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Abstract

Finite volume methods for compressible Euler equations suffer from an excessive diffusion
in the limit of low Mach numbers. This PhD thesis explores new approaches to overcome
this.

The analysis of a simpler set of equations that also possess a low Mach number limit
is found to give valuable insights. These equations are the acoustic equations obtained
as a linearization of the Euler equations. For both systems the limit is characterized by a
divergencefree velocity. This constraint is nontrivial only in multiple spatial dimensions.
As the Jacobians of the acoustic system do not commute, acoustics cannot be reduced to
some kind of multi-dimensional advection. Therefore first an exact solution in multiple
spatial dimensions is obtained. It is shown that the low Mach number limit can be
interpreted as a limit of long times.

It is found that the origin of the inability of a scheme to resolve the low Mach
number limit is the lack a discrete counterpart to the limit of long times. Numerical
schemes whose discrete stationary states discretize all the analytic stationary states of
the PDE are called stationarity preserving. It is shown that for the acoustic equations,
stationarity preserving schemes are vorticity preserving and are those that are able to
resolve the low Mach limit (low Mach compliant). This establishes a new link between
these three concepts.

Stationarity preservation is studied in detail for both dimensionally split and multi-
dimensional schemes for linear acoustics. In particular it is explained why the same multi-
dimensional stencils appear in literature in very different contexts: These stencils are
unique discretizations of the divergence that allow for stabilizing stationarity preserving
diffusion.

Stationarity preservation can also be generalized to nonlinear systems such as the
Euler equations. Several ways how such numerical schemes can be constructed for the
Euler equations are presented. In particular a low Mach compliant numerical scheme is
derived that uses a novel construction idea. Its diffusion is chosen such that it depends on
the velocity divergence rather than just derivatives of the different velocity components.
This is demonstrated to overcome the low Mach number problem. The scheme shows
satisfactory results in numerical simulations and has been found to be stable under
explicit time integration.
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Thanhäuser joined our workgroup and I would like to thank them for sharing their ideas
with me. I also thank Marlies for carefully reading the thesis draft.

The German National Academic Foundation (Studienstiftung des Deutschen Volkes)
kindly supported me throughout the work on my dissertation. I am grateful for their
constant financial support and for paying for my numerous conference trips. Invaluable
for me was the intense exchange with other students of the foundation. With scholars
focusing on ever narrower domains, seemingly what a challenge to bring together people
from all the domains of natural sciences, humanities and arts and make them talk to
each other. In my experience with the meetings organized by the foundation this never
was a challenge at all. And so I am grateful to the foundation of having brought me
together with classical philologists, veterinary doctors, linguists, polar researchers, geol-
ogists, historians, economists, lawyers, psychologists, biologists, fellow mathematicians
and physicists.

7





Introduction

Ideal hydrodynamics is a theory of conservation laws. The motion of an ideal fluid is
entirely determined by mass, momentum and energy conservation. These conservation
laws are called the Euler equations. Even for smooth initial data the solution can de-
velop jumps. It can be shown also across these discontinuities the above quantities are
conserved. By the Lax-Wendroff theorem, numerical methods that are conservative in
the discrete sense are the ones that are able to converge. Thus, conservativity is also
the fundamental concept for numerical methods, which are referred to as finite volume
methods. The discrete degrees of freedom are volume averages over cells, and their time
evolution is determined by fluxes through the boundaries. Thus, whatever flows out of
a computational cell enters its neighbouring cells.

The Euler equations form a hyperbolic system of partial differential equations. Infor-
mation travels with finite speed, that in general depends on the direction. One thus can
identify regions that can influence a given location x at a given time t, and those that
are unable to do so. The former are referred to as causally connected to (t,x). This is
another fundamental property of the equations that has a counterpart in numerics. For
stability of the numerical method, only those discrete values have to be involved in an
update procedure that are causally connected to the cell that is being updated. This is
referred to as upwinding. Thus a technical aspect of a numerical scheme (stability) can
be traced back to its origin in a fundamental property of the equations (causality).

A natural question is what other properties of the equations a numerical scheme
should reflect. On the other hand one might try to understand deficiencies of numerical
methods by making a link to a violation of some properties of the equations. This thesis
shows how both approaches can be fruitfully combined and lead to a better understanding
of the so-called low Mach number problem.

In the context of finite volume schemes one faces a dichotomy: certain schemes are
observed to have the more numerical artefacts the lower the Mach number of the flow
is, and certain schemes are found not to have this property. These latter have only
been discovered in the late 1980s and are called low Mach compliant schemes. In all
cases the quality of the simulations increases with resolution. Therefore the statement
can be rephrased as follows: For a given simulation quality, numerical schemes that are
not low Mach compliant require finer and finer grids the lower the Mach number of

9



10

the flow is. This is impractical (and at some point prohibitive), such that a complete
understanding of low Mach compliant schemes is an avenue towards hugely increased
quality of numerical simulations of fluid flow.

Even inside the class of finite volume schemes there is large variety. One of the
most prominent members of this class are Godunov schemes. They make use of an
exact short-time solution of the equations as a building block for the numerical scheme.
Thus Godunov methods inherit important properties of the equations, such as entropy
dissipation and stability. Interestingly, the Godunov method fails in capturing the low
Mach number flow correctly, i.e. it is not low Mach compliant.

There exist a number of numerical schemes that do not involve the exact solution, but
rather some approximation to it (approximate Riemann solvers). Methods can also be
derived by replacing certain parts of a given scheme by carefully chosen values in order
achieve particular aims. Examples of such an approach are many low Mach compliant
methods (low Mach fixes). They lack a derivation from some fundamental basis, and may
have or have not an optimal stability range. They also often come with free parameters.

Therefore the puzzling situation is that those finite volume schemes that are derived
from fundamental considerations fail to be low Mach compliant, and those that are, lack
a satisfactory derivation from first principles.

In order to study this problem, in this thesis another system of equations is consid-
ered first. It has a very similar limit of low Mach number, and numerical schemes even
show visually similar numerical artefacts. This system is called the acoustic equations,
and has the very useful property of being linear. It is obtained as a linearization of the
Euler equations, and thus shows that the low Mach number problem is not a prerogative
of nonlinear equations or schemes. The starting point of the analysis is a careful study
of the numerical artefacts that arise when the acoustic equations are solved using the
corresponding Godunov scheme and the upwind/Roe scheme. In this analysis one ob-
serves that the numerical solution is the same, whether one changes the Mach number
by a given factor, or the simulation time. Indeed for the acoustic equations, and this is
shown in detail in this thesis, the limit of long time is the same as the limit of low Mach
number.

Thus the artefacts of a scheme that is not low Mach compliant can be entirely under-
stood as its failure to properly resolve those solutions that remain after long times, i.e.
stationary states. The stationary states of the acoustic equations are divergenceless; the
only stationary states of the upwind/Roe scheme, for instance, are shear flows. These
latter are divergenceless, but not all divergenceless flows are shear flows, and this scheme
fails to discretize all the stationary states of the equations. To make such notions precise
is one of the topics of this thesis. Schemes that discretize all of the analytic stationary
states are termed stationarity preserving, and it is shown that for the acoustic equations
they are exactly those that are low Mach compliant.

This new approach leads to further new insights. Indeed, stationarity preservation
can be shown to be but a mirror image of another concept that has been studied in the
literature before: vorticity preservation. For both the Euler and the acoustic equations,
vorticity (i.e. the curl of the velocity) is an important concept, and one might wish the
numerical scheme to have a discrete counterpart to vorticity, and this discrete counterpart
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to fulfill a particular equation that reflects the analytic evolution of vorticity. Such
schemes are called vorticity preserving. For the acoustic equations, they can be shown to
be stationarity preserving, and thus low Mach compliant. This links three very different
concepts.

The methods described in this thesis are not restricted to the equations of linear
acoustics. First of all they can be applied to all multi-dimensional hyperbolic linear
systems. A typical occurrence of stationary solutions is the balance between a differential
operator and a source term. When trying to evolve numerically a setup close to an exact
stationary solution one faces the problem that the numerical discretization does not
quite match the source. This makes the numerical solution evolve in time, rather than
remain stationary. The problem of finding discretizations that achieve stationarity of
the discrete solution in the context of source terms is called well-balancing. Ideas of
stationarity preservation easily can be applied to such a situation and for the acoustic
equations, augmented by a gravity-like source term, they are shown to lead to simple
and convincing arguments.

There are several direct consequences of these studies that can be drawn for the Euler
equation. First, stationarity preservation gives a necessary condition for low Mach com-
pliance of a scheme for the nonlinear Euler equations. Indeed, such a scheme should be
low Mach compliant already in the linearized regime, in which the evolution is governed
by the acoustic equations. Such a linearized scheme thus has to be stationarity preserv-
ing. The usual approach to the behaviour of nonlinear schemes in the low Mach number
limit is via formal asymptotic analysis. These are not rigorous statements, but they can
also be applied to linear acoustics. This allows to compare the results to predictions of
stationarity preservation, and to judge the quality of arguments that involve asymptotic
analysis.

A number of construction principles for stationarity preserving schemes that are
developed for linear acoustics can be applied to the Euler equations. In a nutshell,
this is possible because via the Leibniz rule a derivative of a (nonlinear) product can be
rewritten as terms that involve derivatives of the individual factors, and because discrete
counterparts to such Leibniz rules exist. This thesis presents three different construction
strategies for schemes for the Euler equations, a list that is by no means exhaustive. It is
clear that not every part of an argumentation that is based on linear arguments can be
carried over to a nonlinear setting, but these examples show that linear examples can give
a good deal of guidance for much more complicated situations. The resulting schemes are
meant to exemplify novel ways how numerical schemes for the multi-dimensional Euler
equations can be constructed and hopefully contribute to a more thorough exploration
of what is possible.

The thesis is structured as follows: After a discussion of the Euler equations in Section
1 and the acoustic equations in Section 2, the concept of stationarity preservation for
linear systems is introduced in Section 3. It contains a generalization of the equivalence to
vorticity preservation, as well as construction principles for multi-dimensional schemes,
that can be formulated generally. In Section 4, numerical schemes for linear acoustics are
considered. The concept of stationarity preservation and implications for the limit of low
Mach number are discussed. The multi-dimensional Godunov scheme is derived, and it
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is shown that it fails to be low Mach compliant. It is shown for both dimensionally split
and multi-dimensional schemes how low Mach compliance can be achieved. Particularly
in case of the former this has an influence on the stability properties, such that linear
stability of a certain class of schemes is studied. Section 5 finally demonstrates how
these construction principles can be applied to the Euler equations. It is followed by
conclusions and an outlook.



Conventions

The numerical methods in this thesis are considered on equidistant Cartesian grids,
mostly in two spatial dimensions. The following notation is used:

Definition 0.1. i) A d-dimensional grid is a tiling of Rd with countably many poly-
gons/polyhedra, called cells. A rectangular grid is a tiling that uses only rectangles in
a way such that adjacent rectangles always share one full side. A smoothly deformed
rectangular grid is called a structured grid, and is a generalization of a rectangular
grid. A particular rectangular grid whose cells are all congruent is called Cartesian.
If the rectangles are actually squares, the grid is called square grid.

ii) The sides of the rectangular cells of a d-dimensional Cartesian grid are generically
denoted by ∆x ≡ ∆x1, ∆y ≡ ∆x2, ∆z ≡ ∆x3 (d ≤ 3).

iii) Cells of a d-dimensional rectangular/structured grid are indexed by elements of Zd.

iv) If not stated differently, qni is the value of the function q in cell i ∈ Z of a one-
dimensional grid at time step n ∈ N0. Analogously, qnij is the value of the function
q in cell (i, j) ∈ Z2 of a two-dimensional grid at time step n ∈ N0.

v) Boundaries of a d-dimensional cell of a rectangular grid are indexed by
(
Z + 1

2

)
×

Zd−1, Z×
(
Z + 1

2

)
×Zd−2, . . . , Zd−1×

(
Z + 1

2

)
. They are referred to as cell interfaces.

Note that in this thesis indices never denote derivatives; the convention of summing
over repeated indices is adapted wherever they occur. Also when matrices are specified, in
order to improve readability often only the nonvanishing entries are given. The imaginary
unit is denoted by i and the identity map/matrix by 1.

In order to cope with the lengthy expressions for numerical schemes, the following
notation is used:

Definition 0.2.

[q]i+ 1
2

:= qi+1 − qi {q}i+ 1
2

:= qi+1 + qi

[q]i±1 := qi+1 − qi−1

[[q]]i± 1
2

:= [q]i+ 1
2
− [q]i− 1

2
{{q}}i± 1

2
:= {q}i+ 1

2
+ {q}i− 1

2
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The only nontrivial identity is

{[q]}i± 1
2

= [q]i+ 1
2

+ [q]i− 1
2

= [q]i±1

For multiple dimensions the notation is combined, e.g.

[[q]i±1]j±1 = qi+1,j+1 − qi−1,j+1 − qi+1,j−1 + qi−1,j−1

The brackets for different directions commute.



Chapter 1

Euler equations of hydrodynamics

Contents
1.1 The Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Low Mach number limit . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Gravity source terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1 The Euler equations

1.1.1 Introductory remarks

The derivation of the equations of motion of a fluid encounters a number of difficulties:
the fluids under consideration always consist of individual interacting particles with their
own (atomic/molecular/. . . ) substructure. However, the size of the particles and also
the length scales of the inter-particle distances are often much smaller than length scales
of interest in an experimental situation. One thus might be tempted to interpret, say,
the velocity measured by an experimental device as some spatial average of the particle
velocities in some small volume around the point where the measurement was taken. One
thus would be able to assign a macroscopic velocity to any point in space by suitably
averaging the particle velocities in some volume around it. This is called a continuum
description of the fluid. However this transition is highly nontrivial and it is worth being
thought over and over again.

A continuum description seems to reflect the wish to concentrate on the relevant
features of fluid flow. One thus might be tempted to think that a continuum description
is somehow “easier” than the actual discrete situation. This however depends very much
on what the definition of “easier” is. Consider as an example a linear chain of point
masses m that are coupled by elastic springs (with a stiffness k). The time evolution of
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16 1 Euler equations of hydrodynamics

the displacements xi(t), i ∈ Z of all the masses are the “microscopic” description of the
chain. By Newton’s law one finds

mx′′i (t) = k
(
xi+1(t)− 2xi(t) + xi−1(t)

)
∀i ∈ Z (1.1)

Consider now a continuum model of this chain. For example, assume that there is
some limiting procedure which leads from (1.1) to

∂2
t s(t, x) =

k

m
∂2
xs(t, x) (1.2)

for some function s : R+
0 × R → R. This is the wave equation with wave speed

√
k/m.

One has replaced a (large but finite) system of ordinary differential equations by a partial
differential equation with an uncountably infinite number of degrees of freedom. They
can, e.g. be parametrized by the Fourier modes that solve (1.2). The “approximation”
of a macroscopic description suddenly turns out to be structurally tremendously more
complex, particularly if you imagine a situation where the continuum description is a
nonlinear PDE.

Note that it is easy to mix up two interpretations of what a continuum description is.
Either you think of it as the equation that governs the behaviour of the discrete system
as the microscopic length scales vanish in some carefully chosen limiting procedure, or
you consider the continuum limit to be an approximation to the behaviour of the discrete
system. The former is what mathematically makes more sense, but the latter is what
it actually is used for. Indeed, when somebody designs an airplane and uses the Euler
equations (say) to compute the flow of air, he does so because he expects the continuum
description to give faithful predictions about the behaviour of air with microscopic length
scales about 1µm = 10−6 m, and not because the airplane will be flying through air that
has undergone a limiting process during which all its microscopic length scales have
vanished.

Consider oscillations of the linear chain. Obviously there is a microscopic length
scale involved, which is given by the typical distance between two neighbouring point
masses. This means that oscillations of the chain cannot have a shorter wave length
than twice this distance. This corresponds to some maximum frequency. On the other
hand, harmonic waves of all frequencies are solutions to the wave equation. Therefore
the continuum description is not a faithful approximation of the discrete chain if one is
interested in high frequency waves. The realm of validity of a continuous model should
not be lost out of sight when dealing with it while having some practical applications in
mind.

It is by no means clear that a continuum description would be free of pathologies.
One might imagine, that for some discrete chain of masses coupled in a very complicated
nonlinear manner a similar limiting procedure would lead to a PDE, which has some
singularity. For example imagine the following: the PDE has well-behaved solutions only
if the initial data are not too oscillatory, and otherwise they blow up very quickly. In
particle physics jargon this would be referred to as an ultraviolet catastrophe. One might
then argue that perhaps this time the PDE has not “forgotten” everything about the
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underlying microscopic length scales – indeed in the discrete setting the highly oscillatory
solutions just don’t exist because there is some natural maximum frequency. One would
need to regularize the continuum model somehow, which might become very complicated.

If all were well with the Euler equations, one might accept the above ideas as potential
but irrelevant issues. However since the works of [DLS10, CDLK15, FKKM17] and others
it is known that weak solutions to the Euler equations are not unique in multiple spatial
dimensions for certain initial data. And although most probably the underlying reason
will have an explanation unrelated to what has been said above, it shows once more
that the transition from discrete models to their continuous descriptions is fascinatingly
complex.

1.1.2 Continuum description of a fluid

Contrary to classical thermodynamics where the gas is uniform throughout the whole
volume, in hydrodynamics the state of the gas can vary from location to location. There-
fore for the averaging to be a reasonable description of the fluid, it is to happen at scales
much larger than the microscopic scales (e.g. the mean free path), but much smaller than
the total volume. The transition from a particle description to the Boltzmann equation
and from there to the fluid equations is fairly complicated, and its understanding not
entirely complete. Therefore it shall not be touched upon in this presentation. The
reader interested in more details on this topic is referred e.g. to the review [Vil02] and
the references therein.

The state of the fluid is described by specifying first of all the density ρ and velocity
v of the fluid as functions of (d-dimensional) space and time:

ρ : R+
0 × Rd → R+

v : R+
0 × Rd → Rd

Physically, the density should always remain positive, as it measures mass per unit
volume. Momentum per unit volume is the product ρv. Energy that is related to the
motion of the gas is called kinetic energy, and its amount per unit volume is

ekin =
1

2
ρ|v|2

The time evolution of ρ and ρv is governed by

∂tρ+∇ · (ρv) = 0 (1.3)

∂t(ρv) +∇ · (ρv ⊗ v + p · 1) = 0 (1.4)

Here p is a new function that is called pressure and will be discussed below.
The two equations can be combined into an equation for the velocity v, if all the

derivatives exist in the classical sense:

∂tv + (v · ∇)v +
∇p
ρ

= 0
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Note also the following important identity of vector calculus

(v · ∇)v =
1

2
∇(|v|2)− v × (∇× v)

The evolution of the kinetic energy is obtained in a straightforward manner from the
Equations (1.3)–(1.4):

∂t
|v|2

2
= v · ∂tv = −v ·

[
(v · ∇)v

]
− v · ∇p

ρ
= −1

2
v · ∇(|v|2)− v · ∇p

ρ

∂tekin =
|v|2

2
∂tρ+ ρ∂t

|v|2

2
= −|v|

2

2
∇ · (vρ)− 1

2
ρv · ∇(|v|2)− v · ∇p

This gives the evolution equation for the kinetic energy:

∂tekin +∇ · (v(ekin + p)) = p∇ · v (1.5)

In hydrodynamics, pressure appears in two distinct ways. For the incompressible
Euler equations, it is a free variable that, at every time t, has to be found such that the
divergence constraint

∇ · v = 0

is fulfilled. It is thus an evolving variable. The incompressible Euler equations read

∂tρ+∇ · (ρv) = 0

∂t(ρv) +∇ · (ρv ⊗ v + p · 1) = 0

∇ · v = 0

unknowns: ρ,v, p

For the compressible Euler equations, p is a given functional (a so called equation
of state) of the state of the gas. For example it may be a function p(ρ) of ρ only. The
choice p(ρ) = Kργ, K ∈ R+, γ ∈ R, γ ≥ 1 gives the isentropic Euler equations

∂tρ+∇ · (ρv) = 0 (1.6)

∂t(ρv) +∇ · (ρv ⊗ v + p(ρ) · 1) = 0 (1.7)

unknowns: ρ, ρv

On physical grounds (see e.g. [LL13], Vol. 6) one defines1 the temperature as

T =
p

ρ

1For an ideal gas consisting of particles of mass m and with the Boltzmann constant denoted by
kB = 1.38 · 10−23J/K the physically correct formula is T = m

kB

p
ρ . Here the temperature is obtained in

Kelvin. The definition above amounts to a different choice of units.
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This is why an equation of state with γ = 1 is called isothermal. Temperature is related
to a form of energy, which is called internal energy and its amount per unit volume is
denoted by eint.

Finally, the Euler equations for an ideal gas shall be discussed. Ideal gases are also
parametrized by a parameter γ, which should not be confused with the exponent γ of
the isentropic Euler equations. There are reasons why these two traditionally are given
the same symbol, but to begin with they are two different constants because they appear
in two different contexts. The formulae for the different properties of an ideal gas can
be derived as consequences of some more fundamental definition of what an ideal gas is
(see e.g. [LL13], Vol. 6). Here to facilitate the presentation, the ideal gas is defined to
be a fluid characterized by γ ∈ R, γ > 1 that fulfills

eint =
p

γ − 1

The total energy is the sum of the internal and the kinetic energies. From First Law
of Thermodynamics one obtains ([LL13])

∂teint +∇ · (veint) + p∇ · v = 0

and together with (1.5) an equation for the total energy e = ekin + eint

∂te+∇ · (v(e+ p)) = 0

If everything is differentiable in the classical sense, this can be used to derive an evolution
equation for p:

∂tp+ v · ∇p+ γp∇ · v = 0

Thus the Euler equations for an ideal gas read

∂tρ+∇ · (ρv) = 0 (1.8)

∂t(ρv) +∇ · (ρv ⊗ v + p(ρ) · 1) = 0 (1.9)

∂te+∇ · (v(e+ p)) = 0 (1.10)

unknowns: ρ, ρv, e

Variables ρ, ρv, e are called conservative variables, the set ρ,v, p is called primitive
variables.

Equations (1.8), (1.9), (1.10) are hyperbolic (see e.g. [Tor09]). Small pressure per-
turbations to a constant background are found to be governed by a linear wave equation
with speed

c =

√
γp

ρ

which is called sound speed. Details of this linearization are given in Section 2.1.1.
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In all the equations it is possible to single out a derivative operator

d

dt
:= ∂t + v · ∇

called the advective, or comoving derivative. It describes the time change of a quantity
as it moves with the flow. The equations then become

dρ

dt
+ ρ∇ · v = 0

dv

dt
+
∇p
ρ

= 0

dp

dt
+ γp∇ · v = 0

The First Law of Thermodynamics expresses energy conservation. The Second Law
of Thermodynamics states that a quantity s called entropy is a monotone function of
time. Whereas in physics literature it is defined to grow, in mathematics it typically
is defined to decay in time by inverting the sign. The origin of such a function can be
found in statistical mechanics. It is fascinating that macroscopic irreversibility can be
found in a system whose microscopic laws are fully time reversible. The same concept
was discovered in other domains, for instance by Claude Shannon ([Sha48]) when dealing
with information (or uncertainty). Having asked John von Neumann for a better name
for his “uncertainty function” he got the following answer (as reported in [TM71]):

You should call it entropy, for two reasons. In the first place your uncertainty
function has been used in statistical mechanics under that name, so it already
has a name. In the second place, and more important, no one really knows
what entropy really is, so in a debate you will always have the advantage.

Consider a gas filling a volume, and made of particles that collide randomly with
each other. It is highly improbable that they would at some point in time all be in the
left half of the volume, and the right half be empty. Seeing a film that shows a gas
expand into vacuum you can tell that everything is fine, while seeing a film that shows
the opposite you are able to tell that the film must be running backwards.

Making these ideas precise is not easy, and “present day mathematics is unable to
prove [Boltzmann’s H-theorem] rigorously and in satisfactory generality” [Vil08]. Here
again, the presentation will content itself with stating that

ds

dt
= ∂ts+ v · ∇s ≤ 0

for s = pρ−γ. By combining with the continuity equation (1.3) one can rewrite this as

d(ρs)

dt
= ∂t(ρs) +∇ · (ρvs) ≤ 0

As the Euler equations describe an ideal fluid, equality is true away from discontinuities.
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The curl ω = ∇×v of v is given a particular name: vorticity. For the Euler equations
(1.8)–(1.10) vorticity fulfills

∂tω + v · ∇ω − (ω · ∇)v + ω(∇ · v) +
∇p×∇ρ

ρ2
= 0 (1.11)

1.2 Low Mach number limit

The limit of low Mach numbers in the context of the Euler equations (1.8)–(1.10) is
best explored by introducing a family of solutions, parametrized by a real dimensionless
number ε > 0, ε→ 0.

Definition 1.1 (Asymptotic scaling). Assume that in the limit ε→ 0 a function f(t,x; ε)
can be written as an expansion in ε as

f = εp(f (0) + f (1)ε+ . . .)

with the functions f (i) not depending on ε. Then it is said to be asymptotically scaling
as εp, or f ∈ O(εp).

Using some intuition, it is possible to directly insert powers of a real number ε > 0 into
the equations, with the aim of highlighting a particular limiting regime as ε → 0. Such
equations are called rescaled. This procedure changes the equations, because they are not
invariant under insertion of arbitrary factors. So what do these equations describe? The
following derivation aims at making this clear. It considers first just the original equation,
and a family of solutions, parametrized by ε, that tend to the particular limiting regime
of interest. This family of solutions gives rise to a family of equations, parametrized by
ε, in the following way: To highest order in ε, the family of solutions can be rewritten
as one solution to a family of different equations. More precisely, the solutions still
depend on ε, but their leading order scalings have been transferred to the equation, such
that it also depends on ε now. These equations are the rescaled equations. The way of
derivation presented here (and published in [BEK+17]) allows to find the most general
form of the rescaled equations without making assumptions that need physical guidance.

Consider thus a family of solutions to the Euler equations, parametrized by ε > 0.

i) The local Mach number Mloc(t,x) := |v(t,x)|/

√
γp(t,x)

ρ(t,x)
is assumed to be written

as an expansion in ε and scaling asymptotically as ε: Mloc ∈ O(ε). This condition
makes clear that the limiting regime of interest is that of low Mach number.

ii) Every member of the family shall fulfill the same equation of state

e =
p

γ − 1
+

1

2
ρ|v|2

iii) Every member of the family shall fulfill the Euler equations.
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These requirements replace some physically motivated requirements found in the litera-
ture (e.g. in [Kle95, MRE15]) which relate the scalings of the pressure to scalings of ρc2

rather than ρ|v|2. It is considered important to make clear which parts of the reasoning
actually rely on physical arguments, and which ones are consequences of the equations
themselves. The latter evidently can then be reused in a variety of other circumstances
where physical intuition might not be available.

Theorem 1.1 (Asymptotic scalings). The most general asymptotic scalings of the de-
pendent and independent quantities that are consistent with the requirements i) and ii)
are

x = εax̃, t = εbt̃

ρ(t,x) = εc+2−2dρ̃(t̃, x̃), v(t,x) = εdṽ(t̃, x̃)

e(t,x) = εcẽ(t̃, x̃), p(t,x) = εcp̃(t̃, x̃)

with a, b, c, d arbitrary numbers. It is understood that quantities with a tilde are O(1)
when expanded as power series in ε.

Proof. Assume general scalings

x = εax̃, t = εbt̃

ρ(t,x) = εeρ̃(t̃, x̃), v(t,x) = εdṽ(t̃, x̃)

e(t,x) = εcẽ(t̃, x̃), p(t,x) = εfp̃(t̃, x̃)

Then by computing Mloc one finds

Mloc = εd−f/2+e/2|ṽ|/

√
γp̃

ρ̃
= εd−f/2+e/2M̃loc

i.e. by condition i) above

2d− f + e = 2 (1.12)

Inserting the general scalings into the equation of state one is left with

εcẽ =
εfp̃

γ − 1
+

1

2
εe+2dρ̃|ṽ|2

and using (1.12)

εcẽ =
εfp̃

γ − 1
+

1

2
ε2+fρ̃|ṽ|2

Therefore one concludes c = min(f, f + 2) = f. Indeed, c being an asymptotic scaling
denotes the lowest order of ε that appears on the right hand side. Replacing

e = 2− 2d + c

f = c

proves the assertion.
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An example of such a family of solutions is given by the Gresho vortex setup in
(5.15)–(5.16) (page 158).

Inserting the above scalings into the Euler equations yields a system of equations
that is fulfilled by quantities with a tilde:

Corollary 1.1 (Rescaled Euler equations). Inserting the scalings obtained in Theorem
1.1 into the Euler equations yields

ẽ =
p̃

γ − 1
+

1

2
ε2ρ̃|ṽ|2 (1.13)

and

εa−d−b∂tρ̃+∇ · (ρ̃ṽ) = 0

εa−d−b∂t(ρ̃ṽ) +∇ ·
(
ρ̃ṽ ⊗ ṽ +

p̃

ε2
· 1
)

= 0

εa−d−b∂tẽ+∇ · (ṽ(ẽ+ p̃)) = 0

Observe the fact that the kinetic energy obtains an additional factor of ε2 in the
equation of state. This is not in contradiction to condition ii because (1.13) describes
the equation of state fulfilled by quantities with a tilde.

The factor in front of the time derivatives is related to the dimensionless Strouhal
number

Str loc =
x

|v|t
=

εax̃

εd|ṽ| · εbt̃

This factor is not identical to the Strouhal number, but is just its asymptotic ε-scaling.
As an additional condition on the family of solutions one is tempted to insist on Str loc ∈
O(1), i.e. a − d − b = 0. This corresponds to adapting the time scales to the speed of
the fluid (and not to sound wave crossing times). This yields

∂tρ̃+∇ · (ρ̃ṽ) = 0 (1.14)

∂t(ρ̃ṽ) +∇ ·
(
ρ̃ṽ ⊗ ṽ +

p̃

ε2
· 1
)

= 0 (1.15)

∂tẽ+∇ · (ṽ(ẽ+ p̃)) = 0 (1.16)

Different ways of decreasing the Mach number (e.g. by decreasing the value of the
velocity, or increasing the sound speed instead, or a combination of both) are equivalent
and result in the same rescaled equations. This explains why the precise value of a, b, c, d
does not matter for the form of the rescaled equations. For notational convenience the
tilde is dropped.

In the limit ε→ 0 the solutions to (1.14)–(1.16) tend to solutions of the incompressible
Euler equations, see e.g. [Ebi77, KM81, U+86, Asa87, Iso87, KLN91, Sch94, MS01]. The
limit can formally be found by expanding all quantities as series in ε, e.g. for the pressure
this would give

p(t,x) = p(0)(t,x) + εp(1)(t,x) + ε2p(2)(t,x) +O(ε3).
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Inserting these into the above equations, collecting order by order and assuming imper-
meable boundaries gives (compare e.g. [Kle95, HJL12])

p(0) = const, (1.17)

p(1) = const, (1.18)

(∇ · v)(0) = 0, (1.19)

and

∂tρ
(0) + v(0) · ∇ρ(0) = 0,

∂tv
(0) + (v(0) · ∇)v(0) +∇p(2)/ρ(0) = 0.

These equations describe incompressible flows. Conditions (1.17), (1.18) and (1.19) are
understood to be true at any time. Initial data that fulfill them are called well-prepared.
Not well-prepared initial data may lead to an incompressible flow as well, but then an
initial disturbance is produced.

The equation for the kinetic energy ekin = 1
2
ρ|v|2 can be rewritten as

∂tekin +∇ ·
[
v
(
ekin +

p

ε2

)]
=

p

ε2
∇ · v.

The source term vanishes for incompressible flows and in this case the kinetic energy
becomes a conserved quantity. For compressible flows, this is true in the limit ε→ 0 as
well, despite of ∇·v

ε2
6∈ O(ε). Expanding the quantities and using (1.17) and (1.18) makes

the terms proportional to 1
ε

or 1
ε2

cancel and gives

∂tekin + div
[
v
(
ekin + p(2)

)]
= p(2)∇ · v +O(ε).

Now the source term indeed is O(ε) and the kinetic energy can be seen to become a
conserved quantity in the limit ε→ 0 by Equation (1.19).

1.3 Gravity source terms

When gravity is present, the Euler equations (1.8)–(1.10) have to be augmented by source
terms involving a vector field g:

∂tρ+∇ · (ρv) = 0 (1.22)

∂t(ρv) +∇ · (ρv ⊗ v + p · 1) = ρg (1.23)

∂te+∇ · [v(e+ p)] = ρv · g (1.24)

In presence of an exterior gravitational field g, Equations (1.22), (1.23), (1.24) de-
scribe the motion and the steady states of the fluid. In general, g is a function of space
and time.
In certain applications (e.g. when the atmosphere of the Earth is considered), g is a
given function of space only. It may even be chosen constant in certain cases.
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In other applications, g is evolving in time. For example, when the fluid is evolving under
the influence of its own gravity (self-gravity), system (1.22)–(1.24) has to be augmented
by an equation which tells how mass creates its gravity field. From classical Newtonian
gravity follows that g is a gradient field

g = −∇Φ

and the gravitational potential Φ is a new dependent variable which has to fulfill

∆Φ = 4πρG (1.25)

The gravitational constant G ' 6.67 · 10−11 (in SI units) is a fundamental constant of
nature. For notational convenience, it can also be absorbed into a choice of different
units (together with 4π).

The system (1.22)–(1.24) together with (1.25) now is closed. It is of mixed type
because (1.25) is elliptic: changing the mass distribution, i.e. ρ, in some region immedi-
ately implies a change of Φ everywhere and thus immediately changes the motion of the
fluid arbitrarily far away. In General Relativity, no information can travel faster than
light, and one replaces equation (1.25) by some hyperbolic equation again2. It limits the
domain of influence of a change of mass distribution to what is reachable by traveling
with the speed of light.

In the following g is assumed to be a given function of space only.

Definition 1.2 (Stationary and static). A stationary solution of any set of evolution
equations is characterized by a vanishing time derivative.
A static solution of any set of evolution equations that contain a variable “velocity” v is
a stationary solution that additionally fulfills v = 0.

The static states (called hydrostatic equilibria) of (1.22)–(1.24) are given by

∇p = ρg (1.26)

This equation leads to a solution once a relationship between p and ρ is known. In
view of p = ρT this hydrostatic equilibrium can be determined, once the temperature of
the gas is given everywhere. One can show that this equilibrium can be unstable. Having
buoyantly lighter fluid placed under heavier one, small perturbations will increase and
ultimately lead to convective motion and mixing of the two fluids. The reversed situation
is a stable one, and therefore small perturbations will not grow in time.

Consider again a family of solutions to (1.22)–(1.24).

2Indeed, the Einstein equations are in a sense similar to (1.25). However in General Relativity
gravity is not described by just one variable Φ, but by a symmetric 4 × 4 tensor field. Thus in the
end, the equations look very differently and add tremendous complexity. For an introduction see e.g.
[MTW17, Str12]
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Theorem 1.2 (Rescaled Euler equations with gravity). With conditions i)–ii) as well
as Str loc ∈ O(1) the rescaled Euler equations are

∂tρ+∇ · (ρv) = 0 (1.27)

∂t(ρv) +∇ ·
(
ρv ⊗ v +

p

ε2
· 1
)

=
1

Fr 2ρg (1.28)

∂te+∇ · [v(e+ p)] =
ε2

Fr 2ρv · g (1.29)

Here Fr = εd−
a+g

2 .

Proof. By Theorem 1.1 conditions i)–ii) imply

x = εax̃, t = εbt̃

ρ(t,x) = εc+2−2dρ̃(t̃, x̃), v(t,x) = εdṽ(t̃, x̃)

e(t,x) = εcẽ(t̃, x̃), p(t,x) = εcp̃(t̃, x̃)

g(x) = εgg̃(x̃)

Inserting this into the Euler equations leads to Equations (1.27), (1.28), (1.29). This
proves the assertion.

Note that Fr only denotes the power of ε which appears in the definition of the local
Froude number

Fr loc =
|v|√
|x · g|

= εd−
a+g

2
|ṽ|√
|x̃ · g̃|

Colloquially Fr is often referred to as the Froude number as well. Whereas the Mach
number squared is the ratio between kinetic and internal energies, the local Froude
number squared quantifies the relative magnitudes of kinetic and gravitational potential
energies. In the example of a constant gravity field, this gives the appearance of the
independent spatial variable in the definition of Fr loc the interpretation of the height
measured in the direction opposite to g.

Consider now a setup where the fluid performs motions with a small velocity super-
posing an ε-independent hydrostatic equilibrium. This suggests to actually choose the
velocities to decrease as ε (i.e. d = 1) and to let gravity and length scales (as quantities
involved in the background equilibrium) become asymptotically constant: a = g = 0:

x = x̃, t = εbt̃,

ρ(t,x) = εcρ̃(t̃, x̃), v(t,x) = εṽ(t̃, x̃),

e(t,x) = εcẽ(t̃, x̃), p(t,x) = εcp̃(t̃, x̃),

g(x) = g̃(x̃),

This still leaves c and b arbitrary, but already implies the relation

Fr = ε
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Note that this choice did not follow from equations, but has been taken having a
particular application in mind. It seems, however, to be the only interesting borderline
case. If Fr = εα, α < 1, then gravity becomes irrelevant in the limit. If Fr = εα with
α > 1, then gravity dominates everything else, and it does not seem to be possible to
derive any nontrivial limit. The borderline case Fr = ε leads, by formally performing
asymptotic expansions on all the quantities, to

∇p(0) = ρ(0)g(0) (1.30)

This is the equation of hydrostatic equilibrium encountered in (1.26) already, and which
is to be seen contrasting (1.17). Observe that the velocity field is not divergenceless any
more because this was a direct consequence of (1.17).
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Equations of linear acoustics
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The Euler equations contain the kinematic essence of fluid motion, as they express
how the fundamental conservation laws of mechanics apply to continua. Why are they
nonlinear? Indeed, linear elasticity, for example, ends up as a linear theory, although it
also applies fundamental laws of mechanics to continua. The simplest reason is that in
elasticity, the elements are tied to each other, whereas fluids can mix. This means that
even the simplest model of fluid motion, that just makes use of the most fundamental
conservation laws, is already a system of vast complexity.

This has two consequences. The first consequence is that, at least so far, numerical
simulations are the only way to gain insight in realistic flows. Indeed, exact solutions of
Euler equations typically have a high degree of symmetry and are mostly of academic
interest. The second consequence is that, when it comes to designing numerical methods,
the complexity of the Euler equations is again in the way.

In the context of one-dimensional problems, it has been found that, for example,
upwinding is the key to stable schemes (see [VL06] for a review). This means that finite
difference approximations to spatial derivatives should respect the direction of infor-
mation propagation that is dictated by the equations. However, upwinding is still not
easy to apply to the Euler equations, as, depending on the flow, certain information
propagates in one direction, and certain information – in another. This is why, when in-
troducing the concept of upwinding, textbooks (e.g. [LeV02, Tor09]) prefer to focus first
on a situation with a unique direction of information propagation: the linear advection

29
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equation

∂tq(t, x) + c ∂xq(t, x) = 0 q : R+
0 × R→ R, c ∈ R

q(0, x) := q0(x)

This is, so to speak, the basic building block. Although, obviously, the Euler equations
are not just advection, and are nonlinear, understanding upwinding for the advection
equation is of immense help.

Multi-dimensional problems pose additional challenges. The problem of low Mach
number flows is a such – in [Tur87, KLN91], for example, it has been found that numerical
schemes seem to split into those whose error increases as the Mach number of the flow
is reduced, and those which do not have this problem. Therefore it seems necessary to
introduce a way to discriminate between the two, and to understand the origin of the
error in this limit – in order to avoid it, of course. There exists a variety of approaches
in the literature. They are described in more detail later. The only relevant aspect for
the moment is that most of them ([DOR10] is an exception) discuss the Euler equations
directly. However, just as the clue to the concept of upwinding lies in the linear advection
equation, this thesis wants to argue that the clue to the low Mach number limit is in the
acoustic equations. In both cases, understanding the linear problem gives such a deep
understanding, that the nonlinear case can be fruitfully dealt with.

In a certain way, the acoustic equations play the general role of the building block
for the multi-dimensional situation, just as the advection equation plays this role in the
one-dimensional case (see also the review [Roe17]). Indeed, it is not just the low Mach
number limit that can be studied, but also such concepts as structure-preservation, e.g.
with respect to vorticity. The idea of the acoustic equations as a stepping stone to an
understanding of numerical methods is picked up in Section 4. This Section deals with
the equations themselves: their derivation and origin and their exact solution.

2.1 Properties of the acoustic equations

2.1.1 Linearization

The acoustic equations describe the time evolution of small perturbations to a constant
flow. There are several different linearization procedures that lead to essentially the
same system of equations.

Linearizing the isentropic Euler equations in d spatial dimensions

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v + p1) = 0

with p(ρ) = Kργ around the state (ρ,v) = (ρ̄, 0) yields

∂tρ+ ρ̄ div v = 0 (2.1)

∂tv + c2 grad ρ

ρ̄
= 0 (2.2)
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where one defines c =
√
p′(ρ̄). Linearization with respect to a fluid state moving at some

constant speed U can be easily removed or added via a Galilei transform.
The same system can be obtained from the Euler equations endowed with an energy

equation

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v + p1) = 0

∂te+ div (v(e+ p)) = 0

with e = p
γ−1

+ 1
2
ρ|v|2. Linearization around (ρ,v, p) = (ρ̄, 0, p̄) yields

∂tρ+ ρ̄ div v = 0

∂tv +
grad p

ρ̄
= 0 (2.3)

∂tp+ ρ̄c2 div v = 0 (2.4)

Equations (2.3)–(2.4) are (up to rescaling and renaming) the same as (2.1)–(2.2). Both
can be linearly transformed to either

∂tv + grad p = 0 v : R+
0 × Rd → Rd (2.5)

∂tp+ c2 div v = 0 c = const p : R+
0 × Rd → R (2.6)

or the symmetric version

∂tv + c grad p = 0 (2.7)

∂tp+ c div v = 0 c = const (2.8)

The transformation which symmetrizes the Jacobian J =

(
0 1
c2 0

)
is

S =

(
1 0
0 c

)
(2.9)

such that J = S

(
c 0
0 c

)
S−1. In multiple spatial dimensions the upper left entry in S

has to be replaced by an appropriate block-identity-matrix.
This system is the one to be studied in what follows, sometimes the symmetric version

being preferred over (2.5)–(2.6). p will be called pressure and v the velocity – just to
have names. Due to the different linearizations and the symmetrization they are not
exactly the physical pressure or velocity any more, but still closely related.

These equations describe the time evolution of small perturbations to a constant
state of the fluid, usually referred to as sound waves. Therefore they are called the
equations of linear acoustics. Equations (2.7)–(2.8) have been studied among others in
[LS02, MR01, AG15, DOR10, FG17, BK17]. Unless stated differently, the equations are
always considered on all Rd.
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2.1.2 Vorticity

It should be noted that only the equation for the scalar p is the usual scalar wave equation

∂2
t p− c2∆p = 0 (2.10)

whereas v fulfills

∂2
t v − c2grad div v = 0 (2.11)

The identity ∇× (∇× v) = ∇(∇ · v)−∆v links this operator to the vector Laplacian
in 3-d. By (2.7)

∂t(∇× v) = 0 (2.12)

but ∇ × v needs not be zero initially. The quantity ω := ∇ × v is called vorticity by
analogy with the Euler equations.

2.2 Exact solution

Consider the Cauchy problem for the multi-dimensional hyperbolic system

∂tq + (J · ∇)q = 0 q : R+
0 × Rd → Rn (2.13)

q(0,x) = q0(x)

where x ∈ Rd and J is the vector of the Jacobians into the different directions.
For the symmetrized system (2.7)–(2.8) in 3-d one has q := (v, p) and

J =




0 c
0

0
c 0

 ,


0

0 c
0

c 0

 ,


0

0
0 c
c 0


 (2.14)

The one-dimensional system

∂tp(t, x) + c∂xv(t, x) = 0 (2.15)

∂tv(t, x) + c∂xp(t, x) = 0 (2.16)

with the initial data (x ∈ R)

p(0, x) = p0(x) v(0, x) = v0(x)

can be solved via characteristics, observing that

∂t(p± v)± c∂x(p± v) = 0
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i.e.

p(t, x) =
1

2

[
p0(x− ct) + p0(x+ ct)

]
+

1

2

[
v0(x− ct)− v0(x+ ct)

]
(2.17)

v(t, x) =
1

2

[
v0(x− ct) + v0(x+ ct)

]
+

1

2

[
p0(x− ct)− p0(x+ ct)

]
(2.18)

With respect to the numerics of the 1-d system (2.15)–(2.16), one can write down
the exact Godunov scheme by solving the 1-d Riemann problem for this system. This
scheme is referred to as the upwind/Roe scheme, as it is the linear version of the Roe
scheme [Roe81]. The dimensionally split case applied to multiple dimensions is discussed
in [GZI+76].

In the one-dimensional case one observes a discrepancy in the required regularity of
q0: the solution in (2.15)–(2.16) has to be differentiable, whereas the solution formula
(2.17)–(2.18) does not even require continuity of the initial data. The discrepancy is
removed by generalizing the notion of a solution to all objects for which the solution
formula makes sense. To say it in the words of Schwartz ([Sch78]),

On peut écrire l’expression générale d’une solution de l’équation aux dérivées partielles
∂2U

∂x2
− ∂2U

∂y2
= 0 sous la forme U = f(x+ y) + g(x− y); mais une telle fonction U ne peut

vérifier l’équation aux dérivées partielles que si f et g sont deux fois dérivables. Dans le

cas contraire, on peut convenir de dire que U est “solution généralisée” de l’équation.

An essential ingredient of later discussion is the Riemann Problem, i.e. the Cauchy
Problem for discontinuous initial data. Therefore a generalization of the notion of a
solution is necessary in order to include discontinuous data. How this generalization is
to be chosen depends on the precise shape of the solution formula. Contrary to formulae
(2.17)–(2.18), which only contain the values of the initial data, the solution formula for
(2.7)–(2.8) turns out to contain derivatives of the initial data (Section 2.2.2). This makes
it necessary to consider distributional solutions. They are given a brief review in Section
2.2.1 first, which gives the opportunity to fix the notation. The solution is derived in
Section 2.2.2, with Theorems 2.6 and 2.8 being the main results. These results have been
published in [BK17].

2.2.1 Distributions

In this Section a brief review of definitions and results from the theory of distributions
is given. This is done in first place to fix notation that will be used throughout the rest
of the thesis and thus many results are stated without proofs. The reader interested in
a thorough introduction is, for example, referred to [Sch78], [GS64], [Hör13], [Rud91].

Definition 2.1 (Distribution). A distribution is a continuous linear functional on the set
D(Rd) of compactly supported smooth test functions ψ. The evaluation of the distribution
f on a test function ψ is denoted by 〈f |ψ〉 ∈ R (or C). The set of all distributions is
denoted by D′(Rd).
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It is possible to show (see e.g. [Rud91]) that a function h ∈ L1
loc(R

d) gives rise to
a distribution h ∈ D′(Rd) in the following way: the action 〈h |ψ〉 of h onto any test
function ψ ∈ D(Rd) is defined as:

〈h |ψ〉 :=

∫
Rd

dxh(x)ψ(x) (2.19)

Definition 2.2 (Regular distribution). Given h ∈ L1
loc(R

d), the distribution h , defined
by its action onto a test function ψ ∈ D(Rd) as in (2.19), is called regular distribution.

In order to make explicit the independent variable, the notation 〈h |ψ(x)〉 will be
used. Two regular distributions h1 and h2 are equal, if h1 = h2 almost everywhere.

Definition 2.3 (Tempered distribution). The Schwartz space S(Rd) of rapidly decreas-
ing functions f on Rd is defined as

S(Rd) :=
{
f ∈ C∞(Rd) : sup

x∈Rd
|xa1

1 . . . xa2
d ∂

b1
x1
· · · ∂bdxdf | <∞

∀(a1, . . . , ad, b1, . . . , bd) ∈ (N0)2d
}

The set S ′(Rd) of tempered distributions is the continuous dual of S(Rd).

It is possible to show that the derivative ∇xT of a distribution T ∈ D′(Rd), defined
in the following, is again a distribution (see e.g. [Rud91]).

Definition 2.4. i) The derivative of a distribution T ∈ D′(Rd) is defined as

〈∇xT |ψ(x)〉 := −〈T |∇xψ(x)〉 ∀ψ ∈ D(Rd)

ii) The Fourier transform Ft,x applied to an integrable function f : R+
0 × Rd → R is

defined by

f̂(ω,k) := Ft,x[f ](ω,k) :=
1√
2π

∫
dt

1

(2π)d/2

∫
dx exp(−iωt+ ik · x)f(t,x)

Generically, k denotes the dual variable to x and ω the dual to t. Note the symmetric
prefactor convention chosen here, and that ω is used with the reverse sign. Also,
generically, the tilde denotes a Fourier transform in the following.

iii) The Fourier transform Ft,x[T ](ω,k) of a distribution T is defined by

〈F[T ]|ψ〉 := 〈T |F[ψ]〉 ∀ψ ∈ D(Rd+1)

or, making explicit the independent variables,

〈Ft,x[T ](ω,k)|ψ(ω,k)〉 := 〈T (t,x)|Fω,k[ψ](t,x)〉 ∀ψ ∈ D(Rd+1)

The class S(Rd) allows to put the Fourier transform to maximal use:
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Theorem 2.1. The Fourier transform is an automorphism on S ′(Rd).

For a proof see e.g. [Rud91].
The usual rules of differentiation apply:

Theorem 2.2. Consider a distribution q and its Fourier transform q̂. Then

i)

∇xF−1
k [q̂(k)] = F−1

k [ikq̂(k)] (2.20)

ii)

F−1
k [∇kq̂] = −ixF−1

k [q̂]

Fx[∇xq] = ikFx[q] (2.21)

Proof. i) For every test function ψ ∈ S(Rd)

〈∇xF−1
k [q̂(k)]|ψ(x)〉 = −〈q̂(k)|F−1

x [∇xψ(x)]〉 = 〈F−1
k [ikq̂(k)]|ψ〉

ii) Analogously,

〈F−1
k [∇kq̂(k)]|ψ(x)〉 = 〈∇kq̂(k)|F−1

x [ψ]〉 = −〈q̂(k)|∇kF−1
x [ψ]〉

= −〈q̂(k)|F−1
x [ixψ]〉 = 〈−ixF−1

k [q̂(k)]|ψ(x)〉

The other equation is shown by repeating the argumentation for Fx[q].

The Fourier transform of 1 is (up to factors) the Dirac distribution δ0:

Definition 2.5 (Dirac distribution). The Dirac distribution δx′, or δx=x′, is defined as
〈δx′|ψ〉 := ψ(x′) ∀ψ ∈ D(Rd).

Distributional solutions to partial differential equations are discussed in e.g. [Joh78].

Definition 2.6 (Distributional solution). Given a first order linear differential operator
L containing derivatives with respect to t ∈ R and x ∈ Rd and given initial data q0 ∈
D′(Rd), q is called a distributional solution of Lq = 0 if it holds as an identity in D′(Rd);
i.e. if 〈Lq|ψ〉 = 0 ∀ψ ∈ D(Rd+1) and q|t=0 = q0.

Whenever a solution f ∈ L1
loc in the sense of functions exists, then f is a distri-

butional solution. In general in the following the solution will not be a function, but
the initial data q0 will. If the initial data are locally integrable functions, then in the
context of a distributional initial value problem they are to be interpreted as regular
distributions q0 .

The convolution F ∗G of two distributions F and G can be defined in certain cases.
Here only the following definition is needed, and the reader is referred to e.g. [Rud91]
for further details.
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Definition 2.7 (Convolution). The convolution F ∗ G of F,G ∈ D′(Rd), with at least
one of them having compact support, is defined ∀ψ ∈ D(Rd) as

〈(F ∗G)(x)|ψ(x)〉 =
〈
F (x)|〈G(y)|ψ(x + y)〉

〉
If F and G are regular distributions, i.e. F = f , G = g , with f, g having compact

support, then

〈 f ∗ g |ψ〉 =

∫
dxf(x)

∫
dyg(y)ψ(x+ y) =

∫
dξ

(∫
dyf(ξ − y)g(y)

)
ψ(ξ)

It can be shown that δ0 acts as the identity upon convolution, and δx′ as translation
by x′. For F,G ∈ S ′(Rd) and at least one of them compactly supported, the product of
Fourier transforms is the Fourier transform of the convolution:

Fx[F ](k) · Fx[G](k) =
1

(2π)d/2
Fx[F ∗G](k)

2.2.2 Solution formulae

Definition 2.8 (Evolution operator). The evolution operator Tt maps suitable initial
data q0(x) to the solution of the corresponding Cauchy problem for (2.13) (that is assumed
to exist and be unique) at time t:

(Tt q0)(t,x) = q(t,x)

Obviously T0 = id.

Theorem 2.3. Tt is linear.

Proof. Consider two initial data q0 and p0 and their time evolutions Tt q0 and Tt p0.
Taking λ, µ ∈ R consider the time evolution Tt(λq0 + µp0) of λq0 + µp0. Then, by
linearity of (2.13)

(∂t + J · ∇)(Tt(λq0 + µp0)− λTt q0) = 0

and Tt(λq0 + µp0) − λTt q0 is a solution of (2.13) with initial data µp0. Therefore by
uniqueness of the solution to the Cauchy problem

Tt(λq0 + µp0)− λTt q0 = Tt(µp0)

If µ = 0, linearity of Tt is shown. Otherwise, again by linearity of (2.13)

(∂t + J · ∇)

(
1

µ
Tt(µp0)

)
= 0
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1
µ
Tt(µp0) is a solution with initial data p0, i.e.

1

µ
Tt(µp0) = Tt p0

and thus on total

Tt(λq0 + µp0) = λTt q0 + µTt p0

The very standard procedure of finding a solution to any linear equation such as
(2.13) for sufficiently regular initial data q0(x) is to decompose them into Fourier modes

q0(x) =
1

(2π)d/2

∫
dk q̂0(k) exp(ik · x)

where d ∈ N is the dimensionality of the space. The coefficients q̂0(k) = (v̂0(k), p̂0(k))
of this decomposition are the Fourier transform of q0 and k here characterizes the mode.
The time evolution of any single Fourier mode can be found via the ansatz

Tt

(
exp(ik · x)

)
= exp(−iω(k)t+ ik · x)

where the function ω(k) is to be determined from the equations by inserting the ansatz.
The time evolution q(t,x) of the initial data q0(x) is given by adding all the time evolu-
tions of the individual modes. For the acoustic system (2.7)–(2.8) the solution can then
be found to be

p(t,x) =
1

(2π)d/2

∫ ( p̂0(k) + k·v̂0(k)
|k|

2
exp(ik · x− ic|k|t)

+
p̂0(k)− k·v̂0(k)

|k|

2
exp(ik · x + ic|k|t)

)
dk

v(t,x) =
1

(2π)d/2

∫ ( p̂0(k) + k·v̂0(k)
|k|

2

k

|k|
exp(ik · x− ic|k|t)

+

k·v̂0(k)
|k| − p̂0(k)

2

k

|k|
exp(ik · x + ic|k|t)

+

{
v̂0(k)− k

|k|
k · v̂0(k)

|k|

}
exp(ik · x)

)
dk

An analogous formula is valid in the sense of distributions:
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Theorem 2.4. Given q̂0 = (v̂0, p̂0) ∈ (S ′(Rd))n, n = d+ 1, the distributional solution to
(2.7)–(2.8) is

p(t,x) = F−1
k

[
p̂0(k) + k·v̂0(k)

|k|

2
exp(−ic|k|t) +

p̂0(k)− k·v̂0(k)
|k|

2
exp(ic|k|t)

]
(x) (2.22)

v(t,x) = F−1
k

[
p̂0(k) + k·v̂0(k)

|k|

2

k

|k|
exp(−ic|k|t) +

k·v̂0(k)
|k| − p̂0(k)

2

k

|k|
exp(ic|k|t)

+

{
v̂0(k)− k

|k|
k · v̂0(k)

|k|

}]
(x) (2.23)

Proof. The use of S ′ makes sure that the Fourier transforms exist according to The-
orem 2.1. Denoting the solution q = (v, p) (with independent variables t, x) and its
Fourier transform q̂ (with independent variables ω,k), one has q = F−1

ω,k[q̂]. q being the
distributional solution to ∂tq + J · ∇q = 0 means〈

(∂t + J · ∇)F−1
ω,k[q̂]

∣∣∣ψ〉 = 0 ∀ψ ∈ S(Rd)

which by (2.20) is 〈
F−1
ω,k[i(−ω + J · k)q̂]

∣∣∣ψ〉 = 0

This is only true if ω equals to one of the eigenvalues ωn (n = 1, . . . d + 1) of J · k. For
the acoustic system (2.7)–(2.8) J · k is symmetric and ωn ∈ {0,±c|k|}.

The matrix J · k appears in the study of the Cauchy problem and bicharacteristics
(see e.g. [CH62], VI, §3). Hyperbolicity guarantees its real diagonalizability. Choosing
orthonormal eigenvectors en (n = 1, . . . , d+ 1) which fulfill

(J · k)en = ωnen

the vector q̂ can be, for every k, decomposed according to the eigenbasis of J · k:

q̂(k) =
d+1∑
n=1

en(en · q̂(k))

Then

d+1∑
n=1

〈
F−1
ω,k[i(−ω + ωn)en(en · q̂0(k))]|ψ

〉
= 0

Thus, knowing that 〈xT |ψ(x)〉 = 0 is solved by T = δ0,

en(en · q̂0(k)) = δω=ωn q̂0n(k)
√

2π
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with arbitrary distributions q̂0n(k) ∈ S ′(Rd). The factor
√

2π has been chosen for con-
venience. Performing the Fourier transform with respect to ω gives

q(t,x) =
d+1∑
n=1

F−1
k [q̂0n(k) exp(−iωn(k)t)]

in the sense of distributions. Obviously, q̂0n(k) are related to the initial data:

q̂0n(k) = en(en · q̂0(k))

Using this, and computing the eigenvectors explicitly for (2.7)–(2.8) completes the proof.

Given the Fourier transform of any initial data therefore the solution can easily be
constructed. The solution formulae are most conveniently expressed using spherical
averages:

Definition 2.9 (Sphere and ball). Choose r ∈ R+ and d ∈ N+. Let Bd
r denote the d-ball

of radius r:

Bd
r := {x ∈ Rd : |x| ≤ r}

and let the sphere Sd−1
r denote its boundary.

Definition 2.10 (Radial Dirac distribution and step function). Choose r ∈ R+ and
d ∈ N+.

i) The radial Dirac distribution δ|x|=r is defined as〈
δ|x|=r|ψ(x)

〉
:=

∫
Sd−1
r

dxψ(x) ∀ψ ∈ D(Rd)

ii) In order to restrict a suitable function f onto the ball Bd
r define the following notation

(multiplication by a step function)

Θ|x|≤rf(x) :=

{
f(x) x ∈ Bd

r

0 else

Definition 2.11 (Spherical average). In three spatial dimensions, the spherical average
at a radius r of a distribution T is given by

1

4π

δ|x|=r
r2
∗ T
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If T is a regular distribution T = f , then by Definition 2.7 ∀ψ ∈ S(R3)

1

4π

〈
δ|x|=r
r2
∗ T
∣∣∣ψ〉 =

1

4π

1

r2

∫
S2
r

dx

∫
dyf(y)ψ(x + y)

=

〈
1

4π

∫
S2

1

dyf(x + ry)
∣∣∣ψ(x)

〉

Here,
∫
S2

1
dy denotes an integration over the surface of a 2-sphere of radius 1, i.e. in

spherical polar coordinates this amounts to∫ π

0

dϑ sinϑ

∫ 2π

0

dϕ

Such spherical means appear already in the study of the scalar wave equation (see
e.g. [Joh78, Eva98]).

Definition 2.12 (Unit normal). Define the unit normal vector n := x
|x| and denote its

components by ni, i = 1, 2, 3.

Theorem 2.5 (Radial Dirac distribution). The radial derivative of the radial step func-
tion Θ|x|≤r is closely related to the radial Dirac distribution:

−δ|x|=rn = ∇ Θ|x|≤r

which can be rewritten as

−δ|x|=r = ∂rΘ|x|≤r

Proof. Recall Definition 2.9 of a ball Bd+1
r = {x ∈ Rd+1 : |x| ≤ r}. Use Definition 2.10

and Gauss’ Theorem, for any ψ ∈ D(Rd):

−〈δ|x|=rn|ψ〉 = −
∫
Sdr

dx
x

|x|
· ψ = −

∫
Bd+1
r

dx∇ · ψ = −〈Θ|x|≤r |∇ψ〉

= 〈∇ Θ|x|≤r |ψ〉

Multiplying through with n proves the assertion.

Lemma 2.1 (Fourier transforms). i) In three spatial dimensions, given r ∈ R+, k ∈
R3, ∫

S2
r

dx exp(ikx) = 4πr2 sin(|k|r)
|k|r

ii) In three spatial dimensions, the Fourier transform of the radial Dirac distribution
δ|x|=r is given by

Fx[δ|x|=r](k) =
2

(2π)1/2
r2 sin(|k|r)
|k|r
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iii) In three spatial dimensions, the Fourier transform of Θ|x|≤r
1
|x| is given by

Fx

[
Θ|x|≤r
|x|

]
(k) = − 2

(2π)1/2

cos(|k|r)− 1

|k|2

Proof. i) Integrating in spherical polar coordinates:∫
S2
r

dx exp(ikx) = r2

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕ exp(i|k|r cosϑ) = 4πr2 sin(|k|r)
|k|r

ii) Using i) and Definitions 2.10 and 2.4, for any ψ ∈ S(R3)

〈Fx[δ|x|=r]|ψ〉 = 〈δ|x|=r|Fk[ψ]〉 =

∫
S2
r

dx
1

(2π)3/2
dk exp(−ik · x)ψ(k)

=
〈 1

(2π)3/2

∫
S2
r

dx exp(−ik · x)
∣∣∣ψ〉

=
〈 2

(2π)1/2
r2 sin(|k|r)
|k|r

∣∣∣ψ〉
iii) Note that Θ|x|≤r

1
|x| is an L1

loc compactly supported function in three spatial dimen-
sions. Thus,

Fx

[
Θ|x|≤ρ
|x|

]
(k) =

1

(2π)3/2

∫ ρ

0

dr
1

r

∫
|x|=r

dx exp(−ik · x)

=
2

(2π)1/2|k|

∫ ρ

0

dr sin(|k|r) = − 2

(2π)1/2

cos(|k|ρ)− 1

|k|2

Finally, with these results it is possible to derive solution formulae for (2.7)–(2.8).

Theorem 2.6 (Solution formulae). Consider the distributions

q(t,x) = (v(t,x), p(t,x)) ∈ (S ′(R3))n

with

p(t,x) = p0(x) − 1

4π

1

ct
(div v0 ∗δ|x|=ct)−

1

4π
(div grad p0 ∗

Θ|x|≤ct
|x|

) (2.24)

v(t,x) = v0(x) +
1

4π
(grad div v0 ∗

Θ|x|≤ct
|x|

)− 1

4π

1

ct
(grad p0 ∗δ|x|=ct) (2.25)

They are distributional solutions to

∂tq + J · ∇q = 0
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with J given by (2.14), d = 3, n = d + 1 and compactly supported1 L1
loc initial data

v0(x), p0(x) such that

(v(0,x), p(0,x)) = ( v0(x) , p0(x) ) ∈ (S ′(R3))n

Proof. Recall the differentiation rule in presence of the Fourier transform as formulated
in (2.21). Denote by ∂i differentiation with respect to the i-the direction and ki the
corresponding component of k.

Inserting the definition of p̂0(k) and v̂0(k) into (2.22)–(2.23) yields

Fx[p(t,x)](k) = Fx[ p0 ](k) · cos(c|k|t)− Fx[div v0 ](k) · sin(c|k|t)
|k|

Fx[v(t,x)](k) = Fx[ v0 ](k)− Fx[grad div v0 ](k)
cos(c|k|t)− 1

|k|2

− Fx[grad p0 ](k)
sin(c|k|t)
|k|

Now using Lemma 2.1 one rewrites

Fx[p(t,x)](k) = Fx[ p0 ](k)− Fx[div v0 ](k) · Fx[δ|x|=ct](k)

√
2π

2ct

− Fx[div grad p0 ](k) · Fx

[
Θ|x|≤ct
|x|

]
(k)

√
2π

2

Fx[v(t,x)](k) = Fx[ v0 ](k) + Fx[grad div v0 ](k) · Fx

[
Θ|x|≤ct
|x|

]
(k)

√
2π

2

− Fx[grad p0 ](k) · Fx[δ|x|=ct](k)

√
2π

2ct

When rewriting cos(c|k|t)−1 as a Fourier transform, 1 = k·k
|k|2 has been inserted. As both

Θ|x|≤ct
|x|

and δ|x|=ct have compact support, the convolutions that involve one of them are

well defined (see Definition 2.7). Thus the products above can be converted into Fourier
transforms of convolutions, which proves the assertion.

Corollary 2.1. If all the derivatives exist in the sense of functions and are integrable,
then Equations (2.24)–(2.25) become

p(t,x) = p0(x) +

∫ ct

0

dr r
1

4π

∫
S2

1

dy (div grad p0)(x + ry)− ct 1

4π

∫
S2

1

dy div v0(x + cty)

(2.26)

v(t,x) = v0(x) +

∫ ct

0

dr r
1

4π

∫
S2

1

dy (grad div v0)(x + ry)− ct 1

4π

∫
S2

1

dy (grad p0)(x + cty)

(2.27)
1Any other condition that makes a regular distribution be in S′(Rd) would fit here as well. For

finite t, the solution to hyperbolic PDEs only involves a compact subset of the initial data, such that
the behaviour of the initial data at spatial infinity can be chosen fairly arbitrary.
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Proof. The formulae are transformed into the asserted ones by noting that if f is inte-
grable, then for all ψ ∈ D(Rd)

1

4π

(
f ∗

Θ|x|≤ct
|x|

)
=

1

4π

∫
|y|≤ct

dy
1

|y|
f(x− y) =

∫ ct

0

dr r
1

4π

∫
S2

1

dyf(x + ry)

1

4π
〈 f ∗δ|x|=ct|ψ〉 =

〈 1

4π

∫
S2
ct

dyf(x− y)
∣∣∣ψ〉 =

〈
(ct)2 1

4π

∫
S2

1

dyf(x + cty)
∣∣∣ψ〉

Usage of the Helmholtz decomposition allows to write down a scalar wave equation
for p and for the curl-free part of v, whereas the time evolution of the curl is given by
∂t(∇ × v) = 0. The solution to the scalar wave equation is well-known ([Joh78]) and
the Helmholtz decomposition of the two parts of the velocity conveniently reassembles
into (2.26)–(2.27). The above formulae appear without proof in [ER13] where they have
been obtained by this analogy with the scalar wave equation. A similar approach is
taken in [FG17], again assuming that the solution is smooth enough. It is important
to note however, that the initial data onto which the solution formulae are applied in
[ER13] are not sufficiently well-behaved for the second derivatives to exist, such that a
justification in the sense of distributions was needed. Theorem 2.6 of this thesis now
states that (2.24)–(2.25) is the correct distributional solution.

Equation (2.25) makes obvious that any change in time of v is a gradient. Indeed,
the curl must be stationary due to Eq. (2.12).

The spatial derivatives that appear in the solution formulae (2.24)–(2.25) can be
transformed into derivatives with respect to r only. The new formulae are more useful
in certain situations (as will be seen later), and display interesting properties of the
solution that are discussed after stating the Theorem. Here, for notational convenience,
the components of y ∈ Rd are denoted by yi, i = 1, . . . , d and δij denotes the Kronecker
symbol

δij :=

{
1 i = j

0 else

In order to simplify notation the following distributions will be used:

Theorem 2.7. i) Given a test function ψ ∈ D(R3) the following integral exists∫ ct

0

dr
1

r3

∫
S2
r

dy

(
3
yiyj
|y|2
− δij

)
ψ(y) (2.28)

This defines a distribution Σij(ct) whose action 〈Σij(ct)|ψ〉 onto a test function ψ
is given by (2.28).

ii) Given a test function ψ ∈ D(R3) the following integrals exists∫ ct

0

dr
1

r
∂r

[
1

r
∂r

(
r

∫
S2
r

dy
yiyj
|y|2

ψ(y)

)
− 1

r

∫
S2
r

dyδijψ(y)

]
(2.29)
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This defines a distribution σij(ct) whose action 〈σij(ct)|ψ〉 onto a test function ψ is
given by (2.29).

Proof. One needs to prove the existence of the integrals, because including the origin into
the integration domain might potentially be problematic. Therefore, for δ > 0, divide
the integration over [0, ct] into two integrals over [0, δ] and [δ, ct] and consider δ → 0.

The reason why the integrals exist is subtle. First of all, without the test function
one finds upon explicit computation∫

S2
1

dy yiyj =
1

3

∫
S2

1

dyδij =
4π

3
δij (2.30)

Precisely this combination 3yiyj − δij appears in (2.28) and (2.28).

i) Recall that ψ ∈ C∞, and therefore by the mean value theorem there exists ξ(r,y)
such that

ψ(ry) = ψ(0) + ry · ∇ψ(ξy)

Then for δ > 0∫ δ

0

dr
1

r3

∫
S2
r

dy

(
3
yiyj
|y|2
− δij

)
ψ(y)

S2
r↔S2

1=

∫ δ

0

dr
1

r

∫
S2

1

dy (3yiyj − δij)ψ(ry)

=

∫ δ

0

dr
1

r

∫
S2

1

dy (3yiyj − δij)
(
ψ(0) + ry · ∇ψ(ξy)

)
∣∣∣∣∫ δ

0

dr
1

r3

∫
S2
r

dy

(
3
yiyj
|y|2
− δij

)
ψ(y)

∣∣∣∣ (2.30)
=

∣∣∣∣∣
∫ δ

0

dr

∫
S2

1

dy (3yiyj − δij)y · ∇ψ(ξy)

∣∣∣∣∣
≤ Cδ‖∇ψ‖∞

Therefore the 1
r
-term is harmless. Observe that the presence of the factor 3 is crucial;

otherwise the integral would indeed diverge.

ii) By expanding

〈σij(ct)|ψ〉 :=

∫ ct

0

dr
1

r
∂r

[
1

r
∂r

(
r3

∫
S2

1

dyyiyjψ(ry)

)
− r

∫
S2

1

dyδijψ(ry)

]

=

∫ ct

0

dr

[
1

r

∫
S2

1

dy (3yiyj − δij)ψ(ry) + 5∂r

∫
S2

1

dy (5yiyj − δij)ψ(ry)

+r∂2
r

∫
S2

1

dy yiyjψ(ry)

]
This reduces to the case discussed in i).
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In the following the convention of summing over repeated indices is adapted.

Lemma 2.2. i) The distributional analogue to

∂r

∫
S2

1

dy f(x + ry) =

∫
S2

1

dy yi∂if(x + ry)

is

∂r

(
f ∗δr

1

r2

)
= ∂i f (x) ∗ δr

1

r2
ni

ii) The distributional analogue to

r2

∫
S2

1

dy y · ∇p0(x + ry) =

∫ r

0

dr′ r′
2

∫
S2

1

dy∇ · ∇p0(x + r′y)

is

∂i( f ∗δ|x|=rni) = −∇x · ∇x f (x) ∗ Θ|x|≤r

Proof. i) Consider a test function ψ ∈ D(R3):

〈 ∂
∂r

f ∗δr
1

r2
|ψ〉 =

〈
f (x)| ∂

∂r
〈δr(y)

1

|y|2
|ψ(x + y)〉

〉
= −

〈
f (x)|

∫
S2

1

dy
∂

∂r
ψ(x + ry)

〉

= −〈 f (x)|
∫
S2

1

dy y · ∇xψ(x + ry)〉

=

〈
∇x f (x)

∣∣∣ ∫
S2
r

dy
1

|y|2
y

|y|
· ψ(x + y)

〉
=

〈
∂

∂xi
f (x) ∗ δr

1

r2
ni

∣∣∣ψ〉

ii) Recall Theorem 2.5 which states that −δ|x|=rn = ∇ Θ|x|≤r . Thus〈
∂i( f ∗δ|x|=rni)

∣∣∣ψ〉 = −
〈
f
∣∣∣ 〈δ|x|=rni|∂iψ〉〉

=
〈
f
∣∣∣ 〈∂i Θ|x|≤r |∂iψ

〉〉
= −

〈
f
∣∣∣ 〈∂i∂i Θ|x|≤r |ψ

〉〉
= −

〈
∇x · ∇x f (x) ∗ Θ|x|≤r

∣∣∣ψ〉
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Theorem 2.8 (Solution formulae with radial derivatives only). Consider the setup of
Theorem 2.6 and write the components of the initial data v0 as v0i, i = 1, 2, 3. The
solution (2.24)–(2.25) can be rewritten as

p(t,x) = ∂r

(
1

4π

δ|x|=r
r
∗ p0

)
− 1

r
∂r

(
1

4π
δ|x|=rni ∗ v0i

)
(2.31)

vj(t,x) =
2

3
v0j (x)− 1

r
∂r

(
1

4π
δ|x|=rnj ∗ p0

)
+ ∂r

(
1

4π

δ|x|=r
r

ninj ∗ v0j

)
(2.32)

−
(

1

4π

δ|x|=r
r2

(δij − 3ninj) ∗ v0i

)
+

1

4π
Σij(ct) ∗ v0i (2.33)

It is assumed that r is set to ct after performing the derivatives.
Equation (2.32)–(2.33) is equivalent to

vj(t,x) = v0j (x)− 1

r
∂r

(
1

4π
δ|x|=rnj ∗ p0

)
+

1

4π
σij(ct) ∗ v0i (2.34)

Note: The convolutions that appear in the above formulae show a particular structure
of the solution: The distribution which is convoluted with the initial data carries the
name of Green’s function.

Proof. In order to transfer the r-derivatives in (2.31)–(2.34) into the derivative operators
in (2.24)–(2.25) one uses the Gauss theorem for the sphere of radius r. For example,
differentiating

∂r

(
p0 ∗

δ|x|=r
r

)
with respect to r yields

∂2
r

(
p0 ∗

δ|x|=r
r

)
=

1

r
∂r

(
r2∂r

(
p0 ∗

δ|x|=r
r2

))
by elementary manipulations. According to Lemma 2.2 i), differentiation with respect
to r can be replaced by n · ∇ inside the spherical mean:

=
1

r
∂r

(
r2

(
∂

∂xi
p0 ∗

δ|x|=rni
r2

))
and by Gauss theorem (Lemma 2.2 ii)) as well as Theorem 2.5

= −1

r
∂r

(
∇x · ∇x p0 ∗ Θ|x|≤r

)
=

1

r

(
∇x · ∇x p0 ∗δ|x|=r

)
Integrating over r, and evaluating at r = ct yields the sought identity

∂r

(
p0 ∗

δ|x|=r
r

)∣∣∣∣
r=ct

= p0 +∇ · ∇ p0 ∗
Θ|x|≤ct
|x|

In a similar way the equivalence of the other terms can be shown and is omitted here.
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Corollary 2.2. If all the derivatives exist and the functions are integrable, Equation
(2.31)–(2.33) amounts to

p(t,x) = ∂r

(
r

1

4π

∫
S2

1

dy p0

)
− 1

r
∂r

(
r2 1

4π

∫
S2

1

dy y · v0

)
(2.35)

v(t,x) =
2

3
v0(x)− 1

r
∂r

(
r2 1

4π

∫
S2

1

dy p0y

)
+ ∂r

(
r

1

4π

∫
S2

1

dy (v0 · y)y

)

− 1

4π

∫
S2

1

dy [v0 − 3(v0 · y)y]−
∫ ct

0

dr
1

r

1

4π

∫
S2

1

dy [v0 − 3(v0 · y)y]

and Equation (2.34) becomes

v(t,x) = v0(x)− 1

r
∂r

(
r2 1

4π

∫
S2

1

dy p0y

)

+

∫ ct

0

dr
1

r
∂r

[
1

r
∂r

(
r3 1

4π

∫
S2

1

dy(v0 · y)y

)
− r 1

4π

∫
S2

1

dyv0

]

Note: Everything (if not stated explicitly) is understood to be evaluated at x + ry,
and wherever it remains, r = ct to be taken at the very end. For example, the term

∂r

(
r 1

4π

∫
S2

1
dy p0

)
appearing in (2.35), if fully explicited, reads

∂r

(
r

1

4π

∫
S2

1

dy p0(x + ry)

)∣∣∣∣∣
r=ct

Note that by Theorem 2.7 the integral∫ ct

0

dr
1

r

∫
S2

1

dy [v0 − 3(v0 · y)y]

is finite for continuous v0.

2.2.3 The exponential map

Using the exponential map, an analytic solution of

∂t

(
v
p

)
+

(
G p
Dv

)
= 0

with G and D (not necessarily commuting) operators is given by(
v
p

)
= exp(−tM )

(
v
p

)
0
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with

M =

(
0 G
D 0

)
One observes that

M 2 =

(
0 G
D 0

)(
0 G
D 0

)
=

(
G D 0

0 DG

)
and

M 2m =

(
(G D)m 0

0 (DG )m

)

(
v
p

)
=


∞∑
m=0

t2m(G D)m

(2m)!
v0

∞∑
m=0

t2m(DG )m

(2m)!
p0

−


∞∑
m=0

t2m+1(G D)m

(2m+ 1)!
G p0

∞∑
m=0

t2m+1(DG )m

(2m+ 1)!
Dv0

 (2.36)

In the case considered here, G = grad and D = div . Restricting oneself to analytic solu-
tions, one can show the equivalence to the one derived above by expanding all quantities
around r = 0, e.g.

p0(x + rn) =
∞∑
m=0

∂mr
m!

p0(x)

and using the following identity

Lemma 2.3. Denoting by nj the j-th component of n, the integration of a tensor product
of normal vectors over the unit sphere yields

1

4π

∫
S2

1

dxninj · · ·nkn`︸ ︷︷ ︸
m factors

=
1

(m+ 1)!
δ(ij · · · δk`)︸ ︷︷ ︸
m/2 factors

(m even) (2.37)

Here δij =

{
1 i = j

0 else
denotes the Kronecker symbol and the round brackets denote a

symmetrization, i.e. a sum over all the permutations (without any prefactor included).
E.g. for m = 2:

δ(ij) = δij + δji = 2δij

and thus

1

4π

∫
S2

1

dxninj =
1

3
δij
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Proof. Integration over an odd number of factors yields zero by considerations of sym-
metry. In case of an even number, again rotational symmetry enforces the result not to
have any preferred directions. It thus has to involve only the identity δ, and the result
has to remain unchanged with respect to the exchange of any two indices, which explains
the symmetrization. The prefactor can then be determined by evaluating the integral in
some special case that is easy to check explicitly, e.g.

∫
dΩ̄nznz · · ·nznz = 1

m+1
.

As an example consider (2.34) with only the initial data in v0. Here again (upper
and lower) indices denote the different components

vi(t,x) = vi0(x) +

∫ ct

0

dr
1

r
∂r

[
1

r
∂r

(
r3

∫
dΩ̄(vk0nk)n

i

)
− r

∫
dΩ̄vi0

]
= vi0(x) +

∞∑
m=0

∫ ct

0

dr
1

r
∂r

[
1

r
∂r

(
rm+3

∫
dΩ̄

(nj∂j)
m

m!
(vk0nk)n

i

)
− rm+1

∫
dΩ̄

(nj∂j)
m

m!
vi0

]
= vi0(x) +

∞∑
m=0

m+ 1

m

rm

m!

[
(m+ 3)

∫
dΩ̄nkn

i(nj∂j)
mvk0 −

∫
dΩ̄(nj∂j)

mvi0

]
= vi0(x) +

∞∑
m=1

r2m

(2m)!
∂i(∂a∂a)

m−1∂kv
k
0 (2.38)

In the last equality the identity (2.37) and

(m+ 3)

∫
dΩ̄nkn

i(nj∂j)
mvk0 =

{
1

m+1
(∂a∂a)

m/2vi0 + m
m+1

∂i(∂a∂a)
m
2
−1∂kv

k
0 m ≥ 2

vi0 m = 0

for m even was used. Equation (2.38) is the one from (2.36) which completes the example.
Analogous computations confirm the other parts of the solution.

The approach of writing the solution by employing the exponential map is used in
[MR01] as a guideline for numerical solutions, but the authors do not derive the solution
formulae.

2.2.4 Properties of the solution

There is a number of striking differences to the one-dimensional case that appear in
multiple spatial dimensions.

In one-dimensional problems only the values of the initial data appear in the solution
formulae, not their derivatives. This is different in multiple dimensions and can already
be observed for the scalar wave equation (as discussed e.g. in [Eva98]). A similar
statement is true for the solution to Equations (2.7)–(2.8). (As explained in Section
2.1.2 this system cannot be reduced to scalar wave equations.) (2.24)–(2.25) makes the
impression that second derivatives of the initial data need to be computed, but Theorem
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2.8 states that the solution can be rewritten into Equation (2.33), which involves only
first spatial derivatives.

In one spatial dimension, according to formulae (2.17)–(2.18), the solution at a point
x depends only on initial data at points y for which |y − x| = ct. This motivates the
following (compare e.g. [O’N83], Chapter 14)

Definition 2.13 (Causal structure of spacetime). The pair (t,x) ∈ R+
0 × Rd is called a

spacetime point and refers to the spatial location x at a time t.
The set T(t,x) := {(s,y) : |x−y| < c(t−s)} is called timelike past of the spacetime point
(t,x).
The set N(t,x) := {(s,y) : |x − y| = c(t − s)} is called null past of the spacetime point
(t,x).
The union T(t,x) ∪N(t,x) is called causal past of (t,x).
The intersection between any of these sets and the initial data slice {(s,y) : s = 0}
defines regions of space onto which the initial data can be restricted. Thus restricted
initial data are referred to as timelike initial data, null initial data and causal initial
data, respectively.

Employing the new language one can state that in one spatial dimension the solution
to the acoustic equations depends on null initial data only. In multiple spatial dimensions
the situation is more complicated. Take first again the example of a scalar wave equation
(2.10). Its solution depends on null initial data for odd dimensions d = 1, 3, 5, . . .,
whereas in even spatial dimensions d = 2, 4, . . . it also depends on timelike initial data
(see e.g. [Joh78, Eva98]). For the acoustic system (2.7)–(2.8), which involves a scalar as
well as a vector wave equation (2.11), the solution depends on timelike initial data even
in odd spatial dimensions. Which terms exactly depend on which initial data, however,
is not always easy to see. It is obvious, for example, that the pressure in Equation (2.31)
only depends on null initial data in both p and v. At the same time, v depends on null
initial data in the pressure and timelike initial data in the velocity. However different
ways to rewrite the formulae might obscure these relationships.

2.2.5 The two-dimensional Riemann problem

As an example, a particular feature of the exact solution (2.31)–(2.34), or (2.24)–(2.25)
of a two-dimensional Riemann problem (in the x-z-plane for computational convenience)
shall be discussed here. The initial velocity shall be v0 = (0, 0, 1)T in the first quadrant
and vanish everywhere else (see Fig. 2.1). Also everywhere p0 = 0.

Denote the independent variable x =: (x, y, z) and the components of v =: (vx, vy, vz),
v0 =: (v0x, v0y, v0z).

Recall the distribution defined in Theorem 2.7: σij acts onto test functions as

〈σij(ct)|ψ〉 :=

∫ ct

0

dr
1

r
∂r

[
1

r
∂r

(
r

∫
S2
r

dy
yiyj
|y|2

ψ(y)

)
− 1

r

∫
S2
r

dyψ(y)

]
Define the components of y =: (yx, yy, yz).
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Figure 2.1: Setup of the 2-dimensional Riemann Problem. The only non-vanishing initial datum is
the x-velocity in the first quadrant, indicated by the arrow. As the problem is linear its magnitude
is of no importance and is chosen to be 1.

Inserting v0z(x) = Θ(x)Θ(z), v0x = v0y = 0 into (2.34) gives

〈vx(t, ·)|ψ〉 =
1

4π
〈σzxct ∗ v0z |ψ〉

=
1

4π

∫ ct

0

dr
1

r
∂r

[
1

r
∂r

(
r

∫
S2
r

dy
yxyz
|y|2

∫
dx Θ(x)Θ(z)ψ(x + y)

)]
Compute first ∫

S2
r

dy
yxyz
|y|2

∫
dx Θ(x)Θ(z)ψ(x + y)

=

∫
dx

∫
S2
r

dy
yxyz
r2

Θ(x− yx)Θ(z − yz)ψ(x)

This defines a regular distribution associated to∫
dy
yxyz
r2

Θ(x− yx)Θ(z − yz)

Evaluating the integral for the special case of x = 0 one obtains

=

∫ min(r,z)

−r
dyz

∫ 0

−
√
r2−y2

z

dyx
2yxyz

r2
√

1− y2
x − y2

z

=
2(r2 − z2)

3
2

3r
Θ(r − |z|)

Here the first fundamental form of the unit sphere (1− y2
x − y2

z)
− 1

2 was used to express
the surface integral.
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The velocity becomes

vx(t,x) =
1

4π

∫ ct

z

dr
1

r
∂r

[
1

r
∂r

(
r

2(r2 − z2)3/2

3r

)]
and using that for any function f

1

r
∂rf(r2) = 2f ′(r2)

one obtains

vx(t,x) =
1

2π

∫ ct

z

dr(r2 − z2)−1/2 =
1

2π
L
( z
ct

)
(2.39)

having defined

L (s) := ln
1 +
√

1− s2

s
= − ln

s

2
− s2

4
+O(s4)

One can verify that e−L (s) = tan
arcsin s

2
.

Note that due to the appearance of the factor Θ(r − |z|) above, vx(t,x) vanishes
outside |x| ≤ ct by causality.

Therefore the x-component of the velocity has a logarithmic singularity at the origin,
which is the corner of the initial discontinuity of the z-component. Such a behaviour
of the solution does not have analogues in one spatial dimension because two different
components of the velocity v are involved. This has already been mentioned in [AG15]
in the context of self-similar solutions to Riemann Problems. Here it has been obtained
by application of the general formula (2.31)–(2.34) which is not restricted to self-similar
time evolution.

The solution obtained so far was restricted to x = 0 to simplify the presentation. This
was also sufficient in order to study the appearance of a singularity. For Fig. 2.2–2.3
the integrals in (2.34) have been computed in the x-z-plane numerically using standard
quadratures. They give an impression of the entire solution of the two-dimensional
Riemann Problem. It is not very difficult to obtain analytic expressions in all the plane
by slightly adapting the above calculations.

A vector plot of the flow is shown in Fig. 2.3.

2.3 Low Mach number limit

The system (2.5)–(2.6) has a low Mach number limit just as the Euler equations (compare
[DOR10] and Section 1.2). One introduces a small parameter ε → 0 and inserts the
scaling ε−2 by analogy with the Euler equations in front of the pressure gradient in (2.3).
The system and its symmetrized version read, respectively,

∂tv +
1

ε2
grad p = 0 (2.40)

∂tp+ c2 div v = 0 (2.41)
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Figure 2.2: Solution of Riemann problem at time ct = 0.25. Left: Pressure. Center: x-velocity.
Right: y-velocity. The smoothed out discontinuities are due to finite size sampling of the solution.
In green the location of the initial discontinuity.

Figure 2.3: Solution of Riemann problem at time ct = 0.2. The direction of the velocity v(t,x) is
indicated by the arrows, color coded is the absolute value |v|.

and

∂tv +
c

ε
grad p = 0

∂tp+
c

ε
div v = 0

Regarding the low Mach number limit the non-symmetrized version is more natural.

There exist asymptotic scalings (compare e.g. [GV99], [BEK+17]) of the dependent
and independent variables t, x, p, v and of c which lead from

∂tv +∇p = 0

∂tv + c2∇ · v = 0
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to the rescaled equations (2.40)–(2.41). These scalings can be easily computed explicitly
and are, in their most general form,

t 7→ εat v 7→ εcv (2.42)

x 7→ εbx p 7→ εdp

k 7→ ε−bk c 7→ εec (2.43)

where the free parameters a, b, c, d, e have to satisfy

d + a− b− c = −2 (2.44)

2e + c− b + a− d = 0 (2.45)

Formally, in the limit ε→ 0 the solutions to (2.40)–(2.41) have constant pressure and
a divergenceless velocity. Consider an expansion of the dependent quantities as power
series in ε:

v = v(0) + εv(1) + ε2v(2) +O(ε3)

p = p(0) + εp(1) + ε2p(2) +O(ε3)

Note that they start with a term O(ε0) because the leading order scalings have been
taken care of in (2.42)–(2.43) already.

Inserting these into (2.40)–(2.41) and collecting order by order yields

∇p(0) = 0 div v(0) = 0

∇p(1) = 0

Here as usual it has been assumed that ∂tp
(0) = 0, as the equations are considered on all

the Rd.
This can also be shown in more detail. First, there is an alternative interpretation

to the limit of low Mach number:

Theorem 2.9 (Limit equivalence). The limit of low Mach number ε → 0 for (2.40)–
(2.41) is the same as substituting t

ε
for t and letting ε→ 0 (long time limit) for

∂tv +∇p = 0

∂tp+ c2∇ · v = 0

Proof. In Section 2.2, an exact solution to (2.40)–(2.41) is derived by using the Fourier
transform. Here a small aspect of this derivation shall be taken as starting point. Recall
that any Fourier mode, characterized by its wave vector k, has the form

exp(−iωt+ ik · x)

The time evolution is governed by ω ∈ R, which may be a function of k. Denoting by
J the Jacobian of this system, in Section 2.2 it is shown that, up to factors, ω is an
eigenvalue of J · k.
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Upon explicit calculation, the eigenvalues of J ·k for the acoustic equations are 0 and
± c|k|

ε
. Assembling the time evolution of the Fourier modes gives

q(t, x) = q̂0(k) exp(ik · x) + q̂±(k) exp

(
∓i|k|ct

ε
+ ik · x

)
with q̂0, q̂± following from the initial data. One observes the two possible readings of
the time-evolving part: either as the low Mach number limit c

ε
t or as the long-time limit

c t
ε
.

Thus, decreasing ε by a factor of 10 and looking at the solution at time t = 1, is the
same as leaving ε as it was, and looking at the solution at time t = 10.

The behaviour of numerical schemes in this limit is studied in Section 4.1.1.





Chapter 3

Numerical stationary states for
linear multi-dimensional systems
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Convergence of a numerical method means that the discrete solution approaches the
exact one as the discretization length (grid spacing, time step, . . . ) decreases. However,
sometimes the discrete solution needs to reflect certain properties of the exact solution
already at finite discretization. A prominent example is the positivity of the density and
pressure in the context of the Euler equations. Indeed, a violation immediately leads
to the impossibility of computing the speed of sound c =

√
γp/ρ. However small the

violation of, say, ρ > 0, the consequences are dramatic.

The exact solution might exhibit further properties that one would like to see reflected
by the discrete solution. For the acoustic equations (2.7)–(2.8), for instance, the vorticity
ω = ∇× v is stationary:

∂tω = 0

Obviously, ω cannot be exactly computed just from a set of discrete values of v. One
might however still ask, whether there exists any discretization of ∇ × v that remains
stationary upon the numerical evolution of v. The answer is yes: there is a large body
of work related to such so-called vorticity preserving schemes for the acoustic equations
(see Definition 4.1). Examples of schemes have been presented in e.g. [LMMW00, MR01,
Sid02, JT06, LFS07, MT11, LR14]; they all have been constructed for particular choices
of the discrete vorticity.

57
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This Section presents a more general framework. Instead of focusing on a particular
discretization of vorticity, here a scheme is called vorticity preserving, if there exists any
stationary discrete approximation to ∇× v.

There is an alternative interpretation of a vorticity preserving scheme, which has been
given the name stationarity preserving ([Bar17a, Bar17b]). Both concepts are equivalent
– a scheme that is vorticity preserving is also stationarity preserving and vice versa.
Interestingly, stationarity preservation allows for a new understanding of the behaviour
of numerical schemes in the limit of low Mach numbers. This displays the connection
between vorticity preserving schemes and low Mach number compliant schemes for the
acoustic equations.

These concepts have been developed with a strong focus on the acoustic equations.
However, they are of general applicability to all linear hyperbolic systems, and Section
4.8 shows an example how they can even be used for linear systems endowed with source
terms. Therefore this Section introduces stationarity preservation for general linear
hyperbolic systems in multiple spatial dimensions, and the Sections 4.4.1, 4.5 discuss
applications of the framework to the acoustic equations. In particular it is there that
the connection to the low Mach number limit is clarified. This Section is largely based
on work published in [Bar17a].

3.1 Stationary states

First, in this Section stationary states of both the linear hyperbolic systems and their
discretizations are discussed. Nontrivial stationary states are interesting for numerics
because they turn out to be the key to understanding many more properties, like the
low Mach number limit and vorticity preservation, which are subjects of later sections.
The main result for the discrete situation is Theorem 3.3.

3.1.1 Continuous case

This Section deals with stationary states for the general hyperbolic linear n× n system
in d spatial dimensions (J being a d-dimensional vector of matrices (Jx, Jy, . . .))

∂tq + J · ∇q = 0 (3.1)

q : R+
0 × Rd → Rn

Although this analysis is inspired by a particular example of such system, namely the
acoustic equations discussed in Section 2, stationary states (both at continuous and
discrete level) can be fruitfully studied for more general problems, as is done in this
Section.

Obviously, data that satisfy ∇q = 0 remain stationary for all times. In general:

Definition 3.1 (Trivial stationary states). A solution q to (3.1) is called a trivial sta-
tionary state if

∇q ∈ ker J
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i.e.

∂xq ∈ ker Jx and ∂yq ∈ ker Jy . . .

Recall that, given any 0 6= k ∈ Rd, hyperbolicity of the system (3.1) guarantees
diagonalizability of J · k with real eigenvalues. An eigenvalue zero precisely corresponds
to the existence of a richer set of stationary states:

Theorem 3.1 (Non-trivial stationary states). Given 0 6= k ∈ Rd, if det(k · J) vanishes
for all k, then there exist non-trivial stationary states of (3.1).

Proof. Consider the Fourier transform of (3.1) by inserting

q(t,x) = q̂ exp(−iωt+ ik · x)

to obtain the eigenvalue problem ωq̂ = J · kq̂. Every Fourier mode evolves in time as
exp(−iωt) with the corresponding eigenvalue ω that depends on k. Initial data that
remain stationary have to be such that their time evolution is governed by ω = 0. Their
Fourier transform therefore is (parallel to) the eigenvector q̂0 of J · k which corresponds
to an eigenvalue zero. As k 6= 0, the stationary state is not constant in space, i.e. not
trivial. The eigenvalue zero makes the determinant vanish.

Trivial stationary states typically do not pose challenges to the numerical schemes.
The remainder of this thesis therefore focuses its attention onto systems for which
det(J · k) = 0 ∀k, i.e. those that possess non-trivial stationary states. This is the case
for the acoustic equations to be considered later (Corollary 4.1 in Section 4).

Definition 3.2 (Constant of motion). Given an evolution equation for a function q(t,x),
a constant of motion is a function Ω of q, such that

∂tΩ = 0

is a consequence of the evolution equation for q.

Theorem 3.2 (Constant of motion). The existence of nontrivial stationary states for
the system (3.1) is equivalent to the existence of a constant of motion (one for each zero
eigenvalue), i.e. a linear function Ωq : R+

0 × Rd → R of the solution q, which does not
evolve in time for any initial data:

∂t(Ωq) = 0

Proof. Having only spatial coordinates Fourier transformed, i.e. inserting

q(t,x) = q̂(t) exp(ik · x)

yields ∂tq̂(t) = −i(k · J)q̂(t). Assume that det(k · J) = 0, such that there exists a left
eigenvector Ω̂ that belongs to the eigenvalue zero. Take Ωq to be the inverse Fourier
transform of Ω̂q̂. Then ∂t(Ωq) = 0 for any q.

An example of such a constant of motion for the acoustic equations is given in Corol-
lary 4.2 of Section 4.
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3.1.2 Stationarity preserving schemes

The study of stationary states by means of the Fourier transform in the proof of Theorem
3.1 has a natural equivalent in the discrete sense.

Assume Eqn. (3.1) to be solved numerically on a rectangular d-dimensional grid.
Recall Definition 0.1. The cells of the grid shall be indexed by I ∈ Zd, with components
Im, m = 1, . . . , d. Again, qI is the value of q in cell I. Given k ∈ Rd, its components are
denoted by km, m = 1, . . . , d. The Fourier ansatz now reads

qI = q̂ exp

(
−iωt+ i

d∑
m=1

Imkm∆xm

)
Example 3.1. In 2-d one has I = (i, j) and recall from Definition 0.1 ∆x1 =: ∆x,
∆x2 =: ∆y. Therefore

qij = q̂ exp (i[−ωt+ ik1∆x1 + jk2∆x2])

= q̂ exp (i[−ωt+ ikx∆x+ jky∆y])

�

Definition 3.3 (Translation factor). The shift by one cell is conveyed by the translation
factor tm := exp(ikm∆xm).

This allows to write

qI = q̂ exp (−iωt)
d∏

m=1

tImm (3.2)

Definition 3.4 (Stencil). Consider a mapping that assigns to every cell I ∈ Zd of a
d-dimensional Cartesian grid with values {qJ ∈ Rn : J ∈ Zd} a new value QI . Assume
that this mapping has the property that QI depends only on qI and the values in the
neighbours of cell I in a way that is independent of I. Then this mapping is called a
stencil.

Note: In the following, unless stated differently, only compact stencils are considered,
i.e. stencils such that QI depends only on values in finitely many neighbouring cells.

Any linear numerical stencil at cell I can be written as∑
S∈[−N,N ]d⊂Zd

αSqI+S (3.3)

Example 3.2. On a two-dimensional grid the central difference in x-direction is

1

2
(qi+1,j − qi−1,j)

with N = 1 and α1,0 = 1
2
, α−1,0 = −1

2
and all other α vanish. �
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In general of course, as the object of study are systems of equations, q is a vector,
and every αS is an n× n matrix.

Applying the Fourier transform to the stencil gives rise to a discrete analogue of the
condition det(k · J) found in Theorem 3.1. The role of k · J is played by the evolution
matrix E :

Definition 3.5 (Evolution matrix). The evolution matrix associated to the stencil (3.3)
is the matrix

E = −
∑

S∈[−N,N ]d

iαS

d∏
m=1

tSmm

Definition 3.6 (Stationarity preservation). A consistent linear scheme is called station-
arity preserving if it discretizes all nontrivial stationary states of the equation.

Theorem 3.3 (Stationarity preservation). A necessary condition for a consistent linear
scheme to be stationarity preserving is the vanishing of the determinant det E of its
evolution matrix. If k · J has only one vanishing eigenvalue, then this condition is
sufficient. The numerical stationary states are discretizations of the stationary states of
the PDE.

Proof. The stencil (3.3), inserting (3.2), has the Fourier transform

exp (−iωt)

(
d∏

m=1

tImm

) ∑
S∈[−N,N ]d

αS

(
d∏

m=1

tSmm

)
q̂ (3.4)

The semidiscrete scheme, assumed to be a consistent discretization of (3.1),

∂tqI +
∑

S∈[−N,N ]d⊂Zd

αSqI+S = 0 (3.5)

after the Fourier transform is taken leads to ωq̂ + E q̂ = 0. From here the argument
is exactly the same as in the proof of Theorem 3.1, and the existence of nontrivial
stationary states is characterized by det E = 0. They are a discretization of the analytical
stationarity condition J · ∇q = 0 by consistency.

In the following the focus shall lie on the situation when ker(J ·k) is one-dimensional.
Otherwise additionally to the determinant condition of Theorem 3.3 one has to make
sure that the nullities (or ranks) of E and J · k coincide.

The numerical stationary states, i.e. those states that are kept exactly1 stationary
by the numerics are given by the eigenvector of E corresponding to eigenvalue zero.

Analogously to Theorem 3.2, then together with the right eigenvector (characterizing
the numerical stationary states) one is given a corresponding left eigenvector which yields
a (numerical) constant of motion.

1Exactly here and in the following means “up to machine precision”.



62 3 Numerical stationary states for linear multi-dimensional systems

Theorem 3.4. Any stationarity preserving scheme with the evolution matrix E gives
rise to a numerical constant of motion, whose Fourier transform is given by the left
eigenvector belonging to eigenvalue zero of E.

Proof. Replacing J · k by E in Theorem 3.2 proves the assertion.

3.2 Multi-dimensional schemes

3.2.1 Stationarity-consistent stencils

Central derivatives have been shown to be stationarity preserving, but they are known
to be unstable under forward Euler time integration. Therefore the natural question
is whether it is possible to write down a stabilizing diffusion that does not spoil the
property of stationarity preservation.

3.2.1.1 Continuous case

Consider, as an example, the linear system (3.1) in d = 2 spatial dimensions

∂tq + Jx∂xq + Jy∂yq = 0 (3.6)

with q : R+
0 × R2 → Rn and Jx, Jy being n × n matrices. The stationary solutions are

given by

Jx∂xq + Jy∂yq = 0 (3.7)

Consider now a numerical scheme for Eqn. (3.6), e.g. a finite volume scheme or a finite
difference scheme. Before the concepts can be detailed for the discrete case, it is easier to
discuss them in a continuous situation (as is done e.g. in [Sid02, LFS07]), where effects
of the numerics are taken into account as a diffusive term, e.g. as

∂tq + Jx∂xq + Jy∂yq = Dx∂
2
xq +Dy∂

2
yq + D̄∂x∂yq (3.8)

with Dx, Dy, D̄ matrices. Of course, for stability there are certain conditions that these
matrices need to fulfill, which shall not matter for the moment.

Consider now initial data fulfilling (3.7), such that they are preserved exactly in time
if the evolution is governed by (3.6). If the initial data are evolved according to (3.8),
then their initial evolution ∂tq is given entirely by the diffusion

Dx∂
2
xq +Dy∂

2
yq + D̄∂x∂yq

In this situation, a stationarity consistent diffusion would be a term containing second
derivatives, that vanishes whenever Jx∂xq + Jy∂yq vanishes.

As an example, one could take

Jx∂
2
xq + Jy∂x∂yq = ∂x(Jx∂xq + Jy∂yq)
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i.e.

Dx = Jx Dy = 0 D̄ = Jy

or anything proportional to it. Observe also the necessary appearance of mixed second
derivatives.

3.2.1.2 Discrete case

Consider a linear n× n system

∂tq + J · ∇q = 0

A linear stencil, in general, has the shape (3.3)∑
S∈[−N,N ]d⊂Zd

αSqI+S

with αS an n× n matrix.

Definition 3.7 (Stationarity consistency). Consider discrete data such that a linear
stencil A, evaluated on them, vanishes everywhere on the grid. If a stencil B, that
is evaluated on the same data always vanishes as well, then B is called stationarity-
consistent with A.

The vanishing of a stencil can be best explored via the Fourier transform. According
to (3.4) the Fourier transform of any stencil

∑
S αSqI+S is proportional to the Laurent

polynomial

∑
S

αS q̂
d∏

m=1

tSmm

in the variables {tm}1≤m≤d and is linear in q̂. By trivially factoring out the smallest
power this establishes a mapping between stencils in d dimensions and polynomials in d
variables.
B being stationarity-consistent withAmeans that the Fourier transform of B contains

the Fourier transform of A as a factor.

Theorem 3.5 (Stationarity consistency). Two linear stencils A and B are stationarity-
consistent to each other if their Fourier transforms Â, B̂ are related by a factor F̂ that
does not depend on q̂:

B̂ = Â · F̂

Proof. The condition of stationarity-consistency means that the Fourier transform of
stencil B can be written as the Fourier transform of A times some factor. This factor
has to respect that both Â and B̂ are linear in q̂. It thus cannot itself depend on q̂.
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Note: This factor does not need to be a polynomial in tx, ty, . . . itself, but can be
an arbitrary function. As usual, the product in Fourier space can be rewritten as a
convolution in real space. Thus, if B is stationarity-consistent with A, then there exists
a stencil F , such that B is the convolution of A and F :

B = A ∗ F

If its Fourier transform F̂ is not a polynomial, then the stencil F is not compactly
supported, i.e. it is a stencil that involves values of the grid that are arbitrarily far away.

Note: For scalar problems, any two stencils are stationarity-consistent. This is dif-
ferent when systems are considered.

A stationarity-consistent diffusion easily gives rise to a stationarity preserving scheme:

Theorem 3.6. If A is a stationarity preserving linear discretization of J · ∇q, then
adding a stationarity-consistent diffusion does not destroy the stationarity preservation
property.

Proof. The semidiscrete scheme that involves only A reads

∂tq +A = 0

Write the Fourier transform of A by linearity in q as âq̂ with â a matrix valued function
that depends only on tx, ty, . . .. According to Theorem 3.3, the scheme being stationarity
preserving implies det â = 0.

Consider now a stencil B that is stationarity-consistent with A. By Theorem 3.5, its
Fourier transform b̂q̂ is related to the Fourier transform of A by a factor F̂ , that does
not depend on q̂:

b̂q̂ = F̂ âq̂

The condition of stationarity preservation for the new scheme

∂tq +A+ B = 0

now reads det(â+ b̂) = det((1 + F̂)â) = 0. Also any eigenvector of â that belongs to an
eigenvalue zero is a such for the matrix (1 + F̂)â. This proves the assertion.

3.2.2 Construction principles

Via the Fourier transform there exists a mapping between linear stencils in d dimensions
and Laurent polynomials in d variables. Stationarity consistency deals with (possibly
non-polynomial) factors that relate these Fourier transforms. This allows to make a
number of general statements about the shape of stationarity consistent stencils.

One typically is interested in finding the continuous differential operator that is for-
mally approximated by a given discrete one (e.g. qi+1−qi−1

2∆x
). This can be done by ex-

panding the discrete operator as Taylor series in ∆x, i.e.

qi+1 = q + ∆x · ∂xq +
1

2
∆x2 · ∂2

xq + . . .



3.2 Multi-dimensional schemes 65

Stationarity preservation uses the language of the Fourier transform. The Fourier
transform of

k∑
j=−k

αjqi+j

is proportional to a polynomial in tx:

k∑
j=−k

αjt
j
x =

1

tkx

2k∑
j=0

αj−kt
j
x

which by the fundamental theorem of algebra is

1

tkx

2k∏
j=1

(tx − sj)

for some set of sj ∈ C.
When dealing with stationarity preservation, the discrete differential operators ap-

pear via their Fourier transforms. It is useful to be able to say something about the
continuous operators that they approximate without having to undo the Fourier trans-
form and expand in ∆x. The theorems of the beginning of this Section thus aim at
developing a language that relates Fourier transforms of discrete differential operators
to the continuous operators.

Lemma 3.1. The Fourier transform of a stencil that approximates ∂nx contains precisely
n factors tx − 1.

Proof. Recall that in Fourier space, the derivative ∂nxq becomes (ik)nq̂. Expand tx =
exp(i∆xk) in powers of ∆x as ∆x→ 0. Then

1

tkx

2k∏
j=1

(tx − sj) =
1

1 +O(∆x)

2k∏
j=1

(1− sj + ik∆x+O(∆x2))

This is only proportional to (ik)n, if in precisely n of the linear factors sj = 1.

Lemma 3.2 (Normalization). Consider the Fourier transform

1

tkx

2k∏
j=1

(tx − sj)

with sj = 1 for j = 1, 2, . . . , n and otherwise sj 6= 1. Then, as ∆x→ 0, it approximates
A∆xn∂nx with

A =
2k∏

j=1,sj 6=1

(1− sj)
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Proof. The Fourier transform approximates an n-th order differential operator by Lemma
3.1 because precisely n values of j with sj = 1. Expand again in powers of ∆x:

1

tkx

2k∏
j=1

(tx − sj) =
1

1 +O(∆x)

2k∏
j=1,sj=1

(ik∆x+O(∆x2))
2k∏

j=1,sj 6=1

(1− sj +O(∆x))

= (ik)n∆xn
2k∏

j=1,sj 6=1

(1− sj) + higher order terms

Lemma 3.3. Consider a linear stencil

k∑
j=−k

αjqi+j

Its Fourier transform is invariant under the mapping tx 7→ 1
tx

, iff it is symmetric, i.e. if
ak = α−k ∀k.

Proof. Consider the Fourier transform of a symmetric stencil and apply the mapping
tx 7→ 1

tx
to it.

1

tkx

2k∑
j=0

αj−kt
j
x

tx 7→ 1
tx= tkx

2k∑
j=0

αj−k
1

tjx
=

1

tkx

2k∑
j=0

αj−kt
2k−j
x

j 7→2k−j
=

1

tkx

2k∑
j=0

αk−jt
j
x

which is true if ak = α−k ∀k. The converse is obtained by reading the equations in the
opposite direction.

Theorem 3.7 (One-dimensional symmetric stencil). Consider a one-dimensional sym-
metric linear stencil on cells {xi−k, . . . , xi, . . . , xi+k}, k ∈ N for ∂x. Its Fourier transform
is proportional the Laurent polynomial

1

tkx

2k∏
j=1

(tx − sj)

with s1 = 1 and C 3 sj 6= 1 for j > 1. Moreover, if sj 6= −1, there exists j′ ∈ [1, 2k] such
that sj′ = 1

sj
. Therefore the Laurent polynomial up to a constant can be written as

1

tkx
(tx − 1) (tx + 1) · · · (tx + 1)︸ ︷︷ ︸

N times,1≤N≤2k−1,N odd

(
t2x −

r2
1 + 1

r1

tx + 1

)
· · ·
(
t2x −

r2
M + 1

rM
tx + 1

)
︸ ︷︷ ︸

M= 2k−1−N
2

times

(3.9)

with rj ∈ C obtained by reordering and selecting from {sj} such that r2
j 6= 1 ∀j =

1, . . . , 2k−1−N
2

. N can be freely chosen in its range.
The converse is true as well.
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Note: The proportionality factor is obtained using Lemma 3.2.

Proof. i) As the stencil is one-dimensional, its Fourier transform involves a Laurent
polynomial in tx only.

In the case under consideration, by Lemma 3.1 the Fourier transform contains pre-
cisely one factor (tx − 1). Thus, by reordering, s1 = 1 and for j > 1, 1 6= sj ∈ C.

The symmetry requirement, by Lemma 3.3, means that the stencil is invariant under
tx 7→ 1

tx
:

1

tkx

2k∏
j=1

(tx − sj)
!

= tkx

2k∏
j=1

(
1

tx
− sj

)
=

1

tkx

2k∏
j=1

(1− sjtx)

which means that if sj is a zero, then the polynomial also vanishes at tx = 1
sj

. If

there exists an s2
j 6= 1, then there is also a j′ such that sj′ = 1

sj
. Therefore there can

only be an even number of non-one-non-minus-one zeros of the polynomial. They
can be reordered in pairs:

(tx − sj)
(
tx −

1

sj

)
= t2x −

(
sj +

1

sj

)
tx + 1

The degree of the polynomial (up to the prefactor t−kx ) is even as well. Thus there
is at least one factor (tx + 1).

ii) The converse follows from Lemma 3.3, which states that the one-dimensional stencil
associated to the Fourier transform (3.9) is symmetric.

In general, a polynomial of even degree either approximates a differential operator
∂2n
x of an even order and thus has an even number of (tx− 1) factors, or it approximates

a differential operator of odd order and therefore must have at least one factor (tx + 1),
alongside with an odd number of factors (tx − 1).

Assume in the following s1 = 1, s2 = −1, and sj 6= 1∀j > 2 (by reordering). A
dimensionally split discretization of the divergence ∂xu+ ∂yv involving the cells

xi,j+k
...

xi−k,j · · · xij · · · xi+k,j
...

xi,j−k
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has (up to prefactors involving ∆x, ∆y and normalization constants) the Fourier trans-
form

(tx − 1)
1

tkx

2k∏
j=2

(tx − sj)û+ (ty − 1)
1

tky

2k∏
j=2

(ty − sj)v̂ (3.10)

The highest possible order of derivative that is obtainable on this stencil is 2k. This is
for example ∂2k

x and its Fourier transform is given by

(tx − 1)2k

tkx
(3.11)

The aim is now first to construct a discrete counterpart to

∂xu+ ∂yv = 0 ⇒ ∂2k−1
x (∂xu+ ∂yv) = 0

The focus lies on symmetric divergence stencils. In a one-dimensional situation (up
to prefactors) such a stencil reduces to a symmetric discretization of ∂xu. Its Fourier
transform by Theorem 3.7 is

(tx − 1)
1

tkx

2k∏
j=2

(tx − sj)û

with s1 = 1, s2 = −1, and sj 6= 1∀j > 2.

Theorem 3.8 (Divergence). Assume a symmetric divergence stencil. In order to obtain
a symmetric discretization of ∂2k−1

x (∂xu + ∂yv) that is stationarity consistent with this
divergence, in multiple spatial dimensions the stencils have to involve the cells

xi−k,j+k · · · xi,j+k · · · xi+k,j+k

. . .
...

. . .

xi−k,j · · · xij · · · xi+k,j
. . .

...
. . .

xi−k,j−k · · · xi,j−k · · · xi+k,j−k

and the divergence has to be discretized such that its Fourier transform is

t2x − 1

tx
· (ty + 1)2

ty

1

tk−1
x

2k∏
j=3

(tx − sj)
1

tk−1
y

2k∏
j=3

(ty − sj)û

+
t2y − 1

ty
· (tx + 1)2

tx

1

tk−1
y

2k∏
j=3

(ty − sj)
1

tk−1
x

2k∏
j=3

(tx − sj)v̂

up to prefactors involving ∆x, ∆y and normalization constants.
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Proof. In order to obtain a stationarity consistent discretization of ∂2k−1
x (∂xu + ∂yv)

one needs to obtain (3.11) (or anything that would reduce to it in a one-dimensional
situation) in the first term in (3.10). Thus one needs to multiply (3.10) with

(tx − 1)2k−1∏2k
j=2(tx − sj)

The denominator comes about because the degree of the polynomial is not to be changed
during this process. Obviously, it is not possible to divide (3.10) by this term. Indeed,
the second part of the expression (3.10), does not depend on tx at all, and so it is not
possible to divide by

∏2k
j=2(tx − sj) and still obtain a polynomial in tx, ty.

Therefore a more adequate approximation to the divergence is taking into account
the perpendicular direction and reads

(tx − 1)
1

tkx

2k∏
j=2

(tx − sj)
2k∏
j=2

(ty − sj)û+ (ty − 1)
1

tky

2k∏
j=2

(ty − sj)
2k∏
j=2

(tx − sj)v̂

where two factors have been added to ensure symmetry. They now allow for a division.
However, the polynomial

∏2k
j=2(ty − sj) has an odd degree and cannot be symmetric. It

thus contains one linear factor less than needed. It is known that it does not contain and
that we cannot add any factors (ty−1). It is also not possible to add factors (ty−s) with
s 6= 1

s
, because they come in pairs. The only option is to add one factor (ty+1). Actually

s2 = −1 (i.e. there is already one factor ty + 1 present) which proves the assertion.

Turn now to other derivatives, i.e. the discrete counterparts to

∂xu+ ∂yv = 0 ⇒ ∂n−1
x (∂xu+ ∂yv) = 0

with 2 ≤ n ≤ 2k.
In one dimension, increasing the order of the differential operator in a stationarity

consistent manner is easy: One of the linear factors in

1

tkx

2k∏
j=1

(tx − sj)

with sj 6= 1 has to be divided out and replaced by tx − 1. However, the resulting stencil
has to be symmetric. This leads to the following rules

Theorem 3.9 (Replacement rules). Consider notation as in Theorem 3.8. The order of
the differential operator that is discretized by the linear stencil

1

tkx

2k∏
j=1

(tx − sj) (3.12)

can be increased in a stationarity consistent manner by (repeated) multiplication with



70 3 Numerical stationary states for linear multi-dimensional systems

i) tx−1
tx+1

if the stencil (3.12) contains a factor (tx + 1)

ii) (tx−1)2

(tx−s)(tx−1/s)
if the stencil (3.12) contains (tx − s)(tx − 1/s), s2 6= 1

The first choice increases the order of differentiation by 1, the second by 2.
Additionally, no change in the order happens upon multiplication with

iii) (tx−r)(tx+r)
(tx+1)2 if the stencil (3.12) contains a factor (tx + 1)2 and r2 6= 1

iv) (tx−r)(tx−1/r)
(tx−s)(tx−1/s)

if the stencil (3.12) contains (tx − s)(tx − 1/s), s2 6= 1, r2 6= 1

All the stencils that are thus obtained are symmetric.

Proof. The change of order of differentiation is clear by Lemma 3.1, because every time
factors of (tx−1) are (not) added. The symmetry follows from Theorem 3.7 because the
stencils have the form given in (3.9). There it has been shown that symmetry implies
the appearance of factors tx − s, s2 6= 1 only in pairs (tx − s)(tx − 1/s).

These rules allow to subsequently construct derivatives ∂n−1
x (∂xu+∂yv), 2 ≤ n ≤ 2k.

The results, in general are not unique.
Observe that the Fourier transforms are products of Laurent polynomials in tx with

Laurent polynomials in ty. In a sense, the multi-dimensional stencils somehow “consist”
of two one-dimensional ones. This can be used in order to simplify notation:

Definition 3.8 (⊗-Notation). Consider a one-dimensional stencil Ax along the x-direction
and a one-dimensional stencil Ay along the y-direction. Denote by Âx(tx) and Ây(ty)
their corresponding Fourier transforms. The stencil

Ax ⊗Ay

is defined by its Fourier transform being Âx · Ây.

Example 3.3. The ⊗-notation

(ui+1 − ui−1)⊗ (uj+1 + 2uj + uj−1)

abbreviates

(ui+1,j+1 + 2ui+1,j + ui+1,j−1)− (ui−1,j+1 + 2ui−1,j + ui−1,j−1)

whose Fourier transform is

(tx − 1)(tx + 1)

tx
· (ty + 1)2

ty

�

This definition naturally extends to higher dimensions.
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3.2.2.1 Example 1

Consider the first the smallest one-dimensional symmetric discretization of ∂x with k = 1,
i.e. on a stencil that includes three cells. By Theorem 3.7 it follows that its Fourier
transform is proportional to

1

tkx
(tx − 1)(tx + 1)

Together with Lemma 3.2 it means that the stencil is unique.
Then, from Theorem 3.7 it follows that it is unique and its Fourier transform is

(tx − 1)(tx + 1)

2∆xtx

The normalization has been chosen using Lemma 3.2.
By Theorem 3.8, the corresponding divergence is

(tx + 1)(tx − 1)

2∆xtx

(ty + 1)2

4ty
û+

(ty + 1)(ty − 1)

2∆yty

(tx + 1)2

4tx
v̂ (3.13)

Upon multiplication with

2
tx − 1

tx + 1

(replacement rule i) in Theorem 3.9) this becomes a stationarity consistent discretization
of ∆x∂x(∂xu+ ∂yv):

(tx − 1)2

∆xtx

(ty + 1)2

4ty
û+

(ty + 1)(ty − 1)

2∆yty

(tx + 1)(tx − 1)

2tx
v̂

This is the Fourier transform of

{{[[u]]i± 1
2
}}j± 1

2

4∆x
+

[[v]i±1]j±1

4∆y
(3.14)

Note that the choice of divergence is unique (because the stencil size does not allow
for additional terms other than those dictated by symmetry).

3.2.2.2 Example 2

Consider the stencil qi−2 − 6qi−1 + 6qi+1 − qi+2, i.e. k = 2. Its Fourier transform is

(tx − 1)(tx + 1)(−1 + 6tx − t2x)
8∆xt2x

This polynomial has the form discussed in Theorem 3.7; with the notation introduced
there one has s1 = 1, s2 = −1. The polynomial −1 + 6tx − t2x has irrational roots and
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its factorization thus is of no use. Obviously both the stencil and the polynomial are
symmetric. According to Theorem 3.8, the divergence operator is

t2x − 1

2∆xtx
· (ty + 1)2

4ty

(−1 + 6tx − t2x)
4tx

(−1 + 6ty − t2y)
4ty

û

+
t2y − 1

2∆yty
· (tx + 1)2

4tx

(−1 + 6ty − t2y)
4ty

(−1 + 6tx − t2x)
4tx

v̂ (3.15)

There is one odd derivative n = 3, i.e. the discretization of ∂2
x(∂xu + ∂yv). But it is

possible to multiply with

4
(tx − 1)2

−1 + 6tx − t2x

according to replacement rule ii). Replacement rule i) cannot be used twice here because
there is just one factor (tx + 1).

As for the even derivative ∂x(∂xu+ ∂yv) (n = 2), the factor can either be

2
tx − 1

tx + 1

(replacement rule i)) or

2
tx − 1

tx + 1
· (tx + 1)2

−1 + 6tx − t2x
= 2

(tx − 1)(tx + 1)

−1 + 6tx − t2x

(replacement rules i) and iii)).
Consider the latter choice. Upon multiplication of (3.15) with this factor, the discrete

operator has the Fourier transform

(tx − 1)2

∆xtx

(tx + 1)2

4tx
· (ty + 1)2

4ty

(−1 + 6ty − t2y)
4ty

û

+
t2y − 1

2∆yty
· (tx + 1)2

4tx

(tx + 1)(tx − 1)

2tx

(−1 + 6ty − t2y)
4ty

v̂

This translates, using Definition 3.8 into

ui+2 − 2ui + ui−2

4∆x
⊗ −uj+2 + 4uj+1 + 10uj + 4uj−1 − uj−2

16

+
ui+2 + 2ui+1 − 2ui−1 − ui−2

8
⊗ −vj+2 + 6vj+1 − 6vj−1 + vj−2

8∆y

The fourth derivative is trivial, as it is the maximal one on this stencil, and the factor
that makes it appear is just

8
(tx − 1)3

(tx + 1)(−1 + 6tx − t2x)
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3.2.2.3 Example 3

Analogously, for the stencil2

qi−2 − 8qi−1 + 8qi+1 − qi+2 '
(tx + 1)(tx − 1)(−1 + 8tx − t2x)

t2x

the divergence operator becomes

û
(t2x − 1)

2∆xtx

(ty + 1)2

4ty

−1 + 8tx − t2x
6tx

−1 + 8ty − t2y
6ty

+ v̂
(t2y − 1)

2∆yty

(tx + 1)2

4tx

−1 + 8ty − t2y
6ty

−1 + 8tx − t2x
6tx

The factors can be chosen as:

∂3
x 12

(tx − 1)3

(tx + 1)(−1 + 8tx − t2x)

∂2
x 6

(tx − 1)2

−1 + 8tx − t2x

∂x 3
(tx − 1)(tx + 1)

−1 + 8tx − t2x

Note that

−qi−2 + 4qi−1 − 6qi + 4qi+1 − qi+2 ' −
(tx − 1)4

t2x

−qi−2 − 2qi−1 + 6qi − 2qi+1 − qi+2 ' −
(tx − 1)2(1 + 4tx + t2x)

t2x

qi−2 − 2qi−1 + 2qi+1 − qi+2 '
(tx − 1)3(tx + 1)

t2x

3.2.3 Pseudo-inverse

Consider a linear system of equations

∂tq + Jx∂xq + Jy∂yq = 0 q : R+
0 × R2 → Rn (3.16)

As in Section 3.2.1.1, instead of performing the discrete analysis straight away, first
the action of the numerics is mimicked by continuous diffusion. A dimensionally split
upwind/Roe scheme, up to terms higher than O(∆x,∆y) is

∂tq + Jx∂xq + Jy∂yq =
1

2
∆x|Jx|∂2

xq +
1

2
∆y|Jy|∂2

yq (3.17)

Postpone for the moment the exact definition of |Jx| and sign Jx. Stationarity preserva-
tion will be obtained, if |Jx|∂2

xq = sign Jx ·Jx∂2
xq is replaced by sign Jx ·(Jx∂2

xq+Jy∂x∂yq).

2The symbol A ' B means that the Fourier transform of A is B, possibly up to numerical prefactors.
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Indeed, if (3.16) is stationary, then

Jx∂xq + Jy∂yq = 0

and thus also

Jx∂
2
xq + Jy∂x∂yq = 0

In the discrete sense, via stationarity consistency, this would yield a stationarity pre-
serving scheme by Theorem 3.5 (see also Theorem 3.11 below).

Now the precise definitions of the matrix operations |Jx| and sign Jx shall be discussed.

Definition 3.9 (Absolute value). Given a diagonalization A = RΛR−1 of a real-diagonalizable
n×n matrix A with Λ = diag(λ1, . . . , λn), the absolute value |A| is defined on the eigen-
values λ1, . . . , λn as follows

|A| := R · diag(|λ1|, . . . , |λn|) ·R−1

If additionally the inverse A−1 exists, then a natural definition of signA would be

signA := |A|A−1 if A invertible

However, for certain equations, in particular the equations of linear acoustics (2.40)–
(2.41) the matrices Jx, Jy are not invertible. This makes some kind of regularization
necessary:

Definition 3.10 (Moore-Penrose pseudo-inverse). i) The pseudo-inverse c -1© of a num-
ber c ∈ R is defined as

c -1© :=

{
1
c

c 6= 0

0 c = 0

ii) Given a diagonalizable n × n matrix J = RΛR−1 with real eigenvalues λ1, . . . , λn
and Λ = diag(λ1, . . . , λn), its Moore-Penrose pseudo-inverse is defined as

J -1© := R · diag(λ
-1©

1 , . . . , λ -1©
n ) ·R−1

This definition can be extended to non-diagonalizable matrices, but the way the
definition is given suits perfectly the purposes of this Section. So far it is unclear what
impact the particular choice of regularization will have on the resulting numerical scheme.
The Moore-Penrose pseudo-inverse will be used as a hypothesis, and the properties of
the scheme obtained have be studied in detail in the end.

Definition 3.11 (Sign). Given a real-diagonalizable n× n matrix A, the matrix signA
is defined as follows:

signA := |A|A -1©
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Modifying the diffusion of (3.17) as described leads to the following expression:

∂tq + Jx∂xq + Jy∂yq =
1

2
∆xsign Jx(Jx∂

2
xq + Jy∂x∂yq) +

1

2
∆ysign Jy(Jx∂x∂yq + Jy∂

2
yq)

The only missing ingredient is the discrete counterpart to the statement

Jx∂xq + Jy∂yq = 0 ⇒ Jx∂
2
xq + Jy∂x∂yq = 0

Theorem 3.10. For constant n × n matrices Jx, Jy and q an n-dimensional vector
defined on a rectangular grid, the following discrete statement holds:

Jx
8∆x
{{[q]i±1}}j± 1

2
+

Jy
8∆y

[{{q}}i± 1
2
]j±1 = 0 ⇒ Jx

8∆x
{{[[q]]i± 1

2
}}j± 1

2
+

Jy
8∆y

[[q]i±1]j±1 = 0

(The notation is introduced in Definition 0.2.)

Proof. The proof repeats the proof of Theorem 3.8. Applying the Fourier transformation
to

Jx
8∆x
{{[q]i±1}}j± 1

2
+

Jy
8∆y

[{{q}}i± 1
2
]j±1 (3.18)

gives

Jx q̂

∆x

(tx + 1)(tx − 1)

2tx

(ty + 1)2

4ty
+
Jy q̂

∆y

(tx + 1)2

4tx

(ty + 1)(ty − 1)

2ty

Upon multiplication with tx−1
tx+1

this becomes

Jx q̂

∆x

(tx − 1)2

2tx

(ty + 1)2

4ty
+
Jy q̂

∆y

(tx + 1)(tx − 1)

4tx

(ty + 1)(ty − 1)

2ty

which is the Fourier transformation of

Jx
8∆x
{{[[q]]i± 1

2
}}j± 1

2
+

Jy
8∆y

[[q]i±1]j±1 (3.19)

As the two expressions are related by a simple factor, whenever (3.18) vanishes, (3.19)
vanishes.

This allows to formulate the following statement:

Theorem 3.11. Consider the linear hyperbolic system (3.16) in two spatial dimensions.
The semidiscrete numerical scheme

∂tq +
Jx

8∆x
{{[q]i±1}}j± 1

2
+

Jy
8∆y

[{{q}}i± 1
2
]j±1

− sign Jx

(
Jx

8∆x
{{[[q]]i± 1

2
}}j± 1

2
+

Jy
8∆y

[[q]i±1]j±1

)
− sign Jy

(
Jx

8∆x
[[q]i±1]j±1 +

Jy
8∆y

[[{{q}}i± 1
2
]]j± 1

2

)
= 0 (3.20)

is stationarity preserving and reduces to the upwind/Roe scheme in one spatial dimen-
sion.
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Proof. The dimensionally split upwind/Roe scheme for (3.16) reads

∂tq +
Jx

2∆x
[q]i±1,j +

Jy
2∆y

[q]i,j±1 −
|Jx|
2∆x

[[q]]i± 1
2
,j −

|Jy|
2∆y

[[q]]j± 1
2

= 0

Replacing

Jx
2∆x

[q]i±1,j +
Jy

2∆y
[q]i,j±1

by (3.18), as well as

|Jx|
2∆x

[[q]]i± 1
2
,j

by (3.19) (and analogously for the other direction) proves the assertion. The scheme is
stationarity preserving by Proposition 3.10, with the discrete stationary states given by

Jx
8∆x
{{[q]i±1}}j± 1

2
+

Jy
8∆y

[{{q}}i± 1
2
]j±1 = 0

Observe that this strategy in principle can be applied to all linear hyperbolic systems
of PDEs, although it is unclear whether the scheme thus obtained will always be stable.
Additionally, the precise influence of the choice of regularization procedure is unknown.
A successful application of this procedure is presented in Section 4.5.2.2. One can try to
derive schemes for nonlinear equations along the same lines; this is discussed in Section
5.4.2.

3.2.4 Taylor series and rotationally invariant operators

Consider a discrete divergence D (e.g. Equation (3.13)) and a stationarity consistent
discrete second derivative S (e.g. Equation (3.14)). Taking up the example of Section
3.2.2.1, to highest order S = ∂x(D) +O(∆x,∆y) = ∂x(∂xu + ∂yv) +O(∆x,∆y). How
do the higher order terms look like? For example, do they contain higher derivatives of
∂xu+ ∂yv?

Theorem 3.12. Consider S , a discrete second derivative of a function q, that is station-
arity consistent with D , a discrete first derivative of q. Denote their Fourier transforms
by Ŝ , D̂ and the factor that relates them by f :

Ŝ = fD̂ (3.21)

Assume that f is a function of tx = exp(ikx∆x) only and that it can be expanded as
Taylor series in ikx∆x. Denote by an the corresponding coefficients:

f =
∞∑
n=0

aninknx∆xn (3.22)
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Then S can be written as a function of D and its derivatives as

S =
∞∑
n=0

an∆xn∂nxD

Note: An example (it is studied in detail after the proof) is q = (u, v) and

D =
1

8∆x
{{[u]i±1}}j± 1

2
+

1

8∆y
[{{v}}i± 1

2
]j±1

S =
1

8∆x
{{[[u]]i± 1

2
}}j± 1

2
+

1

8∆y
[[v]i±1]j±1

Proof. Make use of the Fourier transform and expand, e.g. in two spatial dimensions:

S =
∑
k

Ŝ exp(ikxx+ ikyy)
(3.21)
=
∑
k

fD̂ exp(ikxx+ ikyy)

(3.22)
=

∞∑
n=0

an∆xn
∑
k

(ikx)
nD̂ exp(ikxx+ ikyy) =

∞∑
n=0

an∆xn∂nx
∑
k

D̂ exp(ikxx+ ikyy)

=
∞∑
n=0

an∆xn∂nxD

Consider the example of Section 3.2.2.1 and take ∆y = ∆x to ease the notation:

1

4

(
{{[[u]]i± 1

2
}}j± 1

2

∆x
+

[[v]i±1]j±1

∆y

)
= (∂2

xu+ ∂x∂yv)∆x

+
(3∂2

x∂
2
yu+ ∂4

xu+ 2(∂x∂
3
yv + ∂3

x∂yv))∆x3

12

+
(15∂2

x∂
4
yu+ 15∂4

x∂
2
yu+ 2∂6

xu+ 6∂x∂
5
yv + 20∂3

x∂
3
yv + 6∂5

x∂yv)∆x5

720

+
(14∂2

x∂
6
yu+ 35∂4

x∂
4
yu+ 14∂6

x∂
2
yu+ ∂8

xu+ 4(∂x∂
7
yv + 7(∂3

x∂
5
yv + ∂5

x∂
3
yv) + ∂7

x∂yv))∆x7

20160

+O(∆x9)

Obviously, the highest order term is just of the form ∂x(∂xu+∂yv). It would however be
erroneous to expect the higher order terms to be higher derivatives of ∂xu+∂yv, because
it is not ∂xu + ∂yv that is preserved exactly by the numerics – it is rather the discrete
divergence

D =
{{[u]i±1}}j± 1

2

8∆x
+

[{{v}}i± 1
2
]j±1

8∆y
= (∂xu+ ∂yv)

+
1

12

(
3∂x∂

2
yu+ 2(∂3

xu+ ∂3
yv) + 3∂2

x∂yv
)

∆x2

+
1

240

(
5∂x∂

4
yu+ 2(5∂3

x∂
2
yu+ ∂5

xu+ ∂5
yv + 5∂2

x∂
3
yv) + 5∂4

x∂yv
)

∆x4

+
1

10080

(
7∂x∂

6
yu+ 35∂3

x∂
4
yu+ 21∂5

x∂
2
yu+ 2∂7

xu+ 2∂7
yv + 7(3∂2

x∂
5
yv + 5∂4

x∂
3
yv + ∂6

x∂yv)
)

∆x6

+O(∆x8)
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Indeed, one then finds that

1

4

(
{{[[u]]i± 1

2
}}j± 1

2

∆x
+

[[v]i±1]j±1

∆y

)

= ∆x ∂xD −
∆x3

12
∂3
xD +

∆x5

120
∂5
xD −

17∆x7

20160
∂7
xD +O(∆x9)

which is, by Theorem 3.12 the formal series of

2
exp(∆x∂x)− 1

exp(∆x∂x) + 1
D

because f has been found to be 2 tx−1
tx+1

in Section 3.2.2.1.
The stationarity-consistency thus manifests itself in the fact, that every order in the

series of S is a derivative of D . Whenever D vanishes, the discrete second derivative
vanishes as well. This calculation shows that the stencils being “rotationally-invariant”,
as suggested in [Sid02], is actually not a relevant condition. They might seem so to first
order in their expansion in powers of ∆x, but they cannot remain so when higher order
terms are taken into account.



Chapter 4

Numerical schemes for linear
acoustics

Contents
4.1 Low Mach number limit . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 The multidimensional Godunov scheme . . . . . . . . . . . . . . . . . 85

4.3 Stability of one-dimensional schemes . . . . . . . . . . . . . . . . . . . 94

4.4 Dimensionally split schemes . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Multi-dimensional schemes . . . . . . . . . . . . . . . . . . . . . . . . 111

4.6 Asymptotic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7 Stationarity preserving schemes of higher order . . . . . . . . . . . . . 124

4.8 Stationarity preserving schemes for gravity-like source terms . . . . . 138

The introduction to Section 2 emphasized the central role of the advection equation
for understanding the concept of upwinding. It has been argued that the acoustic equa-
tions play a similarly important role when it comes to understanding the behaviour of
schemes in the limit of low Mach numbers. This has several reasons.

First of all, the acoustic equations (2.7)–(2.8) are sufficiently complicated, such that
from learning how to deal with the new features one may hope to learn lessons for similar
features of the Euler equations. Indeed, despite being linear, the acoustic equations
contain the differential operators grad and div, which in multiple spatial dimensions are
different. This leads to the fact that the x- and y-Jacobians of the acoustic equations
do not commute and thus are not simultaneously diagonalizable. For this reason, linear
acoustics cannot be reduced to some kind of multi-dimensional advection. This also
becomes obvious in light of the exact solution obtained in Section 2.2 which involves

79
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a Mach cone. Therefore the acoustic system in multiple spatial dimensions contains
features not present in advective problems (see also the review [Roe17]).

Secondly, the acoustic system is sufficiently simple to be tractable both analytically
and numerically. The exact solution, although lengthy, can be computed to full extent
(see Section 2.2) and linear numerical schemes for the acoustic equations can be studied
with the methods of Section 3. Indeed, the acoustic equations fit into the framework of
Theorem 3.1 of Section 3.1.1:

Corollary 4.1. The acoustic equations (2.7)–(2.8) allow for non-trivial stationary states
given by

∇p = 0 and ∇ · v = 0

Proof. The proof follows from Theorem 3.1. The eigenvector corresponding to the zero-
eigenvalue of

J · k =

 0 0 c
ε
kx

0 0 c
ε
ky

c
ε
kx

c
ε
ky 0


is

q̂0 = (−ky, kx, 0)T

(û, v̂, p̂)T is only a multiple of q̂0 if p̂ = 0 and kxû + v̂ky = 0. These are the Fourier
transforms of ∇p = 0, div v = 0.

Trivial stationary states of (2.7)–(2.8) are shear flows ∇p = 0, ∂xu = 0 = ∂yv.
From Theorem 3.2 follows the

Corollary 4.2. The acoustic equations (2.7)–(2.8) have a constant of motion ω = ∇×v,
i.e.

∂tω = 0 (4.1)

Its Fourier transform is −kyû+ kxv̂.

Proof. The left eigenvector corresponding to the zero eigenvalue of J · k is (−ky, kx, 0)
such that

(−ky, kx, 0)∂t

 û
v̂
p̂

 = 0

This means that kxv̂−kyû is stationary, which is the Fourier transform of ω = ∂xv−∂yu,
and thus ∂tω = 0.
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Figure 4.1: Simulation results for a vortex setup for t = 0, 1, 2, 3 (from left to right). Colour coded
is
√
u2 + v2 Top row: Euler equations. Bottom row: Acoustic equations.

ω is the vorticity introduced in Section 2.1.2. Equation (4.1) also immediately follows
from the application of the curl operator to Equation (2.5). However the language of the
Fourier transform is more useful when the discrete situation is considered.

A hint towards a possible understanding of the low Mach number problem with just
the acoustic system is the appearance of visually similar artefacts between the acoustic
and Euler equations, when the low Mach limit is approached with, say, the upwind/Roe
scheme (see Figure 4.1).

To present an explanation of these artefacts for the acoustics equations, the reasons
why they appear and different ways how to avoid them is the aim of this Section. Ideas
already present in the literature are found to fit well into the new framework and are given
a new interpretation. Some of them seem to find better foundation in the framework of
stationarity preservation. Additionally there appears a connection to vorticity preserving
schemes.

4.1 Low Mach number limit

It is an experimental fact that there are schemes whose numerical results deteriorate as
the Mach number decreases, and those whose numerical error does not increase in the
limit. The aim of this Section is to present a consistent picture of why this happens,
at least for the acoustic equations. The concept of stationarity preservation is shown to
be a fruitful and consistent way to understand the behaviour of schemes for low Mach
numbers. It unveils a connection between vorticity preserving schemes and schemes
that are able to resolve the low Mach number limit. This work has been published in
[Bar17a, Bar17b].
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4.1.1 Connection to stationarity preservation

Recall the acoustic equations (2.40)–(2.41):

∂tv +
∇p
ε2

= 0

∂tp+ c2∇ · v = 0

Recall also that the limit ε → 0 of this family of equations has been given the name
of the low Mach number limit by analogy with the Euler equations, but that for the
acoustic equations it can also be rewritten as the limit of long time (see Section 2.3).

The existence of a stationary vorticity for the acoustic equations has been given
particular attention in [TF04], [MT11], [MR01] and others. The class of schemes that
possess a stationary discrete counterpart has been given a name:

Definition 4.1 (Vorticity preserving). A consistent scheme for (2.7)–(2.8) is called vor-
ticity preserving, if there exists a discretization of the vorticity that remains unchanged
during the time evolution.

Recall the definition of the evolution matrix for linear schemes (Definition 3.5). By
Theorem 3.4 and Corollary 4.2, having a vanishing eigenvalue of the evolution matrix
yields the numerical stationary states as the right eigenvector and a numerical vorticity
operator as the left eigenvector (as Fourier transforms). Conversely, if no eigenvalue of
E vanishes, there is no discrete analogue of the vorticity that would remain stationary:

Corollary 4.3. For the acoustic equations (2.7)–(2.8), a scheme is vorticity preserving
iff it is stationarity preserving.

Proof. As Theorem 3.4 shows, the existence of nontrivial stationary states gives rise to
a constant of motion for every eigenvalue zero.

It is known (see [DOR10] among others) that the Roe scheme displays artefacts in the
limit ε→ 0 when applied to the equations (2.40)–(2.41). With the concept of stationarity
preservation these artefacts can be given a completely new interpretation.

Theorem 2.9 states that the limit ε→ 0 of Equations (2.40)–(2.41) can be understood
as the long time limit t 7→ t

ε
, ε→ 0 of

∂tv +∇p = 0

∂tp+ c2∇ · v = 0

The reason for that is the appearance of c
ε

and t only inside the combination ct
ε
. This is

also true at discrete level:

Definition 4.2 (Low Mach compliant). A numerical scheme for (2.40)–(2.41) is called
low Mach compliant if in the limit ε→ 0 it has solutions that discretize all the analytic
solutions given by the limit equations

∇p = 0 ∇ · v = 0

of (2.40)–(2.41).
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Theorem 4.1. Consider consistent and von Neumann stable linear numerical schemes
for (2.40)–(2.41). Additionally, the eigenvalues of their evolution matrices E shall be
linear in c. Vorticity preserving schemes, that fulfill these conditions, are low Mach
compliant.

Proof. The proof consists of two parts:

i) An analogous result to that of Theorem 2.9 is shown. The time evolution of the
discrete Fourier modes, according to Equation (3.5) is given by the eigenvalues of the
evolution matrix E . By assumption, they are linear in c. In general, the eigenvalue
will have the form c|k|f(k,∆x), with f an arbitrary function (which does not depend
on c).

One now needs to show that the eigenvalues actually are linear in c
ε
. There exist

asymptotic scalings of the dependent and independent variables that lead from the
system (2.5)–(2.6) (which does not contain ε) to its rescaled version (2.40)–(2.41).
They are calculated explicitly in Section 2.3.

E having an eigenvalue c|k| · f implies that there is a quantity q̂ that satisfies an
equation of the form

∂tq̂ + c|k|f q̂ = 0 (4.2)

Rescaling according to (2.42)–(2.43), and using (2.44)–(2.45) forces the rescaled form
of Equation (4.2) to become

∂tq̂ +
c

ε
|k|f q̂ = 0

Therefore, the eigenvalues of E are linear in c
ε
. Therefore in the time evolution of

any non-stationary Fourier mode only the combination ct
ε

appears. This is in full
analogy to the continuous case (Theorem 2.9).

ii) In order to study the limit of low Mach numbers one looks at the long time evolution
of the numerical scheme for the non-rescaled equations

∂tv +∇p = 0

∂tv + c2∇ · v = 0

The statement of von Neumann stability is that every Fourier mode is either sta-
tionary, or decaying. Thus, as the numerical scheme is stable by assumption, then
after long times only stationary Fourier modes will have survived. After long times,
or equivalently for low Mach numbers, the numerical solution will be approaching
one of the numerical stationary states of the scheme. As the scheme is assumed to
be vorticity preserving, or equivalently stationarity preserving (by Corollary 4.3), its
stationary states are a discretization of the analytic stationary states (by Theorem
3.3), which by Theorem 2.9 are the limit equations for low Mach number.
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If the scheme is not stationarity preserving, it will fail to have the right limit as
ε→ 0, as its limit equations do not discretize all of the limit equations of the underlying
PDE. This is discussed for the upwind/Roe scheme in Section 4.4.2.

In fact, by considering the physical dimension that an eigenvalue of the evolution
matrix E must have, one observes that linearity in c is the only way for it to obtain the
correct units. Therefore this assumption is actually always true.

This result is reminiscent of the concept of asymptotic preserving (see e.g. [Jin99]). A
comparative discussion of the relation between stationarity preservation and asymptotic
preserving schemes for the low Mach number limit is found in Section 4.6.

4.1.2 Construction principles for low Mach number schemes

Not all numerical schemes for the acoustic equations are stationarity preserving. In par-
ticular, the upwind/Roe scheme is not (this is proven in Section 4.4.1). Interestingly,
the upwind/Roe scheme is the Godunov scheme for linear acoustics in one spatial di-
mension: It is the scheme that one obtains upon constant reconstruction in every cell,
exact evolution, and subsequent averaging over cells. It feels very disturbing that such a
fundamental scheme may be failing so badly to capture important aspects of the exact
solution.

On the other hand in the literature there exists a number of schemes that are low
Mach compliant. Many of them are obtained by modifying the upwind/Roe scheme
(low Mach fixes). They typically involve free parameters or even functions. The low
Mach fixes are mostly formulated for schemes for the Euler equations (and as such are
discussed in Section 5), but they often can be reinterpreted for the acoustic equations. In
a number of such fixes, e.g. in [TD08, Rie11, LG13, OSB+16], the ε-scaling of one entry of
a diffusion matrix is identified as causing problems in the low Mach number regime, and
it is suggested to multiply it with some function that modifies this scaling. The precise
shape of this function is free. Such schemes indisputably manage to produce good results
in the limit of low Mach numbers and can be shown to be stationarity preserving. The
amount of arbitrariness in the choice of low Mach fixes might be unsatisfying, though.

Here is the dilemma: A scheme derived from seemingly fundamental principles does
not capture the low Mach number limit, and those schemes that do, seem to do so only
using some fix. The Godunov scheme contains the three steps reconstruction, evolution,
averaging. The result of these three steps in one spatial dimension is the upwind/Roe
scheme that is not suitable for low Mach numbers. Which one of these steps is in conflict
with the low Mach number limit then?

There is a simple answer, that unfortunately turns out to be wrong. The upwind/Roe
scheme is indeed the Godunov scheme for linear acoustics, but only for one spatial
dimension. The limit equations for ε→ 0 in 1-d are just

∂xv = 0 ∂xp = 0

This is just a constant flow with constant pressure, and any such flow is well resolved by
the upwind/Roe scheme. There is no low Mach number problem in 1 spatial dimension.
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It is only in multiple sptial dimensions that ∂xv = 0 becomes the much less trivial
condition

∇ · v = 0

In short: the low Mach number limit is a multi-dimensional phenomenon (as has been
also emphasized in [Del10]). The upwind/Roe scheme is the Godunov scheme only in
one spatial dimension. The obvious conjecture thus is that maybe it would just suffice
to derive the Godunov scheme in multiple spatial dimensions, and that it would then
automatically have the right low Mach number limit.

Unfortunately, this is not true. The 2-dimensional Godunov scheme for linear acous-
tics is derived in Section 4.2, and it turns out not to be stationarity preserving. In
[LMMW00, FG17] other schemes are derived that are inspired by the multi-dimensional
exact evolution operator for linear acoustics. None of them is stationarity preserving.
This is an astonishing result: it is not sufficient to use the exact evolution operator in
order to obtain a scheme with good behaviour in the low Mach number limit! Which
part of the reconstruction-evolution-averaging procedure has to be modified in order to
improve the scheme, and how, is to the author’s knowledge an open question, although
problems with the Godunov scheme have been noticed as early as in [GM04].

Thus so far one has to try to use the condition of stationarity preservation somehow
constructively. One way would be to take a large set of schemes with a number of
free parameters (as is done in [LR14] for a class of Lax-Wendroff schemes) and try to
adjust the parameters such that the condition of stationarity preservation is met. This
is performed in Section 4.4.1 for dimensionally split schemes. The results allow one to
rediscover many low Mach number schemes and fixes present in the literature. This
also shows that stationarity preservation indeed is a powerful tool to study the low
Mach number limit. However, contrary to the Godunov scheme, such schemes are not
necessarily stable (under explicit time discretization). A stability analysis for a broad
class of dimensionally split schemes for the acoustic equations is presented in Section
4.3.

There are further ways to construct stationarity preserving schemes, which have al-
ready been discussed in Chapter 3 for general linear systems. The application to the
acoustic equations is discussed in Section 4.5. They lead to multi-dimensional schemes,
i.e. schemes that cannot be obtained by a dimensionally split approach. These construc-
tion principles in practice seem to lead directly to stable schemes. It is also possible to
construct stationarity preserving schemes of higher order (Section 4.7).

4.2 The multidimensional Godunov scheme

4.2.1 Historical overview

The knowledge of the exact solution makes it possible to derive a Godunov scheme. This
is similar in spirit to an idea by Gelfand mentioned in [GZI+76, God97] (a translated
version is [God08]), but the absence of a(n accessible) published work or details on the
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procedure makes it hard to compare it to the approach taken here. From the scarce
account it seems that an exact solution as presented here was not used and that the
present approach is more general, in the sense that it might also be used to derive other
solvers.

Interestingly, the aim of the computation performed back then was completely oppo-
site. After Godunov’s method has been successfully used for one-dimensional problems,
an extension to multiple dimensions was needed. The complexity of a multi-dimensional
Riemann solver for the Euler equations was obvious. Citing from [God08] ([GZI+76], p.
56):

When we implemented the 2-D approach based on the solutions of the Rie-
mann problem with arbitrary initial conditions, the first question concerned
the construction of such solutions. In the 2-D case the rectangular grid cells
can neighbor not only on each other but also on the nodes where four cells
meet. If one constructs a 2-D scheme analogously to the 1-D, one should have
analytic solutions of hydrodynamical equations with four discontinuities of
initial data at one point. We did not have such solutions, even now they do
not exist, at least for general initial data. We had the audacity to suggest
to use only classical solutions of the Riemann problem combined from the
plane waves and describing initial Riemann problem placed on the edges of
the neighboring cells. We ignored interaction of four cells having a common
node. Implementing this approach we abandoned a clear physical interpreta-
tion on which the construction of the 1-D scheme was based. Obviosly, there
were a lot of discussions about the suggestion mentioned above.

The multi-dimensional calculation was done in 1956:

At the same time, for the acoustic waves propagating in a medium at rest,
K. V. Brushlinskii, based on Gelfands suggestion, constructed the solution of
the problem using an interaction of all cells adjoint to one node with the help
of the Sobolevs method of functionally invariant solutions. This solution was
used in a numerical scheme completely analogous to the 1-D one. [...] To our
surprise and satisfaction, we did not discover any essential differences. After
that, only the rough model was employed.

Therefore Godunov and his team were content finding that the development of multi-
dimensional schemes was not worth doing. This is probably due to them having high
Mach phenomena in mind. Indeed, recall that the existence of schemes that do not
deteriorate in the limit of low Mach numbers was not noticed until works like [Tur87,
KLN91, WS95, Kle95]. The remedy until then was to make the grid finer, and generally
the acceptance of diffusivity of schemes must have been much higher in view of the little
computing power available in the late 80s, not to mention the 50s. Today it is obvious
that the class of multi-dimensional schemes is not restricted to ones obtained by solving
multi-dimensional Riemann problems, and that this class does indeed contain very useful
schemes (e.g. stationarity preserving ones, as discussed in Section 4.5 below).
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The exact evolution operator for linear acoustics (2.8)–(2.7) already appears in [ER13,
Roe17], albeit without the justification as distributional solution. It has been taken as
inspiration for a new kind of numerical schemes in [ER13]: the active flux method, which
contains additional, pointwise degrees of freedom that are evolved in time exactly. A
finite volume scheme of the usual kind, as derived in [FG17], takes only an approxi-
mation of the exact solution into account. Among others, [LMMW00] considered the
bicharacteristics relation ([CH62]) in order to derive schemes which incorporate multi-
dimensional information. However, the bicharacteristics do not allow to write down the
time evolution of initial data directly and thus again, the scheme only uses an approxi-
mation of the exact relation.

The conceptually simplest finite volume is a Godunov scheme with the Riemann
Problem as a building block. [AG15, LS02] studied the solutions to multi-dimensional
Riemann Problems for linear acoustics using a self-similarity ansatz. However, no nu-
merical scheme has been derived there. The purpose of the derivation presented here is
twofold. First, it is derived in order to verify that it lacks stationarity preservation and
that multi-dimensionality alone does not solve the low Mach number problem. Second,
the derivation demonstrates the usage of the exact evolution operator. One might in
future imagine numerical schemes that do not rely on Riemann Problems, but still use
the exact evolution operator on a different kind of reconstruction.

This Section is largely based on work published in [BK17].

4.2.2 Procedure

In this Section the aim is to derive a two-dimensional finite volume scheme, which updates
the numerical solution qnij in a Cartesian cell Cij = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] at a time

tn to a new solution qn+1
ij at time tn+1 = tn + ∆t using qnij and information from the

neighbours of Cij. The grid is taken equidistant, and notation of Definition 0.1 is used.
The knowledge of the exact solution makes it possible to derive a Godunov scheme

via the procedure of reconstruction-evolution-averaging ([Tor09, LeV02]). As it is for-
mulated, the derivation encounters technical difficulties, because the solution is needed
at all points inside the cell. This means an evaluation of the integrals (2.31)–(2.34), or
(2.24)–(2.25), for basically all x with no direct simplification. It afterwards undergoes
the possibly nontrivial task of being integrated over the cell.

Employing the structure of the conservation law allows to rewrite the volume integral
into a time integral over the boundary, which is a huge simplification. Now the exact
solution is only needed along the boundary of the cell, and one of the components of x
is zero. Still however one needs to evaluate the solution formulae at a continuous set of
x values.

In the following it is shown that for linear systems a Godunov scheme can be written
down using just one evaluation of the solution formula at a single point in space by
suitably modifying the initial data.

Consider the general linear n× n hyperbolic system (2.13) in d spatial dimensions

∂tq + (J · ∇)q = 0
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with initial data

q(0,x) = q0(x)

Recall the Definition 2.8 of the time evolution operator Tt: (Tt q0)(t,x) satisfies (2.13)
with (at t = 0) initial data q0(x).

Definition 4.3 (Sliding average). Define the sliding average operator A in two spatial
dimensions by its action onto a function q : Rd → Rn as

(Aq)(x) :=
1

∆x∆y

∫
[−∆x

2
,∆x

2 ]×[−∆y
2
,∆y

2 ]

ds q(x + s)

The objective is to construct a Godunov scheme by introducing a reconstruction
q0(x) using the discrete values {qnij} in the cells and computing its exact time evolution.
The reconstruction needs to be conservative, i.e. (Aq0)(xij) = qij. The easiest choice is
a piecewise constant reconstruction

q0(x) := qij if x ∈ Cij

It is shown in Fig. 4.2 (left) and obviously is locally integrable.
The Godunov procedure reconstruction-evolution-averaging can be written as

qn+1
ij = (AT∆t q0)(xij)

Figure 4.2: Left: Piecewise constant reconstruction. Right: Application of the sliding average to
the same data amounts to a bilinear interpolation of the values qij interpreted as point values at
xij .

Lemma 4.1. Provided all expressions exist, the two operators commute:

AT∆t q0

∣∣∣
xij

= T∆tAq0

∣∣∣
xij
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Proof. By linearity of T∆t (Theorem 2.3),

(AT∆t q0)(x) =
1

∆x∆y

∫
[−∆x

2
,∆x

2 ]×[−∆y
2
,∆y

2 ]

ds (T∆t q0)(x + s)

=
1

∆x∆y
T∆t

∫
[−∆x

2
,∆x

2 ]×[−∆y
2
,∆y

2 ]

ds q0(x + s)

= T∆t (Aq0)(x)

In short, for linear systems the last two steps of reconstruction-evolution-averaging
can be turned around to be reconstruction-averaging-evolution which tremendously sim-
plifies the derivation: It suffices to find the solution of (2.13) at xij taking the sliding-
averaged initial data Aq0. The sliding average of a piecewise constant reconstruction on
a 2-d grid amounts to a bilinear interpolation of the values qij taken at points xij (see
Fig. 4.2, right).

Example 4.1 (Godunov scheme for linear advection). Consider linear advection in 1-d

∂tq + c∂xq = 0 c > 0

q : R0
+ × R→ R

and piecewise constant initial data q0(x) = qi if x ∈ [xi− 1
2
, xi+ 1

2
]. Application of the

sliding average for x ∈ [xi−1, xi]:

(Aq0)(x) =
1

∆x

∫ ∆x
2

−∆x
2

ds q0(x+ s) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

ds q0(s)

=
1

∆x

(
xi− 1

2
− x+

∆x

2

)
qi−1 +

1

∆x

(
x+

∆x

2
− xi− 1

2

)
qi

The exact evolution operator at xi evaluates the sliding averaged initial data at xi− c∆t
if c∆t < ∆x:

T∆t(Aq0)(xi) = qi −
c∆t

∆x
(qi − qi−1)

This is the usual upwind scheme. �

4.2.3 Finite volume scheme

Performing the evaluation of the exact solution formulae as outlined in Section 4.2.2 is
straightforward: In every one of the four quadrants all the derivatives of the initial data
exist. At the locations where the quadrants meet, the initial data are continuous with,
in general, discontinuous first derivatives. However, the derivatives are continuous in
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r-direction, as the kinks are all oriented towards the location xij (see Fig. 4.2, right).
Thus the radial derivatives never lead to the appearance of actual distributions and
the solution is a function. The reason for the different behaviour as compared to the
Riemann Problem in Section 2.2.5 is that here the evolution operator is applied onto
sliding-averaged discontinuities which are continuous. This goes back to the averaging-
step of the Godunov procedure.

After carefully collecting the different terms one obtains the following numerical
scheme (the notation is introduced on page 13)

un+1 = unij −
c∆t

2ε∆x

(
[p]i±1,j − [[u]]i± 1

2
,j

)
− 1

2

(c∆t)2

ε2∆x∆y

(
− 1

2π
[[[[u]]i± 1

2
]]j± 1

2
− 1

4
[[v]i±1]j±1 +

1

4
[[[p]i±1]]j± 1

2

)
(4.3)

vn+1 = vnij −
c∆t

2ε∆y

(
[p]i,j±1 − [[v]]i,j± 1

2

)
− 1

2

(c∆t)2

ε2∆x∆y

(
− 1

2π
[[[[v]]i± 1

2
]]j± 1

2
− 1

4
[[u]i±1]j±1 +

1

4
[[[p]]i± 1

2
]j±1

)
pn+1 = pij −

c∆t

2ε∆x

(
[u]i±1,j − [[p]]i± 1

2
,j

)
− c∆t

2ε∆y

(
[v]i,j±1 − [[p]]i,j± 1

2

)
− 1

2

(c∆t)2

ε2∆x∆y

(
1

4
[[[u]i±1]]j± 1

2
+

1

4
[[[v]]i± 1

2
]j±1 − 2 · 1

2π
[[[[p]]i± 1

2
]]j± 1

2

)
(4.4)

This scheme is conservative because it is a Godunov scheme, and can be written as

qn+1 = qn − ∆t

∆x

(
f

(x)

i+ 1
2
,j
− f (x)

i− 1
2
,j

)
− ∆t

∆y

(
f

(y)

i,j+ 1
2

− f (y)

i,j− 1
2

)
One can identify the x-flux through the boundary located at xi+ 1

2
:

f
(x)

i+ 1
2

=
1

2

c

ε

 {p}i+ 1
2
,j − [u]i+ 1

2
,j

0
{u}i+ 1

2
,j − [p]i+ 1

2
,j


+

1

2

c∆t

ε∆y
· c
ε

 − 1
2π

[[[u]i+ 1
2
]]j± 1

2
− 1

4
[{v}i+ 1

2
]j±1 + 1

4
[[{p}i+ 1

2
]]j± 1

2

0
1
4
[[v]i+ 1

2
]j±1 − 1

2π
[[[p]i+ 1

2
]]j± 1

2

 (4.5)

The corresponding perpendicular flux is its symmetric analogue. The first bracket is the
flux obtained in a dimensionally split situation.

The appearance of prefactors which contain π in schemes derived using the exact
multi-dimensional evolution operators has already been noticed in [LMMW00], but none
of the schemes mentioned therein matches the one presented here.

For better comparison to other schemes, below the scheme (4.3)–(4.4) is given in
the variables prior to symmetrization, i.e. such that it is a numerical approximation
to (2.40)–(2.41). This is achieved by applying the transformation (2.9) or, which is
equivalent, by replacing p 7→ p

cε
:
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un+1 = uij −
∆t

2∆x

(
1

ε2
[p]i±1,j −

c

ε
[[u]]i± 1

2
,j

)
− 1

2

∆t

∆x

c∆t

ε∆y

(
− 1

2π

c

ε
[[[[u]]i± 1

2
]]j± 1

2
− 1

4

c

ε
[[v]i±1]j±1 +

1

4

1

ε2
[[[p]i±1]]j± 1

2

)
(4.6)

vn+1 = vij −
∆t

2∆y

(
1

ε2
[p]i,j±1 −

c

ε
[[v]]i,j± 1

2

)
− 1

2

∆t

∆y

c∆t

ε∆x

(
− 1

2π

c

ε
[[[[v]]i± 1

2
]]j± 1

2
− 1

4

c

ε
[[u]i±1]j±1 +

1

4

1

ε2
[[[p]]i± 1

2
]j±1

)
pn+1 = pij −

∆t

2∆x

(
c2[u]i±1,j −

c

ε
[[p]]i± 1

2
,j

)
− ∆t

2∆y

(
c2[v]i,j±1 −

c

ε
[[p]]i,j± 1

2

)
− 1

2

c∆t2

ε∆x∆y

(
1

4
c2[[[u]i±1]]j± 1

2
+

1

4
c2[[[v]]i± 1

2
]j±1 − 2 · 1

2π

c

ε
[[[[p]]i± 1

2
]]j± 1

2

)
(4.7)

Dimensionally split schemes in two spatial dimensions have a stability condition
([GZI+76], Eq. 8.15, p. 63)

c∆t <
1

1
∆x

+ 1
∆y

which for square grids gives a maximum cfl number of 0.5. As the present scheme is
an exact multidimensional Godunov scheme it is stable up to the physical cfl number.

4.2.4 Stability and numerical examples

The scheme (4.3)–(4.4) is applied to two test cases. The first one is the Riemann Problem
considered analytically in Section 2.2.5. The second is a test of the low Mach number
abilities of the scheme.

4.2.4.1 Riemann Problem

The initial setup is that of Section 2.2.5 (Fig. 2.1); it is solved on a square grid of
101× 101 cells on a domain that is large enough such that the disturbance produced by
the corner has not reached the boundaries for t = 0.25. Here, c = ε = 1.

The results are shown in Fig. 4.3.

In Fig. 4.4 the y-component of the velocity obtained with the numerical scheme is
compared to the analytic solution (2.39) found in Section 2.2.5.
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Figure 4.3: Solution of Riemann problem at time ct = 0.25 using scheme (4.3)–(4.4). Left:
Pressure. Center: x-velocity. Right: y-velocity. Compare the images to Fig. 2.2. The sharpness
of the discontinuities is due to the particular choice of the cfl number being very close to 1.

Figure 4.4: The y-component of the velocity obtained by the numerical scheme (4.3)–(4.4) is shown
together with the analytic solution (2.39). Although the latter has only been computed along one
particular axis, the solution is symmetric around the location of the corner in the initial data because
of self-similarity and scale invariance.

4.2.4.2 Low Mach number vortex

The second test shows the properties of the scheme in the limit ε→ 0. The setup is that
of a stationary, divergencefree velocity field and constant pressure:

p0(x) = 1

v(x) = eϕ


r
d

r < d

2− r
d

d ≤ r < 2d

0 else

The velocity thus has a compact support, which is entirely contained in the computa-
tional domain, discretized by 51×51 square cells. Here c = 1 and d = 0.2. Zero-gradient
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boundaries are enforced.
Fig. 4.5 shows the error norm at time t = 1 for different cfl numbers; results for

the scheme (4.3)–(4.4) are shown as solid lines. As has been stated earlier, it is stable
until a cfl number of 1, which is confirmed by a rapid increase of error beyond this
value. Additionally, the error drops significantly when the cfl number approaches 1
from below. This drop is more and more abrupt the lower ε is.

The dimensionally split solver is known to display artefacts in the limit ε → 0 (see
e.g. [GV99], [Bar17a]). Results obtained with this scheme are shown in the same Figure
by dashed lines. For small cfl numbers, the flux (4.5) approaches the dimensionally
split case, which is confirmed experimentally. For the dimensionally split scheme the
error does not depend on the cfl number. Also the small stability region cfl< 0.5, as
well as the growth of the error for decreasing ε are prominent in the Figure.

Figure 4.5: Solid lines show L1 error norms of the numerical solution at time t = 1 for the scheme
(4.3)–(4.4) as a function of the cfl number and for three choices of ε. Dashed lines, for comparison,
display the same for the dimensionally split scheme.

Figure 4.6: Solution of the vortex initial data at time ct = 1 using scheme (4.3)–(4.4) for ε = 10−2.
The quantity shown in color is the magnitude of the velocity. Left: Exact solution = initial data.
Center: cfl = 0.8. Right: cfl = 1.

This growth is equally observed for the scheme presented here. Therefore it is not
suitable for the low Mach number regime.
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At interesting feature however is that the choice cfl = 1 results in a considerable
improvement, as is shown in Fig. 4.3 for the case ε = 10−2. Although not useful for actual
computations, it is instructive to understand this behaviour. A reason can be found by
considering the modified equation for the scheme (4.6)–(4.7) (here it is of advantage to
use the scheme in its non-symmetrized shape). The modified equation reads

un+1 − un

∆t
+

1

ε2
∂xp = ∆x

c

2ε
∂x(∂xu+ cfl ∂yv) +O(∆x2)

vn+1 − vn

∆t
+

1

ε2
∂yp = ∆x

c

2ε
∂y(cfl ∂xu+ ∂yv) +O(∆x2)

pn+1 − pn

∆t
+ c2(∂xu+ ∂yv) = ∆x

c

2ε
(∂2
xp+ ∂2

yp) +O(∆x2)

Here, for simplicity, ∆x = ∆y has been used. Usually, the low Mach number artefacts
are attributed to the diffusion terms scaling as O(ε−1). One observes that here choosing
a cfl number of 1 makes the velocity diffusion become a gradient of the divergence. In
the limit ε → 0 the divergence becomes O(ε), and thus the highest order terms in the
modified equation become O(1). The low Mach number artefacts are then entirely due
to contributions from the O(∆x2) terms.

4.3 Stability of one-dimensional schemes

The upwind/Roe scheme, being the Godunov scheme for linear acoustics in one spatial
dimension, is stable under explicit time integration, provided the CFL number is less
than unity. This is also the physical stability condition. A central scheme, for example,
is unstable under first order explicit time integration. There are many schemes that are
stable, but under a restricted CFL condition. For example, a dimensionally split scheme
that is stable for cfl < 1 in 1-d, is only stable for cfl < 0.5 in two spatial dimensions.
When it comes to dimensionally split schemes, the modifications of the diffusion matrix
that are needed in order to enforce stationarity preservation at the same time affect the
stability of the scheme. Indeed, for example, the central scheme is stationarity preserving,
but cannot be used with an explicit time integrator. In this Section the stability of a
particular class of dimensionally split schemes is studied theoretically in one spatial
dimension. To extend the analysis to two spatial dimensions with the same methods
seems, generally, an unfeasible task. Here one has to resort to numerical experiments.

These methods can also be used to perform a linear stability analysis of numerical
schemes for the Euler equations. Therefore the presentation of the methods is partly
adapted to this task. The Section is based on work partly published in [BEK+17].

4.3.1 General procedure in one spatial dimension

4.3.1.1 Homogeneous systems of equations

Consider a one-dimensional linear hyperbolic system of 2 equations:

∂tq + J∂xq = 0 q : R+
0 × R→ R2
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This is a one-dimensional analogue of schemes considered in Section 3. J is the 2 × 2
Jacobian matrix.

Assume an explicit numerical scheme for this system on a uniform grid of spacing
∆x to be of the form

∆x
qn+1
i − qni

∆t
+

1

2
J(qni+1 − qni−1)− 1

2
D(qni+1 − 2qni + qni−1) = 0 (4.8)

with D a constant 2× 2 matrix (diffusion matrix ).
Then, analogously to Section 3 in order to perform a von Neumann analysis consider

a Fourier mode with wave vector k

qni = q̂ exp(−iωn∆t+ i∆xik)

For simplicity, define β := ∆x · k. Then inserting this ansatz into (4.8) yields

∆x
exp(−iω∆t)− 1

∆t
+ J i sin β −D(cos β − 1) = 0

Also define

ν :=
∆t

∆x

The Fourier mode stays bounded if | exp(−iω∆t)| ≤ 1.

Definition 4.4 (Amplification matrix). Define the amplification matrix A

A = 1− ν
(
J i sin β +D(1− cos β)

)
Definition 4.5 (Stability). Call λ ∈ C an eigenvalue of A. A linear scheme is called
(von Neumann) stable if max |λ| ≤ 1.

4.3.2 Scalar upwinding

The simplest choice of a diffusion matrix D is a scalar, i.e. D = d · id. This case is
considered to briefly demonstrate how the stability analysis is performed.

Theorem 4.2 (Scalar stability). If the diffusion matrix is a scalar d (times the identity
matrix), and λ̄ denotes an eigenvalue of J , then for stability

d ≥ |λ̄|

Proof. The amplification matrix becomes

id (1− νd(1− cos β))− νJ · i sin β
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and from

0 = det (id (1− νd(1− cos β))− νJ · i sin β + λid)

= det

(
id

1 + λ− νd(1− cos β)

νi sin β
− J

)
(νi sin β)some power

one observes that the eigenvalue λ of the amplification matrix, with λ̄ the eigenvalue of
J , is given as

λ = νi sin βλ̄+ νd(1− cos β)− 1 (4.9)

Assuming both λ̄ and d to be real, one has

1
!
> |λ|2 = (νd(1− cos β)− 1)2 + (ν sin βλ̄)2

0
!
> νd2(1− cos β)2 − 2d(1− cos β) + ν sin2 βλ̄2

ν
!
<

2d(1− cos β)

d2(1− cos β)2 + sin2 βλ̄2

ν
!
<

2d

d2(1− cos β) + (1 + cos β)λ̄2
=

2d

d2 + λ̄2 + cos β(λ̄2 − d2)
=: G(cos β)

The denominator is zero at cos β =
d2 + λ̄2

d2 − λ̄2
= 1 + 2

λ̄2

d2 − λ̄2
. Thus if 0 < |d| < |λ̄|,

there is a singularity inside [−1, 1] and the G-image of the interval [−1, 1] is unbounded
to both sides of the real line. Under the condition, that |d| ≥ |λ̄|, G is (in [−1, 1]) a
monotone function of cos β (its derivative does not change sign), therefore it attains its
maximum at the boundary cos β = ±1:

ν
!
< min

(
d

λ̄2
,

1

d

)
d>|λ̄|
=

1

d

Thus for stability, d must be positive and

d ≥ |λ̄|

Scalar diffusion therefore has to be chosen positive and such that it exceeds the
absolute value of every eigenvalue of the Jacobian.

4.3.3 Equal diagonal entries

In order to adapt the studies to the acoustic system, the Jacobian is assumed to have
the following shape:

J =

(
a a12

a21 a

)
(4.10)
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with a, a12, a21 real numbers.

For simplicity, consider first a diffusion matrix with equal entries on the diagonal

D =

(
d d12

d21 d

)
(4.11)

Theorem 4.3. Consider the Jacobian (4.10) and the diffusion matrix (4.11). Define

A = −a12a21 sin2 β + d12d21(1− cos β)2 (4.12)

B = (a12d21 + d12a21)(1− cos β) sin β (4.13)

The stability condition amounts to

ν
!
< 2

d(1− cos β)∓
√√

A2+B2+A
2(

d(1− cos β)∓
√√

A2+B2+A
2

)2

+

(
a sin β ∓ sgn (B)

√√
A2+B2−A

2

)2 (4.14)

which has to be true for all β.

Proof. The amplification matrix is

(
1− ν(ai sin β + d(1− cos β)) −ν(a12i sin β + d12(1− cos β))
−ν(a21i sin β + d21(1− cos β)) 1− ν(ai sin β + d(1− cos β))

)

Its eigenvalue λ fulfills

(1− νd(1− cos β)− νai sin β − λ)2 = ν2[a12i sin β + d12(1− cos β)][a21i sin β + d21(1− cos β)]

=: ν2(A+Bi) (4.15)

1− νd(1− cos β)− νai sin β ± ν
√
A+Bi = λ

The square root of a complex number can be rewritten as

√
A+Bi =

√√
A2 +B2 + A

2
+ i sgn(B) ·

√√
A2 +B2 − A

2
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Therefore

|λ|2 =

1− νd(1− cos β)± ν

√√
A2 +B2 + A

2

2

+

−νa sin β ± sgn (B)ν

√√
A2 +B2 − A

2

2

=

−1 + νd(1− cos β)∓ ν

√√
A2 +B2 + A

2

2

+

νa sin β ∓ sgn (B)ν

√√
A2 +B2 − A

2

2

= 1 + ν2

d(1− cos β)∓

√√
A2 +B2 + A

2

2

− 2ν

d(1− cos β)∓

√√
A2 +B2 + A

2



+ ν2

a sin β ∓ sgn (B)

√√
A2 +B2 − A

2

2

!
< 1

Solving for ν proves the assertion.

Corollary 4.4 (upwind/Roe scheme). Consider the rescaled system of acoustic equations
with additionally an advective velocity: Take a12 = 1

ε2
, a21 = c2 and the diagonal value a

of the Jacobian v with ε, c, v real, positive numbers, i.e(
v 1

ε2

c2 v

)
(4.16)

Consider first d12 = d21 = 0 and d =
∣∣ c
ε

+ v
∣∣. Then the scheme is stable if

ν
!
<

1∣∣ c
ε

+ v
∣∣

Proof. Inserting the given parameters yields

A = −c
2

ε2
sin2 β < 0

B = 0

ν
!
< 2

d(1− cos β)∓
√
|A|+A

2(
d(1− cos β)∓

√
|A|+A

2

)2

+

(
v sin β ∓ sgn (B)

√
|A|−A

2

)2

= 2
d(1− cos β)

d2(1− cos β)2 +
(
v ∓ sgn (B) c

ε

)2
sin2 β

=
2d

d2(1− cos β) +
(
v ∓ sgn (B) c

ε

)2
(1 + cos β)

Results of scalar stability (Theorem 4.2) can thus be used here and yield d ≥
∣∣ c
ε

+ v
∣∣,

and in case of equality one obtains the assertion.
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Using the scheme as suggested in [MRE15]

P =

(
1 − δ

cε

cδε 1

)
leads to a different form of the upwinding matrix:

D =
1

cε
√
c2(1 + δ2)− δ2ε2v2

(
c3 c2δ+cεv−δε2v2

ε

c2ε(−c2δ + cεv + δε2v2) c3

)
(4.17)

Define τ :=
√
c2(1 + δ2)− δ2ε2v2. For the Jacobian (4.16), one can investigate the

limit of small ε.

Corollary 4.5. Consider the Jacobian (4.16) and the upwinding matrix (4.17) in the
limit ε → 0. If δ ∈ O(1) and the scheme is stable, then the stability condition is
νmax ∈ O

(
ε
c

)
; if δ ∈ O(1/ε) and the scheme is stable, then the stability condition is

νmax ∈ O
(
ε2

c

)
.

Proof. For the components of the upwinding matrix one has (having in mind the two
cases δ ∈ O(1

ε
) and δ ∈ O(1)):

τ ∼ c
√

1 + δ2

d̄ ∼ c√
1 + δ2ε

d12 ∼
δ√

1 + δ2ε2
d21 ∼ −

c2δ√
1 + δ2

Therefore

A = −c
2

ε2

(
sin2 β +

δ2

1 + δ2
(1− cos β)2

)
B =

2cv√
1 + δ2ε

(1− cos β) sin β

where due to a lot of cancellations the exact values were used for B. Whereas in both
cases A ∈ O(1/ε2), one has

B ∈ O(1/ε) if δ ∈ O(1)

B ∈ O(1) if δ ∈ O(1/ε)

As, |A| = −A,
√
A2 + B2 −A ∼ 2|A| and

√
A2 + B2 +A ∼ |A| B

2

2A2
=
B2

2|A|
∈

{
O(1) if δ ∈ O(1)

O(ε2) if δ ∈ O(1/ε)
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The term
√√

A2+B2+A
2

will be compared to

d̄(1− cos β) ∈

{
O(1/ε) if δ ∈ O(1)

O(1) if δ ∈ O(1/ε)

and the latter wins in both cases. Therefore

ν < 2
d(1− cos β)

d2(1− cos β)2 +
(
c sin β ∓ sgn (B)

√
|A|
)2

∼ 2

c√
1+δ2ε

(1− cos β)

c2

(1+δ2)ε2
(1− cos β)2 + c2

ε2

∣∣sin2 β − δ2

1+δ2 (1− cos β)2
∣∣

=
ε

c

2√
1+δ2

1
1+δ2 (1− cos β) +

∣∣(1 + cos β)− δ2

1+δ2 (1− cos β)
∣∣

=
ε

c

2
√

1 + δ2

1− cos β + |1 + (1 + 2δ2) cos β|

Now a minimum over all β ∈ [0, 2π) has to be performed in order to obtain the global
maximum value of ν. If δ ∈ O(1) (in particular one might be interested to recover for
δ = 0 the usual Roe scheme) then

νmax ∼
ε

c

if a suitable minimizing cos βmin exists, which is O(1) (trivially the case for δ = 0).
However if δ ∈ O(1/ε), then | cos βmin| = 1 and

νmax ∼
ε

c

√
1 + δ2

δ2
∈ O

(
ε2

c

)

4.3.4 Arbitrary diagonal entries

For the Jacobian (4.10) consider now an arbitrary upwinding matrix

D =

(
d11 d12

d21 d22

)
(4.20)

Theorem 4.4. Given the diffusion matrix (4.20) for the Jacobian (4.10), the stability
condition from Proposition 4.3 can be used, if the following substitutions are made:

d 7→ d̄ :=
d11 + d22

2

A 7→ Ã =

(
d22 − d11

2

)2

(1− cos β)2 + A
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Proof. The amplification matrix is then given by(
1− ν(ai sin β + d11(1− cos β)) −ν(a12i sin β + d12(1− cos β))
−ν(a21i sin β + d21(1− cos β)) 1− ν(ai sin β + d22(1− cos β))

)
and one finds for its eigenvalue λ

[1− ν(ai sin β + d11(1− cos β))− λ][1− ν(ai sin β + d22(1− cos β))− λ]

= ν2[a12i sin β + d12(1− cos β)][a21i sin β + d21(1− cos β)] =: ν2(A+Bi)

Note that A and B are the same as in (4.12) ans (4.13). Define for the moment

1− ν(ai sin β + dii(1− cos β)) =: αi

Then the above equation reads

(α1 − λ)(α2 − λ) = ν2(A+Bi)

λ2 − λ(α1 + α2) + α1α2 = ν2(A+Bi)(
λ− α1 + α2

2

)2

− (α1 + α2)2

4
+ α1α2 = ν2(A+Bi)(

λ− α1 + α2

2

)2

= ν2(A+Bi) +

(
α1 − α2

2

)2

Now

α1 + α2

2
= 1− ν

(
ai sin β +

d11 + d22

2
(1− cos β)

)
α1 − α2

2
= ν

d22 − d11

2
(1− cos β) ∈ R

Therefore formula (4.14) can be reused according to the substitution rules of the asser-
tion.

Corollary 4.6. Consider the Jacobian (4.16) and the following upwinding matrix:

D =

(
|v| 1

ε2

−c2 2c
ε

)
Such a scheme is stable in the limit ε→ 0, or alternatively if v = 0, with ν ∈ O(ε).

Proof. Stability follows from Theorem 4.4. One finds

d =
|v|+ 2c

ε

2

A = −2
c2

ε2
(1− cos β) +

( 2c
ε
− |v|
2

)2

(1− cos β)2

= −2
c2

ε2
(1− cos β) +

(
c2

ε2
− 2

c

ε

|v|
2

+
|v|2

4

)
(1− cos β)2

= −c
2

ε2
sin2 β + |v| · O(ε−1)

B = 0
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In the limit ε→ 0, or for v = 0, the stability condition amounts to

ν
!
< 2

d(1− cos β)

d2(1− cos β)2 + sin2 β
(
v ∓ sgn (B) c

ε

)2 '
ε

c

This method is investigated further in Section 4.4.1.
If the upwinding matrix D shall scale in ε elementwise as the Jacobian of linear

acoustics, one can investigate the highest order of ε appearing in the CFL condition in
quite some generality.

Theorem 4.5. Take, in (4.10) and (4.20), a, a21, d11, d22 and d21 to be asymptotically
constant (O(1)) and

a12 :=
ã12

ε2
d12 :=

d̃12

ε2
+O

(
1

ε

)
Assume additionally that ã12d21 + d̃12a21 = 0, d̃12d21 < 0 and ã12a21 > 0. Then νmax, if
it exists, is νmax ∈ O(ε2).

Proof.

A = −a12a21 sin2 β + d12d21(1− cos β)2 +

(
d22 − d11

2

)2

(1− cos β)2

=
−ã12a21 sin2 β + d̃12d21(1− cos β)2

ε2
+O

(
1

ε

)
B = (a12d21 + d12a21)(1− cos β) sin β =

ã12d21 + d̃12a21

ε2
(1− cos β) sin β +O

(
1

ε

)
d :=

d11 + d22

2
∈ O(1)

With d̃12d21 < 0 and ã12a21 > 0, then |A| + A ∈ O
(

1
ε

)
and
√
A2 +B2 + A ∼ B2

2|A| ∈
O(1).

Then

νmax → 2
d(1− cos β) +O(1)

|A|
∈ O(ε2)

In such a case, therefore, if there is stability, then an upwinding matrix that scales
as the Jacobian and has its diagonal values equal must lead to a CFL condition scaling
as ε2.

There is another interesting situation that can be studied with this theory. Consider
a numerical scheme whose amplification matrix has eigenvalues that scale O(1/ε). Does
this imply a CFL condition ν ∈ O(ε)?

In general, the answer is no:
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Theorem 4.6. If the eigenvalues of the amplification matrix scale O(1/ε), then the CFl
condition of the scheme can be ν ∈ O(ε2).

Proof. This is shown by studying an example. Consider an amplification matrix which
has the following eigenvalue

λ =
A+ iB

ε
ν + 1 + (C +Di)ν

with A,B,C,D real numbers. Its absolute value, imposed to be less than one is(
A

ε
ν + 1 + Cν

)2

+

(
B

ε
+D

)2

ν2 < 1

2

(
A

ε
+ C

)
+

(
A

ε
+ C

)2

ν +

(
B

ε
+D

)2

ν < 0

ν <
−2
(
A
ε

+ C
)(

A
ε

+ C
)2

+
(
B
ε

+D
)2

=
−2 (Aε+ Cε2)

(A+ εC)2 + (B + εD)2

Now if A = 0, it turns out that ν ∈ O(ε2).

In [BM05], for a particular numerical scheme the eigenvalues of the amplification
matrix are found to scale O(1/ε2). The conclusion drawn is that stability is only possible
if ν ∈ O(ε2), which is confirmed by experiments. However, as the example above shows,
things might be more complicated.

4.3.5 Amplification matrices with decomposing eigenspace

Consider the following 3× 3 linear hyperbolic system

∂t

 q1

q2

q3

+

 a a12 0
0 a a23

0 a32 a

 ∂x

 q1

q2

q3

 = 0 (4.21)

which shall be solved with a time-explicit scheme of the form (4.8) with

D =

 d1 d12 d13

0 d2 d23

0 d32 d2

 (4.22)

Observe that though the diagonal elements of the Jacobian are the same, there are two
different values appearing on the diagonal of D.
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Theorem 4.7. The stability of a scheme for (4.21) with the diffusion matrix (4.22) is
governed by the stability of the truncated system

J ′ =

(
a a23

a32 a

)
D′ =

(
d2 d23

d32 d2

)
and the condition d1 ≥ |a|.

Proof. The amplification matrix is

D =

 1− ν(ai sinβ + d1(1− cosβ)) −ν(a12i sinβ + d12(1− cosβ)) −ν(d13(1− cosβ))
0 1− ν(ai sinβ + d2(1− cosβ)) −ν(a23i sinβ + d23(1− cosβ))
0 −ν(a32i sinβ + d32(1− cosβ)) 1− ν(ai sinβ + d2(1− cosβ))



Its eigenvalues λ fulfill

[1− ν(ai sin β + d1(1− cos β))− λ][1− ν(ai sin β + d2(1− cos β))− λ]2

= ν2[a32i sin β + d32(1− cos β)][a23i sin β + d23(1− cos β)][1− ν(ai sin β + d1(1− cos β))− λ]

which factorizes into

1− ν(ai sin β + d1(1− cos β)) = λ (4.23)

and

[1− ν(ai sin β + d2(1− cos β))− λ]2 = ν2[a32i sin β + d32(1− cos β)][a23i sin β + d23(1− cos β)]
(4.24)

Equation (4.23) is easily recognized as a 1-dimensional stability result just as in Equation
(4.9). A such leads to the stability condition d1 ≥ |a| and – alone – it would give the
stability condition ν < 1

d1
.

Equation (4.24) is just Equation (4.15) for the truncated matrices. This proves the
assertion.

In primitive variables the Jacobian and the upwinding matrix, when calculated with
the scheme from [MRE15, BEK+17], are

J =

 v ρ 0
0 v 1

ρε2

0 ρc2 v

 D =

 |v|
ρ(−c2δ+cεv+δε2v2)

cτ
− v
c2

+ 1
ετ

0 c2

ετ
c2δ+cεv−δε2v2

ρcε2τ

0 ρc(−c2δ+cεv+δε2v2)
τ

c2

ετ


The condition d1 ≥ |a| is fulfilled and gives the necessary condition ν < 1

|v| .

The relevant submatrices for Equation (4.24) have already been highlighted. They
turn out to be (but for a factor of ρ) identical to those used in (4.16) and (4.17). The
relevant conditions have thus already been discussed and carry over to this case without
modification.
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4.4 Dimensionally split schemes

It should seem surprising that taking into account (direction by direction) only one-
dimensional information allows an efficient numerical solution of systems of PDEs in
multiple spatial dimensions – if this approach were not ubiquitously in use. Such an
approach is called a dimensionally split scheme.

Definition 4.6 (Dimensionally split scheme). Consider a linear n× n system in e.g. 2
spatial dimensions,

∂tq + Jx∂xq + Jy∂yq = 0 q : R+
0 × R2 → Rn

and two semi-discrete one-dimensional schemes

∂tqij +Ax = 0 ∂tqij +Ay = 0

that discretize, respectively,

∂tq + Jx∂xq = 0 ∂tq + Jy∂yq = 0

Here Ax and Ay are some stencils. The semi-discrete dimensionally split scheme is given
by

∂tq +Ax +Ay = 0

The advantages of simple implementation are so overwhelming that anybody who is
considering different schemes is confronted with the need to explain himself. A compara-
tive discussion is postponed until Section 4.5, while this Section deals with dimensionally
split schemes, that are stationarity preserving.

Schemes for the acoustic equations split up into those that can compute the limit
of low Mach numbers, and those who cannot. As has been mentioned in Section 4.1.2,
there is no construction principle for the former known that rests on as firm a basis as
the Godunov scheme. Dimensionally split schemes that are able to resolve this limit
have free parameters that are introduced by an educated guess, but still ad hoc. An a
priori unknown stability has to be checked later either theoretically or experimentally.
In particular this second constraint is of a practical relevance that can hardly be under-
estimated. This Section demonstrates that still, there exist dimensionally split schemes
for the acoustic equations that both perform well in the limit of low Mach numbers and
are stable under explicit time integration.

4.4.1 Stationarity preservation

For the purpose of the illustration of stationarity preserving properties of schemes in this
Section ε is treated as some finite parameter. Recall Theorem 4.1 that interprets the
limit ε→ 0 as the limit of long time.
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Consider a centered scheme with numerical diffusion for the acoustic system (2.40)–
(2.41), which has the general shape

∂tq +
1

2∆x

(
Jx(qi+1,j − qi−1,j)−Dx(qi+1,j − 2qij + qi−1,j)

)
+

1

2∆y

(
Jy(qi,j+1 − qi,j−1)−Dy(qi,j+1 − 2qij + qi,j−1)

)
= 0 (4.25)

A dimensionally split scheme typically has the following general form of the diffusion
matrices Dx, Dy:

Dx =

 a1 0 a2

0 0 0
a3 0 a4

 Dy =

 0 0 0
0 a1 a2

0 a3 a4

 (4.26)

Dimensionally split schemes under certain conditions can be stationarity preserving:

Theorem 4.8 (Stationarity preserving dimensionally split schemes). The dimensionally
split scheme (4.25) with (4.26) is stationarity preserving if a1 = 0. The stationary states
fulfill p = const and

[u]i±1,j

2∆x
+

[v]i,j±1

2∆y
− a3

c2

(
[[u]]i± 1

2
,j

2∆x
+

[[v]]i,j± 1
2

2∆y

)
= 0 (4.27)

which is a discretization of div v = 0.

Proof. The evolution matrix is easily found to be

E = i


−
a1(tx−2+ 1

tx
)

2∆x
0 −

a2(tx−2+ 1
tx

)

2∆x
+

(tx− 1
tx

)

2∆xε2

0 −
a1(ty−2+ 1

ty
)

2∆y
−
a2(ty−2+ 1

ty
)

2∆y
+

(ty− 1
ty

)

2∆yε2

−
a3(tx−2+ 1

tx
)

2∆x
+
c2(tx− 1

tx
)

2∆x
−
a3(ty−2+ 1

ty
)

2∆y
+
c2(ty− 1

ty
)

2∆y
−
a4(tx−2+ 1
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)

2∆x
−
a4(ty−2+ 1
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)

2∆y



whose determinant is only zero (independently of k), if a1 = 0 as can be shown upon
direct computation. In this case the corresponding eigenvector is a3(ty−2+t−1

y )

2∆y
− c2(ty−t−1

y )

2∆y

−a3(tx−2+t−1
x )

2∆x
+ c2(tx−t−1

x )
2∆x

0

 (4.28)

which amounts, by inverting the Fourier transform, to the given discrete divergence
operator and p = const.

Numerical data that exactly satisfy (4.27) remain unchanged during the evolution
(up to machine error). The discrete operator (4.27) is a first order discretization of
∂xu + ∂yv, if a3 6= 0. Choosing both a1 = 0 and a3 = 0 in (4.27) and (4.26) makes all
the spatial operators reduce to central differences:
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Corollary 4.7. A scheme for the system (2.40)–(2.41) whose spatial derivatives are
discretized by central differences in two spatial dimensions is stationarity preserving.

Choosing a3 = 0 means that the discrete divergence operator which is exactly pre-
served during the time evolution, is a central one. Together with a1 = 0, however, this
would mean that there is no diffusion on the velocity variables at all. In practice this is
often not desirable as then the scheme will not be stable upon usage of an explicit time
integrator (e.g. forward Euler). One might wonder whether there exists a discrete ve-
locity diffusion such that the resulting scheme would keep the central divergence exactly
stationary, as this would lead to the stationary states being discretized to higher order.
One is thus led to the question of finding a diffusion stencil that vanishes whenever a
given divergence stencil does. This problem is solved in Section 3.2 and applied to the
acoustic equations in Section 4.5.

In the literature, there already exist several strategies that have been developed in
order to cope with the low Mach number problems. They can now be understood in
the light of the new arguments that employ the idea of a stationarity preserving scheme.
Adapting the matrices to the case of acoustic equations yields the following selection of
diffusion matrices:

1. Method from [BEK+17]: Dx =

 0 0 1
ε2

0 0 0
−c2 0 0



2. Method from [DOR10]: Dx =

 0 0 0
0 0 0
−c2 0 2c

ε



3. The method investigated in Corollary 4.6: Dx =

 0 0 1
ε2

0 0 0
−c2 0 2c

ε


Note how all of them have a1 = 0, and are thus stationarity preserving. Experimental

results obtained with method no. 3 of the above list are shown in Fig. 4.9–4.7. This
method has been found to be stable under explicit time integration in multiple spatial
dimensions experimentally. Its one-dimensional stability is studied in Corollary 4.6.

4.4.2 The upwind/Roe scheme

The upwind, or Roe, scheme has Dx = |Jx|, Dy = |Jy|, with the absolute value being
defined on the eigenvalues. This gives

Dx =

 c
ε

0
c
ε

 Dy =

 0
c
ε

c
ε


which is of the form (4.26), but violates the condition a1 = 0 found in Theorem 4.8.
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Figure 4.7: Top left: Initial setup of a stationary divergence-free vortex. Top right: Solution at
t = 10 with the upwind (Roe) scheme. Bottom: Solution at t = 10 with solver 3 from the above
list.
√
u2 + v2 is colour coded; all simulations performed on a 50× 50 grid with forward Euler; all

methods are of first order in space and time. Observe the improved quality when using a stationarity
preserving scheme.

Corollary 4.8. The Roe scheme for the system (2.40)–(2.41) in two spatial dimensions
is not stationarity preserving.

This can be observed in the experiment. Consider the following vortex setup that
is similar to the Gresho vortex ([GC90], see also Equations (5.15)–(5.16), page 158).
Denoting by eϕ the unit vector in ϕ-direction and with r =

√
x2 + y2 in two spatial

dimensions

v = eϕ ·


5r r < 0.2

2− 5r r < 0.4

0 else

p = pc = const



4.4 Dimensionally split schemes 109

with a constant pressure pc. As v is divergenceless, this is a stationary solution of the
acoustic equations (2.40)–(2.41).

The numerical time evolution of this setup is shown in Figures 4.8–4.10. From an
initial state (that is derived from the analytic stationary solution) one observes the
numerical solution to move over to some other stationary solution. Initially, ∂xu+∂yv =
0, but ∂xu 6= 0 in general. One observes however in Figure 4.8 that the Roe scheme
diffuses away ∂xu exponentially in time, until it reaches values comparable with machine
precision. The initial velocities, shown in the left column of Fig. 4.10, are modified such
that after long times only a shear flow is left over. The only states that the scheme is
able to keep stationary, are trivial ones. By stability, the scheme is diffusing away all
the others. On the other hand, a stationarity preserving scheme would keep stationary
also discrete versions of vortical, and in general of all divergenceless flows.

Figure 4.8: Left: Decay of ‖∂xu‖L1 ∼ exp

(
− t
ε

)
. Right: ‖∂yu‖L1 . Both figures were measured

for a stationary vortex setup in a simulation using the Roe solver for the acoustic equations and
show curves for values ε = 1, 0.1, 0.01. Note the very different vertical axis scalings in the two plots:
whereas ∂xu 6= 0 does not comply with stationarity for the Roe scheme, after some transients the
scheme settles down on a shear flow (∂yu 6= 0) that is not significantly different from the initial
data.

For the above example the discrete vorticity that is preserved exactly during the time
evolution is, by (4.28) (the notation having been introduced on page 13)

[v]i±1,j

2∆x
− [u]i,j±1

2∆y
+
a3

c2

(
[[u]]i,j± 1

2

2∆y
−

[[v]]i± 1
2
,j

2∆x

)
= ∂xv − ∂yu+O(∆x,∆y)

In [MR01] the Appendix deals with the preservation of a specific discrete vorticity
stencil for a certain family of schemes, and with the production rate in case of non-
preservation. However this analysis, as well as the treatment of the acoustic equations in
[LFS07], assume a vorticity stencil. There might still exist some other vorticity stencil
that is exactly preserved. Therefore a more adequate procedure would be to first check
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Figure 4.9: Time evolution of ‖∂xu‖L1 . Figure measured for a stationary vortex setup in a simulation
using solver 3 mentioned above (“dimensionally split method”) and the multidimensional solver
(“truly multi-dimensional method”) presented in Section 4.5 (Equations (4.32)) for the acoustic
equations and show curves for values ε = 1, 0.1, 0.01. (Note the scalings of both axes.) Observe
the absence of diffusion (contrary to Fig. 4.8, left) and the improved quality of the simulation upon
usage of a truly multi-dimensional solver.

(via the determinant of the evolution matrix) the existence of any preserved vorticity
stencil and to find its shape by evaluating the eigenvector corresponding to the vanishing
eigenvalue. Only if the evolution matrix does not contain any vanishing eigenvalues can
one claim that there is no preserved discrete vorticity. The condition of Theorem 2
formulated in [LFS07] therefore is sufficient, but not necessary for vorticity preservation.

Next we consider the vortex setup as in Figures 4.8–4.10 for the limit of ε → 0.
Again, the upwind/Roe scheme is considered, which has only trivial stationary states.
The initial data of the vortex are a discrete version of an analytically stationary solution
and have been thus obtained from a divergence-free solution. The upwind/Roe scheme,
since it is stable, keeps certain states exactly stationary and diffuses everything else
away with time. This diffusion time scales with ε, because the non-zero eigenvalues of
the evolution matrix scale with 1/ε. After long time therefore one is left with a numerical
stationary state of the scheme.

If the set of numerical stationary states, however, consists only of trivial ones (as it is
the case for the Roe scheme), then this numerical solution will have lost all resemblance
to the analytic one. In this example the vortex is diffused away and a shear flow left over.
Therefore the observed “low Mach number artefacts” are entirely due to the scheme’s
stationary solutions not being discretizations of all the analytic ones.

The low Mach number limit ε → 0 for the acoustic equations makes the scheme



4.5 Multi-dimensional schemes 111

Figure 4.10: Simulation results for ε = 10−3 of a vortex setup with the Roe scheme. Left are results
at time t = 0, right – at t = 0.3. Top row: u (colour coded), bottom row: v (colour coded). The
Roe scheme fails to keep the setup stationary and transitions to a trivial stationary state (shear
flow).

attain a numerical stationary state on time scales O(ε). In order to improve the quality
of the numerical solution therefore one needs to choose a scheme which has nontrivial
numerical stationary states that capture the rich set of nontrivial stationary states, i.e.
a stationarity preserving scheme.

Reducing ∆x does not really solve the problem, because then the diffusion time will
be longer, but the stationary states will still not be any more similar to the analytic
ones. By the equivalence between the low Mach number and the long time limit, this
also means that the numerical limit states will not be any closer to the analytic limit
states as ε→ 0.

4.5 Multi-dimensional schemes

Dimensionally split schemes for the acoustic equations can be stationarity preserving.
Do they have any shortcomings? Is it possible to achieve more by studying schemes that
cannot be written in a dimensionally split manner? This thesis wants to argue that yes,
there exist differences among schemes that are stationarity preserving, and that in order
to overcome certain restrictions of the dimensionally split schemes one has to resort to
multi-dimensional schemes.

Additionally, it turns out that it is in a sense easier to construct stable multi-
dimensional schemes than dimensionally split ones. In Section 4.4 certain entries of
the diffusion matrix were modified in order to achieve stationarity preservation, while
the scheme still remained dimensionally split. This had strong impact on the stability
properties of the scheme. In fact, stable schemes were basically singled out by trial and
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error. There is an alternative strategy, which in practice leads to stable schemes straight
away.

As result of Theorem 4.8 in Section 4.4.1, in the velocity equation, for a dimensionally
split scheme the prefactor of the velocity diffusion has to vanish: denoting the velocity
components in 2-d by u and v,

∂t

(
u
v

)
+

(
1

2∆x
[p]i±1,j

1
2∆y

[p]i,j±1

)
= a1

(
1

2∆x
[[u]]i± 1

2
,j

1
2∆y

[[v]]i,j± 1
2

)
+ a2

(
1

2∆x
[[p]]i± 1

2
,j

1
2∆y

[[p]]i,j± 1
2

)
is only part of a stationarity preserving dimensionally split scheme, if a1 = 0. This
is, loosely speaking, because a stationary state is characterized by vanishing divergence
∂xu + ∂yv = 0, which does not constrain in any way the second derivatives ∂2

xu or ∂2
yv.

However, if one would be able to make ∂x(∂xu + ∂yv) out of ∂2
xu, then these second

derivatives would vanish along with the divergence. This would however imply the
introduction of a numerical discretization of the mixed derivative ∂x∂yv. This is not
possible with dimensionally split schemes.

Multi-dimensional schemes that introduce such discretizations have been found to
have a certain beauty and also measurable advantages (i.e. in terms of error) over
stationarity preserving dimensionally split schemes. The following construction strategy
has proven itself very successful. One starts with a one-dimensional stable scheme,
e.g. the upwind/Roe scheme. It is first extended to multiple spatial dimensions in a
dimensionally split manner. Then one finds terms that have to be added to the velocity
diffusion in order to make appear only derivatives of the divergence, rather than just
derivatives of the different velocity components. How this can be done in the discrete
setting is shown in Section 3.2. It is also shown in Theorem 3.6 that such a scheme is
stationarity preserving.

The new terms that have to be added to the dimensionally split scheme are all
discretizations of mixed derivatives. Therefore these schemes, when applied to a one-
dimensional situation, reduce to the one-dimensional scheme that one has started out
with. One thus can hope to pass on its stability properties to the multi-dimensional
stationarity preserving scheme. Indeed, experimentally the schemes that have been con-
structed in such way all have turned out to be stable under explicit time integration.
Starting with a one-dimensional scheme that is stable under cfl < 1, its dimensionally
split extension to two spatial dimensions is only stable under the condition cfl < 0.5.
The multi-dimensional extensions presented in this thesis have been found to continue
to be stable under cfl < 1 even in multiple spatial dimensions.

It seems that in order to fine-tune the properties of a scheme this construction prin-
ciple can be fruitfully used in a variety of situations, out of which this thesis presents
three. They are discussed in this Section, as well as in the subsequent Sections 4.7 and
4.8, respectively.

4.5.1 Stationarity-consistent divergence

This Section focuses on first order schemes in two spatial dimensions. The extension
to higher order is performed in Section 4.7; the extension to higher dimensions can be
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performed analogously and is omitted. For first order schemes, the stencils of all the
discrete operators involve only the cell itself and its eight neighbours.

Definition 4.7 (Moore stencil). The Moore neighbourhood of a two-dimensional cell
(i, j) is the cell itself and the 8 cells

(i− 1, j + 1) (i, j + 1) (i+ 1, j + 1)
(i− 1, j) (i+ 1, j)

(i− 1, j − 1) (i, j − 1) (i+ 1, j − 1)

A Moore stencil at cell (i, j) is a stencil involving only cells from the Moore neighbourhood
of cell (i, j).

The construction idea plays on a discrete counterpart to the statement

∂xu+ ∂yv = 0 ⇒ ∂2
xu+ ∂x∂yv = 0 (4.29)

This is the case considered in Section 3.2.2. If Equation (4.29) is true at discrete level
for some choice of discretizations, then the resulting scheme is stationarity preserving by
Theorem 3.6.

Often in numerics one has to refrain from the wish of obtaining an exact equality, and
has to content oneself with equality up to terms O(∆xr). The order r ∈ N is then taken as
a measure of the quality of approximation. This thinking prevails throughout numerical
analysis: indeed, differential operators cannot be, in general, exactly reproduced in the
discrete, but only up to some error. This thinking is not sufficient for the purposes of this
Section. If (4.29) is true only up to an error, then the scheme will not be stationarity
preserving. There is no such thing as stationarity preserving up to an error ! The
diffusion of the multi-dimensional Godunov scheme (4.6)–(4.7), for example, is to first
order a derivative of the divergence for certain choices of the cfl number. However,
this is not true for all orders (compare Section 3.2.4), and indeed the scheme is not
stationarity preserving and does not perform well in the low Mach number limit.

Corollary 4.9. There is no non-zero Moore stencil of second derivatives of u and v
which is stationarity-consistent with the central divergence.

Proof. This is a direct consequence of Theorem 3.8. Using the notation established there,
for the Moore stencil one has to consider the case k = 1.

Note. This explains why the authors in [JT06], [TF04] found that “the choice of
central differences turned out to be not very fruitful”.

Modifying the divergence stencil allows to find a stationarity-consistent diffusion.

Corollary 4.10. The only symmetric divergence discretization on a Moore stencil that
allows for a non-zero stationarity-consistent diffusion is

{{[u]i±1}}j± 1
2

8∆x
+

[{{v}}i± 1
2
]j±1

8∆y
(4.30)



114 4 Numerical schemes for linear acoustics

The linear stationarity-consistent stencil of second derivatives associated to the diver-
gence (4.30) is

1

4
c1

(
{{[[u]]i± 1

2
}}j± 1

2

∆x
+

[[v]i±1]j±1

∆y

)
+

1

4
c2

(
[[u]i±1]j±1

∆x
+

[[{{v}}i± 1
2
]]j± 1

2

∆y

)
(4.31)

with arbitrary parameters c1, c2.

Proof. This immediately follows from the example of Section 3.2.2.1.

This analysis easily generalizes to any number of spatial dimensions.
The divergence stencil (4.30) is – by equivalence of stationarity and vorticity preser-

vation – the “extended operator” in [TF04], [JT06] and has also has been suggested in
[MT11] for the system wave equation. The above proof shows that there is actually no
other choice among directionally unbiased stencils defined on a 3 × 3 grid, i.e. among
symmetric Moore stencils. In [Sid02] some non-standard finite difference methods are
introduced in the context of steady Euler equations. They are reminiscent of the stencils
above for the linearized Euler equations. An overview of methods that appear in the
literature is presented in Table 4.1.

Source Year divergence velocity diffusion keyword
[LMMW00] 2000 (4.30) (4.31) (LW) bicharacteristics

[MR01] 2001 (4.30) (4.31) (and LW) vorticity
[Sid02] 2002 (4.30) (4.31) factorizable
[JT06] 2006 (4.30) (4.31) flux distribution

[LFS07] 2007 see [MR01] see [MR01] vorticity
[MT11] 2011 (4.30) (4.31) potential-based
[LR14] 2014 unconstrained (4.31) vorticity

Table 4.1: Selection of the literature involving stationarity preserving multi-dimensional schemes for
the equations (2.7)–(2.8) of linear acoustics. Observe that the discrete divergence and the discrete
second derivative of the velocity are the same nearly everywhere. LW denotes the Lax-Wendroff
scheme, in the sense that in schemes that are thus marked, the same velocity diffusion is built into a
multi-dimensional version of the (second order) Lax-Wendroff scheme. The keyword-column shows
that these schemes have been obtained by pursuing very different approaches. Some of the authors
have given particular names to these approaches, which are mentioned in the keyword-column. In
all cases the reader is referred to the original publications for details.

Note that still it is possible that the schemes that contain this stencil differ – they
might treat the pressure differently, or have different order (e.g. compare the scheme in
[MR01] to [JT06]).

4.5.2 Construction principles for stationarity preserving
multi-dimensional schemes

So far, the focus was lying on the discrete second derivatives of the velocity components.
In the previous Section, they have been chosen in such a way that they vanish whenever
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the discrete divergence does. Moreover, it has been shown that there is just one choice of
this discrete divergence, if one wants to obtain the highest possible order of discretization
that is possible on a 3× 3 stencil.

How do these stencils assemble into a scheme for the acoustic equations? This Section
presents two possible ways.

4.5.2.1 Extension from the upwind/Roe scheme

As has been discussed in the introduction of Section 4.5, modifications of existing schemes
that make them stationarity preserving suffer from the challenge not to spoil their sta-
bility properties. In the context of dimensionally split schemes this turned out to be very
difficult. For multi-dimensional schemes it seems a bit easier. The strategy shall be ex-
emplified here for the case of a first order scheme that is obtained as a multi-dimensional
version of the upwind/Roe scheme. Start out from the dimensionally split upwind/Roe
scheme for the equations (2.40)–(2.41):

∂t

 u
v
p

+
1

2∆x

 1
ε2

0
c2

 u
v
p


i±1,j

+
1

2∆y

 0
1
ε2

c2

 u
v
p


i,j±1

− 1

2∆x

 c
ε

0
c
ε

 u
v
p


i± 1

2
,j

− 1

2∆y

 0
c
ε

c
ε

 u
v
p


i,j± 1

2

= 0

or

∂t

 u
v
p

+


1

2∆x
1
ε2

[p]i±1,j
1

2∆y
1
ε2

[p]i,j±1

c2
(

1
2∆x

[u]i±1,j + 1
2∆y

[v]i,j±1

)
− c

ε


1

2∆x
[[u]]i± 1

2
,j

1
2∆y

[[v]]i,j± 1
2

1
2∆x

[[p]]i± 1
2
,j + 1

2∆y
[[p]]i,j± 1

2

 = 0

Obvious is the appearance of the central divergence

1

2∆x
[u]i±1,j +

1

2∆y
[v]i,j±1

which has to be replaced by the divergence found in (3.13) (Section 3.2.2.1).
Only now does there a stationarity consistent diffusion exist. Obviously, the term

[[u]]i± 1
2
,j

∆x

has to be modified to
{{[[u]]

i± 1
2
}}
j± 1

2

4∆x
and augmented by the mixed derivative

[[v]i±1]j±1

4∆y
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The same procedure applies to the second derivative
[[v]]

i,j± 1
2

∆y
which becomes

[[u]i±1]j±1

4∆x
+

[[{{v}}i± 1
2
]]j± 1

2

4∆y

The stencils for p are updated to those appearing for the velocity components, i.e.

[p]i±1,j

2∆x
7→
{{[p]i±1}}j± 1

2

8∆x
[[p]]i± 1

2
,j

∆x
7→
{{[[p]]i± 1

2
}}j± 1

2

4∆x

and analogously for the other direction, but no new terms are added. In principle,
stationarity preservation does not dictate any conditions on the shape of the discrete
derivatives of the pressure.

The scheme becomes

∂t

 u
v
p

+


1

8∆x
1
ε2
{{[p]i±1}}j± 1

2
1

8∆y
1
ε2

[{{p}}i± 1
2
]j±1

c2
(

1
8∆x
{{[u]i±1}}j± 1

2
+ 1

8∆y
[{{v}}i± 1

2
]j±1
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− c

ε


1

8∆x
{{[[u]]i± 1

2
}}j± 1

2
+ 1

8∆y
[[v]i±1]j±1

1
8∆x

[[u]i±1]j±1 + 1
8∆y

[[{{v}}i± 1
2
]]j± 1

2
1

8∆x
{{[[p]]i± 1

2
}}j± 1

2
+ 1

8∆y
[[{{p}}i± 1

2
]]j± 1

2

 = 0 (4.32)

This scheme is conservative, as it can be rewritten as, with q = (u, v, p)

∂tq +
[fx]i± 1

2
,j

∆x
+

[f y]i,j± 1
2

∆y
= 0

The flux, in x-direction for example, is then given by

(fx)i+ 1
2
,j =

 1
8

1
ε2
{{{p}i+ 1

2
}}j± 1

2

0
c2 1

8
{{{u}i+ 1

2
}}j± 1

2

− c

ε


1
8
{{[u]i+ 1

2
}}j± 1

2
1
8
[{u}i+ 1

2
]j±1

1
8
{{[p]i+ 1

2
}}j± 1

2


This scheme reduces to the upwind (Roe) scheme if restricted to one spatial dimen-

sion. Experimentally, it shows stability up to a CFL number of 1 (rather than 0.5 that
is found for dimensionally split schemes). It is stationarity preserving by construction.
It is similar to the one presented in [JT06, MT11].

4.5.2.2 Pseudo-inverse

The construction strategy of Section 3.2.3 shall be applied to the acoustic equations
(2.40)–(2.41). One has

Jx =

 1
ε2

0
c2

 Jy =

 0
1
ε2

c2

 (4.33)
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and thus obviously one of the eigenvalues is zero and the matrices are not invertible.
This makes some kind of regularization necessary and the Moore-Penrose pseudo-inverse
according to Definition 3.10 shall be used for the moment. This gives

For Jx, Jy as in (4.33) one computes

sign Jx · Jy =

 0 c
ε

0
0

 sign Jy · Jx =

 0
c
ε

0
0

 (4.34)

|Jx| =

 c
ε

0
c
ε

 |Jy| =

 0
c
ε

c
ε

 (4.35)

Corollary 4.11. For the acoustic equations (2.40)–(2.41), the scheme (3.20) is the one
obtained in Equation (4.32).

Proof. Using (4.34)–(4.35) one rewrites Equation (3.20) as

∂tq +
Jx

8∆x
{{[q]i±1}}j± 1

2
+

Jy
8∆y

[{{q}}i± 1
2
]j±1

− 1

8∆x
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ε
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2
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2
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}}j± 1
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8∆y

c

ε

 [[v]i±1]j±1

[[{{v}}i± 1
2
]]j± 1

2

[[{{p}}i± 1
2
]]j± 1

2

 = 0

This is the numerical scheme that has been obtained in Equation (4.32).

This justifies the choice of regularization via the Moore-Penrose pseudo-inverse. An
approach for nonlinear equations along the same lines is discussed in Section 5.4.2.

4.5.3 Numerical examples

Results of a simulation of a divergence-free vortex with the scheme (4.32) can be seen in
Fig. 4.9 and 4.11, and there is evidence for a slight superiority of results obtained with
this multi-dimensional scheme as compared to the dimensionally split method presented
in Fig. 4.7.

Figure 4.12 shows experimental evidence that it is necessary to use the multi-dimensional
operators as they are given in Equation (4.32). This exemplifies that it is not sufficient to
find some discretizations of div v and grad div v, but they need to be stationarity consis-
tent. By Corollary 4.10 the only way to obtain a central discretization of the divergence
together with a stationarity consistent diffusion is to use multi-dimensional operators.

The multi-dimensional Riemann Problem as discussed in Section 2.2.5 is shown in
Figure 4.13, which is to be compared to Figure 2.3 (page 53).
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Figure 4.11: Left: Initial setup of a stationary divergence-free vortex as in Fig. 4.7. Right: Solution
at t = 10 with the truly multi-dimensional solver (4.32).

√
u2 + v2 is colour coded; all simulations

performed on a 50× 50 grid with forward Euler, therefore the method is of first order in space and
time.

Figure 4.12: Influence of the details of the discretization on stationarity preservation. The setup
is that of Figure 4.11 and the result is shown at t = 500 (which corresponds to ε = 0.005). For
results using the Roe scheme see Figure 4.7. Here, in all cases the diffusion remains a discretiza-
tion of grad divv, but the way this discretization is chosen shows drastic effect on stationarity
preservation. Left: Full implementation according to Equation (4.32). Right: Replacing just the
multi-dimensional second derivatives 1

4{{[[·]]}} by simple second derivatives [[·]] fails to be station-
arity preserving.
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Figure 4.13: Solution of the Riemann Problem discussed in Section 2.2.5. The simulation has been
performed with the scheme (4.32) on a 100× 100 grid, and the results are shown at t = 0.2. The
direction of the velocity v(t,x) is indicated by the arrows, color coded is the absolute value |v|.
Compare this to Figure 2.3. Commit hash: 556d8ff (see Appendix for information).
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4.6 Asymptotic analysis

Numerical schemes discussed in the previous section are stationarity preserving by con-
struction. They thus are also able to resolve the low Mach number limit by Theorem 4.1.
It is instructive though to perform an asymptotic analysis for these multi-dimensional
schemes. Indeed they have been constructed starting from the dimensionally split up-
wind/Roe scheme, which is known to fail in this limit. The question is thus to understand
how the multi-dimensional scheme manages to overcome the difficulties of the dimen-
sionally split scheme from a different viewpoint.

Consider an expansion in powers of ε of every dependent quantity as in Section 2.3:

u = u(0) + εu(1) + ε2u(2) +O(ε3)

v = v(0) + εv(1) + ε2v(2) +O(ε3)

p = p(0) + εp(1) + ε2p(2) +O(ε3)

First, the dimensionally split upwind/Roe scheme is to be analyzed:

∂t

 u
v
p

+


1

2∆x
1
ε2

[p]i±1,j
1

2∆y
1
ε2

[p]i,j±1

c2
(

1
2∆x

[u]i±1,j + 1
2∆y

[v]i,j±1

)


− c

ε


1

2∆x
[[u]]i± 1

2
,j

1
2∆y

[[v]]i,j± 1
2

1
2∆x

[[p]]i± 1
2
,j + 1

2∆y
[[p]]i,j± 1

2

 = 0

Insert the expansions and collect order by order in ε:

O(ε−2) :

0 = [p(0)]i±1,j (4.36)

0 = [p(0)]i,j±1

O(ε−1) :

0 = [p(1)]i±1,j − c[[u(0)]]i± 1
2
,j (4.37)

0 = [p(1)]i,j±1 − c[[v(0)]]i,j± 1
2

(4.38)

0 =
1

2∆x
[[p(0)]]i± 1

2
,j +

1

2∆y
[[p(0)]]i,j± 1

2

O(ε0) :

0 =

(
1

2∆x
[u(0)]i±1,j +

1

2∆y
[v(0)]i,j±1

)
− 1

c

(
1

2∆x
[[p(1)]]i± 1

2
,j +

1

2∆y
[[p(1)]]i,j± 1

2

)
(4.39)

As usual for open boundaries, ∂tp
(0) = 0 is assumed (see e.g. [HJL12]).

Theorem 4.9. If tx 6= −1, ty 6= −1 Equations (4.36)–(4.39) are only solved by u and v
satisfying

[u(0)]i± 1
2
,j = 0 (4.40)

[v(0)]i,j± 1
2

= 0 (4.41)

which is not a discretization of div v(0) = 0.
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Proof. Consider the Fourier transforms of (4.37)–(4.38)

0 =
(tx − 1)(tx + 1)

tx
p̂(1) − c(tx − 1)2

tx
û(0)

0 =
(ty − 1)(ty + 1)

ty
p̂(1) − c(ty − 1)2

ty
v̂(0)

Multiplying the first with (ty−1)(ty+1)

ty
and the second with (tx−1)(tx+1)

tx
and subtracting

yields

0 = (ty + 1)(tx − 1)û(0) − (tx + 1)(ty − 1)v̂(0) (4.42)

On the other hand, Equations (4.37)–(4.38) can be combined into

0 =
(tx − 1)2

2∆xtx
p̂(1) +

(ty − 1)2

2∆yty
p̂(1) − c

(
(tx − 1)3

2∆x(tx + 1)tx
û(0) +

(ty − 1)3

2∆y(ty + 1)ty
v̂(0)

)
Using the Fourier transform of Equation (4.39)

0 =

(
(tx + 1)(tx − 1)

2∆xtx
û(0) +

(ty − 1)(ty + 1)

2∆yty
v̂(0)

)
− 1

c

(
(tx − 1)2

2∆xtx
p̂(1) +

(ty − 1)2

2∆yty
p̂(1)

)
one obtains

1

∆x
(ty + 1)(tx − 1)û(0) +

1

∆y
(tx + 1)(ty − 1)v̂(0) = 0

Using (4.42):

(ty + 1)(tx − 1)û(0) = 0

(tx + 1)(ty − 1)v̂(0) = 0

i.e. by undoing the Fourier transform

[u(0)]i± 1
2
,j = 0

[v(0)]i,j± 1
2

= 0

Note: This proof essentially shows that the only stationary states of the Roe scheme
are trivial shear flows, thus repeating results of Corollary 4.8. However the proof using
asymptotic analysis is longer and more involved. One again is left with the result that
in the limit, the discrete equations do not discretize all of the analytic limit equations.
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Now consider analogously the multi-dimensional scheme (4.32). Collecting order by
order in ε, and assuming as usual ∂tp

(0) = 0 again yields:

O(ε−2) :

0 = {{[p(0)]i±1}}j± 1
2

(4.43)

0 = [{{p(0)}}i± 1
2
]j±1 (4.44)

O(ε−1) :

0 =
1

8∆x
{{[p(1)]i±1}}j± 1

2
− c

(
1

8∆x
{{[[u(0)]]i± 1

2
}}j± 1

2
+

1

8∆y
[[v(0)]i±1]j±1

)
(4.45)

0 =
1

8∆y
[{{p(1)}}i± 1

2
]j±1 − c

(
1

8∆x
[[u(0)]i±1]j±1 +

1

8∆y
[[{{v(0)}}i± 1

2
]]j± 1

2

)
0 =

1

8∆x
{{[[p(0)]]i± 1

2
}}j± 1

2
+

1

8∆y
[[{{p(0)}}i± 1

2
]]j± 1

2
(4.46)

O(ε0) :

0 =
1

8∆x
{{[u(0)]i±1}}j± 1

2
+

1

8∆y
[{{v(0)}}i± 1

2
]j±1 −

1

c

(
1

8∆x
{{[[p(1)]]i± 1

2
}}j± 1

2
+

1

8∆y
[[{{p(1)}}i± 1

2
]]j± 1

2

)
(4.47)

Now the solutions to these equations have to be studied.

Theorem 4.10. Assuming tx 6= −1, ty 6= −1, the solutions to (4.43)–(4.47) fulfill

0 = [p(0)]i+ 1
2
,j = [p(0)]i,j+ 1

2
(4.48)

0 = [p(1)]i+ 1
2
,j = [p(1)]i,j+ 1

2
(4.49)

0 =
1

8∆x
{{[u(0)]i±1}}j± 1

2
+

1

8∆y
[{{v(0)}}i± 1

2
]j±1

Proof. From (4.43) follows (4.48) by multiplication with 1
(tx+1)(ty+1)2 , analogously for

(4.44) and (4.49). Multiplying (4.43) by 2
8∆x

tx−1
tx+1

, (4.44) by 2
8∆y

ty−1

ty+1
and adding up yields

(4.46). The rest of the proof follows from the stationarity consistency shown in Corollary
4.10.

In fact, the system (4.43)–(4.47) is not closed: the other O(1)-equations contain
∂tu

(0) and ∂tv
(0). However they also involve p(2). Thus every order in fact couples to

higher orders. Recall that in the proof of Theorem 4.9 there appear certain equations
that restrict the limit solutions. In order to show that this never can happen for the
scheme (4.32) one would thus need to consider all orders of the expansion. This does
not seem feasible. Therefore asymptotic analysis either has to restrict its attention to a
carefully chosen, but not closed, subsystem of equations, or becomes a very difficult task.
Fortunately, the alternative way of proving low Mach compliance for linear acoustics via
stationarity preservation is much easier. This line of thought is taken up again in Section
5.2.1.

Also, one observes that it is not sufficient to find the limit equations – one also needs
to study their solution space. Proving low Mach compliance via asymptotic analysis
is not any simpler than proving stationarity preservation. Observe for instance that
the concept of stationarity consistency has been used in the proof. If the divergence
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discretization in (4.32) would have been chosen differently, then the diffusion would
not be stationarity consistent any longer and the scheme would fail to be stationarity
preserving. It would however be very complicated to show this via asymptotic analysis.

Insisting on the discrete limit equations to be consistent discretizations of the analytic
limit equations entails a certain danger of wrong argumentation. Indeed, if expanded
as power series in ∆x and ∆y both Equations (4.36)–(4.39) and (4.43)–(4.47) are of the
form

∇p(1) = O(∆x,∆y)

div v(0) = O(∆x,∆y)

and seem to be consistent discretizations of the limit equations of the PDE. This is
true! However, in one of the cases (dimensionally split Roe/upwind scheme (4.36)–
(4.39)), the discrete solutions turn out to additionally fulfill (4.40)–(4.41). It is these
additional constraints that reduce the space of limit solutions. In view of stationarity
preservation this is clear as well: the whole theory of stationarity preservation is based
on the observation that certain methods do not keep stationary a discretization of all the
analytic stationary states. Therefore a phrasing of a definition that avoids this confusion
is

Definition 4.8 (Asymptotic preserving). A numerical scheme is called asymptotic pre-
serving if the solutions to its discrete limit equations (obtained via formal asymptotic
analysis) are discretizations of all solutions to the limit PDE.

Observe that this definition leaves much less room for interpretations than that found
in [Jin99]. Inspired by results for other equations and other limits one might expect
from the definition given in [Jin99] that a scheme that is not asymptotic preserving
would violate the limit equations. For the limit of low Mach number this is not the
case. A scheme that is not stationarity-preserving discretizes only a subset of the limit
equations. This reduction of the solution space is the essence of artefacts at low Mach
number, not any hypothetical violation of the limit equations. This also explains the
particular phrasing of Theorem 4.2.

There is another reasoning that might seem attractive but does not work; it shall
be briefly described now. Finding the discrete solutions may be very difficult. In the
above examples the Fourier transform was of great help, but it might not be available in
other circumstances. One might wonder whether studying the leading order diffusion, or
in general just the modified equation of the discrete limit equations might be sufficient.
This is not the case! Asymptotic analysis of numerical schemes in the low Mach number
limit has to involve the fully discrete spatial operators. This is because the same is
true for the concept of stationarity preservation: There is no way to decide whether a
numerical scheme is stationarity preserving by just looking at the modified equation (or
the leading order diffusion) of the scheme, as stationarity preservation (see Section 3.2.4)
is involving all orders of an expansion in ∆x, ∆y. Things might seem to work out at first
order, but they might fail at the next order. In view of the complexity of such expansions
(exemplified in Section 3.2.4) studying ever higher orders does not seem viable.
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4.7 Stationarity preserving schemes of higher order

4.7.1 Second order Godunov schemes for linear advection in
one spatial dimension

Theorem 4.11. For the linear advection ∂tq+c∂xq = 0 consider the reconstruction q̃(x)
in cell i given by

q̃(x) = qi +
x− xi

∆x
σi

with the slope σi any function of the neighbouring values of q. Then the Godunov scheme
reads

qn+1
i − qni

∆t
+
fi+ 1

2
− fi− 1

2

∆x
= 0

with the numerical flux

fi+ 1
2

=
c

2

(
qi + qi+1 +

1

2
(σi − σi+1)

)
− |c|

2

(
qi+1 − qi −

1

2
(σi + σi+1)

)
+
c∆t

4∆x

(
− c(σi + σi+1) + |c|(σi+1 − σi)

)
Proof. Consider the case c > 0 first and compute the flux fi+ 1

2
. Then the reconstruction

reads

q̃(x) = qi +
x− xi

∆x
σi

and

f+
i+ 1

2

= c
1

∆t

∫ ∆t

0

dt q̃(xi+ 1
2
− ct) = c

(
qi +

σi
2∆x

(∆x− c∆t)
)

Otherwise, if c < 0, then

q̃(x) = qi+1 +
x− xi+1

∆x
σi+1

f−
i+ 1

2

= c
1

∆t

∫ ∆t

0

dt q̃(xi+ 1
2
− ct) = c

(
qi+1 −

σi+1

2∆x
(∆x+ c∆t)

)
The complete flux is given by

fi+ 1
2

=
c+ |c|

2
f+
i+ 1

2

+
c− |c|

2
f−
i+ 1

2

=
c+ |c|

2

(
qi +

σi
2∆x

(∆x− c∆t)
)

+
c− |c|

2

(
qi+1 −

σi+1

2∆x
(∆x+ c∆t)

)
=
c

2

(
qi + qi+1 +

1

2
(σi − σi+1)

)
− |c|

2

(
qi+1 − qi −

1

2
(σi + σi+1)

)
+
c∆t

4∆x

(
− c(σi + σi+1) + |c|(σi+1 − σi)

)
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Theorem 4.12. Inserting the Fromm method in the scheme of Theorem 4.11

σi =
qi+1 − qi−1

2

yields a second order scheme.

Proof.

fi+ 1
2

=
c

8

(
(−qi−1 + 5qi + 5qi+1 − qi+2) +

c∆t

∆x
(qi−1 + qi − qi+1 − qi+2)

)
− |c|

8

(
(qi−1 − 3qi + 3qi+1 − qi+2) +

c∆t

∆x
(−qi−1 + qi + qi+1 − qi+2)

)
=
c

8
(−qi−1 + 5qi + 5qi+1 − qi+2)− |c|

8
(qi−1 − 3qi + 3qi+1 − qi+2)

+
c

8

c∆t

∆x
(qi−1 + qi − qi+1 − qi+2)− |c|

8

c∆t

∆x
(−qi−1 + qi + qi+1 − qi+2)

For the flux difference one obtains

fi+ 1
2
− fi− 1

2

∆x
=

c

8∆x
(qi−2 − 6qi−1 + 6qi+1 − qi+2) +

|c|
8∆x

(qi−2 − 4qi−1 + 6qi − 4qi+1 + qi+2)

+
∆tc

∆x

( c

8∆x
(−qi−2 + 2qi − qi+2) +

|c|
8∆x

(−qi−2 + 2qi−1 − 2qi+1 + qi+2)
)

(4.50)

'
(
c∂xq −

1

12
c∂3

xq∆x
2

)
+

1

8
|c|∂4

xq∆x
3

+
∆tc

∆x

(
− c

2
∆x

(
∂2
xq +

1

3
∂4
xq∆x

2

)
+
|c|
2

∆x2

(
1

2
∂3
xq +

1

3
∂5
xq∆x

2

))
+O(∆x4)

whereas

qn+1
i − qni

∆t
= ∂tq +

1

2
∆t∂2

t q +
1

6
∆t2∂3

t q +
1

24
∆t3∂4

t q +O(∆t4)

and using the equation ∂tq = −c∂xq

= −c∂xq +
1

2
∆tc2∂2

xq −
1

6
∆t2c3∂3

xq +
1

24
∆t3c4∂4

xq +O(∆t4)

Adding up this gives

qn+1
i − qni

∆t
+
fi+ 1

2
− fi− 1

2

∆x
=

1

4
∆x2

(
∆t|c|
∆x

− 1

3

)
c∂3

xq −
1

6
∆t2c3∂3

xq +O(∆x3,∆t3)

which is the diffusion of a second-order scheme.
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One of the stencils of this scheme is used as an example in Section 3.2.2.2.
There are several details to note:

• The scheme only becomes second order if all terms O(∆t,∆x) cancel out. The time

derivative
qn+1
i −qni

∆t
contains the contribution 1

2
∆tc2∂2

xq. In order for it to cancel,
the spatial derivatives have to contain a term − c∆t

∆x
· 1

2
∆xc∂2

xq, which is the case in
the above example.

• On the given stencil, the highest order approximation to a first derivative is

qi−2 − 8qi−1 + 8qi+1 − qi+2

12∆x
= ∂xq +O(∆x5) (4.51)

However in the scheme above, this derivative is discretized by

qi−2 − 6qi−1 + 6qi+1 − qi+2

8∆x
= ∂xq −

1

12
∂3
xq∆x

2 +O(∆x3)

i.e. it has the same order as the overall scheme.

For first order schemes the situation is different: they can be written as a central
difference (which discretizes ∂x and is second order) and a diffusion with an error of
first order. The multi-dimensional scheme in Equation (4.32) changed the diffusion
such that the central, i.e. the high order differences discretize the stationary states.
They are thus discretized to a higher order than the actual order of the scheme. An
analogous “improved order” for stationary states can be achieved for the second
order scheme, if the derivative ∂x is discretized by, say, the highest order stencil
(4.51). This can be achieved by choosing the slope σi in a different way.

In general, the reconstruction can depend on the sign of c.

Theorem 4.13. With the notation of Theorem 4.11 and ξ, ξ′ ∈ R, choosing

σi =

{
−1

2
(1 + ξ)qi+1 + ξqi + 1

2
(1− ξ)qi−1 c > 0

−1
2
(1 + ξ′)qi+1 + ξ′qi + 1

2
(1− ξ′)qi−1 c < 0

yields a second order scheme, which uses (4.51) to discretize ∂x if

ξ = −ξ′ = −1

3

Proof. The flux difference
f
i+ 1

2
−f

i− 1
2

∆x
contains the term

c

8∆x

(
(1 + ξ)qi−2 + (−6− 3ξ − ξ′)qi−1 + (3ξ + 3ξ′)qi + (6− ξ − 3ξ′)qi+1 + (ξ′ − 1)qi+2

)

= c∂xq −
1

24
c∂3

xq∆x
2 (2 + 3ξ − 3ξ′) +

1

16
c∂4

xq∆x
3(ξ + ξ′) +O(∆x4)
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This becomes the high order approximation (4.51), if

ξ = −ξ′ = −1

3

One obtains the flux

fi+ 1
2

= c
−qi−1 + 7qi + 7qi+1 − qi+2

12
− |c|qi−1 − 3qi + 3qi+1 − qi+2

12

+
c∆t

∆x

(
c
qi−1 + 3qi − 3qi+1 − qi+2

12
− |c|−qi−1 + qi + qi+1 − qi+2

12

)
and the flux difference

fi+ 1
2
− fi− 1

2

∆x
= c

qi−2 − 8qi−1 + 8qi+1 − qi+2

12∆x
− |c|−qi−2 + 4qi−1 − 6qi + 4qi+1 − qi+2

12∆x

+
c∆t

∆x

(
c
−qi−2 − 2qi−1 + 6qi − 2qi+1 − qi+2

12∆x
− |c|qi−2 − 2qi−1 + 2qi+1 − qi+2

12∆x

)
(4.52)

= c
(
∂xq +O(∆x4)

)
− |c|

(
− 1

12
∂4
xq∆x

3 +O(∆x5)

)
+
c∆t

∆x

(
c

(
−1

2
∂2
xq∆x−

1

8
∂4
xq∆x

3 +O(∆x5)

)
− |c|

(
−1

6
∂3
xq∆x

2 +O(∆x4)

))
(4.53)

4.7.2 Extension to the acoustic system

As has been said, contrary to (4.50), (4.52) can be extended to a stationarity preserving
scheme for linear acoustics in such a way that stationary states will be discretized to
higher order than the overall order of the scheme. Therefore the focus lies on (4.52) in
the following.

The strategy is to first obtain a higher order scheme for linear acoustics in one-
dimension (Section 4.7.2.1). Then this scheme is extended to multiple spatial dimensions
in a dimensionally split way. The deficiencies of such an approach are discussed in Section
4.7.2.2 and a stationarity preserving extension to multiple spatial dimensions presented.

4.7.2.1 Higher order schemes in one spatial dimension

A strategy to extend the higher order scheme (4.53) to systems in one spatial dimension
is to diagonalize it and repeat the reasoning for every component. For the general linear
system

∂tq + J∂xq = 0 q : R+
0 × R→ Rn

this amounts to formally replacing c by J , and |c| by |J |:
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qn+1
i − qni

∆t
+ J

qi−2 − 8qi−1 + 8qi+1 − qi+2

12∆x
− |J |−qi−2 + 4qi−1 − 6qi + 4qi+1 − qi+2

12∆x

+
J∆t

∆x

(
J
−qi−2 − 2qi−1 + 6qi − 2qi+1 − qi+2

12∆x
− |J |qi−2 − 2qi−1 + 2qi+1 − qi+2

12∆x

)
(4.54)

= J
(
∂xq +O(∆x4)

)
− |J |

(
− 1

12
∂4
xq∆x

3 +O(∆x5)

)
+
J∆t

∆x

(
J

(
−1

2
∂2
xq∆x−

1

8
∂4
xq∆x

3 +O(∆x5)

)
− |J |

(
−1

6
∂3
xq∆x

2 +O(∆x4)

))

The multi-dimensional extension is to be constructed in such a way that it reduces to
(4.54) when applied to a one-dimensional situation.

For the acoustic system take

J =

 1
ε2

0
c2

 |J | =

 c
ε

0
c
ε


and q = (u, v, p).

Expanding again in powers of ∆x gives

1

∆t

 un+1
ij − unij
vn+1
ij − vnij
pn+1
ij − pnij

+

 1
ε2
∂xp
0

c2∂xu

 +O(∆x4)

+
∆x3

12

c

ε

 ∂4
xu
0
∂4
xp

 +O(∆x2)


+

∆t

∆x

−∆x

2

c2

ε2

 ∂2
xu
0
∂2
xp

 +O(∆x2)

+
∆x2

6

c

ε

 1
ε2
∂3
xp

0
c2∂3

xu

 +O(∆x2)

 = 0(4.55)

where from each of the four terms of the flux difference only the highest powers have been
kept. Note that the different terms contain different powers of ∆x, ∆t. However, only
the highest term of the expansion has been kept. This might seem inconsistent, if one
would aim at collecting terms of equal powers in ∆x. This is not the purpose, though.
The highest order terms are kept as reminiscences of the discrete operators appearing
in (4.54) in order to simplify notation. Just as in 3.2.1.1 and 4.5.2.2, the strategy is
first to determine the correct multi-dimensional extension of the higher derivatives at
continuous level, and then to determine their stationarity consistent discretizations. Here
one will go back to the discrete operators appearing in (4.54) in order to make sure that
the multi-dimensional extensions reduce to the operators of (4.54) when the scheme is
applied to a one-dimensional situation.

4.7.2.2 Higher order schemes in multiple spatial dimensions

The subsequent extension to multiple spatial dimensions can in principle be performed in
a dimensionally split manner, although this will not yet lead to a stationarity preserving
scheme.
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Consider the linear system

∂tq + Jx∂xq + Jy∂yq = 0

with, for linear acoustics

Jx =

 1
ε2

0
c2

 Jy =

 0
1
ε2

c2


Then the dimensionally split scheme according to Definition 4.6 derived from Equa-

tion (4.55) reads

qn+1
ij − qnij

∆t
+ Jx

qi−2,j − 8qi−1,j + 8qi+1,j − qi+2,j

12∆x
− |Jx|

−qi−2,j + 4qi−1,j − 6qij + 4qi+1,j − qi+2,j

12∆x

+
Jx∆t

∆x

(
Jx
−qi−2,j − 2qi−1,j + 6qij − 2qi+1,j − qi+2,j

12∆x
− |Jx|

qi−2,j − 2qi−1,j + 2qi+1,j − qi+2,j

12∆x

)

+ Jy
qi,j−2 − 8qi,j−1 + 8qi,j+1 − qi,j+2

12∆y
− |Jy|

−qi,j−2 + 4qi,j−1 − 6qij + 4qi,j+1 − qi,j+2

12∆y

+
Jy∆t

∆y

(
Jy
−qi,j−2 − 2qi,j−1 + 6qij − 2qi,j+1 − qi,j+2

12∆y
− |Jy|

qi,j−2 − 2qi,j−1 + 2qi,j+1 − qi,j+2

12∆y

)
(4.56)

In the following ∆x = ∆y is assumed on several occasions to simplify life; in principle
it is possible to keep track of their respective occurrences.

Keeping only the highest powers of every term the dimensionally split scheme reads:

1

∆t

 un+1
ij − unij
vn+1
ij − vnij
pn+1
ij − pnij

+

 1
ε2
∂xp

1
ε2
∂yp

c2(∂xu+ ∂yv)

+
∆x3

12

c

ε

 ∂4
xu
∂4
yv

∂4
xp+ ∂4

yp


+

∆t

∆x

−∆x

2

c2

ε2

 ∂2
xu
∂2
yv

∂2
xp+ ∂2

yp

+
∆x2

6

c

ε

 1
ε2
∂3
xp

∂3
yp

c2(∂3
xu+ ∂3

yv)

 = 0

(4.57)

Extending the one-dimensional scheme (4.55) to a two-dimensional one in a dimen-
sionally split manner turns out to spoil its order:

Theorem 4.14. The numerical scheme (4.57) is not of second order in space and time.

Proof. The only term that is O(∆t) is

−1

2
∆t
c2

ε2

 ∂2
xu
∂2
yv

∂2
xp+ ∂2

yp





130 4 Numerical schemes for linear acoustics

In 1-d, this term is precisely canceled by a term contained in the discrete time derivative.
However, in multi-d

1

∆t

 un+1
ij − unij
vn+1
ij − vnij
pn+1
ij − pnij

 =

 ∂tu+ 1
2
∆t∂2

t u
∂tv + 1

2
∆t∂2

t v
∂tp+ 1

2
∆t∂2

t p

+O(∆t2)

=

 ∂tu
∂tv
∂tp

+
1

2
∆t
c2

ε2

 ∂x(∂xu+ ∂yv)
∂y(∂xu+ ∂yv)
∂2
xp+ ∂2

yp

+O(∆t2) (4.58)

This can be generalized to all linear systems:

Theorem 4.15. Consider the linear system

∂tq + Jx∂xq + Jy∂y = 0

In order for a linear scheme to achieve second order accuracy the spatial derivatives need
to cancel

1

2
∆t{Jx, Jy}∂x∂yq

which comes from the discretization of the time derivative.

Proof. For this system, the calculation in (4.58) can be repeated:

qn+1
ij − qnij

∆t
= ∂tq +

1

2
∆t∂2

t q +O(∆t2)

= ∂tq +
1

2
∆t(Jx∂x(Jx∂xq + Jy∂yq) + Jy∂y(Jx∂xq + Jy∂yq)) +O(∆t2)

= ∂tq +
1

2
∆t
(
J2
x∂

2
xq + {Jx, Jy}∂x∂yq + J2

y∂
2
yq
)

+O(∆t2)

with the anti-commutator {Jx, Jy} = JxJy + JyJx. Thus, the term that cannot be
canceled in a dimensionally split framework, generally, is

1

2
∆t{Jx, Jy}∂x∂yq

The strategy of replacing ∂2
xu by ∂x(∂xu+∂yv) in previous sections has been motivated

by arguments of stationarity preservation. Here already for the purpose of the desired
accuracy one needs a multi-dimensional contribution. [LR14] list several attempts of
an extension of the (second order) Lax-Wendroff scheme to multiple dimensions, and
observe the same necessity of having a multi-dimensional contribution.
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One might come up with some discretization of the mixed derivative that takes care
of these additional terms that appear in multiple dimensions. However, stationarity
preservation puts stricter conditions on the shape of the discrete operators. Indeed,
not only does one need to ensure that there are no error terms O(∆x) and O(∆t), but
one needs more. A way to obtain stationarity preservation is to make appear only the
divergence of v and its derivative. It is reassuring that this is in agreement with the
requirements set by the order of the scheme.

The extension step is not unique. Preference is given to covariant operators, i.e.
operators that can be written as several applications of grad and div , where div is only
allowed to act on vectors and grad on scalars. For the fourth order derivative of u, for
example, it is clear that one has to act first with the divergence, then with the gradient,
then with the divergence again, and then again with the gradient:

∂2
xu 7→ grad (div grad )(∂xu+ ∂yv) =

(
∂x
∂x

)
(∂2
x + ∂2

y)(∂xu+ ∂yv)

The upgrade to multi-dimensional operators can be chosen as

1
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ij − unij
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ij − vnij
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ij − pnij

+

 1
ε2
∂xp
∂yp

c2(∂xu+ ∂yv)

+
∆x3

12

c

ε

 ∂x(∂
2
x + ∂2

y)(∂xu+ ∂yv)
∂y(∂

2
x + ∂2

y)(∂xu+ ∂yv)
(∂2
x + ∂2

y)
2p


+

∆t

∆x

−∆x

2

c2

ε2

 ∂x(∂xu+ ∂yv)
∂y(∂xu+ ∂yv)

(∂2
x + ∂2

y)p

+
∆x2

6

c

ε

 1
ε2
∂x(∂

2
x + ∂2

y)p
1
ε2
∂y(∂

2
x + ∂2

y)p
c2(∂2

x + ∂2
y)(∂xu+ ∂yv)

 = 0

(4.59)

Recall that the continuous operators are placeholders for the discrete operators. Sta-
tionarity preservation will only be obtained if

∂xu+ ∂yv = 0 ⇒ ∂x(∂xu+ ∂yv) = 0

⇒ (∂2
x + ∂2

y)(∂xu+ ∂yv) = 0

⇒ ∂x(∂
2
x + ∂2

y)(∂xu+ ∂yv) = 0

is true at discrete level. The one-dimensional operators shall be those that appear in
(4.55), and the stationarity consistent extension of such operators to multi-dimensional
ones is described in Section 3.2. The Theorems from this Section can thus be used here.

The starting point are the discrete operators in Equation (4.52). The most prominent
role is played by the discrete divergence whose dimensionally split version from (4.56) is

ui−2,j − 8ui−1,j + 8ui+1,j − ui+2,j

12∆x
+
vi,j−2 − 8vi,j−1 + 8vi,j+1 − vi,j+2

12∆y

with the Fourier transform

(tx − 1)(tx + 1)

2∆xtx

−1 + 8tx − t2x
6tx

û+
(ty − 1)(ty + 1)

2∆yty

−1 + 8ty − t2y
6ty

v̂
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By Theorem 3.8 and the example of Section 3.2.2.3 the multi-dimensional extension of
the divergence is

û

∆x

(tx − 1)(tx + 1)

2tx

(−1 + 8tx − t2x)
6tx

· (ty + 1)2

4ty

(−1 + 8ty − t2y)
6ty

+
v̂

∆y

(tx + 1)2

4tx

(−1 + 8tx − t2x)
6tx

· (ty − 1)(ty + 1)

2ty

(−1 + 8ty − t2y)
6ty

(4.60)

allows to find stationarity consistent discrete derivatives of the divergence.
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This allows to replace the terms in (4.59) by their discretizations. The scheme be-
comes a lengthy expression. The relevant quantity for the implementation is the intercell
x-flux fx

i+ 1
2
,j

from which all other fluxes can be derived by suitable permutations of di-

rections and variables. Also,

F

[
fx
i+ 1

2
,j
− fx

i− 1
2
,j

∆x

]
=

1

∆x
F
[
fx
i+ 1

2
,j

](
1− 1

tx

)
such that

F
[
fx
i+ 1

2
,j

]
= F

[
fx
i+ 1

2
,j
− fx

i− 1
2
,j

∆x

]
∆x tx
tx − 1

Note that the transition from the complete terms as in (4.59) to formulae for the
x-flux does not only imply multiplication with ∆x tx

tx−1
, but also that only half of the terms

have to be taken into account, preferably those beginning with a ∂x-derivative.
This greatly simplifies the expressions. Additionally, the ⊗-notation from Definition

3.8 is used and the following notation is introduced:

Definition 4.9. Define the two averaging notations

µ(ty) :=
(ty + 1)2

4ty

−1 + 8ty − t2y
6ty

〈q〉j :=
−qj−2 + 6qj−1 + 14qj + 6qj+1 − qj+2

24

The fluxes corresponding to each of the four terms are given on page 135. Experi-
mentally, the scheme is found to be stable up to a cfl = 1.
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4.7.3 Numerical results

Results of a simulation of a divergence-free vortex with the scheme presented on page
135 can be seen in Fig. 4.14. There is no visible difference to the solution shown in
Figure 4.11, because both schemes are stationarity preserving. However, the measured
error (shown in Fig 4.15) clearly shows the higher order of the scheme. The error is
measured against the initial data. Despite the fact that the stationary divergence is
discretized to much higher order, the error against the initial data is still the overall
error of the scheme. A numerical solution of the Riemann Problem discussed in Section
2.2.5 is shown in Figure 4.16.

Figure 4.14: Solution of a stationary divergence-free vortex (as in Fig. 4.7) at t = 10 with the
second order scheme presented on page 135.

√
u2 + v2 is colour coded; simulation performed on a

50× 50 grid. Commit hash: e87856b.
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Figure 4.15: Convergence test of the second order scheme presented on page 135. The setup is
that of Figure 4.14, and the error measured against the initial data. As a function of the linear cell
size ∆x it shows the correct behaviour. Commit hash: 291b4e3.

Figure 4.16: Solution of the Riemann Problem discussed in Section 2.2.5. The simulation has been
performed with the second order scheme presented on page 135 on a 100×100 grid, and the results
are shown at t = 0.2. The direction of the velocity v(t,x) is indicated by the arrows, color coded is
the absolute value |v|. As the scheme does not have a limiter one observes small overshoots at the
discontinuities (e.g. at x ' 0.7). Compare this to Figures 2.3 and 4.13. Commit hash: 18aab08.
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4.8 Stationarity preserving schemes for gravity-like

source terms

The strategies that lead to stationarity preserving multi-dimensional schemes can be
also applied to entirely different situations. Therefore this Section is a digression on a
different type of a linear hyperbolic system that contains source terms. Consider the
following equations:

∂tρ+ ∂xu+ ∂yv = 0 (4.61)

∂tu+ ∂xp = ρgx

∂tv + ∂yp = ρgy

∂tp+ c2(∂xu+ ∂yv) = 0 (4.62)

The Jacobians are

Jx =


0 1

0 1
0

c2 0

 Jy =


0 1

0
0 1
c2 0

 (4.63)

Defining S as

S :=


0
gx 0
gy 0

0

 (4.64)

and q := (ρ, u, v, p) one can rewrite the equations as

∂tq + Jx∂xq + Jy∂yq = Sq

These equations can be obtained as the linearization of the Euler equations with
gravity (1.22)–(1.24). Obviously, both for (1.22)–(1.24) and (4.61)–(4.62) there exists a
stationary state with the flux difference being balanced by the source. Such setups are
called equilibria.

By analogy with Theorem 3.1, the nontrivial stationary states are governed by J ·
k + iS:

Theorem 4.16. Given 0 6= k ∈ Rd, if det(k · J + iS) vanishes for all k, then there exist
non-trivial stationary states of ∂tq + Jx∂xq + Jy∂yq = Sq with q : R+

0 × Rd → Rn.

Proof. Consider the Fourier transform as

q(t,x) = q̂ exp(−iωt+ ik · x)

to obtain the eigenvalue problem ωq = (J · k + iS)q. From here the result follows from
the proof of Theorem 3.1.



4.8 Stationarity preserving schemes for gravity-like source terms 139

One finds upon explicit calculation that for the choice (4.63) and (4.64), indeed
det(k · J + iS) = 0. The stationary states are governed by

∂xu+ ∂xv = 0 ∂xp = ρgx ∂yp = ρgy

In order to concentrate on the new feature of a source term, the Equations (4.61)–
(4.62) are first considered in one spatial dimension:

∂tρ+ ∂xu = 0 (4.65)

∂tu+ ∂xp = ρg

∂tp+ c2∂xu = 0 (4.66)

with

J :=

 0 1 0
0 0 1
0 c2 0

 |J | =

 0 1
c

c
c

 S :=

 0 0 0
g 0 0
0 0 0

 (4.67)

Again, one easily confirms that det(Jk + iS) = 0 ∀k ∈ R.

4.8.1 Cell-centered source term evaluation

Numerical schemes typically have problems maintaining equilibria numerically because
the way the fluxes are computed often does not fit the discretization of the source.
Consider as an example the upwind/Roe solver for Equations (4.65)–(4.66) with the
simplest possible evaluation of the source term:

∂t

 ρ
u
p


i

+
1

2∆x
J

 ρ
u
p


i±1

− 1

2∆x
|J |

 ρ
u
p


i± 1

2

=

 0
ρg
0


i

An example of a simulation with this scheme is shown in Figure 4.17.

Adjusting the discretizations of the fluxes and of the source leads to schemes that
are able to maintain (certain) equilibria: such schemes are called well-balanced. There
is a rich literature and a number of different approaches to this in the context of the
Euler equations: e.g. [Gos01, KM14, CK15] and many others. For linear systems such
as (4.61)–(4.62), this phenomenon can also be studied using the concept of stationarity
preservation. This allows to give the observed numerical artefacts a new interpretation
(which is summarized in Definition 4.10) and also shows a way how to construct well-
balanced schemes.

Theorem 4.17. The upwind/Roe solver with cell-centered discretization of gravity in
1-d is stationarity preserving.
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Proof. The evolution matrix for the scheme (4.68) is

1

2∆x
J
t2x − 1

tx
− 1

2∆x
|J |(tx − 1)2

tx
− S (4.68)

with J , |J | and S given by (4.67). Upon explicit computation its determinant is found
to vanish which is the condition of Theorem 3.3.

The Fourier mode that is kept stationary is parallel to the eigenvector(
1,

∆xg

2c
,
∆xg(tx + 1)

2(tx − 1)

)T

In particular, a stationary state always has a non-vanishing and spatially non-constant
velocity

v =
∆xg

2c
ρ+ const (4.69)

This can be seen in the experiment, evolved until the stationary state is reached
(Figure 4.17).

Figure 4.17: Simulation results with the scheme (4.68) on 100 cells with g = −1. The initial state
is that of a polytropic equilibrium p = Kργ with K = 1, γ = 1.4 and zero velocity. Left: Evolution
of the velocity u for t = 0, 1, 2, 3. One observes the stationarization of the numerical results on a
spatially non-constant velocity. Right: Comparison between the numerical stationary state and the
theoretical prediction (4.69) (with the constant having been found experimentally).

Colloquially, one would call the scheme (4.68) not well-balanced. In the language of
the methods developed in Section 3 this can be given a new interpretation. It might have
been suspected that the observed artefacts are due to the scheme not being stationarity
preserving. This is not the case: according to Theorem 4.17 the scheme discretizes
all the stationary states of the PDE. Therefore the situation is better than with the
limit of low Mach numbers. The visually unsatisfactory behaviour is related to the
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discrete stationary states: whereas analytically, v = 0, the discrete stationary states
have nonvanishing velocity. Therefore a definition of well-balanced for this particular
situation can be given as follows:

Definition 4.10 (Well-balanced). A linear scheme for the equations (4.65)–(4.66) is
well-balanced, if it is stationarity preserving and the discrete stationary states are char-
acterized by a spatially constant velocity v.

Note the condition of spatially constant velocity, rather than a vanishing. It is impos-
sible to guarantee vanishing velocity: the state of constant density, velocity and pressure
is a trivial stationary state of numerical schemes, and the sum of any two stationary
solutions is stationary as well.

4.8.2 Well-balanced diffusion

The challenge is to find a scheme for Equations (4.65)–(4.66) with particular discrete
stationary states. This fits exactly into the framework of Section 3.2. There, a discrete
divergence was given, and a stationarity-consistent diffusion was constructed. Here, if
the central discretization of ∂xp shall be stationary, one needs to find a diffusion that
originates from the discrete stationary state

1

2∆x
[p]i±1 − si = 0

The source term has been given the name s generically. In the case that is considered,
actually s = ρg, but this is unimportant for the discussion. The Fourier transform reads

(tx − 1)(tx + 1)

2∆xtx
p̂− ŝ = 0

Obviously this does not allow multiplication with 2 tx−1
tx+1

which would lead to the Fourier
transform of a second derivative. But it is easy to find the right discretization:

Theorem 4.18 (Well-balanced diffusion). The scheme

∂t

 ρ
v
p


i

+
1

2∆x

 [u]i±1

[p]i±1

c2[u]i±1

− 1

2∆x


1
c

(
[[p]]i± 1

2
− ∆x

2
[s]i±1

)
c[[u]]i± 1

2

c
(

[[p]]i± 1
2
− ∆x

2
[s]i±1

)
 =

 0
1
4
{{s}}i± 1

2

0


(4.70)

is well-balanced. The stationary states are characterized by u = const and

1

2∆x
[p]i±1 −

1

4
{{s}}i± 1

2
= 0 (4.71)
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Proof. One can compute the kernel of the evolution matrix of this scheme in order to
prove the assertion. However one can also note that the Fourier transform of the asserted
stationary state

(tx − 1)(tx + 1)

2∆xtx
p̂− (tx + 1)2

4tx
ŝ

upon multiplication with 2 tx−1
tx+1

yields

(tx − 1)2

∆xtx
p̂− (tx − 1)(tx + 1)

2tx
ŝ

This is the Fourier transform of

1

∆x
[[p]]i± 1

2
− 1

2
[s]i±1

which, by setting u = const is the only other term that appears in the scheme.

Note: The new diffusion is conservative:

[[p]]i± 1
2
− ∆x

2
[ρgx]i±1 =

[
[p]− ∆x

2
{ρgx}

]
i± 1

2

The very same method follows if one applies the well-balancing strategy described in
[LeV98], which introduces additional jumps at cell centers.

The stationary Fourier mode is proportional to

(
1, 0,

∆xg(tx + 1)

2(tx − 1)

)T

.

This can be seen in the experiment (Figure 4.18).

Figure 4.18: Evolution of the velocity u with the scheme (4.70) and the setup of Figure 4.17.
Observe how the stationary state of the simulation now has a spatially constant velocity. When
comparing to Figure 4.17 mind the scale of the velocity axis.
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Note that the stationary velocity is not zero. This is because the initial data do not
exactly fulfill (4.71). After some time the other Fourier modes have been diffused away
which has led to a small change in u. However the stationary velocity u is spatially
constant.

In order to construct numerical schemes for the multi-dimensional system (4.61)–
(4.61) the strategy presented here (which takes care of the balance ∇p = ρg) needs to
be combined with ideas of Section 4.5 (which take care of ∇ · v).
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Consider a system of conservation laws in d = 2 spatial dimensions

∂tq + ∂xf
x(q) + ∂yf

y(q) = 0 q : R+
0 × Rd → Rn (5.1)

fx, f y : Rn → Rn

with q being the vector of conserved quantities and f = (fx, f y) the flux in x-, y-direction,
respectively. In the case of the Euler equations q = (ρ, ρv, e). The corresponding equa-
tions for three spatial dimensions can be found by direct analogy.

Finite volume schemes interpret the discrete degrees of freedom as cell averages.
Integrating (5.1) over one computational cell Cij ⊂ Rd and a time interval [tn, tn+1] yields∫

Cij
dx q(t,x)

∣∣∣∣∣
tn+1

tn

+

∫ tn+1

tn
dt

∫
∂Cij

ds f · n = 0

Here n is the outward normal onto ∂Cij. The semi-discrete finite volume scheme is
obtained with the identification

qnij :=
1

|Cij|

∫
Cij
q(tn,x)dx

145
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On Cartesian grids, for example, Cij = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
], and the above formula

becomes

qn+1
ij − qnij

∆t
+
fx
i+ 1

2
,j
− fx

i− 1
2
,j

∆x
+
f y
i,j+ 1

2

− f y
i,j− 1

2

∆y
= 0

having defined

fx
i+ 1

2
,j

:=
1

∆t

∫ tn+1

tn
dt

1

∆y

∫ y
j+ 1

2

y
j− 1

2

dy fx(q(t, xi+ 1
2
, y)) (5.2)

and analogously the flux f y
i,j+ 1

2

in the other direction.

Obviously, in order to compute the flux fx
i+ 1

2
,j

through an interface according to

formula (5.2), one needs to know the exact solution q along the interface. In the discrete
setting, however, only the cell averages qnij are known. The essence of the numerical
method thus lies in the choice of an approximation to Equation (5.2).

Quite generally, one thus has to accept that the discrete solution is only representing
the exact solution up to some error, and this is the case for all flow regimes, be it of high
Mach number or low Mach number. However, e.g. in [Tur87, KLN91] it has been noticed
that there exists a dichotomy of numerical schemes with respect to their behaviour for
low Mach number flow: Schemes have been discovered (more or less by accident) whose
performance in the low Mach number regime was much better than that of schemes
known so far, although they had the same order of convergence and the simulations were
performed on the same grid. It has become obvious that numerical schemes split up
into those for which the quality of the numerical solution deteriorates in the low Mach
number limit, and those for which the quality of the results in the limit stays roughly
the same. To the former group belong many popular “standard” finite volume schemes.
The simulation quality of the latter can only be reached, if the simulations are run at
much finer grids. The lower the Mach numbers of the flow, the finer has the grid to
be, which is impractical. The quality deterioration is known as the low Mach number
problem of numerical schemes.

There exists a rich literature devoted to this subject: e.g. [Kle95, DJY07, CDK12,
HJL12, CGK13, NBA+14, DLV17, BLMY17, Tur87, KLN91, GV99, GM04, BM05,
LG08, TD08, TMD+08, EL98, Lio06, RB09, Rie10, DOR10, Del10, Rie11, LG13, MRE15,
OSB+16, DJOR16, BEK+17] and many others.

There are certain situations which generically seem to have less issues with the low
Mach limit. These can be staggered grids and, as has been discovered only recently,
triangular/tetrahedral grids (of otherwise arbitrary shape) ([DOR10, Gui09]). This does
not mean, though, that they are prone to the appearance of low Mach number artefacts.
Taking the triangular grids as example, [DOR10] shows that numerical simulations do
not suffer from the described quality deterioration when the Roe solver is used, but the
low Mach number problem reappears for the HLLC solver.

There exist a number of approaches that explain the deterioration of the quality
of numerical solution. A widely used methodology is to consider a formal asymptotic



147

expansion of the scheme in the limit ε → 0. The scalings thus obtained are compared
to those known for the analytic solution, and discrepancies are made responsible for the
observed quality deterioration. As with everything that is preceded by the word “formal”,
formal asymptotic analysis might be unable to explain all experimental findings. In
practice however, asymptotic analysis is hugely successful in predicting which scheme
will manage to resolve the low Mach number limit. In Sections 5.1.2 and 5.2.1 it is
discussed in detail and results of the analysis are shown.

A nonlinear numerical scheme for the Euler equations can be linearized around the
state of constant density and pressure and of zero velocity (static state, see Definition 1.2).
It then becomes a numerical scheme for the equations of linear acoustics (2.40)–(2.41).
A necessary condition for the nonlinear scheme to perform well in the low Mach number
limit ε→ 0 is that its linearized version is, by Theorem 4.1, stationarity preserving. Thus,
arguments that were given for linear acoustics actually allow to also make statements
about schemes for the Euler equations. Often, purely linear arguments are sufficient to
identify schemes that fail. A discussion of these ideas is subject of Section 5.2.2.

Definition 5.1 (Low Mach compliant). A numerical scheme for (1.14)–(1.16) is called
low Mach compliant if in the limit ε→ 0 it has solutions that discretize all the analytic
solutions given by the limit equations (1.17)–(1.19).

A lot of work in the literature has been devoted to the question how to modify a
scheme such that it becomes low Mach compliant, often starting from the Roe scheme.
A new modification strategy, introduced in [MRE15, BEK+17] is presented and analyzed
in Section 5.3.2. It is constructed such that it can be used even when solving the Euler
equations with gravity (Equations (1.27)–(1.29)).

One might also wonder what construction principles would automatically incorporate
low Mach compliance, such that the schemes would not need to be fixed afterwards.
In the context of the Euler equations it is to be understood as follows: Often, one-
dimensional schemes are extended to multiple spatial dimensions in a dimensionally
split way. This extension is found to violate the ability of the scheme to resolve the
low Mach number limit, and needs to be fixed. The question is how to extend a one-
dimensional scheme to multiple dimensions in such a way that it becomes low Mach
compliant straight away. This thesis presents a number of approaches to incorporate
ideas of stationarity preservation into the nonlinear setting (Section 5.4) and a novel
kind of low Mach compliant scheme (Section 5.5). The latter is inspired by the multi-
dimensional stationarity preserving scheme of Section 4.5.2.

For the Euler equations, the evolution of vorticity is much more complicated than in
the case of linear acoustics. In general, it is not stationary, and therefore also any discrete
vorticity should evolve in time. Focus, for example, on the advective term (v · ∇)ω in
(1.11). There exist a lot of ways how such an advection could be discretized, and so far
it does not seem obvious which one should be used. Would one prefer certain types of
vorticity advection over others? Suggestions with particular examples of – very different
– schemes can be found in [Sid02, JT06, LFS07]. The relation to low Mach compliant
schemes is subject of future work.
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As was said above, the essence of low Mach number is the dichotomy of schemes:
those whose solutions deteriorate in the limit, and those whose solutions do not. It seems
possible to theoretically capture this dichotomy. Still, two different schemes might give
very different solutions, even if they are both low Mach compliant (for instance, they
might have different orders of convergence). How to measure and decide which of them
is to be preferred over the other is not subject of this discussion, and may also depend
on the particular application and setup.

5.1 The Roe scheme and the low Mach number

problem

5.1.1 The Roe scheme

One choice of the numerical flux is the Roe method [Roe81], e.g. in x-direction:

fx
i+ 1

2
,j

=
1

2

[
fx (qij) + fx (qi+1,j)− |J |(qi+ 1

2
,j) (qi+1,j − qij)

]
(5.3)

with the Roe matrix |J |(qi+ 1
2
,j) being evaluated with the average qi+ 1

2
,j. This average

can be chosen such that ([Roe81, LeV02], see Theorem 5.6 below)

fx (qi+1,j)− fx (qij) = J(qi+ 1
2
,j)(qi+1,j − qij)

This scheme (in one spatial dimension) reduces to the upwind scheme if applied to
linear systems. It is experimentally found not to be able to resolve low Mach number
flows.

The central flux on the other hand,

fx
i+ 1

2
,j

=
1

2

[
fx (qij) + fx (qi+1,j)

]
is unstable under explicit time integration, but yields satisfactory results in the limit of
low Mach numbers, if stabilized by implicit time integration ([MRE15]). This has led
many authors to careful analysis of the matrix |J |(qi+ 1

2
,j) in order to understand the

origin of the quality deterioration for low Mach numbers.

5.1.2 Asymptotic analysis

Obviously, the Roe scheme cannot be low Mach compliant, because upon linearization
around the static state it reduces to the upwind/Roe scheme for linear acoustics, which
has been shown not to be stationarity preserving in Corollary 4.8. However, for reference
purposes here the formal asymptotic expansion of the scheme is stated. One expands
every quantity in the numerical scheme as a power series in ε and collects terms of equal
order.
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Define the notation

v = (u, v)

|J |i+ 1
2
,j := |J |(qi+ 1

2
,j)

The flux difference in x-direction reads

fx
i+ 1

2
,j
− fx

i− 1
2
,j

∆x
=

1

2∆x




ρu
ρu2

ρuv
u(e+ p)


i+ 1

2
,j

+
1

ε2


0
p
0
0


i+ 1

2
,j

−

|J |·,j


ρ
ρv
ρw
e


·,j


i± 1

2


The Roe matrix, e.g. if 0 < u < c

ε
, can be written as

|J | = 1

ε


0 0 0 γ−1

c

−cu c 0 2u(γ−1)
c

0 0 0 (γ−1)v
c

0 0 0 c

+


u 0 0 u1−γ

c2

u2 0 0 −u2(γ−1)
c2

0 0 u − (γ−1)uv
c2

0 0 0 0

+O(ε) (5.4)

=:
1

ε
A−1 +A0 +O(ε)

Taking now the y-direction into account as well, one can collect order by order in ε
(compare [GV99, GM04]):

O
(

1

ε2

)
: p

(0)
i+1,j − p

(0)
i−1,j = 0 (5.5)

O
(

1

ε

)
:


0

p
(1)
i+1,j − p

(1)
i−1,j

p
(1)
i,j+1 − p

(1)
i,j−1

0

+


[ γ−1

c(0)
[e(0)]]i± 1

2
,j

−[c(0)u(0)[ρ(0)]]i± 1
2
,j + [c(0)[ρ(0)u(0)]]i± 1

2
,j + [

2u(0)(γ−1)

c(0)
[e(0)]]i± 1

2
,j

[
(γ−1)v(0)

c(0)
[e(0)]]i± 1

2
,j

[c(0)[e(0)]]i± 1
2
,j

+ perp. terms = 0

Additionally one has

O (1) :
1

2∆x

(
u

(0)
i+1,j − u

(0)
i−1,j

)
+

1

2∆y

(
v

(0)
i,j+1 − v

(0)
i,j−1

)
− [c(0)[p(1)]]i± 1

2
− [c(1)[p(0)]]i± 1

2
+ perp. terms = 0

In the literature (e.g. in [GV99] and many others) often the discussion stops at the
O(ε−1) equations, and the inability of the Roe scheme to resolve the low Mach number

limit is attributed to the discrete second derivatives that follow p
(1)
i+1,j − p

(1)
i−1,j. To show

the lack of low Mach compliance one needs to show that a vanishing of these terms
violates the continuous limit equations. This might make a careful study of further
orders necessary, but it might indeed suffice to show a contradiction at some order in ε,
when showing that a numerical scheme is not low Mach compliant.
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5.2 Implications from linear acoustics

5.2.1 Asymptotic analysis

The limit equations of a numerical scheme for both linear acoustics and the Euler equa-
tions are supposed to be a discretization of div v = 0. Schemes that lack low Mach
compliance in the limit discretize only a subspace of all the divergenceless flows. This is
well understood using the concept of stationarity preservation – they do not discretize all
the limit equations. This can also be shown using asymptotic analysis. For the acoustic
equations it is performed for the upwind/Roe scheme in Theorem 4.9: additionally to
the divergence constraint there appear equations that restrict the limit to only shear
flows. For a low Mach compliant scheme on the other hand one has to show that none
of the equations that appear in an expansion in powers of ε restricts the set of diver-
genceless flows to only a subset. Using asymptotic analysis, this turns out to be very
difficult, as the equations of one order generally are coupled to higher orders. Recall how
the argumentation for the multi-dimensional scheme in Section 4.6 relies on deliberately
ignoring certain equations. By ignoring certain equations one is left with the discomfort
of an incomplete argument. Considering every order in the expansion at the same time
seems unfeasible.

The following theorem relates to the observation that often, e.g. in [GV99, BEK+17]
the asymptotic analysis is restricted to a consideration of only the equations to order
O(ε−2 and O(ε−1). This might already suffice for proving a violation of low Mach com-
pliance; otherwise it is necessary to consider higher, and in fact all orders.

Theorem 5.1. To prove that the discretizations of the Euler or acoustics equations are
low Mach compliant one has to study further equations in the asymptotic expansion than
those to orders O(ε−2) and O(ε−1).

Proof. It is sufficient to show the statement for the acoustic equations, as they govern
the linearized regime of the Euler equations.

Consider the following three schemes. The equation to order O(ε−1) contained in the
upwind/Roe scheme (Equation (4.37)) is:

0 = [p(1)]i±1,j − c[[u(0)]]i± 1
2
,j

The Roe scheme is not low Mach compliant, and (e.g. in [GV99]) this is attributed to
the presence of the non-vanishing right hand side.

In Section 4.6 the multi-dimensional scheme (4.32) formally contains the Equation
(4.45)

0 =
1

8∆x
{{[p(1)]i±1}}j± 1

2
− c

(
1

8∆x
{{[[u(0)]]i± 1

2
}}j± 1

2
+

1

8∆y
[[v(0)]i±1]j±1

)
(5.6)

This scheme is stationarity preserving and low Mach compliant.
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The modification of the multi-dimensional scheme (4.32) that is shown in Figure 4.12
(right) contains

0 =
1

8∆x
{{[p(1)]i±1}}j± 1

2
− c

(
1

2∆x
[[u(0)]]i± 1

2
,j +

1

2∆y
[[v(0)]i±1]j±1

)
(5.7)

It is clear by Corollary 4.10 (and obvious in Figure 4.12) that this latter scheme is not
stationarity preserving, and thus not low Mach compliant.

The argument why Equation (5.7) implies that the corresponding scheme is not low
Mach compliant, and that at the same time Equation (5.6) implies low Mach compliance
requires information about the behaviour of the right hand sides. A careful analysis of
the argumentation provided in Section 4.6 shows that the interplay with the divergence
appearing in one of the O(1) equations is responsible for low Mach compliance in case
of Equation (5.6). It thus does not suffice to only look at the O(ε−1) and O(ε−2).

When showing low Mach compliance with only the pressure gradients, a clear sign
that something must be missing is that the discrete divergence constraint is absent from
the argumentations – although it is an equally important part of the limit equations.
Stationarity preservation, on the other hand, involves all the limit equations on an equal
footing. This is another instance where the study of numerical schemes for linear acous-
tics is of huge value: stationarity preservation is an alternative way of proving low Mach
compliance, which allows to detect deficiencies in arguments based entirely on asymptotic
analysis.

Unfortunately, stationarity preservation cannot easily be checked in the nonlinear
setting, even if one can think of a extending its definition to nonlinear schemes (see
Section 5.4). Therefore asymptotic analysis seems inevitable. Arguments have to rely
on a careful choice of equations and a particular way of argumentation. The only reason
why it is used in the following sections is that it is hugely successful in selecting low
Mach compliant schemes in practice. This however also may be due to it having been
applied so far to only a particular kind of schemes. Therefore here care is taken to ex-
plicitly pinpointing deficiencies in argumentations based on asymptotic analysis. Maybe
in future one will be able to fill the gaps and will understand why asymptotic analysis
is successful in practice.

5.2.2 Linearization

Upon linearization around a static state ρ = const, p = const, v = 0 any numerical
scheme for the Euler equations becomes a numerical scheme for the acoustic equations
(2.40)–(2.41). A necessary condition for the nonlinear scheme to be low Mach compliant
is that the linearization is stationarity preserving. Denote by q the vector of conserved
quantities.
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Definition 5.2 (Roe-type scheme). A dimensionally split finite volume scheme with
fluxes

fx
i+ 1

2
,j

=
1

2
{f(q)}i+ 1

2
,j −

1

2
Dx[q]i+ 1

2
,j

f y
i,j+ 1

2

=
1

2
{f(q)}i,j+ 1

2
− 1

2
Dy[q]i,j+ 1

2

with diffusion matrices Dx, Dy is called Roe-type scheme.

Roe-type schemes scheme amounts to a central flux and a diffusion. An example of
such a scheme is the Roe scheme with Dx = |Jx|.

A linearization of such schemes around the static state ρ = const, p = const, v = 0
makes appear a dimensionally split numerical scheme for the acoustic equations. Con-
ditions on this scheme to be stationarity preserving (formulated in Theorem 4.8) are
necessary conditions on the Roe-type scheme to be low Mach compliant.

Theorem 5.2. A low Mach compliant Roe-type scheme for (1.14)–(1.16) has diffusion
matrices that contain scaling O(ε−2) in the energy-column, and otherwise scale as O(1)
as ε→ 0.

Proof. Linearization amounts to keeping the diffusion matrices constant. Theorem 4.8
requires a vanishing diagonal entry in the momentum-column. It thus remains to be
shown that if it is O(1) before linearization, then it is proportional to v and vanishes
upon linearization around a static state.

Call the diagonal matrix element in the x-momentum-row A. This element multiplies
a jump in the x-momentum and the difference between two of those, after dividing by
∆x, or ∆y, contributes to the time derivative of the x-momentum again. Symbolically:

∂t(ρu) ' 1

2∆x
[A[ρu]]i± 1

2
(5.8)

A obviously has units of a velocity. The only two velocities available are v and c,
because the Mach number and the Strouhal number are the only non-dimensional num-
bers that can be obtained in the setting of the Euler equations, and the Strouhal number
involves independent variables that cannot appear in the (constant) linearizations of the
diffusion matrices.

Theorem 1.1 establishes the most general scalings that lead from the Euler equations
(1.8)–(1.10) to the rescaled equations (1.14)–(1.16) that make appear ε. Applying those
scalings to Equation (5.8) means that if A scales as c

∂t(ρu) ' 1

2∆x

[
A

ε
[ρu]

]
i± 1

2

and thus is not O(1). If, however, A scales as v upon rescaling no powers of ε appear:

∂t(ρu) ' 1

2∆x
[A[ρu]]i± 1

2
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One thus concludes that if A ∈ O(1) then it is proportional to v and vanishes upon
linearization around the static state.

The other entries of the diffusion matrix can be treated in the same manner.

This argument only provides a necessary condition for a nonlinear scheme to be low
Mach compliant. A number of low Mach fixes have been suggested in the literature, and
they all can be checked to fulfill this condition (see e.g. [LG13]). In view of the variety of
different suggestions one might wonder whether maybe this condition also is sufficient.
Indeed, pretty much every modification that respects the conditions of Theorem 5.2
seems to lead to a low Mach compliant scheme in practice – as long as it leads to a
stable scheme.

Consider a dimensionally split numerical scheme for the Euler equations in two spatial
dimensions

∂tq + [fx(q)]i±1,j + [f y]i,j±1 − [Dx[q]]i± 1
2
− [Dy[q]]i,j± 1

2
= 0

with q = (ρ, ρu, ρv, e), fx, f y as in (1.14)–(1.16). Dx, Dy are diffusion matrices which in
the limit ε→ 0 scale as 

O(1) O(1) O(1) O(ε−2)
O(1) O(1) O(1) O(ε−2)
O(1) O(1) O(1) O(ε−2)
O(1) O(1) O(1) O(ε−2)

 (5.9)

Additionally, one assumes that ∂tp
(0) = 0. This depends on the boundary conditions,

and may also depend on certain properties of the scheme (see [GV99]). Once constance
this is established, the equations that govern p(1) necessarily are just the same ones,
because there are no terms O(ε−1). This is normally (see e.g. [GV99]) taken as sufficient
an argument in favor of low Mach compliance of the scheme. It is at the same time
absolutely unclear whether the discrete velocities in the limit discretize all of the diver-
genceless flows, or not. This is why this argument, although appearing often in literature,
seems incomplete. If one tries to study, say the O(1) equations, clearly the pressure p(2)

would appear, and so on, with every order coupling to the next higher. Another obvious
shortcoming of such an analysis has been mentioned in [Del10] – although the low Mach
number problem appears only in multiple spatial dimensions, it is not obvious how this
plays a role in this argumentation.

A simplified view why the energy column of diffusion matrices is allowed to have terms
scaling as O(ε−2) is the following. Consider well-prepared initial data in the pressure, i.e.
assume that the numerical data satisfy ∇p ∈ O(ε2). As the diffusion matrices multiply
jumps, the matrix elements scaling as O(ε−2) hit the jump in the energy (or pressure)
which is O(ε2). On total this gives a diffusion term that scales O(1). However there are
several inconsistencies in this argumentation. First of all, as the divergence constraint
has not been mentioned, this cannot be a complete argument. Also it is not clear, what
happens after the first time step.
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5.3 Dimensionally split low Mach compliant

schemes

5.3.1 Low Mach number modifications

There exist a variety of modifications of the Roe scheme that improve the behaviour
of numerical schemes in the limit of low Mach number. Focusing on those that can be
integrated explicitly in time, they are presented in [Tur87, KLN91, GV99, LG08, TD08,
TMD+08, Rie11, LG13, MRE15, OSB+16, DJOR16] and others. As such modifications
change the diffusion of the scheme, its stability properties might be modified. In order
to perform a linear stability analysis, results of Section 4.3.5 can be useful.

Here the following type of modification shall be analyzed in detail ([Tur87, BEK+17]).
Replacing |Jx| in (5.3) by Dx = P−1

x |PxJx| with Px from [WS95]

Px =


1 0 0 µ2−1

c2

0 1 0 0
0 0 1 0
0 0 0 µ2

 (5.10)

Dx =
1

ε2
√

4c2 + u2


0 0 0 2(γ − 1)
0 0 0 3(γ − 1)u
0 0 0 2(γ − 1)v
0 0 0 2c2

+O(1)

given here in the basis of primitive variables. The parameter µ is given by

µ = min[1,max(Mloc,Mcut)]

Mloc is the local Mach number and Mcut avoids singularity of the matrix. Its value should
be chosen smaller than the smallest expected relevant Mach numbers of the flow. For
historical reasons, this modification has been called preconditioning. Here this name will
not be used as it can be misleading. For high Mach numbers, the absolute value becomes
the identity, and the scheme reverts back to the usual Roe scheme.

The performance of this scheme in the context of homogeneous equations (1.14)–
(1.16) has been analyzed, among others, in [GV99].

This scheme satisfies the necessary condition of Theorem 5.2.

5.3.2 Low Mach number modifications in presence of gravity

When dealing with the homogeneous Euler equations, in the limit ε→ 0 the pressure is
constant up to perturbations O(ε2). This was the reason why terms O(ε−2) do not pose
a “problem” if they appear in the energy column of a diffusion matrix. Once the Euler
equations are augmented by gravity source terms as in (1.27)–(1.29) (with Fr = ε), the
pressure (and also the energy) is not spatially constant, but varies according to (1.30).
Keeping the terms O(ε−2) or O(ε−1) in the density and energy rows now changes the
asymptotic behaviour of the scheme in the combined limit ε → 0, Fr = ε. This Section
is based on work published in [BEK+17, BEKR17].
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Theorem 5.3. Consider a Roe-type scheme for the Euler equations with gravity (1.27)–
(1.29)

∂tqij +
1

∆x
[fx(q)]i±1,j +

1

∆y
[f y]i,j±1 −

1

2∆x
[Dx[q]]i± 1

2
,j −

1

2∆y
[Dy[q]]i,j± 1

2
= s(qij)

with q = (ρ, ρu, ρv, e), fx, f y as in (1.27)–(1.29) and s(q) the gravity source

s = (0, ρgx, ρgy, ρv · g)

and gx 6= 0, gy 6= 0.

Dx, Dy are diffusion matrices which in the limit ε → 0 scale as in Equation (5.9)
with the diagonal elements in the energy-row denoted by dex, dey satisfying

∂x(d
e
xρgx) + ∂y(d

e
yρgy) 6= 0 (5.11)

Then the scheme in the limit ε→ 0, Fr = ε formally has solutions which fulfill

1

2∆x
[dex[p

(0)]]i± 1
2
,j +

1

2∆y
[dey[p

(0)]]i,j± 1
2

= 0 (5.12)

which is not a discretization of the limit equation (1.30).

Proof. The assertion immediately follows from the energy row by considering orders
O(ε−2) and O(ε−1). The terms (. . .) are the corresponding entries of the matrix, and
(5.12) discretizes

∆x∂x(d
e
x∂xp

(0) + ∆y∂y(d
e
y∂yp

(0)) = 0

which by condition (5.11) is not consistent with Equation (1.30).

Consider replacing the diffusion matrix by P−1|PJ | as in Equation 5.10. Additionally
to the wrong limit of Theorem 5.3, applying this scheme to any stationary initial data
which contain a non-constant pressure gradient, introduces terms which scale with the
inverse of Mcut (see e.g. [Mic13, BEK+17]). Therefore the numerical errors strongly
depend on an arbitrary parameter, and are unacceptable for low values of Mcut. In
practice, the simulations crash after very short times.

To correct the behaviour of schemes that use Px as given in (5.10), in [MRE15] a
different matrix Px has been suggested. In entropy variables it takes the form

Px,entr =


1 δ 0 0

−δ 1 0 0

0 0 1 0

0 0 0 1
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with δ = 1
min(1,max(Mloc,Mcut))

− 1. In primitive variables it is

Px,prim =


1 ρδε

c
0 0

0 1 0 − δ
ρcε

0 0 1 0

0 ρcδε 0 1

 (5.13)

The definition of δ ensures that the scheme reverts back to the original Roe scheme when
the local Mach number reaches 1.

In x-direction, the diffusion matrix then reads

Dx =
1

ε2


0 0 0 0 0
0 0 0 0 γ − 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

+O(1). (5.14)

Observe that now the O(1/ε2) terms have disappeared from both the pressure and the
density row. Thus the arguments of Theorem 5.3 cannot make this scheme fail in the
combined limit ε→ 0, Fr ∈ O(ε), although as usual a satisfactory proof cannot be given
by means of asymptotic analysis. The equation at order O(ε−2), e.g. in x-direction,
becomes

1

2∆x

(
[p(0)]i±1 − (γ − 1)[[e(0)]]i± 1

2

)
= (ρgx)

(0)
i

pi − pi−1

2∆x
= (ρgx)

(0)
i

which is a consistent discretization of the limit equation (1.30). Observe that this scheme
can still be applied to the homogeneous Euler equations as no new inverse powers of
ε has been added. Contrary to Dx as given in (5.10), additionally the new matrix
in (5.14) has a finite limit for Mcut → 0, although this parameter is still needed in
the definition of Px. Linear stability of this scheme has been studied in Section 4.3.5.
There, a scaling of the CFL number with ε2 rather than ε has been found, which can
be confirmed experimentally. The original scheme (5.10) is known to perform in the
same way ([BM05]). Experimentally, it has been found that integrating the scheme by
a third-order Runge-Kutta scheme has a stabilizing influence, such that in practice the
CFL condition is not found to be as strict.

Note that the correct asymptotic scaling in general does not guarantee that for finite
resolution the numerical solution will be close to the analytical one. The situation is
somewhat easier in the homogeneous case, where any solution to the equation ∇p(0) = 0
can be represented exactly on a numerical grid. A discrete version of an exact solution
to ∇p(0) = ρ(0)g(0) with v = 0 will in general not remain stationary in a numerical
simulation because of the mismatch between the exact derivative and the way its nu-
merical approximation is obtained from adjacent cell averages. This behaviour has been
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briefly mentioned in Section 4.8 already. The correct asymptotics however means that
the errors do not increase without bound in the limit of small Mach numbers. If, in
addition to the correct scaling in the vicinity of a hydrostatic equilibrium, one wishes to
be able to maintain the equilibrium itself exactly stationary (up to machine precision),
a specific discretization (well-balancing) of the source term is necessary (e.g. [CK15]).
This, however, is not subject of this thesis.

As a test an isothermal hydrostatic equilibrium of an ideal gas with γ = 1.4 is
chosen, given by (1.26) and p/ρ = 1. The exact solution for this setup is stationary.
The test is performed in one spatial dimension with gravity pointing towards negative
values of the spatial coordinate with a computational domain of [0, 1]. It is discretized
with N ∈ {50, 100, 200, 400} cells. A Runge-Kutta scheme of 3rd order and a piecewise
constant reconstruction are used. The values in the ghost cells are fixed to their initial
values. The numerical results are displayed in Fig. 5.1, where the temperature p/ρ, is
shown as a function of time at a fixed position of x = 0.85. An oscillation is observed,
which does not change significantly with time, but whose amplitude decreases with
spatial resolution. Its origin is the fact that the numerical discretization of the pressure
gradient is not exactly balanced by the numerical treatment of the source term, which
is evaluated in a cell-centered manner. The residual acts as a perpetual excitation of
the atmosphere to which it answers by oscillation. The characteristic frequency is of the
order of the Brunt-Väisälä frequency of this setup. As expected, the numerical errors
in the approximation of the gradient and therefore the perturbations decrease with the
resolution.

Figure 5.1: Numerical evolution for the initial data of an isothermal, stationary atmosphere. p/ρ,
which is proportional to the temperature, is shown as a function of time at a fixed location of
x = 0.85. For comparison, additionally to the results computed with the new scheme, the evolution
of the same setup with the Roe solver is shown.

For comparison, the Figure shows the time evolution of the same initial data of the
isothermal equilibrium with the unmodified Roe solver. It suffers from a similar kind of
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mismatch between the numerical approximation to the gradient and the source term, but
the perturbations experience the strong diffusion which damps oscillations and manifests
itself in a rapid decrease of the temperature. In principle, again the deviations can be
controlled by increasing the resolution although the diffusive character persists.

The scheme given by the diffusion matrix (5.13) can also be used to numerically
solve the homogeneous Euler equations. Consider the Gresho vortex [GC90]. This is an
example of a stationary, incompressible rotating flow around the origin in two spatial
dimensions. Denoting by eϕ the unit vector in ϕ-direction and with r =

√
x2 + y2

v = eϕ ·


5r r < 0.2

2− 5r r < 0.4

0 else

(5.15)

p =


pc + 25

2
r2 r < 0.2

pc + 4 ln(5r) + 4− 20r + 25
2
r2 r < 0.4

pc + 4 ln 2− 2 else

(5.16)

with the uniform density ρ = 1 and the pressure in the vortex center pc = 1
γε2
− 1

2
.

In the compressible setting the flow can be endowed with different maximum Mach
numbers by varying the parameter ε in the value of the central pressure. Therefore this
is an example of a family of solutions, parametrized by a real number ε, such that Mloc

scales asymptotically as ε in the limit ε → 0. Such families of solutions are described
in Section 1.2. One observes for example that p = 1

ε2
(p̃(0) + εp̃(1) + . . .). Using notation

of Section 1.2, the asymptotic scalings here correspond to the following choice of the
parameters:

a = 0 b = 0 d = 0 c = −2
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Figure 5.2: Numerical simulation using the scheme described in Section 5.3.2. The initial data are
given in Equations (5.15)–(5.16) with ε = 10−2. The homogeneous Euler equations (1.14)–(1.15)
with γ = 1.4 are solved on a square 50×50 grid with a Runge-Kutta scheme of third order. Colour
coded is the Mach number. Left: Initial setup. Right: Simulations result at t = 2. Commit hash:
5498c5d.

Figure 5.3: Numerical simulation using the Roe scheme (Equation (5.3)). The initial data are given
in Equations (5.15)–(5.16) and shown in Figure 5.2 (left). The Euler equations (1.14)–(1.16) with
γ = 1.4 and ε = 10−2 are solved on a square 50 × 50 grid and the result shown at t = 2. Colour
coded is the Mach number. Top left: Initial setup. Commit hash: b428053.
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5.4 Stationarity preserving schemes

Stationarity preservation is very efficient in explaining various properties of numerical
schemes for linear acoustics (Section 4.5). It is tempting to try to generalize this notion
to nonlinear equations. Linearity is not a prerequisite for the existence of stationary
states. For linear acoustics the Fourier transform is used to study (numerical) stationary
states, which is not directly available for nonlinear problems. It thus might at first be
unclear whether any result at all can be reused.

In fact, as is demonstrated below, a number of results carry over to the nonlinear set-
ting. However, clearly, the available tools shrink when dealing with nonlinear equations.
Checking whether a given nonlinear scheme is stationarity preserving is not possible
with the methods presented so far, and seems a very complicated task. This thesis is
unable to cover all issues and to construct a theory for the nonlinear case that would
be as complete as the one for the linear case is. Carefully tailoring the setup, such that
results from Section 4.5 (that were formulated for linear acoustics) can be used, allows
to construct non-linear schemes. Several nonlinear schemes are constructed in Sections
5.4.1 and 5.4.2, and a novel kind of low Mach number modification is shown in Section
5.5. They demonstrate new construction principles and show satisfactory experimental
results, although further investigations are necessary. Hopefully they pave the way to-
wards a deeper understanding of multi-dimensional finite volume schemes for the Euler
equations.

The schemes in this Section are based on the following observation, expressed again
with continuous operators: if stationary states of a nonlinear PDE

∂tq + ∂xf
x(q) + ∂yf

y(q) = 0 q : R+
0 × R2 → Rn (5.17)

fx, f y : Rn → Rn

are governed by

∂xf
x(q) + ∂yf

y(q) = 0

then adding a diffusion of the type

∂2
xf

x(q) + ∂x∂yf
y(q) = 0

does not change the stationary states.
By Corollary 4.10 and Section 3.2.2.1, stationarity consistency allows to find a discrete

counterpart to such a statement: vanishing flux divergence

{{[fx(q)]i±1}}j± 1
2

+ [{{f y(q)}}i± 1
2
]j±1 = 0

implies vanishing of

{{[[fx(q)]]i± 1
2
}}j± 1

2
+ [[f y(q)]i±1]j±1 = 0

Note that the way fx and f y depend on q does not enter! They can well be nonlinear
functions.

This motivates the following definition:
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Definition 5.3 (Stationarity preserving). A consistent numerical scheme for (5.17) is
called stationarity preserving if its stationary states discretize all the analytic stationary
states.

5.4.1 Scalar-vector systems

The idea of the multi-dimensional scheme (4.32) is to make the diffusion of the velocity
v be proportional to grad div v, and to take the diffusion of p proportional to div grad p.
This means that the diffusion of a vectorial quantity is a vector (a gradient even), and
the diffusion of a scalar quantity a scalar. Also it is in a sense diagonal, as the diffusion
of v is a second derivative of v, and the diffusion of p is a second derivative of p.

Consider the following generalization of the acoustic system in two spatial dimensions:

Definition 5.4 (Scalar-vector system). The following system of conservation laws in
two spatial dimensions is called scalar-vector system

∂tp+ ∂xf
x + ∂yf

y = 0

∂tu+ ∂xπ
xx + ∂yπ

yx = 0

∂tv + ∂xπ
xy + ∂yπ

yy = 0

or in shorter notation (with v = (u, v)T):

∂tp+ div f = 0 (5.18)

∂tv + div π = 0 (5.19)

where f = (fx, f y)T and π =

(
πxx, πxy

πyx, πyy

)
are some given, not necessarily linear, func-

tions of p, u and v.
It describes the time evolution of a scalar quantity p : R+

0 ×R2 → R and a vector-valued
quantity v : R+

0 × R2 → R2.

The acoustic system is an example of such a scalar-vector system and is obtained by
choosing

fx = c2u f y = c2v

πxx = πyy =
p

ε2
πxy = πyx = 0

Isentropic hydrodynamics (1.6)–(1.7) can be found by taking

f = ρv

π = ρv ⊗ v + p1

The natural stationarity preserving diffusion would be

∂tp+ ∂xf
x + ∂yf

y = c1∆x(∂2
xπ

xx + ∂x∂y(π
xy + πyx) + ∂2

yπ
yy)

∂tu+ ∂xπ
xx + ∂yπ

yx = c2∆x∂x(∂xf
x + ∂yf

y)

∂tv + ∂xπ
xy + ∂yπ

yy = c2∆x∂y(∂xf
x + ∂yf

y)
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It computes the scalar second derivative by acting with div div onto π. The vectorial
second derivative is obtained by computing grad div f . For the acoustic system this
procedure reduces to the aforementioned operators div grad and grad div .

Observe that this diffusion (once it has been reproduced in a discrete setting) will
lead to a nonlinear stationarity preserving scheme.

Theorem 5.4 (Stationarity preserving scheme for scalar-vector system). The following
scheme for Equations (5.18)–(5.19) is stationarity preserving:

∂tp+
1

8∆x
{{[fx]i±1}}j± 1

2
+

1

8∆y
[{{f y}}i± 1

2
]j±1 (5.20)

= c1

(
1

4∆x
{{[[πxx]]i± 1

2
}}j± 1

2
+

1

4∆y
[[πyx]j±1]i±1 +

1

4∆x
[[πxy]i±1]j±1 +

1

4∆y
{{[[πyy]]j± 1

2
}}i± 1

2

)

∂tu+
1

8∆x
{{[πxx]i±1}}j± 1

2
+

1

8∆y
{{[πyx]j±1}}i± 1

2

= c2

(
1

4∆x
{{[[fx]]i± 1

2
}}j± 1

2
+

1

4∆y
[[f y]i±1]j±1

)
∂tv +

1

8∆x
{{[πxy]i±1}}j± 1

2
+

1

8∆y
{{[πyy]j±1}}i± 1

2

= c2

(
1

4∆x
[[fx]i±1]j±1 +

1

4∆y
[[{{f y}}i± 1

2
]]j± 1

2

)
(5.21)

with arbitrary c1, c2 (that are allowed to be function of p, u, v).

Proof. As the structure of Equations (5.20)–(5.21) is that of divergence operators, the
discrete identity of Corollary 4.10 can be applied three times.

The coefficients c1 and c2 do not follow from these considerations and have to be
found from further conditions.

Obviously the operator 1
4
{{·}}j± 1

2
becomes the identity when one-dimensional prob-

lems in x-direction are treated. Therefore Eqns. (5.20)–(5.21) become

∂tp+
1

2∆x
[fx]i±1 = c1 ·

1

∆x
[[πxx]]i± 1

2
(5.22)

∂tu+
1

2∆x
[πxx]i±1 = c2 ·

1

∆x
[[fx]]i± 1

2
(5.23)

Theorem 5.5 (Stability). In one spatial dimension, consider the scheme (5.22)–(5.23)
upon linearization

fx = a1u+ a2p

πxx = a3u+ a4p

with arbitrary constants a1, a2, a3, a4, a4 6= 0, a1 6= 0. If a3 = a2 =: a and |a| < √a1a4,
it reduces to the upwind/Roe scheme if

c1 =
1

2

√
a1

a4

c2 =
1

2

√
a4

a1
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Proof. With the linearization the scheme (5.22)–(5.23) becomes

∂tp+
1

2∆x
[a1u+ a2p]i±1 = c1 ·

1

∆x

(
a3[[u]]i± 1

2
+ a4[[p]]i± 1

2

)
∂tu+

1

2∆x
[a3u+ a4p]i±1 = c2 ·

1

∆x

(
a1[[u]]i± 1

2
+ a2[[p]]i± 1

2

)
or

∂t

(
u
p

)
+

1

2∆x

[(
a3 a4

a1 a2

)[
u
p

]
i±1

−
(

2c2a1 2c2a2

2c1a3 2c1a4

)[[
u
p

]]
i± 1

2

]
= 0

Define

J :=

(
a3 a4

a1 a2

)
In order to obtain the upwind/Roe scheme one needs to choose c1 and c2 as functions

of a1, a2, a3, a4 such that the matrix

D :=

(
2c2a1 2c2a2

2c1a3 2c1a4

)
becomes the diffusion matrix of the upwind/Roe scheme, i.e. D = |J |. This means that
the two matrices need to be simultaneously diagonalizable and that they commute. The
commutator vanishes under the conditions

c1a3a4 = c2a1a2

c1a
2
4 + c2(a2a3 − a1a4 − a2

2) = 0

c2a
2
1 + c1(a2a3 − a2

3 − a4a1) = 0

These are three linear equations for the two variables c1, c2. If a4 6= 0, a1 6= 0 then
they only have nontrivial solutions if

(a1a4 − a2a3)(a3 − a2) = 0

Clearly, then there also exists an infinity of solutions.
If a3 = a2 =: a, then c1 can be taken arbitrary and

c2 = c1
a4

a1

One can explicitly diagonalize J and D in this case, i.e. there exists an invertible
matrix R with:

R−1JR =

(
a−√a1a4

a+
√
a1a4

)
R−1DR = 2c1

√
a4

a1

( √
a1a4 − a 0

0
√
a1a4 + a

)
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If |a| < √a1a4, then

R−1|J |R =

( √
a1a4 − a

a+
√
a1a4

)
This is obtained by choosing

c1 =
1

2

√
a1

a4

The other case
√
a1a4 < a is not reachable by any choice of c1. Indeed, one would need

2c1

√
a4

a1

(
√
a1a4 − a) = a−

√
a1a4

2c1

√
a4

a1

(
√
a1a4 + a) = a+

√
a1a4

which is only solved by c1 = c2 = 0.

Thinking of linearized Euler (linear acoustics and linear advection)

∂tp+ U∂xp+ c2∂xu = 0

∂tu+ U∂xu+
∂xp

ε2
= 0

one would have

a3 = a2 = a = U a1 = c2 a4 =
1

ε2

For linearized Euler the case |a| < √a1a4 = c
ε

corresponds to a subsonic situation.
From the theorem then follows the choice

c1 =
1

2
cε c2 =

1

2

1

cε

The supersonic case
√
a1a4 < a is not reachable by any choice of c1.

Numerical results for the scheme (5.20)–(5.21) are shown in Figure 5.4. Experimen-
tally, it is found to be linearly stable in the subsonic regime, but seems to suffer from a
different kind of instability that only appears at much later times. Therefore the scheme
cannot be satisfactorily used for simulations in its current form, but there is hope that
this instability will be understood and cured in future. On the other hand, Figure 5.4
shows that stationarity preservation even in the nonlinear case seems to lead to a low
Mach compliant scheme. This is reassuring and subject of future work.
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Figure 5.4: Numerical simulation using the scheme described in Theorem 5.4. The initial data are
chosen to be an isentropic version of the Gresho vortex given in (5.15)–(5.16). The isentropic Euler
equations (1.6)–(1.7) with K = 1 and γ = 1.4 are solved on a square 50× 50 grid. Colour coded
is the Mach number. Top left: Initial setup. Top right: Simulation result at t = 2 for ε = 10−1.
Bottom right: Simulation result at t = 2 for ε = 10−2. Commit hashes: 8e290b1 and 3d52689.

5.4.2 Scheme using the pseudo-inverse

In Sections 3.2.3 and 4.5.2.2 a multi-dimensional scheme is derived by extending the
one-dimensional Roe scheme to multiple dimensions in a stationarity consistent manner.
This does not only involve computing the usual absolute value |Jx| of the Jacobian Jx,
but also its sign |Jx|J−1

x . However, Jx is in general not invertible. Definition 3.11 thus

sets sign Jx := |Jx|J
-1©
x with J

-1©
x being the Moore-Penrose pseudo-inverse (Definition

3.10). The strategy of Section 3.2.3 – to be extended to nonlinear systems here – does
not involve any free parameters. This is in contrast to the scheme presented in Section
5.4.1.

Consider the hyperbolic system

∂tq + ∂xf
x(q) + ∂yf

y(q) = 0 (5.24)
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and the one-dimensional Roe solver defined by its numerical flux

fx
i+ 1

2
,j

=
1

2
{fx(q}i+ 1

2
,j −

1

2
|Jx|(qi+ 1

2
,j)[q]i+ 1

2
,j (5.25)

This scheme needs to be extended to multiple spatial dimensions, and this shall be
done using a stationarity consistent diffusion. Mimic the scheme again by continuous
operators, before dealing with the discrete case. The stationary states of (5.24) are given
by

∂xf
x(q) + ∂yf

y(q) = 0 (5.26)

The Roe flux (5.25) leads to a dimensionally split scheme that has this shape:

∂tq + ∂xf
x(q) + ∂yf

y(q) = (. . .)∂x
(
|Jx|∂xq

)
+ (. . .)∂y

(
|Jy|∂yq

)
Recall that the multi-dimensional extension needs to have a diffusion that vanishes when-
ever the flux divergence (5.26) vanishes. To find out what (5.26) implies for q is very
difficult: this would involve solving the stationary Euler equations. If one manages to
express ∂xq by some function of the fluxes, things would become easier. And indeed,
obviously

∂xf
x = Jx∂xq ∂xf

y = Jy∂yq (5.27)

and thus (ignore the question of the invertibility for the moment, it is discussed below
in detail)

∂tq + ∂xf
x(q) + ∂yf

y(q) = (. . .)∂x(|Jx|J−1
x ∂xf

x) + (. . .)∂y(|Jy|J−1
y ∂yf

y)

This easily has a stationarity consistent extension to multiple spatial dimensions:

∂tq + ∂xf
x(q) + ∂yf

y(q) = (. . .)∂x

(
|Jx|J−1

x (∂xf
x + ∂yf

y)
)

+ (. . .)∂y

(
|Jy|J−1

y (∂xf
x + ∂yf

y)
)

(5.28)

Discrete counterparts to (5.27) and (5.28) need to be found, and the inverse of Jx,
Jy needs to be treated. This latter issue appeared earlier again and one can hope to be
able to regularize it by means of the Moore-Penrose pseudo-inverse.

Turn first to the discrete version of (5.27). For upwinding in the supersonic case
when all the eigenvalues of |Jx|(qi+ 1

2
,j) are positive, one needs to have (in one spatial

dimension again)

fx(qij)
!

= fx
i+ 1

2
,j

=
1

2
(fx(qi+1,j) + fx(qij))−

1

2
Jx(qi+ 1

2
,j)[q]i+ 1

2
,j

[fx(q)]i+ 1
2
,j = Jx(qi+ 1

2
,j)[q]i+ 1

2
,j (5.29)

Roe ([Roe81]) explicitly constructs an averaging procedure for the Euler equations, with
which qi+ 1

2
,j can be computed from qij and qi+1,j such that (5.29) is true. This equation

is a discrete counterpart to (5.27).
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Theorem 5.6 (Roe average). Given

qR = (ρR, ρRuR, ρRvR, eR) qL = (ρL, ρLuL, ρLvL, eL)

vR := (uR, vR) vL := (uL, vL)

define the average ā of any two quantities aR and aL by

ā :=
aR
√
ρR + aL

√
ρL√

ρR +
√
ρL

Also define the enthalpy

hR :=
γeR
ρR
− (γ − 1)

|vR|2

2

and analogously hL.
Consider the fluxes fx, f y of the Euler equations as in (1.8)–(1.10) and Jx = ∇qf

x.
Then

fx(qR)− fx(qL) = Jx(q̄)(qR − qL)

is identically (i.e. for all qR, qL) true if

q̄ =

(
ρ̄, ρ̄ū, ρ̄ū,

ρ̄h̄

γ
+
ρ|v̄|2

2

γ − 1

γ

)
Proof. See e.g. [Roe81, LeV02].

Equation (5.25) would thus be rewritten as

fx
i+ 1

2
,j

=
1

2
{fx(q)}i+ 1

2
,j −

1

2
|Jx|(qi+ 1

2
,j)J

−1
x (qi+ 1

2
,j)[f(q)]i+ 1

2
,j

=
1

2
{fx(q)}i+ 1

2
,j −

1

2
sign Jx(qi+ 1

2
,j)[f

x(q)]i+ 1
2
,j

were it not again for the fact that Jx is not invertible. The eigenvalues of J̄x vanish at
the sonic point and at zero velocity (this latter being the relevant case for low Mach
number flow).

The following Theorem establishes a regularization:

Theorem 5.7. Consider qi+ 1
2
,j as in Theorem 5.6 and the Moore-Penrose pseudo-inverse

J
-1©
x of Jx as in Definition 3.10. Then for subsonic flow

|Jx|(qi+ 1
2
,j)[q]i+ 1

2
,j = |Jx|(qi+ 1

2
,j)J

-1©
x (qi+ 1

2
,j)[f

x(q)]i+ 1
2
,j

Proof. Jx has eigenvalues {u ± c, u}. If ū, associated to qi+ 1
2
,j as in Theorem 5.6 does

not vanish, then Jx is invertible for subsonic flow, and the pseudo-inverse is the usual
inverse by construction. If ū = 0 then both sides of the equation exist, but need not be
equal in principle. From ū = 0 follows

√
ρiui +

√
ρi+1ui+1 = 0

Using this allows to explicitly compute both sides in order to verify the equality. The
computation is lengthy and is omitted here to save a tree.
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It is not obvious whether this finding is pure luck, or whether this has a deep reason.
Note that one can easily compute, for the special case ui = ui+1 = ū = 0 that

J -1©
x (qi+ 1

2
,j)[f

x(q)]i+ 1
2
,j =


0
· · ·
0
0


such that in general

J -1©
x (qi+ 1

2
,j)[f

x(q)]i+ 1
2
,j 6= [q]i+ 1

2
,j

The last ingredient is a discrete counterpart to Equation (5.28). In particular one
needs to ensure that a discrete version of

∂x

(
sign Jx(∂xf

x + ∂yf
y)
)

(5.30)

vanishes whenever a discrete version of

∂xf
x + ∂yf

y

does. So far only a stationarity consistent discretization of

∂2
xf

x + ∂x∂yf
y

is available by Corollary 4.10. In (5.30), Jx is a complicated nonlinear function of q.
However, by the Leibniz rule

∂x

(
sign Jx(∂xf

x + ∂yf
y)
)

= sign Jx(∂
2
xf

x + ∂x∂yf
y)
)

+ (∂xsign Jx) · (∂xfx + ∂yf
y)

This has a discrete counterpart:

Lemma 5.1 (Discrete Leibniz rule).[
A·,j

(
[{{u}}j± 1

2
]

4
+
{[v]j±1}

4

)]
i± 1

2

=

1

2
{A}i± 1

2
,j

(
[[{{u}}j± 1

2
]]i± 1

2

4
+

[[v]i±1]j±1

4

)
+ [A]i± 1

2
,j

(
[{{u}}j± 1

4
]i±1

8
+

[{{v}}i± 1
4
]j±1

8

)
(5.31)

is a discrete version of the statement

∂x

(
A(∂xu+ ∂yv)

)
= A(∂2

xu+ ∂x∂yv) + (∂xA)(∂xu+ ∂yv)

Proof. Expand (by dividing into two halves)[
A·,j

[
{{u}}j± 1

2

]]
i± 1

2

+
[
A·,j

{
[v]j±1

}]
i± 1

2

=
1

2
Ai+ 1

2
,j

[
{{u}}j± 1

2

]
i+ 1

2

+
1

2
Ai+ 1

2
,j

{
[v]j±1

}
i+ 1

2

− 1

2
Ai− 1

2
,j

[
{{u}}j± 1

2

]
i− 1

2

− 1

2
Ai− 1

2
,j

{
[v]j±1

}
i− 1

2

+
1

2
Ai+ 1

2
,j

[
{{u}}j± 1

2

]
i+ 1

2

+
1

2
Ai+ 1

2
,j

{
[v]j±1

}
i+ 1

2

− 1

2
Ai− 1

2
,j

[
{{u}}j± 1

2

]
i− 1

2

− 1

2
Ai− 1

2
,j

{
[v]j±1

}
i− 1

2
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and add zero:

=
1

2
Ai+ 1

2
,j

[
{{u}}j± 1

2

]
i+ 1

2

+
1

2
Ai+ 1

2
,j

{
[v]j±1

}
i+ 1

2

− 1

2
Ai− 1

2
,j

[
{{u}}j± 1

2

]
i− 1

2

− 1

2
Ai− 1

2
,j

{
[v]j±1

}
i− 1

2

+
1

2
Ai− 1

2
,j

[
{{u}}j± 1

2

]
i+ 1

2

− 1

2
Ai− 1

2
,j

[
{{u}}j± 1

2

]
i+ 1

2

+
1

2
Ai+ 1

2
,j

[
{{u}}j± 1

2

]
i− 1

2

− 1

2
Ai+ 1

2
,j

[
{{u}}j± 1

2

]
i− 1

2

+
1

2
Ai+ 1

2
,j

[
{{u}}j± 1

2

]
i+ 1

2

+
1

2
Ai+ 1

2
,j

{
[v]j±1

}
i+ 1

2

− 1

2
Ai− 1

2
,j

[
{{u}}j± 1

2

]
i− 1

2

− 1

2
Ai− 1

2
,j

{
[v]j±1

}
i− 1

2

+
1

2
Ai− 1

2
,j

{
[v]j±1

}
i+ 1

2

− 1

2
Ai− 1

2
,j

{
[v]j±1

}
i+ 1

2

+
1

2
Ai+ 1

2
,j

{
[v]j±1

}
i− 1

2

− 1

2
Ai+ 1

2
,j

{
[v]j±1

}
i− 1

2

=
1

2
{A}i± 1

2
,j

[
{{u}}j± 1

2

]
i+ 1

2

− 1

2
{A}i± 1

2
,j

[
{{u}}j± 1

2

]
i− 1

2

+
1

2
[A]i± 1

2
,j

[
{{u}}j± 1

2

]
i+ 1

2

+
1

2
[A]i± 1

2
,j

[
{{u}}j± 1

2

]
i− 1

2

+
1

2
{A}i± 1

2
,j

{
[v]j±1

}
i+ 1

2

− 1

2
{A}i± 1

2
,j

{
[v]j±1

}
i− 1

2

+
1

2
[A]i± 1

2
,j

{
[v]j±1

}
i+ 1

2

+
1

2
[A]i± 1

2
,j

{
[v]j±1

}
i− 1

2

=
1

2
{A}i± 1

2
,j

[[
{{u}}j± 1

2

]]
i± 1

2

+
1

2
{A}i± 1

2
,j

[
[v]j±1

]
i±1

+
1

2
[A]i± 1

2
,j

[
{{u}}j± 1

2

]
i±1

+
1

2
[A]i± 1

2
,j

{{
[v]j±1

}}
i± 1

2

=
1

2
{A}i± 1

2
,j

([[
{{u}}j± 1

2

]]
i± 1

2

+
[
[v]j±1

]
i±1

)
+

1

2
[A]i± 1

2
,j

([
{{u}}j± 1

2

]
i±1

+
{{

[v]j±1

}}
i± 1

2

)
which proves the statement. Note that the average 1

4
{{·}}j± 1

2
is a crucial ingredient of

the proof.

Thus, although Fourier transform methods cannot be directly applied in the nonlinear
setting, nonlinearity can be handled in such cases via a discrete Leibniz rule!

Now all the ingredients are in place to write down the scheme:

Theorem 5.8. Consider the Euler equations (1.8)–(1.10) in two spatial dimensions.

Denote by qi+ 1
2
,j the Roe average as in Theorem 5.6 and let sign Jx = |Jx|J

-1©
x . The

scheme obtained from the following numerical flux

fx
i+ 1

2
,j

=
1

2

{
1

4
{{fx(q)}}j± 1

2

}
i+ 1

2

− 1

2
sign Jx(qi+ 1

2
,j)

([
1

4
{{fx(q)}}j± 1

4

]
i+ 1

2

+
1

4
{[f y(q)]j±1}i+ 1

2

)

(with the flux in y-direction given by appropriate rotation) is stationarity preserving with
the discrete stationary states given by

1

2

[
1

4
{{fx(q)}}j± 1

2

]
i±1

+
1

2

[
1

4
{{f y(q)}}i± 1

2

]
j±1

= 0

It reduces to the Roe scheme when applied to a one-dimensional situation.

Proof. The flux difference reads

[fx]i± 1
2
,j =

1

2

[
1

4
{{fx(q)}}j± 1

2

]
i±1

− 1

2

[
sign Jx(q)

([
1

4
{{fx(q)}}j± 1

4

]
+

1

4
{[f y(q)]j±1}

)]
i± 1

2
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Therefore stationarity preservation follows from Lemma 5.1. Applied to a one-dimensional
situation the one-dimensional Roe scheme follows by Theorem 5.7.

Numerical results for this scheme are shown in Figure 5.5. Experimentally again
stationarity preservation seems to lead to a low Mach compliant scheme. In the linearized
regime around a static state the scheme reduces to the multi-dimensional scheme (4.32)
which is stable. The presence of the sign function seems to lead to artefacts that spoil
stability for very long times. This is partly due to the fact that errors at the level of
machine precision get amplified. When entering the sign function, two numbers −10−16

and 10−16 which are very close get torn apart to become ±1. This is an issue related to
the practical implementation of the scheme on real computers, and does not touch the
theory above. As a remedy it has been found that in practice it helps to replace the sign
function by a continuous function sign δ

sign δ(x) :=


1 x ≥ δ

−2
(
a
δ

)3
+ 3

(
a
δ

)2
0 ≤ x < δ

−2
(
a
δ

)3 − 3
(
a
δ

)2 −δ ≤ x < 0

−1 x < −δ

(5.32)

Results of both computations are shown in Figure 5.5. The relation between station-
arity preservation and low Mach compliance in the nonlinear case are subject of future
work, for which the results obtained with the schemes of Section 5.4.1 and 5.4.2 are an
inspiration.

Figure 5.5: Numerical simulation using the scheme described in Theorem 5.8. The initial data are
given in Equations (5.15)–(5.16) and shown in Figure 5.2 (left). The Euler equations (1.8)–(1.10)
with γ = 1.4 and ε = 10−2 are solved on a square 50× 50 grid. Colour coded is the Mach number
and the result is shown at t = 2. Left: Using the usual sign function. Right: The sign function
smoothed out according to (5.32) with δ = 10−7. Commit hashes: 87ce579 and 331d2ac.
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5.5 Low Mach number scheme

Recall Theorem 4.10 for linear acoustics. For low Mach compliance, it is sufficient
for the scheme (4.32) to be stationarity preserving, as Theorem 4.1 then establishes
its good behaviour in the limit of low Mach number. Theorem 4.10 shows the same
via asymptotic analysis. In the nonlinear case the Fourier transform that was used to
establish stationarity preservation is unavailable. However, asymptotic analysis is still
viable.

What is the essential reason for the scheme (4.32) to be low Mach compliant? Con-
sider one of the equations, obtained formally by an asymptotic analysis, e.g. Equation
(4.45):

0 =
1

8∆x
{{[p(1)]i±1}}j± 1

2
− c

(
1

8∆x
{{[[u(0)]]i± 1

2
}}j± 1

2
+

1

8∆y
[[v(0)]i±1]j±1

)

It is a discretization of

0 = ∂xp
(1) − ∆x

2
c
(
∂2
xu

(0) +∂x∂yv
(0)
)

The boxed term is the one that is essentially different from the corresponding equations
for the upwind/Roe scheme. Recall that the PDE requires ∂xp

(1) ∈ O(ε). So far, low
Mach fixes started out with the upwind/Roe scheme and have focused on appending a
factor of ε to the second derivative of u and thus in a sense removing it. The multi-
dimensional scheme (4.32) follows a different strategy – it adds another term of the
same kind. The sum of the two, however, is O(ε), and this strategy in the end therefore
achieves the same. The advantage of this approach is that it does not need any adjustable
parameters.

So far, low Mach fixes generically were derived for the Euler equations, and had an
immediate interpretation for acoustic equations. The multi-dimensional scheme (4.32)
has been derived for the acoustic equations directly. The aim of this Section is to extend
it in some sense to the Euler equations. Whereas for the acoustic equations, stationarity
preservation, vorticity preservation and low Mach compliance are equivalent, this is not
the case for the Euler equations. Therefore here, for the Euler equations, the focus shall
lie on low Mach compliance only. As is shown in Section 5.1.2, it is just the same second
derivative of u that appears in the asymptotic analysis of the Roe scheme for the Euler
equations. The idea thus is to add a cross-derivative of v in order to balance it.

As usual, mimic the numerical scheme first by continuous diffusion operators. Recall
that the Roe matrix (Equation (5.4)) in the limit ε→ 0 is

|Jx| =
1

ε


0 0 0 γ−1

c

−cu c 0 2u(γ−1)
c

0 0 0 (γ−1)v
c

0 0 0 c

+O(1) (5.33)
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The Roe scheme (omitting the flux divergence) thus contains, to highest order in ε,
the following diffusion

∂t(ρu) ' ∂x

(
−cu
ε
∂xρ+

c

ε
∂x(ρu)

)
+ ∂y

(
−cv
ε
∂yρ+

c

ε
∂y(ρv)

)
= ∂x

(cρ
ε
∂xu
)

+ ∂y

(cρ
ε
∂yv
)

Here it has been used that − cu
ε
∂xρ+ c

ε
∂x(ρu) = cρ

ε
∂xu.

Observe the presence of second derivatives of u and v. In order to make appear the
divergence ∂xu+ ∂yv one has to augment this expression by cross-derivatives

∂t(ρu) ' ∂x

(cρ
ε

(∂xu+ ∂yv)
)

+ ∂y

(cρ
ε

(∂xu+ ∂yv)
)

and going back to conservative variables, rewrite this into

= ∂x

(
−cu
ε
∂xρ+

c

ε
∂x(ρu)− cv

ε
∂yρ+

c

ε
∂y(ρv)

)
+ ∂y

(
. . .
)

(5.34)

By analogy with the scheme (4.32) in two spatial dimensions, and based on the
Roe scheme, one might consider the following multi-dimensional scheme for the Euler
equations:

fx
i+ 1

2
=

1

2

{{{f(q)}i+ 1
2
}}j± 1

2

4
− 1

2
|Jx|(qi+ 1

2
,j)
{{[q]}}j± 1

2

4
− 1

2
Kx

[{q}i+ 1
2
]j±1

4
(5.35)

with

Kx =


0
− cv

ε
0 c

ε

0
0

 (5.36)

It contains discretizations of (5.34). However, recall that when deriving the multi-
dimensional scheme (4.32) for linear acoustics, the discrete derivatives have been chosen
carefully such that a relation of the type

∂xu+ ∂yv = 0 ⇒ ∂2
xu+ ∂x∂yv = 0

remains exactly true at discrete level. In the nonlinear case one has to find a discrete
counterpart to (5.34) such that this diffusion vanishes whenever ∂xu+ ∂yv does. This is
not guaranteed by the flux in Equation (5.35), which is due to the nonlinear terms. Such
discrete relations however can also be proven in the nonlinear setting if one manages to
find a suitable discrete Leibniz rule. Recall the relation (5.31), given here again:[
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This is a discrete counterpart to

∂x(A(∂xu+ ∂yv)) = A(∂2
xu+ ∂x∂yv) + ∂xA(∂xu+ ∂yv)

and nowhere does this relation depend on the properties of A. Indeed, it might well be
a nonlinear function of the other variables.

Lemma 5.2 (Discrete Leibniz rules). The following discrete Leibniz rules are discretiza-
tions of ∂x(AB) = ∂xA ·B + A · ∂xB:

i)

[AB]i+ 1
2

=
{A}i+ 1

2

2
[B]i+ 1

2
+ [A]i+ 1

2

{B}i+ 1
2

2

ii)

{A}i+ 1
2

2

{B}i+ 1
2

2
−
{A}i− 1

2

2

{B}i− 1
2

2
=

[
{A}

2

{B}
2

]
i± 1

2

=
{{A}}i± 1

2

4

[B]i±1

2
+

[A]i±1

2

{{B}}i± 1
2

4

Proof. Contrary to finding, proving these Leibniz rules is very easy by direct computa-
tion. E.g.
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The other relation is obtained in just the same way.

Recall the dimensionally split Roe scheme for the Euler equations in two spatial
dimensions and denote by q the vector of conserved quantities. The flux is given by
Equation (5.3)
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Theorem 5.9. Consider the x-flux of the dimensionally split Roe scheme and the fol-
lowing replacements:

i) The averaged energy flux 1
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ii) In the jump [q] that is multiplied by |Jx| the density jump is to be chosen as
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and the x-momentum jump as[
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Also, similarly to (5.35), the following term is to be added to the flux:

−1

2
Kx · (discretization of ∂yq)

with Kx, to lowest power in ε, is given by Equation (5.36). The discretization of ∂yq is
to be chosen such that ∂yρ is discretized as
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and ∂y(ρv) discretized as [
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Both |Jx| and Kx are functions of the dependent variables q. They are to be evaluated
at averaged states in such a way, that the terms cu

ε
, cv
ε

in (5.33) and (5.36) in the discrete
setting are
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where 〈c〉i+ 1
2
,j denotes any kind of average of c. The only condition is that all appearances

of c in those matrices are discretized using the same average.

Analogous conditions apply to the y-direction, and it is assumed that the numerical
flux in y-direction is obtained by rotating the setup.

A finite volume scheme with such a numerical flux is low Mach compliant. Formally,
in the limit the solutions are characterized by

p = const
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2
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8
= 0
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Proof. The diffusion, given by the two terms involving |Jx| (to highest order in ε) and
Kx, by construction is
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which is a discrete analogue to (5.34).
With the two discrete Leibniz rules of Lemma 5.2 this becomes
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Upon computing the flux difference [fx]i+ 1
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(5.37)

This is exactly what enters (5.31). Therefore the expression in (5.37) vanishes whenever
the divergence
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2

8
+

[{{v}}i± 1
2
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8
(5.38)

does. It thus remains to be shown that this is the divergence that appears in the limit
ε→ 0.

As the diffusion does not involve any powers less than ε−1, by performing the asymp-
totic analysis on the momentum equations will yield constancy of p(0), just as in (5.5).
Inserting this into the energy equation and making use of condition i) makes appear the
discrete divergence (5.38).

Obviously, the same arguments apply in the y-direction as well.

Corollary 5.1. A scheme for the Euler equations (1.8)–(1.10) that fulfills all the condi-
tions of Theorem 5.9 in two spatial dimensions is given by the following flux:
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The numerical flux in y-direction is obtained by an appropriate rotation. Applied to a
one-dimensional situation this flux reduces to the Roe flux.
|Jx| is given as in the dimensionally split Roe scheme, and Kx is given by (5.36). The

average on which |Jx| is evaluated, is, in conservative variables, chosen as
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Kx is evaluated in the state given by
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Note that low Mach compliance deals with only those terms in |Jx| that are O(ε−1).
Also Kx can only be specified to this order in ε, although it is possible that it contains
further terms O(1). However, they are unimportant for the low Mach number limit
and have to be derived using some other conditions. This means that Theorem 5.9
describes a broad class of schemes. They are characterized by the fact that low Mach
compliance is achieved by using derivatives of the divergence, rather than derivatives of
some components of v. But they still leave plenty of choice, and the scheme in Corollary
5.1 is just one example of such a scheme.

This modification shows very satisfactory results in practice, along with good stability
properties of the scheme. The scheme is experimentally found to remain stable up to a
CFL number of 1 even in two spatial dimensions. However, as it is not (known to be)
stationarity preserving, the numerical results, shown in Figure 5.6, are not of such a good
quality as those of Figures 5.4 and 5.5. Nevertheless they seem to demonstrate low Mach
compliance, as the numerical errors do not depend on ε. Additionally, it shows results
obtained with the flux of Equation (5.35), which is not a carefully chosen discretization.
However, still the results are indistinguishable. The underlying reasons are subject of
future work.
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Figure 5.6: Numerical simulation using the scheme described in Corollary 5.1. The initial data are
given in Equations (5.15)–(5.16) and shown in Figure 5.2 (left). The Euler equations (1.8)–(1.10)
with γ = 1.4 are solved on a square 50 × 50 grid. Colour coded is the Mach number and the
result is shown at t = 2; when comparing to other images of this Section note the different colour
scale. Top left: Full implementation for ε = 10−2. Top right: Simplified implementation according
to Equation (5.35) for ε = 10−2. Bottom: Full implementation for ε = 10−1. Commit hashes:
506b22e, 9eaae49 and ea7ac58.





Chapter 6

Summary and outlook

For the Euler equations in the low Mach number regime one is facing a dichotomy of
numerical schemes: for a given quality of simulation, certain schemes need finer and
finer grids the lower the Mach number of the flow is. Among these schemes are such
prominent ones as the Godunov or the Roe scheme. Other schemes are able to capture
low Mach number flow on a fixed grid. This thesis presents several new approaches for
the second kind of scheme.

It seems to be possible to isolate the problem by studying a simpler set of equa-
tions. The linearization of the Euler equations around a static state yields the acoustic
equations. It is shown in this thesis that the low Mach number limit of the acoustic
equations is equivalent to their long time limit. In the low Mach number limit numerical
schemes for the acoustic equations are found to display a similar kind of dichotomy as
the schemes for the Euler equations.

The analysis numerical schemes for the acoustic equations originates in detailed stud-
ies of the numerical solution obtained with the upwind/Roe scheme. It is found, and
shown in detail analytically, that for long times the states on which the scheme sta-
tionarizes are only a restricted subset of all the analytic stationary states. Whereas
the stationary states of the acoustic equations are characterized by a divergencefree
velocity (∂xu + ∂yv = 0), the numerical stationary states of the Roe scheme are only
those that discretize the divergencefree velocity and additionally ∂xu = 0 and ∂xv = 0.
The upwind/Roe scheme thus only becomes stationary for shear flows. The ability of
a numerical scheme to discretize all the analytic stationary states is termed stationar-
ity preservation. It is shown that the equivalence of the long time and the low Mach
number limit has a discrete counterpart. Thus, stationarity preservation allows to single
out precisely those schemes that are low Mach compliant, i.e. which discretize all the
analytic limit equations for ε→ 0.

For the acoustic equations, vorticity is stationary. One can show that a stationarity
preserving scheme is vorticity preserving, i.e. there exist a discretization of the vorticity
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that remains stationary. Vorticity preserving schemes have been previously studied in
literature, motivated by reproducing at discrete level this feature of the equations. The
analysis presented here makes a new link between vorticity preserving schemes and low
Mach number compliant schemes.

This gives an exhaustive picture of what happens to numerical schemes for linear
acoustics in the limit of low Mach number. The tools developed in this thesis allow
to efficiently study given schemes for linear acoustics, but can also be applied con-
structively. A success of the theory is the clarification of the role played by multi-
dimensional schemes. A particular multi-dimensional stencil appears in a number of
numerical schemes throughout the literature. They usually focus on vorticity preserving
schemes for linear acoustics, and in view of the different constructions it might appear
surprising that they obtain the same, or very similar, stencils. Stationarity preservation
allows to show that this stencil unique in the following sense. Numerical schemes intro-
duce diffusion for stability, and it may spoil the stationary states. The aforementioned
stencils appear if one requires the diffusion not to change the stationary states given by
a central difference discretization of the PDE. It can be shown that this is only possible
with a multi-dimensional scheme that involves all the 8 neighbours of a cell, i.e. also
the corner cells. By studying the modified equation associated to this multi-dimensional
scheme, the velocity diffusion is to leading order found to be grad div v, such that it
vanishes whenever div v = 0. However, to higher orders the operators involved cease to
be “rotationally invariant”. Although there exist lots of discretizations of grad div v and
div v, obtaining a discrete counterpart to

div v = 0 ⇒ grad div v = 0

uniquely specifies the aforementioned discrete operators. This is the reason why the
corresponding stencils reappear in the literature several times.

In practice, such multi-dimensional schemes show superior behaviour when compared
to most dimensionally split ones. They also have better stability properties, with the
stability domain extending up to cfl = 1. They are conceptually pleasing as they do
not introduce any ad hoc parameters, but reflect intrinsic properties of the PDE. Not
all multi-dimensional schemes, however, are stationarity preserving (and thus low Mach
compliant). This thesis presents a derivation of the two-dimensional Godunov scheme
for linear acoustics, which is not found to be stationarity preserving. Its behaviour in the
low Mach limit is in large parts similar to that of the dimensionally split upwind/Roe
scheme, although it naturally has the larger stability domain with cfl < 1.

The thesis presents several ways how the concepts can be extended, and how they
allow to construct new schemes. For instance, it is shown how the aforementioned
multi-dimensional stationarity preserving scheme can be extended to second order. This
extension is not unique and can be performed in such a way that the scheme meets
additional requirements. A fascinating question remains, namely how to derive limiters
for higher order schemes, that do not spoil stationarity preservation.

The behaviour of numerical methods for other linear systems can also be fruitfully
studied using the concept of stationarity preservation. As far as possible, the state-
ments concerning stationarity preservation are formulated for general linear hyperbolic
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systems. The application is exemplified in this thesis for linearized Euler equations with
gravity. The stationary states are governed by a balance between the source term and
the flux divergence. An analytic stationary solution, when inserted into the simulations
typically does not remain stationary. The reason is that the way the flux difference is
obtained in a numerical method usually does not match the discretization of the source
term. There exist several strategies to improve this behaviour, that commonly are re-
ferred to as well-balancing. Stationarity preservation allows to understand the origins
of unsatisfactory behaviour of the simulation, and to find precise solutions. Even here
stationarity preservation yield new insight, despite having been applied to the simplest
well-balancing problem.

The extension of stationarity preservation to nonlinear systems is more subtle. Clearly,
the linearized regime is covered by results of linear acoustics. Thus, necessary conditions
for low Mach compliance are available. Also many of the construction principles, that
are initially developed for linear schemes, can be extended to the nonlinear case. This
might seem surprising, in view of the essential role that the Fourier transform plays in the
proofs. The main reasons that the linear results can be reused is that the Euler equations
are quasilinear, and the non-linear products can be treated with discrete counterparts of
the Leibniz rule. Clearly, unlike in the linear case, not all questions can be answered to
full extent. In particular it remains unclear how for a given scheme to check stationarity
preservation. But the different ways of construction of stationarity preserving schemes
for the Euler equations that are presented in this thesis show that it is possible to tackle
the nonlinear problem. The nonlinear schemes derived in this thesis are not meant to be
an exhaustive presentation. However, the fact that they seem to be low Mach compliant
encourages future work, devoted to a deeper understanding of the underlying structure.

The stationarity preserving schemes for the Euler equations that are presented in
this thesis do not show satisfactory stability properties under explicit time integration.
They are stable in the static linearized regime, because in this case they all reduce to
a stable multi-dimensional scheme for linear acoustics. To understand reasons for the
appearance of the instability is subject of future work.

On the other hand, the multi-dimensional low Mach compliant scheme that has been
constructed for the Euler equations is found to perform very well experimentally. When
applied to flow of low Mach number it is not found to show artefacts and has a large
stability domain which in practice is found to extend up to cfl = 1. The way it
achieves low Mach compliance, to the author’s knowledge, is novel in the realm of the
Euler equations. Instead of removing terms that violate the asymptotic scalings, another
such term is added. In total they combine to a term that brings another factor of ε by
exploiting the divergence constraint in the limit. This seems a very elegant way of
obtaining low Mach compliance.

The low Mach number limit, stationarity and vorticity preservation are all linked for
the acoustic equations. It is not immediately clear what consequences this has for the
nonlinear case. Whereas stationarity preservation as a concept can easily be extended to
nonlinear equations along the lines of this thesis, vorticity preservation is more involved.
Vorticity is not stationary at continuous level. On what grounds to base a discretization
of its evolution equation is unclear. It remains to be investigated what connection there
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might be between the choice of discrete vorticity evolution and the properties of the
scheme in the low Mach number limit.

As the derivation of the low Mach compliant multi-dimensional scheme for the Euler
equations focuses on the low Mach number limit, and in particular on scalings O(ε−1),
there is ample possibility to improve this scheme further. Low Mach compliance does
not provide any conditions for terms that scale as ε0 or higher. They have to come from
further considerations, be it vorticity transport, or something else. To investigate the
possible extensions of this scheme is subject of future work.

The predictive power of stationarity preservation for acoustics, and the first results
for the Euler equations seem to indicate that this work will help to advance numerical
methods for the Euler equations in multiple spatial dimensions.



Appendix

The begemot code

begemot is a conservative code that allows to solve a variety of equations using finite
volume methods on structured and unstructured grids. It is written in Java, and due to
its object-oriented design it allows quick implementation of new features. In particular
inheritance allows to reuse existing parts of the code, thus reducing redundancy. It is
freely available from

https://bitbucket.org/sturzhang/begemot

The code is under git version control ([CS14]). For a number of Figures in this thesis
commit hashes (in short form) are given: A commit is the state of the code as it was
at a certain moment in time. With the hash it is possible to retrieve such a previous
version of the code, compile and run it again. This allows to obtain the entire dataset
that was used for the plot.
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totic preserving imex finite volume schemes for low mach number euler
equations with gravitation. Journal of Computational Physics, 335:222–
248, 2017.

[BM05] Philipp Birken and Andreas Meister. Stability of preconditioned finite
volume schemes at low mach numbers. BIT Numerical Mathematics,
45(3):463–480, 2005.

[CDK12] Floraine Cordier, Pierre Degond, and Anela Kumbaro. An asymptotic-
preserving all-speed scheme for the euler and navier-stokes equations. Jour-
nal of Computational Physics, 231(17):5685–5704, 2012.

191



192

[CDLK15] Elisabetta Chiodaroli, Camillo De Lellis, and Ondřej Kreml. Global ill-
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