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Abstract 

Gene expression and transfer of the genetic information to the next generation forms the 

basis of cellular life. These processes crucially rely on DNA, thus the preservation, 

transcription and translation of DNA is of fundamental importance for any living being. The 

general transcription factor TFIIH is a ten subunit protein complex, which consists of two 

subcomplexes: XPB, p62, p52, p44, p34, and p8 constitute the TFIIH core, CDK7, CyclinH, 

and MAT1 constitute the CAK. These two subcomplexes are connected via XPD. TFIIH is a 

crucial factor involved in both, DNA repair and transcription. The central role of TFIIH is 

underlined by three severe disorders linked to failure of TFIIH in these processes: xeroderma 

pigmentosum, Cockayne syndrome, and trichothiodystrophy. Only limited structural and 

functional data of TFIIH are available so far. Here, the model organism Chaetomium 

thermophilum was utilized with the aim to structurally and functionally characterize TFIIH. By 

combining the expression and purification of single TFIIH subunits with the co-expression 

and co-purification of dual complexes, a unique and powerful modular system of the TFIIH 

core subunits could be established, encompassing all proteins in high quality and fully 

functional. This system permits the step-wise assembly of TFIIH core, thereby making it 

possible to assess the influence of the intricate interaction network within TFIIH core on the 

overall enzymatic activities of TFIIH, which has not been possible so far. Utilizing the single 

subunits and dual complexes, a detailed interaction network of TFIIH core was established, 

revealing the crucial role of the p34 subunit as a central scaffold of TFIIH by linking the two 

proteins p44 and p52. Our studies also suggest that p62 constitutes the central interface of 

TFIIH to the environment rather than acting as a scaffold. TFIIH core complexes were 

assembled and investigated via electron microscopy. Preliminary data indicate that TFIIH 

adopts different conformational states, which are important to fulfill its functions in 

transcription and DNA repair. Additionally, a shortened construct of p62 was used to develop 

an easy-to-use, low cost strategy to overcome the crystallographic phase problem via cesium 

derivatization. 
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Zusammenfassung 

Die Expression von Genen und die Weitergabe des Erbguts an die nächste Generation 

bilden die Grundlage jeden Lebens. Bei diesen Vorgängen spielt die DNA eine 

entscheidende Rolle. Deshalb sind der Erhalt, die Transkription und die Translation der DNA 

von fundamentaler Bedeutung für alle Lebewesen. Der generelle Transkriptionsfaktor TFIIH 

ist ein Multi-Proteinkomplex und umfasst insgesamt zehn Untereinheiten. TFIIH kann in zwei 

Teilkomplexe unterteilt werden: XPB, p62, p52, p44, p34 und p8 bilden den TFIIH Core 

Komplex, CDK7, CyclinH und MAT1 bilden den CAK Komplex. Diese beiden Teilkomplexe 

werden durch XPD verbunden. TFIIH spielt eine entscheidende Rolle sowohl in der DNA 

Reparatur, als auch in der Transkription. Diese zentrale Rolle wird durch das Auftreten dreier 

schwerer Krankheiten deutlich, die mit dem Ausfall von TFIIH bei diesen Aufgaben in 

Verbindung stehen: Xeroderma pigmentosum, Cockayne-Syndrom und Trichothiodystrophie. 

Daten bezüglich der Struktur und Funktion von TFIIH stehen bisher nur in begrenztem 

Umfang zur Verfügung. In dieser Arbeit kam der Modellorganismus Chaetomium 

thermophilum zum Einsatz, mit dem Ziel die Struktur und Funktion von TFIIH näher zu 

beleuchten. Durch die Kombination der Expression und Aufreinigung einzelner TFIIH 

Untereinheiten mit der Koexpression und Koaufreinigung von dualen Komplexen konnte ein 

einmaliges und leistungsfähiges modulares System entwickelt werden, das die Darstellung 

aller Untereinheiten in hoher Qualität und voller Funktionalität erlaubt. Basierend auf diesen 

Ergebnissen wurde die schrittweise modulare Zusammensetzung von TFIIH Core ermöglicht, 

was es nun erlaubt den Einfluss der komplexen Wechselwirkungen innerhalb von TFIIH Core 

auf die enzymatischen Aktivitäten im Ganzen zu untersuchen, was bisher nicht möglich war. 

Mit Hilfe der Einzelproteine und dualen Komplexe wurde ein detailliertes Netzwerk aus 

Wechselwirkungen innerhalb TFIIH Core etabliert, welches die entscheidende Rolle der p34 

Untereinheit als zentrales Gerüst für TFIIH offenbarte, da sie die Verbindung zwischen p44 

und p52 herstellt. Unsere Untersuchungen deuten zudem darauf hin, dass p62 die zentrale 

Schnittstelle zur Umgebung von TFIIH darstellt, anstatt als Gerüst zu fungieren. Des 

Weiteren gelang die Assemblierung von TFIIH Core Komplexen, die mittels 

Elektronenmikroskopie untersucht wurden. Die Strukturen, die daraus hervorgingen, legen 

das Vorhandensein verschiedener TFIIH Konformationen nahe, welche vermutlich bei den 

verschiedenen Aufgaben von TFIIH in der Transkription und DNA Reparatur zum Tragen 

kommen. Außerdem wurde mit Hilfe eines gekürzten p62 Konstrukts eine einfach zu 

handhabende, kostengünstige Strategie zur Lösung des kristallografischen Phasenproblems 

mittels Cäsiumderivatisierung entwickelt. 
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1. Introduction 

Two fundamental processes form the basis of cellular life: Gene expression and transfer of 

the genetic information to daughter cells. Both processes have in common that they crucially 

rely on DNA. The preservation, transcription and translation of DNA is thus highly important 

for the survival of any living being. A crucial factor that is involved in the repair of DNA and its 

transcription is the general transcription factor IIH (TFIIH) [1]. Consequently, mutations in 

TFIIH lead to severe disorders [2]. TFIIH is an essential multi protein complex of which only 

limited structural and functional data are available. Therefore, TFIIH was the subject of this 

doctoral thesis. The aim was the structural and functional characterization of TFIIH, utilizing 

the model organism Chaetomium thermophilum. 

 

1.1. The TFIIH complex 

1.1.1. Composition of TFIIH 

TFIIH is a ten subunit protein complex consisting of XPB, XPD, p62, p52, p44, p34, p8, 

CDK7, CyclinH, and MAT1 [1, 3, 4]. TFIIH is subdivided into two subcomplexes: XPB, p62, 

p52, p44, p34, and p8 form the core complex (Figure 1-2 b, c); CDK7, CyclinH, and MAT1 

form the CAK (CDK activating kinase) complex [1, 4-6]. These two subcomplexes are 

connected via XPD [1, 4, 6, 7]. 

XPB (xeroderma pigmentosum group B) and XPD (xeroderma pigmentosum group D) belong 

to the superfamily 2 helicase family [8-11]. They contain two RecA-like domains, termed 

helicase domain 1 (HD1) and helicase domain 2 (HD2), bearing the seven conserved 

helicase motifs [12, 13]. Both helicases have additional unique motifs. XPB contains a RED 

and a Thumb motif (ThM), which are involved in the ATPase dependent DNA anchoring [14-

16]. XPB also harbors an N-terminal extension with a damage recognition domain (DRD), 

and it has been suggested that this domain can bind to some types of lesions [14]. However, 

the exact function is unclear, as the DRD seems to be not crucial for DNA repair [15, 17]. 

XPD contains two additional domains, the iron sulfur cluster domain and the arch domain 

[18-20]. XPB has been classified as a 3’->5’ helicase [8, 9], whereas XPD is a 5’->3’ helicase 

[10, 11]. However, it is under debate if XPB is actually functioning as a true helicase [21]. 

Nevertheless, its ATPase activity is indispensable for transcription and DNA repair [7, 22]. 

XPDs helicase activity is indispensable for DNA repair, but dispensable for transcription, 

where it acts solely as a scaffold [22-24]. 

The activities of XPB and XPD are regulated through other TFIIH subunits. XPBs ATPase 

activity is stimulated through p52 and p8, and the N-terminal extension of XPB directly 

interacts with p52 through two distinct binding regions within p52 [22, 25, 26]. P8 assumes 

an α/β split fold with a C-terminal helix [1, 27, 28] and it interacts with the very C-terminus of 
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p52 [28, 29]. XPDs ATPase/helicase activity is stimulated through p44 [30]. P44 contains an 

N-terminal von Willebrand factor A (vWA) like domain, a central zinc finger domain, and a 

C-terminal ring finger domain [31-35]. SSL1, the yeast homolog of p44, has been shown to 

display E3 ubiquitin ligase activity [36]. The vWA domain interacts with HD2 of XPD [30]. 

This interaction not only stimulates XPD, but also anchors it to the TFIIH core [30]. 

Furthermore, the arch domain of XPD interacts with MAT1, thereby inhibiting XPDs helicase 

activity [37, 38]. 

P62 constitutes an N-terminal pleckstrin homology (PH) domain and a BSD (BTF2-like 

transcription factors, synapse-associated and DOS2-like) tandem with unknown function [39-

41]. No enzymatic or regulatory function has been assigned to p62 so far. However, the PH 

domain competitively interacts with factors involved in DNA repair as well as transcription, 

suggesting a crucial role in both processes [42-45]. Additionally, the C-terminus of p62 

interacts with p44 [46]. 

P34 contains an N-terminal vWA like domain and a C-terminal zinc finger domain [31, 47]. 

The vWA domain interacts with the ring finger domain of p44 [48]. 

CDK7 (cyclin dependent kinase 7) is a kinase involved in transcription and cell cycle control 

[1, 49-51]. It contains a typical kinase domain, consisting of an N-terminal lobe and a 

C-terminal lobe [52, 53]. The kinase domain contains twelve conserved subdomains [54]. 

CDK7 is stimulated via interaction with CyclinH [55, 56]. 

CyclinH consists of an N-terminal helical motif, a central cyclin box with two α-helical repeats, 

and a C-terminal helical motif [57, 58]. CyclinH interacts with CDK7 via the cyclin box [55, 

56]. 

MAT1 (ménage à trois 1) consists of an N-terminal Ring finger motif, a central coiled-coil 

domain, and a C-terminal hydrophobic domain [37, 59, 60]. MAT1 associates with CDK7 and 

CyclinH via the hydrophobic domain, thereby stabilizing their interaction [5, 59]. The middle 

part, including the coiled-coil domain, interacts with XPD, leading to the inhibition of its 

helicase activity [37, 38, 59]. 

The domain architecture of the TFIIH subunits is depicted in Figure 1-1. 



1. Introduction The TFIIH complex 

14 

 
Figure 1-1. Domain architecture of the TFIIH subunits. DRD: damage recognition domain; HD1: 
helicase domain 1; HD2: helicase domain 2; 4FeS: iron sulfur cluster domain; Arch: arch domain; PH: 
pleckstrin homology domain; BSD: BTF2-like transcription factors, synapse-associated and DOS2-like 
domain; vWA: von Willebrand factor A like domain; ZN: zinc finger; RING: ring finger domain; HN: 
N-terminal helix; HC: C-terminal helix. 

 

1.1.2. Structure of TFIIH 

TFIIH has been the subject of numerous structural studies [61]. Regarding the individual 

subunits, structural information is available for each, even though to a quite varying extend 

and from different organisms. Full-length human structures are only available for CDK7 [52], 

CyclinH [57, 58], and p8 [27]. Partial human structures have been solved for XPB [62], p62 

[41, 45, 63-65], p44 [34], and MAT1 [60]. Considering other organisms, full-length archaeal 

structures are available for orthologues of XPB [14] and XPD [18-20, 66, 67]. A full-length 

yeast structure for Tfb5 (p8) [28], and partial yeast structures have been solved for Tfb1 

(p62) [43, 44, 68-73], Tfb2 (p52) [28] and SSL1 (p44) [35]. Additionally, there is a partial 
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structure of p34 from Chaetomium thermophilum [47]. These findings are depicted and 

summarized in Figure 1-2 a. 

 

To date, structural data about the entire TFIIH complex is still quite limited. According to 

electron microscopy (EM) studies, TFIIH forms a ring like structure build by the core subunits 

and XPD (Figure 1-2 b, c), with the CAK attached [74, 75]. The resolution regarding core 

TFIIH is limited to about 10 Å (Figure 1-2 b, c) [76], and with respect to the entire TFIIH to 

about 20 Å [77]. Owing to the limited resolution, fitting of the TFIIH subunits to EM volumes is 

ambiguous, although chemical crosslinking/mass spectrometry has been utilized [76-78]. 

Especially the intricate interaction network between the TFIIH subunits remains elusive. It is 

known that, among the core subunits, XPB, p52, and p8 form one functionally associated 

subcomplex. XPD, p44, and p34 form another functionally associated subcomplex [79]. How 

the interfaces and precise interactions between the subunits of these subcomplexes are 

formed is poorly understood. Furthermore, how these two subcomplexes interact with each 

other within TFIIH is also poorly understood. A recent chemical crosslinking/mass 

spectrometry study suggested a connection of these subcomplexes via interaction of p52 

with p44, and p52 with p34, as well as via bridging of XPB and XPD through the CAK subunit 

MAT1 [80]. How this intricate interaction network among the TFIIH subunits influences the 

overall enzymatic activities of TFIIH remains a key question to be answered. 
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Figure 1-2. Structural characterization of TFIIH. (a) Structurally characterized regions of the 
different TFIIH subunits are indicated by colored boxes. Corresponding PDB codes are colored 
accordingly. The domain scheme corresponds to Figure 1-1. Af: Archaeoglobus fulgidus; Hs: Homo 
sapiens; St: Sulfolobus tokodaii; Ta: Thermoplasma acidophilum; Sa: Sulfolobus acidocaldarius; Sc: 
Saccharomyces cerevisiae; Ct: Chaetomium thermophilum. (b) Surface representation of an EM 
volume of TFIIH core (EMD-8131). (c) Fitted TFIIH subunits to the EM volume (5IVW). 

 

1.1.3. The role of TFIIH 

TFIIH is involved in several cellular processes of fundamental importance like transcription, 
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Several mutations in TFIIH subunits have been identified which give rise to different severe 

diseases with quite diverse phenotypes, namely xeroderma pigmentosum, Cockayne 

syndrome, and trichothiodystropy, reflecting the different cellular processes TFIIH is involved 

in [2, 81], which will be discussed in section 1.6. 

 

1.2. History of TFIIH 

The first available mention of a subject related to TFIIH is the description of the disorder 

xeroderma pigmentosum (XP; see 1.6.1) in 1874 by Ferdinand Hebra and Moriz Kaposi in 

their book “On diseases of the skin, including the exanthemata” [82, 83]. As apparent from 

the book title, XP was regarded as a disease of the skin at that time. 

The history of TFIIH itself starts more than a century later. In the meantime, it has been 

recognized that XP actually originates from a defect in the ability of removing UV lesions 

from the genome [84]. 

In 1986 a factor involved in RNA polymerase II (RNAPII) transcription (see 1.4.2) was 

identified, termed BTF2 (which now corresponds to TFIIH) [85]. In 1988 Weber and 

coworkers reported that they cloned ERCC2, the gene encoding XPD, and showed that it 

could correct a nucleotide excision repair (NER; see 1.3.2) defect in a Chinese hamster 

ovary (CHO) cell line [86]. One and a half years later in 1989 Conaway and Conaway 

reported the purification of an essential RNAPII transcription factor from rat liver (termed δ 

factor) containing seven subunits, and demonstrated that it constitutes ATPase activity [87]. 

In 1990 it was shown that XPD displays high homology to the yeast 5’->3’ DNA helicase 

Rad3 (the helicase function of Rad3 was known at that time) [88, 89], and suggested that 

XPD is also a helicase [90]. In the same year Weeda and coworkers reported the cloning of 

ERCC3, the gene encoding XPB, and showed that it could also correct an NER defect in a 

CHO cell line [91]. Also in 1990, it was reported that the XPB amino acid sequence exhibits 

seven conserved helicase motifs, and it was suggested that XPB is a 3’->5’ helicase [8]. In 

1991 Feaver and coworkers reported the purification of yeast transcription factor b (Tfb) 

containing at least three subunits, and demonstrated that it is crucial for RNAPII transcription 

[92]. One month later Gerard and coworkers reported the purification of BTF2 containing five 

subunits, and demonstrated that it is crucial for RNAPII transcription [93]. Shortly after, it was 

demonstrated that Tfb possesses kinase activity towards the C-terminal domain (CTD) of the 

large RNAPII subunit Rpb1 [94]. In 1992, Flores and coworkers reported the identification 

and purification of a novel human transcription factor, TFIIH, containing at least two subunits, 

and showed that it is essential for RNAPII transcription [95]. At that time it was not realized 

that BTF2 and TFIIH are identical and were thus regarded as two distinct transcription 

factors. In the same year, a kinase activity as shown for Tfb was also demonstrated for δ 

factor [96] as well as TFIIH [97], finally revealing that Tfb, δ factor, and TFIIH are homologs 
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from yeast, rat, and human respectively. Also in 1992, the cloning of a 62 kDa subunit from 

BTF2 was reported [98]. This subunit corresponds to p62 from TFIIH and it was finally 

realized that BTF2 and TFIIH are identical. Until that time the findings regarding XPD and 

XPB (NER) and TFIIH (transcription) were unrelated. This drastically changed in 1993 with 

the milestone observation that XPB is actually a part of TFIIH, linking TFIIH to both 

processes [99]. This finding was further supported in 1994 when it was shown that XPD is 

also part of TFIIH [100]. In parallel, two more subunits of TFIIH were cloned and 

characterized, p44 and p34 [31]. Also in 1994, Roy and coworkers reported that CDK7 is part 

of TFIIH, and demonstrated that it is responsible for its kinase activity [101]. In 1996 it was 

discovered that CyclinH and MAT1 are also part of TFIIH [5]. In 1997, p52 was cloned and 

characterized and was assumed to be the last subunit [102]. It took more than seven years 

more until the discovery of p8 in 2004, which was overlooked for a long time due to its small 

size (Figure 1-1) [3, 103]. 

 

1.3. DNA maintenance and repair 

DNA carries the genetic information thereby possessing fundamental importance for life. It 

stores the blueprint for all proteins, which form the foundation of all cellular processes. 

Furthermore, DNA is the basis for the passage of the genetic information to the next 

generation of cells [104]. In order to fulfil its functions, the integrity of the DNA is crucial. As 

DNA is a chemical molecule it can undergo chemical reactions, leading to damages or 

mutations of the DNA. There are various sources for DNA lesions, both exo- and 

endogenous. Besides exogenous compounds [105, 106], most notably everyday sunlight 

poses a major threat, as the UV light component leads to DNA lesions [107]. Furthermore, 

the obligatory cell metabolism itself poses a threat to DNA as it produces reactive oxygen 

species like hydroxyl radicals or hydrogen peroxide [108, 109]. Also, spontaneous 

decomposition of chemical bonds in DNA, like hydrolysis of nucleotides or deamination, 

leads to damaged DNA [108, 110]. It is estimated that every cell encounters 104 to 105 

lesions per day [111, 112]. These remarkable numbers immediately suggest a need for DNA 

maintenance and repair. Indeed, several pathways have evolved, ensuring the integrity of 

DNA and efficient repair of lesions. Five different repair pathways can be distinguished, each 

one dealing with a specific subset of lesions [81, 108, 113]. Apart from removing lesions from 

the genome, the cell has to deal with situations, where a yet unrepaired lesion actually 

interferes with DNA metabolism. 
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1.3.1. General DNA repair pathways, lesion bypass, and apoptosis 

Base excision repair is responsible for the removal of oxidized or deaminated bases, abasic 

sites, and single strand breaks. Damaging agents include ionizing radiation, oxygen radicals, 

or alkylating agents [114, 115]. 

Crosslink repair refers to the removal of interstrand crosslinks. Damaging agents include lipid 

peroxidation products or chemical compounds (e.g. mitomycin C) [116-118]. 

Double strand break repair is responsible for the removal of double strand breaks. Damaging 

agents include ionizing radiation, free radicals, or chemical compounds (e.g. cis-platinum) 

[119, 120]. 

Mismatch repair recognizes and removes A-G/T-C mismatches, insertions, and deletions, 

which are caused by replication errors [121, 122]. 

Nucleotide excision repair removes UV light induced lesions as well as bulky DNA adducts 

[123] and is the focus of this thesis due to the involvement of TFIIH. It will therefore be 

discussed in greater detail in the following section. 

If a lesion is encountered during DNA replication, the replicative DNA polymerase (δ/ε) [124] 

becomes stalled, leading to replicational stress. To bypass the lesion, the polymerase is 

temporarily replaced by a specialized polymerase capable of translesion synthesis [125-127]. 

Several translesion polymerases exist, each one being responsible for a certain subset of 

lesions [126-132]. This process enables to continue DNA replication, though it is error prone 

and may lead to persistent mutations [126, 133]. 

Another pathway which lesions interferes with is transcription. If a lesion is encountered on 

the transcribed stand, RNA polymerase II is stalled. This is specifically addressed by 

transcription coupled repair (TCR). As a subpathway of NER, TCR is described in more 

detail in section 1.3.2.2. Alternatively, lesion bypass may be a pathway to deal with 

transcriptional blocks [134-138]. This however, may result in incorrectly transcribed mRNA, 

leading to transcriptional mutagenesis [134, 139, 140]. Consequently, mutant proteins are 

synthesized, which may impair cellular functions [136, 139]. 

If the replicational or transcriptional stress is too high, the cell may induce apoptosis as a last 

resort mechanism [108, 141-147]. 

 

1.3.2. Nucleotide excision repair 

Nucleotide excision repair (NER) is a major DNA repair pathway which repairs a broad range 

of quite diverse DNA lesions [123]. It addresses various bulky DNA adducts such as 

polycyclic aromates or intrastrand crosslinks. Most importantly, it is the only pathway in 

humans which repairs UV-light induced damages, like cyclobutane pyrimidine dimers (CPD) 

and 6,4-photoproducts [123]. There are two distinct pathways of NER, namely global NER 

and transcription coupled repair (TCR). They have different entry points but converge into a 
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common repair process [1, 144, 148]. Global NER constantly scans the entire genome in 

order to remove lesions [149]. TCR removes DNA damages in actively transcribed strands 

that are stalling RNA polymerase II (RNAPII) during transcription [150]. These two NER 

pathways will be discussed in more detail in the following two sections and are depicted in 

Figure 1-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3. Mechanism of nucleotide excision repair (NER). Damaged DNA is either recognized by 
XPC/HR23B/Centrin2 with or without the help of UV-DDB (global NER) (1a), or a stalled RNAPII 
(TCR) (1b). Both entry points converge into a common pathway upon recruitment of TFIIH (2). XPA 
and RPA are recruited, thereby CAK is released. TFIIH then unwinds the DNA around the lesion 
through the helicase activity of XPD (3). The endonucleases XPG and XPF-ERCC1 are recruited to 
the repair bubble. XPF-ERCC1 makes an incision 5’ to the lesion and XPG makes an incision 3’ to the 
lesion in the damaged strand (4). The excised strand is released with TFIIH and the endonucleases 
bound. DNA polymerase δ, ε, or κ is recruited via RFC and PCNA (5). The DNA polymerase 
synthesizes DNA, filling the single stranded gap (6). The DNA is finally ligated by DNA ligase I or 
XRCC1-DNA ligase IIIα (7). 
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1.3.2.1. Global nucleotide excision repair 

The major player in the initial damage detection process during global NER is the 

XPC/HR23B/Centrin2 complex [151-154]. Thereof, XPC is the crucial factor, responsible for 

damage detection [153, 155]. However, HR23B and Centrin2 play important roles in the 

stabilization and stimulation of XPC [153, 156-158]. XPC scans the DNA for lesions and 

binds to them [154, 159-162]. The specific mode of binding is the basis for the broad 

substrate range of NER. It has been shown that XPC does not bind to the lesion itself, but to 

the altered DNA structure, particularly to the unpaired DNA bases on the strand opposite to 

the lesion [154, 163, 164]. This mode of action immediately implies a certain distortion of the 

DNA in order to be recognized [165]. However, some lesions, especially CPDs, hardly 

introduce distortion into the DNA [123, 166]. In line with this, it has been shown that CPD 

lesions are only poorly recognized by the XPC complex [154, 159, 167]. Here UV-DDB 

comes into play, which is a heterodimer consisting of DDB1 and DDB2 [168, 169]. UV-DDB 

can bind to (but not only) CPDs and is thereby able to detect these less distorting lesions 

[170-173]. Upon binding, DDB2 flips the lesion out of the DNA duplex into its active site 

pocket [174, 175], which facilitates binding of XPC/HR23B/Centrin2 to the damaged DNA 

[176-179]. Subsequently, TFIIH is recruited to the lesion site [180-183]. Recruitment most 

likely occurs via interactions of XPC with p62 and XPB [42, 44, 45]. It has also been shown 

that XPC stimulates the ATPase activity of XPB [42, 184]. 

The anchoring of TFIIH to the repair site is achieved by XPB [15]. It has been suggested that 

XPB therefore undergoes a conformational change upon hydrolysis of ATP, bringing the 

RED motif and ThM domain (Figure 1-1) close together. The RED motif intrudes into the 

DNA, forming a wedge, which is clamped by the ThM domain [9, 14, 15]. Subsequent 

recruitment of XPA to the site of repair poses an important step, as this leads to the 

dissociation of CAK from core TFIIH [185]. As CAK inhibits the helicase activity of XPD, its 

release leads to the activation of XPD [37, 38, 184, 186]. XPD unwinds the DNA around the 

lesion thus creating a DNA bubble [22, 187]. Also, the single stranded DNA binding protein 

RPA (replication protein A) is recruited, which protects the undamaged single strand [188-

194]. At this stage an additional damage verification step takes place. It is under debate how 

this verification is achieved. A likely candidate is XPD. It has been suggested that XPD 

threads the damaged single strand through a pore formed by HD1, the iron sulfur cluster 

domain, and the arch domain [18-20, 66, 67, 195]. Thereafter, the diameter of the pore would 

only allow undamaged single stranded DNA to pass through, whereas a lesion would lead to 

a physical block of the helicase movement [66, 186]. Indeed, it has been shown that TFIIH 

scans the lesion site with 5’->3’ directionality [196], and that bulky lesions stall XPDs 

movement and inhibit its helicase activity [186, 197-199]. It has also been suggested that 

XPA is involved in damage verification as it is able to bind to damaged DNA [200-202]. 
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Reminiscent of XPC, it recognizes kinked DNA duplexes rather than the lesion itself [203-

205]. Furthermore, XPA seems to increase the inhibition that DNA lesions exert on XPDs 

helicase activity [186]. 

After verification of the damage, the endonucleases XPG and XPF-ERCC1 are recruited. In 

this process the XPC complex is released [183]. It has been suggested that the PH domain 

of p62 plays a crucial role in this process, as it competitively interacts with both XPC and 

XPG, thereby organizing the “hand-over” from XPC to XPG [43-45]. XPF-ERCC1 on the 

other hand is recruited via XPA [206-210]. In addition, RPA is important for the correct 

positioning of XPG and XPF-ERCC1 [190, 211, 212]. Dual incision is likely to be initiated by 

XPF-ERCC1 [213], making an incision 5’ to the lesion into the damaged strand [214-216]. 

Subsequently, XPG makes an incision 3’ to the lesion into the damaged strand [215, 217-

219]. However, studies about the order of these incisions are contradictory [1, 187, 192, 213, 

220]. Dual incision results in a 24-32 nucleotides long single stranded DNA stretch containing 

the damage asymmetrically located closer to the 3’ end [215, 221-225]. TFIIH, XPG, and 

presumably also XPF-ERCC1 remain bound to the excised strand and are released together 

with it, resulting in a single stranded gap in the DNA [225-227]. The clamp loader RFC 

(replication factor C) and the sliding clamp PCNA (proliferating cell nuclear antigen) are 

recruited, and the RFC/PCNA complex subsequently recruits DNA polymerase δ, ε, or κ 

[183, 228-232]. It has been shown that RPA and XPG are involved in proper recruitment of 

RFC/PCNA [233, 234]. The DNA polymerase then synthesizes DNA, filling the single 

stranded gap, and final ligation is carried out by DNA ligase I or XRCC1-DNA ligase IIIα [229, 

230, 235]. 

 

1.3.2.2. Transcription coupled repair 

The trigger of transcription coupled repair (TCR, also referred to as TC-NER) is the stalling of 

RNAPII due to the presence of a lesion in the actively transcribed strand [236-240]. During 

transcription, RNAPII is accompanied by the transcription elongation factor CSB (Cockayne 

syndrome group B) [138, 150, 241, 242]. Upon stalling, CSB binds tightly to RNAPII and 

DNA [138, 150, 242-245]. In this process CSB changes the DNA conformation, presumably 

by wrapping it [138, 246, 247]. It has been shown that XPG binds to stalled RNAPII and 

stimulates the ATPase activity of CSB, suggesting a role in recognition of stalled RNAPII 

[248]. Subsequently, CSB recruits the CSA E3 ubiquitin-ligase complex, the histone 

acetyltransferase p300, and the NER proteins, including TFIIH [249, 250]. CSA recruits 

further factors, like the nucleosome binding protein HMGN1, elongation factor TFIIS, and the 

XPA binding protein 2 (XAB2) [250]. The fate of RNAPII in the subsequent steps is under 

debate. As the stalled RNAPII occupies ~10 nucleotides in front and ~25 nucleotides behind 

the lesion it has to be removed in order to grant access to the NER machinery to the lesion 
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site [138, 251, 252]. One proposed mechanism is the degradation of RNAPII initiated by the 

ubiquitination through NEDD4. This would lead to the abortion of transcription in favor of 

DNA repair [253-259]. Another proposed mechanism is the backtracking of RNAPII with the 

help of p300, HMGN1, and TFIIS. The chromatin remodelers p300 and HMGN1 would 

disassemble the nucleosomes behind RNAPII to permit the backtracking, and TFIIS activates 

the nascent RNA cleavage by RNAPII [138, 150, 238, 252, 260]. Yet another proposed 

mechanism is the remodeling of RNAPII. Hereby, TFIIH would induce conformational 

changes in RNAPII, granting access to the damaged site with RNAPII still in place [248]. In 

either case TFIIH is recruited, triggering the same repair cascade as described in the section 

about global NER (see 1.3.2.1) after TFIIH has been recruited by the XPC complex [148, 

150, 249, 250]. 

 

1.4. Transcription 

The second major cellular pathway TFIIH is involved in is transcription. Transcription is the 

transmission of the genetic information from DNA into RNA [104]. This is carried out by RNA 

polymerases accompanied by various transcription factors and regulators [76, 77, 261-266]. 

In eukaryotes, three RNA polymerases can be distinguished: RNA polymerase I (RNAPI), II 

(RNAPII), and III (RNAPIII). Each polymerase is responsible for the synthesis of a different 

subset of RNAs [267-271]. TFIIH is a crucial general transcription factor in RNAPII 

dependent transcription [76, 77, 87, 92, 93, 97, 272]. Additionally, TFIIH is verifiably involved 

in RNAPI dependent transcription [272-275]. A few hints exist that TFIIH might also be 

involved in RNAPIII dependent transcription [276, 277]. In the following two sections 

transcription by the three polymerases will be briefly discussed as well as the role of TFIIH 

therein. 

 

1.4.1. RNA polymerase I and III transcription 

RNAPI synthesizes the large ribosomal RNA (rRNA) precursor, which encodes for the 28S, 

18S, and 5.8S ribosome subunits [278-283]. The preinitiation complex is initiated by the 

promotor selectivity factor TIF-IB/SL1 together with the upstream binding factor UBF [284-

290]. TIF-IB/SL1 consists of the TATA binding protein (TBP) and three TBP associated 

factors, which are specific for RNAPI [291-293]. TIF-IB/SL1 and UBF recruit RNAPI, 

alongside with additional factors [288, 289, 294-297]. It was found that TFIIH binds to the 

rDNA promotor and associates with TIF-IB/SL1 and RNAPI [272, 273]. Furthermore, TFIIH 

leaves the rDNA promotor together with RNAPI, and it has been suggested that TFIIH is 

involved in transcription elongation [274, 275]. The exact function of TFIIH in this process, 

however, is unclear, as neither its helicase, nor its kinase activity is required in vitro [273, 
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298]. In vivo however, it has been shown that XPBs ATPase activity enhances RNAPI 

transcription [275]. 

RNAPIII synthesizes transfer RNA (tRNA), the 5S ribosome subunit, and some noncoding 

RNAs [299]. A unique feature of RNAPIII transcription is that the majority of the transcribed 

genes do not require upstream promotors, but possess internal promotors [300-302]. These 

promotors are recognized by TFIIIC which subsequently recruits TFIIIB [300, 302-304]. 

However, a small subset of RNAPIII transcribed genes constitute upstream promotors 

containing a TATA box. These TATA boxes are recognized by TFIIIB, as TFIIIB contains 

TBP [300, 302, 305-307]. In both cases TFIIIB then recruits RNAPIII [300, 302, 308, 309]. To 

date, no direct evidence exists that TFIIH is involved in RNAPIII transcription. However, it 

could be shown that TFIIH, together with TFIIB, TFIIE, and RNAPII, associates with a range 

of RNAPIII transcribed genes [276, 277, 310]. 

 

1.4.2. RNA polymerase II transcription 

RNAPII dependent transcription is the first step of protein expression and responsible for the 

synthesis of pre-messenger RNA (pre-mRNA) as well as noncoding RNAs [104, 311, 312]. 

Pre-mRNA is processed to mRNA [313, 314] and is then translated into the primary amino 

acid sequence in the second step of protein expression [104, 315-317]. 

The formation of the preinitiation complex (PIC) is initiated by TFIID [318, 319] which 

contains TBP and thereby binds to the promotor region [318, 320, 321]. Subsequently, TFIIA 

and TFIIB are recruited [318, 322]. Next, RNAPII together with TFIIF are recruited [323]. This 

complex is then joined by TFIIE. Finally, TFIIE recruits TFIIH [63, 322, 324-327]. Further 

factors are involved in PIC formation, like nuclear receptors (NR) and the multi subunit 

Mediator complex [1, 328-330]. The Meditator complex stimulates and controls the PIC 

formation [331-334] and it extensively interacts with RNAPII, transcription factors like TFIIB 

and TFIIH, as well as nuclear receptors [77, 266, 335, 336]. 

TFIIH, in particular its XPB subunit, is believed to fulfill a key role in promotor opening [7, 

337]. The exact mechanism of this process is under debate. It could be shown that XPB 

binds downstream from the actual opening region, arguing against a common helicase 

mechanism [76-78, 338, 339]. It has been suggested that XPB functions as a DNA 

translocase. In the PIC, on the one hand, the DNA is fixed upstream of the opening region by 

TBP. On the other hand, XPB is fixed downstream of the opening region by TFIIE. Thus, the 

DNA translocase activity of XPB would lead to a rotation and insertion of DNA into the 

RNAPII active site cleft, resulting in DNA opening [21, 340]. Another hypothesis suggests 

that XPB functions as a wrench, which rotates the DNA in order to generate torque, resulting 

in DNA opening [339]. Furthermore, it has been suggested that XPB induces an ATP 

dependent conformational change into the PIC leading to DNA opening [341]. 
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In stark contrast, a recent study suggested that XPB might not be involved in promotor 

opening at all, as transcription seemed to be possible even in the absence of XPB. The 

authors suggested that XPB might act as a regulatory transcriptional block, which is released 

upon ATP hydrolysis through XPB [342]. 

XPDs enzymatic activities are dispensable for transcription, yet it plays an important 

scaffolding role [23, 24]. XPD anchors CAK to TFIIH via the interaction with MAT1 [38, 59]. 

P8 seems to play an important role in transcription, as all known disease related mutations 

lead to the transcription related disorder trichothiodystrophy (see 1.6.3) [3, 343, 344]. P8 

stabilizes TFIIH [28] and mutations in p8 result in reduced TFIIH levels [345]. 

MAT1, in particular the N-terminal ring finger domain (Figure 1-1), also plays an important 

role, as mutation or deletion of this domain impairs transcription [59]. 

CDK7 is important for promotor escape as it phosphorylates serine 5 and 7 of the heptad 

repeats of the CTD of the RNAPII Rbp1 subunit [50, 94, 96, 97, 101, 346]. This leads to the 

dissociation of Mediator from RNAPII enabling the movement of RNAPII from the initiation 

site [334, 347, 348]. Additionally, CTD phosphorylation is required for pre-mRNA processing 

[349, 350]. Furthermore, CDK7 is involved in phosphorylation of transcription factors [327] 

and transactivation of NRs [351-354]. The activity of CDK7 is in turn regulated by the CDK8 

subunit of Mediator. CDK8 phosphorylates CyclinH, thereby reducing the activity of CDK7 

[355]. 

TFIIH also seems to play a role in early elongation and suppression of promoter-proximal 

arrest of RNAPII [356-360]. 

The process of transcription initiation is depicted in Figure 1-4. 
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Figure 1-4. Mechanism of RNA polymerase II transcription initiation. Preinitiation complex (PIC) 
formation is initiated by TFIID, at which TBP recognizes the TATA box. Mediator and nuclear receptors 
(NR) stimulate and control PIC formation (1). Subsequently, TFIIA and TFIIB are recruited (2). This 
complex recruits RNA polymerase II (RNAPII) alongside with TFIIF. Next, TFIIE joins the complex (3). 
TFIIE recruits TFIIH, which then opens the promoter via its XPB subunit (4). CDK7 phosphorylates the 
C-terminal domain of the RNAPII subunit Rbp1 and nuclear receptors (5). RNAPII escapes the 
promoter and synthesizes pre-mRNA (6). ℗: phosphorylation. 
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1.5. Cell cycle control and chromosome segregation 

In addition to its roles in transcription and DNA repair, TFIIH is also involved in other 

important cellular processes. These functions are not carried out by the complete TFIIH 

complex, but rather by certain subparts or subunits, also in the context with other protein 

complexes [1, 79]. 

The CAK complex plays a crucial role in cell cycle control [1, 49, 51]. Interestingly, CAK is 

the only known CDK activating kinase in metazoans [1, 361]. It is able to stimulate a certain 

set of CDKs important for cell cycle control via T-loop phosphorylation through CDK7 [51]. 

This set comprises CDK1, CDK2, CDK4, and CDK6 [49, 55, 361-364]. T-loop 

phosphorylation promotes the association of these CDKs with different cyclin subunits or 

activates the preformed CDK/cyclin complexes [49, 365]. These CDK/cyclin complexes are 

the actual functional species, able to trigger cell cycle events [365-367]. It has been shown 

that CAK levels and activity remain constant during the cell cycle, suggesting that CAK is a 

constitutive activator of the CDKs [5, 368]. This observation immediately poses the question 

about possible regulators of CAK activity. One possible regulator is XPD [1, 79, 369]. It could 

be shown in Drosophila that XPD inhibits the kinase activity of CAK [370]. Indeed, XPD 

levels fluctuate during cell cycle in Drosophila, suggesting a mechanism how CAK might be 

regulated during cell cycle progression [370]. In addition, XPD controls the subcellular 

localization of CDK7 in Drosophila [371]. 

XPD is also involved in chromosome segregation. It was found that XPD is part of the MMXD 

complex [1, 79, 372, 373]. Besides XPD, MMXD consists of MMS19, MIP18, Ciao1, and 

ANT2. MMXD seems to localize to mitotic spindles during metaphase, and knock-down of 

XPD, MMS19, or MIP18 leads to a disturbed spindle pole formation [373]. Furthermore, 

MMS19 and MIP18 are required for the correct positioning of Aurora B at the central spindle 

and midbody [373]. However, it has been found recently that MMS19, MIP18, and Ciao1 are 

part of the cytoplasmic Fe-S assembly pathway [374-376]. Hence, XPD most likely acquires 

its iron sulfur cluster via MMXD [376]. Therefore, these observed detrimental effects on 

chromosome segregation might be indirect through impaired XPD synthesis. Furthermore, 

lack of XPD leads to nuclear division defects and chromosomal instability in Drosophila [371]. 

XPDs involvement in chromosome segregation is also indicated by its participation in the 

CGX complex in Drosophila [1, 377]. Besides XPD, CGX consists of Crumps, Galla-1, and 

Galla-2. Here, Galla-1 shows sequence homology to the MMXD subunit MIP18 [377]. CGX 

localizes to mitotic spindles and is required for correct chromosome segregation in early 

embryogenesis [377]. 
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1.6. TFIIH and disease 

The fundamental importance of TFIIH for transcription and DNA repair becomes evident 

through the severe diseases caused by mutations in TFIIH. Three quite diverse autosomal 

recessive disorders, xeroderma pigmentosum, Cockayne syndrome, and trichothiodystropy, 

are linked with malfunctioning TFIIH [2, 81]. The diversity of these syndromes reflects the 

multiple and diverse roles of TFIIH in the cell. The diseases and the corresponding mutations 

in TFIIH will be discussed in the following four sections. 

 

1.6.1. Xeroderma pigmentosum 

Xeroderma pigmentosum (Greek ξηρός (xerós) for dry, δερμα (derma) for skin; New Latin 

pigmentosum for pigmentation) (XP) is characterized by a highly elevated photosensitivity, 

with an up to 10,000 fold increased risk to develop skin cancer [83]. Sun exposed areas of 

the skin develop several abnormalities like numerous hyperpigmented macules. Some 

patients suffer from severe sun burns, even after minimal sun exposure [378]. Also, some 

patients display ocular abnormalities [379]. Sometimes XP is accompanied by progressive 

neurological degeneration, like mental degeneration or hearing loss [83, 380]. The 

photosensitivity and skin cancer phenotype of XP can directly be linked to TFIIHs function in 

NER, as it is the only pathway in humans capable of repairing UV-light induced lesions [123]. 

It has been suggested that the progressive neurological degeneration is caused by a decay 

of non-dividing nerve cells due to insufficient DNA repair [380, 381] or subtle transcriptional 

defects [382, 383]. 

 

1.6.2. Cockayne syndrome 

Cockayne syndrome (named after Edward Alfred Cockayne, who first described this 

syndrome [384]) (CS) is a disorder typically attributed to a defective TCR pathway [385]. 

Specifically, this syndrome is caused by mutations in CSA or CSB [2, 386, 387]. No 

mutations in TFIIH are known that cause solely CS. Here, only combined XP/CS phenotypes 

have been observed so far [83, 388, 389]. CS is characterized by severe mental retardation, 

microcephaly, a bird-like face, retinal degeneration, long limps, and gait defects [2, 81, 379, 

390]. Some patients display photosensitivity, but without abnormal skin pigmentation or 

increased skin cancer risk. CS is clinically heterogeneous, with severe and moderate 

phenotypes, which lack a clear genotype-phenotype relationship [2, 390, 391]. The observed 

photosensitivity is mainly attributed to impaired repair of UV lesions through defective TCR 

[4, 385]. Presumably, the neurological symptoms are caused by impaired resolving of 

transcriptional blocks, thereby interfering with proper transcription [387], or shifting the 

balance between cell survival and apoptosis [136, 141, 146]. Also TCR unrelated impairment 
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of RNAPI and RNAPII transcription through defects in CSA and CSB or TFIIH has been 

proposed as being causative for the neurological disorders [4, 136, 274, 392]. Regarding 

TFIIH, the occurrence of only combined XP/CS may well reflect its roles in global NER, TCR, 

and transcription. 

 

1.6.3. Trichothiodystrophy 

Trichothiodystrophy (Greek τριχο (tricho) for hair, θειον (theion) for sulfur, δυσ (dys) for bad, 

τροφεῖν (trophein) for nutrition) (TTD) is characterized by brittle hair and nails [393, 394]. It is 

often accompanied by mental retardation, short stature, ichthyotic skin, and photosensitivity, 

but without abnormal skin pigmentation or increased skin cancer risk [2, 394]. In contrast to 

XP, TTD is attributed to the impaired function of TFIIH during transcription [275, 395, 396]. 

TFIIH levels are significantly reduced in all known TTD cases [397] and it has been 

suggested that in specific differentiated cells (like keratinocytes) most of the genes are 

transcriptionally repressed, including those encoding for TFIIH. These cells therefore have to 

rely on residual TFIIH levels, which might be too low in case of TTD cells, resulting in the 

TTD phenotype [398]. However, this cannot explain all symptoms of TTD, especially 

regarding the fact that reduced TFIIH levels were also found in some XP cells [397]. Hence, 

impairment of other functions, like transactivation of NRs might also contribute to TTD [4, 

344, 399]. One enigma however remains: TTD is often accompanied by photosensitivity and 

defects in NER, but without display of the XP phenotype of abnormal pigmentation and skin 

cancer. It has thus been suggested that the transcriptional defect of TTD prevents the 

occurrence of an XP phenotype. According to that hypothesis, the expression of crucial 

genes would be greatly reduced, the overexpression of which would be needed to cause 

abnormal skin pigmentation and cancer [400]. 

 

1.6.4. Disease related mutations in TFIIH 

Regarding TFIIH, disease related mutations in only three subunits have been observed so far 

in humans: XPD, XPB, and remarkably, the smallest subunit p8 [1, 3, 344, 388, 389, 401]. A 

likely explanation of lacking mutations in other TFIIH subunits might be an incompatibility 

with life due to their essential role in maintaining the integrity of TFIIH [1]. A particular case 

might be p44. In humans the gene encoding p44 is duplicated, and the gene products differ 

in three amino acids [402]. It has been shown that both versions are functional within TFIIH 

[7]. Therefore, the lack of p44 disease mutations might be due to the little likelihood of 

mutations in both alleles of both genes [30]. The mutations found in XPD, XPB, and p8 will 

be discussed below. 
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1.6.4.1. XPD 

Mutations in XPD can result in XP, XP/CS, TTD, or XP/TTD [81, 388]. Several mutations 

have been identified, most of them cluster in HD2 of XPD (Figure 1-5) [18, 388, 403]. Most of 

these mutations are missense mutations, and surprisingly, some mutations are adjacent to 

each other but cause different disorders. It has been suggested that the different disorders 

are related to the impairment of specific properties of XPD. According to this theory, 

mutations impairing ATP hydrolysis or DNA binding lead to XP, mutations impairing the 

conformational flexibility between HD1 and HD2 lead to XP/CS, and mutations impairing the 

structural integrity of XPD or protein-protein interactions within TFIIH lead to TTD [18, 369]. 

This hypothesis is supported by several mutations. 

A frequent XP mutation is R683W/Q, occurring in ~80 % of the patients [388, 403]. R683 is 

located in the DNA binding channel in HD2, contacting the DNA backbone and the mutation 

therefore impedes DNA binding. Similarly, several other XP mutations are located within the 

DNA binding channel (T76A, S541R, Y542C, and R601L/W) or the ATP binding site 

(D234N). A mutation leading to XP/CS is G675R. It is located at the bottom of HD2, and 

substitution of a flexible G with a more rigid R reduces the conformational flexibility of HD2 

[18]. Another XP/CS mutation is G602D, which similar to G675R, also substitutes a flexible G 

with a more rigid amino acid. Remarkably, this mutation is directly adjacent to the XP mutant 

position R601. A frequent TTD mutation is R722W, which disrupts the XPD-p44 interaction, 

thereby impairing the recruitment of XPD to TFIIH [24, 396]. As the disruption of the 

XPD-p44 interaction also abolishes the helicase activity of XPD, it is puzzling why this 

mutation displays no XP phenotype. An attempt to explain is given in the section about TTD 

(see 1.6.3). Another TTD mutation is C259Y, which is located in the arch domain of XPD. 

This mutation affects the interaction with CAK, impairing the transcriptional activity of TFIIH 

[38]. 

Also mutations causing a combined XP/TTD phenotype have been reported, which might 

well reflect the concurrent impairment of different XPD properties [404]. 

A remarkable observation regarding XP/CS mutations of XPD are aberrant DNA incisions 

distant from repair sites which were shown to be transcription dependent [405, 406]. In 

accordance with reduced conformational flexibility of XPD, one might speculate that TFIIH is 

locked in a repair conformation, leading to erroneous TFIIH mediated repair events at 

transcription sites [18]. 

 

1.6.4.2. XPB 

Mutations in XPB can result in XP, XP/CS, or TTD [389]. In contrast to XPD, very few 

mutations of XPB have been identified so far. Most likely, this is due to XPBs essential role in 

basal RNAPII transcription, making most XPB alterations incompatible with life [1]. Only three 
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causative mutations are known: The missense mutations F99S and T119P, and a frameshift 

mutation alternating the sequence of the last 42 amino acids (fs740) (Figure 1-5) [389, 401]. 

F99S causes either a mild form of XP or a mild form of XP/CS [389]. It is unclear, why one 

mutation causes two different phenotypes. However, these patients differ in the second 

allele. For the XP phenotype, the second allele bears a point mutation, leading to a stop 

codon at amino acid 425 (full-length: 782 amino acids). For the XP/CS phenotype, the 

second allele bears a splice donor mutation in intron 3, resulting in a frameshift after amino 

acid 157 and a stop codon at amino acid 162 [389]. It is tempting to speculate that for the XP 

phenotype the less truncated protein can at least partially compensate for some of the 

detrimental effects of the F99S mutation on the first allele, leading to a less severe 

phenotype. It has been shown that F99S impairs the interaction with p52, thereby reducing 

the ATPase activity of XPB [22]. Furthermore, it has been shown that NER activity is strongly 

reduced [22, 337, 389]. This is in line with the need of XPBs ATPase activity for NER [15] 

and with the XP symptoms. Transcriptional activity, however, seems to be much less 

affected [22, 337]. 

T119P causes TTD without mental defects. NER and transcription seem to be only slightly 

affected [22, 389], whereas the cellular level of TFIIH is significantly reduced [397]. 

The frameshift mutation fs740 causes a severe XP/CS phenotype. This mutation affects a 

phosphorylation site (S751), which was shown to be of importance for regulation of 5’ DNA 

incision by XPF-ERCC1 [407]. Accordingly, fs740 leads to impaired 5’ DNA incision during 

NER [187]. Also, it has been shown that the ATPase activity of XPB is impaired, as well as 

the transcriptional activity of TFIIH [408]. Additionally, it has been shown that fs740 

decreases the cellular level of TFIIH [62]. 

 

1.6.4.3. p8 

Three causative mutations in p8 are known, all leading to TTD (Figure 1-5) [3, 343, 344]. 

One mutation is a point mutation of the start codon [3], thus no p8 is expressed. The 

missense mutation L21P [3] interferes with the secondary structure of p8 [28]. The nonsense 

mutation R56stop (full-length: 71 amino acids) [3] significantly reduces the binding affinity to 

p52 [28]. It has been suggested that these mutations impair the interaction with p52, thereby 

destabilizing p52 by exposing its hydrophobic C-terminus [28]. Combined, this leads to a 

decreased cellular concentration of TFIIH [3, 345, 397] and might also impede XPBs function 

[26]. However, the transcriptional activity seems to be not affected, at least in vitro [26, 345]. 

In contrast, a recent study suggested a direct role of p8 in transcription as p8 depletion in 

Drosophila testes did not decrease TFIIH stability but showed transcriptional defects [409]. 

This might well explain why p8 mutations lead to TTD. 
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Figure 1-5. Disease related mutations of the TFIIH subunits XPD, XPB, and p8. Locations of 
mutation sites are indicated by lines. Colored boxes correspond to disorder as indicated. fs: frameshift; 
XP: xeroderma pigmentosum; TTD: trichothiodystropy; CS: Cockayne syndrome; XP/CS and XP/TTD: 
combined syndroms. The domain scheme corresponds to Figure 1-1. 
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2. Materials and Methods 

2.1. Materials 

2.1.1. Chemicals, dyes, and ladders 

Table 2-1. Chemicals, dyes, and ladders. 

Compound Abbreviation Supplier 

1,4-piperazinediethanesulfonic acid Pipes Carl Roth 

2-(N-morpholino)ethanesulfonic acid MES Sigma-Aldrich 

2-propanol 
 

Carl Roth 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid Hepes Carl Roth 

Acetic acid HAc Carl Roth 

Acrylamide/Bis-acrylamide AA/BAA Carl Roth 

Adenosine triphosphate ATP Carl Roth 

Agarose  Carl Roth 

Ammonium persulfate APS Carl Roth 

Ampicillin (sodium salt) Amp Carl Roth 

Bromophenol blue 
 

Sigma-Aldrich 

Cesium chloride CsCl Sigma-Aldrich 

Chloramphenicol Cam Carl Roth 

cOmplete™ Protease inhibitor cocktail  Roche Diagnostics 

Coomassie Brilliant Blue G250 Coomassie G250 Carl Roth 

Coomassie Brilliant Blue R250 Coomassie R250 Carl Roth 

Disodium hydrogen phosphate Na2HPO4 Fluka 

Dithiothreitol DTT Carl Roth 

Ethanol EtOH Carl Roth 

Ethylenediaminetetraacetic acid EDTA Carl Roth 

GeneRuler™ 1 kb  Thermo Scientific 

Glycerol 
 

Carl Roth 

Glycine 
 

Carl Roth 

Hen egg white lysozyme HEWL Carl Roth 

Hydrochloric acid HCl Carl Roth 

Imidazole 
 

Carl Roth 

Isopropyl β-D-1-thiogalactopyranoside IPTG Carl Roth 

Kanamycin sulfate Kan Carl Roth 

L-(+)-Arabinose Arabinose Carl Roth 

LB Broth (Lennox) LB-medium Carl Roth 

Magnesium chloride MgCl2 Carl Roth 

Midori Green Advance  NIPPON Genetics 

N-Cyclohexyl-2-aminoethanesulfonic acid Ches Sigma-Aldrich 

Nickel sulfate NiSO4 Carl Roth 

Nicotinamide adenine dinucleotide disodium salt NADH Sigma-Aldrich 

Orange G  Carl Roth 

PageRuler™ Prestained  Thermo Scientific 

Phenylmethylsulfonyl fluoride PMSF AppliChem 

Phosphoenolpyruvate monosodium salt  Sigma-Aldrich 
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Polyethylene glycol 4000 PEG 4000 Sigma-Aldrich 

Ponceau S 
 

Carl Roth 

Potassium chloride KCl Carl Roth 

Potassium dihydrogen phosphate KH2PO4 Carl Roth 

Potassium iodide KI Sigma-Aldrich 

Protino® Ni-IDA Resin Ni-IDA Machery-Nagel 

Protino® Ni-TED Resin Ni-TED Machery-Nagel 

Sodium acetate 
 

Fluka 

Sodium bromide NaBr Fluka 

Sodium chloride NaCl Carl Roth 

Sodium dodecyl sulfate SDS Carl Roth 

Sodium hydroxide NaOH Carl Roth 

SYPRO® Orange Protein Gel Stain SYPRO orange Invitrogen 

Terrific Broth TB-medium Carl Roth 

Tetramethylethylenediamine TEMED Carl Roth 

Triptolide  Cayman Chemical 

Tris(2-carboxyethyl)phosphine TCEP Carl Roth 

Tris(hydroxymethyl)aminomethane Tris Carl Roth 

Uranyl acetate 
 

SERVA 

Xylenecyanol FF  Fluka 

  Table 2-1 continued 

 

2.1.2. Enzymes, enzyme buffers, and kits 

Table 2-2. Enzymes and buffers. 

Enzyme/Buffer Abbreviation Company 

Bovine serum albumin BSA New England BioLabs 

Deoxyadenosine triphosphate dATP Thermo Scientific 

Deoxycytidine triphosphate dCTP Thermo Scientific 

Deoxyguanosine triphosphate dGTP Thermo Scientific 

Deoxythymidine triphosphate dTTP Thermo Scientific 

Deoxyribonuclease I DNase I AppliChem 

DpnI 
 

New England BioLabs 

HF buffer 
 

Thermo Scientific 

NEB2 buffer 
 

New England BioLabs 

Phusion DNA polymerase 
 

Thermo Scientific 

Pyruvate kinase/Lactate dehydrogenase  Sigma-Aldrich 

RecA 
 

New England BioLabs 

T4 DNA polymerase 
 

New England BioLabs 

T4 ligation buffer 
 

New England BioLabs 

Taq DNA polymerase 
 

New England BioLabs 

 

Table 2-3. Kits. 

Kit Company 

NucleoSpin® Gel and PCR Clean-Up Machery-Nagel 

NucleoSpin® Plasmid Machery-Nagel 
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2.1.3. Vectors, constructs, and primer 

Full-length XPB, XPD, p62, p52, p44, p34, and p8 from Chaetomium thermophilum were 

cloned individually into a pBADM-11 vector by Agnes Elias. These constructs constituted the 

starting point and templates for this work. 

 

Table 2-4. Vectors. 

Vector Promoter Tags Cleavage site Marker Source 

pBADM-11 araBAD N-term
1)

 His6
2)

 N-term TEV
4)

 Amp EMBL
5)

 

pETM-11 T7-lac N-term His6, C-term
3)

 His6 N-term TEV Kan EMBL 

pGH T7-lac   Amp GeneArt 

1) N-terminal 
2) Hexa-histidine 
3) C-terminal 
4) Tobacco etch virus 
5) European Molecular Biology Laboratory 

 

The constructs cloned for this work are listed in Table 2-5, together with the respective 

primers. In the course of this work further constructs were attempted and their state 

concerning cloning, purification, and crystallization is given in the appendix (see 6.5, Table 

6-2). All primers were purchased from Sigma-Aldrich. 

 

Table 2-5. Constructs and primers. 

Construct
1)

 Primer sequences
2)

 Template
3)

 Vector
4)

 Method
5)

 
XPBnT 
[pBADM-11] 

5'-CTAACAGGAGGAATTAACCATGCCTCCCAAGCGAAAGGC-3' 
5'-GCCTTTCGCTTGGGAGGCATGGTTAATTCCTCCTGTTAG-3' 

XPB 
[pBADM-11] 

 SLIC 

XPB_1-345  
[pBADM-11] 

5'-GAGTATGATTTCAGAAATTAAGTCGACAAGCTTGCGGCCG-3' 
5'-CGGCCGCAAGCTTGTCGACTTAATTTCTGAAATCATACTC-3' 

XPB  
[pBADM-11]  

SLIC 

XPB_1-345_F143S  
[pBADM-11] 

5'-GCAGGCAACTGATTCTCTCATCACGATTGC-3' 
5'-GCAATCGTGATGAGAGAATCAGTTGCCTGC-3' 

XPB_1-345  
[pBADM-11]  

Site dir 
mut 

XPB_116-E  
[pBADM-11] 

5'-CTTTATTTTCAGGGCGCCAATCGCCCTTTGTGGATTGAC-3' 
5'-GTCAATCCACAAAGGGCGATTGGCGCCCTGAAAATAAAG-3' 

XPB  
[pBADM-11]  

SLIC 

XPB_116-768  
[pBADM-11] 

5'-CTTTATTTTCAGGGCGCCAATCGCCCTTTGTGGATTGAC-3' 
5'-CGGCCGCAAGCTTGTCGACTTACTCGTTGTCGACCAGCGTGCG-3' 

XPB  
[pBADM-11] 

pBADM-11 SLIC 

XPB_116-345  
[pBADM-11] 

5'-GAGTATGATTTCAGAAATTAAGTCGACAAGCTTGCGGCCG-3' 
5'-CGGCCGCAAGCTTGTCGACTTAATTTCTGAAATCATACTC-3' 

XPB_116-E  
[pBADM-11]  

SLIC 

XPB_116-245  
[pBADM-11] 

5'-GGCAAGCTGCGCGTTCAGGGATAAGTCGACAAGCTTGCGGCCG-3' 
5'-CGGCCGCAAGCTTGTCGACTTATCCCTGAACGCGCAGCTTGCC-3' 

XPB_116-E  
[pBADM-11]  

SLIC 

XPB_541-E  
[pBADM-11] 

5'-CTTTATTTTCAGGGCGCCATGGAGCTCTCACAGCAGGGCC-3' 
5'-GGCCCTGCTGTGAGAGCTCCATGGCGCCCTGAAAATAAAG-3' 

XPB  
[pBADM-11]  

SLIC 

XPBopti6)  
[pBADM-11] 

5'-CTTTATTTTCAGGGCGCCATGCCGCCGAAACGCAAAGCACC-3' 
5'-CGGCCGCAAGCTTGTCGACTTACTGACGCGCTGCACGAG-3' 

XPBopti  
[pGH] 

pBADM-11 SLIC 

p62  
[pETM-11] 

5'-CTTTATTTTCAGGGCGCCATGAGCATCCCCCGCAGCCAGACCACC-3' 
5'-CGGCCGCAAGCTTGTCGACTTAAACCGTGCCCTTTCCAGACACAGC-3' 

p62  
[pBADM-11] 

pETM-11 SLIC 

p62nT  
[pETM-11] 

5'-CTTTAAGAAGGAGATATACCATGAGCATCCCCCGCAGCCAG-3' 
5'-CTGGCTGCGGGGGATGCTCATGGTATATCTCCTTCTTAAAG-3' 

p62  
[pETM-11]  

SLIC 

p62_1-285  
[pETM-11] 

5'-CCGCGGCGAGCGCTAAACGGAGAACGACAAC-3' 
5'-GTTGTCGTTCTCCGTTTAGCGCTCGCCGCGG-3' 

p62  
[pETM-11]  

Site dir 
mut 

p62_1-109  
[pETM-11] 

5'-CTCGCCGCGGCAAGGTAAAATGACCCGAATG-3' 
5'-CATTCGGGTCATTTTACCTTGCCGCGGCGAG-3' 

p62  
[pETM-11]  

Site dir 
mut 

p62_145-290  
[pETM-11] 

5'-CTTTATTTTCAGGGCGCCCAAGCCCCCCGATGGTTCGACGATGCTG-3' 
5'-CGGCCGCAAGCTTGTCGACTTAGTCGTTCTCCGTGTAGCGCTCGCC-3' 

p62  
[pETM-11] 

pETM-11 SLIC 

p62_290-E  
[pETM-11] 

5'-CTTTATTTTCAGGGCGCCGACAACCCCGATCCGCTGTTC-3' 
5'-GAACAGCGGATCGGGGTTGTCGGCGCCCTGAAAATAAAG-3' 

p62  
[pETM-11]  

SLIC 

p62_435-E  
[pETM-11] 

5'-CTTTATTTTCAGGGCGCCGGGCAGGCGTCGGAAGATGC-3' 
5'-GCATCTTCCGACGCCTGCCCGGCGCCCTGAAAATAAAG-3' 

p62  
[pETM-11]  

SLIC 

p62nT_435-E  
[pETM-11] 

5'-GAAGGAGATATACCATGGGGCAGGCGTCGGAAGATGC-3' 
5'-GCATCTTCCGACGCCTGCCCCATGGTATATCTCCTTC-3' 

p62_435-E  
[pETM-11]  

SLIC 
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p52  
[pETM-11] 

5'-CTTTATTTTCAGGGCGCCATGTCGATCCCCGCCGTGCC-3' 
5'-CGGCCGCAAGCTTGTCGACTTAACCCTCCTTCTTCCGAC-3' 

p52  
[pBADM-11] 

pETM-11 SLIC 

p52nT  
[pETM-11] 

5'-CTTTAAGAAGGAGATATACCATGTCGATCCCCGCCGTGCC-3' 
5'-CGGCCGCAAGCTTGTCGACTTAACCCTCCTTCTTCCGAC-3' 

p52  
[pETM-11]  

SLIC 

p52nT_dL  
[pETM-11] 

5'-CCGCATCCTCTAACGGCAACGGCGGGGGAGCCGACCCCTCCGCG-3' 
5'-GCTCCCCCGCCGTTGCCGTTAGAGGATGCGGACGAGGTTAGCGTC-3' 

p52nT  
[pETM-11] 

 SLIC 

p52_121-E_dL 
[pETM-11] 

5'-CCGCATCCTCTAACGGCAACGGCGGGGGAGCCGACCCCTCCGCG-3' 
5'-GCTCCCCCGCCGTTGCCGTTAGAGGATGCGGACGAGGTTAGCGTC-3' 

p52_121-E 
[pETM-11] 

 SLIC 

p44_1-367  
[pBADM-11] 

5'-GGTCTCACCCTGATCTAAGCACCCACTTGGCGC-3' 
5'-GCGCCAAGTGGGTGCTTAGATCAGGGTGAGACC-3' 

p44  
[pBADM-11]  

Site dir 
mut 

p44_1-326  
[pBADM-11] 

5'-CGCACACTCGCATCTGCCTAAGTCGACAAGCTTGCGGCCG-3' 
5'-CGGCCGCAAGCTTGTCGACTTAGGCAGATGCGAGTGTGCG-3' 

p44  
[pBADM-11]  

SLIC 

p44_286-E  
[pBADM-11] 

5'-CTTTATTTTCAGGGCGCCCCGCCGCCAGCCACAGCATC-3' 
5'-GATGCTGTGGCTGGCGGCGGGGCGCCCTGAAAATAAAG-3' 

p44  
[pBADM-11]  

SLIC 

p44_286-367  
[pBADM-11] 

5'-CTGTGGTCTCACCCTGATCTAAGTCGACAAGCTTGCGGCCG-3' 
5'-CGGCCGCAAGCTTGTCGACTTAGATCAGGGTGAGACCACAG-3' 

p44_286-E  
[pBADM-11]  

SLIC 

p44_327-E  
[pBADM-11] 

5'-CTTTATTTTCAGGGCGCCAGCCACGTCTCCCTCTGTGC-3' 
5'-GCACAGAGGGAGACGTGGCTGGCGCCCTGAAAATAAAG-3' 

p44  
[pBADM-11]  

SLIC 

1) Residue range is indicated. E: C-terminal end; nT: no tag; dL: delta linker. Vector is given in squared brackets. 
2) Upper sequence corresponds to forward, lower sequence to reverse primer. 
3) Template for insert. Vector is given in squared brackets. 
4) Linearized empty vector for SLIC, if applicable. 
5) SLIC: sequence and ligation independent cloning; Site dir mut: site directed mutagenesis. 
6) Optimized XPB gene. 
  Table 2-5 continued 

 

2.1.4. Bacterial strains 

Table 2-6. Bacterial strains. 

Strain Antibiotic resistance Purpose Company 

ArcticExpress (DE3) RIL Gentamycin Expression Agilent 

BL21 (DE3) - Expression New England BioLabs 

BL21 CodonPlus (DE3) RIL Chloramphenicol Expression Agilent 

DH5α™ - Cloning NEB 

Rosetta™ 2 (DE3) Chloramphenicol Expression Merck Millipore 

SoluBL21™ - Expression Amsbio 

 

2.1.5. Culture media, LB-Agar plates, and antibiotics 

LB-medium and TB-medium were used for bacterial cultures. Both media were purchased as 

premixed powders. 20 g of LB-medium powder was dissolved per 1 l H2O. 50.8 g of 

TB-medium powder was dissolved per 1 l H2O and supplemented with 4 ml glycerol. The 

media were then autoclaved at 121 °C at 2.1 bar for 15 min and antibiotics were added 

afterwards. The composition of both media is given below. 

 

LB-medium TB-medium 

- 10 g/l Trypton - 12 g/l Casein (digested enzymatically) 

- 5 g/l yeast extract - 24 g/l yeast extract 

- 5g/l NaCl - 12.54 g/l K2HPO4 

 - 2.31 g/l KH2PO4 
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LB-Agar plates were casted with the respective antibiotics directly added to the LB-Agar 

medium after autoclaving at 121 °C at 2.1 bar for 15 min. The composition of the LB-Agar is 

given below. 

 

LB-Agar 

- 30 g/l LB-medium powder 

- 16 g/l Agar 

 

The antibiotics used and the respective concentrations are listed in Table 2-7. 

 

Table 2-7. Antibiotics. 

Antibiotic Abbreviation Concentration (mg/l) 

Ampicillin Amp 100 

Kanamycin Kan 50 

Chloramphenicol Cam 34 

 

2.1.6. Solutions for gel electrophoresis 

All solutions listed are aqueous solutions and were prepared with ultrapure water 

(GenPure/xCAD, TKA). Rotiphorese® Gel 30 (37.5:1) ready-to-use AA/BAA solution was 

used for gel casting. 

 

Agarose gel 

- 1 % (w/v) Agarose 

- 40 mM Tris 

- 20 mM HAc 

- 1 mM EDTA pH 8.0 

 

6x Agarose gel loading dye TAE buffer 

- 0.25 % (w/v) Bromophenol blue - 40 mM Tris 

- 0.25 % (w/v) Xylenecyanol FF - 20 mM HAc 

- 30 % (v/v) Glycerol - 1 mM EDTA pH 8.0 

 

SDS-PAGE stacking gel SDS-PAGE separating gel 

- 5 % (w/v) AA/BAA (37.5:1) - 15 % (w/v) AA/BAA (37.5:1) 

- 0.125 M Tris-HCl pH 6.8 - 0.375 M Tris-HCl pH 8.8 

- 0.1 % (w/v) SDS - 0.1 % (w/v) SDS 

- 0.1 % (w/v) APS - 0.1 % (w/v) APS 

- 0.1 % (v/v) TEMED - 0.04 % (v/v) TEMED 
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5x SDS-PAGE loading buffer SDS-PAGE running buffer 

- 0.25 M Tris-HCl pH 6.8 - 25 mM Tris 

- 0.5 M DTT - 0.192 M Glycine 

- 10 % (w/v) SDS - 0.1 % (w/v) SDS 

- 0.5 % (w/v) Bromophenol Blue  

- 50 % (v/v) Glycerol  

 

Native PAGE gel 

- 3.5 % (w/v) AA/BAA (37.5:1) 

- 12.5 mM Tris 

- 96 mM Glycine 

- 0.07 % (w/v) APS 

- 0.1 % (v/v) TEMED 

 

5x Native PAGE loading dye Tris/Glycine buffer 

- 0.1 % (w/v) Ponceau S - 25 mM Tris 

- 50 % (v/v) Glycerol - 0.192 M Glycine 

 

Coomassie R250 staining solution Coomassie R250 destaining solution 

- 0.05 % (w/v) Coomassie R250 - 10 % (v/v) EtOH 

- 50 % (v/v) EtOH - 5 % (v/v) HAc 

- 10 % (v/v) HAc  

 

Coomassie G250 staining solution 

- 0.008 % (w/v) Coomassie G250 

- 36 mM HCl 

 

2.1.7. Standard purification buffers 

All buffer components were mixed together in ultrapure water at a temperature of 4 °C. The 

pH value was then adjusted with hydrochloric acid. The gel filtration buffer was degassed 

and filtered through a 0.2 µm filter. 

 

Lysis buffer Elution buffer 

- 20 mM Tris-HCl pH 7.5 - 20 mM Tris-HCl pH 7.5 

- 0.3 M NaCl - 0.3 M NaCl 

- 5 mM Imidazole - 0.25 M Imidazole 
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Gel filtration buffer 

- 20 mM Tris-HCl pH 7.5 

- 0.25 M NaCl 

 

2.1.8. Crystallization, additive and Thermofluor screens 

The screens used for crystallization were based on commercially available screens, but were 

prepared in-house with the liquid handling system LISSY 2002. These screens are listed in 

Table 2-8. 

 

Table 2-8. Crystallization screens. 

Screen Company 

AmSO4 Suite Quiagen 

Crystal Screen HT™ Hampton Research 

Index HT™ Hampton Research 

JCSG+ Suite Quiagen 

Mb Class Suite Quiagen 

Mb Class II Suite Quiagen 

Nucleix Suite Quiagen 

OptiMix™ 3 Fluidigm 

OptiMix™ PEG Fluidigm 

Opti-Salts Suite Quiagen 

PEGs Suite Quiagen 

PEGs II Suite Quiagen 

pHClear Suite Quiagen 

pHClear II Suite Quiagen 

Protein Complex Suite Quiagen 

Wizard™ Classic 1 & 2 HT96 Rigaku 

Wizard™ Classic 3 & 4 HT96 Rigaku 

 

For the supplement of additives to the crystallization conditions commercially available 

additive screens in 96 well format were used. These screens are listed in Table 2-9. 

 

Table 2-9. Additive screens. 

Screen Company 

Additive Screen HT™ Hampton Research 

Silver Bullets™ Hampton Research 

Silver Bullets Bio™ Hampton Research 

 

For the Thermofluor assays a standard screen containing 40 buffer conditions ranging from 

pH 4.5 to 9.8 at a concentration of 0.1 M each was used. This screen was prepared in-house 

with the liquid handling system LISSY 2002. The exact composition of the standard 

Thermofluor screen is given in the appendix (see 6.2). 
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2.1.9. Consumables 

Table 2-10. Consumables. 

Material Specification Company 

24 well plate SuperClear Crystalgen 

96 well plate Crystalquick™ LP Plate, square Greiner Bio-One 

Centrifugal filter units 
Amicon® Ultra - 0.5mL, Ultracel® - 3/10/30 
Amicon® Ultra - 15, Ultracel® - 3/10/30/50 
Vivaspin® 20, 3k/10k/30k/50k/100k MWCO 

Merck Millipore 
Merck Millipore 
Sartorius Stedim Biotech 

Cover slide 22 mm circular, siliconized Jena Bioscience 

EM grid R2/4, R3/3; 2 nm carbon layer Quantifoil Micro Tools 

Filter for buffers 0.2 µm Sartolon Polyamid Sartorius Stedim Biotech 

Silicone paste KORASILON®, mittelviskos Kurt Obermeier 

Syringe filter unit 0.2 µm Minisart® Sartorius Stedim Biotech 

 

2.1.10. Instruments and columns 

Table 2-11. Instruments and columns. 

Instrument/Column Model Company 

Anion exchange chromatography 
column 

Mono Q 10/100 GL GE Healthcare 

Crystallization robot Honeybee 961/963 Genomic Solutions 

Electron microscope Tecnai™ G
2
 Spirit Twin FEI 

FPLC systems 
ÄKTA pure 
ÄKTA purifier 
ÄKTA xpress 

GE Healthcare 
GE Healthcare 
GE Healthcare 

Gel scanner 
Odyssey® 
Scanjet G2710 

LI-COR 
Hewlett-Packard 

Glass chromatography column Econo-Column® 2.5 x 20 cm Bio-Rad 

Light microscope camera AxioCam MRc Zeiss 

Light microscopes 
Stemi 2000 
SteREO Discovery.V12 

Zeiss 
Zeiss 

Liquid handling system LISSY 2002 Zinsser Analytic 

Microplate reader CLARIOstar® BMG LABTECH 

PCR cyclers 
GeneAmp® PCR System 9700 
Mastercycler epgradient S 
Mastercycler pro S 

Applied Biosystems 
Eppendorf 
Eppendorf 

pH meter BlueLine 14 pH Schott 

Plasma cleaner PDC-002 Harrick Plasma 

RT-PCR cycler Stratagene Mx3005P Agilent Technologies 

Size exclusion chromatography 
columns 

HiLoad 26/60 Superdex 200 pg 
HiLoad 16/600 Superdex 200 pg 
Superdex 200 10/300 GL 
Superose 6 10/300 GL 
Superose 6 Increase 3.2/300 

GE Healthcare 
GE Healthcare 
GE Healthcare 
GE Healthcare 
GE Healthcare 

Spectrophotometers 
BioPhotometer 
NanoDrop® ND 1000 

Eppendorf 
Peqlab 

Vitrification device Vitrobot™ Mark IV FEI 

X-ray generator MicroMax™-007HF Rigaku 
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2.1.11. Software 

Table 2-12. Software. 

Software Version Reference 

ADXV 1.9.8 Andrew Arvai 

Aimless 0.5.28 [410] 

ApE 2.0.37 M. Wayne Davis 

Buccaneer 1.6.3 [411] 

CCP4 suite 7.0.021 [412] 

UCSF Chimera 1.11.2 [413] 

Coot 0.8.8 [414] 

CTFFIND3 
 

[415] 

EMAN2 
 

[416] 

HySS  [417] 

Leginon 
 

[418] 

Phaser 2.6.1 [419] 

Phenix 1.9-1692 [420] 

Pointless 1.10.26 [421] 

PyMOL 1.7.6.0 [422] 

Refmac5 5.8.0155 [423] 

RESOLVE  [424, 425] 

ShelxC/D/E 
C: 2006/1 
D: 2013/2 
E: 2016/2 

[426] 

SPARX 
 

[427] 

Spider 14 [428] 

XDS 2016/11 [429] 

 

2.1.12. Web sources and databases 

Table 2-13. Web sources and databases. 

Web source URL Reference 

ClustalW2 http://www.ebi.ac.uk/Tools/msa/clustalw2/ [430] 

COBALT 
https://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi?CMD=
Web 

[431] 

EMBOSS Needle http://www.ebi.ac.uk/Tools/psa/emboss_needle/ [432] 

ExPASy ProtParam http://web.expasy.org/protparam/ [433] 

I-TASSER http://zhanglab.ccmb.med.umich.edu/I-TASSER/ [434] 

Molprobity http://molprobity.biochem.duke.edu [435] 

PDBe EMDB http://www.ebi.ac.uk/pdbe/emdb/index.html/ 
 

Phyre2 http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index [436] 

PubMed https://www.ncbi.nlm.nih.gov/pubmed 
 

RaptorX http://raptorx.uchicago.edu [437] 

RCSB Protein Data 
Bank 

http://www.rcsb.org [438] 

UniProtKB http://www.uniprot.org [439] 
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2.2. Methods 

2.2.1. Cloning 

2.2.1.1. Sequence and ligation independent cloning 

Sequence and ligation independent cloning (SLIC) utilizes single stranded DNA (ssDNA) 

overhangs which are generated by an exonuclease in the linearized vector and insert, and 

the recombination via these ssDNA overhangs [440]. Two slightly different approaches were 

applied. 

For the cloning of an insert from one vector into another, or deletion of parts at both sides of 

the insert within the same vector, the following procedure was applied. Vector and insert 

where linearized and amplified separately via polymerase chain reaction (PCR) with an 

appropriate primer pair. Here, the vectors (pETM-11, pBADM-11) where linearized with the 

primer pair 5’-GTCGACAAGCTTGCGGCCG-3’ (forward primer) and 

5’-GGCGCCCTGAAAATAAAG-3’ (reverse primer). The forward primer for insert 

amplification consisted of the sequence with reverse complementarity to the vector reverse 

primer (5’-CTTTATTTTCAGGGCGCC) and an approximately 20 nt long sequence 

corresponding to the 5’-end of the insert. The reverse primer for insert amplification consisted 

of the sequence with reverse complementarity to the vector forward primer 

(5’-CGGCCGCAAGCTTGTCGAC) and an approximately 20 nt long sequence corresponding 

to the reverse complement of the 3’-end of the insert. 

For deletion of a sequence within a gene or the removal of the sequence encoding the 

His-tag and TEV cleavage site, the following procedure was applied. The vector containing 

the insert was linearized via PCR with an appropriate primer pair. The 5’-end of the forward 

primer consisted of about 20 nt and corresponded to the vector/insert sequence directly 5’ to 

the deletion. The 3’-end of the forward primer consisted of about 20 nt and corresponded to 

the vector/insert sequence directly 3’ to the deletion. The reverse primer corresponded to the 

reverse complement of the forward primer. The reaction mixture and PCR protocol are given 

below. 

 

Reaction mixture (linearization) PCR protocol   

- 100 ng vector/template plasmid 98 °C 2 min  

- 0.5 µl Phusion polymerase (2 U/µl) 98 °C 30 s  

- 1 µl forward primer (10 µM) 58 °C 40 s 32 cycles 

- 1 µl reverse primer (10 µM) 72 °C 2 min 30 s  

- 1 µl dNTP (10 µM each) 72 °C 10 min  

- 10 µl HF buffer (5x)    

- H2O (fill to 50 µl)    
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The linearized vector was incubated with 20 U DpnI over night at 37 °C to digest the original 

template. Linearized vector and insert were then purified with the NucleoSpin® Gel and PCR 

Clean-Up kit and subjected to the exonuclease activity of T4 polymerase for 30 min at room 

temperature to generate 5’ overhangs. The reaction was stopped by addition of 1 mM dCTP. 

The reaction mixture is given below. 

 

Reaction mixture (T4 treatment) 

- 500 ng vector/insert 

- 0.4 µl T4 polymerase (3 U/µl) 

- 2 µl NEB2 buffer (10x) 

- 2 µl BSA (10x) 

- H2O (fill to 20 µl) 

 

For annealing, the T4 polymerase treated vector and (if applicable) insert were mixed 

together and incubated for 30 min at room temperature. Afterwards, 15 µl of the mixture was 

transformed into DH5α cells (see 2.2.2). The reaction mixture is given below. 

 

Reaction mixture (annealing) 

- 100 ng vector 

- 200 ng insert (if applicable) 

- 1 µl RecA (20 ng/µl) 

- 2 µl T4 ligation buffer (10x) 

- H2O (fill to 20 µl) 

 

Single colonies were picked and checked via colony PCR. For the pBADM-11 vector the 

primers 5’-GACGCTTTTTATCGCAACTCTC-3’ (forward) and 

5’-CTCATCCGCCAAAACAGCCAAG-3’ (reverse) were used. For the pETM-11 vector T7 

promoter (5’-TAATACGACTCACTATAGGG-3’) and T7 terminator 

(5’-GCTAGTTATTGCTCAGCGG-3’) primers were used. The reaction mixture and PCR 

protocol are given below. 
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Reaction mixture (Colony PCR) PCR protocol   

- 0.5 µl Taq polymerase (5 U/µl) 95 °C 2 min  

- 1 µl forward primer (10 µM) 95 °C 20 s  

- 1 µl reverse primer (10 µM) 55 °C 30 s 30 cycles 

- 1 µl dNTP (10 µM each) 72 °C 2 min  

- 2 µl NEB2 buffer (10x) 72 °C 10 min  

- 14.5 µl H2O    

- 1 suspended colony    

 

The size of the amplified PCR product was analyzed via agarose gel electrophoresis. 

Positive single colonies were further grown in 10 ml LB-medium over night at 37 °C and 

200 rpm, supplemented with the appropriate antibiotics. The plasmid DNA was purified from 

the cell culture with the NucleoSpin® Plasmid kit, and the product was checked by 

sequencing (Eurofins Genomics). 

 

2.2.1.2. Site directed mutagenesis 

For introduction of single point mutations site directed mutagenesis was applied [441, 442]. 

Primers with a length of about 30 nt were used with the desired base changes in the center 

but otherwise completely corresponding to the insert sequence. Forward and reverse primers 

were reverse complementary to each other. To avoid the formation of primer dimers, two 

successive rounds of PCR were applied [441]. First, two reactions in separate tubes were 

performed, one with the forward primer, and one with the reverse primer. Then, the PCR 

products were combined and the second reaction was performed. The reaction mixture and 

PCR protocol are given below. 

 

Reaction mixture (forward and reverse primer separately) 

- 100 ng template plasmid 

- 0.5 µl Phusion polymerase (2 U/µl) 

- 1 µl forward/reverse primer (10 µM) 

- 1 µl dNTP (10 µM each) 

- 5 µl HF buffer (5x) 

- H2O (fill to 25 µl) 
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PCR protocol   

98 °C 30 s  

98 °C 10 s 
8 cycles (forward/reverse primer separately) 

25 cycles (combined reaction) 
65 °C 30 s 

72 °C 1 min 30 s 

72 °C 5 min  

 

The PCR product from the combined reaction was treated with 20 U of DpnI over night at 

37 °C to digest the original template. 10 µl of the reaction mixture was transformed into DH5α 

cells. Single colonies were grown in 10 ml LB-medium over night at 37 °C and 200 rpm, 

supplemented with appropriate antibiotics. The plasmid DNA was purified from the cell 

culture with the NucleoSpin® Plasmid kit, and the product was analyzed by sequencing 

(Eurofins Genomics). 

 

2.2.2. Transformation 

Chemically competent cells were stored at -80 °C. For transformation, cells were thawed for 

30 min on ice. 100 ng of plasmid DNA was added and incubated for 30 min on ice. 

Afterwards, cells were subjected to 42 °C for 90 s. Then, 300 µl of LB-medium was added 

and the cells were shaken at 500 rpm at 37 °C for 1h. 150 µl of the cell suspension was 

plated on a LB-Agar plate with the appropriate antibiotics. The plate was incubated over night 

at 37 °C and stored at 4 °C afterwards. 

For co-expression studies, two plasmids were co-transformed. The steps were similar as 

described above, but after thawing of the cells 100 ng of each plasmid DNA was added. 

Also, 250 µl of the cell suspension was plated on a LB-Agar plate with the appropriate 

antibiotics. 

 

2.2.3. Gel electrophoresis 

2.2.3.1. Agarose gel electrophoresis 

Agarose gel electrophoresis was used to check the size of the amplified PCR products. To 

stain the DNA, 3 µl of Midori Green Advance was added per 50 ml of agarose gel solution 

during gel casting. The samples were mixed with 6x agarose gel loading dye in a 5:1 ratio 

and the mixture was loaded on the gel. As size marker GeneRuler™ 1 kb was used. Gel 

electrophoresis was performed for 40 min at 110 V. The DNA fragments were visualized via 

fluorescence of the Midori Green Advance with a Molecular Imager® Gel Doc™ XR system 

(Bio-Rad). 
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2.2.3.2. SDS-PAGE 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins 

by their molecular weight, independent of their amino acid sequence [443]. The proteins are 

denatured by addition of SDS and heating. The detergent SDS is negatively charged and 

binds to the denatured protein chain. The resulting negative charge of the SDS-protein 

complex correlates with the molecular weight of the protein. The mobility through the gel then 

depends on the size of the protein, smaller proteins move faster than bigger ones. Protein 

samples were mixed with 5x SDS-PAGE loading buffer in a 4:1 ratio and incubated at 95 °C 

for 5 min. The sample mixture was then loaded on the gel. As size marker PageRuler™ 

Prestained was used. Gel electrophoresis was performed for 50 min at 200 V. Gels were 

either stained with Coomassie R250 staining solution and destained with Coomassie R250 

destaining solution, or stained with Coomassie G250 staining solution and destained with 

water. 

 

2.2.3.3. Native PAGE 

Native polyacrylamide gel electrophoresis (Native PAGE) is performed under none 

denaturing conditions and the running behavior of a sample depends on its charge, size, 

conformation and oligomeric state. It can thus be used to detect protein-protein or protein-

nucleic acids interactions. For the analysis of protein-protein interactions 50 pmol of protein 

was used. To determine if an interaction can be observed, the respective proteins were 

mixed together and incubated for 30 min on ice prior to gel electrophoresis. The respective 

single proteins were used as control. To compensate for differences in the buffer conditions, 

equal amounts of buffer from the lacking protein components were added to the respective 

samples. The samples were mixed with 5x Native PAGE loading dye in a 5:1 ratio and 

loaded on the gel. Gel electrophoresis was performed at 4 °C for 90 min at 90 V. As running 

buffer Tris/Glycine buffer, cooled to 4 °C, was used. Gels were stained with Coomassie G250 

staining solution and destained with water. Pictures of the gels were taken with a cell phone 

camera. 

 

2.2.4. Chromatography 

2.2.4.1. Immobilized metal affinity chromatography 

Immobilized metal affinity chromatography (IMAC) exploits the affinity of histidine side chains 

for divalent cations like Ni2+ or Co2+ [444, 445]. To separate the proteins of interest from other 

host proteins during purification, the desired proteins were expressed with an N-terminal 

hexa-histidine tag (His-tag). These proteins were then immobilized on a solid phase via the 

His-tag. As solid phase either Ni-TED, or Ni-IDA was used. Ni-TED consists of silica beads 

with tris-carboxymethyl ethylene diamine (TED) attached. TED is a chelator of Ni2+ ions, 
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occupying five of the six available ligand binding sites [446]. Ni-IDA consists of silica beads 

with iminodiacetic acid (IDA) attached. IDA is also a chelator of Ni2+ ions, yet occupying only 

three of the six available ligand binding sites [446]. Therefore, Ni-IDA has a higher binding 

capacity than Ni-TED, whereas the latter has a higher specificity. The histidine sidechains of 

the His-tag occupy the remaining ligand binding sites of the Ni2+ ion and the His-tagged 

protein is thereby adsorbed to the solid phase. The host proteins remain in the flow through 

and can thereby be separated from the target protein. The bound proteins were then eluted 

with a buffer containing high imidazole concentrations, competing with the His-tag for the Ni2+ 

binding sites. 

 

2.2.4.2. Size exclusion chromatography 

Size exclusion chromatography (SEC), also referred to as gel filtration, separates particles by 

their hydrodynamic radius [447, 448]. As a particle solution passes through a porous column 

material, particles with a smaller hydrodynamic radius have a higher likelihood of entering 

porous channels, hence they have to pass a larger volume than bigger particles. As the 

molecular weight correlates with the hydrodynamic radius, larger proteins usually elute 

earlier than smaller proteins and can thus be separated from each other. As SEC usually 

does not disrupt protein-protein interactions, it can also be used to determine oligomeric 

states or monitor complex formation through the analysis of the elution profile. The protein 

solution was applied to a column packed with a composition of dextran and cross-linked 

agarose under constant flow rate using an FPLC system. The elution profile was monitored 

via the absorption at 280 nm (A280). Depending on the FPLC system used, absorption at 

260 nm (A260) was monitored as well. The eluate was collected in fixed sized fractions. 

 

2.2.4.3. Ion exchange chromatography 

Ion exchange chromatography (IEX) separates molecules by their surface charge [449]. A 

highly charged stationary phase is used and proteins with an opposite net charge bind to the 

stationary phase. Depending on the charge of the stationary phase, anion exchange 

(positively charged) (AIEX) and cation exchange (negatively charged) chromatography can 

be distinguished. According to the net surface charge, the binding affinity varies between 

different proteins. The bound proteins can then be eluted by increasing amounts of counter 

ions. More weakly bound proteins elute at lower counter ion concentrations and can thus be 

separated from tighter bound proteins. Anion exchange chromatography was applied using a 

FPLC system. The charged group of the column material was a quaternary ammonium 

cation. To elute the bound proteins, a linear gradient of an increasing NaCl concentration 

was used. The elution profile was monitored via the A280 and, if applicable, A260. The 

eluate was collected in fixed sized fractions. 
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2.2.5. Standard expression procedure 

After transformation, a single colony was picked from the LB-Agar plate and transferred to 

200 ml of LB-medium supplemented with the appropriate antibiotics. This pre-culture was 

incubated over night at 37 °C and 200 rpm. The LB-medium main culture was supplemented 

with the appropriate antibiotics and inoculated with 10 ml pre-culture per 1 l main culture. The 

following steps are similar for all bacterial strains, except ArcticExpress (DE3) RIL. Therefore 

expression in ArcticExpress (DE3) RIL and in other bacterial strains will be described 

separately. Overexpression was monitored by taking samples from the culture at different 

time points before and after induction. The optical density at 600 nm (OD600) of the samples 

was measured and the cells were pelleted by centrifugation at 25000 x g for 1 min. The 

supernatant was discarded and the concentration was normalized to 1 OD600/ml by 

resuspending the pellet in an appropriate amount of water. The samples were then checked 

via SDS-PAGE. 

 

2.2.5.1. ArcticExpress (DE3) RIL 

The inoculated main culture was incubated at 30 °C and 200 rpm. Culture growth was 

monitored by measuring OD600. At an OD600 of 0.8 the main culture was cooled to 11 °C and 

the expression of the cold-adapted chaperonins Cpn10 and Cpn60 were induced with 

0.5 mM IPTG. Depending on the expression vector(s) used, the main culture was additionally 

induced with 0.03 % (w/v) Arabinose. Expression was performed at 11 °C at 200 rpm for 

24 h. 

 

2.2.5.2. All other bacterial expression strains 

The inoculated main culture was incubated at 37 °C and 200 rpm. Culture growth was 

monitored by measuring OD600. At an OD600 of 0.6 the main culture was cooled to 15 °C and 

induced with 0.5 mM IPTG and/or 0.03 % (w/v) Arabinose, according to the expression 

vector(s) used. Expression was performed at 15 °C at 200 rpm for 21 h. 

 

2.2.6. Standard purification procedure 

In most of the cases the following procedure was applied for protein purification. Deviations 

from this procedure are explicitly mentioned in the respective sections. For the standard 

purification a two-step purification protocol was applied. The first step was IMAC, followed by 

SEC. All steps were performed at 4 °C with buffers cooled to 4 °C. The buffers used for the 

standard purification procedure are listed in section 2.1.7. 

After expression, the bacteria were harvested by centrifugation at 6056 x g for 12 min at 

4 °C. The supernatant was decanted and discarded. The obtained cell pellet was either 

stored at -80 °C or directly subjected to further purification steps. 
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The cell pellet was resuspended in about 5 ml lysis buffer per 1 g of cell pellet. The 

suspension was supplemented with 4 U/ml of DNase I. Cells were lysed by two rounds with a 

Microfluidizer® (Microfluidics). The lysate was centrifuged at 33768 x g for 1 h at 4 °C. The 

supernatant was decanted and supplemented with a spatula tip of PMSF. About 2-3 g 

Ni-TED beads were added to ~300-500 ml of supernatant and the mixture was incubated for 

1.5 h on a magnetic stirrer at 150 rpm. The supernatant was removed and the beads were 

washed 2-3 times with lysis buffer. The beads were then transferred to a gravity flow glass 

chromatography column. After washing with 1 column volume of lysis buffer, the His-tagged 

protein was eluted with elution buffer. 10 ml elution fractions were collected and inspected 

via SDS-PAGE. Elution fractions containing the desired protein(s) were pooled and 

concentrated to 5 ml using a centrifugal filter unit and subjected to SEC, usually using a 

HiLoad 16/600 Superdex 200 pg column. Elution fractions of 2 ml were collected and 

inspected via SDS-PAGE. Fractions containing the desired protein(s) were pooled and 

concentrated using a centrifugal filter unit. The resulting protein solution was flash frozen in 

liquid nitrogen and stored at -80 °C. 

 

2.2.7. Thermofluor 

Thermofluor is a fluorescence-based thermal shift assay, which monitors the unfolding of a 

protein with increasing temperature. It can be used to screen for buffer conditions that 

stabilize a protein of interest, by comparing the shift of the melting temperature utilizing 

different conditions [450, 451]. The method makes use of a dye with a low fluorescence 

quantum yield in aqueous solution, but increased fluorescence in a hydrophobic environment 

and can therefore be used to analyze the stability of soluble proteins. By increasing the 

temperature, a protein begins to unfold leading to an exposure of its hydrophobic amino 

acids. These hydrophobic amino acids interact with the dye, resulting in an increase in 

fluorescence [450]. The Thermofluor assay was performed in a 96 well PCR plate (Greiner 

Bio-One) with SYPRO orange as fluorescence dye. In each well 1 µl protein at a 

concentration of 5-12.5 mg/ml was mixed with 23 µl of a certain buffer condition and 1 µl of 

5x SYPRO orange. The temperature of these mixtures was increased step-wise by 1 °C in a 

RT-PCR cycler, starting at 25 °C and ending at 95 °C. At every temperature step the 

fluorescence for each well was monitored. The fluorescence was plotted against the 

temperature, usually resulting in a curve with a steep increase reaching a maximum. The 

inflection point of this increase defined the melting temperature. For direct comparison of 

different buffer conditions the curves were normalized. 
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2.2.8. ATPase assay 

For the biochemical characterization of XPB, its ATPase activity was investigated utilizing a 

coupled enzyme assay. The ATPase activity of an enzyme results in the conversion of ATP 

to ADP. ADP forms the cofactor for pyruvate kinase, which then converts 

phosphoenolpyruvate to pyruvate. Pyruvate in turn is the substrate of lactate dehydrogenase, 

catalyzing the reaction to lactate, thereby converting the cofactor NADH to NAD+. 

Accordingly, the decrease of the NADH concentration is correlated to the hydrolysis of ATP. 

As NADH absorbs at 340 nm, the ATPase activity can be determined by monitoring the 

decrease in absorption at that wavelength. 

ATPase assays were performed at 37 °C in a microplate reader. All components of the 

reaction mixture except ATP were pre-incubated at 37 °C until a stable baseline was 

reached. The reaction was then started by the addition of ATP. The composition of the 

reaction mixture is given below. To test the influence of DNA on the ATPase activity, 2 µM of 

different DNA substrates were used in the assay. 

 

Reaction mixture 

- 0.25-1 µM protein 

- 2 U pyruvate kinase/lactate dehydrogenase 

- 2 mM phosphoenolpyruvate 

- 0.3 mM NADH 

- 2 mM ATP 

- 20 mM Tris-HCl pH 8.0 

- 10 mM KCl 

- 1 mM MgCl2 

- 1 mM TCEP 

- 2 µM DNA (if applicable) 

 

2.2.9. X-ray crystallography 

X-ray crystallography is a technique to determine the three dimensional structure of 

molecules at atomic resolution. It is in principle suitable for molecules of any size and can 

therefore be used to investigate proteins. A prerequisite is the crystallization of the respective 

proteins. Single protein crystals are then exposed to x-rays, giving rise to a protein diffraction 

pattern. The diffraction pattern is recorded with a detector and processed afterwards. X-ray 

crystallography yields an electron density map, which represents the distribution of electrons 

within a protein crystal. This electron density map is interpreted by fitting amino acids into it 

according to their shape, resulting in a structure model. This model is then iteratively 

improved and refined. 
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2.2.9.1. Protein crystallization 

In order to investigate proteins via x-ray crystallography, they have to be crystallized first. To 

retain the native conformation of the protein, it has to be crystallized in its aqueous 

environment. The vapor diffusion method was applied for crystallization [452, 453]. A protein 

solution was usually mixed in a 1:1 ratio with a precipitant solution (protein drop). This 

mixture was equilibrated against an excess of the same precipitant solution (reservoir). The 

process of vapor diffusion requires that the equilibration process takes place in a closed 

system and therefore each individual set-up was sealed. As the precipitant was diluted in the 

protein drop compared to the reservoir, vapor diffusion of water from the protein solution to 

the reservoir takes place, until an equilibrium is reached. Thus, water is removed from the 

protein drop, increasing the concentration of protein and precipitant, resulting in a metastable 

solution. Eventually, the protein forms nuclei, resulting in crystal formation [452-456]. This 

process is depicted in Figure 2-1. 

 

 
Figure 2-1. Phase diagram of a protein/precipitant solution. The process of crystal formation 
during a vapor diffusion experiment is indicated by dashed arrows. Upon vapor diffusion of water from 
the protein drop to the reservoir, the protein and precipitant concentration increases, eventually 
reaching the zone of spontaneous nucleation (1). Nucleation leads to the decrease of the protein 
concentration, shifting into the growth zone, resulting in the formation of crystals from the nuclei (2). 

 

All solutions used for crystallization were filtered through 0.2 µm filters and crystallization was 

generally performed in two ways. The initial screening for suitable crystallization conditions 
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was performed via sitting drop vapor diffusion in 96 well plates with the Honeybee 961/963 

crystallization robot using commercial crystallization screens (Table 2-8). Here, 0.3 µl of 

protein solution was mixed with 0.3 µl of precipitant solution and equilibrated against 40 µl of 

the precipitant solution. Conditions leading to crystals were then fine screened by variation of 

different parameters, like the pH value, precipitant concentration, drop size, temperature, or 

supplement of additives. On the one hand this optimization process was performed in 96 well 

plates with the crystallization robot. In this case, custom crystallization screens were 

prepared with the LISSY 2002 liquid handling system. On the other hand manual 

crystallization was performed utilizing the hanging drop vapor diffusion method in 24 well 

plates. Here, 1 µl of protein solution was mixed with 1 µl of precipitant solution and 

equilibrated against 1 ml of the precipitant solution. The protein drop was pipetted on a cover 

slide, which inverted, thus facing the well containing the reservoir. The well was sealed by 

applying silicone paste. Crystallization plates were usually kept at 20 °C. 

To improve crystal growth and quality, additive screens in the 96 well format were pursued 

(Table 2-9). One promising prior crystallization condition was chosen and 45 µl of the 

corresponding reservoir solution was applied to each reservoir of the 96 well plate. Next, 5 µl 

of a 10x additive stock solution was added to each reservoir and mixed. 0.3 µl from this 

mixture were transferred to the sitting shelf and subsequently supplemented with 0.3 µl of the 

protein solution. 

In order to control and improve nucleation of crystals, seeding was applied. Seeding 

circumvents the necessity of reaching the zone of spontaneous nucleation (Figure 2-1), 

thereby enabling to shift the crystallization process into the more favorable growth zone [453, 

457]. This approach might then result in fewer and larger crystals. In this work, microseeding 

was applied. Crystals obtained from initial crystallization trials were transferred to ~1 µl of the 

reservoir solution, crushed by vortexing and sonication, and diluted with reservoir solution 

according to the amount of seeds in the solution. 1 µl of this solution was added to 40 µl of 

the protein solution directly prior to crystallization. 

Crystals were harvested with cryo loops (CryoLoop™, Hampton Research) and transferred 

to a cryo protectant solution corresponding to the reservoir composition, usually 

supplemented with 25 % (v/v) glycerol. Crystals were flash frozen in liquid nitrogen and 

exposed to synchrotron radiation at the ESRF (Grenoble, France), PETRAIII (Hamburg, 

Germany) or BESSYII (Berlin, Germany) for data acquisition. 

 

2.2.9.2. Diffraction, phase problem and SAD phasing 

Exposure of a protein crystal with x-rays yields a characteristic diffraction pattern. Each 

diffraction spot can be assigned to a triplet of integer values (hkl). These indices correspond 

to a specific family of imaginary parallel planes within the crystal lattice, at which the x-rays 
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have been reflected [452]. The diffraction experiment yields an intensity I(hkl) for every 

recorded reflection. 

The electron density at a point xyz within the unit cell of a crystal can be calculated via the 

following equation: 

 

 
𝜌(𝑥𝑦𝑧) =

1

𝑉
∑𝐹(ℎ𝑘𝑙)𝑒−2𝜋𝑖(ℎ𝑥+𝑘𝑦+𝑙𝑧)

ℎ𝑘𝑙

 (1) 

 

V denotes the unit cell volume, F(hkl) is the structure factor of reflection hkl. By plotting 

ρ(xyz) against x, y, and z, an electron density map is obtained. The structure factor F(hkl) is 

a complex number and can be represented in the plane of complex numbers (Figure 2-2). 

 

 
Figure 2-2. Structure factor representation in the plane of complex numbers. A structure factor 
F(hkl) is a complex number and can be represented as a vector in the plane of complex numbers. The 
real and imaginary parts correspond to the projections on the axes as indicated. The amplitude |F| of 
the structure factor corresponds to the length of the vector, the phase θ to the angle with the real axis. 
i: imaginary axis; re: real axis. 

 

Thereafter, F(hkl) consists of an amplitude |F| and a phase angle θ. The measured intensity 

I(hkl) relates to F(hkl) via the complex conjugate: 

 

 𝐼(ℎ𝑘𝑙) = 𝐹𝐹∗(ℎ𝑘𝑙) (2) 

 

F* is the complex conjugate of F. From equation (2) follows that |F| is proportional to the 

square root of I. Thus, |F| can be retrieved from the diffraction experiment. However, for 

imag

real

|F|

θ
re

i
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solving equation (1) the phase angle θ from F(hkl) is also needed. This information cannot be 

retrieved and is lost during the diffraction experiment. This constitutes the phase problem in 

x-ray crystallography [453, 458]. 

Different methods exist to obtain the missing phase information. One such method is single 

wavelength anomalous diffraction (SAD) [459]. As this method is of relevance for this thesis, 

it will be briefly discussed. 

SAD phasing is an experimental approach for de novo phase determination. The popularity 

of this method has increased more and more over the last 20 years, and nowadays it is the 

most commonly used experimental phasing approach [460]. SAD is based on the fact that 

atoms are capable of absorbing photons at certain energy levels. If an atom is exposed to 

x-rays with an energy at, or slightly above, such an absorption edge, the scattering obtains a 

certain anomalous contribution. The amount of this contribution increases with the weight of 

the anomalous scattering atom. The anomalous scattering consists of a real component f’ 

and an imaginary component f’’ [452, 453, 456]. These scattering contributions are shown 

exemplarily for selenium in Figure 2-3. 

 

 
Figure 2-3. Anomalous scattering of selenium. The components f’ and f’’ of the anomalous 
scattering of selenium are plotted against the x-ray energy. The peak of f’’ at around 12.66 keV 
corresponds to the K-edge of selenium and constitutes a suitable energy for SAD data collection with 
an anomalous contribution f’’ of about 4 e

-
. The plot was generated with data from [461]. 

 

SAD exploits the fact that the occurrence of anomalous scattering leads to the breakdown of 

Friedel’s law. This breakdown is caused by f’’. As f’’ is an imaginary part, it is delayed 

compared to the real scattering part. This delay can be visualized in the complex plane by a 

counterclockwise rotation by 90°. This is depicted in Figure 2-4, demonstrating how this 

results in different amplitudes for the Friedel pairs [453, 458]. 
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Figure 2-4. Breakdown of Friedel’s law via anomalous scattering. The imaginary component f’’ of 
the anomalous scattering is delayed relative to the real scattering by a counterclockwise rotation by 
90°. This results in different amplitudes for FPA(+) and FPA(-). Thus, Friedel’s law no longer holds true. 
FP: scattering contribution of the protein without anomalous scatterers; FA: non-anomalous scattering 
of the anomalous scatterer, combined with the real part of the anomalous scattering; FPA: scattering 
from protein and anomalous scatterer; (+) and (-) correspond to Friedel pairs (hkl) and (-h-k-l), 
respectively. 

 

The Friedel pair differences can be used to determine the positions of the anomalous 

scatterers [452, 453]. For this, a Patterson map is calculated with these differences as 

Fourier coefficients: 

 

 
𝑃(𝑢𝑣𝑤) =

1

𝑉
∑||𝐹(ℎ𝑘𝑙)| − |𝐹(ℎ𝑘𝑙̅̅ ̅̅ )||

2
cos(2𝜋(ℎ𝑢 + 𝑘𝑣 + 𝑙𝑤))

ℎ𝑘𝑙

 (3) 

 

V denotes the unit cell volume; u, v, and w are relative unit cell coordinates. From the 

resulting peaks in the Patterson map the positions of the anomalous scatterers can be 

determined. Knowing the positions of these scatterers a Harker construction can be 

performed, yielding two possible solutions for the phase angle θ (Figure 2-5) [453, 458]. 
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Figure 2-5. Harker construction for single wavelength anomalous diffraction (SAD). 
Demonstrated is the construction for the FPA(+) mate. The intersection points of the two circles 
constitute two possible solutions for the phase θ of FPA(+). The labels correspond to Figure 2-4. 

 

To break this phase ambiguity two main steps are applied. First, an initial set of phases is 

derived for the structure factors, taking into account the phases of the anomalous scatterers. 

Second, these initial phases are used as input for density modification approaches. In an 

iterative approach the phases are improved until an interpretable electron density map is 

obtained [462]. 

As already stated, SAD depends on significant anomalous scattering. However, anomalous 

scattering from proteins is usually very weak, as they mainly consist of the light elements C, 

N, and H. S yields significant anomalous scattering, albeit it is still relatively weak. However, 

the corresponding x-ray energy is not as easily accessible as for example for Se. 

Furthermore, it depends on the presence of cysteine or methionine in the protein. To obtain 

strong anomalous scattering, heavy atoms can be introduced into the crystal. In this work, 

cesium was used as anomalous scatterer. The focus was on the efficient introduction of 

cesium into crystals in order to derive a general, easy-to-use strategy to overcome the phase 

problem via SAD. 

 

2.2.10. Electron microscopy 

Electron microscopy (EM) is another technique to obtain structural information and especially 

suited for the structural investigation of large protein complexes. Recent advances in EM, 

particularly the invention of direct electron detectors [463, 464], made it possible to obtain 
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near atomic resolution maps with EM [465, 466]. EM is especially powerful in combination 

with x-ray crystallography. Fitting crystal structures of atomic resolution into near atomic 

resolution EM maps of a protein complex can yield a pseudo-atomic model of this protein 

complex [467, 468]. In this work transmission electron microscopy has been applied. In 

general, a protein sample is deposited on a grid, so that a single layer of particles, well 

separated from each other, is obtained. These particles are then exposed to an electron 

beam. The electrons pass through the sample and are scattered [467]. The scattered 

electrons are focused by electromagnetic lenses and recorded with a detector [467, 469]. 

This results in projection images of the particles on the detector. As the electrons pass 

through a particle on the grid, they can interact with each atom on their path, therefore also 

transmitting information from the interior of the particle [468]. The resulting projection images 

have a very poor signal to noise ratio. However, when a large amount of particle projections 

are recorded, they can be averaged to drastically improve the signal to noise ratio and to 

recover the structural details [467, 469]. For this purpose, the particles are grouped 

according to their orientation on the grid. The members of a group have to be properly 

aligned and will then be averaged. This procedure yields two dimensional class averages. 

The class averages can then be used to reconstruct a three dimensional map [468-470]. 

Two techniques for sample preparation have been pursued, negative stain and vitrification. 

Using vitrified samples is referred to as cryo-electron microscopy. Both approaches will be 

described in the following two sections. 

 

2.2.10.1. Negative stain 

Negative staining is a simple method to image particles and is usually used for screening the 

quality of a sample. A heavy atom salt solution, such as uranyl acetate or ammonium 

molybdate, is applied to the sample on the grid and dried afterwards [471, 472]. The heavy 

atoms strongly interact with the electrons, and therefore the distribution of the heavy atom 

stain is imaged. Since the particles are embedded in the stain, the exclusion volume is 

monitored, yielding a high contrast at the edges of the particle [472]. However, the 

information from the interior of the particle is not recorded. Furthermore, if the particles are 

not fully embedded in the staining solution, parts of the particle are missing in the projection, 

impeding 3D reconstructions [472]. The resolution of negative stain imaging is limited due to 

the grain size of the heavy atom [468, 473]. 

In this study, uranyl acetate was used as stain. All steps were performed at room 

temperature. 3 µl of a protein sample at a concentration of 0.01-0.05 mg/ml was applied to 

the grid, incubated for 30 s, and blotted with filter paper. Subsequently, 20 µl of a 3 % (w/v) 

uranyl acetate solution was applied to the grid, incubated for 30 s, and blotted with filter 
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paper. The grid was then dried at room temperature. Data acquisition was performed at room 

temperature. 

 

2.2.10.2. Cryo-electron microscopy 

To preserve the high resolution information of a sample, cryo-electron microscopy (cryo-EM) 

is applied. In cryo-EM vitrified protein samples are used. The protein sample is applied to a 

grid and flash frozen in liquid ethane [467]. This leads to the formation of amorphous ice, 

keeping the protein in its native, hydrated state [467, 474]. 

Vitrification was performed with a Vitrobot™ at 4 °C and 100 % humidity. 3.5 µl of the sample 

at a concentration of 0.03-0.2 mg/ml was applied to a grid and blotted for 4 s with zero blot 

force. For blotting, two filter papers on each side of the grid were used. The sample was then 

flash frozen in liquid ethane and kept in liquid nitrogen for storage. Data acquisition was 

performed at cryogenic temperature. 
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3. Results 

The aim of this thesis was the structural and functional characterization of TFIIH. This task 

encompassed different levels of complexity. First, the expression and purification of the 

single core subunits were addressed. During this task also shortened constructs were 

designed for structural studies. Hereof, a p62 construct was used for crystallographic studies, 

investigating the usage of cesium as a common element for experimental phasing 

approaches. Enzymatic activities of the XPB subunit were analyzed. Second, dual 

subcomplexes between these TFIIH subunits and shortened constructs were established to 

stabilize these subunits and to elucidate the interaction network within TFIIH. Third, the 

subcomplexes and single subunits were combined to assemble higher order TFIIH core 

complexes for structural studies via EM. The resulting EM maps were fitted with available 

models of the TFIIH subunits. Finally, the TFIIH core was extended by a shortened construct 

of the CAK complex subunit MAT1 and investigated via EM. 

 

3.1. Sequence conservation of TFIIH in Chaetomium 

thermophilum 

In this thesis Chaetomium thermophilum was used as model organism. C. thermophilum is a 

thermophilic eukaryote [475]. Thermophiles usually offer proteins of increased stability 

compared to their mesophilic orthologues, which can be highly beneficial for structural 

studies. Most importantly, C. thermophilum possesses all TFIIH subunits. If not explicitly 

stated otherwise, all TFIIH subunits mentioned here refer to the homologs from C. 

thermophilum. Table 3-1 provides an overview of all subunits and their sequence 

conservation. 
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Table 3-1. Comparison of the TFIIH subunits from Homo sapiens and Chaetomium 
thermophilum. 

 
1) Molecular weight. 
2) Kilo Dalton. 
3) Amino acids. 
4) UniProtKB identifier. 
5) Identity/Similarity to the human homolog. Determined with EMBOSS Needle; Matrix: EBLOSUM62; gap 

penalty: 10.0; extend penalty: 0.5. 

 

3.2. XPB 

3.2.1. Secondary structure prediction and construct design 

Different constructs of XPB were designed in order to improve its expression, purification and 

crystallization propensities, or to test different regions of the protein for interactions with other 

TFIIH subunits. In order to detect presumably disordered regions within XPB, secondary 

structure predictions (Figure 3-1, see also 6.3.1) and sequence alignments with the human 

XPB amino acid sequence were performed (see 6.3.1). Regions within the protein, which are 

predicted as coil or as helix/sheet with low confidence score were assumed to be disordered. 

Furthermore, insertions and not conserved regions according to sequence alignments were 

considered as disordered as well. To improve the stability of the protein, these disordered 

regions were deleted. Different XPB constructs used in this work alongside a secondary 

structure prediction are depicted in Figure 3-1. Further XPB constructs were attempted in the 

course of this thesis, which are given in the appendix (see 6.5, Table 6-2). 

 

Homo sapiens Chaetomium thermophilum

Protein
mol. w.1)

(kDa)2)

length

(aa)3) UNP4) mol. w.

(kDa)

length

(aa)
UNP

Identity5)

(%)

Similarity5)

(%)

XPB 89.3 782 P19447 97.5 867 G0SHF8 44.2 61.9

XPD 86.9 760 P18074 89.7 780 G0RZH0 49.1 67.5

p62 62.0 548 P32780 74.4 677 G0RZ08 19.3 33.7

p52 52.2 462 Q92759 56.8 514 G0S965 33.0 50.5

p44 44.4 395 Q13888 58.0 534 G0RZE6 30.7 42.4

p34 34.4 308 Q13889 43.6 429 G0RXV8 25.1 38.0

p8 8.1 71 Q6ZYL4 8.4 72 G0SDQ1 31.7 53.7

CDK7 39.0 346 P50613 49.1 437 G0SFC6 32.7 49.2

CyclinH 37.6 323 P51946 46.9 425 G0SH78 24.7 36.5

MAT1 35.8 309 P51948 40.8 363 G0SF48 24.8 44.1
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Figure 3-1. XPB constructs and secondary structure prediction. The construct schemes are 
aligned to the secondary structure prediction at the bottom. The domain scheme corresponds to 
Figure 1-1. Secondary structure prediction was performed with I-TASSER. 

 

3.2.2. Expression and Purification 

Different expression strains were tested for overexpression of full-length XPB, and the 

protein amount over time was monitored using SDS-PAGE analysis of crude extract samples 

(Figure 3-2). 

Expression of XPB could be observed in different cell lines, but degradation was observed 

already after a few hours after induction of protein expression as seen for BL21 (DE3) and 

BL21 CodonPlus (DE3) RIL cells (Figure 3-2 a, b). Purifications were attempted from 

ArcticExpress (DE3) RIL, BL21 CodonPlus (DE3) RIL, and Rosetta™ 2 (DE3) according to 

the standard protocol (see 2.2.6). 
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Figure 3-2. Overexpression of XPB in different bacterial expression strains. The amount of XPB 
before and after induction was monitored over time via SDS-PAGE. (a) BL21 (DE3). (b) BL21 
CodonPlus (DE3) RIL. (c) ArcticExpress (DE3) RIL. PC: pre-culture. 

 

Purification from ArcticExpress (DE3) RIL yielded the highest amount of XPB, yet tightly 

bound to a chaperone (Figure 3-3). The purification from BL21 CodonPlus (DE3) RIL 

seemed to be promising, however the yield was very low and the reproducibility of the 

purification was poor (Figure 3-4, Figure 3-7). Purification from Rosetta™ 2 (DE3) led to less 

pure protein compared to BL21 CodonPlus (DE3) RIL, yet the results were reproducible 

(Figure 3-5). Based on these initial results extensive attempts to optimize expression and 

purification from ArcticExpress (DE3) RIL and BL21 CodonPlus (DE3) RIL cells were 

conducted. 
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Figure 3-3. Purification of XPB from ArcticExpress (DE3) RIL cells. (a) SDS-PAGE analysis of 
IMAC samples. L: lysate; FT: flow through; W: wash. (b) SEC elution profile from a Superdex 200 
10/300 GL column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to 
peaks in (b). *: chaperonin. 

 

 
Figure 3-4. Purification of XPB from BL21 CodonPlus (DE3) RIL cells. (a) SDS-PAGE analysis of 
IMAC samples. L: lysate; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 26/60 
Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers 
correspond to peaks in (b). *: chaperonin. 
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Figure 3-5. Purification of XPB from Rosetta™ 2 (DE3) cells. (a) SDS-PAGE analysis of IMAC 
samples. P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 
200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to 
peaks in (b). *: chaperonin. 

 

In order to separate the chaperone from the high amounts of XPB expressed by 

ArcticExpress (DE3) RIL cells different approaches were applied, like IEX, addition of ATP, 

or purification under denaturing conditions. All approaches failed so far. The result from AIEX 

is exemplarily shown in Figure 3-6. Here, the XPB sample was diluted with dilution buffer to a 

final NaCl concentration of 0.1 M and loaded on the column. Bound proteins were eluted via 

a linear increasing ratio of high salt to low salt buffer (0-100 % over 20 column volumes). 

Buffer compositions are given below. 

 

Dilution buffer 

- 20 mM Tris-HCl pH 7.5 
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- 20 mM Tris-HCl pH 7.5 - 20 mM Tris-HCl pH 7.5 
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Figure 3-6. Anion exchange chromatography of XPB bound to a chaperone. (a) AIEX elution 
profile from a Mono Q 10/100 GL column. B: percentage ratio of high salt to low salt buffer. (b) SDS-
PAGE analysis of elution fractions from AIEX. The number corresponds to the peak in (a). 
*: chaperonin. 

 

Even though the results seemed to be promising initially, optimization of the purification from 

BL21 CodonPlus (DE3) RIL cells failed and was poorly reproducible. Figure 3-7 shows an 

example of such a purification where XPB was purified in the presence of a Pipes buffer 

system. The composition of all buffers is given below. 

 

Lysis buffer Elution buffer 

- 20 mM Pipes-NaOH pH 7.5 - 20 mM Pipes-NaOH pH 7.5 

- 0.3 M NaCl - 0.3 M NaCl 

- 10 mM MgCl2 - 10 mM MgCl2 

- 5 mM Imidazole - 0.25 M Imidazole 

 

Gel filtration buffer 

- 20 mM Pipes-NaOH pH 7.5 
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Figure 3-7. Purification of XPB from BL21 CodonPlus (DE3) RIL cells with a Pipes buffer 
system. (a) SDS-PAGE analysis of IMAC samples. L: lysate; FT: flow through; W: wash. (b) SEC 
elution profile from a Superdex 200 10/300 GL column. (c) SDS-PAGE analysis of elution fractions 
from the SEC. Numbers correspond to peaks in (b). *: chaperonin. 

 

From the observations made during the expression and purification attempts of full-length 

XPB, a new purification strategy was derived, implementing three major considerations: 

 

1. During expression, degradation of XPB is already observed after a few hours. 

2. The usage of Rosetta™ 2 (DE3) cells yields protein separated from the chaperonin in a 

reproducible manner. 

3. A codon optimization of the XPB gene might increase the expression levels. 

 

According to the assumptions stated above, Rosetta™ 2 (DE3) cells were used in future 

attempts, but the expression time was reduced from 21 h to 15 h. The cell pellet was freshly 

utilized for purification, without prior freezing, and all purification steps were performed within 

one day. Additionally, the XPB construct was codon optimized to make it more suitable for 

the bacterial expression system. 

 

The optimized gene was ordered at ATG:biosynthetics. Different parameters were 

considered, like codon usage, GC-content, and secondary structure at the RNA level. The 

optimized gene was delivered in a pGH vector. The gene was then cloned into a pBADM-11 

vector for further usage. An alignment between the wild-type and optimized cDNA sequence 

is given in the appendix (see 6.4). 
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The above described strategy yielded pure XPB in a reproducible manner, using the 

standard buffer system (Figure 3-8). 

 

 
Figure 3-8. Purification of XPB after the revised strategy with the standard buffer system. (a) 
SEC elution profile from a HiLoad 16/600 Superdex 200 pg column. (b) SDS-PAGE analysis of elution 
fractions from the SEC. Numbers correspond to peaks in (a). *: chaperonin. 

 

 
Figure 3-9. Thermofluor analysis of XPB using the Thermofluor standard screen. (a) Comparison 
of acidic buffers to the reference buffer (Tris-HCl pH 7.5). (b) Comparison of basic buffers to the 
reference buffer. 

 

A Thermofluor assay was performed with the protein obtained after completion of the revised 

purification strategy. The standard Thermofluor screen was used and the results are depicted 

in Figure 3-9. The reference buffer (100 mM Tris-HCl pH 7.5) displayed a typical unfolding 
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curve, indicating proper folding of the protein and a melting temperature of ~37 °C. Acidic 

buffer conditions were not suitable, as no typical unfolding curves could be observed (Figure 

3-9 a). Basic buffer conditions however mostly led to proper unfolding curves, with some 

buffers shifting the melting temperature to higher temperatures. The most pronounced shift of 

approximately 6 K to higher melting temperature could be observed with a K/Na phosphate 

pH 7.5 buffer (Figure 3-9 b). 

 

As K/Na phosphate buffer at pH 7.5 led to a distinct shift to higher melting temperature, 

purification with a K/Na phosphate buffer system following the revised strategy was 

attempted. The results were comparable to the purification with the standard buffer system 

and are depicted in Figure 3-10. From the SDS-PAGE it appeared that impurities and 

degradation were reduced. However, this might also be due to the lower protein amounts in 

the gel and the weaker staining. The K/Na phosphate buffer was prepared by mixing 2 M 

KH2PO4 with 2 M Na2HPO4 in an approximately 1:4 ratio, so that pH 7.5 was reached. The 

buffer compositions are given below. 

 

Lysis buffer Elution buffer 

- 20 mM K/Na phosphate pH 7.5 - 20 mM K/Na phosphate pH 7.5 

- 0.3 M NaCl - 0.3 M NaCl 

- 5 mM Imidazole - 0.25 M Imidazole 

 

Gel filtration buffer 

- 20 mM K/Na phosphate pH 7.5 

- 0.25 M NaCl 

 

 
Figure 3-10. Purification of XPB following the revised strategy with a phosphate buffer system. 
(a) SEC elution profile from a HiLoad 16/600 Superdex 200 pg column. (b) SDS-PAGE analysis of 
elution fractions from the SEC. Numbers correspond to peaks in (a). *: chaperonin. 
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3.2.3. ATPase assays 

The ATPase activity of XPB was tested via a coupled enzyme assay (see 2.2.8). These 

assays were performed by Gudrun Sander and Jochen Kuper. Different XPB concentrations 

(0.25, 0.5, and 1 µM) were tested for ATPase activity in dependence of different DNA 

substrates and the presence of p52/p8. Here, single stranded DNA (ssDNA), double 

stranded DNA (dsDNA), and dsDNA with a 3’ overhang (3’OH) were tested. The sequences 

of the DNA substrates are given in Table 3-2. The results for the ATPase activity with 

increasing XPB concentrations are depicted in Figure 3-11 a. In the presence of ssDNA 

alone no ATPase could be observed. In contrast, dsDNA supported induction of ATPase 

activity. Using a 3’OH DNA substrate led to an even more pronounced activation of XPBs 

ATPase activity, well in line with the notion that XPB possesses a 3’->5’ directionality [9]. 

Remarkably, addition of p52/p8 (added in equimolar ratio) also stimulated ATPase activity, 

even in the absence of DNA. This behavior has also been reported before [15, 186]. When 

adding p52/p8 in addition to dsDNA, the strongest activation of the ATPase activity was 

observed. 

 

Table 3-2. Sequences of the DNA substrates used for the ATPase assays of XPB. 

 
 

 
Figure 3-11. ATPase activity of XPB. (a) ATPase activity in dependence of different DNA substrates 
and p52/p8. (b) Inhibitory effect of Triptolide on the ATPase activity of XPB. ssDNA: single stranded 
DNA; dsDNA: double stranded DNA; 3’OH: 3’ overhang. The data was provided by courtesy of Jochen 
Kuper. 

 

 

Substrate Sequence

ssDNA 5‘-GCTACCATGCCTGCACGAATTAAGCAATTCGTAATCATGGTCATAGC-3‘

dsDNA
5‘-GCTACCATGCCTGCACGAATTAAGCAATTCGTAATCATGGTCATAGC-3‘

3‘-CGATGGTACGGACGTGCTTAATTCGTTAAGCATTAGTACCAGTATCG-5‘

3‘OH
5‘-AAGCAATTCGTAATCATGGTCATAGC-3‘

3‘-GATGTCAAGCAGTCCTAAGGTTCGTTAAGCATTAGTACCAGTATCG-5‘

a b
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Triptolide is a known natural inhibitor of ATPase activity of human XPB [298]. It covalently 

attaches to cysteine residue C342 in human XPB, which is located near the first helicase 

motif [476]. According to sequence alignments (see 6.3.1), C342 is conserved in C. 

thermophilum XPB and corresponds to C388. Therefore, the effect of triptolide on the 

ATPase activity of XPB from C. thermophilum was investigated, and the results are depicted 

in Figure 3-11 b. Here, 1 µM of XPB were used, and the effects of increasing amounts of 

triptolide were monitored. The ATPase activity in the presence of dsDNA, p52/p8, or both 

was tested. In all cases, addition of triptolide strongly inhibited the ATPase activity. These 

findings underlined the validity and usefulness of the C. thermophilum model system. 

 

3.2.4. XPB_116-768 

Based on sequence alignments and secondary structure predictions (Figure 3-1, see also 

6.3.1) numerous expression constructs of XPB were engineered, in order to improve its 

protein expression and purification behavior. Several constructs did not lead to an 

improvement compared to full-length XPB, and only the results for the XPB_116-768 

construct are exemplarily described here. Further constructs are listed in Table 6-2 (see 6.5). 

Secondary structure predictions suggested extensive disorder for roughly the first 120 amino 

acids and the last 110 amino acids of the full-length protein (see 6.3.1, Figure 6-1 a, b). 

Accordingly, these regions were predicted to be predominantly unstructured (Figure 3-1, see 

also 6.3.1). Sequence alignments with human XPB (see 6.3.1) furthermore indicated 

extensions and insertions at the N- and C-terminus. Hence, the construct XPB_116-768 was 

designed, lacking the first 115 and the last 99 amino acids (Figure 3-1). XPB_116-768 was 

expressed in ArcticExpress (DE3) RIL cells and purified according to the standard protocol. 

Similar to the full-length protein, the construct was bound by a chaperonin and aggregated 

during the SEC (Figure 3-12). 
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Figure 3-12. Purification of XPB_116-768 from ArcticExpress (DE3) RIL cells. (a) SDS-PAGE 
analysis of IMAC samples. FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 
Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers 
correspond to peaks in (b). *: chaperonin. 

 

3.2.5. XPB_1-345 

To investigate the N-terminal extension of XPB, a construct consisting of the N-terminus, as 

well as the so called DRD domain was designed (Figure 3-1). The crystal structure of an 

archaeal XPB [14] suggests that the N-terminal extension, including the DRD domain, 

encompasses roughly the first 300 amino acids of human XPB. According to sequence 

alignments (see 6.3.1) this range corresponds to the first 345 amino acids of XPB from C. 

thermophilum and therefore the construct XPB_1-345 was cloned, expressed, and purified. 

Purification from BL21 CodonPlus (DE3) RIL cells with the standard buffer system is 

depicted in Figure 3-13. As apparent from the SEC elution profile, XPB_1-345 eluted as two 

distinct species (Figure 3-13 b). Fractions from both peaks were pooled and concentrated 

separately. Both protein pools were subjected to crystallization trials. The protein pool from 

the peak at higher elution volume was used for interaction studies. Crystallization trials were 

conducted at 7.8 mg/ml and 9.8 mg/ml utilizing the crystallization robot (see 2.2.9.1) and the 

commercial crystallization screens (see 2.1.8, Table 2-8) yielding no crystals. 
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Figure 3-13. Purification of XPB_1-345 from BL21 CodonPlus (DE3) RIL cells. (a) SDS-PAGE 
analysis of IMAC samples. P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 
16/600 Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers 
correspond to peaks in (b). 

 

3.2.6. XPB_1-345_F143S 

To investigate the disease related mutation F99S in human XPB (see 1.6.4, Figure 1-5) [22, 

389], this missense mutation was introduced into the XPB_1-345 fragment. According to 

sequence alignments (see 6.3.1), residue F99 corresponds to F143 in XPB from C. 

thermophilum. XPB_1-345_F143S was generated via site directed mutagenesis, and the 

purification from BL21 CodonPlus (DE3) RIL cells with the standard buffer system is shown 

in Figure 3-14. Compared to XPB_1-345, the protein yield and purity was reduced for the 

mutant construct. 
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Figure 3-14. Purification of XPB_1-345_F143S from BL21 CodonPlus (DE3) RIL cells. (a) SDS-
PAGE analysis of IMAC samples. P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a 
HiLoad 16/600 Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. 
Numbers correspond to peaks in (b). 

 

3.2.7. XPB_116-345 

As seen from secondary structure prediction (Figure 3-1, see also 6.3.1) and described for 

construct XPB_116-768 (see 3.2.4), roughly the first 120 amino acids of XPB are predicted to 

be disordered. Therefore, a construct based on XPB_1-345, but without the first 115 amino 

acids was designed. Accordingly, construct XPB_116-345 was cloned (Figure 3-1). 

Expression and purification from BL21 CodonPlus (DE3) RIL cells with the standard buffer 

system was attempted, and the result after IMAC purification is shown in Figure 3-15. As the 

protein was insoluble and remained in the pellet fraction, purification was not continued. 

 

 
Figure 3-15. SDS-PAGE analysis of IMAC samples of XPB_116-345 purified from BL21 
CodonPlus (DE3) RIL cells. P: pellet; FT: flow through; W: wash. 
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3.2.8. XPB_541-E 

Hilario et al. reported the crystallization of a human XPB construct, encompassing the 

complete C-terminal half [62]. This construct starts at residue 494 and contains HD2, the 

ThM motif, and the C-terminal extension. In order to obtain a soluble construct of the 

C-terminal half for further studies, the corresponding construct for C. thermophilum was 

cloned. According to sequence alignments (see 6.3.1), residue 494 from human XPB 

corresponds to residue 541 in C. thermophilum. Thus, construct XPB_541-E was cloned, 

starting at residue 541 and ending at the very C-terminus with residue 867 (Figure 3-1). The 

purification utilizing ArcticExpress (DE3) RIL cells with the standard buffer system is shown 

in Figure 3-16. Besides eluting between 80 and 90 ml, which is the elution volume expected 

for this fragment if it is a monomer, a significant amount of XPB_541-E eluted also after 

120 ml (Figure 3-16 b). Fractions from both species were pooled and concentrated 

separately. The protein pool from elution fractions between 80 and 90 ml was used for further 

studies. The late elution after 120 ml was quite unusual and might indicate partial unfolding 

of the protein and/or sticking to the column. This fraction was therefore not analyzed further. 

 

 
Figure 3-16. Purification of XPB_541-E from ArcticExpress (DE3) RIL cells. (a) SDS-PAGE 
analysis of IMAC samples. FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 
Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers 
correspond to peaks in (b). 

 

a

c

b

2

1

4

- XPB

F
T

W Elution fractions

3

- XPB

21 43

0

225

450

0 20 40 60 80 100 120 140

A
2

8
0

 [
m

A
U

]

Elution volume [ml]



3. Results XPD 

76 

3.3. XPD 

The XPD sequence used in this work differs from the sequence given in the UniProtKB 

reference G0RZH0, as in the latter one exon seems to be missing. An alignment between the 

sequence used in this work and the sequence from the UniProtKB entry is given in Figure 

3-17 to illustrate this difference. 

 

ct     1 MEFMIDDLPVLFPYPRIYPEQYAYMCDLKKTLDAGGNCVLEMPSGTGKTITLLSLIVAYQQHYAEHRKLIYCSRT   75 

UNP    1 MEFMID-----------------YMCDLKKTLDAGGNCVLEMPSGTGKTITLLSLIVAYQQHYAEHRKLIYCSRT   58 

 

ct    76 MSEIEKALVELKALMKFRAERLGYVEEFRGLGLTSRKNLCLHPSVKREKSGTIVDARCRSLTAGFVKEKKQRGED  150 

UNP   59 MSEIEKALVELKALMKFRAERLGYVEEFRGLGLTSRKNLCLHPSVKREKSGTIVDARCRSLTAGFVKEKKQRGED  133 

 

ct   151 VDVCIYHDNLDLLEPHNLIPNGIWTLDNLLKYGEEHKQCPYFTARRMLQYCNVVIYSYHYLLDPKIAERVSRDLS  225 

UNP  134 VDVCIYHDNLDLLEPHNLIPNGIWTLDNLLKYGEEHKQCPYFTARRMLQYCNVVIYSYHYLLDPKIAERVSRDLS  208 

 

ct   226 SDSIVVFDEAHNIDNVCIEALSTDITEESLRRATRGAQNLENRINEMKETDQQKLQDEYEKLVEGLRGNDDGTRE  300 

UNP  209 SDSIVVFDEAHNIDNVCIEALSTDITEESLRRATRGAQNLENRINEMKETDQQKLQDEYEKLVEGLRGNDDGTRE  283 

 

ct   301 DSFMTSPVLPQDLLKEAVPGNIRRAEHFVAFLRRFIEYLKTRMKVRQVISETPPSFLAHLKEYTFIEKKPLRWCA  375 

UNP  284 DSFMTSPVLPQDLLKEAVPGNIRRAEHFVAFLRRFIEYLKTRMKVRQVISETPPSFLAHLKEYTFIEKKPLRWCA  358 

 

ct   376 ERLTSLVRTLELTNIEDYHALQEVATFATLVATYEKGFLLILEPYESDTAEVPNPVLHFCCLDAAIAIKPVFDKF  450 

UNP  359 ERLTSLVRTLELTNIEDYHALQEVATFATLVATYEKGFLLILEPYESDTAEVPNPVLHFCCLDAAIAIKPVFDKF  433 

 

ct   451 RNVIITSGTISPLEMYPKMLNFTTVVQESYSMTLARRSFLPLIVTRGSDQASISTGFQVRNEPSVVRNYGNLLTE  525 

UNP  434 RNVIITSGTISPLEMYPKMLNFTTVVQESYSMTLARRSFLPLIVTRGSDQASISTGFQVRNEPSVVRNYGNLLTE  508 

 

ct   526 FAKITPDGMVVFFPSYLYMESIISMWQGMGILDEVWKYKLILVETPDAQETSLALETYRTACCNGRGAVLLCVAR  600 

UNP  509 FAKITPDGMVVFFPSYLYMESIISMWQGMGILDEVWKYKLILVETPDAQETSLALETYRTACCNGRGAVLLCVAR  583 

 

ct   601 GKVSEGIDFDHQYGRTVLCIGVPFQYTESRILKARLEFLRETYRIRENDFLSFDAMRHAAQCLGRVLRGKDDYGL  675 

UNP  584 GKVSEGIDFDHQYGRTVLCIGVPFQYTESRILKARLEFLRETYRIRENDFLSFDAMRHAAQCLGRVLRGKDDYGL  658 

 

ct   676 MVLADRRFQKKRNQLPKWIAQALLDADTNLSTDMAVSSARRFLKTMAQPFKAKDQEGISTWSLEDLKRHQQKMDE  750 

UNP  659 MVLADRRFQKKRNQLPKWIAQALLDADTNLSTDMAVSSARRFLKTMAQPFKAKDQEGISTWSLEDLKRHQQKMDE  733 

 

ct   751 ERMKELEAQREKESAPAVERPADQGRESDYEVDEEEEREMMALDVGN  797 

UNP  734 ERMKELEAQREKESAPAVERPADQGRESDYEVDEEEEREMMALDVGN  780 

 

Figure 3-17. Alignment between the XPD amino acid sequence used in this work (ct) and the 
sequence from the UniProtKB entry G0RZH0 (UNP). 

 

3.3.1. Expression and purification 

Expression and purification of XPD was performed following a protocol established by 

Gudrun Sander und Jochen Kuper. XPD was overexpressed in ArcticExpress (DE3) RIL cells 

cultured in TB-medium. The cell culture was grown to an OD600 of 1.9 and then induced with 

0.03 % (w/v) Arabinose and 0.5 mM IPTG. Expression and cell harvest was performed 

according to the standard procedure (see 2.2.5.1 and 2.2.6). The cell pellet was 

resuspended in lysis buffer supplemented with DNase I, three protease inhibitor cocktail 

tablets, and 1 mM TCEP. After cell lysis, Ni-IDA beads were used for IMAC. Elution fractions 

were concentrated and subjected to SEC. Elution fractions from the peak containing XPD 

were pooled and concentrated with a centrifugal filter unit. SDS-PAGE analysis of the 

purification and the SEC elution profile are depicted in Figure 3-18. The composition of the 

purification buffers is given below. 
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Lysis buffer Elution buffer 

- 20 mM Hepes-NaOH pH 7.0 - 20 mM Hepes-NaOH pH 7.0 

- 0.3 M NaCl - 0.3 M NaCl 

- 5 mM MgCl2 - 5 mM MgCl2 

- 5 mM Imidazole - 1 mM TCEP 

 - 0.25 M Imidazole 

 

Gel filtration buffer 

- 20 mM Hepes-NaOH pH 7.0 

- 0.15 M NaCl 

- 5 mM MgCl2 

- 1 mM TCEP 

 

 
Figure 3-18. Purification of XPD. (a) SDS-PAGE analysis of IMAC samples. P: pellet; FT: flow 
through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg column. (c) SDS-
PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in (b). 

 

3.4. p62 

3.4.1. Secondary structure prediction and construct design 

To improve crystallization propensities and to investigate interactions with other TFIIH 

subunits, different constructs of p62 were designed (Figure 3-19). Secondary structure 

predictions and sequence alignments with the human p62 sequence were performed, which 

formed the basis for construct design (Figure 3-19, see also 6.3.2). 
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Figure 3-19. p62 constructs and secondary structure prediction. The construct schemes are 
aligned to the secondary structure prediction at the bottom. The domain scheme corresponds to 
Figure 1-1. Secondary structure prediction was performed with I-TASSER. 

 

3.4.2. Expression and purification 

Initial attempts to express and purify p62 from BL21 CodonPlus (DE3) RIL cells 

implementing the standard protocol failed, and the result is shown in Figure 3-20.  

Expression from ArcticExpress (DE3) RIL cells, however, was successful and yielded protein 

of high purity (Figure 3-21). The resulting protein sample was subjected to crystallization (see 

3.4.3). 
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Figure 3-20. Purification of p62 from BL21 CodonPlus (DE3) RIL cells. (a) SDS-PAGE analysis of 
IMAC samples. L: lysate; FT: flow through; W: wash. (b) SEC elution profile from a Superdex 200 
10/300 GL column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to 
peaks in (b). 

 

 
Figure 3-21. Purification of p62 from ArcticExpress (DE3) RIL cells. (a) SDS-PAGE analysis of 
IMAC samples. FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 26/60 Superdex 200 
pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks 
in (b). 
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To stabilize p62 and improve crystallization propensities, a Thermofluor assay was 

performed, using the standard Thermofluor screen (Figure 3-22). The assay revealed a 

preference of p62 for basic buffers, increasing the melting temperature compared to the 

reference buffer at a pH of 7.5 (Figure 3-22 b). Acidic buffers on the other hand, led to 

decreased melting temperatures (Figure 3-22 a). Ches buffer at pH 9 displayed an increase 

of the melting temperature of about 3-4 K (Figure 3-22 b). 

 

 
Figure 3-22. Thermofluor analysis of p62 using the Thermofluor standard screen. (a) 
Comparison of acidic buffers to the reference buffer (Tris-HCl pH 7.5). (b) Comparison of basic buffers 
to the reference buffer. 

 

From these results a Ches based buffer system at pH 9 was derived. Purification with this 

buffer system led to about three times higher relative yields and the result from the SEC is 

depicted in Figure 3-23. Protein purified in the Ches buffer system was subjected to 

crystallization as well (see 3.4.3). The composition of the Ches buffer system is given below. 
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Lysis buffer Elution buffer 

- 50 mM Ches-NaOH pH 9.0 - 50 mM Ches-NaOH pH 9.0 

- 0.3 M NaCl - 0.3 M NaCl 

- 5 mM Imidazole - 0.25 M Imidazole 

 

Gel filtration buffer 

- 50 mM Ches-NaOH pH 9.0 

- 0.25 M NaCl 

 

 
Figure 3-23. Purification of p62 from ArcticExpress (DE3) RIL cells with a Ches buffer system. 
(a) SEC elution profile from a HiLoad 16/600 Superdex 200 pg column. (b) SDS-PAGE analysis of 
elution fractions from the SEC. Numbers correspond to peaks in (a). 

 

3.4.3. Crystallization 

Protein purified with the standard buffer system and the Ches buffer system was subjected to 

extensive crystallization trials. Initially, crystallization with the crystallization robot, using the 

commercial crystallization screens was attempted. With the standard buffer system, crystals 

could be obtained at a concentration of 6.7 mg/ml with Crystal Screen HT™, PEGs Suite, 

and OptiMix™ PEG (Figure 3-24). 
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Figure 3-24. Initial crystallization trials with full-length p62. (a) Crystal Screen HT™. Reservoir 
solution: 0.1 M Tris-HCl pH 8.5; 0.2 M MgCl2; 30 % (w/v) PEG 4000. (b) PEGs Suite. Reservoir 
solution: 0.2 M lithium citrate; 20 % (w/v) PEG 3350. (c) OptiMix™ PEG. Reservoir solution: 0.8 M 
potassium nitrate; 27 % (w/v) PEG 3350. Top row: overview; bottom row: zoom in. 

 

Fine screens in 96 well format based on the initial crystallization conditions were designed to 

obtain bigger crystals. Different protein concentrations were tested, ranging from 5 to 

30 mg/ml, but to no avail. Crystallization was also pursued in the 24 well format using the 

hanging drop method. However, the crystals could not be improved by this approach (Figure 

3-25).  

 

 
Figure 3-25. Crystallization of p62 with fine screens derived from the initial crystallization 
conditions. (a) Reservoir solution: 0.1 M Tris-HCl pH 8.5; 0.2 M MgCl2; 20 % (w/v) PEG 4000. (b) 
Reservoir solution: 0.4 M CaCl2; 30 % (w/v) PEG 3350. 

 

Crystallization trays in the 24 well format at different temperatures (4 °C, 12 °C, 20 °C, and 

37 °C) were set up as well. Crystals grew at 4 °C and 20 °C, but crystal the quality could not 

be improved. Additionally, additive screens were tested, as well as microseeding with 

cba

ba
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crystals from the initial or fine screen conditions. These approaches did not improve crystal 

quality, and the crystals obtained from seeding are shown in Figure 3-26. Further parameters 

varied were the salt concentration in the protein buffer (from 0 to 0.25 M NaCl) and the drop 

sizes (0.5 to 2 µl). 

 

 
Figure 3-26. Crystals of p62, obtained by microseeding. Reservoir solution: 0.4 M CaCl2; 20 % 
(w/v) PEG 3350. 

 

Crystals were harvested and subjected to synchrotron radiation at beamline ID23-2 at the 

ESRF. Protein crystal diffraction could be obtained, but the highly mosaic pattern rendered 

all processing attempts unsuccessful (Figure 3-27). 

 

 
Figure 3-27. X-ray diffraction pattern of a p62 crystal. The crystal was harvested from a 
crystallization condition consisting of 0.2 M CaCl2 and 15 % (w/v) PEG 3350 in the reservoir. Two 
orientations of the crystal in the beam, 90° apart from each other, are shown. 

 

3.4.4. p62_1-109 

Human p62 contains a PH domain comprising residues 1-108 [41]. A construct of the PH 

domain of p62 from C. thermophilum was designed. According to sequence alignments, 

residue 108 would correspond to residue 155 in C. thermophilum (see 6.3.2). However, this 

residue range would also contain an insertion ranging from 106-149, which is unstructured 
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according to secondary structure predictions (Figure 3-19, see also 6.3.2). It was therefore 

assumed that the C-terminal boundary of the C. thermophilum PH domain is at residue 105, 

and a construct p62_1-109, encompassing the first 109 amino acids, was cloned. P62_1-109 

was expressed in ArcticExpress (DE3) RIL cells and purified with a Ches buffer system 

(Figure 3-28). Buffer compositions are given below. 

 

Lysis buffer Elution buffer 

- 50 mM Ches-NaOH pH 9.0 - 50 mM Ches-NaOH pH 9.0 

- 0.3 M NaCl - 0.3 M NaCl 

- 5 mM Imidazole - 0.25 M Imidazole 

 

Gel filtration buffer 

- 20 mM Ches-NaOH pH 9.0 

- 0.25 M NaCl 

 

 
Figure 3-28. Purification of p62_1-109 from ArcticExpress (DE3) RIL cells with a Ches buffer 
system. (a) SDS-PAGE analysis of IMAC samples. FT: flow through; W: wash. (b) SEC elution profile 
from a HiLoad 16/600 Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the 
SEC. Numbers correspond to peaks in (b). 

 

The construct was used for a crystallographic study, exploring cesium for experimental 

phasing. This study will be described in detail in section 3.10. 
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3.4.5. p62_1-285 

In addition to the PH domain, human p62 contains a BSD tandem comprising residues 

109-232 [1]. A construct of p62 from C. thermophilum, encompassing the PH domain and the 

BSD tandem was designed. According to sequence alignments, this region includes the first 

281 amino acids of C. thermophilum p62 (see 6.3.2). The construct p62_1-285, 

encompassing the first 285 amino acids, was cloned, expressed in ArcticExpress (DE3) RIL 

cells, and purified according to the standard protocol (Figure 3-29). In the SDS-PAGE a 

double band was observed at the expected molecular weight (Figure 3-29 a, c), the cause of 

which was unclear. The protein was subjected to crystallization trials at a concentration of 

9.7 mg/ml with the crystallization robot using the commercial crystallization screens, but 

yielded no crystals. 

 

 
Figure 3-29. Purification of p62_1-285 from ArcticExpress (DE3) RIL cells. (a) SDS-PAGE 
analysis of IMAC samples. FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 
Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers 
correspond to peaks in (b). 

 

3.4.6. p62_145-290 

A construct encompassing only the BSD tandem was designed, ranging from residue 145 to 

290. P62_145-290 was expressed in ArcticExpress (DE3) RIL cells and purified according to 

the standard procedure (Figure 3-30). Similar to the p62_1-285 construct (Figure 3-29 a, c), 

the protein appeared as a double band in an SDS-PAGE (Figure 3-30 a, c). Crystallization 
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trials at a concentration of 11.3 mg/ml with the crystallization robot were performed using the 

commercial crystallization screens, but yielded no crystals. 

 

 
Figure 3-30. Purification of p62_145-290 from ArcticExpress (DE3) RIL cells. (a) SDS-PAGE 
analysis of IMAC samples. FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 
Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers 
correspond to peaks in (b). 

 

3.4.7. p62_290-E 

To investigate the C-terminal half of p62, especially the interaction of the C-terminus with 

p44, as shown for the Saccharomyces cerevisiae proteins [46], the construct p62_290-E, 

starting after the BSD tandem and encompassing the last 388 amino acids, was designed 

(Figure 3-19). The construct was expressed in ArcticExpress (DE3) RIL cells and purification 

according to the standard protocol with a Ches buffer system was attempted. The result from 

the IMAC purification is depicted in Figure 3-31, showing that no p62_290-E could be 

obtained. The Ches buffer system used is given below. 

 

Lysis buffer Elution buffer 

- 20 mM Ches-NaOH pH 9.0 - 20 mM Ches-NaOH pH 9.0 

- 0.3 M NaCl - 0.3 M NaCl 

- 5 mM Imidazole - 0.25 M Imidazole 
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Gel filtration buffer 

- 20 mM Ches-NaOH pH 9.0 

- 0.25 M NaCl 

 

 
Figure 3-31. SDS-PAGE analysis of IMAC samples of p62_290-E purified from ArcticExpress 
(DE3) RIL cells. FT: flow through; W: wash; *: chaperonin. 

 

3.4.8. p62_435-E 

As the purification of the C-terminal construct p62_290-E was not successful (see 3.4.7), a 

shorter C-terminal construct was designed, leaving out residues 290-434, which may be 

disordered (Figure 3-19). Construct p62_435-E, encompassing the last 435 amino acids, was 

expressed in ArcticExpress (DE3) RIL cells and purified according to the standard protocol 

(Figure 3-32). P62_435-E eluted from the SEC column in two species, at ~70 ml and 

~120 ml, the cause of which was unclear (Figure 3-32 b). Fractions from both species were 

pooled and concentrated separately. The pool from the fractions at ~70 ml was concentrated 

to 5.5 mg/ml, the pool from fractions at ~120 ml was concentrated to 7.9 mg/ml. Both pools 

were subjected to crystallization trials with the crystallization robot using the commercial 

crystallization screens, but yielded no crystals. 

 

F
T

W Elution fractions

- * 



3. Results p52 

88 

 
Figure 3-32. Purification of p62_435-E from ArcticExpress (DE3) RIL cells. (a) SDS-PAGE 
analysis of IMAC samples. FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 
Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers 
correspond to peaks in (b). 

 

3.5. p52 

3.5.1. Secondary structure prediction and construct design 

To improve crystallization propensities and to investigate interactions of different protein 

regions with other TFIIH subunits, different constructs of p52 were designed (Figure 3-33). 

Secondary structure predictions and sequence alignments with the human p52 sequence 

were performed, which formed the basis for construct design (Figure 3-33, see also 6.3.3). 

Two XPB binding regions within human p52 are known (residues 1-135 and 304-381) [25]. 

Hence, constructs of p52 from C. thermophilum were designed lacking either one or the 

other binding site. According to sequence alignments the first XPB binding site would 

encompass roughly the first 130 amino acids (see 6.3.3). Furthermore, secondary structure 

prediction proposed a domain encompassing the first 120 amino acids (Figure 3-33). Thus, a 

construct lacking the first 120 amino acids (p52_121-E) was designed. Based on sequence 

alignments the second XPB binding site would begin roughly at amino acid 350. Secondary 

structure prediction proposed a domain at the C-terminal end of the protein starting at 

residue 360 (Figure 3-33). Thus, another construct lacking the last 165 amino acids 

(p52_1-349) was designed. The constructs p52_121-E and p52_1-349 have been cloned by 

Elisabeth Schönwetter. Sequence alignments revealed furthermore, that C. thermophilum 

p52 contains a 24 amino acids long insertion (residues 322-345) compared to human p52 
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(see 6.3.3). Correspondingly, this region is predicted as unstructured (Figure 3-33). 

Therefore, amino acids 322-344 were deleted in full-length p52 as well as p52_121-E and 

replaced by an SNGNG linker (termed delta linker, dL), resulting in constructs p52_dL and 

p52_121-E_dL, respectively (Figure 3-33). 

 

 
Figure 3-33. p52 constructs and secondary structure prediction. The construct schemes are 
aligned to the secondary structure prediction at the bottom. The domain scheme corresponds to 
Figure 1-1. Secondary structure prediction was performed with I-TASSER. dL: delta linker, denotes the 
deletion of residues 322-344 and the replacement with a short SNGNG linker. 

 

3.5.2. Expression and purification 

P52 was expressed in B21 CodonPlus (DE3) RIL cells and purified following the standard 

protocol. SDS-PAGE analysis of the purification and the SEC elution profile are depicted in 

Figure 3-34. 
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Figure 3-34. Purification of p52 from BL21 CodonPlus (DE3) RIL cells. (a) SDS-PAGE analysis of 
IMAC samples. L: lysate; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 26/60 
Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers 
correspond to peaks in (b). 

 

SEC was also performed in a Ches buffer, and the elution profile is shown in Figure 3-35. 

The composition of the Ches buffer is given below. 

 

Ches buffer 

- 50 mM Ches-NaOH pH 9.0 

- 0.25 M NaCl 

 

 
Figure 3-35. SEC elution profile of p52 in Ches buffer from a HiLoad 16/600 Superdex 200 pg 
column. 
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3.5.3. Crystallization 

P52 in standard as well as Ches buffer was subjected to extensive crystallization trials. Initial 

plates were set up with the crystallization robot using the commercial crystallization screens. 

For p52 in standard buffer, small crystals could be obtained at 2.1 mg/ml; for p52 in Ches 

buffer, small crystals could be obtained at 2.9 mg/ml with Index HT™ and Crystal Screen 

HT™ (Figure 3-36). 

 

 
Figure 3-36. Initial crystallization trials with p52. (a) Index HT™. Reservoir solution: 0.1 M Bis-Tris 
pH 6.5; 0.2 M lithium sulfate; 25 % (w/v) PEG 3350. (b) Index HT™. Reservoir solution: 0.1 M Hepes 
pH 7.5; 0.2 M lithium sulfate; 25 % (w/v) PEG 3350. (c) Crystal Screen HT™. Reservoir solution: 0.1 
M Mes pH 6.5; 12 % (w/v) PEG 20000. 

 

Initial conditions were fine screened in the 96 well format using the crystallization robot, as 

well as in the 24 well format using hanging drop. Additionally, different protein concentrations 

(ranging from 1.5 to 7.5 mg/ml) and temperatures (4 °C, 20 °C, 37 °C) were tested. However, 

the size or diffraction properties of the crystals could not be significantly improved (Figure 

3-37). 

 

 
Figure 3-37. Crystallization of p52 with fine screens derived from the initial crystallization 
conditions. (a) Reservoir solution: 0.1 M Bis-Tris pH 5.5; 0.3 M ammonium sulfate; 20 % (w/v) PEG 
3350. (b) Reservoir solution: 0.1 M Bis-Tris pH 5.5; 0.3 M lithium sulfate; 15 % (w/v) PEG 3350. (c) 
Reservoir solution: 0.1 M Bis-Tris pH 6.5; 0.3 M lithium sulfate; 15 % (w/v) PEG 3350. 
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P52 crystals were exposed to synchrotron radiation at beamline P14 of PETRAIII. Protein 

diffraction patterns could be observed, yet the resolution was limited to about 6-7 Å (Figure 

3-38). 

 

 
Figure 3-38. X-ray diffraction pattern of a p52 crystal. The protein was purified in Ches buffer. The 
crystal was harvested from a crystallization condition consisting of 0.1 M Hepes pH 7.5, 0.2 M lithium 
sulfate, and 25 % (w/v) PEG 3350 in the reservoir. Two orientations of the crystal in the beam, 90° 
apart from each other, are shown. The outmost areas of the detector are omitted. 

 

3.6. p44 

3.6.1. Secondary structure prediction and construct design 

Different constructs of p44 were designed in order to improve crystallization propensities and 

to investigate interactions of different protein regions with other TFIIH subunits (Figure 3-39). 

P44 is composed of three domains, an N-terminal vWA like domain, a central zinc finger 

domain, and a C-terminal ring finger domain [34, 35]. Secondary structure predictions and 

sequence alignments with the human p44 amino acid sequence were performed to map the 

domain boundaries known from human p44 to C. thermophilum p44 (Figure 3-39, see also 

6.3.4). According to the alignments, C. thermophilum p44 was subdivided into three regions: 

1-285 containing the N-terminal vWA like domain, 286-367 containing the central zinc finger 

domain, and 368-534 containing the C-terminal ring finger domain. Constructs lacking one or 

the other domain were designed accordingly (Figure 3-39). Construct p44_1-285, containing 

the N-terminal vWA like domain has been designed and cloned by Dominik Schmitt. To 

further investigate the central zinc finger domain, the constructs p44_1-326 and p44_327-E 

were designed, containing the first half or second half of the central domain, respectively 

(Figure 3-39). To determine a suitable position for splitting of the central zinc finger domain 

sequence alignments with the human p44 were used (see 6.3.4). Fribourg et al. reported the 

presence of a highly conserved C4 zinc finger motif (C-X2-C-X10-C-X2-C) within the central 

domain [32]. This motif is also conserved in C. thermophilum encompassing residues C345, 
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C348, C359, and C362. The presence of additional histidines and cysteines was also 

considered when the construct was generated, to avoid an accidental destruction of the zinc 

finger. The first potential zinc coordinating amino acid is H328. Hence, the central domain 

was splitted after residue 326, so that p44_327-E contains all histidines and cysteines 

(including the conserved C4 zinc finger motif) present in the central zinc finger domain. 

 

 
Figure 3-39. p44 constructs and secondary structure prediction. The construct schemes are 
aligned to the secondary structure prediction at the bottom. The domain scheme corresponds to 
Figure 1-1. Secondary structure prediction was performed with I-TASSER. 

 

3.7. p34 

3.7.1. Secondary structure prediction and construct design 

P34 is composed of an N-terminal vWA like domain and a C-terminal zinc finger domain [31, 

47]. Two constructs, containing either the vWA like domain or the C-terminal zinc finger 

domain, have been designed (Figure 3-40). Construct p34_1-277 has been designed and 

cloned by Dominik Schmitt, construct p34_278-E by Elisabeth Schönwetter. 
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Figure 3-40. p34 constructs and secondary structure prediction. The construct schemes are 
aligned to the secondary structure prediction at the bottom. The domain scheme corresponds to 
Figure 1-1. Secondary structure prediction was performed with I-TASSER. 

 

3.7.2. Expression and purification 

Expression and purification was performed with a buffer system established by Dominik 

Schmitt. The protein was expressed in BL21 CodonPlus (DE3) RIL cells and purified 

according to the standard procedure. The result from the SEC is depicted in Figure 3-41, and 

the buffer compositions are given below. 

 

Lysis buffer Elution buffer 

- 50 mM Tris-HCl pH 8.0 - 50 mM Tris-HCl pH 8.0 

- 0.15 mM KCl - 0.15 M KCl 

- 0.5 mM TCEP - 0.15 M Imidazole 

 - 1 mM TCEP 

 

Gel filtration buffer 

- 20 mM Tris-HCl pH 8.0 

- 0.15 M KCl 

- 1 mM TCEP 
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Figure 3-41. Purification of p34. (a) SEC elution profile from a HiLoad 16/600 Superdex 200 pg 
column. (b) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(a). 

 

3.8. p8 

3.8.1. Expression and purification 

P8 was expressed from BL21 CodonPlus (DE3) RIL cells and purified according to the 

standard protocol. High yield and purity could be obtained, therefore no further optimization 

was necessary. The result from the SEC is depicted in Figure 3-42. 

 

 
Figure 3-42. Purification of p8. (a) SEC elution profile from a HiLoad 16/600 Superdex 200 pg 
column. (b) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(a). 

 

3.9. MAT1 

3.9.1. Secondary structure prediction and construct design 

To investigate the interaction between the CAK subunit MAT1 and core TFIIH, the construct 

MAT1_1-248 was used, lacking the C-terminal hydrophobic domain (Figure 3-43). 

MAT1_1-248 has been designed, cloned, and purified by Florian Sauer. 
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Figure 3-43. MAT1 constructs and secondary structure prediction. The construct schemes are 
aligned to the secondary structure prediction at the bottom. The domain scheme corresponds to 
Figure 1-1. Secondary structure prediction was performed with I-TASSER. 

 

3.10. Cesium for experimental phasing - A crystallographic 

study 

To overcome the phase problem by means of SAD, a potent anomalous scatterer needs to 

be present in the crystal. In the course of this study, different stages for introduction of an 

anomalous scatterer were explored. The anomalous scatterer was included during protein 

purification, crystallization, or cryo-protection. A suitable heavy atom compound was required 

for this approach, which was ideally compatible with each of these stages. Common 

components of protein buffers and crystallization solutions are chloride salts of alkali metals, 

like NaCl or KCl. These salts are proposed to facilitate crystallization either by stabilizing the 

protein in solution (salting-in) or acting as precipitant (salting-out) [452, 453]. Elements in the 

periodic table ordered in groups generally display similar chemical properties. The group of 

alkali metals consists of lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), 

and francium (Fr) (Figure 3-44). The chemical similarity within this group is apparent from the 

fact that monovalent chloride salts of all alkali metals exist. Within the group the number of 

electrons and anomalous scattering propensity increases downwards. The heaviest group 

member, Fr, possesses the strongest anomalous scattering. However, all known isotopes 

are radioactive, therefore, Fr was not considered further in this study. The second heaviest 

member of the alkali metals, Cs, is also a very potent anomalous scatterer. At an x-ray 

energy of 7 keV (1.7712 Å) the contribution of f’’ is about 10 e- (Figure 3-45). These 

anomalous properties, combined with the chemical similarity to NaCl and KCl, made CsCl a 

suitable candidate for introduction during purification, crystallization, and cryo-protection. 
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Figure 3-44. Periodic table. Cesium is the heaviest not radioactive member of the alkali metals. *: No 
stable isotope known. 

 

 
Figure 3-45. Anomalous scattering of cesium. The components f’ and f’’ of the anomalous 
scattering of cesium are plotted against the x-ray energy. The plot was generated with data from [461]. 

 

3.10.1. Proteins, purification and crystallization 

To test the broader applicability of this approach, three proteins were considered in this 

study. First, p62_1-109 as a novel target, the structure not yet determined by other means. 

Second, hen egg white lysozyme (HEWL) as protein well characterized for methodical 

studies in crystallography. Third, p34_1-277 as a medium resolution target, as it yields 

crystals diffracting to about 3 Å [47]. 

To keep track of the datasets of the different proteins, numbers are introduced in Table 3-3 

(p62_1-109), Table 3-4 (HEWL), and Table 3-5 (p34_1-277). These numbers are used to 

refer to the corresponding crystal/dataset in other tables and the text. 
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P62_1-109 was purified as described in section 3.4.4. For introduction of cesium during 

purification, CsCl buffer was used instead of NaCl buffer for the SEC. Usage of CsCl during 

the SEC seemed to have no influence on the purification compared to NaCl buffer and is 

depicted in Figure 3-46. The composition of both buffers is given below. 

 

NaCl buffer CsCl buffer 

- 20 mM Ches-NaOH pH 9.0 - 20 mM Ches-NaOH pH 9.0 

- 0.25 M NaCl - 0.25 M CsCl 

 

 
Figure 3-46. Purification of p62_1-109 in CsCl buffer. (a) SEC elution profile from a HiLoad 16/600 
Superdex 200 pg column. The curve is overlaid with an elution profile from a purification with NaCl 
buffer. (b) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in (a). 

 

P62_1-109 was concentrated to 11-13 mg/ml and subjected to crystallization in 24 well 

plates utilizing the hanging drop vapor diffusion method. 1 µl of protein solution was mixed 

with 1 µl of mother liquor. Crystallization was attempted in presence of KCl or CsCl. As cryo-

protectant glycerol was used. The precise crystallization and cryo-protectant conditions of 

crystals used in this study are given in Table 3-3. 

Similar crystals of p62_1-109 grew in the presence of KCl or CsCl. The crystals had a plate 

like appearance with the long edges mostly ranging from 200 to 600 µm (Figure 3-47). The 

thickness of the plates was between 20 and 30 µm. 
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Table 3-3. Crystallization and cryo-protectant conditions of p62_1-109 crystals. 

 
 

 
Figure 3-47. Crystallization of p62_1-109. (a) P62_1-109 in NaCl buffer, crystallized in KCl. (b) 
P62_1-109 in CsCl buffer, crystallized in KCl. (c) P62_1-109 in NaCl buffer, crystallized in CsCl. 

 

HEWL was purchased as powder and dissolved at a concentration of 50 mg/ml in either 

purified water, 0.1 M NaAc pH 4.5, or 0.25 M CsCl solution. No further purification was 

performed. HEWL was crystallized utilizing the hanging drop vapor diffusion method in 24 

well plates with 3 µl of protein mixed with 3 µl of mother liquor. Crystallization was attempted 

in the presence of NaCl, KCl, or CsCl. As cryo-protectant ethylene glycol was used. The 

precise crystallization and cryo-protectant conditions of crystals used in this study are given 

in Table 3-4. 

Typical crystals of tetragonal HEWL were obtained in each alkali salt, with edge lengths 

mostly between 200 to 500 µm (Figure 3-48). 

 

# Protein buffer Crystallization Cryo-protectant

1
20 mM Ches pH 9.0

0.25 M CsCl

0.8 M KCl

17 % (w/v) PEG 4000

0.75 M KCl

17.5 % (w/v) PEG 4000

20 % (v/v) glycerol

2
20 mM Ches pH 9.0

0.25 M CsCl

0.6 M KCl

15 % (w/v) PEG 4000

0.25 M CsCl

0.5 M KCl

17.5 % (w/v) PEG 4000

20 % (v/v) glycerol

3
20 mM Ches pH 9.0

0.25 M NaCl

0.9 M KCl

17 % (w/v) PEG 4000

0.75 M CsCl

17.5 % (w/v) PEG 4000

20 % (v/v) glycerol

4
20 mM Ches pH 9.0

0.25 M CsCl

0.9 M KCl

17 % (w/v) PEG 4000

0.75 M CsCl

17.5 % (w/v) PEG 4000

20 % (v/v) glycerol

5
20 mM Ches pH 9.0

0.25 M NaCl

0.7 M CsCl

18 % (w/v) PEG 4000

0.7 M CsCl

18 % (w/v) PEG 4000

20 % (v/v) glycerol

6
20 mM Ches pH 9.0

0.25 M NaCl

0.9 M KCl

19 % (w/v) PEG 4000

0.9 M KCl

19 % (w/v) PEG 4000

20 % (v/v) glycerol

cba



3. Results Cesium for experimental phasing - A crystallographic study 

100 

Table 3-4. Crystallization and cryo-protectant conditions of HEWL crystals. 

 
1) Ethylene glycol. 

 

 
Figure 3-48. Crystallization of HEWL. (a) HEWL dissolved in H2O, crystallized in NaCl. (b) HEWL 
dissolved in H2O, crystallized in KCl. (c) HEWL dissolved in CsCl, crystallized in NaCl. (d) HEWL 
dissolved in H2O, crystallized in CsCl. 

 

# Protein buffer Crystallization Cryo-protectant

1 0.25 M CsCl
50 mM NaAc pH 4.5

1.71 M NaCl

50 mM NaAc pH 4.5

1.71 M NaCl

15 % (w/v) EG1)

2 0.25 M CsCl
50 mM NaAc pH 4.5

1.71 M NaCl

50 mM NaAc pH 4.5

0.25 M CsCl

1.46 M NaCl

15 % (w/v) EG

3 H2O
50 mM NaAc pH 4.5

1.71 M NaCl

50 mM NaAc pH 4.5

1.71 M CsCl

15 % (w/v) EG

4 0.25 M CsCl
50 mM NaAc pH 4.5

1.71 M NaCl

50 mM NaAc pH 4.5

1.71 M CsCl

15 % (w/v) EG

5 H2O
50 mM NaAc pH 4.5

1.5 M CsCl

50 mM NaAc pH 4.5

1.5 M CsCl

20 % (w/v) EG

6 H2O
50 mM NaAc pH 4.5

1.5 M KCl

50 mM NaAc pH 4.5

1.5 M KCl

20 % (w/v) EG

7 0.1 M NaAc pH 4.5

0.1 M NaAc pH 4.5

3 M KCl

15 % (w/v) EG

-

8 0.1 M NaAc pH 4.5

0.1 M NaAc pH 4.5

1.71 M NaCl

15 % (w/v) EG

-

b

c d

a
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P34_1-277 purified in KCl buffer was provided by Stefan Peißert. P34_1-277 in CsCl buffer 

was expressed and purified according to the standard procedure (see 2.2.5 and 2.2.6). The 

KCl buffer system was established by Dominik Schmitt. BL21 CodonPlus (DE3) RIL cells 

were used for protein expression. SEC in CsCl buffer appeared to be similar to the 

purification in KCl buffer and is depicted in Figure 3-49. The composition of all buffers is 

given below. 

 

Lysis buffer Elution buffer 

- 20 mM Tris-HCl pH 8.0 - 20 mM Tris-HCl pH 8.0 

- 0.5 M KCl - 0.3 M KCl 

- 1 mM TCEP - 0.25 M Imidazole 

 - 1 mM TCEP 

 

KCl buffer CsCl buffer 

- 20 mM Tris-HCl pH 8.0 - 20 mM Tris-HCl pH 8.0 

- 0.15 M KCl - 0.2 M CsCl 

- 1 mM TCEP - 1 mM TCEP 

 

 
Figure 3-49. Purification of p34_1-277 in CsCl buffer. (a) SEC elution profile from a HiLoad 16/600 
Superdex 200 pg column. The curve is overlaid with an elution profile from a purification with KCl 
buffer. (b) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in (a). 
The elution profile with KCl buffer was provided by courtesy of Dominik Schmitt. 

 

P34_1-277 in KCl buffer was crystallized at a concentration of 4 mg/ml utilizing the hanging 

drop vapor diffusion method in 24 well plates. 2 µl of the protein solution was placed on the 

cover slide without the addition of mother liquor. The protein solution was equilibrated 

against 1 ml KCl buffer supplemented with NaCl. Crystals were cryo-protected with ethylene 

glycol. The crystallization and cryo-protectant conditions are given in Table 3-5. 
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Table 3-5. Crystallization and cryo-protectant conditions of p34_1-277 crystals. 

 
1) NaCl was supplemented to the mother liquor only. 
2) Ethylene glycol. 

 

The crystals had a cubic appearance with edge lengths of about 60 µm (Figure 3-50). 

Crystallization of p34_1-277 in CsCl buffer was attempted at concentrations of 4 mg/ml and 

7.7 mg/ml applying the same procedure as for p34_1-277 in KCl buffer, but no crystals could 

be obtained. 

 

 
Figure 3-50. Crystallization of p34_1-277. P34_1-277 in KCl buffer, crystallized in KCl buffer. 

 

3.10.2. Data collection, processing, phasing and refinement 

Data was collected on single crystals using the rotation method. All datasets were indexed, 

integrated, and scaled with XDS. One single dataset was collected for each crystal, except 

for p62_1-109 crystals # 2 and 3. Here, two datasets at different positions of the same crystal 

were collected, processed with XDS, and then combined and brought to a common scale via 

XSCALE. Subsequently, the data were merged with Aimless. Data collection and processing 

statistics are given in Table 3-8 (p62_1-109), Table 3-9 (HEWL), and Table 3-10 

(p34_1-277). 

The phase problem for each processed dataset was solved by SAD, utilizing SHELXC/D/E, 

the Phenix AutoSol wizard [477], and the Phenix AutoBuild wizard [478]. For datasets where 

experimental phasing was not possible and necessary, phases were extracted from solved 

structures via rigid body refinement with Refmac5. The phasing procedure for each dataset, 

together with the programs used for the individual steps is given in Table 3-6 (p62_1-109) 

and Table 3-7 (HEWL). The crystals of p34_1-277 diffracted to only about 4 Å (Table 3-10) 

and displayed a weak anomalous signal. Experimental phasing was not possible with these 

# Protein buffer Crystallization Cryo-protectant

1

20 mM Tris-HCl pH 8.0

0.15 M KCl

1 mM TCEP

20 mM Tris-HCl pH 8.0

0.15 M KCl

1 mM TCEP

add 50 mM NaCl1)

10 mM Tris-HCl pH 8.0

0.75 M CsCl

25 % (v/v) EG2)

2

20 mM Tris-HCl pH 8.0

0.15 M KCl

1 mM TCEP

20 mM Tris-HCl pH 8.0

0.15 M KCl

1 mM TCEP

add 0.5 M NaCl1)

10 mM Tris-HCl pH 8.0

0.75 M CsCl

25 % (v/v) EG



3. Results Cesium for experimental phasing - A crystallographic study 

103 

datasets. Merging of both datasets did not improve the anomalous signal to permit structure 

solution by SAD. 

 

Table 3-6. Phasing procedure for the p62_1-109 datasets. 

 
1) Rigid body refinement using Refmac5. Number in parentheses gives the starting model for rigid body 

refinement. 
2) The program was used through the AutoSol/AutoBuild wizard as specified. 

 

Table 3-7. Phasing procedure for the HEWL datasets. 

 
1) Rigid body refinement using Refmac5. Number in parentheses gives the starting model for rigid body 

refinement. 
2) The program was used through the AutoSol/AutoBuild wizard as specified. 

 

#
phasing

method

substructure

determination
initial phases density modification

automated model

building

1 RB1) (# 5) - - - -

2 SAD HySS (AutoSol)2) Phaser (AutoSol) RESOLVE (AutoSol) RESOLVE (AutoBuild)2)

3 SAD HySS (AutoSol) Phaser (AutoSol) RESOLVE (AutoSol) RESOLVE (AutoBuild)

4 SAD SHELXD SHELXE SHELXE Buccaneer

5 SAD HySS (AutoSol) Phaser (AutoSol) RESOLVE (AutoSol) RESOLVE (AutoSol)

6 RB (# 4) - - - -

#
phasing

method

substructure

determination
initial phases density modification

automated model

building

1 SAD SHELXD Phaser (AutoSol)2) RESOLVE (AutoSol) RESOLVE (AutoBuild)2)

2 SAD SHELXD Phaser (AutoSol) RESOLVE (AutoSol) RESOLVE (AutoSol)

3 SAD SHELXD Phaser (AutoSol) RESOLVE (AutoSol) RESOLVE (AutoBuild)

4 SAD SHELXD Phaser (AutoSol) RESOLVE (AutoSol) RESOLVE (AutoSol)

5 SAD SHELXD Phaser (AutoSol) RESOLVE (AutoSol) RESOLVE (AutoBuild)

6 RB1) (# 8) - - - -

7 RB (# 8) - - - -

8 SAD SHELXD SHELXE SHELXE Buccaneer
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Table 3-8. Data collection and refinement statistics of the p62_1-109 datasets. 

 
(Statistics for highest resolution shell are given in parentheses) 

 

# 1 2 3 4 5 6

Beamline P14 (PETRAIII) ID29 (ESRF) ID29 (ESRF) ID29 (ESRF) ID29 (ESRF) BM14 (ESRF)

Wavelength (Å) 1.7712 1.7712 1.7712 1.7712 1.77114 1.7712

Data collection and processing

Spacegroup C 2221 C 2221 C 2221 C 2221 C 2221 C 2221

Unit cell parameters

a/b/c (Å) 34.46/106.52/75.90 39.74/102.30/75.09 40.25/101.76/75.10 34.27/106.78/75.32 34.43/106.79/75.87 34.74/106.17/76.21

α/β/γ ( ) 90/90/90 90/90/90 90/90/90 90/90/90 90/90/90 90/90/90

Resolution range (Å) 75.90-1.90 42.27-1.90 42.12-1.90 43.56-1.90 43.67-1.80 43.56-2.50

Highest resolution shell (Å) 1.94-1.90 1.94-1.90 1.94-1.90 1.94-1.90 1.84-1.80 2.60-2.50

Rmerge 0.080 (0.450) 0.093 (1.420) 0.123 (1.392) 0.071 (0.266) 0.150 (1.359) 0.142 (1.176)

Rmerge (top intensity bin) 0.055 0.051 0.075 0.044 0.07 0.064

Rpim 0.017 (0.114) 0.019 (0.296) 0.025 (0.283) 0.021 (0.080) 0.026 (0.293) 0.041 (0.473)

Number of observations 236591 (9776) 287034 (15642) 300407 (17430) 125536 (7410) 417502 (10544) 63946 (3604)

Number of unique observations 11097 (643) 12135 (692) 12177 (739) 10885 (658) 12670 (487) 5119 (521)

<I/σI> 28.7 (6.9) 21.6 (2.1) 17.4 (2.2) 25.5 (9.2) 22.0 (2.7) 14.4 (1.6)

CC1/2 0.999 (0.965) 0.999 (0.841) 0.998 (0.833) 0.999 (0.983) 0.999 (0.851) 0.997 (0.633)

Completeness (%) 97.4 (90.0) 97.8 (92.3) 97.4 (93.6) 96.3 (92.5) 94.9 (65.1) 99.1 (93.0)

Multiplicity 21.3 (15.2) 23.7 (22.6) 24.7 (23.6) 11.5 (11.3) 33.0 (21.7) 12.5 (6.9)

Refinement

Resolution range (Å) 53.26-1.90 42.27-1.90 42.12-1.90 43.56-1.90 43.67-1.80 43.56-2.50

Number of reflections 10482 11528 11574 10293 12052 4844

Rwork 0.162 0.193 0.198 0.184 0.183 0.202

Rfree 0.224 0.223 0.221 0.216 0.215 0.266

Rfree test set size 595 594 597 572 599 262

Coordinate error (Å) 0.088 0.101 0.1 0.081 0.074 0.242

Wilson B factor (Å2) 23.082 32.232 31.7 17.737 10.914 26.03

B factor (Å2) 28.638 43.584 45.198 23.412 19.978 41.74

Deviations from ideal values

Bond (Å) 0.019 0.018 0.019 0.019 0.02 0.012

Angle ( ) 2.004 1.826 1.93 1.94 2.108 1.598

Chirality ( ) 0.121 0.115 0.128 0.107 0.133 0.091

Planarity (Å) 0.012 0.009 0.01 0.01 0.01 0.007

Ramachandran statistics (%)

Favored 100 98.06 98.15 99.12 100 98.23

Allowed 0 1.94 1.85 0.88 0 1.77

Outlier 0 0 0 0 0 0
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Table 3-9. Data collection and refinement statistics of the HEWL datasets. 

 
(Statistics for highest resolution shell are given in parentheses) 
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Table 3-10. Data collection statistics of the p34_1-277 datasets. 

 
(Statistics for highest resolution shell are given in parentheses) 

 

The automatically build structures were manually completed and corrected in Coot, and 

refined with Refmac5. Refinement was performed directly against SAD data, with automated 

refinement of the anomalous substructure occupancy. Model stereochemistry was checked 

via the MolProbity server. Refinement and model statistics are given in Table 3-8 

(p62_1-109) and Table 3-9 (HEWL). 

 

3.10.3. The cesium substructure 

Anomalous density maps generated by direct refinement against the SAD data were used as 

guidance for placement of the cesium ions. Peaks clearly exceeding the peak height of sulfur 

atoms from the methionines/cysteines present in the protein were generally attributed to 

cesium ions. Chloride ions were placed by comparison with anomalous peaks in datasets 

where no cesium was present. Potassium and chloride ions were distinguished by 

considering bonding distances, as distances of the former are generally shorter [479, 480]. 

The sodium ion in the HEWL dataset # 8 was placed after geometrical considerations (Figure 

3-61 a) [479]. 

 

 

 

 

# 1 2

Beamline P14 (PETRAIII) P14 (PETRAIII)

Wavelength (Å) 1.7712 1.7712

Data collection and processing

Spacegroup F 4132 F 4132

Unit cell parameters

a/b/c (Å) 256.62/256.62/256.62 255.94/255.94/255.94

α/β/γ ( ) 90/90/90 90/90/90

Resolution range (Å) 49.44-4.30 49.25-4.00

Highest resolution shell (Å) 4.81-4.30 4.47-4.00

Rmerge 0.627 (4.748) 0.742 (6.513)

Rmerge (top intensity bin) 0.089 0.098

Rpim 0.073 (0.544) 0.061 (0.523)

Number of observations 388277 (111345) 947785 (275126)

Number of unique observations 5340 (1467) 6506 (1790)

<I/σI> 10.0 (1.7) 11.8 (1.7)

CC1/2 0.999 (0.599) 0.999 (0.522)

Completeness (%) 99.9 (100.0) 100.0 (100.0)

Multiplicity 72.7 (75.9) 145.7 (153.7)
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All cesium site positions that were identified within the different datasets were numbered and 

are depicted in Figure 3-51 (p62_1-109) and Figure 3-52 (HEWL). 

 

 
Figure 3-51. Overview of all observed cesium sites in p62_1-109. P62_1-109 is represented as 
grey surface and shown in four orientations rotated by 90° relative to each other. Cesium ions are 
represented as spheres and the sites are numbered. (a) Front view. (b) Side view left. (c) Back view. 
(d) Side view right. 
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Figure 3-52. Overview of all observed cesium sites in HEWL. HEWL is represented as grey 
surface and shown in four orientations rotated by 90° relative to each other. Cesium ions are 
represented as spheres and the sites are numbered. (a) Front view. (b) Side view left. (c) Back view. 
(d) Side view right. 

 

 

 

 

 

a b

c d

11
12

17
13

8

16

14
4

7
6

5

11 12

10

2

3

1

9

6

15 10

11

3

2

1

9

13

15
10

6

5



3. Results Cesium for experimental phasing - A crystallographic study 

109 

Table 3-11. Occurrence and occupancy of the cesium sites in p62_1-109 after different 
supplementation of CsCl. 

 
1) Occupancy of observed sites is given. Numbers correspond to sites in Figure 3-51. 
2) Supplement of CsCl to SEC buffer in mol/l. 
3) Supplement of CsCl to crystallization condition in mol/l. 
4) Supplement of CsCl to cryo-protectant in mol/l. 
5) Site 1 lies on a crystallographic two-fold axis (Figure 3-55). Doubled occupancy is given. 
6) Total number of observed sites. 
7) Sum of occupancies of all observed sites. 
8) Average occupancy per site. 

 

Table 3-12. Occurrence and occupancy of the cesium sites in HEWL after different 
supplementation of CsCl. 

 
1) Occupancy of observed sites is given. Numbers correspond to sites in Figure 3-52. 
2) CsCl concentration in mol/l in which HEWL was dissolved. 
3) Supplement of CsCl to crystallization condition in mol/l. 
4) Supplement of CsCl to cryo-protectant in mol/l. 
5) Total number of observed sites. 
6) Sum of occupancies of all observed sites. 
7) Average occupancy per site. 

 

The number and occupancies of the individual cesium sites after the different 

supplementation of CsCl at the stages considered (purification, crystallization, cryo-

protection) are summarized in Table 3-11 (p62_1-109) and Table 3-12 (HEWL). Additionally, 

the overall cesium occupancy and average occupancy per site are given. The cesium 

substructure and anomalous density of p62_1-109 after different supplementation of CsCl is 

depicted in Figure 3-53. When 0.25 M CsCl was only used during the SEC (dataset # 1), very 

low anomalous density could be observed for cesium site 4 (Figure 3-53 a; Figure 3-54 a). 

Directly compared with p62_1-109 treated only with KCl (dataset # 6), the anomalous peak 

seems to be higher for # 1 (Figure 3-54), indicating the presence of a cesium ion at this site. 

However, the resolution of dataset # 6 is lower compared to dataset # 1 (Table 3-8). This 

might have an influence on the peak height as well, making the placement of the cesium ion 

in # 1 not unambiguous. 

 

 

CsCl supplement Cesium site1)

# SEC2) Crys3) Cryo4) 15) 2 3 4 5 6 7 8 Sites6) Σ 

Occ7)
Occ / 

site8)

1 0.25 0.25 1 0.25 0.25

2 0.25 0.25 0.72 0.36 2 1.08 0.54

3 0.75 0.9 0.41 0.27 0.42 0.27 5 2.27 0.45

4 0.25 0.75 0.68 0.67 0.36 0.43 0.38 0.31 0.27 0.33 8 3.43 0.43

5 0.7 0.7 0.54 0.47 0.27 0.37 0.36 0.24 0.25 0.26 8 2.76 0.35

CsCl supplement Cesium site1)

# Diss2) Crys3) Cryo4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Sites5) Σ 

Occ6)
Occ / 

site7)

1 0.25 0 0

2 0.25 0.25 0.44 0.22 0.22 0.21 0.37 0.23 0.19 7 1.88 0.27

3 1.71 0.37 0.81 0.45 0.43 0.89 0.35 0.38 0.27 0.28 0.21 0.71 0.44 0.32 0.4 0.34 15 6.65 0.44

4 0.25 1.71 0.48 0.85 0.5 0.39 0.91 0.46 0.37 0.32 0.3 0.27 0.63 0.38 0.3 0.34 0.3 0.38 16 7.18 0.45

5 1.5 1.5 0.32 0.84 0.29 0.4 0.77 0.21 0.35 0.28 0.29 0.36 0.54 0.45 0.33 0.32 0.38 0.56 16 6.69 0.42
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Figure 3-53. Cesium substructure of p62_1-109 after different supplementation of CsCl. P62_1-
109 is represented as grey surface, the cesium ions are represented as spheres. Orange meshes 
display the anomalous density contoured at 3 σ. (a) Protein purified in CsCl buffer. (b) Protein purified 
in CsCl buffer and supplemented with 0.25 M CsCl to the cryo-protectant solution. (c) Protein purified 
in NaCl buffer and supplemented with 0.75 M CsCl to the cryo-protectant solution. (d) Protein purified 
in CsCl buffer and supplemented with 0.75 M CsCl to the cryo-protectant solution. 

 

a b

c d
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Figure 3-54. Comparison of cesium site 4 in p62_1-109 treated with 0.25 M CsCl during SEC 
with the corresponding potassium site. Orange meshes display anomalous density contoured at 
3 σ. (a) Cesium site 4 from Figure 3-53 a. (b) Potassium site 4. The protein has been supplemented 
with 0.9 M KCl in the crystallization solution and 0.9 M KCl in the cryo-protectant solution. 

 

 
Figure 3-55. Cesium site 1 in p62_1-109 occupies a special position. (a) Cartoon representation of 
two p62_1-109 molecules related by a crystallographic two-fold axis perpendicular to the paper plane. 
The cesium ion located on this axis is represented as a sphere. (b) Detailed view of cesium site 1. The 
orange mesh displays the anomalous density contoured at 3 σ. 

 

P62_1-109 crystallized with two slightly different unit cell sizes. On the one hand with a at 

~34 Å and b at ~107 Å (datasets # 1, 4, 5, and 6), on the other hand with a at ~40 Å and b at 

~102 Å (datasets # 2 and 3) (Table 3-8). The crystals appeared to be very similar and in both 

cases they grew in all conditions tested, irrespective of the CsCl concentration. The 

difference in unit cell size goes along with a disordered loop region in datasets # 2 and 3 

(Figure 3-56 a). As this loop region coordinates cesium site 3 (Figure 3-56 b), the missing 

a b

a b
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cesium site 3 in datasets # 2 and 3 (Table 3-11) is most likely due to the slight differences in 

crystal packing. 

 

 
Figure 3-56. Superposition of p62_1-109 models from crystals with different unit cell sizes. (a) 
Surface and cartoon in grey correspond to dataset # 4. The cesium sites are displayed as spheres. 
The red cartoon corresponds to dataset # 2. The loop region at the top is not present in the red model, 
due to disorder. (b) Detailed view of the loop region with cesium site 3. The orange mesh displays the 
anomalous density contoured at 3 σ. 

 

The cesium substructure and anomalous density of HEWL after different CsCl 

supplementation is depicted in Figure 3-57. The substructure for the protein supplemented 

with 0.25 M CsCl only during dissolving of the protein powder (dataset # 1) is not shown, as 

no bound cesium ions could be observed (Table 3-12). 

a b
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Figure 3-57. Cesium substructure of HEWL after different supplementation of CsCl. HEWL is 
represented as grey surface, the cesium ions are represented as spheres. Orange meshes display the 
anomalous density contoured at 3 σ. (a) Protein dissolved in 0.25 M CsCl and supplemented with 
0.25 M CsCl to the cryo-protectant solution. (b) Protein dissolved in water and supplemented with 
1.71 M CsCl to the cryo-protectant solution. (c) Protein dissolved in 0.25 M CsCl and supplemented 
with 1.71 M CsCl to the cryo-protectant solution. 

 

3.10.4. Influence of cesium on the overall structure 

All protein structures from the different approaches of CsCl supplementation were 

superimposed to each other, and the calculated RMSD values are given in Table 3-13 

(p62_1-109) and Table 3-14 (HEWL). 

As seen from the RMSD values, the supplementation with CsCl had hardly any influence on 

the overall protein structure, as all models of all approaches are very similar. However, the 

presence of a cesium ion at site 2 had a slight influence on the local protein conformation of 

HEWL, as it is apparent from the flip of the backbone carbonyl seen in Figure 3-59 (compare 

c and d). 

c

a b
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Table 3-13. RMSD values between the p62_1-109 protein models from all datasets. 

 
RMSD values in Å, calculated by LSQ Superpose via Coot, including all atoms. 
Number of aligned atoms is given in parentheses. 

 

Table 3-14. RMSD values between the HEWL protein models from all datasets. 

 
RMSD values in Å, calculated by LSQ Superpose via Coot, including all atoms. 
Number of aligned atoms is given in parentheses. 

 

3.10.5. Substitution of potassium ions with cesium 

The question was addressed if ion binding sites are interchangeable between potassium and 

cesium, or if cesium ions occupy different positions than potassium ions. Therefore, 

p62_1-109 (dataset # 6) and HEWL (dataset # 6 and 7) were treated with KCl in the absence 

of CsCl. Figure 3-58 depicts a comparison between the potassium and cesium substructures 

of p62_1-109. With a comparable KCl concentration only one potential potassium site could 

be observed where potassium occupies position 4; a detailed view is given in Figure 3-58 c, 

d. 

# 2 3 4 5 6

1 0.823 (819) 0.989 (850) 0.590 (879) 0.257 (910) 0.609 (867)

2 x 0.679 (839) 0.925 (819) 0.831 (814) 0.899 (807)

3 - x 1.099 (850) 0.975 (845) 1.107 (838)

4 - - x 0.597 (874) 0.525 (894)

5 - - - x 0.637 (862)

# 2 3 4 5 6 7 8

1 0.475 (990) 0.635 (973) 0.494 (961) 0.786 (961) 0.646 (988) 0.563 (973) 0.558 (962)

2 x 0.466 (983) 0.581 (995) 0.645 (971) 0.774 (998) 0.730 (992) 0.717 (981)

3 - x 0.400 (969) 0.632 (1011) 0.791 (996) 0.744 (975) 0.720 (979)

4 - - x 0.599 (958) 0.703 (984) 0.572 (963) 0.596 (976)

5 - - - x 0.681 (984) 0.874 (963) 0.879 (967)

6 - - - - x 0.656 (990) 0.654 (994)

7 - - - - - x 0.326 (1021)
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Figure 3-58. Substitution of potassium sites with cesium in p62_1-109. Orange meshes display 
the anomalous density contoured at 3 σ. (a) Potassium substructure of p62_1-109 supplemented with 
0.9 M KCl in the crystallization solution and 0.9 M KCl in the cryo-protectant solution. (b) Overlay of 
the potassium substructure with the cesium substructure from p62_1-109 supplemented with 0.7 M 
CsCl in the crystallization solution and 0.7 M CsCl in the cryo-protectant solution. (c) Detailed view of 
cesium site 4. (d) Detailed view of potassium site 4. 

 

The potassium and cesium substructures of HEWL are compared in Table 3-15 and depicted 

in Figure 3-60. Similar to p62_1-109, fewer potassium sites compared to cesium sites could 

be observed with similar alkali chloride concentrations. The majority of the sites were 

conserved between cesium and potassium, yet unique potassium sites were observed as 

well (Table 3-15). 

 

a b

c d
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Table 3-15. Comparison of the potassium and cesium substructure of HEWL. 

 
1) Occupancy of sites conserved between Cs and K. Numbers correspond to positions in Figure 3-52. 
2) Occupancy of sites unique to potassium. 
3) Concentration of alkali salt supplemented during crystallization and cryo-protection. 

 

 
Figure 3-59. Substitution of potassium sites with cesium in HEWL. Orange meshes display the 
anomalous density contoured at 3 σ. (a) Potassium substructure of HEWL supplemented with 1.5 M 
KCl in the crystallization solution and 1.5 M KCl in the cryo-protectant solution. (b) Overlay of the 
potassium substructure with the cesium substructure from HEWL supplemented with 1.5 M CsCl in the 
crystallization solution and 1.5 M CsCl in the cryo-protectant solution. (c) Detailed view of cesium site 
2. (d) Detailed view of potassium site 2. 

 

When increasing the concentration of KCl, the number of potassium sites in HEWL increases 

as well, occupying more sites, which are also occupied by cesium (Table 3-15). Figure 3-60 

Conserved sites1)
Not

conserved2)

# K/Cs salt3) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 X-1 X-2 X-3

5 1.5 M CsCl 0.32 0.84 0.29 0.4 0.77 0.21 0.35 0.28 0.29 0.36 0.54 0.45 0.33 0.32 0.38 0.56

6 1.5 M KCl 0.53 0.55 0.46 0.48 0.84 0.49

7 3 M KCl 0.59 0.59 0.43 0.52 0.57 0.41 0.44 0.47 0.94 0.46 0.43

a b

c d
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depicts the potassium substructure of HEWL supplemented with 3 M KCl, compared to the 

cesium substructure at 1.5 M CsCl. 

 

 
Figure 3-60. Comparison of the cesium substructure to the potassium substructure at high 
potassium concentrations in HEWL. Orange meshes display the anomalous density contoured at 
3 σ. (a) Front view of the potassium substructure of HEWL supplemented with 3 M KCl in the 
crystallization solution. The cryo-protectant was present in the crystallization solution. (b) Back view of 
the potassium substructure of (a). (c) Overlay with the cesium substructure of HEWL supplemented 
with 1.5 M CsCl in the crystallization solution and 1.5 M CsCl in the cryo-protectant solution. (d) Back 
view of the overlay from (c). 

 

In HEWL dataset # 8 one sodium ion could be positioned (Figure 3-61). When compared to 

HEWL supplemented with KCl or CsCl, the sodium ion could be substituted with potassium 

(Figure 3-61). Cesium however, was not able to substitute at this position for the sodium ion, 

most likely due to insufficient flexibility to accommodate for the significantly longer bonding 

distances of cesium. 

a b

c d
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Figure 3-61. Substitution of sodium sites with potassium in HEWL. (a) Sodium site of HEWL 
supplemented with 1.71 M NaCl in the crystallization solution. The cryo-protectant was present in the 
crystallization solution. (b) Potassium site corresponding to the sodium site in (a). The protein was 
supplemented with 1.5 M KCl in the crystallization solution and 1.5 M KCl in the cryo-protectant 
solution. The orange mesh displays the anomalous density contoured at 3 σ. 

 

3.11. Dual complexes 

To elucidate the interaction network within TFIIH and to improve stability, purification 

behavior, and crystallization propensities, co-expression and co-purification of dual 

complexes of TFIIH subunits and constructs thereof was conducted. Additionally, analysis by 

native PAGE was pursued to further investigate and confirm interaction sites. 

 

3.11.1. XPB and p52 

3.11.1.1. XPB/p52 

Full-length XPB and p52 were co-expressed in BL21 CodonPlus (DE3) RIL cells. However, 

after induction only overexpression of p52 could be observed (Figure 3-62 a). Accordingly, 

only p52 could be obtained from the IMAC (Figure 3-62 b). 

 

a b
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Figure 3-62. Co-expression and purification of XPB and p52 from BL21 CodonPlus (DE3) RIL 
cells. (a) The amount of XPB and p52 during expression before and after induction was monitored 
over time via SDS-PAGE. (b) SDS-PAGE analysis of IMAC samples. L: lysate; FT: flow through; 
W: wash. 

 

As co-expression of XPB and p52 in BL21 CodonPlus (DE3) RIL cells failed, co-expression 

and co-purification in ArcticExpress (DE3) RIL cells was attempted. Purification of XPB/p52 

with the standard buffer system is depicted in Figure 3-63. XPB and p52 eluted clearly 

separately during the SEC. XPB aggregated and was most likely bound by a chaperonin, 

comparable to the purification of the single protein from ArcticExpress (DE3) RIL cells (see 

3.2.2, Figure 3-3). 

Overexpression of XPB in the absence of p52 could be observed in BL21 CodonPlus (DE3) 

RIL cells before, with significant amounts of XPB 3 h after induction (see 3.2.2, Figure 3-2). 

As expression of p52 might interfere with expression of XPB, p52 expression was induced 

with a delay of 3 h. Yet, this approach also yielded only p52 expression; the result is depicted 

in Figure 3-64. 
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Figure 3-63. Co-purification of XPB and p52 from ArcticExpress (DE3) RIL cells. (a) SDS-PAGE 
analysis of IMAC samples. FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 26/60 
Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers 
correspond to peaks in (b). *: chaperonin. 

 

 
Figure 3-64. Co-purification of XPB and p52 from BL21 CodonPlus (DE3) RIL cells with delayed 
p52 induction. Expression of p52 was induced 3 h after induction of XPB. (a) SDS-PAGE analysis of 
IMAC samples. L: lysate; FT: flow through; W: wash. (b) SEC elution profile from a Superdex 200 
10/300 GL column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to 
peaks in (b). 
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In order to address the strong bias on p52 expression, co-expression and co-purification of 

non-tagged (nT) p52 with a gene optimized XPB was attempted. Co-expression was 

performed in SoluBL21 cells, and the result from the co-purification using the standard buffer 

system is shown in Figure 3-65. Similar to previous attempts, only p52 could be obtained. 

Due to the fact that p52 was non-tagged the yields were much lower compared to purification 

of p52 by itself, as most likely only unspecifically bound p52 was retained during the IMAC. 

 

 
Figure 3-65. Co-purification of gene optimized XPB and p52nT from SoluBL21 cells. (a) SDS-
PAGE analysis of IMAC samples. P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a 
HiLoad 16/600 Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. 
Numbers correspond to peaks in (b). 

 

3.11.1.2. XPB_1-345/p52 

As the N-terminal extension of XPB interacts with p52 [25], co-expression of XPB_1-345, 

encompassing the N-terminal extension and the DRD (Figure 3-1) with non-tagged p52 

(p52nT) was performed. Purification of XPB_1-345/p52nT from BL21 CodonPlus (DE3) RIL 

cells with the standard buffer system is shown in Figure 3-66. Based on the SDS-PAGE 

analysis, only one protein was expressed (Figure 3-66 a, c). However, XPB_1-345 and 

p52nT run on the same height in an SDS-PAGE (Figure 3-67 b). Furthermore, the peak from 

the elution volume of XPB_1-345/p52nT was shifted to a lower elution volume compared to 

the single proteins (Figure 3-67 a). Thus, it was speculated that co-purification of XPB_1-345 

and p52nT was successful. Crystallization trials at 12.6 mg/ml with the commercial 

crystallization screens using the crystallization robot were performed, but no crystals could 

be obtained. 
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Figure 3-66. Co-purification of XPB_1-345 and p52nT. (a) SDS-PAGE analysis of IMAC samples. 
P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg 
column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(b). 

 

 
Figure 3-67. Evidence for successful co-purification of XPB_1-345 and p52nT. (a) Overlay of 
SEC elution profiles from co-purified XPB_1-345/p52nT with elution profiles from the single 
components. (b) Comparison of the SDS-PAGEs of XPB_1-345 and p52nT. The protein marker band 
for 55 kDa is indicated. 
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3.11.1.3. XPB_1-345/p52_1-349 

To investigate the first XPB binding site of p52, XPB_1-345 was co-expressed and co-

purified with the non-tagged construct p52_1-349, lacking the second XPB binding site 

(Figure 3-33). Purification of XPB_1-345/p52nT_1-349 from BL21 CodonPlus (DE3) RIL cells 

with the standard buffer system is depicted in Figure 3-68. No stoichiometric complex 

between XPB_1-345 and p52nT_1-349 could be obtained. The majority of p52nT_1-349 

seemed to remain in the flow through and wash fraction (Figure 3-68 a), suggesting only 

weaker interactions. 

 

 
Figure 3-68. Co-purification of XPB_1-345 and p52nT_1-349. (a) SDS-PAGE analysis of IMAC 
samples. P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 
200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to 
peaks in (b) 

 

3.11.1.4. XPB_1-345/p52_121-E 

To investigate the second XPB binding site of p52, XPB_1-345 was co-expressed and co-

purified with the non-tagged construct p52_121-E, lacking the first XPB binding site (Figure 

3-33). Purification of XPB_1-345/p52nT_121-E from BL21 CodonPlus (DE3) RIL cells with 

the standard buffer system is depicted in Figure 3-69. Only high amounts of XPB_1-345 

could be obtained, with a lower running band, which might correspond to p52nT_121-E. 

However, the presumed band for p52nT_121-E was highly substoichiometric. 
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Figure 3-69. Co-purification of XPB_1-345 and p52nT_121-E. (a) SDS-PAGE analysis of IMAC 
samples. P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 
200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to 
peaks in (b). 
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As co-purification of XPB_1-345/p52nT_121-E failed (see 3.11.1.4), co-expression and co-

purification with the modified construct p52_121-E_dL (Figure 3-33) was attempted. In this 

approach, both proteins contained a His-tag. The result of the IMAC is shown in Figure 3-70, 

and in contrast to co-purification with p52nT_121-E (Figure 3-69), only p52_121-E_dL could 

be obtained. 

 

 
Figure 3-70. SDS-PAGE analysis of IMAC samples of XPB_1-345 co-purified with p52_121-E_dL 
from BL21 CodonPlus (DE3) RIL cells. P: pellet; FT: flow through; W: wash. 
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3.11.1.6. XPB_116-345/p52 

To narrow down the p52 binding site of XPB and to obtain a complex suitable for 

crystallization, XPB_116-345 (Figure 3-1) was co-expressed and co-purified with non-tagged 

p52. Purification of XPB_116-345/p52nT from BL21 CodonPlus (DE3) RIL cells in standard 

buffer conditions is shown in Figure 3-71. Both proteins co-eluted in stoichiometric amounts 

in a single peak during the SEC. Importantly, construct XPB_116-345 was insoluble when 

purified on its own (Figure 3-15). Most likely, XPB_116-345 is kept in solution by p52nT, 

strongly indicative of complex formation. XPB_116-345/p52nT was subjected to 

crystallization trials at 7.8 mg/ml with the commercial crystallization screens using the 

crystallization robot, but no crystals could be obtained. 

 

 
Figure 3-71. Co-purification of XPB_116-345 and p52nT. (a) SDS-PAGE analysis of IMAC samples. 
P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg 
column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(b). 
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XPB_116-245 compared to XPB_116-345, as for the XPB_116-345/p52nT co-purification 

(see 3.11.1.6, Figure 3-71), no such band occurred. Only SEC elution fractions without this 

additional band were pooled and subjected to further studies. 

 

 
Figure 3-72. Co-purification of XPB_116-245 and p52nT. (a) SDS-PAGE analysis of IMAC samples. 
P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg 
column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(b). 

 

XPB_116-245/p52nT was subjected to crystallization trials with the commercial crystallization 

screens using the crystallization robot. At a concentration of 2.9 mg/ml small needle like 

crystals could be obtained in a single tray of Wizard™ Classic 1 & 2 HT96 after a time period 

of about 5 months (Figure 3-73). Various fine screens in 96 well format using the 

crystallization robot and in the 24 well format were set up. However, the crystals could not be 

reproduced. 

 

 
Figure 3-73. Crystallization of XPB_116-245/p52nT. Crystals appeared after 5 months. Reservoir 
solution: 0.1 M Tris-HCl pH 7.0; 0.2 M MgCl2; 10 % (w/v) PEG 8000. 
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The crystals were harvested and subjected to synchrotron radiation at beamline ID29 at the 

ESRF. Protein crystal diffraction could be observed, yet the resolution was limited to about 

8-9 Å (Figure 3-74). 

 

 
Figure 3-74. X-ray diffraction pattern of an XPB_116-245/p52nT crystal. The crystal was harvested 
from a crystallization condition consisting of 0.1 M Tris-HCl pH 7.0, 0.2 M MgCl2, and 10 % (w/v) PEG 
8000 in the reservoir. Two orientations of the crystal in the beam, 90° apart from each other, are 
shown. The outmost areas of the detector are omitted. 

 

3.11.1.8. Native PAGE 

To further assess the interaction between XPB_1-345 and the two XPB binding sites of p52, 

the interaction of XPB_1-345 with p52 and p52nT/p8, as well as p52_121-E, lacking the first 

XPB binding site, was tested via native PAGE (Figure 3-75). Complex formation between 

XPB_1-345 and p52, as well as p52nT/p8 could be observed. The appearance of a faint 

band for XPB_1-345 mixed with p52_121-E indicated that the second XPB binding site of 

p52 might be sufficient for the XPB-p52 interaction. 
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Figure 3-75. Interaction analysis between XPB_1-345 and p52, p52_121-E, or p52nT/p8 via 
native PAGE. P52*: protein batch stored over night at 4 °C. 

 

3.11.2. p62 and p44 

3.11.2.1. p62/p44 

Full-length p62 and p44 were co-expressed in BL21 CodonPlus (DE3) RIL cells and initial 

co-purification with the standard buffer system is shown in Figure 3-76. Both proteins were 

present, yet it was unclear, if a complex could be obtained, as the peak from the SEC was 

asymmetric (Figure 3-76 b) and the bands in the SDS-PAGE analysis appeared to be not 

stoichiometric (Figure 3-76 c). Due to the high purity of the sample, crystallization trials at 

9.9 mg/ml with the standard crystallization screens using the crystallization robot were 

performed yielding no crystals. 
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Figure 3-76. Co-purification of p62 and p44. (a) SDS-PAGE analysis of IMAC samples. FT: flow 
through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg column. (c) SDS-
PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in (b). 

 

To test if a complex between p62 and p44 was formed, pooled peak fractions were 

compared to the single proteins via native agarose gel electrophoresis (Figure 3-77). 5 µl of 

each protein sample at 40 µM was mixed with 6x OrangeG loading dye in a 5:1 ratio and 

loaded on the gel. Gel electrophoresis was pursued at 70 V for 3 h at 4 °C in Tris/Glycine 

buffer. Compared to the single proteins, an additional band appeared for the co-purified 

proteins, indicative of complex formation (Figure 3-77). P44 was provided by Dominik 

Schmitt. 

 

 
Figure 3-77. Native agarose gel electrophoresis of co-purified p62/p44 and the single 
components. P62 + p44: mixed single proteins; p62/p44: co-purified proteins. 
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The composition of the agarose gel is given below. 

 

Native agarose gel 

- 0.8 % (w/v) Agarose 

- 12.5 mM Tris 

- 96 mM Glycine 

 

To prove complex formation and to obtain a stoichiometric p62/p44 complex, co-expression 

and co-purification with a His-tag only on one of the subunits was attempted. As p62 seemed 

to be more prominent during initial co-purification trials (Figure 3-76 c), non-tagged p62 

(p62nT) was used. Co-purification of p62nT and p44 from BL21 CodonPlus (DE3) RIL cells 

using the standard buffer conditions is depicted in Figure 3-78. Stoichiometric amounts of 

p62nT and p44 during the IMAC could be obtained, with excessive p62nT remaining in the 

flow through and wash fraction (Figure 3-78 a). However, the SEC elution profile exhibited a 

step wise appearance, presumably representing different oligomeric states of p62nT/p44 

(Figure 3-78 b). Fractions from the main peak eluting between 50 and 60 ml were pooled. 

This protein pool was subjected to crystallization trials at 3.4 mg/ml and 6.7 mg/ml with the 

commercial crystallization screens using the crystallization robot, but yielded no crystals. 

 

 
Figure 3-78. Co-purification of p62nT and p44 with standard buffer conditions. (a) SDS-PAGE 
analysis of IMAC samples. FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 
Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers 
correspond to peaks in (b). 
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To avoid the different oligomeric states, co-purification of p62nT and p44 under reducing 

conditions was attempted. Purification with TCEP supplemented to the purification buffers is 

depicted in Figure 3-79. A stoichiometric protein complex, eluting in one symmetric peak was 

obtained. Crystallization trials at 11.5 mg/ml with the commercial crystallization screens using 

the crystallization robot were performed yielding no crystals. Composition of the TCEP 

containing buffers is given below. 

 

Lysis buffer Elution buffer 

- 20 mM Tris-HCl pH 7.5 - 20 mM Tris-HCl pH 7.5 

- 0.3 M NaCl - 0.3 M NaCl 

- 5 mM Imidazole - 0.25 M Imidazole 

- 1 mM TCEP - 1 mM TCEP 

 

Gel filtration buffer 

- 20 mM Tris-HCl pH 7.5 

- 0.25 M NaCl 

- 1 mM TCEP 

 

 
Figure 3-79. Co-purification of p62nT and p44 in the presence of TCEP. (a) SEC elution profile 
from a HiLoad 16/600 Superdex 200 pg column. (b) SDS-PAGE analysis of elution fractions from the 
SEC. Numbers correspond to peaks in (a). 

 

3.11.2.2. p62/p44_1-367 

To locate the p62 binding site on p44, construct p44_1-367 lacking the C-terminal ring finger 

domain (Figure 3-39) was co-expressed and co-purified with non-tagged p62. Purification of 

p62nT/p44_1-367 from BL21 CodonPlus (DE3) RIL cells with the standard buffer system is 

depicted in Figure 3-80. A stoichiometric complex, eluting in a single peak could be obtained. 

Crystallization trials at 8.3 mg/ml were performed with the commercial crystallization screens 

using the crystallization robot yielding no crystals. 
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Figure 3-80. Co-purification of p62nT and p44_1-367. (a) SDS-PAGE analysis of IMAC samples. P: 
pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg 
column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(b). 

 

3.11.2.3. p62/p44_286-E 

To further investigate the p62 binding site on p44, construct p44_286-E lacking the 

N-terminal vWA like domain (Figure 3-39) was co-expressed and co-purified with non-tagged 

p62. The purification of p62nT/p44_286-E from BL21 CodonPlus (DE3) RIL cells with the 

standard buffer system is shown in Figure 3-81. P62nT and p44_286-E co-eluted during the 

SEC in stoichiometric amounts in a single peak, indicative of complex formation. However, 

significant additional bands were visible beneath p62 and p44. As the number and intensity 

of these bands seemed to increase from IMAC to SEC, degradation might be a possible 

cause for this observation. P62nT/p44_286-E was subjected to crystallization trials at 

7.0 mg/ml, but no crystals could be obtained. 
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Figure 3-81. Co-purification of p62nT and p44_286-E. (a) SDS-PAGE analysis of IMAC samples. P: 
pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg 
column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(b). 
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To further narrow down the p62 binding site on p44, construct p44_286-367 lacking both, the 

N-terminal vWA like domain and the C-terminal ring finger domain (Figure 3-39) was co-

expressed and co-purified with non-tagged p62. Purification of p62nT/p44_286-367 from 

BL21 CodonPlus (DE3) RIL cells with the standard buffer system is depicted in Figure 3-82. 

Both proteins co-eluted in stoichiometric amounts during the SEC in a single peak, localizing 

the p62 binding site to the central zinc finger domain of p44. As also observed for 

p62/p44_286-E (see 3.11.2.3), significant additional bands were visible in the SDS-PAGE. 

As a quite prominent band could be observed in the SDS-PAGE after the SEC (Figure 3-82 

c), the possibility of a stable degradation product was tested by limited proteolysis. However, 

this approach was not successful, as all protein was rapidly degraded by addition of protease 

(data not shown). Crystallization trials with p62nT/p44_286-367 at 10.4 mg/ml with the 

commercial crystallization screens using the crystallization robot were performed, but no 

crystals could be obtained. 
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Figure 3-82. Co-purification of p62nT and p44_286-367. (a) SDS-PAGE analysis of IMAC samples. 
P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg 
column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(b). 

 

3.11.2.5. p62/p44_1-326 and p62/p44_327-E 

To define the p62 binding site on p44 more precisely, two p44 constructs either containing 

the first half (p44_1-326, Figure 3-39) or second half (p44_327-E, Figure 3-39) of the central 

zinc finger domain were tested for co-expression and co-purification with non-tagged p62. 

Purification of p62nT/p44_1-326 from BL21 CodonPlus (DE3) RIL cells with the standard 

buffer system is depicted in Figure 3-83. Both proteins were present, but eluted clearly 

separately during the SEC (Figure 3-83 b, c). Purification of p62nT/p44_327-E from BL21 

CodonPlus (DE3) RIL cells with the standard buffer system is depicted in Figure 3-84. Here, 

only small amounts of p62nT could be obtained. Taken together, these results suggest that 

the splitting of the central zinc finger domain of p44 destroyed secondary structure elements, 

and thus rendered the interaction with p62 impossible. 
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Figure 3-83. Co-purification of p62nT and p44_1-326. (a) SDS-PAGE analysis of IMAC samples. P: 
pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg 
column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(b). 

 

 
Figure 3-84. Co-purification of p62nT and p44_327-E. (a) SDS-PAGE analysis of IMAC samples. P: 
pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg 
column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(b). 

 

a b

c

1

2

3

4

0

40

80

0 20 40 60 80 100 120 140

A
2

8
0

 [
m

A
U

]

Elution volume [ml]

- p62
F

T
W Elution fractionsP

- p44

4321

- p62
- p44

a b

c

1

2 3

4

- p62

- p44?

F
T

W Elution fractionsP

- p62

- p44?

31 2 4

0

60

120

0 20 40 60 80 100 120 140

A
2

8
0

 [
m

A
U

]

Elution volume [ml]



3. Results Dual complexes 

136 

3.11.2.6. p62_435-E/p44_286-367 

To confirm the p44 binding site at the C-terminus of p62 and to obtain a minimal complex for 

crystallization attempts, p44_286-367 was co-expressed and co-purified with non-tagged 

p62_435-E, a construct encompassing the C-terminal 243 residues of p62 (Figure 3-19). 

Purification of p62nT_435-E/p44_286-367 from BL21 CodonPlus (DE3) RIL cells with the 

standard buffer system is depicted in Figure 3-85. A stoichiometric complex, eluting in a 

single peak could be obtained. Crystallization trials at 4.7 mg/ml with the commercial 

crystallization screens using the crystallization robot were performed, but no crystals could 

be obtained. 

 

 
Figure 3-85. Co-purification of p62nT_435-E and p44_286-367. (a) SDS-PAGE analysis of IMAC 
samples. P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 
200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to 
peaks in (b). 

 

3.11.2.7. Native PAGE 

To test the vWA like domain of p44 for its interaction with p62, the construct p44_1-285, 

encompassing the vWA like domain (Figure 3-39), was subjected to native PAGE against 

different p62 constructs. None of the p62 constructs led to a band shift, thus suggesting that 

the vWA like domain of p44 does not interact with p62 (Figure 3-86). P44_1-285 was 

provided by Dominik Schmitt. 
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Figure 3-86. Interaction analysis between p44_1-285 and different p62 constructs via native 
PAGE. 

 

3.11.3. p52 and p34 

TFIIH core can be subdivided into two submodules: XPD/p44/p34 and XPB/p52/p8 [79]. How 

these submodules are linked together is so far not well characterized. One possibility might 

be an interaction via p52 and p34. In an attempt to firmly establish a possible interaction 

between p52 and p34, co-expression and co-purification of these two proteins was 

conducted. 

 

3.11.3.1. p52/p34 

P52nT was co-expressed with p34 in BL21 CodonPlus (DE3) RIL cells, and an initial co-

purification using the standard buffer system is depicted in Figure 3-87. Both proteins could 

be obtained, but did not elute as a homogenous peak during the SEC (Figure 3-87 b). In 

addition, the band intensities of both proteins in the SDS-PAGE analysis of the SEC did not 

correspond to each other (Figure 3-87 c), indicative that no complex was formed. 
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Figure 3-87. Co-purification of p52nT and p34 in standard buffer conditions. (a) SDS-PAGE 
analysis of IMAC samples. P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 
16/600 Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers 
correspond to peaks in (b). 

 

As complex formation between p52 and p34 in standard buffer conditions was ambiguous, 

co-purification under reducing conditions was attempted utilizing TCEP. Purification of 

p52nT/p34 from BL21 CodonPlus (DE3) RIL cells in the presence of TCEP is depicted in 

Figure 3-88. Both proteins co-eluted in stoichiometric amounts in a single peak during the 

SEC, indicative of complex formation. The composition of the TCEP containing buffer system 

is given below. 
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Figure 3-88. Co-purification of p52nT and p34 in presence of TCEP. (a) SDS-PAGE analysis of 
IMAC samples. P34 partly stuck to the pockets. P: pellet; FT: flow through; W: wash. (b) SEC elution 
profile from a HiLoad 16/600 Superdex 200 pg column. (c) SDS-PAGE analysis of elution fractions 
from the SEC. Numbers correspond to peaks in (b). 

 

3.11.3.2. p52/p34_1-277 

To further characterize the interaction between p52 and p34, and to narrow down the p52 

binding site on p34, co-expression and co-purification of construct p34_1-277, lacking the 

C-terminal zinc finger domain (Figure 3-40), with non-tagged p52 was attempted. Purification 

of p52nT/p34_1-277 from BL21 CodonPlus (DE3) RIL cells in the TCEP containing buffer 

system described above (see 3.11.3.1) is depicted in Figure 3-89. Both proteins co-eluted 

during the SEC in stoichiometric amounts, indicative of for complex formation. However, the 

yield and quality of the complex seemed to be inferior compared to the complex utilizing full-

length p34. 
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Figure 3-89. Co-purification of p52nT and p34_1-277. (a) SDS-PAGE analysis of IMAC samples. P: 
pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg 
column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(b). 

 

3.11.4. p52 and p8 

To further stabilize p52 and to establish the interaction with p8 in the C. thermophilum model 

system, p52 was co-expressed and co-purified with p8. To ensure a stoichiometric complex, 

p52nT together with tagged p8 was used. P52 was chosen as non-tagged partner based on 

two considerations: First, during SEC an excess of p8 should readily be separated from 

p52/p8 compared to an excess of p52 due to the larger size difference. Second, because of 

the small size, p8 is difficult to visualize on an SDS-PAGE. The occurrence of high amounts 

of non-tagged p52 would then be an indication of the presence of p8 as well. P52nT/p8 was 

co-expressed in BL21 CodonPlus (DE3) RIL cells, and the purification with a Hepes buffer 

system is depicted in Figure 3-90. The composition of the Hepes buffer system is given 

below. 

 

Lysis buffer Elution buffer 

- 20 mM Hepes-NaOH pH 8.0 - 20 mM Hepes-NaOH pH 8.0 

- 0.375 M NaCl - 0.375 M NaCl 

- 5 mM Imidazole - 0.25 M Imidazole 
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Gel filtration buffer 

- 20 mM Hepes-NaOH pH 8.0 

- 0.375 M NaCl 

 

 
Figure 3-90. Co-purification of p52nT and p8. (a) SEC elution profile from a HiLoad 16/600 
Superdex 200 pg column. (b) SDS-PAGE analysis of elution fractions from the SEC. The number 
corresponds to the peak in (a). 

 

3.11.5. XPB and MAT1 

As an interaction between MAT1 and XPB has been suggested [80], co-expression of non-

tagged XPB with MAT1_1-248 (Figure 3-43) was attempted. The MAT1_1-248 expression 

vector was provided by Florian Sauer. MAT1_1-248 has been inserted into a modified 

pCDFDuet™-1 vector (Novagen), containing the multiple cloning site of the pETM-22 vector 

(EMBL). Thus, MAT1_1-248 contained an N-terminal thioredoxin tag, followed by a hexa-

histidine tag and a 3C cleavage site. Co-expression was performed in BL21 CodonPlus RIL 

cells, and co-purification of XPBnT and MAT1_1-248 is depicted in Figure 3-91. A clear band 

on the expected height of MAT1_1-248 was observed, but no band on the expected height of 

XPB. Most likely, expression of MAT1_1-248 interfered with the expression of XPB, as also 

observed in the co-expression attempts of XPB with p52 (see 3.11.1.1). 
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Figure 3-91. Co-purification of XPBnT and MAT1_1-248. (a) SDS-PAGE analysis of IMAC samples. 
P: pellet; FT: flow through; W: wash. (b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg 
column. (c) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(b). 

 

3.12. The TFIIH core interaction network 

The different dual complexes established above (see 3.11) were utilized in native PAGE to 

investigate and elucidate the intricate interaction network within TFIIH core. 

 

3.12.1. Anchoring of XPD 

Of critical importance for the structural integrity of TFIIH is the anchoring of XPD. XPD is 

anchored to TFIIH core via the vWA like domain of p44 [30]. Furthermore, it has been 

suggested that p62 participates in XPD anchoring [80, 481]. Therefore, XPD was tested for 

its interaction with the different p62/p44 complexes described above (see 3.11.2). The native 

PAGE analysis is depicted in Figure 3-92. Band shifts could only be observed for p62/p44 

complexes where the vWA like domain of p44 was present. This observation led to two 

hypotheses: First, p62 does not interact with XPD directly, as full-length p62 was present in 

each complex tested. Second, the central zinc finger domain and the C-terminal ring finger 

domain of p44 do not participate in the XPD interaction. 

a b

c 1

2

3

0

60

120

0 20 40 60 80 100 120 140

A
2

8
0

 [
m

A
U

]

Elution volume [ml]

4

- XPB?

31 2 4

- XPB?

F
T

W Elution fractionsP

- MAT1

- MAT1



3. Results The TFIIH core interaction network 

143 

 
Figure 3-92. Interaction analysis between XPD and different p62/p44 complexes via native 
PAGE. 

 

3.12.2. The link between the submodules XPD/p44/p34 and 

XPB/p52/p8 

TFIIH core can be subdivided into two functionally associated subcomplexes: XPD/p44/p34 

and XPB/p52/p8 [79]. The interactions within these subcomplexes are firmly established, the 

interactions between these two submodules however, are less well characterized. To shed 

light on how these subcomplexes associate, several interaction studies were conducted. 

As a starting point, the single subunits XPD, XPB_1-345, p34, and p8 were examined for 

interaction via native PAGE (Figure 3-93). No interaction of p8 with XPD or p34 could be 

observed, suggesting that the link is not established via p8. Also, no interaction between 

XPD and XPB_1-345 or between p34 and XPB_1-345 could be detected. 
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Figure 3-93. Interaction analysis of XPD, XPB_1-345, p34, and p8 via native PAGE. 

 

Furthermore, XPB and XPD were analyzed for their direct interaction, as well as for the 

interaction with p62nT/p44 or p52nT/p8. The results are depicted in Figure 3-94, indicating 

no interaction between XPB and XPD. Also, no interaction between XPD and p52nT/p8 or 

between XPB and p62nT/p44 could be observed. As expected, band shifts for XPB in 

presence of p52nT/p8 could be observed. Remarkably, when XPB, p52nT/p8, and XPD were 

mixed, a certain amount of p52nT/p8 seemed to be not shifted, what was not observed when 

only XPB and p52nT/p8 were mixed. The cause of this observation remained unclear, and 

possible explanations are highly speculative. Possibilities might be pipetting errors or some 

influence of XPD on the complex formation between XPB and p52nT/p8. 
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Figure 3-94. Interaction analysis of XPD, XPB, p62nT/p44, and p52nT/p8 via native PAGE. The 
XPB/p52nT/p8 complex bands are indicated by dashed red lines. 

 

To determine a possible interaction between p62 and p52, p52nT/p8 was tested against the 

different p62/p44 complexes. Native PAGE analysis did not indicate band shifts for any of 

these complexes (Figure 3-95), thus not supporting a link via p62-p52, p62-p8, or p52-p44. 

 

 
Figure 3-95. Interaction analysis of p52nT/p8 and different p62/p44 complexes via native PAGE. 
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To assess the role of p34 towards connecting the two submodules, native PAGE analysis 

was performed based on the observation that p62nT/p44 and p52nT/p8 do not interact 

(Figure 3-95). The addition of p34 would potentially be able to mediate complex formation 

between p62nT/p44 and p52nT/p8, resulting in the appearance of a distinct band. The 

approach is depicted in Figure 3-96. A single band could be observed for the mixture of 

p62nT/p44, p52nT/p8, and p34, clearly distinct from any of the control bands. This finding 

strongly suggests that p34 is responsible for linking the two TFIIH core submodules 

XPB/p52/p8 and XPD/p44/p34. This crucial link is mediated via the interaction of p34 and 

p52, as established through the co-purification of p52nT/p34 described above (see 3.11.3). 

In addition, this approach led to the assembly of a higher order TFIIH core complex, 

containing p62, p52, p44, p34, and p8, termed Core5. Furthermore, the usage of the bridging 

function of p34 via native PAGE provided a powerful and sensitive tool to further investigate 

the TFIIH core interaction network. 

 

 
Figure 3-96. Analysis of the ability of p34 to mediate complex formation between p62nT/p44 
and p52nT/p8 via native PAGE. 

 

To investigate the p34 link more specifically, the constructs p34_1-277 and p34_278-E 

(Figure 3-40) were tested for their ability to mediate Core5 formation. P34_1-277 was 

provided by Dominik Schmitt, p34_278-E was provided by Elisabeth Schönwetter. Native 

PAGE analysis using p34_1-277 is depicted in Figure 3-97. Successful formation of the 

Core5 complex could be detected, indicating that the vWA like domain of p34 is sufficient for 

the interaction. This notion is supported by the band shift observed for the mixture of 
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p52nT/p8 and p34_1-277 in the native PAGE, and by the observation of a p52nT/p34_1-277 

complex above (see 3.11.3.2). Native PAGE analysis using p34_278-E is depicted in Figure 

3-98. No formation of the Core5 complex could be detected, however no clear band for 

p34_278-E could be observed, rendering the interpretation uncertain. 

 

 
Figure 3-97. Analysis of the ability of p34_1-277 to mediate Core5 formation via native PAGE. 
The Core5 complex band is indicated by a dashed red line. 
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Figure 3-98. Analysis of the ability of p34_278-E to mediate Core5 formation via native PAGE. 

 

To further investigate the contribution of p52 to the submodule linkage, construct p52_121-E 

(Figure 3-33) was tested for the ability to sustain complex formation mediated by p34 (Figure 

3-99). A slight p34 mediated shift could be observed for p52_121-E, indicating that the very 

N-terminus of p52 is not necessary for interaction with p34. As controls, complex formation 

between p62nT/p44, p52nT/p8, and p34 as well as between p62nT/p44, p52, and p34 was 

monitored. In the native PAGE, p62nT/p44/p52nT/p8/p34 resulted in a clear complex band. 

In contrast, complex formation of p62nT/p44/p52/p34 was weaker and ambiguous. 

Presumably, this is due to a stabilizing effect of p8 on p52. Then again, it might also indicate 

a participation of p8 in the p52/p34 interaction. However, no interaction between p34 and p8 

could be observed via native PAGE (Figure 3-93). 
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Figure 3-99. Analysis of the ability of p52_121-E to sustain complex formation mediated by p34 
via native PAGE. The Core5 and p62nT/p44/p34/p52_121-E complex bands are indicated by dashed 
red lines. The assumed p62nT/p44/p34/p52 complex bands are indicated by dashed orange lines. 
P52*: protein batch stored over night at 4 °C. 

 

3.12.3. The extended interface between p44 and p34 

The bridging function of p34 established above (see 3.12.2) was utilized for a thorough 

investigation of the interaction interface between p44 and p34. P34 consists of an N-terminal 

vWA like domain and a C-terminal zinc finger domain, and it has been shown that the former 

interacts with the C-terminal ring finger domain of p44 [48]. To assess the role of the 

C-terminal zinc finger domain of p34 towards its interaction with p44, the p34 variant A151E 

was utilized. The single amino acid substitution A151E interferes with the binding interface 

between the vWA like domain of p34 and the C-terminal ring finger domain of p44 and was 

provided by Elisabeth Schönwetter (Radu, Schönwetter et al., [482]). However, analysis via 

native PAGE showed that P34_A151E was able to mediate Core5 formation between 

p62nT/p44 and p52nT/p8 (Figure 3-100). Next, the A151E variant of the shortened construct 

p34_1-277 (also provided by Elisabeth Schönwetter), lacking the C-terminal zinc finger 

domain (Figure 3-40), was analyzed towards its ability to mediate Core5 formation (Figure 

3-101). In contrast to p34_A151E, no Core5 formation could be observed with this construct. 

Taken together, these results strongly suggest an extended binding interface between p44 

and p34, involving the C-terminal zinc finger domain of p34 in addition to its vWA domain. 
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Figure 3-100. Analysis of the ability of the p44 interface variant p34_A151E to mediate Core5 
formation via native PAGE. The Core5 complex bands are indicated by dashed red lines. 

 

 
Figure 3-101. Analysis of the ability of the p44 interface mutant p34_1-277_A151E to mediate 
Core5 formation via native PAGE. The Core5 complex band is indicated by a dashed red line. 
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Then the question was addressed if the binding interface also extends beyond the C-terminal 

ring finger domain of p44. For this purpose the p62nT/p44_1-367 complex (see 3.11.2.2), 

lacking the C-terminal ring finger domain of p44, was utilized. The ability of p62nT/p44_1-367 

to sustain Core5 formation with p52nT/p8 mediated by p34 was analyzed via native PAGE 

(Figure 3-102). Even though attenuated compared to the full-length complex, 

p62nT/p44_1-367 was able to successfully sustain Core5 formation, as it is apparent from 

the faint shifted band in lane 5, suggesting that the p34 binding site of p44 is extending 

beyond the C-terminal ring finger domain of p44. 

 

 
Figure 3-102. Analysis of the ability of p62nT/p44_1-367 to sustain Core5 formation via native 
PAGE. The Core5 complex bands are indicated by dashed red lines. 

 

To further investigate if the vWA like domain or the central zinc finger domain of p44 

contributes to the extended p34 binding interface, construct p44_1-285, only comprising the 

N-terminal vWA like domain (Figure 3-39), was analyzed for its ability to sustain complex 

formation with p52nT/p8 mediated by p34 via native PAGE (Figure 3-103). However, 

p44_1-285 failed to sustain complex formation, and no interaction between p44_1-285 and 

p34 without p52nT/p8 could be observed. Taken together, these results suggest that the 

central zinc finger domain of p44 participates in the interaction with p34 in addition to its 

C-terminal ring finger domain. 
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Figure 3-103. Analysis of the ability of p44_1-285 to sustain complex formation with p52nT/p8 
mediated by p34 via native PAGE. 

 

3.12.4. Verification of the p52 delta linker variant integrity 

The amino acid region 322-344 in p52 has been replaced by a short linker in p52_dL and 

p52_121-E_dL (Figure 3-33), in order to improve the crystallization propensities of p52. To 

ensure that this substitution has no impact on the structural and functional integrity of p52, 

the ability of p52_dL to successfully sustain Core5 formation was analyzed. For this purpose, 

the bridging function of p34 was utilized, as described (see 3.12.2). P52nT_dL/p8 was 

expressed and purified as described in section 3.11.4, and subjected to native PAGE in the 

presence of p62nT/p44 and p34 (Figure 3-104). P52nT_dL/p8 successfully sustained Core5 

formation, strongly indicating that the linker region is not required to maintain the integrity of 

the five subunit complex. 
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Figure 3-104. Verification of the integrity of the delta linker variant of p52. The ability of 
p52nT_dL to sustain Core5 formation was monitored via native PAGE. Core5*: complex of p62nT/p44, 
p52nT/p8, and p34 assembled on a Superdex 200 10/300 GL column. 

 

3.12.5. The disease related XPB F143S variant 

To investigate the impact of the disease related XPB mutation F143S on the interaction with 

p52, construct XPB_1-345_F143S was analyzed by native PAGE in the presence of p52 and 

p52nT/p8 (Figure 3-105). For the wild-type XPB construct a clear band shift with p52 as well 

as p52nT/p8 could be observed, confirming complex formation. In contrast, no band shifts for 

the XPB_1-345_F143S variant could be observed. However, with respect to a single amino 

acid substitution, the XPB_1-345_F143S variant by itself already displayed a drastically 

different running behavior compared to the wild-type construct. This difference might indicate 

that F143S is not a true interface mutant, but may corrupt the fold of the p52 binding region. 
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Figure 3-105. Analysis of the influence of the disease related XPB mutation F143S on the 
interaction between XPB_1-345 and p52 via native PAGE. 

 

3.13. Core complexes 

To gain structural insights into the entire TFIIH core, higher order core complexes were 

assembled. These assemblies were used for structural studies via EM. TFIIH core 

complexes were reconstituted via SEC, utilizing the established dual complexes and single 

subunits. In general, two buffer systems were used: a Tris/TCEP and a Ches/TCEP buffer 

system. The composition of these buffer systems is given below. 

 

Tris/TCEP buffer Ches/TCEP buffer 

- 20 mM Tris-HCl pH 7.5 - 20 mM Ches-NaOH pH 9.0 

- 0.25 M NaCl - 0.25 M NaCl 

- 1 mM TCEP - 1 mM TCEP 

 

Reconstituted core complexes were subjected to EM studies. These studies were performed 

in collaboration with Christian Spahn (Charité, Berlin) and Thorsten Mielke (Max Planck 

Institute for Molecular Genetics, Berlin). 
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3.13.1. Core5 

Core5 denotes the five subunit TFIIH core subcomplex, consisting of p62, p52, p44, p34, and 

p8 as described above. In each of the following assemblies, p8 has been added. However, it 

was not visible in each SDS-PAGE analysis. As p8 stains weakly and often very low protein 

amounts were used, it was assumed that p8 is still present even though it is not visible. 

Furthermore, due to its small size it may have been present in the dye front in some of the 

cases. P8 labels were omitted in the figures where no p8 bands were visible. 

 

3.13.1.1. Assembly 

As Core5 could successfully be reconstituted via native PAGE (Figure 3-96), the assembly of 

Core5 by means of SEC was attempted. 6.4 nmol of each subunit or dual complex, 

p62nT/p44, p52nT/p8, and p34, were mixed. The mixture was incubated on ice for 1 h and 

subjected to SEC with Tris/TCEP buffer (Figure 3-106). A stoichiometric complex could be 

obtained, and peak fractions were pooled and investigated via EM. 

 

 
Figure 3-106. Assembly of Core5 via SEC. (a) SEC elution profile from a Superdex 200 10/300 GL 
column. (b) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(a). 

 

In order to obtain sufficient material for crystallization attempts, a large scale Core5 assembly 

was conducted. 58 nmol of each subunit or dual complex, p62nT/p44, p52nT/p8, and p34, 

were mixed and incubated on ice for 1 h. The mixture was concentrated with a centrifugal 

filter unit to about 250 µl and applied to a SEC in Tris/TCEP buffer (Figure 3-107). Peak 

elution fractions were pooled and concentrated to 14.5 mg/ml. Crystallization trials with the 

commercial crystallization screens using the crystallization robot were performed, but no 

crystals could be obtained. 

 

a b

1

2

p62

p34

1 2

p52

p44

0

150

300

0 5 10 15 20 25 30

A
2

8
0

 [
m

A
U

]

Elution volume [ml]



3. Results Core complexes 

156 

 
Figure 3-107. Large scale assembly of Core5 via SEC. (a) SEC elution profile from a Superdex 200 
10/300 GL column. (b) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to 
peaks in (a). 

 

In an alternative approach, co-purification of Core5 was attempted. P62nT/p44, p52nT/p8, 

and p34 were expressed in 4 l of LB-medium each. After cell harvest, the cell pellets were 

combined (17.2 g p62nT/p44 pellet, 15.3 g p52nT/p8 pellet, and 27.8 g p34 pellet) and 

purification was performed following the standard procedure in the presence of TCEP. The 

result from co-purification is depicted in Figure 3-108. Due to the quite different expression 

levels, the purification was dominated by p52nT/p8, impairing formation and isolation of 

Core5. The buffer system used is given below. 

 

Lysis buffer Elution buffer 

- 20 mM Tris-HCl pH 7.5 - 20 mM Tris-HCl pH 7.5 

- 0.3 M NaCl - 0.3 M NaCl 

- 5 mM Imidazole - 0.25 M Imidazole 

- 1 mM TCEP - 1 mM TCEP 

 

Gel filtration buffer 

- 20 mM Tris-HCl pH 7.5 

- 0.25 M NaCl 

- 1 mM TCEP 
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Figure 3-108. Co-purification of Core5 after combination of cell pellets from p62nT/p44, 
p52nT/p8 and p34. (a) SDS-PAGE analysis of IMAC samples. P: pellet; FT: flow through; W: wash. 
(b) SEC elution profile from a HiLoad 16/600 Superdex 200 pg column. (c) SDS-PAGE analysis of 
elution fractions from the SEC. Numbers correspond to peaks in (b). 

 

To account for the large molecular weight of Core5 (251 kDa) and a better separation from 

the void volume, a Superose6 10/300 GL column was used. 7.2 nmol of each subunit or dual 

complex, p62nT/p44, p52nT/p8, and p34, were mixed, incubated on ice for 1 h, and applied 

to a Superose 6 10/300 GL column using Tris/TCEP buffer (Figure 3-109 a, b). Peak elution 

fractions were pooled, concentrated to 100 µl with a centrifugal filter unit, and subjected to 

another round of SEC (Figure 3-109 c, d). A single peak, containing all subunits could be 

obtained. P34 however, seemed to be underrepresented. 
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Figure 3-109. Core5 assembly from p62nT/p44, p52nT/p8, and p34 using a Superose 6 10/300 
GL column. (a) Elution profile of the first SEC. (b) SDS-PAGE analysis of elution fractions from the 
first SEC. Numbers correspond to peaks in (a). (c) Elution profile of the second SEC. Fractions of 
peak 2 from (a) have been used for the second SEC. (d) SDS-PAGE analysis of elution fractions from 
the second SEC. The number corresponds to the peak in (c). 

 

Since the formation of a p52/p34 complex was established above (see 3.11.3.1), it was 

possible to reconstitute Core5 via an alternative assembly. Accordingly, p62nT/p44, 

p52nT/p34, and p8 were used for the assembly. The result of such an alternative assembly is 

depicted in Figure 3-110. 4.3 nmol of each subunit or dual complex, p62nT/p44, p52nT/p34, 

and p8, were mixed, incubated on ice for 1 h, and subjected to SEC in Tris/TCEP buffer 

(Figure 3-110 a, b). Peak fractions were pooled, concentrated to 100 µl with a centrifugal 

filter unit, and subjected to another round of SEC (Figure 3-110 c, d). A single peak, 

containing all subunits, was obtained. When directly compared to the prior assembly (Figure 

3-109), an improved integration of p34 could be achieved. 
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Figure 3-110. Core5 assembly from p62nT/p44, p52nT/p34, and p8 using a Superose 6 10/300 
GL column. (a) Elution profile of the first SEC. (b) SDS-PAGE analysis of elution fractions from the 
first SEC. Numbers correspond to peaks in (a). (c) Elution profile of the second SEC. Fractions of 
peak 2 from (a) have been used for the second SEC. (d) SDS-PAGE analysis of elution fractions from 
the second SEC. Numbers correspond to peaks in (c). 

 

EM studies indicated that dilution of the core complexes might be detrimental for complex 

integrity (Figure 3-139). To circumvent dilution of the sample during SEC and the necessity 

of concentrating it afterwards, assemblies using a Superose 6 Increase 3.2/300 were 

pursued. Due to the small bed volume of this column (2.4 ml), dilution of the sample is 

minimized. An assembly using a Superose 6 Increase 3.2/300 column with Tris/TCEP buffer 

is depicted in Figure 3-111. 5 nmol of each subunit or dual complex, p62nT/p44, p52nT/p34, 

and p8, were mixed, incubated on ice for 1 h, and subjected to SEC. A complex with 

stoichiometric amounts of the subunits could be obtained. The shoulder/peak preceding the 

main peak seemed to be more pronounced relative to the main peak, when compared to 

assemblies described above (Figure 3-110 a). Elution fractions from the main peak were 
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pooled and used for a specific Core7 assembly strategy where preassembled Core5 complex 

was combined with XPB and XPD (see 3.13.3.1, Figure 3-137). 

 

 
Figure 3-111. Core5 assembly from p62nT/p44, p52nT/p34, and p8 using a Superose 6 Increase 
3.2/300 GL column. (a) SEC elution profile. (b) SDS-PAGE analysis of elution fractions from the SEC. 
Numbers correspond to peaks in (a). 

 

According to native PAGE studies (Figure 3-97) the vWA like domain of p34 was sufficient 

for the assembly of Core5. Thus, an assembly by means of SEC using p34_1-277 together 

with p62nT/p44 and p52nT/p8 was attempted (Figure 3-112). Compared to full-length p34 

(Figure 3-106), the Core5 formation via p34_1-277 was strongly impaired. This result 

confirmed the previous finding that the C-terminal zinc finger domain of p34 plays an 

important role in the TFIIH core interaction network (see 3.12.3). P34_1-277 was provided by 

Dominik Schmitt. 
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Figure 3-112. Assembly of Core5 using p34_1-277. (a) SEC elution profile from a Superdex 200 
10/300 GL column. (b) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to 
peaks in (a). 

 

3.13.1.2. Electron microscopy of Core5 

Assembled Core5 (Figure 3-106) was subjected to negative stain experiments using uranyl 

acetate and imaged via EM (see 2.2.10.1). The stock solution of 0.3 mg/ml Core5 was 

diluted 1:10 with Tris/TCEP buffer and deposited on the grid. A micrograph is depicted in 

Figure 3-113, revealing clear particles, with a proper distribution for particle analysis. Particle 

size corresponds to the expected dimensions of TFIIH core (about 15 nm) [74]. The sample 

was furthermore imaged via cryo-EM. Here, a 1:8 dilution of the stock solution was 

deposited. Due to the relatively small size (251 kDa) and the resulting weak contrast, no 

particles after usual exposure times of 200 ms with a dose of 25 e-/Å2 could be observed 

(Figure 3-114 a). However, when increasing the exposure time to 400 ms with a dose of  

50 e-/Å2, particles seem to become visible (Figure 3-114 b). 
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Figure 3-113. Micrograph of negatively stained Core5. A 1:10 dilution of a sample stock of 
0.3 mg/ml Core5 was deposited. 

 

 
Figure 3-114. Micrographs of vitrified Core5 after different exposure times. A 1:8 dilution of a 
sample stock of 0.3 mg/ml Core5 was deposited. (a) Exposure of 200 ms with a dose of 25 e

-
/Å

2
. 

(b) Exposure of 400 ms with a dose of 50 e
-
/Å

2
. 

 

A dataset of negatively stained Core5 was collected at the Max Planck Institute (MPI) in 

Berlin. Data processing was performed by Ferdinand Krupp. 96 micrographs were recorded, 

and 13,164 particles were picked with EMAN2. Grouping of particles into classes was 

performed with SPARX via the iterative stable alignment and clustering (ISAC) algorithm 

[483]. This 2D classification resulted in 204 stable classes, which are depicted in Figure 

3-115. An initial model was then reconstructed with SPARX. The initial model was 

ba
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subsequently used for multiparticle refinement [484] against all 13,164 particles with Spider. 

The final map is depicted in Figure 3-116, with a resolution of about 28 Å. The map displayed 

a hook-like shape, with two additional weakly attached densities at the top. These two 

densities might correspond to flexible parts of the complex or originate from heterogeneity in 

the sample. 

 

 
Figure 3-115. Class averages obtained from 2D classification for the negative stain dataset of 
Core5. 

 

 
Figure 3-116. Reconstructed 3D map of Core5 from the negative stain dataset. (a) Front view. (b) 
Side view right. (c) Back view. 

 

 

a b c
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3.13.2. Core6 

Core6 denotes a six subunit TFIIH core subcomplex, consisting of XPD, p62, p52, p44, p34, 

and p8. As already stated above, p8 was not visible via SDS-PAGE due to weak staining or 

being in the dye front. 

 

3.13.2.1. Assembly 

Based on the native PAGE results for Core5 (Figure 3-96), the assembly strategy was 

extended to include XPD. In a first step the formation of the TFIIH core submodule 

XPD/p62/p44/p34 was tested via native PAGE (Figure 3-117). A clear shift was observed 

when XPD was incubated with p62nT/p44, clearly indicating the successful incorporation of 

XPD. 

 

 
Figure 3-117. Analysis of the formation of the TFIIH core submodule XPD/p62/p44/p34 via 
native PAGE. 

 

In a second step, the p34 mediated complex formation in the presence and absence of XPD 

was tested via native PAGE (Figure 3-118). In the presence of XPD the p34 mediated Core5 

band appeared to be slightly shifted, indicating the formation of Core6. 
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Figure 3-118. Analysis of complex formation between XPD and p34 mediated Core5 via native 
PAGE. 

 

Following the encouraging results from the native PAGE analysis Core6 assembly via SEC 

was pursued. 10 nmol of each subunit or dual complex, XPD, p62nT/p44, p52nT/p8, and 

p34, were mixed. The mixture was incubated on ice for 1 h and applied to a Superdex 200 

10/300 GL column using a Hepes/TCEP buffer system. The result from the SEC is depicted 

in Figure 3-119. A low yield was obtained and the sample eluted as different complexes with 

different stoichiometries. Elution fractions containing all six subunits were pooled and 

subjected to EM studies. The Hepes/TCEP buffer system used for the SEC is given below. 

 

Hepes/TCEP buffer 

- 20 mM Hepes-NaOH pH 7.5 

- 0.15 M NaCl 

- 5 mM MgCl2 

- 1 mM TCEP 
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Figure 3-119. Assembly of Core6 via SEC. (a) SEC elution profile from a Superdex 200 10/300 GL 
column. (b) SDS-PAGE analysis of elution fractions from the SEC. Numbers correspond to peaks in 
(a). 

 

3.13.2.2. Electron microscopy of Core6 

Assembled Core6 (Figure 3-119) was subjected to EM. A stock solution of 0.5 mg/ml Core6 

was diluted to about 0.05 mg/ml, deposited, and negatively stained. A micrograph is depicted 

in Figure 3-120, showing particles with different sizes, indicating heterogeneity and some 

aggregation. 

 

 
Figure 3-120. Micrograph of negatively stained Core6. The sample was deposited at a 
concentration of ~0.05 mg/ml. 

 

A dataset of negatively stained Core6 was collected at the MPI in Berlin and processed by 

Ferdinand Krupp. 409 micrographs were recorded, and 67,806 particles were picked with 

EMAN2. For 2D classification half of the dataset was used. Particles were grouped with 
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SPARX via ISAC, resulting in 650 stable classes (Figure 3-121). The 2D classes contained 

barrel-like contaminations (Figure 3-121, e. g. see 7th row from the bottom, columns 4-12), 

which were sorted out during multiparticle refinement. An initial model was reconstructed with 

SPARX and used for multiparticle refinement against all 67,806 particles with Spider. The 

final map is depicted in Figure 3-122, with a resolution of about 28 Å. The map displayed a 

stable core, most likely corresponding to Core5. An additional appendix appeared, pointing 

upwards, presumably corresponding to XPD. 

 

 
Figure 3-121. Class averages obtained from 2D classification for the negative stain dataset of 
Core6. 

 

 
Figure 3-122. Reconstructed 3D map of Core6 from the negative stain dataset. (a) Front view. (b) 
Side view right. (c) Back view. 

 

a b c
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3.13.3. Core7 

Core7 denotes the entire seven subunit TFIIH core, consisting of XPB, XPD, p62, p52, p44, 

p34, and p8. As already stated above, p8 was often not visible via SDS-PAGE due to weak 

staining or being located in the dye front. 

 

3.13.3.1. Assembly 

With the design and successful purification of XPB constructs, initial Core7 assemblies were 

pursued, utilizing these constructs. Construct XPB_541-E was analyzed for its interaction 

with p52nT/p8 via native PAGE (Figure 3-123). No clear band shift could be observed. 

However, the running behavior of the two proteins made the interpretation highly ambiguous, 

as the bands smeared into each other. Therefore, other XPB constructs were analyzed for 

initial Core7 assemblies. 

 

 
Figure 3-123. Interaction analysis of p52nT/p8 with XPB_541-E and other TFIIH subunits via 
native PAGE. 
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As construct XPB_1-345 interacts with p52 (see 3.11.1.2) reconstitution of different core 

complexes implementing XPB_1-345 was attempted via native PAGE (Figure 3-124). Band 

shifts of XPB_1-345 and the other subunits could be observed, indicative of successful 

complex formation. However, the existence of other species made the interpretation 

uncertain. 

 

 
Figure 3-124. Native PAGE analysis of Core7 formation, including the XPB_1-345 construct. The 
assumed complexes, containing all added subunits, are indicated by dashed red lines. 

 

After the verification of an XPB_116-345/p52nT complex (see 3.11.1.6) further assemblies 

were pursued. Reconstitution of Core7 via native PAGE using XPB_116-345/p52nT, XPD, 

p62nT/p44, p34, and p8 was attempted (Figure 3-125). A unique band for the sample 

containing all seven proteins could be observed, indicative of complex formation.  
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Figure 3-125. Native PAGE analysis of Core7 formation, utilizing the XPB_116-345/p52nT 
complex. 

 

Reconstitution by SEC was attempted subsequently. 2.8 nmol of each subunit or dual 

complex, XPB_116-345/p52nT, XPD, p62nT/p44, p34, and p8, were mixed and incubated on 

ice for 1 h. The mixture was applied to a Superdex 200 10/300 GL column with Tris/TCEP 

buffer (Figure 3-126). Only a very little amount of protein could be retrieved, but it appeared 

that all seven proteins eluted together. However, SDS-PAGE analysis only displayed very 

faint bands, hampering interpretation. 
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Figure 3-126. Assembly of Core7 via SEC, utilizing XPB_116-345/p52nT. (a) SEC elution profile 
from a Superdex 200 10/300 GL column. (b) SDS-PAGE analysis of elution fractions from the SEC. 
Numbers correspond to peaks in (a). 

 

The assembly of a complete Core7, containing the full-length proteins of all core subunits 

was pursued next. To account for the large molecular weight of Core7 (446 kDa), a Superose 

6 10/300 GL column was used for the SEC. Analogous to the p34 mediated Core5 formation 

(Figure 3-106), p62nT/p44, p52nT/p8, and p34 were combined with XPB and XPD. 3.1 nmol 

of each subunit or dual complex were mixed, incubated on ice for 1 h, and subjected to SEC 

in Tris/TCEP buffer (Figure 3-127 a, b). The elution profile displayed three species. The main 

peak and the preceding slight shoulder contained all subunits, however XPB and p34 

seemed to be underrepresented. The main peak elution fractions were pooled, concentrated 

to 100 µl with a centrifugal filter unit, and subjected to another round of SEC (Figure 3-127 c, 

d). A single peak containing all subunits could be obtained, however XPB and p34 still 

seemed to be underrepresented. Peak fractions of the second SEC were pooled, 

concentrated to about 0.3 mg/ml, and subjected to EM studies. 
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Figure 3-127. Assembly of Core7 via XPB, XPD, p62nT/p44, p52nT/p8, and p34. (a) Elution profile 
of the first SEC from a Superose 6 10/300 GL column. (b) SDS-PAGE analysis of elution fractions 
from the first SEC. Numbers correspond to peaks in (a). (c) Elution profile of the second SEC. 
Fractions of peak 2 from (a) have been used for the second SEC. (d) SDS-PAGE analysis of elution 
fractions from the second SEC. The number corresponds to the peak in (c). 

 

To overcome the substoichiometric amount of p34 in the Core7 complex, Core7 assembly 

via formation of the p52nT/p34 complex (see 3.11.3.1) was pursued. Therefore, the dual 

p52nT/p34 complex was used instead of p52nT/p8, and p8 was added as a single subunit 

instead of p34. Accordingly, 2.5 nmol of each subunit or dual complex, XPB, XPD, 

p62nT/p44, p52nT/p34, and p8, were mixed, incubated on ice for 1 h, and subjected to SEC 

(Figure 3-128 a, b). A similar elution profile as observed before (Figure 3-127) was obtained, 

but the bands in the SDS-PAGE appeared to be more stoichiometric, with better 

incorporation of XPB and p34. The main peak fractions were pooled, concentrated to 100 µl, 

and subjected to another SEC (Figure 3-128 c, d). A single peak could be obtained, 

seemingly containing all subunits. However, verification via SDS-PAGE was hampered due 

to the presence of only very faint bands. 
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Figure 3-128. Assembly of Core7 via XPB, XPD, p62nT/p44, p52nT/p34, and p8. (a) Elution profile 
of the first SEC from a Superose 6 10/300 GL column. (b) SDS-PAGE analysis of elution fractions 
from the first SEC. Numbers correspond to peaks in (a). (c) Elution profile of the second SEC. 
Fractions of peak 2 from (a) have been used for the second SEC. (d) SDS-PAGE analysis of elution 
fractions from the second SEC. The number corresponds to the peak in (c). 

 

The influence of a decreased salt concentration on Core7 assembly was analyzed since 

most enzymatic studies such as ATPase and helicase assays are performed at low mM salt 

concentrations [22, 100, 184, 186, 485]. 3.1 nmol of each subunit or dual complex, XPB, 

XPD, p62nT/p44, p52nT/p8, and p34, were mixed and incubated on ice for 1 h. The mixture 

was subjected to SEC using a buffer with half the NaCl concentration compared to previous 

purifications (Figure 3-129 a, b). The low salt concentration seems to be detrimental, as the 

yield of assembled Core7 decreased in comparison to the species of the misassembled 

complex. Elution fractions of the peak containing all subunits were pooled and concentrated 

to 100 µl. After applying to a second SEC, no complex could be retrieved any more (Figure 

3-129 c). Furthermore, an assembly in the presence of 0.15 M potassium acetate (KAc) was 
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conducted. Here, 3.3 nmol of each subunit or dual complex, XPB, XPD, p62nT/p44, 

p52nT/p34, and p8, were mixed and incubated on ice for 1 h. SEC was performed in a 

Hepes/KAc buffer system (Figure 3-130 a). A similar result to the assembly in the low NaCl 

buffer was obtained. Peak fractions were again pooled, concentrated, and subjected to a 

second SEC (Figure 3-130 b). No complex could be retrieved after the second SEC. The 

composition of the low salt buffer and the Hepes/KAc buffer is given below. 

 

Low salt buffer Hepes/KAc buffer 

- 20 mM Tris-HCl pH 7.5 - 20 mM Hepes pH 7.6 

- 0.125 M NaCl - 0.15 M KAc 

- 1 mM TCEP - 5 % (v/v) glycerol 

 

 
Figure 3-129. Assembly of Core7 in a low salt condition. A buffer containing 0.125 M NaCl has 
been used. (a) Elution profile of the first SEC from a Superose 6 10/300 GL column. (b) SDS-PAGE 
analysis of elution fractions from the first SEC. Numbers correspond to peaks in (a). (c) Elution profile 
of the second SEC. Fractions of peak 1 from (a) have been used for the second SEC. 
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Figure 3-130. Assembly of Core7 in a low potassium acetate condition. A buffer containing 
0.15 M KAc has been used. (a) Elution profile of the first SEC from a Superose 6 10/300 GL column. 
(b) Elution profile of the second SEC. Fractions of peak 1 from (a) have been used for the second 
SEC. 

 

As already stated for Core5, dilution of the core complexes might be detrimental for complex 

integrity (Figure 3-139). Therefore, the assembly of Core7 using a Superose 6 Increase 

3.2/300 column was established. The small bed volume of this column strongly decreased 

dilution during the SEC. Furthermore, this column made it feasible to work with small protein 

amounts during Core7 assemblies. A Core7 assembly using a Superose 6 Increase 3.2/300 

column is depicted in Figure 3-131. 3.3 nmol of each subunit or dual complex, XPB, XPD, 

p62nT/p44, p52nT/p34, and p8, were mixed and incubated on ice for 1 h. The mixture was 

concentrated to 50 µl with a centrifugal filter unit and subjected to SEC in Tris/TCEP buffer 

(Figure 3-131 a, b). A similar elution profile as described above (Figure 3-128 a) was 

obtained. Main peak fractions were pooled, concentrated to 50 µl, and subjected to a second 

SEC (Figure 3-131 c, d). The elution profile displayed two peaks. The main peak did not 

elute at the volume of the main peak from the first SEC, but at the volume of the preceding 

shoulder from the first SEC. The second smaller peak corresponded to the main peak from 

the first SEC. A possible cause for this behavior might be the concentrating step between the 

first and second SEC, which became necessary due to the smaller injection volume for the 

Superose 6 Increase 3.2/300 column. This possibility was considered and investigated in the 

following assemblies. 

 

a b

0

60

120

0 5 10 15 20 25 30

A
2

8
0

 [
m

A
U

]

Elution volume [ml]

0

5

10

0 5 10 15 20 25 30

A
2

8
0

 [
m

A
U

]

Elution volume [ml]

1



3. Results Core complexes 

176 

 
Figure 3-131. Assembly of Core7 using a Superose 6 3.2/300 column. (a) Elution profile of the first 
SEC. (b) SDS-PAGE analysis of elution fractions from the first SEC. Numbers correspond to peaks in 
(a). (c) Elution profile of the second SEC. Fractions of peak 2 from (a) have been used for the second 
SEC. (d) SDS-PAGE analysis of elution fractions from the second SEC. Numbers correspond to peaks 
in (c). 

 

To assess the effect of concentrating the core TFIIH sample and to circumvent the necessity 

of a concentration step prior to the second SEC, the assembly strategy was modified. After 

the first SEC, only a single elution fraction from the peak center was subjected to a second 

SEC without a concentrating step. Fraction sizes were chosen to be the same as the 

injection volume for the SEC column (50 µl). To account for the loss of yield during the first 

SEC and to obtain a sufficient amount of protein in a single elution fraction for the second 

SEC, the amount of starting material used was increased. However, as this also increased 

the starting volume, an increased first concentrating step was necessary. Accordingly, 

6.5 nmol of each subunit or dual complex, XPB, XPD, p62nT/p44, p52nT/p34, and p8, were 

mixed and incubated on ice for 1 h. The mixture was concentrated to 50 µl with a centrifugal 

filter unit and subjected to SEC in Tris/TCEP buffer (Figure 3-132 a, b). Based on the elution 
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profile four peaks/shoulders could be distinguished, which will be referred to as species in 

the following. According to the elution volume, species 1, 2, and 4 have been observed 

before (Figure 3-131 a). Species 3 seemed to be unique for this assembly strategy. Species 

1-3 contained all core subunits in stoichiometric amounts, whereas species 4 seemed to be 

less stoichiometric (Figure 3-132 b). A possible cause for this altered elution profile might be 

the more pronounced first concentrating step. From each of the four species, the central 

elution fraction was subjected to a separate SEC (Figure 3-132 c-f). Seemingly, species 1, 2, 

and 4 were stable and distinct entities, as the main peak of each SEC reappeared at the 

same elution volume. An exception was species 3, as it reappeared at the elution volume of 

species 2. The peak fractions of all four SECs were pooled separately and subjected to EM 

studies. 

To explore the effect of a different pH value on Core7 reconstitution, an assembly at a more 

basic pH of 9 was conducted. The same procedure as described above was applied, using a 

starting amount of 6.5 nmol for each subunit or dual complex. SEC was then conducted in a 

basic Ches/TCEP buffer system. Similar to the assembly in Tris/TCEP buffer (Figure 3-132 

a), four species were obtained (Figure 3-133 a). Again, all four species were subjected to a 

second SEC (Figure 3-133 b-e). As described for the Tris/TCEP buffer, the main peak of all 

species reappeared at the same elution volume, except for species 3. The peak fractions of 

all four SECs were pooled separately and subjected to EM studies. 

The same assembly strategy was repeated in Tris/TCEP buffer again, using the exact same 

protein batches as for the assembly in Ches/TCEP buffer. In this case, only species 3 was 

subjected to a second SEC. For better comparison of the two buffer systems, the result is 

depicted in Figure 3-134, underlining the highly reproducible appearance of the four species 

with this assembly strategy. 
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Figure 3-132. Assembly of Core7 at a starting amount of 6.5 nmol, using the Tris/TCEP buffer. 
(a) Elution profile of the first SEC from a Superose 6 Increase 3.2/300 column. (b) SDS-PAGE 
analysis of elution fractions from the first SEC. Numbers correspond to peaks in (a). (c) Elution profile 
of species 1 from (a), subjected to a second SEC. (d) Elution profile of species 2 from (a), subjected to 
a second SEC. (e) Elution profile of species 3 from (a), subjected to a second SEC. (f) Elution profile 
of species 4 from (a), subjected to a second SEC. 
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Figure 3-133. Assembly of Core7 at a starting amount of 6.5 nmol, using the Ches/TCEP buffer. 
(a) Elution profile of the first SEC from a Superose 6 Increase 3.2/300 column. (b) Elution profile of 
species 1 from (a), subjected to a second SEC. (c) Elution profile of species 2 from (a), subjected to a 
second SEC. (d) Elution profile of species 3 from (a), subjected to a second SEC. (e) Elution profile of 
species 4 from (a), subjected to a second SEC. 

 

a

d e

b c

1

43

2

0

450

900

0 0.5 1 1.5 2 2.5 3

A
2

8
0

 [
m

A
U

]

Elution volume [ml]

0

7

14

0 0.5 1 1.5 2 2.5 3

A
2

8
0

 [
m

A
U

]

Elution volume [ml]

0

65

130

0 0.5 1 1.5 2 2.5 3

A
2

8
0

 [
m

A
U

]

Elution volume [ml]

0

50

100

0 0.5 1 1.5 2 2.5 3

A
2

8
0

 [
m

A
U

]

Elution volume [ml]

0

30

60

0 0.5 1 1.5 2 2.5 3

A
2

8
0

 [
m

A
U

]

Elution volume [ml]



3. Results Core complexes 

180 

 
Figure 3-134. Repetition of the Core7 assembly at a starting amount of 6.5 nmol with Tris/TCEP 
buffer. (a) Elution profile of the first SEC from a Superose 6 Increase 3.2/300 column. (b) SDS-PAGE 
analysis of elution fractions from the first and second SEC. Numbers correspond to peaks in (a) and 
(c). (c) Elution profile of peak 1 (species 3) from (a), subjected to a second SEC. 

 

To further address a possible influence of concentrating steps on the Core7 reconstitution, 

an assembly procedure devoid of any concentrating steps was developed. For this, the 

different Core7 components were combined in equimolar ratio, thereby amounting to a total 

sample volume equal to the injection volume for SEC. Accordingly, 2.2 nmol of each subunit 

or dual complex, XPB, XPD, p62nT/p44, p52nT/p34, and p8, were mixed, amounting to a 

total sample volume of 50 µl. The mixture was incubated on ice for 1 h and subjected to SEC 

in Tris/TCEP buffer (Figure 3-135 a). A similar elution profile as observed before (Figure 

3-131 a) was obtained, displaying three species. The central main peak elution fraction 

(species 2) was subjected to a second SEC (Figure 3-135 b), resulting in a single peak. Peak 

fractions were pooled and subjected to EM studies. 
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Figure 3-135. Core7 assembly at 2.2 nmol, devoid of any concentrating steps. (a) Elution profile 
of the first SEC from a Superose 6 Increase 3.2/300 column. (b) Elution profile of the second SEC. 
The central main peak fraction (species 2) from (a) has been used for the second SEC. 

 

To also investigate the preceding shoulder (species 1) by means of EM, a further assembly 

devoid of any concentrating steps was conducted, using 2.5 nmol of each subunit or dual 

complex, XPB, XPD, p62nT/p44, p52nT/p34, and p8. Again, an elution profile, featuring three 

species, was obtained (Figure 3-136 a). According to the SDS-PAGE, species 1 and 2 

contained all subunits (Figure 3-136 b). Both species were subjected to a second SEC. In 

both cases the main peak fractions reappeared at the respective elution volume, indicating 

distinct, stable entities. Peak fractions from both SECs were pooled separately and species 1 

was subjected to EM studies. 
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Figure 3-136. Core7 assembly at 2.5 nmol, devoid of any concentrating steps. (a) Elution profile 
of the first SEC from a Superose 6 Increase 3.2/300 column. (b) SDS-PAGE analysis of elution 
fractions from the first SEC. Numbers correspond to peaks in (a). (c) Elution profile of species 1 from 
(a), subjected to a second SEC. (d) Elution profile of species 2 from (a), subjected to a second SEC. 

 

Based on the successful assembly of Core5 (see 3.13.1.1), another assembly strategy was 

performed to obtain Core7. Preassembled Core5 was used and combined with XPB and 

XPD. The assembly of the Core5 used for this approach is shown in Figure 3-111. 0.5 nmol 

of each, Core5, XPB, and XPD, were mixed, incubated on ice for 1 h, and subjected to SEC 

in Tris/TCEP buffer (Figure 3-137). Similar to the results obtained with the other assembly 

strategies, three peaks/shoulders were obtained, with the main peak corresponding to 

species 2 and the preceding shoulder corresponding to species 1 from the assemblies 

described above. The species 1 and 2 contained all core subunits, whereas the last species 

(peak 3) seemed to contain an excess of XPB (Figure 3-137 b). 
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Figure 3-137. Core7 assembly using preassembled Core5. (a) SEC elution profile from a Superose 
6 Increase 3.2/300 column. (b) SDS-PAGE analysis of elution fractions from the SEC. Numbers 
correspond to peaks in (a). 

 

3.13.3.2. Electron microscopy of Core7 

Core7, assembled via a Superose6 10/300 GL column (Figure 3-127), was subjected to EM 

studies. A stock solution of 0.3 mg/ml was diluted to about 0.05 mg/ml, negatively stained, 

and imaged (Figure 3-138). The micrograph displayed a seemingly crowded grid, with no 

discernible single particles. 

 

 
Figure 3-138. Micrograph of negatively stained Core7. The sample was deposited at a 
concentration of ~0.05 mg/ml. 

 

Optimization of the deposition concentration was quite difficult, as sample dilution seemed to 

be detrimental for complex integrity. A Core7 stock of 1.2 mg/ml was diluted 1:20 and imaged 

via negative stain (Figure 3-139 a). Clear, homogenous particles could be observed. As the 
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particle density was slightly too high, the 1:20 dilution was diluted further to half of the 

concentration. The resulting 1:40 dilution was deposited and imaged via negative stain 

(Figure 3-139 b). In stark contrast to the previous micrograph, only very few and quite 

heterogeneous particles could be retrieved. A one step 1:30 dilution of the protein stock also 

led to disrupted particles. 

 

 
Figure 3-139. Micrographs of negatively stained Core7 at different dilutions. (a) 1:20 dilution of a 
1.2 mg/ml Core7 stock. (b) 1:2 dilution of the diluted sample from (a). 

 

To circumvent excessive dilution, assemblies using a Superose6 Increase 3.2/300 column 

with a bed volume of 2.4 ml were performed. To adjust sample concentration, higher 

amounts of proteins were applied for the assembly. When using a starting amount of 

6.5 nmol, four species were obtained in Tris/TCEP buffer (Figure 3-132). For each species, 

about 0.05 mg/ml were deposited, negatively stained, and imaged. For species 1, particles 

could be observed, yet with some heterogeneity (Figure 3-140 a). For species 2, the grid 

appeared to be crowded, with no discernible single particles (Figure 3-140 b). For species 3, 

particles could also be observed, yet with some heterogeneity (Figure 3-140 c). For species 

4, no clear particles could be observed (Figure 3-140 d). 
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Figure 3-140. Micrographs of negatively stained Core7 assembled with a starting amount of 
6.5 nmol in Tris/TCEP buffer. The sample was deposited at a concentration of ~0.05 mg/ml in each 
case. (a) Species 1. (b) Species 2. (c) Species 3. (d) Species 4. 

 

Species 3 was subjected to further data collection. A protein stock of 0.5 mg/ml was diluted 

1:32 and crosslinked with 0.5 % glutaraldehyde for 15 min on ice. The sample was 

deposited, negatively stained, and imaged. A micrograph of the crosslinked sample is shown 

in Figure 3-141. A dataset of 900 micrographs was recorded at the MPI in Berlin and 

processed by Ferdinand Krupp. 219 usable micrographs were selected, from which 39,124 

particles were picked with EMAN2. For 2D classification half of the dataset was used. 
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Particles were grouped with SPARX via ISAC, yielding 149 stable classes (Figure 3-142). An 

initial model was reconstructed with SPARX and subjected to multiparticle refinement against 

all 13,164 particles with Spider. The final map is depicted in Figure 3-143, with a resolution of 

about 36 Å. Analogous to Core6 the map displayed a bulky core, with an appendix at the top, 

presumably corresponding to XPD. An additional protrusion appeared at the back side, 

presumably corresponding to XPB. 

 

 
Figure 3-141. Micrograph of negatively stained Core7 crosslinked with 0.5 % glutaraldehyde. 
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Figure 3-142. Class averages obtained from 2D classification for the negative stain dataset of 
Core7. 

 

 
Figure 3-143. Reconstructed 3D map of Core7 from the negative stain dataset. (a) Front view. (b) 
Side view right. (c) Back view. 

 

Core7 was assembled in Ches/TCEP buffer using a starting amount of 6.5 nmol (Figure 

3-133). As before, four species were obtained, and each species was subjected to negative 

stain imaging. A micrograph of undiluted stock of about 0.01 mg/ml from species 1 is 

depicted in Figure 3-144. Particles could be observed, yet with some heterogeneity and 

aggregation. 
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Figure 3-144. Micrograph of negatively stained species 1 from Core7 assembled with a starting 
amount of 6.5 nmol in Ches/TCEP buffer. The sample was deposited at a concentration of 
~0.01 mg/ml. 

 

The elution profile of species 2 displayed a main peak and a preceding shoulder (Figure 

3-133 c), and both fractions were imaged separately. When imaged undiluted at about 

0.1 mg/ml, the micrographs displayed quite crowded grids for the preceding shoulder (Figure 

3-145 a). After dilution to about 0.01 mg/ml only some aggregates remained (Figure 3-145 

b). Similar results were obtained with the main peak of species 2. A protein stock of 

0.3 mg/ml was diluted to about 0.1 mg/ml and imaged (Figure 3-145 c). Again, the grid 

appeared to be quite crowded. After dilution to about 0.01 mg/ml it appeared that some 

particles were present, yet with some heterogeneity and aggregation (Figure 3-145 d). These 

findings corroborated the notion that dilution might be detrimental for complex integrity as 

also observed previously (Figure 3-139). 
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Figure 3-145. Micrographs of negatively stained species 2 from Core7 assembled with a 
starting amount of 6.5 nmol in Ches/TCEP buffer. (a) Preceding shoulder from the SEC, deposited 
at a concentration of ~0.1 mg/ml. (b) Preceding shoulder from the SEC, deposited at a concentration 
of ~0.01 mg/ml. (c) Main peak from the SEC, deposited at concentration of ~0.1 mg/ml. (d) Main peak 
from the SEC, deposited at a concentration of ~0.01 mg/ml. 

 

The elution profile of species 3 also displayed a preceding shoulder and a main peak (Figure 

3-133 d). Both fractions were imaged via negative stain. A stock solution of about 0.1 mg/ml 

of the preceding shoulder was diluted to about 0.01 mg/ml and deposited (Figure 3-146 a). 

Seemingly, it only contained aggregates. A main peak stock solution of 0.2 mg/ml was 
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diluted to about 0.01 mg/ml and deposited (Figure 3-146 b). Some particle-like objects could 

be obtained, yet mostly too small in size. 

 

 
Figure 3-146. Micrographs of negatively stained species 3 from Core7 assembled with a 
starting amount of 6.5 nmol in Ches/TCEP buffer. (a) Preceding shoulder from the SEC, deposited 
at a concentration of ~0.01 mg/ml. (b) Main peak from the SEC, deposited at a concentration of 
~0.01 mg/ml. 

 

The elution profile of species 4 displayed two major peaks. As the elution volume of the first 

peak corresponded to the elution volume of species 2, the elution fractions of the second 

peak were investigated. A stock solution of 0.2 mg/ml was diluted to 0.01 mg/ml and 

deposited (Figure 3-147). The micrographs mainly displayed some aggregation. 
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Figure 3-147. Micrograph of negatively stained species 4 from Core7 assembled with a starting 
amount of 6.5 nmol in Ches/TCEP buffer. The sample was deposited at a concentration of 
~0.01 mg/ml. 

 

The preceding shoulder of species 3 was also subjected to cryo-EM. The undiluted stock 

solution (0.1 mg/ml) was deposited, vitrified, and imaged (Figure 3-148). Clear particles, 

properly distributed, could be obtained.  

 

 
Figure 3-148. Micrograph of vitrified species 3 from Core7 assembled with a starting amount of 
6.5 nmol in Ches/TCEP buffer. The preceding shoulder from the SEC was deposited at a 
concentration of ~0.1 mg/ml. 

 

A dataset of 72 micrographs was collected at the homesource microscope (Tecnai™ G2 

Spirit Twin, FEI) and processed by Ferdinand Krupp. 16,335 particles were picked with 

EMAN2. Particles were grouped with SPARX via ISAC, resulting in 549 initial classes (Figure 
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3-149). Classes containing satellites or with low contrast were omitted, resulting in 211 

remaining classes. These classes were used for reconstruction of an initial model with 

SPARX. The initial model was used for multiparticle refinement against all 16,335 particles 

with Spider. The final map is depicted in Figure 3-150, with a resolution of about 35 Å. The 

overall shape of the map from the reconstruction with negatively stained Core7 was 

discernible. 

 

 
Figure 3-149. Class averages obtained from 2D classification for the cryo-EM dataset of Core7. 

 

 
Figure 3-150. Reconstructed 3D map of Core7 from the cryo-EM dataset. (a) Front view. (b) Side 
view right. (c) Back view. 

 

Core7 assemblies devoid of any concentrating steps were investigated by means of EM as 

well. Two species were obtained (Figure 3-136), which were both analyzed. A stock solution 

of the main peak species (Figure 3-135 b) of about 0.2 mg/ml was diluted to about 

0.05 mg/ml and imaged via negative stain (Figure 3-151). Particles seemed to be visible, yet 
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the grid appeared to be quite crowded. The species from the preceding shoulder from the 

SEC (Figure 3-136 c) was vitrified undiluted at about 0.1 mg/ml and imaged (Figure 3-152). 

Properly distributed particles could be observed. When compared to the results from the 

negative stain, the particle density was much lower, even though a higher concentration was 

used for cryo imaging. This might be because of the different species used, or the general 

necessity of higher protein amounts for cryo approaches compared to negative stain [486]. 

 

 
Figure 3-151. Micrograph of negatively stained Core7 assembled without any concentrating 
steps. The main peak species from the SEC was deposited at a concentration of ~0.05 mg/ml. 

 

 
Figure 3-152. Micrograph of vitrified Core7 assembled without any concentrating steps. The 
species from the preceding shoulder from the SEC was deposited at a concentration of ~0.1 mg/ml. 
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3.13.4. Core7 and MAT1_1-248 

3.13.4.1. Assembly 

Incorporation of the CAK subunit MAT1 into the Core7 assembly was attempted. The 

MAT1_1-248 construct (Figure 3-43) with the tag cleaved off was used, which was provided 

by Florian Sauer. 3 nmol of each subunit or dual complex, XPB, XPD, p62nT/p44, 

p52nT/p34, p8, and MAT1_1-248, were mixed and incubated on ice for 1 h. The mixture was 

concentrated to 50 µl with a centrifugal filter unit and subjected to SEC (Figure 3-153 a, b). 

Different species were obtained, with the main peak and the preceding shoulder containing 

all core subunits and MAT1_1-248 in stoichiometric amounts. The preceding shoulder and 

the main peak were both subjected to another SEC (Figure 3-153 c, d). Both species 

reappeared at the respective elution volume, indicating the presences of distinct, stable 

species. Peak fractions were pooled and subjected to EM studies. 

 

 
Figure 3-153. Assembly of Core7 and MAT1_1-248. (a) Elution profile of the first SEC from a 
Superose 6 Increase 3.2/300 column. (b) SDS-PAGE analysis of elution fractions from the first SEC. 
Numbers correspond to peaks in (a). (c) Elution profile of species 2 from (a), subjected to a second 
SEC. (d) Elution profile of species 3 from (a), subjected to a second SEC. 
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3.13.4.2. Electron microscopy of Core7 and MAT1 

Assembled Core7/MAT1_1-248 (Figure 3-153) was subjected to EM studies. A stock solution 

of 0.2 mg/ml was diluted to about 0.05 mg/ml, negatively stained, and imaged (Figure 3-154 

a). Properly distributed clear particles could be obtained. Furthermore, undiluted sample was 

vitrified and imaged as well (Figure 3-154 b). Again, particles were observed. As already 

observed for Core7, the particle density was much lower compared to negative stain, even 

though the concentration during deposition was higher. 

 

 
Figure 3-154. Micrographs of negatively stained and vitrified Core7/MAT_1-248. (a) Negatively 
stained sample, deposited at a concentration of ~0.05 mg/ml. (b) Vitrified sample, deposited at a 
concentration of ~0.2 mg/ml. 

 

3.13.5. Comparison of EM maps 

The EM maps obtained from the negative staining of Core5, Core6, and Core7 were 

compared. Figure 3-155 shows the fitting of the maps into each other. When comparing 

Core5 to Core6 (Figure 3-155 a), an additional appendix appears at the top, presumably 

corresponding to XPD. The additional density appeared to be weak, possibly reflecting 

flexibility or partial loss of XPD in the core complexes. When comparing Core5 to Core7 

(Figure 3-155 b), the density at the top became clearer, which might be due to an overall 

stabilizing effect of XPB. Additionally, a protrusion at the back of the map appeared, which 

was attributed to XPB. Comparison of Core6 to Core7 (Figure 3-155 c) was in line with the 

notion from above, as Core6 displayed no counterpart for the protrusion at the back of 

Core7. 
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Figure 3-155. Comparison of the EM maps of Core5, Core6, and Core7, obtained by negative 
staining. The front view (left), side view (middle), and back view (right) are shown. (a) Core5 (red 
surface) compared to Core6 (black mesh). (b) Core5 (red surface) compared to Core7 (black mesh). 
(c) Core6 (red surface) compared to Core7 (black mesh). 

 

The Core7 maps obtained from negative stain and cryo-EM were compared (Figure 3-156). It 

appeared that the cryo-EM map did not support all features of the map from the negative 

stain. From the shape and volume of the map either XPB or XPD seemed to be missing. The 

assignment was not unambiguous, therefore both possibilities were pursued. The fit 

supporting XPD is shown in Figure 3-156 a, the fit supporting XPB is shown in Figure 

3-156 b. 

b

c

a



3. Results Core complexes 

197 

 
Figure 3-156. Comparison of the negative stain and the cryo-EM map of Core7. The front view 
(left), side view (middle), and back view (right) are shown. Red surface: negative stain map; black 
mesh: cryo-EM map. The fitting was not unambiguous, therefore two possibilities are shown. (a) Fit 
supporting XPD. (b) Fit supporting XPB. 

 

3.13.6. Fitting of TFIIH core subunits 

The TFIIH subunits were fitted into the EM maps obtained via negative stain for Core5, 

Core6, and Core7 and to the cryo-EM map for Core7. The comparison of these maps with 

each other (Figure 3-155, Figure 3-156) was used as a guideline. Furthermore, the subunits 

were placed according to the interactions observed in this work (see 3.11 and 3.12) and also 

based on the interactions described in the literature. As template for the TFIIH core subunits 

model 5IVW (human TFIIH core bound to DNA within the PIC) [76] was used. The model 

was adjusted by moving the different subunits to their suggested position. Due to the limited 

resolution of these maps, the placement of the subunits was not unambiguous and has to be 

taken with some caution. 

The fitting of the subunits to Core5 is depicted in Figure 3-157. Based on the observed 

p52/p34 interaction (see 3.11.3), p34 was positioned in the center of the hook-shaped 

volume, adjacent to p52. The vWA like domain of p44 was placed in a weakly attached 

additional volume above the hook-shaped volume. This placement implies some flexibility of 

the vWA like domain of p44, which might well be the case in the absence of its interaction 
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partner XPD. This position supports the placement of the p44 zinc finger and ring finger 

domains underneath, directly adjacent to p34. To the left of this position the hook-shaped 

volume comprises a peripherally attached volume. This volume was attributed to p62, placing 

it next to the p44 zinc finger domain, in line with the results from our study (see 3.11.2). 

Finally, the EM map comprises an additional volume behind the vWA like domain of p34 for 

the placement of the C-terminal zinc finger domain of p34. 

 

 
Figure 3-157. Fitting of the TFIIH core subunits to the negative stain EM map of Core5. Positions 
of p62 and additional domains of p44 and p34 are indicated. (a) Front view. (b) Back view. (c) Side 
view right. (d) Side view left. ZN: zinc finger domain; RING: ring finger domain. 

 

The fitting of the subunits to Core6 is depicted in Figure 3-158. Placement of the subunits 

was based on the fitting for Core5 (Figure 3-157). Core6 displayed an additional appendix at 

the top, which was attributed to XPD. Placement of the vWA like domain of p44 near XPD 
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was ambiguous and not consistent with the placement in Core5. However, the volume for 

XPD is only weakly defined, proposing flexibility or loss of XPD in some of the assembled 

complexes. This might then lead to in flexibility of the vWA like domain of p44 as well, as 

already hypothesized for Core5. Again, the EM volume supported an additional volume for a 

possible fitting of p62 and the additional domains of p44 and p34. 

 

 
Figure 3-158. Fitting of the TFIIH core subunits to the negative stain EM map of Core6. Positions 
of p62 and additional domains of p44 and p34 are indicated. (a) Front view. (b) Back view. (c) Side 
view right. (d) Side view left. ZN: zinc finger domain; RING: ring finger domain. 

 

The fitting of the subunits to Core7 from negative stain is depicted in Figure 3-159. The map 

supported the hypotheses from Core5, also regarding the positioning of the vWA like domain 

of p44. In line with a seemingly less flexible XPD, an additional volume for the vWA like 

domain of p44 was present. In comparison to Core5 and Core6, a protrusion at the back of 
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the map appeared, which was assigned to XPB. This position placed XPB directly adjacent 

to p52, which is in nice agreement with the interaction of both proteins. As observed for 

Core5 and Core6, the map contained an additional volume for a possible placement of p62 

and the additional domains of p44 and p34. 

 

 
Figure 3-159. Fitting of the TFIIH core subunits to the negative stain EM map of Core7. Positions 
of p62 and additional domains of p44 and p34 are indicated. (a) Front view. (b) Back view. (c) Side 
view right. (d) Side view left. ZN: zinc finger domain; RING: ring finger domain. 

 

From the comparison of the Core7 maps obtained by negative stain and by cryo-EM it can be 

speculated that either XPD or XPB was missing in the cryo-EM map (Figure 3-156). The 

subunits were fitted according to both hypotheses, and the subunit fitting to the negative 

stain Core7 map was used as a guideline. The fitting of the TFIIH core subunits containing 

either XPD or XPB as well as the other five subunits into the cryo-EM Core7 map is depicted 
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in Figure 3-160. Placement of the subunits consistent with the hypothesized positions in the 

negative stain EM map of Core7 was possible, also leaving some additional volume to 

accommodate p62 and the additional domains of p44 and p34. When XPB was fitted into the 

maps, an additional volume at the suggested position of p44 was observed, which could not 

be reasonably interpreted due to the limited resolution. 

 

 
Figure 3-160. Fitting of the TFIIH core subunits to the cryo-EM map of Core7. The front view 
(left), side view (middle), and back view (right) are shown. Positions of p62 and additional domains of 
p44 and p34 are indicated. The fitting was not unambiguous, therefore two possibilities are shown. (a) 
Fit supporting XPD. (b) Fit supporting XPB. ZN: zinc finger domain; RING: ring finger domain. 
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4. Discussion 

In this work, the purification of several functional TFIIH core subunits could be established 

and via interaction studies a TFIIH core interaction network could be carved out. The 

subunits were reconstituted to core complexes and investigated via EM. It was possible to 

interpret the EM maps and to fit structural models of the TFIIH core subunits into these 

maps. Based on this analysis a TFIIH core interaction network was generated, which allowed 

to draw conclusions on the roles of p34 and p62 within this complex. 

Additionally, the applicability of cesium for experimental phasing was assessed, utilizing a 

shortened construct of the p62 subunit. 

 

4.1. Cesium for experimental phasing 

4.1.1. Compatibility of CsCl with purification, crystallization, and 

cryo-protection 

In this study, three proteins were tested, p62_1-109, HEWL, and p34_1-277. P62_1-109 

represents a novel target, whereas HEWL is a well characterized protein, frequently used for 

methodic studies. P34_1-277 constitutes a medium resolution target. The replacement of 

NaCl or KCl with CsCl during protein purification was tested for two proteins, p62_1-109 and 

p34_1-277. In both cases, the purification and appearance of the SEC elution profile were 

virtually identical suggesting that CsCl can readily replace NaCl or KCl during the purification 

process without interfering with the stability of the proteins (see 3.10.1, Figure 3-46 and 

Figure 3-49), and thus discloses CsCl as a suitable salt component in protein buffers. 

The introduction of CsCl during crystallization was analyzed for three different proteins, 

p62_1-109, HEWL, and p34_1-277. In two cases, p62_1-109 and HEWL, supplementing with 

CsCl did not lead to an apparent detrimental influence on crystallization (see 3.10.1, Figure 

3-47 and Figure 3-48). In the remaining case, p34_1-277, crystallization was impeded, which 

might be due to the influence of CsCl. However, crystallization of p34_1-277 was a particular 

case, as crystallization had to be conducted without mixing of the protein solution and 

reservoir solution. In addition, the overall protein quality after purification in general was less 

reproducible compared to the other proteins used in this study. 

Usage of CsCl in the cryo-protectant solution was analyzed for all three proteins. Seemingly, 

the presence of CsCl in the cryo-protectant had no detrimental effect, as for two cases 

diffraction of sufficient quality for experimental phasing could be retrieved (see 3.10.2, Table 

3-6 and Table 3-7). For the third case, p34_1-277, only diffraction to approx. 4 Å could be 

obtained. If the lower resolution compared to prior data sets collected in the absence of CsCl 
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[47], was due to the introduction of CsCl or due to lower overall protein quality remained 

unclear at that point. 

Taken together, these findings suggest that CsCl is compatible with all three major steps of 

sample treatment for structural studies via crystallography: purification, crystallization, and 

cryo-protection. The experimental phasing approach via cesium was successful for two out of 

three cases, thereby also yielding a novel crystal structure for p62_1-109. However, the 

results have to be taken with some caution, as the number of test cases is so far limited. To 

corroborate the findings from these studies further test cases should be included. 

 

4.1.2. Introduction of cesium as anomalous scatterer 

Due to the compatibility of CsCl to be included in purification, crystallization, and cryo-

protection (see 4.1.1), cesium could be introduced as anomalous scatterer at each of these 

stages. CsCl can be used in a cryo-soak approach as described for halides by Dauter et al. 

[487]. This approach has been successfully conducted for p62_1-109, which permitted to 

solve the phase problem by means of SAD (see 3.10.2, Table 3-6, crystal # 3). Hence, cryo-

soaking with CsCl provides a good alternative to cryo-soaking with halides, especially in 

cases were crystals suffer from treatment with halides, or no bound anions can be obtained 

due to unfavorable surface charges of the protein. Here, the opposite charge of cesium might 

be of great benefit. 

To further extend this approach, the introduction of cesium during protein purification was 

considered. P62_1-109 crystal # 1 was treated with 0.25 M CsCl only during the purification 

step (see 3.10.1, Table 3-3). The anomalous substructure exhibited a single cesium ion, 

occupying site 4 (see 3.10.3, Figure 3-54 a). Cesium site 4 constituted a highly conserved 

binding site, also occupied by cesium in all other p62_1-109 approaches (see 3.10.3, Table 

3-11). However, the anomalous signal from this single cesium ion was not sufficient to 

overcome the phase problem. 

The direct comparison of p62_1-109 treated with CsCl only during cryo-protection (# 3) with 

p62_1-109 treated with CsCl during SEC and cryo-protection (# 4) suggests an additive 

effect of the CsCl treatment. Whereas 5 occupied anomalous sites were detected for # 3, it 

was possible to identify 8 sites as well as a higher occupancy sum for # 4 (see 3.10.3, Table 

3-11). These approaches were also conducted with HEWL. Consistent with the p62_1-109 

results, 16 sites and a higher occupancy sum could be observed for HEWL treated with CsCl 

during SEC and cryo-protection (# 4) compared to HEWL only treated with CsCl during cryo-

protection (# 3), where only 15 sites could be detected (see 3.10.3, Table 3-12). The additive 

effect of CsCl utilized during SEC and for cryo-protection makes it possible to decrease the 

CsCl concentration in the cryo-soak step, thereby still preserving sufficient anomalous 
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scatterers for successful phasing (p62_1-109 # 2). This approach might be beneficial for 

sensitive crystals, unable to withstand high salt concentrations in the cryo-soak step. 

Cesium was also used as a component of the crystallization buffer, replacing KCl in case of 

p62_1-109 and NaCl in case of HEWL (see 3.10.1, Table 3-3 and Table 3-4). For both 

proteins, crystallization (see 3.10.1, Figure 3-47 and Figure 3-48) and diffraction (see 3.10.2, 

Table 3-8 and Table 3-9) was not affected. Hence, supplement of CsCl via replacement of 

related alkali salts poses yet another possibility to introduce cesium. 

 

4.1.3. Phasing procedure with CsCl 

Our studies suggest that CsCl provides an elegant, easy-to-use, low cost, and little time 

consuming approach to overcome the phase problem. CsCl is easily commercially available 

and much cheaper than for example selenomethionine. Importantly, the handling of CsCl is 

straightforward, making it suitable as initial standard phasing procedure before applying more 

sophisticated approaches like protein expression in the presence of selenomethinone. 

Furthermore, no special equipment is necessary for the application of this approach. 

For phasing, a step-wise procedure can be pursued, depending on the demands of the 

project. First, cryo-soaks with CsCl can be applied as the easiest approach. If the anomalous 

signal is not sufficient, the cryo-soaks can be combined with supplementing CsCl during 

SEC, which would also permit to use a reduced CsCl concentration in the cryo-soak if this is 

detrimental for the crystals. Finally, when the identified crystallization conditions contain alkali 

chloride salts, cesium can be introduced by replacing the alkali. 

 

4.2. Availability of TFIIH 

In the course of this work, protocols for the purification and functional characterization of 

several TFIIH core subunits, either as single proteins or as dual complexes, were established 

(Figure 4-1). 
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Figure 4-1. Availability of the TFIIH core subunits. The purification of several core subunits was 
established. Purification of XPD (dashed box) was established by Gudrun Sander and Jochen Kuper. 

 

Of central importance is the availability of functional XPB as a crucial TFIIH member. Activity 

assays clearly indicated XPBs ATPase activity, which could be stimulated by p52/p8 and 

specifically inhibited by triptolide (see 3.2.3, Figure 3-11). This clearly demonstrated the full 

functionality of the protein. 

Functional full-length p44 could be generated by means of stabilization with p62. When 

expressed and purified on its own, p44 displayed several higher oligomers during SEC. A 

typical elution profile of p44 is depicted in Figure 4-2. In addition, the functional integrity was 

severely impaired, which can be seen in the interaction study via native agarose gel 

electrophoresis (see 3.11.2.1, Figure 3-77). Here, singly purified p44 was not able to form a 

complex with its known binding partner p62, showing that its integrity was compromised. 

These issues were solved by co-expression and co-purification with p62. The SEC elution 

profile of p62/p44 displayed a homogenous peak, devoid of any higher oligomers (see 
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3.11.2.1, Figure 3-79). Furthermore, native agarose gel electrophoresis indicated a clear 

complex band (see 3.11.2.1, Figure 3-77). 

 

 
Figure 4-2. SEC elution profile of p44 from a HiLoad 16/600 Superdex 200 pg column. P44 eluted 
in several higher oligomeric states. The elution profile was provided by courtesy of Dominik Schmitt. 

 

Purification of p34 on its own resulted in low protein yields, also displaying some 

contaminations (see 3.7.2, Figure 3-41). In contrast, co-expression and co-purification with 

p52 resulted in high protein yield and quality (see 3.11.3.1, Figure 3-88). 

All of these individual steps made it possible to establish a unique and powerful TFIIH core 

assembly system. This system permits the modular and step wise reconstitution of the TFIIH 

core, thereby allowing to monitor its individual enzymatic activities and the effects on the 

enzymatic activity when individual subunits are added. This system thus provides a unique 

possibility to obtain insights into the intricate interaction network within TFIIH. The most 

difficult protein to obtain for this approach was XPB. Another critical step was the 

establishment of fully functional p44 in form of a p62/p44 complex. Full-length p44 is crucial 

for the overall function of TFIIH since it activates XPD via its N-terminal domain, whereas the 

C-terminal part of p44 mediates the connection to the remaining TFIIH core via its interaction 

with p34. Accordingly, full-length p44 was essential for TFIIH core assembly, which was 

achieved through the p62/p44 complex, providing a p44 fully capable of activating and 

integrating XPD within TFIIH. 

 

4.3. The TFIIH core interaction network 

Via co-purification (see 3.11) and native PAGE interaction studies (see 3.12), a TFIIH core 

interaction network was developed. A summary of all newly identified or confirmed 

interactions is given in Figure 4-3. 

 

0

80

160

0 20 40 60 80 100 120 140

A
2

8
0

 [
m

A
U

]

Elution volume [ml]



4. Discussion The TFIIH core interaction network 

207 

 
Figure 4-3. The TFIIH core interaction network. Regions interacting with each other are connected 
by lines. Key interactions established in this work are shown in red. The domain scheme corresponds 
to Figure 1-1. 

 

The well-established interactions of XPB with p52 and XPD with p44 [22, 25, 30] could be 

confirmed. Furthermore, the interaction between p52 and p8 [28] could be confirmed, which, 

together with the XPB/p52 interaction, constitutes the XPB/p52/p8 subcomplex [79]. An 

interaction between the vWA like domain of p34 and the C-terminal ring finger domain of p44 

has been shown before [48], and could be confirmed as well. The involvement of the 

C-terminus of p62 towards an interaction with p44 has been suggested [46], and was also 

confirmed. The p62 binding site on p44 could be narrowed down to the central zinc finger 

domain in p44. An interaction of p34 with p52 has been suggested [80], which could be 

shown in this study. Our results suggest that both domains in p34 (the vWA like domain and 

the C-terminal zinc finger domain) seem to be involved in the interaction with p52, whereas 

the N-terminal part of p52 does not seem to be required for complex formation with p34. The 

complex network is then further established through the interaction of p34 with p44, which in 

addition to the interactions described above requires the C-terminal zinc finger domain of p34 

and the central zinc finger domain of p44. Via chemical crosslinking/mass spectrometry 

studies Luo et al. suggested interactions of XPD with p62, p62 with p34, and p52 with p44 

[80]. These interactions could not be confirmed. Possible explanations for this discrepancy 

might be detection of false positives with the crosslinking procedure due to subunit/complex 

flexibility [488] or very transient interactions, which were not detectable through the assays 

used in this work. However, transient interactions would contradict a scaffolding role of these 

interactions. 
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4.3.1. An important role for p34 

An unexpected role for TFIIH integrity could be observed for p34. P34 consists of two 

domains, an N-terminal vWA like domain, and a C-terminal zinc finger domain [31, 47]. Co-

purification experiments (see 3.11.3) and native PAGE analysis (see 3.12.2) revealed that 

p34 interacts with p52, firmly establishing the link between the submodules XPD/p62/p44 

and XPB/p52/p8. Native PAGE analysis further revealed that the vWA like domain of p34 is 

sufficient for the interaction with p52 (see 3.12.2, Figure 3-97). However, when comparing a 

co-purification of p52/p34 to p52/p34_1-277 (see 3.11.3, Figure 3-88 and Figure 3-89), 

complex formation seemed to be weakened for the latter case. Furthermore, reconstitution of 

Core5 by means of SEC was impeded without the C-terminal zinc finger domain of p34 (see 

3.13.1.1, Figure 3-112). These results indicate that the interaction between p52 and p34 is 

weakened when the C-terminal zinc finger domain of p34 is absent, which can be clearly 

observed when the more harsh conditions of SEC are utilized. Based on these results it was 

concluded that also the C-terminal zinc finger domain participates in the interaction with p52. 

The strong influence of this p34 domain on the Core5 assembly furthermore suggests that 

this subunit assumes an important role for the integrity of the entire TFIIH. 

The vWA like domain of p34 interacts with the ring finger domain of p44 [48]. Native PAGE 

studies using a p34 interface mutant showed that the C-terminal zinc finger domain of p34 

also participates in the interaction with p44 (see 3.12.3, Figure 3-100 and Figure 3-101). 

Native PAGE furthermore indicated that the interface extends beyond the ring finger domain 

of p44, including its central zinc finger domain (see 3.12.3, Figure 3-102). 

It was thus shown that both domains of p34 interact with p52 and p44, which suggests that 

p34 is a central scaffolding protein, connecting XPD/p44 and XPB/p52/p8. Egly and Coin 

proposed two functionally related submodules within TFIIH: XPB/p52/p8 and XPD/p44/p34 

[79], and a role for p34 towards the regulation of XPD. Our results rather support the 

hypothesis that p34 acts as a central scaffold, which also redefines the two submodules 

within TFIIH: XPB/p52/p8 constitutes the first functionally related submodule, whereas 

XPD/p44 defines the second and the connection between the two submodules is established 

via p34 (Figure 4-4). 

 

4.3.2. A role for p62 

So far the role of p62 within TFIIH is only poorly characterized. A recent study proposed that 

p62 acts as an important scaffold for XPD anchoring, as well as a support for the XPD/p44 

interaction [80]. Our results clearly contradict this notion. Native PAGE analysis did not 

support an interaction between XPD and p62 (see 3.12.1). Closer analysis of the p62/p44 

interaction positioned the p62 binding site towards the central zinc finger domain of p44 (see 

3.11.2). Furthermore, anchoring of p62 via p34 was suggested [80]. However, when the p34 
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mediated Core5 formation was investigated utilizing p62/p44_1-367 (see 3.12.3, Figure 

3-102), complex formation was detectable but strongly reduced. A direct interaction between 

p62 and p34 should have compensated for the loss of the interface between p34 and the 

C-terminal ring finger domain of p44, masking this phenotype. Thus, the hypothesis of a 

p62/p34 interaction is unlikely based on the data obtained from this work. So far we can only 

suggest that p62 is presumably attached to TFIIH via the central zinc finger domain of p44. It 

has been shown that the PH domain of p62 competitively interacts with XPC, XPG, TFIIE, 

and p53 [43, 45, 63, 69, 489]. These results suggest that p62 constitutes the major TFIIH 

interface to the environment. This hypothesis goes along with a peripheral attachment of p62 

to TFIIH, only mediated between p44 and the C-terminus of p62, whereas the PH domain 

and the BSD tandem within p62 are available to be addressed by environmental factors. This 

hypothesis is further supported by the fact that no obvious volume for p62 is present in 

published EM maps (Figure 4-5 c) [76], which may indicate high flexibility or loss of p62. 

However, no structural model of p62 is available and the resolution of the available EM maps 

is so far limited, which hampers interpretation and fitting of p62; issues that might also be a 

reason for the absence of p62. Nevertheless, the supposed flexibility of p62 might well 

explain the contradictory results of the chemical crosslink/mass spectrometry studies 

obtained by Luo et al. [80]. Accordingly, p62 would be able to transiently come into close 

proximity to XPD and p34 without directly interacting with both subunits and get trapped by 

the crosslink, thereby generating false positives. 

The three major roles of TFIIH are global NER, TCR, and transcription [1, 148]. In global 

NER, initial damage detection is performed by XPC/HR23B/Centrin2 [152]. TFIIH is then 

recruited to the repair site via the interaction of the p62 PH domain with XPC [42, 44, 45]. In 

a later stage XPG replaces XPC by binding to the same interface on p62, thereby permitting 

the progression of the DNA repair process [43, 44]. In TCR, the lesion is recognized via a 

stalled RNAPII [138]. Thus, XPC is not involved in initial damage detection and TFIIH 

recruitment. However, it has been shown that XPG binds to stalled RNAPII [248]. In this 

case, TFIIH might be recruited directly via the interaction of XPG to p62. In transcription, 

TFIIH is involved in promotor opening and the phosphorylation of the CTD of RNAPII [7, 50]. 

During PIC formation, the general transcription factors are sequentially recruited, with TFIIH 

joining last [4]. TFIIH is recruited to the PIC by TFIIE, again through the interaction with the 

PH domain of p62 [63]. Taken together, p62 is a central component in all three processes 

and seems to be involved in the TFIIH recruitment during global NER, TCR, and 

transcription. In addition to XPC, XPG, and TFIIE, it has been shown that p53 also interacts 

with the PH domain of p62 [69]. The tumor suppressor p53 is a transcriptional activator 

implicated in cell cycle arrest and apoptosis [490]. P53 induces expression of its target genes 

by recruiting the transcription machinery [491]. In this model TFIIH would be directed towards 
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these target genes through the interaction of p53 with p62. The fact that p53 addresses p62 

corroborates the notion that p62 provides a major TFIIH interface to the environment. The 

central importance of this TFIIH interface is underlined by the finding that it is exploited by 

the herpes simplex virus. Herpes simplex virus possesses a transcriptional activator protein 

VP16, which induces transcription of viral genes [492]. For this purpose, VP16 recruits TFIIH, 

again by addressing the PH domain of p62 [68, 70]. Another example is the rift valley fever 

virus (RVFV). RVFV is an RNA virus and replicates in the cytoplasm [493]. As such, it is 

independent of the host transcription machinery and these viruses often inhibit transcription 

of the host cell to avoid an antiviral response [494]. RVFV thus possesses the virulence 

factor NSs [493]. NSs interacts with the PH domain of p62 [72], thereby blocking the 

interface for other factors. Furthermore, NSs targets p62 to the ubiquitin proteasome 

pathway and p62 is rapidly degraded at an early stage of viral infection [495, 496]. According 

to p62s supposed role as external interface, immediate blockage and destruction of p62 

would effectively hinder the recruitment of TFIIH to transcription start sites, thereby shutting 

down host cell transcription. 

The provision of one central interface, competitively addressed by different proteins, 

presumably aids in organizing the participation of TFIIH in its different processes. On the one 

hand it might minimize the interference of the different pathways by hindering recruitment of 

a TFIIH complex, which is already engaged in another pathway, due to a blocked p62 

interface. On the other hand it might give the cell the possibility to actively manage the 

distribution of TFIIH to the different pathways by overexpressing the respective recruiting 

factor, which then outcompetes the other recruiting factors. 

 

4.3.3. Organization of the TFIIH core 

Based on the conclusions decribed above, the TFIIH core is proposedly subdivided into three 

functional submodules: the XPD/p44 submodule, the XPB/p52/p8 submodule, and the 

external interface submodule. P34 constitutes the central scaffold, anchoring the XPD/p44 

and the XPB/p52/p8 submodules. A schematic model of this TFIIH core organization is 

depicted in Figure 4-4. 

In principle the XPD/p44 and XPB/p52/p8 submodules are organized into an enzymatic 

subunit (XPD or XPB) and a second subunit, which serves as a stimulator for the enzymatic 

subunit and as anchor to the remaining TFIIH core (p44 or p52). The XPB/p52/p8 submodule 

possesses an additional regulatory protein with p8. The two submodules fulfill different tasks 

during NER and transcription. 

During NER, the XPD/p44 submodule is responsible for DNA unwinding around the lesion 

via the helicase activity of XPD [22]. The ATPase/helicase activity is stimulated by p44, 

constituting the regulator of this submodule [30]. During transcription, the XPD/p44 
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submodule plays an important scaffolding role by anchoring the CAK complex to the TFIIH 

core. This is achieved by the interaction of MAT1 with XPD [38]. The enzymatic activity of 

XPD is dispensable during transcription [24]. Furthermore, p44 serves as an anchor for p62 

(the external interface submodule) (Figure 4-3) [46]. 

The role of the XPB/p52/p8 submodule during NER is the anchoring of TFIIH to the repair 

site through an interaction of XPB with the dsDNA. Interestingly, it has been shown that this 

anchoring is dependent on the ATPase activity of XPB [15]. In transcription, the XPB/p52/p8 

submodule is supposed to be responsible for promotor opening via XPBs enzymatic activity 

[7]. However, it has also been suggested that XPB is not involved in promotor opening at all 

and that it solely acts as a regulatory transcriptional block, which is released by its own 

ATPase activity [342]. In any case, the ATPase activity of XPB is stimulated through p52 and 

p8, constituting the regulatory subunits of the XPB/p52/p8 submodule [22, 26]. 

The supposed external interface submodule is constituted by the p62 subunit. This 

submodule is presumably the major interface to the environment and responsible for 

recruitment of TFIIH to the different pathways via external recruiting factors as described 

above. Furthermore, TFIIH can be recruited to specific target gene sites, for example via the 

interaction of the tumor suppressor p53 with the external interface submodule [69]. 

Finally, p34 constitutes the central scaffold of the TFIIH core. It interacts with the “anchor 

proteins” p44 and p52 of the XPD/p44 and XPB/p52/p8 submodules, respectively (Figure 

4-3) [48, 80]. Both domains of p34 interact with p52 and p44. It therefore fulfils a key role 

concerning the structural integrity of TFIIH. 

 

 
Figure 4-4. Model of the TFIIH core organization. Submodules are indicated by different coloring. 
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4.4. TFIIH core assembly 

4.4.1. Implications for activity assays 

TFIIH core assemblies were conducted in low salt conditions, containing either 0.125 M KCl 

or 0.15 M KAc (see 3.13.3.1, Figure 3-129 and Figure 3-130). In both cases the assembly 

was severely impaired, and the TFIIH core was seemingly dissociating. This suggests that 

TFIIH is not stable at low salt concentrations, which could have significant implications for the 

assessment of the enzymatic activities of TFIIH. So far the enzymatic activities of TFIIH, like 

the ATPase or helicase activity, have been generally investigated at low salt concentrations 

containing 0-50 mM KCl (see for example [22, 100, 184, 186, 485]). Considering the results 

from this work, it is well possible that TFIIH dissociated when these conditions were utilized 

and that the reported results are not obtained from a complete TFIIH complex but rather from 

the separate subunits. To investigate and properly address this issue, development of activity 

assays at higher salt concentrations seem to be compulsory. 

 

4.4.2. Fitting of TFIIH core subunits 

The TFIIH core subunits could be fitted to the EM volumes of Core5, Core6, and Core7 (see 

3.13.6). However, the limited resolution (~28-36 Å) hampered the interpretation and made 

the placement of the subunits ambiguous. As a cornerstone the differences between the EM 

volumes were beneficial to position the XPB and XPD subunits. The interaction network 

established above (Figure 4-3) was used as a guideline and an interpretation obeying all of 

these interactions could be achieved. Furthermore, the proposed roles for p34 (see 4.3.1) 

and p62 (see 4.3.2) were considered. The vWA like domain of p34 should be directly 

positioned in between p52 and the C-terminal domains of p44. Furthermore, behind the vWA 

like domain of p34 an additional volume was present for the placement of the C-terminal zinc 

finger domain of p34. At this position this domain would again be in contact with p52 as well 

as the C-terminal domains of p44. The proposed role of p62, as described above, is the 

external interface of TFIIH. As such, it would be peripherally attached, available to external 

factors. The EM volumes supported a bulge present at the periphery, which was 

hypothesized to correspond to the position of p62. Additionally, at this position p62 would be 

located next to the assumed position of the central zinc finger domain of p44, in line with the 

p62 binding site of p44 that was identified in this work. As stated above, this interpretation 

has to be taken with some caution due to the limited resolution of the EM maps. To address 

this issue, higher resolution EM maps of TFIIH core are urgently required. 
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4.4.3. Comparison with EM map EMD-8131 

The EM maps obtained for Core7 were compared with map EMD-8131 [76], the TFIIH core 

map with the highest resolution available to date. Comparison of the Core7 EM map obtained 

from negative stain fitted to EMD-8131 is depicted in Figure 4-5. The direct comparison 

revealed that the overall size and volume of both maps correspond to each other (Figure 4-5 

a). However, distinct differences were observed as well. EMD-8131 displays density at the 

top right, which is absent in the Core7 map. On the other hand, the Core7 map indicates 

additional density at the bottom left and at the back in form of a protrusion. A comparison of 

the positions of the fitted subunits from this work with the published model suggests a 

significantly different position for XPB (Figure 4-5, compare b and c). The Core7 EM map 

from this work represents the isolated Core7, while EMD-8131 represents Core7 in the 

context of the PIC. Thus, the different positions of XPB might reflect different conformational 

states of TFIIH engaged in transcription compared to isolated TFIIH. With respect to EMD-

8131 and the fitted subunits, it appears that the EM map does not support clear density for 

the placement of the p62 subunit (Figure 4-5 c). The Core7 EM map from this work seems to 

possess additional volume in form of a bulge at the bottom left, enabling the accommodation 

of p62. 
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Figure 4-5. Comparison of the negative stain EM map of Core7 with EMD-8131. The front view 
(left), side view (middle), and back view (right) are shown. (a) EM map of Core7 (red surface) fitted to 
EMD-8131 (black mesh). The most distinct differences between the maps are indicated by arrows. (b) 
EM map of Core7 with the fitted core subunits. The un-occupied space may allow the positioning of 
the p62 subunit as indicated. (c) EM map EMD-8131 with the fitted core subunits (5IVW). 

 

The cryo-EM Core7 map from this work was compared with EMD-8131 as well. As described 

above, the interpretation of the cryo-EM Core7 map was ambiguous (see 3.13.6, Figure 

3-160), with seemingly either XPB or XPD missing in the complex. Due to the limited 

resolution it could not be distinguished, which subunit might be absent and both possibilities 

were considered and superimposed with EMD-8131 (Figure 4-6). A reason for the missing 
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volume in the Core7 cryo-EM map might be the loss of one of these subunits during sample 

deposition. For the deposition of negatively stained Core7 a crosslinked sample was used, 

whereas the sample for cryo-EM was deposited without a crosslinker. It can easily be 

envisioned that the complex without a crosslinker was less stable, resulting in the loss of one 

of the subunits. As the Core7 complex from negative stain seemingly contained all subunits, 

whereas the Core7 complex from cryo-EM lacked one subunit, the following discussion was 

based on the EM maps obtained from negative staining. 

 

 
Figure 4-6. Comparison of the cryo-EM map of Core7 with EMD-8131. The front view (left), side 
view (middle), and back view (right) are shown. Red surface: Core7 cryo-EM map; black mesh: 
EMD-8131. (a) Fit supporting XPD. (b) Fit supporting XPB. 

 

4.5. TFIIH conformations 

The comparison of the Core7 EM structure obtained from this work with EMD-8131 (Figure 

4-5) indicated the existence of different TFIIH conformations. Two conformations might be 

distinguished, a closed conformation (corresponding to the published structure 5IVW) and a 

possible open conformation (corresponding to the structure from this work). These 

hypothesized conformations are schematically depicted in Figure 4-7 a. The major difference 

between these conformations would be the relative position of XPB and XPD to each other. 
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In the closed conformation XPB and XPD are in close proximity, whereas in the open 

conformation XPB and XPD would be much further apart. As the closed conformation was 

derived from TFIIH incorporated into the PIC [76], it was concluded that TFIIH participates in 

transcription in a closed conformation. In contrast, the open conformation was derived from 

an isolated TFIIH core. This poses the question about a possible role of an open 

conformation and how the transition between these conformations would be triggered. A 

possible factor for such a conformational change might be the CAK complex. CAK is 

anchored to TFIIH core via XPD [38]. Furthermore, an interaction between MAT1 and XPB 

has been suggested [80], and EM studies placed CAK in the proximity of XPB [75]. 

Accordingly, XPD and XPB might be tethered together by CAK, keeping TFIIH in the closed 

conformation. This would also be in line with the occurrence of the closed conformation in the 

PIC, as the CAK is required for transcription [50]. Consequently, the release of CAK might 

enable the transition to the open conformation. In fact, the open conformation was derived 

from an isolated TFIIH core where no CAK was present. Following this hypothesis, the 

suggested open conformation might play a role in the progression of NER, as the CAK is 

released during NER [185]. In NER, XPD unwinds the DNA around the lesion, creating a 

bubble [22]. To permit this activity, it has to move along the DNA. However, as XPD is part of 

the TFIIH core complex during NER, it is restricted in its movement. One possibility is the 

movement of the entire complex. With respect to XPB, ATPase assays revealed a clear 

preference of XPB for dsDNA, as the ATPase activity could only be stimulated in the 

presence of dsDNA (see 3.2.3). Based on these results we conclude that XPB most likely 

binds to a dsDNA region during NER and does not engage with the ssDNA region of the 

repair bubble. A plausible scenario is therefore that XPB binds to a defined position upstream 

of the repair site after recruitment of TFIIH via XPC/HR23B/Centrin2. This engagement with 

the dsDNA is supported by the findings from the study of Fishburn et al., where the authors 

showed that SSL2 (XPB) possesses a dsDNA dependent translocase activity [21]. 

Furthermore, cryo-EM studies of the PIC placed XPB downstream of the actual promotor 

opening side, in contact with dsDNA at all stages of transcription initiation [76, 78]. At this 

stage of the NER pathway; i.e. after the damage has been initially recognized and TFIIH has 

been recruited, the transcription factor would be in a closed conformation with CAK being 

present. It has been shown that CAK inhibits DNA binding of TFIIH [186], most likely by 

blocking XPD. The arrival of XPA leads to the dissociation of CAK, thereby enabling XPD to 

engage the DNA, leading to the activation of XPD [37, 185]. In order to move downstream to 

unwind the DNA around the lesion, TFIIH would then adopt the open conformation. In this 

state XPB and XPD would be much further apart, granting XPD the necessary freedom to 

move downstream and act as a helicase. Presumably, XPB stays bound at a fixed position 

during this process, still binding to the dsDNA region upstream of the repair bubble. The 
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energy for the conformational change of TFIIH might well be provided by the ATPase activity 

of XPB. This model is schematically depicted in Figure 4-7 b. 

 

 
Figure 4-7. Model of the conformational flexibility of TFIIH. (a) Schematic diagram of the closed 
and the open conformation. (b) Proposed role of the different conformations in NER. A DNA lesion is 
recognized by XPC/HR23B/Centrin2 (1). TFIIH is recruited in its closed conformation via p62. In this 
conformation XPB assumes a defined position, where it anchors TFIIH to the DNA by binding to the 
dsDNA upstream of the damage (2). The entry of XPA (not shown) leads to the release of CAK, which 
permits the transition of the TFIIH core to the open conformation, providing the necessary freedom for 
XPD to move downstream for DNA unwinding. XPB remains stationary and bound to the dsDNA 
region upstream of the repair bubble (3). 

 

4.6. Global NER revised 

The results from this work were combined with different previously published results and 

integrated into a unified model to dissect and explain the global NER mechanism. This 

revised model is depicted in Figure 4-8. Damaged DNA is recognized by the 

XPC/HR23B/Centrin2 complex, which binds to the unpaired DNA bases on the strand 

opposite to the lesion [152, 153, 163]. Depending on the lesion this process can be facilitated 

by UV-DDB [173, 174]. XPC recruits TFIIH in a closed conformation through the interaction 

with p62 [42, 44, 45], which constitutes the interface submodule of TFIIH. It has been 

suggested that XPC also interacts with XPB [42]. This interaction may be required to 

precisely position XPB upstream of the DNA damage. XPB then anchors TFIIH by clamping 

the DNA with its RED motif and ThM domain [14, 15]. XPA is subsequently recruited, 

p44p52

XPB XPD

p8 p34 p62

MAT1

CyclinH
CDK7

p44p52

XPB XPD

p8 p34 p62

p44p52

XPB XPD

p8 p34 p62

Closed conformation

Open conformation

a b

3

2

1

XPC/HR23B/Centrin2

p44p52

XPB XPD

p8 p34 p62

MAT1

CyclinH
CDK7



4. Discussion Global NER revised 

218 

resulting in the release of the CAK complex [185]. TFIIH transitions into the open 

conformation, providing the necessary mobility for XPD to unwind the DNA around the lesion. 

This leads to the activation of XPDs helicase activity [37, 38]. In this model XPB would stay 

bound to the dsDNA at a fixed position upstream of the repair site. The damage is verified by 

XPD and/or XPA [66, 198, 205]. The repair bubble is stabilized through binding of RPA to the 

undamaged single strand [191, 194]. At this stage, the repair bubble is precisely defined by 

TFIIH. On the one hand, XPB is fixed upstream of the repair bubble close to the 5’ end of the 

damaged strand. On the other hand, p62 is fixed downstream of the repair bubble close to 

the 3’ end of the damaged strand. This arrangement is crucial for the recruitment of XPG. It 

has been shown that XPG is important for the recruitment of the DNA resynthesis machinery 

(RFC, PCNA, and DNA polymerase δ, ε, or κ) [233]. Considering the fact that XPG performs 

the 3’ incision within the damaged strand and that the DNA resynthesis machinery has to 

start synthesizing from the 5’ incision site strongly suggests a position of XPG spanning the 

entire repair bubble from the 5’ to the 3’ end. It has been suggested that XPG interacts with 

p62 and XPB [43, 481, 497]. Accordingly, p62 leads XPG to the 3’ end and XPB draws XPG 

to the 5’ end of the bubble. The endonuclease XPF-ERCC1 is recruited to the 5’ end via XPA 

[206, 209]. It has been shown that the presence of XPF-ERCC1 hinders the recruitment of 

the DNA resynthesis machinery [233]. Consequently, XPF-ERCC1 is most likely released 

directly after performing the 5’ incision. Presumably, XPF-ERCC1 stays bound to the 5’ end 

of the damaged strand [225]. At this stage XPG is still bound to the repair site. Release of 

XPF-ERCC1 makes the 5’ site of the repair bubble available for the DNA resynthesis 

machinery, which is then recruited via XPG and RPA [233]. Most likely, DNA resynthesis is 

initiated before the 3’ incision and with the NER machinery still in place to avoid the exposure 

of potentially dangerous ssDNA gaps [213]. Finally, XPG performs the 3’ incision and is 

released together with the excised strand and TFIIH [217, 225, 226], and the single stranded 

gap is refilled by the DNA polymerase [229]. 
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Figure 4-8. Revised model of the global NER mechanism. TFIIH subunits important for a particular 
step are highlighted. Damaged DNA is recognized by XPC/HR23B/Centrin2 with or without the help of 
UV-DDB (1). TFIIH in the closed conformation is recruited by XPC via p62. XPB is properly positioned 
upstream of the damaged site via interaction with XPC (2). XPA and RPA are recruited, leading to the 
release of CAK. Furthermore, TFIIH adopts an open conformation, enabling XPD to unwind the DNA 
around the damage (3). The endonucleases XPG and XPF-ERCC1 are recruited. XPG is properly 
positioned via interaction with p62 and XPB, thereby spanning the entire repair bubble (4). XPF-
ERCC1 makes an incision 5’ of the lesion into the damaged strand and is released. RFC, PCNA, and 
DNA polymerase δ, ε, or κ are recruited via XPG and RPA. Subsequently, XPG makes an incision 3’ 
to the lesion (5). The excised strand is released bound by TFIIH, XPG, and XPF-ERCC1 and the 
single stranded gap is filled by DNA synthesis (6). 
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6. Appendix 

6.1. Abbreviations 

A280 Absorption at 280 nm 

AA/BAA Acrylamide/Bis-acrylamide 

ADP Adenosine diphosphate 

AIEX Anion exchange chromatography 

Amp Ampicillin 

APS Ammonium persulfate 

ATP Adenosine triphosphate 

BSA Bovine serum albumin 

BSD BTF2-like transcription factors, synapse-associated and DOS2-like 

CAK CDK activating kinase 

Cam Chloramphenicol 

CDK1 - CDK7 Cyclin dependent kinase 1 - 7 

cDNA Complementary DNA 

Ches N-Cyclohexyl-2-aminoethanesulfonic acid 

CHO Chinese hamster ovary 

CPD Cyclobutane pyrimidine dimer 

CS Cockayne syndrome 

CSA / CSB Cockayne syndrome group A / B 

CTD C-terminal domain 

DDB1 / DDB2 DNA damage-binding protein 1 / 2 

dL Delta linker 

DNA Deoxyribonucleic acid 

DNAse Deoxyribonuclease 

dNTP Deoxynucleoside triphosphate 

DRD Damage recognition domain 

dsDNA Double stranded DNA 

DTT Dithiothreitol 

EDTA Ethylenediaminetetraacetic acid 

EM Electron microscopy 

EMBL European Molecular Biology Laboratory 

ERCC1 - ERCC3 Excision repair cross-complementation group 1 - 3 

ESRF European Synchrotron Radiation Facility 

EtOH Ethanol 

FPLC Fast protein liquid chromatography 
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fs Frameshift 

HD1 / HD2 Helicase domain 1 / 2 

Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HEWL Hen egg white lysozyme 

HR23B UV excision repair protein RAD23 homolog B 

IDA Iminodiacetic acid 

IEX Ion exchange chromatography 

IMAC Immobilized metal affinity chromatography 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

ISAC Iterative stable alignment and clustering 

Kan Kanamycin 

kb Kilo bases 

MAT1 Ménage à trois 1 

MES 2-(N-morpholino)ethanesulfonic acid 

mRNA Messenger RNA 

MWCO Molecular weight cutoff 

NAD+ / NADH Nicotinamide adenine dinucleotide 

NER Nucleotide excision repair 

NR Nuclear receptor 

nt Nucleotides 

nT Non-tagged 

OD600 Optical density at 600 nm 

opti Codon optimized cDNA sequence 

PAGE Polyacrylamide gel electrophoresis 

PCNA Proliferating cell nuclear antigen 

PCR Polymerase chain reaction 

PDB Protein data bank 

PEG Polyethylene glycol 

PH Pleckstrin homology 

PIC Preinitiation complex 

Pipes 1,4-piperazinediethanesulfonic acid 

PMSF Phenylmethylsulfonyl fluoride 

RFC Replication factor C 

RMSD Root-mean-square deviation 

RNA Ribonucleic acid 

RNAPI - RNAPIII RNA polymerase I - III 

RPA Replication protein A 
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rpm Rounds per minute 

rRNA Ribosomal RNA 

SAD Single wavelength anomalous diffraction 

SDS Sodium dodecyl sulfate 

SEC Size exclusion chromatography 

SLIC Sequence and ligation independent cloning 

ssDNA Single stranded DNA 

SSL1 / SSL2 Suppressor of stem-loop protein 1 / 2 

TBP TATA binding protein 

TCEP Tris(2-carboxyethyl)phosphine 

TCR Trancription coupled repair 

TED Tris-carboxymethyl ethylene diamine 

TEMED Tetramethylethylenediamine 

TEV Tobacco etch virus 

Tfb Transcription factor b 

Tfb1 - Tfb5 Transcription factor b subunit 1 - 5 

TFIIA - TFIIH / TFIIS Transcription factor IIA - IIH / IIS 

ThM Thumb motif 

Tris Tris(hydroxymethyl)aminomethane 

tRNA transfer RNA 

TTD Trichothiodystrophy 

UV Ultraviolet 

UV-DDB Ultraviolet radiation-DNA damage-binding protein 

vWA von Willebrand factor A 

XP Xeroderma pigmentosum 

XPA - XPG Xeroderma pigmentosum group A - G 

XRCC1 X-ray repair cross-complementing protein 1 

 

6.2. Standard Thermofluor screen 

All buffers present in the standard Thermofluor screen are listed in Table 6-1. Concentration 

of all buffers is 0.1 M. 
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Table 6-1. Composition of the standard Thermofluor screen. 

 
 

6.3. Secondary structure predictions and sequence 

alignments 

For secondary structure predictions three different web servers have been used: RaptorX, 

Phyre2, and I-TASSER. For sequence alignments between the protein sequences from 

Buffer pH

Citric acid 4.5

Acetic acid 4.6

Bis-Tris 5.5

Mes 5.5

Bis-Tris propane 6.0

Sodium cacodylate 6.0

Ada 6.5

Bis-Tris 6.5

Imidazole 6.5

Mes 6.5

Pipes 6.5

Sodium cacodylate 6.5

K/Na phosphate 6.8

Ada 7.0

Bis-Tris 7.0

Bis-Tris propane 7.0

Hepes 7.0

Mops 7.0

Pipes 7.0

Tris 7.0

Hepes 7.5

K/Na phosphate 7.5

Mops 7.5

Pipes 7.5

Tris 7.5

Bicine 8.0

Hepes 8.0

Imidazole 8.0

Taps 8.0

Tris 8.0

Bicine 8.5

Glycyl-glycine 8.5

Hepes 8.5

Tris 8.5

Bicine 9.0

Ches 9.0

Taps 9.0

Tris 9.0

Ches 9.5

Caps 9.8



6. Appendix Secondary structure predictions and sequence alignments 

246 

Homo sapiens and Chaetomium thermophilum three different web servers have been used: 

EMBOSS Needle, ClustalW2, and COBALT. 

 

6.3.1. XPB 

 
Figure 6-1. Secondary structure prediction of XPB. (a) RaptorX. (b) Phyre2. (c) I-TASSER. 
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hs    1 -----------------------------------MGKRDRADRDKKKSRKRHYEDEEDD-------EEDAPGND   33 

                                           :...:.:|.|         ||.:||       :||....: 

ct    1 MPPKRKAPPVGAQAPAPKAGRTSAMSTSGPATPRSLDDSNLSDAD---------EDLDDDIPEEQKKKEDLLSKE   66 

 

hs   34 PQE------AVPSAAGKQVDESGTKVDEYGA-------KDYRLQMPLKDDHTSRPLWVAPDGH-IFLEAFSPVYK   94 

        ..|      |:.....||.|  ..::..|.|       ||:. .:|||.||.:||||:.|:.. |.||.|:|:.: 

ct   67 ADEFVRKFSAIKRGLNKQDD--AERLRHYDAATPYFKKKDFS-YLPLKPDHYNRPLWIDPNTQTIVLERFNPLSE  138 

 

hs   95 YAQDFLVAIAEPVCRPTHVHEYKLTAYSLYAAVSVGLQTSDITEYLRKLSKTGVPDGIMQFIKLCTVSYGKVKLV  169 

        .|.|||:.||||..|||.:|||.:|.:||||||||||:..||...|.:..||.:|....::|:.||.|||||||| 

ct  139 QATDFLITIAEPRSRPTFLHEYVMTTHSLYAAVSVGLRPKDIINTLDRFLKTPLPASTREYIETCTKSYGKVKLV  213 

 

hs  170 LKHNRYFVESCHPDVIQHLLQDPVIRECRLRNSEGEATELITETFTSKSA-------ISKTAESSG--------G  229 

        ||:|:|:|||....::|.||.||||.:.|::.::           |:.||       |..|..::|        | 

ct  214 LKNNKYYVESVDAQMLQILLNDPVIGKLRVQGTD-----------TTSSAPKMGGLVIPGTQNAAGVRQANLVDG  277 

 

hs  230 PSTSRVTDPQGKSDIPMDLFDFYEQMDKDEEEEEETQTVSFEVKQEMIEELQKRCIHLEYPLLAEYDFRNDSVNP  304 

        |...:  .|..:.....:..|.:..::::::::::....:||:....:|.:||||:.:.||:|.|||||||.:|| 

ct  278 PVAEK--KPGDQDAAAANEADLFANLNEEDDDDDKENVHAFEIADSSVETVQKRCLDIGYPMLEEYDFRNDDINP  350 

 

hs  305 DINIDLKPTAVLRPYQEKSLRKMFGNGRARSGVIVLPCGAGKSLVGVTAACTVRKRCLVLGNSAVSVEQWKAQFK  379 

        ::.|||:|...:||||||||.||||||||:||:|||||||||:|||:|||||::|..:||..|::||.||:.:|. 

ct  351 NLEIDLRPNTQIRPYQEKSLSKMFGNGRAKSGIIVLPCGAGKTLVGITAACTIKKGVIVLCTSSMSVVQWRQEFL  425 

 

hs  380 MWSTIDDSQICRFTSDAKDKPIGCS-VAISTYSMLGHTTKRSWEAERVMEWLKTQEWGLMILDEVHTIPAKMFRR  453 

        .||.|:...|..||:::|::..|.: :.::||||:.::.:||.:::::|::|:.:|||||:|||||.:||:|||| 

ct  426 KWSNINPDDIAIFTAESKNRFQGSTGIIVTTYSMVTNSRERSHDSKKMMDFLRGREWGLMLLDEVHVVPAEMFRR  500 

 

hs  454 VLTIVQAHCKLGLTATLVREDDKIVDLNFLIGPKLYEANWMELQNNGYIAKVQCAEVWCPMSPEFYREYVAIKTK  528 

        |::.:::|.||||||||:||||:|..|||||||||||||||||...|:|||||||||||||..|||.||:....: 

ct  501 VISSIKSHAKLGLTATLLREDDRISHLNFLIGPKLYEANWMELSQQGHIAKVQCAEVWCPMPTEFYDEYLRANAR  575 

 

hs  529 KRILLYTMNPNKFRACQFLIKFHERRNDKIIVFADNVFALKEYAIRLNKPYIYGPTSQGERMQILQNFKHNPKIN  603 

        .:..||.|||.||:|||:||.:||.|.||||||:|.:::||:||::|.|.:|||.|||.||||:|:||:|||::| 

ct  576 MKRTLYAMNPRKFQACQYLINYHEARGDKIIVFSDELYSLKQYALKLKKVFIYGGTSQAERMQVLENFQHNPEVN  650 

 

hs  604 TIFISKVGDTSFDLPEANVLIQISSHGGSRRQEAQRLGRVLRAKKGMVAEEYNAFFYSLVSQDTQEMAYSTKRQR  678 

        |:|:||:||||.|||||..|||||||.||||||||||||:||||: ...|.:|||||||||:|||||.||:|||. 

ct  651 TLFLSKIGDTSLDLPEATCLIQISSHFGSRRQEAQRLGRILRAKR-RNDEGFNAFFYSLVSKDTQEMYYSSKRQA  724 

 

hs  679 FLVDQGYSFKVITKLAGMEE-EDLAFSTKEEQQQLLQKVLAATDLDAEEEVVAGEFGSRS---------SQASRR  743 

        |||||||:|||||.||.:|: .||||||.:|.::|||:.|...:..|||:|...:...|:         |...|. 

ct  725 FLVDQGYAFKVITHLANIEQTPDLAFSTPQEVRELLQRTLVDNEKGAEEDVETDDLFGRTGRKKKAGALSGVRRT  799 

 

hs  744 FGTMSSMSGADDTVYMEYHSSRSKA----------PSK-----HVHPLFKRFRK--------------  782 

        .|.:|.:||..|..|:|.:.:.::|          .||     .....||:..:               

ct  800 AGMLSELSGGQDMAYIEQNKAANRALKQQGAGGGKSSKAAAMAEKSSFFKKIEREKEKSRAAARAARQ  867 

 

Figure 6-2. Alignment between the human (hs) and C. thermophilum (ct) amino acid sequence 
of XPB with EMBOSS Needle. 

 

hs    1 ---------MGKRDRADRDKKKSRK--------RHYEDE--EDDEEDAPGNDPQE--------------------   36 

                 :| :  | :  :.|          |  :|.  .| :||  .: |:|                     

ct    1 MPPKRKAPPVGAQAPAPKAGRTSAMSTSGPATPRSLDDSNLSDADEDLDDDIPEEQKKKEDLLSKEADEFVRKFS   75 

 

hs   37 AVPSAAGKQVDESGTKVDEYGAKDYRLQ----MPLKDDHTSRPLWVAP-DGHIFLEAFSPVYKYAQDFLVAIAEP  106 

        |:  . .|| | .  :  : .:  :: :    :||| || .||||: |    |.|| |.|: : | |||::|||| 

ct   76 AIKRGLNKQDDAERLRHYDAATPYFKKKDFSYLPLKPDHYNRPLWIDPNTQTIVLERFNPLSEQATDFLITIAEP  150 

 

hs  107 VCRPTHVHEYKLTAYSLYAAVSVGLQTSDITEYLRKLSKTGVPDGIMQFIKLCTVSYGKVKLVLKHNRYFVESCH  181 

         .|||.:||| :|::||||||||||:..|| : | :: || :| .  ::|: || ||||||||||:|:|:||| . 

ct  151 RSRPTFLHEYVMTTHSLYAAVSVGLRPKDIINTLDRFLKTPLPASTREYIETCTKSYGKVKLVLKNNKYYVESVD  225 

 

hs  182 PDVIQHLLQDPVIRECRLRNSEGEATELITETFTSKSAISKTAESSGGPSTSRVTD--PQGKSDIPMDLFDFYEQ  254 

        .:::| ||:|||| : |::.::  ::      :.  .: . :.  ...   . |::  | .:.  . :  |:: : 

ct  226 AQMLQILLNDPVIGKLRVQGTDTTSSAPKMGGLVIPGTQNAAGVRQANLVDGPVAEKKPGDQDAAAANEADLFAN  300 

 

hs  255 MDKDEEEEEETQTVSFEVKQEMIEELQKRCIHLEYPLLAEYDFRNDSVNPDINIDLKPTAVLRPYQEKSLRKMFG  329 

        :::::::::: :. :||: :. :| :||||:.: ||:| |||||||.:||:::|||:|.: :|||||||| |||| 

ct  301 LNEEDDDDDKENVHAFEIADSSVETVQKRCLDIGYPMLEEYDFRNDDINPNLEIDLRPNTQIRPYQEKSLSKMFG  375 

 

hs  330 NGRARSGVIVLPCGAGKSLVGVTAACTVRKRCLVLGNSAVSVEQWKAQFKMWSTIDDSQICRFTSDAKDKPIGCS  404 

        ||||:||:|||||||||:|||:|||||::|  :|| .|::|| ||: :|  ||.|: .:|. ||:::|::  |.: 

ct  376 NGRAKSGIIVLPCGAGKTLVGITAACTIKKGVIVLCTSSMSVVQWRQEFLKWSNINPDDIAIFTAESKNRFQGST  450 
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hs  405 -VAISTYSMLGHTTKRSWEAERVMEWLKTQEWGLMILDEVHTIPAKMFRRVLTIVQAHCKLGLTATLVREDDKIV  478 

         : ::||||: :: :|| :::::|::|: :|||||:|||||.:||:|||||:: :::|.||||||||:||||:|  

ct  451 GIIVTTYSMVTNSRERSHDSKKMMDFLRGREWGLMLLDEVHVVPAEMFRRVISSIKSHAKLGLTATLLREDDRIS  525 

 

hs  479 DLNFLIGPKLYEANWMELQNNGYIAKVQCAEVWCPMSPEFYREYVAIKTKKRILLYTMNPNKFRACQFLIKFHER  553 

        .|||||||||||||||||.::|:|||||||||||||..||| ||:  ::: :  ||:|||.||:|||:||::||  

ct  526 HLNFLIGPKLYEANWMELSQQGHIAKVQCAEVWCPMPTEFYDEYLRANARMKRTLYAMNPRKFQACQYLINYHEA  600 

 

hs  554 RNDKIIVFADNVFALKEYAIRLNKPYIYGPTSQGERMQILQNFKHNPKINTIFISKVGDTSFDLPEANVLIQISS  628 

        |.||||||:|::::||:||::|:| :||| |||.||||:|:||:|||::||:|:||:||||:|||||. |||||| 

ct  601 RGDKIIVFSDELYSLKQYALKLKKVFIYGGTSQAERMQVLENFQHNPEVNTLFLSKIGDTSLDLPEATCLIQISS  675 

 

hs  629 HGGSRRQEAQRLGRVLRAKKGMVAEEYNAFFYSLVSQDTQEMAYSTKRQRFLVDQGYSFKVITKLAGMEEE-DLA  702 

        | ||||||||||||:||||:    | :|||||||||:||||| ||:||| |||||||:|||||:||.:|:  ||| 

ct  676 HFGSRRQEAQRLGRILRAKR-RNDEGFNAFFYSLVSKDTQEMYYSSKRQAFLVDQGYAFKVITHLANIEQTPDLA  749 

 

hs  703 FSTKEEQQQLLQKVLAATDLDAEEEVVAGEFGSRS---------SQASRRFGTMSSMSGADDTVYMEYHSSRSKA  768 

        ||| :| ::|||:.|. .: .|||:| :.:: .|:         | . |  | :|.:||.:| .|:| :.: .:| 

ct  750 FSTPQEVRELLQRTLVDNEKGAEEDVETDDLFGRTGRKKKAGALSGVRRTAGMLSELSGGQDMAYIEQNKAANRA  824 

 

hs  769 PSKH---------------VHPLFKRFRK--------------  782 

         .::                 .:||::.:               

ct  825 LKQQGAGGGKSSKAAAMAEKSSFFKKIEREKEKSRAAARAARQ  867 

 

Figure 6-3. Alignment between the human (hs) and C. thermophilum (ct) amino acid sequence 
of XPB with ClustalW2. 

 

hs    1 MGKRDRAD---------------------------------RDKKKSRKRHYEDEEDDEEDAPGNDPQEAVPSAA   42 

ct    1 MPPKRKAPPVGAQAPAPKAGRTSAMSTSGPATPRSLDDSNLSDADEDLDDDIPEEQKKKEDLLSKEADEFVRKFS   75 

 

hs   43 ----GKQVDESGTKVDEYGA-------KDYRLQMPLKDDHTSRPLWVAPDGH-IFLEAFSPVYKYAQDFLVAIAE  105 

ct   76 AIKRGLNKQDDAERLRHYDAATPYFKKKDFSY-LPLKPDHYNRPLWIDPNTQTIVLERFNPLSEQATDFLITIAE  149 

 

hs  106 PVCRPTHVHEYKLTAYSLYAAVSVGLQTSDITEYLRKLSKTGVPDGIMQFIKLCTVSYGKVKLVLKHNRYFVESC  180 

ct  150 PRSRPTFLHEYVMTTHSLYAAVSVGLRPKDIINTLDRFLKTPLPASTREYIETCTKSYGKVKLVLKNNKYYVESV  224 

 

hs  181 HPDVIQHLLQDPVIRECRLRNSEGEATEL----ITETFTSKSAISKTAESSGGPSTSRVTDPQGKSDIPMDLFDF  251 

ct  225 DAQMLQILLNDPVIGKLRVQGTDTTSSAPKMGGLVIPGTQNAAGVRQANLVDGPVAEK--KPGDQDAAAANEADL  297 

 

hs  252 YEQMDKDEEEEEETQTVSFEVKQEMIEELQKRCIHLEYPLLAEYDFRNDSVNPDINIDLKPTAVLRPYQEKSLRK  326 

ct  298 FANLNEEDDDDDKENVHAFEIADSSVETVQKRCLDIGYPMLEEYDFRNDDINPNLEIDLRPNTQIRPYQEKSLSK  372 

 

hs  327 MFGNGRARSGVIVLPCGAGKSLVGVTAACTVRKRCLVLGNSAVSVEQWKAQFKMWSTIDDSQICRFTSDAKDKPI  401 

ct  373 MFGNGRAKSGIIVLPCGAGKTLVGITAACTIKKGVIVLCTSSMSVVQWRQEFLKWSNINPDDIAIFTAESKNRFQ  447 

 

hs  402 GC-SVAISTYSMLGHTTKRSWEAERVMEWLKTQEWGLMILDEVHTIPAKMFRRVLTIVQAHCKLGLTATLVREDD  475 

ct  448 GSTGIIVTTYSMVTNSRERSHDSKKMMDFLRGREWGLMLLDEVHVVPAEMFRRVISSIKSHAKLGLTATLLREDD  522 

 

hs  476 KIVDLNFLIGPKLYEANWMELQNNGYIAKVQCAEVWCPMSPEFYREYVAIKTKKRILLYTMNPNKFRACQFLIKF  550 

ct  523 RISHLNFLIGPKLYEANWMELSQQGHIAKVQCAEVWCPMPTEFYDEYLRANARMKRTLYAMNPRKFQACQYLINY  597 

 

hs  551 HERRNDKIIVFADNVFALKEYAIRLNKPYIYGPTSQGERMQILQNFKHNPKINTIFISKVGDTSFDLPEANVLIQ  625 

ct  598 HEARGDKIIVFSDELYSLKQYALKLKKVFIYGGTSQAERMQVLENFQHNPEVNTLFLSKIGDTSLDLPEATCLIQ  672 

 

hs  626 ISSHGGSRRQEAQRLGRVLRAKKGMVAEEYNAFFYSLVSQDTQEMAYSTKRQRFLVDQGYSFKVITKLAGMEEE-  699 

ct  673 ISSHFGSRRQEAQRLGRILRAKRRN-DEGFNAFFYSLVSKDTQEMYYSSKRQAFLVDQGYAFKVITHLANIEQTP  746 

 

hs  700 DLAFSTKEEQQQLLQKVLAATDLDAEEEVVAGEFGSRS---------SQASRRFGTMSSMSGADDTVYMEYHSSR  765 

ct  747 DLAFSTPQEVRELLQRTLVDNEKGAEEDVETDDLFGRTGRKKKAGALSGVRRTAGMLSELSGGQDMAYIEQNKAA  821 

 

hs  766 SKAPSKH---------------VHPLFKRFRK--------------  782 

ct  822 NRALKQQGAGGGKSSKAAAMAEKSSFFKKIEREKEKSRAAARAARQ  867 

 

Figure 6-4. Alignment between the human (hs) and C. thermophilum (ct) amino acid sequence 
of XPB with COBALT. 
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6.3.2. p62 

 
Figure 6-5. Secondary structure prediction of p62. (a) RaptorX. (b) Phyre2. (c) I-TASSER. 
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hs    1 MATSSEEVLLIVKKVRQKKQDGALYLMAER--IAWAP---EGKDRFTISHMYADIKCQKISPEGKAKIQLQLVLH   70 

               :.:...:...||::|.|.|..:|  :.|.|   .|..  |:|....:|...:.:|.|.||:.|:.... 

ct    1 -------MSIPRSQTTYKKKEGILTLTEDRKFLIWTPLPATGPP--TVSLALDNITNLQQTPPGSAKVILKFTER   66 

 

hs   71 AGDTTN---------FHFSNESTAVKERDAVKDLLQQLL----------PK------------------------  102 

        ......         |.|::.:.|..|.:|::|||.|||          ||                         

ct   67 PRPNAEPGAPPPQYMFQFTHPTDARAEANAIRDLLSQLLAAARENDPNVPKPAAAAAAGGGGGGQSGATNGAPAA  141 

 

hs  103 --------FKRKANK-ELEEKNRMLQEDPVLFQLYKDLVV--SQVISAE----EFWANRLNVNATDSSSTSNHKQ  162 

                |...|.| :::.:..::::|..|.|.|.:.:.  .:.|..|    :||:.|:.:....:......|. 

ct  142 PASQAPRWFDDAALKADIDLQQSLMKKDKDLAQTYAEALALKPESIPTETFNAQFWSTRVGLLRAHAIELHQKKG  216 

 

hs  163 DVGISAAFLADVRPQT-DGCNGLRYNLTSDIIESIFRTYPAVKMKYAENVPHNMTEKEFWTRFFQSHYFHRDR--  234 

        ...:    |:.::|:| ||  .|:.:::.:.|:.|.:.:|.|:..|.:||| .::|.|||:|||.|..|.:.|   

ct  217 AYNV----LSTIKPRTEDG--QLKLSISPEQIQMILQQHPIVRRIYNDNVP-KLSESEFWSRFFLSKLFKKLRGE  284 

 

hs  235 ---LNTGSKDLFAECAKIDEK-GLKTMVSLGVKNP-LLDLTALEDKPLDEGYGISSVPSASNSKSI--KENSNAA  302 

           .|.....||.:..:.|.. ||.:.:....|.| ::||.|.|:   ::| |..|    .|.|.:  :..:|.. 

ct  285 RYTENDNPDPLFDKFLEADNSFGLASKIVAAQKVPHIIDLEANEE---NQG-GFKS----GNRKDVEMRPRANVP  351 

 

hs  303 IIKRFNHHSAMVLAAGLRKQEAQNEQTSEPSNMDGNSGDADCFQPAVKRAKLQES------------IEYEDLGK  365 

        |||..|..|..::|                     |...||...|....|::..|            :...||.. 

ct  352 IIKTLNSLSEKIMA---------------------NVAPADLLDPDPVTARVPASGLTEDDTRTFAQLSLRDLQG  405 

 

hs  366 NNSVKTIALNLKKSDRYYHGPTPIQS-LQYATSQDI-------------------------------INSFQSIR  408 

        :.....|.||:::.::::.......: |....|:|.                               ::....|. 

ct  406 DAETARIILNVREQNQFFQNQAAAAAGLDGQASEDAKVFEHQVPSEVLFDVHADLETLDEDGAGGIDLHGSIGID  480 

 

hs  409 QEMEA-----YTPKLTQVLSSSAASST------------ITALSPGGALMQGGTQQAINQMVPNDIQSELKHLYV  466 

        .|.|:     .|.|:..|.|.:|....            :.....|||.............:|.||......... 

ct  481 DESESDPEGQGTSKVPHVGSRAARKQAQKQILEGMRKKRLETYGTGGAATSSLDDDTSPMSIPPDIAQRCYLTNA  555 

 

hs  467 AVGELLRHFWSCFPVNTPFLEEKVVKMKSNLERFQVTKLCPFQEKIRR------------QYLSTNLVSHIEEML  529 

        ...|.||.|||||....|  :.:....:||... |:.:|..:.|.:||            :.:...:|...:..: 

ct  556 TTVEFLRQFWSCFLSTAP--DSQTANGRSNSSE-QMQQLAYYAETLRRSRERIDALAAEAEVIRQQVVERRKREI  627 

 

hs  530 QTAYNKLH---TWQSRRLMKKT----------------------------  548 

        ...|.:..   .||..|..:::                             

ct  628 MEHYERTRRKIRWQPPRGGRESVMALFEATLEAVRAALAVWGAVSGKGTV  677 

 

Figure 6-6. Alignment between the human (hs) and C. thermophilum (ct) amino acid sequence 
of p62 with EMBOSS Needle. 

 

hs    1 MATSSEEVLLIVKKVRQKKQDGALYLMAER--IAWAP-EGKDRFTISHMYADIKCQKISPEGKAKIQLQLVL---   69 

ct    1 -------MSIPRSQTTYKKKEGILTLTEDRKFLIWTPLPATGPPTVSLALDNITNLQQTPPGSAKVILKFTERPR   68 

 

hs   70 ----HAGDTTNFHFSNE--STAVKERDAVKDLLQQL---------------------------------------   99 

ct   69 PNAEPGAPPPQYMFQFTHPTDARAEANAIRDLLSQLLAAARENDPNVPKPAAAAAAGGGGGGQSGATNGAPAAPA  143 

 

hs  100 ----LPKFKRKANKELEEKNRMLQEDPVLFQLYKD---LVVSQVIS---AEEFWANRLNVNATDSSSTSNHKQDV  164 

ct  144 SQAPRWFDDAALKADIDLQQSLMKKDKDLAQTYAEALALKPESIPTETFNAQFWSTRVGLLRAHAIELHQKKGAY  218 

 

hs  165 GISAAFLADVRPQTDGCNGLRYNLTSDIIESIFRTYPAVKMKYAENVPHNMTEKEFWTRFFQSHYFHRDRL----  235 

ct  219 NV----LSTIKPRTED-GQLKLSISPEQIQMILQQHPIVRRIYNDNVPK-LSESEFWSRFFLSKLFKKLRGERYT  287 

 

hs  236 -NTGSKDLFAECAKIDEK-GLKTMVSLGVKNP-LLDLTALEDKPLDEGYGISSVPSASNSKSI--KENSNAAIIK  305 

ct  288 ENDNPDPLFDKFLEADNSFGLASKIVAAQKVPHIIDLEANEE---NQG-GFKS----GNRKDVEMRPRANVPIIK  354 

 

hs  306 RFNHHSAMVLAAGLRKQEAQNEQTSEPSNMDGNSGDADCFQPAVKRAKLQES------------IEYEDLGKNNS  368 

ct  355 TLNSLSEKIMA---------------------NVAPADLLDPDPVTARVPASGLTEDDTRTFAQLSLRDLQGDAE  408 

 

hs  369 VKTIALNLKKSDRYYHGPTPIQS-LQYATSQDI-------------------------------INSFQSIRQEM  411 

ct  409 TARIILNVREQNQFFQNQAAAAAGLDGQASEDAKVFEHQVPSEVLFDVHADLETLDEDGAGGIDLHGSIGIDDES  483 

 

hs  412 EAY-----TPKLTQVLSSSAASST------------ITALSPGGALMQGGTQQAINQMVPNDIQSELKHLYVAVG  469 

ct  484 ESDPEGQGTSKVPHVGSRAARKQAQKQILEGMRKKRLETYGTGGAATSSLDDDTSPMSIPPDIAQRCYLTNATTV  558 

 

hs  470 ELLRHFWSCFPVNTPFLEEKVVKMKSNLERFQVTKLCPFQEKIRR------------QYLSTNLVSHIEEMLQTA  532 

ct  559 EFLRQFWSCFLSTAP--DSQTANGRSNSSE-QMQQLAYYAETLRRSRERIDALAAEAEVIRQQVVERRKREIMEH  630 

 

hs  533 YNKLHT---WQSRRLMKKT----------------------------  548 

ct  631 YERTRRKIRWQPPRGGRESVMALFEATLEAVRAALAVWGAVSGKGTV  677 

 

Figure 6-7. Alignment between the human (hs) and C. thermophilum (ct) amino acid sequence 
of p62 with COBALT. 
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6.3.3. p52 

 
Figure 6-8. Secondary structure prediction of p52. (a) RaptorX. (b) Phyre2. (c) I-TASSER. 
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hs    1 --MESTPSRGLNRVHLQCRNLQEFLGGLSPGVLDRLYGHPATCLAVFRE-LPSLAKNWVMRMLFLEQPLPQAAVA   72 

          :.:.|         |...|.::|..|......:||..|::..|:||. ||.|||.:|..:|::.||:..:.:. 

ct    1 MSIPAVP---------QSYQLSDYLEKLPGTTFRKLYQQPSSAFAIFRRMLPPLAKVFVQALLYMPQPMLLSDLD   66 

 

hs   73 LWVKKEFSKAQEESTGLLSGLRIWHTQLLPGGL---QGLILNPIFRQNLRIALLGGGKAWSDDTSQLGPDKHARD  144 

        :||:.|....::.:..:|..|.|  .|:.|.|.   |.:.|...||.:||:||.||....|.......|.....| 

ct   67 VWVRPEAKMHRDRALSILRSLHI--VQITPPGKDRPQEVQLTTNFRNSLRLALEGGAAHNSFGVPSSLPVDPRID  139 

 

hs  145 VPSLDKYAEERWEVVLHFMV----------------GSPSAAVSQDLAQLLSQAGLMKSTEPGEPP--CITSAGF  201 

        :..||.||.::||.:||::|                |.|.|:|..     |..||.:....|....  .||.||| 

ct  140 IAFLDNYARKKWEDILHYVVSSVPVHGDAGPGGMGGGGPKASVKD-----LLLAGRLVERRPDTKTGIGITQAGF  209 

 

hs  202 QFLLLDTPAQLWYFMLQYLQTA-QSRGM-----------------DLVEILSFLFQLSFSTLGKDYSVEGMSDSL  258 

        .|||.:..||:|..:|.:|:.| |::..                 |.:|:|||||.|:...||:.|..:.:|::. 

ct  210 TFLLQEANAQVWTLLLLWLEAADQAKAAAAAASGVDPKNAPPTKPDSIEMLSFLFMLASLELGRAYDTDALSETR  284 

 

hs  259 LNFLQHLREFGLVFQRKRKSRRYYPTRLAINLSSGVS------------------------GAGGTVHQPGFIVV  309 

        .|.|..|.:|||::..:..:|:|:|||||..|:|..|                        ||..:.|: |.|:: 

ct  285 RNMLPALVDFGLIYIPREDTRQYFPTRLATTLTSSASALRSVSSGFTAATNNTANDASSLGGADPSAHK-GSIII  358 

 

hs  310 ETNYRLYAYTESELQIALIALFSEMLYRFPNMVVAQVTRESVQQAIASGITAQQIIHFLRTRAHPVMLKQT----  380 

        ||||||||||.|.||||::|||:.:..||..||..::||||:::||:.||||.|||.:|.:.||..|::..     

ct  359 ETNYRLYAYTSSPLQIAVLALFTHLNMRFAGMVTGRLTRESIRRAISFGITADQIISYLASHAHEQMVRAAAAAG  433 

 

hs  381 -PVLPPTITDQIRLWELERDRLRFTEGVLYNQFLSQVDFELLLAHARELGVLVFENSAKRLMVVTPAGHSDVKRF  454 

         ||||||:.||||||:||.:|:|.:.|.|:..|.:..::..|..:|.|:||||:.:..||:...:.  ...::.: 

ct  434 RPVLPPTVVDQIRLWQLENERMRTSPGFLFKDFENVEEYMALAGYAEEIGVLVWRSDRKRMFFASK--FEQLRDY  506 

 

hs  455 WKRQKHSS  462 

        .|.:|... 

ct  507 LKSRKKEG  514 

 

Figure 6-9. Alignment between the human (hs) and C. thermophilum (ct) amino acid sequence 
of p52 with EMBOSS Needle. 

 

hs    1 MESTPSRGLNRVHLQCRNLQEFLGGLSPGVLDRLYGHPATCLAVFR-ELPSLAKNWVMRMLFLEQPLPQAAVALW   74 

          | |      .  |. :|.::|  |.  .: :|| :|::.:|:||  ||.||| :|  :|:: ||:  : : :| 

ct    1 -MSIP------AVPQSYQLSDYLEKLPGTTFRKLYQQPSSAFAIFRRMLPPLAKVFVQALLYMPQPMLLSDLDVW   68 

 

hs   75 VKKEFSKAQEESTGLLSGLRIWHTQLLPGG-LQGLILNPIFRQNLRIALLGGGKAWSDDTSQLGPDKHARDVPSL  148 

        |: | .  ::.: .:| .|:| :      .  | : |.. ||:.||:|| ||.   | ....  | .   |:. | 

ct   69 VRPEAKMHRDRALSILRSLHIVQITPPGKDRPQEVQLTTNFRNSLRLALEGGAAHNSFGVPSSLPVDPRIDIAFL  143 

 

hs  149 DKYAEERWEVVLHFMVGSP-----------SAAVSQDLAQLLSQAGLMKSTEPGEPP--CITSAGFQFLLLDTPA  210 

        |:||.::|| :||::|.|            ... .:  .: |  || : . .|.  .   ||.||| ||| :: | 

ct  144 DNYARKKWEDILHYVVSSVPVHGDAGPGGMGGGGPKASVKDLLLAGRLVERRPDTKTGIGITQAGFTFLLQEANA  218 

 

hs  211 QLWYFMLQYLQTAQ--------SRGMD----------LVEILSFLFQLSFSTLGKDYSVEGMSDSLLNFLQHLRE  267 

        |:| ::| :|::|:        : |:|           :|:||||| |:   ||: |..:.:|::  |:|  | : 

ct  219 QVWTLLLLWLEAADQAKAAAAAASGVDPKNAPPTKPDSIEMLSFLFMLASLELGRAYDTDALSETRRNMLPALVD  293 

 

hs  268 FGLVFQRKRKSRRYYPTRLAINLSSGVS-----------------------GAGGTVHQPGFIVVETNYRLYAYT  319 

        |||::  :..:|:|:||||| .|:|..|                       |....  : | |::|||||||||| 

ct  294 FGLIYIPREDTRQYFPTRLATTLTSSASALRSVSSGFTAATNNTANDASSLGGADPSAHKGSIIIETNYRLYAYT  368 

 

hs  320 ESELQIALIALFSEMLYRFPNMVVAQVTRESVQQAIASGITAQQIIHFLRTRAHPVMLKQT-----PVLPPTITD  389 

        .| ||||::|||:.:  ||..||..::||||:::||: ||||:||| :| ::||  |:: :     ||||||:.| 

ct  369 SSPLQIAVLALFTHLNMRFAGMVTGRLTRESIRRAISFGITADQIISYLASHAHEQMVRAAAAAGRPVLPPTVVD  443 

 

hs  390 QIRLWELERDRLRFTEGVLYNQFLSQVDFELLLAHARELGVLVFENSAKRLMVVTPAGHSDVKRFWKRQKHSS  462 

        |||||:||.:|:| : |.|:::| .  ::  | .:|.|:||||:... ||::..:   ..::: : | :|:.. 

ct  444 QIRLWQLENERMRTSPGFLFKDFENVEEYMALAGYAEEIGVLVWRSDRKRMFFAS--KFEQLRDYLKSRKKEG  514 

 

Figure 6-10. Alignment between the human (hs) and C. thermophilum (ct) amino acid sequence 
of p52 with ClustalW2. 
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hs    1 MESTPSRGLNRVHLQCRNLQEFLGGLSPGVLDRLYGHPATCLAVFR-ELPSLAKNWVMRMLFLEQPLPQAAVALW   74 

ct    1 M-SIPAVP------QSYQLSDYLEKLPGTTFRKLYQQPSSAFAIFRRMLPPLAKVFVQALLYMPQPMLLSDLDVW   68 

 

hs   75 VKKEFSKAQEESTGLLSGLRIWHTQLLPGG--LQGLILNPIFRQNLRIALLGGGKAWSDDTSQLGPDKHARDVPS  147 

ct   69 VRPEAKMHRDRALSILRSLHIVQI-TPPGKDRPQEVQLTTNFRNSLRLALEGGAAHNSFGVPSSLPVDPRIDIAF  142 

 

hs  148 LDKYAEERWEVVLHFMVGSP------------SAAVSQDLAQLLSQAGLM-KSTEPGEPPCITSAGFQFLLLDTP  209 

ct  143 LDNYARKKWEDILHYVVSSVPVHGDAGPGGMGGGGPKASVKDLLLAGRLVERRPDTKTGIGITQAGFTFLLQEAN  217 

 

hs  210 AQLWYFMLQYLQTAQS--------RGMDL----------VEILSFLFQLSFSTLGKDYSVEGMSDSLLNFLQHLR  266 

ct  218 AQVWTLLLLWLEAADQAKAAAAAASGVDPKNAPPTKPDSIEMLSFLFMLASLELGRAYDTDALSETRRNMLPALV  292 

 

hs  267 EFGLVFQRKRKSRRYYPTRLAINLSSGVSGAGGTVHQP-----------------------GFIVVETNYRLYAY  318 

ct  293 DFGLIYIPREDTRQYFPTRLATTLTSSASALRSVSSGFTAATNNTANDASSLGGADPSAHKGSIIIETNYRLYAY  367 

 

hs  319 TESELQIALIALFSEMLYRFPNMVVAQVTRESVQQAIASGITAQQIIHFLRTRAHPVMLKQT-----PVLPPTIT  388 

ct  368 TSSPLQIAVLALFTHLNMRFAGMVTGRLTRESIRRAISFGITADQIISYLASHAHEQMVRAAAAAGRPVLPPTVV  442 

 

hs  389 DQIRLWELERDRLRFTEGVLYNQFLSQVDFELLLAHARELGVLVFENSAKRLMVVTPAGHSDVKRFWKRQKHSS  462 

ct  443 DQIRLWQLENERMRTSPGFLFKDFENVEEYMALAGYAEEIGVLVWRSDRKRMFFASK--FEQLRDYLKSRKKEG  514 

 

Figure 6-11. Alignment between the human (hs) and C. thermophilum (ct) amino acid sequence 
of p52 with COBALT. 
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6.3.4. p44 

 
Figure 6-12. Secondary structure prediction of p44. (a) RaptorX. (b) Phyre2. (c) I-TASSER. 
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hs    1 ---------------------------------------------MDEEPERTK-RWEGGYERTWEILKEDESGS   29 

                                                     .......|| .|| ..:|:||.:.|.|.|| 

ct    1 MADSDGEYVEDLSDDELHDHRPAEAGPHGARSKAGAGKKRDGKKGKKGSSRHTKAAWE-DIQRSWENVVETEDGS   74 

 

hs   30 LKATIEDILFKAKRKRVFEHHGQVRLGMMRHLYVVVDGSRTMEDQDLKPNRLTCTLKLLEYFVEEYFDQNPISQI  104 

        :  |||.::...||:|:......::.|::|||.:|:|.|..|.::||.|||...||.....||.|||:||||||: 

ct   75 I--TIEALIEAEKRRRLMRDTTPLQRGIIRHLVLVLDMSFAMAEKDLLPNRYLLTLNYAVDFVREYFEQNPISQM  147 

 

hs  105 GIIVTKSKRAEKLTELSGNPRKHITSLK-KAVDMTCHGEPSLYNSLSIAMQTLKHMPGHTSREVLIIFSSLTTCD  178 

        |||..:...|.:::::||||..||..|: .|......|.|||.|:|.:....|.|.|.|.:|||||::.:|.:.| 

ct  148 GIIAMRDGIAVRVSDMSGNPADHIERLRFWAEHQEPQGNPSLQNALEMCRGALYHTPSHGTREVLIVYGALLSSD  222 

 

hs  179 PSNIYDLIKTLKAAKIRVSVIGLSAEVRVCTVLARETG----GTYHVILDESHYKELLTHHVSPPPASSSS----  245 

        |.:|::.|..|...:|||:|:||:|:|.||..|...|.    .||.|.|.|.|::||......||||::||     

ct  223 PGDIHETISNLVKDRIRVTVVGLAAQVAVCAELCTRTNHGDDSTYAVALHEQHFRELFLAATIPPPATASSATDK  297 

 

hs  246 ------------ECSLIRMGFPQHTIASLSDQDAKPSFSMAHLDGNTEPGLTLGGYFCPQCRAKYCELPVECKIC  308 

                    :.||:.||||..|:||.|    ..|....|...:.|      ||.|.:||||.|.||.||..| 

ct  298 NGANGNANAASTDASLLMMGFPSRTLASAS----HVSLCACHSRPSRE------GYLCTRCRAKVCRLPAECPAC  362 

 

hs  309 GLTLVSAPHLARSYHHLFPLDAFQEIPLEEYNGER--FCYGC-----------------------QGE-------  351 

        ||||:.:.||||||||||||..:.|:...|....:  .|:.|                       ||:        

ct  363 GLTLILSTHLARSYHHLFPLKGWVEVSWAEARKSKQVGCFACLAPFPLPPAPGSEKTGKEPTQKTQGQAQQPPQE  437 

 

hs  352 ------------------------------LKDQHVYVCAVCQNVFCVDCDVFVHDSLHCCPGC-----------  385 

                                      :.:...|.|..|...||:|||||.|:.:|.||||            

ct  438 RQGSSSNSNNAKKTTGISLATALPEARAVGVSESGRYKCPTCGKHFCIDCDVFAHEVIHNCPGCQADMRPKQDAS  512 

 

hs  386 IHKIPAPSGV------------  395 

        .:.|...:|:             

ct  513 SNNIGPANGLNNVVDGDAMVLD  534 

 

Figure 6-13. Alignment between the human (hs) and C. thermophilum (ct) amino acid sequence 
of p44 with EMBOSS Needle. 

 

hs    1 ---------------------------------------------MDEEPERTKR-WEGGYERTWEILKEDESGS   29 

ct    1 MADSDGEYVEDLSDDELHDHRPAEAGPHGARSKAGAGKKRDGKKGKKGSSRHTKAAWED-IQRSWENVVETEDGS   74 

 

hs   30 LKATIEDILFKAKRKRVFEHHGQVRLGMMRHLYVVVDGSRTMEDQDLKPNRLTCTLKLLEYFVEEYFDQNPISQI  104 

ct   75 I--TIEALIEAEKRRRLMRDTTPLQRGIIRHLVLVLDMSFAMAEKDLLPNRYLLTLNYAVDFVREYFEQNPISQM  147 

 

hs  105 GIIVTKSKRAEKLTELSGNPRKHITSLKK-AVDMTCHGEPSLYNSLSIAMQTLKHMPGHTSREVLIIFSSLTTCD  178 

ct  148 GIIAMRDGIAVRVSDMSGNPADHIERLRFWAEHQEPQGNPSLQNALEMCRGALYHTPSHGTREVLIVYGALLSSD  222 

 

hs  179 PSNIYDLIKTLKAAKIRVSVIGLSAEVRVCTVLARETGG----TYHVILDESHYKELLTHHVSPPPA--------  241 

ct  223 PGDIHETISNLVKDRIRVTVVGLAAQVAVCAELCTRTNHGDDSTYAVALHEQHFRELFLAATIPPPATASSATDK  297 

 

hs  242 --------SSSSECSLIRMGFPQHTIASLSDQDAKPSFSMAHLDGNTEPGLTLGGYFCPQCRAKYCELPVECKIC  308 

ct  298 NGANGNANAASTDASLLMMGFPSRTLASASHV----SLCACHSRPSRE------GYLCTRCRAKVCRLPAECPAC  362 

 

hs  309 GLTLVSAPHLARSYHHLFPLDAFQEIPLEEYNGERF--CYGCQGEL-----------------------------  352 

ct  363 GLTLILSTHLARSYHHLFPLKGWVEVSWAEARKSKQVGCFACLAPFPLPPAPGSEKTGKEPTQKTQGQAQQPPQE  437 

 

hs  353 -------------------------------KDQHVYVCAVCQNVFCVDCDVFVHDSLHCCPGCIHKIPAPSGV-  395 

ct  438 RQGSSSNSNNAKKTTGISLATALPEARAVGVSESGRYKCPTCGKHFCIDCDVFAHEVIHNCPGCQADMRPKQDAS  512 

 

hs  396 ----------------------  395 

ct  513 SNNIGPANGLNNVVDGDAMVLD  534 

 

Figure 6-14. Alignment between the human (hs) and C. thermophilum (ct) amino acid sequence 
of p44 with COBALT. 
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6.4. Codon optimized XPB cDNA sequence 

An alignment between the wild-type and the codon optimized cDNA sequence of XPB is 

given below (Figure 6-15). 

 

wt      1 ATGCCTCCCAAGCGAAAGGCCCCTCCTGTGGGCGCGCAAGCTCCCGCACCCAAGGCTGGACGCACTTCTGCCATG   75 

          |||||.||.||.||.||.||.||.|||||.||.||.||.||.||.||.||.||.||.||.||.||.||.||.||| 

opti    1 ATGCCGCCGAAACGCAAAGCACCACCTGTTGGTGCACAGGCACCGGCGCCTAAAGCCGGTCGTACCTCGGCGATG   75 

 

wt     76 TCTACTTCCGGGCCGGCTACTCCCCGCAGCCTGGATGATTCAAATTTGTCGGACGCCGATGAAGACCTCGATGAC  150 

          ...||.||.||.||.||.|||||.||||||.|.||||||...|||.||...|||||.||||||||.||.|||||. 

opti   76 AGCACCTCAGGTCCTGCGACTCCGCGCAGCTTAGATGATAGTAATCTGAGCGACGCAGATGAAGATCTGGATGAT  150 

 

wt    151 GATATCCCAGAGGAGCAGAAGAAGAAAGAGGATCTGCTGAGCAAGGAAGCCGATGAATTTGTCAGGAAGTTCTCG  225 

          ||.||||||||.||||||||.||||||||.||.|||.|.|||||.|||||.||.||.|||||..|.||.||.... 

opti  151 GACATCCCAGAAGAGCAGAAAAAGAAAGAAGACCTGTTAAGCAAAGAAGCGGACGAGTTTGTGCGTAAATTTAGC  225 

 

wt    226 GCAATAAAGCGCGGGCTCAACAAGCAAGACGACGCTGAGCGTCTCCGGCATTATGATGCTGCCACTCCGTACTTC  300 

          |||||.|||||.||.||.||.||||||||.||.||.|||||.||.||.|||||.|||||.|||||.||||||||| 

opti  226 GCAATTAAGCGTGGTCTGAATAAGCAAGATGATGCCGAGCGCCTTCGCCATTACGATGCCGCCACCCCGTACTTC  300 

 

wt    301 AAGAAGAAAGACTTCTCCTACCTCCCCCTCAAACCCGACCACTACAATCGCCCTTTGTGGATTGACCCCAATACG  375 

          |||||.||.|||||.||.||.||.||.||.|||||.|||||.||.||.||||||||.|||||.||.||.|||||. 

opti  301 AAGAAAAAGGACTTTTCGTATCTGCCGCTGAAACCAGACCATTATAACCGCCCTTTATGGATCGATCCGAATACC  375 

 

wt    376 CAAACCATCGTACTGGAACGGTTCAACCCTCTGTCGGAGCAGGCAACTGATTTTCTCATCACGATTGCTGAGCCC  450 

          ||.||||||||.||.||.||.||.||.||..||...||.||.||.||.|||||.||.||.||||||||||||||. 

opti  376 CAGACCATCGTGCTCGAGCGCTTTAATCCGTTGAGCGAACAAGCCACCGATTTCCTGATTACGATTGCTGAGCCG  450 

 

wt    451 AGATCGCGCCCAACGTTTCTGCACGAGTATGTCATGACGACTCACAGCCTCTATGCTGCAGTCTCGGTTGGTCTT  525 

          .|....||.||.||.||.||||||||||||||.||||||||.|||...||.||.||.||.||.||.||||||||| 

opti  451 CGCAGCCGTCCGACTTTCCTGCACGAGTATGTGATGACGACCCACTCTCTGTACGCCGCCGTGTCAGTTGGTCTT  525 

 

wt    526 CGGCCCAAAGATATCATAAACACCCTTGATCGCTTTTTGAAAACGCCACTTCCTGCATCGACTCGGGAGTATATA  600 

          ||.||.|||||||||||.||.|||||||||||||||.|||||||.||||||||.||....||.||.||.||.||. 

opti  526 CGTCCGAAAGATATCATTAATACCCTTGATCGCTTTCTGAAAACCCCACTTCCGGCGAGTACGCGCGAATACATT  600 

 

wt    601 GAGACGTGCACAAAGAGCTACGGCAAGGTGAAGCTAGTTCTCAAGAACAACAAGTATTACGTAGAGAGCGTGGAC  675 

          ||.||.|||||.|||...||||||||||||||.||.|||||.||.|||||||||||||||||.||...|||.||. 

opti  601 GAAACTTGCACCAAGTCATACGGCAAGGTGAAACTGGTTCTGAAAAACAACAAGTATTACGTCGAATCCGTCGAT  675 

 

wt    676 GCCCAGATGCTGCAGATCCTGCTAAACGATCCTGTCATTGGCAAGCTGCGCGTTCAGGGAACTGACACGACCAGC  750 

          ||.||||||.||||||||.||||.||.|||||.||.|||||.||.|||||||||||.||.||.|||||.|||||. 

opti  676 GCGCAGATGTTGCAGATCTTGCTGAATGATCCGGTGATTGGAAAACTGCGCGTTCAAGGCACCGACACCACCAGT  750 

 

wt    751 TCTGCTCCCAAGATGGGGGGCCTCGTTATCCCCGGCACCCAGAACGCCGCTGGCGTCCGGCAGGCAAACCTGGTG  825 

          ...||.||.||.|||||.|||.|.||.||.||.|||||.|||||.|||||.|||||.||.||.||.||.|||||. 

opti  751 AGCGCCCCAAAAATGGGCGGCTTGGTGATTCCTGGCACACAGAATGCCGCGGGCGTTCGCCAAGCGAATCTGGTA  825 

 

wt    826 GACGGCCCGGTTGCCGAAAAGAAGCCCGGTGACCAGGACGCTGCTGCTGCCAACGAGGCCGACTTGTTCGCCAAT  900 

          ||.||.||||||||.||||||||.||.|||||.|||||.||.||.||.||.||.||.||.||..|||||||.||. 

opti  826 GATGGACCGGTTGCGGAAAAGAAACCTGGTGATCAGGATGCGGCCGCGGCTAATGAAGCTGATCTGTTCGCTAAC  900 

 

wt    901 TTAAATGAGGAAGATGATGATGACGACAAAGAAAACGTCCATGCCTTTGAGATTGCGGATTCGTCTGTCGAGACG  975 

          |||||.||.||||||||.|||||.||||||||.|||||.|||||.||||||||||||||.|||||.||.||.||| 

opti  901 TTAAACGAAGAAGATGACGATGATGACAAAGAGAACGTTCATGCGTTTGAGATTGCGGACTCGTCCGTAGAAACG  975 

 

wt    976 GTCCAGAAGCGCTGCCTTGACATTGGCTACCCCATGCTGGAAGAGTATGATTTCAGAAATGACGACATAAACCCC 1050 

          ||.||.||.||||||||||||||||||||.||.||||||||||||||.||.|||.|.|||||.|||||.|||||| 

opti  976 GTGCAAAAACGCTGCCTTGACATTGGCTATCCGATGCTGGAAGAGTACGACTTCCGTAATGATGACATCAACCCC 1050 

 

wt   1051 AACCTGGAGATTGATCTCCGCCCCAATACCCAGATTCGTCCCTACCAAGAGAAGAGCCTCAGCAAGATGTTTGGC 1125 

          |||.|.||||||||.||.|||||.|||||.|||||.||.||.|||||.||.||....||.||.||||||||.||. 

opti 1051 AACTTAGAGATTGACCTGCGCCCGAATACTCAGATCCGCCCGTACCAGGAAAAATCTCTGAGTAAGATGTTCGGT 1125 

 

wt   1126 AATGGCCGAGCGAAAAGCGGTATCATTGTTCTGCCATGCGGCGCCGGCAAGACGCTGGTCGGCATCACCGCTGCC 1200 

          ||.||.||.||.|||||||||||||||||.|||||.||||||||.|||||.||..|.||.||.||.||.||.||. 

opti 1126 AACGGGCGTGCCAAAAGCGGTATCATTGTGCTGCCCTGCGGCGCAGGCAAAACCTTAGTAGGAATTACTGCCGCG 1200 

 

wt   1201 TGCACCATCAAGAAGGGCGTCATTGTGCTTTGCACCAGCTCCATGTCTGTCGTCCAATGGCGTCAAGAATTCCTC 1275 

          ||||||||.|||||.|||||.||.|||||.||.||.|||..||||||.||.||.||.|||||||||||.||..|. 

opti 1201 TGCACCATTAAGAAAGGCGTTATCGTGCTGTGTACAAGCAGCATGTCCGTGGTGCAGTGGCGTCAAGAGTTTTTG 1275 
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wt   1276 AAGTGGTCCAACATCAATCCCGATGATATTGCCATCTTCACCGCGGAGAGCAAGAATAGGTTTCAAGGGAGCACT 1350 

          ||.|||||||||||||||||.|||||.|||||.||.||.||.||.|||...||.||..|.|||||.||....||. 

opti 1276 AAATGGTCCAACATCAATCCTGATGACATTGCGATTTTTACGGCCGAGTCGAAAAACCGTTTTCAGGGCTCAACC 1350 

 

wt   1351 GGTATCATTGTCACCACGTACTCGATGGTCACAAACAGTCGTGAGCGATCGCATGACTCTAAGAAGATGATGGAT 1425 

          ||.||.|||||.||.||.||||||||||||||.|||..||||||.||.||.|||||.||.||.|||||||||||. 

opti 1351 GGGATTATTGTGACGACATACTCGATGGTCACCAACTCTCGTGAACGCTCACATGATTCGAAAAAGATGATGGAC 1425 

 

wt   1426 TTCTTGAGGGGCAGAGAATGGGGTTTGATGTTGCTCGACGAGGTACACGTCGTGCCGGCCGAGATGTTCCGGCGC 1500 

          |||.|..|.||..|.||||||||..|.|||.||||.||.||.||.|||||.||.||.||.||.||||||||.||| 

opti 1426 TTCCTTCGTGGTCGTGAATGGGGCCTCATGCTGCTGGATGAAGTCCACGTGGTACCAGCGGAAATGTTCCGTCGC 1500 

 

wt   1501 GTCATCTCGTCCATCAAGTCACACGCCAAGCTCGGTTTGACGGCGACACTTCTTCGTGAGGACGATAGGATTTCG 1575 

          ||.||.||.||.|||||.||.|||||.||.||.||..||||.|||||.||..|.|||||.||.|||.|.|||||| 

opti 1501 GTAATTTCCTCAATCAAATCTCACGCAAAACTGGGCCTGACTGCGACGCTGTTGCGTGAAGATGATCGCATTTCG 1575 

 

wt   1576 CATCTTAACTTCTTGATCGGGCCCAAGCTTTATGAGGCCAACTGGATGGAGCTCTCACAGCAGGGCCACATTGCG 1650 

          |||.|.||.||..||||.||.|||||..|.|||||.||.||.||||||||.||....|||||.||.||.|||||| 

opti 1576 CATTTGAATTTTCTGATTGGACCCAAATTGTATGAAGCAAATTGGATGGAACTGAGTCAGCAAGGGCATATTGCG 1650 

 

wt   1651 AAGGTGCAGTGTGCTGAGGTTTGGTGCCCGATGCCTACAGAGTTCTACGACGAGTACCTGCGCGCCAATGCCCGG 1725 

          ||.||.||||||||.||.||.||||||||.|||||.||||||||.||.||.||.||.||.||.|||||.||.||. 

opti 1651 AAAGTCCAGTGTGCAGAAGTCTGGTGCCCCATGCCGACAGAGTTTTATGATGAATATCTCCGTGCCAACGCACGC 1725 

 

wt   1726 ATGAAGCGCACGTTATACGCGATGAACCCGCGCAAGTTCCAGGCTTGCCAGTACCTCATCAACTACCATGAAGCT 1800 

          |||||.|||||.||.|||||.|||||.||.||.|||||.|||||.||.|||||.||.||||||||.||.|||||| 

opti 1726 ATGAAACGCACTTTGTACGCCATGAATCCCCGTAAGTTTCAGGCCTGTCAGTATCTTATCAACTATCACGAAGCT 1800 

 

wt   1801 CGCGGAGACAAAATTATTGTCTTCTCGGACGAGCTCTACTCTCTGAAGCAGTATGCCCTGAAGCTCAAGAAAGTC 1875 

          |||||.|||||||||||.|||||.||.||.||||||||....|||||.|||||.||||||||.|||||.||.||| 

opti 1801 CGCGGCGACAAAATTATCGTCTTTTCCGATGAGCTCTATAGCCTGAAACAGTACGCCCTGAAACTCAAAAAGGTC 1875 

 

wt   1876 TTCATCTACGGCGGCACCAGCCAGGCCGAACGTATGCAGGTCTTGGAGAACTTCCAACACAACCCCGAGGTGAAC 1950 

          ||||||||.||.|||||....||.|||||||||||||||||.||.||.||.||||||||.|||||.||.||.||| 

opti 1876 TTCATCTATGGTGGCACGTCGCAAGCCGAACGTATGCAGGTTTTAGAAAATTTCCAACATAACCCGGAAGTAAAC 1950 

 

wt   1951 ACTCTTTTCCTCTCCAAGATCGGCGATACTTCTCTCGATCTGCCTGAGGCAACCTGCCTGATCCAGATCTCTTCT 2025 

          ||.||.||.|||||.||.||.||.|||||.||..|.|||||||||||.||.|||||.||.||.|||||||||... 

opti 1951 ACACTGTTTCTCTCTAAAATTGGTGATACCTCATTAGATCTGCCTGAAGCGACCTGTCTCATTCAGATCTCTAGC 2025 

 

wt   2026 CACTTCGGCTCGCGTCGTCAGGAGGCGCAGCGCCTGGGCCGCATCCTTCGGGCGAAGAGGCGTAACGACGAAGGG 2100 

          ||.|||||....||||||||.||.||.|||||..|.||.||.||.|||||.||.|||.|.||.|||||||||||| 

opti 2026 CATTTCGGTAGCCGTCGTCAAGAAGCACAGCGTTTAGGTCGTATTCTTCGCGCAAAGCGCCGCAACGACGAAGGG 2100 

 

wt   2101 TTCAACGCCTTCTTCTACTCCCTCGTCTCAAAGGACACCCAAGAAATGTACTACTCCTCTAAGCGTCAAGCGTTC 2175 

          ||||||||.|||||.||...|.|.||.||.||.|||||.||||||||||||||....||.|||||.||.|||||| 

opti 2101 TTCAACGCGTTCTTTTATAGCTTAGTGTCCAAAGACACTCAAGAAATGTACTATAGTTCGAAGCGCCAGGCGTTC 2175 

 

wt   2176 CTTGTCGACCAGGGCTACGCCTTCAAGGTAATCACCCACCTCGCGAATATCGAACAAACTCCCGACTTGGCCTTC 2250 

          .|.||.||.|||||.|||||.||.||.|||||.||.|||||.||.||.|||||.|||||.||.||..|.||.||. 

opti 2176 TTAGTGGATCAGGGATACGCGTTTAAAGTAATTACGCACCTTGCCAACATCGAGCAAACGCCGGATCTCGCGTTT 2250 

 

wt   2251 TCCACGCCCCAGGAAGTCCGCGAACTCCTCCAGCGCACGCTGGTCGACAACGAGAAGGGCGCCGAGGAGGATGTC 2325 

          ..|||.||.||||||||.|||||.|||||.|||||||||||.||.||.||.|||||.||.||.||.||.||.||. 

opti 2251 AGCACCCCGCAGGAAGTTCGCGAGCTCCTGCAGCGCACGCTTGTAGATAATGAGAAAGGTGCAGAAGAAGACGTT 2325 

 

wt   2326 GAGACCGACGATCTCTTCGGCCGGACAGGTCGCAAGAAGAAGGCGGGCGCCCTCTCCGGTGTGCGCCGCACGGCC 2400 

          ||||||||.|||||.||.||.||.||.||.|||||.|||||.||.||.||..|....||.|||||.|||||.||. 

opti 2326 GAGACCGATGATCTGTTTGGGCGCACCGGGCGCAAAAAGAAAGCCGGTGCGTTAAGTGGCGTGCGTCGCACAGCG 2400 

 

wt   2401 GGCATGCTGAGCGAGCTCAGCGGCGGCCAGGACATGGCGTACATCGAGCAGAACAAGGCTGCCAACCGCGCACTC 2475 

          ||.|||.|.||.||.||.||.||||||||.||||||||.||.||.||.||||||||.||.||.||.|||||..|. 

opti 2401 GGAATGTTAAGTGAACTGAGTGGCGGCCAAGACATGGCATATATTGAACAGAACAAAGCAGCTAATCGCGCCTTG 2475 

 

wt   2476 AAGCAGCAGGGTGCTGGTGGCGGTAAGAGCAGCAAGGCGGCTGCGATGGCCGAGAAGAGTTCTTTCTTCAAGAAG 2550 

          ||.|||||.||.|||||.|||||.|||......|||||.||.|||||||||||.|||......|||||.|||||. 

opti 2476 AAACAGCAAGGCGCTGGCGGCGGCAAGTCTTCAAAGGCCGCGGCGATGGCCGAAAAGTCGAGCTTCTTTAAGAAA 2550 

 

wt   2551 ATCGAGCGCGAGAAGGAGAAGAGCAGGGCCGCGGCCCGCGCGGCGAGGCAGTAA 2604 

          ||.|||||||||||.||.||.....|.||.||.||.||.||.|||.|.|||||| 

opti 2551 ATTGAGCGCGAGAAAGAAAAATCACGTGCTGCAGCTCGTGCAGCGCGTCAGTAA 2604 

 

Figure 6-15. Alignment between the wild-type (wt) and codon optimized (opti) cDNA sequence 
of XPB. 
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6.5. Further expression constructs 

In course of this work, further expression constructs of the TFIIH core subunits have been 

designed and attempted. Table 6-2 gives an overview of these constructs and the results 

from the conducted steps. 

 

Table 6-2. Further expression constructs. 

 
 

Construct Vector Cloning Expression/Purification Crystallization Comments

XPB

XPB_K392R pBADM-11 Done bound to chaperone Walker A mutant

XPB_F143S pBADM-11 Done Disease related mutant

XPB_T163P pBADM-11 Done Disease related mutant

XPBopti_K392R pBADM-11 Done Walker A mutant

XPBopti_F143S
Primers

ordered
Disease related mutant

XPBopti_T163P
Primers

ordered
Disease related mutant

XPB_1-345_T163P pBADM-11 Done Disease related mutant

XPB_60-E pBADM-11 Done bound to chaperone

XPB_60-768 pBADM-11 Done bound to chaperone

XPB_60-345 pBADM-11 Done Successful No crystals

XPB_116-E pBADM-11 Done bound to chaperone

XPB_286-747 pBADM-11 Done bound to chaperone DRD + HD1 + HD2

XPB_293-654 pBADM-11 Done bound to chaperone Corresponds to Archaeoglobus fulgidus XPB

XPB_346-747 pBADM-11 Done bound to chaperone HD1 + HD2

XPB_541-777 pBADM-11 Done Successful Corresponds to 4ERN

p62

p62_dL pETM-11 Done Successful No crystals Residues 109-145 replaced by SNGNG linker

p52

p52nT_M455C pETM-11 Done Introduction of cysteine to enable disulfide bridge to p8

p52_1-321_dAA pETM-11 Done Deletion of A121 + A122 in p52_1-321

p52nT_248-464 pETM-11 Done

Co-expressed with 

XPB_60-345; no 

homogenous species 

after SEC

p52_1-464
Primers

ordered

p52_1-454
Primers

ordered

p52_1-435
Primers 

ordered

p52_1-429
Primers 

ordered

p52_1-235
Primers 

ordered

p52_19-E
Primers 

ordered
With and without tag

p52_248-E
Primers 

ordered
With and without tag

p52_326-E
Primers 

ordered

p52_345-E
Primers 

ordered

p52_354-E
Primers 

ordered

p44

p44_LL pBADM-11 Done
Co-expressed with 

p62nT; successful
No crystals Residues 410-468 replaced by SNGNG linker ("long loop")

p44nT_286-E pBADM-11 Done

p44nT_286-367 pBADM-11 Done

p34

p34nT_1-277 pETM-11 Done
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