The complexity of membership problems
for finite recurrent systems and
minimal triangulations

Dissertation

Zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr.rer.nat.)

Bayerische Julius-Maximilians-Universitat Wiirzburg
Fakultat fiir Mathematik und Informatik

von

Daniel Meister

aus Jena

Wiirzburg, im Jahre 2006

Vorwort

Im Jahre 1994, es neigte sich dem Ende zu, und ich war auf dem Weg vom Kranken-
haus zurick nach Hause, horte ich es im Radio. Oder eigentlich horte ich es nicht,
sondern verstand nur ein paar Brocken, Fetzen Inhalts. FEs ging um eine Reform
der Rechtschreibung. Ich hdtte schockiert sein maissen, war es auch, verwarf aber je-
den weiteren Gedanken an das Thema unverzuglich, da einerseits im Straflenverkehr
Obacht und Aufmerksamkeit oberste Gebote sind und andererseits ich zuvor nie von
solcherlei Reformbestrebungen vernahm, so dafi doch recht schnell klar sein mujfte,
dafl ich mich verhort hatte. Zeit verstrich, und das Thema trat nicht wieder in mein
Bewuftsein. Vorerst!

Wie schlimm war es dann, als es eines Tages doch dazu kam, was aus heutiger
Sicht natirlich unvermeidlich war: Die Kultusminister beschlossen eine Reform der
Rechtschreibung, die dann irgendwie umgesetzt werden sollte. Ich kann gar nicht
genau sagen, wie das Thema damals in der éﬁentlichkez’t behandelt wurde, ich war ja
schlieflich noch frischer Student und hatte mit Studium zu tun. Vielleicht war es auch
so, dafs erst einmal gar nichts passierte, da die neuen Regeln erst nach einer gewissen
(jbergangsfrist verbindlich wurden und vor allem nur fir ,offentliche Einrichtungen®
wie da waren vor allem Schulen und Behorden.

Man kann dariber spekulieren, was tdberhaupt der Ausloser war, eine solche Re-
form anzustrengen. Ich hoffe, dafl es nicht daran lag, daf§ die letzte Reform noch im
Kaiserreich beschlossen wurde, denn so reformfreudig war man in Deutschland in den
neunziger Jahren des vergangenen Jahrhunderts nicht. Woriber es aber keiner Speku-
lationen bedarf, sind die Auswirkungen dieser Reform. (Das Wort Reform kommt so
héaufig vor; tatsdchlich bewirkt nicht jede Reform eine Wendung zum besseren.) Fir
mich personlich kann ich sagen, dafi sich meine Kenntnisse der Deutschen Schrift-
sprache stark verbessert haben, da ich beim Lesen eines Textes gezwungen war her-
auszufinden, welchen Regeln der jeweilige Autor folgte, um nun wiederum zu wissen,
was genau er aussagen wollte. Dennoch war ich oft genug mit dem Problem konfron-
tiert, nicht genau zu wissen, ob es Absicht war oder Zufall, daf da stand, was da
stand. Und dies ist wohl einer der grofiten Vorwirfe, den man Politikern machen
kann: daf sie bewufit eine einstmals homogene und in weiten Teilen beherrschte
Schriftsprache derart zerrittet haben, dafi kein normaler Nutzer heutzutage gegen
Fehler gefeit ist, die vor nicht allzu langer Zeit ausgeschlossen waren. Ich verstehe
Schrift und Schriftsprache als Kulturgiter hochster Bedeutung. Und ich denke, der
Umgang mit ihnen zeugt von der Wertschatzung, die thnen entgegengebracht wird.
Aber darum soll es hier ja eigentlich gar nicht gehen.

Wieso habe ich aber das Thema Rechtschreibreform aufgegriffen und damit be-
gonnen? FEs ist ein sehr aktuelles Thema, und es ist ein Thema, welches mich seit
zehn Jahren konstant beschdftigt. Ich hatte das Glick, um Erich Kastners Worte zu
variieren, aufzuwachsen, (nicht dort, wo Milch und Honig von den Bdumen tropfen,
sondern) wo Kunst und Kultur eine herausragende Rolle spielen, wo sie quasi zum

i

personlichen Selbstverstandnis gehoren. Natirlich meine ich das nicht pauschal, und
die Leute liefen nicht durch die Gassen Goethe und Schiller rezitierend in einem fort.
Dennoch trifft man pausenlos auf Kultur. Ich habe mir als Sinnbild das Paar Kultur
und Natur gewdhlt, und genau das beschreibt, was mir besonders wichtig ist. Und
naturlich gehort zum Bereich Kultur Schriftsprache, und natirlich muf diese hochent-
wickelt, differenzierend, ausdrucksfdhig sein. Wie sieht es denn heute (gemaf der Re-
form) damit aus? — Wenn man einmal davon absieht, daf keiner die aktuellen Regeln
kennt, da einfach viel zu hdufig am Reformwerk herumreformiert wurde, kommt der
Aspekt Differenzierbarkeit/Ausdrucksfahigkeit einfach zu kurz. Auch war es einmal
so (und ist es noch im taglichen Gebrauch), daff sich die Schrift an der Sprache
orientierte. Damit war Deutsch eine der wenigen Sprachen, die es erlaubten, vom
geschriebenen Wort recht schnell auf Aussprache und Sinn zu schlieffen. Welchen
Regeln soll man denn dann bei Wortungetimen wie ,platzieren® oder, fiir den theo-
retischen Informatiker ganz wichtig, ,nummerieren” folgen? Ganz zu schweigen von
der semantischen Verbindung zwischen platzen und ,platzieren”. Jedenfalls bin ich
der Meinung, daf die Politik gerade hierbei bewiesen hat, daff ihr manche Themen,
die offiziell ganz oben auf hochgehaltenen Fahnen stehen, von untergeordneter Bedeu-
tung sind.

Ich kdonnte, die einen wissen es, die anderen konnen es sich lebhaft vorstellen, zu
diesem Thema eine langere Abhandlung verfassen. Zum Glick nehmen mir andere
diese Arbeit ab. Ich finde, ein wenig Bewahren kann auch nicht schaden. Aber
das soll hier ja nicht nur stehen. Schliefilich ist die vorliegende Arbeit dem Bereich
Theoretische Informatik zuzuordnen, und eigentlich maochte der Leser an dieser Stelle
wissen, wem der Autor - ich in dem Falle — dankt.

Es ist schwierig, dies in vollem Umfang zu sagen. Ich hatte das ungemeine
Glick, viele, viele Jahre vor dem Abitur bereits zu wissen, daff ich unbedingt In-
formatik studieren wollte. Einen Rechner hatte ich da moch nicht, ich hatte auch
noch nicht an einem gesessen. Ich kannte Rechner nur aus dem Fernsehen und war
dennoch fasziniert. Es war also nicht geboten, nach Schulabschluf§ erst einmal einen
Selbstfindungsprozef zu inititeren, um herauszufinden, was ich denn eigentlich konne.
Normalerweise sollte dann die bewufite Wahl der Universitat getroffen werden. Ich
ging ziemlich pragmatisch vor und wdhlte die Uni nach einem naheliegenden Kri-
terium. Ich konnte ja nicht wissen, daf die Auswahl ein absolutes Optimum wdre.
Ich begann also an der Friedrich-Schiller-Universitat. Und ich hatte das Glick, bei
hervorragenden Dozenten Vorlesungen besuchen zu konnen, die mich im Laufe meines
Studiums aktiv und passiv mafigeblich beeinflufiten. Zu nennen sind Dieter Kratsch
und Gerd Wechsung. Beide hielten die besten Vorlesungen meines gesamten Studi-
ums, und da ist es ja auch kein Wunder, daf§ mich die entsprechenden Themen noch
immer beschaftigen. Im tbrigen bin ich froh, dafi es die Theoretische Informatik
gibt; andernfalls ware ich bestimmt nicht so glicklich uber meine Studienwahl gewe-
sen. (Aber wahrscheinlich doch.)

Kultur und Natur — davon gab es reichlich, und ich genof§ es. Nicht so intensiv
und bewufit wie heute, aber dennoch. Und ich wage zu behaupten, dafi dieses Umfeld,

1l

was nicht zuletzt auch durch grofle Geschichte gepragt wurde, mich stark beeinflufite
und in mir liegenden Anlagen zum Ausbruch verhalf. Zum Leidwesen so manch an-
derer.

Daf ich dann nach Wiirzburg kam, war weder eine logische Folge noch Ergebnis
bewufter Planungen. Es war reiner Zufall. Und das war gut so. Am Lehrstuhl von
Klaus Wagner lief§ sich hervorragend Forschung betreiben; die vorliegende Arbeit legt
davon Zeugnis ab. IThm ist vor allem fir das Gelingen zu danken. Aber auch meinen
Kollegen, die noch da sind oder auch schon nicht mehr, gebiihrt Dank. Altgedient
sind Christian und Elmar. Mit beiden hatte ich meinen ersten Konferenzbeitrag. El-
mar mufite auferdem so manche ,Diskussion” ,ertragen”. Bernhard muf besonders
erwahnt werden, mnicht wegen der Diskussionen, sondern weil er einen Beitrag zu
dieser Arbeit geleistet hat. Seinen Fdhigkeiten ist der schone Beweis zu Lemma 6.10
zu verdanken. Stephen mochte ich hier erwdhnen. Unsere Bekanntschaft geht auf ein
Sommerfest zurick, erstreckte sich uber eine Diplomarbeit und mindete im Neben-
zimmer (wenn ich das einmal so salopp abreifien darf). Ich glaube, manchmal strei-
ten wir heftig (selbstverstandlich nur verbal) iber harmlose Themen, aber es tragt zur
Meinungsbildung stark bei.

Es gibt aber nicht nur Arbeit (und das meine ich im Ernst und nicht witzig,
ironisch oder mit Hintergedanken). Besonders im privaten Umfeld sind Menschen —
Freunde, Bekannte, Verwandte — zu nennen, die fir das Gelingen von unschatzbarer
Bedeutung waren und sind. Ich habe lange uberlegt, aber ich nenne keine Namen.
Einerseits ist mir immer wieder aufgefallen, dafi der eine vergessen wurde oder nicht
gebihrend bewertschatzt wurde, andererseits ... nun ja. Stellvertretend bedanke ich
mich herzlichst bei allen, die sich angesprochen fihlen bei der Erwdahnung von Jena-
Weimar und Dresden. Kultur und Natur in ihrer schonsten Form. Doch noch: der
Familie.

Wiirzburg, 10.03.2006
(Ausbesserungen am 14.07.2006)

Table of contents

Part 1 Introduction and theory fundamentals 2
Chapter 1 Introduction 5
1.1 Membership problemso i e 5
1.2 Composition rules and outline of the thesis............................... 10
1.3 Publishmento 12
Chapter 2 Graph-theoretic fundamentals 15
2.1 Subgraphs, isomorphism and neighbourhoods............... 16
2.2 Walks, paths, cycles and connectivityo it 19
2.3 Topological orderings and acyclic graphs............ccoiiiiiiiiii ... 20
Chapter 3 Complexity-theoretic fundamentals 23
3.1 Random access and Turing machinest 23
3.2 Complexity Classesottt e 28
3.3 Reducibilities and complete problems...............ccoiiiiiiiiiiiiii... 32
Part 1II Finite recurrent systems 40
Chapter 4 The complexity of auxiliary problems 43
4.1 Number-of-walks and power-of-matrix problems........................... 43
4.2 The complexity of number-of-walks and power-of-matrix problems......... 49
4.3 Two NP-complete problems i 55
Chapter 5 Introducing finite recurrent systems 61
5.1 Arithmetical CIrCUItso e 61
5.2 Finite recurrent systems over sets of natural numbers..................... 63
5.3 Membership problems for finite recurrent systems......................... 67
5.4 Membership problems for arithmetical circuits............................ 72
Chapter 6 Decidable membership problems 75
6.1 Nondeterministic logarithmic space acceptable membership problems...... 75
6.2 Nondeterministic polynomial time acceptable membership problems....... 83
6.3 Polynomial space decidable membership problems......................... 94
6.4 Further polynomial space hard membership problems.................... 108
6.5 Two unclassified membership problems............o ... 110

Chapter 7 Undecidable membership problems 113

7.1 Enumerating k-tuples of natural numbers............., 113
7.2 The description of a component i 119
7.3 Assembling COmMpPONEntSc.viittiiit it 123
7.4 Undecidability reSultsoviiiiiii i e e 128
Part III Minimal triangulations 132
Chapter 8 Chordal graphs and minimal triangulations 135
8.1 Minimal vertex Separators.oueiiiiii it 135
8.2 Getting to know chordal graphs..............o i 137
8.3 Characterisations of minimal triangulations of arbitrary graphs 142
8.4 The min-Tri membership problem for arbitrary graphs................... 146
8.5 Width parameters. 147
Chapter 9 2K,-free graphs 151
9.1 Getting to know 2Ks-free graphs i 151
9.2 Characterisations of minimal triangulations of 2Ks-free graphs........... 154
9.3 Solving the min-Tri membership problem 158
9.4 Algorithmic applicationsot 161
Chapter 10 Permutation graphs 165
10.1 Getting to know AT-free and permutation graphs....................... 165
10.2 Characterising minimal separators of permutation graphs............... 172
10.3 Potential maximal cliques of permutation graphs 175
10.4 Characterisations of minimal triangulations of AT-free graphs........... 182
10.5 Solving the min-Tri membership problem............. 187
10.6 Algorithmic applicationsc.ouuiutmiei i 192
10.7 Interesting Problemsottt 196
Chapter 11 AT-free claw-free graphs 197
11.1 The min-LexBFS algorithm........ i i 197
11.2 Moplexes and the min-LexBFS algorithm 202
11.3 Getting to know AT-free claw-free graphs........... 207
11.4 Characterisations of minimal triangulations of AT-free claw-free graphs . 211
11.5 Certifying recognition of proper interval graphs......................... 217
11.6 Solving the min-Tri membership problem........., 222
11.7 Algorithmic applicationsc...oiuiiimi e 226

11.8 Interesting problemsoiuiii i e 228

Bibliography

Mathematical symbolism

List of (decision) problems

Index

231

237

239

241

Part 1

Introduction and theory fundamentals

The thesis is partitioned into three parts, and every part provides a frame for the
contained chapters. While Parts I and III are dedicated to new results, Part I has a
preparatory character. Compared to Parts II and III, it is also short; it consists of
only three chapters.

Chapter 1 is a real introduction into the topic of the thesis. It is explained what
we basically mean by the complexity of problems and what membership problems are
and how they distinguish from other problems, especially with respect to the well-
known decision problems. The main topic of this thesis is a complexity analysis of
special membership problems, and these membership problems are informally intro-
duced and related to previous work. The definition of the finite recurrent systems,
that are considered in Part II, is based on integer expressions, that were introduced
by Stockmeyer and Meyer. In Chapter 1, the connection is established.

The following two chapters are ordinary preliminary chapters as they can be
expected in every mathematical text. In Chapter 2, the fundamental notions of graph
theory are defined such as directed and undirected graphs themselves, walks, paths,
cycles, different subgraph notions and forms of connectivity. Since we will consider
walks, paths, cycles in directed as well as in undirected graphs, these and further

definitions have to be made for both types of graphs. Many more definitions appear
in the chapters of Part III, where a lot of graph classes are defined. Here, a special
focus is set on acyclic graphs, since these graphs are important throughout the thesis.

Chapter 3 is dedicated to complezity theory. Complexity theory and the analysis
of problems are based on algorithms. The notion of an algorithm is precised by two
different algorithm models: the random access machine and the Turing machine.
Random access machines can be considered mathematical models of real computers.
In theory, they are used for analysing algorithms. In contrast, Turing machines
developed from considerations about the way computations are executed by humans.
They are preferred when fundamental computability questions are treated. Based on
both notions complexity notions can be defined. In Chapter 8, we will define the
complexity classes that we will use in this thesis, and we will define two reducibilities
and complete problems.

Chapter 1

Introduction

The title of the thesis states it precisely: The complezity of membership problems for
finite recurrent systems and minimal triangulations is studied. Unfortunately, only a
few people in the world can imagine what this means! The maybe best known tech-
nical term of the title—it is the word “complexity” in my opinion—already produces
expectations, and they may lead into the right direction. Complexity theory is the
field of theoretical computer science which the contents of this thesis must be located
in. (I know well that the algorithms part of the thesis does fit well into the field
algorithms of theoretical computer science and that the field algorithms may be con-
sidered different from complexity theory, but one does not have to be so strict.) Since
problems are mentioned I can even precise and speak of computational complexity
theory. In contrast to structural complexity theory, computational complexity theory
is interested in the complezity of particular problems instead of whole abstract prob-
lem classes. The complexity of a problem is measured by the amount of resources
that are consumed by a best algorithm that solves the problem. Usually, there is no
‘best’ algorithm for a problem but a class of algorithms that are good enough in a
sense that they can be considered best.

Complexity resource measures can be based on arbitrary computation parame-
ters, but users of real-existing computers mostly ask about time and (memory) space
that are needed for carrying out computations. In this thesis, the complexity of mem-
bership problems for finite recurrent systems and minimal triangulations is analysed
in the sense that good algorithms for solving the problems will be presented. Surely,
this does not have to mean that they are “best” except for the case that it is obvious.
And indeed, this case will happen. If this case does not happen, i.e., if it is not
obvious that an algorithm is best possible with respect to current knowledge, it is
proved! Everybody knows that such proofs exist only for very very easy problems
(and I assure that the problems treated in this thesis are not of the very very easy
kind). That is why the proofs for being best algorithm show that better algorithms
exist only if something unexpected happens. Such assumptions about unexpected
events in complexity theory are popular and common.

1.1 Membership problems

So far, the reader knows now that algorithmic solutions of concrete problems have
to be expected in this thesis. But still, I did not say what these concrete problems
are. Let us start with the classification “membership problem”. Problems in general
are simply sets of objects, and in computer science one often restricts to sets of
natural numbers or to sets of words over an alphabet, which again can be considered
sets of natural numbers. One can imagine many questions that should be solved
for a problem, for instance generating an element from the problem set or verifying

whether a given object (number) belongs to the set. In the setting of theoretical
computer science the first question is rather uninteresting, since for every (non-trivial)
problem an algorithm can be constructed that outputs an element of the problem
without using almost any resources. The second question, in contrast, is the general
description of a decision problem: given an object, is it member of the problem set?
A possible solution algorithm is directly associated with the problem and so can
have all possible (and finitely encodable) knowledge about the problem. Membership
problems are of a similar kind but may be considered generalisations of decision
problems: given a set using an appropriate and well-defined representation model
and an object, is the object member of the represented set? I hope the difference
to decision problems is clear: algorithms solving decision problems implicitly know
the set they decide, whereas algorithms solving membership problems learn about
the set for which the membership question is to be answered only at input time. To
cause a little confusion, membership problems are special decision problems: input
set and object for a membership problem are composed into an ordered pair and
become input for a decision problem. So, the classification membership problem or
decision problem depends on the point of view and requires fine distinction.

Well, to completely unveil what this thesis is about, it remains to precise the
definitions of the sets for which the membership problems will be solved. The mem-
bership problems for finite recurrent systems are membership problems about sets of
natural numbers, the membership problems for minimal triangulations are member-
ship problems about sets of graphs. A graph is called chordal if it does not contain
a chordless cycle of length at least 4. (Some graph notions are used in the following,
and I can only refer to later chapters for exact definitions. However, it is not neces-
sary to understand everything here to get an idea of the problem setting.) Not every
arbitrary graph is chordal (chordality is not a trivial graph property), but from arbi-
trary graphs chordal graphs can be obtained by adding edges. This operation, adding
edges to a graph to make it chordal, is called triangulation or triangulating a graph or
making a graph chordal. The obtained chordal graph is called a triangulation of the
start graph. To obtain a minimal triangulation of a graph, an inclusion-minimal set
of edges is used for triangulating the graph. Such an inclusion-minimal set of edges is
called a minimal fill-in. So, every graph defines the set of its minimal triangulations,
that are the results of minimal fill-in operations. And this is what is required for
membership problems. Hence, the membership problem for minimal triangulations
is defined as: given a pair GG, H of graphs, is H a minimal triangulation of G, i.e., is
H a member of the set of minimal triangulations of G?7

The other type of membership problems is based on sets of natural numbers and
is of this form: given a natural number and a set of natural numbers represented in
a special form, is the given number member of the set? It remains to precise the set
representation model. Even though I did not speak about it for the graph problem
it is clear that the complexities of the membership problems are mainly determined
by the representation model of the set. We will introduce a representation of sets
of natural numbers that is based on integer expressions. An integer expression is a

Chapter 1 Introduction 7

well-defined expression that is inductively defined as follows:

(a) {a} for a a natural number is an integer expression
(b) let E be an integer expression, then E is an integer expression

(c) let F4 and E5 be integer expressions, then (E; U Es), (E1 N Ey), (B @ Es)
and (F; ® Ey) are integer expressions

(d) further integer expressions do not exist.

Integer expressions were introduced by Stockmeyer and Meyer as the integer (ba-
sically natural) analogue of regular expressions [79]. (They did not consider the
multiplication operator ®, which is an addition of a subsequent work by McKenzie
and Wagner [61].) The meaning of an integer expression, i.e., the set that is described
by an integer expression, is self-explaining except for the definition of the arithmetical
operations addition (@) and multiplication (®). The definition of both operations is
extended to sets of numbers in the usual style: for A and B sets of natural numbers,
A @ B is the set containing the sums of numbers where one operand is taken from A
and the other is taken from B. Similarly, the product of A and B, A ® B, is defined
as the set of products of all pairs of numbers from A and B. If set variables are addi-
tionally allowed as integer expressions, we obtain parameterised integer expressions,
or simply functions. Such functions will be called {U, N, ~, ®, ® }-functions, since they
are defined using only these operators. (Later, I will not allow singleton sets, i.e.,
constants, in the definition of {U,N, ™, ®, ®}-functions, but this will not make any
difference.)

If a {U,N,”,®, ®}-function f depends on n variables, where fictive variables
are allowed, it is called an m-ary function. Then, a pair composed of an n-ary
{U,N,~,®, ®}-function f and n sets Aj,..., A, of natural numbers defines a set
of natural numbers, which is the result of the application of f to (41,...,A4,). Even
if Ay,..., A, are restricted to cardinality only 1 the membership problem becomes
difficult, as it was shown by Stockmeyer and Meyer [79]. But I extend the power of ex-
pressiveness of integer expressions by defining finite recurrent systems. In the setting
above, nothing has been said about the structure of the operand sets Aq,...,A,.
They shall be the results of {U,N, ™, ®, ®}-functions. I precise: a finite recurrent
{U,N, 7, ®, ®}-system of dimension n is a pair composed of n n-ary {U,N, ™, ®, ®}-
functions and n singleton sets of natural numbers. A set of natural numbers is defined
by such a finite recurrent system by iterated application of functions to sets. At first,
the functions are simultaneously applied to the given singleton sets, which yields n
sets of natural numbers as results. These sets become the inputs of the functions
for the second iteration, and again, this yields n sets of natural numbers. Here is an
example. Two 2-ary functions are defined as follows:

fl(xay) —def (.’E Uy)
f2(2,y) =dqer (y D y) N).

The two functions are applied to the singleton sets ({2}, {5}) and produce after one

iteration:

fi{2},{5}) = ({2} U {5}) = {2,5}

f({2},{5}) = ({5} @ {5}) n{2}) = {10} n{2}) = 0.
The results look pretty poor, and even a second iteration does not change the im-
pression that the defined system is a rather uninteresting one:

fl({2’5}’®) = ({275} U @) = {275}
f2({2,5},0) = (0@ 0)N{2,5}) = 0.

Since the results of the second iteration are the same as the results of the first
iteration, we now know everything about the finite recurrent system ({f1, f2), (2,5)).
A remark: by definition I should write ({2}, {5}) instead of (2,5) but I use the more
convenient denotation.

In the defined sense, the iteration can be carried out arbitrarily often, and always,
this process yields n sets of natural numbers. A function is selected that shall produce
an output set, and for a specified number of iterations, the output set produced by
the selected function is the set defined by the finite recurrent system after the given
number of iterations. For the example, one could say that function f5 shall produce
the output. After two iterations, §) is the result. When the iteration process is carried
out backwards, i.e., when functions are superposed instead of applying them to input
sets, the fixed number iteration defines an integer expression, that represents the
output set. Again the example: two iterations yield the integer expression

(((({3re {3 n{2h) @ ({3t @ {5}) n{2})) n ({2} U {5})),

which is evaluated to the empty set, which is not obvious. So, one can say that finite
recurrent systems for fixed number iterations represent regularly structured integer
expressions in a concice form.

I go one step further and define a second model for representing sets of natural
numbers by finite recurrent systems. In every iteration the selected output function
produces a result. The union of these sets taken over every number of iterations is
the set represented by the finite recurrent system. This set may be infinite, and it is
not clear whether such sets can be represented by integer expressions.

The complexity of membership problems for finite recurrent systems is studied
not only for general finite recurrent {U,N, ™, @, ® }-systems but especially for systems
that are defined using only subsets of the operator set {U,N, ™, ®, ®}. The definition
of corresponding functions is straightforward. It turns out that the complexities of
membership problems for restricted recurrent systems range over a wide field. Al-
ready Stockmeyer and Meyer did not consider integer expressions of only the general
form but also for a reduced operator set [79]. McKenzie and Wagner extended this
work to an almost complete complexity study [61]. The problem setting as well as
the results presented here are mainly inspired by these two papers.

In case of the complexity of membership problems for minimal triangulations,
there is no direct previous work. The problem, given two graphs G and H, is H

Chapter 1 Introduction 9

a minimal triangulation of G, has been considered before only as an application.
There exists an easy characterisation of minimal triangulations of a graph: graph H
is a minimal triangulation of a graph G if and only if H is chordal, is a spanning
supergraph of G and the deletion of every edge of H that is not an edge of G yields
a graph that is not chordal [76]. Ibarra considered the question: how fast can it be
decided whether a chordal graph remains chordal after deletion of a specified edge
[44]? He showed that, given the chordal graph using an appropriate representation,
this question can be decided in time O(n), where n denotes the number of vertices
of the graph. Given a graph G and a graph H, where H is a chordal spanning
supergraph of G that contains f additional edges, Ibarra’s results show that it can
be decided in time O(fn + m) whether H is a minimal triangulation of G, where
m denotes the number of edges of G. The algorithm is easy: for every additional
edge of H, ask whether the deletion of this edge results in a chordal graph. If all
questions are answered ‘no’, H is a minimal triangulation of G due to the cited
characterisation. It is only remarked that time O(n + m + f) is needed to generate
the required representation for H.

There are further algorithms that also answer the question about being minimal
triangulation. But their answers are indirect ones. The original problem is as follows:
given a graph G and a graph H, where H is a chordal spanning supergraph of G,
compute a minimal triangulation of G that is a subgraph of H. This problem was
dealt with by Blair, Heggernes, Telle [6] and Dahlhaus [23]. Their algorithms work
in time not better than O(nm) where n and m denote the numbers of vertices and
edges, respectively, of graph G. So, if the output graph is equal to input graph H,
H is already a minimal triangulation of G.

Similar to the case of membership problems for finite recurrent systems, I will not
consider the membership problem for minimal triangulations for arbitrary graphs but
for restricted graph classes. These graph classes are the class of 2K5-free graphs, the
class of permutation graphs and the class of AT-free claw-free graphs. Particularly
the class of permutation graphs is a well-studied graph class, and many problems are
easy for these graphs (see, for instance and for standard problems, Golumbic’s book
[35]). To name the major results: for all three graph classes, I can present linear-
time algorithms that solve the membership problems, if it is not necessary to verify
that input graph G belongs to the requested graph class but it is simply assumed.
The algorithms are based on characterisations of minimal triangulations of graphs
from these graph classes that allow efficient representations of minimal triangulations,
and considerable amount of work is devoted to obtain such characterisations. The
above-cited characterisation of minimal triangulations of arbitrary graphs does not
suffice.

10

1.2 Composition rules and outline of the thesis

The present thesis is partitioned into three major Parts and eleven Chapters, among
which the first one is currently read. Every chapter is partitioned into several sections.
Part I is mainly dedicated to the introduction and the presentation of fundamental
definitions and results from the fields of graph theory (Chapter 2) and complexity
theory (Chapter 3). If the reader feels familiar with basic notions of both fields
Chapters 2 and 3 can be skipped. I tried to recall definitions that seem standard but
may nevertheless differ in details from definitions by other authors when they are
needed in Parts IT and III, so that it shall be easier to remember and understand.
The following shall summarise the main parts of the thesis and highlight important
results and achievements.

Part II is dedicated to the complexity of membership problems for finite
recurrent systems. This part consists of four chapters.

Chapter 4

Membership problems for finite recurrent {@}- and {®}-systems turn out to be re-
lated to problems that ask for the numbers of walks in directed graphs. So-called
numbers-of-walks problems are introduced, and their complexities are determined.
All problems can be solved in polynomial time, which makes them easy in a certain
sense. Some of them are even complete for nondeterministic logarithmic space, and
this result is needed later for proving hardness of membership problems. Another
problem is introduced, that asks for satisfiability of a system of congruence equations.
This problem can be considered a decisional generalisation of the Chinese Remainder
Theorem and turns out complete for nondeterministic polynomial time.

Chapter 5

Finite recurrent systems are formally introduced, and membership problems for fi-
nite recurrent {U,N,~, ®, ®}-systems are defined. Upper complexity bounds for the
general membership problems are proved. I have only spoken of solving member-
ship problems, which implies the existence of algorithms in the usual context. The
upper bound then is disappointing in the sense that it does not provide a “real”—
executable—algorithm but only an algorithm that has oracle access to the halting,
or a related, problem.

Chapter 6

Many membership problems for restricted finite recurrent systems are classified with
respect to their complexities. In most cases, completeness results are obtained for
the complexity classes NL, NP and PSPACE. Among the results of this chapter,
containment in NP of membership problems for finite recurrent {N, ®}-systems re-
quires a number of partial results. Even more complex is the proof of containment
in PSPACE of membership problems for finite recurrent {U, ®, ® }-systems.

Chapter 7
Three membership problems are considered for which there do not exist decision
algorithms. This particularly shows that the upper complexity bound obtained in

Chapter 1 Introduction 11

Chapter 5 is not so bad as it seemed. The result is obtained by reducing a known
undecidable problem to the membership problems. The chosen undecidable problem
is the satisfiability problem for Diophantine equations.

Part IIT is dedicated to the complexity of membership problems for minimal
triangulations. This part consists of four chapters.

Chapter 8

The class of chordal graphs is got to know. Alternative characterisations of chordal
graphs are presented. Minimal triangulations are defined and two characterisations,
that are used in later chapters, are stated. The membership problem for minimal
triangulations of arbitrary graphs is defined.

Chapter 9

The class of 2Ks-free graphs is defined, and some properties are shown. Two char-
acterisations of minimal triangulations of 2K,-free graphs are proved. One result
characterises the set of minimal triangulations of 2Ks-free graphs in general, and
the other result is a characterisation of the minimal triangulations of a single 2K5-
free graph. Using the second characterisation, the membership problem for minimal
triangulations of 2K,-free graphs is solved.

Chapter 10

The class of AT-free graphs and further subclasses are defined. In particular, the
class of permutation graphs is a subclass of the class of AT-free graphs. The central
result of the chapter is a characterisation of the minimal triangulations of a single
permutation graph. This characterisation is based on potential maximal cliques,
that are characterised by an easy property. Besides the solution of the membership
problem for minimal triangulations of permutation graphs, linear-time algorithms
for computing treewidth and minimum fill-in of permutation graphs are important
results.

Chapter 11

The central result, a characterisation of minimal triangulations of AT-free claw-free
graphs, is based on a breadth first search style algorithm, that is called min-LexBFS.
This algorithm works on graphs and generates vertex orderings for input graphs.
These orderings are studied: they are characterised and properties are proved. An
important auxiliary result is that min-LexBFS finds a moplex of the input graph, that
is a special clique whose neighbourhood is a minimal separator. Another auxiliary
result is a recognition algorithm for a chordal subclass of AT-free claw-free graphs,
that is based on min-LexBFS.

The thesis is concluded by a list of cited papers (Bibliography), a list of used
mathematical symbols and definitions (Mathematical symbolism), a list of defined
decision problems and an index.

I tried to create two parts, I speak of Thesis Parts II and III, that are compa-
rable. Many further results could have been proved. But due to the size the present
thesis already has, I decided to restrict on results that are necessary for achieving

12

the theorems. Only in case of Part III, results beyond the solution of membership
problems are considered, since they are of major importance in the context of mini-
mal triangulations. On the contrary, I did not pay too much attention to space. In
some cases, it was necessary to reprove theorems known from the literature, since
they provided useful inside or, particularly in Part III, an algorithm to which it is
referred. So, I had the idea to reprove further cited theorems, if the proofs are not
too space-consuming. I like it this way, and I strongly believe that the thesis profits
much from this decision.

Finally, the dependencies among the different parts and chapters of this thesis, as
I see them, are shown in Figure 1. Since Chapter 4 in Part II contains only auxiliary
results with respect to the main aspects of the thesis, it is not considered central. The
filled regions mark the parts of the thesis containing the main results or definitions of
new objects, as it is the case for Chapter 5. Chapter 8 is the minimal triangulations
analogue of Chapter 5. But since Chapter 8 is dedicated to the presentation of only
preliminary definitions and results, it is also not considered central.

1.3 Publishment

Some of the results that are contained in this thesis have already been presented at
conferences or been published in a refereed journal. The main results of Chapter 11
were published in

e D. MEISTER, Recognition and computation of minimal triangulations for
AT-free claw-free and co-comparability graphs, Discrete Applied Mathema-
tics 146, pp. 193218, 2005.

Many results of Chapter 10 as well as the main parts of the Chapters 5 and 6 were
presented at international conferences and published in conference proceedings:

e D. MEISTER, Computing Treewidth and Minimum Fill-in for Permutation
Graphs in Linear Time, Proceedings of the 31st International Workshop
on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Com-
puter Science 3787, pp. 91-102, Springer-Verlag, 2005

e D. MEISTER, Decidable Membership Problems for Finite Recurrent Systems
over Sets of Naturals, Proceedings of the 15th International Symposium
on Fundamentals of Computation Theory, Lecture Notes in Computer Sci-
ence 3623, pp- 80-91, Springer-Verlag, 2005.

The managing boards of the Department of Computer Science of the Bayerische
Julius-Maximilians-Universitat Wiirzburg edit a technical reports series named “For-
schungsberichte”. Most of the results of the thesis, the already published results
included, are contained in technical reports; nos. 302, 328, 336, 361, 369.

Chapter 1 Introduction 13

Part |

@

Part |1 Part I11

Figure 1 How are parts and chapters of the thesis related to each other?
The filled regions mark the chapters of the thesis containing the main
results. The dotted arrows show conceptional correspondences between
the chapters of Part II and Part III.

14

15

Chapter 2
Graph-theoretic fundamentals

A simple undirected graph G is an ordered pair (V, F) of sets where V is the set of
vertices of G and E is the set of edges of G. An edge of G is a set containing exactly
two elements from V), i.e., two vertices of G. An edge {u,v}, where u and v are
distinct vertices, is briefly denoted as uv. If uv is an edge of GG, we say that u and v
are adjacent or that u is adjacent with v. For an edge uv of G, we call v and v the
endpoints of uv. The vertex and edge sets of G are also denoted as V(G) and E(G),
respectively. If graphs are intended to be not simple, their edge sets are not sets of
subsets of vertex sets but families of subsets of vertex sets. Here, we only consider
simple graphs. If V is a finite set, GG is a finite graph. Here, we only consider finite
graphs. We only remark that a graph which is not simple may have a finite vertex set
but infinitely many edges. For a given graph G, n and m usually denote the numbers
of vertices and edges of G, respectively. It will not be necessary to add indices to n
or m.

A simple directed graph G is an ordered pair (V, A) of sets where V' is the set
of vertices of G and A is the set of arcs of G. An arc of G is an ordered pair of
vertices of G, and it is not required that both vertices are distinct from each other.
Arcs with both vertices the same are called loops. If (u,v) is an arc of G, we say
that u is adjacent to v. In this case, u is a predecessor of v, and v is a successor of
u. Furthermore, (u,v) is an in-coming arc of v and an out-going arc of u. Vertex
and arc sets of G are also denoted as V(G) and A(G), respectively. We will not
consider directed graphs that are not simple. When we speak of “graphs”, we always
mean undirected graphs. Furthermore, we define that a graph on n vertices (this
will always mean that the graph has exactly n vertices) has vertex set {1,...,n}.
Then, the numbers are the names of the vertices, which clearly must be considered
synonymous for being vertex itself. Note that this does not mean that every graph
has vertex set {1,...,n} for some number n, but we can assume that it is always
a (finite) subset of N. (Usually, vertex sets can be sets of arbitrary objects.) In
special cases, we attach marks to vertices, edges and arcs, and these marks are called
“labels” then.

Graphs appear in many contexts. Especially directed graphs represent binary
relations over a finite set. Undirected graphs can be considered representations of
binary symmetric relations over a finite set, that may be reflexive or irreflexive (we do
not allow loops in undirected graphs). This connection to binary relations is a good
explanation why graphs are used in so many different areas of computer science. And
this is also why purely abstract problems on graphs are studied and solved. Most
of them are motivated by real-world problems. To name only a few, colouring the
vertices of a graph with the least possible number of different colours, determining
largest sets of mutually adjacent or mutually non-adjacent vertices are among the
most fundamental problems on graphs.

16

An important question in connection with computations touches representation
aspects. Let G be an undirected graph. For each vertex x of G, the adjacency
list attached to x is the set of vertices of G that are adjacent with z. ‘List’ usually
means that this set is implemented using a list structure. Hence, if a graph is given by
“adjacency lists”, this means that the graph is represented by a list of adjacency lists.
In case of directed graphs, adjacency list representation is defined analogously. There
are further graph representations—some of them are suitable for general graphs,
others are suitable only for special graphs. If a representation model for graphs is
not specified explicitly, we always assume adjacency list representation.

This chapter contains all information—mainly definitions—about graphs that
we will need in this thesis. We will define walks, paths, cycles in directed as well as
undirected graphs. From this, we will derive different connectivity notions, and we
will define graph parameters. A special subclass of directed graphs is discussed at
the end of the chapter.

2.1 Subgraphs, isomorphism and neighbourhoods

An outstanding property of (finite) graphs is the possibility of visualization. In other
words, and more precisely, graphs can be drawn on a sheet of paper, and many notions
can be described on such drawings. So, the notion of a graph is easily explicable by
examples. Figure 2 shows many graphs with only a few vertices. To understand
the drawings, vertices are represented by dots and adjacency is expressed by line
segments between two dots, i.e., vertices. Vertices (dots) that are not joined by
a direct line segment are meant non-adjacent. The two special graphs are sample
graphs that will be needed later. Some graphs also have names such as the claw.
Graph Cy is sometimes called square. Among the depicted graphs, two graphs can
be considered maximal: 4K; and K4. The former graph does not contain any edge,
and the latter one contains all possible edges. To give names, the blank graph on n
vertices is the graph with vertex set {1,...,n} and empty edge set, and the complete
graph on n vertices is the graph with vertex set {1,...,n} and all possible edges. So,
4K, and K, are the blank and complete graphs on four vertices, respectively. The
empty graph is the graph without any vertex and edge.

Let G = (V,E) and H = (W, F) be graphs. We say that G is a subgraph of H,
denoted as G C H, if V C W and E C F. If one of the inclusions is strict, G is a
proper subgraph of H, denoted as G C H. If G C H we call H a supergraph of G. If
G CHandV =W, we call G a spanning subgraph of H and H then is a spanning
supergraph of GG. If G is a subgraph of H and contains all possible edges of H, G is
an induced subgraph of H. Precisely, G is the subgraph of H induced by V', denoted
as H[V], if, for every pair u, v of vertices of G, uv € E if and only if uv € F. Induced
subgraphs are the results of vertex deletion operations. We say that G and H are
equal if V. =W and F = F. This is equal to G C H and H C G. A relaxation of
equality is provided by isomorphism. We say that G and H are isomorphic, denoted

Chapter 2 Graph-theoretic fundamentals

17

o [] o
4K, 2K+ Ky K+ Ps
[o [:
Py K+ K3 claw
paw Ky—e Ky
Py Cs

ANARYANA

special graph 1 special graph 2

Figure 2 Many small graphs.

2Ks

Cy

18

as G = H, if and only if |[V| = |[W| and there is a bijective function ¢ from V to W
such that, for every pair u,v of vertices of G, uv € E & ¢(u)p(v) € F. Informally,
G and H are isomorphic if H can be obtained from G by simply renaming vertices.

Let G = (V, E) be a graph, and let u be a vertex of G. The neighbourhood of u in
G, denoted as Ng(u), is the set of vertices of G that are adjacent with u. The closed
neighbourhood of u, denoted as Ng[u], is the set Ng(u) U {u}. To emphasise the
distinction, the neighbourhood of a vertex is also called its open neighbourhood. Let
A C V be a set of vertices of G. The neighbourhood of A is defined as Ng(A) =gef
Uuea Na(u)\ A, and the closed neighbourhood of A is Ng[A] =qet Na(A)UA. If uis
adjacent with every other vertex of G, i.e., if Ng[u] =V, we call u a universal vertex.
Neighbourhood can also be defined for edges. Let e; = {u1,v;} and ey = {ug, v}
be edges of G. We say that e; and e are adjacent if [{uy,v1} N {ug,v2}| =1, ie., if
e and ey are different edges with a common endpoint. If vertex u is an endpoint of
edge e, we say that v and e are incident. For a set A of vertices of G, we call A a
cligue in G if every pair of vertices in A is adjacent in G. In other words, A induces
a complete subgraph of G. If every pair of vertices in A is non-adjacent in G, A is
an independent set in G. In this case, A induces a blank subgraph of G. A clique of
G is a set of vertices of G that is a clique in A. A clique of G is mazimal if it is not
properly contained (by inclusion) in any other clique of G. The maximum size of a
clique of G is called the cligue number of G and denoted as w(G). Similarly, maximal
independent sets of G are defined as well as the independent set number of G denoted
as a(G). The complement of G, denoted as G, is the graph on the vertex set of G,
and two vertices u and v of G are adjacent in G if and only if they are non-adjacent
in G. It holds that a(G) = w(G), since independent sets of G are cliques of G, and
vice versa.

In many cases, it is convenient to define sub- or supergraphs of a given graph
by application of basic operations. Let G = (V, E) be a graph. Let S C V be a set
of vertices of G. By G\ S, we denote the subgraph of G that is obtained from G by
deleting the vertices in S and all edges incident with vertices in S. In other words,
G\ S = G[V'\ 5] is the subgraph of G induced by V'\ S. Let u be a vertex of G. By
G—u, we denote the subgraph of G that is obtained from G by deleting vertex uw and
all edges incident with u, i.e., G—u = G \ {u} = G[V' \ {u}]. Let e be an edge of G.
By G—e, we denote the subgraph of G obtained by deletion of e. For v a vertex that
is not a vertex of G and f an edge that is not an edge of G, G+v and G+ f denote
the graphs obtained from G by adding vertex v and edge f, respectively. Note that
in case of G+v the neighbourhood of v needs further precision. In some cases, it
may be already defined by context. Let F' be a set of edges suitable for G such that
FNE(G)=0. Then, GUF =q4¢ (V(GQ), E(G) UF). Let H be another graph. The
disjoint union of G and H, denoted as G U H, is defined as follows: the vertex set
of GU H has |V(G)| + |V(H)| many vertices, and they are partitioned into two sets
one of which corresponds to V(G), the other to V(H). Two vertices of G U H are
adjacent if and only if they are in the same partition class and the corresponding
vertices in G or H are adjacent. Let u and v be vertices of G. Graph G’ is the result

Chapter 2 Graph-theoretic fundamentals 19

of glueing together u and v, if all vertices adjacent with v in G become adjacent also
with v and v is deleted. Note that, if u and v are adjacent, this same edge is ignored.

2.2 Walks, paths, cycles and connectivity

For the definitions in this section, we often have to distinguish the cases directed or
undirected graph. We begin with definitions for undirected graphs. Let G = (V, E)
be an undirected graph. Let k > 0, and let v and v be vertices of G. Let xg, ...,z be
k + 1 vertices of G, that do not have to be distinct. The sequence W = (zy, ..., zx)
is a u,v-walk in G if £y = u and z = v and z;z;41 € E for every i € {0,...,k — 1}.
A u,v-walk W in G is a u,v-path in G if W does not contain multiple occurrences of
vertices; in particular, k¥ < n. Finally, a u,v-path in G is a cycle in G if uv € E. The
length of a walk or a path is one less the number of contained vertices. The length
of a cycle is the number of contained vertices. Alternatively, one can say that the
length of a walk, a path, a cycle is the number of appearing edges (where “chords”
are not counted). Let P = (zg,...,z) be a path in G. The edge zz of G is a chord
in P if there are 4,5 € {0,...,k}, ¢ # j, such that ; =z and z; = z and |i — j| > 2.
In other words, chords are edges joining non-consecutive vertices of P. As a special
case, if zoxy is an egde of G (and k > 2), then zoxy is a chord in P. Chords in
cycles are defined similarly. Let C' = (z1,...,zx) be a cycle in G. The edge zz of
G is a chord in C if there are 4,5 € {1,...,k}, i # j, such that z; = z and z; = 2
and 2 < |i — j| < k — 2. We have to be careful, since z1zy is certainly not a chord
in C. A path or a cycle in G is chordless if G does not contain an edge that is a
chord in the path or the cycle. Let k > 1. The chordless path on k vertices is the
graph ({1,...,k},{12,23,...,(k — 1)k}). When we speak of “chordless paths” as
induced subgraphs then we mean a graph isomorphic to a chordless path. Similar
definitions hold for chordless cycles.

Now, let G = (V, A) be a directed graph. Walks, paths and cycles in G are
defined analogously to the undirected case. Let & > 0, and let u and v be vertices
of G. Let xg,...,z be k + 1 vertices of G. The sequence W = (zg,...,zx) is a
u,v-walk in G if o = v and z = v and (z;,z,11) € A for every i € {0,...,k — 1}.
If W does not contain a vertex twice, it is a u,v-path in G. And if (zy,z9) € A, W
is a cycle in G. Lengths of walks, paths, cycles are defined similar to the lengths in
undirected graphs.

Let G = (V,E) be an undirected graph. We say that G is connected if, for
every pair u, v of vertices of GG, there is a u,v-path in GG. Note that this condition is
equivalent to requiring walks. If G is not connected, maximal connected (induced)
subgraphs of G are called connected components of G. Hence, connected components
of graphs are graphs. The distance of vertices u and v of G, denoted as distg(u,v),
is the length of a shortest u,v-path in G; if v and v are in different connected
components, i.e., if there is no u, v-path in G, we set distg(u,v) = co. Note that in
undirected graphs, distg(u,v) = distg(v,u). Finally, the diameter of G, denoted as

20

diam(@G), is the maximal distance between any pair of vertices of G; in particular, if
G is not connected, diam(G) = oo.

In case of directed graphs, we distinguish two notions of connectivity. Let G =
(V, A) be a directed graph. We say that G is strongly connected if, for every pair u, v
of vertices of G, there are a u,v-walk as well as a v,u-walk in G. In contrast, if, for
every pair u,v of vertices of G, there is a u,v-walk or a v, u-walk, we say that G is
weakly connected. Note that strong connectivity implies weak connectivity, but not
vice versa in general.

2.3 Topological orderings and acyclic graphs

Let G = (V, E) be a graph that may be directed or undirected. A vertez ordering for

G is an ordering of the vertices of G. Let G have n vertices, and let x4, ..., z, be the
vertices of G. Furthermore, let 7 be a bijective mapping from {1,...,n} to {1,...,n}.
We will call mappings like 7 also permutations later. Then, o = (Tr(1),---,Tx(n))

defines a vertex ordering for G. For any pair u,v of vertices of G, u <, v if and only
if i < j where u = z,(;) and v = z(;. We also say that u is to the left of v with
respect to . We also use the term leftmost vertexr with respect to o. A vertex r is
leftmost with respect to o and a given property, if £ has this property and there is
no vertex z such that z has the property and z <, . Fori € {1,...,n}, 0(i) = 2.
is the vertex at position ¢ in ¢ and J*I(xﬂ(i)) =1 is the position in o of vertex z ;.
The reversed ordering of o is & = (Tr(),---,Tx(1))- Vertex orderings will play a
significant role in Part III of this thesis, where special orderings provide interesting
characterisations of graph classes. A well-known ordering characterisation of acyclic
graphs is given in the following.

Among the directed graphs, the class of acyclic graphs plays a prominent role.
Different to any other class of directed graphs, walks in acyclic graphs are always
paths. In a certain sense (that may be clearer later), acyclic graphs can be considered
uni-directed.

Definition 1 Let G = (V, A) be a directed graph. We say that G is acyclic if and
only if G does not contain a cylce.

In other words, in an acyclic graph it is not possible to find a walk that contains
a vertex twice. As a rule, when we speak of acyclic graphs, we assume the graph to be
directed. In case of undirected graphs, the corresponding notion of acyclicness defines
the class of forests (disjoint unions of trees). We look for an easier characterisation
of acyclic graphs. In fact, this characterisation will be by special vertex orderings.

Definition 2 Let G = (V, A) be a directed graph, and let u be a vertex of G. We
say that u is a source of G if and only if uw has no in-coming arcs. Analogously, u
1s called a sink of G if and only if u has no out-going arcs.

Chapter 2 Graph-theoretic fundamentals 21

Lemma 2.1 (folklore)
Let G = (V, A) be an acyclic graph. Then, G contains a source.

Proof: We give an algorithm that surely finds a source of G. Let = be any vertex of
G. If z is a source, the proof is done. Otherwise, G has a vertex z’ that is adjacent
to z. Either z’ is a source of G, or the algorithm procedes. Since G is acyclic, G
contains no cycle, hence the described algorithm must end with a vertex without
in-coming arc, i.e., with a source.

|

An immediate question is whether the statement of Lemma 2.1 can be strength-
ened to a characterisation of acyclic graphs. This is certainly not possible. But
Lemma 2.1 implies such a characterisation.

Definition 3 Let G = (V, A) be a directed graph, and let o be a vertex ordering for
G. We say that o is a topological ordering for G if and only if, for every pair u,v
of vertices of G, holds:

(u,v) EA = u=<,v.

Theorem 2.2 (folklore)
A directed graph is acyclic if and only if it has a topological ordering.

Proof: Let G = (V,A) be a directed graph, and let o be a topological ordering
for G. Suppose G is not acyclic, i.e., G contains a cycle C' = (z1,...,2,), r > 1.
Without loss of generality, x; is the vertex of C leftmost with respect to ¢. In other
words, x1 <, z; for every ¢ € {2,...,r}. If r =1 then C' = (z1), and (z1,2;) is an
arc in G. Since z1 4, 1 and o is a topological ordering for G, r > 2. It holds that
(x,,21) € A. Vertex z, is the predecessor of z; on C. According to the definition of
topological orderings, z, <, 1, which contradicts the choice of ;. Thus, G cannot
contain a cycle, and G is acyclic.

For the converse, let G be acyclic. We prove the existence of a topological
ordering for G by induction over the number of vertices of G. If G has exactly one
vertex, say =, (z) is a topological ordering for G. So, let G have n > 2 vertices.
By Lemma 2.1, G contains a source, say vertex z. Consider graph G’ =40t G—1.
It is clear that G’ is also acyclic, and applying the induction hypothesis, G’ has a

topological ordering, say o’ = (uq,...,u,_1). Note that all neighbours of z in G are
contained in {uq,...,u,_1}. Then, 0 =4et (z,u1,...,u,_1) is a topological ordering
for G.

22

23

Chapter 3
Complexity-theoretic fundamentals

A letter is a symbol. An alphabet is a finite and non-empty set of letters. Let 3 be
an alphabet. A word over ¥ is a finite sequence of letters from Y. The set of words
over ¥ is denoted as X*. The length of a word is the number of symbols it contains.
A language over ¥ is a set of words over ¥.. Problems over ¥ are languages over X.
Problems are the main objects theoretical computer science and most particularly
complexity theory (in the broadest sense) deal with. Two fundamental questions
about problems are in the focus of complexity theory: what is a (very) good algo-
rithm for a given problem and how difficult is a given problem with respect to other
problems?

Structural complexity theory developed from basic considerations about con-
crete problems. In structural complexity theory, concrete problems are of only minor
interest; rather properties of classes of problems are investigated and problem classes
are related to each other. Many properties that define complexity classes are based
on a fixed notion of algorithms: the Turing machine. There are also other formal
definitions of algorithms—random access machines are of fundamental importance in
the field of “real” algorithms, i.e., algorithms that are designed for being implemented
on real-world computing devices. Nevertheless, complexity class definitions are suf-
ficiently robust in most cases such that they do not really rely on the underlying
algorithm definition.

In this chapter, we will define random access machines and Turing machines,
which our theoretic considerations are based on. Especially for the results of Part II of
this thesis, special complexity classes are needed, and they are defined here. Finally,
we present the notions that are needed for relating and comparing problems, namely
we will define reducibilities and hardness and completeness notions.

3.1 Random access and Turing machines

There are many approaches to formalize algorithms. In theoretical computer science,
two models are of fundamental importance when concrete problems are considered.
In the field of algorithms the random access machine is used, in the field of (struc-
tural and computational) complexity theory the Turing machine is used. A ran-
dom access machine is considered a good mathematical modelization of real-existing
computers based on von-Neumann architecture. Turing machines are more or less
purely mathematical objects, and they model computations that work on the sym-
bolic (representation instead of information) level. Most text books about theoretical
computer science introduce Turing machines and random access machines; we refer to
Papadimitriou’s book about computational complexity for further information [68].

A random access machine consists of an infinite set of registers and a programme.

24

The registers contain natural numbers of arbitrary size, and they are denoted as BR
and Ri where ¢ is a natural number. Register BR is a special register and indicates the
next programme instruction that is to be executed. Programmes of random access
machines are finite sequences of instructions. We distinguish arithmetical instruc-
tions, transportation instructions and control instructions. Control instructions are
jump instructions and the final instruction, and they affect programme execution.

goto k
programme execution continues with instruction number k

if Ri =0 then goto k
if register Ri contains 0, the programme execution continues with instruc-
tion number k; otherwise programme ezecution continues with the following
instruction

stop
programme ezecution stops

The first instruction is an unconditional jump, whereas the second instruction is a
conditional jump. It is clear that the conditional jump may be restricted to depend
only on a fixed register.

Transportation instructions move data between registers. We distinguish direct
and indirect addressing.

mov %,j
move the content of register Rj to register Ri; continue with the following
instruction

nov i, 1]
move the content of the register whose number is contained in register Rj
to register Ri; continue with the following instruction

mov [i],]
move the content of register Rj to the register whose number is contained
in register Ri; continue with the following instruction

Finally, arithmetical instructions modify contents of registers. We restrict to the
basic operations addition and subtraction, and a register can be initialized with a
constant.

store i,k
store number k in register Ri; continue with the following instruction

add ,J
add the content of register Rj to the number in register Ri; the content of
register Ri after execution is the result of the addition; continue with the
following instruction

sub 1,7
subtract the content of register Rj from the content of register Ri; if the
content of Rj is greater than the content of Ri, the result will be 0; the

Chapter 3 Complexity-theoretic fundamentals 25

content of Ri after execution is the result of the subtraction; continue with
the following instruction

Basically, random access machines compute functions over the natural numbers.
Input parameters are stored in the first registers in appropriate order, and programme
execution starts with the first instruction of the programme sequence. For simplicity,
the first instruction has number 0. Execution continues as long as possible. The
content of register BR is the number of the next instruction in the sequence that
is to be executed; it is modified by the execution of every single instruction. If the
stop instruction is encountered or BR contains a number that is larger than the
largest instruction number, programme execution stops. The result of the execution
is contained in register RO.

A different computation model is defined by Turing machines. Turing machines
consist of a storage and a programme. The storage is modelled by tapes. Our
Turing machines have two tapes: an input tape and a working tape. Each tape is
arbitrarily long in both directions, and they are partitioned into equally sized cells.
Every cell can be empty (then it contains the blank symbol), or it contains exactly
one symbol. There are two alphabets: one for input words and another for writing
on the working tape. Each tape has a head that reads symbols and may write. On
the input tape there is a read-only head, on the working tape there is a read-write
head. Additionally, heads can move, and in a computation step, a head may stand
still, move one cell to the left or one cell to the right. Heads move independent of
each other. Furthermore, the read-only head on the input tape is only allowed to
read symbols of the input word and the empty cells just to the left and to the right
of the input word on the input tape. In every computation step, the Turing machine
gets into a state, that represents one of a finite number of possible “inner” situations.

Instructions of Turing machines have a simple form. A situation of a Turing
machine (for a fixed input) is constituted by the contents of the working tape, the
machine’s state and the positions of the heads on the input and working tapes. For
every possible situation, a Turing machine’s programme contains an instruction. An
instruction can be carried out, if it is applicable in the current state and the heads
read the correct symbols. Precisely, a Turing machine’s instruction has the form

zab — Z'chH

where z and 2’ denote states of the machine, a is a symbol of the input alphabet, b
and c¢ are symbols of the working alphabet, and h and H represent movements of the
heads on the input and working tapes, respectively. Heads can move to the left (L),
to the right (R) or stand still (0). If a Turing machine is in state z, the head on the
input tape reads symbol a (which may also be the blank symbol) and the head on
the working tape reads symbol b, then this instruction is carried out by going into
state 2/, writing symbol ¢ on the current position of the head on the working tape
and moving the two heads according to h and H.

Computations of Turing machines start with the initial standard situation: the
working tape is empty, i.e., every cell contains the blank symbol, the input tape

26

contains only blank symbols except for a finite number of consecutive cells that
contain the input word. The input word does not contain blank symbols. The head
on the working tape is somewhere, and the head on the input tape is on the cell
containing the first symbol of the input word. If the input word is empty, the head
stands on a cell containing the blank symbol. The state of the machine is a special
start state. During a computation, instructions are executed as long as possible. A
computation ends, if the machine is in a special end state, and it accepts an input
if and only if the head on the input tape stands on the first input symbol and the
working tape is empty.

A Turing machine is called nondeterministic, if it contains two instructions with
the same left side. Hence, in this situation the machine can perform one of these
instructions. In fact, both are performed simultaneously and independently, which
results in nondeterministic computations. If there is exactly one instruction that can
be performed in every situation, the Turing machine is called deterministic.

For random access machines and Turing machines, we define complexity mea-
sures. Let R be a random access machine, and let n be an input number. By R(n)
we denote the computation of R on input n. Then,

timegr(n) =qef min{m : R(n) halts after m computation steps}

is the number of computation steps that are needed by R to halt on input n; if R(n)
does not end, timeg(n) is not defined. We restrict on random access machines with
only one input parameter, since multiple input parameters can be encoded into one
parameter.

Definition 4 Let t be a function over N. Let R be a random access machine. We
say that R works in time t if and only if there is a constant m such that, for every
number m’ > m and every input number n, if the binary representation of n has
exactly m' digits then timeg(n) < t(m').

Running time analysis of algorithms in Part III will be based on random access
machines. It is clear that we will not give algorithms as random access machine
programmes, and inputs will not be natural numbers. However, it is not difficult to
see that this would be possible. Main obstacles are readability and comprehensibility.

For Turing machines, we define two complexity measures and distinguish between
deterministic and nondeterministic computations. Let M be a deterministic Turing
machine, and let z be an input word. By M (z), we denote the computation of M on
input . Then,

dtimeys (z) =gef min{m : M (z) halts after m computation steps}

denotes the number of computation steps of M to halt on input z; if M(z) does
not end, dtimey,(z) is not defined. In a similar fashion, we define the space that
is needed by a computation. By dspace,,;(z), we denote the number of cells of the

Chapter 3 Complexity-theoretic fundamentals 27

working tape of M that are visited during the computation of M on z, if M(z)
ends. Otherwise, i.e., if M (z) does not end, which is equivalent to dtime,(x) is not
defined, dspace,;(z) is not defined. Certainly, there are computations that do not
end but visit only a finite number of cells on the working tape, but this number is
not decidable for arbitrary non-ending computations. For complexity measures, we
require fulfillment of Blum’s axioms, that particularly require a certain decidability

property [7].

Definition 5 Let s and t be functions over N. Let M be a deterministic Turing
machine. We say that M works in time t if and only if there is a constant m such
that, for every number m’ > m and input word x, if the length of x is equal to m'
then dtimey;(z) < t(m'). Analogously, we say that M works in space s if and only
if there is a constant n such that, for every number n’ > n and input word x, if the
length of = is equal to n’ then dspace,;(z) < s(n').

In case of nondeterministic Turing machines, the definitions of time and space
complexities are more delicate. Let M be a nondeterministic Turing machine, and
let z be an input word for M. By M(xz), we denote the computation of M on
input z. Consider M(z). There may be computation paths that end, and there
may be computation paths that do not end. Furthermore, some finite computation
paths accept, others reject. One can define time and space for nondeterministic
computations by considering only accepting computation paths. We use a stricter
definition. Let

ntimeys (z) =gef min{m : every computation path of M (x) halts after m steps}

denote the least number such that no computation path of M(z) has more com-
putation steps; if there is a non-ending computation path of M (z), ntimeys(z) is
not defined. Finally, nspace,;(z) denotes the least number such that no computa-
tion on any computation path of M (x) visits more cells on the working tape, if all
computation paths of M(z) end. Otherwise, nspace;;(z) is not defined.

Definition 6 Let s andt be functions over N. Let M be a nondeterministic Turing
machine. We say that M works in time t if and only if there is a constant m such
that, for every number m’ > m and input word x, if the length of x is equal to m'
then ntimey; (z) < t(m’). Analogously, we say that M works in space s if and only
if there is a constant n such that, for every number n' > n and input word x, if the
length of x is equal to n’ then nspace,;(x) < s(n’).

Depending on the computation mode of a Turing machine, we speak of nonde-
terministic time or deterministic space. Similar to random access machines, Turing
machines are not defined by presenting detailed programmes. Instead, we will infor-
mally describe the behaviour of a Turing machine.

An important variation of Turing machines are so-called Turing transducers. It
is clear from the definition that Turing machines cannot compute functions since they

28

are not able to produce output. The only mechanism for real world interaction is
its acceptance decision. For functions, we like to have a similar computation model.
A Turing transducer looks like an ordinary Turing machine but has an additional
tape—the output tape. The output tape is write-only, and the head on this tape
performs only one-step right moves, when a symbol is written. In one computation
step, a symbol may be written or not, and this is specified in the instructions. It is
clear that all complexity definitions can be transfered to Turing transducers with the
only restriction that output tape space is not considered.

3.2 Complexity classes

In the most general sense, a complexity class is a set of subsets of X*. Most complex-
ity classes are defined by non-trivial syntactic or semantic language properties. And
in many cases, these defining properties are based on properties of Turing machines.
All complexity classes that we need are syntactic classes, and most are defined by
bounding the space or time used by Turing machines for deciding or accepting lan-
guages. Let M be a Turing machine. The language decided by M is the set of input
words that are accepted by M. (Mostly, for deciding a language it is additionally
required that the machine halts on every input. This fine distinction is not necessary
here.) Let N be a nondeterministic Turing machine. The language accepted by N is
the set of input words z for which there is an accepting computation path in N(z).

Definition 7 Let s and t be functions over N.

(1) The complezity class DTIME(t) is the set of languages over ¥ that can be decided
by Turing machines in time t.

(2) The complezity class DSPACE(s) is the set of languages over ¥ that can be
decided by Turing machines in space s.

(8) The complexity class NTIME(t) is the set of languages over ¥ that can be ac-
cepted by nondeterministic Turing machines in time t.

(4) The complezity class NSPACE(s) is the set of languages over ¥ that can be
accepted by nondeterministic Turing machines in space s.

Functions t and s are called resource functions since they bound resources of
machines. By a combinatorial result, time- and space-bounded complexity classes
can be related.

Lemma 3.1 (folklore)

Let s > log be a resource function. Let M be a nondeterministic Turing machine
working in space s. Then, there is a constant ¢ > 1 such that, for every z € ¥*, if there
is an accepting computation path in M (x) then there is an accepting computation
path of length at most 2¢5(z) — 1.

Chapter 3 Complexity-theoretic fundamentals 29

Proof: Let a be the number of symbols of the working alphabet of M, where the
blank symbol is included, and let z be the number of states of M. Let x € ¥*. The
head on the working tape visits at most s(|z|) cells during the computation M ().
Hence, M on input z can produce at most a*(1*D) many configurations of the working
tape, which makes s(|z|) - a*(*]) many situations on the working tape (the configura-
tion of the working tape and the position of the head). The head on the input tape
can visit at most |z| 4+ 2 cells. So, there are only z - (|| + 2) - s(|z|) - a*(#]) < 2¢-s(lz])
many situations possible during the computation of M on input x, where ¢ > 1
depending only on a and z.

Now, let P = (Sp,...,S,) denote a computation path of M(z) where S, is
the accepting end configuration. If there are i,5 € {0,...,7} such that i < j and
Si = Sj then P’ =q¢t (So,---,5i,841,---,5) is also a computation path of M (z),
that is accepting. It follows that M (z) has an accepting computation path without
encountering the same situation twice. By the considerations above, the statement
follows.

|

We extend the definition of resource-bounded complexity classes to sets of re-
source functions. Let C € {DTIME, DSPACE, NTIME, NSPACE}, and let R be a set
of resource functions. By C(R), we denote the complexity class that is the union of
the complexity classes C(r) where r € R. Using these general definitions, we define
concrete complexity classes. Let Pol denote the set of polynomials in one variable,
and let O(log) denote the set of functions of the form f(z) = ¢-logz + d for natural
numbers ¢ and d.

Definition 8 (1)L =4, DSPACE(O(log)) .

(2) NL — 4ot NSPACE(O(log)) .
(3) P = et DTIME(Pol) .
(4) NP — 4ot NTIME(Pol) .

(5) PSPACE =4,; DSPACE(Pol) .
(6) NPSPACE =4,; NSPACE(Pol) .

For a complexity class C, the class of complements of C, denoted as co-C, is the
set of complements (with respect to X*) of languages in C. Famous special cases
are the complement classes coNL and coNP. It is immediate that deterministic
complexity classes are closed under taking complements, i.e., they are their own
classes of complements. The following inclusions hold.

Theorem 3.2 (folklore)
LCNL CPCNP CPSPACE.

The two following equivalences are well-known but require more complicated
constructions.

30

Theorem 3.3 (Savitch, [78])
PSPACE = NPSPACE.

Theorem 3.4 (Immerman, [45]; Szelepcsényi, [80])
NL = coNL.

The complexity class PSPACE contains problems that are really hard. But we
will need complexity classes that (probably) contain even harder problems. By 20!,
we denote the set of functions of the form 27 for p a polynomial from Pol. Similarly,
22" is defined as the set of functions 22° for p a polynomial from Pol.

Definition 9 (1) EXP =4 DTIME(2F°!)

(2) NEXP =gef NTIME(2P°1) .
(3) EXPSPACE =4, DSPACE(2F°!) .
(4) 2NEXP =g NTIME(22™).

Theorem 3.5 (folklore)
PSPACE C EXP C NEXP C EXPSPACE C 2-NEXP.

Similar to complexity classes, we can define function classes. Let s be a resource
function. By FDSPACE(s), we denote the set of functions that can be computed by
Turing transducers that work in space s. An important special case is the class FL,
that is the set of functions that can be computed by logarithmic-space Turing trans-
ducers, hence FL. = FDSPACE(O(log)). Further function classes are defined later.
Examples for concrete functions in FL are addition and multiplication of two num-
bers in binary representation [83]. It even holds a stronger result. By ITMULT we
denote the function that computes the product of a given sequence of numbers. The
abbreviation stands for iterated multiplication.

Theorem 3.6 (Hesse, Allender and Mix Barrington, [42])
ITMuLt is in FL.

Lemma 3.7 (Savitch, [78])

Let s > log and t > id be resource functions. Let M be a nondeterministic Turing
machine working in space s and time t. There is a function f € FDSPACE(s + logt)
such that, for every x € ¥*, f(z) = (G,u,v) where G is an acyclic graph and v and
v are vertices of G and the number of u,v-paths in G equals the number of accepting
computation paths in M (zx).

Proof: Let z € ¥*, and let w =ger |z| be the length of z. Let r =g¢f s(w) and
m =qef t(w). We will define an acyclic graph whose vertices correspond to pairs of
the form (K, n) where K is a configuration of M (z) and n < m. Every configuration
describes a situation of M (z) and consists of the head position on the input tape
(we will alternatively use the corresponding letter of z), the contents of the working

Chapter 3 Complexity-theoretic fundamentals 31

tape, the head position on the working tape and the machine’s state. Depending on
the number of states of M and the size of ¥ and the working tape alphabet, there is
a constant ¢ such that every configuration of M (z) can be represented using ¢(r + 1)
bits. So, the graph G that we will construct will have 2¢U"+1) . m vertices, and they
can be written down using ¢(r + 1) + logm bits.

For the set of arcs, vertices corresponding to (K7,n1) and (Ks,n9) are adjacent
if and only if ny = ny + 1 and one of the two cases holds

(1) situation K5 can be obtained from situation K; in (exactly) one computation
step

(2) K; = K> is the accepting end configuration.

Hence, graph G can be computed by a function that uses only space r + logm. By
this definition, it is clear that G is acyclic, and, if needed, a topological ordering of
the vertices of G can easily be output: first all vertices whose labels have 0 in their
second component, then all vertices whose labels have 1 in their second component,
and so on.

Let s and a denote the vertices of G that correspond to the unique start and
accepting end configuration of M (z), respectively. In particular, the second compo-
nents of the labels of s and a are 0 and m. Every s, a-path in G corresponds to an
accepting computation path of M(z), and vice versa. This correspondence is 1-to-1
(a bijection), and we conclude the lemma.

|

By #L, we denote the following function class. Function f is contained in
#L if there is a nondeterministic logarithmic-space Turing machine M working in
polynomial time such that, for every € ¥*, the number of accepting computation
paths of M(z) is equal to f(z). Lemma 3.7 establishes an interesting connection
between #L-functions and FL-uniform families of acyclic graphs. (This term is non-
standard, but its meaning is evident with the formulation of Lemma 3.7.) Based on
#L-functions, we define two further complexity classes.

Definition 10 Let A be a set over 3.
(1) A is contained in PL if and only if there are a #L-function f and an FL-
function g such that, for every r € ¥*, x € A <= f(z) > g(x).

(2) A is contained in C_L if and only if there are a #L-function f and an FL-
function g such that, for every x € ¥*, x € A <= f(z) = g(z).

The original definition of PL involves probabilistic Turing machines, and it is a
strong result that our definition is equivalent (see [1]).

Theorem 3.8 (Allender and Ogihara, [1]; Borodin, Cook and Pippenger,

[12])
NLC CLCPLCP.

32

A completely different problem class is defined at the end of this section. In
case of algorithms, as we have already mentioned, complexity analysis is based on
random access machines instead of Turing machines, and mostly time complexity is
considered. A linear-time algorithm is an algorithm (which is in fact a random access
machine) that works in time ¢ - id for some constant ¢ > 1. Usually, this time bound
is denoted as O(n). In case of graph algorithms, the input size is determined by the
numbers of vertices and edges of the input graph, and therefore, linear time for an
algorithm on graphs is denoted as O(n+m) for n and m the numbers of vertices and
edges of the graph, respectively.

3.3 Reducibilities and complete problems

Besides the study of inclusion properties of complexity classes, the relationship be-
tween problems is one of the major topics in complexity theory. The most important
relationship relates the “decision intricacies” of two problems to each other. The
notion of reducibility is introduced, and this notion leads to the notion of complete
problems for complexity classes.

A Dbinary relation < over the set of subsets of ¥* is called a reducibility, if it is
reflexive and transitive, i.e., if < is a quasi partial order over the power set of X*. We
say that A reduces to B in the sence of <, if A< B. If A< B aswell as B< A, we
say that A and B are isomorphic with respect to reducibility <. Then, we also write
A = B, where = is an appropriate symbol. In this thesis, we apply two reducibilities,
each of which uses only logarithmic space. The first one is defined straightforwardly.

Definition 11 Let A,B C ¥* be two problems. We say that A logarithmic-
space many-one reduces to B, denoted as A <L B, if and only if there is a
function f € FL such that, for every x € ¥*, x € A<= f(x) € B. If A and B are

isomorphic with respect to reducibility <& we write A =L B.

For concrete problems, we use reducibilities for two purposes. We can show that
a given problem is among the hardest of a complexity class, and we can show that
a problem is contained in a complexity class, since it is not harder than another
problem of which containment in the complexity class is already known. This second
application does not always work; it must be known that the reducibility is “suitable”
for the involved complexity class. This notion is formalized as follows. Let C be a
complexity class, and let < be a reducibility. We say that C is closed under <, if,
for every pair A, B of subsets of ¥*, if B is contained in C and A < B then A is
contained in C.

Lemma 3.9 (folklore)
The complexity classes L, NL, P, NP and PSPACE are closed under logarithmic-space
many-one reducibility.

Chapter 3 Complexity-theoretic fundamentals 33

In this context, the notion of complete problems naturally appears. Let C be a
complexity class, let < be a reducibility, and let A be a problem. We say that A is C-
hard with respect to <, if, for every set Bin C, B < A. Informally spoken, A is at least
as hard (with respect to <) as every problem in C. If, additionally, A is contained
in C, A is a C-complete set with respect to <. Since hardness and completeness
will always be used with respect to logarithmic-space many-one reducibility, we will
shortly speak of C-hardness and C-completeness.

For all complexity classes that appear in this thesis, complete problems are
known. For proving completeness of a problem, there are two possible ways. Let C
be a complexity class, and let A be a problem.

(1) One shows that A is contained in C and that there is a reducing function—a
reduction—f{rom every problem in C to A, i.e., showing C-hardness of A.

(2) One shows that A is contained in C and that there is a problem B that is known
to be C-hard and that reduces to A. C-hardness of A follows by transitivity of
the involved reducibility.

It is clear that method (2) can only be applied if a hard problem is already known.
Method (1) is carried out by defining so-called master reductions, which are reductions
that are usually based on computations.

For the complexity class NL, we give three (or five) complete problems, that are
based on graphs. The graph accessibility problem GAP is the set of triples (G,u,v)
where G is a directed graph and contains a u,v-path. The inverse problem, the
graph inaccessibility problem GIP, is the set of triples (G, u,v) where G is a directed
graph and does not contain a u, v-path. Remember that existence of paths in directed
graphs is not equal to connectivity questions. Finally, the acyclicness problem ACYC
is the set of acyclic (directed) graphs.

Theorem 3.10 (Savitch, [78])
GAP is NL-complete.

Proof: Let (G,u,v) be an instance of GAP. Let n be the number of vertices of
G. For determining whether G contains a u,v-path, guess, starting at vertex u, a
sequence (z1,...,T,) of n vertices such that there is an arc from z; to x; 1 for every
i€{1,...,n—1}. Accept if and only if the sequence contains v. Since the length of
the input is at least n, two consecutive vertices of the guessed sequence can be written
on the working tape using only logarithmic space, and adjacency can be checked also
using only logarithmic space. Hence, GAP is in NL.

For hardness, let A € NL, and let M be a nondeterministic Turing machine
accepting A in logarithmic space. Due to Lemma 3.1, there is a polynomial p such
that, for every x € ¥*, M(z) contains an accepting computation path if and only
if M(z) contains an accepting computation path of length at most p(|z|). Applying
Lemma 3.7, there is an FL-function realising the reduction from A to GAP.

|

34

Corollary 3.11
GIP is NL-complete.

Proof: We show that GIP is contained in coNL. Let (G,u,v) be an instance of
GIP. The algorithm of Theorem 3.10 showing GAP € NL can be used, and we
obtain GIP € coNL. Analogous to the reduction in the proof of Theorem 3.10, GIP
is coNL-complete, and hence NL-complete applying Theorem 3.4.

|

We only remark that GAP and GIP are NL-complete even if they are restricted
to acyclic graphs, as the proof of Theorem 3.10 shows, since it is based on the
construction of an acyclic graph in Lemma 3.7. These two problems are denoted as
ACYCGAP and AcYcGIP, and we will use them later for proving hardness results.

Theorem 3.12 ACYC is NL-complete.

Proof: Let G be an instance of ACYC. Let n denote the number of vertices of G.
It holds that G is not acyclic if and only if there is a sequence (z1,...,Z,41) of n+1
vertices of G such that (z;,z;11) is an arc of G for every i € {1,...,n}. Note that,
if such a sequence exists, it must contain a vertex twice, and G has a cycle. Reusing

the algorithm of Theorem 3.10, such a sequence can be found in logarithmic space,
and ACYC € coNL, i.e., ACYC € NL due to Theorem 3.4.

For hardness of ACYC, let A € NL. Let M be a Turing machine accepting
the complement of A using only logarithmic space. Such a machine exists due to
Theorem 3.4. Application of Lemmata 3.1 and 3.7 shows the existence of an FL-
function that outputs, on input z, an acyclic graph G and vertices u and v such that
G has a u,v-path if and only if M (z) has an accepting computation path, if and only
if x does not belong to A. Let G’ emerge from G by adding arc (v,u), that does not
belong to G. Then, G’ is acyclic if and only if G’ does not have a u,v-path, if and
only if G does not have a u,v-path, if and only if x € A. The described reduction
can be performed by an FL-function.

|

More complete problems, especially for the complexity classes NP and PSPACE,
will be defined in the following chapters, where they are needed. Most of the problems
defined in Part IT turn out to be complete for appropriate complexity classes.

For the second reducibility, we need functions that can be computed by non-
deterministic logarithmic-space Turing transducers. Functions computed by nonde-
terministic Turing transducers, however, always cause confusion, that is why the
nondeterminism is shifted to an oracle. So, we begin by defining relativized (nonde-
terministic) computations. An oracle Turing machine M with oracle set A is a Turing
machine that additionally has a third tape, the oracle tape, on which queries to set A
are written. The query tape is write-only, and the head of this tape simply runs from
left to right (like for the output tape of Turing transducers). For interaction, there

Chapter 3 Complexity-theoretic fundamentals 35

are three further states of the machine besides the usual states: asking a query, query
is positively answered, query is negatively answered. If, during a computation of M,
the word on the query tape shall be asked, M goes into the query state. In the next
step, the query is answered: if ¢ is the word on the query tape, g € A is the ques-
tion. M goes into the appropriate answer state, clears the oracle tape and continues
its work. A crucial point is the computation mode when generating oracle queries.
According to the rule introduced by Ruzzo, Simon, Tompa, the machine is required
to work deterministically when generating a query, i.e., from the step writing the
first symbol of the oracle query on the query tape to the step when the query is
asked [77]. This restriction is only of importance for oracle Turing machines that
have only a small working tape, i.e., if the query word cannot be generated first on
the working tape and then simply copied to the query tape. The time complexity of
an oracle Turing machine is defined as usual by counting the number of computation
steps. For the space complexity of oracle Turing machines only the working tape is
taken into account. Oracle Turing transducers are like oracle Turing machines, that
additionally have a one-way write-only output tape.

So, by the definition of oracle Turing transducers, it is clear how a (deterministic)
logarithmic-space oracle Turing transducer works: on its working tape only logarith-
mically many cells are visited during a computation, and the lengths of queries do
not count.

Definition 12 Let f be a function. We say that f € FNL if and only if there is
a set A € NL and a logarithmic-space oracle Turing transducer M such that M with
oracle A computes f.

The definition of the function class FNL is motivated by an inclusion result
for NL. A set B is in LNU if there is a set A € NL and a logarithmic-space oracle
Turing machine M such that M with oracle A decides B. Analogously, the complexity
class LY is defined, that allows more powerful oracle sets. The complexity classes LNV
and L are also called the logarithmic-space Turing closures of NL and P, respectively.
By NLY*, we denote the set of problems B for which there are a nondeterministic
logarithmic-space oracle Turing machine M and a set A € NL such that B is accepted
by M with oracle A.

Theorem 3.13 INCNLNCNLCLP CP.

Proof: The first and third inclusions are clear, so that it suffices to show the second
and fourth inclusions. We begin with the second inclusion. Let B € NLNV. Then,
there is a set A € NL and a nondeterministic logarithmic-space oracle Turing ma-
chine M such that M with oracle A accepts B. We construct a nondeterministic
logarithmic-space Turing machine M’ that accepts B. Let Ny and N be nonde-
terministic logarithmic-space Turing machines accepting A and A, respectively. Re-
member that Ny exists due to Theorem 3.4. On input x, M’ works as follows: M’
basically simulates the work of M on input z. Query generation is ignored. When

36

M (x) asks a query, M'(x) guesses whether the answer is ‘yes’ or ‘no’ and accordingly
simulates N1 or No. However, the query word has not yet been generated. Whenever
N7 or Ny wants to read a symbol of the query word, M’ generates this symbol. This
can be done in logarithmic space, since M (x) works only in logarithmic space. Note
that the simulation cannot always begin with the start situation, since query gener-
ation may be adaptive, i.e., it may depend on previous queries. Though, it suffices
to simulate query generation from the beginning of the actual query generation of
M (z). The corresponding configuration can be saved in logarithmic space. It is clear
that either the simulation of N7 or the simulation of Ny ends with acception, and the
simulation of M (z) is continued only on accepting computation paths. In total, only
logarithmic space is used, hence M’ is a nondeterministic logarithmic-space Turing
machine accepting B.

The inclusion LY C P is rather easy. Note that a logarithmic-space oracle Turing
machine is also a polynomial-time machine. Let B € LF. Let M be a logarithmic-
space oracle Turing machine and let A € P such that M with oracle A accepts B. Let
N be a polynomial-time Turing machine deciding A. We construct a polynomial-time
Turing machine M’ that decides B. On input z, let M’ simulate M (z), where oracle
queries are written in a separate area of the working tape. Whenever a query is asked
to the oracle by M (z), M’ interrupts the simulation of M (z) and simulates the work
of N on the query. Since M(x) can generate at most polynomially many queries,
since every query is of size polynomial in the length of x and N is a polynomial-
time Turing machine, the overall simulation, i.e., the computation of M'(z), takes
only polynomial time. Hence, M’ is indeed a polynomial-time Turing machine, and
BeP.

|

This proof also shows that FNL-functions can be computed by nondeterminis-
tic logarithmic-space Turing transducers. It is clear that there may be numerous
computation paths that produce an output, but they all produce the same output.
The function class FNL was considered by Alvarez, Balcazar, Jenner, and they gave
further characterisations of this class [3].

By using FNL, we define a nondeterministic analogue of logarithmic-space many-
one reducibility.

Definition 13 Let A, B C ¥* be two problems. We say that A nondeterministic
logarithmic-space many-one reduces to B, denoted as A <NV B, if and only if
there is a function f € FNL such that, for every x € ¥*, v € A <= f(z) € B.

Lemma 3.14 NL is closed under nondeterministic logarithmic-space many-one re-
ducibility.

Proof: Let A € NL, and let B be a subset of ¥*. Assume that B <N A via
reducing function f. By the proof of Theorem 3.13, there is a nondeterministic
logarithmic-space Turing transducer 7' computing f. We define a nondeterministic

Chapter 3 Complexity-theoretic fundamentals 37

logarithmic-space oracle Turing machine M as follows: M on input z simulates T'(x),
and instead of writing the output of 7'(z) on the output tape, M writes it on the
query tape. In the last but second step, M asks the query, and it accepts if and only
if the query is positively answered. Using A as oracle set, B has been shown to be
in NLNE. which is equal to NL due to Theorem 3.13.

|

38

39

40

Part 11

Finite recurrent systems

Regular languages over a fized alphabet are sets of words that are inductively defined:
The empty set and singleton sets containing only letters from the alphabet are regu-
lar languages. If we have two regular languages, their union and concatenation are
reqular languages as well as Kleene iteration of regular languages. Such descriptions
are called regular expressions. It is a well-known fact that regular languages are just
the languages that can be accepted by finite automata. To get an idea finite automata
can be considered Turing machines that use no space on the working tape.

Stockmeyer and Meyer were interested in the computational complexity of the
problem, given a regular expression and a word, is the word contained in the language
described by the expression. It turned out that this problem is hard and becomes even
harder if further operations are allowed such as squaring, which is an abbreviation
for concatenating a language with itself [79]. Inspired by this type of problems, they
defined further so-called membership problems for other environments. In the context
of our considerations, the most influencial definitions were membership problems for
integer expressions, that are expressions in the style of reqular expressions where
union, addition and complementation (with respect to the set of natural numbers) are
applied to initially singleton sets containing only natural numbers. Integer expressions

41

represent sets of natural numbers. By the way, addition of two sets of natural numbers
1s defined elementwise.

Based on the work of Stockmeyer and Meyer, McKenzie and Wagner broadened
the sets of natural numbers for which membership of a given number shall be decided.
Instead of defining sets by integer expressions, they used arithmetical circuits which
provide an even more succinct representation of sets of natural numbers with respect
to integer expressions. And a second aspect was modified. Besides the already involved
operations union, addition and complementation, also intersection and multiplication
of sets were considered. McKenzie and Wagner investigated the complexity of the
membership problem, given a natural number and an arithmetical circuit whose input
vertices are labelled with natural numbers and whose inner vertices are attached labels
from the set of the five operations, whether the number is contained in the set defined
by the circuit [61]. The authors distinguished a number of cases by restricting the
set of operations vertices of circuits are labelled with, and they obtained completeness
results for well-known complezity classes such as NL, NP and PSPACE.

In this series, our work, that is presented in this part of the thesis, extends the
previous definitions and questions. We mainly consider sets of natural numbers that
are generated by iterated application of functions to sets of natural numbers. The
mathematical structure that formally defines this process is called a recurrent system.
Recurrent systems are inspired by usual recurrences. For recurrent systems, i.e., for
sets of natural numbers that are represented by recurrent systems, we investigate the
complezity of two types of problems: given a natural number and a recurrent system,
is the number contained in the set that is generated by the system after application of
a specified number of iteration steps, and is the given number contained in some set
that is generated after a finite number of iteration steps? The second question may
be understood as the question whether a given number can be generated by the given
recurrent system. We do not consider general recurrent systems but restrict the set
of possible operations and study the complexities of these restricted problems. Similar
to the work of McKenzie and Wagner, we will also obtain completeness results for
the complezity classes NL, NP and PSPACE.

The study of the computational complezity of the membership problems inspired
the definition of further problems that appear as auziliary problems for determining
containment or hardness of a membership problem. One of these problems asks for
numbers of walks in arbitrary directed graphs. To obtain a decision problem definition,
we consider two variants: is the number of walks of given length from a vertex to
another vertex bounded below by a given number, or is it equal to a given number.
The complezity of such problems is studied, where we distinguish between unary and
binary representation of the queried numbers of walks.

42

43

Chapter 4
The complexity of auxiliary problems

We will study the complexity of two types of problems: first, we will investigate
special number-of-walks problems, second, we will consider a problem asking for a
solution of a set of equations. Our number-of-walks problems basically ask whether
a given directed graph has at least a given number of walks of given length from
one to another vertex. These problems fit well into a series of past work. At the
beginning, the graph accessibility problem can be seen, that asks whether a given
directed graph has at least one walk from one to another vertex. Note that a length
is not specified. An analogous question can be asked for undirected graphs, and we
obtain the connectivity problem. Recently, Reingold showed that the connectivity
problem is very easy with respect to our complexity measures, in fact it is decidable
in logarithmic space, i.e., contained in L [72].

A number of authors studied further problems asking for special walks in graphs.
An early result is by Valiant. He investigated the complexity of computing the
number of “self-avoiding paths” from one to another specified vertex in directed as
well as undirected graphs. Valiant’s notion of self-avoiding paths corresponds to our
definition of paths: a self-avoiding path, or self-avoiding walk with our definitions, is a
walk that visits a vertex at most once. Valiant showed that his problems both are #P-
complete with respect to an appropriate reducibility [82], that is based on our <l -
reducibility. Ligkiewicz, Ogihara, Toda restricted Valiant’s problems to special graphs
and asked for paths (self-avoiding walks) of a specified length. They also obtained
#P-completeness results [57]. Finally, Allender, Reinhardt, Zhou considered acyclic
graphs and asked for the number of paths from one to another specified vertex. Since
walks in acyclic graphs contain every vertex at most once, they are already paths.
The authors showed that asking a lower bound given in unary representation for the
number of paths is NL-complete [2]. Our number-of-walks problems consider walks
of given length but arbitrary directed graphs.

The second type of problems, asking for a solution of a set of congruence equa-
tions, can be thought inspired by the Chinese Remainder Theorem. This fundamental
result shows that all congruence equations of a system of congruence equations can
simultaneously be satisfied, if the moduli are pairwise relatively prime. If we relax
the requirement of relatively prime moduli, the existence of a solution is not guar-
anteed. To furtherly complicate our problem, we allow several possible residues for
every module. The complexity of this and an interesting related problem will be
determined.

4.1 Number-of-walks and power-of-matrix problems

Accessibility in graphs has been studied for a long time. The most popular problem
is the graph accessibility problem, that asks for the existence of a path in a directed

44

graph from one to another given vertex. Allender, Reinhardt, Zhou restricted the
class of considered graphs but extended the problem: they asked for the number
of paths from one to another given vertex of an acyclic graph [2]. We extend this
last mentioned problem with respect to two aspects: we consider arbitrary directed
graphs and ask for the number of walks. Let G = (V, A) be a directed graph, and let
a and b be vertices of G. An a, b-walk of length k£ in G is a sequence (zq, ..., xx) of
vertices of G where g = a and z;, = b and (z;,z,41) € Aforeveryi € {0,...,k—1}.
Note that vertices may have multiple occurrences in the sequence. Two a,b-walks
are equal if and only if they coincide in every position.

Problem definitions

NoW(a) for a € {1,2} (number of walks in a graph).

INSTANCE (G, k,v,u,v) where G = (V, A) is a simple finite directed graph, u,v €
V and k,v € N, and k is given in binary representation and v is given in «-ary

representation.
QUESTION Are there v u,v-walks of length k in G?

NOMW () for a € {1,2} (number of walks in a marked graph).

INSTANCE (G, M, k,v,u,v) where G = (V,A) is a simple finite directed graph,
M CV,u,v €V andk,v € N, and k is given in binary representation and v is given
in a-ary representation.

QUESTION Are there v u,v-walks in G each of which containing exactly k vertices
from set M?

Let G = (V,A) be a directed graph, and let M C V be the set of marked
vertices of G. If W is a walk in G containing exactly k marked vertices, we say
that W is a k-marked walk in G. From the above problems we derive their ezact
variants XNOW («) and XNOMW (a) in the following way: XNOW («) is the set of
tuples (G, k,v,u,v) from NOW (a) where there are exactly v u,v-walks of length k
in G; a similar definition holds for XNOMW |(«).

At first, we show some interesting relations between these problems. Let h
be an n-ary Boolean function. We say that A logarithmic-space truth-table reduces
to B wia h, denoted as A g};tt B, if there is an FL-function that, on input z,
outputs n words ¥, ..., ¥y, such that z € A if and only if h(cg(y1),-..,c5(ys)) = 1.
Observe that, for every Boolean function, NL and P are closed under fixed-function
logarithmic-space truth-table reducibility. (Fixed-function logarithmic-space truth-
table reducibility is a special case of logarithmic-space Turing reducibility, under

which NL and P are closed due to Theorem 3.13.)

Lemma 4.1 Let a(x1,22) =qef (£1 A —z3). For a € {1,2},
(1) xXNoW (a) <k, NoW(a).

(2) xXNOMW («) glgtt NoMW(a).

Chapter 4 The complexity of auxiliary problems 45

Proof: We prove statement (1) of the lemma; the proof of statement (2) is analogous.
Let (G, k,v,u,v) be an instance of XNOW («). (G, k,v,u,v) € XNOW () if and only
if (G, k,v,u,v) € NOW(«) and (G, k,v+1,u,v) ¢ NOW(a). Adding a constant to a
number can be done in logarithmic space for unary as well as binary number system.

|

A second, at first glance more surprising result relates number-of-walks problems
for marked and unmarked graphs. There is an immediate direction, that we prove
first.

Lemma 4.2 Let a € {1,2}.
(1) NoW(a) <k NoMW (a) .
(2) xNoW () <L xNoMW(a) .

Proof: It suffices to prove statement (1); statement (2) is proved completely analo-
gous. Let (G, k,v,u,v) be an instance of NOW(a). Let V' denote the set of vertices
of G. It holds that W is a wu,v-walk of length k if and only if it is a u,v-walk
containing exactly k + 1 vertices. Hence, (G,k,v,u,v) € NOW(a) if and only if
(G, V,k+1,v,u,v) € NOMW(a).

|

The other direction, from the marked to the unmarked problem version, needs
a more sophisticated construction. It can be described as follows. It is determined
whether the number of walks is infinite, and if not a new graph that preserves the
number of walks and without marked vertices is constructed. To achieve this, we have
to decide whether a graph contains a certain walk of given length. Let G = (V, A)
be a directed graph. For two vertices u,v € V and a number k € N, let W be the
function such that Wg(ut,k) € {0,1} and Wq (w0, k) = 1 if and only if there is a
u, v-walk of length k in G. With W, we associate the decision problem WALK that
is the set of tuples (G, u,v, k) where G = (V, A) is a directed graph, u,v € V, k € N
is given in binary representation and Wg(wt, k) = 1. For an acyclic single-source
graph G = (V, A) we define the depth of a vertex u of G as the length of a longest
path from the source vertex to u in G. Note that acyclic single-source graphs are
connected. By DEPTH we denote the set of triples (G, u,d) where G = (V, A) is an
acyclic single-source graph, and u € V has depth d in G.

Lemma 4.3 WALK and DEPTH are in NL .

Proof: For the complexity of WALK, let (G,u,v,k) be an instance of WALK. Let
W = (ug,-..,ux) be a u,v-walk in G. If k < (n+1)? we can find a walk straightfor-
wardly by starting with u and guessing k consecutive vertices. Now, let k > (n+1)2.
Let r € {0,...,n — 1} such that there is d < n — r and u, = u,y4. Consider
the vertex sequence (U, Urid,Uriods---,Urireqd) Where k —d < r + ed < k. Note
that e > n and that there are ¢,j € {1,...,e}, i < j, such that u,q = Upijq-

46

Then, (uo,---,Urrd = Ur,---,Upgd = Up,- -, Uptid; Upgjdsl, ---,Ug) 1S @ u,v-walk
of length k in G. Iterated application of this argument shows that there is a u,v-
walk W' = (v, ..., v) where u; = v; for all i € {0,...,r + d} and v,1jq = u, for all
j €1{0,...,e —n+ 1}. This characterisation gives a nondeterministic logarithmic-
space algorithm to solve the problem. First, guess vertex w of G and d < n and verify
the existence of a walk (wy, ..., wy) where wg = wg = w. Then, verify the existence
of a walk (zg,...,2,,) where m <n+ (n—1)-d+d=n-(d+1), m =k (mod d),
and that there is ¢ < n such that z; = w.

For the complexity of DEPTH, let (G, u,d) be an instance of DEPTH. In nonde-
terministic logarithmic space, it can be determined by standard procedures whether
G is a connected acyclic single-source graph. Let s be the unique source vertex of
G. Determine the largest number k such that Wg(5%, k) = 1, which can be done in
logarithmic space with oracle access to WALK. If the largest number is equal to d
accept, otherwise reject. This gives a nondeterministic logarithmic-space algorithm
due to Theorem 3.13.

|

Theorem 4.4 Let a € {1,2}.
(1) NoMW (a) <NI'NoW(a).
(2) xXNOMW (a) <N xNoW (a).

Proof: We first prove statement (1) of the theorem; the proof of statement (2)
is discussed at the end. Let (G, M, k,v,u,v) be an instance of NOMW (). Let
n =qef |V| be the number of vertices of G. If there is a vertex z € V such that
(z,x) € A, replace this loop by the walk (z,w,z) for some new vertex w. If u ¢ M
then add a new vertex u’ to G that is adjacent to every successor of u, add v’ to
M and increase k by 1; u’ becomes the new start vertex. If v € M then add a new
vertex v’ to G that is successor of every predecessor of v, add v’ to M and increase k
by 1; v’ becomes the new end vertex. So, without loss of generality we assume that
G is loop-free and u,v € M.

[G contains infinitely many k-marked w, v-walks.]

For every z € M, let G, =gef G\ (M \ {z}). In other words, G, is the subgraph of G
where all vertices from M except for x are deleted. For every pair z,z € M of marked
vertices, let K, denote the set of vertices w € V' for which there exist an x,w-path
in G, and a w, z-path in G,. In other words, K., is the set of unmarked vertices of
G that appear on 2-marked z, z-walks in G. Let K, =qef K, U{z, 2}, if K, #0 or
(z,2) € A; otherwise let K, =gef K, = 0. With oracle set WALK it can be tested
whether K. is empty. Suppose there are z,z € M such that G[K,,] has a cycle.
Then, there are infinitely many 2-marked z, z-walks in G. Such vertices z and z can
be found in logarithmic space with oracle access to WALK. If there are a kj-marked
u, z-walk and a ko-marked z, v-walk such that ki + ko = k then the input tuple must
be accepted. To verify the existence of these walks we construct graph G* which

Chapter 4 The complexity of auxiliary problems 47

contains a copy of every vertex in M and arc (p, q) for two vertices p,q € M if and
only if K, is not empty. For p,q € M where K, # 0, let G}, be the disjoint union of
two copies of G* where the vertices of the first copy have index 1 whereas the vertices
of the second copy have index 2 and that contains the arc (p;,¢2). Then, G contains
a k-marked u,v-walk containing p and q as consecutive vertices from M if and only
if G, contains a u1,vo-walk of length k. For every pair of vertices =,z € M where
G[K,] contains a cycle verify whether G’ has a uy,vy-walk of length k. This can
be done using WALK as oracle. If such a walk has been found output some element
of NoW ().

[G contains only finitely many k-marked wu, v-walks.]

Let it be the case that no such walk exists (and has been found). For every pair z, z
of marked vertices of G, let G,, emerge from G[K,,| where, in case of z # z, arcs
of the forms (w,z) and (z,w) are deleted. If z # z and G, is not acyclic, let G,
be empty. If G, \ (V x {z}) is not acyclic, let G,, be empty. For every pair of
vertices ¢,z € M, x # z, determine the depth of z in G,,. Remember that, by
construction, G, is connected, acyclic and single-source (if not empty). Let the
maximum value be denoted by a’. For every x € M, determine the depth of every
predecessor of z in G, in Gy \ (V x {z}). Let the maximum be denoted by a”.
Let a =40t max{a’,a”+1}. With oracle access to DEPTH, a can be determined in

logarithmic space. Observe the following: Let W = (wy, ..., wy) be a k-marked u, v-
walk in G, and let I C {0,...,¢} such that, for all ¢ € {0,...,¢}, w; € M if and
only if ¢ € I. Then, for consecutive w;, wj, i,j € I, (w;,wit1,...,w;) is a walk

in G,w, (remember that the first case, considered in the paragraph above, has not
been applicable). We add new vertices to make walks between vertices from M of
equal length. Let z,z € M. Let H,, emerge from G, as follows. H,, contains a
copy of every vertex in G,,. (We add further vertices and arcs.) For every pair of
vertices p and g where (p, ¢) is an arc in G, if # z determine the depths of p and
g in G, if x = z and ¢ # = determine the depths of p and ¢ in G, \ (V x {z}), if
x = q = z determine the depth of p in G, \ (V x {z}). Let the depths be numbers d,
and dg, respectively. If ¢ # 2z, let d =qef dy —dp, — 15 if ¢ = 2, let d =qer a — d), — 1.
Let y1,...,yq be new vertices. Add walk (p,y1,-..,¥d,q) to H,,. Observe that there
is a 1-to-1 correspondence between the z, z-walks in G, and H,,. Let H be the
union of all H,, for x,z € M where all copies of the same vertex from M are glued
together. Note that H is a graph similar to G*, that still contains information about
the number of walks. It holds that the k-marked u,v-walks in G correspond to the
u, v-walks of length a-(k—1) in H and vice versa. H can be computed in logarithmic
space using oracle sets WALK and DEPTH. Hence, (G, M, k,v,u,v) € NOMW(q) if
and only if (H,a-(k—1),v,u,v) € NOW(a). Note that a- (k— 1) can be computed in
logarithmic space, since multiplication is an FL-function. It is even possible to choose
a as a power of 2, which makes multiplication trivial. We conclude statement (1) by
Lemma, 4.3.

48

For statement (2), it suffices to observe that, if there are infinitely many k-
marked u, v-walks, the input must be rejected. The remaining reduction is analogous
to the construction above.

|

We have seen that it basically suffices to consider only the problems for unmarked
graphs. These problems are also related to problems for powers of matrices.

Problem definition

POM(a) for a € {1,2} (element of a power of a matrix).

INSTANCE (M, k,a,i,j) where there is n > 1 and M is an n X n matrix over N,
k,a >0, 4,57 € {1,...,n}. All entries of M and 4, j and k are given in binary
representation, and a is given in a-ary representation.

QUESTION (MF¥);; > a?

Similar to the number-of-walks problems, we also consider an exact variant of
POM(a), that is denoted as XPOM(a) and obtained by simply replacing ‘>’ in the
problem definition of POM(a) by ‘=". The relations of POM(a) and XPOM(a) to
NoW(a) and XNOW («), respectively, are based on a result from graph theory. Let
G = (V, A) be a directed graph. Let n be the number of vertices of G. By Adj(G)
we denote the n x n matrix M over {0,1} for which holds M,; = 1 if and only if
(1,7) € Afori,j€{1,...,n}. Adj(G) is called the adjacency matriz of G.

Lemma 4.5 (folklore)

Let G = (V, A) be a directed graph. Let n =g4¢f |V'| be the number of vertices of G,
and let k > 1 and i,j € {1,...,n}. Let M =4t Adj(G) be the adjacency matrix of
G. Then, (M¥);; is the number of i, j-walks of length k in G.

Proof: We prove the statement by induction over k. For k = 0, M* = MY is the
matrix containing 1’s only on the main diagonal, and the statement holds. Now, let
it be true that (M¥);; is the number of 4, j-walks of length k in G. Then, the number
of i, j-walks of length k£ + 1 in G is the sum of the numbers of i, j’-walks of length k
in G for all predecessors j' of j. So, the statement follows by the definition of the
product M* - M.

|

Lemma 4.6 Letac {1,2}.

(1) NoW(a) =L POM(a) .

(2) xXNoW (a) =& xPOM(a) .

Proof: We only prove statement (1); the proof of statement (2) is analogous.

The problem NOW(a) reduces to POM(a) due to Lemma 4.5 by computing ma-
trix Adj(G), which is possible in logarithmic space. So, let (G, k,v,u,v) be an in-

Chapter 4 The complexity of auxiliary problems 49

stance of NOW («). Then, (G, k,v,u,v) in NOW(«) if and only if (Adj(G), k, v, u,v)
in POM(a). Remember that vertices v and v are natural numbers.

For the converse reduction, let (M, k, a,i,j) be an instance of POM(«), and let
w be the size of this instance. Consider the acyclic graph depicted in Figure 3. All
u, v- and u, w-walks have the same length and there are exactly 1 + 8 = 9 u, v-walks
and 16 + 64 = 80 u, w-walks. Graphs of the form of Zg, as it is denoted in Figure 3,
play the central part in our reduction. A formal definition is as follows. By Z; we
mean a single vertex, and Z, is extended to Zs 1 by glueing together the sink of Z,
with the source vertex 1 of the graph Z; =q4er ({1,2,3,4},{(1,2),(1,3),(2,4),(3,4)}).
Note that vertices have to be renamed. Let n =4¢¢ dim M, and let r denote the length
of the largest entry in M, i.e., the number of bits representing the largest entry of
M. We construct graph G as follows. For every =z € {1,...,n}, let G have a vertex
with name = and a copy of the graph Z,_;. Add an arc from z to the source vertex
of its Z,_1 copy. For every entry M;; of M add, as it is shown in Figure 3, paths to
G such that the number of ¢, j-paths of length 2r is exactly the number M;;. Note
that G has at most n - 3r + n? - 2r vertices, and every vertex has a name of length
logarithmic in w. It is clear that G can be computed using only logarithmic space
and that further vertices that are not adjacent to any other vertex can be added to
G such that the final graph contains exactly 3 + 3logw > 5rn? vertices (in order to
make the names of the vertices a complete interval of N); let G’ be the final graph.
Then, the number of i, j-walks of length 2kr in G’ is equal to (M*),;. The product
2kr can be computed in logarithmic space, since multiplication is an FL-function.
Then, (M, k,a,i,j) in POM(«) if and only if (G', 2kr,a,i,7) in NOW(a).
|

4.2 The complexity of number-of-walks and power-of-matrix problems

For the complexity of our problems, we distinguish between @ = 1 and a = 2.
To be more precise, in case of @« = 1, we will determine the complexity of the
problem NOW (1), and from this complexity, we will obtain all further desired results.
In case of @ = 2, we will instead consider the matrix problems and determine the
complexities of POM(2) and XPOM(2). We start with the case « = 1. A central
idea is to use an interesting result by Fredman, Komlds, Szemerédi, which is stated
in Lemma 4.7.

Lemma 4.7 (Fredman, Komlés and Szemerédi, [29])

Let S C N\ {0} be non-empty and finite. Let n =gt |S|, and let m =gt maxS.
Then, there is a prime number p < n?logm such that no two elements of S lie in the
same residue class modulo p.

50

Figure 3 A graph with nine u, v-walks and 80 u, w-walks, and all these
walks have the same length.

Chapter 4 The complexity of auxiliary problems 51

Proof: Let S = {z1,...,2,}. Let

T =gef (H%) : (H (i —xj)>-
i=1
It is clear that
1
log |T'| < nlogm + (Z) logm = (n;—) logm < n?logm.

For a number z, let Q(x) denote the set of prime numbers smaller than z. Then, by
some number-theoretic result, it holds that

log(11 Q)=w+0($),

qeQ(x)

ie.,

n?logm < log (H q) .

q€Q(n?logm)

Hence, there is some prime number p in Q(n?logm) that does not divide 7. It follows
that no number from S lies in the residue class 0 modulo p and no two numbers from
S lie in the same residue class modulo p, which proves the lemma.

|

Allender, Reinhardt, Zhou considered a restricted variant of problem NOW(1).
They were interested in the number of paths in acyclic graphs. They used Lemma 4.7
to obtain an NL-algorithm [2]. In our case, we have to resolve the problem how to
find sufficiently many walks of a certain length, if this length is given in binary
representation. The following result shows that we only have to find enough walks
of a certain short length.

Lemma 4.8 Let G = (V,A) be a directed graph, and let n =4¢ |V|. Let k,r € N,
2n? <r < k—mn, and let Wy = (ug,...,ux) and Wy = (vg,...,v;) be two walks in
G such that u; = v; for all i € {0,...,r} U{k} and u,41 # v,y1. Then, there are
' €{r—2n?...,r—1} and a walk W = (wo,...,wy) in G such that u; = w; for all
i€{0,...,r"}U{k} and up 41 # wprg1.

Proof: Let s1,s0 € {r —2n2 +0,...,7 — 2n? + n}, s1 < so, such that us, = us,.
Let d =gef S2 — s1. If there is a ug,, us,-walk of length d in G that is different from
Wy =det (Us,,Us,+1,---,Us,), replace this sequence in Wj by the other walk and
obtain W. Otherwise, W, is the unique us, ,us,-walk of length d in G.

Consider the sequence ug,, Usy+d, Usy+2d; - - - s Us,+ed Where 1 —d < so +ed < 7.
Note that e > n. Hence there are aj,as € {0,...,e}, a1 < ag, such that us,14,4 =
Usy+a,d- If a1 and ag can be chosen such that there is a € {aq,...,as} such that

Us,+ad 7 Us,, then extract (Us,+q,d, Usyta,dils---sUsytard) from Wi, insert as — aq

52

copies of W, after u,, and obtain W. Otherwise, us, = us, = Ugy4q = -+ =
Usy+-(e—n+1)d-

Let ¢1,¢c0 € {k —mn,...,k}, c1 < co9, such that u., = wuc,, and let d' =gef
co — c¢1. Note that d < e —n + 1. Obtain W’ from W; by deleting the sub-

walk (Us, 11,Us,1+2,---,Us,+a'q) and adding d copies of (¢, 1, Ue,+2;---,Ue,) a6 PO-
sition ¢; in Wy. Certainly, W’ is a ug, ug-walk of length k. If W’ is different from
W1, we found walk W. Otherwise, us, = s, = Us,+d = Us,+2d = *** = U,y (e+1)d Y
induction.

Now, W and Wy differ in u, 1 and v,11. So, we repeat the construction of the
last case with W5 instead of W; and obtain the desired walk W, since W,, is unique.
|

For a directed graph G = (V, A) and two vertices u,v of G, let #¢ (w0, k) denote
the number of u,v-walks of length k¥ > 0 in G.

Corollary 4.9 Let G = (V, A) be a directed graph, and let n =g¢¢ |V'|. Letu,v € V
be two vertices of G, and let v and k be such that 0 < 2un’+4n < k. Ifv < #(ud, k),
then

v< Z #q(ut, 2vn?) - Wg (T2, k — 2vn® —n) - #6(Z0,n) .

z,2€V

Proof: Observe the following equality. It holds that
V= Z #G(’lﬁ,Qleﬂ) : #G('T_z)? k — 2’/”2 - n) : #G(%vn) :

r,2€V
For proving the claimed inequality, we distinguish two cases. Let =,z € V be two
vertices of G such that

Wa(ut, 2vn?) - #q(T2,k — 2un® —n) - W (z0,n) > 2.

Then, there are two u, v-walks of length k in G that coincide on the first 2vn® + 1
vertices and differ in a position that is not among the last n + 1 ones. Hence,
Lemma 4.8 can be applied, which shows the existence of a u,v-walk of length k£ in
G that differs from the two first walks not before position 2vn? — 2n?. Repeated
application of Lemma 4.8 shows the existence of v u,v-walks that pairwise differ
somewhere at the first 2vn? + 1 positions. These walks are partitioned into up to n
sets that are determined by the vertex at position 2vn? + 1. Then, the claim follows
immediately.

Now, assume that, for every pair z, z of vertices of G,
Wq(at, 2vn?) - #q(T2,k — 2un® —n) - W (z0,n) < 1.

Then, for every pair x, z of vertices of G, if there is an x, z-walk of length k —2vn? —n
in G, then it is unique, or one of the other required walks does not exist. Hence,

Wa(z2,k — 2vn® —n) = #q(T%,k — 2vn® —n)

Chapter 4 The complexity of auxiliary problems 53

for every pair x,z of vertices for which Wq(u#,2vn?) = Wg(20,n) = 1, and the
inequality in fact is an equality.
|

To solve the problem NOW (1) we will apply the method of Allender, Reinhardst,
Zhou [2]. Let G be a directed graph. Our chosen representation of G establishes an
ordering on the vertices of G by their names. So, every walk in G can uniquely be in-
terpreted as a natural number greater than 0 in (n+1)-ary representation, where n is
the number of vertices of G. Hence, we can determine the residue class modulo some
number for every walk. Let RESIDUEOFWALK be the set of tuples (G, k,q,r,u,v)
where G = (V, A) is a directed graph, k,q,r € N, k and ¢ are given in unary rep-
resentation and u and v are vertices of G and there is a u,v-walk of length k£ in G
whose (n+1)-ary number representation for n the number of vertices of G lies in the
residue class r modulo q.

Lemma 4.10 RESIDUEOFWALK is in NL.

Proof: Let (G,k,q,r,u,v) be an instance of RESIDUEOFWALK. If r > ¢ compute
" € {0,...,g — 1} such that 7/ = r (mod ¢) and replace r by . Guess a u,v-
walk of length k iteratively, i.e., vertex by vertex, and compute its residue class
modulo ¢ using the standard division algorithm. Since k£ and ¢ are given in unary
representation, this algorithm needs only logarithmic space.

|

Theorem 4.11 NoW(1) is in NL.

Proof: Let (G, k,v,u,v) be an instance of NOW(1). Let n =4¢ |V|. By Lemma 4.3,
WALK is in NL. To decide whether #¢(w®, k) > v it suffices, due to Corollary 4.9, to

guess numbers v, < v and v/, < v for all vertices w of G such that v, < # ¢ (w0, 2vn?)
and v}, < #¢(wv,n) and

v< Z Ve - Wg(@t k —2vn® —n) - v, .
z,z€V

Remember that v is given in unary representation, so that the guessed numbers
can be represented in binary form in logarithmic space. To verify the sufficiency of
each guessed v, for which Wg (w0, k — 2vn? — n) = 1 holds we apply the following
logarithmic-space algorithm with oracle RESIDUEOFWALK. Note that all walks of
length 2un? have a numerical representation with value not exceeding (n + 1)2*" =
92vn*log(n+1) < 92vn® - Applying Lemma 4.7, we have to find a prime number p smaller
than (v,)? - 2vn® such that there are v,, residue classes modulo p each containing
the numerical representation of a u,w-walk of length 2vn?. This can be done in
logarithmic space. The numbers v/, are verified similarly. Since LN¥ = NL by
Theorem 3.13, NOW(1) is in NL.

|

54

Corollary 4.12 NoW(1), xNoW (1), NoMW (1) and XNOMW (1) and POM(1)
and XPOM(1) are NL-complete.

Proof: For hardness, we first show that NOW(1) and XNOW(1) are NL-hard. Let
(G,u,v) be an instance of GAP and GIP. It holds that G contains a u,v-path if
and only if there is k < n for n the number of vertices of G such that G contains
a u,v-path of length k. Let G’ emerge from G by adding the loop (u,u). Hence, G
has a u, v-path if and only if G’ has a u,v-walk of length n, i.e., (G,u,v) in GAP if
and only if (G',n,1,u,v) in NOW(1). In case of XNOW(1), it holds that (G, u,v) in
GIP if and only if (G',n,0,u,v) in XNOW(1). Applying Lemmata 4.2 and 4.6, we
conclude NL-hardness for all problems.

Due to Theorem 4.11, NoW (1) is in NL. Applying Lemma 4.1, XNOW(1) is in

NL. By Lemma 4.6, POM(1) and XPOM(1) are in NL. Finally, since NL is closed

under <Nl-reducibility due to Lemma 3.14, NOMW (1) and XNOMW(1) are in NL
due to Theorem 4.4.

|

Our solution of case a = 2, i.e., determining the complexity of problems like
NOW (2), is less exact than the case considered before. We will not give a complete
solution, since we will only be able to give upper and lower complexity bounds for
NoW (2) that do not meet each other. A complete solution remains one of the major
open problems of this thesis.

Lemma 4.13 POM(2) isin P.

Proof: Let (M,k,a,i,j) be an instance of POM(2). Let n be the dimension of M.
We have to answer the question whether (M*);; > a does hold. Let M’ emerge from
M by replacing every entry that is larger than a by a+1. We denote this operation
by [M]<a, i-e., [M]<o = M'. Then, (M*);; > a if and only if ((M')*);; > a. It holds
that

[M"<a = [[M']<a - M)<a)<a

for every 7 > 0 and i € {0,...,r}. Observe that the left hand side matrix can be
represented using only b - n? bits where b is the number of bits for representing a-+1
in binary form. Furthermore, for r > 0, M?" = M" - M" and M?>"t' = M" - M" - M.
Multiplying two matrices takes polynomial time, and computing [-]<, takes polyno-
mial time. Since [M*]<, can be computed using at most 2c matrix multiplications
where c is the number of (significant) digits of the binary representation of k, [M*]<,
can be computed in polynomial time. Hence, the size of the value of (M k)ij with
respect to a can be determined in polynomial time.

|

The main observation that we have to make in connection with the algorithm
of Lemma 4.13 is that it is not possible to directly compute MF¥ for a matrix M and
a number k, since entries of M* can become very large for large k. Furthermore,

Chapter 4 The complexity of auxiliary problems 55

it is easy to see that problem POM(2) can be modified such that the queried entry
of the matrix power is output, if it does not exceed number a. So, we obtain a
function problem corresponding to XPOM(2). Alternatively, using POM(2) and
binary search, we can also compute that value in polynomial time, if it does not
exceed a.

Theorem 4.14 NOW(2), NOMW(2) and POM(2) are in P and PL-hard.

Proof: Similar to the proof of Corollary 4.12, the problems NOW(2), NOMW (2) and
POM(2) are in P due to Lemma 4.13. For hardness, it suffices to show that NoOW(2)
is PL-hard, since hardness translates to the other problems due to Lemmata 4.2 and
4.6. Let A € PL. Then, there are functions f € #L and g € FL such that z € A if
and only if f(z) > g(x). Let f be computed by nondeterministic logarithmic-space
Turing machine M. Applying Lemma 3.7, in logarithmic space, we obtain an acyclic
graph G/, and vertices u and v of Gjr, such that the number of u, v-paths in Gy,
is equal to f(z). Adding a loop to vertex v, we obtain G/M, »» and there is a constant ¢
independent of = such that f(z) is equal to the number of u, v-walks of length |z|® in
G’y .- Hence, z € A if and only if (G, [7], 9(x),u,v) € NOW(2), which defines a
logarithmic-space reduction.

|

Corollary 4.15 xNoW(2), xXNoMW (2) and xPOM(2) are in P and C_L-hard.

Proof: The proof for containment and hardness is analogous to the proof of Theo-
rem 4.14. It only has to be taken into account that A € C_L if and only if there are
functions f € #L and g € FL such that z € A if and only if f(z) = g(z).

|

4.3 Two NP-complete problems

There is a huge number of NP-complete problems, and only a very few of them can be
found in the classical book by Garey and Johnson [31]. The most popular among these
problems is SAT, the problem that asks for satisfiability of Boolean formulas given
in conjunctive normal form. Without loss of generality, we assume that instances of
SAT do not contain clauses with two appearances of the same variable. An interesting
and very useful restriction of instances of SAT is denoted by 3-SAT: 3-SAT contains
all elements from SAT that have exactly three literals per clause.

Theorem 4.16 (Cook, [17])
SAT and 3-SAT are NP-complete.

We define two new problems that turn out to be NP-complete, too. The first one
can be considered a decisional variant and generalisation of the Chinese Remainder

56

Theorem. The Chinese Remainder Theorem guarantees the existence of a solution for
a system of congruence equations where the involved moduli are pairwise relatively
prime numbers. Two natural numbers are relatively prime if their greatest common
divisor is 1.

Theorem 4.17 (Chinese Remainder Theorem)
Let by, ...,b; be pairwise relatively prime numbers, and let ny,no € N. Let b =qet
[L; bi- Then, ny = ny (mod b) if and only if n; = ng (mod b;) for everyi € {1,...,k}.

For our problem, that will be called SET-SCE, we allow arbitrary moduli and a
set of remainders and ask for satisfaction.

Problem definition

SET-SCE (satisfiability of a set-system of congruence equations).

INSTANCE ((A1,b1),...,(Ag,br)) where Ay, ..., Ay are finite sets of natural num-
bers, and by, . .., by are natural numbers greater than 1 given in unary representation.
QUESTION Are there n € N and a; € Ay,...,a; € Ai such that n = a; (mod b;)
forallie {1,...,k}?

Note that it is not important to require binary representation of the numbers
in Ay,...,A;. However, we assume a binary representation of them, only to fix a
system. For numbers b,c € N and set A C N, we say that ¢ = A (mod b) holds if
there is @ € A such that ¢ = a (mod b). Hence, the question of SET-SCE can be
reformulated as: Is there n € N such that n = A; (mod b;) for alli € {1,...,k}?

Lemma 4.18 3-Sar <! SeT-SCE.

Proof: Let H = H(xy,...,z,) be an instance of 3-SAT, i.e., a Boolean formula
in conjunctive normal form with exactly three literals per clause, and no variable
appears twice in a clause. The variables in H are z1,...,Z,.

[Construction of an instance of SET-SCE.]

Let k& be the number of clauses in H, and let K,..., K} be the clauses in H. Let
P1,---,Pr be r prime numbers. By indices, there is a 1-to-1 correspondence between
the variables of H and the prime numbers. For every j € {1,...,k}, let:

b — ﬁ p; , if x; is variable in K
J T det 1, if z; is not variable in K .
i=1

Variables in each clause are ordered according to their indices; this means that there
is a first, a second, a third variable in each clause. Let f; = f;(z1, 22, 23) be the
Boolean function defined by K;, where z; corresponds to the first, zo corresponds
1) @ 6B)y
e

i Ty T
be the corresponding primes. Let N; be

to the second and z3 corresponds to the third variable in K. Let x

the variables in K, and let pgl), p§2),p§~3)

the set of natural numbers a smaller than b; such that a = {0,1} (mod pg.i)) for all

Chapter 4 The complexity of auxiliary problems 57

i € {1,2,3}. Note that, by the Chinese Remainder Theorem, N; contains exactly
eight numbers, among them 0 and 1. We define A; as the set of numbers a € N;

such that fj(cg»’lg, cﬁz, 0532) = 1 where
i) {1 ,ifa=0 (modpg-i))

(
C: :e i
700 Lifa=1 (mod pl)

for i € {1,2,3}. Then, Sy =qef ((A1,b1),-..,(Ag,bx)) is an instance of SET-SCE.

[Satisfiability of H translates to Sgr.]
Let @ be a satisfying assignment for H. Due to the Chinese Remainder Theorem
there is a number n < p; - - - p, that satisfies the congruence equations

n=1-fp(z;) (mod p;)

for all 4 € {1,...,7}. Let j € {1,...,k}, and let p&l),pf),p(g) correspond to the

J
L @ 6

variables z,;, 2,7, 2, in K;. Let aj <, satisfy

a;j=1- ﬁ(xg»i)) (mod pg.i))

for every i € {1,2,3}. Observe that a; € A;. Since the remainders of a; and n
correspond W52 and pt¥)
pond on p;’, p;” and p;

Theorem. Hence, n is a solution of Sg.

, n = a; (mod bj) due to the Chinese Remainder

[Satisfiability of Sy translates to H.]
Let n be a solution of Sy;. We show that 3, defined as

L J1 ifn=0 (mod p)
B(@;) =der {o , if n # 0 (mod p;)

for all 4 € {1,...,r}, satisfies H. Let a; € A; such that n = a; (mod b;), and let
z; be a variable in K; such that A € {x;, ~x;} is literal in K; and A = z; if and
only if a; =0 (mod p;). Then, A = z; if and only if n = 0 (mod p;) by the Chinese
Remainder Theorem. Therefore, K; is satisfied by (.

[Logarithmic-space computable reduction.]
It remains to show that the reduction, from H to Sy, can be carried out in logarithmic
space. The number set {2, ..., 7%} contains r primes (if r > 2), so that in logarithmic
space r prime numbers can be found. The sets Ay, ..., Ax and the numbers by, ..., b
can be constructed by straightforward enumeration and verification in logarithmic
space.

|

Our second problem is closely related to SET-SCE. This problem is called
SORSR and asks a question about a given system of registers. (These registers are
different from registers of random access machines.) A register R of size k > 1 is a
vector with & components. The entries of R are denoted as R(1),...,R(k). A left

58

ring-shift operation is performed on a register by moving the contents of every but
the first components one position to the left and the previously first entry is moved
to the rightmost (last) position. We assume that the considered register is spread
from left to right, i.e., from R(1) on the left side to R(k) on the right side.

Problem definition

SORSR (simultaneous-ones ring-shift registers problem).

INSTANCE A set {Ry,..., Ry} of registers that contain natural numbers.
QUESTION [s there a number r > 0 such that, after performing r left ring-shift
operations on each register, all registers have entry 1 in the leftmost component?

Similarly to the problem SET-SCE, it is not necessary to fix a number represen-
tation system for SORSR, but for simplicity, we assume binary representation.

Lemma 4.19 SeT-SCE <L SoRSR.

Proof: Let ((A1,b1),...,(Ak, bi)) be an instance of SET-SCE. Note that, since b; is
given in unary form, for every binary number a it can be determined a number o’ €
{0,...,b;—1} such that ¢ = o’ (mod b;) using only logarithmic space. Hence, in
logarithmic space, sets A],..., A} can be determined such that A C {0,...,b;—1},
i€ {l,...,k}, and o’ € A, if and only if there is a € A; such that a = a’ (mod b;).
We define k registers Ry,..., Ry where R; is of size b; for all ¢ € {1,...,k}. The
registers contain 0 and 1 as entries, and R;(j) = 1,7 € {1,...,k}, 7 € {1,...,b;},
if and only if j—1 € Al. Observe that Ry,..., Ry can be computed in logarithmic
space.

By definition of the left ring-shift operation and the registers, it holds that
R;(1) = 1 after application of ¢ > 0 left ring-shift operations if and only if there is
j€{l,...,b;} such that R;(j) =1 and j—1 =t (mod b;). Then, there is a number r
such that, after application of r left ring-shift operations on all registers, all registers
contain 1 in their leftmost components if and only if there are a4, ..., a; and ¢t such
that a; € {1,...,b;}, Ri(a;) = 1 and a;—1 = ¢ (mod b;) for every ¢ € {1,...,k}.
Hence, {Ry,..., Ry} € SORSR if and only if ((A1,b1),-.., (A, br)) € SET-SCE.

|

Theorem 4.20 SeET-SCE and SORSR are NP-complete.

Proof: NP-hardness of both problems follows from Lemmata 4.18 and 4.19 and
Theorem 4.16. So, it suffices to show that SORSR can be accepted in nondeterministic
polynomial time.

Let {Ry,...,R;} be an instance of SORSR, and let by,...,b; be the sizes of
the registers Ry, ..., Ry, respectively. Observe that, if there is ¢ > 0 such that after
application of ¢ left ring-shift operations to the registers such that each register has
1 in its leftmost component, there is such a number ¢ smaller than by ---bg. So,

Chapter 4 The complexity of auxiliary problems 59

it suffices to check whether there is ¢ < by ---b, such that we obtain all leftmost
components filled with 1 after applying ¢ left ring-shift operations to the registers.
If this can be checked in polynomial time, we obtain an overall nondeterministic
polynomial-time algorithm.

We can restrict to the question, given a register R of size b and a number r,
whether R(1) contains 1 after application of r left ring-shift operations. In polynomial
time, number a < b such that 7 = a (mod b) can be computed, and accept if and
only if R(a+ 1) = 1. This concludes the proof.

|

60

61

Chapter 5

Introducing finite recurrent systems

Recurrences or recurrent equations appear in many fields of theoretical computer
science, mathematics, physics—in fields where discrete processes are modelled and
studied. The first and widely known recurrence defines the set of Fibonacci numbers:
this sequence starts with twice number 1, and every further element is the sum of its
two predecessors, i.e., we obtain 1, 1, 2, 3, 5, 8, 13, and so on. Even though the first
few numbers do not seem sensational, the Fibonacci numbers turn out very useful in
many areas of science (see, for instance, The Fibonacci quarterly, that is a scientific
journal devoted to the Fibonacci numbers and related questions).

In the case of Fibonacci numbers, only one recurrent equation is involved. In
other cases, one may want to study number sequences whose elements are generated
by taking elements from other number sequences that are generated by applying
different generation rules. So, the transition from single recurrence equations to
recurrent systems, systems of possibly nested recurrence equations, is natural. A
formal definition is presented in the second section of this chapter. We will give a
rather general definition of recurrent systems. For our investigations, we will restrict
to special ones, that fit well into a series of previous work.

We will not consider recurrent systems as the main object of our investigations,
but we will use them for concisely defining sets of numbers, about which we wish
to obtain information. The corresponding problems are so-called membership prob-
lems, and we will define two versions. We will ask whether a given recurrent system
generates a given number in some iteration step or whether there is an iteration step
in which the given number is generated. Precise definitions and first results are given
in Section 5.3. To give an idea, the questions may be whether a given number is the
k-th Fibonacci number or whether it is a Fibonacci number.

Complexity-theoretic results always depend on input representation. Since re-
current systems consist of equations, or functions (depending on the point of view),
we choose appropriate arithmetical circuits as representation models. These circuits
are defined in the following section. The chapter ends with a summary of complexity
results of problems that are closely related to our membership problems.

5.1 Arithmetical circuits

Complexity theory knows different mathematical objects for proving upper and lower
complexity bounds. A rich and fertile field is created by the study of circuits. Espe-
cially, the complexity of basic arithmetical operations, like addition, multiplication
and division, can be captured adequately. Also, circuit complexity is able to make
finer distinctions compared to classical complexity measures based on Turing ma-
chines, for instance. A good introduction to and survey on circuit complexity is

62

provided by Vollmer’s book on that subject [83].

Here, however, we will not study arithmetical circuits themselves, nor will we
seek for results about them. Instead, we will use them only for representation pur-
poses. Informally spoken, arithmetical circuits are acyclic graphs whose vertices are
labelled. We first define arithmetical circuits in a very general style.

Definition 14 Let 9 be a set (the universe), and let § be a set of operations over
M. Let n > 1. An n-ary arithmetical §-circuit over M is a tuple (G, m,g,a)
where G = (V, A) is an acyclic graph having at least n source vertices, m is a mapping
that labels the arcs of G with numbers such that no pair of arcs is assigned the same
number, g denotes a vertex of G, that is called the output vertex, and « is a mapping
that labels vertices of G with elements from §U {1,...,n} in the following way:

(a) the numbers from {1,...,n} are assigned to n different vertices
(b) for every vertex x of G:
(b1) if a(z) € {1,...,n} then = is a source vertez, also called an input vertex

(b2) if a(z) € § and x has k in-coming arcs then a(z) is a k-ary operation.

Instead of always speaking of n-ary arithmetical §-circuits, we also speak of
arithmetical circuits, for short, if n and § are not precised. Arithmetical circuits
represent functions, in particular, arithmetical §-circuits represent functions that are
built only by using operations from §. The evaluation of a function represented by
an arithmetical circuit on a given input is defined as follows. Let C' = (G, m, g,)
be an n-ary arithmetical §-circuit over some set 9. Let (ay,...,a,) be the input,
where a1, ..., a, are elements from M. The evaluation function § assigns an element
from M to every vertex z of G in the following way (clearly, it is assumed that 90t is
closed under all operations in §):

o if a(z) € {1,...,n}, then B(z) =qef a; where i = a(z)

e if a(z) € § and z has k in-coming arcs and ey, ..., e; are these arcs, where we
assume m(e;) < --- < m(eg), and z1,...,) are the predecessors of = corre-
sponding to ey, ..., ey, respectively, then 5(z) =4ef [a(2)](B(z1),- .., B(zk)).

If the vertices are processed according to a topological ordering for G, it is clear
that the assignment [is well-defined. Then, the result of the function represented
by circuit C' applied to (aq,...,a,) is 5(g), i.e., the value that is assigned to the
output vertex of C. Graph G of C is also called the graph underlying C'. It must
be remarked that the graph underlying an arithmetical circuit does not have to be
connected. Also, there does not always have to be a path from every input vertex
of C to the output vertex. Furthermore, G may contain source vertices that are not
labelled input vertices, if § contains O-ary operations.

Lemma 5.1 Let n be a number, and let § be a set of operations. The problem,
given a tuple C = (G, m, g, a), deciding whether C' is an n-ary arithmetical §-circuit
is in NL.

Chapter 5 Introducing finite recurrent systems 63

Proof: In logarithmic space, it can be verified whether the input is of the correct
form, i.e., whether it represents a tuple whose components are a directed graph,
a mapping from arcs to numbers, a vertex and another mapping from vertices to
{1,...,n} UF, where the elements of § are represented appropriately. If it is the
case, we can assume that (G, m, g,) is the input. Also in logarithmic space, it can
be verified whether m assigns every number to at most one arc of GG, whether ¢
is a vertex of G and whether o maps vertices to {1,...,n} UF in the correct way.
Hence, it remains to check whether G is acyclic. This can be done in nondeterministic
logarithmic space due to Theorem 3.12. Hence, we obtain an overall nondeterministic
logarithmic space algorithm.

|

As already mentioned, we will use arithmetical circuits only for representing
functions. As a basic property of the operation set that will be involved it holds that
every operation is commutative, i.e., the order of the input values is not significant.
So, we will consider arithmetical circuits only as triples, where we suppress the second
component, mapping m, of our original definition.

An important operation for arithmetical circuits is superposition. More pre-
cisely, given two functions represented by arithmetical circuits, how do we obtain an
arithmetical circuit representing the superposition of these functions? This operation
is rather simple, since it suffices to compute the disjoint union of the two underlying
graphs and glue together the output vertex of the one circuit with the appropriate in-
put vertex of the other circuit. Depending on the actual situation, input vertices may
have to be glued together or not. An example is provided in Figure 4. The picture
shows four schemes of arithmetical circuits: three 3-ary circuits, C7, C; and an un-
named one (the rightmost circuit in the picture), and a 2-ary circuit, C. Let fo,, fe,
and f¢ denote the functions represented by C1, C5 and C, respectively. Then, the un-
named circuit represents function f(z1,z2,23) = fo(feo,(z1,22,23), fo,(x1, T2, 23)).
Note that the input vertices of C' have become so-called inner vertices, i.e., vertices
that are not input vertices, by a glueing operation.

5.2 Finite recurrent systems over sets of natural numbers

A recurrence is a pair composed of a function and a set of initial values. Using
recurrences, one can generate infinite sequences of objects by applying the function
to certain of already generated objects. Usual recurrences are defined over natural,
real or complex numbers and involve only basic arithmetical operations like addition
and multiplication. We extend this notion to recurrent systems over sets of natural
numbers. Remember that 0 is also a natural number.

Definition 15 Letn > 1. A finite recurrent system over sets of natural num-
bers of dimension n is a pair S = (F,A) where F = (f1,..., fn) for f1,..., fn n-ary
functions over sets of natural numbers and A € N". The dimension n of recurrent

64

Figure 4 Circuit representation of the superposition of functions. Input
vertices are represented as squares.

Chapter 5 Introducing finite recurrent systems 65

system S is denoted as dim S.

Finite recurrent systems define sequences of tuples of sets of numbers. These
tuples are generated by parallelly applying the functions from F. Formally, this
process is defined as follows. Let S = (F, A) be a finite recurrent system over sets
of natural numbers of dimension n where F = (f1,..., f,) and A = (ay,...,a,). We
define, for every t > 0:

Si(0) =qet S[fi](0) =qet {ai}, i €{1,...,n}
Si(t 4+ 1) =qet S[fi](t + 1) =qet fi(S1(t),...,Sn(t)), i €{1,...,n}

F(t) =qef (S1(t),...,Sn(t))
S(t) =def Sn(t) :

In words, a recurrent system over sets of natural numbers generates tuples containing
sets of natural numbers in each component. Starting with the initial values, that are
determined by the second component of a finite recurrent system, the functions of a
recurrent system are simultaneously applied to the last obtained tuple. Compounding
the results of all functions yields a new tuple, that is also the input for the next
iteration step. If we define concrete recurrent systems, it is not always best to denote
the involved functions as fi,..., f,. Instead, we may give more convenient names,
and the denotation S[h] is applied in these cases.

To give names, we often say that f, is the output function of S. Furthermore,
we call S;(t) the result of the i-th function of recurrent system S in the t-th iteration
step, and S(t) is the result of the system in the t-th iteration step. Compounding
the results of the system of all iteration steps, i.e., compounding the results of the
output function of S, we obtain a sequence of sets of natural numbers; this sequence
is represented or defined by S. By [S], we denote the union of these sets, i.e., [S] =qef
U0 S(t). So, a finite recurrent system defines a sequence of sets of numbers as well
as a set of numbers. We are interested in two problems that are immediately implied
by our definitions. One can ask whether a number b is generated in iteration step ¢
or whether b is generated in some iteration step at all.

Several authors studied so-called membership problems for sets of natural num-
bers that can be built from singleton sets by applying the set operations union,
intersection, complementation and the two arithmetical set operations addition and
multiplication, denoted by @ and ®, respectively, [79], [84], [87], [61]. Addition and
multiplication on sets are defined elementwise in the following sense. Let A, B C N.
Then,

A® B =g {r+s:r7€ Aand s € B}

AQB =ge {r-s:r € Aand s € B}.
Let O C {U,N,”,®,®}. An n-ary O-function f = f(zi,...,z,) is a function over

the variables z1,...,, defined by using only operations from 0. We will consider
finite recurrent systems that are built using only {U,N, ™, ®, ® }-functions.

66

Definition 16 Let O C {U,N,”,®,®}, and let n > 1. A finite recurrent O-
system S = (F, A) over sets of natural numbers of dimension n is a finite recurrent
system owver sets of natural numbers of dimension n where every function in F is an
O-function.

Since we will mostly deal with finite recurrent {U, N, ~, @, ® }-systems over sets of
natural numbers we will henceforth call them recurrent systems, for short. If we want
to restrict the involved functions to special operation sets, we will speak of recurrent
O-systems instead of “finite recurrent O-systems over sets of natural numbers”.

It is high time to discuss an example. The possibly most famous recurrence
known in mathematics defines the Fibonacci numbers. The first few values are:

1,1, 2 3,5,8, 13, 21, 34, 55, 89, ...;

In genera‘la F(TL + 2) —def F(n + 1) + F(TL), n > 0, where F(O) —def F(l) =def 1.
Here, the nature of a usual recurrence is well comprehensible. We want to define a
recurrent system that computes the same sequence. It is already clear by definition
that recurrent systems do not generate numbers but sets of numbers. However, in
case of singleton sets a correspondence is easy to establish. Let

F =qef (f1, f2) where fi(z1,22) =der 2 and fo(z1,22) =def 1 D T2
A =g4et (O, 1) .

Observe that f; and fy are 2-ary {@®}-functions. Using F and A, we define the
following recurrent {®}-system: S =g4cr (F, A). Consider the evaluation of the first
few iteration steps of S:

= ({1} {1}) = {1}
= ({1}, {1}) = {1t & {1} = {2}.

So, it holds that S(0) = {F(0)}, S(1) = {F (1)}, S(2) = {F(2)}, and by induction,
it can indeed be shown that S(t) = {F(¢)} for every ¢t > 0.

51(0) = {0}
5(0) =52(0) = {1}
S1(1) = f1(51(0), S2(0)) = f1({0},{1}) = {1}
S(1) =855(1)
(2)
(2)

(51(0), 52(0)) = f1()

= f2(51(0), 52(0)) = f2({0},{1}) = {0} @ {1} = {1}
(51(1), $2(1)) = fu()
(51(1), $2(1)) = fal)

An operation, that is used sometimes, is the extension of a recurrent system by
further components. Formally, this is defined as follows. Let O C {U,N, 7, ®,®}.
Let S = (F, A) be a recurrent O-system of dimension n, where F = (fy,..., f,) and
A= (ay,...,ap). Let X' =qe¢ (1,...,Tn,Tni1), let f = f(x') be an O-function, and
let a € N. The result of adding (f,a) as (n + 1)-th component to S is the recurrent
O-system S' = (F', A") where F' = (f{,..., fh, fnt1) and A" = (ay,...,ap,a) and
fl(x') = fi(z1,...,z,) forevery i € {1,...,n}. It is obvious that adding a component

Chapter 5 Introducing finite recurrent systems 67

to a recurrent system can be done by a logarithmic-space computable function. A
very analogue definition holds if two (or more) components are added to a recurrent
System.

5.3 Membership problems for finite recurrent systems

For recurrent systems we define two types of membership problems. The ezistential
membership problem M., for recurrent systems asks, given a recurrent system S and
a number b, whether b is contained in set [S] defined by recurrent system S. The
exact membership problem My, asks, given a recurrent system S and numbers ¢ and b,
whether b is contained in the result of the ¢-th iteration step of S. We want to study
the complexities of these membership problems with respect to the involved functions.
That is why we define classes of existential and exact membership problems. Let
oc{yn o}

Mz (O) =ger {(S,b) : S a recurrent O-system and b € [S]}
M (O) =4qet {(S,t,b) : S a recurrent O-system and b € S(¢)}

Instead of writing M., ({U,N, ®}) we will write M., (U, N, @), for short; similarly for
all other problems.

The complexities of our problems strongly depend on the input representation.
We assume that natural numbers are given in binary representation and functions are
represented by arithmetical circuits with appropriate labels. So, to give an example,
a {U, @, ® }-function is represented by an arithmetical circuit whose vertices that are
not input vertices are labelled with U, ® or ®. For circuits we require an encoding
that permits adjacency tests for two vertices and detection of labels of vertices in
deterministic logarithmic space. (A label list and neighbourhood representation by
adjacency lists can be assumed.) So, the size of the representation of a circuit is
of order the number of vertices and arcs of its underlying graph. It can be verified
in nondeterministic logarithmic space whether an input represents an O-function for
O cC{un,—,®,®} (Lemma 5.1). Remember that the upper space complexity bound
is mostly required for verifying that the graph underlying the circuit is acyclic. The
following observation is easy.

Lemma 5.2 Let O CO' C{U,N,~,®,Q}.
(2) Mo (0) <, Mo (O).

Proof: If a given input does not fulfill basic requirements for being an instance
of My, (U,N, 7, @, ®) or M, (U,N, ™, &, ®), it can simply be output by the reducing
function. Acyclicness of the intended circuits is not such a basic requirement. If an
input “looks” like an instance, it suffices to verify that appearing labels are only from
set O, which can certainly be done in logarithmic space.

|

68

It should be mentioned here that instance verification becomes easy, if addition-
ally a certificate for being acyclic is required for the circuits. Such a certificate can
be a topological ordering of the vertices (Theorem 2.2). Then, instance verification
can be done in logarithmic space. However, all complexity results that we will prove
for membership problems for recurrent systems remain true as they will be stated.
In other words, the complexity of instance verification does not have any effect on
the complexities of our problems.

As first complexity results for membership problems for recurrent systems, we
will prove upper bounds for the general problems. Interestingly, it is an open and
difficult question whether My, (U,N,”,®,®) is computable. We can prove only a
weaker result and place the problem in the lower regions of the arithmetical hierarchy.
But before, we define a surely decidable variant of My, (U, N, ~, ®, ®). Instead of the
whole set of natural numbers, the variant takes recurrent systems that are defined
only over finite intervals of N. Let a € N. A finite recurrent system S over {0, ..., a}
is defined similar to usual recurrent systems only that functions are defined only
over {0,...,a}. For our operations, we precise as follows. Let A C N be a set,
and let B and C be integer expressions that are built using operators from the
set {U,N,”,®,®}. Then,

[A]<q =aet AN{O, ..., a}
[B U Cl<a =det [Bl<a U [Cl<a
[B N Cl<a =det [Bl<a N [Cl<a
[Bl<a =def ([Bl<a) N{0,...,a}
[B @ Cl<q =def ([Bl<a ® [C]<a)ﬂ{0,...,a}
[B ® Cl<a =def ([Bl<a ® [Cl<a) NH0,...,a}.

I/\

So, {U,N, ™, ®, ® }-functions over {0, ...,a} compute subsets of {0,...,a}, especially
at every vertex of the representing circuits. Let aMy,,(U,N,”,®,®) be the set of
tuples (S,a,t,b) where S is a recurrent system, a, ¢ and b are natural numbers
given in binary representation and b € [S(t)]<,. Variants of aMy,,(U,N, ™, ®,®) for
recurrent systems with restricted sets of operations are defined in the usual style. We
have to emphasise the fact that b € [S(t)]<, is different from b € S(¢t) N {0,...,a}.
This effect is illustrated by the following example, where we choose a = b = 1:

€ ({1,21n {23} @ {0}) @ {1}) N {0,1} = {1}
but
1¢ ((((11,20 N [12,3Y1) @ [{0M<1) N{0,1}) @ [{1}<1) N {0,1} = 0.

Another example of a bounded circuit evaluation is depicted in Figure 5. The bound
is set to a = 11. The result is the set of prime numbers not greater than 11, and it

Chapter 5 Introducing finite recurrent systems 69

is easy to verify that, for every chosen bound, the result is the set of prime numbers
not greater than the specified bound.

Lemma 5.3 aMy,(U,N,”,®,R®) is in EXP.

Proof: Let (S,a,t,b) be an instance of aMy,,(U,N, ,®,®) where S = (F,A) is a
recurrent system of dimension n, F = (f1,..., fn). Let Ci,...,C, be arithmetical
{U,N, ™, &, ®}-circuits representing the functions fi,..., f,, respectively. Let finally
v denote the sum of the numbers of vertices appearing in Cy,...,C,. To obtain
[S(t)]<a, we have to compute ([S1(7)]<q, - - -, [Sn(i)]<a) for every ¢ < ¢. Per iteration
step, we have to compute v intermediate results, that correspond to the vertices of
the circuits. Every single result can be obtained from already computed ones in
exponential time (measured in the size of the input), so that all computations of one
iteration step can be performed in time

v- p(V . 210ga) < 2q(log v+loga) 2q(log v-a)

for some polynomials p and g. Furthermore, only exponentially many iteration steps
have to be perfermed, which makes exponential time in total.
|

We want to show that aM;,, is not an arbitrary modification of My, but a
usual—a wuseful—one. We need a technical result, that already contains the main
property for this topic.

Lemma 5.4 Letn > 1. Let f = f(z1,...,z,) be an n-ary {U,N, ™, ®, ® }-function,
and let ay,...,a, € N. Let a =q¢f ({a1},-..,{a,}). Then, there is a constant ¢ > 1
such that, for every a > ¢, holds:

[f(@)l<a = f(a) N {0, ...a}

and
pPcflacN = 0cC[f(a)]<a CA{O0,...,a}.

Proof: Let x =get (21,...,2,). We prove the statement by induction over the
construction of f. Let ¢ € {1,...,n} such that f(x) = z;, i.e., f is simple. We set
¢ =gef @; + 1. Then, for every a > c:

[f(@)]<a = {ai} N{0,...,a} = f(a) N {0,...,a} = {a;} .

Furthermore, since § C f(a) C N and @ C [f(a)]<, C {0,...,a}, the statement holds
for this case. Note that ¢ = a; + 1 is necessary for the case a; = 0.

Now, let f be composite. Without loss of generality, we can assume that f
does not use N, since this operator can be built from using only U and ~. There are

70

1
L]] 1

‘0 234567891011

@f 6 8910
S

Figure 5 Depicted is an arithmetical {U, ", ®, ®}-circuit. It is eval-
uated in the sense of aMy,, (U, ,®,®) with bound a = 11, i.e., only
numbers not greater than 11 are taken into account. Input values are 0
and 1, and the results of each vertex are annotated.

|0 234567891011 Cl\\\

‘O 4 8 910

Chapter 5 Introducing finite recurrent systems 71

n-ary functions f; and fo fulfilling the assumptions using the constants ¢; and co,
respectively. We distinguish four cases.

(a)

Let f(x) = fi1(x). We set ¢ =gcf ¢1. We have to verify the properties. Let a > c.

[f(@)]<a = [(f1(@))]<a = [1(a)]<a N A0, ..., a}
= fi(a)ﬂ{O,...,a}ﬂ{O,...,a}
= fi@)N{0,...,a} = f(a) N {0,...,a}

The second property immediately holds by the definition of the complementation
operation.

Let f(x) = fi1(x) U fa(x). Applying the induction hypothesis, it holds for every
a > max{cy, co}:

[f(a)]<a = [f1(a)]<a U [f2(a)]<a = (f1(a) N {0, ..., a}) U (f2(a) N{O,.. ., a})
= (f1(a) U f2(a))0{0,---, a}
= f(a)n{0,...a}.

For proving the second property, we have to be more careful. Assume that
0 c f(a). Then, § C fi(a) or § C fo(a), and so @ C [f(a)]<, for every a >
max{cy, co} by the assumptions about f; or fo. If there is a number b € N such
that b € f(a), then [f(a)]<q # {0,...,a} for every a > max{c;,co,b}. We set
¢ =gof max{cy, co,b}.

Let f(x) = fi1(x) @ fa(x). Applying the induction hypothesis, it holds for every
a > max{cy, co}:

[f(@)]<a = ([f1(a)]<a ® [f2(a)]<a) N {0, .., a}
((f1(@nA0,...,a}) & (f2(a) n{0,...,a})) N{0,...,a}

= (fi(a) @ f2(a)) nH{0,...,a} = f(@a)N{0,...,a}.

Note that the last but second equality holds due to the monotony property
of addition. The definition of the sought constant and the verification of the
second property are similar to the previous case. Let) C f(a), i.e., there are
numbers by € fi(a) and by € fy(a) such that by + by € f(a). Hence, by + by €
[f(a)]<q for every a > max{cy,co,b1 + by}. Similarly, if there is b € N such
that b ¢ f(a), then b ¢ [f(a)]<, for every a > max{c;,co,b}. Thus, we set
C =(ef max{cl, Co, b1 + b2, b}

Let f(x) = f1(x) ® fo(x). This is the case that causes most difficulties. Similar
to the case @ we obtain for every a > max{cy, co}:

[f(@)]<a = ([f1(a)]<a @ [f2(a)]<a) N {0, .. a}
((f1(@)nA0,...,a}) ® (f2(a) N {0,...,a})) N{0,...,a}
(f1(@) ® f2(a)) N{0,...,a} = f(@)NA{0,...,a}.

72

It is clear that all equalities hold for most cases but 0. However, by definition,
if 0 € f(a), then neither fi(a) nor fy(a) are empty and so, by induction hy-
pothesis, neither fi(a) N {0,...,a} nor fa(a) N {0,...,a} are empty for every
a > max{cy,co}. The verification of the second property and the definition of
the constant are straightforward and similar to the case @.

Theorem 5.5 Letn > 1. Let S be a recurrent system, and let t and b be natural
numbers. It holds that b € S(t) if and only if there is ¢ > 1 such that for all a > c:
(S,a,t,b) € aMy,(U,N, ™, ®, Q).

Proof: Without precisely explaining the connection, we can restrict on the situation
t = 1. The basic idea is to replace the recurrent system by a single function. We will
encounter this construction when we will prove polynomial space decidability results
(we compute the “circuit representation” of S(t) by t-fold superposition). But then,
the result follows from Lemma 5.4 using any a > max{c, b} where c is the constant
of the lemma.

|

The complexity class Yo of the second level of the arithmetical hierarchy is
defined as the class of sets A of the following form: there are a decidable set B and
numbers 7, s > 0 such that, for every z1,...,x; € X*:

(1,...,2) €EA <= Fy1...y Vo1 .. . Vas(z1, .o Tl Y1y oy Yry 21, .-, 25) € B

Note that the quantifiers are unlimited, i.e., they range over the whole set ¥*.

Corollary 5.6 (Glafler, [34])
My (U, N, 7, @, ®) and M, (U,N, ™, ®, ®) are contained in ¥s.

5.4 Membership problems for arithmetical circuits

The study of membership problems has a long tradition. Stockmeyer and Meyer,
already in the eighth decade of the past century, considered sets of natural numbers
that can be built by using the operators U, ~ and & applied to singleton sets of
natural numbers [79]. In our notation, Stockmeyer and Meyer formed sets using
arithmetical {U, ™, @}-circuits, where the underlying graphs are trees. Such circuits
were called formulas by McKenzie and Wagner [61].

A broader—almost complete—investigation of such membership problems was
undertaken by McKenzie and Wagner. The authors studied membership problems
for sets that can be defined by {U,N,™,®, ®}-circuits and -formulas. Similar to
our membership problems, they restricted the sets of possible operations to arbitrary
subsets and obtained completeness results for many complexity classes. To be precise,

Chapter 5 Introducing finite recurrent systems 73

McKenzie and Wagner defined the following problems. Let O C {U,N,”,®,®}.
Then,

MC(O) =q4et {(C, A,b) : C is an arithmetical O-circuit and b € [C(A)]}

where A is a tuple containing natural numbers suitable for circuit C, and [C(A)]
denotes the set that is defined by circuit C whose input vertices are labelled with the
corresponding entries of A. Additionally, C is furnished with a topological ordering
of the vertices of its underlying graph for efficient input verification. So, MC(O) can
be considered the sets of tuples (5,¢,b) in My, (O) where ¢ = 1. We re-emphasise
that MC(Q) requires topological orderings; nevertheless the problems are compara-
ble. In Figure 6, the complexity results for the circuit membership problems from
[61] are stated. If lower and upper complexity bounds of a problem coincide, the
problem is complete for this class. The complexity class coR is a probabilistic com-
plexity class and a subclass of coNP. It is interesting that it is not known whether
MC(U,N, ™, ®, ®) is decidable. It seems more likely that this is not the case (consider
the discussion in [61]).

Theorem 5.7 (McKenzie and Wagner, [61])
The results of Figure 6 hold.

It is interesting that most complexity classes that appear in Theorem 5.7 are
important for our membership problems, too. We will see that, in some cases, even
the existential membership problem does not increase the complexity. Particularly,
this will hold for {U, ®, ®}-circuits and recurrent {U, ®, ® }-systems. This behaviour
seems surprising, and the proof will be one of the most involved ones of the following
chapter.

74

Operation set Circuit membership problem MC
Lower bound Upper bound
un-— D NEXP ?
un SR NEXP
U D ® PSPACE
N D ® P ‘ coR
D P
un-— @ PSPACE
un @ PSPACE
U @ NP
N @ C.L
@ C.L
un-— &K PSPACE
un ® PSPACE
U ® NP
N ® C.L P
® NL
Un-— P
un P
U NL
N NL

Figure 6 Lower and upper complexity bounds for membership prob-
lems for arithmetical {U,N, ™, ®, ®}-circuits. In most cases, if lower and
upper bounds are equal, the problems are complete for the specified com-
plexity class. It is not known whether the general membership problem

is decidable.

75

Chapter 6
Decidable membership problems

Our membership problems for recurrent systems can be partitioned into two sets
with respect to decidability. Unlike for membership problems for {U,N,~, @, ®}-
circuits, as they were studied by McKenzie and Wagner, we will see that we can
prove undecidability of some membership problems. However, these three problems
are all existential membership problems, and they will be treated in the next chapter.
This chapter mainly deals with decidable problems.

We will obtain a number of completeness results for the complexity classes NL,
NP and PSPACE, and each of these complexity classes a section of this chapter is
dedicated to. The main results will show upper complexity bounds for membership
problems. Hardness in most cases follows by rather easy reductions, even though
the proof for showing PSPACE-hardness is not simple. Among the NL-complete
problems, the main part is dedicated to My, (®), the exact membership problem for
recurrent {® }-systems, and we will use the number-of-walks problem XNOMW (1)
for solving it.

In the second section, that is dedicated to problems solvable in nondeterministic
polynomial time, we will concentrate on solutions for the problems My, (@) and
M (N, @®). The former problem is related to the auxiliary problems XPOM(2) and
XNOMW(2). For solving the latter problem, we define a new class of problems for
recurrent systems—the emptiness problems. These problems are inspired by similar
problems for arithmetical circuits introduced by McKenzie and Wagner. We will see
that the problems M., (®) and M., (N, ®) are NP-complete.

PSPACE-complete membership problems are concidered in the third section.
To name two of the results, we will prove that M., (U,N) is PSPACE-hard and
M., (U, ®,®) is polynomial-space decidable. Containment is based on analysing so-
called computation trees, that represent elements from the output set of iteration
steps of recurrent {U, ®, ®}-systems. Completeness for this and further problems
follows from easy reductions.

The last two sections are dedicated to problems that have not yet been treated
adequately. Most of them are PSPACE-hard or decidable.

6.1 Nondeterministic logarithmic space acceptable membership prob-
lems

The problems that we will investigate in this section are the exact membership prob-
lems My, (), My (7), My (U), My (N) and My, (®) and the existential membership
problems M., (), Mc,(7) and M., (U). Remember that M;,,() and M., () mean that
functions do not contain any operation. All the mentioned problems are contained
in the complexity class NL, and many of them are even NL-complete; the others

76

are contained in L. One might suspect that nondeterministic logarithmic space is
mostly needed because of the input representation that we have chosen. As we al-
ready mentioned McKenzie and Wagner additionally required a topological ordering
of the vertices of the circuits to check for acyclicness in deterministic logarithmic
space. In our case, however, this would not lower the upper complexity bound as we
will see. At first glance surprisingly, My, (7) can nevertheless be solved in (determin-
istic) logarithmic space, but this is due to the fact that {~}-functions are very easily
representable.

Lemma 6.1 M, (") isin L.

Proof: {~}-Functions are represented by circuits that are unions of directed trees.
Every vertex of such a circuit that is not an input vertex has exactly one prede-
cessor (but may have several successors), and orientations point away from input
vertices. (An example is given in Figure 7.) Hence, syntactical correctness of in-
stances of My,,(7) can be tested in logarithmic space. Equally in logarithmic space,
given an n-ary {~}-function f(x), x = (z1,...,z,), it can be determined index num-
ber j € {1,...,n} such that f(x) = z; or f(x) = Z;, which certainly does exist
and is unique, and verified which of these cases holds. We say that f depends on
input component j. Starting from the output vertex, the unique source (i.e., input)
vertex of the connected component can be determined in logarithmic space as well
as the parity of the length of the path. Even parity means an even number of com-
plementation operations applied to the input component; similarly for odd length
parity.

Now, let (S,t,b) be an instance of My, (T) where S = (F,A) is a recurrent
{"}-system of dimension n and F = (f1,...,fn) and A = (a1,...,a,). Let x =q¢f
(x1,...,2,). It holds that b € S;(0) if and only if b = a;, i € {1,...,n}, and
be Si(t'+1),t >0, if and only if b € S;(t'), if fi(x) = z;, and b & S;(t'), if
fi(x) = z;. Consider the sequences P; =gt (V0,---,v¢) of numbers from {1,...,n}
for £ > 0 where vy =gqcs n and f,,,, (x) =z, or f,,,, (x) =7, foralliec {0,...,£—1}.
Consider P,. Observe that P, is the final part of every sequence Py for ' > n, since
every function of S depends on its unique input component. Note that there are
largest a,w € {0,...,n}, @ > w, such that v, = v, in P,. In logarithmic space we
can determine o and w. If ¢ < 3n, b € S(t) can be decided straightforwardly. Let
t > 3n. Note that in logarithmic space we cannot always count till ¢. However, since
(Vw, - - -, Vo) 18 unique, this cycle appears many times in P, and after passing twice
this cycle, the result is the same as before. So, the basic idea is to reduce such cycles in
P,. Determine r € {0,...,20—1}, § =q¢f @—w, such that ¢ = n—a+r (mod 24), which
can be done in logarithmic space. It holds that b € S(¢) if and only if b € S(n—a+r),
which can be decided in logarithmic space, since n — a + r < 3n.
|
Since we only consider <& -reducibility, we easily conclude L-completeness of

M, (7) from Lemma 6.1. It is clear that this corollary is rather uninteresting, and

Chapter 6 Decidable membership problems

7

o %

Figure 7 The left circuit represents the {~}-function f(z1,z2) = o
whereas the right structure is not a circuit due to an incorrectly oriented
arc. A vertex labelled with ~ cannot have two in-coming arcs.

78

for a more interesting completeness result, we should use stronger reducibilities, for
instance based on small circuits (a first overview may be provided by Vollmer’s book
on circuit complexity [83]).

Lemma 6.2 (1) M, (U) <k M, (®).
(2) My (N) <, Mg (®) .

Proof: Let (S,t,b) be an instance of My, (U) where S = (F, A) is a recurrent {U}-
system of dimension n and F = (f1,..., f,) and A = (ay,...,a,). Functions f/,
i € {1,...,n}, are obtained from f; by replacing operation U by ®. Furthermore,
for every i € {1,...,n}, a} =qer 0, if a; = b, and a] =qer 1, if a; # b. Then,
S" =get (F',A") where F' =4er (f1,-..,f)) and A" =q¢ (af,...,a},) is a recurrent
{®}-system. We will show by induction that b € S;(k) for every i € {1,...,n} and
k > 0 if and only if 0 € S/(k). By definition of A’, the claim is true for k¥ = 0 and
allie{1,...,n}. Let k>0, and let s € {1,...,n}. Let C! be the arithmetical {®}-
circuit that represents {®}-function f/, and let C; be the arithmetical {U}-circuit
that represents f;. Then, 0 € S/(k + 1) if and only if there is s € {1,...,n} such
that the s-th input vertex of C! is start vertex of a path to the output vertex of C]
and 0 € S (k), and this holds if and only if there is r € {1,...,n} such that the r-th
input vertex of C; is start vertex of a path to the output vertex of C; and b € S,.(k).
By construction of S’, r and s can be chosen equal. Hence, 0 € S/(k + 1) if and only
if be S;(k+1), and (5,¢,0) € My, (®) if and only if (S,t,b) € My, (U).

In case of My,,(N), we can apply a similar reduction. We only have to make
the following modification. Let (S,¢,b) be an instance of My, (N) where S = (F, A)
and A = (a1,...,a,), n =dimS. Forevery i € {1,...,n}, a/ =qe 1, if a; = b, and
a =qgef 0, if a; # b. Let A” =q¢¢ (af,...,a];); F” is obtained from F as described
above, where intersection operations are replaced by ®. Let S” =q¢¢ (F”, A”). Then,
(8”,t,1) € My,(®) if and only if (S,t,b) € My,,(N) by a proof similar to the one
above.
|

For showing that My, (®) is contained in NL, we give a logarithmic-space algo-
rithm that has access to an NL-set oracle. This oracle set will be XNOMW (1), the
problem asking for the exact number of marked walks from one to another specified
vertex where the queried number is given in unary representation. In addition, we
have to compute products of natural numbers in small space. By iterated multipli-
cation, we mean the computation of the product of, possibly more than two, given
numbers. This problem defines a function that we have called ITMULT. Remember
that ITMULT is an FL-function (Theorem 3.6).

Before we give the proof of My, (®) € NL, we discuss the main ideas of the
proof on a small example. Consider the {® }-circuit in Figure 8. The depicted circuit
represents the function f(z1,22,23) = (21)3:(22)?-x3. Observe that the powers of the
variables correspond to the numbers of paths from the input vertices to the output

Chapter 6 Decidable membership problems 79

vertex gc; for instance, there are (exactly) three 1, gco-paths. So, for evaluating
{®}-circuits, determining the numbers of paths from input vertices to the output
vertex is important. This idea has been used by McKenzie and Wagner to show that
MC(®) is in NL ([61] and Theorem 5.7). Our proof for showing that My, (®) is in
NL extends this idea.

Lemma 6.3 M, (®) is in NL.

Proof: We will show that My,,(®) can be decided in logarithmic space with access
to oracle XNOMW(1). Let (S,t,b) be an instance of My,,(®) where S = (F,A) is
a recurrent {®}-system of dimension n and F = (fi,..., f,) and A = (a1,...,ay).
Let Cy,...,C, be the arithmetical {®}-circuits representing f1,..., fn, respectively.
We obtain a directed graph C from C,...,C, in the following way: glue together
the input vertices corresponding to the same input component (i.e., glue together the
vertices in C',...,C, labelled 1, glue together the vertices in C1,...,C,, labelled 2,
and so on), and glue together every output vertex with the input vertex corresponding
to its circuit number (e.g., output vertex of C is glued together with input vertex
labelled 1). If there is an output vertex that is also an input vertex, an arc is set
instead, i.e., if, for instance, the input vertex of C labelled with 3 is also the output
vertex of ', an arc from input vertex 3 to input vertex 1 is set in C. Let M be the
set of vertices of C' that are labelled input vertices. Let 21, ..., 2, be the vertices in
M, that we call marked, and z; is the input vertex labelled i. Note that, for every
pair 4,j of numbers from {1,...,n}, the number of 2-marked z;, z;-walks in C is
exactly the number of paths in C; from input vertex labelled 7 to the output vertex.

Now, let ¢y, ..., ¢, be natural numbers such that, for every i € {1,...,n}, ¢; is
the number of (¢ + 1)-marked z;, z,-walks in C. It holds that b € S(¢) if and only if
b =[], (a;). We assume 0° = 1. For verification of this condition, we distinguish
three cases:

(A) If b= 0, it suffices to find i € {1,...,n} such that a; = 0 and ¢; # 0.

(B) If b =1, it suffices to verify that ¢; = 0 holds for all 7 € {1,...,n} for which
a; # 1 does hold. Remember that, by definition of circuits, there must be
r € {1,...,n} such that ¢, > 0.

(C) If b > 2, it must be verified that, for all i € {1,...,n}, a; = 0 implies ¢; = 0,
and ¢; < logb, if a; > 2. Then, ¢; for a; # 0 are determined, and by iterated
multiplication the value of S(t) can be computed.

All three cases can be handled in logarithmic space using XNOMW(1) as oracle.
Case (C) strongly depends on the fact that iterated multiplication is an FL-function
due to Theorem 3.6. Since XNOMW(1) is in NL due to Corollary 4.12, M;,,(®) €
LN = NL.

|

80

Xy

-
X/

®gc

Figure 8 A {®}-circuit representing the function f(z1,zs,73) = (71)3(z2)%z3.

Chapter 6 Decidable membership problems 81

Note that cases (A) and (B) of the last proof solve the problems My, (U) and
My, (N), respectively, after application of the reductions defined in the proof of
Lemma 6.2.

Now, we can show completeness for three exact membership problems.
Theorem 6.4 My, (U), My,,(N) and My, (®) are NL-complete.

Proof: Containment in NL of all these problems is due to Lemmata 6.2 and 6.3.
For hardness, we reduce ACYCGAP to My, (U) and ACYCGIP to My, (N), which
establishes the desired results. Let (G,u,v) be an instance of ACYCGAP where
G = (V,A) is a directed graph and u and v are vertices of G. We have to decide
whether G is acyclic and contains a wu,v-path. Let w; and wy be new vertices. We
obtain H from G by adding w; and wy to G and arcs from w; to w and from v to
wsy. Observe that G has a u,v-path if and only if H has a wy, wo-path. We convert
H into a graph whose vertices all have at most two in-coming arcs: if x is a vertex
of H that is endpoint of r > 3 arcs, replace x by r — 1 new vertices by application of
the method executed on a small example in Figure 9; let H' be the resulting graph.
Then, it holds that (G,u,v) € ACYCGAP if and only if (H',w,ws) € ACYCGAP.
Now, let z be a new vertex. We add z to H' and arcs from z to every vertex with
exactly one in-coming arc; we obtain H”. Then, (H' wy,ws) € ACYCGAP if and
only if (H”,w;,wz) € ACYCGAP.

From H” we construct a {U}-circuit C. Let s be the number of vertices of H”
without any in-coming arcs. By construction, s > 2. Every vertex of H” with in-
coming arcs is labelled with U, and every vertex without in-coming arcs is labelled
input vertex, where w; shall be the first. The output vertex of C' is ws. For con-
structing a recurrent system, let f(zi,...,z,) be the {U}-function represented by
C. We define the functions of our recurrent {U}-system as follows. The system will
have dimension s+ 1. (We use this inefficient construction, since we want to reuse
it later.) For every i € {1,...,s}, let fi(x1,...,Z541) =det Z;. Furthermore, let
fs+1(.’171, - ,J?erl) =def f(acl, - ,Is). Let F =get <f1, ceey fs+1>, A =4t (1, o0,... ,0)
and S =get (F,A). Then, 1 € S(1) if and only if (H”, w1, ws) € ACYCGAP, i.e., if
and only if H” is acyclic and contains a wy,wo-path. Hence, (G,u,v) € ACYCGAP
if and only if (S,1,1) € My, (U).

The reduction from ACYCGIP to My, (N) uses the same reduction with two
slight modifications: S’ emerges from S by replacing every U by N, and (G,u,v) €
ACYCGIP if and only if (5’,1,0) € My, (N), since a u,v-path in G would imply
S'(1)=0or S'(1) ={1}.

|

Interestingly, only one existential membership problem turns out to be complete
for NL. The two others are far more complicated (under reasonable assumptions such
as NL C NP).

82

c

v Y
7\

a
(inH) %\ (inH)

Figure 9 Example for the construction in the proof of Theorem 6.4.
The left situation is replaced by the right one.

Chapter 6 Decidable membership problems 83

Theorem 6.5 (1) M., (") isinL.
(2) M, (U) is NL-complete.

Proof: For statement (1), let (S,b) be an instance of M, (7), n =gef dimS. The
proof of Lemma 6.1 already shows that b € [S] if and only if b € S(t) for some ¢ < 3n.
In deterministic logarithmic space, it can be tested whether one of (5,0,b), (S,1,b),
..+, (S,3n,b) is contained in My,, (™) using My, (7) as oracle. Hence M.,(7) € L = L.

For statement (2), let (S,b) be an instance of M,,(U) where S = (F,A) is a
recurrent {U}-system of dimension n and F = (f1,..., f,) and A = (ay,...,a,). We
show that b € [S] if and only if b € S(0) U---U S(n —1). The proof is based on the
construction of Lemma 6.3. We say that f; depends on input j, i,5 € {1,...,n}, if,
for every A1,...,4, CN,0€ fi(Ala e A, {0}, Ai+1, e ,An) In other words, f;
depends on input j, if the circuit representing f; contains a path from input vertex
labelled j to the output vertex. We construct an auxiliary graph G as follows: G
contains n vertices named 1,...,n, and there is an arc from vertex j to vertex 7 if
and only if f; depends on input j. Note that G is a reduced version of graph C of
Lemma 6.3, where we only keep information about accessibility but not about the
number of paths. Let a, = b for some r € {1,...,n}. It holds that b € S(¢) if
and only if there is an r,n-walk in G of length ¢, i.e., containing ¢ + 1 vertices. Let
P = (ug,...,us) be an r,n-walk of length ¢ in G. By the pigeon hole principle, there
is also an 7, n-path in G that contains at most n vertices, which proves that M., (U)
is in LN = NL with an argument similar to statement (1).

For hardness, we reduce ACYCGAP to M., (U). Let S = (F, A) be the (s + 1)-
dimensional recurrent {U}-system defined in the proof of Theorem 6.4. Let S =
(F,A) and F = (f1,..., fs+1)- Let f{(x1,...,Zs41) =def T2. Then, let F' =gy
(fi, f2, -, fst1). Let S =qef (F', A). Note that Si(t) = {0} for every i € {1,...,s}
and t > 1. Then, (G,u,v) € ACYCGAP if and only if (S,1,1) € My, (U) if and only
if (87,1) € M, (V).

|

6.2 Nondeterministic polynomial time acceptable membership problems

Mainly, we investigate recurrent {N, @}-systems and the complexities of the corre-
sponding membership problems. As a by-product we also determine the complexity
of the existential membership problem for recurrent {®}-systems. Furthermore, we
introduce the emptiness problem for recurrent systems, that asks whether, in some
iteration step, the empty set is the result. Our first considerations, however, are
made even for recurrent {N, ®, ®}-systems.

An immediate property of {N, ®, ®}-functions is that they can compute sets of
cardinality at most 1, if they are applied to singleton sets only. Since the result
may also be empty, multiplication with 0 can be considered an emptiness test. And

84

deciding emptiness will be a major problem to solve in this context. In contrast,
multiplication with 0 for {U,®,®}-functions is nothing else than an accessibility
problem, since such functions cannot compute empty sets.

First, we want to understand {N, @, ® }-functions. The intersection operation in
this context can be regarded as an equivalence test. With this notion in mind we can
rewrite {N, @, ® }-functions by systems of {@, ®}-functions in a specific sense that
is precised in the following lemma. Note that a {®,®}-function is a polynomial in
several variables with natural coefficients. A {@®, ® }-function over Z is a polynomial
in several variables with integer coeflicients. Since every set involved in this section
is of cardinality at most 1, we will avoid cumbersome set braces. The meaning of
every term will always be clear from the context.

Lemma 6.6 Let O C {®,®}, and let f = f(zy,...,zx) be a k-ary ({N} U O)-
function. Then, there are a k-ary O-function f’ and k-ary O-functions gi,...,g,
over 7, r € N, such that, for all a € N¥,

gi(@)=0forallie{l,...,r} = f(a)= f'(a)
gi(@) #0 for some i€ {1,...,r} = f(a)=10.

Proof: We prove the claim by induction. If f(xy,...,2) = z; for j € {1,...,k}
then f fulfills the statement using f’ =qer f and r =4er 0. Let f1 and fo be ({N}UO)-
functions such that f = fiNfoor f = f1® fy or f = f1® fo. By induction hypothesis,
there are k-ary O-functions fi, f}, gi,...,9:, and ¢2,...,¢2, 1,72 > 0, such that,
for all a € N¥,

gl(@)=0forallie{1,...,m} = fi(a) = fi(a)
g?(@)=0forallic {1,...,m} = f2(a) = f3(a)
gl(a) #0 for somei € {1,...,m} = fi(a)=10
g?(a) #0 for some i € {1,...,mm} = fola)=0.

If f=fidfoor f=fi® fythen f has the claimed property using f| & f5 or
f1 ® f}, respectively, and gi,...,9},9%,...,9%. So,let f = fiN fo. Let f' =qet f1,
9i =det g} for i € {1,...,71}, gro4i =der g7 for i € {1,...,r2} and g, =aer f1 — f5,
T =get 71 + 72 + 1. We prove correctness of the construction. Let g;(a) = 0 for a € NF
and all i € {1,...,r}. Then fi(a) £ 0, f(a) £ 0, f1(a) = f{(a), fo(a) = fi(a) and
fi(@) — fa(a) = 0, hence f(a) = fi(a) = fo(a) = f'(a). If thereisi € {1,...,r}
such that g;(a) # 0 for a € N* then fi(a) = 0 or fy(a) = 0 or f1(a) # f2(a). Hence,
fa)=0.

Since we assume functions to be represented by arithmetical circuits, Lemma 6.6
provides a simple polynomial-time algorithm that reduces {N,®,®}-functions to
{®, ® }-functions by simply deleting all N-vertices in the circuits. Precisely, if v

Chapter 6 Decidable membership problems 85

is a N-labelled vertex in such a circuit then we delete v and connect one predecessor
of v to all successors of v. Finally, all vertices from which the output vertex cannot
be reached are deleted. The function complexity class FP contains all functions that
can be computed in polynomial time by Turing transducers.

Corollary 6.7 Let O C {®,®}. Let S be a recurrent ({N} U O)-system. Then,
there is a recurrent O-system S’ of dimension dim S such that, for every t € N,
S(t) # 0 implies S(t) = S’(t), and S’ can be computed by an FP-function.

Proof: Let S = (F,A). Let n =gef dimS and F = (f1,..., fn). Let F' =qet
(fi,---, fr) where f/, i € {1,...,n}, is the function corresponding to f; according
to Lemma 6.6. The functions in F’ can be computed in polynomial time, so that
S =get (F',A) can be computed by a polynomial-time function. Induction over ¢
shows that f;(t) # 0 implies f;(t) = f/(t), i € {1,...,n}.

|

Corollary 6.7 provides a possible way to handle My,, (N, ®): We will give a com-
plexity upper bound for My, (@) and show how to decide whether the result of the
reduced recurrent system S’ can be trusted. The latter of the two tasks requires
the study of an appropriate emptiness problem, which becomes complicated and will
be solved here only partially. The former task, however, is closely related to exact
power-of-matrix and number-of-walks problems and has, therefore, been solved in
large parts.

Lemma 6.8 (1) XPOM(2) <L M, (D).
(2) My (@) <L XNOMW(2) .

Proof: (1) Let (M,k,a,i,j) be an instance of XPOM(2). Let n be the dimension
of M, i.e., the number of columns. Let ay,...,a, be row vectors over N such that
MT = (a; --- a,), where M denotes the transpose of M. By a construction that
is basically the same as used in the proof of Lemma 4.6, we can construct an acyclic
graph with n source vertices for every a;, i € {1,...,n}, such that the numbers
of paths from source vertices to the sink vertex (the designated output vertex of
the derived arithmetical circuit) correspond to the entries of a;. Furthermore, the
construction yields a graph where vertices have either zero or two in-coming arcs.
By the way, we do not have to make the lengths of all input-vertex-output-vertex
paths equal. Then, we label all vertices with two in-coming arcs with & and obtain
arithmetical {@®}-circuits C1,...,C), such that, for every a € N", f;(a) = a; - a for
every i € {1,...,n}, where f; denotes the function defined by circuit C;. Note that
Ci,...,C, can be constructed using only logarithmic space. It then holds that,
for every a € N*, M -a = (fi(a) --- fn(a)) = (aja --- a,a)”. Now, let § =
(F,A) be the recurrent {@}-system where F =get (f1,..., fn), represented by the
circuits C,...,C,, respectively, and A € {0,1}" containing 1 exactly in the j-th
component. It follows that M* - A = ((M*)y; --- (M*),;)T = (S1(k) -+ Sn(k))T.

86

So, it remains to re-index the functions and inputs such that f; becomes the output
function of S. Hence, (M, k,a,i,7) € XPOM(2) if and only if (S, k,a) € My, (D).

(2) Let = be an input word. In logarithmic space, we can check whether z is
of the form such that it may represent an instance of My, (®). So, we can identify
components of the possible input triple that represent ¢ and b of instances of My, ().
We can also identify structures C,...,C, that look like arithmetical {®}-circuits
and a tuple A = (aq,...,a,), where n should be the dimension of the contained
recurrent system S. So, it only remains uncertainty about the acyclicness of the
graphs G4y, ..., G, underlying the possible circuits C1,..., C,, respectively. So, we
have to verify two properties: Gi,...,G, are acyclic, and, if so, S(t) = b. For the
following construction, we treat these questions separately.

[We assume that G1,..., Gy, all are acyclic. So, x = (5,¢,b) is an instance of My, ()]

We construct a marked graph H; and identify two vertices s and ¢ such that H; has
exactly b (¢t + 1)-marked s, g-walks if and only if (S,¢,b) is in My, (). We obtain
subgraph H| of H; from the graphs Gy,...,G,, in three steps:

(a) obtain the first intermediate graph as the disjoint union of the graphs Gy, ..., Gy,

(b) obtain the second intermediate graph by glueing together the vertices of the
graphs G1,...,G, that are labelled in C,...,C, with the same numbers, i.e.,
glue together the n vertices labelled as input vertex 1, glue together the n vertices
labelled as input vertex 2, and so on, and label these glued vertices as marked,

(c) obtain the final graph by adding arcs from the output vertex of C; to the vertex
that is the result of glueing together all input vertices labelled with 4 for all
ie{l,...,n}.

Remember that we used a similar construction in the proof of Lemma 6.3. Let M
denote the set of marked vertices of H/, and let them be z1,...,z,, where z; cor-
responds to the marked vertex obtained from glueing together all i-labelled vertices.
Now, observe that, for all pairs 4,j of numbers from {1,...,n}, the number of 2-
marked z;, z;-walks in H{ is equal to the number of paths in G; from input vertex i
of C; to the output vertex of Cj.

A second subgraph H{ of H; is obtained from the numbers of A by the following
construction. Let H{ be an acyclic graph on at least n + 1 vertices, where we tag
vertices S, $1, ..., S,, such that H{ has exactly a; s, s;-paths for every i € {1,...,n}.
Without loss of generality, we can assume that s is a source of H{ and si,...,s,
are sinks. The construction of H{ is basically equal to the one used in the proof of
Lemma 4.6 as well as in the proof of statement (1). Now, obtain H; from H{ and
HY{ as the disjoint union of H{ and H{ and by adding arcs from s; to z; for every
i € {1,...,n}. By a straightforward induction, it can be shown that the number of
(t' + 1)-marked s, z;-walks in H; is equal to S;(¢’) for every ' > 0 and i € {1,...,n},
from which the claim about H; follows.

Chapter 6 Decidable membership problems 87

[Verifying that Gq, ..., Gy, all are acyclic.]

))

We construct a graph Hs from Gy,..., G, and identify two vertices u,v of Hy such
that Hy has exactly one u,v-walk, if Gq,...,G, all are acyclic, and infinitely many
u, v-walks, if some of the graphs Gy,...,G, is not acyclic. Let vyq,...,v, denote
the numbers of vertices of G1, ..., Gy, respectively. Let G1,...,G7',G3,...,G% be

copies of G1,...,G,. We obtain Hy first as the disjoint union of G},...,G% and
second by adding the following arcs: an arc from vertex 1 of G to vertex 2 of G?, an
arc from vertex 2 of G? to vertex 3 of G3, and so on, generally, an arc from vertex i of
Gé» to vertex i + 1 of G§+1 for every j € {1,...,n} and every i € {1,...,v; — 1}, and
then add an arc from vertex v; of G;j to vertex 1 of G}_H for every j € {1,...,n—1}.
We address the vertices of Hy by triples of the form («, 3,7) which means vertex a
of graph Gg. We add a loop to vertex (1,1,1) and mark this vertex. Then, it is
the case that there is exactly one (¢t + 1)-marked (1,1,1), (v, Vs, n)-walk in Ho, if
G1,...,Gy all are acyclic. Otherwise, i.e., if there is j € {1,...,n} such that G; is
not acyclic, Hy contains infinitely many such walks, since a cycle contained in G
can be put arbitrarily many often into every (1,1,1), (v, vy, n)-walk of Hs.

[Concluding the construction by combining the two constructed graphs.]
Finally, we obtain graph H as the result of the following two operations: first, obtain
the disjoint union of H; and Hs, and second, let a and ¢ be new vertices, add them
to H and add arcs from a to s of Hy and (1,1,1) of Hy and arcs from z,, of H; and
(Un, Vn,n) of Hy to e. By the discussions and results above, H contains exactly b+ 1
(t+ 1)-marked a, e-walks if and only if (S,¢,b) € My, (). It is rather obvious that H
can be obtained in logarithmic space from S, which establishes a logarithmic-space
reduction from My, (®) to XNOMW (2).

|

Corollary 6.9 M, (®) is in P and C_L-hard.

Proof: Due to Corollary 4.15, XNOMW/(2) is contained in P. Since P is closed

under <L -reducibility, My,,(®) is contained in P due to Lemma 6.8. The C_L lower

complexity bound results from reducing XPOM(2) to My,,, (®) and by Corollary 4.15.
|

The result of Corollary 6.9 can be obtained by a much easier construction than
the one that is based on Lemma 6.8. This easier algorithm, however, would only
prove an upper complexity bound without emphasising the fact that the four prob-
lems XNoW (2), xPOM(2), xXNOMW(2) and My, (®) can be considered equally
complicated in some sense. This inexactness is mainly caused by the relation be-
tween the problems XNOMW (2) and XNOW (2) established by an <N-reduction
(Theorem 4.4).

Since the second mentioned way to show polynomial-time decidability of My, (&)
is interesting in its own right but also of importance for following constructions, we
discuss its main part. Let S = (F, A) be a recurrent {@®}-system of dimension n

88

where F = (f1,...,fn) and A = (a1,...,a,). Let x =gt (z1,...,2,). For each
i € {1,...,n}, it holds that fi(x) = }_j_, ¢} -z; for ¢} € N, j € {1,...,n}. Since f;
is given as an arithmetical circuit Cj, ¢} is equal to the number of paths in C; from
the input vertex with label j to the output vertex. We define an n x n matrix M as:
M;; =get c} foralli,j € {1,...,n}. We will call M the function matriz of S. It holds
for every t > 0 that S(t) = (M'A),. If we want to obtain an instance of XPOM(2),

we define another matrix N as

1 1 1
g Cy ... Cp a1
N=dqt | 5, w
cl Cy ... Cp Gy
O 0 ... 0 O

It obviously holds (M*A),, = (N*¥+1), 14 for £ > 0. It is not difficult to see that
matrix N can be computed in polynomial time from S. This construction is illus-
trated by our preferred example, the Fibonacci numbers. Let Fib = (Fgyp, Apip) be
a recurrent {@ }-system whose components are defined as follows:

Frib =det (f1(21, 22) =det T2, f2(T1,22) =det 1 D 2)
Apin, =qer (0,1) .

We already encountered this example in Chapter 5. The constructions of matrices M
and N above yield the following:

0 1 010
M =def (1 1) and N =def 1 11 .
0 00

For the first few powers of NV, we obtain these results:

010
Nl=(1 11

0 0 0

010 010 11 1
Ne=[(111}]-({111]=[1 21

0 0 0 0 0 0 0 0 0

010 1 1 1 1 2 1
N3:<111>-121 :(232)

0 0 0 0 0 0 0 0 0

010 1 2 1 2 3 2
N4:(111>-232:<353>.

0 0 0 0 0 0 0 0 0

Remember that, by construction, the output or result of each iteration step is the
2, 3-entry of the corresponding power of N.

The major goal of this section is to determine the complexity of My, (N, D).
Corollary 6.7 shows a possible way. As we have explained, the solution will consist of

Chapter 6 Decidable membership problems 89

two parts, and the first part has now been concluded by the results of Corollary 6.9.
The second part mainly consists of a solution of the question, given a recurrent
{N, ®}-system S and a number ¢, whether S(¢) = (). This problem is captured by the
following definition.

Problem definition

EmMPTY(O) for O C {U,N, ™, ®,®} (emptiness problem for recurrent O-systems).
INSTANCE (S,t) where S is a recurrent O-system and ¢ > 0, and ¢ is given in
binary representation.

QUESTION S(t) =07

It is clear that the emptiness problem becomes difficult only for those recur-
rent systems that contain intersection or complementation operations, since recur-
rent {U, ®, ®}-systems compute only non-empty sets. Here, we are interested in
the complexity of EMPTY (N, ®). Unfortunately, we cannot give an efficient decision
algorithm for EMPTY(N, ®). However, for deciding My, (N, ®) in polynomial time
it suffices to consider only a subset of EMPTY(N,®). This subset is selected by a
structural property of recurrent systems.

Let G = (V, A) be a directed graph. A cycle of length k in G is a sequence C' =
(x1,...,zk) of vertices of G such that C is an z1,z-path in G and (zx,z1) € A.
Hence, cycles contain at least one vertex. Let S = (F,A) be a recurrent {N,®}-
system of dimension n where F = (f,..., f,). We obtain S’ from S by replacing
every N in the functions of S by @; S’ is a recurrent {®}-system. Let M’ be the
function matrix of §’, as it is defined above. A non-zero entry in M’ means existence
of a path from input to output vertex in a circuit representation. We can interpret
M’ as the adjacency matrix of a directed graph. Let Gg = ({1,...,n}, Ag) be the
graph on vertices 1,...,n where (i,j) € Ag if and only if Mi’j # 0. Equivalently,
(1,7) € Ag if and only if f; depends on its j-th input component. Function f; appears
in a cycle of length k, if there is a cycle of length k in Gg containing vertex i. The
problem o-EMPTY(N, ®) is the set of pairs (S,¢) in EMPTY(N, ®) where the output
function of S appears in a cycle.

First, we show that o-EMPTY(N, @) can be decided in polynomial time, which is
heavily based on a lemma of linear algebra. Let L be a 1 X n matrix over Z, n > 1.
Let [L]70 =g4ef {x € R™ : Lx = 0} denote the hyperplane of R" defined by L.

Lemma 6.10 Let M be an n X n matrix over N, and let L be a 1 X n matrix over
Z. Let a € N". If M'a € [L]™° for all i € {0,...,n — 1} then M‘a € [L]7° for all
1> 0.

Proof: Let k < n — 1 be smallest possible such that M*t'a = % ¢, - Mia for
some ¢y, .-.,ct € R. By induction, it holds that, for every m > k + 1, there are
zg,...,Tr € R such that M™a = Zf:oxi - M'a: Let zg,...,z; € R such that

90

Mra=YF x; - M'afor r >k+1. Then,

k
Mrla = Z(.’L‘i_l + :ckci) - M'a+ TECo - MPOa.
=1

By assumption, M’a € [L]=°, i < k. Then, M‘a € [L]= for every i > 0.

Lemma 6.11 o-EmMPTY(N,®) is in P.

Proof: Let (S,t) be an instance of o-EMPTY(N, ®) where S = (F, A) is a recurrent
{N, ®}-system of dimension n and F = (fi,..., f,). We apply Lemma 6.6 and obtain
functions fi,..., f, and ¢{,..., 4} ,93,..., 9" such that, for every i € {1,...,n} and
every a € N”,

gi(@)=0forall j € {1,...,m;} = fi(a) = fl(a)
gj»(a)#Oforsomeje{l,...,m} = fi(a)=10.

We observe the following important and easy property: for every i € {1,...,n} and
t €N, S[f;](t+1) =0 if and only if f/(F(t)) =0 or thereis j € {1,...,r;} such that
g§ (F(t)) # 0. Let k < n be the smallest number such that f,, appears in a cycle of
length k. If there is ¢’ < 2n? such that S(t') = 0 and ¢ =t (mod k), then S(t) = 0.
We will show that this implication can be strengthened to an equivalence.

Let t > 2n?, and let S(t) = 0. Let W =ger (o, v1,...,v,) be a longest walk
in Gg such that vy = n and S[f,,](t —i) = 0, i € {0,...,r}. Note that r < ¢t and
fu, does not depend on a variable z; such that S[f;](t —r — 1) = (. We might say
that S[f,,](t —r) = 0 causes S(t) = (), which is proven by walk W. Counsider the
subsequence w =gef (Yo, Vg, ---,Vsk) Of W where s -k < r < (s+1) - k. If a number
appears twice in w, say v; and vj, j < j', then W' =4¢¢ (vo,v1,..-,v5,Vjr41,---, 1)
proves that S(t — (j'—3)) = S[fn](t — (7/—3j)) = 0. Note that t =t — (§'—j) (mod k).
We apply this argument repeatedly and as often as possible, i.e., we reduce the
number of elements in W’ to at most (n — 1)k + 1, and obtain that, if S[f,,](t') =0
for ' € N, then S(¢") = @ for t” > ¢’ where t” =t +r (mod k) and ¢/ + kn — k <
t" <t +kn <t +n? Letty€{l,...,k} such that ty =t —r (mod k). Then, for all
i > 0 such that ¢y + ik < ¢t — r, it holds that S[f,](tc + ik) # 0 by the maximality
of W.

Let M be the function matrix belonging to the function sequence (ff,..., f}).
Let T =qo M* and A;, =qof M*~'A. Due to Lemma 6.6, if S[f,](to) # @ then
S[fulto) = fl, (Ay). For i < m, if S[f,](to + ik) # O then S[f,,](to + ik) =
fi, (TAs,). Furthermore, S[f,](to + ik) # 0 if and only if g;-'T(TiAtO) = 0 for all
je{l,...,r,}. We apply Lemma 6.10 and obtain that S[f, |(to + (n—1)-k) # 0
if and only if g;»’r(TiAto) =0forallie{0,...,n—1} and j € {1,...,r, }. Since
S[f,.](t —r) = 0, there is ¢ < n such that S[f,](to + ik) = 0, where ty + ik <
k+ (n—1) -k < n? Hence, if S(t) = 0 then there is t' < 2n? such that S(t') = 0

Chapter 6 Decidable membership problems 91

and t = t' (mod k). It takes polynomial time to compute F(0),...,F(2n?), which
concludes the proof.
|

Before we finally consider My, (N, @), we want to illustrate the construction of
the proof of the following theorem by discussing an example. Consider Figure 10. It
is shown graph Gg of a 9-dimensional recurrent {N, ®}-system S. For instance, func-
tion f; depends only on z1, whereas function f, depends on z; and x5. Lemma 6.11
shows that we can decide for every ¢t > 0 in polynomial time whether S[fs](t) = 0
or whether S[f5](t) = 0. We want to decide whether S[f9](20) = 8. Then, it must
hold that S[f2](18) # 0, S[f5](18) # 0, S[f5](19) # B and S[fs](18) # 0. Further-
more, S[f2](18), S[f5](18), S[f5](19) and S[fs](18) must not all have values greater
than 8. Applying the method of Corollary 6.7, we obtain a recurrent {®}-system S’
that is equivalent to S in iteration steps that do not produce the empty set. Us-
ing the function matrix of S’, we can compute these values in polynomial time or
decide that one of them exceeds 8 (remember the discussion following the proof of
Lemma 4.13). Finally, we can straightforwardly evaluate S[f7](19), S[fs](19) and
S[f5](20) in polynomial time.

Theorem 6.12 M, (N, ®) is in P.

Proof: Let (S,t,b) be an instance of My, (N, ®) where S = (F,A) is a recurrent
{N, ®}-system of dimension n and F = (f1, ..., fn). Let S’ = (F’, A) be the recurrent
{®}-system that is obtained from S by application of Corollary 6.7. It holds that if
S(t) # 0 then S'(t) = S(¢). If the output function f,, of S is contained in a cycle then
(S,t,b) € My, (N, @) if and only if (S',¢,b) € My, (@) and (S,t) &€ o-EmMPTY(N, ®),
which can be verified in polynomial time due to Corollary 6.9 and Lemma 6.11.

So, let f,, be not contained in a cycle. If ¢ < n, S(t) can be computed straight-
forwardly. Let ¢ > n. Consider graph Gg. Since vertex n does not appear in a cycle
in Gg there is a maximal connected subgraph G¢ of Gg that contains vertex n and
that does not contain a vertex that appears in a cycle. (In Figure 10 this subgraph is
induced by the vertex set {7,8,9}.) It holds that every vertex in G has a predeces-
sor in Gg, and all those predecessors that do not occur in G¢ are contained in cycles
in Gg. Let § be the set of predecessors of vertices in G that are not contained in
G®. (In Figure 10 this is the set {2,5,6}.) G is acyclic, and therefore every walk
in G¢ contains less than n vertices. If we know all values S[f;](#) where i € § and
t—n < t' <t we can compute S[f,](t). However, for large ¢ these values can become
large. It suffices though to consider only numbers that are not larger than b, since @
is monotone (it does not matter whether S[f,](t) = 0 or S[f,](t) > b, if S[f,](t) # b).
Using the function matrix for S’, we can compute these values in polynomial time
for all functions with index in § (remember the discussion in the preceding example).
If S[f;](t') > b we can also assume S[f;](¢') = 0 without causing any error for our
problem. In polynomial time, F(t—n+1),...,F(t) can be computed (where numbers
greater than b are replaced by (). Finally, accept if and only if the last component

92

Figure 10 Graph Gg for some sample recurrent system S.

Chapter 6 Decidable membership problems 93

of F(t) is equal to b, i.e., if and only if S(¢) = b.

It remains to consider the problems of generating Gg and §. If a vertex in a
directed graph is contained in a cycle, there is a cycle of length at most the number
of vertices of the graph. Hence, determining whether a vertex appears in a cycle can
be done in nondeterministic logarithmic space. Starting with vertex n in Gg, G<
can be generated straightforwardly. Set § is also computed easily by determining the
predecessors of every vertex in G and choosing those that do not appear in a cycle.
All this can be done in polynomial time.

|

Theorem 6.13 M., (N), M..(®), M (®) and M,.(N, @) are NP-complete.

Proof: For hardness of the problems we first show that SORSR reduces to Mc,(N).
Let R = {Ry,...,R;} be an instance of SORSR; let Ry,..., Ry be registers of
sizes by, . .., by, respectively. We define a recurrent {N}-system S = (F, A) as follows.
For every i € {1,...,k}, for every j € {2,...,b;}, let

fj(l_)l(x) —def -TEZ) and flfj) (X) —def ﬂUgZ)

where X =gqef (a:gl),...,a:l(i),mg),...,:c,()]:),a:’). Let A =gt (cgl),...,cgz),ﬂ) where

cg»i) € {0,1} and ¢\ = 1 if and only if R;(j) = 1. Furthermore, let f'(x) =qef a;gl) N

j
- -ﬂxgk) and F =gef <f1(1), . ,fsz)a f’). Informally spoken, when we regard graph Gg,

every register of R corresponds to a cycle in Gg of length the size of the register. It
holds that S[f{"](t) = 1 if and only if R;(j) = 1 after application of ¢ left ring-shift
operations to R;, and S[f’|(t + 1) = 1 if and only if S[fl(l)](t) =...= S[fl(k)](t) =1
Hence, (S,1) € M, (N) if and only if R € SORSR. So, by Theorem 4.20, M, (N) is
NP-hard.

We now reduce M., (N) to M, () and M., (®). Let (S,b) be an instance of
M. (N) where S = (F, A). We define recurrent {®}- and {®}-systems S” and S” as
follows. Let F' and F” emerge from F by replacing each occurrence of N by @& and
®, respectively, i.e., we only change vertex labels. Let A’ emerge from A by replacing
b by 0 and all other numbers by 1. Similarly, obtain A” from A by replacing b by
1 and all other numbers by 0. Let §' =ger (F',A") and S” =4e¢ (F”, A”). Then,
(S,b) € M¢,(N) if and only if (S’,0) € Mg,(®) if and only if (S”,1) € M, (®).
Finally, M., (®) reduces to M, (N, ®) due to Lemma 5.2. Hence, M, (®), Mc(®)
and M, (N, ®) are NP-hard.

For containment, we show that M., (N, ®) and M., (®) are contained in NP. In
both cases, we will find a sufficiently small number f (.S, b) such that, for S a recurrent
{N, ®}- or {®}-system, b € [S] if and only if there is t < f(S,b) and b € S(t). First,
we need a technical definition. Let f = f(z1,...,z;) be a {N, ®}-function, and let
b, € N, b <b. Let Ay,...,Ar C N be sets of cardinality at most 1. For every
i € {1,...,k}, it holds that, if A; C N {b+1}, then f(A;,..., A;) = {¥'} if and only
if f(Ay,...,Ai-1,0,A;11,...,Ar) = {b'}. In this sense we say that (A4;,...,Ay) and

94

(A1, ..., Ai1,0,Ajq, ..., Ag) are similar with respect to b; we extend the definition
of similar tuples to the transitive closure. Now, let S = (F, A) be a recurrent {N, ®}-
system of dimension n. Let t1,t2 > 0, t; < to, such that F(¢1) and F(t2) are similar
with respect to b. Then, F(t;+1) and F(to+1) are also similar with respect to b. For
an upper bound on the number of iteration steps that are necessary to generate b’ by
S, if possible, it suffices to determine the maximal number of iteration steps before S
generates a tuple F(¢) that is similar with respect to b to an already generated tuple.
Each tuple has n components, and each component can contain b+ 2 different values:
{0},...,{b} and 0 (which is similar with respect to b to {b+1},{b+2},...). This
number sums up to (b + 2)” < 2147198? which is of polynomial size in the length
of S and b. Since My, (N,®) € P, a nondeterministic polynomial-time algorithm
can decide whether (S,b) € M., (N, ®) by checking (S,t,b) € My, (N, ®) for every
t < 21nlogb Hence, Mz (N), Mo (@) and M, (N, @) are NP-complete.

It remains to find a complexity upper bound for M., (®). Let (S,b) be an
instance of M, (®). We consider two cases. If b = 0, we can use the algorithm for
M., (U), since instances of M., (®) of the form (S5’,0) easily reduce to instances of
M., (U): simply replace every ® in the functions of S by U and obtain S”. It holds
that S(t) = 0 if and only if 0 € S”(¢) for every ¢t > 0, which can be shown by an
easy induction. So, let b > 1. Then, however, we can proceed as above. We define
an analogue notion of similarity, where additionally 0 is to be treated like numbers
greater than b. The number of the corresponding equivalence classes for n-tuples
is bounded above by (b + 1)". So, M.;(®) is in NP due to Lemma 6.3 and hence
NP-complete.

|

6.3 Polynomial space decidable membership problems

Besides the announced PSPACE-completeness results, we will show three theorems
that are interesting in their own right. First, we will show that the satisfiability
problem for quantified Boolean formulas, denoted as QBF, reduces to M., (U,N). To-
gether with the PSPACE-completeness of QBF, we can conclude PSPACE-hardness
of M., (U,N) and M., (U,N, 7). Second, we will show that the exact membership
problem for recurrent {U, @, ® }-systems can be decided in polynomial space. This is
surprising when we remember that MC(U, @, ®), the membership problem for arith-
metical {U, ®, ®}-circuits, is PSPACE-complete [87] (see also Theorem 5.7). Third,
we will show that a recurrent {U,®, ®}-system S of dimension n needs at most
(b+1)-2" iteration steps to generate number b, if it is possible. In the end, this will
lead to a polynomial-space decision algorithm for M., (U, ®, ®).

For our first goal, consider the following definition. A quantified Boolean formula
is a first-order logic formula without functions, predicates and free variables. We
assume that every quantified Boolean formula H is of the form

H=Qz1...Quz,H (x1,...,7,)

Chapter 6 Decidable membership problems 95

where Q1,...,Q, € {3,V} and H'(z1,...,z,) is a Boolean formula with A, V and
- and every — applies only to variables z;, i € {1,...,n}. Every quantified Boolean
formula evaluates to true or false (1 or 0, respectively). The problem QBF is the set
of true quantified Boolean formulas. This problem was introduced by Stockmeyer
and Meyer [79].

For a reduction from QBF to M., (U,N), we need to enumerate all binary n-
tuples over {false, true} iteratively. Since {U,N}-functions compute sets, that may
contain more than one single element, the Boolean values are represented by answers
to appropriate containment questions. Consider the following {U, N}-functions:

Ci(a,a,e,e,¢,C) =qef (((aNC)U(@Nc))Ne)U(eNnc) and
Ca(a,a,e,€,¢,¢) =qef (((aNc)U(@nNc))Ne)U(enc).
The following lemma is easy to prove. The operator A denotes the symmetric differ-
ence, i.e., the set-theoretic analogue of the Boolean xor-function.

Lemma 6.14 Let A,B,C,D,E,F CNandb e N.
Ifbe (AAB)N (CAD)N (EAF) then

(1) be Cl(A,B,C,D,E,F) A CZ(AaBacaDaEaF)
(2) be (4(A,B,C,D,E,F) A E ifand only ifbe AND.
Proof: The claim can be proved by simply checking all eight input situations. We

give a table containing all situations of a number b with respect to the input sets.
The symbol * means that given number b is contained in that set.

ABCDEF Cl(AaBacaD’E’F) CZ(AaBaC’DaE’F)
* * * *
* * % *
* ok * *
* % * *
* * * *
* * % *
* * * *
* * * *

Statement (1) is obvious by comparing the last two columns of the table. State-
ment (2) is similarly easy to observe.
|

Using functions (; and (s we construct a recurrent {U, N}-system that enumer-
ates all binary n-tuples for n > 1. Let u =gt (u1, U1, - - -, Up, Uy). We define:
fi(u) =der U1
fi(u)
fiv1(u) =aer i (ui, Ts, fi(w), £ (W), wig1, iv1)
fi1(u) =qer G (ui, Wi, fi(w), fi(u) w1, Wiv1), 0 € {1,...,n—1}.

=def U1

96

Every function can be represented by a {U, N}-circuit using at most c¢-n vertices for
some constant c. (A close look reveals ¢ < 20.) Let

fglum —def <f17f{7" fnafrlz>
Aenum =def ({O} {1} {0}7 {1}) ’

and let ST .n =def (Forum, Aoum)- The following lemma shows that F&,.(¢) in
reversed order can be interpreted as a representation of the n least significant bits
of the binary representation of ¢ € N. Let bin;(¢), ¢ > 0, denote the i-th least
significant bit of the binary representation of ¢; the count starts with 0, i.e., bin,(¢)
is the coefficient of 2¢ in the binary representation of t.

Lemma 6.15 Foreveryt € Nandi € {l,...,n}:
(1) {O 1} = Sgnum[fl](t) A Sgnum[le](t)
(2) le enum[fz]() — binifl(t) =1.

Proof: We prove the statements of the lemma each by induction over t. For state-
ment (1), observe that the claim is true fort =0 and all4 € {1,...,n} and for i =1
and all ¢ > 0. Now, let the statement be true for ¢ > 0, and assume that it holds for
1 < n. We want to prove that it holds for ¢ + 1 and ¢ + 1. By induction hypothesis,

{0 1} enum[fl](t) A Sgnum[f](t)
= Sgnum[fi](t + 1) A Sgnum[f‘](t + 1)
= Sgnum[fiJrl](t) A Senum[fz-l—l]()

Hence, the prerequisites of Lemma 6.14 are fulfilled using 0 and 1. And we conclude
that

{0’ 1} = Sgnum[fi-f—l](t + 1) A Senum[ferl](t + 1)
which proves statement (1).

For statement (2), observe that the claim is true for i = 1. Let 4 < n. First, note
that Senum[fl-l-l]() = {0} Consider Sgnum[fi-i—l](t + 1) It bini—l(t) < bini—l(t + 1)
then bin;(¢) = bin;(¢ + 1). By induction hypothesis, it holds that

Sgnum[fi](t) and 1 ¢ gnum[fi] (t + 1) or
gnum[fi](t) and 1€ Senum [fl] (t + 1) or
le Senum[fz](t) and 1€ Senum[fz] (t + 1)

Applying Lemma 6.14, which means 1 ¢ A N D in statement (2), we obtain that

either 1 € Senum[fz—l—l]() and 1 € Senum[fl-i-l](t + 1) or 1 ¢ enum[fi-‘rl](t) and 1 Q,
Shumlfi+1](t + 1), which concludes this case. If bin;_1(¢) > bin; (¢ + 1) then

bin;(¢) # bin, (¢t + 1). By induction hypothesis,

1€ SGumlfil(t) and 1 & S&um[fil(t+1),

Chapter 6 Decidable membership problems 97

and applying Lemma 6.14, where 1 € AN D holds, we obtain

le Sgnum[fi-l-l](t) A Sgnum[fi-f—l](t + 1))

which shows the claim.
|]

Let H = Qz1...Qur,H' (21,...,2,) be a quantified Boolean formula. For
teNandie{0,...,n},let

H(Z) (t) —def Qn—i—l—lxn—i-i-l s annH,(binn—l(t)a s abini(t)a Lp—itls--- ,.’En) .

Note that the functions bin; are ordered by decreasing index whereas the variables z;
are ordered by increasing index. Two particularly special cases are H (" (t) and

HO)(#):
H™ (t) = Qim1...Que H (x1,...,2,)
HO(t) = H'(bin,_1(t),...,bing(t)).
By definition, the following equivalences hold:
Q=3 = H=H"0)vHE D@21
Q=Y = H=H"Y0)AHFD@2").
This evaluation procedure inductively defines an evaluation tree for H, where the
values of H(™1(0) and H™ 1 (27~1) are the values of the predecessors of a final V-
or A-vertex, depending on the nature of Q1. Then, () (0) denotes the value of this
final vertex. Hence, H(t) for i € {0,...,n} and ¢t > 0 represents the value of some
V- or A-vertex in that tree.

Theorem 6.16 QBF <l M_,(U,n).

Proof: Let H = Qz1...Qnrp,H' (21,...,2,) be a quantified Boolean formula in
the variables z1, ..., z,. We will define a recurrent {U, N}-system that evaluates the
evaluation tree of H. Let S =gt (F, A) where

A=qer ({0}, {1},..., {0}, {1}, {1}, {0},...,{0},{0},...,{0},{0},...,{0})

— / /!
]:—def <f17 fl; B fna fn’ €0, €1, ---5, €n, 90, ---5 Gn, hO’) hn)
X =def (U1, Wiy -y Un, Up, €0y Cly ---y Cny S0y -y Spy 20y «--5 Zn) -
The functions f1, f,..., fa, f), are taken from F2 ... = (f1, f1,---, fn, [}), and they
are defined on the variables uq, ..., u,. The functions e;, g;, h; are defined as follows.

For i € {1,...,n}, let

€0 (X) =def €0

i—l(x)) ’ if Qn—i—i—l =3
i—1(x)) i Qnoit1=V.

98

Function valy (x) will be specified later. To give an idea, this function evaluates H’
for the assignment defined by x. More precisely, it shall hold that 1 € S[ho|(t) &
HOX() = 1. We will show that S[h,](2"—1) contains 1 if and only if H € QBF.
Observe that 1 € S[e;](¢) for ¢ > 0 if and only if bin; 1 (¢) = - - - = bing(t) = 1 due to
Lemma 6.15.

Claim A Let i€ {l,...,n} and ¢o € N such that 1 € S[e;](ty). Then, 1 € S[g;](to)
if and only if 1 € S[hi_1](to — 21~1).

We show by induction over t € {to —2!=! +1,...,t0} that 1 € S[g;](¢) if and only if
1 € S[h;_1](to—2"1). Since 1 & S[f;](to—2"') it holds that 1 € S[g;](to—2""'+1) &
1 € Shhi—1](to—271). Let t € {to — 21 +1,...,t0 —1}. 1 & S[e;—1](t) hence
1 ¢& S[h;—1](t). We obtain:

1€ S[gil(t+1) <= 1€ (S[F1(H) N Slgl®)) U SThi 1t
< 1€ S[g;](t)
1€ S[hz;l](to — 2i_1) .
Claim B Let ¢ty € N such that 1 € S[e,](to). Then, 1 € S[h,](to) if and only if
H=1.
We show by induction over i € {0,...,n} that for every ¢ € N where 1 € Sle;](t)
holds: 1 € S[h;](t) <= H®(t) = 1. For i = 0 the claim holds by definition. Let
i1€{0,...,n—1}. If @,_; = 3 then
1€ SThip](t) <= 1€ Sleia](t) N (Slgi+1](t) U S[hi](t))
< 1€ S5[git](t) U S[hi](t)
< 1€ S[h](t —2°) U S[hi](t)
— HO@t—-2)=10r H(t) =1
— HHFV@t) =1.
If @,_; =V the proof is similar to the 3-case.

To obtain function valy, we introduce new variables 71, ...,T, to H' and replace
every occurrence of —z; by T;. (Remember that — in quantified Boolean formulas
only apply to variables.) Replacing V and A by U and N, respectively, and x; and
T; by u,_;11 and T,_; 1, respectively, we obtain the function valy. which has the
desired property. S = (F,A) can be computed by an FL-function. Then, it holds
that H € QBF < (5,1) € M.,(U,N).

|

We provide a small example that shall illustrate the construction of the proof of
Theorem 6.16. We choose the quantified Boolean formula H as
H= 3.731‘7:1123.’173((:111 A —|£L‘2) V (“33‘3 A 171)) .

This formula obviously evaluates to 1. In Figure 11 the result of the transforma-
tion process is presented by means of a circuit representation. The S3 .. part is

Chapter 6 Decidable membership problems 99

not included into the picture to keep the picture readable. Of course, every func-
tion must be represented by its own circuit, which can be obtained from the given
picture by deleting all irrelevant vertices. The name of a function labels its output
vertex. Vertices with the same name are considered identical, which applies to the
vertices uq,uo,ug. Little squares represent input vertices.

We now turn to recurrent {U, ®, ®}-systems. We will show that the exact as
well as the existential membership problems for recurrent {U, ®,®}-systems are in
PSPACE. To achieve this we will first show that we can bound by some “slowly grow-
ing” function the number of iteration steps that have to be considered for proving
that a number can be generated by a given recurrent {U, @, ®}-system. As an auxil-
iary structure we need to find a special certificate that proves membership of a given
number in the output set of a recurrent {U, @, ® }-system in a specified iteration step.
Let S = (F,A) be a recurrent {U, @, ® }-system of dimension n, F = (f1,..., fn),
and let ¢ € N. With each function of F we associate an arithmetical {U, ®, ®}-circuit.
Consider the following definition:

FO%) =qef
FI &) =aer (LX), B0 (X), r>0.

Furthermore, for every t > 0, let f®)(x) =g f,(f) (x). We obtain f® by t-fold and
simultaneous superposition. Similarly, we obtain, by glueing together vertices, a cir-
cuit representation C of f®). Labelling the input vertices of C with the corresponding
numbers of A results in a {U, ®, ®}-circuit representation C4 of S(t) = f()(A). The
formula representation F of S(t) is obtained from C4 by unfolding circuit C4: Let
g denote the output vertex of C4, and let ¢’ and ¢” be the predecessors of g. Let
C" =g4et Ca—g be a copy of C4 without g where ¢’ is labelled output vertex. Simi-
larly, C" =40f C4—g is a copy of C'4 without g with output vertex ¢g”. Let F’ and F”
be the results of unfolding C’ and C”, respectively. Then, F' is the disjoint union of
{g} and F’ and F” and arcs from the former predecessors of g go to g. An example
is shown in Figure 12. The figure shows the result of unfolding the {®}-circuit of
Figure 8. A computation tree for F' is a maximal subtree of F' such that every vertex
with label U has exactly one predecessor and every other vertex (vertices with la-
bels @ or ®) has two predecessors. If we additionally label vertices of a computation
tree with their values, which is for input vertices the label itself, for vertices with
only one predecessor the value of the predecessor and for the other vertices the sum
or product of the values of the predecessors, then the root vertex has a member of
S(t) as value. The root vertex corresponds to the output vertex of Cy. Computation
trees have been introduced by McKenzie and Wagner to analyse the complexity of
MC(U, ®). By construction, it is clear that a number is in S(¢) if and only if it is the
value of the root vertex of a computation tree for F'. The main observation is that
only one number of the set that is attached to a U-vertex contributes to the result at
the root vertex of a computation tree.

100

Figure 11 The result of the reduction of the proof of Theorem 6.16 for
formula H = Jz1Vrodzs((z1 A —x2) V (-3 A x1)). The quantifiers of H
are modelled by the framed parts in reversed order, and the formula part
of H can be found on the left side of the picture. The enumeration part
S3 . is not depicted.

Chapter 6 Decidable membership problems 101

Figure 12 The result of unfolding a {®}-circuit representing the func-
tion f(z1,22,23) = (21)*(x2)%23.

102

Lemma 6.17 Let S = (F, A) be a recurrent {U, @, ® }-system of dimension n. Let
b€ N. Then, b € [S] if and only if there is t < (b+ 1) - 2" such that b € S(t).

Proof: Let F = (f1,...,fn). If n =1 the claim is clear: If f; contains neither &
nor ®, input equals output. If f; contains @ or ®, on input greater than 0 it takes
at most b iteration steps to know whether b can be generated.

Let n > 2. If b < 1 then it suffices to evaluate S in the following way. Input
numbers greater than 1 are replaced by 2. In every iteration step ¢ > 1, instead of
using S;(t —1) as i-th input, for every i € {1,...,n}, we use (S;(t; —1)N{0,1})U{2}
as i-th input. We observe that, for b < 1, b € S(¢t) if and only if b is contained in
the output set of the ¢-th described iteration step. Since there are only eight possible
sets for each input, the number of iteration steps to decide (S,b) € M, (U, ®, ®) can
be bounded above by 8" = 23" < 27’ Remember the argumentation of the proof of
Theorem 6.13 and the definition of similar tuples.

Let b > 2. We assume that no function of F is of the form ¢(x) = ;.
Otherwise, we add an (n+1)-th component (f,+1(X) =get 1 ® Zp41,b+1) to S,
x' = (z1,...,2n4+1), and replace every function f;j(x) = z; by f/(X') =def ; U Zp41.
Obviously, this does not effect the question b € [S] and is only of technical advantage.
Let t > 0 be smallest possible such that b € S(t). Let F' be the formula representa-
tion of S(t), and let T' be a computation tree for F' with root value b. The reduced
computation tree B of T is the maximal subtree of T' containing the root vertex of T'
and that does not contain vertices with value greater than 0 in a subtree with root
vertex labelled with ® and with value 0. In other words, if u is a vertex in B that is
labelled with ® and has value 0, then all paths in B from input vertices to u contain
only vertices with value 0. We define levels of B as follows. Each vertex of B that
corresponds to the output vertex of the circuit representation of some function of F
is labelled with the index of the corresponding function; the input vertices of B are
labelled with the index of the corresponding variable. Note that some vertices now
have two kinds of labels: numbers from A or U, ®,® and indices 1,...,n. Then, L,
contains exactly those vertices that are labelled with an index and that lie each on
a leaf-root path in B with exactly r index-labelled vertices preceding it. Leaves or
input vertices of B are exactly the vertices in Ly whereas the root vertex of B is the
only member of L;. Observe that every leaf-root path in B passes the same number
of index-labelled vertices. Note the following correspondence: if some vertex from L,
is labelled with index i and has value a, then a € S;(r).

By our definition of a reduced computation tree the value of a vertex in B is
not smaller than the value of any of its predecessors. Let u and v be vertices in B
with the same value such that there is a path from v to u. Then, every vertex on
the v, u-path has the same value as u and v. Suppose there are r1,79 € N such that
r1 > 2" 475 and for each vertex u in L, thereis a vertex v € L,, in the subtree of B
rooted by u such that 4 and v have the same value. Such vertices constitute pairs. If
u has value greater than 1, there is only one such pair for u. Let (u,v) be a pair with
value of u greater than 1. Consider the v, u-path P. Let w be a vertex on P different

Chapter 6 Decidable membership problems 103

from v. If w has label @ then its predecessor that does not lie on P has value 0, if w
has label ® the respective predecessor has value 1. Let (u’,v") be another pair such
that and u’ as well as v and v’ have the same index-labels, respectively. Then, we
can replace the subtree rooted by u’ by a copy of the subtree rooted by wu, replace
the subtree rooted by v in the copy by the subtree rooted by v’ (see Figure 13) and
obtain a reduced computation tree for F' with root value b. We repeat this procedure
for other pairs as long as possible and obtain a reduced computation tree B* for F'
with root value b that contains at most n? different subtrees between L, and L,,
rooted by vertices with values greater than 1. To each level L, we assign a tuple
indicating for every ¢ € {1,...,n} whether a vertex in L, has label ¢ and value 0 or
value 1 and for every pair (i,j) € {1,...,n}? the index of the vertex in L, of B* that
is passed by the path between a vertex in L,, with label j and value greater than 1
and a vertex in L,, with label i. There are at most 22" - n™* < 27" different tuples
possible. It follows that there must be two levels Ly, and Ls,, 1 < 81 < $2 < 79,
with the same assigned tuple. Then, we can delete levels L ,...,Ls,—; and build a
reduced computation tree with root value b that proves b € S(t — (s2 — s1)), which
is a contradiction to the assumption that ¢ is smallest possible.

Now, we can conclude the proof by first observing the following important prop-
erties:

(1) B contains a leaf with value greater than 0

(2) for every r > 2" there is a vertex u in L, such that every vertex in L__ ,.s in
the subtree rooted by u has a smaller value than the value of u, and u has value
greater than 1. Note that, if u has value 1, there is a path from an input vertex
to u that contains only vertices with value 1.

If 3222 L, denotes the sum of the values of the vertices in level L, with value greater
than 1, it holds for every 7 < ¢ that 3= L, < 322 L,,. It follows that ¥ =2 Ly >
2, 222 L, 5.3 > 3, and so on, so that ¢ <b- on’

|

From the just proved lemma, it follows that M = {U, ®,®} is a maximal set of
operators for which the number of iteration steps for recurrent M-systems to generate
numbers can be bounded. M., (U,N, ®,®) and M., (U,N, ™, ®, ®) are undecidable, as
we will see in the next chapter. At first glance, one might argue that undecidability
of the latter problem is due to (the expected) undecidability of the non-iterated
variant MC(U,N,~,®,®). However, every bound for the general problem serves
as bound for a restricted variant, hence M., (U, N, &, ®) would be decidable due to
decidability of My, (U,N, ®, ®).

The problems My, (O) for O C {U,N, ™, ®,®} can be considered similar to the
problems MC(Q) with succinct input representation. For most of the previously
studied problems succinctness led to an increasement of complexity. With this phe-
nomenon in mind it is surprising that we can show that My, (U, ®, ®) is solvable in
polynomial space. It is known that MC(U, @, ®) is complete for polynomial space

104

VY VY

Figure 13 The construction of Lemma 6.17. B’ is the reduced compu-
tation tree that emerged from B by the replacement operation.

Chapter 6 Decidable membership problems 105

(Theorem 5.7 and [87]). To give a short introduction to the main idea of the following
proof, consider some recurrent {®}-system S, and let F' be the formula representa-
tion of S(t) for some ¢ > 0. Then, F is also a computation tree, and the value of the
root vertex is determined by the number of paths from leaves to the root vertex (see
also the discussion in connection with Lemma 6.3). If we additionally have U- and
®-vertices, not all paths in the formula representation contribute to the result.

Theorem 6.18 M, (U,®,®) is in PSPACE.

Proof: Let (S,t,b) be an instance of My, (U, ®,®) where S = (F, A) is a recur-
rent {U, ®, ®}-system of dimension n, F = (fi,..., f,) and A = (a1,...,a,). Let
C1,...,C, be the circuit representations of fi,..., f,, respectively. Similar to the
construction in the proof of Lemma 6.17, we assume that no circuit has output ver-
tex that is an input vertex. In that proof, we have seen that, if b < 1, it suffices
to consider only subsets of {0,1,2} as input and output sets of the functions (also
remember the definition of tuples similar with respect to some given number in the
proof of Theorem 6.13). Hence, in polynomial space, b € S(t) can be decided by a
straightforward evaluation.

Let b > 2. Let b € S(t). Let F' be the formula representation of S(¢) obtained
by unfolding the circuit representation of S(¢), and let T' be a computation tree for
F with root value b. Observe the following: any leaf-root path that does not contain
a vertex with value 0 contains at most |logb| ®-vertices without predecessors with
value 1. We will give an algorithm that verifies the existence of a computation tree for
F with root value b. The main idea is as follows. Let B’ emerge from T by replacing
every ®-vertex of T' by an input vertex of the same value. (Delete all vertices that
are not accessible from the root.) Obviously, the value of every vertex u in B’ is the
sum of the input vertices in the subtree rooted at u and is equal to the value of the
corresponding vertex of T. Now, obtain B from B’ by removing all vertices with
value 0. Then, there are at most b leaves in B, and ®-vertices may have only one
predecessor.

A vertex of B is marked if it corresponds to a vertex that emerged in the circuit
representation of S(t) from glueing together an input and an output vertex. These
marked vertices are additionally labelled with the number of the original input vertex.
(Recall Figure 4: the right circuit contains two such vertices that emerged from a
glue operation, and they would be labelled with 1 and 2.) We consider the levels
of B defined in the same way as in the proof of Lemma 6.17, i.e., marked vertex u

belongs to level r, denoted as L,, r € {0,...,t}, if and only if u is contained in the
subtree of B of exactly ¢ — r + 1 marked vertices. The root vertex of B solely forms
L;. With L, we associate an (n + 1)-tuple (v{,...,v},,0") where v}, i € {1,...,n},

denotes the number of marked vertices in L, with label i and ¢ is the sum of
the values of all marked vertices in L,. Note that this sum may be smaller than b
since subtrees with root vertex a ®-vertex were cut. Our algorithm will iteratively
generate such tuples associated to levels starting from level ¢ and verify that the

106

difference between the values of the last components (the o-components) of the tuples
associated to consecutive levels is the sum of the values of appropriate computation
trees (those that were cut). The tuple (0,...,0,1,b) is associated to level ¢. Let
tuple (v7,...,v},,0"), associated to level r > 0, be known. We describe how to find
a tuple for level » — 1. Remember that no vertex in B has value 0. Let i € {1,...,n}
be such that v > 0. Decrease v by 1. The algorithm guesses how much a copy
of a computation tree of the unfolded circuit representation C; of f; contributes to
7 =ger (Y, v 0", e, which vertices from L,_; are contained in a
subtree rooted by some vertex from L, marked with label i. Let the vertices of C;
be ordered arbitrarily. In polynomial space we can examine the paths of C; one after
the other. If a path contains a U-vertex, the subtree of exactly one predecessor must
be considered. If a path contains a ®-vertex the value of the ®-vertex at shortest
distance to the output vertex must be determined. This vertex then corresponds to
a leaf of B’ that replaced a ®-vertex in 7. This routine is described in the next
paragraph. For each @-vertex u it must be guessed whether it has value 0 or greater
than 0. The former case can be verified in polynomial space as follows. Let f’ be a
sub-function of f; that computes the value of u. (This function is represented by a
sub-circuit of C;.) The algorithm simply verifies (S, r,0) € My, (U, &, ®) where S’ is
obtained from S by adding function f” as (n+ 1)-th function. If u is decided to have
value 0 then the subtree rooted at v does not have to be considered and does not
contribute to 77~ !. If u has value greater than 0 all leaves with value greater than
0 in its subtree contribute to 7"~1. The algorithm repeats this procedure until there
isno i € {1,...,n} such that v/ > 0. Set 0”1 =g¢ 0". Tuple 77! is generated
and the algorithm proceeds with this tuple until the tuple associated to level 0 is
obtained. If X7 1Y -a; = 0¥ then accept. If b ¢ S(t), the existence of no reduced
computation tree with root value b can be proved. The above described part of our
algorithm needs only (nondeterministic) polynomial space.

It remains to show how to verify the value of a ®-vertex w. Similar to the case
of a ®-vertex with value 0, we can verify in polynomial space whether » has value 0
or 1. Let u; and us be the predecessors of u. If u has value p > 1 then w; must
have value p; > 0 and us; must have value p; > 0 such that p = p; - ps. It can
be verified in polynomial space as described above whether p; = 1 or po = 1 can
be chosen. If one is true, u can be treated as @-vertex with one predecessor having
value 0. Otherwise reduce 0" by p and the algorithm verifies (S, 7, p1) € M, (U, ®, ®)
and then (S%,7,p2) € M, (U, ®,®), where S| and S} emerge from S by adding as
(n + 1)-th component the subfunctions of f; computing the values of u; and us,
respectively. Hence, the space needed by the algorithm depends on the number of
such verifications that are carried out at the same time. It holds that every additional
verification process corresponds to some ®-vertex and these vertices are contained
in one leaf-root path of F. Then, there can be at most |logb| verification processes
running at the same time, since 2 < p1,pp < £. This gives a polynomial space upper
complexity bound for the total algorithm.
|

Chapter 6 Decidable membership problems 107

Lemma 6.17 and Theorem 6.18 are highly involved and complex results. But
now, it is easy to prove the final results of this section, using the following well-known
theorem about the complexity of the quantified Boolean formula problem.

Theorem 6.19 (Stockmeyer and Meyer, [79]) QBF is PSPACE-complete.

Theorem 6.20 M., (U,N) and M., (U,N, ™) as well as
M. (8, ®), Mz (U, @), M. (U, ®) and M, (U, ®, ®) are PSPACE-complete.

Proof: We first show that M., (U,N, ™) is contained in PSPACE. Let (S,b) be an
instance of M, (U,N, ™) where S = (F, A) is a recurrent {U, N, ~}-system of dimen-
sion n. There are exactly 2™ possible configurations of F(t) with respect to b, since
for every input set B, it is only important to know whether b € B or b € B. So, we
can consider input sets only as subsets of {b}, and F(t) for every ¢t > 0 contains only)
and {b} as entries. Start the evaluation process of S. If a configuration appears that
has already been encountered there will be no new configuration of S with respect
to b. After 2™ evaluation steps all possible configurations that can be generated by
S have been encountered. Furthermore, the results of every iteration step can be
written down using only n bits, so that M., (U,N,”) can be computed using only
polynomial space, i.e., M, (U,N,7) is in PSPACE. Containment in PSPACE of all
other problems is due to Lemmata 5.2 and 6.17 and Theorem 6.18.

For hardness, we show that M., (U,N) reduces to M, (P, ®), M, (U, D) and
M, (U, ®). Let (S,b) be an instance of M., (U,N) where S = (F, A) is a recurrent
{U,N}-system of dimension n and F = (f1,..., fn). Let f/, i € {1,...,n}, emerge
from f; by replacing every N by @ and every U by ®. Let A’ emerge from A by
replacing b by 0 and every other number by 1. Let S" =gt ((f1,---, fn), A’). It holds
that r+y=0rx=y=0and z-y =0« z =0 or y = 0. By induction, it follows
that b € S(¢) if and only if 0 € S’(¢t), t € N. Hence, (5,b) € M, (U,N) if and only
if (57,0) € M, (®,®). Similarly, M., (U,N) reduces to M., (U,®) and M., (U, ®).
Hardness of all problems follows by Lemma 5.2 and Theorems 6.19 and 6.16.
|

Corollary 6.21 My, (U,N) and My, (U,N, ™) as well as
My (8, ®), My, (U, @), My, (U, ®) and My, (U, ®, ®) are PSPACE-complete.

Proof: Let (S,b) be an instance of M., (U,N) where S is a recurrent {U, N}-system
of dimension n. Remember that (S,b) € M., (U, N) if and only if (S,¢,b) € My, (U,N)
for some ¢t < 2™ (proof of Theorem 6.20). Let x =gef (%1,...,Z,11), and let ' be the
smallest number such that ¥’ # b. Add component (f,,11(X) =det T, U Zp41,b) to S
and obtain S’. Then, (S,b) € M., (U,N) if and only if (S’,2",b) € My, (U,N). Since
My, (U, N) reduces to all other problems, the statement holds. Note that containment
in PSPACE of all problems is due to the proof of Theorem 6.20 and due to Lemma 5.2
and Theorem 6.18.

|

108

6.4 Further polynomial space hard membership problems

About half the number of exact and existential membership problems for recurrent
systems has not yet been treated. Three of these problems are considered in the next
chapter, that discusses undecidability results. Two further problems are considered
in the next section. For the remaining problems, that we treat in this section, we
cannot give full characterisations of their complexities. In other words, upper or lower
complexity bounds that will be given here are not tight. At least, all problems of this
section share the loose property of being PSPACE-hard. We begin the discussion by
proving this property.

Lemma 6.22 (1) My, (U,N) <k My, (7, ®) and Mg, (U,N) <& M,.(7,®) .
(2) th(Ua ﬂ) SL th(_a ®) and Mex(Ua ﬂ) S%n Mex(_a ®) .

Proof: For proving statement (1), let S = (F,A) be a recurrent {U, N}-system
of dimension n and F = (f1,..., fn). Let fi,..., f}, be the functions that emerge
from fi,...,fn, by replacing every N by @ and every BUC by B@® C. It is clear
that the replacement for U-vertices describes a 4-vertex circuit. The following two
equivalences hold. Let B,C C N.

0eBNC < 0eBaC and

0EBUC < 0¢&€Bor0¢C
<~ 0¢(Ba0)
<~ 0€BoC.

Let b € N. Let A’ emerge from A by replacing b by 0 and every other number by 1. Let
S =get ({f1,---, 1), A"). It then holds for every t' > 0: b € S(t') & 0 € S'(t), i.e.,
(S,t,b) € My, (U,N) if and only if (S',¢,0) € My, (7, ®). Equally, (S,b) € M¢,.(U,N)
if and only if (57,0) € M, (7, D).

For statement (2), we use a similar reduction. Let S be a recurrent {U,N}-

system. Obtain S” from S by replacing every U by ® and every BN C by B® C.
Let B,C C N be non-empty. Then,

0eBUC «<— 0eBC
0eBNC < 0€B®C.

Let b € N. When we replace every bin A by 0 and every other number by 1, this yields
A" the initial number set of S”, and it holds, for every ¢ > 0,b € S(t') < 0 € S”(t').
One special case in this construction has to be verified, in fact, that () cannot be
computed, to fulfill the prerequisites of the equivalences above. Remember that,
during the first iteration step, the functions of S” are applied to singleton sets only
{0} and {1}. By induction, it remains to prove that every possible computed set
does not contain 0 and 1. This is clear for the complementation operation. But since

Chapter 6 Decidable membership problems 109

1€ B®C for every B,C C N if and only if 1 € BN C, the required property also
holds for ®. Hence, (S,t,b) € My,,(U,N) if and only if (S”,¢,0) € My, (7, ®), and
(S,b) € M, (U,N) if and only if (S”,0) € M, (7, ®).

|

Theorem 6.23 My, (7,®), My, (U,N, @) and My,,, (U, N, ~,®) as well as
M (7, ®), My, (U, N, ®) and My, (U,N,~, ®) as well as
M (N, &, ®) and My, (7, @, ®) are PSPACE-hard.

Proof: My, (U,N) is PSPACE-hard due to Corollary 6.21. Due to Lemma 6.22, it
follows that all stated problems except for My, (N, ®,®) are PSPACE-hard. Hard-
ness of My, (N, @, ®) directly follows from PSPACE-hardness of My, (®, ®) (equally
Corollary 6.21).

|

Theorem 6.24 M., (7, D), M. (U,N,®) and M., (U,N,~,d) as well as
M. (7, ®), M, (U,N, ®) and M, (U,N, ™, ®) as well as
M. (N, ®, ®) are PSPACE-hard.

Proof: Using Lemma 6.22 and Theorem 6.20, the proof is similar to the proof of
Theorem 6.23.
|

We have proved lower bounds. Now, we show some complexity upper bounds
results. At first, we consider two results that do not trivially follow from previous
results (but the techniques are easy).

Lemma 6.25 M, (U,N,~,®) is in EXP.

Proof: Let (S,t,b) be an instance of My, (U,N,™,®). The main observation that
has to be made here is that (S,¢,0) € My, (U,N,~,®) if and only if (S,b,t,b) €
aMy,,, (U,N, 7, ®). This is the case since numbers larger than b do not contribute to
the results with respect to the question b € S(t). Since aMy,,(U,N, ™, ®) is in EXP
due to Lemma 5.3, we conclude the proof.

|

Lemma 6.26 M., (U,N,~,®) is in EXPSPACE .

Proof: Let (S,b) be an instance of M., (U,N, ™, ®) where S is of dimension n. The
proof of Lemma 6.25 shows that only subsets of {0,...,b} need to be considered.
Since there are only (20+1)" = 2 (*+1) n_tuples over N that are different with respect
to the question b € [S], it follows that b € [S] if and only if there is ¢ < 27(*+1) such
that b € S(¢). In exponential space, (S,t,b) € My, (U,N,”,®) can be verified for
every t < 27(*1)_ Since input length is determined by (S,b), it takes exponential

110

space to write down these numbers, and together with the proof of Lemma 6.25, we
conclude the proof.
|

It would be nice to have a similar result for the existential membership problem
for recurrent {U, N, ~, ®}-systems. However, the equivalence

beBRC < be (BN{0,...,b}) @ (CnA{0,...,b})

does not hold for b = 0, and this non-monotone behaviour of multiplication causes
most problems for analysing corresponding membership problems. In case of exact
membership problems, we obtain complexity upper bounds by transfering results for
the non-iterated membership problems MC to our problems.

Lemma 6.27 (1) My,,,(N,®) is in EXP.
(2) My (N, ®,®) is in coNEXP.

(3) My (U,N,~,®) is in EXPSPACE .
(4) My, (U,N,®,®) is in 2-NEXP.

Proof: All these problems are obtained using the following construction. For S a
recurrent system and b and ¢ numbers, the question b € S(t) is equal to the question
b € S’(1) where S’ emerges from S by t-fold superposition of the involved circuits,
i.e., a single circuit is constructed. If v denotes the sum of the numbers of vertices
of the circuits of S, S’(1) is represented by a circuit of ¢ - v vertices, i.e., by a circuit
of size exponential in the size of instances of exact membership problems. Applying
Theorem 5.7, we obtain the claimed complexity bounds.

|

Corollary 6.28 M,,(U,N,”,®) and M., (U,N,®,®) are computable.

Proof: For every recurrent system S and every number b, b € [S] if and only if there
is t > 0 such that b € S(t). Since My, (U,N, ™, ®) and My, (U, N, ®, ®) are decidable
due to Lemma 6.27, the mentioned existential membership problems are computable.

|

6.5 Two unclassified membership problems

Two membership problems have not yet been considered. Actually, this is not com-
pletely true, since for one of these problems, we have already proved an upper bound.
The problems, that we speak of here, are the exact and existential membership prob-
lem for recurrent {N, ® }-systems. We recall what we know so far about the complex-
ities of both problems:

(1) My, (N, ®) is NL-hard by Theorem 6.4 and contained in EXP by Lemma 6.27

Chapter 6 Decidable membership problems 111

(2) Mc,(N,®) is NP-hard by Theorem 6.13 and computable by Corollary 6.28.

We observe huge gaps between upper and lower bounds. However, the author strongly
believes that, similar to recurrent {N, @}-systems, the complexity upper bounds can
be reduced close to the cited lower bounds. In case of M., (N, ®), this mainly de-
pends on small values for the number of iteration steps that have to be performed
for deciding whether a queried number can be generated. In case of My, (N, ®),
Corollary 6.7 describes a possible way. In fact, it seems that it suffices to solve the
emptiness problem for recurrent {N, ®}-problems. However, in contrast to recurrent
{N, @ }-systems, a partial solution of EMPTY(N,®) would not immediately imply a
solution for My, (N, ®).

112

113

Chapter 7
Undecidable membership problems

A strong motivation for the study of (existential) membership problems for recur-
rent {U,N, ™, ®, ®}-systems was the major open question for membership problems
for arithmetical {U,N, ™, ®, ® }-circuits: Is MC(U,N, ™, ®, ®) decidable? As we have
seen decidability of exact membership problems for restricted recurrent systems trans-
lates directly into decidability for the corresponding circuit problem, and vice versa.
So far, there has not yet been a proof of undecidability of any of these problems.
Hence, a first step to roughly partition problems into classes of decidable and unde-
cidable problems is the consideration of this question for the existential membership
problems.

Interestingly, we can show undecidability for existential membership problems.
Precisely, undecidability can and will be shown for M., (U,N, ®, ®) and M., (—, D, ®).
The exact membership problem corresponding to the former problem is trivially
decidable, since only finite sets are involved. (It is even in the “low” complex-
ity class 2-NEXP.) Decidability of the exact membership problem for recurrent
{7, ®, ®}-systems, however, has not yet been proved or disproved.

Our undecidability proofs are based on a reduction from the DIOPHANTINE prob-
lem. This problem is also known as Hilbert’s 10th problem, which asks for an algo-
rithm deciding whether a given Diophantine equation has a natural (alternatively:
integer) solution [43]. About seventy years after Hilbert’s famous speech, Matiyase-
vich proved undecidability of DIOPHANTINE. QOur reduction will be done in several
steps. The main problem is to generate all k-tuples over the natural numbers. We
will first give an enumeration algorithm, and starting from this, we will define recur-
rent systems that are assembled to realise the enumeration of all k-tuples. The major
problem that we will have to solve is to realise subtraction. When proving PSPACE-
hardness of M,,(U,N) in the previous chapter, we realised a related enumeration
algorithm: generating all binary k-tuples.

7.1 Enumerating k-tuples of natural numbers

We want to decide whether a given Diophantine equation has a natural solution by
using recurrent systems. The idea is to try every possible input for the equation and
to check whether it is a solution. So, it is necessary to generate all inputs, i.e., all
k-tuples over the set of natural numbers, where k£ denotes the number of variables
in the equation. A simple algorithm is realised by &k nested for-loops generating, in
round r, all k-tuples between (0,...,0) and (r,...,r). It is clear that every single
tuple is generated infinitely often by this algorithm. We choose a more sophisticated
approach, since we wish to apply an algorithm that permits generation of every k-
tuple exactly once. We define an enumeration algorithm in two steps: first, we define
an auxiliary algorithm, that also generates tuples but of only a restricted form, and

114

second, we derive from the auxiliary algorithm the desired enumeration algorithm.

The auxiliary generation algorithm shall generate only monotone tuples. This
means: a tuple (by,...,b;) is monotone if by < --- < by. We can order monotone
k-tuples in the following way: (ai,...,ax) < (b1,...,bg) if and only if there is i €
{1,...,k} such that a; < b; and a; = b; forall j € {i+1,...,k}. So, the order relation
of two tuples is determined by the rightmost component in which both tuples differ.
Certainly, we have defined a lexicographic order on the set of monotone k-tuples
over N. Our algorithm will generate all monotone k-tuples over N in the order just
defined. The algorithm is called Generatey, and it is given in Figure 14. In every
iteration step, a k-tuple is output. We consider tuple (0,...,0) to be output in
iteration step 0 (algorithm line 4). Before we prove the result for Generatey, we give
a table containing the outputs of the first iteration steps of Generates.

n 012345678910 1112 13 14 1516 17 18 19 20 21 22 23 24
i -3213212113 2 1211211132121
b3 01112222223 3 3 3 3 3 3 3 3 3 4 4 4 4 4
by 001170112220 112 2 2 3 3 3 3 011 2 2
by 00010010120 01 01 2012 3 00101
Lemma 7.1 Letk > 1. Let a= (ay,...,ax) be a monotone k-tuple over N. Then,

there is exactly one n > 0 such that Generate; outputs a in iteration step n.

Proof: We prove the lemma in three steps: first, we show that the generated tuples
are monotone, second, we show that the generated tuples are ordered according to the
defined order <, and third, we show that every monotone k-tuple over N is generated.

[Generatey, outputs monotone k-tuples.]

We show the claim by induction over the iteration steps. In iteration step 0, (0,...,0)
is output, and this tuple is a monotone tuple. So, let (aq,...,ax) be the output in
some iteration step m. By assumption, (aq,...,ar) is monotone, ie., a; < --- <
ap. Let j be the value of variable ¢ of Generatey in iteration step n + 1. Hence,
ap = --- = a; and a; < a;jq1. Then, a; < a; +1 < aj41 < -+ < ag, and the
output (0,...,0,a; +1,aj41,...,a;) of iteration step n + 1 is monotone.

[Generatey, outputs k-tuples according to order < .

Let a = (ay, .. .,ax) be the output of Generatey in iteration step n > 0. By definition
of Generatey, there is ¢ € {1,...,k} such that a’ = (0,...,0,a; + 1,a;11,...,ax) is

the output in iteration step n + 1, where a’ is monotone. Since a; < a; + 1, a < a’.
By induction, it follows that the k-tuples output by Generate; are ordered according
to <.

Chapter 7

Undecidable membership problems

115

Figure 14 The entries of a monotone k-tuple over the set of naturals
are ordered by <. Algorithm Generatej generates all monotone k-tuples

over N.

1 1= mln{z S {1,,]{}} b < bi+1};

Generatey:

1 begin

2 bpt1 1= 003

3 by :=0; ...; by :=0;
4 output (by,...,bx);

5 for n :=1 to o do
6

7 bZ = bZ + 1;

8 by := 0; .5 b1
9 output (by,...,bx)
10 end for

11 end.

= 0;

116

[Generatey, outputs every monotone k-tuple.]

Since we have shown that the k-tuples output by Generate; are ordered according
to < and since there are only finitely many monotone k-tuples smaller than a given
monotone k-tuple with respect to <, it suffices to show that, for every n > 0, if a; is
output in iteration step n and as is output in iteration step n+1, there is no monotone
k-tuple a such that a; < a < ay. Let i € {1,...,k} such that a; = (ay,...,ax)

and ap = (0,...,0,a; + 1,a;41,...,a;). If a such that a; < a < ay, then i > 2,
a=(a],...,a,_4,a;,...,a;) and there is j € {1,...,7 — 1} such that a; < a;- and
aj = aj, for all j € {j +1,...,4 — 1}. By definition of Generatey, a1 = --- = a;.

But since j < i, a; > a;, and a cannot be a monotone k-tuple.
|

From algorithm Generatej, we easily obtain an algorithm that generates all k-
tuples over N. This algorithm is based on the following result, that defines a bijective
mapping between the set of monotone k-tuples over N and the set of (arbitrary) k-
tuples over N.

Lemma 7.2 Let k > 1. The function that maps monotone k-tuples (a1, ..., ax) to
(a1,a9 —aq,...,ar —ai_1) defines a bijection between the sets of monotone k-tuples
over N and k-tuples over N.

Proof: Let f denote the mapping. Let m = (mq,...,my) be a k-tuple over N.
Then, m is the result of applying f to (my,my + mo,...,m1 + --- + my), which is

a monotone k-tuple over N. Hence, f is surjective. Now, let a; = (ay,...,a;) and
ay = (a),...,a}) be such that f(a;) = f(az). By definition of f, a; = @, and by
induction, a; = a for all 4 € {1,...,k}. Hence, a; = a9, and f is injective. Since f

is total, f is bijective.
|

The original algorithm that we wish to obtain from Generatey, realises the map-
ping defined in Lemma 7.2. However, it will not be a bijection. The algorithm, which
is called Enumeratey, is presented in Figure 15. We observe a number of differences
between Generatej, and Enumeratej, but these are only slight modifications. Most
important is it to see that the k-tuples over N that we wish to enumerate are con-
tained in the variables mq, ..., m; of Enumerate;. To analyse Enumeratej, we say
that the value of a variable in some induction step is the value it contains at the
end of the loop. Before we formally establish the connection between Generatej, and
Enumeratej, consider the first few induction steps of Enumerates. Bold iteration
step numbers mark iteration steps in which variable ¢ has value greater than 1. We
will see that these iteration steps correspond to iteration steps of Generatey.

Chapter 7 Undecidable membership problems 117

Enumeratey:

1 begin

2 b, := 0;

3 my := 0; .y mg = 03

4 Mmgy1 1= 005

5 for n := 0 to oo do

6 i = min{i € {1,...,k+1} : m; > 1};
7 m; = m; - 1;

8 m;_1 = bi_1;

9 bi—l = bi—l + 1;

10 by :=1; ...; bj_o = 1;
11 output (mq,...,mg)

12 end for

13 end.

Figure 15 Based on the definition of Generatey, Enumerate; generates
all k-tuples over the set of naturals.

118

n 0123456789 10111213 14 15 16 17 18 19 20 21 22 23 24

i1 44321432132 1 2114321321211

bs 12222333333 3 3 3 3 4 4 4 4 4 4 4 4 4 4

bo 11222122233 3 3 3 312 223333 3 3
by 11122112212 2 3 3 3 11221223 3 3
m3| 01000211100 0 0 OO0 3 2 2 2111111
mg| 00100010021 10 00 O01O0O02 11000
m| 00010001001 0 2 1 00 01 O0O01O0210

By a phase of Enumeratej, we mean an iteration step in which ¢ has value greater
than 1, and by phase n of Enumeratej, we mean the nth phase of Enumeratey, where
we start with n = 0.

Lemma 7.3 Letk>1. Let n > 0.

(1) If Generatey outputs (aq,...,ay) in iteration step n, then a; +1,...,a;+1 are
the values of the variables by, ..., by in phase n of Enumeratey.

(2) If ay,...,ay are the values of the variables by, ..., by in phase n of Enumeratey,
respectively, (a; —1,a3 —ay,...,a; —ai_1) is output in phase n of Enumeratey.

Proof: We show both statements simultaneously. Observe that, if, in some iteration

step n of Enumeratey, ¢ has value 1, then n > 1 and the values of b1, . . ., by in iteration
step n are equal to the values of by, ..., by in iteration step n— 1, respectively (lines 9
and 10 of Enumeratey). A similar equality holds for variables mo, ..., my in iteration

steps n and n — 1 (lines 7 and 8 of Enumeratey,).

Let n = 0. By definition, Generatey outputs tuple (0,...,0). By the definition
of Enumeratey, ¢ has value k41 in iteration step 0, and b; = --- = by = 1 and
mq = --- =my = 0. Hence, the statement holds for n = 0.

Let n > 0. Let j be the value of variable 7 in phase n of Enumerate;. By
definition, my = --- = m;_; = 0 and m; > 0 in phase n—1 of Enumerate;. Applying
the induction hypothesis, by = - -- = b;_; < b; for the output in iteration step n—1 of
Generate. Hence, j is the value of variable ¢ of Generatey, in interation step n, and
statement (1) is true for n. For statement (2), it remains to see that m; = b1 —1=0
and mg =---=m;_1 =0=0by —by =---=b;_; —bj_s in phase n of Enumeratey.
Furthermore, b;—b;_1 = m; in phase n of Enumeratey,. Since the values of b 1,...,by
are equal in phases n and n — 1 of Enumerate; as well as of Generatey, the lemma
follows.

|

Note that the output of every phase of algorithm Enumerate; is obtained from
the values of the variables by, ..., b; of Enumerate; by application of the rule that
was defined in Lemma 7.2.

Chapter 7 Undecidable membership problems 119

Corollary 7.4 Let k > 1. Algorithm Enumerate; outputs every k-tuple over the
set of natural numbers.

Proof: Let a be a k-tuple over N. Let a’ be the monotone k-tuple that is mapped to a
according to the definition of Lemma 7.2. By Lemma, 7.1, @’ is output by Generatey,
and due to Lemma 7.3, a is output by Enumeratej in some phase.

|

Remember that, if Enumerate; outputs only in phases, i.e., in iteration steps in
which ¢ has value greater than 1, it outputs every k-tuple over N exactly once.

7.2 The description of a component

We have defined an algorithm that generates all k-tuples over N for £ > 1. This
algorithm uses only a few operations: assignments, conditional tests (finding the
minimum) and addition and subtraction. We want to simulate the behaviour of this
algorithm by recurrent systems. However, it takes considerable effort to simulate
subtraction. In this section, we will define a recurrent system that can decrease a
number by 1. To make the work easy, we will talk about another type of recurrent
systems. Let A, B C N. We define function gr, which should be understood as greater
than, as follows: if B C A @ N then gr(A, B) =qef {0}; otherwise gr(A, B) =qef {1}-
By 1, we (also) denote the constant 0-ary function 1.

Definition 17 Let n > 1. A finite recurrent system S = (F,A) over sets of
naturals of dimension n is a finite recurrent {gr,®,®,1}-system over sets of
naturals of dimension n if and only if every function in F is a {gr, ®, ®, 1}-function.

It is easy to see that recurrent {gr,®,®,1}-systems, as we will call finite re-
current {gr, ®, ®, 1}-systems over sets of naturals for short henceforth, can generate
only singleton sets in every iteration step. That is why we will not use set braces for
singleton set inputs and results. For convenience, we define five auxiliary functions.
Let A, B C N. Then,

ueq(A, B) =qet gr(4, B) @ gr(B, A)
or(A, B) =qcf ueq(A ® B, 0)
no(A) =qer ueq(4,1)
eq(A, B) =def no(ueq(4, B))
0 =ger n0(1) .
Note that ueq stands for unequal, no stands for the Boolean ‘not’, eq stands for equal

and or stands for the Boolean ‘or’. Furthermore, every function maps to either 0 or
1, which may be understood as Boolean ‘false’ and ‘true’.

120

Lemma 7.5 Let A,B CN.
(1) gr(A,B) =1 if and only if min A > min B.

(2) ueq(A,B) =0 orueq(4,B) =1,
and ueq(A, B) = 1 if and only if min A # min B.

(3) or(A,B)=1ifand only if 0 ¢ A or 0 & B.
(4) no(A) =1 if and only if min A # 1.

Proof: (1) If gr(A,B) =1, ie., BZ A®N, then min A > min B. If gr(4, B) =0,
i.e.,, BC A®N, then min A < min B.

(2) Since gr(A, B) = 1 implies gr(B, A) = 0, ueq(4,B) = 0 or ueq(4,B) = 1.
By symmetry, let us assume min A < min B. If min A = min B, then gr(A, B) =
gr(B,A) = 0. If minA < minB, then gr(4,B) = 0 and gr(B,A4) = 1, ie,
ueq(A4,B) = 1.

(3) If0 € AN B, then 0 € A® B, and min(A & B) = min{0}. Otherwise,
min(A @ B) > min{0}, and ueq(4A @ B,0) = 1.

(4) Let minA = 1. Then A C 1®Nand {1} € A®N, or gr(l,4) =0
and gr(A4,1) = 0. This means that ueq(A,1) = no(A) = 0. For the converse, let
minA # 1. If minA =0, then AZ1®N, if min A > 2, then {1} Z A ® N. Hence,
ueq(A,1) =no(4) = 1.

|

The recurrent {gr, ®, ®, 1}-system, that we will define, will be Sy, = (Far, Apr)
and will be of dimension 5. In the next section, many copies of this system will be
composed to a new one, and these copies will depend on each other. This commu-
nication will be realised by functions. In the following system, these functions will
already be present but without a precise definition. They are called f., fi, fo and
have the following properties. Let ¢ > 0.

far(0) =det fir (0) =det fer(0) =aef 0
far(t 4+ 1) =qet for (Far(t))
St +1) =qaet for (Faur(t))
for(t +1) =qet fo (Fu(t))

Furthermore, we use two auxiliary functions f’ and f”. Let x =q¢¢ (a,b, ¢, h,m) and

' (x) =gef ueq(h,1 @ (m ® no(f.(x))))
F"(x) =det (m @n0(fer(x))) @ (f'(x) ® ueq(h, m ® no(f(x)))) .-

Chapter 7 Undecidable membership problems 121

Now, let Fnr =def (fas fos fer fry fm) where

Finally, let Ay =qef (0,0,0,0,0). We will continue by proving important properties of
the behaviour of Sjs. The proofs are very technical. Remember that no {gr, ®, ®,1}-
function on only non-empty input sets can output the empty set.

Lemma 7.6 (1) If Sy[fp](1) CN@® 1, then Sy[fp](t) SN 1 for every t > 1.
(2) Sna[fr](t) € Su[fm](t) @ N for every t > 0.

Proof: We prove the claims by induction over t. For statement (1), let Sys[fp](t) C
N@ 1l If0¢& fo(t+1), then fu(t +1) @ Si[fe](t) CN@ 1. If 0 € fo (¢t + 1), then
no(fy(t+1)) =1, and Sy [fo](t+1) C N 1.

For statement (2), note that Sy/[f](0) = Sa[fr](0) = 0, since f,/(0) = fiy (0) =
0. For the induction step, let Sas[fn](t) € Sm[fm](t) ® N. First, consider the
case 0 € fu(t +1). Then, 0 € Sy[fm|(t +1), and Sy[fm](t +1) @ N = N.
Now, let 0 & fo(t +1). If no(f'(Fa(t))) = 1, the claim obviously holds. If
no(f'(Fu(t))) = 0, ie., f/(Fu(t)) = 1 by definition of f’, then Sy [fa](t + 1) C
for(t+1) @ Sar[fn](8). I no(fe(t + 1)) = 0, then 0 = f"(F(t)) or 1 = f"(Fu(t)),
and the claim holds. So, assume no(fy (t+1)) = 1. If ueq(Sas[fn](t), Sar[fm](t)) = 0,
then f"(Fa(t)) = Sm[fim](t), and the claim holds due to induction hypothesis. So,
finally, let ueq(Sas[fn](t), Sar[fm](t)) = 1, i.e., min Sps[fn](t) # min Sys[fn](t), and
F(Far(®)) = Spr[fm](t)@1. By induction hypothesis, Sys[fn](t) C Sy[fm] ()N, ie.,
min Sy/[fx](t) > min Sy/[f,](t), so that we obtain min Sy;[f](t) > min Sy/[fmn](t),
and the claim holds.
|

Lemma 7.7 Let 0 <t <ts.

(1) Let SM[fa](tl) = fa’(tl) =1 and fc’(tl) =0.
If fa/(tl-l-l) =1 and fc/(tl-l-l) = 0, then SM[fa](t1+1) =1, SM[fc](t1+1) =0,
Sulfe)(ti+1) = Su[fo)(t1) and Sar[fm](t1+1) = Sar[fm] (1)

(2) If for(t) = 0 and fy(t) C N1 forallt € {t1,...,t2} and fo(t1) = 1, then
SM[fa](t) =0forallt e {tl, R ,tg}.

Proof: Consider the assumptions of the first claim. Due to definition, f, (0) =
0, hence t; > 0. Furthermore, note that no(f.(¢1)) = 1. By definition of f,,
Sulfa](t1) = 1 implies Sps[fn](t1 — 1) = Sa[fm](t1 — 1), so that

Sulfm](tr) = f"(Fu(ty — 1)) = Sufm](t1 — 1).

122

Since
_ [Sulfalti=1) i fi(Ful(ti—1) =1
sl = { S 1y e i - 1) -0
it follows that Sys[fn](t1) = Sar[fm](t1), which results in Sys[fq](t1 + 1) = 1 and
ueq(Sns[fr](t1), Sar[fm](t1)) = 0. By assumption, f,/(t; + 1) = 1, so that

Sulfml(tr +1) = f"(Fu(t1)) = Sulfiml(t1) -

The claims for Sy/[fc](t1 + 1) and Sps[fp](t1 + 1) follow trivially by definition.

For proving the second claim, observe that f.(¢t1) = 1 implies Sy/[f.](t1) = 0.
Furthermore, since f,/(t) = 0 and fy(t) € N @ 1 by assumption, Sy[fm](t) = 0
and Sy/[fn](t) € N@ 1 by definition, which yields eq(f,, (), frn(t)) = 0 and therefore
SM[fa](t) =0fort; <t <ty

|

Lemma 7.8 Assume, for all t > 0, fo(t+1) = 1 implies Sy/[f,](t) = 1, and if
far(t) =1 and fu, (t+1) =0, then f.(t+1) = 1.

Let to > 0 be such that Syr[f.](to) = 0 and fu (to) = 1. There is t1 > to such that
Sulfa](t1) = 1. Ifty is smallest possible and eq(Syr[fn](to), Sar[fm](to)) = O then
ed(Su[fnl(to), (Sm[fml(t1) © 1)) = 1.

Proof: Let k£ > 0 be the value such that

eq(Sar[fnl(to); (Smlfml(to) ® {k})) = 1.

The existence of k is due to Lemma 7.6. We show the claim by induction over k.

Let kK = 0. It holds that Sy/[f.](to + 1) = 0 implies fo(to + 1) = 1 by definition
of f, and Sy/[fa](to) = 1 by assumption. So, since Sy/[f.](to) = 0 is assumed,
Sulfal(to+1) = 1, and t1 =ger to + 1 fulfills the claim. Furthermore, ¢; is smallest
possible with this property and Sy [fn](t1) = Sa[fim](t1 — 1).

Let k > 1. Clearly Sy/[fa](to+1) =0, and fu (to+1) =1 and fo(to+ 1) = 0 due to
our assumptions. We distinguish two cases.

Let £ = 1. It holds that

' (Fa(to +1)) = veq(Sar[fn](to + 1), (1 ® Sn[fm](to +1))) =0
and
Sulful(to +1) = Syl fm](to +1) = f"(Farto + 1)) = Sn[fml(to) -

Now, eq(Sa[fn](to + 1), Sa[fim](to + 1)) = 1, and the existence of ¢; > ty such
that Sys[fa](t1) = 1 follows by applying case k = 0. Furthermore, t; = ¢y + 2 and
Sulfm)(t1) = Salfm](t1 — 1) = Sa[fm](to). Hence,

eQ(SM[fh](tO)a (SM[fm](tl) @ 1)) =1.

Chapter 7 Undecidable membership problems 123

Let k > 2. We conclude that f'(Fy(tg)) =1, and

Sulfml(to +1) = f"(Fu(to)) = Sulfml(to) ®1

and Sy/[fr](to + 1) = Sn[fr](to). It holds that the number &” such that

eq(Smlfn)(to + 1), (Sm[fml(to +1) & {k'})) = 1

is one less than k, and we can conclude the proof by applying the induction hypoth-
esis.
|

7.3 Assembling components

In this section, we will finally obtain the recurrent {gr, @, ®, 1}-system that simulates
Enumerate;. We will assemble copies of system Sj;. Let S](\}), ey S](\Z) be k copies of
system S);. By f(gz),féf), e éz),fy(ﬁ) we denote the functions of S](\Z), ie{l,...,k}.

Consider the following definition.
Fh=aet (Sa s 1y L 1D 10 52 B R B 8D £

X =gef (a1, b1, c1, hi, my, ag, ..., by, ¢k, hg, mi, x).

Furthermore, let fai)(x) = falai, b, c;, hi,m;), and similarly for féi), c(i),f,y), 72?,
i€ {1,...,k} Finally, let fa(X) =qef T @ fék) (x). Now, we can precise the def-

initions of féf), é,i),f(,z), that appear in the components S](\}[), . ..,S](@). For every
ie{l,...,k—1}, let
FO) =aer £8V (%) £ 00 =aet £V (%) FP (%) =aet 1
(k) (k) and and i)
fa’ (X) —def IlO(fc (X)) b (X) —def fA(x) fc’ (X) —def fc (X) .

Let S§ =qef (FE, AY) where A% =qcr (1,0,0,...,0). Observe that all functions are
well-defined in the sense that no value depends on itself. We begin by showing some
technical properties of SJ’EJ.

Lemma 7.9 Let k > 1.

(1) SEI£V1(1) = -+ = SpIf7)) = 0.

(2) SEFN) = - = SEIAMN) =1

(3) SELFAI1@), ..., S S N@ 1 for every t > 1.

Proof: We prove the lemma by induction over i. We begin with functions S&[féz)]

Observe that S& | ,(LZ)](O) =0foralli € {1,...,k}, and therefore, eq(S%| ,(Li)](O), 0)=
1. By definition, £.”(1) = 1, hence, Sk[f"](1) = 1. Now, let SE[£](1) = 1, for

C

124

1 <4< k. Since S%[f(zﬂ)](1) = fé,Hl)(l) = S’g}[fci)](l) = 1, the lemma holds for
SE[ch]. Note that we have also shown fé,z) (1) = 1. It immediately follows the results

for functions S&| fai)] and S%| flfi)] by definitions.
|

Note that Sk[£7)(t), £% 1), SE1£91(t), £ () € {0,1} for every i € {1,... k}
and t > 0. Furthermore, every function of F J’% always computes singleton sets.

Lemma 7.10 Foreveryt>0andie€{1,...,k},

(1) if SE[£D)(t) = 1 and SE[£V](t+1) = 0 then f(t+1) =1
(2) if 9 (t) = 0 then SE[fV)(t) =0

(3) fM(t+1) =1 if and only if SE[fV)(t) = -+ = SE[FP)(t) = 1.

Proof: Since fc(/l)(t +1) = S| (gl)](t) by definition, statement (1) holds for ¢ = 1.
We show the statement for i > 1 by induction over i. Assume that S§[fél)] (t) =1and
SE£)](¢+1) = 0. It holds that ¢ > 1 and f(”(t) = 0. In particular, SE[£](t

)
Suppose f./'(t+1) = 0. Then, ca(S} [£3718), SELER1(8) = 0, e, SEIFV1(¢
SEI£W1(t). Dueto S@W () =1, SEIA1(E-1) = S@[fni J(t=1), and £ (t-1)
We will show that fa, (t) = 0 must hold. Suppose f(t) = L. Then, Sg[fhi 1(¢
SELFIE - 1). I no(f9 (1) = 1, then SE[£V](t) = SE[fP)(t — 1), which con-
tradicts the assumption. Hence, no(fc(,Z (t)) = 0, which contradicts S&] fél)](t) =1.
So, f9(t) = 0. Ifi = k, SE[f™](t) = 1 by definition, which contradicts the as-
sumption. Let 1 < i < k. By definition of S&, we obtain S%[fawr1 Jt—1) =1 and
SE[fa (ZH)]() = 0. Applying the induction hypothesis, fc, () = 1, and by definition
of S%, S%[fc |(t) = 1, which is a contradiction. Hence, fc(,)(t +1)=1.

We prove statement (2). Observe that fc(,Z) (t) = 1 implies Sg[féi)](t) = 0 by
definition. Hence, it suffices to show that, if fé,i)(t) = 0, then fc(,i)(t) =1. We
show this claim by induction over i. Let i = k. Since féfc) (t) = no(Sk[c(k)](t)), we
obtain S%| c(k)](t) = 1. In particular, fc(,k) (t) = 1. Now, let i < k. By definition,
Sg[f(lﬂ)](t) = 0, and by induction hypothesis, fc(,iﬂ)(t) = Sg[féz)](t) = fc(/z) (t) =1,
which proves statement (2).

0.
t) #
= 1.
) =

For statement (3), observe that S%] fél)](t) = 1 immediately implies fé,l)(t +1).

So, for the converse, let fé,l)(t +1) =1, ie., S&[é”](t) = 1. By induction, we obtain
the result from statement (2).

|

Lemma 7.11 Let ty > 0 such that fc(,l)(to) = 1. Then, there is t; > ty such that
SELfV)() = 1.

Chapter 7 Undecidable membership problems 125

Proof: Observe that, if fi (to) = 1, then S’Ej[fai)](to) =0. Let s € {1,...,k} be
largest possible such that S&| fa](to) = 0. We will show that there is t; > ¢y such
that Sk [é’“)](tl) = S’]g[fa](t1) = 1. Tterated application proves the statement.

Note that the assumptions of Lemma 7.8 are fulfilled for component ¢ of Syy.
For the first assumption, note that f (t + 1) = 1 implies f (t +1) =1, and due
to Lemma 7 10, Sg[f(gz)](t)=1. For the second assumptlon if i =k, f)(t +1) =0,
then sk[fc J(t+1) = Land fP(+1) =1, if i <k, f3(8) = SEIAV)@) = 1
and f (t +1) = Sg[fahLl](t+1) = 0, and due to Lemma 7.10, f(”l)(t +1) =

SEFIE+1) = P+ 1) =1.

Let ¢ = k. Due to Lemma 7.10, fc(,l)(to +1)= fc(k) (to+1) = S%[fc(k)](to +1) =
0. Since fy)(to +1) = no(S%[fc(k)](to + 1)) by definition, f(gfg)(to +1) =1. If
S%[fék)](to + 1) = 0, we can apply Lemma 7.8 and obtain ¢; > ¢y + 1 such that
SEIFF)(t) = 1. Let i < k. By definition, f\/(to) = SE[fS™](t), and due
to the max1mahty of 1, S%[fahLl](to) = 1. We apply Lemma 7.8 and obtain #;
such that S%[fa](tl) = 1. Applying statement (2) of Lemma 7.10, we obtain that

Sg[fak)](tl) =... = S’]}[fai)](tl) =1, and we conclude the proof.
|

Statements (2) and (3) of Lemma 7.10 and Lemma 7.11 justify the following
definition of a phase of S%. A phase of S% is an interval [tg,t;] for numbers ¢,
and t1, tg < t;, where fc(,l)(to) = 1, S%[fél)](tl) =1 and fc(,l)(t) = 0 for every
t € {to+1,...,t1}. In other words, ¢; is the smallest value such that ¢; > t; and

S%[fél)](tl) = 1. Note that Sg[fél)](to) = 0. Furthermore, there is no ¢; such that
[0,¢1] is a phase of S§. The following lemma shows the central result about the
components of S%, in fact, that they perform subtraction.

Lemma 7.12 Let to and t1, 0 < to < t;, be such that [to,t,] is a phase of S%, and
let i € {1,...,k} such that fc(,z)(to) =1. IfSJ’EJ[fCZ)](tO) = 0, then Sk[(Z)](t -1)=
SELFD](t) @ 1. Otherwise £ (t1) = SE[£0)(t1) & 1.

Proof: Due to definition, S&[fai (to) = 0. By the definition of a phase, there is a
smallest number ¢’ where ty < ¢’ < ¢; such that f (t’) = 1. Note that S&] fa](=0
(statement (2) of Lemma 7.10 and the definition of fa)

Let S%[fcZ 1(to) = 0. Then, ¢’ = tg due to statement (1) of Lemma 7.10, and
Sjg[fh I(to — 1) # 0. Slnce SEIF)(to — 1) = 1, it holds that SE[f{V](te — 2) =
Sg[fm [(to — 2). Also, f (to — 1) = 1 due to statement (2) of Lemma 7.10, and
f“(zfo—l) = 0. Thus, SE[fi"](t0 — 1) = S@[fﬁ](to—z) and SE[f3))(to — 1) =
SELA (o — 2). T8 SEIAI(t — D =1, then SELA (ko) = SE[f)](t0) = 0, and
SEIfA(to+1) = 1. So, let SE[f1"](to—1) # 1. Then, SE[£”1(to) = SEIFL"1(to —1)

126

and S%[fhi](to) 75 Sk[](to) and we can apply Lemma 7.8. Hence, there is t; > tg
such that S¥ [fh](0) = Sg[fm |(t1) @ 1. By the results of Lemma 7.7, we conclude
this case.

Now, let S%[£"](to) = 1. Then, ' > to Note that SE[f)](t — 1) = fi7 (¢ — 1)
andSk[fm](t’ 1) =0. Bythechomeoft’ f ("= f/LC (1) and, sincef,i)(t’)zl
and f(t) =0, £) = £t — 1) for i < k. Hence, £ (t1) = £’ (¢ = 1). So, the
situation of component ¢ in ¢’ equals the situation in ¢y of the first case, and we can

conclude the proof.
|

Corollary 7.13 Let [to,t1] be a phase of Sk, and let i € {1,...,k} such that
SEL) o) = 1. Then, SELN0) = -+ = S5)(0) = 1 and SE[FSV)(01) =
= SE[FY](0) = 0.

Proof: Let t € {ty,...,t1} be largest possible such that fa(f) (t) = 0. It is clear

that Sg[fb(i)](t) = 1. Since féf)(t’) =1 and fc(,i)(t) =0foreveryt e {t+1,...,t1},

Sg[fbi)] (t1) = 1. By iterated application of these arguments, we obtain Sg[féi)](tl) =
= S]'f/f[fél)](tl) =1, and the claim follows from Lemma 7.12.

|

We can order the phases of S% according to the left or right endpoints and
enumerate them accordingly starting with phase 0. Let s() denote the right endpoint
of phase n, i.e., there is a number r such that [r, s(")] is phase n. Note that s(™ + 1
is the left endpoint of phase n+1. Then, for every n > 0, let

u(n) =ae(SELFs™), .., SELA1(s™))
k() =ac(f (s, .o, 50 (s)) .

Since the entries of pu(n) are only singleton sets, we can say that u(n) represents
an element of N¥. We will show that the sequences defined by p and generated
by Enumeratej; can be considered equal. More precisely, the phases of S’]} exactly
correspond to the iteration steps of Enumeratey. For every n > 0, let

v(n) :def(mén), . ,mgn))

B(n) =qes®™, ..., B")

where m(") and b(") denote the values of variables m; and b; in iteration step n of
Enumeratek, respectlvely. For being mathematically precise, consider the following
definition. Let a1,...,ax,d},...,a; € N. Then, (a1,...,ar) ~ ({a}},...,{a}}) if
and only if a; = a] for all i € {1,...,k}.

Proposition 7.14 For every n > 0: u(n) ~ v(n).

Chapter 7 Undecidable membership problems 127

Proof: We will show the claim by induction over the iteration steps of Enumeratey
and the phases of SJ’EJ. To achieve this, we will show a stronger result, in fact, that,
for every n > 0, pu(n) ~ v(n) and k(n) ~ B(n). Subsequently, i means the variable
of Enumeratey.

By definition of Enumeratey, v(0) = (0,...,0) and 8(0) = (1,...,1). For S%,
phase 0 has left endpoint 1. Due to Lemma 7.9, S%[fc(k](1) = 1, so that, due to
Corollary 7.13, 4(0) = (SE[£F)(s©),0,...,0) and k(0) = (SE[fa](s©),1,. ..,1).
By construction and due to Lemma 7.10, it holds that SE[f4](1) = S&[fa](s(?) =
Finally, SE[fm k)](s(o) = 0 by Lemma 7.12. Hence, the claim holds for n = 0.

Now, let n > 0, and let u(n) ~ v(n) and k(n) ~ B(n). Let r € {1,...,k} be
largest possible such that f)()4+1) = 1. Recall that s(™+1 is the left endpoint
of phase n+1 and that S’J"Ej[f]()) = S’J"Ej[f(j 1(s™) for every j € {1 ., k} due to
the definition of function £ and the end of a phase of Sk. If % [f](s(” +1)=1

then p(n) = (0,...,0), and ¢ = k + 1 in Enumeratey in iteration step n+1. Hence,
vin+1) = (blg ,0,...,0) and B(n+1) = (b(n)—l—l,l,..., 1). Due to definition of S%,
and since f, éfg)(t)=1 for every t € {s() +2,... 5D}

sy = {7 (s 4 1) = fP (M) @ 1.
From Corollary 7.13, we obtain

pn+1) =(SE[F)(s7HD),0,...,0)
k(n+1) :(fb(,k)(s(")) ®1,1,...,1),

and Lemma 7.12 yields SE[£F] =) (s), ie., u(n+1) = (£ (s™),0,...,0), so
that the claim holds in this case.
Now, let SE[fe M1(s™ 4+ 1) = 0. So, 1 < r < k, r is the least number for which

holds S%] fm](s(”) # 0, and r is equal to the value of 7 in Enumerate;, in iteration
step n+1. By definition of Enumeratey,

v(n+1) :(m,(c"),. mﬁ)l,mgﬂn) -1, b(")1 ,0,...,0)

T

Bn+1)=(b", .., b ™M 411,.,1).

For S&, note that fg) () =1forallt e {s™ +1,..., sV} and fé,r) (t) =0 for all
te{s™ +2,..., st} Hence, by definition of Sy,

SELAT (s D) = SEIFV (5™ + 1) = SV @ 1.

F‘urthermore Sk [f(r)]()) = Sk [f(r)](D) @ 1 and, if r > 1, Sg[f ") (s) =
SE[fm] @ 1 due to Lemma 7.12. Applying Lemma 7.7 and Corollary 7.13, we
finally obtain p(n+1) ~v(n+1) and k(n + 1) ~ B(n + 1).

|

128

Corollary 7.15 Let k > 1. For every a € N¥ there isn € N such that a ~ u(n).

Proof: Let a be a k-tuple over N. Due to Corollary 7.4, there is an iteration step n
such that Enumerate; outputs tuple a in iteration step n. By Proposition 7.14,

a~u(n).
|

7.4 TUndecidability results

There are two finishing steps that remain. First, we will show that the existential
membership problem for recurrent {gr, ®, ®, 1}-systems is undecidable, and second,
we will reduce this problem to both the existential membership problems for recurrent
{U,N, ®, ®}-systems and recurrent {—,®, ®}-systems. The first step is based on
the fact that it is undecidable whether a given Diophantine equation has a natural
solution.

Definition 18 A Diophantine equation is an equation on variables x1,..., Ty
of the form p(z1,...,zr) = q(z1,...,zr) where p and q are polynomials in x1,...,xx
with natural coefficients. The problem DIOPHANTINE asks whether a Diophantine
equation has a solution in natural numbers.

Theorem 7.16 (Matiyasevich, [59])
DIOPHANTINE is undecidable.

The existential membership problem for recurrent {gr, ®, ®, 1}-systems is defined
in the usual style, and it is denoted as M., (gr, ®,®,1).

Lemma 7.17 DIOPHANTINE <l M, (gr,®,®,1).

Proof: Let p(x1,...,z;) = q(x1,...,z;) be an instance of DIOPHANTINE. It holds
that (x;)""% = (z;)" - (z;)® for all r and a. So, in logarithmic space, we can compute
a circuit representation for p and ¢ and a {gr,®, ®,1}-function f,—, such that

fp=¢({a1},... . {ar}) =1 <<= plai,...,a;) =q(a1,...,ax).

Now, we obtain the recurrent {gr,®,®,1}-system S from S% by adding a new com-
ponent (f,—4,0), and f,—, depends on the variables of S% associated with the func-

tions f&l), ... ,f,(,f). It holds that 1 € [S] if and only if there are aq,...,a; € N such

that p(ai,...,ar) = q(a1,...,ax).
|

Lemma 7.18 (1) M, (gr,®,®,1) <k M, (U,N,®,®).
(2) Mem(gr, D, ®, 1) S%n Mem(_a D, ®) .

Chapter 7 Undecidable membership problems 129

Proof: The major part of the proof is dedicated to representing function gr as a
{7, ®, ® }-function and a {U,N, ®, ® }-function. However, this is too restrictive. In
the former case, we will use further constant functions, in the latter case, we give a
representation that strongly depends on a given recurrent system.

We begin by expressing gr as a {7, ®,®,0,1}-function. Consider the following
definitions:

f1(2,2) =t 00 2@ (z 1) @ (T TH1) ®0
f2(2,2) =qet (10 1) ® fi(z,2) @ (1D 1) ® fi(z,2)) & 1)

f3(z,2) =get f1(z,2) D1 D falz, 2).

Let A, B C N be non-empty set. Let ag =gof min A and by =gef min B. Observe that

{0,...,00} ={1,2,..}®{b} =0 B.
Furthermore, N=1&® 1@ 1, and
{ap+1} @ N = {0,ap+1,2a9+2,...} C (A1) @ (1®1d1) CN\ {ao}.
Thus,

_[N , if ag < by
fl(A7B)_{N@1 ,if ag > by

Distinguishing the two cases, we obtain

_[{1,3,5,7,9,...} ,ifay<bg
fz(A,B)—{{o,3,5,7,9,...} ,if ag > by,

so that we obtain

i <
fg(A,B): N@{1,3,5,7,9, } ,?fao_bo
N\{1}) ®{0,3.5,7.0,...F ,ifag> b

. {0} ,ifa0§b0
B {1} , if ag > by,

which shows that f3(A, B) = gr(A, B) for all non-empty A, B C N. So, let S be a
recurrent {gr, ®,®, 1}-system. By replacing every occurrence of gr in the functions
of S by function f3, we obtain a recurrent {—,®, ®,0,1}-system. Adding two fur-
ther components representing the constant functions 0 and 1, we obtain a recurrent
{7, ®,®}-system S’ for which holds S(t) = S’(t) for every t > 0.

Now, we show that gr can be expressed as a {U,N,®,®,0,1}-function in a re-
stricted sense, that is explained later. We have to make some preliminary considera-
tions. Let f be an n-ary {gr, ®, ®, 1}-function represented by a circuit containing v
vertices. Observe that for finite and non-empty sets By, ..., B, C N it holds that

f(By,...,B,) €H{0,...,(b+1)*}

130

where by =qef max(B; U---U B,,). Let
el(z) =qer (1O 2) @ 7) © 7).
Then, for every a € N holds:
el({0,...,a}) ={0,...,a(a+2)}.
Hence, we can generate function el, (z) where

L) =def

=def el(elr (12))
in space linear in v, and for every a € N holds {0, ...,a*'} Cel,({0,...,a}).

elo(z)
elr—l—l(-r)

Let S = (F, A) be a recurrent {gr, ®,®, 1}-system of dimension n. Let ag =gef
max A. In space linear in the length of ¢y we can generate a {®, 0, 1}-function g(x),
where x = (z1,...,2,), in the following way such that {0,...,a0} C g(A):

{0,1} @ {0,1} ={0,1,2}
{0,1,2} @ {0,1,2} = {0,1,2,3,4}
{0,1,2,3,4} ® {0,1,2,3,4} = {0,1,...,6,7,8},

and so on. Let v denote the largest number of vertices of the circuit representations
of the functions of S. Let S’ emerge from S by adding the components

(<fn+1(x/) =def Tn+1, fn+2(xl) =def Tn+2, fn+3(xl) =def elu(g(anrl U xn+3))>= (17 0, 0))

where X' =get (Z1,...,Zn, Tni1, Tni2,ZTy,). Then, for every ¢ > 0, S'[fnis](t + 1)
contains all numbers that are not larger than any number that can be generated by a
{gr, @, ®, 1}-function represented by a circuit on at most v vertices applied to F(t).
The combination of all these results yields the following identity. For every a,b € N
that can appear in F(t):

gr({a}, (0)) =(({0} N ({a} © fusa(t+1))) ©0)
U(({a} N ({B} @ fasalt+D) @ 1)) 0 0) @ 1) .

Obtain S” from S’ by replacing every occurrence of gr by the above defined term,
then by replacing every occurrence of 0 and 1 by z,42 and z,1, respectively, and
finally by making f,, the output function of S”. Hence, for every t > 0, S(t) = S”(¢),
and S” can be obtained using only logarithmic space.

|

Theorem 7.19 M., (U,N,®,®) and M, (~,®,®) are undecidable.

Proof: Undecidability is an immediate consequence of Lemmata 7.18 and 7.17 and
Theorem 7.16.
|

131

132

Part 111

Minimal triangulations

Every graph defines the set of its minimal triangulations. A minimal triangulation
of a graph G is a chordal spanning supergraph of G such that it does not have a
proper subgraph that is also a chordal spanning supergraph of G. Since there is only
a finite number of graphs of fixed vertexr number, the set of minimal triangulations
of a graph is finite. Nevertheless, the problem, given a pair (G,H) of graphs, to
decide whether H is a minimal triangulation of G, is not trivial. This problem will
be called the min-Tri membership problem for arbitrary graphs. Starting only from
the definition, it is not clear whether the min-Tri membership problem is polynomial-
time solvable. However, there is a characterisation of minimal triangulations that
immediately implies a polynomial-time decision algorithm.

Instead of investigating the general min-Tri membership problem, we will con-
centrate on restricted versions. The restrictions will always affect the “first” input
graph, i.e., the graph that defines the set of minimal triangulations. We will consider
the min-Tri membership problem for 2Ko-free graphs, i.e., for graphs that do not con-
tain the 2K5 as induced subgraph, permutation graphs and AT-free claw-free graphs.
In all three cases, we will obtain linear-time solutions, if we assume that the first
input graph belongs to the requested graph class. Otherwise, i.e., if it must be checked

133

whether the first input graph has the required properties, recognition algorithms have
to be applied, and the min-Tri membership problems may become more difficult.

The linear-time algorithm for solving a restricted version of the min-Tri mem-
bership problem is based on efficient characterisations of minimal triangulations of
graphs that belong to the considered graph class. These characterisations are of dif-
ferent types. In case of 2Ko-free graphs, the vertexr set of a minimal triangulation
of such a graph can be partitioned into two sets, and one of the partition classes
must fulfill an easily checkable property. For permutation graphs, we will define a
special acyclic graph such that every mazximal path of this acyclic graph represents a
minimal triangulation in o way that allows efficient construction of the represented
triangulation. Finally, in case of AT-free claw-free graphs, minimal triangulations
are characterised by vertex orderings that can be generated by a special algorithm
applied to the given graph. So, every graph class requires a different approach for
solving the restricted versions of the min-Tri membership problem.

Besides solutions for our central problems, we will obtain a number of results
that will appear only as auziliary tools but are interesting in their own right. We
will present an easy recognition algorithm for proper interval graphs. Proper interval
graphs are special chordal graphs. The algorithm is multi-sweep breadth first search
based and generates a vertex ordering with a property that characterises proper inter-
val graphs, if the input graph is actually a proper interval graph; otherwise, i.e., if the
input graph is not a proper interval graph, the algorithm outputs a verter set which
proves that the input graph cannot be a proper interval graph. Such algorithms are
called “certifying”, since they do not only produce an answer but prove their decisions
by appropriate certificates.

In case of permutation graphs, we derive simple and linear-time algorithms for
computing the treewidth and minimum fill-in of permutation graphs. These algorithms
are modified shortest paths algorithms and work on the acyclic graph whose mazimal
paths represent the set of minimal triangulations of a permutation graph. For 2Ks-
free graphs, treewidth and minimum fill-in do not become linear-time computable, but
we will at least obtain polynomial-time algorithms.

134

135

Chapter 8
Chordal graphs and minimal triangulations

Minimal triangulations are chordal graphs. A graph is called chordal if it does not
contain a chordless cycle of length at least 4. A cycle is chordless if only consecutive
vertices are adjacent. Chordal graphs are very interesting graphs to study, and
they provide many characterisations using basic graph notions. Among those, three
characterisations are of special interest. So, vertices of chordal graphs can be ordered
such that the resulting ordering has an easily verifiable property (these orderings are
called perfect elimination schemes). Chordal graphs are exactly those graphs whose
minimal separators are cliques. This establishes a beautiful connection to the wide
field of separators. Finally, chordal graphs are the intersection graphs of families of
subtrees of trees. Hence, chordal graphs appear also in the context of graph classes
with nice geometric models.

In this chapter, we will present general definitions and results that are needed
for this part of the thesis. We will first define the notion of minimal separators
and give useful characterisations and properties. After that, we will consider the
class of chordal graphs. Especially, we will focus on characterisations of chordal
graphs that will appear later in modified form for characterisations of subclasses of
chordal graphs. Then, we will be prepared for defining minimal triangulations. A
minimal triangulation of a graph is obtained by adding an inclusion-minimal set of
edges to make the given graph chordal. We will give two well-known and useful
characterisations of minimal triangulations. After that, we will define the min-Tri
membership problem for arbitrary graphs, which is the general version of the problems
that we wish to solve in the subsequent chapters for special graph classes. The last
section of this chapter will be dedicated to three graph parameters that turn out to
be related to triangulations of graphs. Further definitions and results are stated in
the subsequent chapters, where they are needed.

8.1 Minimal vertex separators

For analysing the structure of graphs, it is useful to partition the graph into smaller
pieces. Some concepts are known, and the most popular is based on separators. And
for our purposes, special separators are of high importance. Let G = (V| E) be a
graph, and let S C V. By G\ S, we denote the subgraph of G induced by V'\ S. If
S = {z} for some vertex z of G, we also write G—z instead of G \ {z}.

Definition 19 Let G = (V,E) be a graph, and let a,b € V be vertices of G. A
verter set S CV of G is an a,b-separator of G if and only if a and b are contained
in different connected components of G\ S.

136

Note that there may be vertices a and b of a graph G = (V, E) for which there
is no a, b-separator of G. This is the case if and only if a and b are adjacent in G.
For non-adjacent a and b, V' \ {a, b} is always an a, b-separator of G.

Definition 20 Let G = (V,E) be a graph, and let a,b € V be vertices of G. A
verter set S C V of G is a minimal a,b-separator of G if and only if no proper
subset S C S of S is an a,b-separator of G.

Since a different notion of minimal a, b-separators may be defined via a cardi-
nality property, our minimal a, b-separators are also called inclusion-minimal.

Definition 21 Let G = (V, E) be a graph. A vertex set S CV of G is a minimal
separator of G if and only if there are vertices a,b € V of G such that S is a minimal
a, b-separator of G.

Minimal separators have a useful characterisation. Let G = (V, E) be a graph,
and let S C V be a set of vertices of G. An S-full component of G is the subgraph
of G induced by a vertex set C C V where C induces a connected component of
G\ S and every vertex in S has a neighbour in C. The following lemma is easy and
appears several times in the literature.

Lemma 8.1 (folklore)

Let G = (V, E) be a graph, and let a and b be vertices of G. A vertex set S CV of G
is a minimal a, b-separator of G if and only if G has two (different) S-full components
where the one contains a and the other contains b.

Proof: Let S be a minimal a,b-separator of G. By definition, a and b appear in
different connected components C, and Cj, of G \ S, respectively. Suppose there is
z € S that has no neighbour in C,. Every a,b-path in G that contains x contains
another vertex from S. Hence, S\ {z} is also an a, b-separator of G, which contradicts
S being minimal. A similar argumentation holds if S contains a vertex that has
no neighbour in Cp. For the converse, first note that S is an a, b-separator of G.
Furthermore, observe that, for every x € S, there is an a, b-path in G containing only
x as vertex from S. So, no proper subset of S can separate a and b, and S is minimal.

|

Corollary 8.2 Let G = (V,E) be a graph, and let S C V be a vertex set of G.
Then, S is a minimal separator of G if and only if G has two S-full components.

Proof: Let S be a minimal separator of G. By definition, there are vertices a and
b of G such that S is a minimal a, b-separator of G. Due to Lemma 8.1, a and b are
contained in two S-full components of G. For the converse, let C; and C5 be two
S-full components of G. Then, for every a € V(C) and b € V(Cs), S is a minimal
a, b-separator of G due to Lemma 8.1, hence a minimal separator of G.

|

Chapter 8 Chordal graphs and minimal triangulations 137

An interesting and useful relation over the set of minimal separators of a graph
is the crossing relation.

Definition 22 Let G = (V, E) be a graph, and let S1,S2 C V be minimal separa-
tors of G. We say that S1 and Sy cross if and only if So contains vertices of two
connected components of G\ S1.

It is clear that crossing can also be defined for arbitrary separators; we only use
the case minimal separators.

Lemma 8.3 (Parra and Scheffler, [69])
Let G = (V, E) be a graph, and let S1,S2 C V' be minimal separators of G. Then, S;
and Sy cross if and only if Sy and Sy cross, i.e., the crossing relation is symmetric.

Proof: By symmetry, it suffices to prove only one implication. Let S; and Ss
cross, which means that there are vertices a and b in S, and (different) connected
components C, and Cj, of G\S; such that C,, contains a and C}, contains b. Obviously,
S1 is an a, b-separator of G. Since S5 is a minimal separator of GG, there are two So-full
components D; and Dy of G, and a and b have neighbours in Dy and in Dy. Then,
S1 must contain vertices from D; and Dy, since otherwise G \ S; would contain an
a, b-path and S; would not separate a and b.

|

The more interesting case for minimal separators is, if they do not cross. In this
case, we speak of non-crossing minimal separators.

8.2 Getting to know chordal graphs

The class of chordal graphs is a very interesting graph class. In the history of graph
theory, the class of chordal graphs plays an important role, since it has been among
the first to be known a class of perfect graphs (perfect graphs are only mentioned
here, that is why we do not define the term and refer to the book by Golumbic, [35],
for more information and further historic remarks). Also, a lot of basic problems,
such as computing the clique and independent set numbers, are easy for chordal
graphs. The structure of chordal graphs is closely related to trees in a certain sense,
as we will see at the end of this section, and this property is useful in the design of
algorithms. In this section, we will summarise some important structural results for
chordal graphs.

Definition 23 A graph G = (V, E) is chordal if and only if G does not contain a
chordless cycle of length greater than 3.

Minimal separators and chordal graphs become related by two somewhat sur-
prising characterisations.

138

Theorem 8.4 (Dirac, [25])
A graph is chordal if and only if all its minimal separators are cliques.

Proof: Let G = (V, E) be a graph. Let S C V be a minimal separator of G. If S is
not a clique in G, there are two non-adjacent vertices u and v in S. Due to Lemma 8.1,
u and v have neighbours in two connected components of G \ S, and there are two
u,v-paths P; and P» in G such that they form a chordless cycle of length at least 4
in G. Hence, G is not chordal. Conversely, if G is not chordal, there is a chordless
cycle C of length at least 4 in G. Let z and z be vertices in C that are non-adjacent.
Let u and v be the neighbours of z in C. Then, S" =4¢¢ (V \ V(C)) U {u, v} is an
x, z-separator of G. There is § C S’ that is a minimal z, z-separator of G. Note that
S must contain v and v. Hence, S is not a clique in G.

|

Corollary 8.5 (Parra and Scheffler, [69])
A graph G = (V, E) is chordal if and only if G does not have minimal separators that
CTOss.

Proof: Let G have two minimal separators S7 and Sy such that S; and S, cross, i.e.,
there are vertices u and v in Sy that appear in two different connected components
of G\ S;. Then, u and v are not adjacent in G, and G is not chordal by Theorem 8.4.
For the converse, let G be not chordal, and let C' = (z1,...,2,) be a chordless cycle
of length r > 4 in G. Since x; and x3 are non-adjacent in G, there is a minimal
x1,z3-separator S of G. It holds that S contains x5 and another vertex z’ from
{z4,...,z,}. Since x5 and z’ are non-adjacent in G, V' \ {z9, x4, ...,z } is an o, 2'-
separator of G, that contains only z; and xz3 of cycle C. Hence, there is a minimal
Zo, x'-separator S’ of G containing z, and z3. Then, S’ contains two vertices from
two different connected components of G \ S, i.e., S and S’ cross.

|

Interestingly, chordal graphs can also be characterised by special vertex order-
ings. Vertex orderings play an important role in this part of the thesis, since they
often imply easy and efficient algorithms.

Definition 24 Let G = (V, E) be a graph, and let u be a vertexr of G. We say that
u is stmplicial in G if and only if the neighbourhood of u is a clique in G.

We give a first connection between simplicial vertices and chordality. In fact,
simplicial vertices do not influence the chordality of a graph.

Lemma 8.6 Let G = (V,E) be a graph, and let u be a simplicial vertex of G.
Then, G is chordal if and only if G—u is chordal.

Proof: Let G be chordal. Then, for every vertex z of G, G—z is chordal. Conversely,
let G be not chordal, and let C' = (z1,...,x,) be a chordless cycle of length r > 4 in

Chapter 8 Chordal graphs and minimal triangulations 139

G. Observe that every vertex in C has two non-adjacent neighbours in G. Hence, no
simplicial vertex of GG is contained in C', and C is a chordless cycle in G—u.
|

Another interesting connection between chordal graphs and simplicial vertices is
shown by the following lemma. It says that making simplicial an arbitrary vertex of
a chordal graph preserves chordality.

Lemma 8.7 (Rose, Tarjan and Lueker, [76]) Let G = (V,E) be a chordal
graph, and let u be a vertex of G. Let

F =gef {vw : v,w € Ng(u) and v # w and vw ¢ E}.
Then, G’ =4 G U F' is chordal.

Proof: Observe that u is simplicial in G’. Suppose G’ contains a chordless cycle C
of length at least 4. Since u is simplicial in G’, C' cannot contain w. If C' contains
at most one neighbour of u, C is a chordless cycle in G, which is not possible by
chordality of G. Hence, C contains exactly two neighbours v and w of u, and v and
w are adjacent in G’. But then, cycle C’ that is a modification of C' where u is set
between v and w is a chordless cycle in G of length at least 5, which contradicts G
being chordal. Thus, G’ is chordal.

|

Set F' of Lemma 8.7 is called the deficiency of vertex u in G by Rose, Tarjan,
Lueker [76].

So far, we know that chordal graphs and simplicial vertices are related in some
sense. It remains, however, open which chordal graphs contain simplicial vertices. In
brief, it turns out that every chordal graph contains simplicial vertices.

Theorem 8.8 (Dirac, [25])
Let G = (V,E) be a chordal graph that is not complete. Then, G has two non-
adjacent simplicial vertices.

Proof: We prove the statement by induction over the number of vertices of the
graphs. It is clear that the statement holds for all graphs on at most three vertices,
since all these graphs are chordal, and each non-complete graph on at most three
vertices contains two non-adjacent vertices whose neighbourhoods are cliques. So,
let G have at least four vertices. Let u be a vertex of G such that u is not simplicial.
Such a vertex exists, since G is assumed to be non-complete. Let v and w be non-
adjacent neighbours of u. Then, there is a minimal v, w-separator S of G, and S is a
clique due to Theorem 8.4. Let C7 and C5 induce two different S-full components of
G where we assume, without loss of generality, that C; has at most as many vertices
as Cy. We distinguish four cases:

(A) Cy as well as Cy contain at least two vertices. Let G} =q¢f G[C1 U S] and
5 =det G[C2 U S]. Let z1 and z5 be new vertices. Let G emerge from G by

140

adding z; and making it adjacent with every vertex from S; similarly, obtain
G from G, by adding z5. Note that G; and G, contain less vertices than G.
Furthermore, no vertex from S is simplicial in G, G or G5. Hence, by induction
hypothesis, G; and G5 each contain two non-adjacent simplicial vertices, and
two of them are simplicial in G.

(B) C4 as well as Cy contain exactly one vertex. Then, these two vertices are sim-
plicial.

(C) Oy contains exactly one vertex and Cy contains at least two vertices where Cy
is a clique in G. Let z and z be vertices from Cy. If Ng[z] € Ng[z] and
N¢lz] € Nglz], G contains a cycle of length 4, which is not possible. Hence,
C5 contains a vertex whose closed neighbourhood is contained in the closed
neighbourhood of every other vertex from C5, and so this vertex is simplicial.

(D) C} contains exactly one vertex and C contains at least two vertices where Cs is
not a clique in G. So, there are two non-adjacent vertices x and z in Cs. Let T
be a minimal z, z-separator of GG, and let D and Dy be T-full components of G.
If one of these components contains exactly one vertex, this vertex is different
from the vertex in C; and also non-adjacent with it, so that we have found two
non-adjacent simplicial vertices in G. Otherwise, D and D, each contain at
least two vertices, and we can apply the construction of case (A) using D; and
D, instead of C; and Cj, respectively.

Every of the four cases shows the existence of two non-adjacent simplicial vertices in
G. The construction of case (D) relies on the fact that minimal separators of chordal
graphs are non-crossing due to Corollary 8.5.

|

The existence of simplicial vertices in chordal graphs is the foundation of a
characterisation of chordal graphs by vertex orderings.

Definition 25 Let G = (V, E) be a graph, and let o be a verter ordering for G.
We say that o is a perfect elimination scheme for G if and only if for every
triple u,v,w of vertices of G holds:

U<,0<,w and wv € K and ww€e€ FE — wvwekFE.

It follows from the definition of perfect elimination schemes that, for every vertex,
the set of neighbours to the right forms a clique in the graph. Hence, for G = (V, E)
a graph on n vertices and o = (x1,...,z,) a vertex ordering for G, o is a perfect
elimination scheme for G if and only if z; is simplicial in G[{z;,...,z,}] for every
i €{1,...,n}. It will be one of our main goals to generate vertex orderings for special
graphs that are as close to perfect elimination schemes as possible.

Corollary 8.9 (Rose, [75])
A graph is chordal if and only if it has a perfect elimination scheme.

Chapter 8 Chordal graphs and minimal triangulations 141

Proof: Let G = (V,E) be a graph. Let o be a perfect elimination scheme for G.
Suppose there is a chordless cycle C = (z1,...,z,) in G of length r > 4. Without
loss of generality, z1 is leftmost with respect to o, i.e., 1 <, z; for all i € {2,...,7}.
Note that z, and z, are neighbours of G, that are to the right of x1; we may assume
1 <5 To <5 Tr. Due to the definition of perfect elimination schemes, o and x,
must be adjacent in GG, which contradicts the assumption. Hence, G is chordal.

For the converse, let G be chordal. We give an inductive proof. If G has exactly
one vertex u, then (u) is a perfect elimination scheme for G. For the induction step,
let G have at least two vertices. Due to Theorem 8.8, G has a simplicial vertex wu.
Consider G’ =qof G—u. Certainly, G’ is chordal and has less vertices than G. There
is a perfect elimination scheme (z1,...,z,) for G’ by induction hypothesis. Then,
(u,21,...,2,) is a perfect elimination scheme for G.

|

It is clear that a simplicial vertex of a graph can be found in polynomial time,
if there is one. However, it is not clear at first glance, whether this is possible also
in linear time. An even stronger result holds.

Theorem 8.10 (Rose, Tarjan and Lueker, [76])
There is a linear-time algorithm that, on input graph G, generates a perfect elimina-
tion scheme for G if and only if G is chordal.

Another linear-time algorithm for computing perfect elimination schemes for
chordal graphs has been presented by Tarjan and Yannakakis [81].

Corollary 8.11 (Rose, Tarjan and Lueker, [76])
There is a linear-time algorithm that recognizes chordal graphs.

Proof: Let G = (V,E) be a graph. Due to Theorem 8.10, there is a linear-time
algorithm for generating a vertex ordering o that is a perfect elimination scheme for
G if and only if G is chordal. So, it remains to verify in linear time whether o is a
perfect elimination scheme for G. It can be shown by induction that o is a perfect
elimination scheme if and only if ¢ is a reduced elimination scheme for G, i.e., for all
u,v €V,

Imr(u) <, v and wwv e £ = Imr(u)v € E

where Imr(u) denotes the leftmost right neighbour of u with respect to o, if there is
a neighbour z of u such that u <, z; otherwise, lmr(u) =gef u. Since G is given by
adjacency lists, and these lists can be ordered according to ¢ in linear time, it can
be tested in linear time whether ¢ is a reduced elimination scheme. We obtain a
linear-time recognition algorithm for chordal graphs.

|

A characterisation of chordal graphs of a completely different flavour, at first
glance, is given by the following theorem. It shows that chordal graphs have a nice

142

geometric representation and, moreover, that they have a tree-like structure.

Theorem 8.12 (Buneman, [16]; Gavril, [32]; Walter, [85])
Let G = (V, E) be a graph. Then, G is chordal if and only if there is a tree T and a
family T of subtrees of T such that G is the intersection graph of T .

8.3 Characterisations of minimal triangulations of arbitrary graphs

The main objects that we wish to study and to deal with are minimal triangulations
of graphs. They appear in different contexts, and in the following sections, we will
discuss two of them. In this section, we will give definitions, two important charac-
terisations of minimal triangulations of arbitrary graphs and further properties.

Definition 26 Let G = (V,E) be a graph, and let H = (W, F) be a graph. We
call H a triangulation of G if and only if H is a spanning supergraph of G and
chordal.

In other words, a triangulation of a graph G is a graph defined on the vertex set
of G and that is obtained from G by adding further edges to make it chordal. Since
the complete graph on the vertex set of G is a spanning chordal supergraph of G, a
triangulation of G exists. If G is not chordal, every triangulation of GG is a proper
supergraph of G; if G is chordal it is also a triangulation of itself. A small example of
a graph and one of its triangulations is depicted in Figure 16. It may not be obvious
at first glance that the right side graph is chordal, but using Corollary 8.9, chordality
can be proven easily.

Definition 27 Let G = (V,E) be a graph, and let H = (V, F) be a triangulation
of G. We call H a minimal triangulation of G if and only if there is no proper
subgraph H' of H that is a triangulation of G.

We observe that minimality in this context is defined as a set-inclusion property.
That is why in the literature, the above defined minimal triangulations may also
be called inclusion-minimal triangulations. The definition of minimal triangulations
dates back to the fundamental work of Rose, Tarjan, Lueker about perfect elimination
processes [76]. From an algorithmic point of view, it is interesting as well as important
to note that minimal triangulations of a graph with only a few edges may have many
edges. Famous such examples are complete bipartite graphs. A graph is bipartite
if its vertex set can be partitioned into two independent sets, and a bipartite graph
is complete if it contains all edges with endpoints in the two different independent
sets. It is not hard to see that minimal triangulations of complete bipartite graphs
are obtained by adding all edges between vertices of exactly one partition set. If one
independent set contains only one vertex, the graph is already chordal.

For our first characterisation of minimal triangulations of arbitrary graphs, we
state an important partial result.

Chapter 8 Chordal graphs and minimal triangulations 143

Figure 16 The picture shows two graphs. The left side graph contains
chordless cycles of length 4 and 5, and so it is not chordal. The right
side graph looks like a copy of the left side graph, but it contains two
additional edges, that are accentuated as thick lines. Because of these
two additional edges, the right side graph is chordal, hence the right side
graph is a triangulation of the left side graph.

144

Lemma 8.13 (Rose, Tarjan and Lueker, [76])

Let G = (V, E) be a chordal graph. Let F' be a non-empty set of edges for G where
ENF =0, and let G' =qof GUF. If G’ is chordal, then there is an edge e € F' such
that G'—e is chordal.

Proof: We prove the statement by induction over the number of vertices of G. If
G has at most three vertices, every graph on the vertex set of G is chordal, and
the statement holds. So, let G and G’ have at least four vertices. If G’ contains a
simplicial vertex u such that u has a neighbour v in G’ and uv € F, then G'—uwv is
chordal, since u remains simplicial in G'—uwv (Corollary 8.9).

Now, assume that G’ does not contain a simplicial vertex with the property
above. Then, for every simplicial vertex z of G’, Ng (z) = Ng(x). We define, for
every vertex of G', D(z) =get {vw & E : v,w € Ng/(z) and v # w}. We first show
that there is a simplicial vertex = in G’ such that F' € D(z). Let u be any simplicial
vertex of G'. If ' ¢ D(u), let u be chosen. Otherwise, F' C D(u). It immediately
follows that F' = D(u). Hence, G’ emerged from G by making u simplicial. Since the
case above does not hold, every simplicial vertex of G is simplicial in G’ and has the
same neighbourhood. Let v be a simplicial vertex of G. Then, F ¢ D(v) =), and
we choose v as u. So, u is a simplicial vertex of G’, and F' € D(u). Consider the two
graphs H =4 (G—u) U D(u) and H' =40t G'—u. Note that G U D(u) is chordal due
to Lemma 8.7. Then, H is also chordal, and H’ is a chordal supergraph of H. Since
H’ has less vertices than G’, we can apply the induction hypothesis and obtain an
edge e € F'\ D(u) such that H'—e is chordal. Hence, G'—e is chordal.

|

From Lemma 8.13, it follows that, for every chordal graph G that is not blank,
G contains an edge e such that G—e is also chordal. This is true since the blank
graph on the vertex set of G is clearly chordal.

The first characterisation of minimal triangulations of arbitrary graphs that we
give here relies on Lemma 8.13.

Theorem 8.14 (Rose, Tarjan and Lueker, [76])
Let G = (V,E) and H = GUF be graphs where ENF = (. Let H be chordal. Then,
the following statements are equivalent:

(1) H is a minimal triangulation of G
(2) for every e € F, e is unique chord in a cycle of length 4 in H
(3) for every e € F, the graph H—e is not chordal.

Proof: We prove the theorem by showing three implications.

(1)=(2)

Let F # (0, and let uv € F. Since H is a minimal triangulation of G, H—wuv is not
chordal. Then, there must be a chordless cycle C' of length greater than 3 in H—uw
that contains u and v. If the length of C is greater than 4, only one edge does not

Chapter 8 Chordal graphs and minimal triangulations 145

suffice to make H—uw chordal; hence, C has length 4. Let C = (u,z,v, z). It holds
that z and z are non-adjacent in H, so that wv is unique chord in the cycle C in H.

(2)=(3)

Let F # (), and let e € F. Since e is unique chord in a cycle C of length 4, C' does
not have a chord in H—e. Hence, H—e contains a chordless cycle of length at least
4, i.e., is not chordal.

(3)=(1)
Suppose there is a triangulation H' of G that is a proper subgraph of H. By
Lemma 8.13, H contains an edge e that is not contained in H’ such that H—e is
chordal. This, however, contradicts the assumption about H, and so, H is a minimal
triangulation of G.

|

Statement (3) of Theorem 8.14 implies an easy polynomial-time algorithm for
testing, given two graphs G and H, whether H is a minimal triangulation of G:
simply check, for every edge e in H that is not an edge in G, whether H—e is
chordal. Chordality testing can be done in linear time, and H can have at most
n? many edges where n is the number of vertices of G. This gives an O(n*)-time
algorithm. In connection with Lemma 8.13, also a polynomial-time algorithm for
making a triangulation of G minimal follows. It suffices to delete edges as long as
the new graph is chordal. If such an edge cannot be chosen, the obtained graph is a

minimal triangulation of G.

Our second characterisation of minimal triangulations is a structural result, that
relates minimal separators and minimal triangulations. It characterises sets of edges
that have to be added to obtain minimal triangulations. For a graph G and a set .S
of vertices of G, completing S into a cliqgue means the construction of a new graph G’
that is obtained from G by adding all edges between vertices from S that are not
contained in GG, so that S is a clique in the new graph. For a family § of sets of vertices
of G, completing all sets in § into cliques means that every set of § is completed into
a clique separately.

Theorem 8.15 (Parra and Scheffler, [69])
Let G = (V, E) be a graph.

(1) Let & be a maximal set of pairwise non-crossing minimal separators of G.
Graph H is obtained from G by completing into cliques all separators in &.
Then, H is a minimal triangulation of G.

(2) Let H be a minimal triangulation of G and let & be the set of minimal separators
of H. Then, © is a maximal set of pairwise non-crossing minimal separators of
G and H originates from G by completing into cliques the separators in &.

Another structural property of graphs and their minimal triangulations is stated
in the following theorem.

146

Theorem 8.16 (Kloks, [47])
Let G = (V, E) be a graph, and let H be a minimal triangulation of G.

(1) For every pair a,b of vertices of H, if S C V is a minimal a, b-separator of H,
then S is a minimal a, b-separator of G.

(2) For every minimal separator S of H and every connected component C of H\ S,
C is a connected component of G \ S.

Finally, we consider the neighbourhoods of vertices in a graph and its minimal
triangulations. As a special case, we obtain that simplicial vertices of a graph are
simplicial in every of its minimal triangulations. Remember that the existence of
simplicial vertices is not restricted to only chordal graphs.

Lemma 8.17 Let G = (V, E) be a graph, and let H be a minimal triangulation of
G. Let u be a vertex of G. If Ng(u) is a clique in H, then N¢g(u) = Ny (u).

Proof: By definition of minimal triangulations, Ng(u) € Ng(u) obviously holds.
Let Ng(u) be a clique in H, and let F' =4¢f {uv : v € Ny(u) \ Ng(u)} be non-empty.
Consider H' =4, H \ F. Certainly, H’' is a proper spanning subgraph of H and a
supergraph of G. Assume C is a chordless cycle of length at least 4 in H’. Then, C
contains u, since otherwise, C' would be a chordless cycle in H'—u = H—u and hence
in H. But then, C also contains two neighbours of u, and since u is simplicial in H’,
these two neighbours are adjacent. Therefore, C' cannot be chordless or is of length
only 3. Hence, H' is chordal, and H cannot be a minimal triangulation of G.

|

8.4 The min-Tri membership problem for arbitrary graphs

Graphs may have several, in most cases many, minimal triangulations. So, the set of
minimal triangulations of a graph may become of considerable size, and it may be
“difficult” to decide, given two graphs G and H, whether H is a minimal triangulation
of G. We highlighted the word difficult since we have already seen that the question
is polynomial-time decidable using the characterisation of Theorem 8.14, and the
polynomial is not too large. However, we look for faster algorithms. But first, let us
formally define our problem. The min-Tri membership problem for arbitrary graphs
is the set of pairs (G, H) of graphs where H is a minimal triangulation of G.

There are three algorithms known that solve the min-Tri membership problem.
Though, two of them are originally designed for another, more general purpose,
namely making a triangulation of a graph minimal. So, observe that it is easy to
decide, given a pair (G, H) of graphs, whether H is a triangulation of G: by definition,
H is a triangulation of G if and only if H is a chordal spanning supergraph of G.
Chordality and being spanning supergraph can be decided in linear time (linear time
chordality testing is due to Theorem 8.10).

Chapter 8 Chordal graphs and minimal triangulations 147

For testing, given a pair (G,H) of graphs where H is a triangulation of G,
whether H is a minimal triangulation of GG, Blair, Heggernes, Telle propose an algo-
rithm that iteratively generates a vertex ordering of G that defines a minimal trian-
gulation of G that is a subgraph of H [6]. Another algorithm is given by Dahlhaus,
that is also based on generating vertex orderings [23]. The third algorithm simply
applies the characterisation of minimal triangulations given in Theorem 8.14. Ibarra
addressed the problem of maintaining easy representations for chordal graphs and
considered several updating questions. The question that is important for our ap-
plications asks, given an edge, whether the represented graph remains chordal if the
specified edge is removed. This question can be answered in time O(n) [44], which
sums up to O(nm) time.

Theorem 8.18 (Blair, Heggernes and Telle, [6])

There is an algorithm that decides the min-Tri membership problem for arbitrary
graphs, i.e., given a pair (G, H) of graphs, whether H is a minimal triangulation of
G, in time O(f(m + f)) where m denotes the number of edges in G and f denotes
the number of edges in H that are not edges in G.

Theorem 8.19 (Dahlhaus, [23])

There is an algorithm that decides the min-Tri membership problem for arbitrary
graphs, i.e., given a pair (G, H) of graphs, whether H is a minimal triangulation of
G, in time O(nm) where m and n denote the numbers of edges and vertices of G,
respectively.

Theorem 8.20 (Ibarra, [44])

There is an algorithm that decides the min-Tri membership problem for arbitrary
graphs, i.e., given a pair (G, H) of graphs, whether H is a minimal triangulation of
G, in time O(fn + m) where n and m denote the numbers of vertices and edges of
H, respectively, and f denotes the number of edges of H that are not edges in G.

Our algorithms for min-Tri membership problems have far better running times.
They profit from being applied to only restricted classes of graphs. Nevertheless,
correctness and running time in the cases of arbitrary graphs as well as restricted
graph classes rely on appropriate characterisations of minimal triangulations. And a
considerable part of each chapter is dedicated to deducing and proving such charac-
terisation theorems.

8.5 Width parameters

Minimal triangulations are interesting objects in their own right, and the study of
minimal triangulations and related computational aspects created a rich field in graph
theory and algorithms. But their influence reaches further parts of graph theory. So,
they also appear in connection with a number of fundamental and well-studied graph
notions. That is also why each of the following chapters in this part concludes with

148

a section about applications of the obtained results. We are interested in the three
graph parameters treewidth, minimum fill-in and bandwidth.

The treewidth of a graph is a measure for its “treelikeness”. It was introduced
by Robertson and Seymour in their work about graph minors [74]. For defining the
treewidth of a graph, we use a different approach. For a graph G and a vertex x that
does not appear in G, G+x denotes the graph that emerges from G by adding z as
new vertex. The neighbourhood of z must be defined separately. In some cases, G
is an induced subgraph of another graph. Then, the neighbourhood of z is clearly
determined by context. In fact, if G is a subgraph of G’ induced by V' C V(G’) and
z € V(G')\ 'V, then G+z means the subgraph of G’ induced by V U {z}.

Definition 28 Let k> 1. A k-tree is a graph that can be obtained inductively by
applying the following two operations:

(1) the clique on k + 1 vertices is a k-tree

(2) let G be a k-tree, and let C be a clique of size k in G; let u be a vertex that does

not appear in G; then G+u with u adjacent with exactly the vertices in C is a
k-tree.

To get an idea of k-trees, note that 1-trees are just the usual trees, i.e., the
connected graphs containing no cycles. By partial k-trees we mean subgraphs of
k-trees; these subgraphs can be obtained by vertex as well as edge deletions.

Definition 29 Let G = (V, E) be a graph. The treewidth of G, denoted as tw(G),
1s the smallest number k such that G is a partial k-tree.

A proof of the equivalence of our definition of treewidth with the original defini-
tion introduced by Robertson and Seymour can be found in [55]. The following—very
useful—characterisation of the treewidth of a graph is an immediate consequence, and
it links treewidth and minimal triangulations.

Lemma 8.21 Let G = (V,E) be a graph. Then,

tw(G) = min{w(H) : H is a minimal triangulation of G} — 1.

With the treewidth, we also associate a decision problem called TREEWIDTH,
that is the set of pairs (G, k) where G is a graph and tw(G) < k.

Another graph parameter that is closely related to minimal triangulations is the
minimum fill-in.

Definition 30 Let G = (V, E) be a graph. The minimum fill-in of G, denoted
as mfi(QG), is the least number of edges that have to be added to G to obtain a chordal
graph.

Chapter 8 Chordal graphs and minimal triangulations 149

In other words, the minimum fill-in gives the smallest number of additional
edges among all triangulations of a graph. This parameter and triangulations with
this number of additional edges turned out important in connection with numerical
solutions of linear equation systems by Gaussian elimination (also see [75]). The
following alternative definition of minimum fill-in is obvious.

Lemma 8.22 Let G = (V,E) be a graph. Then,
mfi(G) = min{|E(H)| — |E(G)| : H is a minimal triangulation of G} .

Analogous to treewidth, we can associate a decision problem with minimum fill-
in. By MINIMUM FILL-IN, we denote the set of pairs (G, k) where G is a graph and
mfi(G) < k.

The third graph parameter, that we wish to consider, is motivated by an op-
timisation problem from linear algebra. Given a quadratic matrix M, is there a
permutation matrix P such that all non-zero entries in P- M - P~! appear only in a
small area around the main diagonal? For graphs, we have the following definition.

Definition 31 Let G = (V,E) be a graph on n vertices. Let A : V — {1,...,n} be
a bijective mapping; A is called a layout for G. The width of A, denoted as b(G, A),
1s defined as
b(G, A) =qef max{|A(u) — A(v)| : uv € E}.
The bandwidth of G, denoted as bw(G), is the smallest width over all layouts for
G, i.e.,
bw(G) =gef min{b(G, A) : A is a layout for G} .

It is interesting to note that there is an alternative definition of the bandwidth of
a graph using special triangulations. This connection will be presented in Chapter 11.
Clearly, we can define a decision problem for the bandwidth. By BANDWIDTH, we
denote the set of pairs (G, k) where G is a graph and bw(G) < k.

All three decision problems are NP-complete, even when they are restricted to
small graph classes. A graph is co-bipartite, if its vertex set can be partitioned into
two cliques. Co-bipartite graphs are the complements of bipartite graphs.

Theorem 8.23 (Arnborg, Corneil and Proskurowski, [4])
The decision problem TREEWIDTH is NP-complete for co-bipartite graphs.

Theorem 8.24 (Yannakakis, [88])
The decision problem MINIMUM FILL-IN is NP-complete for co-bipartite graphs.

Theorem 8.25 (Kloks, Kratsch and Miiller, [50])
The decision problem BANDWIDTH is NP-complete for co-bipartite graphs.

150

151

Chapter 9
2Ky-free graphs

Graph classes can be defined in a number of different ways. The simplest and most
inefficient manner is to select graphs one by one. Mostly, however, graphs are selected
by special properties, more precisely, by structural properties. These selection rules
may be of any kind. For instance, bipartite graphs are 2-colourable graphs, i.e.,
those graphs that admit colourings using at most two colours. As another example,
chordal graphs are the graphs whose induced chordless cycles have lengths at most
3. This is a structural property. Alternatively, we can say that chordal graphs are
exactly the graphs that do not contain a chordless cycle of length at least 4 as induced
subgraph. This is a selection rule by giving a set of forbidden induced subgraphs. So,
we distinguish graph classes according to their definitions that are based on

(1) structural properties
(2) forbidden induced subgraphs.

Formally, we say that a graph class C can be defined by forbidden induced subgraphs,
if there is a set H of graphs such that graph G belongs to class C if and only if G
does not contain any graph from H as induced subgraph. In that case, we also say
that the graphs from C are H-free. If H contains only one graph, we also omit braces
to improve readability.

Many graph classes can be defined by forbidding induced subgraphs; mostly, an
infinite set of forbidden subgraphs is necessary, as we have seen for chordal graphs: the
class of chordal graphs is equal to the class of {C4, C5, Cg, . . .}-free graphs. If graph
classes are defined by forbidden induced subgraphs, it is most natural to consider
finite sets of forbidden subgraphs. Among finite sets, small sets, and herein singleton
sets, are of high interest.

Cographs have a lot of characterisations. One of them is by forbidden induced
subgraph: cographs are exactly those graphs that do not contain the chordless path
on four vertices, Py, as induced subgraph. Cographs have many interesting properties,
e.g., an efficient tree representation, which is of great importance for the design of
algorithms. The question appeared whether some of these interesting algorithmic
properties hold for graph classes that do not contain other chordless paths, and Ps-
free graphs got into the focus of research. In the last years, the study of graph classes
defined by one or few forbidden subgraphs became more and more popular. In this
sequence, the 2K5, which is the complement of the chordless cycle on four vertices,
Cy, fits well.

9.1 Getting to know 2K,-free graphs

The 2K is the graph on four vertices that contains exactly two edges, and the edges
are non-adjacent. So, the 2K is the disjoint union of two connected graphs on two

152

vertices. The 2K, is the complement of the chordless cycle on four vertices, C4. A
copy of the 2K5 can be found in Figure 2.

Definition 32 A graph is 2Ks-free if and only if it does not contain the 2Ky as
induced subgraph.

Fact 9.1 2Ks-free graphs are Ps-free.

Proof: Let G = (V,E) be a graph containing a P;, and let it be induced by
{u,v,w,z,z} CV such that (u,v,w,z,z) is a path in G. Then, u is a neighbour of
neither z nor z, and v is a neighbour of neither z nor z. Hence, {u,v,z, z} induce a
2K2 in G.

|

It is interesting that 2Ks-free graphs allow characterisations via structural prop-
erties. This fact may support the idea that 2K5-free graphs are more “natural” than
they seem at first glance. To formulate the statement we need two basic definitions.
Let G = (V, E) be a graph. The diameter of G, diam(G), is the length of the longest
distance between two vertices of G; if G is disconnected then diam(G) = oo. The
linegraph L(G) of G contains a vertex for every edge of G, and two vertices of L(QG)
are adjacent if they correspond to adjacent edges in G.

Fact 9.2 Let G = (V,E) be a graph. The following statements are equivalent:
(1) G is 2Ky-free

(2) for every set S CV, G\ S contains at most one connected component with two
vertices

(3) diam(L(G)) < 2.

Proof: We show that statement (1) is equivalent with statements (2) and (3).

(1) = (2)

Let S C V, and let G \ S contain two connected components with two vertices.
Selecting a pair of adjacent vertices in every connected component gives a 2K as
induced subgraph. If there is § C V such that V'\ S induces a 2K, in G, G\ S

contains two connected components with two vertices.

(1)< (3)
Let G be 2Ks-free, and let e,es € E be two non-adjacent edges. Since G is 2K5-
free, there must be an edge e € E that is adjacent with e; and ey, which gives a
path of length 2 between e; and e; in L(G). Conversely, let {u,v,z,z} induce a
2K5 in G where wv,zz € E. Then, uv and zz share no neighbour in L(G), hence
diam(L(G)) > 2.

|

Chapter 9 2K5-free graphs 153

We want to relate the class of 2K5-free graphs to other graph classes and de-
termine their relationships. We already mentioned the superclass of Ps-free graphs.
Further graph classes that are of interest appear in connection with chordal graphs.
The complements of chordal graphs are co-chordal.

Definition 33 Let G = (V, E) be a graph. We call G a split graph if and only if
the vertex set of G can be partitioned into an independent set U and a clique C. The
partition (U, C) is called a split partition of G.

Definition 34 A graph is weakly chordal if and only if it and its complement do
not contain a chordless cycle on more than four vertices as induced subgraphs.

A forbidden subgraph characterisation of weakly chordal graphs is immediate,
and this set is infinite. In case of split graphs, a similar characterisation is not obvious,
but it turns out that split graphs are special chordal graphs. Even a characterisation
that uses only a finite set of forbidden induced subgraphs is known.

Theorem 9.3 (Féldes and Hammer, [27])
The following statements are equivalent for a graph G:

(1) G is a split graph
(2) G is chordal and co-chordal
(3) G is {2K5, Cy, Cs }-free.

Weakly chordal graphs are closed under complementation; this follows immedi-
ately from the definition. It is not difficult to see that chordal graphs are weakly
chordal; hence, co-chordal graphs are also weakly chordal. We can relate the classes
of 2K5-free, co-chordal and weakly chordal graphs.

Fact 9.4 A graph G is 2Ks-free and weakly chordal if and only if G is co-chordal.

Proof: If G is 2K5-free, the complement of G cannot contain the chordless cycle
on four vertices as induced subgraph. If G is weakly chordal, the complement of
G cannot contain a chordless cycle on at least five vertices as induced subgraph.
Hence, if G is 2K5-free and weakly chordal, the complement of G is chordal and G
is co-chordal.

Conversely, if G is not 2Ks-free, the complement of G contains a C4. If G is
not weakly chordal, the complement of G contains a chordless cycle on at least five
vertices as induced subgraph. So, if G is not 2K5-free or not weakly chordal, the
complement of G is not chordal, and G is not co-chordal.

|

Using a forbidden subgraph notation, Fact 9.4 can be restated as follows:
{2K;}-free N {C5, Cs5, Cq, Cs, - . . }-free = {Cy, Cs, . . . }-free .

Since we know that 2K, and C, denote isomorphic graph as well as Cs and Cs, and

154

since Cg, C7, ... all contain the 2K5 as induced subgraph, i.e., a 2K5-free graph
cannot contain Cyg, C7, ... as induced subgraphs, the equivalence follows easily.

Corollary 9.5 A graph is Cy-free and weakly chordal if and only if it is chordal.

Proof: It suffices to note that a graph is Cy-free and weakly chordal if and only if its
complement is 2Ks-free and weakly chordal. The statement follows from Fact 9.4.
|

Figure 17 summarises the results of Theorem 9.3, Fact 9.4 and Corollary 9.5.
Note that the split graphs are contained in every mentioned graph class.

9.2 Characterisations of minimal triangulations of 2Ks-free graphs

For a graph G, a minimal fill-in for G is a minimal set of edges that are added to
G to make GG chordal, i.e., to obtain a minimal triangulation of G. So, adding a
minimal fill-in can be considered an operation on graphs. In this section, we will
answer the question in which way minimal fill-in affects the structural properties of
2Ks-free graphs. In other words: what are the minimal triangulations of 2K,-free
graphs, and can they be characterised non-trivially? We will see that 2Ko-freeness
is preserved by minimal fill-in.

Theorem 9.6 A graph is 2Ks-free if and only if all its minimal triangulations are
2K -free.

Proof: We prove the statement by showing two implications.

[A graph containing a 2K5 has a minimal triangulation that contains a 2K5.]

Let G = (V, E) be a graph, and let U C V induce a 2K in G. Let H' =4t (V, EUF)
where F' =q¢¢ {uv € E : {u,v} Z U}. Since H' is chordal and a spanning supergraph
of G, H' is a triangulation of G, and U induces a 2K5 in H'. In every graph G’ where
G C G’ C H', U induces a 2K5. Hence, there is a minimal triangulation H C H’ of
G that contains a 2K5.

[A 2K5-free graph cannot have a minimal triangulation that contains a 2K5.]

Let G = (V, E) be a graph, and let H = GUF, FNE = (), be a minimal triangulation
of G. We will show that, if H contains a 2K5, then GG contains a 2K5. By contrapo-
sition, it follows that 2Ko-free graphs only have 2K5-free minimal triangulations.

Let {u,v,z,z} C V induce a 2K, in H where uwv,zz € E(H). We distinguish
three cases. If wv,zz € E, {u,v,z, 2z} induces a 2K, in G, and the proof is finished.
Let wv € F and xz € E. If there is a neighbour w of u that is adjacent with neither
z nor z in G, {u,w, z,z} induces a 2K5 in G. Otherwise, i.e., every neighbour of u in
G is neighbour of z or z in G, Ng(u) is a clique in H (two non-adjacent neighbours
of w in H would be contained in a chordless cycle with v and z or z). Since u is
not isolated in G, u has a neighbour in G. Due to Lemma 8.17, however, v cannot

Chapter 9 2K5-free graphs 155

weakly chordal

Figure 17 A Venn diagram relating the class of 2K5-free graphs to well-
known other graph classes.

156

be adjacent with v in H, so that the situation uv € F' and zz € E is not possible.
Finally, let wv,zz € F, i.e., {u,v,z,z} is an independent set in G. Note that not
every neighbour of u in G is a neighbour of z or z in H, since otherwise, Ng(u) would
be a clique in H, and u could not be adjacent with v in H due to Lemma 8.17; let
w € Ng(u) such that wz,wz ¢ E(H). Then, {u,w,z,z} induces a 2K, in H with
an edge already in G, and we can apply the second case.

|

Corollary 9.7 A graph is 2Ks-free if and only if all its minimal triangulations are
split graphs.

Proof: Triangulations of graphs are chordal, and chordal 2Ks-free graphs are split
graphs due to Theorem 9.3. The statement then follows from Theorem 9.6.
|

From the first characterisation of minimal triangulations of 2Ks-free graphs we
can derive another characteristion. This second characterisation provides a means
not only to characterise 2K,-free graphs similarly to the statement of Theorem 9.6
but also to characterise the minimal triangulations of a given graph. We will show
that there is a strong correspondence between minimal triangulations of 2K,-free
graphs and maximal independent sets.

Let G = (V, E) be a graph. If G contains at most one pair of adjacent vertices,
i.e., at most one edge, we say that G is nearly blank. For our characterisation, we
define a set Ug of independent sets of G in the following way. For every U C V,
U € Ug if and only if U satisfies the three conditions:

(U1l) U is a maximal independent set of G
(U2) {a€V:dgla) <1} CU

(U3) if there is a vertex b € V' \ U satisfying |[Ng(b) NU| =1and V \U € Ng[b]
then there is no vertex a € U such that Ng(a) =V \ U.

We observe that no independent set of a nearly blank graph with one edge can
satisfy conditions (Ul) and (U2) simultaneously. Since our second characterisation
of minimal triangulations of 2K5-free graphs is based on the independent sets in U,
this may pose problems. However, nearly blank graphs are easily identifiable, and
since they are chordal we simply exclude them from the following considerations.
Hence, the graphs to be regarded subsequently do not contain adjacent vertices of
degree 1.

Lemma 9.8 Let G = (V,E) be a 2Ks-free graph that is not nearly blank, and let
U € Ug. Then, Hy =40t GU Fy where Fiy =gef {uv € E : u,v € V \ U} is a minimal
triangulation of G.

Proof: Of course, Hy is a split graph: U is an independent set and V' \ U is a clique
in Hy. Thus, Hy is chordal and a triangulation of G. Due to Theorem 8.14, we

Chapter 9 2K5-free graphs 157

will show that every edge in Fy is unique chord in a cycle of length 4 in Hy;. For
every vertex in V \ U, there is a neighbour in U due to the maximality of U. If
two vertices u,v € V' '\ U each have a neighbour in U neither of which is a common
neighbour of v and v, then uv € E. Let uv € Fiy. We assume Ng(u)NU C Ng(v)NU.
If u has two neighbours z,z € U then they are also neighbours of v, and uv is
unique chord in the cycle (z,u, z,v). Note that V' \ U € Ng[u]. If u has exactly one
neighbour z in U then, by condition (U3) for U being in U, thereis a vertex w € V\U
that is not adjacent with . Then, w is adjacent with v and v and non-adjacent with
z in Hy, and wv is unique chord in the cycle (u,z,v,w) in Hy.

|

The following lemma strongly depends on Theorem 9.6. In fact, we assume that
the vertex set of a minimal triangulation of a 2K5-free graph can be partitioned into
a clique and an independent set.

Lemma 9.9 Let G = (V,E) be a 2Ks-free graph that is not nearly blank. Let
H=GUF, FNE = (), be a minimal triangulation of G. Let (U,V \U) be a partition
of V into a set U that is maximally independent in H and a clique V\U in H. Then,
U elUq.

Proof: Due to Theorem 9.6, H is a split graph, and the vertex set of split graphs
can be partitioned into an independent set and a clique by definition. Hence, the
partition (U, V\U) is well-defined. Of course, Ny (u) = N¢(u) for every vertex u € U,
so that U is a maximal independent set in GG, too. An isolated vertex of G must be
an isolated vertex of H. A vertex of degree 1 in G has degree 1 in H. Hence, all
vertices of degree less than 2 must be contained in U. Remember that G does not
contain adjacent vertices of degree 1. So, U fulfills conditions (Ul) and (U2) for
being member of U;. Finally, assume there are u,v € V' \ U such that u has exactly
one neighbour in U and » and v are non-adjacent in G. Then, uwv € F, and wv is
unique chord in a cycle of length 4 due to Theorem 8.14. There are two non-adjacent
common neighbours of 4 and v in H, and one of them is not contained in U. Hence,
U fulfills condition (U3), thus U € Ug.

|

The two last lemmata constitute our second characterisation of minimal trian-
gulations of 2Ks-free graphs.

Theorem 9.10 Let G = (V, E) be a 2K,-free graph that is not nearly blank, and
let H be a graph on vertex set V. Then, H is a minimal triangulation of G if and
only if there is U € Ug such that H = Hy.

Proof: If H is a minimal triangulation of G, then there is U € Uy such that H = Hy
due to Lemma 9.9. If H = Hy; for some U € Ug, H is a minimal triangulation of G
due to Lemma 9.8.

|

158

Corollary 9.11 Let G = (V, E) be a graph that is not nearly blank. G is 2Ky-free
if and only if for every minimal triangulation H of G there is U € Ug such that
H = Hy.

Proof: If G is 2Ks-free, the statement holds due to Theorem 9.10. If G is not 2K5-
free, there is a minimal triangulation H of G that is not 2K5-free due to Theorem 9.6.
Then, there is no independent set U of G such that H = Hy, since Hy is always a
split graph, i.e., a chordal graph not containing a 2K,.

|

9.3 Solving the min-Tri membership problem

The membership problem that we wish to solve here is defined as follows: given a
pair (G, H) of graphs, where G is a 2Ks-free graph, is H a minimal triangulation of
G? We will call this problem the min-Tri membership problem for 2Ks-free graphs.
A variant of this problem is called the promise min-Tri membership problem for 2Ko-
free graphs where we trust that the input graph G is 2Ks-free. In fact, the difference
between both problems is that we also have to check whether G is 2Ks-free in the
former case, whereas in the latter case, this can be assumed. So, recognition of
2Ko-free graphs becomes part of the decision algorithm.

First, we will give an algorithm for solving the promise min-Tri membership
problem for 2K,-free graphs that runs in two phases: checking whether H is a split
graph, and then, checking whether the vertex set of H can be partitioned according
to Lemma 9.9. The following result provides a quite nice recognition algorithm for
split graphs.

Theorem 9.12 (Hammer and Simeone, in [35])

Let G = (V, E) be a graph on n vertices. G is a split graph if and only if thereism < n
such that {u € V : dg(u) < m} is an independent set in G and {u € V : dg(u) > m}
is a clique in G. The separating number m can be computed in linear time.

Proof: If there is m € {0,...,n} such that (U,C) is a split partition of G where
U =4et {u €V :dg(u) < m} and C =g¢f {u € V : dg(u) > m}, then G is a split
graph. If G is a split graph, there exists U C V such that U is an independent set
in G and C =4¢t V' \ U is a clique in G. Then, dg(v) > |C| — 1 for every v € C and
dg(u) < |C] for every u € U. If there is w € C such that dg(w) = |C] — 1, then v
does not have any neighbour in U, and (U U {w},C \ {w}) is also a split partition of
G, and every vertex in C'\ {w} has a neighbour in U U {w}. Thus, there is U’ C V
such that (U’,C"), where C" =4t V' \ U’, is a split partition of G, and every vertex in
C’ has a neighbour in U’. Hence, dg(u) < |C’| for every u € U’ and dg(v) > |C’| for
every v € C'. If there are two vertices uj,us € U’ such that dg(u1) = dg(usz) = |C],
then dg(v) > |C'| + 1 for every v € C’, and m =4t |C’| is the separating number.
If there is no such vertex, dg(u) < |C’'| — 1 for every u € U’, and m =g¢f |C'| — 1 is

Chapter 9 2K5-free graphs 159

the separating number. If there is exactly one vertex u € U’ such that dg(u) = |C'],
then C" U {u} is a clique in G, and m =g4¢f |C’| — 1 is the separating number.

For computing number m, let dy, ..., d, be the degrees of the vertices of G where

dy < --- <d,. It follows from the discussion above that m = max{d; : d; < n — i}
can be chosen. This maximum can be determined in linear time.

|

Theorem 9.13 Algorithm MSP_minTri_cosquarefree, given in Figure 18, solves
the promise min-Tri membership problem for 2Ks-free graphs in linear time.

Proof: Let (G, H) be an instance of the promise min-Tri membership problem for
2Ks-free graphs. In particular, G is a 2Ks-free graph. In linear time, the following
can be tested: whether G and H are defined on the same vertex set, whether G
contains at most one edge and whether G = H, whether H is a split graph. If all this
is the case, a partition (U, V(H) \ U) of the vertex set of H can be computed due
to Theorem 9.12. It holds that U is a maximal independent set of H if and only if
every vertex in V(H) \ U has a neighbour in U. Hence, U can be made maximal by
adding at most one vertex from V(H)\ U. Due to Lemma 9.9 and Theorem 9.10, H
is a minimal triangulation of G if and only if U € Ug. Conditions (U1) and (U2) for
being in U can be verified in linear time. Condition (U3) can be verified as follows:
determine the number of vertices in U whose neighbourhoods in G are V(G) \ U. If
there is exactly one such vertex w, no vertex in V(G) \ U with w the only neighbour
in U shall have degree |V \ U| in G. This condition is linear-time verifiable. Hence,
MSP minTri_cosquarefree is a linear-time algorithm.

|

It is certainly clear that algorithm MSP minTri_cosquarefree does not always
correctly work on graphs that contain a 2K,. As an example, consider “special
graph 17 and “special graph 2” of Figure 2. Special graph 1 contains a 2K5, and
special graph 2 is a triangulation of special graph 1. Since special graph 1 is chordal,
special graph 2 is not a minimal triangulation of special graph 1, but falsely declared
a minimal triangulation by MSP_minTri_cosquarefree. So, for solving the min-Tri
membership problem for 2K,-free graphs, we have to verify that the first input graph
is 2Ko-free. The currently best known recognition algorithm is based on matrix
multiplication. Let « be smallest such that the product of two matrices can be
computed in time O(n®); it holds that a < 2.376 [18].

Theorem 9.14 (Kloks, Kratsch and Miiller, [51])
2K,-free graphs can be recognized in time O(n® + m%(o‘ﬂ)).

Corollary 9.15 The min-Tri membership problem for 2Ks-free graphs can be
solved in time O(n® 4+ m3(+1).

160

MSP_minTri_cosquarefree (G, H) returns Boolean:
begin
if ((V(G)#V(H)) or (E(G) € E(H))) then
return false
end if;
if nearly_blank((G) then
return (G = H)
end if;
if not(split_graph(G)) then
return false

© 0 N Y N W =

~
=)

end if;

compute a maximal independent set U of H
such that V(G) \ U is a clique in H;

12 return (U € Ug)

18 end.

~
~

Figure 18 A linear-time algorithm for solving the min-Tri membership
problem for 2Ks-free graphs. For correctness, it is assumed that input
graph G is 2K-free.

Chapter 9 2K,-free graphs 161

Proof: Let (G, H) be a pair of graphs. Due to Theorem 9.14, G can be recognized
as 2Ks-free in the given time bound. If the test is positively answered, the algo-
rithm MSP_minTri_cosquarefree decides whether H is a minimal triangulation of G
in linear time due to Theorem 9.13. Since a > 1 holds, the whole algorithm works
in the stated time.

|

9.4 Algorithmic applications

Our second characterisation of minimal triangulations of 2Ks-free graphs implies
efficient algorithms for a number of minimal triangulations problems, in particular,
for computing a minimal triangulation and for determining treewidth and minimum
fill-in of 2K,-free graphs.

Theorem 9.16 There is a linear-time algorithm for computing a minimal trian-
gulation of a 2Ks-free graph, where the triangulation is represented by a split parti-
tion.

Proof: Let G = (V,E) be a 2Ks-free graph. Due to Theorem 9.10, it suffices to
compute an independent set from set Ug. In linear time the degree of each vertex
can be computed and the vertices can be ordered accordingly. If G is nearly blank,
G is chodal. Let u € V have degree 1. Then, (V' \ {u},{u}) is an appropriate
split partition. Otherwise, if G is not nearly blank, compute a maximal independent
set U of G as follows: choosing the vertices in order of their degrees starting with
the smallest and put a vertex to the independent set whenever it is possible. This
greedy algorithm is linear-time. We have to show that U € Ug:

(a) U fulfills condition (U1) by construction.

(b) U contains all vertices with degree 0. Suppose there is a vertex of degree 1
that is not contained in U. A neighbour must have been selected earlier, but
this could only be a vertex of degree 1, which would imply that G contains a
connected component of exactly two vertices and which is not possible, since G
is not nearly blank and 2K,-free. Hence, U fulfulls condition (U2).

(c) Suppose there is a vertex u € U that is adjacent with every vertex in V' \ U. If
there is a vertex v in V' \ U such that u is its only neighbour in U and that is
not adjacent with all vertices in V'\ U, v must have smaller degree than u. But
the algorithm would have chosen v before u. Hence, U fulfills condition (U3).

Then, U € Ug, and (U, V \ U) is an appropriate split partition.
|

Theorem 9.10 shows that the number of minimal triangulations of a 2Ks-free
graph is bounded above by the number of its maximal independent sets. For obtaining
efficient algorithms for computing treewidth and minimum fill-in of 2K5s-free graphs,

162

we will simply enumerate all maximal independent sets and explicitly consider every
minimal triangulation. Efficiency of this algorithm is based on the fact that 2K5-
free graphs have only a small number of maximal independent sets, and they can
efficiently be generated. The algorithm is based on ideas that were independently
used by Farber and Prisner for showing that a 2Ks-free graph with m edges has at
most m + 1 maximal independent sets [26], [71].

Lemma 9.17 There is an O(n + m?)-time algorithm that generates all maximal
independent sets of a 2Ks-free graph.

Proof: We give here the proof of Farber and Prisner, that provide the algorithm.
Let G = (V,E) be a 2Ky-free graph, and let z1,...,z, be the vertices of G. For
the following considerations, we assume that G does not contain isolated vertices; in
linear time, they can be identified and deleted. Hence, G is connected and m > n—1.
We generate the maximal independent sets iteratively. For ¢ < n, let the set of
maximal independent sets of G; =gef G[{1,...,z;}] be given. Let U be a maximal
independent set of G;y1 = G[{z1,...,2;11}] containing ;1. Either U \ {z;;1} is
a maximal independent set of G;, or U \ {z;41} is properly contained in a maximal
independent set U’ of G;. In the latter case, there is u € U’ N Ng(z;41) such that
U\{zit1} = {z1,...,z;} \ (Ng(x;11) U Ng(u)). That the right hand side defines
an independent set is due to the 2Ks-freeness of G, and the inclusion from right to
left holds by maximality of U. So, if G; has R; maximal independent sets, G
has Ri;1 < R; + dg(zi41) maximal independent sets. Hence, R; < m + 1 for all
jeA{l,...,n}.

For an efficient implementation of the above sketched generation algorithm, we
store the independent sets in an (m+1) X n matrix, each row representing a maximal
independent set. In time O(nm) it can be initialized with 0 in every position. For
each vertex, we keep a list of descending indices of the independent sets in which
this vertex appears. The index of an independent set is just the number of the
corresponding row in the matrix. To find the independent sets of G; that can be
extended by x;41 to be a maximal independent set in G;1, start with a descending
list containing the indices of all already generated independent sets and exclude
indices by running through the list of each neighbour of z;y;. Since all lists are
ordered, this takes time O(m - dg(z;+1)). For all independent sets kept in the final
list, it remains to change a bit in the matrix, which adds time O(m). Now, consider
the sets UZ-jJrl =def {Z1,.--, i} \ (Ng(zit1) U NG'(:I}]')) for z; € Ng(zipq) and j <
1. All these sets are independent sets, but none of them is maximal in G;, hence
UZ-]'JFIU{le} where z; € Ng(z;11) and j < i does not appear in the already generated
list of maximal independent sets of G, 1. It holds that U/, = U/, if and only if
Neg,(zj)\Ng(zit1) = Ng,(z;:) \ Na(zi+1). In linear time equal independent sets can
be identified. So, it remains to find the maximal sets among the remaining of the
sets Ul

1s e
vertex from Ng[z;]. Using adjacency lists, this takes time O(m - dg(z;41)). Adding

., Ul . We verify for every j € {1,...,i} whether each set contains a

the found maximal independent sets among Ul-lﬂ, LUl .1 to the list and updating

Chapter 9 2K5-free graphs 163

the indices lists takes time O(n - dg(z;11)), which adds up to O(m - dg(z;41)) time
for z;,1 and O(n + m?) for the whole described algorithm.
|

Corollary 9.18 For a 2K,-free graph G, Ug can be generated in time O(n + m?).
If G has m edges, |Ug| < m+ 1.

Proof: Let G = (V, E) be a 2Ks-free graph. If G is nearly blank, output the empty
set. Otherwise, we start with the list of maximal independent sets of G generated
by the algorithm described in the proof of Lemma 9.17. For every independent set,
conditions (U1-3) have to be verified. Conditions (U1) and (U2) are easily checkable.
A procedure for verifying condition (U3) is given in the proof of Theorem 9.16, which
results in a linear-time algorithm for every independent set. Since there are at most
m + 1 maximal independent sets of G, we obtain a O(n + m?)-time algorithm.

|

Theorem 9.19 Treewidth and minimum fill-in of 2K,-free graphs can be com-
puted in time O(n + m?).

Proof: Let H be a split graph, and let (U,C) be a split partition of H. Then,
|C] < w(H) < |C|+1, since C is a clique in H, and at most one vertex from U
can increase clique C. Hence, the clique number of a split graph can be determined
in linear time from a split partition. Due to Corollary 9.18 and Theorem 9.10, in
time O(n + m?), the smallest clique number k among all minimal triangulations of
G can be determined. The treewidth of G then is k — 1.

In case of minimum fill-in, we observe that, for every U € Ug,

p) = (37 + X dotw.

uelU

The smallest number among all these values can be determined in time O(n + m?)
and is equal to mfi(G) + |E(G)|.
|

164

165

Chapter 10
Permutation graphs

Many interesting graph classes can be defined as intersection graphs of appropriate
geometric objects. As we have seen, chordal graphs are the intersection graphs of
families of subtrees of trees (Theorem 8.12), and trees can certainly be considered
geometric objects. For permutation graphs, there is also a nice intersection model:
permutation graphs are the intersection graphs of sets of line segments that have
endpoints on two parallel lines. This model, called permutation diagram, provides
all information about the represented graph in a concise form. It is often used for
algorithmic purposes and the design of efficient algorithms in many cases.

In this chapter, we will prove a new characterisation of minimal triangulations
of permutation graphs. This characterisation is based on the concept of potential
maximal cliques, that turn out to be useful not only for general graphs. The notion
of a potential maximal clique was introduced by Bouchitté and Todinca [13]. A
potential maximal clique of a graph G is a set of vertices that is a maximal clique
in a minimal triangulation of G. The authors used these potential maximal cliques
to solve the treewidth and minimum fill-in problems on weakly chordal graphs in
polynomial time [13].

We will give an easy characterisation of potential maximal cliques of permu-
tation graphs that is based on special parts of permutation diagrams. Given this
characterisation, it seems almost natural to define the so-called potential mazimal
cliques graph of a permutation graph, that is an acyclic graph and whose maximal
paths exactly represent the minimal triangulations of the graph. Using this represen-
tation, we can solve the min-Tri membership problem for permutation graphs, that
asks, given a pair (G, H) of graphs, where G is a permutation graph, whether H is a
minimal triangulation of G.

As another highly interesting application of our efficient minimal triangulations
representation by potential maximal cliques graphs, we can solve the treewidth and
minimum fill-in problems on permutation graphs in linear time.

10.1 Getting to know AT-free and permutation graphs

AT-free graphs have been introduced by Lekkerkerker and Boland for characterising
interval graphs as special chordal graphs [56]. For a long period of time, AT-free
graphs have not been considered. But in the last decade of the twentieth century,
the class of AT-free graphs became the centre of extensive studies, that were mainly
initiated by the works of Corneil, Olariu, Stewart about structural properties of AT-
free graphs [21].

166

Definition 35 Let G = (V,E) be a graph. A triple of vertices u,v,w of G is an
asteroidal triple of G if and only if every pair of vertices of the set {u,v,w} is
connected by a path in G that does not contain a neighbour of the third vertex. We
say that G contains an asteroidal triple if and only if there are three vertices u,v,w
of G such that u,v,w is an asteroidal triple of G.

Alternatively, we can say that a triple u,v,w of vertices of a graph G = (V, E)
is an asteroidal triple of G if and only if, for every z € {u,v,w}, {u,v,w} \ {z}
is contained in one connected component of G \ Ng(z). Examples for graphs that
contain asteroidal triples are depicted in Figure 19.

Definition 36 Let G = (V,E) be a graph. We say that G is AT-free if and only
if G does not contain an asteroidal triple.

An interesting and important class of graphs contained in the class of AT-free
graphs is the class of cocomparability graphs. Let G = (V, E) be a graph. An orien-
tation of the edges of G is an assignment a of orientations to every edge of G such
that, for every edge uv of G, either a(uv) = (u,v) or a(uv) = (v,u). We say that a
is a transitive orientation of G if and only if, for every triple u,v,w of vertices of G
where uv € E and vw € E, holds:

a(uw) = (u,v) and a(vw) = (v,w) = wuw € E and aluw) = (u,w).

A comparability graph is a graph that has a transitive orientation. It is interesting
to note that comparability graphs can be characterised by vertex orderings. It holds
that a graph G = (V, E) is a comparability graph if and only if there is a vertex
ordering o for G such that, for every triple u,v,w of vertices of G, u <, v <, w,
uv € F and vw € E implies uw € E. Now, a graph is a cocomparability graph, if it
is the complement of a comparability graph. Similarly, it holds that G = (V, F) is a
cocomparability graph if and only if there is a vertex ordering ¢ for G such that, for
every triple u, v, w of vertices of G, u <, v <, w, uw € E implies uv € £ or vw € E
[64]. Such a vertex ordering is called cocomparability ordering.

Lemma 10.1 (Golumbic, Monma and Trotter, [36])
Cocomparability graphs are AT-free.

Proof: Let G = (V, E) be a cocomparability graph, and let ¢ be a cocomparability
ordering for G. Suppose G contains an asteroidal triple, formed by the vertices u, v, w.
We may assume that v <, v <, w. By definition, there is a u,w-path P in G
avoiding the neighbourhood of v. Then, there are adjacent vertices z,z on P such
that x <, v <, 2. But since o is a cocomparability ordering for G, x or z is a
neighbour of v, which contradicts P being a wu,w-path avoiding the neighbourhood
of v, and G is AT-free.

|

Chapter 10 Permutation graphs 167

Figure 19 Standard graphs containing asteroidal triples. In all three
graphs, the three vertices with the smallest neighbourhoods form aster-
oidal triples.

168

Permutation graphs are cocomparability graphs. Let n > 1. A permutation over
{1,...,n} is a bijective mapping 7 from {1,...,n} to {1,...,n}. A short description
of 7 is the sequence (m(1),...,7(n)). By 7~!, we mean the inverse function of , i.e.,
7n=1(i) = j if and only if 7(j) = i.

Definition 37 Let n > 1, and let © be a permutation over {1,...,n}. The per-
mutation graph defined by 7, denoted as G(w), has vertex set {1,...,n}, and two
vertices i and j, i < j, of G(w) are adjacent if and only if w(i) > n(j). A graph G
on n vertices is a permutation graph if and only if there is a permutation © over
{1,...,n} such that G = G(x). In this case, we also say that G is a permutation
graph over {1,...,n}.

The definition of permutation graphs that we use here is rather strict, since
the class of permutation graphs is not closed under isomorphism. However, for our
considerations, this circumstance can be ignored.

Theorem 10.2 (McConnell and Spinrad, [60])
Let G = (V,E) be a graph. If G is isomorphic to a permutation graph, then a
permutation 7 can be computed in linear time such that G = G(r).

There is a nice representation of permutation graphs, that is closely related
to permutation sequences. It is called permutation diagram. Let G = G(m) be a
permutation graph on n vertices. On each of two horizontal lines, mark n equidistant
points. On the upper line, label the points from left to right with the numbers 1
through n, on the lower line, label the points from left to right with the numbers (1)
through 7(n). Finally, join the points on the upper and lower line with the same labels
by line segments. The result is the permutation diagram of G, and it will often be
denoted as ©(m). An example is depicted in Figure 20. It holds that two vertices of
G are adjacent if and only if the corresponding line segments intersect. We will often
speak of intersecting line segments, even of intersecting vertices instead of adjacent
vertices.

Lemma 10.3 (Pnueli, Lempel and Even, [70])
Permutation graphs are cocomparability graphs.

Proof: Let G = G(r) = (V, E) be a permutation graph over {1,...,n}. We show
that o =ger (m(1),...,7(n)) is a cocomparability ordering for G. Let u,v,w be
vertices of G where 7! (u) < 77 1(v) < 771 (w), i.e., u <, v <, w, and let uw € E.
By definition, w < u. Then, if v < u, v and u are adjacent, if v > u, v and w are
adjacent. Hence, o is a cocomparability ordering for G and G is a cocomparability
graph.

|

It can even be shown that permutation graphs are exactly the cocomparability
graphs that are also comparability graphs [70].

Chapter 10 Permutation graphs 169

Figure 20 The permutation graph G((5,4,7,1,3,9,6,8,2)) represented
by a permutation diagram and by a usual “drawing”.

170

The class of AT-free graphs also contains an important class of chordal graphs,
namely the class of interval graphs.

Definition 38 A graph G = (V, E) is an interval graph if and only if there is a
1-to-1 correspondence between the vertices of G and a family J of closed intervals of
the real line such that two vertices of G are adjacent if and only if the corresponding
intervals have a non-empty intersection. The family of intervals is called an interval
model for G, and we write G(J) to denote the graph defined by J.

Theorem 10.4 (Lekkerkerker and Boland, [56])
A graph is an interval graph if and only if it is chordal AT-free, i.e., chordal and
AT-free.

It is interesting to know that interval graphs can also be characterised by an
appropriate vertex ordering, that is called interval ordering.

Definition 39 Let G = (V, E) be a graph, and let o be a verter ordering for G.
We say that o is an interval ordering for G if and only if, for every triple u,v,w
of vertices of G, holds:

U<,v<,w and uweFl — wvweEF.

It is immediately obvious that interval orderings are cocomparability orderings.

Theorem 10.5 (Olariu, [66])
A graph is an interval graph if and only if it has an interval ordering.

Proof: Let G = (V, E) be an interval graph, and let J be a family of closed intervals
of the real line such that G = G(J). Additionally, let 7 be a vertex ordering for G.
For every vertex z of G, let I,, = [{(z),r(x)] be the interval of J corresponding to z.
We define a vertex ordering ¢ of G is follows. For every pair u, v of vertices of G, let
u <, v if and only if r(u) < r(v) or, if r(u) = r(v), u <, v. For showing that o is an
interval ordering for G, let u, v, w be vertices of G where u <, v <, w and uvw € FE.
By definition of o, r(u) < r(v) < r(w). Since u and w are adjacent in G, I,, and I,
intersect, i.e., £(w) < r(u). Then, £(w) < r(v), and v and w are adjacent in G.

For the converse, let G = (V, E) be a graph, and let ¢ be an interval ordering
for G. We define a family J of intervals of the real line as follows. For every vertex x
of G, let a, be the smallest number such that o(a;) is contained in Ng[z]. Then, let
I, =qet [az, 0 (z)], and let T =gef {I;}zev- It is clear that a, < o~ !(z) for every
vertex ¢ of G. We show that G = G(J) holds. Let u,v be vertices of G, u <, v.
First, let I, N I, = (. By definition of J, 0~!(u) < a,, which means that v and v
are not adjacent in G. Second, let I, NI, # (. Then, a, < 0 '(u), and u and v
are adjacent in G due to the definition of interval orderings. Hence, J is an interval
model for G.
|

Chapter 10 Permutation graphs 171

Note that the proof of Theorem 10.5 provides a linear-time algorithm for com-
puting an interval model for an interval graph from a given interval ordering. The
converse is also true, if sorting can be done in linear time.

Another characterisation of interval graphs is given by a special property of its
maximal cliques.

Definition 40 Let G = (V,E) be a graph, and let Aq,..., A, be the mazimal
cligues of G. We say that G has a consecutive clique arrangement if and only
if there is a permutation ™ over {1,...,r} such that, for every verter x of G, if = is
verter in Ay and Ay for 1 <i < j <1 then x is vertex in Ay, Ar(iz1), - - - An(
The sequence (Ax(1y,---,Ar@)) 95 a consecutive clique arrangement for G.

9

Theorem 10.6 (Gilmore and Hoffman, [33])
Let G = (V,E) be a graph. Then, G is an interval graph if and only if G has a
consecutive clique arrangement.

Proof: Let (Ay,...,A,) be a consecutive clique arrangement for G. We define an
interval model J as follows. For every vertex z of G, let

l(x) =qefmin{i : z € A;}
r(z) =germax{i:x € A;},

and I, =qef [€(z),r(x)]. Note that there may be intervals containing only one element.
For every pair u,v of vertices of G, uv € E if and only if there is ¢ € {1,...,7} such
that u,v € A;, if and only if I,, N I,, # (. Hence, G = G(J), where T =gef {I;}zev -

For the converse, let G be an interval graph, and let J = {I,},cy be an interval
model for G. We show that a consecutive clique arrangement for GG, that corresponds
to the given interval model, can be obtained inductively. If G is complete, then (V)
is a consecutive clique arrangement for G. If G is not complete, let z be a vertex such
that the right endpoint of I, is smallest possible. Then, Ng[z] is a clique of G. Let
(A1, ..., A,) be a consecutive clique arrangement for G—z that corresponds to J\{I,}.
Then, A; contains all neighbours of z. If Ng(z) = Ay, then (Ng[z], Ag,...,A,) is a
consecutive clique arrangement for G, and if there is € Ay that is not a neighbour
of z, (Ng[z], A1, ..., A,) is a consecutive clique arrangement for G that corresponds
to J.

|

Corollary 10.7 (Kloks, Kratsch and Spinrad, [52])

Let G = (V,E) be an interval graph, and let (Ay,...,A,) be a consecutive clique
arrangement for G. Then, S C V is a minimal separator of G if and only if there is
1€ {1, R ,7‘—1} such that S = A; N Ai—l—l-

Proof: Let i € {1,...,7—1}. Consider S =4t 4; N A;41. Since A; and A;q are
maximal cliques of G, there are vertices u,v of G such that u € A; \ A;+1 and

172

v € A;y1 \ A;. Note that u and v belong to different S-full components of G. Hence,
S is a minimal separator of G due to Lemma 8.1.

For the converse, let S be a minimal separator of G. Then, there are vertices a, b
of G such that S is a minimal a,b-separator of G. Let i,j € {1,...,r} such that
a € A; and b € A;. Without loss of generality, we assume ¢ < j, and since a and b
are non-adjacent in G, i < j. Let C, and C} be the connected components of G \ S
containing a and b, respectively. Let i’ be largest possible such that A; contains a
vertex of C,; similarly, let j' be smallest possible such that A; contains a vertex of
Cp. Since a and b belong to different connected components of G\ S, i’ < j'. We
claim that S = Ay N A;,1. Since every vertex of S has neighbours in C, and Cj, it
is clear that S C Ay N A;+1. And if there is x € (A N Ay 11) \ S, then z belongs to
C,, which contradicts the choice of #'.

|

10.2 Characterising minimal separators of permutation graphs

Minimal triangulations and minimal separators are connected by an interesting rela-
tionship, and this relationship is completely characterised by Theorem 8.15. However,
it cannot be expected in general that Theorem 8.15 implies efficient algorithms, since
finding all minimal separators, determining their relationships with respect to the
crossing relation and generating maximal sets of pairwise non-crossing minimal sep-
arators is time-consuming. Nevertheless, minimal separators are of great importance
in this chapter. It is interesting that, in case of permutation graphs, they have effi-
cient representations, and they can be found easily in the permutation diagram. For
this purpose, Bodlaender, Kloks, Kratsch introduced scanlines [8].

Definition 41 Let G = G(w) be a permutation graph over {1,...,n}. A scanline
of G is a pair (a,e) where a,e € {0.5,1.5, ... ,n—l—%}_

Let G = G(7) be a permutation graph over {1,...,n}, and let ® = D(7) be its
permutation diagram. Let s = (a,€) and s’ = (d/,€’) be scanlines of G. We say that
s<s'ifandonlyifa < a’ ande <¢€; s < s if and only if s < s’ and s # s'. By int(s),
we mean the set of vertices z € {1,...,n} such that (a—z)(e—7~!(z)) < 0, i.e., int(s)
is the set of vertices scanline s intersects with. In terms of permutation diagrams, s
can be thought of as a line segment and int(s) is the set of vertices intersecting with
s. We say that a vertex x is to the left of s in D if it does not intersect with s and is
smaller than a. Similarly, a vertex z is to the right of s in ® if it does not intersect
with s and is greater than a. It is easy to see that int(s) is a separator of G, if there
are vertices to the left and to the right of s. For C1,Cy C {1,...,n}, s is between
G[C1] and G[Cs), if the vertices in C are to the left of s and the vertices in C5 are
to the right of s, or if the vertices in Cs are to the left of s and the vertices in C; are
to the right of s. In these cases, int(s) is an a, b-separator of G for every pair a, b of
vertices where a € C7 and b € Cs.

Chapter 10 Permutation graphs 173

Definition 42 Let G be a permutation graph over {1,...,n}. A scanline s of G
is called special if and only if S =gt int(s) is a minimal separator of G and s is
between two S-full components of G.

We want to list all special scanlines of a permutation graph. Our algorithm
is based on a characterisation of special scanlines that takes into account the near
situation in the permutation diagram. The enclosure of a scanline s = (a,e) where
a,e € {1.5,...,n—3} is the set en(s) =ger {a—3,a+3,m(e—3),m(e+3)}. So, the
enclosure may contain between two and four vertices.

Lemma 10.8 Let G = G(w) be a permutation graph over {1,...,n}. A scanline s
of G is special if and only if en(s) Nint(s) = 0.

Proof: Let s = (a—l—%,e—l—%) be a scanline, 1 < a,e < n, and let S =gef int(s). If
en(s) NS = 0, then a and 7(e) belong to one connected component C; of G\ S
and a+1 and 7(e+1) belong to another connected component Cy of G\ S. Since
every vertex in S has neighbours in | and Cs, C; and C5 are S-full components of
G and s is between C7 and C5. Hence, S is a minimal separator of G, and s is a
special scanline. Now, let en(s) NS # (). Then, there is u € en(s) NS, and either u
has no neighbour in the connected components of G \ S to the left of s or u has no
neighbour in the connected components of G\ S to the right of s. Hence, s is not
a special scanline. Note that S may not be a minimal separator or that there is no
S-full component to the left or right of s.

|

Corollary 10.9 Let G = G(w) be a permutation graph over {1,...,n}, and let m
be the number of edges of G. Then, G has at most min{n+m, () —m} < in-(n+1)
special scanlines, and they can be listed in linear time.

Proof: Every special scanline of G can be identified by a point on the upper line
and a point on the lower line of the permutation diagram of G. For instance, if
s = (a—l—%,e+%) is a special scanline of GG, then s can be identified by the vertex
sets {a,7(e)} and {a,7w(e+1)}. In the former case, these sets can be of cardinality 1
or 2, and if they contain two vertices these vertices are adjacent. In the latter
case, the sets always contain exactly two non-adjacent vertices. Hence, G has at
most 7 + m special scanlines and at most (3) — m special scanlines. For the upper
bound, note that, if n > 4, min{n + m, () — m} is largest possible if n + m equals
(5) —m, and this is true for m = n - (n — 3). For listing the special scanlines,
simply check, for every vertex x and every edge uv of G where u < v, whether
(z+3, 771 (z)+3) or (v+3, 771 (u)+1) are special scanlines, which results in a linear-
time listing algorithm.

174

By definition, special scanlines represent minimal separators of permutation
graphs. We will show that the converse is equally true, i.e., every minimal sepa-
rator is represented by a special scanline. This is based on a lemma by Bodlaender,
Kloks, Kratsch, that we extend. The construction of the proof is related to the
construction of the proof of Corollary 10.7.

Lemma 10.10 (Bodlaender, Kloks and Kratsch, [8])

Let G = G(w) be a permutation graph over {1,...,n}. Let C1,Cy C V induce
connected subgraphs of G. If Ng[Ci] N Cy = 0, then there is a special scanline s
between G[C}] and G[Cs] such that S =qe¢ int(s) is a minimal u, v-separator of G for
some vertices u € C and v € Cs.

Proof: Since C and Cs induce connected subgraphs of G that do not share a vertex,
neither do they contain neighbours of each other, we assume max C; < min Cs. Let
u € Cy and v € O be vertices of G. Since S" =4t V' \ (C1UC%) is an z, z-separator of
G for any pair of vertices from C; and C5, there is a minimal u, v-separator S C S’ of
G. Let Dy and Dy be the connected components of G'\ S containing the vertices of C;
and (s, respectively. It holds that D; and Dy are S-full components of G, and every
vertex of S has neighbours in Dy and Dy. Let a =gcf max D and e =g¢¢ max 7~ (Dy),
and let s =qef (a+1,e+3). Observe that a < minD, and e < min7~1(D,). Then,
S = int(s), and s is a scanline between two S-full components of G. Hence, s is a
special scanline.

|

Corollary 10.11 Let G = G(w) be a permutation graph over {1,...,n}, and let
S CA{1,...,n}. If S is a minimal separator of G, then there is a special scanline s of
G such that S = int(s).

Proof: Let S be a minimal separator of G, and let C; and C3 induce (different)
S-full components of G. Consider G \ S. Every vertex of G \ S between C; and Cs
belongs to an S-full component of G. Let Cs be the S-full component of G containing
max C + 1, which does not belong to S. Applying Lemma 10.10 to C and Cs yields
a special scanline s of G such that S = int(s).

|

In case of permutation graphs, crossing of minimal separators, which is an im-
portant property in connection with minimal triangulations (Theorem 8.15), can be
determined in the permutation diagram and translates into a property of special
scanlines. So, special scanlines are “full” representations of minimal separators of
permutation graphs, since they preserve all information, that we need, of the corre-
sponding separators.

Definition 43 Two scanlines s1 and sy of a permutation graph G = G(x) inter-
sect if and only if neither s1 < so nor s9 < 87.

Chapter 10 Permutation graphs 175

In other words, intersection of scanlines, that do not share common endpoints,
has the original geometric meaning.

Lemma 10.12 Let G = G(w) be a permutation graph over {1,...,n}. Let s; and
s9 be special scanlines of G, and let S1 =qef int(s1) and Sy =gef int(s2).

(1) If s; and so do not intersect then S, and S, are non-crossing.

(2) If s; and sy do intersect then S; and So Cross

Proof: By definition, S; and S5 are minimal separators of G. Let s; and s9 do

not intersect. We assume s; < s9. Let Cq,...,Cy be the connected components of
G\ S1, £ > 2, where the vertices in C; are smaller than the vertices in C;; for all
i€ {1l,...,0—1}. Suppose S; and S, cross, i.e., there are two connected components

of G\ S; that contain vertices from S. So, there is > 1 such that s, intersects
with vertices from C, and C, ;. Since s; < s9, the vertices in en(sy) that are to
the right of sy are not contained in int(s;). Hence, there is a path between a vertex
from C, and a vertex from C, 1, and C, and C,; cannot be in different connected
components of G \ S1, which contradicts the assumption that S; and Sy cross. For
the converse, let s; and sy intersect. Observe that the vertices of en(s;) belong to
two connected components of G \ S, and one vertex from each of these components
belongs to S5. Then, Sy and S cross.

|

We remark that the listing algorithm of Corollary 10.9 does not output every
minimal separator (in form of a special scanline) exactly once, since one minimal
separator may be represented by different scanlines. In [64], a linear-time algorithm
is given that selects exactly one special scanline for each minimal separator, so that
the number of minimal separators of a permutation graph can be computed in linear
time. For general graphs, listing the minimal separators is an interesting problem.
Kloks and Kratsch showed that this can be done in polynomial time for a graph class,
if the numbers of minimal separators of its graphs are polynomially bounded in the
numbers of vertices [48].

10.3 Potential maximal cliques of permutation graphs

Instead of using the characterisation of minimal triangulations by maximal sets of
pairwise non-crossing minimal separators, Bouchitté and Todinca introduced poten-
tial mazimal cliques to solve problems like treewidth and minimum fill-in [13]. Po-
tential maximal cliques are sets of vertices, and they turn out very useful also for our
problems. In this section, we will characterise potential maximal cliques of permuta-
tion graphs.

176

Definition 44 Let G = (V,E) be a graph. A set C C V of vertices of G is a
potential maximal clique of G if and only if there is a minimal triangulation H
of G such that C' is a mazimal clique of H.

For our purposes, we need two further scanlines that we declare to be special. Let
G = G(m) be a permutation graph over {1,...,n}. Then, the scanlines sy =qef (%, %)
and sl =gef (n-l—%, n-l—%) are also special. Let s; and sy be two special scanlines of G
such that s; < sy. By G[s1, s2] we denote the subgraph of G induced by the vertices
that intersect with s; or s, or that lie between s; and s9, i.e., to the right of s; and to
the left of sy. With G[s1, s2] we associate the permutation diagram of G reduced to
only the vertices of G[s1, s2]. The non-intersecting scanlines s and so are neighbours
if there is no special scanline s’ of G such that s; < s’ < sy. We say that s; is a
left neighbour of sy and sy is a right neighbour of s;. If s; and sy have a common
endpoint they are close neighbours. By N~(s) we denote the set of left neighbours
of special scanline s of G.

Lemma 10.13 Let G = G(w) be a permutation graph over {1, ... ,n}, and let m
be the number of edges of G. Then, G has at most 2m pairs of special scanlines that
are close neighbours.

Proof: Let s = (a,) be a special scanline of G. There is at most one special scanline
s’ = (a,€') of G such that s and s’ are neighbours and €’ < e. Similarly, there is at
most one special scanline s” = (a”,¢) of G such that s and s” are neighbours and
a” < a. Note that in both cases the enclosure of s must contain two vertices that are
to the right of s, and these vertices are adjacent.

Lemma 10.14 Let G = G(m) = (V,E) be a permutation graph over {1,...,n}.
Let s1, so, t; and ty be special scanlines of G where s1 € N~(s9) and t; € N> (t2).
Let S1 =gt int(s1) and Sy =qef int(s2), and let C =4er V(G[s1, $2]). Then:

(1) ueC\(51USy) = Nelu]=C
(2) ue S;\Szandv e S \S) = wekE
(3) C:V(G[tl,tz]) == t1 =81 and to = S9.

Proof: Let u,v € C such that uv € E. Let u € C'\ (S1USy). Ifv e C\ (S1US,),
there is a special scanline between G[{u}] and G[{v}] by Lemma 10.10 that does not
intersect with neither s; nor so. If v € Sq, there is a vertex w in the enclosure of
s1 that is to the left of s; and adjacent with v such that there is a special scanline
between G[{v,w}] and G[{u}] by Lemma 10.10, and this scanline does not intersect
with neither s; nor s,. The case v € S5 is similar to v € S;. Since s; and s, are
neighbours there cannot be a special scanline between them, and statement (1) holds.
Ifue S\ Sy and v € Sy)\ Sy, there are vertices z € en(sy) \ C and z € en(sy) \ C
such that ur € F and vz € F and there is a special scanline s between s; and sy due

Chapter 10 Permutation graphs 177

to Lemma 10.10, applied to G[{u,z}] and G[{v, z}]. Note that Lemma 10.10 can be
applied, since {v, z} N Ng[{u,z}] = 0. However, s cannot exist, since s; and sy are
neighbours, and statement (2) holds. Note that this case is not possible, if s; = s
or sy = s?, since S; = 0 or Sy = 0.

For statement (3) observe that ¢; does not intersect with neither s; nor s, since
otherwise C" =4¢¢ V(GJt1,t2]) would contain vertices from the enclosure of s1 or ss.
Analogously, to does not intersect with neither s; nor ss. So, {s1,s2,t1,t2} is a set
of pairwise non-intersecting special scanlines. Since C’ must contain a vertex to the
right of s; that belongs to the enclosure of s1, s1 < to; similarly, ¢; < so, and this is
only possible if t; = s; and £y = s9.

|

Let s1 and s be special scanlines of G = G () where s; € N<(s2). A vertex z €
{1,...,n} is an inner vertex of G[s1, s9] if z & int(s1) Uint(se) and = € V(G[s1, s2]).
Inner vertices play a special role in our analysis, since Ng[z] = V(G[s1,s2]) by
Lemma 10.14. For a potential maximal clique C of G, we say that x € C' is an inner
verter of C' if Ng[z] = C. We prove a useful characterisation of potential maximal
cliques with inner vertices.

Lemma 10.15 Let G = (V, E) be a graph, and let = be a vertex of G. Ngz] is a
potential maximal clique of G if and only if there are no vertices a,b € Ng(z) such
that Ng[z] \ {a,b} is an a, b-separator of G.

Proof: Let C' =4t Ng[z] be a potential maximal clique of G, and let H be a minimal
triangulation of G containing C' as maximal clique. Let a and b be vertices in C' that
are non-adjacent in G. Since C' is a clique in H, ab is an edge in H, and there are
vertices u, v such that ab is unique chord in cycle (a,u, b,v) in H due to Theorem 8.14.
Without loss of generality, u does not belong to C' and v = z. Hence, every u, z-
separator of H must contain a and b. Note that Ng(x) is a u, z-separator of H.
Then, there is a minimal u, z-separator T' C Ng(x) of H. Due to Theorem 8.16, T is
a minimal u, z-separator of G, and T' contains both a and b. This means that there
are a,u- and b, u-paths in G that do not contain vertices from N¢[z] except for a and
b, respectively. Then, Ng[z] \ {a, b} is not an a, b-separator of G.

For the converse, let Ng(z) contain no vertices a,b such that Ng[z]\ {a,b} is
an a, b-separator of G. In other words, for every pair a,b of non-adjacent vertices in
Ng(z), there is an a, b-path in G containing no vertex from Ng[z]\ {a,b}. Consider
triangulation H' =g G U F’ of G where F' =4t {uv € E : u,v # z}, ie.,, H—x
is complete and Ny (x) = Ng(z). Let H C H’ be a minimal triangulation of G.
We prove that Ng[z] is a clique in H. Suppose there are vertices a,b € Ng(x) that
are non-adjacent in H. By assumption, there is an a,b-path P = (a,uq,...,u,,b)
in H that does not contain vertices from Ng[z] except for a and b. Without loss of
generality, P is shortest possible. It holds that » > 1. Then, (z,a,uq,...,u,,b) is
a chordless cycle of length at least 4, which contradicts H being chordal. Hence, a
and b are adjacent in H, and N¢[z] is a clique in H. Since Ny[z] = N¢[z], Ng[z] is

178

a maximal clique in H, therefore a maximal clique in a minimal triangulation of G,
i.e., a potential maximal clique of G.
|

Starting from minimal triangulations, potential maximal cliques with inner ver-
tices are easily identifiable.

Lemma 10.16 Let G = (V, E) be a graph, and let H be a minimal triangulation
of G. Let uw € V such that there is only one maximal clique C' in H containing u.
Then, u is an inner vertex of C.

Proof: Since {u,v} for every v € Ng(u) is a clique in H, Ng[u] C C. Suppose there
is v € C such that uv ¢ E. Since wv € E(H), uv is unique chord in a cylce (u,z,v, z)
in H by Theorem 8.14. But since z, z € C, z and z are adjacent in H, hence (u,z, v, z)
contains two chords in H, which contradicts the assumption.

|

Lemma 10.17 Let G = G(x) be a permutation graph over {1, ... ,n}. Then, G has
at most n pairs of special scanlines that are neighbours but not close neighbours.

Proof: Let s; and sy be special scanlines of G that are neighbours but not close
neighbours. Then, G[s1, so] must contain an inner vertex z; otherwise, i.e., every
vertex of G[s1, s2] intersects with s; or so, G would have a special scanline that is
close to s1 and s9, hence between s; and sy (this also follows from Lemma 10.14,
statement (2)). Let (¢1,%2) be a pair of special scanlines of G where ¢; < t; and ¢;
and ty are neighbours but not close neighbours such that x is inner vertex of G[t1, t2].
Suppose s1 and t; intersect. There are two non-adjacent vertices of the enclosure of
t; that belong to int(s;), and due to Lemma 10.14, they are neighbours of . Hence,
ty intersects with z, which is not possible and s; = t;. Similarly, sy and t2 do not
intersect. Hence, {s1,2,t1,t2} is a set of pairwise non-intersecting scanlines of G,
since x “separates” s; and ¢; from s, and t5. Since s; and sy as well as t; and ¢, are
neighbours, it follows that s; = t; and sy = t5. Thus, for every vertex u of G, there
is at most one pair (s1, $2) of special scanlines of G that are neighbours but not close
neighbours such that u is inner vertex of G[sq, s2].

|

The main result of this section is a characterisation of potential maximal cliques
of permutation graphs in terms of special scanlines. We will consider two cases:
potential maximal cliques with and without inner vertices.

Lemma 10.18 Let G = G(n) be a permutation graph over {1,...,n}. Let C C
{1,...,n} be a potential maximal clique of G that has an inner vertex. Then, there
are special scanlines s1,s9 of G such that s; € N3 (s2) and C = V(G[s1, s2]), where
s1 and s are not close neighbours.

Chapter 10 Permutation graphs 179

Proof: By definition, there is a vertex = of G such that Ng[z] = C. We first define
two scanlines of G as follows. Let

)} U {0}

z)} U {n+1}

¢ Ne(x)} U {0}

¢ No(z)} U {n+1},

and let s1 =qef (@143, e14+3) and s» =ger (a2—1,e2—1). By construction, s; and sy

are special scanlines of G (a1+1,...,a2—1 and 7(e; +1),...,m(ea — 1) are contained
in Ng[z]). Furthermore, s; < sy. Suppose there is a special scanline s of G such

a1 =gef max{a < z :a & Ng(
(

e1 =qof max{i < 7 (x) : (i

ay =def min{a >z :a ¢ Ng

~— ~—

€2 =det min {3 > 771 (z) : 7(i

that s1 < s < s3. By definition of a1, a9, e1,e3, s must be close neighbour of s;
and so. Then, en(s) contains exactly two vertices from Ng(x), and they are non-
adjacent. Let {a,b} = en(s) N Ng(z). By construction of s; and sy, Ng[z] \ {a, b} is
an a, b-separator of G. Hence, Ng|[z] cannot be a potential maximal clique of G due
to Lemma 10.15, which contradicts the assumption. So, s; and s, are neighbouring
special scanlines without common endpoint and C' = G[sq, s2].

|

For the case of potential maximal cliques without inner vertices, we have to know
more about the structure of minimal triangulations of permutation graphs. However,
minimal triangulations of permutation graphs are considered not before the following
section. To preserve the composition of this thesis, we use a result here that is stated
and proved later: Minimal triangulations of permutation graphs are interval graphs
(Corollary 10.24).

Lemma 10.19 Let G = G(w) be a permutation graph over {1,...,n}. Let C C
{1,...,n} be a potential maximal clique of G without inner vertices. Then, there
are minimal separators S1,S of G such that C = Sy U S,. Furthermore, there are
special scanlines s, s, of G such that s; € N5(s2), {S1, S2} = {int(s1), int(s2)} and
C =V (G[s1,s2]). In particular, s; and sy are close neighbours.

Proof: Let H be a minimal triangulation of G such that C' is a maximal clique
of H. By Corollary 10.24, H is an interval graph. Let (Ay,...,Ax), kK > 1, be a
consecutive clique arrangement for H. Let ¢ € {1,...,k} such that A; = C. Since
Ay and Aj have inner vertices, k > 3 and 1 < i < k. Let S1 =qer A;—1 N A; and
So =gef A; N A;11. By Corollary 10.7, S7 and S5 are minimal separators of H, and
by Theorem 8.16, S; and S5 are minimal separators of GG. Since there is no vertex x
in C such that Ng[z] = C, every vertex of C is contained in A; 1 U A;1. Hence,
C = Sl U SQ. Due to maximality of C, Sl ,@ SQ and SQ Z Sl. Let u € C\Sl,
veEA 1\Sandw e C\ Sy z € Ay \ S (see Figure 21). We assume v < u;
if u < v we use (A, ..., A;) as consecutive clique arrangement for H and the same
vertices with their new meanings. It holds that v, w,u,z induce a chordless path in
H, and u and w are adjacent in G. We want to show that w < z. Suppose w > z.
Remember that S7 and Sy are minimal u,v- and w, z-separators in H, respectively,

180

and in G by Theorem 8.16. If z < v, i.e., z < v < u and u and z are non-adjacent in
G, then the u, v-separator S also separates u and z, which contradicts Theorem 8.16,
since u and z are contained in the same connected component of H \ S;. If v < z,
ie., v < ¢z < w and w and v are non-adjacent in G, similarly, S, also separates w
and v contradicting Theorem 8.16. Hence, w < z. Due to Theorem 8.16, C'\ S; is
contained in a connected component of G \ S; induced by D;.

[We construct two scanlines s1 and s of G, that shall define the potential maximal clique C']
Let a1 =qef min(D7) and e; =qef min7 (D7) and s1 =gef (al—%,el—%). Observe
that a;—1 and 7(e;—1) exist and v < a;—1 and 7~ !(v) < e;—1 and a;—1 and
m(e1—1) are to the left of s;. Since a; € Dy and 7(ey) € D1, a1 and 7(ep) are to the
right of s, hence s is a special scanline of G due to Lemma 10.8. Let D induce the
connected component of G\ S; containing v. Since S; is a minimal u, v-separator in
H and G, every vertex in S has a neighbour in Dy and D/, and S; = int(s;). By
a similar construction using S, define Dy and D} and sy =qef (a2+%, 62"‘%), where
az =gef max(Dy) and ey =gof max 7w~ !(Dy). It holds that So = int(ss). Since u < w
or 7 (u) < 7 Hw), ey Ku<w<agore <7 l(u) <7 Hw) < ey, and since S
and S are non-crossing minimal separators of G due to Theorem 8.15, s; < s by
Lemma 10.12. Hence, C C V(G[sy, s2)).

[Scanlines s1 and so indeed define C']

Since H is a minimal triangulation of G, for every pair a,b of vertices of G where
a € S\ S and b € Sy \ S1, a and b are adjacent in G. Imagine the situation
in the permutation diagram of G. Suppose there is z € V(G[s1, s2]) \ C. Then, z
must be adjacent with all vertices in S; or all vertices in Sy in G. Since z € C,
ze AyU---UA; jorze A1 U---UAg. In the former case, Sy is a z, u-separator,
in the latter case, Sy is a w, z-separator in H and therefore in G. Hence, z has no
neighbours in Sy \ S1, which means that z is not contained in D; and to the left
of s1, or in S \ Sy, which means that z is not contained in D9 and to the right of
s9. So, z & G[s1,82) and C = V(G[sy1, s2]). Furthermore, s; and sy have a common
endpoind.

[Scanlines s and sy are neighbours.]
If a; = ay + 1, then there is j € {e1,...,ea—1} such that 7(e1),...,7(j) € Sz and
w(j+1),...,m(e2) € S1. If e7 = eg + 1, then there is j € {aq,...,a2—1} such that
ai,...,J €S9 and j+1,...,as € S1. Then, there cannot be a special scanline s such
that s1 < s < s9, and s1 € N~ (s2).

|

Since scanlines s and sy of Lemma 10.19 are unique, S; and S5 of Lemma 10.19
are also unique up to indices according to Lemma 10.19.

Theorem 10.20 Let G = G(m) be a permutation graph over {1,...,n}. A vertex
set C C {1,...,n} is a potential maximal clique of G if and only if there are special
scanlines s, and ss of G such that sy € N>(s2) and C = V(G|sq, s39]).

Chapter 10 Permutation graphs 181

Sh S

Figure 21 The choice of vertices u, v, w, ¢ in the proof of Lemma 10.19.
Intervals crossing the thin lines represent vertices contained in separa-
tors Sy or Ss.

182

Proof: The “only if” part of the theorem holds by Lemmata 10.18 and 10.19. For
the “if” part of the theorem, let s; and so be special scanlines such that s; € N=(s2),
and let C' =4¢r V(G[s1, $2]). Observe that there are u,v € C such that u ¢ int(s;)
and v & int(s2); v and v may be identical. Let G’ emerge from G by completing into
cliques int(s1) and int(s2). Due to Lemma 10.14, C induces a clique in G’. Since no
vertex to the left of sy is adjacent with u and no vertex to the right of s is adjacent
with v, C' is a maximal clique of G’. Obtain G” from G’ by making adjacent all
vertices to the left of s; with all vertices in int(s;) and all vertices to the right of
89 with all vertices in int(sy). Still, C' is a maximal clique of G”. Now, obtain H’
from G” by making complete every connected component of G” \ C. Note that H’
is a triangulation of G”, and C' is a maximal clique of H’. H’ is also a triangulation
of G', and there is a subgraph H of H’ that is a minimal triangulation of G’. C
is a maximal clique of H, and since every minimal triangulation of G’ is a minimal
triangulation of G, C is a maximal clique in a minimal triangulation of G, and C' is
a potential maximal clique of G.

|

We deduce an interesting upper bound for the number of potential maximal
cliques of permutation graphs.

Corollary 10.21 A permutation graph on n > 1 vertices and with m edges has at
most n + 2m potential maximal cliques.

Proof: Let G = G(w) be a permutation graph over {1,...,n}. Let G[s1, s be a
potential maximal clique of G, s1 < sy and s; € N~(s2). Then, either s; and sy
are close neighbours or G[s1, s3] has an inner vertex. Applying Lemmata 10.13 and
10.17, we obtain the desired result.

|

10.4 Characterisations of minimal triangulations of AT-free graphs

The corresponding sections for 2K,-free graphs and AT-free claw-free graphs each
contain two characterisations of minimal triangulations: one characterises the whole
set of minimal triangulations and the other characterises the set of minimal triangu-
lations of a single graph. This section differs from that structure: In the first part,
we will characterise the minimal triangulations of AT-free graphs, and only in the
second part, we will concentrate on permutation graphs. At least in this second part,
we will meet the general setting.

The characterisation of minimal triangulations of AT-free graphs can be under-
stood as the end of a long series of results about minimal triangulations of AT-free
graphs. Bodlaender and Mohring showed that minimal triangulations of cographs are
interval graphs [10]. Then, Bodlaender, Kloks, Kratsch showed that minimal triangu-
lations of permutation graphs are interval graphs [8]. Habib and Moéhring continued

Chapter 10 Permutation graphs 183

with the result for cocomparability graphs [38]. And finally, Mdhring proved that
minimal triangulations of arbitrary AT-free graphs are interval graphs [65]. Parra
and Scheffler completed this result to a characterisation [69]. An alternative proof
of Mdhring’s theorem was given by Kloks, Kratsch, Spinrad [52], on which the proof
below is based.

Theorem 10.22 (Mohring, [65]; Parra and Scheffler, [69])
A graph is AT-free if and only if all its minimal triangulations are AT-free.

Proof: Let G = (V, E) be a graph that contains an asteroidal triple formed by the
three vertices u, v, w. Let H' emerge from G by completing into a clique V'\ {u, v, w}.
Since u,v,w are pairwise non-adjacent, H’' is chordal, and u, v, w form an asteroidal
triple of H’. Then, there is a minimal triangulation H of G that is a subgraph of H'
and therefore contains an asteroidal triple formed by u, v, w. We conclude that every
graph containing an asteroidal triple has a minimal triangulation that contains an
asteroidal triple.

For the converse, let G = (V, E) be an AT-free graph, and let H be a minimal
triangulation of G. Suppose H contains an asteroidal triple formed by the ver-
tices u, v, w. Since Ny (u), Ny(v) and Ny (w) are u,v-, v, w- and w,u-separators of
H, respectively, there are minimal u,v-, v, w- and w, u-separators S,,, S, and S,,, re-
spectively, such that S, C Ny (u), S, € Ng(v) and S,, € Ny (w). By Theorem 8.16,
Su, Sy and S, are minimal separators of G, and {u} and {v, w} belong to different
connected components of G \ S,. Hence, there is a v, w-path in G that does not
contain a neighbour of u. Similarly for S, and v as well as S, and w. Then, u,v,w
form an asteroidal triple of G, which contradicts our assumption, and H is AT-free.

|

Corollary 10.23 A graph is AT-free if and only if all its minimal triangulations
are interval graphs.

Proof: Due to Theorem 10.4, interval graphs are exactly the chordal AT-free graphs,
and the corollary follows from Theorem 10.22.
|

Corollary 10.24 Every minimal triangulation of a permutation graph is an inter-
val graph.

Proof: Let G = G(w) be a permutation graph. Due to Lemma 10.3, permutation
graphs are cocomparability graphs, and due to Lemma 10.1, cocomparability graphs
are AT-free. Applying Corollary 10.23, we obtain that minimal triangulations of
permutation graphs are interval graphs.

|

184

Our characterisation of minimal triangulations of a given permutation graph is
based on potential maximal cliques. Let G = G(7) be a permutation graph over
{1,...,n}. The potential mazimal cliques graph of G is a directed graph that is
denoted by PC(m) and defined as follows: PC () has a vertex for every special scanline
of G (including sg and s?), that is labelled with this scanline, and there is an arc
from vertex u to vertex v if and only if s, € N=(s,), where s, and s, denote the
special scanlines the vertices u and v are labelled with, respectively. Hence, there is
a 1-to-1 correspondence between the potential maximal cliques of G and the arcs in
PC(m) due to Theorem 10.20.

Lemma 10.25 Let G = G(w) be a permutation graph over {1,...,n}.
(1) PC(r) is acyclic.

(2) Let k > 1, and let x, ...,z be (distinct) vertices of PC(w). It holds that
(zo, - ..,zk) Is a maximal path in PC(x) if and only if sy, s1,...,Sk_1,s are the
labels of x,...,xy, respectively, and {sg, s1,...,Sk—1,5¢} is a maximal set of
pairwise non-intersecting special scanlines of G.

Proof: We prove statement (1). Suppose (z1,...,2,), r > 3 is a cycle of PC(w). Let
81, - --,8, be the scanlines the vertices of the cycle are labelled with. By definition of
PC(w), s1 < -+ < 8, < $1, which is not possible, since < defines a partial order on
the set of scanlines of G. Hence, PC(7) is acyclic.

For statement (2), let (zo,...,z;) be a maximal path in PC(w). Obviously, the
labels of 2y and zj are sy and s, respectively, since sy < s < s? for every special
scanline s of G. Let s1,...,s;_1 be the labels of x1,...,x,_1, respectively. By
definition of PC(~), {so, s1,--.,8k_1,57} is a maximal set of pairwise non-intersecting
special scanlines of G. Conversely, let S =gef {0, - - -, Sk} be a maximal set of pairwise
non-intersecting special scanlines of G where sy < --- < sg. Then, s;_ 1 € N=(s;)
for all 4 € {1,...,k}, and sy = sp and s; = s?. This, however, uniquely defines a
maximal path in PC(r).

|

The potential maximal cliques graph is a central structure of our characteri-
sation of minimal triangulations of a permutation graph. We will show that every
maximal set of pairwise non-intersecting special scanlines corresponds to a minimal
triangulation, and using Lemma 10.25, the correspondence with the maximal paths
of the potential maximal cliques graph is obvious.

Let G = G(r) = (V,E) be a permutation graph over {1,...,n}. For every

maximal path in PC(w), we define an interval graph. Let P = (xg,...,xx) be a
maximal path in PC(x), and let sg,...,s; be the special scanlines of G the ver-
tices xo, ...,z are labelled with, respectively. Due to Lemma 10.25, {so,..., sk} is

a maximal set of non-intersecting special scanlines of G and s;_; € N(s;) for all
i €{1,...,k}. Furthermore, sy = sy and s = s?. Every vertex z of G is assigned an

Chapter 10 Permutation graphs 185

interval I, = [¢,,r,] in the following way:

lp =qot max{i: 8; = (a;,¢;) € Sand a; <z and e; < 7 (z)} + 1

e =det min {i : s; = (a;,e;) € S and a; > z and ¢; > 7 (2)}.

We can say that £, determines the “rightmost” scanline to the left of z, and similarly,
T, determines the “leftmost” scanline to the right of x. It is easy to verify that
1 <4, <r, <k always holds. Let H(P) be the interval graph defined by {I,}.cv,
and let A; =g {z €V 14, <i<r,}forie {l,...,k}. For being more precise, we
should write H,(P) instead of H(P). But the context will always be clear, so that
we avoid 7 as further parameter.

Lemma 10.26 (1) A; = V(G[Sifl,si]) fori € {]_, ceey]{I}
(2) H(P) is a minimal triangulation of G.

Proof: For statement (1), let 4 € {1,...,k}, and let s,_1 = (a,e) and s; = (d/,¢€).
By definition, it holds that z € V/(G[s;_1, s;]) if and only if z is between s;_; and s;
or z € int(s;_1) Uint(s;). Remember that both cases cannot happen simultaneously.
The former is the case if and only if (i — 1) + 1 = ¢, = r, = i, the latter is the
case if and only if £, < (i —1)+1=4i<ryorl, <(i—1)+1=1i<r,. Hence,
x € V(G[si_1, ;) if and only if z € A;.

For statement (2), let uv € E, u < v. It holds that u € Ay, or v € Ay, (some
cases are depicted in Figure 22). Hence, v and v are adjacent in H(P), and since
H(P) is an interval graph by definition, H(P) is chordal and a triangulation of G.
To show that H(P) is a minimal triangulation of G, let uv € E(H(P)) \ E. Then,
there is j € {1,...,k — 1} such that u,v € A; N Aj;4, since otherwise u and v are
adjacent in G by statement (1) and Lemma 10.14. Note that there is a vertex in A;
that is not contained in A;;1 (A; contains a vertex of the enclosure of s; that is to
the left of s;, hence not contained in A;;); analogously, there is a vertex in A;
that is not contained in A;. Then, uv is unique chord in a cycle of length 4 in H(P).
Hence, H(P) is a minimal triangulation of G due to Theorem 8.14.

|

Due to statement (1) of Lemma 10.26, Ay,..., A are the maximal cliques of
H(P) and (Aq,...,Ag) is a consecutive clique arrangement for H(P).

Now, we are ready to prove our main theorem about minimal triangulations of
permutation graphs.

Theorem 10.27 Let G = G(w) be a permutation graph over {1, ... ,n}. An inter-
val graph H on vertex set {1,...,n} is a minimal triangulation of G if and only if
there is a maximal path (z, ..., zy) in PC(rn) such that (Ay,..., Ax) Is a consecutive
clique arrangement for H where A; =qe¢¢ V(G[si—1, 8i]) and the special scanlines s;_;
and s; are the labels of z;_1 and z; in PC(r) for all i € {1,...,k}.

186

. .
Si—1-5i
T e
L
N T
.
§

Figure 22 Graph H(P) is a triangulation of G. We illustrate three
cases how adjacent vertices u and v appear in one maximal clique of
H(P).

Chapter 10 Permutation graphs 187

Proof: By Lemma 10.26 and the discussions and constructions before, every maximal
path of PC(w) defines a minimal triangulation of G in the required sense, which
proves one direction of the theorem. For the other, let H be a minimal triangulation
of G. Due to Theorem 10.22, H is an interval graph, and by Theorem 10.6, H has a
consecutive clique arrangement (Aj, ..., Ag).

Let Sy =qef Sk =def 0 and S; =ger AiNA;11,7 € {1,...,k—1}. By Corollary 10.7,
S1,...,Sk_1 are the minimal separators of H, and by Theorem 8.15, {S1,...,Sk_1}
is a maximal set of pairwise non-crossing minimal separators of GG. Since Ay, ..., Ag
are potential maximal cliques of G, there are special scanlines sy, s/, s2,...,s); of G
such that A; = V(G[s;, s}]) and s; € N(s}) for i € {1,...,k} due to Theorem 10.20.
Suppose there are 4,5 € {1,...,k}, ¢ < j, such that s; or s;» intersects with s;
or s;. Since an inner vertex of the one set does not belong to the other set, A;
and A; do not contain inner vertices (remember that, if, for example, A; has an
inner vertex x and s; intersects with s/, then x is contained in int(s;) and in A;,
which contradicts the definition of inner vertex). Hence, 1 < i < j < k and A; =
Sz‘_l U Sz and Aj = 0Oj-1 U Sj. By Lemma 10.19, {int(si),int(s;)} = {Si—lasi}
and {int(s;),int(s})} = {Sj-1,5;}. So, si,s;,s;, s} are pairwise non-intersecting by
Theorem 8.15 and Lemma 10.12. It follows that S =4ef {51, ..., 5} } is a set of pairwise
non-intersecting special scanlines of G. Suppose S is properly contained in a maximal
set S’ of pairwise non-intersecting special scanlines of G. S’ uniquely defines a path in
PC(7) by Lemma 10.25, and let Cg/ be the set of potential maximal cliques defined by
S’ (i.e., on the path of PC() defined by S’). It holds that Cs =gef {A1,...,Ar} C Csr.
By Lemma 10.26, Cs/ defines a minimal triangulation H’ of G, and since Cs C Cg/,
H is a subgraph of H'. Since H is a triangulation of G, H and H' are equal, and
Cs and Cg: are equal, and the theorem holds. It might also be the case that S is
a maximal set of pairwise non-intersecting special scanlines of G but Cg C Cg:. We
similarly conclude that this is not possible.

|

10.5 Solving the min-Tri membership problem

The membership problem that we wish to solve in this section is defined as follows:
given a pair (G, H) of graphs, where G is a permutation graph, is H a minimal
triangulation of G?7 We will call this problem the min-Tri membership problem for
permutation graphs. A variant of this problem is called the promise min-Tri mem-
bership problem for permutation graphs where we trust that the input graph G is
a permutation graph. The input is additionally furnished with the permutation se-
quence defining the input permutation graph, i.e., input is a triple (G, w, H), where

G = G(m).

Our algorithms for solving the min-Tri membership problems for permutation
graphs are based on the characterisation of minimal triangulations of permutation
graphs by maximal paths of potential maximal cliques graphs (Theorem 10.27).

188

Therefore, a central part is dedicated to the problem of efficiently generating the
potential maximal cliques graph of a given permutation graph. From its definition
and Corollaries 10.9 and 10.21 we know that it may be possible to generate the poten-
tial maximal cliques graph in linear time, and Corollary 10.9 already states that the
set of special scanlines can be listed in linear time. So, the major problem remains
to list the set of arcs.

Lemma 10.28 Let G = G(n) be a permutation graph over {1,...,n} that has m
edges. In time O(n + m), the potential maximal cliques graph PC(w) of G can be
generated.

Proof: Due to Corollary 10.9, the set of special scanlines of G can be listed in linear
time, i.e., in time O(n + m). It is clear by Theorem 10.20 that the sets N~(s) for s
a special scanline of G, sy < s, represent the arc set of PC(w). So, it suffices to show
that these neighbours sets can be generated in linear time. We define an order — on
the special scanlines of G as follows: order the special scanlines increasingly by their
upper endpoints and within an equivalence class by their lower endpoints. In other
words, for scanlines s = (a,e) and s’ = (d/,€’), s = ¢’ ifand only if a < @’ or, if a = d/,
e < €'. Similarly, we define order —: s — s’ if and only if e < €’ or,if e=¢/, a < d'.
Note that — and — define linear orders, hence orderings, and they can be obtained
in linear time. Furthermore, — and — together define a permutation graph, and a
permutation diagram can be computed in linear time: on the upper line, write the
special scanlines according to order —, on the lower line, write the special scanlines
according to order —, join two points with the same scanline label. It is easy to see
that, for two special scanlines s and s’ of G, s < ¢’ if and only if s —~ s’ and s — &'
This also means that s and s’ intersect if and only if either s — s’ or s — s’. We
associate with this permutation diagram a permutation sequence and a permutation
graph that is obtained by simply replacing the scanline labels by natural numbers.
An example is given in Figure 23.

We define two functions g and h. Let g assign to every special scanline s, sy < s,
the rightmost special scanline with respect to — that does not intersect with s and
is to the left of s. In other words, g(s) — s and, for every special scanline s’ of
G, if g(s) — s’ — s, then s intersects with s. Note that we could have used —
alternatively and obtained the same function g. For convenience, let g(sp) =gef So-
By h, we denote the mapping that assigns to every special scanline s the special
scanline s’ that is rightmost with respect to — where s’ — s and that intersects
with s. If there is no such scanline, let h(s) =qof . We claim that, for all special
scanlines s of G, sy < s, holds

N (s) = {hi(g(s)) i 2 0} N {s < s}

where h%(g(s)) =gef 9(s) and A1 (g(s)) =qer (R (g(s))). To verify the inclusion
from left to right, first observe that, for special scanline s, the scanlines in N=(s)
are pairwise intersecting, second, the element in N(s) rightmost with respect to
— is g(s): let N=(s) = {t1,...,t.} where t, — --- — t1, then hi(g(s)) = t;1 for

Chapter 10 Permutation graphs 189

Step 1: Listing special scanlines

1 2 3 4 5 6 7 8 9

Step 2: Defining a permutation diagram

So S22 S1 S3 S4 S5 S

So S1 S22 S3 S4 S5 S

Step 3: Constructing a permutation sequence

1 2 3 4 5 6 7

1 3 2 4 5 6 7

Figure 23 For graph G = G((5,4,7,1,3,9,6,8,2)) we obtain the aux-
iliary graph G((1,3,2,4,5,6,7)) for generating the potential maximal
cliques graph of G using the algorithm of the proof of Lemma 10.28.

190

all 4 < r — 1. The inclusion from right to left is clear by definition of g and h.
So, if g and h can be computed in linear time, more precisely, if we can compute
arrays representing both functions, the sets N=(s) can be computed in overall linear
time, since PC(m) contains at most n + 2m arcs due to Corollary 10.21. Note that if
hi(g(s)) € {s' : s’ < s} then hitl(g(s)) & {s' : ' < s}.

From orders — and —, we have defined a permutation graph. It is easy to
see that the results of functions h and g then correspond to closest left neighbours
and non-neighbours, respectively. Let G(7) be a permutation graph over {1,...,k}.
Let = be a vertex of G(7). The closest left neighbour of x is the vertex z such that
771(2) < 77!(z) and = and z are adjacent and there is no neighbour w of x such that
77 Hz) < 77Y(w) < 77 (z). If there is no left neighbour of x, we say that z is its
own closest left neighbour. The definition of closest left non-neighbour is similar; we
only replace “adjacent” and “neighbour” by “non-adjacent” and “non-neighbour”,
respectively. Now, consider the following algorithm that is applied to G(7):

(1) initialize a stack with value k+1

(2) for ¢ = 1,...,k: delete all vertices from the stack that are smaller than 7(i),
assign the top-of-stack element as closest left neighbour to 7(4), push 7(4) on the
stack

(3) for x € {1,...,k}: if z has k+1 as closest left neighbour, assign z as closest left
neighbour to x.

The described algorithm runs in time O(k). For the correctness, observe that vertices
that are deleted in step 2 are non-neighbours of the current vertex and that all
remaining vertices in the stack (except for k+1) are left neighbours of the current
vertex. It is clear that the top-of-stack element is rightmost in 7 among all vertices in
the stack (since it is latest pushed) and so is the closest left neighbour. For computing
the closest left non-neighbour, use the same algorithm on permutation graph G(7’)
where 7/ =4t k + 1 — 7. The position of the closest left neighbour of 7/(i) is the
position of the closest left non-neighbour of 7(7).

|

Theorem 10.29 (Booth and Lueker, [11])

Let G = (V, E) be a graph. In linear time, it can be verified whether G is an interval
graph. Furthermore, if G is an interval graph, an interval model J such that G = G(J)
can be generated in linear time.

Theorem 10.30 There is a linear-time algorithm for solving the promise min-Tri
membership problem for permutation graphs.

Proof: Let (G, 7, H) be an instance of our promise min-Tri membership problem.
We can assume G = G(m). Due to Lemma 10.28, the potential maximal cliques
graph PC(7) of G is computed in linear time. If H is a minimal triangulation of
G, then H is an interval graph due to Corollary 10.24. In linear time, it can be

Chapter 10 Permutation graphs 191

verified whether H is an interval graph, and if so, an appropriate interval model can
be generated due to Theorem 10.29. Furthermore, Theorem 10.6 gives a linear-time
algorithm for computing a consecutive clique arrangement (A1, ..., Ax) for H from
the interval model. According to Theorem 10.27, we have to find a maximal path in
PC(r) that defines set {A1,...,Ar} as potential maximal cliques of G. We assume
that H is a triangulation of G.

For every vertex x of G, let a(x) denote the number of maximal cliques of H
containing z. Note that, if k > 2, there are two vertices and z’ of G such that
a(x) = a(z’) = 1. Roughly, our algorithm works as follows: select a vertex u for
which holds a(u) = 1, find an appropriate arc in the potential maximal cliques graph
of G, adjust the values of a(x) for the still unselected vertices and repeat until there
is no vertex left. The value a(z) in every iteration denotes the number of maximal
cliques of H in which z appears and whose corresponding arcs in PC(7) have not yet
been found.

Remember that all arcs of PC(7) with start vertex labelled with sg as well as all
arcs with end vertex labelled with s correspond to potential maximal cliques of G
with inner vertex. A vertex z with a(z) = 1 is inner vertex of a potential maximal
clique of GG and therefore represents a unique potential maximal clique of G. Mark all
arcs of PC() that correspond to maximal cliques of H with inner vertex (if potential
maximal cliques of G do not correspond with maximal cliques of H, the input can
be rejected). It holds that H is a minimal triangulation of G if and only if there
is a path in PC(7) containing all already marked arcs whose arcs correspond to the
maximal cliques of H. On such a path, unmarked arcs must correspond to potential
maximal cliques of G without inner vertex.

We describe an iteration step. Let P = (zq,...,2.) be the path in PC(x) that
starts at the source vertex of PC(7), contains only marked arcs and is longest possible.
Hence, r > 1. We know that every arc on P corresponds to a maximal clique of H.
We have to select a successor of z,.. If there is only one possible choice, the next vertex
is chosen, the arc is marked and the values a(z) are adjusted. Suppose there are two
possible choices 2z’ and z”. Let s be the scanline vertex z, is labelled with. Vertices 2’
and 2" are labelled with scanlines, let them be s’ and s”, that are close neighbours of
s. If H is a minimal triangulation of G either V(G[s, §']) or V(G[s, s”]) is a maximal
clique of G. (For instance, s’ and s” represent crossing minimal separators.) Note
that there is a vertex z from the enclosure of s’ or s” such that a(z) = 1. Using this
vertex, the correct arc can be selected. Assume that we select z’. For adjusting the
values a(x) for every vertex x, it remains to consider vertices that are contained in
V(G[s, s]), and these vertices are all neighbours of two vertices from V(G[s, s']), one
from the enclosure of s, the other from the enclosure of s’. Every vertex can be in at
most two such pairs, such that adjustment takes only linear time. While adjusting,
vertices for which only one maximal clique remains unhandled can be found and
stored in a list, so that the described algorithm becomes linear-time.

|

192

For solving the min-Tri membership problem for permutation graphs, it must
be verified whether graph G of input (G, H) is a permutation graph. However, for a
linear-time solution we relax this question and only require that G is isomorphic to
a permutation graph. It is not clear, given a permutation graph G (in our restricted
sense), whether a permutation 7 can be generated in linear time such that G = G(r).

Theorem 10.31 There is a linear-time algorithm for solving the (relaxed) min-Tri
membership problem for permutation graphs.

Proof: Let (G, H) be an instance of our min-Tri membership problem. In linear
time, it can be recognized whether G is isomorphic to a permutation graph, and an
appropriate permutation 7 can be generated in linear time due to Theorem 10.2. Let
G’ and H' emerge from G and H by renaming the vertices according to 7. It holds
that H' is a minimal triangulation of G’ if and only if H is a minimal triangulation
of G. In another linear time, it can be verified by the promise min-Tri membership
problem whether H' is a minimal triangulation of G’, i.e., whether (G',w, H') is
element of the promise min-Tri membership problem for permutation graphs.

|

10.6 Algorithmic applications

Using the potential maximal cliques graph of a permutation graph, we can compute
treewidth and minimum fill-in in linear time. This improves the previously best
known algorithms that run in times O(n - tw(G)) for treewidth and O(n?) for min-
imum fill-in [9]. We remark that the complexity for computing the bandwidth of
permutation graphs is still open, i.e., it is not even known whether BANDWIDTH is
polynomial-time solvable (in case of P # NP).

We show that treewidth and minimum fill-in can be solved as special weighted
shortest paths problems. Let G = G(w) be a permutation graph over {1,...,n}.
The weighted potential maximal cliques graph of G is PC(w) that additionally has
vertex and arc weights: vertex z whose scanline label is s is weighted with |int(s)],
the cardinality of int(s), and arc (z,z’) where s and s’ are the labels of =z and z/,
respectively, is weighted with |V (G[s, s'])|, the cardinality of the potential maximal
clique of G defined by s and s'.

Lemma 10.32 Let G = G(«) be a permutation graph over {1,...,n}. The cardi-
nalities of int for the special scanlines of G can be computed in linear time.

Proof: By Corollary 10.9, the set of special scanlines of G can be listed in linear
time. For every special scanline s of G, we partition the complement of int(s) into
two subsets and compute their cardinalities separately; the cardinality of int(s) is the
result of an easy calculation. Let s = (a,e) be a scanline of G(7). By mE<(s) =qef
{z < a:77!(z) < e}, we denote the set of vertices of G that are smaller than a and

Chapter 10 Permutation graphs 193

that are not contained in int(s). By Tt~ (s) =qef {* > a : 77 1(z) > e}, we denote
the set of vertices greater than a outside int(s). We first describe an algorithm for
computing the cardinalities of mt<.

We assume that the scanlines are ordered decreasingly by the lower endpoint.
(We can use order — of the proof of Lemma 10.28 in reversed order.) We will
iteratively manipulate a list of sets, which is inspired by permutation diagrams. Let
L(n) be an ordered list of singleton sets containing the numbers from 0 to n. Assign
to every set the contained number as label. Iteratively, obtain £(i) from L(i+1),
i€ {1,...,n—1}, by the following procedure:

(a) find set L in £(i+1) containing m(i+1) (it will be the smallest element in that
set); let L have label a

b) find set L' in L(i+1) with the largest label smaller than a
c) add the elements of L to L'
d) decrease by 1 the labels of all sets in £(i+1) with label greater than a

A~ o~ o~ o~

e) delete (now empty set) L.

For every L(i), i« € {1,...,n}, the labelling numbers of the sets are ordered in-
creasingly and successively (remember that we have lists whose elements are or-
dered by their labels). It is the case that the cardinality of mt<(s) for a scan-
line s = (a+3,e+3) is the label of the set in £(e) that contains a. Our algorithm
corresponds to the following procedure on permutation diagrams: for i € {1,...,n}
in decreasing order, in step ¢ delete vertex (). For a scanline s = (a,), all vertices
where 7~!(x) > e do not contribute to Mt<(s).

We first show that £(n),...,£(1) can be computed in linear time. We do not
save every L(7) but manipulate on the same object. In an array, pointers to the list
elements are kept to achieve constant time access to the sets by given label. Every set
is kept as a chained list. Then, it is clear that steps (b) and (c) take only constant
time, since L’ has label a—1 and computing the union in step (c) is mere pointer
manipulation. However, instead of adding L to L', we add L’ to L. For changing the
labels in step (d), pointers in the array and the labels themselves have to be adjusted.
Observe that every set in £(i+1) with label greater than a contains a neighbour of
7(i), which gives linear time. To provide constant time access to the label of the
set containing a given number, we keep another array containing a pointer for each
number from {1,...,n} to the set containing it. Steps (c) and (e) require updating
these pointers, but since all but the smallest elements in L’ are neighbours of (i)
(they are smaller than 7 (i) but have been deleted before), we still have linear time.

To compute the cardinalities of Tnt~, we use the same algorithm on permutation
sequence 7' =gt (n+1—m(n),...,n+1—m(1)). Note that G(r) and G(7’) are isomor-
phic, since we have only mirrored the permutation diagram of G. Therefore, it holds
that (a,b) is a special scanline of G(r) if and only if (n+1—a,n+1—e) is a special
scanline of G(7’). Finally, we obtain the cardinalities of int by the following formula:

|int(s)| = n — [mE=(s)| — |mE~ (s)]. -

194

Lemma 10.33 Let G = G(n) be a permutation graph over {1,...,n} that has m
edges. In time O(n + m), the weighted potential maximal cliques graph of G can be
generated.

Proof: By Lemma 10.28, we can generate the potential maximal cliques graph PC(7)
of G in linear time. By Lemma 10.32, we can weight every vertex of PC(n) with the
cardinality of the minimal separator of G represented by its scanline label. It remains
to add the weights to the arcs. Consider the following equivalence. Let s; = (a1, e;1)
and sy = (a9, e2) be special scanlines of G, s1 € Ny (s2), and let C =4¢r V(G[s1, $2]),
S1 =det int(s1) and Sy =ger int(s2). Then, we claim that

1
€1 =5 (1911 + 12l + (a2 — ar) + (e2 = 1)) .

To see this equality, note the following:
e every vertex in S; NSy contributes exactly 2 to |Sy| + |Se|
e every vertex in C'\ (S; U Sy) contributes exactly 2 to (az — a1) + (e2 — 1)

e every vertex in (S; U Sq) \ (S1 N S2) contributes exactly 1 to |Si| + |S2| and to
(az —ay) + (e2 —e1)
e vertices not contained in C do not contribute to the sum.

Hence, from the labels and weights of the start and end vertex of every arc, its weight
can be computed in constant time. Since PC(7) contains at most n + 2m arcs, we
obtain a linear-time algorithm for computing the weighted potential maximal cliques
graph of G.

|

Theorem 10.34 Treewidth and minimum fill-in for permutation graphs can be
computed in linear time.

Proof: Let G = G(w) be a permutation graph over {1,...,n}. Let W be the
weighted potential maximal cliques graph of G. Due to Lemma 10.25, W is acyclic
and therefore has a topological ordering. Observe that order — of the proof of
Lemma 10.28 defines such a topological ordering, that can be generated in linear
time.

For computing the treewidth of G, it suffices to find a minimal triangulation
of G with smallest clique number among all minimal triangulations of G due to
Lemma 8.21. The clique number of a graph is the maximal size among its maximal
cliques. So, applying Theorem 10.27, we have to find a maximal path in YW whose
largest arc weight is smallest among all maximal paths in W. Such a path can be
obtained by dynamic programming and processing the vertices of W according to
— in the following way. During the process, every vertex of W is labelled with a
number that shall represent the smallest maximal arc weight among all paths of W
that start at the source vertex and end in that vertex. We label the source vertex, the

Chapter 10 Permutation graphs 195

vertex labelled with scanline sy, with number 0. For a vertex x of W, let z1,...,z,
be its predecessors and let aq,...,a, be their number labels, respectively. Since we
process the vertices according to —, these number labels have already been computed.
Furthermore, let by, ..., b, denote the weights of arcs (z1,x),..., (z;,x). Then,

min{max{a;,b;} : 1 <i<r}

is the label of . We obtain that the number label of the sink vertex of W, the vertex
that is labelled with scanline s?, is the clique size of a minimal triangulation of G
that has smallest clique size among all minimal triangulations of G.

For computing the minimum fill-in, we can proceed in a fashion similar to com-
puting the treewidth. Consider the following observation. Let Aq,..., Ax be a con-
secutive clique arrangement of an interval graph H. For every i € {1,...,k}:

|E(H[Ag U -+~ UA])| + [E(H[A;i—1 NA])| = |[E(H[AgU---U A; 1)) + |E(H[A;])],

where Ag =qef 0. Since A; 1 N A; is a minimal separator of H (except for ¢ = 1, of
course) due to Corollary 10.7, H[A;_1NA;] is complete. So, if the numbers of vertices
of H[A;_1 N A;] and H[A;] are known, it is easy to determine the numbers of edges
of these graphs. Hence, a path of PC(w) that represents a minimal triangulation of
G with the smallest number of edges among all minimal triangulations of G can be
found in the following way. We label every vertex with a number. We label the source
vertex of W with number 0. For a vertex x of W, let z1,...,z, be its predecessors
and let aq,...,a, be their number labels, respectively. Furthermore, let bq,...,b,
denote the weights of arcs (z1,),..., (z,,), respectively, and let cy,...,c, denote
the weights of the vertices z1,...,z,, respectively. Then,

mln{a—i-(l;)—(;) :1957«}

is the label of . Similar to treewidth above, it follows that the number label of the
sink vertex of W gives the smallest number of edges in a minimal triangulation of G,
and the minimum fill-in then is the difference between this number and the number
of edges of G.

|

By the definition of the algorithms for computing treewidth and minimum fill-
in, we can even compute minimal triangulations of the given permutation graph that
realize its treewidth and minimum fill-in by saving the chosen predecessor, which
defines an appropriate maximal path. Due to Theorem 10.27, we obtain consecutive
clique arrangements for the minimal triangulations, from which it is easy to obtain
interval models.

196

10.7 Interesting problems

Bodlaender, Kloks, Kratsch used the scanline approach to compute treewidth and
minimum fill-in of permutation graphs [8]. This method was extended by Bodlaen-
der, Kloks, Kratsch, Miiller to solve the treewidth and minimum fill-in problems for
d-trapezoid graphs [9]. A d-trapezoid graph has a geometric model that is a generali-
sation of permutation diagrams. On each of d+ 1 horizontal lines mark 2n points and
label these points with the numbers from 1 to n so that each number appears twice.
Then, on every line and for every = € {1,...,n}, there is a left and a right occurrence
of z. Join the points on neighbouring lines with the same label (number and “left”
or “right”) by line segments. The lines joining the left occurrences of z and the lines
joining the right occurrences of z enclose a figure, that can be considered the union
of d trapezoids. It was shown that minimal separators of d-trapezoid graphs can be
obtained by scanlines [9]. Hence, it is natural to ask whether our approach for solving
the treewidth and minimum fill-in problems for permutation graphs can be extended
to improve previous results for d-trapezoid graphs.

197

Chapter 11
AT-free claw-free graphs

We have studied minimal triangulations of permutation graphs. The class of permu-
tation graphs is a subclass of the class of AT-free graphs. In this chapter, another
subclass of AT-free graphs becomes the centre of our interest. The class of AT-free
claw-free graphs is the set of graphs that are AT-free and do not contain the claw as
induced subgraph. So, the class of AT-free claw-free graphs is defined by combining
a structural with a forbidden induced subgraph property. It holds that the class of
permutation graphs is not contained in the class of AT-free claw-free graphs, and
vice versa.

Similar to previous chapters, we will give a characterisation of minimal trian-
gulations of AT-free claw-free graphs. This characterisation will be based on special
vertex orderings. These orderings will represent minimal triangulations, and they
are generated by an algorithm, that is based on a special lexicographic breadth first
search strategy inspired by LexBFS. This algorithm is called min-LexBFS. A consid-
erable part of this chapter is dedicated to the study of properties of orderings that
are generated by min-LexBFS. Similar to LexBFS, min-LexBFS always numbers last
the vertices of a moplex of the input graph. This moplex property of vertex orderings
generated by min-LexBFS is a strong structural result and of great help when proving
other results about these orderings.

Another result, that appears only as auxiliary, is a simple and special recogni-
tion algorithm for proper interval graphs. Proper interval graphs are interval graphs,
and they have interval models without intervals that are properly contained in other
intervals. Proper interval graphs are related to AT-free claw-free graphs as interval
graphs are related to AT-free graphs, i.e., proper interval graphs are the chordal
AT-free claw-free graphs. A number of proper interval graph recognition algorithms
is known from the literature, but most of them are a bit technical. Only recently
and independently, new recognition algorithms were developed that are based on
lexicographic breadth first search and therefore become somewhat “nicer”. Our algo-
rithm additionally belongs to a new class of recognition algorithms, namely certifying
algorithms. The main idea is that the algorithm proves its decision: in case of ac-
ceptance as well as rejection. Most recognition algorithms prove only one of the two
possible decisions. Certifying algorithms are more reliable. QOur certifying proper
interval graph recognition algorithm is part of the algorithm for solving the min-Tri
membership problem for AT-free claw-free graphs.

11.1 The min-LexBFS algorithm

This section is dedicated to presenting the min-LexBFS algorithm and discussing
important properties. The algorithm works on graphs and generates vertex orderings.
An early version of min-LexBFS was introduced in [63], but this algorithm worked

198

only on families of finite sets. Nevertheless, already the early version of min-LexBFS
showed connections to the well-known LexBFS algorithm introduced by Rose, Tarjan,
Lueker [76]. This connection inspired the final design of min-LexBFS as well as its
name.

Algorithm min-LexBFS is defined as a partition refinement algorithm, which also
guarantees an efficient implementation. Formally, it works on a list of vertex sets,
selects single vertices and partitions sets in iteration steps. We need some definitions.
Let L = (C4,...,Cy) be a list of non-empty sets. The elements of L are called bozes.
We say that box C; is to the left of box C;, denoted as C; < Cj, if and only if 7 < j.
To obtain a new list from L by partitioning, we partition a box C; by some rule and
obtain C’ and C”, define C’ to be to the left of C”, call C’ the left partition box, C”
the right partition boz, and obtain the new list (Cy,...,C;_1,C",C",Ciyq,...,Ck).
This operation will shortly be call partitioning C; into (C',C") and denoted by
L : C; «+ (C',C"). Each such list contains only non-empty boxes, which means
that empty boxes, that may appear as left or right partition box, are instantly re-
moved. The rightmost box in L is the box that is not to the left of any other box.
Algorithm min-LexBFS uses this partition operation; it is presented in Figure 24. As
defined above, empty boxes, that may appear after selecting the last vertex in the
rightmost box or after partitioning, are removed from the list. This means list L of
min-LexBFS always contains only non-empty boxes. If, for some selected vertex wu,
the two partition boxes are non-empty, we say that u separates x and z for every
z € C\ Ng(u) and z € C N Ng(u). We remark that LexBFS is obtained from
min-LexBFS by partitioning every box instead of only the leftmost box containing a
neighbour (see also [76] and [37]).

As an example for the work of min-LexBFS on graphs, consider the graph de-
picted on the left side of Figure 25. The first few iteration steps of a min-LexBFS
run on this graph are documented on the right side of Figure 25. In each step, the
upright arrow points to the currently chosen vertex, and the capital letters represent
its still unselected neighbours. To the right of the upright line, the final sequence is
iteratively generated. Both the lists to the left and to the right of the line are ordered
from left to right. The next chosen vertex will be f. The resulting vertex ordering
will be (h,i,7,9,¢, f,d,c,b,a). In fact, every min-LexBFS-ordering of the pictured
graph that ends with vertex a starts with the sequence (h, i, 5), which can be verified
by trying all possible runs. In the example, vertex b separates g and e.

Definition 45 Let G = (V,E) be a graph. A min-LexBFS-ordering for G is
a vertex ordering o of the vertices of G that can be generated by min-LexBFS on
input G.

Similar to the definition of min-LexBFS-orderings we define LexBFS-orderings,
i.e., vertex orderings that can be generated by LexBFS. It holds that the sets of
LexBFS- and min-LexBFS-orderings for a graph may differ in the sense that each
set contains orderings that are not contained in the other set. An example is already

Chapter 11

AT-free claw-free graphs

199

min-LexBFS((G) returns o:

© N D ;A W N

begin
L = (V(G));
for i := |V(G)| downto 1 do
pick an arbitrary vertex u from the rightmost box of L;
o(i) = u;
let C be the leftmost box in L containing a neighbour of u;
L:C+ (C\Ng(u), CN Ng(u))
end for
end.

Figure 24 The min-LexBFS algorithm.

laBCDefghi j|
a al 1
X [EFghij|[bcD]|(a
y g b f
(Ghi j||EF]|[cD]| (b, &
f J c
N\ FHEEE| 0.0

Figure 25 A graph and the beginning of a min-LexBFS run on it.

200

provided by the graph in Figure 25. Every LexBFS-ordering for this graph that ends
with vertex a starts with (h, 7,4). For min-LexBFS and LexBFS runs on input graphs,
we also speak of sweeps. So, every min-LexBFS sweep on the graph in Figure 25 that
starts with a generates a sequence with (h,1,j) as the beginning, and every LexBFS
sweep on this graph produces only sequences with (h,j,7) as the beginning, if the
sweep starts with a.

As we have seen in the example above, the choice of a vertex by min-LexBFS
may not be unique. This is the case, if the rightmost box contains more than one
vertex. We take care of this effect and avoid this nondeterministic behaviour by the
following definition. Let min-LexBFS* be a variant of min-LexBFS that gets as input
a graph G and a vertex ordering ¢ for G and that works like min-LexBFS but always
chooses that vertex in the rightmost box that is leftmost in 0. We could say that
the chosen vertex has highest preference with respect to ¢ among the vertices in the
current rightmost box. Using min-LexBFS*, we define two multi-sweep algorithm
classes, that differ only in the way the first sweep is performed. Let G be a graph on
the vertices 1,...,n, and let k£ > 0:

Omin-LexBFS*(G, 0) =gef 0
(k+1)min-LexBFS* (G, 0) =gof min-LexBFS* (G, kmin-LexBFS*(G, o)) .

Furthermore, for k£ > 1:

kmin-LexBFS(G) =qef kmin-LexBFS*(G, (1,...,n))
kfree-min-LexBFS(G) =q¢f (k—1)min-LexBFS*(G, min-LexBFS(G)).

For k > 1, orderings that can be generated by kmin-LexBFS are called kmin-LexBFS-
orderings. Similarly, kfree-min-LexBFS-orderings are defined. It holds that 1free-
min-LexBFS-orderings are just min-LexBFS-orderings. In contrast, kmin-LexBFS-
orderings are special min-LexBFS-orderings, namely those that are generated by
min-LexBFS sweeps where vertices are chosen with respect to (k—1)min-LexBFS-
orderings. It is clear that every graph has exactly one kmin-LexBFS-ordering. In con-
trast, kfree-min-LexBFS-orderings are not unique, and every kmin-LexBFS-ordering
is a kfree-min-LexBFS-ordering.

Proposition 11.1 (Meister, [63])
For every k > 1, algorithm kmin-LexBFS can be implemented to run in linear time.

Proof: It is clear that it suffices to give a linear-time implementation of min-LexBFS*.
Generally, we use the implementation that was presented in [76] for LexBFS. Each
box is represented by a chained list and is attached to a so-called set header cell.
These cells are kept in a chained list to establish the ordering of the boxes. Since we
want to partition at most one box each time, we have to know which is the leftmost
one. Each set header cell (each being the head of a box) is additionally furnished
with two numbers: the total number of elements (vertices) in the boxes to its left
and the number of elements in its attached box. The box to be partitioned has

Chapter 11 AT-free claw-free graphs 201

the smallest total number of vertices in boxes to its left. The partition operation
has to create a new box and update two numbers. For every selected vertex, this
takes time linear in its degree, which adds up to linear time in total. It remains to
find the vertex with highest preference in the rightmost box. A thorough analysis
of the implementation shows that, after partitioning a box, the vertices in the right
partition box appear in the same order as they are kept in the adjacency list of the
vertex that caused the partition (i.e., of the currently chosen vertex). In linear time,
we can order the vertices in the adjacency lists of G and the initializing box V. Then,
the first vertex in the list corresponding to the rightmost box is always the one with
highest preference.

|

We want to present a useful property of min-LexBFS-ordering and give a char-
acterisation of these orderings. Let G = (V, E) be a connected graph, and let z be a
vertex of G. A vertex ordering o for G is a BFS-ordering with root vertex z for G if,
for every pair u,v of vertices of G: u <, v = dist(z,u) > dist(z,v). A BFS-ordering
for G is a BFS-ordering with root vertex some vertex of G. The BFS-levels of G
with respect to z are defined by the partition (Sp, ..., Sk) of G where S; contains all
vertices at distance i to z.

Lemma 11.2 Let G = (V, E) be a connected graph, and let ¢ be a min-LexBFS-
ordering for G. Then, ¢ is a BFS-ordering for G.

Proof: Suppose o is not a BFS-ordering for G. Let Sy, ..., S; be the BFS-levels of
G with respect to o(n). Then, there are two vertices u, v such that u <, v and u € S;
and v € Sj and 7 < j. Without loss of generality, we assume u to be rightmost among
all those vertices fulfilling this criterion. When the rightmost neighbour w of v with
respect to o is chosen by min-LexBFS, u and v are both contained in the leftmost
box. This vertex separates v and u, since v is non-adjacent with w in G. Hence, v
is in the left partition box and u is in the right partition box, which contradicts the
assumption.

|

Let G = (V,E) be a graph, and let o be a vertex ordering for G. For every
vertex = of G, by Img ,(2) we denote the neighbour of z in G that is leftmost with
respect to . If z does not have any left neighbour Img ,(z) =get . The indices G
and o are added only if the context requires specification.

Definition 46 Let G = (V,E) be a graph. A vertexr ordering o of G has the
farther right neighbour property if and only if, for every pair u,v of non-adjacent

vertices of G, the following holds: if lm(v) <, u <, v then there is a neighbour w of
u to the right of v such that lm(v) <, lm(w).

It is interesting to observe that interval orderings have the farther right neigh-
bour property, since the premise is always false. Hence, there are graphs that have

202

vertex orderings with the farther right neighbour property. We can even show a
stronger result: every graph has a vertex ordering with the farther right neighbour
property. And we can show an even stronger result: min-LexBFS exactly generates
these orderings.

Theorem 11.3 Let G = (V,E) be a graph. A vertex ordering o for G is a min-
LexBFS-ordering for G if and only if ¢ has the farther right neighbour property.

Proof: Let o be a min-LexBFS-ordering for G. Consider the generation of o. Let
u and v be non-adjacent vertices, Im(v) <, u <, v. Then, Im(v) and u cannot be
contained in the same box when v is chosen by min-LexBFS. Otherwise, v separates u
and Im(v) which contradicts Im(v) <, u. Hence, there is a neighbour w of u, v <, w,
that separates lm(v) and u. Obviously, Im(w) is in the right partition box, like u.
Therefore, Im(v) <, lm(w).

For the converse, let o be a vertex ordering for G with the farther right neighbour
property. Suppose that ¢ cannot be generated by min-LexBFS. Then, there is a first
vertex v that separates two vertices v and x, i.e., u is in the left, x is in the right
partition box, and x <, u. In particular, z is a neighbour of v and u is not a
neighbour of v. Without loss of generality, we assume z = lm(v). Obviously, u
cannot be chosen before x by min-LexBFS. By the farther right neighbour property,
there is a neighbour w of u, v <, w, that is not a neighbour of . Since u and x are
contained in one box when w is chosen (v separates u and z, and w is chosen before
v), w separates ¢ and u. This contradicts the assumption.

|

11.2 Moplexes and the min-LexBFS algorithm

Berry and Bordat introduced the notion of a moplex. A moplex is a possible gener-
alisation (and simultaneously restriction) of a simplicial vertex. Dirac showed that
every non-complete chordal graph contains two non-adjacent simplicial vertices (The-
orem 8.8). Berry and Bordat showed that every LexBFS run numbers the vertices of
a moplex last [5]. It follows that every non-complete graph has two non-adjacent mo-
plexes. This generalises Dirac’s theorem. Thus, moplexes provide structural insight
into the properties of LexBFS-orderings. In this section, we will see that min-LexBFS
also numbers last the vertices of a moplex. This is a non-trivial result with respect to
the work of Berry and Bordat. The definition of moplexes relies on special modules.

Definition 47 Let G = (V,E) be a graph. The vertex set M CV is a module of
G if and only if for all pairs u,v of vertices in M: Ng(u) \ M = Ng(v) \ M.

In other words, the vertices of a module cannot be distinguished from outside the
module, since they have same neighbourhoods. For example, connected components
of a graph or its complement are modules. Since every vertex itself and the whole

Chapter 11 AT-free claw-free graphs 203

vertex set are modules, every graph has modules. Modules containing the whole
vertex set are called trivial. (Sometimes, modules of size at most 1 are also called
trivial.) A module M of a graph G is a mazimal module if it is not contained in any
other module. A module is connected if it induces a connected graph. Modules were
discovered independently several times. Gallai showed that each connected graph
whose complement is also connected can uniquely be partitioned into its maximal
non-trivial modules [30]. The iterative process on the maximal modules is called a
modular decomposition. (Here, connected components of the graph or its complement
also have to be treated adequately.) Further information about modules and modular
decomposition can be found in [14] and [60].

Definition 48 Let G = (V, E) be a graph. The vertex set M CV of G is a clique-
module of G if and only if M is a module as well as a clique of G. If M 1is not
properly contained in another cligue-module of G, M is a maximal clique-module of
G. M is a moplex of G if and only if M is a mazimal clique-module of G and its
neighbourhood Ng(M) is a minimal separator of G.

For simplicity, if G is complete, the whole vertex set V' is a moplex of G (and
the only one). We call a vertex a moplez vertez if it belongs to a moplex. A moplex
is simplicial if its neighbourhood is a clique. Then, a graph is chordal if and only
if one can repeatedly remove simplicial moplexes from the graph until the graph is
empty [5].

Fact 11.4 (Roberts, [73])
Let G = (V,E) be a graph, and let My and Ms be maximal clique-modules of G.
Then, M, and M, are either equal or disjoint.

Proof: Let z and z be two vertices of a clique-module of G. Then, Ng[z] = N¢[z],
since x and z have the same (closed) neighbours inside the module and outside the
module. Suppose M; and M, are not disjoint. Let u € M1 N My, and let v € M;.
It holds that Ng[u] = Ng[v], therefore Ng[w] = Ng[v] for every w € Ms. Hence,
M, U {v} is a clique-module properly containing M5, which is not possible due to
maximality of My. It follows that M; C My, and equality holds by maximality of
M.

|

Two moplexes are adjacent if one moplex contains a neighbour of the other; the
union of two adjacent moplexes forms a clique. We give a new characterisation of
chordal graphs by means of moplexes.

Fact 11.5 A graph is chordal if and only if there is no induced subgraph of G that
contains two adjacent moplexes.

Proof: In a chordless cycle of length at least 4 every maximal clique is the union
of two adjacent moplexes. Conversely, since a graph is chordal if and only if every

204

induced subgraph of it is chordal, it suffices to show that no chordal graph contains
adjacent moplexes. Let G = (V, E) be a chordal graph. Suppose M; and M, are
adjacent moplexes of G. It holds that My C Ng(Maz). Since Ng(My) is a minimal
separator of G, there are two Ng(Ms)-full components in G, and every vertex in
M is adjacent with two non-adjacent vertices. Hence, Ng (M) is not a clique in G,
which contradicts Theorem 8.4.

|

In the following, we will show that the first vertex of every min-LexBFS-ordering
belongs to a moplex, and all vertices of this moplex are generated consecutively. As
mentioned above the same property holds for LexBFS-orderings [5], and LexBFS has
been so far the only algorithm known with this property. Our proof uses ideas that
are similar to the ones used by Berry and Bordat for showing their result, but both
proofs also differ in their final execution.

Lemma 11.6 Let G = (V,E) be a connected graph, and let ¢ be a min-LexBFS-
ordering for G. Let a =q¢f 0(1) and z =4et o(n).

(1) Let M = {a,0(2),...,0(i)}, i € {1,...,n — 1}, be a connected module of G.
Then, the ordering ¢’ = {(a,0(2),...,0(i)) is a min-LexBFS-ordering for G' =t
G[M].

(2) Let G—=z be disconnected, and let C' be a connected component of G—z. Then,
o' originating from o by restriction to the vertices of C+z is a min-LexBFS-
ordering for G’ =40t C+2.

(3) Let v be a vertex, a <, v, such that for every vertex w to the right of v holds:
w € Ng(a) & w € Ng(v). Then, M ={a,0(2),...,v} is a module of G.

(4) Let P be a u,z-path, a <, u, not containing a neighbour of a except for u.
Then, there is a u, z-path P’ = (u,uq, . ..,u,, z) such that no vertex of P' except
for u is a neighbour of a and u <, U1 <y -+ <g Uy <4 2.

Proof: (1-2) Let u,v € V(G'), wv ¢ E, and Img 5 (v) <o u <, v. Obviously,
Img o (v) = Img,(v). Since o is a min-LexBFS-ordering, i.e., it has the farther
right neighbour property due to Theorem 11.3, there is a neighbour w of u in G to
the right of v with respect to ¢ that is not a neighbour of Im(v). Since M is a module,
every neighbour of u to the right of ¢ (i) is a neighbour of Im(v), too. Hence, w € M,
which proves (1). In case of (2), all neighbours of u in G are also contained in G’, so
w is contained in G’ and to the right of v.

(3) Suppose there is a vertex u between a and v that has a neighbour to the
right of v that is not a neighbour of v (and a). Then, v has a neighbour to its
right (the farther right neighbour property of o) that is not a neighbour of @ which
contradicts the premise of the statement. If v has a neighbour z to its right that is
not a neighbour of a vertex u, a <, u <, v, u has a neighbour w to the right of x
that is not a neighbour of a and therefore of v. Then, v has a neighbour to the right
of w that is not a neighbour of a either, which is a contradiction.

Chapter 11 AT-free claw-free graphs 205

(4) Let = be the rightmost neighbour of a. All vertices u that are not to the
left of x have such a desired u, z-path, since ¢ is a BFS-ordering due to Lemma 11.2.
Suppose there is v <, x such that there is a u, z-path P not containing a neighbour
of a except for u, but no such path is of the desired form; we choose u rightmost and
assume P to be chordless. By the choice of u, the neighbour v of w in P is to the
left of u, and there are two adjacent vertices b, c in P such that b <, u <, ¢. By the
farther right neighbour property of ¢ and uc € E, there is a neighbour w of u such
that a <, lm(c) <, Im(w) <, ¢ <, w. By assumption, there is a w, z-path of the
desired form. Hence, there is a u, z-path P’ of the desired form.
|

If a u,z2-path in G is of the form of P’, which means that starting at u we
always go to a right neighbour with regard to o, we will call it a right-monotone
path. Of course, if we loosen the restriction of not passing neighbours of a these
paths trivially exist by BFS-properties. From (3), we conclude that all vertices of a
module containing a are numbered consecutively by min-LexBFS.

To prove that the first vertex of a min-LexBFS-ordering belongs to a moplex,
we also have to identify a minimal separator. Remember that, for a graph G, a set .S
of vertices of G is a minimal separator if and only if there are two S-full components
of G. Note that if G is not connected then S = () is a minimal separator of G. By
definition, every separator contains a minimal separator.

Lemma 11.7 Let G = (V,E) be a graph, and let M C V' be a non-trivial module
of G. Let S C M be a minimal separator of G[M]. Then, S U Ng(M) is a minimal
separator of G.

Proof: Let S be a minimal separator of G[M]. Then, there are two S-full components
in G[M] induced by C and D. Since Ng(C)\M C Ng(M) and Ng(D)\M C Ng(M),
C and D are connected components of G\ (S U Ng(M)). Furthermore, it is clear
that every vertex in Ng(M) has a neighbour in C' and in D, so that every vertex
in SU Ng(M) has a neighbour in C' and in D, i.e.,, C and D are (S U Ng(M))-full
components in G, and S U Ng(M) is a minimal separator of G.

|

Having proved Lemmata 11.6 and 11.7, we can prove the main theorem of this
section. The size of a moplex means the number of vertices in the moplex.

Theorem 11.8 Let G = (V, E) be a connected graph, and let o be a min-LexBFS-
ordering for G. Then, there is r > 1 such that M = {o(1),...,0(r)} is a moplex of
G of size r.

Proof: We will prove the theorem by induction over the number of vertices of a
graph. The statement is true for all connected graphs on at most three vertices.
Furthermore, it is true for all complete graphs. Let n > 4, and let the statement

206

be true for all graphs on at most n—1 vertices. Let G = (V, E) be a connected
graph on n vertices that is not complete, and let ¢ be a min-LexBFS-ordering for G.
Let a =qef 0(1) and z =gef 0(n). Let C be the connected component of G—z that
contains a. If az ¢ F and G—7z is disconnected, let G’ =g C+2z. Then, every subset
of Ng(a) is a minimal separator of G if and only if it is a minimal separator of G'.
If az € E, then z is universal. Set S C V' \ {z} is a minimal separator of G—z if and
only if S U{z} is a minimal separator of G. To both cases, we apply Lemma 11.6
and conclude due to induction hypothesis. Note that the case z universal and G—z
connected immediately holds by induction hypothesis.

Now, let z be not universal, i.e., az € F, and let G—2z be connected. Let v be
the rightmost vertex with respect to ¢ fulfilling N¢g[a] = N¢[v]. Note that a and v
are equal or adjacent and a = Im(v). Let M =g4¢t {a,0(2),...,v}. Then, M is a
module by Lemma 11.6. If, for some u, a <, u <, v, u is not adjacent with v there
must be a neighbour of u to the right of v that is not a neighbour of a, contradicting
M being a module. Hence, uv € E and au € E for every u <, v. If there are two
non-adjacent vertices u,w € M, a <, u <, w <, v, u must have a neighbour z to
the right of w that is not a neighbour of a. Then, x cannot be to the right of v by
M being a module, and x cannot be to the left of v since all vertices between a and
v are adjacent with a. Hence, uw € F, and M is a clique-module. Furthermore, by
the choice of v, M is a maximal clique-module. It remains to show that Ng(M) is a
minimal separator of G.

Let b be the rightmost neighbour of a with respect to . Since G is not complete
and connected, b € Ng(M). Let x be the leftmost vertex for which there is an z, 2-
path P in G containing no neighbour of a except for z itself. Clearly, v <, £ <, b or
z = b. By Lemma 11.6, we assume P to be right-monotone. We show that for every
vertex u, £ <, u <, b, there is a right-monotone u, z-path that does not contain a
neighbour of a except for u. Suppose there is a vertex u, x <, u <, b, for which
there is no such u, z-path; let u be rightmost with this property. Let ¢, d be adjacent
vertices on P such that ¢ <, u <, d. If ud € E, we have an appropriate u, z-path;
if ud ¢ E, there is a neighbour w of u to the right of d that is not a neighbour of
a. If w is to the right of b, we have found a suitable path, if w is to the left of b,
there is a w, z-path not containing a neighbour of a. If there is no neighbour of a
between v and z, all vertices in Ng(M) are between z and b (z and b included).
Then, G \ Ng(M) contains two N¢(M)-full components (of G), namely G[M] and
the component containing z. Hence, Ng(M) is a minimal separator of G.

Finally, we show that all vertices to the left of x are contained in the same
module. Suppose there is a vertex u to the left of x that has a neighbour to the right
of x or z itself that is not a neighbour of a. Then, there is a u, z-path containing
no neighbour of a except for u, contradicting the choice of z. Suppose there is a
neighbour w of a, u <, w, that is not a neighbour of u. Then, v has a neighbour to
the right of w that is not a neighbour of a, which contradicts the statement before.
Therefore, M’ =4ef {u : u <, x} is a module. Let ¢’ denote the restriction of o to
the vertices of M’. Due to Lemma 11.6, ¢’ is a min-LexBFS-ordering for G[M'], and

Chapter 11 AT-free claw-free graphs 207

by induction hypothesis, Ng(M) N M’ is a minimal separator of G[M']. (If M’ is
not a connected module, we can easily restrict to the connected component of G[M’]
containing the vertices of M, which is a clique in G.) Applying Lemma 11.7, Ng(M)
is a minimal separator of GG, and we conclude the theorem.

|

We know now that LexBFS and min-LexBFS identify moplexes. Is it true that
both algorithms find the same moplexes? This question also relates to the question
whether our result for min-LexBFS is an “easy” corollary of the result for LexBFS. To
answer both questions, consider the graph depicted in Figure 26. This graph contains
exactly five moplexes labelled with the letters a, b, ¢, d, e—all moplexes of the graph
have size 1. Independent of the start vertex, LexBFS can generate orderings with only
b or d as first vertex, whereas min-LexBFS numbers only a or c last. Moplex {e} can
be generated by neither of both algorithms.

11.3 Getting to know AT-free claw-free graphs

The claw, or K 3, is the graph on four vertices that contains three edges and three
pairwise independent vertices. In other words, the claw is the graph that is built from
an independent set of size 3 and an additional universal vertex. A copy is depicted
in Figure 2.

Definition 49 A graph is claw-free if and only if it does not contain the claw as
induced subgraph.

Thus, similar to 2Ks-free graphs, claw-free graphs are defined by a forbidden
induced subgraph on four vertices. However, claw-freeness does not guarantee com-
parable robust structural properties as 2K,-freeness. As an example, the class of
claw-free graphs is not closed under minimal fill-in. To see this, consider the chord-
less cycle on six vertices, Cg. This graph is claw-free. Making one of its vertices
universal, defines a minimal triangulation of Cg, and this triangulation contains a
claw. It is easily seen that line graphs of arbitrary graphs are claw-free: there cannot
be three edges in a graph that are mutually non-adjacent and are adjacent with a
common neighbouring edge.

We restrict our considerations to a subclass of the class of claw-free graph. As
we will see, this class provides enough structure to ensure robust properties.

Definition 50 A graph is AT-free claw-free if and only if it is AT-free and
claw-free.

Hence, the class of AT-free claw-free graphs is just the intersection of the classes
of AT-free and claw-free graphs. These graphs and their properties have been studied
by several authors in the past [69], [50], [40]. A structural characterisation of AT-free
claw-free graphs was given by Kloks, Kratsch, Miiller [49]. A graph is triangle-free if

208

Figure 26 Is it true that LexBFS and min-LexBFS always find the same
moplexes?—Nol!, it is not.

Chapter 11 AT-free claw-free graphs 209

it does not contain the triangle as induced subgraph, i.e., if it does not contain three
pairwise adjacent vertices.

Theorem 11.9 (Kloks, Kratsch and Miiller, [49])
A connected graph is AT-free claw-free if and only if it is a claw-free cocomparability
graph or the complement of a triangle-free graph.

Another interesting structural property of AT-free claw-free graphs has been
given by Hempel and Kratsch [40]. We state their result in a way that is more
general. Vertex z of the following lemma has been required by Hempel and Kratsch
to be the first of a LexBFS-ordering, which is a moplex vertex due to results by Berry
and Bordat [5].

Lemma 11.10 (Hempel and Kratsch, [40])

Let G = (V, E) be a connected AT-free claw-free graph, and let z be a moplex vertex
of G. Let Sy,...,Sk be the BFS-levels of G with root vertex z. Then, the following
holds:

(1) So,S2,...,Sy are cliques in G

(2) for every pair u,v of non-adjacent vertices from Sy, u and v have neighbours in
So.

Proof: Let M C V be the moplex of G containing z. It holds that M C Sy U S;.
If there are two non-adjacent vertices u and v in Sy, neither of them belongs to M,
i.e., they are contained in Ng(M). Since Ng(M) is a minimal separator of G, u and
v both have neighbours outside Ng[M], hence in Sy. This proves statement (2).

For proving statement (1), let G =4t G \ Ng(M). Let u and v be vertices in
Ss. If u and v have a common neighbour w in S7, then {u,v,w, z} induces a claw in
G if and only if uv ¢ E. Since G is claw-free, uv € E. Let u and v do not have a
common neighbour in S;. If they are contained in the same connected component of
G’, there is a u, v-path in G avoiding the neighbourhood of z, so that u,v, z forms an
asteroidal triple in G if and only if uv & E. If u and v are not contained in the same
connected component of G’, some neighbour in Sy of u or of v must have neighbours
in Sy that are in two connected components of G’, and we have a claw in G, so that
this case is not possible. Remember that Ng(M) is a minimal separator of G, and
at least one of the connected components of G’ is Ng(M)-full in G. Hence, S5 is a
clique in G. Now, let u and v be vertices in S;;1 for ¢ € {2,...,k—1}. Again, if u
and v have a common neighbour in S;, they must be adjacent on G. If u and v do
not have a common neighbour in S;, u, v, z form an asteroidal triple in G if and only
if uv ¢ E. Hence, S;41 is a clique.
|

Based on the result of Lemma 11.10, Hempel and Kratsch showed that the
diameter of an AT-free claw-free graph can be determined using moplex vertices.

210

Corollary 11.11 (Hempel and Kratsch, [40])

Let G = (V,E) be a connected AT-free claw-free graph, and let z be a moplex
vertex of G. Let Sy,...,Sr be the BFS-levels of G with root vertex z. Then,
diam(G) = k.

Proof: If G is complete, k < 1 and diam(G) = k. So, let G be non-complete. Hence,
k > 2. (This is due to the moplex property of z, i.e., there is a vertex of G that is
non-adjacent with z.) Let u and v be vertices of G. If they are in the same BFS-level,
they are adjacent or have a common neighbour due to Lemma 11.10. Otherwise, let
1,j < k such that i < j and u € S; and v € S;. Let x € S; such that there is
an z,v-path in G of length 7 — 4. If ¢ > 2, there is a u,v-path of length at most
j—i4+1<k—1in G due to Lemma 11.10. If u = 2z, u = z and there is a u, v-path
of length at most k£ in GG. It remains the case ¢ = 1. Let M be the moplex of G
containing z. If u € M, v and z are adjacent, and there is a u,v-path of length at
most k. If u € Ng(M), u has a neighbour w in Ss, and the z,v-path contains a
vertex from So. We can construct a u,v-path of length at most k. Hence, G does
not contain shortest paths of length more than k.

|

For the study of minimal triangulations of AT-free claw-free graphs, we need a
subclass of chordal graphs, even of interval graphs.

Definition 51 A graph is a proper interval graph if and only if it is an inter-
val graph that has an interval model such that no interval is properly contained in
another.

We will see later that proper interval graphs exactly correspond to AT-free claw-
free graphs in the sense of the relationship between interval graphs and AT-free graphs
(Theorem 10.22). We give a first characterisation of proper interval graphs.

Theorem 11.12 (Roberts, [73])
A graph is a proper interval graph if and only if it is chordal AT-free claw-free.

Similar to interval graphs, proper interval graphs can be characterised by special
vertex orderings.

Definition 52 Let G = (V, E) be a graph, and let o be a vertex ordering for G. We
say that o is a proper interval ordering for G if and only if for every triple u,v,w
of vertices of G holds:

U<,V=<,w and uw €K — w€FE and vwe E.

In other words, a vertex ordering o for a graph G is a proper interval ordering
for G if and only if it and its reverse, which means that ¢ is read from right to left,

Chapter 11 AT-free claw-free graphs 211

are interval orderings for G. It also follows that o is a proper interval ordering for G
if and only if its reverse is a proper interval ordering for G.

Theorem 11.13 (Looges and Olariu, [58])
A graph is a proper interval graph if and only if it has a proper interval ordering.

Proof: Let G = (V, E) be a proper interval graph, and let J be an interval ordering
for G such that no interval is properly contained in another. Note that two intervals
may be equal. Let 7 be a vertex ordering for G. Let I, = [¢(z),r(z)] be the interval
for x € V. Let o be a vertex ordering for G such that, for every pair u, v of vertices
of G, u <, v if and only if r(u) < r(v) or, if r(u) = r(v), l(u) < £(v) or, if
r(u) = r(v) and £(u) = £(v), u <, v. We show that ¢ is a proper interval ordering
for G. So, let u,v,w be vertices of G such that v <, v <, w and vw € E. Then,
r(u) < r(v) < r(w) by the definition of ¢ and ¢(w) < r(u). Then, I, and I,, have
a non-empty intersection, i.e., vw € FE. Since J does not contain an interval that is
properly contained in another, £(v) < £(w) < r(u), and uv € E.

For the converse, let G = (V, E) be a graph on n vertices, and let o be a proper
interval ordering for G. We construct an appropriate interval model for G from o.
For every vertex z of G, let a, denote the smallest number ¢ € {1,...,n} such that
o(i) € Ng[z]. Similarly, let b, denote the largest number i € {1,...,n} such that
0(i) € Ng[z]. Then, for every vertex z of G, let £(x) =gef az - n + o~ (z) and
7(x) =qet by -m + o~ !(z). This construction has already been used in the proof
of Theorem 10.5, so that we know that J =qef {1, =det [(z),7(2)]}rey defines an
interval model for G. It remains to show that no interval of J is properly contained
in another. Suppose there are vertices u and v of G such that ¢(v) < £(u) and
r(u) < r(v) and one of these relations is strict. If u <, v, i.e., o7 (u) < o7 (v),
£(v) < £(u) means ¢(v) < f(u) and Ng[v] contains a vertex that is farther to the
left with respect to o than any vertex in Ng[u] (a, < a,). This, however, is not
possible, since ¢ is a proper interval ordering. If v <, u, we similarly conclude that
r(u) < r(v) means that Ng[v] contains a vertex that is farther to the right than any
vertex in Ng[u], which is not possible. Hence, we conclude the theorem.

|

Observe that the proof of Theorem 11.13 provides a linear-time algorithm, given
a graph G and a proper interval ordering for GG, to compute an interval model for G
that does not contain an interval that is properly contained in another.

11.4 Characterisations of minimal triangulations of AT-free claw-free
graphs

We will present two characterisations of minimal triangulations of AT-free claw-free
graphs. The first one is taken from the literature and is the AT-free claw-free analogue
to Theorems 9.6 and 10.22. The second characterisation can be considered the AT-

212

free claw-free counterpart of Theorems 9.10 and 10.27. However, the characterising
means is completely different: It involves min-LexBFS-orderings.

Theorem 11.14 (Parra and Scheffler, [69])
A graph is AT-free claw-free if and only if all its minimal triangulations are AT-free
claw-free.

Proof: Let G = (V, E) be a graph. Due to Theorem 10.22, G is AT-free if and only
if all minimal triangulations of G are AT-free, hence interval graphs. It remains to
show that, if G is AT-free, G is claw-free if and only if all minimal triangulations of
G are claw-free. Let G be not claw-free, and let {u1,us,us,v} induce a claw. Then,
{u1,u9,us,v} induces a claw in H' =4, G U F’ where

F' =4t {zz ¢ E: 2 # z and |{z, 2z} N {u1, uz, uz,v}| < 1}.

H' is chordal, even an interval graph. Since {u1,us,us,v} induces a claw in every
graph G’ that is between G and H', i.e., G C G’ C H’, there is a minimal triangula-
tion H C H' of G that contains a claw. Now, let H be a minimal triangulation of G
that contains a claw. Since G is AT-free, H is an interval graphs. Let (A1, ..., A) be
a consecutive clique arrangement for H. Let {uy,us,us,v} induce a claw in H, and
let v be the vertex adjacent with uq,us,us in H. Let r € {1,...,k} be smallest such
that v € A,, and let s € {1,...,k} be largest such that v € As. Since {uy,us,us}
is an independent set in H, u1, us,u3 appear only in different maximal cliques of H.
Hence, r + 1 < s. Let wy; € A, \ A,41 and w3 € Ag \ As_1. Note that wy and ws
are adjacent with v in G. Let M =gef (App1U---U A1) \ (4, U Ay). If there is a
vertex wy € M that is adjacent with v in G then {w;,ws, w3, v} induces a claw in G.
We will show in the paragraph below that another case is not possible.

We assume that v is adjacent with no vertex from M. Consider graph Hi =gt
H\ A,. Let Al | =qet Ary1\ Ay and A} =gcf A\ A, Suppose A, N AL =0, and
the vertices of A7, and A} are in different connected components of Hy; let D be
the connected component of H; containing the vertices of A’ ;. Then, H\ {vz :z €
V(D)} is a proper subgraph of G and chordal, i.e., a triangulation of G, which is not
possible due to minimality of H. We conclude that the vertices of A} ; and A{ are
not in different connected components of H;. Similarly, it follows that the vertices in
Al =qgef Ar \ Ag and A, | =qer As—1 \ As are not in different connected components
of Hy =4t H \ As. Then, wy,ws,ws, where wy € M, form an asteroidal triple in G,
which is not possible by assumption.
|

We can draw the following result from the proof of Theorem 11.14: Let G be
a graph, and let H be a minimal triangulation of G that is an interval graph. If H
contains a claw then G contains a claw or an asteroidal triple. Again, we see that
(and why) the class of claw-free graphs is not closed under minimal fill-in.

We will prove our algorithmic characterisation of minimal triangulations of AT-
free claw-free graphs in two steps. First, we will show that 2free-min-LexBFS-

Chapter 11 AT-free claw-free graphs 213

orderings for AT-free claw-free graphs represent minimal triangulations in a special
way. To precise this idea, we make the following definition. Let G = (V, E) be a
graph, and let o be a vertex ordering for G. By H = (G, o), we denote the filled graph
of G with respect to o, and H is the result of the following completion process. If G
contains no vertex, then H =4 G. If u is the leftmost vertex of G with respect to o,
let G’ be the graph obtained from G by making into a clique the neighbourhood of u
and removing u. Let ¢’ be obtained from o by removing u. Then, H =g (G',0’)+u
where u has the same neighbourhood in H as in G. In other words, H is obtained
from G by making vertices simplicial and processing them according to o. Note that
o is a perfect elimination scheme for H, hence H is chordal, and H is a triangulation
of G. If H is a minimal triangulation of GG, we call o a minimal elimination scheme
for G. If ¢ is a minimal elimination scheme for G and an interval ordering for (G, o),
we call it a minimal interval elimination scheme for G.

Lemma 11.15 Let G = (V,E) be a connected AT-free claw-free graph, and let
o be a 2free-min-LexBFS-ordering for G. Then, o is a minimal interval elimination
scheme for G.

Proof: Let H =4t (G,0). Let Sy, ..., Sk be the BFS-levels of G with root vertex z =
o(n). We will show that ¢ is a minimal interval elimination scheme for G. This proof
is accomplished in three steps: first, we show that the BFS-levels of G are also the
BFS-levels of H, second, we show that ¢ is an interval ordering for H, and third, we
show that ¢ is a minimal elimination scheme for G.

(1) Let Sp,...,S) be the BFS-levels of H with root z. Remember that ¢ is a BFS-
ordering for G due to Lemma 11.2. Suppose there is ¢ such that S; # S/; let ¢ be
smallest possible. It is clear that Sy = S, and due to Lemma 11.10, S; = 5.
Hence, ¢ > 2. Since S;—1 = S]_,, S; C 5], and there is a vertex u € S} \ S;. By
definition of H, there must be vertices v € S;_1 and z, = <, u, such that = is a
common neighbour of 4 and v in G. Then, x € S;, and by = <, u, u € S;, too,
which contradicts the assumption.

(2) Remember that z is a vertex in a moplex M of G. According to Lemma 11.10,
Sy is a clique in G. Let u € Sy be rightmost with respect to o. During the fill
process of (G, o), u becomes adjacent with every vertex in Ng(M). So, when u
is processed, N (M) becomes a clique. Hence, S; is a clique in H, i.e., every
BFS-level is a clique in H due to Lemma 11.10 and z being a moplex vertex.
Suppose there are vertices u,v,w € V, u <, v <, w, such that vw € E(H)
and vw ¢ E(H). Then, u,v € S; and w € S;_; for some 7 > 2, and uv € E.
According to the filling process defined by (G, o) and uw € E(H), u and w are
adjacent when w is chosen to be made simplicial. This completion, however,
adds edge vw. So, o is an interval ordering for H.

(3) To show that o is a minimal elimination scheme for G, it suffices to show for
every edge in F =4 E(H) \ E that it is unique chord in a cycle of length 4 in
H due to Theorem 8.14. Let uwv € F, u <, v, u € S;, v € §;, ¢ < j. It holds

214

that Img(v) <, u by the definition of (G, 0); otherwise, no vertex can introduce
edge uv to H. If i+ = j, then ¢« = 7 = 1, since all other BFS-levels are cliques
in G due to Lemma 11.10. If 4 and v have a common neighbour xz € S5, x and
z are not adjacent in H (remember that G and H have the same BFS-levels
with root z), and wv is unique chord in the cycle (u,z,v,z). Otherwise, let
w and z from Sy be neighbours of v and v, respectively. Since H is chordal,
ux € F or vw € F must hold. Then, uv is unique chord in the cycle (u,z,v, 2)
or (u,w,v,z). Let 1 <i < j. Then, j =i+ 1, and Img(v) € S; and Img(v) is
a common neighbour of 4 and v in G by Lemma 11.10. Since ¢ has the farther
right neighbour property, u has a neighbour w to the right of v with respect
to o that is not adjacent with lmg(v) in H (due to lmg(v) <, lmg(w), no
vertex to the left of Im¢(v) can introduce an edge between lm¢(v) and w), and
v and w are contained in the same BFS-level. Then, uv is unique chord in the
cycle (Img(v),u, w,v).

In the proof of Lemma 11.15, we have shown that, for G an AT-free claw-free
graph and ¢ a 2free-min-LexBFS-ordering, the BFS-levels of G are also the BFS-
levels of (G, o). This property, in fact, holds for arbitrary graphs and BFS-orderings,
since no special property has been used. We want to show next that every minimal
triangulation of an AT-free claw-free graph can be obtained in the way proposed in
Lemma 11.15. To achieve this, we have to show another result about BFS-levels of
AT-free claw-free graphs.

Lemma 11.16 Let G = (V, E) be a connected AT-free claw-free graph, and let H
be a minimal triangulation of G. Let z be a moplex vertex of H, and let Sy, ..., Sk
be the BF'S-levels of H with root vertex z. Then, Sy,...,S, are the BFS-levels of G
with root vertex z.

Proof: Let S),...,S) be the BFS-levels of G with root vertex z. Obviously, Sy = Sj.
Since G is a spanning subgraph of H, £ > k. Suppose there is i € {1,...,k} such
that S; # S/; let i be smallest possible. It holds that S/ C S;; let w € S; \ S}, which
means that u does not have a neighbour in S;_; = S§/_, in G. If i = 1, uz is unique
chord in a cycle of length 4 in H due to Theorem 8.14. Since z is a moplex vertex,
S1 is a clique in H, and uz cannot be unique chord in such a cycle. Hence, i > 2.
We delete all edges between u and vertices from S;_; in H and obtain graph H'.
Suppose there is a chordless cycle C' of length at least 4 containing u. It is easy to
see that C can contain at most two vertices from S;, since H is an AT-free claw-free
graph due to Theorem 11.14 and S; is a clique due to Lemma 11.10. But then C' is
a chordless cycle in H'[S; U ---U Si] = H[S; U--- U S| which contradicts H being
chordal.

|

Chapter 11 AT-free claw-free graphs 215

From this lemma, we can derive an interesting corollary: For G an AT-free claw-
free graph, it holds that the minimal triangulations of G have the same diameter as
G. Since proper interval graphs are AT-free claw-free graphs due to Theorem 11.12,
BFS-levels with root vertex a moplex vertex give the diameter due to Corollary 11.11.
This number is equal to the diameter of G.

The claim of Lemma 11.16 can be stated in another way. It is said that, if G
is a connected AT-free claw-free graph and H is a minimal triangulation of G, every
BFS-ordering for H that ends with a moplex vertex is a BFS-ordering for G. A
similar, but weaker, correspondence holds for min-LexBFS-orderings. Since this cor-
respondence involves 2free-min-LexBFS-orderings, we have to know what properties
these orderings have.

Lemma 11.17 Let G = (V, E) be a connected graph, and let o be a 2free-min-
LexBFS-ordering for G. If o is not an interval ordering for G, then G contains an
asteroidal triple, a chordless cycle of length at least 4 or a claw.

Proof: Let z =4¢f 0(n), and let Sy, ..., Sk be the BFS-levels of G with root vertex z.
If o is not an interval ordering there must be a rightmost vertex w such that there is a
rightmost vertex v for which holds Im(w) <, v <, w and vw & E. Let u =gef Im(w).
Note that z # w. Let v € S; and w € S;. Since uw € F, 1 <4 < j < i+1. Let
1 = j = 1. Since z is a moplex vertex, v and w are not contained in the moplex defined
by z, so they have neighbours in Sy. If they have a common neighbour a, {a,v,w, z}
induces a chordless cycle of length 4 in G. If they do not have a common neighbour
in S9, v and w have neighbours in one connected component of G =4t G \ N|[z],
and there is a shortest v, w-path P in G'+v,w. We obtain a chordless cycle P + z
of length at least 5. Let i = j > 2. Let z € S;_1 be a neighbour of v. By the
choice of v and w, x is a neighbour of w and has itself a neighbour a € S; 5, so that
{v,w,z,a} induces a claw in G. Let 1 <i < j. This particularly means that u € S;.
By the farther right neighbour property of ¢, there is a neighbour a € S; of v to the
right of w that is not a neighbour of u. By the choice of v and w, a is a common
neighbour of v and w. If wv € E, {u,v,w,a} induces a chordless cycle of length 4.
Let wv ¢ E. Then, {u,w,a,v} induces a chordless path of length 3. If j > 3, then
u, v, z form an asteroidal triple. Finally, let j = 2, i.e., a,w € S; and v,u € So. If u
and v are contained in the same connected component of G \ Sy, then u, v, z form
an asteroidal triple. If they are not contained in one connected component, a or w
(being neighbours of z) must have neighbours in two different connected components
of G\ S (besides the connected component containing z), since S is a minimal
separator. Then, a or w has two non-adjacent neighbours in S5, and we find a claw
in G.

|

216

Lemma 11.18 Let G = (V,E) be a connected AT-free claw-free graph, and let
H be a minimal triangulation of G. Let o be a 2free-min-LexBF'S-ordering for H.
Then, ¢ is a 1free-min-LexBFS-ordering for G.

Proof: Since H is a proper interval graph due to Theorem 11.14, hence chordal
AT-free claw-free due to Theorem 11.12, ¢ is an interval ordering for H due to
Lemma 11.17. Let Sy,..., Sk be the BFS-levels of G with root vertex z = o(n);
z is a moplex vertex. We try to generate o by a min-LexBFS run on G, i.e., we
try to always choose the vertex determined by ¢. In other words, we want to show
that ¢ = min-LexBFS*(G,d), where & is the reverse of 0. Suppose that this is not
possible. Then, there is a rightmost vertex x that, during the generation process by
min-LexBFS*, separates vertices v and v where u <, v. Without loss of generality,
we assume u = lmg(z). Since o is a BFS-ordering for G due to Lemma 11.16, u and
v must be contained in the same level S; for some 7 > 1. If 4 = 1, then z,u,v are
vertices in Ng(z) (x # z, since vx € E), and z has a neighbour in Sy by the moplex
property of z, which contradicts u = lmg(z) € S;. So, 7 > 2,z € S;_; and u and
v are adjacent due to Lemma 11.10. By the definition of interval orderings, every
neighbour of u to the right of v with respect to ¢ is a neighbour also of v, and so,
vr € E(H)\ E. Since H is a minimal triangulation of G, there are non-adjacent
vertices a and b, a <, b, such that vz is unique chord in the cycle (a,v,b,z) in H.
Then, a <, v <, <5 b, and w is not to the right of a. Since u and b are not adjacent
in H and since Imy(b) = Im¢(b) is not to the right of v, there is a vertex to the right
of x that separates u and v (it may be b or is a vertex to the right of b according to
the farther right neighbour property of), which contradicts the assumption. Hence,
o is a 1free-min-LexBFS-ordering for G.

|

Lemma 11.19 Let G = (V,E) be a connected AT-free claw-free graph. Let H
be a minimal triangulation of G, and let ¢ be an interval ordering for H. Then,

H=(G,o0).

Proof: Let H' =4 (G,0). Remember that H' is chordal. Suppose H' ¢ H. Since
H is a minimal triangulation of G, there must be an edge in H’ that is not in H. Let
u be the leftmost vertex with regard to ¢ that causes an edge between two vertices v
and w during the fill process that is not an edge in H. By the choice of u, it holds
that uv and uw are edges in H. Since u is leftmost, we can assume that u <, v <, w.
But since ¢ is an interval ordering for H, vw is an edge in H, which contradicts the
assumption. So, H' C H, and thus H' = H.

|

Now, it is easy to characterise the minimal triangulations of an AT-free claw-free
graph.

Chapter 11 AT-free claw-free graphs 217

Theorem 11.20 Let G be a connected AT-free claw-free graph, and let H be a
graph. Then, H is a minimal triangulation of G if and only if there is a 2free-min-
LexBF'S-ordering o for G such that H = (G, 0).

Proof: If 7 is a 2free-min-LexBFS-ordering for G, ¢ is a minimal interval elimination
scheme for G due to Lemma 11.15. In particular, (G, o) is a minimal triangulation of
G. For the converse, let H be a minimal triangulation of G. Due to Theorem 11.14,
H is a proper interval graph, and due to Theorem 11.13, there is a proper interval
ordering ¢ for H. It holds that ¢ and &, the reverse of o, have the farther right neigh-
bour property, and ¢ = min-LexBFS*(H, &) and & = min-LexBFS*(H, o). Hence, o
and ¢ are 2free-min-LexBFS-orderings for H and lfree-min-LexBFS-orderings for G
due to Lemma 11.18. Furthermore, 0 = min-LexBFS*(G, &). Therefore, o is a 2free-
min-LexBFS-ordering for G. Since o is an interval ordering for H, H = (G, o) due
to Lemma 11.19.

|

11.5 Certifying recognition of proper interval graphs

For solving the min-Tri membership problem for AT-free claw-free graphs, we need an
algorithm that recognises proper interval graphs and additionally generates a proper
interval ordering. In the literature, there are a number of proper interval graph
recognition algorithms, such as in [20], [24], [41], [67]. All these algorithms apply
a breadth first search strategy more or less directly, and they generate appropriate
representations. However, these algorithms are rather involved. In contrast, we will
present an easy algorithm that computes a proper interval ordering for the input
graph, if it is a proper interval graph. Our algorithm is based on min-LexBFS.
Independently, Corneil developed a similar algorithm that is based on LexBFS [19].

The proper interval graph recognition algorithm in this section has an additional
property with respect to all algorithms cited from the literature. All recognition
algorithms above provide a so-called “certificate” for the case the input graph is a
proper interval graph. However, if the input graph is not a proper interval graph,
they just say “no”, and the user has to trust the algorithm. Our algorithm tries to
convince the user of its decision, in the accepting as well as in the rejecting case.
More precisely, if the input graph is a proper interval graph, the algorithm outputs
a proper interval ordering for the graph, if the input graph is not a proper interval
graph, the algorithm outputs a chordless cycle of length at least 4, an asteroidal triple
or a claw. This approach is motivated by Theorems 11.12 and 11.13.

Certifying algorithms, as this class of algorithms is called, are highly interesting
in practice, especially if their proofs of correctness or their implementations are rather
complicated or if the user requires a high level of security [86], [62]. There are
only few such algorithms known, among the first ones is the well-known recognition
algorithm for bipartite graphs. It outputs a 2-colouring of the input graph or a cycle

218

of odd length. It can easily be verified whether the certificate proves the result.
Recently, Kratsch, McConnel, Mehlhorn, Spinrad presented certifying algorithms for
the recognition of interval graphs and permutation graphs [53]. Their interval graph
recognition algorithm is based on Theorem 10.4 and outputs an interval model, if the
input graph is an interval graph, or an asteroidal triple or a chordless cycle of length
greater than 3, if the input graph is not an interval graph. Later, Hell and Huang
presented another certifying recognition algorithm for proper interval graphs, that is
based on LexBFS [39].

Our recognition algorithm is simple: 3min-LexBFS generates a proper interval
ordering for the input graph if and only if it is a proper interval graph. If it is
not a proper interval graph, the algorithm outputs, instead of a vertex ordering,
certificates proving the result. The 3-sweep breadth first search approach has also
been used by Corneil for his proper interval graph recognition algorithm [19]. A
similar approach, i.e., multi-sweep breadth first search, was used by Corneil, Olariu,
Stewart for recognising interval graphs [22]. Recently, Bretscher, Corneil, Habib, Paul
used a multi-sweep breadth first search approach for the recognition of cographs, the
graphs without induced Py [15]. Interestingly, their algorithm is also certifying.

We give a short sketch of our algorithm. It works in two phases: construction
and verification. The construction phase is a 3min-LexBFS where the first sweep finds
a moplex vertex of the input graph, the second sweep constructs an interval ordering
and the third sweep finally constructs a proper interval ordering. The verification
phase verifies whether the output of the first phase is an interval ordering and a
reversed interval ordering. If no violation has been encountered, the ordering is
indeed a proper interval ordering, and the input graph is accepted. Otherwise, the
algorithm determines an asteroidal triple, a claw or a chordless cycle of length at
least 4 as certificate for non-membership. Before we prove the central lemma, it is
necessary to know that the first and last vertices of a 2min-LexBFS-ordering for an
interval graph are at maximal distance, which we will prove first.

Lemma 11.21 Let G = (V, E) be a connected interval graph, and let o be a 2free-
min-LexBFS-ordering for G. Let Sy, ..., Sy be the BFS-levels of G with root z =qef
o(n). For every u,v € S;, 1 > 1, u and v have a common neighbour in S;_.

Proof: Let ¢ be the result generated by the first min-LexBFS sweep. Let Sj,...,.S)
be the BFS-levels of G with root s =get 0/(n). Remember that z = ¢/(1). If £ < 1
then s is a universal vertex in G. If £ = 1, then s € S7, and every vertex in S is
adjacent with z and every vertex in Sy, if k& > 1, is adjacent with s. So, for the
remaining proof, we assume k > £ > 2. Note that s € S, U--- U Sk. We first prove
two claims that hold for arbitrary graphs.

(1) We show that there are a connected component C' of G\ S; and a vertex y €
V(C) N Sy such that for every vertex v € Sy \ V/(C): Ng(y) NSt € Ng(v). Let
y € Sy be a vertex on a shortest s, z-path, and let C' be the connected component
of G\ S, that contains s and y. Hence, y € S, , and Ng(y)NS1 € S;_;. It

Chapter 11 AT-free claw-free graphs 219

is clear that S; C S;_; U .S}, and it follows that Sy \ V(C) C S}, since every
shortest v, s-path for v € S5\ V(C) contains a vertex from S;. Suppose there is
a vertex v € Sp \ V(C) that is not adjacent with some vertex w € Ng(y) N Sy.
By construction, v € S;, w € S;_;, hence z <, v <, w. Due to the farther
right neighbour property of ¢’ there is a neighbour = of v to the right of w with
respect to ¢ that is not a neighbour of z. Since w € §)_, and w <, = and
vr € E, x € §)_,. By construction (v € S3), € S; US> U S;. Note that s € Sy
and that = and s are at distance £ — 1. Since z ¢ V(C), otherwise v € V(C),
x € S1 due to the existence of an z, s-path of length £ — 1. But then x must be
a neighbour of z which contradicts the assumption.

(2) We show that there is at most one connected component in G\ S; that contains
vertices from S3. Suppose there are two connected components in G\ S; that
contain vertices from S3. Remember that there is ¢ > 2 such that s € S;. By
our assumption, there is a vertex x € S3 that is not in the same connected
component of G\ S as s, so that distg(s,z) >i—1+2=1i+1> i =distg(z,s).
But then, z could not be contained in Sj.

For proving the lemma, let ¢ > 2. First, let u,v € S; be vertices in the same connected
component C' of G\ S;_1. Observe that N;(C) is a minimal separator of G and so
is a clique in G (Theorem 8.4). Suppose there are a neighbour a € S;_; of u that
is not a neighbour of v and a neighbour @’ € S;_; of v that is not a neighbour of u.
If u and v are adjacent then {u,v,a,a’} induces a chordless cycle; otherwise u, v, z
form an asteroidal triple. Hence, Ng(u) N S;—1 € Ng(v) or Ng(v) N S;—1 C N(u).
Second, let u,v € S; be vertices in different connected components of G \ S;_1; in
particular, uv € E. If i = 2, let C be the connected component of G \ S containing
s and y. If neither u nor v belong to C, every neighbour in S; of y is a neighbour of
u and v, hence they have a common neighbour in S;. If, without loss of generality,
u belongs to C, u and y have a common neighbour w in Si, since they are in the
same connected component of G \ S;. Hence, w is a common neighbour of u and v.
If 4 > 3, u and v are in the same connected component of G\ Sy. If they have no
common neighbour in S;_1, u,v, z form an asteroidal triple.

|

Corollary 11.22 Let G = (V, E) be a connected interval graph. Let o be a 2free-
min-LexBFS-ordering for G, and let a =4of 0(1) and z =q¢t 0(n). Then, diam(G) =
distg(z, a).

Proof: Let Sy,...,S; be the BFS-levels of G with root z. If £ < 1, then G is
complete, and the statement holds. Let k& > 2, and let v € S; and v € §; for
i < j. If i = 0, which means that u = z, then distg(u,v) < k. If i = 1 then
distg(u,v) < k, since S; is a minimal separator of G and hence a clique. If i > 2
then distg(u,v) < j —i+ 2 < k due to Lemma 11.21.

|

220

The main result of this section is contained in the following lemma. However, one
part of it has already been proved—it is Lemma 11.17. The combination of the proofs
of both lemmata describes an algorithm that finds an asteroidal triple, a chordless
cycle of length at least 4 or a claw in a graph for which 3free-min-LexBFS does not
generate a proper interval ordering. Remember that a proper interval ordering is an
ordering that is an interval ordering as well as a reversed interval ordering.

Let G = (V, E) be a graph, and let o be a vertex ordering for G. For a vertex x
of G, N, (z) denotes the set of neighbours of z that are to the right of with respect
to o. Similarly, N (z) denotes the set of left neighbours of .

Lemma 11.23 Let G = (V,E) be a connected graph, and let ¢ be a 3free-min-
LexBFS-ordering for G. If ¢ is not a proper interval ordering for G, then G contains
an asteroidal triple, a chordless cycle of length at least 4 or a claw.

Proof: Assume that o is not a proper interval ordering for G. Let z =g¢f 0(n), and
let Sy, ..., Sk be the BFS-levels of G with root vertex z. Since ¢ is also a 2free-min-
LexBFS-ordering, Lemma 11.17 shows that, if ¢ is not an interval ordering for G, G
contains an asteroidal triple, a chordless cycle of length at least 4 or a claw. Now,
assume that ¢ is an interval ordering for G, i.e., G is an interval graph. Since ¢ is
not a proper interval ordering, ¢ is not a reversed interval ordering, and there must
be a leftmost vertex u € V, its rightmost neighbour w, and a leftmost vertex v such
that u <, v <, w and uv &€ E. If there is a neighbour z of w to the right of w that
is not a neighbour of v, then {u,v,w,z} induces a claw in G. Note that, since ¢ is
an interval ordering, vx ¢ E implies uz ¢ E. In the remaining part of the proof, we
will show that Nér (w) C Ng(v) is not possible, which completes the proof.

We can assume that k& > 2, since otherwise G would be complete (and o a
proper interval ordering). Let a =gcf 0(1). Let w € S; for some ¢ > 0. Since w is the
rightmost neighbour of u, u € Sj41. We assume N/ (w) C Ng(v). So, v is also in S;,
and therefore i > 1. We first observe that Im(w) = u, since a neighbour of w to the left
of w must also be a neighbour of v which implies u being a neighbour of v by ¢ being
an interval ordering. Similarly, Im(v) is strictly to the right of w. Since all vertices
between u and w are neighbours of w, N, (v) C Ng(w). If there is a shortest a, z-path
containing u or a vertex from S; 1 to the right of u, then there is a shortest a, u-path
of length k — ¢ — 1 by the choice of u; if there are only shortest a, z-paths containing
a vertex from S;y; to the left of u, then distg(a,u) = k — i, since every vertex from
Si11 to the left of u is adjacent with w. If there is an a, w-path of length k — ¢, there
must be an a,w-path of length k£ — i containing u, since u = lm(w). It follows that
distg(a,w) = distg(a,u) + 1. If there is an a, v-path of length k — 4 then there is an
a,u-path of length k — i — 1. It follows that distg(a,u) < distg(a,w) < distg(a,v).
Let S, and S, be the sets of vertices at distance distg(a,u) and distg(a,w) to a,
respectively. Every vertex in S,, appears to the left of v, which follows from arguments
above and lm(w) = u, so that Ng(v) NS, C Ng(w). For every vertex x € S,
w € Ng(z) implies Ng(u) NSy, € Ng(z), since o is an interval ordering.

Chapter 11 AT-free claw-free graphs 221

As we have seen, v € Sk, which means that o on Sy, is a proper interval ordering.
Since a has a neighbour in Sx_1, Sk is a clique. If Sy contains two moplexes, G
cannot be chordal due to Fact 11.5, and therefore, a is vertex in the only moplex in
Si. Furthermore, S, contains all vertices at distance diam(G) to z. Corollary 11.22
shows that the second sweep of 3free-min-LexBFS must have started with a vertex
from S, precisely, with a vertex of the moplex contained in Sy. Since min-LexBFS
can number moplex vertices in any order, we conclude that a is the moplex vertex
with least priority during the third sweep, hence the vertex that started the second
sweep. Now, consider the second sweep of 3free-min-LexBFS. Before a vertex from
Sy is chosen by the algorithm, v and w remain in the leftmost box. S, contains no
vertex that is a neighbour of v but not of w. As long as u has not been chosen,
w remains in the leftmost box that contains neighbours of u. So, when w is finally
chosen, the box containing w must be partitioned. FEither v and w are still in the
same box, then u separates v and w, or a previous selection caused a separation of
v and w. The second sweep therefore assigns high priority to v with respect to w.
During the third sweep of 3free-min-LexBFS, v cannot be contained in a box to the
left of a box containing w by assumption N (w) C Ng(v). If v and w are always
contained in the same box, v must be chosen before w due to its higher priority. This
contradicts v <, w.

|

Theorem 11.24 There is a linear-time certifying recognition algorithm for proper
interval graphs that outputs a proper interval ordering, an asteroidal triple, a chord-
less cycle of length at least 4 or a claw.

Proof: A graph is a proper interval graph if and only if every connected component
of it is a proper interval graph. Given a graph G, apply 3min-LexBFS to each con-
nected component of G. The first paragraph of the proof of Lemma 11.23 describes a
linear-time algorithm that verifies whether the generated vertex orderings are proper
interval orderings and finds an asteroidal triple, a chordless cycle of length at least 4
or a claw, if one is not a proper interval ordering.

|

With little effort, it can be shown that a kmin-LexBFS-ordering of a disconnected
graph is composed of kmin-LexBFS-orderings for every of its connected components.
So, our recognition algorithm does not have to decompose the input graph into its
connected components, but can directly be applied to it.

Theorem 11.25 Let G be a connected proper interval graph. A vertex ordering for
G is a proper interval ordering for G if and only if it is a 3free-min-LexBFS-ordering
for G.

Proof: Due to Lemma 11.23 and Theorem 11.12, every 3free-min-LexBFS-ordering
for GG is a proper interval ordering for G. For the converse, let ¢ be a proper interval

222

ordering for GG, that exists due to Theorem 11.13. Then, &, the reverse of o, is also a
proper interval ordering for G. Since proper interval orderings for G are min-LexBFS-
orderings for G, it holds that o = min-LexBFS*(G, &) and & = min-LexBFS*(G, o).
(We have already seen these arguments in the proof of Theorem 11.20.) Hence,
o = 3min-LexBFS*(G, &), i.e., o is a 3free-min-LexBFS-ordering for G.

|

11.6 Solving the min-Tri membership problem

The membership problem that we wish to solve in this chapter is defined as follows:
given a pair (G, H) of graphs, where G is an AT-free claw-free graph, is H a mini-
mal triangulation of G?7 We will call this problem the min-Tri membership problem
for AT-free claw-free graphs. A variant of this problem is called the promise min-
Tri membership problem for AT-free claw-free graphs where we trust that the input
graph G is AT-free claw-free. At the end, we will discuss that impact of an alterna-
tive representation of H, i.e., a representation that is not defined by adjacency lists,
on the complexity of the membership problems.

Theorem 11.26 There is a linear-time algorithm for solving the promise min-Tri
membership problem for AT-free claw-free graphs.

Proof: The central procedure which our algorithm relies on is depicted in Figure 27.
This procedure works for connected graphs. Let (G, H) be a pair of graphs where G is
connected AT-free claw-free. If H is a minimal triangulation of G, then H is a span-
ning supergraph of G, which is verified in lines 2-4 of MSP_minTri ATfreeclawfree.
Furthermore, if H is a minimal triangulation of G, then H is a chordal AT-free claw-
free graph (Theorem 11.14), i.e., a proper interval graph (Theorem 11.12). Hence,
3min-LexBFS in line 5 generates a proper interval ordering o for H due to Theo-
rem 11.25. If H is a minimal triangulation of G, every 2free-min-LexBFS-ordering
for H is a lfree-min-LexBFS-ordering for G, i.e., a min-LexBFS-ordering for G due to
Lemma 11.18. In lines 9-13 of MSP_minTri_ATfreeclawfree, it is tested whether o
and & are min-LexBFS-orderings for G. If o passes the test, it is a 2free-min-LexBFS-
ordering for G, and (G, o) is a minimal triangulation of G due to Theorem 11.20.
Since ¢ is an interval ordering for H and if H is a minimal triangulation of G,
H = (G, 0) due to Lemma 11.19. If H is not a minimal triangulation, (G, o) cannot
equal H. The described procedure is a linear-time algorithm, since every step can be
performed in linear time. Note that equality in line 14 can be verified by checking
whether H C (G, o) holds, which can be done in linear time.

Now, let (G, H) be a pair of graphs where G is an arbitrary AT-free claw-free
graph. It holds that H is a minimal triangulation of G if and only if there is a 1-to-1
correspondence between the connected components of G and H such that the ones
are minimal triangulations of the others. This correspondence can be computed in
linear time, if it is possible. Then, MSP_ minTri ATfreeclawfree is applied to every

Chapter 11 AT-free claw-free graphs 223

MSP_minTri_ATfreeclawfree (G, H) returns Boolean:

1 begin

2 if ((V(G)#V(H)) or (E(G) € E(H))) then
3 return false

4 end if;

5 let 0 =gof 3min-LexBFS(H);

6 if (o is not proper interval ordering for G) then
7 return false

8 end if;

9 let 0/ =qof min-LexBFS* (G, &);

10 let 0" —=4of min-LexBFS*(G, o);

11 if ((0 #0') or (7 # ¢”) then

12 return false

18 end if;

14 return (H = (G,0))

15 end.

Figure 27 The linear-time algorithm that solves the promise min-Tri
membership problem for connected AT-free claw-free graphs.

224

pair of connected components, and we obtain overall linear time.
|

For solving the min-Tri membership problem for AT-free claw-free graphs, we
have to know whether input graph G is AT-free claw-free. This problem was solved
by Hempel and Kratsch.

Theorem 11.27 (Hempel and Kratsch, [40])

There is an algorithm that recognises AT-free claw-free graphs in time O(n?375).

The time of the recognition algorithm is determined by multiplication of two
binary square matrices and recognition of triangle-free graphs. The authors addi-
tionally showed that any AT-free claw-free graphs recognition algorithm with worst
case time o(n?37%) would improve the time for recognition of triangle-free graphs [40],
which is a challenging task, since finding triangles is a well-studied problem.

Theorem 11.28 The min-Tri membership problem for AT-free claw-free graphs
2.376)

can be solved in time O(n
Proof: Let (G, H) be a pair of graphs. The pair has to be accepted if and only if
G is an AT-free claw-free graph and H is a minimal triangulation of G. The former
condition can be tested in time O(n?37%) due to Theorem 11.27, the latter condition
can be tested in linear time due to Theorem 11.26.

|

We want to discuss a variant of algorithm MSP minTri ATfreeclawfree, that is
called MSP_minTri ATfreeclawfree_short and depicted in Figure 28. It varies from
MSP_minTri_ATfreeclawfree only in the condition at the end of the procedure: it
is not verified whether & is a 2free-min-LexBFS-ordering. We will show that this
variant is nevertheless correct.

Theorem 11.29 Let G = (V, E) be a connected AT-free claw-free graph, and let
H be graph. Then, MSP_minTri_ATfreeclawfree_short accepts input (G, H) if and
only if H is a minimal triangulation of G.

Proof: We reconsider the proof of Theorem 11.26 and observe that it remains to
show that (G, o) is a minimal triangulation of G, if H = (G, o) holds. Observe that,
in line 12 of the algorithm, we know that ¢ is a min-LexBFS-ordering for G, but we
do not know whether o is a 2free-min-LexBFS-ordering for G. A thorough analysis
of the proof of Lemma 11.15 shows that (G, o) is a minimal triangulation of G, if ¢
is a min-LexBFS-ordering for G that ends with a moplex vertex. So, it suffices to
show for our result that z = o(n) is a moplex vertex of G. Let H' =g (G,0), and
let H= H'. Let Sy,...,S; be the BFS-levels of G with root vertex z. The proof of
Lemma 11.15 shows that the BFS-levels of G and H' with root z are equal. Hence,
Ng(z) = Ng:(z) = Ng(z). Suppose k < 1. Then, z is a universal vertex in G and H,

Chapter 11 AT-free claw-free graphs 225

MSP_minTri_ATfreeclawfree_short((G, H) returns Boolean:

1 begin

2 if ((V(G)#V(H)) or (E(G) € E(H))) then
3 return false

4 end if;

5 let 0 =geof 3min-LexBFS(H);

6 if (o is not proper interval ordering for G) then
7 return false

8 end if;

9 let o' =4 min-LexBFS* (G, &);

10 if (0 #¢’) then

11 return false

12 end if;

13 return (H = (G,0))

14 end.

Figure 28 Another linear-time algorithm that solves the promise min-
Tri membership problem for connected AT-free claw-free graphs.

226

and since o is a proper interval ordering for H, H is complete. If G is not complete
there is a vertex in G that is not adjacent with (1) due to the moplex property of
o(1). Hence, H' is not complete, H # H’, and therefore k > 2. Let M C S; be the
set of vertices from S; without a neighbour in S,. By the definition of (G, o) (and
since we assume H = H’), the vertices in M do not have neighbours in Sy in H.
Since ¢ is a proper interval ordering for H, all vertices in M are to the right of all
vertices in S1\ M in 0. Let u be the vertex from S; leftmost with respect to o. If u is
neighbour of every vertex from M in G and by the farther right neighbour property
of o, M is a clique in G. Hence, M U{z} is a module, even a maximal clique-module
of G. Finally, Sy is a clique in G, so that S; \ M is a minimal separator of G, which
means that M is a moplex of GG, and z is a moplex vertex of G.

|

At the end of this section, we want to discuss the impact of representation on
the time complexity of algorithm MSP_minTri_ATfreeclawfree. In the original form
of the algorithm, both graphs G and H are given by adjacency lists. We know that
H can have significantly more edges than G. So, the representation of H can become
more succinct, if we require H to be given by an interval model without interval that
is properly contained in another. We assume that the interval endpoints are from the
set {1,...,2n}, which is a reasonable assumption. In time O(n), a proper interval
ordering ¢ for H can be computed, and in linear time with respect to G, it can be
verified whether ¢ and & are min-LexBFS-orderings for G. Given the interval model,
adjacency can be tested in constant time, so that the subgraph relationship G C H
can be tested in linear time with respect to G. It remains to verify H = (G, 0). It is
clear that this equality cannot be tested by verification of each edge. However, o is
an interval ordering for H and for (G, o) (proof of Lemma 11.15), so that it suffices
to compare leftmost neighbours. This is done in linear time with respect to G.

11.7 Algorithmic applications

In contrast to the graph classes considered before (the classes of 2K,-free graphs
and permutation graphs), all three problems, TREEWIDTH, MINIMUM FILL-IN and
BANDWIDTH, are NP-complete for AT-free claw-free graphs (Theorems 8.23, 8.24 and
8.25), since co-bipartite graphs are AT-free claw-free. We will present a simple and
fast algorithm for approximating the bandwidth of AT-free claw-free graphs.

A number of algorithms for approximating the bandwidth of AT-free graphs have
been proposed in the literature. They are based on the following interesting bounds.
By G2, we denote the square of graph G = (V, E), i.e., the graph on vertex set V' that
has an edge between vertices 4 and v if and only if 4 and v are connected by a path
of length 1 or 2 in G. The square of G can be computed by squaring the matrix that
emerges from the adjacency matrix of G by adding 1’s on the main diagonal. The
computed square of the matrix represents the adjacency matrix of G where entries
on the main diagonal are ignored and edges are represented by non-zero entries. The

Chapter 11 AT-free claw-free graphs 227

square of a matrix can be computed in time O(n?37%) [18]. By A(G), the largest
number of neighbours of a vertex of G is denoted.

Lemma 11.30 (Fomin and Golovach, [28])
Let G be an AT-free graph. Then, 1A(G?) < bw(G) < A(G?).

Corollary 11.31 There is a 4-approximation algorithm for the bandwidth problem
2.376).

on AT-free graphs that runs in time O(n

The time bound of the algorithm of Corollary 11.31 is mainly determined by the
computation of the square of the input graph. So, the authors asked whether the
maximal degree of the square of a graph can be computed faster. For our purposes,
it suffices to find an algorithm for squares of AT-free claw-free graphs. Another
approach involves minimal triangulations.

Lemma 11.32 (Kloks, Kratsch and Miiller, [50])
Let G be an AT-free graph, and let H be a minimal triangulation of G. Then,
bw(G) < bw(H) < 2-bw(G).

Corollary 11.33 There is a 2-approximation algorithm for the bandwidth problem
on AT-free graphs that runs in time O(nm).

A third approach was used by the authors of [50] to obtain a fast 4-approximation
algorithm; it is based on finding a special spanning tree that approximates shortest
paths between every pair of vertices.

Theorem 11.34 (Kloks, Kratsch and Miiller, [50])
There is a 4-approximation algorithm for the bandwidth problem on AT-free graphs
that runs in time O(m + nlogn).

Our algorithm for AT-free claw-free graphs is inspired by Lemma 11.32. So,
we have to compute the bandwidth of a minimal triangulation of an AT-free claw-
free graph. Due to Theorem 11.14, these graphs are proper interval graphs, and
the following result shows that the bandwidth of a proper interval graph is easy to
determine. For a graph G = (V, E), the proper pathwidth of G, denoted as ppw(G),
is one less than the smallest clique number among all triangulations of G that are
proper interval graphs.

Lemma 11.35 (Kaplan, Shamir and Tarjan, [46])
Let G = (V,E) be a graph. Then, bw(G) = ppw(G).

Corollary 11.36 Let G be a proper interval graph. Then, bw(G) = w(G) — 1.

Proof: Since G is a proper interval graph, G is the only minimal triangulation of
G. Hence, the treewith of G equals the proper pathwidth of G, and the treewidth of
a chordal graph is one less than its clique number. So, ppw(G) = w(G) — 1, and the

228

claim follows by Lemma 11.35.

Theorem 11.37 There is a linear-time 2-approximation algorithm for the band-
width problem on AT-free claw-free graphs.

Proof: Let G = (V, E) be an AT-free claw-free graph. In linear time, 2min-LexBFS
computes a minimal interval elimination ordering o for G due to Lemma 11.15.
Then, (G, o) is a minimal triangulation of G and a proper interval graph due to
Theorem 11.14. In linear time, an interval model for (G, o) can be computed, and in
time O(n), the clique number ¢ of (G, o) can be determined. Due to Corollary 11.36,
the bandwidth of (G, o) equals ¢ — 1, and due to Lemma 11.32, bw(G) < c¢—1 <
2-bw(G).

|

Theorem 11.38 (Parra and Scheffler, [69])
Let G be an AT-free claw-free graph. Then, ppw(G) = tw(G).

Proof: For every graph G, ppw(G) > tw(G). For an AT-free claw-free graph G,
every minimal triangulation is a proper interval graph, hence tw(G) > ppw(G).
|

Corollary 11.39 There is a linear-time 2-approximation algorithm for the tree-
width problem on AT-free claw-free graphs.

11.8 Interesting problems

In the previous sections, we proved a number of results about min-LexBFS-orderings
for arbitrary and special graphs. It seems that this field of research is rich. For
example, we saw that 2free-min-LexBFS-orderings for proper interval graphs are
interval orderings (Lemma 11.17), hence perfect elimination schemes. Is there a
number k such that k-min-LexBFS-orderings of chordal graphs are perfect elimination
schemes?

We also saw that, for G a connected AT-free claw-free graph, H a minimal
triangulation of G and ¢ a proper interval ordering for H, o and ¢ are min-LexBFS-
orderings for G (Lemma 11.18). It holds that 0 = 2min-LexBFS*(G, o). This inspires
the definition of fixed points of min-LexBFS: Let G = (V, E) be a graph, and let ¢
be a vertex ordering for G. We say that o is a fized point of 2min-LexBFS* for G, if
o = 2min-LexBFS*((G, o) holds. What are these fixed points for arbitrary or special
graphs? Do they provide structural information about the graph? Do they always
exist, and can a fixed point be generated fast? Is there a number kg for graph G
such that kgmin-LexBFS(G) is a fixed point?

Chapter 11 AT-free claw-free graphs 229

We have mentioned that min-LexBFS and LexBFS are related algorithms. Are
LexBFS- and min-LexBFS-orderings related? Are there (non-trivial) graph classes
for which LexBFS-orderings are min-LexBFS-orderings or vice versa? Analogous to
the definition of kmin-LexBFS, algorithms involving LexBFS and min-LexBFS can be
defined. What can be said about them?

For 2Ks-free graphs and permutation graphs, we characterised minimal triangu-
lations in a way that enabled “efficient” enumeration of all minimal triangulations;
efficiency shall mean that the algorithm runs fast per minimal triangulation. In case
of AT-free claw-free graphs, such a fast algorithm is not immediate. Is there a way to
efficiently guide 2free-min-LexBFS to generate all 2free-min-LexBFS-orderings for
an AT-free claw-free graph?

230

231

Bibliography

1]

2]

[10]

[11]

[12]

[16]

[17]

E. ALLENDER, M. OGIHARA, Relationships among PL, #L, and the Determinant,
Informatique théorique et Applications 30, No. 1, pp. 1-21, 1996.

E. ALLENDER, K. REINHARDT, SH. ZHOU, Isolation, Matching, and Counting
Uniform and Nonuniform Upper Bounds, Journal of Computer and System Sciences 59,
pp- 164-181, 1999.

C. ALVAREZ7 J.L. BALCAZAR, B. JENNER, Adaptive Logspace Reducibility and Parallel
Time, Mathematical Systems Theory 28, pp. 117-140, 1995.

ST. ARNBORG, D.G. CORNEIL, A. PROSKUROWSKI, Complezity of finding embeddings
in a k-tree, STAM Journal on Algebraic and Discrete Methods 8, pp. 277-284, 1987.

A. BERRY, J.-P. BORDAT, Separability generalizes Dirac’s theorem, Discrete Applied
Mathematics 84, pp. 4353, 1998.

J.R.S. BLAIR, P. HEGGERNES, J.A. TELLE, A Practical Algorithm for Making Filled
Graphs Minimal, Theoretical Computer Science 250, pp. 125-141, 2001.

M. BLuM, A Machine-Independent Theory of the Complezity of Recursive Functions,
Journal of the Association for Computing Machinary 14, pp. 322-336, 1967.

H.L. BODLAENDER, T. KLOKS, D. KRATSCH, Treewidth and Pathwidth of Permuta-
tion Graphs, STAM Journal on Discrete Mathematics 8, pp. 606—616, 1995.

H.L. BODLAENDER, T. KLOKS, D. KRATSCH, H. MULLER, Treewidth and minimum
fill-in on d-trapezoid graphs, Journal of Graph Algorithms and Applications 2, No. 3,
pp. 1-23, 1998.

H.L. BODLAENDER, R.H. MOHRING, The pathwidth and treewidth of cographs, STAM
Journal on Discrete Mathematics 6, pp. 181-188, 1993.

K.S. BoorH, G.S. LUEKER, Testing for the Consecutive Ones Property, Interval
Graphs, and Graph Planarity Using PQ-Tree Algorithms, Journal of Computer and
System Sciences 13, pp. 335-379, 1976.

A. BoropiN, S. CoOk, N. PIPPENGER, Parallel Computation for Well-Endowed
Rings and Space-Bounded Probabilistic Machines, Information and Control 58, pp. 113—
136, 1983.

V. BOUCHITTE, I. TODINCA, Treewidth and Minimum Fill-in: Grouping the Minimal
Separators, STAM Journal on Computing 31, pp. 212-232, 2001.

A. BRANDSTADT, V.B. LE, J.P. SPINRAD, Graph classes: a survey, STAM mono-
graphs on discrete mathematics and applications, 1999.

A. BRETSCHER, D.G. CORNEIL, M. HABIB, CHR. PAUL, A Simple Linear Time
LexBFS Cograph Recognition Algorithm, Proceedings of the 29th International Work-
shop on Graph-Theoretic Concepts in Computer Science, WG 2003, Lecture Notes in
Computer Science 2880, pp. 119-130, 2003.

P. BUNEMAN, A Characterisation of Rigid Circuit Graphs, Discrete Mathematics 9,
pp- 205-212, 1974.

ST.A. CooK, The complexity of theorem-proving procedures, Proceedings of the
Third Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery, 1971.

232

[18]
[19]

[20]

[28]

[29]

D. COPPERSMITH, SH. WINOGRAD, Matrix Multiplication via Arithmetic Progressions,
Journal of Symbolic Computation 9, pp. 251-280, 1990.

D.G. CORNEIL, A simple 3-sweep LBFS algorithm for the recognition of unit interval
graphs, Discrete Applied Mathematics 138, pp. 371-379, 2004.

D.G. CorNEIL, H. KiM, S. NATARAJAN, ST. OLARIU, A.P. SPRAGUE, Simple linear
time recognition of unit interval graphs, Information Processing Letters 55, pp. 99-104,
1995.

D.G. CoRNEIL, ST. OLARIU, L. STEWART, Asteroidal triple-free graphs, STAM
Journal on Discrete Mathematics 10, pp. 399-430, 1997.

D.G. CORNEIL, ST. OLARIU, L. STEWART, The ultimate interval graph recognition
algorithm? (Extended abstract), Proceedings of the Nineth Annual ACM-STIAM
Symposium on Discrete Algorithms, SODA’98, pp. 175-180, 1998.

E. DAHLHAUS, Minimal Elimination Ordering Inside a Given Chordal Graph, Proceed-
ings of the 23rd International Workshop on Graph-Theoretic Concepts in Computer
Science, WG’97, Lecture Notes in Computer Science 1335, pp. 132-143, 1997.

X. DENG, P. HELL, J. HUANG, Linear-time representation algorithm for proper
circular-arc graphs and proper interval graphs, SIAM Journal on Computing 25,
pp. 390-403, 1996.

G.A. DirAc, On rigid circuit graphs., Abhandlungen aus dem Mathematischen
Seminar der Universitat Hamburg 25, pp. 71-76, 1962.

M. FARBER, On diameters and radii of bridged graphs, Discrete Mathematics 73,
pp- 249-260, 1989.

ST. FOLDES, P.L. HAMMER, Split graphs, 8th South-Eastern Conference on Com-
binatorics, Graph Theory and Computing, Louisiana State University, Baton Rouge,
Louisiana, Congressus Numerantium 19, pp. 311-315, 1977.

F.V. FoMmIN, P.A. GOLOVACH, Interval degree and bandwidth of a graph, Discrete
Applied Mathematics 129, pp. 345-359, 2003.

M.L. FREDMAN, J. KoMLOs, E. SZEMEREDI, Storing a Sparse Table with O(1) Worst
Case Access Time, Journal of the Association for Computing Machinery 31, pp. 438—
544, 1984.

T. GALLAL, Transitiv orientierbare Graphen, Acta Mathematica Academiae Scien-
tiarum Hungaricae 18, pp. 25-66, 1967.

M.R. GAREY, D.S. JOHNSON, Computers and Intractability. A Guide to the Theory
of NP-Completeness, W.H. Freeman and Company, 1979.

F. GAVRIL, The Intersection Graphs of Subtrees in Trees Are Exactly the Chordal
Graphs, Journal of Combinatorial Theory (B) 16, pp. 47-56, 1974.

P.C. GILMORE, A.J. HOFFMAN, A Characterization of Comparability Graphs and of
Interval Graphs, Canadian Journal of Mathematics 16, pp. 539-548, 1964.

CHR. GLASSER, private communication, 2003.

M.CH. GoLuMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York, 1980.

233

[36]

[37]

[38]

39]

M.CH. GorLuMBIC, CL. MoNMA, W.T. TROTTER, JR., Tolerance Graphs, Discrete
Applied Mathematics 9, pp. 157-170, 1984.

M. HaBiB, R. McCONNELL, CHR. PAuL, L. VIENNOT, Lex-BFS and partition
refinement, with applications to transitive orientation, interval graph recognition and
consecutive ones testing, Theoretical Computer Science 234, pp. 59-84, 2000.

M. HaBIiB, R.H. MOHRING, Treewidth of cocomparability graphs and a new order-
theoretic parameter, Technical report 336/1992, Fachbereich 3 Mathematik, Technische
Universitat Berlin, 1992.

P. HeLr, J. HuaNg, Certifying LexBES Recognition Algorithms for Proper Interval
Graphs and Proper Interval Bigraphs, STAM Journal on Discrete Mathematics 18,
pp. 554-570, 2005.

H. HEMPEL, D. KRATSCH, On claw-free asteroidal triple-free graphs, Discrete Applied
Mathematics 121, pp. 155-180, 2002.

C.M. HERRERA DE FIGUEIREDO, J. MEIDANIS, C. PICININ DE MELLO, A linear-
time algorithm for proper interval graph recognition, Information Processing Letters 56,

pp. 179-184, 1995.

W. HEssE, E. ALLENDER, D.A. MiX BARRINGTON, Uniform constant-depth threshold
circuits for division and iterated multiplication, Journal of Computer and System
Sciences 65, pp. 695-716, 2002.

D. HILBERT, Mathematische Probleme, Nachrichten von der Koniglichen Gesellschaft
der Wissenschaften zu Gottingen 1900, Gottingen, pp. 253-297, 1900.

L. IBARRA, Fully dynamic algorithms for chordal graphs and split graphs, Technical
report, University of Victoria, 2000.

N. IMMERMAN, Nondeterministic space is closed under complementation, SIAM
Journal on Computing 17, pp. 935-938, 1988.

H. KapranN, R. SHAMIR, R.E. TARJAN, Tractability of parameterized completion
problems on chordal and interval graphs: Minimum Fill-in and Physical Mapping,
Proceedings of the 35th Annual Symposium on Foundations of Computer Science,
FOCS 1994, pp. 780-791, IEEE Computer Society Press, 1994.

T. KLoks, Treewidth—Computations and Approximations, Lecture Notes in Computer
Science 842, Springer, 1994.

T. KrLoks, D. KRATSCH, Listing all minimal separators of a graph, STAM Journal on
Computing 27, pp. 605-613, 1998.

T. Kroks, D. KraTscH, H. MULLER, Approximating the Bandwidth for Asteroidal
Triple-Free Graphs, Proceedings of the 3rd Annual Furopean Symposium on Algo-
rithms, ESA’95, Lecture Notes in Computer Science 979, pp. 434-447, 1995.

T. Kroks, D. KraTscH, H. MULLER, Approzimating the bandwidth for AT-free
graphs, Journal of Algorithms 32, pp. 41-57, 1999.

T. Kroks, D. KraTscH, H. MULLER, Finding and counting small induced subgraphs
efficiently, Information Processing Letters 74, pp. 115-121, 2000.

T. KLoks, D. KRATSCH, J. SPINRAD, On treewidth and minimum fill-in of asteroidal
triple-free graphs, Theoretical Computer Science 175, pp. 309-335, 1997.

234

[53] D. KraTscH, R.M. McCONNELL, K. MEHLHORN, J.P. SPINRAD, Certifying
Algorithms for Recognizing Interval Graphs and Permutation Graphs, Proceedings of
the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 709—
716, 2003.

[64] D. KRATSCH, L. STEWART, Domination on cocomparability graphs, STAM Journal on
Discrete Mathematics 6, pp. 400-417, 1993.

[55] J. VAN LEEUWEN, editor, Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity, pp. 527-631, Elsevier, 1990.

[66] C.G. LEKKERKERKER, J.CH. BOLAND, Representation of finite graphs by a set of
intervals on the real line, Fundamenta Mathematicae 51, pp. 45-64, 1962.

[57) M. LiSKiIEwICcZ, M. OGIHARA, S. Topa, The complexity of counting self-avoiding
walks in subgraphs of two-dimensional grids and hypercubes, Theoretical Computer
Science 304, pp. 129-156, 2003.

[58] P.J. LooGEs, ST. OLARIU, Optimal greedy algorithms for indifference graphs,
Computers & Mathematics with Applications 25, pp. 15-25, 1993.

[59] Y.V. MATIYASEVICH, Hilbert’s Tenth Problem, The MIT Press, 1993.
[60] R.M. McCONNELL, J.P. SPINRAD, Modular decomposition and transitive orientation,
Discrete Mathematics 201, pp. 189-241, 1999.

[61] P. McKENzIE, K.W. WAGNER, The Complexity of Membership Problems for Circuits
over Sets of Natural Numbers, Proceedings of the 20th Annual Symposium on
Theoretical Aspects of Computer Science, STACS 2003, Lecture Notes in Computer
Science 2607, Springer, pp. 571-582, 2003.

[62] K. MEHLHORN, ST. NAHER, The LEDA Platform for Combinatorial and Geometric
Computing, Cambridge University Press, 1999.

[63] D. MEISTER, Minimale Triangulationen AT-freier Graphen, Diploma thesis, Friedrich-
Schiller-Universitdt Jena, Germany, 2000.

[64] D. MEISTER, The structure of separator graphs and efficient algorithms for minimal
triangulation problems of permutation graphs, Technical report 361, Institut fir
Informatik, Bayerische Julius-Maximilians-Universitat Wiirzburg, 2005.

[65] R.H. MOHRING, Triangulating graphs without asteroidal triples, Discrete Applied
Mathematics 64, pp. 281-287, 1996.

[66] ST. OLARIU, An optimal greedy heuristic to color interval graphs, Information
Processing Letters 37, pp. 21-25, 1991.

[67] B.S. PANDA, S.K. DaSs, A linear time recognition algorithm for proper interval graphs,
Information Processing Letters 87, pp. 153-161, 2003.

[68] CH.H. PAPADIMITRIOU, Computational Complexity, Addison-Wesley, 1994.

. PARRA, P. SCHEFFLER, aracterizations and algorithmic applications of chorda
69] A. P P.S Ch izati d algorithms licati hordal
graph embeddings, Discrete Applied Mathematics 79, pp. 171-188, 1997.

[70] A. PNUELL, A. LEMPEL, SH. EVEN, Transitive orientation of graphs and identification
of permutation graphs, Canadian Journal of Mathematics 23, pp. 160-175, 1971.

235

[71]

[72]

E. PRISNER, Graphs with Few Cliques, Graph Theory, Combinatorics, and Applica-
tions: Proceedings of the Seventh Quadrennial International Conference on the Theory
and Applications of Graphs, pp. 945-956, John Wiley and Sons, Inc., 1995.

O. REINGOLD, Undirected ST-Connectivity in Log-Space, Electronic Colloquium on
Computational Complexity, ECCC, report no. 94, 2004.

F.S. ROBERTS, Indifference graphs, in: F. Harary (Ed.), Proof techniques in graph
theory, pp. 139-146, Academic Press, New York, 1969.

N. ROBERTSON, P.D. SEYMOUR, Graph Minors. II. Algorithmic Aspects of Tree-
Width, Journal of Algorithms 7, pp. 309-322, 1986.

D.J. ROSE, Triangulated Graphs and the Elimination Process, Journal of Mathematical
Analysis and Applications 32, pp. 597-609, 1970.

D.J. RosgE, R.E. TARJAN, G.S. LUEKER, Algorithmic aspects of vertex elimination
on graphs, SIAM Jounal on Computing 5, pp. 266-283, 1976.

W.L. Ruzzo, J. SIMON, M. ToMPA, Space-Bounded Hierarchies and Probabilistic
Computations, Journal of Computer and System Sciences 28, pp. 216-230, 1984.

W.J. SavITCH, Relationships Between Nondeterministic and Deterministic Tape
Complezities, Journal of Computer and System Sciences 4, pp. 177-192, 1970.

L.J. STOCKMEYER, A.R. MEYER, Word Problems Requiring Ezponential Time,
Proceedings of the ACM Symposium on the Theory of Computation, pp. 1-9, 1973.

R. SZELEPCSENYI, The method of forced enumeration for nondeterministic automata,
Acta Informatica 26, pp. 279-284, 1988.

R.E. TARJAN, M. YANNAKAKIS, Simple Linear-Time Algorithms to Test Chordality
of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs,
SIAM Journal on Computing 13, pp. 566-579, 1984.

L.G. VALIANT, The Complezxity of Enumeration and Reliability Problems, SIAM
Journal on Computing 8, pp. 410-421, 1979.

H. VOLLMER, Introduction to Circuit Complezity, Springer, 1999.

K. WAGNER, The Complezity of Problems Concerning Graphs with Regularities,
Proceedings of the 11th International Symposium on Mathematical Fondations of
Computer Science, MFCS 1984, Lecture Notes in Computer Science 176, Springer,
pp- 544-552, 1984.

J.R. WALTER, Representations of Chordal Graphs as Subtrees of a Tree, Journal of
Graph Theory 2, pp. 265-267, 1978.

H. WASSErRMAN, M. BruwMm, Software Reliability via Run-Time Result-Checking,
Journal of the ACM 44, pp. 826-849, 1997.

K. YANG, Integer Circuit Fvaluation Is PSPACE-Complete, Journal of Computer
and System Sciences 63, pp. 288-303, 2001.

M. YANNAKAKIS, Computing the minimum fill-in is NP-complete, SIAM Journal on
Algebraic and Discrete Methods 2, pp. 77-79, 1981.

236

237

Mathematical symbolism (a list)

Number sets

N=ger {0,1,2,...} set of natural numbers
Z=qet{---,—2,—1,0,1,2,. ..} set of integer numbers
R e set of real numbers
Sets

G e proper inclusion relation
G inclusion relation
U e union operation
PP intersection operation
T complementation operation
L P set subtraction operation
e symmetric difference

Let A be a set.

A% =4t A x A =gt {(a,d) :a,a’ € A} .l Cartesian set product
Functions

a=1logc <= c=2% logarithm function
IA(N) Zdef T e identity function
1 largest integer not greater than r

Let A C N be a set.
m=maxA < meAandm>nforeveryne A maximum of A

Functions can be total, injective, surjective and bijective.

Relations

Let a,b,c € N.
a=c(modb) < FkeN:|c—a|- k=D

Logics

£ logical semantic equivalence
A logical ‘and’
Ve logical ‘or’
TP logical ‘not’
A existential quantifier
Y e universal quantifier

238

Graphs

Let G, H be graphs, let G’ be a directed graph, let u and v be vertices of G, let e be
an edge of G, let A be a set of vertices of G, let F' be a set of edges of G.

V(G vertex set of G
E(G) edge set of G
V(G) vertex set of G’
A(G) arc set of G’
G e proper supergraph/subgraph relation
G e supergraph /subgraph relation
PP isomorphism relation
GlA] subgraph of G induced by A
G deleting edge e
GHe adding edge e
G—U deleting vertex u
GH U o adding vertex u
G U adding set F' of edges
G U H disjoint union of G and H
Na(u) (open) neighbourhood of u
Nalu] closed neighbourhood of u
Na(A) (open) neighbourhood of A
Nal[A] closed neighbourhood of A
ISt (Uy D) o distance of u and v
dIam () diameter of G
DW(G) bandwidth of G
mMA(G) minimum fill-in of G
PPW(G) proper pathwidth of G
WG treewidth of G
A(G) independent set number
WG clique number

<L logarithmic-space many-one reducibility
=L logarithmic-space many-one isomorphism
<NL nondeterministic logarithmic-space many-one reducibility

239

List of (decision) problems

Remark: The cited page numbers refer to the first occurrence of the problems, where
they are defined

ACY C acyclicness problem, p. 33
ACYCGAP ...l graph accessibility problem for acyclic graphs, p. 34
ACYCGIP .l graph inaccessibility problem for acyclic graphs, p. 34
aMy,, (O) .. bounded exact membership problem for recurrent O-systems, p. 68
BANDWIDTH e bandwidth problem, p. 149
DEPTH e depth of a vertex, p. 45
DIOPHANTINE ..., satisfiability of Diophantine equations, p. 128
EmpTY(O) Ll emptyness problem for recurrent O-systems, p. 89
o-EmMPTY(O) special emptyness problem for recurrent O-systems, p. 89
GAP graph accessibility problem, p. 33
GIP graph inaccessibility problem, p. 33
M. (O) existential membership problem for recurrent O-systems, p. 67
M. (gr,®,®,1) existential membership problem for recurrent

{gr,®, ®, 1}-systems, p. 128
Myn(O) exact membership problem for recurrent O-systems, p. 67
MC(O) membership problem for arithmetical O-circuits, p. 73
MINIMUM FILL-IN i minimum fill-in problem, p. 149
NOW(@) oo number of walks in a graph, p. 44
NOMW (@) oo number of walks in a marked graph, p. 44
POM(@) e element of a power of a matrix, p. 48
QBF true quantified Boolean formula problem, p. 95
RESIDUEOFWALK ... i residue class of a walk, p. 53
SAT satisfiability of Boolean expressions, p. 55
3-SAT satisfiability of Boolean 3-expressions, p. 55
SET-SCE satisfiability of a set-system of congruence equations, p. 56
sORSRl simultaneous-ones ring-shift registers problem, p. 58
TREEWIDTH ittt e aaaee treewidth problem, p. 148
W ALK existence of a walk, p. 45
XNOW (@) i exact number of walks in a graph, p. 44
XNOMW (o) viiiiiiien exact number of walks in a marked graph, p. 44

XPOM(a) oo exact element of a power of a matrix, p. 48

240

241

Index

A

adjacency matrix 48
adjacent (vertices) 15
adjacent (edges) 18
alphabet 23

B

bandwidth 149
between (for scanline) 172
BFS-level 201

C

chord
—in a cycle 19
—in a path 19
clique 18
—maximal 18

clique-module 203
—maximal 203

clique number 18
complement (graph) 18
complete 33
completeness 33
completing into clique 145

complexity class 28
-C_L 31
—complements 29
—coNL 29
—coNP 29
-EXP 30
-EXPSPACE 30
-L 29

D

depth 45
diameter 19

arc 15

—in-coming 15
—out-going 15
arithmetical circuit 62
asteroidal triple 166

box 198

—left partition 198
-rightmost 198
-right partition 198

-NEXP 30
—2-NEXP 30
-NL 29

-NP 29

-P 29

-PL 31
-PSPACE 29
component
—connected 19
—S-full 136
computation tree 99
connected 19
—strongly 20
—weakly 20

consecutive clique arrangement

cross 137

cycle
—chordless 19
—directed 19
—undirected 19

Diophantine equation 128
distance 19

171

242

E
edge 15

elimination scheme
—minimal 213

—minimal interval 213
—perfect 140

F

farther right neighbour property 201
Fibonacci numbers 61

finite recurrent system 63
—{U,N, 7, ®, ®}-system 66
—{gr,®,®,1}-system 119
—dimension 65

formula representation 99

kfree-min-LexBFS 200

G

graph 15

~blank 16
—complete 16
—directed 15
—empty 16
—filled 213
—finite 15
-nearly blank 156
—undirected 15
graph class 151
—acyclic 20
—AT-free 166
—AT-free claw-free 207
—bipartite 142
—chordal 137
—claw-free 207
—co-bipartite 149
—co-chordal 153

H
hard 33

enclosure 173
endpoint 15

function

—inverse 168

-Wea 45

{U,n,~, ®, ®}-function 65
function class

-FL 30

-FNL 35

—#L 31

function matrix 88

—cocomparability 166
—cograph 151
—comparability 166
—complete bipartite 142
—{04,05,...}—free 151
—H-free 151
—2Ko-free 152
—interval 170
—partial k-tree 148
—permutation 168
—proper interval 210
—split 153
—d-trapezoid 196
—tree 148

—1-tree 148

—k-tree 148
—triangle-free 207
—weakly chordal 153

hardness 33

243

I
incident 18 integer expression 6
independent set 18 intersect (for scanlines) 174
—maximal 18 interval model 170
independent set number 18 isomorphic (graphs) 16
isomorphic (problems) 32
L

language 23 -walk (directed) 19

layout 149 ~walk (undirected) 19
left ring-shift 58 —word 23

leng‘ch1 « 0 letter 23

—cycle (directe 19 LexBFS 198

—cycle (undirected) 19 o

linegraph 152

—path (directed) 19

—path (undirected) 19 loop 15

M

minimal fill-in 154 module 202

minimum fill-in 148 fconn.ected 203

min-LexBFS 198 ‘m?’?lmal 203

—kmin-LexBFS 200 ~trivial - 203

min-LexBFS* 200 monotone tuple 114

~kmin-LexBFS* 200 moplex 203
—adjacent 203
—simplicial 203
—size 205

N

neighbour (for scanline) 176 neighbourhood 18

—close 176 —closed 18

—left 176 —open 18

—right 176 non-crossing 137

-N=(s) 176

Q)

oracle Tur%ng machine 34 interval 170

oracle Turing transducer 35 _LexBFS 198

ordering —min-LexBFS 198

-BFS 201 —kmin-LexBFS 200

—cocomparability 166 —proper interval 210

—kfree-min-LexBFS 200 —reversed 20

—topological 21

244

P

path ~-EMPTY 89

fcl_lordless 19 —o-EMPTY 89

—directed 19 _GAP 33

fundire‘cted 19 “GIP 33

permutation 20 -M,, 67

permutation diagram 168 My, 67

potential maximal clique 176 -MC 73

potential maximal cliques graph 184 ~MiNniMuM FILL-IN - 149

—PC(W) 184 *NOMW(O() 44

~weighted 192 NoW(a) 44

predecessor 15 —POM(a) 48

blem 23 “QBE 95

pr(erCn;/ o 33 ~RESIDUEOFWALK 53

~ACYCGAP 34 :Sgg{-SSISE%%

’QIS/IYCGI(%; 34 —TREEWIDTH 148

TavEm -WaALK 45

-BANDWIDTH 149

-DEPTH 45 XEO%/IVYVga)MM
—XINO [0}

—DIOPHANTINE 128 ~XPOM(a) 48
proper pathwidth 227

quantified Boolean formula 94

R

random access machine 23 reducibility 32

—programme 24 —closed 32

reduce 32 —<p 32

—<m 36
register 57

245

S

scanline 172

—int(s) 172

—S0 176

—sp 176

—special 173

separate (for vertices) 198

separator

-a,b- 135
—minimal 136
—minimal a,b- 136
simplicial 138

T

transitive orientation 166
treewidth 148

triangulation 142
—minimal 142

U
underlying 62
vV

vertex 15
—inner 177

—leftmost 20

w

walk
—directed 19
—undirected 19

sink 20

source 20

split partition 153
square (of graph) 226
subgraph 16
—induced 16
—proper 16
—spanning 16
successor 15
supergraph 16
—spanning 16
sweep 200

Turing machine 25
—instruction 25
—programme 29

Turing transducer 28

—moplex 203
—universal 18

vertex ordering 20

width (layout) 149

