
Fr
an

k 
Pö

rn
er

Re
gu

la
ri

za
ti

on
 M

et
ho

ds
 fo

r I
ll-

Po
se

d 
O

pt
im

al
 C

on
tr

ol
 P

ro
bl

em
s Frank Pörner

Regularization Methods  
for Ill-Posed Optimal  
Control Problems

Würzburg University Press

ISBN 978-3-95826-086-3

Ill-posed optimization problems appear in a wide range 

of mathematical applications, and their numerical 

solution requires the use of appropriate regularization 

techniques. In order to understand these techniques, 

a thorough analysis is inevitable.

The main subject of this book are quadratic optimal 

control problems subject to elliptic linear or semi- 

linear partial differential equations. Depending on the 

structure of the differential equation, different regula-

rization techniques are employed, and their analysis 

leads to novel results such as rate of convergence 

estimates. 



Frank Pörner

Regularization Methods for Ill-Posed Optimal Control Problems





Frank Pörner

Regularization Methods for Ill-Posed
Optimal Control Problems



Dissertation, Julius-Maximilians-Universität Würzburg

Fakultät für Mathematik und Informatik, 2018

Gutachter: Prof. Dr. Daniel Wachsmuth, Prof. Dr. Christian Clason

Impressum

Julius-Maximilians-Universität Würzburg
Würzburg University Press
Universitätsbibliothek Würzburg
Am Hubland
D-97074 Würzburg
www.wup.uni-wuerzburg.de

c© 2018 Würzburg University Press
Print on Demand

Coverdesign: Julia Bauer

ISBN 978-3-95826-086-3 (print)
ISBN 978-3-95826-087-0 (online)
URN urn:nbn:de:bvb:20-opus-163153

Except otherwise noted, this document—excluding the cover—is licensed under the
Creative Commons License Attribution-ShareAlike 4.0 International (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/

The cover page is licensed under the Creative Commons License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
https://creativecommons.org/licenses/by-nc-nd/4.0/



Preface

Abstract

This thesis deals with the construction and analysis of solution methods for a class
of ill-posed optimal control problems involving elliptic partial differential equations
as well as inequality constraints for the control and state variables. The objective
functional is of tracking type, without any additional L2-regularization terms. This
makes the problem ill-posed and numerically challenging.

We split this thesis in two parts. The first part deals with linear elliptic partial
differential equations. In this case, the resulting solution operator of the partial dif-
ferential equation is linear, making the objective functional linear-quadratic. To cope
with additional control constraints we introduce and analyse an iterative regulariza-
tion method based on Bregman distances. This method reduces to the proximal point
method for a specific choice of the regularization functional. It turns out that this is
an efficient method for the solution of ill-posed optimal control problems. We derive
regularization error estimates under a regularity assumption which is a combination
of a source condition and a structural assumption on the active sets. If additional
state constraints are present we combine an augmented Lagrange approach with a
Tikhonov regularization scheme to solve this problem.

The second part deals with non-linear elliptic partial differential equations. This
significantly increases the complexity of the optimal control as the associated solution
operator of the partial differential equation is now non-linear. In order to regularize
and solve this problem we apply a Tikhonov regularization method and analyse this
problem with the help of a suitable second order condition. Regularization error
estimates are again derived under a regularity assumption. These results are then
extended to a sparsity promoting objective functional.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Konstruktion und Analyse von Lösungsverfahren
für schlecht gestellte Steuerungsprobleme. Die Nebenbedingungen sind in der Form
von elliptischen partiellen Differentialgleichungen, sowie Ungleichungsrestriktionen
für die Steuerung und den zugehörigen Zustand gegeben. Das Zielfunktional besteht
aus einem Tracking-Type-Term ohne zusätzliche L2-Regularisierungsterme. Dies führt
dazu, dass das Optimalsteuerungsproblem schlecht gestellt ist, was die numerische
Berechnung einer Lösung erschwert.

Diese Arbeit ist in zwei Teile aufgeteilt. Der erste Teil beschäftigt sich mit lin-
earen elliptischen partiellen Differentialgleichungen. In diesem Fall ist der zuge-
hörige Lösungsoperator der partiellen Differentialgleichung linear und das Zielfunk-
tional linear-quadratisch. Um die zusätzlichen Steuerungsrestriktionen zu behan-
deln, betrachten wir ein iteratives Verfahren welches auf einer Regularisierung mit
Bregman-Abständen basiert. Für eine spezielle Wahl des Regularisierungsfunktionals
vereinfacht sich dieses Verfahren zu dem Proximal-Point-Verfahren. Die Analyse des
Verfahrens zeigt, dass es ein effizientes und gut geeignetes Verfahren ist, um schlecht
gestellte Optimalsteuerungsprobleme zu lösen. Mithilfe einer Regularitätsannahme
werden Konvergenzraten für den Regularisierungsfehler hergeleitet. Diese Regula-
ritätsannahme ist eine Kombination einer Source-Condition sowie einer struktuellen
Annahme an die aktiven Mengen. Wenn zusätzlich Zustandsrestriktionen vorhanden
sind, wird zur Lösung eine Kombination aus dem Augmented Lagrange Ansatz sowie
einer Tikhonov-Regularisierung angewendet.

Der zweite Teil dieser Arbeit betrachtet nicht-lineare partielle Differentialgleich-
ungen. Dies erhöht die Komplexität des Optimalsteuerungsproblem signifikant, da der
Lösungsoperator der partiellen Differentialgleichung nun nicht-linear ist. Zur Lösung
wird eine Tikhonov-Regularisierung betrachtet. Mithilfe einer geeigneten Bedingung
zweiter Ordnung wird dieses Verfahren analysiert. Auch hier werden Konvergenz-
raten mithilfe einer Regularitätsannahme bestimmt. Anschließend werden diese
Methoden auf ein Funktional mit einem zusätzlichen L1-Term angewendet.
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CHAPTER 1

Introduction

Mathematics is a powerful tool to model phenomena and problems in a very wide
range of all scientific and industrial areas. Especially in physics the concept of partial
differential equations (PDE) is an excellent tool to describe many physical problems.
For instance, these equations can be used to model many problems arising in fluid
dynamics, let us here mention the Euler and magnetohydrodynamics equations
as very popular examples. Further examples which can be modelled by partial
differential equations are heat conduction, electric potentials and many biological
processes [69].

In many physical models and systems, the role of the PDE is that it maps a certain
initial state to the resulting output. We will refer to this problem as the forward
equation. Most classes of partial differential equations are deterministic, i.e. for a
given initial state it will always generate the same output. However, in many physical
situations it is not possible to observe or measure the initial state. It is only possible to
measure the output. To reconstruct the associated initial state one has to reverse the
forward equation in a certain sense. This can be formulated as an PDE-constrained
optimal control problem.

In the context of such optimal control problem the initial state is called control u
and the output generated by the PDE is referred as state y. The PDE is described by
the operator S, hence we have Su = y. The measured output will be called desired
state yd. We consider a so called tracking type functional, hence we want to steer the
control u in such a way that the associated state y is as close as possible to yd. This
can be formulated as the constrained minimization problem

min
u,y

1

2
‖y − yd‖2,

such that Su = y.

From another point of view, the desired state yd can be interpreted as a given
value and we want to control the system such that the output is again as close as
possible to the desired state. An example is the optimal cooling or heating of a
manufactured component.
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Chapter 1 Introduction

In many physical models there are additional constraints for the control and state.
Consider again the optimal heating problem. Due to temperature restrictions for the
heat source we have to bound the control. This can be formulated as the constrained
minimization problem

min
u,y

1

2
‖y − yd‖2,

such that Su = y,

ua ≤ u ≤ ub,

(1.1)

with ua ≤ ub. In many situations the operator S is linear and compact which
makes (1.1) ill-posed and numerically difficult to solve as small errors in the desired
state may lead to a big error in the optimal control. A remedy is to apply different
regularization techniques. We want to mention the Tikhonov regularization [33,93,
96,97,99], the iterated Tikhonov or proximal point method [33,42,45,56,67,79,80,
82,83,88] and the iterative Bregman method [9–11,21–23,30–32,38,72] and the
references therein.

We use the iterative Bregman method to solve the constrained minimzation
problem (1.1). We analyse this method with respect to convergence and numerical
stability under a regularity assumption which includes possible non-attainability and
bang-bang solutions. This regularity condition is a combination of a classical source
condition and a structural assumption on the active sets [28,74–78,97,99].

We establish regularization error estimates for control, state and adjoint state.
Furthermore we establish a stopping rule for noisy data and analyse an inexact
version of the iterative Bregman method.

However, in many situations additional constraints for the state have to be im-
posed. In the case of the optimal heating a limitation of the state is needed to avoid
mechanical damage through overheating. This can be modelled by the additional
state constraints y ≤ ψ. Hence we are interested in the solution of the problem

min
u,y

1

2
‖y − yd‖2 + β‖u‖L1(Ω),

such that Su = y,

y ≤ ψ,
ua ≤ u ≤ ub.

(1.2)

The additional L1-term guarantees that the resulting optimal control is sparse, i.e.
it is zero on large parts of Ω. Starting with the pioneering work [89] such sparsity
promoting functionals have been studied in [97–99] but without additional state
constraints. These additional state constraint significantly increases the complexity
of the problem. A possible approach to handle the constraint is to use the augmented
Lagrange method [2,3,50,55,59]. We couple the Tikhonov regularization scheme
with the augmented Lagrange approach and couple the regularization parameter
with the penalty parameter to obtain a stable scheme. We introduce an update rule
for the multiplier which allows us to prove convergence of the method.

2
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Up to now the operator S associated with the forward equation was assumed to
be linear. Although many physical problems can be modelled with a linear PDE in
some cases a more sophisticated PDE is needed. We therefore also consider problems
of the form

min
u,y

1

2
‖y − yd‖2 + β‖u‖L1(Ω),

such that Su = y,

ua ≤ u ≤ ub,

(1.3)

which resembles (1.1) but now S is a non-linear operator. To be precise we now
assume that the underlying PDE is semi-linear. Such sparsity promoting functionals
for a non-linear PDE have been studied in [13,16]. Optimal control of semi-linear
partial differential equations has been intensively studied in the literature, see [7,13,
15,16,19,20,33,63,71,93] and the references therein.

We extend the regularity condition used for the Bregman iteration to the non-
linear case. As the problem (1.3) is non-convex we make heavy use of a second
order sufficient condition presented by Casas [13] and our regularity assumption
to prove convergence rates of a Tikhonov regularization of (1.3). To the best of
our knowledge this is the first convergence rate result subject to non-linear partial
differential equations. Furthermore we show that our regularity assumption is not
only sufficient but also necessary for high convergence rates.

This thesis is organized as follows. In Chapter 2 we introduce the mathematical
tools and concepts needed in this thesis. In particular we start with the functional
analytic preliminaries and introduce the concepts of the regularization methods
mentioned in the introduction.

Chapter 3 is devoted to the iterative Bregman method to solve (1.1). We introduce
our regularity condition and the Bregman method. We provide regularization error
estimates and an a-priori stopping rule for noisy data. In Chapter 4 we introduce
an inexact version of the iterative Bregman method. We describe the discretization
and establish convergence and stability results. Chapter 5 deals with the numerical
and practical implementation of the iterative Bregman method. We establish a
semi-smooth Newton method and present several test examples.

In Chapter 6 we introduce the augmented Lagrange method for (1.2). We show
how we couple the Tikhonov regularization and the augmented Lagrange approach
and present convergence results. Chapter 7 shows how to implement the augmented
Lagrange method presented in Chapter 6 using an active-set method.

In Chapter 8 we consider (1.3) with a non-linear partial differential equation and
β = 0. We transfer the regularity condition to the non-linear case and introduce the
second order conditions. By combining both assumptions we establish convergence
rates and show that the regularity assumption is not only sufficient but also necessary
for high convergence rates. In Chapter 9 we introduce second order conditions and
transfer our regularity condition to (1.3) with β > 0. Again convergence results are
presented.

Finally in Chapter 10 we summarize our results and list some possible extensions
and modifications for future research.
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CHAPTER 2

Preliminaries

2.1 Tools from Functional Analysis

The aim of the this section is to collect and provide the necessary tools from functional
analysis and optimization which we need during this thesis. We do not provide any
proofs for the results presented in the following. Instead we want to refer to the
books of Werner [100], Dobrowolski [29], Tröltzsch [93], Bonnans and Shapiro [8]
and Rudin [84].

2.1.1 Functional Analysis

Let V,W be two real Banach spaces with norms ‖ · ‖V and ‖ · ‖W , respectively. An
operator A : V → W is called bounded if there exists a constant c ≥ 0 such that
‖Av‖W ≤ c‖v‖V for all v ∈ V . We denote L(V,W ) the set of all linear and bounded
operators between V and W . This set endowed with the norm

‖A‖L(V,W ) := inf{c ≥ 0 | ∀x ∈ V : ‖Av‖W ≤ c‖x‖V }

is a Banach space itself. For the case V 6= {0} this is equivalent to

‖A‖L(V,W ) = sup
‖v‖V =1

‖Av‖W .

For linear operators the concepts of boundedness and continuity coincide.
For every Banach space V the dual space V ∗ is defined by V ∗ := L(V,R). We say

that the space V is reflexive if the canonical embedding

i : V → (V ∗)∗, v 7→ [v′ ∈ V ∗ 7→ v′(v)]

is bijective. In this case we identify (V ∗)∗ = V . We define the duality pairing

〈v′, v〉V ∗,V := v′(v), v′ ∈ V ∗, v ∈ V.

5



Chapter 2 Preliminaries

We drop the subscript V ∗, V if the spaces V and V ∗ are clear from the context. We
say a sequence (vk)k ⊂ V converges weakly to v ∈ V if and only if

lim
k→∞

〈v′, vk〉V ∗,V = 〈v′, v〉V ∗,V ∀v′ ∈ V ∗.

A common abbreviation in the literature is to write vk ⇀ v if (vk)k converges weakly
to v. Furthermore we say that (v′k)k ⊂ V ∗ converges weakly∗ to v′ ∈ V ∗ if and only if

lim
k→∞

v′k(v) = v′(v) ∀v ∈ V.

In this case we write v′k ⇀
∗ v′ in short. Note that if V is reflexive, weak and weak∗

convergence coincide in V ∗.
If the norm ‖ · ‖H of a Banach space H is induced by an inner product, we speak

of a Hilbert space with inner product (·, ·)H . For a Hilbert space every linear and
bounded operator can be characterized. This is part of the next result, which is
known as the Riesz representation theorem.

Theorem 2.1.1 (Riesz). Let H be a real Hilbert space. For all l′ ∈ H∗, there exists an
element l ∈ H such that 〈l′, v〉H∗,H = (l, v)H for all v ∈ H, and ‖l′‖H∗ = ‖l‖H .

Another well-known theorem is the Lax-Milgram theorem, which is a powerful
tool to analyse partial differential equations.

Theorem 2.1.2 (Lax-Milgram). LetH be a real Hilbert space, f ∈ H∗ and a : H×H →
R a bilinear mapping which is coercive, i.e. there exists a constant c1 > 0 such that

a(y, y) ≥ c1‖y‖2H ∀y ∈ H,

and bounded, i.e. there exists a constant c2 > 0 such that

|a(y, v)| ≤ c2‖y‖H‖v‖H ∀y, v ∈ H.

Then, there exists a uniquely determined y ∈ H such that

a(y, v) = f(v) ∀v ∈ H

holds. Furthermore, the a-priori bound ‖y‖H ≤ c−1
1 ‖f‖H∗ holds.

Let us now introduce the adjoint operator. For w′ ∈ W ∗ and a linear operator
A : V →W , the adjoint operator A∗ : W ∗ → V ∗ is defined by

(A∗w′)v := w′(Av).

Using the duality pairing introduced above we can now write

〈A∗w′, v〉V ∗,V = 〈w′, Av〉W∗,W ∀w′ ∈W ∗, v ∈ V.

The mapping of an operator to its adjoint is linear and isometric. We are interested
in the special case V = W being a Hilbert space. In this case we call A self-adjoint if
and only if (A∗)∗ = A.
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2.1 Tools from Functional Analysis

A operator A : X → Y between two Banach spaces is called compact if it is
continuous and maps every bounded subset of X into a relatively compact set of
Y , i.e. its closure is compact. As a immediate result A maps weakly converging
sequences to strongly converging sequences.

Let A : X → Y be a linear compact operator and X,Y be infinite dimensional
Banach spaces, then A is not bijective and therefore A−1 cannot exists. Hence, an
injective compact operator is not surjective. If A ∈ L(X,Y ) is compact its adjoint
operator A∗ is also compact. Denote R(A) the range of A. Then R(A) is closed if
and only if dim(R(A)) <∞.

In the following let V be a real Banach space and denote R := R ∪ {−∞,∞}
the extended real numbers. Let f : V → R̄ be a function. The function f is called
subdifferentiable at x ∈ V , if f(x) is finite and there exists g ∈ V ∗ such that

f(y)− f(x) ≥ 〈g, y − x〉V ∗,V ∀y ∈ V.
The element g is called subgradient of f at x. The set of all subgradients is called
subdifferential

∂f(x) := {g ∈ V ∗ : f(y)− f(x) ≥ 〈g, y − x〉V ∗,V ∀y ∈ V }.
Note that the subdifferential may be empty. However, for convex functions we have
the following result.

Theorem 2.1.3. Let f : V → R be a convex function. Let x ∈ V such that f is finite
and continuous at x. Then ∂f(x) 6= ∅.

For the subdifferential a sum rule can be established, see [86, Proposition 4.5.1].

Lemma 2.1.4. Let f1, f2 : V → R proper and convex. Assume there exists an element
x̄ ∈ (dom f1) ∩ (int dom f2) such that f2 is continuous at x̄. Then for each x ∈
(dom f1) ∩ (dom f2) it holds

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x).

Let us present two important examples which will be used during this thesis. For
the first example let C ⊂ V be a given convex set and IC its associated indicator
function. Then it holds for x ∈ C

∂IC(x) = {x∗ ∈ V ∗ : 〈x∗, y − x〉V ∗,V ≤ 0, ∀y ∈ C} = NC(x),

which is the normal cone of C at x. For x 6∈ C the subdifferential is empty, since for
y ∈ C there exists no g ∈ V ∗ such that

0 = IC(y) ≥
=+∞︷ ︸︸ ︷
IC(x) +〈g, y − x〉V ∗,V .

Now letH be a real Hilbert space and define f(x) := 1
2‖x‖2H . Define the functional

gx : H → R, gx(v) := (x, v)H . Then it holds for all x ∈ H
∂f(x) = {gx},

hence the subdifferential is a singleton. A direct consequence of the definition of the
subdifferential is the next result.

7



Chapter 2 Preliminaries

Theorem 2.1.5. Let f : V → R be a function. Then x ∈ V is a minimizer of f if and
only if 0 ∈ ∂f(x).

Furthermore the subdifferential can be used to derive necessary and sufficient
first order conditions. The next theorem is taken from [86, Proposition 5.2.5] and is
a direct consequence of Lemma 2.1.4 and Theorem 2.1.5.

Theorem 2.1.6. Let f : V → R be a continuous and convex function and A ⊂ V
nonempty and convex. Let x̄ ∈ A. Then the following statements are equivalent:

1. The element x̄ is a solution of min
x∈A

f(x).

2. There exists x∗ ∈ ∂f(x̄) such that 〈x∗, x− x̄〉V ∗,V ≥ 0 ∀x ∈ A.

3. The directional derivative satisfies f ′(x̄;x− x̄) ≥ 0 ∀x ∈ A.

We will also make use of the following theorem.

Theorem 2.1.7. The subdifferential is monotone, i.e. for x1, x2 ∈ V and x∗i ∈ ∂f(xi)
for i = 1, 2 we get

〈x∗1 − x∗2, x1 − x2〉V ∗,V ≥ 0.

2.1.2 Function Spaces

In general, a domain Ω is an open and connected subset of Rn with n ∈ N. In this
work we will only consider bounded domains. Now let 1 ≤ p < ∞. By Lp(Ω) we
denote the space of functions whose p-th power is integrable. The case p = ∞ is
treated separately: essentially bounded functions are collected in the set L∞(Ω). We
always restrict ourselves to the Lebesgue-measure, which will be denoted with meas.

The set Lp(Ω) consists of equivalence classes of functions. For u, v ∈ Lp(Ω) we
say u = v if u(x) = v(x) holds almost everywhere (a.e.) in Ω, i.e. u(x) 6= v(x) only
on a set of measure zero.

Endowed with the norms

‖v‖Lp(Ω) :=

(∫
Ω

|v(x)|p
)1/p

for 1 ≤ p <∞,

‖v‖Lp(Ω) := ess sup
x∈Ω

|v(x)| for p =∞,

the set Lp(Ω) becomes a Banach space. For the special case p = 2 we define the inner
product

(v, w)L2(Ω) :=

∫
Ω

v(x)w(x) dx,

to make L2(Ω) a Hilbert space. In this case we have ‖v‖L2(Ω) =
√

(v, v)L2(Ω). In the
following we suppress the spatial argument x, unless it is explicitly needed. Let us
now collect some important inequalities for Lp-functions.
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2.1 Tools from Functional Analysis

For p, q ∈ (1,∞) with p−1 + q−1 = 1 and v ∈ Lp(Ω) and w ∈ Lq(Ω) it holds
vw ∈ L1(Ω) and∫

Ω

vw dx ≤
(∫

Ω

|v|p dx
)1/p(∫

Ω

|w|q dx
)1/q

= ‖v‖Lp(Ω)‖w‖Lq(Ω).

This inequality is known as Hölder’s inequality. Due to the boundedness of Ω, this
inequality can be used to prove the embedding Lp(Ω) → Lq(Ω) for p > q. The
inequality stays also true for the case p =∞ and q = 1. We will mostly use the special
case p = q = 2, in which we obtain the Cauchy-Schwarz inequality∫

Ω

vw dx ≤ ‖v‖L2(Ω)‖w‖L2(Ω).

A very important tool in the development of weak solutions for partial differential
equations are Sobolev spaces. Let k be a positive integer and p ≥ 1. We denote by
W k,p(Ω) the space of functions which are k-times weakly differentiable and whose
derivatives lie in Lp(Ω). The Sobolev space becomes a Banach space under the norm

‖v‖p
Wk,p(Ω)

:=
∑

0≤|α|≤k
‖Dαv‖pLp(Ω),

where α ∈ Nn0 denotes a multi-index and Dαv its associated weak derivative. For the
special case p = 2 we denote Hk(Ω) := W k,2(Ω). Similar to L2(Ω) the space Hk(Ω)
is a Hilbert space.

Theorem 2.1.8. Let Ω be a bounded domain with Lipschitz boundary and 1 ≤ p ≤ ∞.
Then there exists a linear and continuous operator τ : W 1,p(Ω)→ Lp(∂Ω) such that for
all y ∈W 1,p(Ω) ∩ C(Ω̄) it holds (τy)(x) = y(x) almost everywhere on ∂Ω.

We are mostly interested in the case p = 2, which then gives the existence of an
operator τ : H1(Ω) → L2(∂Ω). This operator τ is called trace operator. Theorem
2.1.8 can also be found in [93]. This allows us to construct the set H1

0 (Ω) of all
functions in H1(Ω) with zero boundary values

H1
0 (Ω) := {v ∈ H1(Ω) : τv = 0}.

Sobolev functions exhibit a certain regularity, which can be characterized by the
Sobolev embeddings.

Theorem 2.1.9. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. Then the
embedding

W 1,p(Ω)→ Lp
∗
(Ω)

is continuous for 1 < p < n and p∗ = np
n−p . and the embedding

W 1,p(Ω)→ Lq(Ω)

is compact for 1 ≤ q < p∗.
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Chapter 2 Preliminaries

2.2 Ill-Posedness and Regularization Techniques

We want to solve optimization problems of the following form

Minimize
1

2
‖Su− z‖2Y

such that ua ≤ u ≤ ub a.e. in Ω.
(2.1)

Here Y is a Hilbert space and S : L2(Ω)→ Y denotes an operator. The problem (2.1)
is analysed in more detail in Section 3.1 and 3.2 for S being the solution operator of
a linear partial differential equation. In Section 8.1 and 8.2 problem (2.1) is analysed
for S being the solution operator of a semi-linear partial differential equation.

2.2.1 Ill-Posedness of Optimal Control Problems

We say a problem is well-posed in the sense of Hadamard [43] if a solution exists,
the solution is unique and, most importantly, the solution depends continuously on
the initial data. A problem is called ill-posed if it is not well-posed.

A well-posed problem is for instance the Poisson’s Equation with homogeneous
Dirichlet boundary condition (5.4). There, all of the three properties are satisfied.

Let X,Y be infinite dimensional Banach spaces and S ∈ L(X,Y ) be compact. As
S is not invertible it is not bijective. Also, in many important examples the range of
S is not closed. Hence, solving the operator equation Sx = y with x ∈ X and y ∈ Y
is ill-posed because a solution do not exist in general. This motivates the auxiliary
problem

min
x∈X

1

2
‖Sx− y‖2Y (2.2)

to get as close to y as possible. The problem (2.2) is a prototypical model problem of
the problems we consider in this thesis. However, this model problem is still ill-posed
in general. As an example we consider the problem

min
u,y∈L2(Ω)

J(y) =
1

2
‖y − z‖2L2(Ω)

such that
{−∆y = u in Ω,

y = 0 on ∂Ω.

(2.3)

We will treat this PDE in the next subsection and show that this is of form (2.2).
It is clear, that (ū, ȳ) is a solution of (2.3) if J(ȳ) = 0, hence ȳ = z, leading to
ū = −∆ȳ = −∆z. Let us now fix Ω = (0, π) and define for δ := δ(k) := 1

k with k ∈ N

z1(x) = 0,

z2(x) = δ sin
(x
δ

)
,
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2.2 Ill-Posedness and Regularization Techniques

and

u1(x) = −∆z1(x) = 0,

u2(x) = −∆z2(x) =
1

δ
sin
(x
δ

)
.

It is easy to calculate that u1 and u2 are solutions of (2.3) with z = z1 and z = z2,
respectively. Note that z1, z2 ∈ H1

0 (Ω) ∩ C2(Ω̄). Here z2 can be interpreted as a
sinusoidal perturbation of z1. In fact we use this sinusoidal noise to test the stability
of our algorithms, see Subsection 3.4.7 for more details. A straightforward calculation
now reveals

‖z1 − z2‖L2(Ω) ≤ πδ,

‖u1 − u2‖2L2(Ω) =
1

4δ2

(
2π − δ sin

(
2π

δ

))
≥ 2π − 1

4δ2
.

If problem (2.3) were well-posed, there would be a constant c > 0 such that the
following inequality holds true for all k ∈ N

2π − 1

4δ2
≤ ‖u1 − u2‖2L2(Ω) ≤ c‖z1 − z2‖2L2(Ω) ≤ cπ2δ2.

However, this is a contradiction for k big enough. This means that the solution does
not depend continuously on the initial data. Small perturbations in the initial data of
order δ lead to a perturbation of order δ−1 in the solution.

This violates the definition of well-posedness in the sense of Hadamard, and
shows that the problem is ill-posed. This may lead to severe instabilities during the
numerical calculation of a solution, as a discretization introduces small perturbations.
To cope with this negative influence several different regularization methods have
been introduced. In the following we want to analyse the PDE used in (2.3) followed
by selected regularization methods which are used in this thesis.

2.2.2 Poisson’s Equation

Let us analyse the partial differential equation

−∆y = u in Ω
y = 0 on ∂Ω,

(2.4)

used in (2.3). It is clear that this equation cannot have a classical solution y ∈
C2(Ω)∩C(Ω̄) for arbitrary u ∈ L2(Ω). Instead we seek a weak solution y in the space
H1

0 (Ω) defined by the following variational formulation∫
Ω

∇y∇ϕ dx =

∫
Ω

uϕ dx ∀ϕ ∈ H1
0 (Ω).

This formulation is formally obtained by integration by parts and is called the weak
formulation of (2.4).

11
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Theorem 2.2.1. Let Ω be a bounded Lipschitz domain, then for every u ∈ L2(Ω)
problem (2.4) has a unique weak solution y ∈ H1

0 (Ω). Moreover, there exists a constant
c > 0 independent from u such that

‖y‖H1
0 (Ω) ≤ c‖u‖L2(Ω).

A proof can be found in [93, Theorem 2.4] and is based on the Lax-Milgram-
Theorem. Furthermore Theorem 2.2.1 shows that problem (2.4) is well-posed.

Let S denote the mapping, which maps every u ∈ L2(Ω) to the unique solution of
(2.4). We now have the following result.

Theorem 2.2.2. The operator S : L2(Ω)→ L2(Ω) is linear, continuous, injective and
compact. Furthermore the range of S is not closed.

Proof. The linearity follows directly by the definition of the weak formulation and the
continuity is a result of Theorem 2.2.1. We now use the Rellich-Kondrachov-Theorem
and obtain that H1

0 (Ω)→ L2(Ω) is compact. By definition S : L2(Ω)→ H1
0 (Ω), hence

S is compact as a mapping from L2(Ω)→ L2(Ω).
Assume Su1 = Su2 with u1, u2 ∈ L2(Ω). By definition of S we obtain∫

Ω

(u1 − u2)ϕ dx = 0 ∀ϕ ∈ H1
0 (Ω),

leading to u1 = u2 using the fundamental lemma of calculus of variations [54, Lemma
3.2.3]. This shows that S is injective.
Let us now prove that the range of S is not closed. We know thatR(S) is closed if and
only if dim(R(S)) <∞. It is clear that the space C0 := {f ∈ C∞(Ω̄) : f = 0 on ∂Ω}
has no finite dimension. Let y ∈ C0 and define u := −∆y ∈ C∞(Ω), than y = Su.
Hence C0 ⊆ R(S) and therefore S has non-closed range.

2.2.3 The Tikhonov Regularization

In the following let S be linear. A well-known regularization method is the Tikhonov
regularization with some positive regularization parameter α > 0. The regularization
effect is introduced by an additional L2-term which can be interpreted as control
costs. The regularized version of (2.1) is given by

Minimize
1

2
‖Su− z‖2Y +

α

2
‖u‖2L2(Ω)

such that ua ≤ u ≤ ub a.e. in Ω.
(2.5)

This regularization method is named after Andrey Tikhonov. It is well understood in
regard to convergence for α→ 0, perturbed data, and numerical approximations, see
e.g., [33,93,96,97,99]. We just want to collect some important results. The following
theorem is a well known result and we also present a similar result in Theorem 6.3.1
with additional state constraints. For a non-linear S we refer to Theorem 8.3.2 for an
analogous result.
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Theorem 2.2.3. The problem (2.5) has an unique solution uα, which satisfies the
variational inequality

(S∗(Suα − z) + αuα, v − uα)L2(Ω) ≥ 0, ∀v ∈ Uad.

Furthermore denote u† the minimum norm solution of (2.1), i.e.

u† = arg min{‖u‖L2(Ω) : u solves (2.1)}.

Then we have uα → u† in L2(Ω) as α→ 0.

However, for α tending to zero the Tikhonov regularized problem becomes in-
creasingly badly conditioned. This is part of the next theorem.

Theorem 2.2.4. Let uα and uδα be the solution of (2.5) with desired states z and zδ

respectively. Assume that ‖z − zδ‖Y ≤ δ holds with some δ ≥ 0. Then it holds

‖uα − uδα‖L2(Ω) ≤
δ√
α
.

Proof. We start by adding the necessary optimality conditions for uα and uδα and
obtain (

S∗S(uα − uδα)− S∗(z − zδ) + α(uα − uδα), uδα − uα
)
L2(Ω)

≥ 0,

which yields

‖yα − yδα‖2Y + α‖uα − uδα‖2L2(Ω) ≤ (zδ − z, yδα − yα)Y

≤ ‖zδ − z‖Y ‖yδα − yα‖Y
≤ δ2 +

1

4
‖yδα − yα‖2Y .

From this, the result now follows.

Under a suitable regularity assumption on the minimum norm solution u† of (2.1)
one can derive noise estimates of the form

‖u† − uδα‖L2(Ω) ≤ cδs

with some s > 0 if α = α(δ) is chosen in a suitable way, see [97, Theorem 3.4]. If
S is non-linear, e.g. S is the solution operator of a semi-linear partial differential
equation, it is more complicated to derive such noise error estimates. See [91,92] for
some stability results.
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2.2.4 The Proximal Point Method

The Tikhonov regularization becomes more and more ill-conditioned if α becomes
very small. However sometimes it is necessary to compute a solution with very small α
to recover some interesting behaviour of the optimal control. An alternative approach
is the proximal point method (PPM) introduced by Martinet [67] and developed by
Rockafellar [82]. Given an iterate uk, the next iterate uk+1 is determined by solving

Minimize
1

2
‖Su− z‖2Y + αk+1‖u− uk‖2L2(Ω)

such that ua ≤ u ≤ ub a.e. in Ω.

Due to the self-canceling effect of the regularization term, there is hope to obtain
convergence without the requirement that the regularization parameters αk tend
to zero. However, in general PPM is not strongly convergent due to the example
given by Güler [42], which exhibits weakly but not strongly converging iterates, see
also [56]. An application of this method to optimal control problems is investigated
in [83]. There exists strongly convergent modifications of PPM, see e.g., [79,80,88].
Here, it is an open question how to transfer these methods to our problem while
exploiting its particular structure.

In the inverse problems community this method is known as iterated Tikhonov
regularization [33, 45]. If one assumes attainability of z, that is, z is in the range
of S and in addition a so-called source condition, convergence rates can be derived.
This condition is an abstract smoothness condition closely related to the existence
of Lagrange multipliers of an associated minimum-norm problem, see Section 3.3
for more details and references. While the PPM and thus the iterated Tikhonov
method allow to prove beautiful monotonicity properties, we were not able to show
strong convergence under conditions adapted to our situation (control constraints
and non-attainability).

2.2.5 The Iterative Bregman Method

In the proximal point method a Hilbert space norm was used to regularize the problem.
However this Hilbert space norm can be replaced by a different regularization term.
Another suitable regularization term is the Bregman distance [9], which will be
introduced in detail in Subsection 3.4.1. The resulting method is called iterative
Bregman regularization method and it will be analysed in detail in Chapter 3, 4 and
5.

There, the iterate uk+1 is given by the solution of

Minimize
1

2
‖Su− z‖2Y + αk+1D

λk(u, uk),

where Dλ(u, v) = J(u) − J(v) − (u − v, λ) is called the (generalized) Bregman
distance associated to a regularization function J with subgradient λ ∈ ∂J(v).
This iteration method was used in e.g. [11, 72], where it was applied to an image
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restoration problem with J being the total variation. Note that for the special choice
J(u) = 1

2‖u‖2L2(Ω) the PPM algorithm is obtained.
We choose to incorporate the control constraint into the regularization functional,

resulting in

J(u) :=
1

2
‖u‖2L2(Ω) + IUad

(u),

where Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub}, and I is the indicator function of convex
analysis. The incorporation of the explicit control constraints u ∈ Uad into the
regularization functional will prove advantageous for the convergence analysis.

2.2.6 The Augmented Lagrange Method

For problems with control constraints of the following form

Minimize
1

2
‖Su− z‖2Y +

α

2
‖u‖2L2(Ω)

such that ua ≤ u ≤ ub a.e. in Ω,

many powerful numerical methods exists. We only want to mention the semi-smooth
Newton method [46, 47] and the active-set methods [4, 52]. However, in many
application it is necessary to add additional state constraints. Hence the problem is
of the form

Minimize
1

2
‖Su− z‖2Y +

α

2
‖u‖2L2(Ω)

such that ua ≤ u ≤ ub a.e. in Ω,

Su ≤ ψ,

with a given function ψ ∈ C(Ω̄). Here, several new problems arise. First, we need
an additional regularity assumption to prove the existence of Lagrange multipliers,
which are needed to establish first order optimality conditions. It turns out that the
Lagrange multipliers lie in the space of Borel measures. This makes it numerically
very challenging.

The augmented Lagrange method (ALM) now eliminates the additional state
constraints by adding a penalty term with respect to the state constraints and an
approximation of the associated multiplier. Hence we solve the problem

Minimize
1

2
||Su− z||2Y +

α

2
‖u‖2L2(Ω) +

1

2ρ

∫
Ω

(
(µ+ ρ(Su− ψ))+

)2 − µ2 dx,

such that ua ≤ u ≤ ub.

Here µ ∈ L2(Ω) is a given approximation of the Lagrange multiplier associated with
the state constraints and ρ > 0 is the penalization parameter. After the problem is
solved, an update rule is applied to construct a new µ and a new ρ. Such Lagrange
method are very popular in the literature and they are applied to many different
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problems. In Section 6.1 we give some more insight into the details and also offer
some literature.

In Chapter 6 we apply an augmented Lagrange method to solve the ill-posed state
constrained optimal control problem

Minimize
1

2
‖Su− z‖2L2(Ω)

such that ua ≤ u ≤ ub a.e. in Ω,

Su ≤ ψ.

An active-set method to solve the arising subproblems is presented in Chapter 7 along
with several numerical examples to support our algorithm.
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Linear State Equation





CHAPTER 3

Iterative Bregman Method for Control Constraints

In this chapter, we investigate and analyse the iterative Bregman method, which was
briefly introduced in Subsection 2.2.5. This method has become quite popular in
the field of optimization and inverse problems, see e.g. [10,23] and the references
therein.

Our aim is to analyse this method in the context of optimal control problems and
to prove convergence rates under a suitable regularity assumption. In order to prove
convergence, in [11] a source condition is imposed. Moreover, the analysis there
relies heavily on the attainability of the desired state z. We prove convergence and
convergence rates without the attainability assumption. To do so, the existing proof
techniques had to be considerably extended.

Moreover, as argued in [97] a source condition is unlikely to hold in an optimal
control setting if z is not attainable, i.e., there is no feasible u such that z = Su.
In [96,99] a regularity assumption on the active sets is used as suitable substitution
of the source condition. Here, the active set denotes the subset of Ω, where the
inequality constraints are active in the solution. However this assumption implies
that the control constraints are active everywhere, and situations where the control
constraints are inactive on a large part of Ω are not covered. To overcome this, in [97]
both approaches are combined: A source condition is used on the part of the domain,
where the inequality constraints are inactive, and a structural assumption is used on
the active sets. We will use this combined assumption to prove convergence rates of
the Bregman iteration.

We start this chapter by formulating the linear quadratic model problem in Section
3.1 and presenting necessary and sufficient optimality conditions in Section 3.2. The
regularity assumption we use to prove convergence rates is established in Section
3.3. The iterative Bregman method is then analysed in Section 3.4. First we establish
the needed auxiliary results, followed by a convergence analysis in Subsection 3.4.5.
The main results of this subsection are Theorem 3.4.15 and 3.4.20. Next we consider
noisy data in Subsection 3.4.6, which leads to an a-priori stopping rule which is
established in Subsection 3.4.7. The results of this chapter can be found in condensed
form in the publications [76,77].
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3.1 The Linear-Quadratic Problem

Denote by Ω ⊂ Rn a bounded domain. We are interested in the linear-quadratic
optimal control problem

Minimize H(u) :=
1

2
‖Su− z‖2Y

such that ua ≤ u ≤ ub a.e. in Ω.
(P )

Here Y denotes a Hilbert space, z ∈ Y is the given desired state and S : L2(Ω)→ Y
is a linear and continuous operator. Here, we have in mind to choose S to be the
solution operator of a linear partial differential equation. In many situations the
operator S is compact and has non-closed range, which makes (P ) ill-posed. The
inequality constraints are prescribed on the set Ω. We assume ua, ub ∈ L∞(Ω).

We say that the functional H is of tracking type, since the minimization problem
intends to find a control u such that Su is as close as possible to the desired state z.

The optimization problem is subject to additional control constraints. Here we
only consider box constraints, i.e. the feasible controls are bounded from below by a
function ua and by ub from above. Let us define the set of admissible controls

Uad := {u ∈ L2(Ω) : ua ≤ u ≤ ub}.

We assume ua ≤ ub, hence Uad 6= ∅. The model problem (P ) can be interpreted in
two different ways. In an optimal control setting, the unknown u is the control and
the constraints are limitations arising from the underlying physical problem, e.g.,
temperature restriction of a heat source. The function z is the desired state, and we
search for u such that Su is as close to z as possible with respect to the norm in Y .
Here, the interesting situation is, when z cannot be reached due to the presence of
the control constraints (non-attainability). If (P ) is interpreted as an inverse problem,
the unknown u represents some data to be reconstructed from the measurement z.
Here the inequality constraints reflect a-priori information of the unknown u.

3.2 Optimality Conditions

The optimal control problem (P ) is the prototypical version of an optimal control
problem and has been studied excessively studied in the literature, see e.g. [93]. By
standard arguments one can prove that this problem has a solution.

Theorem 3.2.1. The problem (P ) has a solution. If the operator S is injective, the
solution is unique.
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Let us now comment on necessary optimality conditions for the problem (P ). For
this purpose it is useful to introduce the adjoint state

p = S∗(z − Su)

for a given control u ∈ Uad. Since the problem (P ) is convex, the first order necessary
conditions are also sufficient. In the following we denote with u† a solution of (P ).
Its associated state and adjoint state are denoted with y† = Su† and p† = S∗(z−Su†),
respectively. We then have the following result.

Theorem 3.2.2. Let u† be a solution of (P ) with state y† and adjoint state p†. Then
the following variational inequality holds:

(−p†, u− u†)L2(Ω) ≥ 0, ∀u ∈ Uad.

Furthermore, we have the relation

u†(x)


= ua(x) if p†(x) < 0,

∈ [ua(x), ub(x)] if p†(x) = 0,

= ub if p†(x) > 0.

This result shows that the solution u† can be uniquely determined from p† if the
set {x ∈ Ω : p†(x) = 0} has measure zero. Note that due to the strict convexity of
the functional H with respect to Su, the optimal state y† = Su† is uniquely defined.
Hence the optimal adjoint state p† = S∗(y† − z) is also unique. If p† 6= 0 almost
everywhere in Ω we conclude that the problem (P ) is uniquely solvable in this case.

The relation between the optimal control u† and its associated adjoint state p†

described in Theorem 3.2.2 will be important in the next section.

3.3 Regularity Assumption

One aim of this thesis is not only to obtain convergence of certain algorithms – but
also to establish convergence rates. However, to obtain regularization error estimates
with respect to the control variable we need some a-priori smoothness information of
the optimal control. In the following we want to introduce our regularity assumption,
which we then use to prove error estimates.

3.3.1 Source Condition

A common assumption on a solution u† is the following source condition, which is an
abstract smoothness condition, see, e.g., [11,24,49,70,97,99]. We say u† satisfies
the source condition (SC) if the following assumption holds.

Assumption SC (Source Condition). Let u† be a solution of (P ). Assume that there
exists an element w ∈ Y such that u† = PUad

(S∗w) holds.
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The source condition is equivalent to the existence of Lagrange multipliers for the
problem

min
u∈Uad

1

2
‖u‖2

such that Su = y†,
(3.1)

where y† is the uniquely defined optimal state of (P ). To see this, consider the
Lagrange function

L(u,w) :=
1

2
‖u‖2 + (w, y† − Su)L2(Ω).

For every u† satisfying Su† = y† we obtain

∂

∂w
L(u†, w†) = y† − Su† = 0.

This means, the function w† is a Lagrange multiplier if and only if

∂
∂uL(u†, w†)(v − u†) ≥ 0 ∀v ∈ Uad

⇐⇒ (u† − S∗w†, v − u†)L2(Ω) ≥ 0 ∀v ∈ Uad

⇐⇒ u† = PUad
(S∗w†).

Hence, if the optimal control u† satisfies (SC) then it is a solution of (3.1).
Moreover, as this optimization problem is uniquely solvable, it follows that there is at
most one control satisfying (SC). Note that the existence of Lagrange multipliers is
not guaranteed in general, as in many situations the operator S is compact or has
non-closed range.

Assumption (SC) is quite common in the field of inverse problems, see e.g. [33].
In the context of iterative methods using Bregman distances Assumption (SC) has
been used in [37–39].

Another widely used condition is the so called power-type source condition
u† = PUad

(
(S∗S)

ν
2w
)

for ν ∈ (0, 1). For an iterated Tikhonov method using this
power-type source condition see [53].

3.3.2 Active Set Condition

If z is not attainable, i.e., y† 6= z, a solution u† may be bang-bang, i.e., u† is a
linear combination of characteristic functions, hence discontinuous in general with
u† 6∈ H1(Ω). But in many examples the range of S∗ is contained in H1(Ω) or C(Ω̄).
Hence, the source condition (SC) is too restrictive for bang-bang solutions.

In the optimal control of ordinary differential equations dealing with bang-bang
solutions one typically assumes that the differentiable switching function σ : [0, T ]→
R possess only finitely many zeros and that |σ̇(t)| > 0 holds for all t where σ(t) = 0,
see e.g. [36, 68, 73] and the references therein. This condition cannot be directly
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transferred to the control of partial differential equations. However, using a Taylor
expansion it is easy to see, that this condition is equivalent to the existence of a
constant c > 0 such that

meas({t ∈ [0, T ] : |σ(t)| ≤ ε}) ≤ cε

holds for all ε > 0. In the context of optimal control of partial differential equations
this transfers to

meas({x ∈ Ω : |p(x)| ≤ ε}) ≤ cε,

where p is the adjoint state. Note that the adjoint state acts as a switching function,
see Theorem 3.2.2.

We will thus resort to the following condition. We say that u† satisfies the active
set condition (ASC), if the following assumption holds. Let us recall the definition of
p† = S∗(z − Su†). In the following χU denotes the characteristic function of the set
U .

Assumption ASC (Active-Set Condition). Let u† be a solution of (P ) and assume that
there exists a set I ⊆ Ω, a function w ∈ Y , and positive constants κ, c such that the
following holds

1. (source condition) I ⊃ {x ∈ Ω : p†(x) = 0} and

χIu
† = χIPUad

(S∗w),

2. (structure of active set) A := Ω \ I and for all ε > 0

meas
(
{x ∈ A : 0 < |p†(x)| < ε}

)
≤ cεκ,

3. (regularity of solution) S∗w ∈ L∞(Ω).

Remark 3.3.3. Following [97, Remark 3.3], there exists at most one u† ∈ Uad satisfying
Assumption (ASC). Furthermore, by [97, Remark 3.3] this has to be the minimal norm
solution in Uad, which is unique by [97, Lemma 2.7].

This condition is used in [97]. It was applied for the case κ = 1, I = ∅ and A = Ω
in [99]. The set I contains the set {x ∈ Ω : p†(x) = 0}, which is the set of points
where u†(x) cannot be uniquely determined from p†(x), compare to Theorem 3.2.2.
On this set, we assume that u† fulfills a local source condition, which implies that u†

has some extra regularity there. The set A contains the points, where the inequality
constraints are active, since it holds by construction that p†(x) 6= 0 on A, which
implies u†(x) ∈ {ua(x), ub(x)}.

The next theorems give some sufficient conditions for Assumption (ASC).
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Theorem 3.3.4. Let Ω ⊂ Rn, n = 1, 2, 3 be a bounded domain. Assume that p ∈ C1(Ω̄)
and

min
x∈K
|∇p(x)| > 0 with K := {x ∈ Ω̄ : p(x) = 0}

holds. Then there exists a constant c > 0 such that

meas({x ∈ Ω : |p(x)| < ε}) ≤ cε

holds for all ε > 0 small enough.

The proof can be found in [28, Lemma 1.3]. We will use this theorem to construct
test examples such that Assumption (ASC) is satisfied with A = Ω and κ = 1. For the
one-dimensional case this result can be generalized. We will start with this auxiliary
result.

Lemma 3.3.5. Let Ω ⊂ R, x̄ ∈ Ω̄, m > 0 and f(x) = m(x − x̄)n with n ∈ N. Then
there exists a constant c > 0 such that

meas({x ∈ Ω : |f(x)| < ε}) ≤ cε1/n

holds for all ε > 0 small enough.

Proof. Without loss of generality, we can assume Ω = (−1, 1), m = 1 and x̄ = 0. Let
ε > 0 such that ε1/n < 1. Then we can compute

meas({x ∈ Ω : |f(x)| < ε}) = meas({x ∈ Ω : |xn| < ε})
= meas((−ε1/n, ε1/n))

= 2ε1/n,

which finishes the proof.

The next result presents a sufficient condition for Assumption (ASC) for one-
dimensional problems.

Theorem 3.3.6. Let Ω ⊂ R be a bounded domain. Let s ∈ N and p ∈ Cs(Ω̄). Assume
that p has finitely many zeros. Define the set K := {x ∈ Ω̄ : p(x) = 0}. Furthermore
assume that

min
x∈K
|p(s)(x)| > 0,

and there exists a point x̄ ∈ K such that |p(i)(x̄)| = 0 for all i = 0, ..., s− 1. Then there
exists a constant c > 0 such that

meas({x ∈ Ω : |p(x)| < ε}) ≤ cε1/s

holds for all ε > 0 small enough.
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Proof. Let us define the following sets for i = 0, ..., s− 1

Ki := {x ∈ K : |p(j)(x)| = 0, j = 1, ..., i, and |p(i+1)(x)| > 0}.
Due to our assumptions we know that Ks−1 6= ∅, since x̄ ∈ Ks−1. Furthermore we
obtain

K =
s−1⋃
i=0

Ki.

Let now y ∈ Ki for i ∈ {0, ..., s− 1}. We then have |p(i+1)(y)| > 0. Since p ∈ Cs(Ω)
we obtain an %i(y) > 0 and θi(y) > 0 such that |p(i+1)(x)| ≥ θi(y) for all x ∈ Ω such
that |x− y| ≤ %i(y). Now define

%i := min{%i(y) : y ∈ Ki} > 0,

θi := min{θi(y) : y ∈ Ki} > 0.

Here we use that K contains only finitely many points. Now define

% := min{%i : i = 0, ..., s− 1} > 0,

θ := min{θi : i = 0, ..., s− 1} > 0,

and let ε̄ > 0 such that the following implication holds true for all ε ≤ ε̄
x ∈ {x ∈ Ω : |p(x)| < ε} =⇒ ∃y ∈ K : |x− y| ≤ %.

Let us mention, that it is always possible to find such an ε, as p is continuous. In the
following we always assume ε ≤ ε̄. We now want to rewrite the set {x ∈ Ω̄ : |p(x)| <
ε} with the help of the sets B%(y) := {x ∈ Ω : |x− y| ≤ %}:

{x ∈ Ω : |p(x)| < ε} ⊆
⋃
y∈K
{x ∈ B%(y) : |p(x)| < ε}

=
s−1⋃
i=0

⋃
y∈Ki
{x ∈ B%(y) : |p(x)| < ε}.

(3.2)

In the next step we want to estimate the measure of the set {x ∈ B%(y) : |p(x)| < ε}.
Let i ∈ {0, ..., s− 1}, y ∈ Ki and x ∈ B%(y). Fist notice, that due to the construction
of % we obtain

|p(i+1)(ζ)| ≥ θ > 0 ∀ζ ∈ [x, y].

Now we apply a Taylor expansion up to order i+ 1 and use the definition of y ∈ Ki

to obtain a ζ ∈ [x, y] such that

|p(x)| =
∣∣∣∣∣
i∑

k=0

p(k)(y)

k!
(x− y)k +

1

(i+ 1)!
p(i+1)(ζ)(x− y)i+1

∣∣∣∣∣
=

∣∣∣∣ 1

(i+ 1)!
p(i+1)(ζ)(x− y)i+1

∣∣∣∣
≥ cθ|x− y|i+1.
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Hence we have cθ|x− y|i+1 ≤ |p(x)| < ε and we therefore conclude the inclusion

{x ∈ B%(y) |p(x)| < ε} ⊆ {x ∈ B%(y) : cθ|x− y|i+1 ≤ ε}.

Using Lemma 3.3.5 we now obtain

meas({x ∈ B%(y) : |p(x)| < ε}) ≤ meas({x ∈ B%(y) : cθ|x− y|i+1 < ε})
≤ cε1/(i+1).

(3.3)

For ε small enough we obtain ε1/j ≤ ε1/s for all 1 ≤ j ≤ s. Hence using (3.3) in
(3.2) and using that Ks−1 6= ∅ yield the result

meas({x ∈ Ω : |p(x)| < ε}) ≤ c
s−1∑
i=0

ε1/(i+1) ≤ cε1/s.

Theorem 3.3.6 will be used in Section 5.2 to construct several test examples such
that Assumption (ASC) is satisfied with different κ. If we set s = 1 in the theorem
above, we obtain an one-dimensional version of Theorem 3.3.4.

3.4 The Bregman Iteration

In this section we first want to introduce the Bregman distance which is then used
to formulate our iterative method. Let J : L2(Ω) → R be a convex function. Let
u, v ∈ L2(Ω) and λ ∈ ∂J(v). We now define the Bregman distance

Dλ(u, v) := J(u)− J(v)− (u− v, λ)L2(Ω).

The function J is called regularization functional. This type of function is a specific
realization of a more general concept, first established by Bregman [9] in the year
1967. The standard, formal definition was given 14 years later by Censor and
Lent [21] based on the work of Bregman. The Bregman distance was introduced to
solve feasibility problems, but however was then adapted to proximal-like methods
for optimization problems [22,23] and for maximal monotone operators [30–32].
We refer to [34, Section 12.9] and [10] for additional historical information and
references.

Osher et al. introduced proximal-type methods for image restoration based on
Bregman distances in [72] and for sparse-reconstruction with convex functionals
[41,101]. More recently Morozov’s principle was applied to a proximal-type method
in [38].
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3.4.1 Bregman Distance

We want to apply the Bregman distance with the regularization functional

J(u) :=
1

2
‖u‖2L2(Ω) + IUad

(u),

where IUad
denotes the indicator function of the set Uad. The Bregman distance for J

at u, v ∈ L2(Ω) and λ ∈ ∂J(v) is defined as

Dλ(u, v) := J(u)− J(v)− (u− v, λ)L2(Ω).

If v is in Uad then the subdifferential ∂J(v) is non-empty. In this case, for every
λ ∈ ∂J(v) there exists a w ∈ ∂IUad

(v) such that λ = v+w. Using this decomposition,
a small calculation reveals

Dλ(u, v) =
1

2
‖u− v‖2L2(Ω) + IUad

(u)− IUad
(v)− (u− v, w)L2(Ω).

Let us summarize some properties of J and D:

Lemma 3.4.1. Let C ⊆ L2(Ω) be non-empty, closed, and convex. The functional

J : L2(Ω)→ R ∪ {+∞}, u 7→ 1

2
‖u‖2L2(Ω) + IC(u)

is convex and nonnegative. Furthermore the Bregman distance

Dλ(u, v) := J(u)− J(v)− (u− v, λ)L2(Ω), λ ∈ ∂J(v)

is nonnegative and convex with respect to u.

Proof. The convexity and nonnegativity of J follow directly from the definition. For
a fixed v ∈ L2(Ω) the Bregman distance Dλ(·, v) is a sum of a convex and an affine
linear function, hence convex. The nonnegativity follows directly from the definition
of the subdifferential λ ∈ ∂J(v).

For this specific choice of J we can explicitly compute the subgradients. Here
∂IUad

(v) is the normal cone of Uad at v, which can be characterized as

∂IUad
(v) =

w ∈ L2(Ω) : w(x)


≤ 0 if v(x) = ua(x)

= 0 if ua(x) < v(x) < ub(x)

≥ 0 if v(x) = ub(x)

 .

Hence, we have for the Bregman distance at v ∈ Uad

Dλ(u, v) =
1

2
‖u− v‖2L2(Ω) + IUad

(u)

+

∫
{v=ua}

w(ua − u) dx+

∫
{v=ub}

w(ub − u) dx,
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where we abbreviated by {v = ua} the set {x ∈ Ω : v(x) = ua(x)} and similar
for {v = ub}. We see that the Bregman distance adds two parts that measures u
on the sets where the control constraints are active for v. Due to the properties of
w ∈ ∂IUad

(v) we obtain

1

2
‖u− v‖2L2(Ω) ≤ Dλ(u, v) ∀u, v ∈ Uad, λ ∈ ∂J(v). (3.4)

Since the subdifferential ∂IUad
(v) is not a singleton in general, the Bregman distance

depends on the choice of the subgradient w ∈ ∂IUad
(v). In the algorithm described

below we will derive a suitable choice for the subgradients λ ∈ ∂J(u) and w ∈
∂IUad

(u).

3.4.2 The Iterative Bregman Method

To start our algorithm we need suitable starting values u0 ∈ Uad and λ0 ∈ ∂J(u0).
We define u0 to be the solution of the problem

min
u∈L2(Ω)

J(u) =
1

2
‖u‖2L2(Ω) + IUad

(u),

which yields u0 = PUad
(0). Furthermore, by Theorem 2.1.5, we have 0 ∈ ∂J(u0),

so we simply set λ0 = 0. Note that all of the following results can be extended to
arbitrary u0 ∈ Uad and general subgradients λ0 ∈ ∂J(u0)∩R(S∗). The (prototypical)
Bregman iteration is now defined as follows, see also [72]:

Algorithm 3.1. Let u0 = PUad
(0) ∈ Uad, λ0 = 0 ∈ ∂J(u0) and k = 1.

1. Solve for uk:

Minimize
1

2
‖Su− z‖2Y + αkD

λk−1(u, uk−1). (3.5)

2. Choose λk ∈ ∂J(uk).

3. Set k := k + 1, go back to 1.

Here (αk)k is a bounded sequence of positive real numbers. If u† is a solution
of (P ), it satisfies u† = PUad

(
u† −ΘS∗(Su† − z)

)
with Θ > 0 arbitrary. Therefore a

possible stopping criterion is given by (with ε > 0)∥∥uk − PUad

(
uk −ΘS∗(Suk − z)

)∥∥ ≤ ε,
with a suitable norm ‖ · ‖. Let us reformulate (3.5) using the definition of Dλ(u, v):

1

2
‖Su− z‖2Y + αkD

λk−1(u, uk−1)

=
1

2
‖Su− z‖2Y + αk

(
1

2
‖u‖2L2(Ω) + IUad

(u)− 1

2
‖uk−1‖2L2(Ω)

− IUad
(uk−1)− (u, λk−1)L2(Ω) + (uk−1, λk−1)L2(Ω)

)
.
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Note that uk−1 ∈ Uad, hence IUad
(uk−1) = 0. Now, by dropping the constant terms

we obtain that (3.5) is equivalent to the following problem:

Minimize
1

2
‖Su− z‖2Y + αk

(
1

2
‖u‖2L2(Ω) − (λk−1, u)L2(Ω)

)
such that u ∈ Uad.

(3.6)

In Algorithm 3.1 it remains to specify how to choose the subgradient λk for the
next iteration. We will show that we can construct a new subgradient based on the
iterates u1, ..., uk. The following result motivates the construction of the subgradient.
Moreover it shows that Algorithm 3.1 is well-posed.

Lemma 3.4.2. The problem (3.5) has a unique solution uk ∈ Uad and there exists
wk ∈ ∂IUad

(uk) such that

S∗(Suk − z) + αk(uk − λk−1 + wk) = 0,

or equivalently

uk = PUad

(
− 1

αk
S∗(Suk − z) + λk−1

)
.

Moreover, the subdifferential ∂J(uk) is non-empty.

Proof. The set of admissible functions Uad is nonempty, closed, convex, and bounded,
hence weakly compact. Furthermore, the function Jk defined by

Jk : L2(Ω)→ R, u 7→ 1

2
‖u‖2L2(Ω) − (λk−1, u)L2(Ω)

is continuous and convex, hence it is weakly lower semi-continuous. With this
definition (3.6) can be formulated as

min
u∈Uad

H(u) + αkJk(u).

Recall that H(u) = 1
2‖Su− z‖2Y . Since H is convex, the function H + αkJk is convex

and by the Weierstraß theorem (with respect to the weak topology) we get existence
of minimizers. Since αk > 0 and Jk is strictly convex, minimizers are also unique. By
the first-order optimality condition for (3.6) there exists wk ∈ ∂IUad

(uk) such that

S∗(Suk − z) + αk(uk − λk−1 + wk) = 0.

The second statement follows immediately by rewriting this equality as(
− 1

αk
S∗(Suk − z) + λk−1 − uk, v − uk

)
L2(Ω)

≤ 0, ∀v ∈ Uad,

which implies

uk = PUad

(
− 1

αk
S∗(Suk − z) + λk−1

)
.

Clearly, it holds ∂J(uk) 6= ∅.
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We have ∂J(uk) = uk + ∂IUad
(uk), so motivated by Lemma 3.4.2 we set

λk := uk + wk =
1

αk
S∗(z − Suk) + λk−1 ∈ ∂J(uk). (3.7)

An induction argument now directly yields the following result.

Lemma 3.4.3. Let the subgradients λk ∈ ∂J(uk) be chosen according to (3.7). Then it
holds

λk = S∗µk, µk :=

k∑
i=1

1

αi
(z − Sui).

With this choice of λk, we see that Algorithm 3.1 can be equivalently formulated
as:

Algorithm 3.2. Let u0 = PUad
(0) ∈ Uad, µ0 = 0, λ0 = 0 ∈ ∂J(u0) and k = 1.

1. Solve for uk:

Minimize
1

2
‖Su− z‖2Y + αkD

λk−1(u, uk−1). (3.8)

2. Set µk :=
k∑
i=1

1
αi

(z − Sui) and λk := S∗µk.

3. Set k := k + 1, go back to 1.

As argued in [11,72], Algorithm 3.2 is equivalent to the following algorithm:

Algorithm 3.3. Let µ0 := 0 and k = 1.

1. Solve for uk:

Minimize
1

2
‖Su− z − αkµk−1‖2Y +

αk
2
‖u‖2L2(Ω)

such that uk ∈ Uad.

2. Set µk =
1

αk
(z − Suk) + µk−1.

3. Set k := k + 1, go back to 1.

The equivalence can be seen directly by computing the first-order necessary and
sufficient optimality conditions. For a solution uk given by Algorithm 3.2 we obtain(

S∗(Suk − z) + αk(uk − λk−1), v − uk
)
L2(Ω)

≥ 0, ∀v ∈ Uad,

while for an iterate ūk and resulting µ̄k of Algorithm 3.3 we get(
S∗(Sūk − z − αkµ̄k−1) + αkūk, v − ūk

)
L2(Ω)

≥ 0, ∀v ∈ Uad.

By adding both inequalities and applying an induction, we obtain

‖S(uk − ūk)‖2Y + αk‖uk − ūk‖2L2(Ω) ≤ (αkS
∗µk−1 − αkλk−1, ūk − uk)L2(Ω).

By definition λk−1 = S∗µk−1 and therefore both algorithms coincide.
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3.4.3 A-Priori Error Estimates

We want to show error estimates in terms of |H(uk)−H(u†)|, where u† is a solution
of (P ). The following result can be proven similar to the proof presented in [72],
hence the proof is omitted here.

Lemma 3.4.4. The iterates of Algorithm 3.2 satisfy

H(uk) ≤ H(uk−1).

Similar to [72, Theorem 3.3] we can formulate a convergence result on (H(uk))k,
together with an a-priori error estimate. We introduce the quantity

γk :=
k∑
j=1

1

αj
.

Since the sequence αj is bounded we obtain

lim
k→∞

γ−1
k = 0.

Theorem 3.4.5. The iterates of Algorithm 3.2 satisfy

|H(uk)−H(u†)| = O
(
γ−1
k

)
.

Furthermore we have

Dλk(u†, uk) ≤ Dλk−1(u†, uk−1) and
∞∑
i=1

Dλi−1(ui, ui−1) <∞.

Proof. Due to the definition of the Bregman distance, the following 3-point identity
[25,72] holds

Dλk(u, uk)−Dλk−1(u, uk−1) +Dλk−1(uk, uk−1) = (uk − u, λk − λk−1).

This implies the inequality

Dλk(u, uk)−Dλk−1(u, uk−1) +Dλk−1(uk, uk−1)

= (uk − u, λk − λk−1)

=
1

αk
(S∗(Suk − z), u− uk)

≤ 1

αk
(H(u)−H(uk)).

We now set u = u† and obtain

Dλk(u†, uk) ≤ Dλk−1(u†, uk−1).
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Note that we use use the optimality of u† and the non-negativity of the Bregman
distance here. If we instead perform a summation over k we get

k∑
i=1

Dλi(u†, ui) +
k∑
i=1

[
Dλi−1(ui, ui−1) +

1

αi

(
H(ui)−H(u†)

)]

≤
k∑
i=1

Dλi−1(u†, ui−1).

Now we use the fact that H(ui)−H(u†) ≥ 0 and H(ui) ≤ H(ui−1) to obtain

Dλk(u†, uk) +

k∑
i=1

Dλi−1(ui, ui−1) + |H(uk)−H(u†)|
k∑
i=1

1

αi
≤ Dλ0(u†, u0) <∞.

From this the results now follow immediately.

The sequence of regularization parameters (αk)k is bounded, leading to the
convergence result H(uk)→ H(u†).

The monotonicity of Dλk(u†, uk) will play a crucial role in the subsequent analysis.
Together with the lower bound (3.4) it will allow us to prove strong convergence
uk → u† in L2(Ω) under suitable conditions.

3.4.4 Auxiliary Estimates

In the sequel, we will denote by (uk)k the sequence of iterates provided by Algorithm
3.2. Let us start with the following result, which will be useful in the convergence
analysis later on.

Lemma 3.4.6. Let βj ≥ 0, such that βj → 0. We then have

lim
k→∞

γ−1
k

k∑
j=1

α−1
j βj = 0.

Proof. Let ε > 0 be arbitrary. Since βj → 0 we can choose N such that βj ≤ ε
2 holds

for all j ≥ N . Since γ−1
k → 0 there is M > N such that

γ−1
k

N∑
j=1

α−1
j βj ≤

ε

2

holds for all k ≥M . We compute for k ≥M :

γ−1
k

k∑
j=1

α−1
j βj = γ−1

k

N∑
j=1

α−1
j βj + γ−1

k

k∑
j=N+1

α−1
j βj

≤ ε

2
+
ε

2
γ−1
k

k∑
j=N+1

α−1
j ≤

ε

2
+
ε

2
γ−1
k γk = ε,

which is the claim.
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We also need the following result.

Lemma 3.4.7. For all γ, κ, c1, c2 > 0 and u, v ∈ L1(Ω) there exists a constant C > 0
independent from γ, u, v such that the inequality

c1‖u− v‖L1(Ω) ≤
c2γ

2
‖u− v‖1+ 1

κ

L1(Ω) + Cγ−κ

holds.

Proof. We use Young’s inequality to prove this result. Let q, r > 0 such that q−1 +
r−1 = 1. Then, for every a, b ≥ 0 and positive c > 0 we obtain

ab = (cγ)(a)

(
b

cγ

)
≤ cγ

(
aq

q
+

br

r(cγ)r

)
=
cγ

q
aq +

br

rcr
γ−r+1.

With the choice of

q := 1 +
1

κ
, r := κ+ 1

and
a = ‖u− v‖L1(Ω), b := c1, c :=

qc2
2

the result is obtained with the constant C := br(rcr)−1.

In the case that Suk is equal to the optimal state y† = Su†, the algorithm gives
uk+1 = uk, which is then a solution of (P ).

Lemma 3.4.8. Let y† be the optimal state of (P ). If Suk = y† then it holds uk+1 = uk,
and uk solves (P ).

Proof. Since uk+1 is the minimizer of

1

2
‖Su− z‖2Y + αk+1D

λk(u, uk)

it follows

1

2
‖Suk+1 − z‖2Y + αk+1D

λk(uk+1, uk) ≤ 1

2
‖Suk − z‖2Y + αk+1D

λk(uk, uk)

=
1

2
‖y† − z‖2Y .

Since y† is the unique optimal state of (P ), it follows ‖y† − z‖Y ≤ ‖Suk+1 − z‖Y ,
and hence we obtain 0 = Dλk(uk+1, uk). We now use (3.4) and obtain

1

2
‖uk+1 − uk‖2L2(Ω) ≤ Dλk(uk+1, uk) = 0,

from which uk+1 = uk follows. Since Suk = y† it follows that uk solves (P ).
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If the algorithm reaches a solution of (P ) after a finite number of steps, we can
show that this solution satisfies the projected source condition (SC). This condition
is used below in Section 3.4.5 to prove strong convergence of the iterates.

Lemma 3.4.9. Let uk be a solution of (P ) for some k. Then there exists an element
w ∈ Y such that uk = PUad

(S∗w) holds.

Proof. For k = 0 this is true by the definition of u0 = PUad
(0) = PUad

(S∗(0)). For
k ≥ 1 we obtain from the optimality condition as stated in Lemma 3.4.2 and with the
definition of λk the representation

uk = PUad
(λk) = PUad

(S∗µk),

which is the stated result.

Let us now prove auxiliary results that exploits the choice of the subdifferential
λk in (3.7). They will be employed in the convergence rate estimates below.

Lemma 3.4.10. Let u† be a solution of (P ). Then it holds
1

αk
Dλk(u†, uk) +

1

2α2
k

‖S(u† − uk)‖2Y +
1

2
‖vk‖2Y

≤ 1

αk
(u†, u† − uk)L2(Ω) +

γk
αk

(p†, uk − u†)L2(Ω) +
1

2
‖vk−1‖2Y ,

(3.9)

where vk is defined by

vk :=

k∑
i=1

1

αi
S(u† − ui). (3.10)

Proof. First notice that u† ∈ ∂J(u†) holds, which follows from

u† = u† + 0 ∈ ∂
(

1

2
‖ · ‖2

)
(u†) + ∂IUad

(u†) ⊆ ∂J(u†).

As in the proof of [11, Theorem 4.1], we consider the sum of the Bregman distances
1

αk
Dλk(u†, uk) +

1

αk
Du†(uk, u

†) =
1

αk
(u† − λk, u† − uk)L2(Ω).

Using the definitions of vk and p†, we obtain

1

αk
(−λk, u† − uk)L2(Ω) =

1

αk

 k∑
j=1

1

αj
(Suj − z), S(u† − uk)


Y

=
1

αk

 k∑
j=1

1

αj
(S(uj − u† + u†)− z), S(u† − uk)


Y

= (−vk, vk − vk−1)Y +
1

αk

k∑
j=1

1

αj
(Su† − z, S(u† − uk))Y

= (−vk, vk − vk−1)Y +
γk
αk

(p†, uk − u†)L2(Ω).
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We continue with transforming the first addend on the right-hand side

(−vk, vk − vk−1)Y =
1

2
‖vk−1‖2Y −

1

2
‖vk‖2Y −

1

2
‖vk − vk−1‖2Y

=
1

2
‖vk−1‖2Y −

1

2
‖vk‖2Y −

1

2α2
k

‖S(u† − uk)‖2Y .

We obtain the result by using the nonnegativity of Du†(uk, u
†).

Estimate (3.9) will play a key role in the convergence analysis of the algorithm.
The principal idea is to sum the inequality (3.9) with respect to k. Using the mono-
tonicity of the Bregman distance Dλk(u†, uk) and inequality (3.4), we can then
conclude convergence of the iterates if we succeed in estimating the terms involving
the scalar product (u†, u† − uk)L2(Ω). Note that due to Theorem 3.2.2 the term
(p†, uk − u†)L2(Ω) is non-positive.

3.4.5 Convergence Results

In the following we want to establish several different convergence results for Algo-
rithm 3.2. The main result of the section are the regularization error estimates under
the regularity assumption (SC) and (ASC), which can be found in Theorem 3.4.15
and Theorem 3.4.20, respectively. Let us start with a general convergence result for
Algorithm 3.2.

Theorem 3.4.11. Weak limit points of the sequence (uk)k generated by Algorithm 3.2
are solutions to the problem (P ). Furthermore the iterates satisfy

∞∑
i=1

‖ui − ui−1‖2L2(Ω) <∞.

Proof. Since L2(Ω) is a Hilbert space and Uad is bounded, closed and convex, it
is weakly compact and weakly closed. Hence we can deduce the existence of a
subsequence ukj ⇀ u∗ ∈ Uad. Furthermore H is convex and continuous, so it
is weakly lower semi-continuous. By Theorem 3.4.5 we know that the sequence
(H(uk))k is converging towards H(u†), hence we obtain

H(u†) = lim inf
j→∞

H(ukj ) ≥ H(u∗),

yielding H(u†) = H(u∗), since u† realizes the minimum of H in Uad. So u∗ is a
solution to the problem (P ). To prove the second part we use (3.4) and the result of
Theorem 3.4.5 to show

∞∑
i=1

1

2
‖ui − ui−1‖2L2(Ω) ≤

∞∑
i=1

Dλi−1(ui, ui−1) <∞,

which ends the proof.
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Remark 3.4.12. The above result resembles properties of the iterates generated by the
proximal point method. There it holds

∑∞
i=1 ‖ui − ui−1‖2L2(Ω) <∞, see e.g. [88].

As argued in Section 2.1, the optimal state y† of (P ) is uniquely determined. This
allows us to prove the strong convergence of the sequence (Suk)k.

Theorem 3.4.13. Let the sequence (uk)k be generated by Algorithm 3.2. Then it holds

Suk → y†

in Y , where y† is the uniquely determined optimal state of (P ).

Proof. We first show Suk ⇀ y†. Let (uk′)k′ be a subsequence of the sequence of
iterates. Due to the boundedness of Uad, this sequence is bounded, and has a weakly
converging subsequence (uk′′)k′′ , uk′′ → u∗. By Theorem 3.4.11, the limit u∗ is a
solution of (P ). This implies Su∗ = y†. Note that a bounded linear operator is also
weakly sequentially continuous. Hence, we proved that each subsequence of (Suk)k
contains a subsequence that weakly converges to y†. This shows Suk ⇀ y†.
Due to Theorem 3.4.5 and γ−1

k → 0, we have that

H(uk) =
1

2
‖Suk − z‖2Y →

1

2
‖y† − z‖2Y = H(u†)

for every solution u† of (P ). Using this and Lemma 3.4.4 we get

0 ≤ ‖y† − z‖2Y − ‖Suk − z‖2Y = ‖y†‖2Y − ‖Suk‖2Y −
1

2
(z, y† − Suk)Y → 0.

Hence, for every ε > 0 we find a k̄ ∈ N such that for all k̄ < k ∈ N we have

0 ≤ ‖y†‖2Y − ‖Suk‖2Y −
1

2
(z, y† − Suk)Y ≤

ε

2
,∣∣∣∣12(z, y† − Suk)Y

∣∣∣∣ ≤ ε

2
.

Note that for the last inequality we used the weak convergence Suk ⇀ y†. We now
obtain

−ε
2
≤ 1

2
(z, y† − Suk)Y ≤ ‖y†‖2Y − ‖Suk‖2Y ≤

ε

2
+

1

2
(z, y† − Suk)Y ≤ ε.

This now implies convergence of the norms ‖Suk‖Y → ‖y†‖Y . Since Y is a Hilbert
space, the strong convergence Suk → y† follows immediately.

If we assume that the problem (P ) has a unique solution u† ∈ Uad we can prove
strong convergence of our algorithm.

As argued above, the solution of (P ) is uniquely determined if, e.g., the operator
S is injective or p† 6= 0 almost everywhere.
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Theorem 3.4.14. Assume that u† ∈ Uad is the unique solution of (P ). Then the iterates
of Algorithm 3.2 satisfy

lim
k→∞

‖uk − u†‖L2(Ω) = 0 and min
i=1,...,k

1

αi
‖S(ui − u†)‖2Y → 0.

Proof. With Theorem 3.4.11 we know that each weak limit point is a solution to
the problem (P ). So let u∗ be such a point which satisfies H(u†) = H(u∗). As u† is
the unique solution we conclude u∗ = u†. From every subsequence of (uk)k we can
extract a weakly converging subsequence and repeat this argumentation. Hence we
can conclude weak convergence uk ⇀ u† of the whole sequence.
With Lemma 3.4.10 and Theorem 3.2.2 we obtain

1

2α2
k

‖S(u†−uk)‖2Y +
1

αk
Dλk(u†, uk) +

1

2
‖vk‖2Y ≤

1

αk
(u†, u†−uk)L2(Ω) +

1

2
‖vk−1‖2Y ,

with vk defined in (3.10). Summing up yields

k∑
j=1

1

2α2
j

‖S(u† − uj)‖2Y +
k∑
j=1

1

αj
Dλj (u†, uj) ≤

k∑
j=1

α−1
j (u†, u† − uj)L2(Ω),

where we used the convention v0 = 0. We now use the monotonicity of Dλk(u†, uk),
see Theorem 3.4.5 and the estimate 1

2‖u† − uk‖2L2(Ω) ≤ Dλk(u†, uk) to obtain

k∑
j=1

1

2α2
j

‖S(u† − uj)‖2Y +
γk
2
‖u† − uk‖2Y ≤

k∑
j=1

α−1
j (u†, u† − uj)L2(Ω).

Multiplying this inequality with γ−1
k leads to

min
j=1,...,k

1

αj
‖S(u† − uj)‖2Y + ‖u† − uk‖2L2(Ω) ≤ 2γ−1

k

k∑
j=1

α−1
j (u†, u† − uj)L2(Ω).

We finally obtain the result by using the weak convergence uk ⇀ u† and Lemma
3.4.6.

Under Assumption (SC) we can prove strong convergence of Algorithm 3.2 to-
gether with additional regularization error estimates.

Theorem 3.4.15. Assume that Assumption (SC) holds for u†. Then the iterates of
Algorithm 3.2 satisfy

‖uk − u†‖2L2(Ω) = O(γ−1
k ),

min
i=1,...,k

‖S(ui − u†)‖2Y = O

( k∑
i=1

α−2
i

)−1
 .

37



Chapter 3 Iterative Bregman Method for Control Constraints

Proof. From Lemma 3.4.10 we know

1

αk
Dλk(u†, uk) +

1

2α2
k

‖S(u†−uk)‖2Y +
1

2
‖vk‖2Y ≤

1

αk
(u†, u†−uk)L2(Ω) +

1

2
‖vk−1‖2Y ,

with vk defined in (3.10). It remains to estimate (u†, u† − uk)L2(Ω) with the help of
the source condition. By the definition of the projection u† = PUad

(S∗w) we get(
u† − S∗w, v − u†

)
L2(Ω)

≥ 0 ∀v ∈ Uad.

Since uk ∈ Uad we have

1

αk

(
u†, u† − uk

)
L2(Ω)

≤ 1

αk

(
S∗w, u† − uk

)
L2(Ω)

=
1

αk
(w, S(u† − uk))Y

= (w, vk − vk−1)Y .

A small variation of Lemma 3.4.10 yields

1

αk
Dλk(u†, uk) +

1

2α2
k

‖S(u† − uk)‖2Y +
1

2
‖vk − w‖2Y ≤

1

2
‖vk−1 − w‖2Y .

Following the lines of Theorem 3.4.14 we obtain by a summation

1

2

k∑
j=1

1

α2
j

‖S(u† − uj)‖2Y +
γk
2
‖u† − uk‖2L2(Ω) +

1

2
‖vk − w‖2Y ≤

1

2
‖w‖2Y ,

which yields the result.

Under the source condition (SC) we can improve Lemma 3.4.8.

Lemma 3.4.16. Assume that u† satisfies Assumption (SC). If it holds Suk = y†, then
it follows uk = u†.

Proof. As argued in Lemma 3.4.9, uk fulfils (SC). Hence both uk and u† are solutions
of the minimal norm problem 3.1. This problem is uniquely solvable, which yields
uk = u†.

While the sequence (λk)k is unbounded in general, we can prove convergence of
γ−1
k λk, which is a weighted average of the sequence

(
S∗(z − Suk)

)
k
.

Corollary 3.4.17. Assume that Assumption (SC) holds for u†. Then it holds∥∥∥∥∥γ−1
k

k∑
i=1

1

αi
S(ui − u†)

∥∥∥∥∥
2

Y

+
∥∥γ−1

k λk − p†
∥∥2

L2(Ω)
= O(γ−2

k ).
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Proof. Due to the definitions of λk, p†, and vk defined in (3.10) it holds

γ−1
k λk − p† = γ−1

k

(
k∑
i=1

1

αi
S∗S(u† − ui)

)
= γ−1

k S∗vk.

Following the lines of the proof of Theorem 3.4.15, we obtain

‖vk‖Y ≤ ‖vk − w‖Y + ‖w‖Y ≤ 2‖w‖Y ,

which yields the claim.

When comparing the convergence rates of Theorem 3.4.15 and Corollary 3.4.17,
one sees that the norm of the weighted average γ−1

k

∑k
i=1

1
αi
S(ui − u†) converges

faster to zero than min
i=1,...,k

‖S(ui − u†)‖Y , since it holds γ2
k =

(∑k
i=1 α

−1
i

)2

>∑k
i=1 α

−2
i for k > 1.

In the following we will show convergence results for iterates produced by Algo-
rithm 3.2 if we assume (ASC). The special case I = Ω is already covered by Theorem
3.4.15, since for this choice of I the Assumption (ASC) reduces to the Assumption
(SC).

We now focus on the case I 6= Ω, that is, if the source condition is not satisfied on
the whole domain Ω.

At first, let us prove a strengthened version of the first-order optimality conditions
satisfied by u†. We refer to [87, Lemma 1.3] for a different proof.

Lemma 3.4.18. Let u† satisfy Assumption (ASC). Then there is cA > 0 such that for
all u ∈ Uad

(−p†, u− u†)L2(Ω) ≥ cA‖u− u†‖1+ 1
κ

L1(A)

is satisfied.

Proof. Let ε > 0 be given. Let us define Aε := {x ∈ A : |p†(x)| ≥ ε}. Then it holds

−
∫
Ω

p†(u− u†) dx ≥ −
∫
Aε

p†(u− u†) dx−
∫

A\Aε

p†(u− u†) dx

≥ ε ‖u− u†‖L1(Aε) − ε ‖u− u†‖L1(A\Aε).

Using Assumption (ASC) to estimate the measure of the set A \Aε we proceed with

ε ‖u− u†‖L1(Aε) − ε ‖u− u†‖L1(A\Aε)

≥ ε ‖u− u†‖L1(A) − 2 ε ‖u− u†‖L1(A\Aε)

≥ ε ‖u− u†‖L1(A) − 2 ε ‖u− u†‖L∞(A) meas(A \Aε)
≥ ε ‖u− u†‖L1(A) − c εκ+1,
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where c > 1 is a constant independent of u. In the last step, we used that the control
bounds are given in L∞(Ω). Setting ε := c−2/κ‖u− u†‖1/κL1(A) yields

(−p†, u− u†)L2(Ω) ≥ c‖u− u†‖1+ 1
κ

L1(A),

which is the claim.

The next step concerns the estimation of (u†, u† − uj)L2(Ω) with the help of the
source condition part of (ASC).

Lemma 3.4.19. Let u† satisfy (ASC). If I 6= Ω there exists a constant c > 0 such that
for all u ∈ Uad it holds

(u†, u† − u)L2(Ω) ≤ (S∗w, u† − u)L2(Ω) + c ‖u† − u‖L1(A).

Proof. Since Uad is defined by pointwise inequalities, the projection onto Uad can be
taken pointwise. This implies(

χI(u
† − S∗w), v − u†

)
L2(Ω)

≥ 0, ∀v ∈ Uad,

leading to
(χIu

†, u† − u)L2(Ω) ≤ (χIS
∗w, u† − u)L2(Ω).

This gives

(u†, u† − u)L2(Ω) = (χIu
† + χAu

†, u† − u)L2(Ω)

≤ (χIS
∗w + χAu

†, u† − u)L2(Ω)

=
(
S∗w,χI(u

† − u)
)
L2(Ω)

+ (χAu
†, u† − u)L2(Ω).

Since χI = 1− χA we have

SχI(u
† − u) = S(1− χA)(u† − u) = S(u† − u)− SχA(u† − u).

Hence

(u†, u† − u)L2(Ω) ≤
(
w, S(u† − u)− SχA(u† − u)

)
Y

+
(
u†, χA(u† − u)

)
L2(Ω)

=
(
w, S(u† − u)

)
Y

+
(
u† − S∗w,χA(u† − u)

)
L2(Ω)

.

Since on A we have p† 6= 0 and u† ∈ L∞(A), (recall ua, ub ∈ L∞(A)) so using the
regularity assumption S∗w ∈ L∞(Ω) we can estimate(

u† − S∗w,χA(u† − u)
)
L2(Ω)

≤ c‖u† − u‖L1(A),

which is the claim.

We now have all the tools to prove strong convergence for the iterates of Algorithm
3.2.
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Theorem 3.4.20. Let u† satisfy Assumption (ASC). Then the iterates of Algorithm 3.2
satisfy

‖u† − uk‖2L2(Ω) = O

γ−1
k + γ−1

k

k∑
j=1

α−1
j γ−κj

 ,

min
j=1,...,k

‖S(u† − uj)‖2Y = O


 k∑
j=1

1

α2
j

−11 +
k∑
j=1

α−1
j γ−κj


 ,

min
j=1,...,k

‖u† − uj‖1+ 1
κ

L1(A) = O


 k∑
j=1

γj
αj

−11 +

k∑
j=1

α−1
j γ−κj


 .

Proof. Using the results of Lemmas 3.4.10, 3.4.18, and 3.4.19 we obtain

1

αk
Dλk(u†, uk) +

1

2α2
k

‖S(u† − uk)‖2Y +
1

2
‖vk‖2Y −

1

2
‖vk−1‖2Y

≤ 1

αk
(u†, u† − uk)L2(Ω) +

γk
αk

(p†, uk − u†)L2(Ω)

≤ 1

αk
(S∗w, u† − uk)L2(Ω) +

c

αk
‖u† − uk‖L1(A) −

cAγk
αk
‖u† − uk‖1+ 1

κ

L1(A)

≤ (w, vk − vk−1)Y +
c

αk
‖u† − uk‖L1(A) −

cAγk
αk
‖u† − uk‖1+ 1

κ

L1(A).

Using Lemma 3.4.7 we find

c

αk
‖u† − uk‖L1(A) ≤

cAγk
2αk

‖u† − uk‖1+ 1
κ

L1(A) + c
γ−κk
αk

.

This implies the estimate

1

αk
Dλk(u†, uk) +

1

2α2
k

‖S(u† − uk)‖2Y +
cAγk
2αk

‖u† − uk‖1+ 1
κ

L1(A) +
1

2
‖vk − w‖2Y

≤ 1

2
‖vk−1 − w‖2Y + c

γ−κk
αk

.

Summation of this inequality together with the monotonicity of the Bregman distance
gives

k∑
j=1

1

α2
j

‖S(u† − uj)‖2Y +
k∑
j=1

γj
αj
‖u† − uj‖1+ 1

κ

L1(A)

+ γkD
λk(u†, uk) + ‖vk − w‖2Y ≤ c

1 +
k∑
j=1

α−1
j γ−κj

 .

The claim now follows using the lower bound (3.4).
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If Assumption (ASC) is satisfied with A = Ω, which implies that u† has a bang-
bang structure on Ω, or w = 0, then the estimate of Theorem 3.4.20 can be improved
to

‖u† − uk‖2 ≤ c γ−1
k

k∑
j=1

α−1
j γ−κj .

Similar to Corollary 3.4.17 we can prove convergence of the weighted average
γ−1
k λk.

Corollary 3.4.21. Let u† satisfy (ASC). Then it holds∥∥∥∥∥γ−1
k

k∑
i=1

1

αi
S(ui − u†)

∥∥∥∥∥
2

Y

+
∥∥γ−1

k λk − p†
∥∥2

L2(Ω)
= O

γ−2
k

1 +

k∑
j=1

α−1
j γ−κj

 .

Proof. Following the lines of Theorem 3.4.20 we obtain

‖vk‖2Y ≤ c(‖vk − w‖2Y + ‖w‖2Y ) ≤ c

1 +
k∑
j=1

α−1
j γ−κj

 .

The claim follows with the same arguments as in Corollary 3.4.17.

Let us derive precise convergence rates, if αk is a polynomial in k.

Corollary 3.4.22. Let u† satisfy (ASC). Suppose that αk is given by αk = cαk
−s with

s ≥ 0, cα > 0. Define

sk :=


k(s+1)(1−κ) if κ < 1,

log(k) if κ = 1,

1 if κ > 1.

Here κ is from Assumption (ASC). Then it holds

‖u† − uk‖2L2(Ω) = O
(
k−(s+1)sk

)
,

min
j=1,...,k

‖u† − uj‖1+ 1
κ

L1(A) = O
(
k−2(s+1)sk

)
,

min
j=1,...,k

‖S(u† − uj)‖2Y = O
(
k−(2s+1)sk

)
,

‖γ−1
k λk − p†‖2L2(Ω) = O

(
k−2(s+1)sk

)
.

Proof. For this choice of αk, it is easy to see that γ−1
k ≤ ck−(s+1). Then α−1

j γ−κj ≤
cjs−(s+1)κ which implies that

∑k
j=1 α

−1
j γ−κj ≤ ck(s+1)(1−κ) if κ 6= 1 and otherwise∑k

j=1 α
−1
j γ−κj ≤ c log(k) if κ = 1. If κ ≤ 1 then the term

∑k
j=1 α

−1
j γ−κj is dominating

the error estimate, while for κ > 1 this term tends to zero.
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This yields

‖u† − uk‖2L2(Ω) ≤ c γ−1
k

1 +
k∑
j=1

α−1
j γ−κj

 ≤ c k−(s+1)sk

with

sk :=


k(s+1)(1−κ) if κ < 1,

log(k) if κ = 1,

1 if κ > 1.

Using
∑k
j=1 α

−1
j γj ≥ ck2(s+1) and

∑k
j=1 α

−2
j ≥ ck2s+1, we obtain the estimates

min
j=1,...,k

‖u† − uj‖1+ 1
κ

L1(A) ≤ c

 k∑
j=1

α−1
j γj

−11 +
k∑
j=1

α−1
j γ−κj


≤ ck−2(s+1)sk

and

min
j=1,...,k

‖S(u† − uj)‖2Y ≤ c

 k∑
j=1

α−2
j

−11 +
k∑
j=1

α−1
j γ−κj


≤ ck−(2s+1)sk.

Similar we obtain with Corollary 3.4.21

‖γ−1
k λk − p†‖2L2(Ω) ≤ cγ−2

k

1 +
k∑
j=1

α−1
j γ−κj


≤ ck−2(s+1)sk.

This finishes the proof.

After we have established the convergence proof we can now explain why the
iterative Bregman method is well suited for our regularity condition and why we do
not work with the proximal point method. Following the proof of Lemma 3.4.10 we
have the estimate

1

2
‖u† − uk‖2L2(Ω) ≤ Dλk(u†, uk) ≤ (u† − λk, u† − uk)L2(Ω).

Lemma 3.4.10 now exploits the special structure of the subgradient λk to decompose
the term (−λk, u† − uk)L2(Ω) with the help of the auxiliary variables vk.

The proof of the convergence rates then mainly consists of estimating the term
(u†, u† − uk)L2(Ω) with the help of our regularity assumption. This is possible since
this term resembles a projection, see Lemma 3.4.19.
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Now, let (upk)k denote the iterates generated by the proximal point method. If we
try to copy this technique we obtain by adding the first order optimality conditions
that

‖u† − upk‖2L2(Ω) ≤ (u† − upk−1, u
† − upk)L2(Ω)

holds. From here it is not clear how to handle the term (−upk−1, u
† − upk)L2(Ω) in a

similar way as we did for the iterative Bregman method.

3.4.6 Noise Estimates

Recall that we want to solve an optimization problem of the following form

Minimize
1

2
‖Su− z‖2Y

such that ua ≤ u ≤ ub a.e. in Ω.

In most cases the exact desired state z will not be known exactly. Assume that only
an approximation zδ ≈ z is known. This is crucial, as solutions may be unstable with
respect to perturbations.

In order to overcome these difficulties, several regularization methods were
developed. Let us recall the Tikhonov regularization introduced in Subsection 2.2.3.
The regularized problem is given by:

Minimize
1

2
‖Su− zδ‖2Y +

α

2
‖u‖2L2(Ω)

such that ua ≤ u ≤ ub a.e. in Ω,

where zδ with ‖z − zδ‖Y ≤ δ is the perturbed state to the noise level δ ≥ 0. Here one
is interested in the convergence of the solution for (α, δ)→ 0 under some suitable
conditions. For this problem convergence results were developed in [97]. In the
context of inverse problems, we refer to [33]. However, for α tending to zero, the
Tikhonov regularized problem becomes increasingly ill-conditioned.

The convergence and regularization error estimates presented in Subsection 3.4.5
are formulated assuming that the value z is known exactly. If only approximations
zδ ≈ z are available, there will be an accumulation of the error when Algorithm 3.2
is applied. We denote by (uδk)k the iterates generated by Algorithm 3.2 when the
desired state z is replaced by zδ. We assume that the noise level δ is known and zδ

satisfies ‖z − zδ‖Y ≤ δ. In general we cannot expect convergence of the sequence
(uδk)k to a solution of the unperturbed problem due to the accumulation of the error.
Our aim is to identify an optimal parameter k(δ), at which it is reasonable to stop the
iteration.

Before we present our stopping rule let us recall some already known facts about
the iterative Bregman method. In [37,39] the authors investigated the problem

Minimize J(u) such that Su = z.

The Lagrangian for this problem is given as

L(u, p) := J(u)− 〈p, Su− z〉.
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Next, they apply an augmented Lagrange method with an additional augmentation
1

2αk
‖Su − z‖2Y , which fosters the fulfillment of the constraints. The augmented

Lagrange method now reads as

uk := arg min

(
1

2αk
‖Su− z‖2Y + J(u)− 〈µk−1, Su− z〉

)
,

µk := µk−1 +
1

αk
(z − Suk).

For the choice J(u) := 1
2‖u‖2L2(Ω)+IUad

(u) the augmented Lagrange method coincides
with the iterative Bregman method 3.2 described in Section 3.4.

In [39, Theorem 5.3] the authors established an a-priori stopping rule Γ(δ) ∈ N
such that each weak cluster point of (uδΓ(δ))δ→0 is a solution to the original problem.
The stopping index Γ(δ) has to satisfy

lim
δ→0

δ2

Γ(δ)∑
j=1

1

αj
= 0 and lim

δ→0

Γ(δ)∑
j=1

1

αj
=∞.

However, the proof relies heavily on the use of the source condition (SC) and the
attainablity of z. The aim of this section is to present an a-priori stopping rule, which
works under our more general assumptions.

Another widely used discrepancy principle is the Morozov’s principle. This rule
selects a suitable stopping index by comparing the residual ‖Su − zδ‖Y with the
known noise level δ. To be precise the stopping index is defined as

ΓM (δ) := min{n ∈ N : ‖Suδn − zδ‖Y ≤ ρδ}

with a fixed parameter ρ > 0. For an analysis of Morozov’s principle applied to the
iterative Bregman method we refer to [38]. However this principle is not applicable
here, as it needs the residual ‖Suδn − zδ‖Y go to zero for δ → 0, which cannot be
guaranteed in general if z is not reachable.

In the following we focus on the derivation of an a-priori stopping rule. We start
by establishing the following noise estimate, which will be used later to construct the
stopping rule.

Lemma 3.4.23. Let (uk)k and (uδk)k denote the sequences generated by Algorithm 3.2
for data z and zδ, respectively. Then it holds

k∑
i=1

1

αi
‖uδi − ui‖2L2(Ω) ≤ δ2

k∑
i=1

(
1

α2
i

+ γ2
i−1

)
.

Proof. We introduce the following adjoint states

pk := S∗(z − Suk), pδk := S∗(zδ − Suδk)
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for uk and uδk respectively. For the subgradients we define

λk :=
k∑
i=1

1

αi
S∗(z − Sui), λδk :=

k∑
i=1

1

αi
S∗(zδ − Suδi ).

We start by using the necessary first order optimality conditions, both for uk and uδk,
see Lemma 3.4.2.

(−pδk+1 + αk+1(uδk+1 − λδk), uk+1 − uδk+1)L2(Ω) ≥ 0,

(−pk+1 + αk+1(uk+1 − λk), uδk+1 − uk+1)L2(Ω) ≥ 0.

Adding both inequalities yield

αk+1‖uk+1 − uδk+1‖2L2(Ω) ≤ (pk+1 − pδk+1, uk+1 − uδk+1)L2(Ω)

+ αk+1(λk − λδk, uk+1 − uδk+1)L2(Ω).

An estimate yields for the first term

(pk+1 − pδk+1, uk+1 − uδk+1)L2(Ω) = (z − Suk+1 − (zδ − Suδk+1), S(uk+1 − uδk+1))Y

= (z − zδ, yk+1 − yδk+1)Y + (yδk+1 − yk+1, yk+1 − yδk+1)Y

≤ δ‖yk+1 − yδk+1‖Y − ‖yk+1 − yδk+1‖2Y ,

while for the second term we estimate

(λk − λδk, uk+1 − uδk+1)L2(Ω) =
k∑
i=1

1

αi
(z − zδ − Sui + Suδi , yk+1 − yδk+1)Y

=

k∑
i=1

1

αi
(z − zδ, yk+1 − yδk+1)Y +

k∑
i=1

1

αi
(yδi − yi, yk+1 − yδk+1)Y

≤ δγk‖yk+1 − yδk+1‖Y +

(
k∑
i=1

1

αi
(yδi − yi), yk+1 − yδk+1

)
Y

.

By defining the quantity

vk :=
k∑
i=1

1

αi
(yi − yδi ),

and using the equality

(−vk, vk+1 − vk)Y =
1

2
‖vk‖2Y −

1

2
‖vk+1‖2Y +

1

2
‖vk+1 − vk‖2Y ,

we obtain

(λk − λδk, uk+1 − uδk+1)L2(Ω) ≤ δγk‖yk+1 − yδk+1‖Y + αk+1(−vk, vk+1 − vk)Y

= δγk‖yk+1 − yδk+1‖Y + αk+1

(
1

2
‖vk‖2Y −

1

2
‖vk+1‖2Y +

1

2
‖vk+1 − vk‖2Y

)
.
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Combining these inequalities yields

αk+1‖uk+1 − uδk+1‖2L2(Ω) ≤ δ‖yk+1 − yδk+1‖Y − ‖yk+1 − yδk+1‖2Y
+ αk+1δγk‖yk+1 − yδk+1‖Y

+ α2
k+1

(
1

2
‖vk‖2Y −

1

2
‖vk+1‖2Y +

1

2
‖vk+1 − vk‖2Y

)
.

With
‖vk+1 − vk‖2Y =

1

α2
k+1

‖yk+1 − yδk+1‖2Y ,

we obtain

αk+1‖uk+1 − uδk+1‖2L2(Ω) ≤ δ2 +
1

4
‖yk+1 − yδk+1‖2Y − ‖yk+1 − yδk+1‖2Y

+ α2
k+1δ

2γ2
k +

1

4
‖yk+1 − yδk+1‖2Y

+ α2
k+1

(
1

2
‖vk‖2Y −

1

2
‖vk+1‖2Y

)
+

1

2
‖yk+1 − yδk+1‖2Y

= δ2 + α2
k+1δ

2γ2
k + α2

k+1

(
1

2
‖vk‖2Y −

1

2
‖vk+1‖2Y

)
.

Dividing everything by α2
k+1 and performing a summation over k yield the result

k∑
i=1

1

αi
‖uδi − ui‖2L2(Ω) ≤ δ2

k∑
i=1

(
1

α2
i

+ γ2
i−1

)
.

Remark 3.4.24. The first step of Algorithm 3.2 is precisely a Tikhonov regularization
with regularization parameter α1, so we should recover the same noise estimates. This
is the case, since for k = 1 we obtain

‖uδ1 − u1‖L2(Ω) ≤
δ√
α1
,

which is the same estimate obtained for Tikhonov with regularization parameter α1, see
Theorem 2.2.4.

Remark 3.4.25. A slight modification of the proof above yields

1

4

k∑
i=1

1

α2
i

‖yi − yδi ‖2Y +
k∑
i=1

1

αi
‖uδi − ui‖2L2(Ω) ≤ 2δ2

k∑
i=1

(
1

α2
i

+ γ2
i−1

)
,

from which we recover the estimates

‖u1 − uδ1‖L2(Ω) ≤ c
δ√
α1
, ‖y1 − yδ1‖Y ≤ cδ,

which resembles the estimates obtained for the Tikhonov regularization but with a
constant c ≥ 1, see also [97, Theorem 3.1].
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3.4.7 A-Priori Stopping Rule

We will now combine the error estimates with respect to the noise level and regulari-
zation. This will give an a-priori stopping rule with best possible convergence order.
We assume that Assumption (ASC) holds for u†. The two estimates are given as (see
Lemma 3.4.23 for the noise error and Theorem 3.4.15 for the regularization error):

k∑
i=1

1

αi
‖ui − uδi ‖2L2(Ω) ≤ δ2

k∑
i=1

(
1

α2
i

+ γ2
i−1

)
,

k∑
i=1

1

αi
‖u† − ui‖2L2(Ω) ≤ c

(
1 +

k∑
i=1

α−1
i γ−κi

)
.

We define the noise error enk and the regularization error erk by

enk := δ2
k∑
i=1

(
1

α2
i

+ γ2
i−1

)
,

erk := 1 +

k∑
i=1

α−1
i γ−κi .

In the case of Assumption (SC) we set erk := 1. All of the following results can be
easily transferred to the case that u† satisfies Assumption (SC). For constant αk = α
the noise and regularization error reduce to

enk =
δ2

α2

(
k +

1

6
(k − 1)k(2k − 1)

)
,

erk = 1 + ακ−1
k∑
i=1

i−κ.

For 0 < κ ≤ 1 we get that erk →∞. Let us motivate our stopping rule. We proceed
with the next iteration as long as the noise error is below the regularization error. If
this condition is violated we stop the algorithm. Hence, our stopping rule is given
by finding the smallest m such that enm > τerm and stop the algorithm at iteration
k(δ) = m− 1. Here τ > 0 is a scaling factor.

The stopping rule is defined as

k(δ) := min{k ∈ N : enk > τerk} − 1.

For the case en1 > τer1 we obtain k(δ) = 0, which reflects the case that the noise error
is dominating after the first iteration. This happens only if δ is too big and we will
show that k(δ) 6= 0 for δ small enough. Note that k(δ) depends also on τ and (αk)k,
but we are suppressing the dependence due to clarity of the notation.

Lemma 3.4.26. Let δ > 0. The value k(δ) defined above is well-defined and unique.
Furthermore k(δ)→∞ as δ → 0.
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Proof. For the case en1 > τer1, there is nothing to show. Now assume that en1 ≤ τer1
holds. We now show that there exists a k̄ ∈ N such that en

k̄
> τer

k̄
. Assume that such a

value does not exists, hence we get enk ≤ τerk for all k ∈ N. Multiplying this inequality
with γ−1

k yields for k →∞, see Lemma 3.4.6

δ2γ−1
k

k∑
i=1

(
1

α2
i

+ γ2
i−1

)
≤ τγ−1

k

(
1 +

k∑
i=1

(
α−1
i γ−κi

))
→ 0.

Hence the sequence (γ−1
k enk )k tends to zero. Recall that there exists a constant C > 0

such that αj ≤ C. Hence
C2

α2
j

≥ C

αj
≥ 1.

This leads to the estimate

γ−1
k

k∑
i=1

1

α2
i

= C−1 (Cγk)
−1

(
C2

k∑
i=1

1

α2
i

)

= C−1

(
k∑
i=1

C

αi

)−1( k∑
i=1

C2

α2
i

)

≥ C−1

(
k∑
i=1

C

αi

)−1( k∑
i=1

C

αi

)
= C−1.

We now have a contradiction since

0 < δ2C−1 ≤ lim sup
k→∞

δ2γ−1
k

k∑
i=1

1

α2
i

≤ lim sup
k→∞

δ2γ−1
k

k∑
i=1

(
1

α2
i

+ γ2
i−1

)

≤ τ lim
k→∞

γ−1
k

(
1 +

k∑
i=1

(α−1
i γ−κi )

)
= 0.

Therefore, we know the existence of k̄ with en
k̄
> τer

k̄
, and we can deduce the

existence of a maximal k∗ < k̄ with eni ≤ τeri ∀i ≤ k∗. Setting k(δ) := k∗ yields the
well-posedness of k(δ).
To show the second part we assume that this is wrong, hence there exists a sequence
(δn)n with δ → 0 and a k̄ ∈ N such that k(δn) < k̄ for all n ∈ N. By definition we now
obtain that the following inequality holds for all n ∈ N

δ2
n

k̄∑
i=1

(
1

α2
i

+ γ2
i−1

)
≥ δ2

n

k(δn)+1∑
i=1

(
1

α2
i

+ γ2
i−1

)
> τ

1 +

k(δn)+1∑
i=1

α−1
i γ−κi

 ≥ τ.
This gives a contradiction for n big enough.
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If we choose k(δ) based on the principle above, we can establish the following
convergence result for uδk(δ) as δ → 0.

Theorem 3.4.27. Let k(δ) be given by the a-priori stopping rule presented above. If u†

satisfies Assumption (SC) we obtain

lim
δ→0
‖u† − uδk(δ)‖L2(Ω) = 0.

If u† satisfies Assumption (ASC) we obtain

min
j=1,...,k(δ)

‖u† − uδj‖L2(Ω) → 0

as δ → 0.

Proof. We use the triangle inequality to obtain

k(δ)∑
i=1

1

αi
‖u† − uδi ‖2L2(Ω) ≤

k(δ)∑
i=1

1

αi

(
‖u† − ui‖L2(Ω) + ‖ui − uδi ‖L2(Ω)

)2
≤ c

k(δ)∑
i=1

1

αi
‖u† − ui‖2L2(Ω) +

k(δ)∑
i=1

1

αi
‖ui − uδi ‖2L2(Ω)


≤ c

(
erk(δ) + enk(δ)

)
≤ c(1 + τ)erk(δ).

If Assumption (SC) holds, we have erk(δ) = 1 and we obtain strong convergence
uδk(δ) → u†. If u† satisfies Assumption (ASC) we cannot expect erk to be bounded, so
we only get the weaker result

min
i=1,...,k(δ)

‖u† − uδi ‖2L2(Ω) ≤ c(1 + τ)γ−1
k(δ)e

r
k(δ).

Since k(δ)→∞ as δ → 0 we obtain the result, see Lemma 3.4.6.

Remark 3.4.28. We expect that strong convergence uδk(δ) → u† also holds under
the more general Assumption (ASC), but it is an open problem to prove it. This is
supported by our numerical observations, since we observed that uδk(δ) is converging to
u† independent from τ in all our simulations. For a specific problem this can be seen in
Figure 3.2.

Remark 3.4.29. If Assumption (SC) holds for u†, following the proof of Theorem 3.4.27
yield the improved result

lim
δ→0

1

αk(δ)
‖u† − uδk(δ)‖2L2(Ω) = 0.

However, this is not possible for Assumption (ASC).
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Let us present some numerical results. We use the implementation presented in
Chapter 5 and the test problems shown in Section 5.2. We add sinusoidal noise to
the desired state

zδ(x) := z(x) + δ sin
(x
δ

)
.

This leads to the estimate

‖z − zδ‖L2(Ω) ≤ δ
√

meas(Ω).

Note that we used this sinusoidal noise in Subsection 2.2.1 to demonstrate the
ill-posedness of (P ). Hence we expect that uδk will not convergence against the exact
solution u†. Instead we expect the typical behaviour of an ill-posed problem, i.e.
the error ‖uδk − u†‖L2(Ω) will first decrease until a certain value k∗ followed by an
increase in the error. Finding this k∗ is a non-trivial task.

We compute the error ‖uδk − u†‖L2(Ω) for Example 5.2.1 and Example 5.2.1. For
both examples we set h = 2 · 10−5 and fix αk = 1. For Example 5.2.1 we set τ = 103

and for Example 5.2.1 we set τ = 10. The results can be seen in Figure 3.1.

200 400 600

5 · 10−2

0.1

0.15

0.2

number of iterations k

Example 5.2.1.2

δ = 0.01
δ = 0.04
δ = 0.06
δ = 0.08

200 400 600
2

4

6

·10−2

number of iterations k

Example 5.2.1.3

δ = 0.01
δ = 0.04
δ = 0.06
δ = 0.08

Figure 3.1: Regularization error ‖uδk − u
†‖L2(Ω) of Example 5.2.1 and 5.2.1, with different noise levels δ after 700

Iterations. The markers highlight the stopping points using the a-priori stopping rule.

Let us remark that such an a-priori stopping rule is barely possible in practice,
as the constant κ appearing in Assumption (ASC) is not known in advance, since it
depends on the unknown solution of the unregularized problem and the possible
unaccessible noiseless data. Furthermore the choice of τ is not clear. If τ is chosen
too large there might be some over-regularization and if τ is chosen too small some
under-regularization might occur. Nevertheless we can use the a-priori rule as a
benchmark to compare the convergence order of an a-posteriori stopping rule.

In Theorem 3.4.27 we proved asymptotic convergence of our stopping rule inde-
pendent from τ . This can also be observed numerically. We computed ‖uδk(δ)−u†‖L2(Ω)
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for different values of τ and δ for Example 6 in Section 5.2 with constant αk = 0.1.
The results can be found in Figure 3.2.

Furthermore we plotted the obtained values of k(δ) in Table 3.1. It is quite
interesting that for fixed τ the value of k( 1

2δ) is roughly twice the size of k(δ).

τ
δ 20 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 210

100 1 1 1 4 6 11 19 33 60 108 194

101 1 3 5 9 15 27 49 88 159 288 521

102 4 7 13 22 40 72 130 235 426 772 1398

103 11 19 33 59 106 192 348 631 1143 2071 3752

104 27 48 87 157 285 516 934 1693 3067 5557 10067

Table 3.1: Values k(δ) for different τ and different δ for Example 6 in Section 5.2. Here we use h = 2 · 10−5 and
αk = 0.1.
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Asymptotic convergence for Example 6 in in Section 5.2
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Figure 3.2: Asymptotic convergence of the stopping rule for Example 6 in in Section 5.2. Here we use
h = 2 · 10−5 and αk = 0.1.
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CHAPTER 4

The Inexact Iterative Bregman Method

In Chapter 3 the iterative Bregman method was analysed under the assumption that
the arising subproblems can be solved exactly. However, in practice this will barely
be possible. The aim of this chapter is to investigate our method with respect to
numerical errors.

The chapter is organized as follows. In Section 4.1 we introduce a family of
linear and continuous operators Sh with finite dimensional range. For h → 0 we
assume Sh → S in a specific way. The operator S is now replaced by the operator
Sh in Algorithm 3.2. This new algorithm is then analysed in Section 4.2. In the
convergence analysis we now have to take the discretization error into account, which
is introduced by the operator Sh. Furthermore we allow some numerical errors in
the solution of the subproblems. The main results of this chapter are Theorem 4.2.1
and 4.2.5 and the resulting corollaries. The results of this chapter can be found in
the publication [75].

4.1 The Discretized Problem

The aim of this section is to introduce the operator Sh and to establish auxiliary
estimates for the discretized subproblem. These estimates will then be applied to
prove convergence results in section 4.2.

4.1.1 The Operator Sh

As mentioned in the introduction we want to introduce a family of linear and
continuous operators (Sh)h from L2(Ω) to Y with finite-dimensional range Yh ⊂ Y .
Throughout this chapter we make the following assumption. A similar assumption is
also made in [96].
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Chapter 4 The Inexact Iterative Bregman Method

Assumption 4.1.1. Assume that there exists a continuous and monotonically increasing
function δ : R+ → R+ with δ(0) = 0 such that

‖(S − Sh)uh‖Y + ‖(S∗ − S∗h)(yh − z)‖L2(Ω) ≤ δ(h)

holds for all h ≥ 0, uh ∈ Uad and yh := Shuh.

For the case of a linear elliptic partial differential equation, the operator Sh is the
solution operator of the weak formulation with respect to the test function space Yh.
If Yh is spanned by linear finite elements, this can be interpreted as the variational
discretization in the sense of Hinze, see [46]. We consider a linear elliptic partial
differential equation in Section 5.2. We assume that the operator Sh and its adjoint
S∗h can be computed exactly.

Note that Assumption 4.1.1 is an assumption on the approximation of discrete
functions. Under Assumption 4.1.1 we can establish the following discretization error
estimate. The proof is similar to [96, Proposition 1.6] and is omitted here.

Lemma 4.1.2. Let uk be the solution of

min
u∈Uad

1

2
‖Su− z‖2Y +

αk
2
‖u‖2L2(Ω) − αk(λ, u)L2(Ω),

and uk,h be the solution of the discretized problem

min
u∈Uad

1

2
‖Shu− z‖2Y +

αk
2
‖u‖2L2(Ω) − αk(λ, u)L2(Ω),

with λ ∈ L2(Ω) and α > 0. Then we have the following estimate

1

αk
‖yk,h − yk‖2Y + ‖uk,h − uk‖2L2(Ω) ≤ cρ2

kδ(h)2

with the abbreviation ρ2
k := α−1

k (1 + α−1
k ) and c independent from λ.

The norm of the operator Sh is bounded in the following sense.

Lemma 4.1.3. Let 0 < h ≤ hmax. Then there exists a constant C > 0 independent
from h, such that ‖Sh‖L2(Ω)→Y ≤ C.

Proof. We compute the operator norm of Sh and estimate

‖Sh‖L2(Ω)→Y = sup
‖u‖L2(Ω)=1

‖Shu‖Y ≤ sup
‖u‖L2(Ω)=1

(‖(Sh − S)u‖Y + ‖Su‖Y )

≤ δ(h) + ‖S‖L2(Ω)→Y
≤ δ(hmax) + ‖S‖L2(Ω)→Y .

In the subsequent analysis we will need the following estimate.
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4.1 The Discretized Problem

Lemma 4.1.4. There exists a constant c > 0 independent from h, such that the following
estimate holds for all uh ∈ Uad

‖S∗h(z − Shuh)− S∗(z − Suh)‖L2(Ω) ≤ cδ(h).

Proof. We compute with yh := Shuh

‖S∗h(z − Shuh)− S∗(z − Suh)‖L2(Ω)

≤ ‖S∗h(z − Shuh)− S∗(z − Shuh)‖L2(Ω) + ‖S∗(Suh − Shuh)‖L2(Ω)

≤ ‖(S∗h − S∗)(z − yh)‖L2(Ω) + c‖(S − Sh)uh‖Y
≤ cδ(h).

Please note that we used the continuity of S∗ and the assumption on the operator
Sh.

An immediate consequence is the following lemma, which is needed in the
subsequent analysis.

Lemma 4.1.5. Let ui ∈ Uad for i = 1, .., k. Then there exists a constant c > 0
independent from h and k such that the following estimate holds∥∥∥∥∥

k∑
i=1

1

αi
S∗(z − Sui)−

k∑
i=1

1

αi
S∗h(z − Shui)

∥∥∥∥∥
L2(Ω)

≤ cγkδ(h).

4.1.2 A-Posteriori Error Estimate for the Discretized Subproblem

We now want to consider the discretized subproblem, i.e. we replaced the operator S
in the minimization problem (step 1) of Algorithm 3.2 with the discrete operator Sh.
This gives the following problem

Minimize
1

2
‖Shu− z‖2Y + αkD

λk−1(u, uk−1).

Similar to (3.6) this problem can be rewritten as the equivalent minimization
problem (4.1). For brevity we set λ := λk−1 and α := αk.

Minimize
1

2
‖Shu− z‖2Y − α(λ, u)L2(Ω) +

α

2
‖u‖2L2(Ω),

s.t. u ∈ Uad.
(4.1)

To construct an a-posteriori error estimate we use Theorem 2.2 in [61], which
will give us the following result. Note that we also use Lemma 4.1.3 here.

Theorem 4.1.6. Let û be the solution of the subproblem (4.1). Let uh ∈ L2(Ω) be given
and define yh := Shuh and ph := S∗h(z − yh). Let 0 < h ≤ hmax with hmax > 0. Then
there exists a constant c > 0 independent from h and λ such that

‖uh − û‖L2(Ω) ≤ c
(

1 +
1

α

)∥∥∥∥uh − PUad

(
1

α
ph + λ

)∥∥∥∥
L2(Ω)

.
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Chapter 4 The Inexact Iterative Bregman Method

This result allows us to estimate the distance to the exact solution of the subprob-
lem. Note that the problem (4.1) is uniquely solvable if α > 0.

For abbreviation we set

B(α, λ, uh) :=

(
1 +

1

α

)∥∥∥∥uh − PUad

(
1

α
S∗h(z − Shuh) + λ

)∥∥∥∥
L2(Ω)

.

Let u ∈ L2(Ω) be an approximate solution to the discretized subproblem (4.1).
The quantity B(α, λ, u) then is an upper bound for the accuracy of u. This is part of
the next result. The proof follows directly with Lemma 4.1.3 and Theorem 4.1.6.

Lemma 4.1.7. Assume that 0 < h ≤ hmax. Let û be the solution of the discretized
subproblem (4.1). Then there exists a constant c > 0 independent from h and λ such
that the following implication holds for all u ∈ L2(Ω) and ε ≥ 0:

B(α, λ, u) ≤ ε =⇒ ‖u− û‖L2(Ω) ≤ cε.

Let us close this section with the following remark. As mentioned in [46] the
solution of the discretized subproblem (4.1) can be approximated with arbitrary
accuracy. This will play a role in the analysis presented in the next section.

4.2 Inexact Bregman Iteration

Solving the subproblem

Minimize
1

2
‖Su− z‖2Y + αkD

λk−1(u, uk−1)

exactly is very costly and in general not possible. We therefore suggest the following
inexact Bregman iteration which can be interpreted as an inexact version of Algorithm
3.2.

Inexact Bregman iterations are analysed in the literature, see e.g. [1,31,57,60]
for a finite dimensional approach, and for an abstract Banach space setting, see [81].

Before we define the algorithm let us recall the different types of approximations
we have made. The first approximation is made by the introduction of the operator
Sh which reflects the discretization with respect to the mesh size h. This error can
only be controlled by the reduction of the parameter h. However this will lead to a
higher computational cost per iteration.

The second approximation is made during the computation of the solution of the
discretized subproblem. It is not needed to compute the exact solution as we will
see later in the analysis. This error is controlled by the quantity B and can be made
arbitrarily small. We will use this fact to force convergence of the algorithm.

The inexact Bregman algorithm is now given as follows.
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4.2 Inexact Bregman Iteration

Algorithm 4.4. Let uin
0 = PUad

(0) ∈ Uad, λin
0 = 0 ∈ ∂J(u0) and k = 1.

1. Find uin
k with yin

k = Shu
in
k and pin

k = S∗h(z − Shuin
k ) such that

B(αk, λ
in
k−1, u

in
k ) ≤ εk.

2. Set

λin
k :=

k∑
i=1

1

αi
S∗h(z − Shuin

i ).

3. Set k := k + 1, go back to 1.

Here εk ≥ 0 is a given sequence of positive real numbers controlling the accuracy
of the approximate solution uin

k . For εk = 0 for all k ∈ N and h = 0 Algorithm 3.2 is
obtained.

The analysis of Algorithm 3.2 presented in Section 3.4 is based on the fact that
λk ∈ ∂J(uk). This is guaranteed by the construction of λk. However, since Sh 6= S
and εk > 0 in general, we cannot expect that λin

k ∈ ∂J(uin
k ) holds.

Before we start to establish robustness results we want to give an overview over
the different auxiliary problems we are going to use. Furthermore we want to
introduce and clarify our notation.

4.2.1 Notation and Auxiliary Results

The aim of this subsection is to summarize the most important notations and abbrevi-
ations. Our aim is to solve the unregularized problem

min
u∈Uad

1

2
‖Su− z‖2Y .

This problem is solvable and we want to specify a solution u†. We assume that this
control satisfies one of the regularity assumptions (SC) or (ASC). In Algorithm 3.2 we
have to solve the following regularized problem. We will refer to this as subproblem

min
u∈Uad

1

2
‖Su− z‖2Y +

αk+1

2
‖u‖2L2(Ω) − αk+1(λ, u)L2(Ω), (4.2)

with some λ ∈ L2(Ω) and αk+1 > 0. Here the (exact) unique solution is denoted
with uex

k+1. The superscript ex stands for exact solution.
However, since the operator S is not computable in general, we introduced the

operator Sh, which is an approximation of S. We now replace S with Sh in (4.2) and
obtain the discretized subproblem

min
u∈Uad

1

2
‖Shu− z‖2Y +

αk+1

2
‖u‖2L2(Ω) − αk+1(λ, u)L2(Ω). (4.3)

Again this problem is unique solvable and its solution is denoted with uex
k+1,h. The

subscript h indicates that it is a discrete solution. Under suitable assumptions we can
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Chapter 4 The Inexact Iterative Bregman Method

estimate the discretization error between uex
k+1 and uex

k+1,h. This is done in Theorem
4.1.2.

Please note that neither uex
k+1 nor uex

k+1,h are computed during the algorithm. As
mentioned above we can approximate uex

k+1,h with arbitrary precision. So we compute
an inexact solution of (4.3), which is denoted with uin

k+1. We use the function B to
measure the accuracy.

To control the accuracy during the algorithm we introduce a sequence (εk)k of
positive real values. In each iteration we now search for a function uin

k+1 ∈ Uad such
that B(α, λ, uin

k+1) ≤ εk+1.
In the end we want to estimate the error ‖u†−uin

k ‖L2(Ω). This is done by triangular
inequality

‖uin
k − u†‖L2(Ω) ≤

(I)︷ ︸︸ ︷
‖uin

k − uex
k,h‖L2(Ω) +

(II)︷ ︸︸ ︷
‖uex

k,h − uex
k ‖L2(Ω) +

(III)︷ ︸︸ ︷
‖uex

k − u†‖L2(Ω) . (4.4)

Note that (I) is controlled by the accuracy εk and (II) is limited by the discretization
parameter h. It remains to estimate the regularization error (III) with the help of
the regularity assumption (SC) or (ASC).

We also want to recall the following definitions, as they will appear quite often:

γk =

k∑
i=1

1

αi
, ρ2

k = α−1
k (1 + α−1

k ).

4.2.2 Convergence under Source Condition

We now start to analyse Algorithm 4.4 with u† satisfying Assumption (SC).

Theorem 4.2.1. Let u† satisfy Assumption (SC) and let (εk)k be a sequence of positive
real numbers. Furthermore let h > 0 be given and let (uin

k )k be a sequence generated by
Algorithm 4.4. Then we have the estimate

k∑
i=1

1

αi
‖uin

i − u†‖2L2(Ω) ≤ c
(

1 +
k∑
i=1

Ri +
k∑
i=1

Hi

)
with the abbreviations

Ri :=
εi
αi

+
ε2
i

α2
i

+
γi−1εi
αi

+
ε2
i

αi
,

Hi := δ(h)

[
ρi
αi

+
γi−1

αi
+
γi−1ρi
αi

]
+ δ(h)2

[
ρ2
i

α2
i

+
ρ2
i

αi

]
.

Proof. The proof is based on the splitting of the error ‖uin
k − u†‖L2(Ω) in three parts,

see (4.4)

‖uin
k − u†‖L2(Ω) ≤

(I)︷ ︸︸ ︷
‖uin

k − uex
k,h‖L2(Ω) +

(II)︷ ︸︸ ︷
‖uex

k,h − uex
k ‖L2(Ω) +

(III)︷ ︸︸ ︷
‖uex

k − u†‖L2(Ω) .
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4.2 Inexact Bregman Iteration

Here (I) is controlled by the given accuracy εk and (II) can be estimated with the
help of Lemma 4.1.2:

(I) = ‖uin
k − uex

k,h‖L2(Ω) ≤ cεk,
(II) = ‖uex

k,h − uex
k ‖L2(Ω) ≤ cρkδ(h).

It is left to estimate (III). We start with adding the optimality conditions for uex
k+1

and u†, see Lemma 3.4.2 and Theorem 3.2.2,(
S∗(Suex

k+1 − z) + αk+1(uex
k+1 − λin

k ), v − uex
k+1

)
L2(Ω)

≥ 0, ∀v ∈ Uad,(
S∗(Su† − z), v − u†

)
L2(Ω)

≥ 0, ∀v ∈ Uad.

Addition yields

1

αk+1
‖S(uex

k+1 − u†)‖2Y + ‖uex
k+1 − u†‖2L2(Ω) ≤

(
u† − λin

k , u
† − uex

k+1

)
L2(Ω)

. (4.5)

For the term (u†, u† − uex
k+1)L2(Ω) we estimate with help of the source condition (SC)

(u†, u† − uex
k+1)L2(Ω) = (u†, u† − uin

k+1)L2(Ω)

+ (u†, uin
k+1 − uex

k+1,h)L2(Ω) + (u†, uex
k+1,h − uex

k+1)L2(Ω)

≤ (S∗w, u† − uin
k+1)L2(Ω) + c(εk+1 + ρk+1δ(h)).

(4.6)

To estimate the remaining term (−λin
k , u

† − uex
k+1)L2(Ω) we introduce the quantity

vin
k :=

k∑
i=1

1

αi
S(u† − uin

i ).

This quantity will be helpful in the subsequent analysis. Let us sketch the next steps.
First we will replace the operator Sh by S in order to apply the first order conditions
for u†. Second we eliminate the unknown exact solution uex

k+1 by its approximation
uin
k+1. For the first part we make use of Lemma 4.1.5 and estimate

(−λin
k , u

† − uex
k+1)L2(Ω) =

(
k∑
i=1

1

αi
S∗h(Shu

in
i − z), u† − uex

k+1

)
L2(Ω)

=

(
k∑
i=1

1

αi
S∗(Suin

i − z), u† − uex
k+1

)
L2(Ω)

+

(
k∑
i=1

1

αi
S∗h(Shu

in
i − z)−

k∑
i=1

1

αi
S∗(Suin

i − z), u† − uex
k+1

)
L2(Ω)

≤
(

k∑
i=1

1

αi
S∗(Suin

i − z), u† − uex
k+1

)
L2(Ω)

+ cγkδ(h).

(4.7)
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Chapter 4 The Inexact Iterative Bregman Method

Now we eliminate the variable z by using the first order conditions for u† presented
in Theorem 3.2.2.(

k∑
i=1

1

αi
(Suin

i − z), S(u† − uex
k+1)

)
Y

=
k∑
i=1

1

αi
(Suin

i − Su†, S(u† − uex
k+1))Y +

k∑
i=1

1

αi
(Su† − z, S(u† − uex

k+1))Y︸ ︷︷ ︸
≤0

≤
k∑
i=1

1

αi

(
S(uin

i − u†), S(u† − uex
k+1)

)
Y
.

(4.8)

Since the variable uex
k+1 is unknown we replace it by its approximation uin

k+1

k∑
i=1

1

αi

(
S(uin

i − u†), S(u† − uex
k+1)

)
Y

=
k∑
i=1

1

αi

(
S(uin

i − u†), S(u† − uin
k+1)

)
Y

+
k∑
i=1

1

αi

(
S(uin

i − u†), S(uin
k+1 − uex

k+1,h)
)
Y

+
k∑
i=1

1

αi

(
S(uin

i − u†), S(uex
k+1,h − uex

k+1)
)
Y

≤ αk+1(−vin
k , v

in
k+1 − vin

k )Y + cγk(εk+1 + ρk+1δ(h)).

(4.9)

Now we use (4.8) and (4.9) in (4.7) and obtain

(−λin
k , u

† − uex
k+1)Y ≤ αk+1(−vin

k , v
in
k+1 − vin

k )Y

+ c
(
γkεk+1 + δ(h)γkρk+1 + δ(h)γk

)
.

(4.10)

In the next step we plug (4.6) and (4.10) in (4.5)

1

α2
k+1

‖S(uex
k+1 − u†)‖2Y +

1

αk+1
‖uex

k+1 − u†‖2L2(Ω)

≤ 1

αk+1
(u†, u† − uex

k+1)L2(Ω) +
1

αk+1
(−λin

k , u
† − uex

k+1)L2(Ω)

≤
(
w,

1

αk+1
S(u† − uin

k+1)

)
Y

+ (−vin
k , v

in
k+1 − vin

k )Y

+ c

(
εk+1

αk+1
+
γkεk+1

αk+1

)
+ cδ(h)

(
ρk+1

αk+1
+

γk
αk+1

+
γkρk+1

αk+1

)
≤ (w − vin

k , v
in
k+1 − vin

k )Y

+ c

(
εk+1

αk+1
+
γkεk+1

αk+1

)
+ cδ(h)

(
ρk+1

αk+1
+

γk
αk+1

+
γkρk+1

αk+1

)
.
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4.2 Inexact Bregman Iteration

Before we proceed we need two additional results. A calculation reveals that

(w − vin
k , v

in
k+1 − vin

k )Y =
1

2
‖vin
k − w‖2Y −

1

2
‖vin
k+1 − w‖2Y +

1

2
‖vin
k+1 − vin

k ‖2Y

holds. Second we obtain

‖S(uex
k+1 − uin

k+1)‖Y ≤ ‖S(uin
k+1 − uex

k+1,h)‖Y + ‖S(uex
k+1,h − uex

k+1)‖Y
≤ c(εk+1 + ρk+1δ(h)).

(4.11)

Furthermore we use Young’s inequality and (4.11) to establish for τ > 1:

1

2
‖vin
k+1 − vin

k ‖2Y =
1

2α2
k+1

‖S(uin
k+1 − u†)‖2Y

≤ 1

2α2
k+1

((
1 +

1

τ

)
‖S(uex

k+1 − u†)‖2Y + (1 + τ) ‖S(uex
k+1 − uin

k+1)‖2Y
)

≤ 1

2α2
k+1

(
1 +

1

τ

)
‖S(uex

k+1 − u†)‖2Y +
c

α2
k+1

(
ε2
k+1 + ρ2

k+1δ(h)2
)
.

This now yields

cτ
α2
k+1

‖S(uex
k+1 − u†)‖2Y +

1

αk+1
‖uex

k+1 − u†‖2L2(Ω)

≤ 1

2
‖vin
k − w‖2Y −

1

2
‖vin
k+1 − w‖2Y + c

(
R̃k+1 + δ(h)H̃

(1)
k+1 + δ(h)2H̃

(2)
k+1

)
,

with cτ = 1− 1
2

(
1 + 1

τ

)
> 0 and the abbreviations

R̃i :=
εi
αi

+
ε2
i

α2
i

+
γi−1εi
αi

,

H̃
(1)
i :=

ρi
αi

+
γi−1

αi
+
γi−1ρi
αi

,

H̃
(2)
i :=

ρ2
i

α2
i

.

Summation over k finally reveals

cτ

k∑
i=1

1

α2
i

‖S(uex
i − u†)‖2Y +

k∑
i=1

1

αi
‖uex

i − u†‖2L2(Ω)

≤ 1

2
‖w‖2Y + c

k∑
i=1

R̃i + cδ(h)
k∑
i=1

H̃
(1)
i + cδ(h)2

k∑
i=1

H̃
(2)
i ,

where we used the convention vin
0 = 0. The result now follows by triangular inequality,

as mentioned in the beginning of the proof.
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Let us point out that the variables Ri can be identified with the accuracy of the
iterates and the Hi are only influenced by the discretization. This result above can
now be interpreted in different ways. First we start with the (theoretical) case that
we can evaluate the operator S and its dual S∗. This refers to the case where h = 0.

Corollary 4.2.2. Let u† satisfy Assumption (SC) and let (εk)k be a sequence of positive
real numbers such that ∞∑

i=1

Ri <∞.

Furthermore assume that Sh = S and let (uin
k )k be a sequence generated by Algorithm

4.4. Then we have
lim
k→∞

1

αk
‖uin

k − u†‖2L2(Ω) = 0.

This is exactly the same convergence result obtained for Algorithm 3.2, see the
proof of Theorem 3.4.15. This means that the accumulation of the error introduced
by solving the subproblem can be compensated by a suitable choice of the sequence
(εk)k.

The other interesting case is, that we can solve the discretized subproblem exactly,
i.e. εk = 0 for all k ∈ N. Here we obtain convergence in the following sense.

Corollary 4.2.3. Let u† satisfy Assumption (SC). Let hmax > 0 be given and εk = 0 for
all k ∈ N. Then there exists a constant C such that for every 0 < h ≤ hmax there exists a
stopping index k(h) such that

k(h)∑
i=1

Hi ≤ C <∞

and k(h)→∞ as h→ 0. Furthermore lim
h→0

1
αk(h)

‖uin
k(h) − u†‖L2(Ω) = 0.

Proof. We only have to show the existence of such a stopping index. The convergence
result then is a direct consequence of Theorem 4.2.1. Let us define the following
auxiliary variables

Ai :=
ρi
αi

+
γi−1

αi
+
γi−1ρi
αi

,

Bi :=
ρ2
i

α2
i

+
ρ2
i

αi
.

Now choose C > 0 sufficiently large such that

δ(hmax)A1 + δ(hmax)2B1 ≤ C.

Now pick 0 < h ≤ hmax. Since δ : (0,∞)→ R is a monotonically increasing function
function we get the existence of k̃ ∈ N, k̃ ≥ 1 such that

k̃∑
i=1

Hi ≤ C.
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Hence, the following expression is well-defined

k(h) := max

{
k ∈ N :

k∑
i=1

Hi ≤ C
}
.

It is left to show that k(h) → ∞ as h → 0. Assume that this is wrong, hence there
exists a k̄ ∈ N and sequence (hn)n with 0 < hn ≤ hmax and hn → 0 such that
k(hn) < k̄ holds for all n ∈ N. By definition we now obtain for all n ∈ N

δ(hn)
k̄∑
i=1

Ai + δ(hn)2
k̄∑
i=1

Bi ≥ δ(hn)

k(hn)+1∑
i=1

Ai + δ(hn)2

k(hn)+1∑
i=1

Bi > C.

However, since Ai and Bi are independent from h this is a contradiction for n big
enough. This finishes the proof.

This result reflects the expected fact, that a finer discretization leads to a better
approximation. In fact we obtain convergence for h→ 0, which is not surprising, as
for h→ 0 Algorithm 3.2 is obtained.

If the discretized subproblem is only solved inexactly we can establish the follow-
ing result. The proof is a combination of Corollary 4.2.2 and Corollary 4.2.3.

Corollary 4.2.4. Let u† satisfy Assumption (SC) and let (εk)k be a sequence of positive
real numbers such that ∞∑

i=1

Ri <∞.

Let h > 0 be given. Then there exists a constant C such that for every 0 < h ≤ hmax

there exists a stopping index k(h) such that

k(h)∑
i=1

Hi ≤ C <∞

and k(h)→∞ as h→ 0. Furthermore

lim
h→0

1

αk(h)
‖uin

k(h) − u†‖2L2(Ω) = 0.

4.2.3 Convergence under Active Set Condition

Let us now consider the case when Assumption (ASC) is satisfied.

Theorem 4.2.5. Let u† satisfy Assumption (ASC) and let (εk)k be a sequence of positive
real numbers. Furthermore let h > 0 be given and let (uin

k )k be a sequence generated by
Algorithm 4.4. Then we have the estimate

k∑
i=1

1

αi
‖uin

i − u†‖2L2(Ω) ≤ c
(

1 +
k∑
i=1

γ−κi−1

αi
+

k∑
i=1

Ri +
k∑
i=1

Hi

)
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with the abbreviations

Ri :=
εi
αi

+
ε2
i

α2
i

+
γi−1εi
αi

+
ε2
i

αi
,

Hi := δ(h)

(
ρi
αi

+
γi−1

αi
+
γi−1ρi
αi

)
+ δ(h)2

(
ρ2
i

α2
i

+
ρ2
i

αi

)
.

Proof. The proof mainly follows the idea of Theorem 4.2.1. Again the main part is to
establish estimates for the regularization error for uex

k+1. First we want to estimate
the term (u†, u†−u)L2(Ω) using Assumption (ASC). We use Lemma 3.4.19 and obtain

(u†, u† − u)L2(Ω) ≤ (S∗w, u† − u)L2(Ω) + c‖u† − u‖L1(A), ∀u ∈ Uad.

This inequality introduces an additional L1-term. To compensate this term we use
the improved optimality condition established in Lemma 3.4.18

(−p†, u− u†)L2(Ω) ≥ cA‖u− u†‖1+ 1
κ

L1(A), ∀u ∈ Uad,

with cA > 0. Similar to the proof of Theorem 4.2.1 we start with the following
inequality

1

αk+1
‖S(uex

k+1 − u†)‖2L2(Ω) + ‖uex
k+1 − u†‖2L2(Ω) ≤ (u† − λin

k , u
† − uex

k+1).

Similar to (4.8) we compute

(−λin
k , u

† − uex
k+1)L2(Ω)

≤
k∑
i=1

1

αi
(S(uin

i − u†), S(u† − uex
k+1))Y

+
k∑
i=1

1

αi
(Su† − z, S(u† − uex

k+1))Y︸ ︷︷ ︸
≤−cA‖u†−uex

k+1‖
1+ 1

κ
L1(A)

+cγkδ(h)

≤ αk+1(−vin
k , v

in
k+1 − vin

k )Y − cAγk‖u† − uex
k+1‖

1+ 1
κ

L1(A)

+ cγk(εk+1 + ρk+1δ(h)) + cγkδ(h).

Combining this now yields

1

α2
k+1

‖S(uex
k+1 − u†)‖2Y +

1

αk+1
‖uex

k+1 − u†‖2L2(Ω)

≤ 1

αk+1
(u†, u† − uex

k+1)L2(Ω)

+ (−vin
k , v

in
k+1 − vin

k )Y −
cAγk
αk+1

‖u† − uex
k+1‖

1+ 1
κ

L1(A)

+ c
γkεk+1

αk+1
+ cδ(h)

[
γkρk+1

αk+1
+

γk
αk+1

]
.

(4.12)

64



4.2 Inexact Bregman Iteration

Recall that we have the equality

(−vin
k , v

in
k+1 − vin

k )Y =
1

2
‖vin
k ‖2Y −

1

2
‖vin
k+1‖2Y +

1

2
‖vin
k+1 − vin

k ‖2Y .

As done in Theorem 4.2.1 we obtain with τ > 1 that

1

2
‖vin
k+1 − vin

k ‖2Y ≤
1

2α2
k+1

(
1 +

1

τ

)
‖S(uex

k+1 − u†)‖2Y

+
c

α2
k+1

(
ε2
k+1 − ρ2

k+1δ(h)
)
.

Using these estimates in (4.12) and performing a summation reveals

cτ

k∑
i=1

1

α2
i

‖S(uex
k+1 − u†)‖2Y +

k∑
i=1

1

αi
‖uex

k+1 − u†‖2L2(Ω)

+ cA

k∑
i=1

γi−1

αi
‖u† − uex

k+1‖
1+ 1

κ

L1(A) +
1

2
‖vin
k ‖2Y ≤

k∑
i=1

1

αi
(u†, u† − uex

i )L2(Ω)

+ c
k∑
i=1

[
ε2
i

α2
i

+
γi−1εi
αi

]
+ cδ(h)

k∑
i=1

[
γi−1ρi
αi

+
γi−1

αi

]

+ cδ(h)2
k∑
i=1

ρ2
i

α2
i

.

Now we estimate the term (u†, u† − uex
k+1)L2(Ω) using Young’s inequality, see Lemma

3.4.7

k∑
i=1

1

αi
(u†, u† − uex

i )L2(Ω) ≤
k∑
i=1

1

αi

[
(S∗w, u† − uex

i )L2(Ω) + c‖u† − uex
i ‖L1(A)

]
=

(
w,

k∑
i=1

1

αi
S(u† − uin

i )

)
Y

+

(
w,

k∑
i=1

1

αi
S(uin

i − uex
i,h)

)
Y

+

(
w,

k∑
i=1

1

αi
S(uex

i,h − uex
i )

)
Y

+ c
k∑
i=1

1

αi
‖u† − uex

i ‖L1(A)

≤ ‖w‖2Y +
1

4
‖vin
k ‖2Y + c

k∑
i=1

εi
αi

+ cδ(h)
k∑
i=1

ρi
αi

+
cA
2

k∑
i=1

γi−1

αi
‖u† − uex

i ‖
1+ 1

κ

L1(A) + c
k∑
i=1

γ−κi−1

αi
.
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Using this estimate we obtain

cτ

k∑
i=1

1

α2
i

‖S(uex
k+1 − u†)‖2Y +

k∑
i=1

1

αi
‖uex

k+1 − u†‖2L2(Ω)

+
cA
2

k∑
i=1

γi−1

αi
‖u† − uex

k+1‖
1+ 1

κ

L1(A) +
1

4
‖vin
k ‖2Y ≤ ‖w‖2Y + c

k∑
i=1

γ−κi−1

αi

+ c

k∑
i=1

[
ε2
i

α2
i

+
γi−1εi
αi

+
εi
αi

]
+ cδ(h)

k∑
i=1

[
ρi
αi

+
γi−1ρi
αi

+
γi−1

αi

]

+ cδ(h)2
k∑
i=1

ρ2
i

α2
i

.

As in the proof of Theorem 4.2.1 we apply triangular inequality to finish the proof.

Let us now establish convergence results similar to Corollary 4.2.2 and 4.2.3.

Corollary 4.2.6. Let u† satisfy Assumption (ASC) and let (εk)k be a sequence of positive
real numbers such that γi−1εi → 0. Furthermore assume that Sh = S and let (uin

k )k be
a sequence generated by Algorithm 4.4. Then we obtain

min
i=1,..,k

‖uin
i − u†‖L2(Ω) → 0

as k →∞.

Proof. The sequence (αk)k is bounded by a constant M . Hence we have the following
inequalities for k large enough

k∑
i=2

γi−1

αi
εi ≥

1

M

k∑
i=2

i− 1

αi
εi ≥

1

M

k∑
i=2

εi
αi
.

Furthermore we have with Lemma 3.4.6 that

γ−1
k

k∑
i=1

γ−κi−1

αi
+ γ−1

k

k∑
i=1

γi−1

αi
εi → 0.

We now obtain

min
i=1,..,k

‖uin
i − u†‖L2(Ω) ≤ c

(
γ−1
k + γ−1

k

k∑
i=1

γ−κi−1

αi
+ γ−1

k

k∑
i=1

Ri

)
→ 0,

which finishes the proof.
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Figure 4.1: Error ‖uin
k − u

†‖L2(Ω) (left) and ‖yin
k − y

†‖L2(Ω) (right) for different mesh sizes h.

Comparing this result to Corollary 4.2.2 we see, that we do not obtain strong
convergence of the sequence (uin

k )k. But we obtain convergence of the iterates
generated by Algorithm 3.2 under the Assumption (ASC). The reason is, that the
proof uses a different technique. The proof of Theorem 3.4.20 uses Bregman distances
and the fact that λk ∈ ∂J(uk). However, this is not the case here, so the proof cannot
be directly copied. Numerical observations, however, still show convergence of the
sequence (uin

k )k.

Corollary 4.2.7. Let u† satisfy Assumption (ASC). Let hmax > 0 be given and εk = 0
for all k ∈ N. Then there exists a constant C such that for every 0 < h ≤ hmax there
exists a stopping index k(h) such that

k(h)∑
i=1

Hi ≤ C <∞

and k(h)→∞ as h→ 0. Furthermore

min
i=1,..,k(h)

‖uin
i − u†‖L2(Ω) → 0,

as h→ 0.

Proof. The proof is very similar to the proof of Corollary 4.2.3.

A combination of both results yields the following corollary.

Corollary 4.2.8. Let u† satisfy Assumption (ASC) and let (εk)k be a sequence of positive
real numbers such that γi−1εi → 0. Let h > 0 be given. Then there exists a constant C
such that for every 0 < h ≤ hmax there exists a stopping index k(h) such that

k(h)∑
i=1

Hi ≤ C <∞
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and k(h)→∞ as h→ 0. Furthermore

min
i=1,..,k(h)

‖uin
i − u†‖L2(Ω) → 0

as h→ 0.

To test the inexact iterative Bregman method (Algorithm 4.4) we consider the
example presented in Subsection 5.2.2. We use the implementation presented in
Chapter 5.

We use different mesh sizes for comparison and plot the error for the first 500
iterations in Figure 4.1. Here, we set αk := 0.1 and εk := k−3/2 to satisfy the
assumptions of Corollary 4.2.8. As expected we see that for h → 0 we obtain
convergence for k → ∞. The coarsest mesh has approximately 102 and the finest
mesh approximately 105 degrees of freedom.
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CHAPTER 5

Implementation of the Iterative Bregman Method

In Chapter 3 we considered an objective functional of the form ‖Su− z‖2Y . Here Y is
a Hilbert space, Ω ⊂ Rn a bounded domain and S : L2 → Y a linear operator. This
operator was replaced in Chapter 4 by a suitable approximation Sh. In this chapter
we want to specify this operator. To be precise we consider the linear elliptic partial
differential equation

−∆y = u in Ω,

y = 0 on ∂Ω,

and its numerical approximation using linear finite elements, see also Subsection
2.2.2.

We start by formulating a semi-smooth Newton method in Section 5.1 to solve the
subproblems. In Subsection 5.1.1 we analyse the discretization using finite elements.
There we also define the operator Sh used in Chapter 4. The chapter is closed in
Section 5.2, where we present several numerical example, to show the efficiency of
our algorithm and to support the theoretical findings. The results of this chapter can
be found in the publications [75,76].

5.1 Semi-Smooth Newton Method

In our algorithm we need to solve the problem (3.8) in each step, which includes
the Bregman distance. Similar to (4.1) and (3.6) this can be written in the following
form. For brevity we set α := αk and λ := λk−1 ∈ L2(Ω).

Minimize
1

2
‖Su− z‖2Y + α

[
1

2
‖u‖2L2(Ω) − (λ, u)L2(Ω)

]
such that u ∈ Uad.

(5.1)

Note that (5.1) has has a unique solution, characterized by the projection formula

u = PUad

(
− 1

α
p(u) + λ

)
, (5.2)
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with p(u) = S∗(Su − z). Several different techniques are available to solve (5.1).
The simplest is a projected gradient method, see [93], with the descent direction
−p(u) − α(u − λ). The implementation is rather simple but comes at very slow
convergence speed and high numerical costs. Nevertheless the gradient method can
be used to globalize the Newton method presented below.

In order to solve (5.1) we want to apply a semi-smooth Newton method to (5.2).
In this section we follow the idea presented in [47], where a semi-smooth Newton
solver was applied for a Neumann-type elliptic optimal control problem. We adapt
this technique for distributed control problems. This technique can also be applied
for optimal boundary control problems, see [6]. Denote by uk the iterates given by
the Newton method. Define the function

F (u) := u− PUad

(
− 1

α
p(u) + λ

)
.

The function F is semi-smooth and we can apply a Newton step

0 = F (uk) +G(uk)(uk+1 − uk),

where G(uk) : L2(Ω)→ L2(Ω) is a suitable derivative of F at uk. To be precise G has
to satisfy a superlinear approximation condition, for more details see [48, Section
2.4.4]. For a convergence analysis of this Newton method we refer to [47]. A suitable
function G is given by the following lemma. The result can also be found in [6] or
in [48, Theorem 2.14].

Lemma 5.1.1. A suitable derivative G(uk) : L2(Ω)→ L2(Ω) of F at uk is given by

G(uk)(uk+1 − uk) = (uk+1 − uk) + d ·
(

1

α

(
p(uk+1)− p(uk)

))
with

d =


0, if − 1

αp(u
k) + λ ≥ ub,

1, if − 1
αp(u

k) + λ ∈ (ua, ub),

0, if − 1
αp(u

k) + λ ≤ ua.
We see that uk+1 satisfies the relation

uk+1 =


ub, if − 1

αp(u
k) + λ ≥ ub,

ua, if − 1
αp(u

k) + λ ≤ ua,
− 1
αp(u

k+1) + λ, if − 1
αp(u

k) + λ ∈ (ua, ub).

Define the sets

Ab(u) =

{
x ∈ Ω : − 1

α
p(u) + λ ≥ ub

}
,

I(u) =

{
x ∈ Ω : − 1

α
p(u) + λ ∈ (ua, ub)

}
,

Aa(u) =

{
x ∈ Ω : − 1

α
p(u) + λ ≤ ua

}
,
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and the operator

EM : L2(Ω)→ L2(Ω), EM (v) = χM (v).

All the inequalities are to be understood pointwise almost everywhere. We have
uk+1 = ua on Aa(uk) and uk+1 = ub on Ab(uk). On the set I(uk) we obtain

EI(uk)

(
uk+1 +

1

α
p(uk+1)− λ

)
= 0.

This can be rewritten in a linear equation for EI(uk)u
k+1.

Lemma 5.1.2. The function uk+1
I := EI(uk)u

k+1 satisfies

uk+1
I +

1

α
EI(uk)q(u

k+1
I ) = − 1

α
EI(uk)p

(
EAa(uk)ua + EAb(uk)ub

)
+ EI(uk)λ, (5.3)

with q(u) := S∗Su.

Our Newton solver now solves the equation above for uk+1
I , which allows us to

construct our new iterate uk+1. Note, that we have formulated the Newton method
in an abstract Banach space setting. When we apply a finite element discretization
we will test (5.3) with some test functions to obtain a finite-dimensional system. This
is part of the next subsection.

5.1.1 Algorithmic Aspects and Implementation

We now focus on the special case where y = Su is given by the weak solution of
the linear elliptic partial differential equation for a convex domain Ω ⊂ Rn with
n = 2, 3.

−∆y = u in Ω,
y = 0 on ∂Ω.

(5.4)

Let us show that this example fits into our framework. Clearly, for u ∈ L2(Ω)
equation (5.4) has a unique weak solution y ∈ H1

0 (Ω), and the associated solution
operator S is linear and continuous. For the choice Y = L2(Ω) we obtain S∗ = S.

Let us now report on the discretization and the operator Sh. We follow the argu-
mentation and results presented in [96, Section 3]. Let Th be a regular mesh which
consists of closed cells T . We assume that the union of all cells is the whole domain
Ω. For T ∈ Th we define hT := diam T . Furthermore we set h := maxT∈Th hT . We
assume that there exists a constant R > 0 such that hT

RT
≤ R for all T ∈ T . Here we

define RT to be the diameter of the largest ball contained in T .
For this mesh T we define an associated finite dimensional space Yh ⊂ H1

0 (Ω),
such that the restriction of a function v ∈ Yh to a cell T ∈ T is a linear polynomial.
The operator Sh is now defined in the sense of weak solutions. We set yh := Shu if
yh ∈ Yh solves

a(yh, vh) = (u, vh)L2(Ω) ∀vh ∈ Yh,
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with the bilinear form

a(w, v) :=

∫
Ω

∇w · ∇v dx.

We also obtain S∗h = Sh in the discrete case. Let us now mention that the operator
Sh satisfies Assumption (4.1.1). Following [96] and the references therein we obtain
the following result.

Lemma 5.1.3. Assume that there exists a constant CM > 1 such that

max
T∈Th

hT ≤ CM min
T∈Th

hT

holds. Then we have the estimates

‖(S − Sh)f‖L2(Ω) ≤ ch2‖f‖L2(Ω),

‖(S∗ − S∗h)f‖L∞(Ω) ≤ ch2−n/2‖f‖L2(Ω),

for f ∈ L2(Ω) and a constant c independent from f and h.

Hence Assumption (4.1.1) is satisfied with δ(h) = ch2. The discretized version of
(5.1) is now given by the solution (uh, yh, ph) of the coupled problem

a(yh, vh) = (uh, vh), ∀vh ∈ Yh,
a(ph, vh) = (vh, yh − zh), ∀vh ∈ Yh,

uh = PUad

(
− 1

α
ph + λh

)
,

(5.5)

with λh ∈ Yh. For a given uh there exists a unique yh(uh) and hence a unique ph(uh),
so we reduce the coupled system (5.5) to one equation for the optimal control uh

uh = PUad

(
− 1

α
ph(uh) + λh

)
.

Note that Lemma 5.1.2 also holds for finite element functions. We are interested
in the solution uk+1

h,I from equation (5.2). But uk+1
h,I is not a finite element function

in general, since it is the truncation of a finite element function uk+1
h,I = EI(ukh)ũ

k+1
h ,

which can be computed by solving the following equation, see (5.3)

EI(ukh)ũ
k+1
h +

1

α
EI(ukh)q

(
EI(ukh)ũ

k+1
h

)
= − 1

α
EI(ukh)p

(
EAa(ukh)ua + EAb(ukh)ub

)
+ EI(ukh)λh.

(5.6)

In the following we denote by uh ∈ Rm the coefficient vector of a function uh ∈ Yh,
where m denotes the degrees of freedom. By testing (5.6) with a test function we
obtain the following lemma.
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Lemma 5.1.4. The coefficient vector ũk+1
h satisfies

(
MI +

1

α
MIK

−1MK−1MI

)
ũk+1
h = − 1

α
MIK

−1M
(
K−1g − z

)
+MIλh, (5.7)

where

K =

[∫
Ω

∇ϕi · ∇ϕj
]
ij

,

MI =

[∫
I(ukh)

ϕiϕj

]
ij

, MAa =

[∫
Aa(ukh)

ϕiϕj

]
ij

,

M =

[∫
Ω

ϕiϕj

]
ij

, MAb =

[∫
Ab(ukh)

ϕiϕj

]
ij

,

g =

[∫
Aa(ukh)

uaϕj +

∫
Ab(ukh)

ubϕj

]
j

= MAaua +MAbub.

Note that we now have the relation

uk+1
h = EAa(ukh)ua + EAb(ukh)ub + EI(ukh)ũ

k+1
h .

We can use this relation to get a system for the coefficient vector of the function pk+1
h .

Lemma 5.1.5. The coefficient vector of the adjoint state pk+1
h satisfies

pk+1
h = K−1M

(
K−1(g +MI ũ

k+1
h )− zh

)
.

Note that only the adjoint state pk+1
h is used to update the active and inactive sets,

hence kinks and discontinuities will not be accumulated.
As mentioned in [6] the operator on the left-hand side of (5.3) is positive definite

on L2(I(uk)), hence the matrix on the left-hand side of (5.7) is positive definite on
the span of all basis functions whose support has non-empty intersection with the
inactive set I(ukh). This makes the equation accessible with a conjugate gradient
method.

With these results we can implement our Newton method and solve the subprob-
lem without actually computing ukh, we only work with adjoint state and the active
and inactive sets.

5.1.2 Using the Newton Solver in the Bregman Iteration

The fact that we are not computing the control (which is not an FEM function) and
work instead with the adjoint state (which is an FEM function) can be extended
to the implementation of the iterative Bregman method. Denote k the number of
iterations and let λkh ∈ Yh be the computed subgradient. Let pk+1

h ∈ Yh be the adjoint
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state computed while solving the subproblem. To start the next iteration all we have
to do is to update the subgradient

λk+1
h := − 1

αk+1
pk+1
h + λkh ∈ Yh.

Again note that we do not need to compute the control. The control can be computed
(for plotting e.g.) using the optimality condition uk+1

h = PUad
(λk+1
h ) if needed.

5.2 Numerical Results

In this section we present several different examples to illustrate the efficiency of
Algorithm 3.2. We now consider the following optimal control problem. Note that
due to the linearity of S this is of form (P ).

Minimize
1

2
‖y − z‖2L2(Ω)

such that −∆y = u+ eΩ in Ω,

y = 0 on ∂Ω,

ua ≤ u ≤ ub a.e. in Ω.

(5.8)

The additional variable eΩ can be used to construct the optimal solution of (5.8). For
the construction process we refer to [93]. The implementation of the semi-smooth
Newton method was done with FEniCS [64] using the C++ interface.

5.2.1 One-Dimensional Examples

Let us start with Ω ⊂ R. In this case it is possible to construct optimal solutions
(u†, y†, p†), such that u† exhibit a bang-bang structure in one part of the domain Ω,
and is singular, i.e. p† = 0 on the other part. We use the implementation presented
in Section 5.1 with an equidistant subdivision of the interval Ω with mesh size h.

Example 1: Source Condition

We want to construct an optimal control such that u† = S∗w for some w ∈ L2(Ω).
This is a stronger version of the assumption made in Assumption (SC). Note that in
this case also Assumption (SC) is satisfied.

Let Ω = (−1, 1), ua = −1 and ub = 1. We now define

u†(x) =
π2

10
sin(πx),

y†(x) =
1

10
sin(πx),

p†(x) = 0,

eΩ(x) = 0,

z(x) = y†(x).
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It is easy to check that the functions (u†, y†, p†) are a solution to (5.8). The desired
state z is reachable by construction. Furthermore we have −∆u = −π2u† =: w. This
shows that the Source Condition (SC) is satisfied. We set αk = 1 and compute the
first 1000 iterations with mesh size h = 4 · 10−6. The computed errors can be seen in
Figure 5.4.

Example 2: Projected Source Condition

In this example we want to construct an optimal control problem such that for the
optimal control u† = PUad

(S∗w) holds with some w ∈ L2(Ω). This is related to
Example 1, where u† = S∗w holds. Again let Ω = (−1, 1), ua = 0 and ub = 1. With
the choice of

u†(x) =

{
(x+ 1)(x+ 1

2 )(x− 1
2 )(x− 1) if x ∈ [− 1

2 ,
1
2 ],

0 else,

y†(x) =


19
240 (x+ 1) if x ∈ [−1,− 1

2 ],
19
240 (x+ 1)− 11

768 − 19x
240 − x2

8 + 5x4

48 − x6

30 if x ∈ [− 1
2 ,

1
2 ],

19
240 (x+ 1)− 19

240 − 19
120 (x− 1

2 ) if x ∈ [ 1
2 , 1],

p†(x) = 0,

z(x) = y†(x)−∆p†(x),

eΩ(x) = 0

the functions (u†, y†, p†) are a solution to (5.8). The functions are plotted in Figure
5.2. Furthermore with the choice of

w(x) =
5

2
− 12x2 = −∆

(
(x+ 1)(x+

1

2
)(x− 1

2
)(x− 1)

)
we obtain u† = PUad

(S∗w). Again we fix αk = 0.1 and compute the first 2048
iterations with mesh size h = 4 · 10−7 leading to 107 degrees of freedom. The
computed errors can be seen in Figure 5.5.

Example 3: Active Set Condition

We now want to construct an example, where the optimal control u† has a bang-bang
structure in one part of the domain, and is singular on the other. The regularity
assumption (ASC) is designed for such a structure. The construction of the bang-bang
part is straightforward and for the part where the solution is singular we define u†

to be continuous. The optimal state is now obtained by solving the resulting partial
differential equation. The optimal adjoint state is now chosen such that the pair
(u†, p†) is consistent in the sense of Theorem 3.2.2. Finally we construct the desired
state such that (u†, y†, p†) are a solution of (5.8).
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We set Ω = (−1, 1), ua = 0, ub = 1
10 and

u†(x) =


1
10 if x ∈ [−1,− 1

2 ],

0 if x ∈ [− 1
2 ,

1
4 ],

(x+ 1)(x− 1
4 )(x− 3

4 )(x− 1) if x ∈ [ 1
4 ,

3
4 ],

0 if x ∈ [ 3
4 , 1],

y†(x) =


− 7

3072 − 803x
15360 − x2

20 if x ∈ [−1,− 1
2 ],

157
15360 − 7x

3072 if x ∈ [− 1
2 ,

1
4 ],

581
49152 − 11x

480 + 3x2

32 − x3

6 + 13x4

192 + x5

20 − x6

30 if x ∈ [ 1
4 ,

3
4 ],

271
15360 − 271x

15360 if x ∈ [ 3
4 , 1],

p†(x) =


−(x+ 1)(x+ 1

2 )4 if x ∈ [−1,− 1
2 ],

−30(x+ 1
2 )4x3 if x ∈ [− 1

2 , 0],

0 if x ∈ [0, 1],

z(x) = y†(x)−∆p†(x),

eΩ(x) = 0.

Hence, the functions (u†, y†, p†) are a solution to (5.8). A plot of these functions
can be found in Figure 5.3. On the interval I = (0, 1) ⊂ Ω we have that u† =
PUad

(S∗w) holds, see Example 2. On the interval A := Ω \ I, the control u† has a
bang-bang structure, i.e. u†(x) ∈ {ua(x), ub(x)} almost everywhere. Using Theorem
3.3.6 yield that Assumption (ASC) is satisfied with κ = 1

4 . We compute the first
2048 iterations for fixed αk = 0.1 with mesh size h = 10−6. From theory we expect
‖uk − u†‖L2(Ω) = O

(
k−

1
8

)
. The computed errors can be seen in Figure 5.6.

Example 4: Bang-Bang Solution with κ = 1

Next we construct an example where u† exhibits a bang-bang structure on Ω. We set
Ω = (−1, 1), ua = −1, ub = 1 and

p†(x) = sin(πx),

u†(x) = −sign(p†),

y†(x) = 1− x2,

eΩ(x) = −∆y†(x)− u†(x),

z(x) = y†(x) + ∆p†(x).

The functions (u†, y†, p†) are a solution to (5.8). By Theorem 3.3.4 or 3.3.6 Assump-
tion (ASC) is satisfied with A = Ω and κ = 1.

It is known, that Assumption (ASC) is not only sufficient, but also necessary for
some regularization error estimates obtained for the Tikhonov regularization for
problem (P ), see [98]. We expect that a similar result also holds for our algorithm.
However, it is an open problem to prove this relation.
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We fix αk = 1 and compute the first 2048 iterations with mesh size h = 4 · 10−7.
We expect a convergence rate‖uk − u†‖2L2(Ω) = O

(
k−1 log(k)

)
see Corollary 3.4.5.

We also compute the rate

κk :=
1

log(2)
log

(
‖uk/2 − u†‖2L2(Ω)

‖uk − u†‖2L2(Ω)

)
.

The results for the numerical convergence rate κk can be found in Table 5.1 and the
computed errors in Figure 5.7. We see that κk ≈ 1, which supports the hypothesis,
that Assumption (ASC) is also necessary. Note that for larger k the discretization
error is dominating, leading to unreliable results for κk.

Example 4 Example 5

k ‖uk − u†‖L2(Ω) κk ‖uk − u†‖L2(Ω) κk

1 0.6722687597530747 - 0.7259004437566887 -

2 0.4632648773518065 1.0744 0.5749379045091544 0.6727

4 0.3260939576765771 1.0131 0.4202572744669416 0.9043

8 0.2303595953689695 1.0028 0.3210829677835648 0.7767

16 0.1628606909423222 1.0005 0.2519388899120427 0.6997

32 0.1151597670894625 1.0000 0.200898312209989 0.6532

64 0.0814343040205087 0.9999 0.1622230718552173 0.6170

128 0.05759141154404519 0.9996 0.1323174230010808 0.5880

256 0.04074577258246533 0.9984 0.1085464267526645 0.5714

512 0.02887391254287635 0.9938 0.08997521562370121 0.5414

1024 0.02059120915374126 0.9755 0.07475963451887319 0.5345

2048 0.01504185572910729 0.9061 0.06232732655147037 0.5248

Table 5.1: Computed rate κk for Example 4 and Example 5.

Example 5: Bang-Bang Solution with κ = 1
2

We define the following functions on Ω = (0, 1):

p† = x2(x− 1)(2x− 1),

u† = −sign(p†),

y† = x(1− x),

eΩ(x) = −∆y†(x)− u†(x),

z(x) = y†(x) + ∆p†(x).
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The functions (u†, y†, p†) are a solution to (5.8). Clearly u† has a bang-bang structure.
Here Theorem 3.3.6 reveals that Assumption (ASC) is satisfied with A = Ω and
κ = 1

2 . Similar to Example 4, we fix αk = 0.1 and h = 2 · 10−7. The computed errors
can be seen in Figure 5.8. We expect a convergence rate ‖uk − u†‖2L2(Ω) = O(k−

1
2 ),

which is good approximated, see Table 5.1.

Example 6: Bang-Bang Solution with κ = 1
3

Similar to Example 5 we define on Ω = (0, 1) the functions

p† = x(1− x)(3x− 1)3,

u† = −sign(p†),

y† = x(1− x),

eΩ(x) = −∆y†(x)− u†(x),

z(x) = y†(x) + ∆p†(x).

The functions (u†, y†, p†) are a solution to (5.8). A calculation using Theorem 3.3.6
shows that Assumption (ASC) is satisfied with A = Ω and κ = 1

3 . The computed
results for κk can be found in Table 5.2. The expected value κ = 1

3 is obtained. Here
we use h = 2 · 10−7.

Example 6 Example 8

k ‖uk − u†‖L2(Ω) κk ‖uk − u†‖L2(Ω) κk

1 0.6384310006585554 - 0.9478136297478046 -

2 0.5564941402566002 0.3963 0.897976145981608 0.1559

4 0.4736649311926216 0.4650 0.8047502704210617 0.3163

8 0.4138390253183378 0.3896 0.655737352082853 0.5908

16 0.3646955085938504 0.3648 0.5093855712942857 0.7287

32 0.322728036963586 0.3527 0.3901466377095458 0.7695

64 0.2862541886157004 0.3460 0.2951825660864547 0.8048

128 0.2542396065205812 0.3422 0.2208871361735489 0.8366

256 0.2259682413252065 0.3401 0.1634645681003727 0.8687

512 0.2009017117358534 0.3393 0.1193857565988463 0.9067

1024 0.1786060483761079 0.3394 0.08549473690142423 0.9634

2048 0.1587149243160397 0.3407 0.0601051288801563 1.0167

Table 5.2: Numerical convergence rate κk for Example 6 and Example 8.
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5.2.2 Two-Dimensional Examples

In this Subsection we want to present test examples for Ω ⊂ R2. In contrast to the
one-dimensional case, it is not clear how to construct examples similar to Example 3.
However, we will present some interesting examples. We use a regular triangulation
of the domain Ω with mesh size h, as presented in Subsection 5.1.1.

Example 7: Source Condition in 2D

For Ω = (0, 1)2, ua = −1, ub = 1 we define

u†(x, y) = sin(πx) sin(πy),

y†(x, y) =
1

2π2
sin(πx) sin(πy),

p†(x, y) = 0,

eΩ(x), y = 0,

z(x, y) = y†(x, y).

Similar to Example 1 the desired state is reachable and the source condition (SC)
is satisfied. We use a regular triangular mesh with h ≈ 1.4 · 10−3, leading to
approximately 3.3 · 105 degrees of freedom and compute the first 1000 iterates. The
numerical results can be seen in Figure 5.10.

Example 8: Bang-Bang Solution with κ = 1 in 2D

With the choice of Ω = (0, 1)2, ua = −1, ub = 1 and

p†(x, y) = − 1

8π2
sin(2πx) sin(2πy),

u†(x, y) = −sign(p†(x)),

y†(x, y) = sin(πx) sin(πy),

eΩ(x, y) = 2π2 sin(πx) sin(πy)− u†,
z(x, y) = sin(πx) sin(πy) + sin(2πx) sin(2πy)

the functions (u†, y†, p†) are a solution to (5.8). The optimal control is of bang-bang
structure, i.e. u†(x) ∈ {−1, 1} almost everywhere, however it is not clear whether
Assumption (ASC) is satisfied. The assumptions of Theorem 3.3.4 are not satisfied
(consider the point ( 1

2 ,
1
2 )), but numerical investigations indicate that Assumption

(ASC) is satisfied with A = Ω and κ = 1. This is supported by the computed
regularization error rates and by a direct computation of κ for the function p† on a
small grid.

We use a regular triangular mesh with h ≈ 1.4 · 10−3, leading to approximately
3.3 · 105 degrees of freedom. We fix αk = 0.1. The obtained errors can be seen in
Figure 5.11 and the numerical convergence order is computed in Table 5.2. We see
that κk ≈ 1 which is expected by the theoretical findings.

79



Chapter 5 Implementation of the Iterative Bregman Method

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
control u†

−1 −0.5 0 0.5 1
−0.1

0

0.1
state y†

Figure 5.1: Optimal control u† (left) and state y† (right) for Example 1.
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Figure 5.2: Optimal control u† = PUad
(S∗w) (left) and the optimal state y† (right) for Example 2.
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Figure 5.3: Optimal control u† (left) and the ptimal state y† and optimal adjoint state p† (right) for Example 3.
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Figure 5.4: Regularization error for the control (left) and for the state and adjoint state (right) for Example 1.
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Figure 5.5: Regularization error for the control (left) and for the state and adjoint state (right) for Example 2.
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Figure 5.6: Regularization error for the control (left) and for the state and adjoint state (right) for Example 3.
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Figure 5.7: Regularization error for the control (left) and for the state and adjoint state (right) for Example 4.
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Figure 5.8: Regularization error for the control (left) and for the state and adjoint state (right) for Example 5.
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Figure 5.9: Regularization error for the control (left) and for the state and adjoint state (right) for Example 6.
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Figure 5.10: Regularization error for the control (left) and for the state and adjoint state (right) for Example 7.
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Figure 5.11: Regularization error for the control (left) and for the state and adjoint state (right) for Example 8.
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CHAPTER 6

ALM for State Constraints and Sparsity

Until now, we have only considered linear quadratic optimal control problems with
additional control constraints. However, in many physical systems it is needed to add
additional state constraints. An example for such a situation is the optimal control
of a heat source discussed in Section 5.1.1. There the state y is the temperature
distribution in the domain Ω. Now assume that for technical reasons the temperature
should not exceed a certain threshold ψ to avoid mechanical damage through over-
heating. The optimal control ū and its state ȳ should therefore satisfy ȳ(x) ≤ ψ(x)
for all x ∈ Ω.

Note that for the elliptic partial differential equation discussed in Section 5.1.1 we
obtained that the state is a continuous function. So let us assume ψ ∈ C(Ω̄), hence
the inequality ȳ ≤ ψ is to be understood pointwise in the space C(Ω̄). We will explain
later why we use the space C(Ω̄) instead of using the embedding C(Ω̄)→ L2(Ω) and
interpreting this inequality in the L2-sense.

These additional constraints increase the complexity of the problem. In this
chapter we develop a method to solve optimal control problem of the form

Minimize
1

2
‖y − z‖2L2(Ω) + β‖u‖L1(Ω)

such that Ay = u in Ω,

y = 0 on ∂Ω,

y ≤ ψ in Ω,

ua ≤ u ≤ ub in Ω,

with a given function ψ ∈ C(Ω̄) and β ≥ 0. Here A is a linear elliptic operator. The
details are made precise in the next section.

We apply an augmented Lagrange method (ALM), which was briefly introduced
in Subsection 2.2.6. First we introduce the model problem in Section 6.1 and discuss
the additional difficulties. In Section 6.2 and 6.3 we introduce the tools needed
for the convergence analysis, e.g. optimality conditions. The augmented Lagrange
method is then introduced in Section 6.4 and the convergence analysis is carried out
in Section 6.5. The results of this chapter can be found in the publication [58].
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6.1 Model Problem with State Constraints

Throughout this section we will use the same notation (P ) for the optimal control as
in Section 3.1. This will not cause any problems as the contents of the sections do
not intersect. In this section we consider a convex optimal control problem of the
following form

min J(y, u) :=
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω), (P )

subject to

Ay = u in Ω

y = 0 on ∂Ω

y ≤ ψ in Ω̄

ua ≤ u ≤ ub in Ω

and u ∈ L2(Ω). We set j(u) := ‖u‖L1(Ω) for abbreviation. Here A is a linear elliptic
operator and β ≥ 0. The main difficulties of this problem are the pointwise state
constraints y(x) ≤ ψ(x) and the convex but non-differentiable term ‖u‖L1(Ω). Note
that there is no additional L2-regularization term present in (P ), which makes the
problem ill-posed and numerically challenging.

The motivation for the L1-term in the cost functional is the following. The
optimal solution ū of (P ) is sparse, i.e., the control is zero on large parts of the
domain if β is large enough. This can be used in the optimal placement of controllers,
especially in situations where it is not desirable to control the system from the whole
domain Ω, see [89]. Such sparsity promoting optimal control problems without
state constraints have been studied in, e.g. [97–99] for optimal control of linear
partial differential equations and in [13, 16] for the optimal control of semilinear
equations. For sufficient second-order conditions for the state constrained sparsity
promoting optimal control problem with a semilinear partial differential equation we
refer to [18].

In order to deal with the state constraints we apply an augmented Lagrange
method established by Karl and Wachsmuth in [59]. There the optimal control
problem

Minimize
1

2
||y − yd||2L2(Ω) +

α

2
‖u‖2L2(Ω) (6.1)

with α > 0 subject to an elliptic linear partial differential equation, state constraints
and bilateral control constraints had been considered. Under suitable regularity
assumptions the existence of Lagrange multipliers can be proven. However, in many
cases the multiplier associated with the state constraint µ̄ has a very low regularity, e.g.
µ̄ ∈ C(Ω)∗ =M(Ω̄), whereM(Ω̄) denotes the space of regular Borel measures on
Ω̄. This makes the numerical solution of (P ) very challenging. Although augmented
Lagrange methods for inequality constraints are well known in finite dimensional
spaces, only a few publications considering state constraints in infinite dimensional
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spaces are available: In [2,3] the state equation is augmented, and in [50] they deal
with finitely many state constraints. Let us also mention the quite general approach
for augmented Lagrange for optimization problems in Banach spaces which was
recently established in [55].

Apart from the augmented Lagrange method there exist some other different
approaches to deal with state constraints. We want to mention [66], in which a
simultaneous Tikhonov and Lavrentiev regularization had been applied for (P ).
There the motivation was to derive error estimates under a source condition and the
assumption that the state constraints are not active for solutions of (P ). Furthermore
they assumed that for the lower bound on the control it holds ua = 0. In this paper
we do not assume any of the above, which allows us to apply our method to a bigger
class of problems.

Our aim is to modify and extend the method presented in [59] to obtain a
numerical scheme to solve (P ). The main idea is the following. We add a Tikhonov
regularization term α

2 ‖u‖2L2(Ω) to (P ) and apply the augmented Lagrange method.
Thus, in every iteration we examine the optimal control problem

Minimize
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω) +

α

2
‖u‖2L2(Ω)

+
1

2ρ

∫
Ω

(
(µ+ ρ(y − ψ))+

)2 − µ2 dx
(6.2)

subject to an elliptic partial differential equation and bilateral control constraints.
We denote f+(x) := max(f(x), 0). Here, again α > 0 denotes the regularization
parameter of the Tikhonov term, while ρ is the penalization parameter of the aug-
mented state constraints. Both variables are coupled in our method. During the
algorithm we decrease the regularization parameter α → 0 while increasing the
penalization parameter ρ. The coupling is described in detail in Section 6.4. Since
the decrease of α is a classical Tikhonov regularization approach, we aim to achieve
strong convergence towards the solution of (P ). Under mild assumptions, i.e. there
exists a feasible point, the problem (P ) has a unique solution, see Theorem 6.2.4.

Denote ū the solution of (P ), uα the solution of (6.1) and uαρ the solution of (6.2).
Similar to [66] we split the error into the Tikhonov error and the Lagrange error in
order to show convergence of the algorithm

‖ū− uαρ ‖L2(Ω) ≤ ‖ū− uα‖L2(Ω)︸ ︷︷ ︸
Tikhonov error

+ ‖uα − uαρ ‖L2(Ω)︸ ︷︷ ︸
Lagrange error

.

We start this chapter by introducing and analysing the model problem in Section
6.2. In Section 6.3 we analyse the Tikhonov error. The augmented Lagrange method
is introduced in Section 6.4 and the associated convergence analysis is carried out in
Section 6.5.
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6.2 Preliminary Results

Before we introduce the augmented Lagrange method we want to recall some impor-
tant definitions and results.

6.2.1 Problem Setting

Let Ω ⊂ RN , N = {1, 2, 3} be a bounded Lipschitz domain. Let Y denote the space
Y := H1

0 (Ω)∩C(Ω̄) and U := L2(Ω). We want to solve the following state constrained
optimal control problem: Minimize

J(y, u) :=
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω)

over all (y, u) ∈ Y × U subject to the linear elliptic equation

(Ay)(x) = u(x) in Ω,

y(x) = 0 on ∂Ω,

and subject to the pointwise state and control constraints

y(x) ≤ ψ(x) in Ω,

ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω.

In the sequel, we will work with the following set of standing assumptions.

Assumption 6.2.1. We assume the following assumptions.

1. The given data satisfy yd ∈ L2(Ω), ua, ub ∈ L∞(Ω) with ua < 0 < ub and
ψ ∈ C(Ω̄).

2. The differential operator A is given by

(Ay)(x) := −
N∑

i,j=1

∂xj (aij(x)∂xiy(x)),

with ai,j ∈ C0,1(Ω̄). The operator A is assumed to be uniformly elliptic, i.e., there
is δ > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ δ|ξ|2, ∀ξ ∈ RN , a.e. on Ω.

The following theorem is taken from [15, Theorem 2.1].

Theorem 6.2.2. For every u ∈ L2(Ω) there exists a unique weak solution y ∈ H1
0 (Ω) ∩

C(Ω̄) of the state equation and it holds

‖y‖H1
0 (Ω) + ‖y‖C(Ω̄) ≤ c ‖u‖L2(Ω) ,

with a constant c > 0 independent of u.
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With this assumption one can prove the following properties of the control-to-state
mapping S.

Theorem 6.2.3. The control-to-state operator S : L2(Ω)→ H1
0 (Ω) ∩ C(Ω̄), u 7→ y is a

linear, continuous, and compact operator.

Proof. The linearity follows directly by the definition of S and for the compactness
we refer to [15, Theorem 2.1].

In the following, we will use the feasible sets with respect to the state and control
constraints denoted by

Uad = {u ∈ L∞(Ω) | ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω},
Yad = {y ∈ C(Ω̄) | y(x) ≤ ψ(x) ∀x ∈ Ω}.

The feasible set of the optimal control problem is denoted by

Fad = {(y, u) ∈ Y × U | (y, u) ∈ Yad × Uad, y = Su}.

The assumption ua < 0 < ub is not a restriction. Assume that ua ≥ 0 on a
subset Ω1 ⊆ Ω. Then we can decompose the L1-norm for u ∈ Uad as ‖u‖L1(Ω) =
‖u‖L1(Ω\Ω1)+

∫
Ω1
u. Hence, on Ω1 the L1-norm is a linear functional and its treatment

does not impose any further difficulties.

Theorem 6.2.4. Assume that the feasible set Fad is non-empty. Then, there exists a
unique solution ū with associated state ȳ of (P ).

Proof. The existence of solutions follows by standard arguments. Due to the assump-
tions the operator S is linear, continuous, and injective. Hence the problem (P ) is
convex leading to a unique optimal state ȳ. By using the injectivity of S we now
obtain uniqueness of the optimal control.

6.2.2 Subdifferential of the L1-Norm

In this section we want to recall some basic properties of the subdifferential of the
function j(u) = ‖u‖L1(Ω). Since j is convex and Lipschitz, the generalized gradient
[26] and the subdifferential in the sense of convex analysis coincide. Following
[13,18] we know that λ ∈ ∂j(u) ⊆ L∞(Ω) if and only if

λ


= +1 if u(x) > 0,

= −1 if u(x) < 0,

∈ [−1,+1] if u(x) = 0.

Since j is a convex function with dom(j) = L1(Ω) the subdifferential is always
nonempty. A straightforward calculation now reveals that for every λ ∈ ∂j(u) it holds∫

Ω

λ(v − u) dx ≤ ‖v‖L1(Ω) − ‖u‖L1(Ω) ∀v ∈ L1(Ω).
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Chapter 6 ALM for State Constraints and Sparsity

For more information we refer to the book of Bonnans and Shapiro [8, Section 2.4.3].
We need the subdifferential to establish first order condition, as we need to compute
derivatives of the objective functional 1

2‖y − yd‖2 + β‖u‖L1(Ω).

6.2.3 Optimality Conditions

We now want to establish optimality conditions for problem (P ). Due to the additional
state constraints the existence of Lagrange multipliers cannot be guaranteed without
any further regularity assumptions. Here we will now benefit from the formulation
of y ≤ ψ in C(Ω̄). Throughout this chapter we will assume that the following Slater
condition is satisfied.

Assumption 6.2.5. We assume that there exists û ∈ Uad and σ > 0 such that for
ŷ := Sû it holds

ŷ(x) ≤ ψ(x)− σ ∀x ∈ Ω.

Let us motivate this assumption. The constraint y ≤ ψ in C(Ω̄) can be rewritten
as

−(y − ψ) ∈ KC := {z ∈ C(Ω̄) : z(x) ≥ 0 ∀x ∈ Ω}.
It is straightforward to check that KC is a convex cone. Following [93, Theorem 6.1]
we obtain the existence of a Lagrange multiplier in the dual space of C(Ω̄) if there
exists a ỹ such that −(ỹ − ψ) ∈ int(KC) with respect to the natural norm in C(Ω̄). It
is clear that the existence of such an inner point is guaranteed by Assumption 6.2.5.
One major drawback is that the multiplier lies in C(Ω̄)∗ =M(Ω̄) which is the space
of regular Borel measures on Ω̄.

If we interpret the inequality y ≤ ψ in the bigger space L2(Ω) the associated set

KL := {z ∈ L2(Ω) : z(x) ≥ 0 for almost all x ∈ Ω}

has empty interior. Hence [93, Theorem 6.1] is not applicable here.
Moreover, since S is linear, Assumption 6.2.5 is equivalent to the linearized

Slater condition, which on the other hand implies the more general Zowe-Kurcyusz
regularity condition. However, one already has to know the solution of the optimal
control problem (P ) to check whether the Zowe-Kurcyusz condition is satisfied. This
is not the case for the proposed Slater condition.

Theorem 6.2.6. Let (ū, ȳ) be a solution of the problem (P ). Furthermore, let As-
sumption 6.2.5 be fulfilled. Then, there exists an adjoint state p̄ ∈ W 1,s

0 (Ω), s ∈
[1, N/(N − 1)), a Lagrange multiplier µ̄ ∈ M(Ω̄) and a subgradient λ̄ ∈ ∂j(ū) such
that the following optimality system{

Aȳ = ū in Ω,

ȳ = 0 on ∂Ω,
(6.3a)

{
A∗p̄ = ȳ − yd + µ̄ in Ω,

p̄ = 0 on ∂Ω,
(6.3b)
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(p̄+ βλ̄, u− ū)L2(Ω) ≥ 0 ∀u ∈ Uad, (6.3c)

〈µ̄, ȳ − ψ〉M(Ω̄),C(Ω̄) = 0, µ̄ ≥ 0, (6.3d)

is fulfilled. Here, the inequality µ̄ ≥ 0 means that 〈µ̄, ϕ〉M(Ω̄),C(Ω̄) ≥ 0 holds for all
ϕ ∈ C(Ω̄) with ϕ ≥ 0.

Proof. The proof can be found in [18, Theorem 2.5].

In the definition (6.3b) for the optimal adjoint state p̄ we have to solve an elliptic
equation with a measure on the right hand side. This problem is well-posed in the
following sense.

Theorem 6.2.7. Let µ̄ ∈ M(Ω̄) be a regular Borel measure. Then the adjoint state
equation

A∗p̄ = ȳ − yd + µ̄ in Ω,

p̄ = 0 on ∂Ω

has a unique very weak solution p̄ ∈W 1,s
0 (Ω) with s ∈ [1, N/(N − 1)), and it holds

‖p̄‖W 1,s
0 (Ω) ≤ c

(
‖ȳ‖L2(Ω) + ‖yd‖L2(Ω) + ‖µ̄‖M(Ω̄)

)
.

Proof. This result is due to [12, Theorem 4].

Here a very weak solution is to be understood in the sense of transposition [14,
Section 2], i.e. p̄ ∈W 1,s

0 (Ω) satisfies∫
Ω

p̄Aϕ dx =

∫
Ω

(ȳ − yd)ϕ dx+

∫
Ω

ϕ dµ̄, ∀ϕ ∈ H2(Ω) ∩H1
0 (Ω).

The next theorem shows the relation between the adjoint state and the control.
One can see, that if β is large, the control will be zero on large parts of Ω. Hence ū is
sparse.

Lemma 6.2.8. Let ū, p̄, λ̄, µ̄ satisfy the optimality system. (6.3a)-(6.3d). Then the
following relations hold for θ > 0:

ū(x)


= ua(x) if p̄(x) > β,

= ub(x) if p̄(x) < −β,
= 0 if |p(x)| < β,

∈ [ua(x), ub(x)] if |p(x)| = β,

λ̄(x) = P[−1,+1]

(
− 1

β
p̄(x)

)
,

ū(x) = P[ua(x),ub(x)]

(
ū(x)− θ(p̄(x) + βλ̄(x))

)
.

From the second formula it follows that λ̄ is unique if the multiplier µ̄ and adjoint state
p̄ are unique.

Proof. The proof only uses the optimality (6.3c) and can be found in [13, Theorem
3.1].
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6.3 Convergence Analysis of the Regularized Problem

Solving the problem (P ) directly is challenging for mainly two reasons. First, since
the multiplier corresponding to the state constraints appears in form of a measure, it
is not clear how to deal with the state constraints. For the control constraints many
powerful methods are available. Here, we only want to mention the semi-smooth
Newton solvers [46,47] and the active-set methods [4]. However, it is not clear how
to implement the state constraints into a direct solver. In [5,51] active-set methods
have been used to solve problems where the state constraints have been treated
by a Moreau-Yosida regularization. In [51,52] also relations between semi-smooth
Newton methods and active-set methods have been established that can be used
to prove fast local convergence. In this work we want to adapt the approach of a
modified augmented Lagrange method that has been proposed in [59] to overcome
the lack of the multiplier’s regularity.

The second challenge is the ill-posedness of the original problem (P ). There small
perturbations of the given data yd may lead to large errors in the associated optimal
controls. To deal with this issue we will use the well-known Tikhonov regularization
technique with some positive regularization parameter α > 0. The regularized
problem is given by

Minimize Jα(y, u) : =
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω) +

α

2
||u||2L2(Ω)

s.t. Ay = u in Ω,

y = 0 on ∂Ω,

y ≤ ψ,
u ∈ Uad.

(Pα)

It is clear that (Pα) admits a unique solution uα with associated state yα. One can
expect that uα converges to the solution of (P ) as α → 0. Similar results can be
found in the literature, e.g. [97].

Theorem 6.3.1. Let uα be the unique solution of (Pα) with α > 0 and associated state
yα. Furthermore let ū be the unique solution of (P ) and ȳ its associated optimal state.
Then we have for α→ 0

‖uα − ū‖L2(Ω) → 0,

1

α
‖yα − ȳ‖2L2(Ω) → 0.

Proof. We first show that ‖uα‖L2(Ω) ≤ ‖ū‖L2(Ω) for all α > 0. To shorten our notation
we set y = Su in the cost functional of (Pα) and define the reduced cost functional
Jα(u) := Jα(Su, u). Let J0 denote the cost functional Jα for α := 0. We start with

J0(uα)+
α

2
‖uα‖2L2(Ω) = Jα(uα) ≤ Jα(ū) = J0(ū)+

α

2
‖ū‖2L2(Ω) ≤ J0(uα)+

α

2
‖ū‖2L2(Ω),

where we exploited the optimality of uα for (Pα) and the optimality of ū for (P ). This
yields ‖uα‖L2(Ω) ≤ ‖ū‖L2(Ω). Now we use that the set Uad is weakly compact and
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extract a subsequence uαi ⇀ u∗ ∈ Uad. Since the operator S is compact, see Theorem
6.2.3, we obtain strong convergence of the associated states yαi → y∗ = Su∗ in
H1

0 (Ω) ∩ C(Ω̄). Now let u ∈ Uad be arbitrary, then

J0(u∗) = lim
i→∞

J0(uαi) = lim
i→∞

Jαi(u
αi) ≤ lim

i→∞
Jαi(u) = J0(u).

Hence u∗ is a minimizer of J0. The solution ū of (P ) is unique and since the problems
(P ) and (Pα) coincide for α = 0 we obtain ū = u∗. As the norm is weakly lower
semicontinuous we get

lim sup
i→∞

‖uαi‖L2(Ω) ≤ ‖u∗‖L2(Ω) ≤ lim inf
i→∞

‖uαi‖L2(Ω) ≤ lim sup
i→∞

‖uαi‖L2(Ω),

which shows ‖uαi‖L2(Ω) → ‖u∗‖L2(Ω). As a well known fact, weak and norm conver-
gence yield strong convergence and hence we have uαi → u∗. As the sequence uαi
was arbitrarily chosen we obtain convergence of the whole sequence uα → ū.
We now want to show improved convergence results for the states. Since the function

J : L2(Ω)→ R, y 7→ 1

2
‖y − yd‖2L2(Ω)

is a strongly convex function we know that the following inequality holds for all
t ∈ [0, 1] and y1, y2 ∈ L2(Ω) with some m > 0 (in fact m = 2)

J(ty1 + (1− t)y2) ≤ tJ(y1) + (1− t)J(y2)− 1

2
m · t(1− t)‖y1 − y2‖2L2(Ω).

Now let (u, y) ∈ Fad and define t = 1
2 , y1 = ȳ and y2 = y. Furthermore note, that

with (u, y), (ū, ȳ) ∈ Fad the convex combination is also feasible. To be precise we
obtain with the optimality of ū that

J(ȳ) ≤ J
(

1

2
ȳ +

1

2
y

)
≤ 1

2
J(ȳ) +

1

2
J(y)− m

4
‖ȳ − y‖2L2(Ω).

Rearranging this inequality above yields the following growth condition

J0(ū) + c‖ȳ − y‖2L2(Ω) ≤ J0(u) ∀(u, y) ∈ Fad.

Note that J0(ū) = J(ȳ), since ȳ = Sū. This growth condition can now be used to
establish improved convergence results for the states (yα). Recall that Jα(uα) ≤ Jα(ū)
and estimate

J0(ū) + c‖yα − ȳ‖2L2(Ω) +
α

2
‖uα‖2L2(Ω) ≤ J0(uα) +

α

2
‖uα‖2L2(Ω) = Jα(uα)

≤ Jα(ū) = J0(ū) +
α

2
‖ū‖2L2(Ω).

This implies
‖yα − ȳ‖2L2(Ω) ≤ c · α

(
‖ū‖2L2(Ω) − ‖uα‖2L2(Ω)

)
.
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Using the already established strong convergence uα → ū, we get

lim
α→0

1

α
‖yα − ȳ‖2L2(Ω) = 0,

which finishes the proof.

Let us assume that the Slater condition given in Assumption 6.2.5 is satisfied.
Then first order necessary optimality conditions can be established for the regularized
problem.

Theorem 6.3.2. Let (uα, yα) be the solution of the problem (Pα). Furthermore, let
Assumption 6.2.5 be fulfilled. Then, there exists an adjoint state pα ∈ W 1,s(Ω), s ∈
[1, N/(N − 1)), a Lagrange multiplier µα ∈M(Ω̄) and a subgradient λα ∈ ∂j(uα) such
that the following optimality system holds:{

Ayα = uα in Ω,

yα = 0 on ∂Ω,
(6.4a)

{
A∗pα = yα − yd + µα in Ω,

pα = 0 on ∂Ω,
(6.4b)

(pα + αuα + βλα, u− uα)L2(Ω) ≥ 0 ∀u ∈ Uad, (6.4c)

〈µα, yα − ψ〉M(Ω̄),C(Ω̄) = 0, µα ≥ 0. (6.4d)

Proof. The proof can be found in [18, Theorem 2.5].

Similar to Lemma 6.2.8 it is possible to reconstruct the optimal solution uα by its
associated adjoint state pα on certain sets. The relation between uα and pα presented
in the next lemma can be used in numerical algorithms, see e.g. the active-set method
described in Chapter 7.

Lemma 6.3.3. Let uα, yα, pα, λα, µα satisfy the optimality system (6.4). Then the
following relations hold:

uα(x) =



ua(x) if β − αua(x) < pα(x),
1
α (β − pα(x)) if β ≤ pα(x) ≤ β − αua(x),

0 if |pα(x)| < β,
1
α (−β − pα(x)) if − αub(x)− β ≤ pα(x) ≤ −β,
ub(x) if pα(x) < −αub(x)− β,

λα(x) = P[−1,1]

(
− 1

β
(pα(x) + αuα(x))

)
,

uα(x) = P[ua(x),ub(x)]

(
− 1

α
(pα(x) + βλα(x))

)
.
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Proof. First note that by the variational inequality (6.4c) can be interpreted pointwise
for almost all x ∈ Ω, see [93, Lemma 2.26]

(pα(x) + αuα(x) + βλα(x))(u− uα(x)) ≥ 0 ∀u ∈ [ua(x), ub(x)]. (6.5)

Consider the first case and assume β − αua(x) < pα(x). Note that λα ∈ ∂‖uα‖L1(Ω),
hence λα(x) ∈ [−1, 1]. Now we obtain using ua(x) ≤ uα(x)

pα(x) + αuα(x) + βλα(x) ≥ pα(x) + αua(x)− β > 0.

Now (6.5) yields
u− uα(x) ≥ 0 ∀u ∈ [ua(x), ub(x)]

and we conclude uα(x) = ua(x). By our assumption we know ua(x) < 0, hence

−1 = λα(x) = P[−1,1]

(
− 1

β
(pα(x) + αuα(x))

)
.

With a similar argument we handle the case pα(x) < −αub(x)− β.
Now assume that β ≤ pα(x) ≤ β −αua(x) holds. We prove uα(x) = 1

α (β − pα(x)) by
contradiction. First assume uα(x) < 1

α (β − pα(x)). This leads to uα(x) < 0 hence
λα(x) = −1. We now compute

pα(x) + αuα(x) + βλα(x) < pα(x) + β − pα(x)− β = 0.

From (6.5) we conclude uα(x) = ub(x) > 0 which is a contradiction. Now assume
uα(x) > 1

α (β − pα(x)). From this inequality we obtain αuα(x) > β − pα(x) ≥ αua(x)
hence uα(x) > ua(x). We now obtain using λα(x) ∈ [−1, 1]

pα(x) + αuα(x) + βλα(x) > pα(x) + β − pα(x)− β = 0

and we obtain uα(x) = ua(x) which again is a contradiction. A straightforward
calculation now reveals

λα(x) = P[−1,1]

(
− 1

β
(pα(x) + αuα(x))

)
.

The case −αub(x)− β ≤ pα(x) ≤ −β is handled with a similar calculation.
We now consider the remaining case |pα(x)| < β. Let us show that uα(x) = 0 holds
by contradiction. Assume uα(x) > 0, hence λα(x) = 1 and

pα(x) + αuα(x) + βλα(x) > pα(x) + β > 0

leading to uα(x) = ua(x) < 0 which is a contradiction. With a similar argument one
can handle the case uα(x) < 0. With uα(x) = 0 and ua(x) < 0 < ub(x) we conclude
from (6.5) that

λα(x) = − 1

β
pα(x) = P[−1,1]

(
− 1

β
(pα(x) + αuα(x))

)
holds.
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In the subsequent analysis we will need that the multipliers for the problem (Pα)
are uniformly bounded for all α ≥ 0. Note that for α = 0 the problem (Pα) reduces
to problem (P ). The boundedness of the multipliers can be expected from abstract
theory [8] and [93, Theorem 6.3], and we make use of the Slater condition to prove
it.

Lemma 6.3.4. Let 0 ≤ α ≤ C and define the set

Mα := {µα ∈M(Ω̄) : (uα, yα, pα, λα, µα) satisfy (6.4a)− (6.4d)}
of all multipliers associated with problem (Pα). Then the multipliers are uniformly
bounded, i.e. there exists a constant C > 0 independent from α such that

‖µα‖M(Ω̄) ≤ C, ∀α ≥ 0 ∀µα ∈Mα.

Proof. We follow the book of Tröltzsch [93] and consider our solution mapping
S : L2(Ω) → C(Ω̄). Then the dual operator is a mapping S∗ :M(Ω̄) → L2(Ω). Let
α ≥ 0 be given, and uα, yα be the solution of (Pα) with an associated multiplier
µα. We now use the Slater condition from Assumption 6.2.5 and compute for any
f ∈ C(Ω̄) with ‖f‖∞ = 1

σ

∣∣∣∣∣∣
∫
Ω

f dµα

∣∣∣∣∣∣ ≤ σ
∫
Ω

|f |dµα ≤
∫
Ω

σ dµα ≤
∫
Ω

(ψ − ŷ) dµα

= 〈µα, ψ − yα〉M(Ω̄),C(Ω̄)︸ ︷︷ ︸
=0 by (6.4d)

+〈µα, yα − ŷ〉M(Ω̄),C(Ω̄)

= 〈µα, S(uα − û)〉M(Ω̄),C(Ω̄)

=

∫
Ω

(S∗µα)(uα − û) dx.

Now recall that the adjoint equation (6.4b) can be rewritten as

S∗µα = S∗(yd − Suα) + pα.

Furthermore by the assumption uα ∈ Uad and by Theorem 6.2.4 and 6.2.7 we obtain
that uα and yα are uniformly bounded in L2(Ω). We now get

σ‖µα‖M(Ω̄) = σ sup
f∈C(Ω̄), ‖f‖∞=1

∣∣∣∣∣∣
∫
Ω

f dµα

∣∣∣∣∣∣ ≤
∫
Ω

(S∗µα)(uα − û) dx,

leading to

σ‖µα‖M(Ω̄) ≤
∫
Ω

(S∗(yd − Suα) + pα)(uα − û) dx

=

∫
Ω

(S∗(yd − Suα))(uα − û) dx+

∫
Ω

pα(uα − û) dx.
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We now apply the optimality condition (6.4c) and obtain with the boundedness of
λα, see Lemma 6.3.3 and the boundedness of α that the following holds

σ‖µα‖M(Ω̄) ≤ c‖uα − û‖L2(Ω)‖yd − yα‖L2(Ω) +

∫
Ω

(αuα + βλα)(û− uα) dx

≤ c‖uα − û‖L2(Ω)

(
‖yd − yα‖L2(Ω) + ‖αuα + βλα‖L2(Ω)

)
≤ c.

Dividing the above inequality by σ > 0 finishes the proof.

6.4 The Augmented Lagrange Method

In the following we want to solve the regularized problem (Pα) for α→ 0. For fixed
α we follow the idea presented in [59] and replace the inequality constraint y ≤ ψ
by an augmented penalization term. In that way we get rid of the measure and work
instead with an approximation.

6.4.1 The Augmented Lagrange Optimal Control Problem

First let us introduce the penalty function P which we use to augment the state
constraints. Let ρ > 0 be a given penalty parameter, and let µ ∈ L2(Ω) with µ ≥ 0 be
a given approximation of the Lagrange multiplier. Now we define

P (y, ρ, µ) :=
1

2ρ

∫
Ω

(
(µ+ ρ(y − ψ))+

)2 − µ2 dx.

Here f+(x) := max(f(x), 0). Let now ρ > 0 and µ ∈ L2(Ω) be given. Then in each
step of the augmented Lagrange method the following subproblem has to be solved:
Minimize

Jαρ (y, u, µ) :=
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω) +

α

2
||u||2L2(Ω) + P (y, ρ, µ) (Pα,ρ,µ)

with α > 0, subject to the state equation and the control constraints

y = Su, u ∈ Uad.

A solution of (Pα,ρ,µ) will be denoted by uαρ with associated state yαρ and adjoint state
pαρ . The next theorem shows that the subproblem is uniquely solveable.

Theorem 6.4.1. For every ρ > 0, µ ∈ L2(Ω) with µ ≥ 0 the augmented Lagrange
control problem (Pα,ρ,µ) admits a unique solution uαρ ∈ Uad with associated optimal
state yαρ ∈ Y and adjoint state pαρ .

Proof. Since Uad is closed, bounded and convex and Jαρ is coercive, weakly lower
semi-continuous and strictly convex, problem (Pα,ρ,µ) has a unique solution uαρ ∈ Uad.
For more details see [93] and [27].
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Solutions of (Pα,ρ,µ) can be characterized by the first-order optimality conditions.

Theorem 6.4.2 (First-order necessary optimality conditions). Let (uαρ , y
α
ρ ) be the

solution of (Pα,ρ,µ). Then, there exists a unique adjoint state pαρ ∈ H1
0 (Ω) associated

with the optimal control uαρ and a subdifferential λαρ ∈ ∂j(uαρ ), satisfying the following
system. {

Ayαρ = uαρ in Ω,

yαρ = 0 on ∂Ω,
(6.6a)

{
A∗pαρ = yαρ − yd + µαρ in Ω,

pαρ = 0 on ∂Ω,
(6.6b)

(pαρ + αuαρ + βλαρ , u− uαρ )L2(Ω) ≥ 0 ∀u ∈ Uad, (6.6c)

µαρ :=
(
µ+ ρ(yαρ − ψ)

)
+
. (6.6d)

Proof. Can be proven by extending the results in [48, Corollary 1.3, p. 73].

Note that we can extend the results obtained in Lemma 6.3.3 to the solution
of (Pα,ρ,µ). The proof only uses the variational inequality (6.4c) and can therefore
directly be copied to (6.6c).

Further we make an analogous observation like in [59]. Boundedness of µαρ in
the L1-norm is enough to get boundedness of the solution (uαρ , y

α
ρ , p

α
ρ , λ

α
ρ ) of (6.6).

Theorem 6.4.3. Let ρ > 0 and µ ∈ L2(Ω) be given. Let s ∈ [1, N/(N − 1)) and α be
bounded. Then there exists a constant c > 0 independent of α,ρ, and µ such that for all
solutions (uαρ , y

α
ρ , p

α
ρ , µ

α
ρ ) of (6.6) it holds

‖yαρ ‖H1(Ω) + ‖yαρ ‖C(Ω̄) + ‖uαρ ‖L2(Ω) + ‖pαρ ‖W 1,s(Ω) ≤ c(‖µαρ ‖L1(Ω) + 1).

Proof. The proof just differs from the one of [59, Theorem 3.3] concerning the
additional subgradient in (6.6b). Hence, we just give the most important steps here.
Let us test the state equation (6.6a) with pαρ and the adjoint equation (6.6b) with yαρ .
This yields

(pαρ , u
α
ρ )L2(Ω) = (yαρ − yd, yαρ )L2(Ω) + (µαρ , y

α
ρ )L2(Ω).

Now fix a u ∈ Uad and use it in (6.6c), yielding

(yαρ − yd, yαρ )L2(Ω) + (µαρ , y
α
ρ )L2(Ω)

≤ (αuαρ , u− uαρ )L2(Ω) + (pαρ , u)L2(Ω) + (βλαρ , u− uαρ )L2(Ω).

By Young’s inequality and exploiting (λαρ , u− uαρ )L2(Ω) ≤ ‖u‖L1(Ω) − ‖uαρ ‖L1(Ω), we
have

1

2

∥∥yαρ ∥∥2

L2(Ω)
+
α

2

∥∥uαρ∥∥2

L2(Ω)
≤ 1

2
‖yd‖2L2(Ω) + ‖µαρ ‖L1(Ω)‖yαρ ‖C(Ω̄) +

α

2
‖u‖2L2(Ω)

+ ‖pαρ ‖L2(Ω)‖u‖L2(Ω) + β
(
‖u‖L1(Ω) − ‖uαρ ‖L1(Ω)

)
.
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Let us fix s̄ ∈ (1, N/(N − 1)) such that W 1,s̄(Ω) is continuously embedded in L2(Ω).
From Theorem 6.2.2 we now get ‖yαρ ‖H1(Ω) + ‖yαρ ‖C(Ω̄) ≤ c‖uαρ ‖L2(Ω) and from
Theorem 6.2.7 we get ‖pαρ ‖L2(Ω) ≤ c

(
‖yαρ ‖L2(Ω) + ‖yd‖L2(Ω) + ‖µαρ ‖L1(Ω)

)
. Now

using the fact that uαρ is bounded in L2(Ω) and u is fixed to obtain the result.

6.4.2 The Prototypical Augmented Lagrange Algorithm

In the following, let (P kα,ρ,µ) denote the augmented Lagrange subproblem (Pα,ρ,µ)
for given penalty parameter ρ := ρk, multiplier µ := µk and regularization parameter
α := αk. We will denote its solution by (ūk, ȳk) with adjoint state p̄k and updated
multiplier µ̄k, which is given by (6.6d).

Algorithm 6.5. Let α1 > 0, ρ1 > 0 and µ1 ∈ L2(Ω) be given with µ1 ≥ 0. Choose
θ > 1.

1. Solve (P kα,ρ,µ) and obtain (ūk, ȳk, p̄k, λ̄k).

2. Set µ̄k := (µk + ρk(ȳk − ψ))+.

3. If the step is successful set µk+1 := µk, ρk+1 := ρk and choose 0 < αk+1 such that
αk+1 < αk.

4. Otherwise set µk+1 := µ̄k and αk+1 := αk, increase penalty parameter ρk+1 :=
θρk.

5. If the stopping criterion is not satisfied set k := k + 1 and go to step 1.

We will define later what it needs for a step to be successful. Please note that we
only decrease the regularization parameter αk if the algorithm produces a successful
step. Let us restate the system (P kα,ρ,µ) that is solved by (ūk, ȳk, p̄k, λ̄k, µ̄k):{

Aȳk = ūk in Ω,

ȳk = 0 on ∂Ω,
(6.7a)

{
A∗p̄k = ȳk − yd + µ̄k in Ω,

p̄k = 0 on ∂Ω,
(6.7b)

ūk ∈ Uad, (6.7c)

(p̄k + αkūk + βλ̄k, u− ūk)L2(Ω) ≥ 0 ∀u ∈ Uad, (6.7d)

µ̄k := (µk + ρk(ȳk − ψ))+ . (6.7e)
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6.4.3 The Multiplier Update Rule

Let us start this section with a basic estimate, which will be useful in the subsequent
analysis.

Lemma 6.4.4. Let αk > 0 be given and let (uαk , yαk , pαk , λαk , µαk) be the solution of
(6.4) and let (ūk, ȳk, p̄k, λ̄k, µ̄k) solve (6.7). Then it holds

‖yαk − ȳk‖2L2(Ω) + αk ‖uαk − ūk‖2L2(Ω) ≤ (µ̄k, ψ − ȳk)L2(Ω) + 〈µαk , ȳk − ψ〉.

Proof. Using (6.4c) and (6.7d), we obtain

0 ≤ (pαk − p̄k + αk(uαk − ūk) + β(λαk − λ̄k), ūk − uαk)L2(Ω)

= (S∗(Suαk − Sūk), ūk − uαk)L2(Ω) − αk(ūk − uαk , ūk − uαk)L2(Ω)

+ (S∗(µαk − µ̄k), ūk − uαk)L2(Ω) + β(λαk − λ̄k, ūk − uαk)L2(Ω).

Now we use that the subdifferential is a monotone operator, which yields (λαk −
λ̄k, ūk − uαk)L2(Ω) ≤ 0. Note that λαk ∈ ∂j(uαk) and λ̄k ∈ ∂j(ūk). This yields

‖yαk − ȳk‖2L2(Ω) + αk‖ūk − uαk‖2L2(Ω) ≤ 〈µ̄k − µαk , yαk − ȳk〉. (6.8)

The term on the right-hand side of equation (6.8) can be split into the two parts

(µ̄k, y
αk − ȳk)L2(Ω) = (µ̄k, y

αk − ψ)L2(Ω) + (µ̄k, ψ − ȳk)L2(Ω) ≤ (µ̄k, ψ − ȳk)L2(Ω)

(6.9)

and

−〈µαkk , yαk − ȳk〉 = −〈µαk , yαk − ψ〉 − 〈µαk , ψ − ȳk〉 = 〈µαk , ȳk − ψ〉. (6.10)

Here, we used the complementarity relation (6.4d) as well as yαk ≤ ψ and µ̄k ≥ 0.
Putting the inequalities (6.8), (6.9), and (6.10) together, we get

‖yαk − ȳk‖2L2(Ω) + αk ‖uαk − ūk‖2L2(Ω) ≤ (µ̄k, ψ − ȳk)L2(Ω) + 〈µαk , yk − ψ〉,

which is the claim.

The following result motivates the update rule.

Lemma 6.4.5. Let (uαk , yαk , pαk , λαk , µαk) and (ūk, ȳk, p̄k, λ̄k, µ̄k) be given as in
Lemma 6.4.4. Then it holds

1

αk
‖yαk − ȳk‖2L2(Ω) + ‖uαk − ūk‖2L2(Ω) ≤

c

αk

(
‖(ȳk − ψ)+‖C(Ω̄)

+ |(µ̄k, ψ − ȳk)L2(Ω)|
)
.

Proof. We start with the estimate

〈µαk , ȳk − ψ〉 ≤ ‖µαk‖M(Ω) ‖(ȳk − ψ)+‖C(Ω̄) .

The result now follows using the uniform boundedness of µαk , see Lemma 6.3.4 and
Lemma 6.4.4.
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6.4 The Augmented Lagrange Method

This result shows that the iterates (ūk, ȳk) will converge to the solution of the
regularized problem for fixed αk if the quantity

1

αk

(
‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)L2(Ω)|

)
tends to zero for k →∞. To construct our update rule we follow the idea presented
in [59] and define a step of Algorithm 6.5 to be successful if the condition

1

αk

(
‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)L2(Ω)|

)
≤ τ

αn

(
‖(ȳn − ψ)+‖C(Ω̄) + |(µ̄n, ψ − ȳn)L2(Ω)|

)
is satisfied with τ ∈ (0, 1). Here, we denoted by step n, n < k, the previous successful
step. In [59] this quantity was also used as a stopping criterion. However this is not
possible here, as we proceed to let αk go to 0. Instead we will check the first order
optimality conditions for problem (P ) as a stopping criterion. This will be described
in detail in Chapter 7.

6.4.4 The Augmented Lagrange Algorithm in Detail

Let us now formulate the algorithm based on the update rule established in the
previous section.

Algorithm 6.6. Let α1 > 0, ρ1 > 0 and µ1 ∈ L2(Ω) be given with µ1 ≥ 0. Choose
θ > 1, 0 < ω < 1, τ ∈ (0, 1). Set k := 1 and n := 1.

1. Solve (P kα,ρ,µ) and obtain (ūk, ȳk, p̄k, λ̄k).

2. Set µ̄k := (µk + ρk(ȳk − ψ))+.

3. Compute Rk := 1
αk

(
‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)L2(Ω)|

)
.

4. If k = 1 or Rk ≤ τR+
n−1 then the step k is successful, set

αk+1 := ωαk,

µk+1 := µ̄k,

ρk+1 := ρk,

and define (u+
n , y

+
n , p

+
n , λ

+
n ) := (ūk, ȳk, p̄k, λ̄k), as well as µ+

n := µk+1, R+
n := Rk

and α+
n := αk. Set n := n+ 1.

5. Otherwise if the step k is not successful, set µk+1 := µk and αk+1 := αk, and
increase the penalty parameter ρk+1 := θρk.

6. If a stopping criterion is satisfied stop, otherwise set k := k + 1 and go to step 1.
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Again, please note that the regularization parameter αk is only decreased when
the algorithm produces a successful step. We will take advantage of this in the
subsequent analysis. Furthermore note that we set the first step to be successful.
From a theoretical point this is not needed and we could just set a R+

0 > 0 and
test our first iteration R1 < τR+

0 . However, if this value is chosen too small it may
take several iterations until a successful step is obtained, leading to a big value of
the penalization parameter ρ. As mentioned in Chapter 7 this lead to numerical
instabilities.

Therefore we set the first iteration to be a successful step. This setting turned out
to be effective as the new multiplier µ1 is, in general, a better approximation than
the initial guess.

6.4.5 Infinitely Many Successful Steps

The main aim of this subsection is to prove that the proposed algorithm produces
infinitely many successful steps. In order to prove this we consider the augmented
Lagrange KKT system of the minimization problem

Minimize Jαρ (y, u, µ) =
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω) +

α

2
||u||2L2(Ω) + P (y, ρ, µ)

subject to y = Su and u ∈ Uad. We fix the multiplier approximation µ, the regulariza-
tion parameter α and let the penalization parameter ρ tend to infinity. As mentioned
in [59] the problem reduces to a penalty method with additional shift parameter µ.
The only difference to the approach in [59] is, that we have an additional L1-term in
the objective functional. However, taking a closer look at [59, Lemma 3.6] reveals
that it also holds for an additional L1-term. The reason is that the proofs are based
on an estimate similar to the one established in Lemma 6.4.4. However, there the
L1-term is already eliminated due to the monotonicity of the subdifferential. This
yields the following Lemma.

Lemma 6.4.6. Let µ ∈ L2(Ω) with µ ≥ 0 and α > 0 be given. Let (uρα, y
ρ
α, p

ρ
α) be

solutions of (Pα,ρ,µ) with ρ > 0 and (uα, yα) be the solution of (Pα). Then it holds
uαρ → uα in L2(Ω) and yαρ → yα in H1

0 (Ω) ∩ C(Ω̄) for ρ→∞.

With a similar argument we can establish the next lemma. Again the proof can be
found in [59, Lemma 3.7].

Lemma 6.4.7. Under the same assumptions as in Lemma 6.4.6, it holds

lim
ρ→∞

(µαρ , ψ − yαρ )L2(Ω) = 0.

If we now combine these two results we can show that our algorithm produces
infinitely many successful steps. This will be crucial in the convergence analysis in
the next section.
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Lemma 6.4.8. Algorithm 6.6 makes infinitely many successful steps.

Proof. We assume that the algorithm produces only finitely many successful steps.
Then there is an index m such that all steps k > m are not successful. Due to the
definition of the algorithm we obtain µ̄k = µ̄m for all k > m and Rk > τRm > 0 as
well as ρk →∞ and αk = αm. This now yields a contradiction as with Lemma 6.4.6
and 6.4.7 we obtain

0 < lim sup
k→∞

Rk = lim
k→∞

1

αk

(
‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)L2(Ω)|

)
= 0.

Please note that αk is constant for k > m since its value is only decreased in a
successful step.

6.5 Convergence Results

In this section we want to show convergence of Algorithm 6.6. Let us recall that
the sequence (u+

n , y
+
n , p

+
n , λ

+
n ) denotes the solution of the n-th successful iteration

of Algorithm 6.6 with µ+
n being the corresponding approximation of the Lagrange

multiplier. We start with proving L1-boundedness of the Lagrange multipliers µ+
n ,

which is accomplished in Lemma 6.5.2 below. To prove this result we need an
auxiliary estimate first.

Lemma 6.5.1. Let y+
n , µ

+
n be given as defined in Algorithm 6.6. Then it holds

1

α+
n

∣∣(µ+
n , ψ − y+

n )L2(Ω)

∣∣
≤ τn−1

α+
1

(∥∥(y+
1 − ψ)+

∥∥
C(Ω̄)

+
∥∥µ+

1

∥∥
L2(Ω)

∥∥(ψ − y+
1 )+

∥∥
L2(Ω)

)
.

(6.11)

Proof. Using the definition for a successful step we obtain

1

α+
n
|(µ+

n , ψ − y+
n )L2(Ω)|

≤ τ

α+
n−1

(∥∥(y+
n−1 − ψ)+

∥∥
C(Ω̄)

+
∣∣(µ+

n−1, ψ − y+
n−1)L2(Ω)

∣∣)
− 1

α+
n

∥∥(y+
n − ψ)+

∥∥
C(Ω̄)

≤ τ

α+
n−1

∥∥(y+
n−1 − ψ)+

∥∥
C(Ω̄)

+ τ

(
1

α+
n−1

∣∣(µ+
n−1, ψ − y+

n−1)L2(Ω)

∣∣) .
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We now use that the (n− 1)-th step was also successful and obtain

1

α+
n
|(µ+

n , ψ − y+
n )L2(Ω)|

≤ τ

α+
n−1

∥∥(y+
n−1 − ψ)+

∥∥
C(Ω̄)

+ τ

(
τ

α+
n−2

(∥∥(y+
n−2 − ψ)+

∥∥
C(Ω̄)

+
∣∣(µ+

n−2, ψ − y+
n−2)L2(Ω)

∣∣)
− 1

α+
n−1

∥∥(y+
n−1 − ψ)+

∥∥
C(Ω̄)

)
≤ τ2

α+
n−2

(∥∥(y+
n−2 − ψ)+

∥∥
C(Ω̄)

+
∣∣(µ+

n−2, ψ − y+
n−2)L2(Ω)

∣∣) .
The rest now follows by induction and a standard estimate.

We want to point out that the right hand side of (6.11) goes to 0 as n→∞. This
will be crucial in the following convergence analysis and is a result of our update
rule. Let us now show the L1-boundedness of the Lagrange multipliers (µ+

n ).

Lemma 6.5.2. Let Assumption 6.2.5 be fulfilled. Then Algorithm 6.6 generates an
infinite sequence of bounded iterates, i.e., there is a constant C > 0 such that for all n it
holds ∥∥y+

n

∥∥
H1(Ω)

+
∥∥y+
n

∥∥
C(Ω̄)

+
∥∥u+

n

∥∥
L2(Ω)

+
∥∥p+

n

∥∥
W 1,s(Ω)

+
∥∥µ+

n

∥∥
L1(Ω)

≤ C.

Proof. Let (û, ŷ) be the Slater point given by Assumption 6.2.5, i.e., there exists σ > 0
such that ŷ + σ ≤ ψ. Then we can estimate

σ||µ+
n ||L1(Ω) =

∫
Ω

σµ+
n dx ≤

∫
Ω

µ+
n (ψ − ŷ) dx =

∫
Ω

µ+
n (ψ − y+

n + y+
n − ŷ) dx

=

∫
Ω

µ+
n (ψ − y+

n )︸ ︷︷ ︸
(I)

dx+

∫
Ω

µ+
n (y+

n − ŷ) dx︸ ︷︷ ︸
(II)

.

The first part (I) can be estimated with Lemma 6.5.1 yielding

(I) ≤
∣∣(µ+

n , ψ − y+
n )L2(Ω)

∣∣ ≤ α+
n

α+
1

τn−1
(∥∥(y+

1 − ψ)+

∥∥
C(Ω̄)

+
∥∥µ+

1

∥∥
L2(Ω)

∥∥(ψ − y+
1 )+

∥∥
L2(Ω)

)
≤ cτn−1.

(6.12)

Please note that we used the monotonicity of (αn)n. Before we estimate part (II),
recall that we have the inequality

(λ+
n , u− u+

n )L2(Ω) ≤ ‖u‖L1(Ω) − ‖u+
n ‖L1(Ω)
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for every u ∈ L1(Ω). By definition we obtain that u ∈ Uad implies u ∈ L∞(Ω). Now
the second part (II) can be estimated using Young’s Inequality as follows∫

Ω

µ+
n (y+

n − ŷ) dx = 〈A∗p+
n − (y+

n − yd), y+
n − ŷ〉

= 〈p+
n , A(y+

n − ŷ)〉 − (y+
n − yd, y+

n − ŷ)L2(Ω)

= (p+
n , u

+
n − û)L2(Ω) − (y+

n − yd, y+
n − ŷ)L2(Ω)

≤ −(α+
n u

+
n , u

+
n − û)L2(Ω) − (y+

n − yd, y+
n − ŷ)L2(Ω) − β(λ+

n , u
+
n − û)L2(Ω)

≤ c.
(6.13)

By our assumption we know that u+
n and y+

n are uniformly bounded and the subgra-
dient λ+

n ∈ L∞(Ω) is uniformly bounded by construction.
Combining (6.12) and (6.13) yields

‖µ+
n ‖L1(Ω) ≤ c

τn−1

σ
+
c

σ
.

Since τ ∈ (0, 1) by assumption, the right-hand side is bounded. The result now
follows from Theorem 6.4.3.

Theorem 6.5.3. As n→∞ we have for the sequence (u+
n , y

+
n ) generated by Algorithm

6.6

(u+
n , y

+
n )→ (ū, ȳ), in L2(Ω)×

(
H1

0 (Ω) ∩ C(Ω̄)
)
,

where ū denotes the unique solution of (P ) with associated state ȳ.

Proof. Since the algorithm yields an infinite number of successful steps, see Lemma
6.4.8 we get

lim
n→∞

R+
n = lim

n→∞
1

α+
n

(∥∥(y+
n − ψ)+

∥∥
C(Ω̄)

+
∣∣(µ+

n , ψ − y+
n )L2(Ω)

∣∣) = 0, (6.14)

with α+
n → 0. Let (uα

+
n , yα

+
n , pα

+
n , λα

+
n , µα

+
n ) be a solution of (6.4) for α := α+

n then
we obtain from Lemma 6.4.4 the following inequality

1

α+
n

∥∥∥yα+
n − y+

n

∥∥∥2

L2(Ω)
+
∥∥∥uα+

n − u+
n

∥∥∥2

L2(Ω)

≤ 1

α+
n

(
〈µα+

n , y+
n − ψ〉+

∣∣(µ+
n , ψ − y+

n )L2(Ω)

∣∣)
≤ 1

α+
n

(∥∥∥µα+
n

∥∥∥
M(Ω̄)

∥∥(y+
n − ψ)+

∥∥
C(Ω̄)

+
∣∣(µ+

n , ψ − y+
n )L2(Ω)

∣∣)
≤ c

α+
n

(∥∥(y+
n − ψ)+

∥∥
C(Ω̄)

+
∣∣(µ+

n , ψ − y+
n )L2(Ω)

∣∣) .
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Note that in the last step we used Lemma 6.3.4. With (6.14) from above, we conclude

lim
n→∞

1

α+
n

∥∥∥yα+
n − y+

n

∥∥∥2

L2(Ω)
+
∥∥∥uα+

n − u+
n

∥∥∥2

L2(Ω)
= 0. (6.15)

As α+
n → 0 with n → ∞ we obtain by Theorem 6.3.1 that uα

+
n → ū. Triangular

inequality now reveals

‖u+
n − ū‖L2(Ω) ≤ ‖u+

n − uα
+
n ‖L2(Ω) + ‖uα+

n − ū‖L2(Ω) → 0.

Convergence of y+
n → ȳ follows from Theorem 6.2.2 which finishes the proof.

Remark 6.5.4. For the sequence (y+
n ) generated by Algorithm 6.6 we obtain

1

α+
n
‖y+
n − ȳ‖2L2(Ω) → 0,

which is similar to the results obtained for a Tikhonov regularization without state
constraints, see [97].

Proof. We split the error to obtain with some c > 0 independent from n

1

α+
n
‖y+
n − ȳ‖2L2(Ω) ≤

c

α+
n
‖y+
n − yα

+
n ‖2L2(Ω) +

c

α+
n
‖yα+

n − ȳ‖2L2(Ω).

The results is now an immediate consequence of (6.15) and Theorem 6.3.1.

Since Lagrange multipliers are in general not uniquely given, we cannot expect
weak or even strong convergence of (p+

n )n or (µ+
n )n in their respective spaces. Let us

therefore now assume that the adjoint state p̄ and the multiplier corresponding to
the state constraint µ̄ are unique. Then following [59, Theorem 3.12, Corollary 3.12]
we get the following two results.

Lemma 6.5.5. Let s ∈ (1, N
N−1 ) such that the embedding W 1,s(Ω)→ L2(Ω) is compact.

Let subsequences (u+
nj , y

+
nj , p

+
nj , λ

+
nj , µ

+
n,j)j of (u+

n , y
+
n , p

+
n , λ

+
n , µ

+
n )n be given such that

µnj ⇀∗ µ̄ in M(Ω̄) and p+
nj ⇀ p̄ in W 1,s(Ω). Then (ū, ȳ, p̄, λ̄, µ̄) with λ̄(x) :=

P[−1,1](−β−1p̄(x)) satisfy the optimality system (6.3a)-(6.3d) of (P ).

Proof. Most of the proof can be found in [59, Theorem 3.12]. We only have to take
care about the additional subgradient λ+

nj and show that the variational inequality
(6.3c) is satisfied. By Lemma 6.3.3 we obtain

λ+
nj (x) = P[−1,1]

(
− 1

β
(p+
nj (x) + α+

nju
+
nj (x))

)
.

We now use the compact embedding W 1,s(Ω)→ L2(Ω) to obtain p+
nj → p̄ in L2(Ω)

and hence λ+
nj → λ̄ in L2(Ω). Note that we also used the boundedness of u+

nj and
αnj → 0. Now we use the strong convergence of the control u+

nj → ū in L2(Ω) to
obtain

(p+
nj + α+

nju
+
nj + βλ+

nj , u− u+
nj )L2(Ω) → (p̄+ βλ̄, u− ū) ≥ 0,

which finishes the proof.
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6.5 Convergence Results

A direct consequence is the following result.

Theorem 6.5.6. Let (ū, ȳ, p̄, λ̄, µ̄) satisfy the KKT-system (6.3). Let us assume that (p̄, µ̄)

are uniquely given. Pick s ∈
(

1, N
N−1

)
such that the embedding W 1,s(Ω) → L2(Ω) is

compact. Then λ̄ is also unique and it holds

p+
n ⇀ p̄ in W 1,s(Ω),

µ+
n
∗
⇀ µ̄ inM(Ω̄),

λ+
n → λ̄ in L2(Ω).

Let us note that finding sufficient conditions such that the multiplier are unique is
a non-trivial task. For the optimal control of a semilinear partial differential equation
sufficient conditions are established in [62]. There the active sets with respect to the
state constraints and the control constraints have to be separated.
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CHAPTER 7

Numerical Implementation of the ALM

In this chapter we want to introduce an active-set method for the solution of the
subproblems arising in the augmented Lagrange method stated in Algorithm 6.6. The
subproblem is given as

min
u∈Uad

1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω) +

α

2
||u||2L2(Ω) + P (y, ρ, µ). (Pα,ρ,µ)

The necessary optimality conditions obtained in Theorem 6.4.2 are not suited to
derive a numerical method as they only introduce a multiplier for the state constraints.
We follow [89] and also introduce multipliers for the bilateral inequality constraints
for the control. Hence the optimal solution (ū, ȳ, p̄) ∈ L2(Ω) × H1

0 (Ω) × H1
0 (Ω) of

(Pα,ρ,µ) is characterized by the existence of λ, λa, λb ∈ L2(Ω) such that{
Aȳ = ū in Ω,

ȳ = 0 on ∂Ω,
(7.1a)

{
A∗p̄ = ȳ − yd + µ̄ in Ω,

p̄ = 0 on ∂Ω,
(7.1b)

p̄+ αū+ λ+ λb − λa = 0, (7.1c)

λa ≥ 0, ū− ua ≥ 0, λa(ū− ua) = 0, (7.1d)

λb ≥ 0, ub − ū ≥ 0, λb(ub − ū) = 0, (7.1e)
λ = β on {x ∈ Ω : ū > 0},
|λ| ≤ β on {x ∈ Ω : ū = 0},
λ = −β on {x ∈ Ω : ū < 0},

(7.1f)

µ̄ := (µ+ ρ(ȳ − ψ))+ . (7.1g)

Here (7.1a) is the state equation, (7.1b) characterizes the adjoint state, (7.1d)-
(7.1e) define the multipliers for the control constraints and (7.1f) reflects the fact
that λ ∈ ∂β‖ū‖L1(Ω).
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In the following we want to formulate our active-set method and present several
numerical examples for Algorithm 6.6. The implementation was done with FEniCS
[64] using the DOLFIN [65] Python interface.

7.1 Active-Set Method

The arising subproblems (Pα,ρ,µ) are solved by combining two methods. The first
method is the active-set method presented by Stadler [89], where optimal control
problems of type (Pα,ρ,µ) were solved, but without augmented state constraints. The
second is the method established by Ito and Kunisch [51] that presented an active-set
method for optimal control problems with state constraints but without an L1-cost
term.

In the following uk, yk, pk and λk are iterates generated by the active-set method,
which is described below.

Like in [89] we set
ξk := λk − λak + λbk,

where λk denotes the subdifferential of β ‖ūk‖L1(Ω), λ
a
k the multiplier to the lower

control constraints ua − uk ≤ 0 and λbk the multiplier corresponding to the upper
control constraint uk − ub ≤ 0. Then (7.1c) can be written as

pk + αuk + ξk = 0.

Note that if (uk, yk, pk, λk) are a solution of (Pα,ρ,µ) we can reconstruct the multipliers
via the formula

λk = min(β,max(−β, ξk)),

λak = −min(0, ξk + β),

λbk = max(0, ξk − β).

(7.2)

Now define the following sets, see also Lemma 6.3.3

Yk+ = {x ∈ Ω : (µ+ ρ(yk − ψ)) > 0},
Yk− = Ω \ Yk+,
Aka = {x ∈ Ω : pk ≥ β − αua},
Ak0 = {x ∈ Ω : |pk| < β},
Akb = {x ∈ Ω : pk ≤ −αub − β},
Ik− = {x ∈ Ω : β ≤ pk < β − αua},
Ik+ = {x ∈ Ω : −αub − β < pk ≤ −β}.

The sets Aka, Ak0 and Akb are called active sets, as on Aka we obtain uk = ua, on Akb we
get uk = ub and on Ak0 we have uk = 0. Obviously, the five sets Aka, Ak0 , Akb , Ik− and
Ik+ are disjoint and their union is Ω. The sets Yk− and Yk+ are motivated by (7.1g).

The resulting subproblem of the augmented Lagrange method (Pα,ρ,µ) can now
be solved by the following algorithm, which is an active-set method.
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7.1 Active-Set Method

Algorithm 7.7. Choose initial data u0, p0 and parameters α, ρ, compute the sets Y0
−,

Y0
+, A0

a, A0
0, A0

b , I0
−, I0

+ .

1. Solve for (uk+1, yk+1, pk+1, ξk+1) satisfying

Ayk+1 − uk+1 = 0,

−A∗pk+1 + yk+1 − yd + µk+1 = 0,

pk+1 + αuk+1 + ξk+1 = 0,

(7.3a)

(1− χAka − χAkb − χAk0 )ξk+1 + (1− χIk− − χIk+)uk+1

= χAkaua + χAkbub − χIk−β + χIk+β,
(7.3b)

µk+1 =

{
0 on Yk−,
µ+ ρ(yk+1 − ψ) on Yk+.

(7.3c)

2. Compute the sets Yk+1
− ,Yk+1

+ ,Ak+1
a ,Ak+1

0 ,Ak+1
b , Ik+1

− , Ik+1
+ .

3. If the following equalities hold: Ak+1
a = Aka, Ak+1

0 = Ak0 , Ak+1
b = Akb , Ik+1

− =

Ik−, Ik+1
+ = Ik+, Yk+1

− = Yk− and Yk+1
+ = Yk+ then go step 4. Otherwise set

k = k + 1 and go to step 2.

4. Compute the subdifferential λk+1 := min (β,max(−β, ξk+1)) and stop the algo-
rithm.

Note that (7.3b) can be equivalently written as

uk+1 =


ua on Aka,
0 on Ak0 ,
ub on Akb ,

ξk+1 =

{
−β on Ik−,
β on Ik+,

but it is more accessible in this form.
The computation of the L1-subgradient follows from a reconstruction formula, [89,

Chapter 2]. Further, the termination criterion yields a solution of the augmented
Lagrange subproblem (Pα,ρ,µ) .
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Lemma 7.1.1. If the following equalities hold

Ak+1
a = Aka, Ak+1

0 = Ak0 , Ak+1
b = Akb , Ik+1

− = Ik−,
Ik+1

+ = Ik+, Yk+1
− = Yk−, Yk+1

+ = Yk+,

then (uk+1, yk+1, pk+1, µk+1, λk+1) is a solution to (6.6) with α, µ and β fixed.

Proof. Since for given sets the solution to (7.3) is unique we have

(uk+1, yk+1, pk+1) = (uk, yk, pk).

By definition of the sets Yk+1
− and Yk+1

+ we get µk+1 = (µ + ρ(yk+1 − ψ))+. Fur-
thermore we know, that (uk+1, yk+1, pk+1, λk+1) satisfy (7.1d)-(7.1f) if and only if it
satisfies the nonsmooth equation, see [89, Lemma 2.2]

uk+1 −max (0, uk+1 + c(ξk+1 − β))−min (0, uk+1 + c(ξk+1 + β))

+ max (0, (uk+1 − ub) + c(ξk+1 − β)) + min (0, (uk+1 − ua) + c(ξk+1 + β)) = 0,

where c > 0 arbitrary. Choosing c = α−1 and exploiting ξk+1 = −pk+1 − αuk+1 we
get the equivalent formulation

uk+1 − α−1 max(0,−pk+1 − β)− α−1 min(0,−pk+1 + β)

+ α−1 max(0,−pk+1 − β − αub) + α−1 min(0,−pk+1 + β − αua) = 0.
(7.4)

Let us show that (7.4) holds on the set Ak+1
a . A straightforward calculation yields

α−1 max(0,−pk+1 − β) = 0,

α−1 min(0,−pk+1 + β) = α−1(−pk+1 + β),

α−1 max(0,−pk+1 − β − αub) = 0,

α−1 min(0,−pk+1 + β − αua) = α−1(−pk+1 + β − αua).

Hence (7.4) holds on the Ak+1
a . With similar arguments it can be easily shown that

(7.4) holds on the sets Ak+1
b and Ak+1

0 . Let us now show it for the set Ik−. On this set
we know by (7.3b) that ξk+1 = −β and the adjoint state satisfies β ≤ pk+1 < β−αua.
Furthermore we know from (7.3a) that

uk+1 =
1

α
(−pk+1 − ζk+1) =

1

α
(−pk+1 + β).

A short calculation reveals

α−1 max(0,−pk+1 − β) = 0,

α−1 min(0,−pk+1 + β) = α−1(−pk+1 + β),

α−1 max(0,−pk+1 − β − αub) = 0,

α−1 min(0,−pk+1 + β − αua) = 0,
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7.2 Numerical Results

which shows that (7.4) holds on Ik−. Again with a similar argument one can show
that (7.4) also holds on Ik+. Recall that

Ω = Ak+1
a ∪ Ak+1

b ∪ Ak+1
0 ∪ Ik− ∪ Ik+.

Consequently the functions (uk+1, yk+1, pk+1, µk+1, λk+1) satisfy (7.4), where the
multipliers are reconstructed using (7.2).

However, high values of the penalty parameter ρ paired with small values of the
Tikhonov parameter α may evoke bad stability during solution of the subproblem. To
counteract this aspect we introduce a so called intermediate step. Here, Step 3 and
Step 4 of Algorithm 6.6 are extended for a third alternative. If the current iterates of
the k-th iteration do not satisfy the update rule but sufficiently satisfy the feasibility
and complementarity condition, i.e.

Rk ≥ τR+
n−1 and ‖(ȳk − ψ)+‖C(Ω̄) +

∣∣(µ̄k, ψ − ȳk)L2(Ω)

∣∣ < εI ,

with εI > 0, we define this step to be almost successful and set

αk+1 := ωαk,

µk+1 := µ̄k,

(u+
n , y

+
n , p

+
n , λ

+
n , µ

+
k , α

+
k ) := (ūk, ȳk, p̄k, λ̄k, µ̄k, αk).

Such a step is called an intermediate step.
As a termination criterion we check the optimality conditions of the current iterate

(u+
n , y

+
n , p

+
n , µ

+
n , λ

+
n ) i.e. we stop the algorithm if the inequality∥∥u+
n − PUad

(
u+
n − (p+

n + βλ+
n )
)∥∥
L2(Ω)

+
∥∥(y+

n − ψ)+

∥∥
C(Ω̄)

+
∣∣(µ+

n , y
+
n − ψ)L2(Ω)

∣∣ ≤ ε
is satisfied. In order to be consistent we set εI < ε.

As the active-set methods are related to the class of semi-smooth Newton methods
we cannot expect a global convergence behavior of the method described above.
Furthermore, the problem becomes badly conditioned if α → 0 or ρ → ∞. Due to
the intermediate step we expect ρ to be bounded.

7.2 Numerical Results

Let us present some numerical results to support our method. We apply our method
for problems of the following form:

min J(y, u) :=
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω)
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subject to

Ay = u+ f in Ω,

y = 0 on ∂Ω,

y ≤ ψ in Ω,

ua ≤ u ≤ ub in Ω.

The additional variable f ∈ L2(Ω) allows us to construct test problems with known
solutions. Note that this problem is of form (P ).

7.2.1 Bang-Bang-Off Solution in One Space Dimension

We first consider the one-dimensional case and define Ω = (−1, 1), ua = −1, ub = 1
and β = 1. Furthermore set

ȳ(x) :=


28 + 108 · x+ 144 · x2 + 64 · x3 if x ∈ [−1,− 3

4 ],

1 if x ∈ [− 3
4 ,

3
4 ],

28− 108 · x+ 144 · x2 − 64 · x3 if x ∈ [ 3
4 , 1],

p̄(x) := −2 cos

(
3π

2
x

)
,

ū(x) :=


0 if x ∈ [−1,− 8

9 ] ∪ [− 4
9 ,− 2

9 ] ∪ [ 2
9 ,

4
9 ] ∪ [ 8

9 , 1],

1 if x ∈ (− 2
9 ,

2
9 ),

−1 if x ∈ (− 8
9 ,− 4

9 ) ∪ ( 4
9 ,

8
9 ),

µ̄(x) :=

Exp
(
− 1

1−( 4
3x)

2

)
if x ∈ [− 3

4 ,
3
4 ],

0 else,

ψ(x) := 1.

Some calculations show that ȳ, p̄ ∈ C2(Ω) and ȳ = p̄ = 0 on ∂Ω. By construction we
obtain ū(x) ∈ {−1, 0, 1} for a.e. x ∈ Ω. In order to satisfy the optimality conditions
we now set

f(x) := −∆ȳ(x)− ū(x),

yd(x) := ∆p̄(x) + ȳ(x) + µ̄(x).

The functions (ū, ȳ, p̄, µ̄) satisfy the KKT conditions defined in Theorem 6.3.2 with
a suitable modification for the forward equation. We apply our algorithm with the
following set of parameters

θ = 5, ω = 0.75, τ = 0.8, ε = 10−6, εI = 5 · 10−7.

The interval Ω is divided into 106 equidistant elements. The algorithm stops after a
total of 40 iterations, which splits in 13 successful, 19 intermediate and 8 unsuccessful
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7.2 Numerical Results

iterations with an average of 5.25 inner iterations. The parameters were initialized
with α := 1 and ρ := 100 and the final parameters are α = 0.7532 ≈ 10−4 and
ρ = 100 · 58 ≈ 3.9 · 107.

As we have an exact solution we can compute convergence rates. We plot the
L2-error ‖u+

k − ū‖L2(Ω) over the regularization parameter αk. Note that we only plot
successful and intermediate steps. As expected we see that the algorithm produces
only intermediate steps after some given time. The error can be found in Figure 7.1
and plots of the computed solution can be seen in Figure 7.2.

Remark 7.2.1. Analysing the error ‖u+
k − ū‖L2(Ω) we see that the error behaves like

‖u+
k − ū‖L2(Ω) = O

(
(α+
k )

1
2

)
. (7.5)

We want to mention that the exact control ū satisfies the following regularity assumption
meas{x ∈ Ω :

∣∣|p̄(x)| − β
∣∣ < ε} ≤ cε, for all ε > 0 with some κ > 0, which resembles

Assumption (ASC). In fact we will use this regularity assumption in Chapter 9 to prove
regularization error estimates for a Tikhonov regularization.
Furthermore we used the similar Assumption (ASC) to prove convergence rates for the
iterative Bregman regularization method, see Chapter 3. However, it is an open problem
to prove convergence rates for Algorithm 6.6 presented in Chapter 6.

10−4 10−3 10−2 10−1 100

10−2

10−1

regularization parameter α+
k

er
ro
r‖
u

+ k
−
ū
‖ L

2
(Ω

)

Error Plot Example 7.2.1

successful step
intermediate step

O((α+
k )

1
2 )

Figure 7.1: Error ‖u+
k − ū‖L2(Ω) over the regularization parameter α+

k for Example 7.2.1.
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(d) Computed adjoint state p

Figure 7.2: Computed results for Example 7.2.1.

7.2.2 Bang-Bang-Off Solution in Two Space Dimensions

We set ua = −1, ub = 1. Let Ω be the circle around 0 with radius 2. We now define
the following functions. To shorten our notation we set r := r(x, y) :=

√
x2 + y2.

ȳ(x, y) :=

{
1 if r < 1,

32− 120 · r + 180 · r2 − 130 · r3 + 45 · r4 − 6 · r5 if r ≥ 1,

p̄(x, y) := sin(x) · sin(y) ·
(

1− 5

4
r3 +

15

16
r4 − 3

16
r5

)
,

ū(x, y) := −Sign(p̄(x, y)),

µ̄(x, y) :=

{
Exp

(
− 1

1−r2

)
if r < 1,

0 if r ≥ 1,

ψ(x, y) := 1.

Some calculation show that µ̄, p̄ ∈ C2(Ω̄) and µ̄ ∈ C(Ω̄). Furthermore ȳ = p̄ = 0 on
∂Ω. We now set

f(x, y) := −∆ȳ(x, y)− ū(x, y),

yd(x, y) := ∆p̄(x, y) + ȳ(x, y) + µ̄(x, y).
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7.2 Numerical Results

(a) Computed control for β = 0.05 (b) Computed control for β = 0.1

(c) Computed control for β = 0.2 (d) Computed control for β = 1

Figure 7.3: Computed discrete control for Example 7.2.2 for different values of β.

One now can check that for β = 0 the functions (ū, ȳ, p̄, µ̄) satisfy the KKT
conditions defined in Theorem 6.3.2 leading to a bang-bang solution. For β 6= 0
we expect the optimal solution to exhibit a bang-bang-off structure. Here no exact
solution is known. We computed this problem for different values of β on a regular
triangular grid with approximately 1.8 · 105 degrees of freedom. The parameters used
for this computation are τ = 0.8, ω = 0.75, θ = 10, ε = 10−6 and εI = 5 · 10−7. We
started with α = 0.1 and ρ = 100. Additional information for the calculations can be
found in Table 7.1 while the computed controls can be seen in Figure 7.3.

As expected by Theorem 6.2.8 we observe that the solution becomes more sparse
as β becomes large. Taking a look at the final values of the regularization parameter
α and penalization parameter ρ we see, that they are of the same order of magnitude
for all β. However for bigger β more successful steps are obtained. The number of un-
successful steps is nearly constant. This supports the introduction of the intermediate
step, as this controls the penalization parameter and stabilizes the algorithm.
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(a) Computed control u (b) Computed state y

(c) Computed adjoint state p (d) Computed multiplier µ

Figure 7.4: Computed results for Example 7.2.3. The range of µ is given by µ(x) ∈ [0, 40].

7.2.3 Bang-Bang-Off Solution on Unit Square

For the next example we set Ω = (0, 1)2, ua = −1, ub = 1 and β = 10−3. Furthermore
τ = 0.8, ω = 0.75 and θ = 10. Now define

ψ(x, y) := 0.01,

yd(x, y) :=
1

2π
sin(πx) sin(πy).

Note that here no exact solution is available. If the state constraint and the L1-term
are neglected, the exact solution is given by

ȳ(x, y) := yd(x, y),

ū(x, y) := −∆yd(x, y).

This example is taken from Subsection 5.2.2 and is an example of an optimal control
problem where the desired state is reachable and the source condition ū = S∗w with
an element w ∈ L2(Ω) is satisfied if the state constraints are not present.
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7.2 Numerical Results

β final α final ρ successful
steps

intermediate
steps

not
successful

steps

average
inner

iterations

0.05 2.38 · 10−5 109 15 14 7 2.9

0.1 2.38 · 10−5 109 16 13 7 3.1

0.2 3.17 · 10−5 109 18 10 7 3.0

1 5.6 · 10−5 1010 20 6 8 3.5

Table 7.1: Additional information for the computation of Example 7.2.2 for different β.

By adding the additional state constraints y ≤ 0.01 we completely changed the
structure of the solution.

We computed the solution on a regular triangular grid with 1.6 · 105 degrees of
freedom, ε = 10−6 and εI = 5 · 10−7. As starting values we set α = 0.1 and ρ = 100.
The algorithm stopped after 8 successful, 25 intermediate and 9 unsuccessful steps
with the final values α = 0.1 · 0.7533 ≈ 7.5 · 10−6 and ρ = 100 · 59 ≈ 2.0 · 108. The
computed results can be seen in Figure 7.4.
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Nonlinear State Equation





CHAPTER 8

Tikhonov regularization

In all of the previous chapters we considered the minimization problem

Minimize
1

2
‖Su− z‖2Y

such that ua ≤ u ≤ ub a.e. in Ω,

with a linear operator S. In Chapter 5 and 6 we took S as the solution operator of
the linear elliptic partial differential equation −∆y = u with homogeneous Dirichlet
boundary data. Although many physical problems can be modelled with this equation,
in some cases a more sophisticated partial differential equation is needed. In this
chapter we want to consider a semi-linear partial differential equation.

Optimal control of semi-linear partial differential equations has been intensively
studied in the literature, see [7, 13, 15, 16, 19, 20, 93] and the references therein.
As we show in this chapter, the results obtained for linear equations can be carried
over using similar techniques while heavily relying on the second-order condition of
Casas [13].

The work on regularization of optimal control problems is certainly connected to
regularization of nonlinear inverse problems: If no control constraints are present,
i.e., Uad = L2(Ω), the problem (P ) described below is a heat source identification
problem, which amounts to a nonlinear, ill-posed operator equation. Tikhonov regu-
larization of nonlinear equations is studied, e.g., in the monograph [33]. Necessary
conditions for convergence rates for non-linear problems can be found in [71]. Regu-
larization of variational inequalities was studied in [63]. In some sense, our results
generalize results from inverse problems theory: If no control constraints are present,
our regularity conditions reduce to well-known source conditions.

First, we establish the model problem in Section 8.1 and state some preliminary
results in Section 8.2, including a sufficient second-order condition. In this section
we also extend the regularity assumption (ASC) to the non-linear case. This modified
regularity assumption together with the second order condition is then used in
Section 8.3 to derive regularization error estimates. It turns out that our regularity
assumption is not only sufficient but also necessary for obtaining higher convergence
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rates. This fact is established in Section 8.4. Numerical results are presented in
Section 8.5.

The results of this chapter can be found in condensed form in the publication [78].

8.1 Problem Setting

Throughout this section define the problem (P ) to be the following optimal control
problem

Minimize J(u) =
1

2
‖yu − yd‖2L2(Ω)

such that ua ≤ u ≤ ub a.e. in Ω,
(P )

where yu is the solution of the Dirichlet problem

Ay + f(x, y) = u in Ω,

y = 0 on ∂Ω.
(8.1)

Here, Ω ⊆ Rn, n ≤ 3, is a bounded Lipschitz domain. The equation (8.1) is a
semilinear elliptic equation with the linear elliptic operator A defined by

(Ay)(x) =

n∑
i,j=1

∂xj [aij(x)∂xiy(x)], x ∈ Ω.

Please note that the non-linearity f depends explicitly on the spatial variable x.
We will suppress this dependency from now on, unless it is explicitly needed. The
standing assumptions on the data of the problem will be made precise below.

Since the cost function J only implicitly depends on u through the solution y of
the state equation, the control problem is in general not coercive with respect to u in
suitable spaces. Optimal controls of (P ) may exhibit a bang-bang structure where
the control constraints are active on the whole domain, i.e., ū(x) ∈ {ua, ub} almost
everywhere. In addition, due to the nonlinear constraint (8.1) the resulting optimal
control problem is non-convex. This makes the analysis and numerical solution
of this problem challenging. To address this issue, we investigate the Tikhonov
regularization of the problem given by

Minimize Jα(u) :=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to the semilinear equation and the control constraints. Here, α > 0 is the
Tikhonov regularization parameter. We are interested in convergence of solutions or
stationary points uα of the regularized problems for α→ 0. Under suitable conditions,
we prove in Section 8.3 convergence rates of the type

‖uα − ū‖L2(Ω) = O
(
αd/2

)
for α→ 0,
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see Theorem 8.3.8. This is the main result of the chapter, and it is a convergence rate
result for regularization of optimal control problems subject to nonlinear partial dif-
ferential equations. In addition, we also derive necessary conditions for convergence
rates. As it turns out, a certain source condition is necessary to obtain convergence
rates, see Section 8.4.

In the subsequent analysis, we will make use of the second-order conditions
developed by Casas [13]. They require positive definiteness of the second-derivative
J ′′ of the reduced cost functional with respect to solutions of linearized equations,
see (SOSC) below. A second ingredient is a condition on the optimal control and
adjoint state of the original problem, very similar to (ASC).

We used this condition to prove convergence rates for the iterative Bregman
method in Chapter 3. However, there we considered a convex problem. Furthermore
the regularity assumption (ASC) was used earlier for convex problems to prove
convergence rates for Tikhonov regularization in [97]. In the following we want to
continue this investigations and generalize these assumption to the non-convex case.

8.2 Assumptions and Preliminary Results

In the sequel, we will make use of the following assumptions, see [13]. To shorten
our notation, we will denote the partial derivatives ∂

∂yf and ∂2

∂y2 f by f ′ and f ′′,
respectively.

(A1) We assume that f : Ω×R→ R is a Carathéodory function, i.e. f(·, y) is measur-
able for all y ∈ R and f(x, ·) is continuous for almost all x ∈ R. Furthermore f
is of class C2 with respect to the second variable and satisfies f(·, 0) ∈ Lp̄(Ω),
with p̄ ≥ n

2 , and
f ′(x, y) ≥ 0 ∀y ∈ R, for a.a. x ∈ Ω.

For all M > 0 there exists a constant Cf,M > 0 such that

|f ′(x, y)|+ |f ′′(x, y)| ≤ Cf,M for a.a. x ∈ Ω and |y| ≤M.

For every M > 0 and ε > 0 there exists δ > 0, depending on M and ε, such that

|f ′′(x, y2)− f ′′(x, y1)| ≤ ε

holds for all y1, y2 satisfying |y1|, |y2| ≤M , |y2 − y1| ≤ δ, and for a.a. x ∈ Ω.

(A2) The coefficients of the operator A satisfy aij ∈ C(Ω̄). There exists some λA > 0
such that

λA|ζ|2 ≤
n∑

i,j=1

aij(x)ζiζj ∀ζ ∈ Rn, for a.a. x ∈ Ω.

(A3) We assume yd ∈ Ls̄(Ω), with s̄ ≥ n
2 . Moreover, ua, ub ∈ L∞(Ω) with ua ≤ ub

a.e. on Ω.
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Chapter 8 Tikhonov regularization

Under these assumptions we can establish the following results. Existence and
uniqueness of solutions of the state equations are well-known, see, e.g. [13,15].

Theorem 8.2.1. For every u ∈ Ls(Ω) with s > n
2 , the state equation (8.1) has a unique

solution yu ∈ H1
0 (Ω) ∩ C(Ω̄). Moreover, the control-to-state mapping S : Ls(Ω) →

H1
0 (Ω) ∩ C(Ω̄) is of class C2 and globally Lipschitz continuous. For the special case

s = 2 we obtain a c > 0 such that

‖yu‖H1
0 (Ω) + ‖yu‖C(Ω̄) ≤ c‖u‖L2(Ω) ∀u ∈ L2(Ω),

holds.

For convenience, let us introduce the space Y := H1
0 (Ω) ∩ C(Ω̄) endowed with

the norm
‖y‖Y := ‖y‖H1

0 (Ω) + ‖y‖C(Ω̄)

and the set of admissible functions

Uad := {u ∈ L2(Ω) : ua ≤ u ≤ ub}.

Then Theorem 8.2.1 implies the existence of M > 0 such that

‖yu‖Y ≤M ∀u ∈ Uad. (8.2)

In addition, S maps weakly converging sequences to strongly converging sequences.
The proof can be found in [15, Thm. 2.1].

Lemma 8.2.2. Let (uk) be a sequence in Uad converging weakly in L2(Ω) to u. Then,
the associated sequence of states (yk) converges strongly in Y to yu.

8.2.1 Existence of Solutions

The existence of solutions of the optimal control problem can be proved by classical
arguments, see [93, Chapter 4].

Theorem 8.2.3. Problem (P ) has at least one solution ū with an associated state
ȳ ∈ H1

0 (Ω) ∩ C(Ω̄).

The derivatives of the control-to-state map S can be characterized by the following
systems. Let u ∈ Ls(Ω) be given with yu := S(u). Then for all v ∈ L2(Ω), z := S′(u)v
is the unique weak solution of

Az + f ′(yu)z = v in Ω,

z = 0 on ∂Ω.

In addition, let us introduce the adjoint state pu associated to u as the unique weak
solution of the adjoint equation

A∗p+ f ′(yu)p = yu − yd in Ω,

p = 0 on ∂Ω.
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Following [13] we know that there exists a constant c > 0 such that ‖pu‖L∞(Ω) ≤ c
forall u ∈ Uad. Furthermore by our assumptions on the semilinear equation, we know
that S′(u)v and S′(u)∗v belong to H1

0 (Ω) ∩ C(Ω̄) for all v ∈ Ls̄(Ω), see [13]. Using
these expressions, the derivatives of the cost functional J are given by the following
lemma, see [13].

Lemma 8.2.4. The functional J : L2(Ω)→ R is of class C2, and the first and second
derivative is given by

J ′(u)v =

∫
Ω

puv dx,

J ′′(u)(v1, v2) =

∫
Ω

(1− f ′′(x, yu)pu) zv1
zv2

dx,

where we used the notation zvi := S′(u)vi.

Let us recall the first-order necessary optimality conditions. We define for ε > 0

Bε(ū) := {u ∈ L2(Ω) : ‖u− ū‖L2(Ω) ≤ ε}.

Theorem 8.2.5. Let ū be a local solution of problem (P ), i.e. there exists an ε > 0 such
that

J(ū) ≤ J(u), ∀u ∈ Bε(ū) ∩ Uad.

Then there is ȳ := S(ū) ∈ Y and p̄ := pū ∈ H1
0 (Ω) such that the following system is

satisfied:
Aȳ + f(ȳ) = ū in Ω,

ȳ = 0 on ∂Ω,
(8.3)

A∗p̄+ f ′(ȳ)p̄ = ȳ − yd in Ω,

p̄ = 0 on ∂Ω,
(8.4)

J ′(ū)(u− ū) ≥ 0 ∀u ∈ Uad. (8.5)

The variational inequality (8.5) implies the following relations between ū and p̄

ū(x)


= ua(x) if p̄(x) > 0,

∈ [ua(x), ub(x)] if p̄(x) = 0,

= ub(x) if p̄(x) < 0.

(8.6)

Let us close this section with the following stability result regarding the solutions
of the adjoint equations, see also [13, Lemma 2.5].

Lemma 8.2.6. Let ū ∈ Uad be given with associated state ȳ and adjoint state p̄. Then
there is a constant c > 0 such that for all u ∈ Uad it holds

‖p̄− pu‖Y ≤ c‖ȳ − yu‖L2(Ω).
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Proof. Let us denote y := yu and p := pu. The functions p̄ and p satisfy

A∗p̄+ f ′(ȳ)p̄ = ȳ − yd,
A∗p+ f ′(y)p = y − yd.

Then the difference p− p̄ of the adjoint states satisfies

A∗(p− p̄) + f ′(y)(p− p̄) = y − ȳ + (f ′(ȳ)− f ′(y))p̄.

Due to the Lax-Milgram theorem, Stampacchia’s estimates [90, Théorème 4.2] and
[93], there is c > 0 such that

‖p− p̄‖Y ≤ c‖y − ȳ + (f ′(ȳ)− f ′(y))p̄‖L2(Ω).

Since p̄ is the solution of a linear elliptic equation with right-hand side in L2(Ω), we
know p̄ ∈ L∞(Ω). We now apply a Taylor expansion and obtain for almost all x ∈ Ω
a ζ(x) ∈ Ω such that

f ′(x, ȳ(x))− f ′(x, y(x)) = f ′′(x, ζ(x))(ȳ(x)− y(x)).

Using the assumptions on the function f we obtain by suppressing the spatial argu-
ment that

|f ′(ȳ(x))− f ′(y(x))| ≤ Cf,M |ȳ(x)− y(x)|
holds for almost all x ∈ Ω. Hence, we can estimate

‖(f ′(ȳ)− f ′(y))p̄‖L2(Ω) ≤ Cf,M‖ȳ − y‖L2(Ω)‖p̄‖L∞(Ω).

The claim now follows.

8.2.2 Second-Order Optimality Conditions

As already mentioned in the introduction of this chapter we know that the objective
functional ‖Su − z‖2Y is non-convex in general. Hence, the first order conditions
established in Theorem 8.2.5 are only necessary but not sufficient. In order to work
with stationary points we have to introduce a sufficient second order condition.

Before we start let us consider the optimization problem

min
x∈C

g(x) (8.7)

with C ⊂ X convex, X a Banach space and g : X → R Fréchet differentiable. Now
let x̄ be a local solution of (8.7), then it holds

g′(x̄)h ≥ 0, ∀h ∈ TC(x̄), (8.8)

see [8]. Here TC(x̄) denotes the tangent cone. In our case we set X = L2(Ω),
C = Uad, x = u and g(x) := J(u). A calculation reveals

TUad
(ū) =

{
v ∈ L2(Ω) : v(x)

{
≥ 0 if ū(x) = ua(x)

≤ 0 if ū(x) = ub(x)

}}
. (8.9)
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Let ū ∈ Uad. We now follow [8,13] and define the cone of critical directions

Cū :=

{
v ∈ L2(Ω) : v(x)

{
≥ 0 if ū(x) = ua(x)

≤ 0 if ū(x) = ub(x)

}
, J ′(ū)v = 0

}
.

A critical direction has to satisfy two properties. First, it has to be an element of the
tangent cone (8.9). Second it has to satisfy J ′(ū)v = 0. Note that by (8.8) it always
holds J ′(ū)v ≥ 0 if ū is a minimizer of (P ). Hence the critical cone represents those
directions for which the first order condition (8.8) does not provide information
about optimality of ū.

Using this cone the necessary second-order optimality conditions for a local
minimum ū of (P ) can be written in the form, see [8], [17]

J ′′(ū)v2 ≥ 0, ∀v ∈ Cū.

Note that we used that the set Uad is polyhedric in L2(Ω). Using Lemma 8.2.4 and
(8.6) it is easy to see that

Cū =

v ∈ L2(Ω) : v(x)


≥ 0 if ū(x) = ua(x)

≤ 0 if ū(x) = ub(x)

= 0 if p̄(x) 6= 0




holds. Hence, the cone of critical direction coincides with the cone used in [13]. The
main idea to prove the equality is to write

J ′(ū)v =

∫
Ω

p̄v dx =

∫
{p̄>0}

p̄v dx+

∫
{p̄<0}

p̄v dx.

One of our main goals is to handle solutions with a bang-bang structure, i.e.
p̄(x) 6= 0 almost everywhere in Ω. If ū is a bang-bang function we obtain Cū = {0},
hence the necessary second order condition does not provide any information. Thus,
a sufficient second order condition cannot be posed on the cone Cū. To overcome
this one can increase the set Cū.

Again, we follow [8, Section 3.3] and introduce the extended critical cone with
η ≥ 0

Bηū :=

{
v ∈ L2(Ω) : v(x)

{
≥ 0 if ū(x) = ua(x)

≤ 0 if ū(x) = ub(x)

}
, J ′(ū)v ≤ η‖v‖L2(Ω)

}
.

It is obvious that for η = 0 we obtain B0
ū = Cū. However, following Casas [13], we

define for τ > 0 the set

Cτū =

v ∈ L2(Ω) : v(x)


≥ 0 if ū(x) = ua(x)

≤ 0 if ū(x) = ub(x)

= 0 if |p̄(x)| > τ


 .
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Here one can show Cτū ⊆ Bηū with η =
√
|Ω|τ . Before we formulate the sufficient

second order condition for (P ) let us consider the regularized functional

JΛ(u) :=
1

2
‖Su− yd‖2L2(Ω) +

Λ

2
‖u‖2L2(Ω)

with Λ > 0 and its second-order conditions. The next result is taken from [13,
Theorem 2.3]. Recall that zv := S′(ū)v.

Theorem 8.2.7. Let ū ∈ Uad satisfy J ′Λ(ū)(u − ū) ≥ 0 for every u ∈ Uad. Then the
following are equivalent:

1) J ′′Λ(ū)v2 > 0 ∀v ∈ Cū \ {0}
2) ∃ν > 0 and τ > 0 s.t. J ′′Λ(ū)v2 ≥ ν‖v‖2L2(Ω) ∀v ∈ Cτū
3) ∃ν > 0 and τ > 0 s.t. J ′′Λ(ū)v2 ≥ ν‖zv‖2L2(Ω) ∀v ∈ Cτū
The inclusions 2) → 3) → 1) are immediate and also hold for the case Λ = 0.

It is known that condition 1) from Theorem 8.2.7 is not enough to guarantee local
optimality in general, for an example see [13, Example 2.1] and condition 2) does
not hold for the case Λ = 0, see [13, Section 2].

This motivates to use condition 3) as a second-order condition.

Assumption SOSC (Second order sufficient condition). Let ū ∈ Uad be given. Assume
that there exists δ > 0 and τ > 0 such that

J ′′(ū)(v, v) ≥ δ‖zv‖2L2(Ω) ∀v ∈ Cτū ,

where we used the notation zv = S′(ū)v.

This condition together with the first-order necessary condition implies local
optimality, see [13, Corollary 2.8].

Theorem 8.2.9. Let us assume that ū is a feasible control for problem (P ) satisfying
the first order optimality conditions (8.3)–(8.5) and the second order condition (SOSC).
Then, there exists ε > 0 such that

J(ū) +
δ

9
‖yu − ȳ‖2L2(Ω) ≤ J(u) ∀u ∈ Bε(ū) ∩ Uad. (8.10)

Let us remark that the growth condition (8.10) is different from the ones obtained
in [8,17]. There a growth condition of the form

J(ū) + c‖u− ū‖2L2(Ω) ≤ J(u) ∀u ∈ Bε(ū) ∩ Uad

is obtained. However, such a growth condition does not hold in our case, see [13].
Furthermore let us present some interesting results established in the recently

published paper by Casas, Wachsmuth and Wachsmuth [20]. They showed that the
structural assumption

meas({x ∈ Ω : |p̄(x)| ≤ ε}) ≤ Kε ∀ε > 0, (8.11)
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among with the assumptions (A1)-(A3) is enough for a stationary point ū of (P ) to
satisfy the growth condition

J(ū) + c‖u− ū‖2L1(Ω) ≤ J(u) ∀u ∈ Uad ∩B∞ε (ū) (8.12)

for some ε > 0. Here B∞ε (ū) is the ball with radius ε in L∞(Ω). Note that the
structural assumption (8.11) is Assumption (ASC) with A = Ω and κ = 1. Hence
this condition implies that ū is a bang-bang control. It is quite interesting that no
assumption on the second derivative of J is needed. However, one should keep in
mind that this result is rather weak due to the L∞-norm. If ε is too small and ū is a
bang-bang solution, then Uad ∩B∞ε (ū) contains no other bang-bang controls besides
ū. Hence (8.12) is not suited to compare other bang-bang controls with ū.

In one of the main results in this paper the authors showed local optimality with
respect to the L1-norm under a second order condition.

Theorem 8.2.10. Let ū ∈ Uad be a stationary point of (P ) and assume that the
structural assumption (8.11) is satisfied. Furthermore assume that there exists constants
τ, c1 > 0 with c1 < (4‖ub − ua‖L∞(Ω)K)−1 such that

J ′′(ū)v2 ≥ −c1‖v‖2L1(Ω) ∀v ∈ Cτū (8.13)

holds. Then there exists constant ε, c2 > 0 such that

J(ū) + c‖u− ū‖2L1(Ω) ≤ J(u) ∀u ∈ Uad ∩B1
ε (ū).

Here B1
ε (ū) is the ball around ū with radius ε in L1(Ω).

The proof can be found in [20, Theorem 2.8]. Note that the second order condition
allows negative curvature of the second derivative on critical directions. It is also
remarkable, that the sufficient second order condition (8.13) can be equivalently
rewritten using measures, see [20, Theorem 2.14].

8.2.3 Regularity Conditions

In order to derive regularization error estimates for the control we assume some
regularity on ū. We say that ū satisfies the assumption (ASC) if the following holds.

Assumption ASC (Active-Set Condition). Let ū be an element of Uad satisfying (8.3)-
(8.5). Assume that there exists a measurable set I ⊆ Ω, a function w ∈ L2(Ω), and
positive constants κ, c such that the following holds:

1. (source condition) I ⊃ {x ∈ Ω : p̄(x) = 0} and

ū = PUad
(S′(ū)∗w) a.e. in I,

2. (structure of active set) A := Ω \ I and for all ε > 0

meas ({x ∈ A : 0 < |p̄(x)| < ε}) ≤ c εκ.
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This assumption differs from the regularity assumptions used in Chapter 3 just
by the assumption on the regularity of the solution, i.e. S′(ū)∗w ∈ L∞(Ω), which is
guaranteed by the regularity of the partial differential equation.

This assumption is a combination of a source condition and a regularity as-
sumption on the active sets. Similar regularity assumptions were used in, e.g.,
[77, 96, 97, 99] for problems with affine-linear control-to-state mapping S. Note
that for the special case A = Ω the solution ū is of bang-bang structure. Under this
regularity assumption we can establish an improved first order necessary condition,
see Lemma 3.4.18. The proofs coincide as it only uses the variational inequality
(8.5).

Theorem 8.2.12. Let ū satisfy assumption (ASC), then there is a constant c > 0 such
that it holds

J ′(ū)(u− ū) ≥ c‖u− ū‖1+ 1
κ

L1(A) ∀u ∈ Uad.

8.3 Convergence Results

In this section we want to combine the second order condition (SOSC) and the
regularity assumption (ASC) to establish regularization error estimates.

8.3.1 Analysis of the Tikhonov Regularization

Let us introduce the Tikhonov regularized optimal control problem associated to (P ).
Let α > 0 be given. Then the regularized problem reads

Minimize Jα(u) :=
1

2
‖yu − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

such that ua ≤ u ≤ ub a.e. in Ω,
(Pα)

where yu denotes again the solution of the semi-linear partial differential equation
(8.1). Clearly, the regularized problem admits solutions.

At first, we want to show that weak limit points of global solutions (uα)α for
α→ 0 are again global solutions of (P ). In addition, we show that every strict local
solution of (P ) can be obtained as a limit of local solutions of (Pα). The results
and the proofs are very similar to [18, Section 4], but since the proofs are short we
present them here.

Lemma 8.3.1. Let (uα)α>0 be a family of global solutions of (Pα) such that uα ⇀ u0

in L2(Ω) for α→ 0. Then u0 is a global solution of (P ). In addition, uα → u0 strongly
in L2(Ω). Moreover, the following identity holds

‖u0‖L2(Ω) = min
{
‖u‖L2(Ω) : u is a global solution of (P )

}
.

Proof. Let u ∈ Uad be given. Then it holds Jα(uα) ≤ Jα(u) for all α > 0. The family
(uα)α is bounded in L∞(Ω). Then Lemma 8.2.2 implies

J0(u0) = lim
α→0

J0(uα) = lim
α→0

Jα(uα) ≤ lim
α→0

Jα(u) = J0(u).
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Since u ∈ Uad was arbitrary, it follows that u0 is a global solution of (P ). Let us now
prove the strong convergence uα → u0 in L2(Ω). On the one hand, we have due to
the weakly lower semicontinuity of the norm that

‖u0‖L2(Ω) ≤ lim inf
α→0

‖uα‖L2(Ω) ≤ lim sup
α→0

‖uα‖L2(Ω).

On the other hand, using that u0 is a global solution of (P ), we obtain

J0(uα) +
α

2
‖uα‖2L2(Ω) = Jα(uα) ≤ Jα(u0) = J0(u0) +

α

2
‖u0‖2L2(Ω)

≤ J0(uα) +
α

2
‖u0‖2L2(Ω)

(8.14)

which implies ‖uα‖L2(Ω) ≤ ‖u0‖L2(Ω) for all α > 0. This shows ‖uα‖L2(Ω) →
‖u0‖L2(Ω), and uα → u0 in L2(Ω) follows. It remains to show the last equality.
Let u be a global solution of (P ). By replacing u0 with u in (8.14) we obtain
‖uα‖L2(Ω) ≤ ‖u‖L2(Ω) for all α > 0. This shows

‖u0‖L2(Ω) = lim
α→0
‖uα‖L2(Ω) ≤ ‖u‖L2(Ω),

which finishes the proof.

This result shows that weak limit points of global solutions of (Pα) are global
solutions of minimal norm of (P ). Since this problem is non-convex in general, such
minimal norm solutions may not be uniquely determined.

Theorem 8.3.2. Let ū be a strict local solution of (P ). Then there exist ᾱ > 0 and a
family (uα)α∈(0,ᾱ) of local solutions of (Pα) such that uα → ū in L2(Ω) for α→ 0.

Proof. For ρ > 0 define the auxiliary feasible set Uad,ρ := Uad ∩ {v ∈ L2(Ω) :
‖v − ū‖L2(Ω) ≤ ρ}. Let ρ > 0 be such that ū is the unique global minimum of J0 in
the set Uad,ρ. We investigate the following auxiliary problem:

min Jα(u) subject to u ∈ Uad,ρ.

For every α > 0 let uρ,α be a global solution of this auxiliary problem. By construction,
the family (uρ,α) is uniformly bounded in L∞(Ω). Hence we find a sequence αk → 0
such that uρ,αk ⇀ u0 in L2(Ω). Arguing as in the proof of Lemma 8.3.1, it follows
that u0 is a global minimum of J0 on Uad,ρ and ‖uρ,α − u0‖L2(Ω) → 0. Consequently,
we obtain u0 = ū, and it holds limα→0 uρ,α = ū strongly in L2(Ω). This implies that
there is ᾱ such that ‖uρ,α − ū‖L2(Ω) < ρ for all α < ᾱ. Thus, the controls uρ,α are
local minima of Jα on Uad for all α < ᾱ.

Using the second-order optimality condition and the growth estimate of Theorem
8.2.9, we can establish the following a-priori error estimate for the states and adjoints.
Analogous results were obtained in [97] for the case of a linear state equation.
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Theorem 8.3.3. Let ū be a local solution of (P ) satisfying (SOSC). Then there exists a
family (uα)α of local solutions of (Pα) such that for α→ 0 the following estimates hold

‖yα − ȳ‖L2(Ω) = o(
√
α), ‖pα − p̄‖L∞(Ω) = o(

√
α).

Proof. We follow the proof of Theorem 8.3.2 and obtain a ρ > 0 and a family (uα)α
of local solutions of (Pα) which are also global solutions to the auxiliary problem

min Jα(u) subject to u ∈ Uad,ρ.

In addition, Jα(uα) ≤ Jα(ū) holds for all α < ᾱ, with ᾱ as in the proof of Theorem
8.3.2. Using this inequality together with Theorem 8.2.9 we get

J0(ū) +
δ

9
‖yα − ȳ‖2L2(Ω) +

α

2
‖uα‖2L2(Ω) ≤ J0(uα) +

α

2
‖uα‖2L2(Ω) = Jα(uα)

≤ Jα(ū) = J0(ū) +
α

2
‖ū‖2L2(Ω).

This implies
δ

9
‖yα − ȳ‖2L2(Ω) ≤

α

2

(
‖ū‖2L2(Ω) − ‖uα‖2L2(Ω)

)
.

Using the strong convergence uα → ū, we get

lim
α→0

‖yα − ȳ‖L2(Ω)√
α

= lim
α→0

9

2δ

√
‖ū‖2L2(Ω) − ‖uα‖2L2(Ω) → 0,

which proves the first part of the claim. The second part follows directly from Lemma
8.2.6.

8.3.2 Convergence Rates

The results of Theorems 8.3.2 and 8.3.3 provide convergence results and a-priori
rates. However, numerical computations reveal that the a-priori rates are suboptimal,
see, e.g., the numerical example in Section 8.5. In addition, it is hard to guarantee
that optimization algorithms deliver globally or locally optimal controls. Hence, we
will assume in the subsequent analysis that only stationary points uα of (Pα) are
available. Recall that uα is a stationary point if it satisfies

J ′(uα)(u− uα) + (αuα, u− uα) ≥ 0 ∀u ∈ Uad.

Furthermore one observes that in many applications the optimal control ū exhibits
a bang-bang structure, as yd is not reachable, i.e., there exists no feasible control
u ∈ Uad such that yd = Su. In this section we want to prove convergence rates under
our regularity assumption (ASC), which is suitable for bang-bang solutions. The
regularity assumption (ASC) was used in [77, 96, 97, 99] to establish convergence
rates for an affine-linear control-to-state mapping. First we need some technical
results, which will be helpful later on. Recall that zv := S′(ū)v.
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Lemma 8.3.4. Let ȳ = S(ū), ū ∈ Uad be given. Then there are constants c > 0 and
ε > 0 such that

‖yu − ȳ‖L2(Ω) ≤ c‖zu−ū‖L2(Ω)

holds for all yu with u ∈ Uad and ‖yu − ȳ‖L2(Ω) ≤ ε.

Proof. This can be proven following the lines of [13, Corollary 2.8].

The following Lemma is an extension of [13, Lemma 2.7].

Lemma 8.3.5. Let (uα)α be a family of controls uα ∈ Uad such that uα ⇀ ū in L2(Ω)
for α→ 0. Then for every ε > 0 there is αmax > 0 such that

|J ′′(uα)v2 − J ′′(ū)v2| ≤ ε‖zv‖2L2(Ω)

for all α ∈ (0, αmax).

Proof. Let us denote the states and adjoints corresponding to uα and ū by yα, pα, and
ȳ, p̄, respectively. Due to Lemma 8.2.2 and 8.2.6 we obtain yα → ȳ and pα → p̄ in
L∞(Ω). Let us define zα,v := S′(uα)v and zv := S′(ū)v. According to Lemma 8.2.4
we can write

J ′′(uα)v2 − J ′′(ū)v2 =

∫
Ω

(1− f ′′(yα)pα)z2
α,v dx−

∫
Ω

(1− f ′′(ȳ)p̄)z2
v dx

=

∫
Ω

(f ′′(ȳ)p̄− f ′′(yα)pα)z2
v dx+

∫
Ω

(1− f ′′(yα)pα)(z2
α,v − z2

v) dx.

Here, the absolute value of the first integral can be made smaller than ε
2‖zv‖2L2(Ω)

for α small enough due to yα → ȳ and pα → p̄ in L∞(Ω). It remains to study the
second integral. Here we use the decomposition z2

α,v − z2
v = (zα,v + zv)(zα,v − zv).

By definition zα,v = S′(uα)v and zv = S′(ū)v satisfy

Azα,v + f ′(yα)zα,v = v,

Azv + f ′(ȳ)zv = v.

Hence, the difference zα,v − zv satisfies the differential equation

A(zα,v − zv) + f ′(yα)(zα,v − zv) + (f ′(yα)− f ′(ȳ))zv = 0.

Arguing as in Lemma 8.2.6 we find

‖zα,v − zv‖L2(Ω) ≤ c‖f ′(yα)− f ′(ȳ)‖L∞(Ω)‖zv‖L2(Ω). (8.15)

Note that the constant c is independent of yα, which is a consequence of the non-
negativity of f ′. This can be seen by following the proof of the Lax-Milgram Theorem.
With a similar argument used in Lemma 8.2.6 we obtain

‖f ′(yα)− f ′(ȳ)‖L∞(Ω) ≤ Cf,M‖yα − ȳ‖L∞ . (8.16)
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The right hand side of (8.16) can now be made arbitrarily small, since yα → ȳ in
L∞(Ω). Using the inverse triangular inequality, the estimate (8.15) also implies the
existence of c > 0 independent of α such that

‖zα,v‖L2(Ω) ≤ c‖zv‖L2(Ω).

Due to our assumptions on the function f and the convergence yα → ȳ and pα → p̄ in
L∞(Ω) we know that 1− f ′′(yα)pα is uniformly bounded. Using the Cauchy-Schwarz
inequality shows that the integral∣∣∣∣∫

Ω

(1− f ′′(yα)pα)(zα,v + zv)(zα,v − zv) dx
∣∣∣∣ ≤ c‖zα,v + zv‖L2(Ω)‖zα,v − zv‖L2(Ω)

≤ c‖yα − ȳ‖L∞‖zv‖2L2(Ω)

can be made smaller than ε
2‖zv‖2L2(Ω) for α small enough.

In the subsequent analysis we need the following two results. Recall that a basic
ingredient for the regularization error estimates for the iterative Bregman method in
Chapter 3 was the estimate of (u†, u† − u)L2(Ω), see Lemma 3.4.19. It turns out that
we need a similar result here.

Lemma 8.3.6. Let ū satisfy Assumption (ASC). Then it holds for all u ∈ Uad

(ū, ū− u)L2(Ω) ≤ ‖w‖L2(Ω)‖zu−ū‖L2(Ω) + ‖ū− S′(ū)∗w‖L∞(A)‖u− ū‖L1(A).

Proof. Since Uad is defined by pointwise inequalities, the projection onto Uad can be
taken pointwise. Let χU denote the characteristic function for the set U . Then the
projection in item (ii) of Assumption (ASC) can be written as(

χI(ū− S′(u)∗w), u− ū
)
L2(Ω)

≥ 0, ∀u ∈ Uad.

We now compute

(ū, ū− u)L2(Ω) = (ū, (ū− u) |I)L2(Ω) + (ū, (ū− u) |A)L2(Ω)

≤ (S′(ū)∗w, (ū− u) |I)L2(Ω) + (ū, (ū− u) |A)L2(Ω)

= (w, S′(ū)(ū− u))L2(Ω) + (ū− S′(ū)∗w, (ū− u) |A)L2(Ω).

We now use that S′(ū)∗w ∈ L∞(Ω) by our assumptions, which yields the result.

In the subsequent analysis we need the following result.

Lemma 8.3.7. Let κ > 0 and cA > 0 be given. Then there exists a constant C ≥ 0
independent from α such that the following inequality holds

α‖ū− S′(ū)∗w‖L∞(A)‖uα − ū‖L1(A) ≤
cA
2
‖uα − ū‖1+ 1

κ

L1(A) + Cακ+1.
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Proof. We use Young’s inequality to prove this result. Let q, r > 0 such that q−1 +
r−1 = 1. Then, for every nonnegative a, b ≥ 0 and positive c > 0 we obtain

ab = (cq)(a)

(
b

cq

)
≤ cq

(
aq

q
+

br

r(cq)r

)
= caq +

cq

r(cq)r
br.

With the choices
q := 1 +

1

κ
, r := κ+ 1,

and
a := ‖uα − ū‖L1(A), b := α‖ū− S′(ū)∗w‖L∞(A), c :=

cA
2
,

the result is obtained with the constant

C :=
cq

r(cq)r
‖ū− S′(ū)∗w‖1+κ

L∞(A).

We now have everything at hand to establish convergence rates for the control.
We want to point out, that we only need weak convergence of the sequence (uα)α.

Theorem 8.3.8. Let ū satisfy Assumption (ASC), and let the assumptions of Theorem
8.2.9 hold for ū. Let (uα)α be a family of stationary points converging weakly in L2(Ω)
to ū for α→ 0. Then it holds with d := min(κ, 1) for α→ 0

‖zuα−ū‖L2(Ω) = O
(
α
d+1

2

)
,

‖uα − ū‖L1(A) = O
(
α
κ(d+1)
κ+1

)
,

‖uα − ū‖L2(Ω) = O
(
αd/2

)
.

In the case w = 0 or A = Ω, these convergence rates are obtained with d := κ.

Proof. Due to Theorem 8.2.9, ū is a local minimum of (P ). Since uα is a stationary
point for (Pα), we know

J ′(uα)(u− uα) + α(uα, u− uα)L2(Ω) ≥ 0 ∀u ∈ Uad. (8.17)

Due to the Assumption (ASC), Theorem 8.2.12 gives

J ′(ū)(u− ū) ≥ cA‖u− ū‖1+ 1
κ

L1(A) ∀u ∈ Uad.

Using ū and uα as test functions in these inequalities and adding them, yields

cA‖uα − ū‖1+ 1
κ

L1(A) + α‖uα − ū‖2L2(Ω) ≤ α(ū, ū− uα)L2(Ω) + (J ′(ū)− J ′(uα))(uα − ū).

Using Lemma 8.3.6 and 8.3.7 we obtain

α(ū, ū− uα)L2(Ω) ≤ α‖w‖L2(Ω)‖zuα−ū‖L2(Ω) + α‖ū− S′(ū)∗w‖L∞(A)‖uα − ū‖L1(A)

≤ α‖w‖L2(Ω)‖zuα−ū‖L2(Ω) +
cA
2
‖uα − ū‖1+ 1

κ

L1(A) + Cακ+1,
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with C > 0 independent of α. By Taylor expansion [85, Theorem 2.8], we obtain

(J ′(ū)− J ′(uα))(uα − ū) = −J ′′(ū)(uα − ū)2 −
(
J ′′(ũα)− J ′′(ū)

)
(uα − ū)2,

with ũα := uα + θα(ū− uα) and θα ∈ (0, 1).
Let us argue that uα− ū is in the extended critical cone Cτū for α small enough. Since
uα ⇀ ū in L2(Ω), it follows from Theorem 8.2.1, and Lemma 8.2.6 that pα → p̄ in
L∞(Ω). Using the uniform boundedness of (uα) in L∞(Ω), α → 0, and pα → p̄ in
L∞(Ω) we obtain |αuα+pα| > τ/2 and sign(αuα+pα) = sign(p̄) for all α sufficiently
small on the set, where |p̄| > τ is satisfied. If we choose α small enough, then also
τ
2 > αmax(‖ua‖L∞ , ‖ub‖L∞) holds. The variational inequality (8.17) implies

uα = PUad

(
− 1

α
pα

)
,

which yields uα = ū on |p̄| > τ . Consequently, uα− ū ∈ Cτū holds for all α sufficiently
small. Hence, we can apply the second-order condition (SOSC) for ū to obtain

J ′′(ū)(uα − ū)2 ≥ δ‖zuα−ū‖2L2(Ω).

Let us now show that ũα ⇀ ū in L2(Ω). Let g ∈ L2(Ω) and compute

(g, ũα)L2(Ω) = (g, uα)L2(Ω)︸ ︷︷ ︸
→(g,ū)L2(Ω)

+ θα︸︷︷︸
0<θα<1

(g, ū− uα)︸ ︷︷ ︸
→0

→ (g, uα)L2(Ω).

Hence, we can apply Lemma 8.3.5 and find that

|J ′′(ũα)v2 − J ′′(ū)v2| ≤ δ

4
‖zv‖2L2(Ω)

for all α sufficiently small. Collecting the estimates above, we get

cA‖uα − ū‖1+ 1
κ

L1(A) + α‖uα − ū‖2L2(Ω) ≤ α(ū, ū− uα)L2(Ω) + (J ′(uα)− J ′(ū))(ū− uα)

≤ α‖w‖L2(Ω)‖zuα−ū‖L2(Ω) +
cA
2
‖uα − ū‖1+ 1

κ

L1(A) + Cακ+1

− J ′′(ū)(uα − ū)2 − (J ′′(ũα)− J ′′(ū))(uα − ū)2

≤
α2‖w‖2L2(Ω)

δ
− δ

2
‖zuα−ū‖2L2(Ω) +

cA
2
‖uα − ū‖1+ 1

κ

L1(A).

This yields

δ

2
‖zuα−ū‖2L2(Ω) +

cA
2
‖uα− ū‖1+ 1

κ

L1(A) +α‖uα− ū‖2L2(Ω) ≤ δ−1‖w‖2L2(Ω)α
2 +Cακ+1,

which proves the claim.

Convergence rates for the state and adjoint state can now be easily obtained.
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Corollary 8.3.9. Let the assumptions of Theorem 8.3.8 hold for ū. Denote ȳ the
associated state and p̄ the adjoint state. Then it holds for α→ 0

‖yα − ȳ‖L2(Ω) = O
(
α
d+1

2

)
, ‖pα − p̄‖L∞(Ω) = O

(
α
d+1

2

)
,

where d is as in the statement of Theorem 8.3.8.

Proof. By Theorem 8.3.8 we already know ‖zuα−ū‖L2(Ω) = O
(
α
d+1

2

)
. Lemma 8.3.4

implies ‖yα − ȳ‖L2(Ω) = O
(
α
d+1

2

)
for α → 0. Lemma 8.2.6 then proves the claim

for the convergence of the adjoint states.

Remark 8.3.10. The convergence rates obtained in Theorem 8.3.8 and Corollary 8.3.9
resemble the rates obtained for the control of a linear partial differential equation,
see [94,95], which improved on the results of [97].

8.4 Necessity of the Regularity Assumption

In this section we will show that the regularity assumption (ASC) is necessary to
obtain the convergence rates provided by Theorem 8.3.8. In the case of a linear state
equation, such results were obtained in [94,95,98]. As it turns out, these results can
be transferred to the nonlinear case with suitable modifications.

Theorem 8.4.1. Let A ⊂ Ω be a given set and define I := Ω \ A. Let us assume that
{x ∈ Ω : p̄(x) = 0} ⊂ I holds. Furthermore assume that there exists a constant σ > 0
such that

ua(x) ≤ −σ < 0 < σ ≤ ub(x) f.a.a. x ∈ Ω.

Let (uα)α be a family of stationary points of (Pα) and ū be a stationary point of (P ).
Suppose that

‖ū− uα‖L1(A) + ‖p̄− pα‖L∞(A) = O(ακ)

for some κ > 1 and all α > 0 sufficiently small. Then there is c > 0 such that the
relation

meas ({x ∈ A : |p̄(x)| ≤ ε}) ≤ c εκ

is fulfilled for all ε > 0 sufficiently small.

Proof. The proof is analogous to that of the corresponding result [95, Thm. 22].
As this proof only uses the variational inequality (8.5), it can be transferred to our
situation without modifications.

Next, we will show that the source condition is satisfied on the set {x ∈ Ω :
p̄(x) = 0} if the convergence rate is sufficiently large. For a related result concerning
the regularization of an ill-posed nonlinear operator equation we refer to [71].
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Theorem 8.4.2. Assume that ū is a stationary point of (P ). Let (uα)α be a family
of stationary points of (Pα) converging weakly to ū ∈ Uad in L2(Ω). Suppose the
convergence rate ‖yα − ȳ‖L2(Ω) = O(α) holds for α→ 0. Then there exists a function
w ∈ L2(Ω) such that ū = PUad

(S′(ū)∗w) holds pointwise almost everywhere on the set
K := {x ∈ Ω : p̄(x) = 0}.
If in addition ‖yα − ȳ‖L2(Ω) = o(α) holds, then ū vanishes on K.

Proof. By assumptions, we know uα ⇀ ū in L2(Ω), ‖yα − ȳ‖L2(Ω) = O(α), and
‖pα − p̄‖Y = O(α), which is a consequence of Lemma 8.2.6.
Let û ∈ Uad be given with û = ū on Ω \K. This implies (p̄, û− ū)L2(Ω) = 0 and

0 ≤ (p̄, uα − ū)L2(Ω) = (p̄, uα − û)L2(Ω).

Testing the variational inequality (8.17) with û and adding it to the above leads to

(αuα + pα − p̄, û− uα)L2(Ω) ≥ 0. (8.18)

As in the predecessor works mentioned above, the idea of the proof is to divide
this inequality by α and then to pass to the limit α→ 0. Hence, we investigate the
difference quotient 1

α (pα − p̄). Using the defining equations of pα and p̄, we find that
pα − p̄ solves

A∗(pα − p̄) + f ′(ȳ)(pα − p̄) + (f ′(yα)− f ′(ȳ))pα = yα − ȳ in Ω,

pα − p̄ = 0 on ∂Ω.
(8.19)

We use Taylor expansion in Banach spaces [44, Theorem 107] to obtain

f ′(yα)− f ′(ȳ) =

∫ 1

0

f ′′(ȳ + s(yα − ȳ)) ds (yα − ȳ).

Since yα− ȳ is uniformly bounded in L∞(Ω) by Theorem 8.2.1, the assumptions on f
and the Lebesgue dominated convergence theorem imply

∫ 1

0
f ′′(ȳ + s(yα − ȳ)) ds→

f ′′(ȳ) in L2(Ω).
Let now ẏ and ṗ be subsequential weak limit points of (α−1(yα− ȳ)) and (α−1(pα− p̄))
in L2(Ω) and H1

0 (Ω), respectively. Dividing (8.19) by α and passing to the limit α→ 0
yields

A∗ṗ+ f ′(ȳ)ṗ+ f ′′(ȳ)ẏp̄ = ẏ in Ω,

ṗ = 0 on ∂Ω.

If needed we pick some suitable subsequences. This equation is to be understood in
the weak sense, and the assumptions made on f and A allow us to pass the weak
limit. Note that the assumptions imply pα → p̄ in L∞(Ω). This shows

ṗ = S′(ū)∗(ẏ − f ′′(ȳ)ẏp̄) =: S′(ū)∗w

with w := (1 − f ′′(ȳ)p̄)ẏ ∈ L2(Ω). By the Rellich-Kondrachov-Theorem H1
0 (Ω) is

compactly embedded in L2(Ω), so ṗ is a strong subsequential limit of α−1(pα − p̄) in
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L2(Ω). Dividing the variational inequality (8.18) by α and passing to the limit α→ 0
we find

0 ≤ lim sup
α→0

(uα + α−1(pα − p̄), û− uα)L2(Ω)

= lim sup
α→0

(−‖uα‖2L2(Ω)) + lim
α→0

(
(uα, û)L2(Ω) + α−1(pα − p̄, û− uα)L2(Ω)

)
≤ −‖ū‖2L2(Ω) + (ū, û)L2(Ω) + (ṗ, û− ū)L2(Ω)

= (ū+ ṗ, û− ū)L2(Ω).

Note that we used the weakly lower semicontinuity of the norm here. Since û ∈ Uad

was arbitrary with the restriction û = ū on Ω \K, this inequality implies

χK ū = χKPUad
(−S′(ū)∗w).

If in addition we have ‖yα − ȳ‖L2(Ω) = o(α), then we obtain ‖pα − p̄‖Y = o(α). This
implies that α−1(pα − p̄) converges to zero in L∞(Ω). Passing to the limit in (8.18)
gives χK ū = χKPUad

(0), hence ū = PUad
(0) holds almost everywhere on K.

Remark 8.4.3. Let us point out an interesting reformulation of the source condition in
terms of the Lagrangian. To this end, let us introduce the Lagrange function to problem
(P ) by

L(y, u, p) := J(y)− 〈Ay + f(y)− u, p〉.
Then the result of the previous theorem can be written as: There exists ẏ ∈ L2(Ω) such
that

χK ū = χKPUad

(
− S′(ū)∗(Lyy(ū, ȳ, p̄)ẏ)

)
.

Here, Lyy denotes the partial derivative of second order of L with respect to y interpreted
as a linear and continuous mapping from L2(Ω) to L2(Ω).
In case of a linear state equation, we obtain Lyy = id. In this case, the theorem above
reduces to the results obtained in [98].
In addition, the above results resemble results for nonlinear inverse problems from [71].
Under the assumptions Uad = L2(Ω) and ȳ = yd (exact and attainable data), the source
condition reduces to

ū = −S′(ū)ẏ.

Here, we used that ȳ = yd implies p̄ = 0 and Lyy(ȳ, ū, p̄) = id.

8.5 Numerical Results

In this section we present a numerical example to support our theoretical results. We
construct a bang-bang solution for the following optimal control problem:

Minimize
1

2
‖y − yd‖2L2(Ω) (8.20)
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Figure 8.1: Error ‖uα − ū‖L2(Ω) for f(y) = exp(y) in a double logarithmic plot for different values for h and α.

For comparison we plotted a line with slope 1
2

.

subject to
−∆y + f(y) = u+ eΩ in Ω

y = 0 on ∂Ω

and
−1 ≤ u ≤ 1 a.e. in Ω.

with Ω = (0, 1). To solve the regularized optimal control problem numerically, we
use dolfin-adjoint [35,40]. We discretized control, state and adjoint state with linear
finite elements. We make use of the adjoint equation

−∆p̄+ f ′(ȳ)p̄ = ȳ − yd

and set

p̄(x) := sin(2πx),

ū(x) := −sgn(p̄(x)),

ȳ(x) := sin(πx),

and

eΩ(x) := −ū(x)−∆ȳ(x) + f(ȳ(x)),

yd(x) := ȳ(x) + ∆p̄(x)− f ′(ȳ(x))p̄(x).

It is easy to check that (ū, ȳ, p̄) is a solution of (8.20). Moreover, Assumption
(ASC) is satisfied with A = Ω and κ = 1, see [28]. We expect to obtain the following
convergence rate with respect to the L2-norm:

‖uα − ū‖L2(Ω) = O
(
α

1
2

)
.
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8.5 Numerical Results

We define the non-linearity

f(x, y) := exp(y).

The function f satisfies the assumptions made in (A1). We computed the problem on a
equidistant subdivision of the interval Ω with different mesh sizes h and regularization
parameter α. The results can be seen in Figure 8.1, where we plotted the error
‖uα − ū‖L2(Ω) for solutions uα of the discretized and regularized problem. As
expected, the theoretical convergence order is very well resolved. In addition, we
observe that for small α the discretization error dominates, which is an expected
saturation effect.
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CHAPTER 9

Extension to Sparse Control Problems

We now investigate sparse control problems given by

Minimize
1

2
‖yu − yd‖2L2(Ω) + β‖u‖L1(Ω)

such that ua ≤ u ≤ ub a.e. in Ω,

where β > 0 is a parameter. This is a non-smooth variant of the control problem
presented in Chapter 8. Again we study the Tikhonov regularization and derive error
estimates, see Section 9.5.

In recent years, there is a growing interest in sparse optimal control problems
starting with [89], see also [13,16]. Tikhonov regularization and its convergence was
studied in [94,95,97] in connection with linear-quadratic optimal control problems.

In Section 9.1 we introduce the model problem and its Tikhonov regularization in
Section 9.2. Sufficient second order conditions are presented in Section 9.3. Using
the regularity assumption in Section 9.4 we establish convergence rates in Section
9.5.

9.1 Model Problem with Sparsity

In this section we consider the problem

Minimize F (u) = J(u) + βj(u) =
1

2
‖yu − yd‖2L2(Ω) + β‖u‖L1(Ω)

such that ua ≤ u ≤ ub a.e. in Ω,
(Pβ)

with J(u) := 1
2‖yu − yd‖2L2(Ω), j(u) := ‖u‖L1(Ω), and β > 0. Again yu is the solution

of the nonlinear Dirichlet problem

Ay + f(x, y) = u in Ω,

y = 0 on ∂Ω.
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Chapter 9 Extension to Sparse Control Problems

We assume that all the assumption made in Section 8.2 are still valid throughout this
section.

The motivation for the additional L1-term in the cost functional F is the following.
A solution ū of (Pβ) is sparse, i.e. large parts of ū are identically zero. The larger β,
the smaller the support of ū. One possible application of such a model is the optimal
placement of controllers, since in many cases it is not desirable to control the system
from the whole domain Ω. Starting with the pioneering work [89], such sparsity
related control problems have been studied in, e.g., [97–99] for optimal control of
linear partial differential equations and [13,16] for the optimal control of semi-linear
equations.

In order to simplify the exposition, we assume ua(x) ≤ 0 ≤ ub(x) almost ev-
erywhere in Ω. Our aim is to investigate so called bang-bang-off solutions, i.e.,
ū(x) ∈ {ua(x), 0, ub(x)} almost everywhere in Ω. The necessary optimality condi-
tions for problem (Pβ) are given by:

Aȳ + f(ȳ) = ū in Ω,

ȳ = 0 on ∂Ω,
(9.1)

A∗p̄+ f ′(ȳ)p̄ = ȳ − yd in Ω,

ȳ = 0 on ∂Ω,
(9.2)∫

Ω

(p̄+ βλ̄)(u− ū) dx ≥ 0 ∀u ∈ Uad (9.3)

with λ̄ ∈ ∂‖ū‖L1(Ω). We refer to [13] for proofs. Similar to Subsection 6.2.2 we
obtain for almost all x ∈ Ω

λ̄


= +1 if ū(x) > 0,

= −1 if ū(x) < 0,

∈ [−1,+1] if ū(x) = 0.

(9.4)

9.2 The Tikhonov Regularization

Again we consider the Tikhonov regularization of problem (Pβ) given by

Minimize Fα(u) =
1

2
‖yu − yd‖2L2(Ω) + β‖u‖L1(Ω) +

α

2
‖u‖2L2(Ω)

such that ua ≤ u ≤ ub a.e. in Ω.
(Pα)

The following convergence result can be proven similarly to the related result of
Theorem 8.3.2.

Theorem 9.2.1. Let ū be a strict local solution of (Pβ). Then there exist ρ > 0 and a
family (uα)α∈(0,ᾱ) of local solutions of (Pα) such that uα → ū in L2(Ω) for α→ 0 and
every uα is a global minimum of Fα in Uad,ρ := Uad ∩ {v ∈ L2(Ω) : ‖v− ū‖L2(Ω) ≤ ρ}.
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9.3 Sufficient Second Order Conditions

9.3 Sufficient Second Order Conditions

Since j is not twice differentiable, we follow [13] and consider the modified extended
critical cone defined by

C̃τu =
{
v ∈ L2(Ω) : v(x) ≥ 0 if u(x) = ua(x), v(x) ≤ 0 if u(x) = ub(x),

and J ′(u)v + βj′(u; v) ≤ τ‖zv‖L2(Ω)

}
.

The second order condition for the sparse control problem (Pβ) reads as follows:

Assumption SOSCβ (Second order sufficient condition). Let ū ∈ Uad be given. Assume
that there exists δ > 0 and τ > 0 such that

J ′′(ū)v2 ≥ δ‖zv‖2L2(Ω) ∀v ∈ C̃τu .

This second order condition induces local quadratic growth of the cost functional.
The next theorem is due to [13, Theorem 3.6].

Theorem 9.3.2. Let us assume that ū is a feasible control for problem (Pβ) with state
ȳ and adjoint state p̄ satisfying the first order optimality conditions (9.1)–(9.3) and the
second order condition (SOSCβ). Then, there exists ε > 0 such that

F (ū) +
δ

5
‖zu−ū‖2L2(Ω) ≤ F (u) ∀u ∈ Bε(ū) ∩ Uad.

9.4 Regularity Assumption

The variational inequality (9.3) implies the following relations between ū and p̄

ū(x)



= ua(x) if p̄(x) > β,

∈ [ua(x), 0] if p̄(x) = β,

= 0 if |p̄(x)| < β,

∈ [0, ub(x)] if p̄(x) = −β,
= ub(x) if p̄(x) < −β,

(9.5)

see [13, Theorem 3.1] and [89, Section 2]. Hence, we have to modify the regularity
assumption (ASC) to take the influence of the non-smooth term j into account, see
also [97,98].

Assumption ASCβ (Active-Set Condition). Let ū be an element of Uad satisfying (9.1)-
(9.3), and assume that there exists a measurable set I ⊆ Ω, a function w ∈ L2(Ω), and
positive constants κ, c such that the following holds

1. (source condition) I ⊃ {x ∈ Ω : |p̄(x)| = β} and

ū = PUad
(S′(ū)∗w) a.e. in I,
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Chapter 9 Extension to Sparse Control Problems

2. (structure of active set) A := Ω \ I and for all ε > 0

meas
(
{x ∈ A : 0 <

∣∣|p̄(x)| − β
∣∣ < ε}

)
≤ cεκ.

Note that if ū satisfies this condition with A = Ω it exhibits a bang-bang-off
structure, and the set {x ∈ Ω : |p̄(x)| = β} is a set of measure zero. Again, we can
establish an improved first order necessary condition.

Lemma 9.4.2. Let ū satisfy Assumption (ASCβ), then there is cA > 0 such that

J ′(ū)(u− ū) + βj′(ū;u− ū) ≥ cA‖u− ū‖1+ 1
κ

L1(A) ∀u ∈ Uad.

Proof. We start by computing the directional derivative of the objective functional. Let
us define the function v = u− ū for u ∈ Uad given. Now define, see [13, Proposition
3.3]

g(x) =



(p̄(x)− β)v(x) if p̄(x) > β,

(p̄(x) + β)v(x) if p̄(x) < −β,
p̄(x)v(x) + β|v(x)| if |p̄(x)| < β,

β(v(x) + |v(x)|) if p̄(x) = β and ū(x) = 0,

β(−v(x) + |v(x)|) if p̄(x) = −β and ū(x) = 0,

0 else.

Following [13] we know that g(x) ≥ 0 almost everywhere in Ω and

J ′(ū)(u− ū) + βj′(ū;u− ū) =

∫
Ω

g(x) dx

holds. Using (9.5) and (9.4) we can now compute

J ′(ū)(u− ū)+βj′(ū;u− ū) ≥
∫

{|p̄|>β}

(p̄+βλ̄)(u− ū) dx+

∫
{|p̄|<β}

p̄(u− ū)+β|u− ū|dx,

where we used the abbreviation {|p̄| > β} := {x ∈ Ω : |p̄(x)| > β} and similar for
{|p̄| < β}.
Let ε > 0 be given. Then we have the following inclusion

{|p̄| > β} ⊇ {|p̄| > β + ε} =: M. (9.6)

We now split the set {|p̄| > β} into the following two disjoint sets

M1 := {|p̄| > β + ε, p̄ < −β},
M2 := {|p̄| > β + ε, p̄ > β},
M = M1 ∪M2.
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9.4 Regularity Assumption

Note that on M1 we have |p̄| − β = −p̄− β > ε. Since ε > 0 this implies |p̄+ β| > ε.
With a similar calculation on M2 we obtain the following inequalities

|p̄+ β| > ε on M1,

|p̄− β| > ε on M2.
(9.7)

We now use (9.6), (9.7), and the non-negativity of g to compute

∫
{|p̄|>β}

(p̄+ βλ̄)(u− ū) dx ≥
∫
M

(p̄+ βλ̄)(u− ū) dx

=

∫
M1

(p̄+ βλ̄)(u− ū) dx+

∫
M2

(p̄+ βλ̄)(u− ū) dx

=

∫
M1

≥ε︷ ︸︸ ︷
|p̄+ β| |u− ū| dx+

∫
M2

≥ε︷ ︸︸ ︷
|p̄− β| |u− ū| dx

≥ ε
∫
M1

|u− ū| dx+ ε

∫
M2

|u− ū| dx

= ε

∫
M

|u− ū| dx.

It remains to estimate the second term appearing in the directional derivative. Again
we use an inclusion of the following form

{|p̄| < β} ⊇ {|p̄| < β − ε} =: N, (9.8)

and split N into the following two disjoint sets

N1 := {|p̄| < β − ε, p̄ ≥ 0},
N2 := {|p̄| < β − ε, p̄ < 0},
N = N1 ∪N2.

Similar to (9.7) we can prove the following inequalities

−p̄ ≥ ε− β on N1,

p̄ ≥ ε− β on N2.
(9.9)
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Chapter 9 Extension to Sparse Control Problems

This now reveals with (9.8), (9.9) and the non-negativity of g∫
{|p̄|<β}

p̄(u− ū) + β|u− ū| dx ≥
∫
N

p̄(u− ū) + β|u− ū| dx

=

∫
N1

p̄(u− ū) + β|u− ū| dx+

∫
N2

p̄(u− ū) + β|u− ū| dx

≥
∫
N1

≥ε−β︷︸︸︷
(−p̄) |u− ū|+ β|u− ū| dx+

∫
N2

≥ε−β︷︸︸︷
p̄ |u− ū|+ β|u− ū| dx

≥
∫
N1

(ε− β)|u− ū|+ β|u− ū| dx+

∫
N2

(ε− β)|u− ū|+ β|u− ū| dx

= ε

∫
N1

|u− ū| dx+ ε

∫
N2

|u− ū| dx

= ε

∫
N

|u− ū| dx.

Let us define
Aε := {x ∈ A :

∣∣|p̄(x)| − β
∣∣ ≥ ε} = M ∪N.

Then the above computations yield

J ′(ū)(u− ū) + βj′(ū;u− ū) ≥ ε‖u− ū‖L1(Aε).

Let us note that Assumption (ASCβ) implies meas (A \Aε) ≤ c εκ. Now, putting
everything together, we obtain using the regularity assumption on the active set

J ′(ū)(u− ū) + βj′(ū;u− ū) ≥ ε‖u− ū‖L1(Aε)

= ε‖u− ū‖L1(A) − ε‖u− ū‖L1(A\Aε)
≥ ε‖u− ū‖L1(A) − ε‖u− ū‖L∞(Ω) meas (A \Aε)
≥ ε‖u− ū‖L1(A) − c εκ+1.

Here c > 1 is a constant independent from u. Setting ε = c−
2
κ ‖u − ū‖

1
κ

L1(A) proves
the claim.

9.5 Convergence Rates

We are now in the position to prove convergence rates. The proof mainly follows the
lines of Theorem 8.3.8.
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9.5 Convergence Rates

Theorem 9.5.1. Let ū satisfy Assumption (ASCβ) and let the assumptions of Theorem
9.3.2 hold for ū. Let (uα)α be a family of stationary points converging weakly in L2(Ω)
to ū. Then it holds with d = min(κ, 1) for α→ 0 sufficiently small

‖zuα−ū‖L2(Ω) = O
(
α
d+1

2

)
,

‖uα − ū‖L1(A) = O
(
α
κ(d+1)
κ+1

)
,

‖uα − ū‖L2(Ω) = O
(
αd/2

)
.

In the case w = 0 or A = Ω, these convergence rates are obtained with d := κ.

Proof. Due to Theorem 9.3.2, ū is a strict local minimum. We split the proof in two
parts and consider the two cases uα − ū ∈ C̃τū and uα − ū 6∈ C̃τū .
Let us start with the case uα − ū ∈ C̃τū . The optimality conditions for uα and Lemma
9.4.2 reveal

(pα + αuα, u− uα)L2(Ω) + βj′(uα;u− uα) ≥ 0 ∀u ∈ Uad, (9.10)

(p̄, u− ū)L2(Ω) + βj′(ū;u− ū) ≥ cA‖u− ū‖1+ 1
κ

L1(A) ∀u ∈ Uad. (9.11)

Note that j is a convex function, hence we have the inequality

j′(x; y − x) ≤ j(y)− j(x),

leading to
j′(uα; ū− uα) + j′(ū;uα − ū) ≤ 0.

Testing (9.10) and (9.11) with ū and uα, respectively, we obtain

cA‖uα − ū‖1+ 1
κ

L1(A)+α‖uα − ū‖2L2(Ω)

≤ α(ū, ū− uα)L2(Ω) + (pα − p̄, ū− uα)L2(Ω)

+ β(j′(uα; ū− uα) + j′(ū;uα − ū))

≤ α(ū, ū− uα)L2(Ω) + (J ′(uα)− J ′(ū))(ū− uα).

As the regularity assumptions (ASC) and (ASCβ) only differ in item (ii), Lemma 8.3.6
is applicable here as well, which gives with Lemma 8.3.7

α(ū, ū− uα)L2(Ω) ≤ α‖w‖L2(Ω)‖zuα−ū‖L2(Ω) + α‖ū− S′(ū)∗w‖L∞(A)‖uα − ū‖L1(A)

≤ α‖w‖L2(Ω)‖zuα−ū‖L2(Ω) +
cA
2
‖uα − ū‖1+ 1

κ

L1(A) + Cακ+1,

with C > 0 independent of α. By Taylor expansion, we obtain

(J ′(ū)− J ′(uα))(uα − ū) = −J ′′(ū)(uα − ū)2 −
(
J ′′(ũα)− J ′′(ū)

)
(uα − ū)2,

with ũα := uα + θα(ū − uα) and θα ∈ (0, 1). Since uα − ū ∈ C̃τū we can apply the
second-order condition on ū to obtain

J ′′(ū)(uα − ū)2 ≥ δ‖zuα−ū‖2L2(Ω).
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Chapter 9 Extension to Sparse Control Problems

Similar to the proof of Theorem 8.3.8 we get ũα ⇀ ū and hence by Lemma 8.3.5, we
find that

|J ′′(ũα)v2 − J ′′(ū)v2| ≤ δ

4
‖zv‖2L2(Ω)

for all α sufficiently small. Altogether, we obtain

cA‖uα − ū‖1+ 1
κ

L1(A) + α‖uα − ū‖2L2(Ω) ≤ α(ū, ū− uα)L2(Ω) + (J ′(uα)− J ′(ū))(ū− uα)

≤ α‖w‖L2(Ω)‖zuα−ū‖L2(Ω) +
cA
2
‖uα − ū‖1+ 1

κ

L1(A) + Cακ+1

− J ′′(ū)(uα − ū)2 − (J ′′(ũα)− J ′′(ū))(uα − ū)2

≤ α2δ−1‖w‖2L2(Ω) −
δ

2
‖zuα−ū‖2L2(Ω) +

cA
2
‖uα − ū‖1+ 1

κ

L1(A).

This yields

δ

2
‖zuα−ū‖2L2(Ω) +

cA
2
‖uα− ū‖1+ 1

κ

L1(A) +α‖uα− ū‖2L2(Ω) ≤ δ−1‖w‖2L2(Ω)α
2 +Cακ+1,

which implies the existence of C > 0 such that

‖zuα−ū‖2L2(Ω) + ‖uα − ū‖1+ 1
κ

L1(A) + α‖uα − ū‖L2(Ω) ≤ C(ακ+1 + α2)

holds for all α sufficiently small.
Now for the second case uα − ū 6∈ C̃τū . By definition of the extended critical cone, we
know

J ′(ū)(uα − ū) + βj′(ū;uα − ū) > τ‖zuα−ū‖L2(Ω).

Combining this with Lemma 9.4.2 yields

J ′(ū)(uα − ū) + βj′(ū;uα − ū) >
τ

2
‖zuα−ū‖L2(Ω) +

cA
2
‖uα − ū‖1+ 1

κ

L1(A).

Using the expansion

(J ′(ū)− J ′(uα))(uα − ū) = −J ′′(ũα)(uα − ū)2

with ũα := uα + θα(ū− uα) and θα ∈ (0, 1), we get similarly as in the first part of the
proof

τ

2
‖zuα−ū‖L2(Ω) +

cA
2
‖uα − ū‖1+ 1

κ

L1(A) + α‖uα − ū‖2L2(Ω)

≤ α‖w‖L2(Ω)‖zuα−ū‖L2(Ω) +
cA
4
‖uα − ū‖1+ 1

κ

L1(A) + Cακ+1 − J ′′(ũα)(uα − ū)2.

Using the structure of J ′′ given in Lemma 8.2.4 we obtain

|J ′′(ū)(uα − ū)2| =

∣∣∣∣∣∣
∫
Ω

(1− f ′′(ȳ)p̄)|zuα−ū|2 dx

∣∣∣∣∣∣ ≤ c‖zuα−ū‖2L2(Ω).
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9.5 Convergence Rates

Here we used the boundedness of ȳ and p̄ in L∞(Ω) as well as the assumption on f .
By Lemma 8.3.5, we obtain

|(J ′′(ũα)− J ′′(ū)(uα − ū)2| ≤ c‖zuα−ū‖2L2(Ω).

Note that we used again the convergence ũα ⇀ ū. Combining both results yield

|J ′′(ũα)(uα − ū)2| ≤ |J ′′(ū)(uα − ū)2|+ |(J ′′(ũα)− J ′′(ū)(uα − ū)2|
≤ c‖zuα−ū‖2L2(Ω)

for all α sufficiently small. Hence, it holds

τ

2
‖zuα−ū‖L2(Ω) +

cA
4
‖uα − ū‖1+ 1

κ

L1(A) + α‖uα − ū‖2L2(Ω)

≤ α2‖w‖2L2(Ω) + Cακ+1 + c‖zuα−ū‖2L2(Ω).

Since zuα−ū → 0 in L2(Ω), the following inequality is satisfied for all α small enough

τ

4
‖zuα−ū‖L2(Ω) +

cA
4
‖uα − ū‖1+ 1

κ

L1(A) + α‖uα − ū‖2L2(Ω) ≤ α2‖w‖2L2(Ω) + Cακ+1,

which implies the claim for the second case.
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CHAPTER 10

Conclusion and Outlook

We successfully analysed and tested three different regularization methods for optimal
control problems governed by linear and semilinear partial differential equations.
Additional constraints consists of box constraints for the control as well as inequality
constraint for the state. Let us recall the results of this thesis and give some ideas for
possible future research.

10.1 Linear State Equation

If the solution operator S of the underlying partial differential equation is linear
we analysed two different regularization methods, depending on the additional
constraints.

10.1.1 Control Constraints

The iterative Bregman method is suited for problems with additional control con-
straints, e.g.

Minimize
1

2
‖Su− z‖2Y

such that ua ≤ u ≤ ub a.e. in Ω.
(P1)

This method reduces to the proximal point method for a specific choice of the
regularization functional in the Bregman distance. However, for the proximal point
method it is not clear how to obtain regularization error estimates under our regularity
assumption (ASC).

If the solution of the optimal control problem (P1) is unique, we proved that the
iterative Bregman method is converging to this solution. In general we obtain that
weak limit points of the sequence generated by the Bregman method are solutions to
(P1) .
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Chapter 10 Conclusion and Outlook

If a solution of (P1) satisfies the regularity assumption (ASC), which includes bang-
bang solutions and non-attainability, we established regularization error estimates.
These results generalize and extend known estimates for the PPM and Bregman
iteration.

In the case of noisy data we presented an a-priori parameter choice rule and
showed convergence results independent from a reachability condition. Furthermore
we analysed the discretization error and its accumulation during the iterations. There
we also allowed some inexactness for the solutions of the subproblems. This analysis
revealed that the iterative Bregman method is robust and stable under the presence of
numerical errors. This theoretical finding is supported by several numerical examples.

The analysis of this algorithm is heavily based on the linearity of the operator
S and the absence of additional state constraints. We assume that most of the
techniques can be carried over if additional state constraints are present. Here
we have in our mind the regularization ideas of the agumented Lagrange method
established in Chapter 6, but instead of applying a Tikhonov regularization, we apply
a Bregman regularization.

Another interesting topic to analyse is the extension of the Bregman method to
nonlinear solution operators S. In this case, several new analytical methods have to
be developed, first to analyse the method and second to obtain regularization error
estimates. A possible approach would be the linearization of the state equation in the
current iterate. This would be in the spirit of some Newton-type methods.

10.1.2 Control and State Constraints

Next, we analysed an augmented Lagrange method for problems of the following
form

min J(y, u) :=
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω), (P2)

subject to

Ay = u in Ω,

y = 0 on ∂Ω,

y ≤ ψ in Ω,

ua ≤ u ≤ ub in Ω.

Recall that A is a linear elliptic operator. Due to the absence of an additional L2-
regularization term in (P2) this problem is numerically challenging. We combined
an augmented Lagrange method to eliminate the state constraints and a Tikhonov
regularization approach to solve (P2). We presented an update rule for the multiplier
and a coupling between the regularization and the penalty parameter. The key idea is
to reduce the regularization parameter during the algorithm in a reasonable manner.

Due to this choice we obtain strong convergence of our algorithm. The arising
problems are solved by an active-set method. Several numerical examples are shown
to support our algorithm.
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10.2 Nonlinear State Equation

Although we established (strong) convergence of our algorithm we do not have
regularization error estimates at hand. Here it would be interesting if the regularity
assumption (ASC) can be used to derive such estimates.

10.2 Nonlinear State Equation

In the second part of this thesis we considered a non-linear state equation and optimal
control problems of the form

Minimize
1

2
‖yu − yd‖2L2(Ω) + β‖u‖L1(Ω)

such that ua ≤ u ≤ ub a.e. in Ω,
(P3)

with β ≥ 0. Here yu is the solution of the semi-linear Dirichlet problem

Ay + f(x, y) = u in Ω,

y = 0 on ∂Ω.

The non-linearity of the partial differential equation significantly increases the com-
plexity of the problem. We analysed a Tikhonov regularization of problem (P3). With
the help of a sufficient second order condition and the regularity assumption (ASCβ)
we derived regularization error estimates of the type

‖uα − ū‖L2(Ω) = O
(
αd/2

)
for α→ 0.

Note that we used different second order conditions for the case β = 0 and β > 0.
In addition we showed that in the case β = 0, the regularity assumption is not

only sufficient for high regularization error rates, but also necessary. This should also
carry over to the case β > 0.

The analysis presented in the section can be extended in future research to
incorporate discretization errors, as was done in [28,94,96,97] for linear-quadratic
problems.

In future work it would also be interesting to analyse problem (P3) with additional
state constraints. This could be done in the spirit of Chapter 6. However, the
nonlinearity increases the complexity, but the problem is still accessible with the
augmented Lagrange method, see [55].
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Ill-posed optimization problems appear in a wide range 

of mathematical applications, and their numerical 

solution requires the use of appropriate regularization 

techniques. In order to understand these techniques, 

a thorough analysis is inevitable.

The main subject of this book are quadratic optimal 

control problems subject to elliptic linear or semi- 

linear partial differential equations. Depending on the 
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leads to novel results such as rate of convergence 
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