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Chapter 1

Introduction

In this thesis we consider numerical methods for two different types of math-
ematical problems that both have feasible sets in the form of boxes. The first
class of problems are the so called nonlinear minimization problems with bound
constraints

minimize f(x) subject to x ∈ Ω, (P)

where the feasible set Ω is given by the box

Ω := {x ∈ R
n : li ≤ xi ≤ ui ∀i = 1, . . . , n}

and li and ui denote the lower and upper bounds for xi and f : D −→ R is the
objective function with domain D ⊆ R

n. Optimization problems of this type
appear for example if reasonable solutions can only be expected in a particular
area or if f is not defined in every point in R

n due to singularities for instance.
Moreover, if one knows that a solution should exist in a certain area, this kind
of information can be used by putting suitable bounds on the variables. In
order to document that bound constraints make sense for many optimization
problems we cite a part of the introduction of [13] by Conn, Gould and Toint
that characterizes the given problem very well.

Some authors [...] even claim that a vast majority of optimization
problems should be considered from the point of view that their
variables are indeed restricted to certain meaningful intervals, and
should therefore be solved in conjunction with bound constraints.
Fortunately, it is the simplest of the inequality constrained problems,
because of its structure. On the other hand, in a way it is more
complex than many equality type problems ...

As a simple economic example we consider a company that fabricates n products,
whose production quantities are denoted by x1, . . . , xn ∈ R. The company wants
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to minimize the total production costs, that are commonly described by

K(x) := Kfix +
n∑

i=1

xik
var
i (x),

where Kfix denotes the fixed costs and the functions kvar
i : R

n → R describe the
variable costs for the ith product. Usually the optimal production quantities
are determined by unconstrained minimization of K, c.f. [38]. But due to
on hand orders that have to be delivered and nonnegativity of the production
quantity there exists a minimum fabrication amount mi ≥ 0 of each product
i. On the other hand limited capacities ci > 0 for the products can lead to a
maximal production quantity. Therefore an unconstrained consideration may
lead to quantities that are not possible to fabricate. Thus it makes sense to
solve problem

minimize K(x) subject to mi ≤ xi ≤ ci, i = 1, . . . , n,

taking the given restrictions explicitly into account.

The optimization problem (P) has attracted quite a few researchers during the
last years, and a number of different methods for its solution may be found in
[7, 8, 13, 14, 26, 27, 34, 47, 48, 49, 70]. The approach we follow in this work
is typically called the affine-scaling interior-point Newton method. Following
an observation by Coleman and Li [11, 12], these methods exploit the fact that
the first order optimality conditions of (P) may be rewritten as a (bound con-
strained) nonlinear system of equations

G(x) = 0, x ∈ Ω,

where G : R
n → R

n is defined by

G(x) := D(x)∇f(x)

for a certain scaling matrix D(x), i.e.

D(x) = diag
(
d1(x), . . . , dn(x)

)

is a diagonal matrix with the components

di(x) := dCL
i (x) :=

{
xi − li, if [∇f(x)]i ≥ 0,
ui − xi, if [∇f(x)]i < 0

for i = 1, . . . , n. The corresponding method was shown to be locally quadrati-
cally convergent in [11, 12] under certain assumptions including strict comple-
mentarity of the solution x∗ of problem (P), i.e., under the assumption that, for



7

all indices i ∈ {1, . . . , n}, we have

x∗
i ∈ {li, ui} =⇒ [∇f(x∗)]i 6= 0.

Unfortunately the rate of convergence can slow down, if the strict complemen-
tarity condition is violated. This effect was reported by Heinkenschloss et al. in
[37] and was overcome by a modification of the scaling matrix, where the scaling
can be switched for certain indices.

We follow this idea and introduce a new class of affine-scaling methods for the
solution of the box constrained optimization problem (P). This new class differs
from the previous works mainly by using a different scaling D(x). To this end,
we note that both the Coleman-Li matrix D(x) = DCL(x) and the Heinken-
schloss et al. scaling D(x) = DHUU(x) are, in general, discontinuous even at a
solution x∗. This makes it relatively difficult to predict the behaviour of New-
ton’s method. Hence we suggest another scaling matrix which is continuous (in
fact, Lipschitz continuous) around a solution of problem (P). It turns out that
the use of locally Lipschitz continuous scaling matrices simplifies the algorithm
to some extent and, in particular, allows a relatively short and straightforward
convergence proof. Of central importance for our new scaling matrix, however,
is the fact that we are able to identify the degenerate indices correctly, where an
index i is called degenerate at a solution x∗ of problem (P), if both x∗

i ∈ {li, ui}
and [∇f(x∗)]i = 0.

The second type of problems we consider are nonlinear systems of equations with
bound constraints

F (x) = 0 subject to x ∈ Ω, (NE)

where the feasible set Ω is again given by

Ω := {x ∈ R
n : li ≤ xi ≤ ui ∀i = 1, . . . , n}

and where F : D −→ R
n denotes a suitable function with domain D ⊆ R

n which
is at least semismooth. This type of problem is, just like the box constrained
optimization problem (P), quite important for several reasons. In fact, in a
number of applications, the mapping F is not defined outside the box Ω. In
some other situations, the unconstrained problem F (x) = 0, x ∈ R

n might have
solutions outside the box Ω, which have no meaning for the applications. And
once more if solutions of the unconstrained problem are expected to be located in
a certain area, this additional information can be exploited. Furthermore bound
constrained nonlinear systems are often used as a reformulation of other problem
types, for example chemical equilibrium problems, boundary value problems or
(mixed) complementarity problems.

As an example we consider the boundary value problem (BVP) to find a function
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w ∈ C2((0, 1)) ∩ C([0, 1]) such that

w′′ =
3

2
w2, w(0) = 4, w(1) = 1.

This problem has the two symbolic solutions

w1(t) =
4

(1 + t)2

and

w2(t) = C2
1

(
1− cn(C1t− C2, k)

1 + cn(C1t− C2, k)
− 1√

3

)

,

where cn(ξ, k) denotes the Jacobian elliptic function with the modulus k. The
constants are given by

k =
1

2

√

2 +
√

3, C1 = 4.30310990, C2 = 2.33464196,

where the last two are results of an iterative process, c.f. [63, p. 504]. Both
solutions w1 and w2 are plotted in Figure 1.1 below. If one wants to solve the
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Figure 1.1: Plot of the symbolic BVP solutions

BVP numerically, a vector x ∈ R
n satisfying

xk ≈ w(tk) with tk :=
k − 1

n− 1
, k = 1, . . . , n
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has to be computed. Assuming sufficient smoothness of w the standard O(h2)
discretization arising from

w′′(t) ≈ w(t + h)− 2w(t) + w(t− h)

h2

and the boundary values lead to the nonlinear system F (x) = 0 defined by

F1(x) = x1 − 4,

Fk(x) = 2xk − xk−1 − xk+1 +
3

2
h2x2

k, k = 2, . . . , n− 1,

Fn(x) = xn − 1

with h = 1/(n−1) to determine the points xk ≈ w(tk). However the given BVP
has two solutions and it is therefore useful to consider the bound constrained
system

F (x) = 0, li ≤ xi ≤ ui, ∀i = 1, . . . , n

to determine one specific solution. By use of the lower bounds li := 0 and upper
bounds ui := ∞, i = 1, . . . , n one can approximate the positive solution w1 for
instance. We will recall this example later in Section 4.5, where we will apply
our affine-scaling method to the reformulation and compute a numerical solution
of the BVP.

The unconstrained nonlinear system F (x) = 0 with Ω = R
n and F continuously

differentiable is discussed in several books including [1, 18, 20, 44, 45, 55]. Ex-
tensions of the classical Newton method for the solution of the unconstrained
problem with F being semismooth may be found in [58, 57, 56, 29]. Despite
the popularity of the unconstrained system of nonlinear equations, the number
of references dealing with the box constrained problem (NE) (and with F being
either smooth or nonsmooth) is still very limited. Currently, we are only aware
of the papers [2, 3, 4, 5, 6, 39, 41, 46, 59, 64, 65]. Most of these papers, however,
appeared during the last few years, and we believe that the box constrained
problem (NE) is of increasing interest.

The main motivation for the method we propose later is a series of papers by
Bellavia et al. [2, 3, 4, 5, 6]. These authors consider a class of affine-scaling
interior-point methods for the solution of problem (NE) which have very good
numerical properties. In particular, in our experience, the practical performance
of these methods is better than the behaviour of the active-set type methods
discussed in [39, 41, 59]. However, Bellavia et al. consider smooth equations
only and assume that the Jacobian F ′(x) is nonsingular in order to show that a
certain inner iteration is finite. Our aim is therefore to generalize their method
to the class of semismooth equations (which is important if we want to apply
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our method to complementarity problems, for example) without using the non-
singularity assumption. Moreover, we allow a more general choice of the scaling
matrix and try to simplify the method and the corresponding convergence analy-
sis by using a simple rule for the transition from global to local fast convergence.

The remaining thesis is organized as follows: In chapter 2 we prepare theoreti-
cal background material including optimality conditions and results from nons-
mooth analysis. The bound constrained optimization problem (P) is considered
in chapter 3. After a review of some numerical methods we present our affine-
scaling approach and its theoretical and numerical properties. The emphasis lies
on the local convergence properties. Chapter 4 deals with numerical methods
for the problem (NE). In particular a new method for semismooth nonlinear
systems with box constraints is proposed. Global and local convergence prop-
erties are established and the method is tested on various examples, especially
smooth and semismooth reformulations of mixed complementarity problems. In
chapter 5 a brief conclusion is carried out.

Closing this section a few words regarding our notation: For a vector x ∈ R
n

we denote by xi and sometimes by [x]i its ith component. If F : R
n → R

n

is a vector-valued mapping, Fi is used for its ith component function. In the
differentiable case F ′(x) denotes the Jacobian of F at a point x ∈ R

n, whereas
∇F (x) is the transposed Jacobian. In particular, if m = 1, the gradient ∇F (x)
is viewed as a column vector. If F is locally Lipschitz we write ∂F (x) for the
generalized Jacobian of F at x. Throughout this text, ‖ · ‖ denotes the Eu-
clidean vector norm or the corresponding matrix norm, while ‖ · ‖∞ denotes the
maximum norm. Furthermore, PΩ(x) is the (Euclidean) projection of a vector
x ∈ R

n onto the feasible set Ω. Note that this projection can be calculated quite
easily since we are dealing with box constraints only. Given a matrix A ∈ R

n×n,
we write Ai for the ith column of this matrix. If A is positive semidefinite,
we write A1/2 for its positive semidefinite square root. Moreover we often use
the short-hand notation Fk for the mapping F evaluated at a point xk ∈ R

n.
Finally Bε(x

∗) stands for the open Euclidean ball of radius ε > 0 around the
point x∗ ∈ R

n and the Landau symbols are denoted by o and O.



Chapter 2

Theoretical Basics

In this chapter we provide the theoretical basics needed for our further con-
siderations. On the one hand we consider optimality conditions for the bound
constrained nonlinear program (P) and the already mentioned reformulation of
the first order necessary condition in the form of a nonlinear system of equa-
tions. Since this nonlinear system is in general not continuously differentiable
and since we want to allow semismooth functions later, some results from non-
smooth analysis are also presented.

2.1 Optimality Conditions

We consider the nonlinear minimization problem with bound constraints

minimize f(x) subject to x ∈ Ω (P)

with
Ω := {x ∈ R

n : li ≤ xi ≤ ui ∀i = 1, . . . , n},
lower bounds li, upper bounds ui and a twice continuously differentiable objec-
tive function f : R

n −→ R. A simple necessary optimality condition for the
problem (P) is given in the next Lemma, see also [27].

Lemma 2.1 Let x∗ ∈ Ω be a local minimum of the optimization problem (P).
Then

[∇f(x∗)]i







= 0, if li < x∗
i < ui,

≥ 0, if x∗
i = li,

≤ 0, if x∗
i = ui

(2.1)

holds.

As noted in the introduction, the first order necessary optimality condition (2.1)
is equivalent to a nonlinear system of equations involving the Coleman-Li scaling
matrix. This equivalence can be extended to more general scaling matrices.
More precisely, we have the following result, cf. Heinkenschloss et al. [37].
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Lemma 2.2 Let x∗ ∈ Ω. Then x∗ satisfies the first order optimality conditions
(2.1) if and only if it is a solution of the nonlinear system of equations

G(x) := D(x)∇f(x) = 0, (2.2)

where D(x) := diag
(
d1(x), . . . , dn(x)

)
is any scaling matrix having the following

properties on the feasible set Ω:

di(x)







= 0, if xi = li and [∇f(x)]i > 0,
= 0, if xi = ui and [∇f(x)]i < 0,
≥ 0, if xi ∈ {li, ui} and [∇f(x)]i = 0,
> 0, otherwise.

(2.3)

Motivated by Lemma 2.2, some methods for solving the bound constrained op-
timization problem (P) apply a Newton-type method to the corresponding non-
linear system (2.2), taking into account explicitly the simple bound constraints
x ∈ Ω.

In order to describe a sufficient optimality condition for the optimization prob-
lem (P), we introduce some index sets.

Definition 2.3 Let x ∈ Ω and the index set I := {1, . . . , n} be given. Then we
call

I0(x) :=
{
i ∈ I : xi ∈ {li, ui}

}

the set of active indices and

I00(x) :=
{
i ∈ I0(x) : [∇f(x)]i = 0

}

the set of degenerate indices.

By use of these index sets strict complementarity of a solution x∗ of problem (P)
reduces to I00(x

∗) = ∅. Moreover the strong second order sufficiency condition
can be described in the following form.

Definition 2.4 A point x∗ ∈ Ω with (2.1) is said to satisfy the strong second
order sufficiency condition (SSOSC for short) if

dT∇2f(x∗)d > 0

holds for all nonzero d ∈ T (x∗) := {z ∈ R
n : zi = 0 ∀i ∈ I0(x

∗)\I00(x
∗)}.

2.2 Nonsmooth Analysis

In this section we present a short introduction to the relevant parts of nonsmooth
analysis. We consider two different aspects. The first one deals with generalized
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derivatives and allows us to compute a suitable substitute for the not existing
Jacobian of a nonsmooth but locally Lipschitz continuous function. This allows
us the development of a Newton-type algorithm. The second aspect we consider,
are semismooth functions. These are not continuously differentiable, but pos-
sess a property of smooth functions that ensures fast local convergence of our
Newton-type iteration.

2.2.1 Generalized Jacobians

The reformulation of the optimality conditions presented in Lemma 2.2 is in
general not differentiable in a solution x∗ of (P) and we are therefore not able
to compute Jacobians of the function G defined in that lemma. But under mild
assumptions on G, we are able to compute a substitute for the Jacobian, called
generalized Jacobian in the sense of Clarke [10]. As a minimum requirement we
need the following definition.

Definition 2.5 Let O ⊆ R
n be open. A function F : O −→ R

m is called
locally Lipschitz continuous, if for each x ∈ O two constants (depending on x)
ε = ε(x) > 0 and L = L(x) > 0 exist, such that

‖F (y)− F (z)‖ ≤ L‖y − z‖, ∀ y, z ∈ Bε(x).

If F is a locally Lipschitz continuous function, we obtain from a theorem of
Rademacher [10, Theorem 2.5.1] that F is differentiable almost everywhere in
the following sense. Let DF := {x ∈ O : F is differentiable in x} denote the
set of differentiable points. Then O\DF is a set of Lebesgue measure zero and
hence for each x ∈ O there exists an arbitrary number of sequences {xk} ⊆ DF

with xk −→ x. This legitimates the following definition.

Definition 2.6 Let O ⊆ R
n be open and F : O −→ R

m be locally Lipschitz
continuous in x∗ ∈ O and DF := {x ∈ O : F is differentiable in x} the set of
differentiable points of F . Then the set

∂BF (x∗) :=
{
V ∈ R

m×n : ∃ {xk} ⊆ DF with xk → x∗ and F ′(xk)→ V
}

is called the B-subdifferential of F in x∗, and its convex hull

∂F (x∗) := conv ∂BF (x∗)

is the generalized Jacobian of F in x∗. If m = 1, the set ∂F (x∗) is called the
generalized gradient of F in x∗.

For sake of clarity we give some elementary examples for the B-subdifferential
and generalized Jacobians.
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Examples 2.7 • The standard example is F (x) := |x|, which is locally Lip-
schitz continuous but not differentiable in x = 0. One can easily compute

∂BF (0) = {−1, +1} and ∂F (0) = [−1, +1].

• Another simple example is F (x) := max{0, x}. This function is again
locally Lipschitz continuous and not differentiable in x = 0. Here we get

∂BF (0) = {0, +1} and ∂F (0) = [0, +1].

• A multidimensional standard example is the Euclidian norm F (x) := ‖x‖2.
This function is Lipschitz continuous but not differentiable in x = 0. For
all x 6= 0 we obtain the Jacobian

F ′(x) =
x

‖x‖ ,

which has a Euclidean norm of one. We therefore get

∂BF (0) ⊆ {x ∈ R
n : ‖x‖2 = 1} .

To prove the opposite inclusion we consider an arbitrary x ∈ R
n with

‖x‖2 = 1 and define a sequence {xk} by xk := x/k. Then xk → x, F is
differentiable in all xk and F ′(xk)→ x. This yields x ∈ ∂BF (0) and

∂BF (0) = {x ∈ R
n : ‖x‖2 = 1} , ∂F (0) = {x ∈ R

n : ‖x‖2 ≤ 1} .

• Let F : R
n −→ R

m be continuously differentiable. Then we obtain from
Definition 2.6

∂F (x) = ∂BF (x) = {F ′(x)}
for all x ∈ R

n. Hence both the generalized Jacobian in the sense of Clarke
and the B-subdifferential are only consisting of the Jacobian of F in x.

• If F : R
n −→ R

m is differentiable but not continuously differentiable the
last conclusion does not hold. To see this we consider the function

F (x) :=

{
x2 sin( 1

x
), if x 6= 0,

0, if x = 0

with F ′(0) = 0, whereas a simple calculation shows ∂F (0) = [−1, +1].

For our further considerations we need some important properties of the B-
subdifferential and the generalized Jacobian, which are presented in the next
propositions. The first one is an existence result.
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Proposition 2.8 Let O ⊆ R
n be open and F : O −→ R

m be locally Lipschitz
continuous and x ∈ O be given. Then the following holds:

(a) The B-subdifferential ∂BF (x) is a nonempty and compact set.

(b) The generalized Jacobian ∂F (x) is a nonempty, convex and compact set.

The last proposition ensures that the generalized Jacobian of a function contains
at least one element. But the computation can be difficult. Sometimes it is easier
to have a look at the generalized gradients of the component functions of F . In
the smooth case the rows of the Jacobian are the gradients of the component
functions. For the generalized Jacobian the following inclusion holds.

Proposition 2.9 Let O ⊆ R
n be open and f1, . . . , fm : O −→ R be locally

Lipschitz continuous. Then F : R
n −→ R

m with F (x) = (f1(x), . . . , fm(x))T is
also locally Lipschitz continuous and

∂F (x) ⊆
{
(g1, . . . , gm)T : g1 ∈ ∂f1(x), . . . , gm ∈ ∂fm(x)

}

holds.

This proposition, c.f. [10, Theorem 2.6.2.e], shows that the generalized Jacobian
of a function is included in a set represented by the generalized gradients of its
component functions. In order to apply this later we need some computational
rules for generalized gradients which are quite similar to the smooth case. We
start with a chain rule.

Proposition 2.10 Let O ⊆ R
n be open and F : O −→ R

m locally Lipschitz
continuous. Let P ⊆ R

m be an open superset of F (O), g : P −→ R be locally
Lipschitz continuous and f := g ◦F . Then f is locally Lipschitz continuous and

∂f(x) ⊆ conv ∂g(F (x))∂F (x) = conv {vH : v ∈ ∂g(F (x)), H ∈ ∂F (x)}

holds.

By use of the above chain rule, see also [10, Theorem 2.3.9, Theorem 2.6.6], it
is possible to derive the subsequent rules for sums, products and quotients of
locally Lipschitz continuous functions.

Proposition 2.11 Let O ⊆ R
n be open and f1, . . . , fm : O −→ R be locally

Lipschitz continuous. Then the following holds:

(a) The weighted sum
m∑

i=1

αifi
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is locally Lipschitz continuous for all α1, . . . , αm ∈ R and

∂

(
m∑

i=1

αifi

)

(x) ⊆
m∑

i=1

αi∂fi(x)

holds for all α1, . . . , αm ∈ R. Equality of the sets holds, if all fi with at
most one exception are continuously differentiable.

(b) The product f1f2 is locally Lipschitz continuous and

∂(f1f2)(x) ⊆ f2(x)∂f1(x) + f1(x)∂f2(x).

holds.

(c) The quotient f1

f2
is locally Lipschitz continuous and

∂

(
f1

f2

)

(x) ⊆ f2(x)∂f1(x)− f1(x)∂f2(x)

f2(x)2

holds, if f2(x) 6= 0.

The results above can be found in [10, Propositions 2.3.3, 2.3.13, 2.13.14 ].

In the last part of Examples 2.7 we have seen that for continuously differen-
tiable functions the generalized gradient reduces to a singleton. Conversely the
following weaker assertion holds, see [10, Proposition 2.2.4].

Proposition 2.12 Let O ⊆ R
n be open and f : O −→ R be locally Lipschitz

continuous in a neighbourhood of x ∈ O. If the (nonempty) generalized gradi-
ent reduces to a singleton, i.e. ∂f(x) = {g} with a vector g ∈ R

n, then f is
differentiable in x with gradient ∇f(x) = g.

With this result we close our consideration of B-subdifferential and generalized
Jacobians. For more information concerning these topics we refer to [10].

2.2.2 Semismooth Functions

The crucial part of the next two chapters in this work is the application of
Newton-type methods to nonlinear systems of equations. The considered func-
tions are not continuously differentiable, which is a very important assumption
for local quadratic convergence of the classical Newton-method. Fortunately
local quadratic convergence can be extended to a more general class of objective
functions, that are called semismooth. In this section we define semismooth-
ness and present some useful properties of semismooth functions. An important
assumption for semismoothness is B-differentiability, so we define this first.
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Definition 2.13 Let O ⊆ R
n be open and F : O −→ R

m be given. Then F is
called

(a) directionally differentiable in x ∈ O, if the limit

F ′(x; d) := lim
t→0+

F (x + td)− F (x)

t

exists for all d ∈ R
n.

(b) B-differentiable in x ∈ O, if G is directionally differentiable in x and locally
Lipschitz continuous near x.

Now we are able to define (strong) semismoothness of a function.

Definition 2.14 Let O ⊆ R
n be open and F : O −→ R

m B-differentiable.
Then F is called

(a) semismooth in x ∈ O, if

‖Hkd
k − F ′(x; dk)‖ = o(‖dk‖)

holds for all dk → 0 and Hk ∈ ∂F (x + dk).

(b) strongly semismooth in x ∈ O, if

‖Hkd
k − F ′(x; dk)‖ = O(‖dk‖2)

holds for all dk → 0 and Hk ∈ ∂F (x + dk).

Note that several other, but equivalent definitions of (strong) semismoothness
are known, an overview and examples are given in [29, Definition 7.4.2, Theorem
7.4.3]. Standard examples for semismooth functions are:

Examples 2.15 • The minimum function

F (x1, x2) := min{x1, x2}

is strongly semismooth on R
2, see also [29, Proposition 7.4.7] for piecewise

affine linear functions.

• The Fischer-Burmeister-function

F (x1, x2) :=
√

x2
1 + x2

2 − x1 − x2

is strongly semismooth on R
2, see [29, p. 685].

• The norm function F (x) := ‖x‖p is strongly semismooth on R
n for every

p ∈ N and p =∞, c.f. [29, Proposition 7.4.8].
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The examples above are quite important for our further considerations, because
the minimum and the Fischer-Burmeister functions are so called NCP-functions
that are used to transform a nonlinear complementarity problem into a nonlinear
system of equations. This will be a topic later.

In view of the defining expressions it seems to be quite natural that a smooth
function is also semismooth. This and other sufficient conditions for (strong)
semismoothness are expressed in the next proposition.

Proposition 2.16 Let O ⊆ R
n open, x ∈ O and f : O −→ R be given.

(a) If f is continuously differentiable in a neighborhood of x, then f is semis-
mooth in x.

(b) If f is continuously differentiable and ∇f is locally Lipschitz continuous
in a neighborhood of x, then f is strongly semismooth in x.

(c) If f is convex in a neighborhood of x, then f is semismooth in x.

This can be found in [28, Theorem 7.4.5]. Moreover a function F : O −→ R
m is

(strongly) semismooth if and only if all component functions Fi : O −→ R are
(strongly) semismooth. This can be seen by exploiting the equivalence of ‖ · ‖2
and ‖ · ‖∞ in Definition 2.14. Therefore parts (a) and (b) of the last proposition
also hold for vector valued functions.

Similar to the last section we need some computational rules for semismooth
functions as well. Again we start with a chain rule from [29, Proposition 7.4.4].

Proposition 2.17 Let O ⊆ R
n be open and F : O −→ R

m B-differentiable.
Let P ⊆ R

m be an open superset of F (O), G : P −→ R
p be B-differentiable and

H := G ◦ F . Then the following holds:

(a) If F is semismooth in x ∈ O and G is semismooth in F (x), then H is
semismooth in x.

(b) If F is strongly semismooth in x ∈ O and G is strongly semismooth in
F (x), then H is strongly semismooth in x.

An application of the chain rule proves (strong) semismoothness of weighted
sums, products and quotients of (strongly) semismooth functions.

Proposition 2.18 Let O ⊆ R
n be open and f1, f2 : O −→ R be (strongly)

semismooth in x ∈ O. Then it holds, that:

(a) The weighted sum α1f1 + α2f2 is (strongly) semismooth in x for all con-
stants α1, α2 ∈ R.
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(b) The product f1 · f2 is (strongly) semismooth in x.

(c) The quotient f1

f2
is (strongly) semismooth in x, if f2(x) 6= 0.

As already mentioned semismooth functions share a property with continuously
differentiable functions that is crucial for fast local convergence of our Newton-
type methods. This property is described in the next proposition and can also
be found in [29, Theorem 7.4.3.c].

Proposition 2.19 Let O ⊆ R
n be open and F : O −→ R

m and x ∈ R
n be

given.

(a) If F is semismooth in x, then

‖F (x + d)− F (x)−Hd‖ = o(‖d‖)

holds for all d→ 0 and H ∈ ∂F (x + d).

(b) If F is strongly semismooth in x, then

‖F (x + d)− F (x)−Hd‖ = O(‖d‖2)

holds for all d→ 0 and H ∈ ∂F (x + d).

With his result we close the collection of theoretical background material and
consider now nonlinear programming problems with box constraints and apply
a new affine scaling method to them.





Chapter 3

Nonlinear Minimization
Problems

In this chapter we consider the box constrained nonlinear optimization problem

minimize f(x) subject to x ∈ Ω, (P)

where the feasible set Ω is given by

Ω := {x ∈ R
n : li ≤ xi ≤ ui ∀i = 1, . . . , n}

and li and ui denote the lower and upper bounds, and f : O −→ R is the
objective function defined on an open set O ⊆ R

n containing the feasible set
Ω. Throughout this chapter, we assume that li < ui for all i = 1, . . . , n and
that f is twice continuously differentiable with a locally Lipschitz continuous
Hessian on the set O. Moreover we assume that all bounds li and ui are finite,
but this is mainly a notational assumption since it simplifies many formulas in
our analysis like the definitions of the scaling matrices that will be introduced
later. However it is not difficult to see that all results remain true with a suitable
redefinition of these scaling matrices, if either li or ui or both are infinite for
some indices i ∈ {1, . . . , n}. Before we propose our affine-scaling method for
box constrained nonlinear optimization problems, we consider some other known
numerical methods for (P).

3.1 Numerical Methods

In the following subsections we describe several of the most important interior
point methods for the bound constrained optimization problem (P). The em-
phasis lies on affine-scaling Newton-type methods since this will be the basic of
our further considerations. For sake of consistency we adopt the notation used
in the corresponding papers if necessary.
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3.1.1 The Coleman-Li Reflective Newton Method

Affine-scaling methods were used only for linear programming at first. The basic
idea is the following: Let an iterate xk ∈ int Ω be given and consider the steepest
descent direction pk := −∇f(xk). In order to prevent this direction from yielding
onto the boundary it is multiplied with a scaling matrix D(xk) ∈ R

n×n, such
that the scaled steepest descent direction

pk := −D(xk)∇f(xk)

is angled away from the nearest boundary. Coleman and Li extend this basic idea
in [11] to develop a method for bound constrained optimization problems. Since
it is possible to prove at most linear convergence for methods using the scaled
steepest descent direction, Coleman and Li consider Newton-type directions as
well. The basis of their considerations is the reformulation of the first order
necessary optimality conditions in the form of a bound constrained nonlinear
system of equations

G(x) := D(x)∇f(x) = 0, x ∈ Ω (3.1)

using the Coleman-Li scaling

D(x) = diag
(
d1(x), . . . , dn(x)

)

with diagonal elements

di(x) := dCL
i (x) :=

{
xi − li, if [∇f(x)]i ≥ 0,
ui − xi, if [∇f(x)]i < 0,

(3.2)

for i = 1, . . . , n. This reformulation was later extended by Heinkenschloss et al.
in [37] for more general types of scaling matrices, see also Lemma 2.2. In [11] a
slightly different notation with squared scaling matrices D(x)2 in (3.1) is used.
We prefer the given one, which is also used in [19, 37, 42, 43] and omit the case
of unbounded components.

Coleman and Li then obtain a Newton-type search direction from the nonlinear
system (3.1). Since G is not differentiable if di(x) = 0 or [∇f(x)]i = 0 holds
for an i ∈ 1, . . . , n they use a scaled modification of the (non existing) Jacobian
B̂(x) ∈ R

n×n and solve the linear system

B̂(xk)D(xk)−1/2p = −D(xk)1/2G(xk)

to get a Newton-type search direction pk
N ∈ R

n. By use of this direction and a
stepsize strategy of the form

xk+1 := xk + tkp
k
N
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with an tk > 0 such that {xk} ⊆ int Ω it is possible to prove local quadratic
convergence of {xk}, if tk → 1 sufficiently fast.

Moreover Coleman and Li introduce a new unconventional line search strategy.
In the classical way a given descent direction is truncated to maintain strict
feasibility, which can prevent that a full step is taken even near a solution.
To overcome this problem Coleman and Li modify the search direction in the
following way. If the direction yields outside the boundary of Ω it is reflected
from the boundary back into the interior of the feasible set. This can be done
several times. Then a steplength tk > 0 along this piecewise linear reflected path
pk(t) is computed. To get strictly feasible iterates it is necessary to ensure that
no breakpoint, which is a point where the path is reflected from the boundary,
is accepted as next iterate. A model algorithm can be described the following
form.

Algorithm 3.1 (model interior-point reflective method)

(S.0) Choose x0 ∈ int Ω and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Determine a descent direction pk ∈ R
n for f in xk.

(S.3) Determine the piecewise linear reflective path pk(t).

(S.4) Determine a steplength tk > 0 by an approximate piecewise line minimiza-
tion of f(xk +pk(t)) with respect to t such that pk(tk) does not correspond
to a breakpoint.

(S.5) Set xk+1 := xk + pk(tk).

(S.6) Set k ← k + 1, and go to (S.1).

The termination criterion in the model algorithm above is left open, but later
we will use ‖G(xk)‖ < ε with a small ε > 0. In steps (S.2) and (S.3) of the
algorithm are still two open questions: The choice of a descent direction and the
computation of a suitable steplength. To compute a steplength Coleman and Li
decide to use the modified Armijo and Goldstein conditions

f(xk + tkp
k) < f(xk) + σl

[
tk∇f(xk)T pk +

1

2
t2k min{(pk)T∇2f(xk)pk, 0}

]
(3.3)

and

f(xk + tkp
k) > f(xk) + σu

[
tk∇f(xk)T pk +

1

2
t2k min{(pk)T∇2f(xk)pk, 0}

]
(3.4)
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with constants 0 < σl < σu < 1 and a given descent direction pk ∈ R
n for f

in xk. They prove that in each iteration an interval (t
(k)
l , t

(k)
u ) containing only

a finite number of breakpoints exists, such that conditions (3.3) and (3.4) are

satisfied for all stepsizes t ∈ (t
(k)
l , t

(k)
u ) and recommend to use a simple bisection

strategy for numerical computations. In the algorithm presented in [11] the con-
dition (3.4) can be replaced with tk > tmin > 0 with a constant tmin > 0 in each
iteration, such that global convergence still holds.

The more complicated part is the computation of a descent direction that en-
sures global and fast local convergence. Two conditions are introduced that are
essential for global convergence:

• The sequence of search directions {pk} is called constrained compatible, if
{D(xk)−1pk} is bounded.

• The sequence of search directions {pk} satisfies the consistency condition,
if ∇f(xk)T pk → 0 implies ‖D(xk)1/2∇f(xk)‖ → 0.

Coleman and Li consider several directions including scaled steepest descent,
some scaled Newton-type directions and solutions of subspace trust-region ap-
proaches that satisfy these two conditions and obtain the following global con-
vergence result [11, Theorem 8]:

Theorem 3.2 Let {xk} be generated by the interior-reflective path algorithm 3.1
with {pk} satisfying consistency and constrained compatibility conditions. Then

lim
k→∞
‖D(xk)∇f(xk)‖ = 0.

In order to obtain a local quadratic rate of convergence the search direction pk

has to be restricted further. Hence Coleman and Li develop a trust-region-type
search direction that has two crucial properties. At first it satisfies the con-
strained compatibility and consistency conditions such that Theorem 3.2 yields
global convergence of Algorithm 3.1. At second the method turns into a local
Newton-type method with the direction pk

N , for which local quadratic conver-
gence can be proved. We want to avoid the rather technical details of the trust-
region type search direction and describe only the most relevant parts. They
consider another extended approximation M̂k ≈ B̂(xk) of the scaled Jacobian
of G in xk which is depending on a parameter τε > 0 to handle with possible
degenerate indices. If M̂k is positive definite the Newton-type direction

pk
N := −D(xk)1/2M̂(xk)−1D(xk)1/2∇f(xk) (3.5)

is used, otherwise sk is obtained by solving the trust-region subproblem

minimize mk(p) := ∇f(xk)T p +
1

2
pT D(xk)−1/2M̂kD(xk)−1/2p (3.6)

subject to ‖D(xk)−1/2p‖ ≤ ∆k, p ∈ Sk
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where ∆k > 0 is the trust-region radius and Sk a suitable subspace of R
n. A

search direction computed in this way satisfies both consistency and constrained
compatibility conditions and therefore global convergence holds. If this subspace
is Sk = R

n at each iteration, the following global and local convergence result
holds for the interior point reflective method with search direction as described
above, see also [11, Theorem 15, Corollary 16].

Theorem 3.3 Let (P) be given and let {xk} be generated by Algorithm 3.1 with
a search direction pk given by (3.5) and (3.6) with Sk = R

n and a steplength
strategy satisfying (3.3) and (3.4). Then the following holds:

(a) Every limit point of {xk} satisfies the first order necessary condition.

(b) If τε is sufficiently small and strict complementarity holds for a limit point
x∗ satisfying SSOSC then {xk} converges to x∗ and the convergence rate
is quadratic.

Theorem 3.3 shows the main advantages and a disadvantage of the Coleman-Li
reflective affine-scaling method: It possesses strong local and global convergence
results, but the strict complementarity assumption is needed for fast local con-
vergence.

In fact Coleman and Li prove additional results concerning other subspaces for
the trust-region strategy to compute descent directions. But our main interest
lies in the local convergence properties so we do not consider these topics and
proceed with another affine-scaling method presented by Coleman and Li as
well.

3.1.2 The Coleman-Li Trust-Region Methods

In [12] Coleman and Li exploit again their reformulation of the first order neces-
sary condition to develop an affine-scaling method for bound constrained opti-
mization problems. The main difference to [11] described in the last subsection
is the globalization technique. In [11] a reflective line search is established while
in [12] two ellipsoidal trust-region globalizations are developed. Both methods
use the Coleman-Li scaling from (3.2) as well. For sake of consistency we use
the notation of the scaling matrices from [19, 37, 42, 43] again. The first method
is called double-trust-region method and is of rather theoretical interest. In con-
trast to standard trust-region methods in unconstrained optimization the trust
region size is not only controlled by the quality of the used model function, but
also by feasibility requirements. The used quadratic model can be described in
the following way. Let an iterate xk ∈ int Ω and a symmetric approximation
Bk ∈ R

n×n of ∇2f(xk) be given. Define

Mk := Bk + Ck with Ck := D(xk)−1/2diag(∇f(xk))JD
k D(xk)−1/2,
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where JD
k ∈ R

n×n is a modification of the in general not existing Jacobian of
D(·) in xk. Then the quadratic model is given by

mk(p) := ∇f(xk)T p +
1

2
pT Mkp (3.7)

and the subproblem for the double-trust-region method is

minimize mk(p) subject to ‖D(xk)−1/2p‖ ≤ ∆k (3.8)

with the trust-region radius ∆k > 0. The double-trust-region method uses an
exact solution pk

ex ∈ R
n of (3.8) for the computation of a search direction.

To maintain strict feasibility pk
ex has to be truncated with a suitable stepsize

tk ∈ (0, 1] that additionally minimizes the value of the model function mk along
the direction pk

ex within the trust-region. The search direction is then given
by pk := tkp

k
ex. This direction is accepted in dependence of two controlling

quantities: The first one measures the quality of the quadratic model as an
approximation to the objective function f and is given by

rf
k :=

f(xk + pk)− f(xk) + 1
2
(pk)T Ckp

k

mk(pk)
. (3.9)

The second quantity is defined to ensure a sufficient decrease of the model func-
tion in comparison to a truncated scaled steepest descent direction

pk
CP := −τCP D(xk)∇f(xk)

with a suitable steplength τCP > 0 later called Cauchy point. If

rc
k :=

mk(p
k)

mk(pk
CP )

> β (3.10)

holds with a constant β > 0 this decreases is achieved. Moreover a condition
later called fraction of Cauchy decrease condition that is important for global
convergence is satisfied by the search direction when (3.10) holds. If both con-
trolling quantities rf

k and rc
k are sufficiently large, the iteration is called success-

ful, the direction pk is accepted and the next iterate is given by xk+1 := xk + pk.
The size of the trust-region ∆k is also controlled by rf

k and rc
k. If one of these

is too small, it is assumed that the reason for this is that one has trusted the
model function on a too large region around xk. Consequently the trust-region
radius is decreased. Otherwise we can trust the model on a larger region and
∆k is increased. The double-trust-region method has then the following form.

Algorithm 3.4 (double trust-region affine-scaling method)

(S.0) Choose x0 ∈ int Ω, constants 0 < ρ1, β < ρ2 < 1, 0 < ω1 < 1 < ω2 and set
k := 0.
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(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Compute a solution pk
ex ∈ R

n of (3.8).

(S.3) Compute pk := tkp
k
ex, rf

k from (3.9) and rc
k from (3.10).

(S.4) If rf
k > ρ1 and rc

k > β hold, we call the iteration ”successful” and set
xk+1 := xk + pk, otherwise we set xk+1 := xk.

(S.5) If rf
k ≤ ρ1 or rc

k ≤ β, then choose ∆k+1 ∈ (0, ω1∆k].

If rf
k ∈ (ρ1, ρ2), then choose ∆k+1 ∈ [ω1∆k, ∆k].

If rf
k ≥ ρ2, then

if rc
k ≥ ρ2, choose ∆k+1 ∈ [∆k, ω2∆k],

if rc
k ∈ (β, ρ2), choose ∆k+1 ∈ [ω1∆k, ∆k],

if rc
k < β, choose ∆k+1 ∈ (0, ω1∆k].

(S.6) Set k ← k + 1, and go to (S.1).

For this algorithm global and local convergence results are proved in [12], but
strict complementarity of a solution has to be assumed always. For a global
convergence theorem we need the following additional assumptions.

• The objective function f is twice continuously differentiable and the level
set L0 := {x ∈ Ω : f(x) ≤ f(x0)} is compact.

• The search direction pk satisfies the fraction of Cauchy decrease condition

mk(p
k) < βmk(p

k
CP ), xk + pk ∈ int Ω, ‖D(xk)−1/2pk‖ ≤ β0∆k (3.11)

with a constant β0 > 0 and the Cauchy point pk
CP .

• The quadratic model uses the exact Hessian of f , i.e. Bk = ∇2f(xk) for
all k.

• The search direction pk satisfies

mk(p
k) < βqmk(τ

∗pk), xk + pk ∈ int Ω, ‖D(xk)−1/2pk‖ ≤ βq
0∆k

with constants βq
0, β

q > 0, where mk(τ
∗pk) denotes the minimum value

of the model function on the line τpk with respect to feasibility and the
trust-region.

Under this assumptions the following global convergence theorem holds.

Theorem 3.5 Let (P) be given and the assumptions above be satisfied. Let
{xk} be generated by the double-trust-region affine-scaling Algorithm 3.4 and all
solutions to (P) satisfy the strict complementarity assumption. Then

lim
k→∞
‖D(xk)1/2∇f(xk)‖ = 0.



28 Chapter 3. Nonlinear Minimization Problems

In order to obtain fast local convergence a Newton-type direction similar to the
reflective method has to be accepted in step (S.2). Let pk

N ∈ R
n be a solution

of the Newton-type linear system

M̂kD(xk)−1/2p = −D(xk)1/2∇f(xk)

with M̂k := D(xk)1/2MkD(xk)1/2. For fast local convergence we have to assume
that a truncated direction tkp

k
N is accepted in step (S.2) of Algorithm 3.4 when-

ever ‖D(xk)−1/2pk
N‖ < ∆k and tkp

k
N satisfies (3.11) with a constant β0 ∈ (0, 1).

Then the following local convergence Theorem [12, Theorem 3.11] holds.

Theorem 3.6 Let (P) be given and the assumptions of Theorem 3.5 be satisfied.
Let {xk} be generated by the double-trust-region affine-scaling Algorithm 3.4 and
let x∗ ∈ Ω be a limit point of {xk} with regular M̂(x∗) that satisfies the strict
complementarity assumption. If pk

N is accepted as described above, then {xk}
converges to x∗ quadratically.

For Algorithm 3.4 global and fast local convergence are proved in [12], but
strict complementarity of a solution has to be assumed always. Moreover an
exact solution of the subproblem (3.8) has to be computed in each iteration.
Hence Coleman and Li propose a more practical trust-region method based on
the double-trust-region algorithm. The main difference lies in the choice of
the search direction and the update of the trust-region radius. Instead of a
truncated exact solution of (3.8) a direction satisfying the fraction of Cauchy
decrease condition (3.11), for example a truncated negative scaled gradient, is
used. This also leads to a sufficient decrease of the quadratic model and is
described as follows.

Algorithm 3.7 (practical trust-region affine-scaling method)

(S.0) Choose x0 ∈ int Ω, constants 0 < ρ1, β < ρ2 < 1, 0 < ω1 < 1 < ω2, Λl > 0
and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Compute a direction pk ∈ R
n that satisfies (3.11).

(S.3) Compute rf
k from (3.9).

(S.4) If rf
k > ρ1 we call the iteration ”successful” and set xk+1 := xk + pk,

otherwise we set xk+1 := xk.

(S.5) If rf
k ≤ ρ1, then choose ∆k+1 ∈ (0, ω1∆k].

If rf
k ∈ (ρ1, ρ2), then choose ∆k+1 ∈ [ω1∆k, ∆k].

If rf
k ≥ ρ2, then

if ∆k > Λl, choose ∆k+1 ∈ [ω1∆k, ∆k] or ∆k+1 ∈ [∆k, ω2∆k],
if ∆k ≤ Λl, choose ∆k+1 ∈ [∆k, ω2∆k].
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(S.6) Set k ← k + 1, and go to (S.1).

For the practical affine-scaling Algorithm 3.4, Theorems 3.5 and 3.6 hold without
assuming strict complementarity of the solutions, which is a big advantage of
this method. However Heinkenschloss et al. observe in [37] that a violation
of the strict complementarity assumption severely slows down the convergence
speed. A theoretical reason is given later in section 3.2.

3.1.3 The Dennis-Vicente Trust-Region Method

The affine-scaling interior point trust-region method proposed by Dennis and
Vicente in [19] is similar to the practical trust-region method of Coleman and
Li in [12] and uses the same scaling matrix (3.2). The main difference lies in the
computation of the search direction. Dennis and Vicente consider only global
convergence properties of their method and therefore do not regard Newton-type
directions to obtain fast local convergence. Hence the reformulation of the first
order necessary optimality conditions in Lemma 2.2, used by the other affine-
scaling methods to obtain a search direction, is here of minor importance. The
affine-scaling approach of Dennis and Vicente is thus not motivated by Newton’s
method applied to the function G in (3.1) but by the property that the scaled
steepest descent direction −D(xk)∇f(xk) is angled away from the boundary.
However (3.1) delivers a useful termination criterion. To obtain a direction we
consider the following trust-region subproblem

minimize mk(p) subject to ‖S−1
k p‖ ≤ ∆k, σk(l − xk) ≤ p ≤ σk(u− xk)

(3.12)
with the model function

mk(p) := f(xk) +∇f(xk)T p +
1

2
pT Bkp,

Bk ∈ R
n×n with Bk ≈ ∇2f(xk), σk ∈ (0, σ] with a constant σ ∈ (0, 1), a regular

matrix Sk ∈ R
n×n and the trust-region radius ∆k > 0. The scaling happens here

implicitly by the choice of the matrix Sk. Dennis and Vicente consider the cases

Sk := I and Sk := D(xk).

The latter choice is similar to the trust-region methods of Coleman and Li, which
correspond to Sk := D(xk)1/2. An exact computation of a solution of (3.12)
can be avoided if the search direction satisfies a fraction of Cauchy decrease
condition. Dennis and Vicente define the Cauchy point pk

CP as the solution of
the one dimensional problem

minimize mk(p(τ))

subject to p(τ) = −τD(xk)2q∇f(xk), τ > 0

‖S−1
k p(τ)‖ ≤ ∆k, σk(l − xk) ≤ p(τ) ≤ σk(u− xk),
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with an q ≥ 1
2
. Their fraction of Cauchy decrease condition is then given by

mk(0)−mk(p
k) ≥ β(mk(0)−mk(p

k
CP )), (3.13)

with a constant β > 0 and the feasibility requirements

‖S−1
k pk‖ ≤ ∆k, σk(l − xk) ≤ pk ≤ σk(u− xk). (3.14)

With a direction satisfying these conditions (for example the Cauchy point pk
CP

itself) Dennis and Vicente develop a trust-region algorithm for (P). Acceptance
of the search direction and the size of the trust-region radius are controlled by

rk :=
f(xk)− f(xk + pk)

mk(0)−mk(pk)
, (3.15)

which again can be seen as a measure of the quality of the model function. The
resulting method has the following form:

Algorithm 3.8 (Dennis-Vicente trust-region affine-scaling method)

(S.0) Choose x0 ∈ int Ω, constants 0 < σ, ω, ρ < 1, ε > 0, q ≥ 1
2

and set k := 0.

(S.1) If ‖D(xk)q∇f(xk)‖ ≤ ε: STOP.

(S.2) Compute a direction pk ∈ R
n that satisfies (3.13) and (3.14).

(S.3) Compute rk given by (3.15).

(S.4) If rk > ρ, we call the iteration ”successful” and set xk+1 := xk + pk and
∆k+1 ≥ ∆k,
otherwise we set xk+1 := xk and ∆k+1 := ω‖pk‖.

(S.5) Set k ← k + 1, and go to (S.1).

The global convergence properties of this algorithm are described in the next
Theorem.

Theorem 3.9 Let (P) be given with f being continuously differentiable and
bounded from below on the level set L0 := {x ∈ Ω : f(x) ≤ f(x0)}. Let
{xk} be generated by the trust-region affine-scaling algorithm 3.8. If {Bk} and
{S−1

k D(xk)q} are uniformly bounded and L0 is compact, then

lim
k→∞
‖D(xk)q∇f(xk)‖ = 0.

If Sk = I or Sk = D(xk)q holds, then {S−1
k D(xk)q} is bounded if L0 is compact.

Hence the assumptions of this result are very mild compared with Theorem 3.5.

The main advantage of the affine-scaling methods of Dennis and Vicente is that
global convergence is guaranteed by the fraction of Cauchy decrease condition
(3.13) and (3.14) without assuming strict complementarity. Unfortunately steep-
est descent directions and Cauchy points do not provide fast local convergence,
which is the main disadvantage of this method.
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3.1.4 The Heinkenschloss-Ulbrich-Ulbrich Method

Heinkenschloss, Ulbrich and Ulbrich present in [37] a local affine-scaling interior
point Newton method, which can be seen as an extension of the Coleman-Li
methods from [11, 12]. Origin of their considerations are the local convergence
properties of these Newton-type methods. A theoretical and numerical analysis
of the bound constrained problem

minimize f(x) := −1

2
x2

1 +
1

2
x2

2 − x2
1x2 + x1 subject to 0 ≤ x1, x2 ≤ 1

shows that affine-scaling Newton methods using the slightly modified Coleman-
Li scaling with

di(x) := dCL
i (x) :=







xi − li, if [∇f(x)]i > 0,
ui − xi, if [∇f(x)]i < 0,
min{xi − li, ui − xi}, if [∇f(x)]i = 0,

(3.16)

for all i = 1, . . . , n do not converge quadratically to the solution x∗ = (0, 0)T

that satisfies the strong second order sufficiency condition but not strict comple-
mentarity. To overcome this disadvantage Heinkenschloss et al. introduce two
modifications of the local Coleman-Li methods: A change of the scaling matrix
and a projection strategy to maintain strict feasibility instead of truncating the
direction.

Since a violation of strict complementarity slows down the local convergence
speed Heinkenschloss et al. decide to estimate the indices for which strict com-
plementarity does not hold and switch off the scaling for these indices. Their
scaling matrix has the following form

D(x) = diag
(
d1(x), . . . , dn(x)

)

with

di(x) := dHUU
i (x) :=







dCL
i (x), if |[∇f(x)]i| < min

{
xi − li, ui − xi

}q

or min
{
xi − li, ui − xi

}
< |[∇f(x)]i|q,

1, otherwise,
(3.17)

for i = 1, . . . , n with a constant q > 1. The requirements (2.3) are satisfied
for this scaling. Hence the reformulation from Lemma 2.2 of the optimality
conditions in the form of the nonlinear system

G(x) := D(x)∇f(x) = 0, x ∈ Ω

is possible. Exploiting this reformulation again, a Newton-type search direction
is obtained from the linear system

M(xk)p = −G(xk), (3.18)
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where M(xk) is an approximation to the possibly not existing Jacobian of G in
xk that is given by

M(x) := D(x)∇2f(x) + S(x)

with a diagonal matrix S(x) := diag
(
s1(x), . . . , sn(x)

)
defined by

si(x) := sHUU
i (x) :=







|[∇f(x)]i|, if |[∇f(x)]i| < min{xi − li, ui − xi}q
or min{xi − li, ui − xi} < |[∇f(x)]i|q,

0, else,
(3.19)

for i = 1, . . . , n. Since the sequence {M−1(xk)} is not bounded, which is shown
by an example in [37], a second scaling of (3.18) with the matrix

W (x) := diag
(
w1(x), . . . , wn(x)

)

with diagonal elements

wi(x) :=
1

di(x) + si(x)
, (3.20)

for i = 1, . . . , n is necessary. The product H(x) := W (x)M(x) is shown to
be nonsingular with bounded inverse in a neighborhood of a solution of (P)
satisfying SSOSC. Then the search direction pk is obtained by solving the linear
system

H(xk)p = −W (xk)G(xk) (3.21)

and a local algorithm based on this direction is given by:

Algorithm 3.10 (Heinkenschloss et al. affine-scaling method)

(S.0) Choose x0 ∈ int(Ω), σ ∈ (0, 1), and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Compute H(xk) := W (xk)D(xk)∇2f(xk)+W (xk)S(xk) with D(xk), S(xk)
and W (xk) being given by (3.17), (3.19), and (3.20) respectively.

(S.3) Let pk ∈ R
n be a solution of the linear system H(xk)p = −W (xk)G(xk).

(S.4) Compute σk := max
{
σ, 1− ‖PΩ(xk + pk)− xk‖

}
.

(S.5) Set xk+1 := xk + σk

(
PΩ(xk + pk)− xk

)
.

(S.6) Set k ← k + 1, and go to (S.1).

Strict feasibility of the iterates is ensured by a projection strategy using the
projection mapping

PΩ(x) = max{l, min{u, x}}
from R

n on the feasible set Ω. The projected direction is then truncated by
σk, which converges fast enough to 1 that the following local convergence result
holds.
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Theorem 3.11 Let (P) be given with f twice continuously differentiable and
∇2f locally Lipschitz continuous. Let {xk} be generated by Algorithm 3.10 and
let x∗ ∈ Ω be a solution of (P) satisfying SSOSC. Then {xk} converges locally
with order min{q, 2} to x∗, if x0 ∈ intΩ is sufficiently close to x∗.

With a choice q ≥ 2 we obtain local quadratic convergence for Algorithm 3.10.
Theorem 3.11 even holds if the linear system in step (S.3) is solved inexactly
with some restriction on the error term, see [37] for more details.

The main advantage of this method is fast local convergence without assuming
strict complementarity of the solution. Disadvantages are that the set of degen-
erate indices can be underestimated in (3.17) even close to a solution, which will
be shown by some numerical examples later, and that global convergence results
are missing.

With this conclusion we stop the consideration of the four affine-scaling meth-
ods for bound constrained optimization problems that are of huge importance
for our further considerations. Of course other numerical methods with strong
theoretical and practical convergence properties are known, but we restrict our
detailed review to finite dimensional affine-scaling methods and give only few
information about some other interesting methods.

• In [7] Bertsekas proposes globally convergent scaled projected gradient and
Newton methods. The Newton-type method converges locally quadrati-
cally under a strict complementarity assumption.

• In [8] the limited memory BFGS method from unconstrained optimization
is extended by Byrd et al. to the case of bound constraints and is consid-
ered from the numerical point of view. The software package LBFGS-B
using this method is described in [70].

• Conn, Gould and Toint develop a trust-region method for bound con-
strained optimization problems in [13] that uses a generalized Cauchy point
to obtain global convergence. Under the strict complementarity assump-
tion this method turns into the unconstrained method after a finite number
of iterations, which ensure fast local convergence. Numerical experiences
are presented in [14].

• Globally convergent extensions of the last method are proposed by Fried-
lander at al. in [34] and by Lescrenier in [47], where the latter one is
additionally locally quadratically convergent without a strict complemen-
tarity assumption.

• In [26] Facchinei et al. present a non-monotone active set Newton algo-
rithm with stabilization technique, which converges globally and locally
quadratically without assuming strict complementarity.
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• A different non-monotone truncated Newton method was later proposed
by Facchinei et al. in [27]. Global and local quadratical convergence are
proved also without strict complementarity assumption.

• A pattern search method using feasible descent directions is described by
Lewis and Torczon in [48] and a global convergence proof is given.

• A Newton-type method that possesses global and local superlinear conver-
gence properties without assuming strict complementarity is developed by
Lin and Moré in [49].

• In [62] descent methods from unconstrained optimization are extended by
Schwarz and Polak to the bound constrained case by a projection strategy
providing global convergence as well.

• Ulbrich and Ulbrich extend the Coleman-Li methods to the case of infi-
nite dimensional problems and obtain a globally convergent affine-scaling
method in [67].

• Another globally convergent infinite dimensional extension of the Coleman-
Li methods is proposed by Ulbrich et al. in [67]. By use of a weak strict
complementarity assumption local superlinear convergence is achieved.

3.2 Singularity Problems of Affine-Scaling New-

ton Methods

A careful convergence analysis in Heinkenschloss et al. [37] shows that the affine-
scaling interior-point Newton method using the Coleman-Li scaling matrices
from (3.16) is, in general, not quadratically convergent if strict complementarity
does not hold at a local minimum x∗. The aim of this section is to give another
reason for the failure of a whole class of affine-scaling methods in the absence of
strict complementarity. In subsequent sections, this result will be used in order
to motivate our new choice of the scaling matrix D(x). As noted in Lemma 2.2,
the first order necessary optimality condition (2.1) is equivalent to the nonlinear
system of equations (2.2)

G(x) := D(x)∇f(x) = 0, x ∈ Ω

using a suitable scaling matrix. Motivated by this observation, some methods
for solving the bound constrained optimization problem (P) apply a Newton-
type method to the corresponding nonlinear system (2.2) (taking into account
explicitly the simple bound constraints x ∈ Ω). Unfortunately, it turns out
that the (generalized) Jacobian of the mapping G is singular under fairly mild
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assumptions if strict complementarity does not hold. This is the main result we
want to show in this section.

To this end, we assume that D(x) is at least locally Lipschitz continuous around
a local minimum x∗ of problem (P). Then the mapping G is also locally Lipschitz.
Hence we can compute its generalized Jacobian in the sense of Clarke [10]. By
calculating the generalized Jacobian of the mapping G, we obtain the following
negative result, where, in addition to our previous assumptions, we also assume
that the scaling matrix D(x) = diag

(
d1(x), . . . , dn(x)

)
has the property that

di(x) = 0, if xi ∈ {li, ui}. (3.22)

This is a rather natural condition since the components di(x) usually represent
an estimate for the distance of the component xi to the boundary of the feasible
set Ω.

Theorem 3.12 Let x∗ be a local minimum of (P) such that strict complemen-
tarity does not hold. Suppose further that D(x) = diag

(
d1(x), . . . , dn(x)

)
is

locally Lipschitz continuous and satisfies (2.3) and (3.22). Then:

(a) The ith component function Gi is differentiable with gradient ∇Gi(x
∗) = 0

for every index i where strict complementarity is violated.

(b) All elements of the generalized Jacobian ∂G(x∗) are singular.

Proof. Recall that G(x) := D(x)∇f(x) is locally Lipschitz continuous. Using
the product rule for generalized gradients from Proposition 2.11 for the ith
component Gi(x) = di(x)[∇f(x)]i, it follows that

∂Gi(x
∗) ⊆ [∇f(x∗)]i∂di(x

∗) + di(x
∗)∂[∇f(x∗)]i.

Since strict complementarity does not hold at x∗, there is an index i0 such that
both x∗

i0
∈ {li0 , ui0} and [∇f(x∗)]i0 = 0. For this particular component, we

therefore get

∂Gi0(x
∗) ⊆ [∇f(x∗)]i0

︸ ︷︷ ︸

=0

∂di0(x
∗) + di0(x

∗)
︸ ︷︷ ︸

=0 by (3.22)

∂[∇f(x∗)]i0 = {0}.

Since the generalized gradient ∂Gi0(x
∗) is nonempty (see Proposition 2.8), it

follows that ∂Gi0(x
∗) = {0}. But then Proposition 2.12 implies that Gi0 is

differentiable in x∗, and its gradient is given by ∇Gi0(x
∗) = 0. However, since

we have

∂G(x∗) ⊆
{
(g1, . . . , gn)T : g1 ∈ ∂G1(x

∗), . . . , gn ∈ ∂Gn(x∗)
}
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due to Proposition 2.9, it follows that each element V ∈ ∂G(x∗) has a zero row
and is therefore singular. This completes the proof of both statements. 2

The previous proof shows that Theorem 3.12 actually holds under much weaker
conditions. In fact, the local Lipschitz continuity of the scaling matrix D(x)
has been exploited only in the degenerate components. The other components,
where strict complementarity is satisfied, are not really important. The only
difficulty which arises without assuming local Lipschitz continuity of all com-
ponents di(x) is that we have to use an extended definition for a generalized
Jacobian for non-Lipschitzian functions. However, whatever this extended defi-
nition might be, if we require that the ith row of such a more general Jacobian is
equal to the gradient of the ith component function Gi(x) whenever this function
is differentiable at the current point (and this is a very natural condition), then
it follows that Theorem 3.12 still holds. Moreover, the proof of Theorem 3.12
clearly shows that the statement also holds if property (3.22) is only satisfied at
the local minimum x∗ of problem (P).

We note that both the Coleman-Li scaling dCL
i (x) as well as the Heinkenschloss

et al. scaling dHUU
i (x) satisfy (2.3). Moreover, dCL

i (x) has the property (3.22)
which turned out to be quite negative in the discussion by Heinkenschloss et al.
[37]. Here we introduce another scaling matrix

DMIN(x) = diag
(
dMIN

1 (x), . . . , dMIN
n (x)

)

defined by

dMIN
i (x) := min

{
xi − li + γ max{0,−[∇f(x)]i}, ui − xi + γ max{0, [∇f(x)]i}

}

(3.23)
for i = 1, . . . , n and some constant γ > 0. This scaling matrix will play an
important role in this work, and it has the advantage of being locally Lipschitz
continuous. Moreover, it is easy to see that it satisfies (2.3). Furthermore,
(3.22) also holds at a local minimum x∗ of problem (P). Therefore, we obtain
the following result as a direct consequence of Theorem 3.12 (and the previous
notes).

Corollary 3.13 Let x∗ be a local minimum of (P) such that strict complemen-
tarity does not hold. Suppose further that D(x) = DMIN(x) denotes the scaling
matrix with its components defined by (3.23). Then all elements of the general-
ized Jacobian ∂GMIN (x∗) are singular.

We note that we cannot apply Theorem 3.12 directly to the Coleman-Li scaling
since DCL(x) is, in general, discontinuous (and therefore not locally Lipschitz
continuous). Nevertheless, a related singularity problem was also observed for
this scaling in Heinkenschloss et al. [37, pp. 621–622]. In fact, this observation
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was the main motivation to introduce another scaling matrix. However, the
Heinkenschloss et al. scaling is also discontinuous in general, even around a
local minimum x∗ (namely in those components where [∇f(x∗)]i = 0). Since
the behaviour of Newton’s method is usually less predictable for discontinuous
functions than for smooth ones, we prefer to work with scaling matrices which
are at least locally Lipschitz continuous around a local minimum x∗. Hence the
scaling matrix from (3.23) is a natural candidate, but in view of Corollary 3.13,
it has to be modified in order to avoid the strict complementarity assumption.

3.3 Identification of Active and Degenerate In-

dices

The analysis from our previous section shows that it is quite important for
fast local convergence to identify the degenerate indices in a local minimum
of problem (P). The aim of this section is therefore to describe a simple and
computationally efficient technique for the identification of these indices. To
this end we use the notation of Definition 2.3 for the sets of active indices

I0(x) :=
{
i ∈ {1, . . . , n} : xi ∈ {li, ui}

}

and degenerate indices

I00(x) :=
{
i ∈ I0(x) : [∇f(x)]i = 0

}

in x ∈ Ω again. In order to identify the index set I00(x
∗) exactly in a neighbour-

hood of a local minimum x∗ of (P), we use an idea from Facchinei et al. [25] and
specialize or modify their results to our situation. The fundamental definition
from [25] is the following one.

Definition 3.14 A function ρ : R
n −→ R+ is called an identification function

for (P) if, for an isolated x∗ ∈ Ω satisfying (2.1), the following properties hold:

(i) ρ is continuous in x∗,

(ii) ρ(x∗) = 0,

(iii) limx→x∗, x6=x∗

ρ(x)
‖x−x∗‖

= +∞.

Note that, in Definition 3.14, we call a vector x∗ satisfying (2.1) isolated if there
is a whole neighbourhood around this point such that x∗ is the only vector sat-
isfying the first order optimality conditions (2.1) in this neighbourhood. In our
local convergence analysis to be presented in Section 3.5, this local uniqueness
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condition is a consequence of another assumption (strong second order suffi-
ciency condition) and, therefore, not as restrictive as it might appear in the
beginning. Later in this section, we will give two examples of suitable iden-
tification functions. For the moment, however, we assume that we have such
an identification function ρ. Using this identification function ρ, we define an
estimate of the active indices I0(x) by

A0(x) : =
{
i ∈ I : xi − li ≤ ρ(x) or ui − xi ≤ ρ(x)

}
(3.24)

=
{
i ∈ I : min{xi − li, ui − xi} ≤ ρ(x)

}
.

Then we have the following result, which shows that A0(x) is equal to the set
I0(x

∗) in a sufficiently small neighbourhood of a solution x∗ of (P), i.e., we are
able to identify the set of active indices correctly.

Theorem 3.15 Let ρ be an identification function for problem (P) and x∗ ∈ Ω
be an isolated vector satisfying (2.1). Then there exists an ε > 0, such that

A0(x) = I0(x
∗)

holds for all x ∈ Bε(x
∗).

Proof. The proof is similar to [25, Theorem 2.3] and is presented here for the
sake of completeness.

First let i ∈ I0(x
∗). Then we either have x∗

i = li or x∗
i = ui. Consider the case

x∗
i = li and define gi(x) := xi − li (the argument is similar if x∗

i = ui). Since
gi(x

∗) = 0 and gi is Lipschitz continuous with constant L = 1, we get

gi(x) ≤ gi(x
∗) + ‖x− x∗‖ = ‖x− x∗‖

for all x ∈ R
n. Using the definition of an identification function, we therefore

obtain
xi − li = gi(x) ≤ ‖x− x∗‖ ≤ ρ(x) ∀x ∈ Bε1(x

∗)

for some ε1 > 0 sufficiently small. Hence we have i ∈ A0(x) for all x ∈ Bε1(x
∗).

Conversely, take an arbitrary index i 6∈ I0(x
∗). Then we have li < x∗

i < ui. Using
ρ(x∗) = 0 and a continuity argument, it follows that ρ(x) < min{xi− li, ui−xi}
for all x ∈ Bε2(x

∗) for some ε2 > 0 sufficiently small (note that the choice of ε2

depends on the index i, but since there are only finitely many i ∈ {1, . . . , n}, we
may choose ε2 > 0 independent of i). Hence i 6∈ I0(x

∗) implies i 6∈ A0(x) for all
x ∈ Bε2(x

∗), and this is equivalent to A0(x) ⊆ I0(x
∗) for all x ∈ Bε2(x

∗).
Using ε := min{ε1, ε2}, we therefore obtain the desired result. 2
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Now we are able to estimate the active constraints exactly, but since we want
to identify the degenerate ones, we also use the set

A+(x) := {i ∈ A0(x) : λi(x) > ρ(x)} (3.25)

where λ(x) is a multiplier function, i.e., λ(x) is continuously differentiable (local
Lipschitz continuity would be enough for our purpose) and has the property that

λ(x∗) = λ∗

for any vector x∗ satisfying (2.1) and the corresponding (unique) Lagrange mul-
tiplier λ∗ for problem (P). The interested reader is referred to [22, 21] for some
suitable examples of multiplier functions. Note that these multiplier functions
can be evaluated quite easily in the case of bound constrained optimization
problems.

Theorem 3.16 Let ρ be an identification function for problem (P) and x∗ ∈ Ω
be an isolated vector satisfying (2.1). Then there exists an ε > 0, such that

A+(x) = I0(x
∗)\I00(x

∗)

holds for all x ∈ Bε(x
∗).

Proof. The technique of proof is taken from [25, Theorem 2.4] and included
here for the sake of clarity.

First consider an index i ∈ I0(x
∗)\I00(x

∗). Since i ∈ I0(x
∗), Theorem 3.15 shows

that i ∈ A0(x) for all x sufficiently close to x∗. Furthermore, since i 6∈ I00(x
∗)

and I00(x
∗) may be rewritten as I00(x

∗) = {i ∈ I0(x
∗) : λ∗

i = 0} in terms of the
multipliers λ∗

i , we have λi(x
∗) = λ∗

i > 0, whereas ρ(x∗) = 0 holds. By continuity,
this implies λi(x) > ρ(x) for all x ∈ Bε1(x

∗) for a suitable constant ε1 > 0, so
that i ∈ A+(x).

To prove the converse inclusion, suppose that i ∈ I00(x
∗). Then λi(x

∗) = λ∗
i =

0. Moreover, since the multiplier function is continuously differentiable and,
therefore, locally Lipschitz continuous around x∗, there is a constant c > 0, such
that

λi(x) ≤ |λi(x)− λi(x
∗)| ≤ ‖λ(x)− λ(x∗)‖ ≤ c‖x− x∗‖ ≤ ρ(x)

for all x sufficiently close to x∗. Hence we have i 6∈ A+(x) for all these x. Hence
A+(x) ⊆ I0(x

∗) \ I00(x
∗) for all x ∈ Bε2(x

∗) and a suitable constant ε2 > 0.
Consequently, the statement holds with ε := min{ε1, ε2}. 2

Using Theorems 3.15 and 3.16, it follows that

A00(x) := A0(x)\A+(x) (3.26)
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is an exact estimation of the set of degenerate indices in the sense that an ε > 0
exists, such that

A00(x) = I00(x
∗) (3.27)

holds for all x ∈ Bε(x
∗), where x∗ is any isolated vector satisfying the optimality

conditions (2.1).

Hence we have reached our goal provided that we have an identification func-
tion ρ. In the remaining part of this section, we therefore introduce two suitable
mappings, which turn out to be identification functions under certain assump-
tions. The main assumption that will be used here is the strong second order
sufficiency condition SSOSC, which is given in Definition 2.4. We note that
weaker conditions are possible for the definition of identification functions, how-
ever, the strong second order sufficiency condition will also be used in our local
convergence analysis of Section 3.5, so this condition is needed in any case.

Note that SSOSC is equivalent to saying that the submatrix ∇2f(x∗)J̄ J̄ is posi-
tive definite, where

J := I0(x
∗) \ I00(x

∗) and J̄ := {1, . . . , n} \ J. (3.28)

We therefore get the following consequence from the definition of SSOSC.

Lemma 3.17 Let x∗ ∈ Ω be a point satisfying (2.1) and SSOSC. Then the
vectors

ei (i ∈ J) and [∇2f(x∗)]i (i ∈ J̄)

are linearly independent, where the index sets J and J̄ are defined in (3.28), and
ei denotes the ith unit vector in R

n.

Proof. Consider an arbitrary linear combination
∑

i∈J

αiei +
∑

i∈J̄

αi[∇2f(x∗)]i = 0. (3.29)

Without loss of generality, we may assume that J = {1, . . . , r} with r := |J |.
Then we can rewrite (3.29) as

Mα = 0 with M :=

(
Ir ∇2f(x∗)JJ̄

0 ∇2f(x∗)J̄ J̄

)

,

where α := (α1, . . . , αn)T . In view of our assumption, however, the block matrix
∇2f(x∗)J̄ J̄ is positive definite and, therefore, nonsingular. This implies that the
matrix M is also nonsingular. Consequently, we obtain α = 0, thus giving the
desired result. 2

We now present our first identification function.
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Theorem 3.18 Let x∗ ∈ Ω be a point satisfying (2.1) and SSOSC. Define

ρ1(x) :=
√

‖φ1(x)‖

with

φ1(x) := x− PΩ

(
x−∇f(x)

)
.

Then ρ1 is an identification function for problem (P).

Proof. It is obvious or well-known that ρ1 satisfies the two conditions (i) and
(ii) of Definition 3.14. In order to verify requirement (iii), we note that SSOSC
and [28, Proposition 6.2.4] imply that there is a constant γ > 0 such that

‖x− x∗‖ ≤ γ‖φ1(x)‖ (3.30)

holds for all x in a sufficiently small neighbourhood of x∗. More precisely, note
that our mapping φ1 is identical to what is called the natural residual in [28],
and that SSOSC implies (for box constrained optimization problems) strong
regularity in the sense of Robinson (see [60]). However, strong regularity implies
semistability (see [28, p. 434]), and therefore [28, Proposition 6.2.4] can be
applied.
As a consequence of (3.30), we get

ρ1(x)

‖x− x∗‖ =

√

‖φ1(x)‖
‖x− x∗‖ ≥

√

‖φ1(x)‖
γ‖φ1(x)‖ =

1

γ
√

‖φ1(x)‖
→ +∞

for x→ x∗, x 6= x∗. Hence ρ1 is an identification function. 2

Our second identification function is given by

ρ2(x) :=
√

‖φ2(x)‖, (3.31)

where the components φ
(2)
i of φ2 are defined by

φ
(2)
i (x) := 2xi− li−ui− |xi− li− [∇f(x)]i|+ |xi−ui− [∇f(x)]i|, i = 1, . . . , n.

(3.32)
It turns out, however, that ρ2 is not much different from ρ1. In fact, an ele-
mentary calculation shows that φ2 = 2φ1. Hence we immediately obtain the
following result from Theorem 3.18.

Theorem 3.19 Let x∗ ∈ Ω be a point satisfying (2.1) and SSOSC. Let ρ2 be
defined as in (3.31), (3.32). Then ρ2 is an identification function for problem
(P).
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We close this section by noting that both Theorems 3.18 and 3.19 hold under
weaker assumptions. In fact, the central result used in order to prove Theorem
3.18 was Proposition 6.2.4 from [28], and this result holds for any isolated vector
x∗ satisfying (2.1) and a condition called semistability in [28]. We refer the
interested reader to [28] for further details on semistability.

3.4 Description of the Method

In this section we present our affine-scaling interior-point Newton method for
the solution of the bound constrained optimization problem (P). Basically it
is a Newton-type method applied to the reformulation (2.2) of the optimality
conditions (2.1) for a suitable scaling matrix D(x). The condition x ∈ Ω is
guaranteed by generating strictly feasible iterates only. This, in turn, is done
by incorporating a projection step as described, for example, in [37], although
other choices would also be possible, see, e.g., [40].

In order to state our choice of the scaling matrix, we assume that we have an
identification function ρ which allows us to define a set A00(x) via (3.26) which
then identifies the set of degenerate indices I00(x

∗) in a neighbourhood of a
local minimum x∗ of problem (P). Examples of suitable functions ρ having this
property under the SSOSC assumption were given in Section 3.3.

Now, having a suitable identification function and a corresponding set A00(x),
we define our scaling matrix by D(x) = diag

(
d1(x), . . . , dn(x)

)
with

di(x) :=

{
1, if i ∈ A00(x),
dMIN

i (x), if i 6∈ A00(x),
(3.33)

where the latter components are given by

dMIN
i (x) := min

{
xi − li + γ max{0,−[∇f(x)]i}, ui − xi + γ max{0, [∇f(x)]i}

}

for all i = 1, . . . , n with a constant γ > 0. Eventually, this definition differs
from the one in (3.23) only in the degenerate indices. Then it is easy to see
that D(x) has the property (2.3). Moreover, we will see below that it is locally
Lipschitzian around a local minimum x∗ of (P) under suitable assumptions.
However, it does not have the natural property from (3.22). On the other hand,
in view of Corollary 3.13, we know that this property must be violated in order
to have a chance to get nonsingular (generalized) Jacobians in the absence of
strict complementarity.

We summarize these observations and some related properties in the following
result.
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Lemma 3.20 Let x∗ be an isolated vector satisfying (2.1) and suppose that
A00(x) = I00(x

∗) holds in a neighbourhood of x∗. Then the scaling matrix D(x)
defined in (3.33) is locally Lipschitz continuous and strongly semismooth in a
neighbourhood of x∗.

Proof. Note that D(x) is locally Lipschitz and strongly semismooth if and only
if each component function di(x) is locally Lipschitz and strongly semismooth.
Therefore, the local Lipschitz property follows simply from the fact that the
set A00(x) does not change locally. Similarly, this also implies the strong semis-
moothness of each di(x) since the min- and max-functions and the composition of
strongly semismooth functions are known to be strongly semismooth, see [32]. 2

We note that the scaling matrix D(x) is not necessarily Lipschitz continuous if
we are far away from a local minimum x∗ of (P). In fact, in this case the function
might even become discontinuous. However, since we are only interested in the
local analysis, Lemma 3.20 states a desirable property of our scaling matrix D(x)
around a local minimum x∗ of (P). In general, this property holds neither for the
Coleman-Li scaling DCL(x) nor for the Heinkenschloss et al. matrix DHUU(x).

Having defined our scaling matrix D(x), we now want to apply a Newton-type
method to the corresponding function G(x) = D(x)∇f(x). The problem is that
this mapping is not differentiable everywhere. As a suitable replacement of the
Jacobian, we take

M(x) := D(x)∇2f(x) + S(x) (3.34)

where S(x) := diag
(
s1(x), . . . , sn(x)

)
is a diagonal matrix with

si(x) ≈ d′
i(x)[∇f(x)]i

(d′
i(x) being the partial derivative of the mapping di with respect to the compo-

nent xi) being given by

si(x) :=

{
0, if i ∈ A00(x),
δi[∇f(x)]i for an arbitrary δi ∈ ∂di(x), if i 6∈ A00(x).

(3.35)

Note that the entry si(x) of the matrix S(x) corresponds to the exact derivative
of the mapping di(x)[∇f(x)]i at a continuously differentiable point. In general,
we have the following simple but important result.

Theorem 3.21 Let x∗ be an isolated vector satisfying (2.1) and suppose that
A00(x) = I00(x

∗) holds in a neighbourhood of x∗. Then the function G(x) :=
D(x)∇f(x) with D(x) being defined by (3.33) is strongly semismooth in a neigh-
bourhood of x∗. Moreover, every element M(x) ∈ ∂BG(x) has a representation
of the form (3.34) with S(x) being the matrix from (3.35).
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Proof. Since the product of two strongly semismooth functions in again
strongly semismooth, the first statement follows from Lemma 3.20 together
with our general smoothness assumption on the mapping f . The remaining
statements follow directly from the definition of the B-subdifferential, see Def-
inition 2.6 (note, however, that, usually, (3.34), (3.35) contain more elements
than those belonging to ∂BG(x)). 2

We are now in the position to state our Newton-type method for the solution of
the bound constrained optimization problem (P).

Algorithm 3.22 (Projected Affine-Scaling Interior-Point Newton Method)

(S.0) Choose x0 ∈ int(Ω), σ ∈ (0, 1), and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Compute M(xk) := D(xk)∇2f(xk) + S(xk) with D(xk) and S(xk) being
given by (3.33) and (3.35), respectively.

(S.3) Let pk ∈ R
n be a solution of the linear system M(xk)p = −G(xk).

(S.4) Compute σk := max
{
σ, 1− ‖PΩ(xk + pk)− xk‖

}
.

(S.5) Set xk+1 := xk + σk

(
PΩ(xk + pk)− xk

)
.

(S.6) Set k ← k + 1, and go to (S.1).

Note that steps (S.4) and (S.5) obviously guarantee the strict feasibility of all
iterates xk.

There are two differences between Algorithm 3.22 and the corresponding method
from Heinkenschloss et al. [37]: First, we use a different way to compute the en-
tries di(x) and si(x) by using the identification results from Section 3.3. Second,
we do not use a further scaling of the matrices M(x) as done in [37]. This further
scaling was important in [37] in order to carry out a local convergence analysis.
In particular, the exact identification result incorporated in our method turns
out to be quite helpful also in order to simplify the local convergence analysis.
This will be done in the following section.

3.5 Local Convergence Analysis

The aim of this section is to show that Algorithm 3.22 is locally quadratically
convergent under the SSOSC assumption; in particular, we do not need the
strict complementarity condition. Hence the local convergence result is identi-
cal to the one shown in Heinkenschloss et al. [37] for their algorithm. However,
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our method of proof is completely different. Rather than using relatively lengthy
and technical calculations, we heavily apply standard results from nonsmooth
analysis and, in this way, obtain a relatively simple proof for local quadratic
convergence.

Throughout this section, we assume implicitly that we have chosen an iden-
tification function such that the corresponding index set A00(x) has the exact
identification property (3.27) under the SSOSC assumption. Suitable candidates
for such an identification function were given in Section 3.3. We begin with the
following result.

Theorem 3.23 Let x∗ ∈ Ω be a vector satisfying (2.1) and SSOSC. Then the
mapping G is differentiable at x∗ with G′(x∗) = M(x∗) being nonsingular. More-
over, there is a neighbourhood of x∗ and a constant c > 0 such that M(x) is
nonsingular with

‖M(x)−1‖ ≤ c

for all x in this neighbourhood.

Proof. Taking into account the definition of M(x∗) in (3.34), (3.35), it follows
after some elementary calculations that the ith column vector Ai of A := M(x∗)T

is given by

Ai =







[∇f(x∗)]iei, if x∗
i = li and [∇f(x∗)]i > 0,

−[∇f(x∗)]iei, if x∗
i = ui and [∇f(x∗)]i < 0,

[∇2f(x∗)]i, if i ∈ I00(x
∗),

di(x
∗)[∇2f(x∗)]i, if i 6∈ I0(x

∗).

In particular, each column Ai is single-valued. Consequently, G is differentiable
in x∗ with ∂BG(x∗) = {M(x∗)}, cf. Proposition 2.12.

Now consider the equation Aα = 0 for some α ∈ R
n. In view of the above

representation of the columns of A, this may be rewritten as

0 =
∑

i:x∗

i
=li,[∇f(x∗)]i>0

αi[∇f(x∗)]iei −
∑

i:x∗

i
=ui,[∇f(x∗)]i<0

αi[∇f(x∗)]iei + . . .

. . .
∑

i∈I00(x∗)

αi[∇2f(x∗)]i +
∑

i6∈I0(x∗)

αidi(x
∗)[∇2f(x∗)]i.

Furthermore, using SSOSC and Lemma 3.17, we obtain

αi[∇f(x∗)]i = 0 ∀i : x∗
i = li, [∇f(x∗)]i > 0,

−αi[∇f(x∗)]i = 0 ∀i : x∗
i = ui, [∇f(x∗)]i < 0,

αi = 0 ∀i ∈ I00(x
∗),

αidi(x
∗) = 0 ∀i 6∈ I0(x

∗).
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Since di(x
∗) > 0 for all i 6∈ I0(x

∗), we get α = 0. Consequently, the matrix A
and, therefore, M(x∗) itself is nonsingular.

Using this nonsingularity as well as ∂BG(x∗) = {M(x∗)} and Theorem 3.21, it
follows from [57, Lemma 2.6] that there is a constant c > 0 and a neighbour-
hood of x∗ such that M(x) is nonsingular with ‖M(x)−1‖ ≤ c for all x in this
neighbourhood. 2

We are now in the position to prove our main local convergence result.

Theorem 3.24 Let x∗ ∈ Ω be a vector satisfying (2.1) and SSOSC. Then there
is a neighbourhood of x∗ such that, for any starting point x0 ∈ intΩ from this
neighbourhood, Algorithm 3.22 is well-defined and generates a sequence {xk}
which converges to x∗ with a quadratic rate of convergence.

Proof. In view of Theorem 3.23, there are constants ε1 > 0 and c > 0 such
that

‖M(x)−1‖ ≤ c ∀x ∈ Bε1
(x∗). (3.36)

Furthermore, Theorem 3.21 and standard properties of (strongly) semismooth
functions (see Proposition 2.19) imply that there is a constant ε2 > 0 such that

‖G(x)−G(x∗)−M(x)(x− x∗)‖ ≤ 1

4c
‖x− x∗‖ ∀x ∈ Bε2

(x∗). (3.37)

Using the definition of σk in (S.4) of Algorithm 3.22, we also see that there is
an ε3 > 0 such that

σk ≥
3

4
∀xk ∈ Bε3

(x∗) (3.38)

(to this end, note that ‖PΩ(xk + pk)− xk‖ = ‖PΩ(xk + pk)− PΩ(xk)‖ ≤ ‖pk‖ is
very small in a neighbourhood of the solution x∗ since then G(xk) is small and,
therefore, the same holds for pk in view of the nonsingularity of M(xk)).

Now choose x0 ∈ int Ω ∩ Bε(x
∗) with ε := min{ε1, ε2, ε3}. Then M(x0) is

nonsingular, p0 from (S.3) of Algorithm 3.22 exists, and we obtain

‖x0 + p0 − x∗‖ ≤ ‖x0 − x∗ −M(x0)−1G(x0)‖
≤ ‖M(x0)−1‖ ‖G(x0)−G(x∗)−M(x0)(x0 − x∗)‖
≤ 1

4
‖x0 − x∗‖
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from (3.36) and (3.37). The definition of x1 in Algorithm 3.22 together with
(3.38) and the nonexpansiveness of the projection operator then implies

‖x1 − x∗‖ =
∥
∥x0 + σ0

(
PΩ(x0 + p0)− x0

)
− x∗

∥
∥

=
∥
∥σ0

(
PΩ(x0 + p0)− x∗

)
+ (1− σ0)(x

0 − x∗)
∥
∥

≤ σ0

∥
∥PΩ(x0 + p0)− PΩ(x∗)

∥
∥+ (1− σ0)‖x0 − x∗‖

≤ ‖x0 + p0 − x∗‖+
1

4
‖x0 − x∗‖

≤ 1

2
‖x0 − x∗‖.

(3.39)

In particular, x1 is also in the ball with radius ε around x∗. By induction, it
follows that {xk} ⊆ int Ω is well-defined and satisfies

‖xk+1 − x∗‖ ≤ 1

2
‖xk − x∗‖ ∀k ∈ N.

Hence the sequence {xk} converges (at least linearly) to x∗.

In order to verify the local quadratic rate of convergence, we recall that the
strong semismoothness of G (see Theorem 3.21) implies that

‖G(xk)−G(x∗)−M(xk)(xk − x∗)‖ = O(‖xk − x∗‖2),

see Proposition 2.19. Using (3.36), we therefore get

‖xk + pk − x∗‖ = ‖xk − x∗ −M(xk)−1G(xk)‖
≤ ‖M(xk)−1‖ ‖G(xk)−G(x∗)−M(xk)(xk − x∗)‖
= O(‖xk − x∗‖2).

Following (3.39), this implies

‖xk+1 − x∗‖ ≤ σk‖PΩ(xk + pk)− PΩ(x∗)‖+ (1− σk)‖xk − x∗‖
≤ ‖xk + pk − x∗‖+ (1− σk)‖xk − x∗‖
= O(‖xk − x∗‖2) + (1− σk)‖xk − x∗‖.

Exploiting once again the local Lipschitz continuity of the mapping G around
x∗ (see Theorem 3.21), we get from (S.3) of Algorithm 3.22 together with (3.36)

1− σk = ‖PΩ(xk + pk)− xk‖
≤ ‖pk‖
= O(‖G(xk)‖)
= O(‖G(xk)−G(x∗)‖)
= O(‖xk − x∗‖).

Altogether, we therefore have ‖xk+1 − x∗‖ = O(‖xk − x∗‖2). 2
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3.6 Globalization

So far the method presented in Algorithm 3.22 possesses only local convergence
properties and a globalization becomes necessary. Unfortunately the trust-region
globalization techniques used, for example, in [12, 19, 67] use the Coleman-Li
scaling and require at least that di(x) → 0 if x converges to a point on the
boundary of Ω. This essential property is not satisfied for our scaling (3.33)
and the Heinkenschloss et al. scaling (3.17) if the scaling is switched off in
a component. Therefore those globalizations cannot be used in the case of a
degenerate solution. Moreover it is in the moment not possible for us to prove
or disprove that the projected direction

pk
PN := σk

(
PΩ(xk + pk)− xk

)

is locally a descent direction for f . Hence a line-search globalization for Algo-
rithm 3.22 is difficult as well.

To overcome these problems we use an idea from methods for nonlinear systems
of equations that has been applied in [43] to the semismooth bound constrained
case and is described in Chapter 4. More precisely it can be shown that if a
current iterate xk is sufficiently close to a solution x∗ satisfying SSOSC, the
condition

‖G(xk + pk
PN)‖ ≤ η‖G(xk)‖ (3.40)

is satisfied for an η ∈ (0, 1) and stays satisfied if xk+1 := xk + pk
PN is the next

iterate. Thus our local method can be combined with any globally convergent
interior-point method for bound constrained optimization problems by use of
condition (3.40). For sake of simplicity we assume that the globally convergent
method produces strictly feasible iterates of the form

xk+1 := xk + pk
gc ∈ int Ω

with a suitable direction pk
gc ∈ R

n (e.g. a truncated projected steepest descent
direction) that provides a global convergence result of the form

lim inf
k→∞

‖D(xk)∇f(xk)‖ = 0. (3.41)

The globalized method then has the following form.

Algorithm 3.25 (Globalized Affine-Scaling Interior-Point Newton Method)

(S.0) Choose x0 ∈ int(Ω), σ, η ∈ (0, 1), and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Compute M(xk) := D(xk)∇2f(xk) + S(xk) with D(xk) and S(xk) being
given by (3.33) and (3.35), respectively.
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(S.3) Let pk
N ∈ R

n be a solution of the linear system M(xk)p = −G(xk).

(S.4) Compute σk := max
{
σ, 1− ‖PΩ(xk + pk

N)− xk‖
}
.

(S.5) Compute pk
PN := σk

(
PΩ(xk + pk

N)− xk
)
.

(S.6) If ‖G(xk + pk
PN)‖ ≤ η‖G(xk)‖ holds, set xk+1 := xk + pk

PN ,

Otherwise compute pk
gc and set xk+1 := xk + pk

gc.

(S.7) Set k ← k + 1, and go to (S.1).

This algorithm inherits the global convergence properties (3.41) of the method
using pk

gc.

Theorem 3.26 Let the global convergence assumptions for the method using pk
gc

be satisfied and let Algorithm 3.25 generate an infinite sequence {xk}. Then

lim inf
k→∞

‖G(xk)‖ = 0. (3.42)

If pk
PN is rejected in step (S.6) only for a finite number of iterations, then we

obtain

lim
k→∞
‖G(xk)‖ = 0.

Proof. If ‖G(xk + pk
PN)‖ > η‖G(xk)‖ holds only for a finite number of

iterations, the method turns eventually into Algorithm (3.22) and (3.40) leads to
‖G(xk)‖ → 0. Otherwise the global convergence property (3.41) of the method
using pk

gc ensures the existence of a subsequence of {‖G(xk)‖} converging to zero.
2

Depending on the globally convergent method used, (3.41) can use a different
scaling matrix, e.g. D(x) := DCL(x) with the Coleman-Li scaling from (3.2).
Then (3.42) has to be replaced by (3.41).

To establish fast local convergence we have to prove that Algorithm 3.25 turns
into Algorithm 3.22 if the iterates are sufficiently close to a suitable solution of
(P). This property can be transferred from the method for bound constrained
semismooth systems of equations proposed in Chapter 4. Thus the following
global convergence result holds.

Theorem 3.27 Let x∗ ∈ Ω be a vector satisfying (2.1) and SSOSC. Then there
is a neighbourhood of x∗, such that for any starting point x0 ∈ intΩ from this
neighbourhood, Algorithm 3.25 is well-defined and generates a sequence {xk},
which converges to x∗ with a quadratic rate of convergence.
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Proof. Since M(x∗) is nonsingular and G is strongly semismooth the proof
Theorem 4.21 (to be presented later) can be easily transferred to our problem
by considering the system G(x) = 0, x ∈ Ω. Thus we only sketch the arguments
and refer to Theorem 4.21 or [43, Theorem 4.1] for more details.

Just like in the proof of Theorem 3.24 there exist constants ε1, c > 0 such that
(3.36) holds. Since G is locally Lipschitz continuous, constants L1, ε2 > 0 exist
with

‖G(x)−G(y)‖ ≤ L1‖x− y‖ ∀x, y ∈ Bε2
(x∗).

Due to the nonsingularity of M(x∗) and [10, Theorem 7.1.1] the locally Lipschitz
continuous inverse function G−1 exists in a neighbourhood of G(x∗), and we
obtain constants ε3 > 0 and L2 > 0 such that

∥
∥G−1(G(x))−G−1(G(y))

∥
∥ ≤ L2‖G(x)−G(y)‖ ∀x, y ∈ Bε3

(x∗).

Similar to (3.37) there exists an ε4 > 0 with

‖G(x)−G(x∗)−M(x)(x − x∗)‖ ≤ min

{
η

2cL1L2
,

1

4c

}

‖x− x∗‖.

Continuity of G leads to a constant ε5 > 0 with

‖G(x)‖ ≤ min

{
η

2cL1L2

,
1− σ

c

}

∀x ∈ Bε5
(x∗).

With ε6 > 0 defined by (3.38) we set ε := min{εi : i = 1, . . . , 6} and assume
xk ∈ int Ω ∩Bε(x

∗). On this basis one can prove that

‖xk + pk
N − x∗‖ ≤ min

{ η

2L1L2
,
1

4

}

‖xk − x∗‖

and consequently xk + pk
PN ∈ Bε(x

∗) holds. Moreover 1−σk ≤ c‖F (xk)‖ can be
shown. By use of these properties and the nonexpansiveness of the projection
mapping we obtain

‖G(xk + pk
PN)‖ = ‖G(xk + pk

PN)−G(x∗)‖
≤ L1‖xk + pk

PN − x∗‖
≤ L1σk‖PΩ(xk + pk

N)− PΩ(x∗)‖+ L1(1− σk)‖xk − x∗‖
≤ L1σk‖xk + pk

N − x∗‖+ L1c‖G(xk)‖ ‖xk − x∗‖
≤ η

2L2

‖xk − x∗‖+
η

2L2

‖xk − x∗‖

=
η

L2

∥
∥G−1(G(xk))−G−1(G(x∗))

∥
∥

≤ η‖G(xk)−G(x∗)‖ = η‖G(xk)‖.
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Thus pk
PN is accepted in step (S.6) and xk+1 := xk + pk

PN follows. Like in the
proof of Theorem 3.24 one can show

‖xk+1 − x∗‖ ≤ 1

2
‖xk − x∗‖

and hence xk+1 ∈ Bε(x
∗). By induction (3.40) holds for all sufficiently large k.

Hence the transition from the global to the local method is established and the
assertion of Theorem 3.24 completes the proof. 2

The last two theorems show that transferring the ideas of Chapter 4 or [43]
to the reformulated optimality conditions of (P) leads to a globalized method.
However this approach is only directed on the reformulated KKT-conditions and
not on a descent property for the objective function. We are aware of this severe
disadvantage but use it nevertheless in absence of alternatives.

3.7 Numerical Examples

In this section, we want to illustrate the local behaviour of the different scal-
ing strategies using two standard test problems. To this end, we implemented
Algorithm 3.22 in MATLAB using σ = 0.9995 and the termination criterion
‖G(x)‖ ≤ 10−25. This is a relatively small tolerance, however, since we compare
the pure local behaviour of some methods only, we prefer to have a small toler-
ance in order to see some interesting effects.

We then consider the following three methods which differ in the choice of the
matrix M(x) = D(x)∇2f(x) + S(x) from (3.34):

• Coleman-Li [11, 12]: Here di(x) = dCL
i (x) is defined by (3.16) and

si(x) := sCL
i (x) := |[∇f(x)]i|

for all i = 1, . . . , n;

• Heinkenschloss et al. [37]: Here we take di(x) = dHUU
i (x) from (3.17) and

si(x) := sHUU
i (x) :=







|[∇f(x)]i| if |[∇f(x)]i| < min{xi − li, ui − xi}q
or min{xi − li, ui − xi} < |[∇f(x)]i|q

0 else

with q = 2;

• new method: Here di(x) and si(x) are defined by (3.33) (using γ = 10−3)
and (3.35), respectively. In order to define the index set A00(x) for these
choices of di(x) and si(x), we use the identification function ρ2 from (3.31),
(3.32) and take a suitable multiplier function λ(x) from [21, Proposition
5] (using the parameters γ1 := γ2 := 0.1 in that reference).
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Note that Heinkenschloss et al. [37] use a further scaling of the matrix M(x) in
order to verify theoretically the uniform nonsingularity of certain Jacobian-type
matrices, but that this additional scaling is not necessary for the algorithm since
it can be cancelled on both sides of the corresponding linear systems to be solved
in their method, see Algorithm 3.10. Hence our implementation is equivalent to
their method.

Our first test example is the famous Rosenbrock-function

f(x) = 100(x2 − x2
1)

2 + (1− x1)
2.

This function has a unique global minimum at x∗ := (1, 1)T . Therefore we use
l := (0, 0)T and u := (1, 1)T to obtain the degenerate set I00(x

∗) = {1, 2}. Since
we are interested in the local convergence properties, we change the standard
starting point to x0 := (0.999, 0.999)T . Table 3.1 contains the corresponding
numerical results for the Coleman-Li scaling. For each iteration k, we report
the size of the stopping criterion ‖G(xk)‖ as well as the distance of the current
iterate (and its components) to the known solution.

k ‖G(xk)‖ |xk
1 − x∗

1| |xk
2 − x∗

2| ‖xk − x∗‖
0 3.994004e-01 1.000000e-03 1.000000e-03 1.414214e-03
1 3.967247e-04 9.945479e-04 1.987114e-03 2.222104e-03
2 5.463162e-07 5.425928e-04 1.085095e-03 1.213194e-03
3 1.296976e-07 2.714348e-04 5.429716e-04 6.070379e-04
4 3.162359e-08 1.357598e-04 2.716074e-04 3.036467e-04
5 7.809617e-09 6.789056e-05 1.358342e-04 1.518554e-04
6 1.940620e-09 3.394796e-05 6.792478e-05 7.593576e-05
7 4.836979e-10 1.697465e-05 3.396431e-05 3.796989e-05
8 1.207434e-10 8.487491e-06 1.698263e-05 1.898545e-05
9 3.016327e-11 4.243788e-06 8.491436e-06 9.492851e-06
...

...
...

...
...

31 1.659987e-24 1.011746e-12 2.024603e-12 2.263326e-12
32 4.003273e-25 5.058176e-13 1.012301e-12 1.131638e-12
33 1.000818e-25 2.529088e-13 5.061507e-13 5.658192e-13
34 2.359936e-26 1.264544e-13 2.531308e-13 2.829593e-13

Table 3.1: Numerical results for the Rosenbrock function
using the Coleman-Li scaling

The results in Table 3.1 indicate a relatively slow (linear) rate of convergence.
The situation is significantly better for the Heinkenschloss et al. method, and
the corresponding results are given in Table 3.2, where we include one further
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column which gives the index set

Ã00(x) :=
{
i : |[∇f(x)]i| < min{xi − li, ui − xi}p

}

∪
{
i : min{xi − li, ui − xi} < |[∇f(x)]i|p

}

which, in view of the definition of their scaling matrices in (3.17), may be viewed
as the counterpart of our index set A00(x).

k ‖G(xk)‖ |(xk)1 − x∗
1| |(xk)2 − x∗

2| ‖xk − x∗‖ Ã00(x
k)

0 3.994004e-01 1.000000e-03 1.000000e-03 1.414214e-03 ∅
1 2.394061e-03 9.945479e-04 1.987114e-03 2.222104e-03 {1, 2}
2 2.644000e-04 4.972739e-07 1.587753e-06 1.663803e-06 {1, 2}
3 4.481673e-10 5.981726e-11 1.208688e-10 1.348605e-10 {1, 2}
4 0 0 0 0 {1, 2}

Table 3.2: Numerical results for the Rosenbrock function
using the Heinkenschloss et al. scaling

Table 3.2 clearly shows the local quadratic convergence of the Heinkenschloss et
al. method. The same is true for our scaling technique, and the corresponding
numerical results are given in Table 3.3. In fact, we need one iteration less than
the Heinkenschloss et al. method. According to our experience, this is mainly
due to the fact that our identification technique for the degenerate indices I00(x

∗)
is more effective. In fact, comparing the results in Tables 3.2 and 3.3, we see
that we are able to identify the correct set from the very beginning, whereas this
is not true for the Heinkenschloss et al. scaling.

k ‖G(xk)‖ |(xk)1 − x∗
1| |(xk)2 − x∗

2| ‖xk − x∗‖ A00(x
k)

0 4.481984e-01 1.000000e-03 1.000000e-03 1.414214e-03 {1, 2}
1 2.245015e-04 5.000000e-07 5.000000e-07 7.071068e-07 {1, 2}
2 1.587703e-10 3.536060e-13 3.536060e-13 5.000744e-13 {1, 2}
3 0 0 0 0 {1, 2}

Table 3.3: Numerical results for the Rosenbrock function
using the new scaling

To illustrate this point further, we take the Wood-function

f(x) := 100(x2 − x2
1) + (1− x1)

2 + 90(x4 − x3)
2 + (1− x3)

2 + 10(x2 + x4 − 2)2

+ 0.1(x2 − x4)
2

as our second test problem. This function admits an unconstrained minimum
in x∗ := (1, 1, 1, 1)T . We use the bounds l := (1, 1, 1, 0.99)T and u := (3, 3, 3, 3)T

and obtain the degenerate set I00(x
∗) = {1, 2, 3}. Note, however, that also the
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fourth component is almost degenerate. As a very good local starting point, we
take x0 := 1.001 · (1, 1, 1, 1)T . The corresponding numerical results using the
Coleman-Li scaling are given in Table 3.4.

k ‖G(xk)‖ ‖xk − x∗‖
0 4.255314e-01 2.000000e-03
1 3.088548e-04 2.021504e-03
2 7.816318e-05 1.012668e-03
3 1.964852e-05 5.069441e-04
4 4.925803e-06 2.536260e-04
5 1.233169e-06 1.268516e-04
6 3.085074e-07 6.343543e-05
7 7.715390e-08 3.172013e-05
8 1.929178e-08 1.586067e-05
9 4.823369e-09 7.930485e-06
...

...
...

34 5.684342e-14 2.366777e-13
35 5.684342e-14 1.182266e-13
36 5.684342e-14 5.933163e-14
37 2.327831e-26 2.994722e-14

Table 3.4: Numerical results for the Wood function using
the Coleman-Li scaling

Again, we see that the convergence of the Coleman-Li method is rather slow.
On the other hand, we get much faster convergence for the Heinkenschloss et al.
scaling, as documented in Table 3.5. However, we also see that the estimation
Ã00(x

k) of the degenerate index set I00(x
∗) is sometimes incorrect even very close

to the solution.

k ‖G(xk)‖ ‖xk − x∗‖ Ã00(x
k)

0 4.255314e-01 2.000000e-03 {}
1 2.428585e-04 2.021504e-03 {2}
2 6.143252e-05 1.012668e-03 {2}
3 1.543420e-05 5.069441e-04 {2}
4 3.868204e-06 2.536260e-04 {1, 2, 3}
5 8.814318e-03 1.268516e-04 {1, 2, 3}
6 2.824142e-06 2.268045e-08 {1, 2, 3}
7 3.067384e-13 5.874748e-16 {1, 2, 3}
8 5.684342e-14 1.110223e-16 {1, 2}
9 0 0 {1, 2, 3}
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Table 3.5: Numerical results for the Wood function using
the Heinkenschloss et al. scaling

The situation is significantly better when using our new scaling technique. Table
3.6 gives the results obtained with our method. Although the fourth index is ini-
tially viewed as being degenerate (as is to be expected), our technique eventually
finds the correct index set and converges much faster than the Heinkenschloss
et al. method.

k ‖G(xk)‖ ‖xk − x∗‖ A00(x
k)

0 5.823476e-01 2.000000e-03 {1, 2, 3, 4}
1 1.391926e-03 9.067386e-06 {1, 2, 3, 4}
2 2.574718e-08 1.609195e-10 {1, 2, 3}
3 0 0 {1, 2, 3}

Table 3.6: Numerical results for the Wood function using
the new scaling

The preceeding numerical examples confirm the observation of Heinkenschloss
et al. [37] that a violation of the strict complementarity assumption slows down
the convergence rate of the affine-scaling Newton method using the Coleman-Li
scaling. This problem can be overcome by the Heinkenschloss et al. scaling
or the new scaling introduced in (3.33) and [43]. The method using the new
scaling seems to perform slightly better due to the exact estimation technique
for the degenerate indices. With this conclusion we abandon considering the
optimization problem (P) and proceed with the second problem class of nonlinear
systems subject to bound constraints.





Chapter 4

Nonlinear Systems of Equations

This chapter deals with affine-scaling methods for the bound constrained non-
linear system of equations

F (x) = 0 subject to x ∈ Ω, (NE)

where the feasible set Ω is given by

Ω := {x ∈ R
n : li ≤ xi ≤ ui ∀i = 1, . . . , n}

and where F : O −→ R
n is at least semismooth on an open set O ⊆ R

n contain-
ing the box Ω. Moreover we assume that the lower and upper bounds satisfy
−∞ ≤ li < ui ≤ +∞ for all i = 1, . . . , n.

Similar to the last chapter we consider some recently proposed numerical meth-
ods for (NE) before we describe our affine-scaling method and its theoretical
and numerical properties.

4.1 Numerical Methods

In subsequent subsections several numerical methods for bound constrained non-
linear systems are shortly described. Our main interest lies again on affine-
scaling methods, which are motivated by corresponding methods for bound con-
strained optimization problems. The notation of the described papers is partially
adapted in order to obtain a consistent representation. This mainly concerns
the used scaling matrices. If possible we call the methods with the names and
abbreviations introduced by their authors.

4.1.1 The STRN Method

Bellavia, Macconi and Morini propose in [2] a scaled trust-region interior point
Newton method (STRN for short) for bound constrained nonlinear systems with
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continuously differentiable objective functions. Origin of their method is the
unconstrained local Newton method that converges locally quadratically under
suitable assumptions. The used direction pk

N ∈ R
n is the solution of the Newton

equation
F ′(xk)p = −F (xk). (4.1)

Because of the bound constraints this direction has to be truncated to obtain an
interior point method. Let xk ∈ int Ω be given an let λ(pk) denote the steplength
from xk to the nearest boundary in the direction pk ∈ R

n, then the stepsize is
given by

t(pk) :=

{
1, if xk + pk ∈ int Ω,
max{θ, 1− ‖pk‖}λ(pk), otherwise,

(4.2)

with a constant θ ∈ (0, 1). If the next iterate is defined by use of this stepsize
and the Newton direction from (4.1) with

xk+1 := xk + t(pk
N)pk

N ,

one obtains a strictly feasible truncated Newton method that possesses fast local
convergence properties if additional assumptions on pk

N and the solution of (NE)
are satisfied.

In order to obtain a globally convergent method the merit function

f(x) :=
1

2
‖F (x)‖2

is considered and an affine-scaling trust-region method similar to the Coleman-Li
trust-region methods in [12] and Section 3.1.2 is applied to the problem

minimize f(x) subject to x ∈ Ω.

With a given iterate xk ∈ int Ω the model function

mk(p) :=
1

2
‖F (xk) + F ′(xk)p‖2 (4.3)

arises from a linearization of F (not f as in the case of optimization problems).
This function is trusted and minimized on an ellipsoidal trust-region and a search
direction pk ∈ R

n is obtained by solving

minimize mk(p) subject to ‖D(xk)−1/2p‖ ≤ ∆k (4.4)

with the trust-region radius ∆k > 0. The used scaling matrix in [2] is (in adapted
notation) given by

D(x) = diag
(
d1(x), . . . , dn(x)

)
,
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where

di(x) :=







xi − li, if [∇f(x)]i ≥ 0 and li > −∞,
ui − xi, if [∇f(x)]i < 0 and ui <∞,
1, otherwise.

(4.5)

This scaling matrix is again the Coleman-Li scaling from [11, 12], similar to
(3.2) and (3.16), but the case of unbounded components is included this time.
As we have seen in the trust-region methods by Coleman-Li and Dennis-Vicente
in Sections 3.1.2 and 3.1.3 the Cauchy point plays an important role for the
global convergence properties of trust-region methods. Therefore Bellavia et al.
define the Cauchy point by

pk
CP := −τCP D(xk)∇f(xk) (4.6)

where the scalar τCP is the solution of

minimize mk(p(τ)) subject to p(τ) = −τD(xk)∇f(xk), τ > 0,

‖D(xk)−1/2p(τ)‖ ≤ ∆k.
(4.7)

Different from, for example, the Dennis-Vicente method this Cauchy point and
the subproblem (4.4) does not take into account the box constraints, because
the stepsize strategy from (4.2) is applied later in the method to maintain strict
feasibility. For global convergence proofs it is important again that the search
direction pk satisfies a fraction of Cauchy decrease condition

rc
k :=

mk(0)−mk(t(p
k)pk)

mk(0)−mk(t(pk
CP )pk

CP )
≥ β1 (4.8)

with a scalar β1 ∈ (0, 1]. If the current candidate for a search direction does not
satisfy (4.8) the Cauchy point itself can be accepted. Moreover the acceptance
of the search direction and the size of the trust-region is controlled by

rf
k :=

f(xk)− f(xk + t(pk)pk)

mk(0)−mk(t(pk)pk)
≥ β2 (4.9)

with β2 ∈ (0, 1) and can be seen as a measure for the agreement of mk and f .
The STRN algorithm can now be described in the following form:

Algorithm 4.1 (Scaled Trust-Region Newton (STRN) method)

(S.0) Choose x0 ∈ int Ω, ∆0 > 0, constants β1 ∈ (0, 1], 0 < β2 < β3 < 1,
0 < ω1 < 1 < ω2, θ ∈ (0, 1) and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.
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(S.2) Repeat:

(R.1) Compute a solution pk of (4.4).

(R.2) Compute the Cauchy point pk
CP from (4.6).

(R.3) Compute t(pk) and t(pk
CP ) by using (4.2) and rc

k from (4.8).

(R.4) If rc
k < β1, then set pk := pk

CP .

(R.5) Set ∆∗
k := ∆k.

(R.6) Set ∆k := ω1∆k.

(R.7) Compute rf
k given by (4.9).

Until rf
k ≥ β2.

(S.3) Set xk+1 := xk + t(pk)pk and ∆k = ∆∗
k.

(S.4) If rf
k ≥ β3, set ∆k+1 := ω2∆k.

Otherwise set ∆k+1 := ∆k.

(S.5) Set k ← k + 1, and go to (S.1).

Global and local convergence Theorems for this method are carried out in [2].
The following general assumptions are used:

(A1) F ′ is Lipschitz continuous on L :=
⋃∞

k=0

{
x ∈ Ω : ‖x − xk‖ ≤ r

}
with a

constant r > 0.

(A2) ‖F ′(x)‖ is bounded from above on L.

At first it is important to ensure that the repeat loop in step (S.2) of the STRN-
Algorithm 4.1 terminates in each iteration to obtain a well defined method. This
is the assertion of the following Lemma, see also [2, Lemma 3.4].

Lemma 4.2 Let (A1) be satisfied and F ′(xk) be nonsingular and F (xk) 6= 0
for a k ∈ N0. Then the repeat loop in step (S.2) of the kth iteration of the
STRN-Algorithm 4.1 terminates after a finite number of inner iterations.

Hence the method is well defined if all Jacobians F ′(xk) are nonsingular and
under this additional assumption global convergence [2, Theorems 3.1, 3.2] can
be shown.

Theorem 4.3 Let (A1) and (A2) be satisfied and {xk} be generated by the
STRN-Algorithm 4.1 and bounded. Then

lim
k→∞
‖D(xk)1/2∇f(xk)‖ = 0.

If x∗ is an isolated limit point of {xk} such that F (x∗) = 0 and F ′(x∗) is non-
singular, then {xk} converges to x∗.
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The convergence rate of the STRN method is described in the next Theorem.

Theorem 4.4 Let (A1) and (A2) be satisfied and {xk} be generated by the
STRN-Algorithm 4.1. Let x∗ be a solution of (NE) with nonsingular F ′(x∗). If
xk → x∗, then {∆k} is bounded away from zero. Moreover:

(a) If ‖D(xk)pk
N‖ → 0 and t(pk

N ) ≥ 1 − √1− β1 for all sufficiently large k,
then ‖F (xk)‖ → 0 linearly.

(b) If ‖D(xk)pk
N‖ → 0 and t(pk

N)→ 1, then xk → x∗ superlinearly.

(c) If ‖D(xk)pk
N‖ → 0 and t(pk

N ) = 1 for all sufficiently large k, then xk → x∗

quadratically.

As a further consequence of this Theorem, see also [2, Theorem 3.2, Corollary
3.2], {xk} converges quadratically to strictly feasible solutions of (NE) satisfying
the assumptions of Theorem 4.4.

The practical properties of the STRN method are examined by Bellavia et al.
in [2] very detailed. Their considerations include 32 different test examples and
a comparison to the ASTN method from [41] and the IGTN method from [46].
Conclusively the STRN method is robust and less costly then the other methods
taking into account the number of needed function evaluations. On basis of this
method the STRSCNE code was developed and described in [3]. This code in-
herits the robustness and fast convergence properties of the STRN method and
is therefore taken as a reference code for the numerical properties of the later
presented method.

Recapitulating the main advantages of the STRN method are very fast theoret-
ical and numerical convergence properties. But the assumptions for the theoret-
ical properties are strict, i.e. F ′(xk) has to be nonsingular in each iteration and
an interior solution is needed for a quadratic rate of convergence theorem. This
is a disadvantage, which is overcome by the later proposed IATR method in [5].

4.1.2 The IATR Method

In [5] Bellavia and Morini develop an interior point affine-scaling trust-region
(IATR) method for (NE) that can be seen as a successor of the STRN method
from the last section or [2]. This method shares many properties of the STRN
method, but is locally quadratically convergent even to solutions on the bound-
ary of the feasible set. To achieve this aim two main modifications of the STRN
method are incorporated. Both are concerning the choice of the search direction.
At first the stepsize strategy (4.2) to maintain strict feasibility is (in large parts)
replaced by a modified projection strategy. At second the direction candidates
satisfying a fraction of Cauchy decrease condition are computed in a different
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way.

Basis of the IATR algorithm is again an affine-scaling trust-region optimization
approach applied to the problem

minimize f(x) :=
1

2
‖F (x)‖2 subject to x ∈ Ω

with the merit function f . To obtain a search direction the ellipsoidal trust-
region subproblem

minimize mk(p) subject to ‖D(xk)−1/2p‖ ≤ ∆k (4.10)

with the model function mk defined in (4.3) is considered. The scaling matrix
D is a slightly modified Coleman-Li scaling with diagonal elements

di(x) :=







xi − li, if [∇f(x)]i > 0 and li > −∞,
ui − xi, if [∇f(x)]i < 0 and ui <∞,
min{xi − li, ui − xi}, if [∇f(x)]i = 0 and (li > −∞ or ui <∞),
1, otherwise,

(4.11)
that differs from (4.5) only in the third case. To compute the search direction
two vectors are involved: The exact solution of (4.10) denoted by pk

ex and the
Cauchy point pk

CP defined in (4.6). Since the subproblem (4.10) does not take
into account the box constraints both directions can lead to infeasible iterates.
Therefore the projection-type direction p̄k

ex with

[p̄k
ex]i :=







min
{
(1− α)(li − xk

i ), 2(li − xk
i )− [pk

ex]i
}
, if xk

i + [pk
ex]i ≤ li,

[pk
ex]i, if xk

i + [pk
ex]i ∈ (li, ui),

max
{
(1− α)(ui − xk

i ), 2(ui − xk
i )− [pk

ex]i
}
, if xk

i + [pk
ex]i ≥ ui,

(4.12)
for all i = 1, . . . , n with a constant α ∈ (0, 1) is computed. Then xk + p̄k

ex is
strictly feasible and can for small α be seen as the result of a projection on
Ω followed by a small step into the interior of Ω. Moreover p̄k

ex shares some
important properties of projected directions, that will also be used later in this
chapter. In case of the Cauchy point pk

CP the stepsize rule from (4.2) is still used
to obtain interior iterates when the direction

p̄k
CP := t(pk

CP )pk
CP (4.13)

is used. The search direction pk is then located on the connecting line between
p̄k

ex and p̄k
CP

pk := µp̄k
CP + (1− µ)p̄k

ex, (4.14)

where µ ∈ [0, 1) is computed such that the fraction of Cauchy decrease condition

rc
k :=

mk(0)−mk(p
k)

mk(0)−mk(p̄
k
CP )
≥ β1 (4.15)
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with a constant β1 ∈ (0, 1) and

mk(p
k) ≤ mk(p̄

k
ex) (4.16)

are satisfied. Existence and computation of such a µ are shown in [5]. The
remaining algorithm is very similar to the STRN method but the update of the
trust-region size is different.

Algorithm 4.5 (Interior point Affine-scaling Trust-Region (IATR) method)

(S.0) Choose x0 ∈ int Ω, ∆0, ∆min > 0, constants α, β1, β2, ω1, θ ∈ (0, 1) and set
k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Set ∆̄k := max{∆min, ∆k}, set ∆∗
k := ∆̄k.

(S.3) Repeat:

(R.1) Set ∆∗
k := ∆k.

(R.2) Compute a solution pk
ex of (4.10).

(R.3) Compute the Cauchy point pk
CP from (4.6).

(R.4) Compute p̄k
ex and p̄k

CP by using (4.12) and (4.13).

(R.5) Compute µ ∈ [0, 1) such that pk satisfies (4.15) and (4.16).

(R.6) Set ∆∗
k := ω1∆k.

(R.7) Compute rf
k given by (4.9).

Until rf
k ≥ β2.

(S.4) Set xk+1 := xk + pk.

(S.5) Choose ∆k+1 (e.g. like in Algotrihm 4.1).

(S.6) Set k ← k + 1, and go to (S.1).

By use of the assumptions

(A1) F ′ is Lipschitz continuous on L :=
⋃∞

k=0

{
x ∈ Ω : ‖x − xk‖ ≤ r

}
with a

constant r > 0,

(A2) ‖F ′(x)‖ is bounded from above on L,

global and local convergence results for the IATR method from Algorithm 4.5
can be established. By assuming that all Jacobians F ′(xk) are nonsingular the
algorithm is well defined, see also the next Lemma or [5, Lemma 3.2].
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Lemma 4.6 Let (A1) be satisfied and F ′(xk) be nonsingular and F (xk) 6= 0
for a k ∈ N0. Then the repeat loop in step (S.3) of the kth iteration of the
IATR-Algorithm 4.5 terminates after a finite number of inner iterations.

On this basis Bellavia and Morini prove a global convergence Theorem [5, The-
orem 3.1] similar to Theorem 4.3.

Theorem 4.7 Let (A1) and (A2) be satisfied and {xk} be generated by the
IATR-Algorithm 4.5 and bounded. Then

lim
k→∞
‖D(xk)1/2∇f(xk)‖ = 0.

If x∗ ∈ int Ω is a limit point of {xk} such that F ′(x∗) is nonsingular, then
{F (xk)} converges to 0 and all accumulation points of {xk} solve (NE).

The global convergence properties of the STRN and the IATR method do not
differ much because both methods use a fraction of Cauchy decrease condi-
tion to establish global convergence for the trust-region approach to the bound
constrained optimization problem with the merit function. But with the modifi-
cations of the search direction it is possible to prove a stronger local convergence
Theorem [5, Theorem 3.2], which leads to quadratic convergence for solutions
on the boundary as well.

Theorem 4.8 Let (A1) and (A2) be satisfied and {xk} be generated by the
IATR-Algorithm 4.5. Let x∗ be a limit point of {xk} with F (x∗) = 0 and
nonsingular F ′(x∗). Then {xk} converges to x∗ and the rate of convergence
is quadratic.

In [5] also numerical experiments with a huge amount of test problems are carried
out. The IATR method is able to solve nearly all of the given problems and
seems to be very efficient since in most iterations only one function evaluation
is necessary.

Conclusively it can be said, that the IATR method inherits the advantages of
the STRN method and possesses a stronger local convergence theory, which
eliminates a disadvantage of the STRN method. The smaller disadvantage that
all Jacobians F ′(xk) have to be nonsingular to get a well defined method still
exists.

4.1.3 The SIATR Method

The IATR method from [5] and the last section possesses good theoretical and
numerical properties. In [6] Bellavia and Morini extend this method to a sub-
space interior point affine-scaling trust-region method (SIATR) for large scale
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nonlinear equations with bound constraints. Most of the numerical effort of the
IATR method has to be done solving the trust-region subproblem (4.10). Hence
the restriction of this subproblem to suitable subspaces can be an advantage in
the large scale case.

The general framework of the SIATR method is equal to the IATR method.
Basis of the subspace strategy is the trust-region subproblem

minimize mk(p) subject to ‖S(xk)p‖ ≤ ∆k (4.17)

with the trust-region radius ∆k > 0 and the model function mk from (4.3).
Similar to Chapter 3.1.3 the matrix S(xk) is defined by

S(xk) := I or S(xk) := D(xk)−1/2

where D(xk) is the Coleman-Li scaling matrix from (4.11). Since the computa-
tion of an exact solution of (4.17) can be be very expensive in the large scale
case, the subproblem is replaced by the subspace trust-region subproblem

minimize mk(p) subject to p ∈ Sk, ‖S(xk)p‖ ≤ ∆k (4.18)

with a subset Sk of R
n. This subset has to satisfy the following condition:

mk(p
∗
k) ≤ η2

kmk(0), (4.19)

where p∗k denotes a solution of

minimize mk(p) subject to p ∈ Sk (4.20)

and ηk ∈ [0, 1). Two different subspace approaches and ways to compute an
exact solution pk

ex of (4.18) are carried out in [6], but for sake of brevity we
pass on the details. If a solution pk

ex is computed the search direction is again
computed on the connecting line between the truncated Cauchy point p̄k

CP from
(4.13) and the projection-type direction p̄k

ex defined in (4.12) with the solution
pk

ex of (4.18)
pk := µp̄k

CP + (1− µ)p̄k
ex (4.21)

with a µ ∈ [0, 1) such that the fraction of Cauchy decrease condition (4.15) is
satisfied. Then the SIATR method can be described as follows.

Algorithm 4.9 (Subspace Interior point Affine-scaling Trust-Region (SIATR)
method)

(S.0) Choose x0 ∈ int Ω, ∆0, ∆min > 0, constants α, β1, β2, ω1, θ ∈ (0, 1) and set
k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.
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(S.2) Set ∆̄k := max{∆min, ∆k}, set ∆k := ∆̄k/ω1 and choose ηk ∈ [0, 1)

(S.3) Repeat:

(R.1) Set ∆k := ω1∆k.

(R.2) Find Sk ⊆ R
n such that (4.19) holds.

(R.3) Compute a solution pk
ex of (4.18).

(R.4) Compute the Cauchy point pk
CP from (4.6).

(R.5) Compute p̄k
ex and p̄k

CP by using (4.12) and (4.13).

(R.6) Compute µ ∈ [0, 1) such that pk satisfies (4.15).

(R.7) Compute rf
k given by (4.9).

Until rf
k ≥ β2.

(S.4) Set xk+1 := xk + pk.

(S.5) Choose ∆k+1 (e.g. like in Algotrihm 4.1).

(S.6) Set k ← k + 1, and go to (S.1).

Under the assumption (A1) from the last two sections the assertion of Lemma
4.6 holds for Algorithm 4.9 as well. Therefore it is well defined and global
convergence can be established, see [6, Theorems 4.1, 4.2].

Theorem 4.10 Let (A1) and (A2) be satisfied and {xk} be generated by the
SIATR-Algorithm 4.9 and bounded. Then

lim
k→∞
‖D(xk)1/2∇f(xk)‖ = 0.

If x∗ ∈ int Ω is a limit point of {xk} such that F ′(x∗) is nonsingular, then
{F (xk)} converges to 0 and all accumulation points of {xk} solve (NE). If x∗ is
an isolated limit point of {xk} such that F (x∗) = 0 and F ′(x∗) is nonsingular,
then {xk} converges to x∗.

The global convergence properties are very similar to those of the IATR and
the STRN method. The local properties differ stronger due to the choice of the
matrix Sk and the reduction of the subproblem to subspaces.

Theorem 4.11 Let (A1) and (A2) be satisfied and {xk} be generated by the
SIATR-Algorithm 4.9. Let {xk} converge to x∗ with F (x∗) = 0 and nonsingular
F ′(x∗) and assume that either Sk := I for all k or Sk := D(xk)−1/2 for all k with
‖D(xk)−1/2pk‖ → 0. Then pk satisfies (4.15) with ∆̄k for all sufficiently large k.
If ηk → 0, then {xk} converges to x∗ superlinearly. If ηk = O(‖F (xk)‖), then
{xk} converges to x∗ quadratically.
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Proof of the last theorem can be found in [6, Theorem 4.3]. The convergence
rate depends on ηk since this term is closely related to the error term of the
inexactly solved Newton equation, see [6, 17] for more details.

As a special choice for the subspace Sk in the SIATR method Bellavia, Macconi
and Morini propose in [4] a two-dimensional subspace trust-region method for
bound constrained nonlinear systems. The subspace is given by

Sk := span
{
pk

I ,∇f(xk)
}

with an inexact solution pk
I of the Newton equation. The subspace subproblem

(4.18) with Sk := I for all k is approximately solved by a dogleg strategy and
the assertions of Theorems 4.10 and 4.11 hold.

Advantages and disadvantages of the SIATR method are mostly inherited from
the IATR method. The SIATR method possesses strong global and local con-
vergence results. The local results can be weaker depending on choice of the
matrix Sk and the subspace Sk. Numerical experiments are not described in [6],
but especially for large scale problems the SIATR method could perform better
than other methods. This is also indicated by the successful high dimensional
tests for the two-dimensional subspace method in [4].

4.1.4 The Ulbrich method

The non-monotone trust-region method for semismooth equations with bound
constraints proposed by Ulbrich in [65] is unlike to the other considered methods
neither an interior point nor an affine-scaling method. Nevertheless it shares
some important properties with those methods and the method we will propose
later in this chapter. The function F is assumed to be at least semismooth on
an open set containing Ω. Basis of the algorithm is the Newton-type direction
pk

N from the linear system
Mkp = −F (xk) (4.22)

where xk ∈ Ω is the current iterate and Mk ∈ R
n×n is a nonsingular approxima-

tion to an H ∈ ∂F (xk). Due to the bound constraints this direction is projected
back on the feasible set and one obtains the projected direction

pk
PN := PΩ(xk + pk

N)− xk.

Since the aim is not an interior point approach, no further truncation of this
direction is necessary. For a local method using the direction pk

PN local quadratic
convergence can be shown under assumptions including BD-regularity of the
solution x∗, strong semismoothness of F and the following restriction on Mk

µk := min
H∈∂BF (xk)

‖(Mk −H)pk
N‖ ≤ δ‖pk

N‖ (4.23)
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for all k with a sufficiently small δ > 0. In order to embed this local direction
into a globally convergent method the merit function

f(x) :=
1

2
‖F (x)‖2

is considered again. Under the assumption that f is continuously differentiable
on an open set containing Ω a trust-region algorithm is applied to the problem

minimize f(x) subject to x ∈ Ω. (4.24)

With the model function

mk(p) := ∇f(xk)T p +
1

2
‖Mkp‖2

the trust-region subproblem

minimize mk(p) subject to xk + p ∈ Ω, ‖p‖∞ ≤ ∆k (4.25)

with the trust-region radius ∆k > 0 is considered. Since the second restriction is
chosen in terms of the maximum norm, subproblem (4.25) is a box constrained
convex quadratic program with the feasible set

Xk := [l − xk, u− xk] ∩ [−∆k, ∆k]
n.

A feasible projected Newton direction is then given by

pk
P := PXk

(pk
N). (4.26)

The used search direction pk has to satisfy the feasibility condition

xk + pk ∈ Ω and ‖pk‖∞ ≤ β1∆k (4.27)

with a constant β1 ≥ 1 and the reduction condition

predk (pk) := −mk(p
k) ≥ β2χ(xk) min{1, ∆k, χ(xk)} (4.28)

with β2 > 0 and a criticality measure χ. A criticality measure is a continuous
mapping χ : Ω −→ R+ with χ(x∗) = 0 iff x∗ satisfies the first order necessary
optimality condition for (4.24). For example

χ(x) := ‖x− PΩ(x−∇f(x))‖

can be used. Moreover the acceptance of a search direction is controlled by an
unconventional reduction ratio rk, because non monotonicity of {f(xk)} should
be allowed, see [65] for more details. In adapted notation the method has the
following form.
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Algorithm 4.12 (Non-Monotone Trust-Region Method)

(S.0) Choose x0 ∈ Ω, ∆0 > ∆min ≥ 0, η, σ, θ ∈ (0, 1), 0 < ρ1 < ρ2 < 1, and
0 ≤ ω1, ω2 < 1 < ω3, set k := 0.

(S.1) If χ(xk) = 0: STOP.

(S.2) Compute the Newton-direction pk
N from (4.22).

(S.3) Compute pk
P given by (4.26).

(S.4) If pk
P satisfies (4.28), then set pk := pk

P . Otherwise compute pk satisfying
(4.27) and (4.28).

(S.5) Compute rk.

(S.6) Update the trust-region radius according to the following rules:
If rk ≥ ρ1, choose ∆k+1 ∈ (ω1∆k, ω2∆k].
If rk ∈ (ρ1, ρ2), choose ∆k+1 ∈ [ω2∆k, max{∆min, ∆k}] ∩ [∆min,∞).
If rk ≥ ρ2, choose ∆k+1 ∈ (∆k, max{∆min, ω3∆k}] ∩ [∆min,∞).

(S.7) If rk > ρ1, we call iteration k ”successful” and set xk+1 := xk + pk.
Otherwise set xk+1 := xk.

(S.8) Set k ← k + 1, and go to (S.1).

Global and local convergence results for this algorithm are carried out in [65].
As usual we restate the global ones [65, Theorems 4.8, 4.9] first.

Theorem 4.13 Let Algorithm 4.12 generate an infinite sequence {xk} and let
ω1 > 0 or ∆min = 0. Then

lim inf
k→∞

χ(xk) = 0.

If there exists a set containing all xk on which χ is uniformly continuous and
bounded, then

lim
k→∞

χ(xk) = 0.

To establish fast local convergence it is important to ensure that the projected
Newton direction pk

PN is accepted close to a BD-regular solution x∗. Therefore
the following implication is required

‖xk − x∗‖ < β3 and predk (pk
PN) ≥ β4f(xk) =⇒ pk

PN satisfies (4.28) (4.29)

with constants β3 > 0, β4 ∈ (0, 1). A concrete implementation of the rather
abstract conditions (4.29) and (4.28) by means of a fraction of Cauchy decrease
condition and including affine-scaling matrices is described in [65]. The local
convergence properties of Algorithm 4.12 can now be described as follows.
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Theorem 4.14 Let Algorithm 4.12 with ∆min > 0 generate an infinite sequence
{xk} and let x∗ be a BD-regular solution of (NE). Then there exist constants
δ, ε > 0 such that the following holds: If the index k′ satisfies ‖xk′ − x∗‖ ≤ ε,
k′ − 1 was successful and if (4.23) holds for all k ≥ k′, then:

(a) The direction pk
P is accepted, pk = pk

P = pk
PN holds and the kth iteration is

successful for all k ≥ k′.

(b) The sequence {xk} converges to x∗.

(c) If µk/‖pk
N‖ → 0 holds, the convergence rate is superlinear.

(d) If F is strongly semismooth in x∗ and

lim sup
k→∞

µk

‖pk
N‖2

holds, the rate of convergence is quadratic.

In fact Ulbrich’s convergence result considers also convergence rates between 1
and 2 for so called p-order semismooth functions, but we restrict this to the
strongest possible rate.

In the numerical section of [65] the presented method is applied to a semis-
mooth reformulation of Mixed Complementarity Problems (MCPs) from the
MCPLIB [23]. The results are very impressive. A reason for this could be that
the subproblems (4.25) are solved with a QP solver if the used Cauchy decrease
condition is not satisfied instead of taking the Cauchy point itself as it is done
in other methods. This seems to be very effective, but is also costly.

Conclusive it can be said that the non-monotone trust-region method by Ul-
brich possesses strong global and local convergence results and is able to handle
semismooth functions. The numerical properties are very good, but an efficient
QP solver is needed, which is a disadvantage of this method. Depending on the
given problem it can be a disadvantage that this method is not an interior point
method. This can be the case if F is not defined on the boundary of Ω.

Beside the methods already described in this section there are only few methods
for nonlinear systems taking explicitly into account box constraints. These other
methods have strong global and local convergence properties as well, but since
our main interest lies on affine-scaling methods, we describe them only shortly.

• In [41] Kanzow proposes an active-set type Newton method for (NE). The
objective function is assumed to be smooth and the generated iterates are
feasible. Global and local convergence results are carried out. The rate
of convergence is quadratic under standard assumptions. A numerical
comparison of this method with the STRN method is presented in [2].
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• Kozakevich, Mart́ınez and Santos describe in [46] a feasible inexact Newton-
type approach for bound constrained smooth equations that has to solve
a convex QP with bound constraints in each iteration. Global and local
superlinear convergence theorems and numerical tests are established.

• A method for nonsmooth nonlinear systems with bound constraints is de-
veloped by Qi, Tong and Li in [59]. This active set projected trust-region
algorithm is shown to be globally and locally quadratically convergent and
numerical experiments are described.

After this summary over existing methods for bound constrained nonlinear sys-
tems we describe our affine-scaling approach to semismooth systems of equations
with bound constraints.

4.2 Description of the Method

This section gives a detailed description of our trust-region-type method for the
solution of problem (NE). To this end, we first recall that (NE) is closely related
to the box constrained optimization problem

minimize f(x) :=
1

2
‖F (x)‖2 subject to x ∈ Ω. (4.30)

In fact, every solution x∗ of (NE) is a global minimum of (4.30). Conversely,
if x∗ is a minimum of (4.30) such that f(x∗) = 0, then x∗ is also a solution of
(NE).

Regarding the mapping f defined in (4.30), we make the following assumption,
which we assume to hold throughout the remaining part of this chapter.

(A) The mapping f from (4.30) is continuously differentiable.

Assumption (A) obviously holds if F itself is continuously differentiable. How-
ever, there are also some interesting situations where f is continuously differen-
tiable although F is not differentiable (but semismooth), see e.g. [30, 16, 9] for
some examples in the context of complementarity problems.

We exploit the relation between the two problems (NE) and (4.30) and apply
again the observation of Coleman and Li [11, 12] that the first order optimality
conditions of (4.30) are equivalent to the nonlinear system of equations

D(x)∇f(x) = 0, x ∈ Ω, (4.31)

with a suitable scaling matrix

D(x) = diag
(
d1(x), . . . , dn(x)

)
.
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Originally, Coleman and Li [11, 12] consider only one particular choice of the
scaling matrix D(x). However Heinkenschloss et al. [37] extended this equiva-
lence to a rather general class of scaling matrices satisfying the conditions (2.3),
i.e.

di(x)







= 0, if xi = li and [∇f(x)]i > 0,
= 0, if xi = ui and [∇f(x)]i < 0,
≥ 0, if xi ∈ {li, ui} and [∇f(x)]i = 0,
> 0, else

for all i = 1, . . . , n and all x ∈ Ω, see also Lemma 2.2. In fact, the reader
may find some other scaling matrices (satisfying these conditions and sometimes
having better convergence properties than the original Coleman-Li-scaling) in
[37, 42, 67].

In this work, we allow the scaling matrix satisfying (2.3) to be from a rather
general class, see Assumption (C) below. Several existing scaling matrices from
the literature satisfy our assumptions, for example, we may take the Coleman-
Li-scaling [11, 12], defined by

dCL
i (x) :=







xi − li, if [∇f(x)]i > 0 and li > −∞,
ui − xi, if [∇f(x)]i < 0 and ui <∞,
min{xi − li, ui − xi}, if [∇f(x)]i = 0 and (li > −∞ or ui <∞),
1, else,

(4.32)
for x ∈ Ω (more precisely, this is the modified Coleman-Li-scaling suggested by
Heinkenschloss et al. [37] or (3.16) with respect to infinite bounds, see also [5, 6]
or (4.11)), or the minimum-scaling

dMIN
i (x) :=

{
1, if li = −∞ and ui = +∞,
di(x), otherwise,

(4.33)

with

di(x) := min
{
xi − li + γ max{0,−[∇f(x)]i}, ui − xi + γ max{0, [∇f(x)]i}

}
,

where γ > 0 is a given constant, cf. (4.33) or [42]. Both scaling matrices may
be used in order to prove suitable global and local convergence results. Nev-
ertheless, we stress that the minimum-scaling has some additional properties
(see Assumption (D) below) that allows us to prove stronger global convergence
results than for the Coleman-Li-scaling (see Theorem 4.20 below).

In order to construct a suitable method for the solution of problem (NE),
we follow an interior-point trust-region approach for (4.30) similar to those in
[12, 19, 67] for box constrained optimization, although it should be pointed out
that our quadratic model is different due to the fact that we deal with nonlinear
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systems of equations. Given an iterate xk ∈ int Ω, we consider the quadratic
model

mk(p) :=
1

2
‖F (xk) + Hkp‖2 ≈

1

2
‖F (xk + p)‖2

on the scaled trust-region
{
p ∈ R

n : ‖D(xk)−1/2p‖ ≤ ∆k

}
,

where ∆k > 0 denotes the trust-region radius, and where Hk ∈ ∂F (xk) is an
element of the generalized Jacobian of F at xk. In order to get the next it-
erate xk+1 ∈ int Ω, we first compute an approximate solution pk ∈ R

n of the
subproblem

minimize mk(p) s.t. xk + p ∈ int Ω, ‖D(xk)−1/2p‖ ≤ ∆k. (4.34)

Following the standard trust-region philosophy, we then define the predicted and
actual reductions by

aredk (pk) := f(xk)− f(xk + pk) and

predk (pk) := mk(0)−mk(p
k) = f(xk)−mk(p

k),

respectively. If the quotient

rk :=
aredk (pk)

predk (pk)
(4.35)

is sufficiently large, we accept the quadratic model, compute xk+1 := xk + pk,
and possibly increase the trust-region radius ∆k. Otherwise we reject the step,
set xk+1 := xk again and decrease the radius ∆k.

Hence it remains to specify the computation of our approximate solution pk. To
this end, we first define the modified Cauchy-step

pk
CP := −τCP Dk∇f(xk),

where Dk := D(xk) and τCP = τ k
CP ∈ R is a solution of the one-dimensional

problem

minimize mk(p(τ)) s.t. p(τ) = −τDk∇f(xk), ‖D−1/2
k p(τ)‖ ≤ ∆k

θ(l − xk) ≤ p(τ) ≤ θ(u− xk), τ ≥ 0,
(4.36)

where θ ∈ (0, 1) is a given constant which guarantees that xk + pk
CP ∈ int Ω,

see also Dennis and Vicente [19] or Section 3.1.3. We then compute a vector
pk ∈ R

n satisfying the fraction of Cauchy-decrease condition

mk(p
k) ≤ mk(p

k
CP ), xk + pk ∈ int Ω, ‖D−1/2

k pk‖ ≤ ∆k; (4.37)
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in particular, we may take pk = pk
CP (although, in practice, we try other steps

first, see the corresponding comments in Section 4.5). With such a choice of
pk, it is possible to prove a global convergence result. In order to get fast local
convergence, we also use a projected interior-point Newton-type step. Since the
(generalized) Newton direction

pk
N := −H−1

k F (xk) (where Hk ∈ ∂F (xk)) (4.38)

for the unconstrained problem F (x) = 0 does, in general, not satisfy the con-
dition xk + pk

N ∈ int Ω, we follow [37, 65] and use the projected and truncated
Newton direction

pk
PN := σk

(
PΩ(xk + pk

N)− xk
)
, (4.39)

with

σk := max
{
σ, 1− ‖PΩ(xk + pk

N)− xk‖
}

(4.40)

for some constant σ ∈ (0, 1). We then have xk+1 := xk+pk
PN ∈ int Ω, and we will

see in our convergence analysis that this choice guarantees local fast convergence
under suitable conditions.

In order to get a simple transition from the global method with a direction pk

satisfying (4.37) to the local method with the direction pk
PN from (4.39), we also

incorporate the test

‖F (xk + pk
PN)‖ ≤ η‖F (xk)‖ (4.41)

in our method, where η ∈ (0, 1) denotes another constant. We will see that (4.41)
holds automatically in a neighbourhood of a solution of (NE) under suitable
assumptions. We are now in a position to give a precise statement of the overall
method.

Algorithm 4.15 (Interior-Point Trust-Region Method)

(S.0) Choose x0 ∈ int Ω, ∆0 > 0, ε > 0, η, σ, θ ∈ (0, 1), 0 < ρ1 < ρ2 < 1, and
0 < ω1 < 1 < ω2, set k := 0.

(S.1) If ‖D1/2
k ∇f(xk)‖ ≤ ε: STOP.

(S.2) Choose a matrix Hk ∈ ∂F (xk) and compute (if possible) pk
PN using (4.39).

If (4.41) holds, set xk+1 := xk + pk
PN , ∆k+1 := ω2∆k, and go to (S.5);

otherwise go to (S.3).

(S.3) Compute pk ∈ R
n satisfying (4.37), and define rk by (4.35).

If rk ≥ ρ1, we call iteration k ”successful” and set xk+1 := xk + pk;
otherwise we set xk+1 := xk.
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(S.4) Update the trust-region radius according to the following rules:
If rk < ρ1, set ∆k+1 := ω1∆k.
If rk ∈ [ρ1, ρ2), set ∆k+1 := ∆k.
If rk ≥ ρ2, set ∆k+1 := ω2∆k.

(S.5) Set k ← k + 1, and go to (S.1).

We give a number of comments with some simple properties of Algorithm 4.15.

Remark 4.16 (a) The termination criterion in step (S.1) checks whether the
current iterate xk is an approximate stationary point of the box constrained
optimization problem (4.30).

(b) All iterates xk belong to the interior of the box Ω. Hence the inverse

diagonal matrices D
−1/2
k occurring, e.g., in (4.36), (4.37), always exist since

the elements di(x
k) are positive according to (2.3).

(c) The computation of pk
PN in step (S.2) requires the (generalized) Jacobian

Hk from (4.38) to be nonsingular. If this matrix turns out to be singular,
we immediately switch to step (S.3).

(d) Taking into account the previous comments, Algorithm 4.15 is well-defined
in the sense that all steps can actually be carried out without any addi-
tional assumptions on problem (NE).

(e) The entire sequence {f(xk)} is monotonically decreasing. Equivalently,
this means that we have ‖F (xk+1)‖ ≤ ‖F (xk)‖ for all k ∈ N. In fact, this
is obvious if the test (4.41) gets accepted in step (S.2) of Algorithm 4.15.
Otherwise, we compute pk satisfying (4.37) in step (S.3). If the iteration
is not successful, we have ‖F (xk+1)‖ = ‖F (xk)‖, otherwise we have

rk ≥ ρ1 ⇐⇒ f(xk)− f(xk + pk) ≥ ρ1

(
f(xk)−mk(p

k)
)
.

Here, the expression on the right-hand side is nonnegative because we have

mk(p
k) ≤ mk(p

k
CP ) ≤ mk(0) = f(xk)

in view of (4.37) and the definition of the Cauchy step pk
CP . Hence, the

inequality f(xk) ≥ f(xk + pk) = f(xk+1) also holds for all successful iter-
ations in step (S.3).

In our subsequent convergence analysis, we assume throughout that ε = 0 and
that Algorithm 4.15 generates an infinite sequence, i.e., it does not terminate
after a finite number of iterations satisfying the first order optimality conditions
of problem (4.30).
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4.3 Global Convergence

The aim of this section is to prove a global convergence result for Algorithm
4.15. To this end, we need two more assumptions. The first is a boundedness
assumption, which is rather standard in trust-region methods (see e.g. [15]),
and the second one is a condition regarding the choice of the diagonal scaling
matrix D(x).

(B) The sequence {Hk} generated by Algorithm 4.15 is bounded.

(C) The scaling matrix D(x) satisfies (2.3) and is bounded on Ω. Furthermore,
there exists a constant α > 0 such that

αdi(x) ≤
{

xi − li, if [∇f(x)]i > 0 and li > −∞,
ui − xi, if [∇f(x)]i < 0 and ui < +∞

for all i = 1, . . . , n and all x ∈ int Ω.

Note that the last part of (C) is satisfied both by the modified Coleman-Li-
scaling (4.32) and the minimum-scaling (4.33) with α = 1. Furthermore, all
remaining conditions hold automatically if Ω itself is bounded, i.e., if all lower
and upper bounds li and ui are finite (this follows, e.g., from the upper semicon-
tinuity of the generalized Jacobian, see [10]). This assumption is quite realistic
in many cases since otherwise one may replace infinite bounds by sufficiently
large bounds.

There is a simple consequence of Assumption (B) that will play a crucial role in
our subsequent analysis and that is therefore stated explicitly in the following
remark.

Remark 4.17 Suppose that Assumptions (A) and (B) hold. Then the sequence
{∇f(xk)} is bounded. To see this, note that Assumption (A) and [10, Propo-
sition 2.2.4 and Theorem 2.6.6] together imply that we can write the gradient
as ∇f(xk) = HT

k F (xk) with Hk being the matrix from step (S.2) of Algorithm
4.15. Now {Hk} is bounded in view of Assumption (B). Moreover, {‖F (xk)‖}
is also bounded because of Remark 4.16 (e), so that {∇f(xk)} must indeed be
bounded.

We now state a technical lemma that leads to a lower bound for the predicted
reduction. Results of this kind are standard for trust-region methods, see, in
particular, [67, Lemma 6.1] and [19, Lemma 4.1].

Lemma 4.18 Suppose that Assumptions (A) and (C) hold, and let pk ∈ R
n

satisfy the fraction of Cauchy-decrease condition (4.37). Then

predk (pk) ≥ 1

2
‖D1/2

k gk‖min
{

∆k,
‖D1/2

k gk‖
‖D1/2

k HT
k HkD

1/2
k ‖

, θα
‖D1/2

k gk‖
‖gk‖∞

}

(4.42)
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where gk := ∇f(xk) denotes the gradient of f at xk. If, in addition, Assumption
(B) holds, then there exists a constant C > 0 such that

predk (pk) ≥ C‖D1/2
k gk‖2 min{∆k, 1}. (4.43)

Proof. The proof is essentially the same as in [67, 19], except that we have a
different quadratic model since we deal with box constrained nonlinear equations
instead of bound constrained optimization problems. For the sake of complete-
ness, however, we include the full proof here.

Consider a fixed iterate xk ∈ int Ω, and recall that the stepsize τ ≥ 0 in (4.36)
has to satisfy the two feasibility requirements

‖D−1/2
k p(τ)‖ ≤ ∆k (4.44)

and

θ(l − xk) ≤ p(τ) ≤ θ(u− xk). (4.45)

Let τ∆ and τΩ denote the two maximum stepsizes such that (4.44) and (4.45)
hold, respectively. Since p(τ) = −τDkg

k, an elementary calculation shows that

τ∆ =
∆k

‖D1/2
k gk‖

and

τΩ = θ min
{

min
i:[Dkgk]i<0

{ ui − xk
i

−[Dkgk]i

}

, min
i:[Dkgk]i>0

{ li − xk
i

−[Dkgk]i

}}

.

Hence the solution τCP = τ k
CP of the one-dimensional problem (4.36) has to

belong to the interval [0, τ+], where

τ+ := min{τ∆, τΩ}.

(Note that τ∆, τΩ and, therefore, τ+ are well-defined because Dkg
k 6= 0 since

otherwise we would have stopped in step (S.1) of Algorithm 4.15.) From the
Cauchy-decrease condition (4.37), we therefore obtain

mk(p
k) ≤ mk(p

k
CP ) = min

τ∈[0,τ+]
φ(τ)

with

φ(τ) := mk(−τDkg
k).

Let τ ∗(= τCP ) be a solution of

minimize φ(τ) s.t. τ ∈ [0, τ+].
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Using the notation

Fk := F (xk), ĝk := D
1/2
k gk, and M̂k := D

1/2
k HT

k HkD
1/2
k ,

and recalling that gk = HT
k Fk (see Remark 4.17), the function φ may be rewritten

as

φ(τ) =
1

2
‖Fk‖2 − τF T

k HkDkg
k +

1

2
τ 2(gk)T DkH

T
k HkDkg

k

=
1

2
‖Fk‖2 − τ‖ĝk‖2 +

1

2
τ 2(ĝk)T M̂kĝ

k.

Note that M̂k is always positive semidefinite. We now distinguish four cases.

Case 1 : Suppose that τ ∗ ∈ (0, τ+). Then τ ∗ is an unconstrained minimum of φ,
and we therefore get

0 = φ′(τ ∗) = −‖ĝk‖2 + τ ∗(ĝk)T M̂kĝ
k. (4.46)

This gives the explicit formula

τ ∗ =
‖ĝk‖2

(ĝk)T M̂kĝk
.

(Note that the denominator is nonzero, because otherwise (4.46) would lead to

D
1/2
k gk = 0 and we would have stopped in step (S.1) of Algorithm 4.15.) This

implies

φ(τ ∗) =
1

2
‖Fk‖2 −

1

2

‖ĝk‖4
(ĝk)T M̂kĝk

≤ 1

2
‖Fk‖2 −

1

2

‖ĝk‖2
‖M̂k‖

.

Case 2 : Assume that τ ∗ = τ+ and τ+ = τ∆. If, in addition, we have (ĝk)T M̂kĝ
k >

0, the necessary optimality condition φ′(τ ∗) ≤ 0 implies

τ ∗ ≤ ‖ĝk‖2
(ĝk)T M̂kĝk

. (4.47)

We therefore get

φ(τ ∗) ≤ 1

2
‖Fk‖2 − τ∆‖ĝk‖2 +

1

2
τ∆

(

‖ĝk‖2
(ĝk)T M̂kĝk

)

(ĝk)T M̂kĝ
k

=
1

2
‖Fk‖2 −

1

2
τ∆‖ĝk‖2

=
1

2
‖Fk‖2 −

1

2
∆k‖ĝk‖

from the definition of τ∆. On the other hand, if we have (ĝk)T M̂kĝ
k = 0, we also

obtain

φ(τ ∗) =
1

2
‖Fk‖2 − τ∆‖ĝk‖2 =

1

2
‖Fk‖2 −

1

2
∆k‖ĝk‖.
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Case 3 : Suppose that τ ∗ = τ+ and τ+ = τΩ. Here we first take a closer look at
τΩ. Using Assumption (C), we get the following lower bound for the maximum
stepsize τΩ:

τΩ = θ min
{

min
i:[Dkgk]i<0

{ ui − xk
i

−[Dkgk]i

}

, min
i:[Dkgk]i>0

{ li − xk
i

−[Dkgk]i

}}

= θ min
{

min
i:[Dkgk]i<0

{ ui − xk
i

di(xk)|gk
i |
}

, min
i:[Dkgk]i>0

{ xk
i − li

di(xk)|gk
i |
}}

≥ θ min
{

min
i:[Dkgk]i<0

{ ui − xk
i

di(xk)‖gk‖∞

}

, min
i:[Dkgk]i>0

{ xk
i − li

di(xk)‖gk‖∞

}}

≥ θα

‖gk‖∞
.

Therefore, if we have (ĝk)T M̂kĝ
k > 0, then φ′(τ ∗) ≤ 0, hence (4.47) holds, and

we get

φ(τ ∗) ≤ 1

2
‖Fk‖2 −

1

2
τΩ‖ĝk‖2 ≤ 1

2
‖Fk‖2 −

θα

2

‖ĝk‖2
‖gk‖∞

.

On the other hand, if (ĝk)T M̂kĝ
k = 0, we also obtain

φ(τ ∗) =
1

2
‖Fk‖2 − τ ∗‖ĝk‖2 =

1

2
‖Fk‖2 − τΩ‖ĝk‖2 ≤ 1

2
‖Fk‖2 −

θα

2

‖ĝk‖2
‖gk‖∞

.

Case 4 : Suppose that τ ∗ = 0. Then the necessary optimality condition−‖ĝk‖2 =

φ′(τ ∗) ≥ 0 implies ĝk = 0, a contradiction to D
1/2
k gk 6= 0. Hence this case does

not occur.

Taking all cases together, we get

mk(p
k) ≤ φ(τ ∗) ≤ 1

2
‖Fk‖2 −

1

2
min

{

∆k‖ĝk‖, ‖ĝ
k‖2

‖M̂k‖
, θα
‖ĝk‖2
‖gk‖∞

}

.

Consequently, we obtain the lower bound

predk (pk) = mk(0)−mk(p
k) ≥ 1

2
‖ĝk‖min

{

∆k,
‖ĝk‖
‖M̂k‖

, θα
‖ĝk‖
‖gk‖∞

}

(4.48)

for the predicted reduction, which is precisely the statement from (4.42).

Now suppose that Assumptions (A)–(C) hold. Then the sequences {‖Hk‖},
{‖gk‖∞} and {‖D1/2

k ‖} are bounded, cf. Remark 4.17. Hence {‖M̂k‖} and {‖ĝk‖}
are bounded as well. Therefore, (4.48) yields the existence of a constant C > 0
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such that

predk (pk) ≥ 1

2
‖ĝk‖min

{∆k‖ĝk‖
‖ĝk‖ ,

‖ĝk‖
‖M̂k‖

, θα
‖ĝk‖
‖gk‖∞

}

=
1

2
‖ĝk‖2 min

{ ∆k

‖ĝk‖ ,
1

‖M̂k‖
,

θα

‖gk‖∞

}

≥ C‖ĝk‖2 min{∆k, 1}

for all k ∈ N, and this proves the second statement. 2

Note that the proof of Lemma 4.18 shows, in particular, how the Cauchy step
pk

CP can be computed in practice.

We are now in the position to state the first main global convergence result for
Algorithm 4.15. To this end, note that we are dealing with two different search
directions pk

PN (the projected Newton-like step) and pk (the Cauchy-like step).
While the former will play a central role for the local rate of convergence, the
Cauchy-like step is the main tool for showing global convergence. This is similar
to some existing results stated in [12, 19, 67], for example. Note that the local
direction pk

PN does not destroy the global convergence of the overall method.

Theorem 4.19 Suppose that Assumptions (A)–(C) hold. Then

lim inf
k→∞

‖D1/2
k ∇f(xk)‖ = 0. (4.49)

Moreover, if the direction pk
PN is accepted an infinite number of times in step

(S.2) of Algorithm 4.15, we have

lim
k→∞
‖F (xk)‖ = 0. (4.50)

Proof. First recall from Remark 4.16 (e) that the entire sequence {‖F (xk)‖}
is monotonically decreasing. Hence, if the test (4.41) in step (S.2) of Algorithm
4.15 is satisfied an infinite number of times, we immediately obtain (4.50). In
particular, this implies ‖∇f(xk)‖ → 0 and therefore (4.49) since the sequence
{Dk} stays bounded in view of Assumption (C).

It remains to consider the case where the direction pk
PN is accepted only a finite

number of times. Without loss of generality, we may assume that this never
happens, so we always compute the direction pk. Suppose that (4.49) does not
hold. Then there is a constant δ > 0 such that

‖ĝk‖ ≥ δ ∀k ∈ N, (4.51)

where, again, we write ĝk := D
1/2
k ∇f(xk).
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In the first part of this proof, we show that this implies

∞∑

k=0

∆k <∞. (4.52)

In fact, if there is only a finite number of successful iterations, we have ∆k+1 =
ω1∆k for all k ∈ N sufficiently large, and (4.52) follows from ω1 ∈ (0, 1) and
the convergence of the geometric series. Otherwise, there is an infinite number
of successful iterations. Let ki denote the indices of the successful iterations.
Since {f(xk)} is monotonically decreasing and bounded from below, the entire
sequence {f(xk)} converges. In particular, we have

∞∑

k=0

(
f(xk)− f(xk+1)

)
<∞. (4.53)

From (4.43) and (4.51), we obtain

f(xki)−f(xki+1) = aredki
(pki) ≥ ρ1predki

(pki) ≥ ρ1Cδ2 min{∆ki
, 1} > 0 (4.54)

for all successful iterations. Since the expression on the left-hand side of (4.54)
converges to zero, it follows that min{∆ki

, 1} = ∆ki
for all sufficiently large ki.

Consequently, (4.54) implies

∆ki
≤ 1

ρ1Cδ2

(
f(xki)− f(xki+1)

)
.

Since {f(xk)} is monotonically decreasing, it therefore follows from (4.53) that

∞∑

i=0

∆ki
≤ 1

ρ1Cδ2

∞∑

i=0

(
f(xki)− f(xki+1)

)
≤ 1

ρ1Cδ2

∞∑

k=0

(
f(xk)− f(xk+1)

)
<∞.

(4.55)
If there are unsuccessful iterations between two successful ones, say ki and ki+1,
we have

∆ki+1 ≤ ω2∆ki
and ∆l+1 = ω1∆l ∀l ∈ {ki + 1, . . . , ki+1 − 1}.

This implies

ki+1−1
∑

l=ki+1

∆l ≤ ∆ki+1

∞∑

j=0

ωj
1 =

1

1− ω1

∆ki+1 ≤
ω2

1− ω1

∆ki
.
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Together, we obtain from (4.55) that

∞∑

k=0

∆k =
∑

k∈{ki}

∆k +
∑

k/∈{ki}

∆k

≤
∞∑

i=0

∆ki
+

ω2

1− ω1

∞∑

i=0

∆ki

=

(

1 +
ω2

1− ω1

) ∞∑

i=0

∆ki
<∞,

and the proof of (4.52) is complete. As a consequence of (4.52), it follows that

min{∆k, 1} = ∆k for all k ∈ N sufficiently large, (4.56)

and
‖pk‖ ≤ ‖D1/2

k ‖ ‖D
−1/2
k pk‖ ≤ ‖D1/2

k ‖∆k ≤ C1∆k −→ 0 (4.57)

since there is a constant C1 > 0 such that ‖D1/2
k ‖ ≤ C1 for all k ∈ N in view of

Assumption (C). Moreover, we obtain from (4.57) that

‖xk+p − xk‖ ≤
p−1∑

j=0

‖xk+j+1 − xk+j‖ ≤
p−1∑

j=0

‖pk+j‖ ≤ C1

p−1∑

j=0

∆k+j.

Consequently, (4.52) implies that {xk} is a Cauchy sequence and therefore con-
vergent.

In the next part of the proof, we show that limk→∞ rk = 1. To this end, first
note that

∣
∣predk (pk)

∣
∣ |rk − 1| =

∣
∣predk (pk)

∣
∣

∣
∣
∣
∣

aredk (pk)

predk (pk)
− 1

∣
∣
∣
∣

=
∣
∣aredk (pk)− predk (pk)

∣
∣

=
∣
∣f(xk + pk)− f(xk) + mk(0)−mk(p

k)
∣
∣.

From the mean-value theorem, we therefore get the existence of a vector ξk

between xk and xk + pk such that

∣
∣predk (pk)

∣
∣ |rk − 1| =

∣
∣∇f(ξk)T pk −∇f(xk)Tpk − 1

2
(pk)T HT

k Hkp
k
∣
∣

≤ ‖∇f(ξk)−∇f(xk)‖‖pk‖+
1

2
‖Hkp

k‖2

≤ ‖∇f(ξk)−∇f(xk)‖C1∆k +
1

2
‖Hk‖2C2

1∆2
k,

where the last inequality follows from (4.57). Dividing this expression by ∆k > 0,
using Assumption (B), noting that ∆k → 0 and ‖∇f(ξk)− ∇f(xk)‖ → 0 since
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∇f is continuous and both sequences {xk}, {ξk} converge to the same point (see
(4.57)), we obtain

∣
∣predk (pk)

∣
∣

∆k
|rk − 1| → 0. (4.58)

However, using (4.43), (4.51), and (4.56), we have

predk (pk)

∆k
≥ C‖D1/2

k gk‖2 ≥ Cδ2

for all k ∈ N sufficiently large. This implies |rk−1| → 0 because of (4.58). This,
in turn, gives ∆k+1 ≥ ∆k for all these k, a contradiction to (4.52). 2

Note that, if the entire sequence {xk} remains bounded, then (4.49) guarantees
that at least one accumulation point of this sequence is a stationary point of the
optimization problem (4.30), whereas (4.50) guarantees that every accumulation
point is a solution of the box constrained system of equations (NE).

In order to prove a stronger convergence result than Theorem 4.19 with the
limit inferior in (4.49) being replaced by the limit, we need to introduce another
assumption, see also [67, Assumption (A.6)].

(D) The scaled gradient D(x)1/2∇f(x) is uniformly continuous.

Note that Assumption (D) is satisfied automatically on compact sets if D(x)
denotes the minimum-scaling from (4.33). This follows from the fact that both
∇f and D(x)1/2 are continuous and therefore uniformly continuous on compact
sets. This is in contrast to the scaling from (4.32) which is not continuous.

Theorem 4.20 Suppose that Assumptions (A)–(D) hold. Then

lim
k→∞
‖D1/2

k ∇f(xk)‖ = 0.

Proof. Similar to the proof of Theorem 4.19, we may assume that the test
(4.41) in step (S.2) of Algorithm 4.15 is never accepted, so we always compute
the direction pk in step (S.3).

Suppose our statement is not true. Then there exists a constant δ > 0 and a
subsequence {xk}K such that

‖D1/2
k ∇f(xk)‖ ≥ 2δ ∀k ∈ K. (4.59)

In view of Theorem 4.19, we have lim infk→∞ ‖D1/2
k ∇f(xk)‖ = 0. Therefore, we

can find for each k ∈ K an iteration index `(k) > k such that

‖D1/2
` ∇f(x`)‖ ≥ δ ∀k ≤ ` < `(k)
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and
‖D1/2

`(k)∇f(x`(k))‖ < δ, k ∈ K. (4.60)

Using Assumptions (B), (C), there exist constants C1 > 0 and C2 > 0 such that

‖D1/2
k ‖ ≤ C1 and ‖Hk‖ ≤ C2 for all k ∈ N.

Now, let k ∈ K be fixed for the moment, take an arbitrary ` with k ≤ ` < `(k),
and assume that the `-th iteration is successful. Then we obtain from Lemma
4.18 that

f(x`)− f(x`+1) ≥ ρ1

(
f(x`)−m`(p

`)
)
≥ ρ1C‖D1/2

` ∇f(x`)‖2 min{∆`, 1}.

Since the left-hand side converges to zero and since

‖x`+1 − x`‖ = ‖p`‖ ≤ ‖D1/2
` ‖ ‖D

−1/2
` p`‖ ≤ ‖D1/2

` ‖∆` ≤ C1∆`,

we obtain

f(x`)− f(x`+1) ≥ ρ1C‖D1/2
` ∇f(x`)‖2∆` ≥

δ2ρ1C

C1
‖x`+1 − x`‖.

Trivially, this inequality also holds if the `-th iteration is not successful. Conse-
quently, we get

δ2ρ1C

C1
‖x`(k) − xk‖ ≤ δ2ρ1C

C1

`(k)−1
∑

`=k

‖x`+1 − x`‖

≤
`(k)−1
∑

`=k

(
f(x`)− f(x`+1)

)

= f(xk)− f(x`(k))

for all k ∈ K. Since {f(xk)} converges, this implies
{
‖x`(k) − xk‖

}

k∈K
→ 0.

In view of Assumption (D), we therefore have

{
‖D1/2

`(k)∇f(x`(k))−D
1/2
k ∇f(xk)‖

}

k∈K
→ 0.

On the other hand, it follows from (4.59) and (4.60) that
∥
∥D

1/2
`(k)∇f(x`(k))−D

1/2
k ∇f(xk)

∥
∥ ≥

∥
∥D

1/2
k ∇f(xk)

∥
∥−

∥
∥D

1/2
`(k)∇f(x`(k))

∥
∥

≥ 2δ − δ = δ.

This contradiction completes the proof. 2
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4.4 Local Convergence

In this section, we consider the local convergence properties of Algorithm 4.15.
More precisely, we show in the following result that, locally, the projected and
truncated Newton-direction is always accepted in step (S.2), and that this di-
rection guarantees superlinear and even quadratic convergence under suitable
assumptions.

Theorem 4.21 Let {xk} be a sequence generated by Algorithm 4.15, and let x∗

be an accumulation point of this sequence such that F (x∗) = 0 and all elements
H∗ ∈ ∂F (x∗) are nonsingular. Then the following statements hold:

(a) The entire sequence {xk} converges to x∗.

(b) The rate of convergence is Q-superlinear.

(c) If F is strongly semismooth, the rate of convergence is Q-quadratic.

Proof. Since all elements H∗ ∈ ∂F (x∗) are nonsingular, it follows from [58,
Proposition 3.1] that there exist constants ε1 > 0 and c > 0 such that

‖H(x)−1‖ ≤ c ∀x ∈ Bε1
(x∗), ∀H(x) ∈ ∂F (x). (4.61)

Moreover, being semismooth, F is locally Lipschitz continuous. Hence there
exist constants ε2 > 0 and L1 > 0 with

‖F (x)− F (y)‖ ≤ L1‖x− y‖ ∀x, y ∈ Bε2
(x∗). (4.62)

Furthermore, the nonsingularity assumption and [10, Theorem 7.1.1] implies
that the inverse function F−1 exists in a sufficiently small neighbourhood of
F (x∗), and this function is also locally Lipschitz. Consequently, we get the
existence of two constants ε3 > 0 and L2 > 0 such that

∥
∥F−1(F (x))− F−1(F (y))

∥
∥ ≤ L2‖F (x)− F (y)‖ ∀x, y ∈ Bε3

(x∗). (4.63)

Using Proposition 2.19 and the semismoothness of F , we see that there is another
constant ε4 > 0 such that

‖F (x)− F (x∗)−H(x)(x− x∗)‖ ≤ min

{
η

2cL1L2
,

1

4c

}

‖x− x∗‖ (4.64)

for all x ∈ Bε4
(x∗) and all H(x) ∈ ∂F (x), where η denotes the constant from

(4.41). Moreover, by continuity, there is a constant ε5 > 0 with

‖F (x)‖ ≤ min

{
η

2cL1L2
,
1− σ

c

}

∀x ∈ Bε5
(x∗), (4.65)
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where σ ∈ (0, 1) denotes the constant from Algorithm 4.15. Finally, the nonsin-
gularity assumption implies that there is another constant ε6 > 0 such that σk

from (4.40) satisfies

σk = 1−
∥
∥PΩ(xk + pk

N)− xk
∥
∥ ≥ 3

4
∀xk ∈ Bε6

(x∗). (4.66)

Now define ε := min{εi : i = 1, . . . , 6}. Since x∗ is an accumulation point of the
sequence {xk}, we can choose an iterate xk (the index k is fixed for the moment)
such that xk ∈ Bε(x

∗) ∩ int Ω. We will show that the next iterate also belongs
to this neighbourhood and, in fact, is actually much closer to x∗ than xk is. The
proof of statement (a) then follows by a simple induction argument.

To this end, we first note that Hk is nonsingular in view of (4.61), and we
therefore obtain from (4.64) that

‖xk + pk
N − x∗‖ = ‖xk −H−1

k F (xk)− x∗‖
≤ ‖H−1

k ‖‖F (xk)− F (x∗)−Hk(x
k − x∗)‖ (4.67)

≤ min
{ η

2L1L2
,
1

4

}

‖xk − x∗‖,

in particular, xk + pk
N also belongs to the neighbourhood Bε(x

∗) of the solution
x∗. Since we can write

xk + pk
PN − x∗ = σk

(
PΩ(xk + pk

N)− x∗
)

+ (1− σk)(x
k − x∗), (4.68)

it is easy to see that this also implies that the vector xk+pk
PN is in the neighbour-

hood Bε(x
∗) of x∗. Using xk ∈ int Ω, (4.61), (4.65), and the nonexpansiveness

of the projection operator, we get

‖PΩ(xk +pk
N)−xk‖ = ‖PΩ(xk +pk

N )−PΩ(xk)‖ ≤ ‖pk
N‖ ≤ ‖H−1

k ‖‖F (xk)‖ ≤ 1−σ.

In view of (4.40), (4.66), this yields

1− σk = ‖PΩ(xk + pk
N )− xk‖ ≤ ‖H−1

k ‖‖F (xk)‖ ≤ c‖F (xk)‖. (4.69)

Using (4.62), (4.68), (4.67), (4.69), (4.65), (4.63), σk ≤ 1, and the nonexpan-
siveness of the projection operator, we get

‖F (xk + pk
PN)‖ = ‖F (xk + pk

PN)− F (x∗)‖
≤ L1‖xk + pk

PN − x∗‖
≤ L1σk‖xk + pk

N − x∗‖+ L1(1− σk)‖xk − x∗‖
≤ η

2L2
‖xk − x∗‖+ L1c‖F (xk)‖ ‖xk − x∗‖

≤ η

2L2

‖xk − x∗‖+
η

2L2

‖xk − x∗‖
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=
η

L2

∥
∥F−1(F (xk))− F−1(F (x∗))

∥
∥

≤ η‖F (xk)− F (x∗)‖
= η‖F (xk)‖.

Hence the projected Newton direction is accepted in step (S.2), and the next
iterate is given by xk+1 = xk + pk

PN . Together with (4.66), (4.67), and (4.68),
this implies

‖xk+1 − x∗‖ = ‖xk + pk
PN − x∗‖

≤ σk‖xk + pk
N − x∗‖+ (1− σk)‖xk − x∗‖

≤ ‖xk + pk
N − x∗‖+

1

4
‖xk − x∗‖

≤ 1

2
‖xk − x∗‖.

Therefore, we also have xk+1 ∈ Bε(x
∗). Using an induction argument, it follows

that the test ‖F (xk + pk
PN)‖ ≤ η‖F (xk)‖ is satisfied for all sufficiently large

k ∈ N, so that we have xk+1 = xk + pk
PN and

‖xk+1 − x∗‖ ≤ 1

2
‖xk − x∗‖ (4.70)

for all k ∈ N large enough. In particular, the sequence {xk} is well-defined and
converges (at least) linearly to x∗.

To prove superlinear convergence, we consider the inequality

‖xk+1 − x∗‖ ≤ σk‖xk + pk
N − x∗‖+ (1− σk)‖xk − x∗‖ (4.71)

again, cf. (4.68). For sufficiently large k ∈ N, it follows from (4.69) and (4.62)
that

1− σk ≤ c‖F (xk)‖ = c‖F (xk)− F (x∗)‖ = O(‖xk − x∗‖).

Using Proposition 2.19 and the semismoothness of F , we get

‖xk + pk
N − x∗‖ ≤ ‖H−1

k ‖‖F (xk)− F (x∗)−Hk(x
k − x∗)‖ = o(‖xk − x∗‖).

Since σk → 1, we therefore obtain from (4.71) that ‖xk+1 − x∗‖ = o(‖xk − x∗‖).
Hence the local rate of convergence is superlinear.

If F is strongly semismooth, it follows from Proposition 2.19 that

‖xk + pk
N − x∗‖ ≤ ‖H−1

k ‖‖F (xk)− F (x∗)−Hk(x
k − x∗)‖ = O(‖xk − x∗‖2).
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Since 1 − σk = O(‖xk − x∗‖), we therefore get ‖xk+1 − x∗‖ = O(‖xk − x∗‖2)
from (4.71). Hence the rate of convergence is locally quadratic in the strongly
semismooth case. 2

The assumptions for local quadratic convergence in Theorem 4.21 are satisfied,
e.g., if F is continuously differentiable with F ′ being locally Lipschitz continuous
and F ′(x∗) being nonsingular. However, in some applications the assumptions
of Theorem 4.21 also hold for nonsmooth F , especially in the context of com-
plementarity problems and variational inequalities, see, for example, [16, 29].

Remark 4.22 We close this section by noting that our (global and) local con-
vergence theory would remain true if we would solve the linear system of equa-
tions (4.38) only inexactly. The classical reference for smooth (unconstrained)
equations is [17], and an extension to semismooth equations may be found in
[51, 24]. From a practical point of view, it is our experience, however, that such
an extension is much less obvious since it requires an iterative linear system
solver (like a Krylov subspace method, see [61]) for nonsymmetric linear sys-
tems of equations. Typically, we then need a very good preconditioner in order
for such a method to be effective, and the choice of a suitable preconditioner
depends very much on the particular problem that we want to solve.

4.5 Numerical Experiments

In this section, we apply Algorithm 4.15 to several test problems of different
types. Some of these problems are originally not given in the form of a nonlinear
system of equations with box constraints, but can be reformulated in this way.
We implemented Algorithm 4.15 in MATLAB using the scaling matrix from
(4.33) and the following constants:

σ = 0.995, θ = 0.95, η = 0.1, γ = 1, ω1 = 0.25, ω2 = 2,

ρ1 = 0.1, ρ2 = 0.75, ∆0 = 1.

We terminate the iteration, if one of the following criteria is satisfied:

‖D1/2
k ∇f(xk)‖ ≤ 10−6 or ‖F (xk)‖∞ ≤ 10−6.

As a safeguard we stop the iteration, if

k ≥ kmax := 500 or ∆k ≤ ∆min := 10−8.

The search direction pk satisfying (4.37) in step (S.3) is computed in such a way
that we try to avoid using the Cauchy point whenever this is possible. To this
end, we make use of the following three directions:
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• the projected and truncated Newton direction pk
PN from (4.39)

• the truncated Newton direction tpk
N from (4.38), where t > 0 is a stepsize

such that xk + tpk
N belongs to the interior of Ω

• the Cauchy step pk
CP itself.

At each iteration, we then choose the search direction in the following way:

• If pk
PN satisfies (4.41), we take xk+1 := xk + pk

PN .

• Otherwise, if pk := tpk
N satisfies (4.37) for some not too small t > 0 (we

use a backtracking and require t > 10−6 in our current implementation),
we accept xk+1 := xk + pk as our new iterate.

• If none of these two strategies work, we use a dogleg-type step from the
Cauchy point xk + pk

CP to the Newton point xk + pk
N . To this end, we

compute a suitable vector on the connecting line between these two points
such that this vector is strictly feasible for our box constraints and belongs
to the trust-region. If this point satisfies (4.37), it becomes our vector of
choice, otherwise we take the Cauchy point itself.

All these choices require that we are able to solve the linear system (4.38). If
this is not possible, we take the Cauchy point as our new iterate. Note that
all global and local convergence properties remain true for this modification of
Algorithm 4.15.

We next give a summary of the test problems that are used in our numerical
experiments:

1. The Chandrasekhar H-equation. A discretization of Chandrasekhar’s
H-equation leads to a nonlinear system of equations that depends on a
parameter c ∈ [0, 1], see [44, p. 87] for more details. Since this system
has two solutions and only one has a physical meaning, we use the bounds
li := 0 and ui := ∞ for all i = 1, . . . , n. We choose x0 ∈ R

n with x0
i := 1

for all i and consider the cases c = 0.99, c = 0.9999, and c = 1 with
n = 1000.

2. The seven-diagonal problem. This is a nonlinear system of equations
of variable dimension that can be found in [50]. The Jacobians have the
structure of band matrices, which allows us to consider high dimensional
cases. The system has several solutions, so we use the bounds li := 0 and
ui :=∞, i = 1, . . . , n, to avoid negative ones. We choose n = 100000 and
x0

i := 1 for all i = 1, . . . , n.
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3. A countercurrent reactor problem. This problem can be found in [50]
as well. Again the problem has variable dimension, several solutions, and
the Jacobians are band matrices. We consider n = 10000, n = 100000 and
set li := −1, ui :=∞ and x0

i := 1 for i = 1, . . . , n.

4. A chemical equilibrium problem. In [53, system 1], a nonlinear system
of 11 equations and variables is described. A solution of this system is
only physically meaningful if all components of the solution are real and
positive. Following [4] we augment the system given in [53] to the size of
n = 11000 and use li := 0, ui :=∞ and x0

i := 1 for i = 1, . . . , n.

5. Boundary value problems. Discretizing a boundary value problem
leads to a nonlinear system of equations. If this problem has several solu-
tions, the use of bound constraints is quite helpful to avoid, for example,
negative solutions. We use three different boundary value problems for
our numerical test runs, called BVP1, BVP2, and BVP3 in the following.
BVP1 is a two-point boundary value problem from [45, Example 2.7.4]
which has at least two solutions. We use the discretization given in [45]
(n = 800) to approximate the function and the first derivative. In order
to get positive function values, we set li := 0 for all odd i, li := −∞ for
all even i and ui = ∞ for i = 1, . . . , n. BVP2 is taken from [54]. The
discretization given in [54] leads to a nonlinear system that has a unique
solution in the box defined by li = −0.5 and ui = 0 for i = 1, . . . , n.
We set n = 500, use the given bounds and start with x0

i := −0.25 for all
i = 1, . . . , n. Finally, BVP3 is the boundary value problem described in
the introduction and in [63, p. 504]. The problem has two solutions, but
only one is positive. We use the discretization from the introduction and
approximate the positive solution by setting li := 0, ui :=∞. The dimen-
sion of this problem is n = 500, and we take x0

i := 1 for all i = 1, . . . , n.

6. The Floudas et al. collection. In [33, Section 14.1], Floudas et al.
present a collection of box constrained nonlinear systems of equations.
This collection contains nine examples. The dimension of these examples
is small, nevertheless, some of these problems are challenging. All examples
have finite lower and upper bounds. We choose x0 := l + 0.25(u − l) as
initial iterate for all test problems.

7. Complementarity problems. Here one tries to find a solution of the
system

x ≥ 0, G(x) ≥ 0, xT G(x) = 0,

where G : R
n
+ → R

n is a given function that is sometimes not defined
outside the nonnegative orthant. This complementarity problem can be
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reformulated as a square system of equations with box constraints in the
following way:

x ≥ 0, y ≥ 0, G(x)− y = 0, xiyi = 0 ∀i = 1, . . . , n.

Similar reformulations are possible for the slightly more general class of
mixed complementarity problems, and a large number of (often very dif-
ficult) test problems of this class is given in the MCPLIB collection, see
[23]. Since the standard starting points for these examples are sometimes
on the boundary of the feasible region, we use the strategy from [65] and
project the standard starting vector x0 of the MCPLIB on the smaller box
[l̂, û] with l̂i = li + 0.01 and ûi = ui − 0.01 for i = 1, . . . , n for all finite
lower and upper bounds, whereas we use y0

i := 1 for the slack variables.
(Note that all lower and upper bounds from the MCPLIB with absolute
value 1020 are treated as infinite bounds.)

In the following tables, we present our numerical results. For each test problem,
the size of the problem (n), the number of iterations (iter), the evaluations of
the function F (eval), the norm of this function in the last iterate (‖F (x)‖), and
the norm of the stopping criterion in the last iterate (‖D1/2(x)g(x)‖) are given.
Moreover, the number of iterations needed by the STRSCNE code described in
[3] is presented. If a method fails to solve a problem, this is denoted by ”–”.
Table 4.1 contains the results obtained for all examples not taken from the MC-
PLIB collection.

problem n iter eval ‖F (x)‖ ‖D1/2(x)g(x)‖ strscne

H-equation, c = 0.99 1000 8 15 9.253655e-07 1.618650e-05 9
H-equation, c = 0.9999 1000 11 21 4.805774e-08 9.663247e-07 11
H-equation, c = 1 1000 14 29 3.564824e-07 7.302551e-06 16
7-diagonal 100000 6 8 1.024474e-07 1.201056e-06 6
reactor 10000 20 38 9.408478e-09 2.762200e-08 17
reactor 100000 33 63 1.760088e-08 5.488085e-08 24
chemical-eq. 11000 13 23 3.596600e-08 2.187478e-06 27
BVP1 800 7 13 4.219342e-10 6.250180e-10 6
BVP2 500 2 3 6.250000e-06 2.210701e-08 4
BVP3 500 3 4 3.750000e-07 7.526758e-07 6
Floudas no. 1 2 5 7 9.663381e-13 1.249890e-10 5
Floudas no. 2 5 12 22 9.044287e-08 4.664314e-07 12
Floudas no. 3 2 30 57 3.793600e-09 4.301148e-06 20
Floudas no. 4 2 4 6 1.040490e-07 1.158006e-07 5
Floudas no. 5 5 9 16 1.677537e-09 3.751097e-09 9
Floudas no. 6 8 6 10 1.466922e-07 1.214811e-07 9
Floudas no. 7 9 – – – – –
Floudas no. 8 2 7 13 1.300791e-07 1.028366e-07 5
Floudas no. 9 1 3 5 2.089180e-05 8.711504e-07 4

Table 4.1: Results for problem classes 1–8
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Both our method and the related algorithm from [3] are able to solve all test
examples with the exception of one example from the Floudas et al. collection.
However, this problem is regarded as very challenging, even the solution given
in [33] seems to be wrong. The behaviour of the two methods on the other
examples is more or less similar, and there is no clear winner on this set of test
problems.

We next present our numerical results for all test examples of dimension n ≥
1000 from the MCPLIB. The corresponding numerical results are contained in
Table 4.2. The columns have the same meaning as in Table 4.1, in particular,
we also compare our results with those obtained by using the STRSCNE code
from [3].

STRSCNE

problem n iter eval cpu ‖Φ(x)‖ ‖D1/2(x)g(x)‖ iter cpu

bert oc 5000 14 26 52.21 1.726599e-05 7.703553e-07 17 37.21
bishop 1645 – – – – – – –
bratu 5625 14 28 195.01 2.675836e-06 9.231569e-07 21 158.12
obstacle 2500 13 26 36.68 3.030147e-07 3.258603e-07 20 31.25
opt cont31 1024 16 30 4.32 5.846047e-07 9.324531e-08 – –
opt cont127 4096 14 25 45.99 1.265241e-10 7.121115e-10 – –
opt cont255 8192 13 24 173.49 6.015165e-07 4.677748e-06 – –
opt cont511 16384 18 33 863.47 1.419340e-07 6.629523e-08 – –
trafelas 2904 68 136 337.21 9.407251e-07 7.632607e-06 79 292.28

Table 4.2: Results for large-scale mixed complementarity problems
(smooth reformulation)

Algorithm 4.15 is able to solve all examples with the exception of the bishop

problem. In this case, our method compares very favourably with the STRSCNE
code from [3] which produces five error messages and is able to solve only four
test examples. In this respect, however, it should be noted that the above prob-
lems have solutions on the boundary of the box Ω, and that the STRSCNE
code is guaranteed to converge locally quadratically only to interior solutions (a
modification of that method, which overcomes this disadvantage, has been pre-
sented in Section 4.1.2 or [5], but is currently not implemented in the STRSCNE
package).

Table 4.2 also gives the CPU times for both methods, and there STRSCNE
is somewhat better than our code for those problems which are solved by both
methods. On the other hand, the CPU times differ (sometimes significantly) be-
tween several test runs on the same problem, hence a serious comparison based
on CPU times seems to be difficult. In principle, both methods should have a
similar amount of work per iteration since the most time-consuming part is the
solution of a linear system of equations.

We stress, however, that the reformulation of the complementarity problems
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used for our test runs is not necessarily the best formulation. For example, if
a solution x∗ of the complementarity problem is degenerate, i.e., if there is at
least one index such that both x∗

i = 0 and Gi(x
∗) = 0, then it is easy to see that

the Jacobian F ′ of our reformulated system is singular at the solution, hence we
cannot expect quadratic convergence.

We illustrate this point using the Kojima-Shindo example. This is a complemen-
tarity problem with four variables which has two solutions, one is nondegenerate
and one is degenerate. Using the standard starting point, our method converges
to the degenerate solution. The iteration history is given in Table 4.3.

k ‖Φ(xk)‖ ‖D1/2
k g(xk)‖ eval ∆k direction

0 2.475100e+00 1.952834e+01 2 2 proj. Newton
1 5.716714e-02 7.597381e-01 4 4 trunc. Newton
2 9.601738e-03 1.297287e-01 5 8 proj. Newton
3 1.898870e-04 1.429594e-03 7 16 trunc. Newton
4 2.637017e-05 1.983471e-04 8 32 proj. Newton
5 1.328548e-07 1.369230e-06 9 64 proj. Newton
6 2.797033e-09 2.862149e-08 10 128 proj. Newton

Table 4.3: Iteration history for the smooth reformulation
of the Kojima-Shindo problem

Clearly, Table 4.3 shows that we do not have quadratic convergence, although
the rate of convergence is still relatively fast. If we would require higher accu-
racy, however, we would run into singularity problems. In fact, if we iterate a
bit further, we see that we get very slow convergence using Cauchy points all
the time from iteration 8 on.

There exist other reformulations of the complementarity problem as a semis-
mooth system of equations such that the corresponding merit function is con-
tinuously differentiable and such that quadratic convergence can still be expected
even in the case of degenerate solutions. We refer to [16, 9] for the correspond-
ing background. In particular, using the semismooth reformulation from [9] and
applying our code to this reformulation using the Kojima-Shindo example once
again, we get the iteration history from Table 4.4.

k ‖Φ(xk)‖ ‖D1/2
k g(xk)‖ eval ∆k direction

0 2.067848e-01 1.722355e+00 3 2 trunc. Newton
1 3.911732e-02 1.252072e+00 4 4 proj. Newton
2 1.118381e-04 8.304539e-04 5 8 proj. Newton
3 7.703886e-09 5.770644e-08 6 16 proj. Newton
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Table 4.4: Iteration history for the semismooth reformu-
lation of the Kojima-Shindo problem

Obviously, the method is quadratically convergent in this case. Note that we
cannot apply the STRSCNE code from [3] to this semismooth reformulation
since this method requires smooth functions F . On the other hand, if we apply
our method to the semismooth reformulation of the large-scale mixed comple-
mentarity problems from Table 4.2, we get similar results. More precisely, we
can solve once again all problems with the exception of bishop, and the number
of iterations are 9,−, 19, 11, 8, 9, 14, 25, 76, 262 for the test examples from Table
4.2, respectively, where the − indicates the failure on the bishop example.
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Conclusion

In the preceding chapters we have introduced affine-scaling methods for two dif-
ferent types of mathematical problems with box constraints.

The first class of problems are bound constrained optimization problems. We
have introduced a new scaling technique for the solution of these problems by
affine-scaling interior-point Newton methods. Using this scaling technique, the
strict complementarity condition is not needed in order to prove local quadratic
convergence. Moreover, this new scaling allows a much simpler local convergence
proof by using standard results from nonsmooth analysis. The analysis carried
out is essentially local. In absence of a suitable descent property for the objective
function a possible globalization based on the first order optimality conditions
is presented. The local convergence properties of the new affine-scaling method
are illustrated on two well-known numerical examples that show the advantage
of our scaling if strict complementarity does not hold for the solution.

The second class of problems considered here are semismooth systems of equa-
tions subject to bound constraints. Here we have introduced an interior-point
trust-region method. The method also follows the affine-scaling approach and
generates strictly feasible iterates. It differs from other methods of this type in
the choice of the scaling matrix and the transition from the global to the local
method. Moreover, the method can be applied to both continuously differen-
tiable and semismooth systems of equations. Hence the method is applicable
to a wider class of problems than other affine-scaling methods, and this was
illustrated for the class of complementarity problems. Compared to other meth-
ods, we also avoid a nonsingularity assumption that is used in order to get a
well-defined method. Global and fast local convergence results are established
for this method and its numerical properties are tested on various smooth and
semismooth examples.

The two problem types we consider are closely related. We stress, however,
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that there is a significant difference in applying affine-scaling methods to ei-
ther bound constrained optimization problems or to nonlinear equations with
box constraints. In the first case the affine-scaling approach is used in order
to get good local convergence properties without assuming strict complemen-
tarity. Whereas in the second case fast local convergence is guaranteed by a
suitable modification of the standard Newton step for the unconstrained prob-
lem F (x) = 0. The affine-scaling approach is used in order to get suitable global
convergence properties.
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[49] C.-J. Lin and J.J. Moré: Newton’s method for large bound-constrained
optimization problems. SIAM Journal on Optimization 9, 1999, pp. 1100–
1127.
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