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Abstract

The main theme of this thesis is the development of multigrid and hierarchi-
cal matrix solution procedures with almost linear computational complexity
for classes of partial integro-differential problems. An elliptic partial integro-
differential equation, a convection-diffusion partial integro-differential equation
and a convection-diffusion partial integro-differential optimality system are in-
vestigated. In the first part of this work, an efficient multigrid finite-differences
scheme for solving an elliptic Fredholm partial integro-differential equation
(PIDE) is discussed. This scheme combines a second-order accurate finite dif-
ference discretization and a Simpson’s quadrature rule to approximate the PIDE
problem and a multigrid scheme and a fast multilevel integration method of the
Fredholm operator allowing the fast solution of the PIDE problem. Theoretical
estimates of second-order accuracy and results of local Fourier analysis of conver-
gence of the proposed multigrid scheme are presented. Results of numerical ex-
periments validate these estimates and demonstrate optimal computational com-
plexity of the proposed framework that includes numerical experiments for ellip-
tic PIDE problems with singular kernels. The experience gained in this part of the
work is used for the investigation of convection diffusion partial-integro differen-
tial equations in the second part of this thesis. Convection-diffusion PIDE prob-
lems are discretized using a finite volume scheme referred to as the Chang and
Cooper (CC) scheme and a quadrature rule. Also for this class of PIDE problems
and this numerical setting, a stability and accuracy analysis of the CC scheme
combined with a Simpson’s quadrature rule is presented proving second-order
accuracy of the numerical solution. To extend and investigate the proposed ap-
proximation and solution strategy to the case of systems of convection-diffusion
PIDE, an optimal control problem governed by this model is considered. In this
case the research focus is the CC-Simpson’s discretization of the optimality sys-
tem and its solution by the proposed multigrid strategy. Second-order accuracy of
the optimization solution is proved and results of local Fourier analysis are pre-
sented that provide sharp convergence estimates of the optimal computational
complexity of the multigrid-fast integration technique.
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While (geometric) multigrid techniques require ad-hoc implementation de-
pending on the structure of the PIDE problem and on the dimensionality of the
domain where the problem is considered, the hierarchical matrix framework al-
lows a more general treatment that exploits the algebraic structure of the problem
at hand. In this thesis, this framework is extended to the case of combined differ-
ential and integral problems considering the case of a convection-diffusion PIDE.
In this case, the starting point is the CC discretization of the convection-diffusion
operator combined with the trapezoidal quadrature rule. The hierarchical ma-
trix approach exploits the algebraic nature of the hierarchical matrices for block-
wise approximations by low-rank matrices of the sparse convection-diffusion ap-
proximation and enables data sparse representation of the fully populated ma-
trix where all essential matrix operations are performed with at most logarithmic
optimal complexity. The factorization of part of or the whole coefficient matrix
is used as a preconditioner to the solution of the PIDE problem using a gener-
alized minimum residual (GMRes) procedure as a solver. Numerical analysis
estimates of the accuracy of the finite-volume and trapezoidal rule approxima-
tion are presented and combined with estimates of the hierarchical matrix ap-
proximation and with the accuracy of the GMRes iterates. Results of numerical
experiments are reported that successfully validate the theoretical estimates and
the optimal computational complexity of the proposed hierarchical matrix solu-
tion procedure. These results include an extension to higher dimensions and an
application to the time evolution of the probability density function of a jump
diffusion process.



Zusammenfassung

Das Hauptthema dieser Arbeit ist die Entwicklung von Mehrgitter-Verfahren und
hierarchischer Matrix-Lösungsverfahren mit nahezu linearer Rechenkomplexität
für Klassen von partiellen Integro-Differential-Problemen. Es werden eine
elliptische partielle Integro-Differentialgleichung, eine partielle Konvektions-
Diffusions-Integro-Differentialgleichung und ein partielles Konvektions-
Diffusions-Integro-Differential-Optimalitätssystem untersucht. Im ersten Teil
dieser Arbeit wurde ein effizientes Mehrgitter-Finite-Differenzen-Schema zur
Lösung einer elliptischen Fredholm partiellen Integro-Differentialgleichungen
(PIDE) diskutiert. Dieses Schema kombiniert eine exakte finite Differenzen-
Diskretisierung zweiter Ordnung mit einer Quadraturregel von Simpson, um
das PIDE-Problem mit einem Mehrgitter-Schema und einer schnellen Multilevel-
Integrationsmethode des Fredholm-Operators zu lösen, was eine schnelle Lösung
des PIDE-Probleme ermöglicht. Theoretische Abschätzungen der Genauigkeit
zweiter Ordnung und Ergebnisse der lokalen Fourier-Analyse der Konvergenz
des vorgeschlagenen Mehrgitter-Systems werden präsentiert. Ergebnisse von
numerischen Experimenten validieren diese Schätzungen und demonstrieren
die optimale rechnerische Komplexität des vorgeschlagenen Frameworks, das
numerische Experimente für elliptische PIDE mit singulären Kernen beinhaltet.
Die in diesem Teil der Arbeit gewonnenen Erfahrungen werden zur Unter-
suchung einer partielle Konvektions-Diffusions-Integro-Differentialgleichungen
im zweiten Teil verwendet. Konvektions-Diffusions-PIDE-Probleme werden
unter Verwendung eines Finite-Volumen-Schemas, das als das Chang- Cooper-
(CC-) Schema bezeichnet wird, und einer Quadraturregel diskretisiert. Auch für
diese Klasse von PIDE-Problemen und diese numerische Einstellung wird eine
Stabilitäts- und Genauigkeitsanalyse des CC-Schemas in Kombination mit einer
Quadraturregel von Simpson vorgestellt, die die Genauigkeit der numerischen
Lösung zweiter Ordnung beweist. Um die vorgeschlagene Approximations-
und Lösungsstrategie auf den Fall von Konvektions-Diffusions-PIDE-Systemen
auszudehnen und zu untersuchen, wird ein Optimalsteuerungsproblem mit
diesem Modell als Nebenbedingung untersucht. Der Forschungsschwer-
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punkt liegt dabei auf der Diskretisierung des Optimalitätssystems durch die
CC-Simpson-Lösung und dessen Lösung durch die vorgeschlagene Mehrgitter-
Strategie. Die Genauigkeit der optimalen Lösung zweiter Ordnung wird
bewiesen und es werden Ergebnisse der lokalen Fourier-Analyse präsentiert, die
scharfe Konvergenz-Schätzungen der optimalen Berechnungskomplexität der
schnellen Mehrgitter Integrationstechnik liefern.

Während (geometrische) Mehrgitterverfahren je nach Struktur des PIDE-
Problems und der Dimensionalität des Gebietes, in dem das Problem berück-
sichtigt wird, eine Ad-hoc-Implementierung erfordern, ermöglicht das hierar-
chische Matrix-Framework eine allgemeinere Behandlung, die die algebrais-
che Struktur des Problems nutzt. In dieser Arbeit wird dieses Verfahren
auf den Fall kombinierter Differential- und Integralprobleme im Fall einer
Konvektions-Diffusions-PIDE erweitert. In diesem Fall ist der Startpunkt die
CC-Diskretisierung des Konvektions-Diffusions-Operators in Kombination mit
der Trapez-Quadratur-Regel. Der hierarchische Matrixansatz nutzt die algebrais-
che Natur der hierarchischen Matrizen für blockweise Approximationen durch
niedrigrangige Matrizen der dünn besetzten Konvektions-Diffusionsmatrix und
ermöglicht eine datenarme Darstellung der vollständig besetzten Matrix, bei
der alle wesentlichen Matrixoperationen mit höchstens logarithmisch opti-
maler Komplexität durchgeführt werden. Die Faktorisierung eines Teils oder
der gesamten Koeffizientenmatrix wird als Vorbedingung für die Lösung der
PIDE-Probleme unter Verwendung eines verallgemeinerten minimalen Restwert-
Verfahrens (GMRes) als Löser verwendet.

Eine numerische Analyse der Abschätzungen der Genauigkeit der Finite-
Volumen- und Trapezregel-Approximation werden präsentiert und kom-
biniert mit Abschätzungen der hierarchischen Matrix-Näherung und mit der
Genauigkeit der GMRes iterationen kombiniert. Ergebnisse numerischer
Experimente werden vorgestellt, die theoretischen Abschätzungen und die
optimale rechnerische Komplexität der vorgeschlagenen hierarchischen Ma-
trix Lösungsverfahren erfolgreich validieren. Diese Ergebnisse beinhalten
eine Erweiterung auf höhere Dimensionen und eine Anwendung auf die
zeitliche Entwicklung der Wahrscheinlichkeitsdichtefunktion des Sprungdiffu-
sionsprozesses.
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1. Introduction

Partial integro-differential equations (PIDEs) constitute a class of equations that
involve both differential and integral terms [24, 44, 45, 53, 59, 62]. In the past
decade, applications of PIDEs in real life problems have sprouted and therefore
necessitated research into this particular field. These applications include mod-
elling of jump diffusion processes [42, 45, 50], biological processes [1], computa-
tional neuroscience [46] and computational finance [23]. It is noticeable that, in
the past, research on integro-differential problems has focused on one-dimensional
problems mainly in the framework of ordinary differential equations where the
problem of numerically solving PIDEs is already one of the main issues experi-
enced in applications. For this reason, different strategies have been employed
to address this problem. The work [53] develops a moving mesh finite-difference
method for a PIDE that involves approximating the time dependent mapping of
the coordinate transformation by a piecewise quadratic polynomial in space and
piecewise linear functions in time. In [63] a one dimensional PIDE with a convo-
lution kernel is solved through conversion of the PIDE to an ordinary differential
equation and the use of the inverse Laplace transform. In [59,70], compact finite-
differences for one-dimensional PIDEs are studied. Additional results on high-
order schemes for PIDE can be found in [24]. The research in [67] is devoted to an
iterated Galerkin method for PIDE in one-dimension; see also [44]. Further, the
work [66] considers the numerical solution of linear PIDE using projection meth-
ods. The work in [43] investigates a Tau method with Chebychev and Legendre
basis to find the numerical solutions of Fredholm integro-differential equations
where the differential part is replaced by its operational Tau representation. We
remark that the methodologies referred above are designed for one dimensional
problems and their complexity for multi-dimensional problems may become pro-
hibitive. A key strategy for solving PIDE problems is to avoid the inversion of the
resulting fully populated matrices of order N whose inversion requires O(N3)

operations, a requirement that is unsustainable when systems with higher de-
grees of freedom are considered. When the matrix of coefficients arising from
a differential operator is sparse, iterative methods can solve the corresponding

8
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linear algebraic problem efficiently with desired accuracy. However, in the case
of dense matrices, the lack of sparsity renders operations on these matrices pro-
hibitively expensive and there is the need to explore other solution techniques
that provide the desired results with optimal computational complexity.

Among the methods that have been proposed for solving algebraic problems
involving dense matrices, we enumerate the solution strategies by using hier-
archical matrices (H-matrices) [8, 36] and multigrid methods [20, 33]. However,
while these methodologies have been investigated in the case of integral equa-
tions, much less is known in the case of partial integro-differential problems.

It is the purpose of this thesis to contribute to this field of research with the de-
velopment and analysis of a methodology that is appropriate for multi-dimensional
PIDE problems and, in doing so, we use numerical schemes that not only guar-
antee desired accuracy but also fulfil certain computational complexity require-
ments. In this thesis, we consider different classes of PIDEs and different dis-
cretization schemes. In the first part, we start by presenting a second-order accu-
rate fast multigrid scheme to solve elliptic problems of the following form

−∆ y(x) +
∫

Ω

k(x, z)y(z)dz = f (x) in Ω,

y(x) = 0 on Γ, (1.1)

where −∆ represents the minus Laplacian in the domain Ω ⊂ Rd, d = 2. Our
approach is to combine a multigrid scheme for elliptic problems with the multi-
grid kernel approximation strategy developed in [20]. For this purpose, we dis-
cretize our PIDE problem by finite-differences and quadrature rules and analyse
the stability and accuracy of the resulting scheme in the case of the minus Laplace
operator that is combined with a Fredholm Hilbert-Schmidt integral operator.

It is well-known that a multigrid scheme solves elliptic problems with opti-
mal computational complexity. However, this is in general not true if a straight-
forward implementation of the integral term is considered. On the other hand,
the multigrid kernel approximation strategy proposed in [20] allows approxima-
tion of a Fredholm integral term with O(h2s) accuracy while reducing the com-
plexity of its calculation from O(N2) to O(sN), where N is the number of un-
knowns.

In the second part of this thesis, we consider a PIDE of the form

−ε∆y(x) +∇ · (b y(x)) +
∫

Ω

k(x, z)y(z)dz + λy(x) = f (x) in Ω,

y(x) = 0 on Γ, (1.2)
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where ε is the diffusion coefficient, b is the drift coefficient and λ is the coefficient
of the reaction term. This PIDE is referred to as the convection-diffusion PIDE.
In this case, for the discretization we employ a second-order accurate and pos-
itive finite volume scheme referred to as Chang and Cooper (CC) scheme; see,
e.g., [2, 22, 30, 54]. For the integral part of our PIDE operator, we focus on a Fred-
holm integral term with a positive semi-definite Hilbert-Schmidt kernel that we
discretize with a fourth-order accurate Simpsons’ quadrature rule. These tech-
niques are further developed and analysed in the context of an optimal control
problem governed by the convection-diffusion PIDE (1.3) with a distributed con-
trol mechanism as follows





min J(y, u) := 1
2 ‖y− yd‖2

L2(Ω) +
ν
2 ‖u‖

2
L2(Ω)

−ε∆y +∇ · (b y) + Iy + λy = f + u in Ω,

y = 0 on Γ,

u ∈ Uad.

(1.3)

Specifically, we consider this distributed control problem with a quadratic cost
and an objective function of tracking type. The purpose of this problem is to find
u in the set of admissible controls Uad such that the state y of the system modelled
by the PIDE is as much as possible (in the L2 norm) close to the given target func-
tion yd, while the cost of the control ‖u‖2

L2(Ω) is kept at a minimum. The main
result of this part is a computational tool that allows to solve control-constrained
convection-diffusion PIDE optimal control problems with O(N log N) complex-
ity. The main motivation for considering this optimal control problem is that the
solution to (1.3) is characterized by the so-called first-order optimality conditions
that correspond to a system of coupled PIDEs, thus providing a benchmark for
validating our multigrid strategy with systems of PIDEs.

In addition to our multigrid strategy and in view of applications with different
PIDE in high-dimensions, we develop a hierarchical matrix (H-matrix) frame-
work that is able to solve PIDE problems with convection-diffusion differential
operators efficiently in higher dimensions. For this reason, in the third part of
this thesis, we investigate solution of PIDE problems using the hierarchical ma-
trix approach [8, 36], considering the convection-diffusion PIDE given by (1.2).
We discuss a strategy of using H-matrices to obtain solutions of PIDEs with al-
most linear complexity. We present accuracy estimates for a CC-trapezoidal rule
discretization and combine these estimates with the H-matrix approximation es-
timates. Storage requirements and perfomance are investigated for different pa-
rameters. The generalized minimum residual method (GMRes) with H-matrix
preconditioning, is used to obtain the solution of the PIDE. In addition, we extend
the application of the hierarchical matrices to a higher dimensional convection-
diffusion PIDE as well as an application to a jump diffusion process.
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This thesis is organized as follows.
In Chapter 2, we start by discussing the model problems to be considered in this
work in appropriate functional spaces and we outline the properties of the inte-
gral terms of the PIDE model problems. We discuss the existence of unique so-
lutions for these model problems. Further, we discuss the discretization of these
PIDE model problems that include elliptic and convection-diffusion PIDEs. We
discuss the finite difference framework used for the differential part of the ellip-
tic PIDE (1.1) and the quadrature rule used. Estimates of solution error of the
numerical approximation for this problem are given, proving second-order accu-
racy. Further, we discuss the CC finite volume scheme that is used to discretize
the differential part of the convection-diffusion PIDE given by (1.2). An extension
to a three dimensions case of the convection-diffusion PIDE is discussed as well.
In Chapter 3, we discuss the multigrid procedure implemented for the classes of
PIDE problems mentioned above and for a related optimality system. We outline
the working principles of the multigrid method and the main components of the
multigrid procedure. We start by discussing the smoothing procedure to be used
in the multigrid cycle, then we review the grid transfer operators. We also discuss
in detail the fast integration procedure for the integral term of the PIDE, thereafter
we summarize the solution procedures with pseudo codes that incorporate the
fast integration in the multigrid cycle. Further, by means of local Fourier analysis
we obtain sharp convergence estimates for our multigrid algorithms.
In Chapter 4, we outline the hierarchical matrix approach to the solution of con-
vection diffusion PIDE. We give an overview and the main concepts of hierarchi-
cal matrix approximation. We illustrate the fundamental arithmetic operations
involving the hierarchical matrices. We describe the hierarchical factorization of
the hierarchical matrix which is used as a preconditioner in the GMRes iterative
solution procedure of the PIDE problem. We prove theoretical error estimates
for the numerical solutions using the hierarchical matrix approximation method.
These second order error estimates are validated by numerical experiments with
PIDE problems in two dimensions. We present storage and computational time
requirements of the hierarchical matrix approximation showing an almost linear
computational complexity. Further, an extension of our methodology to a three-
dimensional PIDE problem and an application to jump diffusion processes are
given, where results of numerical experiments also show an almost linear com-
putational complexity of our numericalH-matrix framework.
In Chapter 5, we outline a multigrid framework for solving a convection diffu-
sion PIDE optimal control problem. We discuss the discretzation technique used
to approximate the optimality system. Since the discretized optimality system
will be solved in the multigrid framework, we give a detailed exposition of the
multigrid method for the system with foreknowledge of the description given in
the previous chapter and sections. We present results of local Fourier analysis
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of our multigrid scheme applied to the optimality system and compare the es-
timated convergence factors to the corresponding numerical values obtained in
the experiments. We perform experiments to validate the theoretical solution er-
ror estimates for the state, adjoint and control variables. Results of experiments
validate second order error estimates for the state, adjoint and control variables
in unconstrained control case while second order error estimates are realized for
the state and adjoint and an order 3

2 for the control in the constrained control case.
Further, the empirical multigrid convergence factors obtained in the experiments
are shown to confirm the convergence estimates by local Fourier analysis.
A section of conclusion completes the exposition of this thesis.
The results presented in this thesis are partly based on the following publications:

1. D. K. Gathungu and A. Borzì, Multigrid solution of an elliptic Fredholm partial
integro-differential equation with a Hilbert-Schmidt integral operator, Applied
Mathematics (2017), 8:967-986.

2. D. K. Gathungu and A. Borzì, A multigrid scheme for solving convection-diffusion-
integral optimal control problems, Computing and Visualization in Science
(2017), DOI:10.1007/s00791-017-0285-7.

3. D. K. Gathungu, M. Bebendorf and A. Borzì, Hierarchical matrices for convection-
diffusion partial integro-differential equations, Submitted for publication.



2. Partial Integro-Differential equations

In this chapter, we discuss our model PIDE problems. We start this chapter stat-
ing the existence of solutions to these problems in appropriate functional spaces.
In Section 2.2.1, we discuss the discretization of the elliptic PIDE problem by fi-
nite differences and quadrature rules and prove the stability and orders of accu-
racy of the discretization error. In Section 2.2.2, we discuss the discretization of
the convection-diffusion PIDE by the CC scheme and prove stability and second-
order error estimates of the discretization scheme. In 2.2.3, we discuss the dis-
cretization of a three dimensional convection-diffusion PIDE.

2.1 Model Problems

In this section, we define our working PIDE models. We prove existence and
uniqueness of solutions to our given PIDE problems, which represent our mod-
els of choice for implementation of our numerical framework. We consider real-
valued functions defined in a Lipschitz domain, i.e. a bounded and convex open
set Ω ⊂ R2 with boundary Γ that is locally a graph of a Lipschitz continuous
function. Ω̄ := Ω ∩ Γ denotes the closure of Ω.
We consider an elliptic PIDE of the form

−∆y(x) +
∫

Ω

k(x, z)y(z)dz = f (x) in Ω (2.1)

y(x) = 0 on Γ,

where x, z ∈ Ω. We adopt a notation of the integral operator as I where

Iy(x) =
∫

Ω

k(x, z)y(z)dz,

and furthermore we choose f ∈ L2(Ω).
We consider a symmetric positive semi-definite Hilbert Schmidt kernel k ∈

13
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L2 (Ω×Ω), such that
∫
Ω

∫
Ω
| k(x, z) |2 dx dz < ∞, and the following holds

∫

Ω

∫

Ω

k(x, z)v(x)v(z)dx dz ≥ 0, for all v ∈ L2(Ω). (2.2)

We have the following theorem.

Theorem 1. Let k ∈ L2 (Ω×Ω) be a Hilbert Schmidt kernel. The integral operator I
given by

I y(x) =
∫

Ω

k(x, z)y(z)dz, x, z ∈ Ω

defines a bounded mapping of L2(Ω) into itself, with the Hilbert Schmidt norm
‖I‖ < ‖k‖L2(Ω×Ω).

Proof. From Tonelli’s theorem, I y(x) =
∫
Ω

k(x, z)y(z)dz is a measurable func-

tion of x and its L2-norm can be determined by the Cauchy-Schwarz inequality. Let
y ∈ L2(Ω), we have

‖I y‖2
L2(Ω) =

∫

Ω

| I y(x) |2 dx =
∫

Ω

|
∫

Ω

k(x, z)y(z)dz |2 dx

≤
∫

Ω



∫

Ω

| k(x, z) |2 dz





∫

Ω

| y(z) |2 dz


 dx

=
∫

Ω

∫

Ω

| k(x, z) |2 ‖y‖2
L2(Ω)dzdx.

Hence Iy ∈ L2(R).

Remark 2. From Schur’s test [39], since the kernel k is a measurable function, it satisfies
the following conditions

ξ1 = ess sup
x∈R

∫

Ω

| k(x, z) | dz < ∞, ξ2 = ess sup
z∈R

∫

Ω

| k(x, z) | dx < ∞.

Then the integral operator I defines a bounded mapping and ‖ I ‖2≤ (ξ1ξ2)
1
2 .

Now, we state the following theorem.

Theorem 3. There exists a unique function y ∈ H1
0 (Ω) ∩ H2 (Ω) that solves (2.1).

Proof. On obtaining the variational formulation of (2.1), the proof is as a result
of applying Lax-Milgram theorem and the properties of the kernel .
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Next, we define the convection-diffusion PIDE that is considered in the second
part of the thesis. It is of the form

−ε∆y(x) +∇ · (b y(x)) + Iy(x) + λy(x) = f (x) in Ω, (2.3)

y(x) = 0 on Γ,

where y : Ω → R represents the unknown function and Ω is a bounded and
convex open set in R2, with Lipschitz boundary Γ. We choose f ∈ L2(Ω), the
diffusion coefficient ε > 0, the linear reaction coefficient λ > 0, and the drift
b = (b1, b2) ∈ C1(Ω̄)× C1(Ω̄) is a smooth vector-function on Ω̄.
The term

Iy(x) =
∫

Ω

k(x, z)y(z)dz,

with x, z ∈ Ω, is a Hilbert-Schmidt integral operator with a symmetric positive
semi-definite Hilbert-Schmidt kernel k ∈ L2 (Ω×Ω).

Theorem 4. There exist a unique function y ∈ H1
0 (Ω) ∩ H2 (Ω) that solves (2.3).

Proof. The proof follows the same reasoning outlined in [27, Chapter 3], by
applying Lax-Milgram theorem and the properties of kernel of the integral term.

With the definition of the PIDE problems under consideration, we discuss the
discretization techniques used in this thesis in the following section.

2.2 Discretization methods

We discretize the PIDE problems (2.1) and (2.3) using finite differences and finite
volume schemes, respectively, for the differential operators and quadrature rules
for the integral terms [35, 47, 60]. For simplicity, we assume that k ∈ C (Ω̄× Ω̄)

and f ∈ C (Ω̄) such that we can evaluate these functions on grid points. Specifi-
cally, we consider Ω = (a, b)× (a, b) and N is an integer with N ≥ 2. Let h = b−a

N−1
be the mesh size and consider an equidistant grid. We denote the mesh points
xi = a + (i − 1)h, i = 1, . . . , N, and zj = a + (j− 1)h, j = 1, . . . , N. These grid
points define the following grid

Ωh = {Zij = (xi, zj) ∈ R2 : i, j = 2, . . . , N − 1} ∩Ω.

Later, we consider a sequence of nested uniform grids {Ωh`}h`>0, where N =

N` = 2` + 1 for ` ∈N.
For grid functions v and w defined on Ωh, we introduce the discrete L2-scalar
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product given by

(v, w)h = h2 ∑
Z∈Ωh

v(Z)w(Z) =
N−1

∑
i=2

N−1

∑
j=2

h2v(xi, zj)w(xi, zj),

with associated discrete L2
h-norm given by ‖v‖h =

√
(v, v)h. The discrete H1−norm

is given by ‖v‖1,h =

(
‖v‖2

h +
2
∑

i=1

∥∥∂−i v
∥∥

L2
h

) 1
2

where ∂−i v denotes the backward

difference quotient in the xi direction; see, e.g., [47]. Given continuous func-
tions in Ω are approximated by grid functions defined through their values at
the grid points. Thus the right-hand sides of (2.1) and (2.3) in Ωh are represented
by f h

ij = f (xi, zj), and similarly for the kernel function.
Further, we introduce the following finite-difference operators. The forward

finite-difference operator is given by

D+
x y(xi, zj) ≡

y(xi+1, zj)− y(xi, zj)

h
. (2.4)

The backward finite-difference operator is as follows

D−x y(xi, zj) ≡
y(xi, zj)− y(xi−1, zj)

h
. (2.5)

With these operators, we can define the H1
h norm as

‖y‖1,h =
(
‖y‖2

h +
∥∥D−x y]

∣∣2
x +

∥∥D−z y]
∣∣2
z

)1/2
.

Notice that the bracket ] denotes summation up to N in the given direction x,
resp. z; see [47]. With this preparation, we have

∆hy(xi, zj) = D−x D+
x y(xi, zj) + D−z D+

z y(xi, zj)

=
y(xi+1,zj)−2y(xi,zj)+y(xi−1,zj)

h2 +
y(xi,zj+1)−2y(xi,zj)+y(xi,zj−1)

h2 .

which in stencil form is written as

1
h2




0 1 0
1 −4 1
0 1 0


 .

The integral term of the elliptic PIDE is written explicitly as follows

Iy(x) =
∫

Ω

k(x, z)y(z)dz , x, z ∈ Ω.
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The integral term is approximated by quadrature techniques and we focus on the
trapezoidal and Simpson’s rules.

Using the trapezoidal quadrature rule, we have the following approximation
of the integral operator

Ihy(xij) = h2
N

∑
l=1

N

∑
m=1

r(l, m) k(xij, zlm) y(zlm), x, z ∈ Ωh, (2.6)

where the r(l, m) = r̃(l) r̃(m) represent the coefficients of the quadrature rule,
which in the trapezoidal case are given by

r̃(l) =





1
2 if l = 2, l = N − 1

1 l mod 2 = 0 , l = 1 . . . N.
(2.7)

Assuming a sufficiently regular integrand, the trapezoidal rule provides a second-
order accurate approximation of the integral as follows [61]

∥∥∥Ihy− Iy
∥∥∥

h
= O(h2).

On using the Simpson’s quadrature rule, we also have the following approxima-
tion of this integral operator

Ihy(xij) = h2
N

∑
l=1

N

∑
m=1

r(l, m)k(xij, zlm)y(zlm) , x, z ∈ Ωh, (2.8)

where r(l, m) = r̃(l)r̃(m). These coefficients of the Simpson’s quadrature rule are
given by

r̃(l) =





1
3 i f l = 1, l = N
4
3 l mod 2 = 0 , l = 1 . . . N
2
3 else.

The Simpson’s rule provides a fourth-order accurate approximation of the inte-
gral as follows ∥∥∥Ihy− Iy

∥∥∥
h
= O(h4).

We refer to the formulae (2.6) and (2.8) as the full-kernel (FK) evaluations.
We need the following lemma.

Lemma 5. The positivity of the Hilbert Schmidt operator stated in (2.2) is preserved after
discretization.

Proof. Consider the following function v(x) =
N
∑

l,m=1
δ̃$(x − zlm)vlm where

δ̃$(x) is a suitable approximation of the Dirac delta function by a Gaussian with
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variance $→ 0. Inserting this function in (2.2) we have

N

∑
l,m=1

N

∑
i,j=1

vlmvij

∫

Ω

∫

Ω

k(x, z)δ̃$(x− xlm)δ̃$(z− zij)dx dz ≥ 0. (2.9)

Therefore by continuity, as $ → 0 the above integral tends to k(xlm , zij). Thus, we
obtain (Ihy, y)h ≥ 0.

Next, we discuss the discretization techniques of each class of PIDE.

2.2.1 Discretization of the elliptic PIDE model

With the setting above, the negative Laplacian with homogeneous Dirichlet bound-
ary conditions is approximated by the five-point stencil and is denoted by −∆h.
We write the finite-difference scheme and quadrature rule approximation of (2.1)
as follows

− ∆hY + IhY = fh in Ωh, (2.10)

where Y = (Yij) denotes the numerical approximation to y.
Next, we investigate the stability and accuracy of (2.10). For this purpose, we

use the numerical analysis framework in [47]. We denote Ah = −∆h + Ih.
We need the following lemma, see also [47].

Lemma 6. Suppose Y is a function defined on Ω̄h with Y = 0 on the boundary and
assume positivity of the Hilbert-Schmidt kernel, then the following holds

(
AhY, Y

)
h
≥

N

∑
i=1

N−1

∑
j=1

h2 ∣∣D−x Yij
∣∣2 +

N−1

∑
i=1

N

∑
j=1

h2 ∣∣D−z Yij
∣∣2 .

Proof. Using the results of Lemma 5, we have

(
AhY, Y

)
h

=
(
−D+

x D−x Y− D+
z D−z Y + IhY, Y

)
h

,

= (−D+
x D−x Y, Y)h + (−D+

z D−z Y, Y)h + (IhY, Y)h,

≥
N

∑
i=1

N−1

∑
j=1

h2 ∣∣DxYij
∣∣2 +

N−1

∑
i=1

N

∑
j=1

h2 ∣∣DzYij
∣∣2 , (2.11)

≥ ‖D−x Y]|2x + ‖D−z Y]|2z.

Lemma 7. Suppose Y is a function defined on Ω̄h with Y = 0 on the boundary; then
there exists a constant ρ∗, which is independent of Y and h, such that the following
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discrete Poincaré-Friedrichs inequality holds

‖Y‖2
h ≤ ρ∗

(∥∥D−x Y
]∣∣2

x +
∥∥D−z Y

]∣∣2
z

)
, (2.12)

for all such Y; see [47].

Remark 8. From (2.11) and (2.12), we obtain
(
−∆hY + IhY, Y

)
h ≥ ρ0 ‖Y‖2

1,h, where
ρ0 = 1/(1 + ρ∗).

Theorem 9. The scheme (2.10) is stable in the sense that ‖Y∗‖1,h ≤ 1
ρ0
‖ fh‖h.

Proof. We have

ρ0 ‖Y‖2
1,h ≤ (−∆hY + IhY, Y)h = ( fh, Y)h ≤ |( fh, Y)h| ,
≤ ‖ fh‖h ‖Y‖h ≤ ‖ fh‖h ‖Y‖1,h ,

hence ‖Y∗‖1,h ≤ 1
ρ0
‖ fh‖h.

We conclude this section with the following theorem where we consider quadra-
ture rules that are at least O(h2) accurate.

Theorem 10. Suppose f ∈ L2(Ω) and k is a continuous positive Hilbert Schmidt kernel,
and assume that the weak solution y to (2.1) belongs to C4(Ω̄); then the solution Y to
(2.10) approximates y with second-order accuracy as follows

‖y−Y‖1,h≤ c h2,

where c is a positive constant independent of h. In particular ‖y−Y‖h≤ c h2 .

Proof. The proof uses Theorem 9 and the fact that the truncation error of (2.10)
is of second order. This proof follows exactly the same reasoning as in Theorem
2.26 in [47].

2.2.2 Discretization of the convection-diffusion PIDE model

In this section, we discuss the approximation of the convection-diffusion PIDE
problem (2.3). The diffusion and convection terms are discretized using the Chang
and Cooper scheme [22, 54], while the integral term is approximated by using a
second-order accurate quadrature rule.

The Chang and Cooper (CC) scheme is a second-order accurate, cell-centred
finite volume scheme that results in a monotone discrete convection-diffusion op-
erator; see [2,54] for the numerical analysis of this scheme. The way to formulate
the CC scheme is to consider the flux form of the convection and diffusion terms
in the state equation as follows

∇ · F = ∇ · [ε∇y− by] ,
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and consider the following scheme for the elementary cell centered at Zij ∈ Ωh.
We have

∇ · F =
1
h
{(

Fi+1/2,j − Fi−1/2,j
)
+
(

Fi,j+1/2 − Fi,j−1/2

)}
, (2.13)

where Fi+1/2,j and Fi,j+1/2 represent the fluxes in the ith and jth direction at the cell
faces i + 1/2, j and i, j + 1/2, respectively. Now, in order to compute these fluxes,
in the CC scheme, a parameter δ is introduced such that the value of y at the cell
face i + 1/2, j is given by yi+1/2,j = δ

j
i yi,j +

(
1− δ

j
i

)
yi+1,j. Similarly for the face

i, j + 1/2, we have yi,j+1/2 = δi
jyi,j +

(
1− δi

j

)
yi,j+1. Using this interpolation of y,

we obtain

Fi+1/2,j =
[ ε

h
− (1− δ

j
i )bi+ 1

2 ,j

]
yi+1,j −

[ ε

h
+ δ

j
i bi+ 1

2 ,j

]
yi,j, (2.14)

Fi−1/2,j =
[ ε

h
− (1− δ

j
i−1)bi− 1

2 ,j

]
yi,j −

[ ε

h
+ δ

j
i−1bi− 1

2 ,j

]
yi−1,j, (2.15)

Fi,j+1/2 =
[ ε

h
− (1− δi

j)bi,j+ 1
2

]
yi,j+1 −

[ ε

h
+ δi

jbi,j+ 1
2

]
yi,j, (2.16)

Fi,j−1/2 =
[ ε

h
− (1− δi

j−1)bi,j− 1
2

]
yi,j −

[ ε

h
+ δi

j−1bi,j− 1
2

]
yi,j−1, (2.17)

In the CC scheme, the interpolation parameter δ is given by

δ
j
i =

1

ω
j
i

− 1

exp
(

ω
j
i

)
− 1

, ω
j
i = h

bi,j

ε
,

δi
j =

1
ωi

j
− 1

exp
(

ωi
j

)
− 1

, ωi
j = h

bi,j

ε
.

Remark 11. The CC scheme is a second-order accurate monotone upwinding method for
all ε > 0 and any smooth function b. Notice that δ

j
i → 1/2 as ω

j
i → 0; δ

j
i → 0 as

ω
j
i → +∞ and δ

j
i → 1 as ω

j
i → −∞ and likewise in the other direction δi

j → 1/2 as
ωi

j → 0; δi
j → 0 as ωi

j → +∞ and δi
j → 1 as ωi

j → −∞.

Now, we combine the CC scheme and the quadrature rule to approximate our
governing model as follows (notice that the solution y is zero at the boundary)

− Âijyi+1,j− B̂ijyi−1,j + Ĉijyi,j− D̂ijyi,j+1− Êijyi,j−1 + h2
N−1

∑
l=2

N−1

∑
m=2

r(l, m)k(xij, zlm)yl,m

= fi,j, (2.18)

where i, j = 2, . . . , N − 1. When considering the trapezoidal rule for the integral
term approximation, we refer to this scheme as the CCT scheme.
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The coefficients in (2.18) are given by

Âij =
1
h

[ ε

h
− (1− δ

j
i )bi+ 1

2 ,j

]
, B̂ij =

1
h

[ ε

h
+ δ

j
i−1bi− 1

2 ,j

]
,

Ĉij =
1
h

[ ε

h
+ δ

j
i bi+ 1

2 ,j

]
+

1
h

[ ε

h
− (1− δ

j
i−1)bi− 1

2 ,j

]

+
1
h

[ ε

h
+ δi

jbi,j+ 1
2

]
+

1
h

[ ε

h
− (1− δi

j−1)bi,j− 1
2

]
+ λ,

D̂ij =
1
h

[ ε

h
− (1− δi

j)bi,j+ 1
2

]
, Êij =

1
h

[ ε

h
+ δi

j−1bi,j− 1
2

]
.

In the following, we denote with Ch the matrix of coefficients resulting from the
CC discretization of the differential part of our PIDE operator. Therefore we have

(
Chyh

)
ij
= −Âijyi+1,j − B̂ijyi−1,j + Ĉijyi,j − D̂ijyi,j+1 − Êijyi,j−1. (2.19)

With this notation, the algebraic problem given by (2.18) becomes
(
Ch + Ih) yh =

fh. For ease of notation , we define Ah = Ch + Ih and discuss the solution to

Ah yh = fh, (2.20)

where Ah is a (N − 1)2 × (N − 1)2 block dense matrix.
Next, we discuss the accuracy and stability of our CCT discretization scheme.

For this analysis, we focus on a one dimensional case and notice that its extension
to multi dimensions is straightforward. For simplicity, we assume that the PIDE
solution y ∈ C4 ([a, b]), f ∈ C ([a, b]), and that the kernel k is continuous. Since
b ∈ C1 ([a, b]), we have that the drift coefficient b is Lipschitz continuous, i.e.
|b(x + h)− b(x)| ≤ ρ h where ρ is the Lipschitz constant. We denote with eh =

y− yh the discretization error in Ωh, where y represents the solution of the PIDE
problem and yh is its numerical approximation. The operator performing the CC
convex combination between cell-centred values is defined as follows

Eδyi = (1− δi−1)yi + δi−1yi−1.

Theorem 12. If λ ≥ ρ
2 , then the CCT schemeAhyh = fh is stable in the sense that there

exists a constant c > 0 such that the following holds

‖yh‖1,h ≤
1
c
‖ fh‖h. (2.21)

Proof. The CCT scheme can be written as follows (for simplicity, we drop the
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index h in yh)

− εD+D−yi + D+ (bEδy)i +
(
Ihy

)
i
+ λyi = fi, i = 2, . . . , N − 1. (2.22)

We have
−ε D+D− yi = −

1
h

[ ε

h
(yi+1 − yi)−

ε

h
(yi − yi−1)

]
,

and

D+ (bEδy)i = D+
(
(1− δi−1)bi− 1

2
yi + δi−1bi− 1

2
yi−1

)
,

=
1
h

(
(1− δi)bi+ 1

2
yi+1 − (1− δi−1)bi− 1

2
yi

)
+

1
h

(
δibi+ 1

2
yi − δi−1bi− 1

2
yi−1

)
.

Taking the L2
h inner product of equation (2.22) with y, we obtain

−ε
(

D+D−y, y
)

h +
(

D+ (bEδy) , y
)

h + λ (y, y)h + (Iy, y)h = ( f , y)h .

The first term of this equation results in the following [47]

−ε
(

D+D−y, y
)

h = ε ‖D−y]|2h.

The second term results in the following

(
D+ (bEδy) , y

)
h =

N

∑
i=0

(
(1− δi)bi+ 1

2
yi+1yi − (1− δi−1)bi− 1

2
yiyi

)

+
(

δibi+ 1
2
yiyi − δi−1bi− 1

2
yi−1yi

)
,

=
N−1

∑
i=1

(1− δi)bi+ 1
2
yi+1yi−

N−1

∑
i=1

bi+ 1
2
yiyi+

N−1

∑
i=1

δi−1bi− 1
2
(yi)

2+
N−1

∑
i=1

δibi+ 1
2
(yi)

2

−
N−1

∑
i=1

δi−1bi− 1
2
yi−1yi.

Because of the homogeneous Dirichlet boundary conditions (y0 = 0, yN = 0) and
shifting indices, we obtain the following

(
D+ (bEδy) , y

)
h =

N−2

∑
i=1

(1− 2δi)bi+ 1
2
yi+1yi+

N−2

∑
i=1

δibi+ 1
2
yiyi+

N−2

∑
i=1

(δi − 1)bi+ 1
2
yi+1yi+1

+ δN−1bN− 1
2
(yN−1)

2 − (δ0 − 1) b 1
2
(y1)

2 .
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Using the Cauchy inequality, we obtain the following inequality

(
D+ (bEδy) , y

)
h ≤

N−2

∑
i=1

[
y2

i + y2
i+1

] (1− 2δi

2

)
bi+ 1

2
+

N−2

∑
i=1

δibi+ 1
2
yiyi+

N−2

∑
i=1

(δi − 1)bi+ 1
2
yi+1yi+1

+ δN−1bN− 1
2
(yN−1)

2 − (δ0 − 1) b 1
2
(y1)

2

=
N−2

∑
i=1

1
2

bi+ 1
2
y2

i+1−
N−2

∑
i=2

1
2

bi− 1
2
y2

i

≤
N−2

∑
i=1

1
2
|bi+ 1

2
− bi− 1

2
||yi|2 =

1
2

ρ
N−2

∑
i=1
|yi|2h =

1
2

ρ‖y‖2
h.

Using the results above and Lemma 5, we have

(Ahy, y)h ≥ ε ‖D−y]|2h +
(

λ− ρ

2

)
‖y‖2

h .

Now, recall the discrete Poincaré-Friedrichs inequality [47], c∗ ‖D−y]|2h ≥ ‖y‖2
h,

where the Poincaré-Friedrichs coefficient is given by c∗ = (b− a)2/2. We obtain

(Ahy, y)h ≥
(

ε

c∗
+ λ− ρ

2

)
‖y‖2

h .

We assume λ− ρ
2 ≥ 0 and define the constant c0 = ε

c∗ + λ− ρ
2 . Hence, we have

(Ahy, y)h ≥ c0 ‖y‖2
h and (Ahy, y)h ≥ ε ‖D−y]|2h. Thus taking c = min{ε, c0}, we

obtain (Ahy, y)h ≥ c ‖y‖2
1,h. Therefore, since Ahy = f , we have

‖y‖2
1,h ≤

1
c
(Ahy, y)h =

1
c
( f , y)h ≤

1
c
‖ f ‖h‖y‖h ≤

1
c
‖ f ‖h‖y‖1,h.

That is, ‖y‖1,h ≤ 1
c ‖ f ‖h as claimed.

Next, we define the truncation error for the CCT scheme as follows. Let y
denote the solution of the continuous PIDE problem, then the truncation error at
the grid point indexed by i is given by

Ψi =
[
−ε
(

D+D−yi − ∂2
xxyi

)]
+
[
D+(b Eδy)i − ∂x(b y)i

]
+
[
Ihyi − Iyi

]
, (2.23)

We consider the Taylors’ expansions for each differential term to determine the
order of the truncation error. As seen earlier and applying the Taylors’ expan-
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sions, we have the following

−ε D+D− yi = −
1
h

[ ε

h
(yi+1 − yi)−

ε

h
(yi − yi−1)

]
,

= −ε

(
1
h

∂xyi +
1
2

∂xxyi +
∂3

∂x3 yi +
h2

24
∂4

∂x4 yi

)

+ ε

(
1
h

∂xyi −
1
2

∂xxyi +
h
6

∂3

∂x3 yi −
h2

24
∂4

∂x4 yi

)
+O(h3).

(2.24)

Hence

− ε
(

D+D−yi − ∂2
xxyi

)
= −ε

h2

2

(
∂4

∂x4 yi +
h2

6
∂6

∂x6 yi +
h6

20160
∂8

∂x8 yi + . . . + HOD
)

,

(2.25)
where HOD represents higher order terms in the Taylors’ expansion.

Similarly for the second term, we employ the Taylors’ expansion and we have
the following

D+ (bEδy)i =
1
h

(
(1− δi)bi+ 1

2
yi+1 − (1− δi−1)bi− 1

2
yi

)
+

1
h

(
δibi+ 1

2
yi − δi−1bi− 1

2
yi−1

)
,

=
1
h

(
bi+ 1

2
((1− δi)yi+1 + δiyi)− bi− 1

2
((1− δi−1)yi + δi−1yi−1)

)
,

=
1
h

yi

(
bi+ 1

2
− bi− 1

2

)
+

∂

∂x
yi

(
(1− δi)bi+ 1

2
+ δi−1bi− 1

2

)

+
h
2

∂2

∂x2 yi

(
(1− δi)bi+ 1

2
+ δi−1bi− 1

2

)
+O(h2),

= yi
∂

∂x
bi +

∂

∂x
yibi (1− δi + δi−1) +

h
2

∂

∂x
(yibi) (1− δi − δi−1)

+
∂2

∂x2 yibi (1− δi − δi−1) +O(h2).

Hence we have

D+(b Eδy)i− ∂x(b y)i =
∂

∂x
yibi (δi−1 − δi)+

h
2

∂

∂x

(
∂

∂x
(yibi)

)
(1− δi − δi−1)+O(h2),

(2.26)
and recall δi and ωi are as defined previously where on expansion they are given
as follows

δi =

∞
∑

m=1

ωm
i

(m+1)!

∞
∑

m=1

ωm
i

(m)!

,
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and

δi−1 − δi =

∞
∑

m=1

ωm
i−1

(m+1)!

∞
∑

m=1

ωm
i−1

(m)!

−

∞
∑

m=1

ωm
i

(m+1)!

∞
∑

m=1

ωm
i

(m)!

,

= −
1
12 ωi−1ωi(ωi−1 −ωi) +O(h4)

∞
∑

s=1

∞
∑

t=1

ωs
i−1ωt

i
t!s!

,

and

1− δi − δi−1 = −
1

12 ωi−1ωi(ωi−1 + ωi) +O(h4)
∞
∑

s=1

∞
∑

t=1

ωs
i−1ωt

i
t!s!

,

ωi−1 + ωi = h
(

bi

ε
+

bi

ε

)
= O(h),

1− δi − δi−1 = O(h),
δi−1 − δi = O(h2).

With these terms, we can now state the order of the truncation error.

Lemma 13. If y ∈ C4 ([a, b]) and k ∈ C2 ([a, b])× C2 ([a, b]), the truncation error Ψi

is consistent of order 2 as follows

‖Ψ‖h = O(h2).

Proof. The proof is similar to [30, Proposition 1].

Theorem 14. Let y be the solution to the PIDE problem (2.3) and yh be the solution to
the CCT scheme (2.18), if λ ≥ ρ/2, then the following holds

‖y− yh‖1,h = O(h2).

Proof. Notice that the PIDE problem and the CCT scheme are linear. Therefore
the solution error satisfies the equation Aheh = Ψh such that




−ε∆eh +∇ · (b eh) + I(eh) + λeh = Ψh,

eh = 0.
(2.27)

Then the proof follows from Theorem 12 and Lemma 13.
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2.2.3 A higher dimensional case

In this section, we extend the CC scheme combined with a quadrature rule (Trape-
zoidal or Simpson’s) discretization to the convection-diffusion PIDE problem to
higher spatial dimensions. We consider the three dimensional case of equation
(2.3). Analogous to the two-dimensional case, we denote the mesh points xi =

a + (i − 1)h, i = 1, . . . , N, zj = a + (j − 1)h, j = 1, . . . , N, and rk = a + (k −
1)h, k = 1, . . . , N. These grid points define the following grid

Ωh = {Zijk = (xi, zj, rk) ∈ R3 : i, j, k = 2, . . . , N − 1} ∩Ω.

We have the three dimensional finite volume discretization of the flux at the faces
of the elementary cell centred at Zijk ∈ Ωh results in the following

∇ · F =
1
h
{(

Fi+1/2,j,k − Fi−1/2,j,k
)
+
(

Fi,j+1/2,k − Fi,j−1/2,k
)
+
(

Fi,j,k+1/2 − Fi,j,k−1/2

)}
,

(2.28)
where Fi+1/2,j,k, Fi,j+1/2,k and Fi,j,k+1/2 represent the fluxes in the ith, jth and kth
direction at the cell faces i + 1/2, j, k and i, j + 1/2, k and i, j, k + 1/2 respectively.
Now the parameter δ is introduced such that the value of y at the cell face i +
1/2, j, k is given by yi+1/2,j,k = δ

j
ikyi,j,k +

(
1− δ

j
ik

)
yi+1,j,k. Similarly for the face

i, j + 1/2, k, we have yi,j+1/2,k = δi
jkyi,j,k +

(
1− δi

jk

)
yi,j+1,k. Similarly for the face

i, j, k + 1/2, we have yi,j,k+1/2 = δk
ijyi,j,k +

(
1− δk

ij

)
yi,j,k+1. Using this interpolation

of y, we obtain

Fi+1/2,j,k =
[ ε

h
− (1− δ

jk
i )bi+ 1

2 ,j,k

]
yi+1,j,k −

[ ε

h
+ δ

jk
i bi+ 1

2 ,j,k

]
yi,j,k, (2.29)

Fi−1/2,j,k =
[ ε

h
− (1− δ

jk
i−1)bi− 1

2 ,j,k

]
yi,j,k −

[ ε

h
+ δ

jk
i−1bi− 1

2 ,j,k

]
yi−1,j,k, (2.30)

Fi,j+1/2,k =
[ ε

h
− (1− δik

j )bi,j+ 1
2 ,k

]
yi,j+1,k −

[ ε

h
+ δik

j bi,j+ 1
2 ,k

]
yi,j,k, (2.31)

Fi,j−1/2,k =
[ ε

h
− (1− δik

j−1)bi,j− 1
2 ,k

]
yi,j,k −

[ ε

h
+ δik

j−1bi,j− 1
2 ,k

]
yi,j−1,k, (2.32)

Fi,j,k+1/2 =
[ ε

h
− (1− δ

ij
k )bi,j,k+ 1

2

]
yi,j,k+1 −

[ ε

h
+ δ

ij
k bi,j,k+ 1

2

]
yi,j,k, (2.33)

Fi,j,k−1/2 =
[ ε

h
− (1− δ

ij
k−1)bi,j,k− 1

2

]
yi,j,k −

[ ε

h
+ δ

ij
k−1bi,j,k− 1

2

]
yi,j,k−1. (2.34)
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In the CC scheme, the interpolation parameter δ is given by

δ
jk
i =

1

ω
jk
i

− 1

exp
(

ω
jk
i

)
− 1

, ω
jk
i = h

bi,j,k

ε
,

δik
j =

1
ωik

j
− 1

exp
(

ωik
j

)
− 1

, ωik
j = h

bi,j,k

ε
,

δ
ij
k =

1

ω
ij
k

− 1

exp
(

ω
ij
k

)
− 1

, ω
ij
k = h

bi,j,k

ε
.

Now, we can combine the CC scheme and a quadrature rule to approximate our
governing model as follows (notice that the solution y is zero at the boundary)

− Âijkyi+1,j,k− B̂ijkyi−1,j,k− Ĉijkyi,j+1,k + D̂ijkyi,j,k− Êijkyi,j−1,k− F̂ijkyi,j,k+1− Ĝijkyi,j,k−1

+ h3
N−1

∑
l=2

N−1

∑
m=2

N−1

∑
s=2

r(l, m, s)k(xijk, zlms)yl,m,s = fi,j,k, (2.35)

where i, j, k = 2, . . . , N− 1 and r(l, m, s) = r̃(l) r̃(m) r̃(s) are the coefficients of the
quadrature rule.
The coefficients in (2.35) are given by

Âijk =
1
h

[ ε

h
− (1− δ

jk
i )bi+ 1

2 ,j,k

]
, B̂ijk =

1
h

[ ε

h
+ δ

jk
i−1bi− 1

2 ,j,k

]
,

Ĉijk =
1
h

[ ε

h
− (1− δik

j )bi,j+ 1
2 ,k

]
,

D̂ijk =
1
h

[ ε

h
+ δ

jk
i bi+ 1

2 ,j,k

]
+

1
h

[ ε

h
− (1− δ

jk
i−1)bi− 1

2 ,j,k

]
+

1
h

[ ε

h
+ δik

j bi,j+ 1
2 ,k

]

+
1
h

[ ε

h
− (1− δ

ij
k−1)bi,j,k− 1

2

]
+

1
h

[ ε

h
+ δ

ij
k bi,j,k+ 1

2

]
+

1
h

[ ε

h
− (1− δ

ij
k−1)bi,j,k− 1

2

]
+λ,

Êijk =
1
h

[ ε

h
+ δik

j−1bi,j− 1
2 ,k

]
,

F̂ijk =
1
h

[ ε

h
− (1− δ

ij
k )bi,j,k+ 1

2

]
, Ĝijk =

1
h

[ ε

h
+ δ

ij
k−1bi,j,k− 1

2

]
.

Analogous to the aforementioned algebraic structure, the three dimensional dis-
cretization scheme is written as Ah yh = fh.
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2.3 Summary and remarks

In this chapter, the model PIDE problems and their discretization were discussed.
In Section 2.2.1, the elliptic PIDE was discretized using finite difference scheme
for the minus Laplacian operator and the integral operator was discretized using
a quadrature rule. In Section 2.2.2, the convection-diffusion PIDE was discretized
using a finite volume CC scheme for the differential operator and the integral
term was discretized using a quadrature rule. For both problems, stability of the
resulting discretization schemes was discussed and second-order accuracy of the
corresponding numerical solution was proved. The case of a three-dimensional
convection-diffusion PIDE problem was also discussed.



3. Multigrid methods

In this chapter, we discuss the multigrid (MG) strategy for solving the classes
of PIDE considered in this thesis. We discuss in detail the fast integration tech-
nique combined with a geometric multigrid method. The key components of the
MG strategy, i.e. the restriction, prolongation and smoothing procedures are dis-
cussed. The convergence analysis of the resulting algorithm is done by means of
the local Fourier analysis. Comparison of theoretical convergence estimates with
observed convergence factors confirm the optimal computational complexity of
the proposed multigrid techniques.

The development of multigrid methods started in the sixties with the work
of R. P. Fedorenko [25, 26], considering the Poisson equation in a unit square.
This was the onset of extension of the multigrid strategy to solve different partial
differential equations. However, full efficiency of the multigrid approach was re-
alized after the works [17] and [33], focusing on linear and non-linear boundary
value problems, however extension of the multigrid scheme to solve Fredholm
integral equations has been considered in [20]. With the foreknowledge of the
application of the MG strategy to partial differential equations and Fredholm in-
tegral equations, we extend these methodologies to elliptic PIDEs. In the follow-
ing section, we discuss the main components of a geometric multigrid scheme.

3.1 The multigrid method for differential problems

In this section, we discuss all components of a (geometric) multigrid method
for solving elliptic PDE problems. We start by discussing a standard iterative
Gauss-Seidel scheme. Even though this scheme is characterised by global poor
convergence rates, it provides rapid damping of high frequency solution errors
leaving smooth, longer wave-length errors. The multigrid method is based on
two complementary schemes. Appropriate iterative methods are used to reduce
the high frequency components of the solution error. For this reason, an iterative
scheme such as the Gauss-Seidel method are referred to as smoothers. A coarse
grid correction scheme is designed to remove the low frequency error compo-

29
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nents of the solution error. Detailed expositions on the MG strategy can be found
in [16, 33, 65, 68]. To illustrate the smoothing procedure, we consider the dis-
cretization of a differential problem given by Ay = f in Ω. We define a sequence
of grids with mesh sizes {hk}k=0 generating a grid hierarchy Ωk := Ωhk

on Ω.
The operators and variables on the grid Ωk are indexed with the level number k,
k = 1, . . . , l, where l denotes the finest level and that hk−1 = 2hk, h0 is given. Fur-
ther, we specialise in the subsequent sections that Ωh denotes a fine grid and ΩH

denotes the next coarse grid, where H = 2h. In a one-dimensional case, where
Ω = (a, b), we denote with xj = a + (j − 1)h the grid points on the grid with
mesh size h, j = 1, . . . , N, h = b−a

N−1 , and with xJ = a + (J − 1)H the grid points
on the grid with mesh size H, J = 1, . . . , N+1

2 .
To outline and analyze the structure of the multigrid method, we consider

a numerical approximation of the differential problem. Let us index with k the
resulting operators and variables defined on a grid with mesh sizes h = hk, k =

1, . . . , l. On each level we have a problem of the form Akyk = fk in Ωk.
A possible choice for solving the system Ak yk = fk is by the use of a linear

iterative scheme as follows

y(m)
k = Sk(y

(m−1)
k , fk),

where m denotes the number of iteration steps starting with an initial given y(0)k .
To formulate this iterative method, and considering the classical splitting Ak =

Dk + Lk + Uk, where Dk is the diagonal matrix, Lk is the lower triangular matrix
and Uk is the upper triangular matrix of Ak is used. The Gauss-Seidel smoothing
procedure S results as follows

Sk(y
(m)
k , fk) = Mky(m−1)

k + Nk fk, (3.1)

with the iteration matrix Mk = −(Dk + Lk)
−1Uk and Nk = (Dk + Lk)

−1.
The iteration matrix is the amplification matrix of the solution error as e(m)

k :=

y∗ − y(m)
k , with y∗ =

(
Ak)−1 fk being the exact solution. The iteration (3.1) is

equivalent to e(m)
k = Mke(m−1)

k . We need the following definitions to discuss the
convergence of an iterative scheme.

Theorem 15. A linear iterative method Sk(y
(m)
k , fk) = Mky(m−1)

k + Nk fk converges for

all initial values y(0)k to the solution y∗ of Akyk = fk iff the following spectral radius
condition holds

ρ(Mk) < 1.

The main purpose of using an iterative procedure in the multigrid algorithm
is its ability to smooth the high frequency components of the solution error. To
illustrate this fact in the case of the Gauss-Seidel scheme, we consider the simplest
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differential problem given by

−y”(x) = f (x) in (a, b), y(a) = 0, y(b) = 0.

The finite-difference discretization of this scheme is given by

−yj+1 − 2yj + yj−1

h2 = f j j = 2, . . . , N − 1,

where y1 = 0 and yN = 0.
The Gauss-Seidel scheme applied to this problem results in

em
j+1 − 2em+1

j + em+1
j−1 = 0.

Now, in the LFA framework we represent the error as em
j =∑

θ
Em

θ eiθ j. Therefore

we have

µθ =

∣∣∣∣∣
Em+1

θ

Em
θ

∣∣∣∣∣ =
eiθ

2− e−iθ , θ ∈ (−π, π] ,

which means that the amplitude of the solution error with frequency θ is reduced
by a factor µθ by a Gauss-Seidel sweep. In particular, as we discuss in detail
in Section 3.3, we obtain that µθ < 0.5 for the high frequencies π

2 ≤ |θ| ≤ π

and independently of the mesh sizes. It is this property that we refer to as the
smoothing property.

A second essential component of the MG method is the transfer operators.
The transfer operators are used to transfer smooth functions between different
grids. These operators involve transfer from fine grids to coarse grids and from
coarse grids back to fine grids. They are interpolation and restriction operators.

An interpolation operator, Ih
H, transfers a function y to the finer grid Ωh know-

ing only its values on the coarse grid ΩH. To construct finite difference coarse-to-
fine transfer operators, we consider the Lagrange interpolation given as follows

Li(x) =
N

∏
j=0
j 6=i

x− xj

xi − xj
,

P(x) =
N

∑
i=0

yiLi(x),

|y(x)− P(x)| ≤ (N + 1)!−1∏
i=0
|x− xi|max

ξ∈[a,b]
|y(N+1)(ξ)|,

where P(x) denotes a polynomial of degree (N − 1) that approximates the func-
tion y, knowing the values yi on N discrete points. Notice that every element of
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the product ∏
i=0
|x− xi| is a multiple of the mesh size h and so the error of the in-

terpolation is proportional to hN. That is y(x) = P(x) +O(hN). We consider the
symmetric and asymmetric Langrange interpolation of the second and the fourth
order. We assume nested grids, and therefore the coarse grid points coincide with
the fine grid points. The values of these coarse grid points are assigned directly
on the corresponding finer grid points and the values of the in-between points are
calculated by computing the Lagrange coefficients of the interpolation schemes.

The second order interpolation corresponds to linear interpolation. The scheme
is defined by

y(xi + h) =
1
2
(y(xi) + y(xi + H)) or Ih

H :=
1
2

[
1 1

]
.

For higher orders, more grid points are accessed and the function is approximated
by a polynomial of higher degree. The interpolation scheme of the fourth order
in stencil form is given by

Ih
H :=

1
16

[
−1 9 9 −1

]
. (3.2)

The scheme equation (3.2) is symmetric and needs two grid points on both sides
of the interpolated grid point. All the grid points can be used except the ones next
to the boundary. To approximate the grid points next to the boundary, we need
a scheme that accesses one grid point on one side and three other grid points on
the other side as illustrated by Figure 3.1. This is referred to as the asymmetric
interpolation and in stencil form is given by

Ih
H :=

1
16

[
5 15 −5 1

]
. (3.3)

5/165/16 15/16
-5/16

-1/169/169/16
-1/16

1/16

5/16

15/16

-5/16

1/16

-1/16

9/16

9/16

-1/16

Figure 3.1: Illustration of the Fourth order interpolation on a mesh grid.
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Next, we discuss the restriction operator, IH
h . The restriction operator maps

fine grid functions to coarse grid functions. In some cases it is defined as the ad-
joint of the interpolation operator and we assume that IH

h = c
(
Ih

H
)T

for a constant
c > 0. This assumption holds for IH

h being full-weighting restriction and Ih
H being

a linear interpolation and c =
(

h
H

)dim
with dim being the spacial dimension.

The simplest restriction operator is the direct injection, which transfers only
the values of the nested points as shown in Figure 3.2.

l

l-1

Figure 3.2: Illustration of straight injection for levels l and l − 1.

The commonly used restriction is the weighted restriction, that is directly con-
nected to the linear interpolation and it is given in stencil form by (dim = 1)

IH
h =

1
2

(
Ih

H

)T
:=

1
4

[
1 2 1

]
. (3.4)

1/4 2/4 1/4

l

l-1

Figure 3.3: Second order restriction for levels l and l − 1.

The fourth order restriction, accesses more grid points and it is the adjoint of the
fourth order interpolation scheme and it is given in stencil form by

IH
h =

1
2

(
Ih

H

)T
:=

1
32

[
−1 0 9 16 9 0 −1

]
(3.5)
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-1/32 9/32 0/32 -1/3216/329/320/32

l

l-1

Figure 3.4: Fourth order restriction for levels l and l − 1.

Notice that the second and the fourth order transfer operators are used inter-
changeably to optimize the performance of the algorithms.

Next, we combine the smoothing procedure and the transfer operators, to con-
struct the multigrid cycle.
In general, a multigrid algorithm consists of the following four elements;

1. Smoothing of the high frequency error components via an iterative method;

2. Approximation of the smooth errors on the coarse grid;

3. Recursive application of (1) and (2) on the sequence of grids as illustrated
in Figure 3.5, until a given stopping criterion is satisfied,

4. A coarse grid correction procedure.

Figure 3.5: A set of nested grids with different mesh sizes. Source: S. Botello 1.

1https://www.osapublishing.org
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Our multigrid solution procedure for solving the discrete PIDE problem (2.10)
is based on the full approximation storage (FAS) framework [17,33,65,68] and the
multigrid fast integration technique presented in [20]. We focus on the nonlinear
FAS framework in view of future applications (nonlinear problems, differential
inequalities).

To illustrate our FAS multigrid strategy, we first focus on the two-grid case,
which involves the fine grid Ωh and the coarse grid ΩH, where H = 2h.

In Ωh, we consider the discretized PIDE equation (2.10) as follows

Ah yh = fh, (3.6)

where yh denotes the solution to this problem.
The main idea of any multigrid strategy for solving (3.6) is to combine a ba-

sic iterative method that is efficient in reducing short-wavelength errors of the
approximate solution to (3.6), with a coarse-grid correction of the fine-grid long-
wavelength solution’s errors that is obtained solving a coarse problem.

We denote the smoothing scheme with S. Specifically, when S is applied to
(3.6), with a starting approximation ym−1

h , it results in ym
h = S(ym−1

h , fh). The
smoothing property is such that the solution error em

h = yh − ym
h has smaller

higher-frequency modes than the error em−1
h = yh − ym−1

h .
In the multigrid solution process, starting with an initial approximation y0

h
and applying S to (3.6) m1-times, we obtain the approximate solution ỹh = ym1

h .
Now, the desired (smooth) correction eh to ỹh, that is required to obtain the

exact solution, is defined by Ah(ỹh + eh) = fh. Equivalently, this correction can
be defined as the solution to

Ah(ỹh + eh) = rh +Ahỹh , (3.7)

where rh = fh −Ahỹh is the residual associated to ỹh.
Next, notice that the structure of Ah and the smoothness of the error function

allow to represent (3.7) on the coarse grid ΩH. On this grid, ỹh + eh is represented
in terms of coarse variables as follows

yH = ÎH
h ỹh + eH , (3.8)

where ÎH
h ỹh represents the restriction of ỹh to the coarse grid by means of the

direct injection operator denoted with ÎH
h .

With this preparation, it appears natural to approximate (3.7) on the coarse
grid as follows

AHyH = IH
h ( fh −Ahỹh) +AHÎH

h ỹh. (3.9)

Notice that this equation can be re-written asAHyH = IH
h fh + βH

h where βH
h =
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AHÎH
h ỹh − IH

h Ahỹh. The term βH
h is the so-called fine-to-coarse defect correction.

Now, suppose to solve (3.9) to obtain yH. Then we can compute eH = yH −
ÎH

h ỹh, which represents the coarse-grid approximation to eh. Notice that while
yH and ÎH

h ỹh need not to be smooth, their difference is expected to be smooth by
construction, and therefore it can be accurately interpolated on the fine grid to
obtain an approximation to eh that is used to correct ỹh. This procedure defines
the following coarse-grid correction step

yh = ỹh + Ih
H(yH − ÎH

h ỹh). (3.10)

In order to damp the high-frequency errors that may arise through the coarse-
grid correction, a post-smoothing is applied. In Algorithm 1, we summarize the
FAS multigrid strategy.

Algorithm 1 Full approximation storage (FAS) scheme

Input: y(0)k , k = l.

1. If k = 1 solve Ak yk = fk exactly.

2. Pre-smoothing steps: y(m)
k = Sk(y

(m−1)
k , fk), m = 1, . . . , m1;

3. Residual computation: rk = fk −Ak y(m1)
k ;

4. Restriction of the residual: rk−1 = Ik−1
k rk;

5. Set yk−1 = Îk−1
k y(m1)

k ;

6. Set fk−1 = rk−1 +Ak−1 yk−1;

7. Call γ times the FAS scheme to solve Ak−1 yk−1 = fk−1;

8. Coarse-grid correction : y(m1+1)
k = y(m1)

k + Ik
k−1

(
yk−1 − Îk−1

k y(m1)
k

)
;

9. Post-smoothing steps: y(m)
k = Sk(y

(m−1)
k , fk), m = m1 + 2, . . . , m1 + m2 + 1;

10. End

3.2 Multigrid fast integration technique

In the fast integration technique, partial kernel evaluation technique is used to ac-
celerate the approximation of the integral term. For the evaluation of the integral
term Iy(x) on each of the N grid points will requireO(N2) operations. To reduce
the complexity of this integration procedure, we perform part of the integration
on coarser grids in such a way that minimal error is added of atmost the order of
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the original fine grid discretization error where we exploit the smoothness of the
kernel k. This is done by replacing some values of the k by interpolations from
the coarser grids.

We illustrate the advantage of the partial kernel evaluation over the full kernel
evaluation in the Figure 3.6. We consider the discretization on different grids with
level k and Nl discrete points per dimension, dim and denoting l as the finest grid
level and k as the coarsest grid level with k ≤ l. Evaluating each and every
discrete point, we get a total of

(
2l + 1

)2 dim
entries. Evaluation on the coarse grid

with level k we get
(
2k + 1

)2 dim
entries. Depending on the depth, depth = l − k

where k ≤ l, we have to evaluate

N2 dim
k

N2 dim
l

=

(
2k + 1

)2 dim

(
2k+depth + 1

)2 dim ≈
(

1
4

)depth·dim
, (3.11)

of the former N2 dim
l points. For example for dim = 2 and considering a depth=2

for l = 5 and k = 3, for the full kernel approximation we have 1.18× 106 evalu-
ations need to be performed and for the partial kernel evaluation we have only
6561 evaluations to be performed. It is evident that this improves the computa-
tional time. Loss of accuracy as a result of use of coarser grids is compensated by
use of higher order transfer operators.

h

h

l=1 (coarse)

l=2 

l=3 (fine)

Figure 3.6: Kernel discretization on different grids Full kernel: Evaluation on l =
3 (81 points)
Fast integration: Evaluation on l = 1 (9 points) and interpolation to
the other 72 points
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The fast integration strategy [20, 52] aims at performing integration mostly on
coarser grids and to interpolate the resulting integral function to the original fine
grid where this function is required.

Now, suppose that the kernel k(x, z) and y are sufficiently smooth (For the
case of singular kernels see [20]). In Ωh, the integral Iy(x) =

∫
Ω

k(x, z)y(z)dz is

approximated by (Ihy)i = h ∑
j

khh
i,j yj. On the other hand, in the strategy of [20],

the kernel is approximated by k̄hh
i,j =

[
Īh

HkhH
i,.

]
j
, where the interpolation operator

Īh
H may be equal to Ih

H. With this setting, we have

(Ihyh)i ≈ (Īhyh)i = h ∑
j

k̄hh
i,j yh,j = h ∑

j

[
Ih

HkhH
i,.

]
j
yh,j

= h ∑
j

khH
i,J

[(
Ih

H

)T
yh

]

J
= H∑

j
khH

i,J yH,J where yH = IH
h yh,

where yH is obtained by coarsening of yh. In particular, using straight injection
and the full-weighted restriction we have yH,J = yh,2J−1. Now, we go a step
further and consider the coarse integral function (IHyH)I = H ∑ kHH

I,J yH,J . This
function is evaluated on the coarse grid and, from the calculation above, it is clear
that it is equal to (Īhyh)i for all i = 2I − 1. Therefore we obtain the following
approximation to the integral function on the fine grid

Ihyh ≈ Ih
H(IHyH) where yH = IH

h yh. (3.12)

In one dimension, the summation complexity on the coarse grid is of orderO(N2/2)
operations, which may still be large. However, assuming that the kernel is suf-
ficiently smooth and using the fact that the coarse-grid summation has the same
structure of the fine-grid summation, the coarsening-summation procedure just
described can be applied recursively, until a grid is reached with O(

√
N) grid

points. On this grid the summation is then actually performed, requiring O(N)

operations. Further, the computational effort of the restriction IH
h yh and of the

interpolation Ih
H(IHyH) is O(2pN), where p is the order of interpolation (p = 2

for linear interpolation). Therefore the order of total work required to obtain the
(approximated) summation is O(N) operations. Moreover, we notice that using
the full integration procedure with Simpson’s rule on the grid with mesh size
H̄ and using fourth order transfer operators, we obtain an approximation to the
integral of order O(H̄4) that corresponds to the accuracy O(h2), since

H̄4 ≈
(

1√
N

)4

=
1

N2 = h2.
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We summarize the fast integration (FI) technique in Algorithm 2, where we
perform full-kernel evaluation when a level k = l − d, with given depth d, is
reached.

Algorithm 2 Fast integration (FI) method.
Input: yk, k = l, d.

1. If size(yk) ≈
√

size(yl) (or k = l − d) then perform FK evaluation,
(Ikyk)I = hdim

k ∑ kkk
i,jyk,j.

2. Restriction: yk−1 = Ik−1
k yk;

3. Call the FI scheme to compute (Ik−1yk−1);

4. Interpolation: Ik
k−1(Ik−1yk−1)

5. End

Our approach is to implement a Gauss-Seidel step for the differential operator,
without updating the integral part of our PIDE operator. It can be appropriately
called a Gauss-Seidel-Picard (GSP) iteration, where the integral is evaluated using
the FI scheme before the Gauss-Seidel step starts.

In the one-dimensional case of (2.1), our smoothing scheme is given by Algo-
rithm 3.

Algorithm 3 Gauss-Seidel-Picard (GSP) scheme

Input: y(0)k ; Iky(0)k .

1. for i = 2 : Nk − 1

2. Compute the dynamic residual:

Rk,i =

(
fk,i +

1
h2

k

(
y(0)k,i+1 − 2y(0)k,i + yk,i−1

)
− (Iky(0)k )i

)

3. Compute: yk,i = y(0)k,i +
(

h2

2

)
Rk,i

4. end

Our multigrid scheme for PIDE problems is given in Algorithm 4. Notice that
this algorithm describes one cycle of the multigrid procedure that is repeated
many times until a convergence criterion is satisfied. In Algorithm 4, the param-
eter γ is called the cycle index and it is the number of times the same multigrid
procedure is applied to the coarse level. A V-cycle occurs when γ = 1 and a
W-cycle results when γ = 2.
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Algorithm 4 Full approximation storage fast integration (FAS-FI) scheme

Input: y(0)k , k = l.

1. If k = 1 solve Ak yk = fk exactly.

2. Perform fast integration to approx. evaluate Iky(0)k ;

3. Pre-smoothing steps: y(m)
k = Sk(y

(m−1)
k , fk), m = 1, . . . , m1;

4. Perform fast integration to approx. evaluate Iky(m1)
k ;

5. Residual computation: rk = fk −Ak y(m1)
k ;

6. Restriction of the residual: rk−1 = Ik−1
k rk;

7. Set yk−1 = Îk−1
k y(m1)

k ;

8. Perform fast integration to approx. evaluate Ikyk−1;

9. Set fk−1 = rk−1 +Ak−1 yk−1;

10. Call γ times the FAS scheme to solve Ak−1 yk−1 = fk−1;

11. Coarse-grid correction : y(m1+1)
k = y(m1)

k + Ik
k−1

(
yk−1 − Îk−1

k y(m1)
k

)
;

12. Perform fast integration to approx. evaluate Iky(m1+1)
k ;

13. Post-smoothing steps: y(m)
k = Sk(y

(m−1)
k , fk), m = m1 + 2, . . . , m1 + m2 + 1;

14. End

Since Algorithm 4, represent one multigrid cycle, in the following Algorithm
5, we summarize the multigrid iterative procedure, where we use a given residual
tolerance as the stopping criterion and Nummaxiter being the maximum number
of V-cycles to be performed.

Algorithm 5 Multigrid iterative procedure.

Input: y(0), residual tolerance, k, l, d, Nummaxiter, m1 and m2, V-cycle=1.

1. while stopping criterion is not satisfied and V-cycle ≤ Nummaxiterdo

2. call FAS-FI procedure

3. V-cycle=V-cycle+1

4. endwhile
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3.3 Local Fourier analysis

In this section, we investigate the convergence of the two-grid version of our FAS-
FI multigrid solution procedure using local Fourier analysis (LFA) [17, 19, 65, 69].
From the early day of multigrid development, A. Brandt introduced a tool for
analyzing a multigrid process, the so called local mode analysis or the local Fourier
analysis . It has proved to be beneficial in developing, analysing and debugging
multigrid algorithms. In its fundamental form, it is used to analyze quantitatively
the smoothing procedures. This smoothing analysis allows judgement to be made
as to whether a given iterative scheme is suitable as a smoothing routine within
a multigrid framework.

In order to ease notation, we consider a one-dimensional case and use h and
H indices to denote variables on the fine and coarse grids, respectively. For the
LFA investigation, we assume that the kernel of the integral term is translational
invariant in the sense that k(x, z) = k(|x− z|) and require that k(|x− z|) decays
rapidly to zero as |x− z| becomes large. With these assumptions the stencil of our
PIDE operator can be cast in the standard LFA framework. However, treating the
fast-kernel evaluation in this framework proves to be too cumbersome. On the
other hand, numerical experiments show that, apart of the different complexity,
the convergence of our multigrid scheme with FI and with FK evaluation are very
similar. Therefore we analyze our two-grid scheme with the latter procedure.

We apply the local Fourier analysis to the two-grid operator for Ahyh = fh. It
is given by

TGH
h = Sm2

h

[
Ih − Ih

H (AH)−1 IH
h Ah

]
Sm1

h , (3.13)

where m1 pre- and m2 post-smoothing steps are considered. The coarse grid oper-
ator is given by CGH

h =
[
Ih − Ih

H (AH)−1 IH
h Ah]. Thus for the coefficient of the θ

Fourier mode in the Fourier space, this action is represented by so called Fourier
symbol. The Fourier symbol corresponding to (3.13) is given by

T̂G
H
h (θ) = Ŝm2

h (θ)
[
Îh − Îh

H(θ) (ÂH(2θ))−1 ÎH
h (θ) Âh(θ)

]
Ŝm1

h (θ). (3.14)

The local Fourier analysis considers infinite grids, Gh = {jh, j ∈ Z}, and there-
fore the influence of boundary conditions is not taken into account. Nevertheless,
LFA is able to provide sharp estimates of multigrid convergence factors. This
analysis is based on the function basis

φh(θ, x) = eiθx/h, θ ∈ (−π, π].

For any low frequency θ0 ∈ [−π/2, π/2), we consider the high frequency mode
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given by
θ1 = θ0 − signum

(
θ0
)

π. (3.15)

We have φh(θ
0, ·) = φh(θ

1, ·) for θ0 ∈ [−π/2, π/2) and x ∈ GH. We also have
φh(θ, x) = φH(2θ0, x) on GH for θ = θ0 and θ = θ1.

The two components φh(θ
0, ·) and φh(θ

1, ·) are called harmonics. For a given
θ0 ∈ [−π/2, π/2), the two-dimensional space of harmonics is defined by

Eθ
h = span[φh(θ

α, ·) : α ∈ {0, 1}].

For each θ and a translational invariant kernel, we assume that the space Eθ
h is

invariant under the action of TGH
h . In fact in our case, the stencil of the discrete

PIDE operator is defined by constant coefficients that do not depend on the choice
of origin of the infinite grid. Now, we study the action of TGH

h on the following
function

ψ(xj) = ∑
α,θ
Aα

θ φh(θ
α, xj), xj ∈ Gh.

Specifically, we determine how the coefficients Aα
θ , θ ∈ [−π/2, π/2) and α =

0, 1 are transformed under the action of the two-grid operator. This requires to
calculate the Fourier symbols of the components that enter in the construction of
this operator.

First, we derive the Fourier symbol of our smoothing operator. For this pur-
pose, we introduce the following Fourier representation of the solution error be-
fore and after one smoothing step. This analysis quantitatively analyzes the re-
duction of high frequency error components on the fine grid on assumption of an
ideal situation where

1. The smoothing does not affect the low frequencies;

2. Low frequencies are approximated well on the coarse grid;

3. There is no iteraction between high and low frequencies error components.

With these assumptions, an estimate of the convergence factor is possible. We
drop the index α as we assume invariance of Eθ

h under the action of the smoothing
operator. Now, the solution errors after the m, and m + 1 iterations are given by

em
j = ∑

θ

Em
θ eiθ j and em+1

j = ∑
θ

Em+1
θ eiθ j, (3.16)

where Em
θ and Em+1

θ denote the error amplitude after m and m+ 1 iterations of the
smoother. Notice that em+1 = Sh em, and thus for the coefficient of the θ Fourier
mode in the Fourier space, this action is represented by Em+1

θ = Ŝh(θ)Em
θ , where

Ŝh(θ) is the so called Fourier symbol of Sh [65].
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Now, consider the following point-wise definition of our GSP iteration ap-
plied to our discretized elliptic PIDE (2.1) on Gh. We have

2
h2 em+1

j − 1
h2 em+1

j−1 =
1
h2 em

j+1 − h
∞

∑
l=−∞

k jlem
l . (3.17)

Notice that, we consider full kernel evaluation on infinite grids l = −∞ to l = ∞.
At this point, recall that k(x, z) = k(|x − z|) and introduce the index n = j − l.
Since we assume that the element k jl = k|j−l| = k|n| becomes very small as n
becomes large, we truncate the sum in (3.17) and consider the following equation

2
h2 em+1

j − 1
h2 em+1

j−1 =
1
h2 em

j+1 − h
L

∑
n=−L

k|n|e
m
j−n. (3.18)

where we assume that the partial sum provides a sufficiently accurate approx-
imation of the integral term on Gh. Specifically, assuming that k(|x − z|) =

exp(−|x− z|2) and requiring that the k|n| = O(10−16) (double precision machine
epsilon) for |n| > L, one should choose L ∝ 1/h. However, in practice, a much
smaller L results in accurate LFA estimates.

Next, in (3.18), we insert (3.16) and obtain

2
h2 ∑

θ

Em+1
θ eiθ j − 1

h2 ∑
θ

Em+1
θ eiθ(j−1) =

1
h2 ∑

θ

Em
θ eiθ(j+1) − h

L

∑
n=−L

k|n|∑
θ

Em
θ eiθ(j−n),

(3.19)
which can be re-written as follows

∑
θ

Em+1
θ

(
2
h2 −

1
h2 e−iθ

)
eiθ j = ∑

θ

Em
θ

(
1
h2 eiθ − h

L

∑
n=−L

k|n|e
−iθn

)
eiθ j. (3.20)

Now, comparing the coefficients of equal frequency modes on both sides of (3.19),
we obtain

Ŝh(θ) :=
Em+1

θ

Em
θ

=

eiθ − h3
L
∑

n=−L
k|n|e−iθn

2− e−iθ . (3.21)

Therefore an appropriate estimate of the smoothing factor of our GSP scheme
is given by

µGSP = max
π
2≤|θ|≤π

(∣∣Ŝh(θ)
∣∣) . (3.22)

With this definition, we obtain a smoothing factor of our GSP scheme given by
µGSP = 0.447 for all mesh sizes as illustrated in the Figure 3.7.
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Figure 3.7: Smoothing factor µGSP for different mesh sizes hk, k = 3, . . . , l.

Next, in order to investigate the two-grid convergence factor, we construct the
Fourier symbol of the two-grid operator. For this purpose, we derive the Fourier
symbol for Ah = −∆h + Ih, applied to a generic vector v with jth component
given by vj = ∑

θ
Vθeiθ j. We have

Ahv|j = ∑
θ

Vθ

(
− eiθ(j+1) − 2eiθ j + eiθ(j−1)

h2 + h
L

∑
n=−L

k|n|e
iθ(j−n)

)
.

Therefore we obtain

Âh(θ) = −2(1− cos(θ))
h2 + h

L

∑
n=−L

k|n|e
−iθn. (3.23)

Now, recall that on the fine grid, we distinguish on the two harmonics. There-
fore, we have the following operator symbols acting on the vector of the two
harmonics

Âh (θ) =

[
Âh (θ0) 0

0 Âh (θ1)
]

and Ŝh (θ) =

[
Ŝh
(
θ0) 0

0 Ŝh
(
θ1)

]
.

On the coarse grid, we have the following

ÂH (2θ) = −2(1− cos(2θ))

H2 + H
L
2

∑
n=− L

2

k|n| e
−i(2θ)n. (3.24)

For the restriction operator since we use the 4th-order operator, we have the fol-
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lowing [69]

IH
h eiθ j =

−eiθ(j−3) + 9eiθ(j−1) + 16eiθ j + 9eiθ(j+1) − eiθ(j+3)

32
,

=

(−e−3iθ + 9e−iθ + 16 + 9eiθ − e3iθ

32

)
eiθ j,

=

(
18 cos(θ) + 16− 2 cos(3θ)

32

)
eiθ j.

Hence
ÎH

h (θ) =
[

18 cos(θ0)+16−2 cos(3θ0)
32

18 cos(θ1)+16−2 cos(3θ1)
32

]
.

For the interpolation operator, we obtain

Ih
Heiθ j =

−eiθ(j−3) + 9eiθ(j−1) + 16eiθ(j) + 9eiθ(j+1) − eiθ(j+3)

16
,

=

(
18 cos(θ) + 16− 2 cos(3θ)

16

)
eiθ j.

Hence

Îh
H (θ) =

[
18 cos(θ0)+16−2 cos(3θ0)

16
18 cos(θ1)+16−2 cos(3θ1)

16

]
.

Now, we are able to compute the two-grid convergence factor as follows

η
(

TGH
h

)
= sup

{
ρ
(

T̂G
H
h (θ)

)
: θ ∈ [−π/2, π/2)

}
, (3.25)

where ρ denotes the spectral radius of the 2× 2 matrix T̂G
H
h (θ).

In Table 3.1, we report the values of the two-grid convergence factor given by
(3.25) for different numbers of pre- and post-smoothing steps, m1, m2. These val-

ues are computed by inspection of the function ρ
(

T̂G
H
h (θ)

)
, which is evaluated

using MATLAB to compute the eigenvalues of the matrix T̂G
H
h (θ) on a fine grid

of θ values, −π
2 ≤ θ ≤ π

2 .
Further in the same table, we compare these values with the value of the ob-

served convergence factor given by

ρ =

∥∥∥rm+1
h

∥∥∥
L2

h∥∥rm
h

∥∥
L2

h

.

This numerical convergence factor represents the asymptotic ratio of reduction
of the L2-norm of the residual between two multigrid cycles. These calculations
refer to the choice k(|x − z|) = exp(−|x − z|2). As shown in Table 3.1, the LFA
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estimates of the multigrid convergence factor are accurate. (The same values of
ηTG are obtained with L ranging from 20 to 400).

Table 3.1: Estimated and observed multigrid convergence factors.

m1, m2 1 2 3 4
ηTG 2.000e-1 4.000e-2 8.000e-3 1.600e-3

ρ 1.347e-1 1.353e-2 9.757e-3 8.653e-3

3.4 Numerical experiments

In this section, we present results of numerical experiments to validate our FAS-
FI multigrid strategy and the LFA theoretical estimates. We demonstrate that
our FAS-FI scheme has O(M log M) computational complexity, where M = N2

denotes the total number of grid points on the finest grid and provides second-
order accurate solutions.

Our first purpose is to validate our accuracy estimates for the discretization
scheme used. For this purpose, we consider an elliptic PIDE problem with a
Gaussian convolution kernel in two dimensions as follows

− ∆y(x) +
∫

Ω

∫

Ω

k(x, z)y(z)dz = f (x), (3.26)

where Ω = (−1, 1)× (−1, 1), x = (x1, x2), z = (z1, z2) and the Gaussian kernel
k(x, z) = exp

(
− (x1−z1)

2+(x2−z2)
2

2

)
.

To investigate the order of accuracy of the discretization scheme, we con-

struct an exact solution to (3.26) by choosing y(x1, x2) = exp
(
− x2

1+x2
2

2

)
. With

this choice, the right-hand side of (3.26) is given by

f (x1, x2) = 2 exp

(
−x2

1 + x2
2

2

)
− (x2

1 + x2
2) exp

(
− x2

1+x2
2

2

)

+
π

4
exp

(
−
(

x2
1
4 +

x2
2
4

))

×
[

erf
(x2

2

)
+ erf

(
2− x2

2

)] [
erf
(

1− x1

2

)
+ erf

(
1 +

x1

2

)]
.

The Dirichlet boundary is also given by the chosen y.
Using the exact solution above, we can validate the accuracy of our finite-

differences and Simpson’s quadrature schemes. In Table 3.2, we report the values
of the norm of the solution errors on different grids. We obtain second-order
accuracy as predicted.
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M ‖y−Y‖h order of accuracy
9× 9 8.60e− 4 1.99

17× 17 2.16e− 4 2.00
33× 33 5.41e− 5 2.00
65× 65 1.35e− 5 2.00

129× 129 3.38e− 6

Table 3.2: L2-norm error using full kernel approximation.

Next, we investigate the FI scheme. For this purpose, we consider the integral
term in (3.26), and compute the norm ‖Ihy− Iy‖h. Notice that we can evaluate
Iy exactly, while Ihy is computed using the full-kernel (FK) evaluation formula
(2.8) and the FI technique involving different depths, d = l − k. For d = 0 the FI
scheme performs FK evaluation.

In Tables 3.3 and 3.4, we report the values of ‖Ihy− Iy‖h and the CPU times
corresponding to different working levels l and different depths. Because we use
a fourth-order quadrature formula, we can see an increase of accuracy of a factor
16 by halving the mesh size and using the FK scheme. On the other hand, increas-
ing the depth of the FI scheme, this scaling factor deteriorates. However, since the
truncation error corresponding to the Laplace operator is of second-order, the re-
duction of accuracy due to the use of the FI scheme with the fourth-order quadra-
ture does not affect the overall solution accuracy of the PIDE problem as shown
in Table 3.5.

M d = 0 d = 1 d = 2 d = 3 d = 4 d = 5
9× 9 FK 3.78e− 5

FI 3.78e− 5 2.12e− 3
17× 17 FK 2.54e− 6

FI 2.54e− 6 7.51e− 5 2.29e− 3
33× 33 FK 1.64e− 7

FI 1.64e− 7 3.89e− 6 7.01e− 5 2.35e− 3
65× 65 FK 1.04e− 8

FI 1.04e− 8 2.42e− 7 3.19e− 6 7.01e− 5 2.38e− 3
129× 129 FK 6.56e− 10

FI 6.56e− 10 1.53e− 8 1.94e− 7 3.11e− 6 7.05e− 5 2.39e− 3

Table 3.3: Solution errors for 2D integral evaluation using 4th-order interpolation
and different depths.
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M d = 0 d = 1 d = 2 d = 3 d = 4 d = 5
9× 9 FK 0.15

FI 0.21 0.06
17× 17 FK 1.99

FI 2.23 0.26 0.06
33× 33 FK 30.22

FI 31.08 2.23 0.22 0.06
65× 65 FK 462.31

FI 469.61 30.32 2.21 0.22 0.06
129× 129 FK 7367.35

FI 7299.60 460.91 30.47 2.21 0.23 0.07

Table 3.4: CPU time (secs.) for 2D integral evaluation using 4th-order interpola-
tion and different depths.

Next, we validate our FAS-FI solution procedure in solving our PIDE prob-
lem. One main issue is how the accuracy of the solution obtained with the FAS-
FI scheme is affected by the approximation of the integral due to the FI proce-
dure. For this purpose, in Table 3.5, we compare the norm of the solution errors
obtained with a FAS scheme with FK calculation and with our FAS scheme in-
cluding the FI technique. We see a moderate degradation of the quality of the
numerical solution while increasing the depth. On the other hand, we notice that
a second-accurate solution is obtained by choosing d corresponding to the first
before the coarsest grid.

M d = 0 d = 1 d = 2 d = 3 d = 4 d = 5
9× 9 FK 8.60e− 4

FI 8.60e− 4 8.39e− 4
17× 17 FK 2.16e− 4

FI 2.16e− 4 2.17e− 4 2.06e− 4
33× 33 FK 5.41e− 5

FI 5.41e− 5 5.41e− 5 5.51e− 5 8.84e− 5
65× 65 FK 1.35e− 5

FI 1.35e− 5 1.35e− 5 1.36e− 5 1.46e− 5 8.64e− 5
129× 129 FK 3.38e− 6

FI 3.38e− 6 3.36e− 6 3.37e− 6 3.45e− 6 4.60e− 6 8.88e− 5

Table 3.5: Solution errors of FAS solution with FK and FI integral evaluation after
5 V-cycles.

For the same experiments as in Table 3.5, we show large speed up in compu-
tational time in Table 3.6. Further, in Figure 3.9, we demonstrate that the compu-
tational complexity of our multigrid procedure isO(M log M) and M = N2 is the
total number of grid points. In Figure 3.8, we depict the convergence history of
the norm of the residuals at a given working level using different numbers of pre-
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and post-smoothing steps, m = 1, . . . , 10, m = m1 + m2, and 5 V-cycle iterations.

M d = 0 d = 1 d = 2 d = 3 d = 4 d = 5
9× 9 FK 0.98

FI 0.95 0.53
17× 17 FK 10.49

FI 10.36 3.27 1.72
33× 33 FK 162.14

FI 161.41 44.33 15.78 8.63
65× 65 FK 2568.89

FI 2574.11 731.88 224.03 84.37 47.75
129× 129 FK 41970.15

FI 41939.82 11237.26 3578.64 1170.72 451.10 263.13

Table 3.6: CPU time (secs.) of FAS-FI solution with 5 V-cycles. In bold are the
values of CPU time actually involved in the multigrid solution scheme.

Figure 3.8: Convergence history of the FAS-FI scheme with different m = m1 + m2, m =
1 (green) to m = 10 (red) along 5 V-cycles of FAS; l = 8, d = 3.
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Figure 3.9: Computational complexity of the FAS-FI method; M = N2.

We complete this section presenting results of experiments with a singular
kernel. We consider an elliptic PIDE in one dimension given by

−∆y(x) +
∫

Ω

log |x− z| y(z)dz = f (x)

where f (x) = 1 for x ∈ Ω := (−1, 1). We further assume homogeneous Dirichlet
boundary conditions for y.

We implement the FAS-FI scheme for this PIDE problem whose integral term
has a singular kernel with one isolated singularity. On the singularity point, we
cannot evaluate the kernel directly. However, we can estimate the integral using
its values on neighbouring points. If the singularity is on one xi of the grid, we
use local averaging k(xi) ≈ 1

2

(
k
(

xi− 1
2

)
+ k

(
xi+ 1

2

))
. In Figure 3.11, we depict

the observed multigrid computational complexity when solving the singular ker-
nel problem and see that complexity appears to match or even improve on the
typical estimate O(M log M). Further, in Figure 3.11 the convergence history of
the multigrid scheme with different pre- and post-smoothing schemes applied to
the singular kernel case is presented.
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Figure 3.10: Computational complexity of the FAS-FI scheme for the PIDE with a
singular kernel.

Figure 3.11: Convergence history of the FAS-FI scheme for a PIDE with singular
kernel.

3.5 Summary and remarks

In this chapter, a multigrid framework for solving elliptic PIDEs was discussed.
The proposed method combines a geometric multigrid scheme for elliptic prob-
lems with a multigrid fast integration technique. By means of local Fourier anal-
ysis, convergence estimates for the proposed multigrid scheme were obtained.
Numerical experiments validated these theoretical estimates. It was shown that
optimal computational complexity is obtained when using our multigrid proce-
dure for solving elliptic PIDEs.



4. Hierarchical matrices

In this chapter, we discuss a hierarchical matrix strategy to solve a convection
diffusion PIDE problem. We give a detailed description of the method and inves-
tigate memory requirements, computational complexity and accuracy of the so-
lutions. We use the hierarchical matrix approach for solving convection-diffusion
PIDE problems in three-dimensions and include an application to a time evolu-
tion jump diffusion process.

Many different discretization schemes for PIDE problems give rise to alge-
braic systems with dense coefficient matrices, and dealing with these dense ma-
trices of order N, requires O(N2) storage space without compression. Matrix op-
erations involving dense matrices are computationally expensive: for an N × N
dense matrix, computational complexity of matrix-matrix multiplication maybe
up to O(N3). To overcome this complexity requirement, the panel clustering
methods [34, 38] and multipole methods [32] were developed in the 1980s. Ex-
tension of the panel clustering method was considered by W. Hackbusch, who
then started the development of the hierarchical matrix (H-matrix) method which
adopts a hierarchical structure. A hierarchical matrix is a matrix whose block in-
dex set has been hierarchically partitioned and whose resulting matrix blocks are
given in factored form whenever the rank of such a block matrix is significantly
smaller than its size. This strategy uses a data sparse representation to approxi-
mate fully populated matrices in certain low rank matrix blocks. This data sparse
representaion of H-matrices has a tree structure called the block structure. Hi-
erarchical matrices have enabled more efficient matrix operations obtained from
the discretization of elliptic PDEs, integral formulations and now to the solution
of classes of PIDEs. In addition to these applications,H- matrices have been used
as efficient preconditioners for iterative processes. In [12, 13, 49] H-LU precondi-
tioners are used in the solution of convection diffusion equations while in [5, 6]
expositions on the use ofH-LU preconditioners are given. In [8,36], theH-matrix
approach is discussed. In H-matrix method, the treatment of fully populated
matrices meets the restrictions on storage and arithmetics to nearly optimal com-
plexity O

(
N (log2 N)γ) for some small γ. H-matrices are based on the fact that,

52
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typical kernel functions are smooth apart from the diagonal, a notion referred to
as asymptotic smoothness [18]. In this chapter, we discuss a strategy for using
H-matrices to obtain solutions of PIDEs with optimal computational complexity.

We consider a convection diffusion PIDE problem of the form

−ε∆y(x) +∇ · (b y(x)) + Iy(x) + λy(x) = f (x), in Ω, (4.1)

y(x) = 0 on Γ.

This model problem is discretized using the CC scheme outlined in Section 2.2.2
and the analysis of this discretization scheme is revisited to incorporate the hier-
archical approximation estimates.

4.1 Construction of Hierarchical matrices

In this section, we discuss the construction of a H-matrix and start by defining
the required terminology.

Definition 16. Let m, n ∈ N and A ∈ Rm×n. If the matrix A is multiplied by any
vector x ∈ Rn, the range of A is obtained i.e. Im(A) := {Ax ∈ Rm, x ∈ Rn}. Now,
the rank of a matrix A ∈ Rm×n is the dimension of the image of A i.e.

rank(A) := dim(Im(A)).

Corollary 17. The rank of A ∈ Rm×n is equal to the number of non-singular values of
A,

rank(A) = |σi|0 < σi ∈ Σ(A)|. (4.2)

If A is a square matrix (m = n), then the rank is also equal to the number of non-zero
eigenvalues

rank(A) = |λi|0 6= λi ∈ Λ(A)|. (4.3)

where λ is the eigen value and Λ is the spectrum(set of all eigenvalues) of A.

We define a set of matrices A ∈ Rm×n having q linearly independent rows or
columns by Rm×n

q := {A ∈ Rm×n : rankA ≤ q}.
Definition 18. A matrix A ∈ Rm×n

q is a matrix of low rank if

q(m + n) < m · n.

Low-rank matrices will always be represented in outer-product form while
entrywise representation will be used for the other matrices.

The closest matrix in Rm×n
q to a given matrix from Rm×n, m ≥ n can be ob-

tained from the singular value decomposition (SVD), A = UΣVH with UHU =

In = VHV and the diagonal matrix Σ ∈ Rn×n with the entries σ1 ≥ . . . ≥ σn ≥ 0.
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Theorem 19 (cf. [8]). Let the SVD A = UΣVH of A ∈ Rm×n, m ≥ n be given. Then
for q ∈N satisfying q ≤ n it holds that

min
M∈Cm×n

q

‖A−M‖F = ‖A− Aq‖F = ‖Σ− Σq‖F,

where Aq := UΣqVH ∈ Cm×n
q and Σq := diag

(
σ1, . . . , σq, 0, . . . , 0

)
∈ Rn×n.

Through inspecting the singular values of A, information on the approxima-
tion error, in terms of the Frobenius norm ‖A − Aq‖2

F = ∑n
l=q+1 σ2

l can be ob-
tained. This is possible if either the maximum rank q of the approximant is pre-
scribed or the relative accuracy ε > 0 is prescribed.

A hierarchical matrix is a matrix whose block index set has been hierarchi-
cally partitioned and whose resulting matrix blocks are given in factored form
whenever the rank of such a block matrix is significantly smaller than its size. In
order to discuss the construction of the H-matrix, we define the following; see,
e.g., [8, 13, 36].

Let I, J ⊂ N be row and column index sets and let Ah =
(
aij
)

i∈I,j∈J ∈ RI×J u
R#I,#J , where #I denotes the cardinality of elements of the set I. A subset P ⊂
P(I × J) of the set of subsets of I × J is a partition if

I × J =
⋃

b∈P

b,

and if
b1 ∩ b2 = ∅,

implying b1 = b2 for all b1, b2 ∈ P where b ∈ P are referred to as index blocks
or blocks. The hierarchical partitioning is a set of several nested partitions and
a H-matrix block partition is a partition consisting of subsets of a hierarchical
partitioning.

The distinction of determining whether matrix blocks of an H matrix are to
be represented in factored form or by full matrices is based on the admissibility
condition. This admissibility condition determines whether a matrix t× s can be
approximated by a low rank matrix.

Definition 20. For two sets of indices t and s, let Xt = {xi|i ∈ t} and Xs =
{

xj|j ∈ s
}

.
On assumption that the kernel is asymptotically smooth [37], the admissibility condition
is given by

min {diam (Xt) , diam (Xs)} ≤ η dist (Xt, Xs) , 0 < η < 1, (4.4)

where
diam(X) = max

xi,xj∈X
|xi − xj|, dist(xi, xj) = min

xi∈Xt,xj∈Xs
|xi − xj|.
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Hence the hierarchical block partition b ∈ PI×J for index sets I and J is admissible
or small if the condition is satisfied i.e. the cardinalities |t| and |s| of t and s satisfy
min{|t|, |s|} ≤ nmin with a given minimal dimension nmin ∈ N otherwise it is inad-
missible.

The admissible matrix block A|t×s can be represented as A|t×s = UVH which
is referred to as outer-product form, [8]. If ui, vi, i, . . . , q denote columns of u and
v respectively, then A = UVH is equivalent to A = ∑

q
i=1 uivH

i . These vectors
ui, vi, i = 1, . . . , q require q(m + n) units of storage.

In order to partition a set of matrix indices I× J hierarchically into sub-blocks,
a rule is required to subdivide the index sets I and J. This leads to the so-called
cluster trees. With these definitions, we discuss the construction of the cluster
tree. Cluster trees are hierarchies of partitions of I and J. For each representation,
we assume that the number n of basis functions is a power of 2

n = 2p for p ∈N.

The candidates t, s for the construction of the partition of I × J are stored in the
cluster tree, TI . The root of the tree TI is the index set I(0)1 := {0, . . . , n− 1}.
The two successors of I(0)1 are given by

I(1)1 :=
{

0, . . . ,
n
2
− 1
}

and I(1)2 :=
{n

2
, . . . , n− 1

}
,

while the two successors of I(1)1 are given by

I(2)1 :=
{

0, . . . ,
n
4
− 1
}

and I(2)2 :=
{n

4
, . . . ,

n
2
− 1
}

and the two successors of I(1)2 are as follows

I(2)3 :=
{n

2
, . . . , 3

n
4
− 1
}

and I(2)4 :=
{

3
n
4

, . . . , n− 1
}

.

Each subsequent node t with more than nmin indices has exactly two successors,
where nmin is the minimum block size. Nodes with not more than nmin indices
are referred to as leaves. The parameter nmin, controls the depth of the tree. For
nmin = 1 gives the maximum depth. The set of leaves of the cluster tree TI is
denoted by L(T1). The number of leaves L(T1) is bounded by |I|/nmin provided
that |t| ≥ nmin, where |I| is the cardinality of I [8]. Ideally a tree TI is called an
index cluster tree if and only if the following properties are satisfied;

1. The root of TI is the index set I.

2. Each node sl ∈ TI is either a leaf or an internal node with children S(sl).
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3. The children of the same parent are pairwise disjoint i.e.

∀jl+1
1 , jl+1

2 ∈ S(il) andjl+1
1 6= jl+1

2 then jl+1
1 ∩ jl+1

2 = ∅.

4. The parent node Sl =
⋃

tl+1∈S(sl)

tl+1.

5. L(TI) forms a partition of I.

Figure 4.1 illustrates the structure of the cluster tree where I1 = {0, 1, 2, 3}.

{0, 1, 2, 3}

{2, 3}

{3}{2}

{0, 1}

{1}{0}

Figure 4.1: Illustration of the Cluster tree, TI .

A given cluster tree along with the admissibility condition allows canonical
construction of a block cluster tree. Let the cluster tree TI be given, we define the
block cluster tree TI×J by the root(T) := I × J and each block t× s ∈ T has the set
of successors

S(t× s) =





∅ if t× s is admissible,

∅ if min {#t, #s} ≤ nmin,

{t′ × s′|t′ ∈ S(t), s′ ∈ S(s)} otherwise

The cluster trees can be used to derive a hierarchy of block partitions of the
I × J corresponding to the matrix, the block cluster tree. The leaves of this tree
form a partition of I × J. Let TI and TJ be cluster trees for the index sets I and
J. The finite tree T is a block cluster tree for TI and TJ if the following conditions
hold

1. root(T) = (root(TI), root(TJ)).

2. Each node b ∈ T has the form b = (t, s) for the clusters t ∈ TI and s ∈ TJ .

3. The label of the node b = (t, s) ∈ T is given by b̂ = t̂× ŝ ⊆ I × J.
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Remark 21. 1. For practical purposes we use nmin > 1, because the outer product
representation does not pay off for small blocks.

2. The number of blocks Nblock(P) = 3n− 2, [36].

3. For a cardinality balanced tree TI as illustrated in Figure 4.2 , the number of nodes
for nmin = 1 is #TI = 2n− 1, [11]. From [8, Lemma 1.4.1], this estimate shows
that the complexity of storing the cluster tree is linear.

{0, . . . , n− 1}

{n2 , . . . , n− 1}

{3n
4 , . . . , n− 1}{n2 , . . . , 3n

4 − 1}

{0, . . . , n
2 − 1}

{n4 , . . . , n
2 − 1}{0, . . . , n

4 − 1}

Figure 4.2: A balanced cluster tree.

{0, . . . , n− 1}

{1, . . . , n− 1}

{2, . . . , n− 1}{1}

{0}

Figure 4.3: An unbalanced cluster tree.

Each block t× s in the tree TI×J can be

1. A leaf.

2. Not a leaf , then the block is decomposed into its sons t′ × s′ with t′ ∈ S(t)
and s′ ∈ S(s).

Figure 4.4 illustrates the structure of a cluster tree where I1× J1 = {0, 1, 2, 3}×
{0, 1, 2, 3}.
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{0, 1, 2, 3} × {0, 1, 2, 3}

{2, 3} × {2, 3}

...
...

...
...

{2, 3} × {0, 1}︸ ︷︷ ︸
Rq

{0, 1} × {2, 3}︸ ︷︷ ︸
Rq

{0, 1} × {0, 1}

{1} × {1}{1} × {0}{0} × {1}{0} × {0}

Figure 4.4: Illustration of the block cluster tree,TI×J

In the following Algorithm 6, we summarize the procedure for obtaining a
block cluster tree TI×J .

Algorithm 6 Construction of the block cluster tree ,TI×J

1. if (t, s) is admissible then
S(t× s) := ∅

2. else
S(t× s) :=

{
t′ × s′| t′ ∈ S(t) and s′ ∈ S(s)

}

3. for t′ ∈ S(t) and s′ ∈ S(s) go to 1

4. end for

5. end if

Definition 22. H−matrix. Let nmin ∈ N0. Let P be a partition of the index set I × J.
Let q : P → N0 be a mapping that assigns a rank q(b) to each block b = b1 × b2 ∈ P.
The set of H-matrices induced by the partition P with a minimum block size nmin is
defined by

H(P, q) :=
{

A ∈ RI×J |∀t× s ∈ P : rank (A|t×s) ≤ q(t× s) or min {#t, #s} ≤ nmin

}
.

(4.5)
The matrix block A|t×s is admissible if b ∈ P is admissible.

4.2 H-matrix arithmetics

H-matrices can be stored in a cheap and efficient way with almost linear amount
of storage. It is important to know whether the same holds for arithmetic op-
erations involving them. The arithmetic operations of H-matrices involve two
strategies, on one hand one can fix the blockwise rank of the intermediate and
the final results, while on the other hand one can fix the approximation error. We
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review the arithmetic operations primarily used in this work, detailed expositions
can be found in [8, 36] and references therein.

Consider aH-matrix having the following block structure

A =

[
At1×t1 At1×t2

At2×t1 At2×t2

]
.

If x =
[

xT
t1

xT
t2

]T
is a partition in the same row way, then one can split the H-

matrix-vector product into four smallerH-matrix vector products

Ax =

[
At1×t1 xt1 At1×t2 xt2

At2×t1 xt1 At2×t2 xt2

]
.

This is repeated down to the leaves through recursion. In the leaves, we have
the form wt = wt + A|t,sxt where w ∈ Rn. If (t, s) is inadmissible then this is a
standard matrix vector product. If (t, s) is admissible we can use the low rank
factorization wt = wt + UVTxt to reduce the complexity of the operation. We
summarize this procedure in the following Algorithm 7.

Algorithm 7H-matrix vector multiplication
A matrix vector multiplication where A ∈ H (TI×I) and x ∈ Rn

Output: Ax = wt ∈ Rn

1. wt = 0;

2. for all t× s ∈ L (TI×I) do

• Compute z = VTxt; Computational cost is O(qn)

• Compute wt = Uz; Computational cost is O(qm)

3. wt = wt + UVTxt; Overall computational cost is O(q(m + n)).

4. end for

Next, we discuss the addition of two hierarchical matrices. The sum of two
hierarchical matrices A, B ∈ H(TI×J , q) is usually in H(TI×J , 2q). Since A and B
have the same structure, it suffices to add the two submatrices in the leaves. In
the inadmissible leaves, we have to add dense matrices as follows

A + B =

[
At1×t1 At1×t2

At2×t1 At2×t2

]
+

[
Bt1×t1 Bt1×t2

Bt2×t1 Bt2×t2

]
,

=

[
At1×t1 + Bt1×t1 At1×t2 + Bt1×t2

At2×t1 + Bt2×t1 At2×t2 + Bt2×t2

]
.
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In the case of approximate addition of two matrices that already contain an error
due to discretization, it is desirable to get a result of blockwise rank q as well.
Truncation step should be performed after addition at a cost of one addition but
a resulting matrix leads to cheaper additions as the block-wise ranks are smaller.

Now, we discuss the inversion of hierarchical matrices. Inversion ofH-matrices
is a delicate issue, first discussed in [37]. Different approaches have been dis-
cussed. In [8], the property that each matrix A ∈ H(TI×J , q) can be subdivided
according to its block cluster tree is exploited (for brevity we drop the t′s).

A =

[
A11 A12

A21 A22

]
.

The exact inverse of A is given by

A−1 =

[
A−1

11 + A−1
11 A12S−1A21A−1

11 −A−1
11 A12S−1

−S−1A21A−1
11 S−1

]
, (4.6)

where S denotes the Schur’s complement S := A22 − A21A−1
11 A12 of A11 in A.

The H-matrix inverse of A is computed by replacing the multiplications and ad-
ditions in (4.6) by H-matrix versions. The complexity of the computation of the
H-inverse is determined by the cost ofH-matrix multiplication.

4.3 Adaptive cross approximation

The adaptive cross approximation (ACA), involves finding the low-rank approx-
imant from a few of the original matrix entries of admissible blocks [8, 58]. The
whole matrix need not be built beforehand and the respective matrix entries are
computed on demand. The rank of the approximation is chosen adaptively. The
SVD scheme would find the lowest rank that is required for a given accuracy.

We focus on a single block A ∈ Rm×n. Essential is to decompose the block A
as follows

A = UqVT
q + Rq,

where Uq ∈ Rm×q,Vq ∈ Rn×q and Rq ∈ Rm×n is the approximation error. If
the norm of Rq is small, then A is approximated by a matrix of rank at most q.
Starting from R0 := A, find a non-zero pivot in Rq−1 say

(
iq, jq

)
and subtract a

scaled outer product of the iq-th row and jq-th column. We have

Rq := Rq−1 −
[(

Rq−1
)

iq jq

]−1 (
Rq−1

)
1:m,jq

(
Rq−1

)
iq,1:n ,
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where
(

Rq−1
)

i,1:n and
(

Rq−1
)

1:m,j are the i-th row and j-th column of Rq−1 respec-
tively. jq should be chosen as the maximum element in the modulus of the iq-th
row as follows

|
(

Rq−1
)

iq jq
| = max

j=1,...,n
|
(

Rq−1
)

iq j |.

Since in the q-th step only entries in the jq-th column and the iq-th column of Rq−1

are used to compute Rq, there is no need to build the whole matrix Rq−1. The
algorithm produces the vectors ul ∈ Rm and vl ∈ Rn, l = 1, . . . , q, from which
the approximant Sq can be formed as follows

Sq =
q

∑
l=1

ulvT
l .

In Algorithm 8, we summarize the ACA scheme. Notice that Algorithm 8 stops
at the qth step after a given relative accuracy ε > 0 has been reached.

Algorithm 8 Adaptive cross approximation (ACA)
Input: Individual entries aij of the matrix A ∈ Rm×n, having an adaptive rank
q < min {m, n}, R0 := A and q := 0.
Output: Factors u =

(
u1, . . . , uq

)
∈ Rm×q, v =

(
v1, . . . , vq

)
∈ Rn×q that yields A ≈ UVH.

1. q = 1.

2. while stopping criterion is not satisfied do.

3. Choose
(
iq, jk

)
= arg max

i,j
|
(

Rq−1
)

i,j | ;

uq = Rq−1ejq ; vq = RH
q−1eiq ;

γq =
((

Rq−1
)

iq,jq

)−1
;

Rq = Rq−1 − γquqvH
q ;

4. q = q + 1.

5. endwhile.

A H-matrix approximation of a fully populated matrix Ah ∈ RI×J for finite
index sets I and J is done first by obtaining block partitions of the matrix index
set I × J and replacing each block b = t × s ⊂ I × J of this partitioning with
a matrix of low-rank q(b). If this rank q(b) is small compared to the number of
indices in t and s then storage requirements are very lower than an approximated
full matrix.

From (4.1), the differential part on discretization gives a sparse matrix while
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the integral term yields a fully populated matrix. We consider seperate approaches
to the construction of H-matrices of the two parts, CH and IH. We convert the
sparse matrix to compressed row storage (CRS) format (see the Appendix A.3)
and convert toH-matrix afterwards. TheH-matrix of the integral operator is im-
plemented directly, where the block entries are computed once the admissibility
condition has been satisfied. Thereafter we add the two H-matrices where addi-
tion of the H-matrix from the sparse matrix only affects the diagonal entries of
theH-matrix from the fully populated matrices. With the coefficient matrix from
(2.20) stored in the H-matrix format, we discuss the strategy to decompose and
obtain the solution of the system of linear equations (2.20).

The gain in storage and computational cost for H-matrices arithmetic oper-
ations, when the matrix Ah is approximated by the H-matrix AH = CH + IH,
originate from the low-rank representations of the admissible blocks. These op-
erations can be performed with almost linear complexity i.e. O(qN log N).

Further, storage gains can be achieved through coarsening techniques. We
discuss the agglomeration of low-rank blocks. This is a procedure of unifying
neighbouring blocks to a single one with the aim of saving memory, for details
see [8]. The coarsening technique that can be applied to the whole H-matrix or a
sub-matrix as shown in the Figure 4.5.

Figure 4.5: AH before and after agglomeration for the meshsize 128× 128 with
their rank distribution.

The integral term in equation (2.3) is the bottleneck of the efficient solution of
the convection diffusion PIDE. In this regard, to address the error due to the H-
matrix approximation IH, we first discuss the efficient H-matrix approximation
of the kernel that leads to an efficient approximation of the whole system. The
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approximation error of the kernel k− k̃ affects the size of the matrix error Ats −
Ãts. We focus on the admissible block b assuming the block b = t× s satisfies the
admissibility condition.

Theorem 23. Let b = t× s, t ⊂ I and s ⊂ J, assuming that

|k(x1, x2)− k̃(x1, x2)| ≤ ε′′, f or all x1 ∈ Xt, x2 ∈ Xs,

then
|aij − ãij| ≤ ε′′, i ∈ t, j ∈ s,

and
‖Ab − Ãb‖F ≤

√
|t||s|ε′′.

Proof. For entrywise estimates for the kernel of the integral

|aij − ãij| ≤ ε′′.

Considering the Frobenius norm, we have

‖Ab − Ãb‖2
F = ∑

i∈t
∑
j∈s
|k− k̃|2

= ∑
i∈t

∑
j∈s
|aij − ãij|2 ≤ |t||s|ε′′2

‖Ab − Ãb‖F =
√
|t||s|ε′′.

Notice that we construct H-matrix approximations of Ch and Ih, separately.
Thus we obtain CH and IH, and AH = CH + IH. From the Theorem 23, we
have that there exist positive constants c′ and c′′ such that ‖Ch−CH‖F ≤ c′ ε′ and
‖Ih−IH‖F ≤ c′′ ε′′. Therefore we have ‖Ah−AH‖F ≤ ε where ε = c′ ε′+ c′′ ε′′.
Next, we discuss theH-matrix solution error estimates.

4.4 H-matrix approximation analysis

In this section, we discuss theH-matrix approximation property where we revisit
solution error estimates from Section 2.2.2. We anticipate some results that we use
to estimate the solution error resulting from theH-matrix approximation.

In our approach, the CCT matrix Ah is being approximated by the H-matrix
AH and, as stated in Theorem 23, for a given accuracy ε it is possible to construct
AH such that the following holds

‖Ah −AH‖F ≤ ε,
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where ‖ · ‖F denotes the Frobenius matrix.
Now, let yh be the solution to the CCT scheme Ahyh = fh and denote with

yHh the solution to AHyHh = fh, and given that the approximation AH = Ah + E ,
‖E‖F = ε and hence

(
Ah + E

)
yHh = fh. Further Ah (yh − yHh

)
= EyHh and hence

utilising the stability of Ah there exists a constant β > 0 such that the following
holds [55]

‖yh − yHh ‖h ≤ β ε, (4.7)

where β depends on the data.
Further notice that the problem AHyHh = fh will be solved by an iterative

scheme that stops whenever a tolerance on the norm of the residual, rh = fh −
AHỹHh , is satisfied, i.e. ‖rh‖ < tol. This means that the iterative procedure pro-
vides the solution ỹHh such thatAHỹHh = fh− rh. Thus, we also haveAH

(
yHh − ỹHh

)
=

rh. Since there is no guarantee on the stability of AH, we use AH = Ah + E and
obtain the following estimate

(
Ah + E

) (
yHh − ỹHh

)
= rh,

and from the Perturbation Lemma [55, Chapter 2], we have the following

‖yHh − ỹHh ‖ ≤ ‖
(
Ah + E

)−1
‖ ‖rh‖,

≤ ‖
(
Ah)−1 ‖

1− ‖
(
Ah
)−1 ‖‖E‖

tol,

≤ β′ tol, (4.8)

where β′ =
‖(Ah)

−1‖
1−‖(Ah)

−1‖‖E‖
.

Notice that, using the generalised minimum residue (GMRes) method [48,57],
with a precondition of accuracy δ, we have ‖rh‖h ≤ cG δ` ‖ fh‖h, where cG > 0 is
independent of h, and ` is the index of the `-th GMRes iterate; see, e.g., [8, Chapter
2].

Now, we can collect our results and prove the following theorem.

Theorem 24. Let y ∈ C4 ([a, b]) be the solution to the PIDE problem (2.3) with k ∈
C2 ([a, b])× C2 ([a, b]) and λ ≥ ρ/2, and ỹHh be the approximate solution to the corre-
spondingH-matrix problem AHyHh = fh obtained after ` ≥ 1 iterations of the precondi-
tioned GMRes scheme, then the resulting solution satisfies the following estimate

‖y− ỹHh ‖h ≤ c1 h2 + c2 ε + c3

(
δ`β′

)
, (4.9)
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for positive constants c1, c2, c3 depending on the data and independent of h.

Proof. Let yh be the solution to Ahyh = fh and yHh be the solution to AHyHh =

fh. Consider the following estimate

‖y− ỹHh ‖h = ‖y− yh + yh − ỹHh + yHh − yHh ‖h

≤ ‖y− yh‖h + ‖yh − yHh ‖h + ‖yHh − ỹHh ‖h.

For the first term, we have the estimate of Theorem 14. The second term is esti-
mated by (4.7). The third term is estimated by (4.8) and the convergence property
of the preconditioned GMRes algorithm. Thus the theorem is proved.

4.5 H-LU factorization

In this section, we consider the matrixAH to construct a suitable LU factorization.
Even though the computational effort of hierachical matrix inversion is relatively
high, it can be done in almost linear complexity provide that the blockwise rank
behaves well. Hierarchical LU decomposition [6, 7, 9] offer a more significantly
efficient alternative. An approximate hierarchical LU (HLU) decomposition is
defined as follows

AH ≈ LHUH,

where the lower and upper triangular matrices LH and UH, respectively, are
stored in H-matrix format. See Figure 4.6. The storage of LH and UH together
is the same as the storage of the matrix AH. The HLU decomposition provides a
more significant strategy to reduce the computational effort than computing the
H-matrix inverse. The hierarchical block structure of the block A|t×t ∈ TI\L (TI)

is exploited.
That is

At×t =

[
At1×t1 At1×t2

At2×t1 At2×t2

]
=

[
Lt1×t1

Lt2×t1 Lt2×t2

] [
Ut1×t1 Ut1×t2

Ut2×t2

]
, (4.10)

where t1, t2 ∈ TI are the sons of t in TI . This LU decomposition on the block At×t

leads to the following problems on the sons of t× t:

(a) Evaluate Lt1×t1 and Ut1×t1 from Lt1×t1Ut1×t1 = At1×t1 ;

(b) Evaluate Ut1×t1 from Lt1×t1Ut1×t2 = At1×t2 ;

(c) Evaluate Lt2×t1 from Lt2×t1Ut1×t1 = At2×t1 ;

(d) Evaluate Lt2×t2 and Ut2×t2 from Lt2×t2Ut2×t2 = At2×t2 − Lt2×t1Ut1×t2 .
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Two scenarios are likely to occur, if a block t× t ∈ L (TI×I) is a leaf, the usual piv-
oted LU decomposition is used, otherwise for (a) and (d), two LU decompositions
of half the size are evaluated. To solve (b), a recursive block forward substitution
is used, see [8]. Similarly, (c) can be solved by recursive block forward substi-
tution. An approximate LU decomposition of A ∈ H (TI×I , q) can be obtained
to a prescribed order of accuracy if the blockwise rank can be guaranteed to be
logarithmically bounded. We summarize the HLU factorization in the following
Algorithm 9.

Algorithm 9H-LU Factorization

1. If At1×t1 or At2×t2 is a full matrix leaf, use full matrix LU factorization;

2. Otherwise apply recursively HLU factorization to At1×t1 to obtain Lt1×t1

and Ut1×t1 ;

3. Solve At1×t2 = Lt1×t1Ut1×t2 with Lt1×t1 to obtain Ut1×t2 ;

4. Solve At2×t1 = Lt2×t1Ut1×t1 with Ut1×t1 to obtain Lt2×t1 ;

5. Apply HLU factorization recursively to Lt2×t2Ut2×t2 = At2×t2 − Lt2×t1Ut1×t2

to get Lt2×t2 and Ut2×t2 .

From [8, Th. 4.3.3], we have that there exist LH and UH such that

‖AH − LHUH‖2 ≤ cond(AH) δ,

where ‖ · ‖2 denotes the matrix spectral norm.
Therefore we can use the HLU decomposition to construct the preconditioner

Cpre = (UH)
−1 (LH)

−1 .

Since we consider a convection-diffusion PIDE, the aim of preconditioning is to
obtain a spectrum of CpreAH which is clustered away form the origin. From the
estimate above, we have

‖I − CpreAH‖2 ≤ c̃ cond(AH) δ.

Notice that using Cpre to precondition the GMRes scheme to solve AHy = fh, for
convergence, the numerical range

F
(

CpreAH
)

: {xTCpreAHx : x ∈ Cn, ‖x‖2 = 1}

of CpreAH is important, see [31]. For the `-th iterate, provided that F
(
CpreAH

)
⊂

Bδ(1) where Bδ(1) is a disc centered 1 with radius δ, then we have the following
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estimate

|xTCpreAHx− 1| = |xT
(

CpreAH − I
)

x1| ≤ ‖I − CpreAH‖2 ≤ c̃ cond(AH) δ.

Hence, we have
‖ fh −AHy(`)‖h ≤ cG δ` ‖ fh‖h,

where ` denotes the `-th GMRes iterate and y(`) denotes the corresponding solu-
tion; see, e.g., [8, Chapter 2].

≈ ×

Figure 4.6: Illustration of HLU decomposition of CH for the mesh size 257× 257.

4.6 Numerical experiments

In this section, we present results of numerical experiments to investigate the
computational performance of our H-matrix solution procedure for our convec-
tion diffusion PIDE problem (2.3) defined on a unit square domain Ω = (0, 1)×
(0, 1). We consider a drift term given by b(x, z) = (x1 + x2, z1 + z2). We choose
ε = 2 and λ = 1, and the kernel of the integral term is given by

k(x, z) = exp
(
−
(
(x1 − z1)

2 + (x2 − z2)
2
))

,

where x = (x1, x2) and z = (z1, z2).
All numerical tests discussed in this section are performed on an Intel core

i5 2.4GHz processor with 4GB core memory. For the H-matrices calculation, we
use the C++ library ‘Another software library on Hierarchical matrices for Elliptic
Differential equations’ (AHMED) with no parallelization.

In the first set of experiments, we validate the performance of the H-matrix
approach in terms of the memory data usage, the compression rate, the mem-
ory increment and the results from the agglomeration of the matrices of the ap-
proximation of the kernel of the integral term. In this calculation, we choose a
prescribed accuracy for theH-matrix approximation given by ε = 10−4, the min-
imum block size nmin = 15 and ηint is the cluster parameter for the approxima-
tion of the kernel and the integration procedure, while ηpre is cluster parameter
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for the preconditioning procedure. They are chosen differently in a bid to bal-
ance between computational requirements and the accuracy of the solutions. For
the HLU preconditioning, we set the accuracy δ = 0.1. The compression rate is
computed as follows

Compression rate (%) =
Memory consumption

Original memory
× 100,

where the memory consumption corresponds to the storage of the H matrix,
while the original memory refers to the storage requirement of the CCT matrix of
coefficients. The same rate can be defined for the single components of the PIDE
operator.

In the Tables 4.1 and 4.2, we report results of the computational effort for the
H-matrix approximation of the Fredholm integral operator for different ηint. We
see that the H-matrix approach has an almost linear storage requirement and
optimal computational complexity as depicted in column five of the tables. In
the Tables 4.3 and 4.4, similar results are presented for the case where the ag-
glomeration procedure is used for different values of ηint. For the agglomeration
procedure, an almost linear storage requirement and optimal computational com-
plexity is realized. This can be seen in the fifth columns of the tables.

Table 4.1: Computational requirements for the kernel approximation with ηint =
0.8.

N × N Memory(MB) Time(sec) Compression
rate ( %)

Increment
ratio of

Memory
Leaves

∥∥IH
∥∥

F

33× 33 3.00 0.03 85.11 - 526 0.7121
65× 65 12.63 0.15 21.01 4.21 3790 0.7380

129× 129 58.22 0.66 5.87 4.61 20767 0.7510
257× 257 262.11 3.05 1.63 4.50 93532 0.7564
513× 513 1150.06 14.48 0.44 4.39 403474 0.7607

1025× 1025 4899.92 71.19 0.12 4.26 1701871 0.7612
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Table 4.2: Computational requirements for the kernel approximation with ηint =
3.0.

N × N Memory(MB) Time(sec) Compression
rate ( %)

Increment
ratio of

Memory
Leaves

∥∥IH
∥∥

F

33× 33 0.67 0.01 18.86 - 130 0.7004
65× 65 2.91 0.05 4.85 4.34 610 0.7381

129× 129 12.62 0.17 1.27 4.34 2719 0.7364
257× 257 53.73 0.74 0.33 4.26 11512 0.7408
513× 513 232.79 3.55 0.09 4.33 46186 0.7608

1025× 1025 973.04 15.00 0.02 4.18 189331 0.7610

Table 4.3: Computational performance of the agglomeration procedure with
ηint = 0.8.

N × N Memory(MB) Time(sec) Compression
rate ( %)

Increment
ratio of Memory

33× 33 1.06 0.19 30.19 -
65× 65 4.76 0.79 7.92 4.49

129× 129 19.84 1.48 1.99 4.17
257× 257 94.18 6.03 0.58 4.75
513× 513 378.77 34.18 0.15 4.02

1025× 1025 1498.23 361.09 0.04 3.96

Table 4.4: Computational performance of the agglomeration procedure with
ηint = 3.0.

N × N Memory(MB) Time(sec) Compression
rate ( %)

Increment
ratio of Memory

33× 33 0.63 0.01 17.92 -
65× 65 2.79 0.03 4.64 4.43

129× 129 12.07 0.11 1.22 4.33
257× 257 50.25 0.52 0.31 4.16
513× 513 215.55 2.38 0.08 4.29

1025× 1025 894.66 11.61 0.02 4.15

Next, we apply the H-matrices framework to implement a HLU precondi-
tioned GMRes [13, 48] and perform iterations until the given residual tolerance
is reached. Our GMRes algorithm, (see the Appendix A.2), uses the Arnoldi
method (Gram-Schmidt process of orthonomalization) to construct the orthonor-
mal basis of the Krylov space; see [4, 57] for all details. As an initial guess for
the numerical solution of our PIDE problem, we choose the zero function. With
this setting, we solve our PIDE problem assuming an exact solution given by
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y(x1, x2) = sin(2πx1) sin(2πx2) with which we determine the source term f by
substitution in the continuous model.

In Table 4.5, we report on the L2-norm of the solution error for different sizes
of our problem. We see that a second-order of accuracy of the numerical solution
is reached. This result suggests that the leading error in the estimate (4.9) of
Theorem 24 is related to the CCT discretization.

Table 4.5: L2-norm of solution errors.

N × N
∥∥y− ỹHh

∥∥
L2

h
33× 33 1.041e-2
65× 65 2.283e-3

129× 129 5.634e-4
257× 257 1.267e-4
513× 513 3.055e-5

1025× 1025 7.248e-6

For the experiments of Table 4.5, the GMRes algorithm has a required toler-
ance of tol = 10−10. For this experiment, we report in Tables 4.6 and 4.7 the
corresponding memory requirements and the computational time for precondi-
tioning for different values of ηpre. Notice that the number of iterations (#It) and
the increment ratio of the memory of the preconditioned GMRes algorithm for
solving our PIDE problem demonstrate optimal complexity of our solution pro-
cedure. Notice that a balance between the parameters ηint, ηpre, ε and δ leads to
improved computational complexity.

Table 4.6: Computational effort for computing the H-matrix solution to the CCT
PIDE problem with ηint = 0.8, ε = 1e−4 and ηpre = 0.7.

N × N Precond:
Memory(MB)

Precond:
Time(sec)

Increment
ratio of Memory #It GMRes:

time(sec)
33× 33 0.95 0.02 - 4 0.002
65× 65 4.85 0.22 5.11 4 0.01

129× 129 25.29 1.53 5.21 4 0.07
257× 257 135.91 9.36 5.37 5 0.40
513× 513 735.96 65.51 5.41 7 2.70
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Table 4.7: Computational effort for computing the H-matrix solution to the CCT
PIDE problem with ηint = 0.8, ε = 1e−4 and ηpre = 0.3.

N × N Precond:
Memory(MB)

Precond:
Time(sec)

Increment
ratio of Memory #It GMRes:

time(sec)
33× 33 0.95 0.02 - 4 0.002
65× 65 5.41 0.36 5.69 4 0.03

129× 129 29.71 3.35 5.49 5 0.13
257× 257 161.51 23.55 5.43 7 0.86
513× 513 807.51 140.91 4.99 9 6.19

We conclude our series of experiments on two-dimensional PIDE problems
showing a comparison of computational performance of ourH-matrices method
with our multigrid approach [28, 29]. For this purpose, we solve our convection-
diffusion PIDE problem (4.1) with the setting given above and the function f
corresponding to the chosen exact solution y(x, z) = sin(2πx) sin(2πz). Thus in
Table 4.8, we present results of the accuracy of the numerical solution obtained
with the H-matrices and multigrid procedures corresponding to different mesh
sizes.

Notice that this comparison should take into account the different implemen-
tation ’languages’ for the two methods: C++ for theH-matrices scheme; MATLAB

for the multigrid scheme.

Table 4.8: Computational time (secs) and L2-norm of solution errors of aH-matrix
method and Multigrid method.

N × N
H-matrices:

(C++)
Time(sec)

∥∥y− ỹHh
∥∥

L2
h

MG V-cycle:
(MATLAB)
Time(sec)

‖y− yh‖L2
h

17× 17 0.03 6.92e-2 1.35 6.62e-3
33× 33 0.27 1.04e-2 6.95 1.64e-3
65× 65 1.11 2.28e-3 40.44 4.10e-4

129× 129 4.28 5.63e-4 260.71 1.03e-4

Next, we extend the H-matrix solution to a three-dimensions (3D) case of the
convection-diffusion PIDE problem (4.1). The discretization is as aforementioned,
where we use the CC scheme and the trapezoidal rule. We adopt a similar pro-
cedure to the H-matrix of the two-dimension case of (4.1). We consider a unit
cuboid domain and choose the drift term to be b(x, z, r) = (x1 + x2 + x3, z1 + z2 +

z3, r1 + r2 + r3), ε = 2, and λ = 1 and the integral kernel is given by

k(x, z) = exp
(
−
(
(x1 − z1)

2 + (x2 − z2)
2 + (x3 − z3)

2
))

,

where x = (x1, x2, x3) and z = (z1, z2, z3).
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In Tables 4.9 and 4.10, we report results of the computational effort for the
H-matrix approximation of the Fredholm integral operator for different values of
ηint. We see that the H-matrices approach has an almost linear storage require-
ment and optimal computational complexity as depicted by the increment ratio
of the memory . In Tables 4.11 and 4.12, similar results are presented for the case
where the agglomeration procedure is used with different values of ηint .

Table 4.9: Computational requirements for the 3D kernel approximation with
ηint = 2.0 and ε = 1e− 2.

N × N × N Memory
(MB)

Time
(sec)

Compression
rate ( %)

Increment ratio:
Memory Leaves

∥∥IH
∥∥

F

17× 17× 17 7.99 0.13 18.38 - 3586 0.5368
33× 33× 33 73.80 1.11 2.18 9.24 20983 0.6002
65× 65× 65 643.16 11.31 0.27 8.71 106864 0.6339

129× 129× 129 5409.16 113.16 0.03 8.41 660547 0.6509

Table 4.10: Computational requirements for the 3D kernel approximation with
ηint = 3.0 and ε = 1e− 2.

N × N × N Memory
(MB)

Time
(sec)

Compression
rate ( %)

Increment ratio:
Memory Leaves

∥∥IH
∥∥

F

17× 17× 17 3.43 0.07 7.90 - 1348 0.5362
33× 33× 33 42.78 0.66 1.26 12.47 10039 0.6020
65× 65× 65 371.20 6.46 0.16 8.68 52234 0.6364

129× 129× 129 3016.89 58.95 0.02 8.13 327757 0.6505

Table 4.11: Computational performance for the agglomeration procedure with
ηint = 2.0 and ε = 1e− 2.

N × N × N Memory
(MB)

Time
(sec)

Compression
rate ( %)

Increment ratio:
Memory

17× 17× 17 2.77 0.23 6.37 -
33× 33× 33 32.44 0.98 0.96 8.60
65× 65× 65 274.21 7.19 0.11 8.45

129× 129× 129 2167.63 111.67 0.01 7.91
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Table 4.12: Computational performance for the agglomeration procedure with
ηint = 3.0 and ε = 1e− 2.

N × N × N Memory
(MB)

Time
(sec)

Compression
rate ( %)

Increment ratio:
Memory

17× 17× 17 2.14 0.06 4.93 -
33× 33× 33 26.77 0.37 0.79 12.49
65× 65× 65 245.02 2.29 0.10 9.15

129× 129× 129 1774.57 44.78 0.01 7.24

In Table 4.13, we report results on the computational performance of the H
matrices scheme. It is noticeable that the computational complexity improves on
refinement of the grid.

Table 4.13: Computational effort for computing the H-matrix solution to the
three-dimensional CCT PIDE problem with ηint = 2.0, ε = 10−2,
δ = 0.1 and ηpre = 0.7.

N × N × N Precond:
Memory(MB)

Precond:
Time(sec) #It GMRes:

time(sec)
9× 9× 9 0.31 0.01 6 0.002

17× 17× 17 6.17 0.59 9 0.04
33× 33× 33 88.84 16.18 15 0.76
65× 65× 65 1128.83 318.61 26 16.10

Next, we discuss results of numerical experiments where we use our CCT
H-matrix scheme to solve the time evolution of the probability density function
(PDF) of a stochastic jump-diffusion process. We refer to [3, 30] for all details
concerning these processes and the formulation of the following Fokker-Planck-
Kolmogorov problem

∂ty = ε∆y−∇ · (b y) + λ Iy− λ y + f in Q = Ω× (0, T),

y(x, 0) = y0(x) in Ω× {t = 0}, (4.11)

y(x, t) = 0 on Γ× (0, T].

Notice that zero Dirichlet boundary conditions correspond to absorbing barriers
for the stochastic process. In the model (4.11) with f = 0, the function y represents
the PDF of a jump-diffusion process with drift b and dispersion

√
2ε. In this

model, λ denotes the rate of the time events of the compound Poisson process
and the kernel k(x, z) = k(x − z) represents the PDF of the sizes of its jumps.
We add the source-term f to easily define an exact solution for validating our
solution procedure.

Now, we consider the semi-discretization in time of (4.11) by an implicit Euler
scheme on a time grid with time step δt = T

M , where M is a positive integer. Let
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denote each time step tn = nδt, n = 0, 1, . . . , M. With this setting, one can easily
verify that at the time step tn the following boundary value problem needs to be
solved

−ε∆yn +∇ · (b yn)− λ Iyn +

(
λ +

1
δt

)
yn =

1
δt

yn−1 + f , in Ω,

y = 0, on Γ,

where the function yn−1 denotes the solution at the previous time step. Notice
that this problem has a structure similar to (4.1), the only difference being the sign
in front of the integral. However, the integral operator is bounded and therefore,
with appropriate adaptation, we can use the error estimates in Theorem 14 and
the numerical analysis tools in [47] to prove that the Euler-CCT solution to (4.11)
has an accuracy of O(h2 + δt).

We perform experiments with (4.11) approximated by our Euler-implicit CCT
H-matrices scheme. We consider a unit square domain and choose the drift term
to be b(x, z, t) = (x1 + x2, z1 + z2), ε = 2 and λ = 1, further we take T = 1.
The kernel is as in the previous experiment with a normalisation coefficient equal
to 1/(π

√
2). To validate our algorithm, we assume an exact solution given by

y(x, z, t) = sin(2πx) sin(2πz) sin(2πt). Certainly, this function cannot represent
a PDF, however it is appropriate to test the accuracy of the solution and facilitates
the computation of the corresponding source term.

In Figure 4.7, we present the values of the discrete L2(Q)-norm of the solu-
tion error for different meshes with subsequent relative refinement of h2 + δt that
scales by a factor of four. We see that the numerical accuracy improves by refine-
ment as predicted. In Figure 4.8, we depict the computational time and memory
requirements of the HLU preconditioner and of the GMRes solver for solving our
time dependent PIDE problem.
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Figure 4.7: Logarithmic plot of the L2(Q)-norm of the solution error (Green and
�) against h2 + δt depicted in (Red and �).

Figure 4.8: Computational requirements for the H-matrices GMRes scheme. It is
plotted: the precondition time (sec; Green and ∗); precondition stor-
age (MB; Red and �), and GMRes time (sec; Blue and4).

4.7 Summary and remarks

A hierarchical matrix approach to the solution of convection-diffusion partial
integro-differential problems was discussed. The convection-diffusion differen-
tial operator was discretized by using a second-order positive finite-volume scheme,
while the integral term was approximated by the trapezoidal quadrature rule,
thus resulting in a sparse matrix and a fully populated matrix, respectively. For
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solving this problem, aH-matrix approximation of these two operators was com-
puted separately and assembled together to define the corresponding H-matrix
problem. Further, the H-matrix framework was used to develop a LU precon-
ditioner which was used by a GMRes scheme. An application of the proposed
methodology to a three dimensional problem was considered as well and results
included. Numerical analysis estimates of the accuracy of the finite-volume dis-
cretization and trapezoidal rule approximation were combined with estimates of
theH-matrix approximation and with the accuracy of the GMRes iterates.

Results of numerical experiments were presented that successfully validated
the theoretical estimates and the optimal computational complexity of the pro-
posed H-matrix approach also in the three-dimensional case and in a time de-
pendent setting.



5. PIDE Optimal control problems

Since the pioneering works of J.L. Lions [51], numerous results concerning the
formulation and analysis of optimal control problems governed by partial differ-
ential equations (PDEs) have been published ; see, e.g. [16, 41, 64] and references
therein. However, during these five decades, much less has been done for the
investigation of control problems where the differential constraint is given by a
partial-integro differential equation. One reason for this situation may be the dif-
ficulty in numerically solving the resulting optimality systems, since the presence
of a Fredholm integral term results in non-sparse algebraic problems that are dif-
ficult to solve. On the other hand, in the recent past, multigrid techniques have
been developed [16] that allow to solve different PDE-based optimal control prob-
lems with optimal computational complexity. Moreover, in a seperate research
field, efforts have been put in developing multigrid techniques that solve multi-
dimensional integral problems with optimal complexity [20, 33, 52]. The purpose
of this chapter is to discuss the extension of our multigrid and fast integration
strategy to solve an optimal control problem governed by a convection-diffusion
PIDE model. The choice of this problem is motivated by the fact that its solution
leads to consider a coupled system of PIDEs that provide a benchmark to validate
our multigrid strategy in this case.

We consider a control u that is chosen among a family of admissible controls
Uad, while the state of the system y that depends on the control is given by the
solution of the following PIDE problem

−ε∆y +∇ · (b y) + Iy + λy = f + u, in Ω,

y = 0 on Γ,

u ∈ Uad.

In this framework, the purpose of the control is modelled by the function J :
Y×U → R+ ∪ {0} to be minimized. J is referred to as the objective function and

77
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we consider an objective function of the tracking type given by

J(y, u) :=
1
2
‖y− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) , (5.1)

where yd ∈ L2(Ω) is the desired state and Uad is the set of admissible controls.
The term 1

2 ‖y− yd‖2
L2(Ω) is referred to as the tracking term. The parameter ν > 0

is used to weight the L2-norm of the control. The main focus of our work is the
development of a computational tool that allows to solve the optimality system
of this control-constrained convection-diffusion PIDE optimal control problem.

5.1 A PIDE optimal control problem

We consider an optimal control problem given by





min J(y, u)

−ε∆y +∇ · (b y) + Iy + λy = f + u, in Ω,

y = 0 on Γ,

u ∈ Uad,

(5.2)

where Ω is a convex, bounded and open set in R2, with Lipschitz boundary Γ.
The integral term

Iy(x) =
∫

Ω

k(x, z)y(z)dz,

with x, z ∈ Ω, is a Hilbert-Schmidt integral operator with a symmetric positive
semi-definite Hilbert-Schmidt kernel k ∈ L2 (Ω×Ω). We chose f ∈ L2(Ω), the
diffusion coefficient ε > 0, λ > 0, and the drift b = (b1, b2) is a smooth vector-
function in Ω̄ = Ω ∪ Γ.

Further, we chose a bounded closed convex set of admissible controls in L2(Ω)

given by
Uad =

{
u ∈ L2(Ω)| u ≤ u ≤ u a.e. in Ω

}
, (5.3)

where, u < u and u, u ∈ R.

In (5.2), we consider the minimization of the quadratic cost functional of track-
ing type given by (5.1).

We denote the dependence of the state y on the control u by y = y(u) and
the map u → y(u) from L2(Ω) to H1

0(Ω) ∩ H2(Ω) is affine and continuous. We
denote the first derivative of y with respect to u in the direction δu by y′(δu). The
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reduced cost functional Ĵ is given by

Ĵ(u) = J(y(u), u). (5.4)

The mapping u → Ĵ(u) is Frechét differentiable and the second derivative is
given by

Ĵ′′(u)(δu, δu) =
∥∥y′(δu)

∥∥2
L2(Ω) + ν ‖δu‖2

L2(Ω) .

It follows that u→ Ĵ(u) is uniformly convex if ν > 0. This implies the existence of
a unique solution u∗ to (5.2) and this solution is characterised by Ĵ′(u∗)(δu) ≥ 0.

To formally obtain the necessary optimality conditions, we use the Lagrange
approach [51, 64] and consider the following Lagrange function

L(y, u, p) = J(y, u) +
∫

Ω

[−ε∆y +∇ · (by) + Iy + λy− u− f ] p dx, (5.5)

where p represents the adjoint variable.
Taking the variations with respect to y, u, and p, one obtains the first-order

optimality conditions for (5.2) as follows

−ε∆y +∇ · (by) + Iy + λy = f + u in Ω,

y =0 on Γ,

−ε∆p− b∇p + I p + λp =− (y− yd) in Ω,

p =0 on Γ,

(νu− p, v− u)L2(Ω) ≥0 ∀v ∈ Uad.

(5.6)

The first equation is called the state equation, the second equation is called the
adjoint equation, which has the same structure as the state equation, henceforth
for a given y, yd ∈ L2(Ω) there exists unique p ∈ H1

0(Ω) ∩ H2(Ω); see Section
2.1. The inequality in (5.6) is referred to as the optimality condition. This varia-
tional inequality can be conveniently reformulated as illustrated in the following
theorem.

Theorem 25 (cf. [64]). Let PUad : L2(Ω)→ Uad be a pointwise projection

PUad(u) := max {u, min {u, u}} . (5.7)

If ν > 0, then (νu− p, v− u)L2(Ω) ≥ 0 is equivalent to the equation

u = PUad

{
1
ν

p(u)
}

,

where p ∈ H1
0(Ω) ∩ H2(Ω) represents the weak solution to the adjoint equation corre-
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sponding to y = y(u).

Lemma 26. The reduced functional Ĵ(u) is differentiable and its derivative is given by

Ĵ′(u)(δu) = (∇ Ĵ(u), δu)L2(Ω) = (νu− p, δu)L2(Ω)

where ∇ Ĵ(u) denotes the L2(Ω) reduced gradient and p is as in Theorem 25.

Next, we discuss the discretization of the optimality system.

5.2 Discretization of the PIDE optimality system

In this section, we discuss the approximation of the optimality system (5.6). The
diffusion and convection terms in the state and adjoint equations are discretized
using the Chang and Cooper scheme and its transpose while the integral func-
tions are approximated by using the Simpson’s quadrature rule. Setting h = b−a

N−1
be the mesh size and consider an equidistant grid. We denote the mesh points
xi = a + (i − 1)h, i = 1, . . . , N, and zj = a + (j− 1)h, j = 1, . . . , N. These grid
points define the following grid

Ωh = {Zij = (xi, zj) ∈ R2 : i, j = 2, . . . , N − 1} ∩Ω.

Further, the functions in the spaces L2(Ω) and H1(Ω) are approximated by
the grid functions defined through their mean values with respect to the elemen-
tary cells

[
x1 − h

2 , x1 +
h
2

]
×
[

x2 − h
2 , x2 +

h
2

]
. With this setting, we have two re-

striction operators: the operator Rh denotes a mapping Rh : H1(Ω) → H1
h and

R̃h : L2(Ω)→ L2
h; see [14, 35, 47] for more details.

The governing model is approximated as follows (notice that the solution y is
zero at the boundary)

− Âijyi+1,j− B̂ijyi−1,j + Ĉijyi,j− D̂ijyi,j+1− Êijyi,j−1 + h2
N−1

∑
l=2

N−1

∑
m=2

r(l, m)k(zij, zlm)y(zlm)

= fi,j + ui,j, (5.8)

where i, j = 2, . . . , N − 1, and the coefficients are given by

Âij =
1
h

[ ε

h
− (1− δ

j
i )b1

]
, B̂ij =

1
h

[ ε

h
+ δ

j
i−1b1

]
,

Ĉij =

(
1
h

([ ε

h
+ δ

j
i b1

]
+
[ ε

h
− (1− δ

j
i−1)b1

]
+
[ ε

h
+ δi

jb2

]
+
[ ε

h
− (1− δi

j−1)b2

])
+ λ

)
,

D̂ij =
1
h

[ ε

h
− (1− δi

j)b2

]
, Êij =

1
h

[ ε

h
+ δi

j−1b2

]
.
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The algebraic problem given by (5.8) and including homogeneous Dirichlet
boundary conditions can be formulated in the following matrix notation

Ah yh = fh + uh, (5.9)

whereAh is a (N− 1)2× (N− 1)2 block dense matrix, and yh, uh, and fh represent
the numerical approximation of y, u, and f on Ωh.

Next, we discuss the approximation of the adjoint equation. Analogous to the
state equation, we can combine the CC scheme and the Simpson’s quadrature
rule to approximate our adjoint equation as follows

− âij pi+1,j− b̂ij pi−1,j + ĉij pi,j− d̂ij pi,j+1− êij pi,j−1 + h2
N−1

∑
l=2

N−1

∑
m=2

r(l, m)k(zij, zlm)p(zlm)

= −
(

yi,j − ydi,j

)
, (5.10)

where i, j = 2, . . . , N − 1, and the coefficients are given by

âij =
1
h

[ ε

h
+ (1− δ

j
i )b1

]
, b̂ij =

1
h

[ ε

h
− δ

j
i−1b1

]
,

ĉij =

(
1
h

([ ε

h
− δ

j
i b1

]
+
[ ε

h
+ (1− δ

j
i−1)b1

]
+
[ ε

h
− δi

jb2

]
+
[ ε

h
+ (1− δi

j−1)b2

])
+ λ

)
,

d̂ij =
1
h

[ ε

h
+ (1− δi

j)b2

]
, êij =

1
h

[ ε

h
− δi

j−1b2

]
.

In [2, 56], it is shown that the transpose of the CC scheme for the convection-
diffusion operator appearing in our governing model (5.2) provides a suitable
approximation of the corresponding adjoint equation. The discretization of the
adjoint equation is a delicate issue since it directly influences the accuracy of
the optimization gradient. We follow the discretize-before-optimize strategy (see,
e.g., [16]) for the derivation of the discrete adjoint equation starting from the dis-
crete Lagrange function. This derivation is discussed in detail in [2]. The result
above is a direct result of considering the Lagrange function (5.5) in discrete form
and performing discrete integration by parts with respect to the flux increment.
Therefore starting from (∇F, p), we have

N−1

∑
i,j=2

(
Fi+1/2,j − Fi−1/2,j

)
pi,j =

N−1

∑
i,j=1

(
Wi+1/2,jyi+1,j − Ti+1/2,jyi,j + Wi−1/2,jyi,j − Ti−1/2,jyi−1,j

)
pi,j, (5.11)
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and likewise in the j-th direction where

Wi+1/2,j =
ε

h
− (1− δ

j
i )bi+ 1

2 ,j and Wi−1/2,j =
ε

h
− (1− δ

j
i−1)bi− 1

2 ,j,

and
Ti+1/2,j =

ε

h
+ δ

j
i bi+ 1

2 ,j and Ti−1/2,j =
ε

h
+ δ

j
i−1bi− 1

2 ,j.

We recast the summation to collect the terms yij as follows

N−1

∑
i,j=1

Wi+1/2yi+1,j pi,j →
N

∑
i,j=2

Wi−1/2yi,j pi−1,j, (5.12)

and
N−1

∑
i,j=1

Ti−1/2,jyi−1,j pi,j →
N

∑
i,j=2

Ti+1/2,jyi,j pi+1,j, (5.13)

On simplification and incorporating the zero boundary conditions we have the
following

N−1

∑
i,j=2

(
Fi+1/2,j − Fi−1/2,j

)
pi,j

=
N−1

∑
i,j=2

(
Wi−1/2 pi−1,j − Ti+1/2,j pi,j −Wi−1/2 pi,j + Ti+1/2,j pi+1,j

)
yi,j, (5.14)

and likewise in the j-th direction.
Now taking the derivative with respect to yij, we obtain that the discrete adjoint
equation is the transpose of the state equation discretized with the CC scheme.

Summarizing, the approximation of the adjoint equation results in the follow-
ing linear algebraic problem

Ah,T ph = gh, (5.15)

where Ah,T is a (N − 1)2 × (N − 1)2 block dense matrix and T denotes transpose
and gh = −(yh − R̃hyd) as discussed below.

In the discretize-before-optimize framework, we can start by formulating the
following discrete optimal control problem





min 1
2

∥∥yh − R̃hyd
∥∥2

L2
h
+ ν

2 ‖uh‖2
L2

h
,

−ε∆hyh +∇h(b · yh) + Ihyh + λyh = uh + R̃h f ,
(5.16)

where uh ∈ Uadh = Uad ∩ L2
h.

Now, let u∗h denote the unique optimal solution to (5.16) and y∗h = yh(u∗h) is
obtained by solving the discretized PIDE model (5.8). Thus, the optimality system
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for (5.16) is given by

Ah yh = uh + R̃h f ,

Ah,T ph = R̃hyd − yh,

(νuh − ph, vh − uh) ≥ 0, ∀vh ∈ Uadh.

(5.17)

We conclude this section with remarks concerning the accuracy of the opti-
mal solution to (5.17). Notice that no results are available that apply directly to
our case, since we use the finite-volume CC scheme and not the much studied
cases using the finite-element method [41,71], and our model has also an integral
term. However, our optimal control formulation and our discretization frame-
work have many similarities with [10]. For this reason and based on previous ex-
perience [14], we may argue that in our case, for solutions where the constraints
on the control are active, an accuracy of the optimal control of order 3

2 in the
L2

h-norm can be expected.
On the other hand, if we assume that the control constraints are not active,

then we can show that a second-order accurate solution is obtained with our ap-
proximation scheme. For this purpose, notice that in the case of inactive control
constraints, the optimal solution satisfies νuh = ph and we can eliminate uh in the
state equation in (5.17). Thus, we obtain the following optimality system

Ah yh − ph/ν = R̃h f ,

Ah,T ph + yh = R̃hyd.
(5.18)

Now, we can rearrange the ν factor and introduce a vector notation such that
(5.18) can be written as ÃhΨh = ζh, with Ψh = (yh, ph), where the matrix Ãh and
the right-hand side ζh of the system are given by

Ãh =

(
νAh −Ih

Ih Ah,T

)
, ζh =

(
νR̃h f
R̃hyd

)
, (5.19)

where Ih is the identity operator.
Next, notice that the solution error corresponding to Ψh, which we denote

with eΨ = (ey, ep)T, satisfies the error equation ÃheΨ = ϕh, where ϕh = (ϕy, ϕp)T

represents the truncation error of our CC-Simpson’s-quadrature discretization of
the optimality system. Further, we recall two properties of our problem discussed
in [2, 54, 56]. The first property is that our CC convection-diffusion operator with
homogeneous Dirichlet boundary conditions is positive definite. This fact com-
bined with a positive semi-definite Hilbert-Schmidt kernel means that there exists
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a positive constant ĉ > 0 such that

(Ahv, v)h ≥ ĉ ‖v‖2
L2

h
, ∀v ∈ L2

h, (5.20)

where ĉ depends on ε, b, λ and on the domain Ω. The same estimate holds for
Ah,T.

The second property that we need to recall is that assuming sufficient regular
solutions, our approximation scheme is second-order consistent, which means
that there exists a positive constant c′ > 0 such that ‖ϕh‖L2

h
≤ c′ h2.

Now, based on the coercivity property (5.20), it follows that Ãh has a bounded
inverse and, similarly to [15], we obtain

‖y∗h − Rhy∗‖L2
h
+ ‖u∗h − Rhu∗‖L2

h
+ ‖p∗h − Rh p∗‖L2

h
≤ c̃ h2, (5.21)

where c̃ > 0 depends on the problem’s parameters and does not depend on h.
In the section of numerical experiments, we validate successfully this estimate

for the control-unconstrained case. Moreover, we demonstrate that, in the case of
active control constraints, a control with accuracy of order O(h3/2) is obtained.

5.3 A multigrid scheme for PIDE optimality systems

In this section, we extend our FAS-FI method (see Chapter 3) to solve the opti-
mality system (5.17). The choice of a nonlinear multigrid scheme is motivated
by the need of imposing constraints on the control variable at all grid levels. We
start considering only two nested grids corresponding to the fine grid Ωh and the
coarse grid ΩH, H = 2h.

We choose different inter-grid transfer operators for the FAS scheme and for
the FI method. For the former, we use the 2nd-order full-weight restriction and
linear interpolation. We denote these operators with IH

h and Ih
H, respectively.

This choice is consistent with the FAS practice for solving elliptic problems. In
the FI procedure, we utilize 4th-order restriction and interpolation operators [33,
40] and denote them with ĨH

h and Ĩh
H, respectively. This choice results from the

discussion in [20, 52] and in Section 3.1 and is consistent with the higher-order
approximation of the Simpson scheme. Notice that for grid points next to the
boundary, an asymmetric fourth-order interpolation formula is used [65, 69].

Now, we recall the nonlinear multigrid FAS [16, 21, 65, 68] framework for the
case of our optimality system. In this framework, the coarse grid problem is
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constructed on ΩH as follows

−ε∆HyH +∇H(b · yH) + IH
h Ihyh + λyH = uH + IH

h fh + τ(y)H
h , (5.22)

−ε∆H pH − b · ∇H(pH) + IH
h Ih ph + λpH = IH

h ydh + yH + τ(p)H
h , (5.23)

(νuH − pH) · (vH − uH) ≥ 0 ∀vH ∈ UadH. (5.24)

where τ(y)H
h and τ(p)H

h are the fine -to-coarse grid defect corrections defined by

τ(y)H
h = −ε∆HIH

h yh +∇H(b · IH
h yh) + IH

h Ihyh + λIH
h yh

− IH
h

(
−ε∆hyh +∇h(b · yh) + Ihyh + λyh

)
, (5.25)

τ(p)H
h = −ε∆HIH

h ph − b.∇H(I
H
h ph) + IH

h Ih ph + λIH
h ph

− IH
h

(
−ε∆h ph − b.∇h(ph) + Ih ph + λph

)
. (5.26)

Once the coarse grid problem (5.22-5.26) is solved, thus obtaining (yH, pH), we
have the coarse-grid corrections as follows

ynew
h =yh + Ih

H

(
yH − IH

h yh

)
, (5.27)

pnew
h =ph + Ih

H

(
pH − IH

h ph

)
. (5.28)

If the solution error on the finer grid is well damped by a smoothing scheme,
then the grid ΩH should provide sufficient resolution of the error of Ψh and hence
ΨH − IH

h Ψh should be a good approximation to this error. Denoting the number
of pre- and post-smoothing iterations with m1 and m2 respectively, the multigrid
FAS-(m1, m2) cycle algorithm is implemented recursively as outlined in the Algo-
rithm 11. The FI procedure is used to evaluate the integrals Ihyh and Ih ph. As
outlined earlier, this method aims at performing integration mostly on coarser
grids and to interpolate the resulting integral function to the original fine grid
where the integral is required. See the discussion in Section 3.2 and Algorithm 2.
Next, we discuss the smoothing iteration used in our multigrid scheme. As in
[16], our approach involves solving the state, the adjoint and the control variables
simultaneously in the multigrid process by implementing a collective update of
the optimization variables. This procedure aims at realizing tight coupling in the
optimality system along the hierarchy of grids such that it is robust with respect
to the choice of the value of the optimization parameter, ν.

In order to illustrate our smoothing procedure, we consider the discrete opti-
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mality system at zij ∈ Ωh and without control constraints. We have

−Âijyi+1,j − B̂ijyi−1,j + Ĉijyi,j − D̂ijyi,j+1 − Êijyi,j−1 + (Ihyh)ij − ui,j = fi,j

−âij pi+1,j − b̂ij pi−1,j + ĉij pi,j − d̂ij pi,j+1 − êij pi,j−1 + (Ih ph)ij + yi,j = ydi,j

νuij − pij = 0.

(5.29)

Now, we use the first two equations to obtain the maps yij = yij(uij) and pij =

pij(uij). The latter is replaced in the third equation to obtain an equation for uij.
Notice that the values of the variables on the neighbouring points are considered
as constants in this calculation. We obtain

yij(uij) :=
ui,j − Ā

Ĉij
, (5.30)

and

pij(uij) :=
−yi,j(uij)− B̄

ĉij
. (5.31)

where

Ā = −Âijyi+1,j − B̂ijyi−1,j − D̂ijyi,j+1 − Êijyi,j−1 + (Ihyh)ij − fi,j,

B̄ = −âij pi+1,j − b̂ij pi−1,j − d̂ij pi,j+1 − êij pi,j−1 + (Ih ph)ij − ydi,j .
(5.32)

Now, substituting (5.30) into (5.31) and requiring that νuij − pij(uij) = 0, we ob-
tain

ũi,j =
1

(1 + ĉijĈijν)

(
Ā− ĈijB̄

)
. (5.33)

This ũi,j represents the update value for the control in the control-unconstrained
case. In the presence of control constraints, this value needs to be projected in the
admissible set of controls. In our case, we have

ui,j =





ui,j if ũi,j > ūi,j,

ũi,j if ui,j ≤ ũi,j ≤ ui,j,

ui,j if ũi,j < ui,j.

(5.34)

With this new values of ui,j, new values for yi,j and pi,j are obtained by (5.30) and
(5.31). This update step can be applied once on all grid points in any order to
define a smoothing iteration sweep. During a sweep, the integral function is not
being updated.

We summarize this collective smoothing procedure with the following Algo-
rithm 10.
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Algorithm 10 Collective smoothing and fast integration (CSMA-FI) procedure
Input: y0

ij,p
0
ij,u

0
ij, f 0

ij, z0
ij .

1. Call the FI procedure to compute Ihy0
h and Ih p0

h

2. Compute Ā and B̄ according to (5.32) and determine uij by (5.33) and (5.34).

3. Compute yij by (5.30) and pij by (5.31)

4. End

Now, we can define our FAS-FI scheme for solving (5.17) with the smoothing
procedure just described. In Algorithm 11, the FI procedure is integrated in the
FAS scheme to evaluate the Fredholm integral terms at any working level. In this
algorithm, the smoothing procedure on the grid level k is denoted by Sk and Sm

k
is the smoothing operator applied m-times. Notice that Algorithm 11 defines one
cycle of the FAS-FI scheme. This cycle is repeated many times until a convergence
criterion is met.
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Algorithm 11 Multigrid FAS-FI (m1, m2) cycle

Input: Ψ(0)
k , k = l.

1. If k = 1 solve exactly ÃkΨk = ζk.

2. Perform fast integration to obtain Iky(0)k and Ik p(0)k (Algorithm 2).

3. Pre-smoothing. Compute Ψ(m1)
k with

Ψ(`)
k = Sk(Ψ

(`−1)
k , ζk)

for ` = 1, . . . , m1; (Algorithm 10).

4. Perform fast integration to obtain Iky(m1)
k and Ik p(m1)

k ( Algorithm 2).

5. Compute the residue : rk =
(

ζk − ÃkΨ(m1)
k

)
;

6. Restriction of the residue: rk−1 = Ik−1
k rk;

7. Set Ψk−1 = Ik−1
k Ψ(m1)

k ;

8. Set ζk−1 = rk−1 + Ãk−1Ψk−1;

9. Call γ times the FAS-FI scheme to solve Ãk−1Ψk−1 = ζk−1;

10. Coarse grid correction: Ψ(m1+1)
k = Ψ(m1)

k + Ik
k−1

(
Ψk−1 − Ik−1

k Ψ(m1)
k

)
;

11. Perform fast integration to obtain Iky(m1+1)
k and Ik p(m1+1)

k (Algorithm 2).

12. Post smoothing: Compute Ψ(m1+m2+1)
k with

Ψ(`)
k = Sk(Ψ

(`−1)
k , ζk)

for ` = m1 + 2, . . . , m1 + m2 + 1 (Algorithm 10).

13. End

5.4 Local Fourier analysis

In this section, we investigate the convergence properties of our FAS-FI scheme
for solving the optimality system (5.17) by local Fourier analysis (LFA). Specifi-
cally, we extend the LFA presented in [15] to our multigrid scheme for solving a
PIDE optimality system. In order to ease notation, we consider a one-dimensional
case and use h and H to denote the variables on the fine and coarse grids, respec-
tively. For the purpose of LFA analysis, we assume that the kernel of the inte-
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gral term is translational invariant, that is, k(x, z) = k(|x − z|) and require that
k(|x − z|) decays rapidly to zero as |x − z| becomes large. The first condition is
needed to obtain a translational invariant stencil of the PIDE operator, as usual
in the LFA framework; the second condition is required to have a well-posed
integral operator on the infinite grid.

Now, recall the family of operators given by (5.19). Notice that Ãh can be de-
composed as Ãh = D̃h − Ãh,+ − Ãh,−. To analyse the CSMA full kernel scheme,
we define

Ãh,+ =



−νÂ + νh

∞
∑

l=−∞
k jl 0

0 −â + h
∞
∑

l=−∞
k jl


 ,

Ãh,− =

[
−νĈ 0

0 −ĉ

]
,

D̃h =

[
νB̂ −Ih

Ih b̂

]
.

(5.35)

With this choice, lexicographic CSMA sweeps are given by

(
D̃h − Ãh,+

)
Ψ(1) − Ãh,−Ψ(0) = ζh and

(
D̃h − Ãh,−

)
Ψ(2) − Ãh,+Ψ(1) = ζh.

(5.36)
From equations (5.36), we can deduce that

Ψ(1) =
(
D̃h − Ãh,+

)−1 [
ζh + Ãh,−Ψ(0)

]
and Ψ(2) =

(
Dh − Ãh,−

)−1 [
ζh + Ãh,+Ψ(1)

]

(5.37)
It follows that

Ψ(1) =
(
D̃h − Ãh,+

)−1 [
ζh + Ãh,−Ψ(0)

]

=
(
D̃h − Ãh,+

)−1
ζh +

(
D̃h − Ãh,+

)−1 (
−Ãh + D̃h − Ãh,+

)
Ψ(0) (5.38)

=
(
D̃h − Ãh,+

)−1
ζh +

(
I−
(
D̃h − Ãh,+

)−1
Ãh
)

Ψ(0)

Subsequently it follows that

Ψ(2) =
(
D̃h − Ãh,−

)−1 [
ζh + Ãh,+Ψ(1)

]
(5.39)

=
(
D̃h − Ãh,−

)−1
[

ζh + Ãh,+
((
D̃h − Ãh,+

)−1
ζh +

(
I−
(
D̃h − Ãh,+

)−1
Ãh
)

Ψ(0)
)]
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Using Ãh,+ = D̃h − Ãh − Ãh,−, we get the following equation

Ψ(2) =
(
D̃h − Ãh,−

)−1
ζh +

(
I−
(
D̃h − Ãh,−

)−1
)

×
[(
D̃h − Ãh,+

)−1
ζh + Ψ(0) −

(
D̃h − Ãh,+

)−1
ÃhΨ(0)

]

Utilizing the relation D̃h =
(
D̃h − Ãh,−)+

(
D̃h − Ãh,+)−Ãh, we deduce that the

resulting iteration is given by

Ψ(2) = Ψ(0)+Λh
[
ζh − ÃhΨ(0)

]
and Λh =

(
D̃h − Ãh,+

)−1
D̃h
(
D̃h − Ãh,−

)−1

(5.40)
Now, recall the setting for the local Fourier analysis given in Section 3.3. We

consider the function basis

φh(θ, x) = a eiθx/h, θ ∈ (−π, π],

where a = (1, 1)T. For any low frequency θ0 ∈ [−π/2, π/2), we consider

θ1 = θ0 − signum
(

θ0
)

π. (5.41)

We have φh(θ
0, ·) = φh(θ

1, ·) for θ0 ∈ [−π/2, π/2) and x ∈ GH. We have
φh(θ, x) = φH(2θ0, x) on GH for θ = θ0 and θ = θ1.

The two components φh(θ
0, ·) and φh(θ

1, ·) are called harmonics. For a given
θ0 ∈ [−π/2, π/2), the space of harmonics is defined by Eθ

h = span[φh(θ
α, ·) :

α ∈ {0, 1}]. For each θ and a translational invariant kernel, the space Eθ
h × Eθ

h is
invariant under the action of TGH

h given by

TGH
h = Sm2

h

[
Ih − Ih

H

((
ÃH
)−1

)
IH

h Ãh
]
Sm1

h , (5.42)

where the coarse-grid operator is given by CGH
h = Ih − Ih

H

((
ÃH)−1

)
IH

h Ãh on

an couple
(
ψy, ψp

)
∈ Eθ

h × Eθ
h where

ψy = ∑
α,θ

Yα
θ φh(θ

α, x) and ψp = ∑
α,θ

Pα
θ φh(θ

α, x).

We analyze how the vector of coefficients
(
Y0, Y1, P0, P1) are transformed if the

two-grid iteration (5.42) is applied to
(
ψy, ψp

)
. To do this, we study the action of

TGH
h on the following function

ψ(xj) = ∑
α,θ

Êα
θ φh(θ

α, xj), xj ∈ Gh.
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where Êα
θ =

(
Yα

θ

Pα
θ

)
. Specifically, we determine how the amplitudes Êα

θ , θ ∈

[−π
2 , π

2 ) and α = 0, 1, are transformed under the action of the two-grid operator.
This requires to calculate the Fourier symbols of the components that enter in the
construction of the TG operator.

Notice that the symbols of the discrete operators
(
D̃h − Ãh,+) and Ãh,− given

in (5.35) appear to depend on j. This is actually not the case since a translational
invariant kernel k(x, z) = k(|x − z|) is considered. In fact, consider the integral

term h
∞
∑

l=−∞
k jlem

l and introduce the index n = j− l. Further, because the element

k jl = k|j−l| = k|n| becomes small as n becomes large, we truncate the sum in the

integral on the infinite grid and replace it with the following h
L
∑

n=−L
k|n|em

j−n where

we assume that the partial sum provides a sufficiently accurate approximation of
the integral term on Gh. Specifically, assuming that k(|x − z|) = exp(−|x − z|2)
and requiring that the k|n| = O(10−16) (double precision machine epsilon) for
|n| > L, one should choose L ∝ 1/h. However, in practice, a much smaller L also
results in accurate LFA estimates.

Now, we proceed with our analysis as follows. For the Fourier symbol of the
forward CSMA scheme that we use in our implementation, we have

(
D̂h − Âh,+

)
(θ) =




νB̂ + νÂeiθ − νh
L
∑

n=−L
k|n|e−iθn −Ih

Ih b̂ + âeθi − h
L
∑

n=−L
k|n|e−iθn


 ,

(5.43)
and

(
Âh,−)(θ) =

[
−νĈe−iθ 0

0 −ĉe−iθ

]
. (5.44)

Hence, we define

S+h (θ) =
((
D̂h − Âh,+

)
(θ)
)−1 (

Âh,−)(θ).

In the one-grid LFA setting, the smoothing factor of this iteration sweep is defined
as follows

µ = µ
(
S+h
)
= max

π
2≤|θ|≤π

{
|ρ
(
S+h (θ)

)
|
}

,

where ρ represents the spectral radius. In the same way one defines the Fourier

symbol of the backward CSMA scheme, S−h (θ) =
((
D̂h − Âh,−)(θ)

)−1 (
Âh,+

)
(θ)

as follows
(
D̂h − Âh,−)(θ) =

[
νB̂ + νĈeiθ −Ih

Ih b̂ + ĉeθi

]
, (5.45)
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and

(
Âh,+

)
(θ) =



−νÂe−iθ + νh

L
∑

n=−L
k|n|e−iθn 0

0 −âe−iθ + νh
L
∑

n=−L
k|n|e−iθn


 . (5.46)

To determine the Fourier symbols of the TG scheme, we recall the following the-
orem [15, 65].

Theorem 27. Under the assumption that the components in (5.42) are linear and that
(ÂH)−1 exists, the coarse grid operator CGH

h is represented on Eθ
h by a 4 × 4 matrix

ĈG
H
h (θ),

ĈG
H
h (θ) =

[
Îh − Îh

H(θ)
(
ÂH(2θ)

)−1
ÎH

h (θ)Âh(θ)

]
,

for each θ ∈ [−π/2, π/2). Îh and Âh(θ) are 4× 4 matrices, Îh
H(θ) is 4× 2 matrix, ÎH

h (θ)

is 2× 4 matrix and ÂH(2θ) is a 2× 2 matrix. If the space Eθ
h × Eθ

h is invariant under
the smoothing operator Sh i.e Sh : Eθ

h × Eθ
h → Eθ

h × Eθ
h for all θ ∈

[
−π

2 , π
2

)2 , TGH
h is

represented by 4× 4 matrix on Eθ
h by

T̂G
H
h (θ) = Ŝh(θ)

m2ĈG
H
h (θ)Ŝh(θ)

m1 .

Next, in order to apply this theorem, we construct the symbols of the operators
in explicit form. The symbol of the coarse-grid operator AH is given by

ÂH(2θ) =




−νÂei2θ + νB̂− νĈe−i2θ + νh
L
2

∑
n=− L

2

k|n| e−i(2θ)n −1

1 −âei2θ + b̂− ĉe−i2θ + h
L
2

∑
n=− L

2

k|n| e−i(2θ)n




.

The symbol Âh(θ) of the fine-grid operator Ãh is given by

Âh(θ) =

[
Âh(θ0) 0

0 Âh(θ1)

]
,

where

Âh(θ) =



−νÂeiθ + νB̂− νĈe−iθ + νh

L
∑

n=−L
k|n|e−iθn −1

1 −âeiθ + b̂− ĉe−iθ + h
L
∑

n=−L
k|n|e−iθn


 .
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The symbol ÎH
h (θ) of the restriction operator IH

h is given by

[
cos(θ0)+1

2
cos(2θ1)+1

2 0 0

0 0 cos(θ0)+1
2

cos(2θ1)+1
2

]
.

The symbol Îh
H(θ) of the prolongation operator Ih

H is given by

Îh
H(θ) =

(
ÎH

h (θ)
)T

.

For the smoothing iteration Sh, we have

Ŝh (θ) =

[
Ŝh
(
θ0) 0

0 Ŝh
(
θ1)

]
, (5.47)

In the LFA framework, the convergence factor is given by

η
(

TGH
h

)
= sup

{
ρ
(

T̂G
H
h (θ)

)
: θ ∈ [−π/2, π/2)

}
. (5.48)

A simpler but less accurate estimate of the convergence factor can be obtained
assuming an ideal coarse-grid correction which completely annihilates the low-
frequency error components and leaves the high-frequency error components un-
changed. In this case, define the projection operator QH

h on Eθ
h as

Q̂H
h (θ) =

[
0 0
0 1

]
for [−π/2, π/2) .

Hence the TG convergence factor is solely determined by the smoothing property
of Sh as follows

ηm1+m2
ideal = sup

{
m1+m2

√∣∣ρ
(
Q̂H

h (θ)Ŝh(θ)m1+m2
)∣∣ : θ ∈ [−π/2, π/2)

}
. (5.49)

Notice that in the two-grid LFA setting, the smoothing factor is defined as follows

µ = sup
{∣∣∣ρ

(
Q̂H

h (θ)Ŝh(θ)
)∣∣∣ : θ ∈ [−π/2, π/2)

}
. (5.50)

In Table 5.1, we report results of LFA estimates using (5.48) and (5.49). These
estimates appear accurate compared to the results of the numerical experiments
presented in the next section, where we choose m1 = 2 and m2 = 2 for the pre-
and post-smoothing steps, respectively.
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Table 5.1: LFA Estimates of convergence factors.

(m1, m2) ηm1+m2
ideal η

(
TGH

h
)

(1, 1) 1.6e-1 7.1e-2
(2, 2) 2.1e-2 1.2e-2
(3, 3) 4.2e-3 1.9e-3
(4, 4) 6.8e-4 3.0e-4
(5, 5) 1.1e-4 4.9e-5

5.5 Numerical experiments

In this section, we present results of numerical experiments to validate our multi-
grid framework for solving the convection-diffusion PIDE optimality system.

We report values of the tracking norm ‖y− yd‖L2(Ω) depending on the cost
of the control and the convergence rates obtained by our FAS-FI algorithm. For
all numerical experiments, we consider a unit square domain Ω = (0, 1)2 ⊂ R2.
We consider the drift term to be b(x, z) = (x1 + x2, z1 + z2), ε = 0.5 and the
kernel of the integral as k(x, z) = exp(−|x− z|2). In all the experiments, we use
m1 = m2 = 2 smoothing steps.

To have an exact solution that is required to validate our solution accuracy
estimate, we assume the following state and adjoint solutions and adapt the right-
hand sides of the state and adjoint equations (i.e. f and yd) correspondingly

y(x, z) = sin(2πx) sin(2πz), (5.51)

p(x, z) =ν sin(2πx) sin(2πz), (5.52)

u(x, z) =
1
ν

p(x, z). (5.53)

The solutions (5.51)-(5.53) represent the exact solutions for the unconstrained case
that we consider in the first experiment whose results are presented in Table 5.2.
We can see in this table that the state, adjoint and the control solutions haveO(h2)

order of accuracy.

Table 5.2: L2(Ω) norm of solution error; ν=1e-2. Control-unconstrained case.

Mesh ‖y− yh‖L2(Ω) Order ‖p− ph‖L2(Ω) Order ‖u− uh‖L2(Ω) Order
17× 17 6.48e-3 - 6.49e-5 - 6.49e-3 -
33× 33 1.61e-3 2.01 1.63e-5 1.99 1.63e-3 1.99
65× 65 4.02e-4 2.00 4.22e-6 1.95 4.21e-4 1.95

129× 129 1.00e-4 2.00 1.06e-6 1.99 1.07e-4 1.97
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For the constrained test cases, the exact solutions are defined as follows

y(x, z) = sin(2πx) sin(2πz), (5.54)

p(x, z) =ν sin(2πx) sin(2πz), (5.55)

u(x, z) =max
{
−0.5, min

{
1,

1
ν

p(x, z)
}}

. (5.56)

In the second set of experiments, we validate the accuracy of solutions for the
constrained case. The corresponding results are reported in Table 5.3 showing
that O(h2) order of accuracy is obtained for both the state and adjoint solutions,
while we obtain O(h3/2) order of accuracy for the control function.

Table 5.3: L2(Ω) norm of solution error; ν=1e-2. Control-constrained case.

Mesh ‖y− yh‖L2(Ω) Order ‖p− ph‖L2(Ω) Order ‖u− uh‖L2(Ω) Order
17× 17 6.48e-3 - 6.49e-5 - 4.92e-2 -
33× 33 1.61e-3 2.01 1.63e-5 1.99 1.65e-2 1.58
65× 65 4.02e-4 2.00 4.22e-6 1.95 5.67e-3 1.54

129× 129 1.01e-4 2.00 1.06e-6 1.99 1.98e-3 1.52

Next, we validate the LFA convergence factor estimate. For this purpose, we
compare the estimates in Table 5.1 with observed convergence factors given by
asymptotic values of the following ratios of reduction of the L2-norm of the resid-
uals of the state and adjoint equations between two consecutive (N and N + 1)
multigrid cycles

ρ(y) = lim
N

∥∥rh(y)N+1
∥∥

L2
h

‖rh(y)N‖L2
h

and ρ(p) = lim
N

∥∥rh(p)N+1
∥∥

L2
h

‖rh(p)N‖L2
h

. (5.57)

Next, comparing the theoretical estimates of Table 5.1 with observed conver-
gence factors reported in Table 5.4, we see that the LFA estimates are very accu-
rate by refining the mesh and for smaller values of ν. We investigate the opti-
mization performance of our optimal control problem in the next series of exper-
iments, we first consider an attainable target state of the form

yd(x, z) = sin(2πx) sin(2πz).
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Figure 5.1: Attainable state, yd

Case 1: Attainable target and no control constraints. In this case, the conver-
gence behaviour of the multigrid procedure is almost independent of the value
of the cost ν and of the mesh size. The convergence factors obtained are reported
in Table 5.4. Also in this table, we report the tracking errors that become smaller
for smaller values of ν, as expected.

Table 5.4: Case 1: observed convergence factors and tracking errors.

Mesh ρ(y), ρ(p) ‖y− yd‖L2(Ω)

ν = 10−4

65× 65 0.24, 0.24 2.9944e-1
129× 129 0.09, 0.08 4.1321e-1

ν = 10−8

65× 65 0.03, 0.21 1.0954e-4
129× 129 0.03, 0.01 4.4515e-4
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Figure 5.2: Case 1: The state y for ν = 10−8 and 129× 129 mesh.

Figure 5.3: Case 1: The control u for ν = 10−8 and 129× 129 mesh.

Case 2: Attainable target and control constraints given by u = −10 and u =

10. The results obtained for this case are reported in Table 5.5. Notice that similar
convergence performance as in Case 1 is obtained, especially by considering finer
meshes. In this case, the constraints are active in most of the portions of the
domain and thus we cannot obtain a considerable improvement in the tracking
error. The Figures 5.4 and 5.5 depict the state and control solutions for ν = 10−8.
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Table 5.5: Case 2: observed convergence factors and tracking errors.

Mesh ρ(y), ρ(p) ‖y− yd‖L2(Ω)

ν = 10−4

65× 65 0.16, 0.07 4.2845e-1
129× 129 0.44, 0.44 4.6431e-1

ν = 10−8

65× 65 0.13, 0.21 4.2764e-1
129× 129 0.04, 0.17 4.6307e-1

Figure 5.4: Case 2: The state y for ν = 10−8 and 129× 129 mesh.
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Figure 5.5: Case 2: The control u for ν = 10−8 and 129× 129 mesh.

In next experiment, we consider an unattainable target state of the following
form

yd(x1, x2) =





2 on (0.25, 0.75)× (0.25, 0.75)

1 otherwise.

Figure 5.6: Unattainable state, yd

Case 3: Unattainable target and no control constraints. The results for this
case are reported in Table 5.6. The multigrid convergence factors show indepen-
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dence on the mesh size but a weak dependence on ν. This is reported in Table
5.6. Changing the cost of the control leads to no change in the tracking norm as
the target state is unattainable but provides information on the multigrid conver-
gence factors.

The Figures 5.7 and 5.8 depict the state and control solutions for ν = 10−8.
Notice that the presence of convection in the differential operator results in a
control function with a slope.

Table 5.6: Case 3: observed convergence factors and tracking errors.

Mesh ρ(y), ρ(p) ‖y− yd‖L2(Ω)

ν = 10−4

65× 65 0.25, 0.25 3.8242e-1
129× 129 0.13, 0.08 4.8502e-1

ν = 10−8

65× 65 0.01, 0.03 1.9173e-1
129× 129 0.04, 0.01 1.3265e-1

Figure 5.7: Case 3: The state y for ν = 10−8 and 129× 129 mesh.
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Figure 5.8: Case 3: The control u for ν = 10−8 and 129× 129 mesh.

Case 4: Unattainable target and control constraints given by u = −100 and
u = 100. The results for this case are reported in Table 5.7 and show a similar
convergence performance of our multigrid scheme as in Case 3.

Table 5.7: Case 4: observed convergence factors and tracking errors.

Mesh ρ(y), ρ(p) ‖y− yd‖L2(Ω)

ν = 10−4

65× 65 0.09, 0.04 3.8242e-1
129× 129 0.45, 0.45 4.8502e-1

ν = 10−8

65× 65 0.01, 0.03 2.3600e-1
129× 129 0.03, 0.01 3.3356e-1
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Figure 5.9: Case 4: The state y for ν = 10−8 and 129× 129 mesh.

Figure 5.10: Case 4: The control u for ν = 10−8 and 129× 129 mesh.

5.6 Summary and remarks

In this chapter, a fast multigrid method for solving an optimal control problem
governed by a convection-diffusion partial-integro differential equation was in-
vestigated. This method combines a FAS multigrid scheme for elliptic optimality
systems with a multigrid fast-integration technique for the efficient evaluation
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of the Fredholm integral terms. The optimality system was approximated by
the Chang-Cooper finite volume scheme and Simpson quadrature. Existence of
optimal controls was proved together with second-order accuracy of the corre-
sponding numerical solution. Numerical experiments for both constrained and
unconstrained control problems were discussed to validate the convergence per-
formance of the multigrid scheme. The convergence properties of the proposed
multigrid scheme was analyzed by local Fourier analysis and successfully vali-
dated by results of numerical experiments.



6. Conclusion

In this thesis, multigrid and hierarchical matrix solution procedures for classes of
partial integro-differential problems were discussed. An elliptic partial integro-
differential equation, a convection-diffusion partial integro-differential equation
and a convection-diffusion partial integro-differential optimality system were con-
sidered. In the first part of this work, an efficient multigrid finite-differences
scheme for solving an elliptic Fredholm partial integro-differential equation (PIDE)
was discussed. This scheme combines a second-order accurate finite difference
discretization and a Simpson’s quadrature rule to approximate the PIDE problem
and a multigrid scheme and a fast multilevel integration method of the Fredholm
operator allowing the fast solution of the PIDE problem. Theoretical estimates of
second-order accuracy and results of local Fourier analysis of convergence of the
multigrid scheme were presented. Results of numerical experiments validated
the estimates and demonstrated optimal computational complexity of the frame-
work that included numerical experiments for elliptic PIDE problems with singu-
lar kernels. In the second part of this work, a convection-diffusion partial-integro
differential equations was considered. The problem was discretized using a finite
volume scheme referred to as the Chang and Cooper (CC) scheme and a quadra-
ture rule. Results of stability and accuracy analysis of the CC scheme combined
with a Simpson’s quadrature rule were presented and second-order accuracy of
the numerical solution was proved. The solution strategy to the case of systems
of convection-diffusion PIDE where an optimal control problem governed by this
model was discussed. In this case, the research focussed on the CC-Simpson’s
discretization of the optimality system and its solution by the multigrid strategy.
Second-order accuracy of the optimization solution was proved and results of lo-
cal Fourier analysis were presented that provided sharp convergence estimates
of the optimal computational complexity of the multigrid-fast integration tech-
nique.

In the third part of this work, a hierarchical matrix solution framework was
discussed. In this framework, the case of a convection-diffusion PIDE was con-
sidered. The CC discretization of the convection-diffusion operator combined
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with the trapezoidal quadrature rule was used. Due to the ability of the hierar-
chical matrix to allow data sparse representation of the fully populated matrix,
essential matrix operations were performed with at most logarithmic optimal
complexity. In addition, preconditioners to the solution of the PIDE using a gen-
eralized minimum residual (GMRes) procedure as a solver were used. Numer-
ical analysis estimates of the accuracy of the finite-volume and trapezoidal rule
approximation were presented and combined with estimates of the hierarchical
matrix approximation and with the accuracy of the GMRes iterates. Results of
numerical experiments were presented that successfully validated the theoretical
estimates and the optimal computational complexity of the hierarchical matrix
solution procedure. The numerical experiments validated second-order accuracy
of the numerical solution. Results of extension of hierarchical matrix method to
a three dimension case of the convection-diffusion PIDE and an application to
the time evolution of the probability density function of a jump diffusion process
were presented. For the three dimensional convection-diffusion PIDE problem
and the application to jump-diffusion process, almost linear computational com-
plexity was realized.



A. Appendix

A.1 Codes

Together with this work, we include a CD-ROM that contains the MATLAB R©

codes implemented for the solution of the classes of PIDE problems considered
in this work. We list the name of the routine and its function and give directions
on how to run them. We list them in three tranche. The first tranche includes
the script used to solve the elliptic PIDE. The second tranche includes the scripts
used to solve the convection diffusion PIDE and the PIDE optimal control prob-
lem. The last tranche explains the functionality of the AHMED C++ library for the
implementation of the Hierarchical matrices framework. In addition, for some of
the graphics in this thesis, we have used Inkscape software.

Elliptic PIDE

To run the elliptic PIDE solver, necessary changes are made to choose the desired
functions and grid sizes and typing in the MATLAB command window

»Test

The following list describes the function of each and every script in the folder for
elliptic PIDE.

Test.m Main script to run
EXACT.m Solves the elliptic PIDE exactly
fas_scheme.m Multigrid scheme for the elliptic PIDE
funcf.m Right hand side of the state equation
funcg.m Assumed exact solution of the elliptic PIDE
GAUSS.m Gauss-Seidel smoother
FIXIT.m Gauss Picard smoother
integrate.m Integration at all points of the integral term in the elliptic PIDE
integratev.m Integration at certain points of the integral term in the elliptic PIDE

106



107 A.1. Codes

interpolation.m Prolongation routines to interpolate the elliptic PIDE variables
kernel Determines the kernel function to be used
Keval Computes the functional values of the kernel
LU.m Computes the differential operator values of the elliptic PIDE
prolong.m 2nd-order prolongation of the elliptic PIDE variables
prolong4.m 4th-order prolongation of the elliptic PIDE variables
r.m Computes the coefficients of the quadrature rule
residual.m Computes the residual of the elliptic PIDE
restrict4.m 4th-order restriction of the elliptic PIDE variables
restriction.m 2nd-order restriction of the elliptic PIDE variables
restriction_adj.m 2nd-order restriction of the elliptic PIDEvariables
vcycle.m For the V-cycle

Convection-diffusion PIDE optimization

To run the convection-diffusion PIDE optimization solver, necessary changes are
made to choose the desired functions and grid sizes and typing in the MATLAB

command window

»Test

The following list describes the function of each and every script in the folder for
optimal control of the convection diffusion PIDE.

Test.m Main script to run
B_1_adj.m Drift coefficient for the adjoint equation in x direction
B_2_adj.m Drift coefficient for the adjoint equation in z direction
B_1.m Drift coefficient for the state equation in x direction
B_2.m Drift coefficient for the state equation in z direction
C_1.m Diffusion coefficient of the state equation in x direction
C_2.m Diffusion coefficient of the state equation in z direction
C_1_adj.m Diffusion coefficient of the adjoint equation in x direction
C_2_adj.m Diffusion coefficient of the adjoint equation in z direction
coefficients_adj.m Computes the CC coefficients of the adjoint equation
coefficients.m Computes the CC coefficients of the state equation
CSMA.m Collective smoothing multigrid approach routine
delta_1.m CC scheme interpolation for the state equation in x direction
delta_2.m CC scheme interpolation for the state equation in z direction



Appendix A. Appendix 108

delta_1_adj.m CC scheme interpolation for the adjoint in the x direction
delta_2_adj.m CC scheme interpolation for the adjoint in the z direction
EXACT.m Solves the state equation exactly
EXACT_adj.m Solves the adjoint equation exactly
fas_schemeCOMBINED.m Multigrid scheme for the optimality system
funcf.m Right hand side of the state equation
funcg.m Assumed exact solution of the state equation
funcf_adj.m Right hand side of the adjoint equation
funcg_adj.m Assumed exact solution of the adjoint equation
integrate.m Integration at all points of Iy in the state equation
integratev.m Integration at certain points of Iy in the state equation
integrate_adj.m Full integration at all points of I p in the adjoint equation
integratev_adj.m Integration at certain points of I p in the adjoint equation
interpolation_adj.m Prolongation routines to interpolate the adjoint variables
interpolation.m Prolongation routines to interpolate the state variables
kernel Determines the kernel function to be used
Keval Computes the functional values of the kernel
LU_adj.m Computes the differential values of the adjoint equation
LU.m Computes the differential values of the state equation
prolong_adj.m 2nd-order prolongation of the adjoint equation variables
prolong.m 2nd-order prolongation of the state equation variables
prolong4_adj.m 4th-order prolongation of the adjoint equation variables
prolong4.m 4th-order prolongation of the state equation variables
r.m Computes the coefficients of the quadrature rule
residual_adj.m Computes the residual of the adjoint equation
residual.m Computes the residual of the state equation
restrict4_adj.m 4th-order restriction of the adjoint equation variables
restrict4.m 4th-order restriction of the state equation variables
restriction.m 2nd-order restriction of the state equation variables
restriction_adj.m 2nd-order restriction of the adjoint equation variables
vcycleCOMBINED.m For the overall V-cycle

Hierarchical matrices

For the solutions of the hierarchical matrices approximations, we use the An-
other software library on Hierarchical matrices for Elliptic Differential equations
(AHMED), a C++ sofware library. Compiling of AHMED requires the following;

1. C/C++ compiler.
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2. BLAS/LAPACK obtained from (http://www.netlib.org/LAPACK).

3. METIS, a graph partitioning software obtained from
(http://glaros.dtc.umn.edu/gkhome/metis/metis/overview).

4. QUARK obtained from (http://icl.cs.utk.edu/quark/).

5. MPI (Message Passing Interface) for parallelization in AHMED.

Installation and usage of the library is documented in the "README.txt" files in
the library. The library is used on permission from Prof. Dr. Mario Bebendorf of
Universität Bayreuth, Germany.

A.2 Generalized minimal residual method

The generalized minimal residual (GMRes) method is an iterative method used
to compute the numerical solution of non-symmetric system of linear equations.
This method relies on the construction of an orthonormal basis of the Kyrlov
space. This method uses the Arnoldi’s method to generate the orthonormal basis
of the Kyrlov subspace. Consider the linear algebraic problem

Ay = f ,

with A ∈ RN×N is an invertible matrix and y, f ∈ RN.

Definition 28. The Kyrlov subspace of dimension k is defined as

Kk(A, r0) = span{r0,Ar0, . . . ,Ak−1r0}.

If x0 is the initial guess of the iterative procedure and r0 = f −Ax0 is the initial residual
vector, one has to solve

min
y∈y0+Kk(A,r0)

‖Ay− f ‖2.

Due to the properties of power iteration, vectors become linearly dependent
and thus the methods relying on the Krylov subspaces involve orthogonalisation
schemes, e.g., Lancosz iteration for Hermitian matrices and Arnoldi iteration for
more general matrices. This solution is done efficiently if one has an orthonormal
basis of Kk(A, r0). Let {v1, v2, . . . , vk} be such a basis, one can by placing each
basis vector as a column , construct an orthogonal matrix matrix vk ∈ Rn×k. Then
each vector yk ∈ y0

0 + Kk(A, r0) can be written as yk = y0 + vkz for z ∈ Rk. Hence

‖ f −Ay‖2 = ‖ f −A
(

y0 + vkz
)
‖2 = ‖ f −Ay0 −Avkz‖2.
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Since r0 = f −Ay0, we get

min
y∈y0+Kk(A,r0)

‖Ay− f ‖2 = min ‖r0 −Avkz‖2.

z is chosen without restrictions from Rk. The GMRes method needs an orthonor-
mal basis of the Krylov space to construct the matrix vk. In order to build an
orthogonal basis {v1, v2, . . . , vk} for Kk(A, r0), we use the Arnoldi’s method. The
construction of this basis and how it is stored is what marks the difference be-
tween different methods. We start by summarizing the Arnoldi method in the
Algorithm 12.

Algorithm 12 Gram-Schmdt implementation (Arnoldi method)

1. Let v1 = r0
‖r0‖2

;

2. for m = 1, 2, . . . do

3. Set
hi,m = (Avm)

T vi, i = 1, 2, . . . , m;

v̂m+1 = Avm −
m

∑
i=1

hi,mvi;

hm+1,m = ‖v̂m+1‖2.

4. If hm+1,m = 0, then stop, otherwise set

vm+1 =
v̂m+1

hm+1,m

5. endfor.

With this notation we have the following relation

Avk = vk+1H̄k,

where H̄k ∈ R(k+1)×k is an upper Hessenberg matrix with one extra row inserted
at the bottom which contains one entry.

H̄k =




h1,1 h1,2 . . . h1,k

h2,1 h2,2 . . . h2,k

0 h3,2 . . . h3,k

0 0 . . . h4,k
...

... . . . ...
hk+1,k




(A.1)
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(A.1) can then be used and setting r0 = βv1;

‖r0 −Avkz‖2 = ‖r0 − vk+1H̄kz‖2 = ‖vk+1 (βe1 − H̄kz) ‖2 =∗ ‖βe1 − H̄kz‖2.

where the last equality (∗) holds true if vk is an orthogonal transformation. Thus
we only need to compute the solution of the following problem

min
z∈Rk
‖βe1 − H̄kz‖2. (A.2)

The following algorithm details the implementation of the GMRes method .

Algorithm 13 GMRes method using the Gram-Schmidt orthogonalisation

1. Choose y0 to compute r0 = f −Ay0 and v1 = r0
‖r0‖2

;

2. for j = 1, 2, . . . do

(a) Compute and save Avj as to only compute it once;

(b) Set hi,j = 〈Avj, vi〉, i = 1, 2, . . . , j;

(c) Set

v̂j+1 = Avj −
j

∑
i=1

hi,jvi;

(d) Set
hj+1,j = ‖v̂j+1‖2;

(e) Set

vj+1 =
v̂j+1

hj+1,j
;

3. endfor.

4. Form an appropriate solution yk = y0 + vkzk, where zk minimizes (A.2).

The cost of full orthogonalisation of the Krylov subspace Kk(A, r0) becomes
important when Kk(A, r0) reaches a certain size, hence to avoid this disadvan-
tage, the GMRes method is restated or incomplete orthogonalisation is applied.
At each iteration of GMRes requires storage of size N more. The number of vec-
tors requiring storage increases. When A is large, this presents a computational
challenge. As a remedy, GMRes is restarted every m iterations with y equal to
the new iterate ym and r0 equal to f − Aym. The GMRes iteration will always
converge in atmost m iteration steps and this convergence is monotonic since
‖rn+1‖ ≤ ‖rn‖. The minimization over a larger subspace allows a smaller resid-
ual norm to be achieved and of interest is when the algorithm converges within
a specified tolerance in n iterations where n << m.
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A.3 Compressed Row Storage (CRS)

Compressed Row and Column storage formats are the most general compression
strategies of storage of matrices. In application, no assumptions about the spar-
sity structure of the matrix are made and any zero elements are not stored. In the
entire thesis, we use the compressed row storage (CRS). We remark that, despite
not storing zero elements, they need an indirect step for addressing every single
scale operation in the matrix-vector product or when using pre-conditioners to
solve.

The CRS format stores nonzero elements of the matrix rows in contiguous
memory locations. Assuming we have a nonsymmetric sparse matrix M, we
create 3 vectors: One for floating point numbers val, the other two for the integers
(column_indices, row_pointer).

The val vector stores the value of the non-zero elements of the matrix M as
they are traversed in the row-wise manner. That is if

val(k) = mij and column_indices(k) = j.

The row_pointer vector stores the locations in the val vector that start a row, that
is , if val(k) = mij, then row_pointer(i) ≤ k < row_pointer(i + 1).

By convention, we define row_pointer(N + 1) = nnz + 1, where nnz is the
number of non-zeros in the matrixM.

The storage savings for this approach is significant. Instead of storing N2

elements, we need only 2nnz + N + 1 storage locations.
We include an example to illustrate this approach. Consider a nonsymmetric

matrixM defined by

M =




10 0 0 0 −2 0
3 9 0 0 0 3
0 7 8 7 0 0
3 0 8 7 5 0
0 8 0 9 9 13
0 4 0 0 2 −1




.

The CRS format of the matrix is then specified by the arrays

{val, column_indices, row_pointer},

given as follows

val 10 -2 3 9 3 7 8 7 3 . . . 9 13 4 2 -1
column_pointer 1 5 1 2 6 2 3 4 1 . . . 5 6 2 5 6
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row_pointer 1 3 6 9 13 17 20

If the matrix M is symmetric, we need only to store the upper (or lower)
triangular portion of the matrix. The trade-off is a more complicated algorithm
with a somewhat different pattern of data access.
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