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Zusammenfassung 

 

Das Phytohormon Auxin erfüllt wichtige Funktionen bei der Initiierung von pflanzlichen Geweben 

und Organen, wie auch in der Steuerung des Wurzelwachstums im Zusammenspiel mit äußeren 

Reizen wie Schwerkraft, Wasser- und Nähstoffverfügbarkeit. Diese Funktionen basieren dabei vor 

allem auf der Auxin-abhängigen Regulation von Zellteilung und -streckung. Wichtig für letzteres ist 

dabei die Kontrolle des Zellturgors durch die Vakuole. Als Speicher für Nährstoffe, Metabolite und 

Toxine sind Vakuolen von essentieller Bedeutung. Vakuolär gespeicherte Metabolite und Ionen 

werden sowohl über aktive Transportprozesse, als auch passiv durch Ionenkanäle, über die 

vakuoläre Membran mit dem Zytoplasma ausgetauscht. In ihrer Funktion als second messenger 

sind Kalziumionen wichtige Regulatoren, aber auch Gegenstand vakuolärer Transportprozesse. 

Änderungen der zytosolischen Kalziumkonzentration wirken nicht nur lokal, sie werden auch mit 

einer Signalweiterleitung über längere Distanzen in Verbindung gebracht. Im Rahmen dieser Arbeit 

wurden elektrophysiologische Methoden mit bildgebenden Methoden kombiniert um Einblicke in 

das Zusammenspiel zwischen zytosolischen Kalziumsignalen, vakuolärer Transportprozesse und 

der Auxin-Physiologie im intakten pflanzlichen Organismus zu gewinnen.  

Kalziumsignale sind an der Regulierung vakuolärer Ionenkanäle und Transporter beteiligt. Um dies 

im intakten Organismus zu untersuchen wurden im Modellsystem junger Wurzelhaare von 

Arabidopsis thaliana Messungen mit intrazellulären Mikroelektroden durchgeführt. Mittels der 

Zwei-Elektroden-Spannungsklemm-Technik konnte bestätigt werden, dass die vakuoläre Membran 

der limitierende elektrische Wiederstand während intravakuolärer Messungen ist und so 

gemessene Ionenströme in der Tat nur die Ströme über die vakuoläre Membran repräsentieren. 

Die bereits bekannte zeitabhängige Abnahme der vakuolären Leitfähigkeit in Einstichexperimenten 

konnte weiterhin mit einer einstichbedingten, transienten Erhöhung der zytosolischen 

Kalziumkonzentration korreliert werden. Durch intravakuoläre Spannungsklemmexperimente in 

Wurzelhaarzellen von Kalziumreporterpflanzen konnte dieser Zusammenhang zwischen 

vakuolärer Leitfähigkeit und der zytosolischen Kalziumkonzentration bestätigt werden.  

Die Vakuole ist jedoch nicht nur ein Empfänger zytosolischer Kalziumsignale. Da die Vakuole den 

größten intrazellulären Kalziumspeicher darstellt, wird seit Langem diskutiert, ob sie auch an der 

Erzeugung solcher Signale beteiligt ist. Dies konnte in intakten Wurzelhaarzellen bestätigt werden. 

Änderungen des vakuolären Membranpotentials wirkten sich auf die zytosolische 

Kalziumkonzentration in diesen Zellen aus. Während depolarisierende Potentiale zu einer 

Erhöhung der zytosolischen Kalziumkonzentration führten, bewirkte eine Hyperpolarisierung der 
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vakuolären Membran das Gegenteil. Thermodynamische Überlegungen zum passiven und aktiven 

Kalziumtransport über die vakuoläre Membran legten dabei den Schluss nahe, dass die hierin 

beschriebenen Ergebnisse das Verhalten von vakuolären H+/Ca2+ Austauschern wiederspiegeln, 

deren Aktivität durch die protonenmotorische Kraft bestimmt wird.  

Im Rahmen dieser Arbeit stellte sich weiterhin heraus, dass zytosolisches Kalzium ebenso ein 

zentraler Regulator eines schnellen Auxin-induzierten Signalweges ist, über den der polare 

Transport des Hormons reguliert wird.  

Im gleichen Modellsystem junger Wurzelhaare konnte gezeigt werden, dass die externe 

Applikation von Auxin eine sehr schnelle, Auxinkonzentrations- und pH-abhängige Depolarisation 

des Plasmamembranpotentials zur Folge hat. Synchron zur Depolarisation des 

Plasmamembranpotentials wurden im Zytosol transiente Kalziumsignale registriert. Diese wurden 

durch einen von Auxin aktivierten Einstrom von Kalziumionen durch den Ionenkanal CNGC14 

hervorgerufen. Experimente an Verlustmutanten als auch pharmakologische Experimente zeigten, 

dass zur Auxin-induzierten Aktivierung des Kalziumkanals die Auxin-Perzeption durch die F-box 

Proteine der TIR1/AFB Familie erforderlich ist. Durch Untersuchungen der Auxin-abhängigen 

Depolarisation wie auch des Auxin-induzierten Einstroms von Protonen in epidermale Wurzelzellen 

von Verlustmutanten konnte gezeigt werden, dass die sekundär aktive Aufnahme von Auxin durch 

das hochaffine Transportprotein AUX1 für die schnelle Depolarisation verantwortlich ist. Nicht nur 

die zytosolischen Kalziumsignale korrelierten mit der CNGC14 Funktion, sondern ebenso die AUX1-

vermittelte Depolarisation von Wurzelhaaren. Eine unveränderte Expression von AUX1 in der 

cngc14 Verlustmutante legte dabei den Schluss nahe, dass die Aktivität von AUX1 posttranslational 

reguliert werden muss. Diese Hypothese erfuhr Unterstützung durch Experimente, in denen die 

Behandlung mit dem Kalziumkanalblocker Lanthan zu einer Inaktivierung von AUX1 im Wildtyp 

führte.  

Die zytosolische Beladung einzelner epidermaler Wurzelzellen mit Auxin hatte die Ausbreitung 

lateraler und acropetaler Kalziumwellen zur Folge. Diese korrelierten mit einer Verschiebung des 

Auxin-Gradienten an der Wurzelspitze und unterstützten somit eine hypothetische 

Kalziumabhängige Regulation des polaren Auxin Transports. Ein Model für einen schnellen, Auxin 

induzierten und kalziumabhängigen Signalweg wird präsentiert und dessen Bedeutung für das 

gravitrope Wurzelwachstum diskutiert. Da die AUX1-vermittelte Depolarisation in Abhängigkeit 

von der externen Phosphatkonzentration variierte, wird die Bedeutung dieses schnellen 

Signalwegs ebenso für die Anpassung des Wurzelhaarwachstums an eine nicht ausreichende 

Verfügbarkeit von Phosphat diskutiert.   
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Summary 

 

The phytohormone auxin performs important functions in the initiation of plant tissues and organs, 

as well as in the control of root growth in conjunction with external stimuli such as gravity, water 

and nutrient availability. These functions are based primarily on the auxin-dependent regulation 

of cell division and elongation. Important for the latter is the control of the cell turgor by the 

vacuole. As storage for nutrients, metabolites and toxins, vacuoles are of vital importance. 

Vacuolar stored metabolites and ions are exchanged across the vacuolar membrane with the 

cytoplasm via active transport processes as well as passively through ion channels. In their function 

as second messenger, calcium ions are important regulators but also subject to vacuolar transport 

processes. Changes in the cytosolic calcium concentration not only act locally, but are also 

associated with signal transduction over longer distances. In this work, electrophysiological 

methods were combined with imaging techniques to gain insights into the interaction between 

cytosolic calcium signals, vacuolar transport processes and auxin physiology in the intact plant 

organism. 

Calcium signals are involved in the regulation of vacuolar ion channels and transporters. In order 

to investigate this in the intact organism, intracellular microelectrode measurements were 

performed in the model system of bulging Arabidopsis thaliana root hairs. By means of the two-

electrode voltage-clamp technique, it could be confirmed that the vacuolar membrane is the 

limiting electrical resistance during intravacuolar measurements and thus measured ion currents 

actually represent only the currents across the vacuolar membrane. The already known time-

dependent decrease of vacuolar conductivity during intravacuolar experiments could be further 

correlated with an impalement-related, transient increase of the cytosolic calcium concentration. 

Intravacuolar voltage-clamp experiments in root hair cells of calcium reporter plants confirmed 

this relationship between vacuolar conductivity and the cytosolic calcium concentration. 

However, the vacuole is not just a recipient of cytosolic calcium signals. Since the vacuole 

represents the largest intracellular calcium reservoir, it has long been argued that it is also involved 

in the generation of such signals. This could be confirmed in intact root hair cells. Changes in the 

vacuolar membrane potential affected the cytosolic calcium concentration in these cells. While 

depolarizing potentials led to an increase of the cytosolic calcium concentration, hyperpolarization 

of the vacuolar membrane caused the opposite. Thermodynamic considerations of passive and 

active calcium transport across the vacuolar membrane suggested that the results described herein 
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reflect the behaviour of vacuolar H+/Ca2+ exchangers whose activity is determined by the proton 

motive force. 

In addition, cytosolic calcium has been shown to be a key regulator of a rapid auxin-induced 

signaling pathway that regulates polar transport of the hormone. 

In the same model system of bulging root hairs it could be shown that the external application of 

auxin results in a very fast, auxin concentration- and pH-dependent depolarization of the plasma 

membrane potential. Synchronous with the depolarization of the plasma membrane potential, 

transient calcium signals were recorded in the cytosol. These were caused by an auxin-activated 

influx of calcium ions through the ion channel CNGC14. Experiments on loss-of-function mutants 

as well as pharmacological experiments showed that the auxin-induced activation of the calcium 

channel requires auxin-perception by the F-box proteins of the TIR1/AFB family. 

Investigations of auxin-dependent depolarization as well as the auxin-induced influx of protons 

into epidermal root cells of loss-of-function mutants showed that the secondary active uptake of 

auxin by the high-affinity transport protein AUX1 is responsible for the rapid depolarization 

Not only the cytosolic calcium signals correlated with CNGC14 function, but also the AUX1-

mediated depolarization of root hairs. An unchanged expression of AUX1 in the cngc14 loss-of-

function mutant suggested that the activity of AUX1 must be post-translationally regulated. This 

hypothesis was supported by experiments in which treatment with the calcium channel blocker 

lanthanum led to inactivation of AUX1 in the wild type. 

The cytosolic loading of individual epidermal root cells with auxin resulted in the spread of lateral 

and acropetal calcium waves. These correlated with a shift of the auxin gradient at the root apex 

and thus supported a hypothetical calcium-dependent regulation of polar auxin transport. A model 

for a rapid, auxin-induced and calcium-dependent signaling pathway is presented and its 

importance for gravitropic root growth is discussed. Since AUX1-mediated depolarization varied 

with external phosphate concentration, the importance of this rapid signaling pathway is also 

discussed for the adaptation of root hair growth to an inadequate availability of phosphate. 
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1. Introduction 

 

1.1. How plants regulate root growth 

 

Roots are essential for plants since they supply the aerial organs with water and essential mineral 

nutrients like potassium (K+), phosphate (PO42-, Pi), and nitrate (NO3-). In return, the 

photosynthetically active tissues supply the root system with the energy needed for growth.  

In general, growth in plants, including their roots, is mostly achieved through cellular elongation. 

However, rather than through an energetically costly expansion of the cytosol, plant cells elongate 

via the passive uptake of water for which the high concentration of osmotically active substances 

in the vacuolar lumen provides the driving force (Taiz 1992; Marty 1999).  

Root growth and thus the architecture of the whole root system of a plant is shaped by the 

interplay of external stimuli like gravity, water, nutrient availability and microbial interactions with 

internal determinants, foremost the hormone auxin, which is a key regulator of plant growth and 

development (Malekpoor Mansoorkhani et al. 2014). For example, auxin determines the direction 

of gravity-guided root growth by maintaining a defined local auxin gradient in the root apex (a 

detailed description of auxin transport and physiology is given below in Chapter 1.3). Any deviation 

from a vertical growth direction leads to a spatial shift of the auxin gradient resulting in a 

differential cell elongation and reorientation of root growth to a vertical direction (Ottenschläger 

et al. 2003). The link between auxin and tugor-driven cellular elongation is provided by the acid 

growth theory (Kutschera 1994). Since plant cells are enclosed in mechanically rigid cell walls, those 

must be weakened to yield to the hydrostatic pressure from the vacuole. Based on observations 

that auxin promoted growth is accompanied by an acidification of the cell wall (Rayle and Cleland 

1977), the acid growth theory states that auxin stimulates the activity of adenosine triphosphate 

(ATP)-driven proton (H+) pumps at the plasma membrane (PM) (Takahashi et al. 2012). The ensuing 

acidification of the extracellular space subsequently activates hydrolytic enzymes therein, called 

expansins, which contribute to cell wall weakening and, ultimately, growth (McQueen-Mason et 

al. 1992). Since vacuoles and auxin fulfill such essential functions during growth, they are subject 

of intensive studies. In the case of auxin, its directional transport, which is unique among plant 

hormones, and its perception and signaling mechanisms are of particular interest. Analysing the 

transport processes across the vacuolar membrane (VM) that exchange organic and inorganic 

solutes between the cytosol and the vacuole, on the other hand, is essential for a comprehensive 

understanding of the physiological functions of the vacuole.   
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1.2. The plant vacuole 

 

1.2.1. Physiological functions of the vacuole 

 

Vacuoles fulfill a diverse set of functions, as they occupy around 90% of a plant cells volume and 

store high amounts of osmolytes. The central vacuoles in mature plant cells develop from many 

small provacuoles in young, not terminally differentiated cells. The endoplasmic reticulum (ER) is 

their main membrane source. During maturation of the cell, the provacuoles fuse and increase 

their volume by solute and water uptake (Viotti 2014).  

Vacuoles balance the ion homeostasis of the cytosol and thus support many cellular functions, like 

the assembly of the cytoskeleton and the regulation of enzyme activity, which are sensitive to 

changes in pH, the cytosolic free calcium concentration ([Ca2+]cyt) and heavy metals (Casey et al. 

2010; Yadav 2010; Qin et al. 2012; Ranty et al. 2016). The cytosolic pH of around pH 7 to 7.5 is inter 

alia maintained by the energized sequestration of H+ into the vacuolar lumen and by the release 

of buffering dicarboxylates like malate into the cytosol (Hurth et al. 2005; Li et al. 2005; Krebs et 

al. 2010; Rienmüller et al. 2012). The vacuolar lumen is also the main Ca2+ storage in a plant cell, 

since the luminal concentration of free Ca2+ exceeds cytosolic levels by approximately three to four 

orders of magnitude (Bethmann et al. 1995; Marty 1999; Roelfsema and Hedrich 2010; 

Schönknecht 2013). It can thus be assumed that the vacuole is an important regulator of [Ca2+]cyt 

and of significance for Ca2+-related signalling events (Schönknecht 2013). Plants do not have a 

secretory system to excrete toxic substances, neither are they able to change their location in case 

of a contamination. Instead, plants sequester toxic heavy metals like cadmium or mercury into the 

vacuole to overcome these disadvantages. Vacuoles also function in homeostasis of essential 

metals like copper (Cu) and iron (Fe) (Sharma et al. 2016).  

The vacuole represents an essential storage compartment of primary and secondary metabolites. 

Carbohydrates, like sucrose in taproots of sugar beet (Jung et al. 2015) or an organic acid, like malic 

acid in crassulacean acid metabolism (CAM-) plants (White and Smith 1989) are accumulated in 

vacuoles as a reservoir of energy and CO2, respectively. Among secondary metabolites are the 

various phenolic and alkaloidic substances used in defence strategies against herbivores and 

microbial pathogens (Hatsugai and Hara-Nishimura 2010; Mithofer and Boland 2012). Flavonoids 

like anthocyanins accumulate in vacuoles as a protection against photodamage (Pourcel et al. 

2010). Specialized vacuoles can function as nutrient sources for growth and development of the 

plant embryo (Herman and Larkins 1999), or protein degradation (Carter et al. 2004). 
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1.2.2. Transport across the vacuolar membrane 

 

1.2.2.1. Thermodynamics of vacuolar membrane transport 

 

The above-described functions, like tugor regulation, ion homeostasis, intracellular signaling and 

carbohydrate storage rely on the ability of the vacuole to retain high concentrations of solutes. 

Uptake of those solutes, however, is often against the respective electrochemical gradient. In 

general, the energy, required for membrane transport against such a gradient, is provided by the 

chemical and the electrical component of the proton motive force (pmf). In the case of the VM, 

the chemical component is the ΔpH across the VM (ΔpHVM) between the acidic vacuolar lumen and 

the neutral cytosol. In Arabidopsis thaliana (henceforth A. thaliana) root cells the ΔpHVM is around 

one to two pH units (Bibikova et al. 1998; Bassil et al. 2011), but it can reach extreme values like 5 

pH units in citrus fruits (Taiz 1992) or 6 pH units in the brown algae Desmerestia (McClintock et al. 

1982). The ΔpHVM is established by VM-localized H+-ATPases and H+-PPases, which hydrolyse 

cytosolic ATP or pyrophosphate (PPi), respectively (Fig. 1.1). Both proteins are primary active H+-

pumps, which use the energy that is liberated during hydrolyzation to translocate protons with a 

rate of 100 to 103 s-1 against the electrochemical gradient into the vacuole (Li et al. 2005; Lodish et 

al. 2008; Krebs et al. 2010; Rienmüller et al. 2012). Apart from H+-pumps, specific primary 

transporters at the VM were described to be involved in the luminal accumulation of Ca2+, heavy 

metals and secondary metabolites (Martinoia et al. 2012).  

The electrical component of the pmf is the VM potential, which is formed by the unequal 

distribution of charges between the cytosolic and luminal site of the membrane due to the 

combined action of pumps, transporters, and ion channels. The VM potential is assumed to be 

around -30 mV to -40 mV (Martinoia et al. 2007; Martinoia et al. 2012). This potential difference is 

relatively low when compared to the hyperpolarized PM which transporters and channels operate 

at a PM potential well negative of -110 mV (Hedrich 2012). Both the PM potential and the VM 

potential are negatively charged on the cytosolic side of the membrane and are thus given as 

negative values according to the sign convention proposed by Bertl et al. (1992).  

The pmf generated at the VM can be used by secondary active transporters, which includes 

symport- and antiport-carriers (Fig. 1.1). Both types of transporters are membrane-localized and 

can use the pmf to achieve the electrochemical uphill (i.e. into the vacuolar lumen) transport of 

solutes with a rate of 102 to 104 s-1 by coupling it to the downhill (i.e. into the cytosol) transport of 

H+ (Lodish et al. 2008). If, for example, a ΔpHVM of 2 pH units and a VM potential of -30 mV are 
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assumed, then, application of Equation 1.1 (Christensen 1975) at 20°C yields 14.1 kJ of potential 

energy stored in one mole of H+. This energy can be used by H+-coupled antiporters to establish 

high luminal/cytosolic concentration gradients of ions like Ca2+ or uncharged solutes like sucrose 

as given in Tab. 1.1.  

 

 
Fig. 1.1: Principal vacuolar transport components. Membrane transport can be divided into primary active, secondary 

active and passive transport. At the VM, the constituents of primary active transport are the H+-translocating ATPase (I) and 

PPase (II). Their H+-pump activity establishes a ΔpHVM, which together with the VM potential (EVM) forms the pmf (light blue 

triangle). Secondary active transporters utilize the pmf and are either symporters (III) or antiporters (IV). Symporter 

translocate n molecules of solute X with valenz z by unidirectional coupling to m molecules of H+. An antiporter translocates 

the solute into the vacuole. Passive transport combines carrier-mediated transport through uniporters (V) and the flow of 

ions through channel proteins (VI). Both of which facilitate diffusion along the electrochemical gradient. Passive diffusion 

of uncharged molecules (VII) is with the chemical gradient across the membrane. 
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Equation 1.1: Calculation of the pmf. G: free energy; R: universal gas constant (8,314 (kg m2)/(s2 mol K)) ; T: absolute 

temperature; X: ion species; z: ionic valenz; n: stoichiometry; F: Faraday constant (96485 s A/mol); EV M: VM potential 

 

Tab. 1.1: Possible luminal/cytosolic concentration gradients established by 

proton-coupled antiporters at a reversal potential of -30 mV, a ΔpH of two units 

and with an assumed 1:1 transport stoichiometry. 

 

 

 

Ion species Luminal accumulation 

X ~300 

X- ~1000 

X2- ~3500 

X+ 100 

X2+ ~30 
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Besides primary active pumps and secondary active transporters, uniporter and ion channels 

passively contribute (i.e. without being energized by ATP or the pmf) to a selective ion or molecule 

transport across the VM (Fig. 1.1; (Hedrich and Neher 1987)). Ion channels show the highest 

molecule translocation rate with 107 to 108 s-1 (Lodish et al. 2008). Due to the passive nature of 

transport via channels it is strictly dependent on the electrochemical gradient of the particular ion. 

The membrane potential, at which the direction of flow of a specific ion is changed is referred to 

as “the reversal potential” (Erev). For example, the luminal/cytosolic Ca2+ gradient is typically in the 

order of 104 (10-3 M luminal against 10-7 M cytosolic) due to the role of primary active Ca2+-ATPases 

and secondary active Ca2+/H+-exchanger (Felle 1988b; Bethmann et al. 1995; Felle and Hepler 1997; 

Wymer et al. 1997; Bose et al. 2011; Martinoia et al. 2012). In this case, a derivative of the Nernst 

equation (Equation 1.2; (Schwarz and Rettinger 2003)) gives a reversal potential of +116 mV. 

Therefore, passive Ca2+ fluxes directed into the vacuole are not possible at a physiological VM 

potential of -30 mV, Ca2+ release from the vacuole via ion channels, however, is facilitated.  

 

𝐸𝐸𝑟𝑟𝑙𝑙𝑟𝑟 =
𝑅𝑅 ∗ 𝑇𝑇
𝑧𝑧 ∗ 𝐹𝐹

∗ 𝑙𝑙𝑙𝑙 �
[𝑋𝑋𝑧𝑧]𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
[𝑋𝑋𝑧𝑧]𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙

� 

Equation 1.2: Calculation of the reversal potential. Symbols are as for Equation 1.1.  

 

Anions cannot only be luminal enriched via H+-coupled transport, but also via passive transport 

through ion channels, based on the VM potential as the responsible driving force. If the potential 

difference is -30 mV, monovalent anions, like chloride (Cl-) or NO3-, can be enriched in the vacuolar 

lumen by a factor of 3 and divalent anions like malate2- or sulphate (SO42-) by a factor of 10. 

Additionally, organic anions might get trapped in the vacuole due to a change in their valence 

caused by the change in pH when they move from the neutral cytosol to the acidic vacuole.  

 

1.2.2.2. Cation transporter 

 

Two cations are of a main importance for plant physiology: K+ and Ca2+. K+ is an important 

macronutrient for plants and a limiting factor of crop yield and quality (Leigh and Jones 1984). It 

can account for 2 to 10% of a plant's dry weight due to concentrations in the order of 10-1 M in 

both the cytosol and the vacuole (Sharma et al. 2013; Wang and Wu 2013). The functions that K+ 

fulfills in plants can be classified into two groups. The first group includes cellular functions for 

which the high and stable cytosolic K+-concentration is an essential prerequisite. Among those 

functions are its involvement in protein biosynthesis and enzyme activation (Sharma et al. 2013). 
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The second group includes functions which rely on the movement of highly mobile K+ ions between 

cellular compartments or its long-distance transport in the plant. These functions include tugor-

regulation during cell elongation and stomatal movement, acting as counter-ion, and contributing, 

together with H+, to the generation of the PM potential (Armengaud et al. 2004; Sharma et al. 

2013; Wang and Wu 2013). K+ serves an additionally important function in the phloem, where its 

gradient was proposed to function as an alternative energy source for phloem loading in case of a 

local ATP depletion (Gajdanowicz et al. 2011).  

The functions K+ fulfils in plant physiology dependent on K+ uptake by root epidermal cells of which 

root hair cells increase the total resorptive surface. K+ must be taken up by root hair cells against 

an average cytosol/soil concentration gradient of 103 (Sharma et al. 2013). Two transport systems 

can be found in A. thaliana root hairs which guarantee an efficient K+-uptake under varying external 

concentrations (Epstein et al. 1963). The high-affinity transport system is represented by HAK5, 

whose homolog was recently shown to be a K+/H+-antiporter in the glands of the Venus flytrap 

Dionaea muscipula (Scherzer et al. 2015). The low-affinity transport system, on the other hand, is 

represented by AKT1, an inward rectifying K+-channel of the Shaker family (Hirsch et al. 1998; 

Gierth et al. 2005; Nieves-Cordones et al. 2010; Wang and Wu 2013). However, besides an efficient 

uptake system at the PM, the exchange of K+ between the cytosol and vacuole is also of crucial 

importance to maintain a stable cytosolic concentration (Walker et al. 1996; Sharma et al. 2013; 

Wang and Wu 2013). 

Vacuolar K+-transporters and channels - The uptake of K+ against the electrochemical gradient into 

the vacuole is executed by the cation/H+-antiporters NHX1 and NHX2, which were localized to root 

tips, the vascular tissue, guard cells, flowers and all seedling tissues (Barragan et al. 2012). Together 

with NHX3 and NHX4, they belong to the class of VM-localized NHXs and are described to transport 

both K+ and Na+ ions in planta (Apse et al. 1999; Venema et al. 2002; Leidi et al. 2010; Bassil et al. 

2011; Barragan et al. 2012). A. thaliana nhx1nhx2 double loss-of-function mutants displayed 

defects in flower development, stomatal movement, cell expansion, tugor regulation, pH-

regulation, and growth because of their lost ability to efficiently transport K+ into the vacuole 

(Bassil et al. 2011; Barragan et al. 2012; Andres et al. 2014). The ability of NHX1/2 to carry Na+ 

besides K+ would point towards a significant role of these transporters in plant salt tolerance. 

However, although it is excepted that vacuolar Na+ sequestration is necessary for plant salt 

tolerance, loss-of-function mutants of vacuolar NHXs were not consistently reported to show an 

increased salt sensitivity (Jiang et al. 2010; Barragan et al. 2012; Martinoia et al. 2012). Much more 

consistently described was their importance for stomatal movement. The loss of an efficient K+ 
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uptake into the vacuole of nhx1nhx2 mutants was shown to result in impaired stomatal movement, 

acidified vacuoles and a loss of vacuolar dynamics in guard cells (Barragan et al. 2012; Andres et 

al. 2014). 

While loading of the vacuole with K+ is apparently facilitated by K+/H+-symport, the release of K+ 

from the vacuole, on the other hand, is mediated by ion channels with the electrochemical gradient 

as the driving force. These ion channels are the VM-localized members of the TANDEM-PORE K+ 

(TPK)-family TPK1/2/3/5 including the K+ INWARD RECTIFIER-LIKE (Kir-like) channel KCO3 (Sharma 

et al. 2013). Another ion channel that is discussed to contribute to vacuolar K+-release is the TWO-

PORE CHANNEL1 (TPC1) which was found to represent the slow vacuolar (SV)-channel found with 

the earliest vacuolar patch-clamp measurements (Hedrich et al. 1986). The best characterized TPKs 

to date, are the vacuolar TPK1 and TPK3 (Voelker et al. 2006; Gobert et al. 2007) as well as the 

pollen tube PM-localized TPK4 (Becker et al. 2004). TPK3 was suggested to have an additional 

function in regulation of the thylakoid pmf during the light-dependent reaction of photosynthesis 

(Carraretto et al. 2013). Hence, TPK3 might serve a dual function as a K+ channel in the VM and in 

the thylakoid membrane of chloroplasts as well. Members of the TPK gene family are expressed in 

roots (TPK1/2/3), leaves (TPK1/2/3/5), flowers (TPK1/2/5), and senescent leaves (TPK3/5). The 

activity of these non-rectifying channels seems to be independent of the membrane voltage, but 

regulated by pH and Ca2+-dependent phosphorylation, which leads to subsequent interaction with 

14-3-3 proteins (Becker et al. 2004; Gobert et al. 2007; Latz et al. 2007; Carraretto et al. 2013; Latz 

et al. 2013).  

The TPC1 channel, a special case - In contrast to the K+-selective TPK channels, TPC1 is a slowly 

activating, voltage-dependent, Ca2+-regulated and non-selective cation channel (Hedrich et al. 

1986; Hedrich and Neher 1987; Peiter et al. 2005; Hedrich and Marten 2011). It is permeable to 

mono- and divalent cations and is broadly expressed in A. thaliana tissues and conserved among 

other plant species (Furuichi et al. 2001; Hedrich and Marten 2011). The TPC1 channel was 

described to be closed under a physiological VM potential. Only a shift to positive potentials 

activates the channel and allows, in the absence of a gradient, the permeation of K+ into the 

vacuole (Hedrich et al. 1986; Jaslan et al. 2016). The activation voltage of TPC1 shifts to more 

negative, i.e. more physiological, membrane voltages, in case the cytosolic K+ concentration is 

lowered (Hedrich and Marten 2011; Hedrich 2012). The steeper electrochemical gradient allows a 

TPC1-dependent release of K+ from the vacuole, which suggests a role for this channel in K+ 

homeostasis (Hedrich and Marten 2011). 
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Ca2+ transport across the vacuolar membrane - In its function as the main Ca2+ storage of plant 

cells, the vacuole maintains high luminal concentrations by the activity of the two Ca2+-ATPases, 

ACA4 and ACA11 and that of the secondary active Ca2+/H+ exchanger of the CATION EXCHANGER 

(CAX) family (Martinoia et al. 2012). Both transport systems achieve import of Ca2+ against the 

membrane polarization and a steep luminal/cytosolic concentration gradient of up to 104. As it was 

described above, primary active transporters show the lowest transport rate, however, this is 

compensated through the high substrate affinity of, e.g. Ca2+-ATPases. Vice versa, the co-

transporter of the CAX-family show a much greater transport rate but are less affine to their 

substrate Ca2+ (Shigaki and Hirschi 2006; Roelfsema and Hedrich 2010; Bose et al. 2011). This 

differential transport behavior led to the proposition of a housekeeping function for Ca2+-ATPases 

in maintaining a low [Ca2+]cyt, while the much faster CAX transporters might act in the reduction of 

[Ca2+]cyt after elevations during signaling processes (Roelfsema and Hedrich 2010; Bose et al. 2011). 

In contrast to the knowledge of Ca2+ storage mechanisms, much less is known about the Ca2+ 

release transporters in the VM (Schönknecht 2013). However, the involvement of TPC1 in salt 

stress- and wounding-induced long-distance Ca2+-signaling has recently been demonstrated ((Choi 

et al. 2014; Kiep et al. 2015); a detailed description is provided in Chapter 1.4.1.).  

 

1.2.2.3. Anion transport 

 

Both inorganic and organic anions play important roles in plant physiology. The bioavailability of 

soil nutrients like NO3-, SO42-, and Pi determines growth and agricultural productivity (Lopez-Bucio 

et al. 2003). Cl-, like K+, is osmotically active and involved in diverse processes like tugor regulation 

during stomatal movement (De Angeli et al. 2013), in the regulation of photosynthesis (Herdean et 

al. 2016) and pollen tube growth (Gutermuth et al. 2013). Carboxylates like malate and citrate are 

intermediates of primary metabolism and also fulfill functions as osmotica and in pH-homeostasis. 

Moreover, organic acids, like citrate and malate, help to release soil bound nutrients, protect plants 

from toxic heavy metals through complexation and in the case of malate serve as a temporary 

carbon storage in CAM plants. Furthermore, plants provide symbiotic microorganisms with 

carboxylates in exchange for NO3- and Pi (Meyer et al. 2010; Hedrich 2012).  

ClC anion transporters - Once anions are taken up from the soil, or being synthesized, the vacuole 

serves as their main storage compartment. In the case of NO3- and Cl-, accumulation in the vacuole 

seems to be realized by the anion/H+ antiporter of the misleadingly named CHLORIDE CHANNEL 

(ClC) family. In A. thaliana, four of this seven members containing family were localized to the VM, 
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namely ClCa, b, c and ClCg (De Angeli et al. 2006; Jossier et al. 2010; von der Fecht-Bartenbach et 

al. 2010; Nguyen et al. 2016). To date, the mechanistically best described members of this family 

are ClCa and ClCb. ClCa was the first plant ClC to which a function could be assigned through the 

observation of a reduced NO3- accumulation in clca knock-out mutants, while Cl-, SO42- and Pi levels 

remained unaltered (Geelen et al. 2000). Patch-clamp experiments later confirmed ClCa as a 

2NO3-/H+-antiporter with a selectivity for NO3- over Cl- and which is negatively regulated by ATP 

binding (De Angeli et al. 2006; De Angeli et al. 2009). Heterologous expression in Xenopus laevis 

oocytes demonstrated a NO3-/H+-antiporter mechanism for ClCb, which seems to have a selectivity 

sequence of NO3- > Br- > Cl- > malate2- > I- (von der Fecht-Bartenbach et al. 2010). However, a 

physiological role of ClCb in planta has yet to be shown as anion levels remained unaltered in clcb 

mutants (von der Fecht-Bartenbach et al. 2010). From another class of transporters, NRT2.7 was 

identified as a putative vacuolar NO3- transporter as well, seemingly regulating NO3-  accumulation 

in seeds (Chopin et al. 2007). While ClCb was shown to be expressed in the seedling root and 

hypocotyl, as well as in the leaves and flowers of mature plants (von der Fecht-Bartenbach et al. 

2010), the expression of ClCc was reported, apart from a weak expression in roots, to be restricted 

to pollen tubes and guard cells (Jossier et al. 2010). While KNO3 was shown to be able to restore 

impaired stomatal movement in clcc loss-of-function mutants, KCl was reported to be unable to do 

so (Jossier et al. 2010). Those results suggest a role of ClCc as a putative Cl-/H+-antiporter, in tugor 

regulation during stomatal movement in addition to a part in Cl--sequestration during salt stress 

(Jossier et al. 2010). The closest homolog to ClCc is the last vacuolar ClC-family member ClCg. Those 

two putative Cl-/H+-antiporter were reported to act non-redundantly in tolerating excess Cl- 

(Nguyen et al. 2016).  

AMLT and MATE-encoded anion channels - The second important group of vacuolar anion 

transporters constitutes from the members of the again often misleadingly named ALUMINUM-

ACTIVATED MALATE TRANSPORTER (ALMT) family. Two of its members, ALMT6 and ALMT9, were 

reported to be localized to the VM (Kovermann et al. 2007; Meyer et al. 2011). Together with 

ALMT3, ALMT4, and ALMT5, they form a separate phylogenetic clade within their gene family 

(Kovermann et al. 2007). ALMT5 was reported to be localized to the ER (Kovermann et al. 2007), 

suggesting a role in vesicle transport. However, the function of ALMT3 and 4 , as well as their 

localization, has yet to be demonstrated. The two best characterized members, ALMT6 and 9, show 

distinct functions. ALMT6 functions as an ion channel that conducts both malate and fumarate into 

the vacuole of guard cells. The channel could only be activated by micromolar [Ca2+]cyt and seems 

to be regulated by the luminal pH and cytosolic malate concentration (Meyer et al. 2011). ALMT9 
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was as well initially described to be a malate and fumarate conducting ion channel in mesophyll 

cells (Kovermann et al. 2007). However, ALMT9 was later reported to be a carboxylate activated 

Cl- channel, which acts independently from [Ca2+]cyt to conduct Cl- into the vacuole of guard cells 

where it is required for stomatal opening (De Angeli et al. 2013).  

Recently, two proteins of the class of DETOXIFICATION EFFLUX CARRIER/MULTIDRUG AND TOXIC 

COMPOUND EXTRUSION (DTX/MATE) transporters were reported to constitute functional Cl- 

channels at the VM of A. thaliana (Zhang et al. 2017a). DTX33 and DTX35 are among the 56 

members of their gene family. Diverse functions in multidrug detoxification, in flavonoid, 

carboxylate and hormone transport, as well as in pathogen defence have been suggested for this 

transporter family (Li et al. 2002; Durrett et al. 2007; Marinova et al. 2007; Serrano et al. 2013; 

Zhang et al. 2014; Dobritzsch et al. 2016). Both channels are expressed in diverse tissues and 

organs, including roots, mesophyll cells, guard cells, stems, and flowers, and were shown to 

positively influence stomatal opening, pollen tube growth and root hair elongation (Zhang et al. 

2017a). 

SO42- and Pi transport - Other anions essential for plant growth are SO42- and Pi. The vacuolar 

transport system for SO42- is partially known. While the transporter facilitating vacuolar SO42- influx 

is still unknown (Gigolashvili and Kopriva 2014), SULTR4.1 has been identified as a vacuolar SO42- 

efflux transporter (Kataoka et al. 2004). Although the vacuole is an important storage and 

sequestration compartment for Pi under limiting as well as under excess conditions, the 

responsible transporters for Pi accumulation in this compartment only have been recently 

identified in A. thaliana. The gene family of PHOSPHATE TRANSPORTER 5/VACUOLAR PHOSPHATE 

TRANSPORTER (PHT5/VPT) was reported to contain three members of the long sought-after 

transporters (Liu et al. 2015; Liu et al. 2016). However, only pht5.1 (vpt1) loss-of-function mutant 

plants displayed a severe growth retardation phenotype under low, standard and high Pi 

conditions as well as a reduced ability to accumulate Pi. PHT5.1 (VPT1) was identified as an ion 

channel which is responsible for vacuolar PO42- accumulation, but also conducts to lesser extents 

other anions like, SO42-, NO3- and Cl- (Liu et al. 2015). Moreover, the results of Liu et al. (2015) 

highlight the importance of this channel for vacuolar storage of Pi, when phosphate nutrition is 

growth limiting and sequestration when high Pi concentrations become toxic.   
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1.3. Transport and physiology of the plant hormone auxin  

 

The ability of plants to sense the direction of light as well as gravity and to alter growth of shoot 

and root organs accordingly (phototropism and gravitropism) are among the best observable 

responses of plants.  

In 1880 Charles Darwin and his son Francis published observations, which ultimately lead to the 

discovery of auxin. They could show that phototropism of canary grass coleoptiles (Phalaris 

canariensis) depends on light absorption by a part of the coleoptile that is well above and distinct 

from the side of bending. They concluded, “[…] when seedlings are freely exposed to a lateral light, 

some influence is transmitted from the upper to the lower part, causing the latter to bend” (Darwin 

et al. 1880).  

Its directional transport in plants led to the identification of auxin as indole-3-acteic acid (3-IAA) as 

a promotor of plant growth. Peter Boysen-Jensen could demonstrate in 1913 that there is indeed 

a mobile, basipetally traveling signal in oat hypocotyls (Boysen-Jensen 1913). The physiological 

nature of it was elucidated independently by Nicolai Cholodny and Fritz Went as a growth 

promoting plant hormone (Went 1926; Cholodny 1927). The identification of its chemical nature 

began when three plant growth promoting substances, among them 3-IAA, were isolated from 

human urine and were called auxins (Kögl et al. 1934). Synthetically produced 3-IAA was later 

shown to be an active promotor of root formation (Thimann and Koepfli 1935). Finally, 3-IAA was 

discovered in planta in developing kernels of Zea mays (Haagen-Smit et al. 1946).  

Auxin regulates the growth of plant tissues i.e. cell division, growth, elongation, and differentiation, 

distinctively depending on the tissue examined. For example, in the shoot and the root high auxin 

concentrations inhibit cell elongation, whereas low auxin levels promote cell elongation (Thimann 

1938). The distinction between shoot and root tissues, however, are the different bell-shaped 

auxin sensitivities as they were first described by Thimann, (1938). While micromolar 

concentrations of externally applied auxin still induce cell elongation in shoot tissues, 

concentrations in the nanomolar range already inhibit root cell elongation (Thimann 1938; Dela 

Fuente and Leopold 1970; Evans et al. 1994).  

Tropic responses provide examples for those different auxin sensitivities between the root and the 

shoot. Hypocotyls respond to light and gravity with bending towards and away from the source, 

respectively. The reason is a differential cell elongation. In the shoot, a higher auxin response in 

cells at the shaded side of the curvature than in cells at the illuminated side was reported (Friml et 

al. 2002b). Hence, high auxin levels promote cell elongation in the shoot. In the gravitropic 
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response of the root, however, high auxin levels at the physiological lower side inhibit root cell 

elongation (Ottenschläger et al. 2003).  

Besides the tropic responses to light and gravity, also the initiation of new organs, like lateral roots, 

is regulated by auxin (Benkova et al. 2003). Thereby, the process of lateral root primordia initiation 

from pericycle cells provides an example for a cell-specific auxin sensitivity. At low auxin 

concentrations, pericycle cells are arrested in the G2 phase of the cell cycle (Ferreira et al. 1994). 

The cell cycle arrest in the G2 phase enables them to commence mitosis after an increase of the 

local auxin concentration. The cell cycles of epidermal and cortical cells, however, are terminally 

arrested in the G0 phase. These cells are thus insensitive to auxin and do not commence mitosis 

and do not develop into primordia when auxin is applied externally (Blakely and Evans 1979; 

Benkova et al. 2003). 

As explained above, cell elongation and division are strongly dependent on auxin and are 

controlled in intact plants through the formation of local hormone gradients. In turn, the formation 

of auxin gradients is highly dependent on auxin synthesis and transport mechanisms.  

 

1.3.1. Transport routes of auxin in planta and physiological implications 

 

Auxin is synthesized either via a tryptophane-dependent, or -independent pathway and 

transported from its main source tissues in the shoot apex and young leaves, to sink tissues in the 

apical parts of primary and lateral roots (Ljung et al. 2001; Woodward and Bartel 2005; Petrasek 

and Friml 2009). Based on the expression of auxin biosynthesis genes, auxin is probably produced 

in all cells of the shoot apical meristem (SAM; (Cheng et al. 2006; Pinon et al. 2013)). Additionally, 

significant auxin biosynthesis was also demonstrated to occur especially in the tips of primary and 

the lateral roots (Ljung et al. 2005).  

Two forms of auxin transport can be differentiated in planta. Experiments in which radiolabeled 

auxin was fed to mature leaves of Pisum sativum showed that the major transport route over long 

distances occurs as bulk flow via the phloem (Fig. 1.2; (Morris and Kadir 1972)) . The second form 

of transport is the polar cell-to-cell transport of auxin (polar auxin transport, PAT) in shoot and root 

tissues (Fig. 1.2B and C). The latter form of auxin tranport was discovered by application of 

radiolabeled auxin to the shoot tip of Pisum sativum. In this experimental system, auxin transport 

was observed in the vascular cambium, but not in the phloem (Morris and Thomas 1978). While 

the phloem flow is relatively fast with 5-20 cm/h, PAT is at least ten times slower (Michniewicz et 

al. 2007a). Nevertheless, PAT is of particular importance for auxin distribution on a cellular scale, 
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as it regulates the establishment of auxin gradients required for tropic responses to light and 

gravity. Auxin gradients are also involved in organ initiation and development of lateral roots, 

leaves, and flowers. Moreover, meristem formation and maintenance during reproductive and 

vegetative growth as well as shade avoidance in leaves depend on gradients of this omnipotent 

phytohormone (Cambridge and Morris 1996; Casimiro et al. 2001; Swarup et al. 2001; Friml et al. 

2002a; Friml et al. 2002b; Benkova et al. 2003; Ottenschläger et al. 2003; Reinhardt et al. 2003).  

PAT is already of importance during early embryogenesis, when the vascular system is not yet 

established. As soon as after the first zygotic division, an auxin gradient can be detected that helps 

to define the apical-basal body axis (Friml et al. 2003). Later during embryogenesis, auxin maxima 

initiate the formation of tissues and organs like the cotyledons and the root apex (Friml et al. 2003; 

Petrasek and Friml 2009). Moreover, PAT through the inner embryonic cell layers is described to 

be involved in the specification of the future vascular tissues (Hardtke and Berleth 1998; Friml et 

al. 2003).  

In the mature root, the phloem bulk flow transports auxin towards the root tip. From the site of 

phloem unloading in the root tip, PAT is responsible for auxin accumulation in root apical tissues 

that include the cells of the quiescent center, the columella initials, and the columella cells (Swarup 

et al. 2001; Friml et al. 2002a). In the quiescent centre, auxin is essential in maintaining the mitotic 

silence (Kerk and Feldman 1995; Sabatini et al. 1999). Within the root tip, auxin reaches a relatively 

high concentration and is transported to the cells of the lateral root cap, in which PAT becomes 

basipetal, transporting auxin via epidermal cells towards the elongation zone (Müller et al. 1998; 

Swarup et al. 2001). This transport route is of primary importance for root gravitropism. If roots 

are stimulated by a shift of the gravitational vector from perpendicular to a lateral orientation, this 

signal is transduced by the columella cells, which signal to the elongation zone, by alteration of 

PAT. As a result, auxin levels increase at the new physiological lower site of the root where they 

inhibit cell elongation and thus lead to a differential elongation of the root until the root apex and 

gravitational vector are aligned again (Ottenschläger et al. 2003). The model of PAT in the root tip 

was named the fountain model, whereas its counterpart in the shoot apices was denoted as the 

reverse fountain model (Fig. 1.2B and C; (Benkova et al. 2003)). In the latter model, auxin is supplied 

by local biosynthesis and flows acropetally through the outermost epidermal cell layer towards 

newly formed leaf, or flower, primordia at the shoot apical meristem. Thereafter, it is redirected 

from inner cell layers and into the basipetal flow directed to the root (Benkova et al. 2003). 
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Fig 1.2: Auxin transport routes in Arabidopsis thaliana. (A) Auxin is produced in shoot apical tissues. Via the bulk flow of 

the phloem, auxin reaches sink tissues in the tips of primary and lateral roots. (B) Fountain model of auxin transport in the 

root. Auxin is unloaded from the phloem and distributed throughout various root tissues through polar auxin transport. 

The hormone is supplied from the root apex and flows through the lateral root cap and epidermal cells. Note that lateral 

transport of auxin in cortex cells leads to recycling of the hormone via the ploem. lrc lateral root cap; ep epidermis; ed 

endodermis; st stele; co columella; pc pericycle; c cortex. (C) Reversed fountain model of auxin transport in the shoot apical 

meristem. Polar transport of auxin in the epidermal cell layer L1 transports auxin into the tips of leaf or flower primordia 

P1 and P0 and towards the shoot apical meristem. Redirection of auxin transport to inner cell layers channels the auxin flux 

into a basipetal direction, which ultimately enters into the developing vascular tissue.  

 

1.3.2. Diffusion vs. carrier-mediated auxin transport 

 

Auxin can move between cells either in its protonated form (IAAH) by passive membrane diffusion 

or in its anionic form (IAA-) by carrier-mediated transport. The IAAH permeability of the PM of 

tobacco protoplasts was estimated to be around 0.18 cm/h (Delbarre et al. 1996). However, 

passive diffusion is not the predominant form of auxin transport at the cellular level. When 

analysing auxin transport in tobacco suspension cells and roots of Vicia faba and A. thaliana, 

carrier-mediated transport was found to exceed diffusion by a factor of 10 to 15 (Tsurumi and 

Ohwaki 1978; Delbarre et al. 1996; Yamamoto and Yamamoto 1998; Swarup et al. 2005; Kramer 
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and Bennett 2006). To explain the directionality of auxin-transport the chemiosmotic polar 

diffusion model of auxin transport was proposed (Rubery and Sheldrake 1974; Raven 1975; 

Goldsmith 1977). These early models considered the electrical potential across the PM, the pH-

difference (ΔpH), and the different auxin concentrations between cytosol and apoplast, to explain 

how passive diffusion of auxin, the presence of an auxin influx carrier and the asymmetric 

distribution of efflux carriers in the PM account for PAT.  

Auxin is a weak organic acid, and therefore both forms of movement of auxin, diffusion and carrier-

mediated, depend on the pH in the respective cellular compartment. In the case of A. thaliana root 

cells, the pH in the apoplast is in the range of pH 5.0 to 5.5 and pH 7.0 to 7.5 in the cytosol (Swarup 

and Peret 2012). The equilibrium of the dissociation reaction of IAAH is at the site of the anion in 

both compartments because the pKa of IAAH (4.75) is below both pH ranges (Fig. 1.3A). 

Nevertheless, the acidic apoplastic pH allows a considerable fraction of IAAH to passively diffuse 

along its concentration gradient into the cell, where it dissociates at the neutral pH in the cytosol 

leading to an enrichment of IAA- in this compartment.  

Besides the disability of the charged auxin anion IAA- to diffuse across the hydrophobic bilayer of 

the PM, also electrochemical restraints call for a specific PM-localized auxin transport machinery 

(Fig. 1.3B). The electrical PM potential of -160 to -180 mV for root cells ((Wang et al. 2015); own 

data), together with its outward directed concentration gradient (complete deprotonation of IAAH 

in the cytosol, Fig. 1.3A) prevents a passive influx of IAA-. Hence, the influx of IAA- across the PM 

and against its electrochemical gradient requires an active transport mechanism. As it was 

described above for the transport across the VM, the driving force for such a transport mechanism 

is stored in the pmf composed of the PM potential and the ΔpH between cytosol and apoplast.  

The same considerations regarding the electrochemical gradient, however, act in favor for a 

passive carrier-mediated efflux of IAA-, which would thus not be against but along (downhill) its 

electrochemical gradient across the PM. 
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Fig. 1.3: Diffusion versus carrier-mediated auxin transport across the PM. (A) The dissociation of auxin at apoplastic and 

cytosolic pH-values (gray bars). The passive influx of IAAH is possible by diffusion along its concentration gradient. The influx 

of IAA- can only be achieved through active transport against its gradient. (reproduced from and © by Swarup and Peret, 

(2012, originally published under the terms of the creative commons attribution license) (B) Electrochemical model of auxin 

transport at a PM potantial of -180 mV and a ΔpH of two units. Auxin can enter the cytosol via diffusion along its 

concentration gradient of the protonated form (black to white triangle) or via carrier-mediated proton-coupled influx of its 

anion (blue box). Efflux via diffusion is not possible, but rather relies on the presence of efflux carriers (green box) which 

facilitate IAA- efflux along the electrochemical gradient. Theoretical ideal enrichment factors are shown in red.  

 

The following calculations exemplify the magnitude of cytosolic IAA- enrichment that is driven by 

carrier-mediated influx, in comparison to passive diffusion, given a PM potential of -180 mV and a 

ΔpH of two units. 

If, in the case of passive diffusion of IAAH, the dissociation of auxin in the apoplast and the cytosol 

is considered through the law of mass action with 

 

[𝐼𝐼𝐼𝐼𝐼𝐼−]𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑐𝑐 ∗ [𝐻𝐻+]𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑐𝑐
[𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻]𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑐𝑐

=
[𝐼𝐼𝐼𝐼𝐼𝐼−]𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙 ∗ [𝐻𝐻+]𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙

[𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻]𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙
 

Equation 1.3: Law of mass action applied to auxin dissociation in the apoplast and cytosol. 

 

it follows with a ΔpH across the PM of two pH units, that 

 

102 ∗
[𝐼𝐼𝐼𝐼𝐼𝐼−]𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑐𝑐
[𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻]𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑐𝑐

=
[𝐼𝐼𝐼𝐼𝐼𝐼−]𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙
[𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻]𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙

 

 

Equation 1.4: Transformation of Equation 1.3 with a ΔpH of two units. 

http://creativecommons.org/licenses/by/3.0/
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which gives a cytosolic enrichment factor for IAA- of < 102, because IAAH should still be at a 

considerable concentration in the apoplast but not in the cytosol (Goldsmith 1977).  

For a carrier-mediated and H+-coupled auxin influx, the PM potential as well as the ΔpH must be 

considered as driving forces. Transformation of Equation 1.2 gives the H+ gradient that is 

equivalent to a given PM potential. Equation 1.5 thus shows that a PM potential of -180 mV is 

equivalent to a ΔpH of three units. 

−0.180 𝑉𝑉 = 0,059 𝑉𝑉 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙
[𝐻𝐻+]𝑖𝑖𝑙𝑙

[𝐻𝐻+]𝑐𝑐𝑙𝑙𝑐𝑐
 

Equation 1.5: Transformation of Equation 1.2 to obtain the H+ gradient equivalent to a PM potential of -180 mV. 

 

Together with a ΔpH of two units, this results in a pmf in the order of 105. Since H+-coupled auxin 

uptake must be electrogenic to fully benefit from the pmf a transport stoichiometry must be 

assumed that couples the influx of at least two H+ to the influx of each IAA- molecule. A pmf of 105 

is thus equivalent to a theoretical upper border for the cytosolic enrichment of auxin via 

electrogenic IAA- influx if a net movement of one positive charge is assumed. Hence, cytosolic IAA- 

accumulation via an active carrier-mediated influx exceeds the accumulation by passive diffusion 

of IAAH 1.000-fold.  

Since the carrier-mediated efflux of IAA- is passively posible, the driving force is determined by the 

electrochemical gradient of IAA-. If, again, a PM potenial of -180 mV is assumed this alone would 

result in a theoretical apoplastic enrichment factor for IAA- in the order of 103.  

The above-described examples show that carrier-mediated auxin transport represents an effective 

way for uptake and release of the hormone.  

 

1.3.3. Auxin transporters in A. thaliana 

 

Four predominant classes of auxin transporters have been identified in A. thaliana so far. The efflux 

facilitators of the PIN-FORMED (PIN) family (Okada et al. 1991; Gälweiler et al. 1998; Müller et al. 

1998; Friml et al. 2002a; Friml et al. 2003) and influx facilitators of the AUXIN1/AUX1-LIKE 

(AUX/LAX) family (Bennett et al. 1996; Swarup et al. 2001; Bainbridge et al. 2008). The P-

GLYCOPROTEINS (PGP) belong to the class of ATP-binding (ABC) transporters and are involved in 

influx and efflux (Noh et al. 2001; Noh et al. 2003; Geisler et al. 2005). The fourth class constitutes 

from members of the PIN-LIKES (PILS; (Barbez et al. 2012)). Additionally, with WALLS ARE THIN1 

(WAT1) an auxin transporter localized to the vacuolar membrane (VM) has been recently identified 

as well (Ranocha et al. 2013). Moreover, with experimental evidence pointing towards an auxin 
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influx function of the NO3- transporter NRT1.1 a link between auxin-controlled root development 

and the nutrient availability in the soil is provided (Krouk et al. 2010). 

 

1.3.3.1. The AUX/LAX family of auxin influx carriers 

 

The existence of a saturable auxin influx carrier with an influx optimum at a weakly acidic pH was 

first shown by Rubery and Sheldrake, (1974) in grown gall suspension culture cells. Further 

experimental data obtained from zucchini membrane vesicles revealed that auxin influx exceeds 

values predicted for a passive carrier-mediated transport, favoring a putative H+-symport 

mechanism (Lomax et al. 1985). Later, loss-of-function mutations of the A. thaliana AUX1 gene 

were found to be responsible for agravitropism and resistance against auxin-induced root growth 

inhibition (Bennett et al. 1996). A wild type-like auxin-responsiveness could be successfully 

restored by cloning of the gene and subsequent complementation of aux1 mutants (Bennett et al. 

1996). 

The amino acid sequence of AUX1 shows similarities to the AMINO ACID PERMEASE I (AAPI) of A. 

thaliana. Since auxin is a derivative of the amino acid tryptophane, and moreover, since plant 

amino acid permeases like AAPI are known to act as H+-symporters, the conclusion was drawn that 

AUX1 is the previously proposed H+-driven auxin influx carrier (Bennett et al. 1996). Additionally, 

in situ hybridization showed AUX1 expression specifically in the root apex of A. thaliana seedlings, 

further highlighting the functional connection between AUX1 and root growth (Bennett et al. 

1996). 

The first direct mechanistic evidence for AUX1 being the IAA-/H+ influx carrier was provided by 

heterologous expression of AUX1 in Xenopus leavis oocytes (Yang et al. 2006). Via uptake 

experiments of radiolabeled auxin (3H-IAA), AUX1 was characterized as a high affinity (Km=800 nM), 

saturable and pH-dependent (optimum at an external pH of 6) auxin transporter (Yang et al. 2006). 

Moreover, the binding capacity of purified AUX1 protein for its substrate IAA was found to be half 

saturable at 2.6 µM IAA with a pH optimum at pH 5.5 (Carrier et al. 2008), which is slightly more 

acidic than the value found by Yang et al. (2006) for auxin uptake. 

The above-described observation that AUX1 expression is restricted to the root apex was later 

refined. Fig. 1.4A illustrates AUX1 localization in the PM of protophloem cells, in the gravity sensing 

columella cells, in the lateral root cap, and in epidermal cells as they emerge from under the root 

cap (Swarup et al. 2001; Swarup and Peret 2012). Except for the protophloem cells, where it shows 

a basal localization, AUX1 is more or less symmetrically distributed in the PM (Swarup et al. 2001). 
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The basal AUX1 localization in protophloem cells supports phloem unloading and acropetal auxin 

transport into the root apex. AUX1 expression in the lateral root cap and epidermal cells is believed 

to be involved in basipetal transport of auxin from the apex, where a gravity stimulus is sensed, to 

the elongation zone, in which cells respond to the stimulus by differential elongation (Swarup et 

al. 2001).  

Besides the founding member AUX1, the phylogenetic tree of the AUX/LAX gene family is 

composed of the close homologs LAX1 to 3, with which it shares sequence similarities between 70 

and 80% (Fig. 1.4B and C). In addition to AUX1, LAX1 and LAX3 were shown to encode functional 

auxin influx carrier located to the PM (Yang et al. 2006; Swarup et al. 2008; Peret et al. 2012; 

Swarup and Peret 2012).  

The expression of LAX1 is restricted to the mature vascular tissue of the primary root, and LAX1 

was shown to facilitate auxin uptake when expressed in oocytes (Peret et al. 2012). LAX2 is involved 

in the formation of the vascular tissue in cotyledons of A. thaliana and is expressed in developing 

vascular tissues of the plant embryo and in the quiescent center and columella cells of seedlings 

(Peret et al. 2012). LAX3 is expressed in the A. thaliana seedling root stele and columella cells and 

additionally in cortical and epidermal cells overlaying emerging lateral root primordia. A lax3 loss-

of-function mutant was reported to show a reduced number of lateral roots, similar to aux1 

mutants (Swarup et al. 2008). Another similarity emerged through the characterisation of LAX3 in 

oocytes. Uptake experiments with 3H-IAA resulted in the similar saturable kinetics as described for 

AUX1 (Swarup et al. 2008).  

It is noteworthy that from all AUX/LAX family members only aux1 loss-of-function mutants displays 

an agravitropic and auxin-induced root growth inhibition resistant phenotype (Peret et al. 2012). 

Furthermore, quadruple aux1lax1lax2lax3 loss-of-function mutant plants show severe 

developmental defects like multiplied and clustered shoot primordia and a spiral phyllotaxis with 

irregular angles between leaves, suggesting that AUX/LAX genes have overlapping functions in 

various cell types (Bainbridge et al. 2008). 
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Fig. 1.4. The AUX/LAX gene 

family of A. thaliana. (A) 

Localization of YFP tagged AUX1 

in the root tip of A. thaliana. 

Scale bar is 20 µm. (B) 

Phylogenetic tree of the 

AUX/LAX family. (C) The 

sequence similarity between 

AUX/LAX gene family members. 

Reproduced from and © Swarup 

and Peret, (2012, originally 

published under the terms of 

the creative commons 

attribution license). 

 

 

 

 

 

1.3.3.2. PINs, PILS, and PGPs 

 

Of particular significance for PAT is the PIN family of efflux carriers. The chemiosmotic model for 

PAT predicted the existence of auxin efflux carriers, which provoke a directional auxin transport 

due to their asymmetrical distribution within the PM (Rubery and Sheldrake 1974). The existence 

of such carriers remained obscure until the founding member of the PIN gene family was identified 

after the first isolation of an A. thaliana pin1 loss-of-function mutant (Okada et al. 1991; Gälweiler 

et al. 1998). This mutant is virtually unable to develop any lateral organs at its stem and shows 

defects in the development of the vascular tissue (Okada et al. 1991). These phenotypes could be 

mimicked by growing plants in the presence of auxin efflux inhibitors like naphthylphthalamic acid 

(NPA; (Okada et al. 1991; Gälweiler et al. 1998)). PIN1 was found to localize specifically to the basal 

side of cells in the vascular tissue of stems in A. thaliana (Gälweiler et al. 1998) . The proof that 

PAT and thus root gravitropism depends on the polar localization of PINs has been provided by 

ectopic expression of GFP or hemagglutinin-tagged pPIN2:PIN1 in the pin2 background. Only if PIN1 

was localized to the basal side of root epidermal cells, a wild type-like response to a gravity stimulus 

was observed (Wisniewska et al. 2006). The pin1 mutant is devoid of lateral stem organs, because 

in wild type PIN1 directs the flow of auxin through epidermal cells of an organ primordium towards 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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its tip (Petrasek and Friml 2009). Inner cell files, which show a localization of PIN1 at the basal site, 

drain auxin from the tip (Benkova et al. 2003; Reinhardt et al. 2003; Heisler et al. 2005). This 

reversed fountain model (Benkova et al. 2003) generates auxin concentration maxima at the tip of 

each primordium in the SAM. Hence the loss of PIN1 disrupts primordium and organ development. 

In roots, with PIN2 another member of the PIN family was found to be an important efflux carrier 

for PAT during the gravitropic response (Müller et al. 1998). PIN2 localizes to the basal part of the 

PM of epidermal cells and on the apical side of the cortical cells at the root apex (Müller et al. 1998; 

Blilou et al. 2005). With PIN3 yet another member of the PIN family was found to be important for 

the root gravitropic response. PIN3 was demonstrated to localize to the apical side of the PM of 

gravity sensing columella cells in the root tip. It was further shown that PIN3 is redistributed to the 

lateral PM site of these cells after a gravity stimulus was applied from this direction (Friml et al. 

2002b). 

Besides PIN1, PIN2, and PIN3, also PIN4 and PIN7 were shown to localize to the PM (Müller et al. 

1998; Friml et al. 2002a; Friml et al. 2002b; Friml et al. 2003). The latter two transporters are 

involved in developmental processes during plant embryo development. PIN1, PIN4, and PIN7 

were reported to play crucial roles in the formation of auxin gradients just after the first cell 

division. Those gradients ensure the formation of the apical-basal body axis, shoot and root apices, 

cotyledons and the vascular tissue (Friml et al. 2002a; Benkova et al. 2003; Friml et al. 2003). All 

PM-localized PIN proteins contribute to maintaining the activity of the root apical meristem (RAM) 

from germination on by establishing a circulating auxin flow (see Fig. 1.2B) through which fractions 

of the hormone are redeployed to the root apex (Blilou et al. 2005). Later in development, PIN1, 

PIN3 and PIN7 are involved in post-embryonic organogeneses like the formation of lateral roots or 

shoot-derived organs (Benkova et al. 2003).  

Both PIN6 and PIN8 were reported to show a dual localization to the membrane of the ER and the 

PM. Additionally, they facilitated auxin efflux in tobacco suspension cells (Petrasek et al. 2006; 

Ganguly et al. 2010; Dal Bosco et al. 2012; Ding et al. 2012; Simon et al. 2016). The remaining PIN5 

was found to be solely localized to the ER membrane where it seems to fulfill auxin loading of the 

ER (Mravec et al. 2009). 

Together with the ubiquitously expressed transporters of the PILS family (Barbez et al. 2012) PIN5, 

6 and 8 are not described to contribute significantly to PAT but rather to fulfill functions in 

maintaining intracellular auxin homeostasis by compartmentalization of the hormone and fine-

tuning signaling by withdrawing auxin from the cytosol (Mravec et al. 2009; Dal Bosco et al. 2012; 

Ding et al. 2012). The importance of intracellular auxin transporters is highlighted by the defects 
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that follow loss or overexpression of PILS transporters. Those defects encompass dwarfed growth, 

sterility, short hypocotyls and higher lateral root density (Barbez et al. 2012). 

Four out of 21 members of the A. thaliana P-GLYCOPROTEIN/MULTIDRUG-RESISTANCE/ATP 

BINDING CASSETTE B (PGP/MDR/ABCB) subfamily of ABC proteins were described to transport 

auxin actively across the PM energized by ATP hydrolysis. In A. thaliana loss-of-function abcb1 and 

abcb19 mutants showed auxin-related growth and developmental defects like dwarfed growth, a 

reduced apical dominance, and enhanced tropic responses (Noh et al. 2001; Noh et al. 2003). Lack 

of ABCB1 and 19 leads to a disturbed basal localization of PIN1 in hypocotyl cells, which seems to 

represent the underlying mechanism of the phenotype, as it results in a reduced basipetal but 

increased lateral flow of auxin (Noh et al. 2001; Noh et al. 2003). ABCB1 and 19 were further 

characterized as auxin efflux facilitators in heterologous expression systems and abcb1 mutant 

mesophyll protoplasts (Geisler et al. 2005). The transport characteristics of the remaining ABCBs 4 

and 21 are not yet clearly resolved, due to contradictory results obtained in heterologous and 

homologous expression systems (Cho et al. 2007; Yang and Murphy 2009; Kamimoto et al. 2012).  

 

1.3.4. The auxin perception mechanism 

 

Mechanistically, auxin shares its main perception and signal transduction pathway with the other 

phytohormones jasmonic acid and gibberellic acid. The core component of this mechanism is an 

SCF-E3-type ubiquitin ligase. This complex is composed of an RING-BOX PROTEIN1 (RBX1), which 

transfers ubiquitin to the substrate, and the scaffolding component CULLIN1 (CUL1). The adaptor 

protein ARABIDOPSIS SKP1 HOMOLOG1 (ASK1) connects the CUL1 to a hormone and substrate 

specific F-box protein as the high-affinity hormone receptor. In case of auxin, the F-box proteins 

are the redundant receptors TRANSPORT INHIBITOR RESPONSE1 (TIR1) and AUXIN SIGNALING F-

BOX PROTEIN1-3 (AFB1-3) (Gray et al. 1999; Dharmasiri et al. 2005a; Dharmasiri et al. 2005b; 

Kepinski and Leyser 2005; Santner et al. 2009; Lavy and Estelle 2016).  

Nuclear auxin perception results in physiological responses mainly by modulating gene expression 

(Guilfoyle and Key 1986; Theologis 1986; Abel and Theologis 1996). Two classes of transcription 

factors provide the link between perception and transcription. Proteins of the family of 

Aux/INDOLE-3 ACETIC ACID (Aux/IAAs, 29 members in A. thaliana) repress the function of AUXIN 

RESPONSE FACTORS (ARFs, 23 members in A. thaliana; (Kim et al. 1997; Ulmasov et al. 1997a; 

Ulmasov et al. 1997b; Tiwari et al. 2001; Guilfoyle and Hagen 2007)). ARFs were shown to directly 

bind auxin response elements (AuxRE) within the promotor regions of auxin-responsive genes 
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(Ulmasov et al. 1997a). Depending on their structure, ARFs can either fulfill activating or a 

repressing function on transcription (Guilfoyle and Hagen 2007). Repression involves the 

recruitment of TOPLESS (TPL) and TPL-related (TPR) co-repressors by Aux/IAAs (Szemenyei et al. 

2008). Through the interaction with histone deacetylases, they seem to promote chromatin 

condensation, resulting in transcriptional repression (Long et al. 2006; Kagale and Rozwadowski 

2011). Those interactions, however, are only persistent in the absence of auxin. The hormone 

mediates the recruitment of Aux/IAAs as substrates to the ubiquitin ligase SCFTIR1/AFB (Gray et al. 

2001; Dharmasiri et al. 2005a; Kepinski and Leyser 2005). Marked by polyubiquitin, Aux/IAAs are 

degraded by the 26S-proteasome (Gray et al. 2001). Hence, ARFs are no longer functionally 

repressed, and transcription is altered. The expression of Aux/IAA repressors, however, is itself 

under control of auxin. Auxin stimulates Aux/IAA expression thereby generating a negative 

feedback loop within the signal transduction pathway (Abel and Theologis 1996). 

 

1.3.5. Auxin and its role in nutrient foraging 

 

Roots supply the aerial tissues with essential elements like potassium, nitrogen, phosphorus, iron 

and sulfur. The chemical cross-reactivity between these nutrients and other soil components, their 

solubility in water and competition with neighboring plants, however, will limit nutrient availability 

(Lopez-Bucio et al. 2003; Lynch 2011; Peret et al. 2011). Pi is among the nutrients for which 

starvation induces a postembryonic remodeling of the architecture of plant root systems for better 

nutrient exploitation (Lynch and Brown 2001; Lopez-Bucio et al. 2003).  

In A. thaliana, Pi starvation (< 10 µM) leads to growth inhibition of the primary root, because of 

loss of meristematic identity. At the same time, a lack of Pi supply was described to causes an 

increased initiation, growth and branching of lateral roots especially at zones near the shoot 

(Williamson et al. 2001; Lopez-Bucio et al. 2002; Al-Ghazi et al. 2003; Sanchez-Calderon et al. 2005). 

In Pi starved soils, plants also develop longer root hairs with higher density, thus contributing to 

an increased root surface for nutrient resorption (Bates and Lynch 1996; Ma et al. 2001). The larger 

number and length of root hairs was shown to be further augmented with an enhanced Pi uptake 

capacity of root hairs (Bates and Lynch 2000).  

Auxin is one of the main factors that determines the root architecture and it is therefore likely that 

Pi starvation affects root growth by altering auxin gradients which were shown to be necessary for 

RAM maintenance and initiation of lateral root development (Friml et al. 2002a; Benkova et al. 

2003; Friml et al. 2003).  
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In Pi-starved A. thaliana plants, the expression levels of the auxin receptor encoding gene TIR1 and 

of the transcriptional auxin response reporter pDR5:GUS showed increased basal auxin responses 

in root meristems and especially in pericycle cells (Nacry et al. 2005; Perez-Torres et al. 2008; Perez 

Torres et al. 2009). In line with these results, the tir1 mutant is insensitive to Pi starvation with 

respect to lateral root formation, although it still shows starvation-dependent inhibition of primary 

root elongation (Perez-Torres et al. 2008). Based on these results, it was suggested that low Pi-

dependent growth inhibition of the primary root is due to the increased auxin response in the RAM 

(Nacry et al. 2005). This is believed to cause the differentiation of meristematic cells, loss of 

quiescent center identity and a stop in cell elongation (Sanchez-Calderon et al. 2005). Shootwards, 

however, a higher auxin level or sensitivity promotes lateral root initiation and growth from 

pericycle cells (Nacry et al. 2005). 

As already mentioned, Pi starvation also promotes root hair growth. Under non-starving 

conditions, differentiation of epidermal cells into root hair cells starts at the basal end of the 

elongation zone. However, under Pi starvation, also non-hair cells develop root hairs, and because 

the meristematic identity at the primary root is lost and cells are differentiated root hair growth is 

already visible at much more apical positions (Müller and Schmidt 2004; Stetter et al. 2015). 

 

1.4. Ca2+ signaling in plants 

 

The sessile lifestyle of plants implies a high flexibility of growth and development to adapt to an 

ever-changing environment. The perception of environmental stimuli like water availability, light, 

wounding, mechanical cues, herbivory and pathogens, often triggers long-range signals 

transmitted to distal parts of the plant, where they trigger transcriptional, biochemical and 

metabolical alterations leading up to changes in growth and development (Choi et al. 2016). Those 

signals were shown to include small RNAs (Yoo et al. 2004), peptides (Reid et al. 2011), proteins 

(Corbesier et al. 2007), hormones like auxin (Darwin et al. 1880), sugars (Mason et al. 2014), 

volatile compounds (Baldwin et al. 2006), hydraulic signals (Farmer et al. 2014), electrical signals 

(Zimmermann et al. 2009), reactive oxygen species (ROS; (Alvarez et al. 1998)) and Ca2+ (Choi et al. 

2014). For this plethora of signals three main routes through plant tissues are described by Gilroy 

et al. (2014): (i) the symplastic route connects the cytosol of nearby cells via plasmodesmata; (ii) 

signals which take the apoplastic route are transmitted in the space between adjacent cells and 

(iii) the vascular route allows the long-range transmission of signals between cells, tissues and plant 
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organs which are connected via the vasculature. Among all those signals, Ca2+ stands out as an 

universal second messenger in plant physiology (Choi et al. 2016; Gilroy et al. 2016). 

 

1.4.1. Cytosolic Ca2+ influx 

 

Across plant species, the basal [Ca2+]cyt was shown to be maintained at a low level of approximately 

200 nM (Felle 1988b; Bethmann et al. 1995; Felle and Hepler 1997; Wymer et al. 1997). The free 

Ca2+ concentrations in storage compartments, foremost the vacuole, the ER, and the apoplast, 

however, are believed to be in the low millimolar range (Bose et al. 2011). Together with the 

cytosolic negative electrical polarization of the plasma- and organelle membranes, these steep 

gradients allow a very fast release of Ca2+ into the cytosol. Ca2+ signals are observed as transient 

changes of [Ca2+]cyt. This requires at least two separate transport systems: while Ca2+-permeable 

ion channels with their high transport rates account for a very fast and passive Ca2+ influx along 

the steep electrochemical gradients, primary and secondary active Ca2+ transporters are 

speculated to decrease the [Ca2+]cyt during a subsiding signal and to maintain the low basal [Ca2+]cyt 

in between signals (Tuteja and Mahajan 2007; Roelfsema and Hedrich 2010).  

In the case of Ca2+ influx across the PM, the experimental evidence points towards the existence 

of voltage-dependent, voltage-independent, and ligand- as well as osmotically activated Ca2+-

permeable channels. Except for the ligand-activated channels, the genetic identities of those Ca2+-

permeable channels are, however, largely unknown (Roelfsema and Hedrich 2010; Jammes et al. 

2011; Hedrich 2012; Swarbreck et al. 2013). Hyperpolarisation-activated Ca2+-permeable channels 

are described in acting on stomatal movement in guard cells (Grabov and Blatt 1998; Köhler and 

Blatt 2002; Stoelzle et al. 2003), in pollen tubes (Qu et al. 2007) and to co-exist with voltage-

independent Ca2+-permeable channels in roots, where both types seem to be involved in cell 

elongation (Very and Davies 2000; Demidchik et al. 2002; Foreman et al. 2003). Discussed to be 

among the ligand-activated Ca2+ channels are the CYCLIC NUCLEOTIDE-GATED CHANNELS (CNGCs) 

and the amino acid-gated GLUTAMATE RECEPTOR-LIKEs (GLRs) (Dietrich et al. 2010; Hedrich 2012). 

Members of the CNGC family were shown to be functional Ca2+-permeable channels involved in 

the formation of Ca2+ signals needed for pollen tube growth and guidance, immune responses, 

auxin-regulated root gravitropism and nuclear Ca2+ spiking events preceding root symbiosis in 

Medicago truncatula (Yoshioka et al. 2006; Zhou et al. 2014; Charpentier et al. 2016; DeFalco et al. 

2016; Gao et al. 2016). Concerning A. thaliana GLRs, several members of this family were shown 

to mediate Ca2+ influx associated with long-range transmission of wound-induced electrical signals, 
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root gravitropism, pollen tube growth and immune responses (Qi et al. 2006; Miller et al. 2010; 

Michard et al. 2011; Vincill et al. 2012; Li et al. 2013; Manzoor et al. 2013). To date, with REDUCED 

HYPEROSMOLALITY INDUCED [Ca2+]cyt INCREASE 1 (OSCA1) and Ca2+ PERMEABLE STRESS GATED 

CATION CHANNEL1 (CSC1) two PM-localized osmotically activated Ca2+ channels have been 

identified in A. thaliana (Hou et al. 2014; Yuan et al. 2014). Patch-clamp experiments confirmed 

OSCA1 as a voltage-independent and hyperosmolarity-activated cation channel with a selectivity 

for K+ over Ca2+ (Yuan et al. 2014). Analysis of a loss-of-function mutant revealed OSCA1 to function 

as an osmo-sensor by mediating osmolarity-induced Ca2+ signaling in guard cells and roots with 

implications on stomatal closure and root growth in response to osmotic stress (Yuan et al. 2014).  

CSC1 lead to hyperosmolarity-induced transient Ca2+ siganls when expressen in Chinese Hamster 

Ovary cells (Hou et al. 2014). Heterologous expression of CSC1 in oocytes revealed channel 

characteristics similar to OSCA1. CSC1 showed a voltage-independent as well as a hyperosmolarity-

activated behaviour and channel-deactivation was shown to dependent on the presence of Ca2+ in 

the bath (Hou et al. 2014). 

In the case of Ca2+ influx from the vacuole, TPC1 is so far the only vacuolar ion channel for which a 

possible role in Ca2+ release has been brought forward (Ward and Schroeder 1994). However, the 

ability of TPC1 to conduct Ca2+ at physiological conditions has not unequivocally been 

demonstrated. Nevertheless, both luminal and cytosolic Ca2+ levels regulate the gating properties 

of TPC1, albeit with opposing effects. While a rise in the luminal Ca2+ concentration shifts the 

voltage-threshold to depolarizing potentials, increasing [Ca2+]cyt causes a change to more 

hyperpolarized, i.e. to more physiological potentials (Hedrich and Marten 2011). The latter 

response, together with a Ca2+ permeability of the TPC1 channel, lead to the theory that TPC1 

facilitates Ca2+-induced Ca2+ release (CICR) from the vacuole (Ward and Schroeder 1994; Bewell et 

al. 1999). A direct proof of the physiological relevance of TPC1 for CICR, however, remained elusive 

(Hedrich and Marten 2011; Hedrich 2012). In recent years TPC1 was demonstrated to be essential 

for the long-range and systemic transmission of Ca2+ signals induced by salt stress and mechanical 

wounding. The rapid shootward propagation of a salt stress-induced Ca2+ wave in the root, as well 

as the transmission of a local wound-induced Ca2+ signal to neighboring leaves, were both impaired 

in the tpc1 loss-of-function mutant (Choi et al. 2014; Kiep et al. 2015).  

As outlined below, long range Ca2+ signaling is likely to be interwoven with the propagation of an 

ROS wave. TPC1 might provide a mechanistic link between the two messenger molecules (Gilroy 

et al. 2014), as ROS were shown to suppress vacuolar Ca2+ release and the activity of the TPC1 

channel (Pottosin et al. 2009). Moreover, TPC1 was shown to be essential for the formation of a 
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salt stress induced apoplastic ROS wave in roots of A. thaliana (Evans et al. 2016). The sensitivity 

of TPC1 against ROS, combined with the apparent requirement of TPC1 for the long-range 

propagation of Ca2+ and ROS signals, point to an important role of TPC1 in the propagation of 

systemic signals.  

 

1.4.2. Function and propagation Ca2+ signals in plants 

 

Apart from stress signalling, cytosolic Ca2+ signals were described to play pivotal roles in the 

movement of stomata (Allen et al. 2000; Allen et al. 2001), the apical growth of pollen tubes and 

root hairs (Pierson et al. 1996; Bibikova et al. 1997), the control of the circadian rhythm (Love et 

al. 2004), tropic responses (Toyota et al. 2008) and fertilization (Denninger et al. 2014). As 

described above, Ca2+ signals are of a transient nature. The kinetics of the signal, however, were 

found specific for each stimulus and the subsequent response. The different kinetic patterns or 

“signatures” (Webb et al. 1996) of alterations of the [Ca2+]cyt are defined by waveform, frequency, 

amplitude as well as their spatiotemporal transmission in plant tissues. Ca2+ signatures are 

discussed to encode stimulus-specific information, which is integrated to evoke specific 

physiological responses (Dodd et al. 2010; Kudla et al. 2010; Hashimoto and Kudla 2011; Batistic 

and Kudla 2012; Gilroy et al. 2014). For example, in A. thaliana roots the wave-like shootward 

propagation of a Ca2+ signal was triggered after a local salt stress was applied (Choi et al. 2014). In 

Medicago truncatula and Alfalfa root hairs, however, the exposure to nodulation factors, leads to 

the induction of cyosolic and nuclear Ca2+ spiking events (Ehrhardt et al. 1996; Miwa et al. 2006; 

Charpentier et al. 2016). The different Ca2+ signals, triggered by salt stress or Nod factors seem to 

have a specific influence on gene expression. This correlation was shown for the induction of 

nodulation-specific gene expression in M. truncatula root hairs, which required a minimal number 

of 36 consecutive Ca2+ spikes (Miwa et al. 2006), as well as in A. thaliana, for which different Ca2+ 

signatures were shown to result in correspondingly different transcriptional changes (Whalley et 

al. 2011). 

In order to act as a specific signal, [Ca2+]cyt must be sensed by Ca2+ binding proteins which integrate 

Ca2+ signals into physiological processes depending to their diverse subcellular localizations, Ca2+ 

affinities, and target proteins. ELONGATION FACTOR (EF)-hand motifs contain a Ca2+ binding α-

helix-loop-α-helix structure and are responsible for the Ca2+-sensitivity of many proteins. Ca2+ 

sensors can be divided into those which unite a Ca2+ binding function with a protein kinase activity 

and those proteins, which have no kinase function and relay the signal via Ca2+-dependent protein-
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protein interactions. To the first group belong the plant-specific Ca2+-DEPENDENT PROTEIN 

KINASES (CDPKs or CPKs) and the Ca2+ specific interaction between CALCINEURIN B-LIKE (CBL) and 

CBL-INTERACTING PROTEIN KINASES (CIPKs) in which CBLs act as the Ca2+ sensors activating the 

kinase function of the interacting CIPKs. The second group contains the conserved CALMODULIN 

(CaM) and the plant-specific CaM-like (CML) proteins that alter downstream processes by Ca2+-

dependent protein-protein interactions (Sanders et al. 2002; Hashimoto and Kudla 2011; Mao et 

al. 2016; Ranty et al. 2016).  

Although a link between Ca2+ signatures and a specific response seems to be well described, less is 

clear about how long-range Ca2+ signals are transmitted in plant tissues. The experimental evidence 

points towards Ca2+ signals being intertwined with other long-range signal transduction 

mechanisms, most notably electrical signals and ROS (Gilroy et al. 2014; Choi et al. 2016; Choi et 

al. 2017). Well studied examples for electrical signals which spread through plant tissues are the 

fast and self-propagating action potentials (APs) (Fromm and Lautner 2007). APs are tightly linked 

to the movement of Ca2+ (Fromm and Lautner 2007). For example, APs of the giant green algae 

Chara occur simultaneously with the release of Ca2+ from internal stores (Plieth et al. 1998) and 

three consecutive APs induce a transient Ca2+ signal in the gland cells of Dionaea muscipula 

(Escalante-Perez et al. 2011). APs are believed to start with the initial influx of Ca2+ through e.g. a 

mechanosensitive channel resulting in the subsequent Ca2+-dependent activation of anion 

channels resulting in the fast depolarization phase of the AP (Fromm and Lautner 2007; Choi et al. 

2016). Moreover, the systemic propagation of AP-like wound-induced PM potential changes in A. 

thaliana, recorded by either surface potential electrodes or phloem-penetrating aphids, depends 

on the presence of the two putative Ca2+ channels GLR3.3 and GLR3.6 (Mousavi et al. 2013; 

Salvador-Recatala et al. 2014; Salvador-Recatala 2016). 

The second example of a wave-like signal transmitted over long distances in planta and which is 

also linked to Ca2+ signaling are ROS (Miller et al. 2009; Mittler et al. 2011; Gilroy et al. 2014; Choi 

et al. 2016). In A. thaliana, the apoplastic generation of ROS and their systemic propagation was 

shown to dependent on the presence of the PM-localized NADPH oxidases RESPIRATORY BURST 

HOMOLOGS (RBOHs) (Sagi and Fluhr 2001; Miller et al. 2009). The activity of these enzymes 

depends on the [Ca2+]cyt at multiple levels, for which regulatory features present in the N-terminal 

domain are responsible (Choi et al. 2016; Choi et al. 2017). The presence of EF-hand motifs allows 

an immediate level of Ca2+-dependent regulation. N-terminal phosphorylation through CPKs and 

CBL/CIPK complexes together with Ca2+-dependent accumulation of phosphatidic acid that binds 

to the N-terminal region of RBOHs mediate indirect integrations of Ca2+ signals into ROS production 
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(Ogasawara et al. 2008; Zhang et al. 2009; Kimura et al. 2012; Dubiella et al. 2013; Gilroy et al. 

2014; Choi et al. 2016; Choi et al. 2017). The functional interdependence of Ca2+ and ROS signals 

has been reported in several studies. Experiments on guard cells of the A. thaliana rbohdrbohf 

double losss-of-function mutant, for example, have shown that the abscisic acid (ABA)-dependent 

activation of PM-localized Ca2+ channels and thus Ca2+ influx, in turn, dependents on the production 

of ROS (Kwak et al. 2003). A comparable effect was reported for A. thaliana roots where RBOHC 

produced ROS stimulate the activity of hyperpolarization-activated Ca2+ channels essential for root 

hair elongation (Foreman et al. 2003). Additionally, the Ca2+ binding protein CPK5 was shown to 

target RBOHD for activation through its N-terminal phosphorylation directly, and the cpk5 mutant 

was reported to consequently lack the ability for the systemic propagation of an ROS signal to distal 

leaves upon a local flagellin treatment (Dubiella et al. 2013). Moreover, the salt stress-induced 

shootward propagating Ca2+ wave in A. thaliana roots, which was already mentioned above, 

enhances the expression of ROS-induced marker genes like ZAT12 in the shoot (Choi et al. 2014) 

and was recently shown to be abolished when roots were treated with the ROS scavenger 

ascorbate (Evans et al. 2016). Those findings led to the development of a positive feedback model, 

in which the production of ROS by RBOHs stimulate the activity of Ca2+ channels. The subsequent 

elevation of the [Ca2+]cyt then feeds back on the activity of RBOHs through the above described 

regulatory mechanisms including Ca2+ binding and Ca2+-dependent phosphorylation (Kwak et al. 

2003; Mittler et al. 2011; Kimura et al. 2012; Dubiella et al. 2013; Gilroy et al. 2014; Evans et al. 

2016). Gilroy et al. (2014) described that this model, however, cannot be applied to the long-range 

transmission of Ca2+ signals without problems. The cytosol, with its low basal Ca2+ level and the 

connection of adjacent cells via plasmodesmata, is a suitable transmission medium for Ca2+ signals, 

but due to the abundance of essential processes sensitive to oxidative damage therein, the more 

appropriate transmission compartment for ROS is the apoplast. However, the high Ca2+ buffering 

capacity of the cytosol in concert with the apoplastic scavenging of ROS might limit the long-range 

transmission of a combined signal. The limited range and slow diffusion velocities of both Ca2+ and 

ROS signals might be compensated by simultaneously propagating electrical signals. Those were 

shown to be associated with Ca2+ signals, and the same might be true for ROS signals since the 

propagation of surface potential changes to distal leaves of A. thaliana in response to a local heat, 

or excess light stimulus was reported to depend on the presence of RBOHD (Suzuki et al. 2013). 

Therefore a model is discussed in which the mutual maintenance of Ca2+, ROS, and electrical signals 

accounts for the systemic propagation of those signals in plants (Steinhorst and Kudla 2013; Suzuki 

et al. 2013; Gilroy et al. 2014; Choi et al. 2016; Gilroy et al. 2016; Choi et al. 2017). 
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1.4.3. The role of Ca2+ in auxin physiology 

 

Externally applied auxin triggers fast cytosolic Ca2+ signals in various cell types and plant species, 

like mesophyll protoplasts from wheat (Shishova and Lindberg 2004), coleoptiles and roots of 

maize (Felle 1988a; Gehring et al. 1990) and roots of A. thaliana (Monshausen et al. 2011). The 

apoplast and internal Ca2+ stores contribute to an auxin-induced Ca2+ release, which is most likely 

independent from transcriptional changes induced by the SCFTIR1/AFB signaling cascade, based on 

the speed of the emerging signal (Vanneste and Friml 2013). So far, the only Ca2+-permeable 

channel identified to be involved in auxin-induced cytosolic Ca2+ signals in A. thaliana is the PM-

localized CNGC14 (Shih et al. 2015). Within their study, the authors propose that CNGC14-

dependent Ca2+ signals are likely elicited through apoplastic perception of the gravitational 

redirected auxin flow. These [Ca2+]cyt elevations should further be necessary for apoplast 

alkalization and the subsequent reduction of cell elongation, which leads to realignment of the 

root growth direction with the gravitational vector. With this model, the work by Shih et al. (2015) 

drove a mechanistic explanation forward concerning earlier findings which showed that Ca2+ 

moves asymmetrically through gravity-stimulated roots and that Ca2+ chelators have an inhibitory 

effect on root gravitropism (Lee et al. 1983a, b; Bjorkman and Leopold 1987).  

As it was described above, it has long been known that auxin has a concentration-dependent effect 

on cell elongation. Ca2+ signaling was shown to be integrated into cell elongation through the 

regulation of the activity of the PM H+-ATPase AHA2 (Fig. 1.5A). This H+ pump is apparently 

regulated by the phosphorylation status of its C-terminus within minutes after auxin application 

(Takahashi et al. 2012; Fendrych et al. 2016). While phosphorylation of the penultimate threonine 

residue (Thr-947 of AHA2) enables the interaction with 14-3-3 proteins and the subsequent 

activation of AHA2, phosphorylation of the Ser-931 residue has the opposite effect (Fuglsang et al. 

1999; Fuglsang et al. 2007; Takahashi et al. 2012). Mechanistically, low auxin concentrations 

stimulate AHA2 activity through the stabilization of the phosphorylated Thr-947 by SMALL AUXIN 

UP RNA19 (SAUR19)-dependent inhibition of the PP2C-D1 phosphatase (Spartz et al. 2014). Higher 

auxin concentrations, on the other hand, lead to the Ca2+-dependent phosphorylation of Ser-931 

through the Ca2+ sensing protein CBL2 and its interacting protein kinase CIPK11 (Fuglsang et al. 

2007). 

Although the Ca2+-dependent alterations of AHA2 activity have an indirect effect on cellular auxin 

transport via pmf modulation, there also exists experimental evidence that [Ca2+]cyt regulates the 
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activity of auxin transporters directly via Ca2+ binding proteins. In fact, the general importance of 

Ca2+ availability for PAT has long been known (Dela Fuente and Leopold 1973; Dela Fuente 1984). 

Fig. 1.5B summarizes the current knowledge of the impact of auxin-induced Ca2+ signals on auxin 

influx and efflux. So far, it has gotten clear that members of two sub-families of AGCVIII class 

protein kinases interact with PIN and ABCB auxin efflux facilitators. The first subfamily constitutes 

of the serine/threonine kinase PINOID (PID) and its close homologs WAVY ROOT GROWTH1 and 2 

(WAG1/2; (Christensen et al. 2000; Dhonukshe et al. 2010)). PID/WAGs-dependent 

phosphorylation of PIN1 and PIN3 was reported to enhance auxin-efflux in the Xenopus oocyte 

expression system, as well as in planta and to interfere with PIN polarity (Michniewicz et al. 2007b; 

Kleine-Vehn et al. 2009; Dhonukshe et al. 2010; Zourelidou et al. 2014). The influence of PID on 

ABCB1 depends on its interaction with the Immunophilin-like TWISTED DWARF1 (TWD1) (Henrichs 

et al. 2012; Wang et al. 2013a). The integration of Ca2+ signals seems to occur via the Ca2+-

dependent interaction of PID with the Ca2+ binding proteins PID BINDING PROTEIN1 (PBP1) and 

TOUCH3 (TCH3) (Benjamins et al. 2003). The second subfamily of AGCVIII kinases contains four 

functional redundant D6 PROTEIN KINASEs (D6PKs), which were also found to positively regulate 

auxin efflux in planta as well as in oocytes  (Zourelidou et al. 2009; Barbosa et al. 2014; Zourelidou 

et al. 2014).  

Because of the close relationship between D6PKs and PID/WAGs, a Ca2+-dependent regulation of 

D6PKs is discussed, however, not yet confirmed (Vanneste and Friml 2013). Both, pid/wag and 

d6pk loss-of-function mutants show phenotypes, like defects during embryogenesis, defects in the 

SAM, and in lateral root formation similar to those of pin mutants, thus highlighting their 

importance for a proper PIN-dependent auxin transport (Willige and Chory 2015). Concerning 

auxin influx, only the putative NO3--regulated auxin influx carrier NRT1.1 (Krouk et al. 2010) has 

been shown to be phosphorylated by the Ca2+-dependent kinase CIPK23 (Cheong et al. 2007; Ho et 

al. 2009). This phosphorylation enhances the affinity of NRT1.1 for its primary substrate NO3-, thus 

reducing its auxin transport capacity.  
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Fig. 1.5: Integration of Ca2+ signals into auxin physiology. (A) Low auxin concentrations stimulate apoplastic acidification, 

and in return cell elongation, through stabilization of the Thr-947 phosphorylation of AHA2. High auxin levels are thought 

to lead to a Ca2+-induced activation of CBL2/CIPK11 that phophorylates of Ser-938 in AHA2 and inhibits the activity of this 

H+-ATPase. The figure was updated and expanded after Vanneste and Friml, (2013). (B) The Ca2+-dependent interaction of 

PID with PBP1 and TCH3 regulates the activity of PIN and ABCB efflux transporters. PID interaction with ABCB depends on 

TWD1, which also stimulates ABCB, independently from PID. A Ca2+-dependent regulation of D6PK is still elusive (doted gray 

arrow). CIPK23 regulates the auxin influx capacity of NRT1.1).  

 

1.5. A. thaliana root hair cells – an attractive in planta system to study vacuoles and 

auxin transport 

 

The intracellular localization of vacuoles complicates their analysis in planta. Before the patch-

clamp technique was available, intracellular microelectrodes were used for in planta analysis of 

vacuolar properties including the VM potential (Spanswick and Williams 1964), luminal pH (Penny 

and Bowling 1975) and abundance of different ions (Spanswick and Williams 1964; Dunlop and 

Bowling 1971). Also the electrical conductance of the VM has been probed in vivo before in Avena 

coleoptiles, maize suspension culture cells and mostly in giant algae of the Characeae family like 

Nitella and Chara (Goldsmith and Cleland 1978; Tester et al. 1987; Holdaway-Clarke et al. 1996). 

The development of the patch-clamp technique (Neher et al. 1978) and its first application to 

isolated plant vacuoles (Hedrich et al. 1986), however, was key to gain detailed insights into the 

electrophysiological characteristics of vacuolar transport and its genetic background (Gobert et al. 

2007; Schulz et al. 2011; Rienmüller et al. 2012; Jaslan et al. 2016). The patch-clamp technique, 

together with experimental approaches that employed heterologous expression systems such as 

https://en.wikipedia.org/wiki/Characeae
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oocytes or yeast cells (Kovermann et al. 2007; Latz et al. 2007; Klemens et al. 2013), advanced the 

knowledge of how individual transporters and ion channels work and are being regulated. In planta 

approaches to probe the electrical properties, however, benefit from the presence of a nearly 

undisturbed cytoplasm, including regulatory proteins like the aforementioned Ca2+ binding CPKs 

and CBL/CIPKs. The undisturbed connection between the VM and the cytoplasm is important to 

probe the modulations of vacuolar transport processes in response to external chemical or 

mechanical cues that trigger local or systemic signaling events.  

At the experimental site, root hair cells of A. thaliana display important characteristics that make 

them an optimal model system, both for the analysis of the electrical properties of vacuoles and 

auxin transport and signaling in planta. Root hair cells have the advantage that they are easily 

accessible for microelectrodes and imaging approaches at hydroponically grown plants (Lew 2004; 

Jeworutzki et al. 2010). Additionally, the root hair tip is typically devoid of the vacuole, which allows 

for the differentiation of cytoplasmic against vacuolar microelectrode impalement. Moreover, root 

hair cells were demonstrated to tolerate the impalement with two individual microelectrodes, thus 

enabling the simultaneous observation of the electrical properties of the VM and those of the PM 

(Lew 2004). 

At the physiological site, the VM of root hair cells seems to contain nearly all important 

transporters and channels described earlier in this work. Fig. 1.6A shows the gene expression of 

known vacuolar active and passive transporters, as well as of ion channels in A. thaliana root 

epidermal cells extracted from data published by Lan et al., (2013) and Birnbaum et al., (2003). 

Additionally, Fig. 1.6B provides an overview of the functions and the so far known transport 

mechanisms of some relevant transporters. Among the highly expressed genes are TPC1, CAX2 and 

ACA11, which are putatively important for vacuolar Ca2+ release and uptake during Ca2+ signaling 

events (Roelfsema and Hedrich 2010; Bose et al. 2011; Choi et al. 2014). Moreover, transport 

proteins for essential nutrients like Pi (PHT5.1), NO3- (ClCa), Cl- (ClCc, ALMT9, DTXs), K+ (TPC1, 

NHX1, TPKs), as well as for Zn2+ and Mg2+ (MTP1, MGT2, MHX1), seem to be present in the VM of 

root epidermal cells (Martinoia et al. 2012; Liu et al. 2015; Zhang et al. 2017a). ESL1, TMT1, and 

SWEET16 represent the capacity to store and release sugars from root cell vacuoles (Yamada et al. 

2010; Schulz et al. 2011; Klemens et al. 2013). The different ABCCs, together with heavy metal 

transporters like COPT5 and NRAMP4 confer the ability to sequester xenobiotics, secondary 

metabolites and heavy metals (Martinoia et al. 2012; Klemens et al. 2013). 
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Fig. 1.6: Expression profiles and functions of vacuolar pumps, ion channels and transporters in root epidermal cells 

extracted from data published by Lan et al. (2013) and Birnbaum et al. (2003). (A) The selection of genes and the 

categorization on the left regarding the transported substrates corresponds to Martinoia et al. (2012). Categorization is as 

follows. I: H+-pumps; II: cation transporter; III: anion transporter; IV: carbohydrate transporter; V: heavy metal transporter; 

VI: nucleoside transporter; VII: oligopeptide transporter. In addition to Martinoia et al. (2012), H+-pumps were added due 

to their importance by providing the trans-tonoplast H+-gradient. SWEET16 and 17 were shown to encode vacuolar sugar 

transporters (Chardon et al. 2013; Klemens et al. 2013; Guo et al. 2014). KCO3 encodes a putative vacuolar K+-channel 

(Rocchetti et al. 2012). ALMT3 is a putative vacuolar member of the ALMT family (Kovermann et al. 2007) and the PHT 

family was recently shown to include the vacuolar Pi  channel PHT5.1 (Liu et al. 2015; Liu et al. 2016). The left bar chart 

shows expression data from two independent RNA-sequencing experiments (as indicated by the black and white bars) on 

A. thaliana root hair protoplasts published by Lan et al. (2013). Protoplasts were isolated from the first 10 mm of roots from 

5d old seedlings. Root hair protoplasts were isolated from other cells, based on their expression of the green fluorescent 

protein (GFP) under the root hair-specific promotor of EXPANSIN 7. Expression data are shown in reads per kilobase per 

million mapped reads (RPKM). The right bar chart shows expression data of the same genes but extracted from microarray 

data published by Birnbaum et al. (2003). This data shows the expression profiles (as the average of three replicates) of 

epidermal cell protoplasts (tricho- and atrichoblasts) of roots from 5d old A. thaliana seedlings. From three developmental 

stages published, the latest stage is displayed. Its lower border from the root tip up was defined by Birnbaum et al. (2003) 

by the start of the longitudinal expansion, and fully elongated root hairs defined the upper border of stage 3. GFP marker 

lines were used for isolation of protoplasts from specific tissues (pGLABRA2::GFP for epidermal cells). Expression data are 

shown as the microarray hybridization signal. Genes of which expression profiles could not be retrieved from the data sets 

are marked with not detectable (n.d.). (B) A functional representation of transport processes between the cytosol (beige) 

and the vacuolar lumen (green) of A. thaliana root hair cells of each category from (A). Transporter names are shown 

outside the root hair cell and substrates inside in the vacuolar lumen. Ion channels are depicted in blue, secondary active 

and passive transporters are depicted in yellow and primary active transporters are green. Black arrows represent substrate 

transport routes, and in cases of H+ co- or antiport the cytosolic influx of H+ is represented by red arrows. The depicted pH 

values are according to Bibikova et al. (1998) and Bassil et al. (2011) for growing root hair cells. Abbreviations are: X+/2+ 

mono- or divalent cation; HM heavy metal; GS-x glutathione conjugate 

 

Just like root hairs are a perfect system to study the vacuole, they are equally suitable to study 

auxin transport in real time with electrophysiological methods. Auxin is regarded as the main 

regulator of primary and lateral root growth. Moreover, it is also believed to be essential for root 

hair development (Masucci and Schiefelbein 1994; Pitts et al. 1998). Both, the auxin transport 

mutants pin2 and aux1, as well as the auxin quadruple receptor mutant tir1afb1afb2afb3, display 

a short root hair phenotype (Dharmasiri et al. 2005b; Jones et al. 2009; Rigas et al. 2013). AUX1 

was recently shown to be important for the promotion of root hair growth during Pi-starvation in 

A. thaliana and Oryza sativa (Bhosale et al. 2017; Giri et al. 2017). Root hair-specific expression of 

any PM-localized PIN resulted in shorter root hairs (Ganguly et al. 2010). The enhancement of auxin 

sensitivity of root hair cells by overexpressing TIR1 resulted in longer root hairs compared to wild-



Introduction  
  

45 
 

type (Ganguly et al. 2010). Further, a constitutive shut-down of auxin signaling by expressing 

degradation resistant Aux/IAA mutants inhibited root hair growth (Fukaki et al. 2002).  

Out of the main transporter classes contributing to PAT, transcriptomic analysis showed that PIN2 

and AUX1 are the only genes expressed in root hair cells of A. thaliana (Fig. 1.7; (Birnbaum et al. 

2003; Lan et al. 2013)). It should be noted here that experiments, using fluorescently labeled 

proteins, localized the efflux carrier PIN2 to the basal PM site of both root hair and non-hair cells 

(Jones et al. 2009). The main influx carrier AUX1, however, was not detectable in root hair cells 

with such an approach (Jones et al. 2009). A possible explanation of this contradiction might be a 

much higher sensitivity of the transcriptomic approaches.  

 

Fig. 1.7: Expression of auxin transporter in A. 

thaliana root epidermal cells. The upper 

panel shows expression data from two 

independent RNA-sequencing experiments 

(black and white bars) on A. thaliana root hair 

protoplasts published by Lan et al. (2013). 

refer to lower graph for X-axis labels. Data 

were obtained as described for Fig. 1.6. 

Expression data are shown in reads per 

kilobase per million mapped reads (RPKM). 

The lower panel shows expression data of the 

same genes but extracted from microarray 

data published by Birnbaum et al. (2003). From 

three developmental stages published, the 

latest stage is displayed. Its lower border from the root tip up was defined by Birnbaum et al. (2003) by the start of the 

longitudinal expansion, and fully elongated root hairs defined the upper border of stage 3. Data was obtained as described 

for Fig. 1.6. 

 

1.6. Experimental work that preceded this thesis  

 

Regarding an in planta analysis of the electrical properties of plant vacuoles Dr. Yi Wang (Wang et 

al. 2015) performed initial experiments in which root epidermal cells of A. thaliana seedlings were 

impaled with sharp microelectrodes (Fig. 1.8A and B). The fluorescent dye Lucifer yellow (LY) was 

injected into the cells to report the intracellular localization of the electrode tip. Cytosolic 

impalement was found to be associated with time-independent currents of high amplitude that 

correlated to a PM conductance of 97 nS. The electrical conductance measured after impalement 

of the vacuole, however, was approximately five-fold lower, with a value of 19 nS. In contrast to 
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an average PM potential of -172 mV, electrodes localized in the vacuole measured considerably 

more positive potentials, with a value of -141 mV. The difference of 31 mV between the two 

compartments matches the previously reported values for the VM potential (Martinoia et al. 2007; 

Martinoia et al. 2012). In subsequent experiments, Dr. Florian Rienmüller found the VM 

conductance to decrease with time after microelectrode impalement (Wang et al. 2015). Since 

[Ca2+]cyt elevations are likely to be triggered through impalement, experiments were performed in 

which the Ca2+ indicator dye FURA-2 was iontophoretically injected into the cytosol of bulging A. 

thaliana root hair cells. Simultaneously the VM conductances of the same root hair cells were 

probed to test the possibility that the total VM conductance is sensitive to changes of [Ca2+]cyt. 

Thereby, it could be shown that sudden transient [Ca2+]cyt elevations are associated with likewise 

transiently increases of the VM conductance (Fig. 1.8C and D; (Wang et al. 2015)). 

Bulging root hair cells are well suited to study the transport of the plant growth hormone auxin 

with electrophysiological methods. In initial experiments, Dr. Elżbieta Król could show that auxins 

externally applied to whole seedlings trigger a concentration and pH-dependent depolarization of 

the PM potential of root hair cells of A. thaliana seedlings. This membrane response was further 

shown to be absent in aux1 mutant plants when they were challenged with external 3-IAA.  
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Fig. 1.8: Electrical properties of the 

VM of A. thaliana root epidermal 

cells and their connection to 

cytosolic Ca2+. Modified from Wang 

et al. (2015). With permission for 

reuse from Elsevier. Data obtained 

by Dr. Yi Wang (A and B) and Dr. 

Florian Rienmüller (C and D). (A) 

Impalement of root epidermal cells 

by triple-barrelled microelectrodes. 

The fluorescent dye Lucifer yellow 

was used to determine the 

intracellular position of the 

electrode tip in either the cytosol 

(left panel) or within the vacuolar 

lumen (right panel). (B) Typical 

electrical currents measured at the 

corresponding electrode positions 

shown in (A). (C) Ratiometric live-cell 

imaging of the Ca2+ indicator FURA-2 

iontophoretically injected into the 

cytosol of bulging root hair cells, 

which were impaled by two 

microelectrodes (brightfield picture 

on the right). FURA-2 was injected 

via a microelectrode impaled 

through the root hair tip and a 

second microelectrode impaled into 

the vacuole was used for voltage-

clamp experiments. From left to right the color-coded (scale on the right) images indicate [Ca2+]cyt  before (white circle), 

during (black circle) and after a peak in the cytosolic Ca2+ level (white triangle). (D) Vacuolar currents corresponding to the 

images from (C). Note the transient increase in membrane current during the Ca2+ peak.  
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1.7. Aim of this work 

 

The interplay of cytosolic Ca2+ with the electrical conductance of the vacuolar membrane as well 

as its integration in the earliest auxin-induced signaling events were the focal points of this work. 

Bulging root hair cells of A. thaliana were chosen as a suitable model system that allows the 

investigation of both aims in planta through the combination of electrophysiological with live-cell 

imaging techniques.  

The first part is dedicated to the electrical properties of vacuoles, which fulfil a role in turgor 

regulation and serve as intracellular storages for nutrients, metabolites, and toxins. These 

functions depend on the transport processes across the VM. Since the patch-clamp technique and 

techniques of molecular biology became available the transport mechanisms, regulation and 

physiological impact of many vacuolar transporters and channels have been characterized 

(Martinoia et al. 2012). However, as the patch-clamp technique requires the isolation of vacuoles 

only limited experimental data on the in vivo regulation of vacuolar transport processes is 

available. Therefore, the aim of the first part of this work was to gain deeper knowledge of the role 

of vacuoles for ion homeostasis in those cells. Since individual VM conductances are known to be 

Ca2+-dependently regulated or to be involved in the exchange of Ca2+ between the cytosol and the 

vacuole, the relationship between the VM conductance and [Ca2+]cyt had to be investigated.  

The second part of this work aimed at the analysis of the earliest auxin-induced responses in root 

cells of A. thaliana. Among those fast responses are the depolarization of the PM potential, 

apoplastic alkalinisation as well as cytosolic Ca2+ signals mediated by a PM-localized putative Ca2+ 

channel (Felle et al. 1991; Monshausen et al. 2011; Shih et al. 2015). A model has recently been 

brought forward that integrates auxin-induced Ca2+ signals into the root gravitropic response (Shih 

et al. 2015). However, the role and interaction of single components in fast auxin siganling, for 

example auxin perception or the H+-conductance responsible for apoplastic alkalinistaion, remain 

largely elusive. Moreover, the depolarization of the PM potential has long been speculated to 

represent electrogenic H+-coupled auxin influx (Felle et al. 1991), and a Ca2+ dependent regulation 

of auxin efflux is at least discussed (Vanneste and Friml 2013). For those reasons, this work analyses 

the integartion of known constituents of polar auxin transport, auxin perception and Ca2+ influx in 

fast auxin signaling in the root of A. thaliana. 
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2. Material and Methods 

 

2.1. Plant material and growth conditions 

 

Seeds of various A. thaliana lines (Tab. 2.1) were sterilized for five minutes by application of 6% 

NaOCl (Roth, Germany) supplemented with 0.05% Triton-X 100 (AppliChem, Germany). Three to 

six washing steps with deionized water removed the sterilizing solution. Single seeds were placed 

in a row on the surface of 1 ml of plant growth medium (Tab. 2.2) filled within small Petri-dishes 

(Ø 35 mm, Sarstedt, Germany) to enable root accessibility for microelectrodes (Fig. 2.1A). The 

Petri-dishes were placed vertically (Fig. 2.1B) in a growth chamber (KBWF 720, Binder, Germany) 

with controlled environmental conditions (12h day vs. 12h night; 21°C at day vs. 16°C at night; 120 

µmol photons m-2 s-1) three to five days before experiments.  

 

Tab. 2.1: Lines of A. thaliana used in this work. R-GECO1 and GFP expressing lines were kindly provided by Melanie Krebs 

(University of Heidelberg). DII-Venus, aux1 and tir/afb mutants were kindly provided by Malcolm Bennett (University of 

Nottingham), and abp1 mutants were kindly provided by Klaus Palme (University of Freiburg). 

  

Line Background Description Reference 

Col-0 - wild type, Columbia 0 - 

Ler - wild type, Landsberg erecta - 

Ws - wild type, Wassilewskija - 

R-GECO1 NES YC3.6 Col-0 Cytosolic Ca2+-reporter line (Keinath et al. 2015) 

UBQ10:GFP Col-0 Cytosolic GFP line - 

DII-VENUS Col-0 Auxin perception reporter line (Brunoud et al. 2012) 

aux1-2 Ler AUX1 ethyl methanesulfonate (EMS) mutant (Mirza et al. 1984) 

aux1-7 Col-0 AUX1 EMS mutant (Pickett et al. 1990) 

aux1-22 Col-0 AUX1 diepoxybutan (DEB) mutant (Roman et al. 1995) 

aux1-T Ws AUX1 T-DNA insertion line (Swarup et al. 2004) 

wav5-33 Ler AUX1 EMS mutant (Okada and Shimura 1990) 

abp1-c1 Col-0 ABP1 CRISPR/CAS line (Gao et al. 2015) 

abp1-TD1 Col-0 ABP1 T-DNA insertion line (Gao et al. 2015) 

pin2 (eir1-1) Col-0 PIN2 DEB mutant line (Roman et al. 1995) 

cngc14-2 Col-0 CNGC14 T-DNA insertion line (Shih et al. 2015) 

tir1-1 Col-0 TIR1 EMS mutant (Parry et al. 2009) 

tir1-1afb2-3afb3-4 Col-0 Triple mutant of TIR1 and AFB2/3  (Parry et al. 2009) 
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Tab. 2.2: Composition of plant growth media. 

Component Final concentration 

Murashige & Skoog (MS)-medium (basal salt mixture incl. 

MES; Duchefa; Netherlands) 

0.12% (equals ¼ strength) 

Sucrose (AppliChem; Germany) 0.5% 

TRIS (AppliChem) Adjusting pH 5.8 

Agarose (Bio&Sell, Germany) 1% 

For PO42- nutrition experiments the MS-medium was replaced by the following nutrients (µM) 

NH4NO3 5200 

KNO3 4700 

CaCl2 600 

MgSO4 200 

H3BO4 25.1 

Na2EDTA 25 

FeSO4 25 

MnO4 19 

ZnSO4 13.3 

KI 1.7 

Na2MoO4 0.386 

CoCl2 0.030 

CuSO4 0.025 

KCl - (Pi  final conc. = 312 µM) 

 281 (Pi  final conc. = 31 µM) 

 309 (Pi  final conc. = 3 µM) 

 312 (Pi  final conc. = 0.3 µM) 

KH2PO4 312 (Pi  final conc. = 312 µM) 

 31 (Pi  final conc. = 31 µM) 

 3 (Pi  final conc. = 3 µM) 

 0.3 (Pi  final conc. = 0.3 µM) 

 

Fig. 2.1: Sterile A. thaliana 

seedling growth. (A) Seedlings 

grown on the surface of the 

medium. (B) Petri-dishes placed 

vertically in a styrofoam tray 

within the growth chamber.  
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2.2. Experimental set-up for electrophysiological measurements on root epidermal cells 

of A. thaliana 

 

2.2.1. Intracellular measurements on bulging root hair cells 

 

2.2.1.1. The two-electrode voltage-clamp technique 

 

Electrical currents across the VM were recorded with the two-electrode voltage-clamp (TEVC) 

technique. Fig. 2.2 shows a simplified electrical circuit model of intravacuolar measurements at a 

bulging root hair cell. In principle, this technique uses two electrodes, a voltage-, and a current 

electrode impaled into a single cell. The membrane potential, measured with the voltage 

electrode, connected to a microelectrode amplifier (A1), is forwarded to a differential amplifier 

(A2). Here the input voltage Vin is compared with the command voltage Vcmd. If there is a difference 

between Vin and Vcmd, a current is injected through the second microelectrode until Vin equals 

Vcmd. For the experiments described in this work, both electrodes were made of thin glass 

capillaries which were fused at their tip to a double-barrelled microelectrode. 

 

Fig. 2.2: Two-electrode voltage-clamp 

technique. An electrode with the 

resistance Rve, connected to an input 

amplifier (A1) records the voltage across 

both membranes (Epm and Evm) as Vin. A 

differential amplifier (A2) compares Vin 

with a given voltage (Vcmd). A difference 

results in a current (Ivm) injected into the 

cell by a second electrode. This equals the 

membrane current (dashed line) at Vcmd. 

The PM, VM, cytosol, and cell wall are 

shown with their respective resistances 

(Rpm, Rvm, Rcs, Rwall ), capacities (Cpm, Cvm) 

and potentials (Epm and Evm).  
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2.2.1.2. Preparation of microelectrodes and application pipettes 

 

Thin microelectrodes were prepared from borosilicate glass capillaries (Øout 1 mm, Øin 0.58 mm, 

w/ filament, Hilgenberg, Germany). Single-barrelled microelectrodes used for PM potential 

recordings and preparation of application pipettes were pulled from capillaries with a P-2000 

horizontal laser puller (Sutter Instruments, USA). Double-barrelled microelectrodes used for 

intravacuolar voltage-clamp experiments were prepared by fusing two glass capillaries through 

successively heating, turning them by 360° and pre-pulling them using an L/M-3P-A customized 

vertical puller (List-Medical-Electronic, USA). Thereafter the double-barrelled microelectrodes 

were pulled with the horizontal laser puller (P2000, Sutter). Auxin was locally applied to bulging 

root hair cells via application pipettes prepared from single-barrelled microelectrodes, of which 

tips were manually broken off to an approx. 20 to 40 µm wide opening. 

 

2.2.1.3. Experimental set-up for intracellular measurements 

 

Seedlings of A. thaliana were accustomed to the bath solutions (Tab. 2.3) before the start of the 

experiment. In the case of vacuolar measurements, this was carried out overnight. For this 

purpose, two milliliters of sterile bath solution were applied, and the Petri-dishes were sealed and 

put in a vertical (upright) position in the growth chamber again. For measurements of the auxin 

response, the bath solution was applied at least 20 min before the experiment. If needed, the bath 

solutions was supplemented with various auxin perception and transport inhibitors given in Tab. 

2.3. Before measurement, the seedling containing Petri-dishes were placed on the table of an 

upright microscope (Axioskop 2FS, Zeiss AG, Germany; Fig. 2.3). Microelectrodes were mounted 

on micromanipulators (MM3A-LMP, Kleindiek Nanotechnik, Germany, or Triple Axis 

Micromanipulator, Sensapex Oy, Finland) to impale them into bulging root hair cells. The bath 

solution was connected to ground with reference electrodes made from the same glass capillaries 

as the microelectrodes, which were backfilled with 300 mM KCl and sealed with an agarose plug 

(2% agarose in 300 mM KCl). All barrels of the microelectrodes were backfilled with 300 mM KCl 

and connected via custom build Ag/AgCl half-cells to HS180 head stages with 100 GΩ input 

resistance (Bio-Logic, France). The head stages were connected to microelectrode amplifiers (VF-

102; Bio-Logic). During voltage clamp experiments the membrane potential was manipulated by 

using a differential amplifier (CA-100, Bio-Logic). For online acquisition, data were filtered with a 

four-pole low-pass Bessel filter (LPF 202A, Warner Instruments, USA) at 200 Hz and sampled at 1 
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kHz (voltage-clamp experiments on vacuoles) or 0.1 kHz (potential measurements) using either the 

PULSE software (v. 8.74, HEKA, Germany) or the WinWCP software (University of Strathlyclyde, UK) 

with an LIH-1600 interface (HEKA) or an NI USB 6259 interface (National Instruments, USA).  

 

Tab. 2.3: Bath solutions used for impalement experiments. Auxinole, IAA derivatives, and pABA were kindly provided by 

Klaus Palme (University of Freiburg) 
Component Concentration (mM) 

Bath solution for vacuolar measurements 

CaCl2 5 

KCl 4 

MgCl2 0.25 

NaCl 0.5 

HEPES (MP Biomedicals, France) 1 

KOH Adjusting pH to 7 

Bath solution for auxin-response measurements 

CaCl2 1  

KCl 0.1 

MES 5 

BTP (Sigma-Aldrich) Adjusting pH to 5.5 

Inhibitors of PAT and auxin perception with solvent (µM) 

Triiodobenzoic acid (TIBA; Sigma-Aldrich; MeOH) 20 

Naphthylphthalamic acid (NPA; Sigma-Aldrich; MeOH) 20 

Auxinole (DMSO) 10 and 20 

PEO-IAA (phenylethyl-2-oxo-IAA; DMSO) 10 

N-ethyl-PEO-IAA (DMSO) 10 

N-ethoxy-ethyl-PEO-IAA (DMSO) 10 

p-Aminobenzoic acid (pABA; DMSO) 10 
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Fig. 2.3: Set-up for root hair impalement measurements 

and live-cell imaging. (A) (i) Waste bottle of perfusion 

system; (ii) control unit of the Sensapex micromanipulator; 

(iii) controller of the Kleindiek micromanipulator; (iv) 

vibration isolating table; (v) custom made microscope 

table; (vi) Zeiss Axiokop 2FS; (vii) CARV2 confocal imager; 

(viii) QuantEM 512SC CCD camera; (ix) headstages for 

microelectrodes; (x) control unit of Kleindiek 

micromanipulator; (xi) faraday cage. (B) Close up of 

measuring set-up (xii) ground-connected reference 

electrode with manipulator; (xiii) Petri-dish with sterile-

grown seedlings; (xiv) Achroplan 40x/0.80w objective; (xv) 

Kleindiek micromanipulator with single-barrelled 

microelectrode; (xvi) Sensapex micromanipulator 

(background) with application pipette 

 

 

 

 

 

 

 

 

2.2.1.4. Cytosolic application of Bapta, Ca2+, and auxin  

 

In Experiments in which the cytosolic Ca2+ homeostasis of the cytosol was changed through 

iontophoretic injection of the Ca2+-chelator BAPTA (Sigma-Aldrich) and Ca2+, single-barrelled 

electrodes were tip filled with 10 mM BAPTA or backfilled with 1 M CaCl2. Cytosolic auxin 

application was achieved by using single- and double-barrelled microelectrodes impaled through 

the tips of bulging root hair cells. The tips of those electrodes were filled with the mixtures listed 

in Tab. 2.4, which contained the fluorescent dye Lucifer Yellow CH (Fluka/Sigma, Germany) and 

either 3-IAA (Sigma-Aldrich) or 2-NAA (2-naphthaleneacetic acid; Merck, Germany). The pH of both 

mixtures was adjusted to pH 7 to achieve complete deprotonation of the auxins (pKa ≈ 4.7). The 

common negative charge of 3-IAA/2-NAA and of the fluorescent dye allowed LY to serve as a 

loading control for current injection. Exogenous application of auxins (3-IAA; 5F-IAA (5-fluoro acetic 

acid; Sigma-Aldrich); 1-NAA (1-naphthaleneacetic acid; Duchefa); 2-NAA; 2,4-D (2,4-
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Dichlorophenoxyacetic acid; Merck) and benzoic acid (BA, Sigma-Aldrich/Fluka)) was achieved by 

using application pipettes which were filled with auxin-containing bath solution, mounted on a 

Sensapex micromanipulator and positioned approx. 150 µm from the impaled root hair cells. The 

pipettes were connected to a Picospritzer II microinjection dispense system (General Valve, USA) 

operating at 20 kPa to apply 1 s back pressure pulses.  

 

Tab. 2.4: Tip-filling solutions used for cytosolic auxin injection. 
Component Concentration (mM) 

3-IAA mixture  

3-IAA 6.66  

LY 0.5 

HEPES 0.83 

TRIS  Adjusting pH to 7 

2-NAA mixture  

2-NAA 3.33 

LY 0.5 

HEPES 0.83 

TRIS Adjusting pH to 7 

 

2.2.1.5. The sign convention for electrical measurements on endomembranes 

 

In 1992, a convention for electrical measurements on endomembranes was proposed (Bertl et al. 

1992). In the proposal, the cytosol was regarded as the reference point for electrical 

measurements treating the lumen of the organelles equivalent to the extracellular space. Fig. 2.4 

illustrates the conditions with voltage electrodes either located in the cytosol, or lumen of the 

vacuole and shows how the voltage gradients are arranged across the VM and PM. If the 

microelectrode only penetrates the PM, it is located in the cytosol of the cell and will record the 

potential across the PM (Epm) (Fig. 2.4A). For a viable root hair cell, this potential will have a 

negative sign. However, in the case of vacuolar impalement, two membrane potentials are 

measured in series (Fig. 2.4B). Just as for the PM, a negative membrane potential, relative to the 

cytosol, excists across the VM (Martinoia et al. 2012). As a result, the relation between the VM 

potential (Evm), the PM potential (Epm) and the total potential (Et) can be written as  

𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑎𝑎𝑙𝑙 − 𝐸𝐸𝑟𝑟𝑙𝑙  

and consequently 

𝐸𝐸𝑟𝑟𝑙𝑙 = 𝐸𝐸𝑎𝑎𝑙𝑙 − 𝐸𝐸𝑐𝑐 

Equation 2.1: Calculation of the VM potential from membrane potential measurements.  
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The above-described convention (Bertl et al. 1992) has its implications on ion currents across the 

VM. In the case of cations, a positive current is equal to a flux of cations from the cytosol into the 

vacuolar lumen. However, a microelectrode impaled through both membranes will record the VM 

potential with the reversed polarity (Fig. 2.4B). As a result, the ion currents will be recorded with 

a reversed sign and a post measurement sign correction is necessary for a correct interpretation 

of the currents across the VM.  

 

Fig. 2.4: Illustration of 

potentials measured with 

intracellular electrodes. 

Adapted after Wang et al. 

(2015). With permission for 

reuse from Elsevier. (A) A 

microelectrode impaled 

through the PM will measure 

the voltage Epm between the 

cytosol (yellow) and the 

apoplast (gray). ap: apoplast; 

pm: plasma membrane; cs: 

cytosol; vm: vacuolar 

membrane; vl: vacuolar lumen. 

(B) A microelectrode of which the tip is within the vacuolar lumen (green) has penetrated both the PM and the VM and will, 

therefore, record the total voltage Et composed of Epm and the voltage across the VM Evm. 

 

2.2.1.6. Analysis of intracellular measurements 

 

Bipolar voltage pulse protocols were applied, to deduce the current-voltage (I/V) relationship of 

the VM (Fig. 2.5A). To this purpose, vacuolar membranes were clamped from the resting potential, 

in 2 s pulses to more positive and negative voltages with 20 mV increments. The steady-state 

currents (ISS, Fig. 2.5B) at the end of each voltage pulse were plotted against the voltage difference 

relative to the resting potential. For experiments in which the relationship between the VM 

potential and [Ca2+]cyt was analysed, voltage pulses of a duration of 30 s were applied. These 

protocols are shown with the individual experiments in Chapter 3.1.3. 

Either the amplitude of the depolarization or the peak depolarization velocity was used to analyze 

the auxin-induced PM response. Fig. 2.5C illustrates how the amplitude was determined as the 

difference between a stable pre-auxin potential (at least 30 s) and the peak response. The 

maximum rate of depolarization was deduced manually in Excel (Microsoft, USA) from 
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differentiated (transformation into the 1st derivative) PM potential recordings which were post-

filtered by averaging 1 s intervals. After transformation, the trace shows that auxin-triggers a rapid 

change in the membrane potential of which the velocity peaks approximately 10 to 20s after 

application of the stimulus. (Fig. 2.5D). The OriginPro (OriginLab Corporation, USA) software was 

used to produce graphics and calculate curve fittings.  

 

Fig. 2.5: Arabidopsis root hair 

impalement measurements and 

their analysis. (A) Bipolar 

voltage pulse protocol. Each cell 

was clamped to their respective 

resting potential (∆E=0 mV), and 

2 s voltage pulses with 20 mV 

increments were applied up to 

potentials 120 mV positive and 

80 mV negative of the resting 

potential. (B) Exemplary 

intravacuolar currents triggered 

with the voltage-puls protocol 

shown in (A). For analysis, the 

steady-state currents (ISS, red 

line) at the end of each voltage 

pulse were used. (C) Typical 

response of the PM potential to 

a 1 s puls of auxin (black arrow). For analysis, the difference between the resting potential before auxin application and the 

peak of depolarization was used (red arrow). (D) To obtain the velocity of the potential change before and after auxin 

application (black arrow) the response shown in (C) was differentiated. As a measure of the auxin response, the peak 

depolarization rate (red arrow) was used.  
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2.2.2. Non-invasive measurement of ion fluxes  

 

Scanning ion selective microelectrodes were used to measure the H+ and Ca2+ fluxes at root 

epidermal cells in response to externally applied auxin. This non-invasive method uses the voltage 

readout of oscillating ion-selective microelectrodes to estimate ion fluxes across the PM (Newman 

2001).  

 

2.2.2.1. Preparation of ion-selective microelectrodes, calibration, and experimental 

set-up 

 

Borosilicate glass capillaries (Øout 1.0 mm, Øin 0.58 mm, w/o filament, Science Products GmbH, 

Germany) were used to produce H+- and Ca2+-selective microelectrodes. Glass capillaries were 

pulled into thin microelectrodes by using a PC-10 vertical puller (Narishige Scientific Instruments 

Lab, Japan). Electrode tips were broken off under microscopic inspection. The electrodes were 

baked overnight at 220°C, and their surface was silanized by adding N, N-

Dimethyltrimethylsilylamine (Sigma-Aldrich). The electrodes were then backfilled with either 40 

mM KH2PO4 and 15 mM NaCl (H+-electrodes) or 500 mM CaCl2 (Ca2+-electrodes) and tip filled with 

either hydrogen ionophore I cocktail A (Sigma-Aldrich) or calcium ionophore I cocktail A (Sigma-

Aldrich). For calibration and measurements of ion fluxes, the microelectrodes were connected to 

either a custom-built microelectrode amplifier (H+ fluxes), or an IPA-2 Ion/Polarographic amplifier 

(Applicable Electronics, USA) for simultaneous H+/Ca2+ flux recordings; Applicable Electronics, USA) 

via head stages (Applicable Electronics) and Ag/AgCl half cells. Online acquisition of raw voltage 

data was achieved by using an NI USB 6259 interface (National Instruments, USA) and the custom 

built Labview-based software “Ion flux monitor”. Ion fluxes were calculated offline from the 

acquired raw data. H+-electrodes were calibrated at pH 4 and pH 7 (pH standard solutions, 

AppliChem) and Ca2+-electrodes at 0.1, 1, and 10 mM CaCl2 (Fig. 2.6A). Before measurements, 

seedling containing Petri-dishes were placed horizontally and plants were accustomed to the bath 

solution (Tab. 2.5) for at least 20 min. When needed, PAT and auxin perception inhibitors were 

added as shown in Tab. 2.3. Positioning of the ion-selective electrodes near bulging root hair cells 

(Fig. 2.6B) was achieved under microscopic inspection (Axiovert 135, Carl Zeiss AG (H+ fluxes); 

Axioskop, Carl Zeiss AG (simlutaneous H+/Ca2+ fluxes)) with either a PatchStar micromanipulator 

(Scientifica, UK) or a SM-17 micromanipulator (Narishige Scientific Instruments Lab, Japan), 

respectively. Electrodes were either moved by a piezo stepper (Luigs & Neumann GmbH, Germany) 
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or a micro stepping motor driver (US Digital, USA) at 10 s intervals over distances of either 50 or 

100 µm. When stable fluxes were recorded for at least 3 min, auxin was manually added to a final 

concentration of 10 µM.  

 

 
Fig. 2.6: Calibration data and position of H+- and Ca2+-selective microelectrodes near an Arabidopsis root. (A) Linear 

regression of a H+ electrode calibration data, gave a Nernst slope of -59 mV/pH unit and an interception point with the y-

axis at 440 mV. Calibration of the Ca2+-electrode resulted in a Nernst slope of -29 mV/pCa unit and an y-axis interception 

point at 5.3 mV. (B) Before measurements, the two ion-selective electrodes were positioned close to bulging root hair cells.  

 

Tab. 2.5: Bath solution for ion flux measurements. 
Component Concentration (µM) 

KCl 100 

CaCl2 100 

MES 100 

BTP Adjusting pH to pH 5.5 

  



   Material & Methods 
   

 
60 
 

2.2.2.2. Calculation of ion fluxes 

 

The vibrating probe technique allows the calculation of ion fluxes Jion, according to Newman 

(2001): 

 

𝐽𝐽𝑖𝑖𝑐𝑐𝑙𝑙 = 𝑐𝑐𝑖𝑖𝑐𝑐𝑙𝑙 ∗ µ𝑖𝑖𝑐𝑐𝑙𝑙 ∗ 𝐹𝐹 ∗ 𝑧𝑧𝑖𝑖𝑐𝑐𝑙𝑙 ∗ �
58 𝑚𝑚𝑉𝑉

𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙𝑁𝑁𝑁𝑁 𝑁𝑁𝑙𝑙𝑙𝑙𝑠𝑠𝑁𝑁
� ∗ �

𝑉𝑉2 − 𝑉𝑉1
𝑑𝑑𝑥𝑥𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟

� 

Equation 2.2: Calculation of ion fluxes. cion : ion concentration; µion : ion mobility; F: Faraday constant; zion : valence. The 

Nernst slope is obtained from electrode calibration. V1, V2: electrode potentials; dxcorr: electrode traveling distance 

corrected for tissue geometry. 

 

Parameters which were used for the calculation of ion fluxes are given in Tab. 2.6. Negative values 

of Jion describe efflux and positive values influx of solutes. Fig. 2.7 illustrates a circumstance where 

the cation (in this case H+) concentration at the first electrode position (P1) near the root is higher 

than at the second position (P2).  

 

Fig. 2.7: Schematic of H+ flux measurements at roots. Based on 

Newman, (2001), Arif et al. (1995) and Shabala et al. (2006). 

The microelectrode, filled with ionophore (red) and backfill 

solution (blue), scans over two positions parted by the distance 

dx. The electrode potential is recorded at both positions (V1 

and V2). dV is the difference in potential measured by the ion-

selective electrode, caused by a difference in H+ concentration 

(black dots). For H+ fluxes, the flow of conjugated buffer also 

must be considered. Red dots indicate H+. At high H+ 

concentrations, buffer becomes protonated (HB). HB diffuses 

to low H+ concentrations where equilibrium shifts in advantage 

of the deprotonated buffer (B-). The flux of the protonated 

buffer thus should be added to that of H+ itself.  

 

This concentration difference results in a higher electrode potential at P1 as compared to P2, hence 

(V2-V1) is negative and so is Jion. Further, the geometry of plant roots has to be considered. The 

traveling distance of the electrode dx was therefore corrected for the cylindrical geometry of the 

root, according to Newman, (2001):  

𝑑𝑑𝑥𝑥𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑁𝑁𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑙𝑙𝑙𝑙 �
𝑁𝑁𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑥𝑥 + 𝑑𝑑𝑥𝑥
𝑁𝑁𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑥𝑥

� 

Equation 2.3: Cylindrical correction of ion fluxes. rroot: plant root radius; x: minimal electrode distance from the sample; 

dx: electrode traveling distance.  
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In case the ion is buffered in the bath solution, the flux of the ion can be compensated for that of 

the conjugated buffer with the following equation (Arif et al. 1995): 

 

𝐽𝐽𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+ = 𝐽𝐽𝐻𝐻+ ∗ �1 +
µ𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏𝑙𝑙𝑟𝑟
µ𝐻𝐻+

∗ 𝑐𝑐𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏𝑙𝑙𝑟𝑟 ∗ 10𝑎𝑎𝑝𝑝 ∗ �
10𝑎𝑎𝐻𝐻

10𝑎𝑎𝐻𝐻 + 10𝑎𝑎𝑝𝑝
�
2

� 

Equation 2.4: Buffer correction of H+ fluxes. µbuffer: mobility of the buffer; µH : mobility of protons; cbuffer: concentration of 

buffer in the bath; pK: negative log10 of dissociation constant of buffer; pH: negative log10 of [H+] 

 

Tab. 2.6: Parameters used in ion flux calculations. 

Parameter Value Reference 

µProton 37.50*10-13 (m s-1) (N mol-1)-1 (Wraight 2006) 

µCalcium 3.19*10-13 (m s-1) (N mol-1)-1 (Samson et al. 2003) 

µMES 3.37*10-13 (m s-1) (N mol-1)-1  (Kunkel et al. 2001) 

pKMES 6.15  

F 96000 C mol-1  

x 5 µm  

dx 100 and 50 µm  

dxcorr 55 and 33.8 µm  

rroot 57 µm  

 

2.2.2.3. Analysis of ion fluxes 

 

Ion flux measurements are based on an unstirred layer at the tissue at which the fluxes occur. As 

auxin was pipetted into the bath solution, the unstirred layer was disrupted and measurements 

were perturbed for 30 to 40 s. Fig. 2.8 illustrates how ∆J was computed as the difference between 

resting fluxes (Jrest) and the average of the first four data points (Jinst) after spiking.  

 

Fig. 2.8: Exemplary H+ flux measurement with auxin response. 

Auxin application after 3 min of stable efflux (black arrow) 

resulted in spiking (gray points). Jrest  is the average flux before 

auxin application (lower red line), and Jinst  is the average of the 

first four points after spiking (top red line). JH+ was calculated 

as the difference between both values.  
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2.3. Live-cell imaging of Arabidopsis roots 

 

The electrophysiological data were correlated to [Ca2+]cyt signals and auxin perception with live-

cell imaging experiments, using A. thaliana seedlings expressing fluorescent reporters. Light filters 

and dichroic mirrors, which are described below, were placed inside a CARV2 confocal imager 

(Crest Optics, Italy; see Fig. 2.3), with the spinning disc out of the light path. Filter selection and 

image acquisition with a charge multiplying CCD camera (QuantEM 512SC, Photometrics; USA; see 

Fig. 2.3) was controlled with Visiview software (Visitron, Germany). The analysis of imaging data 

was carried out with the free software program ImageJ (imagej.nih.gov/ij/).  

 

2.3.1. Imaging of cytosolic Ca2+ levels with R-GECO1 expressing plants 

 

The red shifted R-GECO1 Ca2+-sensor has been derived from the GCaMP Ca2+ indicator (Nakai et al. 

2001; Zhao et al. 2011). The GCaMP-related sensors are based on the same Ca2+ sensing 

mechanism. The N-terminus of a circularly permuated green fluorescent protein (cpGFP, (Nakai et 

al. 2001)) is fused to the CaM-binding domain of chicken myosin light chain kinase M13. The C-

terminus of the fluorescent protein, on the other hand, is fused to a vertebrate CaM. Binding of 

four Ca2+ ions to CaM leads to an interaction between M13 and CaM resulting in conformational 

rearrangements within the fluorescent protein and higher fluorescence intensities (Fig. 2.9A). In 

the case of R-GECO1, GFP was replaced with the red-shifted fluorescent protein cp-mApple (Zhao 

et al. 2011) and first introduced into plants by Keinath et al. (2015). R-GECO1 was exposed to 

excitation light from a mercury lamp (LQ HXP 120; Leistungselektronik Jena, Germany) filtered at 

562 nm with a Brightline single-bandpass filter (562/40 nm, Semrock, USA) and reflected with a 

590 nm dichroic mirror (Zeiss). The excitation light was focused on the sample through an 

Achroplan 40x/0.80w objective (Zeiss) or an Achrostigmat 10x/0.25 objective (Zeiss). Light emitted 

by R-GECO1 was filtered at 628 nm with a Brightline single-bandpass filter (628/40 nm, Semrock).  

 

2.3.2. Imaging of the auxin perception reporter DII-Venus  

 

The DII-Venus reporter utilized the IAA-dependent degradation of the Aux/IAA transcription 

factors after IAA perception by the TIR1/AFB receptor (Fig. 2.9B and Chapter 1.3.4) and was 

designed by Brunoud et al. (2012). Venus, a fast maturing form of the yellow fluorescent protein 

(Nagai et al. 2002) was fused to the interacting domain II (DII) of IAA28. Upon auxin perception by 
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the nuclear receptor complex SCFTIR1/AFB the fluorescent fusion protein is recruited for poly-

ubiquitinylation by the receptor and subsequently degraded by the 26S-proteasome resulting in 

the loss of fluorescence. Hence, high nuclear fluorescence intensities report low auxin levels and 

vice versa. DII-Venus was exposed to excitation light filtered at 500 nm with a Brightline band-pass 

filter (500/20 nm, Semrock) and reflected with a 444/521/606 Brightline triple-edge beamsplitter 

(Semrock) and focused on the sample through an Achrostigmat 10x/0.25 objective (Zeiss). Light 

emitted by DII-Venus was filtered at 520 nm with a Brightline HC 520/35 filter (Semrock).  

 

Fig. 2.9: Mechanism of Ca2+ and 

auxin sensing. (A) Ca2+-binding 

by CaM induces conformational 

changes to R-GECO1 resulting in 

higher fluorescence intensities. 

(B) Venus forms a stable nuclear 

fluorescent fusion protein with 

the domain II of IAA28. The 

presence of auxin (green circle) 

facilitates interaction (middle) of 

DII-Venus with the auxin-

receptor (black half circle) 

leading to the degradation of 

DII-Venus. Figure based on 

Brunoud et al. (2012).  

 

 

2.3.3. Imaging of GFP and Lucifer Yellow 

 

GFP was exposed to excitation light filtered at 472 nm with a Brightline single-bandpass filter 

(572/30 nm, Semrock, USA) and reflected with a 490 nm dichroic mirror (Zeiss). The excitation light 

was focused on the sample through an Achroplan 40x/0.80w objective (Zeiss). Light emitted by 

GFP was filtered at 520 nm with a Brightline single-bandpass filter (520/30 nm, Semrock).  

LY was exposed to excitation light filtered at 430 nm with a Brightline single-bandpass filter (ET 

430/24 nm, Chroma technology, USA) and passed a 490 nm dichroic mirror (Zeiss). The excitation 

light was focused on the sample through an Achroplan 40x/0.80w objective (Zeiss) or an 

Achrostigmat 10x/0.25 objective (Zeiss). Light emitted by LY was filtered at 520 nm with a Brightline 

single-bandpass filter (520/30 nm, Semrock).   
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2.4. Colorimetric detection of Pi 

 

The residual Pi, which diffuses from the agarose-medium into the Pi-free bath solution during 

electrophysiological experiments was colorimetrically determined with malachite green (MG). MG 

detects Pi through the formation of a colored MG-phosphomolybdate complex (Baykov et al. 

1988). The reaction was performed as described by Baykov et al. (1988). The reagent contained 10 

ml of 0.12% MG (Sigma-Aldrich) in 3 M H2SO4, 2.5 ml of 64 mM (NH4)6Mo7O24 and 0.2 ml of 11% 

Tween-20 (AppliChem). For Pi-determination 0.8 ml of sample volume were mixed with 0.2 ml of 

the detection solution. The mixture was incubated for 30 min at room temperature, and the 

absorbance at 630 nm was measured with a NanoDrop 2000c spectrophotometer (Thermo 

Scientific, USA). Pi-free bath solution was supplemented with a series of defined Pi concentrations 

for calibration (Fig. 2.10A). 1 ml of growth medium was two-times overlaid with 3 ml of bath 

solution to simulate the conditions of electrophysiological measurements. The first equilibration 

was conducted over a period of 20 min. The second equilibration lasted 10 min and occurred after 

the first 3 ml of bath solution were removed. The Pi concentration in the bath solution after the 

second equilibration step were measured. Residual Pi levels in the bath solution were found to be 

around 1/10th of the initial Pi levels in the growth medium (Fig. 2.10B). 

 

 

Fig. 2.10: Colorimetric Pi-detection with MG. (A) Calibration of the MG based assay for Pi . The black line was obtained by 

linear regression of all data points. The inset shows the colour of the MG assay after addition of a range of defined Pi 

concentrations. (B) Determination of residual Pi  in standard bath solution after contact with Pi-containing agarose medium. 

Error bars show SE.  
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2.5. Analysis of transcript levels 

 

Total RNA was isolated from whole A. thaliana seedlings after electrophysiological experiments, in 

order to determine the expression levels of AUX1, CNGC14, TIR1, AFB2, and AFB3. Approx. 3 to 10 

seedlings were pooled into each sample to obtain a sufficient amount of material for subsequent 

RNA extraction with the NucleoSpin® RNA Plant Kit (Macherey-Nagel, Germany). Complementary 

DNA (cDNA) for expression analysis was synthesized from precipitated mRNA after digestion of 

genomic DNA, using the following procedure. 2 µg of total RNA was added to a mixture of 2 µl of 

10x DNAse Buffer (Thermo Scientific), 1 µl DNAse I (Thermo Scientific, 1U/µl) and 0.5 µl RNase 

Inhibitor (Thermo Scientific, Ribolock 40 U/µl). The volume was adjusted to 20 µl with DEPC-H2O, 

and gDNA digestion was achieved at 37°C for 45 minutes. The residual RNA was subsequently 

precipitated over night at -20°C. To this purpose, the volume of the gDNA digestion mixture was 

adjusted to 100 µl with DEPC-H2O, and 10 µl of the following mixture was added: 5 M NH4Ac, 1 µl 

of Glycogen, followed by addition of 75 µl of Isopropyl alcohol. The RNA samples were 

subsequently centrifuged (45 minutes at 4°C and 14000 rpm, Eppendorf Centrifuge 5430R), the 

RNA pellet was washed with 500 µl of 70% EtOH and centrifuged again (30 minutes at 4°C and 

14000 rpm). The dry RNA pellet was finally dissolved in 7 µl DEPC-H2O.  

To generate cDNA complementary to mRNA, 6.7 µl of total RNA was added to a mixture of 0.4 µl 

Oligo-dT-Primer, 0.5 µl 10 µM dNTPs and 2 µl 5x M-MLV Reverse Transcriptase Buffer (Promega). 

Total RNA was denatured at 70°C for 2 minutes, and 0.4 µl of M-MLV Reverse Transcriptase (200 

U/ µl, Promega) were subsequently added. cDNA was finally synthesized from mRNA at 42°C with 

a 1 h period of incubation. Transcript levels were ultimately analyzed by quantitative real-time PCR 

(qPCR) by adding 2 µl QPCR SYBR green capillary mix (Thermo Scientific, USA), 8 µl of each gene-

specific primer (diluted to 750 nM) to 2 µl of a 1:20 dilution of cDNA. Quantitative real-time PCR 

was performed on a Realplex Mastercycler (epgradient S, Eppendorf, Germany). Expression levels 

of individual genes were calibrated with standard samples containing defined amounts of cDNA 

(0.02 fg to 20 fg) for each transcript and subsequently normalized to 10,000 transcripts of actin 

(AtACT2/8) under the assumption that one fg of cDNA equals 910 copies of a 1000 bp double-

stranded DNA molecule. The primer pairs of genes of interest used in this work are listed in Tab. 

2.7.   



   Material & Methods 
   

 
66 
 

Tab. 2.7: Primer pairs used for qPCR. All primers were designed by Heike M. Müller, Research group of Peter Ache, 

Molecular plant physiology and biophysics, University of Wuerzburg. 
Gene Primer direction 5’ to 3’ sequence Tm, °C Fragment length, bp 

AtAUX1 
Forward (fwd) GGA TGG GCT AGT GTA AC 56.5 

141 
Reverse (rev) TGA CTC GAT CTC TCA AAG 57.4 

AtCNGC14 
fwd CAG CCA AGC TAA GAC TCT 48.1 

193 
rev GTT GAA GCC TTT GCT TTA 48.5 

AtTIR1 
fwd CTT CTT GTT CCG TGA GTT 59.4 

349 
rev ATT CAA ATT ATT GGC GAC 59.4 

AtAFB2 
fwd ATG ATA ATA ACC GGA TGG A 47.5 

181 
rev TCG GGA AAG ACA CAC TAA C 50.2 

AtAFB3 
fwd GAC GTG GGT AGG TAC GAA A 52.9 

267 
rev AAA ACA CAT GAA GGT GCA A 51.6 

AtACT2/8 
fwd GGT GAT GGT GTG TCT 46.0 

435 
rev ACT GAG CAC AAT GTT AC 48.0 
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3. Results 

 

3.1. Analysis of the electrical properties of the vacuole in planta 

 

In the first part of the results presented in this work, the advantages, which bulging root hair cells 

of A. thaliana provide for electrophysiological measurements (see Chapter 1.5.) were used to 

probe the VM conductivity in planta. In combination with live-cell imaging of genetically encoded 

fluorescent reporters, a first in planta analysis of the relationship between [Ca2+]cyt and vacuolar 

ion conductivity is provided.  

 

3.1.1. The vacuolar membrane is the limiting conductance 

 

The work of Dr. Yi Wang (China Agricultural University), which preceded this thesis, showed that 

microelectrodes impaled into the vacuoles of A. thaliana root epidermal cells, measured electrical 

conductances, which differed from those that were cytosolically localized. More precisely, the 

vacuole localized electrodes showed a five-times lower conductance compared to those in the 

cytosol. Moreover, during the 2 s voltage clamp pulses, a time-dependent decrease of the current 

amplitude was found with electrodes localized in the vacuole, whereas cytosolically localized 

electrodes did not record such a decrease ((Wang et al. 2015); see Chapter 1.6.). In planta, 

however, microelectrodes can only be placed in the lumen of the vacuole, after a serial impalement 

of the PM and VM. Hence, any electrical currents elicited by these electrodes will be affected by 

the conductance of the VM as well as PM. Although the much higher conductance, i.e. lower 

resistance, of the PM due to the symplastical interconnection of adjacent root epidermal cells via 

plasmodesmata should minimize any current superposition, a direct proof of the validity of this 

hypothesis had to be provided.  

Root hair cells offer the advantage of tolerating two simultaneously impaled microelectrodes (Lew 

2004). In these cells, the polar growing tip is devoid of the vacuole, which offers the possibility of 

impalement into the cytosol via the tip of the hair cell. A second electrode can be impaled into the 

vacuole through the base of the cell. Simultaneous recordings with two electrodes in a single root 

hair cell, were started by Dr. Yi Wang and finished as part of the research conducted for this thesis. 

The illustrations in Fig. 3.1 depict the two experimental configurations used for the analysis. In 

both cases, double-barrelled microelectrodes were impaled through the body of the root hair cell 

into the vacuole for voltage-clamp experiments. Simultaneously, voltage recording single-barrelled 
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microelectrodes were either impaled through the root hair tip to record the PM potential, or were 

also impaled into the vacuole. In the case of the first configuration, with the electrodes localized 

in different subcellular compartments, a significantly more positive potential (-135 mV, SE=4 mV) 

was measured by the microelectrode located in the vacuole, as compared to electrodes in the 

cytosol (-148 mV, SE=3 mV) (Fig. 3.1A, inset). In case that both electrodes were placed inside the 

vacuole, an average series potential of -139 mV was recorded (Fig. 3.1B, inset). The more positive 

serial potential of intravacuolar electrodes reflects the VM potential that superimposes the PM 

potential when both voltages are measured in series (see Chapter 2.2.1.5.). From these 

experiments an average VM potential of approx. -13 mV (-148 mV + 135 mV) is yielded.  

In both experimental conditions shown in (Fig. 3.1A and B), the application of bipolar voltage step 

protocols resulted in electrical currents (Fig. 3.1C and D) similar to currents recorded via vacuolar 

localized microelectrodes in experiments performed by Dr. Yi Wang (see Fig. 1.8). Significantly, 

cytosolically localized single-barrelled voltage electrodes only recorded average changes of the 

serial potential of around 1.9 mV per 20 mV voltage pulse increment applied to the VM (Fig. 3.1C 

to E). Vacuolar-localized voltage electrodes, on the other hand, recorded voltage changes that 

appeared simultaneously and nearly showed the same voltage increments as the applied voltage 

pulses.  
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Fig. 3.1. The VM represents the limiting conductance recorded by microelectrodes located in the vacuole. (A) Cartoon 

illustrating the localization of microelectrodes. A double-barrelled microelectrode was impaled into the vacuole of bulging 

A. thaliana root hair cells. In addition, a single-barrelled microelectrode was impaled through the root hair tip into the 

cytosol. The circles correspond to measurements shown in (C). The inset shows average resting potentials measured at the 

indicated electrodes (gray circle: luminal, double-barrelled electrode; black circle: cytosolic, single-barrelled electrode). 

Error bars indicate SE (n=6). The asterisk marks a significant difference (Student´s t-test, p<0.05). (B) Cartoon illustrating 

microelectrode localization. A double-barrelled microelectrode was impaled into the vacuolar lumen of bulging A. thaliana 

root hair cells. In addition, a single-barrelled microelectrode was also inserted into the vacuolar lumen. The triangles 

correspond to measurements shown in (D). The inset shows average resting potentials measured at the indicated 

electrodes (gray triangle: luminal, double-barrelled electrode; black triangle: luminal, single barrelled electrode). Error bars 

show SE (n=4). (C) Representative current and voltage traces measured with microelectrodes localized as indicated in (A). 

White circle: electrical currents measured in response to a bipolar voltage-step protocol with 20 mV increments of a 

duration of 2 s applied via a luminal-localized double-barrelled microelectrode. Gray circle: luminal recorded voltage pulses 

applied via the luminal-localized double-barrelled microelectrode. Black circle: cytosolically recorded changes of the root 

hair PM potential elicited via the voltage step protocol applied through the luminal-localized double-barrelled 

microelectrode. The lower graph shows a magnification of selected traces (D). Representative current and voltage traces 

measured with microelectrodes localized as indicated in (B). White triangle: electrical currents measured in response to a 

voltage-step protocol (see (C)) applied via a luminal-localized double-barrelled microelectrode. Gray triangle: luminal 

recorded voltage pulses applied via the luminal-localized double-barrelled microelectrode. Black triangle: luminal recorded 

potential changes measured via the single-barrelled microelectrode and elicited via the voltage step protocol applied 

through the luminal-localized double-barrelled microelectrode. (E) Quantification of voltage changes measured with 

luminal (black circle) and cytosolically (black triangle) localized single-barrelled microelectrodes. Values are given as ratios 

between the voltage changes measured with single-barrelled microelectrodes (∆VSB) and the voltage changes measured 

with a luminal localized double-barrelled microelectrode (∆VDB). Error bars show SE (n=6 and 8). The asterisk marks a 

significant difference (Student´s t-test, p<0.05). Average values which are shown in (E) combine experiments performed by 

Dr. Yi Wang and by the author of this work.  

 

Together with the findings of Dr. Yi Wang the experiments with two electrodes in a single root hair 

cell thus show that the PM only has a minor effect on the vacuolar ion currents, due to the high 

electrical conductance of the PM. So far, the ion currents were shown as if the vacuolar lumen was 

regarded as being “inside” of the root hair cell. However, the convention of electrical 

measurements on endomembranes ((Bertl et al. 1992), see Chapter 2.2.1.5.) defines the vacuole 

as being equivalent to the “outside” of a cell. In the following, all vacuolar voltage and current 

traces are displayed according to this convention.  
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3.1.2. [Ca2+]cyt elevations stimulate the conductivity of the vacuolar membrane 

 

In a study that was conducted previous to that described in this thesis, Dr. Florian Rienmüller 

noticed a time-dependent decrease of the VM conductivity after impalement (Wang et al. 2015). 

This result led to the hypothesis that elevated cytosolic Ca2+ levels enhanced the conductivity of 

the VM shortly after impalement. Consequently, a progressive decrease of [Ca2+]cyt to basal levels 

would cause the observed decrease in VM conductance. To provide evidence to this hypothesis, 

experiments on root hairs of A. thaliana seedlings expressing the genetically encoded 

intensiometric [Ca2+]cyt sensor R-GECO1 were performed. In contrast to the Ca2+-sensitive dye 

FURA-2, this approach enabled the observation of [Ca2+]cyt before, as well as after impalement of 

microelectrodes (Fig. 3.2A). Directly after impalement, a 3.5-fold elevation of the R-GECO1 

fluorescence intensity could be observed in root hairs (Fig. 3.2B). The signal increase was transient 

and returned to the basal level within three minutes. In 14 out of 26 cells, the elevation of the Ca2+ 

level was limited to the impaled root hair cell, but in the remaining 12 experiments a spread to 

adjacent cells could be observed. However, a wave-like transmission of Ca2+ signals across the root 

tissue, was not observed after impalement. In order to test if the R-GECO1 fluorescence intensity 

saturates during impalement, microelectrodes back-filled with 1 M CaCl2 instead of 0.3 M KCl were 

used. As expected, these electrodes neither enhanced the impalement-induced fluorescence peak, 

nor did subsequent iontophoretic Ca2+ injections trigger fluorescence signals that exceeded the 

impalement-induced peak (Fig. 3.2C).  

Based on the finding that the R-GECO1 signal can be stimulated 3.5-fold, a calibration procedure 

was developed. Purified R-GECO1 proteins have been demonstrated to show a maximum Ca2+-

dependent fluorescence intensity change of 10.5-fold, while they exhibit a Kd for [Ca2+] of 449 nM 

and a Hill-coefficient of 1.51 (Akerboom et al. 2013), the following general relationship between 

the R-GECO1 fluorescence signal and [Ca2+], deduced from the law of mass action, can be applied 

to estimate [Ca2+]cyt of root hair cells (Suzuki et al. 2014): 

 

𝑓𝑓 = 𝑓𝑓𝑙𝑙𝑖𝑖𝑙𝑙 +
(𝑓𝑓𝑙𝑙𝑎𝑎𝑚𝑚 − 𝑓𝑓𝑙𝑙𝑖𝑖𝑙𝑙) ∗ [𝐶𝐶𝐶𝐶2+]𝑙𝑙

𝐾𝐾𝑑𝑑𝑙𝑙 + [𝐶𝐶𝐶𝐶2+]𝑙𝑙  

Equation 3.1: Kinetics of Ca2+-dependent fluorescence signals. f: fluorescence; fmin : minimal fluorescence; fmax : maximal 

fluorescence; n: Hill coefficient; Kd : dissociation constant. 

 

Provided that the impalement-induced 3.5-fold change of the R-GECO1 signal represents 95% of a 

saturated signal, this signal equals a [Ca2+]cyt of 3 µM (Fig. 3.2D). Consequently, the [Ca2+]cyt 
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approximates 200 nM before impalement with microelectrodes, which is in agreement with 

reported values (Felle 1988a; Bethmann et al. 1995; Felle and Hepler 1997; Wymer et al. 1997). 

 

 

Fig. 3.2: Impalement of root hairs induces elevation of [Ca2+]cyt . (A) Representative images of cytosolic R-GECO1 

fluorescence intensities in a bulging root hair cell of A. thaliana, which was impaled with two microelectrodes. The red line 

encircles a region of interest (ROI) from which fluorescent intensities were deduced. Relative intensities are color coded as 

indicated by the scale bar at the left. The average fluorescence intensity in the ROI was set to 1.0 just before impalement 

with the micro electrode. The time points indicated in the panels relate to the time scale in (B). The image at the right shows 

the corresponding brightfield picture. Note the microelectrodes impaled into the cell. (B) Time course of the R-GECO1 

fluorescence signal during impalement with a microelectrode (closed symbols) vs. the R-GECO1 signal of root hair cells that 

were not subject of impalement (open symbols). Experiments are interrupted during impalement with the microelectrode. 

Error bars show SE (n=7 closed symbols and n=26 open symbols). (C) Time course of the R-GECO1 fluorescence signal during 

iontophoretic injection of Ca2+ (black bars). Experiments are interrupted during impalement with the microelectrode. Error 

bars show SE (n=10). (D) Simulation of Ca2+-dependent R-GECO1 fluorescence with Equation 3.1 (solid line). The dashed 

lines indicate cytosolic Ca2+ concentrations at 95% of maximal fluorescence and at basal fluorescence levels.  
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R-GECO1 expressing plants thus provide a means to test the hypothesis that [Ca2+]cyt elevations 

stimulate vacuolar conductivity. For this purpose, experiments with two microelectrodes in single 

root hair cells were performed. A double-barrelled microelectrode was positioned in the vacuole, 

to probe the VM conductivity with the voltage-clamp technique, whereas a single-barrelled 

electrode was tip-filled with 10 mM BAPTA and impaled into the cytosol via the root hair tip. In the 

cell shown in Fig. 3.3A and B, iontophoretic loading of BAPTA first caused a decrease of [Ca2+]cyt 

below basal levels, followed by a rapid transient elevation (Fig. 3.3A and B). During elevation of 

[Ca2+]cyt, a transient increase of the VM conductance could be detected, using bipolar voltage-step 

protocols (Fig. 3.3C and D). A correlation between the velocity of the [Ca2+]cyt elevation and the 

increase in VM conductance divided the experiments into two groups (Fig. 3.3E). Low to modest 

[Ca2+]cyt changes did not cause significant changes of the VM conductance, whereas pronounced 

elevations of [Ca2+]cyt, increased the VM conductance (Fig. 3.3F and G). The relationship between 

the imposed change of the VM potential and corresponding steady-state currents (Fig. 3.3G) shows 

that especially outward currents (i.e. cationic currents from the cytosol into the vacuole, or anion 

currents into the cytosol) were enhanced during elevation of the cytosolic Ca2+ level. 
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Fig. 3.3: [Ca2+]cyt elevations result in increased vacuolar conductance. (A) Representative images of cytosolic R-GECO1 

fluorescence intensities in a root hair cell of A. thaliana in response to iontophoretic injection of 10 mM BAPTA. The white, 

grey and black symbols correspond to those in (B) and (C). The red line encircles a region of interest (ROI) from which 

fluorescent intensity was deduced. The fluorescence intensity is given relative to the average value in the left panel, as 

indicated by the calibration bar at the left. The image at the right shows a brightfield image of the root hair cell. Note the 

microelectrodes impaled into the cell on the right. A single-barrelled microelectrode for cytosolic injection of Bapta was 

impaled through the tip of the root hair cell, while a double-barrelled microelectrode was impaled via the cell body into the 

vacuole. (B) Time-course of the R-GECO1 fluorescence of the cell shown in (A), symbols above the trace correlate to those 

in the panels. The black bars above the X-axis indicate that periods of iontophoretic loading of BAPTA. (C) Voltage step 

protocol used to probe the vacuolar conductance, the holding potential was equal to the free-running membrane potential 

before start of the voltage pulses. (D) Vacuolar current traces measured at the following time points; white circle: before a 

BAPTA-induced Ca2+ peak; gray circle: during the transient elevation of the cytosolic Ca2+ level; black circle: after the Ca2+ 

response. Current traces are presented according to the convention for electrical measurements at endomembranes (Bertl 

et al. 1992). (E) Correlation between the change in VM conductivity and the rate of R-GECO1 intensity change evoked by 

BAPTA injection. The experiments were grouped according to the rate of R-GECO1 fluorescence intensity changes below 

(group 1) or above 0.1 ru s-1 (group 2). (F) Average conductivities before (white bars), during (gray bars) and after BAPTA 

induced cytosolic Ca2+ peaks (black bars). The experiments were grouped as explained in (E). Error bars show SE (n=7 to 9). 

The asterisk marks a significant change (Student´s t-test; p<0.05). (G) Average current-voltage relationship of group 2 

measurements. The symbols correspond to those in (A) and (B) and indicate measurements before, during and after BAPTA-

induced cytosolic Ca2+ peaks. Error bars indicate SE (n=9).  

 

3.1.3. Voltage-induced Ca2+ currents across the VM 

 

The evidence of [Ca2+]cyt influencing the VM conductance (see Fig. 3.3) made it tempting to 

speculate if voltage-pulses applied to the VM result in changes of [Ca2+]cyt. For this purpose, 

double-barrelled microelectrodes were impaled into the vacuole of bulging root hair cells of R-

GECO1 expressing A. thaliana seedlings. In these cells, an average serial potential (Epm-Evm) was 

measured of -112 mV (SE=2 mV). In the following experiments, VMs were clamped to the free 

running potential, measured at the start of the experiment, and de- and hyperpolarizing voltage 

pulses (ΔVc=100 mV and -80 mV) were applied for a period of 30 s. Simultaneously, the changes in 

the cytosolic R-GECO1 fluorescence intensity were recorded (Fig. 3.4A to C). While depolarizing 

VM potentials induced typical outward currents, hyperpolarizing VM potentials led to typical 

inward current responses (Fig. 3.4B and C). The voltage jumps applied to the VM resulted in fast 

changes of the R-GECO1 fluorescence intensity. Voltage steps to depolarized VM potentials 

induced an increase of the fluorescence intensity, whereas hyperpolarized potentials resulted in a 

decreased R-GECO1 signal. The changes in R-GECO1 signal were reversible, as they returned to 

their original values after the voltage pulse was completed. In fact, the fluorescence intensity of R-
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GECO1 decreased to lower intensities as compared to basal level, after application of a depolarizing 

VM pulse. This drop in [Ca2+]cyt after the voltage pulse was accompanied with a small inward 

current as visible from the slightly negative current response after the depolarizing voltage pulse 

(Fig 3.4B).  

Prolonged clamp-currents were reported to provoke changes in the cytosolic volume of guard cells, 

which cause changes in the intensity of fluorescent dyes in the cytosol (Voss et al. 2016). In order 

to rule out if such changes in volume lead to false-positive signals of the single wavelength Ca2+ 

indicator R-GECO1, control experiments were conducted with seedlings that express cytosolic GFP. 

The vacuolar impaled microelectrodes recorded an average serial potential of -101 mV (SE=3 mV) 

in these seedlings. Voltage pulses applied with these electrodes caused no changes in the GFP 

fluorescence intensity, although the average current response was identical to R-GECO1 expressing 

root hair cells (Fig. 3.4A to C). The changes in R-GECO1 intensity are thus most likely caused by 

changes in the cytosolic free Ca2+ concentration.  
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Fig. 3.4: De- and hyperpolarization of the tonoplast potential results in [Ca2+]cyt  changes. (A) Representative false colored 

images of bulging root hair cells of A. thaliana, which express R-GECO1 (upper panels), or GFP (lower panels). The cells were 

stimulated with a 100 mV depolarizing voltage pulse at the VM from 1 to 1.5 min. The region of interest (ROI) are encircled 

by a red line in the left panel. The panels in the middle show magnifications, as indicated by the green box in the left panel. 

Time points are indicated on the bottom of the middle panels (B). The panels at the right show brightfield images of the 

same magnification as for the middle panels. Note the microelectrodes impaled through the cell body into the vacuolar 

lumen. Fluorescence intensities are color coded as indicated by the calibration bars at the left. (B and C) Average values of 

[Ca2+]cyt and vacuolar currents of cells stimulated either with a 100 mV depolarizing (B) or -80 mV hyperpolarizing (C) voltage 

pulse at the VM. Upper panels: average R-GECO1 (red) and GFP (green) fluorescence intensities of ROIs as indicated in (A) 

and (B). Error bars show SE (n=7 (GFP) and 9 (R-GECO1) in B and n=6 in C). Middle panel: average vacuolar current traces 

in response to a +100 mV, or -80 mV pulse in root hair cells that express R-GECO1 (red) or GFP (green). Lower panel: voltage 

pulse protocols applied via double-barrelled microelectrodes impaled into the vacuole.  
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The 100 mV depolarizing pulses applied to the VM will have resulted in hyperpolarization of the 

PM by approximately -10 mV (see Fig. 3.1). Even though these voltages are relatively small, they 

may have caused an increase in [Ca2+]cyt, as hyperpolarization activated Ca2+-permeable channels 

have been described for several types of plant cells (Hamilton et al. 2000; Pei et al. 2000; Foreman 

et al. 2003; Qu et al. 2007). This possibility was tested with root hairs of R-GECO1 expressing 

seedlings, which were impaled by two single-barrelled microelectrodes (Fig. 3.5). Current-pulses 

of ± 1 nA were applied via the tip-impaled electrode, while the second electrode recorded the free 

running PM potential. On average the free running membrane potential was -149 mV (SE=5 mV) 

and electrical currents of ± 1 nA across the PM only induced absolute changes of the PM potential 

of 8 mV (SE=1 mV). The small voltage changes of the PM potential did not affect the R-GECO1 

fluorescence intensity. Hence, the changes in R-GECO1 fluorescence intensity imposed through de- 

and hyperpolarization of the VM potential, are likely due to the voltage-induced Ca2+ currents 

across the VM.  

 

Fig. 3.5: Cytosolic current pulses of 1 nA do not provoke PM Ca2+ currents in root hairs. (A) Representative images of an 

A. thaliana bulging root hair cell that expresses R-GECO1, stimulated with a -1 nA current pulse from 2 to 2.5 min. The upper 

panel shows false colored images of R-GECO1 fluorescence intensity, given relative to that at the region of interest (ROI, 

red line) before application of the current pulse. The cartoon depicts the experimental setup in which two single-barrelled 

microelectrodes are impaled into a single root hair cell. The electrode impaled through the body of the cell was used as a 

voltage electrode, while the tip-impaled electrode was used to inject current pulses. The lower panels on the right and in 

the middle are magnifications of the upper panel as indicated by the green dashed lines. The time points at the bottom of 

the panels indicate the time after start of the experiment. The panel on the right shows the transmitted light signal at the 

same magnification as the other lower panels. Note the two electrodes impaled into the root hair cell on the right. (B) 

Average values of [Ca2+]cyt  and the root hair PM potential, stimulated with a -1 nA and +1 nA current pulse. Upper panel: 
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average R-GECO1 fluorescence intensities of ROIs as shown in (A). Error bars show SE (n=9). Middle panel: average voltage 

trace of the root hair serial potential. Lower panel: current pulse protocol applied via single-barrelled microelectrodes 

localized in the cytosol.  

 

The relationship between the voltage across the VM and the cytosolic Ca2+ level was studied in 

further detail, using alternative voltage-clamp protocols. Instead of using block pulses, a voltage 

ramp was applied from ΔVc = 100 mV, to the serial holding potential of -131 mV (SE=5 mV). During 

the slow repolarizing ramp, a steady decrease of the R-GECO1 signal was observed (Fig. 3.6A to B).  

The slow repolarization of the VM allowed the analysis of the correlation between [Ca2+]cyt and the 

VM potential in more detail. Due to the saturation kinetics of the Ca2+-dependent R-GECO1 

fluorescence (see Fig. 3.2D), a Boltzmann function was used to describe the correlation between 

the applied VM potential and the R-GECO1 intensity (Fig. 3.6C).  

The average current-voltage relationship of the VM was linear and revealed a conductance of 6 nS, 

which is approximatley 3 times lower as found for epidermal cells by Wang et al. (2015).  
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Fig. 3.6: Ca2+ currents across the VM strictly depend on the VM potential. (A) Representative images of an A. thaliana 

bulging root hair cell that expresses R-GECO1. The upper panel shows a false colored image of the R-GECO1 intensity relative 

to that in a region of interest (ROI, red line), just before application of the voltage pulse, as indicated by the calibration bar 

on the upper right. The panels below are magnifications as indicated by the dashed green lines. The time points after start 

of the experiment are given at the bottom of the lower panels. The indicated voltage values correspond to the clamp-

voltage. The lower panel on the right shows a transmitted light image of the root hair cell at the same magnification as the 

other lower panels. All scale bars are 20 µm. (B) Average values of R-GECO1 fluorescence intensity and vacuolar currents, 

in response to a voltage ramp of ΔVc=100 to 0 mV. Upper panel: average R-GECO1 fluorescence intensities measured in 
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the cytoplasm-rich region around the nucleus of root hair cells. Error bars show SE (n=7). The dotted squares indicate data 

points that were used for the analysis in (C) and (D). Middle panel: average vacuolar current traces of cells stimulated with 

a voltage ramp. Lower panel: voltage pulse protocol applied via double-barrelled microelectrodes impaled into the vacuole. 

(C) Average rel. R-GECO1 fluorescence intensity plotted against the potential difference at the VM. The solid line shows a 

Boltzmann function fitted to the data points: ∆𝐹𝐹(𝑉𝑉𝑐𝑐) = (0.7−3.5)

1+𝑙𝑙
(𝑉𝑉𝑐𝑐−149)

58.9
+ 3.5. R2 is the correlation coefficient. Error bars show 

SE (n=7). (D) The averaged current-voltage of the vauolar membrane, measured with a voltage ramp as shown in (B). The 

solid red line was obtained by linear regression. Error bars show SE (n=7). 

 

In addition to the experiments with voltage ramps, shown above, the voltage dependence of Ca2+-

permeable transport at the VM was studied with voltage step protocols. The VMs of root hair cells 

that express R-GECO1 were clamped from the free running membrane potential (average serial 

potential = -116 mV, SE=5 mV) to depolarizing and hyperpolarizing potentials for 30 s. Consecutive 

depolarizing voltage pulses (ΔVc from 100 mV to 20 mV with 20 mV increments) resulted in [Ca2+]cyt 

elevations with successively lower amplitudes (Fig. 3.7A and B). The application of hyperpolarizing 

potentials (ΔVc from -80 mV to -20 mV, Fig. 3.7C) resulted in reductions of [Ca2+]cyt with likewise 

successively lower amplitudes. The correlation between the applied VM potentials and the voltage-

induced changes in [Ca2+]cyt was again found to be in agreement with a Boltzmann relationship 

(Fig. 3.7D). From the linear current-voltage regression an average VM conductance of 8 nS could 

be calculated (Fig. 3.7D, inset).  
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Fig. 3.7: Relationship between [Ca2+]cyt  and the voltage across the VM. (A) Representative images of a bulging root hair 

that expresses R-GECO1, stimulated with voltage pulses. The region of interest (ROI), which includes a cytoplasm-rich region 

around the nucleus is indicated by a red line. The panels below are magnifications as indicated by the dashed green line. 

The time points after start of the experiment are shown in the top and the clamp voltage on the bottom of the panels. A 

transmitted light image of the root hair with the same magnification is shown in the lower right panel. The calibration bar 

on the upper right links the relative R-GECO1 intensity to the colour code. All scale bars are 20 µm. (B) Impact of depolarizing 

voltage pulses at the VM on the average R-GECO1 fluorescence intensity and vacuolar ion currents. Upper panel: Average 

R-GECO1 fluorescence intensities measured in the cytoplasm-rich region around the nucleus of root hair cells. The cells 
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were stimulated with voltage pulses as shown in the lower panel. Error bars show SE (n=7). Middle panel: Average vacuolar 

current traces in response to the applied voltage pulses. Lower panel: Voltage pulse protocol applied via double-barrelled 

microelectrodes impaled into the vacuole. The amplitudes of consecutive pulses range from +100 mV to +20 mV. (C) Impact 

of hyperpolarizing voltage pulses at the VM on the average R-GECO1 fluorescence intensity and vacuolar ion currents. 

Lower panel: voltage pulse protocol applied via double-barrelled microelectrodes impaled into the vacuolar lumen. The 

amplitudes of consecutive pulses range from -80 mV to -20 mV. Middle panel: average vacuolar current traces in response 

to the applied voltage pulses. Upper panel: average R-GECO1 fluorescence intensities measured in the cytoplasm-rich 

region around the nucleus of root hair cells. Error bars show SE (n=7). (D) The relationship between average R-GECO1 

fluorescence change amplitudes and the applied voltage pulses. Values are deduced from measurements shown in (A) and 

(B). The solid line shows a Boltzmann function fitted to the data points: ∆𝐹𝐹(𝑉𝑉𝑐𝑐) = (−0.54−3.5)

1+𝑙𝑙
(𝑉𝑉𝑐𝑐−238.6)

130.9
+ 3.5. R2 is the correlation 

coefficient. The inset gives the corresponding current-voltage relationship with linear regression. Error bars show SE (n=7). 
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3.2. Auxin transport and perception are integrated in a Ca2+-dependent fast auxin 

signaling pathway  

 

The physiological function of auxin, as a major regulator of plant development and growth is tighly 

linked to polar transport of this phytohormone through various tissues and organs. At the cellular 

level, PAT is responsible for the formation of defined auxin gradients through which auxin imposes 

its physiological functions during organ primordia formation or tropic responses (Benkova et al. 

2003; Ottenschläger et al. 2003).  

The importance of auxin transport for its function, resulted in great efforts to characterize all 

aspects of auxin transport (Bennett et al. 1996; Swarup et al. 2001; Friml et al. 2002a; Friml et al. 

2003; Ottenschläger et al. 2003; Kleine-Vehn et al. 2006; Rutschow et al. 2014). Although it has 

long been suggested that carrier-mediated auxin uptake causes electrical signals (Felle et al. 1991), 

a thorough electrophysiological in planta analysis employing the advantages of an established 

model plant like A. thaliana has yet to be undertaken.  

Hence, in the following part of the results presented in this work, the auxin sensitivity of A. thaliana 

bulging root hair cells is combined with their advantage for electrophysiological measurements 

(see Chapter 1.5) to analyze carrier-mediated auxin influx. Special emphasis is provided regarding 

its electrophysiological characteristics, genetic underlying, affinities, and specificities.  

Since [Ca2+]cyt elevation are among the first observable responses to auxin (Felle 1988a; 

Monshausen et al. 2011) a fast auxin signaling pathway that is involved in the root gravitropic 

response has been suggested (Shih et al. 2015). However, despite the identification of the putative 

Ca2+ channel CNGC14 as mediator of auxin-induced Ca2+ signals, other components of fast auxin 

signalling remain elusive (Shih et al. 2015). Therefore, auxin-induced Ca2+ signals and their 

interaction with auxin transport and auxin perception were analysed to gain insights into fast auxin 

signaling.  

 

3.2.1. The first electrophysiological in planta analysis of auxin influx  

 

Application of auxin can provoke rapid changes in the plasma membrane potential of plant cells, 

which have been suggested to be related to carrier-mediated auxin uptake. These studies were 

continued with A. thaliana, as the mutant collection of this model plant provides the genetic 

resources that allow the identification of the genes responsible for the observed responses. 
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Bulging root hair cells of A. thaliana seedlings were stimulated with 1 s pulses of auxin-containing 

solution supplied with pressure operated application pipettes (Fig. 3.8A). The membrane response 

was measured with single-barrelled microelectrodes impaled into the root hair tip. On average, a 

resting PM potential of -161 mV (SE=1 mV, n=156) was recorded. Application of 10 µM of the native 

auxin 3-IAA induced a rapid depolarization of the PM with an amplitude of up to 70 mV. Based on 

the time-course of the membrane response, five phases can be distinguished (Fig. 3.8B). Upon 

auxin application, a lag phase (i) can be recognized, during which the membrane potential often 

slightly hyperpolarized. The auxin-induced depolarization is of biphasic nature divided in an 

acceleration phase (ii), which is followed by a deceleration phase (iii) until the maximal 

depolarization is reached. Finally, a slow repolarization period (iv) is followed by a new steady state 

value (v). In experiments during which the bath solution was constantly exchanged, i.e. auxin 

applied via pipettes was rapidly washed out, showed that root hair cells show a similar response 

to two consecutive auxin pulses (Fig. 3.8C, compare to Fig. 3.25A).  

The tissue specificity of the auxin-induced depolarization was studied by comparing the electrical 

responses of root hair cells and hypocotyl epidermal cells of dark-grown A. thaliana seedlings (Fig. 

3.8D). Although external application of auxin to epidermal hypocotyl cells induces apoplastic 

acidification and cell elongation (Fendrych et al. 2016), only root hair cells depolarized in response 

to a short auxin pulse. Since both cell types showed a similar PM resting potential (Fig. 3.8D inset), 

the auxin-induced depolarization seemed to be a highly root specific response in A. thaliana. The 

immediacy of the auxin-induced depolarization thereby points towards auxin influx as the 

responsible process as it has already been suggested by Felle et al. (1991). 
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Fig. 3.8: Short auxin pulses induce a cell specific depolarization of the PM. (A) Cartoon illustrating the experimental set-

up, in which auxin was applied to impaled bulging root hairs of A. thaliana seedlings, by use of backpressure operated 

application pipettes. (B) Representative PM potential trace of a root hair stimulated with auxin (black line) and a trace of 

the corresponding derivative that indicates the depolarization rate (red line). The arrow indicates the time point at which 

a 1 s pulse of 10 µM 3-IAA was applied. The colored bar above the traces indicates the five phases of the membrane 

response: lag phase (black); acceleration phase (gray); deceleration phase (green); slow repolarization phase (yellow); new 

steady state level (blue). (C) Representative PM potential trace of a root hair cell that was stimulated with two consecutive 

1 s pulses of 1 µM 3-IAA (arrows). The bath solution was constantly perfused during the experiment. (D) Average PM voltage 

traces of root hair cells (red) and hypocotyl epidermal cells (black) of dark-grown A. thaliana seedlings in response to a 1 s 

pulse of 10 µM 3-IAA (arrow). Traces are normalized to the point of 3-IAA application. Inset: Average PM resting potential 

5 s before 3-IAA was applied. Error bars show SE (n=16 (hypocotyl) and 9 (root hair)). 

 

Since the efficient uptake of auxin would only be possible through H+-coupled symport (see 

Chapter 1.3.2.), the auxin- as well as the H+-dependency of the electrical response was 

investigated. The auxin-induced depolarization of the root hair cells was depended on the 

concentration of 3-IAA, as well as on the pH of the external medium (Fig. 3.9). Depolarizations 

were recorded if 3-IAA was applied at concentrations higher than 1 nM (Fig. 3.9A). Both the 

amplitude of the depolarization and the maximal velocity of the depolarization response increased 
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if higher concentrations of auxin were applied (Fig. 3.9B). The relation between the auxin 

concentration, amplitude-, and velocity of the depolarization were fitted with a Michaelis-Menten 

equation that yielded apparent half maximal concentrations of 53 nM (SE=6 nM) and 300 nM 

(SE=133 nM), respectively (Fig. 3.9B). Likewise, the auxin-induced depolarization was enhanced at 

more acidic pH values of the bath solution, with 3-IAA applied at a concentration of 10 µM, as well 

as 0.3 µM. No auxin-induced depolarization occurred at a pH-value of 8.5 in the bath solution, 

although the PM potential had a similar value as at pH 5.5 (Fig. 3.9C). The pH-dependence of the 

depolarization rates at auxin concentrations of 10 and 0.3 µM were fitted with a Michaelis-Menten 

equation, which yielded an apparent half-maximal proton concentration of 910 nM (SE=500 nM) 

(i.e. pH ≈ 6) (Fig. 3.9D). The observation that auxin induces a depolarization of the root hair PM 

potential in a strictly pH-dependent manner lead to the hypothesis that an auxin-induced and 

inward directed H+ flux might be responsible for the fast depolarization.  

 

 
Fig. 3.9: The auxin-induced PM-depolarization of A. thaliana Col-0 root hair cells is IAA- and pH-dependent. (A) 

Representative voltage traces of root hair PM depolarizations at pH 5.5. 3-IAA was applied at the concentrations indicated 

by the color code for 1 s (arrow). Traces are normalized to the point of 3-IAA application. (B) Dose-response curve of the 

auxin-dependent maximal depolarization amplitudes and –rates, deduced from experiments shown in (A) and fitted with a 

Michaelis-Menten equation. Error bars indicate SE (n=6) (C) Representative single measurements of the auxin-induced 

depolarization at different external pH values, as indicated by the colour-code. 10 µM 3-IAA was applied for 1 s (arrow). 
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Traces are normalized to the point of 3-IAA application. The inset shows resting PM potentials of the impaled root hair cells 

at the external pH values applied, 5 s before the stimulation with a 3-IAA pulse. Error bars indicate SE (n=16). (D) Relation 

between maximal depolarization rates, deduced from experiments as in (C), performed with 10 µM (closed circles) and 0.3 

µM (open circles) 3-IAA. The data were fitted with a Michaelis-Menten equation. Error bars indicate SE (n=6 for 10 µM 3-

IAA and n=10 for 0.3 µM 3-IAA).  

 

The hypothesis that the depolarization is linked to carrier mediated co-transport of auxin and H+, 

was tested with scanning H+-selective microelectrodes. At control conditions, an efflux of H+ was 

determined at the early differentiation zones of A. thaliana seedling roots, in which the first root 

hairs begin to differentiate (Fig. 3.10). The pronounced and stable H+ efflux is most likely due to 

the activity of the PM H+-ATPases in root cells. The application of 3-IAA, to a final concentration of 

10 µM in the bath solution, first resulted in a reduction of the net H+ efflux that subsequently 

turned into a net H+ influx. Note that application of 3-IAA led to a short-term disturbance of the 

measurement, which is indicated by the interruption of the graph after 3 min. (Fig. 3.10).  

 

Fig. 3.10: Auxin induces H+ influx at A. thaliana Col-0 

seedling roots. Average H+ fluxes from root epidermal cells 

in the early differentiation zone, stimulated with 3-IAA at 

t=3min. Negative values represent efflux of H+ from the 

roots and positive values influx. The application of 10 µM 

IAA to the bath solution is indicated by the black bar. The 

trace is interrupted after application of 3-IAA. Error bars 

show SE (n=11). The data were provided by Katharina von 

Meyer, Research group of Dirk Becker, Molecular plant 

physiology and biophysics, University of Wuerzburg. 

 

Because of the pH-dependence of the auxin-induced depolarization and H+ influx, it is likely that 3-

IAA is taken up in symport with H+ by a carrier protein in the PM. The main auxin uptake transporter 

in epidermal root cells is AUX1, which has long been proposed to be a H+/auxin symporter, based 

on its similarities to amino acid permeases (Bennett et al. 1996). However, the putative auxin 

receptor ABP1 also was found to induce ion fluxes across the PM (Rück et al. 1993; Thiel et al. 1993) 

and thus a contribution of ABP1 to auxin-induced membrane responses had to be taken into 

account. For this reason, the auxin-induced depolarization of root hairs in wild type was compared 

with two independent ABP1 loss-of-function lines, abp1-c1 and abp1-TD1 (Gao et al. 2015) (Fig. 

3.11). In addition, we studied a loss-of-function mutant of the auxin efflux carrier PIN2. This 

revealed that the auxin response of both abp1 mutants was not significantly different from wild 
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type, but a reduced response to 3-IAA was found for the pin2 mutant. Moreover, the PM potentials 

at control conditions were not affected by the loss-of-function mutations in the three lines tested 

(Fig. 3.11A, inset). In contrast to PIN2, an involvement of ABP1 in PM responses, which are induced 

through auxin transport can thus be excluded.  

 

Fig. 3.11: Auxin-induced root hair 

depolarizations are ABP1-independent, 

but reduced in a pin2 mutant. (A) 

Representative voltage traces of the root 

hair PM of Col-0 (black) as well as abp1 

(green and blue) and pin2 (gray) lines in 

response to a 1 s pulse of 10 µM 3-IAA 

(arrow). The inset shows average root 

hair resting potential at 5 s before auxin 

application Error bars show SE (n=10 to 

11). (B) Average values of maximal 

depolarization rates from measurements 

as shown in (A). Error bars show SE (n=10 

to 11). The asterisk marks a significant 

difference (Student’s t-test, p<0.05).  

 

In the next step, several aux1 loss-of-function mutants (Fig. 3.12A) were tested to study the role 

of AUX1 in auxin-induced root hair depolarizations and stimulation of H+ influx. The selected aux1 

mutants all showed a reduced gravitropic root growth (Fig. 3.12B), which is characteristic for a 

disrupted PAT due to the loss of AUX1 (Swarup et al. 2004). Most of the mutations in AUX1 also 

impaired the auxin-induced depolarization of root hair cells, as well as H+ influx in the most apical 

part of the root hair zone. Only the partial loss-of-function line aux1-2 showed no significant 

reduction of the auxin-dependent H+ influx (Fig. 3.12C). The null alleles wav5-33 and aux1-T 

showed on average an 80% loss of the root hair depolarization, which clearly exceeds the 

phenotype of PIN2 (Fig. 3.12C and D). Moreover, the wav5-33 and aux1-T mutants showed a 

complete loss of auxin-induced H+ influx (Fig. 3.12E). These phenotypes are unlikely to be due to a 

general impact of the mutations on ion transport, as wav5-33 root hair cells have on average the 

same PM potential as their counterparts in wild type seedlings (Fig. 3.12D, inset). The net 

contribution of AUX1 to the auxin induced depolarization and H+ influx were calculated by 

subtracting the mean mutant response from that of the wild type (red curves in Fig. 3.12D and E). 

This analysis suggests that AUX1 is responsible for the rapid auxin-induced depolarization and H+ 
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influx, whereas a residual slow depolarization and H+ influx are due to AUX1-independent auxin 

transport. As the slow auxin-induced root hair depolarization is likely to depend on other transport 

proteins as AUX1, the 3-IAA affinity of both systems was tested with a series of auxin 

concentrations in wild type and wav5-33 seedlings (Fig. 3.12F). Whereas the half-maximal 

response of wild type occurred at an auxin concentration of 67 nM (SE=54 nM), this value increased 

to 1.7 µM (SE=1.6 µM) in the wav5-33 mutant (red graph in Fig. 3.12F). These data thus suggest 

that AUX1 is the predominant auxin influx transporter at physiological auxin concentrations below 

1 µM. At higher auxin concentrations, however, other electrogenic transporters contribute to auxin 

uptake, which have a much lower affinity for 3-IAA.  
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Fig. 3.12: Auxin-induced root hair depolarization and H+ influx are AUX1-dependent. (A) Genomic model of the AUX1 gene 

from the start- to the stop codon including the positions of exons (open boxes) and introns (black lines). aux1 loss-of-

function mutants used in this work are indicated at the respective position by arrows, with the underlying mutations. (B) 

Agravitropic root growth phenotypes of aux1 mutants (right column) compared to their respective accessions (left column). 

(C) Average depolarization rates (closed bars) and the change of H+ fluxes (open bars) in response to application of 10 µM 

3-IAA. Data shows normalized values of aux1 mutants, relative to their respective accessions. Error bars show SE (n=10 to 

13). Asterisks mark significant changes to the wild type response (Student’s t-test, p<0.05). (D) Average root hair 

depolarizations of Ler (black) and wav5-33 (gray) seedlings. The red curve represents the net contribution of AUX1 

calculated by subtracting the average curve of wav5-33 from the average curve of Ler. IAA was applied at a concentration 

of 10 µM for 1 s (arrow). Traces are normalized to the point of 3-IAA application. Inset: Average PM resting potential 5 s 

before application of 3-IAA. Error bars show SE (n=11 (Ler) and 10 (wav5-33)). (E) Average H+ flux from the early 

differentiation zone of Ler (closed circles) and wav5-33 (open circles) seedlings. Red data points represent the net 

contribution of AUX1, calculated by subtracting the average data points of wav5-33 from those of Ler. Error bars show SE 

(n=13 (Ler) and 12 (wav5-33)). (F) Maximal depolarization rates of Ler (closed circles) and wav5-33 (open circles) root hairs 

in response to a range of IAA concentrations applied for 1 s. The shaded area beneath wav5-33 indicates the AUX1-

independent transport of IAA. The red curve shows the net AUX1 contribution, calculated by subtracting the black curves, 

which were obtained by fitting a Michaelis-Menten equation to the data of wav5-33 and Ler wild type. Error bars indicate 

SE (n=6 to 8 (Ler) and 5 (wav5-33)). 

 

AUX1 has a high affinity for the natural auxin 3-IAA, but it is unknown to which extend it can 

transport other auxins in planta. In addition to 3-IAA, the synthetic auxins 5F-IAA, 1-NAA, and 2,4-

D, as well as the physiological inactive substance 2-NAA were tested for their ability to provoke a 

PM potential depolarization in root hair cells (Fig. 3.13A). Benzoic acid (BA) served as a weak 

organic acid control. Active auxins such as 3-IAA, 5F-IAA and 1-NAA were able to elicit a fast 

depolarization of the root hair PM potential when applied at a concentration of 10 µM for 1 s, but 

2,4 D was not (Fig. 3.13B). Both, 5F-IAA and 1-NAA, caused rapid depolarization, albeit at a lesser 

extent as 3-IAA (Fig. 3.13B and C). However, no difference was observed between the response of 

wild type and wav5-33 root hairs, which indicates that AUX1 is not involved in the transport of 

these synthetic auxins. Hence, AUX1 seems to display a high specificity for the natural auxin indole-

3-acetic acid. 
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Fig. 3.13: AUX1 specifically transports indole-3-acetic acid. (A) Chemical structures of the auxins used in this work. 

Physiological active auxins are 3-IAA, 5F-IAA, 1-NAA, and 2,4-D. BA was used as a weak organic acid control. (B) 

Representative traces of PM potentials in Ler root hairs stimulated with native auxin 3-IAA (black) and the synthetic auxins 

1-NAA (blue) and 2,4-D (red). Auxins were applied at 10 µM with a 1 s pulse from an application pipette (arrow). Traces are 

normalized to the point of auxin application. (C) Average maximal depolarization rates of bulging root hairs deduced from 

measurements as shown in (A). The auxins were applied to Ler (closed bars) and wav5-33 (open bars) seedling root hairs. 

Error bars show SE (n=8 (3-IAA) and 5 (analogs)). The asterisk marks a significant difference between the groups of 

measurements (Student’s t-test, p<0.05). 

 

To further substantiate the genetic evidence for AUX1 causing the described PM responses of root 

epidermal cells in subsequent experiments it was tested whether AUX1 expression levels affect the 

auxin-triggered PM potential depolarization.  

Jones et al. (2009) reported a pronounced difference in AUX1 abundance when comparing root 

hair cells and non-hair epidermal root cells. Indicative for a specific expression in non-hair cells 

pAUX1::AUX1::YFP fusions were detectable in the PM of non-hair cells, while a fluorescent signal 

was absent in differentiated hair cells. However, transcriptomic approaches by Birnbaum et al. 

(2003) and Lan et al. (2013) (see Fig. 1.7) provided evidence for the presence of AUX1 transcripts 

in both cell types. 
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To test whether the proposed difference in AUX1 expression results in a different magnitude of 

auxin influx, root hair and non-hair cells were consequently compared in their auxin-induced PM 

potential response. Non-hair cells were found to react with a faster depolarization to 3-IAA 

application then root hair cells did (Fig. 3.14A and B), although both cell types shared a similar 

resting potential (Fig. 3.14C). In line with Jones et al. (2009) the average maximal depolarization 

rate of non-hair cells was found to be more than twice as high as it was found for hair cells (Fig. 

3.14B). However, since bulging root hair cells show several advantages for experimental 

approaches involving live-cell imaging and electrophysiological strategies (see Chapter 1.5.) they 

can be regarded as a well-suited system to study auxin transport.  

 

 
Fig. 3.14: Epidermal non-hair cells show a higher auxin sensitivity than root hair cells. (A) Representative voltage traces 

of auxin-induced PM depolarizations of A. thaliana Col-0 root hair cells (black) and non-hair epidermal root cells (red). The 

arrow indicates the application of a 1 s pulse of 10 µM 3-IAA. Traces are normalized to the point of 3-IAA application. (B) 

Average maximal depolarization rates from experiments as shown in (A). Error bars show SE (n=5). (C) Average epidermal 

root cell PM resting potential within 5 s before the 3-IAA pulse from experiments as shown in (A). Error bars show SE (n=5). 

The asterisk marks a significant difference (Student’s t-test, p=0.05) 

 

The availability of Pi in the soil is one of the major limiting factors for plant growth and crop yield 

in agriculture (Peret et al. 2011; Elser 2012). The architecture of the root system is altered in 

response to Pi nutrition, which guarantees an efficient Pi supply under Pi-limiting conditions (Drew 

1975). As auxin is the main hormone that affects root architecture, it is likely that auxin is involved 

in root response to low Pi nutrition. In line with this role, the expression AUX1 was recently show 

to be enhanced under Pi-deficiency, in cells of the root elongation zone (Kumar et al. 2015).  
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Based on the reported role of Pi on AUX1 expression, we set out to test the impact of Pi nutrition 

on auxin transport in root hair cells. For this purpose, wild type and wav5-33 seedlings were grown 

on Pi concentrations ranging from 0.3 µM to 312 µM. A low Pi concentration in the growth medium 

resulted in a growth retardation of A. thaliana seedlings (Fig. 3.15A). In line with the enhanced 

expression of AUX1 at low Pi nutrition, low Pi (3 and 0.3 µM) significantly enhanced the 

depolarization rates in response to 0.3 µM 3-IAA in wild type (Fig. 3.15B and C). In contrast, no 

effect of Pi supply on auxin transport could be found in the aux1 null allele mutant. The Pi 

concentration in the growth medium did not affect the resting PM potential measured before 3-

IAA application, neither in wild type, nor in wav5-33 root hair cells (Fig. 3.15C, inset).  

Pi is taken up from the soil via the H+-coupled PHOSPHATE TRANSPORTER1 (PHT1; (Mlodzinska and 

Zboinska 2016)). At high external Pi concentrations, this transport mechanism should lead to a 

decreased electrical resistance of the root hair PM because of higher Pi uptake rates. 

An unaltered H+-coupled auxin influx current would consequently be represented by a smaller 

depolarization of the PM potential under high Pi than it would be under low Pi conditions. 

However, residual Pi in the bath solution is approx. 1/10 of its initial concentration (see Fig. 2.10) 

in the growth medium. Hence, transport of Pi should not significantly interfere with auxin transport 

in the described experimental system. Low Pi nutrition thus enhances the auxin-induced 

depolarization of root hairs, suggesting a higher rate of auxin transport via AUX1. The latter 

conclusion is backed up by ion flux measurements, which also revealed higher initial H+ influx 

compared to seedlings grown at high Pi levels (Fig. 3.15D). This thus demonstrates that AUX1-

mediated auxin uptake is enhanced in Pi-starved roots, most likely via an increased expression of 

AUX1. 
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Fig. 3.15: The external phosphate availability modulates the AUX1-mediated root hair response. (A) Representative 

growth phenotype of 5-day-old A. thaliana Ler seedlings grown at normal Pi  nutrition (upper panels) and Pi-limiting 

conditions (lower panels) (Pi  concentrations in growth medium are indicated). (B) Representative membrane potential 

traces of Ler and wav5-33 seedlings root hairs, grown under at normal and Pi  limited conditions, as indicated by the clour 

code below the graph. The arrow indicates a 1 s pulse of 0.3 µM IAA. Traces are normalized to the point of 3-IAA application. 

(C) Average Pi-dependent peak depolarization rates of Ler and wav5-33 seedling root hairs, deduced from experiments as 

shown in (A). The inset shows the corresponding averaged membrane potentials of Ler and wav5-33 root hair cells within 

5 s before the IAA pulse. Error bars show SE (n=14 (Ler) and 9 (wav5-33). Asterisks mark significant differences between the 

groups of measurements (Student’s t-test, p<0.05). (D) Average net H+ fluxes of the early differentiation zone of Ler wild 

type seedlings. Seedlings were either grown at high Pi  conditions (312 µM Pi, black circles/line) or Pi  starving conditions 

(312 nM Pi, red circles/line). The black bar indicates the presence of 10 µM 3-IAA in the bath solution. Curves are interrupted 

due to 3-IAA application. Error bars show SE (n=18 (300 µM Pi) and 22 (0.3 µM Pi)). 
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3.2.2. The PAT inhibitor TIBA interferes with the generation of the proton motive force 

 

Auxin-induced responses at the PM may be influenced by efflux of 3-IAA, as suggested by the 

results with the pin2 mutant (see Fig. 3.11). We therefore tested if the auxin-efflux inhibitors TIBA 

(Capua and Eshed 2017) or NPA (Cecchetti et al. 2017) affected the auxin-induced depolarization 

of root hairs or H+ fluxes. To this purpose, Col-0 seedlings were accustomed to bath solutions 

containing 20 µM of NPA, which had no effect on the fast root hair depolarization, whereas 20 µM 

of TIBA strongly reduced this response (Fig. 3.16A and B). TIBA treated seedlings, however, had a 

pronounced depolarized resting potential (-109 mV, SE=3 mV; Fig. 3.16C), in comparison to NPA-

treated (-163 mV, SE=4 mV) and control seedlings (-170 mV, SE=5 mV).  

The impact of TIBA was studied in further detail with Col-0 seedlings (Fig. 3.16D). Shortly after the 

application of 20 µM TIBA, the PM potential of root hair cells slowly depolarized, with an average 

amplitude of 23 mV (SE=6 mV), seven minutes after the start of TIBA exposure (Fig. 3.16D and E). 

Despite of the TIBA-induced depolarization, root hairs were still responsive to auxin application, 

although the response tended to be reduced 7 min after start of the exposure (Fig. 3.16D and F). 

H+ flux measurements at the apical root differentiation zone, showed that basal H+ efflux was 

absent from TIBA-treated seedling roots (Fig. 3.16G). Additionally, pre-incubation with TIBA, 

prevented the elicitation of any H+ influx after the application of 10 µM 3-IAA (Fig. 3.16G and H). 

The slow TIBA-induced depolarization of root hair cells, together with the reduction of basal H+ 

efflux and auxin-induced H+ influx, suggest that TIBA affects the generation of the pmf as a driving 

force for auxin uptake possibly through a reduction of H+-ATPase activity. Interestingly, the 3-IAA 

analogs 1-NAA and 2-NAA also triggered H+ influx responses, which were not affected by TIBA 

treatment (Fig. 3.16H). These results strengthen the hypothesis that synthetic auxins are 

transported by other carriers than AUX1, while AUX1 itself is highly specific for 3-IAA. (Fig. 3.16H).  
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Fig. 3.16: The auxin efflux inhibitor TIBA reduces the pmf of root cells. (A) Representative voltage traces of Col-0 root hair 

cells stimulated with a 1 s pulse of 10 µM IAA (arrow). Seedlings were either accustomed to the standard bath solution 

(black) or accustomed to a bath solution that contains 20 µM NPA (blue, structure on the left), or 20 µM TIBA (red with the 

chemical structure above the red curve). Traces are normalized to the point of 3-IAA application. (B) Average root hair PM 

potentials 5 s before 3-IAA application from measurements as shown in (A). The same color code as in (A) applies. Error 

bars show SE (n=13 (std. bath), 8 (NPA) and 5 (TIBA). (C) Average maximal depolarization rates in response to IAA application 

from measurements as shown in (A). The same color code as in (A) applies. Error bars are SE (n is as in (B)). (D) 

Representative voltage traces of Col-0 root hair cells, perfused with standard bath solution (black) or standard bath solution 

supplied with 20 µM TIBA (red). The black arrow marks the time point at which a 1 s pulse of 10 µM 3-IAA was applied. The 

red bar indicates the period at which TIBA containing bath solution was perfused. Blue arrows mark the time points at 

which the PM potential was determined as shown in (E). Traces are normalized to the indicated point (i). (E) Average root 

hair PM potentials 5 s before application of TIBA containing bath solution (i) and 5 s before stimulation with a 3-IAA pulse 

(ii). Values were deduced from experiments as shown in (D). The same color code as in (D) applies. Error bars show SE (n=6). 

The asterisk marks a significant difference of the PM potential between root hairs exposed to TIBA and control (Student´s 

t-test, p<0.05). (F) Average maximal depolarization rates in response to 3-IAA application from measurements as shown in 

(D). The same color code as in (D) applies. Error bars indicate SE (n is as under (E)). (G) Representative H+ flux recordings at 

the early differentiation zone of Col-0 seedling roots. Seedlings were either accustomed to the standard bath solution 

(black, a single recording from the average response shown Fig. 3.10) or to the standard bath solution with 20 µM TIBA 

(red). The gap marks the disturbance of the measurements due to the application of 3-IAA to a final concentration of 10 

µM (black bar). The red arrow indicates the change of PM H+-ATPase activity due to TIBA treatment. (H) Average changes 

in H+ fluxes in response to application of 10 µM of 3-IAA (values for 3-IAA w/o TIBA correspond to Fig. 3.10), 1-NAA and 2-

NAA from measurements as shown in (G). Seedlings were either accustomed to the standard bath solution (black bars), or 

the standard bath solution with 20 µM TIBA (red bars). Solvent controls were conducted for 3-IAA, 1-NAA and 2-NAA for 

which 100 mM stock concentrations were dissolved in EtOH, 1 M NaOH and MeOH, respectively. Final concentrations during 

H+ flux measurements were 0.01% EtOH, 0.01 % MeOH and 0.1 mM NaOH. Error bars show SE (n=11 (3-IAA w/o TIBA), 10 

(1-NAA w/ TIBA), 9 (3-IAA w/ TIBA and 1-NAA w/o TIBA), 7 (2-NAA w/ and w/o TIBA), 4 (EtOH and NaOH) and 3 (MeOH)). 

The asterisk marks a significant difference between the values of data sets (Student´s t-test, p<0.05). Katharina von Meyer 

provided data from (G) and (H), Research group of Dirk Becker, Molecular plant physiology and biophysics, University of 

Wuerzburg. 

 

3.2.3. Auxin induces Ca2+ signals that depend on the AUX1 transporter, TIR1/AFB-class F-

box proteins and the putative Ca2+ channel CNGC14  

 

Auxin elicits changes of [Ca2+]cyt in roots of A. thaliana (Monshausen et al. 2011; Shih et al. 2015), 

but a correlation between the uptake of auxin and cytosolic Ca2+ signals has not been documented.  

The relation between Ca2+ signals and auxin transport therefore was studied with simultaneous H+ 

and Ca2+ flux measurements, as well as with plants that expres the cytosolic Ca2+ reporter R-GECO1 

(Keinath et al. 2015) (see Fig. 2.9). Auxin evoked a transient Ca2+ influx that occurred right after 

application of the stimulus, thereafter the Ca2+-uptake decreased, but it remained well above the 
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net efflux of Ca2+ before auxin application (Fig. 3.17A). In line with the data shown in Fig. 3.12, the 

auxin-induced Ca2+ flux was significantly reduced in three out of five aux1 mutants (Fig. 3.17B). The 

influx of Ca2+ is linked to a transient increase of the [Ca2+]cyt, which was monitored with the 

cytosolic Ca2+ reporter R-GECO1. Local application of 3-IAA to impaled bulging root hair cells 

triggered a fast-occurring transient increase of the R-GECO1 fluorescence that is very similar to the 

response reported by Monshausen et al. (2011) and Shih et al. (2015) (Fig. 3.17C and D). The 

cytosolic Ca2+ signal was found to be tightly associated with the auxin-induced depolarization (Fig. 

3.17D, upper panel). An even more pronounced correlation was found between rate of the voltage 

and Ca2+ signal change (Fig. 3.17D, lower panel). This indicates that the cytosolic Ca2+ response 

coincides with H+-coupled auxin influx through AUX1.  

Just as shown for the auxin-induced root hair depolarization, also cytosolic Ca2+ signals are 

modulated in amplitude and slope, depending on the applied 3-IAA concentration or external pH 

(Fig. 3.17E and F). The analysis of auxin-induced R-GECO1 signals revealed that a 3-IAA 

concentration of 1.6 µM (SE=0.9 µM) and pH 5.8 (1.7 µM of [H+], SE=1.4 µM) led to half maximal 

Ca2+ responses (insets of Fig. 3.17E and F).  
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Fig. 3.17: Auxin triggers AUX1-dependent Ca2+ influx in root epidermal cells resulting in cytosolic Ca2+ signals. (A) Average 

H+ (black circles, left axis) and Ca2+ fluxes (red circles, right axis) measured simultaneously at the early differentiation zone 

of A. thaliana Col-0 seedling roots. The gap marks the disturbance of the measurements due to the application of 3-IAA to 

a final concentration of 10 µM (black bar). Error bars show SE (n=12). (B) Average change of Ca2+ fluxes of aux1 mutants 

normalized to the response of their respective accessions. Error bars indicate SE (n=12 to 13 (wt) and 12 (aux1 mutants)). 

Asterisks mark significant differences to the wild type response (Student’s t-test, p<0,05). (C) Time series of images of which 

the colour indicates the R-GECO1 fluorescent intensities, relative to a time point right before auxin application, in a single 

bulging root hair. From left to right images show the [Ca2+]cyt  before, during and after application of a 10 µM 3-IAA pulse. 

Time points correspond to the time scale of (D). (D) Upper panel: average traces of the PM potential (black, left axis), which 

were simultaneously measured with the R-GECO1 intensity (red, right axis) from experiments as shown in (C). Fluorescent 

intensities were deduced from regions of interest (ROI, red line) as depicted in (C). The arrow marks the time point at which 

1 s pulse of 10 µM 3-IAA was applied. Fluorescence values were normalized to the time point right before IAA application 

Error bars show SE (n=26). Lower panel: first derivatives derived from curves shown in the upper panel depicting the time 

course of the slope of the PM depolarization and [Ca2+]cyt  changes. The same color code applies as in the top panel. Error 

bars show SE. (E) Representative recordings of the R-GECO1 fluorescent intensities measured across a root of the early 

differentiation zone in response to a range of 3-IAA concentrations, as indicated by the different colors. The arrow marks 

the time point of application of 3-IAA pulses. Fluorescence values were normalized to the time point right before 3-IAA 

application. The inset shows the 3-IAA concentration-dependence of the R-GECO1 signal change fitted with a Michaelis-

Menten function. Error bars in the inset show SE (n=7). Measurements were performed in the standard bath solution. (F) 

Representative recordings of the R-GECO1 fluorescent intensities measured across a root section of the early differentiation 

zone in response to 3-IAA measured in standard bath solutions adjusted to a range of pH values, as indicated by the color 

code. The arrow marks the time point of a 1 s pulse of 10 µM 3-IAA. Fluorescence values were normalized to the time point 

right before IAA application. The inset shows the pH-dependence of the R-GECO1 signal slope fitted with a Michaelis-

Menten function. Error bars in the inset show SE (n=6). 

 

The putative Ca2+ channel CNGC14 has been identified as an important mediator for auxin signaling 

events that are associated with gravitropic root bending (Shih et al. 2015). In line with the reported 

absence of any auxin-induced cytosolic Ca2+ signals in roots of the cngc14 loss-of-function mutant, 

application of 3-IAA did not trigger the influx of Ca2+ into root epidermal cells of this mutant (Fig. 

3.18A). Moreover, the auxin-induced depolarization was strongly impaired in the cngc14-2 mutant 

(Fig. 3.18B). This phenotype could be due to transcriptional regulation of AUX1 and we therefore 

determined the expression level of AUX1 in whole seedlings (Fig. 3.18C). This revealed that the 

expression level of AUX1 was unaffected in the cngc14 mutant. In addition, the expression of genes 

coding for F-box proteins in the auxin receptor complex was probed, but also the transcript 

numbers of TIR1, AFB2 and AFB3 were unaffected by the loss of CNGC14.  

Taken together the cngc14-2 mutant did not provide a tool to separate fast electrical response 

from the fast elevation of [Ca2+]cyt, but supported the close association of [Ca2+]cyt and AUX1 

activity, probably through a post-translational regulation of AUX1, with even more evidence. 
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Fig. 3.18: The Ca2+ channel CNGC14 is essential for the auxin-induced Ca2+ influx and root hair depolarization. (A) Average 

net Ca2+ flux measurements at the apical root differentiation zone near bulging root hair cells of Col-0 (black) and cngc14-2 

(red) seedlings. The black bar indicates the time point of application of 10 µM 3-IAA to the bath solution. Measurements 

are interrupted because of disturbance of the measurement, due to auxin application. Fluxes were normalized to the values 

just before IAA application. Error bars show SE, n=10 (Col-0) and 11 (cngc14-2). (B) Average voltage traces of the root hair 

PM potential of Col-0 (black) and cngc14-2 (red) seedlings. Traces were normalized to the time point of 3-IAA application. 

The arrow marks a 1 s pulse of 10 µM 3-IAA. Error bars show SE, n=6 (Col-0) and 7 (cngc14-2). Inset: Average root hair PM 

resting potentials 5 s before application of the 3-IAA pulse. Error bars show SE. (C) Relative expression levels of AUX1, TIR1, 

AFB2/3 and CNGC14 in whole Col-0 (black) and cngc14-2 (red) seedlings. Error bars show SE (n=5). Heike M. Müller and 

Pamela Korte (research group of Peter Ache, Molecular plant physiology and biophysics, University of Wuerzburg) provided 

qPCR data.  

 

The SCFTIR1/AFB auxin receptor complex is known to affect the degradation of transcriptional 

repressors and thus gene expression, but it is unknown if this receptor complex is important for 

fast auxin responses that occur within seconds. For this reason, a pharmacological approach was 

chosen to analyze a potential role of SCFTIR1/AFB-mediated auxin perception in the auxin-dependent 

depolarization of root hair cells, as well as H+ and Ca2+ fluxes. Several substances, which were 

designed to bind to the auxin receptor and to block the formation of the SCFTIR1/AFB-IAA-Aux/IAA 

interacting complex (Hayashi et al. 2012), were tested (Fig. 3.19A). In addition, the impact of the 

benzoic acid derivative p-amino-benzoic acid, (pABA), a putative AUX1 inhibitor was tested. When 

seedlings were pre-treated with 10 µM of either pABA, PEO-IAA, N-ethoxy-ethyl-PEO-IAA, N-ethyl-

PEO-IAA, or 2,4-dimethylphenylethyl-2-oxo-IAA (hereafter auxinole), only auxinole had the ability 
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to inhibit the auxin-induced root hair PM depolarizations, as well as H+ and Ca2+ influx (Fig. 3.19B 

to E). Although auxinole repressed the auxin-induced PM responses, no effect on the root hair PM 

resting potential was observed (Fig. 3.19E, inset). Compared to auxinole, PEO-IAA and its 

derivatives were less effective in inhibiting auxin responses. The latter inhibitors also affected the 

membrane potential at control conditions, whereas PEO-IAA hyperpolarized the root hair PM 

potential by -18 mV (SE=3 mV), its derivatives N-ethoxy-ethyl-PEO-IAA and N-ethyl-PEO-IAA 

depolarized the PM potential by 35 mV (SE=7 mV) and 26 mV (SE=5 mV), respectively. The putative 

AUX1-inhibitor pABA had no significant impact on the auxin responses.  
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Fig. 3.19: Auxinole is a potent inhibitor of auxin-induced PM-responses. (A) Structures of AUX1 (pABA) and TIR1-inhibitors. 

(B) Representative voltage traces of the Col-0 root hair PM in response to a 1 s pulse of 10 µM 3-IAA (arrow) in the absence 

(mock (0.02% DMSO), black trace) or presence (red trace) of 10 µM auxinole. (C) Representative net H+ flux measurements 

in response to application of 10 µM 3-IAA (indicated by horizontal black bar) in the absence (mock, black trace) or presence 

(red trace) of 10 µM auxinole. Measurements are interrupted after application of 3-IAA. (D) Representative net Ca2+ flux 

measurements in response to application of 10 µM 3-IAA (black bar) in the absence (mock, black trace) or presence (red 

trace) of 10 µM auxinole. Measurements are interrupted due to application of 3-IAA. (E) Average values of the maximal 

depolarization rate (black bars) and initial changes in H+ (gray bars) and Ca2+ (white bars) fluxes in response to TIR1-

inhibitors. Error bars show SE (n=7 to 14). Asterisks mark significant differences to mock treatment (Student’s t-test, 

p<0.05). The inset shows average root hair PM potentials 5 s prior to the 3-IAA pulse. Error bars show SE (n=7 to 14). 

Asterisks mark significant differences to mock treatment (Student’s t-test, p<0.05). 

 

Despite of the clear impact of auxinole on auxin-induced PM responses, a residual response was 

still found at a concentration of 10 µM (see Fig.3.19). The concentration of auxinole was therefore 

increased to 20 µM, which caused a block of the 3-IAA-induced [Ca2+]cyt elevations in bulging root 

hair cells, as well as a further reduction of the auxin-induced depolarization (Fig. 3.20A and B). In 

comparison, treatment with the auxin efflux inhibitor TIBA also reduced the auxin-induced 

depolarization but did not block the auxin-induced [Ca2+]cyt elevation to the same extent as 

auxinole (Fig. 3.20A and B). Both TIBA and auxinole, at concentrations of 20 µM, depolarized the 

root hair PM resting potential (Fig. 3.20A and C). Whereas TIBA depolarized the root hairs cells on 

average by 67 mV (SE=2 mV), auxinole only caused a change of 30 mV (SE=3 mV). Apparently, the 

tested PEO-IAA derivatives all have the ability to depolarize the PM potential of root hair cells.  



Results  
  

107 
 

 
Fig. 3.20: The SCFTIR1/AFB-inhibitor auxinole and the auxin-efflux inhibitor TIBA inhibit auxin-induced PM responses. (A) 

Representative simultaneous recordings of the PM potential (black, left axis) and the cytosolic R-GECO1 intensity of an 

impaled root hair cell (red, right axis), measured in standard bath solution (left panel), standard bath solution supplied with 

20 µM auxinole (middle panel) and standard bath solution supplied with 20 µM TIBA (right panel). The arrows mark a 1 s 

pulse of 10 µM 3-IAA. Fluorescence values were normalized (fluorescence intensity = 1), to the value 5 s before IAA 

application. (B) Average depolarization rates (black bars) and rates of R-GECO1 intensity change (white bars) deduced from 

measurements as shown in (A). Values were normalized to experiments performed in the standard bath solution. Error bars 

show SE (n=10 (std. bath), 11 (auxinole) and 9 (TIBA)). Asterisks mark significant changes to control conditions (Student’s t-

test, p<0.05). (C) Average resting PM potentials of root hair cells 5 s before the 3-IAA pulse. Values are deduced from 

measurements as shown in (A). Error bars indicate SE (n as under (B)). Asterisks mark significant changes to control 

conditions (Student’s t-test, p<0.05). 
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As auxins other than 3-IAA can elicit PM potential responses (see Fig. 3.13 and 3.16), it was 

tempting to speculate that these auxins may differ in their ability to evoke Ca2+ signals. 5F-IAA, 1-

NAA, and the inactive 2-NAA were therefore compared to 3-IAA for their ability to trigger [Ca2+]cyt 

elevations in root hair cells. In addition to measurements in standard bath solution at pH 5.5, 

experiments were also performed at an external pH of 7.5. The physiological active auxins 5F-IAA 

and 1-NAA triggered cytosolic Ca2+ signals similar to those induced by 3-IAA, although they had less 

effect on the PM potential (Fig. 3.21A and B). Provided that the auxin-induced PM depolarization 

correlates with auxin transport, Ca2+ signals thus are not closely related to the auxin uptake rate. 

As expected, the physiologically inactive 2-NAA hardly affected the [Ca2+]cyt level and the PM 

potential. A trait common to all auxins tested is the pH-dependence of both the root hair 

depolarization and the increase in [Ca2+]cyt. At an external pH of 7.5 the auxin-induced root hair 

depolarizations, as well as [Ca2+]cyt elevations were both found to be heavily reduced for all auxins 

tested (Fig. 3.21A and B), although the higher pH hyperpolarized root hair cells in comparison to 

an external pH of 5.5 (Fig. 3.21B inset, compare to Fig. 3.9C inset).  
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Fig. 3.21: Physiological active auxins induce [Ca2+]cyt elevations. (A) Representative simultaneous recordings of the PM 

potential (black, left axis) and the cytosolic R-GECO1 intensity of impaled root hair cells (red, right axis) in response to 

stimulation with 3-IAA (left panel), 1-NAA (middle panel) and 2-NAA (right panel). Responses to all auxins were measured 

at external pH values of 5.5 (upper graphs) and 7.5 (lower graphs). The arrows mark the time point at which a 1 s pulse of 

10 µM of the auxin was applied. Fluorescence values were normalized (fluorescence intensity = 1) to the values measured 

just before IAA application. (B) Average depolarization rates (black bars) and rates of R-GECO1 intensity change (white bars) 

deduced from measurements as shown in (A). Values are given relative to 3-IAA at pH 5.5. Error bars indicate SE (n=16, pH 

5.5) and (n=8, pH 7.5)). The inset shows average resting PM potentials of root hair cells at external pH values of 5.5 and 7.5, 

the values were determined 5 s before application of auxins. Error bars indicate SE (n=64, pH 5.5) and (n=32, pH 7.5). 

Asterisks mark significant differences compared to 3-IAA (black asterisks) or compared to pH 5.5 of the same auxin (red 

asterisks, Student’s t-test, p<0.05).  
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Auxinole inhibits PM responses to 3-IAA, suggesting that the SCFTIR1/AFB auxin receptor complex is 

important for these responses. However, because of potential side effects of auxinole (see Fig. 

3.20), it was important to back up these data with genetic evidence. The tir1-1 single loss-of-

function mutant (Ruegger et al. 1998), as well as the tir1-1afb2-3afb3-4 triple mutant line (Parry et 

al. 2009) were tested for auxin-induced PM responses (Fig. 3.22). Experiments in which the auxin-

induced root hair PM potential depolarization, as well as the H+ influx response, were tested (Fig. 

3.22A, C, and E) revealed the combined loss of TIR1, AFB2, and AFB3 but not of TIR1 alone to be 

sufficient for mimicking the auxinole-induced loss of AUX1 activity. However, it should be noted 

that the depolarization-response of the triple mutant varied from completely unresponsive to a 

rather strong response (Fig. 3.22A, inset). These varying responses are, however, in line with the 

reported root growth phenotype of this line that shows variations from an aborted growth after 

germination to rather wild type-like root growth (Parry et al. 2009). Further, root hair cells of the 

triple mutant did not show the reduced resting potential as auxinole treated wild type cells did 

(Fig. 3.22B), thus again highlighting the unspecific side-effect caused by auxinole treatment.  

In the absence of a genetically encoded [Ca2+]cyt sensor in the F-box loss-of-function mutant lines 

auxin-induced Ca2+ fluxes into root epidermal cells were observed with scanning ion selective 

microelectrodes. Like the treatment with auxinole, the combined absence of the three F-box 

proteins TIR1, AFB2 and AFB3 again resulted in the loss of the initial CNGC14-mediated Ca2+ influx 

response (Fig. 3.22D and E). Again, the loss of TIR1 alone turned out to be insufficient for a 

significant reduction of the initial response. The apparent absence of auxin-induced Ca2+ influxes 

thus underpins the necessity of a functional F-box protein-mediated auxin perception for the fast 

activation of Ca2+ influx with genetic evidence. The observed auxin-insensitivities of the auxin-

perception mutant could be due to an altered expression of AUX1 and/or CNGC14. However, real 

time PCR studies showed that AUX1 and CNGC14 expression is unaltered in the receptor mutant 

lines, as well as in auxinole treated wild type seedlings (Fig. 3.22F). Please note that tir1-1 is an 

EMS generated point mutant and that the expression of the mutated TIR1 transcript can be 

detected in the mutant lines (Ruegger et al. 1998; Parry et al. 2009). 
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Fig. 3.22: The auxin receptor complex SCFTIR1/AFB is a mediator of AUX1 activity and auxin-induced Ca2+ influx. (A) 

Representative voltage traces of the root hair PM potential of Col-0 in the absence (black trace) or presence (green trace) 

of 20 µM auxinole, the tir1-1 (blue trace) and tir1-1afb2-3afb3-4 (red trace) loss-of-function mutants in response to a 1 s 

pulse of 10 µM 3-IAA (arrow). Traces are normalized to the values measured just before 3-IAA application. The inset shows 

voltage traces of the tir1-1afb2-3afb3-4 mutant that are exemplary for a seedling that responded (black trace) and one that 

did not (red trace). (B) Average PM potential from experiments shown in (A) measured 5 s before application of the 3-IAA 

pulse. Error bars show SE (n=14, Col-0; n=6, Col-0 with auxinole; n= 8, tir1-1; n=6, tir1-1afb2-3afb3-4). The asterisk marks a 

significant difference in comparison with Col-0 (Student’s t-test, p<0.05). (C and D) Representative net H+ (C) and Ca2+ (D) 

fluxes in the early root differentiation zone of Col-0 in the absence, or presence, of 20 µM auxinole, as well as of the tir1-1 

and tir1-1afb2-3afb3-4 loss-of-function mutants evoked by application of 3-IAA. The same color code as in (A) applies. The 

horizontal black bar marks the presence 10 µM 3-IAA in the bath solution. Graphs are interrupted after the time point of 

application of 3-IAA. Fluxes are normalized to the values just before 3-IAA application. (E) Quantification of the auxin-

induced PM responses. Shown are average values of the maximal depolarization rates (black bars), as well as the change in 

H+ fluxes (gray bars) and Ca2+ fluxes (white bars). Error bars show SE of Col-0, n=14 and 10, for depolarization and ion fluxes, 

respectively; Col-0 with auxinole, n=6 and 10 for depolarization and ion fluxes, respectively; tir1-1, n=8 and 16, for 

depolarization ion fluxes, respectively; tir1-1afb2-3afb3-4, n=6 and 9 for depolarization ion fluxes, respectively. Asterisks 

mark significant differences to Col-0 in the absence of auxinole (Student’s t-test, p<0.05). (F) Relative expression levels of 

AUX1, TIR1, AFB2/3 and CNGC14 in whole seedlings. The same color code as shown in (A) applies. Error bars show SD (n=4 

(Col-0, tir1-1, tir1-1afb2-3afb3-4) and 3 (Col-0 w/ auxinole)). Transcript levels marked with n.d. were below the detection 

limit. qPCR data were provided by Heike M. Müller, Research group of Peter Ache, Molecular plant physiology and 

biophysics, University of Wuerzburg. Ion flux data were provided by Dr. Sönke Scherzer, Molecular plant physiology and 

biophysics, University of Wuerzburg. 

 

The apparent reduction or absence of AUX1-mediated H+-coupled auxin influx in root hair cells of 

plants either lacking the F-box proteins needed for auxin perception or the channel necessary for 

auxin-induced Ca2+ influx prompted the idea that [Ca2+]cyt feeds back into AUX1 activity. To gain 

further insights into the propagation of auxin-induced cytosolic Ca2+ signals, we studied Ca2+ signals 

in root tips with plants expression R-GECO1. In these experiments, the cytosol of single root hair 

cells was iontophoretically stimulated with the hormone. The first barrel of double-barrelled 

microelectrodes was tip-filled with the injection mixture containing auxin and the fluorescent dye 

LY as a loading control, while the second barrel served as the voltage recording electrode (Fig. 

3.23A). 

This experimental approach offered the possibility to stimulate a single cell, while propagation of 

the Ca2+ signal could be monitored in the root tissue. The cytosolic injection of 3-IAA with an 

electrical current of -1 nA, applied for one minute, was reported by LY appearing at cytosol rich 

regions like the root hair tip and around the nucleus as well as at the rim of the cell (Fig. 3.23B). 

Cytosolic stimulation with 3-IAA lead to the immediate induction of a local [Ca2+]cyt elevation in the 

injected root hair cells (Fig. 3.23B and C). Those Ca2+ signals were not restricted to the site of auxin 
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stimulation but rather propagated with 5 mm/h (SE=0.8 mm/h) towards the opposite lateral root 

side. During propagation, the Ca2+ signal was enhanced, since its amplitude was higher on the 

opposite site of the root, as in the stimulated root hair cells (Fig. 3.23B and C). Simultaneous to the 

Ca2+ wave, injection of 3-IAA induced a slow and transient depolarization of the injected root hair 

cell which reached an average maximal amplitude of 18 mV (SE=2 mV, Fig. 3.23C and D). This 

response differs from that triggered by externally applied auxin with regard to the velocity of the 

voltage change as well as with regard to the maximal amplitudes (compare to Fig. 3.8). The 

depolarization as well as the lateral moving Ca2+ wave evoked by intracellular injection of 3-IAA 

were inhibited in seedlings pre-treated with auxinole (Fig. 3.23C to E). Moreover, injection of the 

inactive 2-NAA did neither cause a slow root hair PM depolarization, nor a [Ca2+]cyt response (Fig. 

3.23C to E), suggeting that the relatively slow depolarizaton induced by injection of auxin requires 

a functional auxin perception module.  
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Fig. 3.23: Cytosolic injection of 3-IAA into single bulging root hair cells induces propagating Ca2+ waves. (A) Cartoon 

illustrating iontophoretic auxin injection into the cytosol of a bulging root hair cell with the simultaneous recording of the 

PM potential via double-barrelled microelectrodes. (B) Imaging of [Ca2+]cyt  in R-GECO1 expressing seedling roots in response 

to cytosolic 3-IAA injection. Upper left panel: brightfield image of an A. thaliana seedling root with a bulging root hair 

impaled by a microelectrode. Lower left panel: Cytosolic localization of the iontophoretically injected dye LY. Middle and 

right panels: False coloured images, indicating the R-GECO1 fluorescent intensity. 3-IAA was injected with a current of -1 

nA, in the period of t=30 to 90 s, into the root hair of ROI1 (compare to LY distribution, lower left panel). The colour code 

indicates the R-GECO1 intensity relative to a time point before auxin injection as shown in the calibration bar below the 

panels. Time points correspond to the time scale of (C). (C) Representative measurements of iontophoretic injection of 

auxin into bulging root hair cells. From left to right panels show data for 3-IAA injection in seedling roots kept in standard 

bath solution, 3-IAA injection in roots pre-treated with bath solution supplemented with 20 µM auxinole and injection of 

the physiological inactive 2-NAA. Lower graphs: the response of the PM potential (black line, left axis) to auxin injection 

together with the fluorescence intensity of the control dye LY (green line, right axis). Note the relaxation of LY fluorescence 

after the end of injection due to the translocation of the dye into the vacuolar lumen. Upper graphs: corresponding 

response of the R-GECO1 fluorescence intensities of ROI1 (red line) and ROI2 (black line) as indicated in (B). Intensities were 

normalized to the time point before the start of injection (equal to 1.0). The gray bar in the first panel indicates the period 

of auxin injection, which is the same in all three panels observable by the voltage jump to hyperpolarized potentials. (D) 

Average maximal depolarization of root hair cells, in response to cytosolic auxin injection. Error bars show SE (n=20 for 3-

IAA, n=6 for 3-IAA in the presence of auxinole, n=11 for injection of 2-NAA). Asterisk mark significant differences compared 

to 3-IAA (Student’s t-test, p<0.05). (E) Average maximal change of the R-GECO1 fluorescence intensities of ROI1 (black bars) 

and ROI2 (white bars), relative to the time point before the start of auxin injection (equal to 1.0). Error bars show SE (n is 

as under (D)). Asterisks mark significant differences (Student’s t-test, p<0.05) between ROI1 and ROI2 in the case of 3-IAA 

(red asterisk) as well as in comparison to the respective ROI of experiments with 3-IAA (black asterisks).  

 

Intracellular injection of auxin into single root hair cells triggered a slow depolarization and Ca2+ 

signals that were apparently SCFTIR1/AFB-dependent. Since CNGC14 mediates Ca2+ influx in response 

to external auxin application, it was tested if the responses to a cytosolic auxin application require 

the putative Ca2+ channel CNGC14 as well. For this purpose, 3-IAA was iontophoretically loaded 

into root hair cells of wild type and cngc14-2 seedlings (Fig. 3.24). Wild type root hairs showed an 

average maximal depolarization amplitude of the PM potential of 19 mV (SE=4 mV) in response to 

cytosolic application of 3-IAA, while root hairs of cngc14-2 showed no depolarization. Hence, the 

putative Ca2+-permeable channel CNGC14 is apparently required for the auxinole-sensitive 

responses to cytosolically applied 3-IAA.  
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Fig. 3.24: CNGC14 is responsible 

for the Ca2+ influx in response to 

cytosolic auxin application. (A) 

Representative voltage traces of 

the root hair PM potential of Col-

0 (black) and cngc14-2 (red) 

seedlings in response to 

iontophoretic loading of 3-IAA 

into the cytosol. Traces were 

normalized to values measured 

right before the start of 3-IAA 

injection. The double headed 

arrow marks the time frame of 

cytosolic loading of 3-IAA with a 

current of -1 nA. (B) Average peak PM potential depolarization caused by iontophoretic 3-IAA loading into root hair cells of 

Col-0 (black) and cngc14-2 (red) seedlings. Values were obtained from measurement as shown in (A). Error bars show SE 

(n= 7). The asterisk marks a significant difference (Student’s t-test, p<0.05). 

 

Since the loss of auxin and Ca2+ influx activity in the cngc14-2 mutant led to the hypothesis that 

auxin-induced cytosolic Ca2+ signals feed back into AUX1 activity (see Fig. 3.18) a closer look at this 

relationship became necessary. Shih et al. (2015) showed that the broad range Ca2+ channel 

blocker Lanthanum (La3+) causes an auxin-insensitive primary root growth phenotype, similar as 

observed in cngc14 mutants. La3+ was therefore used to inhibit the auxin-induced responses of 

root hairs. A range of La3+ concentrations was tested to find the minimal concentration that inhibits 

the auxin-induced depolarization (Fig. 3.25A to C). The treatment with La3+, three minutes before 

stimulation with a 1 µM 3-IAA pulse, did not inhibit the depolarization of root hair cells (Fig. 3.25A 

and B). However, a consecutive 3-IAA pulse, which was applied after La3+ had been washed out, 

was strongly reduced after pre-treatment with 64 µM or 128 µM La3+, respectively (Fig. 3.25A and 

B). Please note, that the pre-treatment with La3+, at concentrations up to 128 µM, imposed no 

effect on the root hair PM potential (Fig. 3.25C). As depicted in Fig. 3.25D and E external application 

of 64 µM La3+ gradually blocked the AUX1-dependent fast root hair PM potential depolarization 

reaching an effective block after nine minutes into La3+ exposure.  

La3+ thus clearly inhibits the auxin-induced depolarization of roots hairs, but only after cells have 

been exposed to the inhibitor for more than 5 min. These results raised the question, how La3+ 

affects the cytosolic Ca2+ concentration of root hair cells. Therefore the auxin-induced elevations 

of [Ca2+]cyt in roots of R-GECO1 expressing seedlings were probed (Fig. 3.25F). In accordance with 

the observations for the PM potential, a first auxin stimulation was observed to be La3+ insensitive, 
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while a second 3-IAA pulse triggered a strongly reduced [Ca2+]cyt elevation after the root hair cells 

were treated with 128 µM La3+. In cases seedlings were exposed to 128 µM La3+, [Ca2+]cyt failed to 

return to low basal levels after the first auxin-induced elevation, thus indicating a severe effect of 

La3+ on cytosolic Ca2+ homeostasis. 

These experiments revealed a short-term effect of La3+ which supports the hypothesis of a Ca2+-

dependent post-translational regulation of AUX1. A possible explanation for the effect that only 

the second auxin stimulus turned out to be La3+-sensitive could be an open channel block of 

CNGC14 by La3+, which is either achieved by an initial forced channel activation through auxin 

application or, in the case of the time-dependent block, through stochastic channel activation 

events and its effect on Ca2+-homeostasis. The apparent effect La3+ has on [Ca2+]cyt homeostasis 

might point towards La3+ entering the cells and affecting the activities of Ca2+-ATPase and H+/Ca2+ 

exchangers, which are discussed to be involved in maintaining low basal [Ca2+]cyt (Roelfsema and 

Hedrich 2010; Schönknecht 2013).  
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Fig. 3.25: Treatment with La3+ mimics the auxin-insensitive phenotype of the cngc14-2 mutant. (A) Representative voltage 

traces of the root hair PM potential of seedlings exposed to 16 µM (blue trace), 64 µM (green trace), 128 µM (red trace) 

La3+ and in the absence of this Ca2+ channel blocker (black trace, see Fig. 3.8C). The bath solution was constantly perfused 

during measurements. The gray box below the graph indicates exposure to the La3+ containing solutions. 3-IAA was applied 

in two consecutive 1 s pulses of 1 µM, with an application pipette (double-headed arrows). Traces are displayed on top of 

each other for clarity. (B) Average maximal depolarization rates determined for the first (closed bars) and second 3-IAA 

pulse (open bars), in the absence, or presence of La3+ at a range of concentrations as shown in (A). Error bars show SE (n=7, 

with La3+) and n=10 without La3+). Asterisks mark significant differences between values measured in the first and second 

3-IAA pulse (Student’s t-test, p<0.05). (C) Average root hair PM potential within 5 s before La3+ was applied (black bars) and 

before the first (gray bars) and the second (white bars) 3-IAA pulses from experiments as shown in (A). Error bars show SE 

(n as under (B)). (D) Representative voltage traces of the root hair PM potential of seedlings, exposed for 3 min (green), or 

9 min (red) to 64 µM La3+, before stimulation with a 1 s pulse of 1 µM of 3-IAA (arrows). Control experiments (black and 

blue) were performed with the standard bath solution. The bath solutions were constantly exchanged during experiments. 

The blue arrow marks the time point, at which the perfusion with solutions containing La3+ was started. Traces are 

normalized to the points of 3-IAA application. (E) Average maximal depolarization rates in response to the 1 s pulse of 1 µM 

3-IAA plotted against the duration of exposure to 64 µM La3+, as shown in (D). Error bars show SE (n=7 to 8). The black line 

was calculated by linear regression (R2=0.81). (F) Average R-GECO1 fluorescence intensities measured in a region of interest 

across a seedling root in response to two consecutive 1 s pulses of 1 µM 3-IAA (arrows), in the absence (black), or presence 

of 16 µM (blue), 64 µM (green), or 128 µM (red) La3+. The gray box indicates the time frame at which La3+ containing bath 

solutions were applied. Values are normalized to the point right before the first 3-IAA application. Error bars show SE (n=6, 

128 µM La3+ and 64 µM La3+, n=8, 16 µM La3+ and n=9, std. bath).  

 

The ability of moderate La3+ concentrations to block auxin-induced Ca2+ influx was an essential 

prerequisite to directly address the hypothesis of a fast Ca2+-dependent regulation of auxin 

transport. The following questions remained to be addressed: (i) does the lateral Ca2+ wave, 

induced through a single cell stimulation with auxin (see Fig. 3.23), also has a longitudinal 

component and (ii) if this is the case, do these Ca2+ signals affect auxin transport and signaling in 

cells not directly stimulated by auxin application?  

The [Ca2+]cyt of the apical part of the root, including the meristematic and elongation zones, was 

observed in seedlings that express R-GECO1 (Fig. 3.26A). Root epidermal cells were impaled with 

single-barrelled microelectrodes and stimulated by iontophoretic injection of 3-IAA for five 

minutes. Auxin triggered a Ca2+ wave that traversed the root acropetally from the side of auxin 

stimulation to a more apical root zone over distances of approx. 440 µm with an average velocity 

of 39 mm/h (SE=10 mm/h, Fig. 3.26A and B). In line with the data shown in Fig. 3.23, cytosolic 

injection of 2-NAA did not elicit such Ca2+ signals (Fig. 3.26B).  

The ability of local auxin stimuli to trigger tip-directed Ca2+ waves together with a possible Ca2+-

dependent regulation of particular auxin-transporters made it tempting to analyze, in how far 
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these auxin-induced Ca2+ waves interfere with the auxin gradients at the root tip. Therefore, 

seedlings, expressing the fluorescent auxin perception reporter DII-Venus ((Brunoud et al. 2012), 

see Chapter 2.3.2. for details) were used to investigate such a possible signaling over greater 

distances. In the case of the root tip, DII-Venus fluorescence can be observed in the meristematic 

zone and in parts of the adjoining root cell elongation zone where cells rely on a relatively low 

auxin concentration to undergo a high mitotic activity and elongation, respectively (Fig. 3.26C). 3-

IAA was iontophoretically injected together with LY for five minutes into the cytosol of a single 

epidermal root cell, approx. 400 µm above the meristematic zone (Fig. 3.26C, upper left panel). 

The DII-Venus fluorescence intensity started to decrease, without an apparent lag-time, after 

stimulation with 3-IAA (Fig. 3.26C and D). A remaining level of the fluorescence signal intensity, at 

approximately 30% of the initial value, was reached roughly 25 minutes after the start of injection 

(Fig. 3.26D). Cytosolic injection of the inactive auxin 2-NAA had no effect on the time-dependent 

decrease in DII-Venus fluorescence intensity. In the presence of 128 µM La3+, which was applied 

ten minutes before stimulation with 3-IAA, the degradation rate of DII-Venus was reduced and new 

steady-state levels of DII-fluorescence were higher than in the absence of La3+.  

As explained in Chapter 2.3.2, the DII-Venus fluorescence is an indirect reciprocal measure for the 

intracellular auxin concentration. Hence, the loss of this signal in cells distant to the site of local 

auxin stimulation can be interpreted as an accumulation of auxin and the onset of auxin signaling 

in these cells. From the time-courses of the acropetal Ca2+ wave and DII-Venus degradation, it 

seems that the Ca2+ signal coincides with the onset of degradation in these distant cells (Fig. 3.26B 

and D), which indicates that the auxin-induced Ca2+ signals feed back into auxin transport resulting 

in the indirectly observed accumulation of auxin.  
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Fig. 3.26: Local application of auxin evokes responses in distant apical root tissues. (A) Intensiometric R-GECO1-based 

imaging of [Ca2+]cyt  in apical parts of the root. The upper left panel shows the injection of 3-IAA together with the fluorescent 

dye LY into the cytosol of a root epidermal cell, in the border region between elongation and differentiation zone, two 

minutes after the start of injection. The remaining panels show a representative time series of false coloured R-GECO1 

fluorescence images. The colors are linked to the R-GECO1 intensity relative to the start of the experiment (equal to 1.0), 

as indicated by the calibration bar below the panels. The indicated time points correspond to the time scale shown in (B). 
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(B) Average traces of relative R-GECO1 fluorescence intensities of a ROI near the injected epidermal cell (ROI1 in (A), green 

line) and an ROI at the meristematic root zone (ROI2 in (A), red line). An epidermal cell in ROI1 was stimulated by 3-IAA 

injection, as indicated by the horizontal black bar below the graph. As a control, the inactive 2-NAA was injected, and the 

fluorescence time-course of ROI2 is shown in black. R-GECO1 fluorescence data are normalized as explained for (A). Error 

bars show SE (n=8). (C) Intensiometric DII-Venus imaging in apical parts of the root. The upper left panel shows the injection 

of the 3-IAA together with LY into the cytosol of a root epidermal cell in the border region between elongation and 

differentiation zone five minutes after the start of injection. The remaining panels show a representative time series of 

changes in the DII-Venus fluorescence intensity, relative to the intensity at start of injection (equal to 1.0), as indicated by 

the calibration bar shown below the panels. The indicated time points correspond to the time scale shown in (D). (D) 

Average time-course of DII-Venus fluorescence intensities in the meristematic root zone. Epidermal cells were stimulated 

by injection of 3-IAA (red), or the inactive 2-NAA (black), in the absence (closed circles), or presence of 128 µM La3+ (open 

circles). Fluorescence intensities are normalized to the time point at the start of the experiment. The black bar above the 

time axis indicates the time frame of iontophoretic auxin injection. Error bars show SE (n=14, without La3+, n=6 with La3+). 
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4. Discussion 

 

4.1. Intracellular measurements of the vacuolar conductivity 

 

Vacuoles are essential for plants, because of their ability to store high amounts of inorganic ions, 

metabolites, proteins, and water. Because of the important role of vacuoles in plant physiology, 

there is a need to analyse transport processes across the VM. The patch-clamp technique (Neher 

et al. 1978) enabled the characterization of many individual transport processes at isolated 

vacuoles (Hedrich et al. 1986; Peiter et al. 2005; De Angeli et al. 2013; Jaslan et al. 2016). However, 

most cytosolic factors that regulate vacuolar transport processes in vivo are lost during vacuole 

isolation. To overcome this drawback of the patch-clamp technique, an experimental approach 

was developed to measure the electrical properties of vacuoles in intact A. thaliana root hair cells, 

with intravacuolar microelectrodes. Since cytosolic Ca2+ is known to regulate the activity of 

vacuolar transporters (Becker et al. 2004; Bihler et al. 2005; Meyer et al. 2011; Latz et al. 2013; 

Tang et al. 2015) the correlation between the electrical conductivity of the VM and cytosolic Ca2+ 

was analysed in detail.  

The movement of Ca2+ across the VM is assumed to be of importance for cytosolic signaling 

(Roelfsema and Hedrich 2010; Schönknecht 2013). However, the ion-conductances that facilitate 

the release of Ca2+ from the vacuole remain elusive and the active transporters that mediate Ca2+ 

uptake into vacuoles, have not yet been characterized with electrophysiological techniques. 

Hence, intracellular microelectrodes provide a unique opportunity to test if the [Ca2+]cyt depends 

on the voltage across the VM and to provide insights into the  properties of the ionic conductances 

that are involved.  

 

4.1.1. The VM conductance can be measured with electrodes in the vacuole of root cells  

 

In this work, it is demonstrated that voltage pulses applied to the VM do not elicit significant 

changes in the PM potential (see Fig. 3.1). Hence, the VM represents the highest resistance for 

ionic currents elicited between a microelectrode in the vacuole of root hair cells and an 

extracellular reference electrode. The experiments shown in Fig. 3.1 clearly demonstrate that 

intravacuolar microelectrodes record ion currents that depend on the conductance of the VM of 

A. thaliana root hair cells, even though the PM and the VM are impaled in series.  
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These findings are in line with earlier work by Goldsmith and Cleland (1978) who reported that the 

VM is the limiting electrical conductance, of symplastically connected Avena sativa coleoptile cells. 

The relatively high conductance of the PM, in comparison with the conductance of the VM, is most 

likely due to symplastic connections between adjacent cells through plasmodesmata. The 

symplastic connections cause electrical coupling between root cells (Spanswick 1972; Zhu et al. 

1998) and as a result, impaled microelectrodes record an electrical continuum of many epidermal 

root cells. However, vacuoles are electrically isolated and therefore a much lower conductance is 

recorded by microelectrodes positioned in the vacuole.  

The work of Dr. Yi Wang and Dr. Florian Rienmüller, together with the results presented in this 

thesis, demonstrate that the electrical conductance of the A. thaliana epidermal root cell vacuole 

varies between 5 and 20 nS. The conductance of the PM, in conjuncture with the plasmodesmatal 

connections to neighbouring cells, on the other hand, is approx. 100 nS. A value of similar range 

for the electrical conductance of the PM and plasmodesmata of A. thaliana epidermal root cells 

was measured by Roger R Lew, who reported approximately 172 nS (Lew 1996). However, in a later 

study he found a much higher VM conductance of 589 nS, which he regarded: “indicative of large 

ion fluxes between the vacuole and the cytoplasm” (Lew 2004). The author used a double-

impalement approach through which the cytosol of root hair cells was kept as a virtual ground. 

Through this, the electrical properties of the VM could be separated from those of the PM. Voltage-

clamp experiments revealed vacuolar ionic currents with amplitudes of 50 nA at a VM potential 50 

mV negative or 90 mV positive of the serial holding potential. The reason why such high vacuolar 

currents, causing the high VM conductance, were recorded cannot be determined.  

Under consideration of a root hair cells dimensions (cylindrical geometry of the cell body: 12.5 by 

87.5 µm) Lew (2004), gives a specific VM conductance of 160 S m-2. If the cell dimensions given by 

Lew (2004) are applied to an electrical conductance of epidermal root cell vacuoles of 20 nS (Wang 

et al. 2015), a specific VM conductance of approx. 5 S m-2 is yielded. The vacuolar conductance of 

root hair cells presented by Wang et al. (2015) and herein are thus two orders of magnitude smaller 

than the value given by Lew (2004).  

However, such a small value of 5 S m-2 is just in the range of the various VM conductances of 

different giant algae species compiled by Tester et al. (1987). Values reported therein are mostly < 

10 S m-2. Moreover, the conductance of the VM reported by Wang et al. (2015) and herein is in line 

with PM conductances of not symplastically connected and thus electrical isolated cells like A. 

thaliana pollen tubes (approx. 10 to 20 nS, deduced from Gutermuth et al. 2013). An example 

showcasing that the VM conductance is much smaller than the conductance of the PM was 
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reported to be Avena sativa coleoptile cells (Goldsmith and Cleland 1978). While the authors 

demonstrated the electrical resistance of the VM to be approx. 30 MΩ (corresponding to a 

conductance of 33 nS), the electrical resistance of the PM, on the other hand, was found to be 

approx. 8 MΩ (corresponding to a conductance of 125 nS). The electrical conductances deduced 

from Avena coleoptile cells by Goldsmith and Cleland (1978) thus are very similar to the values 

obtained from epidermal root cells of A.thaliana presented by Wang et al. (2015) and herein.  

 

4.1.2. The VM conductance is regulated by cytosolic Ca2+  

 

In this work, a positive correlation between the VM conductance and [Ca2+]cyt is shown. As a first 

line of evidence, a time-dependent decrease of the root hair VM conductance after microelectrode 

impalement (Wang et al. 2015) is shown to coincide with the return of the [Ca2+]cyt to basal levels 

(see Fig. 3.2). In conjunction with experiments performed by Dr. Florian Rienmüller (Wang et al. 

2015) a second line of evidence was obtained by cytosolic injection of Ca2+ chelating substances, 

which can induce transient elevation of [Ca2+]cyt that are associated with an increase of the VM 

conductance (see Fig. 1.8 and Fig. 3.3).  

In general, such a close relationship between the VM conductance and [Ca2+]cyt is supported by the 

findings of Lew (2004). Although the absolute values of the VM conductance reported therein are 

not in agreement with the literature consensus, Lew (2004) showed that application of a 

hyperosmotic shock to root hair cells increased the VM conductance while the PM hyperpolarized. 

Such osmotic shocks generate mechanical forces at the PM (Monshausen and Gilroy 2009; 

Monshausen and Haswell 2013; Peyronnet et al. 2014). Since such forces are believed to activate 

PM-localized mechanosensitive channels of high conductance facilitating the movement of 

osmolytes to minimize these forces (Peyronnet et al. 2014), these fluxes have to be compensated 

to maintain cytosolic ion homeostasis. Moreover, mechanical stimulation was shown to be closely 

associated with the induction of [Ca2+]cyt elevations. For example, local elevations are provoked 

through the mechanical stimulation of growing root hairs (Bibikova et al. 1997; Monshausen et al. 

2009) and hyperosmotic treatments were shown to elicit [Ca2+]cyt elevations in whole A. thaliana 

seedlings (Knight et al. 1997; Yuan et al. 2014). The subsequent stimulation of VM conductances 

through these mechanically induced Ca2+ signals could thus act to maintain cytosolic ion 

homeostasis at the expense of the vacuole. Through such a mechanism the tugor-dependent polar 

growth of root hairs could be maintained in cases mechanical forces are encountered as it is to be 

expected when they grow in soil. Moreover, since the polar growth of root hairs is dependent on 
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a tip-focused Ca2+ gradient (Zhang et al. 2017b), it is conceivable that this local [Ca2+]cyt elevation 

provides the means for tugor maintenance through the vacuole during fast root hair growth 

independent from external stimuli. 

But of what is the nature of those apparently Ca2+ regulated vacuolar ion conductances? 

Intravacuolar microelectrodes record a population of ion conductances in the VM. However, 

several vacuolar ion channels have been characterized with the patch-clamp technique and their 

potential contribution to the Ca2+-stimulated VM conductance is discussed in the following.  

TPC1 - K+ is the most abundant cation in plant cells and it is likely to contribute to the VM 

conductance. The K+-permeable channel TPC1 has the intrinsic ability to directly sense [Ca2+]cyt via 

EF-hand motifs (Schulze et al. 2011). A hallmark of the TPC1 channel is its activation upon 

depolarization of the VM (outward rectification). The voltage threshold for TPC1 activation is 

shifted to more negative potentials (closer to physiological VM potentials) by high Ca2+ levels in the 

cytosol, as well as low Ca2+ levels in the lumen (Hedrich and Neher 1987; Pottosin et al. 1997; 

Pottosin et al. 2004; Beyhl et al. 2009). TPC1 is not only regulated by Ca2+, but also can conduct 

Ca2+ currents, albeit at conditions that are unlikely to occur in intact cells (Ward and Schroeder 

1994; Pottosin et al. 1997; Beyhl et al. 2009; Rienmüller et al. 2010; Hedrich and Marten 2011). 

Nevertheless, TPC1 was suggested to mediate Ca2+-induced Ca2+-release from the vacuole during 

stress-induced signaling events (Ward and Schroeder 1994; Pottosin et al. 2009; Schönknecht 

2013; Choi et al. 2014; Evans et al. 2016).  

TPC1 may contribute to the observed Ca2+-dependent changes of the VM conductance in root hair 

cells. It is most likely to conduct K+ currents, as TPC1 has highest permeability for K+ (Ward and 

Schroeder 1994) and K+ is present in high concetrations in the vacuole (Wang and Wu 2013). 

Because of the small electrochemical gradient of K+ ([K+]lum/[K+]cyt≈1; Wang and Wu, 2013), TPC1-

mediated K+ fluxes into the vacuole, activated through a [Ca2+]cyt-dependent shift of the activation 

threshold, could contribute to the observed changes of the VM conductance in root hair cells. 

However, patch-clamp experiments show that TPC1-mediated ionic currents are typical being only 

slowly activated under depolarising VM potentials (Hedrich and Neher 1987). This characteristic 

feature of TPC1 neither was found for vacuolar currents of stimulated (i.e. high [Ca2+]cyt), nor 

unstimulated root hair cells. This finding thus indicates that SV channels are to a large extend in an 

inactivated state in root hair cells. Activation may occur when plants encounter larger stress 

stimuli. A role of TPC1 was shown for the propagation Ca2+ and ROS waves in roots, after 

stimulation with high salt concentrations (Choi et al. 2014; Evans et al. 2016) and for the 

biosynthesis of the wound hormone jasmonic acid (Bonaventure et al. 2007).  
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TPK1 - Members of the TPK family have been shown to function as voltage-independent K+-

selective channels (Becker et al. 2004; Latz et al. 2007; Carraretto et al. 2013). TPK1 is located in 

the VM and is activated through the interaction with 14-3-3 proteins as well as through a direct EF-

hand motif-mediated Ca2+ sensing. An additional layer of regulation is provided by the Ca2+-

dependent phosphorylation of the 14-3-3 interaction domain of TPK1 by CPK3 (Latz et al. 2007; 

Latz et al. 2013). Because of the voltage-independent characteristic, and because of its sensitivity 

to cytosolic Ca2+, TPK1 is very likely to contribute to the Ca2+-stimulated VM conductivity that was 

observed in this study.  

Anion channels - The VM of root hair cells also harbours several anion channels from which the Pi 

channel PHT5.1 (Liu et al. 2015; Liu et al. 2016), and the Cl--permeable channels ALMT9 (De Angeli 

et al. 2013) and DTX33/35 (Zhang et al. 2017a) are highly expressed and well characterized (see 

Fig. 1.6). These channels are of outward (into the vacuole) rectifying manner and thus could 

facilitate vacuolar currents measured in root hair cells at hyperpolarizing VM potentials. However, 

no Ca2+-dependent regulation was found for ALMT9 in isolated vacuoles, while the Ca2+-dependent 

regulation was neither studied for PHT5.1 (Liu et al. 2015), nor for DTX33/35 (Zhang et al. 2017a). 

Transporter - In addition to ion channels, several carriers may contribute to the conductance of 

the VM. The anion/H+ exchanger of the ClC family are promising candidates. Recently published 

patch-clamp experiments on isolated mesophyll vacuoles of A. thaliana showed vacuolar current 

kinetics to depend on the presence of the phosphatidylinositol-3,5-bisphosphate-regulated ClCa 

with respect to an instantaneous activation and slow time-dependent deactivation (Carpaneto et 

al. 2017). Thus far, no evidence for the absence or presence of a Ca2+-dependent regulation of ClCs 

has been brought forward.  

The cation/H+ exchangers of the NHX and CAX family may be active in the VM and at least NHX1 

and CAX2 could be present at the VM in a high copy number, since both their genes are among the 

more highly abundant transcripts encoding vacuolar transporters in root hair cells (see Fig. 1.6). 

These secondary active transporters can significantly contribute to vacuolar currents in root hair 

cells, provided they operate in an electrogenic manner.  

Both NHX1 and CAX2 are likely to be controlled by Ca2+. In the case of NHX1, regulation through 

luminal Ca2+ via luminal-localized CaM15 has been shown in the heterologous system of yeast cells 

(Yamaguchi et al. 2005). Although no regulation through Ca2+ has been brought forward in the case 

of CAX2 so far, a search for putative physical CAX2 interaction partners on the ARAPORT database 

(https://www.araport.org/) revealed at least four CaMs (CaM1/4/7/10), a 14-3-3 protein 
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(AT5G38480) and two CaM interacting proteins (AT2G41090 and AT2G41100). These putative 

interactions strongly point towards a Ca2+-dependent regulation of CAX2.  

 

4.1.3. A tool to study H+-coupled vacuolar Ca2+ import  

 

The results presented in this work unequivocally demonstrate that the movement of calcium ions 

across the VM is regulated by the electrical potential across this endomembrane. While 

depolarization of the VM led to elevations of [Ca2+]cyt, hyperpolarizing VM potentials caused a drop 

of [Ca2+]cyt below basal levels (see Fig. 3.4 to 3.7). The observed relationship between the changes 

in [Ca2+]cyt and the VM potential is in contrast to the impact that the electrochemical gradient is 

supposed to have on Ca2+ currents. The ideal thermodynamic behaviour of passive Ca2+ movement 

across the VM can be calculated by Equation 4.1 (compare to Equation 1.1; (Christensen 1975)): 

 

∆𝐺𝐺 = �𝑅𝑅 ∗ 𝑇𝑇 ∗ 𝑙𝑙𝑙𝑙 �
[𝐶𝐶𝐶𝐶2+]𝑙𝑙𝑙𝑙𝑙𝑙
[𝐶𝐶𝐶𝐶2+]𝑐𝑐𝑐𝑐𝑐𝑐

� − 𝑧𝑧𝐶𝐶𝑎𝑎2+ ∗ 𝐹𝐹 ∗ ∆𝐸𝐸𝑉𝑉𝑉𝑉� 

Equation 4.1: Thermodynamic simulation of passive Ca2+ movement across the VM. ∆G: free energy, R: universal gas 

constant, T: absolute temperature (293 K), z: charge of the ion, F: Faraday constant, ∆EVM  as the VM potential at the 

cytosolic side. 

 

Since the luminal/cytosolic Ca2+ gradient in root hair cells of A. thaliana can be assumed to be in 

the range of 103 to 104, Equation 4.1 results in reversal potentials for Ca2+ of 87 mV and 116 mV, 

respectively (Fig. 4.1). As it is apparent from Fig. 4.1, a passive release of Ca2+ from the vacuole is 

thus facilitated at all experimentally tested VM potentials. The depolarization of the VM, i.e. a shift 

to more positive potentials at the cytosolic side, represents a decrease of the electrochemical 

gradient and passive Ca2+ fluxes into the cytosol should consequently be reduced. Hence, a 

decrease of [Ca2+]cyt should be the expected outcome. The same relation holds true for a 

hyperpolarized VM potential, which should enhance the passive release of Ca2+ from the vacuole 

and thus should lead to [Ca2+]cyt elevations.  
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Fig. 4.1: Thermodynamics of Ca2+ movement across the VM. 

The change in free energy of Ca2+ is plotted against the VM 

potential. Calculations were performed for luminal/cytosolic 

Ca2+ gradients of 103 (red) and 104 (black). The span of hyper- 

and depolarizing voltage pulses applied to the VM during 

voltage-clamp experiments are indicated by light colored areas. 

Negative ∆G values represent uptake of Ca2+ into the vacuole, 

while positive values indicate the release of Ca2+ into the 

cytosol. 

 

 

 

 

 

 

 

 

How can the experimentally observed voltage-induced change in the cytosolic Ca2+ level, opposite 

from the expected outcome be explained? The considerations shown above exclude that a Ca2+-

permeable vacuolar ion channel is involved. Instead, active Ca2+ transporters may explain the 

outcome of the voltage clamp experiments.  

Whereas vacuolar Ca2+-ATPases like ACA11 (see Fig. 1.6) use ATP to pump Ca2+ into the vacuole, 

cation/H+ exchangers of the CAX family rely on the pmf. Even though Ca2+-ATPases and CAXs 

transporters were not yet characterized with electrophysiological techniques, the CAX family was 

studied extensively at the molecular and biochemical level. CAXs from A. thaliana were able to 

rescue cation sensitive growth phenotypes in yeast and in planta, as well as a reduced pH-

dependent vacuolar Ca2+ uptake in A. thaliana cax loss-of-function mutants (Hirschi et al. 1996; 

Hirschi et al. 2000; Cheng et al. 2002; Cheng et al. 2003; Cheng et al. 2004). The functions of the 

two vacuolar Ca2+-ATPases in A. thaliana have been deduced in a similar approach, by a study that 

revealed their ability to rescue the growth of Ca2+ transport deficient yeast strains. (Geisler et al. 

2000; Lee et al. 2007). In these Ca2+ pumps, the hydrolysis of one molecule of ATP is likely to drive 

the uphill transport of two Ca2+ in exchange of two H+ (Yu et al. 1993; Olesen et al. 2007). Both, 

Ca2+-ATPases and H+/Ca2+ exchanger are likely to have a significant influence on shaping cytosolic 

Ca2+ signatures and in maintaining low basal [Ca2+]cyt (Roelfsema and Hedrich 2010; Bose et al. 

2011; Schönknecht 2013).  
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Thermodynamic considerations of active Ca2+ transport across the VM may help to interpret the 

presented experimental data. Equation 4.2 describes the ideal thermodynamic behaviour of 

vacuolar Ca2+ uptake via a H+-coupled transport process. For this purpose, Equation 4.1 was 

expanded through the expression describing the pmf across the VM. 

 

∆𝐺𝐺 = 𝑙𝑙𝐶𝐶𝑎𝑎2+ ∗ �𝑅𝑅 ∗ 𝑇𝑇 ∗ 𝑙𝑙𝑙𝑙 �
[𝐶𝐶𝐶𝐶2+]𝑙𝑙𝑙𝑙𝑙𝑙
[𝐶𝐶𝐶𝐶2+]𝑐𝑐𝑐𝑐𝑐𝑐

� − 𝑧𝑧𝐶𝐶𝑎𝑎2+ ∗ 𝐹𝐹 ∗ ∆𝐸𝐸𝑉𝑉𝑉𝑉� + 𝑙𝑙𝐻𝐻+

∗ �𝑅𝑅 ∗ 𝑇𝑇 ∗ 𝑙𝑙𝑙𝑙 �
[𝐻𝐻+]𝑐𝑐𝑐𝑐𝑐𝑐
[𝐻𝐻+]𝑙𝑙𝑙𝑙𝑙𝑙

� + 𝑧𝑧𝐻𝐻+ ∗ 𝐹𝐹 ∗ ∆𝐸𝐸𝑉𝑉𝑉𝑉� 

Equation 4.2: Thermodynamic simulation of a H+/Ca2+ exchanger. Symbols are as defined for Equation 4.1. n: H+/Ca2+ 

coupling ratio. 

 

Calculations displayed in Fig. 4.2A were performed for a luminal/cytosolic Ca2+ gradient of 104, four 

different H+/Ca2+ coupling ratios as well as several pH gradients across the VM.  

Based on this model, an efficient uptake of Ca2+ into the vacuole is only possible at electrogenic 

H+/Ca2+ coupling ratios of three or four. Moreover, at a ∆pH of 1 unit, uptake can only occur at VM 

potentials at or negative of the free running value (approx. -30 mV, Fig. 4.2A). A ∆pH of 1.5 or 2 pH 

units, however, is sufficient to enable vacuolar Ca2+ uptake at VM potentials positive of the free 

running value as well. Depending on the Ca2+ gradient, the ∆pHVM and the exact transport 

stoichiometry, a depolarization of the VM potential should thus lead to a reduced activity of 

H+/Ca2+ exchanger, while hyperpolarizing VM potentials should have the opposite effect.  

The pmf also will affect the activity of Ca2+-ATPases. As Ca2+-ATPases are likely to act as ATP-driven 

electrogenic H+/Ca2+ exchanger working with a 1:1 stoichiometry the ideal thermodynamic 

behaviour of a Ca2+ pump can be simulated by expanding Equation 4.2 through an expression 

describing the energy liberated from cytosolic ATP-hydrolysis (Equation 4.3; (Lodish et al. 2008)) 

 

∆𝐺𝐺 = 𝑙𝑙𝐶𝐶𝑎𝑎2+ ∗ �𝑅𝑅 ∗ 𝑇𝑇 ∗ 𝑙𝑙𝑙𝑙 �
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� − 𝑧𝑧𝐶𝐶𝑎𝑎2+ ∗ 𝐹𝐹 ∗ ∆𝐸𝐸𝑉𝑉𝑉𝑉� + 𝑙𝑙𝐻𝐻+

∗ �𝑅𝑅 ∗ 𝑇𝑇 ∗ 𝑙𝑙𝑙𝑙 �
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[𝐻𝐻+]𝑙𝑙𝑙𝑙𝑙𝑙
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Equation 4.3: Thermodynamic simulation of a Ca2+-ATPase. Symbols are as defined for Equations 4.1 and 4.2. ∆G0, ATP: 

Energy liberated from ATP hydrolysis at standard conditions. 
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The calculations presented in Fig. 4.2B presumed a conservative cytosolic ATP/ADP ratio of 1 

(Gardestrom and Igamberdiev 2016), a cytosolic [Pi] of 70 µM (Pratt et al. 2009) and three different 

pH gradients across the VM. The additional energy provided by ATP hydrolysis ensures the uptake 

of Ca2+ into the vacuole at virtually all VM potentials displayed in Fig. 4.2B, except for those 

negative of -100 mV. A depolarization of the VM potential leads to a higher activity of Ca2+-ATPases, 

because a net positive load (2Ca2+ in versus 2H+ out) has to be transported against a smaller 

electrical potential.  

 

 
Fig. 4.2: Thermodynamic simulation of vacuolar Ca2+ uptake via H+/Ca2+ exchangers and Ca2+-ATPases. (A) H+/Ca2+ antiport. 

The cartoons above the graphs illustrate the transport mechanism and the Ca2+ gradient used in the calculations (black 

triangle). Calculations were performed for different coupling ratios (from left to right: 1, 2, 3 and 4) as indicated by the 

cartoons, as well as for different trans-VM pH differences as indicated by the different colours. The luminal/cytosolic Ca2+ 

gradient of 104 was constant for all calculations. The light-coloured areas show the span of hyper (up to -80 mV)- and 

depolarizations (up to +100 mV) from the free running VM potential of -30 mV. (B) Simulation of a Ca2+-ATPase. Calculations 

were performed for different trans-VM pH differences as indicated by the different colours. The luminal/cytosolic Ca2+ 

gradient of 104, the cytosolic ADP/ATP ratio of 1 and the cytosolic [Pi] at 70 µM were constant for all calculations. The light-
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coloured areas show the span of hyper (up to -80 mV)- and depolarizations (up to +100 mV) from the free running VM 

potential of -30 mV.  

 

From the thermodynamic considerations explained above, the model displayed in Fig. 4.3 can be 

deduced, which explains the relationship that was experimentally observed between [Ca2+]cyt and 

the VM potential (Fig 4.3). At a ground state defined through a free running VM potential of 

approximately -30 mV, a ∆pHVM of 1.5 units and a luminal/cytosolic Ca2+ gradient of 104 (Bibikova 

et al. 1998; Bassil et al. 2011; Martinoia et al. 2012; Schönknecht 2013), the Ca2+-ATPases and 

H+/Ca2+ exchanger transport Ca2+ into the vacuole to compensate for Ca2+ release into the cytosol, 

via non-selective cation channels.  

The ideal thermodynamic behavior of vacuolar Ca2+-ATPases in this model is dominated by the 

electrochemical gradient of Ca2+. Hence, a positively shifted VM potential would enhance vacuolar 

Ca2+ import together with cytosolic ATP/ADP ratios > 1. This opposing behaviour excludes Ca2+-

ATPases from being responsible for the [Ca2+]cyt changes observed in voltage-clamp experiments.  

However, since the pmf across the VM is the sum of the ∆pHVM and the VM potential, it is 

enhanced, or reduced, through hyper- and depolarization of the VM, respectively. In the model 

depicted in Fig. 4.3 the pmf in the ground state has a value of -120 mV. A hyperpolarization of the 

VM potential by -80 mV will shift the pmf to -200 mV. A depolarization by 100 mV, on the other 

hand, will lower the pmf across the VM to -20 mV. Because of these voltage-dependent changes in 

the pmf, Ca2+ is less efficiently imported into the vacuole by H+/Ca2+ exchangers upon 

depolarization of the VM and vice versa. Voltage-induced changes in the activity of H+/Ca2+ 

exchanger thus are likely the cause of the changes in [Ca2+]cyt, monitored in vacuolar voltage-clamp 

experiments. 

In this model, Ca2+-ATPases would counteract the activity of H+/Ca2+ exchangers. However, since 

the experimental evidence shows [Ca2+]cyt changes matching the described ideal thermodynamics 

of H+/Ca2+ exchanger, Ca2+-ATPases with their high affinity but low turnover rates (Lodish et al. 

2008) seem to have only negligible contributions.  
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Fig. 4.3: Model for VM potential-mediated changes of [Ca2+]cyt . The close correlation between [Ca2+]cyt  and the VM 

potential can be explained by the changes to the pmf (light blue triangle) which enhance or decrease the ability of H+/Ca2+ 

exchanger (yellow diamond) to transport Ca2+ into the vacuole at hyper- or depolarized membrane potentials. The size of 

the arrows is relative to transport activity. Although H+ influx is still possible at depolarized potentials, the energy liberated 

through this is not sufficient for the uphill transport of Ca2+ (dashed arrow). Ca2+-ATPases counteract antiport activity but 

are expected to have negligible contributions (transparent appearance). 

 

The experimentally acquired data, together with thermodynamic reflections explained above, 

firmly point towards a major role of vacuolar H+/Ca2+ exchangers in VM potential-induced changes 

of [Ca2+]cyt. In the family of so far identified vacuolar H+/Ca2+ exchangers, only CAX2 seems 

significantly expressed in root hair cells (see Fig.1.6A), which makes it the prime candidate for 

further analysis. The presented experimental approach offers a tool to study the role of CAX2 in 

regulating [Ca2+]cyt and characterize its transport properties and regulation mechanisms in the in 

planta system of bulging root hair cells. As mentioned in Chapter 4.1.2., CAX2 possibly interacts 

with Ca2+ sensing CaMs. This possibility could explain the observed drop of the [Ca2+]cyt below basal 

levels which was observed when the VMs were returned to their resting potentials after highly 

depolarizing voltage pulses (see Fig. 3.4). The elevations of the [Ca2+]cyt during such voltage pulses 

could potentially lead to an activation of CAX2 through the Ca2+-dependent interaction with CaMs. 

Whereas depolarizing potentials would mask such an activation by diminishing the pmf, a 

persistent Ca2+-dependent increase of the activity of CAX2 could be responsible for the post-

depolarization drop in [Ca2+]cyt. Since H+-coupled vacuolar Ca2+ uptake into the vacuole would 

require the net movement of positive charges into the cytosol, the small inward current response 
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observed after depolarizing voltage pulses supports the hypothesis of a Ca2+-dependent activation 

of the responsible H+/Ca2+ exchanger.  

 

4.1.4. Outlook and open questions for intracellular vacuolar measurements 

 

Whereas the ion conductivity of the VM apparently is regulated by cytosolic Ca2+ signals, the 

membrane potential of the VM may affect the shaping of cytosolic Ca2+ signatures. Although the 

results presented in this work point to such a mutual interaction of the VM and [Ca2+]cyt, it remains 

to be investigated in much more detail, in order to get answers to the following outstanding 

questions:  

 

(i) Which vacuolar ion channels, or transporters, are dominating the vacuolar 

conductance in planta? 

 

The vacuolar currents measured during voltage-clamp experiments in planta will likely represent 

the superposition of various active conductances. So far, a strong statement regarding the 

contribution of specific ion channels or transporters cannot be made. Analysis of loss-of-function 

mutants, however, could potentially provide such data. Prime candidates would be null alleles of 

TPK K+ channels and anion channels, like ALMT9 and PHT5.1 or secondary active transporter like 

ClC-a and CAX2. Besides their influence on the VM conductance under control conditions, their 

contribution to an elevated conductance under high [Ca2+]cyt would be of special interest.  

 

(ii) Which physiological relevant signals trigger Ca2+ signals in root hairs cells? 

 

So far, the cytosolic Ca2+ signals, which were shown to the enhance the VM conductivity, were 

induced by impalement and current injection of Ca2+ chelators. A prime goal for future research 

will be to study which physiologically more relevant signals trigger Ca2+ signals can enhance the 

VM conductivity. The fast occurring Ca2+ signals induced by the growth hormone auxin would be 

worthwhile to test in this respect. Auxin-induced Ca2+ signals were shown to solely depend on 

CNGC14-mediated Ca2+ influx across the PM (see Fig. 3.18, (Shih et al. 2015)). Provided that 

vacuolar Ca2+ release does not contribute to auxin-induced elevations of the [Ca2+]cyt, an enhanced 

VM conductivity during auxin-induced signaling could point to a Ca2+-dependent regulation of 

other transport processes like the vacuolar uptake of excess cytosolic Ca2+. 
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(iii) Are Ca2+/H+ transporters responsible for VM potential-induced changes in the [Ca2+]cyt 

and are these transporters encoded by CAX genes? 

 

Plant lines expressing genetically encoded cytosolic Ca2+ reporter in the background of loss-of-

function mutants of genes like CAX2 can be used to study if these transporters contribute to the 

experimentally observed voltage-induced [Ca2+]cyt changes. Moreover, the ∆pHVM could be altered 

in order to provide insights into the H+-dependency of Ca2+ transport in root hair cells. In a 

pharmacological approach the vacuolar H+-ATPase could be specifically inhibited with bafilomycin 

(Rienmüller et al. 2012) or the ∆pHVM could be increased through overexpression of vacuolar H+-

pumps (V-ATPases and V-PPases).  

The experimentally applied range of VM potentials is, of course, unphysiological, since the VM, 

resting at around -30 mV, is unlikely to change by 80 or even 100 mV in response to a physiological 

trigger. However, the data presented in Fig. 3.7 show that also smaller changes of the VM voltage 

can affect [Ca2+]cyt. The intracellular localization of the vacuole complicates long-time 

measurements of the VM potential since double-impalement experiments are necessary to correct 

the VM potential for the PM potential. A statistical approach, however, in which a sufficient 

number of PM potential measurements are compared to measurements of the serial potential 

measured through intravacuolar electrodes (EVM = EPM - ET) could gain insights into the response 

of the VM potential to different elicitors and if those changes are sufficient to influence the activity 

of H+/Ca2+ exchanger.  
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4.2. Analysis of auxin transport and membrane-localized signaling 

 

The second part of this work aimed at a comprehensive understanding of the earliest auxin-

induced responses in the root of the model plant A. thaliana. Such fast auxin responses that occur 

within seconds after application of an external auxin stimulus, include a depolarization of the PM 

potential, an apoplastic alkalinization, as well as cytosolic Ca2+ signals mediated by a PM-localized 

putative Ca2+-permeable ion channel (Felle et al. 1991; Monshausen et al. 2011; Shih et al. 2015).  

Although the rapid depolarization of the PM potential already had been suggested to represent 

electrogenic H+-coupled auxin influx, the electrical signals were so far not used to provide a 

detailed characterization of auxin transport in vivo.  

Recently a model has been proposed that links auxin-induced [Ca2+]cyt elevations and fast 

alkalinization of the apoplast to the establishment of the root gravitropic response (Shih et al. 

2015). However, the role and interaction of the single components within this model, including 

auxin perception, Ca2+ signals, and the conductance that mediates apoplastic alkalinization, still 

remained elusive.  

 

4.2.1. The first in vivo characterization of carrier-mediated auxin influx 

 

Local short-term application of auxin induces fast and high-amplitude PM potential depolarizations 

in root hair cells of A. thaliana (see Fig. 3.8). The characteristics of the membrane depolarization, 

like a half-maximal response at 300 nM auxin, as well as the strict dependence on an apoplastic pH 

< 7, are in line with previous reported properties of auxin influx transporters. Rubery and Sheldrake 

(1974) first proposed the existence of a saturable, carrier-mediated, uptake mechanism of IAA-. 

They showed that auxin-uptake has an optimum at pH 6 and a half-maximal response at 1-5 µM 

IAA, by examining auxin-uptake in crown gall suspension cells. Felle et al. (1991) described the 

characteristics of the auxin-induced electrical response of maize coleoptiles and found that it is 

also dependent on an acidic pH and displays a half-maximal value at 490 nM IAA.  

In addition to the depolarization of the root hair PM, auxin was also shown to trigger a rapid influx 

of H+ across the PM of root epidermal cells (see Fig. 3.10). If the IAA- and pH-dependence of the 

root hair depolarization, as well as the auxin-induced H+ influx are taken into account, it is likely 

that these responses represent real-time observations of a secondary active auxin uptake 

machinery. In this regard, Felle et al. (1991) were the first to suggest a 2H+/IAA-  stoichiometry for 

carrier-mediated auxin-uptake that gives rise to a depolarizing positive inward current. 
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Subsequently, protein sequence homologies between amino acid permeases and the putative 

auxin-uptake facilitator AUX1, suggested such a H+-coupled auxin transport mechanism for AUX1 

(Bennett et al. 1996). The hypothesis, that the depolarization of the root hair PM is caused by 

AUX1-mediated H+-coupled auxin uptake, was indeed confirmed in this thesis, based on 

experiments with a series of aux1 loss-of-function mutants, which were tested for their auxin-

induced root hair depolarization and stimulation of H+ influx (see Fig. 3.12). The fast component of 

the depolarization and the rapid induction of H+ influx were reduced, or absent, in the tested aux1 

loss-of-function mutants. The apparent absence of auxin influx in aux1 mutants is in accordance 

with a phenotypic analysis of root agravitropism in the same mutant lines (Swarup et al. 2004), as 

well as with an impaired 3H-IAA uptake in oocytes expressing mutated versions of AUX1 (Yang et 

al. 2006). Significantly, Yang and co-workers found AUX1-mediated 3H-IAA uptake into oocytes to 

be half-maximal at an applied concentration of 800 nM. Furthermore, the experiments by Yang et 

al. (2006) demonstrated the activity of AUX1 to be highest at pH 6. The oocyte experiments are 

thus in accordance with the in planta experiments presented herein that characterized auxin 

transport via AUX1 with apparent Km values for the applied auxin and H+ concentration of 300 nM 

and pH 6, respectively (see Fig. 3.9).  

A comparison between wild type and the aux1 mutants provided evidence that AUX1 is solely 

responsible for the electrogenic auxin uptake into roots at physiological relevant concentrations (< 

1 µM) (see Fig. 3.12). However, at higher auxin concentrations (> 1 µM) a considerable fraction of 

the fast root hair PM depolarization was caused by AUX1-independent auxin transport processes. 

An explanation for the AUX1-independent auxin uptake is given by Rutschow et al. (2014). They 

analysed auxin-uptake into A. thaliana mesophyll protoplasts that transiently expressed AUX1. 

Rutschow et al. (2014) reported that a saturable, but unspecified, transporter caused 20% of the 

IAA uptake. It is thus likely that the AUX1-independent responses represent auxin uptake by 

transporters of lower auxin affinity, compared to AUX1. These might be other members of the class 

of amino acid permeases, sharing a H+-coupled transport mechanism with AUX1 (Fischer et al. 

2002) and which might have affinity to Tryptophane-derived IAA (Woodward and Bartel 2005).  

Besides the high affinity for the native auxin, AUX1 also shows a high specificity for 3-IAA when 

compared to other physiological active, but synthetic auxin analogs (see Fig. 3.13). At this point, a 

significant discrepancy with the results shown in Fig. 3.13 to the literature must be discussed. The 

active synthetic auxins 1-NAA and 2,4-D are widely used in auxin in research (Ottenschläger et al. 

2003; Dharmasiri et al. 2005a; Dharmasiri et al. 2005b; Parry et al. 2009; Shih et al. 2015) and it is 

supposed that the lipophilic nature of 1-NAA enables it to passively enter cells via diffusion, 
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whereas 2,4-D was shown to be a substrate for carrier-mediated influx via AUX1 (Delbarre et al. 

1996; Yang et al. 2006; Swarup and Peret 2012). By analyzing uptake of radiolabelled auxins into 

suspension-cultured tobacco cells, Delbarre et al. (1996) reported a saturable 2,4-D influx 

component with a fourfold lower affinity than it was obtained for 3-IAA. Yang et al. (2006) 

heterologously expressed A.thaliana AUX1 in Xenopus oocytes and found that 2,4-D, but not 1-

NAA, inhibits the uptake of 3H-IAA. Based on these results they concluded that 2,4-D is a substrate 

for uptake via AUX1.  

However, the hypothesis of Yang et al. (2006) is not in line with the electrical responses of root 

hair cells to 2,4-D and 1-NAA presented in this work and those recorded by Felle et al. (1991).  

In accordance with the electrical measurements of Felle et al. (1991) this work showed that 2,4-D 

is unable to elicit strong electrical responses in root hair cells (see Fig. 3.13). This observation led 

to the conclusion that 2,4-D is not a major substrate for active uptake via AUX1.  

In the case of 1-NAA, a fast depolarization of the PM potential with an amplitude that reached 

approx. 50 % of the response induced by 3-IAA was consistently observed by this work and by Felle 

et al. (1991). Significantly, while 1-NAA was shown to induce the influx of H+ (see Fig. 3.16), the 

fast depolarization of root hair cells induced through this synthetic auxin was found to be 

independent from AUX1 (see Fig. 3.13). This is in support of a model in which synthetic auxins are 

actively transported albeit via unspecified transporters.  

The immediate auxin-induced depolarization of the PM of A. thaliana root hair cells presented 

here, of maize coleoptiles reported by Felle et al. (1991) and of Sinapis alba root hairs reported by 

Felle and Hepler (1997) can be safely regarded as direct observations of an electrogenic auxin-

influx. Experimental approaches that monitor the uptake of radiolabelled auxins in hetero- as well 

as homologous expression systems, however, might underestimate the contribution of AUX1-

independent and non-characterized transport to the influx of auxins over time.  

In contrast to root hair cells, epidermal hypocotyl cells of etiolated A. thaliana seedlings were 

found not to show a fast auxin-induced depolarization of the PM potential (see Fig. 3.8). The 

absence of an electrical response in the hypocotyl was unexpected, since the elongation of this 

organ is considered to be highly auxin-responsive (Friml et al. 2002b; Fendrych et al. 2016). 

Moreover, the involvement of AUX1 in the formation of the apical hook clearly demonstrates the 

importance of AUX1 outside root tissues (Vandenbussche et al. 2010). Additional functions of AUX1 

in aerial organs encompass vascular patterning (Fabregas et al. 2015) and phyllotaxis (Reinhardt et 

al. 2003). How can the absence of an electrical response and thus auxin influx in the hypocotyl be 

explained?  
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The auxin-induced influx of H+ into root cells presented in this work is synonymous with the 

apoplastic or root surface alkalinisation shown by Monshausen et al. (2011), Shih et al. (2015) and 

Barbez et al. (2017). In accordance with the absent depolarization shown in this work, Fendrych et 

al. (2016) did not report such an auxin-induced alkalinisation of the apoplastic space in the 

hypocotyl. Hence, the active uptake of auxin seems not to be a major form of auxin influx in 

hypocotyl cells. Since root cells are more auxin sensitivity than shoot tissues (Thimann 1938), it is 

conceivable that this is partially related to the apparent higher activity of AUX1 in this cell type as 

compared to hypocotyl cells. The reason why AUX1 seems to be more active in root tissues than in 

the shoot, however, needs to be studied in more detail. Apart from AUX1, also the influence of 

tissue- and organ-dependent SCFTIR1/AFB receptor compositions and their specific affinities to 

different target AUX/IAA repressors (29 members in A. thaliana) has also to be considered as a 

possible reason (Dreher et al. 2006; Weijers and Wagner 2016; Winkler et al. 2017).  

Membrane potential measurements not only revealed differences in the auxin-induced 

depolarization between root and shoot tissues, but also between cell types of the root epidermis. 

Non-hair cells were found to show a faster auxin-induced PM depolarization than root hair cells 

(see Fig. 3.14). As explained above, such an enhanced response may be the result of a higher 

activity of AUX1 in non-hair cells as compared to root hair cells. With respect to the occurrence of 

AUX1, contradictory statements are found in the literature. Jones et al. (2009) described the 

absence of any fluorescent signal in root hair cells that were transformed with an AUX1::YFP fusion 

protein, driven by its native promotor, whereas a fluorescence signal was detectable from the PM 

of non-hair cells. They concluded that the low cytosolic auxin levels caused by the absence of AUX1 

from root hair cells are necessary for hair cell differentiation and subsequent root hair growth. 

However, AUX1 transcripts were found by a transcriptomics approach in isolated root hair 

protoplasts (Lan et al. 2013). The results presented in this work support both findings. Root hair 

cells were chosen as model cell type, because of their advantages for electrophysiological 

measurements (see Chapter 1.5.) and they proved to be very much suitable for the analysis of 

AUX1-mediated auxin transport. Root epidermal cells are electrically coupled, and the electrical 

signal, i.e. the depolarization of the PM potential, generated by auxin uptake does not necessarily 

represent the AUX1-activity in the impaled cell, but it rather represents the response of a series of 

symplastically connected cells. Consequently, a statement concerning the absence or presence of 

AUX1 in root hair cells cannot be made based solely on the membrane potential responses 

measured with root hair cells.  
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4.2.2. AUX1-mediated auxin uptake is important for the low Pi-adaptive response of root 

hair cells 

 

Plants adapt to low external Pi concentrations by altering the architecture of their root system, 

which leads to an increased resorptive surface that exploits surface near soil layers. Since root 

growth is regulated through PAT, the Pi-dependence of AUX1-mediated auxin influx was studied. 

These experiments revealed that the strength of AUX1-mediated H+-coupled auxin influx was 

negatively correlated with the availability of Pi (see Fig. 3.15). Significantly, AUX1, PIN2, and TIR1 

were already shown to have roles in the low Pi adaptive response of the root. Whereas Pi 

starvation has been reported to impair auxin efflux (Kumar et al. 2015), the transcription of TIR1 

and AUX1 seems to be positively regulated by low Pi (Perez-Torres et al. 2008; Kumar et al. 2015). 

Taken together, low Pi levels thus induce an increased auxin responsiveness of root cells resulting 

in the above-described RSA alterations (Lopez-Bucio et al. 2002; Al-Ghazi et al. 2003; Nacry et al. 

2005). Regarding root hairs, AUX1 was recently shown to be essential for growth promotion under 

Pi-limiting conditions. Both in Oryza sativa and A. thaliana AUX1-mediated transport of auxin from 

the root apex to the differentiation zone was demonstrated to be of critical importance for the 

root hair adaptive response to low Pi (Bhosale et al. 2017; Giri et al. 2017). The observed 

amplification of auxin-induced membrane responses at low Pi conditions fits very well with the Pi-

adaptive response of roots. A transcriptional upregulation of AUX1 as it has been reported by 

Kumar et al. (2015) based on an increased AUX1::YFP fluorescence signal in the root elongation 

zone can be regarded as the most likely reason for the increased auxin influx observed under low 

Pi.  

 

4.2.3. Drawbacks of experimental approaches based on pharmacology 

 

Chemical inhibitors have been used intensively to study auxin transport and signaling (Morris and 

Thomas 1978; Benkova et al. 2003; Friml et al. 2003; Ottenschläger et al. 2003; Hayashi et al. 2012; 

Fendrych et al. 2016). Among them, TIBA and NPA are potent auxin efflux inhibitors that interfere 

with the intracellular trafficking of PM-localized PIN proteins (Geldner et al. 2001). 

TIBA, in contrast to NPA, led to a severely diminished auxin influx response (see Fig. 3.16). 

Addtionally, TIBA, but not NPA, caused a severe positive shift of the resting PM potential and the 

inhibition of basal H+ efflux (see Fig. 3.16). These PM responses point towards the inhibition of the 

root H+-ATPases by TIBA. This process should lead to a reduction of the pmf needed for AUX1-
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dependent auxin influx and thus explains the lack of the auxin-induced electrical responses in the 

presence of TIBA. How could it be possible that TIBA, an auxin efflux inhibitor, interferes with the 

activity of the PM H+-ATPase?  

An explanation is provided by Geldner et al. (2001). They showed that the inhibitory effect of auxin 

efflux inhibitors on the subcellular trafficking of PINs is not restricted to the PIN proteins but is a 

general effect. For example, the authors also found the subcellular cycling of the PM H+-ATPase to 

be sensitive to TIBA. From this it seems apparent that the observed TIBA-induced root cell 

depolarization and the absence of basal H+-efflux in TIBA treated roots is indeed caused through 

the impairment of the subcellular cycling and thus inhibition of the PM H+-ATPase. The absence of 

a NPA-induced depolarization can be explained through the different effective concentrations 

reported by Geldner et al. (2001). In this study, TIBA and NPA were used at 20 µM. However, 

Geldner et al. (2001) reported an effective concentration for TIBA of 25 µM, whereas for NPA this 

concentration was 200 µM. NPA-treatment, as performed in this study, was thus one order of 

magnitude below the effective concentration and could therefore not interfere with subcellular 

protein cycling. 

Besides TIBA, several SCFTIR1/AFB inhibitors, among them auxinole, were also found to influence the 

resting root cell PM potential (see Fig. 3.19 and Fig.3.20). Especially PEO-IAA, N-ethyl- as well as N-

ethoxy-ethyl-PEO-IAA and auxinole severely affected the resting PM potential of root hair cells. 

Apart from a transcriptional auxin response suppressed through auxinole (Hayashi et al. 2012) only 

limited data on the effects of these auxin antagonists is available and so far, their effects on the 

subcellular cycling of PM-localized proteins has not been analysed. However, PEO-IAA was shown 

to suppress the basal, as well as the auxin-induced expression of KAT1, which encodes an inward-

rectifying K+ channel (Philippar et al. 2004; Takahashi et al. 2012). Although not emphasized by 

Takahashi et al. (2012), the effect of PEO-IAA on basal KAT1 expression might explain the 

hyperpolarization of the root cells observed for this auxin antagonist. However, KAT1 is not 

significantly expressed in root tissues (Philippar et al. 2004). Therefore, a similar effect of PEO-IAA 

on the expression of K+-inward rectifying channels present in root cells, like AKT1 (Ivashikina et al. 

2001), could potentially explain the observed hyperpolarization.  

Concerning the root hair PM potential depolarizations induced through the other auxin 

antagonists, especially through auxinole, further research is needed.  
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4.2.4. A new Ca2+-dependent and membrane-localized fast auxin signaling pathway  

 

4.2.4.1. The current model 

 

External application of auxin to A. thaliana roots triggers Cytosolic Ca2+ elevations (Monshausen et 

al. 2011). With CNGC14, a PM-localized and presumably Ca2+-permeable ion channel, has been 

identified to be responsible for those auxin-related Ca2+ signals (Shih et al. 2015). However, the 

molecular mechanism that connects auxin transport and auxin perception to the Ca2+ influx has 

not been uncovered. A possible model has been brought forward by Monshausen et al. (2011) and 

especially by Shih et al. (2015). This model postulates that auxin perception by an unknown 

apoplastic auxin receptor results in CNGC14-mediated Ca2+ influx. Elevations of the [Ca2+]cyt 

subsequently lead to the stimulation of not further described membrane processes responsible for 

the alkalinization of the cell wall and the subsequent inhibition root cell elongation during the 

gravitropic response (Fig 4.4).  

 

Fig. 4.4: Model of Ca2+-dependent auxin signaling 

published by Shih et al. (2015). External auxin (1) is 

perceived by an unknown receptor (2), and CNGC14 

mediates cytosolic Ca2+ signals (3). Ca2+ signals activate 

unknown membrane processes (4) leading to cell wall 

alkalinization (5). Ca2+-independent processes, as well as 

other not further described processes, might result in 

alkalinization through activation of a H+/OH--conductance 

(6, 7). Modified and reused with permission from Elsevier. 

 

Shih et al. (2015) derived this model from the following observations. They demonstrated that both 

the external application of auxin as well as a stimulation by gravity induce the rapid alkalinization 

of the root surface and [Ca2+]cyt elevations. In case of the gravistimulus, both signals were shown 

to occur at the lower site of the root where increased auxin levels inhibit cell elongation. The auxin-

induced change in root surface pH was found to be impaired in the cngc14 loss-of-function mutant 

(Shih et al. 2015). Importantly, the surface pH change was also found to be independent of the 

nuclear SCFTIR1/AFB-complex for auxin perception as it still occurred in the tir1afb2afb3 triple loss-

of-function mutant (Monshausen et al. 2011). Those findings point towards a fast auxin signaling 

pathway, which includes the activation of PM-localized Ca2+ channels and which is independent of 

the well-known SCFTIR1/AFB-IAA-Aux/IAA perception complex  
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4.2.4.2. AUX1 is the PM-localized H+ conductance 

 

Although the model by Shih et al. (2015) is compelling and complementing the mechanism of root 

gravitropism, it relies on the assumption of a yet to be discovered H+/OH- conductance responsible 

for apoplastic alkalinisation. Responsible for this suggestion could be a possible misinterpretation 

of surface pH changes. A comparison of the data from Shih et al. (2015) with the data presented in 

this work revealed the kinetic correlation between the auxin-induced processes of surface pH 

changes and AUX1-dependent root cell PM depolarization as well as H+ influx (Fig. 4.5, see Chapter 

4.2.1.). By taking this close correlation into account, the auxin-induced surface pH change is 

apparently caused by the AUX1-mediated H+-coupled uptake of auxin and not by an unknown PM-

associated ion signaling process. In accordance with this assumption, Monshausen et al. (2011) 

already reported an absent auxin-induced alkalinization of the root surface of the aux1-21 loss-of-

function mutant. However, the authors still concluded that an unspecified H+/OH- PM conductance 

is responsible for the auxin-induced apoplastic alkalinization. 

 

Fig. 4.5: Correlation between auxin-induced root 

responses. The graph at the top shows a modified version 

of Fig. S1C from Shih et al. (2015) displaying wild type root 

surface pH in response to 3-IAA application (red dotted 

line). The graphs in the middle and at the bottom show 

results from this work. Being at the same time scale (see 

bottom graph) as the upper graph, the graphs show the 

auxin-induced wild type root hair PM potential 

depolarization (middle) and H+ influx response (bottom). All 

graphs were aligned to the point of 3-IAA application. The 

black dotted line marks the peak response in surface pH and 

membrane potential change. H+-flux data are interrupted 

due to the application of 3-IAA. In all graphs, data of the 

wild type accession Ler are depicted. Top panel reused with 

permission from Elsevier. 
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4.2.4.3. Fast auxin signaling depends on TIR1/AFB-mediated auxin perception 

 

The model by Shih et al. (2015) additionally assumes a yet to be discovered auxin receptor, capable 

of sensing extracellular auxin. The extracellular auxin receptor was long thought to by ABP1, but 

this protein was recently shown to have no auxin-related physiological function, despite of its auxin 

binding capacity (Woo et al. 2002; Gao et al. 2015). In line with the recent results of Gao et al. 

(2015), the loss of ABP1 did not affect the auxin-induced depolarization of the root hair PM 

potential (see Fig. 3.11) and Shih et al. (2015) excluded a contribution of ABP1 to the auxin-

dependent change in surface pH. 

Experiments, in which the AUX1-dependent root hair depolarization and H+ influx were probed in 

tir1afb2afb3 triple mutant and auxinole treated wild type roots, showed a strong reduction of both 

responses. Significantly, the expression levels of AUX1 were neither affected by the absence of the 

F-box proteins nor through auxinole treatment (see Fig. 3.22). The data provided by this thesis thus 

shows a clear posttranscriptional downregulation of AUX1-mediated auxin uptake through the loss 

of SCFTIR1/AFB functionality. 

In roots and the hypocotyl auxin-induced, apoplastic pH changes were shown to occur 

simultaneously with modifications in the rate of cell elongation (Evans et al. 1994; Scheitz et al. 

2013; Shih et al. 2015; Fendrych et al. 2016). Ruegger et al. (1998) and Scheitz et al. (2013) further 

demonstrated that auxin-sensitive root and hypocotyl growth depends on a functional auxin 

perception system involving TIR1/AFB-class F-box proteins. In contrast to this, Monshausen et al. 

(2011) reported auxin-induced apoplastic alkalinization to be independent of these F-box proteins.  

Unfortunately, Monshausen and co-workers did not provide a quantification or statistical analysis 

of their data regarding the tir1afb2afb3 mutant, but under consideration of the described 

variations of auxin-induced responses in this mutant ((Parry et al. 2009); see Fig. 3.22), it is possible 

that their measurement ranks at the more wild type-like end of the scale.  

 

4.2.4.4. CNGC14-mediated cytosolic Ca2+ signals feed back into AUX1 activity 

 

The AUX1-dependent depolarization of the root hair PM potential was shown to co-occur with 

[Ca2+]cyt elevations (see Fig 3.17). This is in accordance with the results of Monshausen et al. (2011) 

and Shih et al. (2015) who showed that externally applied auxin, as well as gravitropic stimulation, 

induce apoplastic alkalinization, [Ca2+]cyt elevations and inhibition of cell elongation. 
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The dependency of auxin-induced [Ca2+]cyt elevations on auxin perception by TIR1-like receptors is 

shown in multiple approaches in this work. First of all, it is shown that only physiological active 

auxins are able to trigger cytosolic Ca2+ signals (see Fig. 3.21). Secondly, a chemical block of TIR1 

by auxinole suppresses the auxin-induced Ca2+ signals (see Fig. 3.19, Fig. 3.20 and Fig. 3.22), as well 

as the induction of wave-like propagating Ca2+ signals upon cytosolic injection of auxin (see Fig. 

3.23). Finally, the auxin-induced Ca2+ influx in stongly impaired in the tir1afb2afb3 triple mutant 

(see Fig. 3.22). 

Shih et al. (2015) were the first to show that CNGC14 is the sole responsible Ca2+ channel for auxin-

induced [Ca2+]cyt elevations. In accordance with their work, responses like Ca2+ influx and the Ca2+ 

influx-associated PM depolarization through cytosolic auxin application were absent in the cngc14 

mutant (see Fig. 3.19 and Fig. 3.24). In contrast to the results by Monshausen et al. (2011) this 

work demonstrated the necessity of TIR1-like auxin receptors for fast auxin signaling. Those results 

thus place CNGC14 downstream of an established auxin perception mechanism, rather than of an 

unknown apoplastic receptor. It is unclear how F-box-mediated auxin perception could lead to the 

activation of Ca2+ channels like CNGC14. However, a protein phosphatase or kinase linking auxin 

perception with the activation of CNGC14 would be in analogy with the fast ABA signaling pathway, 

which links cytosolic ABA perception by RCAR/PYR/PYL receptors with the activation of the anion 

channel SLAC1 in guard cells (Geiger et al. 2009; Geiger et al. 2010).  

It is likely that auxin does not only regulate CNGC14, but also that CNGC14 has an impact on auxin 

uptake by regulating AUX1, since the cngc14 mutant also showed no auxin uptake activity as 

observed by the absent AUX1-dependent root hair PM depolarization. Because the expression of 

AUX1 in the cngc14 loss-of-function mutant is not different from the wild type a post-translational 

regulation of AUX1 through CNGC14-mediated Ca2+ signals seems conceivable.  

Further support for a Ca2+-dependent regulation of AUX1 was obtained through experiments in 

which the broad range Ca2+ channel blocker La3+ was not only able to block auxin-induced cytosolic 

[Ca2+]cyt elevations but also AUX1-mediated auxin transport (see Fig. 3.25). 

In line with these results, La3+ has already been shown to mimic the reduced auxin-sensitivity of 

root growth of the cngc14 mutant in wild type roots (Shih et al. 2015). Moreover, La3+ should be 

able to block CNGC14 directly, since the A. thaliana CNGCs 5, 6, and 18 were reported to be blocked 

in the presence of La3+ in patch-clamp experiments (Wang et al. 2013b; Gao et al. 2014). 

Importantly, auxin-induced [Ca2+]cyt elevations lost their transient nature and were prolonged in 

the presence of La3+ (see Fig. 3.25). Such an effect might point towards a severe interference of 

La3+ with Ca2+ homeostasis. Since H+/Ca2+ exchanger and Ca2+-ATPases are suggested to be 
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responsible for maintaining low basal [Ca2+]cyt (Roelfsema and Hedrich 2010; Schönknecht 2013), 

a negative regulation of active Ca2+ transport through La3+ could explain the observed prolonged 

[Ca2+]cyt elevations. Because the La3+-induced loss of AUX1-mediated auxin uptake coincides with 

a supposedly disturbed Ca2+ homeostasis, those findings substantiate the crucial role of fast Ca2+ 

signaling as well as the importance of Ca2+ homeostasis for the activity of AUX1.  

 

4.2.4.5. Auxin-induced Ca2+ waves regulate auxin transport over greater distances 

 

Auxin-induced Ca2+ signals are not locally restricted to the site of auxin-stimulation, but instead are 

transmitted as waves through root tissues after an auxin-stimulus has been locally applied via 

intracellular microelectrodes (see Fig. 3.23 and Fig. 3.26). In order to propose that those auxin-

triggered Ca2+ signals represent self-sustained long distance signals, diffusion of auxin and PAT have 

to be excluded as possible reasons of an auxin stimulation that would not be restricted to a single 

root cell.  

Concerning diffusion, the complete deprotonation of auxin at the cytosolic pH should lead to the 

trapping of the anion inside the cell (see Fig. 1.3). Hence, apart from efflux carriers, only leakage 

through a rapture of the PM (e.g. at the site of impalement) could lead to diffusion of auxin to 

neighbouring cells. Although the co-injected dye LY was rapidly taken up into the vacuole, it did 

not indicate a major leakage in the beginning of experiments.  

Concerning the possibility of PAT as the cause of the propagating Ca2+ signals the velocity of the 

Ca2+ wave can be compared to known in planta auxin transport rates. The propagation rate of the 

lateral transmitted Ca2+ wave of 5 mm/h is well within compiled auxin transport rates in plant roots 

of up to 12 mm/h (Kramer et al. 2011). The strong effect of amplification of the Ca2+ signal 

observable at the opposite site of injection, however, cannot be explained by auxin transport. 

Concerning the longitudinal wave, the speed of this Ca2+ wave (40 mm/h) is much greater than any 

reported velocities for auxin transport (Kramer et al. 2011). In silico simulations of auxin transport 

out of a biosynthesis maximum in a single epidermal cell of the root elongation zone, however, 

showed the generation of an auxin maximum at the quiescent center within two minutes 

(Grieneisen et al. 2007). However, the authors employed a permeability of basal-localized PIN 

efflux carriers of 20 µm/s (72 mm/h) which is much faster than any experimentally determined 

value for auxin transport. Moreover, a diffusion constant for IAA (600 µm2/s) was employed which 

was originally defined in an aqueous solution (Robinson et al. 1990). In the gel-like viscosity of the 

extra- and intracellular matrix, however, this coefficient should be significantly lower.  
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Although the distribution of auxin from a cellular maximum throughout the tissues of the root 

cannot be unequivocally excluded by the experimental data presented herein, both the lateral as 

well as the acropetal component of the auxin injection-induced Ca2+ wave are still likely to be 

propagated independently from the movement of auxin. Provided that this is indeed the case a 

mechanism that could underlie the propagation of such Ca2+ waves could potentially be their 

connection to the parallel propagation of ROS signals ((Kimura et al. 2012; Dubiella et al. 2013); 

see Chapter 1.4.2.).  

Significantly, the decay of the DII-Venus signal in apical root parts correlates with the speed at 

which the longitudinal Ca2+ wave propagates (see Fig. 3.26). A possible connection between both 

signals is substantiated through the impaired decay of DII-Venus in La3+ treated roots in which the 

induction and propagation of a Ca2+ wave should be likewise impaired. Since, the DII-Venus signal 

is a reciprocal measure of cytosolic auxin levels, the auxin-induced Ca2+ waves can be assumed to 

trigger the cytosolic accumulation of auxin in cells, that are at distance from the locally applied 

auxin stimulus. As discussed above, La3+ inhibits AUX1 possibly through an inhibition of CNGC14-

mediated Ca2+ signaling and/or a deregulation of Ca2+ homeostasis that are integrated into a Ca2+-

dependent post-translational modification of the auxin influx transporter. Hence, in the presence 

of La3+, the Ca2+-dependent cytosolic accumulation of auxin would be impaired.  

Together with the obviously important role of CNGC14 in fast auxin signalling, the above described 

La3+-sensitive correlation between Ca2+ signals and cellular auxin levels make it thus likely that the 

cytosolic accumulation of auxin in root cells is under the control of a Ca2+-dependent regulation of 

auxin transporters, especially of AUX1.  

 

4.2.4.6. A new model for fast Ca2+-dependent and membrane-localized auxin signaling 

 

In summary, the findings of this work substantiate, adapt and expand the Ca2+-dependent fast 

auxin signaling model of Shih et al. (2015) on three major points: (i) the activation of CNGC14 does 

not require an unknown apoplastic auxin receptor, but rather relies on the described auxin 

perception by SCFTIR1/AFB complexes; (ii) auxin-induced [Ca2+]cyt elevations do not activate unknown 

H+/OH- PM conductances, but instead seem to target AUX1-mediated H+-coupled auxin uptake and 

(iii) auxin-induced cytosolic Ca2+ signals can propagate over longer distances in plant tissues and 

organs and are likely to influence auxin transport and physiology distant from a local auxin 

stimulus. Hence, a model (Fig. 4.6) arises in which the cytosolic perception of IAA activates 

CNGC14-mediated Ca2+ influx. The signature of the Ca2+ signals thereby seems to be integrated into 
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auxin transport. Whereas a proper CNGC14 functionality appears to be necessary for AUX1 activity, 

a disturbance of the Ca2+ homeostasis by the block of Ca2+ channels (and possibly Ca2+ transporters) 

through La3+ seems to have a negative influence on AUX1. Additionally, two feedback loops 

regulating CNGC14 are possible.  

Several CNGCs from A. thaliana, including CNGC14, are known to interact with Ca2+ sensing 

proteins of the CaM family (DeFalco et al. 2016; Fischer et al. 2017). Concerning a diverse 

regulation of CNGCs, DeFalco et al. (2016) proposed a model in which the activity of CNGC12 is 

regulated by CaM interaction at their C- and N-terminal domains. Whereas a Ca2+-facilitatet binding 

of CaMs to the C-terminal domain positively regulates channel function, a CaM binding domain at 

the N-terminus might be involved in a negative feedback inhibition of the channel.  

A second possible feed back loop regulating the activity of CNGC14 is based on three reported 

observations. (i) The activities of ROS-producing NADPH oxidases like RBOHD are apparently Ca2+-

regulated via a direct integration of Ca2+ signals through EF-hand motifs as well as indirectly 

through N-terminal phosphorylation sites (Foreman et al. 2003; Ogasawara et al. 2008; Kimura et 

al. 2012; Dubiella et al. 2013). (ii) ROS stimulate Ca2+ influx through hyperpolarization activated 

Ca2+ channels in root epidermal protoplasts (Foreman et al. 2003) and (iii) root hair tip-localized 

CNGC14 promotes [Ca2+]cyt fluctuations and root hair growth (Zhang et al. 2017b). 
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Fig 4.6: Model of Fast Ca2+-

dependent auxin signaling. 

H+/IAA symport via AUX1 (a) 

results in IAA perception by 

nuclear (b) and cytosolic (c) 

receptors. Nuclear perception 

activates slow auxin signaling via 

degradation of AUX/IAA TFs 

leading to ARF-promoted 

transcriptional changes (d). 

Auxinole-sensitive cytosolic 

perception activates CNGC14 

through so far unknown factors 

(e). The La3+-sensitive Ca2+ influx 

results in [Ca2+]cyt elevations (f), 

[Ca2+]cyt  regulates AUX1 (g). 

Phosphorylation of AUX1 is a 

possible target for Ca2+-

dependent kinases (h). Ca2+ 

might also feedback into 

CNGC14 through the interaction with CaMs (i). CNGC14-mediated Ca2+ signals might additionally stimulate the production 

of ROS (j) which might positively feedback into CNGC14 activity (k). Additionally, auxin efflux might also be regulated 

through CNGC14 mediated Ca2+-signals (l). 

 

Four major so far unknown factors persist in this model.  

(i) Ubiquitylation-dependent proteasomal degradation of target transcription factors so far 

represents the only established mechanism of SCFTIR1/AFB-mediated perception of auxin. Thus, it 

remains to be tested how this receptor complex can trigger the fast activation of CNGC14. An 

example for regulation of a Ca2+ channel by a PM bound ubiquitin ligase exists, since the E3-type 

ubiquitin ligase THERMAL RESISTANCE1 (TR1) from Brassica napus was found to regulate this class 

of ion channels (Liu et al. 2014). The fast induction of [Ca2+]cyt elevations in response to auxin, 

however, argues against a nuclear perception mechanism, or a role for poly-ubiquitinylation of 

target proteins, as these possibilities normally would require a much longer time. TIR1/AFB-class 

F-box proteins have been reported to be localized to the nucleus in homo- and heterologous 

expression systems (Dharmasiri et al. 2005b; Dezfulian et al. 2016; Wang et al. 2016). In the case 

of AFB2, however, a considerable proportion of the proteins was shown to have cytosolic 

localization (Wang et al. 2016; Katz and Chamovitz 2017). Possibly, AFB2 or AFB3 are crucial for 

cytosolic perception of auxin and CNGC14 activation. A functional complex consisting of an auxin 
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binding F-box protein, a kinase or phosphatase, and CNGC14 thus seems conceivable. AUX1 might 

be a part of such complex since a physical interaction with at least TIR1 has been shown (Yu et al. 

2013). Such a complex would account for the immediate auxin-induced activation of CNGC14. 

Other mechanisms that cause elevated [Ca2+]cyt might be the direct activation of CNGC14 through 

the auxin-induced PM potential depolarization, or through the associated H+ influx. These options 

could be studied through the analysis of CNGC14 in patch-clamp or oocyte experiments, which can 

gain insights into regulation mechanisms of the channel.  

(ii) So far, there is no direct evidence for a Ca2+-dependent regulation of auxin transporters. As 

outlined in Chapter 1.4.3., the integration of Ca2+ signals into the phosphorylation of PIN efflux 

carriers by members of the PID and D6PK subfamilies of AGCVIII class protein kinases is discussed 

but not yet proven. PID and D6PK kinases itself are not discussed to be Ca2+-dependent (Zourelidou 

et al. 2009; Zourelidou et al. 2014), however, a possible integration of Ca2+ signals might occur via 

the interaction of PID with the Ca2+ binding proteins PID BINDING PROTEIN1 (PBP1) and TOUCH3 

(TCH3; (Benjamins et al. 2003)).  

In the case of AUX1, no post-translational regulation apart from its subcellular trafficking is known. 

Potential phosphorylation sites of AUX1 were determined with the PhosPhAt database (PhosPhAt 

4.0; http://phosphat.uni-hohenheim.de/; (Heazlewood et al. 2008)). This approach revealed that 

AUX1 has eight putative phosphorylation sites at cytosolic loops, from which three reside within 

the N-terminal domain (Fig 4.7). These residues represent possible targets for protein kinases and 

phosphatases, which may act in a fast Ca2+-dependent manner.  
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Fig. 4.7: Topology model of AUX1 with putative cytosolic phosphorylation sites. The sequence of extra- and intracellular 

loops (a-j) and transmembrane domains (1-11) is based on the Aramemnon consensus topology prediction for AUX1 

(http://aramemnon.uni-koeln.de/) with phosphorylation sites (green) as predicted by the PhosPhAt 4.0 database 

(http://phosphat.uni-hohenheim.de/). Blue circles represent basic amino acid residues, and red circles show acidic amino 

acids. The model was generated using the LaTeX application TeXtopo by Dirk Becker, Molecular plant physiology, and 

biophysics, University of Wuerzburg. 

 

(iii) Besides the contribution of AUX1, this work also showed that the loss of the auxin efflux carrier 

PIN2 has a negative influence on the auxin-induce PM depolarization (see Fig. 3.11). The efflux of 

the IAA anion would, of course, result in a depolarization of the PM. Therefore, it remains to be 

tested if the reduced response of the pin2 loss-of-function mutant is due to a lack of auxin efflux 

or if the loss of PIN2 has repercussions on the activity of AUX1. The loss of PINs was shown to result 

in enhanced transcriptional auxin responses (Friml et al. 2002a; Benkova et al. 2003; Blilou et al. 

2005). As this observations is likely caused by elevated cytosolic auxin levels, those could 

potentially negatively feedback into auxin influx via a Ca2+-dependent regulation of AUX1, thus 

explaining the reduced PM depolarization in the pin2 mutant.  

(iv) In general, the integration of ROS signals into auxin physiology is elusive, and this work does 

not provide new findings related to this subject. An integration of ROS signals into the fast auxin 

signaling pathway is nevertheless very likely based on the apparent inter-dependency of RBOHD-

dependent ROS production and CNGC14-mediated Ca2+ oscillations during root hair growth 
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(Foreman et al. 2003; Ogasawara et al. 2008; Kimura et al. 2012; Dubiella et al. 2013; Zhang et al. 

2017b). Although this hypothesis remains to be investigated, ROS were shown to occur during the 

gravitropic root response in maize (Joo et al. 2001). Additionally, ROS seem to be involved in the 

auxin-directed alteration of the A. thaliana RSA during Pi-starvation (Tyburski et al. 2009).  

The addition of ROS expands the model of fast auxin signaling because it provides additional 

possibilities for a fine-tuned regulation of CNGC14 and auxin transport. If RBOHs are components 

of fast auxin signaling and in which way the production of reactive oxygen species influences the 

other components remains to be investigated.  

 

4.2.4.7. Consequences that arise for auxin physiology from the new model 

 

The importance of fast Ca2+-dependent signaling during the root gravitropic response has already 

been highlighted by Shih et al. (2015). However, the supplements to this model described in this 

work provide novel insight on auxin-sensitive root and root hair growth.  

 

4.2.4.7.1. Gravitropism and auxin-induced root growth inhibition 

 

A shift of the gravitational vector leads to the redirection of root apical auxin fluxes due to the 

change in the polar localization of PIN3 at the PM of gravity sensing columella cells (Friml et al. 

2002b). Auxin now preferentially flows through cells of the lateral root cap and epidermis at the 

new physiologically lower site of the root (Ottenschläger et al. 2003). As this redirection of auxin 

fluxes should result in a wave-like pattern, it is accompanied by a likewise basipetally propagating 

Ca2+ wave and ROS signals (Joo et al. 2001; Monshausen et al. 2011; Shih et al. 2015). Those 

cytosolic Ca2+ signals could feed back to an enhanced auxin transport capacity through the 

stimulation of AUX1. Additionally, Ca2+ and ROS signals could result from a self-sustaining 

activation loop. Such a loop could be responsible for signal propagation as auxin-induced CNGC14 

activation could result in RBOH-mediated ROS production which in turn might feed back into 

cytosolic Ca2+ signals stimulating AUX1. This kind of propagation could potentially support the 

basipetal flow of auxin as the continuous stimulation of auxin transport in adjacent cells could be 

decoupled from the auxin threshold needed for CNGC14 activation. Successively, this signaling loop 

would reach the cells of the root elongation zone faster as predicted for an auxin transport based 

mechanism.  
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Based on the coincidence of auxin-induced apoplastic alkalinization and TIR1/AFB-dependent root 

growth inhibition (Monshausen et al. 2011; Scheitz et al. 2013; Shih et al. 2015) two possibilities 

explaining the inhibition of cell elongation in the context of the acid growth theory arise. 

(i) As it was shown for the root, the auxin-induced Ca2+ signals are possibly integrated in a 

CBL2/CIPK11-dependent downregulation of the PM H+-ATPase activity thus causing apoplastic 

alkalinization (Fuglsang et al. 2007). The promotion of root growth, on the other hand, through low 

auxin levels was shown to result from the SAUR19-dependent inhibition of PP2C-D-mediated 

dephosphorylation of the PM H+-ATPase (Spartz et al. 2014). The same mechanism was reported 

to induce cell elongation in the hypocotyl with a lag time of 20 minutes after auxin application 

(Fendrych et al. 2016). Therefore, it seems unlikely that the deactivation of the H+ pump with the 

successive creeping cell wall alkalinization can account for the immediate responses observed in 

roots after external auxin application.  

(ii) Monshausen et al. (2011) and Shih et al. (2015) suggested an unknown H+/OH- PM conductance 

activated by auxin-induced Ca2+ signals to cause rapid cell wall alkalinization. The results presented 

in this work, however, unequivocally showed this conductance to be the AUX1-mediated H+/IAA 

symport. Through this, AUX1 is placed at a central position to explain the high auxin-sensitivity of 

the root in general and in particular the gravitropic root response, as it is the AUX1 mediated H+ 

influx which seems to cause the alkalinization of the cell wall and the subsequent fast inhibition of 

cell elongation.  

Within this model the PM H+-ATPase would have a role as a counterbalancing factor as its 

deactivation upon increasing auxin levels would prevent the pmf, which was reduced through H+ 

and Ca2+ influx, to return to pre-existing levels rapidly. Through a more alkaline apoplastic pH and 

a reduced capacity for osmolyte uptake, a prolonged reduced pmf would consequently inhibit cell 

elongation as well as auxin uptake, thus balancing both against each other.  

 

4.2.4.7.2. Root hair growth  

 

The polar growth of root hairs is another auxin sensitive process. Like in pollen tubes, a tip-focused 

[Ca2+]cyt gradient which regulates the stability of actin filaments, H+ extrusion and ROS generation 

is essential for the polar growth of root hairs (Mendrinna and Persson 2015). The [Ca2+]cyt of root 

hairs undergoes periodic fluctuations, which are paralleled by changes in growth rate, pH and ROS 

(Monshausen et al. 2007; Monshausen et al. 2008). ROS were further found to induce Ca2+ influx 

into root hair cells, thus supporting a positive feedback loop between the two signaling molecules 
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(Foreman et al. 2003). Significantly, CNGC14 was found to be localized at the root hair tip, and 

since the cngc14 mutant showed a short root hair phenotype and reduced [Ca2+]cyt fluctuations, 

CNGC14 seems to be responsible for the growth directing Ca2+ influx (Zhang et al. 2017b).  

Auxin is also involved in root hair development, because PAT seems to be organized in a way that 

the maintenance of relatively low auxin levels in root hair cells is necessary for their differentiation 

and outgrowth (Jones et al. 2009). Consequently, the absence of AUX1, PIN2 or of the auxin 

perceiving TIR1-like F-box proteins results in a short root hair phenotype (Dharmasiri et al. 2005b; 

Jones et al. 2009; Rigas et al. 2013).  

Moreover, the herein described close interaction between auxin transport, perception and Ca2+ 

influx seems to be essential for the maintenance of root hair growth during Pi starvation. AUX1 

was recently shown to be necessary for the root hair adaptive response to low Pi  (Bhosale et al. 

2017; Giri et al. 2017). Prolonged higher cytosolic auxin levels resulting from a low Pi-induced 

upregulation of AUX1 abundance (Kumar et al. 2015) could lead to a likewise higher activity of 

CNGC14, which could additionally be amplified and sustained through the involvement of RBOHD-

dependent ROS production. Ultimately, this could help to maintain the apical [Ca2+]cyt maximum 

necessary for the coordination of root hair growth during nutrient foraging under Pi starving 

conditions.  

In support for this connection between [Ca2+]cyt and auxin, with CPK11 a Ca2+-dependent protein 

kinase was found to be a downstream target of the auxin-inducible transcription factor RSL4 

(Vijayakumar et al. 2016). A role of CPK11 in an auxin- and Ca2+-dependent signaling pathway 

regulating root hair elongation especially under low Pi conditions seems conceivable because the 

loss of RSL4 disrupts the root hair adaptive response to low Pi (Bhosale et al. 2017). 

This signaling network maintaining the [Ca2+]cyt gradient in response to low Pi further describes 

that the connection between AUX1 and CNGC14 is seemingly not limited to fast auxin signaling. It 

seems further able to mediate slow signaling processes such as the response to a gradual depletion 

of the available Pi in the surrounding soil.   
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4.2.5. Outlook and open questions for the analysis of fast auxin signaling 

 

Although the results of this work have been included into the new model for fast Ca2+-dependent 

auxin signaling, some major questions remain to be addressed in future studies.  

 

(i) What is the exact mechanism of AUX1-mediated H+/IAA- symport?  

 

Although auxin uptake occurs by electrogenic transport mechanism, the exact stoichiometry of 

auxin uptake is still elusive. As the simultaneous influx of Ca2+, as well as the PIN-mediated efflux 

of the IAA anion will also cause a root hair PM depolarization, it would be of major advantage to 

know the transport mechanism of AUX1. Functional expression of AUX1, in a system that is suitable 

for two electrode voltage-clamp, or patch-clamp experiments, like pollen tubes, oocytes or 

mesophyll protoplasts would help to deduce the stoichiometry of H+/IAA- symport. Moreover, such 

an expression system can be used to assess the influence of H+- and IAA- concentrations, as well 

as the membrane voltage-dependence on AUX1 activity. These studies could be complemented by 

structure-function analysis, in which certain protein domains of AUX1 are mutated or exchanged 

with those of related proteins, like LAX1/2/3. In addition, modelling the three-dimensional 

structure of AUX1, either by crystallization of the protein, or based on the homology to other amino 

acid permeases, could gain information on the transport mechanism of this auxin transporter.  

 

(ii) Is AUX1 a target for Ca2+-dependent protein kinases or phosphatases? 

 

AUX1 seems to be a target for post-transcriptional regulation, since putative phosphorylation sites 

reside in cytoplasmic loops, as well as in the N-terminal domain. In this regard, a database search 

for AUX1 interacting proteins on ARAPORT (https://www.araport.org/) revealed that at least three 

putative protein kinases, AT1G07860, AT5G16590, and AT5G59650 as well as the CaM-binding IQ-

domain protein AT2G26180 are interacting with AUX1. This information thus offers a possibility to 

study the Ca2+-dependent regulation of AUX1. Other candidate interaction partners can be 

identified using co-immunoprecipitation and mass spectrometry with AUX1 as a bait protein. 

Subsequent yeast-two hybrid screens and phosphorylation assays may verify interacting kinases or 

phosphatases, as well as the putative phosphorylation sites. In addition, modulating the putative 

phosphorylation sites of AUX1 by exchanging the respective amino acid residues through phospho- 

and dephosphomimetic substitutions would gain further insights into the role of [Ca2+]cyt 
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signatures in regulating auxin transport. Phenotypic analysis of loss-of-function mutants of 

putative interaction partners could also give insights into the mechanisms by which regulation of 

AUX1 affects auxin-mediated responses, like the root gravitropic response, or root hair growth 

under low Pi. 

 

(iii)  How does auxin perception result in the activation of CNGC14? 

 

Auxin-perception and the downstream processes that lead to changes in gene transcription are 

well described. However, components of this mechanism have so far not been included in a fast 

signaling pathway. As the fast activation of CNCG14 is dependent on the presence of auxin-binding 

F-Box proteins, some fast signal must be transmitted between the receptor molecule and the Ca2+ 

channel. It is unlikely that the 26S-proteasome-dependent pathway will lead to CNGC14 activation, 

but this could be tested with the 26S-proteasome inhibitor MG132.  

Alternative pathways that activate CNGC14 might be the direct physical interaction between auxin-

perceiving F-box proteins and the channel protein, or its activation via a mobile signal like a protein 

kinase or phosphatase. Candidate kinases or phosphatases could be identified in a similar way like 

those with AUX1 as a target. A subsequent mutant analysis in A. thaliana, as well as transient 

expression in tobacco leaves of AUX1, CNGC14, F-box proteins as well as candidate 

kinases/phosphatases labelled with fluorescent proteins, could clarify possible interactions 

through colocalization analysis, Förster resonance energy transfer (FRET) experiments and 

bimolecular fluorescence complementation (BiFC) analysis. Of particular interest would be the 

identification of the associated F-box protein responsible for auxin perception and its localization. 

Transient and heterologous expression in tobacco leaves and oocytes offers the possibility for a 

functional reconstitution of the fast auxin signaling pathway with PM potential recordings, live-cell 

imaging of [Ca2+]cyt reporters, ion flux measurements and TEVC recordings as possible output 

signals. The apparent involvement of this signaling pathway in the root hair adaptive response to 

low Pi offers the possibility to test participation and connection of single components in the easily 

accessible system of A. thaliana root hairs. In this regard, CNGC14 and CPK11 would be primary 

targets for an investigation of their role and connection. Moreover, a detailed analysis of the homo- 

or heterologous expressed CNGC14 channel through patch-clamp or TEVC measurements could 

provide the necessary insights to determine its biophysical properties concerning voltage-, Ca2+-, 

cyclic nucleotide-, and pH-dependent activation or deactivation, respectively.  
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(iv) Does the receptor-like kinase FERONIA have a role in fast auxin signaling 

 

FERONIA is a PM-localized receptor-like kinase that is involved in cell elongation, and that 

constitutes an important signaling hub for hormonal crosstalk (Liao et al. 2017). Recently, an 

impaired auxin-induced apoplastic alkalinization in roots of the fer-4 loss-of-function mutant was 

reported (Barbez et al. 2017). Provided that H+-coupled auxin uptake via AUX1 is responsible for 

the fast auxin-induced alkalinization of the apoplastic space of root cells, FERONIA should be 

required for AUX1 to be active. As explained above, the presence of TIR1-like auxin receptors and 

CNGC14 are also necessary for AUX1 activity. The question arises, which role FERONIA could have 

in the above-described model of fast auxin signaling? A hint may be obtained from the recently 

discovered function of FERONIA in plant immunity. Here, FERONIA was shown to provide the 

scaffold for the interaction between the receptor-like kinase FLS2 and its coreceptor BAK1 after 

PAMP-perception (Stegmann et al. 2017). A similar scaffold-providing role of FERONIA for 

mediating the interaction of AUX1, TIR1/AFB-class F-box proteins and CNGC14 is thus conceivable 

and would help to explain the fast activation of CNGC14. To test the contribution of FERONIA in 

fast auxin signaling, the loss-of-fuction mutant should be examined for auxin-induced root hair PM 

depolarization, as well as H+ and Ca2+ fluxes. Because of the potential scaffolding function of 

FERONIA it might be worthwhile to study its interaction with AUX1, CNGC14 and F-box proteins. 

 

(v) Constitute CNGC14-mediated Ca2+ fluxes and RBOHD-dependent production of ROS 

a positive feedback loop involved in fast auxin signaling? 

 

Apparently, the Ca2+-dependent production of ROS through RBOHD forms a positive feedback loop 

through stimulation of Ca2+ influx at the apex of growing root hairs (Foreman et al. 2003). Since 

CNGC14 is localized at the root hair tip and is involved in Ca2+-directed polar growth (Zhang et al. 

2017b) an ROS-dependent regulation is very likely. Moreover, local auxin stimuli can induce Ca2+ 

waves that propagate through the root. It is discussed that the propagation of Ca2+ waves in plant 

tissues is intimately linked with the co-transmission of other long-range signals like ROS and 

electrical signals (Gilroy et al. 2014; Choi et al. 2016; Evans et al. 2016; Gilroy et al. 2016; Choi et 

al. 2017). Therefore, future in planta analysis should focus on whether auxin induces the 

production of ROS simultaneously to the well-described cytosolic Ca2+ signals in A. thaliana roots. 

Genetically encoded ROS-sensitive fluorescent probes like HyPerRed (Ermakova et al. 2014) or 

externally applied ROS-sensitive fluorescent dyes like H2DCFDA (Arnaud et al. 2017) could be used 



   Discussion 
   

 
158 
 

to monitor ROS production, [Ca2+]cyt elevations and auxin uptake in parallel to determine a possible 

sequence of events. External and cytosolic application of auxin in the cngc14 and rbohd mutant 

background could show if potential ROS signals are induced and transmitted and if they depend on 

CNGC14-mediated Ca2+ influx or vice versa. These experiments could be supplemented by the 

analysis of AUX1-mediated auxin uptake in the presence of H2O2. Furthermore, in a heterologous 

characterization of CNGC14, its potential ROS-dependent regulation could be elucidated.  

Another possible feedback loop involving CNGC14 is based on its interaction with [Ca2+]cyt-sensing 

CaMs (DeFalco et al. 2016; Fischer et al. 2017). Therefore, a Ca2+-dependent regulation of CNGC14 

is likely. Transient co-expression of both components in protoplast or oocytes could show a CaM-

dependent regulation of CNGC14-mediated Ca2+ fluxes. The importance of this interaction for fast 

auxin signaling must be additionally investigated in planta. As such interaction can also be expected 

to deactivate CNGC14 after it has been stimulated through auxin, the transient nature of Ca2+ influx 

and [Ca2+]cyt elevations should be affected in appropriate CaM loss-of-function mutant lines.  

Ca2+ and ROS accompanying electric waves would be harder to observe. In the case of external 

auxin application diffusion of auxin would be a major obstacle, but could be monitored with the 

simultaneous application of a fluorescent dye like LY if the PM potential is to be recorded at 

increasing distances to the site of application. The transmission of the electrical signal induced 

through cytosolic auxin application could be observed in the same way. In both cases, the 

propagation of [Ca2+]cyt and ROS signals could be monitored in parallel in wild type and loss-of-

function mutant lines. The dependence of the propagation of possible auxin induced electrical 

signals on CNGC14 and RBOHD could additionally be investigated in the roots of A. thaliana loss-

of-function mutants or in a heterologous system in which the fast auxin signaling pathway has been 

successfully reconstituted.  
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4.3. Auxin and the vacuole 

 

Can the vacuole have a role in fast auxin signaling? The experimental data presented herein 

demonstrated how PM-localized auxin transport, Ca2+ influx, and perception constitute a fast auxin 

signaling pathway in A. thaliana root cells (see Fig. 4.6). This pathway might also include several 

processes at the VM. 

(i) The vacuole can occupy over 90% of a root cells volume. Consequently, the VM and PM are 

often very close to each other and due to the high electrical resistance of the VM large ionic fluxes 

across the PM would also affect the VM potential. The auxin-coupled influx of H+ and the following 

depolarization of the root cell PM would thus depolarize the VM, this, in turn, could activate 

voltage-dependent channels like TPC1 (Hedrich and Marten 2011) or increase the conductance of 

voltage-independent cation channels like TPK1 (Gobert et al. 2007). The depolarization of the VM 

would additionally contribute to auxin-induced cytosolic Ca2+ signals via the above-described 

deactivation of the H+/Ca2+ exchanger.  

(ii) Auxin uptake via AUX1 is coupled to the influx of H+. The cytosolic processes, however, rely on 

a rather constant pH (Casey et al. 2010). H+ pumps at both the PM and the VM fulfill essential 

functions in maintaining cytosolic pH (Rienmüller et al. 2012; Inoue et al. 2016). Therefore, the 

pump activity of the V-ATPase and PPase may get increased together with the PM H+-ATPase to 

counteract cytosolic H+ influx across the PM.  

(iii) Since auxin influx is closely linked to the activation of CNGC14 and subsequent transient 

[Ca2+]cyt elevations, the ion conductivity of the VM is likely to be increased through these Ca2+ 

signals. Vacuolar Ca2+ transporter like CAX2 or the Ca2+-ATPase ACA11 are probably involved in 

returning high auxin-induced [Ca2+]cyt back to basal levels (Roelfsema and Hedrich 2010; 

Schönknecht 2013) and could therefore act in concert with CNGC14 in shaping auxin-induced Ca2+ 

signals.  

(iv) Subcellular compartments like the ER are proposed to be important for cytosolic auxin 

homeostasis. Therefore, the ER membrane is equipped with efflux carriers of the PIN and PILS-

family, which supposedly compartmentalize auxin and thereby withdraw it from the cytosol and 

nuclear signaling (Mravec et al. 2009; Dal Bosco et al. 2012; Ding et al. 2012). With WAT1, the first 

vacuolar auxin transporter was identified. Analogous to AUX1, WAT1 was suggested to mediate 

the influx of IAA into the cytosol in symport with H+ (Ranocha et al. 2013). However, the presence 

of such a transporter would only make sense if there are also transporters present which facilitate 

uptake of auxin into the vacuole. Since IAA is almost completely dissociated in its anionic form at 
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the cytosolic pH, it cannot diffuse across the VM but needs a transport protein. Given the ∆pH 

across the VM and its negative polarization at the cytosolic side, vacuolar auxin uptake would be 

thermodynamically downhill and thus would not require a coupling to protons or ATP. So far, no 

such transporter has been identified, but provided that it would fulfil a function similar to the ER-

localized PINs and PILs a high structural similarity with those intracellular auxin efflux carriers can 

be expected.   
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