 which proves that the time-average queue length is
increasing in K.

Therefore, if we consider the limit λ→ 1 we find that

ν(0|πKr ) ∼ O
(
ρ
−(K+1)
1

)
and

(K − 1)ρK+1
1 −KρK1 + ρ1

(ρ1 − 1)2 + ρ2 +K(1− ρ2)
(1− ρ2)2 ρK1 ∼ O

(
KρK+1

1

)
.
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Thus,
Q(r, p, λ, πKR ) ∼ O(K), as λ→ 1.

Finally, we can conclude that

K(r, p, λ) ∼ log 1
1−r
K(r, p, 1) 1

1− λ,

⇒ Q(r, p, λ, πKR ) ∼ O
(

log 1
1−r

1
1− λ

)
,

as λ→ 1. This concludes the proof of Theorem 3.2.

Proof of Proposition 3.1: From the proof of Theorem 3.1 we find that the time-
average queue length increases as ν(0|πKR ) decreases, i.e., when the probability
that the system is empty is low. Therefore, if we fix r ∈ (0, 1) and λ ∈ (1−r, 1],
we can find p such that ν(0|πKR ) is minimal. Assume the we can choose
K? ∈ Z+ freely, then we want to determine minp>r,K?∈Z+ ν(0|πK?

R ). If we
compute ∂Kν(0|πK?

R ) = 0 we find that K? = 0. Thus we can evaluate

min
p>r

ν(0|π0
R) = 1− λ

1− r + p

and find that ν(0|π0
R)→ min! for p ↓ r, limp↓r ν(0|π0

R) = 1− λ. The expected
queue length of an M/M/1 queue with constant service rate is given as

E(LM/M/1) = ρ

1− ρ

with ρ = λ/µ < 1.Therefore, we need to show that

lim
p↓r
Q(r, p, λ, πK(r,p,λ)

R ) = E(LM/M/1) µ=1= λ

1− λ. (B.5)

As we chose K? freely to determine for which p the reactive policy performs
worst, we have to confirm that it coincides with the definition given in Theo-
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rem 3.1 for p ↓ r,

lim
p↓r

log λ
1−r
K(r, p, λ) 1

1− λ = log λ
1−r

1− r
λ

= −1

=⇒ lim
p↓r

K(r, p, λ) = lim
ε↓0
d−1 + εe = 0.

With limp↓r ρ2 = λ, we can compute

lim
p↓r
Q(r, p, λ, π0

R) = −ρ1 + ρ1

(ρ1 − 1)2 (1− λ) + ρ2

(1− ρ2
2)(1− λ) = λ

1− λ

which is the same as E(LM/M/1) with µ = 1. This concludes the proof.

B.2 Proofs of Section 3.5
Proof of Lemma 3.3: Let λ → 1. We need to show that, for any feasible
policy, the number of service tokens generated by the contingent capacity p
until time t cannot exceed the number of NOB arrivals. From Lemma 2.1 we
know that no service tokens can be wasted after the all-time minimum of Q0

has been reached.31 We can prove the statement by showing that a service
token will be wasted if there exists a time t ∈ R+ where S2($(t)) > A∞Ψ (t).

In order to exceed the number of NOB arrivals at time t1, there must be
a time t2 < t1 where S2($(t2)) = A∞Ψ (t2). Also, we assume that S2($(t3)) ≤
A∞Ψ (t3) for all t3 < t2, i.e., we consider the first excursion of S2($(t)) above
A∞Ψ (t). If the queue is empty at time t2, Q1(t2) = Q2(t2) = δQ(t2) = 0,
any service token that is generated before the next arrival, t1 ∈ (t2, inf{x >
t2 : A(x) = A(x−) + 1}), will be wasted. Now assume that the queue is
not empty at time t2, Q1(t2) = Q2(t2) > 0 and δQ(t2) = 0. Since Q1 is a

31When controlled manually, a policy can be such that the number of service tokens gener-
ated by the contingent capacity exceeds the number of NOB arrivals, but still yields a finite
time-average queue length. For each service token that is wasted, the time-average queue
length after the waste is increased by 1. On the other hand, as we assume that a policy is
a prescription controlling the contingent capacity based on the current and future state
of the system, the number of events where a service token is wasted goes to ∞ as t→∞.
Therefore, when considering a prescriptive policy, for all t ∈ R+, S2($(t)) ≤ A∞

Ψ (t).
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recurrent random walk and NOB arrivals can only occur when Q1(t) = 0,
no NOB arrival will occur before the next drop of Q1 to 0. Therefore, if we
denote t4 = inf{x > t2 : Q1(x) = 0} as the time where Q1 next drops to 0,
we know that, in the time interval t ∈ [t2, t4], the number of service tokens
produced by the base capacity equals the number of jobs currently in queue
plus all additionally arriving jobs, Q1(t2)+A(t4)−A(t2)−[S1(t4)−S1(t2)] = 0.
Thus, if an additional service token is produced at time t1 ∈ [t2, t4], a service
token has to be wasted, although not necessarily the service token produced
by the contingent capacity. This concludes the proof.

Proof of Lemma 3.4: We need to show that there exists no feasible policy
π ∈ Π∞ such that the number of service tokens produced by the contingent
capacity p until time t exceeds the number of service tokens produced when
applying the solely forward-looking policy π∞F . If a policy π is supposed to
generate more service tokens than the policy π∞F , the contingent capacity
must be switched on earlier. We can prove the statement by showing that the
probability that a service token produced by the contingent capacity will be
wasted is larger than 0 by doing so.

By Lemma 3.3, as the number of service tokens generated by the contin-
gent capacity until time t is bounded by A∞Ψ (t), the contingent capacity must
always be switched off as soon as S2($(t)) = A∞Ψ (t). The policy π∞F is such
that the contingent capacity is activated as soon as a NOB arrival occurs (and
the contingent capacity was not active before the NOB arrival). Therefore,
consider a time t1 where the queue is empty and a NOB arrival occurs. Then,

Q1(t1−) = 0, Q1(t1) = 0,
Q2(t1−) = 0, Q2(t1) = 1,
δQ(t1−) = 0, δQ(t1) = 1,
π∞F (t1−) = 0, π∞F (t1) = 1,
S2($∞F (t1−)) = A∞Ψ (t1−), S2($∞F (t1)) = A∞Ψ (t1)− 1.

Denote t2 = sup{x < t1 : Q2(x) = Q2(x−) − 1} as the time of the last
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service token generation, where the queue dropped to 0. Now, assume that
the contingent capacity is switched on at a time t3 ∈ (t2, t1) between the time
of the last generation of a service token and the time of the next NOB arrival.
Then, with the Markov property, the probability that at least one service
token will be produced by the contingent capacity with rate p is given as

P[S2($(t1)) > S2($(t2))] =
∞∑
k=1

pk(t1 − t3)k
k! e−p(t1−t3) > 0.

If the event realizes, S2($(t)) > A∞Ψ (t) and the service tokens will be wasted
as there is no job to be served in the queue. Thus, the earliest time we can
activate the contingent capacity is t1, the time of the next NOB arrivals.
As this corresponds to the time where the solely forward-looking policy π∞F
switches on the high capacity, the proof is concluded.

B.3 Proofs of Section 3.6
Proof of Proposition 3.2: In order the show that the proactive policy out-
performs the asymptotically optimal policy it must be true that, for all λ ∈
(1− r, 1],
(K̃ − 1)ρ̃K̃+1

1 − K̃ρ̃K̃1 + ρ̃1

(ρ̃1 − 1)2 + ρ̃2 + K̃(1− ρ̃2)
(1− ρ̃2)2 ρ̃K̃1

 ν̃(0|πK̃R ) ≤ 1− r
λ− (1− r) .

This inequality holds as the right side is the expected number of jobs in an
M/M/1 queue with service rate λ and arrival rate (1− r) and the left part is
the expected number of jobs in an M/M/1 queue with threshold policy with
arrival rate (1 − r) and service rates {λ, λ + p}. When λ → 1 and K̃ → ∞,
the two expressions coincide. This concludes the proof.

B.4 Proofs of Section 3.7
Proof of Proposition 3.3: With finite lookahead, all real NOB arrivals will be
identified, plus additional ones (virtual). For real NOB arrivals we know that
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U(Q0, n,∞) = U(Q0, n,W (n)) = ∞. Thus, virtual NOB arrivals are all for
which we have U(Q0, n,W (n)) = ∞ but there exists {j ∈ Z+ : Q0[n + j] =
Q0[n]−1}, i.e., U(Q0, n,∞) <∞. The number of arriving jobs left (all arrivals
but real NOB arrivals) that could additionally be identified as virtual NOB
arrivals is given as (1− r). The proactive (and solely forward-looking) policy
will identify all jobs as NOB arrivals for which the busy-period is longer than
the lookahead window. It is well known (see, e.g., Asmussen (2008), Section
III.8c, Corollary 8.7 [2]) that the busy-period distribution of an M/M/1 queue
with arrival rate α, service rate β and load γ = α/β is given by the density

gα,β(t) = γ−1/2

t
e−(α+β)tI1

(
2t
√
αβ
)
,

where I1(y) denotes the modified Bessel function of the first kind of order one,

I1(y) =
∞∑
i=0

(y/2)2i+1

k!(k + 1)! .

Let Fα,β(t) =
∫ t

0 gα,β(x) dx be the cumulative distribution function of the
busy-period. Then, the time-average number of NOB arrivals given a finite
lookahead window of length w <∞ can be computed as

lim
t→∞

AwΨ(t)
t

= λ− (1− r) + χ(w)

= λ− (1− r) + (1− r)[1− F1−r,λ(w)]
= λ− (1− r)F1−r,λ(w).

This concludes the proof.
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C.1 Proofs of Section 4.3
Proof of Proposition 4.1: The proposition follows instantly from equation
(4.1). The rate of w-critical arrivals can be at most r, i.e.,

λ− (1− r)F1−r,λ(w) ≤ r.

Reformulation yields the expression stated in the proposition.

Proof of Proposition 4.2: The rate of w-critical job arrivals is equal to the
probability that a random job arrival n ∈ Φ(Q0) will be characterized as
w-critical. With ξ(t) = mins∈[0,w]Q0(t+ s), this probability is given as

P(n ∈ Ψ̃w) = P[ξ(Tn) ≥ Q0(Tn) ∧Q0(Tn + w) ≥ Q0(Tn) + J ]

(a)= P[ξ(Tn) ≥ Q0(Tn)]P[Q0(Tn + w) ≥ Q0(Tn) + J |ξ(Tn) ≥ Q0(Tn)]

(b)= P[ξ(Tn) ≥ Q0(Tn)]

× P[Q0(Tn + w) ≥ Q0(Tn) + J |Q0(Tn + w) ≥ Q0(Tn)]

(c)= P[ξ(Tn) ≥ Q0(Tn)]P[Q0(Tn + w)−Q0(Tn) ≥ J ]
P[Q0(Tn + w)−Q0(Tn) ≥ 0] . (C.1)

Equality (a) follows from the dependency of the two events. When considering
this dependency, we only need to take into account Q0(Tn + w) ≥ Q0(Tn)
which follows instantly from ξ(Tn) ≥ Q0(Tn), leading to equality (b). Finally,
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equality (c) follows from Kolmogorov’s definition of conditional probability.
However, if we denote Q0(Tn +w)−Q0(Tn) as the random variable N we find
that P(N ≥ y|N ≥ x), y ≥ x, can be rewritten as P(N ≥ y ∧N ≥ x)/P(N ≥
x) = P(N ≥ y)/P(N ≥ x) since (N ≥ x) ⊆ (N ≥ y).

From the proof of Proposition 4.1 we know that

P[ξ(Tn) ≥ Q0(Tn)] = lim
t→∞

AwΨ(t)
t

= λ− (1− r)F1−r,λ(w).

For the right hand side of expression (C.1) we can use the fact that

P[Q0(t+ w)−Q0(t) ≥ x] = P[(A(t+ w)− A(t))︸ ︷︷ ︸
N1

− (S1(t+ w)− S1(t))︸ ︷︷ ︸
N2

≥ x],

with the Markov property, can be computed as the difference between two
Poisson random variables N1 and N2 with rates ν1 = wλ and ν2 = w(1−r), re-
spectively. The difference between two Poisson random variables is described
by the Skellam distribution which is defined as

P(N1 −N2 = k) = e−(ν1+ν2)
(
ν1

ν2

)k/2
Ik (2√ν1ν2) ,

with Ik(·) being the modified Bessel function of the first kind of order k.
Therefore, we can express

P[Q0(t+ w)−Q0(t) ≥ x] = P(N1 −N2 ≥ x)

=
∞∑
k=x

P(N1 −N2 = k)

=
∞∑
k=x

e−w(λ+1−r)[λ/(1− r)]k/2Ik
(

2w
√
λ(1− r)

)
.

Bringing the different parts together, we receive

lim
t→∞

ÃwΨ(t)
t

= [λ− (1− r)F1−r,λ(w)]
∑∞
k=J [λ/(1− r)]k/2Ik

(
2w
√
λ(1− r)

)
∑∞
k=0[λ/(1− r)]k/2Ik

(
2w
√
λ(1− r)

) .
Rearranging terms yields the expression stated in the proposition and the
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proof is concluded.

Proof of Proposition 4.3: The proof is based on the properties of the un-
derlying transient random walk Q0. If we are currently at time Tn and
n ∈ Ψ̃w, we know that Q0(t) ≥ Q0(Tn),∀t ∈ [Tn, Tn + w], and Q0(Tn +
w) ≥ Q0(Tn) + J (we use J instead of J(r, λ, w,Λ) for conciseness). Denote
M = maxt∈[Tn+w,∞)[Q0(Tn+w)−Q0(t)] ∈ Z+ as the maximum excursion ofQ0

below Q0(Tn+w) after time Tn+w. The maximum excursion is geometrically
distributed,

P(M≥ a) =
(1− r

λ

)a
,

with a ∈ Z+ [2]. Therefore, we can compute

P(n ∈ Ψ∞|n ∈ Ψ̃w)
= 1− P[M≥ E(Q0(Tn + w)−Q0(Tn)|Q0(Tn + w)−Q0(Tn) ≥ J)]

= 1−
(1− r

λ

)ϑ(r,λ,w,Λ)
,

with ϑ(r, λ, w,Λ) = E(Q0(Tn + w) − Q0(Tn)|Q0(Tn + w) − Q0(Tn) ≥ J).
Following the proof of Proposition 4.2, we find

ϑ(r, λ, w,Λ) = E[N1 −N2|N1 −N2 ≥ J(r, λ, w,Λ)].

With J = J(r, λ, w,Λ) we obtain

ϑ(r, λ, w,Λ) = J + E(N1 −N2 − J)+

= J +
∞∑
k=J

(k − J)P(N1 −N2 = k)

= J +
∞∑
k=J

(k − J)e−w(λ+1−r)
(

λ

1− r

)k/2
Ik

(
2w
√
λ(1− r)

)
.

This concludes the proof.
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