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1
INTRODUCTION

With our kids I shared my enthusiasm (...) referring to balls changing color upon reflection
of the walls and rising higher and higher until they would go over the roof.

T. M. Klapwijk, Proximity Effect From an Andreev Perspective[1]

A material which has zero electrical resistance and expels an external magnetic field
completely from its interior is called a superconductor. This state of matter, which was
discovered over a hundred years ago by Heike Kamerlingh Onnes [2] is to this day one
of the most fascinating and active phenomena in condensed matter research [3]. Even
though superconductivity is still an effect which occurs only at low temperatures, it
has found numerous practical applications such as superconducting magnets used in
medical nuclear magnetic resonance machines and superconducting tunnel devices used
as sensitive magnetometers or particle detectors [4, 5]. Furthermore, quantum computers
based on superconducting circuits are about to transition from academic research to
industry [6–8].

After the discovery of superconductivity, it took almost 50 years until John Bardeeen,
Leon Cooper and Robert Schrieffer developed a “Microscopic theory of superconductiv-
ity”, nowadays known as the BCS-theory [9]. The breakthrough idea was that electrons
form pairs (Cooper pairs) and overcome their Coulomb repulsion due to an arbitrarily
small positive attraction originating from electron-lattice interactions [10]. Instead of
describing the wave function of each electron individually with an individual phase, as
is done in ordinary metals, the ground state of all Cooper pairs can be described by one
coherent and macroscopic wave function with one phase φ.

In 1962, Brian Josephson predicted that Cooper pairs can tunnel through a thin insu-
lating barrier separating two superconductors, described by phase φ1 and φ2 [11]. This
prediction involves two physical processes which are formulated in the first and second
Josephson equations respectively. The first one says that at zero voltage a supercurrent
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can flow through the device, which depends on the phase difference of the two supercon-
ductors ∆φ=φ1 −φ2. The second equation predicts that a finite dc voltage drop across
the junction generates an oscillating current. The Josephson effect has been verified in
numerous experiments [12–15]. Even though the Josephson effect is a macroscopic quan-
tum phenomenon it is influenced by microscopic properties of the superconductor and
the barrier in between. The barrier between the two superconductors, sometimes also
called “weak link”, can be an insulator as in Josephson’s pioneering work. It is also possible
that the weak link consists of other materials such as a normal metal, a semiconductor, or
a constriction. The transport through this barrier can then be described in the conceptual
framework as introduced by Landau and Büttiker [16, 17] based on transmission matrices
and the Andreev reflection process [18, 19]. The resulting microscopic description of the
Josephson effect gives rise to states which are localized inside the barrier and are called
Andreev bound states. The energy of these states and also the current depend on the
phase difference ∆φ of the two superconductors and the normal state transmission of
each channel. Consequently, Josephson junctions can be used to probe the properties of
the superconductors.

An example where this was successfully used was the proof of d-wave pairing sym-
metry in high temperature superconductors [20]. Most elemental supercondcutors have
a superconducting gap which is isotropic. This is described by a wave function with
zero angular momentum (ls = 0) and is, in analogy to the atomic orbitals, called s-wave
superconductivity. Electrons with opposite spin form a Cooper pair and the total spin is
zero (ss = 0). In contrast, a d-wave superconductor has higher order orbital contributions
(ld = 2), which resemble “pear-shaped lobes”, but the total spin is still zero (sd = 0). This
combination of a symmetric wave function in momentum space and an antisymmetric
wave function in spin space needs to be satisfied as fermions obey the Pauli exclusion
principle (this statement is equivalent to demand that the total wave function of fermions
has to be antisymmetric).

This implies that for a superconductor with odd momentum (lp = 1) the total wave
function is only antisymmetric if triplet Cooper pairs are formed (sp = 1). It is exactly
this triplet pairing, which makes p-wave superconductors fundamentally different from
s- or d-wave superconductors. In general p-wave superconductors based on intrinsic
superconductivity of the material are rare in nature. The compound Sr2RuO 4 is poten-
tially a p-wave superconductor, but so far it has not been successful to unambiguously
prove the p-wave character [21]. This kind of superconductors are of great interest both
from a fundamental and also practical perspective as a peculiar fermionic quasiparticle
excitation at zero energy, a so called “Majorana zero mode”, is predicted to emerge at
vortices or edges of such a system. This new particle is its own anti-particle; the creation
operator or annihilation operator of this state are the same. Furthermore, these states
obey an exchange statistics different from “normal”fermions and belong to a class of
quasiparticles called non-abelian anyons. These particles can be used as building blocks
for topological quantum computation, which is predicted to be more stable than other
quantum computing systems against certain types of decoherence [22].

An alternative approach to creating p-wave superconductivity is the combination of
conventional superconductors with materials where the spin-degeneracy is inherently
lifted [23, 24]. One possible method to realize this is to use topological insulators; this is a



1

3

material class with insulating bulk but metallic surface states where the electron spin and
momentum are locked to each other [25, 26].

In this thesis, the theoretical proposals of Liang Fu and Charles Kane in Refs. [23, 24]
are followed. Superconducting pair correlations are induced into the surface states of
mercury telluride (HgTe), a well studied 2D and 3D dimensional topological insulator
[27, 28]. In order to show that this system has topological properties, Josephson junctions
where the weak link is a topological insulators are fabricated and the fractional Joseph-
son effect, a signature of topological superconductivity is observed. In a topological
Josephson junction, the phase of Andreev bound states varies 4π-periodic instead of the
2π-periodicity of conventional bound states.

The outline of the thesis is as follows:

• Chapter 2 introduces the theoretical concepts of topology in condensed matter
systems and in particular in topological band insulators and topological super-
conductors from the perspective of an experimentalist. It is shown that HgTe with
its inverted band structure is an ideal candidate for the realization of topologi-
cal insulators. It is further shown that the combination of superconductivity and
topological surface states leads to an effective p-wave superconductivity with Majo-
rana bound states when the excitation gap locally closes. In order to study these
states, Josephson junctions and the concept of Andreev bound states are described
and the characteristic differences between a topological Josephson junction and
a conventional Josephson junction are highlighted. At the end of the chapter a
brief motivation for the interest in Majorana fermions in the context of quantum
computation is given.

• Chapter 3 describes the ac behaviour of a Josephson junction based on thick tensile
strained layers of HgTe. In such structures, a 4π-periodic Andreev bound state,
a so-called gapless Andreev bound state, is predicted to exist. By illuminating
the Josephson junction with microwaves, steps of constant voltage form in the
I −V characteristics. In a conventional Josephson junction, the distance in voltage
between two consecutive steps is for a fixed frequency quantized. In contrast the
steps are twice as high in a topological Josephson junction which contains gapless
Andreev bound states. In a 3D TI based weak link one gapless mode but also many
conventional modes are expected. The interplay between these two contributions
is studied as a function of rf frequency and rf power.

• Chapter 4 deals with the numerical modelling of the I −V characteristics of a
topological Josephson junction under rf illumination, in order to understand the
behaviour of the missing odd Shapiro steps. This is commonly done in a lumped
element model where a Josephson junction is shunted by an ohmic resistor. This
model is called the resistively shunted Josephson junction (RSJ) model. The lin-
ear combination of a 2π- and a 4π-periodic supercurrent (i.e. a sinφ and sinφ/2
contribution) is leading to a non-linear differential equation.

• In chapter 5, the study of a Josephson junction based on a HgTe quantum well, a two
dimensional topological insulator, is described. The material is characterized and
the fabrication of the weak link is detailed. In such a weak link the one dimensional
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helical edge channels in combination with conventional superconductivity give
rise to 1D p-wave superconductivity. By studying the response to a magnetic
field applied perpendicular to the sample plane, it is possible to determine the
current distribution in the Josephson junction. This is done as a function of applied
gate voltage. In addition, under microwave illumination, Shapiro steps emerge.
A doubling of the voltage step size is expected due to the presence of gapless
edge channels. This can evidence the presence of a 4π-periodic supercurrent
contribution. The behaviour of a trivial HgTe quantum well, which is expected
to behave like a conventional Josephson junction, is compared to the topological
quantum well.

• Chapter 6 outlines a method for probing the periodicity of the Andreev bound
states involving the measurement of the emitted Josephson radiation. This method
is more direct than the Shapiro step measurements described in chapter 5. A dc
voltage bias V across a conventional Josephson junction is converted into an ac
radiation with frequency f J = 2eV /h according to the second Josephson equation.
In contrast, the ac frequency of a topological Josephson junction with gapless
Andreev bound states is half of the fundamental frequency, i.e. f J /2. The emission
spectrum of a weak link of a topological HgTe quantum well was measured as a
function of applied bias voltage and gate voltage. The results are compared to the
emission spectrum of a trivial quantum well.

• Chapter 7, the last part of the thesis describes the study of the proximity induced
superconductivity in a 3D topological insulator using point-contact spectroscopy.
This geometry allows the energy dependence of the proximity induced supercon-
ducting state to be accessed. The point-contact was defined lithographically and a
superconductor was deposited to induce superconducting correlations. The differ-
ential conductance is studied as a function of temperature, magnetic field strength
and gate voltage. In such a geometry effects like crossed Andreev reflections and
specular Andreev reflection are expected due to the Dirac like band structure of
the topological insulator. Furthermore, the induced state resembles that of a 2D
px + i py superconductor.

Finally a summary of the thesis is given. All chapters are written self-contained and it
should be possible to read each chapter individually. Nevertheless, chapter 2 summarizes
the theoretical background for all the following parts.
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2
TOPOLOGY IN CONDENSED MATTER

AND THE EMERGENCE OF

MAJORANA FERMIONS

One of the most fascinating and ambitious goals in contemporary condensed matter physics
is the experimental engineering, proof, and manipulation of Majorana bound states. In
this thesis, theoretical ideas of such bound states when topological insulators are combined
with conventional superconductors have been investigated. A comprehensive introduction
is given in order to facilitate the understanding of the theoretical and experimental aspects
of the topic. First, the concept of topology in condensed matter is explained. Second, using a
Dirac Hamiltonian with linear band dispersion, the key properties of topological systems are
discussed. Third, it is shown that the band structure of HgTe quantum wells can be cast into
two time-reversal copies of a Dirac Hamiltonian forming a quantum spin Hall insulator,
which is a two dimensional topological insulator. Fourth, this concept is extended to the
case of a three dimensional topological insulator. Fifth, in order to expound the concept
of topological superconductivity, a short primer on the theory of superconductivity and
especially the Bogoliubov-de Gennes representation is introduced. Sixth, it is shown that an
one dimensional spinless superconductor can under certain conditions host topological end
states, so called Majorana fermions. Finally the concepts of conventional superconductivity
and topological insulators are combined to form topological superconductivity. Topological
superconductivity is the key idea of the present thesis. The experimental signatures of such
a system, namely the fractional Josephson effect is derived. In fact, the main goal of this
thesis is the experimental verification and proof of the fractional Josephson effect.
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2.1. TOPOLOGY IN CONDENSED MATTER

The classification of objects which can be transformed into each other under continuous
deformations is investigated in the mathematical field of topology. An often used example
is that a sphere can be deformed into an ellipsoid by for example stretching it, but it
is impossible to transform it into a doughnut without cutting a hole in it [1].Thus, by
topological classification, the ellipsoid and the sphere belong to the same class, while the
doughnut belongs to a different topological class.

This concept can now be applied to classify Hamiltonians by their topological proper-
ties and look for topological distinct phases. In fact, D. J. Thouless, F. D. M. Haldane and J.
M.Kostelitz were awarded the Nobel prize in physics in 2016 “for theoretical discoveries
of topological phase transitions and topological phases of matter ”. Using this classifica-
tion, two systems, described by the Hamiltonians H and H ′ are said to be topologically
equivalent, if it is possible to find a smooth (adiabatic) transformation, which perseveres
the symmetries from one Hamiltonian into the other, i.e.

H(α) =αH ′+ (1−α)H , (2.1)

where for α = 0, the system is in its initial Hamiltonian H and for α = 1 in the final
Hamiltonian H ′.

In this thesis we limit ourself to gapped systems, where the ground state and the
excited state are separated by a finite energy gap, such as in the case in band insulators or,
as we will see later, very similar in superconductors. Such systems are now said to be in the
same topological class if the transformation described in Eq. 2.1 does not close the bulk
band gap. As will be shown, the topological invariants of a given system heavily depend
on the underlying symmetries and dimensions of the Hamiltonian [2]. The two major
symmetries dealt with in this thesis are the time reversal symmetry (TRS), for topological
band insulators and the particle-hole symmetry for topological superconductors.

In general this classification is done by finding integer numbers called topological in-
variants which can only change when the bulk gap closes. Historically the first condensed
matter system which was found to be topological is the quantum Hall state (QH) [3, 4].
An electron in a two dimensional electron gas is forced on a circular motion by applying a
perpendicular magnetic field. If the strength of the field is large enough, the motion of
electrons form closed loops (Landau-levels), which are quantized . These closed loops
turn a metallic bulk system insulating, while at the edges conducting channels, so called
QH channels, form which lead to a quantized Hall conductivity ofσx y = Ne2/h. The num-
ber of filled Landau-levels N forms an integer which corresponds to these topologically
protected edge states.

A simple Hamiltonian, which is linear in momentum and breaks TRS can be used
to see how such edge states form, and what the topological invariant of the system is.
Then, the amount of degrees of freedom are doubled which allows topological insulators
without explicitly breaking TRS. We are able to show that the band structure of HgTe
quantum wells resemble exactly such a state in the low energy limit.
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2.2. TOPOLOGICAL BAND INSULATORS
The presence of topological invariants is directly linked to the symmetries of the underly-
ing system. In the case of band insulators it is the TRS. A system is invariant under TRS if
it does not change under the direction of time flow t 7→ −t . In general this can be defined
for an arbitrary Hamiltonian H as

T HT −1 = H , (2.2)

where T is the time reversal operator which can be defined for a fermionic spin 1/2 system
as T = iσyC , with σi being the Pauli-matrices and C the complex conjugation operator
[5]. Effectively, this operation takes the complex conjugate of the wave function and flips
the spin. One important consequence of a TR-invariant system and also for topological
matter is the Kramers’ degeneracy theorem which states that each energy level is at least
doubly degenerate1. Usually, this degeneracy is the spin of the system.

2.2.1. CHERN INSULATOR AND BULK BOUNDARY CORRESPONDENCE
Before discussing time-reversal invariant topological insulators (TIs), it is instructive
to look at systems where TRS is explicitly broken. Due to its deep consequences and
the fact that a lot of systems in chapters dealing with edge states of TIs and low energy
Hamiltonian of the topological superconductivity, it is useful to introduce the two band
Dirac Hamiltonian:

HDirac(k) =ħvF k~σ+mσz =
(

m ħvF (kx − i ky )
ħvF (kx + i ky ) −m

)
(2.3)

with vF being the Fermi velocity, ħ the reduced Planck constant,~σ= (σx ,σy ,σz ) the Pauli
matrices, and m the massive mass. The basis of the system isΨ= (Ψe ,Ψh). This system
can be used to for example describe a two dimensional electron gas with linear dispersion
without spin degeneracy in presence of a perpendicular magnetic field mσz . The energy
spectrum yields E(k) = ±

√
|ħvF k|2 +m2. For a finite mass, this is a gapped spectrum

with a band gap at k = 0 and a separation of the bands by a value of 2m. It is also possible
to show that the mass term also explicitly breaks the TRS of the system. At this point it is
a purely an academic question what happens if the sign of the mass changes. Looking
at the energy dispersion, the change from m →−m does not affect the bulk properties
of the system, but their topological invariants differ. The two cases refer to two distinct
topological classes. The Chern number defined as the total Berry flux in the Brillouin
zone characterizes the topological invariant of a Hamiltonian and is different for positive
and negative mass [1]. The two Hamiltonians can only be transformed into each other by
closing the bulk band gap.

1Proof: Consider two states |±〉 which are related by TRS |+〉 = T |−〉. If the Hamiltonian is invariant under TRS
the two states correspond to the same energy. Now using the property T 2 =−1, yields 〈+|−〉 = 〈−|T †T−1|+〉 =
−〈−|+〉∗ =−〈+|−〉. This means that the product needs to be zero i.e. the two states are orthogonal.
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BULK BOUNDARY CORRESPONDENCE

An important consequence of topological classification of matter occurs, if two insulating
materials with different topology (i.e. here different mass signs) are brought into contact2.
As the topology of the two systems cannot change adiabatically without closing the gap,
the invariant has to change somewhere in between, crossing zero energy which results in
the formation of gapless edge states.

m(x) |Ψ(x)| 

topological 

trivial 

x 

-m 

m 

Figure 2.1: Sketch the mass m as a function of coordinate x as given in Eq. 2.4. The absolute value of the wave
functionΨ is shown in red.

It is now worth following the idea by Jackiw and Rebbi [6] who looked at the one
dimensional case of a mass sign change. In our case we can create such a system by
assuming a semi-infinite plane with translational invariance along the y-axis and a mass
change as a function of the coordinate x

m(x) →±m for x →±∞ and m(x = 0) = 0. (2.4)

The momentum ky is still a good quantum number and it is therefore possible to separate
both wave functions and use plane waves for the y-direction Ψ(x, y) = e i k yΦ(x). The
system can be reduced to a one dimensional problem and we are now interested in states
at zero energy, therefore we are looking for solutions for HΨ= 0:

[−iħvFσx∂x +m(x)σz ]Ψ(x) = 0 (2.5)

where we used kx =−i∂x . Solving this equation leads to

Ψ(x, y) ∝ e i k y e
1

ħvF

x∫
0

d x′m(x′) ( 1
−1

)
(2.6)

with E(kx ) = ħvF kx . This solution describes a localized state at (x = 0) which decays
exponentially in the bulk as depicted in Fig. 2.1. It is a gapless or zero energy mode
with a positive group velocity along the y-direction forming a chiral edge mode i.e. a
quantum Hall insulator and is commonly referred to as a Chern Insulator where the

2Note that the vacuum is a trivial insulator. The energy gap of the vacuum is determined by ∆ = 2me c2 ≈
1×106 eV, which is the energy needed to create a electron-positron pair by ionising the vacuum.
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topological invariant corresponds to the number of edge channels. This is an important
consequence which must be emphasized ones again. At the boundary of two distinct
topological phases, gapless surface states form. This result can be extended to other
topological to trivial transitions as for example in superconductors. Using these concepts,
the physical meaning of mass inversion, i.e. replacing m by −m in the Hamiltonian,
can now be established in the special case of the quantum spin Hall insulator and HgTe
quantum wells. One has to keep in mind that edge states in a 2 dimensional system form
1 dimensional conduction channels while in 3 dimension, 2 dimensional surface states
form.

2.2.2. QUANTUM SPIN HALL INSULATOR
In treating the Chern insulator model under section 2.2.1 the spin degree of freedom was
neglected. The key idea of time reversal invariant topological matter is to double the
degree of freedom of the spinless model by taking the electron spin into account. In this
regard a strong spin-orbit interaction plays the role of a momentum depended effective
magnetic field but with a different sign for each spin direction (↑,↓). The simplest model,

+ = 

B -B 

Spin 

a) b) c) 

k+ k- 2m 

Figure 2.2: Construction of a quantum spin hall insulator from two counter propagating Chern insulators.

named after Bernevig, Hughes and Zhang the so called BHZ-model [7], is constructed
from two Dirac Hamiltonians HDirac

HBHZ =
(

HDirac 0
0 T HDiracT −1

)
. (2.7)

This formalism enforces TRS of the system. The basis is now a four component spinor

Ψ(r ) = [Ψe↑(r ),Ψh↓(r ),Ψh↑(r ),Ψe↓(r )], (2.8)

where the indices e or h stand for the electron or hole band and the arrows for the
spin direction. Changing the sign of mass m in this system with spatial coordinates
in analogy to the Chern insulator one gets two counter propagating edge channels, as
shown in Fig. 2.2 since it is basically two copies of a quantum Hall state with different
spin directions. It is worth mentioning that as we have now two counter propagating
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edge channels, the Chern number of the total system is zero. But there exists another Z2

invariant which protects the edge channels.

The edge channels are helical, i.e. the wave function are related by Ψ−k,↓ = TΨ+k,↓.
They are spin polarized with a quantized spin Hall conductance and thus this effect is
called “Quantum Spin Hall Effect”(QSHE) in analogy to the QHE with quantized charge
conductance. The two channels form Kramers pairs and are therefore forbidden from
scattering into each other as long as TRS is preserved3. It is exactly this property of
perfectly transmitting spin polarized edge channels which makes them so interesting.
The energy dispersion can then be calculated using the fact that the two diagonal blocks
are decoupled. The upper block yields

E (1,2) = E (e↑,h↓)(k) =±sgn(m)
√

(ħvk2)+m2 (2.9)

and is related to the lower block by E (e↑,h↓)(k) =−E (h↑,e↓)(k) = E (3,4).

The band structure for the normal (m > 0) and negative case (m < 0) are shown in
Fig. 2.3. At this point, we are finally able to identify the physical meaning involving the
sign change of the mass. For a mass m > 0, the electrons form the conduction band and
have a higher energy than the holes. Both are separated by a total energy gap of size 2m.
On the other hand for m < 0, the hole bands have a higher energy. This latter case is called
an inverted band structure and is a necessary property of any topological band insulator.

One can now discuss an intuitive picture for the emergence of metallic edge states by
considering the continuity of the bands when the mass changes sign. The bands need to
reverse their order which leads to the formation of edge states as is shown in Fig. 2.3.

Finally we are able to summarize the requirements for a physical system to be a
quantum spin Hall insulator (QSHI). It needs to contain electron and hole bands which
are coupled by a linear term. Furthermore, the band structure needs to be inverted.
Before it is shown that HgTe quantum wells of sufficient thickness host the quantum spin
Hall phase a brief section on the determination and interpretation of the Z2 invariant is
presented.

2.2.3. TOPOLOGICAL BAND THEORY

Using the translation symmetry of periodic crystals it is possible to describe the electronics
states by the lattice momentum k spanning the Brillouin zone (BZ). The so called Bloch
states |un(k)〉 are solutions for such a periodic system, where the index n accounts for
possible spin or lattice degrees of freedom. For a TRS Bloch Hamiltonian for spin 1/2
particles, the two Kramers’ partners are |uα↑(k)〉 and |uα↓(−k)〉. The periodicity of the
Brillouin zone requires that momenta k which are separated by n 2π

a , n ∈Z and a being
the lattice constant, should be equal. There exist special time reversal invariant momenta
(TRIM)Λwhere, due to TRS, the two Kramers’ partners are mapped onto themselves and
have to be degenerate at those points (k = 0 and π/a in the 1D BZ) [8, 9].

We define a matrix wmn(k) = 〈um(k)|T |un(−k)〉with the property wmn(−k) =−wnm(k),
which at the points Λmakes the matrix antisymmetric. The determinant of a antisym-

3The two states |±〉 are connected via TRS |+〉 = T |−〉. The matrix element of a hermitian scattering potential
V = T V T−1 preserving TRS between the two edge channels 〈+|V |−〉 =−〈+|V †|−〉 = 0 vanishes.
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Normal band structure 
m > 0 

Inverted band structure 
m < 0 

E1 

E4 

E2 

E3 

2m 

E 

k/x 

E2 

E3 

E1 

E4 

Helical edge states 

Ek+ Ek- 

Figure 2.3: Band structure of a TRS Chern insulator for two different mass signs and the emergence of helical
surface states at domain walls.

metric matrix is the square of its Pfaffian [9, 10]. It is now possible to calculate a number

δa = Pf[w(Λ)]

Det[w(Λ)]
=±1, (2.10)

where theZ2 invariant ν of the whole system can be calculated by (−1)ν =∏n
i=1δa . Here n

is the number of time invariant pointsΛ and can take the values 0 (trivial) or 1(topological).
This number can in principle be calculated for any Hamiltonian H and is therefore a
powerful tool to classify matter. This rather abstract formulation can be interpreted as
how the Kramers’ pairs of the bands are connected as shown in Fig. 2.4. The topological
trivial case is shown in Fig. 2.4a) where the TRIM points are connected pairwise and it is
possible to find a transformation such that there are no states cutting the Fermi energy EF

(ν= 0). The situation is different if the TRIM are connected as shown in Fig. 2.4b, where
independent of the position of EF or the TRIM points there is always a level remaining
(ν = 1). Therefore, the number ν can be interpreted as either an even or odd number
of band crossings and is usually described by a Z2 = v mod 2 invariant. This theory
can be extended straight forwardly to higher dimensions, where now in addition to the
strong invariant ν0 calculated from Eq. 2.10, there exist three so called weak topological
invariants (ν1,ν2,ν3).

2.2.4. BAND STRUCTURE OF HGTE
HgTe is a II-VI compound, which grows in the zinc-blende lattice structure [7, 11]. The
bonds are formed between the 6s electrons of the Hg and the 5p electrons of the Te
atoms. The important bands lie at the Γ-point of the BZ. Due to the strong spin orbit
interaction of the heavy Te atoms, the band structure is inverted with a negative energy
gap of E =−300meV between the Γ6 and the Γ8 bands as depicted in Fig. 2.5. The s-type
Γ6-band lies below the p-type Γ8-band (J = 3/2) which exhibits a light and heavy state
dispersion. The Γ7-band lies energetically well below the Γ6-band and can, in a first order
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c) a) Conduction band 

Valence band 

Conduction band 

Valence band 

EF 

E 

k 0 π/a k 0 π/a 

b) 
m(x) |Ψ(x)| 

topological 

trivial 

x 

-m 

m 

Figure 2.4: Figures a) and b) show the bandstructure of a bulk insulator and the different ways to connect the
TRIM in the BZ of states in the gap.

approximation, be omitted in the discussion. The Fermi energy lies at the degenerate Γ8-
band making the bulk material a zero gap semiconductor. For comparison, also the band
structure of Cd0.7Hg0.3Te, which is used as a barrier material in this thesis, is shown in
Fig. 2.5. Here a normal band ordering leads to a gap of E ≈+1eV. Therefore we are already
able to see that the (Hg,Cd) concentration allows the size of the band gap to be tuned and
its sign to be reversed. Bulk HgTe exhibits no band gap, which is needed for a topological
insulator as otherwise bulk modes would dominate the transport behaviour. However,
in addition the possibility of adjusting the concentration, there are two other common
methods which can be used to lift the degeneracy i.e. the opening of the energy gap at the
Γ-point. The first one is to confine the material into lower dimensions and the second
one by growing thin films of HgTe on CdTe which due to the different lattice constant
leads to fully strained layers resulting in a finite gap of the bulk bands. Both methods
have been used in this thesis. The Band structure of a HgTe quantum well (QW) is shown
in the lower panel of Fig. 2.5. It is now possible to tune the band structure by adjusting
the thickness of the HgTe layer between the Cd0.7Hg0.3Te. For very thin HgTe quantum
well, the band structure is mostly dominated by the barrier material while the influence
of the HgTe is increased by increasing the thickness of the QW. It is therefore possible, to
tune the band structure from normal ordering (trivial) to an inverted (topological) regime.
This transition occurs at a critical quantum well thickness of dc ≈ 6.3nm. Around the gap
closing, all energy states apart from E1 and H1 are far away from the Fermi energy and
it is therefore justified that a low energy Hamiltonian is reduced to these two bands as
depicted in the lower part of Fig. 2.5. The eigenstates are now expressed in odd parity
E1 and even parity H1 states which are both doubly degenerate due to TRS. Following
the symmetry arguments of Winkler et al . [14], it is possible to construct the low energy
Hamiltonian of HgTe quantum wells [7]. This basically yields the BHZ model of Eq. 2.7
with an additional quadratic term. This term actually plays no role in the topological
properties of the system. Equation 2.11 omits two terms which are present in the original
article [7]. The band offset C is chosen to be zero and we substitute A =ħvF . Furthermore
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Figure 2.5: Upper panel: Bulk band structure of HgTe and Cd0.7Hg0.3Te calculated by k ·p method developed by
[12, 13]. Lower panel: Schematic of a HgTe quantum well confined between two layers of CdTe. The band edges
are shown and the confined energy levels of the electron and hole band are labelled E1 and H1 respectively.
By adjusting the quantum well thickness d , it is possible to tune the band structure from a trivial regime for
quantum wells below a critical thickness dc (left) or into the topological for d > dc (right).
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the basis is the same as in 2.7.

HHgTe =
(

H0(k)+HDirac(k) 0
0 H∗

0 (−k)+H∗
Dirac(−k)

)
(2.11)

where H0 =−D(k2
x +k2

y ).
Therefore, it is possible to state that the Hamiltonian of a HgTe quantum well of

sufficient thickness can be reduced to the effective BHZ toy model which was shown to
host the QSHI phase if brought into contact with a topological trivial material. Further-
more one can calculate the topological invariant of the system as discussed in section
2.2. This theoretical prediction was shortly thereafter experimentally verified by König
et al . [15], by measuring the quantized longitudinal resistance in a transport experiment.
Further experiments have proven the presence of edge channels by non-local transport
and scanning SQUID4 microscopy [16, 17] and the spin polarization of the edge states
using the inverse spin Hall effect [18].

Г8 

Г6 

Bulk HgTe strained HgTe 

E≈20 meV 

Helical surface states a) b) 

Figure 2.6: a) Band structure of bulk HgTe compared to tensile strained HgTe. b) Dispersion of the surface states
with indicated spin momentum locking of the electrons.

2.2.5. STRAINED HGTE AS A THREE DIMENSIONAL TOPOLOGICAL INSULATOR
The concept of two the QSHI which resembles a 2-dimensional topological insulator (2D
TI) was extended to 3 dimensions (3D TI) by considering eight TRIM points of the BZ and
calculating the topological invariant for each side of a cube [9, 19, 20]. In total this yields
three weak topological invariants ν1, ν2, and ν3 and one strong topological invariant ν0.
In this thesis we limit ourselves only to the case of a strong topological insulator. There, 1D
helical edge states of the QSH effect turn into 2D helical surface states of a bulk material
as depicted in Fig. 2.6 b). Again the dispersion of a single surface can be described using
the Dirac Hamiltonian with a helical pairing and zero mass5:

Hsurface = vF (σx px +σy py ) = vF

(
0 px − i py

px + i py 0

)
(2.12)

4 SQUID: Superconducting quantum interference device
5 It is also possible to think of a QSHI as a thin 3D TI. If the thickness of the 3D TI is reduced in one dimension

such that the wavefunctions of the surface states start to overlap e.g. the top and bottom surface they start
interfering and cancelling each other out leaving only conducting edge channels.
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with the basisΨ= (Ψ↑,Ψ↓). The energy dispersion is Esurface =±vF |p| which is sketched
in Fig. 2.6b). It turns out that the requirements for a material to be a 3D TI are quite similar
to the 2D case. A band inversion leads to the presence of surface states while a bulk band
gap allows the surface states exclusively to be accessed. Again HgTe is a natural candidate
with its inverted band structure however, the Fermi energy of HgTe bulk lies between the
degenerate Γ8-bands making HgTe a semimetal which would result in dominant bulk
transport. By growing thin films of HgTe on a CdTe substrate, which has a different lattice
constant, it is possible to open a band gap due to strain which lifts the degeneracy at the
Γ-point opening a finite gap of about∆E ≈ 20meV [21]. The presence of Dirac like surface
states with a linear dispersion was verified using ARPES6 and transport measurements
[21–23].

6ARPES: Angle resolved photoemission spectroscopy.
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2.3. TOPOLOGICAL SUPERCONDUCTIVITY
Before being able to discuss topological superconductivity and the effects of introducing
superconducting pairing into the edge states of topological insulators, an introduction
to conventional superconductivity is presented. In this chapter the basic properties
and a short introduction of the microscopic theory of superconductivity developed by
Bardeen Cooper and Schrieffer (BCS) and the Bogoliubov-de Gennes representation are
introduced. A comprehensive treatment of the topic is given, for example, in [24, 25].

2.3.1. PHENOMENOLOGY OF SUPERCONDUCTIVITY
For certain metals the electrical resistance vanishes and they become superconducting,
when cooled down below a critical temperature Tc . For the metals used in this thesis,
namely aluminium and niobium, the literature values given for Tc are 1.4K and about
9.2K, respectively [26]. The second defining property of superconductors is that they are
ideal diamagnets, i.e., they exhibit a magnetic susceptibility ξ=−1 up to a critical field
Hc . This effect is called the Meisssner effect and occurs due to screening current at the
surface of the bulk superconductor. It implies that a magnetic field can not penetrate
the bulk superconductor. It is important to note that there are some caveats to this.
First in a narrow layer at the boundary of the superconductor a finite magnetic field can
enter and decays exponentially to zero into the bulk superconductor on a characteristic
length scale λL , known as the London penetration length [24]. Second superconductors
can be divided into two classes called type I and type II. While a superconductor of
type I expels a magnetic field up to its critical field Hc , at which the superconducting
states breaks down, a type II superconductor has two critical fields. Up to Hc1 a type II
superconductor acts like the aforementioned ideal diamagnet, but superconductivity is
not suppressed above this field. A finite magnetic field can enter the bulk in the form of so
called Abrikosov vortices [27]. Each vortex carries exactly one flux quantumΦ0 = h/2e7.
For the sake of completeness we mention also the third quantity which is able to break
the superconductivity namely the critical current Ic .

2.3.2. MICROSCOPIC THEORY OF SUPERCONDUCTIVITY
A microscopic theory of superconductivity was developed by Bardeen, Cooper and Schri-
effer, known as the BSC-theory [29, 30]. The key idea was to find an attractive interaction
which exceeds the coulomb repulsion between two electrons forming a bosonic ground
state. The authors found that a time retarded interaction mediated by the electron-
phonon interaction can create an attractive interaction if the energy difference between
the two electrons is smaller than ħωD where ħ is the reduced Planck constant and ωD

is the Debye frequency. A bound state with energy E = −2∆ can then form. Here ∆ is
the superconducting pair potential and determines the size of the superconducting gap
Egap = 2∆, which depends for a certain material on magnetic field, temperature, and
current. Usually the attractive interaction is the largest if two electrons with opposite

7The critical fields for suppression of superconductors used in this thesis are Hc ≈ 10mT for bulk Al and
about Hc ≈ 3 T for Nb. It is important to mention that the differentiation made between type I and type
II superconductors is more academic than lab reality. Most thin films superconductors act as type II. This
property allows the use of thin films of Al (thickness d ≈ 7−10nm) to withstand fields along the plane of the
film up 2−3T [28].
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momentum ±k pair. The BCS Hamiltonian in the second quantization formulation can
be written as

H =
∫

dr
∑

α,β=↑,↓

[
Ψ†
α(r)Hαβ(r)Ψβ(r)+ g

2
Ψ†
α(r)Ψ†

β
(r)Ψβ(r)Ψα(r)

]
, (2.13)

whereΨ†
α(r) andΨα(r) creates and annihilates an electron at position r and spin α=↑,↓

respectively. H(r)αβ is the single-particle Hamiltonian describing the system in the
normal state and g an attractive interaction constant. It is usually solved within the
mean-field approximation to decouple the second term in Eq. 2.13.

One important consequence is the presence of a superconducting pair potential, or
order parameter, which is defined as ∆αβ(r) =−g 〈Ψα(r)Ψβ(r)〉. The general form of the
pair potential is a 2×2 matrix

∆(r) =
(
∆↑↑(r) ∆↑↓(r)
∆↓↑(r) ∆↓↓(r)

)
=∆iσy , (2.14)

where the last equal represents the conventional homogeneous s-wave spin singlet case
which is isotropic in real space. Everything which deviates from this form e.g. triplet
pairing or a non-isotropic order parameter is generally called unconventional supercon-
ductivity. Furthermore, due to its implications on the topological properties discussed
later, it is important to mention that the BCS-Hamiltonian does not conserve the number
of electrons as electrons and Cooper pairs can be transformed into each other. The parity
of the superconducting condensate however is a conserved quantity and can be even or
odd. Adding a quasiparticle to the system changes the parity by one. Here we do not want
to solve the BCS equation explicitly but exploit the so called Bogoliubov transformation
to diagonalize the Hamiltonian (after approximating it by mean field theory).

2.3.3. BOGOLIUBOV-DE GENNES FORMALISM
The Bogoliubov-de Gennes (BdG) formalism is a very useful transformation to discuss
excitations of spatial inhomogeneous superconductors and unconventional pairing po-
tentials which is hard to treat in the BCS theory8. Excitations in condensed matter physics
are usually treated in the quasiparticle picture. The elementary excitation of solid states
systems are usually electrons and holes. This is represented in the formalism of second
quantization by creation of an electron (c†

n↑,↓) and annihilation of an electron (cn↑,↓) in
state n with spin ↑,↓. In a superconductor on the other, side excited states are a mixture of
particle and hole excitations u(r ) = uck,↑+ v∗c†

−k,↓ as both are coupled through the pair
potential. These quasi-particles are sometimes refereed to as Bogoliubons.

The general form of the BdG equation is given by:(
H(r ) ∆(r )

−∆∗(r ) −H∗(r )

)(
un(r )
vn(r )

)
= En

(
un(r )
vn(r )

)
(2.15)

where H (r ) is the Hamiltonian describing the system in the normal state9. Usually, taking
the spin degree of freedom into account this is a matrix with dimensions 4×4. The pairing

8The BdG transformation has the following form:Ψ(r ) = ∑
n [uσn (r )γn +ν∗σn (r )γ†

n ], Ψ(r )† = ∑
n [vσn (r )γn +

u∗
σn (r )γ†

n ]. Here we just use the result after this transformation.
9For a conventional electron gas in the absence of a vector potential this is H(r ) = [ ħ2

2m∗ ∇2 +U (r )−µ]12×2
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potential in the homogeneous spin-singlet BCS case is given by ∆= iσy∆0e iΦ with the
phaseΦ being the order parameter of the superconductor. The factors un(r ) and vn(r )
describe the fermionic quasiparticle excitations of energy En above the superconducting
condensate. Solving this equation with the simple plane wave ansatzΨ(r ) = e i kr (u0, v0)
for the conventional homogeneous spin singlet case yields

E =±
√
|H(r )|2 +|∆|2 =±

√
(k2/2m −µ)2 +|∆|2, (2.16)

where the second equation is the case for a conventional electron gas. This solution is a
gapped spectrum with a gap size of 2∆. The density of states of the system is then given
by:

Ns (E) = N (0)

{
Ep

E 2−∆2
for (|E | >∆)

0 for (|E | <∆).
(2.17)

As depicted in Fig. 2.7. All excitations |E | < ∆ are raised above ∆ which results in the
divergent density of states at the band edge.

2Δ 

E 

EF 

DOS 

Figure 2.7: Density of states of a supercondcutor. Quasiparticles are pushed outside the gap as there are no
allowed fermionic states.

It is worth at this point to introduce the so called Nambu-base (particle-hole repre-
sentation) which is a spinor of the following form:

Ψ↑(r)
Ψ↓(r)
Ψ†

↑(r)

−Ψ†
↓(r)

 . (2.18)

This representation is obtained by a unitary transformation and the new Hamiltonian H ′
can then be rewritten in a 4×4 matrix10.

H ′ =
(

H(p,r ) σ0∆(r )
σ0∆

∗(r ) −ΘH(p,r )Θ−1

)
(2.19)

10H ′ =U HU † with U =
(
σ0 0
0 iσy

)
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where the lower right block assures that the system obeys TRS. The Nambu basis is
furthermore useful, as the upper left block describes the electronic part and the lower
right block purely holes. Furthermore the Hamiltonian obeys particle-hole symmetry
i.e. PHBdGP−1 = −HBdG. This has the consequence that for each positive solution of
the BdG-equation there is a negative solution which means that the energy spectrum is
symmetric around E = 0.

2.3.4. TOPOLOGICAL SUPERCONDUCTORS
Generally a superconductors is called unconventional when its pairing has a higher
angular momentum than zero (so called s-wave superconductors). The energy spectrum
of a BdG-Hamiltonian has a similar form than the band structure of an insulator. The
gap of the superconductor 2∆ is similar to the band gap. Single electronic quasiparticles
excitations do not exist inside both gaps. Hence, it is possible to define a topological
invariant and classify superconductors by their topology. We will see, that the existence of
so called Majorana zero modes is directly linked to topological superconductivity. In this
context, a heuristic motivation of Majorana fermions in superconductors is given.

PHENOMENOLOGY OF MAJORANA FERMIONS

A Majorana fermion is a particle which is its own antiparticle and was predicted by Ettore
Majorana [31]. It is possible to construct such a particle from solid state excitations. Then
the condition can be reformulated to satisfy that the creation of a particle is the same as
the annihilation i.e. γ= γ†. Quasiparticles like electrons and holes can be seen as particles
and antiparticles. A Majorana mode should then be built from equal parts of electrons
and holes. This can be done by a linear combination γ= c + c†. This kind of excitation
is already very similar to the ones of the quasiparticle excitations in a superconductor,
presented in the previous section: γ= uc↑+vc†

↓ . In order to fulfil the Majorana conditions,
u and v need to be equally weighted with the consequence that E = 0. The last issue
is that the operators have a spin and therefore γ↑ 6= γ†

↑. One can avoid this problem by
removing the spin degree of freedom by using a spin polarized triplet superconductor.
As the total wave function needs to be antisymmetric for fermions, the simplest possible
way is to use p-wave pairing.

To summarize, we are searching for Majoranas as zero energy excitations in spinless
p-wave superconductors. We recall from section 2.2.1, that such zero energy excitations
are directly connected to a change in the topology of the system.

KITAEV CHAIN

Using the ideas from the previous section, we can now construct the simplest possible
system, a one dimensional chain of spinless electrons with superconducting pairing,
which can generate topological excitations. The model stems from Kitaev, who was the
first to discuss the problem within the context of Majorana end states [32]. Written in
second quantisation, the Hamiltonian is given by:

H =−µ∑
j

c†
j c j +

N−1∑
j=0

[
−t (c†

j+1c j + c†
j c j+1)−|∆|(c j c j+1 + c†

j+1c†
j )

]
. (2.20)

This Hamiltonian contains the onsite energy µ, a hopping parameter t between two
neighbouring sites and ∆ is the superconducting pairing. This is an ansatz to create a
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superconductor without spin where we hope to find Majorana modes. As the creation
and annihilation operators are generally complex, it is possible to split them into two real
operators

c† = 1

2
(γ1 + iγ2), c = 1

2
(γ1 − iγ2). (2.21)

which are called the Majorana operators. Importantly they obey the Majorana condition
γ1 = γ†

1 and the fermionic anticommutation relation, namely γ1γ2 +γ2γ1 = 0. These
Majoranas can be seen as half a real fermion and therefore always come in pairs. The
goal now is to create an isolated Majorana mode by splitting electrons in a smart way.
The previous single electron Hamiltonian can be rewritten in the language of Majorana
operators as:

H = i

2
[−µ∑

j
γ2 j−1γ2 j + (t +|∆|)γ2 jγ2 j+1 + (−t +|∆|)γ2 j−1γ2 j+2]. (2.22)

As depicted in Fig. 2.8 there exist two ways to pair these Majorana operators. The trivial

c1 c2 c3 c4 c5 c6 

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12 

Figure 2.8: Two different ways a one dimensional superconductor can pair neighbouring sites. The upper row
shows the trivial pairing while the lower row shows the topological pairing with two isolated Majoranas at each
end. The operators ci indicate electron sites and γi a Majorana site with ci = 1

2 (γ2n−1 − iγ2n ) with n ∈N.

case is for |∆| = t = 0 and µ < 0 where Majoranas from the same site are paired. The
Hamiltonian reduces in this case to

H = i

2
µ

N∑
j=1

γ2 j−1γ2 j . (2.23)

On the contrary, when |∆| = t > 0 and µ= 0, the Hamiltonian reduces to

H = i t
N−1∑
j=1

γ2 jγ2 j+1 (2.24)

and Majoranas from neighbouring sites are paired, which leaves one unpaired Majorana
at each end of the wire giving rise to edge states (lower panel of Fig. 2.8). It is possible to
show, that the bulk properties for both systems are similar. The existence of edge states
in the second case describes the topological case. The two Majoranas γ1 and γ10 form
one fermion, which can be either occupied or unoccupied (both cases yield the same
energy). This fact leads to a ground state degeneracy in the topological case which is
determined by the total parity of the system. In contrast in the trivial case, fermions of
neighbouring sites form Cooper pairs and the total number of unpaired fermions is zero.
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This system only has one non-degenerate ground state with an even number of fermions.
Adding a single fermion to the system leads to an unbound electron which is energetically
unfavourable.

By making the wire a circle and therefore imposing translational invariance on the
system, it is possible to go to momentum space using the Bloch transformation11

H(k) = (−2t cosk −µ)τz +2∆sinkτy . (2.25)

In the low energy limit at k = 0 it is possible to linearise the Hamiltonian to

H = (−µ−2t )τz +2∆kτy = mτz +2∆kτy . (2.26)

Thus, we end again with a Dirac like dispersion and again as in the preceding section 2.2.1
a change in the sign of the mass can be associated to a topological phase transition. The
energy spectrum is given by E =±

p
m2 +4∆2k2.

The model in this section was introduced with the purpose of creating Majorana
fermions without thinking of a realistic system in which such spinnless superconductivity
might be realised. In the next section, we show that it is possible to engineer such a system
by combining conventional superconductivity and topological insulators.

2.3.5. INDUCED SUPERCONDUCTIVITY IN TOPOLOGICAL INSULATORS
There exist predictions of spinless p-wave superconductors in nature like for example
Sr2RuO4 [33]. However, it has not yet been possible to unambiguously prove the uncon-
ventional pairing of the electrons due to the low crystal quality. In the last years, various
research groups came up with new ideas on how to engineer p-wave superconductivity
by using conventional s-wave superconductors which can be combined with strong spin-
orbit coupled materials. This can be done for example by putting a conventional s-wave
superconductor in proximity to a topological insulator surface or to the helical edge states
[34, 35]. Under these conditions the Cooper pairs have a finite probability to leak into the
topological insulators thereby inducing superconducting correlations into the surface
states12.

Still using the Nambu basis as introduced in section 2.3.3, it is possible to express the
helical edge channels as HDirac =ħvF kτzσz −µτz and the superconducting correlations
H∆ =∆(Ψ†

↑Ψ
†
↓+H.c) with ∆=∆0e iφ. The total Hamiltonian is given by:

H =−iħvFτzσx∂x −µτz +∆0(cosφτx + sinφτy ) =−i vFτzσx∂x +∆0τx , (2.27)

where for simplicity we set in the phase and the chemical potential in the last part equal
to zero. The Pauli matricesσ j are acting on the right and left moving edge channels, while
the matrices τ j mix the electron and hole blocks. The energy spectrum is then given by

E =±
√

(ħvF k)2 +∆2. At first sight it still seems as if Eq. 2.27 still contains only s-wave
pairing but the spin degeneracy is lifted by the helical edge channels. This leads to effective
p-wave correlations. The Hamiltonian is reminiscent of the low energy Kitaev chain

11|k〉 =p
N

N∑
n=1

e−i kn |n〉
12At this point we omit the discussion of how to properly treat the proximity effect for a superconductor-

topological insulator interface and just assume a finite probability of Cooper pairs in the TI.
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model. The main difference lies in the geometrical form, namely that the edge channels
in the QSHE do not have an end, i.e., they are moving around the structure without
backscattering and no localized zero energy states can form. By introducing a Zeeman
field HZ = Mσx , it is possible to break TRS and thereby opening a gap which allows
the formation of zero energy states. This Zeeman field could be a local ferromagnetic
insulator or an inplane magnetic field which opens a gap in the helical edge states and
allows the formation of isolated Majorana fermions at the domain wall.

It was further shown by Fu and Kane [34] that also the higher dimensional analogue
of the QSHE, a 3D TI proximitized with a superconductor, mimics the behaviour of
a 2D px + i py superconductor which does not violate TRS due to similar reasons as
presented above. Locally breaking TRS by inserting a magnetic impurity, a localized state,
a so called Abrikosov vortex, as depicted in Fig. 2.9 forms. This state locally closes the
superconducting excitation gap and subgap states depending on the size of the bound
state form as indicated by the blue and red lines. The energy levels are symmetric around
zero (En =−E−n) due to the particle-hole symmetry of the superconductor. While in the
trivial case no state at zero energy exists, the topological one hosts a localized Majorana
fermion at zero energy caused by shift in energy due to the π Berry’s phase of the Dirac
like band structure. Again this zero mode obeys γ= γ†.

E E 

r 

trivial topological 

3DTI 

SC 

Magnetic impurity 

r 

Figure 2.9: a) Schematic of induced superconductivity in a 3D topological insulator with a vortex placed on the
superconductor. b) and c) show the energy spectrum of a vortex core for a s-wave superconductor in b) an a
p-wave superconductor in c).

The next question is how this prediction can be tested experimentally. One way is by
realizing a topological Josephson junction (JJ) with two localized Majoranas which leads
to the doubling of the periodicity of the Andreev bound states. This is discussed in the
next section.

2.4. JOSEPHSON EFFECT AND ANDREEV BOUND STATES
This section presents a basic introduction to the physics of the Josephson effect. The
special case of a radio frequency (rf) driven Josephson junction is discussed. An important
aspect of this is how to apply the method of rf driven junctions to resolve signatures of
topological superconductivity. This prepares the ground for the experimental investiga-
tions involving Josephson junctions presented in chapter 3 to 6.
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Brian Josephson made the ground breaking prediction, that a dissipationless super-
current can flow between two superconducting electrodes separated by a tunnel barrier13

[36]. Here we just state the results relevant to our case. The first Josephson equation says
that a current Is can flow through the junction even at zero applied dc bias and it depends
on the phase difference ∆φ=φ1 −φ2 between the two leads:

Is = Ic sin∆φ. (2.28)

The critical current Ic is the maximum amount of current which can flow without dissi-
pation. The phases φ1 and φ2 are the two macroscopic phases of the superconducting
condensate which makes the classic Josephson effect a macroscopic quantum phenom-
ena. The second Josephson equation relates the phase velocity d∆φ/d t to a finite voltage
drop across the junction:

d∆φ

d t
= 2eV

ħ . (2.29)

Consequently, for a finite voltage drop across the junction, an alternating ac-current
is created by an applied dc-voltage with a frequency f J = 2eV /h, which is called the
Josephson frequency14. This can be understood as the energy change of a single Cooper
pair transferred across the junction as depicted in Fig. 2.10.

VDC 

2eV=hfJ 

Δ 

φ1 φ2 

Figure 2.10: Two superconducting leads separated by a barrier. A Cooper pair, indicated by two red dots may
tunnel from the left to the right lead and emits a photon.The frequency of the photon is called the Josephson
frequency f J and is direct proportional to the applied voltage V . The superconductors are described by their
macroscopic phases φ1 and φ2 and the energygap 2∆.

13In his case the barrier was a thin tunnel barrier. As we will see in next sections this concept can be extended
to a barrier being a normal metal or other exotic materials like topological insulators.

14For V (t) =const the phase evolves as φ = 2eV t/ħ. Plugging this into the first Josephson equation yields
Is = Ic sin2eV t/ħ= Ic sin2π f J .
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2.4.1. DYNAMICS OF JOSEPHSON JUNCTIONS
The treatment of Josephson junctions for the voltage carrying state is usually done in
the framework of the resistively shunted junction model (RSJ)15 as shown in Fig. 2.11a).
This model consists of a Josephson element in parallel with an ohmic resistor, which
describes the normal state resistance Rn =V /I of the system as shown in Fig. 2.11a). By
using Kirchhoffs laws with the first Josephson equation Eq. 2.28, it is possible to calculate
the total current in the circuit:

I = Ic sinφ+V /R (2.30)

by applying the second Josephson equation Eq. 2.29 one gets:

I 

Rn sinφ 

a) b) 

Figure 2.11: a) Equivalent circuit of the RSJ model. A Josephson junction is shunted by a resistor Rn . b) Potential
energy of a phase particle in a tilted washboard potential.

I − Ic sinφ= ħ
2eR

dφ

d t
. (2.31)

Equation 2.31 can be seen as the motion of a fictitious phase particle with coordinate φ in
a potential U (φ) given by

U (φ) = ħ
2e

(−Ic cosφ− Iφ). (2.32)

Equation 2.32 is commonly referred to as the tilted washboard potential and is useful in
describing the dynamics of the JJ. The value E J =ħIc /2e is called the Josephson energy
and sets a characteristic energy scale of the Josephson junction. The potential has a linear
term representing the applied bias I and a periodic modulation given by the phase16.
In analogy to a pendulum it is possible to interpret the resistance of the device Rn as a
friction term, while a potential capacitance would play the role of a mass.

The washboard potential for different applied bias values is shown in Fig. 2.12a). For
zero applied bias, the phase particle is trapped in a minimum and the average phase
velocity <φ> is zero, and there is no voltage drop across the junction (V = 0). At I = Ic ,
the slope is steep enough so that the phase particle starts to “fall”down the washboard

15For simplicity we restrict ourselves to the case where other elements like capacitors (RSCJ), inductors or noise
fluctuations can be neglected.

16The potential energy U (φ) can be calculated by −dU (φ)/d t = IV
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potential and a finite voltage drop occurs. The phase particle gets faster as the voltage
across the junction increases. For a large bias I > Ic , the voltage drop is then mostly
determined by the normal state resistance Rn . The current voltage characteristic of a
Josephson junction is shown in Fig. 2.12b). This I −V characteristic follows the sim-

ple form V = Rn

√
I 2 − I 2

c . The coloured dots mark the corresponding situation in the
washboard potential.

  

I=0 

I=0.5Ic 

I=2Ic 

I=Ic 

I/Ic 0                           1                        

V E φ 
a) b) 

Figure 2.12: a) Washboard potential for different applied bias I . b) Current voltage characteristic of a Josephson
junction. The coloured dots represent the applied current of figure a).

2.4.2. RF-DRIVEN JUNCTIONS
If a Josephson junction is driven by an ac-current, steps of constant voltage (Shapiro steps)
form in the dc I −V trace [37]. The step height is quantized and given by Vn = nħω/2e
with n ∈Z. The influence of an ac drive can be taken into account by adding an alternating
current to the bias in accordance with the relation:

I = I0 + I1 cosωt . (2.33)

Following Ref. [38], it is practical to rewrite the Josephson equation in normalized units

α0 +α1 sinξτ= dφ

dτ
+ sinφ. (2.34)

Here, αi = Ii /Imax are the normalized currents, τ = ωt = 2eImaxRn/ħt the normalized
time, the normalized microwave frequency is ξ=ħω/2eImaxRn . This differential equation
is non-linear due to the sine terms and has no simple analytic solution but it can be solved
numerically. The time averaged voltage for a given bias can be calculated by considering
φ(t ) and determining the time for one period T for φ to advance 2π. Then the voltage V
is given by 2eV /ħ= 2π/T 17. Two examples with and without applied rf bias are shown
in Fig. 2.13b). Steps of constant voltage appear in the I-V trace at values V = h f /2e.
These are the so called Shapiro steps. An intuitive way to understand this behaviour is
to consider the washboard potential. The ac-bias leads to a time dependent periodic

17Or precisely 〈V 〉 = 1
T

T∫
0

ħ
2e

dφ
d t d t = 1

T
ħ
2e [φ(T )−φ(0)]
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perturbation as indicated in Fig. 2.13. This perturbation may lead to a locked motion
of the phase particle, i.e., for a given dc-slope, the particle drops an integer number of
periods until it is stopped by I − Ir f . These integer number of periods is then related to a
constant voltage drop which leads to the formation of steps. It is worth noting that there
exists an analytic solution for an rf driven junction when treated in the voltage biased
case. The resulting current can be expressed as Bessel functions:

Is = Ic
∑

(−1)n Jn(2eV1/ħω1)sin(φ0 +2eVdc/ħ−nω1t ). (2.35)

If the driving frequency ω0 = 2eVdc matches integer multiples of the applied frequency
Vn = nħω1/2e, then the sine term equals zero and steps of constant voltage form. The
current bias regime on the other hand does not have an analytic solution. Here a quasi-
Bessel like oscillatory behavior was found by for example Russer et al . [38]. While Brian

  

I=Ic 

I=Ic+Irf 

I=Ic-Irf 

  

ωt 

E 

φ 

I/Ic 1 

U/(hf/2e) 

1 

2 

a) b) 

Figure 2.13: a) Washboard potential representation for an applied ac-current. b) I-V trace of a Josephson
junction with (red) and without (blue) applied ac-bias.

Josephson and Sidney Shapiro worked in the tunnel limit (i.e. transmission τ 7→ 0), the
concepts can be extended to a barrier constituted by a normal metal or also to topological
insulators as is the case in this thesis (section 2.5).

2.5. EXPERIMENTAL SIGNATURES OF TOPOLOGICAL JOSEPHSON

JUNCTIONS
Amongst a number of proposals on how to detect Majorana fermion (MF) [39, 40], there
are two which are currently of major interest for the electrical detection. The first focuses
on the tunnelling of electrons through a Majorana zero mode [41]. This effect is predicted
to occur at an interface between a normal metal and a superconductor separated by a
barrier. If a MF is placed in this barrier the conductance is quantized to 2e2/h irrespective
of the height of the barrier. This kind of signature is the main focus in experiments on
nanowire based realizations of Majorana fermions [42–45].

The second proposal is called the fractional Josephson effect due to the tunnelling
of electrons through two hybridized Majorana modes. This thesis focuses on the second
approach. In this thesis, we are especially interested in the difference in barriers formed
by normal metals or topological materials as depicted in Fig. 2.14a) and 2.14b). Due
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to the gapped spectrum of the superconducting density of states, a Cooper pair with
|E | < ∆ can only enter the normal part N by splitting into an electron and hole with
opposite momenta. This conversion process is called Andreev reflection (AR) and a more
extensively discussion is given in chapter 7. The AR is a phase coherent process over
time. If the distance between the two superconducting leads is short enough, another
AR may occur at the second interface with a backwards travelling electron. When the
total phase acquired by the electron during these two reflections is a multiple of 2π, a
bound state, so called Andreev bound state forms. The energy of this state depends
on the applied phase difference φ=φ1 −φ2 and the transmission of the normal states.
These states can be calculated by solving the BdG equation HBdGΨ = EΨ for a spatial
inhomogeneous superconductor in one dimension. The superconducting gap can be
expressed as∆(x) =∆0[Θ(−x−L/2)+e iφΘ(x−L/2)]. Following Kwon et al . [46] and using
the ansatz of travelling waves bound to the normal part, the subgap solutions |E | <∆0

have the form

Ψσβ = eβκx

[
Aβ

(
cΨβσ+
Ψ†
βσ+

)
e i kF x +Bβ

(
cΨβσ−
Ψ†
βσ−

)
e−i kF x

]
, (2.36)

where the ± labels the right and left moving electrons respectively, β=± accounts for the
right and left leads respectively. This equation describes states which are bound to the
normal area and decay on a length scale 1/κ into the superconductors. It is possible to
solve these equations using the appropriate boundary conditions forΨ(x) at x =±L/218.
For simplicity we assume to be in the short junction limit, i.e. that L . vF /∆. This means
that only a single ABS resides inside the JJ. Furthermore, for L ¿ vF /∆ the barrier can be
reduced to a delta function δ(x). By solving the equation for the conventional [47] and
the QSH case [46, 48] the energy spectrum yields

E(φ) =±∆0

√
1−Dc sin2(φ/2) for a conventional Josephson junction (s-wave) (2.37)

E(φ) =±∆0

√
D t cos(φ/2) for a topological Josephson junction (p-wave) (2.38)

where Dc and D t account for the transmission of the ABS in the conventional and the
topological case respectively. The two spectra for various transmission values are shown
in Fig. 2.14c) and d). In the case of perfect transmission (Dc = D t = 1) the two spectra are
almost indistinguishable. The difference between both solutions is that the trivial case
has a ground state (red) and a excited state (blue) and the periodicity of the two states is
2π periodic. The topological bound states on the other hand have a 4π-periodicity and
in general no ground and excited state exists. Both states differ by their parity and the
crossing at φ=π is protected by exactly this parity.

If we now introduce impurities in the conventional N part, the transmission may
become finite Dc < 1. Then, the ground and excited state are separated by a gap which
depends on the transmission Eg = 2∆

p
1−Dc as depicted in Fig. 2.14c). In the case

of the topological junction such impurities would not induce a finite transmission, as
the edge channels are protected against backscattering from TRS preserving impurities
and therefore D t = 1. Time reversal symmetry can be broken explicitly by applying a

18Matching conditions for L → 0 areΨαβ(−0) =Ψαβ(+0) andΨ′(+0)−Ψ′(−0) = 2mV
ħ2 Ψ(0)
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finite Zeeman field HZ = M/2Ψ†σxΨ perpendicular to the current direction of the edge
channels. The transmission coefficient then becomes finite an reads:

D t = 1

1+ (M sinh(κL)/κ)2 . (2.39)

Even in this case, no gap around φ = π opens as still parity is conserved as visible in
Fig. 2.14d). However, breaking TRS lifts the Kramers degeneracy at φ = 2nπ with n an
integer. This leads to a decoupling of the ABS from the continuum (i.e. states E > |∆|.

The current carried by ABS is connected to the energy by [49]

IABS ∝ 2e

ħ
∂E

∂φ
(2.40)

which is plotted in the last row of Fig. 2.14 for the conventional and topological case
respectively. This gives a clear illustration of the experimental signature of a topological
Josephson junction which we are looking to detect in this thesis namely the periodicity of
the ABS. The total current, taking a finite temperature into account, is then given by the
sum over the individual ABS states

Itotal =
2e

ħ
m∑

n=0

∂En

∂φ
tanh

(
En

2kB T

)
. (2.41)

The conventional bound states [Fig. 2.14c) and e)] have a 2π periodicity while the
topological states have double the periodicity i.e. 4π [Fig. 2.14d) and f)]. As will be shown
in the experiments it is possible to measure the periodicity using the ac Josephson effect.
It is also worth mentioning that in the limit of low transmission, the sinusoidal current
phase relation of a tunnel junctions is recovered, as introduced by Brian Josephson. In the
bound state picture this means that the energy levels are pushed to the continuum edge.

This chapter treats the origin of topological superconductivity in an extremely simpli-
fied toy model framework. It is important to keep in mind that things like the proximity
effect, finite temperature, finite size effects and bias may alter the system significantly.
Moreover, we neglect stochastic effects such as quasiparticle poisoning which might
destroy the coherence of the ABS and thereby may turn a topological 4π-periodicity into
a effective 2π-periodic behaviour. Furthermore, in reality we may be confronted by the
fact that conventional bulk modes contribute to the current in parallel to the topological
ABS, thus making the current phase relationship a mixture of both types.

2.6. BRAIDING OF MAJORANA FERMIONS
The motivation for the arduous pursuit of the detection of Majorana fermions is the
theoretical prediction that these particles behave like “non-abelian anyons, which can be
used for fault tolerant topological quantum computation”. The aim of this chapter is to
try to give the reader a glimpse of the meaning of this phrase which in this or a similar
formulation is frequently used in this field. First we try to define the words one after
another and then develop the idea of topological quantum computation. Herby, we omit
all problems which are still open related to the creation, manipulation and read out of
Majorana bound states. It is assumed that all these operations can be done adiabatically
i.e without perturbing the ground state. This part closely follows [39, 50, 51].
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Consider a wave function describing a system of many identical particles

|Ψ〉 = |n1,n2,n3...〉 (2.42)

in three spatial dimensions and one time dimension. The exchange of two particles
changes the sign of the wave function in the case of fermions while it stays the same in
the case of bosons. Generally speaking, the exchange of a particle may introduce a phase
shift |Ψ〉→ e iφ |Ψ〉 where for a boson (fermion) φ= 0(π). For any values of φ, the particle
is called an anyon and the exchange of two such particles is called braiding. Interestingly,
such kind of particles are allowed to exist in only two dimensions.

The expression, “non-abelian ” is stating that the braiding operation is non-commutative,
which means that the order in which particles are exchanged is important. Assume a uni-
tary operation Ui j which exchanges two particles i and j , then the exchange operations
do not commute: U12U23 6=U23U12.

Next, we show that Majorana fermions belong to this class of particles. Therefore, we
assume four Majoranas γi as depicted in Fig. 2.15. We recall that it is possible to write

γ1 γ2 γ3 γ4 

c1
† c2

† 

ti
m

e 

≠ 

Figure 2.15: Two pairs of Majoranas can be described as two fermions. The braiding operation U12U23 is non
abelian.

pairs of Majorana fermions as fermionic operators namely: c†
n = (γ2n−1 + iγ2n)/2), each

state being either occupied or empty i.e. |1〉 or |0〉. The occupation of one state is then
given by ni = c†

i ci = [1+ iγ2i−1γ2i )]. This way, we are able to construct the ground state of
the system as

|Ψ〉 = a |00〉+b |11〉+ c |01〉+d |10〉 . (2.43)

An exchange of particles is described by the unitary operator Unm = e±
π
4 γnγm = (1±

γnγm)/
p

2. Here the ± sign stands for the direction which can be either clockwise or
counter-clockwise. We neglect the latter case for now. The operator Unm is a matrix with
dimensions N ×N i.e. here 4×4. While the consequence of exchanging two Majoranas
from one fermion yields just a phase factor19

U12 |00〉 = e i π4 (1) |00〉 , (2.44)

19The general relations yield U12 |n1,n2〉 = ei π4 (1−2n1) |n1,n2〉 and
U23 |n1,n2〉 = 1p

2

(|n1,n2〉+ i (−1)n1 |1−n1,1−n2〉
)
.
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exchanging two Majoranas from neighbouring sites however exchanges half a fermion
yielding a superposition of states:

U23 |0,0〉 = 1p
2

(|00〉+ i |11〉) . (2.45)

Both processes are depicted in the braiding diagram in the of Fig. 2.15. In the figure on
the right side, first two Majoranas from the same lattice site are exchanged ( U12) and then
two of neighbouring sites U23. It is now a straightforward exercise to show that the final
state depends on the order in which the process is carried out i.e. they obey non-abelian
statistics as predicted.

It is now possible to use the states |ni 〉 as a basis of a qubit with two states either full
or empty. Usually, qubits are sensitive to several kinds of pertubations which limit the life
time of the quantum state and therefore the time it can be used to conduct a computation.
In the case of topological quantum computing the information of one state can be stored
in two well separated Majorana fermions which makes it, theoretically, immune against
certain types of local decoherence effects. A computation involving Majorana fermions
would be conducted by braiding operations which as we have seen “remember”the history
of the state as the outcome depends on the order of the braiding operations. This kind of
computation is therefore called fault tolerant topological quantum computation.

As the physical exchange of the position of Majorana fermions is a rather challenging
task, several other ideas emerged in the last few years for braiding without actually
exchanging the position of the Majorana fermions. Relevant references are listed here for
the sake of completeness [52–55].
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4π-PERIODIC JOSEPHSON

SUPERCURRENT IN A HGTE-BASED

TOPOLOGICAL JOSEPHSON

JUNCTION

This chapter is based on the publication: 4π-PERIODIC JOSEPHSON SUPERCURRENT IN

HGTE-BASED TOPOLOGICAL JOSEPHSON JUNCTIONS.
J. Wiedenmann, E. Bocquillon, R.S. Deacon, S. Hartinger, O. Herrmann, T.M. Klapwijk,
L. Maier, C. Ames, C. Brüne, C. Gould, A. Oiwa, K. Ishibashi, S. Tarucha, H. Buhmann, and
L.W. Molenkamp, Nature Communications, 10303 (2016).

In this chapter, a weak link based on the three dimensional topological insulator strained
HgTe is studied under microwave irradiation. The current state of literature of strained
HgTe without and with superconducting contacts is reviewed and a short overview over
the theoretical treatment of induced superconductivity into the surface states with a focus
on Josephson junctions is introduced. A perfectly transmitting Andreev bound state per-
pendicular to the leads (ky = 0) is predicted due to its topological protection. A signature of
this perfectly transmitting Andreev mode, is that the phase exhibits a 4π-periodicity rather
than the 2π-periodicity of conventional states. This can be evidenced, by the observation of
the fractional Josephson effect. Before the discussion of the ac driven Josephson junction, a
comprehensive analysis of the dc-transport of a HgTe based Josephson junction is given.
By applying microwave irradiation to the Josephson junction, a missing first Shapiro step
is observed, which can be attributed to a 4π-periodic contribution to the supercurrent.
This observation is then studied as a function of rf power rf frequency, and device length.
Other effects which can be responsible for a disappearance of the first Shapiro step can be
excluded and trivial Andreev bound states as a likely explanation for our observation are
ruled out. Thus, the 4π-periodicity is attributed to the presence of gapless Andreev bound
state.
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3. 4π-PERIODIC JOSEPHSON SUPERCURRENT IN A HGTE-BASED TOPOLOGICAL JOSEPHSON

JUNCTION

3.1. INTRODUCTION TO THE THREE DIMENSIONAL TOPOLOGICAL

INSULATOR HGTE
This chapter begins with an introduction to the physics of strained HgTe as a 3D topologi-
cal insulator (3D TI). An overview of the current state of research is given with a focus on
magnetotransport experiments in the normal state. Theoretical models detailing weak
links based on 3D TIs are discussed. This is followed by a review of work on HgTe based
Josephson junctions (JJ) carried out in our group. Then, the fabrication process of the
JJs is outlined and dc characterization of the Josephson junction is discussed. Finally,
the investigation of the Josephson junction in presence of an rf drive is presented as a
function of rf power, rf frequency, magnetic field, and device length L.

3.1.1. MATERIAL AND CHARACTERIZATION WITH MAGNETOTRANSPORT

Strained HgTe was predicted to be a 3D TI by Fu and Kane already in 2007 in Ref. [1]. The
two necessary material properties for a 3D TI are recalled from chapter 2, namely (i) an
inverted band structure and (ii) a band gap separating the conduction and valence bands.
Due to strong spin orbit coupling, bulk HgTe has already inherently an inverted band
structure where the s-like Γ6-band lies below the p-like Γ8-band. However, the Fermi
energy EF lies between the degenerate Γ8-band’s J = 3/2 and J = 1/2 states, which makes
HgTe a zero gap semiconductor. As we would like to access the surface state transport
exclusively, we need to induce a finite gap as else the transport would be dominated by
a large parallel bulk contribution. It is possible to lift the degeneracy of the Γ8-bands
by applying uniaxial strain. This can be done by growing HgTe on a CdTe substrates [2].
The lattice constant difference of about 0.3% between the two materials enables a fully
strained growth of HgTe films with thickness up to d ≈ 150nm1 [3]. This strain opens a
band gap of about ∆E ≈ 22meV [4], which is large enough to achieve transport through
the surface states at low enough temperatures of the order of T < 4.2K.

a) b) 

Figure 3.1: a) Shows the ARPES spectrum of bulk HgTe. The bulk bands and surface state bands are labelled BB
and SSB respectively (figure taken from [4]). b) Quantum Hall measurements of a strained HgTe based Hall-bar
for different gate voltages Vg . The dark red curve (Vg =−1V) shows the signature of two Dirac like surface states
(figure taken from [2]).

1Lattice constant of HgTe: aHgTe = 0.646nm. Lattice constant of CdTe: aCdTe = 0.6482nm.
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A first evidence for the presence of topological surface states was obtained by mea-
suring angle-resolved photo emission spectra (ARPES) of HgTe [4]. Figure 3.1a) shows a
spectrum of a rather thick, relaxed HgTe structure. As ARPES is a very surface sensitive
technique, it is still possible to observe the presence of a linear dispersion originating
from the surface states bands (SSB) indicated by the dashed lines. In addition, the hole
like bulk bands (BB) are also visible. Crauste et al . [5] were also able to show the spin
polarization by circular dichroism measurements.

This observation was corroborated by magnetotransport experiments using fully
strained HgTe [4]. In this regard, the quantum Hall effect (QHE), an effect which only exists
in two dimensional systems, was observed. This was taken as a evidence of the presence of
two dimensional states in bulk HgTe. The Landau level sequence was modelled using two
Dirac like states with different chemical potentials on each surface. The main advantages
of HgTe compared to other 3D TI candidates (like bismuth based compounds), are the low
intrinsic doping (electron density of the order of 1011 cm2) and the rather high mobility of
the MBE2 grown films of the order of µ≈ 30000cm2/Vs. This allows on the one hand the
access of the surface states close to the Dirac point and on the other hand the observation
of the quantum Hall effect. An example of a measurement of the transversal resistance
of a Hall bar structure (Hall resistance) is shown in Fig. 3.1b) for different applied gate
voltages [2]. Beyond the presence of the quantum Hall effect itself, it is possible to get
further insight into the physics of the topological surface states. The first is that at a
gate voltage Vg =−1V, a sequence of only odd quantum Hall plateaus ν= 1,3, and 5 can
be seen. This sequence is a signature of two degenerate Dirac like surface states with
equal charge carrier densities, each contributing (n +1/2)e2/h to the total conductance.
This is comparable to graphene (more precisely half of graphene). This sequence, i.e.
(2n + 1)e2/h, is a footprint of a system with linear dispersion, i.e., a Dirac system. In
contrast, a conventional spin-degenerate quantum well, would exhibit a sequence of even
numbered Landau levels. Furthermore, the QHE was observed in the whole accessible
electron density range starting from very low densitiy of the order of 1×1011cm−2 up to
n = 2×1012cm−2 which implies that the transport in high magnetic fields is surface state
dominated. The results of simple k ·p simulations show that at such high densities bulk
transport is expected to coexist. This result was explained by an extended k ·p theory,
where the surface states are electrostatically decoupled from the bulk bands by assuming
a different dielectric constant for the surface and bulk states [2]. From Fig. 3.1b) it can
also be deduced that by changing the gate voltage, even quantum Hall plateaus appear.
This is interpreted by considering the different gate influence for the top and bottom
surface. The bottom surface state is further away from the top gate electrode and thus
expected to have a reduced gate efficiency. This leads to different chemical potentials on
both surfaces and different densities.

In summary, these results show that the transport is dominated by Dirac like states
originating from two individual surfaces over a wide range of densities. The low intrinsic
doping and the high mobility make HgTe an ideal candidate for combination with super-
conductors in experiment to test predictions about unconventional superconductivity in
such systems.

2MBE: Molecular beam epitaxy
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3.1.2. THEORETICAL TREATMENT OF JOSEPHSON JUNCTIONS BASED ON

3D TIS
Next, after it was proven that strained HgTe is a topological insulator, we investigate
the interplay of superconductivity and topological insulators. The emphasize here is
on a simple geometry, a Josephson junction, where the barrier constitutes the helical
surface states. It is intended to show that such a structure gives rise to signatures of exotic
superconductivity.

In a 3D topological insulator based Josephson junction, in which superconductivity is
induced into the surface states via the proximity effect of a nearby s-wave superconduc-
tor, Andreev bound states appear in the induced gap ∆i (see Fig. 3.2). This was already
discussed by Fu and Kane [6], who predict the formation of Majorana zero modes when
superconducting correlations and the helical surface states are combined. Beside the
discussion of a Majorana bound state due to a vortex placed on the surface it also dis-
cusses a gapless Andreev mode which occurs in a one dimensional TI nanoribbon. This
work was extended to finite dimensions [7], including a ferromagnetic barrier [8] or a
generic scattering barrier in the junction [9]. One common feature of all these theories is
a gapless mode for perpendicular propagation, i .e. ky = 0, and gapped states for finite
transverse momenta. Here, we follow the work of Tkachov et al . [9], where supercon-
ducting correlations are induced into the surface state of a TI at a finite tunnelling rate.
This closely follows the approach introduced by McMillan et al . [10] for standard metal
superconductor proximity structures. The strength of the proximity effect is described by
a tunnelling parameter. This yields an effective induced gap ∆i ≤∆SC. The approach is
rather simple. In reality the interaction of a topological insulators and superconductors
might be much more sophisticated. Nevertheless, it is a good starting point and the
Hamiltonian for the system is given by:[

E1−
(
−iħvF

−→σO+U (x)−µ iσy∆inde iφL,R

−iσy∆inde−iφL,R −iħvF
−→
σ∗O−U (x)+µ

)][
u(r )
v(r )

]
= 0, (3.1)

where we introduce a finite scattering potential U (x) =Uδ(x) in the barrier. Compared
to chapter 2.5 the problem is extended to two dimensions. The energy spectrum for the
Andreev amplitudes yields in this case

E±
Θ =±∆ind

√
1−TΘ sin2 φ

2
. (3.2)

The subscript ± stand for the positive and negative solution, the angle is defined as

cosθ =
√

1− (ky /kF )2. The momentum ky has the direction as indicated in Fig. 3.2a) and

kF =p
2mEF is the Fermi momentum. The transmission is now a function of angelΘ and

given by

TΘ = cos2Θ

1− sin2Θ/(1+Z 2)
(3.3)

with Z =U /(ħvF ), a dimensionless parameter which depends on the size of a scattering
potential U . A polar plot of the transmission is shown in Fig. 3.2a). It is possible to see
that perfect transmission TΘ = 1 exist only for zero transverse momentum and a non
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perfect transmission for oblique incidence depending on the angle and the scattering
potential. The energy spectrum of the ABS for different angles Θ is shown in Fig. 3.2b).
The spectrum is only gapless in the case of of perpendicular momentum, i.e., ky = 0
(depicted in blue) and has a finite gap for finite transversal momentum (shown in red).
The peculiarity of this perpendicular mode, sometimes also called a chiral Majorana
mode, is its 4π-periodicity as the crossing at φ= π is protected. Its contribution to the

Δind 

-Δind 

2π 0 4π 

E(φ) 
a) 
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S TI S 
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kx 

ky 
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TΘ 
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𝑘𝑦 = 0 

𝑘𝑦 ≠ 0 

Figure 3.2: a) Schematic of a JJ with size annotations and a polar plot of the transmission probability as a
function of angleΘ. b) Andreev bound state spectrum from a 3D TI JJ where the gapless ky = 0 mode is depicted
in blue and and in red for oblique incidence.

supercurrent is then given by3 I4π = sinφ/2.
This 4π-contribution to the supercurrent is a single channel phenomena and in a finite

size Josephson junction overshadowed by a large number of conventional 2π-periodic
modes. Furthermore, the gapless ABS may restore a 2π-periodicity due to its finite lifetime.
In equilibrium, the electron is likely to follow the lower branch as quasiparticle poisoning
from the superconducting leads allows a change of parity. Therefore a principle aim of
the present thesis is to probe the non-equilibrium case of a JJ by using the ac Josephson
effect. However, before discussing the ac response of the topological JJ, we give a short
overview of dc response done by Oostinga et al . [11].

REVIEW OF HGTE BASED JOSEPHSON JUNCTIONS

First attempts on inducing superconductivity in HgTe have been described in references
[11, 12]. As the devices used for studies described in this chapter are very similar to the
ones discussed in these papers, a summary of the main results is given.

Lateral Josephson junctions, as depicted in Fig. 3.3a) were fabricated using fully
strained films of HgTe with a thickness of dHgTe ≈ 70nm. The superconducting leads
are made from sputtered niobium, covered with a protective layer of aluminium and
ruthenium against oxidation. The distance between the leads is about 200nm and the
width of the HgTe mesa is 2µm. A dissipationless supercurrent is observed with a critical

3Calculated for zero temperature by IΘ = ∂E+
Θ

/∂φ. The total supercurrent is given by integrating over all angles
and is again 2π-periodic due to the large contribution of gapped modes.
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current value of about Ic = 3.8µA and a normal state resistance of Rn = 50Ω as shown in
Fig. 3.3b). Hysteresis in the I −V characteristics is commonly observed. This means that
the critical current has a different value depending on the sweep direction of the applied
bias. Such a behaviour is commonly observed in so called underdamped Josephson junc-
tions which have a large capacitance and normal state resistance. It is possible to quantify
this by calculating the Stuart-McCumber parameter Q =√

2eIc /ħC RnC which gives in
the present case 0.002 ¿ 1. Here the geometrical capacitance C of the superconducting
contacts is estimated to be C = 52aF by considering the dimensions of the junction. A
small Stuart-McCumber parameter indicates an overdamped junction Q ¿ 1 rather than
an underdamped junction Q À 1. The other frequently mentioned source of hysteresis
is self-induced heating. In this case, electrons in the voltage carrying state are scattered
elastically which creates Joule heating. This can locally influence the induced gap and
thus reduce the critical current. In contrast, in the zero voltage state Cooper pairs do not
exchange heat such that the effective temperature is lower and a larger critical current is
measured. The Ic Rn = 0.2 <∆Nb = 1mV can be used to classify the junction to be in the
long junction limit. The position of the nodes in the Fraunhofer pattern can in principle
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Figure 3.3: a) Schematic of a HgTe based Josephson junction. b)I −V measurement of a HgTe based Josephson
junction. The arrows indicated the sweep direction. c) Response of the Josephson junction to a magnetic field
applied perpendicular to the plane of the substrate and shows a Fraunhofer diffration pattern. Figures are taken
and from [11] and have been modified.

reveal the periodicity of the current phase relationship, as the distance between two
neighbouring minima is given by ∆B =φ/A for a sinφ periodicity and is twice as much
for a sinφ/2 supercurrent. The diffraction pattern is shown in the Fig. 3.3c). It shows a
conventional 2π-periodicity when taking the penetration depth of the superconducting
leads λNb = 350nm into account. This behaviour is somewhat expected as quasiparticle
poisoning might restore the conventional periodicity in dc-transport and only a small
fraction of the supercurrent is carried by the gapless modes. The current phase relation-
ship was also directly measured using a scanning SQUID by Sochnikov et al . [13]. They
report an almost length independent skewness of the ABS which might already be related
to the helical nature of the surface states.

To conclude, it was possible to fabricate a Josephson junction based on HgTe and
observe a Josephson effect. So far mostly conventional behaviour has been observed. The
skewed current phase relation shows the high transparency of the ABS.
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3.2. FABRICATION & CHARACTERIZATION OF THE HGTE

JOSEPHSON JUNCTIONS
The devices are fabricated from coherently strained undoped HgTe layers of 65−90nm
thickness, epitaxially grown on a commercial CdTe substrate. The mobility and charge
density relevant for the experiment are evaluated from Hall-bar measurements produced
from the same wafer as the presented junctions and typically yield values around µ =
2−4×104 cm2V−1s−1, and ne = 3−7×1011 cm−2. To calculate this density the linear part of
the Hall-slope is evaluated. The Fermi wavevector is then given by kF = 2

p
πn ≈ 0.2nm−1,

where a factor of two was used to account for the two different surface states assuming
equal charge carrier densities. From these values it is possible to calculate the mean free
path lmfp =µħkF /e ≈ 200nm.

The JJs are fabricated by defining a HgTe mesa using argon sputtering. Before deposi-
tion of the superconducting niobium contacts by magnetron sputtering, a short argon
sputtering cleaning step is used to achieve a transparent interface. A detailed recipe and
description of the lithographic process can be found in the Phd thesis of Luis Maier [14]
and the appendix A. Two SEM4 pictures with corresponding length scales of the devices
are shown in Fig. 3.4c) and d). Each superconducting contact has a width of 1−4µm5.
The HgTe weak link has a width of W = 2µm (corresponding to the width of the mesa
stripe) and a variable length L ranging from 150 nm to 600nm. This means that the device
is close to the ballistic regime for the shortest length scale (lmfp . L) and more in the
diffusive regime for all other junctions (lmfp > L). Another classification of the junction
can be done by comparing the length of the junction with the superconducting coherence
length ξSC. If the superconducting coherence length ξSC is much larger than L, only a
single ABS per channel is existing between the leads. On the other hand if ξSC À L, then
the device is in the long junction limit. The superconducting coherence length of niobium
is given by ħvF /π∆(T = 0) ≈ 40nm and therefore much shorter than L. The junction is
thus expected to be in the long junction limit [15]. This is only true when considering the
gap of the superconducting leads and ABS form inside the niobium gap. On the other
hand there exists the possibility that the proximity effect turns the topological insulator
superconducting and then subsequently the ABS can form between the induced states.
The induced superconducting gap is expected to be much smaller than the niobium gap.
As the coherence length scales inversely with the gap size (ξSC ∝ 1/∆), it is possible that
the induced superconducting coherence length is up to several microns long and the
classification of long and short Josephson junction needs to be taken with care. Indepen-
dent of this characterization, a topological junction will always host a protected crossing
at φ = π. The last number which we can already estimate in advance is the number of
transport channels by considering the density and width of the mesa N =W kF /π' 100.

The sample is cooled down in a dry dilution refrigerator with a base temperature
of T ≈ 20mK fitted with low pass RC and copper powder filters for each line. A typical
I −V curve obtained at 30mK is presented in Fig. 3.5. The critical current in this device
is Ic ≈ 5µA and exhibits hysteresis, as previously discussed. We find that the critical

4SEM: scanning electron microscope
5The change in width was an attempt to reduce the heating and therefore the hysteretic behaviour of the

junction. In general no change in the hysteresis or the behaviour of the junction was observed for varying
contact width.



3

46
3. 4π-PERIODIC JOSEPHSON SUPERCURRENT IN A HGTE-BASED TOPOLOGICAL JOSEPHSON

JUNCTION

   1.5 μm 

c) d) 

W=2 µm 

d=200-600 nm 

≈1 µm 

Nb 

electrode 

HgTe 

mesa 

200 nm  

150 nm  

600 nm  

400 nm  

a) b) 

10 µm 

Figure 3.4: a) Microscope and b) design drawing of the HgTe based JJs. The blue area is the HgTe mesa and the
green the superconducting leads. The numbers indicate distance between the superconducting leads. c) and d)
SEM pictures of a HgTe based JJ with length scales.
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Figure 3.5: I −V measurement of a device with L = 150nm at base temperature of T ' 30mK. The red and blue
lines indicate different sweep directions of the bias voltage. The grey lines indicate the asymptotes of the slope
taken V > 2∆Nb.



3.2. FABRICATION & CHARACTERIZATION OF THE HGTE JOSEPHSON JUNCTIONS

3

47

current of devices with the same dimensions varies by about 30%, which underlines the
reproducibility and quality of the fabrication process. A recurring feature in all devices is
the presence of an excess current in the I-V curve (see Fig. 3.5). For high biases V > 2∆Nb,
the I −V curves become linear with an asymptote which does not go through the origin
but is shifted towards higher currents. This excess current Iexc stems from the fact that
each Andreev reflection transfers the charge 2e, twice the amount than a normal electron
[16, 17]. It thus illustrates the presence of Andreev reflections at both S-TI interfaces
and emphasizes the high interface quality and reproducibility of our devices. The excess
current can reach twice the normal state current for two perfect transmitting NS contacts.
A finite barrier due to elastic scattering reduces the Andreev probability and therefore also
the excess current. Furthermore, the average transparency over all transport channels can
be estimated from the size of the excess current [18] and yields Z ≈ 0.6. This means that
the average transparency is moderate compared to other semiconductor superconductor
hybrid systems. The temperature dependence of the critical current Ic is shown in Fig. 3.6.
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Figure 3.6: a) and b) Fit of the critical current vs. temperature for the junction length 150nm in a) and 400
600nm in b). The data is represented as symbols and the solid lines are fits using the equation 3.4.

By using the appropriate theory6 from Tkachov et al . mentioned in Eq.3.2, it is possible
to estimate the induced superconducting gap ∆ind. Here, each mode is described by an
angle dependent transmission. The critical current as a function of temperature is given

6Apart from the theory, which is used to fit the data, a rather broad range of models exists which describe the
behaviour of the critical current. Fits using the Eilenberger theory [19] for ballistic junctions did not yield a
reasonable agreement with the experimental data. The diffusive regime is described by the Usadel equations
[20] but the theory should not be apply in our case as the we are closer to the ballistic limit.
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L/nm Ic /µA Rn/Ω ∆ind/meV N Z
A 150 3.3 33 0.35 117 0.1
B 400 0.29 158 0.1 33 1
C 600 0.44 165 0.1 48 1

Table 3.1: Summary of measured and estimated parameters for the three different JJs A,B and C in this chapter.
The length L is set by the design parameters and varies between 150−600nm. The values for the critical current
Ic and the normal state resistance Rn are directly measured from the I −V characteristics. The values of the
induced superconducting gap ∆ind is estimated using the temperature dependence of Eq. 3.6. The number of
normal modes and the height of the barrier were fitting parameters for the temperature behaviour of the critical
current.

by

Ic (T ) = eΓ

4ħ
∑
ky

sinφcosΘ
TΘ(1−γ+ 5

2γ
2 − 3

2γ
2TΘ sin2 φ

2 )

1−TΘ sin2 φ
2

tanhΓ
(1−γ+γ2)(1−TΘ sin2 φ

2 )1/2 + 1
2γ

2(1−TΘ sin2 φ
2 )3/2

2kB T
(3.4)

with γ= Γ/∆Nb and the induced gap is given by ∆ind = Γ(1−γ+ 3
2γ

2). As seen in Fig. 3.6
the agreement for low temperatures is very good. This approach breaks down for higher
temperatures where the induced gap becomes comparable to ∆Nb. The quality of the
fit is also not as good for the longer junction which might be due to the fact that the
model is using the short junction limit i.e. L ¿ ξSC which might not be fulfilled for the
longer lead separation. All relevant parameters are summarized in table 3.1. The values
for the number of conducting channels and the induced gap is comparable to the values
estimated in [13]. The estimated values have to be taken with a lot of caution due to
the limitations of the model and the uncertainties on the microscopic details of each
individual JJ.

3.3. AC CHARACTERIZATION OF THE JOSEPHSON JUNCTION
By illuminating the devices with microwaves, Shapiro steps form as described in chapter
1. In the experiment this is achieved by using a coaxial line with an open end which
effectively works as an antenna. The antenna is placed around 1mm close to the chip
carrier to allow a good coupling to the sample. The frequency range in this geometry is
1−12GHz. As just an open coaxial cable is used, the coupling to the chip carrier is not
calibrated and might even change from device to device on the same substrate. Here,
we present three devices produced from the same wafer. The width is set to W = 2µm,
the respective length are L = 150nm, 400nm and, 600nm. The experiment presented
here has been repeated on more than 10 devices made out of three different wafers,
all grown on CdTe substrates, with a HgTe thickness ranging between 50−77nm 7 in
three different measurement setups. All yield similar results. The measurements were

7Substrates Q2602,Q2644 Q2781 and Q2711. The presented sample here is “The Rock”from substrate Q2711.
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conducted at T = 800mK in order to avoid unstable jumps stemming from the hysteresis
of the junction.

Under rf irradiation, we observe the appearance of Shapiro steps in the I −V charac-
teristic at quantized voltages Vn = nh f /2e, where n εZ is the step index [21]. In contrast
to the standard JJ response, with steps at each n, we find at lower frequencies that the
n = 1 step is missing. To illustrate this anomalous Shapiro response of our junctions,
we present three I –V curves corresponding to three different excitation frequencies in
3.7a) (for the junction with L = 150nm). The applied rf power is chosen such that all
curves display similar critical currents. For a high-frequency f = 11.2GHz, one typical
I –V curve is plotted as a blue line. The voltage is normalized to h f /2e such that the step
height is constant for all frequencies. Several steps are clearly visible with step height
h f /2e. At lower frequencies f = 5.3GHz (green line), higher order steps are visible but a
clear reduction of the amplitude of the n = 1 step occurs. For a frequency of f = 2.7GHz
(red line), this first odd step is fully suppressed, showing an anomalous first step at h f /e.
The presence or absence of the n = 1 step can be conveniently detected by binning the
measurement data according to the voltage (with a 0.25h f /(2e) bin size). The resulting
histograms of the voltage V are presented as bar plots in Fig. 3.7b). For Vn = nh f /2e
with n being an integer, Shapiro steps appear as peaks in the bin counts, the amplitude
of which then reflects the length of the current step (in nA). For f = 11.2GHz, all steps
emerge clearly from the background. For f = 2.7GHz, the peak at V = h f /2e is absent,
reflecting the suppression of the n = 1 Shapiro step. This anomalous behaviour of the
Shapiro steps constitutes the main finding in this chapter. Below, we carefully analyse its
origin and conclude that it indicates the existence of a 4π-periodic contribution to the
supercurrent.
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Figure 3.7: a) Shapiro steps for a junction with L = 150nm. Three different frequencies measured at T ≈ 800mK.
The plotted voltage scale is in normalized units h f /2e. b) Bar plots obtained by binning the measurement
data according to voltage, for f = 2.7GHz and 11.2GHz. The Shapiro steps appear as peaks in the bin counts
for Vn = nh f /(2e), nεZ. While all steps are visible for f = 11.2GHz, the first Shapiro step (n = 1) is absent at
f = 2.7GHz.
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3.3.1. POWER DEPENDENCE OF THE SHAPIRO STEP EVOLUTION

We now examine the crossover from high to low frequency, for which the first odd Shapiro
step n = 1 progressively disappears. To this end, we scan the presence of Shapiro steps for
a range of rf powers at fixed frequencies and generate two-dimensional colour plots of
the bin counts at the voltage V (which indicates the current height of the Shapiro step
when present) as a function of the voltage V and rf current Irf. As shown in Fig. 3.8 (for
the junction with L = 150nm), such plots reveal the presence of Shapiro steps as maxima
at constant quantized voltages (horizontal lines). A high bin count signals the presence of
a plateau, which can be identified with the expected voltage value V = h f /2e. Let us first
examine measurements taken at f = 11.2GHz. (Fig. 3.8c). At Irf = 0, a single maximum at
V = 0 reflects the presence of a supercurrent. As Irf increases, Shapiro steps progressively
appear, starting from low values of n, while the amplitude of the supercurrent (n = 0)
decreases and eventually vanishes (here around Irf ≈ 0.3). From now on, everything below
the first crossing will be called the low power regime and everything above the high power
regime. The position where the supercurrent vanishes for the first time is labeled the first
crossing. In the high power regime, the steps show an oscillatory pattern, reminiscent of
Bessel functions occurring in the voltage bias case [15, 22]. Horizontal linecuts at constant
voltages give access to the amplitude of the first steps (n = 0,1,2,3 and 4), presented in
the lower panels of Fig. 3.8 as a function of rf current Irf. For high frequencies such as
f = 11.2GHz, our device exhibits the conventional behaviour that is seen in various other
systems (carbon nanotubes [23], graphene [24] or Bi2Se3 [25] weak links), that always
(regardless of frequency) show a clear presence of the n = 1 step. The case of atomic
contacts (with a few ballistic highly transparent modes) is particularly well understood,
and also exhibits a strong n = 1 Shapiro resonance in excellent agreement with theoretical
models [26, 27]. In contrast to the conventional Shapiro features commonly reported,
our HgTe-based junctions exhibit a very clear vanishing of the first step n = 1 when the
excitation frequency f is decreased. Measurements at f = 5.3GHz show that the first
step is suppressed below a certain value of Irf (indicated by the red arrow), and that it
is completely absent at f = 2.7GHz. In the oscillatory regime at higher rf currents, a
suppressed first oscillation (dark fringe indicated by the dark grey arrow) becomes clearly
visible at the low frequency, demonstrating the range of influence of the vanishing first
step on the rest of the pattern. In the lower panels, a complete suppression of the first
step or disturbances in the oscillations at higher rf currents can similarly be observed.
This crossover has been observed on all working devices, up to 800mK. In some cases,
hysteretic behaviour at low temperatures hinders the observation of low-index steps.
Shapiro steps in a Josephson junction with a hysteresis due to electron heating in Nb-Au-
Nb junctions were studied by Cecco et al . [28]. There, the authors found that hysteresis
introduces unstable switching of the critical current which may lead to the vanishing of
several Shapiro steps. The asymmetry of the switching currents (Is and Ir ) also leads to a
clear asymmetry in the Shapiro response for the “positive”and “negative ”current branch.
At low temperature and low rf-powers where we observe hysteresis we sometimes find
such a behaviour In this case we increased the temperature such that no hysteresis is
measured any more. Furthermore, measurements on junctions with a shunt resistor such
that hysteresis is fully suppressed have been conducted which also showing a missing
first step [29].
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Figure 3.8: 2D map of the bin counts for frequencies f = 2.7,5.3 and 11.2GHz, respectively. Shapiro steps are
identified as maxima for constant voltages Vn (white dashed lines emphasize n = 0,1 and 2). For f = 11.2GHz,
all steps are visible. When the frequency is lowered ( f = 5.3GHz), the first odd step (n = 1) is absent up to a
rf excitation indicated by the red arrow. Finally, at f = 2.7GHz, the first step is completely invisible up to the
crossing point that marks the beginning of the oscillatory regime at higher rf currents. A dark fringe (indicated
by a dark grey arrow) is observed at finite voltages in the oscillating pattern concomitant with the missing n = 1
step. (d–f) Horizontal linecuts through the previous colormaps (frequencies f = 2.7,5.3 and 11.2GHz) that give
access to the amplitudes of steps 0–4. While all Shapiro steps are clearly visible at high frequencies, the step
n = 1 progressively disappears as f decreases. From these plots, we access the maximum widths wn of each
step (see the example of w4 at f = 2.7GHz). For clarity, the different curves are offset by 0.4, 0.6 and 1.7µA for
d–f, respectively.
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In contrast to a missing n = 1 step, additional subharmonic steps (for n = p/q frac-
tional value) are often observed [26, 30] as a consequence of non-linearities, capacitance
effects or higher harmonics in the current phase relation. Such higher harmonics have
been predicted [9] and detected [13] in our junctions. At higher frequencies, we indeed
observe half-integer steps (n = 1/2,3/2 and so on) as slightly visible Fig. 3.8. Such higher
harmonics appear at much higher frequencies in a different regime from where we ob-
serve the missing n = 1 step.

Figure 3.9: For each length L of the JJ, we calculate the ratios of step amplitudes Q12 = w1/w2 (a) and Q34 =
w3/w4 (b) and plot them as a function of the rf frequency. Q12 shows a clear decrease as frequency f is lowered.
A minimum around 0.05 is obtained for the 150nm junction, but we observe that this minimum tends to
increase with the length L of the junction. In contrast, even if the measurements show some scattering, the ratio
of higher order steps Q34 does not show significant variation. For comparisons, we evaluated Q12 and Q34 from
a conventional RSJ model, and show the results as a grey area.

3.3.2. ANALYSIS OF THE AMPLITUDE OF THE 4π-CURRENT

The presence of a 4π-periodic contribution in the supercurrent I4π sinφ/2 is the only
known mechanism to result in the observed doubling of the Shapiro step size. As already
mentioned, microscopic models based on Bogoliubov-de Gennes equations have pre-
dicted such a 4π-periodic contribution in the current phase relation (CPR) [7, 9, 31, 32],
which originates from the presence of a gapless topological Andreev doublet. This anoma-
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lous CPR can then be supplemented with the Josephson equation on the time-evolution of
the phase difference to simulate the dynamics of such a system. This dynamics is captured
in the extended resistively shunted junction (RSJ) model of Dominguez et al . [33]. It takes
into account the presence of a sinφ/2 contribution in the supercurrent and explains the
crossover between the two frequency regimes by the highly non-linear dynamics of the
junction. When a small 4π-periodic contribution I4π sinφ/2 is superimposed on a large
2π-periodic supercurrent I2π sinφ in the CPR, the latter dominates the high-frequency
Shapiro response, but the weak 4π-periodic contribution is revealed at low frequencies
by doubled Shapiro steps. Doubled Shapiro steps are observed only when the driving
frequency frf becomes smaller than the characteristic frequency f4π = 2eRn I4π/h (with
Rn the normal state resistance of the device). This frequency scale based on the amplitude
of the 4π-periodic supercurrent is expected to be much smaller than the typical Josephson
frequency scale f J = 2eRn Ic /h ' 53GHz for the 150nm long junction, as I4π ¿ I2π ' Ic .
To estimate I4π, we introduce two indicators Q12 and Q34 as follows. From the maximum
amplitude of the first lobe of each step, denoted by wn , n εZ, (see Fig. 3.8a where the mea-
surement is indicated for the n = 4 step), we define and compute the ratios Q12 = w1/w2,
Q34 = w3/w4, and plot them as a function of the rf excitation frequency (Fig. 3.9). Despite
some scattering, we observe a clear decrease of Q12 towards 0 with decreasing frequency,
while Q34 remains constant around 1, for all lengths. For the shortest junction (150nm),
Q12 reaches a value of 0.05 around 2GHz, and the first step n = 1 is invisible. For compari-
son, we have also plotted the boundaries (grey dashed lines) between which the ratios
Q12 and Q34 vary in the standard RSJ model [34, 35] (with only a sinφ component in the
supercurrent). While the ratio Q34 remains close to the grey region, the behaviour of Q12

is not properly described. Assuming the validity of the above criterion for f4π, one can
evaluate the number of 4π-periodic channels. We estimate the crossover frequency where
the ratio is 50% which gives f4π = 4.5–5GHz and I4π = 250–300nA for the 150nm junction,
and f4π = 4GHz and I4π = 50–70nA for the longer junctions (400 and 600nm). One can
compare these values with the maximum supercurrent carried by one channel [36], given
by e∆i /ħ per channel, where ∆i is taken from table 3.1. With ∆i = 0.35meV (150nm)
and ∆i = 0.1–0.15meV (400 and 600nm), we estimate that the 4π-periodic contribution
amounts to that of 1–3 channels that is compatible with the presence of one topological
mode in our system, despite uncertainties on the exact value of f4π and ∆i .

MAGNETIC FIELD DEPENDENCE OF THE MISSING FIRST STEP

Further investigations of the anomalous Shapiro response have been carried out in the
presence of a magnetic field perpendicular to the plane of the device. First, when the
I −V curve is measured without rf irradiation, a Fraunhofer-like diffraction pattern of the
critical current is observed as visible in Fig. 3.10. The distance between two neighboring
minima yields ∆B = 0.8mT which is in agreement with earlier reports on similar devices
with comparable aspect ratios [11] and corresponds to a conventional 2π-periodicity,
when considering the finite penetration depth of the niobium contacts. It is interesting
that the observability of the missing first Shapiro step, quantified by the ratio Q12 follows
this behaviour. It is possible to explain this behavior by assuming a constant value of the
fraction I4π/Ic . The frequency f4π at which a missing step can be observed rapidly reduces
when Ic decreases. The magnetic field breaks TRS and should therefore have an effect on
the splitting of the ABS from the continuum states. Bulk HgTe has a large Landé-factor of
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g ' 20 [37]. The Zeeman splitting per mT yields EZ/B = gµB ≈ 1µeV/mT and is therefore
for the accessible fields B < 3mT negligible compared to the induced gap ∆i ≈ 100µeV. It
will be interesting to use a more suitable configuration of the superconducting contacts
to study the influence of larger fields especially along the plane of the HgTe mesa as
there higher fields are allowed before the supercurrent vanishes. Depending on the
magnetic field direction to the current direction different effects are expected. First of
all, by applying an in-plane magnetic field the pairing of Cooper-pairs is expected to
change due to the spin momentum coupling [38]. Furthermore, the Andreev bound states
can be manipulated by the Zeeman effect and it should be possible to induce some kind
of backscattering for a perpendicular to current alignment while a parallel to current
alignment only shifts the Fermi momenta.
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Figure 3.10: Upper panel: critical current Ic as a function of perpendicular magnetic field. Lower panel: The
ratio Q12 as a function of the perpendicular magnetic field B .

DISCUSSION OF TRIVIAL ORIGIN OF A 4π-CONTRIBUTION TO THE SUPERCURRENT

A possible trivial origin of a sinφ/2 contribution are Landau-Zener transitions (LZTs)
as depicted in Fig. 3.11. Such non-adiabatic transitions are possible to occur at the
anticrossings at φ= (2n +1)π, with n ∈ Z, and causing highly transparent modes which
have a small gap δ to behave effectively as 4π-periodic. The probability of a transition
can be estimated using the exponential function PLZT = exp(−8πδ2/E Jħφ̇). This means
that a small gap δ or equivalently a high transmission is enhancing the LZT probability.
Furthermore, as the derivative of the phase is proportional to the voltage this effect gets
stronger for a larger applied bias V as φ̇∝V . We do not observe the missing Shapiro steps
at high applied microwave frequencies or powers. In fact, we observe the opposite the
first step is stronger suppressed at low voltage bias and low rf frequency. This reasoning
make LZT an unlikely candidate for the origin of the missing first Shapiro step.

It is worth noting that here only the first step n = 1 is missing while all higher odd steps
are visible. In the following chapter 4 we will see that this behaviour can be understood
within the resistively shunted Josephson junction framework of two contributions to the
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Figure 3.11: a) Sketch of Landau-Zener crossings which can turn a conventional 2π-periodic bound state
4π-periodic. If the driving bias is strong enough a electron can be excited into the upper energy level close to
the anticrossings. The size of the gap between the two branches is δ.

supercurrent and that it is also possible to observe higher order missing odd steps when
the number of modes is reduced. The next chapter is devoted to the numerical modelling
of a Josephson junction with a sinφ and sinφ/2 contribution to understand the observed
behaviour.

3.3.3. CONCLUSION
To conclude, we have presented robust evidence for a 4π-periodic contribution to the
supercurrent flowing in JJs based on the 3D TI HgTe. The consistency of the measurements
in Hall-bars and JJs indicates that our devices are well-controlled, with well-defined
proximity-induced superconducting HgTe contacts connected via a ballistic HgTe surface.
Under rf irradiation, a suppression of the first Shapiro step is observed at low frequencies
and, for a wide range of temperatures from 20mK up to 800mK. We attribute this to
the existence of a 4π-periodic component in the supercurrent. The study of its order of
magnitude and of Landau–Zener transitions reveal that these experimental observations
are compatible with the presence of a few 4π-periodic gapless Andreev bound states. The
topologically non-trivial behaviour of HgTe has been established in the previous works.
There is evidence, that such states would likely stem from the topologically protected
gapless Andreev doublet.
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4
MODELLING OF A RESISTIVLEY

SHUNTED JOSEPHSON JUNCTION

WITH TWO SUPERCONDUCTING

CONTRIBUTIONS

The dynamics of a Josephson junction are commonly described by the resistively shunted
Josephson junction model. This chapter starts by reviewing the case of only a sinφ periodic-
ity under rf-irradiation. In order to explain the missing of odd Shapiro steps, the model is
extended by a linear combination of a 2π- and a 4π-periodic supercurrent in phase. The
observation of a missing first step in chapter 3 is explained first qualitatively using the
washboard potential. It is possible to show that at low frequencies or low voltage the system
behaves effectively 4π-periodic even though the contribution to the total supercurrent is
small (I4π¿ I2π). Numerical modelling of a topological Josephson junction is then used
to verify the picture. Further extensions to the model for a non-sinusoidal current phase
relation, a finite capacitance and non-adiabatic transitions are discussed.
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4.1. THE TWO SUPERCURRENT RSJ MODEL
This chapter discusses the resistively shunted junction model (RSJ model) in presence
of a 2π- and a 4π-periodic supercurrent. In chapter 2 section 2.4.1 it was shown that
the RSJ model and the washboard potential can be used to describe the dynamics of
a Josephson junction and the formation of Shapiro steps under microwave irradiation.
In this chapter an extended RSJ model is used to explain the missing of odd Shapiro
steps due to the contribution of a 4π-periodic supercurrent. Theory has predicted that
Majorana zero modes in a Josephson junction contribute a 4π-periodicity in weak links
based on topological insulators [1, 2]. In order to extend the RSJ model to the special case
and include effects from Majorana zero modes, first the applicability is justified. Then, it
is shown how the model operates in the presence of two superconducting contributions
given by sinφ and a sinφ/2 first using the qualitative washboard potential and second by
numerical simulations. Finally, the influence of additional effects such as the Landau-
Zener tunnelling, highly transmitting Andreev bound states, or the effect of a capacitance
are discussed. It is possible to derive the current phase relationship using microscopic
models, i.e. the explicit calculation of the energy spectrum of the Andreev bound states
(ABS) using the Bogoliubov-de Gennes-equation and also the energy spectrum of gapless
Andreev bound states due to Majorana zero modes. So far there exists no accessible
microscopic way to describe the time evolution of the phase and therefore a calculation of
the current voltage characteristics across the junction. The most common way to describe
the dynamics of the junction is to use an equivalent circuit of lumped elements, the so
called RSJ model, as introduced by [3–5]. In this part, a simplification is used as the system
is restricted to the overdamped limit, i.e. zero capacitance C = 0. This assumption is for
now justified in our devices, as the geometrical capacitance of the junction is rather small
with C ≈ ε0tSCWSC/L ≈ 34aF. Here, ε0 is the vacuum permittivity, tSC the thickness of the
superconducting leads and WSC the width of the superconducting electrodes [6]. This ap-
proximation for C is rather crude as it considers only the contribution from the Josephson
junction and ignores the leads and the capacitance to the ground. Nevertheless, it is the
dominant term since the geometrical capacitance scales inversely with the distance L and
the two superconducting leads are the closest parts of the system. The Stuart McCumber
parameter for the device is small (βc = 2πR2

nC /φ0 ¿ 1) and thus the effect of the small
capacitance can be neglected for now. This shows that the present junction is in the
overdamped limit and justifies the neglection of the geometrical capacitance for now1.
Following Russer et al . [7], the current biased RSJ model in normalized units2 is given by

α+αrf sinξτ= dφ

dτ
+ ICPR(φ)/Ic . (4.1)

By writing the equivalent circuit this way, several assumptions where used. The normal
state resistance Rn and the supercurrent ICPR(φ) are constant and independent on the
applied bias Iext(t). This is a simplification as, for example, subgap states which are
expected to reside inside the Josephson junction and their occupation, might change with
bias or temperature. So far, it is not possible to quantify the microscopical effects in the

1Later another intrinsic contribution to the capacitance is discussed in 4.4.
2Normalized currents: α= Idc/Ic andαrf = Irf/Ic , the renormalized time τ= 2eIc Rn

ħ t and frequency ξ= ħωrf
RN 2eIc

.

The voltage normalized by current and resistance is given by: dφ/dτ=V /Ic Rn .
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HgTe based devices and more controlled devices or knowledge of the environment are
needed.

The next assumption is that the current phase relationship can be written as a linear
combination of two supercurrents, namely

ICPR = I2π sinφ+ I4π sinφ/2. (4.2)

This implies that the two superconducting contributions are originating from two com-
pletely independent parts, or can at least be effectively summarized as two independent
contributions of the time averaged system. Furthermore, the use of a sinusoidal 2π-
periodic current phase relation is only valid in the limit of low transmission for the
conventional Andreev bound states (ABS). The effect of a high transmission using the
formula for ABS with a finite transmission is discussed in section 4.4.

We also do not consider stochastic processes like quasiparticle poisoning or other
relaxation mechanisms. Such effects might turn a 4π-periodicity into 2π. Also effects like
Landau-Zener transition are not considered which could in principle do the opposite,
i.e. turning a 2π-periodicity into 4π. So far, we do not account for such effects directly,
but treat the two contributions as the time averaged occupation per period. To make
this more explicit, we consider the example of a single gapless Andreev bound state in
a Josephson junction (I4π = Ic and I2π = 0). The lifetime of this state is finite due to e.g.
quasiparticle poisoning and therefore at some point, a 2π-periodicity is restored even
though initially no conventional ABS are present. This effect is then considered implicitly
by a finite contribution I2π. A more comprehensive discussion of these stochastic effects
is presented in section 4.4. Finally, we also ignore finite size effects, or even the use of
dimensionality in general (role of 1D edge channels in a 2D quantum well or 3D bulk
modes).

Despite the limitations of the model, we will show, that it is sufficient to capture the
key aspects of the dynamics in the Josephson junctions in our case and describes our
observation of missing odd Shapiro steps for low frequencies. The measurable observable
in this system is the voltage given by the second Josephson equation V (t ) =ħdφ/(2edτ).
The critical current of the device is defined as Ic = max{I (φ)}. The differential equation
4.1 is highly non-linear leading to non-intuitive dynamics. In the next section, we explain
the dominant 4π-periodic behaviour using the washboard potential. In fact, even in the
case of I4π¿ I2π, it is possible to observe a predominately 4π-periodic behaviour.

4.2. QUANTITATIVE DISCUSSION USING THE WASHBOARD

POTENTIAL
It is possible to explain the missing of odd Shapiro steps in presence of a 2π- and 4π-
periodic contribution to the supercurrent using the washboard potential. We recall the
formation of Shapiro steps as a time dependent perturbation of the washboard potential.
This perturbation locks the motion of the phase particle to the external rf-drive. The
washboard potential is shown at finite bias without applied ac excitation in the case of two
superconducting contributions as dashed lines in the upper panel of Fig. 4.1. The phase
particle is able to continuously develop in time, if the applied dc bias is larger than the
critical current I0 > Ic . The second Josephson equation relates a finite phase velocity to a
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voltage drop across the junction. This is visible more explicitly in the derivative dEpot/dφ
(lower panel of Fig. 4.1). A positive value in the derivative corresponds to a positive slope
in the washboard potential and, therefore, a potential trap for the phase particle. Thus
no voltage drop is observed. For a negative value in the derivative, the particle can move
down the washboard potential with a certain phase velocity and develop a voltage drop.

Adding an ac bias Irf, leads to a time dependent perturbation. The maximal values
are given by +Iac and −Iac as indicated by the blue and red lines respectively. Steps of
constant voltage appear due to the fact that the motion of the phase particle is locked
to the ac frequency over a certain bias range. During one ac period, the particle falls
down an integer number of steps. The number of steps is determined by the speed of
the particle (the applied bias) and the time of one period given by the external frequency.
Then steps of constant voltage form with a step size of Vn = nh f /2e with n any integer.
If the total supercurrent is now a combination of a 2π and a 4π-periodicity as described
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Figure 4.1: Washboard potential for two superconducting contributions I2π sinφ and I4π sinφ/2 with I2π = 2I4π
with an applied dc-bias of I0 = 1.1I2π in (black dashed lines). The effect of a rf-excitation can be represented
as a time dependent change in the slope as shown by the red and blue lines. The left side shows a low rf bias
Iac = 0.2I0, while the right shows a larger bias Iac = 0.4I0. The lower panel shows the respective colour encoded
dEpot/dφ.

by Eq. 4.2, the total periodicity is 4π with a steeper down slope in every “odd”minimum
and a reduced slope every “even”minimum. In the derivative dEpot(φ)/dφ (lower panel
of Fig. 4.1 this is directly visible by positive or negative values. For a negative value in the
derivative the phase particle can move down the washboard potential while it stops at a
positive value. It is now possible that for a low ac amplitude, a minimum in the washboard
potential is only achieved every 4π (red curve). This leads to the missing of odd Shapiro
steps and a dominant 4π-periodic behaviour. Contrary to the case of a large ac bias,
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the phase particle stops at every 2π period and all Shapiro steps are present. This is the
expected conventional behaviour of a Josephson junction with only a sinφ term. This
already indicates that even though the distribution of 2π and 4π is fixed, the behaviour
of the periodicity of the Shapiro steps may differ by changing the amplitude of the ac
bias. Close to Ic , the system is very sensitive. It can then be understood that even a small
I4π-contribution (I4π¿ I2π) can still give a dominant 4π-periodic response if the applied
bias is just small enough. This allows for the identification of a single gapless mode in a
large background of conventional modes in the experiment. In the experiment, it was
estimated that the I4π-contribution can be as low as 0.05I0. It is noted, that a similar
reasoning applies for the dominant 4π-periodic behaviour by lowering the ac frequency
ξ.

As the system is a highly non-linear differential equation a general analytic solu-
tion does not exists. Dominguez et al . [8] discussed several limits of the intensity Iac

pertubativley. We solve the differential equation numerically in the next section.

4.3. MODELLING OF THE SUPERCURRENT OF A JOSEPHSON

JUNCTION
We present the procedure for obtaining the current voltage characteristics of a Josephson
junction as a function of applied rf-power. First, equation 4.1 is solved using a Runge-Kutta
method (RK4) for a fixed bias I = I0+Irf. The time evolution of the phaseφ(t ) is calculated.
The dc voltage is then given by the derivative V = ∆φ/∆t = [φ(t = T )−φ(t = 0)]/T . By
repeating this calculation as a function of bias I0, it is possible to construct the full I −V
characteristics. In the following, we normalize the voltage to the expected step height
of h f /2e. First, we discuss the I −V curves for increasing I4π-contribution as shown in
Fig. 4.2a). For I4π = 0 (black curve) the conventional behaviour is observed and all steps
are visible. By gradually increasing the contribution of I4π =αI2π, the odd steps become
narrower until they completely disappear. This shows that a 4π-periodic supercurrent
contribution causes odd steps to vanish.

Next we set in Fig. 4.2b) a constant I4π = 0.5I2π and vary the applied amplitude Irf.
For zero power Iac = 0 (black curve), the I −V trace shows the characteristic non-linear
behaviour and no steps are visible. With increasing ac amplitude, first only odd steps
are observed (red curve). For a higher ac bias, all integer steps start to appear. This is in
agreement with the explanation using the washboard potential and also as observed in
the measurements described in chapter 3.

A convenient way to present the data is by calculating a histogram for each value of
Irf of the simulated I −V and plot it in a two dimensional map of applied dc bias as a
function of rf power. Then, Shapiro steps appear as maxima in the voltage histogram as
depicted in Fig. 4.3. It is possible to extract horizontal cuts of the histograms along the
lines for the voltages Vn = nh f /2e, with n ∈Z. This represents the width of a step for a
given power and is shown in the lower panels of Fig. 4.3a)-f). For the simulations without
an additional 4π-periodic component (Fig. 4.3a)-c)) the first step (blue) always appears
first and the other steps follow one after each other. All steps are clearly visible and for
a higher frequency ξ, steps appear for lower powers. The line cuts resemble the results
obtained by Russer et al . [7].
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Figure 4.2: a) I-V curves for different values of I4π =α4πI2π-contribution with α4π = 0, (black) 0.2, (red) 0.3,
(blue) 0.4 (magenta) and 0.5 (green). The other values are I2π = 1, ξ= 0.3, and Iac = 0.3 b) I-V curves for different
values of Iac . The parameters for the RSJ simulations are α= 0.5, I2π = 1, ξ= 0.2. The values for the ac drive
from left to right are Iac = 0, 0.3, 0.6, 0.9 and 1.1. All curves are offset consecutively in the x-direction, by 0.4Ic
for clarity.

The behaviour changes, when a small I4π-contribution I4π = 0.15Ic is added as shown
for the Fig. 4.3d), e) and f). In order to compare the influence of the rf drive frequency to
the Josephson current, we use the Josephson frequency in the following discussion. This
is possible as the current is proportional to the Josephson frequency f = 2eRIc /ħ. This
means that I4π = 0.15Ic is equivalent to f4π = 0.15 f J for the remainder of the discussion.
At high frequencies, i.e. f > f4π, as shown in Fig. 4.3d), all steps are visible, and the
result is comparable to the one obtained without a 4π-periodic contribution. As the
frequency is decreased, the amplitude of the odd steps is reduced as shown in Fig. 4.3e)
for a frequency f = f4π and Fig. 4.3f) at a frequency f < f4π. At low power, the odd
steps are completely suppressed and the behaviour for the n = 1 step is similar to the
experimentally observations presented in chapter 3. The crossover frequency from only
odd to all Shapiro steps was calculated by Dominguez et al . [9] and occurs roughly
at fac ≈ f4π = 2eRn I4π/ħ. This result holds only in the current biased case as in the
experiment of chapter 3. In the voltage biased case, the differential equation can be
solved analytically solution exists and the two superconducting contributions would be
weighted with the size of the critical current. This would make an identification of a
4π-periodic contribution much harder in the limit of I4π¿ Ic . The oscillatory pattern of
the step amplitude is also modulated, leading to an even odd pattern in the high power
regime. This is in fact also observed in the experiment as dark fringes (c.f. chapter 3
section 3.3.1) and visible in the step height of the odd steps.

4.3.1. INFLUENCE OF CONVENTIONAL MODES WITH A HIGH TRANSMISSION

So far we have assumed that the conventional contribution is sinusoidal, i.e. I2π(φ) =
I2π sinφ. This approximation is only valid in the limit of low transmission. In a struc-
ture where the weak link is for example a metal or a high mobility semiconductor, the
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Figure 4.3: Figures a), b) and c) show the simulated Shapiro response for a conventional Josephson junction.
The colour maps are obtained by bin counting the voltage of the singleI −V traces as a function of rf-drive Irf.
For three different frequencies f = 0.4 f J in a), f = 0.2 f J in b) and f = 0.1 f J in c). The line-cuts show the step
amplitude along the different Shapiro plateaus. The graphs d), e) and f) show the simulated Shapiro response
including a 4π-periodic term obtained the same way. The parameter values are f4π = 0.15 f J , f = 0.5 f J for d),
f = f4π for e) and f = 0.05 f J for f). With decreasing frequency, odd steps are more and more suppressed at low
powers.
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supercurrent is carried by Andreev bound states. The current of these states is given by

Is (φ,τ) = e∆

ħ
τsinφ√

1−τsin2φ/2
. (4.3)

This current depends on the transmission coefficient τ and the size of the superconduct-
ing gap. The total current is then the sum over all individual channels 1/N

∑N
n=1 Is (φ,τn).

In our case it is not yet possible to access the states individually as the number of modes
contributing to the signal is quite large N À 10. One would therefore need to know the
transmission coefficient of each channel and fit a curve with at least a number of variables
equal to the number of channels in the junction (assuming the same superconducting
gap). The simulations are thus done with an averaged transmission over all channels. The
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Figure 4.4: a) The current phase relationship for various values of transmission coefficient τ. The black line
represents a low transmission of τ= 0.1 while red, green and blue have a high transmission of τ= 0.9, 0.95, and
0.99. b) simulated I −V curves for the four different transmission values with an applied microwave amplitude
Irf = Ic and a frequency ξ= 0.5. For higher transmissions fractional steps at half the expected plateau value start
to appear. No additional I4π contribution was added. The curves are vertically offset for clarity.

current phase relationship for various values of transmission is plotted in Fig. 4.4 together
with their respective I −V curves under applied rf radiation. No 4π-periodic behaviour
is found even for the highest transmission of τ = 0.99. A higher transmission leads to
a non-sinusoidal behaviour and is reminiscent of a saw tooth like behaviour. This can
be approximated by higher harmonics of the fundamental frequency sinnφ, with n ∈Z.
Such higher harmonics are visible in the I −V traces under applied microwave bias. At
higher power values, fractional steps start to develop indicated by the grey dashed lines in
Fig. 4.4b). In fact a similar explanation as in the case of the sinφ and sinφ/2 behaviour is
valid here (doubling effectively both frequencies φ→ 2φ). The higher harmonics start to
become dominant at higher Irf values.

To conclude, a linear combination of a 4π-periodic supercurrent and a 2π supercur-
rent allows the observation of either only odd Shapiro steps or all integer Shapiro steps
depending on the parameter regime. Especially at low frequencies fac and low power Irf,
the phase dynamics are predominantly 4π-periodic. A small I4π-contribution is thus able
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to observe odd steps even in the presence of a majority of conventional modes as expected
in the experiment. In addition, no generic 2π-periodic current phase relation is able to
make odd steps vanish. The observed behaviour is in agreement with the experimental
results in chapter 3 apart from the fact that only the first step vanishes.

4.3.2. INFLUENCE OF CAPACITANCE

The influence of a finite capacitance in the RSJ model in the presence of two supercon-
ducting contributions was discussed by Picó-Cortés et al . [10]. The authors showed
that by taking a finite capacitance into account, the first step is more likely suppressed
than higher order steps in presence of a small 4π-contribution. So far, the geometrical
capacitance was shown to be negligible and thus we need to justify why it can still be a
relevant contribution.

In this regard, it is important to take into account the so called intrinsic capacitance.
In general, the total capacitance Ctot of a JJ is given by the sum of the geometrical Cgeo and
intrinsic capacitances Cint i.e. Ctot =Cgeo+Cint. The intrinsic capacitance originates from
ground state fluctuations of quasiparticles [11, 12] while the geometrical capacitance due
to charging effects. For a bias close but slightly smaller than the critical current Ic , the
phase particle is in a metastable state. Even if the bias is smaller than Ic , quantum or
thermal fluctuations may spontaneously switch the junction into the resistive branch also
the bias is smaller than the critical current. This switching behaviour can be understood
using the washboard potential. There, a capacitance can be interpreted as giving the
phase particle a mass m. Once the mass starts to “roll down”the potential, it now has a
finite inertia and may be able to overcome the positive slope. In tunnel junctions with a
rather large geometrical capacitance, the effect of the intrinsic capacitance can be usually
neglected due to its small contribution to Ctot. Antonenko et al . [13] and Galaktionov
et al . [14] showed that in the case of weak link consisting of a normal metal with a small
normal state resistance and highly transmitting ABS the intrinsic capacitance is the domi-
nating contribution and can even drive the device into a hysteretic regime. The general
expression for the intrinsic capacitance is then given by Cint(φ) =α(φ)G/Eg where α(φ)
is a model dependent parameter of the order 1, G the normal state conductance and
Eg the value of the induced gap. The conductance can in this context be related to the
transmission of the normal state transport. A high conductance signals the presence of
highly transmitting modes and thus a non-sinusoidal current phase relation. Once the
phase particle tunnels through the potential, the steep slope accelerates the particle and
it can get over the minimum. Considering the contribution Cint, the Stuart-McCumber
parameter is approximated by βC = 2eα(φ)Ic R/Eg ≈ 1−2. The values used for the calcu-
lation are taken from the 3DTI Josephson junctions discussed in the previous chapter
2 and are: Rn ≈ 50Ω, Ic ≈ 2µA, Eg = 100−200µeV. Therefore, the device could behave
hysteretic due to the intrinsic capacitance. Although, the intrinsic capacitance and its full
contribution have not been explicitly fully explored, it has become a useful parameter to
the explain the observed hysteresis and the missing of predominantly the first Shapiro
step.

In summary, we can argue using theoretical model of Picó-Cortés et al . [10] that
the missing of only the first step can be caused by the capacitance of the Josephson
junctions. As the Josephson junction is very likely to host some ballistic modes with a
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high transmission, the intrinsic capacitance can be large enough to justify a reasonable
total capacitance.

4.4. PROCESSES AFFECTING THE JOSEPHSON JUNCTION

DYNAMICS
In the last part of this section the numerical treatment of Landau-Zener transitions
and also other stochastic processes, which affect the Josephson dynamics are discussed.
Various stochastic effects which can change the periodicity of the Andreev bound states
from 4π to 2π or, vice versa are illustrated in Fig. 4.5a). Gapped Andreev bound states
with a 2π periodicity may turn 4π by Landau-Zener processes which have the highest
probability at the anti-crossings at φ = (2n +1)π, n ∈ Z. This process is highlighted in
Fig. 4.5a) by the black arrows and occurs with a estimated probability of

PLZ = exp(−2πδ2/∆iħφ̇). (4.4)

According to this classical approximation, the probability decays exponentially with
the size of the gap δ. This gap is directly related to the transmission of the ABS by
2δ= 2∆i

p
1−τ. A high transmission is therefore favouring this process. The probability

increases with increasing phase velocity φ̇∝V , which is proportional to the applied bias
V according to the second Josephson equation. This is contrary to our experimental
observations as we observe missing odd Shapiro steps only at a low bias. The second
process is related to the dephasing rate Γd which is caused by voltage fluctuations e.g.
from the external source which destroy the coherence of the Andreev bound state over
time. The time td is expected to be much shorter than the time to change the phase by
2π. Interference effects between two consecutive Landau-Zener transitions can thus be
neglected [9].

Two more decay processes can influence the periodicity of the Andreev bound states.
The first process is the relaxation of the excited Andreev bound state into the ground state
and related to the relaxation rate Γr . The second process is quasiparticle poisoning by
adding or removing a quasiparticle from the quasi-continuum into the Andreev bound
state and related with a rate Γqp. Both time scales (rates) are unknown in our device. They
can be quite long in conventional Josephson devices (up to minutes but is usually µs) [15].
The rather long quasiparticle poisoning time scale compared to the ac bias frequency (
1GHz≈ 10−3µs) is exactly the reason Shapiro steps and the measurement of the Josephson
emission are suitable for the measurement of the periodicity of the current phase relation
of a topological Josephson junctions. A comprehensive numerical study of Landau-Zener
transitions was reported in Ref.[8]. We summarize the main here. By assuming a single
mode model [9], it is possible to estimate numerically the influence of Landau-Zener
transitions in the following way. A typical plot of φ(t ) and V (t ) is shown in Fig. 4.6b), with
φ(t) as a red line and V (t) ∝ φ̇(t) as a blue line for the following parameters: I = 0.5Ic ,
Irf = 0.8Ic , f = 0.2 f J . The phase φ (blue) follows an anharmonic motion synchronized
with the excitation drive at a frequency f : during one period of duration 1/ f , the phase φ
increases by 2π, yielding an averaged voltage V = h f /2e as expected for the first Shapiro
step. Equivalently, one can calculate the average of V (t ) and obtain V =<V (t ) >= h f /2e.
Then, we access the time t for which φ reaches the anticrossing for example for φ(t ) = 3π



4.4. PROCESSES AFFECTING THE JOSEPHSON JUNCTION

DYNAMICS

4

69

0 1 2 3 4



 

 

E
[

]

Phase []



PLZ 

Гqp 

Гqp 

Гr 

Гd 

a) 

(2n+1)π (2n+3)π 

I(φ) 

b) 

Figure 4.5: a) Andreev bound state spectrum with possible relaxation processes. The ground and excited Andreev
bound state are shown in red and blue respectively. It is possible that a Landau-Zener transition occurring at
the anti-crossing turns the spectrum 4π-periodic as indicated by the green dashed line. A quasiparticle from the
continuum can change the occupation of the ABS on a time scale related to Γq . The exited state might itself
relax on a time scale related to the decay rate Γr . The coherence of the Andreev bound state is lost by dephasing
rate Γd (orange arrow). b) The current phase relationship with two consecutive Landau-Zener transitions (blue)
and no Landau-Zener transitions (dashed green). Figure b) is taken from [9] with small modifications.
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calculated via RSJ equations and plotted as a function of time t in units per rf period 1/ f .
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and calculate the derivative of the phase φ̇3π at this point or equivalently the voltage V3π.
For a given ABS with gap δ, it is then possible to calculate PLZ using Eq. 4.4 and compare
it to a random number to check if a Landau-Zener transition occurs. If a transition occurs
the current phase relationship is multiplied by −1 to account for the population of the
excited state as shown in Fig. 4.5b) (blue). If the Landau-Zener probability is one i.e. at
each anti crossing, the state is excited by the external drive and the junction behaves
undistinguishable to a 4π-periodicity. In Fig. 4.6a), the effect of finite Landau-Zener
probabilities P < 1 on the n = 2 step is shown. The quantization of the Shapiro steps is
lost and splits in two branches departing from the plateau. This can be understood since
the Landau-Zener transition is a stochastic process and the result is an average value
between the 2π and 4π processes depending on the probability of each process. It is still
possible to estimate a lower bound of the gap δ and therefore the minimum transmission
of an Andreev bound state which could cause such an effect. As we do not observe a
deviation from the Shapiro step, we can still estimate a lower bound of the probability of
a Landau-Zener transition which is needed within our measurement accuracy. With the
lowest accessible frequency (2GHz≈ 8µeV) in the experiment, it is possible to estimate
the gap δ. 9µeV. The transmission can then be calculated by 2δ= 2∆ind

p
1−τ2 which

leads to a transmission τ≥ 0.994. To our knowledge such a high transmission was never
reported in superconducting hybrid devices and is even rare in atomic break junctions.

In summary, we showed that the observed phenomena presented in chapter 3 can
be described using a two Josephson supercurrent model in the RSJ framework. The
influence of several parameters were discussed and it was concluded that a 4π-periodic
supercurrent needs to be present to observe the vanishing of odd steps. It was shown,
that for low frequencies or powers, the junction behaves predominately 4π-periodic
even though the total contribution of the I4π is rather small. Stochastic processes were
discussed. Especially Landau-Zener transitions can turn a conventional Andreev bound
state to effectively behave 4π-periodic. The probability of this process is enhanced at
high powers, high frequencies or a large applied dc bias and therefore likely to occur in
the completely opposite regime where we observe missing odd steps.
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GAPLESS ANDREEV BOUND STATES

IN THE QUANTUM SPIN HALL

INSULATOR HGTE

This chapter is based on the publication: GAPLESS ANDREEV BOUND STATES IN THE QUAN-
TUM SPIN HALL INSULATOR HGTE.
E. Bocquillon, R.S. Deacon, J. Wiedenmann , P. Leubner., T.M. Klapwijk, C. Brüne, K. Ishibashi,
H. Buhmann and L.W. Molenkamp,
Nature Nanotechnology 12, 137–143 (2017).

This chapter reports on the fabrication and analysis of superconductivity induced in a HgTe
quantum well, a two dimensional topological insulator that exhibits the quantum spin
Hall effect. By irradiating a Josephson junction with microwaves, Shapiro steps emerge
and demonstrate that the supercurrent has a 4π-periodicity in the superconducting phase
difference, as indicated by a doubling of the voltage step for multiple Shapiro steps. In
addition, the response to a perpendicular magnetic fields is investigated and an interference
pattern reminiscent of a superconducting quantum interference device is observed. This
indicates that the 4π-periodic supercurrent originates from states located on the edges of the
junction and shows signatures expected to occur in strong spin orbit coupled systems. Both
features, namely the missing of odd Shapiro steps and the SQUID like diffraction pattern
appear strongest towards the quantum spin Hall regime, and thus provide evidence for
induced topological superconductivity in the helical edge states. The chapter is organized
as follows. First, a short review of the theoretical predictions and previous experimental
work on induced superconductivity into quantum spin Hall insulators prior to starting
this work is presented. Then, the fabrication is detailed followed by a zero magnetic field
characterization of the device without applied ac-bias. The behaviour in a perpendicular
magnetic field is discussed followed by Shapiro measurements on a topological and trivial
quantum well.
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5.1. SIGNATURES OF INDUCED TOPOLOGICAL

SUPERCONDUCTIVITY
In 2000 Alexei Kitaev investigated a simple model, a one dimensional superconducting
chain without spin degeneracy [1]. He predicted, that in such a system, unpaired Majo-
rana bound states at the end of the wire may occur. His main interest was to use these
localized bound states as qubits which are predicted to be less sensitive to decoherence as
other qubit systems. They form the basic building blocks for so called topological quan-
tum computation [2]. One experimental implementation of this phase can be obtained
by combining recently discovered topological states with conventional s-wave supercon-
ductivity [3–5]. Possible realization so far have been the combination of strong spin-orbit
coupled nanowires with a superconductor and an applied Zeeman field [6, 7]. In this
regard, most of the experimental focus to date has been on 1D InAs or InSb nanowire
systems, which may undergo a topological phase transition under an appropriate applied
magnetic field. Although first results have been obtained [8, 9], the topological origin of
the observed phenomena remains unclear partly because the helical transport in the nor-
mal state has not been demonstrated1 and partly because several trivial artefacts can give
rise to similar responses. For example Ref. [11] gives a detailed discussion. Furthermore,
in order to braid Majorana fermions, several nanowires need to be connected in complex
networks. This is a tough challenge as nanowires must either be randomly put on the
substrate or positioned one by one. A newer development is to use two dimensional
quantum wells and pattern one dimensional channels which can then be combined to
scalable networks [12].

An interesting alternative platform is provided by quantum spin Hall (QSH) insulators,
in which electrons flow in two counterpropagating 1D edge states with opposite spins
[13, 14] as depicted in Fig. 5.1a). Unlike nanowires, this topological state is present in the
absence of a magnetic field, and thus renders the requirements for high critical field su-
perconductors unnecessary [15]. However, the localization in nanowires is more natural
due to the finite length, a time-reversal symmetry breaking mechanism such as a (local)
magnetic field is needed to localize Majoranas in the QSH case. The main difference
to the discussion of a 3D topological insulator based weak link presented in chapter
2 is the dimension of the effective topological superconductor. In the 3D topological
insulator a two dimensional surface state is in proximity with a superconductor and a
2D px + i py superconducting state is created. In the QSH case, superconducting corre-
lations are induced in one dimensional edge channels effectively forming a 1D px + i py

superconductor similar to the proposed model of Kitaev.
Ideally, a Josephson junction formed from a QSH insulator and conventional s-wave

superconducting contacts is expected to emulate spinless 1D p-wave superconductivity
at its edge. At each edge, the junction contains one Andreev doublet with a topologically
protected crossing for a superconducting phase difference φ = π [Fig. 5.1b)]. The two
states of this gapless topological Andreev doublet (usually called Majorana bound states)
have a 4π periodicity in the superconducting phase difference φ and can thus carry a 4π-
periodic supercurrent, I4π sinφ/2, along the edges of the sample [16, 17]. This contrasts

1Recently an article appeared which claims the observation of a helical gap in a nanowire without applied
magnetic field [10].
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with conventional 2π-periodic Andreev bound states (ABSs) that carry a current I2π sinφ
(+ higher harmonics). This theoretical expectation for an unconventional Josephson
effect motivates the experiment in this chapter.

0 2π 4π 

helical edge channels  

s-wave superconductor  

Fraunhofer 

SQUID 

a) b) 

e) c) d) 

Figure 5.1: a) Schematic of a topological Josephson junction with induced superconductivity. A superconducting
weak link in the QSH regime contacted by two superconducting s-wave electrodes hosts induced p-wave
superconductivity. b) Andreev spectrum of a topological p-wave Josephson junction (in the short junction
limit). The Andreev bound states, located on the edges of the samples, have a protected crossing at zero energy
ε and a 4π periodicity in the superconducting phase difference φ (blue lines), in contrast with the conventional
2π-periodic Andreev bound states (red dashed lines). c) Simulated dc current–dc voltage (I –V ) curves in the
presence of rf excitation for 2π- and 4π-periodic supercurrents, obtained with the RSJ model [18] extended to
account for 4π-periodic supercurrents [19, 20]. d) Histograms of the voltage distribution (in bins of 0.25h f /2e).
e) Simulated normalized critical current Ic as a function of the magnetic field B (in units of the number of
flux quanta through the junction area), following formulas in Barone and Paterno [21]. For an uniform planar
current, a Fraunhofer pattern (blue line) is depicted. For current flowing on the edges, a dc SQUID pattern (red
line) is expected.

Here, the realization of a device, that follows the proposal of Fu and Kane [3] using
HgTe quantum wells [14] is reported. Owing to their inverted-band structure [13], HgTe
quantum wells of suitable thickness are QSH insulators in which superconductivity can
be induced by means of, for example, Al electrodes [22]. The anticipated presence of
gapless Andreev bound states on the edges of such a device should be evidenced by
two remarkable signatures, which are presented as simulations in Fig. 5.1c) and e). A
4π-periodic supercurrent is expected in the ac Josephson effect [Fig. 5.1c)]. When phase
locking occurs between the junction dynamics and an external radio frequency (rf) exci-
tation, Shapiro steps appear at discrete voltages given by V = nh f /2e, where n is the step
index [23]. Usually all integer n steps are expected to be visible [Fig. 5.1d) blue line]. On
the contrary, in the presence of a 4π-periodic supercurrent, an unconventional sequence



5

76 5. GAPLESS ANDREEV BOUND STATES IN THE QUANTUM SPIN HALL INSULATOR HGTE

of even steps with missing odd steps is expected [Fig. 5.1d) red line], which reflects the
doubled periodicity of the Andreev bound states [24–26]. The exact sequence of visible
steps can be highlighted by plotting a histogram of the voltage distribution as presented
(Fig. 5.1d, right panel).

In this chapter, the experimental observation of an even sequence of Shapiro step,
with missing odd steps up to n = 9 is reported. The estimated amplitude of the 4π-
periodic supercurrent is compatible with the presence of two gapless Andreev doublets.
By changing the electron density, the missing of odd steps occurs predominant near the
expected QSH regime. In contrast, a non-topological HgTe quantum well is found with a
conventional Shapiro response.

A second signature of topological edge transport can be obtained by a magnetic field
applied perpendicular to the plane of the quantum well. This provides information on
the spatial dependence of the current density [Fig. 5.1e)]. When the current distribution
is homogeneous, the uniform flow through the plane of the quantum well results in a
standard Fraunhofer pattern [21] (illustrated by a blue line in Fig. 5.1e). When current
flows only on the edges, a dc superconducting quantum interference device (SQUID)
response is expected [21, 22] [Fig. 5.1e), red line]. Our measurements show a mixture of
these two cases; this shows that at least a dominant part of the supercurrent flows along
the edges. Additionally, in the SQUID regime, strong modulations of the odd lobes are
observed, yielding an apparent doubling of the periodicity in the magnetic flux fromΦ0

to 2Φ0.

5.2. EXPERIMENTAL REALIZATION OF A TOPOLOGICAL

JOSEPHSON JUNCTION
The experimental realization of a topological JJ using HgTe QWs as described in this
chapter of the thesis is based on the proposal of Fu and Kane [27]. In this regard, the
fabrication process outlined in chapter 3 for uncapped 3D topological insulators has
to be modified in order to suit the goals of the thesis involving buried quantum wells.
First, the MBE grown material is characterized by magnetotransport measurements to
ascertain the high quality of the epitaxial layers. Then, the fabrication process of the
Josephson junction is outlined and the device is characterized at millikelvin temperatures.
The section ends with the classification of the junction into the corresponding transport
regimes.

5.2.1. CHARACTERIZATION OF THE HGTE QUANTUM WELL

The Josephson junction is based on the substrate QC0280. The substrate is an 8nm thick,
nominally undoped HgTe quantum well sandwiched between two Hg0.3Cd0.7Te layers as
depicted in Fig. 5.2a). The bottom barrier is grown on a commercially available CdZnTe
substrate and has a thickness of 136nm and the capping layer has a thickness of 23.5nm.
All these nominal values were verified using x-ray spectroscopy techniques. The Zn
content in the substrate changes the lattice constant of the substrate such that it allows a
lattice matched growth of the HgTe quantum well and leads to a higher crystalline quality
in general. The upper capping layer is chosen to be thin (< 30nm) to allow ion beam
etching (IBE) of the capping layer followed by in-situ deposition of the superconducting
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leads. The thickness d of the quantum well is chosen to exhibit an inverted band structure
(d > dc = 6.3nm) as discussed in Ref. [13]. The band structure of the quantum well
was calculated using a k·p algorithm, developed by Pfeuffer-Jeschke [28]; the result is
shown in Fig. 7.5b). At this thickness, an inverted band structure with an indirect band
gap is calculated. The direct gap at k = 0 is about 33meV at k = 0. The mobility and
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Figure 5.2: a) Sketch of the thickness of the layers of the epitaxial grown heterostructure QC0280, which is used
for the experiments in this chapter. A 8nm thick HgTe quantum well is grown on a commercially available
CdZnTe substrate and protected by two Hg0.3Cd0.7Te. b) Band dispersion of a 8nm HgTe quantum well on a
CdZnTe substrate obtained by k·p calculation. c) Characterization measurements from an optical produced
Hall-bar from the substrate QC0280 with dimensions 200µm×600µm. The longitudinal (black) and transversal
(red) resistance are measured as a function of magnetic field at 4.2K.

charge carrier density of the substrate used to fabricate the Josephson junctions were
evaluated by measuring the longitudinal and transversal resistance of a Hall-bar with
length × width dimensions of 600µm×200µm. The results of the magneto-transport
measurements are shown in Fig. 5.2c). From this, an electron like charge carrier density
of ne = 2.3×1011 cm−2 and a mobility of µ= 300000cm2V−1s−1 can be deduced. From
these values, the elastic mean free path was estimated to be lmfp ' 2.4µm.

5.2.2. FABRICATION OF THE JOSEPHSON JUNCTIONS

The HgTe quantum wells used for fabricating the QSH based JJ have a Hg0.7Cd0.3Te
capping layer with a thickness of 23.5nm. In order to achieve a good transparent interface
between the HgTe and the superconductor, it is necessary that the interface is (i) clean and
(ii) in direct proximtiy to each other. Therefore, the capping layer needs to be etched away
in the area where the supercondcuting leads are deposited. Without this layer the mobility
is drastically reduced. The HgTe would partially oxidise under air such that the exact
thickness would not be known. In addition, it is beneficial to apply the superconductor
right after the etching to avoid oxidation of the HgTe. Furthermore, a working process
to deposit a gate insulator was developed which allows the charge carrier density in the
material to be controlled. The whole process is outlined below.



5

78 5. GAPLESS ANDREEV BOUND STATES IN THE QUANTUM SPIN HALL INSULATOR HGTE

DESIGN OF THE JOSEPHSON JUNCTIONS

The design of the structure is depicted in Fig. 5.3a). The mesa (blue) are three rectangles
with dimensions width × length of 4 × 10µm2. The width is designed to avoid overlap
of the wave functions of the edge channels, as this would lift the helical protection and
allow backscattering from the edge channels. The localization of the wave function of the
edge channels is estimated to be around 200 to 400nm [22, 29, 30]. Hence there should
be no backscattering due to a finite overlap. The superconducting leads are shown in
green. The distance L between the leads is L = 500nm for the bottom junction, 600nm
for the middle junction and 800nm for the topmost junction as indicated in the picture.
The width of the leads is chosen to be 1µm. As a superconducting material, 5nm Ti
followed by 150nm of Al was chosen. This makes it possible to use directional electron-
gun (egun) evaporation which allows an easier and sidewall free process compared to
isotropic magnetron sputtering of Nb. The Ti layer is necessary because samples made
purely with Al contacts did not show a supercurrent. The reason is likely to be that the
Al reacts with the Te atoms forming an interfacial telluride; However, the samples with
only Al showed high contact resistances Rcontact > kΩ. The introduction of a thin Ti layer
apparently solves this issue and allows good induced superconductivity. In addition, Ti is
superconducting by itself (Tc (T i ) ≈ 400mK); it is therefore expected, that the Ti adapts the
superconducting gap size of the Al due to the proximity effect and the thin height of the Ti
layer. A gate is structured (red) between the superconducting leads in order to be able to
control the occupation of states. The whole process is sketched in Fig. 5.4 and the detailed
process steps can be found in the appendix B. Figure 5.4a) shows the material as grown by
the MBE. This is cleaved into a roughly 3mm ×3mm large piece using a scalpel. The first
step is the definition of the mesa by IBE 2. Therefore, a so called sacrificial layer of 10nm
SiO2 is deposited by a low temperature plasma-enhanced chemical vapour deposition
(PECVD) at 80◦C. This step is shown in Fig. 5.4b). A poly(methyl methacrylate)(PMMA)
in ethylacetat resist is applied and the desired mesa is defined by using electron-beam
lithography (Ebeam) with 2.5kV acceleration voltage. After development in isopropanole,
a 20nm Ti etch shield is applied by egun evaporation and the metal is lift-off in acetone
[Fig. 5.4c)]. The SiO2 exposed sacrificial layer is removed by reactive ion etching (RIE).
The mesa is etched using argon sputtering to etch through the cap and bulk layer [Fig.
5.4d)]. The residual titanium etch mask is removed using buffered oxide etch. A optical
microscope picture of the finished mesa is shown in Fig. 5.3b) and a sketch in Fig. 5.4e).

The next step is the definition and evaporation of the superconducting leads. For
this reason a double layer of PMMA is spin coated using PMMA 600K 6% in ethylacetat
and a 950K 4% in ethylacetat resist. The rather thick resist allows for up to 50nm insitu
IBE etching. The chosen PMMA layers form an undercut as the two resists have different
sensitivity and avoids the formation of side-walls which makes the deposition of a gate in
a later step simpler and less susceptible to gate leakage. The thickness of the PMMA on
the other hand limits the resolution which affects especially the distance between the two
superconducting leads L. Using this resist, it was possible to achieve a separation of about

2An alternative dry etch process for the definition of the mesa was later developed using BaF as an etch mask
which simplifies the overall process. Information about this process can be found in e.g. [31]. Recently wet
etching of the mesa was also established in our group using a KI:I:HBr solution. The reason this kind of etchant
was introduced due to the fact that the quality of especially small heterostructure is lowered by IBE.
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a) b) 

c) d) 

L=500 nm 

L=600 nm 

L=800 nm 

Mesa 

Superconductor Gate 

Figure 5.3: a) Design of the Josephson junctions. The mesa (blue) is contacted by superconducting leads (green).
A gate (orange) is applied between the superconducting leads. The black bar indicates a distances of 10µm.
b)and c) Show the structure after the finished mesa and superconductor step respectively. d) Shows the finished
structure with applied gate and optical contacts. The small inset shows an overview of the final structure
including the optically defined bonding pads.
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a) b) c) 

d) e) f) 

g) h) i) 
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Figure 5.4: Fabrication process of a topological Josephson junction: a) The process starts with a MBE grown
HgTe quantum well material grown on a CdZnTe substrate. b) Ten nanometer of SiO2 is grown using plasma-
enhanced chemical vapor deposition. The sample is spin coated with 950 K 3%, exposed to an a ebeam writer to
produce the mesa pattern 20nm Ti are deposited. d) The Ti layer is lift off in acetone and the exposed SiO2 is
removed via reactive ion etching. The uncovered HgTe parts are then ion milled. e) The Ti and SiO2 are removed
using a buffered hydrofluoric acid (HF) solution. f) A double layer resist is applied and the superconducting
leads are written using ebeam lithography. Argon milling is used to etch down to the quantum well and a
superconducting layer stack as indicated in the picture is deposited. g) A double layer resist is applied and the
gate structure is written using ebeam lithography. A HfO2 dielectric is grown with a thickness of d ≈ 15nm by
atomic layer deposition at 35◦ C and a gate electron (5nm Ti and ≈ 100nm Au) is evaporated. h) The layer is lift
of in acetone. i) Artist’s view of the finished device.
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L & 400nm. The structure is written by Ebeam exposure using 30kV acceleration voltage.
The resist is developed using a 1:1 Ar:IPA solution for 60s followed by 30s isopropanole
and deionized water. The higher acceleration voltage compared to the 2.5kV previously
used is needed due to the thick double layer resist (total thickness approx. 650nm). The
capping layer is etched away using IBE etching. The best results were achieved when
trying to etch as close as possible to the HgTe quantum well (about 1-2nm away). Etching
completely through the quantum well did not result in any observable supercurrent3. The
sample is transferred to the egun evaporation chamber without breaking vacuum and
the following layer stack is deposited: 5nm Ti, 150nm Al, 10nm Ti and & 10Au. The last
layer is used to protect the Al against oxidation, while the Ti spacer layer is used to avoid
a high resistance gold-aluminium intermetallic called purple plague layer. In Fig. 5.3c)
the device after deposition of the superconductor is shown. In this picture, the surface of
the superconducting leads is rough. THis is presumably due to the thin Au layer which
sometimes leads to clustering. Then, using the same process as in the superconducting
lead step, the gate structure is defined by Ebeam exposure and developed. This process
allow the growth of an ALD gate oxide followed by metallization of the gate electrode. To
avoid sticking problems of the insulator on the substrate a 3−5s oxygen plasma cleaning
step in the RIE was introduced before approximately 20nm of HfO2 are grown by ALD
at 35◦ C. This low temperature grown HfO2 has been proven to be a good choice for a
reliable insulator, which allows to access a wide range of carrier density. One has to keep
in mind, that the metallic gate structure is close to the active HgTe structure and the
superconducting leads. This proximity might influence the electrostatic environment
Due to the chosen undercut of the resist and the isotropic growth by ALD, it is possible
now to apply the metallic gate using egun evaporation (5nm Ti and 100nm Au).

In a last step, the wire bond pads are defined using an optical process and 50nm AuGe,
5nm Ti and 50nm Au are evaporated. The final device is shown in Fig. 5.3d). A sketch of a
final device is shown in Fig. 5.4i). The measured distance between the superconducting
leads using a scanning electron microscope (Fig. 5.5) yields a slightly shorter distance
(400nm) then the nominal distance of 500nm.

2μm 

W=4 µm 

L=400 nm 

Figure 5.5: Colorized scanning electron microscope picture of a Josephson junction. The HgTe mesa is blue,
the Ti/Al superconducting contacts are in grey and the gate is in yellow and lies between the superconducting
contacts.

3Recently the combination of wet etch of the mesa and applying superconducting contacts on the edges of the
mesa without the need to etch away the capping layer was successful.
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As the mean free path estimated from the magneto-transport measurements lmfp >
2µm is larger than the distance between the two superconducting leads, the junction is in
the ballistic limit. The mobility value was evaluated using a larger macroscopic Hall-bar.
The mobility can be reduced in the micro-structure and therefore the estimate of the
mean free path is an upper limit. The device is quite close to the short junction limit, i.e.,
the coherence length of the Al ξ≈ 0.7−2µm is comparable to the distance L between the
superconducting leads. Therefore, only one or few ABS in the junction per channel are
expected.

5.2.3. DC CHARACTERIZATION OF THE JOSEPHSON JUNCTION

The current-voltage characteristic measured at 30mK and zero applied gate voltage
and magnetic field is shown in Fig. 5.6a). The junction exhibits a supercurrent with a
critical current value Ic = 1.1µA and then jumps into a resistive branch. Hysteresis is
observed between forward and reverse sweeps (red and blue), with a retrapping current
Ir < Ic . There is a strong indication that the difference between Ic and Ir depends on
the size of the critical current. For voltages larger than the energy gap of the aluminium
(∆Al ' 170µV), the I –V curve reaches an asymptote that does not go through the origin
(grey line). The slope indicates the normal state resistance of the device Rn , while the
intercept is the excess current Iexc. The excess current [32] stems from the enhanced
probability of Andreev reflections in an energy window near the superconducting gap. It
thus signals the presence of Andreev reflections at the single superconductor/TI interfaces
and shows therefore good transparent contacts. By comparing the amplitude of the excess
current Iexc = 1.4Ic with numerical simulations using Ref. [33], the barrier transparency t
was estimated to be about t = 0.6 to 0.8.

To identify the QSH regime, it is instructive to plot the normal state resistance Rn

and the critical current Ic as a function of the gate voltage Vg [Fig. 5.6b)]. From this
plot it is possible to describe three regimes. For gate voltages between Vg = –1.1 and
0V, Rn is low (below 300Ω) and Ic is large (above 200nA), which thus characterizes a
high-mobility n-type conduction as also observed in the reference Hall-bar. For gate
voltages below Vg ≈−1.6V, the normal state resistance again decreases. We take this as
a sign for increasing density again, which indicates the p-conducting regime. Owing
to a lower mobility in this region, likely due to the dispersion of the heavy hole bands,
the critical current Ic lies below 50nA and is always finite up to the most negative gate
voltages. Between Vg =−1.7 to −1.1V, Rn exhibits a peak with a maximum around 1.5kΩ
(for Vg =−1.45V), for which Ic is almost suppressed but still has a finite value Ic ≈ 10nA.
This indicates the region in which the QSH edge states should be most visible. However,
the peak value of Rn is lower than the expected quantized value of h/2e2 ≈ 12.9kΩ.The
observed resistance suggests the presence of residual bulk modes in the junction [22],
possibly because of diffusion of the contact material (Ti and Al) [34] into the HgTe material.
Additionally, local n-doping caused by Al may result in p–n barriers at the interface
between the Al-capped and gated areas. This would contribute to the two-point normal
state resistance Rn and could obscure a correct identification of the QSH transition.

In Fig. 5.7a), the Ic RN product is shown as a function of gate voltage Vg . It saturates
for the n-regime around 110µV and decays when the gate voltage is reduced below
−1V and saturates again around 20µV. The Ic RN product yields a lower bound for the
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Figure 5.6: a)I −V curve measured at a gate voltage Vg = 0V. This exhibits a critical current Ic ≈ 1.1µA, with
a weak hysteresis visible between the forward and reverse sweep (blue and red lines). For high biases, the
asymptotes (grey dotted lines) yield the normal state resistance Rn and signals the presence of an excess current
Iexc. b) Normal state resistance Rn (black), critical current Ic (red) and retrapping current Ir (blue) as a function
of gate voltage Vg .

induced gap ∆ind/e ≥ Ic Rn which is compatible with the Al superconducting gap of
the leads (∆ind < ∆Al ≈ 120µeV). It also shows that there is a clear transition between
the high mobility n-regimes and low mobility p-regime and a much better induced
superconductivity in the n-regime in general likely due to the formation of a p −n barrier.
Such a p −n barrier still allows the observation of a supercurrent in the p-regime of
graphene based Josephson junctions [35]. In addition, the gapless edge states are not
affected by such a barrier due to Klein-tunneling. Therefore the p-n barrier needs to
be stronger due to the finite band gap of the bulk quantum well or alternatively the
low mobility in the p-regime is causing this suppression of supercurrent. In Fig. 5.7b)
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Figure 5.7: a Ic RN product as a function of gate voltage measured at 30mK b) critical current Ic (black) and
retrapping current Ir (red) at Vg =−1.35V as a function of temperature T .
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the critical current Ic and retrapping current Ir are shown as a function of temperature.
The decay is observed down to 600mK, which would correspond to an effective gap of
∆ind ' 90µeV in agreement with the values given by the Ic RN product. However, attempts
to model the exact dependence with Kulik-Omelyanchuk formula (for a single ballistic
channel) or with Eilenberger equations (for a multi mode junction), following Veldhorst
et al . [36] have not been successful. Possible reasons for this are that our system is a
two component system consisting of bulk and edge states both can react different to
temperature or the proximity-induced gap might be different from a BCS-like behaviour
used in the assumption of the models.

Given the vanishing of the critical current at 600mK, the estimate of the induced gap
yields ∆ind <∆Al. Thus, one can evaluate the natural coherence length ξ≥ħvF /(π∆Al) ≈
1µm with an estimated Fermi velocity of the edge channels of vF ≈ 5 ·105ms−1 [14]. The
junction is thus possibly close to the short junction limit (L . ξ).

5.3. RESPONSE TO A MAGNETIC FIELD
Before investigating the rf response,the behaviour of the junction in a magnetic field
applied perpendicular to the plane of the junction is detailed. Considering a junction as
it is depicted in Fig. 5.8a). The magnetic field is applied along the y-direction and the
junction itself is in the x − z-plane. The two leads A and B are separated by a distance L
and the width of the electrodes is W . The gauge-invariant phase across the Josephson
junction is given by

φ=φB −φA − 2π

Φ0

2∫
1

Ad l, (5.1)

where the limits of the integral go from electrode A to B [37]. The phase difference between

I 

x 

y z 

L+2λL 

W 

JC(x) 

x 

W 

0 

Φ=0 Φ/ Φ0=1 Φ/ Φ0=5/2 
a) b) 

A B 

L 

Figure 5.8: a) Schematic diagram of an extended Josephson junction. The distance between the two supercon-
ducting leads is L. The current flows along the z-direction and the magnetic field is applied along the y-axis. b)
Current distribution for certain magnetic flux valuesΦ through a Josephson junction.

the two leads is obtained by considering the enclosed fluxΦwhich is approximately equal
to the applied magnetic field strength By times the area A. The effective area is obtained
by the length x and the London screening length λL of each superconductor times the
width W . This gives a position dependent phase difference:

φ(x) = 2π

Φ0
By (d +2λL)x +φ0. (5.2)
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This expression can be inserted into the Josephson current phase relation CPR(φ) where
the tunnel limit is used, i.e. I (φ) = Ic CPR(φ) = Ic sinφ and yields the total supercurrent
density for a given magnetic field by integrating over the spatial dimensions of the junction
one obtains:

Ic (B) =
∫ ∫

Jc (x, z)d xd z =
∫ W

0
Jc (x)sin[

2π

Φ0
By (d +2λL)x +φ0]d x. (5.3)

The last equation is valid for our 2 dimensional system. By assuming a homogeneous
current distribution Jc (x, z) = Jc as depicted in Fig. 5.8b), the critical current is given by
Ic = AJc ; with this the well known Fraunhofer diffraction pattern in analogy to the single
slit diffraction pattern is obtained:

Ic (Φ) = Ic (0)
sin πΦ

Φ0

πΦ
Φ0

, (5.4)

where Φ = By A = By W (2λL +L). This diffraction pattern is shown in Fig. 5.9b) (grey)
and stems from the fact that in the presence of a magnetic field, the phase and therefore
also the current distribution is position dependent as illustrated in Fig. 5.8b) for various
flux ratios. At integer multiples ofΦ0 the distribution of forward and backward directed
current yields a destructive interference and the total supercurrent is zero. The nth
maximum occurs forΦ= (n +1/2)Φ0.

It is worth noting that Eq. 5.3 represents a Fourier-transformation of the supercurrent
distribution Ic (x). This fact was used in previous studies on HgTe and InSb/GaAs quantum
wells [22, 38], where the authors observed in the case a deviation of a homogeneous
current distribution, a change from a Fraunhofer like diffraction pattern, to an edge
dominated transport. This edge dominated transport can be interpreted as two Josephson
junctions in parallel separated by an insulating bulk. Such a structure is reminiscent of
a superconducting quantum interference device (SQUID) and the diffraction pattern
satisfies the relation Ic ∝ cos(πΦ/Φ0) [c.f. Fig. 5.1e)]. This was taken as a proof of edge
transport in the quantum spin Hall regime. Here, it is shown that the device is compatible
with these previous observations in a similar gate regime. In Fig. 5.9, the differential
resistance dV /d I is presented as a function of dc current I and magnetic field B for
Vg = 0V. The junction exhibits to a large extend a conventional Fraunhofer pattern of the
critical current as a function of magnetic field, which rapidly decays as the magnetic field
increases. In this regime, the electron density is high and the current flows uniformly in the
2D plane of the quantum well. A period of approximately 0.41mT is obtained. Given the
dimensions of the junction, it corresponds to an effective length of Leff = L+2λ= 1.3µm
and yields a penetration length of λ= 430nm. This result is agrees with that of Hart et al .
[22]. The plot in Fig. 5.9 shows a small asymmetry between the positive and negative field
directions. This is very likely related to the experimental setup. The white line shows a
fit based on the standard Fraunhofer diffraction pattern using Eq. 5.4. The central lobe
and the first side lobes are fitted quite well by the standard Fraunhofer formula. For
higher fields, the measured data deviates from the expected theory as the experimental
periodicity gets larger and the diffraction pattern decays in general faster. Both effects
have been predicted by Meier et al . [39] for long ballistic SNS junctions taking disordered
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Figure 5.9: Differential resistance dV /d I as a function of dc current and magnetic field for Vg = 0V at 30mK.
Black areas indicate the superconducting regime. The white curve shows a standard Fraunhofer fit with an
effective area of 4×1.3 = 5.2µm2.

edges into account which is close to the regime of our junctions. The authors predict at
fields larger than B 'Φ0/l 2, the supercurrent decays faster and the periodicity becomes
longer. The transition frequency was estimated to be approximately B ' 1mT. This agrees
well with the magnetic field scales. Another possibility which can explain the deviations
in the measured diffraction pattern from the standard Fraunhofer pattern can be flux
focusing. This effect is extensively discussed by Suominen et al . [12]. The authors
account for magnetic field focusing at the edges of the sample caused by the screening
of magnetic fields of the superconducting leads. For a certain geometry, this leads to a
local enhancement of the magnetic field which can also increase the periodicity. However,
because of a significant difference in the design of the Josephson junction in their work,
a direct comparison of the results can not be done. In fact our geometry should be less
affected by flux focusing effects as our leads extend a certain distance over the mesa. In
order to be able to completely analyse the deviation from the standard Fraunhofer pattern
a more systematic investigation of dimensions and length scales needs to be done in
future work.

Fig. 5.10 shows the differential resistance as a function of magnetic field for various
applied gate voltages. As the gate voltage is decreased, the critical current decreases
and the diffraction pattern is similar to that of a dc SQUID for Vg =−1.3 and −1.6V. The
first signature for a SQUID like behaviour is the presence of a maximum rather than a
minimum at multiples of Φ= nΦ0, n ∈Z. This behaviour demonstrates that a sizeable
part of the supercurrent flows along the edges of the sample [22] which is expected in the
presence of QSH edge channels. Additionally, a narrowing of the central lobe is observed
in both cases and the relative height of the central to the higher order lobes becomes
smaller. In contrast to Hart et al . [40] a very strong odd/even modulations is observed:
the first and third lobes are substantially smaller than the second and fourth. In particular,
at Vg =−1.35V, the first and third lobes are completely suppressed and yields an apparent
doubling of the period (fromΦ0 to to 2Φ0) at low fields, before a conventional period is
recovered for larger fields. Finally, for more negative gate voltages Vg =−2V, the pattern
progressively returns to a Fraunhofer one, with some strong distortions, especially at high
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Figure 5.11: a) Normalized critical current as a function of magnetic field B and gate voltage Vg . b) Critical
current Ic as a function of B for two sweep directions (positive as a blue line, negative as a red line), following
the symmetry relation .

fields. This is likely to be due to the low mobility and small supercurrent in the p-regime.
This suggests that the current flow returns to a 2D configuration, with inhomogeneities.

To investigate the development of the Φ0 to 2Φ0 transition, Fig. 5.11a) shows the
normalized critical current as a map of gate voltage Vg and magnetic field B . For 0 to
−0.8V the pattern remains close to a Fraunhofer pattern, but the first and third lobes
progressively disappear and are missing between −1 V and −1.5 V; This is emphasized
by the dotted red lines. For −1.6V, the first and third lobes reappear. When driving the
gate from −1.6V to −2V, a standard Fraunhofer pattern is progressively recovered. This
graph also shows the evolution from a maximum to a minimum when the gate voltage is
lowered and central lobe is narrowed.

It is tempting, to associate our observations of the anomalous doubled of the lobes
period to a SQUID-like pattern with periodicity 2Φ0 that originates from the 4π periodicity.
Dc measurements are sensitive to relaxation processes that, in principle, restore a con-
ventionalΦ0 periodicity [25, 41, 42]. It is unlikely that our devices are free of quasiparticle
poisoning during the time scale of the experiment and thus do not expect a 2φ periodic
Fraunhofer pattern.

There exist several theoretical models [43, 44] which explain odd–even patterns and
small deviations from a SQUID pattern [38] via skewed current-phase relations or addi-
tional coupling between edges. Both effects are predicted to be dependent on tempera-
ture, while the even odd pattern in our case does not vanish with increasing temperature
as visible in Fig. 5.12. There, the differential resistance is shown as a function of perpen-
dicular magnetic field at Vg =−1.35V, where the even odd pattern is most pronounced.
As the temperature is increased a gradual decrease in the amplitude of the critical current
is observed but the strong asymmetry between the even and odd lobes persists. An alter-
native mechanism to explain the interference pattern is the interplay of the Zeeman effect
and spin–orbit coupling, which should occur in our material system [45, 46]. The interfer-
ence pattern in the even odd regime shows a peculiar symmetry relation of the critical
current, Ic+(B) = Ic−(−B), where ± indicate the sweep direction of the bias current and
+B and −B the magnetic field direction [Fig. 5.11b)]. In contrast, it is asymmetric both
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in the magnetic field and the sweep direction. Further investigation in a more suitable
geometry or the direct measurement of the current phase relationship would be required
to clarify the role of these mechanisms.

So far, sections 5.2.3 and 5.3 summarized and analysed the dc behaviour of the JJ. In
section 5.4 the response to an external ac bias is discussed.

5.4. RESPONSE OF A TOPOLOGICAL JOSEPHSON JUNCTION TO

RF IRRADIATION
The presence of gapless Andreev bound states can, in principle, be detected via the 4π-
periodic contribution to the supercurrent. In practice, such detection in dc transport can
be complicated by additional contributions from conventional 2π-periodic modes[47, 48]
that carry a current I2π sinφ and by relaxation processes that can restore a 2π-periodic
supercurrent [17, 26, 49]. To reveal the possible 4π-periodic characteristics, the dynamics
of the junction is most conveniently probed by studying the ac Josephson effect. The I –V
characteristic of the sample is measured using a dc current bias with the addition of an rf
driving current, coupled to the device via a nearby antenna which leads to the formation
of Shapiro steps as visible in Fig. 5.13. For high rf frequencies (6.6GHz, blue), all steps are
visible and a conventional sequence of Shapiro steps at V = nh f /2e, n ∈Z is observed.
As the frequency is lowered to f = 1.0GHz, we observe the progressive vanishing of all
the odd steps up to n = 9. This behaviour is highlighted by plotting the histogram as
visible in Fig. 5.13b). There, peaks signal the presence of Shapiro steps. By lowering the rf
frequency, it is possible to observe a gradual disappearance of the odds steps. Although a
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Figure 5.13: a) I −V traces at Vg =−1.1V for various rf frequencies. The power is always chosen such that it is
below the first crossing b) Histograms obtained by binning the I −V traces with a step size of 0.25h f /2e. Peaks
in the histogram signal the presence of Shapiro steps. By lower the frequency the odd steps start to disappear
gradually.

pure 4π-periodic supercurrent should lead directly to an even sequence of Shapiro steps
(as a direct consequence of the substitution φ→φ/2 in the Josephson equations). In our
experiment this is only visible at a low frequency. Our junction is expected to contain
both gapless bound states and a number of residual conventional modes. Hence, the
supercurrent Is can be written as Ic = I2π sinφ+ I4π sinφ/2. We have seen in the previous
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chapter 4 that even in the presence of a strong 2π-periodic contribution, a 4π-periodic
response can be observed when the time dependence of the voltage V to the current
bias I is most anharmonic, namely at a low frequency, low dc bias or low power. Odd
steps are then missing if the excitation rf frequency f is lower than f4π = 2eRN I4π/h. This
allows the amplitude of the 4π-periodic supercurrent I4π to be estimated. As a crossover
frequency the fully suppressed n = 3 step is chosen which occurs for Vg = −1.1V at
around f4π = 2GHz. With the normal state resistance of approximately 300Ω the critical
current yields I4π ' 10nA. This current is expected to be carried by two gapless Andreev
bound states, one on each edge. This value is comparable with the maximum current
a single channel is able to carry i.e. Isingle = e

ħ∆Ind ' 4nA. These numbers need to be
taken with care as the normal state resistance Rn is largely dominated by bulk transport
in the plane, and not by edge states. Nevertheless, this estimate makes two edges modes
a plausible explanation for the 4π-periodic contribution. Apart from gapless Andreev
states, gapped Andreev bound states with a high transparency could also result in a 4π-
periodic contribution in the supercurrent in the presence of Landau–Zener transitions
at the avoided crossing φ = π, and 3π as extensively discussed in chapter 4. However,
Landau–Zener transitions have increasing probabilities with increasing dc voltage or
frequency. Given our observations of missing steps just at low frequencies, this possibility
appears unlikely.

Recently, a 8π-periodic Josephson effect rather than a 4π-periodic contribution was
proposed taking Coulomb interaction or magnetic impurities and coupling of Andreev
bound states to the continuum in a QSH system into account [50, 51]. In this experimental
work, we observe no sign of such an effect in the response of our devices.

POWER AND FREQUENCY DEPENDENCE UNDER RF RADIATION

For completeness we now address the dependence of the Shapiro steps on the rf power.
This was already discussed in detail in chapter 3 for the case of a 3D TI junction and
is only mentioned briefly here as the behaviour is similar. The left column of Fig. 5.14
shows the differential voltage dV /d I as a function of applied current and rf power Prf

for three different frequencies at Vg =−1.1V. The right column shows the corresponding
voltage histograms normalized to the expected step size h f /2e. For low power levels but
a high frequency (6GHz), Shapiro steps appear consecutively from low to high indices
n and all steps are visible. Even fractional steps n = 1/2 and n = 3/2 which might stem
from non sinusoidal current-phase relationship or capacitive effects are visible. For lower
frequencies, odd steps progressively disappear (starting from low step indices). Although
maxima are seen in Fig. 5.14a) at 1GHz for n = 0, 2, 4, the first and third Shapiro steps
are fully suppressed. As visible here, hysteresis is occasionally found to induce a weak
asymmetry at low power values, which affects the n =±1 step at low frequency and low
power. For high power values, an oscillatory pattern (reminiscent of Bessel functions) in
the voltage bias case [18] is observed. However, the pattern is modified (when compared
with that seen for a higher-frequency excitation) [52], which develop from the suppression
of the first and third maxima of the oscillations. We interpret these features as signalling
the progressive transformation from a 2π- to a 4π-periodic pattern with halved-period
oscillations that correspond to a halved number of steps.
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Figure 5.14: Left column: 2D map of the differential resistance dV /d I as a function of applied rf power Prf for
three different frequencies and at gate voltage Vg =−1.1V. Right column: normalized histogram as a function
of voltage drop V across the junction and applied Prf for the same gate voltage and frequencies as in the left
column.
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GATE DEPENDENCE OF THE SHAPIRO RESPONSE UNDER RF IRRADIATION

Next, we investigate the dependence of the Shapiro response on gate voltage Vg . A
general observation is that odd steps vanish at low frequencies for a very wide range
of gate voltages, from Vg ≥ −1.3 up to +0.5V. The visibility of an even sequence is in
agreement with the previously introduced criterion f < f4π, and demonstrates that a
4π-periodic contribution is present in addition to a conventional 2π-periodic component.
The latter originates most probably from bulk modes, signalling the expected coexistence
of topological edge states with modes from the conduction band [53]. This would mean
that the edge states do not hybridise strongly with the bulk bands similar to the Dirac
screening of the surface states in 3D TI insulators developed in Ref. [54]. The reason
To show that the 4π-periodic modes are unveiled progressively as the number of bulk
modes is decreased for negative voltages, we calculate the ratios Qi ,i+1 of the maximum
amplitude of two consecutive steps as a function of gate voltage for a certain frequency.
The obtained graphs for two frequencies are displayed in Fig. 5.15. Simulations using the
resistively shunted junction (RSJ) model predict ratios Qi ,i+1, which are close to unity for
a conventional junction; the results are indicated by the shaded grey area. Ratios that
approach zero indicate the suppression and disappearance of the lower Shapiro steps. For
low frequencies i.e. 1GHz, the odd steps ratios Q12, Q34 and Q56 start to be suppressed
around Vg =−1.3V while the ratio of two even steps Q24 is only suppressed around that
value but close to the expected grey area for values below and above. This fact is connected
to the visibility of some steps at very low frequencies. It is important to note, that for
such low frequencies, all odd steps are suppressed up to high gate voltages where we are
expecting a large contribution of bulk modes or even a hybridisation of bulk and edge
modes. For values Vg <−1.3V, the ratios are close to the expected conventional behaviour
and do not show a suppression of odd steps. In order to show that the missing of odd steps
occurs stronger around the expected gap area the rf-frequency was increased such that
the criterion f < f4π is not easily met for even small contributions of the 4π supercurrent.
The ratios for 3.5GHz are shown in Fig. 5.15b). Both ratios Q12 and Q34 indicate that the
visibility of the even sequence of steps is improved between Vg =−1.3 and −0.9V but even
for higher frequencies, a suppressed first step remains up to positive gate voltages. Thus,
the ac response of our junctions strongly signals the presence of a strong 4π-periodic
contribution from the supercurrent that appears more clearly in this range close to the
QSH transition. This behaviour is in line with the previous measurements on a 3D TI JJ
described in chapter 2, where we were are able to observe the missing of only the first
Shapiro step. In the case of the 2DTI JJ, the results are more clear as we observe even
higher order missing of odd steps. The number of conventional bulk modes is lower as
in the 3D TI and, therefore, the transition frequency f4π. This makes it harder to resolve
more than one missing odd step as the step size and also the visibility are reduced by
lowering the frequency.

5.5. SHAPIRO STEPS OF A NON-TOPOLOGICAL WEAK LINK
To assess the topological origin of the 4π-periodic supercurrent, we now examine a
narrower HgTe quantum well. The thickness is below dc and does not exhibit an inverted
band structure and therefore also no QSH effect [14]. For this purpose a Josephson
junction was fabricated using the substrate QC0260, with a 5.5nm thick quantum well
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Figure 5.15: Ratios Qi j as a function of gate voltage for 1GHz with i , j being integer in a) and 3.5GHz in b). The
grey shaded area is the expected ratio in the absence of a 4π-contribution calculated with RSJ simulations.

and a 51nm thick capping layer. Usually thinner quantum wells suffer from a lower
mobility than thicker ones as the former are more strongly affected by local thickness
variations or roughness. This was compensated in the present material by growing a
thicker capping layer which increases the mobility. The sample was fabricated the very
same way as the inverted device with only the etching time of the superconducting
contacts being adjusted. The material properties, i.e. mobility of µ= 150×103cm2/Vs at
a density of n = 5×1011cm2 (for Vg = 0V) were obtained from a reference Hall-bar and
yield a mean free path, which is comparable to that of the inverted device. As all material
characteristics apart from the inversion of the bands by changing the quantum well
thickness are similar compared to the inverted device it allows the connection between
the topological properties and the presence of a 4π-periodic supercurrent to be tested.
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Figure 5.16: a) Critical current Ic and normal state resistance Rn of a non-topological Josephson junction as a
function of gate voltage Vg . b) 2D map of the voltage distribution as a function of the dc voltage (in normalized
units) and the rf excitation power Prf, taken at Vg ≈−1V and frequency f = 0.6GHz.

The measurement of the critical current Ic enables the identification of the n- and
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p-conduction regimes, although the gap, around Vg ≈ −1V, is not very pronounced
(Fig. 5.16a). When measuring the Shapiro response to an rf excitation, we do not observe
any missing odd step for any of the gate voltages, neither in the n- nor p-regimes, nor
close to the gap. As an example, we show in Fig. 5.16b) a measurement taken close to the
gap at Vg =−1V and at a very low frequency f = 0.6GHz. This is the regime where the
4π-behaviour is expected to be strongest. For such a frequency close to our detection
limit, all the steps are still visible.

To conclude, an inverted band structure and therefore the presence of topological
edge states is a necessary ingredient for the observation of the 4π-periodic supercurrent.

5.6. BREAKING TIME REVERSAL SYMMETRY WITHOUT A

MAGNETIC FIELD
At this point it is worth to recall the Andreev bound state spectrum of a helical edge
channel in absence of a magnetic field as depicted in Fig. 5.17 in blue. As long as time
reversal symmetry is preserved, Kramers degeneracy enforces a degeneracy at the time
reversal invariant momenta φ= 2nπ, n ∈Z. This degeneracy implies that at e.g. φ= 0 the
ABS touches the continuum states and any infinitesimal disturbance in the system (noise
fluctuations) can relax the electron in the continuum states, which restores a conventional
2π-periodicity as the state can relax every 2π. This problem was already realized by Fu
and Kane [3]. Therefore, they introduced a finite Zeeman field to lift this degeneracy
as indicated by the red curve in Fig. 5.17. In our experiment, we do not explicitly break
TRS by applying a magnetic field and do not expect a decoupling from the continuum
states. Therefore, we have to answer the question why we are observing the 4π-periodic
component at all. Here, we discuss three potential decoupling mechanisms from the
continuum states without a magnetic field, namely (i) backscattering of the edge channels
due to impurities, (ii) dc bias and (iii) non-equilibrium reservoirs.
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Figure 5.17: Schematic of topological Andreev bound state for zero mass M (blue) and in presence of a finite
mass (red).
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5.6.1. BACKSCATTERING OF HELICAL EDGE CHANNELS
The first assumption in the Fu and Kane model is the perfect transmission of the edge
channels due to TRS. Thus, breaking TRS also lifts the protection of the edge channels.
Experimentally, it is known that the edge channels seem to have non perfect transmission
if the edge length is too long. So far, the exact process is not yet known. It was shown for
example by Peng et al . [51] that a localized magnetic impurity allows scattering of the QSH
edge channels and this leads to a 8π-periodicity of the topological ABS. As far as we know
we do not have magnetic impurities in our system but several other proposals explain
mechanism which lead to backscattering of edge states such as the Rashba spin-orbit
coupling [55, 56] or scattering in neighbouring electron reservoirs [57, 58]. Another very
recent proposal takes the roughness of the edges into account which may spontaneously
break time reversal symmetry [59]. If one of the theories applies in our case, it would
justify a local breaking of TRS even without an applied magnetic field.

Additionally, the conductance in the present device inside the gap is much higher
than the expected quantized value of 2e2/h, therefore interaction with bulk channels is
likely to be present as well. The backscattering of edge channels and the interaction with
the bulk modes is experimentally not properly investigated yet and also the interplay of
disorder interaction effects and superconductivity has not been treated theoretically yet.
In summary, it is very likely that a backscattering mechanism might destroy the perfect
conduction of the edge channels which might act as a source of time-reversal symmetry
breaking.

5.6.2. BREAKING OF TRS BY CURRENT BIAS
Romito et al . [60] used the fact that a supercurrent creates a phase gradient through
the device which can be effectively treated as a Zeeman field in the case of QSH edge
channels. Furthermore, the Edelstein effect, i.e. an equilibrium spin polarization by
driving a current, can lift the degeneracy. Tkachov found huge g -factors of the order of
1000 for the superconducting helical edge channels [61]. This effect, similar to Romito
et al ., can be interpreted as an effective Zeeman field which decouples the gapless
Andreev bound states from the continuum. The strenght of the Edelstein-field can be
estimated by

HE = vFħk

2
, (5.5)

where vF is the Fermi velocity and k the momentum. The momentum is directly con-
nected to the phase gradient k =5φ. The phase gradient is then directly proportional
to the applied bias. The drift velocity vD of the edge channels can be roughly estimated
by calculating the current density in the quantum well I =W j ; with the current density
j = nevD , where n is the electron density of the system and e the elementary charge. This
can be related to the momentum by ħk = mvD . By using the following values for the
mass of the electron bands m∗ = 0.02me , a width of W = 4µm, a current of I = 100nA
and a density of n ≈ 5×1011 cm−2, the momentum yields k ≈ 3 ·103m−1. Then, using the
Fermi velocity of the electron bands vF ≈ 5 ·105 m/s [62], we obtain an Edelstein energy
HE ≈ 3µeV. This is a reasonable number and it should not affect the induced energy gap
(∆i ≈ 100µeV) much.The energy scale for rf radiation around 1GHz is ≈ 4µeV and thus
may be enough to decouple the states of the continuum.
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5.6.3. NON EQUILIBRIUM POUPLATION
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Figure 5.18: a) Sketch of a topological Josephson junction. A superconductor is deposited on top of the quantum
spin Hall insulator and induces a finite pairing amplitude ∆ind into the topological insulator. b) Andreev bound
state spectrum of a topological Josephson junction between two proximitized metals.

In most theoretical proposals for inducing superconductivity into topological insu-
lators, the question how the superconductivity is induced, is often neglected. In our
experiment we induce pair correlations by proximitizing the quantum well with Al, a bona
fide superconductor as sketched in Fig. 5.18a). Therefore, we first need to etch some of
the material and then deposit the Al. Both processes most likely reduce the quality of the
underlying material or even destroy its topological properties. The proximity effect turns
the material superconducting but the superconducting gap in the quantum well (∆ind) is
likely to be smaller than the superconducting gap of the main superconductor. This kind
of effect is extensively discussed in chapter 7. Andreev bound states form subsequently
between the two proximitzied normal metals as indicated in Fig. 5.18. As the quantum
well is only a few nanometres thick, it is likely that it does not form a proper continuum
and thus the electrons are separated from the continuum of the superconductor.
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5.7. CONCLUSION
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Figure 5.19: Overview over the observed phenomena in the topological Josephson junction as a function of gate
voltage: The normal state resistance RN (blue) and critical current Ic (red) as a function of gate voltage Vg . The
red and blue arrows summarize the ranges for observed diffraction patterns and Shapiro responses.

The response to rf irradiation strongly suggests the presence of a 4π-periodic super-
current in the device with a contribution compatible with two modes. It is most visible
when the bulk bands are depleted as indicated by the Fraunhofer interference pattern
and the normal state resistance. In this region, the current flow is mostly along the edges
of the sample (as indicated by the SQUID features, with possible indications of spin–orbit
and Zeeman effects). Although the QSH regime is not clearly identified by its quantized
conductance, it appears that the 4π-periodic contribution is also detected in the whole
n-conduction band, but is rapidly suppressed when driving the gate voltage towards the
p-conduction regime. This suggests that the 4π-periodic edge modes coexist in parallel
with bulk modes of the conduction band; this is consistent with previous predictions [53]
and observations in our material system [22, 63]. In contrast, a Josephson junction made
of a topologically trivial quantum well exhibits a conventional Shapiro response. Together,
this set of observations strongly points to the existence of the topological gapless Andreev
bound states as predicted by Fu and Kane [3] in Josephson junctions produced on the
well-characterized QSH insulator HgTe. Although further developments are required to
comprehend fully the richness of the observed phenomena, Josephson junctions in HgTe
quantum wells and at zero magnetic field appear promising for the future realization of
Majorana end states and possibly scalable Majorana qubits.
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6
JOSEPHSON EMISSION FROM

HGTE-BASED TOPOLOGICAL

JUNCTIONS

This chapter is based on the publication: JOSEPHSON RADIATION FROM GAPLESS ANDREEV

BOUND STATES IN HGTE-BASED TOPOLOGICAL JUNCTIONS.
R.S. Deacon, J. Wiedenmann, E. Bocquillon, F. Dommínguez, T. M. Klapwijk, P. Leubner,
C. Brüne, E.M. Hankiewicz, S. Tarucha, K. Ishibashi, H. Buhmann, and L.W. Molenkamp,
Physical Review Letters X 7, 021011 (2017).

In this chapter the Josephson radiation emitted from a weak link based on an inverted HgTe
quantum well, a material which hosts helical edge channels is probed. This technique is
especially powerful, as it allows the frequency of the Josephson junction to be probed directly.
Therefore, a new measurement setup needed to be developed which enables the measure-
ment of the high frequency emission. With this setup, it has been possible to measure the
emitted spectrum and find emission at half the conventional Josephson frequency f J /2, a
clear signature of a 4π-periodic supercurrent. This 4π-periodic supercurrent is predicted in
a topological Josephson junction. The results are in agreement with the previous chapters
3 to 5, i.e. a coexistence of a 2π- and a 4π-periodic supercurrent. The 2π-periodicity is
dominating at high frequencies while the 4π-periodicity is controlling the response of the
weak link at low frequencies. A reference device based on a non-inverted HgTe quantum
well shows only trivial emission at f J over the whole accessible parameter range. The
coherence time of the Andreev bound states has been estimated from the line width of the
emission spectra. For the unconventional emission at f J /2 a coherence time of 0.3−4ns is
found, generally shorter than the f J emission (3−4ns).
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6.1. INTRODUCTION TO EMISSION SPECTRUM OF A

TOPOLOGICAL JOSEPHSON JUNCTION
A fixed voltage bias Vdc applied to a conventional Josephson junction with a sinφ periodic
current phase relation is converted to an ac current with frequency f J = 2eVdc/h. This
process can be understood as the energy change of a Cooper pair tunnelling across the
junction as depicted in Fig. 6.1 a) and is called the ac Josephson effect. This effect has been
experimentally confirmed [1–3] for tunnel junctions with a pure sinusoidal current phase
relation. If the barrier between the two superconducting leads is for example a clean
metal, the normal state transmission t can take values between 0 and 1, where 0 refers to
0 transmission and 1 to 100% transmission respectively. For high transmitting modes, as
shown in Fig. 6.1b) (red), the Josephson current also contains higher harmonics, which
may also lead to emission at higher frequencies (n f J with n ∈N). A topological Josephson
junction in contrast is predicted to host a pair of gapless ABS [blue curves in Fig. 6.1b)].
The doubled periodicity of this ABS leads to emission of half the Josephson frequency f J /2.
This effect is of the same origin, i.e. Majorana bound states, as the missing odd Shapiro
steps discussed in the previous chapters but has the advantage that no ac bias needs to
be applied to the junction which leads to complex dynamics of the Josephson junction.
The analysis of the rf emission of a voltage biased topological Josephson junction is
therefore a powerful, passive and direct way of probing the properties of such a junction.
The problem is that the radiated power of a single junction is rather low and difficult to
measure[4]. Therefore a new measurement setup was developed.
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Figure 6.1: a) Schematic of the Josephson radiation process. A Cooper-pair (red dots) from the left lead tunnels
through a barrier. The energy difference of the applied bias V is absorbed by the environment by emitting a
photon with frequency f J . b) Spectrum of a topologically protected (blue) and conventional (red) Andreev
bound state.

In this chapter the study of the Josephson emission from a weak link based on a HgTe
quantum well with an inverted as well as a non inverted quantum well is reported in
a range from 2−10GHz using cryogenic microwave measurements. On the one hand,
the JJ based on the inverted quantum well (quantum well thickness d ' 8nm > dc =
6.3nm), which hosts helical edge channels, shows clear emission, both at the conventional
frequency f J , as well as at f J /2. On the other hand the conventional JJ, based on a HgTe
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quantum well with d = 5nm < dc shows only conventional emission at f J and 2 f J . The
emission measurements therefore provide a direct signature of the presence of a 4π-
periodic supercurrent as expected from gapless Andreev bound states as predicted by Fu
and Kane [5–8].

6.2. MEASUREMENT SETUP
In order to measure directly the emission spectrum of the Josephson junction, described
in chapter 5, several changes to the experimental setup were made. The detailed mea-
surement setup is presented in Fig. 6.2. The dc part (twisted pairs) are shown in red and
blue (blue is the gate line) while the rf components are shown in black. The substrate
is mounted on a printed circuit board (PCB) with a coplanar transmission line which
collects the radiation emitted from the Josephson junction. The PCB is coupled to the rf
measurement via an SMA launcher. A bias-T decouples the dc and rf measurement parts.
The signal lines are thermally anchored at each state. A cryogenic high electron mobility
transistor (HEMT) (low noise factory LNC4_8C) and two room temperature amplifiers
are used to amplify the small emission signal from the single Josephson junction. Finally
the signal is measured with a spectrum analyser. The commercial rf components limit
the experimentally accessible bandwidth to 2− 10GHz. A directional coupler allows
an external rf drive to be applied to perform Shapiro measurements. The dc lines are
equipped with self made copper-powder and low pass rc-filters.

An essential element in this experiment is the ability to apply a stable and low bias
to the Josephson junction. In this regard, a thin film resistor RS with a low resistance
(≈ 25Ω) is used parallel to the junction. Residual switching below a few microvolts still
sometimes occurred. Another thin film resistor in series to the junction RI ≈ 25Ω allows
the measurement of the current I which flows through the junction1. Both resistors are
placed in close proximity to avoid stray inductance. An equivalent curcuit of this on-chip
circuit is shown on the right side of Fig. 6.2. A typical measurement is done as follows:
At a fixed detection frequency fd , a triangular waveform generator is used to sweep the
I −V characteristics. The junction bias and current are amplified at room temperature
and measured with a digitizer which is synchronized with the spectrum analyser to the
sweeps of the junction current. Both the spectral data and the I −V are averaged over
several hundred repetitions to reduce the noise level. A background at zero bias applied
to the junction is subtracted from the measurements as it is attributed to stray noise from
the environment. It is estimated that the lowest features able to resolve are around 0.1fW
in an 8MHz bandwidth.

6.3. MEASUREMENT OF THE EMISSION SPECTRUM OF THE

TOPOLOGICAL WEAK LINK
A measurement as described in the previous section is shown in Fig. 6.3a). At a fixed
biased a finite voltage V develops and a contribution in the spectra of the junction
appears. The detection frequency is now fixed at fd ' 3GHz and an applied gate voltage

1Parameters for the trivial weak link are RS = RI = 36Ω. The difference compared to the topological device is
due to resistance variations of the thin film resistors at low temperatures.
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1. Bias T 

2. Directional coupler 

3. Isolator 

4. Cryogenic amplifier 

5. Room temperature 

amplifiers 

6. Schematic of the on chip 

curcuit: 

Figure 6.2: Measurement setup: The sample and the thin film resistors RS and RI are fitted on a PCB with a
coplanar transmission line (blue box) and mounted near the mixing chamber with a base temperature of 20mK.
The dc lines (red and blue) and the rf lines (black) are separated at the bias-T 1. 2 indicates the directional
coupler. The rf signal is amplified by a cryogenic HEMT at 3K and two room temperature amplifiers. It is
measured using a spectrum analyser. An equivalent circuit of the shunted Josephson junction is shown on the
right side. The dc lines are equipped with copper power and low-pass rc filters. The voltage VI and also the
overall voltage drop is measured.
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Vg =−0.55V. At a certain dc voltage, a peak in the emission spectrum (blue) is observed.
The corresponding I −V -curve is shown in Fig. 6.3a) and b) in red. As visible, a stable
bias is obtained down to a few microvolts. The dc voltage can then be identified with
the expected values of f J [grey vertical lines in the Fig. 6.3 a) and b)]. As visible, a strong
emission peak at a voltage which corresponds to half the expected Josephson frequency
fd = f J /2 = 2eV /h. This observation is shown for two different gate voltages, i.e. electron
densities and is a signature of a 4π-periodic supercurrent. The gate value for Fig. 6.3a)
is chosen to be close to the gap (QSHE-regime) and only shows f J /2 emission, while the
measurement closer to the valence band, Fig. 6.3b), shows both lines at f J and f J /2. When
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Figure 6.3: Emission spectrum of a quantum spin Hall weak link. a) and b) show I −V curves (red) and the
emission spectrum (blue) detected at a fixed detection frequency ( fd ' 3GHz) when sweeping the dc bias for
Vg =−0.55V and Vg =−1.4V respectively. c) and d) Two dimensional plots of the power collected as a function
of voltage and detection frequency for the same gate voltages as in a) and b) respectively.

the detection frequency is swept, one can verify that the emission lines follow the linear
relation f J = (2eV /h). Therefore, the measurements are done for different detection
frequencies fd of the spectrum analyser as shown in Fig. 6.3c) and d). For each value of fd ,
the reference at I = 0 is subtracted, and the data are normalized to its maximum emission
value to correct for frequency-dependent coupling and amplification. In the topological
device and for Vg =−0.55V Fig. 6.3c), the color map shows that the emission is entirely
dominated by the 4π-periodic supercurrent below fd ' 5.5GHz, before the conventional
line is recovered. At higher frequencies, the emission spectrum is influenced by resonant
modes within the electromagnetic environment. Such resonances are extremely common
in broadband rf measurements, and can be easily identified by a characterization of
the electromagnetic environment of the junction. In principle, the resonant modes can
lead to two-photon processes (at frequency such that 2h f = eVdc, i.e., f = f J /2) that
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could mimic the fractional Josephson effect [23,24]. However, one can safely exclude this
mechanism. Indeed, two-photon effects are of second order in Rn/RK , with RK = (h/e2),
and should always be much less visible than the standard emission at f J . As such, they
cannot solely explain the observation of the radiation at f J /2, and are expected to be
weak since the normal state resistance is much lower in our devices (Rn/RK ¿ 1). It is still
possible that resonances in the electromagnetic environment can enhance the associated
emission features. When Vg ' −1.4V [Fig. 6.3d)], the colour map reveals that the 4π-
periodic component at f J /2 is visible only up to fd ' 4.5GHz, while the conventional
emission line at f J is seen in the whole range of frequencies. We now analyse the data
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Figure 6.4: Resistively shunted junction simulations. a) Simulated I −V curve (blue) compared with measured
data at Vg = −0.55V. The simulations are performed for RI = RS = 24Ω, Rn = 130Ω, I4π = 100nA, and Ic =
240nA. b) Simulated Fourier transform of the voltage V in the junction, as a function of detection frequency fd
and voltage V , for the same simulation parameters as in a). A good qualitative agreement is found with Fig. 6.3c).
In particular, the predominance of the emission at f J /2 for low voltages (below 12µV) is well reproduced.

plotted in Fig. 6.3d). The strong dominance of 4π-periodic radiation observed in Fig. 6.3d)
at low frequencies or voltages may at first sight be surprising, as conventional 2π-periodic
modes are also expected to contribute. In fact the observation is in full agreement with
the observation of missing odd Shapiro steps at low frequencies and voltages reported
in the previous chapters 3 and 5. It can also be explained using the same arguments
as presented in chapter 2.11 on the modelling of the two supercurrent RSJ model. To
model the experimental data, we perform numerical simulations, in the framework of a
resistively shunted junction model, modified to account for the shunt circuit and the 4π-
periodic component of the supercurrent. It is then possible to show (c.f. supplementary
information of Ref. [9]) that the equation describing the current through the JJ is identical
to the standard RSJ equation, but a renormalization of the normal state resistance RN

and critical current Ic has to be taken into account. Thus all arguments considering the
interplay of 2π and 4π-periodic supercurrents discussed in chapter 4 are also applicable
in the shunted device. To compute the emission spectrum, we successively compute the
time-dependent voltage V (t ) and its Fourier transform to obtain the amplitudes of each
frequency component. The nonlinear response to the two time scales associated with
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the combination of 2π and 4π-periodic contributions allows the 4π-periodic terms to be
more visible for low voltages and the 2π-periodic dominating the high voltage regime
[10]. Computations for increasing voltages V and detection frequency fd yield a good
qualitative agreement with the I −V characteristic as shown in Fig. 6.4a). The I −V
curve fitting of the experimental data is determine by the values of Ic and the resistance
Rn . The additional resistors RI and RS are set to 25Ω. Best agreement is achieved using
Ic ' (240±10)nA and Rn ' (130±15)Ω. So far the distribution of the total critical current
in 2π- and 4π-periodic contributions has not played any role in the modelling. In a
next step, the supercurrent is assumed to consist of two components Ic = I4π+ I2π. The
emission features are then used to determine a crossover frequency from a 4π-periodic
to a 2π-periodic dominating behaviour in order to estimate the amount of 4π-periodic
supercurrent. Therefore, a voltage V4π ' 12µV is taken from Fig. 6.3c) which corresponds
to I4π ' 0.4Ic approximately 40% of the total critical current. The simulation is shown in
Fig. 6.4b). The value for the I4π contribution is larger than expected and bigger than the
values estimated from the Shapiro measurements in chapter 5. It is worth noting that the
absolute value of the I4π has to be taken cautiously and strongly depends on the choice of
model and parameters.

MEASUREMENT OF THE EMISSION SPECTRUM OF THE TRIVIAL WEAK LINK

The emission spectrum of a weak link based on a non-inverted HgTe quantum well is
measured, as a reference to exclude artefacts stemming from the setup or other trivial
physical origins for a 4π-emission. The measurements are shown in Fig. 6.5a) and b). As
visible over the whole detection frequency range only conventional emission is observed.
The emission follows very nicely the expected linear behaviour f J = 2eV /h over the whole
frequency range from 2−10GHz. It is interesting, yet not really understood, that the
device shows much less additional features from the environment. This is actually also
true for the topological weak link, where the emission line at f J is much less disturbed
and narrower.
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Figure 6.5: Emission spectrum of a non inverted HgTe quantum well weak link. a) shows the I −V curves (red)
and the emission spectrum (blue) detected at a fixed detection frequency ( fd ' 3GHz) when sweeping the dc
bias for Vg =−0.55V and Vg =−1.4V respectively. b) Two dimensional plot of the power collected as a function
of voltage and detection frequency.
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6.4. GATE DEPENDENCE
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Figure 6.6: Gate dependence of the normalized emitted amplitude A as a function of bias voltage Vdc and gate
voltage Vg for two detection frequencies. The dashed lines correspond to the indicated frequencies f J /2, f J and
2 f J .

We now present data of the dependence of the emitted power as a function of the
gate voltage. We observe that the amplitude of the collected signal reflects the amplitude
of the critical current, and verify that the amplitude A ∝ Ic with good agreement [9, 11].
This confirms the conventional behaviour of the device in the conduction and valence
bands of the quantum well, as well as close to the gap. In Figs. 6.6a) and b), we present
two sets of measurements of the collected rf amplitude A on the topological weak link,
taken at a low ( fd = 2.98GHZ) and high ( fd = 5.5GHz) frequencies. We observe three clear
regimes in the emitted power that correlate with the expected band structure. When the
gate voltage is above Vg >−0.4V, we observe that emission occurs at f J and f J /2 for the
high frequencies and only f J /2 emission for the low frequency. In this regime we expect
the Fermi energy of the device to be in the conduction band, where both edge and bulk
modes are present. This observation is again in agreement with the missing odd Shapiro
steps in the n-conduction regimes as predicted in Refs. [12, 13]. When the gate voltage is
reduced (Vg <−0.4V), we start to deplete the bulk contribution and we observe also in the
high frequency regime only f J /2 emission indicating an increase in the 4π-contribution.
This voltage range corresponds to the quantum spin Hall regime where edge states are
the dominant transport channel. This observation is thus in line with the topological
origin of this anomalous spectral line. For Vg <−0.8V, we observe in the low frequency
regime both radiation forms f J and f J /2, which suggests the coexistence of weak gapless
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Andreev modes with bulk p-type conventional modes of the valence band. The overall
gate voltage dependence is consistent with the expected band structure of a quantum
spin Hall insulator. For the high frequency data, we actually observe only conventional
emission f J in this regime.

Beyond the direct detection of a f J /2 emission, the measurements give a new in-
sight into the ABS spectrum of a topological Josephson junction. First, we discuss the
unlikelihood of non-adiabatic Landau-Zener transition to be the origin of the observed
4π-periodicity. These transitions turn high transparency conventional modes at sufficient
high driving voltage Vdc effectively 4π-periodic [7,25,29]. Such effects have been observed
for instance in single Cooper pair transistors [14]. The presence of Landau-Zener tran-
sitions can, in principle, be evidenced by a strong voltage dependence of the emission
features. Assuming Landau-Zener transitions are responsible one expects a crossover
from a 2π to a 4π-periodic emission for increasing bias voltage [8, 15]. We detect emission
at f J /2 down to 1.5GHz. If Laundau-Zener transitions are responsible for the 4π-periodic
supercurrent it would correspond to a transmission t À 0.995, which is unlikely as such
high transmissions have to our knowledge never been observed in semiconductor su-
perconductor hybrids. In summary, the fact that we observe a transition from 2π- to a
4π-periodic emission with decreasing bias and the high transmission thus tend to exclude
Landau-Zener transitions as the origin for the 4π-periodic emission. Furthermore, as the
Landau-Zener transition is a stochastic process the transition from a 2π- to a 4π-periodic
emission is expected to be gradual as in Ref. [14]. However, we observe only emission at
the expected f J and/or f J /2 but no continuous transition.

Furthermore, the linewidth of the emission lines can give an estimate of the lifetime
of the states. In both the trivial and topological weak link, the f J emission line exhibits
a typical width of δV2π ' 0.5−0.8µV which corresponds to a coherence time of τ2π =
h/(2eδV2π) ' 3−4ns. This timescale is consistent with the visibility of Shapiro steps down
to 0.5GHz [12]. In a conventional JJ the linewidth of the radiation is usually related to
fluctuations in the pair or quasiparticle currents [16, 17] or can be dominated by the
environment noise [11].

The linewidth of the f J /2 radiation on the other hand can additionally reflect parity
poising or ionization into the continuum. The experimental data actually suggest such an
additional relaxation mechanism as the coherence time τ4π ' 0.3−4ns is shorter than
τ2π. As visible in the graphs of Fig. 6.6 and Fig. 6.3, the linewidth of the f J /2 line varies
with gate voltage and emission frequency. On the one hand the linewidth increases when
driving the device deeper into the conduction band. This can indicate stronger coupling
with additional bulk modes. On the other hand the linewidth tends to increase with
increasing frequency. This may be due to similar reasons of coupling the modes stronger
or also additional ionization processes might influence the behaviour. So far it is not
possible to influence the separate effects and disentangle their influence on the linewidth.

6.5. CONCLUSION
To conclude, we are able to measure the emitted radiation from a topological weak link
based on HgTe quantum wells. We find strong emission at half the Josephson frequency
f J /2. These results are in full agreement with the previous chapters 3 to 5, where we
measured missing odd Shapiro steps in the same parameter regime. Our results tend
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to confirm the presence of gapless Andreev bound states in our topological devices and
indicate that effects like Landau-Zener transitions can be excluded.
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7
POINT-CONTACT ANDREEV

REFLECTION SPECTROSCOPY ON A

THREE DIMENSIONAL

TOPOLOGICAL INSULATOR

This chapter is based on the publication: TRANSPORT SPECTROSCOPY OF INDUCED SUPER-
CONDUCTIVITY IN THE THREE-DIMENSIONAL TOPOLOGICAL INSULATOR HGTE.
J. Wiedenmann, E. Liebhaber, J. Kübert, E. Bocquillon, P. Burset C. Ames, H. Buhmann,
T.M. Klapwijk, and L.W. Molenkamp,
Physical Review Letters B 96, 165302 (2017).

This part of the thesis presents the results of the study on the proximity induced super-
conductivity in a three dimensional topological insulator using point-contact Andreev
reflection spectroscopy. In this regard, the concept of point-contact spectroscopy using one
superconducting and one normal conducting electrode is introduced. Then, the design and
fabrication of the HgTe based point-contact is presented. By analysing the conductance as
a function of voltage for various temperatures, magnetic field values and gate voltages, we
find two energy scales. We model the conductance using the theory as introduced by Blonder,
Tinkham and Klapwijk. One energy scale is identified as the induced order parameter of
the surface states of 70µeV. It is possible to fit the induced state using a standard quadratic
dispersion. We also use a more appropriate model which takes the helical surface states of
the topological insulator into account. The second order parameter of 1.1meV is attributed
to the superconducting gap of niobium. We explain the transport by a non-equilibrium
transformation of the relevant scattering regions when the applied bias is varied.
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7.1. BASICS OF ANDREEV POINT-CONTACT SPECTROSCOPY
In the chapters 2-6 of this thesis, Josephson junction based devices were the focus of
investigation. Since the Josephson effect arises from the proximity-induced supercon-
ducting state, we are interested in the determination of the energy dependent properties
of this induced superconducting state, which in principle serves as a coherent reservoir
for the Josephson effect. It is crucial to be able to measure these electronic states directly,
in particular because the Josephson-effect itself contains only information about the
phase difference and the nature of the current-phase relation, but not about its energy
dependence. For this reason we designed an experiment which is based on an NcSp

point-contact to emulate Andreev-spectroscopy of the induced superconducting state as
depicted in Fig. 7.4. N is a normal reservoir, which in our case is a topological insulator, c
is the constriction, and Sp is the proximity-induced superconductor.

The chapter is structured as follows: First, a general introduction to the concept
of point-contact spectroscopy is given. This is extended to point-contacts where one
reservoir is superconducting. This technique is called point-contact Andreev spectroscopy
(PCAR). A short overview about the theoretical and experimental status of this field is
presented. Then, the design and lithographic fabrication of the device is discussed. We
start by discussing the conductance without an applied magnetic field and gate voltage
and model it based on the theory of Blonder, Tinkham and Klapwijk (BTK) [1]. We explain
the transport through the point-contact by a non-equilibrium driven transformation of
the relevant scattering regions. At low bias the voltage drop occurs mostly at the interface
between the normal reservoir and the induced superconducting state, while at a higher
bias the relevant interface is between the normal reservoir and niobium. Finally, we
discuss the dependence of the conductance of gate voltage VG and magnetic field B .

7.1.1. TRANSPORT THROUGH A POINT-CONTACT

Sharvin realized that the resistance through an ideal metallic contact with diameter d
smaller than the elastic mean free path lmfp is only determined by the number of channels
through that contact and is thus independent of the material quality [2]. These contacts,
so called Sharvin contacts or point-contacts, can be used to study scattering mechanisms
in materials and understand its Fermi surface [3]. In order to conduct energy resolved
spectroscopy the point-contact needs to be in a certain transport regime. The regimes can
be classified into the quantum, ballistic, diffusive and thermal regime depending on the
size of the diameter of the contact and the electron mean free path. The corresponding
situations for the latter three cases are shown in Fig. 7.1. If the diameter a of the point-
contact is smaller than a few de-Broglie wave lengths, the electron transport is in the
quantum regime. The conductance of such a nanostructure is given by the sum of the
single channels each contributing G = e2/h to the total conductance [5] (with lifted spin
degeneracy of the channels). The point-contact is in the ballistic regime [Fig. 7.1a)], when
its diameter is larger than the de-Broglie wavelength but smaller than the mean free
path of the electron. The kinetic energy of the electron is determined by the applied
bias eV across the contact and statistically does not scatter within the contact region.
Sharvin derived an expression for the contact resistance RS of a point-contact given
by RS = 2h/(e2(akF )2), where h is the Planck constant and kF the Fermi momentum.
Electrons in this ballistic regime gain kinetic energy in a controlled manner to excite



7.1. BASICS OF ANDREEV POINT-CONTACT SPECTROSCOPY

7

119

ℓmfp < 𝑎 < ℓin 

 

𝑎 

a)     b) 

 

 

 

 

 

 

 

 

 

      

𝑎 ≪ ℓmfp 
 

𝑎 ≫ ℓmfp, ℓin 

 

𝑎 
𝒆𝑽 =

𝟏

𝟐
𝒎∗𝒗𝟐 

c) 

ℓmfp 

ballistic regime diffusive regime thermal regime 

Figure 7.1: Diagram of different transport regimes of a electron e biased with a voltage V through a point-contact
with orifice size a. a) The mean free path lmfp of the electrons is longer than a. b) In the thermal regime elastic
and inelastic scattering occurs in the point-contact. c) In the diffusive regime elastic scattering but no inelastic
scattering is in the point-contact. The figure is adapted from Ref. [4].

elementary excitations and are therefore the basis of energy resolved spectroscopy.

If the elastic mean free path is smaller than the diameter of the orifice, two more
possible regimes exist and the inelastic scattering length lin has to be considered. For
lin > a > lmfp the point-contact is in the diffusive regime [Fig. 7.1c)]. In this regime mo-
mentum information is lost due to the elastic scattering while the energy information is
still available. Hence energy resolved spectroscopy is still possible in the diffusive regime.
In the thermal regime the diameter is larger than the elastic and inelastic scattering length
[(a > lmfp, lin) as depicted in Fig. 7.1b)]. Then, the contact is in the thermal regime. This
means that within the point-contact the electron is scattered elastically and inelastically
loosing both momentum and energy information and is, therefore, not suited for spec-
troscopy [6]. The resistance of the point-contact then depends on the resistivity of the
material, i.e. R = ρ/(2a). The temperature at the point-contact can be estimated by
T 2

max = T 2
bath +V 2/4L, where L is the so called Lorentz number [3]. Thus, in the thermal

regime of a point-contact the temperature dependent resistivity of the point-contact is
probed.

7.1.2. POINT-CONTACT ANDREEV REFLECTION SPECTROSCOPY

When one normal metal N of the point-contact is replaced by a supercondcutor S, a
dissipative current is converted into a dissipationless current. As there are no free quasi-
particle states available inside the superconducting gap an incoming electron with energy
EF +eV <∆ can only enter the superconductor when a hole with opposite momentum
is reflected at the same time. This process transforms two charges into one Cooper pair
and thus allows transport through the interface. This process is called Andreev reflection
and is illustrated in Fig. 7.2a) and b) [7]. Blonder Tinkham and Klapwijk developed a
framework to discuss the transport through a ballistic NS interface. The authors consider
a finite interface transparency and analysed the energy dependence of the different scat-
tering processes which are illustrated in Fig. 7.2 b) and c) [1]. The model is very successful
in describing the transport through superconducting break junctions and is thus a good
basis for our study. We consider a one dimensional situation as shown in Fig. 7.2b) a
normal metal is in contact with a superconductor. A dimensionless barrier Z at x = 0 is
separating the two materials. The barrier is modelled as a repulsive scattering potential
U (x) = ZħvFδ(x), where vF is the Fermi velocity and ħ the reduced Planck constant. The
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Figure 7.2: a) Real space schematic of the Andreev reflection process. b) and c) Energy dependent scattering
processes at the interface of normal metal and a superconductor.

parameter Z is connected with the transmission τ in the normal state of the superconduc-
tor by τ= (1+Z 2)−1. An incoming electron can now, depending on its energy E , either be
reflected as a hole, reflected as an electron, transmitted as an electron or transmitted as a
hole with probabilities A, B, C, D respectively as indicated in Fig. 7.2b) and c). We start in
the Bogoliubov-de Gennes basis in one dimension x:[

H(x) ∆(k, x)
∆∗(k, x) −H∗(x)

][
un(x)
vn(x)

]
= En

[
un(x)
vn(x)

]
, (7.1)

where H(x) describes the normal state Hamiltonian and ∆(k, x) the spaital and mo-
mentum dependence of the superconducting gap. Usually this implies, that the self-
consistency equation of the Bogoliubov-de Gennes equation

∆(x) =VN
∑

E>0
v∗(x)u(x)(1−2 f (E ,T )) (7.2)

needs to be fulfilled. Here, f (E) is the Fermi-Dirac distribution at energy E and tempera-
ture T , VN is the interaction constant which at a large distant from the interface (x À ξ)
obtains the bulk value ∆0. We assume that VN drops fast (∆= 0 for x < 0) at the interface
x = 0 which can be described by

∆(x) =∆0e iφΘ(x) (7.3)

withΘ the Heaviside function. This assumption is called rigid boundary condition and is
usually valid in semiconductors as the resistance of the junction is much bigger than that
of the bulk superconductor [8].

We now consider an incoming electron

Ψinc =
[

1
0

]
e i ke x (7.4)

which can undergo the processes as depicted in Fig. 7.2b) and c) depending on their
energy

Ψreflected = a

[
0
1

]
e i kh x +b

[
1
0

]
e−i ke x (7.5)
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Ψtransmitted = c

[
u
v

]
e i k ′

e x +d

[
u
v

]
e−i k ′

h x . (7.6)

The coefficients a, b, c and d are related to the probability amplitudes as A = aa∗. The
wave vectors can be calculated by inserting this ansatz into the Bogoliubov-de Gennes

(BdG) equation which yields ħke,h =√
2m(µ±E) and ħk ′ =

√
2m(µ±

p
E−∆2) where the

electrons (holes) correspond to the positive (negative) solutions and k (k ′) is the wave
vector for the normal (superconducting) area. The boundary conditions for this problem
are (i) the continuity of the wave function at the interface namelyΨN (x = 0) =ΨS (x = 0)
and (ii) the derivative boundary conditions for a δ(x) potential namely ħ/2m[Ψ′

S (x =
0) −Ψ′

N (x = 0)] = HΨ(x = 0). Using these conditions, it is possible to calculate the
probabilities A(E , Z ). An overview of all the processes with their probabilities depending
on barrier height and energy is presented in Tab. 7.1 and the amplitudes for Andreev and
normal reflection for various barrier heights as a function of energy are shown in Fig. 7.3.
For zero barrier height (Z = 0), every incoming electron is Andreev reflected (black curve)
and the normal reflection is zero (red curve) for E <∆. For increasing barrier values Z
the Andreev probability gets smaller. At the value of the superconducting band gap E =∆,
the high density of the states enhances again the Andreev probability. The normalized
conductance through such an NS-interface as a function of applied bias V is given by [1]

RN
dISN

dV
= d

dV

∫ +∞

−∞
[ f0(E −eV ,T1)− f0(E ,T2)][1+ A(eV , Z )−B(eV , Z )]dE, (7.7)

where the normal state resistance RN is assumed to be the resistance arising from the
number of modes contributing to the transport. It is worth emphasizing that the transport
not only depends on the reflection coefficients A and B but also on the population of
states in the two reservoirs. This equation simplifies in the limit of zero temperature
T 7−→ 0 to

RN
dISN

dV
= 1+ A(eV , Z )−B(eV , Z ) (7.8)

and is a direct measure of the energy dependent reflection amplitudes. The corresponding
conductance for various values of Z is shown in Fig. 7.3 (green curves). For Z = 0, a
doubling of the conductance inside the superconducting gap (i.e. eV <∆) is obtained
due to the fact that each incoming electron now transfers a charge 2e. The normalized
conductance drops to one in the normal state as expected; this can be achieved for
a high bias eV À ∆, or by setting the superconducting gap to zero [∆(Tc ,Bc ) = 0]. In
the high Z regime, the Andreev amplitude A is close to zero for most voltages. At the
superconducting gap edge, the probability has a singularity due to an increased density of
states of the superconductor at the gap edge. Therefore, in the large Z limit the differential
conductance is a direct measure of the density of states of the superconductor namely

RN
dISN

dV
= Ep

E 2 −∆2
. (7.9)

The most crucial limitations of the model for our case are (i) that it is a 1D model
and the injection is only perpendicular to the interface (ii) the thickness of the barrier
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Normal state No barrier (Z = 0) No barrier General Form General Form
E <∆ E >∆ E <∆ E >∆

A 0 1 v2

u2
∆2

E 2+(∆2−E 2)(1+2Z 2)2
u2v2

γ2

B Z 2

1+Z 2 0 0 1-A (u2−v2)Z 2(1+Z 2)
γ

C 1
1+Z 2 0 1-A 0 u2(u2−v2)(1+Z 2)

γ

Table 7.1: Probability amplitudes for Andreev reflection A, normal reflection B and transmission C for an
incoming electron onto an SN interface depending on the energy E and the size of the barrier Z . The factors

u2 = 1− v2 = 1
2 (1+

p
E2−∆2

E ) are solutions of the BdG-equation and γ= u2 + (u2 − v2)Z 2. The transmission of
an electron as a hole is given by the conservation of particles as D = 1− A−B −C .

Z=0 Z=0.5 

A 

dI/dV 
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E Δ 0 
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Figure 7.3: Examples for the probability amplitudes for Andreev (normal) reflection coefficients A,(B) in black
(red) for different values of the barrier Z as indicated in the figures. The normalized differential conductance
RN d I /dV at T = 0K is shown in green.
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is assumed to be zero and (iii) the Fermi surfaces of both materials are assumed to
be spherical and the energy dispersion quadratic and spin degenerate. Because of the
one dimensional assumption, the superconducting gap is also homogeneous and no
directional information can be accessed. All these assumptions can be taken into account
if necessary. Nevertheless, the BTK-formalism is the standard framework for the analysis
of superconducting point-contact spectroscopy.

7.1.3. POINT-CONTACT ANDREEV REFLECTION SPECTROSCOPY OF

PROXIMITY INDUCED SUPERCONDUCTIVITY IN TOPOLOGICAL

INSULATORS

Our aim here is to apply Andreev spectroscopy to the proximity-induced superconducting
state in a 3D topological insulator (3D TI). The application of Andreev-spectroscopy to
low dimensional heterostructures is a much less mature experimental technique than
for bulk systems [6, 9–11]. The point-contact has to be lithographically defined and is
therefore usually larger than for the bulk systems, where accidentally formed pinholes of
smaller dimensions dominate the transport. In addition, the reservoirs constitute a much
smaller number of electrons and are usually 2-dimensional. These experimental concerns
are exacerbated in the case of spectroscopy on proximity-induced superconductivity
because of the need to use two dissimilar materials and, unavoidably, a complex litho-
graphically structured geometry. One constraint is the transmissivity between the main
superconductor (Sm) and the material in which the superconducting state is induced.
In addition, the geometry to which the induced superconductivity is confined needs
to be known and controlled. In fact, very few successful spectroscopic experiments on
proximitized systems have been carried out. One example, applied on diffusive systems is
by Scheer et al . [12], who used mechanical break junctions, an approach that merges bulk
point-contact behaviour with thin films. Recently, Kjaergaard et al . [13] have presented
results of point-contact spectroscopy on the ballistic Al/InAs system, which partially
fulfils the experimental requirements. It shows the expected doubling of the quantized
conductance steps for point-contacts in the highly transmissive regime, but exhibits also,
from a spectroscopic perspective, many puzzling results and, additionally, unexpected
behaviour as a function of the tunable point-contact transmissivity. A different geometry
was used by Zhang et al . [14], with a tunable point-contact as well, but predominantly in
the regime of low transmission.

We are interested in the determination of the energy dependent properties of this
induced superconducting state, which in principle serves as a coherent reservoir for the
Josephson effect as described in chapters 3-6. For this reason, we designed an experiment
which is based on a NcSp point-contact to emulate Andreev-spectroscopy of the induced
superconducting state, as schematically shown in Fig. 7.4. The strained HgTe (blue)
is defined lithographically to a finite sized bar and covered over a small distance by a
conventional superconductor Sm. We assume that an induced superconducting state
exists underneath the superconducting material, which we label Sp. We expect that in the
state of equilibrium, i.e. no applied voltage across the contact (V = 0), the superconductor
and the proximitized topological insulator form one coherent quantum state. The current
through the sample, assumed to enter from the N-part, is carried away as a supercurrent.
Therefore, we do not expect a voltage drop beyond the constriction characterized by
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e- 

e-,B 

h,A 

 e-,C 

N(3DTI),µN 

Sm,µp1 

Sp,µp2,µqp 

Zm 

Zp 

Figure 7.4: Schematic of the experiment: An s-wave superconductor (orange) induces superconducting pairing
in an underlying topological insulator (yellow Cooper pairs). This state is connected through a constriction
(indicated by the barrier Zp) to a normal reservoir. An electron e impinging from the 3D TI reservoir on Zp can
either be Andreev reflected, normal reflected or transmitted with probability amplitudes A,B and C respectively.

a barrier Zp. The superconducting side is initially, for VSN = 0, characterized by an
equilibrium Fermi-function µp1 =µp2 at the bath temperature Tb .

Thus, Eq. 7.7 is a good starting point to analyse the data. We do not know the coeffi-
cients A(E ) and B(E ) a priori. They contain the spectral information we are interested in.
We assume that in Eq. 7.7, A(E ) and B(E ) are the result of the interaction of the supercon-
ductor with the confined bar of the 3D TI with its limited geometry, finite elastic mean
free path and finite interfacial transparency Zm [12, 15]. In addition, the normal part is
made of a 3D TI where Dirac like surface states dominate the transport [16–18]. It is noted
that in the device geometry of Fig. 7.4 no Majorana zero modes are expected to emerge
due to the lack of confinement [19] but unconventional superconducting correlations
might be observable. In fact, following Burset et al . [16], it is possible to extend the
standard BTK-model taking the surface states of a topological insulator in the normal and
superconducting part into account. Then, the barrier Zp is modelled as an intermediate
region to account for any interface scattering between the normal and the superconduct-
ing regions. The low-energy electron and hole excitations at the surface of the 3D TI are
described by the Bogoliubov-de Gennes equations HΨ= EΨ, with E the excitation energy.
In Nambu (particle-hole) and spin space, with basis Ψ = [c↑(k),c↓(k),c†

↑(−k),c†
↓(−k)]T ,

with cσ(k) the annihilation operator for an electron of spin σ=↑,↓, and momentum k, the
Hamiltonian reads as follows

H =
(

h(k)−µ(x)σ0 iσy∆(x)
−iσy∆(x) µ(x)σ0 −h∗(−k)

)
, (7.10)

where µ(x) is the chemical potential and the Pauli matrices σ̂0,1,2,3 acting on spin space.
Here, electron-like quasiparticles are described by the Dirac-Hamiltonian

h(k)=vF
(
kxσx+kyσy

)
, (7.11)

with vF the Fermi velocity and e the electron charge. The pair potential of the supercon-
ducting gap is a generic s-wave potential and restricted to the proximitized area. The
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intermediate region is modelled as a square potential with thickness d and height V0. In
the thin barrier limit d →0, the transmission through the intermediate region becomes
an oscillatory function of the effective barrier strength Zp =V0d/ħvF . This is a typical
behaviour of the linear band structure and is related to Klein-tunnelling [20, 21]. The
scattering amplitudes A, B , C and D can in principle be obtained in a similar manner as
in the standard BTK-model but no analytic expressions exists for them.

Once the scattering amplitudes are known, the zero-temperature conductance of the
NS junction is defined as [1]

GN S (E) =
π/2∫

−π/2

dθcosθ
[
1−|b(E ,θ)|2 +|a(E ,θ)|2] . (7.12)

We note that both the conductance and the LDOS are averaged over all incident angles,
labeled by θ ∈ [−π/2,π/2]. For a finite temperature, the differential conductance can be
calculated using Eq. 7.7.

7.2. DESIGN AND FABRICATION OF THE POINT-CONTACT
The NcSp junctions in this work are based on epitaxially grown layers of strained HgTe.
Using magnetotransport measurements, we first characterize the material and discuss
the design of the point-contact. Then, we present the fabrication of the point-contact.

7.2.1. CHARACTERIZATION OF THE MATERIAL
The goal of this experiment is to probe the superconductivity induced into the surface
states of a three dimensional topological insulator via a point-contact. Therefore, two
key requirements on the transport behaviour of the material are important. First, the
transport needs to be at least predominately mediated by the topological surface states.
Second, for an energy resolved measurements (ballistic regime), the mean free path lmfp

must be larger than the size of the orifice a.
Strained HgTe was first proposed to be a topological insulator by Fu and Kane [22]

and experimentally verified by Brüne et al . [23]. When HgTe is grown on a CdTe substrate
the lattice mismatch of the two compounds leads to a tensile strained growth of the
HgTe. This opens a band gap in the bulk of the material while gapless surface states
with a helical band structure which are protected by topology emerge. In contrast to the
uncapped layers in chapter 3, we here use HgTe layers sandwiched between Hg0.3Cd0.7Te
capping layers as depicted in Fig. 7.5a). The Hg0.3Cd0.7Te layers have a conventional
band structure and protect against surface oxidation, which would otherwise reduce the
carrier mobility. The capping layer also protect the strained HgTe during subsequent
lithographic processing and thus increase the carrier mobility by about a factor of 10.

In order to ascertain the quality of the layers which are used for the point-contacts, a
Hall bar with dimensions length × width (l ×b = 600µm×200µm) are fabricated from the
same wafers (no. Q2567 and Q2830). As an example, the longitudinal Rxx and transversal
resistance Rx y of substrate Q2830 at zero gate voltage and 4.2K are shown in Fig. 7.5b). The
charge type and density n can be determined from the linear slope of the Hall resistance
using Rxy = B/en and this yields n ≈ 4.8×1011 cm−2. The positive slope shows an electron
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Figure 7.5: a) Layer stack of the capped sample Q2830 as grown by MBE. The thickness of each layer is labelled
on the right side. b) Magnetotransport measurements of a Hall bar made from the wafer Q2830. The longitudinal
(black) and the Hall (red) resistances are shown for zero gate voltage at 4.2K.

like behaviour [5]. The mobility µ is given by

µ= l /b

Rxyne
≈ 220000cm2/(V s). (7.13)

Using this, one obtains for the mean free path

lmfp = ħµ
e

√
4πn

gs
≈ 2.5µm (7.14)

where we set gs = 2 to take spin degeneracy due to the top and bottom surface states
into account. It is noted that this estimate of lmfp is clearly a simplification as it assumes
one averaged system. In general the bulk, upper and lower surface or side surfaces
can all contribute differently to the total conductance. For the sake of simplicity we
ignore this in the estimation for lmfp. Furthermore, clear plateaus are visible in the
transversal resistance coinciding with minima of the Shubnikov-de Haas oscillations in
the longitudinal resistance, as expected in 2D electron gases. The plateaus occur at integer
fractions of RK = 25.813Ω and can thus be identified as quantum Hall plateaus. This is a
clear proof, that the transport of bulk HgTe in high magnetic fields is dominated by 2D
states. It is shown in Refs. [24–26], that these states are indeed the topological surface
states.

The longitudinal normal state resistance and mobility as a function of gate voltage
are shown in Fig. 7.6. The resistance rises with decreasing gate voltages and reaches a
local maximum at around −1V; this is roughly where the charge neutrality point is located
i.e. where the slope of the Hall resistance turns from positive to negative p-dominated
transport. The mobility is heavily reduced in the p-conducting regime and saturates at
approximately 15000cm2/(V s).
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To conclude, the mean free path of the HgTe layers in the n-doped regime was esti-
mated around lmfp ≈ 2.5µm. The magnetotransport shows clear QH plateaus which are
an indication of the presence of two dimensional states which was shown to originate
from the topological surface states and dominate the transport behaviour [24, 26]. We are
able to change the density from a n-doped regime into the p-doped regime by applying a
top gate voltage. All these informations are important for of the design and the analysis of
the conductance of the point-contact.
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Figure 7.6: Upper panel: Longitudinal resistance Rxx (black) and Hall resistance Rx y (red) as a function of
gate voltage for Q2830 at 4.2K. The vertical black dashed lines shows the gate voltage where the Hall slope
changes sign. Lower panel: Mobility vs gate voltage. The mobility was calculated by measuring Rxx(B = 0T) and
Rxy(B = 0.3T) and assuming a linear slope for the transversal resistance.

7.2.2. DEVICE DESIGN AND FABRICATION

The design of one point-contact is shown in Fig. 7.7. In order to be in the ballistic transport
regime the orifice a of the point-contact is chosen to be 1µm. This is smaller than the
mean free path of lmfp ≈ 2.5µm. The mesa is designed to open at an angle of 45◦ in
order to ensure that the voltage drop occurs predominantly at the constriction. This
angle value also ensures that electrons reflected from the walls are not scattered back
into the point-contact. The total width of the mesa extends to 13µm. This dimension
is large enough that electrons are fully elastic scattered and the normal part forms a
proper Landauer-Büttiker equilibrium reservoir. The elastic scattering length is estimated
to be in the similar range as the lmfp. Electric contacts made from AuGe alloy and Au



7

128
7. POINT-CONTACT ANDREEV REFLECTION SPECTROSCOPY ON A THREE DIMENSIONAL

TOPOLOGICAL INSULATOR

are applied on the green areas. The ohmic contacts have an almost negligible contact
resistance Rcontact < 20Ω compared to the constriction.

The mesa extends as a small stripe of 6µm length from the constriction downwards
it is covered by the superconductor. This length is long enough so that non-local effects
such as crossed Andreev reflections at both sides of the superconductor are avoided. This
is important in view of the fact that the length scale for such effects is determined by
the coherence length of niobium (ξNb ≈ 20nm) used as the superconducting material.
The superconductor is designed to form a large reservoir for the electrons and to allow
fast spreading of the current densities to avoid heating effects at the point-contact. As a
superconductor Nb was chosen due to its large critical temperature, magnetic field and its
good interface qualities with HgTe. To be able to perform quasi four-point measurements
both the normal and superconducting contacts have two leads. Furthermore, a gate is
applied on most of the devices which extends over the whole uncovered mesa which
allows control over the charge carriers of the reservoir with respect to the covered part.

a 

13 µm 

1 µm 

Figure 7.7: Design of a single point superconducting point-contact. The mesa is shown in blue, normal metal in
green and the superconductor in orange. The size of the orifice is marked in red.

SAMPLE FABRICATION

The point-contacts are fabricated using conventional electron beam lithography with
varying acceleration voltages and poly (methyl methacrylate) (PMMA) resists depending
on the demands for the separate etching and evaporation steps. As HgTe is sensitive to
temperatures above 90◦C, all bake-out and lift-off procedures are carried out well below
this temperature. The detailed recipe can be found in the appendix. Before the start of
the lithography a piece from the MBE grown substrate of about 3×3mm2 is cleaved. As
the first step, the HgTe mesa is defined using low energy argon sputtering. During this
process, a thin titanium etch shield, separated by a SiO2 sacrificial layer from the HgTe,
protects the mesa. The shield is then removed by a buffered oxide etch dip. In the next
step, the superconductor is deposited. Since the interface is buried, the cap layer needs
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to be removed, which is done by argon etching, followed by in-situ magnetron sputtering
of about 110nm of niobium. After this, the leads for the ohmic contacts are defined and
50nm AuGe/50nm Au is deposited. The contact resistances are usually ¿ 50Ω. To allow
control of the charge carrier density in the 3D TI, a top gate electrode is evaporated on top
of the uncovered HgTe as follows. First, a thin HfO2 insulator is grown at a temperature of
35◦C via atomic layer deposition, followed by the deposition of 5nm of Ti and 150nm Au.
Using the same insulator on reference Hall bar structures, it is possible to tune the density
from 1×1012 cm−2 n-type regime to −1×1012 cm−2 p-type dominated conductance. An
SEM picture of the final device without an applied gate is shown in Fig. 7.8b).

a) b) 

Nb 

Capped  

HgTe AuGe/ 

Au 

2 µm 
20 µm 

Figure 7.8: a) Optical microscope picture of a finished device with four point-contacts. The upper two devices
are without an applied gate while the lower two point-contacts have a gate electrode. b) Scanning electron
microscope of one point-contact before the gate was applied.

An optical microscope picture of a finished structure is shown in Fig. 7.8a) and an
SEM picture of a point-contact in Fig. 7.8b). The sample is glued into a chip carrier using
low temperature varnish and bonded with Au wires.

The sample is inserted into a dilution refrigerator at a base temperature of 30mK
for Device 1 and at 140mK for Device 2-3. The full measurement circuit including the
used electrical filtering is show in Fig. 7.9. The measurements are done using ac- and
dc-excitation which are coupled inductively. All electrical lines are equipped with π-filters
at room temperature and copper powder filters attached to the mixing chamber plate.

7.3. DISCUSSION OF THE FUNDAMENTAL CONDUCTANCE
The differential conductance across the point-contact for four different devices at zero
applied gate voltage and zero magnetic field is shown in Fig. 7.10. At voltages |VSN| >
1.5mV, larger than the superconducting gap of niobium∆Nb, the differential conductance
is almost constant and a normal state resistance of RN = 160−240Ω depending on the
measured device can be evaluated. For voltages around VSN ' 1.1mV, the conductance
is slightly enhanced and then starts to decrease for voltages |V | 7→ 0. Close to zero bias,
the conductance enhances again resulting in a double peak structure around VSN = 0,
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Figure 7.9: Measurement circuit for the SN-devices. The SN-device is contacted via electrical wires thermalised
at the mixing chamber of a dilution refrigerator in a four point geometry. The wires are filtered with copper
powder filters Cu-P at the mixing chamber and π-filters in the breakout box of the cryostat. The ac- and dc-
signals are inductively coupled and measured by lock-in amplifiers and voltmeters. The voltage signal at the
point-contact is amplified. A reference resistor Rref was used to determine the current flowing in the circuit.
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with a peak separation of about 100µV for Device 1, and slightly different for the other
devices. We observe sample dependent sub-gap features as indicated by the red arrows
in Fig. 7.10. The four devices differ with respect to the shape and length of the HgTe
bar underneath the superconductor as indicated in the insets of Fig. 7.10. Device 1 is
symmetric with a width of a = 1µm and two open ends. Device 2 has a step like shape
with partially width a and partially width of 0.6µm. Similarly, Device 3 but with the wide
’normal’ electrode connected to the wide part rather than the more narrow part. Finally,
Device 4 is terminated half-way and implies a largely closed HgTe bar. At present it is
not clear whether the sub-gap feature should be interpreted as a feature in the relevant
non-equilibrium distribution entering Eq. 7.7 or as reflecting the geometrical influence
according to the analysis of Kopnin and Melnikov [27]. Systematic shape-dependent
experiments are needed to map and evaluate this dependence accurately and to test the
origin.

The change in conductance at around 1.1mV can be attributed to the size the super-
conducting gap of the niobium film. The conductance increases slightly as expected at
the superconducting gap edge. For lower voltages the conductance reduces, an indication
of dominant normal B(E) reflections over Andreev reflections A(E) [B(E)/A(E) > 1].

Following Ref. [27], it can be assumed that some superconducting correlations are in-
duced from the bulk superconductor into the underlying material with a certain efficiency
depending on the interface quality. This process can be understood in the framework
of Andreev reflections at the interface transforming Cooper pairs into electrons. The
efficiency of this process is given by the height of the barrier which we label Zm as shown
in Fig. 7.4 and is located between the niobium film and the HgTe. The soft gap edge may
be due to pair-breaking mechanisms, disorder or spatial gradients and angle averaging
due to the two dimensionality, which can easily smear out a sharp gap or make it even
vanish [4].

Close to zero bias the conductance is enhanced. There exist several parasitic mech-
anisms which can be responsible for an enhanced conductance, such as reflectionless
tunnelling [28], reentrance effect [29] or weak anti-localization. Thus, we need to first
discard these kinds of effects. The reentrance effect [30, 31] occurs in diffusive contacts
where an incoming electron reaches the SN interface through a lot of scatterers but the
Andreev reflected hole returns the time reversed path. If this process is fully phase co-
herent at low temperatures, the two path interferences cancel and GNS =GNN. This has
the consequence that at zero bias the normal state resistance is recovered which is not
observed in the present measurements. Furthermore, only a single peak is expected to
occur in the case of the reentrance effect. Reflectionless tunnelling is an effect which again
occurs in very disordered materials where the SN interface has a very low transmission,
i.e., a high barrier Z [32]. An incoming electron is then trapped in the point-contact region
and is reflected several times at this barrier which increases the transmission again. This
effect would yield a single peak at zero bias. Both effects, reflectionless tunnelling and
reentrance effect occur in rather disordered metals, while our point-contact is expected
to be in the ballistic regime and has a low resistance. We have been able to exclude weak
anti-localization by measuring the conductance between the two normal leads without
observing a sign of a zero bias peak. Thus, we can identify the central peak as enhanced
conduction originating from AR at the point-contact from the induced superconductivity.
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Figure 7.10: d I /dV measurements for four devices. The devices differ by the ’connectivity’ of the HgTe bar,
covered by niobium, as indicated in the inset. The orange arrows indicate the current current direction. The red
arrow indicates a sample dependent sub gap feature and the black arrow signals the position of the niobium
gap ∆Nb.
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Figure 7.11: a) Conductance of Device 1 normalized to the resistance RN at T = 9K (purple). Panel b) shows
the conductance measured at 30mK for increasing (small) magnetic field values. For clarity, a small vertical
shift has been removed in the presentation of the data to highlight that the high voltage part of the conductance
overlap for these magnetic field strengths.
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We further investigate the behaviour of the conductance, as a function of tempera-
ture. In this regard temperature dependent measurements of Device 1 were conducted;
measurements are shown in Fig. 7.11a). An asymmetric background for negative and
positive bias is observed for all devices. The data can be normalized by multiplying with
the normal state resistance RN measured at 9K (T > Tc ); The result is shown in Fig. 7.11.

With increasing temperature, the double peak feature is smeared out leaving a single
zero bias maximum which vanishes at a temperature of about 2K and merges at higher
temperatures to a bell-shaped curve. At these temperatures, the niobium gap V '∆Nb is
not affected, indicating two separate energy scales. The height of the zero bias anomaly is
at base temperature of the dilution refrigerator several tens of conductance quanta.

Panel b) of Fig. 7.11 shows the conductance measured at 30mK for increasing values
of magnetic field applied perpendicular to the sample. We verified that the response is
independent of the direction of the applied magnetic field (perpendicular to the sample
plane, parallel to the SN interface, and perpendicular to the SN interface). For clarity,
a small vertical shift has been removed in the presentation of the data in Fig. 7.11b) to
highlight the fact that the high voltage part of the conductance is unaffected to these
magnetic field strengths. This is expected for the Nb gap as the critical magnetic field
is much larger (Bc ≈ 2−3T). Evidently, the central peak can be suppressed completely
by applying a much smaller magnetic field (within ±5−10mT). We attribute this central
bell-shaped peak, which evolves into a two peak structure, as a manifestation of the
proximity-induced superconducting order parameter as given by Eq. 7.2.

7.4. MODELLING USING THE BLONDER TINKHAM KLAPWIJK

THEORY
In order to get a more quantitative information on the two energy scales and barrier
heights, the induced and niobium superconducting gap is modelled using the BTK-theory
as introduced in Eq. 7.7. The singularities of the superconducting gap edge, especially
at the niobium gap, are smeared out. This can be treated by a phenomenological broad-
ening parameter which was introduced by Dynes et al . [33] and is then straightforward
to incorporate this into the BTK formalism [34–36]. In this connection, an imaginary
damping term iΓ is introduced into the superconducting density of states expression and
one obtains:

NS(E ,Γ) = Re

[
E − iΓ√

(E − iΓ)2 −∆2

]
. (7.15)

The effect for various values of Γ/∆ is shown in Fig. 7.12. The superconducting singularity
gets softer and broader with increasing value of Γ.

PROXIMITY INDUCED GAP

In Fig. 7.13a), data for different temperatures are compared with standard BTK-modelling
using Eq. 7.7 (cyan) and the model from Burset et al . [16] (magenta) both leading to very
reasonable agreements with the experimental data. In this figure we have renormalized
the data differently. We have chosen the conductance value at the edge of the grey zone in
Fig. 7.13b), as a reasonable approximation to the real value of RN entering Eq. 7.7. From
the comparison shown in Fig. 7.13a), we conclude that we find a proximity-induced order
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Figure 7.12: The normalized differential conductance R/RN is plotted for various broadening parameters in the
high Z À 1 limit. The quasiparticle broadening values are Γ= 0/∆ (black), Γ= 0.05/∆ (red), Γ= 0.1/∆ (green),
and Γ= 0.5/∆ (blue).

parameter ∆p = 70µeV in agreement with both models. Fits using Eq. 7.7 were obtained
with a small barrier height Zp = 0.4. In applying this model, we have assumed that the
proximity-induced order parameter ∆p leads to a standard BCS like behaviour of the
amplitudes A(E) and B(E) as a function of energy and that the normal state is described
by a parabolic band dispersion. The model might therefore not capture the microscopic
details but makes it suitable to be compared to other systems. We assume that this barrier
(labelled Zp) is located at the orifice. In principle this interface is crystalline and thus no
or just a small barrier is expected. The quality of the TI below the Nb is very likely reduced
compared to the covered HgTe due to IBE and the depositing Nb. This leads to a local
doping and thus a Fermi velocity mismatch or different strain of the two TI regions [37].
Therefore, a finite but rather small barrier is justified at the point-contact in agreement
with the BTK fitted value.

Burset et al . [16] studies the conductance of a NS junction on the surface of a topolog-
ical insulator and is thus appropriate in our case. The contact between the normal region
and the induced superconducting reservoir is modelled as a square potential barrier,
where the dimensionless barrier strength Zp is defined as the product of the barrier height
and width. The sub-gap tunnel conductance of the NS junction is then an oscillatory
function of the barrier strength Zp and minimum for values Zp = (n +1/2)π, with n an
integer [20, 21]. By applying this model to our experimental data, a rather large barrier can
be used. The enhanced conductance can then be seen as a signature of the helical surface
states where highly transparent modes are always expected due to Klein tunnelling. We
interpret the low voltage data as a probe of the induced superconducting state in the 3D
TI of strained HgTe. There is no reason to expect a priori an s-wave order parameter. In
fact, we expect deviations, such as for example calculated by Burset et al . [16]. Since
the actual spectra depend on several parameters, a larger data-set is needed to provide
a reliable analysis to show the influence of the helical Dirac nature of the surface states.
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Figure 7.13: In a) the central split peak (gray zone of b)) is compared to an analysis using Eq. 7.7 (cyan) with a
fixed value of Zp = 0.4 and a broadening parameter Γ≈ 0.025∆p. The magenta lines show a comparison with
the model developed in Ref. [16] with a broadening parameter Γ< 0.015∆p. The value of ∆p in both models is
70µeV. (In panel a) we have abandoned the normalization of the data on RN at high voltages and in the normal
state. Instead we have chosen to take the conductance value at the edge of the grey zone. The precise value is
a bit arbitrary, but should be close to this value. The curves are offset for better visibility.) b) Conductance of
Device 1 normalized with the normal state resistance RN above the critical temperature T > Tc at 30mK. The
grey area indicates the voltage-range where we assume an equilibrium proximity-induced superconducting
state. The dashed lines show fits using Eq. 7.7 for three different Zm parameters and a broadening of 0.7∆Nb.
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Especially the values of the barriers and broadening parameters can deviate from the real
values, which have to be combined with the expected A and B amplitudes. The question
is still open with respect to which model describes the experiment properly. Nevertheless,
this does not affect the conclusion that we can draw with respect to the identification
of the regime, where spectroscopy of the induced superconducting state can reliably be
performed.

NIOBIUM GAP

It is possible to achieve good qualitative agreement with the outer (niobium) gap using
a barrier of Zm ≈ 1.1 and ∆Nb = 0.8meV as depicted in Fig. 7.13b). A large broadening
parameter of Γm ≈ 0.7∆Nb is needed. This barrier indicates a rather low transparency
and bad proximity effect of the Nb/HgTe interface. The reduced value of the Nb gap in
contrast to the gap estimated from the critical temperature of the niobium film ≈ 1.1meV
(Tc ≈ 9K) can be due to the fact that the first sputtered layers react with the HgTe and
have therefore a reduced purity and thus a reduced energy gap. The coherence length of
niobium is rather short ≈ 20nm. This length scale is directly correlated to the strength of
the proximity effect [38]. Thus, mostly the Nb with a reduced quality close to the HgTe is
responsible for the transport and justifies a reduced ∆Nb in the modelling. Additionally,
spatial gradients on the large surface area of the HgTe bar can broaden the singularity.

7.5. DISCUSSION OF THE TRANSPORT THROUGH THE

POINT-CONTACT
Given the identification of the induced superconducting gap in the topological surface
states ∆p and the niobium gap ∆Nb, we propose an interpretation and explain the trans-
port in our system.

The uncovered 3D TI part can be treated as a source of (ballistic) electrons. The
electrons inside this area are in thermal equilibrium and can be defined by a constant
chemical potential µN . The incoming electrons can enter independently on their energy
and phase. The phase itself is randomized inside the reservoir. These statements do
not hold for the proximitized topological insulator as the region might be smaller than
one inelastic scattering length and electrons are trapped by the presence of two barriers.
Furthermore, the proximitized part is confined to a bar with a size depending on the
measured device as indicated in the inset of Fig. 7.10 with measurable consequences in
the sub gap spectrum of∆Nb which could arise for example due to geometrical resonances.
Therefore, the scattering problem can not be reduced to a single delta like barrier located
at the orifice of the point-contact but the whole region from the point-contact to the bulk
s-wave superconductor needs to be taken into account.

In the equilibrium case (VSN = 0) at zero temperature as depicted in Fig. 7.14a), the
superconductor exhibits a gap of 2∆Nb which, via the proximity effect, induces a mini-gap
2∆p into the TI below. We assume that the resulting local density of states is gapped at
zero energy and features gap edges at ∆p and ∆Nb as depicted in Fig. 7.14a)[27, 39–41].
For a finite voltage bias, the current in Sp is carried away as a supercurrent. Cooper pairs
can travel freely between Sm and Sp (µp1 =µp2 and µqp = 0). The voltage-drop occurring
at the interface indicated by Zp in Fig. 7.14a), is due to the difference in electrochemical
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Figure 7.14: Semiconductor band representation of the normal constriction superconductor system for different
bias regimes. The normal part N is the topological insulator TI. The constriction is initially characterized by a
barrier Zp and the superconductor by a pair potential ∆p. In a) the system is at zero bias and zero temperature.
The voltage difference will emerge at the narrow point-contact and Andreev reflections (normal reflections)
occur there with probability A (B). In b) at finite temperature and finite bias electrons from higher energies
are allowed to enter the proximity-induced superconductor. For even higher bias, the proximity-induced
superconducting state Sp is quenched (∆p → 0) and the situation as depicted in c) is present. Then, at higher
voltages transport is measured between a normal reservoir being the 3D TI HgTe and the superconductor
niobium with an interface resistance characterized by Zm.
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potentials between N on the left of Zp and Sp on the right of Zp (VSN =µN−µp1). The scale
of the relevant Sharvin resistance is controlled by the number of modes at the Zp location
and by the value of Zp. Due to the small barrier a high Andreev reflection probability
leads to an increased conductance.

For voltages larger than 0.5meV, the conductance curves in Fig. 7.11b) all superimpose,
if we exclude the central part interpreted as the proximity-induced order parameter. The
data outside the central part can no longer be interpreted as the conductance of an
NcS point-contact at Zp. The electronic states in the HgTe bar underneath the niobium
are no longer correlated as expressed in Eq. 7.2. For increasing voltage at the location
Zp, higher energy quasiparticles are injected into the HgTe bar with a probability C
as depicted in Fig. 7.14b). They cannot escape into an equilibrium reservoir because
of the large gap of the superconductor niobium and Zp < Zm. As Andreev reflections
allow charge flow but no energy transfer the only other relaxation mechanism for the
hot electrons is electron-phonon coupling which is likely to be small at the investigated
temperatures. A charge imbalance is build up [41]. Therefore, f0(E) in Eq. 7.2 becomes
a non-equilibrium distribution with relatively hot electrons, which leads in general to
a destruction of the proximity-induced order parameter ∆p, in the same way as a small
magnetic field quenches this induced superconducting state. Hence, beyond a voltage of
about 0.5meV the system has changed and we are left with a non-superconducting HgTe
bar in contact with niobium as shown in Fig 7.14c) with an interface with an unknown
transmissivity parametrized by Zm.

One has to keep in mind that if the process is present, values for the induced super-
conductivity and the transmission through the point-contact might be underestimated.
This argument is enforced by the fact that the critical temperature related to the induced
gap is TCind ≈ 300mK but a finite central peak is still visible at 1.2K.

7.6. GATE AND MAGNETIC FIELD DEPENDENCE OF THE

CONDUCTANCE
We also studied the influence of the AR probability at the point-contact as a function of
the Fermi energy in the normal reservoir by applying different gate voltages. The normal
state resistance of Device 2 versus the gate voltage is shown in Fig. 7.15b). The curves are
normalized to the resistance RN (T > Tc ) for each gate voltage individually. The behaviour
is comparable to a reference Hall-bar. There, by studying the slope of the Hall resistance,
we were able to tune the density from initially n-doped, over the charge neutrality point
into the hole dominated regime. Due to the high mobility in the n-conducting regime,
the point-contact is expected to be ballistic in this regime. By tuning into the p-regime
the mobility reduces by about a factor of ten and the mean free path is now smaller than
the size of the point-contact and, thus expected to be in the diffusive regime. From the
conductance curves (Fig. 7.15a) it is clear that we no longer observe a signature of the
niobium pairing potential in the p-regime. Upon changing the gate voltage, features at
the scale of the niobium gap disappear upon approaching the charge neutrality point
(at −2.2 V ). The only significant voltage-dependent feature is around ± 100µeV. We
assume that this observation is a signature that the NcS point-contact is probing the
induced superconducting state of the HgTe bar in a diffusive proximity-system, leading to
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Figure 7.15: a) Gate dependence of normalized conductance of Device 2 at B = 0T from 1V to −4V. The black
bar indicates how the height of the central peak is evaluated in panel b). b) Normal state Resistance RN versus
gate voltage (black) and size of the peak (red) defined as indicated in a) by the black bar for Vg = 0. c) Normal
state conductance versus zero bias conductance is shown.
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a mini-gap.

The height of the zero bias anomaly as a function of gate voltage is quantified as
indicated in Fig. 7.15a) by the black bar for Vg = 0 (d I /dV (T = 30mK)−d I /dV (T > Tc ))
and plotted in Fig. 7.15b) as red dots. The amplitude is several tens of e2/h in the n-
conducting regime and decreases constantly up to the charge neutrality point (CP) region
where it saturates at a value of 1-2 e2/h depending on the sample. Another way of looking
at the height of the zero bias anomaly is shown in Fig. 7.15c) where the conductance
below the niobium gap is compared with the normal state conductance above ∆Nb. Here,
an almost linear behaviour is found with a slope close to one indicating that the height of
the peak scales with the normal state resistance. A momentum mismatch is created by
changing the density on the normal part while the superconducting region is unaffected,
the peak survives indicating constant AR probability independent of the barrier. In
fact, by using an effective barrier which takes the Fermi velocity mismatch into account

Zeff =
√

Z 2 + (1− r )2/4r where r = vFN/vFS ≈
p

nN/nS is the ratio of the Fermi velocities of
the superconducting vFS compared to the normal part vFN, one can give a rough estimate
of the effect of the density change of a system with a purely parabolic band structure [42].
Also the density of the proximitised part is unknown, a lower bound for the estimated
change of density in the N part by comparing with Hall-bar measurements is nN(1 V) ≈
10×1011cm−2 to nP(-4 V) ≈−10×1011cm−2. Using these assumptions, variations in Zp

in at least the range shown in Fig. 7.3 are expected and should clearly influence the size of
the zero bias anomaly which is not observed in the measurements. A reduced influence
of a barrier is expected for systems with a linear dispersion [21, 43] and could be related
to a phenomenon called superconducting Klein-tunnelling or perfect Andreev reflection
predicted by Tkachov et al . [44].

7.7. GENERAL REMARK ABOUT OUR ANALYSIS

The analysis of our data has lead us to discuss the conductance data resulting from the
transport through three different electron systems (N, Sp and Sm), separated by two
interfaces of transparency Zp and Zm. Following Beenakker [45] it is assumed that any
contact between a normal reservoir and a superconducting reservoir is given by

GS = 2G0
G2

N

(2G0 −GN )2 (7.16)

with G0 = 2e2/h the quantum unit of conductance, GN the conductance in the normal
state, and GS the conductance with one of the electrodes superconducting. This ex-
pression is the zero-voltage limit of the classical BTK-formula for different values of
transmissivity Z . In order to calculate GS , often the conductance at V >∆s is used as GN

[see also Fig. 7.15c)] and implying that this experimental value is independent of the
applied bias. The most important implication in our case is that one measures at high
voltages not a proximity-induced superconducting gap, but rather the parent supercon-
ductor. We suggest that the low voltage data should be understood by acknowledging
that the scattering region and the equilibrium reservoirs at VSN = 0 should be defined
differently from the one at higher voltages, such as in our case V > 0.8meV.
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7. POINT-CONTACT ANDREEV REFLECTION SPECTROSCOPY ON A THREE DIMENSIONAL

TOPOLOGICAL INSULATOR

7.8. CONCLUSION
In conclusion, a ballistic Andreev point-contact based on the topological insulator HgTe
was successfully fabricated and transport spectroscopy of the proximity-induced pair-
potential was carried out. It was possible to identify an induced superconducting order
parameter in the HgTe of about ∆p = 70µeV. In addition, to explain the transport through
the device, we take into account how to identify the relevant Fermi-distribution function
over the energies, implying the relevance of a non-equilibrium distribution function in
analysing the data. The induced superconducting state is quenched by increasing the bias
across the device or by applying a small magnetic field. These results are an important
step towards a better understanding and engineering of topological superconductivity as
it allows control and measurement of the size of the induced superconducting gap. It may
also serve as a building block for further analysis of the 4π-Josephson effect as reported
in chapters 3-6 [46–48].
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SUMMARY

This thesis describes the studies of topological superconductivity, which is predicted to
emerge when pair correlations are induced into the surface states of 2D and 3D topolog-
ical insulators (TIs). In this regard, experiments have been designed to investigate the
theoretical ideas first pioneered by Fu and Kane that in such system Majorana bound
states occur at vortices or edges of the system [Phys. Rev. Lett. 100, 096407 (2008), Phys.
Rev. B 79, 161408 (2009)]. These states are of great interest as they constitute a new
quasiparticle which is its own antiparticle and can be used as building blocks for fault
tolerant topological quantum computing.

After an introduction in chapter 1, chapter 2 of the thesis lays the foundation for the
understanding of the field of topology in the context of condensed matter physics with a
focus on topological band insulators and topological superconductors. Starting from a
Chern insulator, the concepts of topological band theory and the bulk boundary corre-
spondence are explained. It is then shown that the low energy Hamiltonian of mercury
telluride (HgTe) quantum wells of an appropriate thickness can be written as two time
reversal symmetric copies of a Chern insulator. This leads to the quantum spin Hall effect.
In such a system, spin-polarized one dimensional conducting states form at the edges
of the material, while the bulk is insulating. This concept is extended to 3D topological
insulators with conducting 2D surface states. As a preliminary step to treating topological
superconductivity, a short review of the microscopic theory of superconductivity, i.e. the
theory of Bardeen, Cooper, and Shrieffer (BCS theory) is presented. The presence of
Majorana end modes in a one dimensional superconducting chain is explained using the
Kitaev model. Finally, topological band insulators and conventional superconductivity
are combined to effectively engineer p-wave superconductivity. One way to investigate
these states is by measuring the periodicity of the phase of the Josephson supercurrent
in a topological Josephson junction. The signature is a 4π-periodicity compared to the
2π-periodicity in conventional Josephson junctions. The proof of the presence of this
effect in HgTe based Josephson junction is the main goal of this thesis and is discussed in
chapters 3 to 6.

Chapter 3 describes in detail the transport of a 3D topological insulator based weak
link under radio-frequency radiation. The chapter starts with a review of the state of
research of (i) strained HgTe as 3D topological insulator and (ii) the progress of induc-
ing superconducting correlations into the topological surface states and the theoretical
predictions of 3D TI based Josephson junctions. Josephson junctions based on strained
HgTe are successfully fabricated. Before studying the ac driven Josephson junctions, the
dc transport of the devices is analysed. The critical current as a function of temperature
is measured and it is possible to determine the induced superconducting gap. Under
rf illumination Shapiro steps form in the current voltage characteristic. A missing first
step at low frequencies and low powers is found in our devices. This is a signature of
a 4π-periodic supercurrent. By studying the device in a wide parameter range - as a
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function of frequency, power, device geometry and magnetic field - it is shown that the
results are in agreement with the presence of a single gapless Andreev doublet and several
conventional modes.

Chapter 4 gives results of the numerical modelling of the I−V dynamics in a Josephson
junction where both a 2π- and a 4π-periodic supercurrents are present. This is done in
the framework of an equivalent circuit representation, namely the resistively shunted
Josephson junction model (RSJ-model). The numerical modelling is in agreement with
the experimental results in chapter 3. First, the missing of odd Shapiro steps can be
understood by a small 4π-periodic supercurrent contribution and a large number of
modes which have a conventional 2π-periodicity. Second, the missing of odd Shapiro
steps occurs at low frequency and low rf power. Third, it is shown that stochastic processes
like Landau Zener tunnelling are most probably not responsible for the 4π contribution.

In a next step the periodicity of Josephson junctions based on quantum spin Hall
insulators using are investigated in chapter 5. A fabrication process of Josephson junctions
based on inverted HgTe quantum wells was successfully developed. In order to achieve a
good proximity effect the barrier material was removed and the superconductor deposited
without exposing the structure to air. In a next step a gate electrode was fabricated which
allows the chemical potential of the quantum well to be tuned. The measurement of the
diffraction pattern of the critical current Ic due to a magnetic field applied perpendicular
to the sample plane was conducted. In the vicinity to the expected quantum spin Hall
phase, the pattern resembles that of a superconducting quantum interference device
(SQUID). This shows that the current flows predominantly on the edges of the mesa.
This observation is taken as a proof of the presence of edge currents. By irradiating the
sample with rf, missing odd Shapiro steps up to step index n = 9 have been observed. This
evidences the presence of a 4π-periodic contribution to the supercurrent. The experiment
is repeated using a weak link based on a non-inverted HgTe quantum well. This material
is expected to be a normal band insulator without helical edge channels. In this device,
all the expected Shapiro steps are observed even at low frequencies and over the whole
gate voltage range. This shows that the observed phenomena are directly connected
to the topological band structure. Both features, namely the missing of odd Shapiro
steps and the SQUID like diffraction pattern, appear strongest towards the quantum spin
Hall regime, and thus provide evidence for induced topological superconductivity in the
helical edge states.

A more direct way to probe the periodicity of the Josephson supercurrent than using
Shapiro steps is the measurement of the emitted radiation of a weak link. This experiment
is presented in chapter 6. A conventional Josephson junction converts a dc bias V to
an ac current with a characteristic Josephson frequency f J = eV /h. In a topological
Josephson junction a frequency at half the Josephson frequency f J /2 is expected. A
new measurement setup was developed in order to measure the emitted spectrum of a
single Josephson junction. With this setup the spectrum of a HgTe quantum well based
Josephson junction was measured and the emission at half the Josephson frequency f J /2
was detected. In addition, f J emission is also detected depending on the gate voltage and
detection frequency. The spectrum is again dominated by half the Josephson emission at
low voltages while the conventional emission is determines the spectrum at high voltages.
A non-inverted quantum well shows only conventional emission over the whole gate



SUMMARY 149

voltage and frequency range. The linewidth of the detected frequencies gives a measure
on the lifetime of the bound states: From there, a coherence time of 0.3–4ns for the f J /2
line has been deduced. This is generally shorter than for the f J line (3–4ns).

The last part of the thesis, chapter 7, reports on the induced superconducting state
in a strained HgTe layer investigated by point-contact Andreev reflection spectroscopy.
For the experiment, a HgTe mesa was fabricated with a small constriction. The diameter
of the orifice was chosen to be smaller than the mean free path estimated from magne-
totransport measurements. Thus one gets a ballistic point-contact which allows energy
resolved spectroscopy. One part of the mesa is covered with a superconductor which
induces superconducting correlations into the surface states of the topological insulator.
This experiment therefore probes a single superconductor normal interface. In contrast to
the Josephson junctions studied previously, the geometry allows the acquisition of energy
resolved information of the induced superconducting state through the measurement
of the differential conductance d I /dV as a function of applied dc bias for various gate
voltages, temperatures and magnetic fields. An induced superconducting order parame-
ter of about 70µeV was extracted but also signatures of the niobium gap at the expected
value around ∆Nb ≈ 1.1meV have been found. Simulations using the theory developed by
Blonder, Tinkham and Klapwijk and an extended model taking the topological surface
states into account were used to fit the data. The simulations are in agreement with a
small barrier at the topological insulator-induced topological superconductor interface
and a high barrier at the Nb to topological insulator interface. To understand the full con-
ductance curve as a function of applied voltage, a non-equilibrium driven transformation
is suggested. The induced superconductivity is suppressed at a certain bias value due to
local electron population. In accordance with this suppression, the relevant scattering
regions change spatially as a function of applied bias.

To conclude, it is emphasized that the experiments conducted in this thesis found
clear signatures of induced topological superconductivity in HgTe based quantum well
and bulk devices and opens up the avenue to many experiments. It would be interesting
to apply the developed concepts to other topological matter-superconductor hybrid
systems. The direct spectroscopy and manipulation of the Andreev bound states using
circuit quantum electrodynamic techniques should be the next steps for HgTe based
samples. This was already achieved in superconducting atomic break junctions by the
group in Saclay [Science 2015, 349, 1199-1202 (2015)]. Another possible development
would be the on-chip detection of the emitted spectrum as a function of the phase φ
through the junction. In this connection, the topological junction needs to be shunted
by a parallel ancillary junction. Such a setup would allow the current phase relation
I (φ) directly and the lifetime of the bound states to be measured directly. By coupling
this system to a spectrometer, which can be another Josephson junction, the energy
dependence of the Andreev bound states E(φ) could be obtained. The experiments on
the Andreev reflection spectroscopy described in this thesis could easily be extended to
two dimensional topological insulators and to more complex geometries, like a phase
bias loop or a tunable barrier at the point-contact. This work might also be useful for
answering the question how and why Majorana bound states can be localized in quantum
spin Hall systems.





ZUSAMMENFASSUNG

Die vorliegende Dissertation befasst sich mit der experimentellen Untersuchung von
topologischer Supraleitung, die durch die Kombination von konventionellen Supraleitern
mit 2D- und 3D- topologischen Isolatoren (TI) entsteht. Diesbezüglich wurden Experi-
mente durchgeführt, die auf zwei bahnbrechenden Arbeiten von Fu und Kane [Phys. Rev.
Lett. 100, 096407 (2008), Phys. Rev. B 79, 161408 (2009)] aufbauen. Diesen zufolge wird in
supraleitenden topologischen Isolatoren ein neuartiges Quasiteilchen, ein sogenanntes
Majorana-Fermion, vorhergesagt. Das große Interesse an diesem Teilchen beruht auf des-
sen besonderen Eigenschaften. Es sind Fermionen mit halbzahligen Spin, jedoch besitzen
sie keine Ladung und es ist gleichzeitig sein eigenes Antiteilchen. Darüber hinaus besitzt
das Teilchen im Vergleich zu konventionellen Fermionen eine andere Austauschstatistik
und zählt daher zu den sogenannten nicht-abelschen Anyonen. Aufgrund dieser Eigen-
schaften wurde vorhergesagt, dass sie für weniger fehleranfällige Quantenbits als Bauteile
für einen Quantencomputer verwendet werden können.

Nach einer Einleitung in Kapitel 1 folgt in Kapitel 2 eine Einführung in das Konzept von
Topologie in der Festkörperphysik. Der Schwerpunkt liegt dabei auf zwei Materialklassen,
topologischen Isolatoren und topologische Supraleiter. Zunächst wird ein Zweibandmo-
dell, der Chern-Isolator, beschrieben, um das Konzept von topologischen Isolatoren und
die Entstehung von Oberflächenzuständen darzulegen. Es ist möglich die Bandstruktur
von Quecksilbertellurid- (HgTe-) Quantentrögen als zwei zeitumkehrinvariante Kopien
des Chern-Isolators zu interpretieren, was zu einem 2D topologischen Isolator führt. Das
Konzept von 2D-TIs wird auf drei Dimensionen erweitert. Eine Einführung in konventio-
nelle Supraleitung und insbesondere die mikroskopische Theorie von Bardeen, Cooper
und Schrieffer dient einem pädagogischen Zugang zur topologischen Supraleitung. Eine
eindimensionale supraleitenden Kette, entwickelt von Alexei Kitaev, dient der Erklärung
für die Entstehung von Majorana-Fermionen in p-Wellen Supraleitern. Es ist möglich
diesen Zustand durch die Kombination von konventionellen Supraleitern und topologi-
schen Isolatoren zu verwirklichen. In dieser Dissertation wird die erwartet topologische
Supraleitung in einem sogenannten Josephson-Kontakt untersucht. Dabei wurde vorher-
gesagt, dass in einem “topologischen Josephson-Kontakt”die Phase des Suprastromes
eine 4π-Periodizität besitzt, während ein normaler Josephson-Kontakt 2π-periodisch ist.
Ziel dieser Arbeit ist der experimentelle Nachweis der 4π-Periodizität des Suprastroms
in Josephson-Kontakten, die auf HgTe-Bauelementen beruhen. Als Methodik eignet sich
die Messung der Shapiro-Plateaus und der Emission des Josephson-Kontaktes an, die
ausführlich in den Kapiteln 3 bis 6 werden.

In Kapitel 3 wird der Transport in Josephson-Kontakten, die auf dem dreidimensio-
nalen topologischen Isolator HgTe beruhen unter Einfluss von Mikrowellenstrahlung
detailliert ausgeführt. Dieser Teil beginnt mit einem Überblick über die Eigenschaften von
HgTe als dreidimensionaler topologischer Isolator und zeigt insbesondere den Nachweis
der Oberfächenleitung von relativistischen Elektronen auf. Des Weiteren wird der Stand
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der Forschung von Josephson-Kontakten auf diesem Materialsystem dargelegt. In solchen
Strukturen werden nämlich aufgrund von Majorana-Fermionen gebundene Andreev-
Zustände erwartet, welche sich in der Mitte der supraleitenden Bandlücke (bei null
Energie) kreuzen. Sie werden als “gapless Andreev Bound States”bezeichnet. Die Existenz
dieser Zustände kann durch den Nachweis einer 4π-Periodizität der Phase des Supra-
stroms bewiesen werden. Da die endliche Lebensdauer dieser Zustände “langsamen”dc-
Messungen den Nachweis der Periodizität nicht erlauben, wird Strahlung im Gigahertz
Frequenzbereich verwendet. Josephson-Kontakte aus 3D-HgTe-Heterostrukturen werden
erfolgreich lithografiert. Zunächst werden die Strukturen mit dc-Messungen charakte-
risiert und es wird gezeigt, dass der Suprastrom einen Josephson-Effekt aufweist. Die
Temperaturabhängigkeit des kritischen Stroms wird simuliert, wodurch die Bestimmung
der Größe der induzierten supraleitenden Bandlücke ermöglicht wird. Durch Mikrowel-
lenstrahlung entstehen Shapiro-Plateaus in der Strom-Spannungskennlinie I −V -Kurve.
Der Spannungsabstand von zwei aufeinander folgenden Plateaus spiegelt die Periodizität
des Josephsonstroms wider. Zu erwarten wäre, dass der Abstand in einem topologischen
Josephson-Kontakt im Vergleich zu einem konventionellen Josephson-Kontakt doppelt
so groß ist (oder anders formuliert: die ungeradzahligen Plateau-Indizes fehlen). In den
Strom-Spannungskennlinien wird jedoch beobachtet, dass der erste erwartete Schritt
ausbleibt. Alle höheren ungeradzahligen Schritte sind sichtbar. Durch die Untersuchung
des Phänomens als Funktion von Mikrowellenfrequenz, Mikrowellenamplitude, Magnet-
feldstärke und Probengeometrie wird argumentiert, dass die Ergebnisse der Experimente
mit einem topologischen Andreev-Zustand und einer großen Zahl konventioneller Moden
vereinbar sind.

Um die experimentellen Ergebnisse aus Kapitel 3 nachzuvollziehen, werden in Kapitel
4 die I −V -Kennlinie eines Josephson-Kontaktes mit einer linearen Kombination eines
2π- und eines 4π-periodischen Suprastroms unter Mikrowellenstrahlung numerisch
simuliert. Dies erfolgt durch ein Netzwerkmodell, welches aus einem Josephson-Kontakt
in Parallelschaltung zu einem ohmschen Widerstand besteht (RSJ-Modell). Die Ergebnisse
aus Kapitel 3 können nur durch das Vorhandensein eines 4π-periodischem Suprastroms
I4π eindeutig numerisch simuliert werden. Darüber hinaus wird herausgestellt, dass eine
Kopplung des Systems an die 4π-periodische Komponente möglich ist, obwohl der Beitrag
zum Gesamtstrom Ic sehr klein ist (I4π¿ Ic ).

Die Grundlage für die Experimente in Kapitel 5 bildet ein Josephson-Kontakt, der auf
einem invertierten HgTe-Quantentrog basiert. Dieser besitzt helikale Randkanäle, welche
mit Supraleitern topologisch geschützte Andreev-Zustände formen. Hierfür ist zuerst ein
neuer Lithographieprozess zur Herstellung der Proben entwickelt worden. Da sich der
HgTe-Quantentrog unter einer Hg0.3Cd0.7Te-Barriere befindet, muss diese für eine gute
induzierte Supraleitung lokal entfernt und der Supraleiter aufgetragen werden, ohne das
Vakuum zu brechen. Zur Variation der Ladungsträgerdichte im Josephson-Kontakt wird
eine Feldeffektelektrode auf der Struktur platziert. Die Messung des Beugungsmusters
des kritischen Stroms als Funktion des Magnetfeldes erlaubt es, die Stromverteilung
in der Probe zu untersuchen. Das Beugungsmuster ähnelt dem eines supraleitenden
Quanteninterferenzbauelement [engl. Superconducting Quantum Interference Device:
(SQUID)] und zeigt, dass der Strom vorwiegend am Rand der Probe fließt. Durch die
Bestrahlung mit Mikrowellen werden fehlende ungeradzahlige Shapiro-Plateaus bis zum
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Stufenindex n = 9 beobachtet. Dies verdeutlicht, dass der Strom eine 4π-periodischen
Beitrag aufweist. Das Experiment wird mit einem nicht-invertierten HgTe-Quantentrog
wiederholt. Dieser ist nicht in der Quanten-Spin-Hall-Phase und zeigt über den gesamten
Parameterbereich alle erwarteten Shapiro-Plateaus, was beweist, dass die Topologie
der Probe eine wichtige Eigenschaft ist, um die 4π-Periodizität zu beobachten. Beide
Effekte, das SQUID-Beugungsmuster und die verschwindenden ungeradzahligen Shapiro-
Plateaus, sind in der Nähe der Quanten-Spin-Phase am sichtbarsten und können daher
als Beweis für induzierte topologische Supraleitung in spinpolarisierten Randkanälen
interpretiert werden.

Eine Messmethode zur direkten Bestimmung der Periodizität des Suprastromes, an-
ders als die Verwendung von Shapiro-Plateaus, ist die Messung der Josephson-Emission,
was in Kapitel 6 beschrieben wird. Ein topologischer Josephson-Kontakt emittiert Strah-
lung bei der halben Josephsonfrequenz f J /2 aufgrund der 4π-Periodizität des Joseph-
sonstromes. Hierfür wird ein neuer experimenteller Aufbau entwickelt, um das kleine
Emissionssignal eines einzelnen Josephson-Kontaktes zu verstärken. Dieser neue Aufbau
erlaubt es, das Spektrum eines invertierten HgTe-Quantentrog zu messen und eine Emis-
sion bei f J /2 zu detektieren. Je nach Ladungsträgerdichte und Detektionfrequenz wird
auch gewöhnliche Emission bei f J im Spektrum beobachtet. Generell dominiert aber bei
niedriger Spannung die f J /2-Emission und bei höheren Spannungen die f J . Da Spannung
und ac-Frequenz durch die zweite Josephson-Gleichung proportional zueinander lässt
sich das Verhalten mit den Ergebnissen der Shapiro-Plateau-Messungen vereinbaren.
Darüber hinaus ist aus der Linienbreite der Emissionssignale eine Lebensdauer für die
ABS in der Größenordnung von 0.3−4ns für die f J /2-Emission und 3−4ns für die f J -
Emission abgeschätzt worden. Ein nicht-invertierter Quantentrog zeigt im Vergleich zum
invertierten nur gewöhnliche Emission bei f J über den gesamten zugänglichen Frequenz-
und Ladungsträgerbereich.

Im letzten Teil der Arbeit, in Kapitel 7, wird die in den 3D-topologischen Isolator
HgTe induzierte Supraleitung mit Hilfe von Andreev-Punktkontaktspektroskopie unter-
sucht. Hierfür wird eine HgTe-Struktur mit einer Verengung fabriziert, deren Durchmesser
kleiner als die mittlere freie Weglänge der topologischen Oberflächenzustände ist und
somit eine energieabhängige Spektroskopie des Zustandes erlaubt. Auf einer Seite der
Verengung werden supraleitende Paarkorrelationen durch einen gewöhnlichen Supralei-
ter Niob induziert. Diese Struktur ermöglicht daher die Untersuchung der Grenzfläche
zwischen einem Supraleiter und einem Normalleiter (topologischer Isolator). Durch
die Messung der differentiellen Leitfähigkeit d I /dV als Funktion der dc-Spannung ist
es möglich die Energieabhängigkeit der Supraleitung zu untersuchen. Eine induzierte
supraleitenden Bandlücke von 70µeV wird gefunden. Die Leitfähigkeit zeigt Signatu-
ren einer weiteren supraleitende Bandlücke des konventionellen Supraleiters Niob von
∆Nb ≈ 1.1meV. Die Leitfähigkeit wird zum einen mit der Theorie von Blonder, Tinkham
und Klapwijk modelliert und zum anderen mit einem erweiterten Modell, welches die
2D Oberflächenzustände des topologischen Isolators berücksichtigt simuliert. Für die
Grenzfläche topologischer Isolator mit topologischem Supraleiter wird eine hohe Trans-
missionswahrscheinlichkeit (niedrige Barriere) festgestellt, während an der Grenzfläche
zwischen dem konventionellen Supraleiter und dem topologischen Isolator eine hohe
Barriere in Übereinstimmung mit dem Modell war. Der Transportmechanismus wird
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durch eine Unterdrückung der induzierten Supraleitung durch eine Nichtgleichgewichts-
verteilung der Zustände als Funktion der Spannung erklärt.

Die vorliegende Dissertation konnte klare Signaturen von induzierter topologischer
Supraleitung in Josephson-Kontakten auf Basis von HgTe-Quantentrögen und Volumen-
material aufzeigen. Sie kann auch als Ausgangspunkt für eine große Anzahl von weiter-
führenden Experimenten dienen. Die hier entwickelte Technik und auch Theorie kann
auf andere topologische Zustände in Verbindung mit Supraleitern angewandt werden.
Ein weiteres Experiment für HgTe-Strukturen ließe sich beispielsweise mit Hilfe von su-
praleitenden Resonatoren die Spektroskopie und Manipulation der mikroskopischen
topologischen Andreev-Zustände durchführen. Diese Technik wurde schon erfolgreich
von Janvier et al . auf mechanisch kontrollierten supraleitenden Bruchkontakten ange-
wandt [Science 2015, 349, 1199-1202 (2015)]. Eine alternative Technik zur Spektroskopie
der Andreev Zustände benötigt konventionelle Josephson-Kontakte in Kombination mit
topologischen Kontakten. Die konventionellen Kontakte erlauben die Kontrolle der supra-
leitenden Phase und dienen als Spektrometer. Die Andreev-Punktkontaktspektroskopie
kann auf zweidimensionale topologische Isolatoren erweitert werden. Auch kann ei-
ne supraleitende Schleife, welche die Kontrolle über die Phase und eine veränderbare
Barriere ermöglicht, neue Einblicke in die Transportmechanismen geben. Solche Un-
tersuchungen bieten Ansatzpunkte für die Lokalisierung von Majorana-Zuständen in
Quanten-Spin-Hall-Systemen.



A
FABRICATION OF THE 3DTI

JOSEPHSON JUNCTION

Every sample production starts with a MBE grown substrate cleaved into a roughly 3mm
×3mm big sample piece. This is cleaned in acetone using an ultrasonic bath (US),
isopropanole and deionized water (DI-water). The process presented for the uncapped
3DTI was done without the use of the cluster.

Mesa definition

• Deposit sacrifical layer 10nm SiO by PECVD at 80◦C.

• Spincoat 950K 3% PMMA in ethyl lactate at 7000rpm for 40s and soft bake for
10min at 80◦C.

• Ebeam exposure of the mesa structure with 2.5kV with an aperture of 30µm and an
area dose of 70µC/cm2 and a magnification of 805 and 81.92µm writefield.

• Development in isopropanol for 60s, rinse in water and dry with nitrogen.

• E-gun evaporation of 20nm Ti as a etch shield.

• Lift-off in acetone at 50◦C for about 25min. Remove the metal with acetone spray
and clean again in acetone, isopropanol and DI-water. Dry with nitrogen.

• Remove sacrifical SiO-layer in RIE with 15s SiN etch program and clean PMMA
residuals with 10s mini clean program.

• Use argon sputtering to etch through the cap and and quantum well with (1kV/1kV/8mA
settings. Check for position dependend etch rates.).

• Remove titanium etch mask with buffered oxide etch 1:7 for 50s.

• Clean in acetone, isopropanol and DI-water.
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Deposition of the superconductor

• Spincoat 950K 3% PMMA in ethyl lactate at 7000rpm for 40s and soft bake for
10min at 80◦C.

• Ebeam exposure of the mesa structure with 2.5kV with an aperture of 30µm and an
area dose of 70µC/cm2 and a magnification of 805 and 81.92µm writefield.

• Development in isopropanol for 60s, rinse in water and dry with nitrogen.

• Cleaning of the contact area with 5 to 6s of Ar plasma.

• Take care that the path through the cleanroom from the etching chamber to the
sputter chamber is free.

• Run! Transfer to the sputter chamber of the MBE to minimize oxidation time.

• Presputter about 50nm of Nb

• Deposition of 70nm Nb, 10nm Al and 10nm Ru at an relative angel of 20◦
• Lift-off in acetone at 50◦C for about 25min. Remove the metal with acetone spray

and clean again in aceton

• Clean in acetone, isopropanol and DI-water.

Optical contacts

• Spincoat HMDS at 6000rpm for 20s

• Spincoat ARN 4340 at 6000rpm for 20s and bake for 2min at 80◦C.

• Expose for 20s (8W).

• Post-bake for 6min at 80◦C.

• Development in AR 300-47 for 40s.

• Short argon sputtering cleaning 5−10 s (1kV/1kV/8mA settings). This step increases
the sticking of the following metal layers and makes the bonding much easier.

• E-gun evaporation of 50nm AuGe and 50nm of Au.

• Lift-Off in acetone at 50◦C for 15 minutes.



B
FABRIACTION OF THE QSHI

JOSEPHSON JUNCTION

Mesa definition

• Deposit sacrifical layer 10nm SiO by PECVD at 80◦C.

• Spincoat 950K 3% PMMA in ethyl lactate at 7000rpm for 40s and soft bake for
10min at 80◦C.

• Ebeam exposure of the mesa structure with 2.5kV with an aperture of 30µm and an
area dose of 70µC/cm2 and a magnification of 805 and 81.92µm writefield.

• Development in isopropanol for 60s, rinse in water and dry with nitrogen.

• E-gun evaporation of 20nm Ti as a etch shield.

• Lift-off in acetone at 50◦C for about 25min. Remove the metal with acetone spray
and clean again in acetone, isopropanol and DI-water. Dry with nitrogen.

• Remove sacrifical SiO-layer in RIE with 15s SiN etch program and clean PMMA
residuals with 10s mini clean program.

• Use argon sputtering to etch through the cap and and quantum well with (1kV/1kV/8mA
settings. Check for position dependend etch rates.).

• Remove titanium etch mask with buffered oxide etch 1:7 for 50s.

• Clean in acetone, isopropanol and DI-water.

Superconducting contacts

• Spincoat 600K 6% 6000 rpm for 40s and bake for 10min at 80◦C. Spincoat 950K 4%
6000 rpm for 40s and bake for 10min at 80◦C.
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• Ebeam exposure of the superconducting structure using proximity correction with
30kV with an aperture of 20µm and an area dose of 240µC/cm2 and a magnification
of 870 and 81.92µm writefield.

• Development in MIBP:IPA 1:3 for 60s, development stop in IPA 30s and DI-water.

• Use argon sputtering (1kV/1kV/8mA settings) to etch through the cap layer of the
mesa as the superconductor needs to be placed as close as possible to the HgTe
layer for a good proximity effect. In-situ transfer to the evaporation chamber in the
cluster tool.

• Evaporation of 5nm Ti, 150nm Al, 10nm Ti and 10Au.

• Lift-Off in acetone at 50◦C for 15 minutes.

• Clean in acetone, isopropanol and DI-water.

Gate electrode

• Spincoat 600K 6% 6000 rpm for 40s and bake for 10min at 80◦C. Spincoat 950K 4%
6000 rpm for 40s and bake for 10min at 80◦C.

• Ebeam exposure of the superconducting structure using proximity correction with
30kV with an aperture of 20µm and an area dose of 200−240µC/cm2 and a magni-
fication of 870 and 81.92µm writefield.

• Development in MIBP:IPA 1:3 for 60s, development stop in IPA 30s and DI-water.

• To remove PMMA residuals a short 5s RIE mini clean step is done. This step is
crucial that the ALD insulator sticks well on the surface.

• ALD growth of H f O2. 90 cycles (approx 15−20nm) at 35◦C.

• E-gun evaporation of 5nm Ti and 150nm of Au.

• Lift-Off in acetone at 50◦C for 15 minutes (a short ultra sonic bath of about 1−2min
was used to avoid side walls of the insulator).

• Clean in acetone, isopropanol and DI-water.

Optical contacts

• Spincoat ARN 4340 at 6000rpm for 20s and bake for 2min at 80◦C.

• Expose for 20s (8W).

• Post-bake for 6min at 80◦C.

• Development in AR 300-47 for 40s.

• Short argon sputtering cleaning 5−10 s (1kV/1kV/8mA settings). This step increases
the sticking of the following metal layers and makes the bonding much easier.

• E-gun evaporation of 50nm AuGe and 50nm of Au.

• Lift-Off in acetone at 50◦C for 15 minutes.



C
SAMPLE FABRICATION OF THE

ANDREEV POINT-CONTACT

Mesa definition

• Deposit sacrifical layer 10nm SiO by PECVD at 80◦C.

• Spincoat 950K 3% PMMA in ethyl lactate at 7000rpm for 40s and soft bake for
10min at 80◦C.

• Ebeam exposure of the mesa structure with 2.5kV with an aperture of 30µm and an
area dose of 70µC/cm2 and a magnification of 805 and 81.92µm writefield.

• Development in isopropanol for 60s, rinse in water and dry with nitrogen.

• E-gun evaporation of 20nm Ti as a etch shield.

• Lift-off in acetone at 50◦C for about 25min. Remove the metal with acetone spray
and clean again in acetone, isopropanol and DI-water. Dry with nitrogen.

• Remove sacrifical SiO-layer in RIE with 15s SiN etch program and clean PMMA
residuals with 10s mini clean program.

• Use argon sputtering to etch through the cap and bulk layer with (1kV/1kV/8mA
settings. Check for position dependend etch rates.).

• Remove titanium etch mask with buffered oxide etch 1:7 for 50s.

• Clean in acetone, isopropanol and DI-water.

Superconducting contacts

• Spincoat 600K 6% 6000 rpm for 40s and bake for 10min at 80◦C. Spincoat 950K 4%
6000 rpm for 40s and bake for 10min at 80◦C.
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• Ebeam exposure of the superconducting structure using proximity correction with
30kV with an aperture of 20µm and an area dose of 240µC/cm2 and a magnification
of 870 and 81.92µm writefield.

• Development in MIBP:IPA 1:3 for 60s, development stop in IPA 30s and DI-water.

• Use argon sputtering (1kV/1kV/8mA settings) to etch through the cap layer of the
mesa as the superconductor needs to be placed as close as possible to the HgTe
layer for a good proximity effect. In-situ transfer to the sputter chamber in the
cluster tool.

• Sputtering of about 100nm of niobium with 200W power and the close up position.

• Lift-Off in acetone at 50◦C for 15 minutes.

• Clean in acetone, isopropanol and DI-water.

Normal contacts

• Spincoat 950K 3% PMMA in ethyl lactate at 7000rpm for 40s and soft bake for
10min at 80◦C.

• Ebeam exposure of the mesa structure with 2.5kV with an aperture of 30µm and an
area dose of 70µC/cm2 and a magnification of 805 and 81.92µm writefield.

• Development in isopropanol for 60s, rinse in water and dry with nitrogen.

• Short argon sputtering cleaning step to remove PMMA residuals and the oxide
barrier of 5 s (1kV/1kV/8mA settings).

• E-gun evaporation of 50nm AuGe and 50nm of Au.

• Lift-Off in acetone at 50◦C for 15 minutes.

• Clean in acetone, isopropanol and DI-water.

Gate insulator

• Spincoat 600K 6% 6000 rpm for 40s and bake for 10min at 80◦C. Spincoat 950K 4%
6000 rpm for 40s and bake for 10min at 80◦C.

• Ebeam exposure of the superconducting structure using proximity correction with
30kV with an aperture of 20µm and an area dose of 200−240µC/cm2 and a magni-
fication of 870 and 81.92µm writefield.

• Development in MIBP:IPA 1:3 for 60s, development stop in IPA 30s and DI-water.

• To remove PMMA residuals a short 5s RIE mini clean step is done. This step is
crucial that the ALD insulator sticks well on the surface.

• ALD growth of H f O2. 90 cycles (approx 15−20nm) at 35◦C.

• E-gun evaporation of 50nm AuGe and 50−100nm of Au.
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• Lift-Off in acetone at 50◦C for 15 minutes (a short ultra sonic bath of about 1−2min
was used to avoid side walls of the insulator).

• Clean in acetone, isopropanol and DI-water.

Optical contacts

• Spincoat ARN 4340 at 6000rpm for 20s and bake for 2min at 80◦C.

• Expose for 20s (8W).

• Post-bake for 6min at 80◦C.

• Development in AR 300-47 for 40s.

• Short argon sputtering cleaning 5−10 s (1kV/1kV/8mA settings). This step increases
the sticking of the following metal layers and makes the bonding much easier.

• E-gun evaporation of 50nm AuGe and 50nm of Au.

• Lift-Off in acetone at 50◦C for 15 minutes.
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