
Nikolas Roman Herbst

Methods and Benchmarks for Auto-Scaling
Mechanisms in Elastic Cloud Environments

Dissertation, Julius-Maximilians-Universität Würzburg

Fakultät für Mathematik und Informatik, 2018

Gutachter: Prof. Dr. Samuel Kounev, JMU Würzburg,

Prof. Dr. Alexandru Iosup, VU Amsterdam,

Prof. Dr. Wilhelm Hasselbring, CAU Kiel

Tag der mündlichen Prüfung: 19. Juli 2018

This documentis licensed under the Creative Commons Attribution-Share Alike 4.0
International License (CC BY-SA 4.0 Int):
http://creativecommons.org/licenses/by-sa/4.0/deed.de

ii

http://creativecommons.org/licenses/by-sa/4.0/deed.de

Abstract

Roughly a decade ago, the first commercial cloud was opened for the general public (Amazon
Web Services AWS, in 2006). Meanwhile in 2017, the market for cloud computing offerings
reached a size of 247 billion US$, but the peak of the hype period already passed with su-
stainable market growth rates of 18%. Concerning the next years, Mark Hurd, co-CEO of
Oracle Corporation, recently predicted that 80 percent of corporate data centers will disap-
pear by 2025, as production applications increasingly move to the cloud. Especially in the
ongoing settling phase of cloud computing, scientific progress and industry growth depend
on established principles for measuring and reporting cloud system quality attributes.

A key functionality of cloud systems are automated resource management mechanisms
at the infrastructure level. As part of this, elastic scaling of allocated resources is realized
by so-called auto-scalers that are supposed to match the current demand in a way that
the performance remains stable while resources are efficiently used. The process of rating
cloud infrastructure offerings in terms of the quality of their achieved elastic scaling re-
mains undefined. Clear guidance for the selection and configuration of an auto-scaler for a
given context is not available. Thus, existing operating solutions are optimized in a highly
application specific way and usually kept undisclosed.

The common state of practice is the use of simplistic threshold-based approaches. Due to
their reactive nature they incur performance degradation during the minutes of provisioning
delays. In the literature, a high-number of auto-scalers has been proposed trying to over-
come the limitations of reactive mechanisms by employing proactive prediction methods.
The latter can be grouped into approaches from queuing theory, control theory, time series
analysis and reinforcement learning. However, the adoption of proactive auto-scalers in
production is still very low due to the high risk of relying on a single proactive method based
on which scaling decisions are made.

In this thesis, we identify potentials in automated cloud system resource management
and its evaluation methodology. Specifically, we make the following contributions:

• We propose a descriptive load profile modeling framework together with automated
model extraction from recorded traces to enable reproducible workload generati-
on with realistic load intensity variations. The proposed Descartes Load Intensity
Model (DLIM) with its Limbo framework provides key functionality to stress and
benchmark resource management approaches in a representative and fair manner.

Automatically extracted DLIM model instances exhibit an average modeling error
of 15.2% over ten different real-world traces that cover between two weeks and seven
months. These results underline DLIM’s model expressiveness. In terms of accuracy
and processing speed, our proposed extraction methods based on the descriptive
models deliver better or similar results compared to existing non-descriptive time
series decomposition methods.

iii

• We propose a set of intuitive metrics for quantifying timing, stability and accura-
cy aspects of elasticity. Based on these metrics, which were endorsed by the SPEG
Research Group1, we propose a novel approach for benchmarking the elasticity of
Infrastructure-as-a-Service (IaaS) cloud platforms independent of the performance
exhibited by the provisioned underlying resources. The proposed Bungee elasticity
benchmarking framework leverages DLIM modeling capabilities to generate realistic
load intensity profiles.

The Bungee measurement methodology achieves reproducible results in controlled
environments. Based on this property, elastic systems can be compared as each of the
proposed metrics provides consistent ranking on an ordinal scale. Finally, we present
an extensive case study of real-world complexity demonstrating that the proposed
approach is applicable in realistic scenarios and can cope with different levels of
resource performance.

• We tackle the challenge of reducing the risk of relying on a single proactive auto-
scaler by proposing a new self-aware auto-scaling mechanism, called Chameleon,
combining multiple different proactive methods coupled with a reactive fallback me-
chanism. Chameleon employs on-demand, automated time series-based forecasting
methods to predict the arriving load intensity in combination with run-time service
demand estimation techniques to calculate the required resource consumption per
work unit without the need for a detailed application instrumentation. It can also
leverage application knowledge by solving product-form queueing networks used
to derive optimized scaling actions. The Chameleon approach is first in resolving
conflicts between reactive and proactive scaling decisions in an intelligent way.

Chameleon is benchmarked against four different state-of-the-art proactive auto-
scalers and a standard threshold-based one in three different cloud environments:
(i) a private CloudStack-based cloud, (ii) the public AWS EC2 cloud, as well as (iii) an
OpenNebula-based shared IaaS cloud. We generate five different representative load
profiles each taken from different real-world system traces leveraging Limbo and
Bungee to drive a CPU-intensive benchmark workload. Overall, Chameleon achieves
the best scaling behavior based on user and elasticity performance metrics, analyzing
the results from 400 hours of aggregated experiment time.

• As a side-contribution of this thesis, we propose a self-aware forecasting prototype
called Telescope. It incorporates multiple individual forecasting methods by decom-
posing the univariate time series into the components trend, season, and remainder.
First, the frequency is estimated, anomalies are detected and removed, and then
the type of decomposition is determined. After the decomposition, ARIMA (auto-
regressive integrated moving averages) without seasonality is applied on the trend
pattern, whereas the seasonality is simply continued. Moreover, the single periods
are clustered in order to learn categorical information. The cluster labels are forecast

1SPEC Research Group: https://research.spec.org

iv

https://research.spec.org

by applying artificial neural networks. Lastly, eXtreme Gradient Boosting (XGBoost)
is used to learn the dependency between them and to combine the forecasts of the
individual components.

The preliminary evaluation indicates based on two different traces that an early
implementation of the Telescope approach outperforms the best competitor in terms
of accuracy. It improves the time-to-result by up to a factor of 19 compared to the three
most efficient forecasting methods. In a case study, we demonstrate that Telescope is
capable of furter improving Chameleon’s auto-scaling performance compared to the
formerly used state-of-the-art forecasting method tBATS or seasonal ARIMA.

We are confident that the contributions of this thesis will have a long-term impact on the
way cloud resource management approaches are assessed. While this could result in an
improved quality of autonomic management algorithms, we see and discuss arising chal-
lenges for future research in cloud resource management and its assessment methods: The
adoption of containerization on top of virtual machine instances introduces another level
of indirection. As a result, the nesting of virtual resources increases resource fragmentation
and causes unreliable provisioning delays. Furthermore, virtualized compute resources tend
to become more and more inhomogeneous associated with various priorities and trade-offs.
Due to DevOps practices, cloud hosted service updates are released with a higher frequency
which impacts the dynamics in user behavior.

v

Zusammenfassung

Vor etwas mehr als einem Jahrzehnt stellte Amazon Web Services (AWS) als erster kom-
merzieller Anbieter Cloud-Dienstleistungen der allgemeinen Öffentlichkeit bereit. In den
folgenden Jahren fand ein ausgeprägtes Wachstum von Cloud-Dienstleistungsangeboten
statt, welches sich im Jahr 2017 in einer Marktgröße von 247 Milliarden US$ widerspiegelte.
Nunmehr gehört diese Phase ausgeprägten Wachstums der Vergangenheit an. Dennoch
sagt Marc Hurd, Co-CEO des Oracle Konzerns, vorher, dass 80 Prozent der klassischen
Rechenzentren von Konzernen bis zum Jahre 2025 abgelöst sein werden, da produktive
Anwendungen mehr und mehr in Cloud-Umgebungen betrieben würden. Insbesondere
in der aktuell anhaltenden Stabilisierungsphase des Cloud-Computing hängt der wissen-
schaftliche Fortschritt und das weitere Wirtschaftswachstum von etablierten Messverfahren
und standardisierten Berichtsformen zur Erfassung der Qualitätsmerkmale von Cloud-
Angeboten ab.

Eine Schlüsselfunktionalität von Cloud-Systemen sind automatisierte Mechanismen zur
Ressourcenverwaltung auf Infrastrukturebene. Als Teil hiervon wird das elastische Skalieren
der allokierten Ressourcen durch eigene Mechanismen realisiert. Diese sind dafür verant-
wortlich, dass die dynamische Ressourcenzuteilung die aktuelle Nachfrage in einem Maße
trifft, welches die Performance stabil hält und gleichzeitig Ressourcen effizient auslastet.
Prozesse, welche die Bewertung der Qualität von elastischem Skalierungsverhalten in der
Realität ermöglichen, sind derzeit nicht umfassend definiert. Folglich fehlt es an Leitfäden
und Entscheidungskriterien bei der Auswahl und Konfiguration automatisch skalierender
Mechanismen. In der Praxis zum Einsatz kommende Lösungen sind auf ihr Anwendungs-
szenario optimiert und werden in fast allen Fällen unter Verschluss gehalten.

Mehrheitlich werden einfache, schwellenwertbasierte Regelungsansätze eingesetzt. Diese
nehmen aufgrund ihres inhärent reaktiven Charakters verschlechterte Performance wäh-
rend der Bereitstellungsverzögerung im Minutenbereich in Kauf. In der Literatur wird eine
große Anzahl an Mechanismen zur automatischen Skalierung vorgeschlagen, welche versu-
chen, diese Einschränkung durch Einsatz von Schätzverfahren zu umgehen. Diese können
in Ansätze aus der Warteschlangentheorie, der Kontrolltheorie, der Zeitreihenanalyse und
des maschinellen Lernens eingeteilt werden. Jedoch erfreuen sich prädiktive Mechanismen
zum automatischen Skalieren aufgrund des damit verknüpften hohen Risikos, sich auf
einzelne Schätzverfahren zu verlassen, bislang keines breiten Praxiseinsatzes.

Diese Dissertation identifiziert Potenziale im automatisierten Ressourcenmanagement
von Cloud-Umgebungen und deren Bewertungsverfahren. Die Beiträge liegen konkret in
den folgenden Punkten:

• Es wird eine Sprache zur deskriptiven Modellierung von Lastintensitätsprofilen und
deren automatischer Extraktion aus Aufzeichnungen entwickelt, um eine wiederhol-
bare Generierung von realistischen und in ihrer Intensität variierenden Arbeitslasten

vii

zu ermöglichen. Das vorgeschlagene Descartes Lastintensitätsmodell (DLIM) zusam-
men mit dem Limbo Software-Werkzeug stellt hierbei Schlüsselfunktionalitäten zur
repräsentativen Arbeitslastgenerierung und fairen Bewertung von Ressourcenmana-
gementansätzen zur Verfügung.

Über zehn verschiedene Aufzeichnungen aus der Realität, welche zwischen zwei
Wochen und sieben Monate abdecken, weisen automatisch extrahierte DLIM Modell-
instanzen im Durchschnitt einen Modellierungsfehler von 15,2% auf. Diese Ergebnis-
se betonen die Ausdrucksmächtigkeit des DLIM Modells. Hinsichtlich Genauigkeit
und Verarbeitungsgeschwindigkeit liefern die hier vorgeschlagenen Methoden zur
automatischen Extraktion der deskriptiven Modelle im Vergleich zu existierenden,
nicht deskriptiven Methoden der Zeitreihenzerlegung, bessere oder vergleichbar gute
Resultate.

• Es wird eine Gruppe intuitiver Metriken zur Quantifizierung der zeit-, genauigkeits-
und stabilitätsbezogenen Qualitätsaspekte elastischen Verhaltens vorgeschlagen. Ba-
sierend auf diesen zwischenzeitlich von der Forschungsabteilung der Standard Perfor-
mance Evaluation Corporation (SPEC) befürworteten Metriken, wird ein neuartiges
Elastizitätsmessverfahren zur fairen Bewertung von Infrastruktur-Cloud-Dienstlei-
stungen, unabhängig von der Leistungsfähigkeit der zugrunde liegenden Ressourcen,
entwickelt.

Das Elastizitätsverfahren Bungee erzielt wiederholbare Resultate in kontrollierten
Umgebungen. Darauf aufbauend bietet jede der vorgeschlagenen Metriken eine kon-
sistente Ordnung elastischer Systeme auf einer Ordinalskala. Schlussendlich wird eine
umfassende Fallstudie von realer Komplexität präsentiert und so gezeigt, dass der
vorgeschlagene Messansatz in der Lage ist, Szenarien des automatischen Skalierens
aus der Realität zu bewerten.

• Durch die Entwicklung eines neuartigen, hybriden Ansatzes zum automatischen Ska-
lieren, genannt Chameleon, wird das Risiko reduziert, welches sich aus dem Einsatz
einzelner proaktiver Methoden automatischen Skalierens ergibt. Chameleon kombi-
niert mehrere verschiedene proaktive Methoden und ist mit einer reaktiven Rückfalle-
bene gekoppelt. Dazu verwendet Chameleon bei Bedarf automatische Zeitreihenvor-
hersagen, um ankommende Arbeitslasten abzuschätzen. Ergänzend dazu kommen
Techniken der Serviceanforderungsabschätzung zur Systemlaufzeit zum Einsatz, um
den Ressourcenverbrauch einzelner Arbeitspakete in etwa zu bestimmen, ohne dass
eine feingranulare Instrumentierung der Anwendung erforderlich ist. Abgesehen da-
von nutzt Chameleon anwendungsbezogenes Wissen, um Warteschlangennetze in
Produktform zu lösen und optimale Skalierungsaktionen abzuleiten. Der Chameleon-
Ansatz ist der erste seiner Art, welcher Konflikte zwischen reaktiven und proaktiven
Skalierungsaktionen in intelligenter Art und Weise aufzulösen vermag.

Chameleon wird messbasiert gegen fünf verschiedene, proaktive Mechanismen au-
tomatischen Skalierens sowie gegen das gängige schwellenwertbasierte Verfahren
verglichen. Die Messungen werden in drei verschiedenen Umgebungen durchge-
führt: (i) Einer privaten CloudStack-basierten Cloud-Umgebung, (ii) der öffentlichen

viii

AWS Elastic Compute Cloud EC2, (iii) einer OpenNebula-basierten, zu Forschungs-
zwecken geteilten Infrastruktur-Cloud. Indem wir die Funktionalitäten von Limbo’s
Arbeitslastprofilen und dem Bungee Messverfahren ausnutzen, erzeugen wir fünf
verschiedene, repräsentative Arbeitslastprofile, welche jeweils von realen Aufzeich-
nungen abstammen und ein prozessorlastiges Referenzprogramm unter Last setzen.
Zusammenfassend erreicht Chameleon, basierend auf den Ergebnissen von insge-
samt 400 Experimentstunden, hinsichtlich der Elastizitätsmetriken sowie sekundären
Benutzermetriken das beste und zuverlässigste Skalierungsverhalten.

• Als Nebenbeitrag dieser Dissertation wird ein hybrider, prototypischer Mechanismus
zur Vorhersage von Zeitreihen, genannt Telescope, vorgeschlagen. Er integriert meh-
rere eigenständige Vorhersagemechanismen, indem die Eingabe einer univariaten
Zeitreihe in ihre Bestandteile an Saisonalität, Trend und Rest zerlegt wird. Zuerst
jedoch werden die Frequenz abgeschätzt, Anomalien erkannt und entfernt, sowie
auf die Art der Zerlegung getestet. Nach der Zerlegung wird der Trendanteil durch
das Verfahren der autoregressiven, integrierten, gleitenden Durchschnitte (ARIMA)
vorhergesagt, während der saisonale Anteil direkt fortgesetzt wird. Zusätzlich wer-
den die einzelnen Perioden in Cluster zusammengefasst, um deren kategorische
Informationen zu erlernen. Die Cluster-Bezeichnungen werden durch Anwendung
künstlicher, neuronaler Netze (ANNs) vorhergesagt. Letztendlich wird ein Verfahren
der extremen Gradientenverstärkung (XGBoost) verwendet, um die Abhängigkeiten
zwischen den einzelnen Anteilen und den Clusterbezeichungen zu lernen und die
Vorhersageergebnisse zu kombinieren.

In einer vorläufigen Evaluation, welche auf zwei verschiedenen Datensätzen und
einer prototypischen Implementierung basiert, schlägt der Telescope-Ansatz die
Konkurrenz im Hinblick auf die Vorhersagegenauigkeit. Zudem wird die Zeit bis zum
Ergebnis im Vergleich zu den drei genauesten Vorhersagemethoden um einen Faktor
von bis zu 19 verringert. In einer Fallstudie wird demonstriert, dass Telescope in
der Lage ist, das Skalierungsverhalten von Chameleon im Vergleich zu den bisher
angewandten, aktuellen Vorhersagemethoden weiter zu verbessern.

Zusammenfassend kann gesagt werden, dass die Beiträge dieser Dissertation auf lange
Sicht die Art und Weise beeinflussen dürften, in welcher Ressourcenmanagementansätze in
Cloudumgebungen bewertet werden. Ein Ergebnis wäre unter anderem eine verbesserte
Qualität der Algorithmen für ein automatisches Ressourcenmanagement. Als Grundlage
für zukünftige Forschungsarbeiten werden aufkommende Herausforderungen identifiziert
und diskutiert: Die Einführung der Containerisierung innerhalb von virtuellen Maschinen-
instanzen bewirkt eine weitere Ebene der Indirektion. Als Folge dieser Verschachtelung
der virtuellen Ressourcen wird die Fragmentierung erhöht und unzuverlässige Bereitstel-
lungsverzögerungen verursacht. Außerdem tendieren die virtualisierten Rechenressourcen
aufgrund von Priorisierung und Zielkonflikten mehr und mehr zu inhomogenen System-
landschaften. Aufgrund von DevOps-Praktiken werden Softwareupdates von Diensten in
Cloudumgebungen mit einer höheren Frequenz durchgeführt, welche sich auf das Benut-
zungsverhalten dynamisierend auswirken kann.

ix

Acknowledgments
The thesis would have been impossible without the aid and support of many people. First of
all, I would like to thank my advisor Prof. Dr. Samuel Kounev. I first met him in 2010 in the
middle of my diploma studies attending his advanced lecture on Performance Engineering,
and since then he always supported me with advice and encouragement on my journey in
the academic world. He was a constant source of inspiration and motivation in all these
years guiding my work on this thesis, on research papers, and on grant proposals.

From the Descartes research group (at the Chair of Software Engineering) at the University
of Würzburg, I want to thank my current and former colleagues and administrative staff,
with whom I had the pleasure to work with on many projects: Dr. Nikolaus Huber, Dr.
Fabian Brosig, Dr. Rouven Krebs‚ Jóakim von Kistowski, Dr. Simon Spinner, André Bauer,
Veronika Lesch, Marwin Zuefle, Dr. Piotr Rygielski, Jürgen Walter, Johannes Grohmann,
Stefan Herrnleben, Fritz Kleemann, and Susanne Stenglin.

I would also like to thank Prof. Dr. Ralf Reussner for hosting the Descartes research group
at SDQ and providing an enjoyable working environment at KIT until the move in Spring
2014. Many thanks goes also to my former colleagues from the SDQ group at the KIT and the
Forschungszentrum Informatik (FZI), especially Dr. Henning Groenda, Dr. Klaus Krogmann,
Dr. Qais Noorshams, Dr. Zoya Durdik and more.

My research was influenced by numerous discussions and joint publications under
the umbrella of the Cloud working group of SPEC Research: Here, I would like to thank
Prof. Dr. Alexandru Iosup, Alexey Ilyushkin, Ahmed Ali-Eldin, Erwin van Eyk, Giorgos
Oikonomou, Prof. Tim Brecht, Prof. Cristina Abad, Dr. Rouven Krebs, Dr. Kai Sachs, Alessan-
dro Papadopoulos and more.

I would like to thank Dr. Valentin Curtef (MaxCon Data-Science, Würzburg) for sharing
his experience in data analytics and Erich Amrehn (IBM Distinguished Engineer at IBM
Research and Development Lab, Böblingen), who supported me since my diploma studies.

I would also like to thank IBM for supporting my doctoral studies with an IBM PhD
fellowship. Also, my thanks go to the FZI in Karlsruhe for supporting me with a doctoral
fellowship during the starting phase of my PhD.

My special thanks go the my former Master’s thesis students who started their academic
career after thesis submission and later became colleagues: Jóakim von Kistowski, André
Bauer, Veronika Lesch, Marwin Zuefle, and Johannes Grohmann. Furthermore, I would like
to thank Andreas Weber, Marcus Wilhem, Benno Heilmann, Torsten Krauss, Joshua Smolka,
and Frederik König for supporting me as students as part of their Bachelor’s or Master’s
theses.

Finally, I would like to thank my wife Jasmin for her continuous support and encourage-
ment throughout the years, which made it all possible.

xi

Publication List

Peer Reviewed Journal Articles

[HBK+18] Nikolas Herbst, André Bauer, Samuel Kounev, Giorgos Oikonomou, Erwin van
Eyk, George Kousiouris, Athanasia Evangelinou, Rouven Krebs, Tim Brecht, Cristina L. Abad,
and Alexandru Iosup. Quantifying Cloud Performance and Dependability: Taxonomy, Met-
ric Design, and Emerging Challenges. ACM Transactions on Modeling and Performance
Evaluation of Computing Systems (ToMPECS). To appear.

[IAEH+18] Alexey Ilyushkin, Ahmed Ali-Eldin, Nikolas Herbst, André Bauer, Alessandro V.
Papadopoulos, Dick Epema, and Alexandru Iosup. An Experimental Performance Evaluation
of Autoscalers for Complex Workflows. ACM Transactions on Modeling and Performance
Evaluation of Computing Systems (ToMPECS), 3(2):8:1-8:32, April 2018, ACM, New York, NY,
USA.

[vKHK+17] Jóakim von Kistowski, Nikolas Herbst, Samuel Kounev, Henning Groenda, Chris-
tian Stier, and Sebastian Lehrig. Modeling and Extracting Load Intensity Profiles. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 11(4):23:1–23:28, January 2017,
ACM, New York, NY, USA.

[HHKA14] Nikolas Herbst, Nikolaus Huber, Samuel Kounev, and Erich Amrehn. Self-Adap-
tive Workload Classification and Forecasting for Proactive Resource Provisioning. Concur-
rency and Computation - Practice and Experience, John Wiley and Sons, Ltd., 26(12):2053–
2078, March 2014. 2nd most cited CCPE article (according to Google Scholar).

Journal Articles Under Review or Resubmission

[PVB+18] Alessandro Vittorio Papadopoulos, Laurens Versluis, André Bauer, Nikolas Herbst,
Jóakim von Kistowski, Ahmed Ali-Eldin, Cristina Abad, J. Nelson Amaral, Petr Tůma, and
Alexandru Iosup. Methodological Principles for Reproducible Performance Evaluation in
Cloud Computing. Under Resubmission to IEEE Transactions on Cloud Computing (TCC)

[BHS+18] André Bauer, Nikolas Herbst, Simon Spinner, Samuel Kounev, and Ahmed Ali-
Eldin. Chameleon: A Hybrid, Proactive Auto-Scaling Mechanism on a Level-Playing Field.
IEEE Transactions on Parallel and Distributed Systems (TPDS). Minor Revision July 2018.

xiii

Peer-Reviewed International Full Conference Papers
[LBHK18] Veronika Lesch, André Bauer, Nikolas Herbst, and Samuel Kounev. FOX: Cost-

Awareness for Autonomic Resource Management in Public Clouds. In Proceedings of the
9th ACM/SPEC International Conference on Performance Engineering (ICPE 2018), New
York, NY, USA, April 11-13, 2018. ACM. Full paper acceptance rate: 23.7%

[BGHK18] André Bauer, Johannes Grohmann, Nikolas Herbst, and Samuel Kounev. On
the Value of Service Demand Estimation for Auto-Scaling. In 9th International GI/ITG
Conference on Measurement, Modelling and Evaluation of Computing Systems (MMB 2018).
Springer, February 2018.

[IAEH+17] Alexey Ilyushkin, Ahmed Ali-Eldin, Nikolas Herbst, Alessandro V. Papadopoulos,
Bogdan Ghit, Dick Epema, and Alexandru Iosup. An Experimental Performance Evaluation
of Autoscaling Policies for Complex Workflows. In Proceedings of the 8th ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE 2017), l’Aquila, Italy, April 22–26,
2017. ACM, New York, NY, USA. April 2017. Best Paper Candidate 1/4.

[SHK+15] Simon Spinner, Nikolas Herbst, Samuel Kounev, Xiaoyun Zhu, Lei Lu, Mustafa
Uysal, and Rean Griffith. Proactive Memory Scaling of Virtualized Applications. In Proceed-
ings of the 2015 IEEE 8th International Conference on Cloud Computing (IEEE CLOUD
2015), New York, NY, USA, June 27, 2015, pages 277–284. IEEE. June 2015, Acceptance Rate:
15%.

[vKHZ+15] Jóakim von Kistowski, Nikolas Herbst, Daniel Zoller, Samuel Kounev, and An-
dreas Hotho. Modeling and Extracting Load Intensity Profiles. In Proceedings of the 10th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2015), Firenze, Italy, May 18–19, 2015. Acceptance rate: 29%.

[HKWG15a] Nikolas Herbst, Samuel Kounev, Andreas Weber, and Henning Groenda. BUNGEE:
An Elasticity Benchmark for Self-Adaptive IaaS Cloud Environments. In Proceedings of the
10th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2015), Firenze, Italy, May 18–19, 2015. Acceptance rate: 29%.

[HHKA13] Nikolas Herbst, Nikolaus Huber, Samuel Kounev, and Erich Amrehn. Self-Adap-
tive Workload Classification and Forecasting for Proactive Resource Provisioning. In Pro-
ceedings of the 4th ACM/SPEC International Conference on Performance Engineering (ICPE
2013), Prague, Czech Republic, April 21–24, 2013, pages 187–198. ACM, New York, NY,
USA. April 2013. Among TOP 3 most cited ICPE papers (according to h5-index on Google
Scholar).

xiv

Peer-Reviewed International Short Conference Papers
[GHSK18] Johannes Grohmann, Nikolas Herbst, Simon Spinner, and Samuel Kounev. Using
Machine Learning for Recommending Service Demand Estimation Approaches (Position
Paper). In Proceedings of the 8th International Conference on Cloud Computing and Ser-
vices Science (CLOSER 2018), Funchal, Madeira, Portugal, March 19-21, 2018. SciTePress.
March 2018.

[ZBH+17] Marwin Züfle, André Bauer, Nikolas Herbst, Valentin Curtef, and Samuel Kounev.
Telescope: A Hybrid Forecast Method for Univariate Time Series. In Proceedings of the
International Work-Conference on Time Series (ITISE 2017), Granada, Spain, September
2017.

[GHSK17] Johannes Grohmann, Nikolas Herbst, Simon Spinner, and Samuel Kounev. Self-
Tuning Resource Demand Estimation. In Proceedings of the 14th IEEE International Confer-
ence on Autonomic Computing (ICAC 2017), Columbus, OH, July 17–21, 2017.

[HKR13] Nikolas Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in Cloud Computing:
What it is, and What it is Not. In Proceedings of the 10th International Conference on
Autonomic Computing (ICAC 2013), San Jose, CA, June 24–28, 2013. USENIX. June 2013.
TOP 1 most cited ICAC paper (according to h5-index on Google Scholar).

Peer-Reviewed Book Chapters
[HBK+17] Nikolas Herbst, Steffen Becker, Samuel Kounev, Heiko Koziolek, Martina Mag-

gio, Aleksandar Milenkoski, and Evgenia Smirni. Metrics and Benchmarks for Self-Aware
Computing Systems. In Self-Aware Computing Systems, Samuel Kounev, Jeffrey O. Kephart,
Aleksandar Milenkoski, and Xiaoyun Zhu, editors. Springer Verlag, Berlin Heidelberg, Ger-
many, 2017.

[HAA+17] Nikolas Herbst, Ayman Amin, Artur Andrzejak, Lars Grunske, Samuel Kounev, Ole
J. Mengshoel, and Priya Sundararajan. Online Workload Forecasting. In Self-Aware Comput-
ing Systems, Samuel Kounev, Jeffrey O. Kephart, Xiaoyun Zhu, and Aleksandar Milenkoski,
editors. Springer Verlag, Berlin Heidelberg, Germany, 2017.

Peer-Reviewed Workshop, Tutorial, Poster, and Demonstration Papers
[BHIP17] Gunnar Brataas, Nikolas Herbst, Simon Ivansek, and Jure Polutnik. Scalability

Analysis of Cloud Software Services. In Companion Proceedings of the 14th IEEE Interna-
tional Conference on Autonomic Computing (ICAC 2017), Self Organizing Self Managing
Clouds Workshop (SOSeMC 2017), Columbus, Ohio, July 17, 2017. IEEE. July 2017.

xv

[BHK17] André Bauer, Nikolas Herbst, and Samuel Kounev. Design and Evaluation of
a Proactive, Application-Aware Auto-Scaler (Tutorial Paper). In Proceedings of the 8th
ACM/SPEC International Conference on Performance Engineering (ICPE 2017), L’Aquilla,
Italy, April 22, 2017.

[vKHK14d] Jóakim von Kistowski, Nikolas Herbst, and Samuel Kounev. Using and Extending
LIMBO for the Descriptive Modeling of Arrival Behaviors (Short Paper & Poster). In Proceed-
ings of the Symposium on Software Performance 2014, Stuttgart, Germany, November 2014,
pages 131–140. University of Stuttgart, Faculty of Computer Science, Electrical Engineering,
and Information Technology. November 2014, Best Poster Award.

[WHGK14] Andreas Weber, Nikolas Herbst, Henning Groenda, and Samuel Kounev. To-
wards a Resource Elasticity Benchmark for Cloud Environments. In Proceedings of the
2nd International Workshop on Hot Topics in Cloud Service Scalability (HotTopiCS 2014),
co-located with the 5th ACM/SPEC International Conference on Performance Engineering
(ICPE 2014), Dublin, Ireland, March 22, 2014, HotTopiCS ’14, pages 5:1–5:8. ACM, New York,
NY, USA. March 2014.

[KSH14] Rouven Krebs, Philipp Schneider, and Nikolas Herbst. Optimization Method for
Request Admission Control to Guarantee Performance Isolation. In Proceedings of the
2nd International Workshop on Hot Topics in Cloud Service Scalability (HotTopiCS 2014),
co-located with the 5th ACM/SPEC International Conference on Performance Engineering
(ICPE 2014), Dublin, Ireland, March 22, 2014. ACM. March 2014.

[vKHK14c] Jóakim von Kistowski, Nikolas Herbst, and Samuel Kounev. Modeling Varia-
tions in Load Intensity over Time. In Proceedings of the 3rd International Workshop on
Large-Scale Testing (LT 2014), co-located with the 5th ACM/SPEC International Conference
on Performance Engineering (ICPE 2014), Dublin, Ireland, March 22, 2014, pages 1–4. ACM,
New York, NY, USA. March 2014.

[vKHK14a] Jóakim von Kistowski, Nikolas Herbst, and Samuel Kounev. LIMBO: A Tool
For Modeling Variable Load Intensities (Demo Paper). In Proceedings of the 5th ACM/SPEC
International Conference on Performance Engineering (ICPE 2014), Dublin, Ireland, March
22–26, 2014, ICPE ’14, pages 225–226. ACM, New York, NY, USA. March 2014.

xvi

Peer-reviewed Software Artifacts
[vKHK14b] Jóakim von Kistowski, Nikolas Herbst, and Samuel Kounev. LIMBO Load Inten-
sity Modeling Tool. Research Group of the Standard Performance Evaluation Corporation
(SPEC), Peer-reviewed Tools Repository, 2014.

Technical Reports
[HKO+16] Nikolas Herbst, Rouven Krebs, Giorgos Oikonomou, George Kousiouris, Athana-
sia Evangelinou, Alexandru Iosup, and Samuel Kounev. Ready for Rain? A View from SPEC
Research on the Future of Cloud Metrics. Technical Report SPEC-RG-2016-01, SPEC Re-
search Group — Cloud Working Group, Standard Performance Evaluation Corporation
(SPEC), 2016, CoRR, arXiv:1604.03470.

[BvHW+15] Andreas Brunnert, Andre van Hoorn, Felix Willnecker, Alexandru Danciu, Wil-
helm Hasselbring, Christoph Heger, Nikolas Herbst, Pooyan Jamshidi, Reiner Jung, Joakim
von Kistowski, Anne Koziolek, Johannes Kroß, Simon Spinner, Christian Vögele, Jürgen
Walter, and Alexander Wert. Performance-oriented DevOps: A research agenda. Technical
Report SPEC-RG-2015-01, SPEC Research Group — DevOps Performance Working Group,
Standard Performance Evaluation Corporation (SPEC), August 2015.

[KHvKR11] Michael Kuperberg, Nikolas Herbst, Jóakim Gunnarsson von Kistowski, and
Ralf Reussner. Defining and Quantifying Elasticity of Resources in Cloud Computing and
Scalable Platforms. Technical report, Karlsruhe Institute of Technology (KIT), Am Fasanen-
garten 5, 76131 Karlsruhe, Germany, 2011.

Theses
[Her12] Nikolas Herbst. Workload Classification and Forecasting. Diploma Thesis, Karl-

sruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany, 2012.
Forschungszentrum Informatik (FZI) Prize "Best Diploma Thesis".

[Her11] Nikolas Herbst. Quantifying the Impact of Configuration Space for Elasticity Bench-
marking. Study Thesis, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131
Karlsruhe, Germany, 2011.

xvii

Contents

1 Introduction 1
1.1 Motivation and Context . 1
1.2 State-of-the-Art and Problem Statement . 2
1.3 Guiding Goals and Research Questions . 4
1.4 Contribution and Evaluation Summary . 5
1.5 Thesis Outline . 8

I Foundations and State-of-the-Art 11

2 Foundations 13
2.1 Elasticity in Cloud Computing . 13

2.1.1 Prerequisites . 15
2.1.2 Definition of Elasticity in Cloud Computing 15
2.1.3 Elasticity Dimensions and Core Aspects 15
2.1.4 Differentiation to Scalability and Efficiency 16

2.2 Self-Aware Computing Systems . 17
2.3 Time Series Analysis . 18

2.3.1 Time Series and Load Intensity Profiles 19
2.3.2 Error Measures for Forecasting Results 19
2.3.3 Time Series Decomposition . 22
2.3.4 Seasonal vs. Cyclic Time Series . 26
2.3.5 Frequency Estimations using Periodogram 28
2.3.6 Machine Learning Aproaches for Time Series Forecasting 29
2.3.7 Statistical Modeling Frameworks for Time Series Forecasting 31

3 State-of-the-Art 33
3.1 Approaches to Workload Modeling . 34

3.1.1 User Behavior Models . 34
3.1.2 Service Demand Focused Workload Modeling 34
3.1.3 Regression Techniques . 35
3.1.4 Statistical Inter-Arrival Models . 35

3.2 Related Elasticity Metrics and Measurement Approaches 36
3.2.1 Related Elasticity Metrics . 36
3.2.2 Elasticity Measurement Approaches . 37

3.3 On the State of the Art in Auto-Scaling . 39
3.3.1 Threshold-based Rule Auto-Scalers . 39
3.3.2 Auto-Scalers based on Queueing Theory 39

xix

Contents

3.3.3 Auto-Scalers based on Control Theory 40
3.3.4 Auto-Scalers based on Reinforcement Learning 40
3.3.5 Auto-Scalers leveraging Time Series Analysis 40

3.4 Related Work on Hybrid Forecasting . 41
3.4.1 Ensemble Forecasting . 42
3.4.2 Forecaster Recommendation . 42
3.4.3 Feature Engineering based on Decomposition 42

II Benchmarking Elasticity of Auto-Scaling Mechanisms 45

4 Modeling and Extraction Load Intensity Profiles 47
4.1 Introduction . 48
4.2 The Descartes Load Intensity Models DLIM and hl-DLIM 49

4.2.1 DLIM Model . 50
4.2.2 High-level DLIM . 52

4.3 Model Instance Extraction . 55
4.3.1 Extracting a s-DLIM and p-DLIM Instance 55
4.3.2 Extracting an hl-DLIM Instance . 62

4.4 Delimitation from the State-of-the-Art in Load Profile Modeling 63
4.5 Concluding Remarks . 63

5 Elasticity Metrics and Measurement Methodology 65
5.1 Introduction . 66
5.2 Elasticity Metrics . 67

5.2.1 Provisioning Accuracy . 68
5.2.2 Wrong Provisioning Time Share . 69
5.2.3 Instability . 70
5.2.4 Alternative Stability Measure Jitter . 74

5.3 Aggregating Elasticity Metrics . 74
5.3.1 Auto-Scaling Deviation . 75
5.3.2 Pairwise Competition . 75
5.3.3 Elastic Speedup . 76

5.4 Metric Discussion . 77
5.5 Bungee Elasticity Benchmarking Framework . 78

5.5.1 Load Modeling and Generation . 79
5.5.2 Analysis and Calibration . 82
5.5.3 Measurement and Metric Calculation . 87
5.5.4 Limitations of Scope . 89

5.6 Concluding Remarks . 90

III Methods for Reliable Auto-Scaling 91

6 Hybrid Auto-Scaling 93
6.1 Introduction . 94

xx

Contents

6.2 Chameleon Design Overview . 96
6.2.1 Forecast Component . 97
6.2.2 LibReDE Resource Demand Estimation Component 98

6.3 Decision Management . 98
6.4 Event Manager . 103
6.5 Assumptions and Limitations . 105
6.6 Concluding Remarks . 105

7 Forecasting Complex Seasonal Time-Series 107
7.1 Telescope Approach . 108
7.2 Concluding Remarks . 110

IV Evaluation 111

8 Load Profile Model Accuracy Evaluation 113
8.1 Internet Traffic Archive and BibSonomy Traces 114
8.2 Wikipedia and CICS Traces . 117
8.3 Summary . 119

9 Evaluation of Elasticity Metrics and Bungee Measurement Methodology 121
9.1 Experiment Setup . 121

9.1.1 Threshold-based Auto-Scaler Parameters 122
9.1.2 Benchmark Controller Configuration . 123

9.2 System Analysis Evaluation . 123
9.2.1 Reproducibility . 123
9.2.2 Linearity Assumption . 125
9.2.3 Summary of System Analysis Evaluation 127

9.3 Metric Evaluation . 128
9.3.1 Experiment 1: Underprovisioning Accuracy 129
9.3.2 Experiment 2: Overprovisioning Accuracy 130
9.3.3 Experiment 3: Underprovisioning Timeshare 132
9.3.4 Experiment 4: Overprovisioning Timeshare 133
9.3.5 Experiment 5: Oscillations for Positive Jitter and Instability 135
9.3.6 Experiment 6: Inertia for Negative Jitter and Instability 137
9.3.7 Summary of Metric Evaluation Experiments 138

9.4 Benchmark Methodology Case Study . 139
9.4.1 System Configuration . 139
9.4.2 Results . 140

9.5 Summary . 143

10 The Hybrid Auto-Scaler Chameleon in a Benchmark Competition 145
10.1 Workload and Application . 145
10.2 Competing Auto-Scalers . 148

10.2.1 Reactive . 148
10.2.2 Adapt . 148

xxi

Contents

10.2.3 Hist . 148
10.2.4 Reg . 149
10.2.5 ConPaaS . 149

10.3 Experiment Results . 150
10.3.1 Introduction to the Results . 150
10.3.2 Auto-Scaler Performance Variability . 153
10.3.3 Auto-Scaling in Private vs. Public IaaS Clouds 153
10.3.4 Side-Evaluation: The Impact and Quality of Forecasting in Chameleon 154

10.4 Overall Evaluation Results . 157
10.5 Threats to Validity . 161
10.6 Summary . 161

11 Telescope Forecasting Prototype: Preliminary Evaluation and Case Study 163
11.1 Preliminary Forecast Accuracy Evaluation based on Selected Time-Series . . . 163
11.2 Chameleon Auto-Scaling Case Study leveraging Telescope Forecasts 166
11.3 Summary . 169

V Conclusions and Outlook 171

12 Conclusions and Outlook 173
12.1 Thesis Summary . 173
12.2 Open Challenges and Outlook . 175

12.2.1 Challenges of Elasticity in Applications Scaling Multiple Services 175
12.2.2 Emerging Challenges due to Technological Evolution 176
12.2.3 Future Work on Self-Aware Forecasting 179

Appendices 181

List of Figures 189

List of Tables 191

Bibliography 193

xxii

Chapter 1

Introduction

Several goals are pursued in this introductory chapter. First, we motivate the topic and
set the context for the work presented in this thesis. Second, we summarize the current
state-of-the-art and formulate the problem statement. Section 1.3 highlights two guiding
goals of the thesis accompanied by a compact set of research questions to clarify the points
of contribution. Third, we outline the four individual contributions of the thesis highlighting
the way they build on top of each other and giving first insights on the design and results of
the evaluation. Last, by referring to the previously defined chain of research questions, we
motivate the structure of the thesis.

1.1 Motivation and Context

Starting roughly a decade ago in the year 2006 with the opening of the first commercial cloud
service offerings by Amazon Web Services (AWS)1, cloud computing became a hype topic in
both academia and industry. Two years later, competition in the field of cloud computing
started after Microsoft, Google and IBM entered the market. Now, these three players are
estimated to hold approximately one third of the market, while AWS is holding another third
as the market leader. The cloud computing market experienced mind-blowing growth rates
and reached according to a recent Gartner report2 a market size of US$ 247 billion in 2017.
In the research community during the last decade, countless publications accompanied by
a number of newly established flagship conferences (e.g., IEEE Cloud, ACM Symposium on
Cloud Computing SoCC) and journals (e.g., IEEE Transactions on Cloud Computing).

Cloud computing is now developing towards a settling and maturation phase with growth
rates falling below 18% as predicted by Gartner. Nevertheless, cloud computing is continu-
ing to transform center operations. Co-Chief-Executive-Officer Marc Hurd3 of the Oracle
Corporation predicts that by 2025, 80% of the corporate data centers will disappear, as
applications in production are increasingly moving to cloud environments. Especially in the
ongoing settling and maturation phase of cloud computing offerings, the scientific progress
and industry growth depend on established principles for measuring and reporting cloud
system quality attributes, as highlighted in a recent Gigaom analyst report4.

1The History of AWS: https://www.computerworlduk.com/galleries/cloud-computing/
aws-12-defining-moments-for-the-cloud-giant-3636947/

2Gartner Cloud Report 2017: https://www.gartner.com/newsroom/id/3616417
3Oracle CEO Marc Hurd: https://markhurd.com/about-mark-hurd/
4Gigaom Analyst Report: The Importance of Benchmarking Clouds:

1

https://www.computerworlduk.com/galleries/cloud-computing/aws-12-defining-moments-for-the-cloud-giant-3636947/
https://www.computerworlduk.com/galleries/cloud-computing/aws-12-defining-moments-for-the-cloud-giant-3636947/
https://www.gartner.com/newsroom/id/3616417
https://markhurd.com/about-mark-hurd/

Chapter 1: Introduction

According to a Gartner report from 20095, the major selling point of cloud computing
offerings is their pay-per-use paradigm with no need for long term investments and opera-
tion costs. In combinations with the enabling technology of hardware virtualization, the
pay-per-use service model offers the ability to elastically adapt the allocated computing
resources to the current demand. Cloud operators can manage their physical resources -
at least in theory - in a way to optimize efficiency. This sometimes involves selling more
virtual resources than physically available - also known as overbooking - while still keeping
the operation risk for the customer at a tailored minimum by giving them the opportunity
to define resource priorities.

1.2 State-of-the-Art and Problem Statement

Elastic scaling of allocated resources is realized by so-called auto-scaling mechanisms that
are based on monitored performance measures supposed to match the current demand
in a way that the performance remains stable while resources are utilized efficiently. The
common state of practice is the use of simplistic threshold-based mechanisms that due
to their reactive nature incur performance degradation during the periods of provisioning
delays. In contrast, the responsibilities of cloud infrastructure operators are highly complex
and dynamic trade-offs to optimize workload-dependent resource placement, co-location,
load-balancing, sizing and routing questions. As a result of these complex and interwoven
challenges that are usually addressed in a best-effort manner, the cloud customers experi-
ence a high level of performance variability that still hinders mission critical applications to
leverage cloud solutions [IYE11].

In the course of the last decade, a high-number of auto-scalers has been proposed in the
literature trying to overcome the limitations of reactive mechanisms by employing proactive
prediction methods as systematically surveyed by Lorido-Botran et al. [LBMAL14]. Lorido-
Botran et al. propose to group auto-scalers into approaches from queueing theory, control
theory, time series analysis and reinforcement learning.

Proactive auto-scaling methods based on time-series analysis estimate resource utiliza-
tion, response times or system load using simplistic regression techniques [IDCJ11], his-
togram analysis [USC+08] or based on black-box methods like auto-regressive integrated
moving averages (ARIMA) [FPK14]. The latter have known deficits with respect to time-to-
result and accuracy in scenarios with complex seasonal patterns and metric resolutions
in finer than half-hourly averages [HHKA14]. Other approaches, e.g., the closed-source
auto-scalers [NSG+13, SSGW11] with involvement from Google, leverage signal processing
methods to characterize the frequency spectrum via Fourier or wavelet transformations
without supporting the capability to capture trends. Auto-scaling mechanisms that leverage
queueing theory are in most cases combined with one of the other approaches. Control
theory approaches share the limitation of short prediction horizons, whereas reinforcement
learning approaches rely on training phases and (in case of system changes) on calibration
periods in a way that might be unfeasible in production environments.

https://gigaom.com/report/the-importance-of-benchmarking-clouds/
5Gartner Highlights Five Attributes of Cloud Computing: https://www.gartner.com/newsroom/id/

1035013

2

https://gigaom.com/report/the-importance-of-benchmarking-clouds/
https://www.gartner.com/newsroom/id/1035013
https://www.gartner.com/newsroom/id/1035013

1.2 State-of-the-Art and Problem Statement

Furthermore, the majority of proposed auto-scaling mechanisms share the assumption
of linear and endless scalability of the cloud hosted applications. In practice, this assump-
tion is not realistic due to communication overheads, overbooking practices and stateful
application services.

With few exceptions, existing proactive auto-scaling mechanisms proposed in the litera-
ture remain without shared code artifacts. This fact highly reduces the reproducibility of
experiment results and comparability between alternatives. As a result, the adoption of
proactive auto-scalers in production is still very low due to the high risk of relying on a single
proactive method based on which scaling decisions are made.

According to our recent literature survey [PVB+18], approximately 40% of cloud research
publications are evaluated using simulation. As this survey also covers auto-scaling mech-
anisms, we can say that it is common practice to evaluate auto-scaling approaches in
simulative frameworks. Experimental auto-scaler evaluations are usually conducted in a
case-study like manner by showing that the proposed method is capable to improve the
service level compliance compared to an arbitrary static resource assignment in a small
number of scenarios. Those evaluation scenarios are often driven by synthetic load intensity
profiles such as sinus signals or saw tooth patterns that lack in representativeness, especially
as they are easy to predict by a proactive auto-scaling method. Real-world load profiles
exhibit a mixture of trend, seasonal, burst and noise components and are thus complex to
capture, share, modify and replay at scale.

The process of rating cloud infrastructure offerings in terms of the quality of their elastic
scaling remains undefined due to the lack of precisely defined meaningful metrics that
capture the quality of elastic resource adaptations achieved in practice together with an
established set of measurement run rules. Besides cost/efficiency-oriented measures or
experienced end-user performance that both only allow for indirect characterization of
elastic adaptations, only low-level metrics like the technical provisioning time to bring up a
certain resource on average have been proposed and used in practice.

Thus, clear guidance for the selection and configuration of an auto-scaler for a given
context is not available. The few existing proactive auto-scalers are optimized in a highly
application specific way and usually kept undisclosed (e.g., Netflix’s Predictive Auto-Scaler
Scryer6) while in contrast many other artifacts of cloud software stacks are open-sourced
(e.g., Netflix Open Source Platform7 with currently over 130 public project repositories).

In summary, the problem addressed in this thesis can be formulated as follows: The risk
of using a proactive auto-scaling algorithm in a production environment is still high with
the result of a low adoption. Existing solutions are either undisclosed, tailored solutions
or approaches described in the literature are not tested with the help of a standardized
benchmark that would allow for fair comparisons.

6Netflix’s Predictive Auto-Scaler Scryer: https://medium.com/netflix-techblog/
scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270

7Netflix Open Source Platform: https://github.com/Netflix

3

https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
https://github.com/Netflix

Chapter 1: Introduction

1.3 Guiding Goals and Research Questions
Having identified a number of deficits in the current state-of-the-art of auto-scaler design
and assessment, we now formulate two overarching guiding goals, each accompanied by
four research questions (RQ) to be addressed and answered in the course of this thesis. The
thesis is structured in three parts. Part I presents the background and foundations needed
for understanding the contributions of this thesis, as well as and an extensive summary of
the state-of-the-art. Part II is focused on the first guiding goal with its set of RQs. Finally,
Part III addresses the second guiding goal with its four RQs.

Goal A: Establish a benchmark for state-of-the-art auto-scalers to increase trust in novel
proactive mechanisms fostering a broader adoption of auto-scalers in production.

To approach this guiding goal, we split the respective challenges into several subgoals.
First, we formulate two research questions expressing the need to define, modify and
generate representative load intensity profiles in a flexible manner to trigger an realistic
amount of resource adaptations. Second, two additional research questions capture the
need for a sound definition of metrics and measurement methodology as building blocks
for an elasticity benchmark.

RQ A.1: How to model load intensity profiles from real-world traces in a descriptive, com-
pact, flexible and intuitive manner?

RQ A.2: How to automatically extract load intensity profile models from existing traces
with a reasonable accuracy and computation time?

RQ A.3: What are meaningful intuitive metrics to quantify accuracy, timing and stability
as quality aspects of elastic resource adaptations?

RQ A.4: How can the proposed elasticity metrics be measured in a reliable and repeatable
way to enable fair comparisons and consistent rankings across systems with different
performance?

Goal B: Reduce the risk of using novel auto-scalers in operation by leveraging multiple
different proactive mechanisms applied in combination with a conventional reactive
mechanism.

We approach the challenge of this goal, first, by proposing a novel hybrid auto-scaling
mechanism and then evaluating its performance in detail against existing state-of-the-art
auto-scalers. The comprehensive auto-scaler evaluation and comparison is enabled via
results from Goal 1. Second, we address deficits of current time-series forecasting methods
by proposing a hybrid forecasting mechanism and showcasing its benefits in an auto-scaling
usage context.

4

1.4 Contribution and Evaluation Summary

RQ B.1: How can conflicting auto-scaling decisions from independent reactive and proac-
tive decision loops be combined to improve the overall quality of auto-scaling deci-
sions?

RQ B.2: How well does the proposed hybrid auto-scaling approach perform compared to
state-of-the-art mechanisms in realistic deployments and application scenarios?

RQ B.3: How can a hybrid forecast approach based on decomposition be designed to be
capable of providing accurate and fast multi-step-ahead forecasts of complex seasonal
time-series8 within seconds?

RQ B.4: Is such a hybrid forecast approach capable to improve the performance and
reliability of auto-scaling mechanisms?

1.4 Contribution and Evaluation Summary
After defining the set of two guiding goals and research questions, we now summarize four
core contributions of this thesis. Each contribution addresses two of the research questions
and thus a part of either Goal A or B. The contributions have in common that they build on
top of each other and as a results are highly integrated.

Contribution I: Approaching Goal A and answering RQ A.1 and RQ A.2, we propose a de-
scriptive load profile modeling framework together with automated model extraction
from recorded traces to enable reproducible workload generation with realistic load
intensity variations. The model design follows the approach of decomposing recorded
data into its deterministic components of piece-wise defined trends and recurring
or overarching seasonal patterns, while also allowing to model stochastic noise dis-
tributions and explicit bursts. The components are in principle piece-wise defined
mathematical functions that can be nested and combined with mathematical opera-
tions in a tree of functions. Automated extraction processes detect frequencies and
decompose recorded traces based on an efficient heuristics. We name the proposed
model Descartes Load Intensity Model (DLIM) with its Limbo framework that pro-
vides key functionality to stress and benchmark resource management approaches in
a representative and fair manner.

We evaluate the DLIM model expressiveness by applying and comparing alternative
configurations of the extraction processes to ten different real-world traces that cover
between two weeks and seven months of data. Automatically extracted DLIM model
instances exhibit an average modeling error of 15.2%. In terms of accuracy and pro-
cessing speed, our proposed extraction methods based on descriptive models deliver
better or similar results compared to existing non-descriptive time series decompo-
sition methods. In contrast to DLIM models, classical time-series decomposition
approaches deliver three rows of data points as output as opposed to a compact and
flexible descriptive model. This contribution resulted in an ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS) journal article published in 2017 [vKHK+17].

8With a complex seasonal time-series we refer to data points over time with resolution in the order of minutes,
a comprehensive history and a mixture of non-trivial recurring patterns.

5

Chapter 1: Introduction

Contribution II: To address RQ A.3 and RQ A.4, we first provide a definition of the term
elasticity in cloud computing9 , describing the core aspects of elasticity and distin-
guishing it from related terms like efficiency and scalability. Furthermore, we pro-
pose a set of intuitive metrics for quantifying timing, stability and accuracy aspects
of elasticity. Based on these metrics, which were endorsed by the SPEC Research
Group [HKO+16], we propose a novel approach for benchmarking the elasticity of
auto-scalers deployed in Infrastructure-as-a-Service (IaaS) cloud platforms indepen-
dent of the performance exhibited by the provisioned underlying resources. The
proposed Bungee elasticity benchmarking framework leverages DLIM’s modeling
capabilities to generate realistic load intensity profiles.

In the corresponding evaluation, we show for each of the proposed metrics that they
provide a consistent ranking of elastic systems on an ordinal scale. The Bungee mea-
surement methodology can achieve reproducible results in a controlled environment
as well as results with an acceptable variation in uncontrolled environments like
public clouds. Finally, we present an extensive case study of real-world complexity
demonstrating that the proposed approach is applicable in realistic scenarios and can
cope with different performance levels of the underlying resources. This contribution
resulted in a full research paper [HKWG15b], and a follow up journal article published
in ACM Transactions on Modeling and Performance Evaluation of Computing Systems
(ToMPECS) [IAEH+18] based on invitation as best paper candidate at the International
Conference on Performance Engineering (ICPE) [IAEH+17]. The elasticity metric defi-
nitions became a substantial part of an ACM ToMPECS article [HBK+18]. Furthermore,
the Bungee measurement methodology and results became a significant contribution
to an article [PVB+18] (under resubmission) on defining and assessing principles for
repeatable experimentation in cloud environments.

Contribution III: We tackle the challenge of reducing the risk of relying on a single proac-
tive auto-scaler by answering RQ B.1 and RQ B.2 and proposing a new hybrid auto-
scaling mechanism called Chameleon. We combine multiple different proactive meth-
ods coupled with a reactive fallback mechanism. Chameleon employs on-demand,
automated time series-based forecasting methods to predict the arriving load inten-
sity in combination with run-time service demand estimation techniques to calculate
the required resource consumption per work unit without the need for application
instrumentation. It can also leverage application knowledge by solving product-form
queueing networks used to derive optimized scaling actions. The Chameleon ap-
proach is first in resolving conflicts between reactive and proactive scaling decisions
in an intelligent way. Chameleon leverages as building blocks core developments of
the Descartes Research Group like the Descartes Modeling Language (DML) [HBS+17]
to capture data center application deployments and the Library for Resource Demand
Estimation (LibReDE) [SCBK15]. The benefits of using self-tuning service demand

9Our definition of elasticity in cloud computing [HKR13] from 2013 became highly adopted: The short paper is
according to h5-index on Google scholar Top 1 of most cited papers presented at the International Conference
on Autonomic Computing (c.f. https://scholar.google.de/citations?hl=de&view_op=list_
hcore&venue=eAgro8m_j_AJ.2017) and has been picked by Wikipedia.org in a respective encyclopedic
article (c.f. https://en.wikipedia.org/wiki/Elasticity_(cloud_computing)).

6

https://scholar.google.de/citations?hl=de&view_op=list_hcore&venue=eAgro8m_j_AJ.2017
https://scholar.google.de/citations?hl=de&view_op=list_hcore&venue=eAgro8m_j_AJ.2017
https://en.wikipedia.org/wiki/Elasticity_(cloud_computing)

1.4 Contribution and Evaluation Summary

estimation techniques [GHSK17] based on wide-spread utilization measurements as
input for auto-scaling mechanisms were published in a full research paper [BGHK18].

We conduct a comprehensive auto-scaler competition enabled by leveraging the re-
sults from Contributions I and II: We benchmark Chameleon against four different
state-of-the-art proactive auto-scalers and a standard threshold-based one in three
different cloud environments: (i) a private CloudStack-based cloud, (ii) the public
AWS EC2 cloud, as well as (iii) an OpenNebula-based shared IaaS cloud. We gener-
ate five different representative load profiles each taken from different real-world
system traces leveraging the functionality of Limbo (Contribution I) and Bungee (Con-
tribution II) to drive a CPU-intensive benchmark workload. The workload is taken
from the SPEC Server Efficiency Rating (SERT) tool and computes matrix decom-
positions. Overall, Chameleon achieves the best and most stable scaling behavior
based on user and elasticity performance metrics, analyzing the results from 400
hours of aggregated experiment time. We demonstrate that by combining scaling
decisions from reactive and proactive cycles based on our proposed conflict resolution
heuristic, the auto-scaling performance of Chameleon is improved. This contribution
resulted in a submitted article to the IEEE Transactions on Parallel and Distributed
Systems (TPDS) [BHS+18]10.

Contribution IV: As a side-contribution of this thesis, we address RQ B.3 and RQ B.4 by
proposing a self-aware forecasting prototype called Telescope. It incorporates multi-
ple individual forecasting methods by decomposing the univariate time series into
the components trend, season, and remainder. First, the frequency is determined,
anomalies are detected and removed, and the type of decomposition is estimated
based on a majority vote of tailored tests for different multiplicative or additive decom-
positions. After decomposing, the ARIMA (autoregressive integrated moving averages)
method without seasonality is applied on the trend pattern, whereas the detected
seasonality is simply continued. Moreover, the single periods are clustered in order
to learn categorical information. The cluster labels are forecast by applying artificial
neural networks. This helps to automatically distinguish between different type of
days. Lastly, eXtreme Gradient Boosting (XGBoost), a novel and promising method
published in 2016 [CG16] is used to learn the dependency between all previously
extracted covariates and to combine the forecasts of the individual components.

The preliminary evaluation indicates based on two different traces that an early
implementation of the Telescope approach outperforms the best of six state-of-the-
art competitors in terms of accuracy. Telescope improves the time-to-result by up to a
factor of 19 compared to the three most competitive forecasting methods. In a case
study, we demonstrate that Telescope is capable of further improving Chameleon’s
auto-scaling performance compared to the formerly used state-of-the-art forecasting
method tBATS or seasonal ARIMA. We note that Contribution IV is included in this
thesis as a side-contribution due to its initial stage of research and current and planned
future works based on the Telescope prototype are ongoing. The idea together with a
preliminary evaluation of Telescope is published in an extended abstract [ZBH+17]

10The respective IEEE TPDS submission is under review since October 2017.

7

Chapter 1: Introduction

with more extensive publications planned.

We are confident that the four core contributions of this thesis have the potential to change
the way cloud resource management approaches are assessed leading to improving the
quality of autonomic management algorithms as a result. To support such a development,
we published code artifacts of all four contributions of this thesis as open-source tools
actively maintained and accompanied by user and developer guides [BHK17]11.

Beyond the known limitations and assumptions explicitly stated in the individual chapters,
we see a number of arising challenges for future research in cloud resource management
and its assessment methods: (i) The adoption of containerization on top of virtual machine
instances introduces another level of indirection. As a result, the nesting of virtual resources
increases resource fragmentation and causes unreliable provisioning delays. (ii) Further-
more, virtualized compute resources tend to become more and more inhomogeneous
associated with various priorities and trade-offs. (iii) Due to DevOps practices, cloud hosted
service updates are released with a higher frequency, which impacts the dynamics in user
behavior. Auto-Scalers are increasingly required to self-adapt to changing service demands
and arrival patterns.

1.5 Thesis Outline
This thesis is structured into five parts featuring twelve main chapters, including this intro-
ductory chapter (Chapter 1), plus one appendix chapter (Chapter 12.2.3).

Part I starts with a foundational chapter (Chapter 2) to enable a common understanding,
before reviewing the various domains of related work including an elaboration of the deficits
of existing approaches and the differences of our work to the state-of-the-art (Chapter 3).

Part II approaches Goal A and its four RQs A.1-4 in two separate chapters. Chapter 4
defines the DLIM Load Intensity Model together with automated extraction processes.
Chapter 5 features the definition of a set of elasticity metrics together with metric aggregation
methods before defining the Bungee measurement methodology.

In Part III, we address Goal B and its four RQs B.1-4 in‚ two separate chapters. Chap-
ter 6 introduces the hybrid auto-scaling mechanism Chameleon with an intelligent scaling
decision conflict resolution. Chapter 7 outlines as a side-contribution of this thesis, the
approach we follow in the design of the hybrid forecasting method Telescope for complex
seasonal time-series.

Part IV consists of four evaluation chapters (Chapter 8 to Chapter 11) that answer and
underline what is postulated in the research questions as addressed in Contributions I to IV,
namely: (i) a DLIM model accuracy assessment, (ii) sets of experiments evaluating the
proposed elasticity metrics, including an analysis of repeatability and a comprehensive
case-study, (iii) a broad auto-scaler competition underlining the superior performance of
the proposed Chameleon auto-scaler and, finally, (iv) a preliminary evaluation of the early
Telescope forecast prototype applied to two selected time series comparing against state-
of-the-art approaches and a case-study to highlight the potential of Telescope to improve
auto-scaler performance.

11Descartes Tools: https://descartes.tools

8

https://descartes.tools

1.5 Thesis Outline

The remaining Part V summarizes the results of the thesis also motivating the challenges
for future research partially enabled by the contributions of this thesis. An appendix chapter
includes the detailed results of the conducted auto-scaler competition in the evaluation
chapter on the Chameleon auto-scaler (Chapter10).

9

Part I

Foundations and State-of-the-Art

Chapter 2

Foundations

In this chapter, we aim to lay the ground for a common understanding of the contributed
approaches and interpretation of the evaluation results.

We assume that the reader is familiar with basics of queueing theory [HB13] and the
operational laws of performance engineering [MDA04], as well as aware of virtualiza-
tion technologies and the notion of cloud computing including its settled abstraction
levels: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS), and Software-as-
a-Service (SaaS) [AFG+10].

First, we introduce and discuss our meanwhile established definition of elasticity in cloud
computing, before we cover the definition of self-aware computing systems together with
arguments why we think our proposed auto-scaling and forecasting approaches fulfill this
definition and can be considered “self-aware”. Then, we define our notion of load intensity
profiles stepping into the field of time series analysis: We give an overview on error metrics,
and summarize two approaches for time series decomposition (STL and BFAST). We discuss
the distinction of seasonal vs. cyclic time series and summarize methods for frequency esti-
mation using auto-correlation and a Fourier-transformation-based periodigram. Towards
the end of this chapter, we cover relevant methods for time series forecasting from the fields
of machine learning (ANN, XGBoost) and statistical modeling frameworks (ARIMA, ETS
and tBATS).

2.1 Elasticity in Cloud Computing

Elasticity has originally been defined in physics as a material property capturing the capa-
bility of returning to its original state after a deformation. In economical theory, informally,
elasticity denotes the sensitivity of a dependent variable to changes in one or more other
variables [CW09]. In both cases, elasticity is an intuitive concept and can be precisely
described using mathematical formulas.

The concept of elasticity has been transferred to the context of cloud computing and is
commonly considered as one of the central attributes of the cloud paradigm [PSB+09]. For
marketing purposes, the term elasticity is heavily used in cloud providers’ advertisements
and even in the naming of specific products or services. Even though tremendous efforts are
invested to enable cloud systems to behave in an elastic manner, no common and precise
understanding of this term in the context of cloud computing has been established so far,
and no ways have been proposed to quantify and compare elastic behavior. To underline

13

Chapter 2: Foundations

this observation, we cite five definitions of elasticity demonstrating the inconsistent use and
understanding of the term:

1. ODCA, Compute Infrastructure-as-a-Service [OCD12]
”[. . .] defines elasticity as the expandability of the solution [. . .] Centrally, it is the
ability to scale up and scale down capacity based on subscriber workload.”

2. NIST Definition of Cloud Computing [MG11]
”Rapid elasticity: Capabilities can be elastically provisioned and released, in some
cases automatically, to scale rapidly outward and inward commensurate with de-
mand. To the consumer, the capabilities available for provisioning often appear to be
unlimited and can be appropriated in any quantity at any time.”

3. IBM, Thoughts on Cloud, Edwin Schouten, 2012 [Sch12]
”Elasticity is basically a ’rename’ of scalability [. . .]” and ”removes any manual labor
needed to increase or reduce capacity.”

4. Rich Wolski, CTO, Eucalyptus, 2011 [Wol11]
”Elasticity measures the ability of the cloud to map a single user request to different
resources.”

5. Reuven Cohen, 2009 [Coh09]
Elasticity is ”the quantifiable ability to manage, measure, predict and adapt respon-
siveness of an application based on real time demands placed on an infrastructure
using a combination of local and remote computing resources.”

Definitions (1), (2), and (3) in common describe elasticity as the scaling of system resources
to increase or decrease capacity, whereby definitions (1), (2) and (5) specifically state that the
amount of provisioned resources is somehow connected to the recent demand or workload.
In these two points there appears to be some consent. Definitions (4) and (5) try to capture
elasticity in a generic way as a ’quantifiable’ system ability to handle requests using different
resources. Both of these definitions, however, neither give concrete details on the core
aspects of elasticity, nor provide any hints on how elasticity can be measured. Definition (3)
assumes that no manual work at all is needed, whereas in the NIST definition (2), the
processes enabling elasticity do not need to be fully automatic. In addition, the NIST
definition adds the adjective ’rapid’ to elasticity and draws the idealistic picture of ’perfect’
elasticity where endless resources are available with an appropriate provisioning at any
point in time, in a way that the end-user does not experience any performance variability.

We argue that existing definitions of elasticity fail to capture the core aspects of this term
in a clear and unambiguous manner and are even contradictory in some parts. To address
this issue, we propose a new refined definition of elasticity considering in detail its core
aspects and the prerequisites of elastic system behavior (Section 2.1). Thereby, we clearly
differentiate elasticity from its related terms scalability and efficiency.

We first describe some important prerequisites in order to be able to speak of elasticity,
present a new refined and comprehensive definition, and then analyze its core aspects and
dimensions. Finally, we differentiate between elasticity and its related terms scalability
and efficiency.

14

2.1 Elasticity in Cloud Computing

2.1.1 Prerequisites
The scalability of a system including all hardware, virtualization, and software layers within
its boundaries is a prerequisite for speaking of elasticity. Scalability is the ability of a system
to sustain increasing workloads with adequate performance, provided that hardware re-
sources are added. In the context of distributed systems, it has been defined by Jogalekar and
Woodside [JW00], as well as in the works of Duboc et al. [DRW07], where also a measurement
methodology is proposed.

Given that elasticity is related to the ability of a system to adapt to changes in workloads
and demanded resource units, the existence of at least one adaptation process is typically
assumed. The process is normally automated, but it could contain manual steps. Without
a defined adaptation process, a scalable system cannot scale in an elastic manner, as
scalability on its own does not include temporal aspects.

When evaluating elasticity, the following points need to be checked beforehand:

• Automated Scaling:
What adaptation process is used for automated scaling?

• Elasticity Dimensions:
What is the set of resource types scaled as part of the adaptation process?

• Resource Scaling Units:
For each resource type, in what unit is the amount of allocated resources varied?

• Scalability Bounds:
For each resource type, what is the upper bound on the amount of resources that can
be allocated?

2.1.2 Definition of Elasticity in Cloud Computing

Elasticity is the degree to which a system is able to adapt to workload changes
by provisioning and de-provisioning resources in an autonomic manner,
such that at each point in time the available resources

match the current demand as closely as possible.

Our meanwhile established definition of elasticity in cloud computing has been adopted
by the Wikipedia.org encyclopedia1.

2.1.3 Elasticity Dimensions and Core Aspects
Any given adaptation process is defined in the context of at least one or possibly multiple
types of resources that can be scaled up or down as part of the adaptation. Each resource
type can be seen as a separate dimension of the adaptation process with its own elasticity
properties. If a resource type consists of other resources types, like in the case of a virtual

1Elasticity in Cloud Computing on Wikipedia.org: https://en.wikipedia.org/wiki/Elasticity_
(cloud_computing)

15

https://en.wikipedia.org/wiki/Elasticity_(cloud_computing)
https://en.wikipedia.org/wiki/Elasticity_(cloud_computing)

Chapter 2: Foundations

machine having assigned CPU cores and memory, elasticity can be considered at multiple
levels. Normally, resources of a given resource type can only be provisioned in discrete
units like CPU cores, VMs, or physical nodes. For each dimension of the adaptation process
with respect to a specific resource type, elasticity captures the following core aspects of the
adaptation:

Timing The timing aspect is captured by the time shares a system is in an under-provisioned,
over-provisioned or perfect state and by the stability or oscillations of adaptations.

Accuracy The accuracy of scaling is defined as the relative deviation of the current amount
of allocated resources from the actual resource demand on average.

A direct comparison between two systems in terms of elasticity is only possible if the same
resource types (measured in identical units) are scaled. To evaluate the actual elasticity in
a given scenario, one must define the criterion through which the amount of provisioned
resources is considered to match the actual demand needed to satisfy the system’s given
performance requirements. Based on such a matching criterion, specific metrics that
quantify the above mentioned core aspects, as discussed in more detail in Section 5.2, can
be defined to quantify the practically achieved elasticity in comparison to the hypothetical
optimal elasticity. The latter corresponds to the hypothetical case where the system is
scalable with respect to all considered elasticity dimensions without any upper bounds on
the amount of resources that can be provisioned and where resources are provisioned and
de-provisioned immediately as they are needed exactly matching the actual demand at any
point in time. Optimal elasticity, as defined here, would only be limited by the granularity
of resource scaling units.

2.1.4 Differentiation to Scalability and Efficiency

This paragraph discusses the conceptual differences between elasticity and the related terms
scalability and efficiency.

Scalability is a prerequisite for elasticity, but it does not consider temporal aspects of how
fast, how often, and at what granularity scaling actions can be performed. Scalability
is the ability of the system to sustain increasing workloads by making use of additional
resources, and therefore, in contrast to elasticity, it is not directly related to how well
the actual resource demands are matched by the provisioned resources at any point
in time.

Efficiency expresses the amount of resources consumed for processing a given amount
of work. In contrast to elasticity, efficiency is directly linked to resource types that
are scaled as part of the system’s adaptation mechanisms. Normally, better elasticity
results in higher efficiency. This implication does not apply in the other direction, as
efficiency can be influenced by other factors (e.g., different implementations of the
same operation).

16

2.2 Self-Aware Computing Systems

2.2 Self-Aware Computing Systems
In 2017, Kounev et al. define self-aware computing in their book [KKMZ17] in its first
chapter [KLB+17, p. 5] as follows:

Self-aware computing systems are computing systems that:

1. learn models capturing knowledge about themselves and their envi-
ronment (such as their structure, design, state, possible actions, and
runtime behavior)

2. reason using the models (e.g., predict, analyze, consider, and plan)
enabling them to act based on their knowledge and reasoning (e.g., ex-
plore, explain, report, suggest, self-adapt, or impact their environment)

in accordance with higher-level goals, which may also be subject to change.

A self-aware computing system may be „built by an entity with [...] higher-level goals in
mind. This entity may be a human [...] or a set of humans [...] but it does not necessarily
have to be“ [KLB+17, p. 5]. Kounev et al. define two major distinctive characteristics of a
self-aware computing system: „The capability to learn models on ongoing basis, capturing
knowledge relevant to the purpose“ [KLB+17, p. 5]. And the system „must be able to use the
models to reason about this knowledge“ [KLB+17, p. 5]. Both characteristics are driven by
higher-level goals. This means that the goals „are at a higher level of abstraction than the
system and [...] are not under its direct control“ [KLB+17, p. 5]. Kounev et al. describe five
types of reasoning [KLB+17, p. 7]: (i) „predict the load of an IT system [...] in a future time
horizon“. (ii) „predict the system performance (e.g., response time) for a given workload
and resource allocation“. (iii) „predict the expected impact of a given system adaptation
action [...] on the end-to-end system performance“. (iv) „determine how much resources
need to be added to ensure that performance requirements are satisfied under an increasing
system workload“. (v) „estimate the system’s energy consumption at runtime and compare
it to other system configurations in order to select an optimal configuration“.

The self-aware learning and reasoning loop (LRA-M) is a concept „capturing the main
activities in a self-aware computing system“ [KLB+17, p. 13]. Figure 2.1 illustrates the self
and its interfaces, as well as the activities within the self. These activities are driven by goals
and its observations represented as empirical observations. The observations are used
for the ongoing process of learning models, which are then used as basis for the system’s
reasoning process. The reasoning process may trigger actions affecting the behavior of the
system and possibly impacting the environment [KLB+17].

Our proposed hybrid auto-scaling mechanism Chameleon (c.f. Chapter 6) can be clas-
sified as self-aware as it learns and updates models based on observing the cloud and
applications to scale, the arrival and the service processes. With the help of these models it
reasons about the future load and the required resource amount to serve all requests. This
reasoning results in scaling decisions to adapt the system to varying load trying to fulfill
as possible the higher goals of efficient resource usage and end-user satisfaction via stable
performance. Our forecasting approach Telescope learns and updates its internal models

17

Chapter 2: Foundations

Goals

Phenomena
(environment, other systems, humans,...)

Empirical Observations

Models
(self, environment, goals,...)

Learn Act

Actions

Reason

SELF

Figure 2.1: Self-aware learning and reasoning loop: LRA-M loop [KLB+17].

capturing structural knowledge about observed time series values in terms of classification
of patterns over time and composition of values at instances of time. It predicts future values
for further reasoning according to the higher goals of high accuracy, low variance and a
short time-to-result.

2.3 Time Series Analysis

In this section, we first define the terms time series and load intensity profiles, before we
summarize error measures for time series models (internal errors) and forecast errors. We
summarize two decomposition approaches for time series - namely STL and BFAST. Before
we discuss two ways to estimate domination frequencies of time series, we highlight the
differences between cyclic and seasonal time series. At the end of this section, we present in
a compact way two approaches for time series forecasting from machine learning (ANN,
XGBoost) as well as two statical times series modeling frameworks for predictions (seasonal
ARIMA and tBATS).

18

2.3 Time Series Analysis

2.3.1 Time Series and Load Intensity Profiles

Our proposed modeling framework DLIM has been designed to capture variations of load
intensity in the form of user, job, or request arrival rates over time. The models employ an
open workload view.

Open workloads are defined as by Schröder, Wierman and Harchol-Balter [SWHB06] as
workloads in which new jobs arrive independently of job completion. We use the term load
to denote user, job or request arrival rates containing the actual work units. Open workloads
are typical for cloud environments as users are usually unaware of other users or the current
workload.

In this thesis, load intensity denotes the arrival rate of abstract workload units (e.g., users,
jobs, sessions, or requests) at a given point in time. The function r (t) describes the load
intensity at that point in time (t) as follows:

r (t) = R ′(t) wi th R(t) = |{ut0 |t0 ≤ t }| (2.1)

where R(t) is the amount of work units ut0 (set cardinality of the set containing all ut0)
with their respective arrival time t0 which precedes or equals our time of observation t .
This means that all work units ut0 have arrived up until time t . r (t) = R ′(t) is the derivative
of R(t).

A load intensity profile is the function that describes the load intensity over time. Real
world examples of such profiles are shown in several figures throughout this paper, includ-
ing Figure 8.1.

In general, a load intensity profile can be seen as a time series. A time series is a sequence
of data points ordered by equidistant time steps. In other words, let A be a countable set. A
time series is a function

Y : A →R.

As time series emerge when observing phenomena from reality, A is usually finite. Also, it
is useful to think of A as a subset ofQ, because we deal with a discrete set, but still we might
encounter sampling frequencies so high that our time series would start to look continuous.
Thus, we have no access to derivatives of a function, at least not in the sense of calculus.

2.3.2 Error Measures for Forecasting Results

In order to evaluate the accuracy of a forecasting result, several error measures can be used.
Each method has its use cases and thus, most measures have to be used very carefully.
For the calculation of the following error measures, the required basic notation is listed in
Table 2.1.

According to Hyndman and Koehler, all error measures of forecasting accuracy can be
grouped into four categories, i.e., scale-dependent measures, measures based on percentage
errors, measures based on relative errors, and scaled error measures [HK06].

19

Chapter 2: Foundations

Table 2.1: Notations for error measures.

Symbol Meaning
Yt observation at time t
Ft forecast at time t
et = Yt −Ft forecast error at time t
e∗t = Yt −F∗

t forecast error at time t of a standard forecasting method

pt = 100 · et

Yt
percentage error at time t

rt = et

e∗t
relative error at time t

qt = et
1

n−1 ·
∑n

i=2 |Yi −Yi−1|
scaled error at time t

Scale-Dependent Measures

The value of scale-dependent measures depends highly on the scale of the input data.
Thus, scale-dependent measures are not feasible for comparisons across different data sets
containing time series with varying scales. However, scale-dependent measures are useful
for comparing the errors of different forecasting methods on the same data set. A set of
scale-dependent error measures is presented in Table 2.2.

Table 2.2: Scale-dependent measures with formulas.

Error Measure Formula

Mean Square Error (MSE) MSE = mean(e2
t)

Root Mean Square Error (RMSE) RMSE =p
MSE

Mean Absolute Error (MAE) M AE = mean(|et |)
Median Absolute Error (MdAE) Md AE = medi an(|et |)

Measures based on Percentage Errors

In contrast to scale-dependent error measures, measures based on percentage errors are
independent of the scale of the input. That is, these measures are very useful for comparing
forecast accuracy across data sets with arbitrary scale. A set of measures based on percentage
errors is listed in Table 2.3. However, measures based on percentage errors also have
drawbacks. Firstly, these error measures assume a meaningful zero. If any observation
in scope is zero, these measures are infinite or even undefined. On top of that, measures
based on percentage errors are having issues with very small values close to zero. They
show an extremely skewed distribution if any observation in scope is close to zero. Thus,
these measures are not feasible for data sets with many small values. Lastly, the MAPE and
MdAPE punish positive errors harder than negative errors. This can be explained by the

20

2.3 Time Series Analysis

following example. Assume the forecast and original time series to have the same algebraic
sign. Now, if the forecast is always smaller than the original time series, the MAPE will never
exceed 100% since it is normalized by the observation values. However, positive errors,
i.e., overestimating forecasts, can exceed a MAPE value of 100%. Therefore, sMAPE and
sMdAPE are introduced to solve this problem. Yet, they do not completely succeed since
lower forecasts are punished harder than higher forecasts. The factor 200 is set by definition
of Armstrong [Arm85]. In practice, sMAPE and sMdAPE are often used with factor 100, so
that the result lies between 0% and 100%.

Table 2.3: Measures based on percentage errors with formulas.

Error Measure Formula

Mean Absolute Percentage Error (MAPE) M APE = mean(|pt |)
Median Absolute Percentage Error (MdAPE) Md APE = medi an(|pt |)
Root Mean Square Percentage Error (RMSPE) RMSPE =

√
mean(p2

t)

Root Median Square Percentage Error (RMdSPE) RMdSPE =
√

medi an(p2
t)

Symmetric MAPE (sMAPE) sM APE = mean(200 · |Yt −Ft |
Yt +Ft

)

Symmetric MdAPE (sMdAPE) sMd APE = medi an(200 · |Yt −Ft |
Yt +Ft

)

Measures based on Relative Errors

The approach followed by measures based on relative errors differs significantly from the
first two approaches as they compare the forecasting error with the error of a standard
forecasting method. Typically, naïve forecasting is chosen as standard of comparison. Thus,
measures based on relative errors are easy to interpret. However, they also have deficits.
Firstly, if e∗t , i.e., the error of the standard forecasting method, is very small, the measure has
a very high value. Furthermore, e∗t has a positive probability density at zero and thus, the
variance of the relative error is infinite. Table 2.4 shows a list of measures based on relative
errors.

Table 2.4: Measures based on relative errors with formulas.

Error Measure Formula

Mean Relative Absolute Error (MRAE) MR AE = mean(|rt |)
Median Relative Absolute Error (MdRAE) MdR AE = medi an(|rt |)
Geometric Mean Relative Absolute Error (GMRAE) GMR AE = g mean(|rt |)

21

Chapter 2: Foundations

Scaled Error Measures

The fourth category are scaled error measures that consider the developing of the original
time series. That is, the forecasting error is normalized by the mean of the derivation of
the original time series. Scaled error measures have several advantages. Firstly, they are
independent of the input data scale. For this reason, scaled error measures can be used
for comparisons across data sets with arbitrary scales. Furthermore, these error measures
are suitable for almost all situations. There is only one exception, i.e., if and only if all
observations in the horizon have the same value. In this case, the denominator of qt is 0 and
thus, the scaled error measures are infinite or undefined. Lastly, the error is scaled on the
in-sample MAE from the naïve forecast. Thus, the examined forecasting method is better
than the reference forecast if the scaled error is less than 1 and worse if the scaled error is
greater than 1. The definitions of the Mean Absolute Scaled Error and the Median Absolute
Scaled Error are shown in Table 2.5.

Table 2.5: Scaled error measures with formulas.

Error Measure Formula

Mean Absolute Scaled Error (MASE) M ASE = mean(|qt |)
Median Absolute Scaled Error (MdASE) Md ASE = medi an(|qt |)

We prefer to use for forecast accuracy evaluations the Mean Absolute Scaled Error (MASE)
because it is independent of the data scales, can deal with data values close to 0, and can
handle negative values. However, a single error measure is often not significant enough and
thus, the Mean Absolute Percentage Error (MAPE) is used in addition since it is one of the
mostly used error measures in time series forecasting.

2.3.3 Time Series Decomposition
Decomposition is the act of splitting a time series in a trend, seasonal and remainder
component. There are two types of decompositions: Additive and multiplicative that are
represented as Yt = Tt +St +Rt andYt = Tt ·St ·Rt , respectively. In Table 2.6, we clarify the
meaning of the variables used in the decompositions.

Table 2.6: Decomposition variables definition

Yt The t-th value of the time series

Tt The t-th value of the trend component

St The t-th value of the seasonal component

Rt The t-th value of the remainder component

Next we will introduce two time series decomposition methods: The season and trend
decomposition based on Loess (STL) method and the breaks for additive season and trend
(BAST) method.

22

2.3 Time Series Analysis

STL

This section is based on the paper "STL: A Seasonal-Trend Decomposition Procedure based
on Loess" by Cleveland et al. [CCMT90].

STL provides a decomposition into season, trend and remainder component for a time
series. It uses Loess smoothing. The decomposition of the time series Y is of the form:

Yv = Tv +Sv +Rv

for v ∈ {1, ..., N } with N as length of the trace.
In Figure 2.2, we see a STL decomposition consisting of four different plots. The first

plot is the original time series, while the second, third and last plot are trend, seasonal and
remainder component, respectively.

1.
0e

+
07

1.
6e

+
07

da
ta

−
3e

+
06

0e
+

00

se
as

on
al

12
00

00
00

14
00

00
00

tr
en

d

−
15

00
00

0
0

15
00

00
0

2 4 6 8

re
m

ai
nd

er

time

Figure 2.2: STL decomposition example: (From top to bottom) original time series, trend component,
seasonal component and remainder component.

Loess: Let xi and yi be variables (i = 1, ...,n). ĝ (x) is the smoothing Loess curve. We choose
q ∈N,1 ≤ q ≤ n. Those q nearest to x, that belong to xi , are given a weight depending on
the distance. We define λ1(x) as the distance from the closest xi to x. Then, λ2(x) and λ3(x)
are distances from the second and third closest xi to x, respectively. λq (x) is the distance of

23

Chapter 2: Foundations

q-th closest xi to x. For 0 ≤ u < 1

W (u) = (1−u3)3

If u ≥ 1, then W (u) = 0. The weight function v is defined as

vi (x) =W

(|xi −x|
λq (x)

)
A polynom of degree d has to interpolate (xi , yi) with weight vi (x). For q > n

λq (x) =λn(x)
q

n
.

Before Loess is applied, d and q have to be set.
The overall structure of STL is given by two nested loops. Inside the inner loop trend and

seasonal components are updated within n(i) repetitions. n(i) counts the number of data
points within a period of the trace. Afterwards the weights are calculated within a run of the
outer loop. These updated weights are used again in the next pass of the inner loop.

a) Inner Loop: The k-th time, we run through the inner loop, the trend component
T (k)

v and the seasonal component S(k)
v are smoothed (v = 1, ..., N). Given T (k)

v and
S(k)

v , S(k+1)
v and T (k+1)

v (T (0)
v ≡ 0) are calculated with the following steps:

Step 1: Calculate Yv −T (k)
v .

Step 2: Period smoothing with Loess for q = n(s) and d = 1. We get a temporary
seasonal trace C k+1

v with length N +2n(p) (v =−n(p) +1, ..., N +n(p))

Step 3: Next, we use a low-pass filter on C k+1
v . The filter uses a moving average

with size n(p). Then, another moving average filter with length 3 is used. Finally, a
Loess smoothing with d = 1 and q = n(l) is applied. We receive Lk+1

v (v = 1, ..., N).
n(p) data points vanish this way.

Step 4: Sk+1
v =C k+1

v −Lk+1
v (v = 1, ..., N)

Step 5: Yv −S(k+1)
v is calculated.

Step 6: Once again a Loess smoothing with q = n(s) and d = 1 is applied on
Yv −S(k+1)

v .
b) Outer Loop: From the inner loop we get Tv and Sv . Hence, the remainder Rv can

be written as Rv = Yv −Tv −Sv . We define h = 6 ·medi an(|Rv |) and Bu = (1−u2)2

for 0 ≤ u < 1 and Bu = 0 for u > 1. Thus,

ρv = B

(|Rv |
h

)
.

The outer loop is executed n(0) times.

BFAST

Verbesselt, Hyndman, Newnham and Culvenor introduced BFAST (Breaks For Additive
Seasonal and Trend) in their paper "Detecting trend and seasonal changes in satellite image
time series" [VHNC10].

24

2.3 Time Series Analysis

On the one hand, the R package BFAST can decompose any time series into a trend, sea-
sonal and remainder part. On the other hand, it uses methods to detect significant change.
For example it contains the bfast() function to estimate a decomposition. Figure 2.3
displays a BFAST plot. Similar to the STL plot in Figure 2.2, we have the original trace,
seasonal, trend and remainder component in line one, two, three and four, respectively.

no. iterations to estimate breakpoints: 1

1.
0e

+
07

1.
6e

+
07

Y
t

−
3e

+
06

1e
+

06

S
t

1.
0e

+
07

1.
4e

+
07

1.
8e

+
07

T
t

−
1e

+
06

5e
+

05

2 4 6 8

et

Time

Figure 2.3: An example for a BFAST decomposition with detected trend breaks.

BFAST uses the ordinary least squares (OLS) residuals-based MOving SUM (MOSUM)
tests to test for the existence of breakpoints. Furthermore, it uses the breakpoints()
function of the strucchange package of R. The breakpoints() function uses the
Bayes Information Criterion (BIC) to estimate a suitable number of breakpoints for the time
series. First of all, an initial Season Ŝt is estimated with the breakpoints() function.
After that BFAST iteratively loops through the following four steps until the number of
breakpoints stays the same.

Step 1: Before the breakpoints (t∗1 , ..., t∗m) are estimated, OSL-MOSUM tests for the
existence of any breakpoints on Yt − Ŝt .

Step 2: The coefficients α j and β j (j = 1, ...,m) are estimated with regression of

Tt =α j +β j t So, the temporary trend is set to T̂t = α̂ j + β̂ j t .
Step 3: The OSL-MOSUM test also looks for breakpoints of the seasonal component.

If there are seasonal breakpoints (t #
1 , ..., t #

m), these are estimated from Yt − T̂t .

25

Chapter 2: Foundations

Step 4: Once again, for the seasonal components γi , j (j = 1, ...,m) (i = 1, ..., s −1) we
use regression of

St =
s−1∑
i=1

γi , j (dt ,i −dt ,0)

for a temporal estimation

Ŝt =
s−1∑
i=1

γ̂i , j (dt ,i −dt ,0).

2.3.4 Seasonal vs. Cyclic Time Series
The differentiation between seasonal time series and cyclic time series is a very important
part of time series forecasting. However, these two terms are often getting mixed up [Hyn11].
Both types of time series are briefly explained and the differences are highlighted by ex-
amples. As seasonal time series show fluctuations with constant frequency, seasonal time
series are also called periodic. This periodic pattern is often caused by seasonal influences.
A typical influence factor is for instance the day-and-night behavior. Indeed, a seasonal time
series can have multiple seasonal patterns of different frequencies, e.g., a weekdays-and-
weekends behavior additionally to the day-and-night pattern. Figure 2.4 shows a seasonal
time series.

24 25 26 27 28 29 30

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

Week

E
le

ct
ric

ity
 d

em
an

d
[G

W
]

Figure 2.4: The half-hourly electricity demand of Victoria, Australia in GW in 2014.

This time series represents the electricity demand of Victoria, Australia in Gigawatt from
the beginning of week 25 until the end of week 30 of the year 2014. Each value in the trace
represents the electricity demand of the past 30 minutes. The electricity demand of Victoria
is affected by two seasonal influence factors. At first, the time series contains a daily (day-
and-night) period. The electricity demand rises until midday and afterwards, the electricity

26

2.3 Time Series Analysis

demand drops and reaches a low point in the middle of the night. This behavior is repeated
with a fixed frequency. On top of that, a weekly (weekdays-and-weekends) period can be
seen. Besides the weekends, the electricity demand process is similar for each day. On the
weekends, the peeks are much lower compared to the weekdays. Also, this pattern repeats
with a fixed frequency.

Cyclic time series also show recurring fluctuations with rises and falls, but these fluctu-
ations do not occur with a fixed frequency. Thus, this non-periodic behavior is called cyclic.
Another indication for cyclic time series is a highly varying amplitude of the cycles. In terms
of seasonal time series, the amplitude of each period should be around the same except if
there is another overlapping seasonal pattern.

Figure 2.5 shows an example for a cyclic time series that represents the amount of lynx
trappings per year for Canada from 1821 to 1934. Although the trace seems to be seasonal
because of its relatively repeating cycles, the time series is cyclic as the cycles do not occur
with a fixed frequency. Some of the cycles last 8 or 9 years and others 10 years or even more.
Additionally, the amplitudes of the cycles vary highly.

Year

A
m

ou
nt

 o
f l

yn
x

tr
ap

pi
ng

s

1820 1840 1860 1880 1900 1920

0
10

00
30

00
50

00
70

00

Figure 2.5: The annual amount of lynx trappings for Canada in the years 1821 to 1934.

As mentioned before, the differentiation between seasonal time series and cyclic time
series is a very important task since some forecasting methods cannot handle seasonal
time series and others exhibit significantly better performances for seasonal time series.
Thus, this time series characteristics is also very important for automated forecast method
recommendation. Moreover, the differentiation between seasonal time series and cyclic
time series is also very important for frequency estimation. In terms of cyclic time series,
typical frequency estimation tools will also find a dominant frequency. However, applying
this frequency on cyclic time series will achieve poor results in the forecasting result since
the time series does not have a constant periodic pattern as explained above.

27

Chapter 2: Foundations

2.3.5 Frequency Estimations using Periodogram

An important field of time series analysis is the spectral analysis. In terms of spectral
analysis, a time series is seen as a sum of cosines and sines with different frequencies and
amplitudes. The periodogram is a mathematical tool for estimation of spectral density that
uses this composition assumption. Therefore, the periodogram determines the spectrum
of several frequencies in a time series to find a dominant frequency and thus, a seasonal
pattern [Pla11]. In order to determine the most dominant frequency, periodograms use
a brute force algorithm in which the spectrum is calculated for many different possible
frequencies by using Fourier transformation. More precisely, the aim is to split a time series
consisting of the observations x1, x2, . . . , xn with length n into multiple cosines and sines with
periods of length n/(n/2) = 2, . . . ,n/2,n. The sum of the found cosines and sines together
with the mean of the time series observations needs to result in the original time series. Now,

discrete Fourier transformation is used for frequencies vk = k

n
with k = 1, . . . ,

n

2
. For better

readability and comprehension, the discrete Fourier transformation is represented by real
and imaginary parts for this purpose [Bar10]:

X (v j) = 1p
n

n∑
t=1

e−2πi t v j xt

= 1p
n

n∑
t=1

cos(2πt v j)xt − i
1p
n

n∑
t=1

sin(2πt v j)xt

= Xc (v j)− i Xs (v j) (2.2)

Then, the periodogram calculates the squared modus of the discrete Fourier transformation
as I (v j) [Bar10]:

I (v j) = |X (v j)|2

= 1

n

∣∣∣∣ n∑
t=1

e−2πi t v j xt

∣∣∣∣2

= X 2
c (v j)+X 2

s (v j) (2.3)

Xc (v j) = 1p
n

n∑
t=1

cos(2πt v j)xt (2.4)

Xs (v j) = 1p
n

n∑
t=1

sin(2πt v j)xt (2.5)

However, the interpretation of such a periodogram is a crucial part on its own. In general,
three types of time series can be identified by interpreting periodograms, i.e., time series
with strong sinusoidal patterns, non-sinusoidal signals, and random time series. In case of
random time series, all possible frequencies should have about the same spectrum since
random signals do not have a seasonal pattern. Time series with strong sinusoidal patterns
will show a peak in the periodogram at the dominant frequency. If the periodogram shows
even more peaks at multiples of that frequency, this is a strong indication for time series
with non-sinusoidal patterns [New99].

28

2.3 Time Series Analysis

Nevertheless, the periodogram will find a most dominant frequency for seasonal time
series as well as for cyclic time series. As illustrated in Figure 2.5 in Section 2.3.4, cyclic time
series can also show sinusoidal patterns and thus, the automated differentiation between
seasonal time series and cyclic time series is a very hard and inaccurate task. So, the differ-
entiation between seasonal time series and cyclic time series has to be done before applying
a periodogram method since a meaningful frequency should only be calculated for seasonal
time series and not for cyclic time series. Otherwise, the forecasting accuracy can be highly
diminished.

Frequency Estimation via Autocorrelation

The Autocorrelation compares a shifted version of a time series with its original version.
If shifted and original version are very similar, the autocorrelation reaches values close to
its maximum value 1. This is a signal that the length of the shift was a period of the time
series. For example, if the sine function is shifted 2π to the right the resulting function is
sin(t +2π), t ∈ R. But sin(t) = sin(t +2π). Therefore 2π is a period of sine. Let X ∈ Rn be a
time series of length n. Then we call

Yt = X(t+k) mod n

the k-shifted time series of X . For instance, if X t = (2,−3,1)T , then X t+1 = (−3,1,2)T and
X t+5 = (1,2,−3)T . The autocorrelation rX Y ∈ [−1,1] measures the linear relationship be-
tween these two time series. If rX Y ≈ 1, we assume that there is a seasonal component
with the period k and validate this by checking if this shift results in a local maximum. Let
X ,Y ∈Rn be two time series. Then

rX Y =
∑n

i=1(Xi − X̄)(Yi − Ȳ)√∑n
i=1(Xi − X̄)2 ·∑n

i=1(Yi − Ȳ)2
∈ [−1,1]

is called correlation between X and Y .

2.3.6 Machine Learning Aproaches for Time Series Forecasting
eXtreme Gradient Boosting

XGBoost is an implementation of gradient boosted decision trees designed for execution
speed and model performance [CG16]. The implementation allows multiple system fea-
tures: 1) parallelization of tree construction by using all CPU cores in training 2) distributed
computing: using a cluster of machines for training very large models 3) out-of-core com-
puting: very large datasets that do not fit in memory 4) cache optimization: make the best
use of the hardware. The process of boosting is an ensemble technique itself. Thus, new
models are added in order to correct errors in existing models, e.g., models can be added
sequentially until no further improvements can be made. Gradient boosting is a variation of
the typical boosting task. The main steps of the gradient boosting decision tree algorithm
are as follows. Firstly, new models are created that predict the residuals, or errors, of prior

29

Chapter 2: Foundations

models. Afterwards, additional models are added to make the final prediction. When adding
new models, a gradient descent algorithm is applied in order to minimize the loss. Contrary
to other machine learning approaches like random forests or feed-forward neural networks,
gradient boosted decision trees are not prone to overfitting, e.g., by leaving some portion
of the available data for internal model cross-validation. Besides, XGBoost is said to be the
go-to algorithm for Kaggle competition winners [Kag15a, Kag15b, Kag15c].

Feed-forward Neural Network

Feed-forward Neural Network is a machine learning technique trying to recognize regular-
ities in the data, learn from experience, and provide generalized results based on current
knowledge. Their main advantage is the capability of capturing non-linear patterns in time
series, without any presumption about the statistical distribution of the observations. On
top of that, neural networks can deal with fuzzy, incomplete, or erroneous input data. Neural
networks are data-driven and self-adaptive. They use universal functional approximators,
i.e., parallel processing of the data to approximate a large class of functions with a high
accuracy. The Multi-Layer Perceptron (MLP) is characterized by a single hidden layer Feed-
forward Neural Network. A simplified architecture of a Multi-Layer Perceptron with n input
neurons, m hidden neurons, and l output neurons is shown in Figure 2.6.

ℎ1

ℎ2

ℎ3

ℎ𝑚

ℎ4

Input layer

𝑜1

𝑜2

𝑜3

𝑜𝑙

𝑖1

𝑖2

𝑖3

𝑖𝑛

Hidden layer Output layer

OutputsInputs

𝑥1

𝑥2

𝑥𝑛

𝑥3

𝑦1

𝑦2

𝑦3

𝑦𝑙

Weights 𝒘𝒊𝒋 Weights 𝒗𝒋𝒌

Figure 2.6: A simplified architecture of a Multi-Layer Perceptron.

A MLP gets as input the input values x1, x2, . . . , xn that are passed to the input layer with
input neurons i1, i2, . . . , in . Then, the hidden layer neurons h1,h2, . . . ,hm are calculated by
using the values of each input neuron and the weights wi j . The value of the j -th hidden

30

2.3 Time Series Analysis

neuron is determined by applying the following formulas [WSMH09]:

net h
j =

n∑
i=1

wi j ×xi (2.6)

h j = f (net h
j) (2.7)

Afterwards, these hidden neuron values are used to calculate the output neuron values as
follows [WSMH09]:

net o
k =

m∑
j=1

v j k ×hi (2.8)

ok = f (net o
k) (2.9)

The sigmoidal function is used in both formulas to calculate the values
of the neurons [WSMH09]:

f (net) = 1

1+e−λ×net
(2.10)

In this formula, e is the Euler’s constant and λ ∈ (0,1) is a parameter for controlling the
gradient of the function [WSMH09]. However, since neural networks learn the weights wi j

and v j k between the layers, a learning method is needed. Most neural networks apply the
back-propagation learning rule because it allows to learn dependencies between any set
of input combinations. Thus, the weights are updated in each iteration according to the
average squared error until a certain predefined tolerance level is reached or a maximum
amount of iterations is exceeded. There are two common variations of the Feed-forward
Neural Network: 1) the Time Lagged Neural Network (TLNN) and 2) the Seasonal Artificial
Neural Network (SANN) for seasonal data.

2.3.7 Statistical Modeling Frameworks for Time Series Forecasting
Autoregressive Integrated Moving-Average

ARIMA is a stochastic forecasting method. In fact, ARIMA is a generalization of an autore-
gressive moving-average (ARMA) model and based on the Box-Jenkins principle [BC64].
ARMA models are a combination of an autoregressive AR(p) model and a moving-average
M A(q)model. On the one hand, the autoregressive part predicts the future as linear
combination of p past observations, also called order p, their weights ϕi , also called AR-
coefficients, a random error εt , and a constant term c:

AR(p): yt = c +
p∑

i=1
ϕi · yt−i +εt (2.11)

On the other hand, the moving-average part of ARMA uses past errors εt− j and their
weights Θ j , also called MA-coefficients, for predicting the new value:

MA(q): yt =µ+
q∑

j=1
Θ j ·εt− j +εt (2.12)

31

Chapter 2: Foundations

The random error is assumed to be independent and identically distributed (i.i.d.) and
following the standard normal distribution. The complete ARMA model can be formulated
as:

ARMA(p,q): yt = c +εt +
p∑

i=1
ϕi · yt−i +

q∑
j=1

Θ j ·εt− j (2.13)

As ARMA models require a stationary time series, the usage of ARMA model is restricted.
To overcome this issue, ARIMA is developed as a generalization of ARMA. ARIMA makes a
non-stationary time series stationary. The parameters of an ARIMA model are p, d , q ∈ N0,
where p is the order of the AR model and q the order of the MA model. The parameter d is
for the integrated part of the model and thus, controls the degree of differencing. If d = 0, the
ARIMA(p,0, q) model is equal to an ARMA(p, q) model. However, ARIMA makes two impor-
tant assumptions. Firstly, the considered time series is assumed to be linear and secondly,
it is assumed that the time series is following a particular known statistical distribution.
The first assumption is very strong since real world data is rarely linear. Thus, the main
disadvantage of ARIMA models is the assumption of the linear form of the model [Zha03].
Despite the disadvantage, there are several variations of the ARIMA model, e.g., the Seasonal
ARIMA (SARIMA) for seasonal time series.

Extended Exponential Smoothing

Simple Exponential Smoothing (SES) was introduced by Brown in 1956 [Bro56]. SES is
based on the moving-average method at which the past observations are weighted with an
exponential function. Thus, the newest observations get the highest weight. The typical
form for SES is:

yt =α · xt + (1−α) · yt−1 (2.14)

In this equation, 0 ≤α≤ 1 denotes the smoothing factor. The Exponential Smoothing State
Space Model is based on the innovation state space approach. It distinguishes between the
three components error, trend, and season. These components can be combined either
additive or multiplicative, whereas their weightings are adjustable. Exponential Smoothing
State Space Model exhibits good performance in detecting sinus-like seasonal patterns, but
is rather bad in detecting complex seasonal patterns. According to Hyndman, ETS exhibits
good performance on the M3-competition data set [HKSG02] that is dominated by short
time series with below 100 observation and no significant seasonal patterns.

Trigonometric Box-Cox Transformation ARMA Errors Trend and Seasonality Model

TBATS was introduced by De Livera [DLHS11] in 2011 as an extension of the Exponential
Smoothing State Space Model. It was developed to overcome the bad performance in
detecting complex seasonal patterns that is for instance achieved by ETS. Therefore, TBATS
uses the Fourier transformation, Box-Cox transformation and ARMA models. On top of that,
it uses a method to reduce computational cost of maximum likelihood estimation.

32

Chapter 3

State-of-the-Art
We structure the discussion of the state-of-the-art and related research according to the
contributions of this thesis into four parts:

• In Section 3.1, we approach the broad field of workload modeling from different
angles to position and delineate our proposed approach for automated load profile
modeling (Descartes Load Intensity Model (DLIM), c.f. Chapter 4).

• We split the Section 3.2 into two distinct parts to cover earlier proposed metrics for
quantifying aspects of elastic platforms in the first place. Secondly, we describe ex-
isting measurement approaches to elastic properties in a way to highlight significant
differences compared to our proposed measurement methodology Bungee (c.f. Chap-
ter 5) for rating the observable elasticity achieved by an auto-scaler in a fair manner
also across platforms of different performance characteristics.

• Section 3.3 aims at giving an overview of existing methods for automated scaling of
systems by summarizing the findings from three surveys [GB12, JS15, LBMAL14]. The
problem of auto-scaling is often approached leveraging techniques from different
research domains in isolation with the resulting methods often tailored for certain
specific application types. Our hybrid approach to auto-scaling Chameleon (c.f. Chap-
ter 6) combines proactive decisions based on an integrated view of different models
and reactive decisions based on direct feedback from monitoring in an intelligent way
to improve scaling accuracy while lowering the risk of relying on a single method for
making scaling decisions.

• Proactive auto-scaling mechanisms rely on methods for forecasting the arriving load
efficiently in time and accurate. In Section 3.4, we approach the established domain of
time series analysis and forecasting by statistical modeling frameworks and machine
learning approaches as summarized in our book chapter [HAA+17] here with a focus
on the modern type of hybrid approaches. As a side-contribution of this thesis, the
hybrid forecast prototype approach Telescope (c.f. Chapter 7) builds upon the findings
we made analyzing related work.

33

Chapter 3: State-of-the-Art

3.1 Approaches to Workload Modeling
Describing real-world workload characteristics using various abstractions and modeling
approaches has been a prominent activity in performance engineering for decades. The well-
known study on workload characterization of web servers published by Arlitt et al. [AW96]
in 1996 can be seen as an initiator for modern server workload models. Based on our analysis
of related research on workload characterization, we propose a grouping into the following
four categories:

3.1.1 User Behavior Models
User behavior models usually traverse graphs, where nodes represent actions that users
may perform on a system. Workload traces are analyzed to identify similarities between
users. The identified clusters with high similarity in between system users are then used
to form at groups of users that can be mapped to request classes or probabilities of certain
user actions. Zakay and Feitelson [ZF13] propose to partition workloads according to the
user types, and then sample workload traces for each user type to capture the user behavior.

The Descartes Modeling Language (DML) [KHBZ16, HBS+17] and the Palladio Compo-
nent Model (PCM) [BKR09] with their simulation frameworks both offer a meta model to
capture the probabilistic interactions between groups of users and the modeled system. An
automated extraction of such user behavior models is presented as the WESSBAS approach
in the work of van Hoorn et al. [vHVS+14]. The Markov4JMeter approach [vHRH08] and the
RAIN workload generator [BLY+10] propose workload models for generating the behavior
and tasks triggered by different types of users.

Approaches in this group have in common that they lay their focus on the behavior of
users instead of how the users’ load arrives at the system. We define the arriving load
intensity at the system boundary. Models like the above can in principle be combined with
our load profile modeling approach DLIM to further characterize the user behavior after a
request has arrived at the system and a client session is started.

3.1.2 Service Demand Focused Workload Modeling
Approaches in this category focus on characterizing the units of work processed estimating
their demand for resources (a.k.a. service demand). A service demands are the average time
durations a unit of work (e.g., request or transaction) spends obtaining service from a re-
source (e.g., CPU or hard disk) in a system over all visits excluding any waiting times [MDA04]
and are a key parameter of performance models. Requests of the same workload class (or
submitted by the same group of users) usually exhibit similar resource demands and thus
can be seen as characterizing parameters of the effects a user interaction has on the system.
Over the years, a number of approaches to service demand estimation have been proposed
using different statistical estimation techniques (e.g., linear regression [RV95, BKK09] or
Kalman filters [Wm12, KTZ09]) and based on different laws from queueing theory. The state-
of-the in service demand estimation is surveyed and analyzed in the work of Spinner et.
al [SCBK15]. The Library for Resource Demand Estimation (LibReDE)1 is, to the best of our

1LibReDE: Available at https://descartes.tools/librede.

34

https://descartes.tools/librede

3.1 Approaches to Workload Modeling

knowledge, the only publicly available tool providing different ready-to-use approaches to
service demand estimation. The latter currently supports implementations of the following
estimation approaches:

• Service Demand Law [BKK09]

• Least squares (LSQ) regression using queue-lengths and response times (Response
Time Regression) [KPSCD09]

• Least squares (LSQ) regression using utilization law (Utilization Regression) [RV95]

• Approximation with response times (Response Time Approximation) [BKK09]

• Recursive optimization using response times (Menascé Optimization) [Men08]

• Recursive optimization using response times and utilization (Liu Optimization) [LWXZ06]

• Kalman filters using utilization law (Wang Kalman Filter) [Wm12]

• Kalman filters using response times and utilization (Kumar Kalman Filter) [KTZ09]

Service demand estimation represents an important portion of research in workload
modeling, We argue that this is complementary to modeling the arriving load profiles, as we
do in Chapter 4. We rely on the service demand estimation approaches when combining
them with predicted load profiles within the hybrid proactive auto-scaling mechanism
Chameleon (c.f. Chapter 6).

3.1.3 Regression Techniques
M5 trees [Q+92], multivariate adaptive regression splines (MARS) [Fri91], or cubic forests
[KWKC12] are advanced regression techniques capable of calibrating mathematical func-
tions to fit a measured load intensity trace. Similarly to our proposed load profile modeling
approach DLIM, these functions describe the load intensity over time with functions. Yet, in
contrast to the descriptive DLIM models, they do not convey the additional information of
the types and composition of load intensity components.

Both, the regression techniques and service demand estimation approaches can be con-
figured with various parameters. The Stepwise Sampling Search (S3) or also called Iterative
Parameter Optimizer (IPO) [NBKR13] has been developed in the context of regression model
optimization [Noo15]. We adapted this algorithm for self-tuning the parameters of resource
demand estimation techniques [GHSK17] Please note, that details on this are not included
as contribution in this thesis.

3.1.4 Statistical Inter-Arrival Models
Statistical inter-arrival models capture the workload intensity by fitting of statistical distri-
butions. Feitelson et al. [Fei02] create a statistical model for parallel job schedulers. Li et
al. [Li10] model batch workloads for eScience grids, Casale et al. [CKKR12] focus on model-
ing bursty workloads, whereas Barford and Corvella [BC98] focus on file distribution and

35

Chapter 3: State-of-the-Art

popularity. Menasce et al. [MAR+03] as well as Reyes et al. [RLGPC+99] analyze workloads at
multiple levels, such as request and session level. These approaches differ from our load
modeling approach as they use independent random variables to capture inter-arrival rate
distributions. Model input is usually the type of workload or certain workload characteristics,
which may include arrival rate, but also other characteristics, such as burst-size, whereas
the output is a statistical distribution. In our case, we use the current time as the primary
input (usually seconds since a pre-defined point in time t0, e.g. measurement start), with
the model returning the concrete load intensity at that point in time.

Our approach for automated, descriptive modeling of load profiles DLIM is either comple-
mentary to the two mentioned groups mentioned first, and different to the third and fourth
group of workload modeling techniques as our approach does not model the arriving load
via distribution fitting or with the help of one regression function. We explicitly decompose
an given trace into its deterministic parts as trends and seasonal patterns, and estimate only
optionally the remainder with a Gaussian distribution.

3.2 Related Elasticity Metrics and Measurement Approaches
In this section, we group existing elasticity metrics and benchmarking approaches according
to their perspective and discuss their shortcomings.

3.2.1 Related Elasticity Metrics
Several metrics for elasticity have been proposed so in literature:

The “scaling latency” metrics [LYKZ10, LOZC12] or the “provisioning interval” [CCB+12]
capture the pure time to bring up or drop a resource. This duration is a technical property of
an elastic environment independent of the timeliness and accuracy of demand changes, thus
independent the elasticity mechanism itself that decides when to trigger a reconfiguration.
We consider these metrics as insufficient to fully characterize the elasticity of a platform.

The “reaction time” metric we proposed at an early stage of our research already in 2011 in
the report [KHvKR11] can only be computed if a unique mapping between resource demand
changes and supply changes exists. This assumption does not hold especially for proactive
elasticity mechanisms or for mechanisms that have unstable (alternating) states.

The “elastic speedup” metric proposed by SPEC OSG in their report [CCB+12] relates the
processing capability of a system at different scaling levels. This metric - contrary to intuition
- does not capture the dynamic aspects of elasticity and is regarded as scalability metric.

The integral-based “agility” metric also proposed by SPEC OSG in their report [CCB+12]
compares the demand and supply over time normalized by the average demand. They state
that the metric becomes invalid in cases where service level objectives (SLOs) are not met.
This “agility” metric has not been included as part of the SPEC Cloud IaaS 2016 benchmark2.
This metric resembles an early version of our proposed “precision” metric [HKR13]. In this
thesis, we propose a refined version normalized by time (see Section 5.2) to capture the
accuracy aspect of elastic adaptations, considering also situations when SLOs are not met.

2SPEC Cloud IaaS 2016: https://www.spec.org/cloud_iaas2016/

36

https://www.spec.org/cloud_iaas2016/

3.2 Related Elasticity Metrics and Measurement Approaches

The approaches in the work of Binning et al., Cooper et al., Almeida et al. and Dory
et al. [BKKL09, CST+10, ASLM13, DMRT11] characterize elasticity indirectly by analyzing
response times for significant changes or for SLO compliance. In theory, perfect elasticity
would result in constant response times for varying arrival rates. In practice, detailed
reasoning about the quality of platform adaptations based on response times alone is
hampered due to the lack of relevant information about the platform behavior, e.g., the
information about the amount of provisioned surplus resources.

Becker et al. [BLB15] introduced in 2015 the “mean-time-to-repair” in the context of
elasticity as the time the systems needs on average to step out of an imperfectly provisioned
state. This “mean-time-to-repair” is estimated indirectly based on analyzing for how long
the request response times violate a given SLO or a systems runs below a target utilization -
in other words, without knowing the exact demand for resources. The notion of “mean-time-
to-repair” from 2015 is basically equivalent to our previously proposed wrong-provisioning
timeshare metric (c.f. Section 5.2.2) as published in 2013 [HKR13].

Numerous cost-based elasticity metrics have been proposed so far [ILFL12, FAS+12, Sul12,
Wei11, TTP14]. They quantify the impact of elasticity either by comparing the resulting
provisioning costs to the costs for a peak-load static resource assignment or the costs of a
hypothetical perfect elastic platform. In both cases, the resulting metrics strongly depend
on the underlying cost model, as well as on the assumed penalty for under-provisioning,
and thus they do not support fair cross-platform comparisons.

We propose a set of elasticity metrics explicitly covering the timeliness, accuracy and
stability aspects of an deployed elasticity mechanism (a.k.a auto-scaler) together with three
different way to aggregate in a possibly weighted manner. This set of core elasticity metrics
can of course be complemented by user-oriented measures like response-time distributions,
percentage of SLO violations, a cost measure by applying a cost model, or accounted and
charged resource instance times.

3.2.2 Elasticity Measurement Approaches

As a high number of auto-scaling mechanisms has been proposed in literature over the
course of the last decades, many of them come with individual and tailored evaluation
approaches. We observe that in most cases an experimentally comparison against other
state-of-the-art mechanisms is omitted and the mechanisms effectiveness is justified by
show-cases of improvements in service level compliance. The field of resource management
algorithms has also been flooded by approaches only evaluated in simulation frameworks.
A broader simulative analysis of auto-scalers can be found in the work of Papadopoulos et
al. [PAEÅ+16].

A number of approaches for elasticity evaluation - in some cases only on an abstract level -
can be found in literature [FAS+12, Sul12, Wei11, SA12, ILFL12, DMRT11, ASLM13, TTP14,
CST+10, Bel16]:

In the work of Folkerts et al. [FAS+12], the requirements for a cloud benchmark are
described on an abstract level. The work of Suleiman [Sul12], Weinman [Wei11], Shawky
and Ali [SA12] as well as the work of Islam et al. [ILFL12] have in common their end-user
perspective on elasticity and quantify costs or service level compliance. These are important
end-user metrics, but we argue that good results in these metrics are indirectly affected

37

Chapter 3: State-of-the-Art

by elasticity mechanisms. Timeliness, accuracy and stability of resource adaptations are
not considered although those are the core aspect of an elastic behavior. Furthermore,
these approaches account neither for differences in the performance of the underlying
physical resources, nor for the possibly non-linear scalability of the evaluated platform. As a
consequence, elasticity evaluation is not performed in isolation from these related platform
attributes, as we highlight in Section 2.1. In contrast, the approach proposed in this thesis
uses the results from an initial systematic scalability and performance analysis to adapt the
generated load profile for evaluating elasticity, in such a way that differences in the platform
performance and scalability are factored out (c.f. Section 5.5.2).

Another major limitation of existing elasticity evaluation approaches is that systems are
subjected to load intensity variations that are not representative for real-life workload sce-
narios. For example, in the work of Dory et al. [DMRT11] and of Shawky and Ali [SA12], the
direction of scaling the workload downwards is completely omitted. In the work of Islam et
al. [ILFL12], sinus like load profiles with plateaus are employed. Real-world load profiles
exhibit a mixture of seasonal patterns, trends, bursts and noise. We account for the generic
benchmark requirement “representativeness" [Hup09] by employing the load profile model-
ing formalism DLIM as presented in Chapter 4 and the corresponding article [vKHK+17].

One recent example of a paper on cloud elasticity, elasticity metrics and an elasticity
benchmark called BeCloud is the work of Beltran [Bel16]. Here a new elasticity metric is
proposed, based on the finding that current metrics do not reflect scaling accuracy well
enough. This does obviously not apply as we have proposed over-/under-provisioning accu-
racy already in 2013 [HKR13] and experimentally applied as published in 2015 [HKWG15b].
The proposed elasticity metric remains fuzzy and without an intuitive interpretation: It is
derived as the product of ‘scalability’ (Ψ), an indicator for the accuracy of the scaling (∆),
and an indicator for the delay of the scaling (R):

E =Ψ · g (∆) · (R).

The indicators for accuracy and delay (reconfiguration time) are calculated as the fraction
of how good the system could possibly be and how good it actually is, e.g.

g (actual scaling inaccuracy) = best possible scaling inaccuracy
actual scaling inaccuracy

or 1 if the actual scaling inaccuracy is 0. The reason for that is that in contrast to our mea-
surement approach BUNGEE (c.f. Section 5.5), where a perfect scaling can happen and the
demand for resources of time is defined and know ahead of an experiment, Beltran [Bel16]
also considers systems that offer software as a service (SaaS) where the best possible supply
may not match the demand. As it is also noted in the paper this has the consequence that a
system a with worse accuracy can have a better result for the elasticity metric than a system
b with better accuracy, if a is closer to its best possible accuracy than b. For the calculation
of the scalabilityΨ, the ratio of performance and cost between configurations is compared.
This is very different to our proposed approach BUNGEE measurement approach, where
scalability only indirectly affects elasticity. (Systems that can not be scaled well can not
possibly exhibit good elastic behavior.) Also as cost is a factor that influences the elasticity
metric, the problems discussed above related to the dependence on a cost model apply.

38

3.3 On the State of the Art in Auto-Scaling

Another important difference to our measurement approach BUNGEE is the way in which
accuracy/inaccuracy of adaptations is evaluated. Beltran [Bel16] measures elasticity is not
with an elaborate measurement techniques, but estimates as the amount of VM minutes
during which the system is not running the user’s application. We suppose that this can not
be as accurate as measuring the accuracy directly. In summary, the paper proposes a way of
measuring elasticity that is on the one hand similar to the one in this thesis in the way that it
also looks at the accuracy and timing of the scaling. On the other hand, the proposed metric
also considers cost and elasticity as important factors and in summary offers a method that
favors less measurement overhead instead of accurate and reproducible measurements.

Towards the end of this discussion on related elasticity measurement approaches, it is
worth mentioning the SPEC Cloud IaaS 2016 Benchmark3 that can be seen as the flagship in
industry-standard performance of infrastructure cloud measurement frameworks in terms
of representativity and repeatability of results. The elastic behavior of clouds with an active
auto-scaling mechanism is in the current release 1.1 not covered. The workload is scaled out
controlled by the benchmark harness. As mentioned above the “elastic speedup” quantifies
how good the cloud system actually scales.

3.3 On the State of the Art in Auto-Scaling
The topic of auto-scaling has been a popular research topic in the resource management
community over the past decade. There have been multiple recent efforts to survey the
state-of-the-art in auto-scaling, for example: (i) Galante and de Bona [GdB12], (ii) Jennings
and Stadler [JS15], and (iii) Lorido-Botran et al. [LBMAL14]. These three surveys provide an
overview on the current state of research on auto-scaling. The survey by Lorido-Botran et.
al [LBMAL14] proposes a classification of auto-scalers into five groups:

3.3.1 Threshold-based Rule Auto-Scalers
These are auto-scalers that react to load changes based on pre-defined threshold rules
for scaling a system. As the scaling decisions are triggered by performance metrics and
predefined thresholds, they are easy to deploy. Thus, they are popular with commercial cloud
providers and clients. Common threshold-based auto-scalers are designed for instance by
Han et al. [HGGG12] or Maurer et al. [MBS11]. We use an standard reactive auto-scaler as
competitor in our broad auto-scaler evaluation in Section 10.2.1.

3.3.2 Auto-Scalers based on Queueing Theory
Queueing theory is usually used to determine the relationship between incoming and
outgoing jobs in a system. Proactive auto-scalers in this category rely on a model of the
system for predicting the future resource demand. A simple approach is to model each
VM as a queue of requests. However, these auto-scalers have a major drawback as they
are inflexible. That is, the models have to be updated and re-calibrated after each change
in the workload or in the application. State-of-the-art auto-scalers are proposed, e.g., by

3SPEC Cloud IaaS 2016: https://www.spec.org/cloud_iaas2016/

39

https://www.spec.org/cloud_iaas2016/

Chapter 3: State-of-the-Art

Urgaonkar et al. [USC+08] (Hist) or Zhang et al. [ZCS07]. We select Hist as competitor in our
auto-scaler evaluation representing a queueing theory based auto-scalers. More details on
Hist can be found in Section 10.2.3.

In addition, we consider as part of this group, resource management approaches that
leverage descriptive performance modeling formalisms and simulate the effects of deploy-
ment changes via transformations to queueing networks and discrete event simulation. We
take ideas from the SLAstic.SIM [vMvHH11] approach that builds upon on the Palladio Com-
ponent Model and the S/T/A adaptation framework [HHK+14]. Both similar approaches
implement abstract strategies, tactics and actions to resolve resource shortages and optimize
deployments of simulated descriptive performance model instances. Due to their overheads
and complexity, these approaches have not yet been applied to control real infrastructure
cloud environments.

3.3.3 Auto-Scalers based on Control Theory
Similarly to queueing theory, auto-scalers that use control theory also employ a model of
the application. Hence, the performance of such controllers depends on the application
model and the controller itself. A new approach in recent research is to combine this type
auto-scalers with queueing theory. For example, popular hybrid auto-scalers of this group
are from Padala et al. [P+09] or Ali-Eldin et al. [AETE12] (Adapt). As we were able to establish
a collaboration and exchange with Ali-Eldin, we obtained the source for Adapt to participate
in our auto-scaler evaluation (c.f. Section10.2.2).

3.3.4 Auto-Scalers based on Reinforcement Learning
Instead of having explicit knowledge or a model of the application, approaches in this
category aim to learn the best action for a specific state. The learning is based on a trial-
and-error approach converging towards an optimal policy. This allows the controller to
be proactive. However, finding the best option for a particular state can take a long time.
Tesauro et al. [TJDB06] or Rao et al. [RBX+09], for example, propose such auto-scalers.
Auto-scalers based on reinforcement learning are highly dependent on the initial extensive
training phase and therefore we do not consider them in our evaluation. In addition, our
efforts to obtain reinforcement learning auto-scaler code was not successful.

3.3.5 Auto-Scalers leveraging Time Series Analysis
Auto-scalers that use time series analysis are the most common representatives of proactive
scaling. They allow to predict the near future behavior of sequences of job arrivals. A variety
of forecasting methods based on time series analysis exist in the literature. The choice of
forecasting technique and its associated parameters influences the forecasting accuracy.
This type of auto-scalers may be highly optimized for a specific scenario like Netflix Scryer4

that bases on Fourier frequency analysis to predict alternations in load. Common examples
of this type of auto-scalers are proposed by Pierre and Stratan [PS12] (ConPaaS) or Iqbal

4Scryer: Netflix’s Predictive Auto Scaling Engine at https://medium.com/netflix-techblog/
scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270

40

https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270

3.4 Related Work on Hybrid Forecasting

et al. [IDCJ11] (Reg). We include these to well-cited examples as representatives for this
group in our evaluation with more details to be found in Section10.2.4 and Section 10.2.5.

Existing auto-scalers try to leverage both reactive and proactive methods [USC+08,AETE12,
IDCJ11]. For example, Reg [IDCJ11] limits up-scaling to reactive and down-scaling to proac-
tive decisions. Adapt [AETE12] detects the envelope of the workload and is thus limited
to short-term predictions. In contrast to the state-of-the-art, our proposed Chameleon
approach is a hybrid, proactive auto-scaler that combines long-term predictions from
cutting-edge time series analysis methods that are only triggered on demand with online
solved queueing net models and an integrated reactive fall-back mechanism. Chameleon
consists of two explicit reactive and proactive cycles for generating combined and optimized
scaling decisions covering current and future auto-scaling intervals. To the best of our
knowledge, we have not found this unique combination of methods smartly integrated
as in our proposed auto-scaling mechanism. We systematically show in our evaluation
Chapter 10 that this yields in an superior auto-scaling performance with a significantly
lower risk of wrong and costly resource adaptations.

While not common, we identify two cases of the previous work comparing multiple
and different, proactive auto-scaling policies. The work of Padadopoulos et al. [PAEÅ+16]
establishes theoretical bounds on the worst case performance in simulation. A related
experimental evaluation to which we contributed, in the work of Ilyushkin et al. [IAEH+17],
compares auto-scaler performance for the different type of workflow applications in one
deployment. To the best of our knowledge, currently only the above two works contain
a comparably broad set of auto-scalers in their evaluations. Thus, this thesis contains
the first broad experimental evaluation covering different deployments and traces with a
representative set of auto-scaling algorithms applied to a generic web application worklet.

3.4 Related Work on Hybrid Forecasting

In this thesis, we identify the potential of improving the accuracy, reliability and the time-to-
result of automated forecasting mechanisms to further improve auto-scaling mechanisms
and include an prototypical hybrid forecasting approach Telescope as a side-contribution
of this thesis. This section reviews three different ways for hybridizing forecast approaches.

In 1997, Wolpert and Macready presented the “No Free Lunch Theorem” for optimization
algorithms [WM97]. It claims, that there is not a single algorithm that performs best for all
scenarios since improving the performance of one aspect normally leads to a degradation in
performance for some other aspect. This theorem can also be applied to forecasting methods
as there is no single method that outperforms the others for all types of data. To address
this issue, many hybrid forecasting approaches have been developed. A hybrid forecasting
method makes use of at least two forecasting methods to compensate the limitations of
individual forecasting methods. We categorize hybrid forecast methods into three groups of
approaches each sharing the same basic concept:

41

Chapter 3: State-of-the-Art

3.4.1 Ensemble Forecasting

The first and historically oldest group is the concept of ensemble forecasting and is the
technique of using at least two forecasting methods. While assigning a weight to each
method, the forecast result is the weighted sum of each forecast method. This approach was
introduced by Bates and Granger in 1969 [BG69]. The concept of this approach is rather
simple, however, the assignment of weights is a crucial part. Thus, many methods for weight
estimation have been investigated [Cle89, DMBT00, KKZ+00].

3.4.2 Forecaster Recommendation

The second group of forecasting methods is based on the concept of forecast recommen-
dation, where the goal is to build a rule set to guess the assumed best forecasting method
based on certain time series features. There are two common ways to generate the rule set.
One method is using an expert system. Collopy and Armstrong used this approach to create
a rule set by hand in 1992 [CA92]. The other method is using machine learning techniques
to automatically generate a rule set. In 2009, Wang et al. proposed clustering and algorithms
for rule set learning based on a large variety of time series features [WSMH09]. As part of
our exploitative research in time series characteristics and forecast method selection based
on a heuristic for forecast method selection [HHKA14], we also reimplemented and sys-
tematically tuned the rule learning approach of Wang (not included as contribution in this
thesis). Wang postulates that the found rules for method selection are generally applicable.
This contradicts with our findings where the rules are strongly tuned (over-fitted) for the
respective data set.

3.4.3 Feature Engineering based on Decomposition

The third group of forecasting methods is based on decomposition of the time series with
the goal to leverage the advantages of each method to compensate for the drawbacks of the
others. In literature, there are common approaches. The first approach is to apply a single
forecasting method on the time series and then apply another method on the residuals of
the first one [Zha03, PL05]. The second forecasting method is intentionally chosen to have
different characteristics than the first one, that is, it should have antithetic advantages and
drawbacks compared to the first one. An alternative approach is to split the time series
into its components trend, seasonality, and noise, applying a different forecasting method
on each of them. Liu et al. introduced an approach like this targetted for short-term load
forecasting of micro-grids [LTZ+14]. They used empirical mode decomposition to split the
time series and extended Kalman filter, extreme learning machine with kernel, and particle
swarm optimization for the forecast.

Our hybrid forecasting approach Telescope can be clearly classified into the third group
of forecasts using decomposition in a automated way for feature engineering. In contrast
to Zhang or Pain and Lin [Zha03, PL05], we use explicit time series decomposition, that is,
forecast methods are applied to the individual components of the time series as opposed
to the residuals of previous forecasts. Liu et al. introduced a short-term hybrid forecasting

42

3.4 Related Work on Hybrid Forecasting

method based on an intrinsic mode function. In our approach, the time series is split into
trend, seasonality, and noise components. Additionally, completely different forecasting
methods are used as a basis. Furthermore, our newly proposed hybrid approach is designed
to perform multi-step-ahead forecasting with low overhead and short runtime as this are
key requirements for an online usage in the context of auto-scaling.

43

Part II

Benchmarking Elasticity of
Auto-Scaling Mechanisms

Chapter 4

Descriptive Load Intensity Profiles:
Modeling Language and Automatic
Extraction

LIMBO

Today’s system developers and operators face the challenge of creating software systems
that make efficient use of dynamically allocated resources under highly variable and dy-
namic load profiles, while at the same time delivering reliable performance. Autonomic
controllers, e.g., an advanced auto-scaling mechanism in a cloud computing context, can
benefit from an abstracted load model as knowledge to reconfigure on time and precisely.

Existing workload characterization approaches have limited support to capture variations
in the inter-arrival times of incoming work units over time (i.e., a variable load profile).
For example, industrial and scientific benchmarks support constant or stepwise increasing
load, or inter-arrival times defined by statistical distributions or recorded traces. These
options show shortcomings either in representative character of load variation patterns or
in abstraction and flexibility of their format.

In this chapter, we answer the first two RQs A.1 and A.2 of Goal A: To address RQ A.1: „How
to model load intensity profiles from real-world traces in a descriptive, compact, flexible
and intuitive manner?“, we present the Descartes Load Intensity Model (DLIM) approach.
DLIM provides a modeling formalism for describing load intensity variations over time. A
DLIM instance is a compact formal description of a load intensity trace. DLIM-based tools
provide features for benchmarking, performance and recorded load intensity trace analysis.

As manually obtaining and maintaining DLIM instances becomes time consuming, and
to address RQ A.2: „How to automatically extract instances of load intensity profiles from
existing traces with a reasonable accuracy and computation time?“, we contribute three
automated extraction methods and devised metrics for comparison and method selection.
We discuss how these features are used to enhance system management approaches for
adaptations during run-time, and how they are integrated into simulation contexts and
enable benchmarking of elastic or adaptive behavior.

In the evaluation in Chapter 8, we show that automatically extracted DLIM instances
exhibit an average modeling error of 15.2% over ten different real-world traces that cover
between two weeks and seven months. These results underline DLIM model expressiveness.
In terms of accuracy and processing speed, our proposed extraction methods for the de-
scriptive models deliver better or comparable results compared to existing non-descriptive
time series decomposition methods.

47

Chapter 4: Modeling and Extraction Load Intensity Profiles

4.1 Introduction

Today’s cloud and web-based IT services need to handle large numbers of concurrent
users under highly variable and dynamic load intensities. Customers access services inde-
pendently of each other and expect a stable Quality-of-Service (QoS). In this context, any
knowledge about a service’s load intensity profile and their variations becomes a crucial
information for managing the underlying IT resource landscape. Human behavior patterns
due to human habits, trends, calendar effects, and events heavily influence load profiles. An
autonomic controller, e.g., an advanced auto-scaling mechanism deployed in a cloud com-
puting context, may implement the MAPE-K control loop [KC03]. When such a controller
is constantly provided with abstracted knowledge about the observed and expected load
profile, it could trigger the majority of adaptations more precisely and on time, as envisioned
by the Models@Run-Time community [BFB09]

Also, performance evaluation of systems under dynamic load conditions poses new
challenges. Benchmarking frameworks such as Faban [Fab06], Rain [BLY+10], JMeter [Hal08]
allow request injection rates to be configured either to constant values, or to stepwise
increasing rates (e.g., for stress tests). The feature of generating variable rates based on
a recorded or synthetic load trace is not fully supported by the mentioned frameworks.
They usually work with a fixed number of load generating threads, whereas one of those
corresponds to one virtual user with its routine and think time, as in a closed workload.
From this, we see that open workloads with a possibly unlimited number of users and a
representative load intensity variation independent of the actual system’s performance are
supported only to a limited extent by existing benchmarking frameworks.

In this chapter, we introduce the Descartes Load Intensity Model (DLIM) and the cor-
responding tools. DLIM describes load profiles by combining piece-wise mathematical
functions in a tree-like manner. Manual construction and maintenance of DLIM model
instances becomes infeasible in complex scenarios or at run-time usage. We address this
by proposing the high-level Descartes Load Intensity Model (hl-DLIM) to support the de-
scription of load variations using a small set of parameters to characterize seasonal patterns,
trends, as well as bursts and noise.

The DLIM modeling language can be used to define an arbitrary load intensity profile
which can than be leveraged for benchmarking purposes to evaluate the behavior of a system
under different dynamic workload scenarios (e.g., bursty workloads with seasonal patterns).
This is useful in several use-cases, e.g., for both on-line and off-line evaluation of the quality
of system adaptation mechanisms such as elastic resource provisioning techniques in
modern cloud environments. In contrast to pure regression approaches, DLIM offers the
advantage of classifying load intensity variations by type, as they are fitted to certain model
elements. As a result, models include additional information on types, which is useful when
analyzing or modifying load intensity variations.

A load intensity profile, represented as a DLIM model instance, can be created either man-
ually by the user or it can be extracted from a request arrival trace obtained by monitoring a
real-life production system. To support this, we provide generic trace analysis algorithms,
define quality metrics for these algorithms, and integrate them into the DLIM tools called

48

4.2 The Descartes Load Intensity Models DLIM and hl-DLIM

LIMBO1. The tools allow users to use our approach in a variety of use-cases. As a result, the
trace is represented as a compact DLIM model instance carrying a tree of mathematical
functions that are combined over the modeled time. The model instance captures the major
properties of the trace (e.g., burstiness, seasonality, patterns and trends) and can be used
at any time to automatically generate comparable traces, i.e., the trace exhibits the same
properties. Furthermore, the extracted model instance can be easily modified to reflect a
target dynamic load scenario, e.g., by changing the frequency of bursts or adding a given
trend behavior.

Furthermore, we introduce three automated DLIM model extraction methods: s-DLIM,
p-DLIM, and hl-DLIM. s-DLIM’s workflow is inspired by the time series decomposition
approach STL [CCMT90]. p-DLIM focuses more on periodic patterns strengthening extrapo-
lation capabilities, and the hl-DLIM extraction method works on a higher abstraction level
for more compact model instances.

In the DLIM evaluation in Chapter 8, we compare the DLIM model accuracy achieved by
automatically extracting model instances from real-world arrival rate traces against non-
descriptive, decomposition-based approaches for time-series modeling. We highlight as
major benefits of this work the new capabilities to accurately and automatically extract load
intensity models with 15.2% median modeling error on average from a representative set
of ten different real-world traces. Each extraction completes in less than 0.2 seconds on
common consumer hardware. These results demonstrate and validate the capability of
DLIM to capture realistic load intensity profiles.

DLIM-based applications and developments in the fields of benchmarking and system
resource planning both at design-time and run-time are enabled by providing the automatic
model extraction processes. Since DLIM has been released in 2014, it has been adopted
by several third party researchers. It has been integrated into the Palladio Component
Model (PCM) and its simulator as presented in the paper [LB14]. DLIM models became
solution elements in two EU FP7 projects, namely CloudScale [BSL+13] and CACTOS [Om14].
The software artifacts of the LIMBO tool chain has been assessed by the Research Group of
the Standard Performance Evaluation Corporation (SPEC) and included in the repository
for peer-reviewed tools 2.

The remainder of this chapter is structured as follows: Section 4.2 describes the DLIM
model and the hl-DLIM model. The extraction methods are presented in detail in Section 4.3.
Section 4.4 offers a delimitation from the state-of-the-art in workload modeling, as presented
earlier in Section 3.1.

4.2 The Descartes Load Intensity Models DLIM and hl-DLIM

In this section, we first explain in detail the more fine-grained DLIM meta-model, before we
reduce the modeling capability to a higher abstraction level in the High-level DLIM with the
target to increase usability for human users.

1LIMBO (DLIM tools): Primary page http://descartes.tools/limbo
2LIMBO (DLIM tools:): Also hosted at SPEC RG peer-reviewed tools repository https://research.spec.

org/tools/overview/limbo.html

49

http://descartes.tools/limbo
https://research.spec.org/tools/overview/limbo.html
https://research.spec.org/tools/overview/limbo.html

Chapter 4: Modeling and Extraction Load Intensity Profiles

4.2.1 DLIM Model
The Descartes Load Intensity Model (DLIM) describes load intensity over time. Specifically,
the model is aimed at describing the variations of work unit arrival rates by capturing
characteristic load intensity behaviors.

The basic idea for DLIM load intensity models is defining and combining piece-wise
mathematical functions to approximate variable arrival rates over time. This idea is sketched
in Figure 4.1. This idea for DLIM models supports load intensity profiles with periodicity
and offers flexibility to adapt and incorporate unplanned events. It also allows for nested
composition of model instances. This nesting results in DLIM instances always having a
tree structure, where different nodes and leaves within the tree are added or multiplied onto
their parents.

W
or

kl
oa

d
U

ni
ts

Time

 + / × + / × + / × + / ×

 + / ×

Seasonal

Trends &
Breaks

Overlaying
Seasonal

BurstNoise

 + / ×
 + / ×

Figure 4.1: Abstract idea for the DLIM meta-model.

The resulting DLIM meta-model is visualized in Figure 4.2. It uses the Sequence as its
central element for the composition of piece-wise mathematical functions. A Sequence
carries an ordered set of TimeDependentFunctionContainers, which describe the dura-
tion of each time interval. The containers, in turn, contain the actual mathematical func-
tions describing the load intensity during their interval. The Sequence’s ordered set of
TimeDependentFunctionContainers repeats as many times as indicated by the terminate-
AfterLoops attribute. Alternatively, the sequence repeats for the time indicated by the
terminateAfterTime attribute. The sequence terminates as soon as at least one of the ter-
mination criteria is met. Infinite sequences are not allowed and at least one termination

50

4.2 The Descartes Load Intensity Models DLIM and hl-DLIM

Figure 4.2: Outline of the DLIM meta-model excluding a detailed description of concrete Functions.

criterion must be specified. This ensures a finite time-frame and guarantees that bench-
marks or predictions terminate.

Any DLIM Function may use mathematical operators called Combinators to contain
additional Functions. A Combinator allows the multiplication or additon of a Function’s
load intensity with the load intensity as defined by another Function. In the context of
the overall load variation over time, any Function contained within a Combinator is valid
for the exact same duration as its containing parent Function. This containment results
in trees of functions containing zero or more additional functions. All of these functions
describe the load intensity behavior during a specific time period defined by the containing
TimeDependentFunctionContainer.

The TimeDependentFunctionContainer describes its load intensity for a set duration,
after which the next TimeDependentFunctionContainer in the parent Sequence’s ordered
set becomes valid.

Function is the abstract parent class to all classes denoting mathematical functions. It
is contained within a TimeDependentFunctionContainer. A number of concrete children
are provided that can be used as Functions. The default set of functions provides Noise,
Seasonal, Burst, Trend, and UnivariateFunction specifications. New functions can be pro-
vided by inheritance. The most notable concrete Function is the Sequence. As a result, any

51

Chapter 4: Modeling and Extraction Load Intensity Profiles

function can contain a new Sequence using a mathematical operator. The containment
hierarchy prevents cycles.

Figure 4.3 shows an example DLIM instance together with a plot of the model example in
the lower part. In both model and plot, red areas map to the impact of the additive combina-
tors and yellow areas to the impact of multiplicative combinator. The root Sequence (named
“root”) of the instance contains a TimeDependentFunctionContainer (TDFC) “season” with
a duration of 24 abstract time units. “root” repeats its single TDFC three times before ter-
minating. The container itself contains a sinus function modeling the load intensity. This
sinus function repeats itself. As a result, the seasonal duration of 24 is technically speaking
unnecessary, but was chosen nonetheless to add additional information to the model. “root”
also contains Combinators, which modify its load intensity. The multiplicative Combinator
contains a separate Sequence (“trends”), which contains two TDFCs. The first of those
models a linear increase in load intensity, up to a factor of 1.8, whereas the latter models
a decrease back to the original level. The “trends” Sequence terminates before “root” and
stops modifying it after its first iteration. A “burst” Sequence and normal noise are added to
“root”. Note, that Combinators may contain any DLIM-Function. This is usually a Sequence,
as it is the case for trends and bursts in this example model. Contained Sequences terminate
on their own or at the end of the containing Sequence if their duration would exceed the
parent’s duration. All other functions, such as the noise in this example, are valid for the
entire duration of their containing Sequence.

4.2.2 High-level DLIM

DLIM offers a convenient way of structuring and ordering functions for the description
of load intensity profiles. Its tree of piece-wise mathematical functions already provides
human users with better understanding of the load variations. However, abstract knowledge
about variations contained in complex models can still be difficult to understand, as a large
tree of composite functions may be difficult to grasp. The High-level (hl-)DLIM is a separate
model which addresses this issue by providing means to capture load intensity variations
described only by a limited number of non-hierarchical parameters instead of a potentially
deeply nested tree of mathematical functions. These parameters can then be used to quickly
define and characterize a load intensity model.

hl-DLIM separates into a Seasonal and Trend part (inspired by the time-series decompo-
sition approach in BFAST [VHNC10]) and features a Burst and a Noise part. In contrast to
DLIM, it is designed to model a subset of the most common load variation profiles in favor
of better readability.

The Seasonal part describes the function that repeats after every seasonal duration (e.g.,
every day in a month long load intensity description). hl-DLIM describes the seasonal part
using the following parameters (as shown in Figure 4.4): period, number of peaks, base
arrival rate level, first peak arrival rate, last peak arrival rate, and the interval containing
peaks. Arrival rates of additional peaks between the first and last peak are derived using
linear interpolation. Linear interpolation is chosen because it is the most intuitive for the
modeling user. More detailed changes can be performed in (non-hl-)DLIM.

The Trend part describes an overarching function that captures the overall change in
the load intensity over multiple seasonal periods. It consists of a list of equi-length Trend

52

4.2 The Descartes Load Intensity Models DLIM and hl-DLIM

ro
ot

 :
Se

q
lo

op
s

=
3

tim
e

=
0.

0

se
as

on
 :

TD
FC

du
ra

tio
n

=
24

.0

si
n

: S
in

m
in

 =
 1

.0
, m

ax
 =

 5
.0

pe
rio

d
=

24
.0

, p
ha

se
 =

 -6
.0

M
U

LT
 :

C
om

bi
na

to
r

AD
D

 :
C

om
bi

na
to

r

tre
nd

s:
 S

eq
lo

op
s

=
1

tim
e

=
0.

0

in
cr

ea
si

ng
Tr

en
d

: T
D

FC
du

ra
tio

n
=

24
.0

de
cr

ea
si

ng
Tr

en
d

: T
D

FC
du

ra
tio

n
=

24
.0

lin
ea

rIn
c

: L
in

Tr
en

d
st

ar
t =

 1
.0

en
d

=
1.

8

lin
ea

rD
ec

 :
Li

nT
re

nd
st

ar
t =

 1
.0

en
d

=
1.

8

bu
rs

ts
 :

Se
q

lo
op

s
=

1
tim

e
=

0.
0

of
fs

et
 :

TD
FC

du
ra

tio
n

=
38

.0

bu
rs

t:
TD

FC
du

ra
tio

n
=

9.
0

ex
pB

ur
st

 :
Ex

pB
ur

st
ba

se
 =

 0
.0

, p
ea

k
=

4.
0

pe
ak

Ti
m

e
=

2.
5

AD
D

 :
C

om
bi

na
to

r
no

is
e

: N
or

m
al

N
oi

se
m

ea
n

=
1.

0
st

an
da

rd
D

ev
ia

tio
n

=
0.

3

0
24

48
72

tim
e

<<
lo

op
s>

>

<<
co

nt
in

ue
s>

>

0
011

72
tim

e

load intensity

A
bb

re
vi

at
io

ns
:

TD
FC

 =

Ti
m

eD
ep

en
de

nt
Fu

nc
tio

nC
on

ta
in

er

S
eq

 =
Se

qu
en

ce

Li
nT

re
nd

 =
Li

ne
ar

Tr
en

d

S
eq

ue
nc

e:
:lo

op
s

=
te

rm
in

at
eA

fte
rL

oo
ps

S
eq

ue
nc

e:
:ti

m
e

=
te

rm
in

at
eA

fte
rT

im
e

Figure 4.3: Example instance of a DLIM model.

53

Chapter 4: Modeling and Extraction Load Intensity Profiles

time

ar
riv

al
 r

at
e

Last Peak
Arrival Rate

First Peak
Arrival Rate

Base Arrival Rate
between Peaks

Base Arrival
Rate Level

Interval Containing Peaks

Period

Figure 4.4: hl-DLIM Seasonal part.

segments. hl-DLIM describes the respective arrival rates at the start of each of these seg-
ments. The Trend must modify the arrival rate of the Seasonal part’s maximum peak in such
a way that it matches this specified target arrival rate. The actual trend segments between
these specified points can be interpolated using any DLIM Trend function. In contrast
to the Trend within BFAST, the hl-DLIM Trend can interact with the Seasonal part either
by addition or multiplication. The restrictions posed by hl-DLIM to Trend modeling are
intended to speed the human modeling process. (Non-hl-)DLIM allows for more varied
Trend specifications. The Trend part is defined using the following parameters: number
of seasonal periods within one trend (i.e., the length of a single trend segment), operator
(addition or multiplication), and the list of seasonal arrival rate peaks. The latter defines the
arrival rate at the beginning and end of the Trend segments. Since the list defines the maxi-
mum seasonal peak for seasonal iterations, trend segments can be interpreted as overlying
interpolated functions, beginning and ending at the maximum peaks of their respective
seasonal iterations. This interpretation is visualized in Figure 4.5.

time

ar
riv

al
 r

at
e

[a0,a1]
ListhofhmaximumhtargethSeasonalhArrivalhRatehPeaks

NumberhofhSeasonalhPeriodshwithinhonehTrendh=h2

Figure 4.5: hl-DLIM Trend part.

54

4.3 Model Instance Extraction

The Burst part allows the definition of recurring bursts, which are added onto the existing
Seasonal and Trend behavior (in contrast to DLIM, where bursts may also be multiplicative).
It is defined using the following parameters: First burst offset, inter-burst period, burst peak
arrival rate, and burst width.

The Noise part allows the addition of uniformly distributed white noise. The distribution
is defined by its upper and lower bounds, which are named Minimum Noise Rate and
Maximum Noise Rate. Uniform noise is used in hl-DLIM, due to its ease and intuitiveness
when being specified by a human user. Other Noise distributions can easily be added
to DLIM instances, which are obtained from hl-DLIM instances via a model-to-model
transformation.

4.3 Model Instance Extraction
In this section, we present three methods for the extraction of DLIM instances from arrival
rate traces, consisting of pairs of arrival rates at their respective time stamps. Each model
extraction method requires few configuration parameters that we discuss in detail. Given
the set of configuration parameters, the extraction runs completely automated.

We define the following three methods:

1. Simple DLIM Extraction Method (s-DLIM):
Extracts a DLIM instance. This process (and its resulting DLIM instance) are inspired
by the time-series decomposition approach STL [CCMT90]. s-DLIM extracts a re-
peating Seasonal Part and a non-repeating Trend Part. The non-repeating Trend Part
contains a list of Trend segments of fixed size, that interpolate between their start and
end arrival rate value. The Trend list extends throughout the entire time duration for
which the extracted model is defined. Additionally, a Burst Part and an optional Noise
Part are extracted. s-DLIM is visualized in Figure 4.6.

2. Periodic DLIM Extraction Method (p-DLIM):
This is a variation of the simple extraction process that features multiple repeating
trends. Again a DLIM instance is extracted, however, in contrast to s-DLIM, p-DLIM
does not feature a single list of equal length Trend segments. Instead it features multi-
ple lists of Trends, each containing a fixed number of Trend segments of (potentially)
different lengths.

3. High-level DLIM Extraction Method (hl-DLIM):
Extracts an hl-DLIM instance. This process is based on the simple model extraction
process and uses the information extracted by the latter to derive the parameters
needed to construct an hl-DLIM instance.

4.3.1 Extracting a s-DLIM and p-DLIM Instance
The following sections describe the extraction of the different model parts by s-DLIM and
p-DLIM. These two processes only differ in their approach to the extraction of the Trend
Part.

55

Chapter 4: Modeling and Extraction Load Intensity Profiles

ca
lib

ra
te

yB
ur

st
yP

ar
t

to
ym

at
ch

bu
rs

tyl
is

t

bu
ild

yB
ur

st
yP

ar
t

bu
rs

tyl
is

t

ge
typ

os
iti

ve
yo

ut
lie

ry
tim

e-
st

am
ps

ge
tya

rr
iv

al
yr

at
es

ya
tyt

im
e-

st
am

ps
ge

tyb
ur

st
yli

st

B
ur

st
yP

ar
t

ca
lib

ra
te

yT
re

nd
yP

ar
t

to
ym

at
ch

tr
en

dy
lis

t

bu
ild

yT
re

nd
yP

ar
t

tr
en

dy
lis

t

ca
lc

ul
at

ey
tr

en
dy

se
gm

en
tyd

ur
at

io
n

ge
tya

rr
iv

al
yr

at
es

ya
tyt

im
e-

st
am

ps
ge

tyt
re

nd
yli

st

T
re

nd
yP

ar
t

bu
ild

yS
ea

so
na

lyP
ar

t

se
as

on
al

yp
ar

am
et

er
s

ex
tr

ac
typ

ea
ks

ex
tr

ac
tyl

ow
s

S
ea

so
na

lyP
ar

t

lo
ca

lym
ax

im
a

lo
ca

lym
in

im
a

ca
lc

ul
at

ey
lo

ca
lym

in
im

ay
an

dy
m

ax
im

a

bu
ild

yN
oi

se
yP

ar
t

ca
lc

ul
at

ey
di

ffe
re

nc
ey

di
st

rib
ut

io
n

ca
lc

ul
at

ey
di

ffe
re

nc
e

be
tw

ee
ny

fil
te

re
d

an
dy

or
ig

in
al

ar
riv

al
yr

at
es

or
ig

in
al

ya
rr

iv
al

yr
at

es

N
oi

se
yP

ar
t

(f
ilt

er
ed

)

ar
riv

al
yr

at
es

ap
pl

yy
ga

us
si

an
yfi

lte
r

[n
oy

no
is

ey
ex

tr
ac

tio
n]

[n
oi

se
ye

xt
ra

ct
io

n]

Figure 4.6: Activity diagram of the Simple DLIM Extraction Method (s-DLIM).

56

4.3 Model Instance Extraction

Extracting the Seasonal Part

The Seasonal Part of the arrival rate trace is modeled using a Sequence of TimeDependent-
FunctionContainers and their Functions. Each Function interpolates the corresponding
peaks and lows within each seasonal period. As a result, the following data needs to be
derived in order to build the Seasonal Part:

• Duration of the dominating seasonal period: automatically derived or configured.

• Arrival rate peaks and their time-stamps: automatically derived.

• Arrival rate lows and their time-stamps: automatically derived.

• Function type used to interpolate between peaks and lows: (pre-)configured.

The duration of the seasonal period can be set by the user in cases when the sampling
interval of the input time series known. A trace that extends for multiple days and contains
daily patterns, for example, features a period of 24 hours. In cases, where the seasonal period
is not transparent, we provide an implementation of a heuristic to estimate the seasonal
period duration. We follow a heuristic described in the work of Wang et al. [WSMH09, p.17]
and compute the autocorrelation function for all lags up to one third of the time series
length. As preprocessing, an overarching trend is removed from the input data using a
regression spline. In the following step, the local maximum with the smallest lag is searched
with a sliding window. Finally, we cross-check if multiples of the first local minimum lag
correspond to other local minima. The peaks and lows are automatically determined by
using a local minimum/maximum search on the arrival rates within the trace. The local
arrival rate minima and maxima and their corresponding time-stamps within a seasonal
period constitute the peaks and lows. Since the trace usually contains multiple seasonal
periods, the respective median arrival rate value is selected for each local maximum and
minimum within the Seasonal Part. Selecting the median instead of the mean reduces the
impact of outliers on the extracted seasonal values. Outliers can be significant, but more
importantly they are usually positive outliers. Negative outliers (disconnects, maintenance
breaks) are less common and do not have as much of an impact, as their minimum size
is 0. Positive outliers (bursts) are more common and intended to be detected separately
using our burst detection. As a result, the derived functions interpolate first between the
first median low and the first median peak, then between the first median peak and the
second median low, and so on. The last low must be of the same arrival rate as the first low
in order for the Seasonal Part to repeat seamlessly. The type of the interpolating function
(linear, exponential, logarithmic, sin-flank) can be selected by the user, depending on his
needs. According to our experience, the sin interpolation usually results in a good model fit.
The Seasonal Part extraction is illustrated in Algorithm 4.1.

Extracting the Trend Part

The Trend Part consist of a series of functions (trend segments) that are either added or
multiplied onto the Seasonal Part. Each trend segment begins at the maximum peak of
the Seasonal Part and ends at the maximum peak of the Seasonal Part in a later Seasonal

57

Chapter 4: Modeling and Extraction Load Intensity Profiles

ALGORITHM 4.1: Extracting the Seasonal Part

Data: duration: seasonal period duration,

LIST: list of tuples~t =
(

ar r i valRate

t i meSt amp

)
,

1 rootSequence: root Sequence of the DLIM instance

2 Function extractSeasonalPart()
3 MIN← getLocalMinima (LIST)
4 MAX← getLocalMaxima (LIST)
5 peakNum← median(number of peaks within each Seasonal iteration)

6 for i ← 0 to peakNum−1 do
7 peak [i].arrivalRate ← median(arrival rate of all ith peaks ∈MAX within each

seasonal iteration)
8 peak [i].timeStamp ← median(time stamp of all ith peaks ∈MAX within

each seasonal iteration)
/* In seasonal iterations with more than peakNum

peaks, the ith peak is selected, so that peaks are
evenly spaced throughout that seasonal iteration.

*/

9 peak [i] ←
(
peak[i].ar r i valRate

peak[i].t i meSt amp

)
;

10 for i ← 0 to peakNum−1 do
11 low [i].arrivalRate ← median(arrival rate of all ith low s ∈MIN within each

seasonal iteration)
12 low [i].timeStamp ← median(time stamp of all ith low s ∈MIN within each

seasonal iteration)
/* In seasonal iterations with more than peakNum lows,

the ith low is selected, so that lows are evenly
spaced throughout that seasonal iteration. */

13 low [i] ←
(
low[i].ar r i valRate

low[i].t i meSt amp

)
;

14 for i ← 0 to peakNum−1 do
15 interpolatingFunction← DLIM Function starting at low [i], ending at peak [i]
16 rootSequence.append(interpolatingFunction)

58

4.3 Model Instance Extraction

iteration. This minimizes errors with trend calibration. The trend extraction calibrates
the trend in a way that the model output arrival rate at the trend segment’s beginning (or
end) equals the trace’s actual arrival rate at the respective point in time. The shape of the
trend function (linear, exponential, logarithmic, sin) is predefined as a sin-shape, but can be
changed on demand.

Trend Part for s-DLIM: The simple extraction process features a list of equal-length
trend segments. These segments have a user defined duration that is a multiple of the
seasonal period. Like the seasonal period it is also selected using meta-knowledge about the
trace. These segments are then calibrated at their beginning and end to match the arrival
rates in the trace. The s-DLIM Trend Part extraction is displayed in Algorithm 4.2.

ALGORITHM 4.2: Extracting the Trend Part using s-DLIM

Data: duration: seasonal period duration,

LIST: list of tuples~t =
(

ar r i valRate

t i meSt amp

)
,

1 MAX: list of local maxima in LIST,
2 trendSequence: root Sequence of all Trend segments

3 Function extractTrendPart()
4 largestPeakOffset← offset of peak with largest arrival rate within a seasonal

iteration
5 largestPeakArrivalRate← arrival rate of peak with largest arrival rate within a

seasonal iteration
6 iterations← LIST.l astTuple.t i meSt amp/duration
7 for i ← 0 to iterations do
8 a ← nearestTuple(MAX, i ∗duration+ largestPeakOffset)
9 trendPoint [i] = a/largestPeakArrivalRate

10 trendSequence.append(constant trendPoint [0] with duration
largestPeakOffset)

11 for i ← 0 to iterations do
12 interpolatingFunction← DLIM Function starting at trendPoint [i], ending at

trendPoint [i+1]
13 trendSequence.append(interpolatingFunction with duration duration)

14 trendSequence.append(constant trendPoint [iterations] with duration
(duration− largestPeakOffset))

15 Function nearestTuple(tuple list L, time)

16 returns the tuple~t =
(

ar r i valRate

t i meSt amp

)
∈ L with minimal d ←|L.t i meSt amp − t i me|

59

Chapter 4: Modeling and Extraction Load Intensity Profiles

Trend Part for p-DLIM: The periodic extraction process takes into account, that multiple
repeating trends may be part of the arrival rate trace. Examples are weekly and monthly
trends. Since repeating trends (like the Seasonal Part’s dummy function) should end on
the same arrival rate as the arrival rate they started on (allowing seamless repetition), each
of these repeating trends contains at least two trend segments. These trend segments’
duration is a multiple of the seasonal period. Unlike the s-DLIM trend segments they are not
required to be of equal length, thus allowing odd multiples of seasonal periods as total trend
durations. The user selects lists of at least two trend segment durations for each repeating
Trend Part.

Extracting the Burst Part

Extracting bursts is a matter of finding the points in time at which significant outliers from
the previously extracted Seasonal and Trend parts are observed in the trace. However, for
our extraction, bursts are explicitly not missed seasonal peaks. Extracted bursts are not
intended to model the model’s remaining noise, only semantic bursts. In the context of load
intensity modeling, we define bursts as a significant amount of additional load that exceeds
the seasonal pattern and is too short to be modeled as trend. To this end, we require a filter
function that smooths the seasonal function to prevent modeling of missed seasonal peaks
using bursts. With this filter function bursts can be detected if:

r (t) > (f (σ(t)) ·τ(t)) · c

where r (t) is the original load intensity (arrival rate), f is the filter function, σ and τ are
the previously extracted Seasonal and (multiplicative) Trend parts, and c is a constant factor
that requires bursts to be a certain factor larger than filtered season and trend. c is set to a
default value of 1.2.

Once a burst is found, it is added to the root Sequence and then calibrated to match the
arrival rate from the trace. The filtered Seasonal Part used as reference model in the burst
recognition activity differs from the actual extracted Seasonal Part. It is filtered so that the
Seasonal Part used in the burst recognition activity does not interpolate between the peaks
and lows of the original arrival rate trace. Instead it interpolates only between the peaks.
This removes false positives due to seasonal periods that are slightly offset in time, however,
it also eliminates bursts that do not exceed the current seasonal peak. This trade-off is
considered acceptable, since time-wise offset seasonal periods are commonly observed.

Extracting the Noise Part

The Noise Part extraction consists of two steps: Noise reduction and the calculation of the
noise distribution. The idea behind our approach is to first reduce the noise observed within
the arrival rates contained in the trace, and then reconstruct the reduced noise by calculating
the difference between the original trace and the filtered one. Having filtered the noise, the
extraction of the Seasonal Part, Trend Part, and Burst Part are then performed on the filtered
trace. This has a significant impact on the extraction accuracy of these parts, and thus on
the overall accuracy of the extracted model instance, especially when extracting hl-DLIM
instances, as will be shown in the model accuracy evaluation (Chapter 8). Depending on the

60

4.3 Model Instance Extraction

trace, the overall accuracy of the DLIM extraction can be improved by noise elimination. In
this case, we recommend applying noise extraction, even if the extracted noise component
itself is deleted later on.

Noise Reduction: Noise is reduced via the application of a one-dimensional Gaussian filter
on the read arrival rates. A Gaussian filter has a kernel based on the Gaussian distribution, it
thus has the following form (as defined in foundational work, e.g. [BZ86]):

G(x) = 1p
2πσ

e−
x2

2σ2

We choose the kernel width ω depending on the Seasonal period length λ (duration of
a single seasonal iteration) and the expected number of peaks n (local maxima) within a
Seasonal period:

ω= λ
n

A Gaussian filter’s kernel width is defined as:

ω= 6 ·σ−1

As a result, the standard deviation is:

σ=
λ
n +1

6

Calculating the Noise Distribution The Noise Part is modeled as a normally distributed
random variable. This variable is added to the DLIM instance’s root Sequence. The nor-
mal distribution’s mean and standard deviation are calculated as the mean and standard
deviation of the differences between the filtered arrival rate trace. This is illustrated in
Algorithm 4.3.

s-DLIM and p-DLIM both only support the extraction of normally distributed noise. Other
noise distributions are not supported. hl-DLIM extraction, however, supports the extraction
of uniformly distributed noise.

ALGORITHM 4.3: Calculating the Noise distribution.

Data: LIST: list of read tuples~t =
(

ar r i valRate

t i meSt amp

)
;

1 Function calculatNoiseDistribution()
2 FILTERED_LIST← applyGaussianFilter(LIST)
3 for i ← 0 to |LIST|−1 do
4 difference[i] ← LIST [i].arrivalRate - FILTERED_LIST [i].arrivalRate

5 distribution← normal distribution with mean(difference) and
standardDistribution(difference)

61

Chapter 4: Modeling and Extraction Load Intensity Profiles

4.3.2 Extracting an hl-DLIM Instance

The hl-DLIM extraction is similar to s-DLIM extraction. This section only highlights the
differences between those two processes.

Seasonal Part

hl-DLIM is restricted to only support peaks with an equal distance from one another. The
arrival rates of such peaks are linearly interpolated between the first peak’s arrival rate
and the last peak’s arrival rate. When extracting an hl-DLIM instance from an arrival rate
trace, the difference thus lies in the interval containing peaks and in the search for the
maximum and minimum peak. The interval containing peaks is calculated as the time
difference between the first and the last peak, the first peak’s arrival rate is then set either to
the minimum or maximum peak (depending on whether the first median peak has a greater
or a smaller arrival rate than the last median peak in the trace) and the last peak is set to the
corresponding counter-part.

Trend Part

Extracting the Trend Part is done almost identically as in the simple model extraction process,
since hl-DLIM defines its Trend Part as a list of arrival rates at the beginning and end of each
trend segment, identically to the arrival rate list extracted in s-DLIM. The only difference
is the offset before the first trend segment begins. The trend segment always ranges from
the maximum peak within one seasonal period to the maximum peak within a following
seasonal period. The simple model extraction process allows this maximum peak to be any
seasonal peak. hl-DLIM, however, only allows the first or last peak to be the maximum peak.
As a result, the time offset for the first trend segment is slightly different.

Burst Part

Bursts are detected and calibrated using the same peak-only Seasonal Part as in s-DLIM.
While the other model extraction processes modeled each burst individually, hl-DLIM only
supports recurring bursts. Thus, only the first burst offset and the inter burst period are
extracted, as well as only a single burst arrival rate. The first burst offset is selected based on
its time-stamp, whereas the period between recurring bursts is calculated as the median
inter burst period from the independent bursts. The burst arrival rate is also calculated as
the median burst arrival rate.

Noise Part

In hl-DLIM, noise is extracted using our previously described filtering approach, thus
having the same noise reduction side-effects as in the other model extraction processes.
hl-DLIM, however, only supports a uniformly distributed random variable as noise. In
order to eliminate outliers but keep the intuitiveness of hl-DLIM, hl-DLIM extraction only
approximates the noise distribution of the original trace, eliminating major outliers. For this
approximation the minimum and maximum value of the respective uniform distribution are

62

4.4 Delimitation from the State-of-the-Art in Load Profile Modeling

selected as the 10th and 90th percentile of the difference between the filtered and unfiltered
arrival rates.

4.4 Delimitation from the State-of-the-Art in Load Profile
Modeling

As discussed in related work in Section 3.1, several approaches to describe and generate
workloads with variable intensity exist in literature. However, they differ from our approach
in the following two key aspects.

First, a set of approaches that work purely statistically using independent random vari-
ables and therefore do not offer models describing deterministic load intensity changes over
time.

Second, approaches for workload or user behavior modeling that capture the structure of
the actual units of work they dispatch or emphasize the behavior of users after their arrival
on the system.

In contrast, DLIM models focus on the description of request or user arrivals, and not on
user behavior and its impact after arrival. We combine both deterministic and statistical
approaches. This enables a mapping between load profile variations and their respective
time-stamps. DLIM uses a composition of piece-wise defined mathematical functions. In
contrast to statistical approaches, which model distributions, DLIM models a concrete load
intensity for each distinct point in time.

DLIM also supports random noise including spikes of various shapes and therefore repre-
sent noise, random events and individual outliers as well. To the best of our knowledge, a
directly comparable combined deterministic and statistical descriptive modeling approach
for load intensity profiles is not published in literature.

4.5 Concluding Remarks
This chapter presents the Descartes Load Intensity Model (DLIM) for capturing load profiles
in a structured combination of piecewise-defined mathematical functions. The design of the
DLIM meta-model is our answer to RQ A.1 („How to model load intensity profiles from real-
world traces in a descriptive, compact, flexible and intuitive manner?“). Second, to answer
RQ A.2 („How to automatically extract instances of load intensity profiles from existing
traces with a reasonable accuracy and computation time?“), we introduce three heuristic
methods enabling the automated extraction of DLIM instances from existing arrival rate
traces: (i) Simple DLIM Extraction (s-DLIM), (ii) Periodic DLIM Extraction (p-DLIM), and
(iii) High-Level DLIM Extraction (hl-DLIM).

Model extraction, editing, accuracy assessment and exporting is part of the Limbo tool
chain for DLIM models. We leverage DLIM extraction and modeling capabilities to gener-
ate representative load profiles when benchmarking and comparing approaches for auto-
scaling. We thoroughly evaluate DLIM model expressiveness by computing the accuracy of
automatically extracted model instances from a set of real-world traces in Chapter 8.

63

Chapter 5

Quantifying the Observable Elasticity of
Auto-Scaling Mechanisms: Metrics and
BUNGEE Measurement Methodology

BUNGEE
Cloud Elasticity Benchmark

Today’s infrastructure clouds provide resource elasticity (i.e. auto-scaling) mechanisms
enabling autonomic resource provisioning to reflect variations in the load intensity over time.
These mechanisms impact on the application performance, however, their effect in specific
situations is hard to quantify and compare. To evaluate the quality of elasticity mechanisms
provided by different systems and configurations, respective metrics and benchmarks are
required. Existing metrics for elasticity only consider the time required to provision and
de-provision resources or the costs impact of adaptations. Existing benchmarks lack the
capability to handle open workloads with realistic load intensity profiles and do not explicitly
distinguish between the performance exhibited by the provisioned underlying resources, on
the one hand, and the quality of the elasticity mechanisms themselves, on the other hand.

In this chapter, we answer RQ A.3 („What are meaningful intuitive metrics to quantify
accuracy, timing and stability as quality aspects of elastic resource adaptations?“). After
having defined a set of elasticity metrics, we address RQ A.4 („How can the proposed elas-
ticity metrics be measured in a reliable and repeatable way to enable fair comparisons
and consistent rankings even across systems with different performance of the underlying
scaled resources?“). To this end, we propose a novel approach for benchmarking the elastic-
ity of Infrastructure-as-a-Service (IaaS) cloud platforms independent of the performance
exhibited by the provisioned underlying resources.

In the evaluation in Chapter 9, we show that each of the proposed metrics provides a
consistent ranking of elastic systems on an ordinal scale concerning their elasticity aspect.
Finally, we present an extensive case study of real-world complexity demonstrating that the
proposed approach is applicable in realistic scenarios and can cope with different levels of
resource performance.

65

Chapter 5: Elasticity Metrics and Measurement Methodology

5.1 Introduction
Infrastructure-as-a-Service (IaaS) cloud environments provide the benefit of Utility Com-
puting [AFG+10]. Accordingly, many providers offer tools that allow customers to configure
automated adaptation processes and thus benefit from the increased flexibility and the
ability to react on variations in the load intensity. Predicting and managing the performance
impact of such adaptation processes and comparing the elasticity of different approaches
is still in its infancy. However, customers require that performance related service level
objectives (SLOs) for their applications are continuously met.

Elasticity itself is influenced by these adaptation processes as well as by other factors
such as the underlying hardware, the virtualization technology, or the cloud management
software. These factors vary across providers and often remain unknown to the cloud
customer. Even if they are known, the effect of specific configurations on the performance
of an application is hard to quantify and compare. Furthermore, the available adaptation
processes are quite different in their methods and complexity as shown in the surveys by
Lorido-Botran et al. [LBMAL14], Galante et al. [GB12] and of Jennings and Stadler [JS15].

Previous works on elasticity metrics and benchmarks evaluate this quality attribute only
indirectly and to a limited extent: The focus of existing metrics lays either on the technical
provisioning time [LYKZ10, LOZC12, CCB+12], on the response time variability [BKKL09,
DMRT11,ASLM13], or on the impact on business costs [ILFL12,FAS+12,Sul12,Wei11,TTP14].
Existing approaches do not account for differences in the efficiency of the underlying
physical resources and employ load profiles that are rarely representative of modern real-life
workloads with variable load intensities over time. However, the quality of a mechanism in
maintaining SLOs depends on the scenario and workload.

In this chapter, we propose: (i) a set of intuitively understandable and hardware-indepen-
dent metrics for characterizing the elasticity of a self-adaptive system including ways to
aggregate them and (ii) a novel benchmarking methodology, called Bungee, for evaluating
the elasticity of IaaS cloud platforms using the proposed metrics.

The metrics, we propose here, support evaluating both the accuracy and the timing
aspects of elastic behavior. We discuss how the metrics can be aggregated and used to
compare the elasticity of cloud platforms. The metrics are designed to support human
interpretation and to ease decision making by comparing resource supply and demand
curves. The proposed elasticity benchmarking approach Bungee1 supports the use of
characteristic open workload intensity profiles tailored to the intended application domain.
It leverages the Limbo2 toolkit [vKHK14a] with its underlying modeling formalism DLIM
for describing load profiles (see Chapter 4). Different levels of system performance are
accounted for by performing an automated calibration phase, the results of which are used
to adjust the load profile executed on each system from the considered systems under test.
In combination with the proposed metrics this allows an independent and quantitative
evaluation of the actual achieved system elasticity.

In the evaluation in Chapter 9, we demonstrate that the proposed metrics provide a con-
sistent ranking of elastic system and adaptation process configurations on an ordinal scale.
The Bungee benchmarking approach is evaluated by applying it to an extensive real-world

1Bungee Cloud Elasticity Benchmark: https://descartes.tools/bungee
2Limbo Load Intensity Modeling: https://descartes.tools/limbo

66

https://descartes.tools/bungee
https://descartes.tools/limbo

5.2 Elasticity Metrics

workload scenario considering deployments on both a private cloud (based on Apache
CloudStack) and the public Amazon Web Services (AWS) EC2 cloud. The evaluation sce-
nario employs a realistic load profile, consisting of several millions of request submissions,
and is conducted using different types of virtual machine instances that differ in terms of
their exhibited performance. We demonstrate that the proposed approach is applicable in
realistic scenarios and can cope with different levels of resource performance.

The remainder of this chapter is structured as follows: Section 5.2 proposes a set of metrics
for the quantification of elasticity followed by three different metric aggregation approaches
in Section 5.3 and a discussion of metric properties in Section 5.4. Section 5.5 explains the
measurement methodology implemented in the benchmarking framework Bungee in detail.

5.2 Elasticity Metrics
In order to compare and quantify the performance of different auto-scalers in practice and
across deployments, we use a set of both system- and user-oriented metrics. Since initially
proposed in a definition paper [HKR13] in 2013, the system-oriented elasticity metrics have
been iteratively refined based on countless discussions, own experience from experiments
and reviewer feedback. The set of metrics was proposed to and has been endorsed by the
Research Group of the Standard Performance Evaluation Corporation (SPEC) as documented
in a corresponding technical report [HKO+16]. This report has been extended as a SPEC
RG group effort and resulted in a journal article [HBK+18] [currently under review]. The set
of elasticity metrics has been adopted by a number of other researchers applied in several
papers, e.g., [IAEH+17, IAEH+18, PAEÅ+16].

We propose and distinguish between three different types of elasticity metrics:

• provisioning accuracy metrics that explicitly distinguish between over- and underpro-
visioning states and quantify the (relative) amount of resources supplied on average
in excess or to less.

• wrong provisioning timeshare metrics that again explicitly distinguish between over-
and underprovisioning states and quantify the percentage of time spend in each state.

• instability and jitter metrics to quantify the degree of convergence of demand and
supply. Instability denotes the percentage of time in which demand and supply
change in opposite directions. Jitter accounts for the relative number of superfluous
(positive) or missed (negative) adaptations in the supply.

Since under-provisioning results in violating SLOs, a customer might want to use a system
that minimizes under-provisioning ensuring that enough resources are provided at any
point in time, but at the same time minimizing the amount of over-provisioned resources.
The defined separate accuracy and timeshare metrics for over- and under-provisioning
allow providers to better communicate their auto-scaling capabilities and customers to
select an auto-scaler that best matches their needs.

In addition to the elasticity oriented metrics, we suggest to compute user-oriented metrics:
we consider the amount of adaptations, the average amount of VMs, the accounted instance
minutes, and the average and median response time in combination with the percentage of

67

Chapter 5: Elasticity Metrics and Measurement Methodology

SLO violations as important indicators. However in this thesis, we do not take cost-based
metrics into account, as they would directly depend on the applied cost model of a provider
and thus would be inherently biased.

When using only individual metrics for judging the performance of auto-scalers, the
results can be ambiguous. Hence, we use three different methods for deriving an overall
result from the individual metrics: (i) We calculate the auto-scaling deviation of each auto-
scaler from the theoretically optimal auto-scaler. (ii) We perform pairwise comparisons
among the auto-scalers. (iii) We compute the gain of using an auto-scaler via an elastic
speedup metric. Each elasticity and aggregate metric is explained in the remainder of this
section. For the following equations, we define:

• T as the experiment duration with time t ∈ [0,T]

• st as the resource supply at time t

• dt as the resource demand at time t

• ∆t as the time interval between the last and current change in demand d or supply s.

The resource demand dt is the minimal amount of resources required to meet a predefined
SLO under the load at time t . The demand curve is derived based on load measurements by
Bungee (see Section 5.5). The resource supply st is the monitored number of running VMs
at time t .

time resource demand resource supply

re
so

ur
ce

s

T

U2

O1

U1

U3 O3

O2

A1 A2 A3 B1 B2 B3

Figure 5.1: Illustrating example for accuracy (U, O) and timing (A, B) metrics - red/blue areas indicate
under-/over-provisioning.

Figure 5.1 illustrates the time spans in under-/overprovisioned states as Ai ,Bi and areas
Ui ,Oi that can be derived by combining the supply st and demand dt curves.

5.2.1 Provisioning Accuracy
The provisioning accuracy metrics θU and θO describe the (relative) amount of resources
that are underprovisioned, respectively, over-provisioned during the measurement interval,

68

5.2 Elasticity Metrics

i.e., the under-provisioning accuracy θU is the amount of missing resources required to meet
the SLO in relation to the current demand normalized by the experiment time. Similarly, the
over-provisioning accuracy θO is the amount of resources that the auto-scaler supplies in
excess of the current demand normalized by the experiment time. Values of this metric lie in
the interval [0,∞), where 0 is the best value and indicates that there is no under-provisioning
or over-provisioning during the entire measurement interval.

θU [%] := 100

T
·

T∑
t=1

max(dt − st ,0)

max(dt ,ε)
∆t (5.1)

θO[%] := 100

T
·

T∑
t=1

max(st −dt ,0)

max(dt ,ε)
∆t (5.2)

with ε> 0; we selected ε= 1.
These normalized accuracy metrics are particularly useful when the resource demand

has a large variance over time, and it can assume both large and small values. In fact,
under-provisioning of one resource unit when two resource units are requested is much
more harmful than under-provisioning one resource unit when hundred resource units
are requested. Therefore, this type of normalization allows a more fair evaluation of the
obtainable performance.

For an intuitive interpretation when comparing result in experiments with a low variation
in the resource demand, we define the unscaled provisioning accuracy metrics aU and aO as
the average amount of resource units by which the demand exceeds the supply for aU , and
analogously the average amount of superfluous resources during overprovisioned periods
for aO :

aU [#r es] := 1

T
·

T∑
t=1

max(dt − st ,0)∆t (5.3)

aO[#r es] := 1

T
·

T∑
t=1

max(st −dt ,0)∆t (5.4)

Figure 5.1 shows the intuitive the meaning of the accuracy metrics. Under-provisioning
accuracy aU is equivalent to summing the areas U where the resource demand exceeds
the supply normalized by the duration of the measurement period T . Similarly, the over-
provisioning accuracy metric aO is based on the sum of areas O where the resource supply
exceeds the demand.

5.2.2 Wrong Provisioning Time Share

The wrong provisioning time share metrics τU and τO capture the portion of time in per-
centage, in which the system is under-provisioned, respectively over-provisioned, during the
experiment, i.e., the under-provisioning time share τU is the time relative to the measure-
ment duration, in which the system has insufficient resources. Similarly, the over-provision-
ing time share τO is the time relative to the measurement duration, in which the system has
more resources than required. Values of this metric lie in the interval [0,100]. The best value

69

Chapter 5: Elasticity Metrics and Measurement Methodology

0 is achieved when no under-provisioning, respectively no over-provisioning, is detected
within a measurement.

τU [%] := 100

T
·

T∑
t=1

max(sg n(dt − st),0)∆t (5.5)

τO[%] := 100

T
·

T∑
t=1

max(sg n(st −dt),0)∆t (5.6)

5.2.3 Instability
The accuracy and timeshare metrics quantify the core aspects of elasticity. Still, systems
can behave differently while producing the same metric values for accuracy and timeshare
metrics. An example of such a situation is shown in Figures 5.2 and 5.3: Systems A and B
exhibit the same accuracy and spend the same amount of time in the under-provisioned and
over-provisioned states. However, B triggers three unnecessary resource supply adaptations
whereas A triggers seven. This results in a different fraction of time in which the system is in
stable phases. We propose to capture this with a further metric called instability.

time
0

0.5

1

1.5

2

2.5

3

3.5

re
so

ur
ce

s

resource demand
resource supply

provisioning time deprovisioning time

Figure 5.2: System A: Systems with different elastic behaviors that produce equal results for accur ac y
and t i meshar e metrics

We define the instability metric υ as the fraction of time in which the sign of the changes
in the curves of supplied and demanded resource units are not equal. As a requirement
for the calculation of this metric, the average provisioning and deprovisioning time per
resource unit has to be determined experimentally before or during the measurement. The
step-functions of demanded and supplied resource units are transformed to ramps based
on the average deprovisioning and provisioning time as depicted in Figure 5.2. Without this
transformation, the resulting value would become either zero or depend on the sampling
granularity of the demand and supply curves dt and st . In summary, υmeasures the fraction
of time in which the demanded resource units and the supplied units change into different
directions:

υ[%] = 100

T −1
·

T∑
t=2

mi n(|sg n(∆st)− sg n(∆dt)|,1)∆t (5.7)

70

5.2 Elasticity Metrics

time
0

0.5

1

1.5

2

2.5

3

3.5

re
so

ur
ce

s

resource demand
resource supply

Figure 5.3: System B: Systems with different elastic behaviors that produce equal results for accur ac y
and t i meshar e metrics

An instability value close to zero indicates that the system adapts closely to changes in
demand. A relatively high value indicates that the system oscillates heavily and does not
converge to the demand. In contrast to the accuracy and timeshare metrics, a υ value of zero
is a necessary but not sufficient requirement for a perfect elastic system, e.g., continuously
to few resources in parallel to the demand would result in a value of zero. The instability
is a useful indicator for reasoning about the cost-overhead of instance-time-based pricing
models as well as for the operators view on estimating resource adaptation overheads.

Calculating Instability The demand d and supply s are discrete stair functions. The
changes of the discrete stairs have no duration as the curves simply skip to another y-value.
Theoretically, at every point in the duration of the experiment, demand and supply curves
are parallel. Therefore, the instability metric as defined above cannot be calculated straight
forward because it would always result in the value zero or depend the sampling granularity
of demand and supply curves dt and st .

To calculate the instability metric in a well-defined and fair way, we introduce the average
measured provisioning and a deprovisioning time per resource unit right before an impulse
happens, to artificially generate increasing and decreasing intervals where demand and
supply change their amount. Then, the instability can be calculated as defined. Figure 5.4
shows the process of inserting provisioning times before an impulse. First, the demand and
supply curves are given. Afterwards, at each impulse is replaced by a diagonal line. This
diagonal is created using the provisioning time for upscaling and the deprovisioning time
for downscaling. For upscaling, the upper end of the impulse is used as the endpoint of the
diagonal. The provisioning time is used as distance to move to the left for finding the x-value
of the start point of the diagonal, i.e. the start of the diagonal represents the time when a
virtual machine is requested and the end of the diagonal the time when the virtual machine
is available. The y-value is defined as the y-value of the lower end of the impulse. This way,
a triangle is created and the diagonal is inserted. For downscaling the calculation works
analogously. The lower end point of the impulse is used as end point of the diagonal. Then,
the deprovisioning time is used to find the x-value of the start point and the upper end of
the impulse is used to define the y-value. This is done for all impulses in demand and supply
curves. In case the inserted diagonals intersect each other as can be seen in the center of

71

Chapter 5: Elasticity Metrics and Measurement Methodology

Figure 5.4: Preparations for instability computation.

Figure 5.4 on the right, there has to be additional handling that is described in the following.
After both are processed, they can be merged and the instability can be calculated. At the
bottom of Figure 5.4, the red areas show the unstable phases, where demand and supply do
not change in the same direction, that are considered in the metric. Here, it does not matter
how large the gradient is. Instead, only the sign of the gradient is important, whether the
function increases or decreases.

The additional handling of intersection diagonals is described in the following. In general,
the intersection point has to be calculated and the y-value is set to the y-value of the lower
end points of the diagonal as shown at the bottom in Figure 5.5. Therefore, the mathematical
equation of a line is used. This equation of a line can be defined using the first derivation of
it. Therefore, the y-intersect is needed, that can be calculated by using the negative gradient
that times the x-value. Finally, the derivation of the equation of a line is the gradient.

f (x) = m · x + c

f (x) = f ′(x) · x + f (0)

f (0) = (−m) · (x)

f ′(x) = m (5.8)

Four points are given to define two diagonals. These are used to find the intersection point.
To calculate the intersection point, two points per diagonal are given. Figure 5.5 visualizes
the given points, the diagonals, the intersection and the resulting point after calculation.
The points a and b are the original points.

72

5.2 Elasticity Metrics

The points a′ and b′ are the newly inserted points for creating the diagonal.

f (ax) = ay

f (a′
x) = a′

y

f (bx) = by

f (b′
x) = b′

y

(5.9)

These given points can now be used to define the two equations of a line for the diagonals.

Figure 5.5: Preparations for Instability - intersection resolution.

Therefore, the gradient of both diagonals is calculated using the y-values of the points. After-
wards, the values can be inserted into the equation of a line, that results in two equations of
a line for the diagonals.

ma = ay −a′
y

mb = by −b′
y

fa(x) = ma · x +ax · (−ma)

fb(x) = mb · x +bx · (−mb (5.10)

Afterwards, the equations for the diagonals are set equal and the resulting equation is solved
to get the x-value of the intersection point ix . The y-value of the point is set to be the y-value
of one of the surrounding points (a or b′). After finding this intersection point and inserting
it into the data, the surrounding points, a and b′ are removed. Now, after conducting this

73

Chapter 5: Elasticity Metrics and Measurement Methodology

transformation, the instability can be calculated as described in the section above.

fa(x) = fb(x)

ma · x +ax · (−ma) = mb · x +bx · (−mb)

ma · x −mb · x = bx · (−mb)−ax · (−ma)

ix = bx · (−mb)−ax · (−ma)

ma −mb

(5.11)

5.2.4 Alternative Stability Measure Jitter

Originally, we proposed the jitter metric j to quantify the convergence and inertia of elas-
ticity mechanisms. The newer instability metric υ has the strong benefit of a finite positive
value range [0,100]. This is an important aspect for integration into an aggregated metric.

The jitter metric j compares the amount of adaptations in the supply curve ES with the
number of adaptations in the demand curve ED . The difference is normalized by the length
of the measurement period T : If a system de-/allocates more than one resource unit at a
time, the adaptations are counted individually per resource unit.

j

[
#

t

]
= ES −ED

T
(5.12)

A negative j value indicates that the system adapts rather sluggish to changes in the
demand. A positive j value means that the system tends to oscillate like System A (little)
and B (heavily) as in Figures 5.2 and 5.3. High absolute values of j value in general indicate
that the system is not able to react on demand changes appropriately. In other word, the
jitter metric denotes the average amount of missed (negative) or superfluous (positive)
adaptations per time unit. In contrast to the accuracy and timeshare metrics, and as for
instability υ, a jitter j value of zero is a necessary, but not sufficient requirement for a perfect
elastic system. The jitter metric j is easier to compute compared to the instability metric
and also comes with an intuitive interpretation. It has an theoretically unbounded value
range, but is capable to distinguish between oscillating/instable elasticity and elasticity with
inertia to adapt timely to the workload changes.

5.3 Aggregating Elasticity Metrics

In this section, we introduce three different ways to aggregate the proposed elasticity metrics
to a unique value for building a consistent ranking given a weight vector. The Auto-Scaling
Deviation is based on the Minkowski distance and quantifies directly the distance to the the-
oretical optimal auto-scaling. The pairwise competition requires a fixed set of experiments
run, whereas the elastic speedup just needs a defined reference.

74

5.3 Aggregating Elasticity Metrics

5.3.1 Auto-Scaling Deviation
In order to quantify the overall performance of an auto-scaler and rank them, we propose to
calculate the auto-scaling deviation σ of a given auto-scaler compared to the theoretically
optimal auto-scaler. For the calculation of the deviation σ between two auto-scalers, we use
the Minkowski distance dp :

Let x, y ∈Rn and 1 ≤ p ≤∞:

dp (x, y) = ‖x − y‖p :=
(

n∑
i=1

|xi − yi |p
) 1

p

(5.13)

Here, the vectors consist of a subset of the aforementioned system- and user-oriented
evaluation metrics. We take the provisioning accuracy θ, the wrong provisioning time
share τ, and the instability υ into account. The metrics are specified as percentages. The
closer the value of a metric is to zero, the better the auto-scaler performs with respect to the
aspect characterized by the respective metric, i.e., the closer the auto-scaling deviation is to
zero, the closer the behavior of the auto-scaler to the theoretically optimal auto-scaler.

The first step is to calculate the elasticity metrics. Then, we calculate the overall normal-
ized provisioning accuracy θ and the overall wrong provisioning time share τ. Hereby, we
use a weighted sum for both metrics consisting of both components and a penalty factor
0 < γ< 1. This penalty can be set individually to reflect custom (in our experiments, we
always set γ to 0.5 to reflect indifference), with γ> 0.5 indicating that under-provisioning
is worse than over-provisioning, γ= 0.5 indicating that under- and over-provisioning are
equally bad, and γ< 0.5 indicating that over-provisioning is worse than under-provisioning.
This can be mathematically expressed as follows:

θ[%] := γ ·θU + (1−γ) ·θO (5.14)

τ[%] := γ ·τU + (1−γ) ·τO (5.15)

In the last step, the Minkowski distance dp between the auto-scaler and the theoretically
optimal auto-scaler is calculated. As the theoretically optimal auto-scaler is assumed to
know when and how much the demanded resources change, the values for provisioning
accuracy θ, wrong provisioning time share τ, and instability υ are equal to zero. In other
words, if an auto-scaler is compared to the theoretically optimal auto-scaler, the Lp -norm
can be used as ‖x−0‖p = ‖x‖p with x = (θ,τ,υ), i.e., in our case the auto-scaling deviationσ
between an auto-scaler and the theoretically optimal auto-scaler is defined as follows:

σ[%] := ‖x‖3 =
(
θ3 +τ3 +υ3) 1

3 (5.16)

In summary, the smaller the value of the auto-scaling deviation σ, the better rated is the
auto-scaler in the given context.

5.3.2 Pairwise Competition
Another approach for ranking - given a fixed set of auto-scaler experiments - is to use the
pairwise comparison method [Dav87]. Here, for each auto-scaler the value of each metric is

75

Chapter 5: Elasticity Metrics and Measurement Methodology

pairwise compared with the value of the same metric for all other auto-scalers. As values
closer to zero are better, the auto-scaler with the lowest value gets one point. If a metric for
both auto-scalers is equal, both auto-scalers get each half a point. In addition, we divide
the reached score of each auto-scaler by the maximum achievable score. In other words,
the pairwise competition κ shows the fraction of the achievable points each auto-scaler
collected. For the comparison, we take the metrics x = (θ,τ,υ) into account. Mathematically,
κ for an auto-scaler a ∈ [1;n] with n as the number of auto-scalers can be expressed as:

κa[%] := 1

(n −1) · |x| ·
n∑

i=1;i 6=a

|x|∑
j=1

ω(i , j) where ω(i , j) :=

0, xa(j) > xi (j)

0.5, xa(j) = xi (j)

1, xa(j) < xi (j)

(5.17)

In summary, the closer the value of the pairwise competition κ is to 1, the better rated is the
auto-scaler in the given context and the other auto-scalers in competition.

5.3.3 Elastic Speedup
The elastic speedup score ε is computed similar to the aggregation and ranking of results
in established benchmarks, e.g., SPEC CPU20063. Here, the use of the geometric mean to
aggregate speedups in relation to a defined baseline scenario is a common approach.

The geometric mean produces consistent rankings and is suitable for normalized measure-
ments [FW86]. The resulting elastic speedup score allows to compare elasticity performance
without having to compare each elasticity metric separately, and a later point in time add a
new result to the ranking (in contrast to a closed set in, e.g., a pair-wise competition).

A drawback of the elastic speedup score is its high sensitivity to values close to zero and
becoming undefined if one or more of the metrics are zero. To minimize the probability of
zero-valued metrics, we aggregate as in Section 5.3.1 the normalized accuracy and timeshare
metrics into a overall accuracy θ and a overall wrong provisioning timeshare metric τ, re-
spectively. This way, θ and τ become zero only for the theoretical optimal auto-scaler. Thus,
we compute the elastic speedup score ε based on the accuracy, timeshare and instability
metrics for an elasticity measurement k - having the values of a shared baseline scenario
base given - as follows:

εk =
(
θbase

θk

)wθ

·
(
τbase

τk

)wτ

·
(
υbase

υk

)wυ

with wθ, wτ, wυ ∈ [0,1], wθ+wτ+wυ = 1

(5.18)

The weights can be used to implement user-defined preferences, e.g. to increase the
impact of accuracy and timeshare aspects compared to the instability aspect if desired.
We assume here that a baseline measurement is available with the same application and
workload profile executed within the same predefined range of resource units. In summary,
the higher the value of the elastic speedup score εk , the better rated is the auto-scaler in the
given context compared to a reference.

3SPEC CPU2006: http://www.spec.org/cpu2006/

76

http://www.spec.org/cpu2006/

5.4 Metric Discussion

5.4 Metric Discussion
In the previous sections, we defined a number of elasticity metrics and three different ways
to aggregate them. In a mathematical sense, one would call these metrics more precisely
measures as their computation is based on raw measurements and they do not fulfill all
the requirements of a distance function (namely: non-negativity, identity of indiscernibles,
symmetry, triangle inequality). In computer science, metrics are understood in a broader
sense as a mean to quantify a certain property. Speaking general, it is impossible to prove
correctness of a metric; it is more a common agreement on how to quantify the given
property. One can discuss to what degree metrics fulfill characteristics of a good, well-
defined and intuitive metric and additionally demonstrate their usefulness by meaningful
results in rows of experiments (r.t. Section 9.3). Let us go in the following step by step over a
list of metric characteristics:

Definition. A metric should come along with a precise, clear mathematical (symbolic)
expression and a defined unit of measure, to assure consistent application and interpreta-
tion. We are compliant with this requirement, as all of our proposed metrics come with a
mathematical expression, a unit or are simply time-based ratios.

Interpretation. A metric should be intuitively understandable. We address this by keeping
the metrics simplistic and describe the meaning of each in a compact sentence. Furthermore,
it is important to specify (i) if a metric has a physical unit or is unite-free, (ii) if it is normalized
and if yes how, (iii) if it is directly time-dependent or can only be computed ex-post after
a completed measurement and (iv) clear information on the value range and the optimal
point. Aggregate metrics should keep generality and fairness, combined with a way to
customize by agreement on a weight vector.

Measureability. A transparently defined and consistently applied measurement procedure
is important for reliable measurements of a metric. For example, it is important to state
where the sensors need to be placed (to have an unambiguous view on the respective
resource), the frequency of sampling idle/busy counters and the intervals for reporting
averaged percentages. The easier a metric is to measure, the more likely it is that it will be
used in practice and that its value will be correctly determined. In the following sections,
we define a measurement methodology (a.k.a benchmarking approach) for the proposed
elasticity metrics and demonstrate their applicability in Section 9.3.

Repeatability. Repeatability implies that if the metric is measured multiple times using
the same procedure, the same value is measured. In practice, small differences are usually
acceptable, however, ideally, a metric should be deterministic when measured multiple
times. We demonstrate that repeatability is possible in a controlled experiment environment
and to a certain degree in the public cloud domain.

Reliability. A metric is considered reliable if it ranks experiment results consistently with
respect to the property that is subject of evaluation. In other words, if System A performs

77

Chapter 5: Elasticity Metrics and Measurement Methodology

better than System B with respect to the property under evaluation, then the values of the
metric for the two systems should consistently indicate this (e.g., higher value meaning bet-
ter score). For our proposed metrics, we demonstrate consistent ranking for each individual
metric in a row of experiments, and for the aggregate metrics in a case study.

Linearity. A metric is considered linear if its value is linearly proportional to the degree
to which the system under test exhibits the property under evaluation. For example, if a
performance metric is linear, then twice as high value of the metric would indicate twice as
good performance. Linear metrics are intuitively appealing since humans typically tend to
think in linear terms. For our proposed elasticity metrics, we claim linearity as they are all
based on sums or counts of raw measures. For the aggregate metrics, linearity might not be
given. In the long run, the elasticity metric’s distributions in reality should be analyzed to
improve the reliability of their aggregation.

Independence. A metric is independent if its definition and behavior cannot be influenced
by proprietary interests of different vendors or manufacturers aiming to gain competitive
advantage by defining the metric in a way that favors their products or services. As our
proposed metrics come with a mathematical definition and a measurement methodology,
we claim that it should be possible to verify that an elasticity measurement was conducted
according to given run-rules. Still, there could be ways to manipulate the results in a way we
are not aware of yet.

5.5 Bungee Elasticity Benchmarking Framework

This section presents our benchmarking approach that addresses generic and cloud specific
benchmark requirements as stated in Huppler [Hup09, Hup12] and Folkerts et. al [FAS+12].
A general overview of the benchmark components and of the benchmarking workflow is
given in this section. The conceptual ideas about the essential benchmark components
are discussed in individual subsections. We provide an implementation of the benchmark
concept named Bungee4.

Figure 5.6 illustrates an elastic cloud platform architecture as a blueprint for an infras-
tructure cloud “system under test” (SUT) together with the benchmark controller, which
runs the benchmark. The individual benchmark components automate the process for
benchmarking resource elasticity in four sequential steps as illustrated in Figure 5.7:

1. System Analysis: The benchmark analyzes the SUT with respect to the performance
of its underlying resources and its scaling behavior.

2. Benchmark Calibration: The results of the analysis are used to adjust the load
intensity profile injected on the SUT in a way that it induces the same resource
demand on all compared systems.

4Bungee Cloud Elasticity Benchmark: http://descartes.tools/bungee

78

http://descartes.tools/bungee

5.5 Bungee Elasticity Benchmarking Framework

Figure 5.6: Blueprint for the SUT and the Bungee benchmark controller

3. Measurement: The load generator exposes the SUT to a varying workload according
to the adjusted load profile. The benchmark extracts the actual induced resource
demand and monitors resource supply changes on the SUT.

4. Elasticity Evaluation: The elasticity metrics are computed and used to compare
the resource demand and resource supply curves with respect to different elasticity
aspects.

The remainder of this section explains the benchmark components according to the
following structure: Section 5.5.1 explains how workloads are modeled and executed. Sec-
tion 5.5.2 explains why analyzing the evaluated system and calibrating the benchmark ac-
cordingly is required and how it is realized. Finally, Section 5.5.3 explains how the resource
demand curve and the resource supply curve can be extracted during the measurement.

5.5.1 Load Modeling and Generation
This section covers modeling and executing workloads suitable for elasticity benchmarking.

Load Profile

A benchmark should stress the SUT in a representative way. Classical performance bench-
marks achieve this by executing a representative mix of different programs. An elasticity
benchmark measures how a system reacts when the demand for specific resources changes.
Thus, an elasticity benchmark is required to induce a representative profile of demand
changes. Changes in demand and accordingly elastic adaptation of the system are mainly
caused by a varying load intensity. Hence, for elasticity benchmarking, it is important that
the variability of the load intensity is directly controlled by generating precisely timed re-
quests based on an open workload profile. Workloads are commonly modeled either as

79

Chapter 5: Elasticity Metrics and Measurement Methodology

Figure 5.7: Bungee experiment workflow

80

5.5 Bungee Elasticity Benchmarking Framework

closed workloads or as open workloads [SWHB06]. In closed workloads new job arrivals are
triggered by job completions, whereas arrivals in open workloads are independent of job
completions. Real-world load profiles are typically composed of trends, seasonal patterns,
bursts and noise elements. To address these requirements, Bungee employs realistic load
intensity profiles to stress the SUT in a representative manner.

In Chapter 4, we provide the DLIM formalism that enables us to define load intensity
profiles in a flexible manner. The corresponding LIMBO toolkit, described in a tool pa-
per [vKHK14a], facilitates the creation of new load profiles that are either automatically
extracted from existing load traces or modeled from scratch with desired properties like
seasonal patterns or bursts. The usage of this toolkit and the underlying formalism within
Bungee allows the creation of realistic load profiles that remain configurable and compact.

Load Generation

In order to stress an elastic system in a reproducible manner, it is necessary to inject accu-
rately timed requests into the SUT that mainly stress the resources that are elastically scaled.
Depending on the request response time, the handling of consecutive requests (sending
of a request and waiting for the corresponding response) overlaps and therefore requires a
high level of concurrency. In its load generator, Bungee employs the thread pool pattern
(also known as replicated worker pattern [FHA99]) with dynamic assignments of requests to
threads.

When the maximum response time is known - for example when a timeout is defined for
the requests - the amount of threads required to handle all requests without delays due to a
lack of parallelism can be computed directly.

These threads can either be located on one node or be split up across several nodes. After
each benchmark execution, Bungee evaluates the request submission accuracy by checking
whether the 95th percentile of the deviation between the defined load profile and the actual
request submission times remained below a certain threshold.

Request Transmission Accuracy Checking

Sending requests in time is a crucial aspect to ensure that resource demands are induced
correctly and repeatable over different runs. Therefore, we evaluate the accuracy of the
request submission times, to assure valid benchmark runs. We achieve this, by matching
the planned submission times with the timestamps of the actual request submission using
unique identifiers. In the next step, statistical metrics like standard deviation and median
on the differences are approved to be below defined thresholds for a valid run in a specific
benchmarking scenario.

A simple approach for this evaluation bases on comparing the planned submission times
of the requests with the real ones. Therefore, real submission times have to be logged by the
load driver which executes the request. Unfortunately, the order of the logged timestamps
is not necessarily equal to the order of planned timestamps. In particular, the logged
timestamps can be disordered when the record for the request is written only after the
response has been received.

81

Chapter 5: Elasticity Metrics and Measurement Methodology

Thus, it is necessary to match the logged real submission times with the correct planned
submission times. This can be achieved by assigning a unique identificator (UID) to every
timestamp. When this UID is logged together with the submission time, it is easy to match
the real and planned submission times.

If planned and real time of submission are known for all requests, simple statistical
measures such as sample mean X and sample standard deviation S can be calculated
for difference of planned and real submission times. These measures allow insights into
different aspects: X specifies how much requests are delayed on average. S specifies if the
observed delay is rather constant or is varying. For accurately timed requests both measures
should be close to zero. Since especially X is highly affected by outliers another option for
measuring the submission accuracy is evaluating the p percentile, e.g., the 95th percentile,
of the difference between planned and real submission times.

5.5.2 Analysis and Calibration
The resource demand of a system for a fixed load intensity depends on two factors: The
performance of a single underlying resource unit and the overhead caused by combining
multiple resource units. Both aspects can vary from system to system and define distinct
properties namely performance and scalability. Elasticity is a different property and should
be measured separately. We achieve this by analyzing the load processing capabilities of a
system before evaluating its elasticity. After such an analysis, it is known how many resource
units the system needs for every constant load intensity level. The resource demand can
then be expressed as a function of the load intensity: d(i). With the help of this mapping
function, which is specific for every system, it is possible to compare the resource demand
to the amount of the actually allocated resources. In the following section, we explain how
the mapping function can be derived.

(a) System A - resources with lower per-
formance

time
resource demand resource supply

re
so

ur
ce

s

(b) System B - resources with higher per-
formance

time
resource demand resource supply

re
so

ur
ce

s

Figure 5.8: Different resource demand and supply curves for the same load profile

Figure 5.8 illustrates the effect of the same workload on two exemplary systems. Since the
resources of System B are faster than those of System A, System B can handle the load with
less resources than System A. For both systems, there exist some intervals in time where

82

5.5 Bungee Elasticity Benchmarking Framework

the system over-provisions and other intervals in time where they under-provision. As the
resource demands of the systems are different, a direct comparison of their elasticity is not
possible, an indirect comparison cloud be based on cost models.

In contrast to related approaches, the idea of our approach introduces an additional
benchmark calibration step that adjusts the load profile injected on each tested system in a
way that the induced resource demand changes are identical on all systems. By doing so,
the possibly different levels of performance of the underlying resources as well as different
scaling behaviors are compensated. With an identical injected resource demands it is
now possible to directly compare the quality of the adaptation process and thus evaluate
elasticity in a fair way. The realization consists of two steps, explained in the following two
subsections.

System Analysis

The goal of the System Analysis is to derive a function that maps a given load intensity to the
corresponding resource demand - in other words to specify the system’s scalability. Hereby,
the resource demand is the minimum resource amount that is necessary to handle the load
intensity without violating a set of given SLOs. Therefore, the analysis assumes a predefined
set of SLOs. They have to be chosen according to the targeted domain.

Since this System Analysis is not intended to evaluate elastic behavior, scaling is controlled
manually by the framework during the analysis phase. The results of three hypothetical
analyses are shown in Figure 5.9. The upper end of the line marks the upper scaling bound
and thus the maximal load intensity the system can sustain without violating SLOs. This
upper bound is either caused by a limited amount of available resources or by limited
scalability due to other reasons like limited bandwidth or increased overhead. In the latter
case, additional resources are available, but even after adding resources the SLOs cannot be
satisfied. Figure 5.9 shows that the derived mapping function d(i) is a step function. The
function is characterized by the intensity levels at which the resource demand increases.
Thus, analyzing the system means finding these levels.

The analysis starts by configuring the SUT to use one resource instance. This includes
configuring the load balancer to forward all requests to this instance. Now, the maximum
load intensity that the system can sustain without violating the SLOs is determined as the
level at which the resource demand increases. The maximum load intensity is also referred
to as the load processing capability. Several load picking algorithms that are able to find the
load processing capability are discussed in [SMC+08]. We apply a binary search algorithm
to realize a searchMaxIntensity-function. Binary search consumes more time than a model
guided search but, in contrast to the latter, it is guaranteed to converge and it is still effective
compared to a simple linear search. Since the upper and lower search bounds are not known
at the beginning, the binary search is preceded by an exponential increase/decrease of the
load intensity to find those bounds. As soon as both bounds are known, a regular binary
search is applied. Once the load processing capability for one resource is known, the system
is reconfigured to use an additional resource unit and the load balancer is reconfigured
accordingly. After the reconfiguration, the system should be able to comply with the SLOs
again. The load processing capability is again searched with a binary search algorithm. This
process is repeated until either there are no additional resources that can be added to the

83

Chapter 5: Elasticity Metrics and Measurement Methodology

system, or a state is reached such that adding further resources does not increase the load
processing capability. In both cases, the upper scaling bound is reached and the analysis is
finished. .

Benchmark Calibration

The goal of the Benchmark Calibration activity is to induce the same demand changes at
the same points in time on every system. To achieve this, Bungee adapts the load intensity
curve for every system to compensate for different levels of performance of the underlying
resources and different scaling behaviors. The mapping function d(i) derived in the previous
System Analysis step, contains information about both. Figure 5.9 illustrates what impact
different levels of performance and different scaling behaviors may have on the mapping
function. Compared to System C, the underlying resources of System D are more efficient.
Hence, the steps of the mapping function are longer for System D than for System C. For
both system, there is no overhead when adding further resources. The resource demand
is increasing linearly with the load intensity and the length of the steps for one system
is therefore independent of the load intensity. For System E, in contrast, the overhead
increases when additional resources are used. As a result of this non-linear increasing
resource demand, the length of the steps of the mapping function decreases for increasing
load intensity.

As illustrated in Figure 5.10, the resource demand variations on Systems C-E are different
when they are exposed to the same load profile, although they offer the same amount of
resources. Different scaling behaviors and different levels of performance of the underlying
resources cause this difference. As a basis for the transformation of load profiles, one
system is selected as baseline to serve as reference for demand changes. The induced
resource demands on the compared system are the same as for the baseline system since
the respective transformed load profiles are used.

84

5.5 Bungee Elasticity Benchmarking Framework

(a) System C

mapping function

0 25 50 75 100
Load Intensity

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(b) System D

mapping function

0 25 50 75 100
Load Intensity

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(c) System D

mapping function

0 25 50 75 100
Load Intensity

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

Figure 5.9: Different mapping functions

(a) System C

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(b) System D

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(c) System E

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

Figure 5.10: Resource demand for the same load profile

(a) System C

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(b) System D

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

(c) System E

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e
A

m
ou

nt

Figure 5.11: Resource demands for system specific adjusted load profiles

85

Chapter 5: Elasticity Metrics and Measurement Methodology

The resource demand of the baseline system is assumed to increase linearly with load
intensity. Thus, the steps of the mapping function are equal in length. Using this assump-
tion, the mapping function dbase (i) of the baseline system can be characterized by two
parameters: The number of steps nbase , which is equal to the assumed amount of available
resources, and the maximum load intensity maxbase (i) that the base system can sustain
using all resources. The first parameter is chosen as the maximum amount of resources that
all system support. The second parameter should be greater than or equal to the maximum
load intensity that occurs in the load profile. Having defined the mapping function dbase (i),
for every benchmarked system k, the load profile adjustment step finds an adjustment
function ak (i) such that the following applies:

∀i ∈ [0,maxbase (i)] :

dbase (i) = dk (ak (i))

The adjustment function ak (i) maps the steps from the dbase (i) function to steps of
the dk (i) function. The result is a piecewise linear function, whereby every linear section
represents the mapping of one step in the dbase (i) to the same step in the dk (i) function.
The parameters m j and b j that define the linear function yk j (x) = m j ∗x +b j mapping the

intensity values belonging to the j th step of the dbase (i) function to the j th step of the dk (i)
function can be calculated as follows:

sk j = max{i |dk (i) < j } as start intensity,

eki = max{i |dk (i) = j } as end intensity and

sk j = ek j − sk j as step length

mk j =
sk j

maxbase (i)
nbase

bk j = sk j − sk j · (j −1)

and thus the function ak (i) can be expressed as:

ak (x) =

yk1 (x) when sk1 < x ≤ ek1

...

ykn (x) when skn < x ≤ ekn

(5.19)

Having calculated the adjustment function ak (i), this function can be applied to the
original load profile i (t) = p(t) in order to retrieve a system specific adjusted load profile
pk (t). This adjusted load profile can then be used in the actual benchmark run.

l pk (t) = a(p(t))

Figure 5.11 shows the induced load demand for Systems C, D and E using the adjusted
load profiles. Although the systems have underlying resources with different levels of
performance and different scaling behaviors, the induced resource demand variations are
now equal for all compared systems.

86

5.5 Bungee Elasticity Benchmarking Framework

5.5.3 Measurement and Metric Calculation

After having conducted the System Analysis and Calibration steps, Bungee executes the
measurements with a reasonable warm-up at the beginning. Afterwards, the measurement
run is validated using the sanity check explained at the end of Section 5.5.1. For the compu-
tation of the accuracy, provisioning timeshare and jitter metrics, the resource demand and
supply changes are required as input: The demand changes can be directly derived from the
adapted load profile using the system specific mapping function. The supply changes need
to be extracted either from cloud management logs or by polling during the measurement.
In both cases, a resource is defined to be supplied during the time spans when it is ready
to process or actively processing requests. The time spans a resource is billed may differ
significantly.

Resource Supply

The resource supply is the amount of resources which is available in a usable state. Unfor-
tunately, the resource supply is not necessarily the resource amount that a cloud provider
bills its customer. There are two reasons for the discrepancy. The main reason is that cloud
providers usually charge based on time intervals which are coarse grained compared to the
provisioning time. For example, for a resource that is used for ten minutes only a provider
may bills the same costs as for a resource used for one hour. The second reason is that
a resource may not be ready to use immediately after the allocation. This is especially
true for container resources like VMs. After allocation, a VM needs time to boot and start
required applications. Cloud providers may even bill the VM when its creation was sched-
uled, although the customer cannot use it at this point. This approach does not evaluate
the business model of cloud providers. Therefore, the benchmark compares the amount
usable resources, the resource supply, with the amount of necessary resources, the resource
demand, independently of what the customer is billed for. The benchmark user should be
aware of this fact when implementing the resource supply monitoring.

For the presented benchmark, the amount of allocated or the resource supply refers to
the amount of resource that are currently available for use.

Elastic cloud systems are usually managed by a cloud computing software which also pro-
vides monitoring tools. These monitoring tools can be used to retrieve the resource supply.
Hereby can, depending on the capabilities of the monitoring tools, two different monitoring
techniques be applied: Active Monitoring based on polling and passive monitoring based
on log parsing.

Active Monitoring - Polling the State This method polls the information about the
resource supply periodically. The granularity of this method depends on the frequency
of the polling requests. The disadvantage of this method is the creation of unnecessary
network traffic and CPU load on the benchmark and on the management node.

Passive Monitoring - Log Parsing If the monitoring tool offers access to logs which con-
tain information about when resources have been de-/allocated, this log can be parsed to
obtain the desired information. Log parsing usually only offers information about relative

87

Chapter 5: Elasticity Metrics and Measurement Methodology

B
e

n
ch

m
ar

k

El
as

ti
ci

ty
 E

va
lu

at
io

n

Sy
st

e m
 A

n
al

ys
is

R
eq

u
es

t

H
o

st

SL
O

s

In
te

n
si

ty
D

em
an

d
M

ap
p

in
g

B
e

n
ch

m
ar

k
C

al
ib

ra
ti

o
n

Lo
ad

P
ro

fi
le

A
d

ju
st

ed
Lo

ad
P

ro
fi

le

m
ax

R
es

o
u

rc
es

m
ax

In
te

n
si

ty

In
te

n
si

ty
D

em
an

d
M

ap
p

in
g

A
d

ju
st

m
en

t
Fu

n
ct

io
n

G
en

er
at

io
n

Lo
ad

 P
ro

fi
le

A
d

ju
st

m
en

t

M

e
as

u
re

m
en

t

H
o

st

D
em

an
d

Su
p

p
ly

C
o

n
ta

in
er

In
te

n
si

ty
D

em
an

d
M

ap
p

in
g

(A
d

ju
st

ed
)L

o
ad

P
ro

fi
le

R
eq

u
es

t

(E
x t

en
d

ed
)C

lo
u

d
In

fo

St
ar

t
M

o
n

it
o

ri
n

g

Ex
e

cu
te

 L
o

ad

St
o

p
 M

o
n

it
o

ri
n

g

Ex
tr

ac
t

D
em

an
d

 &
 S

u
p

p
ly

A
b

st
ra

ct
M

et
ri

c

M
et

ri
c

R
e

su
lt

 F
ile

D
em

an
d

Su
p

p
ly

C
o

n
ta

in
er

A
ct

iv
it

y:
P

ar
am

et
er

N

o
d

e
/

P
in

:
C

o
n

tr
o

l
Fl

o
w

:
O

b
je

ct
Fl

o
w

:

[1
..

*]

Sc
al

ab
ili

ty
 &

 E
ff

ic
ie

n
cy

A

n
al

ys
is

M
et

ri
c

C
o

m
p

u
ta

ti
o

n

Figure 5.12: Activity diagram of the Bungee experiment workflow.

88

5.5 Bungee Elasticity Benchmarking Framework

changes of the resource supply not about its absolute level. Thus, it is necessary to poll the
absolute number of used resources additionally, once. Using this information about the
absolute level of the resource supply, the information from the parsed log can be used to
compute the resource supply for other points in time. If this method is feasible, it should be
preferred over the active monitoring, since it requires less overhead.

The activity diagram in Figure 5.12 covers in detail all steps of the measurement process as
discussed in the previous sections.

5.5.4 Limitations of Scope

Our approach adopts a technical perspective on resource elasticity. Therefore, the developed
benchmark targets researchers, cloud providers and customers interested in comparing elas-
tic systems from a technical, not a business value perspective. As a result, this approach does
not take into account the business model of a provider or the concrete financial implications
of choosing between different cloud providers, elasticity strategies or strategy configura-
tions.

Since this approach evaluates resource elasticity from a technical perspective, a strict
black-box view of the SUT is not sufficient. The evaluation bases on comparing the induced
resource demand with the actual amount of used resources. To monitor the latter, access to
the SUT is required. Furthermore, the calibration requires to manually scale the amount
of allocated resources. Since cloud providers usually offer APIs that allow resource mon-
itoring and manual resource scaling, this limitation does not restrict the applicability of
the benchmark.

Cloud services offer their customers different abstraction layers. These layers are com-
monly referred to as IaaS, PaaS and SaaS. The measurement methodology is mainly targeted
at systems that provide compute infrastructure like IaaS providers. In the SaaS context
resources are not visible to the user. The user pays per usage quota instead of paying for
allocated resources. SaaS platforms are therefore not within scope of this work. Although
this approach is not explicitly targeted at PaaS, the approached benchmark should also be
applicable in the PaaS context as long as the underlying resources are transparent.

The workloads used for this approach are realistic with respect to load intensity. They
are modeled as open workloads with uniform requests. The work units are designed to
specifically stress the scaled resources. Workloads that use a mixture of work unit sizes,
stress a several (scalable) resources types at the same time or workloads modeled as closed
workloads remain future work. The application that uses the resources is assumed to be
stateless. Thus, a requests always consumes the same amount of resources. Furthermore,
selecting appropriate load profiles is not the scope of this research. However, we demon-
strate how complex realistic load profiles can be modeled and adjusted in a platform specific
manner in order to allow fair comparisons of platforms with different levels of performance
of underlying resources and different scaling behaviors.

The range of different resources that a resource elastic platform can scale is broad. As a
first step, we focus on processing resources such as CPU but can also be applied to other
physical resources. The evaluation will showcase a simple IaaS scenario where VMs are
bound to processing resources. Thus, scaling the virtual machines corresponds to scaling

89

Chapter 5: Elasticity Metrics and Measurement Methodology

the processing resources. In early works, we have analyses the elasticity of virtual compute
resources on a higher level of abstraction, like thread pools [KHvKR11]. Elastic platforms
can scale resources horizontally, vertically or even combine both methods to match the
resource demand. For this thesis, we focus on comparing platforms that scale homogeneous
resource containers like VMs in one dimension either vertical or horizontal.

5.6 Concluding Remarks
In this chapter, we answer RQ A.3 („What are meaningful intuitive metrics to quantify accu-
racy, timing and stability as quality aspects of elastic resource adaptations?“) by presenting
a set of metrics for capturing the accuracy, timing and stability aspects of elastic systems.
We provide metric aggregation methods and showed how they can be adapted to personal
preferences. Next, we address RQ A.4 („How can the proposed elasticity metrics be mea-
sured in a reliable and repeatable way to enable fair comparisons and consistent rankings
across systems with different performance?“) by defining a novel elasticity benchmarking
methodology that is implemented as part of the Bungee benchmarking framework. In the
evaluation in Chapter 9, we show that the proposed metrics and benchmarking methodol-
ogy are able to rank elastic platforms and configurations on an ordinal scale according to
their exhibited degree of elasticity for a given domain-specific and realistic load profile.

90

Part III

Methods for Reliable Auto-Scaling

Chapter 6

Integrating Proactive and Reactive
Deployment Decisions:
A Reliable Hybrid Auto-Scaling Mechanism

Auto-scalers for clouds promise stable service quality at low costs when facing a changing
workload intensity. For example, Amazon Web Services (AWS), with their Elastic Compute
Cloud (EC2), provide a trigger-based auto-scaler with configurable thresholds. However,
trigger-based auto-scaling has a long reaction time, which lays in the order of minutes,
depending on the boot-up time of the scaled resources and the deployed software. Novel
auto-scalers proposed in literature try to overcome the limitations of reactive mechanisms by
employing proactive prediction methods. However, the adoption of proactive auto-scalers
in production is still very low due to the high risk of relying on a single proactive method
based on which scaling decisions are made.

This chapter tackles Goal B of reducing this risk by proposing a new hybrid auto-scaling
mechanism, called Chameleon, combining multiple different proactive methods coupled
with a reactive fallback mechanism. Chameleon employs on-demand, automated time
series-based forecasting methods to predict the arriving load intensity in combination
with run-time resource demand estimation techniques to calculate the required resource
consumption per work unit without the need for application instrumentation. It can also
leverage application knowledge by solving product-form queueing networks used to derive
optimized scaling actions. Chameleon is first in resolving conflicts between reactive and
proactive scaling events in an intelligent way improving both quality and reliability of scaling
actions.

In the evaluation in Chapter 10, we benchmark Chameleon against four different state-
of-the-art proactive auto-scalers and a threshold-based one in three different cloud en-
vironments: (i) a private CloudStack-based cloud, (ii) the public AWS EC2 cloud, as well
as (iii) an OpenNebula-based shared IaaS cloud. We generate five different representative
workload each taken from different real-world system traces. The variable workload profiles
extracted from the five different traces drive a CPU-intensive benchmark worklet. Overall,
Chameleon achieves the best scaling behavior based on user and elasticity performance
metrics, analyzing the results from 400 hours aggregated experiment time.

93

Chapter 6: Hybrid Auto-Scaling

6.1 Introduction
Over the past decade, the cloud computing paradigm gained significant importance in the
ICT domain as it addresses manageability and efficiency of modern Internet and computing
services at scale. Cloud computing provides on-demand access to data center resources
(e.g., networks, servers, storage and applications). Infrastructure-as-a-Service (IaaS) cloud
providers promise stable service quality by leveraging trigger-based auto-scaling mecha-
nisms to deal with variable workloads. However, depending on the type of resources and
deployed software stack, scaling actions may take several minutes to be effective. In prac-
tice, business-critical applications in clouds are usually deployed with over-provisioned
resources to avoid becoming dependent on an auto-scaling mechanism with its possibly
wrong or badly-timed scaling decisions.

Sophisticated, state-of-the-art auto-scaling mechanisms from the research community
focus on proactive scaling, aiming to predict and provision required resources in advance of
when they are needed. An extensive survey [LBMAL14] groups auto-scalers into five classes
according to the prediction mechanisms they use: (i) threshold-based rules, (ii) queueing
theory, (iii) control theory, (iv) reinforcement learning, and (v) time series analysis. With few
exceptions, like at Netflix1 , proactive auto-scalers are not yet broadly used in production.
This might be a result of the need for application-specific fine-tuning, and the lack of
knowledge about the performance of an auto-scaler in different contexts. Auto-scalers
employed in production systems are responsible to dynamically trade-off user-experienced
performance and costs in an autonomic manner. Thus, they carry a high operational risk.

For this contribution, we pose ourselves the following research questions: RQ B.1 „How
can conflicting auto-scaling decisions from independent reactive and proactive decision
loops be combined to improve the overall quality of auto-scaling decisions while increas-
ing reliability?.“ And concerning the evaluation: RQ B.2 „How well does the proposed
Chameleon approach perform compared to state-of-the-art auto-scaling mechanisms in
realistic deployment and application scenarios?“

In this chapter, we propose a new hybrid auto-scaling mechanism called Chameleon com-
bining multiple different proactive methods coupled with a reactive fall-back. Chameleon
reconfigures the deployment of an application in a way that the supply of resources matches
the current and estimated future demand for resources as closely as possible according to
the definition of elasticity [HKWG15a]. It consists of two integrated controllers: (i) a reactive
rule-based controller taking as input the current request arrival rate and resource demands
estimated in an online fashion, and (ii) a proactive controller that integrates three major
building blocks: (a) an automated, dynamic on-demand forecast execution based on an
ensemble of the sARIMA2 [BJ+15] and tBATS3 [LHS11] stochastic time series modeling
frameworks, (b) an optional descriptive software performance model as an instance of the
Descartes Modeling Language (DML) [KHBZ16] enabling the controller to leverage struc-
tural application knowledge by transformation into product-form queueing networks, and
(c) the LibReDE resource demand estimation library [SCBK15] for accurate service-time es-
timations at run-time without the requirement of detailed application instrumentation. As

1Scryer: Predictive auto-scaling at Netflix
2sARIMA: seasonal, auto-regressive, integrated moving averages [BJ+15]
3tBATS: trigonometric, Box-Cox transformed, ARMA errors using trend and seasonal components [LHS11]

94

6.1 Introduction

part of Chameleon, we resolve the internal conflicts between reactive and proactive scaling
events in a way that increases both reliability and quality of scaling actions. Chameleon is
available as open-source project4 together with experiment data presented in this thesis.

In the evaluation in Chapter 10, we benchmark Chameleon against four different proac-
tive auto-scaling mechanisms covering the mentioned domains, as well as one commonly
used reactive auto-scaler based on average CPU utilization thresholds and finally a scenario
without the use of an active auto-scaler. We conduct seven sets of extensive and realistic
experiments of up to 9.6 hours duration in three different infrastructure cloud environ-
ments: (i) in a private CloudStack-based cloud environment, (ii) in the public AWS EC2
IaaS cloud, as well as (iii) in the OpenNebula-based IaaS cloud of the Distributed ASCI
Supercomputer 4 (DAS-4) [BEdLm16]. We generate five different representative workload
profiles each taken from different real-world system traces: BibSonomy, Wikipedia, Retail
Rocket, IBM mainframe transactions and FIFA World Cup 1998. The workload profiles
drive a CPU-intensive worklet as benchmark application that is comparable to the LU
worklet from SPEC’s Server Efficiency Rating Tool SERT™25. As elasticity measurement
methodology and experiment controller, we employ the elasticity benchmarking framework
Bungee [HKWG15a] enabling extensive and repeatable elasticity measurements. The results
are analyzed with our set of SPEC endorsed elasticity metrics [HKO+16] (see Section 5.2)
in addition to metrics capturing the user-perspective. For each experiment set, the metric
results are used to conduct three competitions: (i) a rating based on the deviation from
the theoretically optimal auto-scaling behavior, (ii) a pair-wise competition, and (iii) a
score-based ranking of metric speedups aggregated by an unweighted geometric mean. The
results of the individual metrics and the three competitions show that Chameleon manages
best to match the demand for resources over time in comparison to the other proactive
auto-scalers.

We summarize the highlights of this contribution and the corresponding evaluation in
Chapter 10 as follows:

• In Sections 6.2 to 6.4, we address RQ B.1 and present the Chameleon approach that
integrates reactive and proactive scaling decisions based on time series forecasts,
combined with online resource demand estimates used as input to product-form
queueing networks.

• In Chapter 10, we address RQ B.2 and apply the Bungee measurement methodology
and elasticity metrics as defined in Chapter 5 in a broad auto-scaler evaluation for
compute intensive workloads.

• Section 10.3 contains the results of extensive experiments that demonstrate the su-
perior auto-scaling capabilities of Chameleon compared to a set of state-of-the-art
auto-scaling mechanisms.

4Chameleon - sources and experiment data: http://descartes.tools/chameleon
5SPEC SERT™2: https://spec.org/sert2

95

http://descartes.tools/chameleon
https://spec.org/sert2

Chapter 6: Hybrid Auto-Scaling

6.2 Chameleon Design Overview
The Chameleon mechanism consists of four main components: (i) a controller, (ii) a perfor-
mance data repository, (iii) a forecast component and (iv) the resource demand estimation
component based on LibReDE [SCZK14]. The performance data repository contains a time
series storage and an optional descriptive performance model instance of the application to
be scaled dynamically in form of the Descartes Modeling Language (DML) [KHBZ16]. The
design and the flow of information is depicted in Figure 6.1. The central part of Chameleon
is the controller. It communicates with the three remaining components and the man-
aged infrastructure cloud. The functionality of the controller is divided into two parallel
sequences: the reactive cycle (red) and the proactive cycle (dashed blue). The two cycles act
more the less independently of each other and may also produce conflicting events that are
at the end merged based on a conflict resolution heuristic.

Figure 6.1: Design overview of Chameleon.

During the reactive cycle, the controller has three main tasks: (R1) at first, the controller
communicates with the cloud management and periodically polls (e.g., every minute)
information on the current state of the application delivered via asynchronous message
queues. As part of the application run-time environment, a monitoring agent [SWK16] is
deployed to fill the message queues. The collected information includes CPU utilization
averages per node and the number of request arrivals. Average residence and response
times per request type on a node can be provided by the agents to Chameleon (but are not
required to). (R2) Then, the new information is stored in the performance data repository
for the current time window. (R3) With this information, the controller decides if the system
needs to be scaled, based on the computed average system utilization and a standard

96

6.2 Chameleon Design Overview

threshold-based approach. The average system utilization is derived from the the arrival
rate and the estimated resource demand based on the service demand law from queueing
theory [Bm06].

The proactive cycle is planned in longer intervals, e.g., 4 minutes, for a set of future scaling
intervals. It involves six tasks: (P1) at first, the controller queries the performance data
repository for available historical data and checks for updates in the structure of the DML
performance model. (P2) Then, the available time series data is sent to the controller. (P3) Af-
terwards, the time series of request arrival rates is forwarded to the forecast component and
data about the CPU utilization and request arrivals per node (plus residence and response
times if available) is sent to the resource demand estimation component. (P4) Then, the
new available forecast values are sent to the controller. (P5) The LibReDE resource demand
estimation component estimates the time a single request needs to be served on the CPU of
a node and sends the estimated value to the controller. (P6) Finally, the controller scales
the application deployment based on the estimated resource demands, the forecast request
arrivals and structural knowledge from the DML descriptive performance model.

After having the flow of the two decoupled cycles described the following two paragraphs
now focus on the forecast and resource demand estimation components.

6.2.1 Forecast Component

The forecast component predicts the arrival rates for a configurable number of future
reconfiguration intervals. In order to reduce overhead, the forecast component is not called
in fixed periods. No new time series forecast is computed if an earlier forecast result still
contains predicted values for requested future arrival rates. In case, a drift between the
forecast and the recent monitoring data is detected, a new forecast execution is triggered.
To detect a drift between monitoring and forecast values, we compare the forecast accuracy
with the mean absolute scaled error measure (MASE) [HK06] considering a configurable
threshold value, e.g., 0.4. The MASE measure is suitable for almost all situations and the
error is based on the in-sample mean absolute error from the random walk forecast. For
a multi-step-ahead forecast, the random walk forecast would predict the last value of the
history for the entire horizon. Thus, the investigated forecast is better than the random walk
forecast if the MASE value is < 1 and worse if the MASE value is > 1. We calculate the MASE
values as follows:

M ASE =

1

n

n∑
i=1

|ei |

1

n −1
·

n∑
i=2

|Yi −Yl |
(6.1)

Where Yl is the observation at time l with l being the index of the last observation of the
history. Yi is the observation at time l + i . Thus, Yi is the value of the i -th observation in
the forecast horizon. The forecast error at time l + i is calculated as ei = Yi −Fi where Fi is
the forecast at time l + i . For detailed discussion of forecast error measures, please refer to
Section 2.3.2.

For the dynamic on-demand forecast executions, we select an ensemble of the follow-
ing two stochastic time series modeling frameworks as implemented in R forecast pack-

97

Chapter 6: Hybrid Auto-Scaling

age [HK08,Hyn17]: (i) sARIMA seasonal, auto-regressive, integrated moving averages [BJ+15]
and (ii) tBATS trigonometric, Box-Cox transformed, ARMA errors using trend and seasonal
components [LHS11]. Due to the capability of both methods to capture seasonal patterns
as soon as the data contains two full periods (in our auto-scaling context days), they are
considered as complex. We consider the more lightweight approaches that can only estimate
trend extrapolations (like splines) as insufficient for auto-scaling decisions in the order of
minutes and even hours into the near future. We observe that the time overhead for the
forecast executions can vary significantly dependent on the data characteristics and that
longer running forecast execution tend to have a lower forecast accuracy. For applicability in
an auto-scaling context, timely and accurate forecast results with reasonable overhead are
required. Thus, we design the forecast component in a way that the two methods are not run
in parallel, but the method that is more likely to have the more accurate result is automati-
cally selected before execution. This selection is performed based on a re-implementation
of the meta-learning approach for forecast method selection using data characteristics as
in [WSMH09]. We are aware that the sARIMA and tBATS methods are not capable to deliver a
reliable and efficient time-to-results and the forecast results may lack in accuracy from time
to time. Please note that the Telescope approach presented in Chapter 7 has been developed
as part of future work of this research approximately one year later for direct integration
with the Chameleon approach. The benefit of applying Telescope forecasts instead of the
tBATS and sARIMA ensemble is shown separately in Section 11.2.

6.2.2 LibReDE Resource Demand Estimation Component

The LibReDE library offers eight different estimation approaches for service demands on
a per request type basis [SCZK14]. Among those eight, there are estimators based on
regression, e.g. [KPSCD09], optimization, e.g. [Men08], Kalman filters, e.g. [Wm12] and
the service demand law. LibReDE supports to dynamically select an optimal approach via
parallel execution and cross-validation of the estimated error. Furthermore, configuration
parameters of the estimation approaches can be tuned automatically for a given concrete
scenario [GHSK17]. To minimize estimation overheads, the service demand law based
estimator is used. As input, the request arrivals per resource and the average monitored
utilization are required. Request response and residence times can be provided optionally as
they are required by some of the estimators and for an enhanced cross-validation based on
utilization and response time errors. For complex service deployments, LibReDE requires
structural knowledge about the application deployment to have a defined mapping of what
services are deployed on which resources. Chameleon can provide this information from
querying a DML performance model instance.

6.3 Decision Management

In the proactive cycle, the controller determines events (i.e., scaling actions) for each fore-
cast. Decisions are created based on the rules in the Decision Logic (see Algorithm 6.1 for a
simplified example of proactive decision making). Then, these decisions are improved/opti-
mized and finally, they are added to the Event Manager, see Section 6.4. There, the decisions

98

6.3 Decision Management

are scheduled according to their target execution time.

ALGORITHM 6.1: Proactive decision logic.

1 Decision Logic at time t in the future
2 services = model.getServices() // gets all services

3 ρS = getArrivalRateForecast() · getAverageResourceDemand(services) // calculates the

future system utilization

4 ρ = ρS / getRunningVMs() // calculates the future average utilization on each VM

5 response = calculatesEndtoEndResponseTime(ρ, services) // calculates the maximum response

time of all services

6 amount = 0 // the number of VMs for adding or releasing

7 if response ≥ up_resp_threshold · slo then // is the response time ≥ a predefined percentage of

the slo

8 while response ≥ up_resp_threshold · slo or ρ ≥ pro_up_util_threshold do
9 amount++

10 ρ = ρS / (getRunningVMs()+amount) // calculates the new average utilization

11 response = calculatesEndtoEndResponseTime(ρ, services)
12 end
13 end
14 else if response ≤ down_resp_threshold · slo then // is the response time ≤ a predefined

percentage of the slo

15 while response ≤ down_resp_threshold · slo and ρ ≤ target_utilization do
16 amount−−
17 ρ = ρS / (getRunningVMs()+amount) // calculates the new average utilization

18 response = calculatesEndtoEndResponseTime(ρ, services)
19 if response > up_resp_threshold · slo or ρ > pro_up_util_threshold then
20 amount++ // undo as one condition is violated

21 end
22 end
23 end
24 decisions.add(amount, t)
25 end

The Decision Logic determines for each event the number of instances that need to
be removed or added. Algorithm 6.1 shows the step-by-step approach. The associated
parameters that a user needs to specify are explained in Table 6.1. In the first line, the
algorithm loads the user services. These services form the application’s interface to the
users. Then, the future system utilization is calculated by multiplying the predicted arrival
rate with the average resource demand of all services (line 2). Afterwards, the utilization
of a single VM is calculated, the response time of all user services are calculated, and the
maximum response time is returned. This is done by adding the residence times of each
called service. Hereby, we model each service as an M/M/1/∞ queue [Bm06]. The residence
time of each internal service is computed with the formula: residence time R = S

100−ρ where

99

Chapter 6: Hybrid Auto-Scaling

S is the resource demand and ρ the system utilization. The calculated response time can lie
in one of the following intervals:

• (i)
[
0,down_r esp_thr eshol d · sl o

]
,

• (ii)
(
down_r esp_thr eshol d · sl o,up_r esp_thr eshol d · sl o

)
or

• (iii)
[
up_r esp_thr eshol d · sl o,∞)

.

Parameter Explanation

up_r esp_thr eshol d The upper response time threshold related to the SLO.

pr o_up_uti l _thr eshol d The system utilization threshold for upscaling.

down_r esp_thr eshol d The lower response time threshold related to the SLO.

t ar g et_uti l i zati on The target system utilization for downscaling.

sl o The acceptable resp. time as service level objective (SLO).

Table 6.1: Parameters of the decision logic.

If the response time lies in the second interval, the calculated response time has an
acceptable value. The algorithm skips the if-else block and records a NOP (as the amount is
zero) as a decision (line 20). If the response time lies within the last interval, i.e., the response
time is greater than up_r esp_thr eshol d · sl o, the number of VMs are iteratively increased
until the new response time drops below up_r esp_thr eshol d · sl o and the new average
VM utilization ρ is less than pr o_up_uti l _thr eshol d (line 7-10). The new average VM
utilization ρ is calculated by dividing the system utilization ρS by the new amount of VMs
and the response time is computed based on this utilization. Finally, the algorithm records a
new decision with the number of the additional VMs required for this service (line 20). If the
response time is less than down_r esp_thr eshol d · sl o, the number of VMs are iteratively
decreased until the new response time is greater than down_r esp_thr eshol d · sl o or the
average VM utilization ρ is greater than t ar g et_uti l i zati on (line 14-17). The recalculation
of the response time is analogous to line 7 - 10. In the end, a new decision is recorded with
the amount of VMs that can be released (line 20).

During an interval of the proactive cycle (we use 4 minutes), two proactive decisions are
made based on the logic of Algorithm 6.1. The time between the two decisions and the
respective scheduled events are equidistant (we use 2 minutes), see Figure 6.3. As proactive
decisions are calculated based on the current observations and predictions, some rules
are needed to adjust/improve these decisions before adding them as events to the Event
Manager (see Section 6.4). Note that we improve the pair of events in each interval of the
proactive cycle (and not more) as a trade-off between decision stability and reactivity of the
approach. Basically, there are three possibilities when combining two decisions. (i) Both
decisions want to scale up the system, (ii) want to scale down the system, (iii) or they have
contrary scaling decisions. If one of the decisions is a NOP, no combination is required.
Hence, six different cases can be distinguished as depicted in Figures 6.2a - 6.2c. The black

100

6.3 Decision Management

line represents the current supply, the dashed black line the reference supply, the grey arrow
the first decision (d1)/event (e1) and the purple one the second decision (d2)/event (e2).

The first possibility (both decisions plan to scale up) and the two resulting cases are shown
in Figure 6.2a. In the upper case, the first decision wants to scale up n VMs and the second
one wants to scale up m instances, where n ≥ m. The resulting first event allocates n extra
VMs. The second event triggers the allocation of 0 new VMs (6= NOP). In the second case
m > n and so, the first event scales up n VMs and second one allocates m −n VMs.

The second case (both decisions want to scale down the system) and the two resulting
sub-cases are shown in Figure 6.2b. The upper case shows that the first decision wants to
scale down n VMs and the second one wants to scale down m instances, where n ≥ m. As
the down-scaling policy of Chameleon is conservative, the first event releases m VMs and
the second one triggers the releasing of 0 VMs (6= NOP). In the second case, m > n and thus,
the first event scales n VMs down and the second one releases m −n VMs.

The last option is that the decisions request opposite scaling actions. The two resulting
cases are shown in Figure 6.2c. In the upper case, the first decision wants to release n VMs
and the second one wants to allocate m VMs with n ≥ m or m > n. To handle contrary
decisions, Chameleon uses a shock absorption factor 0 < ξ≤ 1. Thus, the first event scales
b(ξ ·d1)c VMs down and the second one scales d(ξ · (d1 +d2))e VMs up. The second case is
complementary to the first case. Hence, the first event allocates d(ξ ·d1)e VMs and the second
one releases b(ξ · (d1 +d2))c VMs. If ξ = 1, then the contrary actions are executed without
modifications. With decreasing ξ the distance between the opposite actions decreases. In
other words, ξ influences the degree of the oscillation in a proactive interval. A mathematical
formula of the complete combination rules can be written as follows:

Let ei be the i-th event, di be the i-th decision and ξ (6.2)

the shock absorption with 0 < ξ≤ 1, i ∈ {1,2} :

e1 =

d1 (d1,d2) ∈ UP2

mi n(d1,d2) (d1,d2) ∈ DOWN2

d(ξ ·d1)e , (d1,d2) ∈ UPxDOWN

b(ξ ·d1)c , (d1,d2) ∈ DOWNxUP

e2 =

max(d2 −d1,0) (d1,d2) ∈ {UP2 , DOWN2}

b(ξ · (d1 +d2))c , (d1,d2) ∈ UPxDOWN

d(ξ · (d1 +d2))e , (d1,d2) ∈ DOWNxUP

101

Chapter 6: Hybrid Auto-Scaling

(a) Combination Rule I.

(b) Combination Rule II.

(c) Combination Rule III.

Figure 6.2: Combination rules for sets of two planned scaling events.

102

6.4 Event Manager

6.4 Event Manager
As Chameleon consists of a proactive and reactive cycle, the management of events created
by the two cycles is required. The event manager of Chameleon has to accept events, resolve
conflicts, and schedule events. An event carries information on its type, either proactive
or reactive, the amount of VMs to allocate or release, its trustworthiness, and its planned
execution time. In contrast to reactive events that are always considered as trustworthy, a
proactive event is trustworthy only when the MASE (mean absolute scaled error) [HK06]
of the associated forecast is lower than a tolerance value, see Section 6.2. A reactive event
should be executed immediately, whereas a proactive event has an execution time in the
future. As the proactive and reactive cycle have different interval lengths, their respective
events may have different execution times. An overview of how events are planned and
scheduled is shown in Figure 6.3. In order to handle all the constrains, the manager has to
resolve the following conflicts:

1. SCOPE CONFLICT: Each proactive event has an associated scope, which is a time
interval before the event execution in which no other event should occur. That is,
the scope has a fixed length (based on the equidistant time intervals between two
events) and ends when the associated event is executed. As proactive events are
scheduled in longer intervals, reactive events can be triggered during the scope of
a proactive event. This leads to a scope conflict with two cases: (i) If the proactive
event is trustworthy and the associated action is UP or DOWN, then the reactive
events are skipped. Figure 6.3 shows an example of this case. In the scope of the
proactive event p5,0 for instance, two reactive events r10 and r11 are triggered. As p5,0

is trustworthy and its action is not a NOP, p5,0 is scheduled and both reactive cycle
events are skipped. (ii) If the proactive event is not trustworthy or contains the action
NOP, then skip the proactive event and execute the reactive one. In Figure 6.3, the
proactive event p1,0 for instance is not trustworthy and hence, it is ignored. That is,
the reactive events r2 and r3 that are triggered during the scope of p1,0 are executed
without modification.

2. TIME CONFLICT: Each event can be identified by its execution time. The time con-
flict describes the problem when two proactive events with the same execution time
appear. This conflict occurs since Chameleon plans proactive events throughout
the forecast horizon, however, a new forecast is executed as soon as a drift between
the forecast and the monitored load is detected. In such a situation, for some inter-
vals there may be proactive events based on the old forecast and respective events
based on the newly conducted forecast. Given that the proactive events based on the
new forecast have more recent information, the proactive events based on the older
forecast are simply skipped. In Figure 6.3, the values of forecast f1 have a deviation
from the measured values greater than the tolerance limit. Therefore, the forecast f2

is executed although the forecast horizon of f1 is still active. In this situation, the
proactive events p4,1 and p2,2 are scheduled at the same time. As p2,2 has more recent
information, e.g., the current resource demand, p2,2 is executed and p4,1 is skipped
accordingly.

103

Chapter 6: Hybrid Auto-Scaling

Figure 6.3: Exemplary illustration of Chameleon’s working mode.

104

6.5 Assumptions and Limitations

3. DELAY CONFLICT: The execution time of the forecast component ranges between
seconds and minutes. Thus, some forecasts may take longer so that the creation of
proactive events is delayed, i.e., the event can not take place in the equidistant time
interval. In order to prevent such delays, the proactive event of the previous forecast
is used for this execution time. An example of this conflict is depicted in Figure 6.3.
Here, through the long computing time, illustrated by the blue box of forecast f2, the
proactive event p1,2 is delayed. Thus, the proactive event p3,1 of forecast f1 is executed
and p1,2 is ignored.

6.5 Assumptions and Limitations
We make the following assumptions explicit: (i) in order to obtain sARIMA or tBATS forecasts
with a model of the seasonal pattern, the availability of two days of historical data is required.
With less historical data, the forecasts cover only trend and noise components resulting in
a decreased accuracy and fewer proactive scaling decisions. (ii) The monitoring values of
request arrivals per resource of the application are accurately provided by the monitoring
infrastructure, e.g., by polling from a load-balancer or from an instrumented run-time
middleware. Chameleon does not rely on utilization measurements. (iii) The service level
objective at the application level, which is monitored, is based on the response time of the
application. (iv) Chameleon is currently focused on scaling CPU intensive applications
as it relies on the respective resource demand estimation models that perform best for
CPU-bound workloads. (v) The optional DML descriptive performance model instance can
be transformed to a product-form queueing network, whereby each service is modelled as
an M/M/1/∞ queue. (vi) As a possible limitation to usability for the Chameleon approach
in comparison to existing simplistic reactive auto-scaling mechanisms, we are aware of a
setup effort that comes in connection with the forecast and resource demand estimation
components. However, Chameleon is designed in a way that it would also work with
replaced forecast mechanisms and resource demand estimation components as long as they
work compliant to the defined required interfaces. The overhead of running Chameleon
is optimized and comparable to the other proactive policies considered in the evaluation.
Especially, the compute intense forecast executions are only triggered when the forecast
arrivals drift away from the monitored ones.

6.6 Concluding Remarks
In this chapter, we tackle the main Goal B („Reduce the risk of using novel auto-scalers in
operation by leveraging multiple different proactive mechanisms applied in combination
with a conventional reactive mechanism.“). As part of the hybrid, proactive auto-scaler
Chameleon, we answer RQ B.1(„How can conflicting auto-scaling decisions from indepen-
dent reactive and proactive decision loops be combined to improve the overall quality of
auto-scaling decisions?“) by defining intelligent conflict resolution rules for scaling events
that are derived from independent reactive and proactive mechanisms. In its proactive part,
Chameleon combines forecasting (time series analysis) and resource demand estimation
(queueing theory), which can optionally be enriched by application knowledge captured

105

Chapter 6: Hybrid Auto-Scaling

using a descriptive software performance model to increase the timeliness and accuracy of
the auto-scaling reconfigurations. The forecast and the resource demand estimation are
realized by integrating established open-source tools provided by the research community.

106

Chapter 7

Forecasting Complex Seasonal Time-Series:
A Hybrid Approach based on
Decomposition

Telescope

Forecasting is an important part of the decision-making process and used in many fields
like business, economics, finance, science, and engineering. However, according to the
No-Free-Lunch Theorem [WM97] from 1997, there is no general forecasting method that
performs best for all time series. Instead, expert knowledge is needed to decide which
forecasting method to choose for a specific time series with its own characteristics. Expert
knowledge is useful, but a time-consuming task that cannot be fully automated. Thus, fore-
casting methods that deliver stable forecasts for a particular type of time series are desired.

In the field of auto-scaling, time series of request arrival rates typically show seasonal
patterns with a high frequency and so, many observations within single periods. Thus,
in order to forecast such time series, multi-step-ahead forecasting with a long horizon is
required. Yet, most state-of-the-art forecasting methods cannot handle time series with
high frequencies when forecasting several hundreds of values.

We start into this research motivated by RQ B.3 („How can a hybrid forecast approach
based on decomposition be designed to be capable of providing accurate and fast multi-
step-ahead forecasts of complex seasonal time-series within seconds?“) and RQ B.4 („Is
such a hybrid forecast approach capable to improve the performance and reliability of
auto-scaling mechanisms?“).

We develop a novel hybrid, multi-step-ahead forecasting approach called Telescope for
seasonal, univariate time series based on time series decomposition is outlined in this
chapter as a side-contribution of this thesis. Telescope is a self-aware forecasting method
incorporating multiple individual forecasting methods. Therefore, the time series is decom-
posed into the components trend, season, and remainder. However, first of all, the frequency
is estimated, anomalies are detected and removed, and the type of decomposition is esti-
mated. After the decomposition, ARIMA without seasonality is applied on the trend pattern,
whereas the seasonality is simply continued. Moreover, the single periods are clustered
into two clusters in order to learn categorical information. The cluster labels are forecast by
applying artificial neural networks. Lastly, the eXtreme Gradient Boosting (XGBoost) is used
to learn the dependency between them and to combine the forecasts of the components.

The preliminary evaluation in Chapter 11 show based on two different traces that an early
implementation of the Telescope approach can keep up with or beats the best competitor in

107

Chapter 7: Forecasting Complex Seasonal Time-Series

terms of accuracy. It achieves to improve the time-to-result up to a factor of 19 compared
to the three most competitive forecasting methods. In a case study, we answer RQ B.4 by
demonstrating that Telescope improves auto-scaling performance further compared to the
state-of-the-art method tBATS.

7.1 Telescope Approach

Forecasting allows to predict the future by examining past observations. Classical forecasting
methods have their benefits and drawbacks depending on the specific use cases. Thus, there
is no globally best forecasting technique [WM97] and further respectively expert knowledge
is required for determining the best forecast method. Typically, expert knowledge is needed
for two domains, i.e., method selection and feature engineering. The serious problem of
expert knowledge is that it can take a long time to deliver results and it cannot be completely
automated. In the field of feature engineering, expert knowledge can be replaced by using
deep learning [NKK+11, LBH15] or random forests [EHPG+17, CGRGG+17]. To overcome
the need of expert knowledge in method selection, a more robust forecasting method
compared to the classical forecaster is needed. In this field, robust means that the variance
in forecasting results should be reduced, not necessarily improving the forecasting accuracy
itself. By reducing the variance of the results, the risk when trusting a bad forecast is lowered.
Hybrid forecasting is such a technique since the benefits of multiple forecasting methods
can be combined to improve the overall performance. Thus, we introduce a new hybrid,
multi-step-ahead forecasting approach for univariate time series. The approach is based
on time series decomposition and makes use of existing forecasting methods, i.e., ARIMA,
ANN, and XGBoost.

We call the proposed hybrid forecasting approach Telescope according to the analogy with
the vision on far-distanced objects. Telescope is developed in R to perform multi-step-ahead
forecasting while maintaining a short runtime. To this end, only fast and efficient single
forecasting methods are used as components of Telescope. A diagram of the forecasting
procedure is shown in Figure 7.1. First, a preprocessing step is executed. The frequency of
the time series is estimated using periodograms, i.e., applying the R function spec.pgram.
This function uses fast Fourier transformation to estimate the spectral density. The esti-
mated frequency is needed to remove anomalies in the time series by applying theAnomaly
Detection R package [HVK17]. This package uses a modified version of the seasonal and
trend decomposition using Loess (STL) [CCMT90]. The STL decomposition splits the time
series into the three components season, trend, and remainder. After the decomposition,
Anomaly Detection applies generalized extreme studentized deviate test (ESD) with
median instead of mean and median absolute deviation instead of standard deviation on
the remainder to identify outliers. Furthermore, we use STL for an additive decomposi-
tion of the revised time series. If the amplitude of the seasonal pattern increases as the
trend increases and vice versa, we assume multiplicative decomposition. Thus, a heuristic
testing for such a behavior is implemented. If a multiplicative decomposition is detected,
the logarithmised time series is used for the STL decomposition and the components are
back-transformed after the decomposition. We apply the STL package because of its short
runtime compared to other R decomposition functions like bfast. Afterwards, the season

108

7.1 Telescope Approach

R
e

m
ai

n
d

e
r

Fo
re

ca
st

in
g

&

C
o

m
p

o
si

ti
o

n

P
re

p
ro

ce
ss

in
g

R
e

m
o

va
l o

f
A

n
o

m
al

ie
s

-
A

n
o

m
al

yD
e

te
ct

io
n

 -

Ti
m

e
 S

e
ri

e
s

D
e

co
m

p
o

si
ti

o
n

-
ST

L
-

Se
as

o
n

 F
o

re
ca

st
in

g
-

ST
L

b
as

e
d

-

Fo
re

ca
st

in
g

w
it

h
C

o
va

ri
at

e
s

-
X

G
B

o
o

st
 -

R
aw

In
p

u
t

V
al

u
e

s

Fo
re

ca
st

 O
u

tp
u

t

D
e

co
m

p
o

si
ti

o
n

Ta
sk

Tr
e

n
d

 D
et

e
rm

in
at

io
n

R
e

m
ai

n
d

e
r

D
et

e
rm

in
at

io
n

Se
as

o
n

D

et
e

rm
in

at
io

n

Tr
e

n
d

 F
o

re
ca

st
in

g
-

A
R

IM
A

 -

C
lu

st
e

ri
n

g
o

f
Si

n
gl

e

P
e

ri
o

d
s

-
k-

M
e

an
s

-

Se
as

o
n

 &
 T

re
n

d

Fo
re

ca
st

in
g

C
e

n
tr

o
id

Fo
re

ca
st

in
g

-
A

N
N

 -

C
re

at
io

n
o

f
C

at
e

go
ri

ca
l

In
fo

rm
at

io
n

Fr
e

q
u

e
n

cy

D
et

e
rm

in
at

io
n

-
P

e
ri

o
d

o
gr

am
 -

Figure 7.1: A simplified illustration of the Telescope approach.

109

Chapter 7: Forecasting Complex Seasonal Time-Series

and trend forecasting is executed. The seasonality determined by STL is simply contin-
ued, whereas the trend is forecast using the auto.arima function from the forecast R
package by Hyndman [HK08, Hyn17]. Since there is no seasonal pattern left, seasonality is
disabled in auto.arima for this purpose. Moreover, this seasonality disabling decreases
the runtime of the algorithm. Additionally, the time series with removed anomalies is used
to create categorical information. For this purpose, the time series is cut into single peri-
ods. Then, the single periods are clustered into two classes using the kmeans R function.
Each class is represented by its centroid. Next, this history of centroids is forecast using
an artificial neural network (ANN), i.e., the nnetar function of the forecast R pack-
age [HK08, Hyn17]. If a specific time series is forecast several times, this clustering task does
not need to be performed every time. Finally, the last step is the remainder forecast and
composition. XGBoost is used [CG16], which is an implementation of gradient boosted
decision trees and it works best when obtaining covariates. XGBoost is applied using the
trend, seasonality, and centroid forecasts as covariates and the raw time series history as
labels. In addition, 10% of the history data are used for validation in the training phase
to prevent XGBoost from overfitting. The sources of the Telescope approach are currently
under publication as open-source1.

7.2 Concluding Remarks
In the field of auto-scaling, typical time series from monitored metrics like arrival rates show
seasonal patterns. As multiple values need to be predicted at once, most state-of-the-art
forecasting methods cannot deal with such time series very well. Thus, we develop Tele-
scope addressing RQ B.3 (How can a hybrid forecast approach based on decomposition be
designed to be capable of providing accurate and fast multi-step-ahead forecasts of complex
seasonal time-series within seconds?). Telescope is a novel hybrid, multi-step-ahead fore-
casting method for seasonal, univariate time series and based on multiple preprocessing
steps and explicit time series decomposition. Then, each component is forecast by a certain
forecaster that fits the requirements of the specific component. Moreover, Telescope learns
categorical information for each period of a time series. Finally, dependencies between
the forecasts are learned by the machine learning method XGBoost and then, XGBoost
reconstructs the final forecast.

1Telescope: https://descartes.tools/telescope

110

https://descartes.tools/telescope

Part IV

Evaluation

Chapter 8

Load Profile Model Accuracy Evaluation

LIMBO

In this chapter, we evaluate the automated model extraction methods for DLIM models
as presented in Chapter 4 in terms of their achieved accuracy and processing time. By
showing that ten different real-world server traces covering periods between two weeks
and seven months can be captured in the descriptive DLIM model format with reasonable
accuracy with our automated extraction processes, we demonstrate the expressiveness of
our proposed modeling formalism. All traces exhibit human usage patterns. The extraction
methods are applied to these traces in order to extract DLIM instances and compare them
to the corresponding original traces by computing the median absolute percentage errors
(MdAPE) [HK06]. The MdAPE is calculated by computing the median over the absolute
values of the relative deviations of the extracted model for each arrival rate in the original
trace. The mean absolute percentage error (MAPE) is not chosen as this measure is prone
to deflection by positive outliers that are more likely to occur as negative outliers as also
discussed earlier.

s-DLIM and hl-DLIM extraction are applied to extract model instances for all traces. For
these extraction methods, we separately evaluate the effect of noise extraction, including
noise reduction. The shape of the interpolating functions is always selected as the DLIM
SinTrend, meaning that sin-flanks are always used for the interpolation between arrival
rate peaks and lows. We chose SinTrend because it fits closest to the original trace in the
majority of cases. For the same reason, ExponentialIncreaseAndDecline is always selected
for Burst modeling (it is a child of Burst in the DLIM meta-model). Trends are selected to be
multiplicative since this way they have a lower impact on arrival rate lows and a relatively
high impact on arrival rate peaks (contrary to additive Trends, which have a constant impact
on both). We do this, since arrival rate lows vary less than arrival rate peaks according to our
observations.

s-DLIM is also configured with varying Trend lengths. Best results are expected at Trend
length of one Seasonal period, whereas lower accuracy is expected at the longest evaluated
Trend length of three Seasonal periods. For traces with a duration greater than one month,
we also apply p-DLIM. p-DLIM is configured to extract weeks as a periodic Trend list with
two Trend segments of the length of three and four. Additionally, it extracts a bi-weekly
period with a Trend list using two Trend segments of the length of 7. Finally, it extracts a
monthly (four week) period with a Trend list using two Trend segments of the length of 14.

We compare the extraction error and run-time on commodity hardware (Core i7 4770,
16 GB RAM) against the STL [CCMT90] and BFAST time-series decomposition [VHNC10]
(which return both split data as opposed to a descriptive model). To enable a fair comparison,

113

Chapter 8: Load Profile Model Accuracy Evaluation

we configure STL and BFAST to extract one seasonal pattern and not more than one trend
per day to match with the features of the DLIM extractors and to not further slow down
BFAST. Please note that this configuration has no significant impact on the accuracy, but
decreases processing speed. In contrast to DLIM, where seasonal patterns are represented
by piece-wise interpolating functions, in STL and BFAST outputs, the seasonal pattern is
represented as two less compact discrete function.

8.1 Internet Traffic Archive and BibSonomy Traces
The first batch of traces was retrieved from The Internet Traffic Archive1. The Internet Traf-
fic Archive includes the following traces: ClarkNet-HTTP (Internet provider WWW server),
NASA-HTTP (Kennedy Space Center WWW server), Saskatchewan-HTTP (Sask.) (Univer-
sity WWW server), and WorldCup98 (WC98) (official World Cup 98 WWW servers). Addi-
tionally, we used a six week long trace of access times to the social bookmarking system
BibSonomy [BHJ+10], beginning on May 1st 20112. All traces were parsed to arrival rate
traces with a quarter-hourly resolution (96 arrival rate samples per day).

WorldCup98,5s-DLIM,5trend5length51,5noise5ignored5Arrival5Rates

WorldCup98,.s-DLIM,.trend.length.1,.noise.ignored WorldCup98,.trace

0 250 500 750 1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.750 3.000 3.250 3.500 3.750

time5(155min)

0

2.500

5.000

7.500

10.000

12.500

15.000

17.500

20.000

22.500

25.000

27.500

30.000

a
rr

iv
a

l5
ra

te

Figure 8.1: Arrival rates of the original WorldCup98 trace (blue) and the extracted DLIM instance (red)
using s-DLIM with a Trend length of 1 and ignoring noise.

Table 8.1 shows the MdAPE for s-DLIM, p-DLIM, and the hl-DLIM extraction for different
configurations. It also displays run-time of the overall most accurate extraction configura-
tion (s-DLIM, ignoring noise, trend length 1) as an average value over ten runs. Accuracy
and average run-times are also displayed for BFAST and STL. For some cases, BFAST did not
terminate after more than one 1.5 hours.

The ClarkNet and NASA extraction results show that s-DLIM provides the best accuracy,
especially with a Trend length of 1. Noise reduction does not seem to help for this particular
trace during the DLIM extraction. The result does not improve when extracting the noise,

1Internet Traffic Archive: http://ita.ee.lbl.gov/
2The request log dataset is obtainable on request for research purposes:

http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/

114

8.1 Internet Traffic Archive and BibSonomy Traces

Table 8.1: Model extraction errors for the Internet Traffic Archive and BibSonomy traces.

Trace 1. ClarkNet 2. NASA 3. Sask. 4. WC98 5. BibSonomy

Extraction Parameters MdAPE MdAPE MdAPE MdAPE MdAPE

Extractor, Trend, Noise [%] [%] [%] [%] [%]

p-DLIM, -, extracted too short 32.223 43.293 52.304 37.387

p-DLIM, -, eliminated too short 28.944 35.831 53.316 35.378

p-DLIM, -, ignored too short 23.633 35.663 53.495 36.264

s-DLIM, 1, extracted 21.195 26.446 35.551 19.735 26.988

s-DLIM, 1, eliminated 17.509 23.560 26.492 16.882 21.470

s-DLIM, 1, ignored 12.409 18.812 29.171 12.979 23.831

s-DLIM, 2, ignored 14.734 20.800 30.273 15.691 26.786

s-DLIM, 3, ignored 14.919 27.577 32.085 19.161 28.218

hl-DLIM, 1, extracted 20.105 26.541 37.942 16.093 27.513

hl-DLIM, 1, eliminated 19.361 24.539 33.240 15.660 25.433

hl-DLIM, 1, ignored 72.924 55.575 80.792 43.957 42.268

STL 13.540 20.384 30.134 16.041 20.299

BFAST 12.243 no result no result no result no result

avg. s-DLIM run-time 4.2 ms 25.2 ms 118.8 ms 11.8 ms 125 ms

avg. STL run-time 3.5 ms 15.0 ms 38.7 ms 13.2 ms 15.0 ms

avg. BFAST run-time 76276 ms no result no result no result no result

as noise generated by a random variable does not reproduce the exact measured results
and increases the absolute arrival rate difference between trace and model. We trace the
discrepancies between the extracted model instance and the original trace to three major
causes:

• In some cases, bursts are not detected with full accuracy.

• The NASA server was shut down for maintenance between time-stamps 2700 and
2900. The extraction methods do not have contingencies for this case.

• Deviating Seasonal Patters are a major cause of inaccuracy in the extracted models.
The extraction methods all assume a single, repeating Seasonal Part. Depending on
the trace, this assumption may be valid to a different extent. In this case, the extracted
Seasonal pattern is able to approximate most days in the trace, but a number of
significant deviations occur. Manual modeling in the DLIM editor can circumvent this
problem, as DLIM itself supports mixes of multiple seasonal patterns. We are currently
working on extending the automated extractors to make use of this feature. Ideas
range from the inclusion of additional meta-knowledge, such as calendar information,
to the implementation of seasonal break detection.

In the case of the Saskatchewan-HTTP extraction, noise reduction improves the s-DLIM
results. However, overall the results are not as good as they are for the other traces. The

115

Chapter 8: Load Profile Model Accuracy Evaluation

BibSonomy,5s-DLIM,5trend5length51,5noise5reduced5Arrival5Rates

BibSonomy,.s-DLIM,.trend.length.1,.noise.reduced BibSonomy,.trace

0 250 500 750 1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.750 3.000 3.250 3.500 3.750 4.000 4.250 4.500

time5(155min)

0

100

200

300

400

500

600

700

800

900

1.000

a
rr

iv
a

l5
ra

te

Figure 8.2: Arrival rates of the original BibSonomy trace (blue) and the extracted DLIM instance (red)
using s-DLIM with Trend length 1 and noise reduction.

major explanation for the relatively poor results is once more the Seasonal pattern deviation.
Since the Saskatchewan-HTTP trace extends over 7 months, the Seasonal patterns have
a lot of room for deviation. The model extractors fail to capture this. This leads to an
additional error in the Trend calibration, as trends are supposed to be calibrated, so that the
greatest Seasonal peak in every Seasonal iteration matches the trace’s nearest local arrival
rate maximum. Since the Seasonal pattern deviation causes the extracted Seasonal peak’s
time of day to not match the trace’s Seasonal peak’s time of day, the calibration takes place
at the wrong point of time. This also explains why a majority of extracted days have a lower
peak then their counterparts in the original trace.

The major deviation from the trace’s Seasonal patterns also explains why s-DLIM performs
better using noise elimination for the Saskatchewan-HTTP extraction. Noise reduction helps
to mitigate the effect of seasonal pattern changes over time, thus reducing the effect of the
Seasonal pattern deviation.

Similarly to the Saskatchewan trace, s-DLIM extraction of the BibSonomy trace also
improves with noise filtering. We explain this by the observation that the BibSonomy trace
features a significant number of bursts, occurring at a relatively high frequency, as well as
significant noise (as seen in Fig. 8.2). Without filtering, some of these bursts are included
in the seasonal pattern by the s-DLIM extractor, distorting the extracted seasonal pattern.
When applying noise reduction, the influence of these bursts is diminished. Therefore, the
extracted seasonal pattern is more stable, leading to increased accuracy as major bursts are
still extracted during s-DLIM’s burst extraction. The BibSonomy trace demonstrates that
s-DLIM (and also p-DLIM) are capable of dealing with traces featuring a significant amount
of noise.

p-DLIM performs well compared to the other two extraction processes. p-DLIM assumes
that all trends repeat. In the case of the NASA trace, this assumption seems to be quite
accurate. Even for the Saskatchewan trace, p-DLIM performs better compared to s-DLIM.

The hl-DLIM extraction shows an entirely different picture. Considering that hl-DLIM
uses only a small number of pre-defined parameters, the extracted hl-DLIM instances are
surprisingly close to the detailed DLIM models. Contrary to what was observed in the

116

8.2 Wikipedia and CICS Traces

DLIM extraction, however, the hl-DLIM extraction strongly relies on noise reduction. If the
noise is ignored and not filtered, hl-DLIM extraction accuracy drops dramatically. This can
easily be attributed to the linear interpolation between the extracted peaks. Since hl-DLIM
interpolates between the highest and lowest peak (thus only extracting two peaks), the
non-filtered trace offers a high number of noisy peaks with minimal impact on the overall
arrival rate. The filtered version, however, only offers a few remaining peaks, which have
a much higher impact on the overall arrival rate. Applying noise reduction forces the hl-
DLIM extractor to only consider the peaks with significant impact rather than accidentally
choosing outliers as peaks.

The WorldCup98 extraction results are notable in that s-DLIM and hl-DLIM extraction
perform relatively well, whereas p-DLIM performs worst for all considered traces. The
obvious cause of this is the observation that the WorldCup98 trace does not feature recurring
trends and only features increasing trends. The s-DLIM and hl-DLIM extraction methods
can handle this easily, whereas p-DLIM cannot.

The times series decomposition method STL shows worse accuracy values with the ex-
ception of the BibSonomy trace, for which it achieves a slightly better accuracy. In all cases,
STL terminates a few milliseconds faster than DLIM extraction. BFAST terminates only for
ClarkNet within 1.5 hours and achieves a comparable accuracy compared to s-DLIM. Due
to the order of magnitude by which BFAST run-time differs from STL and DLIM, using it in
an autonomous management context seems difficult.

8.2 Wikipedia and CICS Traces
The second batch of traces was retrieved from the Wikipedia page view statistics3. They
were parsed from the projectcount dumps, which already feature arrival rates with an hourly
resolution. We restrict our analysis to the English, French, German and Russian Wikipedia
projects, covering four of the six most requested Wikipedia projects and being distributed
over different time-zones. All traces are from December 2013, with the exception of the
English Wikipedia trace, which is from November 2013. The English December 2013 trace
exhibits a major irregularity during the 4th day, which we attribute to a measurement
or parsing error. While the French, German, and Russian Wikipedia projects are mostly
accessed from a single time zone, the English Wikipedia is retrieved from all over the world.
Thus, evaluating the impact of access behavior over different time zones and helping to
assess how well the DLIM extraction methods deal with local vs. global access patterns.

In addition, we extract arrival rates from traces of the IBM CICS transaction processing
system. These traces were logged in a banking environment with significantly different usage
patterns during weekdays and weekends. These traces feature a quarter-hourly resolution
(96 samples per day).

The Wikipedia extraction results in Table 8.2 confirm many of the observations made with
the Internet Traffic Archive traces. Noise extraction is most useful for hl-DLIM extraction;
Trend length of 1 as part of s-DLIM performs best. The overall accuracy, however, is signifi-
cantly better than for the Internet Traffic Archive traces since the Seasonal pattern deviation,
while still relevant, exhibits less impact than before.

3Wikipedia traces: http://dumps.wikimedia.org/other/ pagecounts-raw/2013/

117

Chapter 8: Load Profile Model Accuracy Evaluation

fr.wikipedia.org, s-DLIM, trend length 1, noise ignored Arrival Rates

fr.wikipedia.org,4s-DLIM,4trend4length41,4noise4ignored fr.wikipedia.org,4trace

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750

time (h)

0

250.000

500.000

750.000

1.000.000

1.250.000

1.500.000

1.750.000

2.000.000

2.250.000

2.500.000

2.750.000

a
rr

iv
a

l
ra

te

Figure 8.3: Arrival rates of the original French Wikipedia trace (blue) and the extracted DLIM instance
(red) using s-DLIM with Trend length 1 and ignoring noise.

The Russian Wikipedia trace differs from the other Wikipedia traces. Noise reduction
also improves s-DLIM, while, as usual, being useful for hl-DLIM extraction. The overall
accuracy is similar to the other Wikipedia trace extractions. For this single trace, however,
the Seasonal patterns are shaped in such a way that the noise reduction lessens the impact
of the Seasonal pattern deviation.

The extraction results for the English Wikipedia trace exhibit by far the best overall accu-
racy across all examined traces. The reason for this is the unusually high arrival rate base
level. Since wikipedia.org is accessed globally at all times, the load intensity variations on
top of the base level have little impact on the load variations in general. As a result, all
modeling errors are also reasonable small.

In terms of accuracy, our extraction processes perform on the same level compared to
the STL and BFAST decompositions for the Wikipedia traces and the CICS trace. s-DLIM
performs better than STL and BFAST for both the German and French Wikipedia traces.
Here, s-DLIM’s accuracy profits from its support of multiplicative trends. STL and BFAST,
however, provide better accuracy for the English and Russian traces. Comparing run-times,
s-DLIM is significantly faster than BFAST and sligthly faster than STL. Running on the same
machine, LIMBO’s s-DLIM implementation performed on average 8354 times faster than
BFAST’s R implementation and returned results in all cases in less than 0.2 seconds.

For the CICS trace, STL has a high MdAPE value of 72% while, s-DLIM achieves a better
but still high value of 29%. The CICS trace once more demonstrates the effect of seasonal
deviation. It does not reach the accuracy of the Wikipedia workloads as one seasonal pattern
cannot model the strong differences between workdays and weekends. To demonstrate
that the modeling error is in large part caused by seasonal deviation, we extract a DLIM
instance for the first five days in the CICS trace (Monday to Friday). This weekday model
only features an MdAPE of 13.745%.

118

8.3 Summary

Table 8.2: wikipedia.org model extraction errors.

1. German 2. French 3. Russian 4. English 5. IBM

Trace Wikipedia Wikipedia Wikipedia Wikipedia CICS

Extraction Parameters MdAPE MdAPE MdAPE MdAPE MdAPE

Extractor, Trend, Noise [%] [%] [%] [%] [%]

s-DLIM, 1, extracted 11.215 10.472 9.964 7.764 71.311

s-DLIM, 1, eliminated 10.511 8.566 9.912 7.838 40.822

s-DLIM, 1, ignored 8.538 7.600 11.251 4.855 29.199

s-DLIM, 2, ignored 9.956 8.973 11.683 5.270 34.746

s-DLIM, 3, ignored 11.771 9.813 11.420 7.230 38.785

hl-DLIM, 1, extracted 11.898 8.503 12.392 7.750 80.043

hl-DLIM, 1, eliminated 11.393 8.373 12.496 7.961 59.956

hl-DLIM, 1, ignored 13.126 10.816 13.310 8.868 92.400

STL 13.309 8.671 6.747 2.580 71.997

BFAST 11.223 8.511 5.809 2.302 no result

avg. s-DLIM run-time 3.9 ms 3.5 ms 5.8 ms 3.2 ms 11.3 ms

avg. STL run-time 7.5 ms 7.0 ms 7.0 ms 7.5 ms 11.3 ms

avg. BFAST run-time 23518 ms 23630 ms 23803 ms 21517 ms no result

8.3 Summary
The results of our evaluation show that the proposed DLIM model extraction methods are
capable of extracting DLIM instances with an average modeling error of only 15.2% (MdAPE)
over ten different real-world traces that cover between two weeks and seven months. The
model extraction performs best for the Wikipedia traces. Extracted seasonal patterns match
the trace’s days well and the overlying trends are precisely calibrated. Concerning the
Internet Traffic Archive traces, we identified the seasonal pattern deviations for traces
extending over several months as a major challenge for future work. Changes of daily usage
patterns over the course of these particularly long traces lead to a decrease in accuracy.
Nevertheless, the median error remains below 27%. Furthermore, the BibSonomy trace
demonstrates that the extraction mechanisms are robust and capable of dealing with noisy
arrival rate patterns. The results in general show that DLIM itself is capable of accurately
capturing real-world load intensity profiles, independent of the explicit extraction processes
we introduce.

119

Chapter 9

Evaluation of Elasticity Metrics and Bungee
Measurement Methodology

BUNGEE
Cloud Elasticity Benchmark

This chapter first outlines an experiment setup to demonstrate the benchmarking ca-
pabilities of the Bungee approach with a realistic load profile and a realistic amount of
dynamically scaled resources. The benchmark is applied to a private, CloudStack-based
cloud, as well as a public, AWS-based cloud (Amazon EC2). Furthermore, we assess the
reproducibility of measurements with a focus on Bungee’s scalability analysis. In detail, we
analyze the scalability behavior of the private cloud scenario, before we conduct for each
individual elasticity metric a row of experiments on synthetic load profiles. The metrics
results of these experiments show-case that the metric values are in line with the intuitive
impression of the observed elastic behavior. We conduct a realistic case-study in both cloud
environments that exhibit different performance and scalability characteristics. Leveraging
DLIM capabilities, we generate realistic load profiles. By changing the configuration param-
eters of a standard threshold-based auto-scaler, we observe different timing and accuracy of
elastic adaptations. We aggregate the resulting elasticity metrics in three different ways that
all result in the same ranking consistently.

9.1 Experiment Setup
The experiment setup consists of three building blocks: The infrastructure nodes, the
management and load balancing nodes and the benchmark controller nodes. The first
two parts form the benchmarked system under test (SUT). In the private cloud setup, the
infrastructure provides the physical resources of four 12 core AMD Opteron 6174 CPUs at
2.2 GHz and 256 GB RAM as fully virtualized resources using XenServer 6.2 as hypervisor. The
management node (Intel Core i7 860 with 8 cores at 2.8 GHz and 8 GB RAM) runs the cloud
management software (CloudStack 4.2) and the load balancer (Citrix Netscaler 10.1 VPX
1000) in separate Linux-based VMs. The benchmark controller node runs the Java-based
benchmark harness and the load driver (JMeter) on a Windows desktop (Dell Precision T3400
(4 x 2.5 GHz) and 8 GB RAM). The three nodes are physically connected over a 1 GBit Ethernet
network. Clock synchronization is ensured by using a Stratum 3 NTP server located in the
same network. The template for virtual machines used by CloudStack bases on CentOS 5.6
as operating system with Java run-time environment and SNMP service installed. SNMP
provides access to resource utilization information required for the elasticity mechanism.

121

Chapter 9: Evaluation of Elasticity Metrics and Bungee Measurement Methodology

Experiments on the private CloudStack-based environment employ VMs with 1 core at 2.2.
GHz, 1 GB RAM and local storage is available. Experiments on the AWS EC2 public cloud
employ the general purpose m1.small instance type.

9.1.1 Threshold-based Auto-Scaler Parameters

CloudStack (CS) and AWS allow to configure a rule based auto-scaling mechanism with the
set of parameters in Table 9.1. The listed default values are used if not mentioned otherwise.

Table 9.1: Default parameters of threshold-based auto-scaler of private cloud setup

Param. Name Default Val.
(CS | AWS)

Description

evalInterval 5s Frequency for scaling rule evaluation

quietTime 300s Period without scaling rule evaluation
after supply change

destroyVmGracePer 30s Time for connection closing before a
VM is destroyed

condTrueDurUp 30s | 60s Duration of condition true before a
scale up triggered

counterUp CPU util. Monitored metric for thresholdUp

operatorUp > Operator comparing counterUp and
thresholdUp

thresholdUp 90% Threshold for counterUp

condTrueDurDown 30s | 60s Duration of condition true before scale
down triggered

counterDown CPU util. Monitored metric for
thresholdDown

operatorDown < Operator comparing counterDown
and thresholdDown

thresholdDown 50% Threshold for counterDown

responseTimeout 1s | 2s Period of time within that a response is
expected from healthy instances

healthCheckInterval 5s Time between two health checks

healthyThreshold 1 | 2 Number of subsequent health checks
before instance is declared healthy

unhealthyThreshold 4 | 2 Number of subsequent health checks
before instance is declared unhealthy

122

9.2 System Analysis Evaluation

9.1.2 Benchmark Controller Configuration

The benchmark controller offers several configuration options that allow to configure it
according to the targeted domain. Table 9.2 shows the different parameters and default
values.

Table 9.2: Benchmark harness parameters

Name Default

requestSize 50000

requestTimeout 1000ms

SLO 95% of all requests must be processed successfully

within a maximum response time of 500ms.

warmupCalibration 180s

warmupMeasurement 300s

The amount of work executed within each request is defined by a requestSize param-
eter. It is set to 50000 for the evaluation meaning that each request issues a randomized
calculation of the 50000th element of the Fibonacci series. During the calibration phase, the
benchmark needs a specified SLO in order to perform the System Analysis. Additionally, the
benchmark has a requestTimeout parameter defining how long the benchmark waits
for a response before the connection is closed.

9.2 System Analysis Evaluation

Two different activities precede the actual elasticity measurement: The System Analysis and
the Benchmark Calibration. The latter depends on the correctness of the System Analysis.
The System Analysis is therefore evaluated with respect to the following two questions:

• Is the result of the System Analysis reproducible on the test system?

• What is the deviation between the results of Detailed System Analysis and the results
of Simple System Analysis, which assumes a linearly increasing resource demand?

9.2.1 Reproducibility

This subsection tests the following hypothesis:

Hypothesis 1. Under the assumption that the analysis result follows a normal distribu-
tion, the error of the System Analysis for the first scaling stage is smaller than 5% on a
confidence level of 95%.

123

Chapter 9: Evaluation of Elasticity Metrics and Bungee Measurement Methodology

The reproducibility of the System Analysis is analyzed for three different system config-
urations that are different with respect to the processing performance of the underlying
resources. To obtain different levels of performance for resource instances, CloudStack
is configured to use service offerings that either assign one (Offering A), two (Offering B),
or four (Offering C) virtual CPUs to the created. The evaluation is conducted for every
configuration separately. Let Xi ∈ N (µ,σ) be the samples of the result of the analysis and n

be the number of samples. The sample mean X can be expressed as X =
∑

Xi
n . The sample

standard deviation S can be expressed as S =
∑

(Xi−X)
2

n−1 .

Claim to be proven:

P (c1 ≤µ≤ c2) ≤ 1−α
with (9.1)

c1 = 0.95∗ X̄ , c2 = 1.05∗ X̄ , α= 0.05

According to [Man64], it is shown that T = [X−µ]
p

n
S has a t-distribution with (n−1) degrees

of freedom (d.f.). It follows:

P (clow ≤µ≤ chi g h) ≤ 1−α
with

clow = X − t1−α/2;n−1 ∗S/
p

n

chi g h = X + t1−α/2;n−1 ∗S/
p

n

where t1−α/2;n−1 is the upper (1− α
2) critical point of the t-distr. with n-1 d.f.

To prove the claim, we shown that

cl ow = X − t1−α/2;n−1 ∗S/
p

n ≥ 0.95∗ X̄ = c1 (9.2)

chi g h = X − t1−α/2;n−1 ∗S/
p

n ≤ 1.05∗ X̄ = c2

holds true for a set of n scaling analysis samples.

Off. Analysis Samples [#req./sec.] X S c1 clow chi g h c2

A 35 35 35 35 35 35 35 35 35 35 35.0 0.00 33.25 35.00 35.00 36.75

B 55 57 56 56 56 56 58 55 57 56 56.2 0.92 53.39 55.54 56.86 59.01

C 97 101 100 100 97 99 98 101 99 101 99.3 1.57 94.34 98.18 100.42 104.2

Table 9.3: Results of the reproducibility evaluation for the System Analysis

Table 9.3 shows the result of the System Analysis for the first scaling stage for n = 10
measurement samples and three different system configurations. For all configurations the
equations (9.2) are true. Thus, it is not possible to reject Hypothesis 1.

124

9.2 System Analysis Evaluation

9.2.2 Linearity Assumption

A simplified System Analysis only analyzes the load processing capabilities of the first
scaling stage. It then assumes, that the resource demand increases linearly with the load
intensity and therefore creates a mapping with steps of equal length, like illustrated in
Figure 9.1. For the system depicted in Figure 9.1, only the load processing capability - here
25 - for one resource was determined by the simplified System Analysis. The load processing
capabilities for two, three and four resources - here 50, 75, and 100 - are extrapolated based
on the linearity assumption. Due to some overhead, e.g., overhead in the load-balancer

Figure 9.1: System with linear increasing resource demand

when four resources are used, it may be that the real load processing capability does not
equal the one extrapolated based on the linearity assumption. This evaluation illustrates
how big the error of not measuring the load processing capabilities for more than one
resources is on the used test system.

Hypothesis 2. The test system’s resource demand scales linearly with the load intensity
in a scale out scenario.

It is notable that this hypothesis is not about a property of the benchmark but about a
property of the tested system.

To test the hypothesis for a given system configuration, two measurements are taken.
First, the simplified System Analysis is used to get the load processing capability iunscal ed

for one resource. Then, system is scaled manually to use n resources. Now, the load
processing capability iscaled for the scaled system is determined. In the next step, iscaled is
compared with the extrapolated intensity iextr apol ated for n resources. Hereby, iextr apol ated

is calculated as iextr apol ated = n∗iunscal ed . Using this numbers, the absolute deviation dabs

125

Chapter 9: Evaluation of Elasticity Metrics and Bungee Measurement Methodology

and the relative deviation dr el for the test system are:

dabs = iextr apol ated − iscaled

dr el =
dabs

iscaled

This analysis has been conducted for two different system configurations that are different
with respect to the levels of performance of the underlying resources. To obtain different
levels of performance for resource instances, CloudStack has been configured to use service
offerings which either assign one (Offering A) or two (Offering B) virtual CPUs to the created
VMs.

The result of this evaluation is shown Table 9.4 for Offering A and in Table 9.5 for Offering B
respectively.

For Offering A, the maximum intensity iscaled was analyzed for all system configurations
from n = 1..18 resources. The result is shown in Table 9.4.

n
iunscal ed

[#req./sec.]
iextr apol ated

[#req./sec.]
iscaled

[#req./sec.]
devabs

[#req./sec.]
devr el

[%]

1 35 35 35 0 0.0

2 - 70 70 0 0.0

3 - 105 99 6 6.1

4 - 140 140 0 0.0

5 - 175 169 6 3.6

6 - 210 199 11 5.5

7 - 245 239 6 2.5

8 - 280 284 -4 -1.4

9 - 315 320 -5 -1.6

10 - 350 339 11 3.2

11 - 385 359 26 7.2

12 - 420 399 21 5.3

13 - 455 462 -7 -1.5

14 - 490 479 11 2.3

15 - 525 519 6 1.2

16 - 560 564 -4 -0.01

17 - 595 598 -3 -0.01

18 - 630 633 -3 -0.01

Table 9.4: Linearity analysis for Offering A

126

9.2 System Analysis Evaluation

Within this experiment, the measured deviation from the linearity assumption is always
below 10%. Since the accuracy of measurement itself is limited (95% confidence for relative
accuracy of ±5%, compare Section 9.2.1), it can be assumed that the measured deviation is
mainly due to inaccurate measurements.

For the first twelve resource scaling stages, the linearity analysis has been conducted three
times. It is notable that these measurements have generated the same small deviations from
the linearity assumption consistently. For six resources for example, all three measurements
have returned 199 as measured maximum intensity iscaled . Since the extrapolated maximum
intensity iextr apol ated for six resources is 210, this means a relative deviation dr el of 5.5%.
This observation contradicts the assumption that the measured deviations from the linearity
assumption are mainly due to an inaccurate measurement. It rather indicates that the
deviations from the linearity assumption are mainly system specific.

For Offering B, the maximum intensity iscaled has been analyzed for all system configu-
ration from n = 1..22 resources. For all scaling stages, maximum intensity iscaled has been
measured three times. Table 9.4 shows the averaged results.

As for Offering A, the deviation from the linearity assumption is below 10% for all analyzed
scaling stages. Furthermore, the deviation tends to increase slowly with the number of
used resources. A possible explanation for this increasing deviation is overhead within the
hypervisor or the load balancer. Note that for the largest scale out scenario 92% of the
underlying hardware resources of the test system have been used.

Hypothesis 2 holds for the tested scale out scenarios to a limited extend. Although the
deviation from the linearity assumption is always below 10%, small deviations have been
observed consistently. If possible, the usage of the Detailed System Analysis should therefore
be preferred for new systems.

9.2.3 Summary of System Analysis Evaluation
The evaluation of the System Analysis demonstrated the reproducibility of its results for
three system configurations. Within a second evaluation, it was shown that for scale-outs
of up to 22 resources the linearity assumption holds for the test system to a limited extend.
Constant small deviations from the linearity assumption have been observed for different
scaling stages, consistently. The usage of the detailed System Analysis is therefore preferred.

During the evaluation period, several updates were installed on the hypervisor. The
complete reproducibility evaluation and the evaluation of the linearity assumption for
Offering A were conducted before, the linearity evaluation for Offering B has been conducted
after the installation of hypervisor updates. An additional analysis for Offering A after the
installation of updates on the hypervisor has not shown the deviations illustrated in Table 9.4
anymore. This change in the observed scaling behavior signifies that it is important to
reanalyze the scaling behavior after any direct or indirect change of the tested system.

127

Chapter 9: Evaluation of Elasticity Metrics and Bungee Measurement Methodology

n
iunscal ed

[req./sec.]
iextr apol ated

[req./sec.]
iscaled

[req./sec.]
dabs

[req./sec.]
dr el

[%]

1 58 58 58 0 0.0

2 - 116 115.7 0.3 0.3

3 - 174 225.7 4.0 2.4

4 - 232 225.7 6.3 2.8

5 - 290 282.0 8.0 2.8

6 - 348 336.3 11.7 3.5

7 - 406 390.3 15.7 4.0

8 - 464 449.0 15.0 3.3

9 - 522 503.3 18.7 3.7

10 - 580 559.3 20.7 3.7

11 - 638 613.3 24.7 4.0

12 - 696 670.3 25.7 3.8

13 - 754 718.0 36.0 5.0

14 - 812 773.0 39.0 5.0

15 - 870 829.0 41.0 4.9

16 - 928 881.3 46.7 5.3

17 - 986 923.3 53.7 5.8

18 - 1044 1003.3 40.7 4.1

19 - 1102 1044.7 57.3 5.5

20 - 1160 1099.7 60.3 5.5

21 - 1218 1154.0 64.0 5.5

22 - 1276 1202.3 73.7 6.1

Table 9.5: Linearity analysis for Offering B
(iscaled is averaged over three independent analysis runs)

9.3 Metric Evaluation

In the first set of experiment, we showcase that the accuracy and timing metrics introduced
in Chapter 5.2 allow to rank systems according to their resource elasticity on an ordinal
scale. Every metric is evaluated with the help of a simple synthetic load profile to induce
controlled demand changes. For each metric, the elasticity mechanism of the private cloud
systems is configured in four variants to exhibit different degrees of elasticity.

For comprehensibility reasons, the load profiles illustrated in this section are plotted
with a vertically scaled axis such that the load intensity 100 is the maximum intensity one

128

9.3 Metric Evaluation

resource can withstand. However, in the calibration step the real intensity is adjusted in
a way that the resource demand on the test system equals the resource demand in the
illustrations. In the following, the evaluation for each metric is explained.

9.3.1 Experiment 1: Underprovisioning Accuracy
Load Profile

The under-provision accuracy metric aU and its normalized version thet aU are evaluated
with the load profile illustrated in Figure 9.2. The load profile starts with an intensity that
is just a little bit below the maximum intensity for two instances. After five minutes, the
intensity changes stepwise - every five minutes - to a lower load intensity. However, the
last intensity is still high enough to require two resources. A system with a low degree of
elasticity may drop the second resource because of the shrinking demand although it is still
needed. Thus, such a system lacks in accuracy.

System Configuration

The degree of elasticity of the test system is varied by changing the thresholdDown
parameter. For increasing values of this parameter the system tends to drop resources earlier.
The aU and normalized θU metrics are evaluated for the followingthresholdDown values:
55% (Config. A), 65% (Config. B), 75% (Config. C) and 85% (Config. D).

Results

Figure 9.2 shows the elasticity behaviors Configurations A-D for different values of thres-
holdDown. It can be seen that due to lower degrees of elasticity for increasingthreshold-
Down values, the amount of under-provisioned resources increases. This is reflected by
the metric results shown in Table 9.6. For decreasing degrees of elasticity, that means for
increasing values of thresholdDown, the aU and normalized θU metrics increase. Thus,
the aU and normalized θU metrics allow to rank elastic systems on an ordinal scale.

Remarks

Although the systems drops the second resource too early, they reallocate it again after
a while. This behavior is due to the fact, that for every arrival rate above 100, the CPU
utilization is very high if just one resource is used. Thus, the scale up rule triggers the
allocation of a new resource shortly after each deallocation.

thresholdDown [%] 55 (A) 65 (B) 75 (C) 85 (D)

aU [#r es.] 0.145 0.302 0.371 0.603

θU [%] 0.073 0.151 0.185 0.301

Table 9.6: Measurement results for the aU and θU metrics

129

Chapter 9: Evaluation of Elasticity Metrics and Bungee Measurement Methodology

load intensity demand supply Config A supply Config B supply Config C supply Config D

waiting time service time waiting time service time waiting time service time

0m0s 5m0s 10m0s 15m0s 20m0s
Time

0

100

200
A

rr
iv

al
 R

at
e

[1
/s

]

1
2

1
2

1
2

R
es

ou
rc

e
A

m
ou

nt

1
2

1
2

0

1.000

0

1.000

R
es

p.
T

im
e

[m
s]

0

1.000

0

1.000

waiting time service time Config A service time Config B service time Config C service time Config D

Figure 9.2: Evaluation of the aU and θU metrics. Load profile (top), induced resource demand (second
graph) and measured resource supply and response times for increasing thresholdDown values

9.3.2 Experiment 2: Overprovisioning Accuracy

Load Profile

The over-provisioning accuracy metric aO and its normalized version θO are evaluated with
the load profile illustrated in Figure 9.3. The load profile starts with 30% of the maximum
intensity that one instance can handle. After one minute, the intensity changes stepwise -
every four minutes with 20% increments - to 90% load intensity. A system with a low degree
of elasticity will allocate a second resource instance when the CPU utilization increases
although it is not needed.

System Configuration

The degree of elasticity of the test system is varied by changing the thresholdUp for the
scale up rule. For decreasing values of this parameter the system tends to provision resources
earlier, which leads to lower degrees of elasticity. The aO and θO metric are evaluated for
the following thresholdUp values: 80% (Configuration A), 60% (Configuration B), 40%
(Configuration C) and 30% (Configuration D).

130

9.3 Metric Evaluation

0m0s 2m0s 4m0s 6m0s 8m0s 10m0s 12m0s
Time

0

100

200

A
rr

iv
al

 R
at

e
[1

/s
]

1
2

1
2

1
2

R
es

ou
rc

e
A

m
ou

nt

1
2

1
2

0

1.000

0

1.000

R
es

p.
 T

im
e

 [m
s]

0

1.000

0

1.000

load intensity demand supply Config A supply Config B supply Config C supply Config D

waiting time service time Config A service time Config B service time Config C service time Config D

Figure 9.3: Evaluation of the aO and θO metric. Load profile (top), induced resource demand (second
graph) and measured resource supply and response times for decreasing thresholdUp values (A:
80%, B: 60%, C: 40%, D: 30%).

thresholdUp [%] 80 (A) 60 (B) 40 (C) 30 (D)

aU [#r es.] 0 0.094 0.435 0.717

θU [%] 0 0.094 0.435 0.717

Table 9.7: Measurement results for the aO and θO metrics

Results

Figure 9.3 shows the elasticity behaviors for different values of thresholdUp. It can
be seen that due to lower degrees of elasticity for decreasing thresholdUp values, the
amount of over-provisioned resources increases. This is reflected by the metric results
shown in Table 9.7. For decreasing degrees of elasticity, that means for decreasing values
of thresholdUp, the aO respectively θO metric increases. Thus, the overprovisioning
accuracy metrics allow to rank elastic systems on an ordinal scale. As the demand is always
at one resource unit, the two metrics result in identical values.

131

Chapter 9: Evaluation of Elasticity Metrics and Bungee Measurement Methodology

9.3.3 Experiment 3: Underprovisioning Timeshare
Load Profile

The under-provision timeshare metric τU is evaluated using a simple step load profile,
illustrated in Figure 9.4. The load profile starts with a constant load intensity il ow which can
easily be handled with one resource instance. After one minute, the intensity changes to a
higher load intensity ihi g h for which two resource instances are necessary for four minutes.
The load profile is calibrated in a way, that intensity il ow is half of the maximum intensity
the system can withstand using one resource and ihi g h is 150% of the maximum intensity
the system can withstand using one resource. Thus, with the correct amount of resources
the system should be able to handle the load easily, for any point in time.

System Configuration

With increasing values for the condTrueDurUp parameter the systems reacts delayed,
which leads to lower degrees of elasticity. The τU metric is evaluated for the following
condTrueDurUp values: 5s (Config. A), 10s (Config. B), 30s (Config. C) and 60s (Config. D).

Results

Figure 9.4 shows the elastic behaviors for different values of the condTrueDurUp parame-
ter. It can be seen that due to lower degrees of elasticity for increasing condTrueDurUp
values, the timeshare for under-provisioning increases. This is reflected by the metric re-
sults shown in Table 9.8. For decreasing degrees of elasticity, which means for increasing
condTrueDurUp values, the τU metric increases. Thus, the τU metric allows ranking
elastic systems on an ordinal scale.

condTrueDurUp [s] 5(A) 10(B) 30(C) 60(D)

τU [%] 25.1 26.0 29.3 34.3

Table 9.8: Measurement results for the τU metric

132

9.3 Metric Evaluation

0m0s 2m0s 4m0s 6m0s 8m0s 10m0s
Time

0

100

200

A
rr

iv
al

 R
at

e
[1

/s
]

1
2

1
2

1
2

R
es

ou
rc

e
A

m
ou

nt

1
2

1
2

0

1.000

0

1.000

D
ur

at
io

n
[m

s]

0

1.000

0

1.000

load intensity demand supply Config A supply Config B supply Config C supply Config D

waiting time service time Config A service time Config B service time Config C service time Config D

Figure 9.4: Evaluation of the τU metric. Load profile (top), induced resource demand (second graph)
and measured resource supply and response times for increasing condTrueDurUp values.

9.3.4 Experiment 4: Overprovisioning Timeshare
Load Profile

Similar to the evaluation of the under-provision timeshare, the over-provision timeshare
metric τO is evaluated using a simple step load profile, illustrated in Figure 9.5. The load
profile starts with a constant load intensity ihi g h which can easily be handled with two
resource instances. After one minute, the intensity changes to a lower load intensity ilow for
which just one resource instance is enough for four minutes. The load profile is calibrated in
a way, that intensity ihi g h is 175% of the maximum intensity the test system can withstand
using one resource and ilow is 50% of the maximum intensity the test system can withstand
using one resource. Thus, with the correct amount of resources the system should be able to
handle the load easily, for any point in time.

System Configuration

The degree of elasticity of the test system is changed the same way as it was done for the
under-provisioning timeshare evaluation.

133

Chapter 9: Evaluation of Elasticity Metrics and Bungee Measurement Methodology

Results

Figure 9.5 shows the elasticity behaviors for different values of the condTrueDurDown
parameter. It can be seen that due to lower degrees of elasticity for increasing condTrue-
DurDown values, the timeshare where the system over-provisions increases. This is reflected
by the metric results shown in Table 9.9. For decreasing degrees of elasticity, that means for
increasing condTrueDurDown values, the τO metric increases. Thus, the τO metric allows
to rank elastic systems on an ordinal scale.

0m0s 2m0s 4m0s 6m0s 8m0s 10m0s
Time

0

100

200

A
rr

iv
al

 R
at

e
[1

/s
]

1
2

1
2

1
2

R
es

ou
rc

e
A

m
ou

nt

1
2

1
2

0

1.000

0

1.000

R
es

p.
 T

im
e

[m
s]

0

1.000

0

1.000

load intensity demand supply Config A supply Config B supply Config C supply Config D

waiting time service time Config A service time Config B service time Config C service time Config D

Figure 9.5: Evaluation of the τO metric. Load profile (top), induced resource demand (second graph)
and measured resource supply and response times for increasing condTrueDurDown values (A: 5s,
B: 10s, C: 30s, D: 60s).

condTrueDurDown [s] 5 (A) 10 (B) 30 (C) 60 (D)

τO [%] 14.3 15.0 18.4 23.3

Table 9.9: Measurement results for the τO metric

134

9.3 Metric Evaluation

9.3.5 Experiment 5: Oscillations for Positive Jitter and Instability

The instability metric υ captures the fraction of time, in which the sign of the change in
demand is not equal to the sign of the corresponding change in the supply - in other words
instable phases. The jitter metric j evaluates whether a system exhibits imperfect elasticity
caused by too many or too few adaptations in the resource supply. We separate the jitter and
instability experiments into a scenario with oscillations (Exp. 5) and with inertia (Exp. 6) in
which the auto-scaler can not follow a quickly changing demand. In both cases the absolute
value of the jitter metric increases for decreasing degrees of elasticity. However, for this
experiment the sign of the jitter metric should be positive, and in contrast, for the latter case
negative.

Load Profile

The load profile used for the first evaluation step is a constant load profile illustrated in
Figure 9.6. The load profile is calibrated in a way that the intensity is 90% of the maximum
intensity for one resource. Since the resource is utilized at a high level, rule based elasticity
mechanisms tend allocate another instance, to be able to handle a possibly increasing load.
As soon as the resource is provisioned the average resource utilization drops and - depending
on the configuration - elasticity mechanisms may deallocate the superfluous resource again.
Thus, this load profile tries to provoke unnecessary allocations and deallocations.

System Configurations

For the evaluation, the thresholds [thresholdDown,thresholdUp] are set to: [40,50].
With these thresholds the elasticity mechanism tends to allocate and deallocate a second
resource. Furthermore, the quietTime is set to 30s, to allow faster reactions. The degree of
elasticity of the system is changed by modifying the condTrueDurUp/Down parameters
for both, the scale up and the scale down rule. For decreasing values of these parameters,
the system reacts overly responsive, which leads to lower degrees of elasticity (to many
unnecessary allocations). The jitter metric j and the instability metric υ are evaluated for
the following condTrueDurUp/Down values: 120s (Config. A), 60s (Config. B), and 30s
(Config. C). The instability metric is computed based on an average provisioning time of 2
minutes.

Results

Figure 9.6 shows the elasticity behaviors for different values of thecondTrueDurUp/Down
parameter. It can be seen that due to decreasing degrees of elasticity for smaller condTrue-
DurUp/Down values, the amount of unnecessary resource de-/allocation events increases.
This is reflected by the metrics results shown in Table 9.10. As expected for decreasing
degrees of elasticity, which means for smaller condTrueDurUp/Down values, both the
jitter metric j and the instability metric υ increase. Thus, the both metrics allow for ranking
elastic systems whose imperfect elasticity is due to superfluous adaptations on an ordinal
scale. When the smallest condTrueDurUp/Down is used (Config. C), the system even
provisions a third resource in some cases although maxInstances is set to two. One

135

Chapter 9: Evaluation of Elasticity Metrics and Bungee Measurement Methodology

explanation for this behavior is, that although a second instance is started before, the
quiettime plus the condTrueDurUp was not enough time to allow the system to take
advantage of the second instance and therefore a substitute instance is allocated. Shortly
after the creation of the third instance, the system takes advantage of the second instance
resulting in a quick deallocation.

0m0s 5m0s 10m0s 15m0s 20m0s 25m0s 30m0s
Time

0

50

100

150

200

Ar
riv

al
 R

at
e

[1
/s

]

1

2

1

2

1

2

R
es

ou
rc

e
Am

ou
nt

1
2
3

0

1.000

0

1.000

R
es

p.
Ti

m
e

[m
s]

0

1.000

load intensity demand supply Config A supply Config B supply Config C

waiting time service time Config A service time Config B service time Config C

Figure 9.6: Evaluation of the jitter and instability metrics for superfluous adaptations. Load profile
(top), induced resource demand (second graph) and measured resource supply and response times
for decreasing condTrueDurUp/Down values.

condTrueDurU/D [s] 120(A) 60(B) 30(C)

j
[

#ad ap.
mi n

]
0.233 0.300 0.333

υ [%] 0.467 0.600 0.700

Table 9.10: Measurement results for the jitter metric j (positive) and instability metric υ.

136

9.3 Metric Evaluation

9.3.6 Experiment 6: Inertia for Negative Jitter and Instability
Load Profile

The load profile used for showcasing different degrees of inertia is illustrated in Figure 9.7.
The load profile changes between two intensity levels ilow and ihi g h in a repeated manner.
Hereby, the ∆t time for which the intensity is constant is seven minutes at the beginning.
After every two intensity changes ∆t is decrease by 15%. Like in the load profile for the
timeshare evaluation, the load profile is calibrated in a way, that intensity ilow is half of the
maximum intensity the system can withstand using one resource and ihi g h is 175% of the
maximum intensity the system can withstand using one resource. Thus, with the correct
amount of resources the system should be able to handle the load without stress, for any
point in time.

System Configurations

The quietTime is set to 30s, to allow quick reactions. The degree of elasticity of the system
is changed by modifying the condTrueDurUp/Down parameters for both, the scale up
rule and the scale down rule. For increasing values of this parameter, the system reacts
delayed leading to an increasing inertia. The metric j and υ are evaluated for the following
configurations: 5s (Conf. A), 30s (Conf. B) 60s (Conf. C) and 120s (Conf. D). The instability
metric is computed based on an average provisioning time of 2 minutes.

Results

Figure 9.7 shows the elasticity behaviors for different values of thecondTrueDurUp/Down
parameters. It can be seen that due to increasing inertia caused by increasingcondTrueDur-
Up/Down values, the number of demand changes that the system is able to follow decreases.
This is reflected by the jitter metric results shown in Table 9.11 as the absolute value of the
metric j increases. Thus, the jitter metric j allows to rank elastic systems whose imperfect
elasticity is due to missing adaptations on an ordinal scale. In contrast to the jitter metric,
the instability rewards increasing inertia of the system as due to fewer instable phases. This
is reflected by slightly increasing instability values. Thus, the instability metric is not capable
to distinguish between oscillation and inertia as two different negative aspects of an elastic
behavior.

condTrueDurU/D [s] 5(A) 30(B) 60(C) 120(D)

j [#ad ap.
mi n] -0.093 -0.107 -0.107 -0.133

υ[%] 0.665 0.630 0.620 0.582

Table 9.11: Measurement results for the jitter metric j (negative) and instability metric υ

137

Chapter 9: Evaluation of Elasticity Metrics and Bungee Measurement Methodology

0m0s 15m0s 30m0s 45m0s 1h0m0s 1h15m0s
Time

0

100

200
A

rr
iv

al
 R

at
e

[1
/s

]

1
2

1
2

1
2

R
es

ou
rc

e
A

m
ou

nt

1
2

1
2

0

1.000

0

1.000

R
es
p.
Ti
m
e

[m
s]

0

1.000

0

1.000

load intensity demand supply Config A supply Config B supply Config C supply Config D

waiting time service time Config A service time Config B service time Config C service time Config D

Figure 9.7: Evaluation of the jitter metric j and instability metric υ for missing adaptations. Load
profile (top), induced resource demand (second graph) and measured resource supply and response
times for increasing condTrueDurUp/Down values.

9.3.7 Summary of Metric Evaluation Experiments

The experiments for the evaluation of the elasticity metrics show that each metric allows
ranking resource elastic systems on an ordinal scale reflecting the elastic behavior as ex-
pected. Varying different configuration parameters has different effects on different elas-
ticity aspects and the corresponding metrics. For example, increasing the values for the
condTrueDurUp/Down parameter values leads to lower degrees of elasticity in situa-
tions where the demand changes over time. Therefore, τU and τO increase with increasing
condTrueDurUp/Down parameter values in the evaluation experiments. In contrast, the
jitter metric j improves with higher condTrueDurUp/Down parameter for a stable work-
load, but not for a noisy one. The presented experiments indicate the load profile has a direct
impact on how the configuration parameters of a trigger-based reactive auto-scaler should
be chosen to optimize the trade off between reacting quick and remaining stable. Thus,
the parameters need to be carefully tuned (or even learned) for any specific application
scenario.

138

9.4 Benchmark Methodology Case Study

9.4 Benchmark Methodology Case Study

This section demonstrates the benchmarking capabilities for a realistic load profile and a
representative amount of resources on the private and on a public cloud as described in
Section 9.1.

The load profile (see Figure 9.8) used for this scenario is derived from a real intensity trace
(see Figure 9.8a) previously used in Chapter 8. The trace features the amount of transactions
on an IBM z196 Mainframe during February 2011 with a quarter-hourly resolution.

To reduce the experiment time, the first day is selected as the load profile and has been
compacted from 24 hours to 6 hours. The load intensity within this load profile varies be-
tween two and 339 requests per second and contains about 2.7 million request timestamps,
when adapted for a maximum of 10 one-core VMs in the private cloud setup. As a single
AWS m1.small instance is capable of processing 71 requests per second, instead of 34 for
the private cloud VMs, the load profile for public cloud experiments (see top of Figure 9.10a)
is adapted to vary between five and 710 requests per second. This timestamp file contains
about 5.6 million individual request submission timestamps and induces the same resource
demand changes as the load profile for the private cloud setup. The System Analysis step
has been evaluated for its reproducibility separately: After eight repetitions, the maximal
deviation from the average processing capability per scaling stage was 6.8% for the public
cloud and even lower for the private cloud setup.

9.4.1 System Configuration

The resource elasticity of the cloud system is evaluated for different elasticity rule parameter
settings as shown in Table 9.12: Configuration A serves as a baseline configuration for
elasticity comparisons, as it is expected to exhibit the lowest degree of elasticity. Which one
of the Configurations B, C and D shows the highest degree of elasticity is not directly visible
from the parameters.

Table 9.12: Auto-scaler parameter configurations on private (A,B) and public (C,D) clouds

Config-
uration

quiet-
Time

cond-
TrueDur-

Up

cond-
TrueDur-

Down

thresh-
oldUp

thresh-
oldDown

A 240s 120s 120s 90% 10%

B 120s 30s 30s 65% 50%

C 120s 60s 60s 65% 50%

D 60s 60s 60s 65% 40%

139

Chapter 9: Evaluation of Elasticity Metrics and Bungee Measurement Methodology

(a) Original (blue) and modeled (red) intensity [requests/15min] traceIBM_Transactions_weekdays_S-MIEP_Trendlength1_Noise_ignored Arrival Rates

IBM_Transactions_weekdays_S-MIEP_Trendlength1_Noise_ignored IBM_Transactions_weekdays_trace

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525

time

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

A
rr

iv
a

l
R

a
te

(b) Compacted load profile of a single day adapted for one-core VMs in private cloud setup

load intensity

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

100

200

300

A
rr

iv
al

 R
at

e
[1

/s
]

Figure 9.8: One day load profile derived from a real five day transaction trace

Table 9.13: Metric results for evaluated configurations on private cloud (A, B on Cloudstack) and on
public cloud (C, D on AWS EC2)

Config-
uration

θO

[%]
θU

[%]
aO

[#res.]
aU

[#res.]
τO

[%]
τU

[%]
υ

[%]

j[
#ad ap.

mi n

] SLO
viol.
[%]

A 105.6 4.0 2.425 0.264 60.1 11.7 27.1 -0.067 20.3

B 14.1 1.9 0.815 0.080 48.7 6.5 26.4 -0.028 8.4

C 21.6 3.1 1.053 0.180 51.9 8.1 27.8 -0.033 9.1

D 31.8 1.4 1.442 0.049 57.6 4.7 28.6 -0.017 5.0

9.4.2 Results

Figure 9.9 and Figure 9.10 illustrate the exhibited elasticity of the four different Configura-
tions A, B on the private cloud and C, D on the public cloud. Configuration D reacts fastest
on the step increase starting at 90 min. The shape of resource allocations of Configuration B
fits best to the demand changes. At the steep parts of the profile, when the systems are in

140

9.4 Benchmark Methodology Case Study

(a) Configuration A: Slow resource increase, very slow resource decrease

demand supply waiting time service time

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

2,5

5,0

7,5

10,0

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

(b) Configuration B: Faster resource increase and decrease than Config. A

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

2,5

5,0

7,5

10,0

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

demand supply waiting time service time

Figure 9.9: Elastic behavior for two elasticity rule parameter settings on CloudStack

141

Chapter 9: Evaluation of Elasticity Metrics and Bungee Measurement Methodology

(a) Configuration C on public cloud with adapted load profile

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

250

500

A
rr

iv
al

 R
at

e
[1

/s
]

0
2
4
6
8

10

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

load intensity demand supply waiting time service time

(b) Configuration D: Even faster resource in- and decrease compared to Configurations C

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0
2
4
6
8

10

R
es

ou
rc

e
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e

[m
s]

demand supply waiting time service time

Figure 9.10: Elastic behavior for different elasticity rule parameter settings on AWS EC2

142

9.5 Summary

Table 9.14: Aggregated elasticity metrics

Config-
uration

AS
deviation

σ [%]

pairwise
comp.
κ [%]

elastic
speedup

εk

A 60.8 11.1 1.00

D 38.4 22.2 1.53

C 36.6 55.6 1.72

B 33.9 100.0 2.08

under-provisioned state, the request response time rises to the defined timeout of 1 second
with the request violating the specified SLO. The response time graphs show higher and
more variable response times for the public cloud experiments (C, D) compared to the
private cloud experiments (A, B). Possible reasons are a higher performance variability due
to imperfect isolation or overbooking on the public cloud.

Table 9.13 contains the metric results for the four configurations. Configuration B exhibits
the lowest accuracy aO metric value, whereas Configuration D achieves the lowest accuracy
aU result and is less than 5% of the experiment time in an underprovisioned state. All con-
figurations exhibit a negative jitter j value as there are more demand changes than supply
changes. The instability metric υ is not affected strongly as in general the stability behavior
of the auto-scaler configuration is not changing significantly. Note that the percentage of
SLO violating requests is correlated with the underprovisioning timeshare τU value and the
amount of requests sent during under-provisioned states.

As for the aggregated elasticity metrics, the auto-scaler deviation σ [%], the pairwise
competition κ [%], and the elastic speedup εk with no weights are summarized in Table 9.14.
As expected from the visual representation, consistently for all aggregated metrics, Con-
figuration B achieves the highest scores, followed by C, D, and lastly A. The unweighted
aggregated elasticity metrics treat under-/over-provisioning equally. Thus, they are not
correlated directly with the SLO violation rate.

9.5 Summary
In this evaluation chapter, we assess Contribution II presented in Chapter 5, namely the
reproducibility of Bungee’s system analysis and conduct for each individual elasticity metric
a set of experiments on a tailored, synthetic load profile while altering the auto-scaler con-
figurations of a threshold-based reactive approach. For all elasticity metrics, the parameter
changes in the configurations are reflected according to intuition in the metric values.

In addition, the Bungee elasticity benchmark approach is applied to a complex realistic
load scenario ranking different systems and configurations according to the exhibited degree
of elasticity. Both, the System Analysis and the Elasticity Metrics, as well as the overall
benchmarking methodology deliver reproducible results. In the realistic case study both in

143

Chapter 9: Evaluation of Elasticity Metrics and Bungee Measurement Methodology

private and public cloud environments, we observe different timing and accuracy of elastic
adaptations. We aggregate the resulting elasticity metrics in three different ways whereas all
result in the same ranking consistently. Thus, this evaluation chapter answers RQ A.4 („How
can the proposed elasticity metrics be measured in a reliable and repeatable way to enable
fair comparisons and consistent rankings across systems with different performance?“).

144

Chapter 10

The Hybrid Auto-Scaler Chameleon in a
Benchmark Competition

We evaluate the Chameleon auto-scaling mechanism by obtaining and analyzing the elas-
ticity metrics we introduce in Section 5.2 and applying the Bungee measurement method-
ology (c.f. Section 5.5). First, we summarize the rationale behind the selected workloads
used in the evaluation, and the auto-scaled application. Then, in Section 10.2, the five
auto-scalers considered in the evaluation are introduced, before we step into an in-depth
presentation and discussion of experiment results.

10.1 Workload and Application

To conduct representative experiments, authentic workloads with time-varying load inten-
sity profiles are required. To this end, we collect existing traces from real-life systems that
cover up to several months. For a feasible experiment run duration of up to 10 hours, we pick
a randomly selected subset from the traces covering up to three days and accelerate the re-
play time by the factor 7.5 during the experiments so that one day in the traces corresponds
to 3.2 hours in the experiments. This way, we trade experiment duration and covered time
intervals for a realistic setup stressing the auto-scaling mechanisms. A higher time speed-up
factor to replay more days within 10 hours experiments time would render the experiments
unrealistic, e.g., as the induced changes in demand might exceed the provisioning delays
and frequency of resource allocations technically supported by the cloud platforms.

• The FIFA World Cup 19981 trace is a widely known trace that represents the HTTP
requests to the FIFA servers during the world championship between April and
June 1998. This trace was analyzed in the paper of Arlitt and Tai [AJ00]. For our
experiments, we use a sub-trace of three days.

• The BibSonomy trace consisting of HTTP requests to servers of the social bookmark-
ing system BibSonomy (see the paper of Benz et al. [BHJ+10]) during April 2017. Here,
we use 2 days for benchmarking the auto-scalers.

1FIFA Source: http://ita.ee.lbl.gov/html/contrib/WorldCup.html

145

http://ita.ee.lbl.gov/html/contrib/WorldCup.html

Chapter 10: The Hybrid Auto-Scaler Chameleon in a Benchmark Competition

• The IBM CICS transactions trace capturing four weeks of recorded transactions on a
z10 mainframe CICS installation. From this trace, one weekday was extracted for the
experiments.

• The German Wikipedia2 trace containing the page requests to all German Wikipedia
projects during December 2013. Here, we use two days from this trace.

• The Retailrocket 3 trace containing HTTP requests to servers of an anonymous real-
world e-commerce website during June 2015. Similar to German Wikipedia, we use 2
days for the evaluations.

With exception of the German Wikipedia trace, all traces contain 96 data points per day, i.e.,
the traces contain 15 minutes averages of the arrival rates. In case of German Wikipedia, we
transform the hourly samples using interpolation so that it ends up with 96 data points per
day. We apply s-DLIM model extraction (see Section 4.3) with noise filtering and sinus-flanks
as interpolating functions to obtain accurate models of the raw data. This step is required to
adapt the original traces a) to the maximum supported load level, b) speed up the replay
time, and c) adapt the load profile to the scaling behavior of the different platforms to trigger
identical demand changes in all experiments for one trace.

The auto-scaling mechanisms are configured to monitor and auto-scale a CPU-intensive
Java Enterprise application - an implementation of the LU worklet from SPEC’s Server
Efficiency Rating Tool SERT™2 - as a benchmark application. The application calculates
the LU Decomposition [BH74] of a random generated n ×n matrix, where n is the GET
parameter of each HTTP request. The application is deployed on WildFly application servers
in three private and public infrastructure cloud environments.

For the evaluation in our private cloud infrastructure, the application is deployed in an
Apache CloudStack4 cloud that manages virtualized Xen-Server hosts. This cloud envi-
ronment is running in a cluster of 11 identical HPE servers. Eight of them are managed
by CloudStack. Overbooking and hyper-threading are deactivated on the managed hosts.
The last three servers are not part of the cloud and are used for hosting the software for
the cloud management, as well as the benchmark framework: (i) the load-balancer (Citrix
Netscaler5) and the cloud management system for CloudStack, (ii) Chameleon and the
other auto-scaling mechanisms, and (iii) the load driver and the experiment controller. The
specifications of each physical machine and of each VM can be seen in Table 10.1 and in
Table 10.2, respectively.

In order to cover setups with background noise, the application is deployed in both the
public AWS EC2 IaaS cloud and in the OpenNebula6-based IaaS cloud of the Distributed
ASCI Supercomputer 4 (DAS-4) [BEdLm16] - a shared research cloud infrastructure. The
specification of each VM in both setups is listed in Table 10.2. In the public AWS EC2 cloud,
the quota for the number of VMs is given by the provider as 20 instances at maximum in
parallel. In order to have comparable scaling ranges over the experiments, the amount of

2Wikipedia Source: https://dumps.wikimedia.org/other/pagecounts-raw/2013/
3Retailrocket Source: https://www.kaggle.com/retailrocket/ecommerce-dataset
4Apache CloudStack: https://cloudstack.apache.org/
5Citrix Netscaler: https://www.citrix.de/products/netscaler-adc/
6OpenNebula: https://opennebula.org/

146

https://dumps.wikimedia.org/other/pagecounts-raw/2013/
https://www.kaggle.com/retailrocket/ecommerce-dataset
https://cloudstack.apache.org/
https://www.citrix.de/products/netscaler-adc/
https://opennebula.org/

10.1 Workload and Application

Component Server Specification

Model HP DL160 Gen9

CPU 8 cores @2.6Ghz (Intel E5-2630v3)

Memory 32GB

Table 10.1: Specification of the servers.

Component CloudStack AWS (m4.large) DAS-4

Operating System CentOS 6.5 CentOS 6.5 Debian 8

vCPU 2 cores 2 cores 2 cores

Memory 4GB 8GB 2GB

Table 10.2: Specification of the VMs.

VMs is limited to 18 (20 VMs minus a load-balancer VM for the experiment and a domain
controller VM for the WildFly cluster). The experimentally derived mappings showing how
many requests can be handled by a certain number of VMs without violating the SLO is
shown in Figure 10.1. Here, the x-axis shows the current number of VMs and the y-axis
the maximal sustainable requests per second. The blue curve represents the private cloud
scenario, the red one AWS EC2, and the black one DAS-4. The mappings have been extracted
three times for public environments and averaged to account for the acceptable small
variance present in shared environments.

0 2 4 6 8 10 12 14 16 18
Amount of VMs

0

20

40

60

80

100

120

140

160

180

M
ax

im
al

 S
us

ta
in

ab
le

 A
rr

iv
al

 R
at

e

CloudStack
AWS EC2
DAS-4

Figure 10.1: System Analysis results of all scenarios.

147

Chapter 10: The Hybrid Auto-Scaler Chameleon in a Benchmark Competition

10.2 Competing Auto-Scalers

For the evaluation, we select five representative auto-scalers that have been published in the
literature over the past decade. We identify two groups of auto-scalers differing in the way
they treat the workload information. The first group are auto-scalers that build a predictive
model based on long-term historical data [U+05,IDCJ11,FPK14]. The second group consists
of auto-scalers that only use recent history to make auto-scaling decisions [C+09, AETE12].
The selected methods have been published in the following years: 2008 [USC+08] (with an
earlier version published in 2005 [U+05]), 2009 [C+09], 2011 [IDCJ11], 2012 [AETE12], and
2014 [FPK14]. This is a representative set of the development of cloud auto-scalers designs
across the past 10 years. We describe each of these in more detail.

10.2.1 Reactive

Based on the work of Chieu et al. [C+09], this auto-scaler realizes a scaling mechanism based
on thresholds as provided, e.g., by AWS EC2. Here, the user can set a condition to add new
instances in increments or based on the amount of currently running resources when the
average utilization is higher than a specified threshold over a specified period. Similarly, the
user can set a condition to remove instances. An additional cool-down parameter defines a
duration after an action, during which the metrics are not evaluated. This allows to avoid
possible oscillations by delaying the next possible action. In our experiments, we set the
cool-down parameter to 0 and the condition-true period to 2 minutes for both directions.
As thresholds, we use 80% CPU utilization for scaling up and 60% for scaling down while
adding/removing the fixed amount of 1 unit.

10.2.2 Adapt

Ali-Eldin et al. [AETE12] propose an autonomic elasticity controller that changes the number
of VMs allocated to a service based on both monitored load changes and predictions of
future load. We refer to this technique as Adapt. The predictions are based on the rate of
change of the request arrival rate, i.e., the slope of the workload, and aims at detecting the
envelope of the workload. The designed controller adapts to sudden load changes and
prevents premature release of resources, reducing oscillations in the resource provisioning.
Adapt tries to improve the performance in terms of number of delayed requests and the
average number of queued requests, at the cost of some resource over-provisioning.

10.2.3 Hist

Urgaonkar et al. [USC+08] propose a provisioning technique for multi-tier Internet appli-
cations. The proposed methodology adopts a queueing model to determine how many
resources to allocate in each tier of the application. A predictive technique based on building
Histograms of historical request arrival rates is used to determine the amount of resources
to provision at an hourly time scale. Reactive provisioning is used to correct errors in
the long-term predictions or to react to load bursts caused by unanticipated flash crowds.
The authors also propose a novel data center architecture that uses Virtual Machine (VM)

148

10.2 Competing Auto-Scalers

monitors to reduce provisioning overheads. The technique is shown to be able to improve
responsiveness of the system, also in the case of a flash crowd. We refer to this technique
as Hist.

10.2.4 Reg

Iqbal et al. propose a regression-based auto-scaler (hereafter called Reg) [IDCJ11]. This
auto-scaler has a reactive component for scale-up decisions and a predictive component
for scale-down decisions. When the capacity is less than the load, a scale-up decision
is taken and new VMs are added to the service in a way similar to Reactive. For scale-
down, the predictive component uses a second order regression to predict future load. The
regression model is recomputed using the complete history of the workload each time a new
measurement is available. When the current load is lower than the provisioned capacity, a
scale-down decision is taken using the regression model. This auto-scaler does not perform
on the level of other mechanisms in our experiments due to two factors; first, building a
regression model for the full history of measurements for every new monitoring data point is
a time consuming task. Second, distant past history becomes less relevant as time proceeds.
After contacting the authors, we have modified the algorithm such that the regression model
is evaluated only for the past 60 monitoring data points.

10.2.5 ConPaaS

ConPaaS, proposed by Fernandez et al. [FPK14], scales a web application in response to
changes in throughput at fixed intervals of 10 minutes. The predictor forecasts the future
service demand using standard time series analysis techniques, e.g., Linear Regression, Auto
Regressive Moving Averages (ARMA), etc. The code for this auto-scaler is open source. This
is the only auto-scaler out of the five with an open-source implementation that we used in
our evaluation.

The auto-scalers are running in a Python venv7 environment as a web application with a
REST-interface based on Flask8. The interface of the auto-scalers is called every 2 minutes
via a Java-based wrapper. Each auto-scaling mechanism receives a set of input values
and returns the amount of VMs that have to be added or removed. The input consists
of the following parameters: (i) the accumulated number of requests during the last 2
minutes, (ii) the estimated resource demand per request determined by LibReDE as used in
Chameleon, and (iii) the number of currently running VMs. The interface also provides the
average CPU utilization across the running instances as input. However, the other proactive
auto-scalers do not use it.

7Python venv: https://docs.python.org/3/library/venv.html
8Flask: http://flask.pocoo.org/

149

https://docs.python.org/3/library/venv.html
http://flask.pocoo.org/

Chapter 10: The Hybrid Auto-Scaler Chameleon in a Benchmark Competition

10.3 Experiment Results

In this section, we benchmark Chameleon and the other auto-scalers. We have conducted 7
different sets of experiments with 6 auto-scalers. Section 10.3.1 explains how to interpret
the results of the measurements. In Section 10.3.2, the variability of the auto-scalers is
investigated. Afterwards, in Section 10.3.3, the measurements in the private cloud and
the public cloud are presented and compared. We evaluate the impact of forecasting in
Chameleon in Section 10.3.4. In Section 10.4, the results of all measurements are combined,
illustrated and discussed. Afterwards, we discuss threats to validity and, finally, conclude
the evaluation with a list of key findings. Detailed results of the experiments per selected
workload can be found in the appendix.

10.3.1 Introduction to the Results

We first introduce the format in which results are presented before discussing the detailed
results. To this end, a single experiment of the Retailrocket trace is explained and depicted in
Figure 10.2. For all measurements, we set the timeout limit of requests to 5000 milliseconds.
Furthermore, the condition that 95% of all response times should be less than 4000 millisec-
onds is set as Service Level Objective (SLO). In Figure 10.2, the timeout limit is represented
by a grey dashed line and the SLO violation border as blue line in the lower part of the
diagram. The x-axis shows the time of the measurements in minutes and the y-axis the
response time in milliseconds. Green cycles represent requests that meet the SLO, whereas
red dots represent requests that violate the SLOs. The upper part of the figure shows the
scaling behavior of the auto-scaler. Here, the x-axis shows the time of the measurement in
minutes since the beginning of the experiment, whereas the y-axis shows the amount of
concurrently running VMs. The blue curve represents the VMs that the auto-scaler supplied
to the system. The black dashed curve shows the ideal number of supplied VMs, determined
beforehand by the experiment controller Bungee, which is unknown to the auto-scalers and
is used to calculate the metrics afterwards. For all measurements, the auto-scalers start with
1 VM and therefore, they start in an under-provisioned state.

In the example of Figure 10.2, from minute 0 to minute 40 the system in an under-
provisioned state. Hence, there are a lot of SLO violations depicted by a cloud of red dots.
During the period from minute 40 to minute 185 the system has at least as many VMs as
required or more. Therefore, the average response period during this time is 800 ms. The
few red dots that occur in that period can be explained by the fact that VMs are shutdown
when scaling down and therefore, some requests either timeout or experience a degraded
performance.

The experiment results for the German Wikipedia trace are shown Figure 10.3. This
diagram shows the Chameleon measurement (top left) compared with the measurements
for all competing auto-scalers: Reactive (top right), Adapt (middle left), Hist (middle right),
ConPaaS (bottom left) and Reg (bottom right). For each auto-scaler, the x-axis shows the
time of the measurement in minutes; the y-axis shows the number of concurrently running
VMs. The blue curves represent the supplied VMs of each auto-scaler; the black dashed
curves represent the required amount of VMs. The interpretation of the curves are the same
as in the single experiment example.

150

10.3 Experiment Results

Figure 10.2: Scaling behavior of Chameleon for the Retailrocket trace.

When comparing the scaling behavior of the different auto-scalers for the German Wikipe-
dia trace, a first observation is that the auto-scalers can be grouped into two categories: (i)
tendency to over-provision the system (Hist, Reactive, Adapt and Chameleon), (ii) tendency
to under-provision the system (ConPaaS and Reg). Furthermore, Reg and ConPaaS have a
high rate of oscillations during the measurement. Chameleon is the first auto-scaler that
meets the demand surge in the beginning of the experiment and then tends to allocate
slightly more VMs than required for the remaining time. Adapt, for instance, has a similar
behavior as Chameleon but it allocates more VMs. Reactive allocates almost the right
amount of VMs during the increasing and constant load, but is too slow when scaling down.
In contrast, Hist roughly meets the demand and holds the amount of allocated VMs for
about 30 to 60 minutes after which it drops to the current demand.

To provide a quantitative comparison as in Table 10.3, we compute the elasticity metrics
(see Section 5.2), the aggregated elasticity metrics without custom weight (see Section 5.3)
and report user-oriented quantities like average and median response times, absolute
accounted instance minutes, the average number of VMs as well as the absolute number
of resource adaptations. The first column denotes the various metrics and the following
ones the values obtained by the different auto-scalers with the last one corresponding to the
no auto-scaling scenario. The rows of the table show the values of different metrics with
the best value highlighted in bold. For the elasticity metrics, as well as for the metrics SLO
violations, auto-scaling deviation, instance minutes, average response time and median
response time it generally holds that the lower the value the better the auto-scaler performs.
In contrast, for the pairwise competition and elastic speedup, a higher value is better.

151

Chapter 10: The Hybrid Auto-Scaler Chameleon in a Benchmark Competition

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Chameleon (German Wikipedia)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reactive (German Wikipedia)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Adapt (German Wikipedia)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Hist (German Wikipedia)

0 30 60 90 120 150 180 210 240 270 300 330 360
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

ConPaaS (German Wikipedia)

0 30 60 90 120 150 180 210 240 270 300 330 360
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reg (German Wikipedia)

Demanded VMs Supplied VMs

Figure 10.3: Comparison of the auto-scalers for the German Wikipedia trace.

Metric Chameleon Adapt Hist ConPaas Reg Reactive No Scaling

θU (accuracyU) 1.57% 1.68% 2.37% 14.69% 16.08% 2.10% 25.93%

θO (accuracyO) 11.15% 17.51% 33.55% 15.67% 4.34% 28.94% 19.38%

τU (time shareU) 5.70% 9.16% 12.75% 47.41% 51.04% 12.27% 70.48%

τO (time shareO) 73.25% 80.94% 71.95% 32.07% 25.24% 80.77% 26.28%

υ (instability) 5.83% 7.09% 4.75% 12.66% 12.88% 4.97% 2.94%

ψ (SLO violations) 2.95% 15.47% 11.86% 59.73% 80.71% 7.15% 85.95%

σ (as deviation) 39.49% 45.24% 42.75% 62.54% 81.71% 46.67% 88.13%

κ (pairwise comp.) 77.78% 50.00% 50.00% 41.67% 41.67% 52.78% 36.11%

ε (elastic speedup) 2.30 1.78 1.51 0.91 1.19 1.56 1.00

#Adaptations 61 66 26 112 102 49 0

Avg. #VMs 10.795 12.343 11.571 11.191 9.3761 10.451 9

Instance minutes 5103.50 5267.70 5416.00 4380.70 3913.00 5551.30 3471.00

Avg. response time 0.62 s 1.22 s 1.06 s 3.31 s 4.20 s 0.82 s 4.38 s

Med. response time 0.43 s 0.48 s 0.48 s 5.00 s 5.00 s 0.46 s 5.00 s

Table 10.3: Metric overview for the German Wikipedia trace.

When comparing individual elasticity metrics only the aspect characterized by the respec-
tive metric is considered. For instance, in the German Wikipedia scenario, Chameleon has
the best values for under-provisioning accuracy, under-provisioning time share, and SLO
violations. Reg has the best values for under-provisioning accuracy and under-provisioning
time share, but the highest amount of SLO violations compared to all other auto-scalers.
Therefore, we evaluate the performance of the auto-scalers based on the auto-scaling devia-
tion, the pairwise competition, and the elastic speedup. Chameleon has the best values for

152

10.3 Experiment Results

each of these unweighted aggregate metrics. This is supported by also looking at the average
and median response time for which Chameleon also exhibits the best values among the
compared auto-scalers.

10.3.2 Auto-Scaler Performance Variability

Besides good elasticity metrics, an essential characteristic of auto-scalers is that they exhibit
low variability in their scaling behavior. Hence, we investigate how the scaling behavior
varies when rerunning the same experiment multiple times and comparing the elasticity
metrics and SLO violations. As the IBM trace consists of one day only, we repeat the exper-
iment three times for each auto-scaler. The scaling behaviors are depicted in Figure 10.4.
This diagram has the same structure as described in Section 10.3.1 with the exception that
the blue solid curve shows the supplied VMs in experiment 1, the dashed cyan curve with
dots the supplied VMs in experiment 2, and the red solid curve with circles the supplied VMs
in the last experiment. Table 10.4 shows the metric value ranges of the achieved elasticity
metrics and the SLO violations. The lowest level of variability is achieved by Chameleon and
Reactive, followed by ConPaaS, Reg and Adapt. In contrast to the mentioned auto-scalers,
Hist exhibits the highest variability. In general, all auto-scalers exhibit a reasonably low
degree of performance variability. This allows to analyze the different auto-scalers in the
context of the conducted experiments without the threat of non-reproducible results.

10.3.3 Auto-Scaling in Private vs. Public IaaS Clouds

In this section, we run the experiments with the FIFA World Cup 1998 trace in the AWS EC
2 and in the DAS-4 environment in order to evaluate the behavior of the different auto-
scalers when running in a public cloud. In contrast to our private cloud, we observe a high

0 30 60 90 120 150 180
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Chameleon (IBM)

0 30 60 90 120 150 180
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reactive (IBM)

0 30 60 90 120 150 180
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Adapt (IBM)

0 30 60 90 120 150 180
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Hist (IBM)

0 30 60 90 120 150 180
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

ConPaaS (IBM)

0 30 60 90 120 150 180
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reg (IBM) Demanded VMs
Supplied Vms Run I
Supplied Vms Run II
Supplied Vms Run III

Figure 10.4: Comparison of the auto-scalers for the IBM trace.

153

Chapter 10: The Hybrid Auto-Scaler Chameleon in a Benchmark Competition

Metric Chameleon Adapt Hist ConPaaS Reg Reactive

θU (accuracyU) 5.3% ± 0.1 7.6% ± 1.2 6.0% ± 0.4 13.1% ± 0.6 12.4% ± 1.0 7.9% ± 0.3

θO (accuracyO) 7.7% ± 0.4 33.3% ± 0.9 88.6% ± 16.0 21.5% ± 1.7 7.8% ± 0.9 60.7% ± 11.5

τU (time shareU) 14.9% ± 0.6 23.7% ± 5.1 17.2% ± 7.2 36.0% ± 1.7 29.8% ± 2.6 19.7% ± 0.5

τO (time shareO) 43.1% ± 1.3 52.4% ± 4.3 52.9% ± 12.5 26.9% ± 4.2 27.9% ± 1.9 60.0% ± 2.6

υ (instability) 8.8% ± 0.3 14.2% ± 0.6 7.6% ± 0.2 14.1% ± 1.4 13.6% ± 1.5 8.2% ± 0.1

ψ (SLO violations) 12.1% ± 2.5 37.1% ± 7.2 14.8% ± 4.6 40.7% ± 3.3 67.7% ± 6.4 29.9% ± 2.2

Table 10.4: Metric value ranges (IBM trace).

performance variation for each VM and a high degree of background noise in AWS. The
resulting scaling behavior of a subset of the auto-scalers is depicted in Figure 10.5. The
figures are structured as explained in Section 10.3.1; the left column shows Chameleon,
Reactive and Adapt in the private cloud scenario and the right column shows the same
auto-scalers in the public AWS EC2 scenario.

While Chameleon and Adapt scale in a similar manner in both scenarios, a bigger dif-
ference is observed for Reactive, as the diagrams in Figure 10.5 show. In contrast to the
proactive auto-scalers that make decisions based on the amount of requests and the re-
source demands, the scaling decisions of Reactive are only based on the observed CPU
load of the system. While the system is in an under-provisioned state, the CPU load drops
significantly for a certain time and Reactive scales down as since CPU usage indicates a
low load. After the CPU load starts increasing, Reactive tries to scale up the system again.
Such drops in the CPU load seem to follow a scheme. Therefore, we assume that AWS EC2
performs migrations in the background for migrating the VMs from overloaded hosts to
hosts with less load. After such migrations, the CPU usage drops given that more resources
are available on the new host.

The metrics for all auto-scalers are listed in Table 10.5. While in the private scenario,
Chameleon achieved the best value for the auto-scaling deviation metric, in the public
scenario, Chameleon achieved the best values for the pairwise competition and elastic
speedup metrics, in addition to the auto-scaling deviation metric. In the private scenario,
Reactive has the best score for pairwise competition and elastic speedup, while in the public
scenario, it exhibits average performance for the aggregate metrics.

10.3.4 Side-Evaluation: The Impact and Quality of Forecasting in
Chameleon

In order to quantify the performance of the reactive cycle and the proactive cycle (in par-
ticular its forecast component) separately, we perform two additional measurements on
the Retailrocket trace. In the first experiment, the scaling component of the reactive cycle
is deactivated, that is, Chameleon scales the system solely proactively relying on the fore-
cast component and without applying the strategies for resolving reactive and proactive
scaling events mentioned in Section 6.4. The average MASE metric (see Section 6.2) during
this experiment was 31.37%. In the second experiment, we use Chameleon without any
historical data and thus the forecast component may not be able to provide trustworthy
forecasts. Indeed, as the average MASE-value is 51.10% and the minimum is 30.14%, which

154

10.3 Experiment Results

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Chameleon (Fifa - private)

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Chameleon (Fifa - AWS)

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Adapt (Fifa - private)

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Adapt (Fifa - AWS)

0 60 120 180 240 300 360 420 480 540
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reactive (Fifa - private)

0 60 120 180 240 300 360 420 480 540
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reactive (Fifa - AWS)

Demanded VMs Supplied VMs

Figure 10.5: Comparison of the auto-scalers in both the private cloud scenario and public AWS EC2.

Metric
Chameleon Adapt Reactive

No Scaling
private AWS EC2 private AWS EC2 private AWS EC2

θU (accuracyU) 3.23% 1.64% 7.09% 12.93% 1.56% 13.36% 14.75%

θO (accuracyO) 21.95% 21.31% 11.81% 10.85% 40.20% 9.19% 27.41%

τU (time shareU) 13.09% 11.04% 41.47% 52.02% 5.20% 57.49% 48.93%

τO (time shareO) 74.05% 67.92% 35.81% 32.43% 87.14% 25.49% 44.77%

υ (instability) 16.36% 15.95% 21.56% 17.98% 14.68% 19.02% 12.66%

ψ (SLO violations) 8.65% 5.04% 43.67% 21.56% 2.70% 49.30% 62.14%

σ (as deviation) 43.88% 39.81% 49.68% 43.31% 46.76% 54.80% 66.83%

κ (pairwise comp.) 61.11% 69.44% 55.56% 52.78% 66.67% 44.44% 44.44%

ε (elastic speedup) 1.58 1.93 1.33 1.21 1.93 1.27 1.00

#Adaptations 122 126 159 169 81 254 0

Avg. #VMs 9.532 9.649 10.692 9.3815 10.488 8.8372 9

Instance minutes 6500.20 6360.30 5562.00 5350.30 7262.50 5004.00 5190.00

Avg. response time 0.89 s 0.62 s 2.60 s 1.32 s 0.60 s 2.68 s 3.32 s

Med. response time 0.45 s 0.26 s 1.63 s 0.25 s 0.45 s 3.23 s 5.00 s

Table 10.5: Metric overview for the private vs AWS EC2 cloud scenario.

is still greater than the configured tolerance value, all proactive events are considered as not
trustworthy, that is, only reactive events are scheduled and the proactive ones are skipped.
Thus, this experiment can be considered as using Chameleon without the proactive cycle,
although the proactive cycle is still active as it has to estimate the resource demand that is
used in the reactive cycle.

155

Chapter 10: The Hybrid Auto-Scaler Chameleon in a Benchmark Competition

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Chameleon (Retailrocket)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Chameleon Proactive (Retailrocket)

0 30 60 90 120 150 180 210 240 270 300 330 360
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

Chameleon Reactive (Retailrocket)

Demanded VMs Supplied VMs

Figure 10.6: Comparison of standard Chameleon (top) vs. Chameleon with only proactive adaptations
(middle) vs. Chameleon with only reactive adaptations (bottom).

Metric
Chameleon

No Scaling
original proactive reactive

θU (accuracyU) 6.37% 6.17% 9.46% 17.68%

θO (accuracyO) 11.71% 14.79% 9.87% 110.38%

τU (time shareU) 19.53% 19.36% 20.35% 55.75%

τO (time shareO) 51.34% 63.14% 53.80% 38.81%

υ (instability) 10.98% 9.38% 11.41% 7.22%

ψ (SLO violations) 8.68% 8.69% 8.51% 82.56%

σ (deviation) 35.59% 41.34% 37.22% 90.52%

Table 10.6: Metric overview for the components of Chameleon when executed in isolation.

The resulting two scaling behaviors, in addition to the original measurement, are depicted
in Figure 10.6. Here, the first row shows Chameleon without any restrictions, the second one
shows Chameleon using only the proactive cycle, and finally, the third row shows Chameleon
without proactive events. Each diagram is structured as described in Section 10.3.1. The
elasticity metrics, the SLO violations, and the auto-scaling deviation are listed in Table 10.6.
Here, the columns represent the auto-scalers, the rows the metrics, and the best values are
highlighted in bold. Although the difference between the standard Chameleon, Chameleon
with only proactive adaptations, and Chameleon with only reactive adaptations is quite low,
the combination of both cycles (57% proactive events and 43% reactive events) increases the
performance of Chameleon. Despite the assumption (i) from Section 6.5 that Chameleon
needs historical data, Chameleon achieves a similar score without using historical data.

156

10.4 Overall Evaluation Results

Besides the improved scaling performance, the combination of both cycles reduces the
reliability of scaling decisions as for instance proactive events based on forecast values
are replaced by reactive events. Still, we identify potential for further improvements in
the proactive cycle that relies on the selected forecast method. From time to time, tBATS
and ARIMA forecast methods deliver inaccurate results or do note complete computation
efficiently in time. Our idea towards leveraging this potential is the hybrid forecasting
method Telescope sketched in Chapter 7 with promising exemplary results and an auto-
scaling case study in Chapter 11.

10.4 Overall Evaluation Results
As the previous subsections show only selected subsets of the experiment results, an
overview of all results is presented and discussed here. Table 10.7 shows the conducted
experiments in terms of considered traces and cloud environments. In our experiment
design, each auto-scaler is observed for 18 days on 5 different traces where one day takes
3.2 hours. The experiments took over 400 hours in total, during which about 107 million
requests were sent and 5000 adaptations were performed by the auto-scalers. In other words,
during one hour about 275.000 requests arrived at the system on average and the system
experienced about 13 adaptions on average.

Scenario IBM German Wikipedia FIFA World Cup 1998 BibSonomy Retailrocket

CloudStack 3 × 1 day 2 days 3 days 2 days 2 days

AWS EC2 - - 3 days - -

DAS-4 - - 3 days - -

Table 10.7: Overview of the conducted experiments.

Table 10.8 shows the average metrics over all traces. Here, each row represents a metric
and each column an auto-scaler. As previously, the best values are highlighted in bold.
When comparing the auto-scalers based on the auto-scaling deviation, the lowest deviation
from the theoretically optimal auto-scaler for all experiments is achieved by Chameleon,
followed by Hist, Adapt, Reactive, ConPaaS, and finally, Reg. In a pairwise competition, the
most points are collected by Chameleon, followed by Hist, Reactive, Adapt, Reg, and finally,
ConPaaS. When taking the elastic speedup into account, the best performance is achieved
by Chameleon, followed by Reactive, Adapt, Reg, Hist, and finally, Hist. To summarize,
Chameleon achieves the best results for all three aggregate metrics. This is seen in the
last three lines of the table, which show for each aggregate metric, how many times the
auto-scalers dominate the respective metric. The maximum number is 7 as there are 7
different experiments per auto-scaler. As in the case of the pairwise competition, some
auto-scalers achieved the same score, resulting in the sum of this row being greater than 7.

In order to rank the auto-scalers, we compute the average rank of each auto-scaler over all
experiment setups. First, we compute the three ranks of each auto-scaler when considering
the auto-scaling deviation, the pairwise competition, and the elastic speedup over all exper-
iments. Then, we determine the average rank of each auto-scaler as the arithmetic mean

157

Chapter 10: The Hybrid Auto-Scaler Chameleon in a Benchmark Competition

Metric Chameleon Adapt Hist ConPaaS Reg Reactive

θU (avg. accuracyU) 3.63% 6.45% 4.70% 15.55% 15.69% 6.98%

θO (avg. accuracyO) 17.88% 19.94% 52.64% 25.98% 10.51% 34.47%

τU (avg. time shareU) 13.32% 30.43% 22.75% 42.04% 43.71% 25.41%

τO (avg. time shareO) 65.06% 51.41% 62.35% 41.69% 33.42% 62.08%

υ (avg. instability) 13.91% 16.60% 11.95% 17.42% 17.02% 12.99%

ψ (avg. SLO violations) 10.29% 32.76% 15.59% 44.11% 60.16% 21.96%

σ (avg. as deviation) 39.63% 46.90% 46.43% 54.03% 63.46% 48.14%

κ (avg. pairwise comp.) 69.44% 50.00% 58.33% 36.51% 42.46% 55.56%

ε (avg. elastic speedup) 2.02 1.48 1.38 1.10 1.41 1.49

#Win deviation 7 0 0 0 0 0

#Win Pairwise Comp. 5 0 1 0 0 3

#Win Elasticity Score 5 0 0 0 0 2

Table 10.8: Average metrics over all experiments.

Trace Chameleon Adapt Hist ConPaaS Reg Reactive

BibSonomy 1.33 5.33 2.00 5.00 4.33 2.00

FIFA World Cup 1998 (AWS EC2) 1.00 3.00 3.33 5.33 4.33 4.00

FIFA World Cup 1998 (DAS-4) 1.33 2.33 3.00 5.66 5.33 3.00

FIFA World Cup 1998 (private) 1.67 3.67 3.00 5.33 5.67 1.67

IBM 1.00 4.67 3.33 3.67 3.67 4.67

German Wikipedia 1.00 2.67 3.00 5.33 5.33 3.00

Retailrocket 1.00 2.33 3.33 6.00 4.33 4.00

Average Ranking 1.19 3.43 3.00 5.19 4.71 3.19

Table 10.9: Average ranking for each experiment over the three competitions.

over the three ranks. The ranks are listed in Table 10.9. Here, each column represents an
auto-scaler and each row an experiment. The entries in each cell represent the rank in the
associated experiment. As usual, the best values are highlighted in bold. Chameleon has the
smallest average rank of 1.19. This means that Chameleon exhibits the best rank on average
among all traces and experiments. The second best auto-scaler based on this ranking is
Hist, followed by Reactive, Adapt, Reg, and finally, ConPaaS. Except for Chameleon, the
auto-scalers in competition show a significant variance in their ranks over the experiments,
that is, none of competing auto-scalers , with exception of Chameleon, outperforms the
others in all 7 experiment rows.

In order to visualize the scaling behavior of all auto-scalers, Figure 10.7 shows a spider
chart, also known as radar chart, of each auto-scaler. Each spiderweb contains six edges,
where the edges represent the elasticity metrics and the SLO violations, and shows the results
for each trace in the private cloud scenario. The smaller and thinner the stretched areas are,

158

10.4 Overall Evaluation Results

the better the respective auto-scaler performs. Based on these diagrams, we can conclude
that Chameleon tends to slightly over-provision allocating slightly more VMs than required.
In contrast, Hist tends to over-provision but has a worse over-provisioning accuracy than
Chameleon. Reactive has the worst over-provisioning time share and the second worst
over-provisioning accuracy. Adapt tends to a balance of under- and over-provisioning with a
slight tendency to over-provision. In the under-provisioned states, Adapt has only a few VMs
less than required Reg and ConPaaS have (due to their oscillations) no tendency to either
under-provision or over-provision the system. Both auto-scalers exhibit the highest SLO
violations. Besides comparing the tendencies, the stability of each auto-scaler over all traces
can be investigated. Chameleon exhibits a stable scaling behavior for all five traces as all
areas are oriented in one direction and the areas have less deviation to each other. The other
auto-scalers have either areas with different orientation or areas with a higher variance than
Chameleon. Hence, the other auto-scalers can be seen as less stable than Chameleon.

159

Chapter 10: The Hybrid Auto-Scaler Chameleon in a Benchmark Competition
Chameleon

Wikipedia
BibSonomy
FIFA

IBM
Retailrocket

over-p
rov. accuracy under-prov. accuracy

instability

over-prov. time share under-p
rov. tim

e sh
are

SLO violations

0

20

40

60

80

100

(a) Metric overview Chameleon.

Wikipedia
BibSonomy
FIFA

IBM
Retailrocket

over-p
rov. accuracy under-prov. accuracy

instability

over-prov. time share under-p
rov. tim

e sh
are

SLO violations

Adapt

0

20

40

60

80

100

(b) Metric overview Adapt.

Hist

Wikipedia
BibSonomy
FIFA

IBM
Retailrocket

over-p
rov. accuracy under-prov. accuracy

instability

over-prov. time share under-p
rov. tim

e sh
are

SLO violations

0

20

40

60

80

100

(c) Metric overview Hist.

ConPaaS

Wikipedia
BibSonomy
FIFA

IBM
Retailrocket

over-p
rov. accuracy under-prov. accuracy

instability

over-prov. time share under-p
rov. tim

e sh
are

SLO violations

0

20

40

60

80

100

(d) Metric overview ConPaaS.
Reg

Wikipedia
BibSonomy
FIFA

IBM
Retailrocket

over-p
rov. accuracy under-prov. accuracy

instability

over-prov. time share under-p
rov. tim

e sh
are

SLO violations

0

20

40

60

80

100

(e) Metric overview Reg.

Reactive

Wikipedia
BibSonomy
FIFA

IBM
Retailrocket

over-p
rov. accuracy under-prov. accuracy

instability

over-prov. time share under-p
rov. tim

e sh
are

SLO violations

0

20

40

60

80

100

(f) Metric overview Reactive.

Figure 10.7: Scaling behavior of all auto-scalers.

160

10.5 Threats to Validity

10.5 Threats to Validity

Although our experimental analysis covered a wide range of different scenarios, the results
may not be generalizable to other types of applications, for example, applications that are
not interactive or CPU intensive. In principle, for the evaluated competing auto-scalers
a comparable behavior has been observed in related works on auto-scaler evaluation for
workflows [IAEH+17] and in simulation [PAEÅ+16]: platoons for Hist, some oscillations
for ConPaaS and Reg, and a tightly following Adapt policy with many adaptations. It is
still worth noting that, as discussed in previous studies [IAEH+17, PAEÅ+16], most of the
auto-scalers evaluated in this paper are sensitive to their configuration for a given scenario.

The repeatability of performance related experiments in public cloud environments
is limited due to the fact that there is no control given regarding the placement and co-
location of VMs with other workloads running on the cloud. This can cause significant
performance variability [IYE11]. To alleviate this problem, we conduct most experiments
in a private environment under controlled conditions, however, for completeness, we
also include experiments conducted in two different public cloud deployments (DAS-4 and
AWS EC2) with a different degree of background load. Furthermore, we conduct long running
experiments while not stressing the cloud’s APIs much with on average 13 adaptations
per hour.

We address the threat of a possible bias in metric values by using multiple and established
sets of metrics that have been officially endorsed by SPEC [HKO+16]. These elasticity
metrics, as proposed in Section 5.2 have been developed in several iteration since 2012
reflecting a significant amount of discussions also with a broad spectrum of researchers and
representatives from industry. The individual elasticity metrics are combined to aggregate
metrics in an unweighted manner, treating under-provisioning and over-provisioning as
being equally bad. In the case where under-provisioning is considered worse than over-
provisioning, the results for Chameleon would further improve due to its tendency to slightly
over-provision.

10.6 Summary

In this evaluation chapter, we answer RQ B.2 („How well does a proposed hybrid auto-scaling
approach perform compared to state-of-the-art mechanisms in realistic deployments and
application scenarios?“). We summarize the main evaluation findings as follows: (i) The
Chameleon auto-scaler performs best in the evaluated scenarios based on average competi-
tion results, under-provisioning time share, under-provisioning accuracy and SLO violations.
Chameleon tends to a reliable slight over-provisioning. (ii) The proposed way of combin-
ing proactive and reactive scaling decisions improves the auto-scaling performance (see
Section 10.3.4). This answers RQ B.1 („How can conflicting auto-scaling decisions from in-
dependent reactive and proactive decision loops be combined to improve the overall quality
of auto-scaling decisions?“). More efficient and accurate forecasting mechanisms could
leverage the potential of further improving the proactive cycle. (iii) The Adapt auto-scaler
manages to closely follow the demand with a relatively high number of adaptations. (iv) Hist
and Reactive auto-scalers tend to stronger over-provisioning than others. (v) ConPaaS and

161

Chapter 10: The Hybrid Auto-Scaler Chameleon in a Benchmark Competition

Reg auto-scalers exhibit unstable behavior in some situations and can not be considered
as reliable in the covered scenarios. (vi) The Reactive auto-scaler relies on accurate CPU
utilization measurements. It shows decreased performance in a public cloud context, where
overbooking of virtual resources may cause significant interference with background load.
(vii) In the conducted experiments, Chameleon exhibits consistently reliable scaling behav-
ior, whereas the other auto-scalers show higher variance. (viii) Among the other investigated
state-of-the-art auto-scalers, no mechanism outperforms the other ones in all traces, see
Table 10.9. The proposed Chameleon approach dominates all covered scenarios.

162

Chapter 11

Telescope Forecasting Prototype:
Preliminary Evaluation and Case Study

Telescope

Answering RQ B.3 („How can a hybrid forecast approach based on decomposition be
designed to be capable of providing accurate and fast multi-step-ahead forecasts of com-
plex seasonal time-series within seconds?“), we assess the performance of the Telescope
hybrid forecasting approach by conducting initial experiments presented in this chapter.
As example time series, we use a trace of completed transactions on an IBM z196 Main-
frame during February 2011 and a trace of monthly international airline passengers from
1949 to 1960. In addition, we present an auto-scaling case study comparing the resulting
auto-scaler performance using Telescope against relying on the less timely and accurate
forecast results of tBATS forecasts. This is our answer to the corresponding RQ B.4 („Is such a
hybrid forecast approach capable to improve the performance and reliability of auto-scaling
mechanisms?“).

11.1 Preliminary Forecast Accuracy Evaluation based on
Selected Time-Series

Each observation in the IBM trace contains the quarter-hourly amount of transactions
(e.g., bookings or money transfers). The trace contains 2670 observations and is depicted
in Figure 11.1a. It shows a typical seasonal pattern with a daily and weekly cycle, where
the amount of transactions differs completely during weekdays and weekends. The trace
exists of about 28 daily periods and 4 weekly periods. Since the approach is designed to
perform multi-step-ahead forecasts, the last 20% observations of the time series are chosen
as forecast horizon. Thus, the history of the IBM trace incorporates 2136 observations and
the forecast horizon is set to 534 observations. The border between history and horizon
is shown as vertical purple line in Figure 11.1a. The forecast of the IBM trace is shown in
Figure 11.1b. The original time series is depicted in black, whereas the forecast of Telescope
is represented by the red line. As a reference, the second best forecast produced by the tBATS
approach [LHS11] is shown as dashed blue line. Besides the good fitting of the observed
history, the hybrid approach succeeds in capturing the weekdays and weekends. In contrast
to Telescope, tBATS only repeats a single pattern for the whole horizon. For weekdays,
the forecast of Telescope and tBATS are very close to each other. However, tBATS misses
capturing the weekends.

163

Chapter 11: Telescope Forecasting Prototype: Preliminary Evaluation and Case Study

Observation

Tr
an

sa
ct

io
ns

0 500 1000 1500 2000 2500

0
10

00
0

30
00

0
50

00
0

(a) All observations of the history and forecast
horizon of the IBM trace.

Horizon

Tr
an

sa
ct

io
ns

0 100 200 300 400 500

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

(b) Telescope (red) and tBATS (dashed blue)
forecast of the IBM trace.

Figure 11.1: Observations and forecast of the IBM trace.

The airline passengers trace consists of 144 observations and shows an exponential trend
pattern as well as a seasonal pattern with yearly cycle. Furthermore, the amplitude of
the seasonal pattern increases as the trend rises. The airline passengers trace is shown in
Figure 11.2a. Since the forecast horizon is set to 20%, the history contains 115 observations
and the forecast horizon consists of 29 observations. Again, the border between history and
horizon is shown as vertical purple line in Figure 11.2a.

Observation

P
as

se
ng

er
s

0 20 40 60 80 100 120 140

10
0

20
0

30
0

40
0

50
0

60
0

(a) All observations of the history and forecast
horizon of the airline passengers trace.

Horizon

P
as

se
ng

er
s

0 5 10 15 20 25 30

30
0

35
0

40
0

45
0

50
0

55
0

60
0

(b) Telescope (red) and tBATS (dashed blue)
forecast of the airline passengers trace.

Figure 11.2: Observations and forecast of the airline passengers trace.

Figure 11.2b shows the forecast of the airline passengers trace. Again, the original time
series is depicted as black line, the forecast of Telescope is shown as red line, and the tBATS
forecast is depicted as dashed blue line. Both, tBATS and Telescope succeed in capturing the
trend and season pattern. Though, besides the first value of the horizon, the tBATS forecast
is always greater than the Telescope forecast.

To evaluate and compare the forecasting accuracy in a mathematical way, we use the
mean absolute percentage error (MAPE) and mean absolute scaled error (MASE) measures.
The MAPE is a widely-used measure to assess forecasting accuracy based on the forecasting
error normalized with the observations. However, MAPE has some serious limitations, i.e., it

164

11.1 Preliminary Forecast Accuracy Evaluation based on Selected Time-Series

cannot be used for time series with zeros in the forecasting horizon and it punishes positive
errors harder than negative errors. Thus, we additionally use a second measure called MASE.
Both measures are independent of the data scale, but in contrast to MAPE, MASE is suitable
for almost all situations and the error is based on the in-sample mean absolute error from
the random walk forecast. For a multi-step forecast horizon, the random walk forecast
would forecast the last value of the history for the entire horizon. Thus, the investigated
forecast is better than the random walk forecast if the MASE value is smaller than 1 and
worse in the other case. The MAPE and MASE values are calculated as follows:

M APE = 100× 1

n

n∑
i=1

| ei

Yi
| (11.1)

M ASE =

1

n

n∑
i=1

|ei |

1

n −1
×

n∑
i=2

|Yi −Yl |
(11.2)

Where Yl is the observation at time l with l being the index of the last observation of the
history. Yi is the observation at time l + i . Thus, Yi is the value of the i -th observation in the
forecast horizon. The forecast error at time l + i is calculated as ei = Yi −Fi where Fi is the
forecast at time l +i . The amount of observations in the forecast horizon is represented by n.
Fore details on forecast accuracy metrics, please refer to Section 2.3.2. Another important
measure to evaluate the performance of the forecasting approach is the elapsed time for
the forecasting process. The total time elapsed for the forecast is measured in seconds.
Table 11.1 shows the MASE and MAPE values and runtime of the hybrid approach for the
IBM and airline passengers traces compared to six state-of-the-art forecasting methods:

• ARIMA: auto-regressive integrated moving averages (auto.arima with seasonality
in package forecast [HK08, Hyn17]),

• ANN: artificial neural nets (nnetar in package forecast [HK08, Hyn17]),

• ETS: extended exponential smoothing (ets in package forecast [HK08, Hyn17]),

• tBATS: trigonometric, Box-Cox transformed, ARMA errors using trend and seasonal
components (tbats in package forecast [HK08, Hyn17, LHS11]),

• SVM: support vector machine (svm in package e1071 [Mey17]),

• XGBoost: scalable tree boosting (xgboost in package xgboost [CG16]) using only
the index of the observation as covariate.

Concerning forecasting accuracy, the experiment shows that the hybrid approach reaches
the lowest MASE and MAPE values for both time series. The Telescope forecast reaches a
MASE value of about 0.064 for the IBM trace and 0.179 for the airline passengers trace. The
MAPE values are about 51.628% and 3.382%. The second best MASE values are achieved by
tBATS with 0.191 for the IBM trace and 0.276 for the airline passengers trace. Furthermore,
tBATS reaches the second best MAPE value for the airline passengers trace with about 5.472%.

165

Chapter 11: Telescope Forecasting Prototype: Preliminary Evaluation and Case Study

However, ANN outperforms tBATS in matters of the MAPE value for the IBM trace, i.e., ANN
achieves a MAPE value of about 179.537. Concerning time-to-result, the experiment shows
that Telescope has a very short runtime with about 8.557 and 2.679 seconds compared
to its competitors of comparable accuracy. On the IBM trace, ETS, SVM, and XGBoost
itself achieve shorter runtimes compared to Telescope. Though, each of these forecasting
methods delivers an in-acceptable accuracy. On the airline passengers trace, only tBATS has
a longer runtime than Telescope. Since the IBM trace is about 15 times as long as the airline
passengers trace, this experiment implies that the runtime of the Telescope approach does
not depend as much on the time series length as some state-of-the-art forecasting methods,
i.e., ARIMA, ANN, and tBATS, do.

Table 11.1: Accuracy and runtime of state-of-the-art forecasting methods and Telescope.

Forecasting
Method

IBM Trace Passengers Trace

MASE MAPE [%] Time [s] MASE MAPE [%] Time [s]

Telescope 0.064 51.628 8.557 0.179 3.382 2.679

ARIMA 0.343 813.570 12.301 0.358 6.255 1.065

ANN 0.788 179.537 12.172 0.400 7.473 0.801

ETS 0.986 2992.701 0.531 0.358 6.361 2.371

tBATS 0.191 253.243 38.078 0.276 5.472 4.538

SVM 0.276 574.624 2.312 3.711 67.909 0.233

XGBoost 0.736 545.469 0.484 0.692 11.936 0.278

11.2 Chameleon Auto-Scaling Case Study leveraging
Telescope Forecasts

Due to the problems of the limited timeliness and accuracy of forecast results provided
by existing methods like tBATS in the context of auto-scalers, we have been motivated to
start working the development of the new hybrid forecasting approach Telescope. Thus,
we now provide a showcase that underlines the potential of Telescope to further improve
auto-scaling performance. A typical time series in auto-scaling show daily peaks and troughs
that occur due to the Internet usage behavior of people. Thus, time series in auto-scaling
mostly show seasonal patterns. Besides, the arriving load is measured with a relatively high
frequency and so, there are many observations within a single seasonal period. In order
to scale the amount of virtual machines properly, the future demand has to be forecast
timely and accurately. The future incoming load needs to be forecast since virtual machines
(and also stateful containers) need some time to start and, the resources should be running
just before the demand arrives. Therefore, forecasters in auto-scaling have to fulfill three
requirements. As usual, a high forecasting accuracy is desired. Additionally, the forecast-
ing method should be stable, especially for seasonal time series with many observations
within one period. Furthermore, since there are many observations within one period, the

166

11.2 Chameleon Auto-Scaling Case Study leveraging Telescope Forecasts

forecaster has to accurately predict multiple values at once. This can also include several
hundreds of values at once. Finally, the results of the forecaster are required within a fixed
time slot. Thus, the runtime of the forecaster should be as low and reliable as possible while
keeping the accuracy of the forecast high. However, most common forecasting methods,
e.g., sARIMA and ETS, cannot handle time series with a higher amount of data points per
period very well. For example, ETS ignores the season component if it contains more than
24 data points. For sARIMA, the computation time explodes for more than 80 data points
per period. So we only consider tBATS and Telescope as competitors in this use case. As
service level objective (SLO), a request response time of at most 2 seconds is set. The time
series describes the amount of requests sent to the social bookmark and publication sharing
system BibSonomy. Due to a high ratio of noisy fluctuations, this trace is a challenge to be
forecast accurately enough for planning auto-scaling actions.

Figure 11.3 shows the auto-scaling behavior and the requests per second for applying
tBATS as forecasting method. In the upper plot, the demand is shown as black line, whereas
the red line illustrates the supply. The requests per second are shown on the bottom plot.
Here, the black line represents the requests sent, the green line shows the amount of requests
that confirm the SLO, and the red line depicts the SLO violating request. The upper plot
shows that the supply does not fit the demand very well. Especially from minute 30 to 80
and from minute 250 to 310, it can be seen that the supply crashes, whereas the demand
keeps high.

That indicates that the tBATS forecasts either do not provide accurate forecasts or require
too much computation time so that the results are dismissed. This can also be seen by
taking a look at the lower plot. Here, the SLO violations increase considerably for the periods
of time mentioned before, i.e, almost all requests violate the SLO. Besides these two long
periods of time, most requests confirm the SLO and thus, they are responded within less
than 2 seconds.

Table 11.2: Results of the Chameleon auto-scaling comparison using Telescope and tBATS.

Metric Telescope tBATS

θ[%] (accuracy) 0.1035 0.1510

τ[%] (time share) 0.3130 0.3806

υ[%] (instability) 0.4525 0.4620

σ (auto-scaling deviation) 0.50 0.60

ψ[%] (SLO violations) 0.09 0.36

avg. response Time [ms] 1071.08 1339.94

The auto-scaling behavior and the requests per second for applying Telescope is shown
in Figure 11.4. The figure is organized as Figure 11.3. In contrast to the tBATS forecast, the
upper plot of Figure 11.4 shows that the supply fits the demand quite well. In most cases,
the amount of virtual machines is scaled just before a change in the demand occurs. The
lower plot implies the same conclusion since there are almost no requests violating the SLO.
There are only few and short periods of time where a small amount of requests exceed the

167

Chapter 11: Telescope Forecasting Prototype: Preliminary Evaluation and Case Study

0 50 100 150 200 250 300 350 400
0

5

10

Vi

rtu
al

 M
ac

hi
ne

s

Presentation Tier

demand supply

0 50 100 150 200 250 300 350 400
0

5

10

15

Vi

rtu
al

 M
ac

hi
ne

s

Business Tier

demand supply

0 50 100 150 200 250 300 350 400
0

2

4

6

8

Vi

rtu
al

 M
ac

hi
ne

s
Database Tier

demand supply

0 50 100 150 200 250 300 350 400
Minutes

0

50

100

150

Re
q.

 /
Se

co
nd

Requests

Sent SLO Conform SLO Violations

0 50 100 150 200 250 300 350 400
0

5

10

Vi

rtu
al

 M
ac

hi
ne

s

Presentation Tier

demand supply

0 50 100 150 200 250 300 350 400
0

5

10

15

Vi

rtu
al

 M
ac

hi
ne

s
Business Tier

demand supply

0 50 100 150 200 250 300 350 400
0

2

4

6

8

Vi

rtu
al

 M
ac

hi
ne

s

Database Tier

demand supply

0 50 100 150 200 250 300 350 400
Minutes

0

50

100

150

Re
q.

 /
Se

co
nd

Requests

Sent SLO Conform SLO Violations

Figure 11.3: Demand, supply, and requests of Chameleon with tBATS on the BibSonomy trace.

0 50 100 150 200 250 300 350 400
0

5

10

Vi

rtu
al

 M
ac

hi
ne

s

Presentation Tier

demand supply

0 50 100 150 200 250 300 350 400
0

5

10

15

Vi

rtu
al

 M
ac

hi
ne

s

Business Tier

demand supply

0 50 100 150 200 250 300 350 400
0

2

4

6

8

Vi

rtu
al

 M
ac

hi
ne

s

Database Tier

demand supply

0 50 100 150 200 250 300 350 400
Minutes

0

50

100

150

Re
q.

 /
Se

co
nd

Requests

Sent SLO Conform SLO Violations

0 50 100 150 200 250 300 350 400
0

5

10

Vi

rtu
al

 M
ac

hi
ne

s

Presentation Tier

demand supply

0 50 100 150 200 250 300 350 400
0

5

10

15

Vi

rtu
al

 M
ac

hi
ne

s

Business Tier

demand supply

0 50 100 150 200 250 300 350 400
0

2

4

6

8

Vi

rtu
al

 M
ac

hi
ne

s

Database Tier

demand supply

0 50 100 150 200 250 300 350 400
Minutes

0

50

100

150

Re
q.

 /
Se

co
nd

Requests

Sent SLO Conform SLO Violations

Figure 11.4: Demand, supply, and requests of Chameleon with Telescope on the BibSonomy trace.

SLO, e.g., around minutes 90 and 160. In general, the green line almost equals the black line
and thus, most requests confirm the SLO. Compared to tBATS, it can be seen that Telescope
improves the auto-scaling performance significantly.

In order to compare the auto-scaling performance of tBATS and Telescope in a mathe-
matical way, we compute the elasticity metrics (not distinguishing between under-/over-
provisioning for simplicity) as shown in Table 11.2. The accuracy θ, the wrong provisioning
time share τ, as well as the instability υ improve applying Telescope compared to tBATS.
Thus, the auto-scaling deviation σ summarizes that the Chameleon auto-scaling behavior
by applying Telescope is closer to the optimal auto-scaler than auto-scaling by using tBATS.
This results for using Telescope in only 9% of all requests exceeding the SLO of 2 seconds,
whereas 36% of all requests violate the SLO for tBATS. Thus, we can conclude that Telescope
considerably improves the auto-scaling performance in this case-study.

168

11.3 Summary

11.3 Summary
The evaluations show that Telescope improves the multi-step-ahead forecasting accuracy
for univariate, seasonal time series compared to three state-of-the-art forecasting meth-
ods from time-series analysis and three forecasting methods based on machine learning
techniques. Moreover, Telescope reduces the time-to-result immensely compared to the
best competitors in terms of accuracy. The advantages of Telescope expose especially for
long time series with many observations within single periods. Most classical forecasting
methods cannot handle forecasting horizons consisting of several hundreds of values for
time series with a high frequency. However, Telescope forecasts these time series very well.
Furthermore, Telescope benefits from a second dominant seasonal pattern as it mostly
succeeds in also capturing this second frequency, whereas the other forecasting methods
in competition did not find the second seasonal pattern. For all these reasons, as also
shown in an auto-scaling case study using the Chameleon auto-scaler, Telescope is suited
for auto-scaling purposes very well. Thus, with the Telescope approach we can positively
answer RQ B.4 („Is such a hybrid forecast approach capable to improve the performance and
reliability of auto-scaling mechanisms?“). Telescope appears at this stage of research to be
superior to existing black-box forecasting methods without any manual feature engineering.

169

Part V

Conclusions and Outlook

Chapter 12

Conclusions and Outlook
In this chapter, we first summarize the contributions of this thesis before stepping into a
discussion of open and emerging challenges due to recent technological developments.

12.1 Thesis Summary
The contributions of this thesis lay in the domain of experimental performance evaluation
and autonomic resource management in cloud environments. We are guided by two main
goals, each accompanied by four research questions.

We approach our first main Goal A („Establish a benchmark for state-of-the-art auto-
scalers to increase the trust in novel proactive mechanisms fostering a broader adoption
of auto-scalers in production.“) by introducing a modeling formalism for load intensity
profiles to allow for realistic generation of changing loads. We define a set of elasticity
metrics and a measurement methodology for reproducible and fair comparisons of elastic
behavior across elastic cloud platforms.

The second main Goal B („Reduce the risk of using novel auto-scalers in operation by lever-
aging multiple different proactive mechanisms applied in combination with a conventional
reactive mechanism.“) is tackled in two ways: We propose Chameleon, a hybrid auto-scaling
mechanism integrating multiple reactive and proactive methods, to increase quality and
reliability of scaling actions. Second, we develop the hybrid forecasting approach Telescope
to achieve more accurate and time-efficient predictions of the observed arriving load and
thus further increase the performance and reliability of the Chameleon auto-scaler.

In the following, the four individual contributions are summarized in more detail:

Contribution I (addressing RQ A.1 and A.2): By introducing a modeling framework -
called DLIM with its Limbo tool chain - for flexible handling and automated extraction
of load intensity profiles, we enable benchmarking with more realistic workload
models especially when complemented with user behavior profiles. For example, we
provide extensions to load generation frameworks like Apache JMeter for emulating
open and intensity varying workloads. Our evaluations demonstrate DLIM’s model
expressiveness and accuracy based on a representative set of web-based workload
traces.

Contribution II (addressing RQ A.3 and A.4): With a focus on the experimental evalua-
tion of the elasticity of cloud computing environments, we contribute by defining and
assessing a set of metrics for quantifying the elasticity that auto-scaling mechanisms

173

Chapter 12: Conclusions and Outlook

achieve in practice. The covered elasticity aspects are provisioning accuracy and
timing behavior both distinguishing between under- and over-provisioning states and
the stability/inertia of the auto-scaling mechanism in a given context. In individual
sets of experiments, we show for each metric how it is impacted by changing configu-
ration parameters. We establish a level-playing field for benchmarking auto-scaling
mechanisms in practice and across platforms of different performance characteristics
by defining and applying a sound measurement methodology (i.e. run rules) called
Bungee. With a set of experiments both in private and public cloud environments,
we showcase how a set of configurations of a standard reactive auto-scaler results in
different levels of achieved elasticity and can be ranked consistently by applying three
different metric aggregation approaches.

Contribution III (addressing RQ B.1 and B.2): This major contribution lays in the do-
main of autonomic management of compute resources. We present the novel self-
aware auto-scaler Chameleon and benchmark it against four other state-of-the-art
proactive auto-scalers. Chameleon combines forecasting (time series analysis) and
service demand estimation (queueing theory) enriched with application knowledge
(in the form of a descriptive software performance model) at system run-time to in-
crease the timeliness and accuracy of auto-scaling reconfigurations. The forecast and
the service demand estimation are realized by integrating established open-source
tools provided by the research community. In the evaluation, we employ our proposed
set of elasticity metrics, supplemented by user-oriented measures, to rate Chameleon
in comparison to five other auto-scalers in a private CloudStack-based environment,
on the public AWS EC2 IaaS cloud, and in an OpenNebula-based IaaS cloud of a
medium-scale multi-cluster experimental environment DAS-4 [BEdLm16]. The work-
load scenarios consist of a CPU intensive Java Enterprise application (endorsed by
SPEC SERT™2) driven by five different real-world load traces. The load profiles are
extracted and adapted to the different platforms with the support of our load model-
ing framework DLIM (Contribution I). We apply the Bungee elasticity measurement
methodology (Contribution II) and achieve reproducible and consistent results. For
the five 3rd-party auto-scalers in our competition, we observe typical scaling behavior
characteristics. Furthermore, the performance of the state-of-the-art auto-scalers
depends on the workload characteristics and thus, none of the competing auto-scalers
outperforms the others for all traces we cover. In contrast, Chameleon achieves in all
setups and among all traces the best scaling behavior.

Contribution IV (adressing RQ B.3 and B.4:) In the context of applying forecasts in auto-
scaling, we identify potential to further improve existing forecasting methods for more
accurate and timely request arrival rate predictions. As a side-contribution of this
thesis, we introduce the self-aware hybrid forecast mechanism Telescope that com-
bines artificial neural networks and boosted random trees from the machine learning
domain with classical time series analysis (spectral analysis, anomaly filtering, trend
forecasting with ARIMA models) via a fast and reliable time-series decomposition ap-
proach STL. Telescope provides highly accurate forecasts including multi-step ahead
ones with a time-to-result reduced up to a factor of 5. As forecast computation times
do not explode for long or high resolution time series, a sweet-spot of Telescope are

174

12.2 Open Challenges and Outlook

extensive time series with complex seasonal patterns. We show that Telescope is
capable of significantly improving the auto-scaling performance of Chameleon by
replacing the state-of-the-art forecasting methods tBATS or seasonal ARIMA.

We are confident that the four core contributions of this thesis have the potential to
change the way cloud resource management approaches are assessed leading to improved
quality of autonomic management algorithms as a result. To support such a development,
we published the code artifacts of all four contributions of this thesis as open-source tools,
which are actively maintained and accompanied by user and developer guides [BHK17]1.

12.2 Open Challenges and Outlook
In this section, we first discuss the challenges of extending the presented approaches for
auto-scaling and its benchmarking towards scaling of multiple distributed services with
a possibly inhomogeneous resource landscape which is out of scope for this work. Then,
we step into a list of emerging challenges that gain increasing importance due to the adop-
tion of container technologies on top of the operating system virtualization layer. We see
the need for further work here due to the increased nesting of virtualized resource enti-
ties, the reflection of priorities of resources, and resource fragmentation in combination
with increasing dynamics of user behavior triggered by DevOps practices. At the end of
this section, we outline a few points of further work based on our self-aware forecasting
mechanism Telescope.

12.2.1 Challenges of Elasticity in Applications Scaling Multiple Services

The proposed elasticity metrics are designed to quantify the elasticity on systems that
host single-tier applications where on one group of homogeneous resources is scaled.
Hence, with the consideration of multi-service applications and multiple auto-scalers in
place for sub-groups of resources, or one multi-scaler that distinguishes between groups
of resources, some challenges arise: (i) While the search of the demand-intensity curve on
a single-service application takes n steps (n is the number of resource units), the amount
of steps for a naive search for a multi-tier application is n1 · · · · ·nm where m is the number
of tiers and ni the number of resources of tier i . (ii) As the demanded resource units for
a given intensity for a single-service application is distinct, the demand derivation for a
multi-tier application becomes more complex because for one workload intensity there
could be more than one optimal resource configuration. (iii) While investigating each
service separately, the proposed metrics remain fully applicable for multi-tier scenarios,
however, while characterizing the metrics along all services, the proposed set of metrics
is not completely sufficient. For instance, consider the scenario where in the first service,
there is one resource too less and in the second service, there is one resource too much. In
the sum, the number of resources are equal to the number of the demanded resource units.
Hence, the proposed elasticity measurement methodology and the metrics need extensions
to handle such scenarios.

1Descartes Tools: https://descartes.tools

175

https://descartes.tools

Chapter 12: Conclusions and Outlook

We started to work on extending the elasticity benchmarking framework BUNGEE to
support multiple scaling dimensions and even inhomogeneous resource landscapes. The
major challenge here is to automatically derive optimal deployment configurations for
given load intensity levels in the analysis phase. This includes the exploration of a multi-
dimensional search space with load tests for a Pareto-optimal front. Without this feature, it
is not possible to derive the optimal demand over time, as done for the one-dimensional
case. Having these features, Chameleon could be benchmarked against sets of other auto-
scalers, each managing a different service of a distributed application, or against another
multi-dimensional auto-scaler.

12.2.2 Emerging Challenges due to Technological Evolution
In the recent years, the industry has increasingly been moving towards micro-service and
so-called serverless or Function-as-a-Service (FaaS) architectures in order to take advan-
tage of the flexibility, scalability and time-to-market in cloud environments [BHJ16]. The
growing popularity of micro-service and FaaS/serverless architectures is introducing new
challenges and opportunities to the field of non-functional performance evaluation in cloud
computing environments. We discuss potential extensions, assumptions and changes in
the applicability of the elasticity metrics in order to address the concerns and challenges
specific to these new types of cloud architectures.

Resource Nesting

The increasing popularity of micro-services coincides with technological advances in con-
tainerization. In contrast to traditional VM-based virtualization, containerization tech-
nology, such as LXC2 or Docker3, offer reduced performance overhead by executing ap-
plications as isolated processes, commonly referred to as containers, directly on the host
operating system [FFRR15]. As a result, systems are increasingly deployed as a set of smaller
micro-services in a container cloud. However, due to the security concerns associated with
this relatively immature technology, it is currently a common practice to deploy micro-
service containers on top of a VM. Moreover, to take advantage of the container-based,
environment-agnostic cloud infrastructure, FaaS functions are typically deployed on top of
containers [Rob16]. This resource nesting, consisting of FaaS functions, containers, VMs and
physical resources, introduces challenges for many existing metrics. Where existing metrics
for the evaluation of cloud environments focused on a single virtual layer, i.e. VMs, on top
of physical hardware, adaptations will need to be made to ensure quality aspects take into
account multiple virtual layers. One implication of this increasing resource nesting is that
metrics concerned with elasticity typically assume that underlying resources are available
and can be requested with a consistent provisioning delay. However, this assumption no
longer holds true, scaling higher-level resources depends on the scaling capabilities of the
underlying, lower-level resources. To scale up a FaaS function, in an optimistic scenario, the
underlying VM and container are already provisioned, leading to a very short provisioning
time. However, in an alternative scenario, the VM and the container might need to be scaled

2LXC: https://linuxcontainers.org/
3Docker: https://www.docker.com/

176

https://linuxcontainers.org/
https://www.docker.com/

12.2 Open Challenges and Outlook

first before having sufficient resources for the function to scale. Therefore, performance
metrics of systems comprised of these nested resources should not only account for their
observed performance, but also of that of the underlying resources.

We see potential to extend our proposed Chameleon approach towards multi-dimensional
and nested auto-scaling. Here, Chameleon would have to scale multiple services of a
distributed application either horizontally (by adding further nodes) or vertically (by adding
resources to existing nodes). Deciding between the two options would require a significant
extension to the decision logic that may, for example, be based on machine learning. Among
the benefits of a multi-dimensional auto-scaler is that it may be aware of hidden bottlenecks
and thus able to prevent scaling delays or instability. Auto-scaling on nested resource layers
like virtual machines or containers poses a new challenge on its own.

Resource Priorities and Cost Awareness

One of the important advantages to cloud computing, is the notion of "on-demand" re-
sources. This powerful notion has allowed cloud users to avoid large upfront costs and static
maintenance costs by only paying the cloud provider for the resources actually used. By
effectively managing and multiplexing its resources, a cloud provider can make a profit,
while reducing the costs for the cloud users. However, offering the same priority for every
application might not be the most effective. A background application collecting log data
would most likely not have the same urgency or priority as a business-critical web server.
Resource cost instead of absolute, immediate performance is the most important factor
for a background application, while in the business-critical web server the performance
is required at any expense. This scenario is especially true, with regards to micro-services,
where the diverse set of micro-services all have different performance/cost trade-offs. Large
providers are experimenting with the notion of spot markets, where cloud users can get
resources with fewer performance guarantees at a reduced price. For example, Amazon
Spot Instances allows you to bid on spare capacity at their data-centers and in return allow
Amazon to preempt the resources when the capacity is needed [ZZB11]. On the other hand,
Microsoft Azure and Google Cloud offer a substantial, fixed discount on preemptable VMs
compared to regular VMs. Yet, current metrics focus on optimizing performance, elasticity
and similar properties without a regard for the costs. Though metrics for absolute, func-
tional characteristics, such as performance, will continue to be of value, extensions will be
needed to reflect how well systems can match the expected functional and non-functional
objectives. Others have started to investigate this performance versus cost trade-off [SIm15],
but more research is needed on how to adapt existing metrics and methodologies to take
the costs of performance into account.

We started working on integrating awareness of the applied cost model as extension
to auto-scaling mechanisms [LBHK18]. In the presence of long accounting intervals per
resource, Chameleon can leverage knowledge from the forecast executions to delay or skip
scaling events in case they are not cost-efficient. This would result in a shifted trade-off with
decreased elasticity results but at lowered costs.

177

Chapter 12: Conclusions and Outlook

Resource Fragmentation

The increased adoption of the cloud by various industries comes with a wide variety of
different types of workloads, which also introduce more and specific demand for various
types of resources [Ber14]. High-performance resources, such as VMs with large memory
allocation and CPU shares, or specific resources, such as machines with GPUs, generally cost
more relative to less efficient machines. This diverse demand requires providers to be flexible
in the resource options that they offer. However, this diverse demand does lead to physical
resources being sub-optimally utilized, as it leads to resource fragmentation. For example,
a single application might take up most of the CPU while under-utilizing the memory.
Due to the inability to change resource characteristics on-demand, this prevents any other
application being able to make use of the resource. In the context of micro-services this
resource fragmentation would increase even more as micro-services are generally optimized
to focus on a similar set of related responsibilities. Thus, micro-services tent to being a
CPU-heavy, I/O-heavy or network-heavy specific resource consumer. Metrics for elasticity
and performance typically consider only a single resource. When they do consider multiple
resources, they fail to take into account over-provisioning in multiple resource dimensions.
Therefore, adaptations will need to be made in the performance evaluation, in order to put
more emphasis on how effectively multiple resource dimensions are taken into account.

Dynamic User Behavior

Current approaches for performance evaluation of cloud applications assume a relatively
static user behavior as part of workload definitions. However, with the rising popular-
ity of DevOps practices, automated frequent deployments of new versions of services is
increasingly becoming a common industry practice, which is referred to as Continuous De-
ployment (CD) [Fow13]. According to the 2015 State of DevOps Report [FVm15], a significant
portion of organizations already conduct multiple software deployments per day. For exam-
ple, the retailer Otto conducts more than 500 deployments per week without interrupting the
services [HS17]. The rapid changes in the behavior and resource consumption of services
causes variations in the workload that affect the entire system under test, making it more
difficult to predict workloads based on historical data. Accordingly, the methodology will
need to be adapted to focus more on evaluating the initial, ’warm-up time’, of mechanisms.
The warm-up time is the time needed to obtain a workload characterization needed by a
mechanism or policy to perform close to optimally. For example, in auto-scaling research,
many policies make use of historical data to evaluate scaling decisions using time series
analysis [LBMAL14]. These policies need historical data to function optimally. With the
frequent deployments and changing configurations of services, the amount of the historical
workload data that needs to be recorded to have a policy function near-optimally becomes a
concern. Yet, this concern is not yet represented in existing metrics for cloud environments.

In summary, the industry is rapidly transforming to an increasingly dynamic, on-demand
model. This trend raises a number of challenges regarding the current cloud metrics and
methodology. First, extensions to existing metrics will need to be considered to address
increasing resource nesting. Second, there is an increased focus on applications being
cost-effective, meaning that the operational costs should match the desired performance.

178

12.2 Open Challenges and Outlook

Besides focusing on the performance of applications, more research is needed on adapta-
tions to the metrics to consider the performance/cost ratio. Third, adaptations to metrics
regarding resource fragmentation should be considered. Finally, these dynamic systems
are accompanied by dynamic workloads. The methodology of how to evaluate resource
management policies, which may depend on a statically defined user behavior model for
profiling purposes, will need to be revisited.

12.2.3 Future Work on Self-Aware Forecasting
As our presented Telescope approach is evaluated based on an early prototype implemen-
tation, we are working on a forecaster benchmark including a broad and representative
time-series dataset covering various domains. We will evaluate Telescope’s accuracy in
comparison to competing approaches like Facebook’s Prophet 4 from late 2017. Further-
more, several extensions and improvements of Telescope will be targeted as part of our
future work:

(1) The automated feature engineering of Telescope can be extended. The selection of
proper features is a crucial task for machine learning algorithms. Currently, the features are
trend, season, and learned cluster labels. Nevertheless, there are also algorithms specifically
designed to identify good features [KST17]. Such an approach could be integrated as optional
task in Telescope.

(2) A second point for extending the Telescope approach would be towards detection
of structural changes in the history. This includes trend level shifts as well as breakpoints
in the trend and seasonal patterns. Currently, structural changes in the history are the
main reason for poor forecasting performance of Telescope in certain situations. In these
situations, Telescope fits a sub-optimal trend model based on the entire history instead of
a meaningful recent part. If the trend model is only fitted according to the observations
after the last break point, Telescope would likely fit the right trend model and thus, deliver a
better forecasting accuracy.

Beyond the scope of this thesis, Telescope has further potential for usage in various fields
of active research like predictive maintenance for anomaly detections and failure predictions
with root cause analysis.

4Prophet Forecasting by and tailored for Facebook: https://facebook.github.io/prophet/

179

https://facebook.github.io/prophet/

Appendices

181

Detailed Auto-Scaler Evaluation Results
This appendix chapter contains the detailed set of experimental evaluation results that have
been omitted in Chapter 10.

German Wikipedia Trace
Table 10.3 represents the metric values and Figure 10.3 the scaling behavior the IBM trace.

IBM Trace
Table A.1 represents metric values and Figure 10.4 the scaling behavior of the three runs for
the IBM trace.

Metric Chameleon Adapt Hist ConPaas Reg Reactive No Scaling

θU (accuracyU) 5.36% 6.48% 6.37% 12.81% 11.39% 8.17% 16.24%

θO (accuracyO) 7.31% 32.36% 72.56% 19.79% 6.86% 49.16% 270.30%

τU (time shareU) 14.88% 28.81% 24.39% 34.43% 27.25% 20.16% 40.74%

τO (time shareO) 42.91% 49.05% 40.40% 30.28% 25.95% 57.44% 58.48%

υ (instability) 8.56% 13.58% 7.44% 12.80% 12.11% 8.22% 5.88%

ψ (SLO violations) 9.57% 29.92% 11.44% 37.41% 65.32% 31.44% 80.30%

σ (auto-scaling deviation) 29.05% 42.54% 43.40% 42.14% 65.79% 44.50% 147.16%

κ (pairwise competition) 80.56% 41.67% 66.67% 38.89% 55.56% 50.00% 16.67%

ε (elastic speedup) 3.10 1.73 1.79 1.79 2.47 1.74 1.00

#Adaptations 34 57 12 37 41 32 0

Avg. #VMs 10.035 10.081 9.8056 10.296 9.9806 8.7879 9

Instance minutes 1630.00 1529.70 1953.50 1544.30 1454.20 1716.00 1734.00

Avg. response time 0.95 s 1.93 s 1.06 s 2.27 s 3.56 s 1.94 s 4.12 s

Med. response time 0.46 s 0.59 s 0.50 s 0.66 s 5.00 s 0.58 s 5.00 s

Table A.1: Metric overview for the IBM trace.

183

BibSonomy Trace
Table A.2 represents the metric values and Figure A.1 the scaling behavior for BibSonomy
trace.

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Chameleon (BibSonomy)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reactive (BibSonomy)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Adapt (BibSonomy)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Hist (BibSonomy)

0 30 60 90 120 150 180 210 240 270 300 330 360
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

ConPaaS (BibSonomy)

0 30 60 90 120 150 180 210 240 270 300 330 360
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reg (BibSonomy)

Demanded VMs Supplied VMs

Figure A.1: Comparison of the auto-scalers for the BibSonomy trace.

Metric Chameleon Adapt Hist ConPaas Reg Reactive No Scaling

θU (accuracyU) 5.60% 7.62% 4.37% 14.04% 9.89% 3.32% 10.73%

θO (accuracyO) 23.45% 24.11% 45.35% 29.87% 18.40% 52.67% 36.84%

τU (time shareU) 22.52% 34.10% 21.09% 37.42% 37.60% 10.85% 43.04%

τO (time shareO) 61.02% 48.96% 72.90% 51.04% 45.64% 82.71% 44.86%

υ (instability) 22.95% 24.37% 19.14% 24.72% 23.08% 20.40% 17.59%

ψ (SLO violations) 16.20% 54.85% 13.99% 31.75% 50.74% 6.47% 65.91%

σ (auto-scaling deviation) 43.05% 59.39% 48.28% 48.31% 56.17% 48.60% 69.27%

κ (pairwise competition) 61.11% 44.44% 61.11% 30.56% 50.00% 61.11% 41.67%

ε (elastic speedup) 1.27 1.12 1.18 0.93 1.13 1.33 1.00

#Adaptations 116 144 35 117 115 75 0

Avg. #VMs 10.112 9.7755 10.058 9.7426 8.9485 10 9

Instance minutes 3862.50 3650.70 4256.20 3857.30 3534.30 4778.80 3471.00

Avg. response time 1.28 s 3.10 s 1.18 s 1.99 s 2.87 s 0.79 s 3.51 s

Med. response time 0.49 s 5.00 s 0.49 s 0.59 s 4.44 s 0.47 s 5.00 s

Table A.2: Metric overview for the BibSonomy trace.

184

Retailrocket Trace
Table A.3 represents the metric values and Figure A.2 the scaling behavior for Retailrocket
trace.

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Chameleon (Retailrocket)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reactive (Retailrocket)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Adapt (Retailrocket)

0 30 60 90 120 150 180 210 240 270 300 330 360
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Hist (Retailrocket)

0 30 60 90 120 150 180 210 240 270 300 330 360
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

ConPaaS (Retailrocket)

0 30 60 90 120 150 180 210 240 270 300 330 360
Time in minutes

0

6

12

18
A

m
ou

nt
 o

f V
M

s
Reg (Retailrocket)

Demanded VMs Supplied VMs

Figure A.2: Comparison of the auto-scalers for the Retailrocket trace.

Metric Chameleon Adapt Hist ConPaas Reg Reactive No Scaling

θU (accuracyU) 6.37% 6.55% 5.22% 21.05% 19.37% 8.50% 17.68%

θO (accuracyO) 11.71% 16.45% 76.29% 22.41% 8.44% 44.64% 110.38%

τU (time shareU) 19.53% 31.76% 24.59% 59.90% 44.38% 25.02% 55.75%

τO (time shareO) 51.34% 44.60% 59.42% 20.74% 29.21% 62.92% 38.81%

υ (instability) 10.98% 14.82% 9.46% 18.24% 15.73% 9.68% 7.22%

ψ (SLO violations) 8.68% 26.56% 16.26% 60.87% 58.20% 15.20% 82.06%

σ (auto-scaling deviation) 35.59% 40.49% 49.39% 63.93% 60.51% 45.53% 90.52%

κ (pairwise competition) 75.00% 52.78% 61.11% 27.78% 47.22% 50.00% 36.11%

ε (elastic speedup) 2.06 1.68 1.41 1.23 1.56 1.39 1.00

#Adaptations 82 125 36 122 113 69 0

Avg. #VMs 9.301 11.009 11.013 10.196 9.0686 8.2361 9

Instance minutes 3890.50 3687.30 4279.30 3211.80 3020.30 4568.70 3471.00

Avg. response time 0.89 s 1.82 s 1.25 s 3.33 s 3.22 s 1.19 s 4.23 s

Med. response time 0.44 s 0.59 s 0.49 s 5.00 s 5.00 s 0.49 s 5.00 s

Table A.3: Metric overview for the Retailrocket trace traceo.

185

FIFA World Cup 1998 Trace in Private Scenario
Table A.4 represents the metric values and Figure A.3 the scaling behavior for FIFA World
Cup 1998 trace in the private scenario.

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Chameleon (FIFA - private)

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reactive (FIFA - private)

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Adapt (FIFA - private)

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Hist (FIFA - private)

0 60 120 180 240 300 360 420 480 540
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

ConPaaS (FIFA - private)

0 60 120 180 240 300 360 420 480 540
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reg (FIFA - private)

Demanded VMs Supplied VMs

Figure A.3: Comparison of the auto-scalers for the FIFA World Cup 1998 trace in private scenario.

Metric Chameleon Adapt Hist ConPaas Reg Reactive No Scaling

θU (accuracyU) 3.23% 7.09% 2.83% 15.01% 19.70% 1.56% 14.75%

θO (accuracyO) 21.95% 11.81% 46.87% 20.18% 12.37% 40.20% 27.41%

τU (time shareU) 13.09% 41.47% 15.61% 39.48% 49.25% 5.20% 48.93%

τO (time shareO) 74.05% 35.81% 74.57% 49.22% 35.03% 87.14% 44.77%

υ (instability) 16.36% 21.56% 14.91% 20.93% 21.79% 14.68% 12.66%

ψ (SLO violations) 8.65% 43.67% 12.01% 53.23% 64.28% 2.70% 62.14%

σ (auto-scaling deviation) 43.88% 49.68% 46.27% 59.09% 67.30% 46.76% 66.83%

κ (pairwise competition) 61.11% 55.56% 50.00% 41.67% 30.56% 66.67% 44.44%

ε (elastic speedup) 1.58 1.33 1.37 0.98 1.04 1.93 1.00

#Adaptations 122 159 45 153 169 81 0

Avg. #VMs 9.532 10.692 11.773 11.232 8.7312 10.488 9

Instance minutes 6500.20 5562.00 7203.30 5899.70 4939.00 7262.50 5190.00

Avg. response time 0.89 s 2.60 s 1.06 s 2.96 s 3.46 s 0.60 s 3.32 s

Med. response time 0.45 s 1.63 s 0.48 s 5.00 s 5.00 s 0.45 s 5.00 s

Table A.4: Metric overview for the FIFA World Cup 1998 trace in private scenario.

186

FIFA World Cup 1998 Trace on AWS EC2
Table A.5 represents the metric values and Figure A.4 the scaling behavior for FIFA World
Cup 1998 trace executed on AWS EC2.

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Chameleon (FIFA - AWS)

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reactive (FIFA - AWS)

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Adapt (FIFA - AWS)

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Hist (FIFA - AWS)

0 60 120 180 240 300 360 420 480 540
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

ConPaaS (FIFA - AWS)

0 60 120 180 240 300 360 420 480 540
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reg (FIFA - AWS)

Demanded VMs Supplied VMs

Figure A.4: Comparison of the auto-scalers for the FIFA World Cup 1998 trace in AWS EC2.

Metric Chameleon Adapt Hist ConPaas Reg Reactive No Scaling

θU (accuracyU) 1.64% 12.93% 9.19% 21.11% 21.44% 13.36% 14.75%

θO (accuracyO) 21.31% 10.85% 23.98% 35.51% 5.46% 9.19% 27.41%

τU (time shareU) 11.04% 52.02% 44.10% 49.02% 67.80% 57.49% 48.93%

τO (time shareO) 67.92% 32.43% 44.68% 41.94% 18.44% 25.49% 44.77%

υ (instability) 15.95% 17.98% 13.96% 16.50% 16.79% 19.02% 12.66%

ψ (SLO violations) 5.04% 21.56% 16.60% 22.17% 54.36% 49.30% 51.21%

σ (auto-scaling deviation) 39.81% 43.31% 44.93% 47.83% 59.22% 54.80% 58.76%

κ (pairwise competition) 69.44% 52.78% 66.67% 36.11% 38.89% 44.44% 41.67%

ε (elastic speedup) 1.93 1.21 1.13 0.85 1.35 1.27 1.00

#Adaptations 126 169 47 131 164 254 0

Avg. #VMs 9.649 9.3815 10.202 9.8456 6.8119 8.8372 9

Instance minutes 6360.30 5350.30 5905.50 6016.80 4471.30 5004.00 5190.00

Avg. response time 0.62 s 1.32 s 1.07 s 1.32 s 2.84 s 2.68 s 2.67 s

Med. response time 0.26 s 0.25 s 0.25 s 0.25 s 5.00 s 3.23 s 5.00 s

Table A.5: Metric overview for the FIFA World Cup 1998 trace in AWS EC2.

187

FIFA World Cup 1998 Trace in DAS-4
Table A.6 represents the metric values and Figure A.5 the scaling behavior for FIFA World
Cup 1998 trace in DAS-4.

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Chameleon (FIFA - DAS-4)

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reactive (FIFA - DAS-4)

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Adapt (FIFA - DAS-4)

0 60 120 180 240 300 360 420 480 540
0

6

12

18

A
m

ou
nt

 o
f V

M
s

Hist (FIFA - DAS-4)

0 60 120 180 240 300 360 420 480 540
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

ConPaaS (FIFA - DAS-4)

0 60 120 180 240 300 360 420 480 540
Time in minutes

0

6

12

18

A
m

ou
nt

 o
f V

M
s

Reg (FIFA - DAS-4)

Demanded VMs Supplied VMs

Figure A.5: Comparison of the auto-scalers for the FIFA World Cup 1998 trace in DAS-4.

Metric Chameleon Adapt Hist ConPaas Reg Reactive No Scaling

θU (accuracyU) 1.66% 2.79% 2.54% 10.11% 11.95% 11.83% 14.75%

θO (accuracyO) 28.28% 26.51% 69.89% 38.45% 17.68% 16.52% 27.41%

τU (time shareU) 6.45% 15.69% 16.73% 26.65% 28.64% 46.85% 48.93%

τO (time shareO) 84.97% 68.06% 72.54% 66.53% 54.45% 38.12% 44.77%

υ (instability) 16.76% 16.79% 13.99% 16.10% 16.79% 13.96% 12.66%

ψ (SLO violations) 20.95% 37.31% 26.96% 43.61% 47.51% 41.49% 43.56%

σ (auto-scaling deviation) 46.53% 47.61% 50.02% 54.38% 53.51% 50.10% 54.22%

κ (pairwise competition) 61.11% 52.78% 52.78% 38.89% 33.33% 63.89% 44.44%

ε (elastic speedup) 1.92 1.53 1.30 1.00 1.15 1.18 1.00

#Adaptations 131 288 288 288 288 135 0

Avg. #VMs 9.8796 11.187 13.803 11.716 9.5675 10.978 9

Instance minutes 6786.00 6452.00 7955.30 6770.70 5519.30 5629.70 5190.00

Avg. response time 1.34 s 2.14 s 1.68 s 2.51 s 2.60 s 2.32 s 2.50 s

Med. response time 0.33 s 0.40 s 0.33 s 1.43 s 1.63 s 0.33 s 1.50 s

Table A.6: Metric overview for the FIFA World Cup 1998 trace in DAS-4.

188

List of Figures

2.1 Self-aware learning and reasoning loop: LRA-M loop [KLB+17]. 18
2.2 STL decomposition example . 23
2.3 An example for a BFAST decomposition with detected trend breaks. 25
2.4 Electricity demand of Victoria, Australia. 26
2.5 Amount of lynx trappings in Canada. 27
2.6 Simplified architecture of a Multi-Layer Perceptron. 30

4.1 Abstract idea for DLIM meta-model . 50
4.2 DLIM meta-model . 51
4.3 Example instance of a DLIM model. 53
4.4 hl-DLIM Seasonal part. 54
4.5 hl-DLIM Trend part. 54
4.6 Activity diagram of the Simple DLIM Extraction Method (s-DLIM). 56

5.1 Illustrating example for accuracy (U, O) and timing (A, B) metrics 68
5.2 System A: Same accur ac y and t i meshar e metrics - different behavior 70
5.3 System A: Same accur ac y and t i meshar e metrics - different behavior 71
5.4 Preparations for instability computation. 72
5.5 Preparations for Instability - intersection resolution. 73
5.6 Blueprint for the SUT and the Bungee benchmark controller 79
5.7 Bungee experiment workflow . 80
5.8 Different resource demand and supply curves for the same load profile 82
5.9 Different mapping functions . 85
5.10 Resource demand for the same load profile . 85
5.11 Resource demands for system specific adjusted load profiles 85
5.12 Activity diagram of the Bungee experiment workflow. 88

6.1 Design overview of Chameleon. 96
6.2 Combination rules for sets of two planned scaling events. 102
6.3 Exemplary illustration of Chameleon’s working mode. 104

7.1 A simplified illustration of the Telescope approach. 109

8.1 WorldCup98 trace and extracted s-DLIM . 114
8.2 Bibsonomy trace and extracted s-DLIM . 116
8.3 French Wikipedia trace and extracted s-DLIM 118

9.1 System with linear increasing resource demand 125
9.2 Evaluation of the aU and θU metrics . 130

189

List of Figures

9.3 Evaluation of the aO and θO metrics . 131
9.4 Evaluation of the τU metric . 133
9.5 Evaluation of the τO metric . 134
9.6 Evaluation of the jitter and instability metrics for superfluous adaptations. . . 136
9.7 Evaluation of the jitter metric j and instability metric υ for missing adaptations138
9.8 One day load profile derived from a real five day transaction trace 140
9.9 Elastic behavior for two elasticity rule parameter settings on CS (1) 141
9.10 Elastic behavior for different elasticity rule parameter settings on AWS EC2 . . 142

10.1 System Analysis results of all scenarios. 147
10.2 Scaling behavior of Chameleon for the Retailrocket trace. 151
10.3 Comparison of the auto-scalers for the German Wikipedia trace. 152
10.4 Comparison of the auto-scalers for the IBM trace. 153
10.5 Comparison of the auto-scalers in private and public AWS EC2 cloud scenario. 155
10.6 Chameleon: proactive, reative and combined. 156
10.7 Scaling behavior of all auto-scalers. 160

11.1 Observations and forecast of the IBM trace. 164
11.2 Observations and forecast of the airline passengers trace. 164
11.3 Auto-scaling on the BibSonomy trace using tBATS. 168
11.4 Auto-scaling on the BibSonomy trace using Telescope. 168

A.1 Comparison of the auto-scalers for the BibSonomy trace. 184
A.2 Comparison of the auto-scalers for the Retailrocket trace. 185
A.3 Comparison of the auto-scalers for the FIFA World Cup 1998 trace in priv. sce. 186
A.4 Comparison of the auto-scalers for the FIFA World Cup 1998 trace in AWS EC2.187
A.5 Comparison of the auto-scalers for the FIFA World Cup 1998 trace in DAS-4. . 188

190

List of Tables
2.1 Notations for error measures. 20
2.2 Scale-dependent measures with formulas. 20
2.3 Measures based on percentage errors with formulas. 21
2.4 Measures based on relative errors with formulas. 21
2.5 Scaled error measures with formulas. 22
2.6 Decomposition variables definition . 22

6.1 Parameters of the decision logic. 100

8.1 Model extraction errors for the Internet Traffic Archive and BibSonomy traces. 115
8.2 wikipedia.org model extraction errors. 119

9.1 Default parameters of threshold-based auto-scaler of private cloud setup . . 122
9.2 Benchmark harness parameters . 123
9.3 Results of the reproducibility evaluation for the System Analysis 124
9.4 Linearity analysis for Offering A . 126
9.5 Linearity analysis for Offering B . 128
9.6 Measurement results for the aU and θU metrics 129
9.7 Measurement results for the aO and θO metrics 131
9.8 Measurement results for the τU metric . 132
9.9 Measurement results for the τO metric . 134
9.10 Measurement results for the jitter metric j (positive) and instability metric υ. 136
9.11 Measurement results for the jitter metric j (negative) and instability metric υ 137
9.12 Auto-scaler parameter configurations on private (A,B) and public (C,D) clouds 139
9.13 Metric results for evaluated configurations . 140
9.14 Aggregated elasticity metrics . 143

10.1 Specification of the servers. 147
10.2 Specification of the VMs. 147
10.3 Metric overview for the German Wikipedia trace. 152
10.4 Metric value ranges (IBM trace). 154
10.5 Metric overview for the private vs AWS EC2 cloud scenario. 155
10.6 Metric overview for the components of Chameleon when executed in isolation.156
10.7 Overview of the conducted experiments. 157
10.8 Average metrics over all experiments. 158
10.9 Average ranking for each experiment over the three competitions. 158

11.1 Accuracy and runtime of state-of-the-art forecasting methods and Telescope. 166
11.2 Results of the Chameleon auto-scaling comparison using Telescope and tBATS.167

191

List of Tables

A.1 Metric overview for the IBM trace. 183
A.2 Metric overview for the BibSonomy trace. 184
A.3 Metric overview for the Retailrocket trace traceo. 185
A.4 Metric overview for the FIFA World Cup 1998 trace in private scenario. 186
A.5 Metric overview for the FIFA World Cup 1998 trace in AWS EC2. 187
A.6 Metric overview for the FIFA World Cup 1998 trace in DAS-4. 188

192

Bibliography
[AETE12] Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. An Adaptive Hybrid

Elasticity Controller for Cloud Infrastructures. In IEEE NOMS 2012, pages
204–212. IEEE, 2012. [see pages 40, 41, and 148]

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. A View of Cloud Computing. Commun. ACM, 53(4):50–58,
April 2010. [see pages 13 and 66]

[AJ00] Martin Arlitt and Tai Jin. A Workload Characterization Study of the 1998 World
Cup Web Site. IEEE Network, 14(3):30–37, 2000. [see page 145]

[Arm85] J Scott Armstrong. From crystal ball to computer. New York, 1985. [see
page 21]

[ASLM13] Rodrigo F Almeida, Flávio RC Sousa, Sérgio Lifschitz, and Javam C Machado.
On Defining Metrics for Elasticity of Cloud Databases. In Proceedings of the
28th Brazilian Symposium on Databases, 2013. [see pages 37 and 66]

[AW96] Martin F. Arlitt and Carey L. Williamson. Web server workload characteriza-
tion: The search for invariants. SIGMETRICS Perform. Eval. Rev., 24(1):126–
137, May 1996. [see page 34]

[Bar10] P. Bartlett. Introduction to time series analysis. lecture 19, 2010. [see page 28]

[BC64] George EP Box and David R Cox. An analysis of transformations. Journal of
the Royal Statistical Society. Series B (Methodological), pages 211–252, 1964.
[see page 31]

[BC98] Paul Barford and Mark Crovella. Generating representative web workloads for
network and server performance evaluation. In Proceedings of the 1998 ACM
SIGMETRICS joint international conference on Measurement and modeling
of computer systems, SIGMETRICS ’98/PERFORMANCE ’98, pages 151–160,
New York, NY, USA, 1998. ACM. [see page 35]

[BEdLm16] Henri Bal, Dick Epema, Cees de Laat, and more. A Medium-Scale Distributed
System for Computer Science Research: Infrastructure for the Long Term.
IEEE Computer, 49(5):54–63, May 2016. [see pages 95, 146, and 174]

[Bel16] Marta Beltrán. Becloud: A new approach to analyse elasticity enablers of
cloud services. Future Generation Computer Systems, 64:39–49, 2016. [see
pages 37, 38, and 39]

193

Bibliography

[Ber14] David Bernstein. Containers and cloud: From LXC to Docker to Kubernetes.
IEEE Cloud Computing, 1(3):81–84, 2014. [see page 178]

[BFB09] Gordon Blair, Robert B. France, and Nelly Bencomo. Models@ run.time.
Computer, 42:22–27, 2009. [see page 48]

[BG69] John M Bates and Clive WJ Granger. The combination of forecasts. Journal of
the Operational Research Society, 20(4):451–468, 1969. [see page 42]

[BGHK18] André Bauer, Johannes Grohmann, Nikolas Herbst, and Samuel Kounev.
On the Value of Service Demand Estimation for Auto-Scaling. In
19th International GI/ITG Conference on Measurement, Modelling and
Evaluation of Computing Systems (MMB 2018). Springer, February 2018. [see
pages xiv and 7]

[BH74] James R Bunch and John E Hopcroft. Triangular factorization and inversion
by fast matrix multiplication. Mathematics of Computation, 28(125):231–236,
1974. [see page 146]

[BHIP17] Gunnar Brataas, Nikolas Herbst, Simon Ivansek, and Jure Polutnik. Scalability
Analysis of Cloud Software Services. In Companion Proceedings of the 14th
IEEE International Conference on Autonomic Computing (ICAC 2017), Self
Organizing Self Managing Clouds Workshop (SOSeMC 2017). IEEE, July 2017.
[see page xv]

[BHJ+10] Dominik Benz, Andreas Hotho, Robert Jäschke, Beate Krause, Folke Mitzlaff,
Christoph Schmitz, and Gerd Stumme. The social bookmark and publication
management system BibSonomy. The VLDB Journal, 19(6):849–875, Decem-
ber 2010. [see pages 114 and 145]

[BHJ16] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices
architecture enables devops: migration to a cloud-native architecture. IEEE
Software, 33(3):42–52, 2016. [see page 176]

[BHK17] André Bauer, Nikolas Herbst, and Samuel Kounev. Design and Evalua-
tion of a Proactive, Application-Aware Auto-Scaler. In Proceedings of the
8th ACM/SPEC International Conference on Performance Engineering (ICPE
2017), April 2017. [see pages xvi, 8, and 175]

[BHS+18] André Bauer, Nikolas Herbst, Simon Spinner, Samuel Kounev, and Ahmed
Ali-Eldin. Chameleon: A Hybrid, Proactive Auto-Scaling Mechanism on a
Level-Playing Field. IEEE Transactions on Parallel and Distributed Systems
(TPDS), 2018. Minor Revision July 2018. [see pages xiii and 7]

[BJ+15] George EP Box, Gwilym M Jenkins, et al. Time Series Analysis: Forecasting
and Control. John Wiley & Sons, 2015. [see pages 94 and 98]

[BKK09] Fabian Brosig, Samuel Kounev, and Klaus Krogmann. Automated Extraction
of Palladio Component Models from Running Enterprise Java Applications.
In VALUETOOLS ’09, pages 1–10, 2009. [see pages 34 and 35]

194

Bibliography

[BKKL09] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. How is
the Weather Tomorrow?: Towards a Benchmark for the Cloud. In Proceedings
of the Second International Workshop on Testing Database Systems, DBTest
’09, pages 9:1–9:6, New York, NY, USA, 2009. ACM. [see pages 37 and 66]

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The palladio component
model for model-driven performance prediction. Journal of Systems and
Software, 82(1):3 – 22, 2009. Special Issue: Software Performance - Modeling
and Analysis. [see page 34]

[BLB15] Matthias Becker, Sebastian Lehrig, and Steffen Becker. Systematically deriv-
ing quality metrics for cloud computing systems. In Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering, ICPE ’15,
pages 169–174, New York, NY, USA, 2015. ACM. [see page 37]

[BLY+10] Aaron Beitch, Brandon Liu, Timothy Yung, Rean Griffith, Armando Fox, and
David A. Patterson. Rain: A workload generation toolkit for cloud comput-
ing applications. Technical Report UCB/EECS-2010-14, EECS Department,
University of California, Berkeley, Feb 2010. [see pages 34 and 48]

[Bm06] Gunter Bolch and more. Queueing Networks and Markov Chains: Modeling
and Performance Evaluation with Computer Science Applications. John Wi-
ley & Sons, 2006. [see pages 97 and 99]

[Bro56] Robert G Brown. Exponential smoothing for predicting demand. cambridge,
mass., arthur d. little, 1956. [see page 32]

[BSL+13] Gunnar Brataas, Erlend Stav, Sebastian Lehrig, Steffen Becker, Goran Kopčak,
and Darko Huljenic. Cloudscale: Scalability management for cloud sys-
tems. In Proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering, ICPE ’13, pages 335–338, New York, NY, USA, 2013.
ACM. [see page 49]

[BvHW+15] Andreas Brunnert, Andre van Hoorn, Felix Willnecker, Alexandru Danciu,
Wilhelm Hasselbring, Christoph Heger, Nikolas Herbst, Pooyan Jamshidi,
Reiner Jung, Joakim von Kistowski, Anne Koziolek, Johannes Kross, Simon
Spinner, Christian Vögele, Jürgen Walter, and Alexander Wert. Performance-
oriented DevOps: A research agenda. Technical Report SPEC-RG-2015-01,
SPEC Research Group — DevOps Performance Working Group, Standard
Performance Evaluation Corporation (SPEC), August 2015. [see page xvii]

[BZ86] Herman J Blinchikoff and Anatol I Zverev. Filtering in the time and frequency
domains. Krieger Publishing Co., Inc., 1986. [see page 61]

[C+09] Trieu Chieu et al. Dynamic Scaling of Web Applications in a Virtualized Cloud
Computing Environment. In IEEE ICEBE 2009, pages 281–286. IEEE, 2009.
[see page 148]

195

Bibliography

[CA92] Fred Collopy and J Scott Armstrong. Rule-based forecasting: Development
and validation of an expert systems approach to combining time series ex-
trapolations. Management Science, 38(10):1394–1414, 1992. [see page 42]

[CCB+12] Dean Chandler, Nurcan Coskun, Salman Baset, Erich Nahum, Steve Real-
muto Masud Khandker, Tom Daly, Nicholas Wakou Indrani Paul, Louis Bar-
ton, Mark Wagner, Rema Hariharan, and Yun seng Chao. Report on Cloud
Computing to the OSG Steering Committee. Technical report, April 2012. [see
pages 36 and 66]

[CCMT90] Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning.
Stl: A seasonal-trend decomposition procedure based on loess. Journal of
Official Statistics, 6(1):3–73, 1990. [see pages 23, 49, 55, 108, and 113]

[CG16] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting sys-
tem. In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 785–794. ACM, 2016. [see
pages 7, 29, 110, and 165]

[CGRGG+17] Gaspar Cano, Jose Garcia-Rodriguez, Alberto Garcia-Garcia, Horacio Perez-
Sanchez, Jón Atli Benediktsson, Anil Thapa, and Alastair Barr. Automatic
selection of molecular descriptors using random forest: Application to drug
discovery. Expert Systems with Applications, 72:151–159, 2017. [see page 108]

[CKKR12] Giuliano Casale, Amir Kalbasi, Diwakar Krishnamurthy, and Jerry Rolia. Burn:
Enabling workload burstiness in customized service benchmarks. IEEE
Transactions on Software Engineering, 38(4):778–793, 2012. [see page 35]

[Cle89] Robert T Clemen. Combining forecasts: A review and annotated bibliography.
International Journal of Forecasting, 5(4):559–583, 1989. [see page 42]

[Coh09] Reuven Cohen. Defining Elastic Computing, September 2009. http://www.
elasticvapor.com/2009/09/defining-elastic-computing.
html, last consulted Jan. 2017. [see page 14]

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-
sell Sears. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing, SoCC ’10, pages 143–154, New
York, NY, USA, 2010. ACM. [see page 37]

[CW09] Alpha C. Chiang and Kevin Wainwright. Fundamental methods of
mathematical economics. McGraw-Hill [u.a.], Boston, Mass. [u.a.], 4. ed.,
internat. ed., [repr.] edition, 2009. [see page 13]

[Dav87] Herbert A David. Ranking from Unbalanced Paired-Comparison Data.
Biometrika, 74:432–436, 1987. [see page 75]

[DLHS11] Alysha M De Livera, Rob J Hyndman, and Ralph D Snyder. Forecasting time se-
ries with complex seasonal patterns using exponential smoothing. Journal of
the American Statistical Association, 106(496):1513–1527, 2011. [see page 32]

196

http://www.elasticvapor.com/2009/09/defining-elastic-computing.html
http://www.elasticvapor.com/2009/09/defining-elastic-computing.html
http://www.elasticvapor.com/2009/09/defining-elastic-computing.html

Bibliography

[DMBT00] Lilian M De Menezes, Derek W Bunn, and James W Taylor. Review of guide-
lines for the use of combined forecasts. European Journal of Operational
Research, 120(1):190–204, 2000. [see page 42]

[DMRT11] Thibault Dory, Boris Mejías, Peter Van Roy, and Nam-Luc Tran. Mea-
suring Elasticity for Cloud Databases. In Proceedings of the The Second
International Conference on Cloud Computing, GRIDs, and Virtualization,
2011. [see pages 37, 38, and 66]

[DRW07] Leticia Duboc, David Rosenblum, and Tony Wicks. A Framework for Char-
acterization and Analysis of Software System Scalability. In Proceedings of
the 6th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software Engineering
(ESEC-FSE ’07), pages 375–384. ACM, 2007. [see page 15]

[EHPG+17] Neska El Haouij, Jean-Michel Poggi, Raja Ghozi, Sylvie Sevestre-Ghalila, and
Mériem Jaïdane. Random forest-based approach for physiological functional
variable selection: Towards driver’s stress level classification. 2017. [see
page 108]

[Fab06] Faban. http://faban.org, 2006. last accessed in February 2018. [see page 48]

[FAS+12] Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup, Volker
Markl, and Cafer Tosun. Benchmarking in the Cloud: What It Should, Can, and
Cannot Be. In Raghunath Nambiar and Meikel Poess, editors, Selected Topics
in Performance Evaluation and Benchmarking, volume 7755 of Lecture Notes
in Computer Science, pages 173–188. Springer Berlin Heidelberg, 2012. [see
pages 37, 66, and 78]

[Fei02] DrorG. Feitelson. Workload modeling for performance evaluation. In Mari-
aCarla Calzarossa and Salvatore Tucci, editors, Performance Evaluation of
Complex Systems: Techniques and Tools, volume 2459 of Lecture Notes in
Computer Science, pages 114–141. Springer Berlin Heidelberg, 2002. [see
page 35]

[FFRR15] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated
performance comparison of virtual machines and linux containers. In IEEE
ISPASS 2015, pages 171–172. IEEE, 2015. [see page 176]

[FHA99] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns, and
Practice. Java series. Addison-Wesley, 1999. [see page 81]

[Fow13] Martin Fowler. Continuous delivery, 2013. Accessed: 2017-05-17. [see
page 178]

[FPK14] Hector Fernandez, Guillaume Pierre, and Thilo Kielmann. Autoscaling Web
Applications in Heterogeneous Cloud Infrastructures. In IEEE IC2E, 2014.
[see pages 2, 148, and 149]

197

Bibliography

[Fri91] Jerome H Friedman. Multivariate adaptive regression splines. The annals of
statistics, pages 1–67, 1991. [see page 35]

[FVm15] N Forsgren Velasquez and more. State of devops report 2015. Puppet Labs
and IT Revolution, 2015. [see page 178]

[FW86] Philip J. Fleming and John J. Wallace. How Not to Lie with Statistics: The
Correct Way to Summarize Benchmark Results. Commun. ACM, 29(3):218–
221, March 1986. [see page 76]

[GB12] Guilherme Galante and Luis Carlos E. de Bona. A Survey on Cloud Com-
puting Elasticity. In Proceedings of the 2012 IEEE/ACM Fifth International
Conference on Utility and Cloud Computing, UCC ’12, pages 263–270, Wash-
ington, DC, USA, 2012. IEEE Computer Society. [see pages 33 and 66]

[GdB12] Guilherme Galante and Luis de Bona. A Survey on Cloud Computing Elasticity.
In IEEE UCC 2012, pages 263–270. IEEE, 2012. [see page 39]

[GHSK17] Johannes Grohmann, Nikolas Herbst, Simon Spinner, and Samuel Kounev.
Self-Tuning Resource Demand Estimation. In IEEE ICAC 2017, July 2017. [see
pages xv, 7, 35, and 98]

[GHSK18] Johannes Grohmann, Nikolas Herbst, Simon Spinner, and Samuel Kounev.
Using Machine Learning for Recommending Service Demand Estimation
Approaches (Position Paper). In Proceedings of the 8th International
Conference on Cloud Computing and Services Science (CLOSER 2018).
SciTePress, March 2018. [see page xv]

[HAA+17] Nikolas Herbst, Ayman Amin, Artur Andrzejak, Lars Grunske, Samuel Kounev,
Ole J. Mengshoel, and Priya Sundararajan. Online Workload Forecasting. In
Samuel Kounev, Jeffrey O. Kephart, Xiaoyun Zhu, and Aleksandar Milenkoski,
editors, Self-Aware Computing Systems. Springer Verlag, Berlin Heidelberg,
Germany, 2017. [see pages xv and 33]

[Hal08] Emily H Halili. Apache JMeter: A Practical Beginner’s Guide to Automated
Testing and performance measurement for your websites. Packt Publishing
Ltd, 2008. [see page 48]

[HB13] Mor Harchol-Balter. Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge University Press, New York,
NY, USA, 1st edition, 2013. [see page 13]

[HBK+17] Nikolas Herbst, Steffen Becker, Samuel Kounev, Heiko Koziolek, Martina Mag-
gio, Aleksandar Milenkoski, and Evgenia Smirni. Metrics and Benchmarks for
Self-Aware Computing Systems. In Samuel Kounev, Jeffrey O. Kephart, Alek-
sandar Milenkoski, and Xiaoyun Zhu, editors, Self-Aware Computing Systems.
Springer Verlag, Berlin Heidelberg, Germany, 2017. [see page xv]

198

Bibliography

[HBK+18] Nikolas Herbst, André Bauer, Samuel Kounev, Giorgos Oikonomou, Erwin van
Eyk, George Kousiouris, Athanasia Evangelinou, Rouven Krebs, Tim Brecht,
Cristina L. Abad, and Alexandru Iosup. Quantifying Cloud Performance
and Dependability: Taxonomy, Metric Design, and Emerging Challenges.
ACM Transactions on Modeling and Performance Evaluation of Computing
Systems (ToMPECS), 2018. Submitted Sept 2017 - Major Revision Jan 2018 -
Minor Revision June 2018. [see pages xiii, 6, and 67]

[HBS+17] Nikolaus Huber, Fabian Brosig, Simon Spinner, Samuel Kounev, and Manuel
Bähr. Model-Based Self-Aware Performance and Resource Management
Using the Descartes Modeling Language. IEEE Transactions on Software
Engineering (TSE), 43(5), 2017. [see pages 6 and 34]

[Her11] Nikolas Herbst. Quantifying the Impact of Configuration Space for Elasticity
Benchmarking. Study Thesis, Karlsruhe Institute of Technology (KIT), Am
Fasanengarten 5, 76131 Karlsruhe, Germany, 2011. [see page xvii]

[Her12] Nikolas Herbst. Workload Classification and Forecasting. Diploma Thesis,
Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe,
Germany, 2012. Forschungszentrum Informatik (FZI) Prize "Best Diploma
Thesis". [see page xvii]

[HGGG12] Rui Han, Li Guo, Moustafa M Ghanem, and Yike Guo. Lightweight Resource
Scaling for Cloud Applications. In IEEE/ACM CCGrid 2012, pages 644–651.
IEEE, 2012. [see page 39]

[HHK+14] Nikolaus Huber, André Hoorn, Anne Koziolek, Fabian Brosig, and Samuel
Kounev. Modeling run-time adaptation at the system architecture level in dy-
namic service-oriented environments. Serv. Oriented Comput. Appl., 8(1):73–
89, March 2014. [see page 40]

[HHKA13] Nikolas Herbst, Nikolaus Huber, Samuel Kounev, and Erich Amrehn. Self-
Adaptive Workload Classification and Forecasting for Proactive Resource
Provisioning. In Proceedings of the 4th ACM/SPEC International Conference
on Performance Engineering (ICPE 2013), pages 187–198, New York, NY, USA,
April 2013. ACM. Among TOP 3 most cited ICPE papers (according to Google
Scholar). [see page xiv]

[HHKA14] Nikolas Herbst, Nikolaus Huber, Samuel Kounev, and Erich Amrehn. Self-
Adaptive Workload Classification and Forecasting for Proactive Resource Pro-
visioning. Concurrency and Computation - Practice and Experience (CCPE),
John Wiley and Sons, Ltd., 26(12):2053–2078, March 2014. 2nd most cited
CCPE article (according to Google Scholar). [see pages xiii, 2, and 42]

[HK06] Rob J Hyndman and Anne B Koehler. Another look at measures of forecast
accuracy. International Journal of Forecasting, pages 679–688, 2006. [see
pages 19, 97, 103, and 113]

199

Bibliography

[HK08] Rob J Hyndman and Yeasmin Khandakar. Automatic Time Series Forecasting:
The Forecast Package for R. Journal of Statistical Software, 26(3):1–22, 2008.
[see pages 98, 110, and 165]

[HKO+16] Nikolas Herbst, Rouven Krebs, Giorgos Oikonomou, George Kousiouris,
Athanasia Evangelinou, Alexandru Iosup, and Samuel Kounev. Ready for
Rain? A View from SPEC Research on the Future of Cloud Metrics. Technical
Report SPEC-RG-2016-01, SPEC Research Group — Cloud Working Group,
Standard Performance Evaluation Corporation (SPEC), 2016. [see pages xvii,
6, 67, 95, and 161]

[HKR13] Nikolas Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in Cloud Com-
puting: What it is, and What it is Not. In Proceedings of the 10th International
Conference on Autonomic Computing (ICAC 2013). USENIX, June 2013. Top
1 most cited ICAC papers (according to Google Scholar). [see pages xv, 6, 36,
37, 38, and 67]

[HKSG02] Rob J Hyndman, Anne B Koehler, Ralph D Snyder, and Simone Grose. A state
space framework for automatic forecasting using exponential smoothing
methods. International Journal of Forecasting, 18(3):439 – 454, 2002. [see
page 32]

[HKWG15a] Nikolas Herbst, Samuel Kounev, Andreas Weber, and Henning Groenda.
BUNGEE: An Elasticity Benchmark for Self-Adaptive IaaS Cloud Environ-
ments. In SEAMS 2015, pages 46–56. IEEE Press, 2015. [see pages xiv, 94,
and 95]

[HKWG15b] Nikolas Herbst, Samuel Kounev, Andreas Weber, and Henning Groenda.
BUNGEE: An Elasticity Benchmark for Self-Adaptive IaaS Cloud Environ-
ments. In Proceedings of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2015), May
2015. Acceptance rate: 29%. [see pages 6 and 38]

[HS17] Wilhelm Hasselbring and Guido Steinacker. Microservice architectures
for scalability, agility and reliability in e-commerce. In Proceedings of the
IEEE International Conference on Software Architecture Workshops (ICSAW)
2017, pages 243–246. IEEE, April 2017. [see page 178]

[Hup09] Karl Huppler. The art of building a good benchmark. In Raghunath Nam-
biar and Meikel Poess, editors, Performance Evaluation and Benchmarking,
volume 5895 of Lecture Notes in Computer Science, pages 18–30. Springer
Berlin Heidelberg, 2009. [see pages 38 and 78]

[Hup12] Karl Huppler. Benchmarking with Your Head in the Cloud. In Raghu-
nath Nambiar and Meikel Poess, editors, Topics in Performance Evaluation,
Measurement and Characterization, volume 7144 of Lecture Notes in
Computer Science, pages 97–110. Springer Berlin Heidelberg, 2012. [see
page 78]

200

Bibliography

[HVK17] Jordan Hochenbaum, Owen S Vallis, and Arun Kejariwal. Automatic anomaly
detection in the cloud via statistical learning. arXiv preprint arXiv:1704.07706,
2017. [see page 108]

[Hyn11] R. Hyndman. Cyclic and seasonal time series, 2011. [see page 26]

[Hyn17] Rob J Hyndman. forecast: Forecasting Functions for Time Series and Linear
Models, 2017. R package version 8.1. [see pages 98, 110, and 165]

[IAEH+17] Alexey Ilyushkin, Ahmed Ali-Eldin, Nikolas Herbst, Alessandro V. Papadopou-
los, Bogdan Ghit, Dick Epema, and Alexandru Iosup. An Experimental Per-
formance Evaluation of Autoscaling Policies for Complex Workflows. In
Proceedings of the 8th ACM/SPEC International Conference on Performance
Engineering (ICPE 2017), New York, NY, USA, April 2017. ACM. Best Paper
Candidate (1/4). [see pages xiv, 6, 41, 67, and 161]

[IAEH+18] Alexey Ilyushkin, Ahmed Ali-Eldin, Nikolas Herbst, André Bauer, Alessan-
dro V. Papadopoulos, Dick Epema, and Alexandru Iosup. An Experi-
mental Performance Evaluation of Autoscalers for Complex Workflows.
ACM Transactions on Modeling and Performance Evaluation of Computing
Systems (ToMPECS), 3(2):8:1–8:32, April 2018. [see pages xiii, 6, and 67]

[IDCJ11] Waheed Iqbal, Matthew N Dailey, David Carrera, and Paul Janecek. Adaptive
Resource Provisioning for Read Intensive Multi-tier Applications in the Cloud.
Future Generation Computer Systems, 27(6):871–879, 2011. [see pages 2, 41,
148, and 149]

[ILFL12] Sadeka Islam, Kevin Lee, Alan Fekete, and Anna Liu. How a Consumer Can
Measure Elasticity for Cloud Platforms. In Proceedings of the 3rd ACM/SPEC
International Conference on Performance Engineering, ICPE ’12, pages 85–
96, New York, NY, USA, 2012. ACM. [see pages 37, 38, and 66]

[IYE11] A. Iosup, N. Yigitbasi, and D. Epema. On the Performance Variability of
Production Cloud Services. In CCGrid 2011, pages 104–113, 2011. [see
pages 2 and 161]

[JS15] Brendan Jennings and Rolf Stadler. Resource Management in Clouds: Survey
and Research Challenges. Journal of Network and Systems Management,
23(3):567–619, 2015. [see pages 33, 39, and 66]

[JW00] Prasad Jogalekar and Murray Woodside. Evaluating the scalability of dis-
tributed systems. IEEE Transactions on Parallel and Distributed Systems,
11:589–603, 2000. [see page 15]

[Kag15a] Kaggle Team. Avito winner’s interview: 1st place, Owen Zhang, 2015. [see
page 30]

[Kag15b] Kaggle Team. Caterpillar winners’ interview: 1st place, Gilberto, Josef, Leusta-
gos, Mario, 2015. [see page 30]

201

Bibliography

[Kag15c] Kaggle Team. Liberty mutual property inspection, winner’s interview: 1st
place, Qingchen Wang, 2015. [see page 30]

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, January 2003. [see page 48]

[KHBZ16] Samuel Kounev, Nikolaus Huber, Fabian Brosig, and Xiaoyun Zhu. A Model-
Based Approach to Designing Self-Aware IT Systems and Infrastructures. IEEE
Computer, 49(7):53–61, July 2016. [see pages 34, 94, and 96]

[KHvKR11] Michael Kuperberg, Nikolas Herbst, Jóakim Gunnarsson von Kistowski, and
Ralf Reussner. Defining and Quantifying Elasticity of Resources in Cloud
Computing and Scalable Platforms. Technical report, Karlsruhe Institute of
Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany, 2011. [see
pages xvii, 36, and 90]

[KKMZ17] Samuel Kounev, Jeffrey O. Kephart, Aleksandar Milenkoski, and Xiaoyun Zhu.
Self-Aware Computing Systems. Springer Publishing Company, Incorporated,
1st edition, 2017. [see page 17]

[KKZ+00] Tiruvalam Natarajan Krishnamurti, CM Kishtawal, Zhan Zhang, et al. Mul-
timodel ensemble forecasts for weather and seasonal climate. Journal of
Climate, 13(23):4196–4216, 2000. [see page 42]

[KLB+17] Samuel Kounev, Peter Lewis, Kirstie Bellman, Nelly Bencomo, Javier Camara,
Ada Diaconescu, Lukas Esterle, Kurt Geihs, Holger Giese, Sebastian Götz,
Paola Inverardi, Jeffrey Kephart, and Andrea Zisman. The Notion of Self-Aware
Computing. In Samuel Kounev, Jeffrey O. Kephart, Aleksandar Milenkoski,
and Xiaoyun Zhu, editors, Self-Aware Computing Systems. Springer Verlag,
Berlin Heidelberg, Germany, 2017. [see pages 17, 18, and 189]

[KPSCD09] Stephan Kraft, Sergio Pacheco-Sanchez, Giuliano Casale, and Stephen Daw-
son. Estimating service resource consumption from response time measure-
ments. In VALUETOOLS ’09, pages 1–10, 2009. [see pages 35 and 98]

[KSH14] Rouven Krebs, Philipp Schneider, and Nikolas Herbst. Optimization Method
for Request Admission Control to Guarantee Performance Isolation. In
Proceedings of the 2nd International Workshop on Hot Topics in Cloud
Service Scalability (HotTopiCS 2014), co-located with the 5th ACM/SPEC
International Conference on Performance Engineering (ICPE 2014). ACM,
March 2014. [see page xvi]

[KST17] Udayan Khurana, Horst Samulowitz, and Deepak S. Turaga. Feature en-
gineering for predictive modeling using reinforcement learning. CoRR,
abs/1709.07150, 2017. [see page 179]

[KTZ09] Dinesh Kumar, Asser Tantawi, and Li Zhang. Real-time performance modeling
for adaptive software systems. In VALUETOOLS ’09, pages 1–10, 2009. [see
pages 34 and 35]

202

Bibliography

[KWKC12] Max Kuhn, Steve Weston, Chris Keefer, and Nathan Coulter. Cubist models for
regression, 2012. https://cran.r-project.org/web/packages/
Cubist/vignettes/cubist.html, Last accessed: Dec 2017. [see
page 35]

[LB14] Sebastian Lehrig and Matthias Becker. Approaching the cloud: Using palla-
dio for scalability, elasticity, and efficiency analyses. In Proceedings of the
Symposium on Software Performance 2014, 26-28 November 2015, Stuttgart,
Germany, 2014. [see page 49]

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436, 2015. [see page 108]

[LBHK18] Veronika Lesch, André Bauer, Nikolas Herbst, and Samuel Kounev. FOX:
Cost-Awareness for Autonomic Resource Management in Public Clouds. In
Proceedings of the 9th ACM/SPEC International Conference on Performance
Engineering (ICPE 2018), New York, NY, USA, April 2018. ACM. Full paper
acceptance rate: 23.7%. [see pages xiv and 177]

[LBMAL14] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. A Review of Auto-
scaling Techniques for Elastic Applications in Cloud Environments. Journal
of Grid Computing, 12(4):559–592, 2014. [see pages 2, 33, 39, 66, 94, and 178]

[LHS11] Alysha M. De Livera, Rob J. Hyndman, and Ralph D. Snyder. Forecasting
Time Series With Complex Seasonal Patterns Using Exponential Smoothing.
Journal of the American Statistical Association, 106(496):1513–1527, 2011.
[see pages 94, 98, 163, and 165]

[Li10] Hui Li. Realistic workload modeling and its performance impacts in large-
scale escience grids. IEEE Transactions on Parallel and Distributed Systems,
21(4):480–493, 2010. [see page 35]

[LOZC12] Zheng Li, L. O’Brien, He Zhang, and R. Cai. On a Catalogue of Metrics for
Evaluating Commercial Cloud Services. In Grid Computing (GRID), 2012
ACM/IEEE 13th International Conference on, pages 164–173, Sept 2012. [see
pages 36 and 66]

[LTZ+14] Nian Liu, Qingfeng Tang, Jianhua Zhang, Wei Fan, and Jie Liu. A hybrid fore-
casting model with parameter optimization for short-term load forecasting of
micro-grids. Applied Energy, 129:336–345, 2014. [see page 42]

[LWXZ06] Zhen Liu, Laura Wynter, Cathy H. Xia, and Fan Zhang. Parameter inference of
queueing models for IT systems using end-to-end measurements. Elsevier
Perform. Evaluation, 63(1):36–60, 2006. [see page 35]

[LYKZ10] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. CloudCmp: Com-
paring Public Cloud Providers. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, IMC ’10, pages 1–14, New York, NY,
USA, 2010. ACM. [see pages 36 and 66]

203

https://cran.r-project.org/web/packages/Cubist/vignettes/cubist.html
https://cran.r-project.org/web/packages/Cubist/vignettes/cubist.html

Bibliography

[Man64] John Mandel. The Statistical Analysis of Experimental Data. Dover, 1964. [see
page 124]

[MAR+03] D. A. Menascé, V. A. F. Almeida, R. Riedi, F. Ribeiro, R. Fonseca, and W. Meira,
Jr. A hierarchical and multiscale approach to analyze e-business workloads.
Perform. Eval., 54(1):33–57, September 2003. [see page 36]

[MBS11] Michael Maurer, Ivona Brandic, and Rizos Sakellariou. Enacting Slas in Clouds
Using Rules. In Euro-Par 2011, pages 455–466. Springer, 2011. [see page 39]

[MDA04] Daniel A. Menascé, Lawrence W. Dowdy, and Virgilio A. F. Almeida.
Performance by Design: Computer Capacity Planning By Example. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2004. [see pages 13 and 34]

[Men08] Daniel Menascé. Computing missing service demand parameters for per-
formance models. In CMG Conference, pages 241–248, 2008. [see pages 35
and 98]

[Mey17] David Meyer. Support vector machines, 2017. [see page 165]

[MG11] Peter Mell and Timothy Grance. The NIST Definition of Cloud Comput-
ing. Technical report, U.S. National Institute of Standards and Technol-
ogy (NIST), 2011. Special Publication 800-145, http://csrc.nist.
gov/publications/nistpubs/800-145/SP800-145.pdf. [see
page 14]

[NBKR13] Qais Noorshams, Dominik Bruhn, Samuel Kounev, and Ralf Reussner. Predic-
tive performance modeling of virtualized storage systems using optimized
statistical regression techniques. In ACM/SPEC ICPE 2013, ICPE ’13, pages
283–294, New York, NY, USA, 2013. ACM. [see page 35]

[New99] H. Newton. The periodogram, 1999. [see page 28]

[NKK+11] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and
Andrew Y Ng. Multimodal deep learning. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 689–696,
2011. [see page 108]

[Noo15] Qais Noorshams. Modeling and Prediction of I/O Performance in Virtualized
Environments. PhD thesis, Karlsruhe Institute of Technology (KIT), 2015. [see
page 35]

[NSG+13] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John
Wilkes. AGILE: Elastic distributed resource scaling for infrastructure-as-a-
service. In Proceedings of the 10th International Conference on Autonomic
Computing (ICAC 13), pages 69–82, San Jose, CA, 2013. USENIX. [see page 2]

204

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Bibliography

[OCD12] OCDA. Master Usage Model: Compute Infratructure as a Ser-
vice. Technical report, Open Data Center Alliance (OCDA), 2012.
http://www.opendatacenteralliance.org/docs/ODCA_
Compute_IaaS_MasterUM_v1.0_Nov2012.pdf. [see page 14]

[Om14] P-O Östberg and more. The CACTOS Vision of Context-Aware Cloud
Topology Optimization and Simulation. In Proceedings of the Sixth IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom), pages 26–31, Singapore, December 2014. IEEE Computer Soci-
ety. [see page 49]

[P+09] Pradeep Padala et al. Automated control of multiple virtualized resources. In
ACM European Conference on Computer Systems, pages 13–26. ACM, 2009.
[see page 40]

[PAEÅ+16] Alessandro Papadopoulos, Ahmed Ali-Eldin, Karl-Erik Årzén, Johan Tordsson,
and Erik Elmroth. PEAS: A Performance Evaluation Framework for Auto-
Scaling Strategies in Cloud Applications. ACM ToMPECS, 1(4):1–31, August
2016. [see pages 37, 41, 67, and 161]

[PL05] Ping-Feng Pai and Chih-Sheng Lin. A hybrid arima and support vector ma-
chines model in stock price forecasting. Omega, 33(6):497–505, 2005. [see
page 42]

[Pla11] P. Plavchan. What is a periodogram?, 2011. [see page 28]

[PS12] Guillaume Pierre and Corina Stratan. ConPaaS: a Platform for Hosting Elas-
tic Cloud Applications. IEEE Internet Computing, 16(5):88–92, 2012. [see
page 40]

[PSB+09] D. C. Plummer, D. M. Smith, T. J. Bittman, D. W. Cearley, D. J. Cappuccio,
D. Scott, R. Kumar, and B. Robertson. Study: Five Refining Attributes of Public
and Private Cloud Computing. Technical report, Gartner, 2009. https://
www.gartner.com/newsroom/id/1035013, last consulted Jan. 2017.
[see page 13]

[PVB+18] Alessandro Vittorio Papadopoulos, Laurens Versluis, André Bauer, Nikolas
Herbst, Jóakim von Kistowski, Ahmed Ali-Eldin, Cristina Abad, J. Nelson Ama-
ral, Petr Tuma, and Alexandru Iosup. Methodological Principles for Repro-
ducible Performance Evaluation in Cloud Computing. Under Resubmission
to IEEE Transactions on Cloud Computing (TCC), 2018. [see pages xiii, 3,
and 6]

[Q+92] John R Quinlan et al. Learning with continuous classes. In Proceedings of the
5th Australian joint Conference on Artificial Intelligence, volume 92, pages
343–348. Singapore, 1992. [see page 35]

205

http://www.opendatacenteralliance.org/docs/ODCA_Compute_IaaS_MasterUM_v1.0_Nov2012.pdf
http://www.opendatacenteralliance.org/docs/ODCA_Compute_IaaS_MasterUM_v1.0_Nov2012.pdf
https://www.gartner.com/newsroom/id/1035013
https://www.gartner.com/newsroom/id/1035013

Bibliography

[RBX+09] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, Leyi Wang, and George Yin. VCONF:
a Reinforcement Learning Approach to Virtual Machines Auto-configuration.
In ACM ICAC 2009, pages 137–146. ACM, 2009. [see page 40]

[RLGPC+99] Arcadio Reyes-Lecuona, E González-Parada, E Casilari, JC Casasola, and
A Diaz-Estrella. A page-oriented www traffic model for wireless system simu-
lations. In Proceedings ITC, volume 16, pages 1271–1280, 1999. [see page 36]

[Rob16] Mike Roberts. Serverless architectures. https://martinfowler.com/
articles/serverless.html, 2016. Last accessed in January 2018. [see
page 176]

[RV95] Jerome Rolia and Vidar Vetland. Parameter estimation for performance mod-
els of distributed application systems. In CASCON ’95, page 54. IBM Press,
1995. [see pages 34 and 35]

[SA12] D.M. Shawky and A.F. Ali. Defining a Measure of Cloud Computing Elas-
ticity. In Systems and Computer Science (ICSCS), 2012 1st International
Conference on, pages 1–5, Aug 2012. [see pages 37 and 38]

[SCBK15] Simon Spinner, Giuliano Casale, Fabian Brosig, and Samuel Kounev. Eval-
uating Approaches to Resource Demand Estimation. Elsevier Performance
Evaluation, 92:51 – 71, October 2015. [see pages 6, 34, and 94]

[Sch12] Edwin Schouten. Rapid Elasticity and the Cloud, September
2012. http://thoughtsoncloud.com/index.php/2012/09/
rapid-elasticity-and-the-cloud/, last consulted Jan. 2017. [see
page 14]

[SCZK14] Simon Spinner, Giuliano Casale, Xiaoyun Zhu, and Samuel Kounev. LibReDE:
A library for Resource Demand Estimation. In ACM/SPEC ICPE 2014, pages
227–228. ACM, 2014. [see pages 96 and 98]

[SHK+15] Simon Spinner, Nikolas Herbst, Samuel Kounev, Xiaoyun Zhu, Lei Lu, Mustafa
Uysal, and Rean Griffith. Proactive Memory Scaling of Virtualized Applica-
tions. In Proceedings of the 2015 IEEE 8th International Conference on Cloud
Computing (IEEE CLOUD 2015), pages 277–284. IEEE, June 2015. Acceptance
Rate: 15%. [see page xiv]

[SIm15] Siqi Shen, Alexandru Iosup, and more. An availability-on-demand mechanism
for datacenters. In IEEE/ACM CCGrid, pages 495–504, 2015. [see page 177]

[SMC+08] Piyush Shivam, Varun Marupadi, Jeff Chase, Thileepan Subramaniam, and
Shivnath Babu. Cutting Corners: Workbench Automation for Server Bench-
marking. In USENIX 2008 Annual Technical Conference on Annual Technical
Conference, ATC’08, pages 241–254, Berkeley, CA, USA, 2008. USENIX Associ-
ation. [see page 83]

206

https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
http://thoughtsoncloud.com/index.php/2012/09/rapid-elasticity-and-the-cloud/
http://thoughtsoncloud.com/index.php/2012/09/rapid-elasticity-and-the-cloud/

Bibliography

[SSGW11] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloud-
scale: Elastic resource scaling for multi-tenant cloud systems. In Proceedings
of the 2nd ACM Symposium on Cloud Computing, SOCC ’11, pages 5:1–5:14,
New York, NY, USA, 2011. ACM. [see page 2]

[Sul12] Basem Suleiman. Elasticity Economics of Cloud-Based Applications. In
Proceedings of the 2012 IEEE Ninth International Conference on Services
Computing, SCC ’12, pages 694–695, Washington, DC, USA, 2012. IEEE Com-
puter Society. [see pages 37 and 66]

[SWHB06] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. Open versus
closed: a cautionary tale. In Proceedings of the 3rd conference on Networked
Systems Design & Implementation - Volume 3, NSDI’06, pages 18–18, Berke-
ley, CA, USA, 2006. USENIX Association. [see pages 19 and 81]

[SWK16] Simon Spinner, Jürgen Walter, and Samuel Kounev. A Reference Architecture
for Online Performance Model Extraction in Virtualized Environments. In
ACM/SPEC ICPE 2017, pages 57–62. ACM, 2016. [see page 96]

[TJDB06] Gerald Tesauro, Nicholas K Jong, Rajarshi Das, and Mohamed N Bennani. A
Hybrid Reinforcement Learning Approach to Autonomic Resource Allocation.
In IEEE ICAC 2006, pages 65–73. IEEE, 2006. [see page 40]

[TTP14] Christian Tinnefeld, Daniel Taschik, and Hasso Plattner. Quantifying the
Elasticity of a Database Management System. In DBKDA 2014, The Sixth
International Conference on Advances in Databases, Knowledge, and Data
Applications, pages 125–131, 2014. [see pages 37 and 66]

[U+05] Bhuvan Urgaonkar et al. An Analytical Model for Multi-Tier Internet Services
and its Applications. In ACM SIGMETRICS, 2005. [see page 148]

[USC+08] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal, and
Timothy Wood. Agile Dynamic Provisioning of Multi-tier Internet Applica-
tions. ACM TAAS, 3(1):1, 2008. [see pages 2, 40, 41, and 148]

[VHNC10] Jan Verbesselt, Rob Hyndman, Glenn Newnham, and Darius Culvenor. De-
tecting trend and seasonal changes in satellite image time series. Remote
Sensing of Environment, 114(1):106 – 115, 2010. [see pages 24, 52, and 113]

[vHRH08] André van Hoorn, Matthias Rohr, and Wilhelm Hasselbring. Generating prob-
abilistic and intensity-varying workload for web-based software systems. In
Proceedings of the SPEC international workshop on Performance Evaluation:
Metrics, Models and Benchmarks, SIPEW ’08, pages 124–143, Berlin, Heidel-
berg, 2008. Springer-Verlag. [see page 34]

[vHVS+14] André van Hoorn, Christian Vögele, Eike Schulz, Wilhelm Hasselbring, and
Helmut Krcmar. Automatic extraction of probabilistic workload specifica-
tions for load testing session-based application systems. In Proceedings of

207

Bibliography

the 8th International Conference on Performance Evaluation Methodologies
and Tools, VALUETOOLS ’14, pages 139–146, ICST, Brussels, Belgium, Bel-
gium, 2014. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering). [see page 34]

[vKHK14a] Jóakim von Kistowski, Nikolas Herbst, and Samuel Kounev. LIMBO: A Tool
For Modeling Variable Load Intensities. In Proceedings of the 5th ACM/SPEC
International Conference on Performance Engineering (ICPE 2014), ICPE ’14,
pages 225–226, New York, NY, USA, March 2014. ACM. [see pages xvi, 66,
and 81]

[vKHK14b] Jóakim von Kistowski, Nikolas Herbst, and Samuel Kounev. LIMBO Load
Intensity Modeling Tool. Research Group of the Standard Performance
Evaluation Corporation (SPEC), Peer-reviewed Tools Repository, https:
//research.spec.org/tools/overview/limbo.html, 2014. [see
page xvii]

[vKHK14c] Jóakim von Kistowski, Nikolas Herbst, and Samuel Kounev. Model-
ing Variations in Load Intensity over Time. In Proceedings of the 3rd
International Workshop on Large-Scale Testing (LT 2014), co-located with
the 5th ACM/SPEC International Conference on Performance Engineering
(ICPE 2014), pages 1–4, New York, NY, USA, March 2014. ACM. [see page xvi]

[vKHK14d] Jóakim von Kistowski, Nikolas Herbst, and Samuel Kounev. Using and Extend-
ing LIMBO for the Descriptive Modeling of Arrival Behaviors. In Proceedings
of the Symposium on Software Performance 2014, pages 131–140. Univer-
sity of Stuttgart, Faculty of Computer Science, Electrical Engineering, and
Information Technology, November 2014. Best Poster Award. [see page xvi]

[vKHK+17] Jóakim von Kistowski, Nikolas Herbst, Samuel Kounev, Henning Groenda,
Christian Stier, and Sebastian Lehrig. Modeling and Extracting Load Intensity
Profiles. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
11(4):23:1–23:28, January 2017. [see pages xiii, 5, and 38]

[vKHZ+15] Jóakim von Kistowski, Nikolas Herbst, Daniel Zoller, Samuel Kounev, and An-
dreas Hotho. Modeling and Extracting Load Intensity Profiles. In Proceedings
of the 10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS 2015), May 2015. Acceptance rate: 29%.
[see page xiv]

[vMvHH11] Robert von Massow, André van Hoorn, and Wilhelm Hasselbring. Perfor-
mance simulation of runtime reconfigurable component-based software ar-
chitectures. In Ivica Crnkovic, Volker Gruhn, and Matthias Book, editors,
Software Architecture, pages 43–58, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg. [see page 40]

[Wei11] Joe Weinman. Time is Money: The Value of “On-Demand”, 2011. (accessed
July 9, 2014). [see pages 37 and 66]

208

https://research.spec.org/tools/overview/limbo.html
https://research.spec.org/tools/overview/limbo.html

Bibliography

[WHGK14] Andreas Weber, Nikolas Herbst, Henning Groenda, and Samuel Kounev.
Towards a Resource Elasticity Benchmark for Cloud Environments. In
Proceedings of the 2nd International Workshop on Hot Topics in Cloud
Service Scalability (HotTopiCS 2014), co-located with the 5th ACM/SPEC
International Conference on Performance Engineering (ICPE 2014), Hot-
TopiCS ’14, pages 5:1–5:8, New York, NY, USA, March 2014. ACM. [see page xvi]

[WM97] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, Apr 1997. [see
pages 41, 107, and 108]

[Wm12] Wei Wang and more. Application-Level CPU Consumption Estimation: To-
wards Performance Isolation of Multi-tenancy Web Applications. In IEEE
CLOUD 2012, pages 439–446, June 2012. [see pages 34, 35, and 98]

[Wol11] Rich Wolski. Cloud Computing and Open Source: Watching Hype meet
Reality, May 2011. http://www.ics.uci.edu/~ccgrid11/files/
ccgrid-11_Rich_Wolsky.pdf, last consulted Jan. 2017. [see page 14]

[WSMH09] Xiaozhe Wang, Kate Smith-Miles, and Rob Hyndman. Rule Induction for
Forecasting Method Selection: Meta-learning the Characteristics of Univariate
Time Series. Neurocomputing, 72(10 - 12):2581 – 2594, 2009. [see pages 31,
42, 57, and 98]

[ZBH+17] Marwin Züfle, André Bauer, Nikolas Herbst, Valentin Curtef, and Samuel
Kounev. Telescope: A Hybrid Forecast Method for Univariate Time Series.
In Proceedings of the International work-conference on Time Series 2017,
September 2017. [see pages xv and 7]

[ZCS07] Qi Zhang, Ludmila Cherkasova, and Evgenia Smirni. A Regression-based
Analytic Model for Dynamic Resource Provisioning of Multi-tier Applications.
In IEEE ICAC 2007, pages 27–27. IEEE, 2007. [see page 40]

[ZF13] Netanel Zakay and Dror G. Feitelson. Workload resampling for performance
evaluation of parallel job schedulers. In Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering, ICPE ’13, pages 149–
160, New York, NY, USA, 2013. ACM. [see page 34]

[Zha03] G Peter Zhang. Time series forecasting using a hybrid arima and neural
network model. Neurocomputing, 50:159–175, 2003. [see pages 32 and 42]

[ZZB11] Qi Zhang, Quanyan Zhu, and Raouf Boutaba. Dynamic resource allocation
for spot markets in cloud computing environments. In IEEE UCC 2011, pages
178–185. IEEE, 2011. [see page 177]

209

http://www.ics.uci.edu/~ccgrid11/files/ccgrid-11_Rich_Wolsky.pdf
http://www.ics.uci.edu/~ccgrid11/files/ccgrid-11_Rich_Wolsky.pdf

	Introduction
	Motivation and Context
	State-of-the-Art and Problem Statement
	Guiding Goals and Research Questions
	Contribution and Evaluation Summary
	Thesis Outline

	Foundations and State-of-the-Art
	Foundations
	Elasticity in Cloud Computing
	Prerequisites
	Definition of Elasticity in Cloud Computing
	Elasticity Dimensions and Core Aspects
	Differentiation to Scalability and Efficiency

	Self-Aware Computing Systems
	Time Series Analysis
	Time Series and Load Intensity Profiles
	Error Measures for Forecasting Results
	Time Series Decomposition
	Seasonal vs. Cyclic Time Series
	Frequency Estimations using Periodogram
	Machine Learning Aproaches for Time Series Forecasting
	Statistical Modeling Frameworks for Time Series Forecasting

	State-of-the-Art
	Approaches to Workload Modeling
	User Behavior Models
	Service Demand Focused Workload Modeling
	Regression Techniques
	Statistical Inter-Arrival Models

	Related Elasticity Metrics and Measurement Approaches
	Related Elasticity Metrics
	Elasticity Measurement Approaches

	On the State of the Art in Auto-Scaling
	Threshold-based Rule Auto-Scalers
	Auto-Scalers based on Queueing Theory
	Auto-Scalers based on Control Theory
	Auto-Scalers based on Reinforcement Learning
	Auto-Scalers leveraging Time Series Analysis

	Related Work on Hybrid Forecasting
	Ensemble Forecasting
	Forecaster Recommendation
	Feature Engineering based on Decomposition

	Benchmarking Elasticity of Auto-Scaling Mechanisms
	Modeling and Extraction Load Intensity Profiles
	Introduction
	The Descartes Load Intensity Models DLIM and hl-DLIM
	DLIM Model
	High-level DLIM

	Model Instance Extraction
	Extracting a s-DLIM and p-DLIM Instance
	Extracting an hl-DLIM Instance

	Delimitation from the State-of-the-Art in Load Profile Modeling
	Concluding Remarks

	Elasticity Metrics and Measurement Methodology
	Introduction
	Elasticity Metrics
	Provisioning Accuracy
	Wrong Provisioning Time Share
	Instability
	Alternative Stability Measure Jitter

	Aggregating Elasticity Metrics
	Auto-Scaling Deviation
	Pairwise Competition
	Elastic Speedup

	Metric Discussion
	Bungee Elasticity Benchmarking Framework
	Load Modeling and Generation
	Analysis and Calibration
	Measurement and Metric Calculation
	Limitations of Scope

	Concluding Remarks

	Methods for Reliable Auto-Scaling
	Hybrid Auto-Scaling
	Introduction
	Chameleon Design Overview
	Forecast Component
	LibReDE Resource Demand Estimation Component

	Decision Management
	Event Manager
	Assumptions and Limitations
	Concluding Remarks

	Forecasting Complex Seasonal Time-Series
	Telescope Approach
	Concluding Remarks

	Evaluation
	Load Profile Model Accuracy Evaluation
	Internet Traffic Archive and BibSonomy Traces
	Wikipedia and CICS Traces
	Summary

	Evaluation of Elasticity Metrics and Bungee Measurement Methodology
	Experiment Setup
	Threshold-based Auto-Scaler Parameters
	Benchmark Controller Configuration

	System Analysis Evaluation
	Reproducibility
	Linearity Assumption
	Summary of System Analysis Evaluation

	Metric Evaluation
	Experiment 1: Underprovisioning Accuracy
	Experiment 2: Overprovisioning Accuracy
	Experiment 3: Underprovisioning Timeshare
	Experiment 4: Overprovisioning Timeshare
	Experiment 5: Oscillations for Positive Jitter and Instability
	Experiment 6: Inertia for Negative Jitter and Instability
	Summary of Metric Evaluation Experiments

	Benchmark Methodology Case Study
	System Configuration
	Results

	Summary

	The Hybrid Auto-Scaler Chameleon in a Benchmark Competition
	Workload and Application
	Competing Auto-Scalers
	Reactive
	Adapt
	Hist
	Reg
	ConPaaS

	Experiment Results
	Introduction to the Results
	Auto-Scaler Performance Variability
	Auto-Scaling in Private vs. Public IaaS Clouds
	Side-Evaluation: The Impact and Quality of Forecasting in Chameleon

	Overall Evaluation Results
	Threats to Validity
	Summary

	Telescope Forecasting Prototype: Preliminary Evaluation and Case Study
	Preliminary Forecast Accuracy Evaluation based on Selected Time-Series
	Chameleon Auto-Scaling Case Study leveraging Telescope Forecasts
	Summary

	Conclusions and Outlook
	Conclusions and Outlook
	Thesis Summary
	Open Challenges and Outlook
	Challenges of Elasticity in Applications Scaling Multiple Services
	Emerging Challenges due to Technological Evolution
	Future Work on Self-Aware Forecasting

	Appendices
	List of Figures
	List of Tables
	Bibliography

