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Abstract: Mechanical thrombectomy is a novel treatment option for patients with acute ischemic
stroke (AIS). Only a few studies have previously suggested strategies to categorize retrieved
clots according to their histologic composition. However, these reports did not analyze potential
biomarkers that are of importance in stroke-related inflammation. We therefore histopathologically
investigated 37 intracerebral thrombi mechanically retrieved from patients with AIS, and focused on
the composition of immune cells and platelets. We also conducted correlation analyses of distinctive
morphologic patterns (erythrocytic, serpentine, layered, red, white, mixed appearance) with clinical
parameters. Most T cells and monocytes were detected in erythrocytic and red clots, in which the
distribution of these cells was random. In contrast, von Willebrand factor (vWF)-positive areas
co-localized with regions of fibrin and collagen. While clots with huge amounts of vWF seem to
be associated with a high National Institute of Health Stroke Scale score at admission, histologic
findings could not predict the clinical outcome at discharge. In summary, we provide the first
histologic description of mechanically retrieved intracerebral thrombi regarding biomarkers relevant
for inflammation in ischemic stroke.

Keywords: immune cells; lymphocytes; mechanical thrombectomy; ischemic stroke; inflammation;
thrombus formation

1. Introduction

After successful clinical trials in patients with occlusion of a major intracranial artery, mechanical
thrombectomy (MT) with stent retrievers adds a novel therapeutic option in patients with acute
ischemic stroke (AIS) [1–3]. As MT is only applicable in approximately 5%–10% of patients with
ischemic stroke, intravenous thrombolysis (IVT) using recombinant tissue plasminogen activator
is still the treatment of choice for most patients with AIS [4]. In IVT [5], but not MT with stent
retrievers [6], the response to therapy regarding recanalization and subsequent clinical outcome
depends on thrombus length. In contrast, recanalization rates and clinical outcomes are dependent
on thrombus density in computed tomography (CT) imaging—and consequently dependent on
histologic thrombus composition—in both therapeutic strategies, IVT [7,8] as well as MT [9]. Therefore,
knowledge of the detailed clot composition could become helpful to assign patients to a distinct
treatment strategy—at the latest when novel treatment options next to IVT and MT arise.

The first histopathologic evaluation of cerebral thrombi was carried out about 50 years ago using
post-mortem material [10]. However, a timely assessment of thrombus material immediately after
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AIS occurrence has only been possible since the development of MT devices a few years ago. Since
then, several researchers analyzed the histologic composition of retrieved cerebral clots and suggested
different strategies for categorization [11–15]. In addition, an increasing number of imaging studies
have been published trying to visualize clot composition with CT [16–18] and magnetic resonance
imaging (MRI) [13,14,19]. A series of studies evaluating novel MRI contrast agents specific for activated
platelets [20] or fibrin [21,22] have been published. In the near future, these imaging strategies could
allow identification of individual patients who might profit the most from a therapeutic intervention in
AIS, and—vice versa—of patients who would most likely not profit from a particular treatment strategy.

The important role of immune cells on stroke development [23–26] and the underlying mechanism
of thromboinflammation [27] is well established in animal models of ischemic stroke. It has been
shown that immune cells (e.g., cluster of differentiation (CD) 4+ T cells, CD68+ monocytes) interact
with molecules that are of importance for platelet signaling (e.g., von Willebrand factor (vWF))
and contribute to thrombus formation [27]. Monocyte–platelet aggregates are increased in patients
with acute thrombotic events [28,29]. A recent clinical trial provided the first evidence that a
pharmacologically induced lymphocytopenia is also associated with beneficial effects in human
AIS [30]. Further clinical stroke studies addressing immunologic targets are on the way (e.g.,
ClinicalTrials.gov: NCT01955707).

Until now, the published reports about the histologic characterization of intracranial thrombi
mainly focused on coagulation, and a precise assessment of inflammation has not yet been reported.
Therefore, we aimed for a detailed characterization of the retrieved cerebral thrombi regarding
biomarkers that play major roles in stroke-related inflammation.

2. Results

2.1. Demographic and Clinical Characterization of Patients

We histologically analyzed 37 thrombi (retrieved between 2012 and 2015) from patients with
AIS with a mean age of 66 ˘ 16 years. Forty-nine percent of patients were male. Twenty-six patients
(70%) received IVT before clot retrieval. The mean National Institutes of Health Stroke Scale (NIHSS)
score [31] was 17 ˘ 7 at admission and 7 ˘ 4 at discharge of the patients. Location of the vessel
occlusion was the middle cerebral artery (MCA) in 22 cases, intracranial part of the internal carotid
artery (“carotid-T”, C-T) in 10 cases, or the basilar artery (BA) in five cases (Table 1).

Table 1. Clinical characteristics of patients and categorization of thrombus histology.

No. Sex Age,
Years Smoker Vascular

Site Lysis NIHSS
Admission

NIHSS
Discharge

Thrombus
Histology

1 F 54 Yes Right MCA Yes 15 8 e/red
2 F 72 No Right C-T No 4 8 e/red
3 F 83 No Right C-T Yes 17 7 e/red
4 F 57 No Left MCA Yes 18 2 s/red
5 M 61 Yes Left MCA Yes 16 4 l/mixed
6 M 42 No Left C-T Yes 18 10 l/white
7 M 50 Yes Right MCA Yes 24 3 s/mixed
8 F 72 No BA No 23 9 l/red
9 F 74 No BA Yes 28 10 l/red

10 F 59 No Left MCA No 23 7 s/white
11 F 80 No Left C-T Yes 23 14 l/white
12 M 56 Yes Right MCA Yes 8 8 e/red
13 M 54 No Right MCA Yes 30 11 l/white
14 F 83 Yes BA Yes 31 Deceased s/mixed
15 F 56 No Left MCA Yes 17 10 l/mixed
16 M 58 No Left MCA Yes 18 8 s/red
17 M 57 No Left MCA Yes 10 4 l/white
18 F 84 No Left MCA Yes 15 9 s/white
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Table 1. Cont.

No. Sex Age,
Years Smoker Vascular

Site Lysis NIHSS
Admission

NIHSS
Discharge

Thrombus
Histology

19 F 75 No Left C-T Yes 19 7 l/mixed
20 M 61 Yes BA Yes 4 0 l/white
21 M 67 No Left C-T No 13 15 l/white
22 M 75 No Left MCA Yes 13 3 l/white
23 F 82 No Right MCA Yes 22 5 l/white
24 F 83 No Right MCA No 17 7 e/red
25 F 80 No Right MCA Yes 5 2 s/mixed
26 F 69 No Left MCA Yes 18 13 e/red
27 M 43 No Left MCA Yes 18 6 s/red
28 F 93 No Right MCA Yes 11 4 l/white
29 M 40 No Right MCA Yes 10 1 l/white
30 M 77 No Left C-T Yes 20 13 s/white
31 M 28 No Right C-T Yes 12 0 s/mixed
32 F 63 No Left MCA No 25 10 s/red
33 F 84 No Right MCA No 17 9 l/white
34 M 47 No Right C-T No 11 1 e/red
35 M 95 n.d. Left MCA No 13 Deceased l/red
36 M 58 Yes Left C-T No 3 12 l/mixed
37 M 60 Yes BA No 23 3 l/mixed

BA, basilar artery; C-T, intracranial part of the internal carotid artery (“carotid-T”); F, female; M, male; MCA,
middle cerebral artery; thrombus histology: e, erythrocytic; l, layered; s, serpentine.

2.2. Categorization of Retrieved Clots

After clinical characterization of patients, we histopathologically categorized the extracted thrombi
according to distinctive patterns into erythrocytic (19%), layered (30%), and serpentine (51%) [11], and
according to the content of the red blood cells (RBCs) and fibrin/collagen as red (35%), white (38%), or
mixed (27%) [12] (Table 1, Figure 1A).

Int. J. Mol. Sci. 2016, 17, 298 3 of 10 

 

21 M 67 No Left C-T No 13 15 l/white 
22 M 75 No Left MCA Yes 13 3 l/white 
23 F 82 No Right MCA Yes 22 5 l/white 
24 F 83 No Right MCA No 17 7 e/red 
25 F 80 No Right MCA Yes 5 2 s/mixed 
26 F 69 No Left MCA Yes 18 13 e/red 
27 M 43 No Left MCA Yes 18 6 s/red 
28 F 93 No Right MCA Yes 11 4 l/white 
29 M 40 No Right MCA Yes 10 1 l/white 
30 M 77 No Left C-T Yes 20 13 s/white 
31 M 28 No Right C-T Yes 12 0 s/mixed 
32 F 63 No Left MCA No 25 10 s/red 
33 F 84 No Right MCA No 17 9 l/white 
34 M 47 No Right C-T No 11 1 e/red 
35 M 95 n.d. Left MCA No 13 Deceased l/red 
36 M 58 Yes Left C-T No 3 12 l/mixed 
37 M 60 Yes BA No 23 3 l/mixed 

BA, basilar artery; C-T, intracranial part of the internal carotid artery (“carotid-T”); F, female; M, male; 
MCA, middle cerebral artery; thrombus histology: e, erythrocytic; l, layered; s, serpentine. 

2.2. Categorization of Retrieved Clots 

After clinical characterization of patients, we histopathologically categorized the extracted 
thrombi according to distinctive patterns into erythrocytic (19%), layered (30%), and serpentine  
(51%) [11], and according to the content of the red blood cells (RBCs) and fibrin/collagen as red (35%), 
white (38%), or mixed (27%) [12] (Table 1, Figure 1A). 

In the next step, we correlated the histopathologic thrombus subgroups (Figure 1B,C) with the 
number of immune cells (CD4+ T cells, CD68+ monocytes) and the fraction of vWF+ areas. Importantly, 
a significant accumulation of CD4+ T cells (p < 0.05) and a trend for CD68+ monocytes (p > 0.05) was 
detected in erythrocytic when compared with serpentine thrombi (Figure 2). The CD4+ and CD68+ 
cells were randomly distributed within the clot. In contrast, white thrombi (79% layered and 21% 
serpentine) showed higher percentages of vWF+ areas that are co-localized with the regions of 
fibrin/collagen (p > 0.05) (Figure 2). 

 
Figure 1. Cont. Figure 1. Cont.



Int. J. Mol. Sci. 2016, 17, 298 4 of 11

Int. J. Mol. Sci. 2016, 17, 298 4 of 10 

 

 
Figure 1. (A) Macroscopic view, hematoxylin and eosin (H&E), Martius scarlet blue (MSB), and von 
Willebrand factor (vWF) staining of three representative thrombi that show erythrocytic, layered, or 
serpentine morphology; (B,C) Bar graph of all thrombi after categorization by morphologic subtypes. 
e, erythrocytic; s, serpentine; l, layered. 

 
Figure 2. Histologic quantification of T cells (CD4+), monocytes (CD68+), and platelets (vWF+) in all 
thrombi by morphologic subgroups. e, erythrocytic; s, serpentine; l, layered. Scale bar: 20 µm. 
Magnification: 20-fold. Inserts show high magnification of representative staining. * p < 0.05. 

2.3. Correlation of Histologic Results with Clinical Parameters 

Finally, linear regression analysis was performed to correlate the number of immune cells or 
vWF+ areas within the thrombi with the NIHSS score as a marker for AIS symptom severity. The 
number of CD68+ monocytes and vWF+ platelets—but hardly the number of CD4+ T cells—displayed 
a clear trend to correlate with a high NIHSS score at admission (Figure S1). To reduce sample 
inhomogenities, we statistically re-evaluated our findings after exclusion of basilar artery occlusions. 
Here, the associations between CD68+ monocytes (p = 0.06) or vWF+ platelets (p = 0.02) and NIHSS 
score were even higher (Figure 3). In contrast, neither the number of CD4+ and CD68+ nor the area of 
vWF+ cells was predictive of the clinical outcome at discharge (Figure 3B). In a multivariate linear 
regression model, neither age nor sex significantly influenced these results (data not shown). Also 
Trial of Org 10172 in Acute Stroke Treatment (TOAST) [32] criteria and thrombolysis in cerebral 
infarction (TICI) scores [33] (Table S1) had no impact on the fraction or distribution of immune cells 
or platelets in the clots (data not shown). 

Figure 1. (A) Macroscopic view, hematoxylin and eosin (H&E), Martius scarlet blue (MSB), and von
Willebrand factor (vWF) staining of three representative thrombi that show erythrocytic, layered, or
serpentine morphology; (B,C) Bar graph of all thrombi after categorization by morphologic subtypes.
e, erythrocytic; s, serpentine; l, layered.

In the next step, we correlated the histopathologic thrombus subgroups (Figure 1B,C) with the
number of immune cells (CD4+ T cells, CD68+ monocytes) and the fraction of vWF+ areas. Importantly,
a significant accumulation of CD4+ T cells (p < 0.05) and a trend for CD68+ monocytes (p > 0.05)
was detected in erythrocytic when compared with serpentine thrombi (Figure 2). The CD4+ and
CD68+ cells were randomly distributed within the clot. In contrast, white thrombi (79% layered and
21% serpentine) showed higher percentages of vWF+ areas that are co-localized with the regions of
fibrin/collagen (p > 0.05) (Figure 2).
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2.3. Correlation of Histologic Results with Clinical Parameters

Finally, linear regression analysis was performed to correlate the number of immune cells or vWF+

areas within the thrombi with the NIHSS score as a marker for AIS symptom severity. The number of
CD68+ monocytes and vWF+ platelets—but hardly the number of CD4+ T cells—displayed a clear trend
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to correlate with a high NIHSS score at admission (Figure S1). To reduce sample inhomogenities, we
statistically re-evaluated our findings after exclusion of basilar artery occlusions. Here, the associations
between CD68+ monocytes (p = 0.06) or vWF+ platelets (p = 0.02) and NIHSS score were even higher
(Figure 3). In contrast, neither the number of CD4+ and CD68+ nor the area of vWF+ cells was predictive
of the clinical outcome at discharge (Figure 3B). In a multivariate linear regression model, neither age
nor sex significantly influenced these results (data not shown). Also Trial of Org 10172 in Acute Stroke
Treatment (TOAST) [32] criteria and thrombolysis in cerebral infarction (TICI) scores [33] (Table S1)
had no impact on the fraction or distribution of immune cells or platelets in the clots (data not shown).Int. J. Mol. Sci. 2016, 17, 298 5 of 10 

 

 
Figure 3. (A) Cellular thrombus histology of all retrieved clots except from the basilar artery in 
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Figure 3. (A) Cellular thrombus histology of all retrieved clots except from the basilar artery in
correlation to NIHSS scores at admission and clinical outcome at discharge. Red line: linear regression
curve; (B) Categorization of CD4+ T cells, CD68+ monocytes and vWF+ platelets into “Good outcome”
(NIHSS score 0–4 or improvement >9 points) or “Bad outcome” at the time of discharge. NIHSS,
National Institute of Health Stroke Scale. r = correlation coefficient. R squared = coefficient of
determination. p = level of significance.

3. Discussion

In this study, we analyzed the histologic composition of cerebral clots retrieved by MT from
patients with AIS. In contrast to previous publications [11–14], we here, for the first time, provide a
detailed characterization of clots regarding the number and distribution of distinct immune cells known
to play major roles in inflammatory mechanisms of experimental ischemic stroke in rodents [24–27,34]
and which could also be highly relevant for the pathophysiology of human AIS.

The baseline categorization of cerebral thrombi regarding distinctive patterns (erythrocytic,
layered, or serpentine) and the content of RBCs and fibrin/collagen (red, white, or mixed) is based
on previous reports [11,12]. In contrast, the immunohistologic characterization of CD4+ T cells,
CD68+ monocytes and vWF+ cells (considered to be platelets) adds valuable new pathomechanistic
information for the understanding of the composition of cerebral clots in special and thrombus
formation in the context of human AIS in general.

Immunohistologic work-up of the thrombi revealed that the number of CD4+ T cells and CD68+

monocytes was increased in erythrocytic and red clots compared with the other morphologic groups.
In contrast, white thrombi comprised more vWF+ cells compared with red and mixed clots. Given
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the promising results of studies that tried to visualize cerebral clot composition using CT and
MRI imaging [12,13], it might be feasible to indirectly predict immunologic clot composition by
these routine imaging techniques. Moreover, the development of specific MRI contrast agents for
immune cells [35] and platelets [36] could further pave the way for non-invasive, but sensitive
and specific, novel imaging possibilities for in vivo characterization of intracranial clot composition
regarding thromboinflammation.

There is increasing evidence that immune cells are not only biomarkers after AIS [37], but also
potential therapeutic targets [38]. Nevertheless, the mechanisms by which immune cells contribute
to AIS pathophysiology have not been understood in depth so far. Even though we did not observe
unambiguous platelet-monocyte co-localizations within the retrieved clots, it appears plausible that
the interaction of immune cells with platelets (e.g., via cluster of differentiation 40 (CD40) and CD40
ligand or P-selectin (CD62-P) and P-selectin glycoprotein ligand 1) [27,39] and endothelial cells (e.g.,
via intercellular adhesion molecule 1 and lymphocyte function-associated antigen 1) [24] also plays a
role in human AIS. Based on this hypothesis, formation of platelet–leukocyte aggregates and leukocyte
activation might not only contribute to vascular repair, but also to thrombus formation leading to AIS.
While most of the preclinical studies dealing with the role of immune cells in AIS development focused
on microcirculatory dysfunction [26] or pathomechanisms within the brain [40], the intracranial clots
retrieved by MT reflect thrombus formation outside the brain, as most of the patients suffered AIS due
to a cardioembolic or arterioarterial embolic event (see TOAST classification in Table S1). Nevertheless,
also in the pathogenesis of peripheral (i.e., outside the central nervous system) macroangiopathic
atherosclerosis, various immune cells are involved [41–43] and there is ongoing effort for in vivo
visualization of atherosclerotic plaque composition [44,45]. Importantly, and in contrast to Niesten
and co-workers [12] who reported AIS subtype-specific differences regarding the percentage of RBC
infiltration, we found no differences in immune cell infiltration within the clots when having a detailed
look at AIS subtypes according to TOAST criteria. Further clinical studies are needed to assess whether
immune cell composition of clots—measured by non-invasive imaging—could predict the response to
revascularization strategies, and, in the future, may influence the decision of which treatment option is
most suitable in individual cases.

There are several limitations of this study that must be considered. First, the number of patients
that could be recruited and consequently the power of statistical analyses are low. Reasons for this
are the low number of MTs (only 5%–10% of all patients with AIS) and the difficulties in receiving
informed consent from a patient severely affected by AIS. Therefore, patients who have suffered a
severe stroke and/or have aphasia could be underrepresented in this study (compared with patients
with milder symptoms) because neurologic deficits related to their condition may have prevented
them from being capable of providing informed consent; Second, despite a recent publication showing
that stent-retriever MT does not lead to significant intimal damage [46], it is possible that the procedure
of MT itself might dislocate the original clot composition and thereby could influence the results of
our histologic analysis; Furthermore, thrombi retrieved as multiple fragments could not be further
processed for immunohistochemistry. Third, it was not possible to conduct a standardized follow-up
of patients due to limited patient numbers and low response rates.

4. Materials and Methods

4.1. Patient Population and Study Design

We histopathologically studied a convenience sample of 37 occluding clots that were mechanically
retrieved from large intracranial arteries of patients with AIS at the Department of Neurology,
University Hospital of Würzburg, Germany. The study protocol was approved by the ethics committee
of the Medical Faculty of the University of Würzburg, Germany (reference number 36/2012) and
written informed consent was provided by all participants. Inclusion criteria were: patients with AIS
ě 18 years with an occlusion of the proximal MCA, the C-T, or the BA, successful MT and informed
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consent of the patients or their legal representatives during the hospital treatment. The functional
status of the patients was assessed using the NIHSS score [31] at hospital admission and again before
discharge. Good neurologic outcome was defined as an NIHSS score of 0–4 or an NIHSS score
improvement of >9 points [46]. The TICI score [33] was used to assess post-intervention vessel patency
and has been performed by an independent investigator (Ignaz Gunreben) blinded to clinical and
histologic outcome: (0) no perfusion; (1) penetration with minimal perfusion; (2) partial perfusion (2a,
only partial filling (less than two-thirds) of the entire vascular territory is visualized); 2b, complete
filling of all of the expected vascular territory is visualized, but the filling is slower than normal;
(3) complete perfusion. The TOAST (Trial of Org 10172 in Acute Stroke Treatment) criteria [31] were
applied to describe the assumed etiology of AIS: (1) cardioembolism; (2) large-artery atherosclerosis;
(3) small-vessel occlusion; (4) other determined etiology; or (5) undetermined etiology.

4.2. Thrombectomy Procedure

MT was performed in accordance with local standard operating procedures and common
recommendations [47]. Only stent retrievers were used. The MT was performed under general
anesthesia in all of the patients. Participation in the study had no impact on the way the patients
were treated.

4.3. Processing of Thrombi and Analysis

Immediately after clot retrieval, i.e., still within the catheter laboratory, thrombus material was
fixed in phosphate-buffered formalin. The formalin-fixed specimens were embedded in paraffin
(Leica, Wetzlar, Germany), cross-sectioned at 4-µm thickness and stained with hematoxylin and eosin
(H&E), and Martius scarlet blue (MSB) (Atom Scientific, Cheshire, UK). Subsequently, based on H&E
staining, thrombi were characterized according to their overall appearance into erythrocytic, layered,
and serpentine [11]. Categorization was done by visual assignment of two independent investigators
(Michael K. Schuhmann, Peter Kraft). In case of divergent results after first view, investigators
independently re-categorized the clots and finally had to reach an agreement. Additionally, using
MSB-stained sections, the content of RBCs and fibrin/collagen was quantitatively determined.
Accordingly, thrombi were classified as red (RBCs outnumber fibrin/collagen ě 15%) or white
(fibrin/collagen outnumber RBCs ě 15%). All others were classified as mixed [12]. To assess for
thromboinflammation, all thrombi were stained immunohistochemically for CD4+ T cells (abcam;
ab133616, Cambridge, UK), CD68+ monocytes (Acris; AM331235U-N, Herford, Germany) and von
Willebrand factor (abcam; ab6994, Cambridge, UK).

4.4. Statistical Analysis

All results are presented as mean˘ standard error of the mean. Distribution of data was evaluated
using the Kolmogorov–Smirnov test. To test for significant differences between multiple groups,
one-way analysis of variance with post hoc Bonferroni adjustment for p-values was used. The Pearson
test was used to analyze the correlation between the number of immune cells or platelets and NIHSS
at admission. To rule out potential confounders, we utilized a multivariate linear regression model
adjusted for age and sex. In a second multivariate linear regression model we evaluated for TICI score
and TOAST classification. p-values <0.05 were considered significant with * p < 0.05.

5. Conclusions

Intracranial thrombi retrieved by MT from patients with AIS comprise T cells, monocytes, and
platelets as cellular components and potential inflammatory biomarkers that might also be relevant in
the pathophysiology of human AIS. Our findings should stimulate further investigations to identify
whether the immune cell composition of clots may influence the clinical response to IVT or MT.
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Abbreviations

AIS acute ischemic stroke
BA basilar artery
CD cluster of differentiation
C-T intracranial part of the internal carotid artery
CT computed tomography
H&E hematoxylin and eosin
IVT intravenous thrombolysis
MCA middle cerebral artery
MRI magnetic resonance imaging
MSB Martius scarlet blue
MT mechanical thrombectomy
NIHSS National Institutes of Health Stroke Scale
RBC red blood cell
TOAST Trial of Org 10172 in Acute Stroke Treatment
TICI thrombolysis in cerebral infarction
vWF von Willebrand factor
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