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Abbreviations

Ck continuously differentiable of order k
GE generalized equation
GMRES generalized minimal residual method of Saad and Schultz [110]
KKT Karush-Kuhn-Tucker
LC1 C1 functions with Lipschitz continuous Jacobian
LCP linear complementarity problem
LMCP linear mixed complementarity problem
LSQR bidiagonalization method for least squares problems [94]
MCP mixed complementarity problem
NCP nonlinear complementarity problem
QP quadratic program
PATH algorithm for solving MCP [23] based on path search strategy
SMOOTH algorithm for solving MCP [12] based on smoothing technique
SEMISMOOTH semismooth algorithm for solving MCP [90]
VI variational inequality



iv NOTATION

Notation

Spaces and Orthants

R the real numbers
R
n the n-dimensional real vector space

R
n
+ the nonnegative orthant in R

n

R
n
++ the positive orthant in R

n

R
m×n the space of m× n real matrices

Sets

{x} the set consisting of the vector x
conv S convex hull of the set S
S1 ⊆ S2 S1 is a subset of S2

S1 ⊂ S2 S1 is a proper subset of S2

S1 \ S2 the difference of two sets S1 and S2

S1 + S2 the vector sum of two sets S1 and S2

|S| the cardinality of a set S
Bε(x) open ball of radius ε around x
Bε(x) closed ball of radius ε around x
(a, b) an open interval in R

[a, b] a closed interval in R

argmax
x∈S

f(x) the set of constrained maximizers of f on S
argmin
x∈S

f(x) the set of constrained minimizers of f on S
NC(x) the normal cone of a set C at a point x ∈ C
B := [l, u]; rectangular box in R

n, where the lower bounds
l = (l1, . . . , ln)

T and upper bounds u = (u1, . . . , un)
T

satisfy −∞ ≤ li < ui ≤ +∞ for all i = 1, . . . , n.

Vectors

x ∈ R
n column vector in R

n

xT := (x1, . . . , xn); the transpose of a vector x with components xi
(x, y) column vector (xT , yT )T

xi i-th component of x
xδ vector in R|δ| consisting of components xi, i ∈ δ
x ≥ y componentwise comparison xi ≥ yi, i = 1, . . . , n
x > y strict componentwise comparison xi > yi, i = 1, . . . , n
min{x, y} the vector whose i-th component is min{xi, yi}
max{x, y} the vector whose i-th component is max{xi, yi}
ei ∈ R

n the i-th vector of the canonical basis of R
n

PC(x) the Euclidean projection of a vector x ∈ R
n on a convex set C ⊂ R

n
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Vectors (continued)

x+ the projection of a vector x ∈ R
n onto R

n
+

x− the negative of the projection onto the negative orthant
xTy the standard inner product of two vectors x ∈ R

n and y ∈ R
n

‖x‖ the Euclidian norm of x ∈ R
n, unless otherwise specified

‖x‖p := (
∑n

i=1 |xi|p)
1/p

; the `p-norm of x ∈ R
n

‖x‖∞ := max
i∈{1,...,n}

|xi|; the maximum norm of x ∈ R
n

Matrices

A := (aij); a matrix with entries aij
AIJ the |I| × |J | submatrix of A consisting of the elements aij,

with i ∈ I and j ∈ J
AT the transpose of a matrix A
A−1 the inverse of a matrix A
M/A the Schur complement of A in M
λmin(A) the smallest eigenvalue of a symmetric matrix A
λmax(A) the largest eigenvalue of a symmetric matrix A
In identity matrix of order n (subscript often omitted)
diag(x) the diagonal matrix with diagonal elements equal

to the components of the vector x

Functions

G : D → R a mapping with domain D and range R
Gi i-th component function of G : D → R

n

F ◦G composition of two functions F and G
G′(·, ·) directional derivative of the mapping G

G′ :=
(
∂Gi

∂xj

)

; the Jacobian of a mapping G : R
n → R

m

∇G the transposed Jacobian

∇g := ( ∂f
∂x1
, . . . , ∂f

∂xn
)T ; the gradient of a function g : R

n → R

∂BG the B-subdifferential of the locally Lipschitz continuous function
G : R

n → R
m

∂G := conv ∂BG; the Clarke subdifferential or limiting Jacobian
of the locally Lipschitz continuous function G : R

n → R
m

∂CG := (∂G1 × · · · × ∂Gn)
T ; the C-subdifferential of the locally Lipschitz

continuous function G : R
n → R

m

Landau symbols

f(d) = o(‖d‖) if lim
d→0

f(d)
‖d‖ = 0 for a given scalar or vector function d 7→ f(d)

f(d) = O(‖d‖) if lim sup
d→0

f(d)
‖d‖ <∞ for a given scalar or vector function d 7→ f(d)

αk = o(βk) if lim
k→∞

αk

βk
= 0 for two sequences {αk} and {βk} converging to zero
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αk = O(βk) if lim sup
k→∞

αk

βk
<∞ for two sequences {αk} and {βk} converging to zero



Chapter 1

Introduction

This thesis is concerned with numerical methods for solving nonlinear and mixed comple-
mentarity problems. Such problems arise from a variety of applications; among the most
popular ones is the Nash equilibrium, a fundamental concept introduced in noncooperative
game theory by J.F. Nash. Among many practical applications of this equilibrium concept
is the Nash-Cournot production/distribution problem. Already in 1838, A.A. Cournot
showed how one can find what was later called the Nash equilibrium within a duopolistic
market. The model by Cournot can be extended to a oligopolistic market and in this case
the Nash equilibria can be found by solving a nonlinear complementarity problem.

Example 1.1 (Nash-Cournot equilibrium problem) Within a closed market, assume
there are n companies producing a common product and competing for the same set of
customers. If we let xi be the quantity of the product fabricated by the i-th company,
then ξ =

∑n
i=1 xi denotes the total quantity being produced. The aim of each company is

to maximize its own profit, and it can achieve this goal by optimizing its production level
xi at the beginning of each period. For this purpose, the i-th company assumes that the
productions of all other companies remain constant at some level x?j . Such a setting, in
which the companies do not cooperate with each other, is called a Nash setting. A Nash
equilibrium point is a state where no company can benefit by changing its production level
while the other companies keep their levels unchanged. In such a state, there will be no
further change to the productions. Mathematically speaking, a Nash equilibrium x∗ ∈ R

n

with components x∗i (i = 1, . . . , n) satisfies the optimization problem

max xip

(

xi +

n∑

i=1
i6=j

x∗j

)

− Ci(xi) s.t. xi ≥ 0. (1.1)

Here, the so called inverse demand function p(ξ) gives the unit price at which the set of
customers will demand and buy a quantity ξ of the product. Under generally accepted
economic behavior, it is reasonable to assume that the price p(ξ) will decrease with an
increasing amount of available products. Similarly, we can expect the cost function Ci

1



2 CHAPTER 1. INTRODUCTION

to be convex in xi and the total revenue ξp(ξ) to be concave in ξ ≥ 0. Under these
assumptions the objective function in (1.1),

fi(x) = xip

(

xi +
n∑

i=1
i6=j

x∗j

)

− Ci(xi),

is concave in xi for each i = 1, . . . , n since it is the sum of two concave functions, see
also [34, 91]. Using KKT theory, the optimization problem (1.1) is equivalent to

∇fi(x) ≥ 0, xi ≥ 0, xi∇fi(x) = 0. (1.2)

Problems of the form (1.2) are called complementarity problems. Finding Nash equilibria
via (1.2) is among the simpler problems that can be addressed by the methods developed
in this thesis.

Other applications of complementarity problems arise not only in other equilibria mod-
els of economics, but also from applications in engineering such as contact and structural
mechanics problems, obstacle problems, and discrete-time optimal control problems. Vari-
ational inequalities with box constraints lead to (mixed) complementarity problems. Also,
continuous-time optimal control problems and the Black-Scholes model for pricing Amer-
ican options can be turned into complementarity problems by applying an appropriate
discretization. Particularly the latter applications lead to large-scale problems; a fact
which represents a challenge to numerical methods and special care must be taken to ob-
tain practicable methods. For a comprehensive overview of these and other sources of
complementarity problems we refer the reader to [29, 34]. Many of these applications can
be found in the collection MCPLIB [22] representing a popular benchmark for evaluating
newly developed methods.

The general form of complementarity problems, which will be used throughout the rest
of this thesis, is given by

xi ≥ 0, Fi(x) ≥ 0, xiFi(x) = 0 ∀i = 1, . . . , n, (1.3)

where F : R
n → R

n denotes a given continuously differentiable mapping. While the ex-
istence (and uniqueness) of solutions of particular instances of (1.3) is well established,
see [29, 32, 51] and Chapter 2 for summaries, developing numerical methods which are reli-
able and efficient for a large class of complementarity problems still represents a challenging
task.

In the following, we provide a brief overview of existing numerical methods for solv-
ing complementarity problems, more comprehensive accounts can be found in [30, 32, 51].
Lemke’s algorithm [76, 77] was among the first general algorithms for solving linear com-
plementarity problems. Other classes of such pivoting algorithms can be found in [18].
Scarf [111] described the first algorithm to approximate the fixed point of a continuous
map, which can in turn be used to address nonlinear complementarity problems by re-
formulating (1.3) as a fixed point problem. Extensions of this idea led to other fixed
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point schemes, see, e.g., [116]. Theoretically, these methods are rather powerful, due to
their global convergence properties. However, on the practical side they suffer from slow
convergence and proved to be ineffective.

Complementarity problems can be viewed as particular instances of the framework of
generalized equations [104]. Josephy [54] developed Newton methods for solving such gen-
eralized equations and provided a firm theoretical basis for establishing fast convergence.
Mathiesen [82, 83] successfully applied linearization techniques to solve Walrasian equilib-
rium models, resulting in an iterative method that requires the solution of a sequence of
linear complementarity problems. The methods by Josephy and Mathiesen turned out to
be theoretically equivalent. Having local quadratic convergence established, it remained
unclear how to obtain global convergence of such Newton methods. A first attempt was
made by Rutherford [108] using a simple line search procedure which was demonstrated
to be practically powerful but had little theoretical justification. Ralph [103] proposed a
theoretically sound approach using a path search algorithm.

Many algorithms for the solution of the complementarity problem are based on a suit-
able reformulation as a nonsmooth nonlinear system of equations. With the advent of
nonsmooth Newton methods for solving semismooth systems [75, 97, 98, 100], finding such
reformulations has attracted considerable attention. An early approach by Pang [95] is
based on the minimum function, which belongs to the class of so called NCP functions.
Combined with a line search strategy, this approach, which is based on the B-derivative
of the reformulation operator, achieves global convergence under certain relatively strong
regularity conditions. In contrast to the minimum approach, other NCP functions such
as the popularly used Fischer-Burmeister function [36] lead to reformulations whose nat-
ural merit function is continuously differentiable. Under certain further conditions, this
property facilitates the use of line search strategies for obtaining global convergence. This
approach has been extensively studied, improved and extended, see e.g. [19, 11, 31, 65, 71],
bringing semismooth Newton methods to a high level of reliability and efficiency.

Interestingly, equation-based methods employing smooth NCP functions only lead to
a fast locally convergent method if, additionally to the nonsingularity and Lipschitz conti-
nuity conditions of the standard Newton method [93], the problem under consideration is
nondegenerate. On the other hand, employing nonsmooth NCP functions can lead to fast
local convergence even in the case of degenerate problems. Smoothing methods typically
approximate a nonsmooth NCP function φ by a smooth function φµ with a smoothing
parameter µ such that φµ → φ as µ → 0. Then a standard Newton method is applied to
the corresponding nonlinear system of equations while µ is driven to zero. If this is done in
an appropriate manner, one can achieve favorable convergence properties under standard
assumptions [8, 12, 14]. It was pointed out that smoothing methods are intimately related
to interior point methods [58], which are known to have polynomial complexity [124, 125].

In this thesis we present a new formulation of nonlinear and mixed complementarity
problems based on the Fischer-Burmeister function approach. Unlike traditional reformula-
tions, our approach leads to an over-determined system of nonlinear equations. This has the
advantage that certain drawbacks of the Fischer-Burmeister approach are avoided. Among
other favorable properties of the new formulation, the natural merit function turns out to



4 CHAPTER 1. INTRODUCTION

be differentiable. To solve the arising over-determined system we use a nonsmooth damped
Levenberg-Marquardt-type method and investigate its convergence properties. Under mild
assumptions, it can be shown that the global and local fast convergence results are sim-
ilar to some of the better equation-based method. Moreover, the new method turns out
to be significantly more robust than the corresponding equation-based method. For the
case of large complementarity problems, however, the performance of this method suffers
from the need for solving the arising linear least squares problem exactly at each iteration.
Therefore, we suggest a modified version which allows inexact solutions of the least squares
problems by using an appropriate iterative solver. Under certain assumptions, the favor-
able convergence properties of the original method are preserved. As an alternative method
for mixed complementarity problems, we consider a box constrained least squares formula-
tion along with a projected Levenberg-Marquardt-type method. To globalize this method,
trust region strategies are proposed. Several ingredients are used to improve this approach:
affine scaling matrices and multi-dimensional filter techniques. Global convergence results
as well as local superlinear/quadratic convergence are shown under appropriate assump-
tions. Combining the advantages of the new methods, a new software for solving mixed
complementarity problems is presented.

The rest of this thesis is organized as follows. Chapter 2 summarizes some basic defini-
tions and results of nonsmooth analysis, in particular with respect to semismooth functions.
Moreover, the complementarity problem is formally introduced and we state a few exis-
tence results for nonlinear and mixed complementarity problems. In Chapter 3, we recall
some existing methods for solving complementarity problems. In Chapter 4 a least squares
reformulation is presented, which leads to an exact unconstrained Levenberg-Marquardt-
type method. Chapter 5 is concerned with an inexact version of this method suitable for
large-scale problems. A projected filter trust-region method is suggested in Chapter 6.
Finally, we provide some conclusions.



Chapter 2

Theoretical Background

In this chapter we review those results of nonsmooth analysis that are required for devel-
oping and understanding our numerical methods, following the expositions given in [15,
63, 120]. Particular attention is paid to properties of semismooth functions.

2.1 Elements of Nonsmooth Analysis

In the following, we consider a function G : R
n → R

m and denote by DG ⊆ R
n the set

of all x ∈ R
n at which G admits a Fréchet-derivative G′(x) ∈ R

m×n. Assuming that G
is locally Lipschitz continuous around x ∈ R

n, there is an ε = ε(x) > 0 and a Lipschitz
constant L = L(x) > 0 such that

‖G(x1)−G(x2)‖ ≤ L‖x1 − x2‖ ∀x1, x2 ∈ Bε(x),

where ‖ ·‖ is the Euclidean norm on R
n. Then according to Rademacher’s theorem [102] G

is almost everywhere differentiable around x, i.e., the set Bε(x)\DG has Lebesgue measure
zero. As an immediate consequence there exist sequences {xk} ⊂ DG with xk → x for
every such x. This justifies the following constructions.

Definition 2.1 Let G : R
n → R

m be locally Lipschitz continuous around x ∈ R
n. The set

∂BG(x) := {H ∈ R
m×n|∃{xk} ⊂ DG : xk → x and G′(xk)→ H}

is called Bouligand subdifferential, or short B-subdifferential, of G at x. Moreover, the
convex hull

∂G(x) := conv ∂BG(x)

is called Clarke’s generalized Jacobian of G at x.

When m = 1, in which case G is a real-valued function g : R
n → R, ∂g(x) is called the

generalized gradient of g at x. Furthermore, in this case, consistent with the notation of
the gradient of a smooth function, the elements of ∂g(x) are usually viewed as column
vectors.

5



6 CHAPTER 2. THEORETICAL BACKGROUND

The set

∂CG(x)T := ∂G1(x)× · · · × ∂Gm(x),

denotes Qi’s C-subdifferential of G at x [99], where the right-hand side denotes the set of
matrices whose i-th column is an element of the generalized gradient of the i-th component
function Gi. For m = 1, the generalized gradient and the C-subdifferential coincide. For
notational convenience, we often refer to Clarke’s generalized Jacobian simply as general-
ized Jacobian. Note that for m = 1 the generalized gradient corresponds to what would
be the transposed of the generalized Jacobian.

Let us illustrate these definitions with some examples.

Example 2.2 (a) From the definition of the B-subdifferential, C-subdifferential and
generalized Jacobian, it is clear that if G : R

n → R
m is continuously differentiable

we have

∂CG(x) = ∂G(x) = ∂BG(x) = {G′(x)} for all x ∈ R
n.

In other words, the respective differentials reduce to a singleton. On the other hand,
in view of the corollary to Proposition 2.2.4 in [15], a real valued mapping G is
continuously differentiable at x if G is locally Lipschitz continuous around x and the
set ∂G(x) consists of one element only.

(b) In some situations the generalized Jacobian can be larger than expected. For example,
the generalized Jacobian does not necessarily reduce to the usual Jacobian if G :
R
n → R

m is differentiable but not continuously differentiable, as we can see from
considering the function G : R→ R with

G(x) :=

{
x2 sin( 1

x
), x 6= 0,

0, x = 0,

which is locally Lipschitz continuous and differentiable. While G′(0) = 0, we have
∂G(0) = [−1, 1]. Note that G′(x) ∈ ∂BG(x) always holds, provided that G is differ-
entiable in x.

(c) The Euclidean norm function g(x) = ‖x‖ on R
n is continuously differentiable every-

where except at the origin and globally Lipschitz continuous with Lipschitz constant
L = 1. For x 6= 0 we have g′(x) = x

‖x‖ , and therefore ∂Bg(0) ⊆ {x| ‖x‖ = 1}. To show

that both sets are actually equal, we consider an arbitrary x ∈ R
n with ‖x‖ = 1 and

define xk := x
k
. From g′(xk) = x

‖x‖ → x we get

∂Bg(0) = {x| ‖x‖ = 1}, and ∂Cg(0) = ∂g(0) = {x| ‖x‖ ≤ 1}.

(d) Given a convex function g : R
n → R, then g is locally Lipschitz continuous around

any x ∈ R
n and Proposition 2.2.7 in [15] asserts that the generalized gradient ∂g(x)

coincides with the subdifferential at x in the sense of convex analysis.
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The following proposition summarizes some important and useful properties of the
differentials introduced above.

Proposition 2.3 Let G : R
n → R

m be locally Lipschitz continuous. Then the following
statements hold for an arbitrary x ∈ R

n:

(a) The B-subdifferential ∂BG(x) is a nonempty and compact set.

(b) The generalized Jacobian ∂G(x) and the C-subdifferential ∂CG(x) are nonempty,
compact and convex sets.

(c) The set-valued mappings

x 7→ ∂BG(x), x 7→ ∂G(x), x 7→ ∂CG(x)

are closed, i.e., for any sequence {xk} converging to x, and any sequence {Hk} with
Hk ∈ ∂BG(xk) for all k ∈ N converging to some element H ∈ R

m×n, we have
H ∈ ∂BG(x) (and similarly for ∂G, ∂CG).

(d) The set-valued mappings

x 7→ ∂BG(x), x 7→ ∂G(x), x 7→ ∂CG(x)

are upper semicontinuous, i.e., for every ε > 0 there exists a δ > 0 with

∂BG(y) ⊆ ∂BG(x) +Bε(0)

for every y ∈ Bδ(x) (and similarly for ∂G, ∂CG).

Proof. The results for ∂G are established in [15, Prop. 2.6.2]. The statements on ∂CG
are immediate consequences of the properties of ∂CGi. The assertion (d) on ∂BG can be
established analogously to the upper semicontinuity of ∂G. Now it can be directly seen
that part (d) implies (c), while part (c) yields that the set ∂BG(x) is closed. In view of (b),
∂BG(x) is also nonempty and bounded, since ∂G(x) = conv ∂BG(x) ⊇ ∂BG(x). Thus (a)
holds. 2

Remark 2.4 (a) The inclusion ∂G(x) ⊆ ∂CG(x) holds (see Corollary 2.6) and is in
general strict, as we can see from the following example:

G(x) =

(
G1(x)
G2(x)

)

with G1(x) := min{0, x}, G2(x) := max{0, x}.

At the origin, this function is Lipschitz continuous and we have

∂BG(0) =

{(
0
1

)

,

(
1
0

)}

and ∂G(0) =

{(
1− λ
λ

)
∣
∣ λ ∈ [0, 1]

}

.

On the other hand, we have ∂G1(0) = ∂G2(0) = [0, 1] and consequently ∂CG(0) =
{(g1, g2)

T | g1, g2 ∈ [0, 1]} is a strict superset of ∂G(0).
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(b) Let {xk} ⊂ R
n be a sequence with a subsequence {xk}K converging to a vector x ∈ R

n

and {Hk}K an associated sequence with Hk ∈ ∂G(xk). Then the sequence {Hk}K is
bounded (the statement applies to Hk ∈ ∂BG(xk) and Hk ∈ ∂CG(xk), too), since the
set ∂G(x) is bounded and for a given ε > 0 we can find a k̃ ∈ K such that

Hk ∈ ∂G(xk) ⊆ ∂G(x) +Bε(0)

for all k ∈ K with k ≥ k̃.

The following chain rule holds.

Theorem 2.5 [15, Thm. 2.6.6 ] Let f := g ◦G, where G : R
n → R

m is locally Lipschitz
continuous at x and g : R

m → R is locally Lipschitz continuous at G(x). Then f is locally
Lipschitzian at x and

∂f(x) ⊆ conv{∂g(G(x))∂G(x)} := conv{HT ζ | ζ ∈ ∂g(G(x)), H ∈ ∂G(x)}.

If, in addition to the Lipschitz conditions,

1. g is continuously differentiable at G(x), then equality holds and conv can be omitted,
i.e., ∂f(x) = ∇g(G(x))∂G(x) := {HT∇g(G(x)) | H ∈ ∂G(x)};

2. g is convex and G is continuously differentiable at x, then equality holds too, and
conv can be omitted, i.e., ∂f(x) = ∂g(G(x))G′(x) := {G′(x)T ζ | ζ ∈ ∂g(G(x))}.

As a special case of Theorem 2.5, by choosing g(x) = eTi x = xi where ei is the i-th unit
vector, we obtain the following result.

Corollary 2.6 Let G : R
n → R

m be locally Lipschitz continuous around x, then

∂Gi(x) = eTi ∂G(x) = {hi | hTi is the i-th row of some H ∈ ∂G(x)},

for i = 1, . . . , m.

For the explicit application of the chain rule it is sometimes meaningful to weaken the
statement of Theorem 2.5. To this end we first define the set

∂g(G(x))∂CG(x) :={HT ζ | ζ ∈ ∂g(G(x)), H ∈ ∂CG(x)}

=

{
m∑

i=1

ζiHi| ζ = (ζ1, . . . , ζm)T ∈ ∂g(G(x)), Hi ∈ ∂Gi(x)

}

.

Since ∂G(x) ⊆ ∂CG(x), Theorem 2.5 yields the following result.

Corollary 2.7 Let f := g ◦ G, where G : R
n → R

m is locally Lipschitz continuous at x
and g : R

m → R is locally Lipschitz at G(x). Then f is locally Lipschitz continuous at x
and

∂f(x) ⊆ conv{∂g(G(x))∂CG(x)}.
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Appropriate variants hold under the additional assumptions of Theorem 2.5. These rules
imply a number of other calculus rules, which imitate the corresponding rules for differen-
tiable functions.

Corollary 2.8 Let gi : R
n → R, i = 1, . . . , m be locally Lipschitz continuous functions at

x ∈ R
n.

(a) For any coefficients αi ∈ R, we have

∂

(
m∑

i=1

αigi

)

(x) ⊆
m∑

i=1

αi∂gi(x),

with equality holding if all but at most one of the gi are continuously differentiable at
x or if all the functions are convex and each αi is nonnegative.

(b) ∂(g1g2)(x) ⊆ g2(x)∂g1(x) + g1(x)∂g2(x), with equality holding if the functions are
convex, g1(x) ≥ 0 and g1(x) ≥ 0.

(c) If g2(x) 6= 0, then

∂

(
g1

g2

)

(x) ⊆ g2(x)∂g1(x)− g1(x)∂g2(x)

g2
2(x)

.

Example 2.9 The following function, the so called Fischer-Burmeister function, will play
an important role in our numerical methods:

φFB : R
2 → R, φFB(x) :=

√

x2
1 + x2

2 − x1 − x2.

This function is the difference of the Lipschitz continuous function g(x) = ‖x‖ and the
linear (and in particular differentiable) function f(x) := x1 + x2. Hence

∂φFB(0) = ∂g(0)−∇f(0) = {x− (1, 1)T | ‖x‖ ≤ 1} = B1((−1,−1)T ).

From this relation and from

∂φFB(x) =

{
x

‖x‖ −
(

1
1

)}

for all x 6= 0, one can see that for all x ∈ R
2 and all h ∈ ∂φFB(x) it holds that h1, h2 ≤ 0

and √
2− 1 ≤ ‖h‖ ≤ 1 +

√
2. (2.1)

Particularly, this shows that all generalized gradients of φFB are bounded above and are
bounded away from zero. To see (2.1), consider S :=

⋃

x∈Rn ∂φFB(x) = B1((−1,−1)T ),
depicted in Figure 2.1. Denoting by P1 the closest point from S to 0 and the furthest by
P2, equation (2.1) easily follows since

P1 = argmin
h∈S

‖h‖ and P2 = argmax
h∈S

‖h‖.
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Figure 2.1: Illustration of S from Example 2.9.

2.2 Semismooth Functions

Semismooth functions represent an important subset of locally Lipschitz continuous func-
tions. Their usefulness stems from the fact that zeros of such functions can be found by
employing Newton’s method, which converges locally Q-superlinearly, even for nonsmooth
functions.

Extending Mifflin’s definition for a scalar function [86], Qi and Sun [98, 100] introduced
the following definition of semismooth functions.

Definition 2.10 Let X ⊆ R
n be a nonempty and open set. The function G : X → R

m

is said to be semismooth at x ∈ X if G is locally Lipschitz continuous around x and if
additionally the limit

lim
H∈∂G(x+td̃)

d̃→d, t↘0

Hd̃
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exists for all d ∈ R
n. If G is semismooth at all x ∈ X, we call G semismooth (on X).

There are several equivalent ways to define semismoothness. To formulate them, we re-
call the notions of directional and Bouligand-differentiability (B-differentiability for short).

Definition 2.11 Let G : X → R
m with an open set X ⊆ R

n. Then

(a) G is called directionally differentiable at a point x ∈ X if the directional derivative

G′(x; d) := lim
t↘0

G(x + td)−G(x)

t

exists for all (nonzero) directions d ∈ R
n;

(b) G is called B-differentiable at a point x ∈ X if G is directionally differentiable at x
and

‖G(x+ d)−G(x)−G′(x; d)‖ = o(‖d‖) as d→ 0.

It is easy to see that the mapping d 7→ G′(x; d) is positive homogeneous and globally Lip-
schitz continuous. From Proposition 3.5 in [112] we know that directional differentiability
and B-differentiability are equivalent for locally Lipschitz continuous mappings between
finite-dimensional spaces, see also [52]. With a slight abuse of notation, in the following
we call G to be B-differentiable at x if it is directionally differentiable at x and locally
Lipschitz continuous around x. Our definition of B-differentiability follows [95].

The next proposition shows how the directional derivative at x of a B-differentiable
function can be computed using a particular element H ∈ ∂G(x).

Proposition 2.12 [100, Lem. 2.2] Let X ⊆ R
n be an open set, x ∈ X and G : X → R

m

be a B-differentiable function. Then for any d ∈ R
n there exists an element H ∈ ∂G(x)

such that

G′(x; d) = Hd.

The following proposition provides alternative ways of characterizing semismoothness.
We mention that version (c) is particularly well suited for the convergence analysis of
Newton-type methods.

Proposition 2.13 Let X ⊆ R
n be an open set, x ∈ X and G : X → R

m. Then the
following statements are equivalent:

(a) G is semismooth at x;

(b) G is locally Lipschitz continuous around x, directionally differentiable at x and for
all d→ 0 and H ∈ ∂G(x + d) we have

‖Hd−G′(x; d)‖ = o(‖d‖);
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(c) G is locally Lipschitz continuous around x, directionally differentiable at x and

‖G(x + d)−G(x)−Hd‖ = o(‖d‖) (2.2)

holds for all d→ 0 and all H ∈ ∂G(x + d).

Proof. The equivalence between (a) and (b) follows from Theorem 2.3 in [100]. To
prove the equivalence between (b) and (c) we first note that in both cases G is locally
Lipschitz continuous around x and directionally differentiable at x, implying that G is
B-differentiable at x. Hence, (b) and (c) are equivalent, since for all H ∈ ∂G(x + d) we
have

∣
∣‖G(x+ d)−G(x)−Hd‖ − ‖Hd−G′(x; d)‖

∣
∣

≤ ‖G(x+ d)−G(x)−G′(x; d)‖
= o(‖d‖).

This completes the proof. 2

The rate of convergence of the semismooth Newton method (see Section 3.2.1) can be
improved if instead of (2.2) an estimate of higher order is available. Such a property is
called p-order semismoothness according to [100].

Definition 2.14 Let X ⊆ R
n be an open set, x ∈ X and G : X → R

m be locally Lipschitz
continuous and directionally differentiable. Then for 0 < p ≤ 1 G is said to be p-order
semismooth at x if

‖Hd−G′(x; d)‖ = O(‖d‖1+p)
for all d→ 0 and H ∈ ∂G(x + d).

Note that 1-order semismoothness is sometimes also called strong semismoothness. For
strong semismoothness a counterpart of Proposition 2.13 can be established under an
additional assumption, which we will call B-differentiability of degree 2, following [98].

Definition 2.15 Let X ⊆ R
n be an open set, x ∈ X and G : X → R

m be locally Lipschitz
continuous and directionally differentiable. Then G is said to be B-differentiable of degree
2 at x if

‖G(x+ d)−G(x)−G′(x; d)‖ = O(‖d‖2)
for all d→ 0.

An alternative characterization of strong semismoothness is stated below.

Proposition 2.16 Let X ⊆ R
n be an open set, x ∈ X and G : X → R

m. Then the
following two statements are equivalent:

(a) G is strongly semismooth at x;
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(b) G is B-differentiable of degree 2 at x and

‖G(x+ d)−G(x)−Hd‖ = O(‖d‖2) (2.3)

holds for all d→ 0 and H ∈ ∂G(x + d).

Proof. In view of [98, Lem. 2.3], strong semismoothness at x implies B-differentiability
of degree 2 at x. Now we can proceed as in the proof of Proposition 2.13. 2

It is natural to ask if for a semismooth function G its component functions are semis-
mooth and vice versa. A positive answer is given by the next proposition.

Proposition 2.17 Let X ⊆ R
n be an open set, x ∈ X and G : X → R

m be locally
Lipschitz continuous and directionally differentiable. Then the following statements hold:

(a) G is semismooth at x if and only if each component function Gi is semismooth at x.

(b) G is strongly semismooth at x if and only if each component function Gi is strongly
semismooth at x.

Proof. We will prove only part (b), since (a) follows similarly as (b). Let G be strongly
semismooth at x, d ∈ R

n, i ∈ {1, . . . , m} fixed and choose an arbitrary hi with hi ∈
∂Gi(x + d). Choose H ∈ ∂G(x + d) such that its i-th row equals hTi (see Corollary 2.6).
Then we have

|G′
i(x; d)− hTi d| =

∣
∣eTi (G′(x; d)−Hd)

∣
∣

≤ ‖G′(x; d)−Hd‖
= O(‖d‖2) as d→ 0,

where ei denotes the i-th unit vector in R
m. On the other hand, we know that the inclusion

∂G(x) ⊆ ∂CG(x) holds. Hence if we denote by hi the i-th row of an element H ∈ ∂G(x+d)
we obtain that hTi ∈ ∂Gi(x + d) and since every Gi is strongly semismooth we also have

‖G′(x; d)−Hd‖ ≤
m∑

i=1

∣
∣eTi (G′(x; d)−Hd)

∣
∣

=
m∑

i=1

|G′
i(x; d)− hid|

= O(‖d‖2) as d→ 0.

Hence, G is strongly semismooth. 2

As a consequence of Proposition 2.17 we obtain estimates of the type (2.2) and (2.3)
also by choosing any element of the C-subdifferential, which in some situations may be
easier to compute.
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Proposition 2.18 Let X ⊆ R
n be an open set, x ∈ X and G : X → R

m. The following
two statements hold:

(a) If G is semismooth at x, then

‖G(x + d)−G(x)−Hd‖ = o(‖d‖)
for all d→ 0 and H ∈ ∂CG(x+ d).

(b) If G is strongly semismooth at x, then

‖G(x+ d)−G(x)−Hd‖ = O(‖d‖2)
for all d→ 0 and H ∈ ∂CG(x+ d).

Proof. We will prove only part (b), since (a) follows similarly as (b). Let G be strongly
semismooth at x, d ∈ R

n and choose an arbitrary H ∈ ∂CG(x + d). Further we denote
by hi the i-th row of H and obtain that hTi ∈ ∂Gi(x + d) in view of the definition of the
C-subdifferential. Since every Gi is strongly semismooth by Proposition 2.17 we have

‖G(x+ d)−G(x)−Hd‖ ≤
m∑

i=1

∣
∣eTi (G(x + d)−G(x)−Hd)

∣
∣

=

m∑

i=1

|Gi(x+ d)−Gi(x)− hid|

= O(‖d‖2) as d→ 0.

This shows statement (b). 2

The class of semismooth functions is very broad. It includes convex functions, see [86],
as well as smooth functions, as shown in the following proposition.

Proposition 2.19 Let X ⊆ R
n be an open set, x ∈ X and G : X → R

m. The following
two statements hold:

(a) If G is continuously differentiable at x, then G is semismooth at x.

(b) If G is differentiable at x and the Jacobian map y 7→ G′(y) is locally Lipschitz con-
tinuous around x, then G is strongly semismooth at x.

Proof. We only prove (b), since the proof of (a) is rather similar. Since G is continuously
differentiable, ∂G(x+ d) = {G′(x+ d)} reduces to a singleton. Denoting by L = L(x) > 0
the local Lipschitz constant of G′ around x we get for all d ∈ R

n with d → 0 and all
H ∈ ∂G(x + d),

‖Hd−G′(x; d)‖ = ‖G′(x+ d)d−G′(x)d‖ ≤ ‖G′(x + d)−G′(x)‖‖d‖ ≤ L‖d‖2 = O(‖d‖2).
Hence, G is strongly semismooth. 2
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Example 2.20 (a) The Euclidean norm function g(x) = ‖x‖ on R
n is an important

example of a strongly semismooth function. As already mentioned it is Lipschitz
continuous on R

n and continuously differentiable on R
n \ {0}. We have

∂g(x) =

{ { x
‖x‖} for x 6= 0,

{y | ‖y‖ ≤ 1} for x = 0.

Hence, by Proposition 2.19 (b) g is strongly semismooth on R
n \ {0}. On the other

hand, for all d ∈ R
n \ {0} and all h ∈ ∂g(d) we have

g′(0; d)− hTd = lim
t↘0

‖td‖
t
−
( d

‖d‖
)T
d = ‖d‖ − ‖d‖ = 0.

Hence, g is also strongly semismooth at 0.

(b) The function G : R
2 → R defined by

G(x1, x2) := min{x1, x2}

which is shown to be strongly semismooth on R
2. At any point x := (x1, x2) ∈ R

2

with x1 6= x2, G is differentiable with G′ being locally Lipschitz continuous around
x. Hence G is strongly semismooth at x by Proposition 2.19 (b). We now consider a
point x = (x1, x2) with x1 = x2 and an arbitrary direction d = (d1, d2)

T ∈ R2. It is
easy to see that G′(x; d) = min{d1, d2}. We distinguish three cases.

Case 1: If d1 < d2 then for any h ∈ ∂G(x1 + d1, x2 + d2) = {(1, 0)T} we have

G′(x; d)− hTd = min{d1, d2} − (1, 0)

(
d1

d2

)

= d1 − d1 = 0.

Case 2: If d1 > d2 then for any h ∈ ∂G(x1 + d1, x2 + d2) = {(0, 1)T} we have

G′(x; d)− hTd = min{d1, d2} − (0, 1)

(
d1

d2

)

= d2 − d2 = 0.

Case 3: If d1 = d2 we have ∂G(x1+d1, x2+d2) = {(λ, 1−λ)T | λ ∈ [0, 1]}. Therefore,
for any h ∈ ∂G(x1+d1, x2+d2), there exists λh ∈ [0, 1] such that h = (λh, 1−λh)T
and

G′(x; d)− hTd = min{d1, d2} − (λh, 1− λh)
(
d1

d2

)

= d1− λhd1 − (1− λh)d2 = 0.

The strong semismoothness of G now follows directly from the above three cases.

Replacing G(x1, x2) by −G(−x1,−x2) in the arguments above it follows that also the
function max{x1, x2} is semismooth.
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The next result, whose first part is due to Mifflin [86] and whose second part was shown
by Fischer [36], states that the class of (strongly) semismooth functions is closed under
composition.

Theorem 2.21 [36, Lem. 18, Thm. 19] Let G : R
m → R

p and F : R
n → R

m be
locally Lipschitzian and directionally differentiable functions, and consider the composition
H := G ◦ F . Then the following statements hold:

(a) If F is semismooth at x ∈ R
n and G is semismooth at F (x), then H is semismooth

at x.

(b) If F is strongly semismooth at x ∈ R
n and G is strongly semismooth at F (x), then

H is strongly semismooth at x.

As a direct consequence of the above theorem we obtain that sums, products and
quotients of (strongly) semismooth functions are again (strongly) semismooth.

Corollary 2.22 Let G1, G2 : R
n → R be (strongly) semismooth at x ∈ R

n. Then the
following statements hold:

(a) For any scalars a1, a2 ∈ R the sum a1G1 + a2G2 is (strongly) semismooth at x.

(b) The product G1G2 is (strongly) semismooth at x.

(c) If G2(x) 6= 0, then the quotient G1

G2
is (strongly) semismooth at x.

We conclude this section by giving two further important examples of strongly semis-
mooth functions. The first is the Fischer-Burmeister function

φFB(x) = ‖x‖ − x1 − x2, x = (x1, x2)
T ∈ R

2,

which is strongly semismooth, since it is the difference of the strongly semismooth Euclidian
norm function (see Example 2.20 (a)) and the strongly semismooth part f(x) = x1 + x2.

The second example is the Euclidean projection PB : R
n → R

n of a vector x ∈ R
n

on a rectangular box B = [l, u] with lower and upper bounds l = (l1, . . . , ln)
T and u =

(u1, . . . , un)
T , with −∞ ≤ li < ui ≤ +∞ for all i ∈ {1, . . . , n}. PB can be easily computed

as

PB(x)i = max{li,min{xi, ui}}.

Since every component is strongly semismooth, being the composition of strongly semis-
mooth functions (see Example 2.20 (b)), PB is strongly semismooth.
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2.3 P-Functions and P-Matrices

Monotone functions play a similarly important role in the area of complementarity prob-
lems as convex functions in optimization.

Definition 2.23 Let X ⊆ R
n be a nonempty set. A function F : X → R

n is called

(i) monotone (on X) if, for all x, y ∈ X,

(F (x)− F (y))T (x− y) ≥ 0;

(ii) strictly monotone (on X) if, for all x, y ∈ X,

(F (x)− F (y))T (x− y) > 0;

(iii) strongly monotone (on X) if there exists a constant α > 0 with

(F (x)− F (y))T (x− y) ≥ α‖x− y‖2,

for all x, y ∈ X.

Conditions for the monotonicity of F can be described by properties of its Jacobian.

Proposition 2.24 [45, Thm. 7.11] Let X ⊆ R
n be an open convex set and F : X → R

n

be continuously differentiable. Then the following statements hold:

(a) F is monotone (on X) if and only if F ′(x) is positive semidefinite for all x ∈ X.

(b) F is strictly monotone (on X) if F ′(x) is positive definite for all x ∈ X.

(c) F is strongly monotone (on X) if and only if F ′(x) is uniformly positive definite on
X, i.e., there exists a constant µ > 0 such that

dTF ′(x)d ≥ µ‖d‖2

holds for all x ∈ X and all d ∈ R
n.

In what follows we state some weakened concepts of monotonicity, which turn out to
be very useful for stating existence and uniqueness results for (mixed) complementarity
problems in the next section.

Definition 2.25 Let X ⊆ R
n be a nonempty set. A function F : X → R

n is called

(i) pseudo-monotone (on X) if, for all x, y ∈ X,

F (y)T (x− y) ≥ 0 implies F (x)T (x− y) ≥ 0;
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(ii) a P0-function (on X) if, for all x, y ∈ X with x 6= y, there exists an index i0 :=
i0(x, y) ∈ {1, . . . , n} with xi0 6= yi0 and

(xi0 − yi0)(Fi0(x)− Fi0(y)) ≥ 0;

(iii) a P -function (on X) if, for all x, y ∈ X with x 6= y, there exists an index i0 :=
i0(x, y) ∈ {1, . . . , n} with

(xi0 − yi0)(Fi0(x)− Fi0(y)) > 0;

(iv) a uniform P -function (on X) if there exists a constant α > 0 with

max
1≤i≤n

(xi − yi)(Fi(x)− Fi(y)) ≥ α‖x− y‖2,

for all x, y ∈ X.

Clearly, every monotone function is pseudo-monotone, and on the other hand also a
P0-function; every strictly monotone function is a P -function; and every strongly monotone
function is a uniform P -function.

These function properties can be used in order to define analogous matrix properties
by considering the special case of linear functions.

Definition 2.26 A matrix M ∈ R
n×n is called

(i) a P0-matrix, if F (x) = Mx is a P0-function on R
n;

(ii) a P -matrix, if F (x) = Mx is a P -function on R
n.

There exist many characterizations for these classes of matrices, see, e.g., [18]. For our
purpose, it is sufficient to consider the following characterization of P0-matrices, which also
holds for P -matrices by replacing ≥ by >.

Proposition 2.27 Let M ∈ R
n×n. Then the following statements are equivalent:

(a) M is a P0-matrix;

(b) for all x ∈ R
n with x 6= 0 there exists an index i0 = i0(x) ∈ {1, . . . , n} with xi0 6= 0

and xi0 [Mx]i0 ≥ 0.

(c) det(MJJ) ≥ 0 for all index sets J ⊆ {1, . . . , n}, where we made the convention
det(M) := 1 for a matrix M ∈ R

0×0.

The proposition above clearly shows that the class of P0/P -matrices contains the class of
symmetric positive (semi-)definite matrices. Thus, a result analogous to Proposition 2.24
for linear P0/P -functions trivially holds, from the definition and the observations made
above. A similar result for nonlinear P0/P -functions, which is due to Moré and Rheinboldt,
is stated in the next theorem.
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Theorem 2.28 [88, Thm. 5.8, Thm. 5.2, Cor. 5.3] Let X ⊆ R
n be a nonempty open set

and F : X → R
n be continuously differentiable. Then the following statements hold:

(a) If F is a P0-function (on X), then the Jacobian F ′(x) is a P0-matrix for every x ∈ X.

(b) If F is a P -function (on X), then the Jacobian F ′(x) is a P -matrix for every x ∈ X.

(c) If B ⊆ X is a rectangle and F ′(x) is a P0/P -matrix for every x ∈ B, then F is a
P0/P -function on B.

We conclude this section with a technical result which is needed in our subsequent
analysis and concerns P -matrices. For a proof of this statement see [65].

Lemma 2.29 A matrix of the form

Da +DbM

is nonsingular for all positive (negative) semidefinite diagonal matrices Da, Db ∈ R
n×n with

a positive (negative) definite sum Da +Db if and only if M ∈ R
n×n is a P -matrix.

2.4 The Nonlinear Complementarity Problem

After having introduced Clarke’s calculus, semismoothness, and some monotonicity con-
cepts, we now come to complementarity problems (CPs), which are the focus of this work.
Most of the literature concerning CPs handle the standard forms given by the nonlinear
complementarity problem (NCP) and the linear complementarity problem (LCP).

2.4.1 Formal Definition and Related Problems

Definition 2.30 Let F : R
n → R

n be a given function. The complementarity problem is
to find a vector x∗ ∈ R

n satisfying the following system of equations and inequalities:

x ≥ 0, F (x) ≥ 0, xTF (x) = 0

or, equivalently,

xi ≥ 0, Fi(x) ≥ 0, xiFi(x) = 0 ∀i = 1, . . . , n.

If F (x) = Mx + q is an affine function (where M ∈ R
n×n and q ∈ R

n), then the com-
plementarity problem is called a linear complementarity problem (denoted by LCP(q,M)),
otherwise it is called a nonlinear complementarity problem (denoted by NCP(F )).

While the standard forms are convenient from a theoretical point of view, many prac-
tical problems are more naturally formulated in the framework of mixed complementarity
problems (MCPs).
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Definition 2.31 Let F : R
n → R

n be a given function, l = (l1, . . . , ln)
T and u =

(u1, . . . , un)
T be given lower and upper bounds with −∞ ≤ li < ui ≤ +∞ for all i ∈

{1, . . . , n}. The mixed complementarity problem (denoted by MCP(F, l, u)) consists in
finding a vector x∗ ∈ [l, u] such that for all i ∈ {1, . . . , n} exactly one of the following
conditions holds:

x∗i = li and Fi(x
∗) > 0,

x∗i = ui and Fi(x
∗) < 0,

x∗i ∈ [li, ui] and Fi(x
∗) = 0.

In the special case when F is an affine function we obtain the so called linear mixed
complementarity problem.

Note that the assumption l < u represents no loss of generality, since otherwise the
variable x∗i can be removed from the problem, for all i ∈ {1, . . . , n} with li = ui. The
above definition shows that NCP(F ) is a special case of MCP(F, l, u) given by l = 0 and
u =∞.

Nonlinear complementarity problems as well as mixed complementarity problems are
special cases of the finite variational inequality problem.

Definition 2.32 Let F : R
n → R

n be a given function and let X ⊆ R
n be a nonempty,

closed and convex set. The variational inequality problem (denoted by VI(F,X)) consists
in finding a point x∗ ∈ X such that

F (x∗)T (x− x∗) ≥ 0 ∀x ∈ X.
In the following proposition we see that for B := [l, u] the mixed complementarity

problem MCP(F,B) is equivalent to the box-constrained variational inequality VI(F,B),
and, as a consequence, NCP(F ) is equivalent to VI(F,Rn

+).

Proposition 2.33 Given a rectangular set B = [l, u] and a function F : R
n → R

n, then
the vector x∗ solves MCP(F,B) if and only if it solves VI(F,B).

Proof. We first rewrite the mixed complementarity problem in the following form:

MCP(F,B) : Find x∗ ∈ B such that
(x∗ − l)TF (x∗)+ = 0 and (u− x∗)TF (x∗)− = 0.

(2.4)

In the above reformulation of the MCP, note that the components of the bounds l and u
may be infinite. We therefore adopt the convention ±∞ · 0 = 0.
(⇒) Assume that x∗ solves MCP(F,B). Then x∗ ∈ B and for all x ∈ B we have

F (x∗)T (x− x∗) = −F (x∗)T+(x∗ − x)− F (x∗)T−(x− x∗)
≥ −F (x∗)T+(x∗ − l)− F (x∗)T−(u− x∗)
= 0.

(2.5)

(⇐) If x∗ solves VI(F,B), then l ≤ x∗ ≤ u. For an arbitrary index i ∈ {1, . . . , n} assume
that Fi(x

∗) > 0 and x∗i > l. Since Fi(x
∗)− = 0 we obtain

F (x∗)T (x∗ + (li − x∗i )ei − x∗) = Fi(x
∗)+(li − x∗i ) < 0,
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where ei denotes the i-th unit vector of R
n. Since x∗ + (li − x∗i )ei ∈ B this contradicts our

assumption that x∗ solves VI(F,B). Since i was arbitrary we get F (x∗)T+(x∗ − l) = 0 as
well. Similarly, F (x∗)T−(u− x∗) = 0, so that x∗ solves MCP(F,B). 2

A useful reformulation of the VI involves the normal cone, which we define below.

Definition 2.34 Let C ⊆ R
n be a given closed convex set. The normal cone at a point

x ∈ R
n related to C is the set

NC(x) =

{

{y | yT (c− x) ≤ 0, ∀c ∈ C} if x ∈ C,
∅ otherwise.

It can be directly verified that V I(F,C)⇔ 0 ∈ F (x) +NC(x). The latter formulation,

0 ∈ F (x) +NC(x), (2.6)

is a special case of a generalized equation (GE) in the sense of Robinson [104], a zero
finding problem of a set-valued mapping.

2.4.2 Existence Results

Our next concern is with the existence of a solution to the box-constrained variational
inequality VI(F,B), which in turn addresses the existence of solutions of MCP(F,B). We
begin with another useful reformulation of the variational inequality problem as a classical
fixed-point problem, following an early approach by Eaves [24].

Proposition 2.35 Let X ∈ R
n be a nonempty, closed and convex set. Then x∗ ∈ R

n

solves the VI(F,X) problem if and only if x∗ is a fixed point of the mapping P : R
n → R

n

defined by
P (x) := PX(x− F (x)), (2.7)

i.e., if x∗ = P (x∗).

The most basic result on the existence of a solution of VI(F,X) requires the set X
to be compact and convex and the mapping F to be continuous. By applying Brouwer’s
fixed-point theorem to the mapping P defined in equation (2.7) one can state the following
result.

Theorem 2.36 [24] Let X ⊂ R
n be a nonempty, compact and convex set and let F : X →

R
n be continuous. Then there exists a solution to the problem VI(F,X).

The set B = [l, u], to which we turn our attention, is nonempty, closed and convex but
often unbounded (as in the case of the nonlinear complementarity problem). In order to
give an idea of what can happen in this case, we consider the following example.

Example 2.37 In all examples the function F is defined on R to R.
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(a) If F (x) := −x2 − 1, the corresponding NCP(F ) has no solution.

(b) If F (x) := e−x, the corresponding NCP(F ) has a solution, namely x∗ = 0.

(c) If F (x) := x− 1, the corresponding NCP(F ) has the unique solution x∗ = 1.

(d) For F (x) := sin(x), the NCP(F ) has infinitely many isolated solutions, namely xk =
kπ, k ∈ {0, 1, . . . }.

If the mapping F possesses some additional properties, such as being a P-function, then
the unboundedness of X may not lead to the undesired effects observed in Example 2.37.
The following result for NCPs/MCPs has been known for a long time and can be found in
the survey [51].

Theorem 2.38 Let F : R
n → R

n be a continuous mapping on the rectangular box B =
[l, u] with lower and upper bounds l = (l1, . . . , ln)

T and u = (u1, . . . , un)
T , with −∞ ≤ li <

ui ≤ +∞ for all i ∈ {1, . . . , n}. Then the following statements hold:

(a) If F is pseudo-monotone on B, then NCP/MCP has a convex solution set (provided
it is nonempty).

(b) If F is a P-function on B, then NCP/MCP has at most one solution.

(c) If F is a uniform P -function on B, then NCP/MCP has a unique solution.

Considering Example 2.37, the function in (a) is not even monotone, let alone strongly
monotone (uniform P - functions from R to R are strongly monotone and vice versa). Only
for the problem in (c) the existence can be guaranteed using the above theorem, since the
function in (c) is strongly monotone. The uniform P - property is however not a necessary
condition to ensure existence. The function F in (b) is only pseudo-monotone and the
underlying NCP has a solution. Fortunately, pseudo-monotonicity is sufficient to establish
the existence of a solution of the NCP (where B = R

n
+ is a convex cone) under a certain

Slater-type constraint qualification stated below.

Definition 2.39 An element x̂ ∈ R
n is called strictly feasible for NCP(F) if x̂ > 0 and

F (x̂) > 0.

The following result can be applied if F is continuous and pseudo-monotone on the
cone R

n
+. Unfortunately, it cannot be transferred to MCPs since B = [l, u] is usually not a

cone.

Theorem 2.40 [29, Thm. 2.4.4] Let F : R
n → R

n be a continuous mapping on R
n
+. If F

is pseudo-monotone on R
n
+ and there is a strictly feasible point x̂ for NCP, then NCP(F )

has a nonempty and compact solution set.
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Theorem 2.38 (c) provides conditions under which the NCP/MCP has a unique solution.
The following result provides conditions under which a given solution x∗ is isolated (or
locally unique), i.e., there is a neighborhood U of x∗ such that x∗ is the only solution of
NCP/MCP in U .

Proposition 2.41 [115, Thm. 2.3] Let F : R
n → R

n be continuously differentiable and
let x∗ be a solution of NCP/MCP. If the Jacobian matrix F ′(x∗) is positive definite, then
x∗ is locally unique.

Unfortunately, the above results admit no decision on the question whether the solutions
x2k+1 = (2k + 1)π, k ∈ {0, 1, . . . } from Example 2.37 (d) are isolated. There is a different
way of deriving a much weaker alternative of the above result via the local analysis of
nonsmooth equations, see for instance [29] or Lemma 6.13. Under a condition which we
will later call R-regularity at a solution (see Definition 3.18) the local uniqueness can be
guaranteed. This condition translated to our one-dimensional example from (d) is equal
to the condition cos(kπ) 6= 0, k ∈ {0, 1, . . . }, which clearly holds.

We conclude this section by mentioning that most proofs of the above results can be
found in [29], although the main existence result will follow from an equivalent formulation
of NCP/MCP as an optimization problem which consists in minimizing a certain merit
function.
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Chapter 3

Solution Methods for
Complementarity Problems

The purpose of this chapter is to review existing methods for solving nonlinear and mixed
complementarity problems. Here, we concentrate on Newton-type methods and will not
discuss fixed points methods, which have been introduced in the pioneering years of the field
of CPs but have proven to be inefficient due to their poor local convergence properties.
To apply a Newton-type method, we first have to reformulate the CP into a nonlinear
equation. This matter is discussed in Section 3.1. Although there exist reformulations
into smooth equations, modern methods prefer nonsmooth reformulations. To address the
latter class of equations, we introduce nonsmooth Newton- and Levenberg-Marquardt-like
methods in Section 3.2. For achieving fast local convergence, the original CP has to satisfy
certain properties, which are discussed in Section 3.3. To address the delicate matter of
global convergence, several globalization techniques such as line search and trust region
strategies are described in Section 3.4. While Section 3.5 is concerned with some other
methods, Section 3.6 presents a summary of available software for solving complementarity
problems.

3.1 Reformulation of Complementarity Problems

Various numerical algorithms have been proposed based upon reformulations of the nonlin-
ear complementarity problem as a system of nonlinear equations G(x) = 0. One possibility
is to use the so-called NCP-functions.

Definition 3.1 A function φ : R
2 → R having the property that

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0 (3.1)

is called an NCP-function.

25
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Let F : R
n → R

n be given, φ : R
2 → R be any NCP-function and Φ : R

n → R
n be

defined as follows:

Φ(x) :=






φ(x1, F1(x))
...

φ(xn, Fn(x))




 . (3.2)

Then it can be directly seen that x∗ solves the nonlinear complementarity problem
NCP(F ) if and only if x∗ solves the nonlinear system of equations Φ(x) = 0. Already in
the seventies, Mangasarian [79] proved the equivalence of NCP to a system of equations
choosing the NCP-function

φM(a, b) = θ(|a− b|)− θ(a)− θ(b), (3.3)

where θ : R → R is any strictly increasing function with θ(0) = 0. If, in addition, θ
is continuously differentiable with θ′(0) = 0, then also φM is continuously differentiable.
This is satisfied by choosing for example θ(t) = t|t|. If F is C1, then the resulting system
Φ(x) = 0 is smooth and a Newton-type method can be applied without modifications.

Nevertheless, modern algorithms prefer nondifferentiable, semismooth reformulations,
because Newton’s method is not applicable if strict complementarity is violated at the
solution x∗ [64]. Such a solution is sometimes called degenerate.

Definition 3.2 Let F : R
n → R

n be a given function and consider the nonlinear comple-
mentarity problem NCP(F ). A solution x∗ of NCP(F ) is called

(i) nondegenerate if x∗i + Fi(x
∗) > 0 for all i = 1, . . . , n;

(ii) degenerate if it is not nondegenerate, i.e., if there exists at least one index
i0 ∈ {1, . . . , n} such that x∗i0 = 0 and Fi0(x

∗) = 0.

In practice, degeneracy occurs quite frequently, at least numerically, since it is often dif-
ficult to decide whether a numerically obtained solution is degenerate or nondegenerate.
Returning to the problems associated with degeneracy, we consider a differentiable NCP-
function φ and see that ∇φ(0, 0) = (0, 0)T , since limt↘0

φ(t,0)
t

= 0 = limt↘0
φ(0,t)
t

. The
Jacobian of G at x∗ is given by

Φ′(x∗) = Da(x
∗) +Db(x

∗)F ′(x∗), (3.4)

where Da(x
∗), Db(x

∗) ∈ R
n×n are diagonal matrices with

Da(x
∗) := diag

(

. . . ,
∂φ

∂a
(x∗i , Fi(x

∗)), . . .

)

,

Db(x
∗) := diag

(

. . . ,
∂φ

∂b
(x∗i , Fi(x

∗)), . . .

)

.

Hence, if the solution x∗ is degenerate, there exists an index i0 ∈ {1, . . . , n} with x∗i0 =
0 = Fi0(x

∗) and the i0-th row of Φ′(x∗) is zero. This phenomenon can be avoided by
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using semismooth NCP -functions, because they can be constructed in such a way that
any element of the generalized gradient ∂φ(a, b) is bounded away from zero (see Example
2.9).

We next give some examples of semismooth NCP-functions.

Example 3.3 (a) The use of the minimum NCP-function φP (a, b) := min{a, b} was ex-
tensively studied and propagated by Pang, see, e.g., [95]. Note that for the straight-
forward choice θ(t) = t in (3.3) we obtain φM(a, b) = −2φP (a, b). Recall that φP is
strongly semismooth, cf. Example 2.20 (b).

(b) The Fischer-Burmeister function φFB(a, b) :=
√
a2 + b2−a− b, see also Example 2.9,

first appeared in the paper [36] by Fischer, where it is attributed to Burmeister.

(c) The penalized Fischer-Burmeister function, φCCK(a, b) := λφFB(a, b)− (1− λ)a+b+
with λ ∈ (0, 1) fixed, was introduced in [11] in order to overcome some limitations of
the Fischer-Burmeister function.

It follows from Example 2.20 (b) that the plus function z 7→ z+ is strongly semis-
mooth, thus not only the Fischer-Burmeister function but also the penalized Fischer-
Burmeister function is strongly semismooth.

The reformulation via NCP-functions can be extended to the framework of mixed com-
plementarity problems. We stress that not every NCP-function is suitable to serve this
purpose. Once again, the Fischer-Burmeister function is a good choice as we will see in
Section 4.4. A further important reformulation, which is due to Robinson [106], is based
on the normal map.

Definition 3.4 Let B ⊆ R
n be a closed convex set and consider a function F : B → R

n.
Then the normal map FB induced on F by B is defined as

FB(x) := F (PB(x)) + (x− PB(x)).

The corresponding normal map equation is then defined as

FB(x) = 0. (3.5)

In the case of B := [l, u] finding a zero of the normal map equation is equivalent to
solve MCP(F, l, u) in the following sense.

Proposition 3.5 Let B = [l, u] be a rectangular box and let F : B → R
n be a given

function. If the vector x ∈ R
n solves the normal map equation (3.5), then z := PB(x)

solves MCP(F,B). Conversely, if z solves MCP(F,B), then x := z − PB(z) solves (3.5).

Proof. Assume that x satisfies (3.5). Then

PB(x)− F (PB(x)) = x.
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If we define z := PB(x) the above equation becomes

z − F (z) = x.

Hence, z(= PB(x)) satisfies the fixed point equation z = PB(z−F (z)), which is equivalent
to solving MCP(F,B), according to Proposition 2.35.
Conversely, if z solves MCP(F,B), also z = PB(z − F (z)) holds. Defining x := z − F (z)
we get z = PB(x). Replacing z in F (z) + x− z = 0 we obtain

F (PB(x)) + x− PB(x) = 0.

Thus, x satisfies the normal map equation. 2

The normal map FB is strongly semismooth, if F is strongly semismooth on B, since the
Euclidian projection PB is strongly semismooth, as we already noticed.

3.2 Local Methods for Semismooth Equations

3.2.1 Generalized Newton Method

After having seen that the reformulation of complementarity problems leads to nonsmooth
systems of equations, we now study the local behavior of nonsmooth versions of Newton’s
method for solving such systems. Let G : R

n → R
n be a given function. IfG is continuously

differentiable, then Newton’s method for the solution of the nonlinear system of equations

G(x) = 0

generates a sequence {xk} according to the following rule:

xk+1 := xk − (G′(xk))−1G(xk), k = 0, 1, . . . ,

where x0 ∈ R
n is a suitable starting point. Now, if G is only locally Lipschitz continuous,

one can replace this formula by

xk+1 := xk −H−1
k G(xk), k = 0, 1, . . . ,

where Hk is an element of some generalized Jacobian, such as the the B-subdifferential
∂BG(xk), the generalized Jacobian ∂G(xk), or the C-subdifferential ∂CG(xk).

We obtain the following algorithm.

Algorithm 3.6 (Nonsmooth Newton Method)

(S.0) Choose x0 ∈ R
n. Set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.
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(S.2) Choose Hk ∈ ∂BG(xk) and compute a solution dk ∈ R
n of the linear system

Hkd = −G(xk). (3.6)

(S.3) Set xk+1 = xk + dk, k ← k + 1, and go to (S.1).

We note that we can obtain similar algorithms by choosing Hk ∈ ∂G(xk) or Hk ∈
∂CG(xk). Imitating the classical Newton method, Algorithm 3.6 needs a regularity as-
sumption on the matrices Hk to converge locally superlinearly.

Definition 3.7 Let G : R
n → R

n be locally Lipschitz continuous and let x∗ ∈ R
n be a

solution of G(x) = 0. Then

(a) x∗ is called a BD-regular solution (”BD” for Bouligand-differential) of this system if
all elements H ∈ ∂BG(x∗) are nonsingular.

(b) x∗ is called a CD-regular solution (”CD” for Clarke-differential) solution of this
system if all elements H ∈ ∂G(x∗) are nonsingular.

For example, if G(x) = |x| is the absolute value function, then x∗ := 0 is a BD-regular
solution of this system of equations, but not a CD-regular solution. BD-regularity (CD-
regularity) implies the following nonsingularity result, see [98, 100].

Proposition 3.8 Let G : R
n → R

n be locally Lipschitz continuous and let x∗ ∈ R
n be a

BD-regular (alternatively CD-regular) solution of G(x) = 0. Then there is a neighborhood
Bε(x

∗) of x∗ and a constant c > 0 such that for any x ∈ Bε(x
∗) and for any H ∈ ∂BG(x)

(alternatively H ∈ ∂G(x)), H is nonsingular and

‖H−1‖ ≤ c.

A similar nonsingularity result holds also for Qi’s subdifferential ∂CG by a slight change
of the corresponding proof in [100]. These nonsingularity results admit the formulation of
the following local convergence properties.

Theorem 3.9 Let G : R
n → R

n be locally Lipschitz continuous and denote by x∗ ∈ R
n a

solution of the system G(x) = 0. Assume that

(A) an estimate (2.2) holds at x∗ (which in particular is satisfied if G is semismooth at
x∗);

(B) there is a constant ε1 > 0 and a constant c > 0 such that, for any x ∈ Bε1(x
∗), every

H ∈ ∂BG(x) is nonsingular and ‖H−1‖ ≤ c (which in particular is satisfied if x∗ is
a BD-regular solution).

Then there exists an ε > 0 such that the following statements hold for all starting points
x0 ∈ Bε(x

∗):
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(a) Algorithm 3.6 is well-defined and generates a sequence {xk} converging to x∗.

(b) The rate of convergence is Q-superlinear.

(c) The rate of convergence is Q-quadratic if additionally an estimate

G(x∗ + d)−G(x∗)−Hd = O(‖d‖2) (3.7)

holds for all d → 0 and H ∈ ∂BG(x∗ + d) (which in particular is satisfied if G is
strongly semismooth at x∗).

Proof. Since the proof is not difficult and proliferates the understanding of later local
convergence analyses we include it here. With c > 0 from (B), condition (A) implies that
there is a constant ε2 > 0 with

‖G(x)−G(x∗)−H(x− x∗)‖ ≤ 1

2c
‖x− x∗‖

for all x ∈ Bε2(x
∗) and all H ∈ ∂BG(x). Define ε := min{ε1, ε2} (with ε1 from (A)) and

choose a starting vector x0 such that x0 ∈ Bε(x
∗). Then x1 exists, and we have

‖x1 − x∗‖ = ‖x0 − x∗ −H−1
0 G(x0)‖

≤ ‖H−1
0 ‖‖G(x0)−G(x∗)−H0(x

0 − x∗)‖

≤ c
1

2c
‖x0 − x∗‖

=
1

2
‖x0 − x∗‖.

Hence x1 also belongs to Bε(x
∗). Continuing in this manner we obtain by induction that

‖xk − x∗‖ ≤
(

1

2

)k

‖x0 − x∗‖

for all k ∈ N. Hence the sequence {xk} generated by Algorithm 3.6 is well-defined and
converges to x∗. This proves part (a). In order to verify the local superlinear rate of
convergence, we exploit estimate (2.2) once again and obtain

‖xk+1 − x∗‖ = ‖xk − x∗ −H−1
k G(xk)‖

≤ ‖H−1
k ‖‖G(xk)−G(x∗)−Hk(x

k − x∗)‖
(B)

≤ c‖G(xk)−G(x∗)−Hk(x
k − x∗)‖

(2.2)
= o(‖xk − x∗‖)

as xk → x∗. The local quadratic convergence follows similarly by using estimate (3.7). 2
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Various results of this type can be found in the literature, see for instance [97, 98, 100].
If in (S.2) of Algorithm 3.6 we choose an element of Hk ∈ ∂G(x) we obtain Q-superlinear
convergence towards a solution x∗ of system G(x) = 0, provided that assumption (A) of
Theorem 3.9 and the CD-regularity of x∗ (see [100]) hold. In [95] the proposed search
direction dk is obtained by solving the nonlinear equation

G′(xk; d) +G(xk) = 0, (3.8)

where G is a B-differentiable function. According to Proposition 2.12, for this solution
dk there exists an element H̃k ∈ ∂G(xk) such that equation (3.8) (in general nonlinear) is
identical to

H̃kd
k +G(xk) = 0.

However it is a nontrivial task to find this particular H̃k.
In the case when G is semismooth and (3.8) has a solution, this B-derivative-based

Newton method becomes a special case of Algorithm 3.6 (see [98, 100]). Hence, under the
assumptions of Theorem 3.9 and the solvability of (3.8) this B-derivative-based Newton
inherits the convergence properties of Algorithm 3.6.

Similar convergence properties can be established for Hk ∈ ∂CG(x) under an analogous
regularity assumption. We conclude this section by noting that a globalization of the
nonsmooth Newton method is usually a much more complicated issue than the globalization
of the standard smooth Newton method.

3.2.2 Inexact Variants

Typically, the most expensive part of Algorithm 3.6 in terms of computing time and mem-
ory consists of solving the linear system of equations in step (S.2). For large n, this system
becomes intractable by standard direct solvers such as Gaussian elimination. So, in order to
address large-scale systems, other linear system solvers have to be employed. One possibil-
ity is to use direct sparse solvers, which can reduce the cost for sparse matrices considerably
by avoiding excessive fill-in during Gaussian elimination using appropriate reordering and
pivoting strategies. However, the effectiveness of direct sparse solvers heavily depends
on the sparsity structure of the matrix. In contrast, iterative solvers such as LSQR [94],
GMRES [110] and QMR [109] (note that the systems to be solved are in general neither
symmetric nor positive definite) only require fast matrix-vector multiplications. Here, the
effectiveness depends on the number of iterations; normally the iteration is stopped before
the residual reaches the level of roundoff error. Consequently, using iterative solvers means
that the linear system in Algorithm 3.6 is solved inexactly. To take this fact into account,
we reformulate Algorithm 3.6 as follows.

Algorithm 3.10 (Nonsmooth Inexact Newton Method)

(S.0) Choose x0 ∈ R
n. Set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.
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(S.2) Choose Hk ∈ ∂BG(xk) and compute a solution dk ∈ R
n of the linear system such

that

Hkd = −G(xk) + rk,

where the residual vector rk ∈ R
n satisfies

‖rk‖ ≤ αk‖G(xk)‖

with αk being a positive number.

(S.3) Set xk+1 = xk + dk, k ← k + 1, and go to (S.1).

The following theorem discusses the effect of using inexact solutions on the convergence
of the nonsmooth Newton method, see [26, 28, 81].

Theorem 3.11 Let G be semismooth and let x∗ be a BD-regular solution of the system
G(x) = 0. Assume that {xk} is a sequence generated by Algorithm 3.10, Then the following
statements hold:

(a) Provided there is a sufficiently small number ᾱ with αk ≤ ᾱ and ‖x0 − x∗‖ is suffi-
ciently small, Algorithm 3.10 and {xk} converges Q-linearly to x∗.

(b) If additionally αk → 0, the rate of convergence is Q-superlinear.

(c) If G is strongly semismooth, αk = O(‖G(xk)‖), and the sequence {xk} converges to
x∗ then the rate of convergence is Q-quadratic.

3.2.3 Levenberg-Marquardt Method

The Levenberg-Marquardt method is a variant of Algorithm 3.6 for solving

G(x) = 0. (3.9)

Algorithm 3.12 (Nonsmooth Levenberg-Marquardt Method)

(S.0) Choose x0 ∈ R
n. Set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Choose Hk ∈ ∂BG(xk) and compute a solution dk ∈ R
n of the linear system

(HT
k Hk + νkI)d = −HT

k G(xk), (3.10)

where νk ≥ 0 is a prescribed regularization parameter.

(S.3) Set xk+1 = xk + dk, k ← k + 1, and go to (S.1).
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The only notable difference between this algorithm and Algorithm 3.6 is that the linear
system (3.6) is replaced by (3.10). Solving the latter system can have several advantages.
First, its system matrix HT

k Hk + νkI is symmetric, and positive definite if νk > 0. Second,
if the iterates are not sufficiently close to the (regular) solution, then Hk can be (close
to) a singular matrix, resulting into an ill-conditioned linear system (3.6). This effect can
be avoided for (3.10) by an appropriate choice of νk (finding such choices is discussed in
[21, 93] and in the forthcoming chapters, particularly in Sections 4.5 and 5.3). Finally,
and probably most importantly, Algorithm 3.12 can be used to find least squares solutions
for (3.9) if G : R

n → R
m with m ≥ n, i.e., to solve the nonlinear least squares problem

min
1

2
‖G(x)‖2. (3.11)

Specifically, we have the following result for the zero residual case, which is a corollary of
Theorem 3.16 below. For m = n, this is proven in [28].

Theorem 3.13 Let G : R
n → R

m be semismooth and let x∗ be a solution of (3.9) such
that all matrices H∗ ∈ ∂BG(x∗) have full rank. Then the following statements hold:

(a) Provided that νk ∈ (0, ν̂] for some sufficiently small constant ν̂ > 0, there exists
ε > 0 such that, for every x0 ∈ Bε(x

∗), Algorithm 3.12 generates a sequence {xk}
converging at least Q-linearly to x∗.

(b) The rate of convergence is Q-superlinear if, in addition to the conditions in (a),
νk → 0.

(c) The rate of convergence is Q-quadratic if, in addition to the conditions in (a), νk =
O(‖G(xk)‖) and G is strongly semismooth.

There is also an inexact version of Algorithm 3.12, much in the spirit of Algorithm 3.10.
Concerning convergence results for m = n, the reader is referred to [28]. In Section 5.1,
we deal with the case m > n in a different context.

One may see that Algorithm 3.12 reduces to a Gauss-Newton method if for all k the
regularization parameter νk = 0. In this case, equation (3.10) represents the normal
equation for the linearization of the least squares problem (3.11) around the iterate xk,
namely

min
1

2
‖Hkd+G(xk)‖2. (3.12)

The possible occurring unsolvability of the linear subproblems of the generalized New-
ton method, is avoided also by the Gauss-Newton method, although, in contrast to the
Levenberg-Marquardt method, the solution of subproblem (3.12) may not be unique for a
not full rank Hk.
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3.2.4 Projected Levenberg-Marquardt Method

In the context of mixed complementarity problems, we will face overdetermined nonlinear
equations with box constraints. It will be important that the iterates of the Levenberg-
Marquardt method stay within these constraints.

To obtain such a method, let m ≥ n and let G : O → R
m be a semismooth function,

which is defined on an open neighborhood O ⊆ R
n of a box B := [l, u]. Here and in

the following, the lower bounds l = (l1, . . . , ln)
T and upper bounds u = (u1, . . . , un)

T

satisfy −∞ ≤ li < ui ≤ +∞ for all i = 1, . . . , n. Let us consider the box constrained
overdetermined system

G(x) = 0, x ∈ B, (3.13)

which is equivalent to the box constrained least squares problem

min
1

2
‖G(x)‖2 s.t. x ∈ B, (3.14)

provided the latter problem has a zero residual at the solution. Since all bounds can be
infinite, this includes the unconstrained least squares problem.

In this section, we present a local method for the box constrained overdetermined
system of equations (3.13) and the related nonlinear least squares problem (3.14). To
motivate our method, let us emphasize again that (3.14) is an unconstrained least squares
problem if all bounds are infinite. Replacing the B-subdifferential by the C-subdifferential
in Algorithm 3.12, we obtain an iterative procedure of the form

xk+1 := xk + pkLM , k = 0, 1, . . . ,

where pkLM is the solution of the linear system
(
HT
k Hk + νkI

)
pLM = −HT

k G(xk), Hk ∈ ∂CG(xk). (3.15)

Now, if all or some of the bounds are finite, we consider the following projected Levenberg-
Marquardt method:

xk+1 := xk + pkPLM , k = 0, 1, . . . ,

where
pkPLM := PB(xk + pkLM)− xk (3.16)

and pkLM denotes the unconstrained Levenberg-Marquardt direction from (3.15). Formally,
we therefore obtain the following method, see also [72, 118].

Algorithm 3.14 (Projected Levenberg-Marquardt Method)

(S.0) Choose x0 ∈ B, and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Choose Hk ∈ ∂CG(xk), choose a regularization parameter νk > 0, and compute pkLM
from (3.15).
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(S.3) Compute pkPLM from (3.16).

(S.4) Set xk+1 = xk + pkPLM , k ← k + 1, and go to (S.1).

Note that Algorithm 3.14 is well-defined, and that all iterates xk stay in the box B. Of
course, Algorithm 3.14 is a local method only. In order to state the local convergence
properties of this method, we need the following result which follows from the upper semi-
continuity of the generalized Jacobian.

Lemma 3.15 Let G : R
n → R

m be semismooth and x∗ be a solution of problem (3.13)
such that all elements from ∂CG(x∗) have full rank. Then there exist constants ε > 0 and
c > 0 such that

‖(HTH)−1‖ ≤ c

for all H ∈ ∂CG(x) and all x ∈ R
n with x ∈ Bε(x

∗).

Proof. The proof is similar to the one of [98, Lem. 2.6], which states a similar result
in a slightly different setting. Suppose the claim of the lemma is not true. Then there
exists a sequence {xk} converging to x∗ and a corresponding sequence of matrices {Hk}
with Hk ∈ ∂CG(xk) for all k ∈ N such that either HT

k Hk is singular or ‖(HT
k Hk)

−1‖ →
∞ on a subsequence. Noting that HT

k Hk is symmetric positive semidefinite, we have
‖(HT

k Hk)
−1‖ = 1

λmin(HT
k
Hk)

in the nonsingular case. Hence the condition ‖(HT
k Hk)

−1‖ → ∞
is equivalent to λmin(H

T
k Hk)→ 0. Since {xk} → x∗ and the mapping x 7→ ∂CG(x) is upper

semicontinuous, it follows that the sequence {Hk} is bounded (see Remark 2.4) and there-
fore has a convergent subsequence. Let H∗ be a limiting element of such a subsequence.
It then follows that HT

∗ H∗ is singular, since λmin(H
T
∗ H∗) = 0 (note that the mapping

A 7→ λmin(A
TA) is continuous), i.e., H∗ is not of full rank. On the other hand, exploiting

the fact that the mapping x 7→ ∂CG(x) is closed, we have H∗ ∈ ∂CG(x∗), so that H∗ is of
full rank. This contradiction completes the proof. 2

We are now in the position to state the main local convergence properties of Algorithm 3.14.
Later, this result will facilitate the local convergence analysis of a trust-region globalization
of this method.

Theorem 3.16 Let G : R
n → R

m be semismooth and let x∗ be a solution of (3.13) such
that all matrices H∗ ∈ ∂CG(x∗) have full rank. Then the following statements hold:

(a) Provided that νk ∈ (0, ν̂] for some sufficiently small constant ν̂ > 0, there exists
ε > 0 such that for all x0 ∈ B ∩ Bε(x

∗), Algorithm 3.14 generates a sequence {xk}
converging at least Q-linearly to x∗.

(b) The rate of convergence is Q-superlinear if, in addition to the conditions of (a),
νk → 0.

(c) The rate of convergence is Q-quadratic if, in addition to the conditions of (a), νk =
O(‖G(xk)‖) and G is strongly semismooth.
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Proof. Lemma 3.15 implies that there are constants ε1 > 0 and c > 0 such that

∥
∥(HTH + νI)−1

∥
∥ ≤ c ∀x ∈ Bε1(x

∗), ∀H ∈ ∂CG(x), ∀ν > 0.

Furthermore, from the upper semicontinuity of the generalized Jacobian, we obtain the
existence of constants ε2 > 0 and α > 0 with

‖HT‖ ≤ α ∀x ∈ Bε2(x
∗), ∀H ∈ ∂CG(x).

Moreover, the semismoothness of G (see Proposition 2.18 (a)) implies that there is a
constant ε3 > 0 with

∥
∥G(x)−G(x∗)−H(x− x∗)

∥
∥ ≤ 1

4αc
‖x− x∗‖ ∀x ∈ Bε3(x

∗), ∀H ∈ ∂CG(x).

Now take

ε := min{ε1, ε2, ε3} and ν̂ :=
1

4c
.

Suppose that the k-th iterate xk ∈ B belongs to the ball Bε(x
∗) (in the beginning, this is

true since we choose x0 ∈ Bε(x
∗)). Then we have the following identity:

(
HT
k Hk + νkI

)
(xk + pkLM − x∗) =

(
HT
k Hk + νkI

)
(xk − x∗) +

(
HT
k Hk + νkI

)
pkLM

=
(
HT
k Hk + νkI

)
(xk − x∗)−HT

k G(xk)

= −HT
k

(
G(xk)−G(x∗)−Hk(x

k − x∗)
)

+ νk(x
k − x∗).

Premultiplying with (HT
k Hk + νkI)

−1 and taking norms, we therefore obtain

‖xk + pkLM − x∗‖
≤

∥
∥(HT

k Hk + νkI)
−1
∥
∥
[
‖HT

k ‖ ‖G(xk)−G(x∗)−Hk(x
k − x∗)‖+ νk‖xk − x∗‖

]

≤ c
[
α‖G(xk)−G(x∗)−Hk(x

k − x∗)‖+ ν̂‖xk − x∗‖
]

≤ c

(

α
1

4αc
+

1

4c

)

‖xk − x∗‖

=
1

2
‖xk − x∗‖.

This implies

‖xk+1 − x∗‖ = ‖xk + pkPLM − x∗‖
= ‖PB(xk + pkLM)− x∗‖
= ‖PB(xk + pkLM)− PB(x∗)‖
≤ ‖xk + pkLM − x∗‖
≤ 1

2
‖xk − x∗‖
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since the projection operator is nonexpansive. In particular, this shows that xk+1 also
belongs to the ε-ball around x∗, and using an induction argument, it follows that

‖xk+1 − x∗‖ ≤ 1

2
‖xk − x∗‖ ∀k ∈ N.

This shows that the sequence {xk} converges to x∗ at least Q-linearly.

The local Q-superlinear convergence can be verified by using a similar chain of inequal-
ities. Indeed, using νk → 0 and the semismoothness of G, we obtain

‖xk+1 − x∗‖ = ‖xk + pkPLM − x∗‖
≤ ‖xk + pkLM − x∗‖
≤ c

[
α‖G(xk)−G(x∗)−Hk(x

k − x∗)‖+ νk‖xk − x∗‖
]

= o(‖xk − x∗‖),

using the fact that the projection operator PB is nonexpansive. The Q-quadratic rate of
convergence can be verified in a similar way using

νk = O(‖G(xk)‖) = O(‖G(xk)−G(x∗)‖) = O(‖xk − x∗‖),

where the last inequality follows from the local Lipschitz property of G, and by noting that
the strong semismoothness of G implies

‖G(xk)−G(x∗)−Hk(x
k − x∗)‖ = O(‖xk − x∗‖2),

in view of Proposition 2.18 (b). This completes the proof. 2

We conclude this section with the following remark.

Remark 3.17 (a) Suppose G is continuously differentiable with a locally Lipschitzian Ja-
cobian G′, and suppose that we choose νk := ν‖G(xk)‖2 for some constant ν > 0 in
Algorithm 3.14. Then it was shown in [72] that the sequence {xk} generated by Algorithm
3.14 is locally quadratically convergent under an error bound condition. This condition is
weaker than the full rank assumption made in Theorem 3.16 and might also hold in some
situations where the solution set is not (locally) unique. However, in the context of this
work we are mainly interested in a nonsmooth mapping G, and whether the result from
[72] holds in this situation is not clear.

(b) Similar convergence properties can be established for Hk ∈ ∂BG(xk) under a weaker
BD-regularity assumption. However, we will apply this local method (see Chapter 6) to a
nonsmooth reformulation of the nonlinear (and mixed) complementarity problem, which ad-
mits an R-regular solution. R-regularity will imply that all elements in the C-subdifferential
have full rank. Thus, choosing an element from the smaller set ∂BG(xk) does not seem to
have any significant theoretical advantage.
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3.3 Regularity Conditions and Reformulations

In the previous section, we have seen that BD-regularity of the nonlinear equation at the
solution is a crucial requirement for obtaining (fast) local convergence of semismooth New-
ton and Levenberg-Marquardt methods. We will apply these methods to reformulations
of nonlinear (and mixed) complementarity problems. For this purpose, it is important to
know which conditions the original complementarity problems has to satisfy such that the
reformulation admits a BD-regular solution. Stating such conditions is the purpose of this
section.

Let us recall that an important class of reformulations is based on the concept of
NCP-functions leading to nonsmooth nonlinear equation Φ(x) = 0, see Section 3.1. For
the particular choice of the NCP-function φ ∈ {φP , φFB, φCCK}, we denote the resulting
operator Φ by ΦP ,ΦFB and ΦCCK , respectively. Given the properties of φP , φFB, φCCK we
stress that the resulting operators ΦP ,ΦFB,ΦCCK are semismooth if the problem function
F is C1. If, in addition, F is LC1 then the operators are strongly semismooth. From the
very definition of the operator ΦP an element Hk ∈ ∂BΦ(xk) can be easily computed. Also
for Φ ∈ {ΦFB ,ΦCCK} there are simple procedures to compute an element Hk ∈ ∂BΦ(xk),
see, e.g., [19, 11]. Given such an element Hk ∈ ∂BΦ(xk), a typical nonsmooth Newton
method leads to the iteration

xk+1 := xk −H−1
k Φ(xk), k = 0, 1, 2, . . . , (3.17)

which belongs to the framework of the local nonsmooth Newton method, Algorithm 3.6.
The structures of the B-subdifferentials of ΦP ,ΦFB and ΦCCK allow stating conditions

which guarantee BD-regularity at a solution. This regularity concept which will be used in
order to prove a nonsingularity result for an equation reformulation of the complementarity
problem, can be extended to the mixed complementarity problem (see [33]). Associated
with any solution x∗ ∈ R

n of the complementarity problem NCP(F ), we define the following
three index sets:

α := {i | x∗i > 0, Fi(x
∗) = 0},

β := {i | x∗i = 0, Fi(x
∗) = 0},

γ := {i | x∗i = 0, Fi(x
∗) > 0}.

The set β is usually called the degenerate set for obvious reasons. Note that α, β, γ depend
on the particular solution x∗, but since this dependence will always be clear from the
context, it is not necessary to stress it in our notation.

The following two regularity concepts play an important role in the theoretical analysis
of complementarity problems.

Definition 3.18 Let M := F ′(x∗). A solution x∗ ∈ R
n of NCP(F ) is called

(a) b-regular if the principal submatrices Mα∪δ,α∪δ are nonsingular for all subsets δ such
that ∅ ⊆ δ ⊆ β;
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(b) R-regular if Mαα is nonsingular and its Schur-complement in

(
Mαα Mαβ

Mβα Mββ

)

is a P -matrix.

We note that the Schur-complement used above is defined by

Mββ −MβαM
−1
ααMαβ ∈ R

|β|×|β|. (3.18)

The R-regularity condition is due to Robinson and it was introduced in [105] in the context
of the local solvability of generalized equations. There it is called strong regularity and is
analogous to the nonsingularity condition imposed to the usual implicit-function theorem
for nonlinear equations. The b-regularity condition was employed, e.g., in [61, 96, 20]. At
a nondegenerate solution x∗ of NCP(F ) the b- and R-regularity coincide. The following
example from [20] shows that b-regularity is a weaker assumption than R-regularity.

Example 3.19 Consider the NCP(F ) with F : R
2 → R

2 defined by

F (x) :=

(
−x1 + x2

−x2

)

.

The unique solution x∗ = (0, 0)T is degenerate and b-regular. A simple calculation yields

∂BΦP (x∗) =

{(
−1 1
0 −1

)

,

(
−1 1
0 1

)

,

(
1 0
0 −1

)

,

(
1 0
0 1

)}

.

Hence, x∗ is a BD-regular solution of the system ΦP (x) = 0. On the other hand, x∗ is

not R-regular, since α = ∅ and F ′(x∗)β,β =

(
−1 1
0 −1

)

is not a P-matrix. Considering

xk :=
(

1
k
, 2
k

)
→ x∗, where the operator ΦFB is smooth, we see that

Φ′
FB(xk)→

(
0 1√

2
− 1

0
√

2

)

∈ ∂BΦFB(x∗).

This shows that x∗ is not a BD-regular solution of the system ΦFB(x) = 0.

As a matter of fact, BD-regularity respective to ΦP at a solution of NCP can be established
under a weaker assumption than BD-regularity respective to ΦFB. Let H ∈ ∂BΦP (x∗) be
arbitrary, and let α, β, γ be the index sets defined above. Then there is an index set δ ⊆ β
such that

H =

(
F ′(x∗)α∪δ,α∪δ F ′(x∗)α∪δ,γ∪δ̄

0γ∪δ̄,α∪δ Iγ∪δ̄,γ∪δ̄

)

,

where δ̄ := β \ δ, see [20]. The definition of b-regularity now directly gives the following
proposition.
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Proposition 3.20 Let F : R
n → R

n be continuously differentiable and x∗ ∈ R
n a b-regular

solution of NCP(F ). Then x∗ is a BD-regular solution of the system ΦP (x) = 0.

On the other hand, R-regularity of a solution implies the BD/CD-regularity with respect
to ΦFB and ΦCCK .

Proposition 3.21 Let F : R
n → R

n be continuously differentiable and x∗ ∈ R
n a R-

regular solution of NCP(F ). Then

(a) x∗ is a CD-regular solution of the system ΦFB(x) = 0;

(b) x∗ is a CD-regular solution of the system ΦCCK(x) = 0.

Proof. Statement (a) will play a central role in the subsequent chapters and we include
the proof here, although it is identical to Lemma 5.3 in [19]. Let H ∈ ∂CΦFB(x∗) be
arbitrary but fixed. In view of the chain rule from Theorem 2.5 and the structure of
the generalized gradient of φFB at a point (xi, Fi(x)), there are diagonal matrices Da :=
Da(x

∗) ∈ R
n×n and Db := Db(x

∗) ∈ R
n×n such that H = Da +DbM , where M := F ′(x∗)

and Da := diag(a1(x
∗), . . . , an(x

∗)), Db := diag(b1(x
∗), . . . , bn(x

∗)) ∈ R
n×n are diagonal

matrices whose i-th diagonal element is given by

ai(x
∗) =

x∗i
‖(x∗i , Fi(x∗))‖

− 1, bi(x
∗) =

Fi(x
∗)

‖(x∗i , Fi(x∗))‖
− 1

if (x∗i , Fi(x
∗)) 6= (0, 0), and by

ai(x
∗) = ξi − 1, bi(x

∗) = χi − 1 with (ξi, χi) ∈ R
2 such that ‖(ξi, χi)‖ ≤ 1

if (x∗i , Fi(x
∗)) = (0, 0). Write

M =





Mαα Mαβ Mαγ

Mβα Mββ Mβγ

Mγα Mγβ Mγγ





and, accordingly,

Da =





Da,α 0 0
0 Da,β 0
0 0 Da,γ



 and Db =





Db,α 0 0
0 Db,β 0
0 0 Db,γ



 ,

where Da,α := (Da)αα, Da,β := (Da)ββ, etc. Now let p ∈ R
n be an arbitrary vector with

Hp = 0. Partitioning p = (pα, pβ, pγ) we can rewrite Hp = 0 as follows:

Da,αpα +Db,α(Mααpα +Mαβpβ +Mαγpγ) = 0α, (3.19)

Da,βpβ +Db,β(Mβαpα +Mββpβ +Mβγpγ) = 0β, (3.20)
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Da,γpγ +Db,γ(Mγαpα +Mγβpβ +Mγγpγ) = 0γ. (3.21)

Since we have Da,α = 0α, Da,γ = −Iγ , Db,α = −Iα, and Db,γ = 0γ, (3.21) immediately gives

pγ = 0γ, (3.22)

so that (3.19) reduces to

Mααpα +Mαβpβ = 0α.

The submatrix Mαα is nonsingular (x∗ is a R-regular solution of NCP(F )) and we obtain
from the previous equation

pα = −M−1
ααMαβpβ. (3.23)

Inserting this into (3.20), using (3.22), and rearranging terms we obtain

[Da,β +Db,β(Mββ −MβαM
−1
ααMαβ)]pβ = 0β,

Since the Schur complement is a P -matrix and both diagonal matrices Da,β, Db,β are nega-
tive semidefinite such that their sum is negative definite it follows that Da,β +Db,β(Mββ −
MβαM

−1
ααMαβ)] is nonsingular (see Lemma 2.29), thus pβ = 0β. We therefore have p = 0,

which proves that H ∈ ∂CΦFB(x∗) is regular. Since H was chosen arbitrarily, we ob-
tain the regularity of all elements in ∂CΦFB(x∗). This implies the desired result, since
∂ΦFB(x∗) ⊂ ∂CΦFB(x∗).

Statement (b) can be proved similarly (see Theorem 2.6 in [11]). 2

If F : R
n → R

n is a P0-function, then every Jacobian F ′(x) is a P0-matrix for all x ∈ R
n,

see Theorem 2.28. In this case, there is no difference between b- and R-regularity, as
the following proposition suggests. Note that if F ′(x∗) is a P0-matrix then the Schur-
complement (3.18) is also a P0-matrix.

Proposition 3.22 [20, Thm. 2.5] Let x∗ ∈ R
n be a solution of NCP(F ). Then the

following statements are equivalent:

(a) x∗ is a R-regular solution of NCP(F ).

(b) x∗ is a b-regular solution and the Schur-complement (3.18) is a P0-matrix.

To roughly summarize the discussion, if one of the equivalent conditions of Proposi-
tion 3.22 is satisfied then Propositions 3.20 and 3.21 imply that the (penalized) Fischer-
Burmeister as well as the minimum reformulation give rise to locally convergent Newton
methods for solving complementarity problems. We conclude this section by noting that
the R-regularity condition is strictly related to the similar condition used in [35] involving
the normal map reformulation.
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3.4 Global Methods

We have seen that the Newton- and Levenberg-Marquardt-type methods discussed above
display local (fast) convergence under appropriate conditions. Obtaining iterations that
achieve global convergence towards the desired solution is usually a much more subtle
issue. Such a property, however, is indispensable for developing reliable solvers of mixed
and nonlinear complementarity problems. In this section, we briefly discuss globalization
strategies and other globally convergent methods.

3.4.1 Merit Functions

To facilitate the development of global methods it is important to provide a measure
for monitoring the convergence of the iterates in our method of choice toward a desired
solution. Merit functions provide such a measure and are formally defined as follows.

Definition 3.23 A function Ψ : R
n → R is called a merit function for the nonlinear

complementarity problem/mixed complementarity problem NCP(F )/MCP(F, l, u) if it has
the following two properties:

(a) Ψ(x) ≥ 0 for all x ∈ R
n;

(b) Ψ(x) = 0 if and only if x solves NCP(F )/MCP(F, l, u).

The above definition admits a large class of functions; to be useful in practice a merit
function should satisfy further properties, such as being continuously differentiable. In
such a case it is easy to enforce the global convergence of algorithms by using the gradient
of the merit function.

Example 3.24 The following functions are merit functions for the nonlinear complemen-
tarity problem NCP(F ).

(a) Given an equation reformulation Φ(x) = 0 of the complementarity problem NCP(F ),
the so called natural merit function is simply obtained by setting

Ψ(x) :=
1

2
Φ(x)TΦ(x) =

1

2
‖Φ(x)‖2. (3.24)

The natural merit functions associated with Φ ∈ {ΦP ,ΦFB ,ΦCCK} will be denoted
by ΨP ,ΨFB,ΨCCK , respectively.

(b) Another classical merit function is based on the normal map

Ψ+(x) := ‖F+(x) + x− x+‖.

(c) The Luo-Tseng merit function is defined as

ΨLT (x) :=
1

2
max2{0, xTF (x)}+

1

2

n∑

i=1

max2{0, φFB(xi, Fi(x))};
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(d) The Kanzow-Yamashita-Fukushima merit function is defined as

ΨKY F (x) :=
1

2

n∑

i=1

(max2{0, xiFi(x)}+ max2{0, φFB(xi, Fi(x))}).

(e) The Mangasarian-Solodov merit function is defined as

ΨMS(x) :=

n∑

i=1

{xiFi(x)+
1

2α
(max2{0, xi−αFi(x)}−x2

i+max2{0, Fi(x)−αxi}−Fi(x)2)},

where α > 1 is a fixed parameter.

It is not difficult to see that the merit functions ΨLT , ΨKY F and ΨMS are continuously
differentiable, whereas ΨP and Ψ+ are, in general, not differentiable. On the other hand,
the next theorem shows that also ΨFB and ΨCCK are continously differentiable (despite
the fact that the underlying equation operators ΦFB and ΦCCK are nonsmooth). Hence,
even if on the first view the reformulation of NCP via the operator ΦP has an obvious
advantage over the reformulations via the operators ΦFB and ΦCCK (cf. Section 3.3), the
globalization of the local method is a much simpler issue for Φ ∈ {ΦFB,ΦCCK}.

Theorem 3.25 [19, Thm. 2.3],[11, Thm. 3.2] Let F : R
n → R

n be continuously differen-
tiable. The following statement hold:

(a) The merit function ΨFB is continuously differentiable with ∇ΨFB(x) = HTΦFB(x)
for every H ∈ ∂CΦFB(x).

(b) The merit function ΨCCK is continuously differentiable with ∇ΨCCK(x) = HTΦCCK(x)
for every H ∈ ∂CΦCCK(x).

Proof. (a) We only give the proof for the first statement since the second one can be
verified in very much the same way. Let x ∈ R

n be arbitrary and define the index set
I = {1, . . . , n}. Let β = {i ∈ I | xi = 0 = Fi(x)} and let β̄ := I \ β denote the
complementarity subset of β in I. Then for every i ∈ β̄ it holds that the i-th component
function ΦFB,i is continuously differentiable with

∂ΦFB,i(x) = ∂φFB(xi, Fi(x)) = {∇ΦFB,i(x)}, i ∈ β̄. (3.25)

We next show that the set {HTΦFB(x) | H ∈ ∂CΦFB(x)} consists of one element only:

S :={HTΦFB(x) | H ∈ ∂CΦFB(x)}

={
m∑

i=1

ΦFB,i(x)Hi | Hi ∈ ∂ΦFB,i(x), i ∈ I}

={
∑

i∈β̄

ΦFB,i(x)Hi +
∑

i∈β
ΦFB,i(x)
︸ ︷︷ ︸

=0

Hi | Hi ∈ ∂ΦFB,i(x), i ∈ β̄ ∪ β}

(3.25)
= {

∑

i∈β̄

ΦFB,i(x)∇ΦFB,i(x)}.
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Now, using the relaxed chain rule, see Corollary 2.7, we obtain

∂ΨFB(x) ⊆ conv(S),

and therefore ∂ΨFB(x) is a singleton too. The assertion therefore follows from the fact
that a locally Lipschitz continuous function is continuously differentiable if and only if its
generalized gradient is a singleton at every point, see Example 2.2 (a). 2

Since the most commonly used merit functions are once but not twice continuously differ-
entiable, solving the complementarity problem using an off-the-shelf minimization method
is not suggested. Nevertheless, the interplay between a gradient method and a Newton-
type method applied to the underlying equation reformulation makes this minimization
approach successful. However, obtaining a decreasing sequence {Ψ(xk)} is not sufficient
to ensure the convergence of a sequence xk of iterates toward a solution. Therefore, the
common goal will be convergence toward a local minimizer of Ψ.

The next propositions summarize appropriate conditions for a stationary point of Ψ
(provided that the merit function is differentiable) to be a solution of the complementarity
problem. Most of this results can be verified in a similar way to the proof of Theorem 4.8.

Proposition 3.26 [31, 11, 71, 78, 80] Let x∗ be a stationary point for a merit function
Ψ to be specified below. Then the following statements hold:

(a) If Ψ ∈ {ΨFB,ΨCCK ,ΨKYF} and F ′(x∗) is a P0-matrix, then x∗ is a solution of
NCP (F ).

(b) If Ψ = ΨLT and F ′(x∗) is positive semidefinite, then x∗ is a solution of NCP (F ).

(c) If Ψ = ΨMS and F ′(x∗) is a P -matrix, then x∗ is a solution of NCP (F ).

3.4.2 Line Search

The methods discussed in Section 3.2 compute at each iteration a new direction dk 6= 0
which is added to the old iterate in order to obtain the new iterate. If the old iterate is
not sufficiently close to the solution then it may happen that the new iterate is not closer
to the desired solution, which can lead to stagnation or even divergence of the method. To
avoid this to happen, the line search strategy dampens the effect of the update by scaling
the direction with a positive parameter tk ≤ 1. The choice of this parameter can be met
using the merit functions defined above.

Let xk be the current iterate which is not a stationary point. The line search strategy
is now to choose the step length tk ∈ (0, 1] such that the new iterate

xk+1 := xk + tkd
k

produces a sufficient decrease in the merit function Ψ. Considering the vector xk + tdk, t ∈
(0, 1], we have

Ψ(xk + tdk) = Ψ(xk) + t∇Ψ(xk)Tdk + o(t),
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under the assumption that Ψ is continuously differentiable. Now, if dk is a descent condition
for Ψ in the sense that

∇Ψ(xk)Tdk < 0, (3.26)

then for any constant σ ∈ (0, 1], one can show that there exists a t̄k ∈ (0, 1] such that for
all t ∈ (0, t̄k],

Ψ(xk + tdk) ≤ Ψ(xk) + σt∇Ψ(xk)Tdk.

By choosing our step length tk to be such a particular tk ∈ (0, t̄k) we obtain a decrease in
the merit function as

Ψ(xk+1) ≤ Ψ(xk) + σtk∇Ψ(xk)Tdk,

in view of the descent property of dk. There are many line search strategies ([21]) that
provides such a tk. One of the most popular is the Armijo-Goldstein line search rule [1, 46],
which for a given parameter β ∈ (0, 1) evaluates the merit functions at the sequence of
points {xk + βldk | l = 0, 1, . . . } until a steplength tk = max{β l | l = 0, 1, 2, . . . } is found
such that

Ψ(xk + tkd
k) ≤ Ψ(xk) + σtk∇Ψ(xk)Tdk. (3.27)

In view of the above discussions this line search rule is well defined provided that dk is
a descent direction and Ψ is continuously differentiable. A generalization of the Armijo
rule to the case of a B-differentiable merit function Ψ can be established provided that
Ψ′(xk; dk) < 0, since B-differentiable merit functions have a similar first order expansion
around xk, see Definition 2.11. In analogy to the classical Armijo rule the steplength is
given by tk = βlk , where lk is the first nonnegative integer l for which

Ψ(xk + βldk) ≤ Ψ(xk) + σβlΨ′(xk; dk). (3.28)

Remark 3.27 (a) We note that it can be helpful to employ nonmonotone line search
strategies, which admit a controlled increase of the merit function. This is mainly confirmed
by computational experiments, see [48]. Roughly speaking, admitting such an increase can
help the algorithm to avoid local minima that are not global ones. An implementation of a
nonmonotone line search strategy is discussed in Section 4.5.1.
(b) A large class of descent directions satisfying (3.26) is given by

dk := −Mk∇Ψ(xk),

where Mk ∈ R
n×n is any symmetric positive definite matrix. Letting Mk be the iden-

tity matrix we obtain the steepest descent direction dk = −∇Ψ(xk). Considering Ψ ∈
{ΨFB,ΨCCK}, the Levenberg-Marquardt direction (see Section 3.2.3) reduces to

dk = −(HT
k Hk + νkI)

−1∇Ψ(xk),

in view of Theorem 3.25. Accordingly, the Levenberg-Marquardt direction is a descent
direction respective to these particular merit functions.
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3.4.3 Path Search

A theoretical and practically relevant difficulty with the line search approach is that for
some reasonable choices of merit functions the direction dk is not guaranteed to be a descent
direction. A strategy which avoids this effect for the normal map reformulation of NCPs
and MCPs was proposed by Ralph [103]. Given an NCP(F ), we consider the normal map,
see Section 3.1, for the case B = [0,∞)n:

F+(x) := F (x+) + x− x+.

If F+(x) = 0 then x+ is a solution of NCP(F ). Since x 7→ x+ is a piecewise linear
operator, it is not sensible to approximate F+ with a linear function. Instead, a first-order
approximation with a piecewise linear normal map is used, for example

Ak(x) := F (xk+) + F ′(xk+)(x+ − xk+) + x− x+,

where xk is the current iterate. The zero of this approximation determines the Newton
point xkN (which may not be unique). This is known to be equivalent to solving the LCP

y ≥ 0, F (yk) + F ′(yk)(y − yk) ≥ 0, yT (F (yk) + F ′(yk)(y − yk)) = 0 (3.29)

by setting yk = xk+. Using the solution of this LCP results in a local method called
the Josephy-Newton algorithm for NCPs or sequential LCP (SLCP) method in [82, 83].
Josephy [54] proved, in the context of generalized equations, local quadratic convergence
for this method, under a strong regularity condition [105] at a solution. Global convergence
results for the Josephy-Newton method were not established.

In contrast, the path search strategy generates a piecewise linear path pk(t) from xk

to the Newton point (if it exists) by applying a complementary pivot algorithm similar to
Lemke’s method; each pivot step results in a new linear segment of the path. This path is
a so called Newton path [103], i.e., it is a continuous function pk : [0, Tk]→ R

n, which has
the properties

pk(0) = xk,

Ak(p
k(t)) = (1− t)F+(xk), ∀t ∈ [0, Tk],

where Tk ∈ [0, 1]. This shows that, in first order, points on the path decrease the norm
of the normal map. For larger t there might be no such decrease. In this case, the
path is backtracked using an Armijo-type rule as follows. Given β ∈ (0, 1), the points
{p(β0), p(β1), p(β2), . . . } are tried until a value l is found for which

‖F+(pk(βl))‖ ≤ (1− σβ l)‖F+(xk)‖, (3.30)

where σ > 0 is a fixed parameter. The next iteration is then chosen to be xk+1 = pk(βl).
For global convergence results concerning path search strategies, see [23, 103]. Simi-

lar to line search, there exist nonmonotone path search strategies that have the benefits
mentioned in Remark 3.27 (a), see [103] for more details.
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3.4.4 Trust Region

In this section, we consider a different strategy for designing global methods for CPs by
considering as before a merit function Ψ(x) associated with the CP under consideration.
Solving the CP can be formulated as solving the unconstrained minimization problem

min Ψ(x), x ∈ R
n.

In the following, we restrict ourselves to natural merit functions, which take the form
Ψ(x) = 1

2
‖Φ(x)‖2, where Φ(x) = 0 is the reformulation of the CP, and make the following

assumption:
∇Ψ(x) = HTΦ(x) for an arbitrary H ∈ ∂BΦ(x).

This assumption certainly holds if Φ itself is continuously differentiable, but we have seen
that it also holds in some situations where Φ is a nonsmooth mapping. We recall that in
each step of the semismooth Newton method, one has to find the solution dk of the linear
system

Hkd+ Φ(xk) = 0, (3.31)

where Hk ∈ ∂BΦ(xk). In a small neighborhood of a BD-regular solution this is equivalent
to solving the optimization problem

min
1

2
‖Hkd+ Φ(xk)‖2 for all d ∈ R

n.

Another point of view is to consider the quadratic form

qk(d) :=
1

2
‖Hkd+ Φ(xk)‖2

as a first-order approximation of Ψ(xk+ ·). The idea of trust region methods is to trust this
approximation only in a certain region, say for all ‖d‖ ≤ ∆k with the trust region radius
∆k. The update of ∆k is done with respect to the decrease of the merit function. The
subproblem to be solved at each iteration becomes a constrained optimization problem:

min qk(d), s.t. ‖d‖ ≤ ∆k. (3.32)

The decision whether xk + dk, with dk from (3.32) can be accepted as a new iterate
depends on the ratio

rk = aredk(d
k)/predk(d

k), (3.33)

where
aredk(d) = Ψ(xk)− Ψ(xk + d), predk(d) = Ψ(xk)− qk(d)

denote the actual and predicted reduction of the merit function, respectively. Combining
these findings leads to the following trust region algorithm. The only difference to a stan-
dard trust region method is the updating rule for the trust region radius after a successful
iteration.
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Algorithm 3.28 (Trust Region Method)

(S.0) Choose x0 ∈ R
n, ∆0 > 0, 0 < ρ1 < ρ2 < 1, 0 < σ1 < 1 < σ2, ∆min > 0 and set

k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Choose Hk ∈ ∂BΦ(xk), and compute dk from (3.32).

(S.3) If rk ≥ ρ1, with rk as in (3.33), we call the iteration k successful and set xk+1 :=
xk + dk; otherwise we set xk+1 := xk.

(S.4) Update the trust region radius as follows:

∆k+1 :=







σ1∆k, if rk < ρ1,
max{∆min,∆k}, if rk ∈ [ρ1, ρ2),
max{∆min, σ2∆k}, if rk ≥ ρ2.

(S.5) Set k ← k + 1, and go to (S.1).

Several remarks concerning Algorithm 3.28 are in order. The choice of the norm when
defining the trust region

Bk := {x ∈ R
n|‖x− xk‖p ≤ ∆k}

determines the geometrical shape of the trust region. Although, this shape determines the
position of the model minimizer, the choice of the norm that defines the trust region is in
general irrelevant to the convergence of the method, but may have a serious impact on the
computations. The ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞ norms, or scaled variants of these, are preferred.

The algorithm uses a minimal radius ∆min > 0 as a lower bound for the new radius,
in order to ensure global and local superlinear/quadratic convergence. Under standard
assumptions it can be shown that for k sufficiently large the generalized Newton direction
from (3.31) (the solution of the unconstrained optimization problem) exists and is unique
and coincides with the constrained optimization problem. Moreover, the iterations are
successful. Thus, for sufficiently large k the trust region method reduces to the generalized
Newton method, [57, 73].

Further we note that solving the subproblems is not a simple task. Each iteration
requires the solution of the constrained quadratic programming problem (3.32). This
subproblem has an optimal solution as its feasible region is nonempty and compact.

There exist efficient and reliable numerical methods to address (3.32), see, e.g., [17, 89,
50, 113].

On the first, line search strategies seem to be preferable as they only require the solution
of a linear (least squares) problem in each iteration. To select the appropriate update of the
iterate only a small number of merit function evaluations has to be performed. However, the
higher cost of the trust-region method is typically more than compensated by its superior
convergence properties [17]. There is also a nonmonotone variant of Algorithm 3.28, see,
e.g., [118].
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3.5 Other Methods

The need for nonsmooth Newton-type methods was motivated by the fact that reliable
NCP reformulations of CPs yield nonsmooth equations. A possibility to maintain the reli-
ability of these nonsmooth reformulations without having to use nonsmooth algorithms is
presented in the following. In our discussion we restrict ourselves to the Fischer-Burmeister
function, since it will naturally lead to another class of methods, the so called interior point
methods.

The idea of smoothing methods is to approximate the NCP-function by a parameterized
function, which is not NCP but leads to a smooth system of nonlinear equations. For
example, the Fischer-Burmeister function is replaced by

φµ(a, b) :=
√

a2 + b2 + 2µ− a− b, (3.34)

so that φµ(a, b)→ φFB(a, b) as µ tends to zero [58]. Analogous to NCP reformulations, we
obtain the following nonlinear equations:

Φµ(x) :=






φµ(x1, F1(x))
...

φµ(xn, Fn(x))




 .

Now we can apply a standard Newton method to solve Φµ(x) = 0. Since the ultimate
goal is to find a solution of ΦFB(x) = Φ0(x) = 0, we let the parameter µ converge to zero
during the Newton iteration. Introducing µk, the value of µ at the k-th iteration, we thus
compute the direction dk as the solution of the linear system

Φ′
µk

(xk)d = −Φµk
(xk) (3.35)

at each iteration. As in the standard Newton method, the next iterate is obtained by
setting xk+1 = xk + dk. Choosing µk in an appropriate manner is a delicate task. There
are several possibilities, which can be shown to yield superlinear or even quadratic local
convergence under the R-regularity condition, see, e.g., [8, 30, 58]. To improve the global
convergence properties, the smoothing algorithm described above should be combined with
line search or other globalization strategies. For monotone NCPs, global convergence can
be established [10]. Indeed, smoothing methods usually require F to be at least a P0-
function in order to guarantee that the linear systems (3.35) are solvable. However, the
implementation of the smoothing technique by Chen and Mangasarian [12] seems to work
quite well even applied to nonmonotone problems. We mention that there exists many
other variants of smoothing methods. Among these Jacobian smoothing methods are
often viewed as a mixture between the nonsmooth methods and smoothing methods, since
these method try to solve at each iteration the mixed Newton equation

Φ′
µk

(xk)d = −Φ(xk),

using the smooth matrix from (3.35), but an unperturbed right-hand side, see, e.g., [70,
13, 101].
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Kanzow [58] has shown a theoretical equivalence between the smoothed Fischer-Burmeister
method and the interior-point method. Basically, the relationship between these two meth-
ods can be seen as follows. Considering φµ from (3.34), we see that

φµ(a, b) = 0 ⇔ a > 0, b > 0, ab = µ.

It directly follows that solving Φµ(x) = 0 is equivalent to

xi > 0, Fi(x) > 0, xiFi(x) = µ, ∀i = 1, . . . , n. (3.36)

It turns out that (3.36) constitute the central path conditions typically used in interior-
point methods [124]. However, the subproblems associated with the two methods are
solved in a different manner. In analogy to interior-point methods for linear programs [74],
interior-point methods for linear complementarity problems have polynomial complexity,
which means that the worst-case execution time of this algorithms is a polynomial function
of the problem size. In practice, the run time grows slowly for large-scale linear problems.
They are therefore preferable compared to pivotal methods such as Lemke’s method. Re-
turning to the nonlinear case, local fast convergence can be established for interior point
methods, even in the absence of strong regularity conditions.

3.6 Software

In the following, we provide a brief overview of available software for addressing nonlinear
and mixed complementarity problems. This survey is partly based on [5].

The SEMISMOOTH algorithm [19, 90] is based upon reformulating the MCP as a sys-
tem of nonsmooth equations involving both the Fischer-Burmeister NCP-function φFB and
the penalized Fischer-Burmeister function φCCK . SEMISMOOTH extends the approach
used in [4, 19] reformulating the MCP using the reformulation Φ : R

n → R
n given by

Φ(x) :=







φFB(xi − li, Fi(x)) if i ∈ Il,
−φFB(ui − xi,−Fi(x)) if i ∈ Iu,
φ(xi − li, φFB(ui − xi,−Fi(x))) if i ∈ Ilu,
−Fi(x) if i ∈ If ,

where φ ∈ {φFB, φCCK}. Furthermore, Il, Iu, Ilu and If denote the set of indices i ∈
{1, . . . , n} with finite lower bounds only, finite upper bounds only, finite lower and upper
bounds and no finite bounds, respectively, on the variable xi, see (4.35). This results in
a semismooth system of equations Φ(x) = 0 on which a nonsmooth generalized Newton
method (see Section 3.2.1) is applied to obtain a Newton direction dk. The natural merit
function

Ψ(x) :=
1

2
‖Φ(x)‖2 (3.37)

is continuously differentiable, thus the local method can be globalized using standard line
search techniques, provided dk satisfies sufficient decrease. Otherwise, the negative gradient
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of the merit function is taken. However, when the Newton system is (close to) singular
solving the linear least squares problem via iterative solvers is preferred to the resort
of taking the gradient step. To improve performance, iterative solvers are also used to
compute the Newton direction when dealing with large-scale problems.

The SEMICOMP algorithm [4] is an extension to the SEMISMOOTH algorithm, which
adds a proximal perturbation strategy that allows the iterates to escape local minima of
the merit function from (3.37). If SEMISMOOTH stopped making satisfactory progress
towards a solution of Φ at an iterate xp, then a sequence of perturbed problems will be
solved, which generates a sequence of solutions {yk} that lead to a better starting point
yp =: xp+1. The perturbed problems replace F with a perturbed function

F λ,ȳ := F (y) + λ(y − ȳ), (3.38)

where the centering point is usually chosen to be the current iterate yk and λ > 0 is
chosen to be large enough to assure that F λ,x̄ is strongly monotone. Thus the sequence of
subproblems MCP(F λ,yk

, B) can be solved by SEMISMOOTH providing the next iterate
yk+1. In general, the perturbed problems MCP(F λ,yk

, B) are not solved exactly. Whenever
an iterate is found where the merit function Ψ of the unperturbed problem has been
sufficiently reduced with respect to any other point computed so far, then the algorithm
returns to the unperturbed problem, SEMISMOOTH starts from the last iterate and the
perturbation strategy is stopped.

The BDIFF algorithm [52, 95] is based upon reformulating the NCP as a system of
nonsmooth equations using the minimum function φP . The algorithms attempts to find a
zero of the semismooth equation

ΦP (x) = min{x, F (x)}

involving directional derivatives of ΦP . Solving the subproblems

Φ′
P (xk; d) = −ΦP (xk) (3.39)

a direction dk is obtained which is a descent direction, in the sense that Ψ′
P (xk; dk) < 0.

Thus the Armijo-type rule from (3.28) is well defined, providing the globalization strategy
for BDIFF. Recall that the natural merit function ΨP (xk) is in general not differentiable.
However, (3.39) is a system of nonlinear equations. It is a nontrivial task to solve it. Pang
[95] suggested to solve it inexactly.

The NE/SQP algorithm (for Nonsmooth Equations/Successive Quadratic Program-
ming) [96] is based upon the same reformulation of the NCP via the B-differentiable op-
erator ΦP , but resulting into a nonnegatively constrained system of equations. In [4], this
idea is extended to the MCP framework using the reformulation

Φ̄P,i(x) := min(xi − li,max(ui − xi,−Fi(x))), x ∈ [li, ui],

which leads to the B-differentiable merit function

Ψ̄P (x) =
1

2
‖Φ̄P (x)‖2.
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The resulting nonlinear system of equations is solved by a damped Gauss-Newton method,
which leads at each iteration to a convex quadratic program with box-constraints

min qk(x
k, d) s.t. d ∈ B − xk,

where qk is formed by squaring a linear approximation of Φ̄P at xk, see [4]. The advantage
of this approach is that the subproblems are always solvable. However, the performance of
the method depends on the choice of a reliable QP solver. Once the direction is calculated,
a slightly modified Armijo rule is used to determine the step length. The robustness of the
NE/SQP algorithm is disappointing when applied to large scale problems, see [5].

The NE/SQP algorithm improved by a proximal perturbation strategy gives the QP-
COMP algorithm [4].

The PROXI algorithm [4] uses the the minimum map reformulation of the mixed com-
plementarity problem

Φ̄P (x) = 0

and applies, opposed to NE/SQP, a nonsmooth version of Newton’s method on this refor-
mulation. At each iteration a linear approximation of Φ̄P is solved, choosing a particular
element of its subdifferential at a point where the operator is nondifferentiable. PROXI is
closely related to QPCOMP since it also relies on a proximal perturbation strategy to help
iterates escape local minima of the merit function. This strategy is also extended to deal
with singularities.

MILES [107] can be viewed as an extension of the classical Josephy-Newton method
[54] for MCP. The latter attempts to solve the generalized equation (see (2.6))

0 ∈ F (x) +NB(x)

by solving at the k-th iteration the linearized subproblem

0 ∈ F (xk) + F ′(xk)(x− xk) +NB(x).

It can be directly seen from Definition 2.34 of the normal cone that the linearized subprob-
lem is equivalent to the linear mixed complementarity problem

MCP(F (xk) + F ′(xk)(x− xk),B).

Similarly to the method developed in [82, 83], MILES computes the solution of each sub-
problem using an extension of Lemke’s almost-complementary pivot algorithm in which
upper and lower bounds are represented implicitly. This Newton point is used to define
the Newton direction, which is then used in a damped line search. Note that this is theo-
retically unjustified since the Newton direction is not necessarily a descent direction for the
merit function used. Furthermore, when Lemke’s algorithm does not terminate successfully
MILES has to resort to a restart procedure.

The PATH solver [23] is a path search damped Newton-type method applied to the
nonsmooth reformulation of the MCP via the normal map

0 = F (PB(x)) + x− PB(x),
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see Section 3.4.3. The algorithm consists of a sequence of major iterations, each consisting
of an approximation or linearization step similar to that of MILES (sometimes called
successive LCP) cast as a linear MCP of the form LMCP(qk,Mk,B), where

Mk := F ′(PB(xk)) and qk := F (PB(xk))−MkPB(xk).

Then a path to the Newton point (the solution to the approximation, or equivalently, to the
solution of LMCP(qk,Mk,B)) is constructed using a pivotal technique, and a possible search
of this path is performed. When the Newton point does not exist or the path cannot be
entirely constructed, a step along the partially computed path is taken before the problem
is relinearized. A nonmonotone watchdog strategy is employed when applying the path
search; this helps avoid convergence to local minima of the norm function for the underlying
nonsmooth equation and keeps the number of function evaluations required as small as
possible. To solve the linearized subproblems PATH uses a pivotal based code similar to
Lemke’s method in which upper and lower bounds are represented implicitly. A limitation
of the PATH solver is that the residual of the normal map, the merit function used by the
former versions of PATH, is not differentiable. Newer versions consider alternative merit
functions [33] for globalization purposes. When the subproblem solver fails, a projected
gradient direction of a differentiable merit function is used. A further enhancement is
a projected Newton preprocessor used in order to find an initial point that corresponds
better to the optimal active set.

The SMOOTH algorithm [12] is based upon reformulating the NCP as a system of
nonsmooth equations (see Proposition 2.35)

0 = x− PR
n
+
(x− F (x)).

Similarly to smoothing techniques for NCP-reformulations, the method solves a sequence
of smooth approximations, which lead to a zero of the nonsmooth system. The smooth
approximation p̂(x, β) (see [12] for a definition) to PR

n
+
(x) are commonly used in machine

learning and lead to the smooth equation

0 = x− p̂(x− F (x), β).

The search direction is generated by applying only one Newton step to the smooth system.
This direction is searched using a Armijo-type rule respective to the merit function

‖x− p̂(x− F (x), β)‖.

Since the accuracy of the approximation is given by the residual of the current point
‖xk − PR

n
+
(xk − F (xk)‖, assuming that the new point have a smaller residual, the next

approximation will be tighter. An extension to the MCP framework is possible and the
numerical test involving MCPLIB indicates good performance. In contrast to PATH which
uses the preprocessor only to identify the active set (that is, determination of which vari-
ables are at their upper and lower bounds), SMOOTH uses the same preprocessor to solve
the problem. If the preprocessor does not find a solution SMOOTH is then used to find it.
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Chapter 4

A Least-Square Semismooth Method

We have seen that a number of important methods for the solution of the complemen-
tarity problem (1.3) are based on reformulating the complementarity problem via the
Fischer-Burmeister function. The Fischer-Burmeister function φFB(a, b) is very effective
in obtaining feasibility, since it becomes relatively large if a or b are significantly negative.
However, it has some difficulties in reducing the complementarity gap, since φFB(a, b) is
quite flat on the positive orthant, see Figure 4.1. For example, if a is a large number and
b is, say, equal to one, then the product ab is a large number while |φFB(a, b)| is small. In
this section, we propose an approach which overcomes these difficulties but retains the ad-
vantages of the Fischer-Burmeister function. To this end, we modify the nonlinear systems
reformulation described in Section 3.1 by appending additional equations that incorporate
product terms, see Section 4.1. This leads to a least-squares reformulation of the nonlinear
complementarity problem, whose properties are discussed in Section 4.2. To solve the aris-
ing overdetermined system of equations we propose a semismooth Levenberg-Marquardt
method equipped with line search, see Section 4.3. The global and local fast convergence
results (under mild assumptions) are similar to some existing equation-based methods. In
Section 4.4, this newly developed algorithm is extended to the more general case of mixed
complementarity problems. The numerical results presented in Section 4.5 illustrate that
our new approach is significantly more robust than the one based on the nonlinear systems
reformulation.

4.1 A Least-Square Semismooth Reformulation

To introduce a least squares formulation of nonlinear complementarity problems, let us
define the function

φ+(a, b) := a+b+ ,

55
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Figure 4.1: Graph of the Fischer-Burmeister function.

where z+ := max{0, z} for z ∈ R. We then define the mapping Φ : R
n → R

2n by

Φ(x) :=











...
λ1φFB(xi, Fi(x)), i = 1, . . . , n

...
λ2φ+(xi, Fi(x)), i = 1, . . . , n

...











, (4.1)

where λ1, λ2 ∈ R \ {0} are fixed but arbitrary parameters used as weight parameters
between the first type of terms and the second one. Hence we obtain Φ by adding some
components to the definition of ΦFB . These additional components are used in order to
avoid the disadvantage of the Fischer-Burmeister function mentioned before.

A similar idea has been used before in [11] where the penalized Fischer-Burmeister
function was introduced which, however, is based on a direct modification of φFB (see also
Section 4.5.3). Moreover, the corresponding Newton-type method in [11] (essentially taken
from [19]) might have to take a number of gradient steps for difficult problems, whereas
this is completely avoided in our approach.

To describe this approach, first note that Φ(x) = 0 is an overdetermined system of
equations having the property that

x∗ solves Φ(x) = 0⇐⇒ x∗ solves NCP(F ).

Hence we have a nonlinear least squares formulation of the complementarity problem with
the additional property that the residual at the solution is zero. We therefore suggest a
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nonsmooth Gauss-Newton- or Levenberg-Marquardt-type method for the solution of this
least squares problem. This method has the following advantages over existing methods
based on ΦFB :

• Faster reduction of the complementarity gap xTF (x).

• A Newton-type search direction can be taken at each iteration; in particular, no
gradient steps are necessary in order to get global convergence.

• The numerical results indicate that the method is significantly more robust than
those methods which are based on ΦFB .

Moreover, in the following section it will be shown that the corresponding merit function

Ψ(x) :=
1

2
‖Φ(x)‖2 (4.2)

shares all the beneficial properties of ΨCCK .
Similarly the idea can also be used in order to modify other equation-based methods,

see, for example, [114] for a summary of many of these equation reformulations. More
precisely, assume we have a reformulation of the complementarity problem as a square
system of equations ΦA(x) = 0 with ΦA : R

n → R
n. Suppose further that ΦB : R

n → R
m

is any mapping with the property that ΦB(x) = 0 whenever x is a solution of the NCP.
Then it is easy to see that x∗ is a solution of the complementarity problem if and only if x∗

is a solution of the overdetermined system of equations Φ̃(x) = 0, where Φ̃ : R
n → R

n+m

is now defined by

Φ̃(x) :=

(
ΦA(x)
ΦB(x)

)

.

Assuming that Φ̃ and the corresponding merit function Ψ̃(x) := 1
2
‖Φ̃(x)‖2 have similar

properties as those to be stated in the next Section 4.2 for the functions from (4.1) and (4.2),
we could apply our the Levenberg-Marquardt method method also to the least squares
problem

min Ψ̃(x)

in order to solve the nonlinear complementarity problem. Of course, the crucial part is the
definition of the mapping ΦB which depends on the properties of the mapping ΦA.

4.2 Properties of Φ and Ψ

In this section, we study several important properties of the mappings Φ and Ψ from (4.1)
and (4.2), respectively. To this end, we begin with the equation operator Φ and note that
it is (strongly) semismooth.

Theorem 4.1 The mapping Φ from (4.1) is semismooth. If F is an LC1 function, then
Φ is strongly semismooth.



58 CHAPTER 4. A LEAST-SQUARE SEMISMOOTH METHOD

Proof. The function Φ is (strongly) semismooth if every of its component functions
is (strongly) semismooth. For each i ∈ {1, . . . , n}, Φi is the composite of the strongly
semismooth Fischer-Burmeister function φFB (see Example 2.20) and of the differentiable
function x 7→ (xi, Fi(x))

T : R
n → R

2. If F is an LC1 function, then x 7→ (xi, Fi(x))
T

is strongly semismooth. Since the composite of (strongly) semismooth functions is again
(strongly) semismooth, Φi is (strongly) semismooth for all i ∈ {1, . . . , n}. On the other
hand, Φn+i is for all i ∈ {1, . . . , n} the composite of the plus function φ+ (which is strongly
semismooth, since it is the product of two strongly semismooth functions), and the func-
tion x 7→ (xi, Fi(x))

T : R
n → R

2. In turn, every component function of Φ is strongly
semismooth. 2

We next investigate the structure of the C-subdifferential of Φ at a given point x ∈ R
n.

To this end, we first state a standard result regarding the generalized gradients of φFB and
φ+, cf. [11].

Lemma 4.2 The generalized gradient of the function φFB : R
2 → R at a point (a, b) ∈ R

2

is equal to the set of all (ga, gb)
T ∈ R

2 with

(ga, gb) =

{(
a

‖(a,b)‖ − 1, b
‖(a,b)‖ − 1

)

, if (a, b) 6= (0, 0),

(ξ − 1, ζ − 1) , if (a, b) = (0, 0),

and where (ξ, ζ) is any vector satisfying ‖(ξ, ζ)‖ ≤ 1. The generalized gradient of the
function φ+ : R

2 → R at a point (a, b)T ∈ R
2 is equal to ∂φ+(a, b) = (b+∂a+, a+∂b+)T ,

where

∂z+ =







1 if z > 0,

[0, 1] if z = 0,

0 if z < 0.

Proof. The Fischer-Burmeister function is the difference of the Euclidean norm function
and the differentiable function (a, b)T 7→ a + b. Since

∂‖(a, b)‖ =







(
a

‖(a,b)‖ ,
b

‖(a,b)‖

)T

, if (a, b) 6= (0, 0),

(ξ, ζ)T , if (a, b) = (0, 0),

where (ξ, ζ) is any vector satisfying ‖(ξ, ζ)‖ ≤ 1, and ∂(a + b) = (1, 1)T , Corollary 2.8
part (a) provides the desired result for the Fischer-Burmeister function. To calculate the
generalized gradient of the plus function φ+ we first define g1, g2 : R

2 → R by g1(a, b) := a+

and g2(a, b) := b+. Note that both g1 and g2 are convex and nonnegative functions. Using
well known calculus rules (see Corollary 2.8 part (b)) we obtain

∂φ+(a, b) =∂(g1g2)(a, b) = g2(a, b)∂g1(a, b) + g1(a, b)∂g2(a, b)

=b+

(
∂a+

0

)

+ a+

(
0
∂b+

)

=

(
b+∂a+

a+∂b+

)

.
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This completes the proof. 2

As a consequence of Lemma 4.2, we obtain the following result.

Theorem 4.3 Let x ∈ R
n be given. Then any matrix H ∈ ∂CΦ(x) has the representation

H =

(
λ1H1

λ2H2

)

,

where
H1 ∈ {Da(x) +Db(x)F

′(x)} and H2 ∈ {D̃a(x) + D̃b(x)F
′(x)}

with

Da(x) = diag{ai(x)}, Db(x) = diag{bi(x)}, D̃a(x) = diag{ãi(x)}, D̃b(x) = diag{b̃i(x)}
being diagonal matrices with entries (ai(x), bi(x)) ∈ ∂φFB(xi, Fi(x)) and (ãi(x), b̃i(x)) ∈
∂φ+(xi, Fi(x)), where ∂φFB(xi, Fi(x)) and ∂φ+(xi, Fi(x)) denote the sets from Lemma 4.2,
with (a, b) being replaced by (xi, Fi(x)).

Proof. By our definition of the C-subdifferential, we have

∂CΦ(x)T = ∂Φ1(x)× · · · × ∂Φ2n(x),

where ∂Φi(x) denotes the generalized gradient of the i-th component function of Φ. Using
Lemma 4.2, it follows that

∂Φi(x) ⊆ {λ1

(
ai(x)e

T
i + bi(x)∇Fi(x)T

)
} ∀i ∈ {1, . . . , n} (4.3)

and
∂Φn+i(x) ⊆ {λ2

(
ãi(x)e

T
i + b̃i(x)∇Fi(x)T

)
} ∀i ∈ {1, . . . , n}, (4.4)

with (ai(x), bi(x)) and (ãi(x), b̃i(x)) being the elements specified in the statement of our
theorem. 2

In order to prove fast local convergence, we need to show that every element H ∈ ∂CΦ(x∗)
has full rank n under a suitable assumption. This assumption will be the R-regularity
condition. We recall Definition 3.18, stating that a solution x∗ of the complementarity
problem is R-regular if the submatrix F ′(x∗)αα is nonsingular and the Schur complement

F ′(x∗)ββ − F ′(x∗)βαF
′(x∗)−1

ααF
′(x∗)αβ

is a P -matrix, where the partition I = α ∪ β ∪ γ is given by the index sets

α = {i | x∗i > 0, Fi(x
∗) = 0}, (4.5)

β = {i | x∗i = 0, Fi(x
∗) = 0}, (4.6)

γ = {i | x∗i = 0, Fi(x
∗) > 0}. (4.7)

Then we have the following result.
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Theorem 4.4 Let x∗ ∈ R
n be an R-regular solution of the complementarity problem. Then

all elements from the C-subdifferential ∂CΦ(x∗) have full rank.

Proof. Let H ∈ ∂CΦ(x∗). In view of Theorem 4.3, we then have

H =

(
λ1H1

λ2H2

)

,

where H1 is an element from ∂CΦFB(x∗). It now follows from the proof Proposition 3.21
(a) that each element H1 ∈ ∂CφFB(x∗) is nonsingular under the assumed R-regularity con-
dition. Therefore we have rank(H) = n, i.e., H has full rank. 2

We stress that the proof of Theorem 4.4 is based on known properties of the first block
H1. An interesting question is whether the second component H2 contributes something
so that the entire matrix H ∈ ∂CΦ(x∗) could have full rank even if the first block H1

is singular. However, the answer is negative. Let us consider a solution x∗ ∈ R
n of the

NCP together with the associated index sets α, β, γ from (4.5) and an arbitrary matrix
H ∈ ∂CΦ(x∗). We calculate the i-th row of H using Theorem 4.3 and obtain:
For i ∈ α there is a ti ∈ [0, 1] such that

Hi = −∇Fi(x∗)T and Hn+i = tix
∗
i∇Fi(x∗)T ;

for i ∈ β there is a (ξi, ζi) ∈ R
2 satisfying ‖(ξi, ζi)‖ ≤ 1 such that

Hi = (ξi − 1)eTi + (ζi − 1)∇Fi(x∗)T and Hn+i = (0, . . . , 0)T ;

for i ∈ γ there is a τi ∈ [0, 1] such that

Hi = −eTi and Hn+i = τiFi(x
∗)eTi .

This shows that the rows of H2 are either completely zero or are multiples of the corre-
sponding rows from the H1-matrix. Nevertheless, it is interesting to note that, if we are
far away from a solution x∗, then the H2-block is sometimes quite helpful to guarantee the
full rank of the entire matrix H.

We next state a consequence of Theorem 4.4 that will play an important role in our
convergence analysis.

Lemma 4.5 Let x∗ ∈ R
n be an R-regular solution of the complementarity problem. Then

there exist constants ε > 0 and c > 0 such that

‖(HTH)−1‖ ≤ c

for all H ∈ ∂CΦ(x) and all x ∈ R
n with ‖x− x∗‖ ≤ ε.
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Proof. The proof is similar to the one of Lemma 3.15, in view of Theorem 4.4, so we
omit it. 2

We next investigate the properties of the merit function Ψ from (4.2). To this end, it will
be useful to rewrite this function as

Ψ(x) =
1

2
‖Φ(x)‖2 =

n∑

i=1

ψ(xi, Fi(x))

with ψ : R
2 → R being defined by

ψ(a, b) :=
1

2
λ2

1φ
2
FB(a, b) +

1

2
λ2

2a
2
+b

2
+. (4.8)

The following properties of ψ are crucial in order to state several interesting results
for the corresponding merit function Ψ. Basically, the next result says that ψ shares all
the beneficial properties of the merit function corresponding to the Fischer-Burmeister
function φFB.

Lemma 4.6 The mapping ψ : R
2 → R defined in (4.8) has the following properties:

(a) ψ is continuously differentiable on R
2;

(b) ψ(a, b) ≥ 0 for all a, b ∈ R
2;

(c) ψ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0 and ab = 0;

(d) ∂ψ
∂a

(a, b)∂ψ
∂b

(a, b) ≥ 0 for all a, b ∈ R
2;

(e) ψ(a, b) = 0⇐⇒∇ψ(a, b) = 0⇐⇒ ∂ψ
∂a

(a, b) = 0⇐⇒ ∂ψ
∂b

(a, b) = 0.

Proof. Statements (a) and (b) follow directly from the definition of ψ together with the
fact that φ2

FB is known to be continuously differentiable on R
2, see [43, 31]. Property (c)

follows from the fact that φFB is an NCP-function. Hence it remains to show statements
(d) and (e). Since both statements obviously hold for (a, b) = (0, 0), we can assume without
loss of generality that (a, b) 6= (0, 0) for the rest of this proof.

In order to verify part (d), first note that we have

∂ψ

∂a
(a, b)

∂ψ

∂b
(a, b)

= λ4
1φ

2
FB(a, b)

( a√
a2 + b2

− 1
)( b√

a2 + b2
− 1
)

+ λ4
2a

3
+b

3
+ + λ2

1λ
2
2t(a, b)

with t : R
2 → R being defined by

t(a, b) := φFB(a, b)a+b+

[( a√
a2 + b2

− 1
)

a+ +
( b√

a2 + b2
− 1
)

b+

]

.
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It is easy to see that it suffices to prove that t(a, b) ≥ 0. Now, we obviously have t(a, b) ≥ 0
if a ≥ 0 and b ≥ 0. On the other hand, in all other cases, we have t(a, b) = 0, so that
statement (d) follows.

To prove part (e), we first recall that we have (a, b) 6= (0, 0). Furthermore, taking into
account the fact that an unconstrained minimum of a continuously differentiable function
is always a stationary point of this function and using the symmetry of the function ψ with
respect to its arguments a and b, we only have to verify the implication

∂ψ

∂a
(a, b) = 0 =⇒ ψ(a, b) = 0.

To this end, we first note that

∂ψ

∂a
(a, b) = λ2

1φFB(a, b)
( a√

a2 + b2
− 1
)

+ λ2
2a+b

2
+.

Using ∂ψ
∂a

(a, b) = 0, let us consider two cases: If a ≤ 0 or b ≤ 0, we have a+b
2
+ = 0 and

therefore

0 =
∂ψ

∂a
(a, b) = λ2

1φFB(a, b)
( a√

a2 + b2
− 1
)

.

This implies

φFB(a, b) = 0 or
a√

a2 + b2
− 1 = 0

which, in turn, is equivalent to

φFB(a, b) = 0 or
(
a > 0 and b = 0

)
.

Hence we immediately have ψ(a, b) = 0.
Now consider the second case where a > 0 and b > 0. Then we get φFB(a, b) ≤ 0 and

therefore
φFB(a, b)

( a√
a2 + b2

− 1
)

≥ 0.

Consequently, we obtain from

0 =
∂ψ

∂a
(a, b) = λ2

1φFB(a, b)
( a√

a2 + b2
− 1
)

+ λ2
2a+b

2
+

that both sums must be equal to zero. In particular, we therefore have

0 = λ2
1φFB(a, b)

( a√
a2 + b2

− 1
)

.

Hence we can argue as in the first case and see that ψ(a, b) = 0. 2

Already from Lemma 4.6 part (a), we obtain the differentiability of the merit function
Ψ. The next proposition is important from a computational point of view and shows how
∇Ψ can be computed making use of an arbitrary element H ∈ ∂CΦ(x).
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Theorem 4.7 Let F : R
n → R

n be continuously differentiable. Then Ψ is continuously
differentiable with ∇Ψ(x) = HTΦ(x), where H ∈ ∂CΦ(x) can be chosen arbitrarily.

Proof. Let x ∈ R
n be arbitrary, consider the index sets I = {1, . . . , n}, J = {1, . . . , 2n}

and define the following index sets associated with x:

α = {i ∈ I | xi > 0 = Fi(x)},
γ = {i ∈ I | xi = 0 < Fi(x)}, α ∪ γ := I \ (α ∪ γ),
β = {i ∈ I | xi = 0 = Fi(x)}, β̄ := I \ β.

Then for all i ∈ β̄ the i-th component function Φi is continuously differentiable and

∂Φi(x) = λ1∂φFB(xi, Fi(x)) = {∇Φi(x)}, i ∈ β̄ (4.9)

holds. On the other hand,

Φi(x) = λ1φFB(xi, Fi(x)) = 0, for all i ∈ β. (4.10)

For all i ∈ α ∪ γ the (n+ i)-th component function Φn+i is continuously differentiable and

∂Φn+i(x) = λ2∂φ+(xi, Fi(x)) = ∇Φn+i(x), i ∈ α ∪ γ (4.11)

holds. On the other hand,

Φn+i(x) = λ2φ+(xi, Fi(x)) = 0, for all i ∈ α ∪ γ. (4.12)

Taking into account (4.9)–(4.12) we can show that the set {HTΦ(x) |H ∈ ∂CΦ(x)} consists
only of one element:

S := {HTΦ(x) |H ∈ ∂CΦ(x)}

= {λ1

n∑

i=1

φFB(xi, Fi(x))Hi + λ2

n∑

i=1

φ+(xi, Fi(x))Hn+i |Hi ∈ ∂Φi(x), i ∈ J}

(4.10),(4.12)
= {λ1

∑

i∈β̄

φFB(xi, Fi(x))Hi + λ2

∑

i∈α∪γ
φ+(xi, Fi(x))Hn+i|Hi ∈ ∂Φi(x), i ∈ J}

(4.9),(4.11)
= {λ1

∑

i∈β̄

φFB(xi, Fi(x))∇Φi(x) + λ2

∑

i∈α∪γ
φ+(xi, Fi(x))∇Φn+i(x)}

Now, using the relaxed chain rule, see Corollary 2.7, we obtain:

∂Ψ(x) ⊆ conv(S),

and therefore ∂Ψ(x) is a singleton too. The assertion therefore follows from the fact that
a locally Lipschitz continuous function is continuously differentiable if and only if its gen-
eralized gradient is a singleton at every point. 2

We now prove our stationary point result. See also Proposition 3.26.
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Theorem 4.8 Suppose that x∗ ∈ R is a stationary point of Ψ such that the Jacobian
F ′(x∗) is a P0-matrix. Then x∗ is a solution of the nonlinear complementarity problem
NCP(F ).

Proof. We first recall that we can write

Ψ(x∗) =

n∑

i=1

ψ(x∗i , Fi(x
∗))

with ψ : R
2 → R being defined in (4.8). Based on Lemma 4.6, the proof is essentially the

same as the one given in [31, 65]. Since x∗ ∈ R
n is a stationary point of Ψ, we have

0 = ∇Ψ(x∗) =
∂ψ

∂a
(x∗, F (x∗)) + F ′(x∗)T

∂ψ

∂b
(x∗, F (x∗)) (4.13)

where
∂ψ

∂a
(x∗, F (x∗)) :=

(

. . . ,
∂ψ

∂a
(x∗i , Fi(x

∗)), . . .

)T

∈ R
n

and, similarly,
∂ψ

∂b
(x∗, F (x∗)) :=

(

. . . ,
∂ψ

∂b
(x∗i , Fi(x

∗)), . . .

)T

∈ R
n.

Componentwise, equation (4.13) becomes

∂ψ

∂a
(x∗i , Fi(x

∗)) + [F ′(x∗)T
∂ψ

∂b
(x∗, F (x∗))]i = 0, ∀i = 1, . . . , n.

Premultiplying the i-th equation by ∂ψ
∂b

(x∗i , Fi(x
∗)) we obtain

∂ψ

∂b
(x∗i , Fi(x

∗))
∂ψ

∂a
(x∗i , Fi(x

∗)) +
∂ψ

∂b
(x∗i , Fi(x

∗))[F ′(x∗)T
∂ψ

∂b
(x∗, F (x∗))]i = 0 (4.14)

for all i = 1, . . . , n. Now we assume that ∂ψ
∂b

(x∗, F (x∗)) 6= 0. By assumption, F ′(x∗) and
therefore also F ′(x∗)T is a P0-matrix. Hence there is an index i0 ∈ {1, . . . , n} such that
∂ψ
∂b

(x∗i0 , Fi0(x
∗)) 6= 0 and

∂ψ

∂b
(x∗i0 , Fi0(x

∗))[F ′(x∗)T
∂ψ

∂b
(x∗, F (x∗))]i0 ≥ 0. (4.15)

On the other hand, we also have

∂ψ

∂a
(x∗i0 , Fi0(x

∗))
∂ψ

∂b
(x∗i0 , Fi0(x

∗)) ≥ 0. (4.16)

by Lemma 4.6 (d). In view of (4.14)–(4.16), we obtain

∂ψ

∂a
(x∗i0 , Fi0(x

∗))
∂ψ

∂b
(x∗i0 , Fi0(x

∗)) = 0.
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Lemma 4.6 (e) therefore implies

ψ(x∗i0 , Fi0(x
∗)) = 0.

This, in turn, implies ∂ψ
∂b

(x∗i0 , Fi0(x
∗)) = 0 by Lemma 4.6 (e), a contradiction to the choice

of the index i0 ∈ {1, . . . , n}. Hence ∂ψ
∂b

(x∗, F (x∗)) = 0, which again by Lemma 4.6 (e),
implies Ψ(x∗) = 0 so that x∗ solves NCP(F ). 2

The proof of the next theorem uses a technique which was introduced by Geiger and
Kanzow [43] in order to prove a similar theorem for the case of strongly monotone functions.
Before, we require the following technical result.

Lemma 4.9 If φP and φFB denote the minimum and Fischer-Burmeister NCP functions,
respectively, then there exist positive constants c1, c2 such that

c1φ
2
P (a, b) ≤ φ2

FB(a, b) ≤ c2φ
2
P (a, b).

Proof. The assertion follows directly from Lemma 3.1 in [117]. 2

Theorem 4.10 Let c ∈ R be an arbitrary constant, and let Ψ be the merit function defined
in (4.2). Then the level set

LΨ(c) := {x ∈ R
n | Ψ(x) ≤ c}

is compact for all c ∈ R, if F is a uniform P -function.

Proof. Since Ψ is continuous, the set LΨ(c) is obviously closed. Hence it suffices to show
the boundedness of the level set LΨ(c). Assume this set is unbounded for some c ∈ R.
Then there is a sequence {xk} ⊆ LΨ(c) such that limk→∞ ‖xk‖ =∞. Hence the index set

J := {i ∈ {1, . . . , n} | {xki } is unbounded}
is nonempty. We now define a second sequence {zk} ⊆ R

n by

zki :=

{

0, if i ∈ J ,

xki , if i /∈ J .

From the definition of {zk} and the fact that F is a uniform P -function, there is a scalar
µ > 0 such that

µ
∑

j∈J
(xki )

2 =µ‖xk − zk‖2

≤ max
i∈{1,...,n}

[xki − zki ][Fi(xk)− Fi(zk)]

= max
i∈J

xki [Fi(x
k)− Fi(zk)]

≤
√
∑

i∈J
(xki )

2
∑

i∈J
|Fi(xk)− Fi(zk)|.

(4.17)
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Dividing by
√
∑

i∈J(x
k
i )

2 6= 0, equation (4.17) then gives

µ

√
∑

i∈J
(xki )

2 ≤
∑

i∈J
|Fi(xk)− Fi(zk)|. (4.18)

Since F is continuous and the sequence {zk} is bounded, the sequence {Fi(zk)} is also
bounded for all i ∈ {1, . . . , n}. Hence (4.18) implies the existence of an index i0 ∈ J such
that

|Fi0(xk)| → ∞.
On the other hand, since i0 ∈ J , we also have

|xki0 | → ∞,
at least on a subsequence and together min2{xki0 , Fi0(xk)} → ∞ on a subsequence. Hence

Ψ(xk) ≥ λ2
1

2

∑

j∈J
φ2
FB(xki , Fi(x

k)) ≥ λ2
1

2
φ2
FB(xki0 , Fi0(x

k))
Lem.4.9
≥ c1λ

2
1

2
min2{xki0 , Fi0(xk)} → ∞

on a subsequence, contradicting the fact that the whole sequence {xk} lies in the level set
LΨ(c). 2

We next provide another condition for bounded level sets and note that it is not satisfied
for the natural merit function related to the pure Fischer-Burmeister reformulation.

Theorem 4.11 Let Ψ be the merit function defined in (4.2). Assume that F is monotone
and the complementarity problem NCP (F ) is strictly feasible, i.e., there exists a vector
x̂ ∈ R

n such that x̂ > 0 and F (x̂) > 0. Then the level sets LΨ(c) are compact for all c ∈ R.

Proof. We first rewrite

Ψ(x) =
λ2

1

2

n∑

i=1

φ2
FB(xi, Fi(x)) +

λ2
2

2

n∑

i=1

max2{0, xi}max2{0, Fi(x)}

and assume that there exists an unbounded sequence {xk} ⊆ LΨ(c) for some c ∈ R. We
note that there is no index i ∈ {1, . . . , n} such that xki → −∞ or Fi(x

k) → −∞ on a
subsequence, because otherwise we would have φFB(xki , Fi(x

k))→∞, which in turn would
imply Ψ(xk)→∞ on a subsequence. Hence all components of the two sequence {xk} and
{F (xk)} are bounded from below, i.e., there is a constant c > 0 such that

xki > −c and Fi(x
k) > −c for all k ∈ N and i ∈ {1, . . . , n}. (4.19)

On the other hand, the sequence {xk} is unbounded by assumption. Hence there exists an
index i0 ∈ {1, . . . , n} such that xki0 → ∞ on a subsequence. Now let x̂ satisfy the strict
feasibility condition for the complementarity problem. Since F is monotone, we have

(xk)TF (x̂) + x̂TF (xk) ≤ (xk)TF (xk) + x̂TF (x̂). (4.20)



4.2. PROPERTIES OF Φ AND Ψ 67

Hence the left-handside of (4.20) tends to infinity, since x̂ > 0 and F (x̂) > 0, which implies
that also (xk)TF (xk) → ∞ on a subsequence. Thus, there is a subset K ⊂ N, a k0 ∈ K
and an index j such that

xkjFj(x
k) > c2 > 0 for all k ≥ k0, k ∈ K. (4.21)

Hence, there is an index k1 ∈ N such that

xkj > 0 and Fj(x
k) > 0 for all k ≥ k1, k ∈ K, (4.22)

since otherwise there would exist a subset K̄ ⊆ K such that xkj < 0 or Fj(x
k) < 0 for all

k ∈ K̄. But this together with (4.19) would imply that

xkjFj(x
k) < c2 for all k ∈ K̄,

which contradicts (4.21). Taking (4.22) into account, we obtain

Ψ(xk) ≥ λ2
2

2
(max{0, xkj}max{0, Fj(xk)})2 (4.22)

=
λ2

2

2
(xkjFj(x

k))2,

for all k ≥ k1, k ∈ K. Now (4.21) obviously implies {Ψ(xk)}K → ∞, a contradiction to
our assumption that {xk} ⊆ LΨ(c). 2

As a corollary of the previous results, we give the next existence result, consistently
with Section 2.4.2.

Corollary 4.12 Assume that F is either a uniform P -function or F is monotone and
the complementarity problem (1.3) is strictly feasible. Then the NCP has a nonempty and
bounded solution set.

Proof. Let c ∈ R+ be large enough such that the level set LΨ(c) is nonempty. By
Theorem 4.10 or respectively 4.11 the level set LΨ(c) is compact. Since Ψ is continuous
it has a global minimum x∗ in LΨ(c). In particular x∗ is a stationary point of Ψ, since Ψ
is continuously differentiable by Theorem 4.7. Since both assumptions on F imply that
F ′(x∗) is a P0-matrix (see Theorem 2.28 or respectively Proposition 2.24) we obtain in view
of Theorem 4.8 that x∗ is also a solution of the NCP. Hence x∗ ∈ LΨ(0). The boundedness
of the solution set LΨ(0) follows from the fact that LΨ(c) is bounded and LΨ(0) ⊂ LΨ(c)
obviously holds.

2

We close this section by noting that there are some other merit functions which share
the properties of the merit function Ψ see Section 3.4.1 and [71, 11]. However, we are
not aware of any merit function having stronger properties, while there are a couple of
merit functions (including the Fischer-Burmeister merit function) which satisfy only some
weaker conditions, see [80, 78, 43].



68 CHAPTER 4. A LEAST-SQUARE SEMISMOOTH METHOD

4.3 Algorithm and Convergence

We first state our algorithm for the solution of the complementarity problem (1.3). It is
a Levenberg-Marquardt-type method (see Algorithm 3.12) equipped with line search (see
Section 3.4.2) applied to the nonlinear least squares problem

min Ψ(x) =
1

2
‖Φ(x)‖2,

where Φ and Ψ denote the mappings from (4.1) and (4.2), respectively.

Algorithm 4.13 (Semismooth Levenberg-Marquardt Method)

(S.0) Let β ∈ (0, 1), σ ∈ (0, 1
2
) and ε ≥ 0. Choose any x0 ∈ R

n. Set k := 0.

(S.1) If ‖∇Ψ(xk)‖ ≤ ε: STOP.

(S.2) Choose Hk ∈ ∂CΦ(xk), νk > 0 and find a solution dk ∈ R
n of

(
HT
k Hk + νkI

)
d = −∇Ψ(xk). (4.23)

(S.3) Compute tk = max{β l | l = 0, 1, 2, . . . } such that

Ψ(xk + tkd
k) ≤ Ψ(xk) + σtk∇Ψ(xk)Tdk. (4.24)

Set xk+1 = xk + tkd
k, k ← k + 1, and go to (S.1).

We now investigate the convergence properties of our algorithm. To this end, we assume
that the termination parameter ε is equal to zero and that Algorithm 4.13 generates an
infinite sequence. We further note that Algorithm 4.13 is well defined since νk > 0 and
since one can easily see that the search direction dk is always a descent direction for the
merit function Ψ.

We first state a global convergence result. For the sake of simplicity, we assume that
νk is given by

νk := ‖∇Ψ(xk)‖, (4.25)

although several other choices of νk yield the same result, including the more realistic
choices

νk := min{c1, c2‖∇Ψ(xk)‖} or νk := min{c1, c2‖Φ(xk)‖}
for certain constants c1, c2 > 0. Note that these choices are consistent with the requirements
for local superlinear/quadratic convergence stated in Theorem 4.15 below.

Theorem 4.14 Algorithm 4.13 is well defined for an arbitrary nonlinear complementarity
problem. Furthermore, every accumulation point of a sequence {xk} generated by Algorithm
4.13 is a stationary point of Ψ.
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Proof. As noticed above the algorithm is well defined. Let x∗ be any accumulation
point of the sequence {xk} and {xk}K a subsequence converging to x∗. Suppose that
∇Ψ(x∗) 6= 0. Due to the monotone decrease of the sequence {Ψ(xk)} and the fact that
{Ψ(xk)}K converges to Ψ(x∗), it follows that the entire sequence {Ψ(xk)} converges to
Ψ(x∗). In particular, we have

Ψ(xk+1)− Ψ(xk)→ 0.

On the other hand, we obtain

Ψ(xk+1)−Ψ(xk) ≤ σtk∇Ψ(xk)Tdk ≤ 0

by Step (S.3) in Algorithm 4.13 and the descent property of the search direction dk. Hence
we have

{tk∇Ψ(xk)Tdk}K → 0. (4.26)

Using the definition of the Levenberg-Marquardt direction gives

tk∇Ψ(xk)Tdk = −tk∇Ψ(xk)T (HT
k Hk + νkI)

−1∇Ψ(xk). (4.27)

Since {xk}K → x∗, we get from the upper semicontinuity of the C-subdifferential that the
sequence {Hk}K is bounded. Without loss of generality, we therefore have {Hk}K → H∗ for
some matrixH∗ ∈ ∂CΦ(x∗). Since∇Ψ is continuous, we also obtain {∇Ψ(xk)}K →∇Ψ(x∗)
and therefore {νk}K → ν∗ with ν∗ := ‖∇Ψ(x∗)‖ > 0, cf. (4.25). Using these arguments, it
follows that the matrices

HT
k Hk + νkI

converge to the symmetric positive definite matrix HT
∗ H∗ + ν∗I on the subset K ⊆ N.

From (4.26) and (4.27) we therefore obtain

{tk}K → 0.

Now, for each k ∈ N, let lk ∈ N be the uniquely defined exponent such that tk = βlk .
It follows that the Armijo rule in Step (S.3) is not satisfied for β lk−1 for sufficiently large
k ∈ K. Hence, we have

Ψ(xk + βlk−1dk)−Ψ(xk)

βlk−1
> σ∇Ψ(xk)Tdk (4.28)

for all these k ∈ K. From the Levenberg-Marquardt equation we obtain {dk}K → d∗, with
d∗ being the solution of the linear system

(
HT

∗ H∗ + ν∗I
)
d = −∇Ψ(x∗).

Taking into account that {dk}K → d∗, {xk}K → x∗ and {tk}K → 0, we obtain from (4.28)
that

∇Ψ(x∗)Td∗ ≥ σ∇Ψ(x∗)Td∗.
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Hence ∇Ψ(x∗)Td∗ ≥ 0, since σ ∈ (0, 1
2
).

On the other hand, we have

∇Ψ(x∗)Td∗ = −∇Ψ(x∗)T (HT
∗ H∗ + ν∗I)

−1∇Ψ(x∗) < 0.

This contradiction shows that x∗ is a stationary point of Ψ. 2

Recall that Theorem 4.8 gives a relatively mild condition for a stationary point of Ψ
to be a solution of the complementarity problem (1.3). Furthermore, the existence of a
stationary point follows, e.g., under the assumptions of Theorem 4.10 and 4.11.

We next investigate the rate of convergence of Algorithm 4.13. Obviously, this rate of
convergence depends on the choice of the Levenberg-Marquardt parameter νk.

Theorem 4.15 Let {xk} be a sequence generated by Algorithm 4.13. Assume that x∗ is
an accumulation point of {xk} such that x∗ is an R-regular solution of the complementarity
problem (1.3). Then the following statements hold:

(a) The entire sequence {xk} converges to x∗ if {νk} is bounded.

(b) The full stepsize tk = 1 is always accepted for k sufficiently large so that xk+1 = xk+dk

provided that νk → 0.

(c) The rate of convergence is Q-superlinear if νk → 0.

(d) The rate of convergence is Q-quadratic if νk = O(‖∇Ψ(xk)‖) and, in addition, F is
an LC1-function.

Proof. (a) To establish that the entire sequence {xk} converges to x∗, we first note
that an R-regular solution is an isolated solution of the complementarity problem, see
Lemma 6.13 or [105]. Since Algorithm 4.13 generates a decreasing sequence {Ψ(xk)} and
x∗ is a solution of the complementarity problem, it follows that the entire sequence {Ψ(xk)}
converges to zero. Hence every accumulation point of the sequence {xk} is a solution of
(1.3). Consequently, x∗ is an isolated accumulation point of the sequence {xk}.

Now let {xk}K denote any subsequence converging to x∗, and note that x∗ is a stationary
point of Ψ. For all k ∈ N, we have

‖xk+1 − xk‖ = tk‖dk‖ ≤ ‖dk‖ ≤ ‖(HT
k Hk + νkI)

−1‖ ‖∇Ψ(x)‖.

From {∇Ψ(xk)}K → 0, Lemma 4.5 and the assumed boundedness of {νk}, we immediately
obtain {‖xk+1 − xk‖}K → 0. Hence statement (a) follows from [89, Lemma 4.10].

(b), (c) First we prove that

‖xk + dk − x∗‖ = o(‖xk − x∗‖) (4.29)
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for all k ∈ N sufficiently large. In view of part (a), we know that the entire sequence {xk}
converges to the R-regular solution x∗. Hence it follows from Lemma 4.5 that there is a
constant c > 0 such that

‖(HT
k Hk + νkI)

−1‖ ≤ c ∀k ∈ N.

Furthermore, the sequence {Hk} is bounded. We can therefore assume without loss of
generality that we also have

‖HT
k ‖ ≤ c ∀k ∈ N.

Using Theorem 4.7 and Φ(x∗) = 0, we then obtain for all k ∈ N sufficiently large that

‖xk + dk − x∗‖ = ‖xk − (HT
k Hk + νkI)

−1∇Ψ(xk)− x∗‖
≤ ‖(HT

k Hk + νkI)
−1‖ ‖∇Ψ(xk)− (HT

k Hk + νkI)(x
k − x∗)‖

≤ c ‖HT
k Φ(xk)−HT

k Hk(x
k − x∗)− νk(xk − x∗)‖

= c ‖HT
k

(
Φ(xk)− Φ(x∗)−Hk(x

k − x∗)
)
− νk(xk − x∗)‖

≤ c
(
‖HT

k ‖ ‖(Φ(xk)− Φ(x∗)−Hk(x
k − x∗)‖+ νk‖xk − x∗‖

)

≤ c
(
c‖Φ(xk)− Φ(x∗)−Hk(x

k − x∗)‖+ νk‖xk − x∗‖
)
.

Since Φ is semismooth by Theorem 4.1, it follows that

‖Φ(xk)− Φ(x∗)−Hk(x
k − x∗)‖ = o(‖xk − x∗‖),

see Proposition 2.13. Using the fact that νk → 0 by assumption, we therefore obtain (4.29).
In order to prove that the full step is eventually accepted, we next show that

lim
k→∞

Ψ(xk + dk)

Ψ(xk)
= 0 (4.30)

and

1 + σ
∇Ψ(xk)Tdk

Ψ(xk)
≥ 1− 2σ > 0 (4.31)

holds for all sufficiently large k ∈ N. Since Ψ(xk) 6= 0 for all k ∈ N, we get from Theorem 4.7
that

∇Ψ(xk)Tdk

Ψ(xk)
= −(HT

k Φ(xk))T (HT
k Hk + νkI)

−1HT
k Φ(xk)

1
2
‖Φ(xk)‖2

≥ −Φ(xk)THk(H
T
k Hk)

−1HT
k Φ(xk)

1
2
‖Φ(xk)‖2

≥ −Φ(xk)TΦ(xk)
1
2
‖Φ(xk)‖2

= −2,

(4.32)
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for all sufficiently large k ∈ N. Here, the second inequality in (4.32) follows from the fact
that

dTAd ≤ λmax(A)‖d‖2 ∀d ∈ R
n

holds for all symmetric matrices A ∈ R
n×n, by noting that the maximal eigenvalue of the

symmetric matrix A := Hk(H
T
k Hk)

−1HT
k is equal to one.

Indeed, Hk has full rank for sufficiently large k ∈ N and a singular value decomposition
Hk = UkΣ̂kV

T
k , where Uk ∈ R

2n×2n and Vk ∈ R
n×n are orthogonal matrices, Σ̂k ∈ R

2n×n is

of the form Σ̂k =

(
Σk

0

)

, with Σk = diag(σ1, . . . , σn) ∈ R
n a diagonal matrix with positive

diagonal elements in decreasing order. Then it holds

Hk(H
T
k Hk)

−1HT
k =UkΣ̂kV

T
k (VkΣ̂

T
kU

T
k UkΣ̂kV

T
k )−1VkΣ̂

T
kU

T
k

=UkΣ̂kV
T
k Vk

(
ΣkΣk

)−1
V T
k VkΣ̂

T
kU

T
k

=UkΣ̂k

(
Σk

)−1(
Σk

)−1
Σ̂T
kU

T
k

=Uk

(
I 0
0 0

)

UT
k .

The inequality (4.31) now follows from (4.32). To verify (4.30), we only have to show that

lim
k→∞

‖Φ(xk + dk)‖
‖Φ(xk)‖ = 0 (4.33)

holds. To this end, we first note that there exists a constant α > 0 such that

‖Φ(xk)‖ ≥ α‖xk − x∗‖ (4.34)

for all k ∈ N sufficiently large. This follows from the simple observation that ‖Φ(x)‖ ≥
λ‖ΦFB(x)‖ together with the fact that all elements V ∈ ∂ΦFB(x∗) are nonsingular under
the R-regularity condition. Using (4.34) and (4.29), we obtain

‖Φ(xk + dk)‖
‖Φ(xk)‖ ≤ ‖Φ(xk + dk)‖

α‖xk − x∗‖

=
‖Φ(xk + dk)− Φ(x∗)‖

α‖xk − x∗‖

≤ L‖xk + dk − x∗‖
α‖xk − x∗‖

→ 0,

where L > 0 denotes the local Lipschitz constant of Φ. Hence (4.33) holds.
Using (4.30) and (4.31), we see that the condition

Ψ(xk + dk) ≤ Ψ(xk) + σ∇Ψ(xk)Tdk
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or, equivalently,
Ψ(xk + dk)

Ψ(xk)
≤ 1 + σ

∇Ψ(xk)Tdk

Ψ(xk)

is satisfied for all k ∈ N sufficiently large. Hence the stepsize tk = 1 is eventually accepted
in the line search criterion, and we have xk+1 = xk + dk for all k ∈ N large enough. Hence
Q-superlinear convergence of {xk} to x∗ follows from (4.29).

(d) The proof is essentially the same as for the local superlinear convergence. We only note
that F being an LC1 function implies that Φ is strongly semismooth by Theorem 4.1, and
that the relation

‖Φ(xk)− Φ(x∗)−Hk(x
k − x∗)‖ = O(‖xk − x∗‖2)

holds for strongly semismooth functions. 2

Note that the previous proof is similar to one given in [56]. We stress, however, that [56]
considers a Levenberg-Marquardt-type method for a square system of equations, whereas
we are dealing with a nonsquare (overdetermined) system.

4.4 Extension to Mixed Complementarity Problems

In this section, we would like to point out that the approach presented for the standard
nonlinear complementarity problem (1.3) can actually be extended to the more general
mixed complementarity problem.

In order to present a reformulation of this mixed complementarity problem, let us
introduce the following partition of the index set I := {1, . . . , n}:

Il := {i ∈ I | −∞ < li < ui =∞},
Iu := {i ∈ I | −∞ = li < ui <∞},
Ilu := {i ∈ I | −∞ < li < ui <∞},
If := {i ∈ I | −∞ = li < ui =∞}.

(4.35)

We now define the operator Φ̄ : R
n → R

2n componentwise as follows (i = 1, . . . , n):

Φ̄i(x) :=







λ1φFB(xi − li, Fi(x)) if i ∈ Il,
−λ1φFB(ui − xi,−Fi(x)) if i ∈ Iu,
λ1φFB(xi − li, φFB(ui − xi,−Fi(x))) if i ∈ Ilu,
−λ1Fi(x) if i ∈ If ,

(4.36)
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Φ̄n+i(x) :=







λ2φ+(xi − li, Fi(x)) if i ∈ Il,
λ2φ+(ui − xi,−Fi(x)) if i ∈ Iu,
λ2(φ+(xi − li, Fi(x)) + φ+(ui − xi,−Fi(x))) if i ∈ Ilu,
−λ2Fi(x) if i ∈ If .

Note that the first n components of Φ̄ correspond to the Fischer-Burmeister-type reformu-
lation of the mixed complementarity problem first introduced by Billups [4] and further
investigated in [33]. The last n components are again used in order to reduce the comple-
mentarity gap at the current point x. Further in this section we will often make use of the
following notation:

Φ̄FB,i(x
∗) :=

1

λ1
Φ̄i(x

∗) ∀i ∈ {1, . . . , n},

Φ̄+,i(x
∗) :=

1

λ2
Φ̄n+i(x

∗) ∀i ∈ {1, . . . , n}.
(4.37)

It follows in a relatively simple way that the mixed complementarity problem is equivalent
to the overdetermined system of equations Φ̄(x) = 0. The proof is a simple extension of
that given in [4, Prop. 3.2.7].

Proposition 4.16 x∗ is a solution of the mixed complementarity problem if and only if
x∗ solves the nonlinear overdetermined system of equations Φ̄(x) = 0.

Proof. If x∗ solves MCP(F, l, u), then for any i ∈ I, one of the following cases holds:

Case 1: x∗i = li and Fi(x
∗) > 0,

Case 2: x∗i = ui and Fi(x
∗) < 0,

Case 3: x∗i ∈ [li, ui] and Fi(x
∗) = 0.

If the first case holds for some i, then i ∈ Il or i ∈ Ilu. For i ∈ Il we obtain Φ̄i(x
∗) = 0

and Φ̄n+i(x
∗) = 0, since φFB(x∗i − li, Fi(x∗)) = 0 and φ+(x∗i − li, Fi(x∗)) = 0. Further we

have ui − x∗i > 0 and −Fi(x∗) < 0, which implies φFB(ui − x∗i ,−Fi(x∗)) > 0. Thus,

φFB(x∗i − li, φFB(ui − x∗i ,−Fi(x∗))) = 0,

since x∗i − li = 0, and so Φ̄i(x
∗) = 0 for i ∈ Ilu. For i ∈ Ilu it also follows that Φ̄n+i(x

∗) = 0,
since φ+(x∗i − li, Fi(x∗)) = 0 and φ+(ui − x∗i ,−Fi(x∗)) = 0 for Case 1.

If the second case holds for some i, then i ∈ Iu or i ∈ Ilu. For i ∈ Ilu we obtain Φ̄i(x
∗) =

0, since φFB(ui − x∗i ,−Fi(x∗)) = 0 and x∗i − li > 0. Furthermore, we have Φ̄n+i(x
∗) = 0,

since (x∗i − li)+(Fi(x
∗))+ = 0 and (ui−x∗i )+(−Fi(x∗))+ = 0. For i ∈ Iu we have Φ̄i(x

∗) = 0
and Φ̄n+i(x

∗) = 0, since φFB(ui − x∗i ,−Fi(x∗)) = 0 and (x∗i − li)+(Fi(x
∗))+ = 0.

Assume that the third case holds for some i. If i ∈ If , we obtain Φ̄i(x
∗) = 0 and

Φ̄n+i(x
∗) = 0, since Fi(x

∗) = 0. Further ui − x∗i ≥ 0 and −Fi(x∗) = 0 holds, thus
φFB(ui − x∗i ,−Fi(x∗)) = 0 and therefore also

φFB(x∗ − li, φFB(ui − x∗i ,−Fi(x∗))) = 0,
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since x∗− li ≥ 0. Thus, for i ∈ Iu or i ∈ Ilu we have Φ̄i(x
∗) = 0 and since Fi(x

∗) = 0 holds
in Case 3, also Φ̄n+i(x

∗) = 0 holds. For i ∈ Il we obtain Φ̄i(x
∗) = 0 and Φ̄n+i(x

∗) = 0,
since x∗i − li ≥ 0 and Fi(x

∗) = 0.
To prove the opposite direction, let us first consider an index i ∈ Il. Since Φ̄i(x

∗) = 0,
we have x∗i−li ≥ 0, Fi(x

∗) ≥ 0 and (x∗i−li)Fi(x∗) = 0. Thus, either Case 1 or Case 3 occurs.
From Φ̄i(x

∗) = 0 for i ∈ Iu, it follows that ui−x∗i ≥ 0,−Fi(x∗) ≥ 0 and (ui−x∗i )Fi(x∗) = 0.
Thus, either Case 2 or Case 3 holds. If i ∈ If and Φ̄i(x

∗) = 0, we directly obtain Case 3.
If i ∈ Ilu and Φ̄i(x

∗) = 0, then we have either

(a): x∗i − li > 0 and φFB(ui − x∗i ,−Fi(x∗)) = 0

or

(b): x∗i − li = 0 and φFB(ui − x∗i ,−Fi(x∗)) ≥ 0.

If (a) holds, the complementarity conditions ui−x∗i ≥ 0, Fi(x
∗) ≤ 0, (ui−x∗i )Fi(x∗) = 0,

are satisfied, which in turn, imply either Case 2 or Case 3.
If (b) holds, ui − x∗i = ui − li > 0. Thus, since φFB is negative only on the positive

orthant (see Figure 4.1), we see that −F (x∗) ≤ 0. Thus, the complementarity condition
x∗i − li ≥ 0, Fi(x

∗) ≥ 0, (x∗i − li)Fi(x∗) = 0 holds. Hence either Case 1 or Case 3 holds. 2

We next analyze the structure of the C-subdifferential of the operator Φ̄.

Proposition 4.17 Let x ∈ R
n . Then any matrix H ∈ ∂CΦ̄(x) has the representation

H =

(
λ1H1

λ2H2

)

,

where
H1 ∈ {Da(x) +Db(x)F

′(x)} and H2 ∈ {D̃a(x) + D̃b(x)F
′(x)},

and Da(x) ∈ R
n×n and Db(x) ∈ R

n×n are diagonal matrices whose diagonal elements are
defined as follows:
(a) If i ∈ Il, then if (xi − li, Fi(x)) 6= (0, 0),

Da(x)ii =
xi − li

‖(xi − li, Fi(x))‖
− 1,

Db(x)ii =
Fi(x)

‖(xi − li, Fi(x))‖
− 1,

but if (xi − li, Fi(x)) = (0, 0),

(Da(x)ii, Db(x)ii) ∈ {(ξ − 1, ζ − 1) ∈ R
2 | ‖(ξ, ζ)‖ ≤ 1}.

Further, if xi > li and Fi(x) > 0,

D̃a(x)ii = Fi(x),

D̃b(x)ii = xi − li,
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if xi > li and Fi(x) = 0,

(D̃a(x)ii, D̃b(x)ii) ∈ {(0, ζ(xi − li)) ∈ R
2 | ζ ∈ [0, 1]},

if xi = li and Fi(x) > 0,

(D̃a(x)ii, D̃b(x)ii) ∈ {(ξFi(z), 0) ∈ R
2 | ξ ∈ [0, 1]},

but if xi < li or Fi(x) < 0, or if (xi − li, Fi(x)) = (0, 0),

D̃a(x)ii = 0,

D̃b(x)ii = 0.

(b) If i ∈ Iu, then if (ui − xi, Fi(x)) 6= (0, 0),

Da(x)ii =
ui − xi

‖(ui − xi, Fi(x))‖
− 1,

Db(x)ii =
−Fi(x)

‖(ui − xi, Fi(x))‖
− 1,

but if (ui − xi, Fi(x)) = (0, 0),

(Da(x)ii, Db(x)ii) ∈ {(ξ − 1, ζ − 1) ∈ R
2 | ‖(ξ, ζ)‖ ≤ 1}.

Further, if xi < ui and Fi(x) < 0,

D̃a(x)ii = Fi(x),

D̃b(x)ii = xi − ui,

if xi < ui and Fi(x) = 0,

(D̃a(x)ii, D̃b(x)ii) ∈ {(0, ζ(xi − ui)) ∈ R
2 | ζ ∈ [0, 1]},

if xi = ui and Fi(x) < 0,

(D̃a(x)ii, D̃b(x)ii) ∈ {(ξFi(z), 0) ∈ R
2 | ξ ∈ [0, 1]},

but if ui < xi or Fi(x) > 0, or if (ui − xi, Fi(x)) = (0, 0),

D̃a(x)ii = 0,

D̃b(x)ii = 0.

(c) If i ∈ Ilu, then, for certain ai(x), bi(x), ci(x), di(x) ∈ R defined below, it holds

Da(x)ii = ai(x) + bi(x)ci(x),
Db(x)ii = bi(x)di(x).
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If (xi − li, Fi(x)) 6= (0, 0),

ai(x) =
xi − li

‖(xi − li, φFB(ui − xi,−Fi(x)))‖
− 1,

bi(x) =
φFB(ui − xi,−Fi(x)

‖(xi − li, φFB(ui − xi,−Fi(x)))‖
− 1,

but if (xi − li, F (x)) = (0, 0),

(ai(x), bi(x)) ∈ {(ξ − 1, ζ − 1) ∈ R
2 | ‖(ξ, ζ)‖ ≤ 1}.

Further, if (ui − xi, F (x)) 6= (0, 0),

ci(x) =
xi − ui

‖(ui − xi, Fi(x))‖
+ 1, di(x) =

Fi(x)

‖(ui − xi, Fi(x))‖
+ 1,

but if (ui − xi, F (x)) = (0, 0),

(ci(x), di(x)) ∈ {(ξ + 1, ζ + 1) ∈ R
2|‖(ξ, ζ)‖ ≤ 1}.

Further, if xi < ui and Fi(x) < 0,

D̃a(x)ii = Fi(x),

D̃b(x)ii = xi − ui,

if xi > li and Fi(x) > 0

D̃a(x)ii = Fi(x),

D̃b(x)ii = xi − li,
if xi = li and Fi(x) > 0 or xi = ui and Fi(x) < 0,

(D̃a(x)ii, D̃b(x)ii) ∈ {(ξFi(x), 0) ∈ R
2 | ξ ∈ [0, 1]}.

Further, if xi > ui and Fi(x) < 0, or, if xi < li and Fi(x) > 0,

D̃a(x)ii = 0,

D̃b(x)ii = 0.

If xi ≤ li and Fi(x) = 0,

(D̃a(x)ii, D̃b(x)ii) ∈ {(0, ζ(xi − ui)) ∈ R
2 | ζ ∈ [0, 1]},

if li < xi < ui and Fi(x) = 0,

(D̃a(x)ii, D̃b(x)ii) ∈ {(0, ξ(xi − li) + ζ(xi − ui)) ∈ R
2 | ξ, ζ ∈ [0, 1]},

if xi ≥ ui and Fi(x) = 0,

(D̃a(x)ii, D̃b(x)ii) ∈ {(0, ζ(xi − li)) ∈ R
2 | ζ ∈ [0, 1]}.

(d) If i ∈ If , then Da(x)ii = 0 = D̃a(x)ii and Db(x)ii = −1 = D̃b(x)ii.
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Proof. Taking into account the definition of Φ̄ using the different index sets Il, Iu, Ilu, If
and Lemma 4.2 the computation of the elements of Da(x), Db(x), D̃a(x) and D̃b(x) is rather
tedious, but straightforward (see also [4, Lem. 3.2.10]). Note that the C-subdifferential
exists, since all component functions of Φ̄ are locally Lipschitz continuous. 2

We now investigate the properties of the merit function

Ψ̄(x) :=
1

2
‖Φ̄(x)‖2, (4.38)

and the properties of the associated operator Φ̄.

Theorem 4.18 If F : R
n → R

n is continuously differentiable, then the following state-
ments hold:

(a) The mapping Φ̄ from (4.36) is semismooth. If, in addition, F is an LC1 function,
then Φ̄ is strongly semismooth.

(b) The merit function Ψ̄ from (4.38) is continuously differentiable with∇Ψ̄(x) = HT Φ̄(x),
where H ∈ ∂CΦ̄(x) can be chosen arbitrarily.

Proof. (a) Since Φ̄ is (strongly) semismooth if and only if all component functions
are (strongly) semismooth and since the composite of (strongly) semismooth functions is
(strongly) semismooth (see Proposition 2.21), we obtain the above result as an immediate
consequence of the fact that φFB and φ+ are strongly semismooth.

(b) The merit function Ψ̄ is locally Lipschitz continuous, since it is the composite of
the locally Lipschitz continuous mapping Φ̄ and the Lipschitz continuous square Euclidean
norm function. Hence its generalized gradient exists, and using the relaxed chain rule from
Corollary 2.7 we obtain:

∂Ψ̄(x) ⊆ {HT Φ̄(x) | H ∈ ∂CΦ̄(x)} =: ∂CΦ̄(x)T Φ̄(x).

Now we show that the set ∂CΦ̄(x)T Φ̄(x) consists only of one element because the zero
components of Φ̄(x) cancel out the possibly multivalued columns of ∂CΦ̄(x)T . Let x ∈ R

n

be arbitrary, define K := {(a, b) ∈ R
2 | ab = 0, a ≥ 0, b ≥ 0}\ (0, 0) and the following index

sets associated with x:

J0
l := {i ∈ Il | (xi − li, Fi(x)) = (0, 0)}, J̄0

l := Il \ J0
l ,

J0
u := {i ∈ Iu | (ui − xi,−Fi(x)) = (0, 0)}, J̄0

u := Iu \ J0
u,

J0
lu := {i ∈ Ilu | (xi − li, Fi(x)) = (0, 0) or (ui − xi,−Fi(x)) = (0, 0)}, J̄0

lu := Ilu \ J0
lu,

J+
l := {i ∈ Il | (xi − li, Fi(x)) ∈ K}, J̄+

l := Il \ J+
l ,

J+
u := {i ∈ Iu | (ui − xi,−Fi(x)) ∈ K}, J̄+

u := Iu \ J+
u ,

J+
lu := {i ∈ Ilu | (xi − li, Fi(x)) ∈ K or (ui − xi,−Fi(x)) ∈ K}, J̄+

lu := Ilu \ J+
lu.

Then for all i ∈ J̄0
l ∪ J̄0

u ∪ J̄0
lu ∪ If =: DFB the i-th component function Φ̄i is continuously

differentiable and
∂Φ̄i(x) = {∇Φ̄i(x)}
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holds, for all these i. On the other hand,

Φ̄i(x) = 0, for all i ∈ J0
l ∪ J0

u ∪ J0
lu =: ΘFB.

For all i ∈ J̄+
l ∪ J̄+

u ∪ J̄+
lu ∪ If =: D+ the (n+ i)-th component function of Φ̄ is continuously

differentiable and
∂Φ̄n+i(x) = {∇Φ̄n+i(x)}

holds, for all these i, in view of Proposition 4.17. On the other hand, it is not difficult to
see that for all i ∈ J+

l ∪ J+
u ∪ J+

lu =: Θ+

Φ̄i(x) = 0

holds. Taking these observations into account we can see that the set

∂CΦ̄(x)T Φ̄(x)

=
{ n∑

i=1

Φ̄i(x)Hi +

n∑

i=1

Φ̄n+i(x)Hn+i | Hi ∈ ∂Φ̄i(x), i ∈ {1, 2, . . . , 2n}
}

=
{ ∑

i∈ΘFB

Φ̄i(x)
︸ ︷︷ ︸

=0

∂Φ̄i(x) +
∑

i∈DFB

Φ̄i(x)∇Φ̄i(x) +
∑

i∈Θ+

Φ̄n+i(x)
︸ ︷︷ ︸

0

∂Φ̄n+i(x) +
∑

i∈D+

Φ̄n+i(x)∇Φ̄n+i(x)
}

=
{ ∑

i∈DFB

Φ̄i(x)∇Φ̄i(x) +
∑

i∈D+

Φ̄n+i(x)∇Φ̄n+i(x)
}

consists only of one element.
The assertion therefore follows from the fact that a locally Lipschitz continuous func-

tion is continuously differentiable if and only if its generalized gradient is a singleton at
every point. 2

In order to prove fast local convergence towards a solution x∗ of the mixed complemen-
tarity problem we need to show that every element H ∈ ∂CΦ̄(x∗) has full rank n under a
suitable regularity condition. This assumption will be the strong regularity condition in
the sense of Robinson [105], restated in the context of mixed complementarity problems,
using yet another partition of I = {1, . . . , n}:

α := {i ∈ I | li < x∗i < ui, Fi(x
∗) = 0},

β := {i ∈ I | x∗i ∈ {li, ui}, Fi(x∗) = 0},
γ := {i ∈ I | x∗i ∈ {li, ui}, Fi(x∗) 6= 0}.

This condition will also be called R-regularity to be consistent with the analogous concept
for standard complementarity problems.

Definition 4.19 A solution of the mixed complementarity problem is called R-regular if
the submatrix F ′(x∗)αα is nonsingular and the Schur complement

F ′(x∗)ββ − F ′(x∗)βαF
′(x∗)−1

ααF
′(x∗)αβ

is a P -matrix.
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Note that, in the case of a nonlinear complementarity problem (i.e., li = 0 and ui =∞
for all i ∈ I), the two R-regularity conditions coincide. We stress that the original definition
of strong regularity from [105] is different, but it was shown in [27] that the two definitions
are equivalent.

Theorem 4.20 If x∗ is a strongly regular solution of the mixed complementarity problem,
then all elements H ∈ ∂CΦ̄(x∗) are nonsingular.

Proof. Let H ∈ ∂CΦ̄(x∗). In view of Proposition 4.17, we have

H =

(
λ1H1

λ2H2

)

,

where H1 is an element from ∂CΦ̄FB(x∗) (here we used the notation from (4.37)). It now
follows from [33, Thm. 2.7] that each element H1 ∈ ∂CΦ̄FB(x∗) is nonsingular under the as-
sumed strong regularity condition. Therefore we have rank(H) = n, i.e., H has full rank. 2

Lemma 4.21 Let x ∈ R
n be arbitrary and H ∈ ∂CΦ̄(x), where H =

(
λ1H1

λ2H2

)

, H1 =

Da(x) +Db(x)F
′(x) and H2 = D̃a(x) + D̃b(x)F

′(x), with diagonal matrices Da(x), Db(x),
D̃a(x), D̃b(x) ∈ R

n×n as defined in Proposition 4.17. Further define

ui(x) := λ2
1Da(x)iiΦ̄i(x) + λ2

2D̃a(x)iiΦ̄n+i(x)

and
vi(x) := λ2

1Db(x)iiΦ̄i(x) + λ2
2D̃b(x)iiΦ̄n+i(x)

for all i ∈ I. Further we denote If̄ := I \ If . Then the following statements hold:

(a) For all i ∈ If̄ ,
(
Da(x)iiΦ̄i(x)

)(
Db(x)iiΦ̄i(x)

)
≥ 0, (4.39)

(
Da(x)iiΦ̄i(x)

)(
D̃a(x)iiΦ̄n+i(x)

)
≥ 0, (4.40)

(
Db(x)iiΦ̄i(x)

)(
D̃b(x)iiΦ̄n+i(x)

)
≥ 0. (4.41)

(b) For all i ∈ If̄ , ui(x) = 0 ⇐⇒ Φ̄i(x) ⇐⇒ vi = 0.

(c) For all i ∈ If̄ , ui(x)vi(x) ≥ 0.

Proof. (a) Considering the three cases i ∈ Il, i ∈ Iu, i ∈ Ilu separately, it is easy to see
that Da(x)ii ≤ 0 and Db(x)ii ≤ 0. Hence (4.39) holds, since

(
Da(x)iiΦ̄i(x)

)(
Db(x)iiΦ̄i(x)

)
= Da(x)iiDb(x)iiΦ̄

2
i (x) ≥ 0.

To establish (4.40) and (4.41), we consider these three cases separately.
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Case 1: i ∈ Ilu.
If i ∈ Jl := {i : xi > li and Fi(x) > 0}, we have Φ̄n+i(x) > 0 and by Proposition 4.17

D̃a(x)ii = Fi(x) > 0,

D̃b(x)ii = xi − li > 0.

Thus
D̃a(x)iiΦ̄n+i(x) ≥ 0 and D̃b(x)iiΦ̄n+i(x) ≥ 0. (4.42)

On the other hand,

Φ̄i(x) = λ1φFB(xi − li, φFB(ui − xi,−Fi(x))
︸ ︷︷ ︸

>0

) < 0,

since the Fischer-Burmeister function is negative on {(a, b) ∈ R
2 : a > 0, b > 0} and

positive on R
2 \ {(a, b) ∈ R

2 : a ≥ 0, b ≥ 0}. Since Da(x)ii ≤ 0 and Db(x)ii ≤ 0, we have

Da(x)iiΦ̄i(x) ≥ 0 and Db(x)iiΦ̄i(x) ≥ 0. (4.43)

From (4.42) and (4.43) we obtain both (4.40) and (4.41).
If i ∈ Ju := {i : xi < ui and Fi(x) < 0}, we have Φ̄n+i(x) > 0 and by Proposition 4.17

D̃a(x)ii = Fi(x) < 0,

D̃b(x)ii = xi − ui < 0.

Thus
D̃a(x)iiΦ̄n+i(x) ≤ 0 and D̃b(x)iiΦ̄n+i(x) ≤ 0. (4.44)

On the other hand,

Φ̄i(x) = λ1φFB(xi − li, φFB(ui − xi,−Fi(x))
︸ ︷︷ ︸

<0

) > 0.

This implies
Da(x)iiΦ̄i(x) ≤ 0 and Db(x)iiΦ̄i(x) ≤ 0, (4.45)

since Da(x)ii ≤ 0 and Db(x)ii ≤ 0. The inequalities (4.44) and (4.45) now imply (4.40)
and (4.41).
If i /∈ Jl ∪ Ju then Φ̄n+i(x) = 0, thus (4.40) and (4.41) hold trivially.
Case 2: i ∈ Il.
The subcase i ∈ Jl = {i : xi > li and Fi(x) > 0}, can be shown very similar to the one
shown above. For i /∈ Jl, Φ̄n+i(x) = 0. This immediately implies (4.40) and (4.41).
Case 3: i ∈ Iu.
For i ∈ Ju = {i : xi > ui and Fi(x) < 0} we can argue similarly as in Case 1. For i /∈ Ju,
Φ̄n+i(x) = 0, thus (4.40) and (4.41) hold.
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(b) If Φ̄i(x) = 0 for i ∈ If̄ , we also have Φ̄n+i(x) = 0 (see Proposition 4.16). Thus ui(x) = 0
and vi(x) = 0 follow immediately.
Conversely, assume that ui(x) = 0 for some index i ∈ If̄ (the proof is analogous if vi(x) = 0
and we omit the details). Since the two summands of ui(x) have the same sign by (4.40),
we must have Da(x)iiΦ̄i(x) = 0 and therefore Da(x)ii = 0 or Φ̄i(x) = 0. Suppose that
Da(x)ii = 0 (in the later case, there is nothing to show). We distinguish three cases:
Case 1: i ∈ Il.
If (xi − li, Fi(x)) = (0, 0), then Φ̄i(x) = 0 follows immediately. Otherwise, due to the
definition of Da(x)ii in Proposition 4.17, we have

0 =
xi − li

‖(xi − li, Fi(x))‖
− 1,

which implies xi > li and Fi(x) = 0, so that Φ̄i(x) = 0.
Case 2: i ∈ Iu.
This case is analogous to the above Case 1.
Case 3: i ∈ Ilu.
If (xi− li, Fi(x)) = (0, 0), then (xi− li, φFB(ui−xi,−Fi(x))) = (0, 0) and Φ̄i(x) = 0 follows
from the definition of the operator Φ̄. Otherwise, we have

0 = Da(x)ii = ai(x) + bi(x)ci(x),

with certain numbers ai(x) ≤ 0, bi(x) ≤ 0, ci(x) ≥ 0 specified in Proposition 4.17 (c). Since
the sum of two nonpositive expressions can be zero only if both expressions are zero, we
have in particular ai(x) = 0. In view of the definition of ai(x), this implies that xi− li > 0
and φFB(ui − xi,−Fi(x)) = 0. Thus Φ̄i(x) = 0.

(c) The inequalities (4.39)–(4.40) imply that the two summands in ui(x) and vi(x) have
the same sign for all i ∈ If̄ . Thus statement (c) hold. 2

In the following result we will use the shortcut ∇F (x∗)ff to denote the submatrix
∇F (x∗)IfIf . A similar notation is used for submatrices and subvectors defined by other
index sets.

Theorem 4.22 Let x∗ ∈ R
n be a stationary point of Ψ̄. Assume that

(a) the principal submatrix ∇F (x∗)ff is nonsingular, and

(b) the Schur complement ∇F (x∗)/∇F (x∗)ff is a P0-matrix.

Then x∗ is a solution of the mixed complementarity problem.

Proof. Let x∗ be a stationary point of Ψ̄. Then by Proposition 4.18 (b) we have

∇Ψ̄(x∗) = HT Φ̄(x∗) = 0, (4.46)
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for an arbitrary H ∈ ∂CΦ̄(x∗). By Proposition 4.17, there exist diagonal matrices Da(x
∗),

Db(x
∗), D̃a(x

∗) and D̃b(x
∗), such that the matrix H ∈ ∂CΦ̄(x∗) has the representation

H =

(
λ1H1

λ2H2

)

,

with
H1 = Da(x

∗) +Db(x
∗)F ′(x∗) and H2 = D̃a(x

∗) + D̃b(x
∗)F ′(x∗).

Using the notation (4.37) we have

Φ̄(x∗) =

(
λ1Φ̄FB(x∗)
λ2Φ̄+(x∗)

)

,

and (4.46) therefore becomes

λ2
1(Da(x

∗) +∇F (x∗)Db(x
∗))Φ̄FB(x∗) + λ2

2(D̃a(x
∗) +∇F (x∗)D̃b(x

∗))Φ̄+(x∗) = 0. (4.47)

Writing

Da(x
∗) =

(
Da(x

∗)ff Da(x
∗)ff̄

Da(x
∗)f̄f Da(x

∗)f̄ f̄

)

, D̃a(x
∗) =

(
D̃a(x

∗)ff D̃a(x
∗)ff̄

D̃a(x
∗)f̄f D̃a(x

∗)f̄ f̄

)

,

Db(x
∗) =

(
Db(x

∗)ff Db(x
∗)ff̄

Db(x
∗)f̄f Db(x

∗)f̄ f̄

)

, D̃b(x
∗) =

(
D̃b(x

∗)ff D̃b(x
∗)ff̄

D̃b(x
∗)f̄f D̃b(x

∗)f̄ f̄

)

and

∇F (x∗) =

(
∇F (x∗)ff ∇F (x∗)ff̄
∇F (x∗)f̄ f ∇F (x∗)f̄ f̄

)

,

where If̄ = I \ If , and taking into account that

Da(x
∗)ii = 0 = D̃a(x

∗)ii, i ∈ If ,
Db(x

∗)ii = −1 = D̃b(x
∗)ii, i ∈ If ,

by Proposition 4.17 (d), we can rewrite (4.47) as

0 =λ2
1

(
−∇F (x∗)ff Φ̄FB(x∗)f +∇F (x∗)ff̄Db(x

∗)f̄ f̄ Φ̄FB(x∗)f̄
)

+λ2
2

(
−∇F (x∗)ff Φ̄+(x∗)f +∇F (x∗)ff̄D̃b(x

∗)f̄ f̄ Φ̄+(x∗)f̄
)
,

(4.48)

0 =λ2
1

(
Da(x

∗)f̄ f̄ Φ̄FB(x∗)f̄ −∇F (x∗)f̄f Φ̄FB(x∗)f +∇F (x∗)f̄ f̄Db(x
∗)f̄ f̄ Φ̄FB(x∗)f̄

)

+λ2
2

(
D̃a(x

∗)f̄ f̄ Φ̄+(x∗)f̄ −∇F (x∗)f̄f Φ̄+(x∗)f +∇F (x∗)f̄ f̄D̃b(x
∗)f̄ f̄ Φ̄+(x∗)f̄

)
.

(4.49)

In order to simplify the notation we define

ui(x
∗) := λ2

1Da(x
∗)iiΦ̄FB,i(x

∗) + λ2
2D̃a(x

∗)iiΦ̄+,i(x
∗)
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and
vi(x

∗) := λ2
1Db(x

∗)iiΦ̄FB,i(x
∗) + λ2

2D̃b(x
∗)iiΦ̄+,i(x

∗)

for all i ∈ I, as in Lemma 4.21. Since ∇F (x∗)ff is assumed to be nonsingular, we obtain
from (4.48):

λ2
1Φ̄FB(x∗)f + λ2

2Φ̄+(x∗)f = ∇F (x∗)−1
ff∇F (x∗)ff̄ v(x

∗)f̄ . (4.50)

Substituting expression (4.50) into (4.49) and rearranging terms gives

u(x∗)f̄ + (∇F (x∗)/∇F (x∗)ff )v(x
∗)f̄ = 0f̄ . (4.51)

Our next aim is to prove that

Φ̄FB(x∗)f̄ = 0. (4.52)

Suppose the contrary. Then Φ̄FB(x∗)f̄ 6= 0 and both u(x∗)f̄ 6= 0, v(x∗)f̄ 6= 0 are different
from 0 and have their nonzero elements in the same positions, according to Lemma 4.21
(b). Moreover, these nonzero elements have the same sign by Lemma (4.21) (c). Then for
all j ∈ If̄ with Φ̄FB,j(x

∗) 6= 0(⇐⇒ vj(x
∗) 6= 0) we obtain from (4.51)

vj(x
∗)[(∇F (x∗)/∇F (x∗)ff)v(x

∗)]j = −uj(x∗)vj(x∗) < 0. (4.53)

But (4.53) contradicts the fact that ∇F (x∗)/∇F (x∗)ff is a P0-matrix. Hence (4.52) holds.
This immediately implies v(x∗)f̄ = 0 in view of Lemma 4.21 (b). Thus (4.50) gives

(
λ2

1 + λ2
2

)
Φ̄FB(x∗)f = 0, (4.54)

since Φ̄FB(x∗)f = Φ̄+(x∗)f . Now (4.52) and (4.54) gives Φ̄FB(x∗) = 0, and therefore
Φ̄(x∗) = 0. Hence x∗ is a solution of the mixed complementarity problem. 2

The generalization of Algorithm 4.13 to the MCP framework is stated below, where Φ̄
and Ψ̄ denote the mappings defined in (4.36) and (4.38), respectively.

Algorithm 4.23 (Semismooth Levenberg-Marquardt Method for MCPs)

(S.0) Let β ∈ (0, 1), σ ∈ (0, 1
2
) and ε ≥ 0. Choose any x0 ∈ R

n. Set k := 0.

(S.1) If ‖∇Ψ̄(xk)‖ ≤ ε: STOP.

(S.2) Choose Hk ∈ ∂CΦ̄(xk), νk > 0 and find a solution dk ∈ R
n of

(
HT
k Hk + νkI

)
d = −∇Ψ̄(xk). (4.55)

(S.3) Compute tk = max{β l | l = 0, 1, 2, . . . } such that

Ψ̄(xk + tkd
k) ≤ Ψ̄(xk) + σtk∇Ψ̄(xk)Tdk. (4.56)

Set xk+1 = xk + tkd
k, k ← k + 1, and go to (S.1).
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Note that Algorithm 4.23 is well defined for an arbitrary mixed complementarity prob-
lem. The main convergence result for this algorithm is given by the following theorem,
whose proof is identical to the proof of the analogous statements for Algorithm 4.13.

Theorem 4.24 The following statements hold.

1. Every accumulation point of a sequence {xk} generated by Algorithm 4.23 is a sta-
tionary point of Ψ̄.

2. Let {xk} be a sequence generated by Algorithm 4.23. Assume that x∗ is an accumula-
tion point of {xk} such that x∗ is a R-regular solution of the mixed complementarity
problem. Then the following statements hold:

(a) The entire sequence {xk} converges to x∗ if {νk} is bounded.

(b) The full stepsize tk = 1 is always accepted for k sufficiently large so that xk+1 =
xk + dk provided that νk → 0.

(c) The rate of convergence is Q-superlinear if νk → 0.

(d) The rate of convergence is Q-quadratic if νk = O(‖∇Ψ̄(xk)‖) and, in addition,
F is an LC1-function.

Recall that Theorem 4.22 gives a relatively mild condition for a stationary point of Ψ̄
to be a solution of the mixed complementarity problem.

4.5 Numerical Experiments

4.5.1 Implementation Details

We implemented Algorithm 4.23 in MATLAB and tested the algorithm on the MCPLIB
test problem collection, see [22] (note that we used a newer version of this test problem
collection, as currently available from http://www.gams.com/mpec/mcplib.htm). The
implementation is along the lines of Algorithm 4.23 except that we use a nonmonotone line
search as introduced by Grippo, Lampariello and Lucidi [48], together with a watchdog
stabilization technique (see [49]).

The nonmonotone line search can be stated as follows. Let m ≥ 0 be a prespecified
constant and let mk ≥ 1 be an integer which is adjusted at each iteration k. We calculate
a steplength tk = max{β l : l = 0, 1, 2, . . .} > 0 satisfying the nonmonotone Armijo-rule by

Ψ̄(xk + tkd
k) ≤ Wk + σtk∇Ψ̄(xk)Tdk,

where Wk := max{Ψ̄(xj) | j = k+1−mk, . . . , k} denotes the maximal function value of Ψ̄
over the last mk iterations. Note that mk = 1 corresponds to the monotone Armijo-rule.
In the implementation, we used the following adjustment of mk:
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1. Setmk = 1 for k = {0, . . . , 5}. In other words, start the algorithm using the monotone
Armijo-rule for the first five steps.

2. mk+1 = min{mk + 1, m} at all remaining iterations (with m = 10 in our implemen-
tation).

As already mentioned, the method from Algorithm 4.23 is enhanced with a so-called watch-
dog feature. If after 20 steps the best function value of Ψ̄ found so far has not been reduced
sufficiently, we return to that point using a monotone line search. The starting point x0 is
the standard one provided by the MCPLIB collection. We terminate the iteration if one
of the following conditions are satisfied

‖Φ̄(xk)‖ ≤ 10−11 or ‖∇Ψ̄(xk)‖ ≤ 10−6 or k > 300.

The Levenberg-Marquardt parameter νk is chosen as follows: For smaller problems with
n < 100, we first estimate the condition number of the matrix HT

k Hk, see [53, Ch. 15].
If this estimated condition number is larger than 1025, we set νk := 0.1/(k + 1). In all
other cases, we take νk := 0. This latter choice is motivated by some preliminary numerical
experiments which showed that small values of νk give much better results than larger once
so that, in the end, we decided to take the limiting value νk = 0. The other parameters
used in our implementation are λ1 = 0.1, λ2 = 0.9, β = 0.55, σ = 10−4. The procedure
for calculating an element Hk ∈ ∂CΦ(xk) is similar to one given in [4] for the Fischer-
Burmeister equation operator Φ̄FB .

4.5.2 Numerical Results

The obtained numerical results are summarized in Table 4.1 for small dimensional problems
and in Table 4.2 for large dimensional ones. In these tables, the first column gives the name
of the problem; Dim is the number of the variables in the problem; Ψ̄(x0) gives the value of
the merit function at the starting point; Nit denotes the number of iterations; Nwd gives
the number of times the watchdog was activated; Ψ̄(xf ) and ‖∇Ψ̄(xf )‖ denote the values
of Ψ̄(x) and ‖∇Ψ̄(x)‖ at the final iterate x = xf . Note that Nit is equal to the number of
linear subproblems solved.

Table 4.1: Numerical results for (small) MCPLIB test
problems

Problem Dim Ψ̄(x0) Nit Nwd Ψ̄(xf ) ‖∇Ψ̄(xf)‖
badfree 5 4.600000e-01 7 0 9.268389e-12 7.457793e-07
bertsekas 15 3.936098e-03 38 0 2.753981e-16 1.468192e-07
billups 1 3.451182e-05 30 1 2.204422e-12 7.627348e-06
choi 13 7.709002e-03 5 0 2.649619e-16 1.278982e-09
colvdual 20 5.488000e+01 19 0 8.785821e-12 1.096167e-05
colvnlp 15 6.207596e+01 6 0 4.033072e-15 2.298059e-07
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Table 4.1: Numerical results for (small) MCPLIB test
problems (continued)

Problem Dim Ψ̄(x0) Nit Nwd Ψ̄(xf ) ‖∇Ψ̄(xf)‖
cycle 1 5.173835e+01 5 0 3.703547e-21 7.746281e-10
degen 2 1.000000e-01 5 0 6.295417e-17 1.122182e-09
duopoly 63 2.132546e+02 — — — —
ehl-k40 41 1.042178e+04 32 0 2.335817e-14 6.724182e-06
ehl-k60 61 3.797546e+04 43 1 4.583750e-14 1.039919e-05
ehl-k80 81 9.363011e+04 50 1 1.115490e-12 3.133144e-03
ehl-kost 101 1.878951e+05 113 4 1.021911e-12 5.417297e-03
electric 158 2.609736e+08 33 0 8.195661e-13 2.421314e-06
explcp 16 3.200000e-01 19 0 5.723100e-16 3.383225e-09
forcebsm 184 3.944244e+03 239 8 3.095727e-12 2.489442e-07
forcedsa 186 3.948661e+03 25 0 2.971468e-16 2.437821e-09
freebert 15 1.509811e+04 10 0 6.212865e-14 2.194618e-06
gafni 5 1.300358e+03 10 0 6.470323e-13 3.651867e-05
games 16 6.006634e+01 6 0 7.154607e-12 8.895455e-05
hanskoop 14 1.185959e+02 8 0 1.052035e-16 3.867725e-09
hydroc06 29 1.766604e+05 5 0 6.762849e-15 6.397969e-04
hydroc20 99 4.104414e+05 9 0 6.304574e-16 1.026980e-04
jel 6 9.561221e+02 7 0 5.187227e-18 2.058262e-08
josephy 4 2.281054e-02 3 0 1.059211e-22 1.355775e-10
kojshin 4 2.281054e-02 3 0 1.079806e-22 1.368936e-10
mathinum 3 6.215376e+02 4 0 3.024771e-12 6.673325e-07
mathisum 4 5.216473e+00 8 0 2.199525e-16 1.559273e-08
methan08 31 6.463832e+06 4 0 2.488877e-14 4.527827e-03
nash 10 5.426293e+02 4 0 2.354633e-19 7.457201e-09
ne-hard 3 1.155892e+04 — — 1.448421e-10 2.179638e-04
pgvon106 106 1.536653e+02 21 0 6.110093e-12 8.964999e-07
pies 42 5.267785e+08 27 0 7.026880e-13 8.659392e-03
powell 16 6.807131e-04 5 0 8.057887e-17 1.061372e-08
powell-mcp 8 9.316746e+01 2 0 2.728284e-13 6.048681e-06
qp 4 3.300000e+00 5 0 6.295416e-17 1.122089e-09
scarfanum 13 6.994871e-05 3 0 3.605079e-12 2.824943e-06
scarfasum 14 6.994871e-05 3 0 3.604873e-12 2.809442e-06
scarfbsum 40 1.123239e+02 27 0 6.331156e-17 2.098521e-06
shubik 45 1.638873e-01 290 0 8.777558e-17 1.805669e-08
simple-ex 17 9.561639e+00 53 1 7.317284e-13 9.444120e-07
simple-red 13 2.250785e+02 11 0 1.037776e-19 3.444468e-10
sppe 27 1.216934e+02 6 0 5.936441e-19 5.100155e-09
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Table 4.1: Numerical results for (small) MCPLIB test
problems (continued)

Problem Dim Ψ̄(x0) Nit Nwd Ψ̄(xf ) ‖∇Ψ̄(xf)‖
tinloi 146 4.001771e-01 9 0 1.416760e-12 1.286753e-03
tobin 42 3.236481e+00 2 0 1.474633e-14 1.354525e-05

Table 4.1 shows that the algorithm was able to solve almost all problems from the
MCPLIB collection including a number of examples which are known to be very hard. We
have failures only on problems duopoly and ne-hard. By changing our parameters, we are
also able to solve these problems with high precision. In very few cases, like the billups

problem from [4], we view it as a mere coincidence that we are able to solve them. In
general, however, the method seems to be extremely robust.

Table 4.2: Numerical results for (large) MCPLIB test
problems

Problem Dim Ψ̄(x0) Nit Ψ̄(xf ) ‖∇Ψ̄(xf)‖
bert-oc 5000 5.129446e+01 10 6.254441e–12 3.734828e–07
bratu 5625 7.886962e+00 10 1.800397e–14 2.026905e–08
bishop 1645 2.157671e+11 — — —
lincont 419 3.956019e+03 21 5.335966e–18 9.678748e–07
obstacle 2500 3.371445e–04 7 3.232956e–12 1.645663e–06
opt-cont 288 8.693982e+02 8 3.973421e–14 3.040037e–08
opt-cont31 1024 2.435888e+02 9 1.175346e–12 1.578468e–07
opt-cont127 4096 7.867371e+01 12 3.232490e–12 2.584229e–07
opt-cont255 8192 5.184548e+01 41 4.567335e–12 3.173779e–07
opt-cont511 16384 3.848816e+01 17 4.924145e–13 1.000753e–07
trafelas 2904 5.124999e+03 143 6.567286e–17 1.585157e–09

In Table 4.2 we see that we are also able to solve all larger problems with the only
exception of problem bishop. In particular, we can solve the relatively difficult examples
lincont and trafelas.

4.5.3 Comparison with Fischer-Burmeister Function

We consider the following one-dimensional NCP:

x ≥ 0, F (x) :=
1

x
≥ 0, xF (x) = 0. (4.57)

Obviously, this problem has no solution, since the complementarity gap is always 1. To
indicate the difference between the merit functions, Figure 4.2 plots them for this simple



4.5. NUMERICAL EXPERIMENTS 89

Figure 4.2: Merit functions for Fischer-Burmeister and least squares reformulation of the
one-dimensional NCP (4.57).

example. Here Ψ is plotted for λ1 = 0.75, λ2 = 0.25. Further we observe that ΨFB tends
to 0 as x → 0. From this measure we might think x = 0 is a solution. However, F is
not defined at x = 0. Indeed, applying our algorithm with λ1 = 1, λ2 = 0 to this simple
example choosing various starting points < 1 the (Fischer-Burmeister) merit function value
(less then 10−16) indicate that we have solved the problem in a few iterations (less than
16). Using the new merit function this phenomenon is avoided by obvious reasons and our
algorithm will fail (pleasantly in this case).

A more reasonable comparison with the pure Fischer-Burmeister approach can be ob-
tained considering the MCPLIB test suite. To this end, we make the following remarks:

• During all the iterations, no domain violations occurred, i.e., the function F was
always defined at the iterates xk. This is very much in contrast to the pure Fischer-
Burmeister approach where domain violations occur quite frequently and special
(heuristic) rules have to be used so that the method can go on. We admit, however,
that we have no theoretical justification for this observation since no special care is
taken in order to avoid domain violations when using our least squares approach.

• If we apply our algorithm with λ1 = 1, λ2 = 0 in the definition of Φ or Φ̄, then our
method reduces to the standard Fischer-Burmeister approach since the last n com-
ponents in the definition of Φ or Φ̄ get canceled. Doing so, we get failures on eleven
(compared to two) test problems among the small-dimensional examples, namely
duopoly, ehl-k40, ehl-k60, ehl-k80, electric, forcebsm, forcedsa, ne-hard,
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pgvon106, shubik, simple-ex. Furthermore, we sometimes have to take a signif-
icantly higher number of iterations for some other examples, e.g., the solution of
ehl-kost now takes more than 200 iterations. The new approach scores well also
applied to the large-scale problems. The Fischer-Burmeister approach fails on bishop

and opt-cont511, and takes more than 150 iterations on opt-cont127.

• A further comparison with the pure Fischer-Burmeister approach can be obtained
by having a look at the numerical results presented in [118] where four different
Fischer-Burmeister-type algorithms are compared with each other (two of them use
constrained reformulations of the complementarity problem and therefore have to
solve more complicated subproblems). Even the best method in [118] produces more
failures than our algorithm. This is interesting to note especially because many of the
more difficult test problems from the MCPLIB collection (like electric, forcebsm,
forcedsa) have been completely excluded from the numerical results in [118].

Altogether this indicates that our new approach is certainly more robust and sometimes
also more efficient than the underlying Fischer-Burmeister method.

4.5.4 Comparison with Penalized Fischer-Burmeister Function

The penalized Fischer-Burmeister function from [11] (see Figure 4.3) is given by

φ̃(a, b) := λφFB(a, b)− (1− λ)φ+(a, b).

It can be used in order to reformulate the complementarity problem as a square system of
equations Φ̃(x) = 0 with

Φ̃i(x) := φ̃(xi, Fi(x)) ∀i = 1, . . . , n.

The corresponding merit function Ψ̃ : R
n → R is then given by

Ψ̃(x) :=
1

2
Φ̃(x)T Φ̃(x)

and can be rewritten as

Ψ̃(x) =

n∑

i=1

ψ̃(xi, Fi(x))

with

ψ̃(xi, Fi(x)) :=
1

2
φ̃(xi, Fi(x))

2 = ui + vi + wi,

where the terms ui, vi, and wi are given by

ui :=
1

2
λ2φFB(xi, Fi(x))

2,

vi :=
1

2
(1− λ)2φ+(xi, Fi(x))

2,
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wi := λ(λ− 1)φFB(xi, Fi(x))φ+(xi, Fi(x)).

Note that ui is used in order to get an equivalent reformulation of the complementarity
problem as a system of equations or an unconstrained minimization. Furthermore, vi is
responsible for making the complementarity gap as small as possible, whereas the contri-
bution of the mixed term wi is not quite clear and, in fact, not necessary. This is reflected
by our merit function which, in the above notation, can be written as

Ψ(x) =

n∑

i=1

ψ(xi, Fi(x)) with ψ(xi, Fi(x)) := ui + vi,

where λ1 = λ and λ2 = 1 − λ. Of course, this is not the only difference since we also
compute a totally different search direction for example.

Figure 4.3: Graph of the penalized Fischer-Burmeister function for three values of λ.

Numerically, the experiments indicate our new method is also more robust. In order
to see this, we made another test run with our current implementation of the nonsmooth
Newton method from [11] applied to the nonlinear equation Φ̃(x) = 0. Instead of giving
the details of this test run here, we only summarize the results: The nonsmooth Newton
method from [11] is also quite robust and able to solve some of the difficult test problems
like billups, forcebsm, and forcedsa. Nevertheless, it produces a significantly higher
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number of errors: Within the small dimensional examples, it produces failures on problems
colvdual, duopoly, electric, ne-hard, pgvon106, and shubik, and within the set of
large dimensional problems, it is not able to solve the three examples bishop, lincont,
and trafelas. Hence, altogether, there are nine failures compared to only three for our
least squares formulation.



Chapter 5

An Inexact Semismooth Method

Similar to standard Newton- and Levenberg-Marquardt methods, Algorithm 4.23 is of
limited practical value for large scale complementarity problems, simply due to the fact
that the linear system (4.55) can in general not be solved exactly by direct methods for
larger n. Instead, iterative methods have to be used, leading to inexact solutions of (4.55).
The main purpose of this chapter is to discuss the influence of this inexactness on the
convergence of Algorithm 4.23. Since the newly inexact variant allows us to address a
much larger range of applications, we also discuss the application of the new variant to
optimal control and obstacle problems, additionally to the examples from the MCPLIB.

5.1 Description of Algorithm

The method to be considered exploits a reformulation of the (mixed) complementarity
problem as an overdetermined nonlinear system of equations Φ(x) = 0 with Φ : R

n → R
2n

being defined in (4.36), as presented in the previous chapter.

Algorithm 5.1 (Inexact Semismooth Levenberg-Marquardt Method)

(S.0) Let β ∈ (0, 1), σ ∈ (0, 1
2
), ρ > 0, p > 2 and ε ≥ 0. Choose any x0 ∈ R

n. Set k := 0.

(S.1) If ‖∇Ψ(xk)‖ ≤ ε: STOP.

(S.2) Choose Hk ∈ ∂CΦ(xk), νk > 0 and find an approximate solution dk ∈ R
n of

(
HT
k Hk + νkI

)
d = −∇Ψ(xk), (5.1)

where νk is the Levenberg-Marquardt parameter. If the condition

∇Ψ(xk)Tdk ≤ −ρ‖dk‖p (5.2)

is not satisfied, set dk = −∇Ψ(xk).

93
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(S.3) Compute tk = max{β` | ` = 0, 1, 2, . . .} such that

Ψ(xk + tkd
k) ≤ Ψ(xk) + σtk∇Ψ(xk)Tdk. (5.3)

(S.4) Set xk+1 = xk + tkd
k, k ← k + 1, and go to (S.1).

Algorithm 5.1 is very similar to the one presented in [28] (see also [56]), which, however,
is based on a different reformulation of the complementarity problem as a square sys-
tem of equations. Nevertheless, this observation will simplify the convergence analysis of
Algorithm 5.1 significantly, and we will come back to this point in the next section.

Before investigating the convergence properties of Algorithm 5.1, however, we need to
say what we mean by solving the subproblem (5.1) inexactly in Step (S.2). To specify this
point, we will assume that the inexact solution dk of (5.1) satisfies a relation of the form

(HT
k Hk + νkI)d

k = −∇Ψ(xk) + rk (5.4)

for some residual vector rk such that

‖rk‖ ≤ αk‖∇Ψ(xk)‖ (5.5)

for some a priori chosen number αk ≥ 0. Note that the choice αk = 0 corresponds to an
exact solution of the regularized linear least squares subproblem from (4.23).

5.2 Convergence Properties

In this section, we investigate the convergence properties of our algorithm. To this end, we
assume that the termination parameter ε is equal to zero and that Algorithm 5.1 generates
an infinite sequence. We further assume throughout this section that the subproblems (5.1)
are solved inexactly in such a way that conditions (5.4) and (5.5) hold for some sequence
{αk}. We first state a global convergence result for Algorithm 5.1. Its proof is essen-
tially the same as the one from [28, Theorem 12], and we include it here for the sake of
completeness.

Theorem 5.2 Assume that the sequence {νk} is bounded and that the sequence of residual
vectors {rk} satisfies condition (5.5) for some sequence of positive numbers {αk} such that
αk ≤ ᾱ for some ᾱ ∈ [0, 1). Then every accumulation point of a sequence {xk} generated
by Algorithm 5.1 is a stationary point of Ψ.

Proof. We show that the sequence {dk} is uniformly gradient related to {xk}, according
to [2]), i.e., for every convergent subsequence {xk}K for which

lim
k→∞,k∈K

∇Ψ(xk) 6= 0, (5.6)

there holds
lim sup
k→∞,k∈K

‖dk‖ <∞, (5.7)
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lim inf
k→∞,k∈K

|∇Ψ(xk)Tdk| > 0. (5.8)

Let {xk}K be any convergent subsequence for which (5.6) holds. To show that {dk}K
satisfies condition (5.7) and (5.8) we can assume without loss of generality that dk is always
given by (5.1), since any subsequence of {∇Ψ(x)}K is uniformly gradient related to the
corresponding subsequence of {xk}K.

We now show first that {dk}K is bounded. From (5.4) we get

‖dk‖ ≥ ‖∇Ψ(xk)− rk‖
‖HT

k Hk + νkI‖
, (5.9)

and since νk is bounded by assumption and the generalized Jacobian is upper semicon-
tinuous (recall that the sequence {xk}K converges), there exists a constant κ > 0 such
that

‖HT
k Hk + νkI‖ ≤ κ for all k ∈ K.

We now obtain

‖dk‖ ≥ ‖∇Ψ(xk)− rk‖
κ

≥ ‖∇Ψ(xk)‖ − ‖rk‖
κ

(5.5)

≥ 1− αk
κ
‖∇Ψ(xk)‖ ≥ 1− ᾱ

κ
‖∇Ψ(xk)‖ =: κ1‖∇Ψ(xk)‖,

(5.10)

for all k ∈ K sufficiently large. Since the direction dk satisfies (5.2) we have

‖dk‖p ≤ −1

ρ
∇Ψ(xk)Tdk ≤ 1

ρ
‖∇Ψ(xk)‖‖dk‖

(5.10)

≤ 1

ρκ1
‖dk‖2

and the boundedness of the sequence {dk} now readily follows from the above inequality
dividing by ‖dk‖2 together with p > 2. Note that ‖dk‖ 6= 0, since otherwise we would have
∇Ψ(xk)− rk = 0 by (5.9) which, in turn, since ‖rk‖ ≤ αk‖∇Ψ(xk)‖ with αk < 1, would be
possible only if ‖∇Ψ(xk)‖ = 0, so that xk would be a stationary point and the algorithm
would have stopped.

For proving (5.8), we assume that there exists a subsequence {xk}K′ of {xk}K for which
limk→∞,k∈K′ |∇Ψ(xk)Tdk| = 0. By (5.2), this implies, that limk→∞,k∈K′ ‖dk‖ = 0. This in
turn implies limk→∞,k∈K′ ‖∇Ψ(xk)‖ = 0, in view of (5.10), but contradicting (5.6). Thus
{dk} is uniformly gradient related to {xk} and the assertion of the theorem now follows
from Proposition 1.8 in [2].

2

In order to show local fast convergence, we need a regularity assumption. This will be
the R-regularity assumption. For our subsequent analysis, we note that the R-regularity
assumption implies that, if the sequence {xk} converges to an R-regular solution x∗, then
the matrices HT

k Hk are uniformly positive definite, i.e., there is a constant γ > 0 such that

‖Hkd
k‖2 = (dk)THT

k Hkd
k ≥ γ‖dk‖2 (5.11)
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for all k sufficiently large, see Lemma 4.5. We are now in the position to state a local
convergence result.

Theorem 5.3 Let {xk} be a sequence generated by Algorithm 5.1, let the sequence {νk}
be bounded and assume that {αk} → 0 with {αk} being the sequence from (5.5). Assume
that x∗ is an accumulation point of {xk} such that x∗ is an R-regular solution of the
complementarity problem (1.3). Then the following statements hold:

(a) The entire sequence {xk} converges to x∗.

(b) Eventually dk is always given by the inexact solution of system (5.1).

(c) The full stepsize tk = 1 is always accepted for k sufficiently large so that xk+1 = xk+dk

provided that νk → 0.

(d) The rate of convergence is Q-superlinear if νk → 0.

(e) The rate of convergence is Q-quadratic if νk = O(‖Φ(xk)‖), αk = O(‖Φ(xk)‖) and,
in addition, F ′ is locally Lipschitzian.

Proof. (a) Using the R-regularity assumption, we can argue exactly as in Theorem 4.15
(a) for proving that x∗ is an isolated accumulation point of the sequence {xk}. Let {xk}K
denote any subsequence converging to x∗, and note that x∗ is a stationary point of Ψ by
Theorem 5.2. For all k ∈ N such that dk is an inexact solution of (4.23), we have

‖xk+1 − xk‖ = tk‖dk‖
≤ ‖dk‖

(5.4)

≤ ‖(HT
k Hk + νkI)

−1‖ ‖ − ∇Ψ(xk) + rk‖
≤ ‖(HT

k Hk + νkI)
−1‖
(
‖∇Ψ(xk)‖+ ‖rk‖

)

(5.5)

≤ (1 + αk)‖(HT
k Hk + νkI)

−1‖ ‖∇Ψ(xk)‖.

On the other hand, for all k ∈ N with dk = −∇Ψ(xk), we have

‖xk+1 − xk‖ = tk‖dk‖ ≤ ‖dk‖ = ‖∇Ψ(xk)‖.

Together, it follows from {∇Ψ(xk)}K → 0, the assumed boundedness of {νk} and Lemma 4.5
that {‖xk+1 − xk‖}K → 0. Hence statement (a) follows from [89, Lemma 4.10].

(b) First we prove that there is a constant κ > 0 such that

∇Ψ(xk)Tdk ≤ −κ‖dk‖2 (5.12)

for all k ∈ N sufficiently large, where dk denotes an inexact solution of (4.23) in the sense
that (5.4) and (5.5) are satisfied.
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Since {νk} is bounded by assumption, xk → x∗ by (a) and the generalized Jacobian is
upper semicontinuous, the sequence {HT

k Hk + νkI} is bounded. Furthermore, it follows
from xk → x∗, the assumed R-regularity and Lemma 4.5 that the corresponding inverse
matrices are also uniformly bounded. Hence there is a constant c > 0 such that

‖HT
k Hk + νkI‖ ≤ c and ‖(HT

k Hk + νkI)
−1‖ ≤ c ∀k ∈ N. (5.13)

Since
‖HT

k Hk + νkI‖ = λmax(H
T
k Hk + νkI) =: λkmax

and

‖(HT
k Hk + νkI)

−1‖ =
1

λmin(HT
k Hk + νkI)

=:
1

λkmin

,

we obtain from (5.13)

1

c
‖dk‖2 ≤ λkmin‖dk‖2 ≤ (dk)T (HT

k Hk + νkI)d
k ≤ λkmax‖dk‖2 ≤ c‖dk‖2. (5.14)

Furthermore, we have

‖∇Ψ(xk)− rk‖ (5.4)
= ‖(HT

k Hk + νkI)d
k‖ ≤ ‖HT

k Hk + νkI‖ ‖dk‖

and therefore

‖dk‖ ≥ ‖∇Ψ(xk)− rk‖
‖HT

k Hk + νkI‖
(5.13)

≥ 1

c
‖∇Ψ(xk)− rk‖

≥ 1

c

(
‖∇Ψ(xk)‖ − ‖rk‖

)

(5.5)

≥ 1

c

(
‖∇Ψ(xk)‖ − αk‖∇Ψ(xk)‖

)

=
1

c
(1− αk)‖∇Ψ(xk)‖.

(5.15)

The Cauchy-Schwarz inequality therefore implies

∇Ψ(xk)Tdk
(5.4)
= −(dk)T (HT

k Hk + νkI)d
k + (rk)Tdk

≤ −(dk)T (HT
k Hk + νkI)d

k + ‖rk‖ ‖dk‖
(5.5)

≤ −(dk)T (HT
k Hk + νkI)d

k + αk‖∇Ψ(xk)‖‖dk‖
(5.14)

≤ −1

c
‖dk‖2 + αk‖∇Ψ(xk)‖‖dk‖

(5.15)

≤ −1

c
‖dk‖2 + c

αk
1− αk

‖dk‖2.

Hence inequality (5.12) follows immediately from the fact that αk → 0.
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Using (5.12), the Cauchy-Schwarz inequality implies

κ‖dk‖2 ≤ ‖∇Ψ(xk)‖ ‖dk‖

and therefore {‖dk‖} → 0. This together with p > 2 gives statement (b).
(c), (d) We first show that

‖xk + dk − x∗‖ = o(‖xk − x∗‖) (5.16)

holds for all k ∈ N sufficiently large. To this end, we recall that, for any k ∈ N, the
matrix HT

k Hk + νkI is nonsingular with ‖(HT
k Hk + νkI)

−1‖ ≤ c by (5.13). Furthermore,
the sequence {Hk} is bounded (since {xk} is convergent) and we can assume without loss
of generality that we also have ‖HT

k ‖ ≤ c. Since ∇Ψ(xk) = HT
k Φ(xk) in view of Theorem

4.7, we obtain for all xk sufficiently close to x∗ that

‖xk + dk − x∗‖
(5.4)
= ‖xk + (HT

k Hk + νkI)
−1(−∇Ψ(xk) + rk)− x∗‖

≤ ‖(HT
k Hk + νkI)

−1‖ ‖∇Ψ(xk)− rk − (HT
k Hk + νkI)(x

k − x∗)‖
≤ c‖HT

k Φ(xk)−HT
k Hk(x

k − x∗)− νk(xk − x∗)− rk‖
≤ c
(
‖HT

k (Φ(xk)− Φ(x∗)−Hk(x
k − x∗))‖+ νk‖xk − x∗‖+ ‖rk‖

)

(5.5)

≤ c
(
‖HT

k ‖‖Φ(xk)− Φ(x∗)−Hk(x
k − x∗)‖+ νk‖xk − x∗‖+ αk‖HT

k Φ(xk)‖
)

≤ c
(
c‖Φ(xk)− Φ(x∗)−Hk(x

k − x∗)‖+ νk‖xk − x∗‖+ αkc‖Φ(xk)− Φ(x∗)‖
)

= o(‖xk − x∗‖) + o(‖xk − x∗‖) + o(‖xk − x∗‖)
= o(‖xk − x∗‖)

since νk → 0, αk → 0, and Φ is locally Lipschitz and semismooth. Hence (5.16) holds.

In order to verify statement (c), we have to show that the full step tk = 1 is eventually
accepted by the line search rule in Algorithm 5.1. This fact may be derived from a general
result in [25] using some additional properties of the merit function Ψ. However, we prefer
to give a direct proof here which does not exploit any further properties of this merit
function.

First note that (5.16) implies

‖xk − x∗‖ ≤ ‖xk + dk − x∗‖+ ‖dk‖ = o(‖xk − x∗‖) + ‖dk‖.

Hence we have

‖xk − x∗‖ = O(‖dk‖). (5.17)
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Together with (5.16), the local Lipschitz property of Φ and the fact that Φ(x∗) = 0, we
therefore obtain

Ψ(xk + dk) =
1

2
‖Φ(xk + dk)‖2

=
1

2
‖Φ(xk + dk)− Φ(x∗)‖2

= O(‖xk + dk − x∗‖2)
= o(‖xk − x∗‖2)
= o(‖dk‖2).

(5.18)

In a similar way, we also get from (5.5) and ∇Ψ(xk) = HT
k Φ(xk) that

‖rk‖ = o(‖∇Ψ(xk)‖) = o(‖Φ(xk)− Φ(x∗)‖) = o(‖xk − x∗‖) = o(‖dk‖). (5.19)

Exploiting the semismoothness of Φ once again, we have

∣
∣‖Φ(xk)−Φ(x∗)‖−‖Hk(x

k−x∗)‖
∣
∣ ≤ ‖Φ(xk)−Φ(x∗)−Hk(x

k−x∗)‖ = o(‖xk−x∗‖). (5.20)

This means that there is a positive sequence τk → 0 such that

∣
∣‖Φ(xk)− Φ(x∗)‖ − ‖Hk(x

k − x∗)‖
∣
∣ ≤ τk‖xk − x∗‖

for all k sufficiently large. Consequently, we have

τk‖xk − x∗‖+ ‖Hk(x
k − x∗)‖ − ‖Φ(xk)− Φ(x∗)‖ ≥ 0

and

τk‖xk − x∗‖ − ‖Hk(x
k − x∗)‖+ ‖Φ(xk)− Φ(x∗)‖ ≥ 0 (5.21)

for all k large enough. Multiplying the last two inequalities, we obtain

τ 2
k‖xk − x∗‖2 − ‖Hk(x

k − x∗)‖2 + 2‖Hk(x
k − x∗)‖ ‖Φ(xk)− Φ(x∗)‖ ≥ ‖Φ(xk)− Φ(x∗)‖2.

We therefore have

1

2
‖Φ(xk)−Φ(x∗)‖2 ≤ −1

2
‖Hk(x

k−x∗)‖2 + ‖Hk(x
k−x∗)‖ ‖Φ(xk)−Φ(x∗)‖+ o(‖xk−x∗‖2).

On the other hand, multiplying (5.21) with ‖Φ(xk) − Φ(x∗)‖ and rearranging terms, we
get

−‖Φ(xk)− Φ(x∗)‖2

≤ τk‖xk − x∗‖ ‖Φ(xk)− Φ(x∗)‖ − ‖Hk(x
k − x∗)‖ ‖Φ(xk)− Φ(x∗)‖

≤ −‖Hk(x
k − x∗)‖ ‖Φ(xk)− Φ(x∗)‖+ o(‖xk − x∗‖2)
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since Φ is locally Lipschitz. Adding the last two inequalities and using (5.17) gives

−1

2
‖Φ(xk)− Φ(x∗)‖2 ≤ −1

2
‖Hk(x

k − x∗)‖2 + o(‖dk‖2). (5.22)

Since

∣
∣‖Hk(x

k + dk − x∗)‖ − ‖Hkd
k‖
∣
∣ ≤ ‖Hk(x

k + dk − x∗)−Hkd
k‖ = ‖Hk(x

k − x∗)‖

holds and the left-hand term is nonnegative, squaring both sides gives

‖Hk(x
k + dk − x∗)‖2 − 2‖Hk(x

k + dk − x∗)‖ ‖Hkd
k‖+ ‖Hkd

k‖2 ≤ ‖Hk(x
k − x∗)‖2.

Multiplying this inequality by − 1
2

and using (5.16), (5.17) as well as the boundedness of
the sequence {Hk}, we obtain

−1

2
‖Hk(x

k − x∗)‖2

≤ −1

2
‖Hkd

k‖2 − 1

2
‖Hk(x

k + dk − x∗)‖2 + ‖Hk(x
k + dk − x∗)‖ ‖Hkd

k‖

≤ −1

2
‖Hkd

k‖2 − 1

2
‖Hk(x

k + dk − x∗)‖2 + o(‖dk‖2)

≤ −1

2
‖Hkd

k‖2 + o(‖dk‖2).

(5.23)

Summarizing our previous discussion, we now obtain for all xk sufficiently close to x∗ that

Ψ(xk + dk)− Ψ(xk)− σ∇Ψ(xk)Tdk

(5.4),(5.18)
= o(‖dk‖2)− 1

2
‖Φ(xk)‖2 + σ(dk)T (HT

k Hk + νkI)d
k − σ(rk)Tdk

≤ −1

2
‖Φ(xk)‖2 + σ(dk)T (HT

k Hk)d
k + σνk‖dk‖2 + o(‖dk‖2) + σ|(rk)Tdk|

νk→0

≤ −1

2
‖Φ(xk)− Φ(x∗)‖2 + σ(dk)T (HT

k Hk)d
k + o(‖dk‖2) + σ‖rk‖‖dk‖

(5.22),(5.19)

≤ −1

2
‖Hk(x

k − x∗)‖2 + σ(dk)T (HT
k Hk)d

k + o(‖dk‖2)
(5.23)

≤ −1

2
‖Hkd

k‖2 + σ‖Hkd
k‖2 + o(‖dk‖2)

= (σ − 1

2
)‖Hkd

k‖2 + o(‖dk‖2)
(5.11)

≤ (σ − 1

2
)γ‖dk‖2 + o(‖dk‖2)

< 0,

,

where the last two inequalities follow from the fact that σ ∈ (0, 1/2). This implies that
the full step is eventually accepted, i.e., we have xk+1 = xk + dk for all k sufficiently large.
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Consequently, (5.16) shows that {xk} converges Q-superlinearly to x∗.

(e) The proof is essentially the same as for the local superlinear convergence. To this end,
we only note that F ′ being locally Lipschitz implies that Φ is strongly semismooth, and
that the relation

‖Φ(xk)− Φ(x∗)−Hk(x
k − x∗)‖ = O(‖xk − x∗‖2).

holds for strongly semismooth functions, see 2.16 (b). 2

Note that statement (e) of Theorem 5.3 remains true if the two sequences {νk} and {αk}
satisfy νk = O(‖∇Ψ(xk)‖) and αk = O(‖∇Ψ(xk)‖).

5.3 Numerical Experiments

Since the previous sections showed that the good theoretical properties of the exact semis-
mooth Newton method in Chapter 4 also hold for the inexact version from Algorithm
5.1, we now look at the practical behavior of the algorithm. Here we are mainly inter-
ested in large-scale problems where the exact method may not necessarily be applied to
because the solution of the linearized least squares problem at each iteration is either too
time-consuming or simply not possible due to storage problems.

We first give some general comments regarding the implementation of Algorithm 5.1
in Subsection 5.3.1. We then give some more details and present our numerical results in
Subsections 5.3.2 (for the large-scale problems from MCPLIB), 5.3.3 (for some problems
from optimal control), and 5.3.4 (for a discretized obstacle problem).

5.3.1 General Considerations

We first note that Algorithm 5.1 can be extended in a relatively simple way to the more
general class of mixed complementarity problems. The details are given in Chapter 4. Our
implementation is therefore able to deal with mixed complementarity problems. Note, how-
ever, that we still write Φ(x) = 0 for the corresponding reformulation as an overdetermined
nonlinear system of equations, and we still write Ψ(x) := 1

2
‖Φ(x)‖2 for the associated merit

function, i.e., we do not change our notation from the previous sections although Φ and Ψ
are defined in a slightly different way.

We have implemented Algorithm 5.1 in MATLAB. The implementation is along the
lines of Algorithm 5.1, except that we use a nonmonotone line search. To be more precise,
we use the standard (monotone) Armijo rule during the first five iterations and then switch
to the nonmonotone line search where the maximum of the function values Ψ(xk) is taken
over the last ten iterations.

Some preliminary numerical experiments indicated that small values of the Levenberg-
Marquardt parameter νk give much better results than larger ones so that we decided to
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take the limiting value νk = 0 for all k, i.e., the Levenberg-Marquardt step from (5.1)
reduces to a Gauss-Newton step

min
d
‖Hkd+ Φ(xk)‖. (5.24)

The search direction dk is always given by the inexact solution of system (5.24).
We terminate the iteration in step (S.1) of Algorithm 5.1 if one of the following condi-

tions are satisfied:

Ψ(xk) ≤ 10−8 or ‖∇Ψ(xk)‖∞ ≤ 10−6 or k > 100.

The other parameters used in our implementation are λ1 = 0.9, λ2 = 0.1, β = 0.9 and
σ = 10−4.

For the inexact solution of the linearized least squares subproblems, we use the LSQR
method from [94]. An implementation of LSQR is provided by MATLAB. LSQR is an
iterative method for the solution of linear least squares problems and does not need any
matrix factorizations. This allows us to apply LSQR to large-scale problems. The forcing
sequence {αk} from Algorithm 5.1, which determines the accuracy with which we actually
solve the subproblems, is defined as

αk = min
{ 10−2

k + 1
,Ψ(xk), ‖∇Ψ(xk)‖∞

}

.

LSQR employs several termination criteria (see [94]). The two main criteria used in our
implementation are

‖rkLS‖
‖Φ(xk)‖ ≤ αk (5.25)

and

‖HT
k r

k
LS‖ ≤ max

{

10−8,min
{

αk, θ‖HT
k Φ(xk)‖

}}

with θ = 0.01, (5.26)

where rkLS := Hkd + Φ(xk) denotes the residual vector of (5.24) (note that this vector
is different from the vector rk occurring in (5.4)). Basically, the first criterion (5.25)
checks whether the relative residuum is sufficiently small. In general, this condition will
be satisfied only if the linearized least squares problem has a zero or small residuum in the
solution dk, and this will usually happen only if we are getting close to a solution x∗ of our
mixed complementarity problem.

The other condition (5.26) is applicable in more general situations and checks whether
the error in the normal equation is small enough. Note that we use an absolute lower
bound of 10−8 so that we do not force this error to become too small. The other two terms
in (5.26) are easy to understand: We require the relative error in the normal equation to
be at least as small as αk, and, in addition, it has to satisfy the bound

‖HT
k r

k
LS‖ ≤ θ‖HT

k Φ(xk)‖
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for some constant θ ∈ (0, 1). This latter condition is important because otherwise it
happens quite often that the zero vector (used as a starting point for the inner LSQR
iteration) is accepted by this criterion, meaning that xk+1 = xk in the corresponding outer
iteration, and this useless situation has to be avoided.

We also note that estimates of the quantities ‖rkLS‖ and ‖HT
k r

k
LS‖ used within the

inner termination criterion can be obtained at minimal cost from the LSQR method itself,
see [94] for more details.

Finally, we turn to the question of a suitable preconditioner. Like all iterative methods
for the solution of linear systems of equations, the practical performance of LSQR for the
iterative solution of the linear least squares subproblem (5.24) may often be accelerated by
the choice of a suitable preconditioner. Note, however, that we only have the possibility
to choose a right preconditioner M since

min
d
‖Hd+ Φ(x)‖ = min

z
‖HM−1z + Φ(x)‖, where z = Md,

whereas a left preconditioner would change the subproblem. In order to find an appropriate
preconditioner M , recall that any matrix H ∈ ∂CΦ(x) has the representation

H =

(
λ1H1

λ2H2

)

, (5.27)

where
H1 ⊆ Da(x) +Db(x)F

′(x) and H2 ⊆ D̃a(x) + D̃b(x)F
′(x) (5.28)

with certain diagonal matrices Da(x), Db(x), D̃a(x), D̃b(x), see Theorem 4.3 and Proposi-
tion 4.17.

Taking into account this structure, a natural choice for M seems to be the first block
matrix H1 provided this matrix is nonsingular and the size and structure of H1 allows the
solution of linear systems of equations with this matrix. Note also that H1 is the leading
block since λ1 = 0.9, λ2 = 0.1 in our implementation, i.e., we put much more emphasis on
this block than on the second part.

However, for some large-scale problems, it may not be possible to use H1 or a suitable
modification of this matrix as a preconditioner, and then we have to take a closer look at
the particular structure of this matrix in order to find a suitable preconditioner. We will
illustrate this point in more detail in some of the following subsections.

5.3.2 MCPLIB Test Problems

Our first test problems are the larger ones taken from the MCPLIB. We note again that the
test problem library used here is an updated version of the MCPLIB originally introduced
in [22], see also Section 4.5.1. The starting point x0 is the standard one provided by the
MCPLIB collection.

Since the examples from the MCPLIB are difficult, but still of reasonable size, we
basically take the suggestion from the previous subsection and use the slightly regularized



104 CHAPTER 5. AN INEXACT SEMISMOOTH METHOD

H1-block M := H1 + 10−4I as a preconditioner. We note, however, that nonsingularity of
this matrix M is not guaranteed, but the addition of the scaled identity seems to be quite
helpful in order to avoid singularity problems at the solution of some test examples.

Our numerical results are summarized in Table 5.1. In this table, the first column
gives the name of the problem; Dim is the number of the variables in the problem; o.it.
denotes the number of outer iterations; column avg.i.it. presents the average number of
inner LSQR iterations needed to solve the corresponding linear least squares problem (5.24)
inexactly; Ψ(x0) gives the value of the merit function at the starting point; and Ψ(xf) and
‖∇Ψ(xf)‖∞ denote the values of Ψ(x) and ‖∇Ψ(x)‖∞ at the final iterate x = xf .

Table 5.1: Numerical results for (large) MCPLIB test
problems

Problem Dim o.it. avg.i.it. Ψ(x0) Ψ(xf ) ‖∇Ψ(xf)‖∞
bert oc 5000 5 1.8 5.13e+01 2.99e-12 1.07e-06
bratu 5625 8 1.6 1.41e+01 4.22e-10 4.21e-05
bishop 1645 — — 1.00e+11 — —
lincont 419 34 45.2 7.11e+03 1.19e-11 7.37e-06
obstacle 2500 7 1.0 2.36e-02 6.79e-10 4.88e-05
opt cont 288 8 1.9 6.09e+01 5.86e-09 8.92e-05
opt cont31 1024 10 1.5 6.76e+01 7.57e-10 3.36e-05
opt cont127 4096 11 2.0 3.89e+01 1.12e-09 4.77e-05
opt cont255 8192 10 2.9 2.64e+01 4.78e-09 1.37e-05
opt cont511 16384 13 3.6 1.84e+01 2.54e-14 3.26e-07
trafelas 2904 39 4.2 5.28e+03 1.10e-11 3.86e-06

With the only exception of example bishop, we see from Table 5.1 that we can solve
all other test examples. These other examples include some problems like lincont or
trafelas which are usually regarded as being quite difficult. We also stress that the
average number of inner iterations is extremely small for all problems except lincont.
This indicates the effectiveness of our preconditioner.

5.3.3 Optimal Control Problems

In this section we look at the practical behavior of the algorithm by considering a variety
of large-scale complementarity problems resulting from suitable discretizations of optimal
control problems. We consider both control problems with control constraints and control
problems with control and state constraints.

Control Problems with Control Constraints

Let Ω ⊂ R
2 be a bounded domain with boundary Γ = ∂Ω, and let yd, ud, ψ ∈ L2(Ω) be

given functions such that yd represents a desired state, ud a desired control, and ψ describes
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the upper bounds on the control variable. Furthermore, let α ≥ 0 denote a regularization
parameter. Our aim is then to find a control u and a corresponding state y minimizing the
functional

J(y, u) =
1

2

∫

Ω

(
y(x)− yd(x)

)2
dx+

α

2

∫

Ω

(
u(x)− ud(x)

)2
dx,

subject to the elliptic state equation

−∆y(x) = u(x), for x ∈ Ω,

the Dirichlet boundary conditions

y(x) = 0, for x ∈ Γ,

and the control constraints
u(x) ≤ ψ(x) a.e. in Ω.

To be more specific, consider the two-dimensional case Ω = (0, 1) × (0, 1) ⊆ R
2, and let

A denote the standard five-point finite difference approximation to the negative Laplacian
with uniform stepsize h := 1/(N + 1) for some N ∈ N, so that we have n := N 2 interior
nodes. Then the discretized optimal control problem becomes

min
u,y

1

2
‖y − yd‖22 +

α

2
‖u− ud‖22 s.t. Ay = u, ψ − u ≥ 0,

where, for simplicity of notation, the discretized functions u, y etc. are denoted by the same
letters as their continuous counterparts.

Because the state variable is not constrained, we can remove the control variable using
u = Ay and obtain the equivalent problem

min
y

1

2
‖y − yd‖22 +

α

2
‖Ay − ud‖22 s.t. ψ − Ay ≥ 0.

Setting v := ψ − Ay, we obtain

min
v

1

2
‖A−1(ψ − v)− yd‖22 +

α

2
‖ψ − v − ud‖22 s.t. v ≥ 0.

Defining vd := yd − A−1ψ and ψd := ud − ψ, we finally obtain the convex problem

min
v
f(v) :=

1

2
‖A−1v + vd‖22 +

α

2
‖v + ψd‖22 s.t. v ≥ 0.

Using the KKT theory, it follows that this convex quadratic optimization problem is equiv-
alent to the linear complementarity problem

v ≥ 0, F (v) ≥ 0, vTF (v) = 0

with
F (v) := ∇f(v) = (A−1A−1 + αI)v + A−1vd + αψd.
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Figure 5.1: Optimal state (left) and optimal control (right) for Example 5.4

Table 5.2: Numerical results for Example 5.4

N 50 100 150 200 250 300
o. it. 10 10 9 13 16 15

avg. i. it. 6.3 20.7 38.0 25.1 31.0 37.5

At this stage we can apply Algorithm 5.1 using the same parameter setting as in the
previous subsection. In order to solve the corresponding linear least squares problem (5.24)
inexactly, we apply the LSQR method with the same termination criteria as described
above.

The matrix Hk arising in the subproblem (5.24) has the structure from (5.27), (5.28)
with F ′(v) = A−1A−1 + αI. Since we only need to compute matrix-vector products of
the form Hkv and HT

k u for certain vectors v and u, respectively, and since the matrix
A corresponds to the standard five-point finite difference approximation of the negative
Laplacian, these matrix-vector products can be computed quite efficiently by, e.g., a fast
sine transform in only O(N 2 log2N) arithmetic operations which is not much more than
O(n) flops.

We apply our method to two examples taken from [3] (also used as test problems in,
e.g., [119, 62]).

Example 5.4 (Control Constraints) The data are α = 0.01, ψ ≡ 0, ud ≡ 0 and
yd(x1, x2) = sin(2πx1) sin(2πx2) exp(2x1)/6. The optimal state and control are depicted in
Figure 5.1.

We present our numerical results (number of outer iterations and average number of
inner LSQR iterations) for this example in Table 5.2 using different discretizations N ∈ N.
Note that the dimension of the corresponding complementarity problem is n = N 2.
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Figure 5.2: Optimal state (left) and optimal control (right) for Example 5.5

Table 5.3: Numerical results for Example 5.5

N 50 100 150 200 250 300
o. it. 12 16 10 10 11 11

avg.i. it. 6.2 12.6 21.2 37.5 45.6 45.2

Note also that the average number of inner iterations is relatively small for this example,
so there was no need to use a fancy preconditioner for the LSQR method.

Example 5.5 (Control Constraints) The data are α = 0.01, ψ ≡ 1, ud ≡ 0 and

yd(x1, x2) =

{
200x1x2(x1 − 0.5)2(1− x2), if 0 < x1 ≤ 0.5,
200x2(x1 − 1)(x1 − 0.5)2(1− x2), if 0.5 < x1 ≤ 1.

The optimal state and control are depicted in Figure 5.2.

Table 5.3 contains the number of inner and outer iterations needed by our method to
solve Example 5.5. Again, we observe a relatively small number of average inner iterations,
so there is no need to use a suitable preconditioner for this example.

Both examples clearly indicate that our inexact semismooth method can be applied
very successfully to optimal control problems with control constraints.

Control Problems with Control and State Constraints

Let Ω ⊂ R
2 be a bounded domain with boundary Γ = ∂Ω. Given yd ∈ L2(Ω), ud, u1, u2, ψ ∈

L2(Γ), α ≥ 0, and suitable functions d : Ω × R → R, b : Γ × R → R, our aim is to find a
control function u ∈ L2(Γ) and a corresponding state y minimizing the functional

J(y, u) =
1

2

∫

Ω

(
y(x)− yd(x)

)2
dx +

α

2

∫

Γ

(
u(x)− ud(x)

)2
dx, (5.29)

subject to the state equation



108 CHAPTER 5. AN INEXACT SEMISMOOTH METHOD

−∆y(x) + d(x, y(x)) = 0, for x ∈ Ω, (5.30)

the Dirichlet boundary conditions

y(x) = b(x, u(x)), for x ∈ Γ, (5.31)

and the control and state constraints

y(x) ≤ ψ(x) a.e. in Ω, u1(x) ≤ u(x) ≤ u2(x) a.e. in Γ. (5.32)

We discretize this problem in a similar way as described in the previous subsection, where
Ω is again the unit square (0, 1)× (0, 1) ⊂ R

2. After discretization we obtain a nonlinear
programming problem of the form

min f(z) s.t. g(z) ≤ 0, h(z) = 0. (5.33)

The corresponding KKT conditions of (5.33) form a mixed complementarity problem which
may be reformulated as an overdetermined nonlinear system of equations Φ(w) = 0, with
Φ : R

n × R
p × R

m → R
n × R

p × R
2m being defined by

Φ(w) := Φ(z, ζ, ξ) :=







∇f(z) + g′(z)T ξ + h′(z)T ζ
h(z)

λ1 ϕFB(ξ, g(z))
λ2ϕ+(ξ, g(z))






, (5.34)

for some λ1, λ2 ∈ R \ {0} (again, we use λ1 = 0.9, λ2 = 0.1 in our implementation),

ϕFB(ξ, g(z)) := (φFB(ξ1, g1(z)), . . . , φFB(ξm, gm(z))T ∈ R
m

and
ϕ+(ξ, g(z)) := (φ+(ξ1, g1(z)), . . . , φ+(ξm, gm(z))T ∈ R

m.

We note that the last m components are again used in order to reduce the complementarity
gap at the current point z.

We now follow [84] and try to achieve the form (5.33) by choosing a number N ∈ N, a
stepsize h = 1/(N + 1), considering the mesh points

xij, 0 ≤ i, j ≤ N + 1,

and defining the following sets of indices (i, j), residing either in the domain Ω or on the
boundary Γ:

I(Ω) := {(i, j) | 1 ≤ i, j ≤ N + 1},
I(Γ) := {(i, j) | i = 1, . . . , N, j = 0 or j = N + 1,

j = 1, . . . , N, i = 0 or i = N + 1 }.
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Obviously, these index sets have the cardinality |I(Ω)| = N 2 and |I(Γ)| = 4N , respectively.
The optimization variable z in (5.33) is taken as the vector

z := ((yij)(i,j)∈I(Ω)∪I(Γ), (uij)(i,j)∈I(Γ)) ∈ R
N2+8N .

Since we have Dirichlet boundary conditions, the dimension of the optimization variable z
can be reduced to a vector in the smaller space R

N2+4N by determining the state variables
(yij)(i,j)∈I(Γ) out of the Dirichlet conditions (5.31).

The discretized form of the cost function (5.29) then becomes

f(z) :=
h2

2

∑

(i,j)∈I(Ω)

(yij − yd,ij)2 +
αh

2

∑

(i,j)∈I(Γ)

(uij − ud,ij)2.

The application of the five-point finite difference approximation of −∆ to the elliptic
equation (5.30) yields the following equality constraints for all (i, j) ∈ I(Ω):

hij(z) := 4yij − yi+1,j − yi−1,j − yi,j+1 − yi,j−1 + h2d(xij, yij) = 0.

Note that the Dirichlet conditions (5.31) are used in the above equation to substitute the
variables (yij)(i,j)∈I(Γ), so we have h : R

N2+4N → R
N2

.
The control and state inequality constraints (5.32) yield the inequality constraints g :

R
N2+4N → R

N2+8N defined by

gij(z) := yij − ψij ≤ 0 ∀(i, j) ∈ I(Ω),
gij(z) := −uij + u1,ij ≤ 0 ∀(i, j) ∈ I(Γ),
gn+i,n+j(z) := uij − u2,ij ≤ 0 ∀(i, j) ∈ I(Γ).

In summary, we obtain a problem of the form (5.33) and therefore get the corresponding
equation reformulation Φ(w) = 0 using certain Lagrange multipliers ζ = (ζij)(i,j)∈I(Ω) and
ξ = (ξij)(i,j)∈I(Ω)∪I(Γ)∪I(Γ).

Example 5.6 (Control and State Constraints) This example is taken from [84] and
has the following data

on Ω : −∆y(x) = 20, y(x) ≤ 3.5, yd(x) = 3 + 5x1(x1 − 1)x2(x2 − 1),
on Γ : y(x) = u(x), 0 ≤ u(x) ≤ 10, ud(x) ≡ 0, α = 0.01.

The cost function evaluated at the optimal control and state by the authors in [84] is
f(ȳ, ū) = 0.196525 for a discretization factor N = 99. The optimal state and adjoint
variable ζ are depicted in Figure 5.3. The control variable is depicted in Figure 5.4.

Example 5.7 (Control and State Constraints) This example is again taken from [84]
and has the same data as Example 5.6 except that α = 0. A singular control is obtained.
The cost function evaluated at the optimal control and state by the authors in [84] is
f(ȳ, ū) = 0.096695 for a discretization factor N = 99. The optimal state and adjoint
variable ζ are depicted in Figure 5.5. The control variable is shown in Figure 5.6.
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Figure 5.3: Optimal state (left) and adjoint variable (right) for Example 5.6
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Figure 5.4: Optimal control for Example 5.6
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Figure 5.5: Optimal state (left) and adjoint variable (right) for Example 5.7
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Figure 5.6: Optimal control for Example 5.7
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Figure 5.7: Optimal state (left) and adjoint variable (right) for Example 5.8

Example 5.8 (Control and State Constraints) This is the third example from [84]
and has the same data as Example 5.6 except that the state and control constraints are
more restrictive:

on Ω : −∆y(x) = 20, y(x) ≤ 3.2, yd(x) = 3 + 5x1(x1 − 1)x2(x2 − 1),
on Γ : y(x) = u(x), 1.6 ≤ u(x) ≤ 2.3 ud(x) ≡ 0, α = 0.01.

The optimal state and adjoint variable ζ are depicted in Figure 5.7. The control variable
is shown in Figure 5.8. The cost function evaluated at the optimal control and state by
the authors in [84] is f(ȳ, ū) = 0.321010 when using N = 99.

Example 5.9 (Control and State Constraints) This is the fourth example from [84]
and has the same data as Example 5.8 except that α = 0. We obtain a bang-bang optimal
control. The optimal state and adjoint variable ζ are depicted in Figure 5.9. The control
variable is shown in Figure 5.10. The cost function evaluated at the optimal control and
state by the authors in [84] is f(ȳ, ū) = 0.249178 for N = 99.

Note that, after the discretization of these examples, we obtain a nonlinear program-
ming problem (5.33) with convex objective function f and linear equality and linear in-
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Figure 5.8: Optimal control for Example 5.8
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Figure 5.9: Optimal state (left) and adjoint variable (right) for Example 5.9
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Figure 5.10: Optimal control for Example 5.9
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equality constraints h and g. This implies the equivalence between (5.33) and the overde-
termined system of equations Φ(x) = 0 from (5.34).

We therefore applied Algorithm 5.1 using the same parameters as in the previous sub-
sections. However, without a suitable preconditioner, LSQR was not able to solve the
larger subproblems successfully. Therefore we had to find a suitable preconditioner M in
order to improve the performance of the LSQR method. To this end, we note that the
matrix Hk from the least squares subproblem (5.24) has the following structure for all test
problems from Examples 5.6–5.9:

Hk =


















1
(N+1)2

I 0 A I 0 0

0 α
N+1

I B 0 −I I

A BT 0 0 0 0
λ1D1 0 0

0 −λ1D2 0 λ1D4

0 λ1D3 0

−λ2D̃1 0 0

0 λ2D̃2 0 λ2D̃4

0 −λ2D̃3 0


















,

where the matrix A ∈ R
N2×N2

is the five-point difference approximation to the negative
Laplace operator, B ∈ R

4N×N2

a sparse matrix with entries 0 or −1, and Di, D̃i, i = 1, 2, 3
are diagonal matrices of suitable dimension.

Taking into account this structure, we decided to take the matrix

M =







0 0 A
0 1

N+1
I B 0

A BT 0
0 I







as a preconditioner for the LSQR matrix since this matrix is both nonsingular and may
be viewed as a suitable approximation to the leading block of Hk. Moreover, we can
solve linear systems involving M once again very efficiently by a fast sine transform. The
numerical results obtained with Algorithm 5.1 using this preconditioner are summarized
in Table 5.4 using different discretizations N ∈ N. The columns in Table 5.4 have the
same meaning as those for Table 5.1 except that we now have one additional column which
shows the optimal value f(ȳ, ū) of the cost function obtained by our method. Note that,
for N = 100, this value is always very close to the corresponding results presented in [84].

Table 5.4: Numerical results for optimal control problems
with mixed constraints

Example N Dim o.it. avg.i.it. Ψ(wf) ‖∇Ψ(wf)‖∞ f(ȳ, ū)
50 8100 14 42.4 7.99e-09 6.19e-05 1.882782e-01

5.6 100 31200 13 55.1 3.79e-10 8.48e-06 1.965488e-01
150 69300 23 96.5 3.53e-09 3.62e-05 1.993628e-01
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Table 5.4: Numerical results for optimal control problems
with mixed constraints (continued)

Example N Dim o.it. avg.i.it. Ψ(wf) ‖∇Ψ(wf)‖∞ f(ȳ, ū)
50 8100 12 53.1 5.30e-10 2.63e-06 8.939136e-02

5.7 100 31200 14 56.9 9.17e-07 9.79e-07 9.659419e-02
150 69300 21 116.3 3.37e-07 7.93e-07 1.000500e-01
50 8100 77 1004.5 3.37e-09 5.09e-05 3.069800e-01

5.8 100 31200 55 516.1 2.48e-06 6.35e-07 3.195118e-01
150 69300 67 596.4 2.64e-06 7.88e-07 3.230811e-01
50 8100 84 1172.1 3.67e-09 5.02e-05 2.358106e-01

5.8 100 31200 57 484.4 2.48e-06 4.45e-07 2.474559e-01
150 69300 75 702.1 2.27e-06 5.43e-07 2.506512e-01

Table 5.4 shows that we are able to solve all optimal control problems with mixed
constraints from Examples 5.6–5.9. The number of outer iterations is quite reasonable for
all test runs. Also the number of inner iterations is at least acceptable taking into account
the overall dimension of the problems.

5.3.4 Obstacle Problems

Let Ω ⊂ R
2 be a given domain with boundary Γ = ∂Ω. The obstacle problem consists in

finding the equilibrium position of an elastic membrane subject to an external force f and
an obstacle ψ. Hence the infinite-dimensional problem is to minimize the total energy

E(u) :=
1

2

∫

Ω

‖∇u‖2dx−
∫

Ω

fudx,

subject to the constraint

u ≥ ψ a.e. in Ω.

The optimality conditions for this infinite-dimensional problem lead to a variational in-
equality which, under a weak regularity condition, is equivalent to the following comple-
mentarity problem

−∆u ≥ f on Ω,

u ≥ ψ on Ω,

(−∆u− f)(u− ψ) = 0 on Ω,

u ≡ 0 on Γ.

(5.35)

In order to discretize this problem, we take once again the standard rectangle Ω = (0, 1)×
(0, 1) and denote by A the five-point finite difference approximation to the negative Laplace
operator on a uniform grid with stepsize h := 1/(N + 1) for some N ∈ N. Then, setting
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v := u − ψ, the discretized problem can be reformulated as a nonlinear complementarity
problem

v ≥ 0, F (v) ≥ 0, vTF (v) = 0 (5.36)

with F (v) := A(v + ψ) − f . Using f = f(v) := λe−ψ−v for some parameter λ ≥ 0, we
obtain the obstacle Bratu problem from [87].

We apply Algorithm 5.1 to this problem using the particular data ψ ≡ −4, λ := 1 and
the same parameters as in the previous subsections. We use the matrix A as a precondi-
tioner for the inner LSQR method. Note again that a linear system with this matrix can be
solved very efficiently. The numerical results are summarized for different discretizations
in Table 5.5.

Table 5.5: Numerical results for the obstacle Bratu prob-
lem

N o.it avg.i.it Ψ(xf) ‖∇Ψ(xf )‖∞
100 7 9.9 2.67e-15 4.13e-05
200 7 11.6 3.28e-11 5.58e-02
300 8 13.9 3.55e-12 1.78e-04
400 8 14.1 6.59e-12 4.86e-04
500 8 14.2 1.05e-11 1.15e-03

Note that both the number of outer iterations and the average number of inner iterations
is extremely small for this example. This is consistent with the observation made in [62]
for a somewhat different method.
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Chapter 6

A Projected Trust Region Filter
Method

In this chapter, we aim at improving the exact method from Chapter 4 further. To this
end, we incorporate two additional features: First, we incorporate the bound constraints
explicitly into the reformulation of the mixed complementarity problem as a least squares
system, so that all iterates stay feasible with respect to these constraints. This should
improve the robustness of the method since it avoids spurious stationary points outside
the box B = [l, u], for example. Second, we add a filter in our trust region method in
order to improve the efficiency of the method. In fact, preliminary numerical experiments
showed that the local method presented in Section 3.2.4 behaves very good, so we try to
accept the full (Levenberg-Marquardt-type) step as often as possible.

The organization of this chapter is as follows. We begin by presenting a projected
Levenberg-Marquardt-type method for the solution of mixed complementarity problems in
Section 6.1. The global and local convergence properties of this method are investigated in
Sections 6.2 and 6.3, respectively. We then incorporate a filter technique into the globalized
method in Section 6.4 and show that all global and local convergence results still hold for
this filter trust region method. Finally, numerical results are presented in Section 6.5.

6.1 Projected Levenberg-Marquardt Method

We reconsider the reformulation of the mixed complementarity as an overdetermined
system of equation Φ(x) = 0, with the operator Φ : R

n → R
2n being the operator

Φ̄ : R
n → R

2n defined in (4.36). Then it was noted in Proposition 4.16 that the overdeter-
mined system of equations Φ(x) = 0 is equivalent to the mixed complementarity problem.
Obviously, the same holds for the box constrained reformulation Φ(x) = 0, x ∈ [l, u], which
we prefer here because this avoids some problems like mappings F which are not defined
outside the feasible region B = [l, u] or possible stationary points outside this set. Hence
we arrive at a problem of the form (3.13). Now the mixed complementarity problem is

117
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equivalent to the box constrained overdetermined system

Φ(x) = 0, x ∈ B, (6.1)

and therefore fits into the framework (3.13) discussed in Section 3.2.4. For the readers
convenience we restate the local projected Levenberg-Marquardt Algorithm 3.14.

Algorithm 6.1 (Projected Levenberg-Marquardt Method for MCPs)

(S.0) Choose x0 ∈ B, and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Choose Hk ∈ ∂CΦ(xk), νk > 0, and compute pkLM as the solution of the linear system

(
HT
k Hk + νkI

)
pLM = −HT

k Φ(xk), Hk ∈ ∂CΦ(xk). (6.2)

(S.3) Compute the projected Levenberg-Marquardt direction

pkPLM := PB(xk + pkLM)− xk = PB−xk(pkLM). (6.3)

(S.4) Set xk+1 = xk + pkPLM , k ← k + 1, and go to (S.1).

We now want to develop a globalized version of Algorithm 6.1 for the solution of the
mixed complementarity problem. For this purpose we note the equivalence between the
box constrained reformulation (6.1) of the MCP and the bound constraint least squares
problem

min Ψ(x) :=
1

2
‖Φ(x)‖2 s.t. x ∈ B. (6.4)

Then it was noted in Theorem 4.18 (b) that the merit function Ψ is continuously differ-
entiable. In view of this observation the Levenberg-Marquardt direction pkLM may equiva-
lently be computed by solving the linear system

(
HT
k Hk + νkI

)
pLM = −∇Ψ(xk),

see (6.2).
Our globalized method is a trust-region algorithm that contains elements from affine-

scaling methods. In fact, we exploit an observation by Coleman and Li [16] who noted
that the first-order optimality conditions of the least squares problem (6.4) are equivalent
to the nonlinear system of equations

G(x) = 0 with G(x) := D(x)r∇Ψ(x),

where r > 0 and
D(x) := diag

(
d1(x), . . . , dn(x)

)
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is a suitable scaling matrix satisfying the following conditions:

di(x)







= 0, if xi = li and [∇Ψ(x)]i > 0,
= 0, if xi = ui and [∇Ψ(x)]i < 0,
≥ 0, if xi ∈ {li, ui} and [∇Ψ(x)]i = 0,
> 0, else.

i = 1, . . . , n. (6.5)

Several different scaling matrices may be found in the literature, see, e.g., [16, 66, 122].
For the sake of simplicity, we will always use the following scaling matrix in this paper:

di(x) :=







min{1, xi − li}, if [∇Ψ(x)]i > 0,
min{1, ui − xi}, if [∇Ψ(x)]i < 0,
min{1, xi − li, ui − xi}, if [∇Ψ(x)]i = 0.

i = 1, . . . , n. (6.6)

This scaling matrix was suggested by Ulbrich [118] and satisfies some additional properties
that will be used in our convergence analysis, see Lemmas 6.5 and 6.10. We note, however,
that other choices are possible, like the one from [66].

For notational convenience, we write

Dk := D(xk) and gk := ∇Ψ(xk).

Let

qk(p) := pTgk +
1

2
pT
(
HT
k Hk + νkI

)
p

be a quadratic approximation of Ψ(xk + p)−Ψ(xk), where xk denotes the current iterate.
We then compute a search direction pk as an approximate solution of the trust region
subproblem

min qk(p) s.t. xk + p ∈ B, ‖p‖∞ ≤ ∆k (6.7)

for some trust region radius ∆k > 0. Note that this is a box constrained quadratic program
with feasible set

Xk := [l − xk, u− xk] ∩ [−∆k,+∆k]
n.

Whether xk + pk can be accepted as the new iterate xk+1 then depends on the ratio

rk :=
aredk(p

k)

predk(p
k)

(6.8)

of the actual and predicted reductions

aredk(p) := Ψ(xk)− Ψ(xk + p) and predk(p) := −qk(p),

respectively. In order to guarantee nice global convergence results, the approximate solu-
tion pk of the trust region subproblem (6.7) has to satisfy at least the feasibility condition

pk ∈ Xk ⇐⇒ xk + pk ∈ B, ‖pk‖∞ ≤ ∆k, (6.9)
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and the fraction of Cauchy decrease condition

qk(p
k) ≤ αqk(p

k
C), (6.10)

where α ∈ (0, 1] is a given constant, and pkC = p(tk) denotes the scaled Cauchy step, where
tk is defined as the solution of the one-dimensional subproblem

mint qk
(
p(t)

)
s.t. p(t) = −tD2

kg
k, t ≥ 0,

‖p(t)‖∞ ≤ ∆k, xk + p(t) ∈ B. (6.11)

Note that, since qk(p
k
C) ≤ qk(0) = 0, we may take the Cauchy step pk = pkC itself in order to

get a suitable approximate solution of the trust region subproblem (6.7) satisfying (6.10).
The overall method is as follows.

Algorithm 6.2 (Scaled Trust Region Method)

(S.0) Choose x0 ∈ B, ∆0 > 0, 0 < ρ1 < ρ2 < 1, 0 < σ1 < 1 < σ2, ε ≥ 0, η ∈ (0, 1), ∆min >
0, α ∈ (0, 1], and set k := 0.

(S.1) If ‖Dkg
k‖ ≤ ε: STOP.

(S.2) Choose Hk ∈ ∂CΦ(xk), νk > 0, and compute pkLM using (6.2).

(S.3) Compute pkPLM from (6.3). If ‖Φ(xk + pkPLM)‖ ≤ η‖Φ(xk)‖ holds, set xk+1 := xk +
pkPLM , ∆k+1 := max{∆min, σ2∆k}, and go to step (S.6); otherwise go to step (S.4).

(S.4) Compute an approximate solution pk of the trust region subproblem (6.7) satisfying
(6.9) and (6.10), and define rk by (6.8). If rk ≥ ρ1, we call the iteration k successful
and set xk+1 := xk + pk; otherwise we set xk+1 := xk.

(S.5) Update the trust region radius as follows:

∆k+1 :=







σ1∆k, if rk < ρ1,
max{∆min,∆k}, if rk ∈ [ρ1, ρ2),
max{∆min, σ2∆k}, if rk ≥ ρ2.

(S.6) Set k ← k + 1, and go to (S.1).

Throughout the rest of this paper, we denote by

ĝk := Dkg
k

the scaled gradient. Using this notation, we can state the following result which is standard
for trust region methods and provides a lower bound for the predicted reduction predk, cf.
[16, Lemma 3.1].
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Lemma 6.3 Let pk be an approximate solution of the subproblem (6.7) satisfying the frac-
tion of Cauchy decrease condition (6.10). Then

predk(p
k) ≥ 1

2
α‖ĝk‖min

{ ‖ĝk‖
‖HT

k Hk + νkI‖
,∆k, 1

}

.

Proof. Consider a fixed iterate xk ∈ B, and recall that the Cauchy step pkC = p(tk) is
given by the solution tk of the one-dimensional problem (6.11) in the variable t = tk. By
definition, the stepsize t ≥ 0 has to satisfy the two requirements

‖tDkĝ
k‖∞ ≤ ∆k and l − xk ≤ −tDkĝ

k ≤ u− xk.

Let t∆ and tB denote the maximum stepsize such that these two conditions hold. Then an
elementary calculation shows that

t∆ =
∆k

‖Dkĝk‖∞
and

tB = min
{

min
i:[Dkĝk]i<0

ui − xki
−[Dkĝk]i

, min
i:[Dkĝk]i>0

xki − li
[Dkĝk]i

}

(note thatDkĝ
k = D2

kg
k 6= 0, since otherwise Algorithm 6.2 would have stopped at iteration

k in step (S.1), hence the two maximum stepsizes are finite numbers).
Now, the definition (6.6) of the scaling matrix Dk implies that, for all i such that

[Dkĝ
k]i < 0, we have di(x

k) = min{1, ui − xki }, and therefore

ui − xki
−[Dkĝk]i

=
ui − xki
−di(xk)ĝki

≥ di(x
k)

di(xk)|ĝki |
=

1

|ĝki |
≥ 1

‖ĝk‖∞
.

In a similar way, we obtain for all i such that [Dkĝ
k]i > 0 the lower bound

xki − li
[Dkĝk]i

=
xki − li
di(xk)ĝki

≥ di(x
k)

di(xk)|ĝki |
=

1

|ĝki |
≥ 1

‖ĝk‖∞
.

Consequently, we have tB ≥ 1
‖ĝk‖∞ . Using the definition (6.6) of the scaling matrix Dk

once again, we get ‖Dkĝ
k‖∞ ≤ ‖Dk‖∞‖ĝk‖∞ ≤ ‖ĝk‖∞. Therefore, we obtain the following

lower bound for the maximum stepsize t̄ of the one-dimensional subproblem (6.11):

t̄ = min{t∆, tB} ≥
1

‖ĝk‖∞
min{1,∆k}. (6.12)

We now derive an upper bound for qk(p
k). Using the fraction of Cauchy decrease condition

(6.10) and the choice of the optimal stepsize tk, we have

qk(p
k) ≤ αqk(p

k
C) = αqk(p(tk)). (6.13)
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Further, recall that the one-dimensional objective function is given by

qk
(
p(t)

)
= −t(gk)TDkĝ

k +
1

2
t2(ĝk)TDk(H

T
k Hk + νkI)Dkĝ

k = −t‖ĝk‖2 +
1

2
t2µk,

where

µk := (ĝk)TDk(H
T
k Hk + νkI)Dkĝ

k > 0.

The strict inequality follows from the fact that Dkĝ
k = D2

kg
k 6= 0 (otherwise we would

have stopped in step (S.1) of Algorithm 6.2) together with the positive definiteness of the
matrix HT

k Hk + νkI. Obviously, this quadratic function attains its global unconstrained
minimum at tmin = ‖ĝk‖2/µk. Then we either have tk < tmin (if tmin > t̄), or tk = tmin (if
tmin ≤ t̄).

We consider these two cases separately. If tk < tmin, we have tk = t̄ < ‖ĝk‖2

µk
, and

therefore, using (6.12),

qk
(
p(tk)

)
= −t̄‖ĝk‖2 +

1

2
t̄2µk < −

1

2
t̄‖ĝk‖2 ≤ −1

2

‖ĝk‖2
‖ĝk‖∞

min{∆k, 1}.

On the other hand, if tk = tmin, we have tk = ‖ĝk‖2/µk, and therefore

qk
(
p(tk)

)
= −tmin‖ĝk‖2 +

1

2
t2minµk = −1

2
tmin‖ĝk‖2 = −1

2

‖ĝk‖4
µk

≤ −1

2

‖ĝk‖2
‖HT

k Hk + νkI‖
.

Here, we used the fact that µk ≤ ‖ĝk‖2‖Dk‖2‖HT
k Hk + νkI‖ ≤ ‖ĝk‖2‖HT

k Hk + νkI‖, since
‖Dk‖ ≤ 1 in view of (6.6).

Since ‖ĝk‖∞ ≤ ‖ĝk‖, we obtain from the last two inequalities that

qk
(
p(tk)

)
≤ −1

2
‖ĝk‖min

{

∆k, 1,
‖ĝk‖

‖HT
k Hk + νkI‖

}

.

The statement now follows from (6.13). 2

As a direct consequence of Lemma 6.3, we have that Algorithm 6.2 is well-defined, since the
denominator predk(p

k) = −qk(pk) in the definition of rk is nonzero for all k ∈ N, otherwise
the algorithm would have stopped at step (S.1). More precisely, Lemma 6.3 shows that
the denominator predk(p

k) is always positive. This, in turn, implies that Ψ(xk+1) ≤ Ψ(xk)
for all iterations k ∈ N for which the test in step (S.3) does not hold. On the other hand,
if this test is satisfied, we also have Ψ(xk+1) ≤ Ψ(xk). Consequently, the entire sequence
{Ψ(xk)} is monotonically decreasing. We will use this fact several times in our subsequent
convergence analysis.

Moreover, the proof of Lemma 6.3 clearly shows how the scaled Cauchy step pkC can be
computed in practice.
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6.2 Global Convergence

The aim of this section is to prove some global convergence results for Algorithm 6.2.
To this end, we assume that Algorithm 6.2 does not terminate after a finite number of
iterations. Furthermore, we recall that Algorithm 6.2 uses two different search directions,
namely the projected Levenberg-Marquardt step pkPLM and the Cauchy-like step pk. The
former will be used in order to prove fast local convergence, whereas the latter is the main
tool for proving global convergence results. Our first result basically shows that the global
convergence properties are not destroyed by using the projected Levenberg-Marquardt
direction.

Theorem 6.4 If the direction pkPLM is accepted an infinite number of times in step (S.3)
of Algorithm 6.2, we have

lim
k→∞
‖Φ(xk)‖ = 0.

Proof. We already observed that the entire sequence {Ψ(xk)} is monotonically de-
creasing. Obviously, this implies that the whole sequence {‖Φ(xk)‖} is also monotonically
decreasing. Since the test ‖Φ(xk + pkPLM)‖ ≤ η‖Φ(xk)‖ is accepted an infinite number of
times in view of our assumptions, we therefore get ‖Φ(xk)‖ → 0 for k →∞ since η ∈ (0, 1).

2

For a complete convergence analysis of Algorithm 6.2, it remains to consider the case
where the direction pkPLM from step (S.3) is accepted only a finite number of times. In the
following global convergence analysis, we therefore assume without loss of generality that
the direction pkPLM is never accepted in step (S.3). Hence, in all iterations k ∈ N, we take
the approximate solution pk from step (S.4).

The technique of proof is similar to the one in [57, 73] for a square system of equations.
In addition, we present another convergence result which is based on a stronger smoothness
property of the mapping x 7→ D(x)∇Ψ(x). We first note that ∇Ψ is continuous on O since
Ψ is continuously differentiable on this set. However, the scaling x 7→ D(x) is discontinuous
at certain points x. Nevertheless, our first result states that the mapping x 7→ D(x)∇Ψ(x)
is continuous, see also [118, Lemma 6.1].

Lemma 6.5 The mapping x 7→ D(x)∇Ψ(x) is continuous on O.

Proof. Let x ∈ O be given, and let i ∈ {1, . . . , n} be an arbitrary component. If either
[∇Ψ(x)]i > 0 or [∇Ψ(x)]i < 0, then it follows immediately from the definition (6.6) of the
scaling matrix D(x) that the mapping x 7→ [D(x)∇Ψ(x)]i = di(x)[∇Ψ(x)]i is continuous
in x. Hence it remains to consider the case where [∇Ψ(x)]i = 0. Let {xk} denote an
arbitrary sequence converging to x. Since ∇Ψ is continuous and the scaling matrix D(x) is
bounded, we obtain [D(xk)∇Ψ(xk)]i → 0 = [D(x)∇Ψ(x)]i, and this completes the proof. 2

From now on, we always assume that the following condition is satisfied.
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(A) The sequence {νk} is bounded.

The following result will be used in order to show that every accumulation point of a
sequence generated by Algorithm 6.2, is a KKT-point of (6.4).

Lemma 6.6 Let {xk} be a sequence generated by Algorithm 6.2, and let {xk}K be a
subsequence converging to a point x∗ ∈ B. If x∗ is not a KKT-point of (6.4), then
lim infk→∞,k∈K ∆k > 0.

Proof. Let K̄ := {k − 1 | k ∈ K}. Then {xk+1}k∈K̄ → x∗, and we have to show that
lim infk→∞,k∈K̄ ∆k+1 > 0. Assume this is not true. Subsequencing if necessary, we may
suppose that

lim
k→∞,k∈K̄

∆k+1 = 0. (6.14)

In view of the updating rules for ∆k+1 in step (S.5), this implies that none of the iterations
k ∈ K̄, with k sufficiently large, is successful. Hence we have

rk < ρ1 (6.15)

and xk = xk+1 for all k ∈ K̄ large enough. Consequently, we also have {xk}k∈K̄ → x∗.
Moreover, since ∆k+1 = σ1∆k for all k ∈ K̄ sufficiently large, it follows from (6.14) that

lim
k→∞,k∈K̄

∆k = 0. (6.16)

Since x∗ is not a KKT-point of (6.4) by assumption, it follows from Lemma 6.5 that there
exists a constant β1 > 0 such that

‖ĝk‖ ≥ β1 (6.17)

for all k ∈ K̄. From the upper semicontinuity of the generalized Jacobian and Assumption
(A), we get the existence of a constant β2 > 0 such that

‖HT
k Hk + νkI‖ ≤ β2 (6.18)

for all k ∈ K̄. Using Lemma 6.3, (6.16), (6.17), and (6.18), we obtain

predk(p
k) ≥ α

2
‖ĝk‖min

{ ‖ĝk‖
‖HT

k Hk + νkI‖
,∆k, 1

}

≥ α

2
β1 min

{β1

β2
,∆k, 1

}

(6.16)
=

α

2
β1∆k

(6.9)

≥ α

2
β1‖pk‖∞

≥ αβ1

2
√
n
‖pk‖

(6.19)
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for all k ∈ K̄ sufficiently large. Since Ψ is continuously differentiable, there exists, for each
k ∈ N, a vector ξk ∈ [xk, xk + pk] such that Ψ(xk + pk) = Ψ(xk)+∇Ψ(ξk)Tpk. This implies

|rk − 1| =

∣
∣
∣
∣

aredk(p
k)

predk(p
k)
− 1

∣
∣
∣
∣

=

∣
∣Ψ(xk)− Ψ(xk + pk) + qk(p

k)
∣
∣

−qk(pk)

=

∣
∣Ψ(xk)− Ψ(xk + pk) +∇Ψ(xk)Tpk + 1

2
(pk)T (HT

k Hk + νkI)p
k
∣
∣

−qk(pk)

=

∣
∣(∇Ψ(xk)−∇Ψ(ξk))Tpk + 1

2
(pk)T (HT

k Hk + νkI)p
k
∣
∣

−qk(pk)
(6.19)

≤ 2
√
n

αβ1

∣
∣(∇Ψ(xk)−∇Ψ(ξk))Tpk + 1

2
(pk)T (HT

k Hk + νkI)p
k
∣
∣

‖pk‖
(6.18)

≤ 2
√
n

αβ1

(

‖∇Ψ(xk)−∇Ψ(ξk)‖+
1

2
β2‖pk‖

)

≤ 2
√
n

αβ1

(

‖∇Ψ(xk)−∇Ψ(ξk)‖+
1

2
β2

√
n∆k

)

K̄→ 0,

where {‖∇Ψ(xk)−∇Ψ(ξk)‖}K̄ → 0 follows from {xk}K̄ → x∗, {ξk}K̄ → x∗ (since ‖pk‖∞ ≤
∆k → 0 for k ∈ K̄ in view of (6.16)) and the continuity of ∇Ψ. Hence {rk}k∈K̄ → 1, which
contradict (6.15). 2

As a direct consequence of Lemma 6.6, we now show that there are infinitely many suc-
cessful iterations (provided that Algorithm 6.2 does not terminate at a stationary point of
(6.4) after a finite number of iterations).

Lemma 6.7 Let {xk} be a sequence generated by Algorithm 6.2. Then there are infinitely
many successful iterations.

Proof. Assume that the number of successful iterations in (S.4) is finite. Then there
exists an index k0 ∈ N such that rk < ρ1 and xk = xk0 for all k ≥ k0. Hence {∆k} → 0
and {xk} → xk0 . This contradicts Lemma 6.6, since ĝk0 = D(xk0)∇Ψ(xk0) 6= 0. 2

We are now in the position to state our first global convergence result.

Theorem 6.8 Let {xk} be any sequence generated by Algorithm 6.2. Then every accumu-
lation point of {xk} is a KKT-point of (6.4).

Proof. We first recall that, as a consequence of Theorem 6.4, we may assume without
loss of generality that the search direction is always computed by step (S.4) of Algorithm
6.2.
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Let x∗ be an accumulation point of {xk}, and let {xk}K be a subsequence converging
to x∗. In view of Lemma 6.7, we can assume, without loss of generality, that all k ∈ K are
successful iterations, since xk+1 = xk for all nonsuccessful iterations k. Suppose that x∗ is
not a KKT-point of (6.4). Then it follows from Lemma 6.5, the upper semicontinuity of
the generalized Jacobian, and Assumption (A) that there exist suitable constants β1 > 0
and β2 > 0 such that

‖ĝk‖ ≥ β1 and ‖HT
k Hk + νkI‖ ≤ β2 (6.20)

for all k ∈ K. Since the iterations k ∈ K are successful, we have rk ≥ ρ1 for all k ∈ K. By
Lemma 6.3 and the fact that the entire sequence {Ψ(xk)} is decreasing and bounded from
below, we have

Ψ(x0) ≥
∞∑

k=0

(
Ψ(xk)− Ψ(xk+1)

)

≥
∞∑

k=0

ρ1 predk(p
k)

≥ ρ1

∑

k∈K
predk(p

k)

≥ αρ1

2

∑

k∈K
‖ĝk‖min

{ ‖ĝk‖
‖HT

k Hk + νkI‖
,∆k, 1

}

≥ αρ1β1

2

∑

k∈K
min

{β1

β2

,∆k, 1
}

.

This implies {∆k}K → 0, a contradiction to Lemma 6.6. 2

We want to give two additional global convergence results which are more traditional in
the context of trust region methods, see, e.g., [17]. To this end, we first introduce the
following assumption.

(B) The sequence {Hk} is bounded.

Then we can state the following result which is weaker than Theorem 6.8 in the sense that
it does not guarantee that every accumulation point is a KKT-point. However, it will be
used in the subsequent result in order to state a stronger convergence theorem.

Theorem 6.9 Suppose that Assumptions (A) and (B) hold, and let {xk} be any sequence
generated by Algorithm 6.2. Then

lim inf
k→∞

‖ĝk‖ = 0. (6.21)

Proof. The proof is by contradiction. Suppose there exists a constant β1 > 0 such that
‖ĝk‖ ≥ β1 for all k ∈ N. Assumptions (A) and (B) imply the existence of a constant β2 > 0
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such that ‖HT
k Hk + νkI‖ ≤ β2 for all k ∈ N. We denote the set of all successful iterates

by S and note that it has infinite cardinality by Lemma 6.7. Since the entire sequence
{Ψ(xk)} is monotonically decreasing, we get from Lemma 6.3 that

Ψ(x0) ≥
∞∑

k=0

(
Ψ(xk)−Ψ(xk+1)

)

≥
∑

k∈S

(
Ψ(xk)−Ψ(xk+1)

)

≥
∑

k∈S
ρ1 predk(p

k)

≥ αρ1

2

∑

k∈S
‖ĝk‖min

{ ‖ĝk‖
‖HT

k Hk + νkI‖
,∆k, 1

}

≥ αρ1β1

2

∑

k∈S
min

{β1

β2

,∆k, 1
}

.

This implies
∑

k∈S ∆k <∞. Taking into account that ‖xk+1− xk‖∞ = ‖pk‖∞ ≤ ∆k for all
k ∈ S, we get

∑

k∈S ‖xk+1 − xk‖∞ <∞. Since ‖xk+1 − xk‖∞ = 0 for all k /∈ S, we obtain

∞∑

k=0

‖xk+1 − xk‖∞ <∞.

Hence {xk} is a Cauchy sequence and therefore convergent to a point x∗. Theorem 6.8 then
implies that x∗ is a KKT-point of (6.4). Consequently, we have ĝ∗ := D(x∗)∇Ψ(x∗) = 0.
However, Lemma 6.5 implies that ĝk → ĝ∗ = 0, a contradiction to our assumption. Hence
(6.21) holds. 2

In order to state our final convergence result, we need to introduce another assumption.

(C) The function ∇Ψ is uniformly continuous and bounded on the box B.

Note that Assumption (C) automatically holds if the box B is a compact set. As a conse-
quence of Assumption (C), we get the following preliminary result, see also [118].

Lemma 6.10 Under Assumption (C), the mapping x 7→ D(x)∇Ψ(x) is uniformly contin-
uous on B.

Proof. Let ε > 0 and i ∈ {1, . . . , n} be arbitrary. Since, by assumption, ∇Ψ is bounded
on B, there is a constant b > 0 such that ‖∇Ψ(x)‖∞ ≤ b for all x ∈ B. Since ∇Ψ is
uniformly continuous, we have the existence of a constant δ̄ > 0 such that

−ε
4
≤ [∇Ψ(y)]i − [∇Ψ(x)]i ≤

ε

4
(6.22)
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holds for all x, y ∈ B with |yi − xi| ≤ δ̄. Now define δ := min{δ̄, 3ε
4b
}, let x, y ∈ B with

‖y − x‖∞ ≤ δ be arbitrary, and set T (x, y) := D(y)∇Ψ(y)−D(x)∇Ψ(x). Then
∣
∣[T (x, y)]i

∣
∣ =

∣
∣di(y)[∇Ψ(y)]i − di(x)[∇Ψ(x)]i

∣
∣

≤ di(y)
∣
∣[∇Ψ(y)]i − [∇Ψ(x)]i

∣
∣ +
∣
∣di(y)− di(x)

∣
∣
∣
∣[∇Ψ(x)]i

∣
∣

(6.6)

≤
∣
∣[∇Ψ(y)]i − [∇Ψ(x)]i

∣
∣+
∣
∣di(y)− di(x)

∣
∣
∣
∣[∇Ψ(x)]i

∣
∣.

(6.23)

We now distinguish several cases.
Case 1. If [∇Ψ(x)]i = 0, we immediately obtain

∣
∣[T (x, y)]i

∣
∣ ≤ ε from (6.23) and (6.22).

Case 2. If [∇Ψ(x)]i > 0, we consider two subcases:
Case 2.1. If [∇Ψ(x)]i ≤ 3ε

8
we obtain

∣
∣[T (x, y)]i

∣
∣ ≤ ε

4
+ 23ε

8
= ε from (6.23).

Case 2.2. If [∇Ψ(x)]i >
3ε
8
, we obtain

[∇Ψ(y)]i =
(
[∇Ψ(y)]i − [∇Ψ(x)]i

)
+ [∇Ψ(x)]i ≥ −

ε

4
+

3ε

8
=
ε

8
> 0

from the first inequality in (6.22). Hence both [∇Ψ(x)]i and [∇Ψ(y)]i are positive, and
(6.23) together with the definition of the scaling matrix D(x) becomes

∣
∣[T (x, y)]i

∣
∣ ≤

∣
∣[∇Ψ(y)]i −∇Ψ(x)]i

∣
∣ +
∣
∣min{1, yi − li} −min{1, xi − li}

∣
∣[∇Ψ(x)]i

≤
∣
∣[∇Ψ(y)]i −∇Ψ(x)]i

∣
∣ +
∣
∣yi − xi

∣
∣ [∇Ψ(x)]i ≤

ε

4
+

3ε

4b
b = ε.

Case 3. Analogously, for [∇Ψ(x)]i < 0, we consider the following two subcases:
Case 3.1. If [∇Ψ(x)]i ≥ −3ε

8
, we obtain

∣
∣[T (x, y)]i

∣
∣ ≤ ε

4
+ 23ε

8
= ε from (6.23).

Case 3.2. If [∇Ψ(x)]i < −3ε
8
, the second inequality in (6.22) implies

[∇Ψ(y)]i =
(
[∇Ψ(y)]i − [∇Ψ(x)]i

)
+ [∇Ψ(x)]i ≤

ε

4
− 3ε

8
= −ε

8
< 0.

Hence [∇Ψ(x)]i and [∇Ψ(y)]i are both negative, and we obtain
∣
∣[T (x, y)]i

∣
∣ ≤

∣
∣[∇Ψ(y)]i −∇Ψ(x)]i

∣
∣ +
∣
∣min{1, ui − yi} −min{1, ui − xi}

∣
∣
∣
∣[∇Ψ(x)]i

∣
∣

≤
∣
∣[∇Ψ(y)]i −∇Ψ(x)]i

∣
∣ +
∣
∣yi − xi

∣
∣
∣
∣[∇Ψ(x)]i

∣
∣ ≤ ε

4
+

3ε

4b
b = ε

from (6.23).
Summarizing all three cases, we obtain ‖T (x, y)‖∞ ≤ ε for all ‖y − x‖∞ ≤ δ. The

assertion of the lemma therefore holds. 2

We are now in the position to state our final global convergence result.

Theorem 6.11 Suppose that Assumptions (A), (B) and (C) hold, and let {xk} be any
sequence generated by Algorithm 6.2. Then

lim
k→∞
‖ĝk‖ = 0. (6.24)
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Proof. Suppose that (6.24) does not hold. Then there is a constant ε > 0 and a
subsequence {xk}K, K ⊆ N, such that

‖ĝk‖ ≥ 2ε ∀k ∈ K. (6.25)

In view of Theorem 6.9, we can find, for each k ∈ K, an index `(k) > k such that

‖ĝ`‖ ≥ ε ∀k ≤ ` < `(k) and ‖ĝ`(k)‖ < ε. (6.26)

Let β2 > 0 be a constant such that ‖HT
k Hk + νkI‖ ≤ β2 for all k ∈ N, cf. Assumptions (A)

and (B). Given k ∈ K, take an arbitrary index ` with k ≤ ` < `(k) and suppose, for the
moment, that iteration ` is successful. Then Lemma 6.3 implies

Ψ(x`)−Ψ(x`+1) ≥ ρ1 pred`(p
`)

≥ 1

2
αρ1‖ĝ`‖min

{ ‖ĝ`‖
‖HT

` H` + ν`I‖
,∆`, 1

}

≥ 1

2
αρ1εmin

{ ε

β2
,∆`, 1

}

≥ 1

2
αρ1εmin

{ ε

β2
, ‖x`+1 − x`‖∞, 1

}

.

Since {Ψ(xk)} converges, we therefore get

Ψ(x`)− Ψ(x`+1) ≥ 1

2
αρ1ε‖x`+1 − x`‖∞

for all these ` sufficiently large. Trivially, this inequality also holds for all nonsuccessful
iterations. Consequently, we get

1

2
αρ1ε‖x`(k) − xk‖∞ ≤ 1

2
αρ1ε

`(k)−1
∑

`=k

‖x`+1 − x`‖∞

≤
`(k)−1
∑

`=k

(
Ψ(x`)− Ψ(x`+1)

)

= Ψ(xk)− Ψ(x`(k))

for all k ∈ K. The convergence of the entire sequence {Ψ(xk)} therefore implies
{
‖x`(k) −

xk‖
}

K
→ 0. In view of Lemma 6.10, we then get

{
‖ĝ`(k)− ĝk‖

}

K
→ 0. On the other hand,

it follows from (6.25) and (6.26) that

‖ĝ`(k) − ĝk‖ ≥ ‖ĝk‖ − ‖ĝ`(k)‖ ≥ 2ε− ε = ε.

This contradiction completes the proof. 2
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6.3 Local Convergence

In this section, we consider the local behavior of Algorithm 6.2. Taking into account
Theorem 3.16, it follows that we only have to show that the projected Levenberg-Marquardt
direction pkPLM from step (S.3) is automatically accepted in a neighborhood of a solution
of (6.1). In order to do this we begin with the following preliminary result.

Lemma 6.12 Let x∗ ∈ R
n be a solution of (6.1) such that all elements from ∂CΦ(x∗) have

full rank, and let ν̄ > 0. Then there exist constants ε > 0 and κ > 0 such that

pT (HTH + νI)p ≥ κ‖p‖2

for all H ∈ ∂CΦ(x) and all x ∈ R
n with ‖x− x∗‖ ≤ ε and all ν ∈ [0, ν̄], i.e., the matrices

HTH + νI are uniformly positive definite.

Proof. It follows from Lemma 3.15 that there exist constants ε > 0 and c > 0 such that

‖(HTH + νI)−1‖ ≤ c ∀x ∈ Bε(x
∗), ∀H ∈ ∂CΦ(x), ∀ν ∈ [0, ν̄]. (6.27)

Since

‖(HTH + νI)−1‖ =
1

λmin(HTH + νI)
=:

1

λxmin

for all x ∈ Bε(x
∗), all H ∈ ∂CΦ(x) and all ν ∈ [0, ν̄], we obtain from (6.27)

(p)T (HTH + νI)p ≥ λxmin‖p‖2 ≥
1

c
‖p‖2 ∀x ∈ Bε(x

∗), ∀H ∈ ∂CΦ(x), ∀ν ∈ [0, ν̄].

Hence the assertion holds with κ := 1
c
. 2

As noticed in Theorem 4.20 the full rank assumption for all elements in the C-subdifferential
∂CΦ(x∗) at a solution x∗ of the MCP is satisfied under the R-regularity condition according
to the Definition in 4.19.

In order to establish our main local convergence theorem we also need the following
result.

Lemma 6.13 Let x∗ ∈ R
n be an R-regular solution of the mixed complementarity problem.

Then there exist constants ε > 0 and γ > 0 such that

‖Φ(x)‖ ≥ γ‖x− x∗‖ for all x ∈ Bε(x
∗).

Proof. Lemma 6.12 implies that there are constants ε1 > 0 and κ > 0 such that

‖H(x− x∗)‖2 = (x− x∗)THTH(x− x∗) ≥ κ‖x− x∗‖2 (6.28)

holds for all x ∈ Bε1(x
∗) and all H ∈ ∂CΦ(x) . Furthermore, the semismoothness of Φ

implies that there is a constant ε2 > 0 such that

‖Φ(x)− Φ(x∗)−H(x− x∗)‖ ≤
√
κ

2
‖x− x∗‖ (6.29)
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holds for all x ∈ Bε2(x
∗) and all H ∈ ∂CΦ(x), cf. Proposition 2.18. Setting ε :=

min{ε1, ε2}, we obtain from (6.28) and (6.29) that, for all x ∈ Bε(x
∗) and all H ∈ ∂CΦ(x),

we have

‖Φ(x)‖ =
∥
∥H(x− x∗) +

(
Φ(x)− Φ(x∗)−H(x− x∗)

)∥
∥

≥ ‖H(x− x∗)‖ − ‖Φ(x)− Φ(x∗)−H(x− x∗)‖

≥ √κ‖x− x∗‖ −
√
κ

2
‖x− x∗‖

=

√
κ

2
‖x− x∗‖.

The statement therefore holds with γ :=
√
κ

2
. 2

We are now in the position to state the main convergence result of this section.

Theorem 6.14 Suppose that Assumption (A) hold, and let {xk} be a sequence generated
by Algorithm 6.2. Assume that x∗ ∈ B is an accumulation point of {xk} such that x∗ is a
R-regular solution of problem (6.1). Then the following statements hold:

(a) The entire sequence {xk} converges to x∗.

(b) The direction pkPLM in (S.3) is always accepted for k sufficiently large so that the next
iterate is given by xk+1 = xk + pkPLM , provided that νk → 0.

(c) The rate of convergence is Q-superlinear if νk → 0.

(d) The rate of convergence is Q-quadratic if νk = O(‖Φ(xk)‖) and, in addition, F is an
LC1 function.

Proof. (a) To establish that the entire sequence {xk} converges to x∗, we first note
that x∗ is an isolated solution of (6.1). This follows immediately from Lemma 6.13. Since
Algorithm 6.2 generates a decreasing sequence {Ψ(xk)} and x∗ is a zero of Φ (and Ψ), it
follows that the entire sequence {Ψ(xk)} converges to zero. Hence every accumulation point
of the sequence {xk} is a solution of (3.13). Consequently, x∗ is an isolated accumulation
point of the sequence {xk}.

Now let {xk}K denote any subsequence converging to x∗, and note that Φ(x∗) = 0 and,
therefore, ∇Ψ(x∗) = 0 .

For all k ∈ N with the search direction pkPLM coming from (S.3), we have

‖xk+1 − xk‖ = ‖pkPLM‖ = ‖PB(xk + pkLM)− xk‖
= ‖PB(xk + pkLM)− PB(xk)‖
≤ ‖xk + pkLM − xk‖
= ‖ − (HT

k Hk + νkI)
−1∇Ψ(xk)‖

≤ ‖(HT
k Hk + νkI)

−1‖ ‖∇Ψ(xk)‖.

(6.30)
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We now consider the iterates k ∈ N where the search direction is the Cauchy-like step pk

coming from (S.4). Using Lemma 6.12, it follows that there is a constant κ > 0 such that

κ‖pk‖2 ≤ (pk)T (HT
k Hk + νkI)p

k (6.31)

for all k ∈ K sufficiently large. On the other hand, since qk(p
k) ≤ 0, we get

1

2
(pk)T (HT

k Hk + νkI)p
k ≤ −∇Ψ(xk)Tpk. (6.32)

From (6.31), (6.32), and the Cauchy-Schwarz inequality, we obtain

κ‖pk‖2 ≤ 2‖∇Ψ(xk)‖ ‖pk‖.

This implies

‖xk+1 − xk‖ ≤ ‖pk‖ ≤ 2

κ
‖∇Ψ(xk)‖. (6.33)

Since {∇Ψ(xk)}K → ∇Ψ(x∗) = 0, we obtain from (6.30), (6.33), and the boundedness
of the sequence {‖(HT

k Hk + νkI)
−1‖} (see Lemma 4.5) that {‖xk+1 − xk‖}K → 0. Hence

statement (a) follows from [89, Lemma 4.10].

(b), (c), (d) We only have to prove statement (b), since (c) and (d) then follow directly
from Theorem 3.16.

To this end, we first recall from the proof of Theorem 3.16 that

‖xk + pkLM − x∗‖ = o(‖xk − x∗‖), (6.34)

provided that νk → 0. Furthermore, Lemma 6.13 implies that there is a constant γ > 0
such that

‖Φ(xk)‖ ≥ γ‖xk − x∗‖ (6.35)

for all k ∈ N sufficiently large. Using (6.35) and (6.34), we obtain

‖Φ(xk + pkLM)‖
‖Φ(xk)‖ ≤ ‖Φ(xk + pkLM)‖

γ‖xk − x∗‖

=
‖Φ(xk + pkLM)− Φ(x∗)‖

γ‖xk − x∗‖

≤ L‖xk + pkLM − x∗‖
γ‖xk − x∗‖

→ 0,

where L > 0 denotes the local Lipschitz constant of Φ (note that Φ is semismooth and
therefore, in particular, locally Lipschitzian). Hence we have

‖Φ(xk + pkLM)‖ = o(‖Φ(xk)‖). (6.36)
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Using the definition of pkPLM and exploiting the definition of the projection PB, we obtain

‖pkPLM − pkLM‖ = ‖PB(xk + pkLM)− (xk + pkLM)‖
x∗∈B
≤ ‖x∗ − (xk + pkLM)‖

(6.34)
= o(‖xk − x∗‖)

(6.35)
= o(‖Φ(xk)‖).

(6.37)

From (6.37) and (6.36), we now get

‖Φ(xk + pkPLM)‖ ≤ ‖Φ(xk + pkPLM)− Φ(xk + pkLM)‖+ ‖Φ(xk + pkLM)‖
≤ L‖pkPLM − pkLM‖+ ‖Φ(xk + pkLM)‖
= o(‖Φ(xk)‖),

and this shows that the test in (S.3) is passed by the direction pkPLM for all k ∈ N suffi-
ciently large. 2

6.4 A Projected Filter Trust Region Method

In this section, we present a variant of Algorithm 6.2 by adding a filter technique into
our projected Levenberg-Marquardt trust region method. We will show that this method
has essentially the same global and local convergence properties as Algorithm 6.2 itself.
However, the filter allows a nonmonotone behavior of the sequence {Ψ(xk)} by accepting
the full projected Levenberg-Marquardt step even in some situations where we get no
decrease of the merit function Ψ.

Originally, filter methods were proposed in the year 2002 by Fletcher and Leyffer [40]
for the solution of constrained optimization problems, see also [39, 47, 121, 123] for some
further developments in this direction. Extensions of the filter idea to the solution of
nonlinear systems of equations can be found in Fletcher and Leyffer [41] as well as in Gould
et al. [47]. Here we adapt the multidimensional filter approach from [47] and incorporate
that idea into our method for the solution of problem (3.13).

More precisely, we simplify the approach from [47] to some extent and present a special
case of that filter approach only. This version is tailored to the case where we apply
our method to mixed complementarity problems. To describe the filter idea, let r ∈
{1, . . . , m− 1} be any given number, and partition the mapping Φ : R

n → R
m into

Φ(x) :=

(
ΦA(x)
ΦB(x)

)

with ΦA : R
n → R

r, ΦB : R
n → R

m−r.

Then define a mapping θ : R
n → R

2 by

θ(x) :=
(
θ1(x), θ2(x)

)T
:=
(
‖ΦA(x)‖, ‖ΦB(x)‖

)T
.
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We say that a vector x ∈ R
n dominates another vector y ∈ R

n if θi(x) ≤ θi(y) for both
i = 1 and i = 2. Now suppose that we are at the kth iteration of a suitable method and
that we have generated certain iterates x0, x1, . . . , xk. Then a filter Fk at the kth iteration
is a subset

Fk ⊆
{
θ(x0), θ(x1), . . . , θ(xk)

}

such that none of the elements θ(xl) ∈ Fk dominates another element from the set Fk.
Assume that a filter Fk is given, and that we have computed a new vector y (which

we hope to become xk+1). The question is when θ(y) becomes an element of the new
filter Fk+1. A straightforward idea would be to add θ(y) to the old filter Fk if θ(y) is not
dominated by any element from Fk. However, this notion is not strong enough in order to
prove suitable convergence results.

Following [47], we therefore call y acceptable for the filter Fk if there is a constant
γθ > 0 such that, for each element θ(xl) ∈ Fk, there is an index j ∈ {1, 2} with

θj(y) ≤ θj(x
l)− γθ‖θ(y)‖.

Loosely speaking, this means that θ(y) is acceptable if, for each element θ(xl) ∈ Fk, the
new candidate θ(y) is sufficiently smaller than θ(xl) in at least one of the two components.
In this case we define the new filter by

Fk+1 := Fk ∪ {θ(y)}

and remove all elements from Fk that are dominated by θ(y). Moreover, we accept xk+1 :=
y as our new iterate. On the other hand, if y is not acceptable for the filter Fk, we simply
set Fk+1 := Fk.

Finally, we note that, in a very natural way, the definition of Φ from (4.36) leads to
the partition Φ = (ΦA,ΦB), where ΦA denotes the first n components and ΦB the last n
components of Φ. Hence we can apply our filter technique described above with r := n to
this reformulation of mixed complementarity problems.

Incorporating this filter idea into Algorithm 6.2, we obtain the following method.

Algorithm 6.15 (Scaled Filter Trust Region Method)

(S.0) Choose x0 ∈ B, ∆0 > 0, 0 < ρ1 < ρ2 < 1, 0 < σ1 < 1 < σ2, ε ≥ 0, η ∈ (0, 1), ∆min >
0, α ∈ (0, 1],M > 0, and set F0 := {θ(x0)}, k := 0.

(S.1) If ‖Dkg
k‖ ≤ ε: STOP.

(S.2) Choose Hk ∈ ∂CΦ(xk), νk > 0, and compute pkLM using (6.2).

(S.3) Compute pkPLM from (6.3). If xk + pkPLM is acceptable for the filter Fk and ‖Φ(xk +
pkPLM)‖ ≤ M , set xk+1 := xk + pkPLM , ∆k+1 := max{∆min, σ2∆k},Fk+1 := Fk ∪
{θ(xk+1)} (and remove all entries from Fk that are dominated by θ(xk+1)), and go
to step (S.7); otherwise set Fk+1 := Fk, and go to (S.4).
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(S.4) If ‖Φ(xk+pkPLM)‖ ≤ η‖Φ(xk)‖ holds, set xk+1 := xk+pkPLM , ∆k+1 := max{∆min, σ2∆k},
and go to (S.7); otherwise, go to step (S.5).

(S.5) Compute an approximate solution pk of the trust region subproblem (6.7) satisfying
(6.9) and (6.10), and define rk by (6.8). If rk ≥ ρ1, we call the iteration k successful
and set xk+1 := xk + pk; otherwise we set xk+1 := xk.

(S.6) Update the trust region radius as follows:

∆k+1 :=







σ1∆k, if rk < ρ1,
max{∆min,∆k}, if rk ∈ [ρ1, ρ2),
max{∆min, σ2∆k}, if rk ≥ ρ2.

(S.7) Set k ← k + 1, and go to (S.1).

Note that Algorithm 6.15 differs from Algorithm 6.2 only in (S.3) where we added the
filter strategy. Furthermore, note that we have a constant M which we assume to be
sufficiently large in practice such that the test ‖Φ(xk + pkPLM)‖ ≤ M is always satisfied.
From a theoretical point of view, however, this constant M is needed and plays the role of
a safeguard in order to prevent the sequence {‖Φ(xk)‖} to become too large. In fact, we
have the following simple note.

Remark 6.16 The sequence {xk} generated by Algorithm 6.15 has the property that
‖Φ(xk)‖ ≤ max

{
‖Φ(x0)‖,M

}
for all k ∈ N. This can be seen by induction. For k = 0,

this inequality holds trivially. Hence suppose that it holds for some k ≥ 0, and consider
the iterate xk+1. If this iterate is computed in step (S.3), we have ‖Φ(xk+1)‖ ≤ M . Oth-
erwise, we have ‖Φ(xk+1)‖ ≤ ‖Φ(xk)‖, and the statement then follows from the induction
hypothesis.

The following result shows what happens if the new vector xk+pkPLM is accepted an infinite
number of times by our filter step in (S.3).

Theorem 6.17 Assume there are infinitely many iterations k such that xk+1 = xk+pkPLM
is accepted in the filter step (S.3) of Algorithm 6.15. Then

lim
k→∞
‖Φ(xk)‖ = 0.

Proof. Let K ⊆ N denote the infinite subset such that xk+1 = xk + pkPLM is accepted for
all k ∈ K in step (S.3) of Algorithm 6.15. In the first part of the proof, we show that

lim
k∈K
‖θ(xk+1)‖ = 0. (6.38)

Suppose this is not true. Then we may assume that there is a infinite subset K̄ ⊆ K and
a constant ε > 0 such that

‖θ(xk+1)‖ ≥ ε ∀k ∈ K̄. (6.39)
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In view of step (S.3) of Algorithm 6.15, the sequence {θ(xk+1)}k∈K̄ is bounded. Hence
there is another subset K̂ ⊆ K̄ with

lim
k∈K̂

θ(xk+1) = θ∗ (6.40)

for some number θ∗ ∈ R
2 satisfying ‖θ∗‖ ≥ ε.

For the moment, consider a fixed index k ∈ K̂. Furthermore, let lk ∈ K̂ denote the
index in K̂ previous to k. Since xk+1 was acceptable for the filter Fk, we have

θj(x
k+1) ≤ θj(x

lk+1)− γθ‖θ(xk+1)‖ (6.41)

for at least one index j ∈ {1, 2}. This statement does not depend on θ(xlk+1) still being in
the filter Fk. Indeed, if θ(xlk+1) /∈ Fk, it must be dominated by an entry θ(xl) in the filter
Fk. Since xk+1, k ∈ K̂, is acceptable for θ(xl) ∈ Fk, there is an index j ∈ {1, 2} such that

θj(x
k+1) ≤ θj(x

l)− γθ‖θ(xk+1)‖ ≤ θj(x
lk+1)− γθ‖θ(xk+1)‖,

where the last inequality holds since θ(xl) dominates θ(xlk+1). Hence (6.41) holds. Together
with (6.39), we obtain

θj(x
k+1)− θj(xlk+1) ≤ −γθε

for at least one index j ∈ {1, 2}. However, the left-hand side converges to zero for at least
one index j ∈ {1, 2} because of (6.40). This contradiction shows that (6.38) holds.

As an immediate consequence of (6.38), we also obtain limk∈K ‖Φ(xk+1)‖ = 0. How-
ever, for all k /∈ K, we have ‖Φ(xk+1)‖ ≤ ‖Φ(xk)‖. Hence we obtain limk→∞ ‖Φ(xk)‖ = 0,
and this completes the proof. 2

Theorem 6.17 shows that every accumulation point of a sequence generated by Algorithm
6.15 is actually a solution of (6.1) and not just a stationary point of (6.4), provided the
filter is accepted an infinite number of times. Hence we get a very strong global convergence
result in this case. Moreover, it is easy to see that all statements of the local convergence
result from Theorem 6.14 remain true in this case.

On the other hand, if the filter is accepted only a finite number of times, then Algorithm
6.15 eventually reduces to Algorithm 6.2, and in this case Algorithm 6.15 has precisely the
same convergence properties of Algorithm 6.2 as described in the previous sections.

6.5 Numerical Experiments

We implemented Algorithm 6.15 in MATLAB and tested the algorithm on a number of
mixed complementarity problems from the MCPLIB collection (see [22]) using the refor-
mulation from the previous section.

Preliminary numerical experiments showed that the local method behaves extremely
good. We therefore decided to use the local method as a preprocessor before starting the
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main algorithm. More precisely, we first allow at most 20 iterations of the local method, and
then switch to the globalized trust-region filter method from Algorithm 6.15. Moreover,
we follow an idea by Ulbrich [118] and compute the direction pkPLM using a projection onto
the intersection of the box B and the trust-region bound rather than a projection onto
B alone. Note that, locally, this does not change anything since pkPLM → 0 whereas the
trust-region radius ∆k ≥ ∆min is bounded away from zero. In particular, neither the global
nor the local convergence theory is affected by this modification.

We next describe the initialization of our method: The starting point x0 is the one from
the MCPLIB collection. It always belongs to the box B, so there is no need to project
it onto the feasible set. The Levenberg-Marquardt parameter νk is chosen as follows: For
smaller problems with n < 100, we first estimate the condition number of the matrix
HT
k Hk. If this estimated condition number is larger than 1025, we set νk := 10−6/(k + 1),

otherwise we set νk := 10−16. In all other cases, we take νk := 0. (Note the condition
estimator becomes expensive for larger problems, so we do not use it for problems with
n ≥ 100.) We terminate our iteration if one of the following conditions hold:

Ψ(xk) ≤ 10−10 or ‖ĝ(xk)‖ ≤ 10−6 or k > 500 or ∆k ≤ 10−12.

The remaining parameters used by our method are λ1 = 0.1, λ2 = 0.9, α = 10−4, ρ1 =
10−4, ρ2 = 0.75, σ1 = 0.5, σ2 = 2,∆0 = 10, and ∆min = 10−6.

If the preprocessor is not able to solve a problem or if ‖pkPLM‖ ≤ 10−12, we switch
to Algorithm 6.15 starting with the best point computed so far. We then test whether
our slightly modified projected step pkPLM is acceptable for the current filter or satisfies the
descent condition in (S.4). If this is not the case and pkPLM also fails to satisfy the fraction of
Cauchy decrease condition, we compute pk in (S.5) by solving the trust-region subproblem
(6.7) exactly. Here, the QP-solver MINQ from Neumaier [92] is used. This is a MATLAB
routine for bound constrained quadratic programs, and we allow at most n inner iterations
for each call of this QP-solver. Unfortunately, sometimes we do not succeed in solving the
trust-region subproblem even with a higher number of inner QP-iterations. The number
of errors produced by MINQ grows with the dimension n of the mixed complementarity
problem. For this reason, we exclude from our test all problems of the MCPLIB with
size n > 160. Alternatively, we could compute an approximate solution of the trust-region
subproblem like a Cauchy step or a simple dogleg step, however, according to our numerical
tests, it is better to solve (or try to solve) the QP-subproblem exactly.

Our numerical results are summarized in Table 6.1. In this table the first column gives
the name of the problem; itot gives the total number of outer iterations (adding the iteration
numbers from the preprocessor and the main algorithm). The entry ’–’ is used to indicate
that the algorithm terminated unsuccessfully; Ψ(xf ) and ‖ĝ(xf )‖ denote the values of
Ψ(x) and ‖ĝ(x)‖ at the final iterate x = xf ; ifil gives the number of filter steps taken and
ides the number of descent steps satisfying the criterion in (S.4) of Algorithm 6.15. The
remaining two columns contain nonzero numbers only if we solve our QP-subproblem using
MINQ. The entries of column iTR report the number of successful (left) and the number
of unsuccessful trust-region steps (right); moreover, column iQP gives the number of QP-
problems that were solved successfully (left) and unsuccessfully (right). In the latter case,
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we do not stop our iteration if the final approximate solution provided by MINQ satisfies
the fraction of Cauchy decrease condition.

Table 6.1: Numerical results for MCPLIB test problems

Problem itot Ψ(xf) ‖ĝ(xf )‖ ifil ides i TR i QP

succ unsucc solv unsolv

badfree 4 1.589642e-14 3.088351e-08 0 0 0 0 0 0
bertsekas 11 1.276482e-11 3.156252e-05 0 0 0 0 0 0
billups – 2.000000e-06 0.000000e+00 0 0 0 0 0 0
choi 5 2.649619e-16 4.405966e-10 0 0 0 0 0 0
colvdual 14 9.073964e-11 9.450997e-05 0 0 0 0 0 0
colvnlp 6 4.885855e-16 4.901420e-08 0 0 0 0 0 0
cycle 4 8.921959e-12 4.224224e-07 0 0 0 0 0 0
degen 4 3.151895e-17 1.122835e-09 0 0 0 0 0 0
duopoly – 5.163723e+00 4.977950e-07 14 0 22 5 14 13
ehl k40 12 1.511446e-13 1.842138e-04 0 0 0 0 0 0
ehl k60 15 3.103870e-11 6.406644e-04 0 0 0 0 0 0
ehl k80 14 9.474365e-13 3.872440e-03 0 0 0 0 0 0
ehl kost 17 5.651902e-12 1.512516e-02 0 0 0 0 0 0
electric 52 1.745588e-11 1.238040e-02 23 0 4 5 4 0
explcp 4 7.407629e-14 3.849074e-08 0 0 0 0 0 0
freebert 11 4.545773e-11 5.974924e-05 0 0 0 0 0 0
gafni 10 6.420657e-13 9.795657e-06 0 0 0 0 0 0
games 13 4.384397e-13 1.618921e-05 0 0 0 0 0 0
hanskoop 14 1.231700e-11 3.573738e-06 0 0 0 0 0 0
hydroc06 7 5.792347e-19 1.566474e-09 0 0 0 0 0 0
hydroc20 10 2.322843e-16 5.090809e-05 0 0 0 0 0 0
jel 8 3.651083e-18 1.601171e-08 0 0 0 0 0 0
josephy 2 2.989144e-11 6.436729e-05 0 0 0 0 0 0
kojshin 2 3.004186e-11 6.452607e-05 0 0 0 0 0 0
mathinum 4 3.024771e-12 6.673325e-07 0 0 0 0 0 0
mathisum 8 2.199503e-16 1.559264e-08 0 0 0 0 0 0
methan08 4 6.252855e-13 2.274457e-02 0 0 0 0 0 0
nash 4 2.354633e-19 7.457045e-09 0 0 0 0 0 0
ne-hard 20 5.337625e-11 1.323158e-04 0 0 0 0 0 0
pgvon106 69 1.387117e-12 1.325755e-01 4 0 11 34 42 3
pies 29 1.739675e-13 1.328305e-03 8 0 0 1 0 0
powell 4 5.659114e-11 7.740843e-06 0 0 0 0 0 0
powell mcp 2 2.728284e-13 6.048681e-06 0 0 0 0 0 0
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Table 6.1: Numerical results for MCPLIB test prob-
lems (continued)

Problem itot Ψ(xf) ‖ĝ(xf )‖ ifil ides i TR i QP

succ unsucc solv unsolv

qp 2 1.603357e-31 1.025472e-15 0 0 0 0 0 0
scarfanum 3 3.605079e-12 1.796300e-06 0 0 0 0 0 0
scarfasum 3 3.604872e-12 2.255827e-06 0 0 0 0 0 0
scarfbsum 120 1.507297e-11 9.669907e-04 7 1 57 35 89 2
shubik – 1.407769e-07 4.303409e-03 74 8 161 237 290 91
simple-ex 25 1.079537e-13 4.142756e-07 5 0 0 0 0 0
simple-red 10 2.173645e-11 5.866415e-06 0 0 0 0 0 0
sppe 3 4.251553e-11 1.849914e-04 0 0 0 0 0 0
tinloi 6 7.639515e-12 7.292264e-04 0 0 0 0 0 0
tobin 2 1.474605e-14 1.352957e-05 0 0 0 0 0 0

Table 6.1 shows that our method was able to solve the majority of all test examples.
Most of them were solved in less than 20 iterations and, therefore, by our preprocessor
which turns out to be very effective. We have failures only on three problems, namely
billups, duopoly, and shubik. For billups and duopoly, we terminate with a stationary
point, whereas the function value in the final iteration of shubik is very small, but does
not satisfy our termination criterion. We also stress that we have a relatively high number
of unsolved QP-subproblems for the two examples duopoly and shubik which might be
the reason for the failure of the overall algorithm. However, we also tried some other QP-
solvers, but, in general, MINQ seems to be a good choice for bound constrained quadratic
programs. Finally, we mention that we changed example pgvon106 slightly by adding a
small number to the lower bounds. This prevents difficulties in computing the function
value F (x) when x is close to the lower bounds.
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Conclusions

The contributions of this thesis are concerned with solving nonlinear and mixed comple-
mentarity problems.

• In Section 3.2.4, we developed a local projected Levenberg-Marquardt method for
box constrained least squares problems, which in turn can be used to address mixed
complementarity problems. The convergence was shown to be locally fast.

• In Chapter 4, a new reformulation of nonlinear and mixed complementarity problems
was given, whose properties were shown to be similar to the Fischer-Burmeister
reformulation. However, the new reformulation avoids certain drawbacks of the latter
approach. Proposing a Levenberg-Marquardt-type method with line search, global
and fast local convergence were established. This new method turns out to be very
reliable for the examples from the MCPLIB.

• In Chapter 5, we developed an inexact variant of the method from Chapter 4 which
was shown to be able to solve large-scale mixed complementarity problems, such as
those arising from optimal control and obstacle problems. It was proven that the
global and fast local convergence properties are preserved.

• In Chapter 6, we proposed yet another approach for solving mixed complementarity
problems by combining the ideas developed in Section 3.2.4 and Chapter 4 with a
trust region globalization strategy. Additionally, a filter technique is incorporated to
improve the efficiency of the overall method. Again, superior global and fast local
convergence properties are established. Surprisingly, the numerical experiments re-
vealed the robustness of the method even without any globalization strategy. On the
other hand, it turned out that, when applying globalization, the attained robustness
was inferior compared to the method from Chapter 4.

As a result of our theoretical and algorithmic investigations, MATLAB functions for solving
mixed complementarity problems were developed. This implementation combines the local
method from Chapter 6 with the global method from Chapter 4. These functions are online
available from http://www.mathematik.uni-wuerzburg.de/~petra/.

The work presented in this thesis admits several extensions.

• The regularity conditions for local convergence presented in the preceding chapters
can possibly be weakened. One direction to obtain improvements could be the con-
struction of other least squares formulations of the complementarity problem.

141



142 CONCLUSIONS

• The method of Chapter 6 is of limited value for large scale problems. To address
such problems, it is necessary to use solvers for large scale QP-problems with box
constraints.

• Although LMMCP has been demonstrated to be a robust solver, the current imple-
mentation admits further possibilities for improvements, which will be incorporated
in future versions of this program.
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convergence of trust-region SQP-filter algorithms for nonlinear programming. SIAM
J. Optim. 13, pp. 635–659.

[40] R. Fletcher and S. Leyffer (2002). Nonlinear programming without a penalty function.
Math. Program., 91, pp. 239–269.

[41] R. Fletcher and S. Leyffer (2003). Filter-type algorithms for solving systems of al-
gebraic equations and inequalities. In: G. Di Pillo and A. Murli (Eds.), High-
Performance Algorithms and Software in Nonlinear Optimization. Kluwer, Dordrecht,
The Netherlands, pp. 259–278.

[42] R. Fletcher, S. Leyffer, and Ph.L. Toint (2002). On the global convergence of a filter-
SQP algorithm. SIAM J. Optim., 13, pp. 44–59.

[43] C. Geiger and C. Kanzow (1996). On the resolution of monotone complementarity
problems. Comput. Optim. Appl., 5, pp. 155–173.

[44] C. Geiger und C. Kanzow (1999). Numerische Verfahren zur Lösung unrestringierter
Optimierungsaufgaben. Springer-Verlag.

[45] C. Geiger und C. Kanzow (2002). Theorie und Numerik restringierter Opti-
mierungsaufgaben. Springer-Verlag.

[46] A.A. Goldstein (1967). Constructive Real Analysis. Harper and Row, New York-
Evanston-London.

[47] N.I.M. Gould, S. Leyffer, and Ph.L. Toint (2004). A multidimensional filter algorithm
for nonlinear equations and nonlinear least squares. SIAM J. Optim., 15, pp. 17–38.

[48] L. Grippo, F. Lampariello and S. Lucidi (1986). A nonmonotone line search technique
for Newton’s method. SIAM J. Numer. Anal., 23, pp. 707–716.

[49] L. Grippo, F. Lampariello and S. Lucidi (1991). A class of nonmonotone stabilization
methods in unconstrained optimization. Num. Math., 59, pp. 779–805.

[50] N.I.M. Gould, S. Lucidi , M. Roma , P.L. Toint (1999). Solving the Trust-Region
Subproblem using the Lanczos Method. SIAM Journal on Optimization, 9, pp.504–
525.

[51] P.T. Harker and J.S. Pang (1990). Finite-dimensional variational inequality and non-
linear complementarity problems: A survey of theory, algorithms and applications.
Math. Program., 48, pp. 161–220.

[52] P.T. Harker and B. Xiao (1990). Newton’s method for nonlinear complementarity
problem: a B-differentiable equation approach. Math. Program., 48, 339–357.



BIBLIOGRAPHY 147

[53] N.J. Higham. Accuracy and Stability of Numerical Algorithms. 2nd edition. SIAM,
Philadelphia, PA, 2002.

[54] N.H. Josephy (1979). Newton’s method for generalized equations. Technical Summary
Report 1965, Mathematics Research Center, University of Wisconsin, Madison.

[55] M. Jacobsen, P.C. Hansen, and M.A. Saunders (2003). Subspace preconditioned LSQR
for discrete ill-posed problems. BIT Num. Math. 43, pp. 975–989.

[56] H. Jiang (1999). Global convergence analysis of the generalized Newton and Gauss-
Newton methods of the Fischer-Burmeister equation for the complementarity problem.
Math. Oper. Res., 24, pp. 529–543.

[57] H. Jiang, M. Fukushima, L. Qi, and D. Sun (1998). A trust region method for solving
generalized complementarity problems. SIAM J. Optim., 8, pp. 140–157.

[58] C. Kanzow (1996). Some noninterior continuation methods for linear complementarity
problems. SIAM J. Matrix Anal. Appl., 17, pp. 851–868.

[59] C. Kanzow (1998). An inexact QP-based method for nonlinear complementarity prob-
lems. Numer. Math., 80, pp. 557–577.

[60] C. Kanzow (2001). Strictly feasible equation-based methods for mixed complementar-
ity problems. Numer. Math., 89, pp. 135–160.

[61] C. Kanzow (2004). Some equation-based methods for the nonlinear complementarity
problem. Optim. Meth. and Soft. 3, pp. 327-340.

[62] C. Kanzow (2004). Inexact semismooth Newton methods for large-scale complemen-
tarity problems. Optim. Meth. and Soft. 19, pp. 309-325.

[63] C. Kanzow (2005). Nichtglatte Analysis mit Anwendungen. Vorlesungsskript zur Vor-
lesung Optimierungsmethoden II, Sommersemester 2005, Universität Würzburg.

[64] C. Kanzow and H. Kleinmichel (1995). A class of of Newton-type methods for equality
and inequality constrained optimization. Optim. Meth. and Soft. 5, pp. 173–198.

[65] C. Kanzow and H. Kleinmichel (1998). A new class of semismooth Newton-type meth-
ods for nonlinear complementarity Problems. Comp. Optim. Appl. 11, pp. 227–251.

[66] C. Kanzow and A. Klug (2004). On affine-scaling interior-point Newton methods for
nonlinear minimization with bound constraints. Comput. Optim. Appl., to appear.

[67] C. Kanzow and S. Petra (2004). On a semismooth least squares formulation of com-
plementarity problems with gap reduction. Optim. Meth. and Soft., 19, pp. 507–525.



148 BIBLIOGRAPHY

[68] C. Kanzow and S. Petra (2004). An inexact semismooth least squares method for large-
scale complementarity problems. Preprint 257, Institute of Applied Mathematics and
Statistics, University of Würzburg, December 2004.

[69] C. Kanzow and S. Petra (2005). Projected filter trust region methods for a semismooth
least squares formulation of mixed complementarity problems. Preprint 262, Institute
of Applied Mathematics and Statistics, University of Würzburg, September 2005.

[70] C. Kanzow and H. Pieper (1999). Jacobian smoothing methods for nonlinear comple-
mentarity problems. SIAM J. Optim., 9, pp. 342–373.

[71] C. Kanzow, N. Yamashita and M. Fukushima (1997). New NCP-functions and their
properties. J. Optim. Theory Appl., 94, pp. 115–135.

[72] C. Kanzow, N. Yamashita, and M. Fukushima (2004). Levenberg-Marquardt methods
with strong local convergence properties for solving nonlinear equations with convex
constrains. J. Comput. Appl. Math. 172, pp. 375–397.

[73] C. Kanzow and M. Zupke (1999). Inexact trust-region methods for nonlinear comple-
mentarity problems. In: M. Fukushima and L. Qi (Eds.), Reformulation - Nonsmooth,
Piecewise Smooth, Semismooth and Smoothing Methods. Kluwer Academic Press, Dor-
drecht, The Netherlands, pp. 211–233.

[74] N.K. Karmakar (1984). A new polynomial-time algorithm for linear programming.
Combinatorica, pp. 373-395.

[75] B. Kummer (1992). Newton’s method based on generalized derivatives for nonsmooth
functions: Convergence analysis. Advances in optimization (Lambrecht, 1991), W.
Oettli and D. Pallaschke, eds., Springer, Berlin, pp. 171–194.

[76] C.E. Lemke (1965). Bimatrix equilibrium points and mathematical programming.
Manage. Sci., Ser. A, 11, 681–689.

[77] C.E. Lemke, J.T. Howson (1964). Equilibrium points of bimatrix games. J. Soc. Ind.
Appl. Math., 12, 413–423.

[78] Z.Q. Luo and P. Tseng (1997). A new class of merit functions for the nonlinear com-
plementarity problem. In: M.C. Ferris and J.S. Pang (Eds.), Complementarity and
Variational Problems: State of the Art, pp. 204–225, SIAM, Philadelphia.

[79] O.L. Mangasarian (1976). Equivalence of the complementarity problem to a system
of nonlinear equations. SIAM J. Appl. Math., 31, pp. 89–92.

[80] O.L. Mangasarian and M.V. Solodov (1993). Nonlinear complementarity as uncon-
strained and constrained optimization. Math. Program., 62, pp. 277–298.



BIBLIOGRAPHY 149

[81] J.M. Mart́ınez and L. Qi (1995). Inexact Newton methods for solving nonsmooth
equations. J. Comput. Appl. Math., 60, pp. 127–145.

[82] L. Mathiesen (1985). Computation of economic equilibria by a sequence of linear
complementarity problems. Math. Program. Study, 23, pp. 144–162.

[83] L. Mathiesen (1987). An algorithm based on a sequence of linear complementarity
problems applied to a Walrasian equilibrium model: An example. Math. Program. 37,
pp. 1–18.

[84] H. Maurer and H.D. Mittelmann (2000). Optimization Techniques for Solving Elliptic
Control Problems with Control and State Constraints: Part 1. Boundary Control.
Comp. Optim. Appl., 16, pp. 29–55.

[85] H. Maurer and H.D. Mittelmann (2001). Optimization Techniques for Solving Elliptic
Control Problems with Control and State Constraints: Part 2. Distributed Control
Comp. Optim. Appl., 18, pp. 141–160.

[86] R. Mifflin (1977). Semismooth and semiconvex functions in constraint optimization.
SIAM J. Control Optim., 15, pp. 959–972.

[87] E. Miersemann and H.D. Mittelmann (1989). Continuation for parameterized nonlin-
ear variational inequalities. J. Comp. App. Math., 26, pp. 23–34.
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