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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit kompositenbasierten Schätzverfahren

für Strukturgleichungsmodelle mit latenten Variablen sowie deren Weiterentwicklung

und einhergehenden Problemen bei deren Verwendung in empirischen Studien.

Die Arbeit umfasst insgesamt fünf Kapitel. Neben einer kurzen Einleitung im ersten

Kapitel beinhalten die verbleibenden Kapitel Teile der Ergebnisse meiner Promotion,

die in Form von vier, teilweise schon veröffentlichten Aufsätzen präsentiert werden.

Der erste Aufsatz befasst sich mit einer alternativen Modellierungsweise der theo-

retischen Konstrukte in der Strukturgleichungsmodellierung. Während in den Sozial-

und Verhaltenswissenschaften die theoretischen Konstrukte klassischerweise durch so-

genannte common factors modelliert werden, stellt dies in manchen Situationen bzw.

in anderen Wissenschaftsbereichen eine unplausible Annahme dar. In diesem Teil der

Arbeit wird eine abgewandelte Form der konfirmatorischen Faktorenanalyse, die kon-

firmatorische Kompositenanalyse, vorgestellt, in welcher die theoretischen Konstrukte

anstatt durch common factors mit Hilfe von Kompositen modelliert werden. Neben

der Ausführung der theoretischen Grundlage wird durch eine Monte Carlo Simulation

gezeigt, dass die konfirmatorische Kompositenanalyse geeignet ist, Fehlspezifikationen

im zugrundeliegenden Kompositenmodell aufzudecken.

In der zweiten Studie wird die Frage aufgeworfen, wie Parameterunterschiede im

Rahmen der partial least squares Pfadmodellierung getestet werden können. Da die

Standardfehler des Schätzers keine analytisch-geschlossene Form besitzen, kann der

aus der Regressionsanalyse bekannte t- bzw. F-Test nicht direkt für die Beantwortung

dieser Frage verwendet werden. Einen Ausweg bietet das Bootstrapping, durch welches
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Konfidenzintervalle um den geschätzten Parameterunterschied konstruiert werden kön-

nen. Mit Hife dieser können statistische Aussagen über den Parameterunterschied in

der Grundgesamtheit gemacht werden. Das vorgestellte Verfahren wird anhand eines

empirischen Beispiels demonstriert.

Der dritte Aufsatz dieser Arbeit geht der Frage nach, wie ordinale Indikatoren mit

festen Kategorien in der partial least squares Pfadmodellierung berücksichtigt werden

können. Es wird ein neues, konsistentes Schätzverfahren vorgestellt, das den qualita-

tiven Charakter der ordinalen Variablen mittels der polychorischen Korrelation bei

der Schätzung berücksichtigt. Der neue Schätzer trägt den Namen „ordinal consistent

partial least squares“ und kombiniert die Verfahren consistent partial least squares und

ordinal partial least squares. Neben der Darbietung des Schätzverfahrens wird mit Hilfe

einer Monte Carlo Simulation gezeigt, dass das Verfahren ordinal consistent partial least

squares geeignet ist, Modelle, die ordinale Indikatoren mit festen Kategorien enthalten,

zu schätzen. Darüber hinaus wird ein empirisches Beispiel mit ordinal consistent partial

least squares geschätzt.

Das letzte Kapitel widmet sich der Schätzung nicht-linearer Strukturgleichungsmo-

delle mit latenten Variablen, wobei sich die Nichtlinearität auf die latenten Variablen

und nicht auf deren Parameter bezieht. In diesem Kontext wird ein neues Schätz-

verfahren vorgestellt, welches ähnlich wie consistent partial least squares funktioniert

und konsistente Parameterschätzungen für rekursive, nicht-lineare Gleichungssysteme

liefert. Im Gegensatz zu consistent partial least squares benötigt der vorgestellte Mo-

mentenschätzer kein iteratives Verfahren, um die Gewichte für die Bildung der Kompo-

siten zu bestimmen. Es wird mit Hilfe einer Monte Carlo Simulation gezeigt, dass der

Schätzer geeignet ist, nicht-lineare Strukturgleichungsmodelle mit latenten Variablen

zu schätzen.
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Chapter 1

Introduction

Structural equation modeling with latent variables (SEM) has become an established

method, especially in research fields such as social and behavioral sciences. Its capacity

to model dependencies between theoretical constructs, take into account various forms

of measurement errors, and test entire theories makes it a favorable tool for engagement

with a plethora of research problems.

The origin of SEM dates back to the early 20th century (Westland, 2015, Chap.

2), and it combines developments from various fields of methodological research, e.g.,

psychometrics, econometrics, and biometrics. However, (linear) SEM, as it is known

today, was initially developed by Jöreskog (1969), who assumed that latent theoretical

constructs are modeled as common factors. This kind of SEM is also named factor-

based SEM due to the way in which construct modeling takes place within its purview.1

In general, SEM comprises the following two models: structural model and mea-

surement model (see Bollen (1989) for a more detailed overview). The structural model

connects the endogenous and exogenous common factors, as seen in the equation below:

η = Γξ +Bη + ζ, (1.1)

where the vectors η and ξ contain the endogenous and the exogenous common factors,

while the vector ζ contains the structural error terms. The matrices Γ and B contain
1See Rigdon (2012, 2014) for a more detailed explanation of construct modeling in SEM, and how

the common factor has reached such a predominant position in SEM.
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the path coefficients of the exogenous and the endogenous common factors respectively.

The measurement model, which also provides the basis for confirmatory factor analysis

(CFA), defines how the latent common factors are connected to the observed indicators,

as outlined in the formulas below:

x =Λxξ + ε (1.2)

y =Λyη + δ, (1.3)

where the observed indicators are stacked in the vectors x and y, and the vectors ε

and δ contain the measurement errors. Thus, in context of factor-based SEM, the

variance of an observed indicator can be decomposed into the following two parts: a

common variance, which is explained by common factors; and a unique variance, which

is explained by some other source captured in the measurement error.

In Chapter 2, the assumption that the underlying construct must be modeled as

a common factor is relaxed and the confirmatory composite analysis (CCA) (Henseler

et al., 2014) is presented as being analogous to CFA. In CCA, theoretical constructs are

modeled as composites instead of as common factors; and therefore, CCA can be used

in situations where CFA faces conceptual limitations because of the strict assumptions

imposed upon the model due to its insistence upon the use of common factors. Figure

1.1 draws out the contrast between the common factor model and the composite model

as different ways of construct modeling.

xk· · ·x1 · · · xK

ξ

ε1 εKεk· · · · · ·

(a) Common factor model

xk· · ·x1 · · · xK

ξ

(b) Composite model

Figure 1.1: Common factor vs. composite

By introducing the CCA, composites are put into a holistic model framework that

comprises the same steps as involved in CFA, i.e., model specification, model esti-
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mation, model identification, and testing of the overall model fit. Besides providing

a description of each step, a Monte Carlo simulation is conducted to investigate the

performance of a bootstrap-based procedure to statistically test the overall model fit

in CCA. The results of the simulation confirm that various misspecification can be

detected and highlight the confirmatory character of CCA.

A consistent estimator for CCA or, more generally, composite-based SEM2 is par-

tial least squares path modeling (PLS) (Lohmöller, 2013). It is applied across many

disciplines, e.g., marketing science (Hair et al., 2012b), information systems (Gefen

et al., 2011; Hair et al., 2017), or strategic management (Hair et al., 2012a), and it

has been subject to intensive debate highlighting its advantages and its limitations

(Aguirre-Urreta and Marakas, 2013, 2014; Henseler et al., 2014; Rigdon et al., 2014;

Rönkkö and Evermann, 2013). A secondary benefit of the scientific debate was the

introduction of further enhancements of PLS, e.g., the heterotrait-monotrait ratio of

common factor correlations as new criterion for discriminant validity (Henseler et al.,

2015) or invariance testing of composites using PLS (Henseler et al., 2016b).

However, practitioners often struggle with issues that are of a rather practical rel-

evance. Chapter 3 addresses such an issue and provides a user guideline on how the

difference between two parameters in the framework of PLS can be tested. In regression

analysis, this is typically done by a so-called t-test. Since the variance of PLS estimates

cannot be expressed in a closed-form expression, bootstrap-based approaches are em-

ployed to construct confidence intervals around the estimated parameter difference in

order to draw conclusions about the population parameter difference. To illustrate this

advancement in PLS, a reduced version of the well-established technology acceptance

model is used.

As PLS always creates composites as stand-ins for theoretical constructs, even for

factor-based SEM, its estimates suffer from attenuation (Cohen, 1988, Chap. 2.10.2)

and are, therefore, biased. This is due to the fact that in factor-based SEM, in-

dicators containing measurement error are used to build composites as a weighted

linear combination. However, it can be shown that the estimates are ”consistent at

large”(Schneeweiss, 1993), which, in turn, means that the estimate converges in prob-

ability to the true parameter if the sample size as well as the number of indicators

converge to infinity. To overcome the drawback of inconsistent parameter estimates in
2SEM where theoretical constructs are modeled as composites.
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factor-based SEM, Dijkstra and Henseler (2015a,b) developed consistent partial least

squares (PLSc), which uses a correction for attenuation of the composite correlations

as well as of the correlations between the composites and the indicators. This makes

PLSc an outstanding and appealing estimator for both, composite-based and factor-

based SEM and, in particular, for models wherein composites as well as common factors

are included.

Chapter 4 provides an extension of PLSc by incorporating the polychoric correlation

to deal with ordinal categorical indicators. The approach is called ordinal consistent

partial least squares (OrdPLSc) and permits one to estimate structural equation mod-

els of composites and common factors if some or all indicators are measured on an

ordinal categorical scale. Its performance is evaluated by a Monte Carlo simulation

and compared to means and variance adjusted weighted least squares (WLSMV), a

covariance-based alternative. Furthermore, three approaches are presented to obtain

constructs scores from OrdPLS and OrdPLSc, which can be used, for instance, in im-

portance performance matrix analysis. Finally, the behavior of OrdPLSc is shown on

an empirical example and a practical guidance is provided for the assessment of SEMs

with ordinal categorical indicators in the context of OrdPLSc.

The last chapter of my dissertation, Chapter 5, proposes an estimator for polynomial

factor models similar to PLSc for nonlinear structural equation models containing latent

variables (Dijkstra, 2014). In contrast to PLSc, non-iterative weights are used to build

composites which are the proxies for the latent variables. The approach is called

the non-iterative method-of-moments for polynomial factor models (MoMpoly); and it

corrects the moments of the composites in order to consistently estimate the moments

of the latent variables that can, in turn, be used to obtain consistent estimates for the

parameters of the structural and the measurement model. A Monte Carlo simulation

is conducted to examine the performance of MoMpoly and it is compared to latent

moderated structural equations (LMS), which is a full information maximum likelihood

estimator. In this context, an R package named MoMpoly has been developed where

the MoMpoly estimator is implemented.
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Chapter 2

Confirmatory Composite Analysis

2.1 Introduction1

Structural equation modeling with latent variables (SEM) comprises confirmatory fac-

tor analysis (CFA) and path analysis, thus combining methodological developments

from different disciplines such as psychology, sociology, and economics, while cover-

ing a broad variety of traditional multivariate statistical procedures (Bollen, 1989;

Muthén, 2002). It is capable of expressing theoretical constructs by means of multiple

manifest variables, to connect them via the structural model as well as to account for

measurement error. Since SEM allows for statistical testing of the estimated parame-

ters and even entire models, it is an outstanding tool for confirmatory purposes such

as for assessing construct validity (Markus and Borsboom, 2013) or for establishing

measurement invariance (Van de Schoot et al., 2012). Apart from the original max-

imum likelihood estimator, robust versions and a number of alternative approaches

were also introduced to encounter violations of the original assumptions in empirical

work, such as the asymptotic distribution free (Browne, 1984) or the two-stage least

squares (2SLS) estimator (Bollen, 2001). Over time, the initial model has been con-

tinuously improved upon to account for more complex theories. Consequently, SEM is

able to deal with categorical (Muthén, 1984) as well as longitudinal data (Little, 2013)
1This chapter is based on joint work with Jörg Henseler and Theo K. Dijkstra.
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and can be used to model non-linear relationships between the constructs (Klein and

Moosbrugger, 2000).2

Researchers across many streams of science appreciate SEM’s versatility. In partic-

ular, in behavioral and social sciences, SEM enjoys large popularity, e.g., in marketing

(Bagozzi and Yi, 1988; Steenkamp and Baumgartner, 2000), psychology (MacCallum

and Austin, 2000), communication science (Holbert and Stephenson, 2002), operations

management (Shah and Goldstein, 2006), or information systems (Gefen et al., 2011)

– to name a few. Additionally, beyond the realm of behavioral and social sciences, re-

searchers have acknowledged the capabilities of SEM, such as in construction research

(Xiong et al., 2015) or neurosciences (McIntosh and Gonzalez-Lima, 1994).

Over the last decades, the conceptualization of the theoretical construct and the

common factor has become more and more conflated such that hardly any distinction

is made between both the terms (Rigdon, 2012). The common factor, as a way of

modeling the underlying construct, dominates SEM and confirmatory factor analysis

(CFA) to an extent that both terms are incorrectly used interchangeably. This is

unfortunate and misleading because in disciplines besides and even within social and

behavioral sciences, the construct under investigation is sometimes represented by a

composite rather than by a common factor, e.g., in design research (Henseler, 2017)

or in marketing (Edwards and Bagozzi, 2000). At present, the validity of composites

models cannot be systematically assessed. Current approaches are limited to assessing

the indicators’ collinearity (Diamantopoulos and Winklhofer, 2001) and their relations

to other variables in the model (Bagozzi, 1994). A rigorous test of composites models

in analogy to CFA does not exist so far. Not only does this situation limit the progress

of composites models, it also represents an unnecessary weakness of SEM.

For this reason, we introduce the confirmatory composite analysis (CCA) wherein

the theoretical construct is modeled as a composite to make SEM accessible to a broader

audience. We show that the composites model relaxes the restrictions imposed by the

common factor model. However, it still provides testable restrictions, which makes

CCA a full-fledged method for confirmatory purposes. In general, it involves the same

steps as CFA or SEM, without assuming that the underlying construct is necessarily

modeled as a common factor.
2For more details and a comprehensive overview, we referred to the following text books: Hayduk

(1988), Bollen (1989), Marcoulides and Schumacker (2001), Raykov and Marcoulides (2006), Kline
(2015), and Brown (2015).
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There is no exact instruction on how to apply SEM; however, there exists a gen-

eral consensus that SEM and CFA comprise at least the following four steps: model

specification, model identification, model estimation, and model testing (Schumacker

and Lomax, 2009, Chap. 4). To be in line with this proceeding, the remainder of the

paper is structured as follows: Section 2.2 introduces the composites model providing

the theoretical foundation for the CCA and how the same can be specified; Section 2.3

considers the issue of identification in CCA and states the assumptions as being neces-

sary to guarantee the unique solvability of the composites model; Section 2.4 presents

one approach that can be used to estimate the model parameters in the framework of

CCA; Section 2.5 provides a test for the overall model fit to assess how well the spec-

ified model fits the observed data; Section 2.6 assesses the performance of this test in

terms of a Monte Carlo simulation and presents the results; and finally the last section

discusses them and gives an outlook for future research.

2.2 Specifying composites models

Composites have a long tradition in multivariate data analysis (Pearson, 1901). Orig-

inally, they are the outcome of dimension reduction techniques, i.e., the mapping of

the data to a lower dimensional space. In this respect, they are designed to cap-

ture the most important characteristics of the data as efficiently as possible. Apart

from dimension reduction, composites often serve as proxies for theoretical constructs

(MacCallum and Browne, 1993). In marketing research, Fornell and Bookstein (1982)

recognized that theoretical constructs like marketing mix or population change are not

appropriately modeled by common factors. This is because these constructs are rather

built than that they constitute latent variables. Thus, they are defined as an aggre-

gate of observable variables forming a new entity. In the recent past, more and more

researchers recognized composites as a legit way of construct modeling, e.g., in market-

ing science (Diamantopoulos and Winklhofer, 2001; Rossiter, 2002), business research

(Diamantopoulos, 2008), environmental science (Grace and Bollen, 2008), or in design

research (Henseler, 2017). Additionally, the use of composites in SEM is supported by

the concept proxy framework (Rigdon, 2012).

Since most researchers are used to employing common factors as a way of construct

modeling, Table 2.1 contrasts the common factor and the composite as proxies for
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theoretical constructs.3 In social and behavioral sciences, latent constructs are often

Table 2.1: Type of theoretical construct
Criterion: Latent variable Artifact
Dominant statistical model: Common factor model Composites model
Fundamental scientific question: Does it exist? Is it useful?
Scientific paradigm: Positivist Pragmatist
Examples: Abilities, attitudes,

traits
Indices,
management success factors

understood as ontological entities such as abilities or attitudes, which rests on the

assumption that the theoretical construct of interest exists in nature, regardless of

whether it is the subject of scientific examination. In contrast, a construct can be

conceived as a result of theoretical thinking or as a construction, i.e., as an artifact.

This way of thinking has its origin in constructivist epistemology. The epistemological

distinction between ontological and constructivist nature of constructs has important

implications when modeling the causal relationships among the constructs and their

relationships to the observed indicators. While a common factor model seeks to explore

whether a certain latent entity exists by testing if collected measures of a construct are

consistent with the assumed nature of that construct, a composite is more pragmatic

in the sense that it explores whether a formed construct is useful at all.

In the following part, we present the theoretical foundation of the composites model.

Although the formal development of the composites model and the composites factor

model (Henseler et al., 2014) were already laid out by Dijkstra (2013a, 2015), it has not

been put into a holistic framework yet. In the following, it is assumed that each theoret-

ical construct is modeled as a composite cj with j = 1, . . . , J .4 By definition, a compos-

ite is completely determined by a unique block ofKj indicators, x′j =
(
xj1 . . . xjKj

)
,

cj = w′jxj. The weights of block j are included in the column vector wj of length Kj.

Usually, each weight vector is scaled to ensure that the composites have unit variance

(see also Section 2.3). Here, we assume that each indicator is connected to only one

composite. The theoretical covariance matrix Σ of the indicators can be expressed as
3For a comparison of composites and common factors, we referred to Rigdon (2016).
4In general, models containing common factors and composites are also conceivable but have not

been considered here.
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partitioned matrix as follows:

Σ =



Σ11 Σ12 . . . Σ1J

Σ22 . . . Σ2J
. . . ...

ΣJJ


. (2.1)

The intra-block covariance matrix Σjj of dimension Kj × Kj is unconstrained and

captures the covariation between the indicators of block j; thus, effectively allowing the

indicators of one block to freely covary. Moreover, it can be shown, that the indicator

covariance matrix is positive-definite, if and only if the following two conditions hold: (i)

all intra-block covariance matrices are positive-definite, and (ii) the covariance matrix

of the composite is positive-definite (Dijkstra, 2015, 2018). The covariances between the

indicators of block j and l are captured in the inter-block covariance matrix Σjl, with

j 6= l of dimension Kj ×Kl. However, in contrast to the intra-block covariance matrix,

the inter-block covariance matrix is constrained, since by assumption, the composites

carry all information between the blocks:

Σjl = ρjlΣjjwjw
′
lΣll = ρjlλjλ

′
l, (2.2)

where ρjl = w′jΣjlwl equals the correlation between the composites cj and cl. The

vector λj = Σjjwj of length Kj contains the composite loadings, which are defined as

the covariances between the composite cj and the associated indicators xj. Equation 2.2

is highly reminiscent of the corresponding equation where all constructs are modeled

as common factors instead of composites. In a common factor model the vector λj
captures the covariances between the indicators and its connected common factor and

ρjl represents the correlation between common factor j and l. Hence, both models

show the rank-one structure for the covariances matrices between two indicator blocks.

Although, the intra-block covariance matrices of the indicators, Σjj are not re-

stricted, we emphasize that the composites model is still a model from the point of

view of SEM. It assumes that all information between the indicators of two different

blocks is conveyed by the composite(s), and therefore, it imposes rank one restrictions

on the inter-block covariance matrices of the indicators (see Equation 2.2). These

restrictions can be used for testing the overall model fit (see Section 2.5). It is empha-

sized that the weights wj producing these matrices are the same across all inter-block

covariance matrices Σjl with l = 1, ..., J and l 6= j.
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Figure 2.1 illustrates a minimal composites model.5 The composite c is illustrated

by a hexagon and the observed indicators are represented by squares. The uncon-

strained covariance σ12 between the indicators of block x′ =
(
x1 x2

)
forming the

composite is highlighted by a double-headed arrow.

y c

x1 x2

z

w2w1

σyc σcz

σ12

σyz

Figure 2.1: Minimal composites model

In contrast, the observed variables y and z do not form the composite; however, they

are allowed to freely covary among each other as well as with the composite.

To emphasize upon the difference of the composites model to the model typically

used in CFA where constructs are modeled as common factors, we depict the compos-

ites model as composites factor model (Dijkstra, 2013a; Henseler et al., 2014). Figure

2.2 shows the same model as Figure 2.1 but in terms of a composite factor representa-

tion. This illustration is advantageous since in it the deduction of the model implied

correlations is straightforward.
5The model is still over-identified with one degree of freedom.
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y c

x1 x2

z

λ2λ1

ε1 ε2

σyc σcz

θ12

σyz

Figure 2.2: Minimal composites model displayed as composites factor model

The composite loading λi, i = 1, 2 captures the covariance between the indicator xi
and the composite c. In general, the error terms are included in the vector ε, explaining

the variance of the indicators and the covariances between the indicators of one block,

which are not explained by the composite factor. As the composites model does not

restrict the covariances between the indicators of one block, the measurement errors

are allowed to freely covary. The covariations among the measurement errors as well

as their variances are captured in matrix θ. Therefore, the model implied intra-block

covariances among the indicators of one block equal the empirical ones. The model

implied covariance matrix of the minimal composites model can be displayed as follows:

Σ =



y x1 x2 z

σyy

λ1σyc σ11

λ2σyc λ1λ2 + θ12 σ22

σyz λ1σcz λ2σcz σzz


. (2.3)

In comparison to the same model using a common factor instead of a composite,

the composites model is less restrictive as it allows all error terms of one block to

be correlated, which leads to a more general model (Henseler et al., 2014). In fact,

the common factors model is always nested in the composites model since it uses

the same restriction as the composites model; but additionally, it assumes that (some)

covariances between the error terms of one block are restricted (usually to zero). Under
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certain conditions, it is possible to rescale the intra- and inter-block covariances of a

composites model to match those of a common factors model (Dijkstra, 2013a; Dijkstra

and Henseler, 2015a).

2.3 Identifying composites models

Model identification is an important issue in CCA as well as in SEM and CFA. Since

practitioners can freely specify their models, it needs be ensured that the model param-

eters have a unique solution (Bollen, 1989, Chap. 8). Therefore, model identification

is necessary to obtain consistent parameter estimates and to reliably interpret them

(Marcoulides and Chin, 2013).

In general, the following three states of model identification can be distinguished:

under-identified, just-identified, and over-identified. An under-identified model, also

known as not-identified model, offers several sets of parameters that are consistent with

the model constraints, and thus, no unique solution for the model parameters exist.

Therefore, only questionable conclusions can be drawn. In contrast, a just-identified

model provides a unique solution for the model parameters and has the same number of

free parameters as non-redundant elements of the indicator covariance matrix (degrees

of freedom (df) are 0). In empirical analysis such models cannot be used to evaluate

the overall model fit, since they perfectly fit the data. An over-identified model also has

a unique solution; however, it provides more non-redundant elements of the indicator

covariance matrix than model parameters (df > 0). This can be exploited in empirical

studies for assessing the overall model fit, as these constraints should hold for a sample

within the limits of sampling error if the model is valid.

A necessary condition for ensuring identification is to normalize each weight vec-

tor. In doing so, we assume that all composites are scaled to have a unit variance,

w′jΣjjwj = 1.6 Besides the scaling of the composite, each composite must be con-

nected to at least one composite or one variable not forming a composite. As a result,

at least one inter-block covariance matrix Σjl, l = 1, ..., J with l 6= j satisfies the

rank one condition. Along with the normalization of the weight vector, the model

parameters can be uniquely retrieved from the rank one inter-block covariance matrix
6Another way of normalization is to fix one weight of each block to certain value. Furthermore,

we ignore trivial regularity assumptions such as weight vectors consisting of zeros only; and similarly,
we ignore cases where intra-block covariance matrices are singular.
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displayed in Equation 2.2. Otherwise, if a composite ci is isolated in the nomologi-

cal network, all inter-block covariances Σjl, l = 1, ..., J with l 6= j, belonging to this

composite are of rank zero, and thus, the weights forming this composite cannot be

uniquely retrieved.

In the following part, we give a description on how the number of degrees of freedom

is counted in case of the composites model.7 It is given by the difference between

the number of non-redundant elements of the indicator covariance matrix Σ and the

number of free parameters in the model. The number of free model parameters is

given by the number of covariances among the composites, the number of covariances

between composites and indicators not forming a composite, the number of covariances

among indicators not forming a composite, the number of non-redundant off-diagonal

elements of each intra-block covariance matrix, and the number of weights. Since we fix

composite variances to one, one weight of each block can be expressed by the remaining

ones of this block. Hence, we regain as many degrees of freedom as fixed composite

variances, i.e., as blocks in the model. Equation 2.4 summarizes the way of determining

the number of degrees of freedom of a composites model.

df = number of non-redundant off-diagonal elements of the indicator covariance matrix

− number of free correlations among the composites

− number of free covariances between the composites and indicators not forming a composite

− number of covariances among the indicators not forming a composite (2.4)

− number of free non-redundant off-diagonal elements of each intra-block covariance matrix

− number of weights

+ number of blocks.

To illustrate the way of calculating the number of degrees of freedom, we consider

the minimal composites model presented in Figure 2.1. As described above, the model

consists of four (standardized) observed variables, thus the indicator correlation matrix

has six non-redundant off-diagonal elements. The number of free model parameters is

counted as follows: no correlations among the composites as the models consists of only

one composite, two correlations between the composite and the observable variables
7The number of degrees of freedom can be helpful at determining whether or not a model is

identified, since an identified model has non-negative number of degrees of freedom.
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not forming a composite (σyc and σcz), one correlation between the single indicators

(σxz), one non-redundant off-diagonal of the intra-block correlation matrix (σ12), and

two weights (w1 and w2) minus one, the number of blocks. As a result, we obtain

the number of degrees of freedom as follows: df = 6 − 0 − 2 − 1 − 1 − 2 + 1 = 1.

Once identification of the composites model is ensured, in a next step the model can

be estimated.

The existing literature sometimes mentions empirical under-identification in the

context of model identification (Kenny, 1979). We emphasize that empirical under-

identification refers to an issue of estimation rather than to the issue of model identifi-

cation. Although a model is in principle identified by its structure, model parameters

can be undetermined and unstable due to the indicator sample covariance matrix.

To exemplify the problem of empirical under-identification, we consider a model with

two composites each formed by two standardized indicators: c1 = w1x1 + w2x2 and

c2 = w3x3 + w4x4. For normalization, we fix the variance of each composite to one.

Moreover, the two composites are allowed to freely correlate. The model implied cor-

relation matrix is given by the following:

Σ =



1 σ12 ρλ1λ3 ρλ1λ4

1 ρλ2λ3 ρλ2λ4

1 σ34

1


, (2.5)

where ρ is the correlation between the two composites c1 and c2 and λi, with i =

1, . . . , 4, represents the correlation between the indicator xi and its corresponding com-

posite. Since each composite is connected to at least one variable, the model is identified

with one degree of freedom; however, when the inter-block correlation matrix (elements

surrounded by a rectangle) are close to zero or even zero in the sample, the estimates

may be unstable or cannot be retrieved uniquely from the indicator sample correlation

matrix.

2.4 Estimating composites models

The existing literature provides various ways of constructing composites from blocks of

indicators. The most common among them are principal component analysis (PCA)

(Pearson, 1901), linear discriminant analysis (LDA) (Fisher, 1936), and (generalized)
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canonical correlation analysis ((G)CCA) (Hotelling, 1936; Kettenring, 1971). All these

approaches seek composites that ’best’ explain the data and can be regarded as pre-

scriptions for dimension reduction (Dijkstra and Henseler, 2011). Further approaches

are partial least squares path modeling (PLS-PM) (Wold, 1975), regularized general

canonical correlation analysis (RGCCA) (Tenenhaus and Tenenhaus, 2011), and gen-

eralized structural component analysis (GSCA) (Hwang and Takane, 2004). Of course,

the use of predefined weights is also possible.

We follow Dijkstra (2010) and apply GCCA in a first step to estimate the correlation

between the composites.8 In the following part, we give a brief description of GCCA.

The vector of indicators x of length K is split up into J subvectors xj, so called

blocks, each of dimension (Kj × 1) with j = 1, . . . , J . We assume that the indicators

are standardized to have means of zero and unit variances. Moreover, each indicator

is connected to one composite only. Hence the correlation matrix of the indicators

can be calculated as Σ = E(xx′) and the intra-block correlation matrix as Σjj =

E(xjx′j). Moreover, the correlation matrix of the composites, cj = x′jwj is calculated

as follows: Σc = E(cc′). In general, GCCA chooses the weights to maximize the

correlation between the composites. In doing so, GCCA offers the several following

options: sumcor, maxvar, ssqcor, minvar, and genvar.9

In the following part, we use maxvar under the constraint that each composite

has a unit variance, w′jΣjjwj = 1, to estimate the weights, the composites, and the

resulting composite correlations.10 In doing so, the weights are chosen to maximize the

largest eigenvalue of the composite correlation matrix. Thus, the total variation of the

composites is explained as well as possible by one underlying ’principal component’

and the weights to form the composite cj are calculated as follows (Kettenring, 1971):

wj = Σ−
1
2

jj ãj/
√
ã′jãj. (2.6)

The subvector ãj, of length Kj, corresponds to the largest eigenvalue of the matrix

Σ−
1
2

D ΣΣ−
1
2

D , where the matrix ΣD, of dimension K × K, is a block-diagonal matrix

containing the the intra-block correlation matrices Σjj, j = 1, ..., J on its diagonal.

For empirical work, the population matrix Σ is replaced by its empirical counterpart

S to obtain the estimates of the weights, the composites, and their correlations.
8GCCA builds composites in a way that they are maximally correlated.
9For an overview we refer to Kettenring (1971)

10In general, GCCA offers several composites (canonical variates); but in our study, we have focused
only on the canonical variates of the first stage.
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2.5 Assessing composites models

2.5.1 Tests of overall model fit

In CFA and factor-based SEM a goodness-of-fit test has been naturally supplied by the

maximum-likelihood estimation in form of the chi-square test (Jöreskog, 1967), while

CCA inherently lacks in terms of such a test. However, we contribute a combination

of a bootstrap procedure with several distance measures to statistically test how well

the assumed composites model fits to the collected data.

The existing literature provides several measures with which to assess the discrep-

ancy between the perfect fit and the model fit. In fact, every distance measure known

from CFA can be used to assess the goodness-of-fit of a composites model. They all

capture the discrepancy between the sample covariance matrix S and the model im-

plied covariance matrix Σ̂ of the indicators. In our study, we consider the following

three distance measures: squared Euclidean distance (dL), geodesic distance (dG), and

standardized root mean square residual (SRMR).

The squared Euclidean distance between the sample and the model implied covari-

ance matrix is calculated as follows:

dL = 1
2

K∑
i=1

K∑
j=1

(sij − σ̂ij)2, (2.7)

where K is the total number of indicators, and sij and σ̂ij are the elements of the

sample and the model-implied covariance matrix respectively. It is obvious that the

squared Euclidean distance is zero for a perfectly fitting model, Σ̂ = S.

Moreover, the geodesic distance stemming from a class of distance functions pro-

posed by Swain (1975) can be used to measure the discrepancy between the sample

and model-implied covariance matrix. It is given by the following:

dG = 1
2

K∑
i=1

(log(ϕi))2, (2.8)

where ϕi is the i-th eigenvalue of the matrix S−1Σ̂ and K is the number of indicators.

The geodesic distance is zero when and only when all eigenvalues equal one, i.e., when

and only when the fit is perfect.

Finally, the standardized root mean square residual (SRMR) (Hu and Bentler, 1999)
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can be used to test the goodness-of-fit. The SRMR is calculated as follows:

SRMR =

√√√√√
2

K∑
i=1

i∑
j=1

((sij − σ̂ij)/(siisjj))2

 /(K(K + 1)), (2.9)

where K is the number of indicators. It reflects the average discrepancy between the

empirical and the model implied correlation matrix. Thus, for a perfectly fitting model,

the SRMR is zero, as σ̂ij equals sij.

Since all distance measures considered are functions of the sample covariance ma-

trix, a procedure proposed by Beran and Srivastava (1985) can be used to test the

overall model fit: H0 : Σ = Σ̂.11 The reference distribution of the distance measures

as well as the critical values are obtained from the transformed sample data as follows:

XS−
1
2 Σ̂

1
2 , (2.10)

where the data matrix X of dimension (N × K) contains the N observations of all

K indicators. This transformation ensures that the new dataset satisfies the null

hypothesis, i.e., the sample covariance matrix of the transformed dataset equals the

model implied covariance matrix. The reference distribution of the distance measures

is obtained by bootstrapping from the transformed dataset. In doing so, the estimated

distance based on the original dataset can be compared to the critical value from the

reference distribution (typically the empirical 95% or 99% quantile) to decide if the

null hypothesis, H0 : Σ = Σ̂ is rejected or not (Bollen and Stine, 1992).

2.5.2 Fit indices for composites models

Additional to the test of overall model fit, we provide some fit indices as measures of

the overall model fit. In general, fit indices can indicate whether or not a model is

misspecified by providing an absolute value of the misfit; however, we advise to use

them with caution as they are based on heuristic rules-of-thumb rather than statistical

theory. Moreover, it is recommended to calculate the fit indices based on the indicator

correlation matrix instead of the covariance matrix.

The standardized root mean square residual (SRMR) was already introduced as a

measure of overall model fit (Henseler et al., 2014). As described above, it represents

the average discrepancy between the indicator sample and model-implied correlation
11This procedure is known as Bollen-Stine bootstrap (Bollen and Stine, 1992) in the factor-based

SEM literature. The model must be over-identified for this test.
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matrix. Values below 0.10 and, following a more conservative view, below 0.08 indicate

a good model fit (Hu and Bentler, 1998).

Furthermore, the normed fit index (NFI) is suggested as a measure of goodness of

fit (Bentler and Bonett, 1980). It measures the relative discrepancy between the fit

of baseline model and the fit of the estimated model. In this context, a model where

all indicators are assumed to be uncorrelated (the model-implied correlation matrix

equals the unit matrix) can serve as a baseline model (Lohmöller, 2013, Chap. 2.4.4).

To assess the fit of the baseline model and the estimated model several measures can

be used, e.g., the log likelihood function used in CFA or the geodesic distance. Values

of the NFI close to one imply a good model fit. However, cut-off values still need to

be determined.

Finally, we suggest to consider the root mean square residual covariance of the outer

residuals (RMStheta) as a further fit index (Lohmöller, 2013). It is defined as the square

root of the average residual correlations. Since the indicators of one block are allowed

to be freely correlated, the residual correlations within a block should be excluded and

only the residual correlations across the blocks should be taken into account during

its calculation. Small values close to zero for the RMStheta indicate a good model fit.

However, threshold values still need to be determined.

2.6 A Monte Carlo simulation

In order to assess our proposed procedure of statistically testing the overall model fit

of composites models and to examine the behavior of the earlier presented discrepancy

measures, we conduct a Monte Carlo simulation. In particular, we investigate the

type I error rate (false positive rate) and the power which are the most important

characteristics of a statistical test. In designing the simulation, we choose a number of

constructs used several times in the literature to examine the performance of fit indices

and tests of overall model fit in CFA: a model containing two composites and a model

containing three composites (Heene et al., 2012; Hu and Bentler, 1999). To investigate

the power of the test procedure, we consider various misspecifications of these models.

Tables 2.2 and 2.3 summarize the designs investigated in our simulation study.
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2.6.1 Two composites model

All models containing two composites are estimated using the specification illustrated in

the last column of Table 2.2. The indicators x11 to x13 are specified to build composite

c1, while the remaining three indicators build composite c2. Moreover, the composites

are allowed to freely correlate. The parameters of interest are the correlation between

the two composites, and the weights, w11 to w23. As column ’Population model’ of

Table 2.2 shows, we consider three types of population models with two composites.

Design 1: no misspecification

First, in order to examine whether the rejection rates of the test procedure are close

to the predefined significance level in cases in which the null hypothesis is true, a

population model is considered that has the same structure as the specified model.

The correlation between the two composites is set to ρ = 0.3 and the composites are

formed by its connected standardized indicators as follows: ci = x′iwi with i = 1, 2,

where w′1 =
(

0.6 0.2 0.4
)
and w′2 =

(
0.4 0.2 0.6

)
. All correlations between the

indicators of one block are set to 0.5, which leads to the population correlation matrix

given in Table 2.2 (see row No misspecification).

Design 2: false assignment

The second design is used to investigate whether the test procedure is capable of

detecting misspecified models. It presents a situation where the researcher falsely

assigns two indicators to wrong constructs. The correlation between the two composites

and the weights are the same as in population model 1: ρ = 0.3, w′1 =
(

0.6 0.2 0.4
)
,

and w′2 =
(

0.4 0.2 0.6
)
. However, in contrast to population model 1, the indicators

x13 and x21 are interchanged. Moreover, the correlations among all indicators of one

block are 0.5. The population correlation matrix of the second model is presented in

Table 2.2 (see row Confounded indicators).

Design 3: unexplained correlation

The third design is chosen to further investigate the capabilities of the test procedure

to detect misspecified models. It shows a situation where the correlation between the
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two indicators x13 and x21 is not fully explained by the two composites.12 As in the

two previously presented population models, the two composites have a correlation of

ρ = 0.3. The correlations among the indicators of one block are set to 0.5, and the

weights for the construction of the composites are set to w′1 =
(

0.6 0.2 0.4
)
, and

w′2 =
(

0.4 0.2 0.6
)
. The population correlation matrix of the indicators is presented

in Table 2.2 (see row Unexplained correlation).

2.6.2 Three composites model

Furthermore, we investigate a more complex model consisting of three composites.

Again, each composite is formed by three indicators and the composites are allowed to

freely correlate. The column ’Estimated model’ of Table 2.3 illustrates the specification

to be estimated in case of three composites. We assume that the composites are built

as follows: c1 = x′1w1, c2 = x′2w2, and c3 = x′3w3. Moreover, the composites are

allowed to freely correlate. Again, we examine two different population models.

Design 4: no misspecification

The fourth design is used to further investigate whether the rejection rates of the

test procedure are close to the predefined significance level in cases in which the null

hypothesis is true. Hence, the structure of the fourth population model matches the

specified model. All composites are assumed to be freely correlated. In the population

the composite correlations are set to ρ12 = 0.3, ρ13 = 0.5, and ρ23 = 0.4. Each

composite is built by three indicators using the following population weights: w′1 =(
0.6 0.4 0.2

)
, w′2 =

(
0.3 0.5 0.6

)
, and w′3 =

(
0.4 0.5 0.5

)
. The indicators

correlations of each block can be read from Table 2.3. The population correlation

matrix of model 4 is given in Table 2.3 (see row No misspecification).

Design 5: unexplained correlation

In the last design, number 5, we investigate a situation where the correlation between

two indicators is not fully explained by the underlying composites, similar to what is

observed in design 3. Consequently, population model 5 does not match the model to

be estimated and is used to investigate the power of the overall model test. It equals
12The model implied correlation between the two indicators is calculated as follows, 0.8 · 0.3 · 0.8 6=

0.5.
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population model 4 with the exception that the correlation between the indicators

x13 and x21 is only partly explained by the composites. Since the original correlation

between these indicators is 0.084, a correlation of 0.25 presents only a weak violation.

The remaining model stays untouched. The population correlation matrix is illustrated

in Table 2.3 (see row Unexplained correlation).

2.6.3 Further simulation conditions and expectations

To assess the quality of the proposed test of the overall model fit, we generate 10,000

standardized samples from the multivariate normal distribution having zero means and

a covariance matrix, according to the respective population model. Moreover, we vary

the sample size from 50 to 1,450 observations and the significance level α from 10% to

1%. To obtain the reference distribution of the discrepancy measures considered, 200

bootstrap samples are drawn from the transformed and standardized dataset. Each

dataset is used in the maxvar procedure to estimate the model parameters.

All simulations are conducted in the statistical programming environment R (R

Core Team, 2016). The samples are drawn from the multivariate normal distribution,

using the mvrnorm function of the MASS packages (Venables and Ripley, 2002). The

results for the test of overall model fit are obtained by user-written functions13 and the

matrixpls package (Rönkkö, 2016).

Since population model 1 and 4 fit the respective specification, we expect rejection

rates close to the predefined level of significance α. Additionally, we expect that for

an increasing sample size the predefined significance level is kept with more precision.

For population model 2, 3, and 5, much larger rejection rates are expected as these

population models do not match the respective specification. Moreover, we expect

that the power of the test to detect misspecifications would increase with an increasing

sample size. Regarding the different discrepancy measures, we have no expectations

only that the squared Euclidean distance and the SRMR should lead to identical results.

For standardized datasets, the only difference is a constant factor that does not affect

the order of the observations in the reference distribution and, therefore, does not affect

the decision about the null hypothesis.
13These functions are provided by the authors upon request.
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2.6.4 Results

Figure 2.3 illustrates the rejection rates for population model 1 matching the specifica-

tion estimated. Besides the rejection rates, the figure also depicts the 95% confidence

intervals (shaded area) constructed around the rejection rates to clarify whether or not

a rejection rate is significantly different from the predefined significance level.14
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Figure 2.3: Rejection rates for population model 1

First, as expected, the squared Euclidean distance (dL) as well as the SRMR lead

to identical results. The test using the squared Euclidean distance and the SRMR

rejects the model too rarely in case of α = 10% and α = 5% respectively; however, for
14The limits of the 95% confidence interval are calculated as, p̂±Φ−1(0.975)

√
p̂(1− p̂)/10000, where

p̂ represents the rejection rate and Φ−1() is the quantile function of the standard normal distribution.
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an increasing sample size, the rejection rates converge to the predefined significance

level without reaching it. For the 1% significance level, a similar picture is observed;

however, for larger sample sizes the significance level is retained more often compared

to the larger significance levels. In contrast, the test using the geodesic distance mostly

rejects the model too often for the 5% and 10% significance level. However, the obtained

rejection rates are less often significantly different from the predefined significance level

compared to the same situation where the SRMR or the Euclidean distance is used.

In case of α = 1% and sample sizes larger than n = 100, the test using the geodesic

distance rejects the model significantly too often.
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Figure 2.4 displays the rejection rates for population model 2 and 3. The horizontal

line at 80% depicts the commonly recommended power for a statistical test (Cohen,

1988).
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Figure 2.4: Rejection rates for population model 2 and 3

For the two cases where the specification does not match the underlying data gen-

erating process, the test using the squared Euclidean distance as well as the SRMR

has more power than the test using the geodesic distance, i.e., the test using former

discrepancy measures rejects the wrong model more often. For model 2 (confounded

indicators) the test produces higher or equal rejection rates compared to model 3 (un-

explained correlation). Furthermore, as expected, the power decreases for an increasing

level of significance and increases with increasing sample sizes.
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Figure 2.5 depicts the rejection rates for population model 4 and 5. Again, the 95%

confidence intervals are illustrated for population model 4 (shaded area) matching the

specification estimated.
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Figure 2.5: Rejection rates for population model 4 and 5

Considering population model 4 which matches the estimated model, the test leads

to similar results for all three discrepancy measures. However, the rejection rate of the

test using the geodesic distance converges faster to the predefined significance level,

i.e., for smaller sample sizes n ≥ 100. Again, among the three discrepancy measures

considered, the geodesic distance performs best in terms of keeping the significance

level.

As the misspecification in population model 5 is only of minor extent, the test
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struggles to detect the model misspecification up to sample sizes n = 350, regardless of

the discrepancy measure used. However, for sample sizes larger than 350 observations,

the test detects the model misspecification satisfactorily. For sample sizes larger than

1050 observations, the misspecification was identified in almost all cases regardless

of the significance level and the discrepancy measure used. Again, this confirms the

anticipated relationship between sample size and statistical power.

2.7 Discussion

We introduced the confirmatory composite analysis (CCA) as a full-fledged technique

for confirmatory purposes that employs composites to model theoretical constructs. In

doing so, it carries the spirit of CFA and SEM to research domains where composites

models prevail. Thus, CCA is appropriate in situations where the research goal is to

explore whether or not an artifact is useful rather than to establish whether or not

a certain entity exists. It follows the same steps usually applied in SEM and enables

researchers to analyze a variety of situations, in particular, abroad the realm of social

and behavioral sciences. Hence, CCA allows for dealing with research questions that

could not be appropriately dealt with yet in the framework of CFA or in more generally

SEM.

The results of the Monte Carlo simulation confirmed that CCA can be used for

confirmatory purposes. They revealed that the bootstrap-based approach, in combina-

tion with different discrepancy measures, can be used to statistically assess the overall

model fit of the composites model. For specifications matching the population model,

the rejection rates were in the acceptable range, i.e., close to the predefined significance

level. Moreover, the results of the power analysis showed that the boostrap-based test

can reliably detect misspecified models. However, caution is needed in case of small

sample sizes where the rejection rates were low which means that misspecified models

were not reliably detected.

In future research, the usefulness of the composites model in empirical studies needs

to be examined, accompanied and enhanced by simulation studies. In particular, the

extensions outlined by Dijkstra (2018), to wit interdependent systems of equations

for the composites estimated by classical econometric methods (like 2SLS and 3SLS)

warrant further analysis and scrutiny. Robustness with respect to non-normality and
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misspecification also appear to be relevant research topics. Additionally, devising ways

to efficiently predict indicators and composites might be of particular interest (see for

example the work by Shmueli et al. (2016)).

Moreover, to contribute to the confirmatory character of CCA, we recommend to

further study the performance and limitations of the proposed test procedure: consider

more misspecifications and the ability of the test to reliably detect them, find further

discrepancy measures and examine their performance, and investigate the behavior of

the test under the violation of the normality assumption, similar as Nevitt and Hancock

(2001) did for CFA. Finally, cut-off values for the fit indices need to be determined for

CCA.
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2.8 Appendix to Chapter 2

Rejection rates of the test for overall model fit

Table 2.4: Results: 2 composites model
(a) Population model 1

Obs. Rejection rates
α dLS dG SRMR

50
10% 8.3% 6.4% 8.3%
5% 4.5% 2.5% 4.5%
1% 1.3% 0.5% 1.3%

150
10% 6.3% 9.5% 6.3%
5% 3.0% 4.7% 3.0%
1% 0.7% 1.1% 0.7%

250
10% 6.1% 10.2% 6.1%
5% 2.6% 5.3% 2.6%
1% 0.5% 1.4% 0.5%

350
10% 6.3% 10.2% 6.3%
5% 2.8% 5.3% 2.8%
1% 0.5% 1.4% 0.5%

450
10% 7.3% 10.1% 7.3%
5% 3.1% 5.5% 3.1%
1% 0.5% 1.3% 0.5%

550
10% 8.1% 11.1% 8.1%
5% 3.6% 5.7% 3.6%
1% 0.7% 1.6% 0.7%

650
10% 8.1% 10.6% 8.1%
5% 3.9% 5.6% 3.9%
1% 0.8% 1.6% 0.8%

750
10% 8.3% 10.2% 8.3%
5% 3.9% 5.4% 3.9%
1% 0.8% 1.3% 0.8%

850
10% 8.7% 10.8% 8.7%
5% 4.0% 5.7% 4.0%
1% 0.9% 1.5% 0.9%

950
10% 8.2% 10.0% 8.2%
5% 4.0% 5.4% 4.0%
1% 0.8% 1.4% 0.8%

1050
10% 8.9% 10.5% 8.9%
5% 4.4% 5.3% 4.4%
1% 1.0% 1.6% 1.0%

1150
10% 9.2% 10.8% 9.2%
5% 4.5% 5.6% 4.5%
1% 1.1% 1.5% 1.1%

1250
10% 9.3% 10.7% 9.3%
5% 4.6% 5.6% 4.6%
1% 1.1% 1.5% 1.1%

1350
10% 9.1% 10.3% 9.1%
5% 4.2% 5.3% 4.2%
1% 1.1% 1.6% 1.1%

1450
10% 8.8% 9.9% 8.8%
5% 4.5% 5.3% 4.5%
1% 1.1% 1.4% 1.1%

(b) Population model 2

Obs. Rejection rates
α dLS dG SRMR

50
10% 89.0% 81.9% 89.0%
5% 81.2% 71.0% 81.2%
1% 58.9% 46.9% 58.9%

150
10% 100% 100% 100%
5% 100% 99.9% 100%
1% 99.8% 99.4% 99.8%

250
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

350
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

450
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

550
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

650
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

750
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

850
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

950
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

1050
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

1150
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

1250
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

1350
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

1450
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

(c) Population model 3

Obs. Rejection rates
α dLS dG SRMR

50
10% 37.2% 29.8% 37.2%
5% 25.8% 18.6% 25.8%
1% 11.6% 6.2% 11.6%

150
10% 84.1% 73.4% 84.1%
5% 75.2% 62.1% 75.2%
1% 53.4% 39.4% 53.4%

250
10% 96.7% 91.8% 96.7%
5% 93.7% 86.3% 93.7%
1% 82.9% 71.2% 82.9%

350
10% 99.4% 98.1% 99.4%
5% 98.7% 95.9% 98.7%
1% 94.8% 88.5% 94.8%

450
10% 100% 99.6% 100%
5% 99.8% 99.0% 99.8%
1% 98.8% 96.1% 98.8%

550
10% 100% 99.9% 100%
5% 100% 99.8% 100%
1% 99.7% 99.0% 99.7%

650
10% 100% 100% 100%
5% 100% 99.9% 100%
1% 99.9% 99.7% 99.9%

750
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 99.9% 100%

850
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

950
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

1050
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

1150
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

1250
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

1350
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%

1450
10% 100% 100% 100%
5% 100% 100% 100%
1% 100% 100% 100%
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Table 2.5: Results: 3 composites model
(a) Population model 4

Obs. Rejection rates
α dLS dG SRMR

50
10% 7.1% 5.3% 7.1%
5% 3.1% 1.9% 3.1%
1% 0.6% 0.2% 0.6%

150
10% 8.5% 9.7% 8.5%
5% 4.1% 4.8% 4.1%
1% 0.9% 1.1% 0.9%

250
10% 8.8% 9.6% 8.8%
5% 4.1% 4.7% 4.1%
1% 0.8% 1.2% 0.8%

350
10% 9.6% 9.8% 9.6%
5% 4.9% 5.0% 4.9%
1% 1.2% 1.2% 1.2%

450
10% 9.7% 9.9% 9.7%
5% 4.7% 5.3% 4.7%
1% 1.1% 1.2% 1.1%

550
10% 9.5% 10.2% 9.5%
5% 4.7% 5.1% 4.7%
1% 1.0% 1.2% 1.0%

650
10% 10.2% 10.4% 10.2%
5% 5.1% 5.2% 5.1%
1% 1.3% 1.5% 1.3%

750
10% 10.0% 10.2% 10.0%
5% 5.3% 5.2% 5.3%
1% 1.5% 1.3% 1.5%

850
10% 10.3% 10.7% 10.3%
5% 5.4% 5.2% 5.4%
1% 1.4% 1.5% 1.4%

950
10% 10.0% 10.1% 10.0%
5% 5.3% 5.2% 5.3%
1% 1.4% 1.4% 1.4%

1050
10% 10.1% 10.4% 10.1%
5% 5.4% 5.7% 5.4%
1% 1.2% 1.5% 1.2%

1150
10% 9.9% 10.0% 9.9%
5% 5.0% 5.3% 5.0%
1% 1.3% 1.4% 1.3%

1250
10% 10.2% 10.5% 10.2%
5% 5.3% 5.6% 5.3%
1% 1.5% 1.6% 1.5%

1350
10% 10.7% 10.8% 10.7%
5% 5.5% 5.7% 5.5%
1% 1.4% 1.5% 1.4%

1450
10% 9.9% 10.1% 9.9%
5% 5.1% 5.1% 5.1%
1% 1.3% 1.3% 1.3%

(b) Population model 5

Obs. Rejection rates
α dLS dG SRMR

50
10% 11.4% 9.4% 11.4%
5% 5.0% 3.7% 5.0%
1% 1.1% 0.6% 1.1%

150
10% 29.3% 34.9% 29.3%
5% 17.6% 22.6% 17.6%
1% 5.5% 8.8% 5.5%

250
10% 51.0% 57.8% 51.0%
5% 37.3% 44.9% 37.3%
1% 17.1% 24.0% 17.1%

350
10% 69.6.1% 76.1% 69.6%
5% 55.6% 64.6% 55.6%
1% 31.2% 41.4% 31.2%

450
10% 82.5% 87.0% 82.5%
5% 71.3% 78.3% 71.3%
1% 47.4% 58.8% 47.4%

550
10% 90.5% 93.7% 90.5%
5% 82.9% 88.5% 82.9%
1% 63.4% 74.1% 63.4%

650
10% 95.1% 97.1% 95.1%
5% 90.8% 94.1% 90.8%
1% 75.9% 84.3% 75.9%

750
10% 97.4% 98.6% 97.4%
5% 95.0% 96.9% 95.0%
1% 83.9% 90.8% 83.9%

850
10% 99.0% 99.5% 99.0%
5% 97.6% 98.7% 97.6%
1% 90.5% 95.3% 90.5%

950
10% 99.6% 99.8% 99.6%
5% 98.9% 99.5% 98.9%
1% 95.0% 97.8% 95.0%

1050
10% 99.9% 100% 99.9%
5% 99.7% 99.9% 99.7%
1% 97.5% 99.1% 97.5%

1150
10% 99.9% 100% 99.9%
5% 99.8% 99.9% 99.8%
1% 98.6% 99.5% 98.6%

1250
10% 100% 100% 100%
5% 99.9% 100% 99.9%
1% 99.3% 99.7% 99.3%

1350
10% 100% 100% 100%
5% 100% 100% 100%
1% 99.7% 99.9% 99.7%

1450
10% 100% 100% 100%
5% 100% 100% 100%
1% 99.7% 100% 99.7%
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Further insights to the composites model

As demanded in the discussion (Section 2.7), I further compare different estimators for

the measurement model (PLS and maxvar) and the structural model (two-stage least

squares and three-stage least squares) in a scenario where composites are embedded

in a structural equation model. For this purpose, I adopt a simulation study from

Dijkstra and Henseler (2015a) and Dijkstra (2018) based on a model from Summers

(1965).

Setup of the Monte Carlo simulation

Figure 2.6 depicts the structural model used in the Monte Carlo simulation. It contains

four exogenous (cexo,j, j = 1, ..., 4)15 and two endogenous composites (cendo,j, j = 1, 2),

illustrated by hexagons.

cendo,1

cexo,1

cexo,2

cendo,2

cexo,3

cexo,4

z1 z2

c11

c12

b12

b21

c21

c22

Figure 2.6: Structural model of Summers’ model

The structural model can be summarized by the following equation:

(I −B)cendo = Ccexo + z. (2.11)

For the simulation study, I use the following population path coefficients:

B =

 0 0.25

0.5 0

 and C =

−0.3 0.5 0 0

0 0 0.5 0.25

 . (2.12)

Furthermore, each composite is built as a linear combination of three indicators. For

the composites cexo,1 and cexo,4, I choose unit weights, for cexo,2 and cendo,1, the weights
15Since composites are built by the indicators, exogeneity of the composites refers to the structural

model.
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are proportional to (1, 2, 3), and for cexo,3 and cendo,2, the unscaled weights are (1, 4, 9).

Before the analysis, the weights are scaled to obtain composites with unit variance. In

addition, I vary the correlation between the endogenous composites cendo,1 and cendo,2
from 0 to

√
0.6, leading to correlated structural error terms in order to investigate

the efficiency gains of 3SLS over 2SLS. While 3SLS is known to be asymptotically

more efficient than 2SLS for structural equation models with observable variables only

(Zellner and Theil, 1962), for structural equation models containing composites, an

additional source of uncertainty is introduced by the estimation of the weights.16 Table

2.6 contains the resultant variances and covariances between the error terms of the

structural model ζ1 and ζ2, depending on the correlation between the endogenous

composites.

Table 2.6: Variances and covariance of the structural error terms z1 and z2 depending
on the correlation between cendo,1 and cendo,2

cor(cendo,1, cendo,2) var(z1) var(z2) cov(z1, z2)√
0.0 0.8725 0.8125 -0.8250√
0.1 0.7144 0.4963 -0.4692√
0.2 0.6489 0.3653 -0.3219√
0.3 0.5986 0.2648 -0.2088√
0.4 0.5563 0.1800 -0.1135√
0.5 0.5189 0.1054 -0.0295√
0.6 0.4852 0.0379 0.0464

As was observed in the original simulation of Dijkstra (2018), my simulation com-

prises 10,000 runs, using samples of size n = 300. Apart from replicating the Monte

Carlo simulation using maxvar (Kettenring, 1971), I rerun the simulation using PLS

(Wold, 1982b). For PLS, the all-adjacent centroid scheme and Mode B are used.17 The

whole simulation is conducted in R (R Core Team, 2016), using the matrixpls package

(Rönkkö, 2016) in combination with several user-written functions. The user-written

functions are provided by the author upon request.

16This might entail an adjustment of the weighting matrix in 3SLS, which is object of future
research.

17The use of the usual centroid scheme leads to average weight estimates substantially far away
from the population weights and, therefore, the average path coefficient estimates deviate from their
population value.
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Results

The results confirm that 3SLS outperforms 2SLS if structural error terms are substan-

tially correlated, i.e., 3SLS produces smaller standard errors (SEs) (blue line is below

the red line). The SEs presented in Figure 2.7 are obtained as standard deviation of

the parameter estimates obtained in each of the 10,000 runs.

maxvar PLS
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Figure 2.7: SEs for 2SLS and 3SLS, using the Summers’ model with composites

While the standard deviations are for most path coefficient estimates as expected,

they are smaller for 3SLS than for 2SLS. It is surprising that the standard deviations

of b̂12 are very similar for 2SLS and 3SLS.

Furthermore, I present the deviation of the average path coefficient estimates from

their population value for 2SLS and 3SLS. The deviations using PLS and maxvar
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are illustrated in Figure 2.8 and 2.9 respectively. Across the columns, the correlation

between the endogenous composites cendo,1 and cendo,2 is varied. The results of maxvar

are in line with those obtained by Dijkstra (2018). To view this, compare column 6

of Figure 2.9 with the results presented in Dijkstra (2018, Table p. 19). Furthermore,

the results confirm that PLS leads to similar results as is obtained with maxvar.
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Figure 2.8: Average deviations from the population path coefficients for 2SLS and 3SLS
using PLS weights
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Figure 2.9: Average deviations from the population path coefficients for 2SLS and 3SLS
using maxvar weights
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Chapter 3

Assessing statistical differences

between parameter estimates in

Partial Least Squares path

modeling

3.1 Introduction1

Structural equation modeling with latent variables (SEM) have become a mainstream

modeling approach in various disciplines, such as marketing, information systems, and

innovation management (Hair et al., 2013; Henseler et al., 2014). Its ability to model

complex relationships between constructs, to configure associations between indicators

and constructs, and to account for various forms of measurement errors makes SEM

a powerful statistical method for dealing with a variety of research questions. Among

the various approaches to SEM, including variance- and covariance-based estimators,

the partial least squares path modeling (PLS) approach (Wold, 1982b) has particularly

gained increasing attention over the last decades (Hair et al., 2014). Representing a
1This chapter is based on a published article with Macario Rodríguez-Entrena and Carsten Gelhard

(Rodríguez-Entrena et al., 2016).
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two-step approach, PLS first creates proxies for the latent constructs and, subsequently,

it estimates model parameters. Since PLS is based on separate OLS regressions, no

distributional assumptions are imposed on the data (’soft modeling approach’), and

complex models can be estimated using a relatively small number of observations com-

pared to the number of indicators and constructs (Henseler, 2010).

Since any research method can only play to its strengths if properly applied, in

this specific research context, scholars incessantly study the limits of PLS (Sarstedt

et al., 2014; Hair et al., 2013). In so doing, scholars steadily advance PLS to broaden

its applicability as well as reinforce its methodological foundations. The latest ad-

vancements to PLS refer to the following: (i) a bootstrap-based test for evaluating the

overall model fit (Dijkstra and Henseler, 2015b), (ii) the heterotrait-monotrait ratio of

common factor correlations as a new criterion for discriminant validity (Henseler et al.,

2015), and (iii) consistent partial least squares (PLSc) as an extension of PLS, which

allows for the consistent estimation of common factor and composite models (Dijk-

stra and Henseler, 2015a). The ability to model latent constructs as both composites

and common factors makes PLSc an outstanding and appealing estimator for SEM.

Thus, in its most modern appearance, PLS can be understood as full-fledged SEM

method,2 which enables the hybridization of two complementary paradigms of anal-

ysis – behavioral and design research. However, PLS is still continuously enhanced.

Particularly, PLS-users very often struggle with issues that are of greater practical

relevance and have not been sufficiently addressed yet. One of those issues is the lack

of appropriate guidance and techniques that are necessary for exploring and interpret-

ing statistical differences between various parameter estimates (e.g., Doreen (2009) in

the SmartPLS3 internet forum). By exploring the existence of significant differences

between various parameter estimates, scholars become enabled to deepen the knowl-

edge of both the structural model (e.g., ranking different management instruments) as

well as the measurement model (e.g., identifying outstanding indicators). Commonly

used practices, such as ranking various indicators/constructs based on differences in

the p-values of weight/loading/path coefficient estimates or deriving conclusions solely

based on effect size differences are prone to misleading findings and misinterpretations

(e.g., Kline (2004); Hubbard and Lindsay (2008); Schochet (2008); Vandenberg (2009);
2For more detailed information on the state of the art of PLS, please refer to Henseler et al.

(2016a).
3SmartPLS is a commercial software where PLS is implemented.
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Nieuwenhuis et al. (2011); Gross (2015)). Gelman and Stern (2006, p. 328), for in-

stance, accentuate that ’large changes in significance levels can correspond to small,

not significant changes in the underlying quantities’. Hence, drawing conclusion about

parameter differences solely based on differing p-values must be regarded with caution,

since the difference between ’significant’ and ’non-significant’ does not necessarily have

to be significant (Gelman and Stern, 2006).

A comparison of two estimated effects requires rather a statistical test that is based

on the difference between two parameter estimates as opposed to two separate tests for

each parameter estimate. Since the mere presence of differences in p-values does not

allow one to make any inferences about the nature of these differences, more sophisti-

cated steps need to be taken to fully exploit the information inherent in the estimated

model. Otherwise, important parameter differences might remain undetected (Gelman

and Stern, 2006). Figure 3.1 provides an overview of common misconceptions by ex-

emplary comparing three variables (η1, η2, and η3) and their related estimated effects

(β̂1, β̂2, and β̂3, where β̂1 > β̂2). The p-values used in the figure refer to the hypothesis

assuming that the true coefficient is equal to zero.
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To eliminate these sources of misinterpretation and to support PLS users in fully

leveraging information inherent in the underlying data set, the study at hand introduces

a practical guideline on how to statistically assess a parameter difference in SEM using

PLS. For assessing the statistical significance of a difference between two parameter

estimates, we use several bootstrap techniques that are commonly applied to test single

parameter estimates in PLS. To be more precise, we construct confidence intervals for

the difference between two parameter estimates belonging to the same sample. The

procedure is compiled in a user-friendly guideline for commonly used PLS software

packages such as SmartPLS (Ringle et al., 2015) or ADANCO (Henseler and Dijkstra,

2015). By introducing this advancement, we not only fill an important gap in the

existing literature on PLS (McIntosh et al., 2014), but we also draw attention to the

commonly made mistake of relying on individual p-values when prioritizing effects

(Gelman and Stern, 2006).

3.2 Field of application

While most studies solely consider the estimated net effect of various predicting vari-

ables on the outcome of interest, they usually do not test whether two parameter

estimates are statistically different. This prevents researchers from fully exploiting the

information captured in the estimated model. Evaluating the statistical difference be-

tween two parameter estimates might be particularly valuable when model estimates

are proposed for guiding decision-makers while handling budget constraints (e.g., se-

lection of marketing strategies, success factors or investment in alternative instruments

of innovation, process, product, and the like.). In situations in which two management

instruments coexist with both wielding impact on the outcome of interest, a rank-

ing of priority based on their explanatory power supports managers in selecting the

most relevant one. In the following, we present some empirical examples, illustrat-

ing the practical relevance of assessing whether the difference between two parameter

estimates belonging to the same model (i.e., comparisons within a single sample) is

statistically significant.4

4For an overview of techniques for assessing statistical significance of differences between parameter
estimates in a multi-group setting, i.e., comparing the estimated coefficients across different sub-
models, please refer to Sarstedt et al. (2011) or Henseler (2012a).
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Figures 3.2a and 3.2b display two excerpts of the well-known corporate reputation

model (CRM) by Eberl and Schwaiger (2005) and the technological acceptance model

(TAM) by Davis (1989).

Company’s
Competence

Company’s
Likeability

Costumer
Satisfaction

+

+

(a) Corporate reputation model

Perceived
Usefulness

Perceived
Ease of Use

Intention
to Use

+

n.s.

(b) Technology acceptance model

Figure 3.2: Practical examples for testing parameter differences

Testing parameter differences might be applied to examine which of the two pre-

dictors has a greater influence on the endogenous construct. To be more precise,

researchers might be potentially interested in exploring whether ’Company’s Compe-

tence’ or ’Company’s Likeability’ has a higher impact on ’Customer Satisfaction’ in the

context of the CRM or, with regard to the TAM, they might be interested in statis-

tically testing whether ’Perceived Usefulness’ is more relevant than ’Perceived Ease of

Use’ for explaining ’Intention to Use’. In general, drawing conclusions solely based on

the individual p-values of the estimated coefficients is not recommended (Gelman and

Stern, 2006) as p-values provide no information about the substantiality of a variable

or the magnitude of an effect. Hence, claims such as ’Perceived Usefulness’ is more

relevant than ’Perceived Ease of Use’ might be misleading (see the TAM in Figure

3.2b).

In addition to the previously described examples, Figure 3.3 illustrates a less com-

mon though highly interesting and important scenario wherein the two estimated pa-

rameters of both antecedents are approximately equal in magnitude but differ with

regard to their signs (|β̂1| ≈ |β̂2|) (Eggert et al., 2012). To eventually assess the total

impact of the two antecedents on the outcome of interest (here: ’Channel Switching’),

researchers might need to test whether the difference of the absolute estimated effect
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between both antecedents (here: ’Distributor Loyalty’ and ’Brand Loyalty’) differs

significantly from zero (H0: |β1| = |β2|).

Distributor
Loyalty

Brand
Loyalty

Channel
Switching

β1

β2

Figure 3.3: Example from Eggert et al. (2012)

3.3 Methodological framework for testing

differences between parameters

Typically, in PLS, bootstrap-based confidence intervals (CIs) are constructed to draw

conclusions about population parameters. In general, a CI is designed to cover the

population parameter with a confidence level 1−α. We suggest the same approach for

testing parameter differences of the following form: θk − θl = 0, see Section 3.4.5

In the following, we summarize the commonly used bootstrap procedures to con-

struct CIs (Davison and Hinkley, 1997) for a single parameter θ and show how these

approaches can be used to statistically assess parameter differences.6

3.3.1 The standard/ Student’s t confidence interval

For the standard/ Student’s t CI, it is assumed that (θ̂− θ)/V̂ar(θ̂)
1
2
is approximately

standard normally or t-distributed respectively. For this purpose, the central limit theo-

rem is often used to justify the distribution of the standardized parameter estimates.
5Using a slight modification, hypotheses of the form θk − θl ≥ a can also be tested, where a =

constant.
6We refer to Davison and Hinkley (1997) for further procedures that have overcome some limita-

tions of the approaches presented here.
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The standard/Student’s t CI for a certain significance level α is constructed as follows:θ̂ − F−1
(

1− α

2

)√
V̂ar(θ̂∗), θ̂ − F−1

(
α

2

)√
V̂ar(θ̂∗)

 , (3.1)

where θ̂ is the parameter estimate based on the original sample, and F−1 is the quantile

function of the standard normal or the t-distribution with n − k degrees of freedom,

where n denotes the number of observations and k the number of estimated parameters.

Since PLS does not provide a closed-form expression of the variance, the bootstrap-

based estimator V̂ar(θ̂∗) for the variance is used. This approach is problematic when the

distribution of the parameter estimates is not normal. This is especially true for small

sample sizes. Moreover, the standard/Student’s t CI does not adjust when dealing

with skewness in the underlying population (Efron and Tibshirani, 1994).

3.3.2 The basic percentile bootstrap confidence interval

In contrast to the previous CI, the basic percentile bootstrap CI is not based on dis-

tributional assumptions. The boundaries are directly calculated from the bootstrap

sample distribution of the estimated parameter as follows:
[
F̂−1
θ∗

(
α

2

)
, F̂−1

θ∗

(
1− α

2

)]
, (3.2)

where F̂−1
θ∗ is the empirical quantile function of the bootstrap sample distribution of θ̂.

This approach only works well if a transformation, even an unknown one, exists, which

makes the bootstrap distribution symmetric around zero (Wehrens et al. 2000). In

case of no such transformation, the percentile method must be be adjusted.7 However,

the percentile method is really appealing due to its simplicity (Sarstedt et al., 2011).

3.3.3 The basic bootstrap confidence interval

The basic bootstrap CI assumes that the distribution of θ̂− θ can be approximated by

θ̂∗− θ̂ and, therefore, the quantiles of θ̂− θ are estimated by the empirical quantiles of

θ̂∗ − θ̂ (Wehrens et al., 2000). The basic bootstrap CI is constructed as follows:
[
2θ̂ − F̂−1

θ∗

(
1− α

2

)
; 2θ̂ − F̂−1

θ∗

(
α

2

)]
, (3.3)

7A well-known approach to achieve the adjustment is the bias corrected (BC) estimator (Efron
and Tibshirani, 1994) that is not discussed in this chapter.
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where θ̂ represents the parameter estimate from the original sample, and F̂−1
θ∗ (1 − α

2 )

and F̂−1
θ∗ (α2 ) are the 1− α

2 and α
2 quantiles of the empirical bootstrap sample distribution

of θ̂.

3.4 Guideline on testing parameter differences in

partial least squares path modeling

Following Gelman and Stern (2006), when comparing two treatments, we recommend

taking into consideration the statistical significance of the difference between two pa-

rameter estimates rather than the difference between their individual p-values. Thus,

we provide a user guideline on testing a parameter difference in PLS as well as in PLSc

(see Table 3.1).

Table 3.1: Guideline on testing parameter differences based on different CI

1. Use PLS or PLSca to obtain the model parameter estimates: (θ̂k; θ̂l).

2. Calculate the difference of the parameter estimates: ∆θ̂ = θ̂k − θ̂l.

3. Create B bootstrap samples of the original data set and calculate the parameter
estimates θ̂∗ki and θ̂∗li, and their difference ∆θ̂∗i = θ̂∗ki − θ̂∗li for every bootstrap
sample, with i = 1, ..., B.

4. Estimate the variance of the estimated parameter difference as

̂Var(∆θ̂∗) = (B − 1)−1
B∑
i=1

(∆θ̂∗i −∆θ̂∗)2, with ∆θ̂∗ = B−1
B∑
i=1

∆θ̂∗i . (3.4)

5. Estimate the α
2 and 1 − α

2 sample quantile of ∆θ̂∗ given by F̂−1
∆θ∗(α2 ) and

F̂−1
∆θ∗(1− α

2 ).

a PLSc should be used if constructs are modeled as common factors in the model.

First, the parameters of interest need to be obtained by PLS or PLSc (Step 1). For

this purpose, every common PLS software such as SmartPLS or ADANCO can be used.

Second, the difference between the parameter estimates of interest is calculated (Step

2). Third, the bootstrap estimates of the parameters need to be obtained (Step 3) and

inserted into a spreadsheet in order to manually calculate the parameter difference for

every bootstrap sample. Depending on the CI used (see Table 3.2), Step 4 comprises
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the estimation of the variance of the estimated parameter difference. The command

VAR.S() in MS Excel can be used for this purpose. If the basic percentile bootstrap

CI or the basic bootstrap CI is used, Step 5 needs to be conducted, comprising the

determination of the empirical quantiles of the bootstrapped parameter difference, e.g.,

the command PERCENTILE.INC() in MS Excel can be applied.

Table 3.2: Necessary steps for the construction of the different CIs

• Steps 1 and 2 are needed for all approaches except for the basic percentile boot-
strap CI.

• To apply the standard/Student’s t CI (Equation (3.1)), additionally Step 3 and
4 are necessary.

• In contrast, the construction of the basic percentile bootstrap CI (Equation (3.2))
and the basic bootstrap CI (Equation (3.3)) of the parameter difference requires
the Steps 3 and 5.

Based on the CI, the null hypothesis is rejected or not rejected. If the zero is

covered by the CI, it cannot be assumed that a difference between the two considered

parameters exists in the population regarding the type I error. For an illustration of

the described procedure, see Figure 3.4.

θ̂∗k1
...

θ̂∗ki
...

θ̂∗kB

-

θ̂∗l1
...

θ̂∗li
...

θ̂∗lB

=

∆θ̂∗1
...

∆θ̂∗i
...

∆θ̂∗B

→

Variance:
̂Var(∆θ̂∗)

Quantiles:

F̂−1
∆θ∗(α2 )

F̂−1
∆θ∗(1− α

2 )

θ̂k
↓ - θ̂l

↓ = ∆θ̂

↓
∆θ̂∗

Figure 3.4: Construction of the CIs
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3.5 Empirical example

To illustrate our proposed procedure, we refer to the TAM developed originally by

(Davis, 1989; Davis et al., 1992), suggesting ’Perceived Usefulness’ and ’Perceived Ease

of Use’ as potential predictors of IT adoption intention. More precisely, we demonstrate

our procedure by referring to Chin et al. (2003), who followed Davis’ (1989) theoretical

framework when investigating the intention to regularly use electronic mail within an

organization. The data set consists of 12 indicators and 250 respondents from a single

organization that had recently installed an electronic mail system.8 The respondents

worked at different organization levels, including managers, engineers, technicians, and

clerical workers. The dependent construct ’Intention to regularly use electronic mail’

(INT) is explained by both ’Perceived Usefulness’ (USE) and ’Enjoyment’ (ENJ). The

structural model is depicted by the following equation (see also Figure 3.5):

INT = β1 · USE + β2 · ENJ + ζ. (3.5)

Following Chin et al. (2003), all constructs are modeled as common factors. While

USE is connected to six indicators, both ENJ and INT are connected to three items

each. All indicators are measured on a seven-point Likert scale.

Perceived
Usefulness

Enjoyment

Intention to
regularly use
electronic

mail

β1

β2

Figure 3.5: Structural model of the reduced TAM

Using our proposed procedure for statistically testing the difference between two

parameter estimates, we seek to answer whether USE (extrinsic motivation) has a

statistically different impact on INT than ENJ (intrinsic motivation) (H0: β1 = β2).

Since this model was originally estimated by traditional PLS but represents a common

factor model, we use both approaches PLS and PLSc (Dijkstra and Henseler, 2015a)
8For a detailed description of the indicators, please refer to Chin et al. (2003).
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for model estimation.9 The analysis eventually leads to the following estimated path

coefficients: β̂1 = 0.517 and β̂2 = 0.269 for the model estimation with PLS and β̂1 =

0.507 and β̂2 = 0.313 for the model estimation with PLSc.

Table 3.3: Results of PLS

Type of CI 95% CI
Standard 0.046 0.450
Percentile 0.044 0.496
Basic 0.001 0.452

Table 3.4: Results of PLSc

Type of CI 95% CI
Standard -0.099 0.488
Percentile -0.048 0.508
Basic -0.120 0.437

The limits of the CIs derived from the bootstrap procedure with 5000 draws (see

Section 3.3) are displayed in Tables 3.3 and 3.4. Since the CIs do not contain the

zero with regard to the estimation using PLS, we infer that both path coefficient

estimates (β̂1 and β̂2) are significantly different. With regard to the estimation with

PLSc, all CIs cover the zero. We, therefore, conclude that the difference between

the two path coefficient estimates (β̂1 and β̂2) is not statistically significant.10 Hence,

if the underlying measurement models are conceptualized as composites (i.e., model

estimation using PLS), the null hypothesis of no parameter difference (H0: β1 = β2)

must be rejected. If the measurement models, on the other hand, are conceptualized

as common factors (i.e., model estimation with PLSc), there is not enough evidence

against the null hypothesis.

3.6 Discussion

The purpose of this chapter is to provide a practical guideline as well as the technical

background for statistically assessing the difference between two parameter estimates

in SEM using PLS. This guideline is intended for testing a parameter difference based

on the parameter estimates and the bootstrap distribution. The input required for the

proposed methodological procedure directly builds on the output of the most popular

variance-based SEM statistical software packages such as ADANCO or SmartPLS. The

methodological procedure serves as a functional toolbox that can be considered as a
9As outer weighting scheme, we use mode A and the factorial scheme is used as inner weighting

scheme.
10As PLSc path coefficient estimates are known to have a larger standard deviation compared to

PLS estimates (Dijkstra and Henseler, 2015a), it is not surprising that PLSc produced larger CIs than
PLS.
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natural extension of PLS. As it is common practice in PLS to use bootstrap approaches

to draw conclusions about single parameters, we use these approaches and the resulting

CIs to draw conclusions about a parameter difference. As the study at hand shows,

the same procedure can also be employed for PLSc to assess a parameter difference in

models where constructs are modeled as common factors instead of as composites.

Using the well-established TAM, we eventually demonstrated the application of our

proposed assessment technique. In accordance with Chin et al. (2003), we made use

of PLS to test for a statistical difference between the estimated influence of ’Perceived

Usefulness’ (extrinsic motivation) and ’Enjoyment’ (intrinsic motivation) on ’Intention

to regularly use electronic mail’. Since no CI covered the zero, we conclude that a

difference between the parameters exists. We also performed our proposed procedure

using PLSc because existing literature has shown that traditional PLS tends to overes-

timate factor loadings and underestimate path coefficients when referring to common

factor models (Schneeweiss, 1993). Contrasting the estimation with PLS, we cannot

infer that the estimated influence of ’Perceived Usefulness’ and ’Enjoyment’ on ’Inten-

tion to regularly use electronic mail’ is statistically different. Considering the concrete

example used in this study, our proposed technique is proven to be useful, i.e., when

estimating the SEM using traditional PLS, we could show that the estimated effects

of the two antecedents explaining the outcome of interest are significantly different.

Contrasting established methods for assessing whether various parameter estimates

are statistically different (e.g., parametric and non-parametric approaches in PLS

multi-group analysis (PLS-MGA) (Sarstedt et al., 2011)), the procedure introduced

in this study enables PLS users to test whether two parameter estimates from one

sample (β̂1
k and β̂1

l ) are statistically different. Approaches used in PLS-MGA, for in-

stance, are not suitable for this framework, since the underlying assessment approach

is based on the hypothesis that a parameter βk differs for two subpopulations (H0: β1
k

= β2
k), which can be tested, for instance, by using an unpaired t-test in the PLS-MGA

framework (e.g., (Keil et al., 2000)). In the PLS-MGA framework, the proposed re-

search model is estimated for different subsamples, followed by a comparison of the

coefficient estimates across the various models. Taken together, while techniques used

in PLS-MGA represent proper approaches for statistically assessing the difference be-

tween the same parameter estimate for different subsamples (H0: βik = βjk, where i and

j refer to the different subpopulations and k to the parameter tested), the procedure
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proposed in the study at hand represents the first choice when assessing the difference

between two parameter estimates derived from the same sample (H0: βik=βil , where i

refers to the population, and k and l to the parameters tested).

Although the present study only considered path coefficient estimates while test-

ing for differences, the proposed approach might also be performed with regard to

other parameter estimates, such as weights, factor-loadings, or cross-loadings. Thus,

for instance, testing for statistically significant differences between factor-loading and

cross-loading estimates, might prove to be a promising approach for evaluating dis-

criminant validity (e.g., (Hair et al., 2011; Henseler et al., 2009)). Analyzing whether

estimated weights are significantly different might further be useful for identifying key

indicators of composites.

3.7 Limitations and future research

Though we are able to introduce a diagnostic procedure for statistically assessing the

differences between two parameter estimates, the study at hand is not without limita-

tions. First, we only consider the difference between one pair of parameter estimates.

We, thus, recommend future research to develop procedures for testing more than two

parameter estimates, employing the following two potential approaches: (i) perform-

ing several single tests and adjusting the assumed level of significance (e.g., Bonferroni

correction) (Rice, 1989) or (ii) performing a joint test, similar to an F-test in regression

analysis.

Second, the procedure proposed in this study solely makes use of basic bootstrap

approaches when calculating the required CIs. Therefore, scholars might also want

to consider more sophisticated techniques, such as studentized, bias-corrected, tilted,

balanced, ABC, antithetic, or m-out-of-n bootstrap techniques.

Third, in general, scholars could, in more detail, investigate the performance and

limitations of the various bootstrap procedures when using PLS and PLSc, in particu-

lar, for small sample sizes, which can be done through a simulation study.
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Chapter 4

Partial least squares path modeling

using ordinal categorical indicators

4.1 Introduction1

Structural equation modeling (SEM) has become an established method in the fields

of business and social sciences, and its application goes even beyond. Its capacity to

model constructs, to take into account various forms of measurement error, and to test

entire theories makes it a prime candidate for dealing with a variety of research issues.

For SEM, two types of estimators need to be differentiated, which are covariance-

and variance-based estimators. Covariance-based parameter estimates are obtained by

minimizing the distance between the empirical variance-covariance matrix of the indi-

cators and its model-implied counterpart. Variance-based estimators, on the contrary,

create proxies for constructs first and, subsequently, estimate model parameters based

on these proxies. While covariance-based methods are preferred if the model contains

constructs modeled as common factors, variance-based estimators are favored if the

underlying model consists of constructs modeled as composites, in particular, when
1This chapter is based on a published article with Jörg Henseler and Theo K. Dijkstra (Schuberth

et al., 2016), which was presented at the meeting of the working group ’Structural Equation Modeling’
in Zurich in 2016. Furthermore, it contains parts of a forthcoming book chapter, written with Gabriele
Cantaluppi (Schuberth and Cantaluppi, 2018).
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the composites are endogenous in the structural model.

Among variance-based estimators, partial least squares path modeling (PLS) is

regarded as the ”most fully developed and general system” (McDonald, 1996, p. 240),

and it was even called a ”silver bullet” (Hair et al., 2011). The use of PLS is prevalent

in many fields, e.g., information systems research (Marcoulides and Saunders, 2006)

or marketing (Hair et al., 2012b). Because of its capability to model both factors and

composites2, the latest version of PLS, known as consistent PLS, is considered to be

a vigorous method for estimation and is acknowledged by researchers across different

disciplines. Common factors can be used to model constructs of behavioral research,

such as attitudes or personality traits, whereas composites can be applied to model

strong concepts (Höök and Löwgren, 2012), i.e., the abstraction of artefacts such as

management instruments, innovations, or information systems. Consequently, PLS is

a preferred statistical tool for success factor studies (Albers, 2010).

Recently, a lot of development has been done in the field of PLS. For example, a

new criterion for discriminant validity based on heterotrait-monotrait ratio of common

factor correlations (Henseler et al., 2015), the standardized root mean square residual

(SRMR) as a measure of overall model fit (Henseler et al., 2014), and bootstrap-

based tests for overall model fit (Dijkstra and Henseler, 2015a) have been introduced.

Since PLS creates composites as proxies for all kinds of constructs, its estimates suffer

from attenuation and are inconsistent in case of an underlying common factor model

(Schneeweiss, 1993). Therefore, a consistent PLS (PLSc) version was developed in

order to rectify for the attenuation bias to consistently estimate SEMs with common

factors (Dijkstra and Henseler, 2015b). All these developments are based on the PLS

algorithm and, therefore, on ordinary least squares (OLS) regression analysis, implicitly

assuming that all indicators are continuous.

Since numerous studies are based on data collected by questionnaires, the indicators

used are rarely measured on a metric scale. Hence, in many situations researchers are

faced with data measured on ordinal categorical scales, e.g., in marketing research, in

particular customer satisfaction surveys (Hair et al., 2012b; Coelho and Esteves, 2007).

It is well-known in the PLS literature as well as in literature pertaining to other

fields that treating categorical variables as continuous can lead to biased estimates and,

therefore, to invalid inferences and erroneous conclusions. Lohmöller recognizes that
2For a comparison of constructs modeled as composites or common factors, see Rigdon (2012).
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the ”[...] standard procedures cannot be used for the categorical and ordinal-scaled

variables [...]” (Lohmöller, 2013, Chap. 4). Additionally, Hair et al. (2012b) mention

that PLS is often used with categorical indicators but that their use in a procedure

like PLS, which uses OLS as estimator, can be problematic. Several approaches to

address this issue in the context of PLS are provided by the literature, e.g., ordinal

PLS (OrdPLS) an innovative approach to deal with ordinal categorical indicators in

a psychometric way (Cantaluppi, 2012; Cantaluppi and Boari, 2016). As OrdPLS is

based on the traditional PLS algorithm, its use is limited to models where all constructs

are modeled as composites. However, researchers often deal with models containing

constructs that are modeled as common factors instead of as composites (Ringle et al.,

2012; Hair et al., 2012b). Hence, there is a real need for improving methods like

OrdPLS to equip it to deal with common factors, composites, and ordinal categorical

indicators.

In this chapter, we present ordinal consistent partial least squares (OrdPLSc) (Schu-

berth et al., 2016) which is a combination of PLSc and OrdPLS, thus providing the

advantages of both. OrdPLSc is an estimator that is capable of consistently estimating

structural equation models, including not only composites but common factors and

ordinal categorical indicators as well. Figure 4.1 compares the properties of traditional

PLS, PLSc, OrdPLS, and OrdPLSc with respect to dealing with common factors and

taking into account the scale of ordinal categorical indicators.
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Figure 4.1: A typology of PLS methods

First, we run a Monte Carlo simulation to investigate the performance of Ord-

PLSc in different conditions and compare it as benchmark to the means and variance

adjusted weighted least squares (WLSMV) estimator. The latter approach is a consist-

ent covariance-based estimator, which is typically used for structural equation models

with common factors and ordinal categorical indicators. Moreover, we show how tra-

ditional PLS, PLSc, and OrdPLS behave for different kinds of models, and we also

show how PLS and PLSc are affected when the scale of ordinal categorical indicators

is ignored. Second, apart from running a Monte Carlo simulation, we also reestimate

the well-known European customer satisfaction model for the mobile phone industry

(Tenenhaus et al., 2005), using OrdPLSc, thereafter which, we compare the results

with those obtained from PLS, PLSc, and OrdPLS. We also provide commonly used

instruments in PLS to assess construct validity and composite reliability, taking into

account the qualitative scale of ordinal categorical indicators. Additionally, we show

how construct scores can be obtained from OrdPLSc.

The remainder of the chapter is organized as follows. The next section shows the

development from PLS to PLSc and provides a reformulation of the two procedures
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in terms of indicator correlation matrices. In Section 4.3, we present the development

from PLS to OrdPLS utilizing a literature review of the existing approaches dealing

with categorical indicators in the framework of PLS, and, in particular, we present

the idea of the OrdPLS and how it treats ordinal categorical indicators. In Section

4.3, we propose our approach, ordinal consistent PLS (OrdPLSc), combining PLSc

and OrdPLS. Section 4.5 provides first attempts of calculating construct scores for

OrdPLSc as well as OrdPLS. In the following Section 4.6, we present the setup of our

Monte Carlo simulation, which is conducted to examine the performance of OrdPLSc

and different other estimators under several conditions. We present these findings in

Section 4.7. In the following Section 4.8, we present ways to assess the results from

OrdPLSc. In Section 4.9, we assess the results from OrdPLSc and compare them with

those obtained from PLS, PLSc, and OrdPLS, using an empirical example. The chapter

closes with the discussion of the results in Section 4.10. An Appendix covers the figure

of the threshold parameter distribution used in the Monte Carlo simulation and several

additional results from the empirical example.

4.2 The development from PLS path modeling to

consistent PLS path modeling

PLS was developed by Wold (1975) for the analysis of high-dimensional data in a

low-structure environment, and it has since then undergone various extensions and

modifications. It is an approach similar to generalized canonical correlation analysis

(GCCA), and, in addition, it can emulate several of Kettenring’s (1971) techniques for

the canonical analysis of several sets of variables (Tenenhaus et al., 2005).

In its most modern appearance known as consistent PLS (PLSc) (Dijkstra and

Henseler, 2015a,b), it can be understood as a well-developed SEM method. It is capable

of estimating recursive and non-recursive structural models with constructs modeled

as composites and common factors. Both of these obtain the outer weights and the

final stand-ins for the constructs by the classical PLS algorithm. While traditional PLS

simply relies on OLS to estimate the model parameters, its extended version, PLSc,

uses two-stage least squares (2SLS) to consistently estimate even non-recursive path

models. Furthermore, PLSc can handle both constructs modeled as composites and as

common factors by using a post-correction for attenuation of the correlations among
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common factors as well as of the correlations between common factors and indicators.

The classical common factor model assumes that the variance of a block of indicators

(x1, . . . , xK) is completely explained by the underlying common factor (ξ in the large

circle) and by their random errors (ε1, . . . , εK), see Figure 4.2a. Hence, the indicators

reflect the underlying common factor (reflective measurement model). This sort of

indicator is also known as effect indicators (Bollen and Bauldry, 2011). Common

factors are usually used in behavioral research.

xk· · ·x1 · · · xK

ξ

ε1 εKεk· · · · · ·

(a) Common factor model

xk· · ·x1 · · · xK

ξ

(b) Composite model

Figure 4.2: Common factor vs. composite

As Figure 4.2b depicts, composites (ξ in the hexagon) are formed as linear combi-

nations of their belonging indicators (x1, . . . , xK). Since the indicators form the com-

posite, they are related to composite-formative measurement models.3 Furthermore,

the composite model does not put any restrictions on the covariances of the indicators

belonging to one block, and hence, it relaxes the assumption that all covariation be-

tween the indicators has to be explained by the common factor. Composites are often

used as proxies for scientific concepts of interest (Ketterlinus et al., 1989; Maraun and

Halpin, 2008; Rigdon, 2012; Tenenhaus, 2008).

For the derivation of OrdPLS(c), it is crucial to describe the well-known PLS algo-

rithm (Wold, 1975) and its extension to PLSc in terms of indicator covariances or cor-

relations respectively. Since in PLS no distinction between exogenous and endogenous

constructs is made, we use the following notation: η is a (J × 1) vector containing all
3In general, the existing literature provides the two following definitions of a formative mea-

surement model: (i) the (composite) indicators that completely determine composite (Fornell and
Bookstein, 1982) and (ii) the (causal) indicators that do not completely explain the underlying latent
variable. See Bollen and Bauldry (2011) for a more detailed description.
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modeled constructs that are connected by the structural model, regardless of whether

they are modeled as common factors or as composites. The (K × 1) vector x contains

all indicators that are connected to the common factors or build the composites.

4.2.1 Partial least squares path modeling

For a sample of size n, all observations of the K indicators are stacked in a data matrix

X of dimension (n ×K). For simplicity, the Kj indicators belonging to one common

factor or one composite ηj are grouped to form block j with j = 1, . . . , J . Observations

of block j are stacked in the data matrixXj of dimension (n×Kj) with
∑J
j=1Kj = K.

Furthermore, we assume that each indicator is standardized, as is customary in PLS,

to have mean zero and unit variance, such that the sample covariance matrix S equals

the sample correlation matrix.

The PLS estimation procedure consists of three parts. In the first part, for each

block j initial arbitrary outer weights ŵ(0)
j (Kj × 1) are chosen, which satisfy the

following condition: ŵ(0)′
j Sjjŵ

(0)
j = 1, where the (Kj × Kj) matrix Sjj contains the

sample correlations of the indicators of block j. This condition holds true for all

outer weights in each iteration (i) and can be achieved by using the scaling factor

(ŵ(i)′
j Sjjŵ

(i)
j )− 1

2 for the outer weights ŵ(i)
j in each iteration.

In the second part, the iterative PLS algorithm starts with step one, the outer

approximation of ηj as follows:

η̂
(i)
j = Xjŵ

(i)
j with ŵ

(i)′
j Sjjŵ

(i)
j = 1, (4.1)

where η̂(i)
j is a column vector of length n. Since outer weights are scaled, all outer

proxies also have mean zero and unit variance.

In the second step, the inner proxy of ηj is calculated as a linear combination of

inner weights and outer proxies of ηl:

η̃
(i)
j =

J∑
l=1

e
(i)
jl η̂

(i)
l , (4.2)

where η̃(i)
j is again a column vector of length n. The inner weight ejl defines how the

inner proxy η̃j is built. The following three different schemes for the calculation of

ejl are commonly used: centroid (Wold, 1982b), factorial (Lohmöller, 2013), and path

weighting. However, all schemes yield essentially the same results (Noonan and Wold,
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1982), and hence, we only consider the centroid scheme.4 The inner weight is chosen

according to the sign of the correlation between the outer proxies:

e
(i)
jl =


sign(ŵ(i)′

j Sjlŵ
(i)
l ), for j 6= l if construct j and l are adjacent

0, otherwise,
(4.3)

where adjacent refers to the constructs j and l directly connected by the structural

model. All inner proxies η̃(i)
j are again scaled to have unit variance.

In the third and last step of the iterative part, new outer weights are calculated.

This can be done in the following three ways: mode A, mode B, and mode C. For mode

A, estimated outer weights of block j equal the estimated coefficients of a multivariate

regression from the indicators of block j on its related inner proxy. Due to standardi-

zation, the new estimated outer weights ŵ(i+1)
j equal the correlations between inner

proxy and its related indicators:

ŵ
(i+1)
j ∝

J∑
l=1
Sjlŵ

(i)
l e

(i)
jl with ŵ

(i+1)′
j Sjjŵ

(i+1)
j = 1. (4.4)

In contrast, for mode B, the new outer weights equal the estimated coefficients of a

regression from the inner proxy on its connected indicators:

ŵ
(i+1)
j ∝ S−1

jj

J∑
l=1
Sjlŵ

(i)
l e

(i)
jl with ŵ

(i+1)′
j Sjjŵ

(i+1)
j = 1. (4.5)

Mode C, also known as MIMIC mode, is a mixture of mode A and mode B and is not

considered here.5

As the traditional PLS algorithm has no single optimization criteria to be mini-

mized, the new outer weights ŵ(i+1)
j are checked for significant changes compared to

the outer weights from the iteration step before ŵ(i)
j . If there is a significant change in

the weights, the algorithm starts again at step one by building new outer proxies with

the new outer weights; otherwise, it stops.

In the last part, the obtained stable outer weights ŵj are used to build final compo-

sites as stand-ins for the theoretical constructs, regardless of being modeled as common

factors or composites as follows:

η̂j = Xjŵj. (4.6)

4For more details on the other schemes, see Tenenhaus et al. (2005).
5A consistent version of mode C, for any of its 2J − 2 implementations, can be obtained by using

the properties of mode A and mode B, see Dijkstra (1985, Chap.2 Par. 5.2), but since mode C is
intermediate between the other modes, adding mode C does not really contribute to achieving further
understanding.
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For constructs that are modeled as common factors, the factor loadings are estimated

by OLS in accordance with the measurement model. In contrast, for constructs that

are modeled as composites, the final weights equal the stable weights from the last

iteration. Finally, path coefficients are estimated by OLS with respect to the structural

model.

4.2.2 Consistent PLS

PLS is based on composites, which implies that estimates are inconsistent if constructs

are modeled as common factors.6 However, a transformation of the model-implied

correlation matrix of a composite model into the model-implied correlation matrix of

a common factor model can be achieved by a correction for attenuation (Cohen et al.,

2003, Chap. 2.10). Consistent PLS (PLSc) uses this correction to obtain consistent

estimates for models containing common factors (Dijkstra and Henseler, 2015a,b). The

correction requires that each common factor is connected to at least two indicators and

uses the proportionality between the population factor loadings and the population

outer weights, λj = cjwj. The estimated correction factor for block j satisfies the

following condition:

plim(ĉj) =
√
λ′jΣjjλj, (4.7)

where λj is a column vector of lengthKj, containing the population loadings of common

factor ηj, and Σjj is the Kj × Kj population correlation matrix of the indicators of

block j.7 The squared correction factor ĉ2
j can be obtained as follows:

ĉ2
j =

ŵ′j(Sjj − diag(Sjj))ŵj

ŵ′j(ŵjŵ′j − diag(ŵjŵ′j))ŵj

. (4.8)

It is chosen such that the Euclidean distance between

Sjj − diag(Sjj) and (cjŵj)(cjŵj)′ − diag((cjŵj)(cjŵ′j)) (4.9)

is minimized (Dijkstra and Henseler, 2015a). Factor loadings of block j are consistently

estimated as follows:

λ̂j = ĉjŵj. (4.10)

6Both, common factors as well as composites are legit ways of construct modeling, see Rigdon
(2012).

7The use of mode B for common factors is not considered here. For a consistent version of PLS
using mode B, see Dijkstra (2011).
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Moreover, PLSc can consistently estimate the path coefficients of recursive and non-

recursive models,8 using OLS or 2SLS, according to the structural model. Since all

variables are standardized, the estimated path coefficients are based on the correlations

between the columns of η̂ (n× J). The correlation between the common factors j and

l is consistently estimated by the following:

ĉor(ηj, ηl) =
ŵ′jSjlŵl√

ĉ2
jŵ
′
jŵj ĉ2

l ŵ
′
lŵl

. (4.11)

Using the corrected correlation of Equation (4.11) for the estimation of the structural

model, one obtains consistently estimated path coefficients between the common fac-

tors.9 For constructs that are modeled as composites, no correction of the correlation

is required, because, by assumption, they are not affected by attenuation. For exam-

ple, if construct j is modeled as a common factor and construct l as a composite, the

consistently estimated correlation is obtained as follows:

ĉor(ηj, ηl) =
ŵ′jSjlŵl√
ĉ2
jŵ
′
jŵj

. (4.12)

4.3 The development from PLS to ordinal PLS

Since incorrectly handling ordinal categorical variables as continuous can lead to biased

inferences and, therefore, to erroneous conclusions, the PLS literature provides several

approaches to deal with discrete indicators: dichotomize the ordinal categorical indica-

tor, a mixture of PLS and correspondence analysis (CA), Partial Maximum Likelihood

PLS (PML-PLS), and non-metric PLS (NM-PLS).

Common practice in PLS is to replace a categorical indicator by a dummy matrix

which is known as dichotomizing. Since each categorical indicator is replaced byM−1

dummy variables, where M is the number of observed categories, M − 1 outer weights

are obtained for the original variable. This contradicts the idea of treating an indicator

as a whole.

Betzin and Henseler (2005) use correspondence analysis to quantify ex-ante cat-

egorical indicators. As the quantified indicators are obtained, PLS is used to estimate
8PLSc relaxes the assumptions of the basic design (Wold, 1982b) where non-recursive structural

models are not allowed.
9For more details, e.g., the consistent estimation of non-recursive models and the correction for

nonlinear structural equation models, see Dijkstra (1983, 1985, 2010, 2011); Dijkstra and Schermelleh-
Engel (2014).
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the model parameters. As a result, individual weights are obtained for each category

of the categorical indicator. Again, this has the drawback that no single outer weight

for a categorical indicator is calculated.

Partial Maximum Likelihood Partial Least Squares (PML-PLS) is a modified ver-

sion of the original PLS algorithm (Jakobowicz and Derquenne, 2007). It is a combina-

tion of PLS and generalized linear models designed to deal with indicators of any scale.

For categorical indicators, individual outer weights are computed for each category

by ANOVA. Based on those, one ’global’ weight per categorical indicator is calcu-

lated. However, statistical properties like the proportionality of outer weights to factor

loadings are unknown for the global weights, thus necessitating further investigation.

Moreover, the authors note that PML-PLS ”is especially advantageous in the case of

nominal or binary variables” (Jakobowicz and Derquenne, 2007); however, we focus on

ordinal categorical indicators.

The last approach, non-metric partial least squares (NM-PLS) combines the PLS

algorithm with optimal scaling to quantify qualitative indicators (Trinchera and Russo-

lillo, 2010; Russolillo, 2012). Optimal scaling is a procedure that quantifies qualitative

variables by preserving properties of the original measurement scales. In case of NM-

PLS, the categorical indicator is quantified in a way that the correlation between the

inner LV estimate and the quantified categorical indicator is maximized. As a result,

for each variable one outer weight is obtained as is the case in traditional PLS for

continuous indicators.

However, the evaluation of the presented approaches is based on empirical studies,

and, to our knowledge, no simulation studies have been conducted to investigate their

statistical properties. For an extension to PLSc, in order to deal with common factors,

it is necessary that the outer weights are proportional to the factor loadings. Moreover,

the modified PLS procedures are often applied to common factor models that represent

a misspecified model in the context of PLS. Hence, an assessment of their statistical

properties is hardly possible, and hence, we decide not to pursue any of the previously

mentioned methods.
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4.3.1 Ordinal PLS

A promising approach to deal with ordinal categorical indicators is ordinal PLS (Ord-

PLS10) (Cantaluppi, 2012). It is a modified procedure for handling ordinal categorical

variables in a classical econometric way. In Section 4.2, we showed that all parameters

can be obtained using the correlation matrix S. Traditional PLS uses the Bravais-

Pearson (BP) correlation matrix which requires all indicators to be continuous for con-

sistency. The observation of an ordinal categorical variable is a qualitative measure,

yet it is often coded numerically and, therefore, mistakenly treated as a quantitative

measure by researchers. This routinely happens in applications with binary and ordinal

categorical indicators, which, in turn, results in biased BP correlation estimates (Car-

roll, 1961; O’Brien and Homer, 1987; Quiroga, 1992; Wylie, 1976). To fix this, OrdPLS

uses a consistent correlation matrix as input for the traditional PLS algorithm. An

advantage of OrdPLS over the approaches previously introduced is that it offers a

transparent way of dealing with ordinal categorical variables. Moreover, the original

PLS algorithm remains untouched, and it is just provided by a consistent correlation

matrix as input for the algorithm.

Since OrdPLS does not correct for attenuation, it shows the same drawbacks as

PLS if common factors are included in the model. Nevertheless, we consider OrdPLS

as a powerful extension of PLS when applied under appropriate circumstances, i.e.,

for models with only composites. Furthermore, it is straightforward to extend by

PLSc for overcoming its drawback for common factor models (see Section 4.4). In the

following subsection we present Pearson’s considerations of ordinal categorical variables

to provide a better understanding of the polychoric and polyserial correlation.

4.3.2 Ordinal categorical variables according to Pearson

Pearson (1900, 1913) considers an ordinal categorical variable as a crude measure of an

underlying continuous random variable, while Yule (1900) assumes categorical variables

as being inherently discrete. In this chapter, we follow Pearson’s idea which states

that an observed ordinal categorical indicator x is the result of a polytomized standard
10OrdPLS was originally called OPLS (Cantaluppi, 2012). An anonymous reviewer suggested to

use a different name in order to avoid confounding with O-PLS (Trygg and Wold, 2002). We came to
an agreement with Gabriele Cantaluppi to speak of OrdPLS in the future. We thank the anonymous
reviewer for suggesting such a disambiguation.
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normally distributed random variable x∗ seen as follows:

x = xm, if τm−1 ≤ x∗ < τm m = 1, . . . ,M, (4.13)

where the threshold parameters τ0, . . . , τM determine the observed categories. The first

and last threshold are fixed as follows: τ0 = −∞ and τM = ∞. Moreover, thresholds

are assumed to be strictly increasing as follows: τ0 < τ1 < . . . < τM .

τ1 τm−1 τm τM−1

. . . . . .

xmx1 xM

x∗

φ(x∗)

Figure 4.3: Pearson’s idea of an ordinal categorical variable

Figure 4.3 depicts the idea of an underlying continuous variable: For indicator x cat-

egory xm is observed if the realization of the underlying continuous variable x∗ is in

between the thresholds τm−1 and τm.

4.3.3 Polychoric and polyserial correlation

Since an ordinal categorical variable is determined by an underlying continuous vari-

able, it is more appropriate to consider the correlation between these underlying quan-

titative continuous variables for evaluating the linear relationship of interest. This is

achieved by using the polychoric or polyserial correlation (Drasgow, 1988). To illus-

trate the principles of the polychoric correlation, we consider two ordinal categorical

variables, x1 and x2, with consecutive categories denoted by m1 and m2 for x1 and x2

respectively, with m1 = 1, . . . ,M1 and m2 = 1, . . . ,M2, see Equation (4.13). The two

underlying continuous variables are assumed to be jointly bivariate standard normally

distributed with correlation ρ. The correlation between x∗1 and x∗2 can be consistently
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estimated by maximum likelihood, using the following log-likelihood function:

lnL = ln(c) +
M1∑
m1=1

M2∑
m2=1

nm1m2 ln(πm1m2), (4.14)

where ln(c) is a constant term, nm1m2 denotes the observed joint absolute frequency

of x1 = m1 and x2 = m2, and πm1m2 is the probability that category m1 and m2

are observed jointly. Due to the bivariate normality assumption, πm1m2 is obtained as

follows:

πm1m2 = (4.15)

Φ2(τm1 , τm2 , ρ)− Φ2(τm1 , τm2−1, ρ)− Φ2(τm1−1, τm2 , ρ1) + Φ2(τm1−1, τm2−1, ρ),

where Φ2 is the cumulative distribution function of the bivariate standard normal dis-

tribution. The parameters τm1 , τm2 , and ρ are chosen to maximize the function lnL.

In order to reduce computational burden, a two-step procedure can be used (Olsson,

1979). In the first step, estimated threshold parameters are separately calculated for

both ordinal categorical indicators xk, with k = 1, 2 as quantiles of cumulative marginal

frequencies, τ̂mk
= Φ−1(Fmk

), where Fmk
equals the cumulative marginal relative fre-

quency up to category mk. The function Φ−1 represents the quantile function of the

univariate standard normal distribution. Second, given the estimated threshold pa-

rameters, Equation (4.14) is maximized with respect to ρ. In case of a continuous

and an ordinal categorical variable, the correlation between the two continuous vari-

ables is obtained by the polyserial correlation (Olsson et al., 1982). For more than two

variables, a multivariate version is used to estimate the correlations (Poon and Lee,

1987). Moreover, a less computational intensive two-step approach can be used for the

multivariate version (Lee and Poon, 1987). OrdPLS as well as OrdPLSc make use of

the polychoric and polyserial correlation when ordinal categorical indicators are part

of the model.

4.4 Ordinal consistent partial least squares

We introduce a new approach that deals with common factors, composites, and ordinal

categorical indicators. It is called ordinal consistent partial least squares (OrdPLSc)

and is a combination of OrdPLS and PLSc. It uses the polychoric correlation, a

consistent correlation matrix in case of ordinal categorical indicators, as input for the
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PLS algorithm and corrects for attenuation if common factors are included in the

model. Since the use of the polychoric correlation matrix does not affect the original

PLS algorithm, the proportionality property of the outer weights is maintained, and

the correction of attenuation can be applied to the inter-composite correlation matrix

in the same manner as is done in PLSc. Figure 4.4 illustrates commonalities and

differences of the three previously presented PLS approaches and OrdPLSc.

OLS
PLS

algorithm

Traditional PLS

Correction for
attenuation

(common factors)
OLS/2SLSPLS

algorithm

PLSc

OLS
PLS

algorithm
Determining
polychoric
correlations

OrdPLS

Correction for
attenuation

(common factors)
OLS/2SLSPLS

algorithm
Determining
polychoric
correlations

OrdPLSc

Figure 4.4: Conceptual differences between the four PLS approaches

The role of an ordinal categorical indicator x, more precisely its underlying contin-

uous variable x∗, is influenced by its position in the model. As Figure 4.5a displays,

when the ordinal categorical indicator belongs to a common factor, its outcome is indi-

rectly influenced by the underlying common factor and a measurement error ε through

the underlying continuous variable x∗. An ordinal categorical indicator that is part of

a composite, see Figure 4.5b, is simply a crude measure of an underlying continuous

variable (represented by a double headed arrow) that actually builds the composite
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along with the other indicators belonging to this block.

x∗ xξ

ε

(a) Exogenous common factor: ordinal categor-
ical indicators

x∗ xξ

(b) Exogenous composite model: ordinal cate-
gorical indicators

Figure 4.5: Ordinal categorical indicators in common factor and composite models

Ignoring the nature of the ordinal categorical indicators may cause serious problems.

First, in common factor models, the correlation between the indicator and its underly-

ing common factor is underestimated (O’Brien and Homer, 1987; Quiroga, 1992), which

leads to biased estimates. Second, in the case of a composite, disregarding the scale of

the ordinal categorical indicator leads to biased estimates as well. This is commonly

known as the error-in-variables problem (Wooldridge, 2012, Chap. 15).

4.5 Evaluation of construct scores in OrdPLS and

OrdPLSc

A useful feature of PLS is that construct scores can be calculated directly enabling,

e.g., importance-performance matrix analysis (IPMA) (Ringle and Sarstedt, 2016).11

In this section, we present three ways of calculating construct scores in the framework

of OrdPLS and OrdPLSc12 to obtain a category indication, which is expressed on the

same common ordinal scale that characterizes the indicators13 of the latent variable.14

As the continuous variables x∗j underlying each ordinal categorical indicator are not

observable (see Figure 4.5), unique construct scores η̂j cannot be calculated directly.
11IPMA is a technique aimed at finding which construct is better to act on, in order to improve

the average level of a target construct. It is based on a scatter plot diagram for each endogenous
construct, representing summary location measures (performances) of its antecedent latent variables
and their impacts (regression coefficients) on the analyzed endogenous construct.

12As the weights are unaffected by the correction for attenuation, the construct scores are the same
for PLS and PLSc as well as for OrdPLS and OrdPLSc.

13We assume that all indicators have the same number of categories. Calculating construct scores
in presence of ordinal categorical indicators with different numbers of categories will be considered in
future research.

14In PLS, a linear transformation of standardized scores is sufficient to assign location and scale to
construct scores as shown, e.g., in Bayol et al. (2000).
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We are only able to determine the probability function of each composite η̂j and an

interval of possible values conditional on the threshold values pertaining to the latent

variables x∗jk that underlie each ordinal categorical indicator connected to ηj. This

information can be used for approximating construct scores.

Each underlying latent variable x∗jk with k = 1, . . . , Kj is assumed to be standard

normally distributed. Therefore, the composite η̂j, defined by the following linear

combination (analogous to Equation 4.6):

η̂j =
Kj∑
k=1

ŵjkx
∗
jk, (4.16)

is also normally distributed and, thus, classified on a continuous scale. In order to

assign a location value to the composites η̂j, a set of threshold parameters for the com-

posite τ η̂j
m , m = 1, . . . ,M − 1, can be derived from the individual indicators threshold

parameters τxjk
m belonging to the underlying variable x∗jk, k = 1, . . . , Kj, where M

denotes the number of categories for indicator xjk, as follows:

τ η̂j
m =

Kj∑
k=1

ŵjkτ
xjk
m . (4.17)

For practical reasons, threshold parameters equal to ±∞ are replaced by ±4.

In the following, we first define an interval of η̂ji, with i = 1, . . . , n, which is the

image of xjki, k = 1, . . . , Kj, where xjki is the observation of subject i for indicator xjk
linked to the corresponding composite η̂j. Using the interval, we propose three ways

to obtain construct scores on the common ordinal scale characterizing the indicators.

In case subject i chooses the same category m for all the indicators connected to

η̂j, xj1i = · · · = xjKji = m with m ∈ {1, . . . ,M}, the image is of the following type:

Am ≡ (τ η̂j

m−1, τ
η̂j
m ] (4.18)

which we call homogeneous thresholds. Otherwise, as illustrated in Figure 4.6, the set

which is the image of all possible responses xjki, will not correspond exactly to one

subset Am. Let us denote this set for subject i with

Cji ≡ (αη̂j

i , β
η̂j

i ], (4.19)

where

α
η̂j

i =
Kj∑
k=1

ŵjkτ
xjki

m−1 and β
η̂j

i =
Kj∑
k=1

ŵjkτ
xjki
m . (4.20)
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The parameters τxjki

m−1 and τ
xjki
m are the threshold parameters that determine the ob-

served category for subject i of indicator xjk and those that can be used to define

the values for the interval of x∗jk. To assign a category to the i-th observation of the

composite η̂j, we propose one of the following options:

1. Mode estimation: Compute, see Figure 4.6, the probabilities for Cji overlap-

ping each set Am defined by the ’homogeneous thresholds’ as follows:

P (Cji ∩ Am) m = 1, . . . ,M (4.21)

and select for observation i the set Am with the maximum probability. To the

set Am corresponds the assignment of category m as a score estimate for the

construct ηj. In Figure 4.6, category 3 (interval from τ2 to τ3) is assigned.

2. Median estimation: Compute the median for each observation i of the variable

η̂j on the interval Cji as follows:

median(η̂ji|η̂ji ∈ Cji) = Φ−1
(1

2(Φ(αη̂j

i ) + Φ(β η̂j

i )
)
. (4.22)

The category m pertaining the set Am to which median(η̂ji|η̂ji ∈ Cji) belongs, is

assigned to subject i.

3. Mean estimation: Compute the mean of the variable η̂ji on the interval Cji as

follows:

E(η̂ji|η̂ji ∈ Cji) = φ(αη̂j

i )− φ(β η̂j

i )
Φ(β η̂j

i )− Φ(αη̂j

i )
. (4.23)

The category m pertaining the set Am to which E(η̂ji|η̂ji ∈ Cji) belongs, is

assigned to subject i.

τ1 τ2 τ3 τ4 τM−1

. . .

η̂j

αi βi
Mode estimation

Figure 4.6: Categorical construct scores
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4.6 Monte Carlo simulation

In order to investigate the performance of OrdPLSc under various conditions and to

compare it to the performance of PLSc, OrdPLS, and PLS for structural equation

models containing ordinal categorical indicators, we run a Monte Carlo simulation. In

particular, we examine their unbiasedness and their efficiency – the most important

properties of an estimator. Furthermore, we study the bias of PLS and OrdPLS for

common factor models with ordinal categorical indicators. Also for PLSc, which is

known to be a consistent estimator in the framework of continuous indicators (Dijkstra

and Henseler, 2015a), we examine the behavior when ordinal categorical variables are

used instead of continuous ones.

We conduct a Monte Carlo simulation with 1000 multivariate standard normally

distributed samples with 500 observations each. The continuous indicators are catego-

rized in the way presented in Section 4.3.2. We only consider consecutive categories,

i.e., 1, 2, . . . ,M . To compare all estimators in a fair way, inadmissible solutions15 are

removed and replaced by proper estimations before analysis.

We consider the following experimental conditions: two population models (a model

with three common factors and a model with one common factor and two composites),

four different number of categories (2, 3, 5, and, 7 categories), and five different dis-

tributions of the ordinal categorical indicators (symmetric, moderately asymmetric,

extremely asymmetric, alternating moderately asymmetric, and alternating extremely

asymmetric). Each condition is estimated by OrdPLSc, PLSc, OrdPLS, and PLS.

As a benchmark comparison for the pure common factor model, we also estimate the

model by WLSMV, a consistent covariance-based three stage least squares estimator

(Muthén, 1984; Lee et al., 1990b), which is considered to be the golden standard for

common factor models with ordinal categorical indicators.16

15Inadmissible solutions are estimations with absolute factor loadings larger than 1, non positive-
definite construct correlation matrix, or estimations that have not converged.

16The mixed model with an endogenous composite cannot be estimated by WLSMV because of
identification problems. Moreover, as is the case in OrdPLS and OrdPLSc, covariance-based estimators
for categorical indicators are typically based on polychoric correlation, see Lee et al. (1990a, 1992);
De Leon (2005); Liu (2007); Katsikatsou et al. (2012).
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4.6.1 Two population models

Starting point are the following two kinds of models: one model with only common

factors and one model with one common factor and two composites. The pure com-

mon factor model is chosen to compare OrdPLSc to its covariance-based counterpart

WLSMV. In designing the path structure of the models, we choose a structure that has

been used several times in the literature (Hwang et al., 2010; Henseler, 2012b; Henseler

and Sarstedt, 2013).

Population model with only common factors

First, we consider a pure common factor model with the following population structural

equations:

η1 = γ1ξ1 + ζ1 (4.24)

η2 = γ2ξ1 + βη1 + ζ2, (4.25)

where γ1 = 0.6, γ2 = 0.0, β = 0.6, var(ζ1) = 0.64, var(ζ2) = 0.64, and cov(ζ1, ζ2) =

0. As Figure 4.7 depicts, each common factor is connected to three indicators with

factor loadings λ′x =
(

0.8 0.7 0.6
)

for ξ, λ′y1 =
(

0.7 0.7 0.7
)

for η1, and λ′y2 =(
0.5 0.7 0.9

)
for η2.

x1 x2 x3 y11 y12 y13 y21 y22 y23

ξ η1 η2

ε1 ε2 ε3 δ11 δ12 δ13 δ21 δ22 δ23

ζ1 ζ2

λx1 = .8

λx2 = .7

λx3 = .6 λy11 = .7

λy12 = .7

λy13 = .7 λy21 = .5

λy22 = .7

λy23 = .9

γ1 = .6 β = .6

γ2 = 0

Figure 4.7: Population model with three common factors

All measurement errors and structural residuals are mutually independent and all com-

mon factors are assumed to be independent of the measurement errors. Therefore, the
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indicators population correlation matrix is given by the following:

Σ =



x1 x2 x3 y11 y12 y13 y21 y22 y23

1.0000

0.5600 1.0000

0.4800 0.4200 1.0000

0.3360 0.2940 0.2520 1.0000

0.3360 0.2940 0.2520 0.4900 1.0000

0.3360 0.2940 0.2520 0.4900 0.4900 1.0000

0.1440 0.1260 0.1080 0.2100 0.2100 0.2100 1.0000

0.2016 0.1764 0.1512 0.2940 0.2940 0.2940 0.3500 1.0000

0.2592 0.2268 0.1944 0.3780 0.3780 0.3780 0.4500 0.6300 1.0000



.

(4.26)
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Population model with two composites and one common factor

Second, we consider a model with the identical structural model as used for the model

with three common factors, but two of the constructs are modeled as composites instead

of as common factors. Figure 4.8 depicts the population model in terms of common and

composite factors. We deliberately choose this representation of the composites and

not the one used in Figure 4.2b to be able to clarify the construction of the population

correlation matrix of the indicators.

x1 x2 x3 y11 y12 y13 y21 y22 y23

ξ η1 η2

ε1 ε2 ε3 δ11 δ12 δ13 δ21 δ22 δ23

ζ1 ζ2

λx1 = .4
λx2 = .8

λx3 = .8 λy11 = .725 λy13 = .74
λy12 = .68

λy21 = .5

λy22 = .7

λy23 = .9

γ1 = .6 β = .6

γ2 = 0

−0.12

−0.32

−0.24 −0.243

−0.1365

−0.3432

Figure 4.8: Population model with two composites and one common factor

Here ξ and η1 are constructs modeled as composites. Since the relationship between

a composite and its indicators can be expressed by composite loadings (Figure 4.8) or

weights, we also report the weights: the composites are formed by their connected

indicators as follows: ξ = x′wx where w′x = (0.3, 0.5, 0.6) and η1 = y′1wy1 where

w′y1 = (0.4, 0.5, 0.5). The common factor η2 is again connected to three indicators with

the following loadings: 0.5, 0.7, and 0.9. The population correlation matrix of the
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indicators has the following form:

Σ =



x1 x2 x3 y11 y12 y13 y21 y22 y23

1.0000

0.2000 1.0000

0.0000 0.4000 1.0000

0.1740 0.3480 0.3480 1.0000

0.1632 0.3264 0.3264 0.2500 1.0000

0.1776 0.3552 0.3552 0.4000 0.1600 1.0000

0.0720 0.1440 0.1440 0.2175 0.2040 0.2220 1.0000

0.1008 0.2016 0.2016 0.3045 0.2856 0.3108 0.3500 1.0000

0.1296 0.2592 0.2592 0.3915 0.3672 0.3996 0.4500 0.6300 1.0000



.

(4.27)

4.6.2 Number of categories

We consider four different numbers of indicator categories: 2, 3, 5, and 7. An increasing

number of categories diminishes the bias of the BP correlation (O’Brien and Homer,

1987). Hence, we expect a decreasing difference between PLS and OrdPLS as well as

PLSc and OrdPLSc as the number of categories increases.

4.6.3 Threshold parameter distribution

We investigate differently skewed ordinal categorical indicators by varying threshold

parameter distributions for each number of categories. We consider the following

threshold parameter distributions that has already been used in the literature before

(Rhemtulla et al., 2012): symmetrically, moderately asymmetrically, extremely asym-

metrically, alternating moderately asymmetrically, and alternating extremely asym-

metrically distributed threshold parameters. In the alternating asymmetric threshold

distribution scenario, the same thresholds are used; however, the direction of asym-

metry is reversed for the indicators, x2, y11, y13, and y22.17 Since BP correlations are

more downward biased for more asymmetrical threshold distributions (Bollen and Barb,

1981; Faber, 1988; Holgado-Tello et al., 2010), and even more for alternating skewed

indicators (Olsson, 1980), we expect an increasing difference between OrdPLSc and
17For an exact description of the threshold parameter distribution, see the Appendix.
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PLSc estimates as well as between OrdPLS and PLS estimates from the symmetrical

to the alternating extreme threshold distribution.

4.6.4 Data generation and analysis

All simulations are conducted within the R (version 3.2.2) statistical programming

environment (R Core Team, 2015). Multivariate standard normally distributed data

sets are drawn using themvrnorm function of theMASS package (Venables and Ripley,

2002). To obtain PLS and PLSc estimates, we primarily use functions provided by the

matrixpls package (Rönkkö, 2015), which allows for the use of the empirical correlation

matrix as input for PLS and PLSc. A slightly modified version of those functions is also

used for OrdPLS and OrdPLSc. The modified version is provided by the authors upon

request. Since matrixpls is still under development, we also partly verify our results

obtained with ADANCO (Henseler and Dijkstra, 2015). The polychoric correlation is

calculated by the polychoric function from the psych package (Revelle, 2015), using

the two-step approach.18 WLSMV estimation is carried out using the lavaan package

(Rosseel, 2012).

4.7 Results

This section shows the results of our study.19 In the following, we summarize our

findings in terms of bias with respect to the quality of the parameter estimates for

the model containing only common factors and the mixed model. The bias is evalu-

ated as follows by the deviation of the estimated parameter mean from its population

counterpart across all Monte Carlo simulation runs:

B̂ias = 1
1000

1000∑
i=1

θ̂i − θ, (4.28)

where θ represents the population parameter and θ̂i is the estimated parameter from the

i-th Monte Carlo run. The estimated bias provides information about the estimators’

unbiasedness and is used as performance measure to compare OrdPLSc estimates with

the estimates obtained from the other approaches. Moreover, we assess the estimators’
18If the polychoric correlation matrix is not positive definite, an eigenvector smoothing is done to

assure its positive definiteness. Moreover, we follow the recommendation of Savalei (2011) and use
the ’ADD’ approach (0.5) for empty cells in the case of two categories and the ’NONE’ approach for
the other cases. The same is done for WLSMV.

19The complete results are provided in the supplementary material.
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efficiency in terms of standard deviation across all Monte Carlo simulation runs. We

finish the section by summarizing inadmissible results.

In general, for the moderate asymmetric and the alternating moderate asymmetric

threshold parameter distribution, the estimators lead to similar results. The same is

observed for extremely and alternating extremely asymmetrically distributed threshold

parameters. For latter conditions, all estimators show a poorer performance, which

confirms our expectations.

4.7.1 Bias of the parameter estimates

Figures 4.9 and 4.10 display the average deviation of the path coefficient estimates for

β(= 0.6) and γ2(= 0.0), and factor loading estimates for λx1(= 0.5) and λy21(= 0.8)

of the pure common factor model from their population value for the different number

of categories and the different threshold parameter distributions. An asterisk above a

bar indicates that the deviation is statistically significant on a 5% level. Due to space

constraints, we omit the results for the estimated path coefficient γ̂1 and the other

factor loading estimates. They behave very similarly to the ones presented.
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Figure 4.9: Model with only common factors: average deviations from β and γ2
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Figure 4.10: Model with only common factors: average deviations from λy21 and λx1

These figures offer evidence that OrdPLSc and WLSMV lead to almost the same

results for the estimated path coefficients and factor loadings under all conditions. Most

parameter means are not significantly different from their population values, indicating

that both estimators are hardly biased. In case of extremely and alternating extremely

skewed indicators, the means of the path coefficient estimates significantly differ from

the population values. This deviation diminishes and becomes insignificant with an

increasing number of categories.

In contrast, PLSc path coefficient estimates behave surprisingly well in most of the

conditions. For non-extremely distributed threshold parameters, the path coefficient

estimates are, upon averaging, close to their population values. However, in case of the
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extreme and, in particular, the alternating extreme threshold parameter distribution,

the path coefficient means are significantly different from the true values. This devia-

tion declines with an increase in the number of categories and becomes insignificant. In

contrast, factor loadings are significantly under-estimated on average in all conditions

but the deviation dramatically declines as the number of categories increases. However,

the deviation is still significant for seven categories.

We obtain different results for OrdPLS that lead to fairly constant and statisti-

cally significant deviations of the means from their true parameters in all conditions,

unaffected by the number of categories. In particular, the path coefficients β and γ1

are significantly underestimated on average while the zero-path coefficient γ2 is sig-

nificantly overestimated on average. Factor loadings are all overestimated on average,

except the largest factor loading λy23 = 0.9. All deviations are largely unaffected by

the number of categories.

PLS produces average path coefficient estimates for γ1 and β1 that differ most

from their population value. While the deviation of the average OrdPLS estimates

from the true parameter is fairly constant in all conditions, the difference between the

average PLS estimates and their population values converges to the average deviation

of OrdPLS estimates with an increasing number of categories. A similar pattern is

observed for PLS factor loading estimates. Mean factor loading estimates slightly

deviate from the population value in case of two categories, but the deviation becomes

more pronounced and converges to the deviation of the average OrdPLS factor loading

estimates as the number of categories increases. In all conditions, these deviations are

significant.

Next, we examine the estimates obtained for the mixed population model. Again,

for the sake of simplicity, Figures 4.11 and 4.12 only depict the deviations for the path

coefficients, β(= 0.6) and γ2(= 0), for the factor loading λy22(= 0.7) and for the weight

wy12(= 0.5) of the model with two composites and one common factor. An asterisk

above a bar signalizes a significant difference between the average parameter estimate

and its population value on a 5% level.
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Figure 4.11: Mixed model: average deviations from β and γ2
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Figure 4.12: Mixed model: average deviations from λy22 and wy12

The OrdPLSc parameter means, again, show virtually no deviation from the popu-

lation values. However, in case of an alternating extreme asymmetric threshold param-

eter distribution with two categories, a significant deviation of the average estimated

path coefficient from its true value is observed.

OrdPLS leads to very similar results compared to OrdPLSc for estimates affected

only by composites (γ̂1 and estimated weights). The estimated zero-path γ̂2 is after

averaging very close to zero, while the mean of the path coefficient estimate for β,

which is only affected by one common factor, constantly deviates from its population

value. However, the difference is not significant. Factor loadings are again significantly

overestimated on average under almost every threshold parameter distributions. The
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deviation is neither affected by the number of categories nor by the threshold parameter

distribution.

In contrast, for path coefficient β, average PLSc estimates differ significantly from

the population value. However, the deviations become insignificant in case of more

than two categories. For γ2, the average PLSc estimates deviate from the population

value, but this difference is only significant in case of two categories and alternating

extremely asymmetrically distributed threshold parameters. In general, deviations of

the factor loading estimates from the true parameters show a very similar behavior as

those seen in the model with only common factors: factor loadings are underestimated

on average. However, the difference is almost only significant in case of two categories.

The weight means are not statistically different from their population values. All

deviations decrease and average PLSc estimates converge to the average OrdPLSc

estimates as the number of categories increases.

PLS produces almost the same parameter means for path coefficient γ1 and weights

as PLSc. The means of the other path coefficients differ significantly from their popula-

tion counterparts under all conditions. While this difference decreases with an increas-

ing number of categories, the deviations of factor loading means become even larger

for an increasing number of categories. Again, average PLS factor loading estimates

tend to converge to OrdPLS average factor loading estimates.

4.7.2 Efficiency

Apart from parameter recovery, an estimator’s efficiency is of interest to assess its

quality. Therefore, we evaluate the standard deviations of the standardized path co-

efficient, loading, and weight estimates. In general, all standard deviations decrease

with an increasing number of categories but increase for more asymmetric threshold

parameter distributions.

Considering the pure common factor model, WLSMV is always more efficient than

OrdPLSc. Since comparing estimators’ efficiency is only meaningful for unbiased or

consistent estimators, the other results for the pure common factor model are not

evaluated.

Also, the estimates for the composite model become more efficient with an increas-

ing number of categories. For estimated parameters between composites only, PLS

and PLSc as well as OrdPLS and OrdPLSc produce almost the same standard er-
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rors. Estimated parameters connected with at least one common factor show larger

standard deviations for OrdPLSc than for OrdPLS. In most cases, path coefficient and

weight estimates are less efficient for OrdPLS than PLS, while factor loadings are more

efficiently estimated by OrdPLS.

4.7.3 Inadmissible solutions

We finish the results part by comparing the inadmissible solutions. Inadmissible solu-

tions are results with absolute factor loadings greater than one, construct correlation

matrix that are not positive semi-definite, or results where the estimation algorithm

does not converge. Figure 4.13 depicts the relative frequencies of inadmissible results.
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Figure 4.13: Inadmissible solutions
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PLS, OrdPLS, and PLSc produce almost no inadmissible solutions for both kind of

models. In contrast, OrdPLSc and WLSMV produce a few inadmissible solutions under

every condition. The total number of inadmissible results increases for more skewed

distributed indicators. The most inadmissible results are produced for alternating

extremely asymmetrically distributed threshold parameters.

A similar pattern is observed for inadmissible results during the bootstrap pro-

cedure. PLS and OrdPLS, again, produce no improper solutions. In general, the

number of inadmissible results during the bootstrap procedure increases for PLSc with

an increasing number of categories, while it decreases for OrdPLSc and WLSMV.

4.8 Assessing the results of OrdPLSc

The main focus of this section is the assessment of the OrdPLSc results. In the follow-

ing, we give a brief overview of approaches commonly followed in PLS and PLSc, which

can be also used to assess the results obtained from OrdPLSc. Furthermore, we present

approaches for the model evaluation in the case of ordinal categorical indicators.

4.8.1 Overall model evaluation

Statistical tests for the evaluation of the overall-model fit were not available for a long

time in case of PLS. Most recently, a bootstrap-based test was developed for PLSc

(Dijkstra and Henseler, 2015a). It is a combination of a bootstrap-based test about the

model implied covariance matrix (Beran and Srivastava, 1985; Bollen and Stine, 1992)

and PLSc. In the context of OrdPLSc, this approach is under development and the

object of future research.20 Nevertheless, the standardized root mean square residual

(SRMR) (Hu and Bentler, 1999) can be used as a measure of model fit. It captures the

sum of the squared differences between the empirical and the model-implied correlation

matrix. Hence, the smaller the SRMR, the better the model fit. Furthermore, as PLS

was developed as prediction method (Wold, 1982a), models estimated by PLS should

be compared with regard to their predictive power (Shmueli et al., 2016).21

20Applying simply the transformation proposed by Beran and Srivastava (1985) is not recommended
since the transformation of the qualitative categorical indicators is not clear.

21We will investigate the predictive power of OrdPLSc and compare it to other approaches that
can deal with ordinal categorical indicators in a future study.
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4.8.2 Measurement model

In the following, we focus on criteria to assess convergent validity, discriminant validity,

and internal consistency in the case of OrdPLSc.

Convergent validity

Convergent validity refers to the extent to which the reflective indicators connected

to one construct are in fact related. A typically used measure for convergent validity

is the average variance extracted (AVE) (Fornell and Larcker, 1981; Fornell and Cha,

1994; Farrell, 2010), which can be appropriately used in the context of OrdPLSc.

Discriminant validity

Discriminant validity refers to the extent to which a given construct differs in fact from

the other constructs in the nomological network. It can be examined for OrdPLSc

in the same manner as for PLSc, and it is usually assessed by the Fornell-Larcker

criterion (Fornell and Larcker, 1981). In addition, in PLSc, the heterotrait-monotrait

ratio of common factor correlations (HTMT) (Henseler et al., 2015) and the cross-

loadings are used to investigate whether different common factors are also statistically

different. Since all approaches mentioned are based on the factor loading estimates

or the indicator correlation matrix, it is straightforward to use them in the context of

OrdPLSc.

Internal consistency

Internal consistency relates to the correlations among the indicators of one block and

reflects the reliability of the measurement model. To evaluate internal consistency for

a block of indicators belonging to one construct modeled as common factor,22 the use

of the reliability measure ρA is recommended (Dijkstra and Henseler, 2015b; Henseler

et al., 2016a). Furthermore, measures of composite reliability like Dillon-Goldstein’s

ρ (also known as Jöreskog ρc) (Chin, 1998) or Cronbach’s α are usually considered.

Since all these measures are based on the estimated factor loadings or the indicator
22For constructs modeled as composites the assessment of internal consistency is meaningless since

composites are by assumption fully reliable.
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correlations, they can also be used in the context of OrdPLSc.23

In general, it is noted that measures used in the context of OrdPLSc refers to the

underlying continuous latent variables x∗j instead of referring to the ordinal categorical

indicators xj themselves.

4.8.3 Structural model

Since OrdPLSc is also based on OLS, the coefficient of determination R2 of the en-

dogenous constructs can be used to assess the structural model. It measures how well

the explanatory constructs explain an endogenous construct.

4.9 An empirical example: customer satisfaction

Traditional PLS has been successfully applied to models aiming at measuring customer

satisfaction: first at a national level (Fornell et al., 1996; Fornell, 1992), and later, also

in a business context (Johnson et al., 2001). We replicate the study conducted by

Bayol et al. (2000) and Tenenhaus et al. (2005) on customer satisfaction in the mobile

phone industry to empirically investigate the performance of OrdPLSc in the presence

of ordinal data collected through questionnaires with a large number of categories.24.

Furthermore, we compare the results of OrdPLSc to those of PLS, PLSc, and OrdPLS.

The assumed underlying customer satisfaction model refers to a version of the

European Customer Satisfaction Index (ECSI) with one exogenous and six endog-

enous constructs all modeled as common factors, see Figure 4.14 for a depiction of the

structural model. The data set consists of 250 observations on 24 ordinal categorical

indicators with 10 categories each: five measures of Image (IMG), three measures

of Customers Expectations (EXP), seven measures of Perceived Quality (QUA), two

measures of Perceived Value (VAL), three measures of Customer Satisfaction (SAT),

one measure of Complaints (COM) and three measures of Loyalty (LOY). For more

details on the questionnaire, see Tenenhaus et al. (2005).
23The idea to calculate a Cronbach’s α using the polychoric correlation is already known and de-

noted by the ordinal alpha (Zumbo et al., 2007). Ordinal alpha avoids the negative bias of Cronbach’s
α in the case of ordinal categorical indicators.

24The data set is public available, e.g., from the R package plspm (Sanchez et al., 2015).
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Figure 4.14: Path diagram of the mobile phone industry customer satisfaction model

The estimation of the model is conducted in R (R Core Team, 2016) using the

package matrixpls (Rönkkö, 2016).25 For the estimation, we use the centroid scheme

for inner weighting, mode A for outer estimation, and the algorithm proposed by Wold

(1982b) to obtain the final weights. To obtain the polychoric correlation for OrdPLS

and OrdPLSc, we use a modified version26 of the polychoric function of the psych pack-

age (Revelle, 2016). Moreover, we use the NONE approach in the case of non-occupied

cells, which is recommended for indicators with more than two categories (Savalei,

2011). For the calculation of the construct scores, we use user-written functions, which

are provided upon request. In the bootstrap procedures, improper solutions are dis-

carded.

Since the SRMR is below the recommended cut-off value of 0.08 (Hu and Bentler,

1998) with regard to OrdPLSc, overall-model fit is established and we proceed with

considering the parameter estimates.27 In Table 4.1, we provide the path coefficient

estimates of the mobile phone customer satisfaction model for PLS, PLSc, OrdPLS,

and OrdPLSc.
25As matrixpls is still under development, we cross-validate the results for PLS and PLSc with

ADANCO (Henseler and Dijkstra, 2015).
26The original polychoric function does not allow for the calculation of the polychoric correlation

between indicators with more than eight categories.
27It is mentioned that goodness of fit measures like the SRMR should be regarded with caution.

A test for the overall model fit is not developed yet for OrdPLSc.
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Table 4.1: Path coefficient estimates of the mobile phone customer satisfaction model
PLS CIa PLSc CIb OrdPLS CIa OrdPLSc CIc

β21 0.493 0.379 0.610 0.887 0.646 0.940 0.584 0.474 0.669 0.902 0.740 0.963
β51 0.153 0.060 0.262 0.109 -0.431 0.968 0.199 0.087 0.318 0.284 -0.130 1.127
β71 0.212 0.068 0.362 0.044 -0.590 0.483 0.261 0.112 0.404 0.012 -0.680 0.695
β32 0.545 0.441 0.653 0.892 0.675 0.950 0.612 0.507 0.697 0.880 0.736 0.959
β42 0.066 -0.095 0.243 0.026 -0.644 0.795 0.037 -0.105 0.210 -0.115 -0.762 0.749
β52 0.037 -0.050 0.139 -0.124 -0.573 0.505 0.035 -0.067 0.134 -0.120 -0.687 0.412
β43 0.540 0.357 0.706 0.655 -0.093 1.236 0.596 0.416 0.746 0.801 -0.053 1.403
β53 0.544 0.408 0.651 0.833 0.094 1.264 0.517 0.399 0.645 0.669 -0.023 1.042
β54 0.200 0.081 0.317 0.191 -0.116 0.358 0.198 0.091 0.308 0.177 -0.028 0.306
β65 0.540 0.424 0.643 0.609 0.483 0.703 0.563 0.454 0.657 0.624 0.509 0.722
β75 0.465 0.290 0.617 0.867 0.346 1.472 0.493 0.331 0.651 0.917 0.226 1.540
β76 0.050 -0.061 0.179 -0.068 -0.221 0.076 0.043 -0.075 0.156 -0.065 -0.178 0.104

Bold printed values are the coefficient estimates whose corresponding CI does not cover the zero.
Percentile confidence intervals are calculated at a 95% confidence level.
a based on 500 bootstrap samples. b based on 317 bootstrap samples.
c based on 270 bootstrap samples.

The results show that OrdPLSc produces significant path coefficient estimates for

β21, β32, β65, and β75, while the other approaches produce a larger number of significant

path coefficient estimates. Under the approaches considered, PLS and OrdPLS yield

the most path coefficients that are significantly different from zero. Comparing the

magnitude of the significant estimates, the consistent versions of PLS and OrdPLS lead

to larger absolute path coefficient estimates. However, the path coefficient estimates for

PLS and OrdPLS are known to be inconsistent for common factor models (Schneeweiss,

1993; Schuberth et al., 2016). Therefore, it is recommended to rely on the OrdPLSc

estimates since they have been corrected for attenuation and take the scale of the

ordinal indicators into account. Moreover, estimates obtained from PLS and OrdPLS

as well as PLSc and OrdPLSc are quite similar for most path coefficients. Such a

result is expected since the discrepancy between the polychoric and the BP correlation

is reduced by the large number of categories per indicator (here: 10).

As all constructs are modeled as common factors, estimated factor loadings λ̂j
instead of weights are of main interest in the measurement model. Considering the

factor loadings (see Table 4.2), PLS and OrdPLS mostly produce larger estimates than

their consistent counterparts. Moreover, all factor loading estimates are significantly

different from zero, except the factor loading of indicator loy2, which is not significant

for OrdPLSc, OrdPLS, and PLSc. The factor loading estimates of PLS and OrdPLS

as well as of PLSc and OrdPLSc are not comparable, since we report the standardized

estimates of OrdPLS and OrdPLSc and the non-standardized factor loadings of PLS
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and PLSc28. The difference in the magnitude of PLS and PLSc as well as OrdPLS and

OrdPLSc factor loading estimates is not surprising as PLS as well as OrdPLS estimates

suffers from attenuation in the case of a common factor model. The consistent versions

controlling for the attenuation bias lead, in general, to smaller factor loading estimates.

Table 4.2: Factor loading and confidence interval estimates

PLS CIa PLSc CIb OrdPLS CIa OrdPLSc CIc
ima1 1.216 0.931 1.462 1.036 0.814 1.251 0.764 0.690 0.818 0.662 0.555 0.760
ima2 0.953 0.665 1.209 0.905 0.649 1.169 0.648 0.525 0.734 0.592 0.471 0.691
ima3 1.399 1.015 1.698 0.975 0.653 1.256 0.602 0.463 0.695 0.483 0.318 0.610
ima4 1.455 1.203 1.669 1.262 0.989 1.483 0.799 0.729 0.854 0.720 0.604 0.818
ima5 1.085 0.854 1.359 1.028 0.821 1.232 0.780 0.724 0.826 0.710 0.623 0.791
exp1 1.111 0.808 1.367 0.809 0.562 1.106 0.780 0.654 0.848 0.556 0.426 0.686
exp2 1.153 0.724 1.547 0.786 0.518 1.198 0.743 0.589 0.832 0.539 0.391 0.707
exp3 1.523 1.022 1.931 0.885 0.585 1.242 0.623 0.476 0.738 0.479 0.360 0.620
qua1 1.104 0.916 1.281 1.147 0.969 1.337 0.828 0.779 0.875 0.835 0.761 0.895
qua2 1.228 0.929 1.529 0.997 0.751 1.306 0.647 0.531 0.737 0.553 0.447 0.683
qua3 1.456 1.199 1.685 1.373 1.131 1.564 0.801 0.747 0.852 0.769 0.679 0.849
qua4 1.253 1.051 1.428 1.103 0.894 1.294 0.809 0.744 0.871 0.733 0.656 0.819
qua5 1.062 0.874 1.237 0.980 0.777 1.142 0.782 0.718 0.837 0.720 0.616 0.821
qua6 1.246 1.069 1.402 1.109 0.940 1.294 0.826 0.752 0.889 0.758 0.684 0.849
qua7 1.477 1.252 1.738 1.502 1.276 1.732 0.799 0.735 0.849 0.822 0.758 0.891
val1 2.032 1.823 2.226 1.646 1.412 1.950 0.914 0.869 0.944 0.771 0.674 0.864
val2 1.674 1.413 1.907 1.704 1.504 1.965 0.943 0.925 0.958 0.943 0.881 0.996
sat1 0.875 0.715 1.031 0.854 0.694 0.981 0.825 0.768 0.870 0.734 0.644 0.813
sat2 1.536 1.329 1.751 1.247 1.035 1.445 0.858 0.814 0.893 0.724 0.656 0.802
sat3 1.543 1.319 1.774 1.422 1.246 1.653 0.867 0.830 0.901 0.834 0.780 0.910
loy1 2.268 1.936 2.538 1.559 1.257 2.002 0.849 0.766 0.903 0.641 0.524 0.739
loy2 0.775 0.037 1.396 0.513 -0.065 0.867 0.193 -0.056 0.393 0.163 -0.013 0.274
loy3 1.923 1.611 2.205 1.893 1.704 2.205 0.924 0.898 0.942 0.903 0.856 0.989

Bold printed values are the coefficient estimates where the corresponding CI does not cover the zero.
Percentile confidence intervals are calculated on a 95% confidence level.
a based on 500 bootstrap samples. b based on 317 bootstrap samples.
c based on 270 bootstrap samples.

28Non-standardized factor loading estimates are easier to interpret. For standardized factor loading
estimates, we refer to Table 4.18 in the Appendix.
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In the following, we investigate the convergent validity. On the main diagonals

in the Tables 4.3a to 4.3d, we provide the AVEs that are commonly used to assess

convergent validity.

Table 4.3: Average variance extracted and shared variance estimates
(a) PLS

IMA EXP QUA VAL SAT LOY
IMA 0.476 0.243 0.535 0.258 0.450 0.300
EXP 0.493 0.471 0.297 0.130 0.231 0.134
QUA 0.731 0.545 0.574 0.332 0.626 0.275
VAL 0.508 0.360 0.576 0.850 0.365 0.267
SAT 0.671 0.481 0.791 0.604 0.683 0.403
LOY 0.548 0.366 0.524 0.517 0.635 0.520

(b) PLSc
IMA EXP QUA VAL SAT LOY

IMA 0.356 0.786 0.835 0.433 0.786 0.600
EXP 0.887 0.207 0.796 0.373 0.693 0.460
QUA 0.914 0.892 0.505 0.460 0.906 0.455
VAL 0.658 0.611 0.679 0.715 0.567 0.475
SAT 0.886 0.833 0.952 0.753 0.549 0.747
LOY 0.775 0.678 0.674 0.689 0.864 0.370

(c) OrdPLS
IMA EXP QUA VAL SAT LOY

IMA 0.522 0.342 0.636 0.309 0.550 0.421
EXP 0.584 0.517 0.375 0.161 0.300 0.218
QUA 0.797 0.612 0.619 0.383 0.672 0.371
VAL 0.556 0.402 0.619 0.862 0.413 0.359
SAT 0.742 0.547 0.820 0.643 0.723 0.505
LOY 0.649 0.467 0.609 0.600 0.711 0.537

(d) OrdPLSc
IMA EXP QUA VAL SAT LOY

IMA 0.409 0.814 0.898 0.455 0.863 0.681
EXP 0.902 0.276 0.775 0.348 0.688 0.516
QUA 0.947 0.880 0.557 0.489 0.914 0.520
VAL 0.675 0.590 0.699 0.742 0.586 0.526
SAT 0.929 0.830 0.956 0.766 0.586 0.787
LOY 0.825 0.718 0.721 0.725 0.887 0.417

Correlations are below the diagonal, squared correlations are above the diagonal, and AVE estimates are
presented on the diagonal (in boldface).

It is obvious that OrdPLS and PLS as well as OrdPLSc and PLSc lead to similar

results, which is expected as the AVEs are based on the standardized factor loading

estimates that only slightly differ because of the large number of categories per indicator

(see Table 4.18). It is noteworthy that the AVEs obtained from PLS and OrdPLS

estimates are not trustworthy if the common factor model holds, since the factor loading

estimates are biased. Since only the AVEs for the constructs QUA, VAL, and SAT

are larger than the recommended threshold of 0.5 (Fornell and Larcker, 1981) using

OrdPLSc, convergent validity cannot be established for the remaining common factors.

To assess discriminant validity, we first consider the standardized cross-factor load-

ings, see the Table 4.19 to 4.22 in the Appendix. For PLS and OrdPLS, all factor

loading estimates are larger than the estimated cross-loadings, which leads to the be-

lief that discriminant validity is achieved. In contrast, OrdPLSc as well as PLSc lead

to a different conclusion. In almost every block, there is at least one indicator where a

cross-loading exceeds the corresponding factor loading, except for the construct VAL.

This finding is supported by the Fornell-Larcker criterion. Using PLS and OrdPLS es-

timates respectively, the Fornell-Larcker criterion indicates that discriminant validity

is established for all constructs except for IMG and QUA. While the Fornell-Larcker
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criterion based on the PLSc and OrdPLSc estimates shows that discriminant validity

can be established only for the construct VAL. Following Henseler et al. (2015), we

recommend a cautious interpretation of the Fornell-Larcker criterion when it is based

on PLS or OrdPLS factor loading estimates, as these are known to be upward-biased.

Moreover, the HTMT further supports the suspicion that some indicators are incor-

rectly assigned. The lower triangular of Table 4.4 represents the results based on the

BP correlations, while the upper triangular contains the results based on the polychoric

correlations. Since the HTMT is solely based on indicator correlations, it leads to the

same results for PLS and PLSc as well as for OrdPLS and OrdPLSc.

Table 4.4: HTMT results for PLS(c) and OrdPLS(c)

IMA EXP QUA VAL SAT LOY
IMA 0.917 0.949 0.681 0.929 0.943
EXP 0.888 0.888 0.602 0.843 0.824
QUA 0.929 0.878 0.699 0.958 0.802
VAL 0.652 0.589 0.673 0.765 0.865
SAT 0.910 0.865 0.954 0.741 1.001
LOY 0.867 0.770 0.723 0.797 0.957

The HTMT based on the polychoric correlation indicates that the constructs IMA

and EXP, IMA and QUA, IMA and SAT, IMA and LOY, QUAL and SAT, and SAT and

LOY cannot be adequately distinguished since it is above the recommended threshold

of 0.9 (Gold et al., 2001).29 The use of the HTMT based on the BP correlation in

case of ordinal categorical indicators is not recommended because it does not take into

account the qualitative character of the indicators. For a tutorial on how to proceed if

the discriminant validity is not satisfied, see Farrell (2010) and Henseler et al. (2015).

Furthermore, we assess internal consistency. In doing so, we consider Cronbach’s

alpha and ordinal alpha respectively, which are lower-bound estimates for the reliability.

Moreover, we refer to Dijkstra & Henseler’s ρA and Dillon-Goldstein’s ρc in order to

examine the internal consistency. Tables 4.5c to 4.5a provide the results of the three

measures for the various PLS approaches.
29Furthermore, the HTMT correlation can be used in a bootstrap procedure that allows for the

construction of confidence intervals (Henseler et al., 2015), which is not done here.
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Table 4.5: Internal consistency reliability
(a) Cronbach’s α and ordinal alpha

Cronbach’s α ordinal alpha
IMA 0.723 0.768
EXP 0.452 0.526
QUA 0.877 0.896
VAL 0.824 0.842
SAT 0.779 0.809
LOY 0.472 0.497

(b) Dijkstra-Henseler’s ρA

PLS(c) OrdPLS(c)
IMA 0.728 0.784
EXP 0.425 0.536
QUA 0.879 0.903
VAL 0.820 0.866
SAT 0.786 0.813
LOY 0.687 0.789

(c) Dillon-Goldstein’s ρc

PLS PLSc OrdPLS OrdPLSc
IMA 0.818 0.731 0.844 0.772
EXP 0.727 0.437 0.761 0.533
QUA 0.904 0.876 0.919 0.897
VAL 0.919 0.832 0.926 0.850
SAT 0.865 0.784 0.887 0.809
LOY 0.735 0.582 0.736 0.625

Results for COM are not reported, as it is measured by only one indicator.

The results for Dillon-Goldstein’s ρc (Table 4.5c) for PLS and OrdPLS as well as

their consistent version are again very similar, which can, again, be explained by the

large number of indicators categories. Although the results for PLS and OrdPLS are

more desirable, it is recommended to employ them with caution as they are based on

attenuated factor loading estimates (Zumbo et al., 2007). Comparing the values of

Dillon-Goldstein’s ρc for OrdPLSc with the recommended threshold of 0.7 (Henseler

et al., 2016a), we conclude that construct scores are reliable except for the constructs

EXP and LOY. This conclusion is fully supported by Cronbach’s α and by ordinal alpha

(see Table 4.5a). However, it is well-known that the use of Cronbach’s α should be

done with circumspection as it can only be appropriately interpreted if the assumption

of tau-equivalence holds. If this assumption is violated, Cronbach’s α underestimates

the reliability (Raykov, 2004). Moreover, drawing conclusion from Cronbach’s α in the

case of ordinal categorical indicators is not recommended (Zumbo et al., 2007), as it is

based on the BP correlation.

Finally, we consider Dijkstra-Henseler’s ρA (Table 4.5b), which also largely supports

our conclusion since most reliability estimates exceed the threshold of 0.7, except for

EXP. Even though Dijkstra-Henseler’s ρA is quite similar for PLS and OrdPLS as well
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as for PLSc and OrdPLSc in our example, ρA based on the BP correlation should

be used cautiously in the context of ordinal categorical indicators as it does not take

into account the qualitative scale of the indicators. Again, due to the large number of

categories, ρA leads to quite similar results for PLS and OrdPLS as well as for PLSc

and OrdPLSc.

Besides studying the significance levels of the path coefficients, it is a common

practice to consider the coefficient of determination R2 of the endogenous constructs

(Table 4.6) to investigate the structural model.

Table 4.6: R2 of the endogenous constructs
PLS PLSc OrdPLS OrdPLSc

IMA 0.000 0.000 0.000 0.000
EXP 0.243 0.786 0.342 0.814
QUA 0.297 0.796 0.374 0.773
VAL 0.335 0.461 0.384 0.490
SAT 0.672 0.931 0.719 0.936
COM 0.292 0.371 0.319 0.391
LOY 0.432 0.750 0.538 0.790

Table 4.6 illustrates that the consistent PLS versions result in larger R2s, which

means that more variance of the endogenous construct is explained by the explanatory

constructs. The R2s for OrdPLS and PLS as well as OrdPLSc and PLSc are again

quite similar.

Finally, we investigate the construct scores for OrdPLSc. Figure 4.15 shows a

comparison of the latent scores calculated with PLS(c) and OrdPLS(c).30 Construct

scores for the construct COM are not reported since it is connected to a single indicator.
30As the weights are the same for PLS and PLSc as well as for OrdPLS and OrdPLSc, we only

report the scores of PLS and OrdPLS.

92



●

●

●

● ● ●

●

●

●●

● ●●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●● ●

●

● ●

●

●●

●● ●●●

● ●

●

●●

●

●

●● ●

●●

● ●●● ●

●

●

●●

●

●

●

●●

●● ●●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●● ●●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

● ●

●

●

●●●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●●

●

●●

●

●●●

●

●

●

●

●● ●●

●

●

● ●●●

●●●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●● ●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●●

●

●

●

●●

●

● ●●

●● ●

●

●

●●

● ● ●

●

●● ●●

●

●

●

●

●

●●

●

●● ●

● ●

●

●

●

● ●

●

●●●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●● ●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

● ●●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●●●●

●

●●●

●●

●●●●

●

●●

●

●

●

● ● ●

●

● ● ●

●

●●●●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●● ●●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●●●

●

●●

●

●

●●

●

●

●●

●

●●●

●

●

● ●●

●

●

●●

●

●

●

●● ●

●●

●

●●

●

●●

●

●●

●●

●

●●●

●

●

●

●●● ●●●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●● ●●●● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

● ● ●●

●

●● ●

●●●●

●

●●

●

●

●

●

●

●

●

●● ●●

● ●●

●

●

●

●

●

●

●

●

●●●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●● ●

●

●

●

●

●●

●

●●

● ●●● ●

●

●

●

● ●

●

●

●●●●● ●

●

●

●●

● ●

●

●

● ●● ●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●●

●

●

●

●●

● ●●●

●●

●

●

●

●

● ●

●●

●

●●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●● ●●

●

●

●

● ●

●

●

● ●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●●●

●

●●● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●●

●

●● ●

●

● ●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●●●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●● ●

●

●

● ●

●

●

IMG EXP QUA

VAL SAT LOY

2

4

6

8

10

2

4

6

8

10

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Construct scores PLS(c)

C
on

st
ru

ct
 s

co
re

s 
O

rd
P

L
S(

c)

Figure 4.15: Construct scores for PLS(c) and OrdPLS(c) (Mode estimation)

According to the approaches described in Section 4.5, we obtain ordinal construct

scores for OrdPLS(c). For PLS(c), we use rounded scores for a better comparison.

Table 4.7 shows the degree of coherency between the construct scores obtained from

PLS(c) and the three procedures for OrdPLS(c). Using the rounded scores for PLS(c),

the percentages of exact concordance are reported in the first three rows, while the re-

maining rows contain the percentages of concordance with a difference between rounded

values not larger than 1. We have at least 70% exact concordance except for the con-

struct LOY. More than 90% of the cases for all constructs show a difference between

rounded values lower than 1.
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Table 4.7: Coherency of construct scores between PLS(c) and OrdPLS(c)

Method IMG EXP QUA VAL SAT LOY
Mode estimationa 70.4 71.2 79.2 84.4 71.6 48.0
Median estimationa 75.2 74.8 78.0 88.0 70.4 51.6
Mean estimationa 73.2 76.8 75.6 86.8 71.6 49.2
Mode estimationb 98.8 98.0 100.0 99.6 99.6 90.8
Median estimationb 99.2 98.4 100.0 100.0 99.6 94.0
Mean estimationb 99.2 98.4 100.0 99.6 100.0 91.6

a Percentages of exact concordance after having rounded PLS scores to integer values.
b Percentages of concordance with a difference between rounded values not larger than 1.

4.10 Discussion

The primary goal of our study is to propose a variance-based estimator for structural

equation models that is able to consistently estimate models with common factors,

composites, and ordinal categorical indicators. We develope OrdPLSc combining the

approaches OrdPLS and PLSc, and thus, their favorable characteristics. Furthermore,

due to the nature of the ordinal categorical indicators, point estimates of factor scores or

composite scores should not be directly calculated from their observations. To overcome

this shortcoming first attempts like the mode estimation, median estimation, or mean

estimation can be used to obtain construct scores on the indicators scale (Cantaluppi,

2012). However, this issue currently limits the use of OrdPLSc for prediction.

Our Monte Carlo simulation results confirm that OrdPLSc fulfills its intended pur-

pose. For a sample size of 500 observations, almost all OrdPLSc factor loading, weight,

as well as path coefficient estimates are virtually unbiased under the conditions con-

sidered. As the combination of the polychoric correlation and PLSc leads to larger

standard errors of parameter estimates, OrdPLSc produces a few improper solutions

in terms of absolute factor loadings larger than 1. The number of inadmissible solu-

tions is mainly driven by the estimates of the largest factor loading λy23 . However,

the number of inadmissible solutions are in an acceptable range except for alternating

extremely asymmetrically distributed threshold parameters. Compared to WLSMV,

OrdPLSc produces very similar estimates but with larger standard errors and a few

more inadmissible solutions. However, OrdPLSc outperforms PLS, OrdPLS, and PLSc

in terms of parameter recovery for both models, which makes OrdPLSc the dominant

approach under the considered variance-based estimators if ordinal categorical indica-
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tors are included in the model. In case of model parameters that are not connected

to a common factor, OrdPLSc and OrdPLS as well as PLSc and PLS produce almost

the same estimates and standard errors. This is not surprising as no correction for

attenuation is needed, which is the only difference between OrdPLSc and OrdPLS as

well as between PLSc and PLS.

We investigate the behavior of PLSc, OrdPLS, and PLS in different scenarios using

ordinal categorical indicators. Although PLSc uses the BP correlation and, therefore,

does not account for the scale of ordinal categorical indicators, it performs surpris-

ingly well in estimating the path coefficient of the model with only common factors

in most conditions. This could be due to the use of identical threshold parameters

for the indicators, however further research is needed.31 Furthermore, PLSc behaves

as expected and factor loadings are underestimated on average, which becomes more

pronounced for more asymmetric threshold parameter distribution. This is due to the

downward-bias of the BP correlation. This difference declines as the number of cat-

egories increases because the bias of the BP correlation decreases. Therefore, the use

of PLSc for models with both common factors and composites is appropriate but only

for indicators with a large number of categories.

Moreover, our findings support the results of Cantaluppi (2012), stating that OrdPLS

path coefficient estimates are less biased than PLS estimates in the pure common factor

model. Although OrdPLS takes account of the scale of ordinal categorical indicators,

the problem of attenuation remains unaddressed which is illustrated by underesti-

mated path coefficients and overestimated factor loadings. As this deviation is almost

unaffected by the number of categories and the indicators’ distribution, OrdPLS es-

timates seem to be constantly biased. However, OrdPLS consistently estimates the

model parameters that are not connected to common factors because no correction

for attenuation is needed. Therefore, OrdPLS is an appropriate estimator for models

containing only constructs modeled as composites.

Traditional PLS suffers from the following two shortcomings: no correction for

attenuation in case of common factors and no accounting for the scale of ordinal cat-

egorical indicators. For a small number of categories, the bias of attenuation and the
31Since the BP correlation is about to be proportionally biased (for a certain range of correlations,

see Kukuk (1991)), bias cancels out for path coefficients and only affects factor loading and correction
factor estimates. Results may change for indicators with a different number of categories and different
threshold parameter distribution.
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bias of the BP correlation cancel out, which leads to factor loading means close to

the population values. When the number of categories increases, the bias of the BP

correlation decreases and average PLS factor loading estimates deviate more and more

from the population values and converge to the OrdPLS means, which do not suffer

from the bias of the BP correlation. Therefore, PLS should be cautiously used for

models containing common factors regardless of whether ordinal categorical indicators

are included.

Since OrdPLSc uses the polychoric correlation, which assumes normality for the

latent variables underlying each ordinal categorical indicator, it cannot be declared

as an approach that is free of distributional assumptions anymore. However, the as-

sumption of joint normality of the underlying unobservable variables can be relaxed as

the polychoric correlation produces fairly unbiased correlation estimates for elliptically

symmetric distributed variables (Kukuk, 1999).

Furthermore, we present the assessment of common factor models with ordinal

categorical indicators using OrdPLSc. For this purpose, we use a well-known empirical

example from Tenenhaus et al. (2005). The results show that OrdPLS and OrdPLSc

as well as PLS and PLSc produce quite similar estimates, which is not surprising as the

large number of categories per indicator reduces the discrepancy between the BP and

the polychoric correlation. However, in contrast to the original study where traditional

PLS was applied, OrdPLSc lead to substantially different results. This is mainly due to

the correction for attenuation of the estimates and to the use of validity and reliability

measures based on the polychoric correlation. In general, we recommend the usage of

OrdPLSc in case of common factor models containing ordinal categorical indicators,

in particular, when indicators with a small number of categories are included in the

model.

In our simulation study as well as in the empirical example, we only consider situa-

tions where all indicators are measured on an ordinal categorical scale. Of course, in

practice, continuous indicators are also often part of the model. In such a context,

the polyserial correlation can be used to adequately address the issue of ordinal cat-

egorical indicators. Hence, future research should investigate the behavior of OrdPLSc

for models containing a mixture of both ordinal categorical and continuous indicators.

Besides the use of the polyserial correlation as input, we further recommend the inves-

tigation of the behavior of OrdPLSc, in particular, for small sample sizes. Furthermore,
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out-of-sample prediction plays an increasingly important role in PLS (Shmueli et al.,

2016). Thus, the prediction power needs to be investigated for approaches dealing

with ordinal categorical indicators, e.g., using k-fold cross-validation.32 Moreover, we

recommend the extension to the polychoric correlation for other variance-based estima-

tors to deal with ordinal categorical indicators, e.g., generalized structural component

analysis (Hwang and Takane, 2014). Of particular interest is also their comparison to

OrdPLS(c). Finally, tests for overall-model fit in case of ordinal categorical indicators

need to be developed.

32This topic is the subject of a current research by Florian Schuberth & Gabriele Cantaluppi.
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4.11 Appendix to Chapter 4

Threshold parameter distribution
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Figure 4.16: Threshold parameter distribution
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Results of the Monte Carlo simulation

In the following, the results of the ADD approach for two categories and the results of

the NONE approach for more than two categories are presented. These are the results

used in the paper. Every second row contains the average standard deviations of the

parameter estimates. The last four columns contain the source and the number of

inadmissible results

• Load: At least one absolute factor loading is larger than 1.

• CompCor : Correlation matrix between the composites/common factors is non

positive-definite.

• notc: Non-convergence of the PLS algorithm.

• Boot: Number of inadmissible solutions during the bootstrap procedure.
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Standardized loading and cross-loading estimates

Table 4.18: Standardized factor loading estimates
PLS PLSc OrdPLS OrdPLSc

ima1 0.717 0.611 0.764 0.662
ima2 0.566 0.537 0.648 0.592
ima3 0.658 0.458 0.602 0.483
ima4 0.792 0.686 0.799 0.720
ima5 0.698 0.662 0.780 0.710
exp1 0.687 0.500 0.780 0.556
exp2 0.644 0.439 0.743 0.539
exp3 0.726 0.422 0.623 0.479
qua1 0.778 0.808 0.828 0.835
qua2 0.651 0.528 0.647 0.553
qua3 0.801 0.755 0.801 0.769
qua4 0.760 0.669 0.809 0.733
qua5 0.732 0.676 0.782 0.720
qua6 0.766 0.682 0.826 0.758
qua7 0.803 0.816 0.799 0.822
val1 0.933 0.756 0.914 0.771
val2 0.911 0.927 0.943 0.943
sat1 0.711 0.693 0.825 0.734
sat2 0.872 0.708 0.858 0.724
sat3 0.885 0.815 0.867 0.834
loy1 0.855 0.587 0.849 0.641
loy2 0.273 0.181 0.193 0.163
loy3 0.869 0.855 0.924 0.903
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Table 4.19: Standardized cross-loading estimates of PLS
IMA EXP QUA VAL SAT COM LOY

ima1 0.717 0.347 0.571 0.393 0.540 0.423 0.338
ima2 0.566 0.387 0.492 0.269 0.398 0.188 0.293
ima3 0.658 0.272 0.368 0.332 0.339 0.207 0.309
ima4 0.792 0.374 0.571 0.459 0.542 0.440 0.461
ima5 0.698 0.340 0.544 0.260 0.501 0.337 0.485
exp1 0.349 0.687 0.437 0.293 0.362 0.183 0.268
exp2 0.404 0.644 0.343 0.175 0.345 0.225 0.320
exp3 0.285 0.726 0.357 0.273 0.300 0.126 0.190
qua1 0.622 0.534 0.778 0.454 0.661 0.380 0.461
qua2 0.405 0.308 0.651 0.295 0.474 0.300 0.319
qua3 0.621 0.423 0.801 0.467 0.651 0.472 0.461
qua4 0.480 0.389 0.760 0.390 0.587 0.379 0.353
qua5 0.598 0.406 0.732 0.455 0.517 0.389 0.373
qua6 0.551 0.447 0.766 0.405 0.539 0.418 0.333
qua7 0.596 0.411 0.803 0.547 0.707 0.465 0.446
val1 0.405 0.314 0.477 0.933 0.495 0.287 0.435
val2 0.542 0.354 0.594 0.911 0.629 0.360 0.525
sat1 0.558 0.495 0.637 0.403 0.711 0.334 0.484
sat2 0.524 0.395 0.672 0.480 0.872 0.416 0.484
sat3 0.612 0.382 0.684 0.588 0.885 0.547 0.609
loy1 0.430 0.281 0.393 0.407 0.455 0.237 0.855
loy2 0.109 0.095 0.065 0.148 0.115 0.122 0.273
loy3 0.528 0.351 0.537 0.481 0.658 0.448 0.869

The bold printed value in each row shows on which construct the indicator loads most.
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Table 4.20: Standardized cross-loading estimates of PLSc
IMA EXP QUA VAL SAT COM LOY

ima1 0.611 0.533 0.608 0.434 0.609 0.423 0.408
ima2 0.537 0.594 0.524 0.297 0.449 0.188 0.353
ima3 0.458 0.417 0.392 0.367 0.382 0.207 0.373
ima4 0.686 0.574 0.609 0.507 0.612 0.440 0.556
ima5 0.662 0.522 0.580 0.287 0.565 0.337 0.586
exp1 0.409 0.500 0.466 0.324 0.409 0.183 0.324
exp2 0.473 0.439 0.366 0.193 0.389 0.225 0.386
exp3 0.334 0.422 0.381 0.301 0.338 0.126 0.229
qua1 0.729 0.819 0.808 0.501 0.745 0.380 0.556
qua2 0.474 0.473 0.528 0.326 0.535 0.300 0.385
qua3 0.728 0.649 0.755 0.516 0.734 0.472 0.556
qua4 0.563 0.596 0.669 0.430 0.662 0.379 0.426
qua5 0.701 0.623 0.676 0.503 0.583 0.389 0.450
qua6 0.646 0.686 0.682 0.448 0.608 0.418 0.402
qua7 0.698 0.631 0.816 0.604 0.797 0.465 0.538
val1 0.475 0.482 0.509 0.756 0.558 0.287 0.525
val2 0.635 0.543 0.633 0.927 0.710 0.360 0.633
sat1 0.654 0.760 0.679 0.445 0.693 0.334 0.584
sat2 0.614 0.606 0.717 0.530 0.708 0.416 0.584
sat3 0.718 0.587 0.729 0.649 0.815 0.547 0.735
loy1 0.504 0.431 0.419 0.450 0.514 0.237 0.587
loy2 0.128 0.146 0.069 0.164 0.130 0.122 0.181
loy3 0.618 0.539 0.572 0.531 0.742 0.448 0.855

The bold printed value in each row shows on which construct the indicator loads most.
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Table 4.21: Cross-loading estimates of OrdPLS
IMA EXP QUA VAL SAT COM LOY

ima1 0.765 0.423 0.620 0.453 0.614 0.458 0.440
ima2 0.647 0.445 0.559 0.324 0.474 0.253 0.399
ima3 0.602 0.325 0.408 0.362 0.378 0.247 0.376
ima4 0.799 0.453 0.652 0.517 0.609 0.491 0.545
ima5 0.780 0.456 0.610 0.346 0.570 0.389 0.559
exp1 0.415 0.779 0.475 0.334 0.407 0.245 0.336
exp2 0.490 0.747 0.428 0.240 0.421 0.273 0.400
exp3 0.348 0.621 0.415 0.293 0.346 0.164 0.263
qua1 0.688 0.559 0.828 0.522 0.719 0.416 0.563
qua2 0.460 0.351 0.647 0.329 0.511 0.314 0.398
qua3 0.671 0.474 0.801 0.509 0.678 0.502 0.531
qua4 0.593 0.466 0.809 0.457 0.658 0.435 0.435
qua5 0.664 0.495 0.781 0.495 0.564 0.435 0.453
qua6 0.642 0.534 0.826 0.482 0.620 0.458 0.445
qua7 0.641 0.466 0.799 0.577 0.731 0.495 0.505
val1 0.429 0.343 0.511 0.912 0.523 0.322 0.480
val2 0.589 0.397 0.627 0.944 0.661 0.385 0.620
sat1 0.633 0.526 0.691 0.473 0.820 0.379 0.575
sat2 0.572 0.440 0.696 0.524 0.859 0.451 0.549
sat3 0.681 0.435 0.705 0.633 0.871 0.592 0.677
loy1 0.524 0.383 0.461 0.492 0.513 0.275 0.855
loy2 0.095 0.066 0.076 0.138 0.114 0.123 0.178
loy3 0.625 0.445 0.610 0.563 0.726 0.496 0.922

The bold printed value in each row shows on which construct the indicator loads most.
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Table 4.22: Cross-loading estimates of OrdPLSc
IMA EXP QUA VAL SAT COM LOY

ima1 0.666 0.578 0.653 0.486 0.679 0.458 0.497
ima2 0.587 0.608 0.588 0.348 0.525 0.253 0.451
ima3 0.482 0.443 0.429 0.388 0.419 0.247 0.425
ima4 0.722 0.619 0.686 0.554 0.674 0.491 0.615
ima5 0.709 0.623 0.641 0.371 0.630 0.389 0.631
exp1 0.469 0.554 0.500 0.358 0.450 0.245 0.379
exp2 0.554 0.545 0.450 0.257 0.466 0.273 0.452
exp3 0.393 0.476 0.436 0.314 0.383 0.164 0.297
qua1 0.777 0.764 0.834 0.559 0.795 0.416 0.635
qua2 0.519 0.480 0.557 0.353 0.566 0.314 0.449
qua3 0.758 0.648 0.772 0.546 0.750 0.502 0.599
qua4 0.670 0.637 0.737 0.490 0.729 0.435 0.491
qua5 0.749 0.676 0.713 0.531 0.624 0.435 0.512
qua6 0.725 0.729 0.753 0.516 0.685 0.458 0.502
qua7 0.724 0.637 0.825 0.619 0.808 0.495 0.570
val1 0.485 0.469 0.538 0.764 0.579 0.322 0.542
val2 0.665 0.543 0.660 0.951 0.731 0.385 0.700
sat1 0.714 0.719 0.727 0.507 0.713 0.379 0.649
sat2 0.646 0.601 0.732 0.561 0.725 0.451 0.619
sat3 0.769 0.595 0.742 0.678 0.854 0.592 0.764
loy1 0.591 0.524 0.485 0.527 0.567 0.275 0.660
loy2 0.108 0.090 0.080 0.148 0.127 0.123 0.142
loy3 0.705 0.609 0.641 0.603 0.804 0.496 0.891

The bold printed value in each row shows on which construct the indicator loads most.
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Results of PLS and PLSc for the mobile phone industry

customer satisfaction model based on the indicator

correlation matrix

A reviewer suggested to estimate the model using the indicator correlation matrix

instead of the indicator covariance matrix in case where ordinal categorical indicators

are treated as continuous. In the following, the results based on the Bravais-Pearson

correlations are reported.

Table 4.23: Path coefficient estimates of the mobile phone customer satisfaction model
based on the correlation matrix

PLS CIa PLSc CIb
β21 0.505 0.398 0.622 0.864 0.694 0.946
β51 0.179 0.075 0.305 0.148 -0.275 0.841
β71 0.195 0.051 0.345 -0.114 -0.721 0.594
β32 0.557 0.459 0.663 0.872 0.707 0.951
β42 0.051 -0.085 0.235 -0.051 -0.694 0.644
β52 0.064 -0.040 0.157 0.036 -0.471 0.504
β43 0.557 0.385 0.691 0.721 -0.012 1.291
β53 0.513 0.376 0.626 0.667 -0.082 1.095
β54 0.192 0.089 0.304 0.177 -0.029 0.311
β65 0.526 0.405 0.632 0.594 0.472 0.690
β75 0.483 0.314 0.633 0.983 0.208 1.517
β76 0.071 -0.040 0.194 -0.036 -0.175 0.114

Bold printed values are the coefficient estimates whose corresponding CI does not cover the zero.
Percentile confidence intervals are calculated at a 95% confidence level.
a based on 500 bootstrap samples. b based on 483 bootstrap samples.
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Table 4.24: Factor loading and confidence interval estimates based on the correlation
matrix

PLS CIa PLSc CIb
ima1 0.743 0.636 0.807 0.612 0.439 0.746
ima2 0.601 0.474 0.696 0.538 0.375 0.657
ima3 0.578 0.438 0.686 0.451 0.305 0.581
ima4 0.768 0.665 0.838 0.673 0.515 0.797
ima5 0.744 0.675 0.802 0.667 0.576 0.776
exp1 0.771 0.663 0.845 0.511 0.365 0.673
exp2 0.687 0.454 0.818 0.458 0.303 0.644
exp3 0.612 0.450 0.746 0.440 0.317 0.572
qua1 0.803 0.752 0.847 0.807 0.748 0.879
qua2 0.637 0.517 0.734 0.542 0.419 0.651
qua3 0.784 0.714 0.833 0.753 0.669 0.831
qua4 0.769 0.674 0.849 0.673 0.570 0.779
qua5 0.756 0.674 0.821 0.683 0.560 0.783
qua6 0.775 0.629 0.868 0.682 0.551 0.811
qua7 0.779 0.705 0.836 0.810 0.740 0.877
val1 0.904 0.856 0.936 0.754 0.661 0.856
val2 0.938 0.922 0.951 0.928 0.860 0.986
sat1 0.799 0.744 0.849 0.693 0.616 0.778
sat2 0.846 0.798 0.885 0.701 0.630 0.773
sat3 0.852 0.813 0.886 0.810 0.754 0.880
loy1 0.814 0.701 0.877 0.594 0.486 0.721
loy2 0.219 0.010 0.413 0.173 -0.013 0.301
loy3 0.917 0.890 0.937 0.869 0.801 0.971

Bold printed values are the coefficient estimates where the corresponding CI does not cover the zero.
Percentile confidence intervals are calculated on a 95% confidence level.
a based on 500 bootstrap samples. b based on 483 bootstrap samples.

Table 4.25: Average variance extracted and shared variance estimates based on the
correlation matrix

(a) PLS
IMA EXP QUA VAL SAT LOY

IMAG 0.478 0.255 0.561 0.258 0.480 0.318
EXPE 0.505 0.480 0.311 0.131 0.260 0.144
QUAL 0.749 0.557 0.577 0.343 0.632 0.289
VAL 0.508 0.361 0.586 0.849 0.367 0.281
SAT 0.693 0.510 0.795 0.606 0.693 0.431
LOY 0.564 0.380 0.538 0.530 0.656 0.517

(b) PLSc
IMA EXP QUA VAL SAT LOY

IMAG 0.353 0.746 0.858 0.412 0.826 0.577
EXPE 0.864 0.221 0.761 0.333 0.716 0.419
QUAL 0.926 0.872 0.507 0.457 0.910 0.438
VAL 0.642 0.577 0.676 0.715 0.551 0.443
SAT 0.909 0.846 0.954 0.742 0.542 0.736
LOY 0.760 0.647 0.662 0.666 0.858 0.379

Correlations are below the diagonal, squared correlations are above the diagonal, and AVE estimates are
presented on the diagonal (in boldface).

Since the HTMT is based on the indicator correlations it is the same as is observed in

Table 4.4.
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Table 4.26: Internal consistency reliability using the correlation matrix
(a) Dijkstra-Henseler’s ρA

PLS(c)
IMA 0.740
EXP 0.462
QUA 0.884
VAL 0.849
SAT 0.785
LOY 0.746

(b) Dillon-Goldstein’s ρc

PLS PLSc
IMA 0.819 0.720
EXP 0.733 0.459
QUA 0.905 0.877
VAL 0.918 0.833
SAT 0.871 0.780
LOY 0.724 0.590

Values larger than 0.7 are printed in bold.
Results for COM are not reported, as it is connected to one indicator only.

Table 4.27: R2 of the endogenous constructs
PLS PLSc

IMA 0.000 0.000
EXP 0.255 0.746
QUA 0.311 0.761
VAL 0.345 0.457
SAT 0.680 0.931
COM 0.277 0.353
LOY 0.457 0.739
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Table 4.28: Cross-loading estimates of PLS based on the correlation matrix
IMAG EXPE QUAL VAL SAT COMP LOY

ima1 0.743 0.350 0.571 0.396 0.549 0.423 0.354
ima2 0.601 0.380 0.497 0.274 0.418 0.188 0.304
ima3 0.578 0.284 0.368 0.338 0.331 0.207 0.308
ima4 0.768 0.370 0.573 0.475 0.548 0.440 0.460
ima5 0.744 0.359 0.552 0.271 0.514 0.337 0.493
exp1 0.352 0.771 0.436 0.294 0.372 0.183 0.271
exp2 0.408 0.687 0.348 0.179 0.366 0.225 0.321
exp3 0.288 0.612 0.370 0.274 0.320 0.126 0.196
qua1 0.634 0.514 0.803 0.469 0.680 0.380 0.476
qua2 0.430 0.319 0.637 0.307 0.490 0.300 0.342
qua3 0.628 0.434 0.784 0.473 0.645 0.472 0.473
qua4 0.496 0.391 0.769 0.395 0.601 0.379 0.368
qua5 0.609 0.419 0.756 0.464 0.524 0.389 0.377
qua6 0.568 0.445 0.775 0.410 0.549 0.418 0.343
qua7 0.586 0.417 0.779 0.553 0.698 0.465 0.452
val1 0.395 0.312 0.474 0.904 0.486 0.287 0.431
val2 0.530 0.351 0.595 0.938 0.619 0.360 0.536
sat1 0.577 0.492 0.642 0.411 0.799 0.334 0.504
sat2 0.523 0.398 0.670 0.491 0.846 0.416 0.497
sat3 0.624 0.391 0.673 0.598 0.852 0.547 0.627
loy1 0.434 0.294 0.394 0.413 0.455 0.237 0.814
loy2 0.100 0.093 0.063 0.139 0.107 0.122 0.219
loy3 0.539 0.356 0.534 0.494 0.663 0.448 0.917

The largest loading of each indicator is printed in bold.
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Table 4.29: Cross-loading estimates of PLSc based on the correlation matrix
IMAG EXPE QUAL VAL SAT COMP LOY

ima1 0.612 0.515 0.607 0.430 0.619 0.423 0.410
ima2 0.538 0.560 0.529 0.298 0.472 0.188 0.352
ima3 0.451 0.418 0.391 0.367 0.374 0.207 0.357
ima4 0.673 0.545 0.610 0.516 0.619 0.440 0.532
ima5 0.667 0.529 0.587 0.294 0.580 0.337 0.571
exp1 0.410 0.511 0.464 0.319 0.420 0.183 0.313
exp2 0.475 0.458 0.370 0.195 0.413 0.225 0.372
exp3 0.334 0.440 0.393 0.298 0.361 0.126 0.227
qua1 0.738 0.756 0.807 0.509 0.768 0.380 0.551
qua2 0.500 0.470 0.542 0.333 0.553 0.300 0.396
qua3 0.730 0.639 0.753 0.514 0.727 0.472 0.548
qua4 0.577 0.575 0.673 0.428 0.678 0.379 0.426
qua5 0.708 0.617 0.683 0.504 0.591 0.389 0.437
qua6 0.660 0.655 0.682 0.445 0.620 0.418 0.397
qua7 0.681 0.613 0.810 0.600 0.788 0.465 0.523
val1 0.459 0.458 0.504 0.754 0.549 0.287 0.499
val2 0.616 0.517 0.632 0.928 0.698 0.360 0.620
sat1 0.671 0.724 0.683 0.446 0.693 0.334 0.584
sat2 0.608 0.585 0.712 0.533 0.701 0.416 0.575
sat3 0.726 0.575 0.716 0.649 0.810 0.547 0.726
loy1 0.505 0.433 0.419 0.448 0.514 0.237 0.594
loy2 0.116 0.136 0.067 0.151 0.120 0.122 0.173
loy3 0.627 0.525 0.567 0.536 0.748 0.448 0.869

The largest loading of each indicator is printed in bold.
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Chapter 5

Polynomial factor models:

non-iterative estimation via

method-of-moments

5.1 Introduction1

Structural equation modeling with latent variables (SEM) (Jöreskog, 1969, 1970; Bollen,

1989) is an established method, in particular, in social and behavioral sciences, but also

beyond. Its capability to model linear relationships among observed and latent vari-

ables, to deal with various forms of measurement errors, and to test entire theories

makes it a prime candidate for confirmatory purposes. However, in its original appear-

ance, it faces limitations inherent in its linearity assumptions.

Over the last three decades, there has been a growing interest in modeling non-linear

relationships among the latent variables in SEM (Schumacker and Marcoulides, 1998).

In particular, the incorporation of quadratic and interaction terms has gained more

and more attraction. As a result, a large variety of approaches were developed that

can be grouped into the following: product indicator approaches, (e.g., the constrained
1This chapter is based on joint work with Rebecca Büchner, Karin Schermelleh-Engel, and Theo

K. Dijkstra.
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product indicator approach (Jöreskog and Yang, 1996), or the unconstrained product

indicator approach (Marsh et al., 2004)), distribution analytic approaches (e.g., quasi-

maximum likelihood estimator (QML) (Klein and Muthén, 2007), or latent moderated

structural equations (LMS) (Klein and Moosbrugger, 2000)), moment based approaches

(e.g., two-stage method-of-moments estimator (2SMM) (Wall and Amemiya, 2003),

or consistent partial least squares for nonlinear structural equation models (PLSc)

(Dijkstra and Schermelleh-Engel, 2014)), and Bayesian approaches (e.g., the approach

by Arminger and Muthén (1998), or the approach by Kelava and Nagengast (2012)).

For a more detailed overview, we referred to Brandt et al. (2015).

In the following Chapter, we introduce a new estimator for recursive nonlinear factor

models. It is based on the method-of-moments and is similar to PLSc for nonlinear

factor models. However, instead of relying on an iterative procedure to obtain the

weights, so-called one-step weights are used to build proxies for the latent variables and

to estimate the model parameters. Due to its simplicity and less strict assumptions,

our approach can be advantageous in complex situations, e.g., where endogenous latent

variables are part of higher-order terms.

The remainder of the Chapter is structured as follows: In Section 5.2, we present

our new approach. Section 5.3 shows the setup of a Monte Carlo simulation to inves-

tigate the performance of our approach. In Section 5.4, we present the results of our

simulation study. The Chapter closes with a discussion of the results and an outlook

for future research.

5.2 The non-iterative method-of-moments for

polynomial factor models

Starting point is a system of q recursive equations with p exogenous and q endogenous

latent variables (LVs). The i-th equation can be generally written in the following

form:

ηp+i = Li(η1:p+i−1) + ζi, for i = 1, ..., q, (5.1)

where Li is a linear function of the preceeding p+i−1 LVs. The structural error term ζi

is assumed to be independent of the LVs from the right-hand side of its equation. Each

LV is standardized to have mean of zero and unit variance. Moreover, it is connected
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to at least two indicators2 and each block of indicators yi is connected to only one LV.

The linear measurement model has the typical following form:

yi = λiηi + εi, (5.2)

where the vector λi contains the factor loadings, the vector yi contains the continuous

indicators, and the vector εi contains the measurement errors. All of the vectors are of

the same length. The measurement errors are mutually independent3 and independent

of all LVs, including the structural error terms. All indicators have a mean of zero

and a unit variance, and it is assumed that finite moments of the required order exist.

Thus, the correlation matrix Σii of the indicators of block i is calculated as follows:

E(yiy′i) = Σii = λiλ
′
i + Θi, (5.3)

where the variance-covariance matrix of the measurement errors Θi is a diagonal matrix

with the variances of the measurement errors on its diagonal. The correlations between

the indicators of two blocks i and j are captured in the matrix Σij which is given by

the following:

E(yiy′j) = Σij = ρijλiλ
′
j, (5.4)

where λi and λj denote the vectors containing the factor loadings of block i and j,

respectively, and ρij is the correlation between the LVs ηi and ηj. In the following,

the matrices Sii and Sij denote the sample counterparts of Σii and Σij and repre-

sent consistent estimates. Since we assume continuous indicators, the correlations are

estimated by the Bravais-Pearson correlation coefficient.

5.2.1 Factor loadings

The parameters of the measurement model and the structural model are estimated

separately. For the estimation of both, we use composites that serve as proxies for

the LVs. A composite is defined as a weighted linear combination of its connected

indicators. To build the proxies we refer to all-adjacent one-step weights that are
2The MoMpoly function can also treat single-indicator LVs. In this case, the LV equals the

indicator.
3This assumption is not necessary for measurements errors of one block of indicators and the

MoMpoly package is capable of dealing with correlated measurement errors within a block, see
(Dijkstra, 2013b).
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calculated for block i as follows:

ŵi ∝
∑
j 6=i

eijSijwj, (5.5)

where wj is an arbitrary weight vector of the same length as the vector yj and the

inner weight is defined as the sign of the correlation between proxy i and proxy j,

eij = sign(w′iSijwj). The arbitrary weight vector wj as well as ŵi are normalized to

ensure a unit variance of each composite, w′jSjjwj = 1, and ŵ′iSiiŵi = 1. In contrast

to the all-adjacent one-step weights, where all LVs except the i-th LV are taken into

account (j 6= i) for the calculation of ŵi, it can be useful to calculate the weights

based on the adjacent LVs only, j ∈ C(i), where C(i) contains the indices of the LVs

connected directly via the structural model. We call the latter approach adjacent-only

one-step weights.

The probability limit of ŵi is given by the following:4

w̄i = plim(ŵi) = λi√
λ′iΣiiλi

. (5.6)

It is obvious that the weights are not equal, but proportional to the factor loadings and

that they are distorted by the factor (λ′iΣiiλi)−
1
2 . However, consistent factor loading

estimates can be obtained by rescaling the estimated weights. A straightforward way

of obtaining a scaling factor ĉi with plim(ĉi) =
√
λ′iΣiiλi is the minimization of the

squared difference between off-diagonal elements5 of

Sii and ĉ2
i ŵiŵ

′
i (5.7)

with respect to ĉ2
i . As a result, we obtain the correction factor as

ĉi =

√√√√ ŵ′i(Sii − diag(Sii))ŵi

ŵ′i(ŵiŵ′i − diag(ŵiŵ′i))ŵi

, (5.8)

where diag(Sii) and diag(ŵiŵ
′
i)) return a diagonal matrix containing the main diagonal

elements of Sii and ŵiŵ
′
i, respectively on its diagonal. The factor loadings can be

consistently estimated by λ̂i = ĉiŵi.

5.2.2 Correlations between the latent variables

Since we consider a recursive system of equations where the structural error term of

each equation is independent of the LVs on the right-hand side of the equation, each
4See the Appendix for a derivation of the plim(ŵi).
5Other ways of obtaining the correction factor ĉi are conceivable (Dijkstra, 2013b) and are imple-

mented in the MoMpoly package.
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equation can be treated as an ordinary regression equation. Thus, the path coefficients

are determined by the moments of the LVs and consistent estimates of the moments

are required for their estimation. For this purpose, we define a population proxy η̄i for

each LV ηi by η̄i = w̄i
′yi. Replacing the vector of indicators yi by the measurement

model, we obtain the following:

η̄i = w̄′iyi = w̄′iλiηi + w̄′iεi = Qiηi + δi, (5.9)

where Qi is the correlation between the proxy and the LV, which is usually denoted

as quality of proxy η̄i (Dijkstra and Henseler, 2015b). Hence, the squared correlation

between the proxy and its LV is obtained as follows:

Q2
i = r2(ηi, η̄i) = (w̄′iλi)2 = c̄2

i (w̄′iw̄i)2. (5.10)

Moreover, the squared correlation between two population proxies η̄i and η̄j is given

by the following:

r2(η̄i, η̄j) = (w̄′iΣijw̄j)2. (5.11)

From Equation 5.11, an important relationship between the correlations of two proxies

and the correlation between two LVs can be deduced as follows:

r2(η̄i, η̄j) = (ρijw̄′iλiw̄′jλj)2 = ρ2
ij(w̄′iλi)2(w̄′jλj)2 = ρ2

ijQ
2
iQ

2
j . (5.12)

Since the qualities of the proxies are smaller than 1, it is obvious that the correlation

between the two LVs is underestimated by the correlation of the proxies. However, the

correlation can be consistently estimated by solving Equation 5.12 for the correlation

ρij and by replacing the theoretical quantities by their sample counterparts,

ρ̂ij = ŵ′iSijŵj

Q̂iQ̂j

. (5.13)

As, we obtain consistent LV correlation estimates, it is straightforward to calculate the

path coefficient estimates.

Something similar was already done by Dijkstra and Schermelleh-Engel (2014) for

polynomial factor models and by Dijkstra and Henseler (2015a,b) for linear models

using PLS weights. In contrast to PLS weights, our proposed weights are not obtained

by iteration until a certain fix point is reached. Evidentially, for the proportionality of

the weights to the factor loadings, the iterative procedure from PLS is not required.
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5.2.3 Model with interaction terms

To illustrate our approach for polynomial factor models, we extend the initial model

by two-way interaction terms. Again, equation i of a system of q recursive equations

containing linear and two-way interaction terms can be generally written as follows:

ηp+i = Li(η1:p+i−1) + Ii(η1:p+i−1) + ζi, for i = 1, ..., q. (5.14)

L(η1:p+i−1) is a linear function of the p+ i− 1 preceding LVs and I(η1:p+i−1) is a linear

function of their centered cross-products ηkηl − ρkl, where the indices k and l refer

to different LVs. Again, each structural error term is independent of the LVs on the

right-hand side of its equation leading to q regression equations. Therefore, the path

coefficients of each equation are determined by the covariances among the explanatory

LVs on the right-hand side and the covariances between the explanatory LVs and the

dependent LV. To calculate these covariances, the following moments are required:6

E(η̄2
i η̄j) = Q2

iQj E(η2
i ηj), (5.15)

E(η̄iη̄j η̄k) = QiQjQk E(ηiηjηk), (5.16)

E(η̄2
i η̄

2
j ) = Q2

iQ
2
j(E(η2

i η
2
j )− 1) + 1, and (5.17)

E(η̄2
i η̄j η̄k) = Q2

iQjQk E(η2
i ηjηk) + E(ηjηk)QjQk(1−Q2

i ), (5.18)

where the different subscripts indicate different proxies and their corresponding LVs.

To obtain estimates of the moments of the LVs, and thus, the path coefficient

estimates, each Equation from 5.15 to 5.18 is solved for the moment of the LVs and

the qualities Q are replaced by their estimates. Furthermore, the theoretical moments

of the proxies need to be replaced by their sample counterparts, i.e, by the average

product of the sample proxies.

For a further illustration, we consider a single equation with two exogenous LVs η1

and η2 and a two-way interaction term, which is as follows:

η3 = γ1η1 + γ2η2 + γ12(η1η2 − ρ12) + ζ1, (5.19)

where the γ’s satisfy the following moment equations:
E(η3η1)

E(η3η2)

E(η3η1η2)

 =


1 E(η1η2) E(η2

1η2)

E(η1η2) 1 E(η1η
2
2)

E(η2
1η2) E(η1η

2
2) E(η2

1η
2
2)− E(η1η2)2




γ1

γ2

γ12

 . (5.20)

6See the Appendix for their derivation.
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The path coefficient estimates are obtained by replacing the theoretical moments by

their estimates and by solving Equation 5.20 for γ.

It is important to mention here that besides the existence of the finite moments and

the usual independence assumptions of certain variables, no distributional assumptions

are needed to estimate the path coefficients. However, if we add higher-order terms,

making assumptions on the higher-order moments of the δ’s from Equation 5.9 cannot

be avoided.

5.2.4 Model with higher-order terms

To highlight this issue, we additionally include quadratic terms to the initial system

of equations. However, following the same logic, it is straightforward to include cubic

(η3
i − E(η3

i )), quartic (η4
i − E(η4

i )), or even higher-order terms and interaction terms

consisting of more than two LVs. Again, we consider the i-th equation of a system of

q recursive equations, containing q + p LVs, evident below:

ηp+i = Li(η1:p+i−1) + Ii(η1:p+i−1) + Sqi(η1:p+i−1) + ζi. (5.21)

The functions Li and Ii are defined as above. The function Sqi is a linear function of the

centered squares η2−1 of the proceeding p+ i−1 LVs. Since each structural error term

ζi is independent of the LVs of the right-hand side of its equation, each equation can be

treated separately and the path coefficients are determined by the covariances among

the explanatory variables and those between the explanatory LVs and the dependent

LV. While the covariances between the dependent LV and the explanatory LVs can

be estimated by the moments presented in Section 5.2.3, higher-order moments are

required for the calculation of the covariance matrix of the explanatory variables of

each equation, which are as follows:

E(η̄3
i η̄j) =Q3

iQj E(η3
i ηj) + 3E(η̄iη̄j)(1−Q2

i ) (5.22)

E(η̄i3) =Q3
i E(η3

i ) + E(δ3
i ) (5.23)

E(η̄4
i ) =Q4

i E(η4
i ) + 6Q2

i (1−Q2
i ) + E(δ4

i ). (5.24)

Obviously, assumptions on the higher-order moments of the δ’s are required for the

calculation of the moments of the LVs in Equation 5.23 and 5.24, i.e., E(δ3
i ) and E(δ4

i ).
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In the following, we adopt the moments of the normal distribution, i.e., a skewness of

zero, E(δ3
i ) = 0, and a kurtosis of 3(1−Q2

i )2 = E(δ4
i ).7

In principle, adding further higher-order terms or interaction terms consisting of

more than two LVs is not a problem; however, the estimation of the required moments

becomes more and more challenging as further higher-order moments are needed. To

our knowledge, there exist no general formula to obtain the higher-order moments

without making distributional assumptions. Therefore, for simplicity, we assume joint

normality of all exogenous variables, i.e., η1:p, the ζ’s, and the ε’s. It is well-known that

the moments of joint normally distributed random variables are solely determined by

their moments up to the second-order. Since all LVs are standardized, the moments of

the exogenous LVs simplify as follows:

E(η2
i ηj) =0 (5.25)

E(ηiηjηk) =0 (5.26)

E(η2
i η

2
j ) =1 + 2ρ2

ij (5.27)

E(η2
i ηjηk) =ρjk + 2ρijρik. (5.28)

The estimated moments are obtained by replacing ρij by its estimate from Equation

5.13.

Of course, the moments of endogenous LVs as well as the moments of a mixture

of endogenous and exogenous LVs require some attention, since the moments of the

normal distribution can only be applied if the explanatory endogenous and exogenous

LVs considered are indeed jointly normally distributed. This is for example not the

case if the endogenous LV is explained in a previous equation by a higher-order or an

interaction term, even if every LV, which is part of the higher-order or the interaction

term, itself is normally distributed. In particular, in systems of several equations,

endogenous latent variables often appear on the right-hand side of the equation, which

violates the assumption of joint normality of the explanatory variable if the endogenous

LV is not normally distributed. However, as we only consider recursive models, each

endogenous LV can be expressed by exogenous LVs solely, which are, by assumption,

jointly normally distributed. Therefore, the path coefficients can be retrieved from the

’replaced’ equations.8
7The kurtosis of a normally distributed random variable, X ∼ N(µ, σ2) is given by E((X4 −

E(X))4) = 3σ4.
8In the MoMpoly package, this approach is called approach.replace.
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5.3 Monte Carlo simulation

To investigate the performance of our approach, in particular, parameter recovery and

standard deviations of the parameter estimates, we run a Monte Carlo simulation. We

consider two models, one single structural equation model consisting of two exogenous

LVs, their quadratic and interaction terms, which is given by the following:

η3 = γ1η1 + γ2η2 + γ11(η2
1 − 1) + γ12(η1η2 − ρ12) + γ22(η2

2 − 1) + ζ1. (5.29)

The structural error term ζ1 is independent of the explanatory variables and the cor-

relation between the two exogenous LVs η1 and η2 is set to 0.3. The population path

coefficients are set to γ1 = 0.3, γ2 = 0.4, γ11 = 0.12, γ12 = 0.15, and γ22 = 0.1.

Furthermore, we consider a second, more complex model consisting of the following

recursive equations:

η3 =γ31η1 + γ32η2 + ζ1

η4 =γ41η1 + γ43η3 + γ433(η2
3 − 1) + ζ2

η5 =γ52η2 + γ54η4 + γ534(η3η4 − E(η3η4)) + ζ3. (5.30)

The structural errors are mutually independent and independent of the exogenous

latent variables. The population path coefficients are set to γ31 = 0.5, γ32 = −0.4,

γ41 = 0.35, γ43 = 0.2, γ433 = −0.1, γ52 = 0.3, γ54 = −0.25, and γ534 = 0.3 The

correlation between the two exogenous LVs is set to ρ12 = 0.3. The correlation between

η3 and η4 yield 0.333.

The measurement model has the following form: yi = λiηi + εi, where each stand-

ardized LV ηi is connected to 3 standardized indicators captured in the vector yi. For

each of the three blocks, the factor loadings are set to λ′i =
(

0.9 0.85 0.8
)
. Moreover,

all measurement errors are mutually independent and independent of the LVs.

For each model, 500 data sets with N = 400 observations each are generated from

the multivariate normal distribution with means zero and the corresponding variance-

covariance matrix of the exogenous variables (exogenous LVs, measurement and struc-

tural errors). Using the generated values of the exogenous LVs, it is straightforward to

obtain the values of the endogenous LVs and the indicators. Each sample is standard-

ized before the analysis.

As a benchmark comparison, for the first model, we compare our approach to latent

moderated structural equations (LMS), a maximum likelihood estimator that is known
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to be asymptotically efficient under normality of the exogenous variables (Klein and

Moosbrugger, 2000). Due to the model complexity, the second model is only estimated

by MoMpoly.

The whole simulation is conducted in R (R Core Team, 2016), except the estimation

of the first model using LMS, which is conducted in Mplus (Muthén and Muthén, 1998-

2015). The results of our approach are obtained by the MoMpoly function from the

MoMpoly package9. As starting weights, we use unit weights for every estimation.

Moreover, we use the all-adjacent one-step weights to build the proxies for the latent

variables. The data sets for the exogenous variables are generated in R using the

mvrnorm function from the MASS package (Venables and Ripley, 2002). To compare

all estimation in a fair way, we drop all Heywood cases from the results. Based on the

remaining estimates, averages and standard deviations are calculated.

5.4 Results

This section provides the results of our simulation. The results for the single-equation

model from Equation 5.29 are shown in Table 5.1. It contains the average parameter

estimates obtained from MoMpoly and LMS and their corresponding standard devia-

tions. Due to space constraints, not all parameters are presented but can be found in

the Appendix.

Table 5.1: Results for the first model
Para. true mean MoMpoly1 mean LMS2 sd MoMpoly1 sd LMS2

γ1 0.30 0.298 0.297 0.048 0.047
γ2 0.40 0.403 0.402 0.047 0.045
γ11 0.12 0.118 0.117 0.044 0.041
γ12 0.15 0.147 0.147 0.062 0.059
γ22 0.10 0.104 0.101 0.042 0.039
ρ12 0.30 0.300 0.299 0.052 0.052
λ11 0.90 0.898 0.899 0.044 0.017
λ12 0.85 0.854 0.852 0.052 0.018
λ13 0.80 0.795 0.800 0.058 0.022

1Inadmissible results are removed, and therefore, the results are based on 484 estimations.
2No inadmissible results were produced.

While LMS produces no improper solutions (Heywood cases), MoMpoly produces

16 estimations where at least one absolute factor loading is larger than 1. The results
9The package is provided by the first author upon request.

129



show that the mean path coefficient estimates from MoMpoly are very similar to those

from LMS, which are close to the values of the population parameters. The standard

deviations of path coefficient estimates from MoMpoly are only slightly larger compared

to those from LMS. However, although both methods produce similar average factor

loading estimates, it is salient that the factor loading estimates from MoMpoly show

larger standard deviations than those from LMS.

The results for the second model are presented in Table 5.2. Again, the average

estimates and their standard deviations are shown.

Table 5.2: Results for the second model
Para. true mean1 sd1

γ31 0.50 0.502 0.049
γ32 -0.40 -0.395 0.053
γ41 0.35 0.347 0.056
γ43 0.20 0.201 0.058
γ433 -0.10 -0.099 0.038
γ52 0.30 0.301 0.050
γ54 -0.25 -0.247 0.052
γ534 0.30 0.298 0.052
ρ12 0.30 0.299 0.051
λ51 0.90 0.895 0.054
λ51 0.85 0.846 0.061
λ51 0.80 0.803 0.068

1Inadmissible results are removed, and therefore, the results are based on 475 estimations.

In 15 out 500 estimations, at least one absolute factor loading is estimated larger

than one. Also, for the more complex model, both average path coefficient and factor

loading estimates are close to the true value.

5.5 Discussion and future research

We introduce a new estimator based on non-iterative method-of-moments (MoMpoly),

which is capable of consistently estimating recursive polynomial factor models. The re-

sults of our Monte Carlo simulation show that MoMpoly produces average estimates for

path coefficients and factor loadings close to the population values. However, MoMpoly

estimates show larger standard deviations than those from LMS. This is particularly

the case for factor loading estimates. This is not surprising as the circumstances of our

simulation study favors LMS, which is a maximum likelihood estimator and known to

be asymptotically efficient and consistent if the underlying assumptions hold. More-
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over, in contrast to LMS, MoMpoly is a partial information method, i.e., the proxies

are built without taking into account the detailed specification of the structural model.

Thus, MoMpoly cannot be expected to be as asymptotically efficient as LMS. However,

due to its simplicity, MoMpoly is an estimator with tremendous potential, in particular

for complex models and situations where LMS faces its limitations.

In this context, an important issue is the investigation of MoMpolys’ robustness to

non-normally distributed samples and its performance for misspecified models. Due

to the nature of MoMpoly (partial information approach), it might be more robust to

erroneous model specifications. To further leverage the capabilities of MoMpoly, future

research needs to address the issue of correlated structural error terms inducing the

problem of endogeneity and the resulting consequences for the parameter estimates.

A possible way out could be the combination of MoMpoly with the two-stage least

squares estimator. Moreover, we want to investigate the use of other moments for the

δ’s than those from the normal distribution. Finally, the MoMpoly approach can be

easily modified to estimate non-linear composite models.
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5.6 Appendix to Chapter 5

Probability limit of the estimated weight vector ŵi

We assume that plim(Sij) = Σij = ρijλiλ
′
j. The probability limit (plim) of the

estimated weights can be calculated by replacing the empirical covariance matrix Sij
by its theoretical counterpart Σij in Equation 5.6, which leads to the following:

w̄i = plim(ŵi) ∝
∑
j 6=i

eijΣijwj =
∑
j 6=i

eijρijλiλ
′
jwj = λi

∑
j 6=i

eijρijλ
′
jwj. (5.31)

The expression ∑
j 6=i

eijρijλ
′
jwj is a constant term, and therefore, w̄i is proportional to

the population loading vector λi:

w̄i = aiλi, (5.32)

where ai is a constant term. Since the weights are scaled to ensure that the proxy has

a unit variance, the following holds:

w̄′iΣiiw̄i = 1 = a2
iλiΣiiλi. (5.33)

This leads to ai = 1/
√
λ′iΣiiλi and w̄i = λi/

√
λ′iΣiiλi and shows that the weights

cannot be directly used to estimate the factor loadings, since the weights are distorted

by the factor
√
λ′iΣiiλi.

Probability limit of the correction factor ĉi

A correction factor to control for this distortion can be obtained by minimizing the

squared difference between the off-diagonal elements of Sii and ĉ2
i ŵiŵ

′
i. The resultant

correction factor is given by the following:

ĉi =

√√√√ ŵ′i(Sii − diag(Sii))ŵi

ŵ′i(ŵiŵ′i − diag(ŵiŵ′i))ŵi

. (5.34)
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The plim of ĉi can be obtained by replacing ŵi and Sii by their theoretical counterparts

(see Equation 5.32 and 5.3):

ci = plim(ĉi) =

√√√√ w̄′i(Σii − diag(Σii))w̄i

w̄′i(w̄iw̄′i − diag(w̄iw̄′i))w̄i

= (5.35)

=

√√√√aiλ′i(λiλ′i + Θii − diag(λiλ′i + Θii))aiλi
aiλ′i(aiλiaiλ′i − diag(aiλiaiλ′i))aiλi

= (5.36)

=

√√√√ aiλ′i(λiλ′i − diag(λiλ′i))aiλi
aiλ′i(aiλiaiλ′i − diag(aiλiaiλ′i))aiλi

= (5.37)

=
√

1
a2 =

√
1

1/λ′iΣiiλi
=
√
λ′iΣiiλi. (5.38)

Derivation of the moments of the explanatory variables in

case of one-way interaction terms

In the following, we derive the moments required for the calculation of the covariances

of the model with two-way interaction terms presented in Section 5.2.3. It is important

to keep in mind, that the LVs are assumed to be standardized having means of zero and

unit variances. Furthermore, the measurement errors are mutually independent and

they are independent of the LVs. The mean and the variance of δi can be calculated

as follows:

E(δi) =E(w̄′iεi) = w̄′i E(εi) = w̄′i0 = 0 (5.39)

η̄i =Qiηi + δi ⇔ δi = η̄i −Qiηi (5.40)

var(δi) =E(δ2
i )− E(δi)2 = E((η̄i −Qiηi)2)− 02 = (5.41)

E(η̄2
i − 2Qiη̄iηi +Q2

i η
2
i ) = 1− 2Q2

i +Q2
i = 1−Q2

i . (5.42)

We start with the moment presented in Equation 5.15, which can be derived as follows:

E(η̄2
i η̄j) =E((Qiηi + δi)2(Qjηj + δj)) = (5.43)

E(Q2
i η

2
i + 2Qiηiδi + δ2

i )(Qjηj + δj)) = (5.44)

Q2
iQj E(η2

i ηj) + 2QiQj E(ηiηj) E(δi) +Qj E(δ2
i ) E(ηj)+ (5.45)

Q2
i E(η2

i ) E(δj) + 2Qi E(ηi) E(δi) E(δj) + E(δ2
i ) E(δj) = (5.46)

Q2
iQj E(η2

i ηj) + 2QiQjρij · 0 +Qj(1−Q2
i ) · 0 +Q2

i · 1 · 0+ (5.47)

2Qi · 0 · 0 · 0 + (1−Q2
i ) · 0 = (5.48)

Q2
iQj E(η2

i ηj). (5.49)
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The moment presented in Equation 5.16 can be calculated as follows:

E(η̄iη̄j η̄k) = E((Qiηi + δi)(Qjηj + δj)(Qkηk + δk)). (5.50)

Since E(δi) = E(δj) = E(δk) = 0 and the error terms are mutually independent, it is

obvious that the above equation reduces to the following:

E(η̄iη̄j η̄k) = QiQjQk E(ηiηjηk). (5.51)

Next, we derive the moment from Equation 5.17:

E(η̄2
i η̄

2
j ) =E((Qiηi + δi)2(Qjηj + δj)2) = (5.52)

E((Q2
i η

2
i + 2Qiηiδi + δ2

i )(Q2
jη

2
j + 2Qjηjδj + δ2

j )) = (5.53)

E((Q2
i η

2
i + 2Qiηiδi + δ2

i )Q2
jη

2
j )+ (5.54)

E((Q2
i η

2
i + 2Qiηiδi + δ2

i )2Qjηjδj)+ (5.55)

E((Q2
i η

2
i + 2Qiηiδi + δ2

i )δ2
j ) = (5.56)

Q2
iQ

2
j E(η2

i η
2
j ) + 0 + (1−Q2

i )Q2
j+ (5.57)

0 + 0 + 0+ (5.58)

Q2
i (1−Q2

j) + 0 + (1−Q2
i )(1−Q2

j) = (5.59)

Q2
iQ

2
j E(η2

i η
2
j ) +Q2

j −Q2
iQ

2
j +Q2

i −Q2
iQ

2
j+ (5.60)

1−Q2
j −Q2

i +Q2
iQ

2
j = (5.61)

Q2
iQ

2
j E(η2

i η
2
j ) + 1−Q2

iQ
2
j . (5.62)

The last moment from Equation 5.18 E(η̄2
i η̄j η̄k) is not derived here, but can be obtained

in a similar way.
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Derivation of the moments in case of two-way interaction and

quadratic terms

In the following, we derive the additional moments required to estimate a model with

two-way interaction and quadratic terms (Equations 5.22 to 5.24):

E(η̄3
i η̄j) =E((Qiηi + δi)3(Qjηj + δj)) (5.63)

E((Q3
i η

3
i + 2Q2

i η
2
i δi +Qiηiδ

2
i +Q2

i η
2
i δi + 2Qiηiδ

2
i + δ3

i )(Qjηj + δj)) =

(5.64)

E((Q3
i η

3
i + 2Q2

i η
2
i δi +Qiηiδ

2
i +Q2

i η
2
i δi + 2Qiηiδ

2
i + δ3

i )Qjηj)+ (5.65)
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In the last step, we assume that the error terms are symmetrically distributed, i.e.,
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i )2. (5.81)

In the last step, we adopt the kurtosis of the normal distribution for δi.
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Results of the Monte Carlo simulation

Table 5.3: Results for the model containing a single equation
Para. true mean sd
γ1 0.300 0.298 0.048
γ11 0.120 0.118 0.044
γ12 0.150 0.147 0.062
γ2 0.400 0.403 0.047
γ22 0.100 0.104 0.042
ρ12 0.300 0.300 0.052
λ31 0.900 0.896 0.034
λ32 0.850 0.850 0.039
λ33 0.800 0.797 0.041
λ11 0.900 0.898 0.044
λ12 0.850 0.854 0.052
λ13 0.800 0.795 0.058
λ21 0.900 0.898 0.037
λ22 0.850 0.850 0.044
λ23 0.800 0.800 0.049

Table 5.4: Results for the model containing a set of recursive equations
Para. true mean sd
γ31 0.500 0.502 0.049
γ32 -0.400 -0.395 0.053
γ41 0.350 0.347 0.056
γ43 0.200 0.201 0.058
γ433 -0.100 -0.099 0.038
γ52 0.300 0.301 0.050
γ534 0.300 0.298 0.052
γ54 -0.250 -0.247 0.052
ρ12 0.300 0.299 0.051
λ31 0.900 0.904 0.036
λ32 0.850 0.847 0.040
λ33 0.800 0.797 0.045

Para true mean sd
λ41 0.900 0.898 0.040
λ42 0.850 0.850 0.043
λ43 0.800 0.800 0.048
λ51 0.900 0.895 0.054
λ52 0.850 0.846 0.061
λ53 0.800 0.803 0.068
λ11 0.900 0.897 0.035
λ12 0.850 0.851 0.040
λ13 0.800 0.799 0.042
λ21 0.900 0.897 0.041
λ22 0.850 0.848 0.046
λ23 0.800 0.803 0.049
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