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Abstract

Background

The current notion that cortico-striato-thalamo-cortical circuits are involved in the patho-
physiology of obsessive-compulsive disorder (OCD) has instigated the search for the most
suitable target for deep brain stimulation (DBS). However, despite extensive research,
uncertainty about the ideal target remains with many structures being underexplored. The
aim of this report is to address a new target for DBS, the medial dorsal (MD) and the ventral
anterior (VA) nucleus of the thalamus, which has thus far received little attention in the treat-
ment of OCD.

Methods

In this retrospective trial, four patients (three female, one male) aged 31-48 years, suffering
from therapy-refractory OCD underwent high-frequency DBS of the MD and VA. In two
patients (de novo group) the thalamus was chosen as a primary target for DBS, whereas in
two patients (rescue DBS group) lead implantation was performed in a rescue DBS attempt
following unsuccessful primary stimulation.

Results

Continuous thalamic stimulation yielded no significant improvement in OCD symptom
severity. Over the course of thalamic DBS symptoms improved in only one patient who
showed “partial response” on the Yale-Brown Obsessive Compulsive (Y-BOCS) Scale.
Beck Depression Inventory scores dropped by around 46% in the de novo group; anxiety
symptoms improved by up to 34%. In the de novo DBS group no effect of DBS on anxiety
and mood was observable.
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Conclusion

MD/VA-DBS yielded no adequate alleviation of therapy-refractory OCD, the overall strategy
in targeting MD/VA as described in this paper can thus not be recommended in DBS for
OCD. The magnocellular portion of MD (MDMC), however, might prove a promising target
in the treatment of mood related and anxiety disorders.

Introduction

Obsessive Compulsive Disorder (OCD) is a complex neuropsychiatric disorder whose main
features involve persistent, intrusive thoughts (obsessions) and repetitive, ritualistic behaviors
aiming to neutralize the distress (compulsions). OCD has severe impact on an individual’s
occupational, academic and personal life causing misery and reduced quality of life [1]. Cogni-
tive-behavioral therapy and pharmacotherapy with serotonin reuptake inhibitors and clomip-
ramine have proven effective treatment options in most patients. However, 20-40% of OCD
patients show little or no symptom relief to conventional treatment and remain severely
affected [2]. Since the first study published by Nuttin et al. in 1999 [3], deep brain stimulation
(DBS) has increasingly gained importance as a treatment option in the field of therapy-refrac-
tory Obsessive-Compulsive Disorder (OCD). However, the most effective anatomical target for
stimulation remains controversially discussed. Recent publications favored the investigation of
the internal capsule/ ventral striatum (IC/VS) [3-15] and the nucleus accumbens (NA) [16—
25]. Targets such as the subthalamic nucleus (STh) [26,27] and the thalamus [28-30] are
underexplored. In an attempt to get a deeper understanding about the efficacy of DBS in the
thalamus, we present four patients who underwent lead implantation in the medial dorsal
nucleus (MD) and the ventral anterior nucleus (VA) of the thalamus. In two patients the thala-
mus was chosen as a primary target, whereas in two patients thalamic lead implantation was
performed in a rescue DBS attempt following primary stimulation in the NA. In this retrospec-
tive study we report the results obtained from our patients during follow up visits.

Materials and Methods
Patient selection

Between January 2001 and January 2012, 35 patients suffering from severe, therapy-refractory
OCD underwent DBS treatment in the NA at the Department of Stereotactic and Functional
Neurosurgery, University of Cologne. Patients who didn’t show any symptom improvement
over the course of NA-DBS and remained severely affected by OCD were offered lead replace-
ment and additional lead implantation. Over the course, two patients who did not respond to
primary NA stimulation consented to a rescue DBS procedure. Neuroanatomical and patho-
physiological considerations (see Rationale for Thalamic DBS) prompted us to select MD/ VA
as the most promising target in both cases. In two patients (de novo group), the conventional
approach of NA/IC stimulation was abandoned due to distinct depressive symptoms that
could be objectified during preoperative assessment (Table 1). The aim in this group was to
alleviate both OCD and depressive symptoms employing MD and VA as targets for DBS.
Before surgery, every patient was examined and validated by a multidisciplinary team of spe-
cialists consisting of neurosurgeons, neurologists, psychiatrists and neuropsychologists. Prior
to performing DBS in each patient, the Ethics Committee of the Medical Faculty of the Univer-
sity of Cologne was informed about the extended access-trial. No separate ethics application
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Table 1. Demographic data and clinical characteristics at the time of surgery.

Patient | Age at

No. MD/
VA-DBS
(a)
1 42
2 36
3 48
4 31

Time of
Onset

Childhood

Adolescence

Adulthood

Childhood

doi:10.1371/journal.pone.0160750.t001

Duration | Comorbidity
of OCD

(@)

38

19

17

20

Suicide |Obsessions Compulsions |Drug Previous |Previous
attempts Therapy Drug CBT
Trials Trials
Recurrent 0 Fear of Washing, Fluoxetine, 7 12
depressive contamination ordering, Diazepam,
disorder, counting Lorazepam,
Borderline Pregabalin
personality
disorder, Bulimia
nervosa
None 0 Fear of Washing, Ziprasidone, 8 9
contamination, cleaning Fluoxetine
inappropriate
sexual and
blasphemous
thoughts, fear of
misstating facts
Posttraumatic 3 Fear of being Washing, Sertraline, 15 14
stress disorder, touched and cleaning Quetiapine,
Dissociative contaminated Clonazepam
disorder,
Recurrent
depressive
disorder,
Histronic and
borderline
personality
disorder
None 0 Fear of the Checking, Quetiapine, 12 11
future, repeatedly Duloxetine,
interpreting touching Palliperidone
numbers and objects,
colors, avoiding to step
calculating on stains on the
rituals floor

and statement by the ethical committee for this retrospective study were required. This study
has been evaluated in accordance with German data protection legislation (German Data Pro-
tection Legislation English Version available as S1 Appendix). This, in particular, means that
the results of the study have been obtained in a completely anonymous manner. The authors
MM, CN, FE, DL, JK and VS had contact with patients and access to patients’ data during med-
ical treatment and follow-up evaluations. For all kinds of treatment done at the Department of
Stereotactic and Functional Neurosurgery Cologne it is mandatory to obtain written informed
consent of patients scheduled for treatment. In case of minors, this consent is granted either by
their parents or by a court-approved caregiver.

Patients were eligible for DBS if they were between 21 and 65 years of age and suffered from
primary OCD, verified with the Structured Clinical Interview for DSM-IV, German Version.
Severity of illness, as assessed with the Yale-Brown Obsessive Compulsive Scale (Y-BOCS)
must have been 25 or higher and patients had to attest disease duration of at least 5 years with
less than 35% symptom reduction following pharmacologic therapy and cognitive behavioral
therapy (CBT) with exposure and response prevention comprising at least 1 CBT trial for a
minimum of 20 sessions, each ranging from 60-120 minutes. Pharmacotherapy involved treat-
ment with a selective serotonin reuptake inhibitor (SSRI) for at least 10 weeks, an additional
treatment regimen using a different SSRI or clomipramine over a period of 10 weeks and
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augmented therapy administering an atypical antipsychotic, lithium or buspirone for 10 weeks.
Table 1 summarizes clinical characteristics and demographic data of the patients at the time of

surgery.

Rationale for thalamic DBS

The involvement of cortical and subcortical structures in the pathophysiology of OCD was dis-
covered during the era of ablative surgery. Surgical disruption of aberrant circuitry by means of
anterior capsulotomy [31-34], subcaudate tractotomy [35,36], limbic leucotomy [37,38] and
cingulotomy [39-41] aimed for alleviation of obsessions, compulsions and comorbid symp-
toms. Hence, ablative procedures, along with lesional studies and, more recently, functional
imaging modalities built the foundation of our current understanding of the cortico-striato-
thalamo-cortical (CSTC) -based model of OCD. The circuit comprises cortical structures such
as the orbitofrontal cortex (OFC), prefrontal cortex (PFC) and the anterior cingulate cortex
(ACCQC), the basal ganglia: striatum, pallidum, nucleus accumbens (NA), STh and substantia
nigra (SN), the thalamus and limbic components (amygdala, hippocampus) [42-46]. These
neuroanatomical structures are interconnected forming two antagonistic pathways, a “direct’
positive feedback loop and an “indirect” negative feedback loop (Fig 1). Within the direct cir-
cuit, cortical projections from the OFC, PFC and ACC modulate target cells in the striatum.

>

Striatal excitation exerts inhibitory effects on downstream targets in the globus pallidus inter-
nus (IGP) and substantia nigra pars reticulate (SNR), which ultimately results in increased
reciprocal feedback via thalamo-cortical projections. In contrast, activation of the indirect
pathway leads to excitation of IGP and SNR through STh disinhibition. Inhibitory nigro/pal-
lido-thalamic projections subsequently decrease thalamic output and induce negative cortical
feedback. In healthy controls, direct and indirect pathways are in balance. In OCD, increased
activity of the CSTC circuit is observable at rest due to overactivation of the excitatory pathway
as well as failure of inhibition in the indirect loop [43,44,47].

Multiple superordinate systems are embedded in the direct and indirect loop of the CSTC
circuit: Motor circuit, associative circuit, limbic circuit, dorsal and ventral cognitive circuit.
Pathways reside within segregated basal ganglia territories and remain distinct throughout the
CSTC loop although there is considerable crosstalk between circuits [4,48]. Among functional
circuits, the ventral cognitive network has consistently been implicated in the pathophysiology
of OCD featuring nodes within OFC, head of the caudate nucleus and MD. Lack of inhibition
within this circuit is believed to result in anxiety provoking thoughts and conditioned fear
responses involving repetitive, intrusive movements and complex acts [49-53]. The thalamus
constitutes the final subcortical link within the CSTC loop. When uncoupled from inhibitory
striatal influence, thalamic projections exert excitatory effects on the cortex and thus are cru-
cially involved in diverse cognitive and executive tasks, such as strategy selection, behavioral
flexibility and prospective coding [54]. Several thalamic nuclei are implicated in the pathophys-
iology of OCD, predominantly the medial dorsal (MD) and the ventral anterior (VA) nucleus
[45,46,55,56]:

MD consists of three subnuclei, that is, the medial or magnocellular nucleus (MDMC), the
intermediate or parvocellular nucleus (MDPC), and the lateral or paralaminar nucleus
(MDPL) [57]. Each subdivision sends projections to specific areas within PFC, OFC, ACC, pre-
motor cortex and insular cortex, which then relay back to the same location in MD. MDMC
receives subcortical afferents from IGP/SNR [58,59] that inhibit MD output, whereas projec-
tions from the basal amygdala, the magnocellular nuclei of the basal forebrain and the brain-
stem stimulate thalamic activity [60]. Amygdaloid afferents reach MDMC through the ventral
amygdalofugal pathway and the inferior thalamic peduncle (ithp) and are then conveyed to
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Fig 1. Schematic of thalamic involvement in OCD pathophysiology. MD and VA are embedded within
the “direct” positive and “indirect” negative feedback loop of the CSTC circuit and are under striatal influence.
Imbalance between direct and indirect pathways results in increased CSTC activity in OCD. Amygdaloid
afferents link MD and VA with limbic circuits and enable thalamic processing of emotional stimuli. Increased
thalamic output in OCD alters mood and anxiety components. OFC, orbitofrontal cortex; PFC, prefrontal
cortex; ACC, anterior cingulate cortex; PMC, premotor cortex; SMA, supplementary motor area; IC, insular
cortex; NA, nucleus accumbens; EGP, external globus pallidus; STh, subthalamic nucleus; IGP, internal
globus pallidus; SN, substantia nigra; VA, ventral anterior thalamic nucleus; MD, medial dorsal thalamic
nucleus.

doi:10.1371/journal.pone.0160750.g001

PFC [61]. MDMC therefore is involved in the evaluation, modulation and transmission of
emotional processes and affective stimuli. In turn, MD sends fibers to the amygdala and
thereby connects with the dorsomedial and lateral hypothalamic nuclei as well as the dorsal
nucleus of the vagus nerve [62-64]. In conjunction with auditory and visual signals, MDMC
induces vegetative manifestations and agitation upon sensory stimulation [65,66]. Finally,
MDMC is involved in memory processing via amygdalohippocampal and orbitofrontal con-
nections [60,67]. MDPC is the largest nucleus in MD and receives input from multiple mid-
brain structures within the basal ganglia circuit; efferents reach the dorsolateral and
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dorsomedial PFC [68]. MDPC plays a role in working memory and, together with fibers from
MDPL, controls oculomotor activity by establishing connections to the frontal eye field (FEF).
Lesions in MD frequently cause cognitive, emotional and behavioral impairment similar to
frontal lobe syndrome [69]. Occasionally, memory disruption [70] and loss of insight and judg-
ment [71] can be observed. Bicuculline (GABA-A antagonist) injections into MD in monkey
are characterized by motor hypoactivity and induce distinct dysautonomic manifestations [56].
MD thalamotomy has been reported to alleviate schizophrenic symptoms and anxiety [72].

VA is strongly implicated in the CSTC circuit and processes prefrontal associative, sensori-
motor and limbic information. Subcortical afferents from IGP reach the lateral portion of VA
(VAL), whereas fibers from SNR terminate in the medial portion of VA (VAM). IGP and SNR
modulate voluntary motor activity and determine the type of motor output when multiple
movement options are available [73]. VAM receives oculomotor components from the supe-
rior colliculus [74], while amygdaloid afferents link VAM with the limbic circuit. The latter
originate in the basal amygdala and terminate in the nucleus lateralis rostralis, pars medialis of
the ventromedial VAM [75,76]. Efferents from VAM and VAL project to the premotor cortex
and supplementary motor area [77-79] without overlap. VAM additionally relays to prefrontal
cortex, cingulate cortex and FEF [80-82]. Lesions of the anterior thalamus are associated with
complex behavioral syndromes [83] and result in memory impairment, deficits in motor plan-
ning and sequencing as well as perseveration in memory, thinking, spontaneous speech and
executive tasks [84,85]. Bicuculline injections within VA trigger OCD-like behavior in monkey,
i.e. repetitive food seeking, excessive and time-consuming grooming and unusual manipulation
of objects. Interruption of compulsive tasks results in aggressive and agitated behavior [56].

Our target

According to the Atlas of the Human Brain [86] MD originates on a level with the intrathala-
mic adhesion, 12.0 mm posterior from the anterior commissure (AC) and extends an estimated
18-20 mm to the level of the habenular commissure (Fig 2). In coronal sections MD features
its greatest vertical expansion at 17.2 mm posterior from AC with a length of 13.1 mm. MD’s
greatest horizontal diameter amounts to 10.7 mm at 25.2 mm posterior from AC. MD is medi-
ally bordered by the paraventricular thalamic nucleus and the third ventricle; ventrally, the
ithp advances into MD. The internal medullary lamina (iml) and the intralaminar nuclear
group border the lateral side and separate MD from VA. The rostral pole of VA is located 6.7
mm posterior from AC and borders the prereticular zone and the reticular thalamic nucleus
(Fig 3). VA expands caudally for 9-10 mm, reaches its greatest extent (16.6 mm) at 12.0 mm
and terminates at the ventrolateral nucleus. VAM gets penetrated by the mammillothalamic
tract (mt). The lateral margin of VA borders the external medullary lamina; pallidal fibers
reach the ventral portion of VA through H1.

Surgical procedure

Prior to surgery frame-based imaging modalities were obtained for stereotactic treatment plan-
ning: Magnet Resonance Imaging (MRI) was carried out in axial T1 and T2-weighted
sequences while intraoperative cerebral computed tomography (CCT) scans were performed
following intravenous administration of contrast agent. After image fusion, target points were
determined based on the Atlas of the Human Brain [86] and the surgical trajectory was modi-
fied so DBS leads would pass through VA and MD with the lowest contacts (contacts 0 and 4)
residing in the mediobasal portion of MDPC. The objective was to place distal contact points
within MDPC/MDMC while proximal contact placement was aimed at the transition of MD/
VA and in VA, respectively (Fig 4). After burr hole craniostomy and dural incision patients
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+30,5 mm

Fig 2. Reconstruction of MD and its boundaries. (A) Coronar section, displaying MD in anterior to posterior-view. (B)
Sagittal section of MD. (C) Coronar section of MD in posterior to anterior view. ac, anterior commissure; AV, anteroventral
nucleus; CMn, centromedian nucleus; DSf, dorsalis superficialis nucleus; mt, mammillothalamic tract; pc, posterior
commissure; vaf, ventral amygdalofugal fibers. Reproduced with permission from Mai JK, Paxinos G (2004): The Human
Nervous System, 3rd ed. San Diego Elsevier Academic Press, p 628.

doi:10.1371/journal.pone.0160750.g002

underwent stereotactic-guided lead placement with quadripolar electrodes (Medtronic 3387 in
cases 2 and 4 and Medtronic 3389 in cases 1 and 3; Medtronic, Inc., Minneapolis, MN, USA)
being implanted bilaterally into the predetermined targets in general anesthesia. To confirm
accurate lead positioning 2D stereotactic X-ray procedures and postoperative CCT scans (Phil-
ips MX8000 IDT16, Philips Medical Systems, Best, The Netherlands, matrix size 512 x 512,
field-of-view 290 mm, slice thickness 1.5 mm, voltage 120 kV, current time product 390 mAs)

(B)

Fig 3. Reconstruction of VA and its surrounding structures. (A) Coronar section of VA in anterior to posterior view. (B)
anterolateral surface of VA. ac, anterior commissure; AD, anterior dorsal nucleus; AM, anterior medial nucleus; AV, anterior ventral
nucleus; DSf, dorsal superficial nucleus; f, fornix; h1, thalamic fascicle; h2, lenticular fascicle; mt, mammillothalamic tract; Pul,
Pulvinar; st, stria terminalis; VAL, ventral anterolateral nucleus; VAM, ventral anteromedial nucleus; VL, ventral lateral nucleus; VM,
ventromedial nucleus; VMpo, ventromedial posterior nucleus; VPI, ventroposterior inferior nucleus; VPL, ventral posterolateral
nucleus. Reproduced with permission from Mai JK, Paxinos G (2004): The Human Nervous System, 3rd ed. San Diego Elsevier
Academic Press, p 637.

doi:10.1371/journal.pone.0160750.g003
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Fig 4. Anatomical localization of MD/VA and DBS lead localization according to the Atlas of the Human Brain. Stereotactic coordinates
constitute the centers of active contact points (Case No.-Contact No.) on coronal sections retrieved from postoperative 2D stereotactic X-ray and
CCT images. (A) Lead localization within the left hemisphere. (B) Lead placement within the right hemisphere. MDMC, medial dorsal thalamic
nucleus, magnocellular part; DSF, dorsal superficial nucleus; bfx, body of fornix; CM, centromedian thalamic nucleus; PF, parafascicular thalamic
nucleus; PT, paratenial thalamic nucleus; sm, stria medullaris of thalamus; PV, paraventricular thalamic nucleus; APr, anteroprincipal thalamic
nucleus; AD, anterodorsal thalamic nucleus; Cuc, cucullaris nucleus; VA, ventral anterior thalamic nucleus; VM, ventromedial thalamic nucleus; iml,
internal medullary lamina of thalamus; CeMe, central medial thalamic nucleus; Co, commissural nucleus; VAMC, ventral anterior thalamic nucleus,
magnocellular part; mt, mammillothalamic tract; ithp, inferior thalamic peduncle. Adapted with permission from Mai JK, Paxinos G, Voss T (2007):
Atlas of the Human Brain, 3rd ed. San Diego: Elsevier Academic Press.

doi:10.1371/journal.pone.0160750.9004

were obtained. In a subsequent procedure a programmable implantable pulse generator (IPG;
Kinetra (case 2), Activa PC (cases 1, 3 and 4), Medtronic Inc., Minneapolis, MN, USA) was
placed subcutaneously in an abdominal (case 2) or infraclavicular (cases 1, 3 and 4) pocket and
connected to the electrodes using extension wires. Actual stereotactic coordinates were
obtained via backward calculation of active contact points using the intercomissural line as a
reference. For this purpose, the center of each active contact was determined on postoperative
CCT scans using a stereotactic 3D planning software (STP, Stryker-Leibinger, Freiburg, Ger-
many). Coordinates were subsequently adjusted in both anteroposterior and mediolateral
plane to match the reference brain as described in the Atlas of the Human Brain. Finally, coor-
dinates were transferred to the Atlas, with each coordinate representing the center of the
respective contact (Table 2).
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Table 2. Coordinates (center of active contacts) of MD/VA electrodes.
left right
Patient No. |Contact number |Contact localization X y z |Contactnumber |Contact localization X y z
1 0 MDPC -37 | 203 | 24 |4 MDPC 52 | 20.6 2.9
1 MDMC/MDPC 45 | 188 | 35 |5 MDPC 5.9 | 19.0 3.9
2 MDPC -5.3 17.2 44 |6 MDPC 6.7 175 5.0
3 iml -6.1 157 | 55 |7 VA 74 | 16.0 5.9
2 0 MDPC 47 | 207 | 45 |4 MDPC 41 | 226 3.0
1 MDMC/MDPC -55 | 183 | 6.2 |5 MDPC 5.0 | 20.1 4.6
2 MDPC 62 | 159 | 78 |6 MDPC 59 | 17.7 6.1
3 VA/mt -7.0 | 135 | 94 |7 mt 6.7 | 152 7.7
3 0 MDMC 46 | 180 | 47 |4 MDMC/MDPC 49 | 1838 4.8
1 MDPC -5.1 16.3 | 54 |5 MDPC 55 | 171 5.4
2 iml -57 | 145 | 6.2 |6 iml 6.2 | 153 6.0
3 VA -6.4 12.8 69 |7 VA 6.7 135 6.7
4 0 MDMC/MDPC 2.2 19.9 35 |4 MDMC/MDPC 3.2 19.3 4.6
1 MDMC -33 | 179 | 56 |5 MDMC/MDPC 44 | 171 6.5
2 MDPC -4.3 15.9 75 |6 iml 5.5 151 8.2
3 iml -5.4 13.9 95 |7 VA 6.7 13.0 10.0

iml, internal medullary lamina; MDMC, magnocellular nucleus of MD; MDPC, parvocellular nucleus of MD; mt, mammillothalamic tract; VA, ventral anterior

thalamic nucleus

doi:10.1371/journal.pone.0160750.t002

Adjustment of Stimulation Parameters

Determination of optimal stimulation settings in each patient was based on a detailed stimula-
tion protocol obtained during postoperative test stimulation. Consecutive monopolar stimula-
tion of individual contacts was performed initially with a frequency of 130 Hz and a pulse
width of 60 psec. For each active contact, the amplitude was progressively increased to control
for acute effects and adverse events. Stimulation was applied sequentially to individual con-
tacts; the trial was discontinued if the patient reported unwanted side effects. During follow-up
visits, stimulation parameters were adjusted empirically depending on patients’ response to
DBS and neuropsychological scoring. Table 3 gives an overview of stimulation settings used in
the immediate postoperative course and during chronic stimulation.

Table 3. Stimulation settings following surgery and in the postoperative course.

Patient No. Time of programming Stimulation settings
1 Postoperatively 0-, 1-, 2-, 4-, 5-, 6-, ¢+, 90us, 130Hz, 4.0V
1 year follow up 1-, 2-, 5-, 6-, c+, 120ps, 130Hz, 2.5V
1.5 year follow up 2-, 3-,6-, 7-, c+, 120ps, 130Hz, 2.7V
2 Postoperatively 0-, 1-, 2-, 4-, 5-, 6-, c+, 90us, 130Hz, 2.5V
3 Postoperatively 1-,2-, 5-, 6-, ¢+, 90us, 130Hz, 0.5V
0.5 year follow up 0-, 1-, 2-, 4-, 5-, 6-, c+, 90us, 130Hz, 3.5V
4 Postoperatively 1-, 2-, 5-, 6-,90us, 130Hz, 4.5V
1 year follow up 1-, 2-, 5-, 6-, 150us, 130Hz, 3.0V
2 year follow up 1-, 2-, 5-, 6-, 150us, 130Hz, 3.0V
3 year follow up 0-, 1-, 2-, 4-, 5-, 6-, c+, 120ps, 130Hz, 3.5V

doi:10.1371/journal.pone.0160750.t003
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Psychiatric and neuropsychological assessment

After discharge, patients were advised to proceed pharmacologic therapy as normal and under
observation by their treating psychiatrists. Modification of stimulation parameters and follow-
up evaluation were performed at our outpatient clinic. The primary outcome measure was the
change in symptom severity as evaluated by the Y-BOCS. Furthermore an extensive assessment
battery was carried out including the Beck Depression Inventory (BDI) [87], State and Trait
Inventory (STAI) [88], Modular System of Quality of Life (MSLQ) [89], Global Assessment of
Functioning Scale (GAF), Tower of London test (ToL) and Verbal Fluency Examination
(VFE). Neuropsychological testing was performed at baseline and after initiating DBS.

Results

Due to the complexity of the cases reported in this series, each patient is presented as a single
case. The first two patients (cases 1 and 2) underwent lead placement in a rescue DBS attempt;
cases 3 and 4 received de novo lead implantation (Table 1). Table 2 illustrates the stimulation
parameters and target coordinates used for chronic stimulation, and the effect of DBS on
Y-BOCS and secondary outcome measures.

Case 1. A 42-year-old single woman with a 38-year history of therapy refractory OCD with
mixed obsessional thoughts and acts (ICD-10: F42.2) and without a family history of neuropsy-
chiatric diseases presented for management. Severe OCD symptoms occurred at an early age and
she did not recall a specific trigger event. She attended secondary education until the 10" grade;
due to the severity of obsessive and compulsive symptoms she was never able to pursue a regular
job. Her main obsession is the fear of contamination, which leads her to perform ritualistic wash-
ing behaviors. Compulsions are orderliness and counting. The patient’s past medical history
revealed recurrent depressive episodes, personality disorder of the borderline type and eating dis-
order (bulimia nervosa). She underwent psychotherapeutic treatment and was prescribed
numerous medications, involving two SSRIs and augmented therapy with quetiapine, different
benzodiazepines and anticonvulsants. Therapy hardly yielded any symptom improvements,
whereas the patient experienced multiple adverse events during the drug trials and did not show
any significant reduction in OCD severity. At admission psychiatric medication included fluoxe-
tine (40-60 mg/d), diazepam (20 mg/d), lorazepam (5.0 mg/d) and pregabalin (600 mg/d).

The patient derived no therapeutic benefit from an initial attempt at stimulation in the right
NA and the anterior limb of the internal capsule (ALIC). Therefore, due to treatment refractori-
ness and in accordance with the patient’s wish, bilateral lead placement into MD/V A was per-
formed 3 years following primary implantation. Scores, however, did not improve after the rescue
DBS procedure with thalamic stimulation only (Table 4) and the patient remained disabled and
unsatisfied. Given the lack of response to stimulation, the DBS device was eventually explanted.

Case 2. A 36-year-old woman, suffering from therapy refractory OCD with mixed obses-
sional thoughts and acts (ICD-10: F42.2). Onset of disease was at age 17. No certain trigger
event could be determined during psychiatric evaluation and family history is negative for neu-
ropsychiatric diseases. After completing lower secondary education, she became a shoe sales-
man and after being discharged, an assembly line worker. She lives together with her
boyfriend. Main obsessions involve her fear of contamination, which result in ritualistic behav-
iors concerning body hygiene, dressing and using the restroom. Furthermore, she displays
intrusive sexual and blasphemous thoughts and impaired speech due to her fear of misstating
facts. Past medical treatment consisted of two SSRIs, Clomipramine, as well as diverse antipsy-
chotics and antidepressants. In- and out-patient psychotherapy was performed repeatedly
prior to DBS-indication. At admission for MD DBS the patient’s medication involved ziprasi-
done (80 mg/d), biperiden (4.0 mg/d) and paroxetine (40 mg/d).
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Table 4. Baseline characteristics and outcome of MD/VA stimulation as measured by clinical scales.
Y-BOCS |Y-BOCSO Y-BOCS C BDI STAI-X1 STAI-X2 GAF |MSQoL |ToL |VFE

Patient No. | Time of follow-up
1 Baseline
0.4 months
3.7 months
2 Baseline
0.3 months
3 Baseline
0.4 months
7.5 months
4 Baseline
1.7 months
13.4 months
34.6 months

35
33
31
37
37
32
34
32
35
33
29
24

18 17 29 64 64 42 31.9 n/a n/a
18 15 41 75 68 n/a 22.9 8 37
16 15 38 75 68 42 22.9 1 47
19 18 19 45 52 42 24.6 8 57
19 18 22 45 52 42 24.2 10 52
16 16 42 64 74 41 271 12 59
17 17 21 42 73 43 22.1 11 56
15 17 n/a n/a n/a n/a n/a n/a n/a
17 18 41 67 76 41 29.2 n/a 8
16 17 26 63 55 46 52.9 2 16
15 14 24 55 51 43 52.5 10 22
12 12 n/a n/a n/a n/a n/a n/a n/a

BDI, Beck Depression Inventory; GAF, Global Assessment of Functioning; MSQoL, Modular System for Quality of Life; STAI, State (X1) Trait (X2) Anxiety
Inventory; ToL, Tower of London Task; VFE, Verbal Fluency Examination; Y-BOCS, Yale-Brown Obsessive Compulsive Scale; Y-BOCS O, Yale-Brown
Obsessive Compulsive Scale Obsessions; Y_BOCS C, Yale-Brown Obsessive Compulsive Scale Compulsions

doi:10.1371/journal.pone.0160750.1004

Case 2 was initially implanted a lead targeting the right NA and the adjacent anterior limb
of the internal capsule. Baseline characteristics and follow-up evaluations are depicted in
Tables 1 and 3. Within the first three months after surgery she reported symptom reduction,
however, this condition did not last. She developed new symptoms including covering herself
with a blanket in a certain way and repeating the process over and over, as well as concerns
with symmetry and checking. The only permanent improvement affected the patient’s speech
impairment, which occurred less frequently. Five years following primary placement three
additional leads were implanted in a rescue DBS attempt. One lead targeted the left NA
whereas two leads were placed bilaterally into MD/VA. Initially stimulation was performed in
both targets. To validate the efficacy of sole thalamic stimulation, NA DBS was discontinued
one month after surgery. Due to persisting symptom severity the thalamic DBS device was
turned off after 4 months of continuous stimulation and sole NA stimulation was resumed.

Case 3. A 48-year-old single woman who suffers from OCD with predominantly compulsive
acts (ICD-10: F42.1). Onset of OCD was at age 31 and family history is negative for OCD and
any other psychiatric diseases. She attended secondary school until the 11™ grade and became
an educator after dropping out. However, she was not able to pursue her career due to symp-
tom worsening. OCD symptoms first occurred after the patient had undergone endoscopic sur-
gery and mainly consisted of the fear of being touched or contaminated. These obsessive
thoughts lead to ritualistic washing behaviors including washing her hands up to 50 times a
day and excessive showering lasting up to three hours per session. Because of her fear of con-
tamination, she refused physical examination. Besides the principal diagnosis of OCD the
patient’s medical record revealed the following diagnoses: post-traumatic stress disorder, disso-
ciative disorder and recurrent depressive disorder. Furthermore, she fulfilled criteria for histri-
onic and borderline personality disorder. The patient reported three suicide attempts resulting
from family conflicts and sexual abuse. Besides psychotherapy, drug treatment involved three
SSRIs, Clomipramine and augmented therapy with various antidepressants, benzodiazepines
and anticonvulsants. At admission to our department the patient’s medication consisted of ser-
traline (250 mg/d), quetiapine (50 mg/d), and clonazepam (2.0 mg/d).
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After lead placement into MD/V A, she initially complained about nausea and vertigo as a
result of high stimulation parameters. In the days following surgery the patient reported being
‘more outward-oriented’. OCD symptoms however did not improve. Seven months after tha-
lamic DBS, she presented again at our department with no improvement regarding her fear of
contamination and worsening of her ritualistic washing behaviors. Moreover, she had devel-
oped new symptoms including compulsive gambling, compulsive buying, tiredness and
impaired speech. Due to the deterioration of her condition MD leads were explanted after 6
months of continuous stimulation and, in accordance with the patient’s wish, replaced with
bilateral leads targeting the NA. Although compulsive gambling and buying compulsions dis-
appeared after lead replacement the patient remained disabled and therapy-refractory to DBS.
Therefore, in a final attempt, the basolateral amygdala was targeted bilaterally. Despite great
efforts in DBS programming, OCD symptoms remained unchanged and amygdaloid stimula-
tion was discontinued eventually. Table 4 outlines baseline features and results of DBS in case 3
as evaluated with our assessment battery.

Case 4. A 31-year-old single man with 10 years of education and a positive family history
for OCD presented with predominantly compulsive acts (ICD-10: F42.1). The patient dis-
played first symptoms at age 11 including compulsive checking of doors and windows, inter-
preting numbers and colors, repeatedly touching objects, the compulsion not to step on stains
on the floor and calculating rituals. As a consequence of the increasing severity of his symp-
toms he was never able to take up a profession. Detailed assessment revealed no history of pre-
vious psychosis or personality disorder. Preceding pharmacological trials involved treatment
with at least two SSRIs and augmented therapy with atypical antipsychotics, benzodiazepines,
serotonin-norepinephrine reuptake inhibitors (SNRIs) and dopamine agonists. Moreover, he
underwent electroconvulsive therapy with a total of 17 sessions, but remained severely affected
and disabled. Medication upon admission to our department included quetiapine (400 mg/d),
duloxetine (60 mg/d) and paliperidone (6 mg/d).

After lead placement into MD/V'A, the patient initially displayed no improvement in symp-
tom severity. As a consequence of the unsatisfying results and the patient’s discontent, stimula-
tion parameters were adjusted and active contact points were varied. During follow up visits he
reported persisting obsessions and compulsions as well as deterioration in mood. DBS was con-
tinued within the following years and stimulation parameters were adapted consistently. Inter-
estingly, three years after lead placement, the OCD symptoms were found to be reduced (Fig
5A). The patient’s obsessive thoughts and compulsive acts had decreased by 31% (11 points)
on the Y-BOCS scale.

OCD symptom severity

According to the classification by Pallanti et al. [90] improvement in symptom severity of at least
35% on the Y-BOCS scale is defined as “full response”. In our study group none of the patients
has reached that goal during the course of MD-DBS (Fig 5A). Only one of four patients (case 4)
showed “partial response” as defined by symptom reduction between 25% and 35%, whereas
three patients did not show any response to treatment with less than 25% improvement on the
Y-BOCS. One patient (case 3) initially deteriorated during the observation period. No differential
impact on compulsions and obsessions during MD stimulation could be determined.

Depressive and anxiety symptoms

Depressive symptoms as assessed with the Beck Depression Inventory (BDI) (Fig 5B) dropped
within the group receiving de novo lead implantation (case 3: -50%; case 4: -42%), whereas the
rescue DBS group displayed symptom worsening (case 1: +31%; case 2: +16%) during
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Fig 5. Bar graphs showing the efficacy of MD/VA stimulation. (A) Y-BOCS. (B) BDI. (C) STAI-X1. (D)
STAI-X2. Scores of cases 1, 2, 3 and 4 are shown at presurgical baseline (Baseline) and following lead
implantation (1st follow up, 2nd follow up, 3rd follow up). Intervals between follow up visits can be obtained

from Table 4.

doi:10.1371/journal.pone.0160750.g005
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MD-DBS. Anxiety symptoms were evaluated using the State-Trait Anxiety Inventory

(Table 4), STAI-X1 for State anxiety (i.e. anxiety about an event) and STAI-X2 for Trait anxiety
(i.e. anxiety as a personal characteristic). Scores improved in case 3 (STAI-X1: -34%; STAI-X2:
-1%) and case 4 (STAI-X1: -17%; STAI-X2: -33%); in case 2, symptom severity remained
unchanged, whereas case 1 displayed deterioration (STAI-X1: +17%; STAI-X2: +6%) at final
follow-up evaluation (Fig 5C and 5D).

Global functioning and quality of life

Psychological, occupational and social functioning as measured using the Global Assessment
of Functioning (GAF) Scale remained stable in all patients (Table 4). Case 4 showed the most
significant improvement in terms of quality of life with an 80% increase in MSQoL scores com-
pared to baseline conditions. Case 2 did not show any changes in quality of life, case 1
(MSQoL: -28%) and case 3 (MSQoL: -19%) deteriorated during MD-stimulation.

Neuropsychological assessment

Assessment of executive functioning was conducted using the Tower of London test (ToL)—
number of right answers (Table 4): In cases 2 and 3 results were obtained at baseline and dur-
ing MD-DBS, showing amelioration in case 2 (ToL: +25%) and deterioration in case 3 (ToL:
-8%). Cases 1 and 4 were not assessed at baseline, though testing was performed throughout
MD stimulation. Results showed an improvement in executive functioning in case 4 within the
first year, whereas scores dropped in case 1 during the first 4 months of continuous stimula-
tion. Verbal fluency was determined using the Verbal Fluency Examination (VFE), a phonemic
test challenging the patient to name as many words as possible beginning with a certain initial
letter within one minute (Table 4). While cases 2 and 3 showed no improvement during the
observation period, the naming ability of case 4 ameliorated within one year of MD-DBS. In
case 1, baseline characteristics had not been acquired, however, an improvement in verbal flu-
ency could be noted during follow-up visits within the first 3 months of thalamic stimulation.

Discussion

Among the studies reporting lead implantation into thalamic areas, the ithp has been targeted
most commonly [28-30]. References favoring the MD/V A are sparse. Nuttin et al. published the
only report on DBS in MD describing bilateral lead implantation in a rescue DBS attempt in
one patient suffering from OCD. Postoperative evaluation revealed moderate response. In the
long-term the patient did not benefit from MD -DBS [13]. The data obtained from our case
series is in accordance with the observation of Nuttin et al. revealing no significant benefit of
MD/VA stimulation on OCD symptom severity. Only case 4 responded to treatment, the bene-
fit of MD/V A DBS in this patient, however, was moderate. Assessment of comorbid symptoms
revealed a distinct improvement of depression and anxiety in the de novo DBS group. In cases 3
and 4 BDI scores dropped up to 50% whereas state and trait anxiety decreased by up to 30%
(Table 4). To correlate the clinical findings with electrode positioning, backward calculation of
lead localization was performed from stereotactic 2D X-ray and postoperative CCT images, ste-
reotactic coordinates were then converted to the Atlas of the Human Brain [86] (Fig 4). Post-
hoc analysis showed a correlation between alleviation of comorbid symptoms and more medial
and ventral targeting of MD at the border and within MDMG, respectively. While medial lead
placement seems to favor more extensive stimulation of MDMG, ventral targeting might allow
stimulation of both cell bodies in close vicinity to the electrode and subthalamic fibers ascending
to their respective cell bodies within MDMC. As amygdaloid afferents branch out within
MDMC forming interlocking patches that claim a vast area, stimulation of the ventral aspect
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might lead to more successful recruitment of fibers implicated in the limbic and paralimbic cir-
cuit [61,91]. Adequate targeting of critical network connections as observed in the de novo
group might consequently translate into better clinical outcome (Table 4). Target evaluation in
the rescue DBS group revealed electrode localization predominantly in MDPC, VA, iml and mt
(Fig 4); Contacts C1-1 and C2-1 (Fig 4) were found to be located at the border between MDMC
and MDPC (Fig 4A). Stimulation of these contacts, however, did not lead to improvement of
obsessive-compulsive and comorbid symptoms in the rescue DBS group, raising the question as
to why stimulation in close vicinity to MDMC did not yield comparable clinical results in cases
1 and 2. Discrepancies might arise from intersubject neuroanatomical variability, that is difficult
to account for due to technical limitations: Reference coordinates were obtained from the Atlas
of the Human Brain and adjusted during treatment planning to match the patients’ individual
neuroanatomy. This, however, only allows a rough estimation of the desired target point and
necessitates further adaption and customization of the trajectory according to the present
neuroanatomical findings. A draw back in targeting thalamic nuclei and subnuclei is the lack of
anatomical information attainable from MR sequences, ruling direct targeting impossible.
Hence, target determination can only be performed using indirect targeting, which, however, is
prone to error and might not be adequate. Reliance on physiological markers as obtained from
microelectrode recordings and/or intraoperative stimulation testing might have been a valuable
adjunct in this study as they might have provided comprehensible functional feedback and cir-
cumvented the drawbacks concerned with imaging/indirect targeting. Post-hoc back calculation
of lead location introduces potential error as well. Refractoriness to NA/IC DBS in the rescue
DBS group is another confounding factor that needs to be addressed. It suggests an overall com-
plex clinical picture in both cases, that did not respond to conventional DBS. Interpretation of
outcome measures in this group thus proves especially difficult.

Within the rescue DBS group, both simultaneous/multifocal and staged stimulation
attempts were performed to validate the therapeutic effect of DBS on OCD symptom severity.
Moreover, a staged procedure was performed in case 3 due to refractoriness to MD/VA DBS.
Superiority of simultaneous/multifocal stimulation over staged stimulation could not be
observed in any of the patients, however we are skeptical of abandoning the multifocal
approach: Psychiatric conditions are based on complex pathophysiological mechanisms that
involve multiple, segregated neural circuits [42-46] that are affected to varying degrees in vari-
ous patients and lead to different OCD symptom subtypes e.g. compulsive checking, hoarding
or washing [92]. To achieve the best possible outcome, the therapeutic approach therefore
requires tailored, symptom dependent targeting. Multifocal DBS might lead to more rational
treatment in the future by enabling the determination of optimal DBS targets in complex and
medically refractory cases and improve the efficacy of initial DBS treatment while minimizing
the need for rescue DBS procedures in the long-term.

In our patient series, duration of thalamic stimulation varied between 4 and 35 months, rais-
ing the question whether stimulation duration has an influence on patient outcome. Among
patients, short- and long-term stimulation did not show any significant improvement in OCD
symptom severity. Case 4, however, who received thalamic stimulation for almost 3 years, dis-
played subtle alleviation of symptoms towards the end of the follow-up period. These rather
unexpected results might arise from a variety of time related factors including continuous adjust-
ment of stimulation parameters and long-term plastic changes in neural circuitry [42]. Following
initial DBS programming in the immediate postoperative course, fine tuning of stimulation set-
tings might take several months [93]. On the one hand, this is owing to the multitude of potential
electrode configurations and stimulation parameters, which have to be adjusted consistently and
individually. On the other hand, medical conditions and symptoms vary in clinical response to
DBS and feature different latencies. In Parkinson’s disease, alleviation of rigidity and tremor can
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be observed within seconds of DBS, while response to bradykinesia has a latency of seconds to
minutes [94]. Parkinsonian gait and balance tend to respond 20 to 30 minutes after stimulation
onset. In contrast, symptoms in dystonia, depression and OCD are persevering and only decrease
after months of continuous stimulation [10,95-97]. These findings suggest different mechanisms
of action of DBS on neurons and circuitry in the short- and long-term. Long latencies are consid-
ered to be the result of neuroplastic and anatomical changes such as synaptic reorganization
[98,99] whereas short-term improvements are likely induced by electrophysiological changes
within the circuit [42]. Patients deciding to undergo DBS often experience great emotional pres-
sure, since this form of therapy constitutes a treatment of last resort. Therefore, patients may eas-
ily lose confidence in the procedure if symptoms persist and may demand lead replacement or
lead removal although the full potential of DBS has not developed. Hence, it lies within the
responsibility of the treating physician to inform the patient about latencies in response to DBS.
In case of prolonged stimulation failure, treatment response ought to be reevaluated in interdisci-
plinary DBS teams to confirm lead positioning and response to thresholds and exclude deteriora-
tion through psychiatric comorbidities or distress. Due to the growing number of DBS
procedures, the need for reliable clinical predictors of outcome in DBS for therapy refractory
OCD is increasing. Even in extensively explored targets DBS-treatment response only yields a
45% alleviation of OCD symptom severity on the Y-BOCS [100]. Thus, predictors of success
need to be established in order to make an accurate statement about the indications for lead
placement, lead replacement, lead removal and additional lead implantation.

Limitations in this study include the relatively small number of patients enrolled and the
lack of control conditions. Furthermore, cases 1 and 3 exhibited distinct comorbidities on axis
II of DSM-IV (Table 1) that, aside from potential inefficacy due to target selection, might have
accounted for the failure of OCD symptom reduction using MD/V A DBS in these patients.
Technical drawbacks concern the reliance on imaging modalities only. Hence, targeting 1) may
not be accurate due to interindividual neuroanatomical variability, 2) may inadequately target
the network connections as described above, and 3) as a consequence may not be accurately
reflected in the post-hoc determination of electrode location.

Given the results of our small case series, yielding only a partial response in one patient, the
overall strategy in targeting MD/V A as described in this paper cannot be recommended for
DBS in therapy-refractory OCD. MDMC, namely the ventromedial portion may be a possible
target in the treatment of mood related disorders such as major depressive disorder (MDD)
and anxiety disorder, however, further research is necessary to make a clear statement about
stimulation efficacy in using this target. We advise a cautious approach towards the use of mul-
tifocal and rescue DBS. Studies addressing these topics are sparse and guidelines regarding
optimal management have yet to be established. Given the current lack of international patient
registries that are in process of planning but not yet available, we feel compelled to provide this
‘negative’ retrospective trial to the scientific community.
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