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Introduction

Lung cancer is a wide-spread cancer disease with high mor-
tality claiming 1.59 million deaths, that is, 19.4% of total 
cancer-related deaths annually.1,2 It is divided into two 
major types: non-small-cell lung cancer (NSCLC) and 
small-cell lung cancer (SCLC). NSCLC represents 85% of 
the clinically diagnosed lung cancer, in which adenocarci-
noma (AC) and squamous cell carcinoma (SQ) are the 
major histologic sub-categories.2–5 Diagnosis is currently 
based on imaging methods, for example, computer tomog-
raphy (CT)- or PET-CT scan, supplemented by biopsy and 
bronchoscopy. Molecular biomarkers include the epider-
mal growth factor receptor (EGFR) and ALK-EML4 which 
both became part of clinical guidelines for targeted therapy 
applications.6 However, other diagnostic tools such as cell-
cycle regulators are not validated by randomized trials, and 
due to a lack of blood tests, they are presently not useful for 
clinical primary diagnosis.7,8

MicroRNAs (miRNAs) have emerged as promising 
diagnostic and therapeutic tools due to their association 
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with tumorigenesis, survival, and prognosis. They are 
highly conserved small non-coding RNAs (~22 nucleo-
tides; nt) regulating genes associated with several biologi-
cal functions and signaling pathways implying lung cancer 
pathogenesis and treatment resistance.9,10 Interestingly, 
miRNAs show altered expression profiles in lung cancer. 
For instance, miRNA-21 and miRNA-34 display different 
expressions between NSCLC and SCLC,11 whereas 
miRNA-205 and miRNA-375 are differentially expressed 
in AC and SQ.5,12–15 Many studies highlight the diagnostic 
and therapeutic potential of miRNAs with the EGFR-
regulated miRNA-21 and p53-regulated miRNA-34 as 
most promising candidates for a better clinical manage-
ment of lung cancer.5,7,8,16–18 An important role of selected 
miRNAs in lung cancer is derived from observations that 
low miRNA-21 levels suggest to be predictive for benefi-
cial adjuvant chemotherapy after lung tumor resection,19 
and induction of miRNA-34 shows a preventive role in 
cancer initiation, as well as slows down progression in ther-
apeutically resistant KRAS/p53 mutant lung AC tumors.20

Notably, miRNA levels allow fast and systemic regula-
tion of cell growth in culture as the imperfect seed region 
pairing of miRNAs regulates several targets and pathways. 
Even though delivery of miRNAs to cell culture is simple, 
this remains challenging in intact animal or human patient. 
Thus, targeting the tightly connected proteins modulated by 
these miRNAs is a powerful alternative. Moreover, miRNA 
expression profiles might be helpful as molecular biomark-
ers for early identification and categorization of NSCLC, 
especially for the detection of cancer disease in early 
stages.7,21–23 Late diagnosis is one of the main reasons why 
survival stayed low over decades in this tumor entity 

(5-year survival: stage I = 60%–70%, stage II = only 
33%).2,24 Further clinical studies underline miRNAs’ value 
as attractive diagnostic and therapeutic markers.20,25–27

In this review, starting from the observation that miRNA-
21 acts as an oncogenic (oncomiR) and miRNA-34 as an 
onco-suppressor miRNA with an intimate connection to key 
cancer pathways, we elucidate miRNA interaction networks 
involved in this antagonism. In addition, we present how 
experimental and bioinformatic approaches can help in 
understanding the function of miRNAs in lung cancer and 
embed this analysis in general considerations. Subsequently, 
we discuss the high potential of both miRNAs as diagnostic 
markers and resulting new potential therapeutic targets as 
well as implied treatment strategies for lung cancer.

Biogenesis and miRNA biology

miRNAs are expressed by an RNA polymerase II as pri-
mary transcript (pri-miRNA; see Figure 1).10,28,29 The 
nuclease enzyme Drosha (RNase III) and the cofactor 
DiGeorge syndrome critical region gene-8 (DGCR8) build 
then the ~70-nt-long stem-loop precursor-miRNA (pre-
miRNA).10,28,29 Exportin-5 (XPO5) transports it to cyto-
plasm where ribonuclease enzyme Dicer and RNA binding 
partner HIV-1 trans-activating responsive element  
(TRBP) process it to the mature miRNA (guide strand, 
miRNA)28–31 which is bound to Argonaute protein AGO2 
to degrade mRNA in the RISC complex.10,28,31 Passenger 
miRNA (miRNA*) is removed or tissue-specific replaces 
miRNA in RISC when more stable with AGO2.28,31,32 The 
miRNA seed region (~8 nt) binds mRNA 3′-untranslated 
region perfectly for translational inhibition or imperfectly 

Figure 1. miRNA biogenesis. A long miRNA transcript is processed in the nucleus by RNA-Polymerase II (RNA-Pol II; not shown) 
as a primary-miRNA transcript (pri-miRNA; left one in nucleus). The pri-miRNA is cleaved by the RNase III enzyme Drosha (red 
circle) and its cofactor DGCR8 (green circle) into the ~70 nt long precursor-miRNA (pre-miRNA; right one in nucleus) which is 
further transported into the cytoplasm by the export protein Exportin-5 (blue square). There, the enzyme Dicer (black circle) and 
its RNA binding partner TRBP (black circle) cleave the pre-miRNA into the ~22 nt mature miRNA duplex which integrates into 
the multi-protein complex RISC to post-transcriptionally regulate gene expression (right one in cytoplasm; single guide strand, 
passenger strand is removed; here not shown).
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for down-regulation of multiple mRNAs10,26,28,31 in differ-
entiation and cancer-related signaling pathways.10,28,29,33 
5′-UTR binding affects protein synthesis or post-transcrip-
tional silencing in the nucleus.5,10,28,31 Lin28 can inhibit 
processing of tumor-suppressor pri-miRNA lethal-7 (pri-
let-7 miRNA).5,28,34

Lung cancer: key genes and  
signaling pathways

Lung cancer is often characterized by alterations of key 
genes such as EGFR and p53 and downstream signaling 
pathways associated with tumor growth, differentiation, 
and survival.2,4,24,35 These pathways are intimately associ-
ated with miRNAs.

EGFR is a receptor tyrosine kinase (RTK) overex-
pressed in 15%– 30% of NSCLC patients activating sign-
aling pathways such as RAS/RAF/MEK/ERK and PI3K/
AKT. This leads to tumor initiation, metastasis, angiogen-
esis and cell survival, reduced patient survival rate, and 
tumor resistance to chemotherapy.2,35–37 The EGFR protein 
is already investigated as a therapeutic target in lung  
cancer.38,39 For this, tyrosine kinase inhibitors (TKIs) such 
as gefitinib (Iressa®), erlotinib (Tarceva®), or afatinib 
(Giotrif®) are used in clinic. These are standard therapies 
in patients with EGFR mutations and used for additional 
treatment or after failure of the initial treatment in patients 
developing resistance to other chemotherapeutics.40–43 
However, after some time of TKI treatment, resistance 
occurs. For instance, the EGFR T790M mutation or c-MET 
gene amplification are important mechanisms for primary 
and acquired resistance to EGFR-TKI treatment in lung 
cancer.44–46 Moreover, co-mutations in KRAS and HER2 
(ERBB2) are reported.25,40,47,48 Notably, EGFR and also 
c-MET are known to regulate miRNA expression to influ-
ence metastasis and gefitinib resistance of NSCLC.44,49

The tumor-suppressor p53 is found to be deregulated in 
50%–70% of NSCLC patients and correlate with reduced 
apoptosis and higher cancer survival rate.2,24,35,50 Over 

50% of lung cancers show mutation in the p53 gene on 
chromosome 17p13.1, however, p53 mutations are obtained 
more commonly in smokers than in never smokers.4,51,52 
p53 mediates a complex signaling network and regulates 
several downstream genes such as p21, BAX, and PTEN 
which influence cell division, cell death, and genomic 
integrity.2,24,35,50,53 p53 also mediates miRNAs to regulate 
the downstream p53 pathway.53,54 Most prominently, p53 
functions in a feedback loop with miRNA-34 and regulates 
c-MET which promotes tumorigenesis.53,55,56 Targeting the 
p53 tumor-suppressor pathway is an interesting strategy 
for lung cancer treatment. For instance, treatment with 
small molecules such as PRIMA-1MET (p53 reactiva-
tor)57 and heat shock protein 90 inhibitor Ganetespib 
(depletion of mutant p53)58,59 but also an adenovirus gene 
therapy (Ad-p53) combined with chemotherapeutic drug 
cisplatin60 or radiotherapy61 are under clinical trials.62,63

For additional information including clinical implica-
tions about other genes which are deregulated in lung can-
cer, for example, KRAS, HER2 (ERBB2), and c-MET, see 
the studies of Herbst et al.,2 Sun et al.,4 Minna et al.,24 
Sekido et al.,35 and Fong et al.50

Key miRNAs in lung cancer form a 
network around EGFR and p53

MiRNA signatures associated with the above-described 
pathways become apparent from high-throughput experi-
ments.64–66 Several miRNA signatures correlated with 
patient relapse and shortened survival in NSCLC.22,23 As 
several miRNAs are correlated to lung cancer, we high-
light in the following section a clinical network of 
selected key miRNAs based on their link to EGFR and 
p53 signaling. We review their importance in literature, 
focusing on the well-studied miRNA-21 and miRNA-34 
and their connected miRNAs and signaling pathways as 
promising targets in NSCLC (see Table 1 and Figure 2). 
In the following, we only report few targets for the con-
nected miRNAs, additional targets and references are 
listed in Table 1.

Table 1. Key deregulated miRNAs associated with miRNA-21 and miRNA-34 and their important targets in lung cancer. miRNA-21 
and miRNA-34 are connected to EGFR- and p53-signaling and are associated with several cancer-deregulated miRNAs, thus forming a 
miRNA network (see Figure 2). The table lists the miRNAs, its altered expression in lung cancer (tumor) with important targets and 
references.

MiRNA Tumor Targets References

MiRNA-21 Up PDCD4, PTEN, Spry1, SMAD7 [29, 30, 56, 67–71]
MiRNA-155 Up TCF4, APAF-1 [23, 72–77]
MiRNA-221/222 Up p27 (Kip1), PTEN, CDKN1C, TIMP3, APAF-1 [27, 78–80]
MiRNA-130a Down c-MET [78, 81, 82]
MiRNA-27a Down c-MET, EGFR, Sprouty2 [44, 49, 56, 83]
MiRNA-143 Down HK2, CD44v3 [84–86]
MiRNA-145 Down c-Myc, CDK4, EGFR, NUDT1, OCT4, MUC1 [78, 87–90]
Let-7 Down KRAS, c-Myc, HMGA2 [67, 91–94]
MiRNA-34/449 Down c-Myc, c-MET, E2F, Sirt1, RB, AXL, SNAIL1, CDC25A, HDAC1, HMGA2, 

SERPINE1
[20, 29, 67, 78, 95–103]
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Role of the oncomiR miRNA-21 as  
EGFR-regulated miRNA in lung cancer

The miRNA-21 is induced by EGFR and regulates the 
downstream EGFR signaling pathway, thus it can function 
as an indicator of cellular growth, tumor transformation, 
and progression.19 It is overexpressed in lung cancer and 
known to be associated with cell-cycle and cancer progres-
sion, advanced tumor stage, poor survival rates, and chem-
otherapy sensitivity in NSCLC.78,104–106 MiRNA-21 targets 
several genes among which Programmed Cell Death 4 
(PDCD4) and PTEN indicate a pivotal role in regulating 
RAS/MEK/ERK and RAS/PI3K/AKT signaling path-
ways.29,56,67,68 PTEN is a negative regulator of PI3K/AKT-
signaling, playing a role in cell migration, cell-cycle 
progression, and survival, whereas PDCD4 activates p21 
which regulates apoptosis by inhibition of CDK.69,70,107 
Studies have shown that inhibition of miRNA-21 expres-
sion through Foxo3a can induce apoptosis in NSCLC,108 
whereas post-transcriptional activation of miRNA-21 by 
collagen type I (Col-1) is associated with loss of polarity in 
epithelial cells and progression of tumors.109

Notably, miRNA-21 shows co-expression with additional 
miRNAs such as the cancer pathway promoting miRNA- 
155 and miRNA-221/222 and the tumor-suppressor  

miRNA-143/145.110–112 Similarly, studies reported that 
miRNA-221/222 are co-expressed with miRNA-21 and 
miRNA-155 in resected stage I NSCLC patient tissues, 
highlighting a potential predictive role of these miRNAs in 
NSCLC.113 Moreover, both miRNA-155 and miRNA-21 
are up-regulated in a therapeutically resistant KRAS/p53 
lung cancer mouse which were deficient in p53-regulated 
miRNAs such as miRNA-34.20

The miRNA-221/222 are both overexpressed in NSCLC 
and activated by a c-MET-dependent c-Jun stimulation, as 
well as EGFR.27,56,78,79 They inhibit p27, CDKN1C, PTEN, 
and APAF-1 and are thus linked to lung tumorigenesis, 
invasion, and apoptosis.27,78–80 The miRNA-155 is overex-
pressed in lung cancer and regulates cell division, immu-
nity, and angiogenesis.23,72–74 As it was shown that the 
miRNA-155 is up-regulated in EGFR/KRAS-negative 
cells and associated with bad prognosis, new therapeutic 
strategies focus on this miRNA.75,114–116 For example, inhi-
bition of miRNA-155 leads to reduction in tumor growth 
in EGFR mutant NSCLC tumors and enhances the sensi-
tivity to cisplatin treatment as it regulates apoptotic pepti-
dase activating factor 1 (APAF-1).76

Down-regulation of several other key miRNAs influ-
ences lung cancer progression and are connected to our 
miRNA-21 expression network. For instance, miRNA-130a  

Figure 2. Connection of oncomiRs (red) and tumor-suppressor (blue) miRNAs to EGFR and p53 in lung cancer. Simplified 
network topology of key miRNAs (overexpressed in red, down-regulated in cyan) and their targets (in light green) implicated in 
lung cancer (see Table 1). Important EGFR- and p53-signaling pathways in lung cancer are represented as violet hexagons (e.g. 
Raf/MEK/ERK and p53), downstream nodes connecting miRNA targets as yellow rectangles (e.g. ERK/MAPK). Arrows represent 
activation, blunted arrows inhibition. miRNAs deregulation is associated with characteristic tumorigenic functions and lung cancer 
pathogenesis (black box, e.g. proliferation and angiogenesis).
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is weakly expressed in NSCLC cells, implying treatment 
resistance and cell migration.81,82 MiRNA-130a modulates 
miRNA-221/222 expression78,82 and is inversely corre-
lated with c-MET: it is overexpressed in gefitinib-sensitive 
NSCLC cells, while down-regulated in gefitinib-resistant 
NSCLC cells.81 Moreover, it was also demonstrated that 
miRNA-130a reverses gefitinib resistance in NSCLC cells 
through direct targeting of c-MET.81

Similarly, the onco-suppressor miRNA-27a is linked to 
EGFR and c-MET through direct and indirect targeting of 
c-MET, EGFR, and Sprouty2. Thus, the lack of miRNA-
27a results in uncontrolled proliferation and tumor progres-
sion.44,49,56,83 Moreover, miRNA-27a is associated with 
early NSCLC stages,7,56 whereas Wang et al.44 identified that 
miRNA-21 and miRNA-27a (and miRNA-218) are associated 
with primary resistance to EGFR-TKI in NSCLC patients.

The miRNA-143/145 is down-regulated in lung cancer 
which triggers cell growth and carcinogenesis.110,117–119 
MiRNA-145 directly targets EGFR, c-Myc, and OCT4 to 
regulate cell proliferation and cell-cycle arrest,78,87–89 
whereas inhibition of metastasis and invasion results from 
targeting MUC1.90 However, the miRNA-143 inhibits 
migration and invasion in NSCLC through targeting the 
lung stem cell marker CD44v384,85 and Hexokinase 2 
(HK2).86 However, compared to miRNA-145, less is known 
about the role of miRNA-143 in lung tumorigenesis.78

Onco-suppressor miRNA-34 is a non-EGFR-
regulated miRNA connected to other miRNAs

Beside EGFR, p53 is frequently mutated in lung cancer. 
The miRNA-34 family (miRNA-34a, -34b, and -34c) 
functions as a tumor suppressor showing a reduced expres-
sion with poor prognosis in NSCLC patients.20,29 MiRNA-
34 family members are important downstream targets of 
p53 signaling, and p53 binding sites are also present in the 
miRNA-34 promoter.95,96,120 MiRNA-34 targets c-Myc 
and E2F, and also inhibits c-MET activation and  
invasion.29,67,97,98 There is an inverse tumorigenesis effect 
and induction of apoptosis, as well as cell-cycle arrest, 
through restoration of miRNA-34 expression in lung  
cancer cells.20,120,121 Moreover, several studies report that 
expression of miRNA-34 stops the cell cycle and also 
reverses in lung cancer the epithelial to mesenchymal transi-
tion (EMT) through targeting RB, AXL, and SNAIL1.99–101

Interestingly, the miRNA-449 family (miRNA-449a, 
-449b, and -449c) possesses the same seed region as the 
miRNA-34 family and regulates the same targets, but are 
less well investigated.29,78 Both miRNA-34 and miRNA-
449 feedback on p53 and E2F transcription factors.102 To 
close the feedback loop, miRNA-34 is activated by p53, 
while miRNA-449 is activated by E2F. Similar to miRNA-
34, miRNA-449 directly inhibits E2F and up-regulates p53 
by targeting deacetylase gene Sirt1.78,102 In addition, other 
known targets of both miRNAs include CDC25A, HDAC1, 

HMGA2, and SERPINE1, thus regulating cell-cycle arrest, 
apoptosis, and migration/invasion.78,103

Furthermore, miRNA-34 shows association with the 
miRNA let-7. This tumor-suppressor miRNA family regu-
lates cell proliferation and tumor development, in which 
low expression levels are associated with poor survival 
rate in lung tumors.67,91,122 Let-7 targets KRAS, c-Myc, 
and HMGA2 signaling.67,91–93 Studies already focus on 
therapeutic modulation: ectopic expression of let-7 induces 
cell death in lung cancer,122,123 whereas combined treat-
ment of miRNA-34 and let-7 inhibits tumor growth in 
aggressive KRAS/p53 mutant NSCLC mouse models and 
cells.94 In addition, let-7b and miRNA-34a also enhance 
the anti-proliferative effect of erlotinib, highlighting that 
both miRNAs influence tumor signaling pathways which 
are not suppressed by EGFR, indicating an effective thera-
peutic strategy to overcome EGFR-TKI resistance in lung 
cancer.25

MiRNA target identification

How can the above networks involving miRNA-21 and 
miRNA-34 be identified? We will review in the following 
section the experimental and bioinformatic methods for 
miRNA target identification. Our current understanding of 
miRNAs relies on a combination of extensive experimental 
methods (details in Hausser and Zavolan124 and Thomas 
et al.125) and theoretical approaches (details in Kunz et al.5,10).

Experimental miRNA target identification

Initially, expression profiling of mRNAs after overexpres-
sion or knockdown of miRNAs was the method of choice. 
Following miRNA transfection, several techniques exist 
for measuring effects ranging from transcriptome analysis 
to proteomic-based approaches. Changes in the mRNA 
expression profile can be examined either by gene expres-
sion microarrays or RNA sequencing.126 Concurrently, 
effects of miRNAs on protein expression can be detected 
using stable isotope labeling with amino acids in cell cul-
ture (SILAC)127 which is a spectrometry-based method. 
Protein and mRNA expression analysis methods cannot 
distinguish direct and indirect miRNA targets. Direct 
miRNA targets are detected by biochemical isolation of 
the miRISC and the associated mRNAs by immunopre-
cipitation of the native RISC complex or components such 
as AGO proteins with microarrays or RNA sequencing.128 
To identify individual target sites down to single nucleo-
tide resolutions, there exists the method of crosslinking 
and immunoprecipitation (CLIP). CLIP uses ultraviolet 
(UV) light to crosslink nucleic acids to miRISC compo-
nents. The complex is immunoprecipitated, unbound RNA 
is digested, so that only the miRISC-protected RNA frag-
ments are preserved and the AGO-associated miRNA rec-
ognition elements are identified using high-throughput 
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sequencing. The efficiency of miRNA target capture is fur-
ther increased in photoactivatable ribonucleoside-
enhanced CLIP (PAR-CLIP),129 whereby photoreactive 
4-thiouridine is incorporated into RNAs before the 
crosslinking is achieved by 365-nm UV-A light. In HITS-
CLIP,130 254-nm UV-C light is used for crosslinking. 
Disadvantages of CLIP-based methods as discussed by 
Hausser and Zavolan124 include the fact that low- 
abundance targets may not be captured and it is not clear 
that miRNA–target interaction is relevant for the pheno-
type. Furthermore, the procedure requires highly specific 
antibodies for the precipitation.

Bioinformatics and prediction algorithms

General databases such as RFAM (RNA family database) 
collect miRNAs including sequence and structure align-
ments among species, as well as seed region information, 
whereas the Gene Expression Omnibus (GEO) database 
consists of experimental datasets and specific regulatory 
effects. As miRNAs target mRNAs with their short about 
8-nt conserved seed region, potential base pairing between 
a miRNA and a mRNA motif can be predicted applying 
bioinformatics. Computational miRNA target prediction is 
extensively reviewed in previous studies.5,10,28,131,132

Prediction algorithms combine miRNA seed region 
similarity, sequence conservation with structure, folding 
energy, and target site accessibility.10,28,131,133 The popular 
TargetScan is based on a thermodynamically RNA duplex 
interaction modeling with comparative seed region  
analysis.134 miRanda,135 PicTar,136 and DIANA-microT137 
algorithms include seed region mismatches and free-fold-
ing energy. The PITA algorithm even includes structural 
target site accessibility for seed matching.138

Drawbacks and limitations are the high false-positive 
prediction rate and low mRNA target overlap, as algo-
rithms use different parameters, for example, seed match-
ing and free energy.10 Most algorithms are not based on 
experimental data or, furthermore, miRNAs often show 
tissue-specific expression.131,133,139,140 However, they are 
quite helpful for pre-selection of targets for experimental 
validation. It was shown that prediction algorithms based 
on stringent seed region matching show the highest sensi-
tivity and specificity compared to experimentally vali-
dated miRNA targets.10,28,131,139 TargetScan (perfect 
complementarity) and PicTar have the highest sensitivity 
and overlap of predicted and experimentally validated tar-
gets, whereas the DIANA-microT algorithm shows low 
sensitivity. miRanda algorithm shows similar sensitivity to 
TargetScan and PicTar but has much higher number of 
total target predictions.131 Thus, miRanda, TargetScan, and 
PicTar algorithms were all combined for the three miR-
NAs, miRNA-34b/34c/449, to reveal a diagnostic signa-
ture of 17 target genes that shows a high sensitivity for 
predicting lung cancer and distinguishing between NSCLC 

subtypes AC and SQ from microarray data sets.141 
Similarly, analysis using these algorithms identified con-
served binding sites among different species for the 
miRNA-21 and the tumor-suppressor PDCD4 in colorectal 
and breast cancer cells,142,143 as well as NUAK family 
kinase 1 (known oncogene in NSCLC) as new target of 
miRNA-96 in pancreatic cancer.144 This was further vali-
dated by experiments. Moreover, computational prediction 
analysis using the TargetScan algorithm found that 
miRNA-21 targets SMAD7 which was experimentally 
validated in NSCLC.71

Thus, to avoid over-predictions and achieve the best bio-
logical targets, different prediction algorithms should be 
combined with different experiments such as tissue-specific 
gene expression microarray and proteome analysis.5,10,28,131

Clinical implications of the miRNA-21 
and miRNA-34 network for lung 
cancer diagnosis and therapeutic 
strategies

Lung cancer is often detected late with poor treatment 
prognosis. MiRNAs as non-invasive biomarkers could 
complement CT for lung cancer diagnosis and monitoring 
to improve this situation.16,111,145,146 Interestingly, recent 
studies report that miRNA expression methods are more 
accurate in defining cancer subtypes than protein-coding 
gene profiling.22,116,147,148 Moreover, miRNA expression 
signatures correlate with lung cancer tumor stages, pro-
gression, and treatment response.21–23,111 In a more general 
approach with several tumor entities, miRNA-21 was 
identified as a biomarker for poor prognosis including 
lung, breast, stomach, prostate, colon, and pancreatic 
tumors underlining its central role in cancer.116

Clinical diagnostics

MiRNA profiles revealed that besides miRNA-21, 
miRNA-155, miRNA-17, miRNA-143/145, miRNA-
221/222, and let-7a are also strongly deregulated in lung 
cancer. This deregulation is linked to patient prognosis and 
survival, indicating a role of miRNAs as potential bio-
markers for early lung cancer diagnosis.110–112,118 
Up-regulated miRNA-17, miRNA-21, and miRNA-155 
demonstrated oncogenic potential,23,111,116,122 whereas 
miRNA-155 shows high correlation with the angiogenic 
marker FGF2, as well as nodal metastasis.115 Altered let-7a 
and miRNA-221 levels imply cancer relapse and bad prog-
nosis for NSCLC patients.22 Moreover, Izzotti et al.118 
demonstrated that altered expression of miRNAs occur in 
early events of healthy tissues as they found a deregulation 
of let-7, miRNA-34, miRNA-145, and miRNA-222 in 
healthy rat lungs exposed to cigarette smoke. MiRNA sig-
natures in lung cancer have already been evaluated 
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by bioinformatic meta-analyses, highlighting that such 
analyses are very useful to identify best miRNA markers. 
For example, Vosa et al.112 used a rank aggregation method 
to robustly identify seven up-regulated and eight down-
regulated miRNAs in lung cancer (again miRNA-21, 
miRNA-143, and miRNA-145). In a retrospective analy-
sis, a benefit from chemotherapy in addition to current 
clinical guidelines149 could be identified by high levels of 
miRNA-21 for high-risk patients after TNM stage I resec-
tion.19 Furthermore, by using two different normalization 
strategies, Charkiewicz et al.150 determined that miRNA-
21 and miRNA-205 expression allow NSCLC subtype 
classification and patient selection for targeted therapy. 
Nevertheless, monitoring miRNA-21 expression to detect 
early lung  
cancer compared to healthy controls may be challenging.151 
Further miRNAs which are currently under investigation 
as biomarkers and diagnosis tools include miRNA-486 
and miRNA-150 as blood markers,152 miRNA-486-5p and 
miRNA-30a-5p as tissue markers,153 and extra cellular 
miRNA-198 as biomarkers warning against AC-associated 
malignant pleural effusion.154

However, clinical studies have identified diagnostic 
miRNA markers either in lung tumor tissue or blood sam-
ples. It should be noted that tumor tissue analysis results 
vary depending on tissue preparation: studies conducting 
analysis from frozen tissues reveal that high miRNA-21 
expression correlates with low patient survival,110,155 
whereas in FFPE (formalin-fixed paraffin embedded) sam-
ples, this correlation could not be confirmed.113,156 This 
points out the challenge of technical accuracy necessary 
for clinically reliable miRNA profiling. For this reason, it 
was recommended to evaluate multiple slices for stand-
ardization and normalization. Furthermore, oncomiRs 
should be used as controls.157,158 Importantly, sample prep-
aration should be carried out in a lab where standard oper-
ating procedures (SOPs) are well established.

MiRNA detection from blood or biological fluids is a 
new technique and monitors patients non-invasively. For 
example, Sozzi and colleagues demonstrated in 2014 in 
their MILD trial (Multicenter Italian Lung Detection) that 
a miRNA signature classifier (MSC) from patients’ blood 
samples has a predictive, diagnostic as well as prognostic 
value that reduces false-positive rates of low-dose com-
puter tomography (LDCT) when used as an additional 
diagnostic tool.16 Screening with false-double positive 
results could reduce false-positive rates to an impressive 
3.7% compared to 19.7% for LDCT alone.16 It has been 
speculated that the MSC derives from the tumor environ-
ment which is related to the tumor aggressiveness and 
hence distinguishes between lung cancers and benign nod-
ules that are both detected by LDCT.16 Low MSC of 24 
circulating miRNAs predicted the absence of lung cancer 
mortality in the first 3 years correctly.159 Similarly, a signa-
ture of 34 different regulated miRNAs from the COSMOS 

trial (Continuous Observation of Smoking Subjects) 
detected with 80% accuracy high-risk asymptomatic par-
ticipants, representing a useful blood test for early lung 
cancer detection as it was shown in a large-scale clinical 
validation study.146,160

From the technical point of view, it is critical to avoid 
hemolysis of red blood cells or platelets as they also contain 
miRNAs such as miRNA-451, miRNA-486-5p, miRNA-
16, and miRNA-92a and here, the levels and changes are 
completely different from serum. Moreover, different 
miRNA ratios may also reflect different blood cell counts.161 
Regarding further technical challenges for miRNA detec-
tion in blood samples, it is important to choose the correct 
housekeeping genes for real-time quantitative polymerase 
chain reaction (qRT-PCR) evaluation: they should always 
be present with robust and good expression levels in all 
samples.162

Therapeutic implications

MiRNA can beneficially affect multiple targets and path-
ways in cancer tumorigenesis and resistance develop-
ment.25,27,94 Several studies illustrate that miRNAs have 
promise in treatment of lung cancer, for instance, breaking 
resistance of TKIs erlotinib or gefitinib by modulating 
miRNA let-7 and miRNA-34 regulation of EGFR and p53 
pathways in NSCLC cells.20,25,94,97 Both miRNAs are 
down-regulated by c-Myc oncogene which explains their 
low expression and reduced anti-proliferative and pro-
apoptotic function in cancer cells.163 Excitingly, chemo-
preventive agents can modulate smoke-induced miRNAs 
and connected proteome.164 Thus, Delta-tocotrienol down-
regulates the Notch-1 pathway as it induces miRNA-34a in 
NSCLC cells.17 Several studies confirmed that miRNA-21 
overexpression is involved in EGFR-TKI resistance in 
NSCLC. Experimental modulation of the miRNA-21 
expression level in NSCLC tissues and cells show first 
promising therapeutic results through regulation of PTEN, 
PDCD4, and the PI3K/AKT signaling pathways.18,165

Moreover, targeting the miRNA-dependent interaction 
network in NSCLC patients which do not respond any 
more to gefitinib/erlotinib represents a promising alterna-
tive therapeutic strategy. Thus, c-MET receptors often 
involved in EGFR-TKI therapy resistance are currently 
under investigation for their application in the clinic.27,56 
However, most miRNA studies focus on cell biology and 
are still far away from direct therapeutic application. As 
mentioned before, expression levels of miRNA-21, 
miRNA-221/222, miRNA-34a, and miRNA-30b/c are 
altered in gefitinib-resistant lung cancer cells due to EGFR 
and c-MET alterations.27,97 Consequently, experiments 
considering these miRNAs have been carried out: modula-
tion of miRNA-221/222 and miRNA-30b/c expression 
levels in vitro and in vivo reverses gefitinib resistance in 
NSCLC,27 whereas modulation of miRNA-34a rescues 
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gefitinib and miRNA-130a modulation reduces the migra-
tory capacity and overcomes gefitinib treatment failure in 
NSCLC cells.82,97

Conclusion

Diagnosis and treatment of lung cancer is challenging. 
However, observing miRNA-21 and miRNA-34 family 
levels and connected networks provide important new 
handles. Combined bioinformatics and experimental 
approaches exploit high-throughput RNA sequencing 
and omics data for a detailed understanding of the com-
plex interactions of these and other miRNAs with their 
cognate mRNA and protein networks in lung cancer. 
miRNAs can regulate several targets and pathways. Thus, 
the modulation of specific miRNAs such as miRNA-21 
and miRNA-34 promises new diagnostic options and 
novel therapeutic interventions. However, miRNA signa-
tures and miRNA-inspired therapies are currently 
explored in first clinical trials. They have a high potential 
to improve significantly the diagnosis and treatment of 
lung cancer, but still hampered by various specificity 
considerations. In this context, we hope our overview 
stimulates future research as a basis for an improved clin-
ical management of lung cancer.
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