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1 Summary 

1.1 Summary (English) 

Wilms tumor (WT) is the most common kidney cancer in childhood. It is a genetically heterogeneous 

tumor and several genetic alterations have been identified in WT patients. Recurrent mutations were 

found in the homeo-domain of SIX1 and SIX2 in high proliferative tumors (18.1% of the blastemal-type 

tumors) as well as in the microprocessor genes DROSHA and DGCR8 (18.2% of the blastemal-type 

tumors), indicating a critical role of the SIX-SALL pathway and aberrant miRNA processing in WT 

formation. Underlined by the fact that a significant overlap between mutations in DROSHA and SIX1 

was found, indicating a synergistic effect. 

To characterize the in vivo role of DROSHA and SIX mutations during kidney development and their 

oncogenic potential, I analyzed mouse lines with either a targeted deletion of Drosha or an inducible 

expression of human DROSHA or SIX1 carrying a tumor-specific E1147K or Q177R mutation, 

respectively. 

The DROSHA mutation E1147K was predicted to act in a dominant negative manner. Six2-cre mediated 

deletion of Drosha in nephron progenitors led to a lethal phenotype with apoptotic loss of progenitor 

cells and early termination of nephrogenesis. Mosaic deletions via Wt1-creERT2 resulted in a milder 

phenotype with viable offspring that developed proteinuria after 2-4 weeks, but no evidence of tumor 

formation. Activation of the DROSHA-E1147K transgene via Six2-cre, on the other hand, induced a 

more severe phenotype with apoptosis of progenitor cells, proteinuria and glomerular sclerosis. The 

severely growth-retarded mice died within the first two months. This strong phenotype was consistent 

with the predicted dominant-negative effect of DROSHA-E1147K. 

Analysis of the SIX1-Q177R mutation suggested that the mutation leads to a shift in DNA binding 

specificity instead of a complete loss of DNA binding. This may end up in subtle changes of the gene 

regulatory capacity of SIX1. Six2-cre mediated activation of SIX1-Q177R lead to a viable phenotype 

with no alterations or shortened life span. Yet a global activation of SIX1-Q177R mediated by Zp3-cre 

resulted in bilateral hydronephrosis and juvenile death of the mice. 

To mimic the synergistic effect of DROSHA and SIX1 mutations, I generated compound mutants in two 

combinations: A homozygous deletion of Drosha combined with an activation of SIX1-Q177R and a 

compound mutant with activation of DROSHA-E1147K and SIX1-Q177R. Each mouse model variant 

displayed new phenotypical alterations. Mice with Six2-cre mediated homozygous deletion of Drosha 

and activation of SIX1-Q177R were not viable, yet heterozygous deletion of Drosha and activation of 

SIX1-Q177R led to hydronephrosis, proteinuria and an early death around stage P28. Combined 



 Summary  

- 2 - 
 

activation of DROSHA-E1147K and SIX1-Q177R under Six2-cre resulted in proteinuria, 

glomerulosclerosis and lesions inside the kidney. These mice also suffered from juvenile death. Both 

mouse models could confirm the predicted synergistic effect. 

While these results underscore the importance of a viable self-renewing progenitor pool for kidney 

development, there was no evidence of tumor formation. This suggests that either additional 

alterations in mitogenic or antiapoptotic pathways are needed for malignant transformation, or 

premature loss of a susceptible target cell population and early lethality prevent WT formation. 
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1.2 Zusammenfassung (Deutsch) 

Der Wilms Tumor ist der am häufigsten auftretende Nierentumor im Kindesalter. Er ist genetisch 

heterogen und bisher wurden bereits verschiedene genetische Mutationen in Wilms Tumor Patienten 

gefunden. Es konnten wiederkehrende Mutationen in der Homeo-Domäne der Gene SIX1 und SIX2 und 

in den Genen des Mikroprozessorkomplexes DROSHA und DGCR8 gefunden werden. Die Ergebnisse 

weisen darauf hin, dass einerseits die gestörte Prozessierung von miRNAs und andererseits der SIX-

SALL Signalweg eine wichtige Rolle im Entstehungsprozess des Wilms Tumors spielen. Des Weiteren 

konnte die Analyse der blastem-reichen Tumore einen möglichen synergetischen Effekt zwischen 

DROSHA und SIX1 aufzeigen. 

Um die Bedeutung von DROSHA und SIX Mutationen für die Nierenentwicklung und für die 

Tumorgenese in vivo zu untersuchen, wurden in dieser Arbeit Mausmodelle mit konditioneller Deletion 

von DROSHA oder induzierbarer Expression der DROSHA Mutation E1147K bzw. der SIX1 Mutation 

Q177R analysiert. 

Es wurde vermutet, dass die E1147K Mutation einen dominant-negativen Effekt besitzt. Six2-cre 

vermittelte Deletion von DROSHA in Nierenvorläuferzellen führte zu einem letalen Phänotyp, der sich 

durch Apoptose von Vorläuferzellen und vorzeitigen Abbruch der Nephrogenese auszeichnete. 

Mosaik-Deletion mittels Wt1-creERT2 führte zu einem deutlich milderen Phänotyp. Die Nachkommen 

waren lebensfähig, entwickelten aber innerhalb der ersten 2-4 Wochen eine Proteinurie. Bei beiden, 

so erzeugten, Mauslinien konnten keine Tumorbildung feststellen werden. Aktivierung des DROSHA-

E1147K Transgenes durch Six2-cre brachte einen deutlich gravierenderen Phänotyp hervor. Dieser 

zeichnete sich durch Apoptose von Vorläuferzellen, sowie Proteinurie und Glomerulosklerose aus. Die 

im Wachstum stark retardierten Mäuse starben innerhalb der ersten zwei Monate nach der Geburt. 

Dieser Phänotyp unterstreicht den vermuteten dominant-negativen Effekt von DROSHA-E1147K auch 

in vivo. 

Analysen der Q177R Mutation konnten zeigen, dass diese Mutation in der Homeo-Domäne des SIX1 

Genes wahrscheinlich nicht zu einem kompletten Verlust der Fähigkeit, DNA zu binden, führt, sondern 

eher eine leichte Verschiebung der DNA Bindespezifität als Folge hat. Das könnte eine subtile 

Veränderung in der Fähigkeit von SIX1 Gene zu regulieren bedeuten. Six2-cre vermittelte Aktivierung 

des SIX1-Q177R Transgenes hatte jedoch keinen sichtbaren Effekt für den Phänotyp der Mäuse. 

Dennoch hatte eine globale Aktivierung des Transgenes durch Zp3-cre bilaterale Hydronephrose und 

einen frühzeitigen Tod der Mäuse zur Folge. 
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Um den bereits vermuteten Synergieeffekt zwischen DROSHA-E1147K und SIX1-Q177R zu 

untersuchen, wurden zwei neue Mausgenotypen erzeugt. Einerseits wurde eine Mauslinie mit dem 

SIX1-Q177R Transgen und der Drosha Deletion, andererseits eine Mauslinie, die sowohl das SIX1-

Q177R Transgen, als auch das DROSHA-E1147K Transgen besitzt, verpaart. Beide Mauslinien 

entwickelten jeweils neue Phänotypen. Mäuse mit Six2-cre vermittelter, homozygoter Deletion von 

Drosha und gleichzeitiger Aktvierung von SIX1-Q177R waren nicht lebensfähig, während Mäuse mit 

heterozygoter Deletion von Drosha und gleichzeitiger Aktvierung von SIX1-Q177R sehr wohl 

lebensfähig waren. Diese Mäuse entwickelten wiederum Hydronephrose, sowie Proteinurie und 

verstarben innerhalb des ersten Lebensmonats. Kombinierte Aktivierung von DROSHA-E1147K und 

SIX1-Q177R mittels Six2-cre führte ebenfalls zu Proteinurie. Jedoch litten die Mäuse nicht an 

Hydronephrose, sondern an Glomerulosklerose und Zystenbildung. Ebenfalls starben die Mäuse einen 

frühzeitigen Tod. Beide Mausmodelle konnten, durch die Ausprägung neuer Phänotypen, den 

vermuteten Synergieeffekt beweisen. 

Die Ergebnisse dieser Arbeit zeigen deutlich, wie wichtig ein lebensfähiger Zellpool an selbst-

erneuernden Vorläuferzellen für die Nierenentwicklung ist. Dennoch konnten keine Anzeichen für eine 

Tumorbildung gefunden werden. Das lässt vermuten, dass weitere genetische Veränderungen z.B. in 

mitogenen oder anti-apoptotischen Signalwegen von Nöten sind, um eine maligne Transformation zu 

gewährleisten. Natürlich könnte auch der frühzeitige Verlust der verantwortlichen Zellpopulation und 

das frühe Absterben der Embryos ein Hindernis für die Wilms Tumorbildung sein.  
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2 Introduction 

To understand the developmental mechanisms that lead to the formation of Wilms tumor, it is 

essential to understand the process of kidney development in embryos. Therefore, this introduction is 

structured as followed: Firstly, an insight into the kidney, its function and the embryonal nephrogenesis 

is given. Afterwards, the Wilms tumor and the Wilms tumor screens, which were performed 

simultaneously by Wegert et al. (2015) and Walz et al. (2015), are summarized. Finally, an overview of 

the two most promising oncogenes, which were proposed by the screens, and their possible 

connection, is presented.  

2.1 The Kidney 

The bilateral kidneys are not only a simple disposer of waste, they are the central organs of 

homeostasis in mammals (Figure 1 A). The human kidney is able to filter 180 liters of primary urine per 

day. Apart from filtering metabolic waste, the kidney also adjusts water, salt and pH levels to keep the 

homeostasis of tissue fluids at an equilibrium. Furthermore, the kidney regulates blood pressure via 

the renin-angiotensin-aldosterone system, calcium and phosphate levels by the activation of vitamin 

D and finally erythropoiesis through the production of erythropoietin (McMahon 2016).  

2.1.1 Function and organization of the kidney 

The functional element of the kidney is the nephron (Figure 1 B). The mouse kidney has 12,000 to 

16,000 nephrons per kidney, while the human kidney can have 200,000 to 1.8 million of these 

complexly patterned nephrons which are compartmentalized in various specialized subunits (Hughson 

et al. 2003; Short et al. 2014).  

The actual renal filtration happens inside the renal corpuscle at the proximal extent of the nephron 

(Figure 1 C) (Scott and Quaggin 2015). At this proximal extent afferent vasculature forms the 

glomerulus, which is basically a tangle of punctured blood vessels. To maintain integrity and 

permeability of the vasculature, mesangial cells are located closely opposed to the vascular 

endothelium (McMahon 2016). Fluid can pass from the glomerular capillaries into the interstitial space 

of the Bowman’s capsule. The capillaries are lined with podocytes that are located on top of the 

glomerular basement membrane, which builds a surprisingly thick and highly specialized filtering 

barrier that prevents serum solutes of molecular weight over 15 kDa like serum albumin from passing 

into the nephron (Miner 2011; Suh and Miner 2013). 
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Figure 1: Schematic overview of the adult mouse metanephric kidney 

(A) Overview of the adult kidney on the basis of specific regional organization. (B) Composition of the nephron. 
(C) Structure of the renal corpuscle and related structures (dashed box in B). Illustration from (McMahon 2016) 
with permission of Elsevier. 

While the renal corpuscle and the segments of the proximal tubule (S1 and S2) are located in the outer 

cortex of the kidney (Figure 1 B, bracket C), the final segment of the proximal tubule (S3) is located in 

the outer medullary region (Figure 1 B, bracket M) (McMahon 2016). The proximal tubule epithelial 

membrane is covered with various membrane-embedded channels and transporters. Their main 

function is the reuptake of important small molecules like glucose, amino acids and minerals. 

The proximal tubule extends with the loop of Henle far into the medulla before looping back and 

becoming the distal tubule segment inside the renal cortex (Figure 1 B). The main function of the loop 

of Henle is regulation of urine concentration, while the distal tubule segment returns sodium and 

calcium into the blood stream. The return of sodium and calcium ions is mediated by aldosterone and 
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parathyroid hormones and plays an important part in water uptake as well as for pH balance 

(Subramanya and Ellison 2014). 

Finally, the distal tubule is connected to the collecting duct (Figure 1 B). The collecting duct originates 

from the ureter and forms a ramified epithelial network throughout the kidney. This collecting duct 

system channels the urine from the kidney through the ureter to the bladder. The renal papilla acts as 

the exit point for the tubular network out of the kidney parenchyma and the water permeable 

medullary collecting duct helps to retain water (Al-Awqati and Gao 2011; Pearce et al. 2015). 

In close relation to each glomerulus lies another important and specialized part of the distal tubule, 

the macula densa (Bell, Lapointe, and Peti-Peterdi 2003). It is located at the point of entry of the 

afferent arterioles and the exit of the efferent arterioles (Figure 1 C). The macula densa is responsible 

for reducing fluid flow into the glomerulus depending on the salt levels in the distal tubule. By this 

mechanism the filtration rate is controlled and kept at an optimal level. Additionally, the macula densa 

interacts with juxtaglomerular cells, which surround the glomerular arterioles, thereby regulating the 

systemic blood pressure with the help of renin secretion and indirectly through renin’s catalytic 

influence on the angiotensinogen system (Bell, Lapointe, and Peti-Peterdi 2003). 

2.1.2 Nephrogenesis in mice 

The intermediate mesoderm gives rise to the metanephric kidney in chronologically and regionally 

distinct processes (Taguchi et al. 2014; Takasato and Little 2015). At embryonic day 8.75 (E8.75) the 

paired nephric ducts occur at the level of rostral somites and extend in the posterior direction while 

inducing mesonephric tubular structures alongside them (Figure 2 A). When it reaches the hind limb 

level at stage E10.5 each nephric duct interacts with the metanephric mesenchyme cells and the 

dynamic process of kidney development begins (Combes, Davies, and Little 2015; Costantini and Kopan 

2010; Little and McMahon 2012): 
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Figure 2: Schematic overview of mouse kidney development 

(A) Illustration of the mesonephric and metanephric kidney anlage before (E10.5) and after (E11.5) UB infiltration 
into the MM. (B) Cellular composition of the collecting duct (duct tip Wnt11 positive), the nephron (Six2 positive), 
interstitial (Foxd1 positive) and the vascular progenitors within ureteric tip niche. Illustration from (McMahon 
2016) with permission of Elsevier.  

Induced by signals from the mesenchymal cells the ureteric bud, a single, bilateral ductal outgrowth, 

grows into the medial positioned metanephric mesenchyme. This ingrowth leads to a condensation of 

mesenchymal cells around the tip and branching of the ureteric bud (Figure 2 A). At stage E11.5 the 

branched ureteric bud forms a T-like structure. The branching of the ureteric bud proceeds until day 2 

after birth (P2) and the ureteric bud derived epithelium will have undergone 12 generations of 

branching until this point. By the end of this process this ongoing branching has formed the complete 

urine collecting duct system (Short et al. 2014). While the cap mesenchymal cells induce ingrowth and 

branching, the branch tips of the ureteric bud on their part signal expansion and differentiation of the 

cap mesenchyme (Figure 2 A, Figure 3 A). For each branching incident a subgroup of mesenchymal 

cells condensates into the pretubular aggregate, a tight cluster right under the branch tip. The 

pretubular aggregate develops into the renal vesicle, the most primitive stage of the nephron 

development. Each renal vesicle will form a mature nephron. Half of all nephrons are formed in the 

first two days after the branching stops at stage P2-4 (Short et al. 2014). The final number of nephrons 

is limited to the size of the progenitor cell pool and can vary in different mouse strains (Cebrian et al. 

2014). Within 24 to 36 hours the renal vesicle first develops into the comma-shaped body and then 
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into the S-shaped body (Figure 3 A). The distal part of the S-shaped body connects to the collecting 

duct and forms a luminal connection, which will be essential for fluid flow throughout the kidney (Kao 

et al. 2012). At the proximal part of the S-shaped body the glomerular cleft is formed (Figure 3 A). After 

cleft formation the renal corpuscle assembly starts with endothelial cell migration into the cleft 

accompanied by podocyte specification in the proximal epithelium. The other segments of the nephron 

are derived from the remaining part of the S-shaped body. The nephron related vascular network is 

formed by vasculogenesis and angiogenesis while the development of the renal tubule epithelium 

proceeds. In addition, interstitial cell types arrange around tubules and vasculature, and neurons 

extend into the kidney to stimulate differentiated target sites. Ultimately the number of nephrons 

surpasses the number of ureteric branches. In mice multiple nephrons can attach to a single branch, 

while in the human kidney nephrons can also attach to one another, generating a cascade of nephrons. 

 

Figure 3: Schematic overview of nephron patterning process 

(A) Transition from renal vesicle to patterned S-shape body. (B) Hypothetical map of different cell fates from 
progenitor cells in S-shaped bodies to sub-domains of the matured nephron. Illustration from (McMahon 2016) 
with permission of Elsevier.   

So far, it is not fully understood at what time point the first functional nephrons are completed in the 

kidneys of mice, but filtering seems to start around E16.5 (McMahon 2016). Since nephron 

development is a continual process of ureteric tip branching, condensation and differentiation of 

progenitor cells into renal vesicles and further into matured nephrons, different stages of maturated 

nephrons can be seen over the whole prenatal and postnatal kidney development until the full kidney 

function is established around stage P7. 

Nonetheless, the underlying cellular dynamics of embryonal nephron morphogenesis are still not fully 

understood. The transition from renal vesicles to S-shaped bodies goes along with growth and 

excessive epithelial restructuring (Figure 3 A) (McMahon 2016). A disturbed proliferation may lead to 
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failure in distal elongation, but since there are no 3D studies of the different transition stages from 

renal vesicle to S-shaped bodies, it is still unclear which molecular and cellular processes are the central 

driving forces (Georgas et al. 2009). However, after the connection between the distal S-shaped body 

and the ureteric epithelium is settled, one can find clear molecular heterogeneity present along the 

proximal-distal axis of the nascent nephron (Georgas et al. 2009). Interestingly, fate mapping studies 

could identify a structural coherence between defined gene expression domains of the S-shaped body 

and the adult nephron composition (Figure 3 B) (Barker et al. 2012; Harding et al. 2011). 

2.1.3 The progenitor cell pool 

As mentioned in the previous chapter, all functional subunits of the nephron are derived from a 

progenitor cell pool that is established before the initial ureteric bud outgrowth happens at stage E10.5 

(Kobayashi et al. 2008). This progenitor cell pool originates from Six2 positive progenitor cells that are 

self-renewing and multipotent. Studies have shown that the absence of Six2 leads to a premature 

differentiation of all progenitor cells in the direction of renal vesicle at stage E12.5, which shows the 

importance of Six2 expression for maintenance of progenitor cell fate (Kobayashi et al. 2008; Self et al. 

2006). Apart from Six2 more transcription factors have been found that are either involved in 

specification or maintenance of the Six2 progenitor cell pool: Six1, Hox11 paralogs (Hoxa11, Hoxc11 

and Hoxd11), Pax2, Wt1 and Sall1 (Little and McMahon 2012; O'Brien and McMahon 2013).  

Since Cited1 is solely expressed in the undifferentiated nephron progenitors, it has become the 

standard marker for correct identification of the nephron progenitor compartment (Boyle et al. 2008). 

In contrast, Six2 is expressed in regions of epithelializing nephron precursors, although only for a 

limited time span, while Cited1 expression is limited exclusively to uncommitted nephron progenitors 

(Mugford et al. 2009; Park et al. 2012). Remarkably, Cited1 expression is not mandatory for kidney 

development even with its nephron progenitor specificity (Boyle et al. 2007). The progenitor niche is 

not as homogenous as expected. Depending on Six2 expression levels and proliferation rates, the 

progenitor cell pool is divided into different subsets of cell pools (Short et al. 2014). It is still to be 

shown, if these subsets have different roles in the developmental program of the kidney (Short et al. 

2014). 

In mice the ratio of nephron progenitors to tip niche declines over the time of embryogenesis and then 

sharply drops at birth (Short et al. 2014). At stage P3-4 all nephron progenitors are gone and the 

number of nephrons gained throughout nephrogenesis by this point is the final number of nephrons 

for the whole life span of the mouse. In the human kidney nephrogenesis is completed in week 36, 

which implies that the sharp drop in nephron progenitors to tip niche ratio is not necessarily an event 

triggered by birth (Hinchliffe et al. 1991). 
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As could be seen, nephrogenesis is a sophisticated interaction between various signal pathways and 

their genetic factors which are responsible for complex tissue differentiation processes. A disturbance 

of this balance can have a severe outcome. As example, an early decline in progenitor cells can lead to 

agenesis or reduction of kidney volume. On the other hand, a transition of undifferentiated cells into 

the juvenile kidneys can give rise to tumorous diseases.  

2.2 Wilms Tumor 

Wilms tumor, also known as the nephroblastoma, is the most common solid cancer in childhood. It 

was first described in 1899 by the surgeon Max Wilms (1867-1918). Wilms already identified the 

nephroblastoma as a tumor identity that derives from the mesodermal layer and realized that its 

different tissue types originate from undifferentiated progenitor cells. These facts led him to the 

conclusion that the cause of the nephroblastoma must be a developmental defect in embryogenesis 

(Coppes-Zantinga and Coppes 1999). 

2.2.1 Epidemiology  

Wilms tumor is the most frequent kidney tumor in childhood. WT has an incidence of 1 of 10,000 in 

the USA and Europe (Wegert et al. 2015). The incidence rates are considerably lower in Asia (Breslow 

et al. 1993). The majority of Wilms tumors are sporadic (98-99%) and unilateral (90-95%). Bilateral 

tumors are far less common (5-10%) and affect mostly younger children with a high familiar disease 

risk (Huff 1998). Unilateral cases are diagnosed at a mean age of 44 months and bilateral cases around 

31 months (Horner et al. 2009). 

2.2.2 Pathogenesis 

Since Wilms tumor presents itself most of the time as painless and asymptotic, the majority of WT are 

diagnosed because of abdominal swellings. In fewer cases, WT is recognized during to a routine check-

up. 20-30% of cases presenting signs and symptoms including abdominal pain, malaise and either 

microscopic or macroscopic hematuria (Davidoff 2012). In 25% of the affected children, associated 

hypertension is diagnosed. The hypertension might be an effect caused by increased renin activity. 

Other symptoms can include: urinary tract infections, varicocele, fever, anemia or, if the patient has 

lung metastases, dyspnea or tachypnea can occur. The methods of choice for diagnosis are abdominal 

sonography and/or magnetic resonance imaging. Tumor specific markers in blood or urine are not 

known so far. Tumor biopsy is only recommended for children under 6 months or over 16 years and 

only if the imaging techniques do not give a definitive diagnosis (Babyn et al. 1995). 
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2.2.3 Histology 

Wilms tumor develops from undifferentiated tissue that still shows mitotic activity. The origin of WT 

are metanephric progenitors that can differentiate into different tissue types such as epithelial, 

stromal or blastemal tissue. Accordingly, the Wilms tumor can consist all of these tissue types. If a 

tumor contains all three of these components, the tumor is classified as a triphasic tumor (Figure 4). 

Depending on the prevalent tissue type (>65%), the tumor is characterized as epithelial-, stromal- or 

blastemal-type.  

 

Figure 4: Histology of the Wilms tumor 

An example of the typical triphasic histological appearance of the Wilms tumor with blastemal (B), stromal (S) 
and epithelial (E) components. (www.webpathology.com 25.09.17) 

A correct histological classification is of high prognostic value. Tumors may be classified as having low, 

intermediate or high risk (Vujanic et al. 2002). Since chemotherapy has an impact on the histological 

type of the tumor, it is important to know if the tumor was removed before or after chemotherapy. 

The classification guidelines are as followed: 

  

http://www.webpathology.com/
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Table 1: Classification of Wilms tumor on the basis of histological subtypes (Vujanic et al. 2002) 

GRADE PREOPERATIVE CHEMOTHERAPY PRIMARY SURGERY 

LOW RISK  cystic partial differentiated 

entirely necrotic 

cystic partial 

differentiated 

INTERMEDIATE MALIGNANCY epithelial 

stromal-type 

mixed-type 

regressive 

focal anaplasia  

epithelial  

stromal-, blastemal-type 

mixed-type 

regressive 

focal anaplasia 

HIGH MALIGNANCY blastemal-type 

diffuse anaplasia 

diffuse anaplasia 

 

Beside the histological classification, a tumor staging depending on local expansion, affection of lymph 

nodes and status of metastases is done: 

Table 2: Staging of Wilms tumors (Vujanic et al. 2002) 

STAGE CRITERIA 

I limited to kidney, renal capsule intact, complete resection 

II extent beyond kidney, penetrates renal capsule, complete resection 

III incomplete resection, positive lymph nodes, no distant metastases 

IV distant metastases (lung, liver, bone, brain etc.), positive lymph nodes outside 

abdominopelvic region 

V bilateral renal tumor at diagnosis 

 

In the majority of cases the Wilms tumor appears in a sporadic manner, yet rare cases of familial 

predisposition (1-2%) are known (Matsunaga 1981). The inheritance is autosomal dominant, but 

incomplete penetrance seems to be prevalent. In the past, only three genes WT1, CTNNB1 and WTX 

have been known as reoccurring mutations (Ruteshouser, Robinson, and Huff 2008). One third of the 

Wilms tumor cases showed one of these mutations. WT1 and WTX mutations occur with comparable 

frequency and CTNNB1 displays synergistic effects with WT1. Still, the etiology of the Wilms tumor 

seems to be as complex as it is heterogeneous and two thirds of the tumor cases have an unknown 

genetic background (Ruteshouser, Robinson, and Huff 2008). New studies, including the recent Wilms 

tumor screens, have started to reveal the possible genetic composition of WT by discovering more 
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reoccurring mutations regarding, for example, the microprocessor complex and the SIX-SALL pathway 

(Wegert et al. 2015; Walz et al. 2015). 

2.2.4 Therapy 

There are two different guidelines to treat the Wilms tumor: In Europe and other countries patients 

are treated according to the Société International d’Oncologie Pédiatrique (SIOP) protocol, while in 

North America patients are treated according to the Children’s Oncology Group (COG) protocol. The 

COG protocol favors primary surgery followed by chemotherapy and/or radiotherapy, while based on 

the SIOP protocol patients are treated with preoperative chemotherapy followed up by surgery and 

personalized postoperative chemotherapy and/or radiotherapy (Dome et al. 2013; Vujanic and 

Sandstedt 2010). A diverse histological appearance with different contributions of blastemal, stromal 

and epithelial tissue is characteristic for the Wilms tumor and different treatment protocols can 

influence the contribution of each tissue type. 35% of primarily resected tumors (COG) are categorized 

as blastemal-types, while the blastemal-type contribution drops to 9.5% for tumors treated with 

preoperative chemotherapy (SIOP) (Weirich et al. 2001). The blastemal contribution in primarily 

resected tumors is not of prognostic significance, but interestingly for patients who are treated with 

preoperative chemotherapy the apparently chemotherapy-resistant remaining viable blastema is 

associated with a poor prognosis and reduced relapse-free survival (58.4% in contrast to 86.7%) 

(Weirich et al. 2004). Diffuse anaplasia and the associated TP53 mutation have a comparably 

unfavorable outcome (Lahoti et al. 1996). This comparison highlights the importance of understanding 

the underlying genetic basis of remaining blastema and identifying related biomarkers for new 

therapeutic approaches. 

2.2.5 Prognosis  

The overall therapeutic cure of the Wilms tumor is satisfactory. Since the early 20th century, the survival 

rate has hugely increased from 10% to 90%, due to improved surgery methods and a risk-related 

therapy with chemotherapy and radiotherapy (Sonn and Shortliffe 2008). Nevertheless, the survival 

rate still depends mainly on the histology and stage of the tumor. The relapse-free two year survival 

rate of a patients with a high risk, bilateral or metastatic Wilms tumor drops below 50%. In general, 

patients suffer from a relapse within the first two years after primary diagnosis in 10-15% of cases. 

Follow up examinations on a regular basis with the given diagnostic imaging techniques are crucial for 

early relapse recognition. The normal therapeutic strategy of treating a relapse consists of 

chemotherapy, radiotherapy and surgery. As already pointed out, the overall survival rate of patients 

suffering from Wilms tumors is satisfactory, but there are still downsides of the therapeutic measures. 

For example the chemotherapeutic agent Doxorubicin can have a toxic effect on heart muscle cells, 

which has a negative impact on heart function and can lead to heart failure (Levitt, Hamard, and 
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Demignon 2012). Also, radiotherapy in childhood, especially in the spinal region, affects growth and 

organ function, but more importantly it is the main cause for the elevated risk of suffering from a 

second malignant neoplasm (Levitt, Hamard, and Demignon 2012; Taylor et al. 2008; Wright, Green, 

and Daw 2009). Furthermore, radiotherapy can lead to endocrine defects like precocious puberty, 

hypogonadism (primary or central), altered fertility and/or sexual function, low BMI, the metabolic 

syndrome and hypothalamic obesity (Rose et al. 2016). These long-term effects demonstrate how 

important it is to find the right balance of chemotherapy and radiotherapy for each patient and to keep 

the burden on young patients as minimal as possible. Therefore, definite classification and deep 

understanding of the genetic basis of chemo-resistant blastemal remnants in WT is mandatory to find 

the right therapeutic strategy.  

2.2.6 Mouse model of the Wilms tumor 

The heterogeneity regarding genetic background and histological appearance made it difficult to 

establish a model system for Wilms tumor. Valuable results in reproduction of the triphasic 

characteristics of the Wilms tumor in vivo were achieved by transplantation of xenografts originated 

from humans into mice (Houghton et al. 2007; Yeger et al. 1985). It were Hu and colleagues (2011) 

who established the first mouse model that could recapitulate a subset of human WT. They engineered 

mice that maintain mosaic ablation of Wt1 and biallelic upregulation of Igf2 by ubiquitous expression 

of tamoxifen-inducible cre-recombinase. In 2016, the same group used nephron progenitor specific 

cre-recombinase under the Six2 or Cited1 promotor to introduce the same Wt1 ablation and biallelic 

Igf2 expression in mice. Furthermore, they engineered a new mouse model with a Cnntb1 mutation 

that is known to stabilize β-catenin (Huang et al. 2016). While the Wt1 ablation together with biallelic 

Igf2 expression again resulted in the typical triphasic tumor appearance, the mice with the Cnntb1 

mutation developed tumors with predominant epithelial histology and a gene expression profile not 

characteristic for early renal mesenchyme. Targeting either of these alterations to stromal progenitors 

did not result in tumor formation. These results demonstrated that committed nephron progenitors 

are the origin of WT. Furthermore, it could be shown that committed stromal progenitors were less 

susceptible to tumorigenic growth and stromal-type tumors arise from mesenchymal cells before 

commitment to a stromal linage (Huang et al. 2016). 

2.3 Wilms Tumor screens 

To gain a more detailed genetic insight into Wilms tumor and especially the remaining persistent 

blastema of chemotherapy treated patients, Wegert et al. (2015) analyzed a large cohort of blastemal-

type Wilms tumors by exome sequencing. The results were validated by a replication cohort. The study 

revealed several possible oncogenic driver genes for Wilms tumor. Recurrent mutations were found in 

the homeo-domain of SIX1 and SIX2 in highly proliferative tumors (18.1% of the blastemal-type 



 Introduction  

- 16 - 
 

tumors), in the microprocessor genes DROSHA and DGCR8 (18.2% of the blastemal-type tumors) and 

in DICER and DIS3L2, which are both involved in miRNA processing as well. Alteration could also be 

found in the genes IGF2, MYCN and TP53. Especially alteration in TP53 has a severe negative impact 

on patient outcome. Interestingly, the study found an overlap between mutations in DROSHA and SIX1, 

which was significant (p < 10-6), and may be a strong hint for a synergistic effect (Wegert et al. 2015). 

The findings of Wegert et al. (2015) were further validated by a parallel study done by Walz et al. (2015) 

that found the same SIX and DROSHA mutations in blastemal-type WT. 

2.4 The SIX gene family 

The members of the SIX family are homologs of genes that are well known in the fruit fly Drosophila 

melanogaster, namely Drosophila sine oculis (So), Optix and Dsix4. As the name suggests So loss leads 

to a deficiency of the compound eye in the fly, while Optix expression in other than retinal tissue causes 

eye formation in this tissue. Dsix4 is important for the development of mesoderm derivatives such as 

somatic muscles, somatic cells of the gonad and fat tissue (Kumar 2009). In vertebrates the SIX family 

splits up into three groups: Six1/Six2 are homologs of So, Six3/Six6 of Optix and Six4/Six5 of Dsix4. 

Characteristic for the SIX family members are the Six-type homeodomain (HD, 60 aa) and the Six-

domain (SD, 110-115 aa). The SIX family members can be found in different species throughout the 

vertebrates up to higher mammals (Kumar 2009; Kawakami et al. 2000). 

From all the mentioned SIX family members, the most profoundly studied over the last two decades 

has been Six1. Various studies could show its involvement in the development of tissues in respective 

organs such as the auditory system, the kidney, muscles, sensory organs and craniofacial structures 

(Wu et al. 2015). Also, Six1 contribution to tumorigenesis has been the topic of many studies. Six1 is 

known for playing a role in breast cancer, ovarian cancer, cervical cancer, hepatocellular carcinoma, 

rhabdomyosarcoma, Wilms tumor and colorectal cancer (Wu et al. 2015). 

2.4.1 Six1 in kidney development 

As already pointed out in chapter 2.1.2, the outgrowth of the UB into the metanephric mesenchyme 

is the initial start point of nephrogenesis. This outgrowth seems to be indirectly regulated and 

controlled by SIX1 and its co-factor EYA1 (Costantini 2006). Knockout of Eya1 leads to renal agenesis 

(Xu et al. 1999), but it is known that EYA1 alone cannot affect transcription due to its inability to enter 

the nucleus. The entrance of EYA1 into the nucleus is only possible if mediated by SIX protein family 

members (Ohto et al. 1999). This leads to the conclusion that SIX1 has an indirect effect on UB 

outgrowth and that kidney development depends on the interaction of SIX1 and EYA1 (Xu et al. 2003). 

Consequently, Six1 knockout at early stages of kidney development can lead to failure of UB invasion, 

followed by apoptosis of the metanephric mesenchyme. In Six1 deficient mice, expression levels of 
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Pax2, Six2 and Sall1 in the metanephric mesenchyme are downregulated. All three genes are critical 

factors in early kidney development and especially SALL1 is known to be a direct downstream target 

of SIX1 (Bouchard et al. 2002; Nishinakamura et al. 2001; Chai et al. 2006). The interactions with SALL1 

and EYA1 indicate that SIX1 is a critical factor for kidney development. Six1 mutations that affect these 

interactions may play an important role in developmental disorders. 

2.4.2 SIX1 in tumor development 

Six1 is involved in different types of cancer including breast cancer, ovarian/ cervical carcinoma, 

colorectal cancer and hepatocellular carcinoma (Wu et al. 2015). An overview of the regulatory 

network of SIX1 in tumorigenesis is shown in Figure 5. 

 

Figure 5: SIX1 in tumorigenesis 

Mechanisms and pathways of positive and negative regulation of Six1 in different cancer types. (Illustration based 
on (Wu et al. 2015)) 

In 1998 SIX1 was for the first time reported to be overexpressed in a high number of mammary 

carcinomas and a correlation between metastatic breast cancer was predicted (Ford et al. 1998). That 

SIX1 has a function in metastatic regulation was also predicted by a study of rhabdomyosarcoma (Yu 

et al. 2004). It has been shown that SIX1 overexpression can abolish the G2 cell cycle checkpoint, which 

is induced by DNA damage (Ford et al. 1998). To date, many studies could prove the correlation 
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between SIX1 mutations and breast cancer (Micalizzi et al. 2009; Radisky 2009; Reichenberger et al. 

2005). Especially, the direct activation of cyclin A1 transcription by SIX1 is a critical factor, due to cyclin 

A1 involvement in cell proliferation, cell survival, DNA repair and angiogenesis (Coletta et al. 2004). 

Thereby, SIX1 overexpression promotes breast cancer cell proliferation and tumorigenesis. Apart from 

cyclin A1, SIX1 regulates other genes that are known for their pro-tumorigenic properties, for example 

cyclin D1, c-Myc and Ezrin (Yu et al. 2006) and SIX1 overexpression induces tumor growth and 

metastasis in breast cancer due to increased TGF-β signaling (Micalizzi et al. 2009; Micalizzi et al. 2010). 

Furthermore, recent studies could show that SIX1 also plays a role in the induction of 

lymphangiogenesis and distant metastasis in breast cancer by upregulation of lymphangiogenic factor 

VEGF-C (Wang et al. 2012). 

Apart from its prominent role in breast cancer, SIX1 also is involved in hepatocellular carcinoma (HCC), 

ovarian and cervical cancer. In HCC, SIX1 is associated with tumor recurrence and metastasis (Ng et al. 

2006). Thus, SIX1 mRNA could be found in 85% of liver tumor tissue, while almost completely absent 

in nontumor tissue, and also the SIX1 protein could only be detected in tumor tissue. A recent study 

identified 52 possible target genes of SIX1 in HCC, but whether these targets are involved in the 

development or metastasis of HCC is still not confirmed (Ng et al. 2010). For ovarian and cervical cancer 

SIX1 is a proposed biomarker because of its high expression in both tumor types (Behbakht et al. 2007; 

Wan et al. 2008). In comparison with a normal ovary, SIX1 is overexpressed in 50% of early and 63% of 

late stage ovarian carcinomas, can promote cell proliferation and prevent tumor necrosis (Behbakht 

et al. 2007).  

2.4.3 SIX1 and Wilms tumor 

SIX1 protein expression has been proposed as a candidate marker for blastema in WT. From all 

candidates (SIX1, CITED1 and CD65) SIX1 shows the highest detection specificity for postchemotherapy 

WT blastema (Sehic, Ciornei, and Gisselsson 2014; Sehic et al. 2012). SIX1 detection may help to 

successfully identify and quantify blastemal elements after preoperative chemotherapy and surgery 

and by that helps to determine correct histopathological risk stratification.  

In the analyzed blastemal-type Wilms tumor cohort (2.3), the somatic hotspot mutation which 

occurred with the highest frequency (10%, 6 of 58 cases) was an A to G transition in exon 1 of the SIX1 

gene (Wegert et al. 2015). This mutation leads to a substitution from glutamine to arginine at position 

177 (Q177R) that affects the homeo-domain of the SIX1 protein. Further screening of a larger 

unselected cohort of Wilms tumors (n=529) could detect 17 cases of mostly heterozygous SIX1 Q177R 

mutations. Furthermore, 6 cases with the same Q177R mutation were found in the SIX2 gene, which 

is highly homologous to SIX1 and a downstream target of SIX1 in embryonic kidney development. Also, 

one truncation mutation of SALL1 was found. SALL1 is also activated by SIX1, leading to the conclusion 
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that the whole pathway downstream of SIX1 plays an important role for tumorigenesis in WT. Since 

the mutations were somatic and sequencing of cDNA showed an equal expression of wild type and 

mutant allele, Wegert et al. (2015) suggest a dominant effect.  

Wegert et al. predicted that the Q177R mutation leads to an altered DNA binding ability of SIX1 

because crystal structure analysis had shown that the exchanged residue is placed in the major groove 

of the bound DNA. A change in promotor activation of downstream targets of SIX1/2, as well as SALL1, 

could not be detected by luciferase assay (Wegert et al. 2015). The conclusion of the results achieved 

in the Wilms tumor screen and further analysis of the Q177R mutation suggest that the mutation leads 

to a shift in DNA binding specificity instead of a complete loss of DNA binding. This may end up in subtle 

changes to the gene regulatory capacity of SIX1. 

2.5 The microprocessor protein DROSHA 

The ribonuclease III enzyme DROSHA together with its partner, the double-stranded RNA binding 

protein DGCR8, form the microprocessor complex. The microprocessor organizes the essential nuclear 

processing step of miRNAs biogenesis. 

2.5.1 miRNA biogenesis 

Mammalian miRNAs are embedded in long primary miRNAs, which can be located within exons or 

introns. After transcription by the RNA polymerase II, pri-miRNAs are processed within the nucleus and 

then further in the cytoplasm to become mature miRNAs. For the processing inside the nucleus, 

DROSHA and DGCR8 form together the microprocessor complex which converts the pri-miRNA into 

precursor miRNA. After the export of the pre-miRNA out of the nucleus by EXPORTIN5, the pre-miRNA 

can by further processed by the DICER, an RNase III enzyme, into mature miRNA (Figure 6). 

In detail, it has been shown that DROSHA is able to form two different kind of complexes. The smaller 

of the two complexes consists of DROSHA and its partner DGCR8, which together build the minimal 

catalytically active complex in vitro that directs cleavage and thereby the processing of pri-miRNAs to 

pre-miRNAs (Gregory et al. 2004; Landthaler, Yalcin, and Tuschl 2004). Alternatively, DROSHA and 

DGCR8 together can interact with further RNA-binding proteins like RNA helicases, heterogeneous 

nuclear ribonucleoproteins (hnRNPs) and proteins that regulate activity of DROSHA/ DGCR8, which 

forms a larger complex (Siomi and Siomi 2010). DROSHA/ DGCR8 are both essential for processing of 

pri-miRNA: DGCR8 braces the pri-miRNA at the hairpin and recognizes the distance between the 

double-stranded RNA and single-stranded RNA junction (Han et al. 2006). With its endonuclease 

activity, DROSHA is able to cleave the pri-miRNA exactly 11 bp away from this junction (Han et al. 

2004). After exportation by EXPORTIN5, the so called dicing of the pre-miRNA by DICER gives rise to 

the 22 nt long mature miRNA duplex. In mammals this dicing step is supported by the interaction of 
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DICER with two partner proteins, the TAR (transactivating response), RNA-binding protein (TRBP) and 

protein activator of the interferon induced protein kinase (PACT), which are not necessary for DICER 

activity, but play a role in defining the cleavage site and recruiting the RNA-induced silencing complex 

(RISC) (Fukunaga et al. 2012). Either the 5p arm or the 3p arm of the miRNA duplex has the preference 

to bind to one of the multiple Argonaute proteins (AGO) (Peters and Meister 2007). The miRNA 

functions as a guide to target specific mRNAs and can result in degradation or translation inhibition of 

the transcripts reliant on the complementarity of miRNA and mRNA (Huntzinger and Izaurralde 2011). 

Apart from this canonical production of miRNAs there are different non-canonical pathways that are 

able to produce functional miRNAs. One example is the generation of mature miRNAs by spliceosome 

activity (mirtrons) (Yang and Lai 2011). 

 

 

Figure 6: miRNA biogenesis 

Long pri-mRNAs are transcribed by RNA polymerase II and are afterwards processed by the microprocessor 
complex containing DROSHA and DGCR8. The cleavage by DROSHA and DGCR8 leads to 2 nt 3’ overhangs that 
are recognized by EXPORTIN5-RanGTP and allows transport out of the nucleus into the cytoplasm. In the 
cytoplasm DICER cuts at the stem loop and creates an RNA duplex. Out of this duplex only one strand is 
preferentially used and able to bind to Ago, which acts as a guide to the targeted mRNA for translational 
repression or degradation. (Illustration based on (Macias, Cordiner, and Caceres 2013)) 
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2.5.2 DROSHA and Wilms tumor 

Mutations regarding the microprocessor complex and especially DROSHA and DGCR8 were the second 

most prevalent somatic mutations found by the exome sequencing screen of blastemal-type Wilms 

tumors (Wegert et al. 2015). Five DROSHA mutations could be identified, four affected one of the metal 

binding amino acids inside the RNase IIIb domain. The RNase IIIb domain is critical for catalytic activity 

of DROSHA (Gan et al. 2006). All mutations led to an amino acid transition from glutamic acid to lysine 

at aa 1147 (n=3) or 1222 (n=1). The last mutation D973H affected the catalytic center of the RNase IIIa 

domain. Further screening of Wilms tumor cases (n=363) revealed 13 additional tumors with the 

DROSHA E1147K mutation. The identified mutations were heterozygous in tumor DNA and cDNA for 

all cases. Furthermore, multiple biopsies (up to six) of different tumors (n=8) were screened and all 

displayed heterozygous mutations (Wegert et al. 2015). This suggests a possible dominant effect of 

heterozygous DROSHA mutations. 

The hotspot mutations in DGCR8 either affected the RNA binding domain with a charge reversal amino 

acid alteration at amino acid 518 (E518K), resulting in an early protein truncation behind amino acid 

81, or exhibited a nonsense mutation (E213X). Since the E518K alteration was most prevalent (4 out 

of 6 tumors), 719 additional cases were screened for this mutation. An additional 20 tumors positive 

for the E518K alteration were identified. Overall, the cumulative incidence of the E518K mutation was 

3.2%. In contrast to DROSHA, most of the DGCR8 mutations were homozygous, which might be an 

indication for recessive activity (Wegert et al. 2015). 

2.6 Possible Synergistic effect of DROSHA and SIX1 

The results of exome sequencing cohort showed significant overlap between DROSHA and SIX1 

mutations. Of 45 cases, seven displayed a double mutant tumor). In contrast a combination of DGCR8 

and SIX1 mutation only occurred once (Figure 7). One can assume that a possible functional and 

synergistic link might only exists between DROSHA and SIX1 (Wegert et al. 2015). 
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Figure 7: Overlapping mutations between SIX1/2 and DROSHA 

Χ2 test: p < 10-6 

The possible synergistic effect and because SIX and DROSHA alterations were the most prevalent of all 

found mutations, the aim of this study was the establishment of DROSHA E1147K and SIX1 Q177R 

mutant mice to understand the influence of these genes on kidney development and to find out if one 

of these mutations is sufficient to induce WT. Furthermore, after establishment and analysis of both 

mouse models, compound mutants were bred to investigate the possible synergistic effects of both 

mutations and its importance regarding WT. 
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3 Material 

3.1 Equipment 

Table 3: Equipment used 

Equipment Company 

HM 340E Rotary Microtome Thermo Scientific, USA 

Mastercylcer ep realplex Eppendorf, Germany 

NanoDrop ND-1000 Spektrophotometer PeqLab, USA 

Nikon Eclipse TS100 with Intenslight C-HGFI Nikon, Japan 

Nucleofector™ II/2b Device Lonza, USA 

Zeiss Axioskop Zeiss, Germany 

 

3.2 Chemicals and disposables 

All disposals were either purchased from Sarstedt (Germany) or Eppendorf (Germany). All chemicals 

not included in Table 4 were ordered from ROTH (Germany) or Sigma-Aldrich (Germany). All enzymes 

used for cloning were purchased from NEB (USA). Oligonucleotides listed in 9.1 were synthesized by 

Sigma-Aldrich (Germany). 

Table 4: Chemicals used 

Chemicals/ Disposables Company 

Aprotinin Sigma-Aldrich, Germany 

Beta-mercaptoethanol Sigma-Aldrich, Germany 

CHIR99021 Axon, Netherlands 

DIG RNA Labeling Mix Roche, Switzerland 

DMEM Sigma-Aldrich, Germany 

Fetal calf serum (FCS) Sigma-Aldrich, Germany 

His-taq polymerase self-made 

Kaiser's glycerol gelatine Merck, Germany 

Leukemia inhibitory factor (LIF) self-made 

Leupeptin Sigma-Aldrich, Germany 

Metafecten Pro Biotex, Germany 

Parafilm® M Sigma-Aldrich, Germany 

Penicillin/Streptomycin 100x PAA, Germany 
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Pepstatin  Sigma-Aldrich, Germany 

peqGOLD TriFast™ Peqlab, Germany 

Proteinase K Roche, Switzerland 

QuadriPERM Box Heraeus, Germany 

RNAse A Thermo Scientific, USA 

Roti®-Histokitt ROTH, Germany 

SuperfrostTM plus slides  Thermo Scientific, USA 

SybrGreen Sigma-Aldrich, Germany 

 

3.3 Buffers 

All in situ buffers used before hybridization with the RNA probe were prepared with DEPC water or 

treated with DEPC. 

Table 5: Buffers used 

Buffer  Components 

Standard buffers  

PBS 150 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 1.8 mM KH2PO4 

TE 10 mM Tris pH 8.0, 1 mM EDTA 

DNA buffers  

Base buffer 50x 1.25 M NaOH, 10 mM EDTA.  

Cell lysis buffer 100 mM Tris pH 8.5, 5 mM EDTA pH 8.0, 0.5 % SDS, 200 mM NaCl 

DNA loading dye 10x 50 % glycerol, 15 % ficoll, 10 mM EDTA pH 8.0 

Neutral buffer 50x 2 M Tris-Base pH 5 

PCR buffer 10x 200 mM Tris pH 8.8, 100 mM (NH4)2SO4, 100 mM KCl,  

20 mM MgSO4, 1 % TritonX-100, 1 % BSA-acetylated 

SB 20x 200 mM NaOH pH 8.0 with boric acid 

TAE 50x 50 mM EDTA, 2 M Tris acetate pH 8 

Protein buffers  

Blotting buffer 25 mM Tris pH 8.3, 150 mM Glycine, 10 % Methanol 

Detection buffer 100 mM Tris pH 8.0, 250 mM luminol, 90 mM coumaric acid, 0.01 % 

H2O2 

Protein loading buffer 2x 100 mM Tris pH 6.8, 4 % SDS, 0.25 % Bromophenol blue, 25 % glycerol, 

200 mM DTT 
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RIPA buffer 50 mM Tris pH 8.0, 1 % Nonidet P40, 0.5 % Sodium deoxycholate, 0.1 

% SDS, 150 mM NaCl, 1 mM EDTA. Fresh before use: 1 µg/ ml Aprotinin, 

Leupeptin, Pepstatin mix, 50 µg/ ml PMSF 

SDS running buffer 25 mM Tris pH 8.3, 192 mM glycine, 1 % SDS 

in situ buffers  

Hybridization solution 50 % Formamide deionized, 1.3 x SSC pH 5, 5 mM EDTA, 0.5 % CHAPS, 

100 µg/ ml Heparin, 0.2 % Tween-20 

MABT 100 mM maleic acid, 150 mM NaCl, 1 % Tween-20, pH 7.5 

MOPS 20x 200 mM MOPS, 50 mM NaAc, 10 mM EDTA 

NTE (RNase Buffer) 0.5 NaCl, 10 mM Tris-HCl pH 7.0, 5 mM EDTA 

NTMT 10 mM NaCl, 50 mM MgCl2, 100 mM Tris-HCl pH 9.5, 0.1 % Tween-20 

PFA 4 % 1x PBS, 4 % PFA. Adjust pH to 7.0 

Proteinase K buffer 20 mM Tris pH 7.5, 1 mM EDTA 

SSC 20x  3 M NaCl, 0.3 M Na citrate x 2 H2O, citric acid pH 5 

TBST 140 mM NaCl, 2.7 mM KCl, 25 mM Tris-HCl pH 7.5, 0.1 % Tween-20 

Tris/ Glycine buffer 0.1 M Tris, 0.1 glycine 

 

3.4 Kits 

Table 6: Kits used 

Name Company 

Gel extraction kit Omega Bio-Tek, USA 

MaxblockTM Autofluorescence Reducing Reagent 

Kit 

Dianova, Germany 

Nucleofector™ Kit for Mouse Embryonic Stem 

Cells (mES) 

Lonza, USA 

Plasmid midi kit  Omega Bio-Tek, USA 

Plasmid mini kit  Omega Bio-Tek, USA 

RevertAid Reverse Transcriptase  Thermo Scientific, USA 
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3.5 Antibodies 

Table 7: Antibodies used 

Name Species # Company 

Primary Antibodies    

α-cCasp3 (Asp175) rabbit 9579 Cell Signaling, Netherlands 

α-Digoxigenin-AP,FAB fragments sheep 11093274910 Roche, Switzerland 

α-Flag-M2 mouse H9658 Sigma-Aldrich, Germany 

α-GFP (AA246) goat ABIN100085 Antibodies online, USA 

α-Ki-67 rabbit ab16667 Abcam, UK 

α-Nephrin mouse AF3159 R&D Systems, USA 

α-WT1 (13B5) mouse  Mundlos et al. (1993) 

Secondary Antibodies   Invitrogen, USA 

Alexa 594-α-goat donkey A-11058 Thermo Scientific, USA 

Alexa 594-α-mouse donkey R37115 Thermo Scientific, USA 

Alexa 594-α-rabbit donkey R37119 Thermo Scientific, USA 

Alexa488-α-goat donkey A-11055 Thermo Scientific, USA 

 

3.6 Plasmids 

The plasmids were cloned by Anja Winkler (AG Gessler, EBCh, Wuerzburg). Afterwards, the constructs 

were verified by Sanger sequencing. 

 

Figure 8: Plasmid constructs for integration into ES cells via RMCE 

Both mutation sites (DROSHA-E1147K and SIX1-Q177R) are indicated with red boxes for the corresponding 
construct. 
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3.7 Cell lines 

IDG3.2-R26.10-3 (I3) murine ES cells, (Hitz, Wurst, and Kuhn 2007). 

NSNL neomycin resistant feeder cells, (Hitz, Wurst, and Kuhn 2007). 

3.8 Mouse lines 

All experiments on animals were carried out in accordance with national and institutional guidelines 

(TierSchG). 

The Wt1-creERT2 (Wt1tm2(cre/ERT2)Wtp) and the Six2-cre (Tg(Six2-EGFP/cre)1Amc/J) breeder pairs as well as 

the floxed Droshatm1Litt mouse line were obtained from C. Englert (FLI Jena) and V. Taylor (Basel 

University) respectively. The inducible DROSHA-E1147K and SIX1-Q177R alleles were generated via 

recombinase mediated cassette exchange (4.9) in IDG3.2-R26.10-3 ES cells by Anja Winkler (SIX1-

Q177R) and myself (DROSHA-E1147K). The injection of the ES cells into C57BL/6 blastocysts was 

performed by M. R. Bösl (Center for Experimental Molecular Medicine, Wuerzburg University Hospital, 

97078 Würzburg) (4.9.4). 

3.9 Software 

Table 8: Software used 

Name Version Source 

Fiji (ImageJ) 1.5J OpenSource, NIH, USA 

Leica Application Suite 4.1 Leica, Germany 

Mastercylcer realplex 2.2 Eppendorf, Germany 

Nikon NIS-Elements AR 3.2 Nikon, Japan 

SnapGene™ 1.1.3 GSL Biotech, USA 
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4 Methods 

4.1 DNA isolation 

4.1.1 Rapid DNA isolation from tissue or cells 

For a quick and simple isolation of DNA from tissue or cells the Base/ Neutral method is used. Especially 

for mouse genotyping, it is the method of choice. Tissue or cells are placed in a reaction tube and 50 

µl of 1x Base solution is added. The sample is incubated on a heater for 30 min at 95°C. The sample is 

cooled down to RT and 50 µl of Neutral solution is added. Solution volume can vary with the size of 

the tissue sample or cell pellet, but the proportion of Base and Neutral solution always stays 1:1. 

4.1.2 DNA isolation from cells 

The use of cell lysis buffer is another quick method to gain high concentrations of DNA from cells. The 

cell pellet (1-5 x106 cells) is resuspended in 700 µl of cell lysis buffer with 7 µl Proteinase K (10µg/ ml) 

and incubated at 55°C overnight. On the next day, 1 ml of isopropanol is added and the sample is 

centrifuged at maximal speed for 5 min. The supernatant is discarded, the pellet is washed with 70 % 

ethanol. After another centrifugation step, the pellet is dried and resuspended in 100 µl TE buffer. For 

maximal yield the sample is incubated for 15 min at 60°C and stored at -20°C. The concentration of 

isolated DNA is estimated through absorbance using a Nanodrop spectrometer. 

4.2 RNA isolation 

For isolation of RNA from tissue or cells peqGOLD TriFast™ is used. Tissue is homogenized and cell 

pellets are resuspended in TriFast™. RNA is isolated according to manufacturer’s protocol. The 

concentration of isolated RNA is measured through absorbance using a Nanodrop spectrometer. 

4.3 Reverse transcription  

For first strand cDNA synthesis for quantitative realtime PCR the Thermo Scientific RevertAid Reverse 

Transcriptase kit is used. All working steps are performed as recommended by the manufacturer. 

4.4 Cloning 

All cloning is done by using standard molecular methods and Sanger sequencing for construct 

verification. 

4.5 Cell culture 

IDG3.2-R26.10-3 (I3) murine ES cells are cultured at 37°C and 5 % CO2 in DMEM (high glucose with 

glutamine and sodium pyruvate) supplemented with 15% heat inactivated FCS, 1 MHEPES, 1% non-

essential amino acids, 100 mM beta-mercaptoethanol, penicillin/ streptomycin (100 U/ ml / 100 µg/ 
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ml) and leukemia-inhibitory factor (LIF) (1000 U/ ml) on porcine skin gelatine (0.1 % in PBS) coated cell 

culture dishes. It is essential to change the medium every day. 

To maintain pluripotency, ES cells are grown either on coated cell culture dishes in the presence of LIF 

or on inactivated neo-resistant feeder cells. Ideally, pluripotent ES cell colonies should appear as round 

to ovoid clusters with defined margins on top of the feeder cells. In this work, ES cells are cultured on 

neo-resistant and mitomycin-C treated feeder cells (inactivated NSNL). These embryonic feeder cells 

are derived from E13-E14 mouse embryos harboring the neo gene. NSNL feeder cells are cultured at 

37°C and 5% CO2 in DMEM supplemented with 10 % heat inactivated FCS, 1% non-essential amino 

acids and penicillin/ streptomycin (100 U/ ml / 100 µg/ ml). Feeder cells grow on normal cell culture 

dishes and can be treated according to common cell culture protocols. For the use as feeder cells for 

ES cell growth, the feeder cells need to be mitotically inactivated. Therefore, a confluent dish is washed 

with PBS and treated with mitomycin C (10 µg/ ml) containing DMEM for at least 2 hours (up to 6 h). 

Afterwards, the cell dish is washed with PBS for three times and either used directly or frozen in the 

described medium including 10% DMSO at -80°C for later use. 

4.6 PCR Analysis 

For analysis of DNA a standard PCR reaction is used. PCR products are analyzed by SB agarose gel 

electrophoresis. 

Standard-PCR reaction  

2    µl  10x PCR buffer 

0.2 µl dNTPs 100 mM 

0.2 µl His-tag 15 U/ µl 

0.5 µl 5’ primer 10 pmol 

0.5 µl 3’ primer 10 pmol 

16  µl H2O 

1    µl DNA  
 

 

Standard-PCR program   

95°C 3   min Initial denaturation 

95°C 30 sec Denaturation   ┐ 

55°C* 30 sec Annealing         │- 35 cycles 

72°C* 45 sec Elongation        ┘ 

72°C 5   min Final elongation 

16°C ∞ End 

 

 

 

 

 

 

 

* Annealing temperature is depending on primer combination and elongation time can vary depending 

on the size of the desired product.  
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4.7 Quantitative realtime PCR 

For quantitative realtime PCR, 2 µg of RNA are reverse transcribed into first strand cDNA and diluted 

1:10 for the qRT-PCR reaction. The annealing temperature of the PCR is set to 60°C and SybrGreen 

(1:2000 in H2O/ 0.5 % DMSO) is used for quantification. To verify the PCR products melting curve 

analysis and SB agarose gel electrophoresis are used. For expression level normalization the 

housekeeping gene HPRT is used. All measurements are done as technical duplicates or triplicates. 

qRT-PCR reaction  

2.5     µl  10x PCR buffer 

1.5     µl  Ethylenglycol 

0.25   µl dNTPs 100 mM 

0.75   µl SybrGreen  

0.25   µl His-tag 15 U/ µl 

0.75   µl 5’ primer 10 pmol 

0.75   µl 3’ primer 10 pmol 

13.25 µl H2O 

5         µl cDNA template 
 

 

qRT-PCR program   

95°C 3   min Initial denaturation 

95°C 15 sec Denaturation   ┐ 

60°C 10 sec Annealing         │- 40 cycles 

72°C 20 sec Elongation        ┘ 

55-60°C 10 min Melting curve (+4°C/ min) 

16°C ∞ End 

 

 

 

4.8 Two-tailed RT-qPCR 

In this study the two-tailed RT-qPCR is used to measure miRNA expression of tissue samples derived 

from mouse embryos. This method was established by Androvic et al. (2017).  

The two-tailed RT primer secondary structures are predicted with the help of the UNAfold web server 

(http://unafold.rna.albandy.edu/) (Markham and Zuker 2008). Two-tailed RT primers as well as qPCR 

primers are designed according to the target miRNA and synthesized by Sigma-Aldrich, Germany. 

The total RNA is extracted from samples with peqGOLD TriFast™ and according to manufacturer’s 

protocol. 10 ng of total RNA is put into 10 µl reaction volume and the reaction is performed with the 

Thermo Scientific RevertAid Reverse Transcriptase kit as follows: 

http://unafold.rna.albandy.edu/
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cDNA synthesis reaction:  

x   µl 10 ng total RNA  

1   µl 1 µM two-tailed RT primer mix 

ad to 12 µl with DEPC- H2O   

4    µl  5x RT buffer 

0.5 µl 40 U/ µl Ribolock RNase Inhibitor 

2    µl dNTPs 10 mM 

1    µl 200 U/ µl ReverseTranscriptase 

0.5 µl DEPC- H2O 

20 µl reaction volume   

 

The reaction is incubated for 45 min at 25°C and inactivated for 5 min at 70°C. Afterwards, the 20 µl 

reaction mix is 10x diluted with 180 µl of H2O. The subsequent qPCR is performed with 20 µl reaction 

mix and 5 µl cDNA template according to the following setup: 

qRT-PCR program    

95°C  30 sec  
95°C    5 sec ┐ 
60°C  15 sec ┘ 45 cycles 
95°C    5 sec  
55-60°C  10 min Melting curve  
16°C  ∞ End 

 

4.9 Recombinase mediated cassette exchange 

With the help of site specific recombination, the recombinase mediated cassette exchange (RMCE) 

enables the exchange of the preexisting gene cassette for an analogous cassette carrying the gene of 

interest (GOI) in mammalian cells. In this study the RMCE method is used to generate murine ES cells 

that harbor a cre-recombinase inducible loxP-stop-loxP (LSL) cassette followed by either a SIX1-Q177R-

IRES-eGFP or a YFP-DROSHA-E1147K-Flag fusion (3.6). The protocol used in this study is based on the 

publication of Hitz et al. (2007). 

The donor vector with the GOI can be integrated into ES cells that contain the acceptor site within the 

Rosa26 locus. For later selection the donor vector contains a promotor-less hygromycin resistance 

coding region and poly A site. Both GOI and the hygromycin coding region are flanked by attB 

recognition sites. The Rosa26 acceptor allele (R26.10) contains a pair of attP recognition sites that flank 

a hygromycin B resistance region and a poly A site. The C31 integrase can now mediate the 

recombination between the pairs of attB and attP sites. The catalyzed exchange destroys the attB and 
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attP sites, it addresses, and converts them in attR and attL sites. This leads to an exchange of the hygro-

pA with the neo-pA-GOI site now flanked by the attR and attL sites (Figure 9). 

 

Figure 9: Scheme for C31Integrase mediated RMCE 

 

The attR and attL sites are not further recognized by the C311 integrase. For induction of the described 

exchange, R26.10 ES cells are cotransfected with the donor vector and the expression vector of the 

C31 integrase. Since the hygro-pA site is exchanged by the neo-pA-site, neo resistant ES cell colonies 

are selected, expanded and analysed via PCR and Western blot for the expression of the GOI. In this 

study the IDG3.2-R26.10-3 (I3) murine ES cells are used for RMCE (3.7). 

4.9.1 Vector precipitation  

The donor vector (pCAG-LSL-YFP-DROSHA-E1147K-F respectively pCAG-LSL-SIX1-Q177R-IRES-eGFP) 

and the pCAG-C31Int-bpA vector are put in the precipitation reaction with the ratio 1:1 or 13:7. 1/10 

volume of 3 M NaAc pH 5.2 and 2 volumes of 100 % ethanol are added to the DNA mix. After an 

incubation at -20°C for 20 min, the sample is centrifuged and the pellet washed 2 times with 70 % 

ethanol. Afterwards, work is continued under the laminar flow hood and with sterile reagents. The dry 

pellet is resuspended in 10 µl ddH2O and incubated for 15 min, followed by gentle mixing via pipetting. 

The DNA is incubated another 15 min and then used either directly for transfection or stored at -20°C. 

4.9.2 Transfection of murine ES cells 

For murine ES cell transfection the Nucleofector™ Kit for Mouse Embryonic Stem Cells and 

Nucleofector™ II/2b Device are used. The murine ES cells are counted and 2x 106 cells are centrifuged 
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at 900 rpm for 3 min. The pellet is resuspended in 90 µl of Nucleofector solution and combined with 

the 10 µl vector-DNA mix (4.9.1). The combined solution of ES cells and vector-DNA is transferred into 

a Lonza-mESC-cuvette and electroporated in the Nucleofector™ II/2b Device (program Ax024). After 

electroporation, pre-warmed ES cell medium (4.5) is added and the cell suspension is transferred to a 

10 cm cell culture plate coated with neo resistant feeder cells. The medium is changed every day. From 

the second day after electroporation, 400 µg/ ml G418, an analog of neomycin, is added to the medium 

to select correctly recombined cell colonies. After picking and expanding surviving ES cell colonies, 

analysis for correct integration is done via PCR. 

4.9.3 RMCE control of transfected ES cells via nested PCR 

To check for successful recombinase mediated cassette exchange and correct integration of the GOI 

into the acceptor site, the picked cell colonies are expanded and a fraction is lysed for DNA extraction 

(4.1.2). The DNA is analyzed via nested PCR, which minimizes non-specific products. For nested PCRs 

two sets of primers are used in two successive PCR runs. The second run amplifies a secondary target 

within the product of the first run. Therefore, the product of the first run is diluted 1:100 and 1 µl is 

used for the second PCR reaction. 

The correct integration into the Rosa26 locus is checked with the two primer pairs PGK-forw/ neo-rev 

and PGK-forw/Neotest1 for 5’ integration and two primer pairs bGHpA-for/ R523 and hes1KO2-bgh/ 

R523 for 3’ integration. Furthermore, the landing site is checked with the two primer pairs 

FRTneo2/R523 and FRTneo2/ Rosa-rev and the two primer pairs FRTneo2/hygro5’out and PGK-forw/ 

hygro5’out, which should not amplify a product, if the Rosa26 locus is correctly targeted. The RMCE 

method holds the possibility to integrate the GOI in the wrong direction. To analyze the direction of 

the GOI, the two primer pairs reverse/ neo-rev and T3-69/ Neotest1 are used. If the GOI is integrated 

in the right direction, no product should be amplified. Remaining plasmid is controlled with the two 

primer pairs reverse/ neoA and T3-69/ Neotest1. Additionally, construct specific PCRs are done for GFP 

(GFP-real-for/ GFP-real-rev), FLAG tag (Flag-tag-for/ reverse) and the human transgenes SIX1-Q177R 

(hSIX1-f/ hSIX1-r) or DROSHA-E1147K (hDrosha-for1/ hDrosha-rev1). The integrated constructs with 

annotated primers are shown in Figure 10. All used primers are listed in Table 10. 
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Figure 10: Maps of constructs successfully integrated into the Rosa26 locus 

Primers used to control correct integration via RMCE are indicated in purple. 

4.9.4 Implantation of mES-cells into mice 

Correctly targeted ES cells are injected into C57BL/6 blastocysts and implanted into foster mothers. 

Resulting chimeras are bred to C57BL/6 mice and offspring are tested for germline transmission. The 

injection and implantation were carried out by Michael Bösl at ZEMM, Würzburg. 

4.10 Mouse genotyping 

Cre transgenes were genotyped by PCR using the primer pairs mCitrine-3’out and ROSA26-creER for 

Six2-cre, Wt1-creERT2-for and Wt1-creERT2-TG for WT1-creERT2 and mCitrine-3’out and SM22-3’-cre 

for Zp3-cre. Deletion of Drosha was controlled with the primers mDrosha-flox1 and mDrosha-flox2 and 

mDrosha-flox4 to amplify the wild type (300 bp) , lox-P site insertion (350 bp) and the deleted (510 bp) 

allele. The SIX1-Q177R and the DROSHA-E1147K line were tested with primers R26F2, Rosa-rev and 

TK1 to amplify wild type (240 bp) and transgene (542 bp) fragments. Cre-mediated activation in SIX1-

Q177R mice was documented with the primers AG3, Q177-rev2 and Q177-for1 to amplify the inactive 

(221 bp) or activated (333) allele. Activation for DROSHA-E1147K mice was controlled with the primers 

AG3, GFP-real-rev and Q177-for1 to amplify the inactive (492 bp) or activated (362) allele. All used 

primers are listed in Table 10. 
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4.11 Preparation of mouse embryos and tissue 

For preparation of mouse embryos or organs for further analysis like hematoxylin/ eosin staining, in 

situ hybridization or whole organ immunofluorescence the mice are mated overnight and the female 

mice are controlled for the vaginal plug the following day, which is stated as embryonal stage 0.5 (E0.5). 

In the presented work, whole embryos or organs between stage E11.5 - E18.5 were extracted. If the 

mice are born, the day of birth is marked as first day post birth (P1) and ongoing.  

The pregnant mice or the adult mice were sacrificed. Afterwards, the mouse embryos or organs were 

dissected and washed in PBS. Next the tissue is fixed with 4 % PFA/ PBS. For organs that are dissected 

later than stage P14, the PBS and 4 % PFA/ PBS solutions are applied via syringe into the left ventricle 

of the heart to achieve maximal perfusion of the organ and to minimize the autofluorescence caused 

by erythrocytes. After fixation the embryos/ organs are washed with PBS (2x) and 0.9 % NaCl for 10 

min each and dehydrated with an ascending isopropanol series (30 %, 50 %, 70 %, 85 %, 95 %, and 2x 

100 %) for 30 min to 2 h each depending on the size of the fixated embryos/ organs. Subsequent to 

the dehydration, the embryos/ organs are incubated with isopropanol : chloroform (1:1) and 

transferred to the intermediate medium chloroform. For embedding, the embryos/ organs are 

incubated in chloroform : paraffin (1:1) in an open vessel for as long as the chloroform needs to 

evaporate. To make sure the embryos/ organs are properly infused, the paraffin solution is changed 

for three times. Afterwards, the embryos/ organs are embedded into paraffin blocks and kept at 4°C. 

5 µm sections are cut with a microtome, stretched on a 42°C water bath and transferred to 

SuperfrostTM plus slides. The slides are dried for 30 min at 42°C and can be stored afterwards again at 

4°C. If used for in situ hybridization, all used solutions are prepared RNase free. 

4.12 Hematoxylin and eosin staining 

The widely used method for histological analysis of tissue samples is the hematoxylin and eosin staining 

(HE staining). The oxidation product of hematoxylin hemalum colors the nuclei of cells blue and the 

counterstaining with aqueous eosin colors eosinophilic structures like the cytoplasm and protein 

deposition in different shades of red, pink and orange. 

The slides are deparaffinized with xylol 10 min (2x) and then hydrated with an descending ethanol 

series from >99 % (2x 3 min) to 50 % (every concentration is incubated for 3 min) ending in ddH2O for 

3 min. After hydration, the slides are stained in hemalum for 5-10 min and rinsed with ddH2O. The 

slides are now placed under flowing tap water for 10 min and are rinsed again with ddH2O. 

Subsequently, the slides are counterstained with eosin (0.1 %, aqueous) for 5-10 min. The slides are 

washed with ddH2O for 3 min, followed by ascending ethanol series from 96 % to 100 % (5 min) and 
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finally the intermediate medium xylol (2 times for 5min). Next, the slides are embedded with the ready 

to use embedding medium Roti®-Histokitt. 

4.13 in situ hybridization 

The in situ hybridization is a sophisticated and established method to analyze timing and localization 

of gene expression patterns on tissue sections. Single strand RNA probes that are complementary to 

cellular mRNA are labeled by the integration of Digoxigenin labeled UTP through in vitro transcription. 

These Digoxigenin labeled UTP can be detected via immunohistochemical alkaline phosphatase linked 

antibodies and a subsequent color reaction. 

Preserving RNA is a difficult task due to the presence of RNase enzymes on glassware, in reagents and 

on laboratory personnel and clothes. RNase is able to rapidly destroy RNA in the cell or the RNA probe 

itself. The use of sterile techniques, gloves, and solutions to prevent RNase contamination of the 

probes or tissue RNA is mandatory. 

4.13.1 Preparation of Digoxigenin-labeled RNA probes  

RNA probes of approximately 800 bases length exhibit the highest sensitivity and specificity, but the 

length of the probes can range from 250 to 1,500 bases. For correct preparation of antisense in situ 

RNA probes, the sequence or gene of interest has to be integrated into a plasmid vector with RNA 

polymerase binding sites such as T3, T7 or SP6 promotors. 10 µg of plasmid DNA is linearized with a 

suitable restriction enzyme to produce a 5’ end with either a 5’-overlap or a blunt end and afterwards 

purified with Phenol and Chloroform : Isoamyl ethanol (24:1). The DNA precipitation is done with 1/10 

volume 3 M NaOAc and 2.5 volume 100 % ethanol at -20°C and subsequently washed with 70 % 

ethanol. The DNA pellet is resuspended in 20 µl DEPC-H2O. For the in vitro transcription 2 µg of 

linearized plasmid DNA is used: 

2    µg linearized plasmid DNA 
2    µl 10x transcription buffer 
2    µl  Digoxigenin-labeling mix 
0.8 µl RNase inhibitor 
1.2 µl  RNA polymerase 

ad to 20 µl  DEPC-H2O 

The transcription reaction is incubated for 2 h at 37°C. Afterwards, 1 µl of DNAseI is added and the 

reaction is incubated for another 15 min at 37°C. A formaldehyde agarose gel with 2 µl of the 

transcription reaction is run for integrity control of the RNA probe. The RNA is precipitated with 7 µl 

7.5 M NH4OAc and 75 µl >99 % ethanol either at -80°C for 30 min or -20°C overnight and after that 

washed with 70 % ethanol. The pellet is resuspended in 100 µl DEPC-H2O and diluted with 500-900 µl 

of hybridization mix (1:5 - 1:10) depending on the thickness of the band shown by the formaldehyde 

agarose gel. The ready to use probe can be stored at -20°C. 
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4.13.2 in situ staining of paraffin slides 

5 µm sections of designated tissue are transferred to SuperfrostTM plus slides and placed for 30 min at 

68°C in the incubator to melt the paraffin. After melting, the remaining paraffin is removed by a 2 times 

10 min washing step with chloroform. Rehydration is achieved with a descending alcohol series, 

starting with two times 5 min of >99 % Ethanol (95 %, 90 %, 80 %, 70 %, 50 %, 30 %) and ending with 

two times 5 min PBS. The slides are now fixed again with 4 % PFA/ PBS and washed with PBS twice for 

5 min. Then the slides are treated with 10 µg/ ml Proteinase K for 10 min and after a 5 min washing 

step with PBS again fixed with 4 % PFA for 30 min. Further washing with two times 5 min PBS, two 

times 5 min 2x SSC and two times 15 min Tris/ Glycine buffer is carried out. The slides are placed into 

Heraeus QuadriPERM boxes. Then 60 µl of denaturized RNA-probe (1:100 diluted in hybridization mix) 

is pipetted on the tissue carrying side of the slides and they are covered with Parafilm® M. 

Hybridization takes place at 70°C overnight. The following day, the slides are washed three times with 

5x SSC for 20 min and afterwards with preheated 0.5x SSC/ 20 % Formamide at 60°C for 40 min. The 

0.5x SSC/ 20 % Formamide is changed and cooled down to 37°C for 15 min. Next, the slides are 

incubated for 15 min at 37°C in NTE, 30 min in 10 µg/ ml RNase A/ NTE and 15 min NTE. All three 

incubation steps are done at 37°C, followed by a 30 min washing step with 0.5x SSC/ 20 % Formamide 

at 60°C and an additional step at RT with 2x SSC for 30 min. The slides are now blocked for 1 h with 

MABT/ 1 % blocking reagent at RT. The α-Digoxigenin-AP is diluted 1:5000 in MABT/ 1 % blocking 

reagent, pipetted on the slides and incubated at 4°C overnight. Before staining, the slides are washed 

four times for 10 min, three times for 20 min with TBST, twice for10 min with NTMT and one time with 

NTMT/ 2 mM Levamisole. The BM purple AP substrate is centrifuged for 5 min at 3000 rpm to remove 

insoluble particles, 0.1 % Tween-20 and 2 mM Levamisole are added and the slides are incubated in 

the dark for several days to achieve adequate staining. Finally, the slides are washed twice with NTMT 

for 15 min, once more with PBS and then embedded in Kaiser's glycerol gelatine. 

4.14 Immunofluorescence staining 

4.14.1 Indirect immunofluorescence staining of paraffin sections 

The slides containing the 5 µm tissue sections are deparaffinized with Xylol for 5 min (2x) and then 

hydrated with a descending alcohol series from 100 % to 70 % (each step for 3 min). To mask disturbing 

tissue autofluorescence, the slides are incubated with 2-4 drops of MaxblockTM reagent A for 5 min 

and washed with 50 % ethanol via dipping. Furthermore, the slides are washed with H2O for 5 min and 

PBS for 5 min (3x). The slides are transferred to a coplin jar for antigen retrieval. The coplin jar is filled 

with freshly prepared 10 mM sodium citrate buffer and incubated in the microwave for 2 min at 1000 

W and 25 min at 300-500 W. After a cool down period of 20 min at RT, the slides are washed three 

times with PBST (PBS + 0.05 % Tween-20) for 5 min and blocked with 3 % BSA in PBST for 1 h. The 
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primary antibody is diluted 1:200 in 3 % BSA/ PBST (dilution may change depending on the antibody) 

and each slide is incubated with 200 µl antibody solution in a moist compartment overnight. The 

following day, the slides are washed three times with PBST and incubated with the secondary antibody 

(1:200 in 3 % BSA/ PBST) for 1 h. After an additional washing step PBST (3x) and H2O, the slides are 

incubated with 2-4 drops of MaxblockTM reagent B for 5 min and then washed three times with H2O. 

Staining of the nuclei is achieved by a 5 min incubation with Hoechst (1:10,000 in PBS). After two 

washing steps with PBST, the slides can be embedded with 2-4 drops of Mowiol. The slides should not 

be extensively exposed to light and the analysis via fluorescence microscopy should be done within 

the following two weeks for satisfying staining results. 

4.14.2 Whole kidney tissue quantification 

Whole embryos at stage E13.5 or kidneys of stage E16.5 embryos are dissected and further processed 

as stated in the iDISCO protocol (Renier et al. 2014). In this work methanol is used for dehydration of 

whole embryos or whole organs. 

Image-stacks of cleared kidney samples are acquired in a home-built scanning light-sheet fluorescence 

microscope (laser excitation: 488 nm) similar to previous designs (Keller et al. 2008) and controlled by 

IQ 2.9 software (Andor, UK). Samples are mounted in a square boro-silicate glass capillary (3.0 mm, 

CM Scientific, United Kingdom) filled with iDISCO medium (Renier et al. 2014). The autofluorescence 

signal of the sample is detected by a 5X/0.15 objective (HCX PL FLUOTAR, Leica, Germany) using a 

525/50 emission filter (Brightline HC, Semrock, Rochester, NY , USA) and a sCMOS camera Neo 5.5 

(2560 x 2160 pixels, 16.6 mm x 14.0 mm sensor size, 6.5 µm pixel size, Andor). Image Stacks 

(2560*2160 pixels; Voxel dimensions xyz 1.3*1.3*2 µm) are saved as 16-bit TIFF-file sequence for 

further processing and analysis. 

4.14.3 Image analysis 

Kidney structures were derived from light-sheet images by using the pixel classification algorithm of 

the well-established interactive learning and segmentation toolkit ilastik ver. 1.2.0. (Sommer et al. 

2011). Training was performed and output assessed for each sample individually. Four classes were 

defined: tubular structures, dense tissue, loose tissue, and ductal structures. Classification output was 

exported from ilastik to Imaris 8.3.1 (Bitplane, Zurich, Switzerland) for segmentation. Iso-surfaces of 

individual classes were generated, artefacts filtered (by volume, position, shape), statistical 

parameters extracted and exported from Imaris for further analysis to Microsoft Excel (Microsoft 

Corporation, Redmond, WA, USA). The image analyses were carried out by Oguzhan Angay (Rudolf 

Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, 97078 

Würzburg, Germany). 
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5 Results 

The general framework of the results section was structured as followed (Figure 11): First, I created ES 

cell lines via RMCE (4.9) harboring either an activatable lox-stop-lox shielded transgene for DROSHA-

E1147K or SIX1-Q177R, the two most prevalent mutations, identified by the WT screens (2.3). The 

correct integration was controlled via PCR (4.9.3) (recombination efficiency: 12.5%) and positive ES 

cells were injected into C57BL/6 mouse blastocysts. To generate mice with a germline transition, the 

chimeric mice were mated again with C57BL/6 mice. Germline transition was controlled via PCR (4.10 

and Table 10). These transgenic mice were intercrossed with promotor driven cre-expression mouse 

lines specific for blastemal cells such as Six2-cre and Wt1-creERT2 (3.8), to achieve a kidney specific 

activation of the transgenes. For further global activation of SIX1-Q177R, the mice were intercrossed 

with Zp3 promotor driven cre-recombinase mice. Since the tumor screen proposed a dominant-

negative effect for the DROSHA-E1147K, I wanted to analyze the effects of a complete knockout of 

DROSHA in the progress of kidney development. Therefore, mice with a Drosha allele, harboring a 

floxed exon 9 (Droshatm1Litt) (Chong et al. 2008), were used (3.8), to achieve a cre-driven inactivation of 

DROSHA. This inactivation was again driven by the Six2 and Wt1 promotors. The three different mouse 

models were phenotyped at various stages of kidney development. Finally, I created compound 

mutants of either both transgenes DROSHA-E1147K and SIX1-Q177R or mice with Drosha alleles, 

harboring a floxed exon 9, and SIX1-Q177R. Both mouse lines were intercrossed with Six2-cre mice. 

With the help of these new compound mutants, the proposed synergetic effect of DROSHA and SIX1 

mutations could be investigated.  

 

Figure 11: Schematic overview of the results 

Corresponding chapters are given in brackets. 
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5.1 Phenotyping of DROSHA mice models 

5.1.1 Expression analysis of conditional Drosha knockout in blastemal cells 

To test if reduced Drosha activity can induce WT, I generated mice with inactivation of one or both 

alleles of Drosha in the condensing metanephric mesenchyme as the origin of most nephron cell types 

like glomeruli and tubular structures. Drosha inactivation was achieved by intercrossing mice with a 

Drosha allele, harboring a floxed exon 9 (Droshatm1Litt), and a Six2 promoter driven EGFP-cre allele (Six2-

cre; Tg(Six2-EGFP/cre)1Amc/J). The Six2 promotor is active in a restricted time window during 

differentiation of blastemal cells and by that homozygous Drosha∆Six2c/∆Six2c embryos should show a 

downregulation of DROSHA protein in condensing metanephric blastema and its derivatives. A clear 

reduction in Drosha expression could be confirmed by immunohistochemistry as well as qRT-PCR 

(Figure 12 B). The Immunofluorescence staining of DROSHA presented a strong reduction of signal 

mainly in the blastemal regions of the embryonal kidneys at stage E16.5, but also revealed a remaining 

expression in tissue that is not derived from the metanephric mesenchyme (Figure 12 B). With this 

reduction of DROSHA protein, the processing of canonical miRNAs should also be deficient. Therefore, 

kidneys of mouse embryos at stage E16.5 were analyzed for expression of the canonical miRNAs mir-

196a, mir-126 and mir-10b. The expression levels of non-canonical miRNA mir-320 should not be 

affected by deficiency of the microprocessor complex. Therefore, mir-320 was used to normalize the 

samples. The expression levels were compared to the expression of littermates with only heterozygous 

inactivation of Drosha (Droshawt/∆Six2c). The results of the miRNA expression analysis showed a 

significant downregulation of all tested canonical miRNAs in Drosha∆Six2c/∆Six2c kidneys compared to the 

Droshawt/∆Six2c embryos (Figure 12 A) (2way ANOVA p-values: Interaction: <0.0001 Column factor: 

<0.0001 Row factor: 0.0001). 

Conditional inactivation of only one Drosha allele (Drosha∆Six2c/wt) did not produce obvious alterations, 

consistent with normal development and fertility of heterozygously deleted mice. The analysis of 

miRNA levels showed a comparable expression to wild type controls (Figure 12 A). Leading to the 

conclusion that heterozygous deletion of Drosha is phenotypically similar to wild type littermates and 

heterozygous expression of Drosha is sufficient to allow normal microprocessor activity.  
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Figure 12: Expression analysis of Drosha∆Six2c/∆Six2c and DROSHA-E1147Kactive  

(A) qPCR of selected canonical miRNAs mir-196a, mir-126 and mir-10b in E16.5 kidneys to show downregulation 
in Drosha∆Six2c/∆Six2c and DROSHA-E1147Kactive mice (5.1.5) and normal processing in Droshawt/∆Six2c mice. The 
expression levels are normalized to the non-canonical miRNA mir-320 and Droshawt/∆Six2c littermates. (B) qPCR to 
show reduction of Drosha expression in E16.5 in KO kidneys. IF staining against DROSHA to show loss of 
endogenous DROSHA protein in the metanephric blastema. (C) Western Blot and qPCR analysis of DROSHA-
E1147Kactive vs. controls at E16.5. IF staining against flag-tag to show expression of DROSHA-E1147K protein in 
the metanephric blastema. 
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5.1.2 Homozygous Drosha knockout leads to impairment of nephrogenesis 

At embryonic stage E13.5 normal uretic tip branching could be observed and the mesenchymal 

condensation was comparable between Drosha∆Six2c/∆Six2c embryos and control littermates 

(Droshaflox/flox, Droshawt/flox or Droshawt/ΔSix2c). Also, renal vesicles in Drosha∆Six2c/∆Six2c embryos could 

clearly be identified, histological sectioning revealed a reduction in the number of S-shaped bodies 

(Figure 13 A). 

At E16.5 maturing structures like comma-, S- shaped bodies or mature glomeruli were further reduced 

in the cortical region and the medulla, while remaining comma- and S- shaped bodies appeared 

immature and exhibited more densely packed cells compared to controls (Figure 13 B). A quantification 

of glomeruli numbers of vertically sliced whole E16.5 kidneys showed a significant reduction between 

Drosha∆Six2c/∆Six2c and control littermates (6 versus 30.8 glomeruli per mm2 in controls; p-value < 0.0001) 

(Figure 13 C). 

At stage E18.5 no matured glomeruli were present in Drosha∆Six2c/∆Six2c kidneys (Figure 13 D). The 

centrally located glomeruli, which should be more mature, appeared densely packed, respectively 

clogged and thus likely non-functional. 

The newborn Drosha∆Six2c/∆Six2c mice could easily be distinguished from wild type littermates. They did 

not react to stimuli and seemed quite lethargic. Further, they showed extensive gasping and suffered 

from cyanosis. A sign for reduced activity was also the visibly smaller milk spot compared to controls. 

The Drosha∆Six2c/∆Six2c mice died within hours after birth with terminal heart failure and pulmonary 

edema. The kidneys of newborn Drosha∆Six2c/∆Six2c mice were much smaller (Figure 13 C) and 

characterized by complete absence of mature glomeruli, reduced tubular structures (black arrow), 

cystic dilatation of tubuli (arrowheads) and a strong increase in stromal tissue compared to controls. 
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Figure 13: Histological analysis of Drosha KO under the Six2cre-eGFP promotor 

(A) HE staining of Drosha∆Six2c/∆Six2c mice at stage E13.5. Arrows indicate S-shaped-bodies Droshawt/∆Six2c mice. (B) 
HE staining of Drosha∆Six2c/∆Six2c mice at stage E16.5. Arrows mark matured Glomeruli. Arrowhead marks S-shaped-
body. (C) Quantification of Glomeruli numbers in E16.5 Drosha∆Six2c/∆Six2c compared to control littermates. (D) HE 
staining of Drosha∆Six2c/∆Six2c mice at stage E18.5. Arrows indicate location of normal matured glomeruli in 
Droshawt/∆Six2c mice and malformed glomerular structures in Drosha∆Six2c/∆Six2c mice. (E) HE staining of 
Drosha∆Six2c/∆Six2c mice at stage P1. Arrows indicate residual tubular tissue and arrow heads indicate dilated 
tubules. 
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5.1.3 Marker analysis of Drosha∆Six2c/∆Six2c embryos 

In situ hybridization of Cited1, Six2 and Wt1 revealed a correctly established nephrogenic zone with 

intact cap mesenchyme in E13.5 Drosha∆Six2c/∆Six2c embryos with expression of all markers in a 

comparable level and pattern as in control littermates (Figure 14 A). Wnt4 staining as a marker for 

epithelization was present, but a stronger Wt1 staining in the more central glomerular precursors was 

missing in the Drosha∆Six2c/∆Six2c kidneys (Figure 14 A, black arrows). Analysis of E16.5 mutant embryos 

with the same markers revealed an alteration of kidney development on different levels. The 

nephrogenic zone in the cortex of the kidney with high expression of Six2 appeared thinner and 

discontinuous. This effect is yet further evidence of an adequate Six2-cre mediated deletion of Drosha. 

Some blastemal cells of the cortical nephrogenic zone were lacking Six2 completely. Additionally, 

Cited1 expression seemed to be lost completely (Figure 14 A). The epithelialization marker Wnt4 was 

infrequently expressed and especially Wt1 expression was much weaker in the blastemal 

compartment and limited to fewer regions of maturing glomerular precursors in the center in contrast 

to controls. Even with these limitations kidney development seemed to proceed, but at a reduced 

level. Nephrin-positive structures could be found. Yet, their morphology did not resemble glomeruli 

and their cellular structure seemed to be disarranged (Figure 14 B). GFP positive structures, as a sign 

for expression of the Six2 driven EGFP/cre transgene, could be found outside the nephrogenic zone in 

KO kidneys. This might be a hint for incomplete differentiation or reactivation of a progenitor cell 

program at a later time point. 

DroshaSix2c/Six2c kidneys were smaller compared to controls (Figure 13). The cause of this effect could be 

a reduction of proliferation with depletion of precursors or increased apoptotic cell loss. Staining with 

the proliferation marker Ki-67 did not show a clear difference in proliferation in mutant and control 

embryos. Yet, the proliferation zone seemed to be thinner and fewer Ki-67 positive condensed 

structures like comma- and S-shaped bodies could be found (Figure 14 C, white arrows). To check for 

increased apoptosis, kidneys were stained for the presence of the apoptotic marker cleaved Caspase 

3 (cCasp3) (Figure 14 D). A striking increase in apoptosis could be detected especially in the cortical 

region along with more central regions that contain mesenchymal and epithelial but not stromal cells. 

This is a strong sign that along with ongoing differentiation a significant number of cells were lost due 

to apoptosis. If this apoptosis is too severe, the embryo could suffer from kidney agenesis. Indeed, 36% 

of the E16.5 DroshaSix2c/Six2c embryos showed loss of at least one kidney (n=11) (Figure 14 E). 
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Figure 14: Marker analysis of Drosha∆Six2c/∆Six2c embryos 

(A) in situ hybridization of E13.5 and E16.5 kidneys with riboprobes to detect progenitor markers: Six2, Cited1, 
Wt1 and Wnt4. Arrows indicate Wt1 staining in central regions of the kidney. (B) Immunofluorescent staining 
against nephrin to label the glomerular structures and GFP to label Six2 expressing cells of the nephrogenic zone. 
(C) Immunofluorescent staining against the progenitor marker WT1 and the proliferation marker Ki-67. Arrows 
indicate comma- and S-shaped bodies. (D) Immunofluorescent staining against GFP and the apoptosis marker 
cCasp3. (E) Autofluorescence image of Drosha∆Six2c/∆Six2c mice at stage E16.5 shows unilateral kidney agenesis. 

5.1.4 Conditional knockout of Drosha in podocyte precursors 

Due to the perinatal lethality of Drosha∆Six2c/∆Six2c mice, the strong reduction of precursor cells, reduced 

kidney size and partial kidney agenesis, development of WT-like lesion at postnatal stages was not 

achievable. Hence, a tamoxifen-inducible deletion of Drosha in only a fraction of the developing kidney 

would allow partial kidney development and may lead to WT. The Wt1-driven creERT2 transgene 

(Wt1tm2(cre/ERT2)Wtp) shows weaker activity in uninduced kidney mesenchyme but a stronger expression 

in glomerular and podocyte precursors. The promotor is tamoxifen inducible and a single prenatal 

bolus is sufficient for transgene recombination. The fraction of non-recombined cells were expected 

to rescue kidney function and lead to postnatal survival. 
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Figure 15: Inducible KO of DROSHA in podocytes precursors 

(A) in situ hybridization of E16.5 kidneys with the same riboprobes. (B) SDS-PAGE, stained with Coomassie 
brilliant blue, of P28 Drosha∆WT1c/∆WT1c mouse urine shows high albumin content compared to wild type controls. 
(C) HE staining of P28 control and Drosha∆WT1c/∆WT1c mice. Arrows indicate protein cylinders in collection tubules. 
(D) PCR analysis of tamoxifen treated embryonal kidneys at stage E14.5, E16.5 and E18.5.  

After tamoxifen treatment at E12.5, DroshaΔWt1/ΔWt1 embryos developed the same disruption of the 

nephrogenic zone compared to Drosha∆Six2c/∆Six2c embryos, but in a less dramatic manner (Figure 15 A). 

Cited1 staining was again missing, but in contrast to Drosha∆Six2c/∆Six2c Six2 cap mesenchyme staining 

showed less reduction. The number of Wnt4 positive structures as well as fully developed glomeruli at 

stage E16.5 were higher. DroshaΔWt1/ΔWt1 mice were in fact viable and developed normal sized kidneys, 

but suffered from proteinuria starting between day 14 and 28 after birth (stage P14 and P28). As a 

result of this proteinuria, albumin could be detected in urine by SDS PAGE. HE staining of kidney slides 

revealed that DroshaΔWt1/ΔWt1 mice had protein deposits in kidney tubules. The protein deposits were 
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mainly located in the medulla and the inner cortex (Figure 15 B and C). Nevertheless, this defect 

seemed to be compensated by the remaining functional kidney tissue, likely derived from non-deleted 

cells. Accordingly, PCR analysis of tamoxifen treated embryonal kidneys showed that the levels of cells 

with deletions of Drosha decreased from E13.5 to E18.5 (Figure 15 D). The mice live up to at least 6 

months without further impairment or any evidence of kidney tumor formation. 

5.1.5 Kidney development is impaired by activation of DROSHA-E1147K  

The heterozygous, dominant-negative DROSHA alleles seen in human WT likely induce a partial but 

critical reduction of miRNA species yet did not lead to complete absence as seen in Drosha∆Six2c/∆Six2c 

mice. As a way to investigate this predicted dominant effect of the E1147K mutation, I generated a 

mouse line with an activatable, lox-stop-lox shielded DROSHA-E1147K transgene (Figure 16 A). The 

principal is the same as used in the Drosha floxed mouse line, with the difference that this transgene 

can be switched on by Six2-cre through deletion of the floxed puro-polyA stop cassette with 

subsequent transcription of the YFP-DROSHA-E1147K fusion protein driven by a CAG promotor (Figure 

12 C). Indeed, the predicted reduction of miRNA species in embryonal kidneys could be confirmed with 

the help of the two-tailed qPCR (Figure 12 A). The level of reduction is still lower than seen in the 

Drosha∆Six2c/∆Six2c kidneys, but significantly higher compared to control or Drosha∆Six2c/wt. 

Embryos with activated DROSHA-E1147K (DROSHA-E1147Kactive) developed the same disruption of the 

nephrogenic zone as Drosha∆Six2c/∆Six2c mice at E16.5 with reduced and patchy Six2 expression. Also, the 

lack of Cited1 and an early loss of Wt1 staining in the center of the kidneys were present (Figure 16 B). 

But none of these deviations were seen at stage E13.5. The degree of impairment seemed to be lower 

compared to the KO situation since Wnt4-positive structures were still present in high numbers at 

E13.5 but were clearly reduced at stage E16.5. Compared to the control the DROSHA-E1147Kactive 

kidneys showed reduced Ki-67 staining. At stage E16.5 it was weaker overall, especially in epithelial 

cells derived from the nephrogenic zone, but the thickness of the proliferation area in the cortical 

nephrogenic zone stayed unchanged (Figure 16 C). Analysis of apoptosis by cCasp3 staining revealed 

apoptosis not only in the nephrogenic zone, but additionally in epithelial cells within the cortex (Figure 

16 D). Still, nephrin-positive structures that morphologically resembled functional and intact glomeruli 

of controls could be detected (Figure 16 E). Nevertheless, like the KO mice, the DROSHA-E1147Kactive  

mice also suffered from kidney agenesis. 23% of the E16.5 DROSHA-E1147Kactive embryos lost at least 

one kidney at (n=13). 

In comparison to DroshaΔSix2c/ΔSix2c, mice with an activated DROSHA-E1147K transgene were viable. 

However, they developed proteinuria after birth, similar to DroshaΔWt1c/ΔWt1c mice. Yet, the proteinuria 

was more severe with a higher number of protein deposits throughout the kidneys (Figure 17 A). To 

check if the activated transgene also had an impact on tubular maturation, in situ hybridization for 
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tubular segment markers like Uromodulin and LAP3 was used. The result was a strong reduction of 

these markers in P28 kidneys, speaking for loss or reduction of tubular tissue after birth (Figure 17 B). 

 

Figure 16: Prenatal development impairments 

(A) Schematic overview of the DROSHA-E1147K mouse model. (B) in situ hybridization of E13.5 kidneys with 
riboprobes to detect progenitor markers: Six2, Cited1, Wt1 and Wnt4 (C) Immunofluorescent staining of E16.5 
kidneys against WT1 and Ki-67. (D) Immunofluorescent staining against GFP and cCasp3 as an apoptotic marker. 
(E) Immunofluorescent staining against GFP and nephrin to label maturing glomeruli. 

Apart from the proteinuria phenotype shared with DroshaΔWt1/ΔWt1 mice, DROSHA-E1147Kactive mice 

displayed glomerulosclerosis after birth as a novel phenotype (Figure 17 A2). The number of sclerotic 

glomeruli increases over time (30% at P14 and >50% at P28; n=4 each). In addition, the sclerotic 

glomeruli showed positive staining for the fibrosis-marker Tgfβ and the blastemal proliferation marker 

Six2 (Figure 17 C). Ongoing proliferation could be detected by staining for Ki-67 positive cells at P28, 

when control kidneys lack Ki-67 positive cells almost completely (Figure 17 D). In DROSHA-E1147Kactive 

kidneys, sclerotic glomeruli in particular showed strong Ki-67 staining (Figure 17 D circle). Besides 
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ongoing proliferation, there was also continuing apoptosis indicated by increased cCasp3 staining 

(Figure 17 E). While in E16.5 kidneys nephrin staining seemed comparable to the control kidneys, in 

P28 nephrin staining of the sclerotic glomeruli was weaker and scattered, pointing to functional 

impairment (Figure 17 F). The glomeruli gave the impression of dilation and disorganization, while cells 

expressing the Six2-cre transgene, which was detected by the fused EGFP protein, were still present. 

The expression pattern of the Six2-cre transgene was highly comparable to the one of the in situ 

hybridization probe shown in Figure 17 C. In control kidneys at stage P28, expressing only the Six2-cre 

transgene but not the DROSHA-E1147K transgene, Six2 expression could not be detected at all. 

 

Figure 17: Postnatal developmental impairments 

(A) HE staining of P28 DROSHA-E1147Kactive kidneys showing severe proteinuria and glomerulosclerosis  (Zoom). 
(B) in situ hybridization of P28 DROSHA-E1147Kactive kidneys with the tubular markers Uromodulin and LAP3. (C) 
in situ hybridization shows expression of fibrosis marker TGFβ and progenitor marker Six2 in sclerotic glomeruli 
of DROSHA-E1147Kactive kidneys. (D) Ki-67 staining shows ongoing proliferation in DROSHA-E1147Kactive kidneys. 
(E) GFP and cCasp3 staining to reveal Six2 promoter activity and apoptosis in P28 DROSHA-E1147Kactive kidneys. 
(F) Immunofluorescent staining against nephrin to label mature glomeruli. DROSHA-E1147Kactive glomeruli are 
malformed and still populated with SIX2 expressing (GFP positive) cells. (G) Kaplan-Meier curve showing the 
survival rate of male and female DROSHA-E1147Kactive mice. (H) Growth retardation and reduced kidney size of 
DROSHA-E1147Kactive mice in comparison to wild type littermates. 

DROSHA-E1147Kactive life expectancy was reduced and a gender difference could be seen (Figure 17 G). 

While the monitored male mice had a median survival of 48 days, the female mice had a median 

survival rate of 238.5 days. The results for DROSHA-E1147Kactive mice shown in Figure 17 were all based 
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on male mice. I analyzed female mice in the same way and got exactly the same phenotype, but with 

a delayed onset. Regardless of gender, DROSHA-E1147Kactive mice exhibited severe growth retardation 

and strikingly reduced kidney size (Figure 17 H). However, none of the dissected kidneys showed any 

tumor formation. 

5.1.6 3D analysis of kidney development 

Drosha∆Six2c/∆Six2c kidneys lacked glomeruli and displayed a strong increase of stromal tissue, while the 

overall kidney volume seemed to be decreased. I investigated how the tissue distribution inside the 

kidney was affected by impaired miRNA biogenesis in the nephrogenic zone. Furthermore, I wanted to 

know if the volume reduction and increase of stromal tissue seen in KO kidneys, could also be detected 

in DROSHA-E1147Kactive kidneys. 

Therefore whole kidneys from E16.5 embryos were dissected and treated according to the iDisco 

clearing protocol. Afterwards, the kidneys were analyzed regarding their tissue composition by light 

sheet fluorescence microscopy (LSFM) and the autofluorescence data was used to construct 3D images 

of whole kidneys. This image analysis was carried out by Oguzhan Angay (AG Heinze, RVZ, University 

of Würzburg, Germany). With the help of in silico tissue classification using the image classification and 

segmentation software Ilastik, four different tissue types could be defined: tubular structures, ductal 

structures, loose tissue and dense tissue (Figure 18). The tubular structures appeared to be 

predominantly of mesenchymal origin, whereas the ductal structures were connected to the kidney 

pelvis and likely derived from the uretic bud (UB). The loose tissue component was mostly similar to 

stromal tissue and the dense tissue to epithelial components. 

Tubular structures were completely absent in Drosha∆Six2c/∆Six2c kidneys and furthermore ductal 

structures were vastly reduced. In contrast loose tissue was highly enriched and dense tissue including 

the blastemal cortex was mostly thinner and partly fragmented. As expected from the previous results, 

DROSHA-E1147Kactive kidneys displayed an intermediate picture with reduced tubular and ductal 

structures, while loose tissue was more abundant. The same reduction of tubular tissue with the 

staining of tubular markers at P28 shown for DROSHA-E1147Kactive mice had been observed and these 

results were in line with the previous findings. In addition, I could confirm the already predicted 

reduction of kidney volume: Total kidney volume was reduced from 1.6 µl in controls to 0.6 µl in 

DroshaSix2c/Six2c embryos. Loose tissue increased from 8% to 23% of kidney volume. DROSHA-E1147Kactive 

kidneys showed no volume reduction, but the same tendency towards increased loose tissue. 
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Figure 18: Whole tissue classification of DROSHA KO and DROSHA-E1147K OE kidneys 

(A) Overview of vertical and horizontal planes of kidney samples. (B) Quantification of total kidney volume of 
Drosha∆Six2c/∆Six2c, DROSHA-E1147Kactive and controls at stage E16.5. (C) Classification results of tissue 
autofluorescence data analyzed and visualized with Imaris (grid scale 200µm). Top two rows: Ortho slice view of 
image stacks from control kidneys. Class label overlay on raw data. Lower rows: Iso-surface rendering of 
respective structures. 
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5.2 Phenotyping of SIX1-Q177R mutant mice 

Apart from Drosha-E1147K, one of the most frequent somatic changes in WT discovered by the WT 

screens was the SIX1-Q177R mutation. I used a similar approach to DROSHA-E1147K as a model for 

tumorigenesis. Again, I generated mice with an activatable, lox-stop-lox shielded SIX1-Q177R 

transgene (Figure 19 A). As already described for the DROSHA-E1147K transgene, the construct can be 

switched on by cre-recombinase through deletion of the floxed puro-polyA stop cassette with 

subsequent translation of SIX1-Q177R protein and an IRES dependent EGFP protein. 

5.2.1 Conditional activation of SIX1-Q177R in metanephric blastema 

The Six2 promotor driven cre transgene was used to induce an activation of SIX1-Q177R in the 

condensing metanephric mesenchyme, to investigate if and how SIX1-Q177R influences nephrogenesis 

and kidney development. A successful activation of the transgene and the corresponding loss of puro 

could be detected via qRT-PCR (Figure 19 B). In contrast to the strong phenotype of DROSHA-E1147K 

mice, I could not detect major aberrations in the phenotype of mice with SIX1-Q177R activation. 

At stage E16.5 the embryos with activated SIX1-Q177R (SIX1-Q177Ractive) showed no difference in UB 

tip branching and the mesenchymal condensation seemed to proceed as in control littermates (Figure 

19 C). I could clearly detect maturing structures from renal vesicles, comma- and S-shaped bodies to 

mature glomeruli (Figure 19 B, arrows). The investigation of glomeruli in E16.5 kidneys displayed a 

normal distribution of 25 – 32 glomeruli/ mm2 in control and SIX1-Q177Ractive embryos. 

The SIX1-Q177Ractive mice were viable at birth and had no further impairments in adult stages. At stage 

P28, I analyzed the kidneys and found fully functional glomeruli (Figure 19 D, arrows), which differed 

neither in number nor appearance compared to control littermates. 

Marker analysis of SIX1-Q177Ractive at stage E16.5 was in line with the earlier findings. Six2 and Cited1 

expression displayed a normal condensation of the nephrogenic zone and the epithelialization marked 

by Wnt4 was comparable to control littermates. As expected from the histological results, Wt1 staining 

presented a normal maturation of glomeruli with staining in the blastemal compartment and in more 

central regions of the kidney. 
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Figure 19: No kidney impairments after SIX1-Q177R activation in metanephric blastema 

(A) Schematic overview of the SIX1-Q177R mouse model. (B) Relative expression of SIX1-Q177Ractive normalized 
on control (ctrl = 1) littermates at E16.5. (C) HE staining of control and SIX1-Q177Ractive mice at stage E16.5. 
Arrows indicate the location of mature glomeruli in SIX1-Q177Ractive mice. (D) HE staining of control and SIX1-
Q177Ractive mice at stage P28. Arrows indicate the location of mature glomeruli in SIX1-Q177Ractive mice. (E) in situ 
hybridization of E16.5 kidneys with riboprobes to detect progenitor markers: Six2, Cited1, Wt1 and Wnt4. 

5.2.2 Global activation of SIX1-Q177R 

Because the activation of SIX1-Q177R did not have a major impact on kidney development, the mice 

harboring the SIX1-Q177R transgene were intercrossed with the Zp3 promotor driven cre-recombinase 

mouse line (Zp3-cre; C57BL/6-Tg(Zp3-cre)93Knw/J). This leads to an expression of the cre-recombinase 

in oocytes and a global activation of SIX1-Q177R in the embryo respectively. qRT-PCR presented a 

strong activation of human SIX1-Q177R and the associated EGFP. Again, downregulation of puro could 

be detected (Figure 20 A). 
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At stages E13.5, E16.5 and E18.5 no obvious phenotypic alterations were present. Transition from renal 

vesicles to mature glomeruli were consistent with normal development, furthermore glomeruli 

numbers did not change compared to control littermates. 

 

Figure 20: Global activation of SIX1-Q1177R leads to hydronephrosis 

(A) Relative expression of SIX1-Q177Ractive normalized on control littermates (ctrl = 1) at E16.5. (B) Bilateral 
hydronephrosis in juvenile mice at stage P28 (C) HE staining of SIX1-Q177Ractive mice from stages P14 to P28. 
Small pictures show dilated remains of kidney parenchyma (1) and glomeruli (2). (D) Ink injection into the pelvis 
of kidneys stains ureter and bladder and shows correct flux from kidney to bladder. 

Newborn SIX1-Q177Ractive mice were viable and did not show any alterations in behavior or in size. At 

stage P28 SIX1-Q177Ractive mice were clearly distinguishable from their wild type littermates due to 

visible abdominal swelling. These mice developed severe bilateral hydronephrosis, which led to an 

early death between stages P28-P42 (Figure 20 B). 

Histological analysis of different stages revealed that the observed hydronephrosis is an ongoing 

process starting around stage P14 with distension inside the kidney without overall volume change 

until the distension is so massive that the whole kidney begins to expand at P21 and finally displays 

the appearance of a balloon kidney at P28 (Figure 20 C). In this end stage of hydronephrosis, a clear 
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distension of the renal pelvis could be seen (Figure 20 C1), but intact and probably functional glomeruli 

in the outer region of the dilated kidney were still present (Figure 20 C2). Since all the tissue at the 

outline of the dilated areas seemed to be compressed, I wanted to check for a reflux problem based 

on the clogged ureter, due to possible overproliferation of ureter epithelia, and subsequent 

accumulation of urine in the kidney. Therefore, I injected ink into the pelvis of both P21 kidneys to 

label the ureter. The ink labeled each individual ureter (Figure 20 D, yellow arrows) and furthermore 

the bladder (Figure 20 D, red arrows) in wild type littermates and as well in SIX1-Q177Ractive mice. A 

normal flux from the kidneys to the bladder appeared to be possible. The main cause behind the 

constant appearance of hydronephrosis in mice with global activation of SIX1-Q177Ractive is likely not 

to be a complete obstruction of urine flow, but an impaired passage with urine retention and elevated 

pressure building up. 

5.3 Compound mutants 

To mimic the possible synergetic effect of DROSHA-E1147K and SIX1-Q177R seen in WT, I produced 

compound mutants in two combinations: A homozygous deletion of Drosha combined with an 

activation of SIX1-Q177R and in addition a compound mutant with activation of DROSHA-E1147K and 

SIX1-Q177R. Both mouse models can be switched on by Six2-cre through deletion of the floxed puro-

polyA stop cassette (5.1.5 and 5.2.1) and the homozygous deletion of the floxed exon 9 of the Drosha 

allele (5.1.1). 

5.3.1 Deletion of Drosha and activation of SIX1-Q177R in blastema derived cells 

At embryonic stages E13.5 and E16.5 there was no major difference in histological appearance in 

Drosha∆Six2c/∆Six2c / SIX1-Q177Ractive compared to Droshawt/∆Six2c / SIX1-Q177Ractive or Droshawt/wt / SIX1-

Q177Rinactive littermates. Mature glomeruli could be found at stage E18.5. 

Marker analysis underlined this picture of unaltered nephrogenesis with Wnt4 and Wt1 positive 

structures in the cortex and central parts of the kidney (Figure 21 A). Nevertheless, Six2 staining was 

weaker compared to the control and Cited1 showed the already known patchy staining as a sign of a 

partly disrupted nephrogenic zone. 

Drosha∆Six2c/∆Six2c SIX1-Q177Ractive mice shared the same lethal phenotype of Drosha∆Six2c/∆Six2c (5.1.1) and 

Drosha∆Six2c/∆Six2c / SIX1-Q177Rinactive mice, while the inactivation of only one Drosha allele without SIX1-

Q177R expression (Droshawt/∆Six2c / SIX1-Q177Rinactive) lead to a phenotype comparable to control 

littermates. Droshawt/∆Six2c / SIX1-Q177Ractive mice had fully functional glomeruli at stage P21 (Figure 21 

B, arrowheads), yet started to develop proteinuria in cortical regions (Figure 21 B, arrows). At stage 

P28 the kidneys displayed a more dramatic condition with beginning hydronephrosis and dilated 

tubules in all parts of the kidney (Figure 21 C, overview) and strong proteinuria (Figure 21 C, zoom: 
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arrows). Also, cells positive for the blastemal marker Six2 could still be found. Staining against Ki-67 

showed ongoing proliferation in the matured kidney, especially in cells surrounding cystic dilated 

tubules (Figure 21 C, Ki-67: arrowheads). These combined impairments limited the life expectancy of 

Droshawt/∆Six2c SIX1-Q177Ractive mice to 6 weeks. The major cause of death is probably due to 

hydronephrosis and kidney failure. 

 

Figure 21: Deletion of DROSHA combined with SIX1-Q177R activation 

(A) in situ hybridization of E16.5 kidneys with riboprobes to detect progenitor markers: Six2, Cited1, Wt1 and 
Wnt4 (B) HE staining of P21 Droshawt/∆Six2c / SIX1-Q177Ractive kidneys reveals the onset of proteinuria (arrows). in 
situ hybridization displays expression of progenitor marker Six2 (C) HE staining of P28 Droshawt/∆Six2c / SIX1-
Q177Ractive kidneys shows strong proteinuria (Zoom: arrows), in situ hybridization displays expression of 
progenitor marker Six2 and Ki-67 staining (Ki-67: arrowheads) demonstrates ongoing proliferation. 
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5.3.2 Co-activation of DROSHA-E1147K and SIX1-Q177R in blastemal cells 

DROSHA-E1147Kactive / SIX1-Q177Ractive mice developed an even more complex phenotype in mature 

kidneys compared to the Droshawt/∆Six2c / SIX1-Q177Ractive mice. At P28 the mice showed strong 

proteinuria, but in contrast to  Droshawt/∆Six2c SIX1-Q177Ractive mice did not develop hydronephrosis at 

any stage between P14 and P52 (Figure 22 A). In addition to the proteinuria (Figure 22 A2), the 

DROSHA-E1147Kactive / SIX1-Q177Ractive mice suffered from lesions inside the kidney cortex (Figure 22 

A1) and intense glomerulosclerosis (Figure 22 A3). Still, the kidneys had functional glomeruli in the 

cortical region of the kidney (Figure 22 A). 

Analysis of proliferation marker Ki-67 could confirm strikingly increased and ongoing proliferation in 

Droshawt/∆Six2c / SIX1-Q177Ractive kidneys at stage P28 in contrast to reduced proliferation in littermate 

control kidneys (Figure 22 B). In particular, critical structures like glomeruli and dilated tubules 

presented high numbers of proliferating cells, which are presumably the cause for the sclerotic 

glomeruli. Furthermore, the lesions were regions of high proliferation activity. This could be caused by 

inflammation processes. 

In spite of these impairments the mice could survive for up to 8 weeks without limitations until the 

mice had to be sacrificed due to kidney failure. 

 

Figure 22: Co-activation of DROSHA-E1147K and SIX1-Q177R in blastemal cells 

(A) HE staining of P28 DROSHA-E1147Kactive SIX1-Q177Ractive kidney showing lesions, proteinuria and 
glomerulosclerosis (zoomed rectangles 1-3). (B) Ki-67 staining shows ongoing proliferation in DROSHA-
E1147Kactive kidneys. 
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6 Discussion 

6.1 DROSHA 

Functional processing of miRNA is an essential component of various processes of animal development 

and homeostasis of different tissue types. Alteration of the microprocessor key players like Drosha, 

Dgcr8 or Dicer shows numerous phenotypes in different organ systems that often share overlapping 

features (Brandl et al. 2016; Marinaro et al. 2017; Yi et al. 2009; Bartram et al. 2016; Chu et al. 2014). 

One of the best studied components of the microprocessor complex is Dicer. Recent studies have 

analyzed Dicer with global or conditional deletions, yet more limited work has been performed on the 

microprocessor components Drosha and Dgcr8. An early or complete loss of either component was 

often described to be associated with differentiation impairments, proliferation deficit and increase in 

apoptosis. Nevertheless, a connection to human pathology was still missing, until DICER mutations 

were found to be a leading factor of pleuropulmonary blastema (Hill et al. 2009). Shortly after this 

finding, DROSHA and DGCR8 mutations were recognized as drivers in WT (Rakheja et al. 2014; Torrezan 

et al. 2014; Walz et al. 2015; Wegert et al. 2015). 

6.1.1 Drosha function is essential in kidney blastema 

For a better understanding if and how Drosha alterations may contribute to tumor formation, mutant 

mice with loss or mutant activation of Drosha were generated. A previous study had already shown 

that a podocyte-specific deletion of Drosha leads to proteinuria and renal failure (Zhdanova et al. 

2011). But this deletion would happen too late as WT is thought to arise in earlier precursor cells. 

Because of this, I used the Six2-cre and Wt1-creERT2 transgenes to induce deletion of Drosha. This led 

to an earlier time point of recombination, which clearly affected multiple nephron cell types as 

validated by DROSHA immunofluorescent staining of DroshaΔSix2c/ΔSix2c embryos. Six2-cre led to a fairly 

uniform deletion and there were only some DROSHA expressing blastema-derived cells left in mutant 

kidneys, indicative of a low-level mosaic phenotype. The Wt1-creERT2 mediated deletion resulted in 

much weaker effects, consistent with the expectation that a larger fraction of precursor cells may be 

outside the critical expression window at the time of tamoxifen administration. These cells can then 

rescue kidney functionality. Both deletion phenotypes shared some overlap when tested by marker 

analysis, with a reduction in the progenitor cell compartment, reduced proliferation, increased 

apoptosis and a graded impairment of differentiation. While the Six2-cre mediated deletion was lethal 

at birth and thus much more severe than the podocyte-limited deletion described by Zhdanova et al. 

(2011), the Wt1-creERT2 mediated inducible deletion produced an even milder phenotype, where mice 

survived with otherwise asymptomatic proteinuria for many weeks without evidence for WT 

formation. 
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6.1.2 DROSHA-E1147K is a dominant-negative mutation in vivo 

The complete loss of Drosha in individual cells via Six2-cre or Wt1-creERT2 mediated recombination 

which leads to a complete lack of microprocessor activity in descendants may be too harsh to allow 

for tumor formation. I could show that the expression of the dominant-negative DROSHA-E1147K 

mutant transgene leads to graded reduction in individual canonical miRNAs, while still compatible with 

normal cell function. This combination offers a chance for malignant transformation. The broad 

activation of the DROSHA-E1147K transgene more closely resembled the Six2-cre mediated loss of 

Drosha activity and not the mosaic DroshaΔWt1/ΔWt1 situation. The additional occurrence of 

glomerulosclerosis and ongoing proliferation in postnatal kidneys indicates the development of 

additional degenerative lesions with advancing life time. Furthermore, the presence of Six2 and GFP 

positive cells at stage P28 are strong hints that these lesions contain either still incompletely 

differentiated or subsequently dedifferentiated blastema-like cells since physiological Six2 expression 

is terminated within the first days after birth (Hartman, Lai, and Patterson 2007). The strong phenotype 

of mutant DROSHA-E1147K is consistent with the dominant-negative effect already proposed from in 

vitro experiments (Wegert et al. 2015). 

6.1.3 All miRNA biogenesis mutations share similar features 

As already pointed out, Drosha deletions in mouse models have only been induced in a podocyte 

specific approach (Zhdanova et al. 2011). These mice suffer from late development impairments. Apart 

from this podocyte specific approach, there are numerous studies for other members of the miRNA 

biogenesis pathway that show comparable phenotypical alterations. For example kidneys of mice with 

Pax8-cre mediated Dgcr8 deletion displayed ongoing proliferation combined with apoptosis in 

postnatal kidneys, followed by juvenile death (Bartram et al. 2016). This phenotype is comparable to 

mice with Six2-cre driven activation of DROSHA-E1147K presented in this thesis. Pax8-cre shares a 

significant overlap in cre driver expression to Six2-cre, even if Pax8 is activated at a slightly later stage 

in renal vesicles and additionally in uretic bud derived ducts. The phenotypic similarities are in line with 

this similar expression pattern. Dicer is by far the best studied member of the miRNA biogenesis 

pathway. Accordingly, several cre driver lines have been crossed with Dicer deletion mice and again 

the offspring share phenotypic similarities. The Six2-cre mediated DICER knockout reported by 

Nagalakshmi et al. (2011) yielded a picture comparable to the Six2-cre mediated DROSHA KO in this 

thesis, with a loss of progenitor cells in the nephrogenic zone and around the UB tips and a significant 

reduction in the number of glomeruli. Interestingly, Chu et al. (2014) had shown that an even earlier 

loss of the progenitor cell pool due to apoptosis in Pax3-driven DICER KO embryos leads to a stalled 

nephrogenesis in the metanephros by E14.5. This may underlie the partial loss of kidneys observed in 

DroshaΔSix2c/ΔSix2c and DROSHA-E1147Kactive embryos. In regard to the previously characterized Dicer and 
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Dgcr8 deletions as well as my Drosha deletion and transgene models, it can be concluded that altered 

or lost miRNA procession induces not only a depletion of progenitor cells and further apoptosis, but 

ends up in severe functional kidney impairment to the point of kidney agenesis. 

6.1.4 DROSHA-E114K mutation alone is not sufficient to induce Wilms tumors 

The deletion or mutant activation of Drosha led to strong developmental defects in kidneys, but no 

changes that pointed in the direction of WT formation could be detected. There are multiple reasons 

why this may not have happened: The size of the target cell population and the available time window 

before terminal differentiation may be far too limited when compared to human children. The 

impairment of differentiation as seen in my mouse model would promote the formation of an 

embryonal neoplasm. Embryonal neoplasms are thought to be derived from precursor cells that are 

unable to differentiate beyond the precursor stage. Nevertheless, the observed reduction of 

proliferation and increase of apoptosis in the embryonic kidney cortex of mutants suggests that 

additional alterations may be needed. Since SIX2 expression is associated with a proliferative 

phenotype (Wegert et al. 2015), the synergetic effect of DROSHA and SIX 1/2 mutations points in the 

direction that a combination miRNA procession impairment together with upregulation of proliferation 

factors may be the key for WT formation. In agreement with this hypothesis, prototypic mutations of 

the WT gene Wt1 did not promote tumor formation without a complex assortment of Wt1 and Igf2 

alterations (Hu et al. 2011). 

6.2 SIX1 

The importance of SIX1 for kidney development and the found SIX1 alterations in WT may represent a 

promising strategy to model malignant transformation leading to WT in the mouse. Therefore, I 

generated mice with the activation of the SIX1-Q117R mutant. SIX1 and SIX2 are known as blastemal 

markers for WT and as influencing cellular proliferation, but there were so far no signs for SIX1/2 to be 

tumorigenic drivers (Sehic et al. 2012; Senanayake et al. 2013). Nevertheless, Wegert et al. (2015) 

could identify a sub group of WT that showed strong expression of SIX and SALL family members as 

well as SIX cofactor EYA1. In addition, these tumors showed expression of other kidney development 

genes like CITED1, NCAM1, GDNF, REST and MYCN, suggesting a progenitor cell state. Binding motif 

analysis proposed that the preferred binding site of the SIX1 mutant changes with the slightly altered 

binding specificity compared to tumors with wild type SIX1 (Wegert et al. 2015). However, the 

functional impact is still unknown. 

6.2.1 SIX1 mutant expression in blastemal cells has no impact on kidney development 

The activation of SIX1-Q177R in nephron progenitor cells of mouse kidneys did not exhibit a phenotypic 

alteration that could be easily detected. Even with high expression levels of the mutant SIX1 protein, 
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embryonic nephrogenesis seems to be unaltered and the mice are able to maintain normal kidney 

function leading to a life span comparable to wild type mice. I could not find any Six2 expressing cells 

acting in a blastemal like manner in the adult kidney as I could in the DROSHA-E1147Kactive mice. The 

termination of physiological Six2 expression within the first days after birth, shown in earlier studies 

(Hartman, Lai, and Patterson 2007), could be observed. It seems that even if the blastemal cell 

compartment has a changed proliferation pattern, which could not be detected by Ki-67 staining, 

nephrogenesis goes on and mature glomeruli are formed. Therefore, activation of SIX1-Q177R in 

blastemal cells leads to a either a subtle or an unaltered phenotype, indicating that the mutation has 

no effect or the induced alterations may be compensated by genetic regulatory networks. 

6.2.2 Global activation of SIX1-Q177R leads to hydronephrosis and early death 

In contrast to the mice with activated SIX1-Q177R in blastemal cells, a global expression of SIX1-Q177R 

exhibits a far stronger phenotype with juvenile hydronephrosis and early death after birth. The fact 

that I could not find alterations in the prenatal kidney development led me to the conclusion that this 

hydronephrosis may be a product of defective flux from kidney to bladder. But with the ink staining it 

could be confirmed that liquid can pass through each individual ureter and reach the bladder. The real 

cause of the hydronephrosis, even with its recurring character, is still to be found. Because SIX1 plays 

an important role in ureteral smooth muscle formation (Nie et al. 2010), a possible explanation could 

be that proliferation alterations in the ureter smooth muscle cells disturb the peristaltic motion and 

lead to reflux into the kidney,. Nevertheless, the global activation of SIX1-Q177R  mutant can affect 

various parts of the urinary system of the mice, which makes the search for the leading cause of 

hydronephrosis a difficult task. Yet, the recurring hydronephrosis could be an interesting model for 

hydronephrosis in mice. 

6.3 Synergetic effect of DROSHA and SIX1 mutants 

6.3.1 SIX1-Q177R expression and heterozygous deletion of Drosha are sufficient to induce 

kidney impairment 

One of my two approaches to mimic the synergetic effect seen in WT was activation of SIX1-Q177R 

along with a homo- and heterozygous knockout of Drosha in blastemal cells. I could detect that the 

Drosha∆Six2c/∆Six2c / SIX1-Q177Ractive mice died at P1 comparable to the mice with Six2-cre driven 

homozygous deletion of Drosha. The Drosha∆Six2c/∆Six2c / SIX1-Q177Ractive mice showed the typical 

disrupted nephrogenic zone, but did not suffer from complete depletion of glomeruli precursors 

leading to maturing glomeruli in the central regions of the kidney. I concluded that a presumed benefit 

gained from activated SIX1-Q177R enables precursor cells to make the transition into a more 

differentiated cell state instead of an apoptotic cell fate seen in Drosha∆Six2c/∆Six2c mice. Yet, it seems 
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that these cells, even if able to form mature glomeruli, could not compensate the loss of progenitor 

cells and prevent a lethal phenotype. 

The heterozygous deletion of Drosha combined with activation of the SIX1-Q177R transgene resulted 

in a viable phenotype. Interestingly, the mice still expressed Six2 in the kidney at stage P24, where Six2 

staining should already be terminated (Hartman, Lai, and Patterson 2007). With these undifferentiated 

and possibly proliferating cells still inside the mature kidney the possibility for WT formation was given. 

Since the Droshawt/∆Six2c mice were close to the wild type in their phenotypic appearance, it was 

surprising that heterozygous deletion of Drosha with activation of the SIX1-Q177R transgene was 

sufficient to induce a new composition of kidney impairments. The mice exhibited severe proteinuria 

and beginning hydronephrosis, which in combination leads to an early death around P28, a time point 

probably too early to allow successful formation of WT. Yet, this results are a strong hint for a 

synergetic effect of SIX1-Q177R activation and heterozygous deletion Drosha with a new phenotype 

and numerous progenitor cells inside the matured kidneys. 

6.3.2 SIX1-Q177R and DROSHA-E1147K display a synergistic effect and new phenotype 

The overexpression of DROSHA-E1147K showed a dominant-negative effect, but a miRNA processing 

alteration that lay in between the KO and wild type situation could be seen. Furthermore, DROSHA-

E1147Kactive offspring were viable. A combination of SIX1-Q177R and DROSHA-E1147K activation in 

blastemal cells was therefore one of the most promising approaches to allow for WT formation in mice 

kidneys. Indeed, the mice were viable after birth and displayed a phenotype that was again partly a 

combination of already known alterations like proteinuria and glomerulosclerosis, and the mice 

suffered from early death within the first 2 months. A new feature that had not be experienced so far 

was the formation of lesions inside the kidneys. This lesions displayed strong proliferation staining. 

Furthermore, proliferation hotspots in various areas of the kidney including glomeruli and dilated 

tubuli were found. The results suggest that also in SIX1-Q177Ractive / DROSHA-E1147Kactive kidneys 

precursor cells with the ability to proliferate are present. 

It seems that in both compound mutants, cells were able to maintain their progenitor cell status even 

after nephrogenesis had finished. The expression of SIX1-Q177R could prevent the progenitor cells 

from complete depletion and benefits the formation of glomeruli at prenatal stages, seen in the 

Drosha∆Six2c/∆Six2c / SIX1-Q177Ractive mice, but seems to be a driving force behind the transition of still 

active and proliferating progenitor cells into postnatal stages resulting in the correlated severe kidney 

alterations. Kidney injuries could promote the activation of progenitor cell program even further. 

Interestingly, the expression of SIX1-Q177R is sufficient to induce a severe phenotype with only 

heterozygous Drosha deletion which would be comparable to wild type littermates without SIX1 

mutations, leading to the conclusion that even a subtle alterations of miRNA processing can have a 
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severe outcome if SIX1 mutations are present. In line with these findings, the severe phenotype of 

Six2-cre driven DROSHA-E1147K activation was worse in SIX1-Q177Ractive / DROSHA-E1147Kactive mice 

under the same promotor. 

In summary, I could not observe Wilms tumor formation in kidneys of the mouse models newly 

established in this thesis. Nonetheless, the results show the importance of DROSHA and SIX1 for kidney 

development. The DROSHA mutations seen in Wilms tumors are dominant-negative alterations in vivo 

that strongly impair kidney development leading to kidney failure. Furthermore, global activation of 

SIX1 mutations can be a new approach to model hydronephrosis in the mouse. I could clearly confirm 

the synergetic effect of alteration in the SIX-SALL pathway and the microprocessor complex proposed 

by the Wilms tumor screens. The compound mutants show new combinations of kidney impairments 

with kidney failure as a terminal end point. Yet, additional genetic alterations seems to be needed to 

fully recapitulate WT formation in the mouse. In the future, another promising approach to allow WT 

formation would be the combination of my compound mutants with different cre driver mouse lines 

to induce SIX1 and DROSHA mutant expression at different time points of nephrogenesis and to target 

different cell types of the developing kidney. This could prevent apoptotic loss of progenitor cells and 

promote tumorigenesis. 
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8 Abbreviations  

A 
aa   amino acid 
ALP mix  Aprotinin, Leupeptin, 

Pepstatin mix 
B 
bp  base pair 
BSA  bovine serum albumin 
C 
cDNA  complementary DNA 
ct-value cycle threshold value 
D 
DAB  3,3'-Diaminobenzidine 
DEPC  diethylpyrocarbonate 
DMEM  Dulbecco’s Modified Eagle 

Medium 
dNTP  deoxynucleoside-triphosphate 
E 
EDTA  ethylenediaminetetraacetic 
  acid   
EMT  epithelial mesenchymal  
  transition 
ESC  embryonic stem cells 
F 
FCS  fetal calve serum 
G 
eGFP  enhanced green fluorescent 

protein 
GFP  green fluorescent protein 
GOI  gene of interest 
H 
HE  hematoxylin and eosin  
I 
IRES  internal ribosome entry site 
 
 
 

 
 
 
K  
kb  kilobase 
KO  knockout 
L 
LIF  leukemia inhibitory factor 
LSFM  light sheet fluorescence  

microscopy 
M 
mES  mouse embryonic stem cells 
MOPS  3-(N-morpholino) propane 

sulfonic acid 
N 
NEAA  non-essential amino acids  
P 
PAGE  poly acrylamide gel 

electrophoresis  
PBS  phosphate buffered saline  
PFA  paraformaldehyde 
PCR  polymerase chain 
  reaction  
Q 
qRT-PCR quantitative realtime PCR 
R 
RT  room temperature 
S 
SDS  sodium dodecyl sulfate 
SSC  saline sodium citrate 
W 
WT  Wilms tumor 
U 
UB  Ureteric bud 
Y 
YFP  yellow fluorescence protein 
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9 Supplement 

9.1 Primer tables 

Table 9: Mouse oligonucleotides for RMCE 

bGHpA-for CCTTCTAGTTGCCAGCCATC 

Flag-tag-for GGATTACAAGGATGACGACGAT 

FRTneo2 GCGAAGCTTGATATCGAATTCCGAAGTTCCTATTCTCTA 

GFP-real-for ACGTAAACGGCCACAAGTTC 

GFP-real-rev AAGTCGTGCTGCTTCATGTG 

hDrosha-for1 CGACAACTTATTGAAACTTCTCCAGT 

hDrosha-rev1 GAAGCTGGGATTTGGGGTCA 

hes1-kO2_bgh GGGAGGATTGGGAAGACAAT 

hSIX1-f GCGGAGGCCAAGGAAAGGGAGAAC 

hSIX1-r GCTTGCCCCCTTCCAGAGGAGA 

hygro5’out CACGCCCTCCTACATCGAAG 

neo-rev GAAGAACTCGTCAAGAAGGC 

Neotest1 CGTGCAATCCATCTTGTTCA 

PGK-forw CATTCTGCACGCTTCAAAAG 

R523 GGAGCGGGAGAAATGGATATG 

reverse AGCGGATAACAATTTCACACAGGA 

Rosa-rev CTTTAAGCCTGCCCAGAAGA 

T3-69 GCGCGCAATTAACCCTCACTAAAGG 

 

Table 10: Mouse oligonucleotides for mouse genotyping 

Drosha Deletion:  

mDrosha-flox1 AGTACCGGTGTATTGCCAGC 

mDrosha-flox2 AAACCAGAAAAAGACAGAGTTCCT 

mDrosha-flox4  ACACTGAAAACTTAATTCTAAGGCA 

  

SIX1-Q177R/ DROSHA-E1147K het/hom:  

R26F2 CCAAAGTCGCTCTGAGTTGTTAT 

TK1 CTAAAGCGCATGCTCCAGAC 

PGK-forw CATTCTGCACGCTTCAAAAG 
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SIX1-Q177R/ DROSHA-E1147K activation:  

AG3 CTGCTAACCATGTTCATGCC 

Q177-rev2 TTGGCCTTGAGTACGCTCTC 

Q177-for1 CTCCCCCTGAACCTGAAACATA 

  

AG3 CTGCTAACCATGTTCATGCC 

GFP-real-rev AAGTCGTGCTGCTTCATGTG 

Q177-for1 CTCCCCCTGAACCTGAAACATA 

  

Six2-cre:  

mCitrine-3’out ACATGGTCCTGCTGGAGTTC 

ROSA26-creER ACGGACAGAAGCATTTTCCA 

  

Wt1-cre  

Wt1-creERT2-for ATCGCAGGAGCGGAGAAC 

Wt1-creERT2-TG GCAAACGGACAGAAGCATTT     

  

Zp3-cre:  

mCitrine-3’out ACATGGTCCTGCTGGAGTTC 

SM22-3’-cre ACGGACAGAAGCATTTTCCA 

 

Table 11: Mouse oligonucleotides for qPCR 

GFPreal-for ACGTAAACGGCCACAAGTTC 

GFP-real-rev AAGTCGTGCTGCTTCATGTG 

hDrosha_real-for TCAGAGAATGAAATTCCTAGGTGACTCCA 

hDrosha_real-rev  CTCCATGTCCTCCTCGTCCT 

hSix2-q1 CACAGGTCAGCAACTGGTTCA   

hSix2-q2 CAGCGGGTTGTGGCTGTTA   

mHPRT-real-ex8 TGTTGTTGGATATGCCCTTG 

mHPRT-real-ex9  ACTGGCAACATCAACAGGACT 
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Table 12: Mouse oligonucleotides for two-tailed PCR 

Two-tailed primer:  

mmu-miR-196a ACTACCTACAACGACCAGAGCTAGAGAACCTAGCTCACCCACTACCCCAA 

mmu-miR-126 GGTACGATCAAGCTCTCCAGGTACAGTTGGTACCTGACTCCACGCCGCAT 

mmu-miR-10b ACAGGGTACGACGAATACTGCTAGAGTTGCTAGCAGAGCCCTTAACACAA 

mmu-miR-320 TCTCAACCCGCTAGCTATGCAGGTACAGTTGGTACCTGACTCTTGTTTCGCC 

  

qRT-PCR primer forward:  

mmu-miR-196a CGACTACCTACAACGACCAGAG 

mmu-miR-126 GGTACGATCAAGCTCTCCAGG 

mmu-miR-10b ACAGGGTACGACGAATACTGC 

mmu-miR-320 TCTCAACCCGCTAGCTATGCAG 

  

qRT-PCR primer reverse:  

mmu-miR-196a GGGCTAGGTAGTTTCATGTTGTT 

mmu-miR-126 GGGCTCGTACCGTGAGTAATAA 

mmu-miR-10b GGCTACCCTGTAGAACCGAAT 

mmu-miR-320 CGGAAAAGCTGGGTTGAGAG 

 

  



 Supplement  

- 74 - 
 

9.2 Figure index 

Figure 1: Schematic overview of the adult mouse metanephric kidney - 6 - 

Figure 2: Schematic overview of mouse kidney development - 8 - 

Figure 3: Schematic overview of nephron patterning process - 9 - 

Figure 4: Histology of the Wilms tumor - 12 - 

Figure 5: SIX1 in tumorigenesis - 17 - 

Figure 6: miRNA biogenesis - 20 - 

Figure 7: Overlapping mutations between SIX1/2 and DROSHA - 22 - 

Figure 8: Plasmid constructs for integration into ES cells via RMCE - 26 - 

Figure 9: Scheme for C31Integrase mediated RMCE - 32 - 

Figure 10: Maps of constructs successfully integrated into the Rosa26 locus - 34 - 

Figure 11: Schematic overview of the results - 39 - 

Figure 12: Expression analysis of Drosha∆Six2c/∆Six2c and DROSHA-E1147Kactive - 41 - 

Figure 13: Histological analysis of Drosha KO under the Six2cre-eGFP promotor - 43 - 

Figure 14: Marker analysis of Drosha∆Six2c/∆Six2c embryos - 45 - 

Figure 15: Inducible KO of DROSHA in podocytes precursors - 46 - 

Figure 16: Prenatal development impairments - 48 - 

Figure 17: Postnatal developmental impairments - 49 - 

Figure 18: Whole tissue classification of DROSHA KO and DROSHA-E1147K OE kidneys - 51 - 

Figure 19: No kidney impairments after SIX1-Q177R activation in metanephric blastema - 53 - 

Figure 20: Global activation of SIX1-Q1177R leads to hydronephrosis - 54 - 

Figure 21: Deletion of DROSHA combined with SIX1-Q177R activation - 56 - 

Figure 22: Co-activation of DROSHA-E1147K and SIX1-Q177R in blastemal cells - 57 - 

 

9.3 Table index 

Table 1: Classification of Wilms tumor on the basis of histological subtypes (Vujanic et al. 2002) - 13 - 

Table 2: Staging of Wilms tumors (Vujanic et al. 2002) - 13 - 

Table 3: Equipment used - 23 - 

Table 4: Chemicals used - 23 - 

Table 5: Buffers used - 24 - 

Table 6: Kits used - 25 - 

Table 7: Antibodies used - 26 - 

Table 8: Software used - 27 - 

Table 9: Mouse oligonucleotides for RMCE - 71 - 

Table 10: Mouse oligonucleotides for mouse genotyping - 71 - 

Table 11: Mouse oligonucleotides for qPCR - 72 - 

Table 12: Mouse oligonucleotides for two-tailed PCR - 73 - 



 Supplement  

- 75 - 
 

 

9.4 Oral presentations and Posters 

05/2014 Eureka 9th International GSLS Students symposium 

Poster: “Functional analysis of Drosha knockout in kidney development” 

03/2015 AEK 18th International Cancer congress 

Poster: “Functional analysis of DROSHA and DGCR8 mutations in Wilms tumor” 

04/2016 2nd PCCC-Kloster Seeon Meeting on Mouse Models of Human Cancer 

Poster: “Functional analysis of DROSHA and SIX1/2 mutations” 

06/2016 6th International Tübingen-Symposium on Pediatric Solid Tumors 

Oral presentation: “Functional analysis of DROSHA mutations in Wilms tumor” 

  



 Supplement  

- 76 - 
 

9.5 Curriculum vitae 



 Supplement  

- 77 - 
 



 Supplement  

- 78 - 
 



 Supplement  

- 79 - 
 

9.6 Affidavit 

I hereby confirm that my thesis entitled “Functional analysis of DROSHA and SIX1 mutations in kidney 

development and Wilms tumor” is the result of my own work. I did not receive any help or support 

from commercial consultants. All sources and / or materials applied are listed and specified in the 

thesis. 

Furthermore, I confirm that this thesis has not yet been submitted as part of another examination 

process neither in identical nor in similar form. 

 

 

 

Place, Date Signature 

 

 

 

Eidesstattliche Erklärung 

 

Hiermit erkläre ich an Eides statt, die Dissertation „Funktionelle Analysen von DROSHA und SIX1 

Mutationen in der Nierenentwicklung und dem Wilms-Tumor“ eigenständig, d.h. insbesondere 

selbständig und ohne Hilfe eines kommerziellen Promotionsberaters, angefertigt und keine anderen 

als die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben. 

 

Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form bereits in einem 

anderen Prüfungsverfahren vorgelegen hat. 

 

 

Ort, Datum Unterschrift 

 

 



 Supplement  

- 80 - 
 

9.7 Copy right agreements 

 

  



 Acknowledgment  

- 81 - 
 

10 Acknowledgment 

An erster Stelle möchte ich mich ganz herzlich bei meinem Doktorvater Prof. Dr. Manfred Gessler für 

die Bereitstellung dieses Projekts und für die freundliche Betreuung bedanken. Besonders seine immer 

offene Tür und die konstruktiven Anregungen haben in besonderem Maße zum Gelingen dieser Arbeit 

beigetragen. Des Weiteren möchte ich mich bei Prof. Dr. Ricardo Benavente und Prof. Dr. Svenja 

Meierjohann dafür bedanken, dass Sie, als Teil meines Prüfungskomitees, diese Arbeit über die Jahre 

begleitet haben und mir immer mit gutem Rat zur Seite standen. 

Prof. Dr. Alexander Buchberger danke ich für die Übernahme des Prüfungsvorsitzes. 

Ein ganz besonderen Dank gilt Anja für die Klonierung der Vektoren, die Erzeugung der SIX1-Q177R ES 

Zellen, die Genotypisierung der Mäuse und ihrer Bereitschaft mir bei jeder Frage Rede und Antwort zu 

stehen. Bei Christian möchte ich mich für die vielen Gespräche während der gemeinsamen 

Kaffeepausen und seiner grundsätzlichen hilfsbereiten und offenen Art bedanken. Des Weiteren gilt 

mein Dank allen Mitarbeitern der EBCh und der PC1 für eine nette Atmosphäre während der 

Doktorarbeit und dass Sie meine spontanen Gesangseinlagen über die letzten Jahre stoisch erduldet 

haben. Ein großer Dank gilt auch Steffi und dem Tierstall für die Pflege der Mäuse. 

Ich bedanke mich bei meinen Mitdoktoranden Romina und Ovidio für die vielen Gespräche und 

Anregungen im Denkraum. Insbesondere, Romina danke ich ganz herzlich für die vielen 

Unternehmungen abseits der Arbeit und ihrer Mithilfe bei der Leitung des Eureka Komitees. Ein 

besonderer Dank gilt auch Mateus für den täglichen Gang zu Mensa, die vielen interessanten 

Gespräche und der Gitarrenbegeleitung bei so manchem Konzert. 

Ein großer Dank geht an meine Freunde Martin, Hans, Christoph, Ralf und Till dafür, dass Sie keine 

Gelegenheit ungenutzt gelassen haben, mich zu besuchen und ich mich immer blind auf Sie verlassen 

kann. Auch danke ich der SBS Kleinrinderfeld, die mir eine musikalische Heimat in Franken gegeben 

und mich von der ersten Minute freundlich aufgenommen hat. Ebenfalls großer Dank geht an Andreas 

und die Jungs vom ASW Würzburg, die für die nötige sportliche und soziale Ablenkung gesorgt haben. 

Ich kann Nadine gar nicht genug danken, dass Sie jeder Zeit für mich da war und so manche Entbehrung 

in Kauf genommen hat ohne sich einmal darüber zu beklagen. Danke für die Kraft, die du mir gibst. 

Ich danke meiner Mutter, ohne die meine Ausbildung und damit auch diese Arbeit nicht möglich 

gewesen wäre, für ihre bedingungslose Unterstützung und den Rückhalt den Sie mir gibt. Ich danke 

meinem Vater, da er für mich immer moralischer Kompass, Motivation und Vorbild sein wird. 

Vielen Dank, euch allen! 




