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Abstract

This work deals with the development and application of novel quantum Monte Carlo
methods to simulate fermion-boson models. Our developments are based on the path-
integral formalism, where the bosonic degrees of freedom are integrated out exactly to
obtain a retarded fermionic interaction. We give an overview of three methods that can
be used to simulate retarded interactions. In particular, we develop a novel quantum
Monte Carlo method with global directed-loop updates that solves the autocorrelation
problem of previous approaches and scales linearly with system size. We demonstrate its
efficiency for the Peierls transition in the Holstein model and discuss extensions to other
fermion-boson models as well as spin-boson models. Furthermore, we show how with
the help of generating functionals bosonic observables can be recovered directly from
the Monte Carlo configurations. This includes estimators for the boson propagator,
the fidelity susceptibility, and the specific heat of the Holstein model. The algorithmic
developments of this work allow us to study the specific heat of the spinless Holstein
model covering its entire parameter range. Its key features are explained from the single-
particle spectral functions of electrons and phonons. In the adiabatic limit, the spectral
properties are calculated exactly as a function of temperature using a classical Monte
Carlo method and compared to results for the Su-Schrieffer-Heeger model.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Anwendung neuer
Quanten-Monte-Carlo-Methoden zur Simulation von Fermion-Boson-Modellen. Grund-
lage für unsere Entwicklungen ist der Pfadintegralformalismus, in dem das exakte Aus-
integrieren der bosonischen Freiheitsgrade zu einer retardierten fermionischen Wechsel-
wirkung führt. Wir geben einen Überblick über drei Methoden, die für die Simulati-
on retardierter Wechselwirkungen geeignet sind. Insbesondere entwickeln wir eine neue
Quanten-Monte-Carlo-Methode mit globalen Updates, die das Autokorrelationsproblem
früherer Ansätze löst und linear in der Systemgröße skaliert. Wir demonstrieren die Effi-
zienz dieser Methode am Beispiel des Peierls-Übergangs im Holstein-Modell und disku-
tieren Erweiterungen auf andere Fermion-Boson-Modelle sowie Spin-Boson-Modelle. Des
Weiteren zeigen wir, wie mithilfe erzeugender Funktionale bosonische Observablen direkt
aus den Monte-Carlo-Konfigurationen berechnet werden können. Dies beinhaltet unter
anderem den Boson-Propagator und die spezifische Wärme des Holstein-Modells. Die
methodischen Entwicklungen dieser Arbeit erlauben es uns, die spezifische Wärme des
spinlosen Holstein-Modells in seinem gesamten Parameterbereich zu untersuchen. Ihre
wesentlichen Merkmale werden mithilfe der Einteilchenspektralfunktionen von Elektro-
nen und Phononen erklärt. Im adiabatischen Grenzfall verwenden wir eine klassische
Monte-Carlo-Methode, um die Temperaturabhängigkeit der Spektralfunktionen exakt
zu berechnen, und vergleichen unsere Ergebnisse für das Holstein-Modell mit Resultaten
für das Su-Schrieffer-Heeger-Modell.
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1. Introduction

The interplay between electronic and lattice degrees of freedom is fundamental to solid-
state physics and leads to a variety of interesting phenomena. The most intriguing is
maybe the onset of superconductivity at very low temperatures that was discovered by
Kamerlingh Onnes in 1911 and since then was observed in many different materials [1].
It took physicists half a century to understand that electron-phonon coupling causes an
attractive interaction between electrons and finally leads to an instability of the Fermi
surface towards the formation of Cooper pairs [2]. This insight led Bardeen, Cooper,
and Schrieffer to formulate their microscopic theory of conventional superconductivity
that is now known as BCS theory [3]. For one-dimensional (1D) systems, the situation
is inherently different. Fermi-liquid theory breaks down and the metallic phase is either
described by a Tomonaga-Luttinger liquid [4, 5] or a Luther-Emery liquid [6]. Here,
electron-phonon coupling is the driving force behind the Peierls instability: under the
formation of a periodic lattice modulation the metallic state becomes unstable towards
charge-density-wave (CDW) order [7]. The theoretical study of conjugated polymers
revealed that domain walls between different dimerization patterns may be associated
with topological excitations called solitons which appear inside the Peierls gap of the
electronic spectrum [8, 9]. Only recently, these kinds of systems have been identified
as the simplest realizations of topological band insulators [10]. Furthermore, strong
electron-phonon interaction in semiconductors or polymers leads to the formation of
polarons [11], i.e., electrons that are screened by a cloud of lattice deformations [12].
Recently, the study of nonequilibrium dynamics using, e.g., pump-probe experiments
has attracted a lot of interest. In this context, electron-phonon interaction plays an
important role for the relaxation of excited states [13].

For many physical phenomena and in particular for the ones described above, much of
our understanding relies on the study of simplified models that capture the key features
of a physical problem. As long as these models are simple enough, analytic approaches
to their solution are very successful and can explain the basic mechanisms behind phys-
ical observations. In many of these cases, the quantum many-particle problem reduces
to an effective single-particle description. However, as interactions between particles
become more complex, analytic approaches often become approximate and only valid
in certain regions of parameter space. Rigorous mathematical solutions to the many-
particle problem only exist in special cases. In general, the quantum many-particle
problem cannot be solved exactly and therefore requires numerical approaches. To illus-
trate this point, we consider the Peierls transition in the 1D Holstein molecular-crystal
model [14, 15] at half-filling, one of the standard models to describe electron-phonon
coupling and the central model studied in this work. The Holstein model consists of free
electrons on a lattice in the tight-binding approximation, free phonons described by local
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1. Introduction

harmonic oscillators, and a local electron-phonon coupling of the density-displacement
type.1 While for some 1D models like the Hubbard model there exist exact solutions by
the Bethe ansatz [16–18], the Holstein model lacks a general solution. Nonetheless, it
has been shown analytically that the ground-state of a generic electron-phonon model
is a spin singlet [19]. According to Peierls’ theorem, any finite electron-phonon coupling
should lead to an insulating ground state [7]. In the adiabatic approximation, where the
phonons lose their dynamics, this is indeed true and the ground state is exactly given by
mean-field theory [20]. However, quantum fluctuations of the lattice destroy the ordered
state at a critical phonon frequency and lead to a metallic ground state, in contradic-
tion to Peierls’ theorem. The detection of the Tomonaga-Luttinger liquid phase in the
spinless Holstein model as well as the Luther-Emery phase in the spinful Holstein model
required ongoing numerical studies using different approaches [20–30], as reviewed in
Ref. [31]. The determination of the phase boundaries is complicated by an exponentially
small Peierls gap in the vicinity of the Berezinskii-Kosterlitz-Thouless quantum phase
transition as well as the existence of a spin gap in the metallic phase of the spinful Hol-
stein model [32]. To overcome these shortcomings, the further development of efficient
numerical methods is essential.

During the last decades, different numerical methods have been developed to simulate
the quantum many-particle problem. The most established methods that promise exact
results for model Hamiltonians are exact diagonalization (ED) [33], the density-matrix
renormalization group (DMRG) [34,35], and quantum Monte Carlo (QMC) [36]. These
methods have been applied to a variety of fermionic or bosonic models with great success.
In particular, QMC methods are very efficient for bosonic and spin systems due to the
existence of global updating schemes, but also give good results for fermionic models in
the absence of a sign problem. By contrast, DMRG has become the method of choice
for many 1D systems, where it efficiently calculates the ground state from a variational
approach [37, 38]. However, the interplay between fermionic and bosonic degrees of
freedom—as it is the case for electron-phonon models like the Holstein model—poses a
difficult numerical problem for all of these methods. The major issue for ED and DMRG
simulations is the unbound bosonic Hilbert space that must be truncated. Although
this is not a principal problem—efficient truncation schemes have been developed in
recent years [39–41]—the local state space is significantly enlarged in contrast to the
case of fermionic models. The efficiency of ED and DMRG strongly depends on the
size of the local Hilbert space: ED solves the many-body problem exactly and therefore
suffers from an exponential scaling of complexity with the size of the local state space,
whereas DMRG has a more favorable scaling with the so-called bond dimension (see
Refs. [37, 38, 42] for details). Using advanced truncation schemes, ED results for the
1D spinless Holstein model at half-filling are available for up to L = 10 lattice sites
[27, 43], whereas DMRG simulations reached L = 256 sites [29]. By contrast, QMC
simulations usually do not suffer from the unbound bosonic Hilbert space, but can exhibit
very long autocorrelation times because only local boson updates are available [44].
For example, in many QMC methods that are based on a Trotter discretization ∆τ of

1For a definition of the Holstein model, see Eq. (2.3).
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imaginary time [45, 46] the phonons are represented by continuous displacement fields
qi,τ at site i and time slice τ . Then, the kinetic energy of the phonons is given by
the action Sb,kin = K∑i,τ(qi,τ − qi,τ+1)

2/(2ω2
0 ∆τ2), where ω0 is the phonon frequency

and K the stiffness constant. Especially when ω0 ∆τ ≪ 1, only small changes in the
local displacements are accepted during a Monte Carlo update. This already leads to
tremendous autocorrelation times for the harmonic oscillator [47]. Autocorrelations were
shown to be absent for the polaron problem when sampling the principal components of
the phonons and using a Lang-Firsov transformation [48]. However, generalizations to
finite fillings were only successful for the 1D spinless Holstein model [49].

In QMC simulations, long autocorrelation times often appear in the vicinity of second-
order phase transitions and are a consequence of local Monte Carlo updates. The first
cluster algorithms that overcame critical slowing down in the Ising model were the
Swendsen-Wang [50] and the Wolff algorithm [51]. These algorithms are constructed in
such a way that the size of the clusters being updated scales with the correlation length
of the system. Later, global updating schemes were also developed for quantum models.
The first QMC method with global updates was the loop algorithm [52], followed by
the worm [53], operator-loop [54], and directed-loop algorithms [55]. These algorithms
have in common that they are based on a world-line representation of the partition
function. Many bosonic and spin models as well as 1D fermionic models can by now be
simulated very efficiently. However, apart from very specialized algorithms [56], global
updates have not been formulated for fermion-boson models. Using global updates for
the electrons and local updates for the phonons still results in long autocorrelation
times near phase transitions [28]. For fermionic systems in more than one dimension,
global updating schemes are rare: while the hybrid QMC method [57, 58] in principle
includes global updates, its efficiency for problems in solid-state physics is currently
under debate [59].

In this work, we consider an alternative approach to simulate fermion-boson models.
It is based on the path-integral representation of the partition function and exploits
that the bosons can be integrated out exactly if the action is quadratic in the bosonic
fields [60]. One ends up with a retarded fermionic interaction, i.e., nonlocal in imaginary
time, that is mediated by the free boson propagator. As a result, the bosonic fields
need not be sampled in a Monte Carlo simulation anymore. Originally, this approach
has been used to simulate the polaron problem, both in discrete [61–63] and continuous
time [64–66], but applications to finite band fillings are also possible. For this purpose,
the development of modern continuous-time QMC methods [67, 68]—that are predomi-
nantly used as impurity solvers for dynamical mean-field theory (DMFT) [69]—played
an important role. Using the example of the Holstein model, it was shown in Ref. [70]
that the continuous-time interaction expansion (CT-INT) method [67] gives good re-
sults for fermion-boson lattice models and especially allows for reliable simulations in
the adiabatic regime of low boson frequencies [71]. The CT-INT method is very flexible
regarding the models being simulated and allows the calculation of any fermionic cor-
relation function from the single-particle Green’s function using Wick’s theorem. How-
ever, updates are based on determinantal identities leading to an expensive scaling of
O(L3β3) operations to generate independent Monte Carlo configurations. Here, L is
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1. Introduction

the number of lattice sites and β = 1/kBT the inverse temperature. Nonetheless, the
CT-INT method reaches system sizes up to L = βt = 50 [32] and can also be used to
simulate two-dimensional fermion-boson models [P1]. Retarded interactions have also
been included in the worm algorithm with global world-line updates, where system sizes
of L = 128 and βt = L/2 were reached [72]. Because the interaction is nonlocal in imag-
inary time, the worm algorithm does not show the same performance as for equal-time
interactions. By contrast, the directed-loop algorithm has not been able to treat non-
local interactions in imaginary time so far, but nonlocal interactions in space can be
simulated efficiently [73, 74]. Retarded interactions are also studied in the context of
DMFT and the hybridization expansion method [75] to understand dynamical screening
effects [76–78], and in extended DMFT calculations [79,80].

The main goal of this thesis is the further development of the action-based QMC ap-
proach to fermion-boson problems. Our starting point is the CT-INT method, where re-
tarded interactions are sampled in the form of vertices in a perturbation expansion. The
main advantage of the action-based approach—to integrate out the bosons so that they
need not be sampled—is also one of its few disadvantages: bosonic observables cannot
be accessed directly anymore. However, with the help of generating functionals we can
derive sum rules to recover bosonic observables from fermionic correlation functions. For
example, the phonon propagator of the Holstein model can be recovered from the time-
displaced charge-charge correlation function, which is directly accessible in the CT-INT
method via Wick’s theorem. We also develop another way of calculating bosonic observ-
ables: because we sample retarded interactions resulting from fermion-boson coupling,
many bosonic observables can be inferred directly from the Monte Carlo configurations.
This is a common feature of many QMC methods based on a series expansion and was
used, e.g., to derive a unified QMC estimator for the fidelity susceptibility [81]. Fur-
thermore, the analogy between different QMC methods led us to the development of a
new algorithm for retarded interactions. It is based on the stochastic series expansion
(SSE) representation [82] which provides global directed-loop updates [55]. Originally,
the SSE representation was obtained from a series expansion in the total Hamiltonian,
but it can also be derived from the path-integral approach where retarded interactions
can be included. We formulate an efficient directed-loop algorithm for retarded interac-
tions that solves the autocorrelation problem for various fermion-boson models. We test
our method for the 1D spinless Holstein model and reach system sizes up to L = 1282
and βt = 2L.

The algorithmic developments of this thesis allow us, for the first time, to study the
thermodynamic properties of Peierls chains using the example of the spinless Holstein
model.2 While the ground-state properties of the Holstein model are in principle known
from QMC or DMRG, a systematic study of thermodynamic observables like the spe-
cific heat was out of reach so far. In QMC simulations, the accessible system sizes were
too small to overcome finite-size effects, whereas finite-temperature DMRG studies are
hindered by the increasing size of the phonon Hilbert space as temperature increases.

2A few results exist for the thermodynamic properties of 1D spin-Peierls models [83,84]. However, they
are limited by their accuracy at low temperatures, in particular for the specific heat.
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Using the directed-loop algorithm developed in this thesis, we are now able to calculate
the specific heat for systems reaching L = 162 lattice sites. For this purpose, we derive
a direct Monte Carlo estimator that recovers the specific heat from the distribution of
vertices. We present results for the specific heat of the spinless Holstein model covering
the entire parameter range from weak to strong coupling and from low to high phonon
frequencies. In the adiabatic limit, we compare our results for the Holstein model with
those obtained for the Su-Schrieffer-Heeger (SSH) model [8], another electron-phonon
model with a different coupling mechanism.

In the following, we give a brief outline of this work.
In Chap. 2, we define the fermion-boson models studied in this thesis and introduce

the path-integral formalism to derive a retarded fermionic interaction from a generic
fermion-boson model. Using the concept of generating functionals, we show how bosonic
observables can be recovered from fermionic correlation functions. In particular, we
specify sum rules for the phonon propagator and the total energy of the Holstein model.

In Chap. 3, we present the action-based QMC approach to retarded interactions.
After discussing the basics of Monte Carlo sampling, we introduce a generic framework
to formulate QMC methods from a perturbation expansion of the path integral. Based
on this, we give an overview of three methods that can be used to simulate retarded
interactions: the CT-INT method, the worm algorithm, and the directed-loop algorithm.
We continue with a derivation of bosonic QMC estimators that use the information
contained in the Monte Carlo configurations. Finally, we provide a detailed description
of the directed-loop QMC method developed in this work. We show test results for the
spinless Holstein model and discuss possible generalizations to other models.

In Chap. 4, we show applications to the thermodynamic and spectral properties of
Peierls chains. First, we consider the adiabatic limit where we briefly discuss the Peierls
instability as well as symmetry-protected topological states in Peierls systems. We use
a classical Monte Carlo method to calculate the specific heat of the spinless Holstein
and SSH models. With this method, spectral functions can be obtained directly on the
real-frequency axis. We explain the specific heat data by analyzing the temperature
dependence of the single- and two-particle spectra. The effects of quantum lattice fluc-
tuations on the specific heat of the spinless Holstein model are studied in the subsequent
section. We first discuss the specific heat for a fixed coupling as a function of the phonon
frequency, then the adiabatic and antiadiabatic regimes as a function of the electron-
phonon coupling. To explain the low-temperature features in the adiabatic regime, we
consider the electron and phonon spectral functions across the Peierls transition.

In Chap. 5, we conclude and give an outlook on prospective algorithmic developments,
possible applications, and future work on thermodynamic properties of Peierls systems.

Additional information is provided in the Appendix. In App. A, we show how retarded
interactions for fermion-boson models can be obtained directly from the interaction
picture without referring to the path integral. In App. B, we define the electron and
phonon spectral functions for the Holstein model, derive a relation between the phonon
spectral function and the dynamic charge structure factor, and outline sum rules for
the total energy. Appendix C deals with different approaches to calculate the specific
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1. Introduction

heat from QMC simulations. On the one hand, we derive a direct QMC estimator for
the specific heat of the Holstein model. On the other hand, we outline a maximum
entropy approach that calculates the specific heat from fitting and differentiating the
total energy. Finally, we discuss finite-size effects for the Holstein model and the SSH
model in the adiabatic limit.

Much of the work presented in this thesis is based on the publications [P2–P4] (see
p. 121). In particular, the presentation of fermion-boson models and the path-integral
formalism in Chap. 2 as well as the discussion of the perturbation expansion, the CT-INT
method, and the measurement of bosonic observables from the Monte Carlo configura-
tions in Chap. 3 rely on Ref. [P3]. The discussion of the directed-loop algorithm for
retarded interactions in Chap. 3 is based on Ref. [P2] and its supplemental material.
The results for thermodynamic and spectral properties of adiabatic Peierls chains pre-
sented in Chap. 4 were published in Ref. [P4], whereas the study of combined effects of
thermal and quantum lattice fluctuations on the spinless Holstein model have not been
published so far. Results for the phonon spectrum rely on Ref. [P3] and the appendix
on spectral functions is based on Refs. [P3,P5].
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2. Fermion-boson models and retarded
interactions

In principle, quantum many-particle physics in thermal equilibrium does not include the
notion of time. However, to solve the partition function in the path-integral formulation,
one introduces an artificial time axis called the imaginary-time axis that ranges from
zero to β = 1/kBT . Actions obtained in this way are instantaneous, though. Retarded
interactions, i.e., interactions that are nonlocal in imaginary time, usually arise when
dividing the physical system into two subsystems: the subsystem of interest is still
called the system, whereas the other part is referred to as the bath. A coupling between
system and bath allows for particle or energy exchange. From the perspective of the
system, the coupling to the bath then looks like a self-interaction that is nonlocal in
time. This effect becomes manifest in the path-integral formalism. Starting from a
bilinear action in the bath fields, the latter can be integrated out analytically which
leads to a retarded interaction in the system. Many physical examples can be described
by retarded interactions originating from the coupling to a bath: In the Kondo problem,
the local spin of an impurity is screened by the surrounding Fermi sea that acts as a
bath [85]. Realistic modeling of physical systems at low energies requires the inclusion
of screening effects from high-energy bands which leads to retarded interactions [78].
The coupling of a physical system to bosonic or fermionic baths is also studied in the
context of quantum dissipative systems, both in equilibrium and nonequilibrium [86].
In this work, we are particularly interested in fermionic systems that couple locally to a
bosonic bath, more precisely, in electron-phonon coupled systems. Here, the effect of the
phonons on the electronic system can be described by a retarded electronic interaction
that is mediated by the free phonon propagator.

The goal of this chapter is to introduce the path-integral formalism for a generic
fermion-boson model in order to prepare our discussion of action-based QMC methods
in Chap. 3. We briefly define two fermion-boson models that fall into the class of the
generic model, i.e., the Holstein model and the SSH model. Their physical properties
will be discussed in detail in Chap. 4. For the generic fermion-boson model, we derive a
retarded fermionic interaction by integrating out the bosons. The result is specified for
the electron-phonon models considered in this thesis. Furthermore, we show how bosonic
observables can be recovered from fermionic correlation functions using the concept of
generating functionals. In particular, we derive sum rules for the phonon propagator
and the phonon energies of the Holstein model.

Our presentation in this chapter is based on Ref. [P3]. Although we restrict ourselves
to fermion-boson models with a single bosonic mode, the basic formalism derived in
this chapter can be easily generalized to other systems that couple to a bosonic bath.
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2. Fermion-boson models and retarded interactions

For example, the fermionic degrees of freedom can be replaced by bosons or spins, but
also different types of boson propagators are possible. To keep the notation as simple
as possible, we only consider 1D models. Generalizations to higher dimensions are
straightforward.

2.1. Fermion-boson models

The 1D electron-phonon models studied in this thesis belong to a larger class of fermion-
boson Hamiltonians of the form

Ĥ = Ĥf +∑
q

ωq b̂
†
q b̂q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĥb

+∑
q

(γq%̂q b̂
†
q + γ̄q%̂

†
q b̂q)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĥfb

(2.1)

which consist of a general fermionic part Ĥf and a remainder that is quadratic in the
bosonic creation and annihilation operators b̂†q, b̂q. The bosonic part Ĥb is described
by harmonic oscillators with a general dispersion ωq, whereas Ĥfb contains the coupling

to an arbitrary fermionic operator %̂q with coupling parameter γq (we also include the
complex conjugate γ̄q). The sums in Eq. (2.1) run over momenta q = 2πn/L with
n ∈ {0, . . . , L− 1}. Here, L is the number of lattice sites. We set the lattice constant and
h̵ equal one and use periodic boundary conditions to define the momenta q.

Below, we define the Holstein model as well as the SSH model and map them to the
generic form (2.1). For both models, the electronic part of the Hamiltonian is given by
the nearest-neighbor hopping of spinful fermions with amplitude t,

Ĥf = −t∑
i
∑
σ

(ĉ†i,σ ĉi+1,σ + ĉ
†
i+1,σ ĉi,σ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B̂i,i+1

. (2.2)

Here, B̂i,i+1 is the electronic bond operator and ĉ†i,σ, ĉi,σ create or annihilate an electron
at lattice site i with spin σ, respectively. The corresponding spinless models are obtained
by dropping spin indices. The retarded interactions derived from the path integral only
depend on the bosonic part Ĥb and the type of fermion-boson coupling in Ĥfb, but
not on the explicit choice of Ĥf, which could also include other terms like a Hubbard
interaction. Therefore, we leave Ĥf unspecified in the following.

2.1.1. Holstein model

As a first example of the generic model (2.1), we consider the Holstein molecular-crystal
model [14,15]

Ĥ = Ĥf +∑
i

(
1

2M
P̂ 2
i +

K

2
Q̂2
i ) + g∑

i

Q̂i ρ̂i . (2.3)
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2.1. Fermion-boson models

The phonons are described by local harmonic oscillators with displacements Q̂i and
momenta P̂i; M is the oscillator mass and K the spring constant. The displacements
couple to the local charge density ρ̂i = ∑σ(n̂i,σ − 1/2) (here n̂i,σ = ĉ

†
i,σ ĉi,σ) with coupling

parameter g. The Holstein model follows from the generic model (2.1) by dropping the
momentum dependence of the bosons, i.e., ωq = ω0 =

√
K/M and γq = γ̄q = γ = g/

√
2Mω0,

and assuming a density-displacement coupling so that %̂q = L−1/2
∑i e

−iqiρ̂i.
1 We also

introduce the dimensionless coupling parameter λ = γ2/(2ω0t) = g
2/(4Kt).

The Holstein model is the central model studied in this thesis. We use it as an example
to explain and develop QMC methods for retarded interactions in Chap 3. Furthermore,
we study its thermodynamic and spectral properties in Chap. 4. The phase diagram in
Fig. 4.1 shows that the spinless Holstein model undergoes a quantum phase transition
between a Peierls insulating phase and a metallic Luttinger liquid phase. For further
information on the physical properties of the model, see Chap. 4. In particular, Sec. 4.1.1
includes a definition of the adiabatic limit and a discussion of the Peierls instability.

2.1.2. Su-Schrieffer-Heeger model

As a second example, we consider the Su-Schrieffer-Heeger (SSH) model [8]

Ĥ = Ĥf +∑
i

[
1

2M
P̂ 2
i +

K

2
(Q̂i+1 − Q̂i)

2
] + α∑

i

(Q̂i+1 − Q̂i) B̂i,i+1 (2.5)

where the electrons couple to the phonons in the form of a modulation of the electronic
hopping as a result of lattice distortions. The SSH model can be obtained from the
generic Hamiltonian (2.1) by choosing acoustic phonons with dispersion ωq = ωπ sin(q/2)

and ωπ = 2
√
K/M [P6]. The coupling of the phonons to the bond operators leads to

%̂q = L
−1/2
∑i e

−iqiB̂i,i+1 and a complex coupling γq = α (e−iq − 1) /
√

2Mωq.
2 For the SSH

model, we define the dimensionless coupling λ = 2 ∣γq ∣
2
/(ωqt) = α

2/(Kt).

A similar model that is given by the Hamiltonian [87]

Ĥ = Ĥf +∑
i

(
1

2M
P̂ 2
i,i+1 +

K

2
Q̂2
i,i+1) + α∑

i

Q̂i,i+1B̂i,i+1 (2.7)

1For the Holstein model, the displacement and momentum operators can be transformed into the
second-quantized creation and annihilation operators via the relations

Q̂i =
1√

2Mω0

(b̂†i + b̂i) , P̂i = i

√
Mω0

2
(b̂†i − b̂i) . (2.4)

Then, the parameters for the generic Hamiltonian (2.1) can be read off immediately. We omit the
zero-point energy in Eq. (2.1).

2For the SSH model, the bosonic operators in Eq. (2.5) must first be Fourier transformed into momen-
tum space before we can apply the relations

Q̂q =
1√

2Mωq
(b̂†−q + b̂q) , P̂q = i

√
Mωq

2
(b̂†q − b̂−q) . (2.6)
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2. Fermion-boson models and retarded interactions

describes the coupling of the electronic bond operators B̂i,i+1 to a single displacement
Q̂i,i+1 instead of the difference (Q̂i+1 − Q̂i). In contrast to the original SSH model, the
phonons are defined at the bonds between two lattice sites i and i+1 and rather describe
the dynamics of the bonds than the fluctuations of the atom positions. The model has
optical phonons with frequency ωq = ω0 =

√
K/M and is therefore called the optical SSH

model. It follows from the generic Hamiltonian (2.1) by choosing the constant coupling
γq = γ̄q = γ = α/

√
2Mω0 to the bond operators %̂q = L

−1/2
∑i e

−iqiB̂i,i+1. Formally, the

optical SSH model is very similar to the Holstein model, only %̂q is chosen differently.

The SSH model was originally introduced for the theoretical study of soliton excita-
tions in conjugated polymers [8]. In Chap. 4, we briefly discuss solitons in the context of
symmetry-protected topological insulators and investigate how they appear in the adia-
batic limit of the spinless SSH model as a consequence of thermal fluctuations. Moreover,
we use, in particular, the optical SSH model as a further example to demonstrate the
applicability of the action-based QMC approach.

2.2. Path-integral formalism and retarded interactions

The path integral provides a general approach to derive retarded interactions for systems
coupled to a bosonic bath. We derive an effective fermionic action for the generic fermion-
boson model (2.1). With the help of generating functionals, any bosonic observable can
be recovered from fermionic correlation functions. In particular, we derive sum rules for
the phonon propagator and the total energy of the Holstein model.3

2.2.1. Effective fermionic action for the bosons

The grand-canonical partition function of a fermion-boson coupled many-particle system
can be represented by the functional field integral

Z = ∫ D(b̄, b)∫ D(c̄, c) e−S[b̄,b,c̄,c] , (2.8)

where D(b̄, b) [D(c̄, c)] is the bosonic [fermionic] integration measure and S the action
of the total system. We use the coherent-state representation b̂ ∣b⟩ = b ∣b⟩ with complex
variables b for the bosons, and ĉ ∣c⟩ = c ∣c⟩ with anticommuting Grassmann variables c
for the fermions. The bosonic and fermionic fields are functions of imaginary time τ
and fulfill the boundary conditions b(β) = b(0) and c(β) = −c(0). Note that in the
field-integral approach time ordering is implicit. For further details on coherent states
and the functional field integral, see Refs. [89, 90].

3Note that the path-integral formalism is not essential to derive retarded interactions. In App. A,
we describe an alternative way to obtain retarded interactions directly from the Hamiltonian-based
interaction picture. In this approach, the bosonic degrees of freedom are eliminated by applying
Wick’s theorem to the bosonic correlation functions that appear in the interaction expansion. More-
over, instead of generating functionals one can also use the equations of motion to derive sum rules
for bosonic observables [88]. However, in our opinion the path-integral approach is more elegant and
much simpler. Therefore, we use the path integral in the course of this work.
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2.2. Path-integral formalism and retarded interactions

For the generic fermion-boson model (2.1), the action S is split into the fermionic part

Sf = ∫

β

0
dτ∑

iσ

{c̄i,σ(τ) [∂τ − µ] ci,σ(τ) +Hf[c̄i,σ(τ), ci,σ(τ)]} (2.9)

and the remainder containing the free-boson part and the interaction,

Sb + Sfb = ∫

β

0
dτ∑

q

{ b̄q(τ) [∂τ + ωq] bq(τ) + γq %q(τ) b̄q(τ) + γ̄q %̄q(τ) bq(τ)} . (2.10)

Then, the partition function takes the form

Z = ∫ D(c̄, c) e−Sf[c̄,c]
∫ D(b̄, b) e−Sb[b̄,b]−Sfb[b̄,b,c̄,c]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Zb e−Sret[c̄,c]

. (2.11)

Because the action is quadratic in the bosonic fields, they can be integrated out exactly
[60], leading to an effective fermionic interaction

Sret = −∑
q

∣γq ∣
2

ωq
∬

β

0
dτdτ ′ %̄q(τ)Pq(τ − τ

′
)%q(τ

′
) (2.12)

mediated by the noninteracting bosonic Green’s function Pq(τ − τ
′) = ωq⟨b̄q(τ)bq(τ ′)⟩b.

Here, we introduced the expectation value with respect to the free-boson part, ⟨O⟩b =

Z−1
b ∫ D(b̄, b) e−SbO, where Zb = ∫ D(b̄, b) e−Sb is the partition function of free bosons.

For 0 ≤ τ < β, Pq(τ) is given by

Pq(τ) = ωq
e−ωqτ

1 − e−ωqβ
(2.13)

and we impose periodic boundary conditions Pq(τ + β) = Pq(τ). With the factor of ωq,
the adiabatic and antiadiabatic limits of Pq(τ) are

lim
ωq→0

Pq(τ) =
1

β
, lim

ωq→∞
Pq(τ) = δ(τ) . (2.14)

In general, the bosonic propagator Pq(τ) mediates a nonlocal interaction that drops off
exponentially in imaginary time. However, in the adiabatic limit ωq → 0 the interaction
becomes long-ranged, whereas in the antiadiabatic limit ωq → ∞ it becomes instanta-
neous.

Retarded interactions for electron-phonon models

For the Holstein model, the effective interaction (2.12) takes the form

Sret = −2λt∬
β

0
dτdτ ′∑

i

ρi(τ)P (τ − τ ′)ρi(τ
′
) , (2.15)
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2. Fermion-boson models and retarded interactions

which is diagonal in real space. Because the free phonon propagator is now local in
space, we replaced Pq(τ) → P (τ). For the optical SSH model, the retarded interaction
is very similar and given by

Sret = −
λt

2
∬

β

0
dτdτ ′∑

i

Bi,i+1(τ)P (τ − τ ′)Bi,i+1(τ
′
) . (2.16)

However, for the SSH model with acoustic phonons, we obtain a nonlocal interaction in
space and time, i.e.,

Sret = −
λt

2
∬

β

0
dτdτ ′∑

ij

Bi,i+1(τ)Pij(τ − τ
′
)Bj,j+1(τ

′
) , (2.17)

where Pij(τ) = L
−1
∑q e

−iq(i−j)Pq(τ). While Pq(τ) > 0 is always satisfied, Pij(τ) obtains
negative contributions for i ≠ j if we consider an arbitrary dispersion ωq that is not
constant [P6].

2.2.2. Correlation functions and generating functionals

The expectation value of an arbitrary observable O[b̄, b, c̄, c] takes the form

⟨O[b̄, b, c̄, c]⟩ = ∫
D(b̄, b) ∫ D(c̄, c)O[b̄, b, c̄, c] e−S

∫ D(b̄, b) ∫ D(c̄, c) e−S
. (2.18)

If the observable only depends on the fermionic fields, the bosonic parts of S can be
integrated out exactly, both in the numerator and in the denominator of Eq. (2.18).
Then, O[c̄, c] can be calculated directly from the retarded interaction, i.e.,

⟨O[c̄, c]⟩ = ∫
D(c̄, c)O[c̄, c] e−Sf−Sret

∫ D(c̄, c) e−Sf−Sret
. (2.19)

To calculate an observable O[b̄, b, c̄, c] that also depends on the bosonic fields, we add
the source term

Ssource = −∫

β

0
dτ∑

q

[ηq(τ) b̄q(τ) + η̄q(τ) bq(τ)] (2.20)

to the action in the numerator of Eq. (2.18). Then, the bosonic fields contained in the
observable can be expressed as functional derivatives with respect to the complex source
fields ηq(τ) and η̄q(τ). After integrating out the bosons (including the source term), the
source fields appear in Sret, i.e.,

S
source
ret = −∑

q

∣γq ∣
2

ωq
∬

β

0
dτdτ ′ [%̄q(τ) − γ̄

−1
q η̄q(τ)]Pq(τ − τ

′
) [%q(τ

′
) − γ−1

q ηq(τ
′
)] , (2.21)

18



2.2. Path-integral formalism and retarded interactions

and Eq. (2.18) becomes

⟨O[b̄, b, c̄, c]⟩ = lim
η̄,η→0

∫ D(c̄, c)O[ δδη̄ ,
δ
δη , c̄, c] e

−Sf−Ssource
ret

∫ D(c̄, c) e−Sf−Sret
. (2.22)

As a result, any bosonic observable can be recovered from a higher-order fermionic
correlation function.

2.2.3. Bosonic observables for the Holstein model

In the following, we illustrate the use of generating functionals for the Holstein model.4

To express bosonic observables in terms of the displacements qi(τ) or the momenta pi(τ)
we rewrite the source term (2.20) as

Ssource = −∫

β

0
dτ∑

i

[ξi(τ) qi(τ) + ζi(τ)pi(τ)] , (2.23)

with real fields ξi(τ) and ζi(τ). Transformation of the source fields in Eq. (2.21) leads
to the action

S
source
ret = Sret + S

+
ξρ + S

+
ξξ + S

−
ζρ + S

+
ζζ + S

−
ξζ , (2.24)

where the individual contributions are given by

S
±
µν = −αµν∬

β

0
dτdτ ′∑

i

µi(τ)P±(τ − τ
′
)νi(τ

′
) (2.25)

with αξρ = −2
√
λt/K, αξξ = 1/(2K), αζρ = 2i

√
Mλt, αζζ = M/2, and αξζ = i/ω0. Here,

we defined the phonon propagators

P±(τ) =
1

2
[P (τ) ± P (β − τ)] , (2.26)

corresponding to P+(τ − τ ′) = K ⟨qi(τ) qi(τ
′)⟩b = M−1⟨pi(τ)pi(τ

′)⟩b and P−(τ − τ ′) =

−iω0 ⟨qi(τ)pi(τ
′)⟩b.

Phonon propagator

With the help of the generating functionals in Eqs. (2.24) and (2.25), we get access to
the phonon propagators

DQ(i − j, τ − τ
′
) =K ⟨qi(τ) qj(τ

′
)⟩ = P+(τ − τ

′
) δi,j +X

++
ij (τ, τ ′) , (2.27)

DP (i − j, τ − τ
′
) =

1

M
⟨pi(τ)pj(τ

′
)⟩ = P+(τ − τ

′
) δi,j +X

−−
ij (τ, τ ′) (2.28)

4The sum rules derived below also apply to the optical SSH model (2.7) after substituting ρi(τ) →
Bi,i+1(τ) and λ→ λ/4.
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2. Fermion-boson models and retarded interactions

consisting of the free propagator P+(τ − τ ′) and the interaction contributions

X±±
ij (τ, τ ′) = 4λt∬

β

0
dτ1dτ

′
1 P±(τ − τ1) ⟨ρi(τ1)ρj(τ

′
1)⟩P±(τ

′
1 − τ

′
) . (2.29)

The phonon propagators of the Holstein model are completely determined by the dy-
namic charge-charge correlation function. A relation between the corresponding spectral
functions is derived in App. B.2.

Total energy

The total energy of the Holstein model, E = Eel +Eph +Eep, is the sum of the electronic
part Eel, the phonon part Eph, and the electron-phonon interaction term Eep. We further

split Eph = Ekin
ph +Epot

ph into the kinetic and potential parts of the phonon energy. With
the help of generating functionals, the bosonic contributions to the total energy can be
calculated from the local charge-charge correlation function Cρ(τ −τ

′) = ∑i ⟨ρi(τ)ρi(τ
′)⟩

via the sum rules

Ekin
ph =

E0
ph

2
− 2λt∬

β

0
dτdτ ′P−(τ)P−(τ

′
)Cρ(τ − τ

′
) , (2.30)

Epot
ph =

E0
ph

2
+ 2λt∬

β

0
dτdτ ′P+(τ)P+(τ

′
)Cρ(τ − τ

′
) , (2.31)

Eep = −4λt∫
β

0
dτ P+(τ)Cρ(τ) . (2.32)

Here, E0
ph = LP+(0) is the contribution of free phonons at λ = 0. Epot

ph and Ekin
ph follow

from the phonon propagators (2.27) and (2.28) by fixing the interaction to X±±
ii (0,0).

In Appendix B.3, we provide further information on the relation between the bosonic
observables and the dynamic charge structure factor.
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3. Action-based quantum Monte Carlo
approach to retarded interactions

During the last decades, many QMC methods have been developed that avoid a Trot-
ter discretization of imaginary time and are therefore regarded as numerically exact
methods. For the development of different QMC methods, choosing the right repre-
sentation of the partition function played an important role. Many QMC methods are
based on a Hamiltonian formulation. For example, the SSE representation [82] was es-
tablished as a high-temperature expansion of the partition function, i.e., an expansion
in the full Hamiltonian, where a Monte Carlo configuration is given by a sequence of
operators that does not even contain an explicit notion of imaginary time. By con-
trast, the worm algorithm [53] was formulated in the interaction-expansion representa-
tion where the imaginary-time evolution of operators requires an explicit time labeling
of kinks appearing in a world-line configuration. Later, it has been recognized that
the interaction-expansion representation provides a general framework for many QMC
methods [56, 91]. With the development of determinantal continuous-time QMC meth-
ods that are predominantly used as impurity solvers [67,68,75] in DMFT applications, an
action-based formulation of QMC methods was promoted. Again, these methods rely on
an interaction-expansion representation, but now in a path-integral formulation. In con-
trast to the Hamiltonian-based methods used before, the flexibility of the path-integral
approach allowed an easy implementation of retarded interactions that arise from the
coupling to a bosonic bath or from dynamical screening. Important applications included
the simulation of lattice fermion-boson models using the CT-INT method [70] and ex-
tended DMFT calculations for screening effects in impurity models [76,79,80]. However,
world-line methods had already been used before to simulate retarded interactions for
the polaron problem [61–66]. Recently, the worm algorithm has also been applied to
retarded interactions at finite band fillings [72].

In this chapter, we give an introduction to the action-based QMC approach to re-
tarded interactions. We restrict ourselves to exact methods that can be used to simulate
fermion-boson models on a lattice, i.e., the CT-INT method, the worm algorithm, and
the directed-loop algorithm. These methods have in common that they sample inter-
action vertices in a perturbation expansion, but differ in the choice which part of the
action is regarded as the perturbation. An apparent disadvantage of the action-based
approach is the loss of direct access to bosonic observables. For those methods that
expand in the retarded interaction we show that bosonic observables can be recovered
efficiently from the distribution of vertices. Furthermore, we develop a new QMC algo-
rithm with directed-loop updates that is based on the SSE representation and solves the
autocorrelation problem for 1D fermion-boson models. Although we restrict ourselves
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3. Action-based quantum Monte Carlo approach to retarded interactions

to fermion-boson models, the concepts discussed for world-line methods, i.e., the worm
algorithm and the directed-loop algorithm, also apply to bosonic or spin models coupled
to a bosonic bath. Accordingly, these world-line algorithms can also be used to simulate
bosonic models with retarded interactions in higher spatial dimensions.

After a brief introduction to the basics of Monte Carlo sampling in Sec. 3.1, we give an
overview of QMC methods for retarded interactions in Sec. 3.2 and show how they follow
from a unified picture of the perturbation expansion. This section already includes a
short description of the directed-loop algorithm developed in this thesis. In Sec. 3.3, we
show for the CT-INT method how bosonic observables can be recovered from the distri-
bution of vertices. Finally, in Sec. 3.4 we give a detailed description of the directed-loop
algorithm, demonstrate its efficiency, and discuss possible extensions to other models.
Parts of this chapter are based on Refs. [P2,P3].

3.1. Monte Carlo basics

The Monte Carlo method is a stochastic approach to calculate high-dimensional sums
and integrals as they occur for example in the partition function of a many-particle
system. Its efficiency relies on the central-limit theorem which ensures that the statistical
error of an observable scales inversely with the square root of the number of samples.
In particular, the sampling error is independent of the dimension of the integrals. In
the following, we briefly review the main concepts of Monte Carlo sampling using the
example of the partition function. Our presentation follows Refs. [68, 92,93].

3.1.1. From the partition function to Monte Carlo sampling

In the Monte Carlo language, the partition function of a physical system is written as a
sum over configurations C and a weight W (C), i.e.,

Z = ∑
C

W (C) . (3.1)

Each configuration C consists of a set of variables that can either be discrete or con-
tinuous. Hence, the ∑ symbol in Eq. (3.1) may in general contain sums over discrete
variables and integrals over continuous ones. In a classical system, the Monte Carlo
weight is often given by the Boltzmann factor W (C) = exp[−βE(C)], where a configu-
ration is represented by a point in phase space and E(C) is the corresponding energy.
Even for a quantum system, a mapping to the form (3.1) is always possible. Using the
path-integral formulation of the partition function, the quantum many-particle problem
is mapped to a classical problem with an additional dimension for imaginary time.

Although the mapping of the partition function to the form (3.1) is often used to
identify the weight W (C), the defining equation for the Monte Carlo sampling is the
expectation value of an observable. It is given by

⟨O⟩ =
1

Z
∑
C

W (C)O(C) , (3.2)
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3.1. Monte Carlo basics

where O(C) is the contribution to the observable for a given configuration. The precise
form of O(C) depends on the details of the Monte Carlo method used and can be very
different for different methods. If W (C) > 0, we can identify the probability distribution
p(C) = W (C)/Z that is sampled in the Monte Carlo process. However, especially for
fermionic systems W (C) may have negative contributions which leads to the negative
sign problem. A positive weight can then be obtained by a simple reweighting:

⟨O⟩ =
∑C ∣W (C)∣O(C) s(C)

∑C ∣W (C)∣ s(C)
=

⟨Os⟩∣W ∣
⟨s⟩∣W ∣

. (3.3)

Here, we take the expectation value with respect to the absolute value of the weight and
add the sign s(C) to the observable. In the presence of a severe sign problem, Monte
Carlo simulations usually scale exponentially [94].

Equation (3.2) can be estimated using importance sampling : We draw M samples
C(i), i ∈ {1, . . . ,M}, from the distribution p(C) and obtain the sample mean

Ō =
1

M

M

∑
i=1

Oi . (3.4)

Here, we have introduced the short-hand notation Oi = O(C(i)). The estimator Ō itself
is a random variable that converges to the exact result ⟨O⟩ in the limit M → ∞. Its
variance can be estimated from the sample variance

σ2
Ō =

1

M − 1

M

∑
i=1

(Oi − Ō)
2

(3.5)

if all samples are statistically independent. Then, the error becomes (σ2
Ō
/M)1/2 for

large M . However, the true error can be much larger if the samples are correlated (cf.
Sec. 3.1.3).

3.1.2. Markov chains and the Metropolis-Hastings algorithm

There are different ways of generating random configurations from a probability distri-
bution. If p(C) is known, we can often use direct sampling to generate independent
samples, which is very efficient in low-dimensional phase spaces. In Sec. 3.4.2, we will
use direct sampling to generate random numbers distributed according to the phonon
propagator. For the high-dimensional phase space of the partition function, we use a
different approach called Markov chain sampling. It is based on a stochastic process that
generates a new configuration C(t+1) only from the present configuration C(t) with the
transition probability T (C(t) → C(t+1)). Thereby, an artificial time t is introduced that
labels the configurations. To keep the notation as simple as possible, we drop the time
labels in the following. Conservation of probability requires ∑C′ T (C → C ′) = 1. The
Markov chain starts from an arbitrary initial distribution and converges to the station-
ary distribution W (C) if two conditions are fulfilled: ergodicity and balance. Ergodicity
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3. Action-based quantum Monte Carlo approach to retarded interactions

means that it is possible to reach any configuration C ′ from C in a finite number of
Markov steps, whereas the balance condition

∑
C

W (C)T (C → C ′
) =W (C ′

) (3.6)

ensures that the Markov process converges to the stationary distribution W (C). Note
that for a Markov process the normalization of the probability distribution need not be
known. For example, to sample Eq. (3.2) we only need the weight W (C) but not the
normalization factor Z. In practice, it is often easier to work with the detailed-balance
condition

W (C)T (C → C ′
) =W (C ′

)T (C ′
→ C) (3.7)

that directly leads to Eq. (3.6) by summing both sides of the equation over C.
Markov chains provide a general framework to sample the weight W (C). However,

one still has to find an algorithm defined by the transition probabilities T (C → C ′).
A particular choice is given by the Metropolis-Hastings algorithm [95, 96]. In this al-
gorithm, the transition probability is split into a proposal probability T0(C → C ′) and
an acceptance probability A(C → C ′) so that T (C → C ′) = T0(C → C ′)A(C → C ′).
While the proposal probability is chosen in advance, the acceptance follows from the
Metropolis choice

A(C → C ′
) = min[1,R(C → C ′

)] , R(C → C ′
) =

W (C ′)T0(C
′ → C)

W (C)T0(C → C ′)
, (3.8)

which fulfills the detailed balance condition (3.7).

3.1.3. Autocorrelation times

While Markov chain sampling yields high acceptance rates, subsequent configurations are
usually strongly correlated. We have to distinguish between two issues: the equilibration
time of the Markov chain towards equilibrium and the autocorrelation time between
subsequent measurements in equilibrium. Both time scales are usually captured by the
normalized autocorrelation function [93]

AO(t) =
1

M−t ∑
M−t
i=1 OiOi+t − Ō2

1
M ∑

M
i=1O

2
i − Ō

2
. (3.9)

Typically, AO(t) decays exponentially at large times [93], which defines the exponential
autocorrelation time

τexp,O = lim sup
t→∞

t

− log ∣AO(t)∣
(3.10)

for the observable O. The relaxation time for the slowest mode in the system is then
defined as τexp = supO τexp,O, which sets an upper bound for the equilibration time. For
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3.2. Quantum Monte Carlo methods for retarded interactions

each observable, we can also define the integrated autocorrelation time

τint,O =
1

2
+

∞
∑
t=1

AO(t) , (3.11)

which controls the statistical error of the observable O once equilibrium is reached. If
the samples are statistically independent, τint,O = 1/2 and the variance of the estimator
Ō is related to the variance of the individual samples Oi via σ2

Ō
= σ2

Oi
/M . In the

presence of autocorrelations, the variance increases by a factor of 2τint,O and becomes
σ2
Ō
= 2τint,O σ

2
Oi

/M . Therefore, the effective number of independent samples is reduced
by a factor of 2τint,O. In practice, the integrated autocorrelation time can be estimated
from a binning analysis (for details see Ref. [97]).

3.2. Quantum Monte Carlo methods for retarded interactions

In this section, we use the path-integral representation of the partition function to intro-
duce a general framework for QMC methods that are based on a perturbation expansion
and can be used to simulate retarded interactions of the form

Sret = −2λt∬
β

0
dτ1dτ2∑

i

ρi(τ1)P+(τ1 − τ2)ρi(τ2) . (3.12)

Depending on whether we perform the perturbation expansion in Sret or choose it as the
unperturbed part of the action, we obtain different representations for QMC methods.
We give an overview of three representations that follow from the general framework, i.e.,
the diagrammatic determinantal representation, the world-line representation, and the
SSE representation. For simplicity, we only consider retarded interactions of the density-
density type, as obtained from the Holstein model, but we also discuss extensions to other
types of retarded interactions. The presentation in this section is based on Refs. [P2,P3].

3.2.1. Unified picture based on the perturbation expansion

The coherent-state path integral provides a general framework for the perturbation ex-
pansion that allows us to include retarded interactions. In this formulation, the grand-
canonical partition function of an arbitrary fermionic action reads

Z = ∫ D(c̄, c) e−S0[c̄,c]−S1[c̄,c] . (3.13)

We split the action into the unperturbed part S0 and the perturbation S1. The pertur-
bation expansion of Eq. (3.13) is

Z =
∞
∑
n=0

(−1)n

n!
Z0 ⟨S

n
1 ⟩0 , (3.14)
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where we defined the expectation value with respect to the unperturbed system as ⟨O⟩0 =

Z−1
0 ∫ D(c̄, c) e−S0O with Z0 = ∫ D(c̄, c) e−S0 .

The QMC methods considered below have in common that the expansion in Eq. (3.14)
is calculated stochastically by sampling configurations of vertices. For this purpose, we
write the perturbation in the vertex notation

S1 = −∑
ν

wνhν . (3.15)

A vertex is represented by an instance of the superindex ν that contains both discrete
(e.g., lattice sites) and continuous variables (e.g., imaginary times), a weight wν , and the
Grassmann representation of the operators hν[c̄, c]. We included an additional minus
sign in the vertex to get rid of the trivial sign (−1)n in Eq. (3.14). The perturbation
expansion becomes

Z =
∞
∑
n=0

∑
ν1...νn
²
∑Cn

1

n!
wν1 . . .wνn Z0 ⟨hν1 . . . hνn⟩0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∑αWα(Cn)

. (3.16)

The sum runs over the expansion order n, the ordered list of vertices Cn = {ν1, . . . , νn},
and the variable α that allows an additional sampling of the trace in world-line QMC
methods (see below). In the diagrammatic determinantal representation, we will omit
this index. Hence, we can already identify the weightWα(Cn) to be sampled in the Monte
Carlo method.1 The expectation value ⟨O⟩ = Z−1

∫ D(c̄, c) e−S0−S1O of an observable O
takes the form

⟨O⟩ =
∞
∑
n=0
∑
Cn

∑
α

pα(Cn)⟪O⟫Cn,α , (3.17)

where pα(Cn) =Wα(Cn)/∑n∑Cn∑αWα(Cn) is the probability distribution sampled in
the Monte Carlo simulation and ⟪O⟫Cn,α is the value of the observable for configuration
Cn and label α. For a finite system size L and inverse temperature β, the perturbation
expansion always converges [67]. As shown in Sec. 3.3.1, the average expansion order
scales as ⟨n⟩ = − ⟨S1⟩ ∼ βL.

The perturbation expansion (3.16) provides a general framework to deal with re-
tarded interactions in QMC simulations. However, the choice which part of the action
is regarded as the perturbation S1 of the unperturbed part S0 leads to different QMC
methods. The details of an algorithm are then determined by the specific representa-

1To be precise, Wα(Cn) is not exactly the Monte Carlo weight for continuous-time methods. Consider,
for example, a vertex with variables ν = {i, τ}. To simplify the notation for the QMC methods
and the vertex measurements discussed below, we put the integration measure dτ for the imaginary-
time variable in ∑ν = ∑i ∫ dτ . This is correct as long as we consider properties of the perturbation
expansion, but to obtain the true probability density for the Monte Carlo sampling, the integration
measures of the vertices must be included in the Monte Carlo weight. Then, the weights are consistent
with those obtained for QMC methods with a Trotter discretization of imaginary time. However, the
additional dτ factors drop out of the Metropolis ratio in the end.
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3.2. Quantum Monte Carlo methods for retarded interactions

tion used to calculate the expectation value ⟨hν1 . . . hνn⟩0 required for the Monte Carlo
weight Wα(Cn). In the following, we give an overview of different QMC approaches to
simulate lattice models with retarded interactions. We introduce the different methods
in their original representations. Afterwards we show how they apply to the simulation
of retarded interactions using the example of the Holstein model. In this section, we
already review the directed-loop QMC method developed in this thesis. However, the
details of the algorithm will be discussed in Sec. 3.4.

3.2.2. Diagrammatic determinantal representation

The continuous-time QMC method in the interaction expansion, also known as the CT-
INT method, was introduced by Rubtsov et al. [67] to simulate rather general fermionic
actions. In this representation, S0 contains the single-particle terms of the action, i.e.,

S0 = ∫

β

0
dτ∑

ijσ

c̄i,σ(τ) [(∂τ − µ) δi,j − ti,j] cj,σ(τ)

= ∬

β

0
dτdτ ′∑

ijσ

c̄i,σ(τ)G
−1
0 (i − j, τ − τ ′) cj,σ(τ

′
) , (3.18)

where ti,j = t (δi,j+1 + δi,j−1) is the hopping matrix element between nearest neighbors
and G0 is the noninteracting single-particle Green’s function. Because S0 is a bilin-
ear in the fermionic fields, Wick’s theorem applies to ⟨hν1 . . . hνn⟩0 for each configu-
ration Cn [98]. Thus, the Monte Carlo weight W (Cn) only involves the determinant
detM(Cn) = ⟨hν1 . . . hνn⟩0 of the O(n) × O(n) matrix M(Cn). Its entries are nonin-
teracting Green’s functions with space-time arguments taken from the interaction ver-
tices. Updates correspond to the addition or removal of individual vertices using the
Metropolis-Hastings algorithm (cf. Sec. 3.1.2), and involve matrix-vector multiplications
with O(n2) operations. Since O(n) updates are necessary to reach an independent con-
figuration, the algorithm scales as O(n3). A clear advantage of the CT-INT method is
that for any configuration Cn, Wick’s theorem can be used to calculate any correlation
function ⟪O⟫Cn from the single-particle Green’s function ⟪c̄i,σ(τ) cj,σ′(τ

′)⟫Cn [98].

While the technical details of the algorithm can be found in Refs. [68, 99], the idea
behind the CT-INT method is very simple. For a given expansion order n, each vertex
provides a set of Grassmann fields that is distributed over space and imaginary time.
Because the perturbation expansion is performed around the noninteracting system, the
contractions of the fermionic fields can be regarded as Feynman diagrams. In the end,
for every expansion order n and configuration of vertices Cn, all the Feynman diagrams
(including the disconnected ones) are taken into account in the determinant detM(Cn).

In principle, the diagrammatic determinantal representation is independent of the
internal structure of the interaction vertex2 so that the interaction can be nonlocal in
space and imaginary time. The first application of the CT-INT method to retarded

2Of course, the possible interaction terms that can be simulated efficiently with the CT-INT method
are limited by the fermionic sign problem.

27



3. Action-based quantum Monte Carlo approach to retarded interactions

interactions was performed by Assaad and Lang [70] considering the Holstein model

S1 = −∬

β

0
dτdτ ′∑

iσσ′s
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∑ν

λtP+(τ − τ
′
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wν

[ρi,σ(τ) − sδ] [ρi,σ′(τ
′
) − sδ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
hν

, (3.19)

which is still local in space. To establish a relation to the generic vertex notation in
Eq. (3.15), we identified the constituents of the vertex in Eq. (3.19). In particular, each
vertex contains the variables ν = {i, τ, τ ′, σ, σ′, s}, where the auxiliary Ising variable s =
±1 (and δ = 0.51) is included to avoid the sign problem [70]. The formulation of the CT-
INT method does not change in the presence of retarded interactions, only the acceptance
rate for adding a new vertex is optimized by proposing the time difference τ−τ ′ according
to the phonon propagator P+(τ − τ ′) via inverse transform sampling. A pedagogical
introduction to the CT-INT method with an emphasis on retarded interactions can be
found in Ref. [100].

The CT-INT method was successfully applied to a number of 1D electron-phonon
models including Holstein and Holstein-Hubbard models [32,70,71,101–103,P3,P5], the
optical SSH model [P6], the interplay between Holstein- and SSH-type coupling [104],
and a long-range Fröhlich-type interaction [105]. Applications to the SSH model with
acoustic phonons [P6] led to a severe sign problem caused by negative contributions of
the free phonon propagator in the nonlocal interaction (2.17). Recently, the CT-INT
method was successfully applied to the 2D Holstein model [P1].

In this work, we extend the CT-INT method with respect to measuring bosonic cor-
relation functions from the distribution of vertices (see Sec. 3.3), and present results for
the single-particle spectral functions of the spinless Holstein model (see Sec. 4.2.2).

3.2.3. World-line representation and worm algorithm

Another representation that is often used for QMC methods is the world-line representa-

tion. It is based on the idea that the partition function Z = ∑α ⟨α∣ e−βĤ ∣α⟩ describes the
imaginary-time evolution of an initial state ∣α⟩ from time τ = 0 to τ = β. In the following,
we explain the basic steps to arrive at a world-line representation of Z using the case of
spinless fermions, where ∣α⟩ = ∣n1, . . . , nL⟩ is given in the local occupation-number basis.
The Hamiltonian consists of two types of operators that are distinguished by their ef-
fect on ∣α⟩: diagonal operators that leave ∣α⟩ unchanged and off-diagonal operators that
change the occupation numbers of ∣α⟩. The time evolution of ∣α⟩ becomes particularly
clear in the interaction-expansion representation3 where the Hamiltonian Ĥ = Ĥ0 − Ĥ1

is split into the diagonal part Ĥ0 (including the chemical potential) and the off-diagonal
perturbation Ĥ1. We consider the hopping term Ĥ1 = t∑i B̂i,i+1 = t∑b B̂b as the pertur-
bation and introduce the bond variable b between lattice sites i and i+1. It is important
that the operators in the perturbation Ĥ1 are non-branching, i.e., B̂b ∣α⟩ ∼ ∣α′⟩. Then,

3The interaction picture as well as the interaction expansion are defined in App. A.
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3.2. Quantum Monte Carlo methods for retarded interactions

Figure 3.1.: (a) Closed world-line configuration for a 4-site system with two electrons.
A world line is represented by a solid line and illustrates the path an electron takes in
space and imaginary time. (b) The same world-line configuration as in (a) but with an
additional worm (red) included. Open circles correspond to the head and the tail of the
worm. (c) Flipping the occupation numbers in (a) along the path of the worm in (b) leads
to an open world-line configuration with two world-line discontinuities. Thereby, kinks can
be created or annihilated.

the perturbation expansion becomes

Z =
∞
∑
n=0

tn ∑
b1...bn

∫
β

0
dτn . . . ∫

τ3

0
dτ2∫

τ2

0
dτ1∑

α

⟨α∣ e−βĤ0B̂bn(τn) ∣αn−1⟩ ⟨αn−1∣ . . .

. . . ∣α2⟩ ⟨α2∣ B̂b2(τ2) ∣α1⟩ ⟨α1∣ B̂b1(τ1) ∣α⟩ , (3.20)

where B̂b(τ) = eτĤ0B̂b e
−τĤ0 . We end up with a time-ordered sequence of operators

B̂bp(τp) that act at time τp and propagate the initial state ∣α⟩. Since the propagated

state ∣αp⟩ ∼ ∏p
l=1 B̂bl ∣α⟩ is uniquely defined, we need not sum over intermediate states.

From Eq. (3.20) the world-line representation of the interaction expansion becomes
manifest. Starting with an initial state ∣α⟩ = ∣n1, . . . , nL⟩, the occupation numbers cannot
change until the first operator B̂b1(τ1) is applied at time τ1. The expectation value
⟨α1∣ B̂b1(τ1) ∣α⟩ is only nonzero if one of the sites of bond b1 is occupied and the other site
is empty. Then, B̂b1(τ1) exchanges the occupation numbers at bond b1. This procedure
is repeated for the remaining operators B̂bp(τp). In the end, we obtain a graphical
representation as shown in Fig. 3.1(a), where solid lines correspond to occupied lattice
sites and dashed lines to empty sites. Then, the path a single electron takes in space
and imaginary time defines a world line. An electron can only hop to a neighboring site
if an operator B̂bp(τp) is applied. The resulting horizontal line is called a kink.

Equation (3.20) is the starting point to formulate world-line QMC methods for instan-
taneous interactions in continuous time. Usually, these methods are applied to bosonic
or spin models, but they can also be used to simulate 1D fermionic models.4 A Monte
Carlo configuration is then defined by the expansion order n, the initial state ∣α⟩, and a

4For fermionic models in more than one dimension, world-line QMC methods suffer from a sign problem.
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list of kinks Cn, where each kink has a bond and a time variable. The Monte Carlo weight
Wα(Cn) factorizes into a product of weights ⟨αp∣ B̂bp(τp) ∣αp−1⟩ = e

τp∆Ep ⟨αp∣ B̂bp ∣αp−1⟩

where we define ∆Ep = ⟨αp∣ Ĥ0 ∣αp⟩−⟨αp−1∣ Ĥ0 ∣αp−1⟩ as the energy change of the diagonal
term at kink p. If Ĥ0 consists of local operators, the weight of a kink is completely deter-
mined by the change of the occupation numbers at the corresponding bond. Originally,
world-line QMC methods used local update procedures in the form of kink motion or the
creation and annihilation of kink-antikink pairs. However, these local updates lead to a
series of problems: The Monte Carlo sampling can only be performed in the canonical
ensemble and cannot change the winding number of a world-line configuration. In the
end, the local kink updates lead to long autocorrelation times, especially in the vicinity
of second-order phase transitions [53].

A very efficient world-line QMC method for instantaneous interactions is the worm
algorithm introduced by Prokof’ev et al. [53]. It circumvents the problem of long auto-
correlation times by performing the Monte Carlo sampling in an enlarged configuration
space. In addition to the closed world-line configurations of the partition function, the
worm algorithm also considers configurations with two world-line discontinuities that
are connected by a “worm”. These configurations correspond to the single-particle
Green’s function and the end points of the worm are the space-time coordinates of
particle creation and annihilation. They are represented by additional matrix elements
⟨αp∣ ĉ

†
i(τ) ∣αp−1⟩ and ⟨αq ∣ ĉj(τ0) ∣αq−1⟩ in the expansion (3.20). In the worm algorithm,

the head of the worm becomes a dynamical object that can move through space and
imaginary time and thereby creates or annihilates kinks [see Figs. 3.1(b) and (c)]. Only
when the head of the worm hits its own tail, the world line closes and a valid configuration
for the partition function is reached again. In the end, this entire process corresponds
to a global update of a world-line configuration. Because each worm update only re-
quires local information from the world-line configuration, this update procedure is very
efficient and O(Lβ) operations lead to an independent Monte Carlo configuration. For
further details on the worm algorithm, see Refs. [53, 106,107].

Recently, Zi Cai et al. [72] extended the worm algorithm to the simulation of retarded
interactions that are diagonal in the occupation number. To formulate the method, they
used the path-integral representation of the perturbation expansion (3.16) and put all
the diagonal terms contained in S into the unperturbed part S0, i.e.,

S0 = ∫

β

0
dτ∑

i

c̄i(τ)∂τ ci(τ) + ∫
β

0
dτ H0(τ) + Sret . (3.21)

For the Holstein model, H0(τ) only contains the chemical potential. As in the interaction
expansion (3.20), the perturbation S1 is given by the electronic hopping terms. Using
the vertex notation of Eq. (3.15), we have ν = {b, τ}, wν = t, and hν = Bb(τ). The Monte
Carlo weight Wα(Cn) can then be obtained by mapping the time-ordered expectation
value ⟨hν1 . . . hνn⟩0 to the world-line representation (3.20). It takes exactly the same
form, up to an additional factor exp(−Sret[{ni(τ)}]) that stems from the retardation.
The worm updates can be formulated as usual, but the Monte Carlo weights cannot
be obtained from the local world-line configuration anymore. For each update step,
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the double integral in Sret[{ni(τ)}] requires the knowledge of the density ni(τ) for all
times τ ∈ [0, β). Therefore, the worm algorithm only scales as O(Lβ2) for retarded
interactions. If the interaction is also nonlocal in space, the scaling becomes even worse
leading to O(L2β2) operations to obtain independent Monte Carlo configurations. Zi
Cai et al. [72] applied the worm algorithm to a 1D bosonic model with a retarded
density-density interaction that is local in space and reached system sizes of L = 128 and
βt = L/2 [72].

Similar world-line approaches to retarded interactions appear in the context of DMFT
using the hybridization expansion method [75] to understand dynamical screening effects
[76–78], and in extended DMFT calculations [79,80]. However, all these approaches have
in common that only diagonal retarded interactions can be simulated.

3.2.4. Stochastic series expansion representation

A different representation that is closely related to the world-line picture introduced
above is the stochastic series expansion (SSE) representation [82]. It corresponds to a
high-temperature expansion of the partition function in the Hamiltonian formulation
and is given by

Z = ∑
α

⟨α∣ e−βĤ ∣α⟩ = ∑
α

∞
∑
n=0

(−β)n

n!
⟨α∣ Ĥn

∣α⟩

= ∑
α

∞
∑
n=0

βn

n!
∑
Sn

⟨α∣
n

∏
p=1

Ĥap,bp ∣α⟩ . (3.22)

The Hamiltonian Ĥ is written as a sum of local operators, Ĥ = −∑a,b Ĥa,b, where a spec-
ifies an operator type and b the bond between sites i(b) and j(b). The expansion (3.22)
is sampled stochastically. A configuration with expansion order n corresponds to a string
of n operators, specified by the index sequence Sn = {[a1, b1], . . . , [an, bn]},5 and a state
∣α⟩ from a complete basis in which Ĥ is non-branching, i.e., Ĥa,b ∣α⟩ ∼ ∣α′⟩. In the spirit

of the world-line representation introduced above, the sequence of operators Ĥap,bp leads
to a propagation of the initial state ∣α⟩ in imaginary time and the propagated state is
given by ∣αp⟩ ∼ ∏

p
l=1 Ĥal,bl ∣α⟩. However, there is no explicit notion of imaginary time

because we expand in the total Hamiltonian. In contrast to the worm algorithm, the SSE
representation requires that Ĥ contains both off-diagonal (a = 1) and diagonal (a = 2)
operators. Then two types of updates are sufficient to achieve ergodicity: the diagonal
updates and the directed-loop updates.

Before we describe the update procedures, we first introduce a graphical representa-
tion of the operator sequence using the world-line picture. This simplifies our further
discussion of the directed-loop updates. For simplicity, we consider a spinless fermionic
model, but the basic ideas can be easily generalized to other systems. Figure 3.2(a)
shows two examples of a typical vertex appearing in a world-line configuration. Each

5We use the symbol Sn instead of Cn because in the SSE representation the index sequence does not
include imaginary-time variables.
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Figure 3.2.: (a) Examples for a diagonal and an off-diagonal vertex. The vertex structure
is explained in the main text. (b) A sequence of vertices that illustrates the propagation
of the initial state ∣α⟩ and generates the same world-line configuration as in Fig. 3.1(a).
(c) During the directed-loop updates, a closed loop (red) is constructed that starts at the
lower vertex and propagates in the direction of the arrow. (d) Flipping the occupation
numbers of the vertex legs connected by the loop changes the operator types of the vertices
as well as the initial state ∣α⟩.

vertex consists of a horizontal bar representing the operator and four circles attached
to it, also called the legs of the vertex. The two lower (upper) circles illustrate the
occupation of the state at neighboring lattice sites before (after) the operator is applied.
Here, open (filled) symbols indicate empty (occupied) lattice sites. A diagonal operator
then leaves the state unchanged, whereas an off-diagonal operator exchanges the fillings
of the circles. A typical SSE world-line configuration is now defined by a sequence of
vertices, as shown in Fig. 3.2(b). Therefore, we do not draw filled (dashed) lines for
occupied (unoccupied) world lines anymore [as in Fig. 3.1(a)]. Figure 3.2(b) shows the
same world-line configuration as Fig. 3.1(a), but contains additional off-diagonal vertices
that do not change the world-line configuration.

The efficiency of the SSE representation for QMC simulations relies on the directed-loop
updates which provide global updates that significantly reduce autocorrelation times.
They are very similar to the worm updates discussed before. In the latter, the occupation
of a world-line segment is changed along a closed loop that is constructed from local
update moves of the world-line discontinuities. In contrast to the worm algorithm, the
directed loops connect different vertices of a world-line configuration and can only jump
to neighboring sites at the positions of the vertices. Starting at an entrance leg le of a
randomly chosen vertex, the choice of the exit leg lx determines how the vertex changes
as a result of the flipping of the occupation numbers nle , nlx to 1 − nle ,1 − nlx . Thereby,
the operator type of the vertex can change from a = 1 to a = 2 or vice versa. From lx the
loop continues to the next vertex until it closes. The probabilities for choosing lx are
determined by the directed-loop equations for a general vertex [55], which can be derived
from the requirement of local detailed balance (cf. Sec. 3.4.3). An example for a directed
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3.2. Quantum Monte Carlo methods for retarded interactions

loop is given in Fig. 3.2(c) and the resulting world-line configuration in Fig. 3.2(d).

During the directed-loop updates, the number of vertices as well as their positions
are fixed. Therefore, we need a second type of update procedure, the diagonal updates,
which changes the total number of operators in the operator string Sn. This is done by
adding or removing diagonal operators that do not change the world-line configuration.
For an efficient sampling, it is convenient to fix the length of the operator string to N
by inserting N − n unit operators (a = 0).6 Then, SN can be traversed sequentially and
updates Ĥ0,b ↔ Ĥ2,b be proposed. The corresponding configuration weights are directly
obtained from the propagated state ∣αp⟩. For further details see Ref. [55].

The SSE representation can also be obtained from the path-integral formulation of
the perturbation expansion. For this purpose, we make the trivial choice

S0 = ∫

β

0
dτ∑

i

c̄i(τ)∂τ ci(τ) (3.23)

and put all the other terms into the perturbation S1. For problems without retardation,
Eq. (3.15) takes the form S1 = −∫ dτ ∑a,bHa,b(τ), i.e., ν = {a, b, τ}, wν = 1, and hν =

Ha,b(τ). The relation between the perturbation expansion in Eq. (3.16) and the SSE
representation (3.22) is established by mapping the time-ordered expectation value to
an operator string:

∑
Sn

Z0 ⟨hν1 . . . hνn⟩0 = ∑
Sn

∑
α

⟨α∣∏
p

Ĥap,bp ∣α⟩ . (3.24)

While the Grassmann fields on the l.h.s. imply time ordering, it becomes explicit by the
operator sequence on the r.h.s. We included the sum over Sn in Eq. (3.24) to relabel the
operator types and bonds after the application of time ordering. On the r.h.s., the time
labels have become obsolete. Therefore, the additional τ -integrals contained in ∑Cn [cf.
Eq. (3.16)] can be carried out and give βn, leading to Eq. (3.22). A mapping between the
SSE and the time-ordered interaction expansion in the full Hamiltonian was previously
introduced in Ref. [91].

For retarded interactions such as Eq. (3.12), ⟨hν1 . . . hνn⟩0 can still be mapped to an
operator string to calculate the weight of a configuration. However, the fact that for Sret

the weight wν = P+(τ−τ ′) depends on imaginary time demands an explicit sampling of the
τ -integrals, as well as time-ordering of the fields. Since S1 consists of bilinears c(τ)c(τ),
this re-ordering does not change the sign of the configuration. To formulate the Monte
Carlo updates for retarded interactions, we have to solve basically two issues: On the one
hand, the diagonal updates cannot be performed as before by traversing the operator
string since the two constituents of the retarded interaction act at different positions in
the operator string. On the other hand, one has to find a coherent representation of the
vertices that allows an exchange of the bilinear hopping terms with one time argument
and the biquadratic interaction terms with two time arguments in the directed-loop
updates and still preserves the locality of the loop construction.

6If N is large enough, we do not introduce a systematic error. A convenient choice is N = 1.25n [55].
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3. Action-based quantum Monte Carlo approach to retarded interactions

Figure 3.3.: Vertices for the spinless Holstein model [cf. Eqs. (3.26) and (3.27)]. Vertex ν1
is a diagonal vertex (a1,1 = a1,2 = 2) on bond b1 connecting sites i(b1) and j(b1). It consists
of subvertices ν1,1 at time τ1,1 and ν1,2 at τ1,2. Vertex ν2 is off-diagonal (a2,1 = 1, a2,2 = 0)
and acts at b2, τ2,1, τ2,2.

To formulate the directed-loop algorithm for retarded interactions, it is expedient to
write each vertex νk as two subvertices νk,1 and νk,2. While this is already the case for
the retarded interaction, we add a unit “operator” 1b(τ) with a dummy time variable
to the hopping terms. Each subvertex then has local variables νk,j = {ak,j , bk,j , τk,j} (see
Fig. 3.3). For the Holstein model, bk,1 = bk,2 = bk. To lighten the notation we drop the
index k from here on. We write Eq. (3.15) as

S1 = −∬
β

0
dτ1dτ2 P+(τ1 − τ2) ∑

a1,a2,b

ha1a2,b(τ1, τ2) . (3.25)

The off-diagonal hopping vertices are given by

h10,b(τ1, τ2) =
t

2
Bb(τ1)1b(τ2) , (3.26)

h01,b(τ1, τ2) =
t

2
1b(τ1)Bb(τ2) ,

whereas the diagonal interaction vertices read

h22,b(τ1, τ2) = λt [C + ρi(b)(τ1)ρi(b)(τ2) + ρj(b)(τ1)ρj(b)(τ2)] (3.27)

with j(b) = i(b) + 1. For simplicity, we set the chemical potential to zero. To arrive
at the form (3.25), we multiplied the off-diagonal terms in Eq. (3.26) with the bosonic

propagator and exploited ∫ β
0 dτ2 P+(τ1 − τ2) = 1 for the dummy time variables. This

essentially promotes the hopping terms to retarded interactions and yields a vertex
weight Wν = w(τ1, τ2)W [ha1a2,b(τ1, τ2)]dτ1dτ2.7 Here, wν = w(τ1, τ2) = P+(τ1 − τ2)
irrespective of the operator types a1, a2. As a result, P+(τ1 − τ2) only plays a role for
the diagonal updates but drops out of the directed-loop equations, allowing for a simple

7Because Wν is the Monte Carlo weight for a vertex, we included the imaginary-time measures dτ1 and
dτ2 in its definition.
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3.3. Bosonic observables from the distribution of vertices

and efficient implementation (cf. Sec. 3.4.3). By contrast, W [ha1a2,b(τ1, τ2)] depends on
time only implicitly via the world-line configuration. Finally, the constant C = 1/2 + δ
(δ ≥ 0) in Eq. (3.27) ensures positive weights.

In the diagonal updates, the operator string cannot be traversed sequentially anymore
because each vertex update requires knowledge of the propagated state at two distinct
positions in the string. However, the occupation number at {i, τ} is completely deter-
mined by the initial state ∣α⟩ and the number of off-diagonal operators that act between
0 and τ and involve site i. During the diagonal updates, we construct an ordered list
containing the time arguments of the operators Bb(i)(τ) for each i. Sorting this list
takes O(Lβ logβ) operations, after which any propagated state can be quickly calcu-
lated. Diagonal updates involve adding or removing a single vertex h22,b(τ1, τ2) using
the Metropolis-Hastings algorithm (cf. Sec. 3.1.2). Sampling τ1, τ2 according to the
phonon propagator P+(τ1 − τ2) by inverse transform sampling ensures high acceptance
rates for any phonon frequency ω0.

The directed-loop updates for retarded interactions are now very similar to those
for instantaneous interactions. Our generalization exploits (i) the subvertex structure
introduced above, (ii) the fact that the update of a subvertex only changes the world-
line configuration locally into another allowed configuration, and (iii) our choice of the
weight w(τ1, τ2) that removes any time dependence from the directed-loop equations.
Because of these conditions, each subvertex can be updated individually during the loop
construction. However, the retarded interaction (3.12) leads to an update probability
that also depends on the other subvertex connected via P+(τ).

The ideas presented in this section to generalize the directed-loop algorithm to re-
tarded interactions are not restricted to the Holstein model, but also apply to other
models, e.g., Fröhlich, SSH, and spin-phonon models [31]. The SSE representation is
therefore more flexible than the interaction-expansion representation used for the worm
algorithm regarding the simulation of retarded interactions and reaches system sizes of
L = 1282 and βt = 2L [P2]. In Sec. 3.4, we give a detailed discussion of the directed-loop
algorithm including a definition of the vertex weights, the formulation of the diagonal
and directed-loop updates, the definition of observables, test results for the Holstein
model, and the discussion of possible extensions to other models.

3.3. Bosonic observables from the distribution of vertices

An apparent disadvantage of the fermionic approach is the loss of direct access to bosonic
observables. However, as shown in Sec. 2.2, the latter can be systematically calculated
from sum rules over fermionic correlation functions. For QMC methods that treat the
retarded interaction as a perturbation, information about the bosonic fields is also en-
coded in the vertex distribution. For models with a local fermion-boson interaction (e.g.,
the Holstein model), the bosonic contributions to the total energy as well as the local
bosonic propagator can be calculated efficiently from the vertex distribution. Moreover,
with the help of auxiliary Ising fields [108] originally introduced to avoid the sign prob-
lem [70], even nonlocal correlation functions such as the full bosonic propagator become
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3. Action-based quantum Monte Carlo approach to retarded interactions

accessible. Finally, we derive an estimator for the fidelity susceptibility that is applicable
to retarded boson-mediated interactions and can be used to identify phase transitions.

In the following, we show which observables can be recovered from the vertex distri-
bution for a generic model (with vertex hν). Then, we apply the general results to the
Holstein model. Finally, we use the CT-INT method to provide a performance test of
these estimators compared to a direct numerical integration of the fermionic sum rules.
The presentation in this section is based on Ref. [P3].

The bosonic estimators derived below become particularly useful in the SSE represen-
tation where observables must be recovered from the world-line configurations. As shown
in Sec. 3.4.4, the bosonic estimators remain valid and only require an easy substitution.

3.3.1. Estimators from the distribution of vertices

Expectation values of operators hν contained in the perturbation S1 can be calculated ef-
ficiently from the distribution of vertices [91]. To this end, hν is regarded as an additional
vertex written as hν = w

−1
ν ∑νn+1

wνn+1hνn+1δν,νn+1 and absorbed into the perturbation ex-
pansion:

⟨hν⟩ =
Z0

Z

∞
∑
n=0
∑
Cn

1

n!
wν1 . . .wνn ⟨hν1 . . . hνnhν⟩0

=
1

wν

∞
∑
n=0
∑
Cn+1

∑
α

(n + 1)pα(Cn+1) δν,νn+1 (3.28)

=
∞
∑
n=0
∑
Cn

∑
α

pα(Cn) [
1

wν

n

∑
k=1

δν,νk] .

Here, we first identified the probability distribution pα(Cn+1) of a configuration with
n + 1 vertices and then shifted the summation index to obtain pα(Cn). Finally, we
included the n = 0 contribution to the sum and replaced the factor of n by a sum over
the equivalent vertices. Comparison with Eq. (3.17) yields

⟪hν⟫Cn =
1

wν

n

∑
k=1

δν,νk . (3.29)

From here on, we drop the subscript α because it does not have any influence on the
vertex measurements. From Eq. (3.29) we obtain the familiar relation between the
perturbation term and the average expansion order, ⟨S1⟩ = − ⟨n⟩ [67]. Because ⟨S1⟩ is an
extensive thermodynamic quantity, the average expansion order ⟨n⟩ ∼ βL. In the same
way, we can obtain higher-order correlation functions, e.g.,

⟪hνhν′⟫Cn =
1

wνwν′
∑
k≠l
δν,νkδν′,νl . (3.30)

Each variable contained in the superindex ν can be resolved from a configuration Cn,
but continuous variables (e.g., imaginary time τ) have to be integrated over (at least on
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3.3. Bosonic observables from the distribution of vertices

a small interval) to make sense of the corresponding delta functions. The evaluation of
observables via Eqs. (3.29) and (3.30) only requires O(n) operations since

∑
k≠l
δi,k δj,l = ∑

k

δi,k∑
l

δj,l −∑
k

δi,k δj,k . (3.31)

Although the vertex measurements are restricted to operators that appear in the pertur-
bation, the class of accessible observables grows with the complexity of the interaction,
as demonstrated below for the fermion-boson problem.

3.3.2. Bosonic estimators for the Holstein model

The bosonic estimators are derived for the Holstein model using the interaction term

S1 = −λt∬
β

0
dτdτ ′∑

iσσ′s

[ρi,σ(τ) − sδ]P+(τ − τ
′
) [ρi,σ′(τ

′
) − sδ] (3.32)

as introduced for the CT-INT method in Sec. 3.2.2. In the vertex notation of Eq. (3.15),
ν = {i, τ, τ ′, σ, σ′, s}, wν = λtP+(τ − τ ′), and

hν = ρi,σ(τ)ρi,σ′(τ
′
) + δ2

− sδ [ρi,σ(τ) + ρi,σ′(τ
′
)] . (3.33)

The operators contained in Eq. (3.33) can be measured from the distribution of vertices.
In particular, we have access to the dynamical charge correlations required for the calcu-
lation of the bosonic observables in Sec. 2.2.3. The estimators derived below also apply
to other models with local fermion-boson coupling like the optical SSH model. For the
latter, we just have to replace ρi,σ(τ) → Bi,σ(τ), λ→ λ/4, and set δ = 0.8

Total energy

In the CT-INT method, the kinetic energy of the electrons is calculated from the single-
particle Green’s function. To recover the bosonic contributions (2.30)–(2.32) to the total
energy from the distribution of vertices, we sum over the auxiliary Ising variable s in
Eq. (3.33) and use Eq. (3.29) to obtain the estimator

⟪ρi,σ(τ)ρi,σ′(τ
′
)⟫

Cn
+ δ2

=
n

∑
k=1

δi,ikδσ,σkδσ′,σ′kδ(τ − τk) δ(τ
′ − τ ′k)

2λtP+(τk − τ ′k)
(3.34)

for the local charge-charge correlation function. Applying the sum rules (2.30)–(2.32) to
Eq. (3.34), we get the estimators

Ekin
ph (Cn) =

E0
ph

2
−

n

∑
k=1

P−(τk)P−(τ
′
k)

P+(τk − τ ′k)
, (3.35)

8If we set δ = 0, the auxiliary Ising variables s = ±1 become meaningless. As a consequence, the boson
propagator cannot be obtained from the distribution of vertices anymore.
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Epot
ph (Cn) =

E0
ph

2
+

n

∑
k=1

P+(τk)P+(τ
′
k)

P+(τk − τ ′k)
− 2λtLN2

σδ
2 , (3.36)

Eep(Cn) = −
2n

β
+ 4λtLN2

σδ
2 . (3.37)

For the kinetic energy the term ∼ δ2 vanishes due to the antisymmetry of P−(τ). Nσ

counts the number of spin components of the Holstein model, i.e., Nσ = 1 for the spinless
and Nσ = 2 for the spinful model.

The estimators for Ekin
ph and Epot

ph can be further improved by exploiting the global

translational invariance of all vertices, i.e., τk → τk+∆ and τ ′k → τ ′k+∆ with ∆ ∈ [0, β). We
integrate over ∆ to treat all the translations exactly, which allows for the transformation

P±(τk)P±(τ
′
k)

P+(τk − τ ′k)
Ð→

1

β
∫

β

0
d∆

P±(τk +∆)P±(τ ′k +∆)

P+(τk − τ ′k)
= P̄±(τk − τ

′
k) (3.38)

to the averaged propagator (τ ∈ [−β,β])

P̄±(τ) =
1

2β
±
ω0

4

β − ∣τ ∣

β
[coth(ω0β/2) −

P−(τ)

P+(τ)
] ±

ω0

4

∣τ ∣

β
[coth(ω0β/2) +

P−(τ)

P+(τ)
] . (3.39)

Since the substitution (3.38) applies to time differences of the same vertex, the compu-
tational cost to calculate the energies remains O(n). The improvement is particularly
noticeable for Ekin

ph (see Sec. 3.3.3).

Fidelity susceptibility

Recently, Wang et al. [81] derived a universal QMC estimator for the fidelity suscep-
tibility χF based on the distribution of vertices. Originally, their estimator was only
valid for equal-time interactions. We briefly summarize their results, focusing on the
CT-INT method, and then show how this estimator applies to retarded boson-mediated
interactions.

The fidelity susceptibility is a geometrical tool originating from quantum information
theory [109]. It can be used to detect quantum critical points without prior knowledge of
the order parameter from the change of the ground state upon changing the Hamiltonian
Ĥ(α) = Ĥ0 + αĤ1 via a driving parameter α. In Refs. [110–112], χF was extended to
finite temperatures in terms of the structure factor

χF(α) = ∫
β/2

0
dτ [⟨Ĥ1(τ)Ĥ1(0)⟩ − ⟨Ĥ1(0)⟩

2
] τ . (3.40)

Wang et al. [81] recognized that χF(α) can be recovered from the distribution of vertices
using Eqs. (3.29) and (3.30), leading to the covariance estimator

χF =
⟨nLnR⟩ − ⟨nL⟩ ⟨nR⟩

2α2
. (3.41)
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3.3. Bosonic observables from the distribution of vertices

For each vertex configuration, nL and nR count the number of vertices in the intervals
[0, β/2) and [β/2, β), respectively.

The calculation of χF via Eq. (3.41) is restricted to fermionic interactions of the form
S1 = α ∫ dτH1(τ), i.e., actions that are local in time and related to a Hamiltonian Ĥ1.
Using the example of the Holstein model, we generalize the fidelity susceptibility to
retarded boson-mediated interactions. Because χF is defined from a Hamiltonian, we
start from Eq. (3.40) and identify the electron-phonon coupling as the driving term
with α = g and Ĥ1 = ∑i Q̂iρ̂i. The displacements Q̂i entering the expectation values
in Eq. (3.40) via Ĥ1 can be replaced with fermionic operators using the source terms
introduced in Sec. 2.2.3. ⟨H1⟩ is given by Eq. (2.32), and

⟨H1(τ)H1(τ
′
)⟩ = 2∑

ν1

wν1 ⟨hν1⟩ δ(τ − τ1) δ(τ
′
− τ ′1)

+4 ∑
ν1ν2

wν1wν2 ⟨hν1hν2⟩ δ(τ − τ
′
1) δ(τ

′
− τ ′2)

(3.42)

in the vertex notation of the Holstein model. Continuing the derivation as in Ref. [81],
we obtain an estimator very similar to Eq. (3.41),

χF =
⟨ñLñR⟩ − ⟨ñL⟩ ⟨ñR⟩

2g2
. (3.43)

However, in the present case, each vertex contains two bilinears with times τk and τ ′k,
and ñL and ñR count the numbers of these bilinears in the left and right half of the
partitioned imaginary-time axis. For simplicity, we omitted a constant shift in Eq. (3.43)
that arises from the δ-dependent terms in Eq. (3.33). Taking it into account leads to
χF → χF − 2λtLN2

σδ
2 tanh(βω0/4)/(ω0g

2).

Phonon propagator

Equation (3.34) only gives access to local charge-charge correlations. For the Holstein
model, we can also obtain nonlocal correlation functions from the distribution of vertices,
including the phonon propagator. For this purpose, we exploit the information provided
by the Ising variable s. If we consider ∑s shν , the first two terms in Eq. (3.33) drop out
and only individual charge operators are left. Analogously, by taking

∑
s1s2

s1s2 hν1hν2 = 4δ2 [ρi1,σ1(τ1) + ρi1,σ′1(τ
′
1)] [ρi2,σ2(τ2) + ρi2,σ′2(τ

′
2)] , (3.44)

we can recover nonlocal charge correlations from Eq. (3.30). The simplest estimator is
the charge susceptibility

χij(Cn) =
1

β
∬

β

0
dτdτ ′ ⟪ρi(τ)ρj(τ

′
)⟫

Cn
(3.45)

=
1

16(λt)2N2
σδ

2β3 ∑
k≠l

sk δi,ik
P+(τk − τ ′k)

sl δj,il
P+(τl − τ ′l )

,
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which is obtained from the summation over all variables except for the lattice sites.9

The phonon propagators (2.27) and (2.28) take the form

K ⟪qi(τ) qj(τ
′
)⟫

Cn
= P+(τ − τ

′
) δi,j +

1

4λtN2
σδ

2 ∑
k≠l

P+(τ − τk)P+(τ − τ
′
k) sk δi,ik

P+(τk − τ ′k)

×
P+(τ ′ − τl)P+(τ

′ − τ ′l ) sl δj,il
P+(τl − τ ′l )

, (3.46)

1

M
⟪pi(τ)pj(τ

′
)⟫

Cn
= P+(τ − τ

′
) δi,j −

1

λtN2
σδ

2β2 ∑
k≠l

P−(τ − τk) sk δi,ik
P+(τk − τ ′k)

×
P−(τ ′ − τl) sl δj,il
P+(τl − τ ′l )

. (3.47)

To arrive at Eq. (3.46), we multiplied Eq. (3.44) with the symmetrized propagator P+
for each of the four times on the r.h.s. before integrating over the imaginary times. For
Eq. (3.47), we included the antisymmetrized propagator P− only for one pair of times, but
the estimator can be further improved by considering the remaining three combinations.

The simplest way to calculate the phonon propagators (3.46) and (3.47) is to fix the
second time argument to τ ′ = 0 and apply Eq. (3.31) to obtain the necessary information
from the vertices in O(nNτ) operations. Here, Nτ is the number of τ points on which
the correlation functions are calculated. Similar to the equal-time case, especially the
estimator for the momentum correlations can be improved by using translational invari-
ance. However, the rigorous approach of integrating over all translations increases the
computational cost to O(n2Nτ) operations since the sums in the first term of Eq. (3.31)
can no longer be calculated independently. This problem can be overcome by measuring
the correlation functions on an equidistant grid with spacing ∆τobs so that translations
of all vertices by multiples of ∆τobs are available and the computational cost remains
O(nNτ). Regardless, translational invariance can be applied rigorously to the second
term in Eq. (3.31). Putting the contributions of the phonon propagator together requires
another O(L2N2

τ ) operations, where an additional factor of Nτ comes from exploiting
translational invariance. This last step dominates the computational time for vertex
measurements (cf. Sec. 3.3.3).

3.3.3. Performance of the vertex measurements

In the CT-INT method, the computation of the single-particle Green’s function for the
calculation of observables via Wick’s theorem requires O(n2LNτ) operations, where
Nτ is the number of τ points. If Nτ is scaled with β, the calculation of dynamical
correlation functions is of the same order as the Monte Carlo updates. For fermion-boson
problems, even the bosonic energies in Eqs. (2.30)–(2.32) require the full time dependence
of ⟨ρi(τ)ρj(0)⟩. On the other hand, the calculation from the vertex distribution involves
only O(n) operations for the energies and O(nNτ) for the phonon propagator. For the
latter, exploiting translational invariance leads to another O(L2N2

τ ) operations to set

9Similarly, the (spin-resolved) charge correlation function can be calculated in Matsubara frequencies.
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Table 3.1.: Ratios of statistical errors for averages from vertex measurements and Wick’s
theorem for different simulation parameters. Ratios larger than 1 mean that estimators from
Wick’s theorem are more precise. The reference point is the spinless Holstein model with
ω0/t = 0.4, λ = 0.5, L = βt = 22, and δ = 0.51. The first two rows indicate the observable and
estimator used. The last column reports the average expansion order.

observable Eep Epot
ph Ekin

ph χ(π) ⟨n⟩

from Eq. (3.37) (3.36) (3.38) (3.46) (3.35) (3.38) (3.47) (3.45)

reference 2.6 4.0 2.6 2.5 20 5.6 5.9 1.2 151

λ = 1.0 1.2 1.4 1.1 1.2 4.8 1.6 1.3 1.0 371
λ = 1.5 1.1 1.3 1.1 1.6 18 3.3 2.9 1.0 661

L = βt = 14 3.2 4.0 3.2 0.2 19 6.4 4.0 1.2 62
L = βt = 30 2.6 5.0 2.7 2.8 23 5.4 13 1.3 282

δ = 1.0 3.7 7.0 4.0 2.1 32 8.5 4.4 1.2 510

up the final estimator. For large n, the computational cost for the vertex measurements
becomes negligible.

The above considerations were verified for the spinless Holstein model with ω0/t = 0.4,
L = βt = 22, λ = 1.5, and 1000 Monte Carlo steps between measurements. The average
expansion order was ⟨n⟩ ≈ 660 and we used ∆τobs = 0.1 (Nτ = 220). The computation
of dynamical correlation functions using Wick’s theorem took 26% of the total time, of
which 86% went into the matrix-vector multiplications necessary to calculate the Green’s
function. Only 1% of the total time was used for the vertex measurements, most of which
went into the O(L2N2

τ ) operations necessary to set up the translation-invariant phonon
propagator. If we omitted this last operation, the vertex measurements only took 0.02%
of the total time, and were dominated by the exact evaluation of P±(τ) for each vertex.
Approximately the same time would be needed for equal-time measurements from Wick’s
theorem using Nτ = 1. Hence, further improvements through tabulation of P±(τ) seem
unnecessary.

Aside from the significant speed-up, another advantage of the vertex measurements is
the exact calculation of imaginary-time integrals. By contrast, Wick’s theorem provides
⟨ρi(τ)ρj(0)⟩ only on a finite grid so that systematic errors from numerical integration
can arise. For ω0/t = 0.4, using Simpson’s rule on an equidistant grid with ∆τobs = 0.1
was sufficient to make systematic errors irrelevant. However, more elaborate integration
schemes may be necessary for larger ω0.

Table 3.1 reports ratios of statistical errors of averages obtained from either the vertex
distribution or Wick’s theorem, as determined in the same simulation and hence for the
same number of bins. Ratios larger than 1 mean that estimators obtained from Wick’s
theorem are more precise. We considered different bosonic energies, as well as the
charge susceptibility χ(q) at q = π which tracks CDW order. For Epot

ph and Ekin
ph we

compared three different estimators: the simple estimators (3.35) and (3.36) from one
set of vertices, the improved estimators using translational invariance [Eq. (3.38)], and
the estimators for the phonon propagators using the Ising spins, Eqs. (3.46) and (3.47).
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3. Action-based quantum Monte Carlo approach to retarded interactions

The reference results are for the spinless Holstein model with ω0/t = 0.4, λ = 0.5,
L = βt = 22, and δ = 0.51. For the resulting rather small expansion order ⟨n⟩ ≈ 151,
the estimators from Wick’s theorem have better statistics, i.e., the ratios in Table 3.1
are larger than one. The vertex estimators improve significantly upon exploiting trans-
lational invariance, especially Ekin

ph . Increasing the number of vertices per phase-space
volume via the interaction parameter λ levels out the differences between estimators,
except for Ekin

ph at λ = 1.5. By contrast, changing ⟨n⟩ via the phase-space parameters L
and β leaves most of the ratios essentially unchanged. The same is true when increasing
the number of vertices via the Ising-spin parameter δ. Finally, Table 3.1 confirms that
⟨n⟩ ∼ βL, whereas the dependence on λ is nonlinear.

Although the dependence of the statistical errors on the simulation parameters is
not completely systematic, the vertex measurements become advantageous especially at
large expansion orders. The errors are of the same order of magnitude, but the vertex
estimators are much faster and avoid systematic integration errors.

3.4. Directed-loop algorithm for retarded interactions

In Sec. 3.2.4, we have already discussed the key ideas that underlie our formulation of
the directed-loop QMC method for retarded interactions. In the following, we give a
detailed description of the method using the example of the spinful Holstein model. In
particular, we define the configuration space and the vertex weights, discuss the details
of the diagonal and directed-loop updates, carry over the bosonic estimators derived
in the previous section to the SSE representation, and present some test results that
demonstrate the efficiency of the algorithm. Finally, we discuss possible extensions
of our method to other models. The goal of this section is to provide the necessary
theoretical background to understand and implement the directed-loop algorithm for
retarded interactions. For practical information on the implementation of the method
see Ref. [55]. The presentation in this section is based on Ref. [P2] and its supplemental
material.

3.4.1. Configuration space and vertex weights

The directed-loop algorithm for retarded interactions is based on the generic formulation
of the perturbation expansion in the path-integral representation discussed in Sec. 3.2.1.
The Monte Carlo sampling is over configurations C = {n,Cn, ∣α⟩} defined by the expan-
sion order n, the ordered vertex list Cn = {ν1, . . . , νn}, and the state ∣α⟩ in the local
occupation number basis. In Sec. 3.2.4, we defined the interaction vertex for the spinless
Holstein model. In the following, we extend it to the spinful case, where each subvertex
j ∈ {1,2} now has local variables {aj , b, σj , τj} labeling its operator type, bond, spin, and
imaginary-time value. The interaction (3.15) becomes

S1 = −∬

β

0
dτ1dτ2 P+(τ1 − τ2) ∑

a1,a2,b,
σ1,σ2

hσ1σ2

a1a2,b
(τ1, τ2) . (3.48)
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3.4. Directed-loop algorithm for retarded interactions

The off-diagonal hopping vertices are now given by

hσ1σ2

10,b (τ1, τ2) =
t

2Nσ
Bb,σ1(τ1)1b,σ2(τ2) , (3.49)

hσ1σ2

01,b (τ1, τ2) =
t

2Nσ
1b,σ1(τ1)Bb,σ2(τ2) ,

whereas the diagonal interaction vertices read

hσ1σ2

22,b (τ1, τ2) = λt [C + ρi(b),σ1
(τ1)ρi(b),σ2

(τ2) + ρj(b),σ1
(τ1)ρj(b),σ2

(τ2)] (3.50)

with j(b) = i(b) + 1. We introduced an additional factor Nσ in the hopping terms that
counts the number of spin flavors and compensates the sum over the second spin index.
For the spinful Holstein model, we have Nσ = 2, whereas the spinless case is recovered by
choosing Nσ = 1 and dropping the spin indices. Note that we only consider the half-filled
Holstein model. However, the chemical potential can be easily included in the diagonal
term (3.50).

To calculate the Monte Carlo weight Wα(Cn), we map ⟨hν1 . . . hνn⟩0 to an operator
string (see the discussion in Sec. 3.2.4). Then, the weight is given by10

Wα(Cn) =
1

n!

n

∏
p=1

Wνp with Wν = P+(τ1 − τ2)W [hσ1σ2

a1a2,b
(τ1, τ2)]dτ1dτ2 . (3.51)

As usual for world-line representations, Wα(Cn) factorizes into a product of individual
vertex weights Wν . The explicit time dependence of the vertex is in P+(τ1 − τ2)dτ1dτ2

which is independent of the operator type and therefore has to be considered only during
the diagonal updates (see below). The remainder W [hσ1σ2

a1a2,b
(τ1, τ2)] can be calculated

from the propagated state ∣αp⟩ that is included between each of the 2n subvertices of
the operator string. Since each vertex is nonlocal in time, we use states ∣αp⟩ and ∣αq⟩
that belong to different positions p and q in the operator string. We obtain

W [hσ1σ2

10,b (τ1, τ2)] =
t

2Nσ
⟨αp+1∣ B̂b,σ1 ∣αp⟩ ⟨αq+1∣ 1̂b,σ2 ∣αq⟩ =

t

2Nσ
⟨αp+1∣ B̂b,σ1 ∣αp⟩ , (3.52)

W [hσ1σ2

01,b (τ1, τ2)] =
t

2Nσ
⟨αp+1∣ 1̂b,σ1 ∣αp⟩ ⟨αq+1∣ B̂b,σ2 ∣αq⟩ =

t

2Nσ
⟨αq+1∣ B̂b,σ2 ∣αq⟩ , (3.53)

W [hσ1σ2

22,b (τ1, τ2)] = λt [C + ⟨αp+1∣ ρ̂i(b),σ1
∣αp⟩ ⟨αq+1∣ ρ̂i(b),σ2

∣αq⟩ + (i↔ j)] . (3.54)

The individual expectation values can be calculated from the occupation-number basis
and do not lead to a sign problem in one dimension.11 The effect of each operator must

10Now we include the integration measures of the vertices in the definition of the weight. To keep the
notation as simple as possible, we use the same label Wα(Cn) as before.

11For fermions, the ordering of the single-particle states in the occupation-number basis is important
for the sign of the Monte Carlo weight. In 1D, we order the creation operators along the chain and
separated with respect to their spin. For spin- 1

2
particles, we have

∣n1,↑, . . . , nL,↑, n1,↓, . . . , nL,↓⟩ = (ĉ†1,↑)
n1,↑ . . . (ĉ†L,↑)

nL,↑(ĉ†1,↓)
n1,↓ . . . (ĉ†L,↓)

nL,↓ ∣0⟩ (3.55)
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3. Action-based quantum Monte Carlo approach to retarded interactions

1 2 3 4 5 6

Figure 3.4.: Possible subvertex types for the Holstein model. Open (filled) symbols indicate
empty (occupied) lattice sites. Note that only one spin orientation is considered.

be considered only at the two basis states defined by the bond and the spin variable of
the operator. In Sec. 3.2.4, we introduced a graphical representation that illustrates the
change of the occupation numbers at each subvertex due to the effect of an operator.
For the Holstein model, there exist six different graphical representations for each sub-
vertex, as shown in Fig. 3.4. Each of these graphical representations is assigned with
a number v ∈ {1, . . . ,6} we call the subvertex type. Here, v ∈ {1, . . . ,4} corresponds
to unit and diagonal operators (a = 0,2) and v ∈ {5,6} to off-diagonal ones (a = 1).
In the end, the two subvertex types v1, v2 completely determine the weight of a vertex
and we write W [hσ1σ2

a1a2,b
(τ1, τ2)] = Wv1,v2 . The corresponding weights Wv1,v2 are given

in Table 3.2. To give an explicit example, we calculate the weight W1,4 for a diagonal

Table 3.2.: Vertex weights Wv1,v2 for the Holstein model for all possible combinations of
vertex types v1 and v2.

v1

v2
1 2 3 4 5 6

1 λt (C + 1
2
) λtC λtC λt (C − 1

2
) t/(2Nσ) t/(2Nσ)

2 λtC λt (C + 1
2
) λt (C − 1

2
) λtC t/(2Nσ) t/(2Nσ)

3 λtC λt (C − 1
2
) λt (C + 1

2
) λtC t/(2Nσ) t/(2Nσ)

4 λt (C − 1
2
) λtC λtC λt (C + 1

2
) t/(2Nσ) t/(2Nσ)

5 t/(2Nσ) t/(2Nσ) t/(2Nσ) t/(2Nσ) 0 0

6 t/(2Nσ) t/(2Nσ) t/(2Nσ) t/(2Nσ) 0 0

which leads to the phase conventions [113]

ĉ†i,↑ ∣. . . , ni,↑ = 0, . . .⟩ = (−1)n
<

i,↑ ∣. . . , ni,↑ = 1, . . .⟩ , (3.56)

ĉi,↑ ∣. . . , ni,↑ = 1, . . .⟩ = (−1)n
<

i,↑ ∣. . . , ni,↑ = 0, . . .⟩ , (3.57)

ĉ†i,↓ ∣. . . , ni,↓ = 0, . . .⟩ = (−1)n↑+n
<

i,↓ ∣. . . , ni,↓ = 1, . . .⟩ , (3.58)

ĉi,↓ ∣. . . , ni,↓ = 1, . . .⟩ = (−1)n↑+n
<

i,↓ ∣. . . , ni,↓ = 0, . . .⟩ . (3.59)

Here, nσ counts the total number of spin-σ electrons and n<i,σ the number of spin-σ electrons on

sites with position numbers less than i. For open boundary conditions, the hopping operators B̂b,σ
then do not lead to a negative weight. If we consider periodic boundary conditions ĉL+1,σ = ĉ1,σ, the
expectation value ⟨α∣ B̂b(1,L),σ ∣α′⟩ gives an additional phase of (−1)nσ−1. At half-filling, we therefore
choose lattice sizes L = 4k + 2 with k ∈ N. The same is true for spinless fermions.
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3.4. Directed-loop algorithm for retarded interactions

vertex. Here, the world-line configuration at the first subvertex is determined by v1 = 1
and at the second subvertex by v2 = 4. We first consider the occupation numbers at
the left lattice site of each subvertex. For the first subvertex, this site is empty and we
obtain ⟨αp+1∣ ρ̂i(b),σ1

∣αp⟩ = −1/2 (here ρ̂i,σ = n̂i,σ − 1/2), whereas for the second subvertex
it is occupied and we have ⟨αq+1∣ ρ̂i(b),σ2

∣αq⟩ = 1/2. The same is true for the expectation
values at the right lattice site of each subvertex. Putting everything into Eq. (3.54), we
obtain W1,4 = λt (C − 1/2).

3.4.2. Diagonal updates

The diagonal updates involve adding or removing a single vertex hσ1σ2

22,b (τ1, τ2) using the
Metropolis-Hastings algorithm defined in Sec. 3.1.2. We propose the addition of a new
vertex with probability density

T0(Cn → Cn+1) =
P+(τ1 − τ2)dτ1dτ2

LβN2
σ (n + 1)

, (3.60)

where the bond variable b, the two spin variables σ1 and σ2, and one time variable are
chosen uniformly. The second time variable is obtained via inverse transform sampling
of P+(τ1 − τ2).

12 Note that there are n + 1 possibilities to insert the new vertex into the
ordered list Cn+1. For the removal of a randomly chosen diagonal vertex, we get

T0(Cn+1 → Cn) =
1

n2 + 1
, (3.62)

where n2 is the number of diagonal vertices in Cn. With the ratio of the Monte Carlo
weights in Eq. (3.51), Wα(Cn+1)/Wα(Cn) = P+(τ1 − τ2)W [hσ1σ2

22,b (τ1, τ2)]dτ1dτ2/(n + 1),
we obtain the Metropolis acceptance rate (3.8) with the Metropolis ratios

R(Cn → Cn+1) =
LβN2

σW [hσ1σ2

22,b (τ1, τ2)]

(n2 + 1)
, (3.63)

R(Cn → Cn−1) =
n2

LβN2
σW [hσ1σ2

22,b (τ1, τ2)]
(3.64)

for the addition and removal of a vertex, respectively. Note that P+(τ1− τ2) drops out of
the acceptance rates because we have already included it in the proposal probabilities.
This ensures high acceptance rates for any phonon frequency ω0.

12The phonon propagator P+(τ) can be interpreted as a probability distribution function as it is pos-
itive and normalized to one. It can be sampled exactly via inverse transform sampling because its
cumulative distribution function G(τ) = ∫

τ

0 dτ ′P+(τ ′) can be inverted analytically. If we choose a
uniformly-distributed random number ξ ∈ [0,1), then G−1(ξ) returns a random number drawn from
the distribution P+(τ). We obtain

τ = β
2
+ 1

ω0
asinh[(2ξ − 1) sinh(ω0β/2)] . (3.61)
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3. Action-based quantum Monte Carlo approach to retarded interactions

To calculate the Metropolis ratios, we need access to the weights W [hσ1σ2

22,b (τ1, τ2)] at
arbitrary space-time positions in the world-line configuration. A world-line configuration
is determined by the initial state ∣α⟩ and the positions of the off-diagonal operators
Bb,σ(τ) and therefore does not change during the diagonal updates. The occupation
number at an arbitrary space-time point can therefore be calculated from ∣α⟩ and the
number of off-diagonal operators that act between 0 and τ and involve site i. At the
beginning of the diagonal updates, we once construct an ordered list containing the
time arguments of the operators Bb(i)(τ) for each i. Sorting this list takes O(Lβ logβ)
operations, after which any state can be quickly calculated.

3.4.3. Directed-loop updates

In Sec. 3.2.4, we have already discussed the idea behind the directed-loop updates and
how they apply to retarded interactions. In the following, we give a formal derivation of
the directed-loop equations from detailed balance that closely follows the presentation in
Ref. [55]. We point out the differences that appear for retarded interactions and finally
solve the directed-loop equations for the Holstein model. Note that for the spinful model
loops are always constructed for a fixed spin orientation.

Derivation of the directed-loop equations

The idea behind the directed-loop updates is to construct a closed loop from local up-
date rules and then flip the world-line configuration along the loop. Thereby, the Monte
Carlo configuration changes globally from C to C ′. The global change of configura-
tions must fulfill the detailed-balance condition (3.7), which consists of the Monte Carlo
weight (3.51) and a transition probability T (C → C ′). The transition probability defines
the algorithm and will be constructed in such a way that the global detailed-balance
condition factorizes into local conditions given by the directed-loop equations.

The transition probability from a closed world-line configuration C to another closed
configuration C ′ can be written as follows:

T (C → C ′
) = ∑

loops

T (e0)T (C, e0 → C1, e1) × ⋅ ⋅ ⋅ × T (Ck−1, ek−1 → C ′, e0) . (3.65)

A graphical example for the construction of the directed loop is shown in Fig. 3.5. At
first, a random subvertex leg e0 is chosen with probability T (e0) that serves as the
starting point for the loop construction [cf. Fig. 3.5(a)]. In the next step, we randomly
choose an exit leg of the same subvertex and then proceed along the world line to the
entrance e1 of the next subvertex, as illustrated in Fig. 3.5(b). During this process, the
occupation number of the world-line segment is flipped and the world-line configuration
changes from the closed configuration C to the configuration C1 that now contains
two world-line discontinuities [cf. Fig. 3.5(c)]. The corresponding transition probability
T (C, e0 → C1, e1) is completely defined by the entrance legs of the two subvertices
connected by the loop segment and the configurations C and C1. This update procedure
is repeated until the loop returns to its starting point e0 and closes [see Figs. 3.2(c) and
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3.4. Directed-loop algorithm for retarded interactions

Figure 3.5.: Graphical representation of the initial steps to construct a directed loop
using the world-line configuration shown in Fig. 3.2(b). (a) At first, we choose a random
subvertex leg e0 as the starting point for the loop construction (red arrow). (b) Secondly, we
randomly choose an exit leg of the same subvertex and then proceed to the entrance e1 of
the next subvertex. (c) Flipping the occupation number along this loop segment generates
a configuration with two world-line discontinuities near the entrance and exit leg of the first
subvertex (red symbols). We only obtain a closed world-line configuration again when we
proceed with the loop construction until it closes, as shown in Figs. 3.2(c) and 3.2(d).

(d) for an example]. Then, we arrive at the closed world-line configuration C ′. Since
there are many different ways to construct a closed loop that changes C to C ′, Eq. (3.65)
contains a sum over all of these loops.

For the detailed-balance condition, we also need the reverse process

T (C ′
→ C) = ∑

loops

T (e0)T (C ′, e0 → Ck−1, ek−1) × ⋅ ⋅ ⋅ × T (C1, e1 → C, e0) (3.66)

where the loop is constructed from the starting point e0 in the opposite direction to
generate configuration C from C ′. Equations (3.65) and (3.66) are now inserted into
the detailed balance condtion (3.7) and we multiply both sides of the equation with the
weights ∏k−1

i=1 W (Ci). Then, detailed balance is satisfied if

W (Ci)T (Ci, ei → Ci+1, ei+1) =W (Ci+1)T (Ci+1, ei+1 → Ci, ei) (3.67)

holds for each update step. W (C) is given by the Monte Carlo weight (3.51) and
factorizes into a product of weights for each vertex. Because in each update step only one
vertex is changed (more precisely only one subvertex), the weights of all the other vertices
drop out of Eq. (3.67). Moreover, also the phonon propagator P+ of the remaining vertex
drops out of Eq. (3.67) as it does not depend on the operator types of the subvertices.
Hence, we are left with the vertex weight Wv1,v2 . It only depends on the two subvertex
types v1 and v2 that determine the configuration of the vertex. In the following, we
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3. Action-based quantum Monte Carlo approach to retarded interactions

Figure 3.6.: Examples for the (a) first and (b) second directed-loop equation. The first
directed-loop equation relates weights Wv2(v1, l1, l2) with exchanged entrance and exit legs
l1 and l2. The second directed-loop equation states that the weight Wv1,v2 for a vertex
without paths assigned is equal to the sum over weights for vertices with fixed entrance leg
and all possible exit legs. We only show the paths assigned to subvertex v1 because v2 is
fixed during the update step.

assume that v1 is changed during the update step and we write Wv1,v2 Tv2(v1, e→ v′1, x) =
Wv2(v1, e, x), whereas subvertex v2 is fixed but still required to calculate the weight.
Furthermore, e and x denote the entrance and exit leg of the same subvertex. Equation
(3.67) becomes

Wv2(v1, l1, l2) =Wv2(v
′
1, l2, l1) , (3.68)

which is the first directed-loop equation. It states that the weights of two subvertices
assigned with inverted directed paths are the same if also the occupation numbers on the
sites touched by the loop are flipped [see Fig. 3.6(a) for an expample]. For the transition
probability, we also require ∑x Tv2(v1, e→ v′1,x, x) = 1 which means that the path always
continues through a subvertex. The sum is over all exit legs x and v1,x means that also
the final vertex type depends on the chosen exit leg. This requirement directly translates
into the second directed-loop equation

∑
x

Wv2(v1, e, x) =Wv1,v2 . (3.69)

An example is given in Fig. 3.6(b). From Eqs. (3.68) and (3.69) we can construct the
probability tables for the directed-loop updates. Note that the transition probability to
choose an exit leg x given the entrance e and the initial subvertices v1 and v2 is given
by Tv2(v1, e→ v′1, x) =Wv2(v1, e, x)/Wv1,v2 .

All in all, the directed-loop equations for retarded interactions are almost the same
as for instantaneous interactions. For the loop construction, each subvertex is regarded
as an independent entity, but the transition probabilities Tv2(v1, e → v′1, x) require ad-
ditional information about the vertex type v2 of the second subvertex. Formally, this
means that always the total vertex is updated [as shown in Fig. 3.7(a)], but the directed
path is only assigned to one subvertex and the other subvertex remains unchanged.

Solution of the directed-loop equations for the Holstein model

For the directed-loop updates, the configuration space of subvertex types vi ∈ {1, . . . ,6}
shown in Fig. 3.4 is enlarged by assigning to subvertex v1 directed paths that connect
an entrance leg e with an exit leg x. This is reflected in the weights Wv2(v1, e, x) that
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Figure 3.7.: (a) A vertex is determined by the subvertex types v1 and v2. The directed
path is only assigned to one subvertex and flips the occupation numbers of the corresponding
states. Here, we consider hσ1σ2

10,b (τ1, τ2) → hσ1σ2

22,b (τ1, τ2). (b) Example of an assignment table
for the directed-loop equations for a subvertex of type v1.

are determined by the directed-loop equations (3.68) and (3.69). In the following, we
present a particular solution of the directed-loop equations for the Holstein model that
avoids backtracking of the loop in a large parameter range.13

For the vertices defined by Eqs. (3.49) and (3.50), we have to distinguish two cases:
the directed loop either hits a unit operator, or any other operator. For the former case,
the path goes straight through the subvertex with probability 1 and changes its vertex
type. For the latter case, the directed-loop equations have to be solved explicitly.

We illustrate the solution of the directed-loop equations for the assignment table given
in Fig. 3.7(b). We only show the possible assignments for vertex type v1, corresponding
to the lower subvertex in Fig. 3.7(a). The second subvertex of type v2 remains unaf-
fected by this segment of the loop update but still enters the configuration weight.14

Each row in Fig. 3.7(b) shows the possible assignments for a fixed entrance leg and the
three possible exit legs. The associated weights are related by the second directed-loop
equation (3.69). Furthermore, the assignment table is arranged in such a way that the
weights are symmetric around the diagonal exploiting the first directed-loop equation
(3.68). For the specific example of Fig. 3.7(b), we obtain for the corresponding weights

b1 + a + b =W1,v2 ,

a + b2 + c =W2,v2 , (3.70)

b + c + b3 =W5,v2 .

The bounce weights bi, i ∈ {1,2,3}, are related to the assignments on the diagonal,

13Our derivation follows the presentation in Ref. [114] for the Hubbard model.
14As discussed in the main text, the world-line configuration is updated at each subvertex independently.

However, while the vertex type of the other subvertex does not change, the same is not in general
true for its dummy operator type a2. For example, a2 changes from 0 to 2 when interchanging
hσ1σ210,b (τ1, τ2) ↔ hσ1σ222,b (τ1, τ2) in Fig. 3.7(a). This corresponds to the update from a hopping operator
at τ1 and a unit operator at τ2 to a (diagonal) density-density interaction term at times τ1 and τ2.
Because unit operators that change into diagonal operators are relevant for the weights Wv1,v2 in
later updates, it is important to keep track of such changes.

49



3. Action-based quantum Monte Carlo approach to retarded interactions

whereas a, b, and c are the remaining weights. Our goal is to reduce the bounce weights
and solve for a, b, and c. To this end, we write [114]

a =
1

2
[W1,v2 +W2,v2 −W5,v2 − b1 − b2 + b3] ,

b =
1

2
[W1,v2 −W2,v2 +W5,v2 − b1 + b2 − b3] , (3.71)

c =
1

2
[−W1,v2 +W2,v2 +W5,v2 + b1 − b2 − b3] .

For concreteness, we choose v2 = 3 and insert the weights given in Table 3.2. This leads
to

a =
1

2

⎡
⎢
⎢
⎢
⎣
2λtC −

(N−1
σ + λ) t

2
− b1 − b2 + b3

⎤
⎥
⎥
⎥
⎦
,

b =
1

2

⎡
⎢
⎢
⎢
⎣

(N−1
σ + λ) t

2
− b1 + b2 − b3

⎤
⎥
⎥
⎥
⎦
, (3.72)

c =
1

2

⎡
⎢
⎢
⎢
⎣

(N−1
σ − λ) t

2
+ b1 − b2 − b3

⎤
⎥
⎥
⎥
⎦
.

The bounce weights bi and the constant C = 1/2 + δ must be chosen such that a, b,
and c are positive. For λ < N−1

σ , this is already fulfilled by b1 = b2 = b3 = 0 and
δ ≥ (N−1

σ − λ)/(4λ). In our simulations, we have chosen the lower bound. For λ ≥ N−1
σ ,

the positivity of c requires b1 ≥ (λ −N−1
σ ) t/2, whereas the positivity of b demands b1 ≤

(λ +N−1
σ ) t/2. We have chosen the lower bound and δ = 0. This procedure has to be

repeated for each type of background vertex v2 and each possible assignment table for
v1. In the end, we find that the global constant C has to be chosen as for the example
given here.

Let us point out that analytic solutions of the directed loop equations are neither
common nor necessary for efficient simulations. Instead, the equations can be solved
using linear programming techniques [115].

3.4.4. Observables

Electronic observables are calculated directly from the Monte Carlo configurations, e.g.,
from the distribution of vertices or the state ∣α⟩. Even bosonic correlation functions can
be recovered from the distribution of vertices as discussed in Sec. 3.3. In the following,
we briefly define the estimators used below.

Estimators for the total energy and the fidelity susceptibility were derived in Sec. 3.3.2.
They carry over to the SSE representation by substituting δ2 → C/2. For the total energy

E(Cn) = Eel(Cn) +Eph(Cn) +Eep(Cn) , (3.73)
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the individual contributions are given by

Eel(Cn) = −
n1

β
, (3.74)

Eph(Cn) = E
0
ph +

n2

∑
k=1

[P̄+(τk − τ
′
k) − P̄−(τk − τ

′
k)] − λtCLN

2
σ , (3.75)

Eep(Cn) = −
2n2

β
+ 2λtCLN2

σ . (3.76)

Here, n1 and n2 count the number of off-diagonal and diagonal vertices, respectively.
For Eph(Cn), we already exploited translational invariance of all vertices. The fidelity
susceptibility (including the shift) becomes

χF =
⟨ñ2,Lñ2,R⟩ − ⟨ñ2,L⟩ ⟨ñ2,R⟩

2g2
−
λtCLN2

σ tanh(βω0/4)

ω0g2
. (3.77)

Note that it is important to include the shifts proportional to C in the estimators because
the optimal C for the directed-loop updates changes with λ. Even the specific heat can
be calculated directly from the distribution of vertices. Since the estimator for ⟪Ĥ2⟫Cn is
much more complicated than for ⟪Ĥ⟫Cn , it is given in App. C.1. The phonon propagator
cannot be recovered from our choice of the vertex because we only used the constant
shift C to avoid the sign problem. However, using an additional Ising variable in the
Monte Carlo sampling [cf. Eq. (3.32)] should give access to the phonon propagator.

The real-space correlation function in the charge sector can be calculated via

Sρ(r;α) =
1

L

L

∑
j=1

⟨α∣ ρ̂j+rρ̂j ∣α⟩ (3.78)

from the initial state ∣α⟩. Here, ρ̂j = ∑σ (n̂j,σ − 1/2) is the local charge operator. The
spin correlation function Sσ(r;α) can be obtained by substituting ρ̂j → Ŝzj = ∑σ σ n̂j,σ.

3.4.5. Application to the Peierls transition in the Holstein model

To demonstrate the potential of our new method, we first discuss its efficiency. In
standard SSE simulations of the Holstein-Hubbard model, the integrated autocorrelation
time τint essentially diverges with λ [28]. Although reduced by parallel tempering, τint

exceeds 100 at intermediate coupling already for moderately difficult parameters (ω0 = t,
L = 16, βt = 2L) [28]. Figure 3.8 shows τint for our method for L = 18 and βt = 2L,15

covering the entire range of phonon frequencies from adiabatic to antiadiabatic and the
entire range of couplings from weak to strong. Remarkably, τint is of order 1 both for the
spinful and the spinless Holstein model. Autocorrelations in fact decrease with increasing
λ, with no visible signature of the Peierls phase transition. The data shown are for the

15A sweep consisted of two blocks of diagonal and directed-loop updates. For each block of diagonal
updates, we attempted approximately 2 ⟨n2⟩ updates. The number of loop updates was fixed by
touching approximately 2 ⟨n⟩ subvertices of type a = 1,2.
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Figure 3.8.: Autocorrelation time τint for the total energy, as determined from a rebinning
analysis [97], for the spinless and the spinful Holstein model. Here, L = 18, βt = 2L. Arrows
indicate Peierls critical values λc(ω0) [29, 30].

total energy, for other observables τint is even smaller. Similar autocorrelation times
were observed for larger systems.

Having established its numerical efficiency, we used the directed-loop algorithm to ob-
tain high-precision results for the half-filled spinless Holstein model. The latter provides
a generic framework to study the Peierls transition of 1D electrons coupled to quan-
tum phonons. From previous work [20, 26, 27, 29, 116], the model is known to exhibit
a Berezinskii–Kosterlitz–Thouless quantum phase transition with dynamical exponent
z = 1 between a Luttinger liquid and a CDW insulator with a q = 2kF = π modulation of
charge density and lattice deformations. Since z = 1 we keep β/L = const.

Figure 3.9 shows the real-space density correlator Sρ(r) (using the conformal dis-
tance ξ = L sin(πrL ) [117]) and the fidelity susceptibility χF [81,P3], a finite-temperature
extension of the quantum fidelity and an unbiased diagnostic for quantum phase transi-
tions [109, 118]. We simulated systems of up to L = 1282 sites with βt ≥ 2L. Real-space
correlation functions were previously reported for L ≲ 50 [32], DMRG results for other
quantities were available up to L = 256 [29].

Figure 3.9(a) reveals the theoretically predicted power-law decay of density corre-
lations in a spinless, repulsive Tomonaga-Luttinger liquid [119]. The dominant con-
tribution to Sρ(r) is the oscillating term cos(2kFr) r

−2K (we only plot even r). The
nonuniversal exponent is determined by the Luttinger parameter K. As expected for
the Mott transition of a spinless Luttinger liquid, K decreases with increasing λ until it
reaches the critical value K = 1/2 for λc = 0.68(1) [29]. This can be seen by comparing
to the dashed line in Fig. 3.9(a) that shows a 1/r power law. The inset shows estimates
for K from power-law fits (see caption for details). For λ > λc, K scales to zero and the
system exhibits long-range CDW order.

In Fig. 3.9(b), we plot the density correlator at the largest distance r = L/2, whose
thermodynamic limit serves as an order parameter for the quantum phase transition. We
find a nonzero extrapolated order parameter for λ ≳ 0.68, in accordance with Fig. 3.9(a)
and previous estimates [29]. The transition can also be detected from the fidelity sus-
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Figure 3.9.: Results for the spinless Holstein model (ω0/t = 0.4). (a) Real-space density
correlator for even distances as a function of the conformal distance ξ = L sin(πr

L
) [117] on

chains of up to L = 1282 sites (βt = 2L). The dashed line indicates the 1/ξ decay expected
at λc. Inset: Luttinger parameter K extracted from fits of Sρ(L/2) to a/r2K using L = 162 –
562. (b) Finite-size scaling of the density correlations at distance L/2, indicating long-range
order beyond λc = 0.68(1). Here, βt = 2L and the key is the same as in (a). (c) Fidelity
susceptibility for βt = 4L. The dashed line indicates λc.

ceptibility shown in Fig. 3.9(c). Because statistical errors are generally larger for χF, the
maximum system size was L = 162. In contrast to previous work [P3], the directed-loop
algorithm permits to reach sufficiently large values of L and β to observe the cusp at
λc predicted theoretically [120]. The latter sharpens and converges (slowly, similar to
other 1D models [120]) to λc with increasing L. More generally, Figs. 3.9(b) and (c)
are important because they establish the usefulness of the order parameter and χF to
detect the CDW transition without reference to bosonization results. They can therefore
be used for spinful electron-phonon models, the analysis of which is complicated by the
existence of a spin gap in the metallic phase [6, 32, 121] and the absence of a reliable
theory for the Mott transition of a Luther-Emery liquid [6]. Moreover, our method can
access the system sizes necessary to resolve the spin gap [32].

3.4.6. Possible extensions to other models

So far, we have formulated the directed-loop QMC method only for the Holstein model.
However, the ideas presented in Sec. 3.2.4 are more general and apply to a variety of
models of particles that couple to bosonic modes. A generic action that can be simulated
with our directed-loop QMC method must have the form

S1 = −∬

β

0
dτ1dτ2 ∑

a1,a2,b1,b2

Pb1b2(τ1 − τ2)ha1a2,b1b2(τ1, τ2) . (3.79)

Here, aj , bj , τj denote the operator type, bond variable, and time variable of subvertex
j ∈ {1,2}. The propagator Pb1b2(τ1 − τ2) can be nonlocal in space and time and must be
positive. The operator part ha1a2,b1b2(τ1, τ2) must be chosen in such a way that we can
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3. Action-based quantum Monte Carlo approach to retarded interactions

switch locally between diagonal (a = 0,2) and off-diagonal (a = 1) operators while the
configuration at the second subvertex stays the same.

We will give some examples in the following. For fermionic models, we will concen-
trate on the spinless case, but spin can be trivially included (as shown in Sec. 3.4.1).
While fermionic models can only be simulated in 1D due to the sign problem, the cor-
responding bosonic models as well as spin-boson models can also be simulated in higher
dimensions. Of course, all instantaneous interactions that can already be simulated in
the SSE representation can also be included in our formulation using a unit operator as
the second subvertex and will not be mentioned explicitly.

Fröhlich model

The Fröhlich model is very similar to the Holstein model, but has a long-range electron-
phonon interaction of the form Ĥep = γ∑i,r f(r) (b̂

†
i+r+ b̂i+r) ρ̂i. After integrating out the

phonons, we obtain the fermionic action

S = −2λt∬
β

0
dτdτ ′∑

ij

ρi(τ)Pij(τ − τ
′
)ρj(τ

′
) , (3.80)

which is nonlocal in space and time. The phonon propagator has the form Pij(τ − τ
′) =

F (i − j)P+(τ − τ ′), where P+(τ − τ ′) is the same propagator as for the Holstein model
and F (i−j) = ∑r f(r+ i−j)f(r) [105]. To rewrite the action into the form of Eq. (3.79),
we have to choose f(r) such that ∑r F (r) = F̄ and F (r) ≥ 0. Then, the vertices for our
Monte Carlo method become

h10,b1b2(τ1, τ2) =
t

2F̄
Bb1(τ1)1b2(τ2) , (3.81)

h01,b1b2(τ1, τ2) =
t

2F̄
1b1(τ1)Bb2(τ2) ,

as well as

h22,b1b2(τ1, τ2) = λt [C + ρi1(b1)(τ1)ρi2(b2)(τ2) + ρj1(b1)(τ1)ρj2(b2)(τ2)] (3.82)

with j1(b) = i1(b) + 1 and j2(b) = i2(b) + 1. These vertices are very similar to those
in the Holstein model with the difference that the subvertices are located at different
bonds and the phonon propagator has a spatial dependence. All the other details of the
algorithm stay the same.

Su-Schrieffer-Heeger model

Our directed-loop method is not restricted to density-density-type interactions, but can
also be used to simulate bond-bond couplings

S = −
λt

2
∬

β

0
dτdτ ′∑

b

Bb(τ)P+(τ − τ
′
)Bb(τ

′
) (3.83)
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that appear in the SSH model. Here, we use optical phonons with a local interaction
between bond operators [see Eq. (2.7) for the definition of the model], where the propa-
gator is defined as for the Holstein model.16 For the SSH model, the off-diagonal hopping
vertices are the same as for the Holstein model

h10,b(τ1, τ2) =
t

2
Bb(τ1)1b(τ2) , (3.84)

h01,b(τ1, τ2) =
t

2
1b(τ1)Bb(τ2) ,

but also the interaction is now given by an off-diagonal term, i.e.,

h11,b(τ1, τ2) =
λt

2
Bb(τ1)Bb(τ2) . (3.85)

In the directed-loop updates, we can perform local updates to switch between h11,b and
h10,b. However, we also have to include a diagonal operator to change the number of
vertices during the diagonal updates. The simplest choice is just a constant shift in
energy given by

h00,b(τ1, τ2) ∝ 1b(τ1)1b(τ2) , (3.86)

but could also be a Hubbard interaction for the spinful model. Again, the diagonal
updates include the retardation of the phonon propagator. With this additional term,
we can include the local updates h00,b ↔ h10,b to reach every configuration in the directed-
loop updates. Of course, the configurational weights are different for this model and the
directed-loop equations have to be solved again.

Spin-Peierls model

We can also consider a spin-Peierls models of the form

Ĥ = J∑
i

[1 + α (b̂†i + b̂i)]
ˆ⃗Si

ˆ⃗Si+1 + ω0∑
i

b̂†i b̂i . (3.87)

Also for spin-boson models, the bosons can be integrated out leading to the retarded
interaction17

S = −λJ∬
β

0
dτdτ ′∑

b

[S⃗i(b)(τ) S⃗i(b)+1(τ)]P+(τ − τ
′
) [S⃗i(b)(τ

′
) S⃗i(b)+1(τ

′
)] , (3.88)

16In contrast to the optical SSH model (2.7), the original SSH model (2.5) with acoustic phonons leads
to a sign problem because the phonon propagator Pij(τ) that appears in the retarded interaction
(2.17) contains negative contributions for i ≠ j.

17The spins can be integrated out using for example a fermionic representation of the spin operators to
formulate the path integral. However, a retarded interaction for the spins can also be obtained from
the interaction picture without referring to the path integral, as discussed in App. A.
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where λ = α2J/ω0. For the spin-1
2 representation, we split the spin operator into the

diagonal and off-diagonal parts as follows

1

4
−

ˆ⃗Si(b)
ˆ⃗Si(b)+1 =

1

4
− Ŝzi(b)Ŝ

z
i(b)+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D̂b

+
1

2
(Ŝ+i(b)Ŝ

−
i(b)+1 + Ŝ

−
i(b)Ŝ

+
i(b)+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ôb

. (3.89)

We included a shift of 1/4 to get a positive diagonal weight and used a sublattice rotation
to obtain a positive weight for the off-diagonal term (which is possible on a bipartite
lattice). In the vertex notation introduced above, we end up with the following terms

h20,b(τ1, τ2) =
J

2
Db(τ1)1b(τ2) , h22,b(τ1, τ2) = λJ Db(τ1)Db(τ2) ,

h02,b(τ1, τ2) =
J

2
1b(τ1)Db(τ2) , h21,b(τ1, τ2) = λJ Db(τ1)Ob(τ2) , (3.90)

h10,b(τ1, τ2) =
J

2
Ob(τ1)1b(τ2) , h12,b(τ1, τ2) = λJ Ob(τ1)Db(τ2) ,

h01,b(τ1, τ2) =
J

2
1b(τ1)Ob(τ2) , h11,b(τ1, τ2) = λJ Ob(τ1)Ob(τ2) .

Again, the diagonal terms can be easily added and removed during the diagonal updates,
whereas every off-diagonal term can be obtained from the diagonal ones by changing one
subvertex configuration in the directed-loop updates. With these ideas, the formulation
of the update rules is straightforward.
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of Peierls chains

In 1D systems, the Peierls instability can lead to a periodic lattice distortion and thereby
drive a metal-insulator transition to a state with long-range CDW order. Experimental
realizations include the organic charge-transfer salts such as TTF-TCNQ [122, 123] or
the blue bronze K0.3MoO3 [124], but similar phenomena can also be found in spin-Peierls
materials such as CuGeO3 [125]. Real Peierls compounds can only be regarded as quasi-
1D systems because they always couple to an environment. For example, many 1D
conductors crystallize in stacks of molecules or atomic clusters where neighboring chains
couple weakly [126]. A consequence of the small but finite interchain coupling is that
all quasi-1D materials show a crossover and finally a transition to a 3D ordered Peierls
state. This ordered state exists below the experimentally observed Peierls transition
temperature T3D [126]. Only for temperatures T ≫ T3D do these quasi-1D materials
resemble the physics of truly 1D systems, including the 1D Peierls physics.

The formation of the Peierls state as a function of temperature is qualitatively under-
stood from the adiabatic approximation, where the phonon dynamics is neglected. Ac-
cordingly, the lattice displacements are considered as classical variables and the ground-
state of the 1D system is well described by mean-field theory. The temperature scale
where the Peierls ordering sets in is then often estimated from the mean-field transi-
tion temperature TMF

1D . However, thermal fluctuations forbid a finite-temperature phase
transition in 1D and only permit a crossover to dominant CDW correlations. The effect
of thermal fluctuations on the ordered state was previously studied using a functional
Ginzburg-Landau approach [127,128]. For the specific heat CV of a Peierls chain it was
shown that the discontinuity at TMF

1D predicted by mean-field theory is smeared out by
thermal fluctuations and the corresponding peak position is shifted to lower tempera-
tures [127]. The peak in CV also signals a significant increase of the correlation length
and the formation of a pseudogap in the density of states [128]. Long-range order and
a finite Peierls gap can only appear at T = 0 for a truly 1D system. For weakly-coupled
chains, a finite-temperature phase transition towards 3D Peierls order takes place. At
T3D, experiments show a peak-like anomaly in CV [129–133] that can be explained by a
Ginzburg-Landau approach for weakly coupled chains [134].

The adiabatic approximation is justified for low phonon frequencies and deep in the
Peierls phase. In this regime, quantum lattice fluctuations mainly reduce the dimeriza-
tion [135, 136]. However, in some materials like CuGeO3, where the relevant phonon
frequencies are comparable to the spin exchange constant [137], a classical treatment of
the phonons is not a priori justified. Historically, the quantum mechanical description of
lattice fluctuations was particularly important to explain the low-temperature features
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of CV , which was a key experimental confirmation of early quantum theory [138]. Ex-
act results including quantum lattice fluctuations are rare and often require numerical
simulations for microscopic models. Numerical studies of 1D electron-phonon models,
for example, showed that quantum lattice fluctuations can destroy the Peierls phase and
lead to a metallic ground state (see Ref. [31] for a detailed discussion). A comprehensive
study of both thermal and quantum lattice fluctuations was out of reach so far and is
the goal of this chapter.

For electron-phonon models, the numerical calculation of thermodynamic properties is
challenging and only few results exist for the spin-Peierls problem for selected parameters
[83, 84, 139]. DMRG calculations at finite temperatures—successfully carried out for
fermionic systems [140]—are so far inhibited by the large Hilbert space of the phonons.
The determination of CV from QMC simulations is affected by long autocorrelation
times [44], large fluctuations, and Trotter discretization errors [141]. Moreover, the
thermodynamic Bethe ansatz only applies to the classical-phonon limit of the spin-
Peierls problem [142]. Our development of the directed-loop algorithm for retarded
interactions solves the problem from a QMC point of view: autocorrelation times become
negligible (cf. Fig. 3.8 in Sec. 3.4.5), CV can be calculated directly from the Monte
Carlo configurations (see App. C.1), and due to the efficiency of the method statistical
fluctuations are under control for sufficiently large system sizes.

In this chapter, we calculate the specific heat of the spinless Holstein model covering
the full parameter range of the phase diagram: from the adiabatic to the antiadiabatic
regime and from weak to strong coupling. One particular goal is to identify the charac-
teristic low-temperature signatures in CV for the different regimes in the phase diagram.
Figure 4.1 shows the phase diagram of the spinless Holstein model as obtained from
DMRG simulations [29] and includes the paths in parameter space along which we carry
out our studies.

In Sec. 4.1, we discuss the thermodynamic and spectral properties of Peierls chains in
the adiabatic limit (blue arrow in Fig. 4.1). For this purpose, we consider the spinless
Holstein model and the spinless SSH model. Their ground states are ordered for any λ > 0
and described exactly by mean-field theory. In Sec. 4.1.1, we briefly discuss their ground-
state properties with respect to the Peierls instability as well as relations to symmetry-
protected topological insulators. For the special case of ω0 = 0, we implemented a Monte
Carlo method that makes use of the classical nature of adiabatic phonons (as outlined in
Sec. 4.1.2). We apply this method to calculate CV as a function of the electron-phonon
coupling λ (see Sec. 4.1.3). Although we cannot reach larger systems sizes than with
the directed-loop algorithm, the classical Monte Carlo method has the advantage that
it has direct access to spectral functions on the real-frequency axis. In Secs. 4.1.4 and
4.1.5, we analyze the temperature dependence of the single- and two-particle spectra to
explain the key features of the CV data. Finally, we discuss some relations to disorder
problems in Sec. 4.1.6.

The combined effects of thermal and quantum lattice fluctuations on Peierls chains
are studied in Sec. 4.2, where we restrict our discussion on the spinless Holstein model.1

1The SSH model with acoustic phonons cannot be simulated efficiently with the action-based QMC
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Figure 4.1.: Ground-state phase diagram of the half-filled spinless Holstein model as a
function of the electron-phonon coupling λ and the phonon frequency ω0. Critical values
are from DMRG calculations (open symbols) [29]. Additionally, we show our SSE estimate
λc = 0.68(1) at ω0/t = 0.4 and the exact value λc = 0 at ω0 = 0 (filled symbols). At ω0 = 0,
the spinless Holstein model shows CDW order for any λ > 0, whereas for ω0 > 0 and small λ,
quantum lattice fluctuations destroy the ordered state and lead to a Tomonaga-Luttinger-
liquid (TLL) phase. For ω0 → ∞, the spinless Holstein model maps to free fermions and is
always in the metallic phase. Arrows indicate the paths in parameter space along which we
discuss the thermodynamic properties of the Holstein model in this chapter. The simulation
parameters are indicated by additional markers attached to the arrows.

In Sec. 4.2.1, we study the effect of quantum lattice fluctuations on the specific heat by
tuning the phonon frequency ω0 for a fixed coupling λ = 0.75 (green arrow in Fig. 4.1).
In particular, we test the validity of the adiabatic approximation as ω0 is increased. The
Peierls phase is destroyed at ω0,c/t ≈ 0.5 where the system enters the metallic Tomonaga-
Luttinger liquid phase. The transition between the metallic and the ordered phase is
also studied for a fixed phonon frequency ω0/t = 0.4 (red arrow in Fig. 4.1). In Sec. 4.2.2,
we first consider the single-particle spectral functions of electrons and phonons in the
adiabatic regime. In particular, we first discuss the characteristic spectral features in
the metallic and in the ordered phase to explain the evolution of CV as a function of
λ in Sec. 4.2.3. In order to unambiguously resolve the CV ∼ T behavior for T → 0 in
the Tomonaga-Luttinger liquid phase, we study CV in Sec. 4.2.4 for ω0/t = 4 (purple
arrow in Fig. 4.1). In the metallic phase of the antiadiabatic regime, CV also shows the
crossover to small polarons as a function of λ.

methods discussed in this thesis because the phonon dispersion leads to negative contributions to the
phonon propagator and therefore to a severe sign problem. By contrast, the optical SSH model does
not have a sign problem. However, we expect the thermodynamic properties of the optical SSH model
to be very similar to the Holstein model because both models have similar phase diagrams [P6].

59



4. Thermodynamic and spectral properties of Peierls chains

4.1. Adiabatic Peierls chains

We present exact numerical results for the effects of thermal fluctuations on the ther-
modynamic and spectral properties of Peierls chains. To this end, a combination of
classical Monte Carlo sampling and exact diagonalization is used to study adiabatic
half-filled Holstein and SSH models. The classical nature of the lattice displacements
in combination with parallel tempering permit simulations on large system sizes and
a direct calculation of spectral functions in the frequency domain. Most notably, the
long-range order and the associated Peierls gap give rise to a distinct low-temperature
peak in the specific heat. The closing of the gap and suppression of order by thermal
fluctuations involves in-gap excitations in the form of soliton-antisoliton pairs, and is
also reflected in the dynamic charge and bond structure factors as well as in the opti-
cal conductivity. We compare our data to the widely used mean-field approximation,
and highlight relations to symmetry-protected topological phases and disorder problems.
The presentation of this section is based on Ref. [P4].

4.1.1. Electron-phonon models and the Peierls instability

In this section, we define the adiabatic limits for the spinless Holstein and SSH models.
Furthermore, we briefly discuss the Peierls instability as well as relations to symmetry-
protected topological insulators.

Electron-phonon models in the adiabatic limit

We briefly define the adiabatic limits of the spinless Holstein and SSH models introduced
in Sec. 2.1. To simplify the notation for the classical Monte Carlo method discussed
below, we split the Hamiltonian

Ĥ = Ĥph + Ĥel+ep (4.1)

into the lattice contribution Ĥph and the remainder Ĥel+ep that contains the electronic

and electron-phonon parts. In general, Ĥph depends on the lattice displacements Q̂i and

momenta P̂i. In the adiabatic limit, the lattice is static (M →∞) and the displacements
become classical variables qi, allowing us to replace Ĥph →Hph in Eq. (4.1).

For the spinless Holstein model (2.3), we have the quadratic potential

Hph =
K

2
∑
i

q2
i (4.2)

with spring constant K and the electronic part

Ĥel+ep = −t∑
i

(ĉ†i ĉi+1 + ĉ
†
i+1ĉi) + g∑

i

qi (n̂i − 1/2) . (4.3)

For the Holstein model, the adiabatic limit follows from Eq. (2.3) by choosing M → ∞

and ω0 → 0 at fixed K =Mω2
0.
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In the spinless SSH model (2.5), the lattice energy depends on the relative displace-
ments of neighboring sites,

Hph =
K

2
∑
i

(qi+1 − qi)
2 . (4.4)

The electronic part,

Ĥel+ep = ∑
i

[−t + α (qi+1 − qi)] (ĉ
†
i ĉi+1 + ĉ

†
i+1ĉi) , (4.5)

describes the modulation of the hopping amplitude by the coupling of the lattice dis-
placements to the bond density. The adiabatic limit follows from Eq. (2.5) by choosing
M →∞ and ωπ → 0 at fixed K =Mω2

π/4. In this limit, the acoustic phonons of the SSH
model lose their dispersion. Because the length of the chain is fixed for the SSH model,
it has one lattice degree of freedom less than its optical analog (2.7).

For both models, we introduce a dimensionless coupling parameter λ by rescaling the
displacement fields. It is defined as in Sec. 2.1: for the Holstein model λ = g2/(4Kt),
whereas for the SSH model λ = α2/(Kt). We use t as the unit of energy, set the lattice
constant and h̵ to one, and consider half-filling (one electron per two sites).

The Peierls instability and topological excitations

The Fermi surface of the 1D tight-binding model only consists of two points at k = ±kF,
where kF = π/2 is the Fermi vector at half-filling. The simplest excitation of a 1D
system is the creation of an electron-hole pair with momentum transfer q. Due to perfect
nesting between the Fermi points, the charge susceptibility has a logβ divergence at the
wavevector q = 2kF. This logarithmic divergence drives the Peierls instability at q = 2kF

and the electronic system becomes unstable when coupled to the lattice [126]. This is
the case for the spinless Holstein model as well as the spinless SSH model studied in this
chapter. At ω0 = 0 and zero temperature, the exact properties of both models can be
obtained from mean-field theory [20,143,144]. For any λ > 0, the Peierls instability leads
to a dimerization of the lattice that is captured by the ansatz qi = (−1)i∆/(2g) for the
Holstein model and qi = (−1)i∆/(8α) for the SSH model. Here, ∆ is the gap calculated
self-consistently from the gap equation. The lattice dimerization is accompanied by
charge-density-wave order in the Holstein model and bond-density-wave order in the
SSH model that has 2kF periodicity. Commensurability with the lattice pins the phase
of the order parameter to π [145], so that the ground state is twofold degenerate under
∆ → −∆. While exact at T = 0, mean-field theory predicts a finite Peierls transition
temperature TMF

1D , in violation of the Mermin-Wagner theorem [146]. The adiabatic
limit is expected to capture the physics of the dimerized phase [147].

While the Holstein and the SSH model both describe Peierls insulators, important
differences arise from their different symmetries. The mean-field SSH Hamiltonian is
often considered as the simplest model of a symmetry-protected topological band insu-
lator [148], as reviewed in Ref. [149]. It obeys time-reversal, particle-hole, and chiral
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symmetry. Explicitly, under time reversal, T ĉjT
−1 = ĉj with T iT −1 = −i, whereas for a

particle-hole transformation P ĉjP
−1 = (−1)j ĉ†j with PiP−1 = i. The chiral symmetry op-

erator is given by C = T P. These symmetries put the SSH model into the so-called BDI
class of the general classification of symmetry-protected topological phases [150–152]
which in 1D allows for a nontrivial topological invariant. The two degenerate ground
states of the SSH model belong to different topological sectors. The symmetry-protected
zero-energy states of the topological phase are identical to the soliton excitations at do-
main walls introduced in Refs. [8, 153]. For periodic boundaries, domain walls can only
occur as soliton-antisoliton pairs. Depending on their size, such pairs may form bound
polaron states with nonzero energy [9]. The Hamiltonian of the Holstein model belongs
to the AI symmetry class with broken chiral (and particle-hole) symmetry as a result
of the density-displacement coupling. The two degenerate ground states are therefore
trivial and do not support topologically protected zero-energy states at domain walls.
While the topological classification is strictly valid only at T = 0, the electronic symme-
tries persist for any configuration of displacements generated by thermal fluctuations.

4.1.2. Classical Monte Carlo method

To solve the adiabatic electron-phonon problem at finite temperatures, we used the
Monte Carlo method of Ref. [154]. We did not include it in Chap. 3, because it is not
based on a perturbation expansion. In the adiabatic limit, and using the notation of
Ref. [155], the partition function of Hamiltonian (4.1) takes the form

Z = ∫

∞

−∞
dq1 . . . ∫

∞

−∞
dqL e

−βHph Zel+ep[q1, . . . , qL] , (4.6)

where Zel+ep = Tr exp[−β(Ĥel+ep − µN̂)] is the grand-canonical partition function of the
electronic subsystem, β = 1/kBT the inverse temperature, µ the chemical potential and
N̂ the total particle-number operator.

For each configuration C = {q1, . . . , qL} of the classical displacements, Ĥel+ep is a
noninteracting Hamiltonian that can be diagonalized exactly. The Monte Carlo method
of Ref. [154] samples the continuous space of displacement configurations C. Expectation
values take the form

⟨Ô⟩ = ∑
C

W (C)⟪Ô⟫
C

(4.7)

with the weight of the configuration

W (C) =
1

Z
e−βHph(C)Zel+ep(C) (4.8)

and the corresponding value of the observable

⟪Ô⟫
C
=

1

Zel+ep(C)
Tr{e−β[Ĥel+ep(C)−µN̂] Ô(C)} . (4.9)
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The weight W (C) is always positive and can be sampled using the Metropolis-Hastings
algorithm, cf. Sec. 3.1.2. For each configuration, observables are calculated from Eq. (4.9).
Both quantities are obtained from a diagonalization of the L × L matrix representation
of Ĥel+ep(C) which dominates the computational complexity of the algorithm.

Technically, Monte Carlo simulations of Eq. (4.7) are related to disorder problems
at finite temperature [147]. For each configuration C, we solve an Anderson model
[156] with either diagonal (site) disorder for the Holstein model or off-diagonal (bond)
disorder for the SSH model. In contrast to common disorder problems, the probability
distribution W (C) has a nontrivial dependence on Zel+ep(C). However, in the high-
temperature limit, Zel+ep(C) ≈ 1 and W (C) becomes a Gaussian distribution. We will
revisit this analogy below.

Sampling

Simulations were started from random configurations which were then updated by ran-
domly picking a single qi and proposing a change ∆q. ∆q was drawn from a Gaussian
distribution with variance σ2

q . Because at high temperatures W (C) is dominated by

exp[−βHph(C)], σq ∼
√
T is a natural choice. However, at low temperatures, the distri-

bution of displacements evolves into a two-peak structure [157] and σq ∼
√
T becomes

too sharp. Therefore, for each temperature, we performed a warmup to estimate the
actual distribution of displacements. At low temperatures, the algorithm suffers from
long autocorrelation times due to the local phonon updates. In our simulations, they
were overcome by parallel tempering [158]. For each coupling parameter λ, the data
shown were generated from a fixed temperature grid with at least 64 points. A switch
of configurations at adjacent temperatures was proposed every 500 updates. We set
µ = 0 for half-filling and simulated lattices of length L = 162 with periodic boundary
conditions.

Observables

In the following, we define the relevant static and dynamic observables. For each con-
figuration C, they were calculated from the single-particle basis of Ĥel(C) given by the
eigenvalues Eλ and eigenvectors ∣λ⟩.

The specific heat CV was calculated via

CV (C) = kBβ
2
[⟪Ĥ2⟫

C
− ⟪Ĥ⟫

2

C
] . (4.10)

To study the ordering of the electronic subsystem, we used the static structure factors

Sα(q;C) =
1

L
∑
ij

eiq(i−j) ⟪Ôαi Ô
α
j ⟫C

(4.11)

as a function of transferred momentum q. The subscript α = ρ (α = b) denotes the charge
(bond) structure factor. The corresponding operators Ôαi are the local charge density
n̂i and bond density B̂i.
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Importantly, spectral functions can be calculated directly for real frequencies, without
the need of numerical analytic continuation. For the single-particle spectral function
A(k,ω), the Lehmann representation reads2

A(k,ω;C) = ∑
λ

∣⟨0∣ ĉk ∣λ⟩∣
2
δ(ω −Eλ) . (4.12)

From Eq. (4.12), the density of states N(ω) was obtained by summation over momentum
k. Two-particle spectra were calculated from the dynamic structure factors

Sα(q, ω;C) = ∣∑
λ

nF(Eλ) ⟨λ∣ Ô
α
q ∣λ⟩ ∣

2
δ(ω) (4.13)

+∑
λν

nF(Eν) [1 − nF(Eλ)] ∣⟨λ∣ Ôαq ∣ν⟩∣
2
δ(Eλ −Eν − ω) ,

where nF(Eλ) = {exp[β(Eλ −µ)] + 1}−1 is the Fermi function and α = ρ, b as before. We
also consider the real part of the optical conductivity

σ(ω;C) =
1

ω
∑
λν

[nF(Eν) − nF(Eλ)] ∣⟨λ∣ Ĵ ∣ν⟩∣
2
δ(Eλ −Eν − ω) , (4.14)

where Ĵ = i∑i ti(ĉ
†
i ĉi+1− ĉ

†
i+1ĉi) is the current operator; here ti = t for the Holstein model

and ti = t − α(qi+1 − qi) for the SSH model, respectively.

Spectral functions were measured on a discrete frequency grid. Each data point rep-
resents the averaged spectral weight in an interval of width ∆ω. Unless stated otherwise
we used ∆ω/t = 0.04.

4.1.3. Thermodynamics

We first discuss thermodynamic properties, focusing on the specific heat. The latter
is an integrated quantity accessible to experiments that already captures the relevant
temperature scales of the physical system.

Figure 4.2 shows the specific heat of both models as a function of temperature and for
different couplings λ. For the large lattice size L = 162 used, only minor finite-size effects
appear (see App. C.3). Note that adjacent data points in Fig. 4.2 are not statistically
independent since they were generated by parallel tempering.

At λ = 0, the specific heat is the sum of contributions from the phonons and the
electrons. In the adiabatic limit, the phonons are described by classical harmonic os-
cillators. According to the equipartition theorem, each phonon mode contributes kB/2,
which leads to the constant background in Fig. 4.2. (For the SSH model, the k = 0 mode
does not contribute because the length of the chain was fixed.) Therefore, CV does

2For the classical Monte Carlo method, we define the spectral functions from a single-particle basis. In
this form, they can be easily implemented in the algorithm. For a general many-body problem, these
definitions do not hold. Rigorous definitions of spectral functions using a many-particle Fock basis
are given in App. B.1.
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Figure 4.2.: Specific heat per site for (a) the spinless Holstein and (b) the spinless SSH
model with L = 162. The dashed lines indicate the respective free-phonon contributions.

not vanish for T → 0, in violation of the third law of thermodynamics. The electronic
contribution reaches a maximum at the coherence temperature kBT /t ≈ 0.63 for free
electrons and vanishes for T → 0 and T → ∞. The maximum is related to the thermal
activation of charge fluctuations across the entire band width of our lattice model. The
expected linear free-fermion contribution is visible in the interval 0.03 < kBT /t < 0.1 (for
the system size L = 162 used) in a different representation.3

For λ > 0, the electronic and phononic contributions to CV can no longer be separated.
For the Holstein model, a small coupling λ = 0.25 suppresses CV over the entire temper-
ature range shown in Fig. 4.2(a). With increasing λ, the free-electron peak loses weight
and shifts to higher temperatures. At λ = 1 and intermediate temperatures, the specific
heat even falls below the free-phonon contribution. For the SSH model [Fig. 4.2(b)],
CV is also suppressed at high temperatures, but its maximum shifts to slightly lower
temperatures. Moreover, CV remains almost constant at intermediate temperatures.

For both models, an additional peak emerges in CV at low temperatures. While for
small λ the peak cannot be observed in the accessible temperature range, it shifts to
higher temperatures and grows with increasing λ. This feature is robust against finite-
size effects, only the downturn towards T → 0 where the electronic contribution vanishes
is not yet fully converged with L. For a detailed finite-size analysis see App. C.3.

The appearance of the low-temperature peak can be attributed to an enhancement of
order as temperature is decreased. Figure 4.3 shows the static charge structure factor
Sρ(q) for the Holstein model at λ = 0.5. At low temperatures, Sρ(q) develops a peak at
q = 2kF = π that indicates the formation of a charge-density wave. Simultaneously, the
peak in CV arises, as shown in the two insets of Fig. 4.3. Its maximum at kBT /t ≃ 0.02

3The representation chosen in Fig. 4.2 does not show the linear contribution to CV for free fermions.
However, it will become visible in the inset of Fig. 4.16 when we discuss the specific heat of the
Holstein model in the antiadiabatic regime (cf. Sec. 4.2.4).
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Figure 4.3.: Charge structure factor Sρ(q) of the spinless Holstein model around the
ordering vector q = 2kF = π for selected temperatures. The full temperature dependence of
Sρ(π) is shown in the left inset. Dashed lines mark the temperatures for which Sρ(q) is
shown in the main panel and match the evolution of the low-temperature peak in CV , as
shown in the right inset. Here, λ = 0.5 and L = 162.

corresponds with the inflection point of Sρ(π). The width of the peak is related to the
temperature range where 2kF correlations become prominent. The same behavior is
expected for the SSH model and the bond structure factor Sb(q).

While true long-range order only exists at T = 0, the position of the low-temperature
peak in CV can be regarded as a coherence scale at which pronounced 2kF correlations
set in and which marks the emergence of a clear Peierls energy gap. The thermal
crossover is described by a correlation length ξ(T ) [159]. While ξ(T ) → ∞ for T → 0,
corresponding to long-range order, the correlation length is finite at T > 0 where charge
or bond correlations decay exponentially. Similar results have been obtained from a
Ginzburg-Landau approach [127]. While a saddle-point approximation gives a second-
order phase transition at a finite TMF

1D and a jump in CV [160], Scalapino et al. [127] used
a functional method to treat fluctuations in the Ginzburg-Landau fields. Thereby, they
mapped the 1D electron-phonon problem to a single quantum mechanical anharmonic
oscillator [161]. In this approach, long-range order is destroyed at T > 0, and CV is
continuous with a peak similar to our results. The maximum in CV may be located well
below the mean-field value for TMF

1D [161]. For the electron-phonon models considered
here, the mean-field critical temperature is an order of magnitude larger than the peak
positions in our CV data.

The results in Fig. 4.2 are very similar for the two models considered. With increasing
λ, the free-electron contribution is suppressed and an additional low-temperature peak
emerges that can be attributed to enhanced 2kF charge or bond correlations, respectively.
The same temperature scales will also be relevant for the spectral properties discussed
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in Sec. 4.1.4 and Sec. 4.1.5. The relation between CV and the spectral function becomes
apparent by considering the relation CV = ∂E/∂T and using the equation of motion [162]
to write the total energy as4

E =
Nph

2β
+∑

k
∫

∞

−∞
dω

ω + εk
2

nF (ω)A(k,ω) . (4.15)

Here, Nph = L for the Holstein model and Nph = L − 1 for the SSH model. According
to Eq. (4.15), the total energy can be expressed as a sum rule of the single-particle
spectrum weighted with the Fermi function nF (ω) and the bare dispersion εk = −2t cosk.
Thus, the specific heat measures the change of the density of states around the Fermi
energy with temperature. The decrease of the free-electron peak in CV with increasing λ
therefore corresponds to a reduction of spectral weight across a broad region of energies
and temperature, whereas the sharp low-temperature peak signals a sudden change in
the single-particle spectrum. In particular, we will show that the emergence of the
low-temperature peak is related to the Peierls gap.

4.1.4. Spectral properties of the Holstein model

In this and the next subsection, we investigate how the temperature-driven suppression of
2kF charge or bond order manifests itself in the single-particle and two-particle spectral
functions [Eqs. (4.12)–(4.14)]. While at T = 0 the spectral functions can be calculated
exactly using mean-field theory, finite temperatures require numerical simulations.

For the Holstein model, the electron-phonon coupling is chosen as λ = 0.5, for which the
mean-field gap ∆/t ≈ 0.68 and the interesting temperature scale set by the corresponding
peak in CV is well accessible.

Temperature dependence of the density of states

We begin with the density of states plotted in Fig. 4.4. The filled curve shows the exact
mean-field result at T = 0 which in the thermodynamic limit is given by

N(ω) =
L

π

∣ω∣
√

ω2 − (∆
2
)

2
√

(2t)2
+ (∆

2
)

2
− ω2

(4.16)

for ∆/2 < ∣ω∣ <
√

(2t)2 + (∆/2)2, and zero else. Hence, at the mean-field level, the
electron-phonon interaction opens a gap ∆ at the Fermi level and shifts the upper edge
of the band to higher energies. At the band edges, square-root singularities appear.

Thermal fluctuations lead to a broadening of the band edges and the singularities
become finite peaks. At the lowest temperature considered in our simulation, βt = 80,
N(ω) is still close to the result at T = 0, but spectral weight enters the mean-field
gap exponentially. The fine structure visible in the middle of the bands is a finite-
size effect and is partly smeared due to the use of a frequency grid with spacing ∆ω.

4For the Holstein model, a collection of sum rules for the total energy is given in App. B.3.
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Figure 4.4.: Density of states of the spinless Holstein model for λ = 0.5 and L = 162. The
filled curve corresponds to the T = 0 mean-field result (4.16).

With increasing temperature, the peak at the lower edge of the spectrum is strongly
suppressed. At the same time, the T = 0 gap is filled in and has disappeared at βt = 5.
At even higher temperatures, also the peak at the upper edge is entirely washed out.
The weight is shifted to higher frequencies and the spectrum flattens completely.

The temperature of the gap closing in Fig. 4.4 coincides with the position of the low-
temperature peak in CV and the suppression of 2kF correlations in Sρ(q) in Fig. 4.3.
According to Eq. (4.15), the change of N(ω) near the Fermi level is largest at kBT /t ≈
0.02 where CV has its maximum. The peak in CV directly signals the formation of the
Peierls gap and the corresponding temperature can be regarded as the coherence scale
at which the 1D Peierls physics appears. This temperature scale is considerably lower
than the mean-field gap ∆/(2t) ≈ 0.34 or the critical temperature kBT

MF
1D /t ≈ 0.2, similar

to the reduction of the transition temperature due to 1D fluctuations in the functional
Ginzburg-Landau approach of Refs. [127,128].

Momentum dependence of the spectral functions

The single-particle spectrum A(k,ω) and the dynamic charge structure factor Sρ(q, ω)
are shown in Fig. 4.5. The temperatures were chosen to capture the interesting regions
defined by the results for CV in Fig. 4.2.

For βt = 80 [Fig. 4.5(a)], A(k,ω) closely follows the mean-field dispersion indicated by
the dashed line. The imbalance of spectral weight between the original cosine dispersion
and the shadow bands is characteristic for systems with competing periodicities and
only disappears for λ → ∞ [163]. Due to the finite temperature, the peaks in A(k,ω)
are broadened and their positions deviate slightly from the mean-field dispersion at the
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Figure 4.5.: (a)–(d) Single-particle spectral function A(k,ω) and (e)–(h) dynamic charge
structure factor Sρ(q, ω) of the spinless Holstein model for λ = 0.5 and L = 162. Dashed lines
correspond to the T = 0 mean-field dispersion and gap, respectively. For better visibility,
the ω = 0 contributions to Sρ(q, ω) are shown as a bar of width ∆ω/t = 0.1 in (e)–(h).

band edges. There are additional features of minor weight that disperse from the edges
of the original cosine band forming a continuum of excitations.

With increasing temperature [Fig. 4.5(b)], the broadening of the single-particle spec-
trum becomes larger and the shadow bands less pronounced. Inside the mean-field gap,
two dispersing bands appear with dominant weight around kF = π/2 (see also the discus-
sion below). At βt = 10 [Fig. 4.5(c)], the gap and the shadow bands have disappeared
completely, and the locus of spectral weight follows the cosine dispersion of the nonin-
teracting system. Further increasing the temperature only leads to a broadening of the
spectrum until it becomes washed out completely, see Fig. 4.5(d).

Figures 4.5(e)–(h) show the dynamic charge structure factor Sρ(q, ω) at the same tem-
peratures. At βt = 80, Sρ(q, ω) exhibits a particle-hole continuum but with a gap com-
parable to the mean-field gap (dashed line). Moreover, there is a sharp central (Bragg)
peak at q = 2kF = π associated with CDW order. At higher temperature [Figs. 4.5(f)–
(g)], the edges of the particle-hole continuum diffuse, the gap is filled in, and the central
peak becomes a Lorentzian of width ξ−1(T ) in momentum space (cf. Fig. 4.3) where
ξ(T ) is the correlation length introduced at the beginning of Sec. 4.1.3. In the high-
temperature limit [Fig. 4.5(h)] the particle-hole continuum is washed out completely,
and Sρ(q, ω) contains (i) a spatially localized (i.e., q-independent) zero-energy Einstein
phonon mode, and (ii) an additional mode at ω = 2t related to the strong onsite disorder
generated for the fermions by the lattice fluctuations (see Sec. 4.1.6).
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Figure 4.6.: Close-up of the single-particle spectral function A(k,ω) around kF = π/2 for
the same parameters as in Fig. 4.5. The dashed lines correspond to the mean-field dispersion
at T = 0. Here, we used a discretization ∆ω/t = 0.01.

Closing of the single-particle gap

The closing of the single-particle gap in Fig. 4.5 is the result of two effects: (i) a spatially
homogeneous renormalization of the T = 0 mean-field order parameter and (ii) thermally
induced defects in the lattice dimerization with energies below the band gap.

A closeup of the thermally induced low-energy excitations is shown in Fig. 4.6. For
βt = 60 [Fig. 4.6(a)], we see a band above (below) the mean-field main band for k < kF

(k > kF), as well as a weaker band below (above) the mean-field shadow band for k < kF

(k > kF) that extends only over a small range of k around kF. Both features merge with
the mean-field bands near kF. With increasing temperature, the additional excitations
gain spectral weight (especially close to kF) and the feature following the shadow bands
extends over a large k-range. Eventually, the gap is filled in and the linear dispersion
near kF is restored, cf. Figs. 4.6(c), 4.6(d), and 4.5(c).

At low temperatures [Fig. 4.5(a)], the spectral function has a close resemblance with
that of the spinless Holstein model with quantum phonons, which is shown in Fig. 4.13(b)
and will be discussed in detail in Sec. 4.2.2. At finite phonon frequencies, A(k,ω)
exhibits dispersive excitations with energy smaller than the mean-field gap that have
been interpreted as polaron excitations [71]. While quantum fluctuations reduce the
minimal energy for polaron excitations [71], the latter coincides with the mean-field gap
in the adiabatic limit [Fig. 4.5(a)].
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Figure 4.7.: Optical conductivity of the spinless Holstein model for λ = 0.5 and L = 162.
The filled curve is the T = 0 mean-field result (4.17). The inset shows the kinetic energy of
the electrons as a function of temperature. It is related to σ(ω) by the sum rule (4.18).

Optical conductivity

Finally, we consider the optical conductivity σ(ω) in Fig. 4.7. At T = 0, mean-field
theory gives

σ(ω) =
L∆2

4πω2

√
(4t)2 +∆2 − ω2

ω2 −∆2
(4.17)

for ∆ < ∣ω∣ <
√

(4t)2 +∆2. The filled curve in Fig. 4.7 clearly shows the square-root
singularity at the lower edge ω = ∆. In contrast to the density of states, there is no
singularity at the upper edge where σ(ω) = 0. At βt = 80, the lower edge of σ(ω) has
already broadened significantly. As a function of temperature, we first observe a decrease
of the optical gap due to the suppression of charge order. While this shift is qualitatively
captured by a temperature-dependent mean-field gap ∆(T ), the latter does not account
for the nontrivial broadening due to fluctuations. Although the single-particle gap is
filled in at high temperatures, there is no Drude peak. The absence of the latter, and
the shift of the peak in σ(ω) back to larger frequencies for βt ≲ 20, can be attributed
to the onset of incoherence. By contrast, in the mean-field CDW approximation, ∆ = 0
at T > TMF

1D so that the electrons can move coherently. At even higher temperatures,
the strong lattice fluctuations act as essentially random disorder. A characteristic peak
emerges at ω = 2t that becomes more pronounced as temperature increases further. The
relation to a disorder problem will be discussed in more detail in Sec. 4.1.6.

The integrated optical conductivity is related to the kinetic energy of the electrons
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Figure 4.8.: Density of states of the spinless SSH model for λ = 0.75 and L = 162. The
filled curve corresponds to the T = 0 mean-field result (4.19).

via the f-sum rule [164]

∫

∞

0
dω σ(ω) = −

π

2
Eel . (4.18)

The results for Eel in the inset of Fig. 4.7 reveal that up to βt ≈ 20 spectral weight
is merely redistributed, whereas it is significantly reduced at higher temperatures and
vanishes for T →∞.

4.1.5. Spectral properties of the Su-Schrieffer-Heeger model

The spectral properties of the SSH model are in many aspects similar to the Holstein
model, and we therefore focus on the differences. To facilitate a comparison with the
results for the Holstein model we take λ = 0.75 for which the mean-field gap ∆/t ≈ 0.76.

Temperature dependence of the density of states

Figure 4.8 shows the density of states, including the T = 0 mean-field result given by

N(ω) =
L

π

∣ω∣
√

ω2 − (∆
2
)

2√
(2t)2 − ω2

(4.19)

for ∆/2 < ∣ω∣ < 2t, and zero otherwise. Equation (4.19) has the same form as Eq. (4.16),
but the upper edge of the spectrum remains at ω = 2t independent of λ. The temper-
ature dependence of the mean-field bands, i.e., the broadening of the singularities and
the closing of the gap, is similar to the Holstein model. However, there is an additional
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Figure 4.9.: (a)–(d) Single-particle spectral function A(k,ω) and (e)–(h) dynamic bond
structure factor Sb(q, ω) of the spinless SSH model for λ = 0.75 and L = 162. The dashed lines
correspond to the T = 0 mean-field dispersion and gap, respectively. For better visibility,
the ω = 0 contributions to Sb(q, ω) are shown as a bar of width ∆ω/t = 0.1 in (e)–(h).

peak at ω = 0 that grows and broadens with increasing temperature. It survives even
at the highest temperature considered where the rest of the spectrum has been com-
pletely washed out by thermal fluctuations. As discussed below, the peak is related to
topologically protected midgap states of the SSH Hamiltonian.

Momentum dependence of the spectral functions

The single-particle spectral function A(k,ω) shown in Figs. 4.9(a)–(d) is again very
similar to the Holstein model, except for the zero-energy peak. The latter is absent
at βt = 80 [Fig. 4.9(a)], where the spectrum closely follows the mean-field dispersion.
It first emerges at βt ≃ 40 when the gap starts to be filled in by thermal excitations
[Fig. 4.9(b)]. At βt = 10 [Fig. 4.9(c)], the mean-field gap is filled in but signatures of
the shadow bands remain. More noticeably, the zero-energy peak is well visible for all
k with maximal spectral weight at kF. Finally, increasing the temperature further to
βt = 0.1 completely smears out the spectrum except for the ω = 0 peak [Fig. 4.9(d)]; in
this regime, the spectral weight of the peak becomes independent of k.

The results for the dynamic bond structure factor are shown in Figs. 4.9(e)–(h). At the
lowest temperature considered [Fig. 4.9(e)], it has a continuum of excitations above the
mean-field gap and zero-energy peaks at q = 0 and q = 2kF = π. The evolution with tem-
perature is similar to Fig. 4.5. In particular, the gap is filled in and the Lorentzian central
peak widens due to the decrease of ξ(T ). In the high-temperature limit [Fig. 4.9(h)],
sharp excitations exist only at ω = 0.
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of momentum k for the spinless SSH model for λ = 0.75 and L = 162. The spectrum was
averaged over an interval ∆ω/t = 0.04 around ω = 0. Hence, the extent of the peak in
frequency is not captured.

Localization of the zero-energy mode

We attribute the zero-energy mode in the single-particle spectrum to soliton states at
thermally generated domain walls between different lattice dimerizations [8, 143]. We
can estimate the spatial extent of these states from their momentum dependence, which
is shown in Fig. 4.10. At low temperatures, the shape of the peak hardly changes, only
its spectral weight becomes larger. A comparison with the analytic result for the soliton
wave function [143], φ0(n) ∼ sech(n/l) cos(πn/2), gives a localization length of l ≈ 5 in
units of the lattice spacing, in agreement with Ref. [143]. As the temperature exceeds
βt = 20, the peak in Fig. 4.10 broadens in k-space and the localization length becomes
smaller. In the high-temperature limit, the zero-energy state becomes completely local-
ized. Although the picture of domain walls between ordered regions breaks down when
the single-particle gap closes, the zero mode persists at higher temperatures [Fig. 4.9(d)]
where it can be understood as a disorder effect, see Sec. 4.1.6.

Optical conductivity

The optical conductivity σ(ω) is shown in Fig. 4.11. At T = 0, the mean-field result is
given by

σ(ω) =
4L∆2t2

πω2

1
√
ω2 −∆2

1
√

(4t)2 − ω2
(4.20)
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Figure 4.11.: Optical conductivity of the spinless SSH model for λ = 0.75 and L = 162. The
filled curve is the T = 0 mean-field result (4.20). The inset shows the energy of the electronic
subsystem as a function of temperature. It is related to σ(ω) by the sum rule (4.21).

for ∆ < ∣ω∣ < 4t, otherwise it is zero. Compared to the Holstein model, it has an additional
square-root singularity at the upper edge of the spectrum. However, its integrated weight
is too small to be visible even at the lowest temperature considered. The lower edge
first broadens and then also shifts to lower frequencies. Similar to the Holstein model,
up to βt ≈ 10 spectral weight is only redistributed, as visible from the inset of Fig. 4.11.
The integrated spectrum is related to the energy of the electronic subsystem via the sum
rule [164]

∫

∞

0
dω σ(ω) = −

π

2
Eel+ep . (4.21)

In contrast to the Holstein model, the sum rule also includes the interaction energy
of electrons and phonons. Because of this contribution, the integrated weight slightly
increases between βt ≈ 10 and βt ≈ 3. Further increasing the temperature leads to a
reduction of spectral weight at small ω and a substantial enhancement of the tail at
large ω. In contrast to the Holstein model, the integrated weight does not vanish for
T →∞.

4.1.6. Relation to disorder problems

At high temperatures, the essentially random lattice distortions act as disorder for the
electrons [147], corresponding to site disorder for the Holstein model, and bond disorder
for the SSH model. The probability distribution W (C) [Eq. (4.8)] becomes a Gaussian
and the disorder strength scales as

√
λT . The connection to disordered noninteracting

models explains some of the spectral features observed above.
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For the Holstein model, the strong onsite disorder leads to two distinct peaks in the
two-particle spectra [Figs. 4.5(h) and 4.7], one at ω = 0 in Sρ(q, ω), and another at
ω = 2t both in Sρ(q, ω) and σ(ω). The zero-energy peak in Sρ(q, ω) does not show any q
dependence, whereas the peak at ω = 2t is strongest around q = π, but vanishes at q = 0.
The latter signature also appears in σ(ω), where it has already been observed for the t−V
model at strong disorder [165] and the Holstein polaron in the adiabatic regime [166].
This signature becomes even sharper as temperature is increased further. In Ref. [166],
the resonance at ω = 2t has been explained from an effective two-site model, where the
bonding and antibonding eigenstates of the electron perfectly overlap with the current
operator. In the same way, n̂q connects the different-parity states at q = π, whereas the
overlap is zero at q = 0.

For the SSH model, only the zero-energy peak appears in the high-temperature limit of
Sb(q, ω). Moreover, an excitation with ω = 0 is visible in the single-particle spectrum and
persists for T →∞. Such a peak has previously been observed for the SSH polaron [155]
and explained as a disorder effect [167–170]. For the tight-binding model, any finite
off-diagonal disorder leads to a zero-energy peak in the density of states that becomes
larger and broadens as the disorder strength increases [168]. The appearance of the
peak is related to the chiral symmetry of the SSH Hamiltonian. The latter is broken
by onsite disorder, and the zero mode disappears accordingly [168]. Moreover, no zero
mode exists for the Holstein model for which chiral symmetry is broken already at the
mean-field level. While we have so far interpreted the zero-energy excitations at low
temperatures in terms of topologically protected soliton states located at domain walls,
such states can also be induced by off-diagonal disorder acting on the dimerized ground
state [171–174].

At low temperatures, the broadening of the spectral functions can be considered as a
disorder effect, including the tail of the optical conductivity extending into the mean-field
gap. For the Holstein model, it is related to the weak pinning of a charge-density wave
by onsite disorder [175]. For the SSH model, similar results were also obtained from the
fluctuating gap model, where order parameter fluctuations are modeled as off-diagonal
disorder [173,174,176–178].

4.2. Quantum Peierls chains

In the previous section, we investigated the effects of thermal fluctuations on the dimer-
ized ground state of adiabatic Peierls chains. For the Holstein model as well as the SSH
model we found a low-temperature peak in CV related to the closing of the single-particle
gap by soliton-antisoliton excitations that appear at domain walls and considerably re-
duce the 2kF correlations. In real materials, phonon frequencies are often small but finite,
and numerical simulations show that quantum lattice fluctuations can even drive a phase
transition to a metallic state. To obtain a comprehensive understanding of 1D Peierls
materials, it is therefore necessary to study the effects of finite phonon frequencies.

In the following, we show results for the specific heat of the spinless Holstein model as
a function of the phonon frequency ω0 and discuss for which parameters the adiabatic
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Figure 4.12.: (a) Specific heat of the spinless Holstein model for different ω0. Data points
correspond to direct estimates of CV , whereas straight lines are obtained from fits to the
total energy using the maximum entropy method (for details see App. C). Dashed lines
indicate the free-phonon contributions. (b) Specific heat subtracted by the corresponding
free-phonon contribution. (c) Charge structure factor at the ordering vector q = π. We used
λ = 0.75 and L = 162. Results were obtained using the SSE representation.

approximation is satisfied. We also study CV in the adiabatic and antiadiabatic regimes.
In the adiabatic regime, we use the single-particle spectral functions obtained from the
CT-INT method [71] to explain the key effects of quantum lattice fluctuations at low-
temperatures. In contrast to the adiabatic limit, we do not show results for the SSH
model. Since the phase diagram of the spinless SSH model with optical phonons is very
similar to the spinless Holstein model [P6], we expect similar thermodynamic properties.
A study of the SSH model with acoustic phonons is out of reach due to a sign problem.

4.2.1. Crossover from the adiabatic to the antiadiabatic regime

Figure 4.12(a) shows CV as a function of the phonon frequency ω0 ranging from the
adiabatic to the antiadiabatic limit. We fixed the electron-phonon coupling to λ =

0.75. Here and in the following, simulations were performed using the directed-loop
algorithm presented in Sec. 3.4 and reached lattice sizes of up to L = 162. Data points
in Fig. 4.12(a) correspond to direct measurements of CV from the covariance estimator
CV = kBβ

2(⟨Ĥ2⟩−⟨Ĥ⟩2), whereas solid lines serve as a guide to the eye and are obtained
from fits to the total energy using the maximum entropy method [179] and applying
CV = ∂E/∂T . A detailed discussion of both estimators is given in App. C.

Starting from the adiabatic limit at ω0 = 0, Fig. 4.12(a) reveals that quantum lattice
fluctuations successively reduce the specific heat for temperatures kBT < ω0 as ω0 be-
comes larger. By contrast, the adiabatic approximation is satisfied for kBT ≳ ω0, where
the data for different ω0 coincide. As expected from the fundamental laws of thermo-
dynamics, we find CV → 0 for T → 0 and CV → LkB for T → ∞. These limiting cases
already are a feature of free phonons with ω0 > 0 and their contributions to CV for differ-
ent ω0 are illustrated by dashed lines in Fig. 4.12(a). As a function of ω0, the maximum
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of the low-temperature peak in CV is reduced and finally disappears when approaching
the critical value ω0,c/t ≈ 0.5, where a T = 0 transition from a Peierls insulator to a Lut-
tinger liquid takes place. In the Luttinger liquid phase, the low-temperature behavior
of CV is fundamentally different from the Peierls phase and is expected to show a linear
temperature dependence. This contribution will be discussed in detail in the subsequent
sections. By further increasing the phonon frequency, we enter the antiadiabatic regime
(ω0 > t). Here, the electron and phonon contributions to CV separate and are approxi-
mately described by their noninteracting contributions, e.g., at ω0/t = 4.0. Finally, the
spinless Holstein model maps to free electrons for ω0 →∞.

To test the validity of the adiabatic approximation in the Peierls phase, we take a
closer look at the low-temperature behavior of CV for phonon frequencies ω0/t ≲ 0.2. In
Fig. 4.12(a), the CV data for different ω0 are difficult to compare, because already the
contributions of free phonons (dashed lines) drop to zero at different energy scales. We
can get rid of this effect by subtracting the free-phonon contributions from CV . The
resulting ∆CV is shown in Fig. 4.12(b) and suggests that the adiabatic approximation
is excellent for phonon frequencies ω0/t ≲ 0.1 and still satisfactory for ω0/t = 0.2.5 In
particular, the coherence temperature below which the 1D Peierls physics can be ob-
served is related to the peak position in ∆CV (cf. Sec. 4.1.3) and appears to be the same
for all ω0/t ≤ 0.2. Further evidence for a fixed coherence scale comes from the charge
structure factor Sρ(π) at the ordering vector q = 2kF = π shown in Fig. 4.12(c). For every
ω0/t ≤ 0.2, the onset of enhanced CDW correlations takes place at the same temperature
scale. Furthermore, at low temperatures the absolute values of Sρ(π) are very similar
for ω0/t ≤ 0.1. The relation between enhanced CDW correlations and the peak position
in CV was also demonstrated in Fig. 4.3 for the adiabatic limit.

4.2.2. Spectral functions in the adiabatic regime

The specific heat is fully determined by the single-particle spectral functions A(k,ω) and
B(q, ω) of electrons and phonons. A collection of exact sum rules is given in App. B.1.
In the adiabatic limit, CV (T ) can be understood solely from the electronic spectral
function A(k,ω) and its temperature dependence, as shown in Sec. 4.1. In the presence
of quantum lattice fluctuations, also the phonon dynamics contained in B(q, ω) must be
considered to explain the temperature dependence of CV . Unlike in the adiabatic limit
where a classical Monte Carlo method provided access to spectral functions directly on
the real-frequency axis, QMC methods can only access correlation functions in imaginary
time. A(k,ω) and B(q, ω) are then obtained from numerical analytic continuation which
is an ill-posed numerical problem. For this reason, the spectral functions discussed below
cannot show the same accuracy as in the adiabatic limit and a study of their temperature
dependence is out of reach. However, our results for ω0 = 0 revealed that thermal
fluctuations mainly lead to a broadening of the T = 0 spectra, with some additional
features related to thermally generated lattice defects. Therefore, we believe that already

5Note that subtracting the free-phonon contribution from CV is only satisfied deep in the Peierls
phase, where renormalization effects of the phonon dispersion are small. By further increasing ω0,
this approximation breaks down as shown for the phonon spectral functions in Sec. 4.2.2.
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Figure 4.13.: Electronic single-particle spectral function A(k,ω) of the spinless Holstein
model in the (a) Luttinger liquid phase (λ = 0.5) and (b) Peierls phase (λ = 1.0). Dashed
lines indicate ω = ±ω0 as well as the free-electron dispersion in (a) and the lower band of the
mean-field dispersion in (b). Here, ω0/t = 0.4 and L = βt = 34. Data are taken from Ref. [71]
and were obtained using the CT-INT method.

the low-temperature properties of A(k,ω) and B(q, ω) will give considerable insight for
the interpretation of the CV data.

In this section, we discuss the electronic and phononic single-particle spectra for ω0/t =
0.4, as obtained from the CT-INT method. A brief discussion of spectral features in
the antiadiabatic regime is included in Sec. 4.2.4. A short summary of the analytic
continuation problem and references to the methods used can be found in App. B.1.

Electronic spectral function

We study the single-particle spectral function as defined by the Lehmann representation

A(k,ω) =
1

Z
∑
mn

e−βEm (1 + e−βω) ∣⟨m∣ ĉk ∣n⟩∣
2
δ[ω − (En −Em)] . (4.22)

Here, ∣m⟩ is a many-particle eigenstate of the Hamiltonian and Em the corresponding
eigenvalue. For further details see App. B.1.

Figure 4.13(a) shows A(k,ω) in the Luttinger liquid phase for λ = 0.5. The dominant
part of the spectrum closely follows the free-electron dispersion indicated by a dashed
line. Almost all spectral features are substantially broadened by incoherent phonon
scattering [180] and thermal fluctuations, only inside an energy window ω ∈ [−ω0, ω0]

around the Fermi level and near kF = π/2 A(k,ω) has sharp and gapless excitations.
As discussed in Ref. [71], these low-energy excitations are very similar to bosonization
results [181]. At k = kF, the bosonization results of Ref. [181] include a sharp and
dominant peak at ω = 0 as well as additional phonon satellites at ω = ±ω0 of low spectral
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weight. When ∣k − kF∣ increases, the sharp excitation at the Fermi level disperses with a
renormalized velocity, loses spectral weight, and broadens. Simultaneously, the phonon
peaks at ω = ±ω0 increase in spectral weight and finally merge into the broad cosine band.
The QMC results at finite system sizes L = βt = 34 shown in Fig. 4.13(a) are consistent
with those obtained from bosonization. In particular, one can infer a renormalization of
the Fermi velocity from the QMC data. This renormalization is caused by the formation
of polarons—electrons that are dressed by phonons—with an increased effective mass.
The reduction of the charge velocity will be discussed below with our results for CV .

Figure 4.13(b) shows A(k,ω) in the Peierls phase for λ = 1. The spectrum is gapped
and consists of four well-separated features that appear symmetrically around ω = 0: two
high-energy bands and two low-energy bands (near ω = 0). The high-energy bands follow
the mean-field dispersion (drawn as a dashed line in the lower half of the spectrum)
and include the shadow bands characteristic for the doubling of the unit cell. The
broadening of these bands is again a result of thermal fluctuations and incoherent phonon
scattering [180]. In contrast to the mean-field result, A(k,ω) shows additional dispersing
features inside the mean-field gap that define the real Peierls gap. In Ref. [71], these
features were identified as polaron bands. In contrast to the adiabatic limit, where
polarons are only observed as thermal excitations, these features are expected to remain
at zero temperature. However, with increasing λ their weight will become smaller.

Reference [71] establishes a connection between the spectral features of the Peierls
phase and the Luttinger liquid phase. In the latter, the bosonization results of Ref. [181]
essentially show two features: the phonon peaks at ω = ±ω0 and the gapless low-energy
contribution identified as the polaron band. Because the Peierls transition is a continuous
phase transition, the low-energy feature continuously evolves into the gapped polaron
band with a finite Peierls gap, whereas the high-energy feature becomes the mean-field
band at large λ [71]. Thereby, the Peierls gap is expected to open exponentially slowly,
as it is characteristic for a Berezinskii-Kosterlitz-Thouless transition.

Phonon spectral function

Previous results for the spinless Holstein model suggest that in the adiabatic regime, the
phonon dispersion softens at and around the ordering wavevector q = π on approaching
λc from the metallic phase [27, 71, 182, 183,P5]. For a soft-mode transition, the phonon
mode should become completely soft at q = π and λ = λc, and subsequently harden for
λ > λc. Indications for such a hardening were recently observed for the spinful Holstein
model [P5], but a clear identification is complicated by the dominant central peak in the
Peierls phase [71,P5] and—in the case of exact diagonalization—the small system sizes
accessible at strong coupling [27].

Here, we consider the phonon spectral functions

Bα(q, ω) =
1

Z
∑
mn

e−βEm ∣⟨m∣ Ôαq ∣n⟩∣
2
δ[ω − (En −Em)] (4.23)

calculated either from the displacement [α = Q, Eq. (2.27)] or the momentum correla-
tion function [α = P , Eq. (2.28)], with ÔQ = K1/2Q̂ and ÔP = M−1/2P̂. In principle,
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Figure 4.14.: Phonon spectral functions BQ(q, ω) [(a)–(c)] and BP (q, ω) [(d)–(f)] for the
spinless Holstein model. Dashed lines correspond to ω0/t = 0.4. Here, L = βt = 30. Results
were obtained with the CT-INT method.

both spectral functions contain the same information, but spectral weights may differ
significantly. In particular, the QMC estimators (3.46) and (3.47) derived in the previ-
ous chapter may be subject to different statistical fluctuations that affect the analytic
continuation. Our discussion of the phonon spectral functions is based on Ref. [P3].
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The displacement spectrum BQ(q, ω) in Fig. 4.14(a) reveals the softening of the
phonons near q = π in the metallic phase. Near the critical point, the dispersion ap-
pears completely soft at q = π [Fig. 4.14(b)], and the spectrum is dominated by a central
peak at ω = 0 associated with the long-range charge order. This peak grows strongly
with λ and introduces strong fluctuations in the dynamic displacement correlation func-
tion (2.27) at all momenta q. The fluctuations cause a significant broadening of the
spectrum obtained by analytic continuation, and in particular make it virtually impos-
sible to resolve finite-frequency contributions at q = π, cf. Fig. 4.14(c).

To follow the phonon dispersion in the ordered phase, we instead consider the spectral
function BP (q, ω) shown in Figs. 4.14(d)–(f). The use of the momentum correlation
function (2.28) filters out the central mode, and allows us to unambiguously identify
the hardening of the phonon dispersion at q = π in the Peierls phase [Fig. 4.14(f)].
Hence, the Peierls transition in the adiabatic regime can be classified as a soft-mode
transition. Further evidence for the soft-mode behavior comes from a minimum in the
phonon kinetic energy that appears in the vicinity of λc (for details see our discussion
of sum rules in App. B.3.2 and the results in Ref. [P3]).

The phonon spectral functions BQ(q, ω) and BP (q, ω) are directly related to the charge
structure factor Sρ(q, ω) by an exact mapping that is given in App. B.2. Therefore, the
renormalization of the phonon dispersion is also contained in Sρ(q, ω) [71]. However,
the study of the phonon hardening from Sρ(q, ω) is more elaborate than from B(q, ω)
because in addition to the central peak at ω = 0 in the Peierls phase, also the particle-
hole continuum has substantial spectral weight. On the other hand, the particle-hole
continuum also enters the phonon spectra, but its high-energy contributions are filtered
out. Nonetheless, the phonon spectral functions must contain gapless excitations at q = π
throughout the metallic phase that are related to particle-hole excitations.6 The mixing
of particle-hole and phonon excitations leads to another feature at small momenta q
where the phonon dispersion in Figs. 4.14(a) and 4.14(d) seems to be discontinuous. In
Ref. [P5] this feature is explained as a hybridization effect between coherent particle-hole
and phonon excitations. For an unambiguous identification of this feature, large lattice
sizes are required. The hybridization feature at small momenta vanishes in the Peierls
phase, as can be seen in Figs. 4.14(c) and 4.14(f). For a detailed discussion of the phonon
spectral function and its relations to charge excitations see Ref. [P5].

4.2.3. Specific heat in the adiabatic regime

Figure 4.15(a) shows the evolution of the specific heat from weak to strong electron-
phonon coupling λ at an intermediate phonon frequency ω0/t = 0.4. The parameters
chosen in Fig. 4.15(a) are very similar to those in Fig. 4.2(a) in the adiabatic limit. For
temperatures kBT ≫ ω0, we expect the adiabatic approximation to be valid and indeed
we find that the high-temperature fermionic peak at kBT = O(t) is suppressed by the
electron-phonon interaction, exactly as for ω0 = 0. However, quantum lattice fluctuations
lead to a very different behavior at kBT ≲ ω0. Most notably, CV → 0 for T → 0 as

6Note that for finite lattice sizes, Sρ(q, ω) has a finite-size gap at q = π. For a discussion of finite-size
effects see Ref. [P5].
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Figure 4.15.: (a) Specific heat of the spinless Holstein model in the adiabatic regime.
Data points correspond to direct estimates of CV , whereas straight lines are obtained from
fits to the total energy using the maximum entropy method (for details see App. C). The
dashed line corresponds to the free-phonon contribution. The inset shows CV subtracted by
the free-phonon contribution for λ = 1.25 and compares it to the adiabatic approximation.
(b) CV /T for the same data. (c) Charge structure factor at the ordering vector q = π. Here,
ω0/t = 0.4 and L = 162. Results were obtained using the SSE representation.

expected from the third law of thermodynamics. Moreover, at ω0/t = 0.4 the ground state
is metallic for λ < λc = 0.68(1) and a Peierls insulator for λ > λc. At low temperatures, CV
is therefore expected to exhibit a linear fermionic contribution in the metallic phase, and
an exponential contribution due to the Peierls gap in the insulating phase. Figure 4.15(a)
shows that in the temperature interval 0.05 < kBT /t < 0.1 CV is enhanced with increasing
λ up to the strongest coupling considered, whereas for kBT /t < 0.05 CV is suppressed
between λ = 1.0 and λ = 1.25 in the Peierls phase. In the following, we explain the
low-temperature behavior of the specific heat using the predictions of Luttinger liquid
theory, our previous results for the adiabatic limit, and our knowledge of the spectral
features of A(k,ω) and B(q, ω).

The metallic phase that exists for λ < λc as a result of quantum lattice fluctuations
has been identified as a repulsive Luttinger liquid with K < 1 [29,32]. Consequently, the
fermionic contribution to the specific heat should be given by [184]

Cel
V =

π

3

Lk2
BT

u
, (4.24)

with the renormalized charge velocity u. For the present case, u → vF = 2t for either
λ → 0 or ω0 → ∞. Equation (4.24) holds for an infinitely wide band, whereas a finite
band width gives rise to the high-temperature peak discussed in Sec. 4.1.3. The linear
contribution (4.24) will hence only be observable at low temperatures. To test the
specific heat for this contribution, Fig. 4.15(b) shows CV /T in the low-temperature
regime. Already for the noninteracting case λ = 0, it is difficult to detect the constant
electronic contribution to CV /T defined by Eq. (4.24) with u = vF (dashed line). As
temperature is decreased, our result at λ = 0 first converges to this constant, but below
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kBT /t ≈ 0.03 it starts to deviate. The latter is a result of the finite lattice size L = 162.
When we increase the electron-phonon coupling up to λ = 0.75, the absolute value of
CV /T becomes larger in the entire temperature range shown in Fig. 4.15(b). From the
maximum entropy fits to the total energy (straight lines) we conclude that the charge
velocity is reduced with increasing λ. However, we cannot unambiguously determine u
from the QMC data because CV /T does not yet reach a plateau for the temperatures
considered and at L = 162. Note that at λ = 0.75, the system is already in the Peierls
phase, but the gap is exponentially small and cannot be detected in Fig. 4.15(b). Deep
in the Peierls phase, i.e., at λ = 1.0 and λ = 1.25, CV /T drops down to zero for T → 0, as
expected for a gapped system.

In the adiabatic limit, the appearance of a low-temperature peak in CV signalled the
onset of enhanced CDW correlations as temperature was decreased (see the discussion
in Sec. 4.1.3). We found the same behavior for small but finite ω0 (see Fig. 4.12) as
long as the system was deep enough in the Peierls phase. For ω0/t = 0.4, the free-
phonon contribution indicated by a dashed line in Fig. 4.15(a) as well as the phonon
renormalization across the Peierls transition make it difficult to detect a clear signature
of the Peierls ordering in the specific heat. Therefore, Fig. 4.15(c) shows the charge
structure factor Sρ(π) at the ordering vector q = 2kF = π as a function of temperature.
In the metallic phase, Sρ(π) does not show any signature of CDW ordering, but already
at λ = 0.75, close to the critical coupling λc = 0.68(1), Sρ(π) slowly increases with
decreasing temperature. However, the temperature scale where Sρ(π) starts to increase
is too small to detect any signature of enhanced CDW correlations in our CV data shown
in Fig. 4.15(a). Deeper in the Peierls phase, Sρ(π) is strongly enhanced at temperatures
kBT /t < 0.1 and reaches a plateau at even lower temperatures, very similar to our results
in the adiabatic limit. The onset of dominant CDW correlations in Sρ(π) suggests that
we find a related signature in CV . Indeed, for the strongest coupling considered, i.e.,
λ = 1.25, and for kBT /t ≲ 0.1, we find that the difference ∆CV between CV and the free-
phonon contribution closely follows the result in the adiabatic approximation, as shown
in the inset of Fig. 4.15(a). In particular, ∆CV only shows small deviations between
ω0/t = 0.4 and ω0 = 0 at intermediate temperatures.

Finally, the specific heat is also related to the single-particle spectral functions A(k,ω)
and B(q, ω) via the sum rules given in App. B.1. In the metallic phase, the increase
of CV as a function of λ that appears in the entire low-temperature regime can be
attributed to three effects: (i) the reduction of the charge velocity u, as apparent from
the renormalization of A(k,ω) around the Fermi level in Fig. 4.13(a); (ii) the phonon
softening towards the Peierls transition shown in Fig. 4.14; and (iii) the formation of a
second band in A(k,ω) that originates from the phonon satellites at k = kF and ω = ±ω0

and merges into the cosine band away from kF, as discussed in Sec. 4.2.2. In the Peierls
phase, the hardening of the phonon dispersion as well as the opening of the Peierls gap
in the low-energy bands of A(k,ω), cf. Fig. 4.13(b), lead to a suppression of CV at very
low temperatures for λ ≳ 1.0. However, CV further increases around kBT /t ≈ 0.1 which
is very similar to the adiabatic limit shown in Fig. 4.2(a), where the low-temperature
peak appears. For ω0 = 0, we have mainly attributed this contribution to the formation
of the mean-field gap as temperature is decreased. The comparison of CV for ω0/t = 0.4
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Figure 4.16.: Specific heat of the spinless Holstein model in the antiadiabatic regime.
Data points correspond to direct estimates of CV , whereas straight lines are obtained from
fits to the total energy using the maximum entropy method (for details see App. C). The
shaded areas indicate the free-electron and free-phonon contributions. The inset shows
CV /T for weak couplings. The dashed lines correspond to fits to the total energy of the
form E(T ) = E0 +

1
2
aT 2. Here, ω0/t = 4 and L = 162. Results were obtained using the SSE

representation.

and ω0 = 0 in the inset of Fig. 4.15(a) reveals that the formation of the mean-field bands
may be the dominant contribution to CV at strong coupling.

4.2.4. Specific heat in the antiadiabatic regime

In the antiadiabatic regime, the formation of the Peierls state is conceptually different
from the adiabatic regime discussed before. Here, the electrons first undergo a crossover
to small polarons with an effective mass that is significantly increased. In a second step,
the polarons order and form a polaronic superlattice [27]. In this section, we study the
formation of small polarons in the metallic phase from a thermodynamic perspective.

Figure 4.16 shows CV at ω0/t = 4 for different electron-phonon couplings λ. At λ = 0,
CV is the sum of the free-electron and free-phonon contributions indicated by the shaded
areas in Fig. 4.16. As λ is increased, the high-temperature part of CV converges to
the free-phonon contribution, whereas the free-electron part is mainly shifted to lower
temperatures. Thereby, the charge velocity u characteristic for the Luttinger liquid
regime is significantly reduced, as confirmed for small couplings λ in the inset of Fig. 4.16.
In contrast to the adiabatic regime, CV /T unambiguously reaches a constant at low
temperatures that increases with increasing λ. From fitting the total energy to the form
E(T ) = E0+

1
2aT

2 for temperatures βt ∈ [10,20] and using Eq. (4.24), we obtain estimates
for the renormalized charge velocities. For example, at λ = 2 we get u ≈ 0.47 vF.
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4. Thermodynamic and spectral properties of Peierls chains

The shift of the electronic contribution to CV towards lower temperatures as well as
the reduction of the charge velocity with increasing λ can be related to the electronic
spectral function A(k,ω). As a result of small polaron formation, the band width of
the electronic dispersion in A(k,ω) shrinks with increasing λ as observed numerically in
Refs. [27,185]. The effective mass of the polarons increases and the resulting dispersion
can—as a first approximation—be modeled by an effective hopping t̃ = u/2. On the one
hand, t̃ can be estimated by extracting u from the low-temperature behavior of CV as
shown in the inset of Fig. 4.16. On the other hand, the position of the peak in the
electronic contribution of CV should give a good estimate for t̃. At λ = 0, the peak
position is related to the coherence scale of free fermions, kBT /t ≈ 0.63, whereas at λ = 2
we have kBT /t ≈ 0.29 which reproduces our estimate of u ≈ 0.47 vF very well. Note that
the renormalization of the effective hopping for a single polaron can also be estimated
using the Lang-Firsov transformation and approximately calculating the polaron ground
state from the zero-phonon sector [186]. However, the resulting t̃ = exp(−λW /2ω0)

overestimates the renormalization of the charge velocity. Here, W = 4t is the band
width of the electronic dispersion at λ = 0. The suppression of the charge velocity is in
accordance with previous estimates of the Luttinger liquid parameters from bosonization
[187] and QMC simulations [25,26].

In contrast to the adiabatic regime, the influence of the phonon spectral function
B(q, ω) on CV seems to be limited. A finite electron-phonon interaction leads to a
hardening of the phonon dispersion at q = π as well as the appearance of the electronic
particle-hole continuum in B(q, ω) [27, 185]. The latter is a consequence of the exact
relation between B(q, ω) and the dynamic charge structure factor (see App. B.2). How-
ever, with increasing electron-phonon coupling the high-temperature part of CV only
approaches the free-phonon contribution.
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Thus far, the efficient simulation of fermion-boson models has posed a difficult problem
for numerical methods. While DMRG studies were hindered by the unbound bosonic
Hilbert space, QMC methods often suffered from large autocorrelation times as a con-
sequence of local boson updates. These difficulties in simulating fermion-boson models
were summarized in Chap. 1. In this thesis, we worked on a QMC approach that aims
to overcome these issues by simulating the fermion-boson problem in the form of a re-
tarded fermionic interaction. Our starting point was the CT-INT method that had been
successfully applied to the simulation of fermion-boson models [67,70,71]. In the course
of this work, we extended the action-based QMC formalism to the measurement of
bosonic observables, developed an efficient directed-loop QMC algorithm, and provided
a comprehensive study of the thermodynamic properties of Peierls chains.

The primary goal of this thesis was the further development of the action-based QMC
approach to simulate fermion-boson lattice models. As a first step, we introduced the
path-integral formalism for a generic fermion-boson model in Chap. 2. By integrating
out the bosonic degrees of freedom, we derived a retarded fermionic interaction that is
mediated by the free boson propagator. Using the concept of generating functionals, we
showed that bosonic observables can be recovered from fermionic correlation functions.
In particular, we derived sum rules for the phonon propagator and the total energy of the
Holstein model. The action-based QMC approach to retarded interactions was discussed
in Chap. 3 using the example of the Holstein model. Starting from a unified picture of
QMC methods based on a perturbation expansion, we outlined three representations
to treat retarded interactions: the diagrammatic determinantal representation used in
the CT-INT method, the world-line representation used for the worm algorithm, and the
SSE representation used for the directed-loop algorithm. For convenience, we introduced
these methods in their original formulation and then showed how they apply to retarded
interactions. While the CT-INT method had already been used to simulate retarded
interactions [70,71], the worm algorithm has only recently been applied to systems cou-
pled to a bosonic bath [72]. The directed-loop algorithm for retarded interactions is one
of the key achievements of this work [P2]. In the overview section, we only discussed
the basic ideas that allow an efficient treatment of retarded interactions in the SSE rep-
resentation. The development of the directed-loop algorithm was closely related to our
second algorithmic achievement, i.e., the derivation of bosonic estimators that exploit
the information provided by the interaction vertices. This technique is frequently used
in world-line or SSE representations. Inspired by the work of Wang et al. [81], who
derived a universal estimator for the fidelity susceptibility applicable to many different
QMC methods, we generalized their estimator to the case of boson-mediated retarded
interactions [P3]. Furthermore, we used the same techniques to estimate the phonon
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propagator and the total energy of the Holstein model from the Monte Carlo configura-
tions. We tested our new estimators for the CT-INT method and compared our results
to measurements from Wick’s theorem. The analogy between the different QMC meth-
ods led us to the development of the directed-loop algorithm for retarded interactions.
At the end of Chap. 3, we provided a detailed description of the directed-loop algorithm
using the example of the spinful Holstein model. We derived the Monte Carlo weights,
discussed the diagonal and directed-loop updates, and defined efficient estimators based
on the distribution of vertices. In particular, we derived a direct estimator for the spe-
cific heat. Applications to the Holstein model showed that autocorrelation times are
negligibly small for the entire parameter range, even in the vicinity of the phase tran-
sition. For the spinless Holstein model, we estimated the critical coupling λc = 0.68(1)
for a fixed phonon frequency ω0/t = 0.4 from the real-space correlation functions and a
cusp in the fidelity susceptibility. In the end, we discussed possible extensions of the
directed-loop algorithm to other models of particles or spins coupled to a bosonic bath.

The second part of this thesis dealt with the thermodynamic and spectral properties
of Peierls chains and was presented in Chap. 4. Based on our algorithmic developments
we provided a comprehensive study of the specific heat across the entire phase diagram
of a 1D Peierls system. We first considered the adiabatic limit of the spinless Holstein
and SSH models. Here, a dimerized Peierls state exists for any nonzero electron-phonon
coupling at zero temperature, as described by mean-field theory. Using a classical Monte
Carlo method, we studied the effects of thermal fluctuations on the specific heat, the
electronic single-particle spectrum, the dynamic charge and bond structure factors, and
the optical conductivity [P4]. In the adiabatic limit, we were able to calculate exact
spectral functions for different temperatures without using analytic continuation. We
found that thermal fluctuations destroy long-range order at finite temperatures and
give rise to a low-temperature peak in the specific heat. A comparison to the electronic
single-particle spectral function revealed that this peak is related to the temperature scale
where the Peierls gap is filled in by thermal fluctuations. In particular, thermally-excited
solitons manifest themselves as in-gap excitations. In the Holstein model, they appear
symmetrically around the Fermi level, whereas in the SSH model they are pinned to zero
energy and protected by chiral symmetry. The filling of the Peierls gap is also reflected
in the two-particle spectra and in the optical conductivity. Moreover, high-temperature
features in the spectral functions were related to disorder models. Having investigated
the effects of thermal fluctuations on the Peierls state, we also considered the combined
effects of thermal and quantum lattice fluctuations. The latter destroy the ordered
phase at a critical value of the phonon frequency and lead to a metallic Tomonaga-
Luttinger liquid phase. We studied the specific heat of the spinless Holstein model
covering the entire parameter range from low to high phonon frequencies ω0 and from
weak to strong electron-phonon coupling λ. We verified that the adiabatic approximation
is accurate for kBT ≳ ω0 and deep in the Peierls phase. Studying the effect of quantum
lattice fluctuations as a function of ω0, we found that the low-temperature peak in the
specific heat remains for small but finite phonon frequencies and only disappears in the
vicinity of the Peierls transition. In the low-temperature regime of the metallic phase,
bosonization predicts a linear dependence of the specific heat on temperature with a
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prefactor that is inversely proportional to the charge velocity. We found evidence for
CV ∼ T in the adiabatic regime, but unambiguous verification was only possible in
the antiadiabatic regime of high phonon frequencies. In both regimes, electron-phonon
interaction leads to a reduction of the charge velocity that is particularly strong in the
antiadiabatic regime. At high phonon frequencies and as a function of λ, we found that
the electronic contribution to CV is shifted towards lower temperatures, whereas the
phonon contribution hardly changes. The shift of the electronic feature is a consequence
of small polaron formation with a significantly increased effective mass. In the adiabatic
regime, the evolution of CV as a function of λ was found to be very different and was
explained with the help of the single-particle spectral functions of electrons and phonons.
We discussed three relevant effects: (i) the renormalization of the charge velocity in the
metallic phase and the subsequent splitting of the polaron bands in the Peierls phase,
(ii) the additional formation of the mean-field bands including the shadow bands, and
(iii) the softening of the phonon dispersion at the Brillouin zone boundary towards the
Peierls transition as well as the subsequent hardening in the Peierls phase. As a result,
CV monotonically increases with λ in the temperature interval 0.05 < kBT /t < 0.1 (here
ω0/t = 0.4). This trend continues in the Peierls phase, where CV is only suppressed at
even lower temperatures kBT /t < 0.05. Deep in the Peierls phase, we found that CV is
again well described by the adiabatic approximation.

The calculation of the specific heat for the spinless Holstein model combined all the
algorithmic developments of this thesis. On the one hand, it was the first application
of our directed-loop algorithm for retarded interactions. The efficiency of the method
made it possible to simulate temperatures and system sizes that could not be reached
with the CT-INT method. Therefore, finite-size effects were under control for all our
results. On the other hand, we used generating functionals and the information provided
by the vertex distribution to derive a QMC estimator for CV , a complicated observable
that is a combination of fermionic and bosonic operators. However, spectral functions
have only been calculated from the CT-INT method on much smaller system sizes. As
a future project, we consider the calculation of dynamical correlation functions from
the directed-loop algorithm to reach larger system sizes and lower temperatures. For
example, the electronic single-particle Green’s function can be obtained during the con-
struction of the loop [188, 189], whereas the phonon propagator of the Holstein model
can be accessed from the world-line configurations. For the latter, it would also be in-
teresting to implement the retarded interaction with additional Ising fields from which
we calculated the phonon propagator using the CT-INT method.

In 1D, the directed-loop algorithm for retarded interactions can be applied to the
same class of fermion-boson models as the CT-INT method. Therefore, many previous
studies can be extended to much larger system sizes. We showed that the basic idea
behind our algorithm carries over to various models, for example, a Fröhlich model with a
nonlocal diagonal interaction in space and imaginary time or the optical SSH model with
a retarded interaction between off-diagonal bond operators. Instantaneous interactions
like the Hubbard interaction can also be added. The subvertex structure introduced for
retarded interactions can even be applied to certain nonlocal interactions at equal times.
Furthermore, open quantum systems in equilibrium coupled to a bosonic bath can be
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simulated by replacing the phonon propagator in the retarded interaction [72]. The
directed-loop algorithm is not restricted to fermionic models. If we replace the fermionic
operators by hard-core bosons, the method can be applied to similar bosonic models,
even in higher dimensions. Additionally, the simulation of spin-boson models may have
great potential.

There are some restrictions on the scope of the directed-loop algorithm. Similar to
the CT-INT method, the SSH model with acoustic phonons will generate a sign problem
because the nonlocal phonon propagator has negative contributions [P6]. Moreover, our
method is based on a world-line representation. Therefore, fermion-boson models in
more than one dimension will generate a severe sign problem as well. For the latter case,
the CT-INT method may be an appropriate alternative and has recently been applied to
the 2D Holstein model [P1]. For simulations with the CT-INT method, our developments
on measuring bosonic observables from the vertex distribution are relevant. We have
already applied our estimator for the fidelity susceptibility to the 2D Holstein model [P1].
Future applications may include the phonon propagator. Moreover, our SSE estimator
for the specific heat directly transfers to the CT-INT method and may be used to study
finite-temperature phase transitions in 2D.

Finally, the thermodynamic properties of Peierls chains may be further investigated by
adding an interchain coupling to address the dimensional crossover to three dimensions.
To circumvent the fermionic sign problem, a study of spin-Peierls models is favorable.
This application has the potential to study the experimentally observed low-temperature
peak in CV using exact simulations.
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A. Interaction picture and retardation

In this work, we used the coherent-state path-integral formulation of the partition func-
tion. This is a natural choice for fermion-boson models because the Gaussian integrals
over the bosonic fields can be calculated exactly. This leads to a retarded fermionic ac-
tion that can be simulated with the action-based CT-INT method discussed in Sec. 3.2.2.
Moreover, the concept of generating functionals provides an easy formalism to derive sum
rules for bosonic observables. In this way, the latter can be calculated only from the
knowledge of fermionic correlation functions. However, world-line QMC methods like
the worm algorithm or the directed-loop algorithm are usually based on a Hamiltonian
formulation. We have shown in Sec. 3.2 that these methods can be recovered from
the action-based formulation by mapping expectation values of Grassmann variables to
time-ordered products of operators. In the following, we show how retarded interactions
can be obtained from the interaction picture without referring to the path integral.

In the interaction picture, the Hamiltonian Ĥ = Ĥ0 + V̂ is usually split into the unper-
turbed part Ĥ0 and the perturbation V̂ . The partition function can be written as

Z = Tr [e−βĤ0 Tτ e
−∫ β0 dτ V̂ (τ)

] = Z0 ⟨Tτ e
−∫ β0 dτ V̂ (τ)

⟩
0
, (A.1)

where the time evolution of the perturbation V̂ (τ) = eτĤ0 V̂ e−τĤ0 is performed according
to the unperturbed part of the Hamiltonian. Here, we introduced the time-ordering op-

erator Tτ and we defined ⟨Ô⟩0 = Z
−1 Tr e−βĤ0Ô with Z = Tr e−βĤ0 . The Dyson expansion

of Eq. (A.1) becomes

Z

Z0
=

∞
∑
n=0

(−1)n

n!
∫

β

0
dτ1 ⋯∫

β

0
dτn ⟨Tτ V̂ (τ1) . . . V̂ (τn)⟩0

. (A.2)

The expansion in Eq. (A.2) is the starting point to formulate the worm algorithm as
reviewed in Sec. 3.2.3 [53]. Moreover, also the SSE representation discussed in Sec. 3.2.4
follows from the interaction picture by choosing Ĥ0 = 0 [91].

Consider the generic fermion-boson model (2.1). We choose Ĥ0 = Ĥf+Ĥb and V̂ = Ĥfb.
To simplify the notation in the following, we write V̂ = ∑q,a V

a
q = ∑q,a γ

a
q %̂

a
q b̂
a
q , where

the superscript a is, i.a., used to distinguish between bosonic creation and annihilation
operators, i.e., V 1

q = γq%̂q b̂
†
q and V 2

q = γ̄q%̂
†
q b̂q. The interaction expansion becomes

Z

Z0
=

∞
∑
n=0

(−1)n

n!
∫

β

0
dτ1 . . .∫

β

0
dτn ∑

q1...qn

∑
a1...an

γa1
q1 . . . γ

an
qn (A.3)

×⟨Tτ %̂
a1
q1 (τ1) . . . %̂

an
qn (τn)⟩f

⟨Tτ b̂
a1
q1 (τ1) . . . b̂

an
qn (τn)⟩b

.
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A. Interaction picture and retardation

Here, ⟨. . .⟩0 splits into separate expectation values for fermions and bosons.1 Due to
particle-number conservation, ⟨Tτ b̂

a1
q1 (τ1) . . . b̂

an
qn (τn)⟩b

only gives a nonzero contribution
if n = 2m and the number of creation and annihilation operators is the same. The
bosonic expectation value can be further simplified using Wick’s theorem. For example,
consider the bosonic correlation function with operators ordered as follows:

⟨Tτ b̂
†
q1(τ1) . . . b̂

†
qm(τm) b̂qm+1

(τm+1) . . . b̂q2m(τ2m)⟩
b

(A.4)

= ∑
π∈Sm

m

∏
k=1

ω−1
qk
Pqk(τk − τm+π[k]) δqk,qm+π[k]

.

Here, Sm is the symmetric group of orderm and π ∈ Sm is a permutation ofm objects. We
introduced the free boson propagator Pq and the boson frequency ωq defined in Sec. 2.2.
The l.h.s. of Eq. (A.4) represents only one possible combination of choosing {a1, . . . , an}
such that we obtain the same number of creation and annihilation operators. In total,
there are (

2m
m

) combinations. Inserting Eq. (A.4) into the perturbation expansion (A.3),
we obtain (we define τ ′k = τm+k)

Z

Z0
=

∞
∑
m=0

1

(2m)!
(
2m

m
)∬

β

0
dτ1 dτ

′
1 . . .∬

β

0
dτm dτ

′
m ∑
q1...qm

∣γq1 ∣
2

ωq1
. . .

∣γqm ∣
2

ωqm
∑
π∈Sm

(A.5)

× Pq1(τ1 − τ
′
π[1]) . . . Pqm(τm − τ ′π[m]) ⟨Tτ %̂q1(τ1) %̂

†
q1(τ

′
π[1]) . . . %̂qm(τm) %̂†

qm(τ ′π[m])⟩f
.

The sum over all permutations can be evaluated by relabeling the variables, which gives
another factor of m! in Eq. (A.5). The perturbation expansion finally becomes

Z

Z0
=

∞
∑
m=0

1

m!
∬

β

0
dτ1 dτ

′
1∑
q1

∣γq1 ∣
2

ωq1
Pq1(τ1 − τ

′
1) . . .∬

β

0
dτm dτ

′
m

∣γqm ∣
2

ωqm
Pqm(τm − τ ′m)

× ⟨Tτ %̂q1(τ1) %̂
†
q1(τ

′
1) . . . %̂qm(τm) %̂†

qm(τ ′m)⟩
f

(A.6)

and can be rewritten in an exponential form again, i.e.,

Z

Z0
= ⟨Tτ exp

⎡
⎢
⎢
⎢
⎣
∬

β

0
dτ dτ ′∑

q

∣γq ∣
2

ωq
%̂q(τ)Pq(τ − τ

′
) %̂†

q(τ
′
)
⎤
⎥
⎥
⎥
⎦
⟩

0

. (A.7)

The exponent in Eq. (A.7) has the same form as the retarded interaction (2.12) derived
from the path-integral approach, only the Grassmann fields are replaced by operators.
This derivation shows that one does not need an action-based formulation to obtain
retarded interactions. Sum rules for the bosonic operators can also be derived from the
equations of motion instead of using generating functionals [88].

1Now the imaginary-time evolution of fermionic (bosonic) operators is with respect to Ĥf (Ĥb).
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B. Spectral functions and sum rules

Spectral functions are very important for our understanding of quantum many-particle
systems because they give direct access to the momentum- and frequency-resolved ex-
citations of a system. In the following, we define the spectral functions for the spinless
Holstein model and discuss the problem of numerical analytic continuation. Further-
more, we derive exact relations between the phonon spectral function and the charge
structure factor and discuss the implications for the spectra. Finally, we specify relations
between the total energy and the spectral functions of the Holstein model.

B.1. Spectral functions and analytic continuation

Spectral functions are usually defined from a Lehmann representation and give direct
access to real frequencies ω. For the fermionic single-particle spectrum, we have

A(k,ω) =
1

Z
∑
mn

e−βEm (1 + e−βω) ∣⟨m∣ ĉk ∣n⟩∣
2
δ[ω − (En −Em)] , (B.1)

whereas the bosonic single-particle spectrum is defined as

B(q, ω) =
1

Z
∑
mn

e−βEm (1 − e−βω) ∣⟨m∣ b̂q ∣n⟩∣
2
δ[ω − (En −Em)] . (B.2)

Here, ĉk is the fermionic annihilation operator at momentum k and b̂q is the bosonic
annihilation operator with momentum transfer q. Furthermore, ∣m⟩ is a many-particle
eigenstate of the Hamiltonian and Em the corresponding energy eigenvalue. Note that
the chemical potential is included in the Hamiltonian and therefore also in Em. In the
same way, we define the charge structure factor

Sρ(q, ω) =
1

Z
∑
mn

e−βEm ∣⟨m∣ ρ̂q ∣n⟩∣
2
δ[ω − (En −Em)] , (B.3)

where ρ̂q creates a charge excitation with momentum transfer q.
For fermion-boson models defined in first quantization, it is useful to split B(q, ω) into

its momentum and displacement contributions. For the Holstein model, we have

BQ(q, ω) =
K

Z
∑
mn

e−βEm ∣⟨m∣ Q̂q ∣n⟩∣
2
δ[ω − (En −Em)] , (B.4)

BP (q, ω) =
1

MZ
∑
mn

e−βEm ∣⟨m∣ P̂q ∣n⟩∣
2
δ[ω − (En −Em)] , (B.5)
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B. Spectral functions and sum rules

where Q̂q and P̂q are the bosonic displacement and momentum operators, respectively.
We included the stiffness constant K and the mass M in the spectral functions to be
consistent with the definitions of the phonon propagators in Eqs. (2.27) and (2.28).
In contrast to the definition of B(q, ω), we omitted the factor (1 − e−βω) because it
is problematic for the numerical analytic continuation of imaginary-time correlation
functions. BQ(q, ω) and BP (q, ω) have the same form as Sρ(q, ω) and should therefore be
regarded as structure factors. To include the additional factor in the spectral functions,
we define B̄Q(q, ω) = (1−e−βω)BQ(q, ω) and B̄P (q, ω) = (1−e−βω)BP (q, ω). In the same
way, we define S̄ρ(q, ω) = (1 − e−βω)Sρ(q, ω) for the charge structure factor.

QMC methods do not provide direct access to spectral functions. They only give
access to dynamical correlation functions in imaginary time. However, these correlation
functions are related to spectral functions via sum rules. For example, we have

G(k, τ) = ∫
∞

−∞
dω

e−τω

1 + e−βω
A(k,ω) (B.6)

for the electronic single-particle Green’s function as well as

Cρ(q, τ) = ∫
∞

0
dω [e−τω + e−(β−τ)ω]Sρ(q, ω) (B.7)

for the dynamical charge-charge correlation function. Equivalent relations are obtained
by replacing Cρ(q, τ) in Eq. (B.7) with the phonon propagator DQ(q, τ) [DP (q, τ)] and
Sρ(q, ω) with the phonon spectral function BQ(q, ω) [BP (q, ω)]. Analytic continuation
considers the inversion of these integral equations to obtain the spectral functions A(k,ω)
or Sρ(q, ω) on the real-frequency axis. Mathematically, this problem corresponds to
the numerical calculation of a two-sided Laplace transform, which is known to be ill-
posed [190]. Moreover, the imaginary-time correlation functions obtained from QMC
simulations are only exact within statistical errors. These problems require numerical
regularization schemes for the analytic continuation of QMC data. One approach that
is often used is the maximum entropy method. In its original formulation, it is based on
Bayesian inference (see Ref. [190] for an introduction). To calculate the spectral functions
presented in Sec. 4.2.2 of this thesis, we used stochastic analytic continuation [191,192].
However, we also used the maximum entropy method to fit the total energy and calculate
the specific heat [179]. The latter approach is outlined in App. C.2.

B.2. Exact relations between the phonon and charge spectra

For the Holstein model, the phonon spectral function B(q, ω) and the dynamic charge
structure factor Sρ(q, ω) in principle contain the same information. Here, starting from
the relation (2.27) between the corresponding imaginary-time correlation functions, we
derive an exact relation between the spectral functions as well as additional sum rules,
and discuss the implications. We only consider B̄Q(q, ω), but similar relations can also
be derived for B̄P (q, ω). To simplify the notation, we include the factor (1 − e−βω) in
the spectra. Our presentation is based on Ref. [P5].
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B.2. Exact relations between the phonon and charge spectra

B.2.1. Analytic properties of the spectral functions

The phonon spectral function B̄Q(q, ω) can be obtained from the Lehmann representa-
tion of the phonon propagator

DQ(q, z) = −∫
∞

−∞
dω

B̄Q(q, ω)

z − ω
(B.8)

by analyzing its pole structure in the complex-frequency plane. For simplicity, we restrict
our considerations to finite Hilbert spaces, where D(q, z) has only simple poles on the
real axis1 determined by the exact relation

DQ(q, z) = P+(z) + 4λtP+(z)
2Cρ(q, z) . (B.9)

The term depending on the electron-phonon coupling λ in Eq. (B.9) gives rise to a
product of poles arising from the free phonon propagator P+(z) = ω2

0/(ω
2
0 − z

2) and the
charge susceptibility

Cρ(q, z) = ⟨ρq(z)ρ−q⟩ = −∫
∞

−∞
dω

S̄ρ(q, ω)

z − ω
. (B.10)

A partial-fraction decomposition and comparison of the pole structure of the two sides
of Eq. (B.9) gives

B̄Q(q, ω) = B̄
0
Q(q, ω) + 4λtP+(ω)

2 S̄ρ(q, ω) + B̄
1
Q(q, ω) . (B.11)

For λ = 0, the phonon spectral function is given by

B̄0
Q(q, ω) =

ω0

2
[δ(ω − ω0) − δ(ω + ω0)] , (B.12)

which describes excitations at the bare phonon frequency ω = ±ω0. Any finite electron-
phonon coupling leads to the appearance of two additional terms in Eq. (B.11): The first
contains the whole charge spectrum S̄ρ(q, ω) reweighted by the free phonon propagator,
while

B̄1
Q(q, ω) = −

4λt

ω0
[δ(ω − ω0) − δ(ω + ω0)] P ∫

∞

0
dω′ ω′ P+(ω

′
)

2 S̄ρ(q, ω
′
) (B.13)

gives an additional contribution at ω = ±ω0. Here, P denotes the principal value.

To derive Eq. (B.11), we used a partial-fraction decomposition, leading to poles of both
first and second order. However, poles of second order are forbidden by the Lehmann
representation (B.8). Therefore, their weights have to vanish, which (for ω0 > 0) leads

1We consider finite lattices with an arbitrary cutoff for the phonons. The same results can be obtained
by evaluating B̄Q(q, ω) = Im[DQ(q, ω + iη)]/π for the general case, where DQ(q, z) has a branch cut
on the real axis.
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to the sum rule

P ∫

∞

0
dω

ω

ω2 − ω2
0

S̄ρ(q, ω) = 0 . (B.14)

From Eqs. (B.11) and (B.14), we obtain an equivalent sum rule for B̄Q(q, ω),

∫

∞

0
dω ω (ω2

− ω2
0) B̄Q(q, ω) = 0 , (B.15)

which is just a combination of the first and third moment of B̄Q(q, ω). In the same way,
the absence of higher-order poles requires S̄ρ(q, ω = ±ω0) = 0.

For finite electron-phonon coupling, Eq. (B.9) can also be used to obtain the charge
spectrum

S̄ρ(q, ω) =
1

4λtω4
0

(ω2
− ω2

0)
2
B̄Q(q, ω) (B.16)

from the phonon spectral function. Here, contributions at ω = ±ω0 are removed from
S̄ρ(q, ω) by the prefactor.

B.2.2. Implications for the spectral properties

In the following, we discuss the implications for the structure factors defined without
the factor (1 − e−βω). Hence, we use the original symbols BQ(q, ω) and Sρ(q, ω).

According to Eqs. (B.11) and (B.16), BQ(q, ω) and Sρ(q, ω) share the same spectral
information, up to an additional contribution to BQ(q,±ω0) that consists of the free
phonon spectrum B0

Q(q, ω) and a compensating term B1
Q(q, ω) due to finite interactions.

For q = 0, because of charge conservation, Sρ(q, ω) only has a static contribution at
ω = 0. Thus, B1

Q(q = 0, ω) = 0 and the full phonon spectrum is given by the free part at
ω = ±ω0 and the static contribution to Sρ(q, ω).

For q ≠ 0, any finite electron-phonon coupling seems to shift the phonon dispersion
away from ω = ±ω0, cf. Fig. 4.14. Exact diagonalization data for the spinless Holstein
model [27] suggest that BQ(q,±ω0) vanishes and therefore B0

Q(q, ω) and B1
Q(q, ω) com-

pensate each other.2 In general, for q ≠ 0, both BQ(q, ω) and Sρ(q, ω) contain signatures
of the phonon dispersion as well as the particle-hole continuum, although the spectral
weights may be very different.

The condition BQ(q, ω0) ≥ 0 sets an upper bound to the integral in Eq. (B.13),

P ∫

∞

0
dω

ω

(ω2 − ω2
0)

2
Sρ(q, ω) ≤

1

8λtω2
0

. (B.17)

For the integral to converge, Sρ(q, ω) has to vanish when approaching ω0. Thus, a
nonzero electron-phonon interaction splits the charge spectrum at ω = ω0.

2In general, this need not be the case.
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B.3. Sum rules for the total energy

Further insight into the distribution of spectral weight can be obtained from the
sum rules (B.14) and (B.15). We restrict our discussion to BQ(q, ω), but the same
arguments hold for Sρ(q, ω). For ω > 0, BQ(q, ω) ≥ 0 but the prefactor (ω2 − ω2

0)

changes sign at ω0. This sign change divides the frequency axis into regions ω < ω0

and ω > ω0, whose integrated spectral weights have to compensate each other in the
sum rule.3 Note that spectral weight at ω = 0 and ω = ω0 does not contribute to the
sum rule, therefore the noninteracting phonon dispersion fulfills Eq. (B.15) trivially. By
adiabatically switching on the electron-phonon coupling, the particle-hole continuum
enters BQ(q, ω) and spectral weight has to be redistributed to fulfill Eq. (B.15). For
wave vectors such that the particle-hole continuum only enters one of the two regions,
spectral weight has to appear in the other region. This can be most easily achieved
by shifting the phonon dispersion. Both the hardening of the phonon dispersion for
ω0 ≫ t [27, 185], and the hybridization with the particle-hole continuum as well as the
phonon softening for ω0 ≪ t, are consistent with the sum rule (B.15). Furthermore, in
the Peierls phase, the charge gap (the lowest excitation at q = π) cannot become larger
than ω0, as the central peak does not contribute to the sum rule (B.15).

B.3. Sum rules for the total energy

In this section, we specify sum rules for the total energy of the Holstein model. In a first
step, we show that the total energy can be calculated from the single-particle spectral
functions of electrons and phonons. In a second step, we relate the bosonic parts of the
total energy to the charge structure factor. The latter subsection is based on Ref. [P3].

B.3.1. Relations to the single-particle spectral functions

The total energy of the Holstein model can be calculated exactly from the single-particle
spectra A(k,ω) and B(q, ω). Following Ref. [162], we use the fermionic and bosonic
equations of motion to derive the sum rules

Eel +Eep = ∑
k
∫

∞

−∞
dω ω nF(ω)A(k,ω) , (B.18)

Eph = ω0∑
q
∫

∞

−∞
dω nB(ω)B(q, ω) . (B.19)

Here, nF(ω) and nB(ω) are the Fermi and Bose functions, respectively. The individual
contributions to the total energy can also be split in a different way so that we obtain

Eel +
1

2
Eep = ∑

k
∫

∞

−∞
dω

ω + εk
2

nF(ω)A(k,ω) , (B.20)

Eph +
1

2
Eep = ∑

q
∫

∞

−∞
dω ω nB(ω)B(q, ω) . (B.21)

3However, the integrated weight ∫ dωBQ(q, ω) may be very different for ω < ω0 and ω > ω0.
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B. Spectral functions and sum rules

Here, εk = −2t cosk is the free-electron dispersion. In the adiabatic limit (ω0 = 0), where
the phonons lose their dynamics, Eq. (B.21) simplifies to

Eph +
1

2
Eep = E

0
ph =

Nph

β
, (B.22)

where Nph counts the number of bosonic degrees of freedom. This simplification can be
proven using the sum rules for the bosonic energies in Eqs. (2.30)–(2.32). Together with
Eq. (B.20), we obtain the sum rule (4.15) for the total energy in the adiabatic limit.4

B.3.2. Relations to the charge structure factor

For the Holstein model, the phonon propagators (2.27) and (2.28) as well as the bosonic
energies (2.30)–(2.32) are determined by the time-displaced charge correlation function
Cρ(q, τ − τ

′) = ⟨ρq(τ)ρ−q(τ ′)⟩. Therefore, the entire single-particle dynamics of the
phonons is contained in Sρ(q, ω). In particular, B(q, ω) is directly related to Sρ(q, ω),
as it was shown in the previous section. The energies (2.30)–(2.32) can be calculated
from Sρ(q, ω) via

Ekin
ph =

E0
ph

2
− 2λt∫

∞

0
dωK−−(ω/ω0, βω0)∑

q

Sρ(q, ω) , (B.23)

Epot
ph =

E0
ph

2
+ 2λt∫

∞

0
dωK++(ω/ω0, βω0)∑

q

Sρ(q, ω) , (B.24)

Eep = −4λt∫
∞

0
dωK+(ω/ω0, βω0)∑

q

Sρ(q, ω) , (B.25)

with the kernels (x = ω/ω0, y = βω0, ω0 > 0)

K±±(x, y) =
1

4π (x2 − 1)
{x tanh(xy/2) coth(y/2) ±

xy tanh(xy/2)

2 sinh2(y/2)
(B.26)

∓
2x

(x2 − 1)
[tanh(xy/2) coth(y/2) − x∓1]} ,

and K+ =K++ +K−−, with

K+(x, y) =
x tanh(xy/2) coth(y/2) − 1

2π (x2 − 1)
. (B.27)

The kernels are plotted in Fig. B.1 for different temperatures. At T = 0, K++ and K+
are largest at ω = 0 and decrease monotonically with increasing ω, whereas K−− is zero
at ω = 0 and has a maximum at ω = ω0. Therefore, Epot

ph and Eep mainly capture the

4In Eq. (B.22), both the kinetic and the potential energy of the phonons contribute with E0
ph/2. By

contrast, Eq. (4.15) only contains the contribution of the potential energy, because the trivial kinetic
term was already omitted at the level of the Hamiltonian (cf. Sec. 4.1.1). For the Holstein model, we
have Nph = L.
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Figure B.1.: The kernels K−−, K++, and K+. Solid lines correspond to T = 0 results,
whereas dashed lines correspond to y = βω0 = {10,5,3,2,1} as shown from the top in (a)
and from the bottom in (b)–(c).

charge ordering. By contrast, because K−− filters out the zero-frequency contributions
to Sρ(q, ω), E

kin
ph reveals the softening of the phonons and the opening of the Peierls gap.

The same reasoning applies to the phonon spectral function. If calculated from DQ(q, τ)
[cf. Eq. (2.27)] it is dominated by the central mode in the Peierls phase. This mode is
filtered out when using DP (q, τ) [cf. Eq. (2.28)]. The kernels broaden significantly when
the temperature becomes comparable to ω0 but the qualitative behavior for ω ≪ ω0

remains unchanged.
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C. Calculation of the specific heat from
quantum Monte Carlo simulations

A reliable and precise calculation of the specific heat is a demanding task and strongly
depends on the QMC method used. For QMC methods with an inherent Trotter dis-
cretization like the auxiliary-field QMC method [46], estimators for CV may suffer from
unphysical divergencies at low temperatures [141], but even for exact continuous-time
QMC methods, the calculation of CV remains challenging. There are mainly two ap-
proaches to calculate CV . The first approach is based on a direct evaluation of CV for
any given temperature from the variance of the Hamiltonian,

CV = kBβ
2
[⟨Ĥ2⟩ − ⟨Ĥ⟩

2
] . (C.1)

This estimator is subject to large statistical fluctuations because of a mismatch of length
scales that enter its calculation: while CV itself scales linearly with system size L and
vanishes for T → 0,1 we calculate CV from the difference of two large numbers where
each of them scales as (βL)2 [193]. Particularly strong fluctuations at low temperatures
therefore require very precise simulations. The second approach is based on the relation

CV =
∂E(T )

∂T
(C.2)

and exploits that the total energy E(T ) can be calculated with high accuracy on a dense
temperature grid. E(T ) is then fitted to a functional form that can be differentiated
exactly. However, finding an appropriate fitting ansatz for the entire temperature range
is a difficult task itself and it is not a priori clear that it captures the physical situation.
For a discussion of different fitting procedures and their limitations, see Ref. [179].

For the fermion-boson models studied in this thesis, the calculation of CV is even
more elaborate. Both approaches require a precise estimation of the first or even the
second moment of the Hamiltonian from the sampled probability distribution. While
the classical Monte Carlo method for the adiabatic limit gives direct access to these
estimators (cf. Sec. 4.1.2), the QMC methods of Sec. 3.2 rely on an elimination of the
bosonic fields from the probability distribution. Hence, the corresponding observables
must be recovered from fermionic correlation functions using generating functionals. In
Sec. 3.3 we have shown that the bosonic contributions to the total energy can be easily
obtained from the distribution of vertices. A direct calculation of ⟨H2⟩ is complicated

1This is generally true for systems that obey the third law of thermodynamics. Note that we also
consider the case of classical phonons in this thesis, where CV reaches a constant at low temperatures.
However, this small difference does not change much about the scaling argument.

101



C. Calculation of the specific heat from quantum Monte Carlo simulations

by an increasing number of functional derivatives that must be evaluated to obtain the
corresponding sum rules over fermionic fields. Then, the bosonic contributions to ⟨H2⟩

can be recovered from the distribution of vertices again.

In the following, we derive a direct estimator for the specific heat of the Holstein model
using the SSE representation. Then, we discuss a physically-motivated fitting procedure
proposed by Huscroft et al. [179] that only requires E(T ) as input data and therefore
has a wider range of applicability. Finally, we provide an analysis of finite-size effects of
CV in the adiabatic limit.

C.1. Direct Monte Carlo estimator for the specific heat

We derive a direct estimator for the specific heat of the spinful Holstein model using the
SSE representation, where all contributions to CV are recovered from the distribution of
vertices. We assume the vertices to be defined as in Eqs. (3.48)–(3.50). A similar esti-
mator can also be derived for the CT-INT method, but then the electronic contributions
must be calculated from the single-particle Green’s function using Wick’s theorem.

First moment of the Hamiltonian

For completeness, we review the estimator for the total energy that was already given
in Sec. 3.4.4. The sum rules for the bosonic contributions (2.30)–(2.32) were derived
without using translational invariance, but it is used in the following by rewriting E =

β−1
∫
β

0 dτ ⟨H(τ)⟩. For a configuration Cn, the SSE estimator for the total energy becomes

E(Cn) = Eel(Cn) +Eph(Cn) +Eep(Cn) , (C.3)

where the individual contributions are given by

Eel(Cn) = −
n1

β
, (C.4)

Eph(Cn) = E
0
ph +

n2

∑
k=1

[P̄+(τk − τ
′
k) − P̄−(τk − τ

′
k)] − λtCLN

2
σ , (C.5)

Eep(Cn) = −
2n2

β
+ 2λtCLN2

σ . (C.6)

Translational invariance of all vertices is contained in the averaged propagator

P̄±(τk − τ
′
k) =

1

β
∫

β

0
dτ

P±(τk + τ)P±(τ
′
k + τ)

P+(τk − τ ′k)
. (C.7)

Explicitly, it is given by (τ ∈ [−β,β])

P̄±(τ) =
1

2β
±
ω0

4

β − ∣τ ∣

β
[coth(ω0β/2) −

P−(τ)

P+(τ)
] ±

ω0

4

∣τ ∣

β
[coth(ω0β/2) +

P−(τ)

P+(τ)
] . (C.8)
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C.1. Direct Monte Carlo estimator for the specific heat

Second moment of the Hamiltonian

To calculate the second moment of the Hamiltonian, we write its expectation value in a
translationally invariant form, i.e.,

⟨Ĥ2⟩ =
1

β2 ∬

β

0
dτdτ ′ ⟨H(τ)H(τ ′)⟩ . (C.9)

As before, we split the total Hamiltonian into three contributions that are purely elec-
tronic, purely phononic, or contain the electron-phonon interaction.

The estimator for the purely electronic contribution has the same form as usual [193]
and is given by

1

β2 ∬

β

0
dτdτ ′ ⟪Hel(τ)Hel(τ

′
)⟫

Cn
=
n1 (n1 − 1)

β2
. (C.10)

Also the mixing terms between the electronic part of the Hamiltonian and the remaining
parts have simple estimators that are given by

2

β2 ∬

β

0
dτdτ ′ ⟪Hel(τ)Hph(τ

′
)⟫

Cn
= 2Eel(Cn)Eph(Cn) , (C.11)

2

β2 ∬

β

0
dτdτ ′ ⟪Hel(τ)Hep(τ

′
)⟫

Cn
= 2Eel(Cn)Eep(Cn) . (C.12)

The electronic and the bosonic contributions are recovered from vertices with different
operator types and hence do not interfere in the total estimators.

The derivation of estimators is more complicated for correlation functions, where
each part of the Hamiltonian contains bosonic fields. When we calculate the functional
derivatives to obtain sum rules for the bosonic fields, we have to be aware of additional
cross terms that do not appear for the individual energies. For example, the correlation
function between the electron-phonon parts of the Hamiltonian becomes

⟨Hep(τ)Hep(τ
′
)⟩ = 4λtP+(τ − τ

′
)∑
i

⟨ρi(τ)ρi(τ
′
)⟩ (C.13)

+ (4λt)2
∫

β

0
dτ1 P+(τ − τ1)∫

β

0
dτ2 P+(τ

′
− τ2)∑

ij

⟨ρi(τ)ρi(τ1)ρj(τ
′
)ρj(τ2)⟩ ,

The first term on the r.h.s. is an additional cross term. The corresponding estimator is

1

β2 ∬

β

0
dτdτ ′ ⟪Hep(τ)Hep(τ

′
)⟫

Cn
= Eep(Cn)

2
−

4n2

β2
−
Eep(Cn)

β
. (C.14)

For the remaining terms, we do not specify the correlation functions because they become
too lengthy. We obtain the estimators

2

β2 ∬

β

0
dτdτ ′ ⟪Hep(τ)Hph(τ

′
)⟫

Cn
= 2Eep(Cn)Eph(Cn) +

4λtCLN2
σ

β
(C.15)
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and

1

β2 ∬

β

0
dτdτ ′ ⟪Hph(τ)Hph(τ

′
)⟫

Cn
= Eph(Cn)

2
+LP+(0) [P̄+(0) − P̄−(0)] (C.16)

−
n2

∑
k=1

[P̄+(τk − τ
′
k) − P̄−(τk − τ

′
k)]

2
+
n2

∑
k=1

Z(τk − τ
′
k)

P+(τk − τ ′k)
−

2λtCLN2
σ

β
.

For the latter, we introduced an additional function

Z(τ) =
ω3

0

β2
e(β−τ)ω0 nB(ω0) [τ

2
+ β (β + 2τ)nB(ω0) + 2β2nB(ω0)

2] (C.17)

that is defined for τ ∈ [0, β). To evaluate Z(τ) for τ < 0, we use Z(τ + β) = Z(τ). Here,
nB(ω) = [exp(βω) − 1]−1 is the Bose function.

Estimator for the CT-INT method

Although we derived the above estimator for the interaction vertex in the SSE represen-
tation, it can be easily transferred to the CT-INT method. Because the vertex for the
retarded interaction is very similar in both methods, all estimators that only contain
bosonic parts of the Hamiltonian directly transfer to the CT-INT method. Using the
action as defined in Eq. (3.32), we only have to replace C → 2δ2. Furthermore, the
purely electronic contributions to the first and second moment of the Hamiltonian must
be calculated from the single-particle Green’s function using Wick’s theorem. Finally,
the mixing terms (C.11) and (C.12) have the same form as before, only the electronic
contribution has to be estimated from the Green’s function again.

C.2. Maximum entropy approach to the specific heat

To obtain the specific heat only from E(T ), Huscroft et al. [179] proposed a method
that is superior to direct numerical differentiation, yields smooth curves, and gives error
bars. It is based on the ansatz

E(T ) = ∫

∞

−∞
dω ω [nF(ω,T )ρF(ω) + nB(ω,T )ρB(ω)] , (C.18)

corresponding to a spectral decomposition of the energy into fermionic (F) and bosonic
(B) contributions. The temperature dependence of E(T ) is assumed to arise only
from the Fermi and Bose functions nF(ω,T ) and nB(ω,T ), respectively. Considering
Eq. (C.18) as an inverse problem of the form

E(T ) = ∫

∞

−∞
dωK(ω,T )ρ(ω) , (C.19)

the maximum-entropy method [190] can be used to obtain the most likely solution for
ρ(ω) that is compatible with the data E(T ) (within error bars) and contains the least
information, i.e., only features supported by the data. In practice, ρ(ω) consists of
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the fermionic and bosonic contributions ρF(ω) and ρB(ω) and the kernel K(ω,T ) is
defined from a comparison to Eq. (C.18). The specific heat then follows from CV (T ) =

∫
∞
−∞ dω ∂TK(ω,T )ρ(ω) and is explicitly given by

CV (T ) = kB∫

∞

−∞
dω (

βω

2
)

2

[
ρF(ω)

cosh2(βω/2)
+

ρB(ω)

sinh2(βω/2)
] . (C.20)

To invert Eq. (C.18), Huscroft et al. [179] assumed ρF(ω) ≥ 0 and sgn(ω)ρB(ω) ≥ 0. This
choice may lead to fits that violate CV ≥ 0. The positivity of CV can be imposed by
choosing ρB(ω) ≥ 0, which is only possible for Hamiltonians with bosonic contributions,
e.g., the Holstein model. From our experience it is better not to impose CV ≥ 0, because
then the fitting procedure is less restrictive. In practice, we did not encounter any prob-
lems where CV becomes negative. Although the ansatz (C.18) is well motivated by the
sum rules given in App. B.3.1, it neglects the temperature dependence of the spectral
functions. In the end, the maximum entropy approach makes use of a noninteracting sys-
tem to fit the temperature-dependent energy E(T ) of an interacting system. Especially
at finite-temperature phase transitions or at low temperatures this fitting procedure may
have problems. In Sec. 4.2, we mainly use the maximum entropy fits as a guide to the
eye for the exact CV data. For our simulations, the maximum entropy fits match the
exact CV data very well because the QMC estimates for E(T ) are very precise. Note
that it is also possible to obtain error bars from the maximum entropy approach because
CV (T ) is an integrated quantity of the spectral function ρ(ω) [190].

C.3. Finite-size analysis in the adiabatic limit

In Sec. 4.1.3 we discussed the low-temperature behavior of CV , and observed the ap-
pearance of a peak related to the ordering of the lattice. A reliable analysis also requires
a study of finite-size effects. Therefore, we present in Fig. C.1 CV as a function of tem-
perature for different system sizes ranging from L = 22 to L = 162, and for two values of
the electron-phonon coupling. Our discussion is based on Ref. [P4].

Figure C.1(a) shows data for the spinless Holstein model with λ = 0.5. For tempera-
tures kBT /t > 0.1, CV has already converged at the smallest L considered, whereas for
lower temperatures a clear dependence on the lattice size is visible. Between L = 22 and
L = 82, both the position of the low-temperature peak and its height change substan-
tially. The upturn to its maximum is only converged for the two largest lattice sizes. At
λ = 1 [Fig. C.1(b)], the peak appears at higher temperatures and its upturn is already
converged for L = 22. While the height of the maximum has converged for L = 82, the
subsequent downturn to the lowest temperatures measured still changes from L = 82 to
L = 162. Note that error bars are large in this temperature regime and adjacent data
points are not independent due to the use of parallel tempering.

For the spinless SSH model, finite-size effects on CV are also visible at high tempera-
tures [Fig. C.1(c) and C.1(d)]. However, these effects are simply related to the fact that
only L − 1 phonon modes contribute to CV because the length of the chain is fixed and
the k = 0 mode drops out of the Hamiltonian. The finite-size effects at low temperatures

105



C. Calculation of the specific heat from quantum Monte Carlo simulations

0.5

0.6

0.7

0.01 0.1 1 10
0.4

0.6

0.8

1.0

1.2

0.01 0.1 1 10

0.4

0.5

0.6

0.7

0.8

0.01 0.1 1 10
0.4

0.6

0.8

1.0

0.01 0.1 1 10

C
V
[L
k
B
]

kBT/t

L = 22
L = 42
L = 82
L = 162

0.5

0.6

0.7

0.01 0.1 1 10

(a) Holstein model, λ = 0.5

C
V
[L
k
B
]

kBT/t

L = 22
L = 42
L = 82
L = 162

0.4

0.6

0.8

1.0

1.2

0.01 0.1 1 10

(b) Holstein model, λ = 1.0

C
V
[L
k
B
]

kBT/t

L = 22
L = 42
L = 82
L = 162

0.4

0.5

0.6

0.7

0.8

0.01 0.1 1 10

(c) SSH model, λ = 0.75

C
V
[L
k
B
]

kBT/t

L = 22
L = 42
L = 82
L = 162

0.4

0.6

0.8

1.0

0.01 0.1 1 10

(d) SSH model, λ = 1.5

Figure C.1.: Specific heat of the spinless Holstein model [(a), (b)] and the spinless SSH
model [(c), (d)] for different system sizes L and in the adiabatic limit. Data were obtained
using the classical Monte Carlo method described in Sec. 4.1.2.

are slightly larger than for the Holstein model. For λ = 0.75 [Fig. C.1(c)], the peak
position and height still change up to L = 162. Compared to the finite-size convergence
in the Holstein model at λ = 0.5 [Fig. C.1(a)], we believe that the upturn at L = 162 is
converged. For λ = 1.5 [Fig. C.1(d)] it is indeed converged, but the subsequent downturn
again shows finite-size effects.

The above analysis suggests that except for the downturn at the lowest temperatures
considered, the CV data shown in Fig. 4.2 have converged with respect to L. The finite-
size effects on CV may also be consulted in order to estimate finite-size effects on the
spectral functions.
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[81] L. Wang, Y.-H. Liu, J. Imrǐska, P. N. Ma, and M. Troyer: Fidelity Susceptibility
Made Simple: A Unified Quantum Monte Carlo Approach. Phys. Rev. X 5, 031007
(2015).

[82] A. W. Sandvik and J. Kurkijärvi: Quantum Monte Carlo simulation method for
spin systems. Phys. Rev. B 43, 5950 (1991).
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[131] X. Liu, J. Wosnitza, H. von Löhneysen, and R. K. Kremer: Specific Heat Analysis
of the Spin-Peierls Transition in CuGe O3. Phys. Rev. Lett. 75, 771 (1995).

[132] D. K. Powell, J. W. Brill, Z. Zeng, and M. Greenblatt: Specific heat of α
′

−NaV2O5

at its spin-Peierls transition. Phys. Rev. B 58, R2937 (1998).

[133] R. S. Kwok, G. Gruner, and S. E. Brown: Fluctuations and thermodynamics of
the charge-density-wave phase transition. Phys. Rev. Lett. 65, 365 (1990).

[134] W. Dieterich: Ginzburg-Landau theory of phase transitions in pseudo-one-
dimensional systems. Adv. Phys. 25, 615 (1976).

115



Bibliography

[135] D. Schmeltzer, R. Zeyher, and W. Hanke: Effect of quantum fluctuations on one-
dimensional electron-phonon systems: The Su-Schrieffer-Heeger model. Phys. Rev.
B 33, 5141 (1986).

[136] M. Nakahara and K. Maki: Quantum corrections to solitons in polyacetylene. Phys.
Rev. B 25, 7789 (1982).

[137] M. Braden, G. Wilkendorf, J. Lorenzana, M. Aı̈n, G. J. McIntyre, M. Behruzi,
G. Heger, G. Dhalenne, and A. Revcolevschi: Structural analysis of CuGeO3:
Relation between nuclear structure and magnetic interaction. Phys. Rev. B 54,
1105 (1996).

[138] N. W. Ashcroft and N. D. Mermin: Solid State Physics. Saunders College Pub-
lishing, Philadelphia (1976).
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Centre.

123


	Introduction
	Fermion-boson models and retarded interactions
	Fermion-boson models
	Holstein model
	Su-Schrieffer-Heeger model

	Path-integral formalism and retarded interactions
	Effective fermionic action for the bosons
	Correlation functions and generating functionals
	Bosonic observables for the Holstein model


	Action-based quantum Monte Carlo approach to retarded interactions
	Monte Carlo basics
	From the partition function to Monte Carlo sampling
	Markov chains and the Metropolis-Hastings algorithm
	Autocorrelation times

	Quantum Monte Carlo methods for retarded interactions
	Unified picture based on the perturbation expansion
	Diagrammatic determinantal representation
	World-line representation and worm algorithm
	Stochastic series expansion representation

	Bosonic observables from the distribution of vertices
	Estimators from the distribution of vertices
	Bosonic estimators for the Holstein model
	Performance of the vertex measurements

	Directed-loop algorithm for retarded interactions
	Configuration space and vertex weights
	Diagonal updates
	Directed-loop updates
	Observables
	Application to the Peierls transition in the Holstein model
	Possible extensions to other models


	Thermodynamic and spectral properties of Peierls chains
	Adiabatic Peierls chains
	Electron-phonon models and the Peierls instability
	Classical Monte Carlo method
	Thermodynamics
	Spectral properties of the Holstein model
	Spectral properties of the Su-Schrieffer-Heeger model
	Relation to disorder problems

	Quantum Peierls chains
	Crossover from the adiabatic to the antiadiabatic regime
	Spectral functions in the adiabatic regime
	Specific heat in the adiabatic regime
	Specific heat in the antiadiabatic regime


	Conclusions and outlook
	Interaction picture and retardation
	Spectral functions and sum rules
	Spectral functions and analytic continuation
	Exact relations between the phonon and charge spectra
	Analytic properties of the spectral functions
	Implications for the spectral properties

	Sum rules for the total energy
	Relations to the single-particle spectral functions
	Relations to the charge structure factor


	Calculation of the specific heat from quantum Monte Carlo simulations
	Direct Monte Carlo estimator for the specific heat
	Maximum entropy approach to the specific heat
	Finite-size analysis in the adiabatic limit

	Bibliography
	Publications
	Acknowledgments

