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Abstract
The freeze-thaw cycles in periglacial areas during the Quaternary glacials increased frost weathering, leading 
to a disintegration of rock formations. Transported downslope, clasts allowed in some areas the formation of 
stratified slope deposits known as “grèzes litées”. This study reviews the existing theories and investigates the 
grèzes litées deposits of Enscherange and Rodershausen in Luxembourg. This process was reinforced by the 
lithostructural control of the parent material expressed by the dip of schistosity (66°) and its orientation par-
allel to the main slopes in the area. This gave opportunities to activate the frost-weathering process on top of 
the ridge where the parent material outcropped. As the stratified slope deposits have a dip of 23° and as there 
is no significant lateral variation in rock fragment size, slope processes that involve only gravity are excluded 
and transportation in solif luction lobes with significant slopewash and sorting processes is hypothesized. The 
Enscherange formation, the biggest known outcrop of grèzes litées in north-western Europe, shows evidence of 
clear layering over the whole profile depth. A palaeolandscape reconstruction shows that ridges must have been 
tens of metres higher than presently. The investigation of the matrix composition shows Laacher See tephra in 
the overlying periglacial cover bed with infiltrations of the minerals in the reworked upper layer of the grèzes 
litées deposit. Chronostratigraphic approaches using the underlying cryoturbation zone and Laacher See heavy 
minerals in the overlying topsoil place the formation of grèzes litées deposits in the Late Pleistocene.
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Zusammenfassung
Während der quartären Eiszeiten verstärkte der Frost-Tau-Zyklus in den Periglazialgebieten die Frostverwitte-
rung, was zu einem stärkeren Zerfall des anstehenden Gesteins führte. Hangabwärts verlagerter Detritus ermög-
lichte in einigen Bereichen die Bildung geschichteter Hangablagerungen, die unter der Bezeichnung “grèzes litées” 
bekannt sind. Die vorliegende Studie gibt einen Überblick über die bestehenden Theorien zu diesem Phänomen und 
untersucht die grèzes-litées-Ablagerungen von Enscherange und Rodershausen in Luxemburg. Deren Entstehung 
wurde verstärkt durch die lagerungsbedingte Streichrichtung im Ausgangsmaterial, die vor allem in der Neigung 
der Schieferung (66°) und deren Ausrichtung parallel zur vorherrschenden Hangneigung zum Ausdruck kommt. 
Dadurch wurde der Frostverwitterungsprozess auf dem Kamm, an dem das Ausgangsmaterial ausstreicht, akti-
viert. Da die geschichteten Hangablagerungen eine Neigung von 23° aufweisen und es keine signifikanten Unter-
schiede in der Korngröße des Detritus zu den Seiten hin gibt, können Hangprozesse, die nur auf der Schwerkraft 
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1.  Introduction 

1.1 Relict grèzes litées deposits

During the Pleistocene, the Rhenish-Ardennes massif 
was subjected to severe frost weathering and peri-
glacial processes (Semmel and Terhorst 2010). This 
area was never glaciated as it lies outside the limits of 
the large Pleistocene ice sheets; neither did local gla-
ciers develop as was the case in slightly higher Cen-
tral European mountain ranges (Andreoli et al. 2006, 
Metz 1997, Raab and Völkel 2003). In the Luxembour-
gian Ardennes (Oesling), the abandoned quarry at 
Enscherange shows deposition beds with layered an-
gular rock fragments, supplemented by finer material. 
Such stratified slope deposits have elsewhere been 
subjected to detailed descriptive research (e.g. Guillien 
1964a) defining it as grèzes litées deposits, formed of 
rock fragments with a particle size between 2.5 mm 
and 25 mm and a fine fraction of 10 % (lits maigres) to 
20 % (lits gras). Previous research on their genesis has 
led to several hypotheses which all gave specific names 
to the resulting deposits. One of the most important 
conditions to initiate the development of grèzes litées 
is the presence of a slope. Gullentops (1952) considered 
grèzes litées deposits as the result of a mechanism that 
includes rock fall, implicating a steep slope gradient 
leading to the French term of éboulis ordonnés. Due 
to the uncertainty that still exists around the slope 
steepness, Bertran et al. (1992) preferred to use the 
term grèzes litées deposits, as proposed earlier by Guil-
lien (1964a,b) and Journaux (1976). While this process 
was ongoing, run-off during warmer periods (i.e. sum-
mers or interstadials) drained out the finer fractions, 
a hypothesis that led to the term slopewash deposits 
(Washburn 1979, Karte 1983, Bertran et al. 1992).

Both the slopewash and the rock fall hypothesis are still 
under discussion. Generally accepted characteristics are 

taken into account to subdivide the grèzes litées deposits. 
It is foolproof that these deposits have a detrital, frost-
weathered genesis, classifying them into the category 
of periglacial cover beds (Torres-Giron and Recio-Especo 
1997, Semmel and Terhorst 2010, Terhorst et al. 2013).

Depending on the resistance to frost weathering 
of the lithological setting, the amount of detrital 
material may vary (Fossen 2010). Although grèzes 
litées deposits are frequently found in limestone ar-
eas (Guillien 1964a, Dewolf and Pomerol 2005), they 
are also observed in shale-dominated lithological 
areas (Karte 1983, Riezebos 1987).

Besides the lithological setting, periglacial conditions 
have to prevail. As such, the process is ongoing in sub-
polar regions (Greenland (Malaurie 1968), Antarctica 
(Bockheim and Hall 2002), Canada (Hétu 1995), Sval-
bard (Norway) ( Jahn 1960)) and mountain areas such 
as the Alps (Bertran et al. 1992, Matsuoka et al. 1997), 
the Pyrenees (García-Ruiz et al. 2001), the Himalaya 
(Wasson 1979) and the Andes (Francou 1990). Very of-
ten, however, the stratigraphy of the modern deposits 
cannot be studied because of the absence of incisions in 
these sediments (A. Pissart, personal communication).

Relict sites of grèzes litées deposits can be found in 
areas that were characterized by periglacial condi-
tions in the Upper Pleistocene: in Central Europe 
(Karte 1983, Semmel and Terhorst 2010), in Mediter-
ranean mountains (Coltorti et al. 1983, Van Steijn 
et al. 1984, Torres-Giron and Recio-Especo 1997), 
in Great Britain (Watson 1965, Potts 1971), Ireland 
(Hanvey 1989), Belgium (Gullentops 1952, 1954, 
Seret 1963, Juvigné 1979, Pissart 1976, 1995, Har-
ris and Prick 2000), Luxembourg (Riezebos 1987), 
France ( Journaux 1976, Joly 1976, Deshaies et al. 
1995, Harmand et al. 1995, Laurain et al. 1995, Ozouf 
et al. 1995) or New-Zealand (Harris 1975). 
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beruhen, ausgeschlossen werden; stattdessen kann ein Transport in Solifluktionsdecken mit erheblicher Massen-
bewegung sowie bedeutenden Sortiervorgängen angenommen werden. Die Enscherange-Formation, das größ-
te bekannte Vorkommen von grèzes litées in Nordwesteuropa, zeigt Anzeichen einer deutlichen Schichtung über 
die gesamte Profiltiefe. Eine Rekonstruktion der Paläolandschaft zeigt, dass die Bergrücken mehrere Zehner von 
Metern höher gewesen sein müssen als heute. Die Untersuchung der Matrixzusammensetzung zeigt Laacher-See-
Tephra in der darüberliegenden periglazialen Decke, mit Infiltrationen der Mineralien in die aufgearbeitete obere 
Schicht der grèzes-litées-Ablagerungen. Chronostratigraphische Ansätze, angewandt auf die Kryoturbationszone 
im Untergrund und die Schwerminerale aus der Laacher-See-Tephra im darüber liegenden Oberboden, verlegen die 
Bildung der grèzes-litées-Ablagerungen ins Spätpleistozän.

Keywords     Stratified scree, slope deposits, Pleistocene, Luxembourg, Oesling
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1.2  Inferred palaeoenvironmental conditions

The characteristic layering in the grèzes litées depos-
its raised interest from various authors. The main re-
search question was often related to linkages between 
layering and possible palaeoclimatic changes (Gullen-
tops 1952). However, as the layering is generally due 
to transport processes, including intensive sorting of 
the rock debris, quantitative palaeoclimatic informa-
tion has been lost (Washburn 1979, Karte 1983, Francou 
1990, Bertran et al. 1992, Van Vliet-Lanoë and Vala das 
1992). As the layer thickness is typically in the order of 
centimetres, it has been linked to the depth of upslope 
parent rock degradation by frost penetration (Lautri-
dou 1985). After downslope transport of the rock de-
bris, new bedrock material outcrops and is subjected 
to frost weathering. Most authors agree on a seasonal 
variation within the transport system, but different 
interpretations remain. One proposed model suggests 
summer solifluction as the reason for the matrix-sup-
ported beds whereas clast-supported beds are the re-
sult of a more robust winter transportation (Tricart 
and Cailleux 1967, Coltorti et al. 1983, Van Steijn et al. 
1984). This is questioned by Guillien (1964b), Journaux 
(1976) and Karte (1983) suggesting that summer melt-
water washes out the finer fraction, with clast-support-
ed beds as the result, while gelifluction (Dylik 1967) 
and frost creep (Francou 1990; Bertran et al. 1992) 
lead to matrix-supported beds. The picture becomes 
even more complex as also granulometric sorting is 
observed during transport ( Journaux 1976, Washburn 
1979; Karte 1983), due to the increased kinetic energy 
of larger particles and a natural sorting process during 
transport (Statham 1972, Francou 1990).

Detailed analysis of the layers resulted, according 
to Guillien (1964a) and Journaux (1976), in a “binary 
system” in which each lobe is divided in two layers, 
one of coarser and one of finer debris. Several other 
hypotheses were formulated, such as the “dynamic 
unit system” of Francou (1990) in which a higher 
friction force of two subsequent clast-supported 
layers caused easier deposition.

1.3 Earlier investigations in the study area and 
 research objectives

The outcrops in the Oesling (Luxembourg), the study 
area of this research, are by far larger and better 
sorted than what has been observed elsewhere in the 
Rhenish-Ardennes massif (e.g. Karte 1983). Though 

the material was not examined more exactly, Riezebos 
(1987) dated the deposits roughly as Weichselian. No 
plant remnants or charcoal are found within the lay-
ers. In Rodershausen, however, charcoal from the un-
derlying cryoturbation unit was radiocarbon-dated 
by Riezebos (1987) at ~ 50 ka cal BP as maximum age 
for the formation. This is, more or less, the upper age 
limit of radiocarbon dating and, thus, the reliability 
is questioned. However, datings of nearby sites may 
offer, together with chronostratigraphic techniques, 
better insights into the age determination (Semmel 
and Terhorst 2010). Chronostratigraphic analyses of 
frost wedges in this cryoturbation unit at Roders-
hausen (Riezebos 1987) led to the establishment of 
a contemporaneity with the involutions associated 
with the upper main level of ice wedge casts of the 
Weichselian deposits of Belgium and the Netherlands, 
dated as 60-50 ka and 30-20 ka (Vandenberghe and 
Van Den Broek 1982, Vandenberghe 1983). The datings 
may be refined by correlation of the grèzes litées de-
posits with the Laacher See eruption (12,900 cal BP), 
the tephra of which is observed in wide areas of the 
Rhenish- Ardennes Massif (Hulshof et al. 1968, Juvigné 
1980, Schmincke et al. 1999, Baales et al. 2002, Sem-
mel and Terhorst 2010), or with the influx of aeolian 
loess fractions, although Paepe and Vanhoorne (1967) 
indicate a rather limited loess deposition in the En-
scherange and Rodershausen area. However, as no 
 hiatuses within the grèzes litées deposits are ob-
served, a multiglacial time cover can be excluded. The 
aim of this study is to investigate the grèzes litées de-
posits of Enscherange (49° 59’ 44” N; 5° 58’ 38” E) and 
Rodershausen (50° 2’ 31” N; 6° 7’ 45” E) – with a mag-
nitude which is exceptional for the Rhenish-Ardennes 
massif – and their environmental setting and material 
characterisation, allowing to understand the forma-
tion and genesis of grèzes litées in a spatio-temporal 
context of climate and geomorphology.

2.  Geological and geomorphological setting

The Luxembourgian Rhenish-Ardennes Massif (Oes-
ling) mainly consists of Devonian schists, phyllites 
and quartzite. Geomorphologically, it is character-
ized by a dissected plateau at an altitude of between 
400 and 500 m a.s.l., resulting from peneplanations of 
a series of syn- and anticlinoria, including the Wiltz 
synclinorium (Bintz 2006). During the Pleistocene, 
periglacial conditions in the area allowed the devel-
opment of periglacial slope deposits upon which soils 
developed (Semmel and Terhorst 2010, Juilleret et al. 
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2011). Near the vicinity of Rodershausen and En-
scherange (Fig. 1) bedrock has been reworked leading 
to the development of grèzes litées.

Orientation (65°) and gradient (66°) of the schistosity 
of the Emsian schist of Wiltz (Figs. 1C, 1D), measured 
near the Enscherange outcrop, are in line with obser-
vations by Lucius (1949) and Bintz (2006) who defined 
the Wiltz synclinorium as  perpendicular to the largest 
pressure component during the Hercynian orogenesis. 

The lithological and topographic setting of Enscherange, 
in the centre of the Schist of Wiltz formation (Fig. 1B), 
has resulted in a large supply of frost-weathered rock 
debris leading to a thick deposit of grèzes litées. The site 
is located east of the water divide between the Kirel 
and Clerve catchments, quite near the top of the ridge. 

Small valleys differ from the consequent orientation of 
the main rivers, eroding the ridge in an east-west direc-
tion parallel to the schistosity (Fig. 1C).

The site (Fig. 2) was originally quarried for brick 
preparation and finally for stable landfill materi-
als. After the abandonment of the quarry in the late 
1980s, the vertical walls partly collapsed, leading to 
the formation of the recent scree slopes on the bot-
tom of the quarry. Four outcropping sections, 2.8 to 
5.9 m high, were cleaned, sampled and interpreted. 

Compared to the Enscherange quarry, the Roders-
hausen outcrop is found more downhill, with a more 
complex lithological setting; as it is located near the 
village centre (Fig. 1D), the outcrop has been more 
disturbed by anthropogenic interventions. Only one 

Fig. 1 Location of the two studied grèzes litées outcrops in the Rhenish-Ardennes massif; Enscherange (1C) is located in a less 
complex lithological setting than Rodershausen (1D); after Lucius (1949).
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section (91 cm thick) was interpreted as undisturbed 
grèzes litées deposits and incorporated in this study.

The general geomorphological setting in the area 
comprises bedrock overlain by different colluvial 
deposits. A subdivision could be made into four 
lithostratigraphic units (Fig. 3), i.e. from top to bot-

tom: a Holocene topsoil (a), developed upon a solifluc-
tion deposit with a stone line at its lower end (b), the 
grèzes litées deposits (c), and the underlying cryotur-
bated zone (d). In line with earlier observations by 
Riezebos (1987), we could only observe the latter (d) 
in Rodershausen, as in Enscherange the lower layers 
are hidden by recent screes (e).

Fig. 2 Map of the Enscherange quarry, showing the 
overall topography, the steep gradient of the 
recent screes inside the quarry, and scarps 
where the grèzes litées and overlaying solifluc-
tion deposits are still visible. The locations of 
the recorded profiles presented in Fig. 4 are 
indicated.

Fig. 3 The general stratigraphical context of the different formations. The grèzes litées formation (c) is overlain by a solifluction 
layer (b), which is covered by the topsoil (a), in both sequences. Due to the formation of a recent stratified slope deposit (e), 
underlying cryoturbated structures (d) cannot be observed in Enscherange but only in Rodershausen.
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Fig. 4 Synthetic representation of the Enscherange outcrop where we sampled 4 sequences (E1A, E2A, E3A and E3B, E4A) for 
heavy mineral analysis (n = 12; blue dots) and grain size investigation (n = 19; red dots), in addition to field measurements 
in 178 layers. The upper profile is indicated as “Profile 1” in Fig. 2, the lower as “Profile 2”.

3. Materials and methods

3.1 Analysis of stratification

The analysis of the stratification aims at under-
standing the depositional conditions of the grèzes 
litées deposits. Jointly with measurements of dip 
and strike, we reconstructed the palaeotopogra-
phy of the ridge and considered the possibility of 
proposed transport hypotheses.

We aimed at interpolating the stratification between 
profiles at the Enscherange outcrop. Statistical evi-
dence was searched to confirm the applicability of 
the hypothesis that relates changing layer character-

istics to transport distance (Guillien 1964a, Statham 
1972, Journaux 1976, Francou 1990).  

Previous research (Wasson 1979, Coltorti et al. 1983) divid-
ed the layers of the grèzes litées deposits into 4 categories 
taking into account the sorting of the layers and the ma-
trix amount. They can be categorized as openwork bed, a 
poorly-sorted, high-porous layer; partially openwork bed; 
clast-support bed; and a matrix-supported bed, a well-
sorted, low-porous layer. Due to the difficulties in obser-
vation and distinction in the field, Francou (1990) reduced 
the four categories to openwork bed and matrix-rich bed.

Three characteristics were chosen to characterize the 
individual layers in detail: layer thickness and rock 



7DIE ERDE · Vol. 147 · 1/2016

fragment size as macromorphological parameters and 
matrix composition as a micromorphological parame-
ter. Each transition where one or more characteristics 
of the grèzes litées change indicates a border between 
two layers. The distance between such borders result-
ed in the thickness of the layer (precision: 0.5 cm). 

3.2 Physical characteristics of the material 

The granulometric investigation occurred in two stag-
es. In the field, about 200 cm³ was sampled from each 
of the 178 layers; a rock fragment that was visually as-
sumed to represent the D50 (i.e. the particle  diameter 
at 50 % in the cumulative distribution) of the layer was 
selected and its median diameter was measured. Rock 
fragment sizes were further measured for 19 samples 
(on average 250 g; indicated with red dots in Fig. 4) 
and granulometric curves were established, from 
which D50 and the interquartile range were obtained. 
These values were plotted against the estimates of D50 
obtained in the field for the same layers, allowing an 
adjustment of all other field estimations.

In line with Francou (1990) we classified grèzes litées 
layers into categories according to the relative pro-
portion of fine earth and rock fragments.

To obtain robust data on porosity, 12 undisturbed 
samples were taken to the laboratory. These 
samples were weighed at water saturation and 
weighed again after drying which enabled us to 
calculate the porosity. As the samples were taken 
with Kopecki rings having a 5 cm diameter, layers 

with a thickness < 5 cm could not be sampled for 
this absolute determination of the porosity.

3.3  Heavy mineral analysis

As the deposits consisted of colluvial frost-weathered 
rock debris, luminescence dating of this disintegrat-
ed bedrock material was not feasible as the small 
amount of quartz had most probably insufficiently 
been bleached. However, allochthonous material that 
is incorporated in the grèzes litées added a more ro-
bust temporal framework. Hence, the fine sand frac-
tion (63-250 µm) of 12 samples (blue dots in Fig. 4) 
was extracted through sieving and analyzed through 
a microscope to investigate the influx of allochtho-
nous quartz, screening the feasibility of luminescence 
dating, and analysed on heavy minerals in order to 
determine loessic (garnet, epidote and green amphi-
bole) or tephra (titanite, brown amphibole and augite) 
signatures (Terhorst et al. 2013). 

4.  Results

4.1 Overall stratigraphy

At the major outcrop in Enscherange, when the 
quarry was still active, Riezebos (1987) measured a 
thickness of 20 m of the grèzes litées deposit (Fig. 3c). 
The dip of these deposits (23°) is in line with dips 
observed in similar deposits in Belgium (Harris and 
Prick 2000) and with the expected slope of between 
20° and 30° (Francou 1990). Post-depositional dis-

Grèzes litées and their genesis: the site of Enscherange in the Rhenish-Ardennes Massif as a case study

Fig. 5 Post-depositional structures evidence the fluvial reworking of the grèzes litées deposits by meltwater: fluvial lens in 
profile E3B (left) and cross-bedded structures in profile E2A (right) corresponding to gully fill.
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turbances in the grèzes litées layering occur as gully 
incision and infill, f luvial lenses (Fig. 5a), cross-
beddings (Fig. 5b), which evidence the influence of 
meltwater in periglacial conditions during and af-
ter the deposition, as well as frost cracks. An uncon-
formably overlaying solif luction layer of reworked 
grèzes litées is clearly present at both sites (Fig. 3b), 
yielding the most recent part of the formation. This 
solif luction layer has a clearly different orientation 
indicating changed topographical conditions. Due 
to this differential strike of the grèzes litées and the 
overlaying solif luction lobe, outcrop curvature or 
hakenwerfen (Sevink and Spaargaren 2005) is found 
in the upper part of the grèzes litées. 

A volumetric estimation, taking into account thick-
ness and strike of the grèzes litées (Van Nieuland 
2011), shows that the former ridge that produced all 
the frost-shattered debris must have been tens of m 
higher before the activation of frost weathering.

In Rodershausen, the solifluction layer is limited 
and the grèzes litées deposit is small and poorly pre-
served, but a large lower unit with cryoturbation is 
recognizable in which frost wedges were observed 
by Riezebos (1987). Furthermore, on the border be-
tween the grèzes litées deposits and the underlying 
cryoturbation unit, a pebble floor indicates an in-
creased action of (melt)water. Rounded quartzite 
rock fragments, correlated to river terraces, were 
observed on top of the cryoturbation zone.

4.2 Characteristics of the layers

Though layering is clearly visible, our measurements 
of thickness, porosity and granulometry did not 
show any regularity, linear or cyclic trend in the oc-
currence of layer characteristics. Layer thickness is 
comprised between 1 and 15 cm. The Enscherange 
outcrop comprises significantly thicker layers 
(5.54 ± 0.21 cm) than the Rodershausen outcrop 
(4.14 ± 0.83 cm), A Welch-test (p = 0.712) showed 
that the thickness does not vary significantly be-
tween the four sections in the Enscherange quarry.

In line with Journaux (1976), almost all measured rock 
fragments, except for a few outliers, were smaller 
than 22 mm, and the fine fraction (< 2 mm) was be-
tween 5 % and 20 %. The sorting rate in the layers is 
rather high, as confirmed by the small inter-quartile 
ranges (IQR) in the samples (6.1 ± 0.4 mm).

The overall averages of D50 of both the field estima-
tions (6.3 ± 0.7 mm) and the laboratory measure-
ments (7.3 ± 0.5 mm) indicate a rather good agree-
ment. A linear regression equation allowed adjusting 
the field observations of the operator into reliable 
data for further statistical investigation: 

Y = 0.6602 X + 3.1596 (n = 19; R² = 0.83; P < 0.001)  (1)

with Y: the adjusted observations and X: the field 
 observations of D50 (in mm).

An ANOVA test did not show a significant difference in 
the grain size distributions among the Enscherange 
sections; the hypothesis of changing granulometric 
characteristics when moving away from the bedrock 
source area (Guillien 1964a, Statham 1972, Francou 
1990) could not be proven.

An independent sample T-test showed, similarly to the 
layer thickness, a significant difference (P < 0.05) be-
tween the particle size of Rodershausen (6.28 ± 0.24 mm) 
and that of Enscherange (7.01 ± 0.11 mm).

The porosity of the deposits varies between 20 and 
26 % and is independent of the depth in the profile 
(R² = 0.05). Only eluviation and illuviation over short 
distances may have existed, as also stated by Karte 
(1983), Francou (1990) and Bertran et al. (1992). 

4.3 Matrix composition

Under the microscope, the specific composition of 
the matrix particles (< 250 µm) showed angular- 
shaped particles, confirming the origin as frost-
weathered metamorphic rock. Almost the whole 
matrix consists of disintegrated schist of Wiltz and 
non-schist elements are rare. 

The amount of heavy mineral particles found was in-
sufficient to allow a statistical analysis. Semi-quanti-
tative data (Table 1) show that allochthonous miner-
als related to loess deposition are not observed in the 
grèzes litées samples. The signature of the Laacher 
See tephra (LST) (i.e. augite, titanite and brown am-
phibole) is found in samples 3.4 and 1.4, correspond-
ing to the uppermost grèzes litées layers reworked 
in a soli fluction lobe, as well as in the topsoil. The 
occurring small amounts of micas, especially mus-
covite and quartz, are typical bedrock components 
derived from the schist formation of Wiltz.
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5.  Discussion

5.1  On the methodology

Although layer characteristics are often described in 
the field, some collected data deserve quantitative 
evaluation. Where layer thickness can be measured in 
the field, field observations of porosity are inaccurate. 
What can be estimated in situ is the matrix fraction 
in the layer. Adjusting field observations to laboratory 
measurements is incorrect as the material of almost 
half of the layers is thinner than 5 cm (the diameter of 
the undisturbed samples for porosity measurements). 
Moreover, a Spearman correlation test (r = 0.635) 
 indicates that the estimation of the amount of ma-
trix in each layer in the field is influenced by grain 

size. The rather small Pearson correlation coeffi-
cient (r = 0.228; P < 0.05) between layer thickness 
and granulometry on the other hand indicates an 
independence of both types of field observations. 

5.2 The source area of the frost-shattered clasts

The outcrop in Enscherange is situated in an area al-
most fully covered by schistose lithology, which has 
a low resistance to frost weathering (Fossen 2010). 
The main slopes in the area are oriented in the same 
direction as the dip and strike of the cleavage of the 
schist of Wiltz. This excellent combination of pa-
rameters has led to a strong lithostructural control 
on the production of clasts from the bedrock and al-

 Loessic  components Laacher See tephra 
components Bedrock components  

Sample 
code Unit Garnet Epidote Green 

amphibole Titanite Brown 
amphibole Augite Muscovite Tourmaline Zircon Alterite Opaque 

minerals 

1.1 Grèzes litées           X 

1.2 Grèzes litées *  *    ***    *** 

1.3 Grèzes litées          *** X 

1.4 Solifluction 
lobe, 
reworked 
grèzes litées 

   * * ** ***    X 

3.1 Grèzes litées       ***   *** *** 

3.2 Grèzes litées       ***   *** *** 

3.3 Grèzes litées       ***   *** *** 

3.4 Solifluction 
lobe, 
reworked 
grèzes litées 

  * * ** * X  * X X 

4.1 Grèzes litées       X   X X 

4.2 Grèzes litées       X *   X 

4.3 Solifluction 
lobe, 
reworked 
grèzes litées 

      X    X 

UL Upper layer/ 
topsoil *  ** *** X *** X  *** *** X 

Table 1 Abundance of heavy minerals in 12 samples taken in different profiles of the Enscherange outcrop. Sample code and unit enable 
to find the locations of the samples in combination with Fig. 4. The abundance of the heavy minerals is indicated by * (low; 1-2), 
** (medium; 3-5), *** (high; 6-10) and X (abundant; > 10). The different signatures (loess, Laacher See tephra and bedrock 
 material) are represented, as well as alterite, which is a collective term for undefined minerals, and opaque minerals.
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tions in layer thickness as proposed by Statham (1972) 
and Lautridou (1985). This hypothesis is strengthened 
by the location of the outcrop near the top of the ridge.

Given the rather low dip gradient of the Enscherange 
formation (23°), transportation by rock fall only (Was-
son 1979) is excluded. Therefore, seasonal transport 
models based on solifluction, either or not in combi-
nation with frost-creep, seem to be more applicable 
in this setting (Guillien 1964b, Dylik 1967, Journaux 
1976, Karte 1983, Francou 1990, Bertran et al. 1992). 
Although absolute datings through the grèzes litées 
outcrop would be needed to determine how fast this 
process went on, the large height and the resolution 
of the Enscherange outcrop indicate that this trans-
port process might have occurred at a fast rate due to 
the parallel orientation between the schistosity and 
the slopes. The intense sorting during and after trans-
portation is deemed to induce a layering of matrix and 
clast-supported beds; indeed, in Enscherange it is al-
most impossible to recognize seasonal variations in 
the layer characteristics, in contrast to Van Steijn et al. 
(1984) who thought the clast-supported beds to be a 
result of transport under snow conditions.

Grèzes litées and their genesis: the site of Enscherange in the Rhenish-Ardennes Massif as a case study

lowed the development of a large grèzes litées deposit 
downslope. Two processes are at stake: (1) the sub-
vertical dip-enhanced water availability that is essen-
tial in frost weathering, and (2) the frost-weathered 
bedrock material could easily be removed in a valley 
parallel to schistosity, making new outcropping bed-
rock available for freezing and thawing.

The geological setting in Rodershausen is more com-
plex. Several rock types with different characteristics, 
such as quartzite and sandstone, outcrop here, and the 
Our river left some Quaternary river terraces upslope 
from the grèzes litées outcrop. This heterogenic setting 
leads to a less observable grèzes litées deposit. Given 
the topographical conditions (plan and profile con-
cavities), the Enscherange outcrop acted as a sediment 
trap, in contrast to the convex situation in Roders-
hausen. Remarkably, no escarpments of cliffs are pre-
sent upslope of the grèzes litées at Enscherange, but a 
large planated rock surface; on its way downslope, 
solifluction material on the plateau that reached the 
escarpment at the edge would then have developed into 
grèzes litées ( Joly 1976). Taking into account the depos-
ited volumes of grèzes litées, the pre-grèzes litées to-
pography must have consisted of bedrock that reached 
tens of metres above the current surface of the ridge.

5.3 Processes involved in the formation of the grèzes 
litées deposits

Although earlier measurements of frost penetration 
into bedrock material varied between 5-10 cm (Mat-
suoka et al. 1997) and 20 cm (Francou 1990), our study 
of grèzes litées deposits cannot contribute to this de-
bate, given the intensive sorting during transport. 
Slopewash and granulometric sorting within solifluc-
tion lobes (Karte 1983, Francou 1990) make that the 
observed average layer thickness (around 5 cm) is 
more likely a result of transport sorting rather than 
of frost penetration in bedrock outcropping upslope. 
Hence, it is impossible to correlate particular macro-
sedimentological observations of the grèzes litées for-
mation to climatic or seasonal fluctuations. 

The fact that all studied layer characteristics do not 
change significantly through the Enscherange outcrop 
is a surprising observation. However, as we were only 
able to evaluate the uppermost metres of a 20 m thick 
grèzes litées packet, this may indicate that the trans-
portation was rather slow, at least, and not long enough 
to induce intensive sorting leading to important varia-

Fig. 6 Different formation processes of grèzes litées are 
 observed in the Enscherange outcrop. The layering re-
veals no information on palaeoclimatic circumstances 
but is largely induced by intensive sorting during 
transport in solifluction lobes: top: binary units (Guil-
lien 1964a) as observed in profile E1A, and bottom: the 
 dynamic unit system (Francou 1990) that occurs rather 
indistinct in profile E3B.
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Depositional factors also deserve a proper discussion. 
The observed absence of any systematic or cyclic oc-
currence of layer characteristics may be related to the 
short transportation distance, whereby internal sort-
ing within lobes could not be fully expressed. Only 
locally, particularly in Enscherange, the outcropped 
layered structure gives insights into both transport 
processes and depositional settings. The binary sys-
tem of Guillien (1964a) can be observed in small parts 
of the sequences (Fig. 6a) as well as the dynamic units 
system of Francou (1990) (Fig. 6b). The latter is related 
to the high topographical position of the grèzes litées on 
the slope. The short transport distance prevented the 
upper layers from intensive sorting, which induces the 
higher friction force between the two layers. The En-
scherange grèzes litées outcrop is located near a ridge 
formed of outcropping bedrock, indicating that the 
build-up of the grèzes litées deposit reached almost the 
height of that outcropping bedrock of the ridge, result-
ing in the submergence (ennoyage) of the escarpment 
by the grèzes litées formation and hence exhaustion 
of supply. At the lower side, larger obstacles (Francou 
1990) were not observed, but slope and plan concavity 
and the impossibility for the material to be evacuated 
further downslope are obvious reasons for deposition.

After deposition, which occurred most probably under 
periglacial circumstances, warmer periods occurred 
with an increase of meltwater and rainfall. This led to 
the presence of small gullies in the upper layers. On top 
of these, a new system of solifluction lobes of reworked 
disintegrated bedrock material developed. These lobes 
are clearly discernible, conforming to descriptions by 
Francou (1990), and have a different direction than the 
underlying beds of the grèzes litées. Later on, erosional 
processes gave rise to a new valley at the SE of the out-
crop towards which the solifluction lobes are directed.  

Though not cyclic, a clear organisation in lits gras 
and lits maigres is present; hence, despite a porosity 
of > 20 %, the vertical migration of the finer fraction 
through the sequence must have been limited; never-
theless, eluviation processes as described in other grèz-
es litées formations (Karte 1983, Francou 1990, Bertran 
et al. 1992) may not be excluded at a centimetral scale.

5.4  Age of the studied Luxembourgian grèzes litées 
deposits 

A microscope analysis of the matrix composition 
showed a limited to non-existent fraction of quartz 

or allochthonous wind-blown minerals. Together 
with the low probability of bleaching of quartz or 
feldspar minerals during the process, this reduces 
the feasibility of OSL dating.

The absence of a loess-influenced signature in the 
grèzes litées deposits (Table 1) is probably explained 
by the thin deposits of Pleistocene loess in the study 
area that are spatially and temporally discontinuous 
(Paepe and Vanhoorne 1967). However, a loess admix-
ture was present in the upper layer, and hence loess 
deposition was possible in principle. The absence of 
loess in the grèzes litées deposits does not allow to 
classify it as the middle layer of the periglacial cover 
beds (sensu Semmel and Terhorst 2010), as, in the sedi-
mentology-based classification of units, the interme-
diate layer comprises loess and rock fragments. Most 
probably the grèzes litées of Enscherange correspond 
to the basal layer of the periglacial cover beds.

The occurrence of Laacher See tephra in the perigla-
cial cover beds is generally observed in the Rhen-
ish-Ardennes massif (Gullentops 1954, Semmel and 
Terhorst 2010) and the presence of the LST in the 
overlying solifluction lobe, which is infiltrated from 
the topsoil in which a large signature of LST was ob-
served, is proved by the heavy minerals. As such, the 
underlying grèzes litées deposit in Enscherange was 
determined older than 12 900 cal BP. Besides that, 
the layering of the grèzes litées deposit was clearly 
recognizable and a lack of hiatuses (such as soil for-
mation, erosional phases) suggests that the grèzes 
litées deposits were formed during one single period 
in the Late Glacial or earlier. With the Older Dryas as-
sumed to be too short (several hundred years) to cre-
ate a 20 m thick set of layers, the Enscherange forma-
tion has to be older. Assuming that the Rodershausen 
site, in which the cryoturbation unit underlying the 
grèzes litées unit is interpreted by Riezebos (1987) as 
approx. 50 ka cal BP (see Section 1.1), may be corre-
lated to the Enscherange outcrop, the maximum age 
might be 50 ka. It is obvious that in absence of an ab-
solute dating, it cannot be excluded that the studied 
grèzes litées are older than the Late Pleistocene since 
severe climatic conditions occurred both in the Saal-
ian and Elsterian (Ehlers et al. 2011).

6.  Conclusions

The periglacial climate conditions during the Late 
Pleniglacial and the Late Weichselian transformed 

Grèzes litées and their genesis: the site of Enscherange in the Rhenish-Ardennes Massif as a case study
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the pre-existing landscapes. Intense frost weathering 
eroded the outcropping rock formations of the Wiltz 
synclinorium and formed colluvial sediments. Under 
some circumstances grèzes litées deposits were formed.

These circumstances are mainly dependent on the 
lithological characteristics of the parent material. 
The schist of Wiltz, the most frequent geological 
formation in the study area, is frost-susceptible, 
which makes it susceptible for physical erosion, too. 
This is reinforced by the fast transportation of the 
cryoclastic material due to the coincidence of schis-
tosity and the main topographic slopes. 

The exact transportation model probably differs 
from other regional settings and is still discussed, 
but the main processes have been investigated and 
rock fall models are excluded. Therefore, the term 
‘scree’ had to be avoided, in line with Dewolf and 
Pomerol (2005). Overland flow may have occurred 
in summer months, causing slopewash of the upper-
most layers. Together with eluviation and illuviation 
this is assumed to be the major sorting cause. 

In addition, the statistical analysis has rejected the lat-
eral variability of granulometry within one grèzes li-
tées bed in our study area. The main reason is probably 
the limited distances in the outcrops in comparison to 
the distance over which such a phenomenon occurs. 
This sorting results in a binary system (Guillien 1964a) 
on the one hand and dynamic units on the other hand 
(Francou 1990), both observed in the study area.

Metre-scaled ephemeral incisions of the deposits occurred 
when seasonal meltwater needed to find its way through 
topographical lows within the grèzes litées deposits.

In order to date the Enscherange and Rodershausen 
outcrops, several approaches were used. Laacher See 
tephra was observed in the overlying (reworked) 
solifluction layer in Enscherange, indicating that the 
deposition must have occurred before the end of the 
Late Pleniglacial. The underlying cryoturbation unit 
in Rodershausen was radiocarbon-dated at 50 ka (Rie-
zebos 1987) (but could as well be much older); a con-
temporaneity with the upper main level of ice wedge 
casts of the Weichselian deposits (60-50 ka) has also 
been assumed (Riezebos 1987) but it could also date 
back to Saale or Elster that were extremely cold in this 
region. Heavy mineral analysis shows no loess signa-
ture in Enscherange, which makes it impossible to re-
fine age determination by luminescence dating. 
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