
October 2016 v Volume 7(10) v Article e014981 v www.esajournals.org

Temporal segmentation of animal trajectories informed  
by habitat use

Mariëlle L. van Toor,1,2,† Scott H. Newman,3 John Y. Takekawa,4,5 Martin Wegmann,6  
and Kamran Safi1,2

1Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany
2Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany

3Food and Agriculture Organization of the United Nations, Emergency Centre for Transboundary Animal Diseases,  
No. 3 Nguyen Gia Thieu Street, Hanoi, Vietnam

4U.S. Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field Station, 505 Azuar Drive,  
Vallejo, California 94592 USA

5Science Division, National Audubon Society, 220 Montgomery Street, San Francisco, California 94104 USA
6Department of Remote Sensing, Institute for Geography and Geology, University of Würzburg, Campus Hubland Nord 86,  

97074 Würzburg, Germany

Citation: van Toor, M. L., S. H. Newman, J. Y. Takekawa, M. Wegmann, and K. Safi. 2016. Temporal segmentation of 
animal trajectories informed by habitat use. Ecosphere 7(10):e01498. 10.1002/ecs2.1498

Abstract.   Most animals live in seasonal environments and experience very different conditions through-
out the year. Behavioral strategies like migration, hibernation, and a life cycle adapted to the local sea-
sonality help to cope with fluctuations in environmental conditions. Thus, how an individual utilizes 
the environment depends both on the current availability of habitat and the behavioral prerequisites of 
the individual at that time. While the increasing availability and richness of animal movement data has 
facilitated the development of algorithms that classify behavior by movement geometry, changes in the 
environmental correlates of animal movement have so far not been exploited for a behavioral annota-
tion. Here, we suggest a method that uses these changes in individual–environment associations to divide 
animal location data into segments of higher ecological coherence, which we term niche segmentation. We 
use time series of random forest models to evaluate the transferability of habitat use over time to cluster 
observational data accordingly. We show that our method is able to identify relevant changes in habitat 
use corresponding to both changes in the availability of habitat and how it was used using simulated data, 
and apply our method to a tracking data set of common teal (Anas crecca). The niche segmentation proved 
to be robust, and segmented habitat suitability outperformed models neglecting the temporal dynamics of 
habitat use. Overall, we show that it is possible to classify animal trajectories based on changes of habitat 
use similar to geometric segmentation algorithms. We conclude that such an environmentally informed 
classification of animal trajectories can provide new insights into an individuals’ behavior and enables us 
to make sensible predictions of how suitable areas might be connected by movement in space and time.
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Introduction

The technological advances that allow us to 
follow animals in the wild have revolutionized 
the field of movement ecology (Cagnacci et  al. 

2010, Hussey et al. 2015, Kays et al. 2015). Since 
the invention of simple tags such as bird bands a 
centennial ago, the miniaturization and increased 
efficiency in power consumption have given rise 
to modern tags which transmit or record locations 
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of the tagged animals at an unprecedented rate. 
Animal location data have become ever more 
accurate in space and time, and the duration 
over which a single individual can be observed 
steadily increased. Thus, animal movement data 
have become not only more accurate, but also 
much more abundant. With the increased spa-
tiotemporal resolution owed to the technological 
developments, the amount of details that can be 
gleaned from movement data has also increased. 
It is now possible to not only know where animals 
were and how much space they used, but also 
what they were doing during the time of obser-
vation. The contextualization of locations, that is, 
the ability to put locations in a behavioral context, 
allows us to address important questions like 
how an individual allocates its time and energy 
to specific behaviors. Contextualization also is the 
basis on which we can associate resource distri-
bution with a more detailed perspective of space 
use, as well as study the interactions between 
tagged individuals or even species, particularly 
in predator–prey dyads. The identification of 
behavior from animal trajectories thus provides 
a unique and important perspective on ecology in 
high detail in the wild.

While in the past mainly expert opinion was 
used for the behavioral classification of animal 
trajectories, the exponential growth of collected 
movement data as well as the necessity for repro-
ducibility poses logistical limits on expert-based 
contextualization. Hence, behavioral classifica-
tion is being increasingly based on algorithms 
often referred to as segmentation algorithms. 
These algorithms subset a behaviorally hetero-
geneous trajectory into a discrete number of 
segments that characterize distinct patterns rep-
resenting coherent behavior (Gurarie et al. 2016). 
Current segmentation algorithms often rely on 
metrics such as speed and tortuosity of the tra-
jectory and are in general based on the geometry 
of the movement alone (e.g., Gurarie et al. 2009, 
Garriga et al. 2016).

Trajectories can, however, be characterized not 
only by their geometry, but also by the environ-
mental conditions an individual was observed 
in. Certain behaviors like foraging and resting 
are often tied to a specific habitat, as observed in, 
for example, Spanish stone martens (Martes foina) 
who use pastures for foraging and orchards for 
resting (Santos and Santos-Reis 2009). Similarly, 

the association between an animal and its envi-
ronment can change with changing life-history 
stages. For example, some species of migratory 
birds use very different habitat in their temper-
ate breeding grounds compared to what they use 
in the tropical wintering areas (Martínez-Meyer 
et al. 2004, Nakazawa et al. 2004, Batalden et al. 
2007). Finally, habitat segregation can occur 
for different age classes of the same species, for 
example, in cave salamanders (Hydromantes 
(Speleomantes) strinatii, Ficetola et al. 2012).

Thus, behavior across multiple temporal scales 
can be linked to the environment an individual is 
observed in. In the reverse conclusion, changes 
in the association between an individual and 
its environment could thus indicate changes in 
behavior. These changes in the association of 
individuals with their surrounding environment 
can be the consequence of different processes: 
The individual moved to a different habitat, the 
environment itself changed over time, or both 
happened in parallel, all of which can be indica-
tive of a behavioral change.

We argue that the changes in the relationship 
between an individual and its environment can, 
similar to a segmentation based on movement 
geometry, be utilized for a behavioral segmenta-
tion of trajectories. In this study, we suggest a new 
class of segmentation algorithms that uses envi-
ronmental correlates of a trajectory, rather than 
movement geometry, for behavioral classification. 
We will utilize changes in the realized ecological 
niche of tracked individuals and, by comparing 
snapshots of their habitat use, introduce niche 
segmentation for movement trajectories. Besides 
being important for a better understanding of 
how individuals change their behavior in relation 
to changes in the environment, niche segmenta-
tion is also a key to finding a minimum adequate 
number of time-explicit niche models when mod-
eling habitat use of animals that undergo niche 
shifts in their life cycle. The identification of dis-
tinct realized niche volumes is pivotal to accu-
rately predict where animals will eventually be 
for a specific life-history stage, or under specific 
environmental conditions.

Segmentation of animal trajectories by changes in 
habitat use

Our approach to niche segmentation is based 
on the classic habitat suitability, or ecological 
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niche model (also termed species distribution 
models, SDM), and uses a measure of transfer-
ability to cluster subsets of a trajectory into seg-
ments based on their similarity in habitat use. 
Species distribution models are derived from the 
Grinnellian and Hutchinsonian niche concepts 
(Grinnell 1917, Hutchinson 1957, Soberón 2007) 
and capture the environment species preferen-
tially occur in to understand and approximate the 
potential distribution and abundance of individ-
uals, populations, and species in space (e.g., 
Sattler et al. 2007). While originally developed for 
the estimation of a species’ ecological niche, 
SDMs are now also being used on the level of ani-
mal groups or individuals to identify intraspecies 
variation in habitat use, for example, between age 
classes (Ficetola et  al. 2012) or sexes (van Toor 
et al. 2011). One of the main advantages of SDMs 
is that they can describe a complex environment 
in terms of a single metric—habitat suitability—
which is based on where a species or an individ-
ual occurs, and which environmental conditions 
are available. In contrast to a multivariate descrip-
tion of the environmental conditions at a given 
location, habitat suitability at a specific location 
can be easily compared across, for example, indi-
viduals or for different points in time.

To evaluate changes in habitat use along a series 
of animal locations, we divide an environmentally 
annotated trajectory into non-overlapping win-
dows of equal window size S (Fig. 1, step 1). We 
model habitat use within each of these windows 
using an SDM and subsequently compare habitat 
use between windows. To do so, we estimate the 
pairwise similarity in habitat use between all win-
dows using a measure of transferability, which 
we refer to as the Discriminatory Index (DI, see 
Section 1 in Appendix S1). The DI quantifies how 
well a SDM can discriminate between presences 
and pseudoabsences, taking values between 1 
(perfectly correct discrimination) and −1 (com-
plete opposite prediction). By calculating the DI of 
all pairwise comparisons of windows, we obtain 
a matrix of transferability that estimates similar-
ity of habitat use across the SDMs of all windows 
(Fig.  1, step 2). Finally, we group the windows 
into niche segments based on the similarity of 
habitat use through a clustering of the transfer-
ability matrix (Fig. 1, step 3). To achieve this, we 
ordinate the transferability matrix such that win-
dows for which DI is higher become placed closer 

to each other, and windows for which DI is lower 
become placed further apart in two-dimensional 
space. A clustering is then applied to the ordina-
tion axes derived from the transferability matrix. 
In contrast to assuming a priori a number of clus-
ters, we determine the number of clusters that 
produces the most compliant clustering using the 
respective cluster silhouettes (Rousseeuw 1987). 
The resulting clustering of windows is finally 
used to annotate the original data with an envi-
ronmentally informed segmentation, which we 
refer to as niche segmentation (Fig. 1, step 4).

Testing the niche segmentation with simulated data
We test our niche segmentation concept first on 

simulated environmental and movement data. 
This allows us to evaluate whether known 
changes in habitat use can be detected using our 
approach, an assessment which would be impos-
sible to make in empirical animal trajectories. We 
consider the two different processes that can lead 
to shifts in the relationship between an individ-
ual and its environment, and their combination: 
(1) changes in the environment available to the 
individuals without changes in habitat prefer-
ence (niche following), (2) changes in the habitat 
preference of individuals without changes in the 
environment (niche switching), or (3) both pro-
cesses in parallel (simultaneous change). By inte-
grating all three of these processes into the 
simulated data, we can investigate whether 
changes in habitat preference or changes in the 
surrounding environment are more likely to be 
detected by the niche segmentation.

For our simulations we simulate movement 
trajectories using correlated random walks 
(CRW, e.g., Codling et al. 2008) which we biased 
by modeled preferences for the surrounding 
environmental conditions. Different from an 
unbiased CRW, the environmental conditions at 
every possible location are taken into account in 
an iterative stepwise simulation of the trajecto-
ries. This preference for a certain environmental 
condition is thus incorporated in the movement 
trajectory, and results in a realized niche reflect-
ing this preference. We introduce changes in hab-
itat use by switching this preference at specific 
known points in time mimicking niche switch-
ing, and/or gradually changing the environ-
mental conditions to simulate niche following 
and the simultaneous change of both. We then 
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Fig. 1. Flow chart outlining the process of the niche segmentation.
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use the niche segmentation concept to identify 
break points in the observed habitat use of the 
simulated trajectories, and test the ability of the 
method to reconstruct the underlying, simulated 
process.

Application to an empirical tracking data set of 
common teal

Finally, we apply the niche segmentation 
approach to empirical tracking data of the com-
mon teal, a small species of dabbling duck with a 
wide distribution in the Northern hemisphere 
(Anas crecca, L. 1758). We make no a priori 
assumption about the timing of changes in habi-
tat use over the annual cycle of the common teal, 
but instead reconstruct it from the data using the 
niche segmentation. While this species is resident 
in some parts of its range, most of the popula-
tions are considered migratory. We therefore  
expect to find changes in the temporal signature 
of habitat use at least as an effect of the migration 
between breeding and wintering ranges. Typical 
for empirical animal movement data sets is that 
they contain many idiosyncrasies making the 
analysis more challenging compared to simu-
lated trajectories. We show how to address typi-
cally occurring characteristics of empirical data 
in the segmentation approach, such as irregular 
sampling or the inclusion of location error.

In this study, we focus our main interest on sea-
sonal changes of habitat use. We repeat the niche 
segmentation using four different window sizes 
S to investigate how the choice of S influences 
the resulting segmentation. Subsequently, we 
evaluate whether the niche segments detected 
by the segmentation reflect relevant changes in 
habitat use known for the species. We derive a 
set of SDMs specific to the niche segments iden-
tified by the segmentation to compare the spa-
tial predictions of habitat suitability to the life 

history of common teal as published in the liter-
ature. Furthermore, we test how migration and 
catching site of individuals contributed to the 
resulting segmentation of the data set. Finally, 
we compare the performance of SDMs derived 
for niche segments to SDMs based on the com-
plete data set.

Materials and Methods

Data preparation
Simulated data.—We used simulations to test 

the capability of our segmentation method to 
detect changes in habitat use under three different 
scenarios: (1) niche following (constant habitat 
preference in a changing environment), (2) niche 
switching (changing habitat preference in a 
constant environment), and (3) a simultaneous 
change (changing habitat preference and cha
nging environment). We also allowed other 
parameters to vary, namely the number of niche 
segments introduced to the simulated data, and 
the size of windows the data were partitioned 
by  (S). For each scenario, we varied all these 
parameters to estimate their effect on the accuracy 
of the method (Table  1), and computed 1000 
replicates per scenario and number of niche 
segments while S was chosen randomly. To sim
ulate the movements of individuals in artificial 
landscapes, we used random fields (Schlather 
et al. 2015, R-package RandomFields, version 3.1.8) 
and CRWs biased by habitat preference. We 
created landscapes using a Whittle–Matern cov
ariance model on a grid of 250 by 250 cells of 
arbitrary size. This size was chosen because it 
was sufficiently large such that no simulated 
individual ever encountered an edge, thus 
avoiding edge effects. The habitat preference 
of individuals was sampled from the range bet
ween the 5%- and 95%-quantiles of the available 

Table 1. Setup for the different simulation experiments.

Parameter Niche following Niche switching Simultaneous change

Total number of replicates 4000 4000 4000
Habitat preference Constant Variable Variable
Environment Variable Constant Variable
Number of niche segments Variable (3–5) Variable (3–5) Variable (3–5)
Window size S Random (50–500) Random (50–500) Random (50–500)

Notes: Listed are all parameters used and how they were handled for each of the different scenarios. We computed 1000 
replicates for every combination of parameters, except for window size which was chosen randomly.
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environmental conditions. We calculated a bias 
layer from the environment by normalizing the 
absolute difference between the individuals’ 
preference and the environmental value for each 
grid cell. For each of the simulations, we used a 
group of five individuals. The starting locations 
for the individuals were sampled from a circle 
around the grid center with a radius of 50 cells, 
and weighted by the corresponding bias layer 
values. For the biased CRWs, we created a two-
dimensional kernel density of step lengths 
(Weibull distribution with k  =  2 and λ  =  1) and 
turning angles (wrapped Cauchy distribution 
with μ = 0 rad and γ = 0.9) with 100 by 100 grid 
cells, representing 1000 potential steps of varying 
probability.

At each point in time (t), we calculated the 
putative end locations of all 1000 steps relative to 
the individual’s previous position xt − 1. The real-
ized step with the new position xt was sampled 
from all possible steps weighted by the product 
of their probability (the kernel density) and the 
environmental bias of the corresponding loca-
tions. For the three different simulation scenar-
ios, the data for the segmentation were prepared 
as follows: (1) Niche following; We simulated a 
gradual change in the environment by shifting 
the values of the initial environmental layer by 
an arbitrary amount, and interpolated the num-
ber of desired segments between these two lay-
ers. Then, all individuals were allowed to take 
100 steps on each of the layers, with the starting 
location on each layer corresponding to the last 
position on the previous layer. (2) Niche switch-
ing; For each niche segment, all individuals were 
allowed to take 100 steps, resulting in a total of 
500 presence locations for all five individuals. 
After reaching the last location, a new envi-
ronmental preference was sampled and a new 
bias  layer computed, and the process repeated. 

(3) Simultaneous change; In this case, we first cre-
ated the environmental time series as in (1), then 
sampled the number of species segments (either 
smaller or equal to the number of environmental 
segments). Again, for each of the segments, the 
individuals were allowed to take 100 steps in the 
corresponding environment and biased by the 
corresponding preference. We sampled 500 loca-
tions per segment as pseudoabsences to achieve 
a 1:1-ratio of presences vs. absences. Both pres-
ences and pseudoabsences were subsequently 
annotated with the environmental information in 
space and time. To prepare the data for segmen-
tation, the complete data set with information 
on position, presence or absence, environmental 
conditions, and the true niche segment for both 
environment and the individuals’ habitat prefer-
ence was partitioned into windows with the pre-
defined size S. We provide a commented R-script 
that provides all necessary details to repeat the 
simulations in the Data S1.

Tracking data of common teal
In addition to the simulation study, we tested 

our method on a tracking data set of the common 
teal. Between 2007 and 2010, 34 individuals of 
common teal were caught at five different study 
sites (China, India, Kazakhstan, Egypt, and 
Turkey) and equipped with ARGOS tags before 
release (PTT-100; Microwave Telemetry, Colu
mbia, Maryland, USA). These tracking data are 
part of a broader disease and migration ecology 
study implemented by the Food and Agricultural 
Organization of the United Nations (FAO) and 
the U.S. Geological Survey (USGS). Locations 
were taken throughout the day, and 6448 posi-
tions for 22 individuals were obtained in total 
(Table 2). The median sampling frequency for all 
individuals was 0.83 fixes per hour (25%-quantile: 
0.24 fixes per hour, 75%-quantile: 2.40 fixes per 

Table 2. A summary over the catching sites and corresponding sample sizes.

Catching site Year
Number of 
individuals First fix taken

Tracking days 
(mean ± SD)

Locations 
(mean ± SD)

China/Lake Poyang 2007 3 March 18–20 336 ± 243 289 ± 157
Egypt 2009 8 January 18–November 26 161 ± 126 182 ± 293
India 2008 5 December 9–18 133 ± 81 211 ± 112
Kazakhstan 2008 2 September 15–17 89 ± 47 96 ± 50
Turkey 2010 4 February 10–15 232 ± 99 720 ± 383

Note: The number of tracking days and locations are listed as a mean per individual.
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hour). These tracking data show characteristics 
that are typical of empirical data, and we 
addressed these using different approaches as 
described below:

Variation in location error.—A common con-
founder of tracking data is the use of different 
tags or geopositioning sensors for the collection 
of animal movement data. The effect is a variation 
of location error in the data set, and consequently 
the corresponding environmental conditions. To 
account for this, we corrected for location error 
using temporally explicit estimates of the indi-
viduals’ space use rather than the actual loca-
tions. From these utilization distributions (UD), 
we derived pseudopresences that better reflect 
the actual distribution of individuals in space. 
We used the dynamic Brownian Bridge move-
ment model (dBBMM, Kranstauber et  al. 2012, 
R-package move, version 1.2.475) which estimates 
the UD of an individual from its movement path 
while also accounting for temporal autocorrela-
tion and the spatial error of locations. Moreover, 
the dBBMM is time explicit, allowing us to esti-
mate an individual’s UD at any given point in 
time. We applied the dBBMM to each of the indi-
vidual tracks, using the estimates from Douglas 
et  al. (2012) to associate each location with the 
respective spatial error according to its ARGOS 
quality class. Prior to the sampling of pseudo-
presence locations, we split the dBBMM by day 
to obtain estimates of the UD during each day of 
tracking. We sampled 24 locations from the daily 
99%-UDs weighted by the likelihood of the indi-
vidual having used that location as indicated by 
the UD.

Individuals from multiple populations.—Our data 
set was comprised of individuals from multiple 
populations and study years. While such a setup 
is generally desirable, here individuals from for 
example China were caught and tagged in 2007, 
whereas Kazakhstan served as a study site only 
in 2008. Temporal changes in habitat use in this 
data set might thus have been caused by changes 
in the realized niche of individuals, but also by 
the change in study site over the years. For this 
reason, we pooled the available location data for 
all study years and applied the segmentation to 
the data using Julian days.

Irregular sampling.—Irregular sampling caused 
by intentionally irregular sampling schemes, 
missed fixes, or fluctuations in battery power can 

cause problems with methods that expect a 
regular time series of locations. For the niche 
segmentation, irregular sampling is especially 
relevant to the choice of a suitable window size S. 
The choice of S influences both the temporal 
resolution with which changes in habitat can be 
detected, but also the sample size available for 
the SDMs. We chose the position of windows so 
that larger temporal gaps fall between, rather 
than within windows. To accommodate the 
resulting differences in temporal spacing of 
windows, we incorporated this temporal 
information during the ordination of the 
transferability matrix using a constraining matrix 
that reflects the difference between the last date 
of one window and the first location of the 
subsequent window in days.

Lack of true absence data.—As true absences 
were  not available, we sampled pseudoabsence 
data. We used the tracking data to estimate the 
area available to the individuals instead of 
drawing random samples from a previously spe
cified spatial area, which has been reported to 
affect sensitivity and specificity of SDMs (Václavík 
et al. 2012). To achieve this, we randomized the 
steps of all individual trajectories. We kept the 
start and end locations of trajectories constant, 
and randomized the order of steps in-between 
these locations. We then used the corresponding 
step lengths and turning angles to calculate the 
trajectories in the randomized order. This leads to 
a wide spread of random tracks around the actual 
movement of ducks both in space and in time, 
which we took as a reflection of where the animals 
could have been during the same time of year. We 
generated 100 alternative routes for each indivi
dual, calculated dBBMMs for these, and sampled 
pseudoabsence locations in the same way as we 
did for the presence locations.

We annotated all locations with environmen-
tal information using the Movebank Env-DATA-
Tool (Dodge et  al. 2013). We initially chose 57 
variables containing information on climate, land 
use, elevation, human impact and vegetation 
features. Variables available as time series were 
interpolated linearly from the closest available 
measurements in time weighted by the inverse 
temporal distance. We eliminated all environ-
mental variables for which more than 10% of 
the data were missing, so that only 19 variables 
remained (Appendix S1: Table S1).
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We repeated the segmentation procedure 
(see section Segmentation) using four different 
window sizes for the initial partitioning of the 
data (S: 500, 1000, 1500, 2000 locations). First we 
divided the data into subsets so that no subset 
contained large temporal gaps (>10 d). We then 
divided the data subsets into the smallest possi-
ble temporal units that met a minimum data cri-
terion, for which we used the window size S.

Segmentation
Step 1: Assessing habitat use with random forest 

models.—Prior to modeling habitat use, all 
windows of the respective data set were divided 
into a training and a test data set, each containing 
50% of the data. We then built random forest 
models for all windows (simulated data: one 
model per window; empirical tracking data: 100 
replicates per window) based on the training data 
sets (Breiman 2001, R-package randomForest, 
version 4.6.12). To prevent overfitting of the 
empirical tracking data models, we optimized the 
number of environmental variables as determined 
by fivefold cross-validations (random forest 
cross-validation for feature selection) on the 
corresponding test data.

Step 2: Transferability matrix.—We then assessed 
the transferability of the resulting random forest 
models, each based on a specific window, for 
(1)  the test data of the corresponding window 
and (2) the test data of the other windows using 
the DI (see Section 1 in Appendix S1, Rubner 
et  al. 2000, R-package emdist, version 0.3.1). In 
doing so, we assessed the ability of the window 
models to predict the habitat use of all (other) 
windows. For the empirical tracking data, we 
used multiple model replicates for the same 
subset. We first chose the best ten model 
replicates as determined by their DI on their 
respective test data. We then used these ten best 
models to calculate the DI on their respective 
test data and also for the test data of the other 
windows. The resulting DI measures were then 
averaged per window and used to derive the 
transferability matrix (see Fig. 1, step 2). For the 
simulated data, we used the DI as calculated 
from the single model replicates.

Step 3: Ordination and clustering of windows by 
transferability.—We ordinated the transferability 
matrix using a canonical correspondence analysis 
(CCA, Ter Braak 1986, R-package vegan, version 

2.3.3) to make it suitable for clustering. For the 
empirical tracking data, this was applied with a 
constraining time distance matrix representing 
the temporal distance between the last location of 
window k and the first location of window k + 1 
to correct for the temporal irregularities of the 
tracking data. Assuming that similar habitat use 
between windows would translate to high values 
of DI, we sought to detect coherent model 
ensembles using a fuzzy clustering algorithm 
(Kaufman and Rousseeuw 1990, R-package 
cluster, version 2.0.3). We replicated the clustering 
on the ordinated transferability matrix using 
i  =  2,…,n, where n is the total number of loca
tions  divided by the number of windows, of 
desired clusters. Post hoc, we then determined 
the optimum number of clusters using the cluster 
silhouettes (Rousseeuw 1987, Kaufman and 
Rousseeuw 1990). Using the number of clusters i 
that produced the most compliant clustering, we 
merged the windows according to the clustering 
(termed niche segments) and annotated the 
complete data set accordingly.

Analysis of segmentation results
Segmentation of simulated data.—We evaluated 

the performance by testing the clustering derived 
from the segmentation against the known niche 
segments that were introduced during the data 
simulation using the Adjusted Rand Index (ARI, 
Rand 1971, Gordon 1999, R-package fpc, version 
2.1.10). The ARI is a measure of similarity bet
ween two clustering alternatives that ranges 
from ARI = 0 (no better than random) to ARI = 1 
(the clustering alternatives are identical). We 
calculated the ARI between the resulting 
segmentation and the simulated changes in the 
environment (for the scenarios of niche following 
and simultaneous change), as well as between 
the resulting segmentation and the simulated 
changes in habitat preference (for the scenarios 
of niche switching and simultaneous change). 
We tested the effects of changes in the different 
simulation parameters (Table  1) on the perfor
mance of the niche segmentation with a linear 
model, using the ARI as dependent variable. We 
standardized all numeric parameters using 
x̂=x− x̄∕σx, where x is the actual observation, 
x̄  the mean of all observations, and σx their 
standard deviation. For the window size S and 
the number of niche segments, we also included 
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quadratic and cubic transformations in the linear 
model as suggested by a preliminary generalized 
additive model (GAM). We determined the 95% 
confidence intervals on the mean ARI of all 
simulations using bootstrapping with 10,000 
replicates.

Segmentation of the empirical tracking data set.—
Validation. We derived random forest models for 

all niche segments detected by the segmentation 
using the respective locations corresponding to 
the segments (=niche segment models). We 
randomly sampled 2000 locations as training data 
set from each niche segment and modeled habitat 
use as described above, repeating the process to 
obtain 100 model replicates. We calculated the DI 
of all model replicates on the data not used for 
training and kept only the ten models with the 
highest resulting DI. We compared the spatial 
predictions made from niche segment models, 
assuming that those niche segments with similar 
habitat use should result in  similar spatial 
predictions for the same environmental conditions. 
We obtained the environmental conditions for 
every day of the study period with a resolution of 
0.25 degrees while restricting the analysis to the 
spatial range of the species in Eurasia (BLI NS 
2013). We used the niche segment models to 
predict habitat suitability for the complete study 
period and averaged the predictions over the 10 
model replicates. We extracted the predictions for 
those Julian days corresponding to the respective 
niche segments and calculated the volumes of 
intersections for each unique combination of these 
daily predictions to generate an empirical 
distribution of intrasegment variation. We 
calculated the volumes of intersection as the sum 
of the absolute per-pixel difference between 
any  two spatial predictions. To estimate the 
differences between niche segments, we cal
culated daily volumes of intersection using (1) the 
reference prediction from the respective niche 
segment model and (2) the prediction for the 
same  day but derived from the other niche 
segment model. This resulted in two distribu
tions:  one representing intrasegment variation 
and one representing intersegment differences 
for  each pairwise comparison of two segments, 
which allowed us to do two-way comparisons 
using Kolmogorov–Smirnov tests. Only those 
segment pairs for which Kolmogorov–Smirnov 
tests suggested significant differences between 

intrasegment and intersegment variation in both 
directions were considered sufficiently different. 
Else, we combined the respective niche segment 
data sets. We then compared the validated 
segmentations for the different window sizes 
used.

Contributions of migration and study site to the 
segmentation. Variation in habitat use might not 
only arise through changes in the environment 
or habitat preference of individuals, but also 
from environmental differences between study 
sites and the migration of individuals between 
their breeding and wintering areas. To estimate 
how this contributed to the final segmentation, 
we computed a GAM for ordered categorical 
data (Wood 2006, R-package mgcv, version 1.8.6). 
We used the segmentation for the window size of 
S = 2000 locations as response variable, the catch-
ing site as a linear predictor, and two smooth-
ing parameters: Julian day (using a cyclic cubic 
regression spline) as well as longitude and lati-
tude (using a spherical spline).

Comparison with full models. In addition to the 
niche segment models, we also built models for 
the complete data set following the same proce-
dure as previously described, only that we used 
data covering the complete study period for the 
training of random forest models (100 replicates 
with 2000 randomly sampled locations each). We 
calculated the DI of each model replicate for the 
complete data set and only kept the ten model 
replicates with the highest DI. Subsequently, we 
used the full model replicates to predict both the 
full and the segmented data sets and estimated 
their respective performances using DI. We also 
calculated the predictive performance of the niche 
segment model replicates on both the full and 
segmented data sets. We used t tests and adjusted 
the P-values for repeated testing using Bonferroni 
corrections. All analyses were conducted using 
the software R (R Development Core Team 2012). 
The code used for the simulation and segmen-
tation of the simulated data is available in the 
Supporting Information (Data S1).

Results

Simulation experiments
The 95% confidence intervals of the mean over-

all ARI were (0.476; 0.484), while the modal ARI 
was 0.71 (Fig.  2). This suggests that our 
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segmentation method performed better than ran-
dom in all three scenarios (niche following, niche 
switching, simultaneous change). Overall, the 
performance was slightly higher when we calcu-
lated ARI based on the simulated environmental 
change than for changes in habitat preference. 
We found that segmentation performance also 
differed with both S and the true number of niche 
segments, as well as with the ratio between win-
dow size and the total number of locations 
(Table 3). Overall, we found that the performance 
tended to be higher for lower numbers of intro-
duced segments and for small to medium win-
dow sizes.

Segmentation of waterbird tracking data
The validation process that we applied after 

the segmentation of the empirical tracking data 
suggested that all detected niche segments dif-
fered significantly in their spatial predictions of 
habitat suitability (Kolmogorov–Smirnov tests, 
P  <  0.01 in all cases). Thus, the SDMs derived 
from the detected niche segments represented 

different habitat use (see also Appendix S1: 
Fig. S2). Moreover, we found that different envi-
ronmental variables were retained in the differ-
ent niche segment models (Appendix S1: Fig. S3).

Table 3. Influences of the parameters on the method 
performance as evaluated by the ARI.

Coefficient Estimate SE t-Value

Intercept 0.500 0.002 258.401
Changes in species 
preference

−0.044 0.003 −15.114

Window size (S) 0.0877 0.019 45.987
S2 −1.542 0.043 −35.987
S3 0.696 0.026 26.623
Number of niche 
segments (n)

0.352 0.140 2.511

n2 −0.808 0.288 −2.802
n3 0.419 0.150 2.794
Ratio n

S
0.094 0.005 20.031

Notes: ARI, Adjusted Rand Index.
Results from a linear model with ARI as response variable, 

and the number of true segments, the simulation scenario, 
number of data points, window size, and the ratio of window 
size/number of locations as predictors.

Fig.  2. Performance of the segmentation method according to the Adjusted Rand Index. The results for 
segmentation performance are shown separately for the niche following (change in the environment) and niche 
switching scenario (change in habitat preference). The results for the simultaneous change scenario are included 
within these results.
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When comparing the temporal structure of 
the segmentations resulting from different win-
dow sizes, we found that three niche segments 
were detected for the smaller three window sizes 
(S:  500, 1000, 1500 locations) and four for the 
largest window size (S: 2000 locations). The min-
imum temporal duration between change points 
of niche segments was naturally shorter for the 
smaller windows, and so the number of change 
points was lower for larger windows. However, 
we found that the timing of change points corre-
sponded across window sizes (Appendix S1: Fig. 
S4) and also seemed to roughly match the timing 
of life-history stages of the species (Scott and Rose 
1996, Kear 2005; see also Fig. 4). Migratory popu-
lations tend to arrive at their breeding grounds 
from late February onwards, corresponding to 
the first set of change points (beginning of March 
to mid-March for all S). Common teal usually 
start breeding in May, where we found a second 
change point in the largest window size. With the 
start of incubation in June, males usually migrate 
to molt at suitable sites, whereas the females stay 

at the breeding grounds until fall migration. For 
all window sizes, we found change points around 
the beginning of June as well as in mid-June, 
which is followed by a period of consistent hab-
itat use until November, when the birds usually 
arrive at the wintering grounds. The last change 
point occurred in the beginning of December.

We tested how the use of individuals caught 
at different study sites as well as the migration 
of individuals might have influenced the seg-
mentation using a GAM for ordered categorical 
data. The results suggest that the segmentation 
could be best explained by Julian day (Appendix 
S1: Table S2). Study site except for Kazakhstan, 
and the spatial position of locations used for the 
window models did only have minor effects on 
the temporal sequence of niche segments. When 
comparing the predictive performance of SDMs 
that were derived from (1) the segmented data 
and (2) the full data set, we found that niche 
segment models outperformed the full models 
on the respective niche segment data sets (two-
sample t tests, P < 0.01 in all cases, Fig. 3). Niche 

Fig. 3. Comparison between full and niche segment random forest models. We predicted both the full and 
niche segment data sets using the full model (a) and niche segment models (b), and estimated the models’ ability 
to accurately predict the data with the Discriminatory Index. Shown here are the mean ± SD for the window size 
S = 2000.

a) Prediction with full model b) Prediction with segment models
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segment models were, however, outperformed 
by the full models when applied to the full data 
set. This pattern was observed for the segmenta-
tions based on all the window sizes used.

Discussion

Under the assumption that changes in observed 
habitat use are indicative of behavioral changes, 
they can be used for a segmentation of animal 
movement data, similar to a segmentation by 
geometric features of a trajectory (Gurarie et al. 
2016). In the simulated data, the clustering of 
windows based on a single measure of transfer-
ability allowed us to successfully detect the 
inbuilt temporal structure. When we applied the 
niche segmentation to an empirical data set of 
common teal, change points roughly corre-
sponded to the species’ life history, and the 
results from the segmentation were robust 
against changes in window size. We thus think 
that the niche segmentation can detect relevant 
changes in habitat use across multiple scales. 
Overall, the niche segmentation performed bet-
ter than random on the simulated data. Several of 
the simulation parameters, however, showed an 
effect on the success of the segmentation as indi-
cated by the ARI. The most crucial step in the 
segmentation was the choice of the window 
size S, which affects the resolution in determin-
ing changes in habitat use as well as the number 
of locations available to the window-specific 
models. We thus think that the overall higher 
values of ARI for smaller window sizes were 
likely due to the increased temporal resolution, 
while smaller window sizes inherently lead to 
less generalizable models in terms of habitat use. 
Whereas it has been shown that SDMs for spe-
cialized species can provide sensible predictions 
of species occurrence using just a few presence 
locations (Pearson et al. 2007), this does not apply 
to non-independent animal observations from 
tracking data, especially for a limited number of 
individuals. But despite this trade-off, the simu-
lations showed that the niche segmentation can 
successfully detect changes in habitat use.

Using temporally explicit models of the space 
use of individuals and a temporally weighted par-
titioning of data into windows, we could apply 
the segmentation to an empirical tracking data set 
of the common teal. In contrast to simulated data, 

however, empirical movement data are often char-
acterized by sampling irregularity and location 
errors. So while we could show that the segmen-
tation worked well in the case of regular data with 
exact positions, it was not clear whether this abil-
ity of the method transfers to empirical movement 
data. We incorporated the temporal structure of 
the irregular tracking data using a constraining 
time distance matrix during the ordination of the 
transferability matrix. We also think that smaller 
temporal irregularities will not greatly affect the 
outcome of the segmentation, because the parti-
tioning of the data into windows will inherently 
result in a fuzzy segmentation. Much of the tempo-
ral irregularity of empirical data can be redeemed 
by how the data are partitioned into windows, 
especially when the temporal scale of interest is 
greater than the scale of temporal inaccuracies. 
The impact of location error, however, we deem 
to be rather small for mainly two reasons: (1) In 
many cases, the spatial resolution of the environ-
mental data is lower than the spatial resolution 
of movement data and will become more so over 
time as the use of highly accurate GPS devices 
increases, and (2) the spatial autocorrelation of the 
environment, that is, neighboring pixels of envi-
ronmental data have highly correlated values. In 
our case study on the common teal, however, the 
location error was highly variable across the tra-
jectories which could have introduced a bias in the 
accuracy of the environmental information corre-
sponding to the locations over time. With the use 
of time explicit, we could reduce this bias by sam-
pling pseudopresence points that reflect the envi-
ronmental conditions within the 99% UDs rather 
than just at a single erroneous location.

The detected change points of the niche seg-
mentation bear similarities to the life-history 
cycle of the species (Fig. 4). What is also import-
ant to note is that the predictions from niche seg-
ment models also differed considerably in the 
spatial distribution of suitable habitat (Appendix 
S1: Fig. S2), corresponding to the changes in the 
spatial distribution of the species in the wild. 
Finally, niche segment models outperformed full 
models when predicting the respective niche seg-
ment despite using the same amount of samples 
for training the models, which indicates that the 
changing interactions between individuals and 
environment over time could not be completely 
captured by the full models.
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Although changes in habitat use are likely to 
be driving the segmentation pattern, there are 
alternative explanations that could result in the 
segmentation of the data into multiple niche 
segments. One of them is the use of location 
data from several different populations. Habitat 
composition at these study sites might be so dif-
ferent that changes in habitat use could more 
easily be explained by catching site, especially 
because individuals at the different study sites 
were caught during different times of the year 
(Table 2). This can result in an unbalanced distri-
bution of location data from the different popula-
tions across the year. However, we found that the 

series of niche segments could not be explained 
by study site, and only the individuals from 
Kazakhstan seemed to use different habitats 
than the individuals from the other populations. 
Consequently, the niche segmentation was likely 
to reflect consistent differences in habitat use of 
common teal throughout the year.

In general, there is a growing tendency to use 
the framework of SDMs for fine-scaled analy-
ses of variation of habitat use to illuminate the 
dynamic interface between individuals and their 
environment (e.g., van Toor et al. 2011, Pikesley 
et  al. 2015), as well as an increasing availabil-
ity of long-term and high-resolution animal 

Fig. 4. Comparison of the life-history stages of common teal for both males and females (Scott and Rose 1996, 
Kear 2005) with the segmentation derived with a window size of S = 2000. The coloring is kept differently to not 
imply any untested similarities.
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movement data sets. The fusion of both provides 
a promising approach to extract an environmen-
tally informed behavioral signature from the tra-
jectories of single individuals as well as groups 
of animals. As movement and habitat use are an 
expression of individual decisions, because indi-
viduals are driven by physiological necessities 
like energy requirements and optimal breeding 
sites (e.g., Boone et al. 2006, Nathan et al. 2008, 
Suárez-Seoane et al. 2008, Bischof et al. 2012), the 
behavioral annotation of trajectories will allow 
us to derive ecologically meaningful models of 
animal movement. In addition to increasing the 
understanding of animal movement, SDMs used 
for the spatial prediction of habitat suitability 
on larger scales can profit from the incorpora-
tion of changes in both habitat preferences and 
the environment. This might especially apply 
to migratory species which are currently under-
represented in studies applying SDMs (Web of 
Science search, 12 March 2015, 358 and 15,698 
publications using the keywords “species distri-
bution model” with and without “migrat*”). This 
is of special concern, as the areas used by migra-
tory species are currently underrepresented by 
protected areas (Runge et al. 2014). SDMs could 
therefore incorporate the underlying temporal 
dynamics of habitat use and habitat availability 
by applying a niche segmentation and deriving 
separate models for segments. This might help 
to improve predictions of habitat suitability for 
these cases or for species that require different 
types of habitat or resources during their life 
cycle (e.g., Werner and Gilliam 1984, Wilbur 
1988, Hatase et al. 2002). Thus, it could be pos-
sible to identify restrictions of the fluctuations 
in the availability of suitable habitat, and how 
suitable areas might be connected in space and 
time. Overall, using a niche-based segmentation 
can contribute to the understanding of animal 
behavior from using remotely tracked animal 
movement data. The niche segmentation will 
determine change points in habitat use rather 
fuzzily and with only approximate times, owed 
to the fact that they are found by comparing win-
dows of a discrete size and thus sudden changes 
can only be found if they coincide with falling 
at the very end or start of a window. Yet, the 
fuzziness in finding changes also can be an indi-
cation of gradual changes involved in species–
environment interactions. A segmentation based 

on habitat use adds a component of information 
to models that cannot necessarily be covered by 
a segmentation based on movement geometry 
alone. By integrating information like age or 
sex, smaller and more subtle changes in habitat 
use will potentially become traceable. Overall, 
a niche segmentation as presented here can not 
only contribute to the understanding of pro-
cesses that are mediated by how individuals 
interact with a changing environment, but also 
provide new opportunities to integrate changing 
landscapes into the study of the spatial dimen-
sion of animal behavior.
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