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Abstract

In this work, functional plasmonic nanocircuitry is examined as a key of revolution-
izing state-of-the-art electronic and photonic circuitry in terms of integration density
and transmission bandwidth. In this context, numerical simulations enable the design
of dedicated devices, which allow fundamental control of photon �ow at the nanome-
ter scale via single or multiple plasmonic eigenmodes. The deterministic synthesis
and in situ analysis of these eigenmodes is demonstrated and constitutes an indis-
pensable requirement for the practical use of any device. By exploiting the existence
of multiple eigenmodes and coherence - both not accessible in classical electronics - a
nanoscale directional coupler for the ultrafast spatial and spatiotemporal coherent con-
trol of plasmon propagation is conceived. Future widespread application of plasmonic
nanocircuitry in quantum technologies is boosted by the promising demonstrations of
spin-optical and quantum plasmonic nanocircuitry.
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Kurzfassung

In dieser Arbeit werden funktionelle plasmonische Schaltkreise als Schlüssel zur
Revolutionierung modernster elektronischer und photonischer Schaltkreise in Bezug
auf deren Integrationsdichte und Übertragungsbandbreite untersucht. Mit Hilfe nu-
merischer Simulationen werden Bauelemente speziell für die Steuerung des Photo-
nen�usses im Nanometerbereich mittels einzelner bzw. mehrerer plasmonischer Eigen-
moden konzipiert. Die deterministische Synthese und Analyse solcher Eigenmoden
wird aufgezeigt und stellt eine unverzichtbare Voraussetzung für die praktische An-
wendung eines jeden Nanoschaltkreises dar. Durch die Existenz mehrerer Eigenmoden
und Kohärenz - beide in der klassischen Elektronik nicht zugänglich - lässt sich ein
nanoskaliger Richtkoppler für die ultraschnelle räumliche und räumlich-zeitliche ko-
härente Kontrolle der Plasmonenausbreitung entwerfen. Künftig werden plasmonische
Schaltkreise aufgrund der vielversprechenden Demonstrationen von spinoptischen und
quantenplasmonischen Schaltkreisen in Quantentechnologien weite Verbreitung �nden.
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Chapter 1

Introduction & overview

Today's electronic integrated circuits, including micro-processors, micro-controller, and
static random-access memory are based on complementary metal-oxide-semiconductor
(CMOS) technology. Enormous technological advances over the past �ve decades made
Moore's law [1], which predicts a doubling of transistor numbers every two years [2], a
self-ful�lling prophecy. In 2017, this exponential increase in transistor density lead to
remarkable transistor feature sizes approaching 10 nm (in accordance with the 10 nm
technology node de�ned by the International Technology Roadmap for Semiconduc-
tors) allowing over one billion transistors on a single micro-chip.
The scaling toward smaller, faster, and more e�cient devices, however, indisputably

brings about fundamental challenges and limitations [3] in processing data with elec-
trons, as evident from the slowed progression in processor speeds and bit rates. Their
origin is associated with both thermal [4, 5] and signal delay issues arising due to the
electrical interconnects that are necessary to transmit information from one place to
another. The latter one is dominated by resistive-capacitive (RC) delay τ , which is
determined by the product of the interconnect's distributed resistance R and capaci-
tance C. While a shrinking of the wire's cross-sectional area A leaves the capacitance
almost unchanged [6], its resistance is increased according to R = ρ l

A
, where ρ and l

are the interconnect's electrical resistivity and length, respectively. A substitution of
aluminum wires by copper wires reduces this resistance and thus the delay.
The increasingly important role of the RC delay is re�ected by the upper limit of

the achievable bit rate B = 1
τ
≤ B0

A
l2
with B0 ≈ 1016 bits/s for typical on-chip nano-

electronic interconnects [7]. The scale invariance of B under growing and shrinking of
all interconnect dimensions hinders a steady increase in accessible bit rate capacities,
in contrast to the ever decreasing transistor delay for shrinking dimensions. Instead,
to further boost central processing unit (CPU) performance multicore technologies are
exploited to keep up with the demand.
On the other hand, on scales much larger than the footprint size of modern electron-

ics �ber-optics has become the method of choice in digital communication, e.g. for long
haul information exchange. Here, spatially and temporally coherent light of mostly
semiconductor lasers routinely forms a pulsed electromagnetic carrier wave that is
transmitted along dielectric optical �bers. Modulation of this carrier wave enables the
transport of data with unprecedented bandwidth compared to the aforementioned cop-
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Chapter 1 Introduction & overview

per interconnection. Long-distance information transmission is guaranteed by signal
ampli�cation.
The transfer of this technology on chips, as �rst proposed in a seminal paper by

Goodman [8], can circumvent the previously mentioned limitations of electrical inter-
connects and allow for incomparable bit rate capabilities [9, 10]. However, this comes
at the price of a large size mismatch between electronic and photonic components
hampering the interfacing of both technologies on an actual chip. In contrast to their
electronic counterparts, the fundamental law of di�raction limits the physical dimen-
sions of dielectric photonic waveguides and their supported eigenmodes to about half
the wavelength of light in the material. This prevents the same miniaturization of
optical devices as observed in state-of-the-art electronic circuits. However, such minia-
turization is necessary for a denser waveguide packaging without crosstalk and thus is
a prerequisite for broadband data processing technology to compete with cutting-edge
nanoelectronic circuits.
In quest of new chip-scale device technologies that can bridge the gap between

nanoscale electronics and microscale photonics, plasmonics has evolved as a promising
candidate [11]. Upon interaction of noble metals with visible light quantized coherent
oscillations of their delocalized free electron gas accompanied by a subwavelength
con�nement of electromagnetic �elds at interfaces with dielectrics, termed surface
plasmon polaritons, build up. Thanks to these intriguing properties the di�raction
limit � a seemingly unsurpassable obstacle � can be overcome. In metallic nanoparticles
the oscillation of the electron gas is spatially bound and, just as for classical harmonic
oscillators, can be of resonant fashion. Such localized surface plasmon resonances
are characterized by (i) a strong spatial electromagnetic near-�eld con�nement in the
nanoparticle's vicinity accompanied by (ii) an enhancement of the �eld strength by
orders of magnitude. Based on the great promise of these two properties, vivid research
is carried out in a diverse range of potential applications from light concentration into
deep-subwavelength volumes [12, 13], to sensing [14�17], single-molecule spectroscopy
[18�20], generation of light [21�23], and photovoltaics [24, 25].
Besides these localized plasmon phenomena, potential applications for on-chip inte-

grated optical signal guidance and processing stimulated a variety of plasmon wave-
guide designs that have been prototyped in the past years such as chains of metal
particles [26�29], periodic corrugations [30], channels [31�33] and wedges in �at metal
�lms [34], metallic wires of nanoscale cross section [35�39], and di�erent two-conductor
waveguides separated by a nanoscale gap [40�47]. Common to all these geometries are
considerably shortened e�ective wavelengths of surface plasmon polaritons compared
to free-space light [35, 48�50] and corresponding eigenmode pro�les with a strong
transverse �eld con�nement � thus terming them subwavelength waveguides. The
two-conductor waveguide structures in particular are promising candidates since their
supported gap plasmon modes show minimal crosstalk with adjacent waveguides en-
abling a high degree of spatial integration. Moreover, the high �eld con�nement in
plasmonic waveguides makes them an ideal candidate for sensing [15, 51, 52] and
subdi�raction information processing [53�58], and their ability to strongly couple to
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quantum emitters [59�61] quali�es them as a building block for nano quantum optical
networks [62, 63].
Today, the substitution of electrical impulses in electronic circuitry by plasmons

supported in speci�cally designed nanocircuits is within reach. This entirely new class
of circuitry, i.e. plasmonic nanocircuity, is the subject of this thesis. Recent progress
in nanotechnology enables the fabrication of plasmonic circuits composed of optical
nanoantennas [64�66] and waveguides [67, 68], that support guided plasmon modes.
Thanks to their deep subwavelength sizes as well as their electrically conducting materi-
als, plasmonic nanocircuits are fully compatible to their electronic counterparts, while
at the same time preserving the speed of photonics [3]. Synergetic integration of all
three technologies, i.e. electronics, conventional photonics, and plasmonics, promises
to fully exploit nanoscale functionalities and to keep chip-scale technology further on
track with Moore's law.
First experiments to manipulate propagating plasmons have been performed using

networks of chemically grown silver nanowires [56, 69�73] or slot-less gold nanostruc-
tures [74]. For future nano-optical circuits, controlling the spatial and temporal evo-
lution of surface plasmons are key features. So far, the strong subwavelength electro-
magnetic energy con�nement [11, 35, 48] of propagating plasmonic modes supported
by noble-metal nanowires led to the realization of nanometer-scale proof-of-concept
circuits with well-de�ned built-in (passive) functionality [58, 75, 76] such as splitting
or �ltering [33]. Moreover, (active) coherent control of femtosecond optical energy lo-
calization in nanoscale random structures and V-shapes [77] as well as coherent control
of plasmon routing has been proposed [78, 79].
The present work aims to design plasmonic nanocircuits that readily allow the funda-

mental control of photon �ow at the nanometer scale by use of numerical simulations.
Each integrated plasmonic element consists of an input capable of converting optical
far-�eld excitations into guided plasmonic modes. These modes propagate along the
nanocircuit and are processed according to the nanocircuit's functionality. Lastly, the
result of this operation is converted back into far-�eld light at one or multiple outputs.
In addition, a detailed insight into the underlying physical phenomena and limitations
of such plasmonic nanocircuits is gathered in this work. Therefore, Chap. 2 starts
with a brief summary of classical electromagnetism in matter in a depth necessary for
understanding the encountered phenomena and the applied simulation technique. The
appealing properties of noble metals in the optical regime and the resulting physics
of plasmons are detailed in Chap. 3. Afterwards, in Chap. 4 the numerical simulation
method is introduced together with the most important evaluation concepts. The
di�erent plasmonic waveguide geometries used as basis for the subsequently studied
nanocircuits are introduced in Chap. 5. There, the inevitable compromise between
the mode's propagation length, its degree of con�nement, and its �eld enhancement
is also addressed.
There is a con�ict between time-consuming numerical simulations and the practi-

cally unlimited number of possible plasmonic nanocircuits to study. Chapter 6 ad-
dresses this issue by transferring ideas from classical electronics to plasmonics. The
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Figure 1.1: Overview of nanocircuit designs investigated in this thesis. (a) Junction of
plasmonic TWTLs. (b) Single gold nanowire. (c) Mode detector nanocircuit. (d) Nanoscale
directional coupler under optical investigation. (e) Nanoscale directional coupler for PEEM
measurements. (f) Spin-optical nanocircuit. The respective excitation and emission spot
positions and polarizations are indicated. Panels d and e adapted from [80]. © 2016
American Chemical Society.

power of electronic circuit design is based on the fact that complex circuitry can be
created by arranging simple circuit elements into networks. The circuit properties can
then be calculated using Kirchho�'s laws. It would be a great asset if similar design
principles could be used in nanophotonics to create complex nanophotonic circuitry
based on simple building blocks. However, at such short wavelengths the applicability
of Kirchho�'s laws cannot be taken for granted any more. By studying a junction of
plasmonic two-wire transmission lines (TWTLs) [Fig. 1.1a], which represents a funda-
mental building block of nanophotonic circuitry, a new phenomenological parameter
relating the geometrical parameters of the junction to the wavelength of propagation
is identi�ed which allows to judge the degree of validity of Kirchho�'s laws. As an
example and illustration of the power of this approach a system composed of a TWTL
and a nanoantenna as a load is investigated. By addition of a parallel stub designed
according to Kirchho�'s laws maximum signal transfer to the nanoantenna is achieved.
The design of any functional plasmonic device requires the exact quantitative under-

standing of all involved plasmonic and non-plasmonic propagation channels. In Chap. 7
a simple showcase system, i.e. a single, straight nanowire, is studied [Fig. 1.1b]. Subtle
but important and so far unnoticed propagation channels are revealed by simulations
and con�rmed in experiments. It is shown that the transmission through �nite-length
nanowires can be described by Fabry-Pérot oscillations that beat with free-space prop-
agating light launched at the incoupling end. Furthermore, a fully analytical model
is established that shows quantitative agreement with simulated and experimental
length-dependent transmission signals.
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Chapter 8 focuses on a nanocircuit design [Fig. 1.1c] capable of a deterministic
synthesis and in-situ optical analysis of arbitrary multimodal excitations. The prop-
agation and far-�eld coupling of multiple (in the present case two) guided plasmonic
modes is independent of each other, thus in analogy to multimode optical �bers the
simultaneous transmission of multiple signals is possible. These �ndings and achieve-
ments demonstrate a new level of control in plasmonic nanocircuitry.
By exploiting the existence of multiple eigenmodes and coherence - both not acces-

sible in classical electronics - Chap. 9 builds upon the preceding chapters by design-
ing and optimizing an essential element of functional plasmonic nanocircuitry, i.e. a
nanoscale directional coupler [Fig. 1.1d], allowing for e�cient coherent control of highly
con�ned propagating near-�elds using the simplest possible control �eld, i.e., linearly
polarized light, thereby avoiding the use of closed-loop learning algorithms. In con-
trast to classical electronic circuits, where a symmetric bifurcation inevitably causes
an equal splitting of any input current pulse towards the two output ports, a funda-
mentally di�erent behavior is induced representing a very intuitive classical analogue
to quantum control in molecules. Furthermore, some insight into the feasibility of
nonlinear all-plasmonic switching based on gold is given.
The same device is further investigated in Chap. 10 using normal-incidence two-

photon photoemission electron microscopy (PEEM) [Fig. 1.1e]. It is found that the
recorded photoemission yield can be heuristically modeled with high precision by con-
sidering the 4th power of the numerically simulated electric near-�eld around the
nanocircuit. This potentially paves the road for a future widespread application of
normal-incidence PEEM in validating plasmonic nanocircuits.
Finally, Chap. 11 sheds light onto future prospects of plasmonic nanocircuitry. A

spin-optical nano device [Fig. 1.1f] as well as a single-plasmon nanocircuit are intro-
duced as examples. The former uses the spin of photons as a carrier of information
and might enable a variety of novel devices, just as spintronics did in electronics by
using the intrinsic spin of electrons. The latter uses a self-assembled quantum dot
that e�ciently excites narrow-band single plasmons and demonstrates the feasibility
of fully on-chip plasmonic nanocircuits for quantum optical applications.
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Chapter 2

Classical electromagnetism

�Since Maxwell's time, physical reality has been thought of as represented by
continuous �elds, governed by partial di�erential equations, and not capable
of any mechanical interpretation. This change in the conception of reality
is the most profound and the most fruitful that physics has experienced
since the time of Newton.�

Albert Einstein [81] in honor of the centenary of Maxwell's birth (1931).

Classical electromagnetism, the investigation of electric and magnetic �elds and
their mutual interaction, has been the driving force of core technologies of the 20th

and the early 21st century. Its theory, however, dates back to decades of experimental
discoveries and advances of many scientists and engineers in the 18th and 19th century,
such as the description of electrostatic attraction and repulsion forces between electri-
cally charged particles by Charles Augustin de Coulomb1 and the observed interaction
of electric currents and magnetic �elds by Michael Faraday2, to name but a few.
By mathematical distillation of all the knowledge of his time and huge conceptional

leaps James Clerk Maxwell3 successfully pioneered a fundamental uni�cation of electric-
ity, magnetism, and light. Formulated over 150 years ago, Maxwell's partial di�erential
equations provide a complete description of classical electromagnetic phenomena and
up to the present day enable great advances in modern electrical, information, and
communication technologies. Furthermore, in physics Maxwell's seminal work paved
the way for such revolutionary ideas as Planck's4 quantum theory [82] and Einstein's
theory of special relativity [83]. Even Albert Einstein acknowledged that �one scienti�c
epoch ended and another began with James Clerk Maxwell�.
This chapter aims to give the reader a short overview over Maxwell's fundamental

equations of classical electromagnetism and some important implications of his theory
in a depth necessary for the understanding of the physical behavior of nano-optical
systems. For further in-depth reading about classical electromagnetism the reader
is referred to comprehensive standard literature, e.g. [84], with special emphasis on
nanoscale e�ects available in [85].
1French physicist (* 14. June 1736; † 23. August 1806)
2English scientist (* 22. September 1791; † 25. August 1867)
3Scottish physicist (* 13. June 1831; † 5. November 1879)
4German physicist (* 23. April 1858; † 04. October 1947)
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Chapter 2 Classical electromagnetism

2.1 Maxwell's equations

Maxwell's seminal work �A dynamical theory of the electromagnetic �eld� from 1865
[86] allows the description of all classical (i.e., non-quantum) electromagnetic phenom-
ena in a closed theoretical form, relating the characteristic quantities of electromag-
netic �elds, i.e. electric �eld E and magnetic �eld H, with the electric displacement D
and magnetic induction B. Neglecting the singular character of electric charges and
their associated currents by using the macroscopic quantities charge density ρ and cur-
rent density j Maxwell's famous equations written in the convenient vector calculus
formulation introduced by Oliver Heaviside5 read6:

∇× E(r, t) = −∂B(r, t)

∂t
, (2.1a)

∇×H(r, t) =
∂D(r, t)

∂t
+ j(r, t), (2.1b)

∇ ·D(r, t) = ρ(r, t), (2.1c)
∇ ·B(r, t) = 0. (2.1d)

These four equations describe the generation of electromagnetic �elds from distribu-
tions of charges and currents and their evolution in time, thus building the axiomatic
basis for electromagnetism, just as Newton's axioms for mechanics.
Any solution of Maxwell's equations with arbitrary time dependency can be repre-

sented as a linear combination of single-frequency solutions via the inverse Fourier
transform, reading e.g. for the electric �eld

E(r, t) =

∞∫
−∞

E(r, ω)e−iωtdω. (2.2)

Thereby, Eqs. (2.1) transform into the time harmonic (phasor) Maxwell's equations

∇× E(r, ω) = iωB(r, ω), (2.3a)
∇×H(r, ω) = −iωD(r, ω) + j(r, ω), (2.3b)
∇ ·D(r, ω) = ρ(r, ω), (2.3c)
∇ ·B(r, ω) = 0. (2.3d)

Here, all quantities are functions of position r and angular frequency ω. The spectral
representation of any �eld quantity is obtained from the corresponding time dependent
quantity via Fourier transformation. This yields, e.g., for the electric �eld

E(r, ω) =
1

2π

∞∫
−∞

E(r, t)eiωtdt. (2.4)

5English scientist (* 18. May 1850; † 03. February 1925)
6SI units are used throughout this work.
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2.2 Conservation laws

2.2 Conservation laws

The continuity equation stating the conservation of charges is implicitly contained in
the above equations by combining Eq. (2.1c) with the divergence of Eq. (2.1b), thus
reading

∇ · j(r, t) +
∂ρ(r, t)

∂t
= 0. (2.5)

In case of a time-harmonic variation of the �elds and linear, non-dispersive media,
Poynting's theorem expressing the conservation of electromagnetic energy reads [84]

−
〈
∂W

∂t

〉
=

1

2
Re [j∗ · E] +∇ · 〈S〉 . (2.6)

The time-averaged change of electromagnetic energy density W is denoted by
〈
∂W
∂t

〉
,

with W = 1
2

[E ·D∗ −B ·H∗]. The �rst term on the right-hand side of Eq. (2.6)
accounts for the mean energy dissipation, the second term equals the mean net energy
�ow, represented by the time average of the Poynting vector S,

S = E×H∗. (2.7)

By integrating the Poynting vector over a surface A with normal vector n the average
power �ow P through this surface is obtained according to

〈P 〉 =
1

2

∫∫
A

Re [S] · n dA. (2.8)

2.3 Constitutive relations

Self-consistent solutions for electromagnetic �elds require a supplement to Maxwell's
equations by relating D with E, B with H, as well as j with E, thus accounting for
the behavior of matter under the in�uence of external �elds. This connection is done
by introducing the macroscopic polarization P and magnetization M as follows:

D(r, ω) = ε0E(r, ω) + P(r, ω), (2.9a)
B(r, ω) = µ0H(r, ω) + µ0M(r, ω), (2.9b)

where ε0 and µ0 respectively denote the electric permittivity7 and the magnetic per-
meability8 of vacuum, which are linked to the vacuum speed of light c via c = 1√

ε0µ0
.

7ε0 ≈ 8.854 · 10−12 As
Vm

8µ0 = 4π · 10−7 V s
Am
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Chapter 2 Classical electromagnetism

For linear and isotropic media, as are usually encountered in this work,9 the polar-
ization P and magnetization M at a given angular frequency depend linearly on E
and H via

P(r, ω) = ε0χe(r, ω)E(r, ω), (2.10a)
M(r, ω) = χm(r, ω)H(r, ω), (2.10b)

where the proportionality constants are called electric and magnetic susceptibility χe
and χm. In general, both material quantities are frequency dependent, i.e. dispersive,
due to a non-instantaneous polarization response to time-varying �elds.
Equations (2.9) can be rewritten as the constitutive relations

D(r, ω) = ε0ε(r, ω)E(r, ω), (2.11a)
B(r, ω) = µ0µ(r, ω)H(r, ω), (2.11b)

by introducing the macroscopic response functions of matter ε = 1 + χe and µ =
1 + χm, known as permittivity and permeability, respectively. In general, both are
second rank tensors and depend on material, position, direction and �eld strength.
In this work, however, the almost exclusive concern are electromagnetic phenomena
of homogeneous, local, isotropic, linear9, and nonmagnetic media in the visible and
near-infrared spectral region, thus ε is a �eld strength independent scalar and intrinsic
magnetic e�ects can safely be neglected (M = 0, µ = 1). The dispersive character of
ε for gold is extensively analyzed in Sec. 3.1.
Finally, for materials with conductivity σ a linear relationship between current den-

sity j and electric �eld E can be established according to

j(r, ω) = σ(r, ω)E(r, ω), (2.12)

which is known as Ohm's law in di�erential form.

2.4 Vector Helmholtz equation

In general, the electric �eld E and the magnetic �eld H of a monochromatic wave can
be expressed as

E(r, t) = E(r)e−iωt, (2.13a)

H(r, t) = H(r)e−iωt. (2.13b)

9The regime of nonlinear e�ects in gold is approached in Chap. 9.
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2.4 Vector Helmholtz equation

By evaluating the time derivatives in Eq. (2.1) and inserting the constitutive rela-
tions (2.11) Maxwell's equations can then be written as

∇× E(r) = iωµ0H(r), (2.14a)
∇×H(r) = −iωε0ε(r)E(r), (2.14b)

∇ · [ε0ε(r)E(r)] = 0, (2.14c)
∇ · [µ0H(r)] = 0, (2.14d)

where the absence of source currents and charges has been assumed, which is the
relevant condition encountered in this work.
The homogeneous vector wave equation is obtained from Eqs. (2.14) by eliminating

either the electric or the magnetic �elds. For the electric �eld, when applying the curl
to Eq. (2.14a) and substituting Eq. (2.14b) one obtains10

∇2E +
ω2

c2
ε(r)E = ∇(∇ · E). (2.15)

Calculating the divergence of Eq. (2.14c) the ∇ · E term can be elaborated11

∇ · E = −E · ∇ ln ε(r). (2.16)

By substituting this result into Eq. (2.15), the following homogeneous vector wave
equation for E is obtained:

∇2E +
ω2

c2
ε(r)E = −∇ [E · ∇ ln ε(r)] . (2.17)

In a similar manner the homogeneous vector wave equation for H is derived as

∇2H +
ω2

c2
ε(r)H = [∇×H]×∇ ln ε(r). (2.18)

In most practical situations the entire space can be subdivided into domains Di

characterized by homogeneous material permittivities εi. Instead of solving Eqs. (2.17)
and (2.18) directly for the complete space one can solve for each domain Di separately
the simpler wave equations

(∇2 + k2
i ) Ei = 0, (2.19a)

(∇2 + k2
i ) Hi = 0, (2.19b)

where ki = (ω/c)
√
εi is the wave number in domain Di. Within each domain the

resulting �eld vectors are continuous functions of position and time, with continuous

10The vector identity ∇× (∇×A) = ∇(∇·A)−∇2A is applied. A denotes a vector, ∇ the gradient
operator, and ∇2 the vector Laplacian operator.

11The vector identity ∇ · (∇×A) = 0 is applied.
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Chapter 2 Classical electromagnetism

derivatives [87]. However, �eld discontinuities may occur at interfaces between di�er-
ent media due to the accompanying abrupt change in physical properties. Thus, a
correct connection of all domain solutions [Eqs. (2.19)] at the domain boundaries is
required to recover the solution for the complete system.
Since Maxwell's equations are valid everywhere including the domain boundaries,

they completely govern the behavior of the electromagnetic �eld components at the
boundary. The tangential �eld components at the boundary ∂Dij between two domains
i and j satisfy the following boundary conditions [85]

n× (Ei − Ej) = 0, (2.20a)
n× (Hi −Hj) = js, (2.20b)

with the unit vector normal to the boundary ∂Dij and the surface current density
denoted as n and js, respectively. On the other hand, the normal �eld components
obey

n · (Di −Dj) = σs, (2.21a)
n · (Bi −Bj) = 0. (2.21b)

where σs is the surface charge density. In the absence of free charges and currents in
the domains js and σs vanish.
In a limitless region of homogeneous, isotropic space (e.g. free space with ε = 1 inde-

pendent of position r) and Cartesian coordinates the simplest solutions of Eqs. (2.19)
are propagating plane waves of the form

E(r, t) = E0 e
i(k·r−ωt), (2.22a)

H(r, t) = H0 e
i(k·r−ωt), (2.22b)

resulting in the linear free space dispersion relation ω = c|k|. The wave vector k
is oriented along the direction of propagation. E and H of such a transversal wave
are perpendicular to each other. Furthermore, Eqs. (2.14c) and (2.14d) additionally
require the �elds to be perpendicular to k.
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Chapter 3

Fundamentals of plasmonics

The optical properties of plasmons arising from the interaction of electromagnetic �elds
with noble metal nanostructures are essentially dictated by both the metal's frequency-
dependent dielectric response function and the structure's geometry. In this chapter
both aspects are addressed, starting in Sec. 3.1 with studying the dielectric function of
metals in the optical regime, which notably shows a negative real part responsible for
plasmon formation. The subsequent sections focus on the unique properties of surface
plasmon polaritons for simple two-dimensional (2D) waveguide geometries, i.e single-
[Sec. 3.2] and double-interface systems [Sec. 3.3]. We limit our study to gold as the
metal, since all nanostructures throughout this thesis were fabricated from this mate-
rial. Reasons for the choice of gold range from its chemical stability, to the excellent
optical properties in the red and near-infrared parts of the optical spectrum used for
excitation of our structures, and the availability of high-quality monocrystalline gold
platelets [88, 89].

3.1 Optical response of noble metals

Though our interest lies in nano-sized metallic structures, the minute spacing of elec-
tron energy levels compared to the thermal energy kBT caused by the high density
of free electrons nevertheless allows a classical instead of a quantum mechanical de-
scription of metal optics. A quantum plasmonic description [90, 91] only becomes
necessary for single-digit nanometer sized particles [92] or sub-nanometer separation
distances between nanoparticles [93, 94] to, e.g., account for electron tunneling e�ects
[95]. Within the realm of Maxwell's equations (2.3) the optical response of metals is
governed by the complex frequency dependent permittivity ε(ω) = ε′(ω) + iε′′(ω), in
the following referred to as the dielectric function. It relates the external light �eld to
the macroscopic polarization, as de�ned in Eqs. (2.9a) and (2.11a). In �rst approxi-
mation Drude-Sommerfeld theory is applied to describe the exclusive e�ect of the free
electron gas, that can oscillate with respect to the �xed ion core background. For
time-harmonic excitation �elds of amplitude E0 and angular frequency ω the equation
of motion of free electrons that lack a restoring force reads [85]

me
∂2r

∂t2
+meΓ

∂r

∂t
= eE0e

−iωt, (3.1)
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Chapter 3 Fundamentals of plasmonics

where e and me denote charge and e�ective mass of the free electrons, respectively.
The damping constant Γ = vF

l
measures the frequency of scattering events for electrons

with Fermi velocity vF and mean free path l. Solving Eq. (3.1) yields for the dielectric
function

εDrude(ω) = 1−
ω2
p

ω2 + iΓω
, (3.2)

where the volume plasma frequency ωp =
√

ne2

ε0me
with electron density n is introduced.

Figure 3.1a shows a �t of Eq. (3.2) to experimental data obtained by Johnson and
Christy [96]. While the Drude-Sommerfeld model represents the dielectric function of
gold in the long wavelength regime reasonably well, it is inadequate in doing so for
wavelengths below λ = 650 nm.

Figure 3.1: Dielectric function of gold in the extended visible spectrum. Comparison of
experimental data [96] (symbols) with a �t of (a) the pure Drude-Sommerfeld theory, (b) the
Drude-Sommerfeld theory supplemented by an interband transition, and (c) the Etchegoin
model [97]. The model constants are obtained from [85] and take the values in (a) ~ωp =
8.95 eV and ~Γ = 65.8 meV and in (b) ~ω̃p = 2.96 eV, ~γ = 0.59 eV, ω0 = 2πc/λ (λ =
450 nm) and ε∞ = 5. Note the di�erent scales for the abscissae.

In this wavelength region the energy of photons is higher than the threshold for
transitions of bound electrons from �lled valence bands below the Fermi surface (d
bands in gold) to unoccupied states in the conduction band (sp band in gold). These
interband transitions can be accounted for by adding a restoring force term to Eq. (3.1),
that then reads for bound electrons [85]

m
∂2r

∂t2
+mγ

∂r

∂t
+ αr = eE0e

−iωt, (3.3)

where m and γ are separate e�ective mass and damping constants for bound electrons,
respectively. α accounts for the parabolic restoring potential seen by the bound elec-
trons. The contribution of a single interband transition to the dielectric function is
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3.2 Surface plasmon polaritons

given by a Lorentz-oscillator term of the form

εInterband(ω) = 1 +
ω̃2
p

(ω2
0 − ω2)− iγω

, (3.4)

with eigenfrequency ω0 =
√
α/m and ω̃p =

√
ñe2

ε0m
depending on the density of bound

electrons ñ. The integrated e�ect of further interband transitions at higher energies
can be included in a constant o�set ε∞. In fact, combining the free electron [Eq. (3.2)]
and interband absorption [Eq. (3.4)] contribution the dielectric function can be re-
produced much more accurately down to wavelengths of about λ = 500 nm [98], as
obvious from Fig. 3.1b. By adding a su�cient number of Lorentz-oscillator terms the
dielectric function can be approximated to any desired accuracy. However, a physically
more meaningful analytical model of the dielectric function of gold was presented by
Etchegoin et al. [97] based on the method of critical points. Their model1 nicely �ts
the data of [96] [Fig. 3.1c], and thus is used in all simulations presented in this work.

3.2 Surface plasmon polaritons

Coherent oscillations of the metal's delocalized electron plasma about the positive
ion cores, as described in the Drude-Sommerfeld theory [cf. Sec. 3.1], are termed
plasma oscillations, with their quanta called plasmons. Interesting phenomena arise at
surfaces between metals and dielectrics where the electron motion in so-called surface
plasmons is associated with electromagnetic �elds that propagate along the interface
while being evanescently con�ned in the perpendicular direction thus preventing energy
transport away from the interface [100]. Such surface plasmon polaritons (SPPs)
are solutions of the homogeneous Helmholtz equation (2.17) for a planar interface
between two half-spaces described by the respective dielectric functions of the metal
ε1(ω) = ε′1(ω) + iε′′1(ω) and the dielectric ε2(ω), as sketched in Fig. 3.2a. Without
loss of generality, the interface is oriented perpendicular to the z-direction and wave
propagation along the positive x-direction is assumed.
The only allowed self-consistent solutions are transverse magnetic (TM) polarized

surface waves with non-vanishing Ex, Ez and Hy �eld components. The electric �elds
in the two half-spaces j can then be written as [85]

Ej =

 Ej,x
0
Ej,z

 ei(kSPPx−ωt)eikz,j |z|, j = 1, 2 (3.5)

where the parallel wave vector kSPP (i.e. the component along the propagation direc-
tion) is equivalent to the SPP's propagation constant. kz,j corresponds to the normal
component of the wave vector in half-space j and the absolute value of z has been
used to ensure an exponential decay into both half-spaces.
1Note the erratum [99] to the original publication.
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Figure 3.2: Surface plasmon polariton at plane interface. (a) Illustration of coupled �eld
and charge density distribution of a bound SPP mode traveling in positive x-direction along
an interface between a metal and a dielectric represented by dielectric functions ε1 and
ε2, respectively. The interface is de�ned as z = 0 in a Cartesian coordinate system. (b)
Exponential electric �eld decay into the adjacent half-spaces for a gold-air interface at vacuum
wavelength 800 nm, giving rise to energy con�nement in z-direction.

By requiring the continuity of the tangential (normal) component of E (D) at the
boundary in accordance with Eq. (2.20a) (Eq. (2.21a) with σs = 0) in combination
with the continuity of the parallel wave vector kSPP the following dispersion relations,
i.e. relations between wave vectors and angular frequency ω, result:

kSPP =

√
ε1ε2

ε1 + ε2

ω

c
→ ω =

√
ε1 + ε2

ε1ε2

c kSPP, (3.6a)

kz,j =

√
ε2
j

ε1 + ε2

ω

c
, j = 1, 2. (3.6b)

The metal's non-negligible imaginary part of the dielectric function results in a complex
SPP wave vector kSPP = β+iα causing damping upon propagation due to Ohmic losses.
In contrast, free space photons in the dielectric are described by a linear dispersion
relation given by

ω =
c
√
ε2

k, (3.7)

commonly referred to as light line. Necessary requirements for a bound interface mode
to exist are imaginary normal wave vector components kz,j. Equation (3.6b) infers for
the involved dielectric functions the condition Re [ε1(ω) + ε2(ω)] < 0. Furthermore,
propagation along the interface requires a positive real part of the SPP propagation
constant kSPP and thus imposes Re [ε1(ω) · ε2(ω)] < 0. A metal-dielectric interface
satis�es both conditions in the optical regime, i.e. Re [ε1(ω)] < −Re [ε2(ω)], as can be
seen by inspection of Fig. 3.1.
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3.2 Surface plasmon polaritons

The �nite value of the attenuation constant α manifests itself in a �nite SPP prop-
agation length ldecay (1/e intensity decay length), which is de�ned as

ldecay =
1

2α
. (3.8)

An SPP propagation length of ldecay = 86µm is obtained for a gold-air interface at
λ = 800 nm. The SPP e�ective wavelength λeff is obtained via

λeff =
2π

β
, (3.9)

taking a value of 788 nm for a gold-air interface at λ = 800 nm. With distance from the
interface the SPP's evanescent �elds decay exponentially into both neighboring media,
as illustrated in Fig. 3.2b. This is due to the mostly imaginary kz,j [Eq. (3.6b)]. The
near-�eld penetration depths lz (1/e amplitude decay) into gold and air take values
of lz,1 = 1/Im [kz,1] = 25 nm and lz,2 = 1/Im [kz,2] = 615 nm, respectively, showing a
much shorter penetration depth into the metal.

b ca

Figure 3.3: Properties of SPPs. (a) SPP dispersion relation for a gold-air interface (red solid
line) together with the light line in air (black dashed line). Gold is modeled after [97]. (b)
Fraction of real to imaginary part of transverse wave vector kz,1 in gold. (c) Corresponding
SPP propagation length. The gray shaded area denotes the high energy Brewster mode
regime.

Compliance with both energy and momentum conservation is required for SPP
excitation. To this end, the SPP dispersion relation ω(β) [Eq. (3.6a)] for a single
plane gold-air interface is depicted exemplarily in Fig. 3.3a (red solid line) together
with the dispersion of free space photons in air [Eq. (3.7) - black dashed line]. Here,
the dispersive character of the dielectric function of gold ε1(ω) in the visible to near-
infrared region of the electromagnetic spectrum is modeled as explained in Sec. 3.1,
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while the permittivity of air is set to ε2 = 1 irrespective of frequency. The dispersion
relation can be divided in two branches, a high-energy and a low-energy branch. The
�rst one, the so-called Brewster mode, describes waves propagating into the gold
instead of true surface waves [85], as obvious from the strongly increased real part of
kz,1 shown in Fig. 3.3b and negligible SPP propagation length ldecay shown in Fig. 3.3c.
Thus, we are not interested further in this branch.
Only the low-energy branch corresponds to true SPPs, which always possess a larger

wave vector than free space photons of the same frequency. This manifests itself in
the SPP dispersion relation lying below the light line. The wave vector di�erence is
small for low frequencies, where gold better resembles an ideal conductor that pro-
hibits �elds to penetrate it, resulting in quasi plane wave modes in the air half-space
with in�nite extension. This can be made a general rule also for the more complex
waveguide geometries studied later, that whenever the SPP dispersion approaches the
light line of adjacent dielectrics the SPP mode becomes more photonic-like with only
little con�nement accompanied by a large propagation length. In contrast, for higher
frequencies within the low-energy branch gold behaves more and more like an electron
plasma and e�cient coupling to this results in a large wave vector di�erence. Due
to this wave vector di�erence SPPs on a smooth metal interface cannot directly be
excited by light from the far-�eld. Thus, special excitation schemes are required to
overcome the momentum mismatch and generate SPPs. To this end, the use of prism
couplers in the Otto [101] and Kretschmann [102] con�gurations or high numerical
aperture objectives providing large angular components [103] are commonly exploited.
In turn, reciprocity implies that such SPPs are also non-radiative in nature. In the
following, we will show the evolution of λeff and ldecay instead of dispersion curves since
we are mostly interested in how these two properties change depending on structure
dimensions.
With applications such as optical information transport via SPPs in mind, the group

velocity vg constitutes the relevant measure for the propagation speed of a broadband
pulse. For a certain angular frequency ω0 it can be directly deduced from the dispersion
relation by calculating its slope [104]

vg =
∂ω

∂β
|ω0 . (3.10)

For the gold-air interface at λ = 800 nm considered above the group velocity takes
a value of vg = 0.93 c and thus is expectedly slower than the speed of light in air.
The group velocity is not to be confused with the phase velocity, i.e. the speed of
phase fronts of single-frequency components. This is de�ned as vp = ω

β
and usually,

depending on the spectral characteristics of the dielectric function, is slightly di�erent
than vg. For the speci�c example from above, the phase velocity at λ = 800 nm is
calculated to be vp = 0.98 c.
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3.3 Surface plasmon modes in double-interface

systems

Having introduced the basic concept of SPPs at single metal-dielectric interfaces in
the previous section, we now want to proceed by focusing on two speci�c three layer
geometries as depicted in Fig. 3.4: the metal-insulator-metal [MIM, Fig. 3.4a] and the
insulator-metal-insulator [IMI, Fig. 3.4b] con�guration [105]. Each single interface of
such systems is capable of independently sustaining a bound SPP [cf. Sec. 3.2], as long
as the interface separation t is much larger than the SPP's evanescent decay length
lz in the respective inner medium. Otherwise, mutual coupling of SPPs associated
with individual metal-insulator interfaces results in mode hybridization of symmetric
or antisymmetric nature [106�108], just as for atomic orbitals in molecules. In the
following, the propagation properties of these di�erent solutions are examined for sym-
metric systems with identical substrate and superstrate material. For non-symmetric
systems, on the other hand, di�erent modes exist [109], which are not governed in this
thesis. Furthermore, only the supported fundamental bound modes with potential ap-
plications in waveguiding are treated here omitting the family of leaky and oscillatory
modes [107].

3.3.1 Metal-insulator-metal architecture

Bound modes, i.e. solutions of the wave equation in the absence of driving terms, can
in general be found by solving the characteristic equation imposed by the boundary
conditions of the system under investigation. For the symmetric MIM geometry only
an implicit expression for the dispersion relation linking kSPP with ω can be obtained
[110]. Therefore, we have numerically solved for the modes of a MIM waveguide
formed by an air gap in gold by means of the �nite-di�erence frequency-domain method
[cf. Sec. 4.3].
Within a certain parameter range the symmetric MIM geometry can support two

fundamental bound modes with amplitudes of their �eld components as illustrated in
Fig. 3.4c. The mode symmetry with respect to the mid-plane of the dielectric layer
is de�ned by the longitudinal �eld component Ex, yielding a symmetric (left, light
green dashed curve) and an antisymmetric mode (right, light blue dashed curve). The
respective symmetry is also evident from inspection of the surface charge densities upon
both metal surfaces, as schematically sketched in Fig. 3.4c. Notably, in contrast the
transverse �eld component Ez shows the opposite symmetry. Therefore, the symmetric
mode (also called quasi-TM mode) possesses a node for the Ez component between
the two interfaces (left, green solid line), while for the antisymmetric mode (also called
quasi-TE mode) Ez inside the dielectric has the same sign across the gap (right, blue
solid line).
Figures 3.5a-c show general trends in the characteristic properties of both modes.

Most notably, while the antisymmetric mode experiences no cuto� for vanishing dielec-
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Figure 3.4: Modes of symmetric multilayer systems. (a) Schematic illustration of a MIM
heterostructure. The metal extends inde�nitely on both sides of the dielectric. (b) Schematic
illustration of an IMI heterostructure. (c) Field components of the symmetric (left, green
curves) and antisymmetric (right, blue curves) bound modes for the MIM geometry composed
of gold and air. (d) Field components of the symmetric (left, red curves) and antisymmetric
(right, black curves) bound modes for the IMI geometry composed of gold and air. All
modes are calculated for a center layer thickness t = 1.5µm at a vacuum wavelength of
800 nm, ensuring that none of these fundamental modes is already in cuto�.

tric, the symmetric mode does so [109], e.g. at λ = 800 nm the symmetric mode is in
cuto� for dielectric layer thicknesses t < 1.25µm. Toward smaller values of t, i.e. for
decreasing gaps between the two metal layers, the antisymmetric mode's e�ective
wavelength drastically reduces toward the limit λeff → 0 [Fig. 3.5a] [111], equivalent
to a strong increase in propagation constant β reaching values exceeding those of a
single metal-dielectric interface. A large β implies a strong near-�eld con�nement in
the transverse direction, which in turn results in small propagation lengths, as seen
in Fig. 3.5b. Absorption in gold is limiting the propagation length, thus high mode
con�nement results in a larger fraction of the �elds to be within the gold [Fig. 3.5c]
and consequently high losses. Finally, for large propagation constants also the group
velocity decreases [Fig. 3.5c].
From the two bound MIM modes, the antisymmetric one is especially appealing for

waveguide applications [45, 112], since it can in principle be squeezed unlimitedly in
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Figure 3.5:Mode properties of multilayer systems. (a) E�ective wavelength, (b) propagation
length, and (c) group velocity and fraction of mode intensity in Au for MIM heterostructures
with varying dielectric layer thickness t. (d)-(f) Same as (a)-(c), but for IMI heterostructures.
For all simulations, Au modeled according to [97] and air have been chosen as metal and
dielectric, respectively. The results are obtained for a vacuum wavelength of 800 nm.

its transverse cross section even for excitation wavelengths in the red or near-infrared,
as long as the width of the dielectric is made su�ciently small. This is contrary to
the single interface SPP mode that requires frequencies close to the surface plasmon
frequency ωsp to show strong �eld con�nement [see Sec. 3.2]. However, this inevitably
comes at the price of small propagation lengths imposing a general trade-o� in plas-
monics between strong �eld con�nement and propagation losses [111]. Nevertheless,
it can be shown that the available dielectric space is most e�ciently exploited by the
antisymmetric MIM mode [113, 114], resulting in fairly small absorption [111]. In
future, plasmon ampli�cation techniques might help solving this issue [115�118].

3.3.2 Insulator-metal-insulator architecture

Just as their MIM counterparts, IMI multilayer structures also support two fundamen-
tal bound modes distinguished by the hybridization symmetry of the single surface
modes. The �eld amplitudes for symmetric (left, red curves) and antisymmetric (right,
black curves) mode are depicted in Fig. 3.4d with general trends in the characteristic
properties of both modes shown in Figs. 3.5d-f. Regarding the symmetric mode, the
e�ective wavelength [Fig. 3.5d] decreases to 0 for in�nitely thin gold �lms, equivalent
to an inde�nite increase of both real and imaginary parts of kSPP. As a consequence,
the propagation length of the symmetric IMI mode gets very small [Fig. 3.5e] due to
strong Ohmic damping arising from the large fraction of mode intensity inside the
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gold [Fig. 3.5f]. Contrary to this so-called short-range SPP, the dispersion relation of
the antisymmetric IMI mode in the limit of very thin gold �lms approaches the light
line. It resembles a photonic-like plane wave supported by the homogeneous dielectric
environment and is characterized by low losses at the expense of poor con�nement
[119]. This remarkable feature of long propagation lengths [Fig. 3.5e] caused by the
�elds being pushed out of the gold [Fig. 3.5f] dubs the mode long-range SPP [120] and
might be employed for practical components in integrated plasmonic circuitry [121].
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Chapter 4

Numerical simulations

The analytical solution of Maxwell's equations is a complex task limiting closed form
solutions to a few simple geometries, such as spherical particles in the framework of
Mie theory [122, 123] or plane interfaces as described in Chap. 3. For more advanced
problems, numerical approximations of Maxwell's equations are usually required to
make reliable predictions of the present classical electromagnetic e�ects. Nowadays,
scientists around the world use such computational electromagnetics to investigate,
among others, electromagnetic scattering, radiation, and waveguiding phenomena. A
myriad of algorithms is used for this task, with the most recognized ones being the
�nite element method (FEM), the method of moments (MoM), and the �nite-di�erence
time-domain (FDTD) method. An extensive overview of these full-wave techniques is
given in [124]. However, within this thesis the FDTD algorithm is exclusively used,
which is justi�ed given that this method is the preferred choice when studying guided
wave problems.

In plasmonics, numerical simulations are particularly important as a tool to study
complex nanostructures. Firstly, due to their time-consuming and expensive fabri-
cation new concepts are often tested and optimized in simulations before the actual
experiments with promising structures are performed. Secondly, to draw solid con-
clusions from experimental data a comparison with simulation results can often help,
since there - in contrast to the actual experiments - additional relevant properties are
accessible such as the spatial near-�eld distribution around the nanostructure.

This chapter gives a synoptic view of the FDTD algorithm [Sec. 4.1] together with
emphasis on practical simulation aspects [Sec. 4.2]. For a primal read the extensive
text book of Ta�ove and Hagness [125] is highly recommended. All FDTD simulations
presented in this work were performed with commercial software (FDTD Solutions,
Lumerical Solutions Inc., Canada) in versions 5 to 8.12.590. The software's documen-
tation can be found online [126]. Subsequently, the frequency-domain eigenmode solver
used to numerically obtain eigenmode characteristics of investigated waveguide struc-
tures is introduced in Sec. 4.3. Finally, Sec. 4.4 brie�y summarizes the most frequently
employed post-processing procedures important for the derivation and understanding
of later results.
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Chapter 4 Numerical simulations

4.1 Finite-di�erence time-domain algorithm

The FDTD algorithm relies on central-di�erence approximations to the space and
time partial derivatives in Maxwell's curl Eqs. (2.1a) and (2.1b)1. Rewriting them
component-wise in Cartesian coordinates under the assumption of time independent
parameters ε, µ, and σ, one yields a system of six coupled partial di�erential equations,
that can be compactly written as

∂Ep
∂t

=
1

ε

(
∂Hr

∂q
− ∂Hq

∂r
− σEp

)
, (4.1a)

∂Hp

∂t
=

1

µ

(
∂Eq
∂r
− ∂Er

∂q

)
, (4.1b)

with {p, q, r} being cyclic permutations of {x, y, z}. This immediately suggests a
leapfrog-type marching-in-time scheme with �nite time steps ∆t, wherein electric and
magnetic �eld updates are staggered by ∆t/2 with respect to each other. Consequently,
updated values for the electric (magnetic) �eld in time are computed from the electric
(magnetic) �eld in the previous time step and the local curl of the magnetic (electric)
�eld, as implied by Eq. (4.1a) (Eq. (4.1b)). This iterative update, as sketched in
Fig. 4.1a, is repeated until the termination criterion of negligible energy remaining in
the simulation domain is met.

nE n+1En+1/2H n+3/2Hn-1/2H

a b
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Figure 4.1: Discretizations involved in the FDTD algorithm for solving Maxwell's equations.
(a) Leapfrog time marching of electric and magnetic �elds. (b) Cubic unit cell of the inter-
leaved lattice used for discretization in space. The electric and magnetic �eld components
are situated on the respective cube edge centers of the primal (red) and interleaved (blue)
unit cell. The natural implementations of the integral forms of Ampere's [Eq. (2.1b)] and
Faraday's [Eq. (2.1a)] law are highlighted for the Ey and Hx components by the bluish and
reddish planes, respectively.

The discretization in time allows for the numerical approximation of the �rst partial
time derivatives in Eqs. (4.1a) and (4.1b) by second-order accurate center-di�erences

1Although not explicitly enforced by the FDTD algorithm, the obtained �eld quantities nevertheless
satisfy the Gauss' laws relations (2.1c) and (2.1d), as pointed out in [125].
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of the form

∂un

∂t
=
un+1/2 − un−1/2

∆t
+O(∆t2), (4.2)

where un represents any component of E and H at integer time step n. While at this
point both �elds are still continuous in space, FDTD further requires a discretization in
space that naturally allows for the computation of the curl of all �eld components. This
is commonly achieved by the nested nature of two interleaved cuboid-shaped lattices
with lattice constants ∆x, ∆y, and ∆z, that are shifted in all three dimensions relative
to each other by half of the respective lattice constant and represent the components of
the electric and magnetic �eld, respectively. The unit cell of this segmentation, which
was originally introduced by Kane Yee in 1966 [127] and since then proved to be very
robust, is shown in Fig. 4.1b.
Space discretization by means of Yee cells allows for the numerical approximation

of the �rst partial space derivatives in Eqs. (4.1a) and (4.1b) by second-order accurate
center-di�erences [125], e.g. reading for the derivative of u in x-direction

∂un(i, j, k)

∂x
=
un(i+ 1

2
, j, k)− un(i− 1

2
, j, k)

∆x

+O(∆2
x), (4.3)

where (i, j, k) represents the Yee cell indices in x-, y-, and z-direction. This space
lattice further maps the permittivity and permeability of physical structures within
the simulation domain onto the electric and magnetic �elds, respectively.
Spatial and temporal discretizations of the FDTD algorithm inherently bring about

limitations in the accuracy, as evident from the numerical dispersion [128]

[
1

c̃∆t
sin

(
ω∆t

2

)]2

=
∑

l={x,y,z}

[
1

∆l

sin

(
k̃l ∆l

2

)]2

, (4.4)

showing a discrepancy in the phase velocities c̃ and c of numerically and physically
propagating waves, respectively. Only in the limit {∆t,∆x,∆y,∆z} → 0 agreement
with the analytical dispersion

(
ω
c

)2
=
∑

l={x,y,z} k
2
l is reached. As can be inferred

from the numerical dispersion relation Eq. (4.4), the stability of the FDTD algorithm
requires the Courant criterion to be satis�ed, which sets the following upper bound
on the time step [128]:

∆t ≤ 1

vmax

(
1

∆2
x

+
1

∆2
y

+
1

∆2
z

)−1/2

, (4.5)

where vmax is the maximum phase velocity possible in the simulation domain.
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4.2 Simulation setup
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Figure 4.2: FDTD simulation setup. The simulation domain includes the physical structures
of interest, in this particular case a mode detector device as introduced in Chap. 8, and is
con�ned by PML layers (orange box). An excitation source, here a Gaussian beam focused
onto the incoupling antenna, injects electromagnetic �elds into the simulation domain, which
are recorded by monitors. Information outside of the simulation domain, such as far �eld
images, can be retrieved by post-processing techniques, as detailed in Sec. 4.4. (inset) The
region around the nanoantenna is placed into a mesh override region allowing for a �ner
discretization.

The basic elements of a typical FDTD simulation are illustrated in Fig. 4.2 with
essential simulation parameters brie�y discussed in the following. In order to nu-
merically tackle a give problem, the computational domain, i.e. a �nite region of
space containing the physical structures of interest, must be de�ned. Only within this
simulation region the FDTD method solves for the electromagnetic �elds. A typical
guideline is to ensure a spacing between structure and simulation boundary on the
order of the longest considered excitation wavelength to avoid spurious absorption of
the structure's evanescent �elds at the boundary. For an exception of this guideline
see Sec. 4.4.1. Since the boundary is arti�cial in the sense that it is not present in the
real unbounded system but just used to make the problem numerically tractable, a re-
�ection of energy at the boundary needs to be avoided for faultless results. Therefore,
a highly e�ective arti�cial absorbing material, called perfectly matched layer (PML),
has been introduced [129, 130] and surrounds the simulation region, thus mimicking
an in�nite computational domain. This bene�cial property speci�cally applies to the
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present case of plasmonic modes. Moreover, if the studied structure and its excitation
are inherently mirror symmetric it is advisable to reduce the computational e�ort by
using symmetric or antisymmetric boundary conditions.
The meshing of the simulation region, i.e. the spatial discretization according to

Yee's algorithm, has to take the following two aspects into consideration. Firstly, the
structure itself needs to be accurately resolved within the created grid. This is partic-
ularly important for curved objects, since otherwise the object's representation in the
simulation includes sharp corners and edges due to stair-casing instead of a smooth
surface. For metal structures in particular this leads to a concentration of charges in
arti�cial edges and corners and unwanted strong local �elds due to the lightning rod
e�ect. Secondly, plasmonic excitations on metallic nanostructures are accompanied
by strong �eld gradients in the structure's vicinity, as introduced in Sec. 3.2, which
need to be reproduced by the chosen grid to be able to achieve a correct behavior in
simulations. In contrast to the originally introduced uniform grid of cuboid Yee cells
[cf. Sec. 4.1], the commercial software allows for a more sophisticated non-uniform
grid. This is highly bene�cial as it allows for sub-gridding pre-de�ned volumes enclos-
ing plasmonic structures using smaller cell sizes and hence additional resolution where
needed [see Fig. 4.2, inset], while other areas not containing metallic materials can
have signi�cantly larger cell dimensions and still accurately describe, e.g., propagating
free space radiation. In lack of analytical solutions to the complex systems studied in
this thesis the optimal Yee cell size in terms of accuracy on the one hand and simu-
lation time and memory requirements on the other hand is obtained by convergence
tests using decreasing mesh sizes. Typical optimal cell sizes for terminations of metal-
lic waveguides or isolated nanoantennas are 1 × 1 × 1 nm3, while for pure plasmon
propagation along propagation direction invariant waveguides the mesh size in this
direction can be increased to 4 nm - 8 nm. For regions far away from metallic material
grid sizes in the order of 15 nm to 20 nm are acceptable.
A variety of ways exists to model di�erent types of materials within the simulations.

In the present case, glass is assumed to be non-dispersive in the considered wavelength
range and consequently is implemented as a dielectric material with a constant, real
refractive index of 1.51. In contrast, the dielectric function of gold is strongly wave-
length dependent in the visible spectral range, as shown in Sec. 3.1. To account for
this dispersive nature, sampled gold material data from a critical point �t [97, 99] to
experimental data of Johnson and Christy [96] are used.2 An automatic �tting routine
within the software generates a multi-coe�cient material model of these data over the
relevant wavelength range.
As the constitutive relation (2.11a) is a frequency-domain expression but the FDTD

method is a time-domain technique, an inverse Fourier transformation of Eq. (2.11a) is

2This data set is a well established standard for gold. However, a recent collection of spectroscopic
ellipsometry measurements suggests di�erences in the dielectric function depending on the mor-
phology of gold [131]. Consequently, some uncertainty is introduced by the choice of the concrete
material data, which is however found to be only of minor impact and none of the observations
in this work is a�ected by our choice.
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required to obtain the time-domain electric displacement. Multiplication of harmonic
functions in the frequency domain is equivalent to a convolution in the time domain,
hence one yields the convolutional (and causal) constitutive relation

D(r, t) = ε0

t∫
τ=0

ε(r, t− τ)E(r, τ)dτ, (4.6)

with ε(r, t) as the inverse Fourier transform of ε(r, ω)

ε(r, t) =

∞∫
−∞

ε(r, ω)e−iωtdω. (4.7)

The time-domain function ε(r, t), which has to obey Kramers-Kronig constraints, de-
scribes the impulse response of the medium.
Another fundamental element for modeling a system is an appropriate excitation

source, with which electromagnetic energy is introduced into the simulation region.
A variety of accurate electromagnetic wave sources is available with the two most
commonly used ones in this work being the Gaussian beam source and the mode
source. The Gaussian beam source injects a fully vectorial beam with Gaussian beam
pro�le and an adjustable numerical aperture, thus resembling a laser beam excitation
focused by an objective. In contrast, the mode source directly injects a guided mode
into a plasmonic waveguide. Therefore, �rst the 2D modal pro�le in a cross-sectional
cut perpendicular to the waveguide direction is obtained using an eigenmode solver [see
Sec. 4.3]. This modal pro�le is then applied to an electromagnetic source and, since
modal pro�le of the source and the waveguide are perfectly matching, all energy is
coupled into the waveguide mode without excitation of free space waves. In simulations,
the time signal of the source s(t) is speci�ed to be a few cycle pulse with typical pulse
duration of 5 fs and center wavelength as required from the experiment.
With the aforementioned building blocks simulations can be carried out, which

according to the FDTD algorithm introduced in Sec. 4.1 calculate the electromagnetic
�elds at each grid point and every simulation time step. Since this vast amount of data
is impossible to store, �elds are only recorded in pre-speci�ed monitors, i.e. one-, two-
or three-dimensional sub-regions of the simulation region. Such monitors can either
directly record the time evolution of �eld quantities, or by a Fourier transformation
of these transient �eld data the corresponding frequency-domain results according to

E(r, ω) =
1

2π

∞∫
0

E(r, t)eiωtdt. (4.8)

Unlike their time-domain counterparts frequency-domain electric �elds are inherently
complex quantities comprising magnitude and phase information. Frequency-domain
monitors calculate the integral in Eq. (4.8) only up to the time when the simulation is

28



4.3 Frequency-domain eigenmode solver

ended assuming zero �elds beyond this point. To still ensure a physically meaningful
transformation, the simulation must only be terminated if the energy in the simulation
volume has dropped far enough so that most of the excitation power has already left the
simulation region. A �nal �eld strength decrease of 5 orders of magnitude compared to
its peak value is an appropriate condition to terminate the simulation. The simulated
frequency-dependent electric �eld results from Eq. (4.8) not only depend on the system
under investigation, but also on the exact shape of the source pulse s(t). A useful
normalization of E(r, ω) is obtain by dividing Eq. (4.8) with the Fourier transform of
the source pulse, i.e.

s(ω) =
1

2π

∞∫
0

s(t)eiωtdt. (4.9)

By this normalization the impulse response of the system is returned, which is com-
pletely independent of the exact properties of the excitation pulse.

4.3 Frequency-domain eigenmode solver

From the plethora of optical/plasmonic waveguide geometries only a few simple ones
[as shown in Secs. 3.2, 3.3 and 5.1] possess analytical solutions. The modal charac-
teristics of more complex waveguide structures can only be determined by rigorous
numerical methods [132, 133]. From the many available modeling techniques in this
work we adopt the full-vectorial �nite-di�erence frequency-domain (FDFD) method
to obtain eigenmodes of plasmonic waveguides and their mode characteristics (MODE
Solutions, Lumerical Solutions Inc., Canada). As within the FDTD algorithm [see
Sec. 4.1] the underlying discretization scheme is based on �nite-di�erence approxima-
tions of the derivative operators in Maxwell's equations using Yee's 2D grid.
The following considerations assume the involved materials to be non-magnetic,

i.e. imply that µ is unity over the entire waveguide cross section. Furthermore, the
waveguide is oriented along the x-direction, thus the permittivity ε is assumed to be
translationally invariant along this propagation direction, i.e. ε = ε(y, z). Then, the
solutions of Maxwell's equations take the form of plane waves with time-harmonic
dependence

E(x, y, z) = [Et(y, z) + Ex(y, z)x̂] ei(kSPPx−ωt), (4.10a)

H(x, y, z) = [Ht(y, z) +Hx(y, z)x̂] ei(kSPPx−ωt), (4.10b)

where E(y, z) and H(y, z) have been decomposed into components transverse and par-
allel to the plasmon propagation direction, denoted by subscripts t and x, respectively.
x̂ is the unit vector parallel to the waveguide axis. Building on Sec. 2.4, the homo-
geneous vector Helmholtz Eqs. (2.17) and (2.18) simplify to wave equations for the
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transverse �elds(
∇2
t + εk2 − k2

SPP

)
Et = − (∇t + ikSPPx̂) (Et · ∇t ln ε) , (4.11a)(

∇2
t + εk2 − k2

SPP

)
Ht = [(∇t + ikSPPx̂)×Ht]×∇t ln ε, (4.11b)

with the gradient operator in transverse direction de�ned as ∇t = ŷ ∂
∂y

+ ẑ ∂
∂z
.

Application of the �nite-di�erence algorithm, i.e. approximation of derivatives by
ratios of �nite di�erences, on a cross-sectional mesh of the waveguide yields a matrix
eigenvalue equation in terms of the transverse electric �elds [134]

A

[
Ey
Ez

]
=

[
Ayy Ayz
Azy Azz

] [
Ey
Ez

]
= k2

SPP

[
Ey
Ez

]
(4.12)

with the eigenvalues k2
SPP. The implementation of the coe�cient matrix A uses an

index averaging technique for the �nite di�erences in Eq. (4.11a) and thus reduces
stair-casing problems for curved surfaces, as detailed in [134]. Solving Eq. (4.12) us-
ing sparse matrix techniques the transverse mode �elds Et(y, z) are obtained, which
readily allow the calculation of Ex(y, z). Thus, both �eld pro�les and corresponding
propagation properties for eigenmodes of arbitrarily shaped waveguides can numeri-
cally be calculated. In a manner similar to Eq. (4.12) one can alternatively obtain an
eigenvalue equation for the magnetic �elds H from Eq. (4.11b).
In terms of customizable settings and the obtainable results FDFD simulations are

less complex compared to the previously introduced FDTD simulations [see Sec. 4.2],
however, the accuracy of results nevertheless needs to be demonstrated. Common
sources of errors are related to the simulation area size and the discretization of this
area, especially in regions containing metals. Evanescent mode �elds overlapping
with the absorbing PML simulation boundaries constitute the �rst type of error. If
the simulation area is not su�ciently large, electromagnetic energy gets lost in the
boundaries. This results in deviations most dominantly of the imaginary part of kSPP.
Those deviations are especially pronounced for weakly con�ned modes that require
a particularly large simulation area for convergence of results. The second source of
error is associated with the ability to resolve the structure's geometrical features as
well as the near-�eld's strong spatial variations. This e�ect is studied exemplarily
for a cylindrical metallic nanowire waveguide in a homogeneous dielectric surrounding
[35, 48] in Sec. 5.1, as this case can in addition be addressed fully analytically [135],
thus providing an important reference.

4.4 Post-processing procedures

This section shortly summarizes the most frequently used post-processing procedures
used throughout this work, i.e. near- to far-�eld projections, far-�eld image calculation,
mode overlap analysis, and �tting of the mode's re�ectivity at waveguide discontinu-
ities.
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4.4.1 Near- to far-�eld projections

In view of the previously mentioned �nite computational domain the FDTD solver
only determines near-�eld data in close proximity to the structure. If one is interested
in modeling the corresponding electromagnetic �elds in the intermediate or distant
far-�eld regions, near- to far-�eld projections provide a numerically e�cient way to
accomplish this task as a post-processing step. These projections can be understood
as a decomposition of the near-�eld data using a set of plane waves propagating at
di�erent angles as its basis. A detailed review of the underlying method can be found in
[125]. In this work, we typically encounter structures that reside on glass-air interfaces
and knowledge of their far-�eld emission patterns, i.e. the angular distribution of the
emission, into both air and glass half-spaces is mandatory, with particular importance
of the latter one as this is also experimentally accessible. Therefore, the results of the
near-�eld decomposition are propagated to a hemisphere in one meter distance in air
and glass, respectively, as schematically illustrated for the glass half-space in Fig. 4.3a.

The requirement for a far-�eld projection into the glass (air) half-space is the know-
ledge of the electromagnetic �elds (i.e. E and H) in a plane parallel to the interface
situated completely in the glass (air) half-space. In the following, far-�eld emission
patterns of a key component of plasmonic nanocircuitry, that is a linear dipole antenna,
are investigated. The antenna dimensions, as denoted in the caption of Fig. 4.3, are
chosen in order to support a fundamental dipolar resonance at 800 nm wavelength.
The far-�eld projection onto the hemisphere in glass is shown in Fig. 4.3b together
with cuts parallel and perpendicular to the nanoantenna axis in Fig. 4.3c. The perfect
dipolar antenna far-�eld emission pattern is revealed by comparison with the emission
pattern of an individual electric dipole placed 15 nm above the glass-air interface, i.e.,
at the antenna's mid-height, as displayed in Fig. 4.3c by the black dashed curves.
A simpler illustration of the far-�eld emission pattern is obtained by a top-view of
the hemisphere in Fig. 4.3b, yielding Fig. 4.3d. This planar representation is used
throughout this thesis.

To ensure accurate results the lateral extension of the near-�eld monitor used for
the projection must be large enough to record most of the light propagating into the
far-�eld and to su�ce the underlying assumption of zero �elds beyond the edge of
the monitor. Figure 4.4 shows cuts through the far-�eld emission pattern of a dipole
situated 15 nm above a glass substrate in air for di�erent extensions of this monitor.
Comparing with the analytical solution of this simple problem [85] considerable errors
in the far-�eld data become apparent, especially in the region of the classically forbid-
den light, when using too narrow monitors. A trade-o� between simulation accuracy
and the size of the simulation domain, that determines the required simulation time,
needs to be found depending on the complexity of the system under investigation.
For accurate far-�eld emission patterns a minimum monitor size of 20 × 20µm2 is
recommended, requiring at least the same lateral simulation domain span.
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Figure 4.3: Calculation of far-�eld emission pattern. (a) Visualization of the hemisphere
used to record the emission pattern in the glass half-space. A gap nanoantenna (arm length
= 85 nm, width = 30 nm, height = 30 nm, gap = 10 nm) resonating in its fundamental dipolar
mode at 800 nm wavelength, as evidenced by its charge distribution, serves as an example.
Dimensions are not to scale. (b) The nanoantenna's far-�eld emission pattern projected onto
the hemisphere in glass. (c) Cuts through the far-�eld emission pattern parallel (red) and
perpendicular (blue) to the nanoantenna axis. Equivalent cuts are obtained for an individual
dipole 15 nm above a glass-air interface (black dashed curves). The hemisphere used to record
the emission pattern in the air half-space is shown as an inset. (d) Top-view of the hemisphere
of (b).

4.4.2 Far-�eld image calculation

Experimentally the structures are characterized by a home-built inverted microscope
setup [see Sec. 7.2]. Therefore, a post-processing of the simulation data is needed in
order to facilitate a comparison with experimental images recorded by the microscope.
Most importantly the e�ect of the microscope objective with its numerical aperture
(NA) limiting the resolution of �nest details needs to be considered. To this end, �rst
a near-�eld decomposition into a series of plane waves propagating at di�erent angles
is performed as described in Sec. 4.4.1. Subsequently, the obtained emission pattern
is �ltered by discarding any plane wave contributions with angles outside the de�ned
collection NA of the objective. Finally, the remaining plane wave contributions are re-
focused onto an image plane coinciding with the objective's focal plane to reconstruct
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a 2
|E|  [a.u.] b

Figure 4.4: Accuracy of far-�eld emission pattern calculation. Cuts through the simulated
emission pattern (a) parallel and (b) perpendicular to the dipole moment of an electric dipole.
The lateral extension of the square monitors used for the far-�eld projection is 5µm (green),
10µm (blue), and 20µm (red). The theoretical curves, as obtained after [85], are shown in
black. Both theoretical and simulated emission patterns are obtained for an electric dipole
source located 15 nm above a glass-air interface with polarization parallel to it and oscillation
wavelength of 800 nm. The critical angle for total internal re�ection θc is shown in orange as
a guide for the eye.

a simulated microscope image. Technically this is done by a chirped z-transform of
the �ltered set of data [126]. A schematic of the simpli�ed imaging system is given
in Fig. 4.5 showing the image construction for plasmon transmission through a gold
nanowire, as discussed in detail in Chap. 7. In the corresponding experimental setup,
which is equipped with an NA = 1.3 microscope objective, light can pass through the
objective up to a maximum half-angle of the light cone of θNA = 59.4°. The �ltering
by propagation angle as well as a schematic sketch of the marginal rays is included in
Fig. 4.5.

4.4.3 Mode overlap analysis

The mode-speci�c incoupling e�ciency ηin constitutes an important quantity in studies
of the optical excitation of nanocircuits. It quanti�es the e�ciency of power transfer
from an external excitation, e.g. a Gaussian beam, to the respective waveguide eigen-
mode [64]. In simulations and as detailed below, its value is obtained by means of a
mode expansion analysis [126] and is denoted as ηsin.
For a given waveguide supporting a complete set of source-free solutions to Maxwell's

equations [see Sec. 4.3], i.e.m orthogonal eigenmodes Φm determined by their �elds Em

and Hm, any arbitrary input �eld can be expressed in terms of a weighted summation
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Figure 4.5: Schematic representation of the simpli�ed imaging system used to acquire sim-
ulated microscope images. The sample (left), a 2µm long single gold nanowire with lateral
dimensions as described in Chap. 7, is excited by a tightly focused Gaussian beam (NA =
1.3, λ = 800 nm). The same objective, here represented by a simple lens, collects the emitted
light and focuses it to the image plane (right). An aperture limits the angles of light that
can pass the objective in accordance with the objective's NA.

of all these eigenmodes according to

Ein =
∑
m

amE
+
m +

∑
m

bmE
−
m, (4.13a)

Hin =
∑
m

amH
+
m +

∑
m

bmH
−
m. (4.13b)

Here, am and bm represent the respective complex expansion coe�cients (modal ampli-
tudes) of the forward and backward propagating mode m (denoted by the superscripts
+ and −, respectively) and describe the amplitude contributing to the total �eld.
The �rst summation combines all forward propagating modes traveling in positive
x-direction, the second summation all backward propagating modes.
Considering the de�nition of propagating modes [Eq. (4.10)], a positive propagation

constant β results in a waveguide mode traveling in positive x-direction, while the
corresponding backward propagating mode is simply obtained by the transformation
β → −β. Symmetry considerations result in the following relations [136]:

E−m = E+
t,m − E+

x,mx̂, (4.14a)

H−m = −H+
t,m +H+

x,mx̂, (4.14b)

with E+
t,m and H+

t,m describing the transverse �eld components of the forward prop-
agating mode. Only transverse �eld components are relevant for the orthogonality
relation, which is de�ned for forward propagating modes as

1

2

∫ (
E+
m ×H+∗

n

)
dS = δmnNm (4.15)
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with the normalization factor Nm.3 Equivalently, if either or both modes are backward
propagating, the orthogonality relation [Eq. (4.15)] can be re-expressed by

1

2

∫ (
E−m ×H+∗

n

)
dS = δmnNm, (4.16a)

1

2

∫ (
E+
m ×H−∗n

)
dS = −δmnNm, (4.16b)

1

2

∫ (
E−m ×H−∗n

)
dS = −δmnNm. (4.16c)

Starting from Eq. (4.13) the complex modal amplitudes for any mode m can be deter-
mined by calculating the overlap integrals

1

2

∫ (
Ein ×H+∗

m

)
dS = (am + bm)Nm, (4.17a)

1

2

∫ (
E+∗
m ×Hin

)
dS = (am − bm)N∗m, (4.17b)

where the orthogonality relations Eqs. (4.15) and (4.16) have been applied. After some
algebra one obtains the wanted modal amplitudes

am =
1

4

[∫
(Ein ×H+∗

m ) dS

Nm

+

∫
(E+∗

m ×Hin) dS

N∗m

]
, (4.18a)

bm =
1

4

[∫
(Ein ×H+∗

m ) dS

Nm

−
∫

(E+∗
m ×Hin) dS

N∗m

]
. (4.18b)

A simulated �eld distribution {Ein,Hin} recorded in a cross-sectional cut of the wave-
guide at a distance x from its incoupling end can thus be analyzed to yield the power
in each mode at this position. In this context, simulations allow to simplify the system
by suppressing any backward propagating modes by extending the waveguide into the
absorbing PML boundaries (i.e. bm = 0). Thus, the power in the forward propagat-
ing mode at position x along the waveguide is obtained via pm(x) = |am|2Nm. By
accounting for the mode's exponential intensity decay [see Sec. 4.3] this value can be
extrapolated toward the waveguide input position. Consequently, the mode's incou-
pling e�ciency ηsin,m reads as

ηsin,m =
pm(x)

p0

×
[
e−x/ldecay

]−1
, (4.19)

where p0 is the source power and ldecay the intensity decay length of the mode. In
general, the excitation power is not completely transferred into well-de�ned waveguide
modes, but instead is partially propagating as unbound free space radiation, therefore
pm is always smaller than p0.
3Only in the case of guided modes in non-absorbing waveguides, Nm is a real number describing the
power carried by mode m. More generally, Nm is a complex quantity with its real part describing
the power carried by mode m.
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4.4.4 Mode re�ectivity �tting at waveguide discontinuity

Along an unlimited plasmonic waveguide of uniform transverse refractive index pro�le
the electric �eld amplitude and phase evolution of any guided eigenmode of wave vec-
tor kSPP is fully governed by a propagation factor of the form eikSPPx. This manifests
itself in an inevitable exponential decay of the mode intensity along the propagation
direction. In contrast, a waveguide discontinuity, i.e. any abrupt change in the trans-
verse refractive index pro�le, additionally results in partial mode re�ection. As an
example, the termination of a single nanowire waveguide, as investigated in detail in
Chap. 7, is studied here.
By recording the near-�eld intensity forming around the nanowire upon excitation of

its single guided eigenmode, as illustrated in Fig. 4.6a, the complex re�ection coe�cient
Γ = |Γ|eiθΓ can be obtained by analyzing the standing wave pattern. To this end, the
standing wave's total �eld intensity I measured along a linecut in close proximity to
the waveguide [Fig. 4.6b] is �tted by an analytical model [64]

I(x) =
∣∣A0

[
eikSPPx + eikSPP(L−x)ΓeikSPPL

]∣∣2 , (4.20)

where a semi-in�nite nanowire is assumed, as in the actual simulation, and conse-
quently only one re�ection at the wire termination (position L) needs to be considered.
A0 is the mode's initial �eld amplitude. Since re�ection is a consequence of impedance
mismatch, Γ is very sensitive to the condition of the nanowire end, including its sur-
rounding environment.

a b

air

glass

x
y

z

discontinuity

Figure 4.6: Mode re�ectivity at discontinuity. (a) Standing wave pattern forming upon
re�ection of the single nanowire mode (λ = 800 nm) at a wire termination. (b) Nonlinear �t-
ting of the intensity linecut recorded 5 nm below the nanowire in glass by means of Eq. (4.20)
with kSPP as obtained according to Sec. 4.3, yielding a re�ection amplitude of Γ = 0.42 and
a re�ection phase of θΓ = 1.39. The nanowire termination is at L = 0 nm.
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Chapter 5

Plasmonic waveguide designs

In open space waves emitted from a localized source propagate in all directions as
spherical waves. Thereby, the waves' intensity falls o� with source distance R propor-
tional to 1

R2 . A waveguide is a structure designed to facilitate guiding of waves, in the
particular case of this work electromagnetic waves in the optical spectrum, and thus
signal transmission from one input port to one or more output ports with a signi�cantly
reduced signal decrease compared to the unbound expansion into three-dimensional
space with the aforementioned inverse square law. Depending on their application
waveguides in the optical regime can be constructed from either dielectrics or noble
metals, thus forming photonic or plasmonic waveguides, respectively.
In photonic-based integrated optics, miniaturization and packaging density are fun-

damentally limited by the wavelength-scale modal pro�les of guided photonic modes
[137]. In contrast, plasmonic modes supported by noble-metal nanostructures of-
fer strong subwavelength con�nement [11, 75, 110] and therefore promise the real-
ization of nanometer-scale integrated optical circuits with well-de�ned functionality
[33, 53, 64, 138�140], and thus are the subject of this work.
A common feature of the plasmonic waveguide con�gurations showcased in Secs. 3.2

and 3.3 is a con�nement of the near-�eld in one direction only, which is perpendicular
to 2D interfaces. Consequently, plasmon propagation can take place in all directions
within these 2D planes, hence naming the structures 2D plasmonic waveguides. Ulti-
mately, we are interested in guiding plasmonic excitations in one direction only. The
fabrication of such one-dimensional (1D) plasmonic waveguides can be categorized into
two routes, namely the bottom-up and the top-down approach.
In the former approach plasmonic waveguides are self-assembled via chemical synthe-

sis, yielding nanowires of cylindrical shape, that are introduced in Sec. 5.1. However,
the envisaged plasmonic nanocircuits require the facility to deliberately build advanced
waveguide networks. Thus, a sophisticated top-down nanofabrication technique, in the
present case focused-ion-beam (FIB) milling, is needed. This allows for arbitrary pat-
terning of a bulk substrate, here monocrystalline gold platelets, into desired networks
of single- or multi-mode waveguides, as presented in Sec. 5.2. The �ndings of this
chapter are of relevance for the design of all subsequently studied functional plasmonic
nano-devices for signal processing.
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5.1 Bottom-up assembled nanowire geometry

Chemically grown noble metal nanowires can readily be described as circular metal
cylinders1, thus representing a simple and analytically treatable 1D waveguide. In the
following, a nanowire of radius R embedded in a homogeneous dielectric of in�nite
extent is considered [see sketch in Fig. 5.1a] [35, 48]. The nanowire is oriented along
the z axis. The derivation of the resulting transcendental equation [Eq. (A.4)] for the
complex propagation constant kSPP of the fundamental TM0 mode, from which λeff

and ldecay can be deduced, is given in Appendix A. Both quantities critically depend
on the nanowire radius R [35, 48], as illustrated in Fig. 5.1b for gold nanowires in air
at a wavelength of λ = 800 nm, con�rming that the mode experiences no cuto� for
decreasing R.
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Figure 5.1: Cylindrical gold nanowire waveguide. (a) Illustration of the nanowire within
the used coordinate system. (b) Mode properties of the 0th-order guided modes for varying
nanowire radius. (c) Analytical electric �eld components of the 0th-order guided mode along
a radial cut of a nanowire (R = 15 nm). The black line denotes the total electric �eld
intensity, the red and blue lines its radial and z-component, respectively. (d) Analytical
full-2D transverse intensity pro�le of the 0th-order guided mode for the same nanowire. All
results are obtained for a vacuum wavelength of 800 nm.

In view of applications in the �eld of optical communication, the propagation of
ultrashort pulses representing bits of information is of fundamental importance and
needs to be characterized in detail. Of particular interest in this context is the speed

1Geometrical aberration, e.g. pentagonal or hexagonal cross sections, have also been observed [141].
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of propagation, i.e., the plasmon group velocity as de�ned in Eq. (3.10). The inset
of Fig. 5.1b shows a strong dependency on the wire geometry, encompassing peculiar
e�ects such as the vanishing group velocity in adiabatic focusing [142, 143]. Similar
behavior is not known for electronic integrated circuits and can lead to characteristic
signal delays in information processing systems.
Experimentally, this behavior was con�rmed within a close collaboration with the

work group of Tobias Brixner2 using far-�eld spectral interferometry [144]. His group
developed a microscope setup [145] capable of fully characterizing both amplitude
and phase of propagating plasmons. This is achieved by interference of the signal
transmitted through a plasmonic waveguide in the form of ultrashort pulses with a
reference pulse. Consequently, for known distance of propagation the group velocity
can be derived. Detailed results of this study can be found in [146].3

The analytically obtained electric �eld components of the fundamental TM0 mode
along a radial cut for an exemplary gold nanowire with radius R = 15 nm are shown
in Fig. 5.1c, together with the full-2D intensity pro�le in Fig. 5.1d. Both demonstrate
the nonlinear intensity decay away from the gold-air boundary. This high intensity
con�nement in two dimensions is accompanied by propagation lengths ldecay [Eq. (3.8)]
that are comparatively smaller than for the plane gold-air interface. While such cylin-
drical waveguides are typically single-mode for small radii, they can support higher
orders of bound modes for larger radii, e.g., due to the appearance of an additional
mode with azimuthal dependence m = 1.
Although self-assembled nanowires are extensively studied, e.g. in [50, 147], their

applicability as building blocks of future plasmonic nanocircuits is practically limited
for several reasons. Firstly, chemical growth usually results in an ensemble of nano-
wires with disperse diameters and lengths, requiring a time-consuming pre-selection of
suitable nanowires. Secondly, structural uncertainties, such as the uncontrolled shape
of the end facets, have a strong in�uence on the far-�eld excitation and emission
properties of the nanowire modes [148�150]. Lastly, cumbersome micro-manipulation
is required for pushing multiple nanowires in place. Nevertheless, simple functional-
ities, such as plasmon routing and logic gates, have successfully been implemented
[56, 69, 71].
This section concludes with a short discussion of the accuracy of FDFD simulations,

as introduced in Sec. 4.3. For the present structure the dominant simulation error is
associated with the ability to resolve the structure's geometrical features as well as the
near-�eld's strong spatial variations. The properties of the 0th-order quasi-TM mode
for a nanowire with 15 nm radius and varying discretization accuracy are shown in
Fig. 5.2a. An edge length of 0.5 nm for the square-grid used for discretization gives
values that are nicely converged to the theoretically expected values, although a rough
agreement is still captured for more coarse discretizations.

2Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074
Würzburg, Germany

3In contrast to the waveguides presented in this thesis, the nanowires in [146] were made from silver.

39



Chapter 5 Plasmonic waveguide designs

This discretization of the circular wire cross section inevitably leads to sharp corners
and unphysically high mode �elds, as can be seen very drastically in Fig. 5.2b showing
the mode pro�le calculated with 5 nm discretization steps. Reducing this by a factor
of ten results in a mode pro�le [see Fig. 5.2c] that nicely compares with the analytical
one depicted in Fig. 5.1d.
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Figure 5.2: Discretization in FDFD simulations. (a) Mode properties of the 0th-order
quasi-TM nanowire mode (R = 15 nm) for varying edge lengths of the square-grid used
for discretization. The analytical values obtained after Eq. (A.4) are indicated by the red
lines. (b) The mode's intensity pro�le calculated using a square-grid discretization of 5 nm
edge length. (c) Same as in (b), but for discretization with edge length of 0.5 nm. All results
are obtained for a wavelength of 800 nm.

In general, such characterizations of numerical errors need to be done whenever a
new geometry is introduced. As in the previously shown example, if an analytical
model is available a comparison with this is the method of choice. However, for the
waveguide structures considered later in this work there is no such exact analytical
model available to compare with. Thus, convergence tests are performed by comparing
results for increasing simulation accuracy in order to establish a good tradeo� between
su�ciently accurate simulation results and manageable simulation requirements, yield-
ing an ideal mesh cell edge length of 0.5 nm.
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5.2 Top-down fabricated waveguide geometries

Due to the aforementioned limitations of bottom-up fabrication, the route followed in
this work concerns studying nanoscale waveguides and resultant functional plasmonic
nanocircuits that eventually can be top-down fabricated from monocrystalline gold
platelets as a substrate. Moreover, the intended optical experiments require struc-
tures that are supported by a transparent substrate, in our case glass, thus lifting the
symmetry of the waveguide surrounding.

5.2.1 Single-mode plasmonic waveguides
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Figure 5.3: Eigenmode of solitary rectangular nanowire. (a) Sketch of a nanowire, de�ned
by its width and height, residing on a glass substrate. (b) Mode pro�le of a gold nanowire
with cross section of 125 × 60 nm2 at vacuum wavelength of 800 nm. Electric �eld lines are
indicated by the thin white lines. (c) Current density distribution in direction of the nanowire
axis for the identical geometry. Magnetic �eld lines are indicated by the thin black lines. (d)
Instantaneous charge distribution along a 2µm long piece of nanowire. The values for λeff

and ldecay are stated.

With this in mind, the simplest top-down fabricated plasmonic waveguide is a soli-
tary nanowire (as is the cylindrical nanowire) with a rectangular cross-sectional ge-
ometry [Fig. 5.3a], representing a 1D insulator-metal-insulator waveguide. The modal
intensity pro�le of an exemplary nanowire made from gold is presented in Fig. 5.3b.
For su�ciently small nanowire dimensions, as is the case in the present work, this
0th-order quasi-TM mode is the only guided mode at the wavelength of consideration.
Thus, in the following it is simply referred to as the fundamental single nanowire
mode. It is noted, that the presence of the high refractive index glass substrate pulls
the near-�elds toward the substrate side, thus highest mode intensity builds up in the
glass directly below the structure. This feature is also present in the corresponding
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current density distribution along the nanowire [Fig. 5.3c], where strongest currents
in gold can be found close to the substrate. As the electromagnetic penetration depth
and the nanowire dimensions are of same order, volume instead of surface currents
are present [151], in clear contrast to classical RF theory. These volume currents are
accompanied by induced magnetic �elds, with their �eld lines closely resembling those
of a classical current-carrying conductor. In a transverse cut through the nanowire net
charges are accumulated, while the charge balancing happens along the propagation
direction, as indicated by the instantaneous charge distribution in Fig. 5.3d.
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Figure 5.4: Mode properties of solitary rectangular Au nanowires. (a) E�ective wavelength,
(b) mode area, (c) fraction of intensity in gold, (d) propagation length, (e) fraction of intensity
in glass, and (f) group velocity for varying nanowire width and height at �xed vacuum
wavelength of 800 nm.

Changing the dimensions of the rectangular nanowire, i.e. its width and height, has a
strong impact on the properties of guided SPPs, similar to the previously shown cylin-
drical wire in Fig. 5.1b. For the guided fundamental modes of single gold nanowires
at a wavelength of 800 nm the trends are shown in Fig. 5.4. Apparently, a change in
either nanowire width or height has similar consequences on the mode's properties. A
decrease in either of the two nanowire dimensions results in a decrease of the e�ective
wavelength [Fig. 5.4a] caused by the increasing mode con�nement. This is evident
from the decreasing mode area [Fig. 5.4b], as calculated according to [126], which
simply means that the mode is more localized around the gold allowing more �elds
to penetrate into the gold [Fig. 5.4c]. A larger intensity inside the metal of course is
accompanied by increased inherent Ohmic losses and a decreasing propagation length,
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5.2 Top-down fabricated waveguide geometries

as shown in Fig. 5.4d. On the other hand, for large wire dimensions the intensity
is less localized and tends to be mostly dragged into the glass substrate [Fig. 5.4e],
explaining why the group velocity approaches the speed of light in glass [Fig. 5.4f].
Due to the �nite penetration depth in gold all above mentioned quantities show a
saturating behavior in the limit of very large wire dimensions.
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Figure 5.5: Mode properties of single Au nanowires in di�erent surroundings. (a) Prop-
agation constant and e�ective wavelength (left abscissae, reddish curves) along with corre-
sponding propagation length (right abscissa, bluish curves) of the fundamental guided SPP
of a single nanowire situated in air (hollow circles), on a glass-air interface (solid rectangles),
and in glass (diamonds). The nanowire height is �xed at 60 nm, the vacuum wavelength
is 800 nm. (b) Representative mode pro�les for the three surroundings (top: air, middle:
glass-air, bottom: glass) for a nanowire of width 125 nm. Electric �eld lines are indicated by
the thin white lines. All mode pro�les are normalized to the same power in the mode.

Both e�ective wavelength and propagation length are sensitive to the surrounding
environment. Figure 5.5 shows both data for nanowires on top of a glass half-space as
well as embedded in homogeneous media representing air and glass, respectively. For
the homogeneous environment the higher refractive index of glass results in consistently
smaller e�ective wavelengths and propagation lengths for all wire widths [Fig. 5.5a].
The inhomogeneous glass-air interface consequently falls in between the homogeneous
cases. The mode pro�les for the three situations are illustrated in Fig. 5.5b. Apart
from the obvious symmetry of the modes in homogeneous environments the stronger
con�nement in case of homogeneous glass compared to air is in agreement with the
respective mode properties.
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5.2.2 Multi-mode plasmonic waveguides

In assemblies of two parallel nanowires separated by a nanoscale dielectric gap, known
as two-wire transmission lines (TWTLs), the individual single nanowire modes couple
via near-�eld interaction. As part of the mode hybridization, which similarly occurs in
strongly coupled nanoparticle dimers [152�154], two fundamental TWTL eigenmodes
arise with distinct mode symmetry, which is determined by the di�erence in phase
between the currents on both nanowires. For the antisymmetric TWTL mode, with its
mode pro�le shown in Fig. 5.6a, the π phase di�erence in the currents [Fig. 5.6b] results
in opposite charges across the nanogap and hence strongly localized �elds [64], which
promise great potential for enhanced nanoscale light-matter interaction [53, 155, 156].
This quasi-TE mode is analogous to the fundamental bound MIM mode studied in
Sec. 3.3.1. Charge balancing again happens along the propagation direction, as shown
in Fig. 5.6c.
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Figure 5.6: TWTL eigenmodes. (a) Antisymmetric mode pro�le for a TWTL with nanowire
cross sections of 125× 60 nm2 and a nanogap size of 50 nm at vacuum wavelength of 800 nm.
The instantaneous charge distribution is symbolized by + and -. Electric �eld lines are
indicated by the thin white lines. (b) Corresponding current density distribution in direction
of the TWTL axis for the identical geometry. Magnetic �eld lines are indicated by the thin
black lines. (c) Instantaneous charge distribution of antisymmetric mode propagating along
a 2µm long piece of TWTL. The values for λeff and ldecay are stated. (d)-(f) Same as (a)-(c),
but for the symmetric TWTL mode. Both mode pro�les in (a) and (d) are normalized to
the same power as those in Fig. 5.5.

The intensity distribution of the symmetric TWTL mode is shown in Fig. 5.6d. Here,
in-phase currents [Fig. 5.6e] lead to a symmetric charge distribution [Fig. 5.6f] and
minimal �elds within the nanogap, while most intensity is guided at the outer surface
towards the substrate. Thus, contrary to the antisymmetric mode it can only weakly
interact with matter in the nanogap. This symmetric mode is quasi-TM polarized,
similar to the fundamental bound IMI mode studied in Sec. 3.3.2.
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The appearance of the two aforementioned TWTL modes on the basis of coupling
between guided single wire modes can be illustrated by a splitting of the wave vector's
real part β at �xed operation wavelength. Figure 5.7 shows β and the propagation
length against the nanogap size. By decreasing the size of the nanogap and thus
enhancing the near-�eld coupling the wave vector di�erence between antisymmetric
and symmetric mode increases considerably. This strong coupling is unique to plas-
monic waveguides, since it is absent for photonic-type modes in both photonic crystal
waveguides and dielectric waveguides. Also, the antisymmetric mode is much more
in�uenced by a change in gap size making it more sensitive to fabrication-induced
uncertainties. For gap sizes exceeding 250 nm the coupling between the two individ-
ual nanowires is negligible, thus the propagation constant as well as the propagation
length reach the values of a solitary single nanowire mode.

+ ++ +

+ + - -

+ + + +

200 nm  

60 nm

x

y

glass

Au

125 nm gap

Figure 5.7: Mode hybridization due to coupling of individual nanowire modes for varying
separation. The nanowire's cross section is 125× 60 nm2, the vacuum wavelength is 800 nm.
Propagation constant, e�ective wavelength, and propagation length of symmetric and anti-
symmetric mode show a gap-size dependent splitting. For a nanogap of 50 nm the intensity
pro�les of symmetric and antisymmetric mode are plotted on their respective propagation
constant levels on the left. The uncoupled solitary nanowire mode is additionally added. All
mode pro�les are normalized to the same power in the mode.

It is noted, that the well-studied eigenmodes of a slit waveguide and a single nanowire
constitute the limiting cases of antisymmetric and symmetric TWTL eigenmodes, re-
spectively, as obvious from comparison of Fig. 5.8 with Fig. 5.6. The bene�t of TWTLs
thus is their ability to support two eigenmodes of di�erent symmetry on the same
structure. This allows for the preparation of arbitrary mode superpositions. From
Chap. 8 onwards this possibility is utilized for advanced functionality in plasmonic
nanocircuity.
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Figure 5.8: Eigenmodes of slit waveguide and single nanowire, constituting the limiting
cases of antisymmetric and symmetric TWTL eigenmodes, as shown in Fig. 5.6. (a) Mode
pro�le of the gap mode of a 50 nm wide nanoslit in gold at vacuum wavelength of 800 nm. The
instantaneous charge distribution is symbolized by + and -. Electric �eld lines are indicated
by the thin white lines. (b) Corresponding current density distribution in direction of the slit
axis for the identical geometry. Magnetic �eld lines are indicated by the thin black lines. (c)
Instantaneous charge distribution of the gap mode along a 2µm long piece of the nanoslit.
The values for λeff and ldecay are stated. (d)-(f) Same as (a)-(c), but for the single nanowire
mode with 300 nm total nanowire width. Both mode pro�les in (a) and (d) are normalized
to the same power as those in Fig. 5.5.
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Chapter 6

Limits of Kirchho�'s laws in

plasmonics

The power of electronic circuit design is based on the fact that complex circuitry can be
created by arranging simple circuit elements into networks. The circuit properties can
then be calculated using Kirchho�'s laws. It would be a great asset if similar design
principles could be used in nanophotonics to create complex nanophotonic circuitry
based on simple building blocks. However, at such short wavelengths the applicability
of Kirchho�'s laws cannot be taken for granted any more.
In this chapter, we investigate the validity of Kirchho�'s laws in plasmonic nanocir-

cuitry by studying a junction of plasmonic TWTLs, which represents a fundamental
building block of nanophotonic circuitry. We identify a new phenomenological param-
eter relating the geometrical parameters of the junction to the wavelength of propaga-
tion. This allows to judge the degree of validity of Kirchho�'s laws. As an example and
illustration of the power of the suggested approach we investigate a system composed
of a TWTL and a nanoantenna as a load. By addition of a parallel stub designed
according to Kirchho�'s laws we achieve maximum signal transfer to the nanoantenna.
Most of this chapter has been published in [157].

6.1 Motivation

The strong subwavelength light con�nement of guided plasmonic modes supported by
noble-metal nanowires [11, 35, 48] is a prerequisite for the realization of optical nanocir-
cuits bridging the size mismatch between nanoelectronics and micrometer-scaled opti-
cal devices. At the core of such optical nanocircuits lies a very small footprint network
of optical transmission lines enabling the controlled distribution and manipulation of
plasmonic excitations. Devices featuring well-de�ned built-in functionalities [75, 76]
such as directional switching [56, 69, 158] or �ltering [33] have been realized. Junctions
of such transmission lines represent one of the fundamental building blocks of any such
network.
The power of electronic circuit design is based on the fact that complex circuitry

can be replaced by simple circuit elements described by a discrete impedance. Circuit
elements can then be arranged into networks, whose functionality can be analyzed
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Chapter 6 Limits of Kirchho�'s laws

based on Kirchho�'s laws. Naturally, some e�orts have also been devoted to the use
of Kirchho�'s laws for the description of circuit elements and circuitry at optical fre-
quencies. The �gurative representation and modularization of nano-optical systems
enabled by the application of equivalent circuit models provides signi�cant insight
into their optical response and can be used to improve the overall performance of plas-
monic nanostructures such as isolated nanospheres [159], dipole [160�165] and more
elaborate [166] nanoantennas, or plasmonic waveguide components [64, 167]. As a well-
established principle of classical transmission line theory, the impedance description
of lumped and distributed circuit elements [162, 168, 169] has also been successfully
applied to improve the impedance matching between a plasmonic waveguide and a
nanoantenna [64, 170] and between waveguide segments of di�erent geometry and/or
orientation [171�174]. However, at the short wavelengths involved and given the �nite
dimensions of nano-optical circuitry the applicability of Kirchho�'s laws cannot be
taken for granted. Yet there is no systematic study as to what extent circuit theory
can be applied to subwavelength plasmonic systems.
In spite of the similarities, the optical (plasmonic) regime shows signi�cant di�er-

ences from the radio frequency (RF) regime. Firstly, at optical frequencies noble
metals do not behave as perfect conductors but, due to the small negative real part
of their permittivity, as plasmonic materials [see Chap. 3]. This holds several impli-
cations, for example the non-negligible skin depth compared to the wire cross section
[see Sec. 5.2.1], which in turn creates volume currents with no counterparts in RF
[175]. Secondly, the lumped element model of electronic circuits and Kirchho�'s laws
can be understood as an approximation of Maxwell's equations in the low-frequency
domain (quasistatic limit), equivalent to assuming the involved wires, when compared
to the circuit's operation wavelength, as quasi 1D in cross section and their junctions
as point-like objects. While in the RF regime with typical ratios of wire dimension to
wavelength on the order of 10−3 (estimated for a common twin lead cable at 100 MHz
frequency) this limit is satis�ed, in the optical regime the approximation has to be
questioned. Even with state-of-the-art fabrication techniques the realizable dimen-
sions (i.e. the nanowire cross section and the inter-wire distance) are in the range of
a few tens of nanometers, thus such realistic nanowires and their junctions are rather
laterally extended objects in a size range comparable to the e�ective wavelength of the
supported eigenmodes. This is re�ected by ratios of wire dimension to wavelength ex-
ceeding 0.1, as further detailed below. Finally, at variance with the purely transverse
guided modes sustained by perfect conductors (which is the case in the RF regime),
plasmonic modes possess a signi�cant longitudinal component that is not taken into
account in the standard impedance description.
In this chapter, the validity of Kirchho�'s circuit laws in the optical regime is in-

vestigated by considering a fundamental, yet simple system, i.e. a junction of TWTLs
supporting an antisymmetric guided plasmonic mode. The �rst part of this chapter
deals with an idealized junction of in�nite TWTLs of uniform cross-sectional geometry
with one input and two outputs. We show by FDTD simulations that clear deviations
occur from the expected behavior derived from Kirchho�'s circuit laws applied to the
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6.2 Idealized TWTL junction

same waveguide junction [Sec. 6.2]. By varying the TWTL's cross-sectional dimen-
sions, the deviation from Kirchho� theory can clearly be correlated with an increasing
�nite extension of the structure, as observed in Sec. 6.3. Despite the signi�cant de-
viations, which cannot be completely neglected even for nanowire dimensions at the
limit of current microfabrication techniques, we show that Kirchho�'s laws can still
be used as a qualitative guideline to compose nano-optical circuitry that is then sub-
ject to further (numerical) optimization. The second part of this chapter highlights
additional deviations due to mutual coupling of discrete circuit components located in
close proximity. It is based on the example of a system composed of a TWTL and a
nanoantenna as the load. By addition of a parallel stub [Sec. 6.4] designed according
to Kirchho�'s laws we realize maximum transfer of signal between circuit elements
in Sec. 6.5, a necessary prerequisite for the design of e�cient devices, and use this
example to further test the validity of the lumped-element impedance approach.

6.2 Idealized TWTL junction

A classical TWTL consists of a pair of parallel conducting wires separated by a uni-
form distance. Wire geometry and separation determine its characteristic impedance
Z0. It is a fact of classical transmission line theory that the parallel connection of
two such idealized in�nitely long TWTLs [as shown in Fig. 6.1a] results in an equal
splitting of any input current. This is an implication of the node analysis by means
of Kirchho�'s circuit laws. To be more speci�c, if two impedances are connected in
parallel, the voltage drop across both of them is identical, thus according to Ohm's law
the current entering the junction is split inversely proportional to their impedances.
Therefore, for two identical parallel impedances the current splits equally. The optical
analogue, the simpli�ed plasmonic TWTL junction geometry studied in the following,
is sketched in Fig. 6.1b. An input TWTL [marked as s in Fig. 6.1b] of characteristic
impedance Z0 branches into two perpendicularly oriented TWTLs [marked as t and u
in Fig. 6.1b] of identical cross section extending to in�nity. For reasons of simplicity
the investigated TWTL structure is placed in vacuum to ensure that both the vertical
and the horizontal TWTLs support the same propagating mode with identical Z0 and
to exclude any parasitic e�ects of a substrate. In the simulations presented here, two
nanowires of squared cross section consisting of gold and separated by a small gap
build up the TWTL. In a �rst step, we calculate the mode pro�le of the antisymmet-
ric TWTL eigenmode at a wavelength λ = 830 nm [Fig. 6.1b, inset] for a given wire
cross section by means of a full-vectorial eigenmode solver [see Sec. 4.3]. Afterwards,
full-3D FDTD simulations [see Sec. 4.1] are carried out at the same wavelength excit-
ing the structure from the input TWTL side (s) by direct injection of the previously
calculated mode. In�nitely long TWTLs are mimicked in the simulations by extending
them into the perfectly matched layer boundaries surrounding the simulation volume,
thus avoiding any back-re�ection to the junction region. The whole TWTL junction
region is covered by a uniform mesh of 1× 1× 1 nm3 cell size.
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Chapter 6 Limits of Kirchho�'s laws
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Figure 6.1: Classical vs. plasmonic transmission lines. (a) Two classical TWTLs of identical
characteristic impedance Z0 connected in parallel resulting in an equal splitting of electrical
currents at the point junction. (b) Equivalent junction of two plasmonic TWTLs, an idealized
building block of optical nanocircuits. Inset: The guided antisymmetric mode (electric �eld
intensity |E|2 at free-space wavelength λ = 830 nm) is directly launched from the left and
propagates along the nano-sized TWTL, where the mode intensity is split at the parallel
junction. Figure taken from [157].

Figures 6.2a-d show simulation results for a small-sized TWTL composed of nano-
wires with a 30 × 30 nm2 cross section separated by a 10 nm gap. When exciting the
TWTL's antisymmetric eigenmode [see Fig. 6.2a, inset] in a single in�nite TWTL,
the intensity is exponentially damped along the propagation direction [Fig. 6.2a]. As
the parallel junction is formed by introducing the upward TWTL (u) [Fig. 6.2b] the
intensity transmitted through the junction region into the horizontal output TWTL
(t) is signi�cantly reduced, in favor of both mode intensity propagating in the upward
direction and mode intensity being re�ected due to the impedance mismatch at the
junction. The latter results in the formation of a standing wave intensity pattern
on the input side, as obvious from Fig. 6.2c, where we plot the intensity di�erence
between the simulation results of Fig. 6.2b and those of Fig. 6.2a.
We introduce two �gures of merit to analyze the junction and quantify the di�er-

ence between the plasmonic TWTL junctions and their RF counterparts, namely the
power splitting ratio and the (complex) re�ection coe�cient Γ = |Γ|eiθΓ , where |Γ|
and θΓ denote the re�ection amplitude and phase, respectively. Firstly, the power
splitting ratio is obtained by applying a mode overlap analysis [in accordance with
Sec. 4.4.3] using 2D near-�eld data in cuts through the horizontal (vertical) output
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Figure 6.2: Parallel junction of plasmonic TWTLs. (a) Optical near-�eld intensity distri-
bution in a cut through the gap centered between small-sized nanowires (width = height =
30 nm, gap = 10 nm) of an unconnected TWTL. Inset: modal pro�le of the guided antisym-
metric mode with most of its intensity localized in the nanowire gap. The dashed white line
indicates the plane used to record the near-�eld intensity cut. (b) Same as in (a) but for a
parallel junction of TWTLs. (c) Intensity di�erence plot obtained from the maps with (b)
and without (a) the upward pointing semi-in�nite TWTL. (d) Standing wave pattern forming
along the TWTL due to partial re�ection of the antisymmetric mode at the TWTL junction
used to extract the re�ection coe�cient according to the method described in Sec. 4.4.4. The
theoretically expected behavior (red dashed line) corresponding to |Γ| = 1/3 and θΓ = π is
added as a guide for the eye. The intensity distribution (black solid line) is recorded mid-
height in the gap center of the horizontal TWTL. (e)-(h) The same as (a)-(d), but for a
parallel junction of wider TWTLs (width = height = 120 nm, gap = 10 nm). Figure taken
from [157].
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Chapter 6 Limits of Kirchho�'s laws

TWTL at equal distances from the junction center to determine the remaining power
in the antisymmetric mode in the horizontal (vertical) output. With this, the power
splitting ratio is determined as the ratio of powers in the antisymmetric mode along
the horizontal and the vertical output TWTL, respectively. As a measure for the de-
viations from the RF behavior we exploit the fact that in classical transmission line
theory Kirchho�'s circuit laws together with Ohm's law predict an equal splitting of
power at a parallel junction of two identical semi-in�nite TWTLs.
Secondly, further insight into the behavior of the junction region is obtained by

determining Γ at the junction position as a direct measure of the degree of impedance
matching. The input impedance Ztot of a parallel junction of horizontal and vertical
semi-in�nite output TWTLs with the same Z0 is Ztot = Z0/2, which is not impedance
matched to the characteristic impedance of the input TWTL. Consequently, the guided
plasmon mode is partially re�ected as it reaches the junction, which according to the
de�nition of Γ,

Γ =
Ztot − Z0

Ztot + Z0

, (6.1)

results in a theoretically expected re�ection amplitude |Γ| = 1/3 and a phase accu-
mulation θΓ = π. In numerical simulations, Γ is obtained by �tting Eq. (4.20) to the
total intensity Itotal of the forming standing wave pattern along a linecut centered in
the gap of the input TWTL.
For the geometry studied in Figs. 6.2a-d one observes that the intensity in the

antisymmetric mode entering the horizontal output is only 10% larger than the inten-
sity directed into the vertical output. Similarly, as shown in Fig. 6.2d, the re�ection
amplitude Γ = 0.321 and phase θΓ = 3.069 obtained by �tting of Eq. (4.20) to the
standing wave pattern also reveal very small di�erences from transmission line theory
predictions of 3.7% and 2.3%, respectively. In the regime investigated in Figs. 6.2a-d,
therefore, Kirchho�'s laws respresent a valuable asset, providing accurate predictions
for the response of the plasmonic circuit.

6.3 Dimension dependent deviations

The in�uence of the structure size on the observed deviations from RF theory is
demonstrated in Figs. 6.2e-h, showing equivalent simulation results for a wider TWTL
with nanowire cross section of 120× 120 nm2 and a gap of 10 nm. Here, the intensity
distribution in the gap region becomes notably asymmetric, as seen in Figs. 6.2f,g,
leading to the presence of anomalous �eld gradients at the junction, which deviate
markedly from the expected transversal wavefronts of the guided modes. The resulting
deviation from the RF-like behavior is manifested in a very poor power splitting ratio
of 5.51 and calculated re�ection amplitude Γ = 0.094 and phase θΓ = 3.081 [Fig. 6.2h].
To investigate in more detail the in�uence of the lateral dimensions of the plasmonic
waveguide on the degree of agreement with RF theory, we systematically varied the
nanowire width [Figs. 6.3a-c] and the gap distance [Figs. 6.3d-f], separately.
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6.3 Dimension dependent deviations

Figure 6.3: Variation of plasmonic TWTL dimensions. (a) Power splitting ratio, (b) re�ec-
tion amplitude (black curve) and phase (red curve), and (c) λe� (black curve) and κ (red
curve) as a function of nanowire width. The gap is kept constant at 10 nm. (d) Power split-
ting ratio, (e) re�ection amplitude (black curve) and phase (red curve), and (f) λe� (black
curve) and κ (red curve) as a function of the gap size. The nanowire width and the height
are kept constant at 30 nm. Figure taken from [157].

On the one side, as the width and the height of the nanowires with square cross sec-
tion are simultaneously increased (with a �xed gap of 10 nm) the power splitting ratio
[Fig. 6.3a] gradually increases and deviates more from the expected ratio of 1. Thus,
especially for wider wires, the guided mode tends to propagate mostly horizontally,
whereas only little intensity is re-directed to the upward oriented TWTL. Similarly,
the re�ection amplitude displayed in Fig. 6.3b (black curve) drastically decreases for
increasing wire dimensions, again deviating more and more from the expected value
of |Γ| = 1/3. It is noted that the re�ection phase [Fig. 6.3b, red curve] in contrast
does not show such a monotone behavior, but still shows a strong deviation from the
expected value of θΓ = π beyond a wire width of 140 nm. The observed increase in
deviations from RF theory derived from the two �gures of merit can be tentatively
correlated to a phenomenological characteristic TWTL dimension κ, which is de�ned
as the ratio of the largest TWTL physical dimension, which can be either the nanowire
width or the gap distance, and the e�ective wavelength λe� of the antisymmetric mode
supported by the speci�c TWTL cross section. Originally, the lumped circuit model
and consequently Kirchho�'s circuit laws were derived under the assumption of very
small characteristic circuit cross sections compared to the circuit's operation wave-

53



Chapter 6 Limits of Kirchho�'s laws

length, i.e. κ� 1. Figure 6.3c shows the evolution of λe� (black curve) as a function
of the nanowire width, demonstrating an initial increase of λe� followed by a saturation
behavior for wires exceeding about 100 nm in width. With this the evolution of the
phenomenological parameter κ is derived, showing a steady increase as the nanowire
width grows and reaches values of almost 0.5 for the widest wires studied [Fig. 6.3c,
red curve]. Here, the validity of the assumption of κ � 1 clearly breaks down, an
occurrence that correlates with the strongly deviating behavior of TWTL junctions
composed of extended nanowires.
On the other side, as the gap is increased (with a �xed cross section of 30× 30 nm2)

the power splitting ratio [Fig. 6.3d] �rst decreases reaching a minimum (and thus best
agreement with theory) for a gap of 20 nm, then it starts increasing again for larger
gaps. However, even for the largest investigated gap of 100 nm the deviation remains
rather small (less than 20 % increase). Similarly, the re�ection amplitude [Fig. 6.3e,
black curve] shows best agreement with the expected value of |Γ| = 1/3 for a gap
width of 20 nm. This behavior can be again phenomenologically correlated with the
relative characteristic TWTL dimension κ. As shown in Fig. 6.3f, λe� increases with
gap size, however the TWTL's largest physical dimension is not changing up to a gap
of 30 nm, since only then the gap distance and the nanowire width become equal in
size. Therefore, κ is not monotonically increasing, but instead shows a minimum for
30 nm gap sizes. Also, in the presented gap scan κ has overall smaller values compared
to the nanowire width scan [Fig. 6.3c], supporting the generally better agreement with
the lumped circuit model.

6.4 Finite stub tuning

Based on this analysis, and thanks to the improved understanding gained on the
reasons and the relevance of the deviations from Kirchho�'s laws, we can infer that
it is possible with reasonable accuracy to extend the range of validity of Kirchho�'s
analysis to plasmonic waveguide networks in the optical regime provided that κ . 0.1.1

In this case the lumped circuit approximation commonly used in the RF regime can
be applied on safe grounds. This is highly bene�cial because it allows one to simplify
complex relevant problems such as the optimization of power transfer in a system
composed of a TWTL and a nanoantenna as the load by addition of a suitable parallel-
connected tuning element. As an intermediate step toward this goal, we �rst apply the
circuit description to a system composed of an in�nite TWTL and a parallel-connected
�nite TWTL section of length L (usually referred to as a `stub' [176, 177]), as sketched
in Fig. 6.4a. For this geometry one expects re�ection at the stub termination and thus
resonances building up within the stub. In this study, in order to further corroborate
the role played by the phenomenological parameter κ, the geometrical cross section

1It should be noted, though, that the numerical case study at hand of course cannot be taken as
a general proof for the validity of the κ-criterion. Nevertheless, we believe that similar threshold
values will be found in di�erent systems as well.

54



6.4 Finite stub tuning

Figure 6.4: Finite stub re�ectivity tuning. (a) Sketch of the investigated system featuring
an in�nite TWTL connected in parallel with a �nite stub of length L. The displayed antisym-
metric mode is directly launched from the left and propagates along the nano-sized TWTL.
(b) The mode's standing wave pattern along a cut at midheight through the TWTL for high
impedance stub (L = 120 nm, top) and low impedance stub (L = 180 nm, bottom). (c) Re-
�ection amplitude (top) and phase (bottom) for systems of varying stub length L. The red
dots are obtained by �tting of FDTD simulation data with the model described in Eq. (4.20),
while the blue solid lines are obtained by the analytical model [see Appendix B.1]. Figure
taken from [157].

of the TWTL is chosen as in Figs. 6.2a-d, i.e. the individual nanowires have a cross
section of 30 × 30 nm2 and a gap of 10 nm. Thus, κ takes a value of 0.036 and the
geometry is expected to show good agreement with the theory based on Kircho�'s
laws. Figure 6.4b shows the simulated near-�eld intensity distribution within the
in�nite TWTL when connected in parallel with a high impedance stub (L = 120 nm,
top) and a low impedance stub (L = 180 nm, bottom). The high re�ectivity observed
for the case of the low impedance stub is a direct consequence of the destructive
interference along the output TWTL. Figure 6.4c shows the re�ection amplitude and
phase for varying stub length L as measured at the stub connection position obtained
by full-3D FDTD simulations (red dots). As expected, the re�ection amplitude can be
tuned over a wide range of values by adjusting L. Note that nearly full and nearly zero
re�ectivity can be obtained. Moreover, the observed modulation period matches λe�/2
of the antisymmetric waveguide mode due to the formation of resonances in the stub.
When compared to the analytical circuit model [see Appendix B.1], the features are
qualitatively reproduced fairly well, apart from residual deviations for speci�c stub
lengths, especially around re�ection maxima and minima corresponding to low and
high impedance stubs, respectively.
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6.5 Antenna-stub system

Based on the demonstrated ability of tuning the re�ectivity by a stub, we now incor-
porate a parallel stub into a prototypical nanocircuit relevant for applications. In this
nanocircuit [shown in Fig. 6.5a] the concept of impedance matching is applied by con-
necting a de�ned stub of length L in parallel at a distance d from a load nanoantenna
of length lant in order to ful�ll the condition of minimizing the system's re�ectivity
or achieve maximum signal transfer to the nanoantenna. Note that with complex
impedances minimum voltage re�ectivity and maximum power transfer are two di�er-
ent conditions [64, 178]. The equivalent circuit representation is detailed in the inset
of Fig. 6.5a. The complexity of such a system, together with the potentially large
scattering background that might be present in the surroundings of the circuit due
to the large radiation resistance of the antenna, opens up further relevant issues. In
particular, this system is the perfect candidate to check for spurious deviations from
the simple theory because of near-�eld coupling and/or radiative cross-talk between
the lumped elements (here, the antenna and the stub) not included in the RF model.
An exhaustive study of the practically unlimited number of possible nanocircuits with
di�erent combinations of L, d, and lant is beyond the scope of this work.
Instead, we concentrate on two speci�c loading conditions, namely an open-end

termination (i.e. lant = 70 nm) and a resonant nanoantenna (i.e. lant = 230 nm). As
in the classical transmission line theory, the open end termination of the plasmonic
TWTL under investigation results in a nearly perfect re�ectivity (|Γ| = 97.4 %), while
the termination with a resonant nanoantenna leads to a minimum in re�ectivity
(|Γ| = 37.6 %) [see Appendix B.2, Fig. B.1]. Figures 6.5b,c show plots of the simu-
lated re�ection amplitude and phase for varying stub length L and �xed stub distance
d = 200 nm (red dots) for open end and resonant nanoantenna termination, respec-
tively. Simulation data for a third, non-resonant antenna of length lant = 290 nm with
an intermediate re�ection amplitude together with additional distances d in the range
from 50 nm to 2µm for each antenna length are presented in Figs. B.2, B.3, and B.4
[Appendix B.3]. When compared to the analytical circuit model (blue solid line) some
clear deviations are identi�ed. While this disagreement can again be in part attributed
to the small deviations already observed before for the junction of in�nite TWTLs, the
newly introduced coupling between nearby elements in this system, through scattered
�elds / near-�eld coupling or through guided �elds bouncing back and forth between
the stub and the load, may lead to additional deviations. From all the presented data
one can draw some tentative conclusions concerning the degree of agreement between
the simulations and the model. Generally, smaller distances d between the stub and
the load result in larger deviations [see e.g. Fig. B.2]. On the one side, the fact that the
main deviations are observed if d gets smaller than about 500 nm is consistent with a
mode propagation length of about 900 nm for the guided mode, since coupling e�ects
through guided modes in the antenna-stub cavity become less important as the round
trip distance gets longer than the propagation length. On the other side, if scattered
�elds would be the main source of coupling instead of guided modes, we should see
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Figure 6.5: Tuning the re�ectivity in a nanoantenna-terminated TWTL by a parallel stub.
(a) Sketch of the investigated system featuring a �nite TWTL terminated by an optical
antenna of length lant connected in parallel with a �nite stub of length L at a distance d
from the antenna. The displayed antisymmetric mode is directly launched from the left
and propagates along the nano-sized TWTL. Inset: Equivalent circuit representation of the
system. (b) Re�ection amplitude (top) and phase (bottom) for varying stub length L in a
system with open end termination (lant = 70 nm) and d = 200 nm. (b) Re�ection amplitude
(top) and phase (bottom) for varying stub length L in a system with resonant antenna
termination (lant = 230 nm) and d = 200 nm. The red dots are obtained by �tting of FDTD
simulation data with the model described in Eq. (4.20), while the blue solid lines are obtained
by the analytical model [Appendix B.3]. Figure taken from [157].
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larger disagreement for antenna terminations with large radiation e�ciencies, which is
not the case. Instead, the system terminated by the resonant load antenna [Figs. 6.5c
and B.3] seems to show the best agreement, even for a 100 nm distance. Therefore,
it is tentatively suggested that the guided �elds bouncing back and forth between
the stub and the load are responsible for the observed deviations since they cause
an increased coupling, resulting in larger disagreement for elements that have a high
re�ectivity for the guided mode such as the open end termination [Figs. 6.5b and B.2].
Consistently with its intermediate re�ectivity value, the non-resonant antenna [lant =
290 nm, Fig. B.4] shows a degree of agreement which is in between the open end and
the resonant antenna. Lastly, the deviation reaches a maximum when the re�ectivity
amplitude of the overall system is minimum, meaning that the energy is e�ectively
�stored� in the cavity formed between the stub and the load. To consider these e�ects
in the lumped circuit model, one should add a dependent current source describing the
coupling between the individual elements [159], with signi�cant additional complexity.
Despite all the mentioned deviations, the lumped circuit model still can serve as a

rough guideline to compose complex nano-optical circuitry by taking advantage of the
possibility inherent to an analytical model, i.e. the rapid scanning of multi-dimensional
parameter spaces for optimization purposes. A limited set of time-consuming numer-
ical simulations can subsequently be performed to �ne-tune these pre-optimized pa-
rameters to further take into account additional coupling e�ects.

6.6 Conclusion

In conclusion, by investigating a junction of plasmonic TWTLs we obtain insight into
the reasons for and the strength of the deviations from Kirchho�'s laws at the junction
of plasmonic waveguides. We �nd that the validity of Kirchho�'s laws can tentatively
be checked via the value of a phenomenological parameter κ relating the geometrical
parameters of the transmission line with the plasmon's e�ective wavelength. In the
regime of small κ the junction behaves according to Kirchho�'s theory. Beyond such
regime, for large values of κ, increasing deviations occur and the equivalent impedance
description can only provide rough, but nevertheless useful, guidelines for the design
of more complex plasmonic circuitry. Moreover, we investigate the in�uence of the cou-
pling between individual plasmonic elements with a system composed of a TWTL and
a nanoantenna as a load by addition of a suitable stub connected in parallel and give
some tentative explanations for the di�erent degrees of agreement observed for various
structure parameters. Experimentally, the accurate and reproducible fabrication of the
presented nano-optical circuits, however, is very challenging, not only because of the
narrow gap sizes, which can be produced with some e�ort from high-quality substrates,
e.g. monocrystalline gold platelets, by state-of-the-art nanofabrication techniques such
as milling with helium ions, but even more since the devices are not planar but instead
real three-dimensional. Therefore, with experimental implementations in mind we now
turn to devices that can be fabricated by a more straight forward approach.
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Chapter 7

Transmission of plasmons through

a nanowire

Plasmonics is often considered to be not very precise since the reproducibility of fabri-
cated nanostructures is limited. Indeed, even the simple problem of plasmon transmis-
sion through a nanowire has caused some discussion in the literature. On the other
hand, exact quantitative understanding of this problem is of importance for designing
and creating functional devices in the �eld of plasmonic nanocircuitry, but also in
related �elds, such as surface metamaterials, also dealing with plasmonic nanowires.
In this chapter, a systematic numerical study of �nite-length nanowires reveals so far

unnoticed propagation channels that noticeably modulate the wire transmission signals
for single-mode plasmon excitation. By incorporating these additional channels into
a Fabry-Pérot model, a fully analytical, quantitatively correct description of these
observations is obtained. The results of this chapter have been published in [179].
Most parts of text and graphics are taken one-to-one from this publication.

7.1 Motivation

High-precision experiments of simple physical systems often reveal subtle but impor-
tant e�ects or can be used to test theoretical descriptions of experimental results.
Validated theoretical descriptions can then be used with con�dence to model more
complex systems. Yet, systematic high-precision experiments of light transmission
through nanowires to date hardly exist. The characterization of such waveguides of-
ten relies on leakage radiation [180] or mode imaging with �uorophores [71, 181], which
both lead to increased damping during ongoing propagation and may be a�ected by
photobleaching. Coherent white-light transmission spectra of single wires can also be
used to analyze their transmission [147]. However, this method requires knowledge
of the waveguide's wavelength-dependent optical functions [97] in a broad wavelength
range as well as the analysis of wavelength-dependent incoupling and outcoupling e�-
ciencies [182]. As a result, the transmission e�ciency of light through such nanowires
in many experiments signi�cantly deviates from theoretical expectations based on bulk
dielectric constants [183]. Up to now, the origin of such deviations remains unknown
since the structural uncertainties of bottom-up and top-down fabricated nanowires are
not small enough to allow for conclusive analyzes.
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Chapter 7 Transmission of plasmons through a nanowire

This chapter presents a systematic study of monochromatic light transmission
through gold nanowires of equal cross section but variable length. By varying the
length and keeping the operation wavelength �xed, complexity is avoided since each
unknown, like the in- and outcoupling e�ciency, can be described by a single (com-
plex) number. Section 7.2 brie�y introduces both the sample fabrication and the
experimental setup, and thus provides the basis for the accurate analytical modeling
in Sec. 7.3. We demonstrate by simulations and experiments [Sec. 7.4] that a quan-
titatively correct description of the length-dependent nanowire transmission can be
obtained by also taking into account free-space propagating modes launched by scat-
tering of the excitation spot at the wire input in addition to Fabry-Pérot-type internal
plasmon resonances. These free-space propagating modes interact with the outcou-
pling end of the wire and beat with the regularly emitted photons originating from
the wire plasmon's radiative decay. This leads to signi�cant amplitude modulations
of the Fabry-Pérot transmission resonances. The quantitative agreement between our
fully analytical model, numerical simulations, and measurements validates our model
and yields values of propagation parameters that are compatible with bulk dielectric
constants and for which remaining sources of uncertainties are clearly identi�ed.

7.2 Sample fabrication and experimental setup

The experimental observation and distinction of the di�erent propagation channels
sets demanding requirements on the sample's geometrical precision, as is detailed
in Sec. 7.4. Therefore, a state-of-the-art combined bottom-up and top-down nano-
fabrication strategy is applied. In a �rst bottom-up fabrication step laterally extended,
yet thin monocrystalline gold �lms, henceforth referred to as gold platelets, are created
by means of wet chemical synthesis from a gold salt solution [88, 89]. Their unique
properties (e.g. ultra-smooth surfaces) render them ideal substrates for nanotechnology
[184�189]. In a subsequent top-down fabrication step high energetic gallium ions
focused to positions controlled by means of electron optics are capable of sputtering
gold atoms from the surface layers of the monocrystalline gold platelet by transferring
part of their momentum and kinetic energy and thus overcoming the binding energy
of gold, as sketched in Fig. 7.1a.
Focused-ion beam milling allows for the deliberate design of almost arbitrarily so-

phisticated devices beyond the simple nanowires studied here [see e.g. the subsequent
chapters]. Undesired e�ects of this nanopatterning include ion implantation into the
substrate upon impact (instead of backscattering into the vacuum chamber), amor-
phization of the remaining gold structure, as well as a partial redeposition of ablated
gold atoms in proximity to the patterning position. Throughout this work, both sam-
ple fabrication (FIB) and characterization (scanning electron microscopy, SEM) were
performed by a dual-beam system within the same vacuum chamber (Helios Nanolab
Dualbeam, FEI Company) operated by co-workers. To provide optimal conditions for
focused-ion beam milling (i.e. no ion beam distortion) the sample was fabricated on a
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7.2 Sample fabrication and experimental setup

conductive substrate (silicon) and then transferred to a clean and �at glass substrate
(no adhesion layers) by means of a PMMA �lm, as depicted in Fig. 7.1b. Transfer
to the glass substrate avoids the presence of a glass ridge below the nanowires and
excludes fabrication-induced surface roughness as well as Ga+-ion impurities within
the milling area [190].
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Figure 7.1: (a) Illustration of beam-sample interactions in FIB as discussed in the text. (b)
Illustration of the transfer protocol. (c-e) SEM images of the sample showing (c) the full
platelet including the focused-ion beam milled area of the platelet with the array of single
nanowires of random wire lengths as well as (d,e) two closeups at di�erent zoom levels. (f)
Atomic force microscopy (AFM) line pro�le along one wire's cross section. Panels c-f taken
from [179]. © 2017 American Chemical Society.

Aiming for a high-precision experiment that can reveal the e�ects of all relevant
propagation channels on the overall apparent wire transmission, we prepared a sample
consisting of 306 gold nanowires ranging from 1940 nm to 8040 nm in nominal length
with a length increment of 20 nm [Fig. 7.1c] from a single monocrystalline gold platelet.
Therefore, structural detail and plasmon propagation are not limited by the grain
boundaries of multi-crystalline gold �lms [88, 147] ensuring uniform milling conditions.
For such high-precision fabrication, di�erences between the structuring parameters and
the exact �nal results depend on the �ne adjustments of the whole setup. To ensure
these di�erences are identical for all structures, we use a single patterning step to
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Chapter 7 Transmission of plasmons through a nanowire

create the whole array. The wire lengths were distributed randomly over the array to
avoid artifacts due to changes of fabrication or measurement conditions. All resulting
wires are of uniform quality, showing no observable di�erences in SEM images apart
from the wire length. Simulations show that the remaining gold frames [Fig. 7.1d]
around the wires do not a�ect the in- or outcoupled intensity.
To experimentally characterize the transmission properties of nanowires of di�erent

lengths, we use a home-built inverted microscope setup, as schematically sketched
in Fig. 7.2. Nanofabricated gold nanowires supported by a cover glass are mounted
above an oil immersion microscope objective (Leica, 1.30 NA, ∞, PL Fluotar 100×),
which is used to focus a laser beam (λ = 800 nm, 12 nm FWHM spectral line width,
80 MHz repetition rate, 50 nW average power measured in front of the objective, NKT
Photonics, SuperK Power with SpectraK AOTF, masterseed pulse duration 5 ps, after
AOTF about 300 ps) via a λ/2-plate (Foctec, AWP210H NIR) to a di�raction-limited
(390 nm diameter) spot at the air�glass interface that is linearly polarized along the
wire axis.

Figure 7.2: Sketch of
the experimental setup
used for far-�eld opti-
cal characterization. De-
tails are given in the
text.

The same objective is used to image the emitted and re�ected light onto a CCD
camera (Andor, DV887AC-FI EMCCD) via a 50/50 nonpolarizing beamsplitter (Thor-
labs, CM1-BS013). In order to avoid saturation of the CCD, the strong re�ection of
the excitation spot is suppressed by a small beam block (OD 2) introduced in an in-
termediate image plane. The exact position of the excitation spot with respect to the
wire end can be adjusted with nanometer precision by moving the sample using a piezo
translation stage (Physik Instrumente, P-527) and was optimized to obtain maximum
signal intensity at the wire end. In simulations, a post-processing of near-�eld data
according to the experimental con�guration is required [as detailed in Sec. 4.4.2] to
yield images equivalent to the experimental images recorded by the microscope.
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7.3 Analytical model

7.3 Analytical model

The principle of the experiment and all light propagation channels are sketched in
Fig. 7.3a, showing the time evolution of the optical near-�elds upon nanowire excita-
tion as obtained from numerical simulations. The geometry was chosen to match high
resolution SEM and AFM images and includes, for example, the soft edges [Fig. 7.1e,f].
Optical properties of the gold are modeled according to Sec. 3.1, while the refractive
index of the glass was set to n = 1.46.
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Figure 7.3: (a) Sketch of free-space and guided �elds involved in the excitation of gold
nanowires by a focused laser pulse as obtained from FDTD simulations. Progress in time is
illustrated by �eld intensity distributions (logarithmic scale) in a plane through the nanowire
long axis perpendicular to the substrate at time steps t0, t1, and t2. In contrast to the actual
experiment a longer wire of 20µm length with a shorter pulse of only 5 fs duration is used
in the simulation to improve the discrimination of the di�erent contributions. (1) Focused
Gaussian source illumination from the glass half-space; (2) scattered and transmitted light
above the glass surface leading to (3) refracted waves at the air�glass interface; (4) scattered
and re�ected light below the air�glass interface; (5) launched plasmon pulse at time t0; (2')-
(5') as (2)-(5) but at later time t1. (6) plasmon pulse at time t2; light emission from the
wire end (7) above and (8) below the air�glass interface; (9) scattered and re�ected light
below the air�glass interface at time t2 leading to additional scattered �elds at the wire
end. The (green) lines below the glass surface symbolize the limited accepting angle of the
objective with NA = 1.3. (b) Dispersion relation obtained from FDFD simulations using the
experimentally realized nanowire dimensions for the symmetric (black) and antisymmetric
(red) plasmonic mode as well as the light lines in glass (blue, dashed) and air (green, dotted).
(c) Transverse pro�le of the nanowire's symmetric mode at vacuum wavelength λ = 800 nm.
Electric �eld lines are indicated by the thin black lines.

The tightly focused laser at the incoupling end of the nanowire [Fig. 7.3a(1)] launches
a plasmon with about 30% e�ciency [Fig. 7.3a(5)] that propagates toward the distal
end [Fig. 7.3a(6)], where it is partly radiated into the surrounding media [Fig. 7.3a(7)
and (8)], while about 40% of the plasmon �eld is re�ected and propagates back along
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Chapter 7 Transmission of plasmons through a nanowire

the wire, leading to Fabry-Pérot-type standing waves [191, 192]. Additional propagat-
ing �elds - in the following referred to as air-wave and glass-wave [Fig. 7.3a(2) and (4)]
- are launched by the partial scattering of the excitation source at the incoupling end.
While about 30% of the laser energy is coupled into the nanowire, about 50% of the
energy is scattered into the glass half-space, leading to a spherical wave originating
from the incoupling end of the wire. The remaining 20% are transmitted into the air
half-space, where they also evolve as spherical waves.
Another contribution to propagating waves in the glass half-space arises from light

refracted at the air�glass interface [Fig. 7.3a(3)], which propagates into the glass as
a plane wave under an angle of about 43◦ (critical angle for total internal re�ection)
and thus within the acceptance angle of the objective. This wave leads to a distinct
pattern in the wire far-�eld images that vanishes for low-NA imaging. The air-wave
and the glass-wave originating from the excitation position are not directly detected
by the camera for di�erent reasons. While the air-wave propagates away from the
collecting objective lens above the interface, the glass-wave is strongly suppressed by
the beam block at the intermediate image plane. However, as we detail below, the
interaction of these propagating waves of di�erent e�ective wavelengths with the distal
wire end leads to interference and beating e�ects in the light intensity emitted by the
wire ends which is detected by the camera.
From the simulated dispersion relation [Fig. 7.3b], as obtained by the eigenmode

solver [Sec. 4.3], two guided plasmonic modes of symmetric and antisymmetric nature
can be identi�ed for the considered nanowire dimensions. However, at the chosen
vacuum wavelength (λ = 800 nm) the propagation along the nanowire is single-mode,
since only the dispersion relation of the symmetric mode [see Fig. 7.3c for the associ-
ated transverse mode pro�le] remains below both air and glass light line. This also
con�rms that the corresponding plasmon wave couples to the far �eld only at the wire
terminations.
Based on Fabry-Pérot theory, the �eld amplitude ψT that is transmitted by a wave-

guide of length L via one single eigenmode and emitted into the detection path can
be expressed as [192]

ψT =
ψ0 η t e

−(α+iβ)L

1− (Γe−(α+iβ)L)
2 . (7.1)

Here, ψ0 is the amplitude of the Gaussian excitation beam, η is a (complex valued)
e�ciency factor comprising the combined e�ects of incoupling into the waveguide
and detecting the emitted signal, and Γ = |Γ|eiθΓ and t are the complex plasmon
re�ection and transmission coe�cients, respectively. These coe�cients are assumed to
be identical for both wire terminations. Furthermore, the mode's attenuation constant
α and its wave vector β are related to the mode's intensity decay length ldecay and its
e�ective wavelength λe� via Eqs. (3.8) and (3.9), respectively. Both air-wave and glass-
wave can be approximated by propagating spherical waves. The respective amplitudes
scattered from the wire far end at a distance L away from the incoupling end toward
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the detector can be expressed as

ψmedium = ψ0ηmedium

e−iβmediumL

L
, (7.2)

where βmedium = 2π/λmedium is the wave vector and λmedium is the wavelength of light
in the respective medium, i.e., air and glass. The complex quantity ηmedium denotes a
combined e�ciency factor accounting for the e�ciency of scattering of the excitation
�eld ψ0 at the incoupling wire end, thus generating the spherical wave in the respective
medium, as well as for the e�ciency for scattering of this wave at the wire's far end
into the detection path. All �elds originating from the waveguide end interfere at the
detector according to

Itotal = |ψT + ψair + ψglass|2. (7.3)

7.4 Simulation and experiment

Simulated and experimentally obtained far-�eld images for a wire of 8µm length are
displayed in Figs. 7.4a and b, respectively. The e�ect of the beam block used for
spatially blocking the high-intensity re�ection spot resulting from the focused laser ex-
citation of the nanowire input terminal is visible by the nearly circular areas of reduced
intensity around the excitation spot. Apart from a somewhat increased scattering in
the experiment, simulated and experimental images agree exceptionally well.
For a detailed analysis of plasmon transmission through the nanowires we extract

for each nanowire the simulated far-�eld intensity as well as experimental CCD image
counts by integrating 1×1µm2 regions centered at the wire end [red and blue squares in
Fig. 7.4]. The resulting simulated wire transmission values are plotted as a function of
the wire length [Fig. 7.5a, blue �+�]. The data are normalized such that the resulting
decay curve (interleaved dark green line) passes an intensity value of 1/e at a wire
length matching ldecay. The detected intensity as a function of the wire length exhibits
an exponential decay modulated by an oscillatory behavior. A short-wavelength and a
superimposed longer-wavelength oscillation are distinguishable. First, the simulation
data is compared to the proposed model by �tting Eq. (7.3) to the data.
In order to reduce the number of free parameters, the mode's propagation properties

(λe� = 505 nm, ldecay = 4960 nm) and its re�ection coe�cient at the wire termination
(|Γ| = 0.42, θΓ = 1.39 � see Sec. 4.4.4) are obtained from FDFD and FDTD simulations,
respectively. The initial phase o�sets of both air-wave and glass-wave with respect to
the propagating plasmon are set to a �xed value of π. With these constraints the
amplitudes of the launched wire plasmon, the air-wave, and the glass-wave at the
incoupling position remain the only free parameters of the model. The resulting �t to
the simulation data [red line in Fig. 7.5a] shows perfect agreement.
The corresponding plot resulting from experimentally determined far-�eld images

is shown in Fig. 7.5b. From all 306 measured nanowires, only about 1% showed
unexpected signals that we attribute to structural defects and therefore we excluded
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a

b

Figure 7.4: (a) Simulated far-�eld intensity of an 8µm long nanowire obtained via the post-
processing method illustrated in Sec. 4.4.2. (b) Corresponding experimental CCD image. The
yellow circle visualizes the position of the beam block, and the green corners mark the borders
between gold platelet on glass and bare glass [see Fig. 7.2]. The red (blue) square marks the
area that was integrated to obtain the intensity in simulation (experiment). Experimental
data is scaled to match the simulated peak intensity within the integration area. Figure
taken from [179]. © 2017 American Chemical Society.

them from further analysis. The amplitude ratio of the three contributions is adopted
from the �t to the simulation data, so that the �nal �t to the experimental data has
only one remaining amplitude parameter. A fabrication-induced length o�set of 85 nm
has to be introduced, which accounts for a systematic di�erence between the nominal
and the actual wire length. Its value is precisely determined by �tting the position of
the Fabry-Pérot oscillations. While high-resolution SEM measurements support this
e�ect, contrast and charging-induced uncertainties in the measured length are larger
than the uncertainty in the �tted length-o�set.
The Fourier transformations of the length-dependent data [insets of Fig. 7.5] show

two distinct peaks. The highest frequency component corresponds to a periodicity of
252 nm and therefore matches λe�/2 as anticipated by the Fabry-Pérot model. The
slower oscillation (wavelength of about 1300 nm) agrees with the calculated beating
wavelength of the excitation's vacuum wavelength and the Fabry-Pérot modulated
plasmon emission at λair�fptbeating = 1372 nm and is thus attributed to the interference of
the spherical air-wave scattered at the wire end and the emitted plasmons.
This origin is further supported by numerical simulations using a tailored mode

source to directly excite the plasmons without launching spherical waves. Since the
modal pro�le of the electromagnetic source (positioned at a cut plane 100 nm after
the wire start) and propagating medium (the wire) are perfectly matched all energy
is coupled into the wire mode. This way, the excitation of free-space waves is strongly
suppressed. The result is a smooth length dependent decay modulated by Fabry-Pérot
oscillations only [Fig. 7.6a]. In contrast to the results for Gaussian beam excitation,
almost no beating is visible in the Fourier transformation [Fig. 7.6b]. The very weak
residual beating is most likely caused by small scattering artifacts of the source and
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Figure 7.5: (a) Simulated and (b) experimentally detected signal (blue �+�, thin blue line
to guide the eye) within the integration box at the wire end. Superimposed is the �tted
model (solid red line) together with the intensity decay curve (interleaved dark green line)
and a curve of the model with Fabry-Pérot re�ectivity |Γ| = 0 visualizing the oscillations
from the beating between the Fabry-Pérot model and the scattered free-space waves in air
and glass at the wire end (dashed light green line); (insets) Fourier-transformed (a) simulated
and (b) experimental data. The expected peak positions from the Fabry-Pérot oscillation
(252 nm), the beating between the transmitted light and the air-wave (1372 nm), and the
beating between the transmitted light and the glass-wave (6520 nm) are indicated. Figure
adapted from [179]. © 2017 American Chemical Society.

the scattering at the emission end.
In addition, the model predicts a beating between the plasmon emission and the

glass-wave showing a periodicity of about λglass-fptbeating = 6520 nm. This beating wavelength
is about the same as the length di�erence between longest and shortest measured wire
(∆Lmax = 6100 nm) and close to the length scale of the plasmonic intensity decay
(ldecay = 4960 nm). While it is not clearly resolved in the Fourier transformation
data, it is important to note that, within the observation window, it will appear as an
additional slope of the exponential decay curve. Neglecting this additional component
will, depending on its relative phase, lead to either an under- or overestimation of
the decay length. In our case a �t to the experimental data without taking the glass-
wave into account leads to a 20% underestimation of the decay length as compared
to the simulated plasmon decay. This deviation can also be inferred from Fig. 7.5a
by observing that the light green curve oscillates (visible beating λair�fptbeating = 1372 nm)
above the dark green decay curve due to the additional intensity caused by the beating
between the spherical wave in glass and the Fabry-Pérot modulated plasmon emission.
To observe and distinguish these di�erent contributions in the experiment, the re-

quirements on the sample's geometrical precision are demanding. By validating our
experimental data against a model that includes arti�cial errors, i.e., by comparing the
residuals, we determine the upper limits for the uncertainties (standard deviation) of
our structures' geometrical parameters and experimental conditions, i.e., wire length,
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width, and random intensity �uctuations, to be 32 nm, 8 nm, and 7%, respectively. For
the wire length this corresponds to a relative error of less than 0.4%, which is, taking
into account the nonconductive substrate, smaller than the experimentally accessible
resolution limit of current state-of-the-art SEM techniques.

a b

Figure 7.6: (a) Simulated far-�eld intensity for Gaussian beam (red line) and mode source
(blue line) excitation, a corresponding intensity decay curve (interleaved dark green line),
and curves of the model with Fabry-Pérot re�ectivity |Γ| = 0 visualizing the oscillations
from the beating between the Fabry-Pérot model and the scattered free-space waves in air
and glass at the wire end (orange: mode source; light green: Gaussian source). (b) Fourier
transformation of the wire length dependent intensity data for Gaussian (red line) and mode
source (blue line). Figure adapted from [179]. © 2017 American Chemical Society.

7.5 Conclusion

We conclude that the high-precision and reproducibility of the fabricated nanowires
allowed us to reveal the nonnegligible in�uence of air and substrate waves on their
apparent length-dependent transmission. Our experiments also show that by inclu-
sion of these additional waves simulated and experimental data agree quantitatively
within the remaining small experimental uncertainties. The e�ect of the air wave re-
veals itself as a beating superimposed to the Fabry-Pérot standing wave pattern. The
role of the substrate wave is less obvious. The very long beating wavelength of the
substrate wave with the wire plasmon causes unavoidable uncertainty for the �tting of
the decay length because the corresponding oscillatory behavior cannot be captured
experimentally even for the longest wires, since the overall damping of the plasmon
becomes too strong. The resulting uncertainty regarding the starting phase of the
substrate wave is likely responsible for measurements of decay lengths that reported
too long or too short decay lengths [181, 183]. The presence of additional waves due to
the di�erent group velocities could in�uence the temporal structure of plasmon pulses
transmitted through plasmonic nanowires [158, 180]. The interference e�ect inherent
to plasmon propagation in a single wire could also lead to ultracompact realizations
of interferometric sensing schemes, which may exploit changes of the launching phases
of the involved excitations.
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Chapter 8

Multimode plasmon excitation and

in situ analysis

The quantitative agreement between simulation and experiment, even including eigen-
mode properties, as con�rmed in Chap. 7, allows us in the following to con�dently ap-
ply numerical simulations for the deliberate design and analysis of functional plasmonic
devices beyond the previously studied simple single-mode linear nanowires. Still, ex-
perimental veri�cation of fabricated devices, that were predetermined by simulations,
is given, which was carried out by other members of the work group, mainly Peter
Geisler and Enno Krauss.
In this chapter, we increase device complexity by using multimode TWTLs as a

basis. The proposed device allows the synthesis and in situ analysis of multimode
plasmonic excitations. The guidance and processing of such deterministic eigenmode
superpositions at subwavelength scales in highly integrated optical nanocircuits may
become important in future information processing technology including quantum com-
munication. The results of this chapter have been published in [193]. Most parts of
text and graphics are taken one-to-one from this publication.

8.1 Motivation

While single-mode operation is a design goal for dielectric waveguides, in plasmonic
nanocircuits multimode interference leads to enhanced functionality based on the con-
trol of near-�eld intensity patterns [77�79]. Previous work toward the realization of
optical nanocircuits relied on chemically grown single-wire waveguides pioneered by
Ditlbacher et al. [147], that were introduced in Sec. 5.1. In such systems the plasmon
excitation and emission e�ciencies depend on the wire diameter, which at the same
time also determines the spectrum of modes and their respective dispersion relations.
By combining careful selection and micromanipulation of chemically grown nanowires,
indeed prototypes of optical nanocircuitry have been demonstrated in which multi-
mode interference is exploited [56, 69].
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Figure 8.1: Principle of the nanocircuit. (a) Cartoon: launching, propagation and re-
emission of TWTL modes. (b,c) Simulated transverse modal pro�les in an in�nitely long
TWTL on glass for the symmetric (b) and antisymmetric eigenmode (c). Instantaneous
charge distributions are symbolized by �+� and �-�. Eigenmode properties (free-space wave-
length 830 nm) take values of λeff = 480 nm, ldecay = 2628 nm, and vg = 1.26 ·108m/s for the
symmetric and λeff = 434 nm, ldecay = 1892 nm, and vg = 1.16 ·108m/s for the antisymmetric
eigenmode, respectively. Figure taken from [193]. © 2013 American Physical Society.

Despite these achievements, it is a necessary next step toward advanced plasmonic
nanodevices to obtain independent control over light coupling and propagation in
optical nanocircuits by a deterministic synthesis of multimodal excitations. The exis-
tence of a transverse and a longitudinal mode in chains of closely spaced plasmonic
nanoparticles [26, 29] led to a proposal of deterministic coherent control of a routing
functionality in a branched particle-chain waveguide circuit [79]. Later on, easier to
fabricate MIM-type waveguides, such as grooves and channels [32] were applied e.g.,
to implement logic operations, albeit via single-mode interference [55].
To obtain more �exibility and control in terms of excitation schemes and available

modes, TWTLs are eligible candidates since they o�er a symmetric and an antisymmet-
ric mode [194], as introduced in Sec. 5.2.2. However, experiments so far have only con-
sidered the antisymmetric mode [67, 68, 195]. Importantly, TWTLs can be combined
with linear dipole antennas to tailor the in- and outcoupling of light [64, 67, 68, 196].
Deterministic synthesis and in situ analysis of multimode plasmonic excitations is an

indispensable requirement for exploiting the full power of TWTLs as building blocks
of functional plasmonic nanocircuits. To this end, we design nanocircuits, as sketched
in Fig. 8.1a, consisting of an optimized incoupling antenna (generator), a TWTL with
a mode-dependent characteristic impedance, and a mode detector (load). While the
general properties of guided TWTL modes have already been addressed in Chap. 5,
the e�ciency of their excitation by a di�raction-limited excitation spot is subject of
Sec. 8.2 elucidating the role of the incoupling antenna's dimensions on amplitude and
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8.2 Synthesis of multimode plasmonic excitations

phase of the excited modes. Subsequent modal analysis is performed by a single-shot
in situ far-�eld readout of two mode-speci�c spatially separated emission spots of
the mode detector termination, as investigated both numerically and experimentally
in Sec. 8.3. We further show that by a combined polarization and position control
[Sec. 8.4] of the di�raction-limited excitation spot with respect to the incoupling an-
tenna any superposition of TWTL modes can be launched. To illustrate the power
of the approach we selectively determine the group velocities and time delays of pure-
mode contributions of a multimode ultrafast plasmon pulse [Sec. 8.5]. This part of the
study was carried out in the work group of Tobias Brixner1.

8.2 Synthesis of multimode plasmonic excitations

The basic device functionality is not determined by the exact dimensions of e.g. the
TWTL, so that without loss of generality the experimentally realized device dimen-
sions2 are adopted in all simulations of this chapter. For the chosen dimensions only
two TWTL eigenmodes with considerable propagation length (>1µm) exist, a sym-
metric (quasi-TM) and an antisymmetric (quasi-TE) one as illustrated in Figs. 8.1b,c.
The corresponding eigenmode properties are summarized in the caption of Fig. 8.1.
The longer propagation length, larger e�ective wavelength, as well as higher group
velocity observed for the symmetric mode are consistent with its lower �eld con�ne-
ment, con�rming the previous results of Chap. 5. The transverse modal pro�le of any
multimodal excitation propagating along the TWTL at a �xed position therefore is a
superposition of these two eigenmodes after transients have expired [64].
The excitation e�ciency of both TWTL modes can be engineered by utilizing an

incoupling structure that links the �eld pro�le of the excitation beam to the modal
pro�les of the TWTL. Here we use a simple dipole antenna [12] where the length and
width of the antenna arms in�uence the antenna impedance and therefore the transfer
of power to the respective waveguide mode [64]. We �rst consider an isolated dipole
antenna, i.e. two head-to-head aligned nanorods separated by a small gap. Figure
8.2a shows the intensity enhancement in the center of a 50 nm gap as a function of
the overall antenna length at a �xed wavelength of λ = 830 nm. Antenna widths have
been chosen to be 60 nm, 80 nm, and 100 nm.
For excitation along the antenna axis (bluish curves) a fundamental resonance builds

up for overall antenna lengths around 370 nm. Additionally, for narrow antennas a
characteristic shift toward shorter resonant lengths accompanied by a more pronounced
resonance feature is visible. This harmonic oscillator-like antenna behavior is also
manifest in its phase response, as illustrated in Fig. 8.2b. It reveals a characteristic
transition from an approximately 0 to π phase shift of the local plasmon �eld in the

1Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074
Würzburg, Germany

2Nanocircuits were fabricated from a large monocrystalline gold platelet (38 nm thickness) deposited
on a cover glass. FIB milling results in gold wires with rounded upper corners on glass elevations.
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Chapter 8 Multimode plasmon excitation and in situ analysis

antenna gap with respect to the driving �eld as the antenna length is increased from
below to above its resonance length. The trends for the perpendicular polarization
(reddish curves) are less pronounced, showing neither a resonance feature nor a phase
transition but a rather constant phase.

a

b

c

d

Figure 8.2: Linear dipole antenna coupled to TWTL. (a) Simulated near-�eld intensity
enhancement in the gap center of isolated dipole antennas vs. overall antenna length and
various widths as indicated. The excitation polarization is along the antenna axis (bluish
curves) and perpendicular to it (reddish curves), respectively. (inset) Sketch of the antenna
geometry. Arrows indicate the polarization of the excitation �eld. (b) Phase response of
isolated dipole antennas. In (a,b) intensity and phase without antenna are used as reference.
(c) Simulated incoupling e�ciency vs. overall antenna length for same set of antenna widths.
Illumination parallel (perpendicular) to the TWTL excites the symmetric (antisymmetric)
mode, as shown by the reddish (bluish) curves. (d) Corresponding initial phases of both
TWTL modes at the position of the incoupling antenna.

In the following, we consider a TWTL-connected dipole antenna acting as a receiving
antenna. In Fig. 8.2c the simulated incoupling e�ciencies ηsin into either TWTL mode
are shown, obtained as detailed in Sec. 4.4.3, as a function of the overall antenna
length (the 290 nm simulation corresponds to the �no-antenna� � �wire-only� case) for
a �xed antenna width (80 nm, solid lines). For polarization parallel to the TWTL
(red solid line) the incoupling e�ciency of the symmetric mode decreases from a large
value of >30% in the case without antenna to a narrow minimum of <5% at around
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8.3 Analysis of multimode plasmonic excitations

425 nm overall antenna length and then largely recovers for a further increase of the
antenna length. Excitation of the antisymmetric mode is symmetry forbidden for this
polarization unless the focus is displaced [see Sec. 8.4]. For a polarization perpendicular
to the TWTL (blue solid line) the behavior is quite the opposite. Without antenna
the antisymmetric mode can hardly be excited (ηsin<2%). By increasing the antenna
length to about 425 nm the incoupling e�ciency reaches a maximum of almost 30%
and then decreases toward another minimum for even longer antennas in accordance
with classical antenna theory. Notably, a�ected by the attached TWTL the optimum
antenna length di�ers from the resonance length of an isolated dipole antenna of same
width [Fig. 8.2a]. For this polarization, in turn, coupling to the symmetric mode is
symmetry forbidden.
Considering di�erent incoupling antenna widths [see dashed lines in Fig. 8.2c] it

is found that the optimal overall antenna length qualitatively shifts similarly to the
resonance length for isolated dipole antennas [Fig. 8.2a]. Moreover, there is a clear
trend of increasing incoupling e�ciency for thinner antennas, in practice however lim-
ited due to fabrication constrains. Similarly, the minimum in excitation e�ciency
for parallel polarization is more pronounced for thinner antennas, while its position
does not depend strongly on the antenna width. Other parameters, such as TWTL
width and gap, additionally in�uence the incoupling e�ciency. A decreased gap width,
e.g., results in an increased incoupling e�ciency for the antisymmetric mode due to a
stronger antenna resonance, albeit at the cost of signi�cantly increased TWTL prop-
agation losses. Additionally, in view of the results of Chap. 6 passive elements such
as stubs may also be employed to increase the coupling e�ciency from far-�eld power
into guided TWTL modes [176].
Moreover, not only the incoupling e�ciency but also the respective mode's initial

phase can be tuned considerably by the antenna geometry [Fig. 8.2d], revealing an
altered phase transition compared to the isolated dipole antenna case [Fig. 8.2b]. For
multimode device operation, as exploited in Chap. 9, this provides an option to adjust
the relative phase between pure-mode contributions and thus a positional shift of the
resulting beating pattern.

8.3 Analysis of multimode plasmonic excitations

The mode detector attached to the far end of the TWTL can be read out via a
di�raction-limited far-�eld measurement and therefore provides direct in situ feed-
back on the actual modal composition. Its operation principle relies on the di�erent
interaction of symmetric and antisymmetric modes with di�erent types of TWTL dis-
continuities. Due to an intensity node in the gap the symmetric eigenmode is not
a�ected by a termination of the gap while it is strongly re�ected and radiated at a
complete termination of the circuit. The antisymmetric eigenmode exhibits an inten-
sity maximum in the gap and is thus strongly re�ected and radiated as soon as the
gap is terminated. A sequence of a gap shortcut followed by a complete termination
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Chapter 8 Multimode plasmon excitation and in situ analysis

of the TWTL therefore acts as a mode detector by spatially separating the respective
emission spots.

Figure 8.3: (a,b) Simulated far-�eld images [see Sec. 4.4.2] for a pure symmetric (a) and
antisymmetric mode (b) arriving at the mode detector. Pure modes are excited by illuminat-
ing the incoupling antenna (overall length 450 nm) with a focused beam polarized parallel
(a) and perpendicular (b) to the TWTL. The intensity scale is normalized to the re�ected
intensity at the glass/air interface. To match the experiments the antenna re�ections have
been attenuated numerically using an optical density OD 2.2 (left of the vertical green line).
The arrows indicate the excitation polarization. The nanocircuit outline is superimposed as
a guide to the eye. (c) Emission signal vs. polarization analyzer angle for a pure symmetric
(red) and antisymmetric mode (blue) arriving at the mode detector. Panels a,b adapted from
[193]. © 2013 American Physical Society.

Figures 8.3a,b show far-�eld FDTD simulations of the mode detector interacting
with either of the two eigenmodes. The 1µm spacing between the discontinuities
results in two clearly separated emission spots whose intensities are proportional to
the amplitudes of the respective eigenmode contributions. The emission is mostly
polarized parallel to the TWTL axis for the symmetric and perpendicular for the
antisymmetric mode emission spot [Fig. 8.3c], with an analyzer in cross polarization
extincting about 80% and 95% of the total emission signal, respectively.
For a quantitative determination of the power in each mode the respective radiation

e�ciencies of the two emission points have to be taken into account. As a �gure of
merit (FOM) for the ability of the mode detector to separate modal contributions
we de�ne for an incoming pure symmetric (antisymmetric) mode plasmon FOMi =
Ii/
∑

i Ii , i = {sym., antisym.}, where Ii is the emission intensity at the symmetric
(antisymmetric) emission spot. Perfect mode selectivity corresponds to FOMi = 1.
Due to the small amount of scattered light at the position of the mode detector we
achieve typical �gure of merits of 0.98 in simulations (and experiment).
SEM images of a fabricated plasmonic nanocircuit are shown in Figs. 8.4a,b visual-

izing the rounded shape of the TWTL wires caused by secondary sputtering processes
during FIB milling. In order to experimentally characterize the launching and emis-
sion of plasmon excitations, the cover glass supporting the nanocircuit is mounted onto
the same home-built inverted microscope setup including the small beam block (OD
2.2) as introduced in Chap. 7. Unlike there, the laser wavelength has been tuned to
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Figure 8.4: Experimental veri�cation. (a) SEM image of the plasmonic nanocircuit. (b)
SEM image of the TWTL cross section (52◦ observation angle). (c,d) CCD images (detected
power per pixel) showing the attenuated (OD 2.2, indicated by the green circle-segment) re-
�ected spot at the incoupling antenna position and the mode detector emission spots (100 nW
excitation power). The arrows indicate the polarization. The nanocircuit outline is superim-
posed as a guide to the eye. All images show background �fringes� from direct laser scattering
which have no in�uence on the transmission and thus the outcome of the experiment. (e)
Simulated (lines, small symbols, ηsin) and experimentally obtained incoupling e�ciency (large
symbols with error bars, ηein) vs. total antenna length. Symmetric mode: Illumination par-
allel to the TWTL (red). Antisymmetric mode: Illumination perpendicular to the TWTL
(blue). Figure adapted from [193]. © 2013 American Physical Society.

λ = 830 nm and delivers 100 nW average power measured in front of the objectives
back aperture. Once the di�raction-limited excitation spot is overlapped with the in-
coupling antenna of the structure, plasmons are excited and subsequently re-emitted
at its far end, as schematically sketched in Fig. 8.1a. Figures 8.4c,d show experimental
far-�eld images of the structure being excited at the antenna and re-emitting light at
the mode detector structure for excitation polarizations parallel [Fig. 8.4c] and perpen-
dicular [Fig. 8.4d] to the TWTL. To launch the antisymmetric mode the polarization
was rotated by 90◦ while the excitation spot was kept �xed. This demonstrates the
possibility to excite a well-de�ned superposition of both modes simply by adjusting
the laser polarization. It is interesting to observe that not only the positions of the
far-�eld emission spots match very well the simulations in Figs. 8.3a,b but also the
respective spot shapes.
To experimentally verify the predictions for the simulated antenna incoupling ef-

�ciency [Fig. 8.2c], two nominally identical arrays consisting of 5 nanocircuits with
varying antenna lengths have been fabricated. By taking into account the damping
of the modes along the TWTL and the radiation e�ciencies of the mode detector
emission spots, the power in each mode at the antenna position can be extrapolated.
We plot the experimental incoupling e�ciency ηein [Fig. 8.4e, large symbols], de�ned
in the style of Eq. (4.19) as

ηein =
pout
p0

×
[
ηout × e−L/ldecay

]−1
, (8.1)
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where pout is the integrated emitted power at an emission spot, p0 the excitation
power measured in front of the objective, ηout the radiation e�ciency of either emission
spot corrected by the collection solid angle of the objective lens (about 25% for both
modes), L the length of the TWTL, and ldecay the simulated decay length. While the
experimental data very well reproduce the general trend the absolute experimental
values for the incoupling e�ciency are smaller by about a factor of 2. Such a deviation
can be caused by experimental decay lengths that are about 25% shorter than predicted
by simulations. The reason for such deviations is unclear but e�ects like surface
scattering of electrons likely contribute.

8.4 Polarization and position dependent excitation

e�ciency

So far we have assumed an excitation focal spot perfectly centered on the incoupling
antenna (neglecting small displacements along the TWTL) leading to the excitation
of pure modes for the two fundamental polarizations. We test the stability of such
a con�guration by recording the excitation e�ciencies into both modes for parallel
and perpendicular polarization as a function of beam displacements. Breaking the
symmetry, such displacements lead to a signi�cant increase in the excitation e�ciency
of the respective symmetry forbidden modes [154].

a b c d

e f g h

Figure 8.5: Focal spot position dependent modal excitation e�ciency maps (450 nm overall
antenna length): (a-d) simulations, (e-h) experiment. Middle panel: pictograms indicating
excitation polarization and emission position. When centered on the antenna the antisym-
metric mode (d,h) is more e�ciently excited than the symmetric mode (a,e) consistent with
Fig. 8.4e. Figure adapted from [193]. © 2013 American Physical Society.
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Figures 8.5a-d show simulated excitation e�ciency maps for both fundamental po-
larizations obtained by recording the integrated emission intensity at the respective
positions of the mode detector as a function of excitation spot position over a range
of 1 × 1 µm. For parallel (perpendicular) polarization the maps feature a single con-
nected region roughly centered on the incoupling antenna if the emission is recorded
at the corresponding emission position of the symmetric (antisymmetric) mode. If the
�wrong� mode detector port emission is recorded, then, despite the seemingly wrong
polarization, the corresponding modes can still be detected if the beam is displaced per-
pendicular to the TWTL axis. This results in two disconnected areas in the excitation
e�ciency maps which are reproduced in experiments [Figs. 8.5e-h]. We conclude that
excitation of pure modes requires both control of the polarization and nanometer-scale
precision for the positioning of the excitation spot. We further conclude that both de-
grees of freedom, polarization and focal spot position, can be used to synthesize linear
combinations of pure modes.

8.5 Group velocity of pure-mode contributions

As an application we demonstrate the selective determination of the group velocities
of symmetric and antisymmetric contributions of a multimode ultrafast plasmon pulse.
We create such a plasmon pulse using a well-positioned excitation spot polarized at 45◦

with respect to the TWTL [Fig. 8.6a]. The experiment is performed using ultrashort
pulses (800 nm central wavelength, 53 nm FWHM, 80 MHz repetition rate, 2 nW aver-
age excitation power) on a dedicated setup [145, 146] using one of the TWTL arrays of
Fig. 8.4e. A time-averaging detector imaging the mode detector records about equal
intensities for both ports. However, since both modes travel at di�erent group veloci-
ties, the symmetric and the antisymmetric pulse contributions actually arrive at their
ports at slightly di�erent instants after correcting for the total propagation distance.
Such minute time delays as well as absolute propagation times can be measured using
spectral-interference microscopy [145]. Its principle is outlined in Fig. 8.6b. From
the determined propagation times we calculate the respective modal group velocities.
The results are displayed in Fig. 8.6c and compared to simulated values. Within the
error margins quantitative agreement between experiment and theory is found and the
small di�erences in the modal group velocities can be clearly resolved. As expected,
the less-con�ned symmetric mode is closer to the free-space propagation speed (about
10% faster than the antisymmetric mode). No systematic in�uence of the antenna
length on the pulse propagation time is observed.

8.6 Conclusion

In summary, plasmon excitations in top-down fabricated monocrystalline gold TWTL
nanocircuits can be prepared in deterministic eigenmode superpositions by positioning
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Chapter 8 Multimode plasmon excitation and in situ analysis

a tightly focused laser beam with respect to the incoupling antenna attached to the
TWTL and by adjusting its polarization. This enables the controlled superposition
and interference of multiple eigenmodes allowing, e.g., for spatio-temporal control of
nano-optical �elds. This yields the possibility to tap new degrees of freedom in creating
advanced circuit functionality beyond single-mode interference. In linear nanocircuits
such new functionality will include coherent control of the optical path taken by an
excitation in the circuit. This is subject of the next chapter. Such control of con�ned
�elds can also be used for the implementation of nonlinear optical switching e�ects
and the controlled interaction of guided modes with single quantum emitters [60, 197].

Figure 8.6: (a) Emitted intensity scan (log-scale, no attenuation of direct scattering) of the
circuit using 45◦ polarized illumination (λ = 800 nm) [145, 146]. (b) Scenario of response
function characterization using spectral interferometry. A pulsed far-�eld light source excites
propagating plasmons (A) that are processed by the plasmonic device (B). After propagation
the pulses are converted back into far-�eld detectable signals (C) and full characterization
(amplitude and phase) is facilitated via spectral interferometry [144] using a reference pulse
(D). (c) Group velocities of symmetric (red squares, dashed line) and antisymmetric mode
contributions (blue circles, solid line) of ultrafast plasmon pulses determined for one of the
arrays used in Fig. 8.4e. Quantitative agreement between experimental data (symbols with
error bars) and simulation results (horizontal lines) is obtained. Panels a and c adapted from
[193]. © 2013 American Physical Society. Panel b taken from [145]. © 2012 Optical
Society of America.
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Chapter 9

Coherent control of plasmon

propagation in a nanocircuit

With identi�cation of the �nite spectrum of eigenmodes present in TWTLs [Chap. 5]
and their deterministic synthesis [Chap. 8] we now have the indispensable tools at
hand to design and optimize essential elements of functional plasmonic nanocircuits.
In this chapter, we introduce a nanoscale directional coupler, i.e., a nanocircuit with a
single input port and two output ports, which exploits a controlled near-�eld interfer-
ence mechanism. Due to the intuitive and optimized design varying the linear input
polarization is enough to switch between both output ports.
The results of this chapter have been published in [158] and [198]. Parts of text and

graphics are taken one-to-one from these publications. All presented experiments have
been performed in a close collaboration within the work group of Tobias Brixner1.

9.1 Motivation

The miniaturization of optical devices is a prerequisite for broadband data processing
technology to compete with cutting-edge nanoelectronic circuits. For these future nano-
optical circuits, controlling the spatial and temporal evolution of surface plasmons is
a key feature. So far, the strong subwavelength electromagnetic energy con�nement
[11, 35, 48] of propagating plasmonic modes supported by noble-metal nanowires led to
the realization of nanometer-scale proof-of-concept circuits with well-de�ned built-in
(passive) functionality [58, 75, 76] such as splitting or �ltering [33]. Moreover, (ac-
tive) coherent control of femtosecond optical energy localization in nanoscale random
structures and V-shapes [77] as well as coherent control of plasmon routing has been
proposed [78, 79]. Coherent control of nonpropagating near-�elds was achieved ex-
perimentally using closed-loop learning algorithms [199, 200] and open-loop control
schemes [201]. In all these schemes, a far-�eld laser pulse - determined by its spectral
amplitude, phase, and polarization - excites a particular superposition of near-�eld
modes, which then evolve into a desired state, e.g., a local �eld enhanced by orders

1Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074
Würzburg, Germany
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of magnitude [77]. It is customary in the literature [77�79] to call such a scheme
�coherent control�. Thus we will also use the term here even when there is no clear sep-
aration between an external �source� for a propagating signal and another �eld acting
as �control� on that signal. The �control� can rather also be part of the �source�.
First experiments to manipulate propagating plasmons have been performed using

networks of chemically grown silver nanowires [56, 69�73] or slot-less gold nanostruc-
tures [74]. However, only recent advances in the understanding and fabrication of plas-
monic nanocircuits based on optical antennas [12, 64�66] and TWTLs [67, 68] have
enabled the quantitative selective excitation of multiple eigenmodes [193], as presented
in Chap. 8. Our �ndings there prepare the ground for an experimental demonstration
of coherent control of plasmon propagation based on linear interference of multiple
well-de�ned plasmonic modes, similar to concepts used in dielectric waveguides [202].
In this chapter, we report on plasmon routing by open-loop coherent control in a

plasmonic nanoscale directional coupler. By careful design of the device [Sec. 9.2] it is
possible to achieve e�cient coherent control of highly con�ned propagating near-�elds
using the simplest possible control �eld, i.e., linearly polarized light, thereby avoiding
the use of closed-loop learning algorithms. In contrast to classical electronic circuits,
where a symmetric bifurcation inevitably causes an equal splitting of any input current
pulse towards the two output ports, we induce a fundamentally di�erent behavior in
the plasmonic nanoscale directional coupler by exploiting the existence of multiple
eigenmodes and coherence - both not accessible in classical electronics. We therefore
demonstrate the potential and importance of optical coherent control in the design and
operation of plasmonic nanocircuitry. In Sec. 9.3 we experimentally demonstrate open-
loop ultrafast spatial and spatiotemporal coherent control of plasmon propagation
by manipulating the input polarization of ultrashort pulses and pulse pairs and by
characterizing the light emitted from both output ports. Our experiments represent a
very intuitive classical analogue to quantum control in molecules.
However, true conditional switching action as occurring in electric transistors re-

quires the utilization of nonlinear e�ects. One way to realize nonlinearities in plasmonic
nanocircuitry consists in the combination of plasmonic materials with dielectrics hav-
ing large higher-order susceptibilities. For example, the use of chalcogenide glasses has
been proposed [177, 203]. However, the high precision required to embed such mate-
rials into plasmonic nanostructures constitutes a major obstacle for their realization.
An alternative approach consists in directly using the nonlinear Kerr-type response
of the electron plasma in metals [204] which has been demonstrated for example by
four-wave mixing at gold surfaces supporting surface plasmons [205, 206] and in ex-
periments showing third-harmonic generation in single plasmonic nanoparticles [207]
and optical nanoantennas [208, 209]. The latter type of experiments make use of the
fact that the inherent optical nonlinearity of plasmonic materials can be enhanced in
well-designed, high-quality nanostructures in which considerable near-�eld intensity
enhancement can be achieved.
The design of plasmonic circuitry, in which e�ects of the third-order nonlinearity of

gold can be observed, su�ers from the lack of reliable knowledge of the nonlinear optical
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constants in the relevant spectral range. Uncertainties are related to the dependence of
the nonlinear response on the crystalline structure, as data obtained so far was recorded
for multi-crystalline thin �lms [210�214] and data for monocrystalline gold �lms does
not exist. Furthermore, the e�ect of the nonlinear refractive index on propagation
phenomena in plasmonic circuits is rather unclear. In this overall context, our proposed
nanoscale directional coupler can also be seen as a phase-sensitive nanointerferometer
to investigate e�ects of a third-order nonlinearity in plasmonic nanocircuitry. This
allows us to retrieve upper bounds for nonlinear e�ects in plasmon propagation and
the formation of mode superpositions, as is detailed in Sec. 9.3.3. These results o�er
some insight into the feasibility of nonlinear all-plasmonic switching based on gold.

9.2 Directional coupler design and simulation

Commonly, the polarization state of monochromatic light beams and their transforma-
tion is displayed via a spherical representation of the normalized Stokes parameters
S1, S2, and S3, the so-called Poincaré sphere [Fig. 9.1a]. In this representation, linear
polarization states are situated on the equator, with orthogonal polarizations being op-
posing points, while the spin eigenstates � left- and right-handed circular polarization
� are localized at the poles.

a b
300 nm
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Figure 9.1: Poincaré spheres. (a) Classical Poincaré sphere for light beams and (b) equiv-
alent Poincaré sphere for TWTL modes. Fundamental polarization states and modes are
indicated, respectively.

Our nanoscale directional coupler is based on a TWTL situated on a glass-air in-
terface that supports the familiar symmetric and antisymmetric eigenmodes, just as
our mode detector device in Chap. 8. As shown there, the two orthogonal linear ex-
citation polarizations of a well-positioned laser spot can directly be mapped onto the
two TWTL eigenmodes and thus any other polarization state of the TWTL can be
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Chapter 9 Coherent control of plasmon propagation in a nanocircuit

expressed as a superposition of both eigenmodes. Therefore, taking the orthogonal
modes of the TWTL as a basis we can now represent the polarization state in our
plasmonic device via an equivalent Poincaré sphere [Fig. 9.1b].
The di�ering e�ective wavelengths (λsyme� = 517 nm and λantisyme� = 471 nm for 800 nm

vacuum wavelength) and propagation lengths (lsymdecay = 4.83µm and lantisymdecay = 2.53µm)
of the two TWTL eigenmodes directly in�uence the behavior of the device under mul-
timode excitation. The former is the characteristic of a birefringent medium, where a
di�erential phase delay between both modes accumulates with unchanged amplitude ra-
tio. The latter is the characteristic of a dichroic medium, where one polarization state
is preferentially attenuated. The birefringent character is well visible in the TWTL's
near-�eld by the formation of a beating pattern along the propagation direction whose
phase, and thereby the position of �eld maxima and minima, can be controlled by the
polarization of the incoming light. Figures 9.2a,b show the simulated S-like near-�eld
intensity and instantaneous charge distributions obtained for a +45° linear excitation
polarization, respectively. To mimic the experimental conditions, the device illumi-
nation was modeled from the substrate side using a tightly focused Gaussian beam
(λ = 800 nm in vacuum, NA = 1.4) centered on the incoupling antenna gap. We note
that alternatively the beating pattern can be obtained by considering the TWTL as
two (strongly) coupled single-wire waveguides supporting identical modes [215, 216].
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Figure 9.2: Multimode excitation of a TWTL. (a) Simulated steady-state near-�eld beat-
ing pattern and (b) corresponding instantaneous surface charge distribution produced by a
near equal-amplitude superposition of symmetric and antisymmetric mode. The white arrow
indicates the incoupling polarization. All near-�eld intensity distributions of this chapter
are recorded in a plane 10 nm below the glass�air interface and are normalized to the input
intensity I0. (c) Evolution of the polarization state along the TWTL represented on the
Poincaré sphere. (d,e) Simulated far-�eld images for a (d) 3.4µm and (e) 4.5µm long TWTL
with antenna terminations on both sides. (insets) Emission spots for various polarization
analyzers (indicated in yellow). Panel a adapted from [158].

In terms of the Poincaré sphere representation, birefringence manifests itself in a
circling of the polarization state [Fig. 9.2c], i.e. evolving from a linear to a circular,

82



9.2 Directional coupler design and simulation

back to a linear polarization state and so on ad nauseam. Dichroism, in turn, leads
to a spiral on the Poincaré sphere due to the drift of the polarization state onto that
side of the sphere belonging to the mode with less damping, here the symmetric mode.
As a direct consequence, it is impossible to reach the initial polarization state by a
simple ongoing propagation. It is noted that the deviation of the initial polarization
state from the corresponding +45° of the excitation light is a direct consequence of
the di�erent incoupling phases of both modes, as displayed in Fig. 8.2d.
The di�erent polarization states can be coupled to the far �eld by a second antenna

terminating the TWTL, with the exact TWTL length adjusting the relative phase of
the emitted �eld components. Thus and counter-intuitively, a linear dipole antenna
can be driven to emit any arbitrary far-�eld polarization state � in contrast to classical
antennas, that only emit with polarization along the antenna axis. For instance, a
3.4µm long TWTL operates as a half-wave plate with most of the antenna emission
still being linearly polarized but rotated by 90° with respect to the input polarization
[Fig. 9.2d], while a 4.5µm long TWTL operates as a quarter-wave plate by emitting
circularly polarized light [Fig. 9.2e].
In order to realize a branching region for the TWTL and achieve phase-sensitive

directional coupling, two additional wires are added on both sides of the TWTL. These
four wires then split up adiabatically into a set of two uncoupled parallel TWTLs
supporting the same eigenmodes as the input line. Figure 9.3a illustrates the principle
of directional coherent control in this coupler. We follow the evolution of the beating
pattern into the four-wire region, which supports the four eigenmodes displayed in
Figs. 9.3b-e. For +45° input polarization an intensity maximum appears at the lowest
wire after about 2300 nm propagation. We exploit this observation and split the four
wires at this point via a sine-curved S-bend so that the +45° polarization results in
propagation of light in one branch only. The resulting simulated near-�eld intensity
distribution for the optimized device is displayed in Fig. 9.4a. Indeed, in the far-�eld
the intensity is successfully routed to the right branch and emitted from output port
A as shown in Fig. 9.4b.
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Figure 9.3: Four-wire transmission line. (a) Beating pattern extending over all wires of
a four-wire transmission line supporting two antisymmetric (b,c) and two symmetric (d,e)
eigenmodes. Panel a adapted from [158].
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Figure 9.4: Nanoscale directional coupler. (a) Simulated steady-state near-�eld intensity
distribution for excitation with +45° input polarization (white arrow) demonstrating routing
to the right branch (output port A). The standing wave pattern is due to re�ection at the
termination. (b) Corresponding far-�eld projection. (c-e) Far-�eld projection for (c)−45°, (d)
0°, and (e) 90° input polarization. Far-�eld projections consider the properties of the imaging
system, as described in Sec. 4.4.2, and additionally include an analyzer oriented perpendicular
to the nanostructure's symmetry axis, thus only the dominating antisymmetric mode emission
from the output ports is recorded. The intensity is normalized to an unstructured gold surface
re�ection IR. (f) SEM image of the fabricated coupler. Figure adapted from [158].

To quantify the control performance of our device we de�ne the spatial contrast sc
as

sc =
E(A)− E(B)

E(A) + E(B)
, (9.1)

where the emitted energy E in each output port is determined by the background-
corrected integral in 1 × 1µm2 regions indicated by the yellow squares in Fig. 9.4b.
This quantity combined with an overall high throughput of the device served as the
�gure of merit in numerical structure optimization. To this end, several parameters
were tuned, among others cross-sectional TWTL geometry, four-wire transmission line
starting position, branching position and bending angle. Furthermore, the antenna
geometry (overall length 400 nm, width 100 nm) was chosen so that it provides similar
excitation e�ciencies for both eigenmodes, which is important for maximum near-�eld
interference. The four-wire starting position was optimized to minimize re�ections due
to impedance mismatch. The distance between the start of the four-wire transmission
line and the branching position has to be su�ciently large to allow most of the �elds
to locate at an outermost wire of the nanostructure, while the branching position
was optimized such that the spatial contrast is maximal for ±45° linear excitation.
Furthermore, a high signal throughput was achieved by keeping the radii of curvature
in the bending region as large as possible (thus reducing propagation losses) while
still being able to clearly spatially separate the two output ports by far-�eld optical
microscopy. The best directional coupler, which was found within this optimization
and is shown in this chapter, yields in simulations a spatial contrast sc = 0.90 for the
design wavelength of 800 nm.
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9.2 Directional coupler design and simulation

Due to symmetry, output portB lights up for an input polarization of−45° [Fig. 9.4c].
For 0° or 90° excitation, the plasmon splits up equally into both branches [Figs. 9.4d,e],
equivalent to a spatial contrast sc = 0. Beyond the branching region, the modal com-
position of the propagating optical near �eld is dominated by the antisymmetric mode
that is localized in the gap and, therefore, radiates to the far �eld at the point where
the gap is short cut [193]. The choice of the branching position as well as the design
of the antenna lead to simple rather than complex [199, 217] optical control �elds.
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Figure 9.5: Origin of plasmon routing. Instantaneous charge distributions for excitation
with 0° (left), 90° (right), and +45° (center) input polarization. The orange boxes indicate
modes that experience a phase shift of π between output ports A and B.

The charge distributions upon pure eigenmode excitation, as shown in Fig. 9.5,
allow further insight into the origin of plasmon routing. Although in both cases pure
modes are excited in the �rst place, after the bend a mixture of both eigenmodes is
present. Symmetry considerations suggest di�erent phases of the respective converted
eigenmode (i.e. the initially not excited eigenmode) between output ports A and B.
Consequently, for appropriate structure dimensions a linear superposition of both cases
(resembling an excitation with +45° polarization) leads to a cancellation (addition)
of the charges on output port B (A) and thus to a dark (bright) far-�eld emission
spot of output port B (A). The degree of cancellation depends on how similar one
can get the mode powers for the two orthogonal excitation polarizations. To this
end, deliberate mode conversion proves to be indispensable. This can be achieved,
at least to some extent, by plasmonic elements such as a simple TWTL curve or the
S-like bend in our directional coupler, acting similarly to the structures described in
[194, 218]. In the latter case [Fig. 9.6a], the exact geometry of the S-shaped bending
region determines the conversion e�ciencies, which are calculated as the fraction of the
power in the respective mode right after the bend to the input mode power right before
the bend and thus include the regular mode decay along the bend segment. Conversion
to the initially not excited mode is favorable for bends with larger extension in y-
direction, as displayed in Fig. 9.6b. Alternatively, single TWTL bends are even more
promising candidates for mode conversion, as the S-shaped bend partially reverses the
mode conversion of a single bend. Therefore, an almost perfect conversion of one into
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the other mode is feasible with the correct curve radius [Fig. 9.6c]. The conversion
capabilities as a function of the bend radius are summarized in Fig. 9.6d. Chapter 11
provides an outlook on our spin-optical nano-device implementing this type of mode
converter.
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Figure 9.6: Plasmonic mode converting elements. (a) Geometry of TWTL S-like bend and
(b) mode conversion e�ciency for ybend = 2µm (solid lines) and ybend = 1µm (dashed lines).
(c) TWTL curve (radius = 700 nm) converting from symmetric input to antisymmetric output
mode. (d) Mode conversion e�ciency for varying curve radii.

Regarding the spectral behavior of the spatial contrast [Eq. (9.1)], simulations show
that, even though the beating wavelength and thus the beating pattern varies across
the spectrum, the functionality of the nanoscale directional coupler is robust in a
su�ciently broad wavelength region around the design wavelength of 800 nm. The
spatial contrast is scsim = ±0.63 for 750 nm and scsim = ±0.89 for 850 nm.
We have, therefore, successfully implemented coherent control over plasmon propa-

gation for a system in which the light-matter interaction responsible for the control is
spatially separated from the decisive branching region, as �rst proposed by Sukharev
and Seideman [78]. In coherent (nanooptical) control schemes, the local electric �eld in
the frequency domain ~Elocal(~r, ω) = A(~r, ω) ~Eext(ω) depends on both the tensorial lin-
ear response function of the (nano-)system A(~r, ω) and the external �eld ~Eext(ω) [79].
Usually the response function is �xed and coherent control is exerted by manipulating
the properties of the excitation light, i.e., amplitude, phase, and polarization. E.g., in
the prototype quantum control problem for chemical reactions [217], a complex elec-
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tric �eld ~Eext(t) is required that excites a particular wavepacket, which preferentially
evolves from the initial state into a selected �nal state. In our case an appropriate
coherent control �eld leads to surface plasmon polariton propagation to a selected out-
put port. Therefore, our experiment represents a very intuitive classical analogue to
quantum control. However, as opposed to the conventional coherent control problem,
here we do not seek the optimal ~Eext(t) for a given system but rather design the system
response A(~r, ω) so that a given simple control �eld (varying linear polarization) leads
to the desired result. Thus, the simple pulse shape that leads to control is not a sign
of an incoherent control scheme but it is rather a desired feature.
We further note that although the behavior appears to be similar to that of a

polarizing beam splitter, the physics of plasmon routing is di�erent. The polarizer-
like behavior only occurs due to the speci�c design of the incoupling antenna as well
as the length of the four-wire coupling region. For example, by an appropriate choice of
the four-wire coupling region length, routing with right versus left circularly polarized
light could be easily obtained. By additionally detuning the antenna and thereby
the weight of both eigenmodes corresponding elliptical polarization states would be
required as input �elds.
In addition, the mode interference in the proposed device can be utilized to detect

changes of the spectral phase di�erence between the modes. If one considers the prop-
agation phase of a near-�eld mode that is subject to small changes when excited at
di�erent intensities, such changes can be monitored by sophisticated near-�eld probe
methods (e.g., NSOM [219] and PEEM [220]) or spectral interferometry [144�146].
The latter reconstructs the complete plasmon propagation phase, but the extraction
of small excitation-intensity-induced changes remains challenging. We therefore pro-
pose the use of our nanocircuit as a phase-sensitive plasmonic nanointerferometer that
intrinsically translates di�erences of the propagation phase into a far-�eld intensity
variation, which can directly be measured by conventional optical imaging techniques.
Again, a +45° linearly polarized Gaussian excitation leads to a predominant routing
of the intensity to the right branch and emission from output port A [Fig. 9.7a].
A nonlinear refractive index leads to a phase variation of the propagating plasmons.

We expect the process to occur in the antenna region where the local �eld is largest.
If the nonlinear e�ect varies in magnitude between the two superimposed plasmon
modes, e.g., because of di�erent �eld localization and enhancement, a relative phase
change is introduced. Due to the decaying intensities of the propagating modes, phase
changes upon propagation caused by nonlinear e�ects likely only play a minor role.
The potential bene�t of this kind of structure for studies of nonlinear e�ects lies in the
phase sensitivity of the spatial contrast sc, as can be seen in the reduced spatial con-
trast in Fig. 9.7b obtained for a relative phase change of −π/10 rad. There the e�ect
of a nonlinearity has been approximated by introducing a phase di�erence between
horizontally and vertically aligned excitation components, corresponding to an e�ec-
tively elliptical excitation. In the case considered here of a relative phase change of
−π/10 rad, the spatial contrast decreases from 0.75 to 0.53 for the structure featuring
an overall antenna length of 425 nm.
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Figure 9.7: Principle functionality of the device as phase-sensitive plasmonic nanointerfer-
ometer. (a) Simulated far-�eld image of the device excited at the input antenna (overall
length 425 nm) with a focused Gaussian beam polarized at +45° with respect to the antenna
axis, as indicated by the white arrow. (b) Simulated far-�eld image of the identical structure
assuming a change by −π/10 rad in phase di�erence between the two eigenmodes, i.e., in-
creasing the ellipticity of the excitation polarization. The intensity scale is normalized to an
unstructured gold surface re�ection IR. (c) Spatial contrast as a function of the introduced
change in phase di�erence between the two eigenmodes for input antenna lengths of 375 nm
(black dashed line), 400 nm (red dotted line), and 425 nm (blue solid line). The correspond-
ing e�ective excitation polarization is depicted above. Figure modi�ed from [198]. © 2016
Springer-Verlag Berlin Heidelberg.

To investigate this further, we consider structures that are nominally identical ex-
cept for the input antenna length, that in�uences the amplitude of each excited mode
[193]. Consequently, in simulations the structures show varying spatial contrasts for
the same +45° linearly polarized excitation. The respective results for input antenna
lengths of 375 nm, 400 nm, and 425 nm are presented in Fig. 9.7c. A closer look at the
spatial contrast as a function of the introduced relative phase change between the two
eigenmodes reveals that the structure with overall antenna length of 400 nm shows
the highest spatial contrast for +45° polarized excitation, whereas the other struc-
tures have slightly detuned antenna lengths leading to a reduced spatial contrast. On
the contrary, the spatial contrast of the interferometer with 425 nm antenna length is
expected to have the highest sensitivity for relative phase changes since its spatial con-
trast graph shows the steepest slope. The behavior of these structures under varying
excitation intensity is investigated experimentally in Sec. 9.3.3.
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9.3 Experiments

The nanoscale directional coupler � again fabricated by FIB milling from a monocrys-
talline gold platelet grown in solution and deposited on a cover glass � is shown in
Fig. 9.4f. Femtosecond laser pulses with a peak wavelength of λ0 = 800 nm and a spec-
tral full width at half maximum (FWHM) of 48 nm are coupled into a (home-built)
confocal microscope that has the ability of selectively detecting particular emission
spots independent of the excitation position using a piezo tip-tilt mirror in combi-
nation with a Keplerian telescope and a pinhole. Furthermore, heterodyne spectral
detection is realized with a reference pulse [145]. The setup records light emitted in
the sample plane with di�raction-limited resolution and further detects the tempo-
ral position of emission signals with respect to the reference pulse with femtosecond
resolution. This allows, e.g., to measure the group velocity of propagating plasmons
[146], as demonstrated in Sec. 8.5. In addition to the piezo tip-tilt option for spectral
interferometry measurements, we can image a large sample area onto a charge-coupled
device (CCD) camera. When using this visualization option, the piezo tip-tilt mirror
is bypassed and the image is relayed via a di�erent Keplerian telescope. This tele-
scope adjusts the image size on the two-dimensional CCD chip and allows to insert
a circular beam attenuator (OD 2) in the focal plane [as familiar from Chapters 7
and 8] that suppresses most of the strong re�ection and scattering of the excitation
spot at the input end of the nanostructure. In all experiments an analyzer with its
transmission axis oriented perpendicular to the symmetry axis of the nanostructure is
used. Thus, only the dominating emission of the antisymmetric mode at the output
ports is detected.
Since control in the designed nanoscale directional coupler relies on active polar-

ization and phase manipulation, a Mach�Zehnder delay line is used to produce two
collinearly propagating pulses. The polarization in one arm of the delay line is rotated
by 90° using a half-wave plate in combination with a polarizer. We carefully checked
that both pulses have the same focal size, focal position, and excitation power in the
sample plane. Hence, we are able to produce two orthogonally polarized excitation
pulses, termed x-polarized and y-polarized, with an arbitrary temporal separation.
This includes the possibility of temporal overlap, yielding more complex temporal po-
larization patterns. In the temporal overlap region the polarization state depends on
the relative phase ∆Φ between the two pulses. If the relative phase is, e.g., scanned
from ∆Φ = 0 to π/2, the resulting polarization state changes from linear (at 45°) over
elliptical, to circular. Using the delay line we are able to control the separation of the
two pulses with 0.1 fs accuracy (experimentally determined via spectral-interference
measurements). This corresponds to a relative path-length di�erence of 30 nm, or a
relative phase of ∆Φ = 0.075π at 800 nm wavelength. Therefore, we are able to pre-
cisely manipulate the relative phase of both pulses, i.e., the polarization state of the
excitation �eld. Compared to polarization pulse shaping based on a zero-dispersion
compressor and spatial light modulator [221], the Mach�Zehnder setup avoids compli-
cations originating from space�time coupling [222�224] that become especially relevant
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with high-NA focusing and excitation position sensitivity. The observed control e�ects
are therefore indeed due to spectral phase properties only and not due to spatially
modi�ed excitation.

9.3.1 Single-pulse routing and coherent spatiotemporal control

To experimentally demonstrate single-pulse routing the nanostructure was mounted so
that the symmetry axis coincided with the diagonal of the coordinate system spanned
by the two orthogonal polarizations. In this con�guration an x(y)-polarized pulse is
expected to excite the superposition of eigenmodes that leads to far-�eld emission only
at output port A(B) [Figs. 9.8a,b].
Figures 9.8c,d show experimental time-integrated intensity maps recorded at the

output port region of the nanoscale directional coupler. As predicted, only output
port A(B) emits light for the x(y)-polarized excitation. The high spatial contrast
(sc = 0.79 and sc = −0.88 for x- and y-polarized excitation pulses, respectively)
con�rms the spectrally broadband operation of the device required by ultrashort laser
pulses.

a

b

c d

Figure 9.8: Single-pulse routing. (a,b) Sketch: Routing of plasmon pulses for x-polarized (a)
and y-polarized (b) excitation pulses. (c,d) Spatial maps show the measured time-integrated
sample emission upon excitation with the x-polarized (c) and y-polarized (d) pulse. Due to
the orientation of the directional coupler (white outline), the x(y)-polarized pulse corresponds
to +(-)45° polarization and causes routing to output port A(B). Figure taken from [158].

In the measurements described so far, the nanostructure was excited either by a
single x- or y-polarized pulse. If pulses of both polarizations are incident with a �xed
time delay, both output ports emit light successively [Fig. 9.9a]. Indeed, in the time-
integrated spatial map of the emission region shown in Fig. 9.9b both output ports
of the nanostructure light up. To resolve the temporal separation between the two
emitted pulses we use spectral-interference microscopy [145]. Figure 9.9c shows the
reconstructed temporal envelopes of the signals from both output ports. The temporal
signature corresponds to the scheme in Fig. 9.9a and con�rms that the light at the two
output ports is emitted successively as expected. Here, the y-polarized pulse arrives
later than the x-polarized pulse. This can be inferred from the temporal envelopes
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Figure 9.9: Coherent spatiotemporal control. (a) Two orthogonally polarized excitation
pulses are incident on the nanostructure with a temporal delay leading to the emission of
separate pulses at each output port at di�erent times. (b) Time-integrated sample emission
map showing light emission from both output ports. (c) Reconstructed temporal envelopes
of emission in output port A (green solid) and B (red dashed). (d) Reconstructed temporal
envelope of the input �eld showing two peaks. The time trace below 900 fs (black solid)
represents the x-polarized pulse, whereas the part above 900 fs (blue dashed) is attributed
to the y-polarized pulse. The contribution above 900 fs was multiplied by a factor of 2.0
to account for the polarization-dependent transfer function from the sample plane to the
detectors (i.e., the ratio of separately measured integrated spectra). The x-polarized pulse
was delayed by 800 fs with respect to the reference pulse. Figure taken from [158].

of the x- and the y-polarized input pulses in Fig. 9.9d. Because the envelopes were
measured using the re�ections from an unstructured gold platelet, the temporal sepa-
ration of their maxima (210 fs) indicates the starting time di�erence of the plasmons
launched by the respective pulses [145, 146]. Since the plasmons propagate with a cer-
tain group velocity [146], the output signals in Fig. 9.9c both peak at a time τ = 34 fs
after the maxima of the respective input pulses in Fig. 9.9d. Due to the symmetry of
the nanoscale directional coupler the value of τ is the same for both output ports and
is, within its error and considering the fabrication uncertainties, in good agreement
with the simulated value of τsim = 30 fs.
To quantify the control performance, we de�ne the temporal contrast for a given

output port as

tc =
Ê(t1)− Ê(t2)

Ê(t1) + Ê(t2)
, (9.2)
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where the energy Ê(ti) is the integral under the chosen temporal envelope curve in
the respective shaded areas in Fig. 9.9c. We obtain tc = 0.94 for output port A and
tc = −0.86 for output port B. These values con�rm the successful implementation
of spatiotemporal coherent control. We note that the temporal separation of the
excitation pulses can be adjusted at will so that almost arbitrary temporal sequential
routing of plasmon pulses is possible with femtosecond resolution.

9.3.2 Coherent switching

We now change the reference frame by reorienting the structure so that the x po-
larization is parallel to its symmetry axis. In this case each far-�eld polarization
separately excites the corresponding pure eigenmode (symmetric for the x polariza-
tion and antisymmetric for the y polarization). As a result, each polarization causes
simultaneous emission at both output ports with equal intensity. Thus, if the excita-
tion pulses are well separated in time, both output ports emit a corresponding pair
of pulses as sketched in Fig. 9.10a. In the time-integrated map for a pulse separation
of ∆t = −107.8 fs shown in Fig. 9.10b this cannot be distinguished from the case in
Fig. 9.9(b), where each output port emits a single pulse but at a di�erent time. The
emitted intensity is approximately the same in both output ports as con�rmed by the
spatial contrast curve in Fig. 9.10e, which has a value close to zero (sc = −0.06) at
this separation of the pulses. Again, the energy E emitted at each output port was
determined by the background corrected integral in 1 × 1µm2 regions as indicated
with the yellow squares in Figs. 9.10b-d. If, on the other hand, both pulses are su-
perimposed in time, the instantaneous polarization of the excitation �eld varies as a
function of the time delay. By using such polarization-shaped laser pulses [221�224],
it is possible to control and visualize a coherent process of alternating routing by scan-
ning the temporal overlap stepwise and recording the spatial map of time-integrated
sample emission for each step. As seen in Fig. 9.10e, the spatial contrast remains
constant with decreasing temporal separation of the excitation pulses as long as both
pulses are not superimposed in time. However, as soon as temporal overlap occurs the
light emission alternates between both output ports with increasing spatial contrast.
Near the perfect temporal overlap [Fig. 9.10f] changing the time delay by ∆t = 1.3 fs,
corresponding to a half of the optical �eld oscillation cycle, is enough to invert the
spatial contrast from sc ≈ +1 to sc ≈ −1, i.e., to switch the routed signal between
both output ports. This switching is illustrated in Fig. 9.10c (emission from A at
∆t = 0.0 fs) and Fig. 9.10d (emission from B at ∆t = 1.3 fs).
To illustrate further potential of polarization-shaped pulses, we now consider time

delays comparable to the bandwidth-limited pulse length. A quasi-3D representation
of the excitation pulse for the delay of ∆t = 22.7 fs is shown in Fig. 9.10g. The pulse
was simulated using measured spectra and zero spectral phase for the x-polarized pulse
as well as 22.7 fs linear spectral phase for the y-polarized pulse and is approximately
linearly polarized with orientation evolving from x to −45° and �nally to y polarization.
Feeding this pulse into the nanoscale directional coupler results in output pulses as
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Figure 9.10: Alternating routing. (a) Reference frame sketch: x-polarized pulse is paral-
lel to the symmetry axis of the directional coupler. (b,c,d) Spatial maps of the measured
time-integrated sample emission are shown for the two excitation pulses well separated in
time (∆t = −107.8 fs) and overlapping with ∆t = 0.0 fs and ∆t = 1.3 fs. Outlines of the
nanostructure (white) and of a circular beam attenuator (green) that suppresses most of the
excitation spot re�ection and scattering are shown. (e) Spatial contrast curve as a function of
the time delay and (f) a zoom into the temporal overlap region. (g) Reconstructed temporal
envelopes (bottom) from measurements at output port A (green solid) and B (red dashed)
are shown for a pulse separation of ∆t = 22.7 fs [black open circle in (e)] together with a
quasi-3D representation of the input �eld (top). Figure taken from [158].

shown in the lower panel in Fig. 9.10g: The temporal evolution of the emission in
output port B follows the projection of the polarization onto the −45° axis, whereas
in output port A it follows the projection onto the +45° axis. Consequently, output
port A emits a closely spaced double pulse.

9.3.3 Nonlinear relative phase change

This study was performed with a modi�ed experimental setup using a Ti:Sapphire
oscillator with subsequent LCD-based pulse shaper and high-NA microscope [145, 225].
The oscillator emits laser pulses with a spectrum from 650 nm to 950 nm (foot width)
[225] at a repetition rate of 80 MHz. In combination with a pair of chirped mirrors,
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the dispersion from transmissive optics is pre-compensated in the pulse shaper. By
using the phase-resolved interferometric spectral modulation (PRISM) algorithm [226],
a pulse length of below 10 fs is reached at the sample position, measured by second-
order autocorrelation. The beam waist of the immersion-oil objective (NA = 1.4) has
been characterized [225] to be about 260 nm (beam waist for I = Imax/e

2).
For power-dependent scans, we use a broadband half-wave plate in combination with

a linear polarizer. The angle of the wave plate and thereby the power transmitted
through the subsequent polarizer is varied in a precise and reproducible way by a
motorized rotation stage. The excitation position of the sample is selected by mounting
it on a piezo scanner. The emission position is set independently using a piezo tip-
tilt mirror in combination with confocal detection. Spatial maps are scanned and
detected in re�ection through the same objective by avalanche photodiodes. Instead
of confocal detection, a two-dimensional image of the sample plane can be mapped
onto a two-dimensional CCD chip (Princeton Instruments, Acton Pixis2kB) [145].
For the experiments the linear excitation polarization is kept �xed at +45°, resulting

in an emission mainly from outputA [see Fig. 9.7a]. As described in Sec. 9.2, the spatial
contrast is modulated if the relative phase between the two excited near-�eld modes
varies. Such a variation would be expected to result from a nonuniform nonlinear
refractive index. We test for such a phase change to occur by varying the power
of light incident on two identical series of nanointerferometers, S1 and S2. Within
each series, the overall input antenna length is increased from structure to structure,
resulting in slightly di�erent relative amplitudes of the excited near-�eld modes. Apart
from that, the geometry of the structures is identical.
We selected four of these nanostructures, three of them from series S1, one from

series S2. The former are shown in the SEM picture in Fig. 9.11a. The antenna
lengths for these structures are 375 nm for structure S1 s (small), 400 nm for structure
S1 m (medium), and 425 nm for the identical structures S1 l and S2 l (large). Figures
9.11c-e show the spatial contrast between the output ports in power-dependent exper-
iments for structures with di�erent antenna lengths (425 nm in Fig. 9.11c, 400 nm in
Fig. 9.11d, and 375 nm in Fig. 9.11e). Subsequent series of measurements Mi on the
same structure are labeled by the index i in chronological order. The error bars show
the standard deviation of all measurements taken at the same power in a single series
of measurements. Within each series of measurements, multiple up and down scans of
the excitation power (called loops from now on) were performed. The intensity scan
in a single loop is sketched in the inset of Fig. 9.11e. Each loop consists of a scan with
increasing intensity (labeled U) followed by a scan with decreasing intensity (labeled
D). A series of measurements was stopped when the average spatial contrast within U
di�ered by more than 10% from the average spatial contrast within D in a single loop.
Those irregularities can be an indicator for sample drift, because the spatial contrast
is dependent on the exact incoupling position (cf. Chap. 8). Since the contrast changes
occurred mainly after a few loops close to the antenna damage threshold, we attribute
it to sample degradation after an initial antenna deformation at the highest power
within a loop.
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Figure 9.11: SEM pictures of the three used structures of series S1 (a) right after fabrication
and (b) after power-dependent excitation scans. All three antennas with lengths 375 nm,
400 nm, and 425 nm (left to right) have clearly taken damage. The inset in (b) shows the
partly melted 425 nm antenna of structure S1 l. (c-e) Power-dependent scans of the spatial
contrast in nanointerferometers. Each color shows a power-dependent series of measurements
Mi on nanointerferometers with overall antenna lengths of (c) 425 nm, (d) 400 nm, and (e)
375 nm. Each series Mi consists of multiple up-and-down scans (loops) in excitation power.
A single loop is depicted in the inset in (e). Figure taken from [198]. © 2016 Springer-Verlag
Berlin Heidelberg.

SEM pictures of the three structures of series S1 taken right after the intensity-
dependent scans are shown in Fig. 9.11b. The antennas have su�ered visible damage
and are deformed, which can be seen more clearly in the inset showing the 425 nm
antenna of structure S1 l. All three antennas were damaged at some point during
the measurements, regardless if the highest used peak intensity was 52 GW/cm2 or
127 GW/cm2. Therefore, we determine the damage threshold of the investigated phase-
sensitive plasmonic nanointerferometers to an upper bound of 52 GW/cm2, correspond-
ing to a threshold intensity a factor of 0.23 relative to the threshold for homogenous
gold layers determined from z-scan measurements (for details see [198]). In terms of
pulse energy per area, damage occurs at 0.48 J/cm2.
The fact that the spatial contrast remained constant during a series of measurements

until a rapid change at a certain point gives a hint that, until then, the nanointerferom-
eters also withstood the incident laser pulses without taking damage. When a series
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of measurements was repeated afterwards on the same wire, the spatial contrast again
was constant for multiple loops. Nevertheless, the tendency that the absolute value
of the spatial contrast gets smaller for repeated series of measurements on the same
structure can be seen for all three antenna lengths. This tendency was also observed
in simulations, where parts of one antenna arm were removed to mimic the damage.
Within one series of measurements, the power-dependent deviation of the spatial con-
trast is in the range of the error bars, i.e., no nonlinear e�ect is observable. Typical
errors are on the order of 5% of the spatial contrast value. To achieve experimen-
tally detectable spatial contrast variations exceeding the measurement uncertainties
using our most sensitive structures (S1 l and S2 l with an overall antenna length of
425 nm), according to the simulation model [Fig. 9.7c] a phase di�erence between the
two eigenmodes of 0.07 rad or more would be required. Thus, we conclude that the
experimentally achieved nonlinear relative phase change between the symmetric and
the antisymmetric plasmonic eigenmode is below 0.07 rad.

9.4 Conclusion

In conclusion, we successfully demonstrated ultrafast spatial and spatiotemporal co-
herent control of plasmon propagation in a nanoscale directional coupler by exploiting
the interference of well-characterized multiple eigenmodes, thus realizing light guid-
ance [78] and femtosecond energy localization at the nanoscale [77] without the use of
learning algorithms. Our results show the potential and importance of coherent con-
trol in the design and operation of plasmonic nanocircuitry. Furthermore, our �ndings
open an interesting route to femtosecond pump�probe experiments on the nanoscale
[227]. The demonstrated coherent control of spatial�temporal emission characteristics
can be further improved using a polarization pulse shaper [221] providing access to
arbitrary output pulse patterns limited only by the excitation pulse bandwidth. By
changing the branching position of the nanoscale directional coupler its function can
be adapted, e.g., to achieve switching using circularly polarized light [see Chap. 11].
Reciprocity implies that a carefully selected superposition of near-�eld modes, excited
at the two output ports, can drive the linear input antenna to radiate any far-�eld
polarization state. Moreover, extension of the nanoscale directional coupler to a nanoin-
terferometer, which might enable probing, e.g., quantum optical properties of single
plasmons [197] or phase di�erences in plasmonic systems induced by optical nonlinear-
ities [228, 229], was studied. The interferometers showed damage thresholds below the
onset of noticeable nonlinear e�ects. Their sensitivity can potentially be further en-
hanced by the use of shorter laser pulses and by �ne-tuning the design of the plasmonic
nanointerferometers.
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Chapter 10

Normal-incidence PEEM imaging

of propagating plasmon modes

In the previous chapter, we designed a high-end plasmonic nanocircuit, i.e. a nanoscale
directional coupler, and demonstrated by far-�eld optical characterization determin-
istic coherent control of plasmon propagation and routing based on multimode SPP
interference. In view of the ever increasing device complexity with simultaneously
decreasing tolerance toward fabrication uncertainties, quantitative nanoimaging tools
for accessing near-�eld distributions of optical nanocircuits are urgently needed.
In this chapter, normal-incidence two-photon photoemission electron microscopy

(PEEM) is applied to image the propagation, interference, and routing of multiple
guided modes using our directional coupler as a showcase nanocircuit. We �nd that
the recorded photoemission yield can be heuristically modeled with high precision by
considering the 4th power of the numerically simulated electric near-�eld around the
nanocircuit, paving the road for a future widespread application of normal-incidence
PEEM. The presented PEEM experiments have been performed in the work group of
Martin Aeschlimann1. Most of this chapter has been published nearly identically in
[80].

10.1 Motivation

Complex devices for future ultrafast integrated nano-optical circuitry require accurate
fabrication techniques with minimal uncertainties such as substrate inhomogeneities
or small structural defects, e.g. a conductive bridge forming a short circuit. There-
fore, dedicated nanoimaging tools are needed that provide detailed information about
the propagation of plasmonic modes in order to verify functionality. In this frame-
work, multiphoton PEEM [220] has been established as a powerful tool to image and
characterize propagating SPPs along planar metal �lms [230�234], chemically-grown
[235] and microfabricated [236] noble-metal nanowires, organic nano�bers [237], and
photonic waveguides [238�240]. However, the observation of the propagation and

1Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-
Schrödinger-Str. 46, 67663 Kaiserslautern, Germany
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interference of a �nite spectrum of eigenmodes on a complex, functional plasmonic
waveguide device relevant for future nano-optical circuits has never been attempted.

Conventional PEEM setups have successfully exploited grazing-incidence illumina-
tion in many studies, e.g., coherent superposition of multiple localized surface plas-
mon (LSP) modes in small rice-shaped silver nanoparticle structures using few cycle
laser pulses [241] and polarization of the LSP resonances in metallic �at nanoprisms
[242]. However, when investigating more complicated structures, due to phase re-
tardation e�ects such asymmetric illumination leads to complex photoemission pat-
terns thereby obstructing the direct visualization of optical near-�elds. Only recently
normal-incidence illumination PEEM was introduced [243] removing these di�culties.
Normal-incidence illumination PEEM will have a major impact as it is expected to
allow direct imaging of SPPs near-�eld intensity distributions with, e.g., the observed
fringe spacing in a standing wave directly resembling the e�ective wavelengths of the
involved plasmons. So far, just proof of principle measurements of plasmon polaritons
have been published using this technique [243].

In the following, for the �rst time we use normal-incidence PEEM to visualize the
propagation of distinct superpositions of multiple plasmonic modes responsible for the
operation of our nanoscale directional coupler. The photoemission process induced by
plasmons propagating a 1D transmission line is expected to di�er markedly from that
of surface plasmon propagation on a 2D metal �lm. Indeed, it is unknown which �eld
components at which position of the sample contribute most to the emission of pho-
toelectrons. It is therefore bene�cial if plasmon modes and their superpositions have
been characterized before by independent methods, as is done in Chap. 9 employing
di�raction-limited far-�eld optical characterization. In that study, only emission from
the structure's terminations was observed, since propagating modes don't result in any
far-�eld radiation. Of course, in the presented PEEM study the imaged near-�eld dis-
tribution di�ers from the one present in Chap. 9 due to the di�erent excitation scheme.
Here, the wide�eld plane wave illumination of the whole structure is responsible for
a simultaneous launching of plasmon modes at all the device's input/output ports.
In addition, for certain polarization, the plane wave illumination directly excites an
o�-resonant near-�eld intensity in the TWTL gap that coherently superimposes to the
guided mode �eld. In Sec. 10.2 we reveal excellent agreement between PEEM images
and simulation data by using the 4th power of the mostly transverse �eld components
propagating in the transmission line gaps as a measure for the photoemission yield.
We further show that PEEM signals of di�erent pure plasmonic modes vary strongly
in amplitude depending on the mode. In Sec. 10.3 we demonstrate that interference of
plasmonic mode �elds forming standing waves within the device with the illumination
�eld has to be taken into account to correctly explain the obtained patterns in PEEM.
The observation of a distinct switching behavior with PEEM can be obscured by the
above mentioned launching of plasmon modes at all device's input/output ports, as
detailed in Sec. 10.4.
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10.2 Numerical modelling of PEEM yield

Figure 10.1 shows a sketch of the experiment. The directional coupler is illuminated
with a mode-locked Ti:Sa laser of 25 fs pulse duration and an 80 MHz repetition rate
at a center wavelength of λ = 795 nm. The laser beam comes in at normal incidence
from the air half-space and is focused to a roughly 100µm diameter spot on the sample
resulting in an evenly illuminated structure. The studied photoemission process is a
two-photon photoemission process (2PPE), i.e. two photons must be absorbed in order
to free one electron. The spatial distribution of photo-emitted electrons is imaged
using a photoemission electron microscope (Focus IS PEEM) with a spatial resolution
of < 40 nm [243]. The inset of Fig. 10.1 shows an SEM image of the investigated
directional coupler fabricated from a monocrystalline gold platelet (60 nm thickness).
To avoid charging in SEM and PEEM, the sample was covered with an additional
2 nm thin gold layer before the FIB process.
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Figure 10.1: Principle of the exper-
iment. The entire directional cou-
pler is illuminated by a short plane
wave laser pulse at normal incidence
resulting in the excitation of counter-
propagating plasmon modes forming
a standing wave pattern. The spa-
tially varying photoemission of elec-
trons (sketched as blue dots) is im-
aged by PEEM. Inset: SEM im-
age of investigated structure. Figure
taken from [80]. © 2016 American
Chemical Society.

We model the expected distribution of the PEEM signal using the FDTD method
[Sec. 4.1] to simulate the near-�elds in the structure's vicinity. To mimic the exper-
iment [Fig. 10.1], the entire nanostructure is homogeneously illuminated by a plane
wave source of 800 nm wavelength under normal incidence from the air half-space. To
account for the two-photon nature of the photoemission process and the electron ex-
traction toward the air half-space, in simulations we calculate |E|4 in a cross section
at midheight through the structure and use this as a measure for the simulated PEEM
intensity. Note that this choice results in much better agreement to experimental
PEEM data compared to a plane closely above the structure in the air half-space due
to an increased weight of electron emission originating from the gap. Although the
local �elds in this case are totally parallel to the substrate and perpendicular to the
direction of the electron detector, a nice correspondence of PEEM data and simulated
|E|4-maps is obtained, as given below.
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Chapter 10 Normal-incidence PEEM imaging of propagating plasmon modes

In this way, we obtain simulated PEEM intensity maps for an excitation with lin-
early polarized light in x-direction [Fig. 10.2a] and y-direction [Fig. 10.2b], respectively.
For x-polarized excitation (parallel to the antenna axis) the simulated PEEM intensity
shown in Fig. 10.2a is con�ned in the gap between the two wires indicating the exci-
tation of the antisymmetric near-�eld mode [cf. Fig. 9.2b]. Indeed, a detailed analysis
of the terminations' emission patterns using the reciprocity theorem [85] shows that
the antisymmetric mode is excited at both types of terminations with nearly equal ef-
�ciency. This is obvious by inspection of the numerically calculated far-�eld emission
patterns [for details see Sec. 4.4.1] in Fig. 10.2c at a mode detector end (left) and the
antenna (right) obtained by driving the respective terminations with the antisymmet-
ric mode, both showing similar intensities for an emission angle of 0° (corresponding
to normal-incidence excitation). The interference of the resulting counter-propagating
antisymmetric plasmon modes causes the intensity modulations (standing wave
pattern) observed in the gap regions in Fig. 10.2a.

0

50

100

150

200

250a b

x

y

1 µm 1 µm
0

x

y

1 µm 1 µm

2|E |x

2|E |x

2|E |y

2
|E |y

0

1

c d

e f

1 µm 1 µm
20

800

Figure 10.2: (a,b) Simulated PEEM intensity maps, i.e. near-�eld distribution |E|4 in the
x-y plane at midheight through the structure. The plane wave laser light (λ = 800 nm)
hits the sample at normal incidence with (a) x- and (b) y-polarization. (c,d) Projected far-
�eld emission patterns for the (c) antisymmetric and (d) symmetric TWTL mode at a mode
detector end (left) and the antenna (right). All emission patterns have the same scaling
and have been projected to a hemisphere above the structure. The circular rings mark the
angle of emission in steps of 10°. (e,f) Experimental PEEM images of the directional coupler
at normal incidence illumination by a laser of wavelength λ = 795 nm with (e) x- and (f)
y-polarization. In (f) hardly any photoelectrons can be detected. Figure adapted from [80].
© 2016 American Chemical Society.
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For the in-plane orthogonal y-polarized excitation the simulated PEEM intensity
shown in Fig. 10.2b is much weaker despite identical excitation power. For this excita-
tion polarization the symmetric near-�eld mode [cf. Fig. 9.2a] is also excited at both
types of terminations. While for this mode the excitation e�ciency at the mode detec-
tor end is approximately twice as large as at the antenna, they both are comparable to
that of the antisymmetric mode for x-polarized excitation [see Fig. 10.2d]. Therefore,
as for the x-polarized excitation, counter-propagating symmetric plasmon modes are
excited, which, however, do not lead to any detectable photoelectron emission due to
the very weak overall near-�eld intensity close to the structure.
For PEEM experiments, we �rst used o�-resonant imaging to reveal the exact posi-

tion and orientation of the nanostructure. Experimental PEEM images for resonant
excitation at a laser wavelength of λ = 795 nm with x-polarization (y-polarization)
leading to the excitation of pure modes are shown in Fig. 10.2e (Fig. 10.2f). The
comparison of simulated [Fig. 10.2a,b] and experimental [Fig. 10.2e,f] photoemission
patterns reveals good agreement, con�rming the reasonable assumptions underlying
the simple photoemission model used to obtain the simulated PEEM intensity maps.
The nice match includes the number and positions of the emission spots for x-polarized
excitation [Fig. 10.2a,e] as well as correctly predicting the observation of negligible pho-
toemission for y-polarized light excitation [Fig. 10.2b,f]. The latter can be explained
by the fact that the near-�eld intensity of the symmetric mode is mostly guided at
the interface between glass and gold [see Fig. 9.2a]. Considering that the electron
escape length is only 1 − 2 nm, this mode is likely not detectable with PEEM since
the excited electrons cannot be e�ciently released from the solid. Additionally, for
the same mode power, the antisymmetric mode exhibits higher surface �elds (and also
more �elds in the gold), which is another possible explanation why only photoemission
from the antisymmetric mode can be detected in PEEM. As opposed to this, there are
situations where PEEM can reveal otherwise optically dark modes, as shown e.g. for
nanoparticles placed at subnanometer distance to a metal �lm [244].
Notably, toward both left and right structure ends the spots get brighter, evident

in both simulation [Fig. 10.2a] and experiment [Fig. 10.2e]. This is due to the mode
intensity being highest at the terminals and decaying away from them. Some intensity
variations (e.g., an asymmetry between both arms) are, however, not reproduced by
the FDTD simulations. We explain these di�erences with changes in the work function
across the surface caused by inevitable formation of contaminant monolayers at ambi-
ent experimental conditions, while small fabrication induced structural imperfections
are expected to have only a minor contribution.

10.3 PEEM pattern periodicity

In normal-incidence PEEM one may expect that the observed periodicity of a standing
wave pattern matches one half of the e�ective wavelength λe� of the corresponding
propagating plasmon mode. However, as shown by Kahl et al. for SPPs on epitaxial

101



Chapter 10 Normal-incidence PEEM imaging of propagating plasmon modes

silver islands [243], the interference with the excitation �eld increases the observed
fringe spacing to λe�. To verify this behavior for the present structure, the simulated
PEEM intensity map for x-polarized illumination is again shown in Fig. 10.3b. For
comparison we also plot the corresponding near-�eld intensity distribution for the
identical nanostructure illuminated as in Chap. 9, i.e. with a localized Gaussian source
focused to the position of the incoupling antenna [on the right-hand side in Fig. 10.3d].
The di�erent excitation geometries are illustrated in Figs. 10.3a and 10.3c, respectively.
In both cases standing wave patterns are observed. Since only the antisymmetric
mode is visible in PEEM images, the resulting intensity patterns are caused by the
antisymmetric mode (λe� = 456 nm). The blue lines in Fig. 10.3 exhibit a spacing of
λe�/2 and serve as a guide for the eye. Indeed, for local excitation [Fig. 10.3d] the
expected periodicity of λe�/2 resulting from the back re�ection of the antisymmetric
mode at the gap termination of the two mode detectors is observed. However, in
the simulated PEEM intensity map [Fig. 10.3b] every second intensity maximum is
missing which leads to an apparent doubling of the periodicity.
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Figure 10.3: Periodicity of near-�eld intensity distributions. (a) Normal-incidence PEEM
excitation geometry with x-polarized laser light illumination. (b) Corresponding simulated
PEEM intensity map. (c) Excitation geometry used for optical propagation measurements.
The identical nanostructure is illuminated with an x-polarized tightly focused Gaussian beam
(NA = 1.3) from the substrate side centered on the antenna gap. The incoupled intensity
is equally emitted at both mode detector terminations, preferentially to the substrate side.
(d) Corresponding simulated near-�eld intensity distribution |E|2 for focused excitation. The
structure's corners are superimposed in gray as a guide to the eye. The vertical blue lines have
a spacing of λe�/2 of the antisymmetric mode. Figure taken from [80]. © 2016 American
Chemical Society.
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We conclude that even for normal-incidence laser illumination, PEEM images do
not just show the standing wave pattern resulting from counter-propagating plas-
mons that get simultaneously excited at all three terminals of the structure due to
the large illumination area. Instead, the near-�eld distribution mapped in PEEM is
due to the additional interference of the mode's standing wave pattern with the po-
larization dependent non-resonantly enhanced excitation �eld along the whole struc-
ture. Its impact is obvious from the simulated PEEM images for an in�nitely long
TWTL excited by x- and y-polarized plane waves impinging under normal incidence
in Figs. 10.4a,b and 10.4c,d, respectively. Only in the case of x-polarized plane wave
excitation [Fig. 10.4a], the excitation �eld can e�ciently penetrate into the gap region
of the TWTL [Fig. 10.4b] where it superimposes to the TWTL mode �eld. This inter-
ference process, in combination with the two-photon nonlinearity of PEEM, causes the
change in the observed oscillation period [see Fig. 10.4e-j]. Therefore, normal-incidence
PEEM truly images the total near-�eld intensity present at the sample surface.
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Figure 10.4: Simulated near-�eld intensity distribution |E|4 along an in�nitely long TWTL
for x-polarized (a,b) and y-polarized (c,d) plane wave excitation (λ = 800 nm) impinging
under normal incidence. The intensity maps are recorded in a cut at midheight through the
structure, as indicated by the blue planes in (a),(c). The structure's outline is superimposed
in gray as a guide to the eye. Position dependent near-�eld amplitude |E| (e) and intensity
|E|4 (f) of the antisymmetric mode propagating along an in�nitely long TWTL in positive
y-direction. The initial mode's amplitude is set to 1 without loss of generality. Position
dependent near-�eld amplitude |E| (g) and intensity |E|4 (h) of the antisymmetric mode
including the back re�ection at a termination (y = 5000 nm). The mode's re�ection amplitude
and phase at the termination have arbitrarily been set to 0.8 and 0, respectively. The exact
values only in�uence the modulation depth and the absolute position of the maxima, but
not the oscillation wavelength. Position dependent near-�eld amplitude |E| (i) and intensity
|E|4 (j) of the superposition of the standing wave pattern in (g,h) with a constant complex
o�set (o�set amplitude = 0.4, o�set phase = 0) along the whole length describing the non-
resonantly enhanced excitation �eld. A di�erent value for the o�set phase again just leads to
a shift of the pattern without changing the periodicity. Figure adapted from [80]. © 2016
American Chemical Society.
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For completeness the superior interpretation capabilities enabled by using normal-
incidence PEEM are shown in Fig. 10.5 exhibiting a comparison of FDTD simulated
beat patterns for the directional coupler illuminated with light under normal-incidence
[Fig. 10.5a-c] and grazing-incidence [Fig. 10.5d-f], respectively. For the latter one, the
laser pulse is incident from the antenna side and its propagation direction and the
surface normal comprise an angle of 65°, as illustrated in Fig. 10.5d. The simulated
PEEM intensity maps for s- and p-polarized excitation are shown in Figs. 10.5e,f,
respectively.
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Figure 10.5: Comparison of normal-incidence vs. grazing-incidence illumination. (a) Normal-
incidence PEEM excitation geometry with x-polarized laser light illumination. (b) Cor-
responding simulated PEEM intensity map. (c) Simulated PEEM intensity map with y-
polarized laser light illumination at normal-incidence. (d) Grazing-incidence PEEM excita-
tion geometry with s-polarized laser light illumination. (e) Corresponding simulated PEEM
intensity map. (f) Simulated PEEM intensity map with p-polarized laser light illumination
at grazing-incidence. The structure's corners are superimposed in gray as a guide to the eye.
The vertical lines have a spacing of λe� of the antisymmetric mode. Figure taken from [80].
© 2016 American Chemical Society.

Obviously, the PEEM patterns for grazing-incidence illumination show more com-
plex features. Thus, the normal-incidence PEEM technique is clearly favorable to get
physical insight into our nanostructures. Particularly, in contrast to illumination un-
der normal-incidence for p-polarization at grazing-incidence there is also photoemission
signal to be expected due to the existence of an additional out-of-plane component of
the electric �eld which can contribute dominantly to the PEEM signal. Furthermore,
at grazing-incidence we additionally have phase retardation e�ects, that a�ect the in-
terference along the structure and result in a changed beating periodicity, as already
previously observed [230, 243]. For s-polarization under grazing-incidence illumina-
tion [Fig. 10.5e], the observed fringe spacing in the transmission line is roughly 2·λe�
(considering only the high intensity spots), in contrast to the λe�-spacing observed at
normal-incidence [Fig. 10.5b]. This �ts with the fringe spacing obtained by the Moiré
condition for the employed excitation geometry [243].
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10.4 Spatial switching in optical and PEEM

measurements

Using a localized excitation source focused to the position of the incoupling antenna to
the right at +45° polarization [Fig. 10.6a] causes a distinct superposition of modes to
be launched. As a result, routing of intensity can be observed in far-�eld propagation
measurements. In experiments, light emission is observed at the upper mode detector
terminal as shown in Fig. 10.6b [158]. The appearance of two separate emission spots
at the mode detector reveals the fact that both the symmetric and the antisymmetric
mode are propagating in the TWTL [193]. The image is obtained with the same
home-built inverted microscope setup introduced in Sec. 7.2. Near-�eld simulation
results considering the corresponding illumination with a tightly focused Gaussian
beam centered on the antenna gap are shown in Fig. 10.6c. As this illumination
geometry is the one used for design and optimization of the structure in Chap. 9, it
is con�rmed that the equal-amplitude superposition of both TWTL modes excited at
the antenna is selectively directed into the upper arm of the device. Routing to the
lower arm is achieved using -45° polarization.
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Figure 10.6: (a) Sketch of the excitation geometry used for optical propagation measure-
ments of the directional coupler excited by a localized source at +45° linearly polarized light.
(b) Corresponding experimental optical propagation measurement result. To avoid saturation
of the CCD, the strong re�ection of the excitation spot at the incoupling antenna position
is suppressed by a small beam block in an intermediate image plane (indicated by the green
circle segment). The structure's outline is superimposed as a guide to the eye. (c) Simulated
near-�eld intensity distribution |E|2 in a cross section at midheight through the structure for
focused Gaussian excitation. (d) Normal-incidence PEEM excitation geometry with linearly
polarized laser light illumination at +45°. (e) Experimental PEEM image of the directional
coupler. (f) Corresponding simulated PEEM intensity map. Figure taken from [80]. © 2016
American Chemical Society.
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Such a distinct switching behavior as a function of the polarization is not expected to
be directly reproduced in our PEEM measurements of the same device. All three termi-
nals of the structure are fed simultaneously due to the large illumination area, which
results in a more complex near-�eld distribution that is mapped with PEEM. The
experimental PEEM intensity map for +45° polarization [as sketched in Fig. 10.6d]
shown in Fig. 10.6e gives rise to an asymmetric PEEM signal with the lower arm
of the structure being brighter than the upper arm, again in good agreement with
the simulated PEEM intensity map shown in Fig. 10.6f. Corresponding experimen-
tal and simulated PEEM signals for -45° excitation polarization show the upper arm
brighter. The brightness di�erence in both arms is clear proof that the symmetric
mode, although not directly observable in PEEM, is nevertheless excited and a�ects
the measured PEEM signal by interference with the antisymmetric mode. However,
those brightness di�erences between the two arms cannot be directly related to the
directional propagation observed for local illumination in Figs. 10.6b,c. We note that
the occurring near-�eld interference e�ects strongly depend on the relative phases of
the plasmon waves in the structure. For slight di�erences in the geometry (e.g. chang-
ing the TWTL length by less than λe�/2), the behavior of upper and lower arm can
be exchanged.

10.5 Conclusion

In conclusion, we have used normal incidence PEEM to study the imaging of propagat-
ing plasmons in a showcase plasmonic nanocircuit - our directional coupler introduced
in Chap. 9. Despite the rather complex mechanisms involved in photoelectron gener-
ation, here the photemission yield is assumed to be proportional to the 4th power of
the electric �eld distribution in a plane midheight through the structure. Using this
assumption we are able to compare simulated PEEM images to experiments which we
�nd to be in excellent agreement. While both modes can be e�ciently excited, only
the antisymmetric mode is directly detectable with PEEM. For standing wave patterns
resulting from pure modes we observe a doubling of the expected periodicity. This can
be attributed to the interference of the guided localized plasmon with the broad plane
wave excitation, which - for the correct polarization - penetrates into the TWTL gap.
Finally, we study directional coupling of a plasmon mode superposition in the device.
When considering the incoupling of light at all terminals of the structure and subse-
quent interference e�ects PEEM can o�er unique and quantitative insights into the
functionality of optical nanocircuitry opening the �eld for a widespread application of
PEEM to integrated functional nano-optical structures.
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Chapter 11

Prospects of plasmonic

nanocircuitry

The recent advances in the �eld of plasmonic nanocircuitry, among others the results
of the preceding chapters, pave the way for a future widespread application of plas-
monic nanocircuitry. This chapter sheds light onto two of its most promising branches,
i.e. spin-optical [Sec. 11.1] and quantum plasmonic nanocircuitry [Sec. 11.2]. The re-
sults of Sec. 11.2 have been published in [245].

11.1 Spin-optical nanocircuitry

The spin-orbit coupling, i.e. the interaction of a particle's intrinsic spin state with its
motion state, is well known from quantum physics. A prominent manifestation of this
phenomenon is the splitting of atomic energy levels due to the interaction between
the spin of electrons and the magnetic �eld accompanying their orbiting around the
nucleus. In semiconductors spin-dependent electron transport can be realized, estab-
lishing the �eld of spintronics with novel device technology [246�248]. There and in
contrast to classical electronics the spin of electrons provides an additional degree of
freedom as e�cient storage and carrier of information besides the traditionally ex-
ploited electron charge.
However, the same limitations concerning bandwidth as for traditional electronics

[see Chap. 1] also apply for spintronics. A transfer of its conceptual idea to photonics
enables the processing of quantum information with bandwidths increased by orders
of magnitude. Here, the spin angular momentum of light associated with the wave's
circular polarization state takes the place of the electron's spin state. The emergence of
a geometric phase, commonly termed Berry phase [249�251], acquired over the course
of a cyclic path in the parameter space is closely related to spin-orbit interaction. It
was demonstrated for closed loops in the polarization space [252] and in wound single
mode optical �bers [253].
A broad range of novel e�ects and applications arises from exploiting the strongly

enhanced and localized optical �elds in plasmonics [254]. Chirality-dependent scat-
tering and directed excitation of plasmons due to coupling between the helicity state
of photons and their orbital angular momentum (e.g. the beam trajectory) can be
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observed [255]. Spin-orbit phenomena at interfaces of the far-�eld and waveguides can
be used for the sorting of photons with di�erent helicity by the directed excitation of
photonic [256, 257] or plasmonic [258�260] waveguide modes. The latter are subwave-
length in size and intrinsically couple well with single emitters potentially allowing for
quantum computing [260].
Polarization dependent photon �uxes were already reported in Chap. 9, however

without exploiting circularly polarized photons. In the following, the full potential of
spin-orbit interaction for plasmonic nanocircuitry is brie�y demonstrated. Therefore,
we design and optimize a plasmonic nano-device capable of sorting photons by their
natural base, their chirality, and restoring the photons' initial polarization state after
spatial sorting by means of numerical simulations. The device's operation relies on
the two well-de�ned eigenmodes of a TWTL [as detailed in Sec. 5.2.2], which enable
the complete characterization of the polarization state during the whole propagation.
The representation of the plasmon polarization state in the device can be done via
mapping of the photon polarization state onto plasmonic mode states as described via
the equivalent Poincaré sphere [see Sec. 9.2].
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Figure 11.1: Nanoscale spin sorter. (a) Sketch of the investigated device. (b) Simulated
steady-state near-�eld intensity distribution for excitation with right circular input polar-
ization (white arrow) demonstrating routing to the left branch (output port B). (c,d) Cor-
responding far-�eld images with analyzer in detection path to �lter (c) right and (d) left
circularly polarized light emission (marked by yellow arrows). Excitation and emission de-
tection are performed via an objective of NA = 1.4 at a wavelength λ = 800 nm. The gray
squares (500 × 500 nm2 regions) indicate the integration areas for the emission intensities
used to calculate the polarization contrast. (e) Polarization state along the device in the
Poincaré sphere representation.

The proposed nanocircuit is sketched in Fig. 11.1a. Essentially, it can be divided
into four types of elements [as marked in Fig. 11.1b]: interfacing elements between
far-�eld photons and plasmonic modes (yellow), the propagation on linear TWTL
segments (blue and red), the abrupt waveguide splitting (position X), and the TWTL
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11.1 Spin-optical nanocircuitry

bending (green). It is noted that a short mode detector element (i.e. a 50 nm long
bridge at the TWTL terminations short-circuiting the wires) forms the interfacing
element due to the previously observed high in-/outcoupling e�ciency of around 30%
and its facilitated fabrication compared to the dipole antennas used in Chaps. 8 -
10. Upon excitation of the device by right circularly polarized light (as de�ned from
the point of view of the source) the near-�eld intensity [Fig. 11.1b] is guided toward
the left output port and is subsequently re-emitted into the far-�eld. The emission
polarization is again circularly polarized, as evident from the simulated far-�eld images
in Figs. 11.1c,d [for method see Sec. 4.4.2] taking an analyzer for circular polarization
within the detection beam path into account. The circular excitation polarization
state prepares an initial mode superposition, which in terms of the Poincaré sphere
representation is situated close to one of its poles [Fig. 11.1e]. The further evolution of
the polarization state along the linear TWTL segment is based on the birefringent and
dichroic character of the mode propagation in TWTLs [as already addressed for the
directional coupler in Chap. 9]. After acquiring a certain propagation phase, at the
splitting position X the near-�eld mode superposition is overall asymmetrically shifted
to the left (depending on the initial chirality state). At this position the polarization
state discontinuously jumps to almost the opposite side of the Poincaré sphere. The
subsequent bending of the TWTL converts the eigenmodes [as illustrated in Fig. 9.6]
and manifests itself in a closed loop on the Poincaré sphere. Such closed loops are
typically associated with a Berry phase, which might enable further applications for the
presented device, e.g. in interferometric circuitry. Right after the bend the polarization
state is shifted toward the antisymmetric mode's hemisphere. By a further birefringent
and dichroic propagation along a TWTL segment of appropriate length the initial
circular polarization state is recovered.
As a �gure of merit for the switching capability of the device the spatial contrast sc,

as introduced in Eq. (9.1), can be employed. The optimized device yields sc = -0.95,
con�rming an almost perfect spatial helicity sorting. Moreover, the preservation of
the photons' helicity state is characterized by a second �gure of merit de�ned in the
style of the spatial contrast, namely the polarization contrast pc. It is obtained for the
primary emission port by relating the energy E detected through an analyzer of same
chirality to the total emitted energy of this port. In case of right circularly polarized
excitation the polarization contrast of output port B is de�ned via

pc(B) =
E÷(B)− Eö(B)

E÷(B) + Eö(B)
, (11.1)

and takes a value of pc(B) = 0.87. The emitted photons regain an exceptionally high
degree of circular polarization and thus conserve their initial quantum information.
Similarly, when exciting the structure with linear polarization along or perpendicular
to the structure's symmetry axis (data not shown), both output ports emit circularly
polarized light with identical intensity (i.e. sc = 0) but opposing helicity. All simulation
results have been reproduced in experiments with high precision (data not shown)
yielding similar values for both spatial and polarization contrast.
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11.2 Quantum plasmonic nanocircuity

Future technologies such as secure communication, quantum computation, quantum
simulation, and quantum metrology are boosted by progress in quantum photonics.
There, the pivotal challenge is the miniaturization of integrated circuit designs that
combine single photon sources, linear optical components, and detectors on a single
chip. Plasmonic nanocircuits are ideally suited for quantum photonics applications
[261]. In this context, single photons can be emitted by colloidal nanocrystals and ni-
trogen vacancy centers in diamond nanocrystals [262, 263], or originate from nonlinear
optical processes [63, 264]. However, the reported approaches su�er from di�erent dis-
advantages and are hardly suited for scalable on-chip devices. The former su�er from
bleaching, blinking, poor control of the orientation of the transition dipole moment,
and often broadband emission, that is not easily excited electrically. The latter only
yield low photon rates by requiring bulky crystals.
Self-assembled semiconductor quantum dots instead are stable and nonblinking sin-

gle photon sources that are electrically drivable and have well-de�ned orientations of
the transition dipole moments [265�267]. Integrating such emitters into dielectric on-
chip devices by structuring the semiconductor material has been achieved [268, 269].
However, the coupling with surface plasmons is hampered by the high refractive index
of the semiconductor host material, as the conventional way of bringing emitters in the
vicinity of plasmonic structures [262, 263, 270�272] does not work. The solution for
the integration of self-assembled semiconductor quantum dots as single-photon sources
in plasmonic nanocircuits presented in the following employs releasing of the emitters
from the bulk crystal and exploiting an indirect-coupling approach.
An SEM image of the proposed nanocircuit is given in Fig. 11.2a. The device is

centered around a bar of AlGaAs heterostructure containing a GaAs quantum dot.
This is placed on a SiO2 substrate and gold wires are fabricated on both sides of the
bar constituting an in-plane version of a hybrid waveguide [274]. Transformation of
the hybrid into a plasmonic waveguide is achieved by tapering the semiconductor bar
such that the gold wires �nally form a TWTL. GaAs quantum dot emission is �rst
e�ciently coupled into the hybrid waveguide and afterwards again coupled with high
throughput into surface plasmons propagating along the TWTL toward an optical
antenna with high emission e�ciency.
In raster-scanned confocal microscopy images upon excitation of the quantum dot in

the AlGaAs bar with a stationary focus of a continuous-wave laser (532 nm wavelength)
bright and stable emission at the position of both the quantum dot and the antenna on
the right is observed [Fig. 11.2b]. This experimental result agrees with the simulated
far-�eld image of Fig. 11.2c. Photoluminescence spectra taken from both emission
spots exhibit exactly the same features in terms of the spectral position and width
of the sharp lines and their relative intensities [Fig. 11.2d]. As these features are a
�ngerprint for each quantum dot, this spectral correlation con�rms the quantum dot
as the source of the antenna emission. The neutral exciton peaks (X) of both spectra
have the same FWHM of 116µeV, which is only slightly broadened compared to an
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Figure 11.2: Single-plasmon nanocircuit driven by a self-assembled quantum dot. (a) SEM
image of the fabricated structure (right part only). (b) Photoluminescence micrograph of
the structure (T = 10 K). The quantum dot is excited by a stationary laser focus and the y-
polarized emission is collected by raster-scanning a confocal detection focus. (c) Numerically
simulated far-�eld image following the experimental structure and conditions closely. The
excitation source is a pair of incoherent x- and y-polarized dipoles at the quantum dot position
of panel (b), and only |Ey|2 in the image plane is plotted. (d) Spectra collected at the position
of the quantum dot (red solid line) and antenna at the right end of the structure (blue dashed
line). (e) Measured second-order cross-correlation function g(2)(τ) between the antenna and
quantum dot (blue dots). The red line is a �t to model [273], taking the o�-resonant excitation
conditions into account. Figure modi�ed from [245]. © 2017 American Chemical Society.

unprocessed quantum dot (60µeV) due to the sample fabrication. Furthermore, the
quantum statistics of the quantum dot emission is preserved by the device and truly
single plasmons are launched, as obvious from the antibunching dip at time delay τ = 0
in the measured second-order cross-correlation function g(2)(τ) between the emission
in the exciton line collected at the antenna and the quantum dot [Fig. 11.2e]. For
additional in depth information the reader is referred to the full publication of this
work [245].

In conclusion, these spectral and statistical properties make the introduced single-
plasmon source suitable for quantum optical experiments. More complex plasmonic
as well as photonic circuits can be developed on the basis of this approach, e.g. cou-
pling of multiple quantum dots via plasmonic circuits to achieve photonic transistors
[53]. Transitions of the quantum dot may be tuned into resonance electrically by ap-
plying voltages on the conducting gold wires. Moreover, electrical excitation of the
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quantum dot [275, 276] and electrical detection of single plasmons [277, 278] can be
implemented to make all-on-chip circuits. The present work shows that by making
use of self-assembled quantum dots, quantum plasmonic circuits can also be built on
semiconductor platforms, and it thus opens the way to integrate electronic, photonic,
and plasmonic devices on one semiconductor chip for applications of quantum tech-
nologies.

112



Chapter 12

Summary & outlook

Modern information society possesses an insatiable hunger for an increasing amount of
processed information per unit of time, i.e. higher and higher bit rates. The chase after
ever smaller, faster, and more e�cient electronic integrated circuits has enabled truly
nanoelectronic circuits with feature sizes approaching 10 nm, but at the same time
uncovered fundamental limitations in the achievable bit rates when processing data
with electrons. In contrast, processing data with photons is incredibly fast and thus
the method of choice in photonic circuits for digital communication. However, there
the same miniaturization as in state-of-the-art nanoelectronic circuits is hampered by
the fundamental law of di�raction. In quest of new chip-scale device technologies that
can bridge the gap between nanoscale electronics and microscale photonics, plasmonics
has evolved as a promising candidate, owing the intriguing properties of noble metals
when interacting with visible light.
At the beginning of this thesis, the �eld of plasmonic nanocircuitry was still in

its infancy. From a theoretical perspective, the power of electronic circuit design is
based on the fact that complex circuitry can be created by arranging simple circuit
elements into networks. In particular, the circuit properties can then be calculated
using Kirchho�'s laws. However, due to the short wavelengths involved in plasmonic
nanocircuitry the applicability of these laws cannot be taken for granted any more. In
fact, their validity in plasmonic nanocircuitry was not yet answered satisfactorily, even
though they would serve as valuable guidelines for the design of complex nanophotonic
circuitry based on simple building blocks. This thesis tackles this issue by studying
a junction of plasmonic TWTLs, which represents a fundamental building block of
nanophotonic circuitry. A new phenomenological parameter relating the junction's
geometrical parameters to the plasmon wavelength is identi�ed, which allows to judge
the degree of validity of Kirchho�'s laws. To illustrate the power of this approach a
system composed of a TWTL and a nanoantenna as a load is investigated. By addition
of a parallel stub designed according to Kirchho�'s laws maximum signal transfer to
the nanoantenna is achieved.
From an experimental perspective and stimulated by potential applications for on-

chip integrated optical signal guidance and processing, a variety of plasmon waveguide
designs have already been prototyped. Experimental studies so far concentrated on
single-mode operation in selected waveguide geometries and simple device functionality
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almost exclusively in networks of chemically grown nanowires. The simultaneous use
of multiple eigenmodes in speci�cally designed top-down fabricated nanocircuits has
not yet been attempted. The scope of the present work is to bridge this gap by using
numerical simulations for the design of functional plasmonic nanocircuits, which allow
fundamental control of photon �ow at the nanometer scale.
At �rst, the prejudice of plasmonics always being an inaccurate science is dispelled.

Indeed, even the simple problem of plasmon transmission through a nanowire, which
is of key importance for any functional device in the �eld of plasmonic nanocircuitry,
has caused discussion in the literature. The reason for this lies mainly in the limited
reproducibility of fabricated nanostructures. This thesis presents a systematic numer-
ical study of monochromatic light transmission through gold nanowires of equal cross
section but variable length. Propagation channels that were until now unnoticed but
noticeably modulate the wire transmission signals are revealed. Quantitatively, this
modulation can analytically be described by incorporating these additional channels
into the usual Fabry-Pérot resonator model. Optical measurements of high quality
structures produced from monocrystalline gold platelets by focused-ion beam milling
show unprecedented agreement with only small remaining sources of uncertainty.
Thus, the use of numerical simulations for the deliberate design and analysis of func-

tional plasmonic nanocircuits can safely be extended beyond the simple single-mode
linear nanowires. As the logical next step, an increase in device complexity is obtained
by engineering a nanodevice on the basis of TWTLs, which support two orthogonal
eigenmodes. The proposed device allows the synthesis and in situ analysis of multi-
mode plasmonic excitations. Preparation of deterministic eigenmode superpositions is
simply achieved by proper positioning of a tightly focused laser beam with respect to
the incoupling antenna attached to the TWTL and by adjusting its polarization. This
controlled superposition and interference of multiple eigenmodes yields the possibility
to tap new degrees of freedom to create advanced circuit functionality beyond single-
mode interference, e.g. coherent control of the optical path taken by an excitation in
the circuit. This is subsequently studied in a dedicated nanoscale directional coupler
device.
In contrast to classical electronic circuits, where a symmetric bifurcation inevitably

causes an equal splitting of any input current pulse toward the two output ports, a
fundamentally di�erent behavior can be induced in plasmonic circuitry by exploiting
the existence of multiple eigenmodes and coherence - both not accessible in classical
electronics. An intuitive and optimized design enables a switching between both out-
put ports by simply varying the linear input polarization. By manipulating the input
polarization of ultrashort pulses and pulse pairs open-loop ultrafast spatial and spa-
tiotemporal coherent control of plasmon propagation is experimentally demonstrated
representing a very intuitive classical analogue to quantum control in molecules.
In view of the ever increasing device complexity with simultaneously decreasing tol-

erance toward fabrication uncertainties, quantitative nano-imaging tools for accessing
near-�eld distributions of optical nanocircuits are urgently needed. The capabilities of
normal-incidence two-photon PEEM for this purpose are examined. Therefore, the pre-
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viously introduced directional coupler is used as a showcase nanocircuit enabling the
successful imaging of propagation, interference, and routing of multiple guided modes.
Heuristically, the recorded photoemission yield can be modeled with high precision by
considering the 4th power of the numerically simulated electric near-�eld around the
nanocircuit, paving the road for a future widespread application of normal-incidence
PEEM.
The advances made in this work directly allow for a plethora of new and interesting

devices, such as spin-optical nano devices and single-plasmon nanocircuits. The former
uses the spin of photons as a carrier of information and might enable a variety of novel
devices, just as spintronics did in electronics by using the intrinsic spin of electrons.
The latter uses a self-assembled quantum dot that e�ciently excites narrow-band single
plasmons and demonstrates the feasibility of fully on-chip plasmonic nanocircuits for
quantum optical applications. Therefore, the concept of plasmonic nanocircuitry has
a bright future.
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Zusammenfassung & Ausblick

Unsere moderne Informationsgesellschaft besitzt einen unersättlichen Hunger nach
zunehmenden Bitraten, d.h. einer ständig gröÿer werdenden Menge an zu verarbei-
tenden Informationen pro Zeiteinheit. Diese Jagd nach immer kleineren, schnelleren
und e�zienteren integrierten elektronischen Schaltkreisen hat zu wirklich nanoelek-
tronischen Schaltungen mit Strukturgröÿen um 10 Nanometer geführt. Gleichzeitig
sind grundlegende Einschränkungen in den erreichbaren Bitraten bei der Datenver-
arbeitung mit Elektronen aufgedeckt worden. Im Gegensatz dazu erfolgt die Daten-
verarbeitung mit Photonen unglaublich schnell und ist somit die Methode der Wahl
in photonischen Schaltkreisen zur digitalen Kommunikation. Allerdings verhindert
das Beugungslimit der Photonik die gleiche Miniaturisierung wie bei modernsten
nanoelektronischen Schaltkreisen. Auf der Suche nach neuen Technologien, die mit
der Mikrochipherstellung kompatibel sind und die Lücke zwischen nanoskaliger Elek-
tronik und mikroskaliger Photonik schlieÿen können, hat sich die Plasmonik als vielver-
sprechender Kandidat entwickelt. Dies ist den faszinierenden Eigenschaften von Edel-
metallen bei der Wechselwirkung mit sichtbarem Licht zu verdanken.

Zu Beginn dieser Arbeit befand sich das Fachgebiet der plasmonischen Nanoschalt-
kreistechnik noch in den Kinderschuhen. Die Leistungsfähigkeit des Schaltungsentwurfs
in der Elektronik basiert aus theoretischer Sicht darauf, dass komplexe Schaltkreise
durch das Anordnen einfacher Schaltungselemente in Netzwerken erzeugt werden kön-
nen. Insbesondere können deren Eigenschaften dann nach den Kirchho�schen Regeln
berechnet werden. Aufgrund der kurzen Plasmonenwellenlängen kann deren Anwend-
barkeit in Nanoschaltkreisen jedoch nicht mehr als selbstverständlich angesehen wer-
den und tatsächlich wurde ihre Gültigkeit auch noch nicht zufriedenstellend beant-
wortet, obwohl dies wertvolle Richtlinien für die Gestaltung komplexer nanophoto-
nischer Schaltkreise aus einfachen Bausteinen liefern würde. Diese Arbeit untersucht
eine Verzweigung plasmonischer Zweidrahtwellenleiter - einen grundlegenden Baustein
vieler nanophotonischer Schaltungen. Hierbei lässt sich ein neuer phänomenologischer
Parameter identi�zieren, der die Geometrie der Verzweigung mit der Plasmonenwellen-
länge in Beziehung setzt und es erlaubt, den Gültigkeitsgrad der Kirchho�schen Regeln
zu beurteilen. Zur Veranschaulichung der Stärke dieses Ansatzes wird daraufhin ein
System bestehend aus einem Zweidrahtwellenleiter und einer Nanoantenne als Ver-
braucher untersucht. Durch die gezielte Parallelschaltung einer nach den Kirchho�-
schen Regeln entworfenen Stichleitung kann die Signalübertragung an die Nanoantenne
maximiert werden.
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Motiviert durch mögliche Anwendungen zur integrierten optischen Signalführung
und -verarbeitung auf Mikrochips wurden in Experimenten bereits vielfältige Pro-
totypen von Plasmonenwellenleitern hergestellt. Bisher konzentrieren sich experi-
mentelle Studien auf den Einmodenbetrieb in ausgewählten Wellenleitergeometrien
und einfache Funktionalitäten fast ausschlieÿlich in Netzwerken von chemisch gewach-
senen Nanodrähten. Die gleichzeitige Verwendung mehrerer Eigenmoden in gezielt
entworfenen und mittels Abwärtsstrukturierung gefertigten Nanoschaltkreisen wurde
bisher noch nicht versucht. Das Ziel der vorliegenden Arbeit besteht darin, diese Lücke
durch Einsatz numerischer Simulationen zu schlieÿen und funktionelle plasmonische
Nanoschaltkreise zu entwerfen, die eine Steuerung des Photonen�usses im Nanometer-
bereich ermöglichen.
Zuerst wird mit dem Vorurteil Plasmonik sei eine ungenaueWissenschaft aufgeräumt.

In der Tat löste sogar das einfache Problem der Plasmonenübertragung durch einen
Nanodraht, was für jede Funktionseinheit auf dem Gebiet der plasmonischen Nanoschal-
tungen von zentraler Bedeutung ist, Diskussionen in der Literatur aus. Der Grund
hierfür liegt insbesondere in der begrenzten Reproduzierbarkeit von gefertigten Nano-
strukturen. Diese Arbeit stellt eine systematische numerische Studie der monochroma-
tischen Lichttransmission durch Golddrähte mit gleichem Querschnitt aber variabler
Länge dar. Bis jetzt unbemerkte Ausbreitungskanäle, die das Übertragungssignal aber
spürbar modulieren, werden aufgedeckt. Analytisch und quantitativ korrekt kann diese
Modulation durch den Einbau dieser zusätzlichen Kanäle in das übliche Fabry-Pérot-
Resonatormodell beschrieben werden. Optische Messungen an hochwertigen Struk-
turen, die durch das Fräsen aus monokristallinen Goldplättchen mittels fokussierten
Ionenstrahlen hergestellt werden, zeigen eine noch nie dagewesene Übereinstimmung
mit nur geringen noch verbleibenden Unsicherheitsquellen.
Die Verwendung numerischer Simulationen für die gezielte Gestaltung und Analyse

funktioneller plasmonischer Nanoschaltkreise kann somit auf sichere Weise über den
einfachen Einmodenbetrieb linearer Drähte hinaus erweitert werden. Im logisch näch-
sten Schritt wird die Komplexität durch Konstruktion eines Nanoschaltkreises auf der
Basis von Zweidrahtwellenleitern, die zwei orthogonale Eigenmoden unterstützen, er-
höht. Die vorgeschlagene Vorrichtung ermöglicht die Synthese und In-situ-Analyse
von plasmonischen Multimodenanregungen. Die Präparation deterministischer Über-
lagerungen dieser Eigenmoden wird in einfacher Weise mittels korrekter Positionierung
eines fokussierten Laserstrahls und durch Einstellung von dessen Polarisation in Bezug
auf die am Zweidrahtwellenleiterende angebrachte Einkopplungsantenne erreicht. Die
mittels der gezielten Interferenz dieser Eigenmoden erschlossenen zusätzlichen Frei-
heitsgrade ermöglichen erweiterte Schaltungsfunktionalitäten jenseits von Einmoden-
interferenz, z.B. die kohärente Steuerung des optischen Weges einer Anregung im
Schaltkreis. Dies wird anschlieÿend in einer dedizierten nanoskaligen Richtkoppler-
schaltung untersucht.
Im Gegensatz zu klassischen elektronischen Schaltkreisen, bei denen eine symme-

trische Bifurkation zwangsläu�g eine gleichmäÿige Aufteilung eines Eingangsstrom-
impulses auf beide Ausgangsanschlüsse bewirkt, kann ein grundsätzlich unterschied-

118



liches Verhalten in plasmonischen Schaltkreisen induziert werden, indem die Existenz
von mehreren Eigenmoden und Kohärenz ausgenutzt wird - beide nicht zugänglich
in der klassischen Elektronik. Ein intuitives und optimiertes Design ermöglicht ein
Umschalten zwischen beiden Ausgängen durch einfaches Variieren der linearen Ein-
gangspolarisation. Durch Manipulation der Eingangspolarisation ultrakurzer Pulse
und Pulspaare wird ultraschnelle räumliche und räumlich-zeitliche kohärente Steuerung
der Plasmonenausbreitung experimentell demonstriert, was ein sehr intuitives klassi-
sches Analogon zur Quantenkontrolle in Molekülen darstellt.
Angesichts der ständig wachsenden Komplexität plasmonischer Bauelemente bei

gleichzeitig abnehmender Toleranz gegenüber Fertigungsungenauigkeiten werden drin-
gend quantitative Verfahren zur Visualisierung der Nahfeldverteilungen von optischen
Nanoschaltkreisen benötigt. Die Eignung von Zwei-Photonen Photoemissionselektro-
nenmikroskopie unter senkrechtem Lichteinfall wird zu diesem Zweck untersucht. Hier-
zu wird der zuvor eingeführte Richtkoppler als Beispielstruktur verwendet, der die er-
folgreiche Abbildung von Ausbreitung, Interferenz und Lenkung mehrerer geführter
Eigenmoden ermöglicht. Heuristisch kann man die registrierte Photoemissionsaus-
beute mit hoher Präzision modellieren, indem man die vierte Potenz der simulierten
elektrischen Nahfeldstärke um den Nanoschaltkreis betrachtet. Dies ebnet den Weg für
eine zukünftig weit verbreitete Anwendung von Photoemissionselektronenmikroskopie
unter senkrechtem Lichteinfall.
Der mit dieser Arbeit erzielte Fortschritt erlaubt direkt eine Fülle neuer und inter-

essanter Anwendungen von spinoptischen bis quantenphotonischen Nanoschaltkreisen.
Erstere nutzen den Spin von Photonen als Informationsträger und können eine Vielzahl
neuartiger Funktionalitäten ermöglichen, genauso wie die Spintronik neue Anwendungs-
möglichkeiten in der Elektronik durch die Verwendung des intrinsischen Elektronen-
spins scha�te. Letztere verwenden selbstorganisierte Quantenpunkte zur e�zienten,
schmalbandigen Anregung einzelner Plasmonen und demonstrieren die Machbarkeit
von plasmonischen Nanoschaltkreisen auf einem Mikrochip für quantenoptische An-
wendungen. Das Konzept der plasmonischen Nanoschaltkreise wird daher auch eine
goldene Zukunft haben.
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Appendix A

Analytical model for eigenmodes of

cylindrical nanowires

Here, the analytical model for the eigenmode determination of chemically grown plas-
monic nanowires with cylindrical cross section, as sketched in Fig. 5.1a, is reproduced
[35, 48]. Their cylindrical shape directly evolves from rolling up a single metal-
dielectric interface. The metal and dielectric domains are characterized by dielectric
functions ε1(ω) and ε2, respectively.
Plasmonic modes of this cylindrical nanowire are obtained by solving the full vector

wave equations (2.17) and (2.18) in cylindrical coordinates (r,ϕ,z), which is well doc-
umented in the literature [87, 136]. By expressing the �elds F (both E and H), that
propagate along the nanowire, in separable form

F(r, ϕ, z) = F̂(r, ϕ) ei(kSPPz−ωt), (A.1)

the wave equation reduces to Bessel's second order di�erential equation with solutions
F̂nm for mode (n,m) of the form

F̂n,m(r, ϕ) ∝ eimϕ

{
Jn(κ1r) for 0 ≤ r < R

H(1)
n (κ2r) for r > R.

(A.2)

Here, Jn and H
(1)
n are cylindrical Bessel and Hankel functions of the �rst kind of

order n that describe the radial dependence within and outside of the metal cylinder,
respectively. These solutions ensure both a �nite �eld value at the nanowire center
as well as the proper behavior at in�nity. The azimuthal dependence of the �elds in
each domain is described by a harmonic dependence of order m. The transverse wave
vector κi in medium (domain) i ∈ {1, 2} is denoted by

κi =
√
k2

0εi − γ2, (A.3)

with the vacuum wave vector k0 = 2π/λ.1

1It is important to note, that the square root with positive imaginary part must always be taken
for κ2 to satisfy the radiation condition at in�nity [48].
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Appendix A Analytical model for eigenmodes of cylindrical nanowires

The continuity of the tangential components of the E- and H-�elds [cf. Sec. 2.4]
at the domain boundary r = R dictates a system of four homogeneous equations.
Speci�cally, in case of the fundamental TM0 mode, a single transcendental equation
[135]

ε1(λ)

κ1R

J1(κ1R)

J0(κ1R)
− ε2(λ)

κ2R

H
(1)
1 (κ2R)

H
(1)
0 (κ2R)

= 0 (A.4)

remains for the complex propagation constant kSPP, from which λeff and ldecay can be
deduced.
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Appendix B

Analytical model of systems

involving stubs and load antennas

B.1 Parallel connection of stub and in�nite TWTL

In the following, we adopt well-known formulas from the RF regime, as can be found
in standard textbooks [176], in order to describe plasmonic systems and validate Kirch-
ho�'s analysis at optical frequencies. Let Zopen be the impedance of the open-circuit
'load'. A stub with length L can be seen as an open-circuit load attached to a segment
of TWTL with length L, therefore its impedance Zstub can be described via

Zstub = Z0
Zopen + Z0 tanh(kd)

Z0 + Zopen tanh(kd)
. (B.1)

If this stub is parallel-connected to an in�nite TWTL, the total input impedance Ztot

measured at the stub connection position is the parallel of Zstub and Z0, i.e.

1

Ztot
=

1

Zstub
+

1

Z0

. (B.2)

Therefore, the re�ection coe�cient Γtot at this reference plane can be evaluated as

Γtot =
Ztot − Z0

Ztot + Z0

(B.3)

and is plotted as the blue solid lines in Fig. 6.4c.
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Appendix B Analytical model of systems involving stubs and load antennas

B.2 Re�ection coe�cient of load antenna

If a TWTL with characteristic impedance Z0 is loaded by an antenna with impedance
ZL attached to the TWTL termination [as shown in Fig. B.1a], the re�ection coe�cient
Γ measured at the load position can be written as

Γ =
ZL − Z0

ZL + Z0

. (B.4)

Numerically simulated values of Γ obtained by �tting the total intensity Itotal of the
standing wave patterns building up along the input TWTL [Fig. B.1b] with the ana-
lytical model described by Eq. (4.20) are displayed in Fig. B.1c for varying antenna
length lant. The re�ection amplitude can be strongly controlled by choosing a certain
antenna length.

Figure B.1: Tuning the re�ectivity by a load antenna's total length. (a) Sketch of the
investigated system of a TWTL terminated by an optical antenna of length lant. The displayed
antisymmetric mode is directly launched from the left and propagates along the nano-sized
TWTL. Inset: Equivalent circuit representation of the system. (b) Simulated mode's standing
wave pattern along a cut at midheight through the TWTL for an open end termination (left),
antenna with lant = 230 nm (center), and antenna with lant = 290 nm (right). The scale bar
in panel b is 100 nm. (c) Re�ection amplitude (left) and phase (right) for varying antenna
length. Figure taken from [157].
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B.3 Parallel connection of stub and load antenna terminated �nite TWTL

B.3 Parallel connection of stub and load antenna

terminated �nite TWTL

With the knowledge of the antenna impedance ZL, it is further necessary to derive the
input impedance Zin of a system composed of an additional TWTL segment of length
d terminated by such an antenna. In analogy to Eq. B.1, Zin can be calculated as

Zin = Z0
ZL + Z0 tanh(kd)

Z0 + ZL tanh(kd)
. (B.5)

The parallel connection of Zin and Zstub gives the total input impedance Z ′tot of the
system shown in Fig. 6.5a, which reads

1

Z ′tot
=

1

Zstub
+

1

Zin
. (B.6)

Again, the re�ection coe�cient Γ′tot measured at the stub connection position can be
evaluated as

Γ′tot =
Z ′tot − Z0

Z ′tot + Z0

, (B.7)

and is plotted for certain combinations of antenna length lant, stub distance d, and
stub length L as the blue solid lines in Figs. 6.5b-c, B.2, B.3, and B.4.
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Figure B.2: Re�ection amplitude and phase of a system composed of a �nite stub of varying
length L connected in parallel with an open end terminated TWTL of length d = 50 nm,
100 nm, 150 nm, 200 nm, 300 nm, 500 nm, 750 nm, 1000 nm, and 2000 nm (from top left to
bottom right). The red dots are obtained by �tting of FDTD simulation data, while the blue
solid lines are obtained by the analytical model.
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B.3 Parallel connection of stub and load antenna terminated �nite TWTL
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Figure B.3: Re�ection amplitude and phase of a system composed of a �nite stub of varying
length L connected in parallel with a TWTL of length d = 50 nm, 100 nm, 200 nm, 500 nm,
and 1000 nm (from top left to bottom right) terminated by a resonant antenna of length
lant = 230 nm. The red dots are obtained by �tting of FDTD simulation data, while the blue
solid lines are obtained by the analytical model. Figure taken from [157].
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Figure B.4: Re�ection amplitude and phase of a system composed of a �nite stub of varying
length L connected in parallel with a TWTL of length d = 50 nm, 100 nm, 200 nm, 500 nm,
and 1000 nm (from top left to bottom right) terminated by a resonant antenna of length
lant = 290 nm. The red dots are obtained by �tting of FDTD simulation data, while the blue
solid lines are obtained by the analytical model. Figure taken from [157].
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