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Abstract

Brain computer interfaces based on sensorimotor rhythms modulation (SMR-BCIs) allow
people to emit commands to an interface by imagining right hand, left hand or feet movements.
The neurophysiological activation associated with those specific mental imageries can be
measured by electroencephalography and detected by machine learning algorithms. Improve-
ments for SMR-BCI accuracy in the last 30 years seem to have reached a limit. The currrent
main issue with SMR-BCIs is that between 15% to 30% cannot use the BCI, called the "BCI
inefficiency" issue. Alternatively to hardware and software improvements, investigating the
individual characteristics of the BCI users has became an interesting approach to overcome
BCI inefficiency. In this dissertation, I reviewed existing literature concerning the individual
sources of variation in SMR-BCI accuracy and identified generic individual characteristics.
In the empirical investigation, attention and motor dexterity predictors for SMR-BCI perfor-
mance were implemented into a trainings that would manipulate those predictors and lead
to higher SMR-BCI accuracy. Those predictors were identified by Hammer et al. (2012) as
the ability to concentrate (associated with relaxation levels) and "mean error duration" in a
two-hand visuo-motor coordination task (VMC). Prior to a SMR-BCI session, a total of n=154
participants in two locations took part of 23 min sessions of either Jacobson’s Progressive
Muscle Relaxation session (PMR), a VMC session, or a control group (CG). No effect of PMR
or VMC manipulation was found, but the manipulation checks did not consistently confirm
whether PMR had an effect of relaxation levels and VMC on "mean error duration". In this
first study, correlations between relaxation levels or "mean error duration" and accuracy were
found but not in both locations. A second study, involving n=39 participants intensified the
training in four sessions on four consecutive days or either PMR, VMC or CG. The effect or
manipulation was assessed for in terms of a causal relationship by using a PRE-POST study
design. The manipulation checks of this second study validated the positive effect of training
on both relaxation and "mean error duration". But the manipulation did not yield a specific
effect on BCI accuracy. The predictors were not found again, displaying the instability of
relaxation levels and "mean error duration" in being associated with BCI performance. An
effect of time on BCI accuracy was found, and a correlation between State Mindfulness Scale
and accuracy were reported. Results indicated that a short training of PMR or VMC were
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insufficient in increasing SMR-BCI accuracy. This study contrasted with studies suceeding
in increasing SMR-BCI accuracy Tan et al. (2009, 2014), by the shortness of its training
and the relaxation training that did not include mindfulness. It also contrasted by its ma-
nipulation checks and its comprehensive experimental approach that attempted to replicate
existing predictors or correlates for SMR-BCI accuracy. The prediction of BCI accuracy by
individual characteristics is receiving increased attention, but requires replication studies and
a comprehensive approach, to contribute to the growing base of evidence of predictors for
SMR-BCI accuracy. While short PMR and VMC trainings could not yield an effect on BCI
performance, mindfulness meditation training might be beneficial for SMR-BCI accuracy.
Moreover, it could be implemented for people in the locked-in-syndrome, allowing to reach
the end-users that are the most in need for improvements in BCI performance.



Résumé

Les interfaces cerveau-ordinateur (angl. brain-computer interfaces, BCIs) basées sur les
rythmes sensorimoteurs (angl. sensorimotor rhythms, SMR) permettent d’émettre des com-
mandes par l’imagination de mouvements des mains ou des jambes. Dans le cas des BCIs
non-invasifs, les manifestations neurophysiologiques liées á l’imagination motrice peuvent
être mesurées par électroencephalographie (EEG) á la surface du cuir chevelu, puis détectées
á l’aide d’algorithmes d’apprentissage. Après 30 années de progrès dans l’implémentation
des BCI basées sur les SMR, il devient de plus en plus difficile d’obtenir un gain significatif
de performance, alors qu’il est estimé qu’entre 15% et 30 % des utilisateurs ne peuvent pas
utiliser une BCI basée sur les SMR. On parle d’inefficacité de la BCI (angl. BCI inefficiency).
Une alternative aux avancées matérielles et logicielles réside dans l’investigation de carac-
téristiques propres à l’utilisateur. Dans ce travail de thèse, j’ai d’abord procédé à une revue
de littérature sur les sources individuelles de variation de la performance SMR-BCIs, sous
la forme de caractéristiques psychologiques, neurologiques et neuroanatomiques propres à
l’utilisateur. Pour l’étude empirique, je me suis basé sur deux prédicteurs – l’attention et la
dextérite motrice – que j’ai expérimentalement manipulés par des protocoles d’intervention.
Ces deux prédicteurs ont été identifiés par Hammer et al. (2012) en tant que capacité à se
concentrer (ability to concentrate) et durée moyenne d’erreur dans une tâche de coordination
visuo-motrice (mean error duration in a visuomotor coordination task, VMC). La première
étude comprend N=154 participants recrutés dans deux villes allemandes (Würzburg et
Berlin). Avant de procéder à une session de BCI basée sur les SMR, les participants ont été
aléatoirement répartis en trois groupes d’intervention d’une durée de 23 minutes. Le groupe
PMR a pris part à une session de relaxation musculaire progressive de Jacobson, censée
relaxer le participant ; le groupe VMC a pris part a une session de coordination visuo-motrice
des deux mains, censé augmenter la dextérité motrice ; le groupe controle CG ayant eu pour
tâche de lire un texte. Les résultats, analysés indépendemment pour chaque lieu de mesure,
indiquent que l’entraînement PMR ou VMC n’ont pas provoqué d’amélioration significative
de la performance BCI. L’effet des interventions sur leurs variables témoins respectives (PMR
sur le niveau subjectif de relaxation ; VMC sur la durée moyenne d’erreur) sont inéquivoques.
Il n’est donc pas possible d’interpréter l’absence d’effet d’entraînement sur la performance
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BCI. Les corrélations entre les variables témoins et la performance BCI répliquent les deux
prédicteurs à l’origine de l’étude, mais ces résultats sont restreints à l’un des deux lieux
de mesure. La seconde étude a été menée sur N=39 participants pour lesquels la durée
d’entraînement (soit PMR, VMC ou CG) a été prolongée sur quatre sessions étalées sur
quatre jours successifs. Cette seconde étude a été conçue selon un modèle pré-test post-test
permettant de réduire la sensibilité aux variations inter-individuelles de la performance, ainsi
que de tester la présence d’une relation causale entre entraînement et performance BCI. Les
variables témoins – relaxation et durée d’erreur VMC– ont evolué de maniere positive validant
les entraînements. Cependant, les entraînements PMR et VMC n’ont eu aucun effet positif
sur la performance BCI basée sur les SMR. Les prédicteurs n’ont donc pas de nouveau été
répliqués, démontrant l’instabilité des niveaux de relaxation et la performance VMC dans
leur association avec la performance BCI. L’effet de temps sur la performance BCI, constaté
dans de nombreuses études a été répliqué. De manière plus inattendue, une correlation entre
l’échelle d’attention consciente (state mindfulness scale, SMS) et la performance BCI a été
révélée. Globalement, Les résultats de ces deux études empiriques indiquent que de courts
entraînements PMR ou VMC ont été insuffisants pour améliorer la performance BCI. Ces
études contrastent donc avec les précédentes études qui au contraîre ont montré un effect
positif d’un entraînement en relaxation Tan et al. (2009, 2014), notamment marqués par leur
durée s’étalant sur plusieurs mois ainsi que leur forme de relaxations basées sur la méditation
de pleine conscience (angl. Mindfulness). Mes deux études se démarquent cependant par la
présence de tests de manipulation, l’approche expérimentale basée sur l’implémentation du
potentiel des prédicteurs et corrélats de la performance BCI. La prédiction de performance
SMR-BCI par des caractérisiques individuelles reçevant une attention croissante ces dernières
années, il est nécessaire pour contribuer efficacement au domaine des sources de variation des
BCI, d’opter pour une approche expériementale englobant les résultats existants, notamment
par l’effort de réplication, et de comparaison d’études. En conclusion, Alors que de courts
entraînements PMR et VMC n’ont pas eu d’effets sur la performance BCI basée sur les SMR,
la piste de l’entraînement de méditation pleine conscience présente un potentiel qu’il est
nécessaire de confirmer. De plus, il pourraît être mis en place pour des patients paralysés
moteur (angl. locked-in syndrome, LIS), permettant de fait d’atteîndre la population pouvant
le plus profiter des améliorations de la performance BCI.



Zusammenfassung

Gehirn-Computer Schnittstellen (engl. brain-computer interfaces, BCIs), basierend auf
der Modulation sensomotorischer Rhythmen (SMR), erlauben Menschen, Befehle an eine
Schnittstelle zu übermitteln, beispielsweise durch die Vorstellung von Bewegungen der Hände
oder der Füße. Die neurophysiologische Aktivität, die mit den Bewegungsvorstellungen
assoziiert ist, kann mittels Elektroenzephalographie gemessen und durch Algorithmen aus
dem Bereich des maschinellen Lernens detektiert werden. Die Fortschritte in Bezug auf
SMR-BCIs, die es in den letzten 30 Jahren gab, scheinen an eine Grenze zu stoßen. Das
Hauptproblem liegt darin, dass 15 bis 30% der Nutzer keine Kontrolle über SMR-BCIs
erlangen. Dieses Phänomen wird als „BCI Ineffizienz“ bezeichnet. Neben Verbesserungen
der Hard- und Software ist die Untersuchung individueller Charakteristika der BCI Nutzer
ein vielversprechender Ansatz, um die BCI Ineffizienz zu überwinden. Im Rahmen dieser
Dissertation habe ich zunächst durch eine Literaturstudie zu den Ursachen der Variation der
SMR-BCI Genauigkeiten individuelle Charakteristika identifiziert. In der experimentellen
Untersuchung wurden Aufmerksamkeit und Feinmotorik als Prädiktoren für die Leistung mit
einem SMR-BCI in ein Trainingsparadigma aufgenommen, das zum Ziel hatte, die SMR-BCI
Genauigkeiten zu verbessern. Diese Prädiktoren wurden von Hammer et al. (2012) als die
Konzentrationsfähigkeit (assoziiert mit Entspannungsniveau) und „mittlere Fehlerdauer“ in
einer beidhändigen visuomotorischen Koordinationsaufgabe (engl. two-hand visuo-motor
coordination task, VMC) identifiziert. In der ersten Studie der vorliegenden Dissertation
nahmen insgesamt n=154 Studienteilnehmer an zwei verschiedenen Standorten teil. Im
Vorfeld einer SMR-BCI Sitzung nahmen diese entweder an einer 23-minütigen Sitzung mit
Progressiver Muskelrelaxation nach Jacobson (PMR), einer Sitzung mit VMC oder einer
Kontrollgruppe (KG) teil. Es zeigten sich keine Effekte auf die Genauigkeiten des SMR-
BCI als Folge der Versuchsbedingung (VMC, PMR oder KG). Jedoch konnte auch durch
Manipulationschecks nicht konsistent bestätigt werden, dass PMR eine Auswirkung auf das
Entspannungsniveau und VMC auf die „mittlere Fehlerdauer“ hatte. In dieser ersten Studie
konnten Korrelationen zwischen dem Entspannungsniveau oder „mittlerer Fehlerdauer“ und
der Genauigkeit mit dem SMR-BCI aufgedeckt werden, jedoch nicht an beiden Standorten.
In der zweiten Studie dieser Dissertation mit n=39 Teilnehmern wurde das Training durch die
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Steigerung auf vier Sitzungen intensiviert, die an vier aufeinanderfolgenden Tagen entweder
mit PMR, VMC oder KG durchgeführt wurden. Der Effekt dieser Manipulation auf SMR-
BCI Genauigkeiten wurde mittels eines Pretest-Posttest-Studiendesigns untersucht. Die
Manipulationschecks validierten den positiven Effekt des Trainings sowohl für Entspannung
als auch die „mittlere Fehlerdauer“. Es gab jedoch keine spezifische Wirkung des Trainings
auf die BCI Genauigkeiten. Entspannungsniveau und „mittlere Fehlerdauer“ konnten nicht
als zuverlässige Prädiktoren für SMR-BCI Leistung bestätigt werden. Es gab einen Effekt
der Zeit auf die BCI Genauigkeit und eine Korrelation zwischen der State Mindfulness
Scale und der Genauigkeit. Die Ergebnisse deuten darauf hin, dass ein kurzes PMR oder
VMC Training nicht ausreichten, um SMR-BCI Genauigkeiten zu steigern. Diese Studie
steht im Widerspruch zu Studien von Tan et al. (2009, 2014), die erfolgreich die SMR-BCI
Genauigkeit steigern konnten, unterscheidet sich von diesen jedoch auch durch die kürzere
Trainingsdauer und dem Fehlen von Achtsamkeitskomponenten beim Entspannungstraining.
Weitere Unterschiede liegen in dem verwendeten Manipulationscheck und dem umfassenden
experimentellen Ansatz der aktuellen Studie mit dem Ziel, zuvor ermittelte Prädiktoren oder
Korrelate von SMR-BCI Genauigkeit zu replizieren. Die Vorhersage von BCI Genauigkeit
durch individuelle Charakteristika erhält steigende wissenschaftliche Aufmerksamkeit, bedarf
aber Replikationsstudien und eines umfassenden Ansatzes, um die Beweislage hinsichtlich
Prädiktoren für SMR-BCI Genauigkeit zu verbessern. Während für kurze PMR und VMC
Trainings kein Effekt auf die SMR-BCI Genauigkeit aufgedeckt werden konnte, könnte sich
achtsamkeitsbasiertes Meditationstraining als vorteilhaft für die Leistung mit einem SMR-BCI
erweisen. Darüber hinaus könnte es auch für Personen mit Locked-In-Syndrom implementiert
werden, um so diejenigen Endnutzer zu erreichen, die am meisten von Verbesserungen der
BCI Leistung profitieren würden.
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Chapter 1

Introduction

Brain-computer interfaces (BCIs; for review, see Wolpaw and Wolpaw (2012)) are systems
that interpret activity from the brain into output commands. The "non-invasive" BCIs uses
external sensors such as scalp electroencephalography (EEG). The particularity of BCIs is that
they – in principle – do not rely on traditional muscular control, but only on neurophysiological
processes. Sensorimotor rhythms (SMR; for review, see Pfurtscheller and McFarland, 2012)
are frequencies in the range of 8Hz to 13Hz (µ) and 16Hz to 24Hz1 (β) present in the surface
EEG of motor and somatosensory areas. The strength of SMR rhythms is associated with
motor preparation or execution, following relatively generic patterns concering time and scalp
locations. SMR-based BCI requires user to perform motor imagery of a limb to lead to SMR
modulation, which can be translated into output commands. Its first implementation was
made by Wolpaw et al. (1986).

Improvements for SMR-BCI accuracy in the last 30 years seem to have reach a limit,
that can be described as a glass ceiling (McFarland et al., 2011). The currrent main issue
with SMR-BCIs is that between 15% to 30% (Allison and Neuper, 2010) cannot use the
BCI. Those people have initially been called BCI "illiterate". Researchers, such as Kübler
et al. (2011a); Grosse-Wentrup and Schölkopf (2013) have proposed that instead of mainly
looking for hardware and software improvements, individual characteristics (e.g. relaxation
or motivation states) of the BCI users have been overlooked, and that their investigation and
implementation could lead to further improvements. The change of perception on the issue
was also marked by a reversal in how "BCI illiterate" (i.e. people not able to learn the BCI)
were labeled. The authors named them "BCI inefficient" (Kübler et al., 2011b), putting the
blame on the BCI to not be able to interpret the brain activity of the users.

At the very beginning of this doctoral work (i.e. in 2011), only a few studies had inves-
tigated and reported individual characteristics for SMR-BCI, such as motivation (Nijboer

1The frequencies often vary from 1Hz to 2Hz depending on the source or author.
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et al., 2008), locus of control (Burde and Blankertz, 2006), attention levels (Grosse-Wentrup
et al., 2011), age and full-body movements (Randolph et al., 2010), resting SMR rhythms
(Blankertz et al., 2010), and ability to concentrate and proficiency in a visuo-motor task
(Hammer et al., 2012).

1.1 Aim of the dissertation

In this dissertation, the approach was to investigate the individual dimension of the BCI
user in relation with SMR-BCI accuracy. To proceed I collected and identified variables that
explained variation in SMR-based BCI accuracy, supported by empirical evidence. Having
identified these source of variation, the objective was to propose and evaluate trainings that
could increase SMR-BCI accuracy. Those trainings were based on the manipulation of the
identified predictors, and aimed at investigating a causal relationship between training and
BCI accuracy.

1.2 Structure of the dissertation

In the structure of this dissertation, I had a bottom-up approach that starts from the neuronal
origin of the brain activity. While this chapter (1) contains a short introduction of the topic of
the dissertation, the chapter 2 describes the origin of the motor activity of the brain. This can
only be understood by taking into account the the specific neuroanatomical organization of
the motor cortex brain (section 2.1) and its neurophysiological processes (section 2.3), which
can be measured via different means (section 2.2).

Having introduced in chapter 2 the existence of specific patterns of brain activity, I
described in chapter 3 the methods allowing these patterns to be instrumentally extracted
via EEG and translated into commands. After evoking the origins of how the modulation of
those patterns was conditionned via neurofeedback (section 3.1), I then concisely report how
it was implemented into communication systems via different EEG based BCI paradigms
(section 3.2). Focused only on SMR-BCIs, I introduced the methods to conduct SMR-BCI, (in
section 3.4), from EEG setup (section 3.4.1), reduction of the artifacts (section 3.4.2), to signal
processing (section 3.4.4) and experimental trial feedback (section 3.4.5). This method section
allows to evoke the complexity of SMR-BCI (as compared to neurofeedback), particularly by
the use of machine learning in spatial derivation and co-adaptive calibration (i.e. between
the user and the BCI), therefore positing SMR-BCI as the dynamical combination of spatial,
temporal and oscillatory properties of SMR modulation. Having described SMR-BCIs, I
introduce the different applications they are – or anticipated to be – used for (section 3.5).
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This section particularly describes the accidental or pathological conditions that lead to the
locked-in-state (LIS; section 3.5.1). As people in the LIS are the one who need – functional –
BCI the most, I provide a description of BCI-based implementations for assistive technology
(section 3.5.1) and the benefits the BCI can provide.

In chapter 4, I introduced the current models and guidelines for investigating variation in
SMR-BCI performance. This chapter first posits the issue of BCI inefficiency (section 4.1) that
motivated this dissertation, then provide guidelines and models of BCI control (section 4.2)
to better categorize and interpret the sources of varitation in the BCI.

The empirical investigation can be found in chapter 6. I provide a list and description of
individual predictors – and correlates – of BCI performance, sub-classified by their generic
subtypes (one per section, e.g. psychological, visuo-motor and spatial, neurophysiological,
anatomical). In the following section (5.5), I evoke the limitations of these predictors. In
the next section, I listed the – scarce – findings that, similarly to the aim of this dissertation,
successfully implemented specific training to increase SMR-BCI accuracy (section 5.7).

The original contribution in chapter 6 describes the empirical experimentation work in
two studies in which investigated the effect of relaxation and visuo-motor coordination based
training on SMR-BCI accuracy. The first study consisted in an intervention prior to SMR-BCI
training (section 6.1), while the second extended the training duration on four consecutive days
(section 6.2). Those two studies are retrospectively introduced with respective summaries,
research gap and research questions. Both studies are described following a substructure of
hypotheses, method, results and discussion.

In Chapter 7, a general discussion encompasses the findings of both studies and integrates
them in the state-of-the art review of the literature concerning individuals variation of SMR-
BCI performance. The limitations section (7.1) evokes the main issue that can limit the
generalization of the empirical investigation. The next section (7.2) concludes this dissertation
and provides a general interpretation of this dissertation. An outlook (section 7.3) provides
my future plans following this doctoral dissertation work.





Chapter 2

Motor activity in the brain

2.1 The motor cortex

The motor cortex refers to dorsal areas of the frontal lobe, involved in the planning and
execution of movement. It is defined in smaller areas called (from anterior to posterior):
premotor cortex (PMC), supplementary motor area (SMA); primary motor cortex (M1);
primary and secondary somatosensory cortex (S1,SSA); the posterior parietal cortex (PPC,
see Figure 2.1). The primary motor cortex is anterior to the central sulcus ("anterior central
gyrus"), while the somatosensory cortex is located posterior to the central sulcus ("post
central gyrus"). An anatomical specificity of these cortices is their point-to-point mapping
with areas of the body, or "somatotopic arrangement". The discovery of this arrangement was
found by stimulating the motor cortex with weak electric discharges over the motor cortex
which would trigger movements, contralateraly from the stimulated side. Experimentations
led researchers to map these areas, by dogs (Fritsch and Hitzig, 1870), then on the brain
of apes (Ferrier, 1874, 1875) and later by humans (Campbell, 1905; Vogt and Vogt, 1919;
Foerster, 1936). After a meticulous investigation, Penfield and Boldrey (1937); Penfield and
Rasmussen (1950) provided a yet iconic drawing of the brain’s representation of the body on
a slice of the cortex called "motor homunculus", noting that the representation of the arm and
the fingers were disproportionately big in relation to other parts of the body. He also provided
somatosensory mapped body parts ("somatosensory homunculus"), with the particularity
that the two homunculus are slides of the cortex located side by side along the central gyrus,
with the position of the motor and somatosensory mapped areas roughly matching. The
somatosensory homunculus comprises additional representations of body parts that are linked
with only few to no muscles such as the nose, internal organs, the pharynx and genitals. Yet,
while it looks well organized, the brain is renowned for its complexity, and limitations of
this model have been evoked by (Penfield and Rasmussen, 1950, p. 56), mentioning the
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homunculus: "A figurine of this sort cannot give an accurate indication of the specific joints
in which movement takes place, for in most cases movement appears at more than one joint
simultaneously [. . . ]". Recent studies confirm these early findings (e.g. Asanuma and Rosén,
1972), demonstrating that there is an overlap and a wide distribution of smaller body across
arm, leg and face representations.

Figure 2.1 Representation of the motor areas on the Human cortex.The upper part shows the
area between the right and left cortices, in the longitudinal fissure. SMA: supplementary
motor area; PMC: premotor cortex; MI: Primary motor cortex; SI: somatosensory cortex
(Source: Iamozy/Pancrat, Wikimedia CC BY )

The particularity of the somatotopic areas (M1,S1) lies in the fact they are mapped in a
way that enables to roughly locate and discriminate the representation limbs, making them
interesting for BCIs. For example, the somatosensory representation of both feet can be
found on the central midline of the cortex (called Cz in electroencephalography); and the
somatosensory representation of the hand can be found laterally on the side of the motor
cortex (C3 for left cortex, C4 for the right cortex, EEG montage is described in section 3.4.1).

There are in the brain several types of neurons with different functions. The cortex is
notably known to be populated with a high amount of pyramidal neurons. Those neurons
were named after the conic shape of the cell body (soma) and can be found in several layers of
the cortex. They have the particularity of having their apical (upper) dendritic tree projecting
directly and perpendicularly below the surface of the cortex (see Figure 2.2).

2.2 Measuring neuronal activity

2.2.1 Invasive recordings
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Figure 2.2 Drawing of golgi-
stained cortex, representing
pyramidal neurons (from
y Cajal, 1899; p. 363, public
domain)

An invasive and most specific method to measure neuronal activ-
ity is to insert a very small needle shaped microelectrode in the
cortex, with its conductive end either in contact with the neuron,
or in its vicinity. The methods allow to measure the electrical
activity of the neuron with a very good time resolution, and is
visualized on a time axis as a succession of spikes. Intserting
the electrode directly inside the somatotopically mapped areas
(see section 2.1) alows to measure neurons associated with the
sensorimotor function. An invasive study with apes conducted
by Georgopoulos et al. (1986) found that the direction of the
arm movement could be decoded by summing the spike activity
of a population neurons in the motor cortex mapping the arm.
To do such a measurement, the author used a device called a
microelectrode array, which is composed by a grid of micro-
electrodes (see figure), greatly increasing the number of input
channels. The analysis is conducted on spike trains (see "rate
coding theory"; Adrian and Zotterman (1926); or "temporal
coding theory"; Theunissen and Miller, 1995). Alternative to
spike measurements, instruments can measure the summed up
neural activity directly at the surface of the cortex via electro-
cortigraphy (ECoG) or scalp electroencephalography (EEG),
allowing for measuring oscillatory patterns.

2.2.2 EEG oscillations

The beginning of EEG measurements by Humans dates back to
Hans Berger, a German psychiatrist who measured EEG activity of the brain using Einthoven’s
string galvanometer (Moise et al., 2008; see Figure 2.4). The existence of such electrical
potentials produced by the brain was already proven by intra-cranial animal measurements by
Caton in 1875, who reported "fluctuations of the electric current often occured coincidently
with some movements of the animal’s body or changes in its mental condition;" (Caton, 1877).
The first frequency Berger identified was named alpha wave (α see Figure 2.5) and had a
frequency of 8–12 Hz which could be observed when participants were resting (Berger, 1929).
He then identified beta (β) for 12–30 Hz frequencies when his participants were in an attentive
state of mind. He subsequently named gamma (γ, 30 to 100 Hz) and delta (δ, below 4 Hz)
frequency bands. Walter et al. (1964) investigated tumoral lesions in the thalamus of apes,
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and observed a frequency in the 4 to 7 Hz range, which was called as theta (for thalamus; θ,
see Figure 2.5).

Figure 2.3 EEG recordings from Berger, showing α beta β EEG wave. A 10 Hz sinusoidal
wave was inserted as a reference below. (public domain)

While the role of lower γ waves (<60Hz) has been hypothesized to "bind" different areas
of the brain, there is no strong evidence of such a claim (Vanderwolf, 2000; Jerbi et al.,
2009). The γ band oscillations, as noted by Engel and Fries (2010), are involved in several
cognitive processes such as feature integration (Engel et al., 1992; Singer, 1995), stimulus
selection (Engel et al., 2001), attention (Jensen et al., 2007) and sensorimotor processing
(Grosse-Wentrup et al., 2011; Grosse-Wentrup and Schölkopf, 2013). A better consensus
was reached in lower frequency bands due to their activity reflecting cognitive processes
or states of wakefulness. The β band is observed during the active, busy or concentrating
state of the brain (Baumeister et al., 2008). The α band identified by Berger is known to
be prominent in the resting state or the absence of sensory input, and a more recent theory
show that α band relates to a disengagement of task-irrelevant brain areas or to the function
of short-term memory (Palva and Palva, 2007). θ activity has been extensively studied
in both animals and humans (Bland and Oddie, 2001) for its role in memory integration
during wakefulness and REM sleep. This θ activity is however found in the hippocampus,
which is the main subcortical substrate for memory. Yet, animal models did not transfer
to Humans, as was demonstrated that Human cortical θ is not directly synchronized with
hippocampal activity (Cantero et al., 2003). Instead, it reflects focused attention and is called
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Figure 2.4 Commercial ECG machine, built in 1911 by the Cambridge Scientific Instrument
Company (from Burch and DePasquale, 1964) to measure the human electrocardiogram
according to the standards developed by Einthoven. (Source: Norman publishing, http:
//www.historyofscience.com/norman-publishing/, accessed 11/20/2017, with permission)

"frontal midline θ" (Ishihara and Yoshii, 1972). Frontal-midline θ is more prominent during
inattentive (Gevins et al., 1997), drowsy, meditative, or in shallow sleep ("hypnaogic") states
of mind (Schacter, 1976). Yet, frontal-midline θ oscillations were also found to be linked
with dispositional anxiety (Osinsky et al., 2016), working memory (Raghavachari et al.,
2001), in short phases of about 1-2 seconds and time-locked to the cognitive event (Rizzuto
et al., 2003). θ oscillations were also found to be anticorrelated with α (Klimesch, 1999).
Finally, the lowest frequency brain oscillations, called Delta (δ), are predominant during
deep sleep. Their functional significance is not well understood, but Knyazev (2012) links
δ with autonomic and metabolic processes representing homeostasis. The author proposes
an evolutionary approach, associating δ with "evolutionary old basic" processes, that are in
adults "overshadowed by more advanced processes". Such old processes concerns the reward
system and defense mechanisms (Knyazev, 2007; Steriade et al., 1993).

Figure 2.5 Stereotypical EEG shape of cortical theta θ, delta δ, α and beta β. (Source:
The McGill Physiology Virtual Lab, https://www.medicine.mcgill.ca/physio/vlab/biomed_
signals/eeg_n.htm, accessed 11/20/2017, with permission)

http://www.historyofscience.com/norman-publishing/
http://www.historyofscience.com/norman-publishing/
https://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm
https://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm
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2.2.3 Recording the EEG activity

Oscillatory activity in the brain is the result of the combined activity of large populations
of pyramidal neurons. Instead of directly recording the individual activity of neurons from
within, it is also possible to measure the activity of a large population of neurons from the
surface of the cortex or from the scalp. From outside the cortical tissue, action potentials
cannot be measured in term of axonal potentials of neurons, due to their random directions,
myelin sheath insulation and fast latency. A rather viable candidate can be found in the
excitatory and inhibitory post synaptic potentials (IPSPs) occurring on the synapses of the
dendritic trees. Due to their particular anatomical properties, pyramidal neurons produce
electrical dipoles. At the individual level, the polarity of each dipole depends on the type of
synaptic stimulations, and whether they occur superficially or deep near the cell body (soma,
for review on the source of EEG, see Kirschstein and Kohling, 2009). The aggregated synaptic
activity of large quantities of neurons creates electrical dipoles that are measurable at the
surface of the cortex. Electrocorticography (ECog) is when an electrode is placed directly on
the surface of the cortex, (more commonly a patch several of electrodes). It requires surgery
to saw off a part the skull, and is used for a medical intervention that locates the neuronal
tissue responsible for epilepsy. Researchers which are unlikely to obtain an ethical approval
to perform such a surgery can however be allowed to perform measurements while the ECoG
is in place. Due to these non-optimal conditions of invasive recordings, non-invasive surface
EEG is the most commonly used method to measure brain activity. In this method, the
electrodes are placed at the surface of the scalp, extending the spatial resolution to several
centimeters while the signal to noise ratio is strongly reduced, due to the several layers of
brain tissues, bone and cerebrospinal fluid that attenuate the signal source and the electrode.
While the tension at the membrane of individual neurons ranges between -70 and 40 mV,
the EEG cap record neuronal currents with an amplitude of 80 µV. Moreover, surface EEG
contains a lot of noise originating from non-cerebral physiological and other environmental
sources called artifacts (described in section 3.4.3). Another common recording methods
exist, such as magnetoencephalography (MEG) that provides bettwer spatial resolution due
the non-interference of brain tissues with electromagnetic waves the device measures. Yet,
MEG requires a very strict setup, as experiments must be conducted in a magnetically shielded
room and the superconductors coils of the device requires super-cooling.

2.2.4 Why use EEG?

BOLD states for blood oxygenation level dependent. It is dependent on the hemodynamic
response that follows localized neuronal activity. Variations in the blood opacity can measured
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using Near Infrared spectroscopy (NIRS). The device sends infrared light though the skin
using small infrared (IR) emitters and measures it back using light sensors. The size of the
device and the spatial resolution are comparable to EEG, and can measure localized activity,
but suffers from its poor temporal resolution of several seconds. The magnetic resonance
imagery (MRI), records the magnetic resonance of the molecules that compose the brain
tissue. A variation of MRI called functional MRI (fMRI), allows to distinguish oxygenated to
deoxygenated blood, but the subsequent variations in blood flow are better discriminated. It
can measure activity at the surface and in deep areas of the brain with a spatial resolution of
a few millimeters. The high complexity of the device, using an assembly of strong magnets
precisely calibrated, with moving parts requires the participant to remain still in a small
chamber and endure loud noises. Diffusion weighted MRI (DWI) is a MRI based method
that maps the diffusion of water mollecules in the brain. A variant of this technique called
diffusion tensor imagery (DTI) makes possible to map the white matter tracts in the brain, in
addition to estimate their anisotropy (whether they all in line) and their orientation.

While all methods presented in this section can be used efficiently to extract information
from the brain, only the EEG – and NIRS to some extent – has been miniaturized and offer
an innocuous, easy to apply device that can be used outside a laboratory, justifying why it is
widely used.

The use of EEG and fMRI devices for research purposes in the 20th centrury has made
possible to precisely locate and detect patterns of activations in the brain associated with
behaviors or mental states. In this thesis, I specifically investigate activations in the motor
cortex linked to motor imagery retrieved by EEG. The voluntarily modulation of BOLD
activity while being supervised in real time by an fMRI (rt-fMRI), is anticipated to potentially
lead to BCI applications (Weiskopf et al., 2004), as it was shown to work in neurofeedback
applications (for a review see Sulzer et al., 2013), and can reach acceptable BCI control
accuracies (e.g. 80%; Sorger et al., 2012; Luhrs et al., 2017) while being still hard to achieve
(Sepulveda et al., 2016; for a review, see Ruiz et al., 2014). Nevertheless, it is yet limited by
its high cost and heavy setup constraints, and no recent breakthrough, or any improvement in
miniaturization or portability are on the horizon. Still, the NIRS allows for trading spatial
resolution for portability and price, and can therefore be used to measure hemodynamic
responses in the cortex.
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2.3 Motor function of the brain

2.3.1 Neural substrate of voluntary movements

Initially thought to be the source of voluntary movements, motor neurons (known also as
"Betz neurons") are large pyramidal neurons which have their axon projecting directly into
the spinal cord. This is called the direct pathway of motor movements (see Figure 2.6). But
to produce voluntary movement, there are far more areas than M1 alone recruited in the
process. The decision to trigger movements, their sequencing and coordination comes from
indirect pathways. One of the indirect pathways involves excitatory and inhibitory connections
between MI and the Basal Ganglia, including the Caudate Nucleus, the Putamen, both Globus
Pallidus and the Substantia Nigra. The second involves the SMA and the SI area interacting
with the cerebellum via the pontine nuclei. In addition to regulating balance and muscle
tonus, the role of the cerebellum is to coordinate sequences of movements. These "motor
loops", involving the basal ganglia, the cerebellum and the motor cortex is considered to be
the substrate for voluntary movement, the cerebellum coordinating sequences of movements
while basal ganglia inhibit the movements for preparation and then providing the "Go" for
movement execution. Higher order commands are transmitted down the spinal cord to the
interneurons and lower motor neurons (LMN) controlling the muscles. Upper motor neurons
(UMN) is used to label neurons from the cortex or in the brainstem.

From this model, we see that not only the primary motor cortex is involved in movement
preparation and execution, but also the SMA and S1, which are implied in secondary pathways,
and are important in the localization of brain areas associated with movement preparation
and execution.

2.3.2 Rhythms and components in the EEG

In this section, I provide a description of the different EEG patterns of activity in the brain
that are association with the motor function. Those are reported via the scope of EEG
measurements to provide a direct insight in how they could later be used in BCI paradigms.

Sensorimotor rhythms (SMR)

In their survey studies of occipital and central rhythms of the brain, Jasper and Andrews
(1938) reported that certain tactile or light stimulations affected α and β rhythms on the
central region. Despite the unsuccessful attempt of Bates (1951) in finding any change in α

or β oscillations in the motor areas preceding voluntary movements, Gastaut et al. (1952)
described the presence of arch-shaped waves ("rythme en arceau") of a frequency between
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Figure 2.6 Direct pathway of motor control from the cortex to the spinal chord, showing
the position of upper and lower motor neurons. (Source: OpenStax College, Anatomy &
Physiology, Connexions Web site. CC BY 4.0 https://cnx.org/contents/FPtK1zmh@8.108:
8_Ye-vQ3@6/Motor-Responses accessed 11/20/2017)

https://cnx.org/contents/FPtK1zmh@8.108:8_Ye-vQ3@6/Motor-Responses
https://cnx.org/contents/FPtK1zmh@8.108:8_Ye-vQ3@6/Motor-Responses
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7-11 Hz recorded over the motor cortex. Movements of the arm and thumb, whether they were
passive, reflex or voluntary were marked by contralateral activations or activations on both
hemispheres. Moreover, the contralateral blocking of the rhythms occurred a few seconds
before the onset of voluntary movements. These 9 Hz oscillations, also called rolandic wickets
were later on solely referred to as mu (µ). Pfurtscheller et al. (1976) investigated the contingent
negative variation (CNV, see ) paradigm, a shift in the EEG amplitude occuring 1 second
before moment onset ("expectancy wave"; Walter et al., 1964; or "readiness potentials";
(Deecke et al., 1976)) matching with the somatotopic mapping of the limbs. During this
investigation, Pfurtscheller et al. (1976) found a reduction in the α range concurrently to
the negative shift of the CNV. In the year that followed, Pfurtscheller (1977) described the
blocking of µ oscillations preceding the pressing of a button, which he called event-related
desynchronization (ERD), he found a similar effect, that he called ERD for "event-related
desyncrhonization" in the low β range (16-20 Hz) a few years afterwards (Pfurtscheller, 1981).
Over the years, Pfurtscheller (1992) refined a proper definition of the µ ERD: "not only an
electrophysiological correlate of cortical activation related to stimulus processing or motor
output, but is also characteristic for cortical areas or neural structures preparing to process
sensory information or ready and prepared to execute a motor command.". Pfurtscheller
then introduced the event related synchronization rebound ("secondary ERS") in the µ range
that follows the offset of a movement, and hypothesized to represent the inhibition of cortical
areas (Pfurtscheller, 1992).

Still, the ERD/ERS patterns described so far were restricted to the α frequency range, a
comprehensive review of these patterns was provided by Pfurtscheller and Lopes Da Silva
(1999). The authors evoked the presence of low β (14-19 Hz) and high β (20-24 Hz) in the
motor areas while µ rhythms in the somatosensory areas (Pfurtscheller et al., 1994; Salmelin
et al., 1995). As for the frequencies, the description of the topographic properties of SMR
ERD/ERS are scattered in several publications; Pfurtscheller et al. (2000) describe that during
motor preparation, a lower-frequency µ (8-10 Hz) ERD appears widespread over the motor
cortex, while a task-specific, higher-frequency µ (10-13 Hz) ERD remains topographically
restricted, especially in term or laterality. Pfurtscheller and McFarland (2012) specifically
evokes the presence of a β band ERD similar in location and topography to the µ. But β band
displays a typical ERS occurring on movement offset, which was called "β rebound".

Later, and with the use of MEG and EcoG for the detection of SMR rhythms, Pfurtscheller
and McFarland (2012) also report the presence of high γ associated with movements (Miller
et al., 2009; He et al., 2010). Lopes da Silva et al. (1976), using simulation data, demonstrate
that averaging the common activity a larger zone of neurons decreased the frequency while
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increasing the amplitude, but it is unclear whether it alone explains the inter-individual
variation in observed and reported frequencies, especially due to their different dynamics.

The origin in the brain of SMR rhythms has not yet been completely elucidated, but
Pfurtscheller and McFarland (2012) evoke that areas such as the thalamus, the subthalamic
nucleus and the pedunculopontine area display µ and β-range activity (Androulidakis et al.,
2008; Williams, 2002) and that specific ERD/ERS are reflected in those subcortical areas.
Klostermann et al. (2007) showed that with movement, µ ERD occurred in the cortex, while
µ ERS occurs in the subthalamic nucleus; β ERD occurs in both cortex, thalamus and
subthalamic nucleus.

It must be also indicated the presence of θ oscillations associated with the motor function.
More than being an indicator of drowsiness and inattention, θ oscillations have also been found
to be involved in sensorimotor processing. For example, cortical θ activity correlates with
performance in memory taks (Guderian et al., 2009; Kahana et al., 1999). More importantly
in the context of this thesis, Bland and colleagues’ research, based on rodents, proposed a
model in which θ oscillations integrate sensory and motor information with the hippocampus
during sensorimotor behavior (Bland and Oddie, 2001; Bland, 2009), acting as a carrier wave
(Jensen, 2001). The hippocampus is known to be a major component of short, long-term
memory and spatial memory both in rats (Winson, 1978) and in humans (Lega et al., 2012).
As transferring animal models to human model is not without discrepancies, Mitchell et al.
(2008) argues that unlike rodents, the θ rhythms in the frontal cortex are not directly coupled
with hippocampal activity, and that such oscillations are not directly and exclusively generated
in the hippocampus, but originate from other sources in the neo-cortex (Cantero et al., 2003).
In transfering this model to human, Caplan et al. (2003) found that θ activity, increased during
virtual movement as opposed to stillness, when sensory information and motor planning were
in flux. Cruikshank et al. (2012) reported higher θ oscillations during movement initiation
and execution as compared to stillness; adding that θ band had been overlooked by researchers
which were more interested in studying µ activity.





Chapter 3

SMR-BCI and its applications

As the origin of oscillatory activity in the motor cortex has been introduced. In this chapter,
we will see how EEG activity can be modulated, first by operant conditionning (i.e. "neuro-
feedback" section 3.1), then in BCI paradigms (section 3.2). A detailed method SMR BCI
is provided, indicating how to translate raw EEG signal into voluntary commands (section
3.4). At last, the section "BCI Applications" (3.5) comprises a desription of the end-user
population of BCIs, with the emphasis on locked-in syndrome, their requirement for assistive
technology and how BCI answer to those needs.

3.1 Neurofeedback

Biofeedback is a method that utilizes operant conditioning (Thorndike, 1911; Skinner, 1948)
to increase or decrease the occurence of a behavior that cannot or is insufficiently supervised
by proprioception, and require the participant to build control strategies. Those strategies
are meant to persist after the conditioning phase. Neurofeedback, in particular, is a type of
biofeedback that solely rely on brain activity. Operant conditioning of SMR rhythms was first
demonstrated on cats by (Wyrwicka and Sterman, 1968) and shown to increase sleep quality
(Sterman et al., 1970). Interestingly, both monkeys and cat who underwent the SMR training
had higher threshold in resisting drug induced seizures (Sterman et al., 1969), therefore
suggesting an inhibitory effect of SMR synchronization training. The SMR EEG training
was shown to produce similar inhibition in treating epilepsy seizures by Human (Sterman
and Friar, 1972).

The development of BCIs, evoked in the next section (3.2), is intertwined with the
development of neurofeedback. While both SMR neurofeedback and BCI rely on SMR
modulation as an input signal, neurofeedback attempts to provide a therapeutic or behavioral
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effect, and BCI attempts to provide control over the interface. BCIs for rehabilitation focus
on both aspects.

3.2 BCI paradigms

A brain computer interface (BCI) is a device that translate activity produced in the brain into
output commands. The term was first advanced by Vidal (1973). Alternatively, brain-machine
interface" (BMI, Joseph, 1985) has also been used to characterize such systems, particularly
when involving the use of invasive microelectrodes arrays. BCIs are driven by a "paradigm",
which is the ensemble of experimental protocols and trainings, combined with the use of
specific mental strategies from the user, allowing the system to extract voluntary commands
from EEG. The most common EEG paradigms are

• the P300 paradigm, based on the eliciting of P300 event-related potentials (EEG
amplitude)

• the SCP paradigm, based on the voluntary shifting the polarity of cortical activity
(EEG amplitude)

• the SMR paradigm, based on voluntarily modulate the frequency of SMR rhythms (µ
and β oscillations in the EEG)

• the SSVEP paradigm, in which the frequency of the attended stimuli (with the eyes) is
reflected in the occipital cortex (elicited oscillations in the EEG)

The diversification and the introduction of new BCI paradigms, including those that do
not strictly rely on CNS activity, led Wolpaw et al. (2002) to advance the term "dependent"
and "independent" BCI, term attributed on whether or not the BCI relied on muscular activity.
This is for example the case for SSVEP-BCI that relies on neural activity but is by design
inherently dependent on muscular control of the eyes. The term "hybrid", was introduced by
Graimann et al. (2010) to describe a BCI relying on two different paradigms, but as noted
by Wolpaw and Wolpaw (2012), can alternatively be used to describe a BCI relying on both
dependent and independent paradigms, therefore casting doubt about its independence. The
independence from muscular activity appears to be important for BCIs, at least for most
researchers, as shown in the report of a survey of the BCI community stakeholders, in which
Nijboer et al. (2013) report that 83.3% of the respondents answered that a BCI "must detect
brain activity directly (without using signals from peripheral nerves or muscles)".
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3.2.1 Characterizing the BCIs

Bitrate

The first characterization of a BCI is it’s performance. An estimation of the operational
capabilities of BCIs was proposed by evaluating the information transfer rate (ITR; Shannon
and Weaver, 1949) or bitrate (estimated in bits/minute; Obermaier et al., 2001), which
combines the number of possible choices with the output speed. This is the potential bitrate,
but due to the amount of selections required to cancel out false classifier predictions, the
bitrate or ITR correct for individual level of control. The criterion for "BCI efficiency" (Kübler
et al., 2011b) posits that in a binary classifier, a minimum of 70% accuracy is required to be
able to transmit information and correct errors. Below 70% the number of false classifier
predictions prevents participants to reliably correct for mistakes.

Synchronous vs Asynchronous

There are several classifications for BCI, we already mentioned hybrid and non-hybrid , and
mentioned the asynchronous based control (see introduction of section 3). Asynchronous
control means that the control over the BCI is self-initiated in opposition to external. But
BCIs can fall in each of the classes depending on the design. For example, while modulation
of SMR is autonomously produced by the user, a SMR BCI can be in one case "self-paced"
if the BCI relies on rest vs motor imagery. It is commonly designed to emit a command
after several contingent conditions are reached, such as exceeding a threshold for several
seconds ("asynchronous"). In a second case, it can be "externally-paced", when an output is
produced every few seconds, with timing restrictions imposed by the BCI ("synchronous").
Such a distinction cannot be found with ERP based BCIs since they are synchronous by
essence. They are indeed time-locked to an event and the events are produced externally. The
synchronous/asynchronous distinction raises a bigger issue encountered with BCIs in general.
In most setups and paradigms, indistinctively from the synchronous or the asynchronous
nature of a BCI, connected a user to a BCI forces the user to constantly interact with the
device, even in times the interaction is not wanted.

Invasive vs non-invasive

Also it is important to note that in parallel to EEG solutions, invasive BCIs (iBCIs) have
been developed. It was first demonstrated by Kennedy and Bakay (1998) that a person with
ALS could manipulate spikes in the motor cortex to move a cursor on a unidimensional
axis. A significant leap was done when Chapin et al. (1999), using a microelectrode array,
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enabled a monkey to control a 3-dimensional prosthesis, plus and additional dimension for
grasp. The proof-of-concept technology was later on successfully transferred to humans
(Hochberg et al., 2006). Long-term studies showed that invasive BCI could work for years,
even after the scaring process of brain tissue, which was expected to restrict the long-term
operability of the devices (Bartels et al., 2008). Outside from the significant issues related to
safety (discussed by Wong et al., 2009) when dealing with iBCIs, non-invasive BCIs have
advantages, notably in the field of portability (Zich et al., 2015) and easiness of use (Debener
et al., 2012); moreover it is argued that their performance can compete with their invasive
counterparts, according to Wolpaw and McFarland (2004).

3.3 SMR BCI

Vidal (1973) had anticipated techniques that bypass the normal output channels to issue
commands. Using electromyography (EMG, detection of potentials generated by muscle fiber
depolarization), Loeb (1989) developed a system that could send command to a prothesis; yet,
this was based on muscle control in the first place. Keirn and Aunon (1990) suggested that a
BCI system was feasible by exploiting the various rhythms detected in the brain such as δ, θ
α and β oscillations. In fact, a conjunction of factors led to the development to SMR based
BCI; it was found that SMR were linked with movement preparation (Pfurtscheller et al.,
1976, described in section 2.3.2), that they were measurable on most healty adult participants
(Pfurtscheller, 1989), and that such rhythms could be increased through biofeedback (Kuhlman,
1978). Wolpaw and colleagues combined those into a system that could issue commands,
introducing the "Wadsworth BCI" (Wolpaw et al., 1986, 1991). Named after their research
laboratory ("The Wadsworth Center"), the BCI could detect voluntary modulation of µ
rhythms, using bipolar electrodes placed over C3 (or C4 if the participant was left-handed).
The feedback on a TFT monitor displayed a ball moving up or down. The height of the
ball was defined by the participants’ µ activity, and the participants were told to attempt to
move ball up or down in a target direction for every trials. No particular instruction else
that avoiding muscle artifact was given to the participants, meaning they were expected to
implicitly learn the association between feedback and EEG modulation. Having ruled out
any contribution from EEG artifacts, Wolpaw et al. (1991) reported various strategies used
by the participants to control their µ rhythms ("thinking about activities (e.g lifing weights) to
move the cursor down and thinking about relaxing to move it up"). The system was calibrated
such that producing desyncronizing µ activity steered the ball down while synchronizing µ

activity steered it upwards. Interestingly, the authors also report that as training progressed,
several participants did no longer need to use mental imageries, but instead just though about
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moving the ball up or down, showing the success of the implicit learning. The wadsworth
BCI then integrated a time dimension, restricting the duration of each trial, and allowing to
evaluate BCI performance. The time was represented by the continuous horizontal movement
of the ball that took three seconds to move from left to right.

Concurrently, Pfurtscheller and colleagues started in 1991 to develop their own BCI,
they named after their laboratory "Graz BCI" (Pfurtscheller et al., 1993). The paradigm
and methods were very similar to the first Wadsworth BCI, but instead of opposing mental
imagery against rest, it differentiated between two movements imageries, respectiveley left
or right finger movements. For this purpose, the feedback was different: a fixation cross
appeared in the center of the screen, then the target was cued for 1 second by a rectangle on
the right or on the left side of the screen. For the 2 seconds of provided feedback, a cross
moved in real-time on the horizontal axis depending on classified EEG signals. Their early
results were such that the cursor was in the correct direction at the end of 70% of the trials.

Since two MI classes restricted the range of possible actions, several attempts have been
made to distinguish more than two classes by relying on three dimensions (Kalcher et al.,
1996; Scherer et al., 2004; Doud et al., 2011) and even five dimensions (Anderson et al., 1998).
The use of more than two motor imagery classes was used to allowed for the design self-paced
or "asynchronous" use of the BCI (Lotte et al., 2010), and it and considered by Hema et al.
(2011) as a viable option for the control of a wheelchair. A different,but nonetheless potent
asynchronous interface was proposed by Blankertz et al. (2006); Müller and Blankertz (2006)
called the "Hex-o-spell", allowing to periodically select one out of 6 choices by a one class
movement imagery (movement imagery vs rest).

3.4 Methods for SMR BCI

I present here an up-to date description on how to produce outputs from the modulation of
SMR in the context of a BCI. This section indirectly refers to concepts introduced in the
preceding sections.

3.4.1 EEG setup

Electrode arrangement

In its early findings, SMR rhythms associated with arm and thumb movements were performed
with bipolar recordings over C3 and C4 (Jasper and Andrews, 1938; Gastaut et al., 1952),
meaning that the amplifier recorded the difference between two electrodes. Currently, elec-
trode caps can have from 8 to 256 electrodes following layouts proportional to the dimensions
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of the head. Such proportion can be ensured by the use of the 10-20 system, 5-10 or 5-5
systems (Oostenveld and Praamstra, 2001). The electrodes can be regularly dispatched on
the head of the user or be more concentrated on certain areas of interest. The electrodes are
named after the cortex they are placed over (FP: frontal-pole, F: frontal, C: central, P: parietal,
O: occipital, T: temporal), and with a number that increases from the longitudinal fissure.
Over the fissure (i.e. the center), the position is coded with the letter "z", then electrodes
on the left side are coded with odd numbers and electrodes on the right side are coded with
even numbers. For example, the electrode over the motor cortex on the center is named "Cz",
then "C3" and "C4" correspond to the left and right cortex somatotopical representation
of the arms. The presence of a ground electrode (GND) helps to cancel out electrostatic
and electromanetic noise. As EEG recorded signals correspond to small currents traveling
through the amplifier, it is important to note that the recorded current travels from electrodes
to one reference electrode ("REF"). Positioning the REF electrode has an influence on the
recordings (McFarland et al., 1997), and most common positions for the REF are either the
nose, earlobes, or mastoid (bone behind the ears). These locations were chosen because they
are less sensitive to artifacts and therefore maximize the signal-to-noise ratio (SNR). Nose
reference, since it is place exactly in the middle is particularly interesting to compare overall
activations between the right and the left cortex. However, using a nose REF comes with
practical constraints, since it can obstruct vision and eventually prevent participants to carry
glasses. In P300 designs, earlobe electrode can be preferred since the use of a clamp shaped
electrode makes it easy to apply. Preferably for SMR-BCIs, the REF is placed on the mastoid
electrode, and re-referenced on the opposite mastoid to obtain what we call "linked mastoids".

Increasing the number of electrodes allows to increase the SNR. Since the cortical activity
is very diffused when recorded from scalp; using specific cap montage which cover certain
areas of interest can be beneficial to increase SNR. The specific methods of spatial filtering
are described in section 3.4.3.

Electrode prepping

When applying the electrodes on the skin, a gel is required to ensure a stable conductivity
between the skin and the electrode and prevents artifacts or loss of contact produced by
movements. The prepping duration is commonly acceptable for 8 to 32 electrodes because its
practice is does not exceed 30 min, but since the prepping time is proportional to the number
of electrodes, it becomes cumbersome when prepping 64 to 256 electrode caps, requing a
significant amount of time prior to an EEG recording.
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3.4.2 Acquiring and filtering the EEG

3.4.3 Artifacts in the EEG

Since it records electrical activity, EEG catches currents originating from non-cerebral
sources. Some of those sources are produced by activity of the body, in particular muscle
activity. As muscle contractions result from muscular fiber membrane depolarization and that
these produce strong dipoles, muscle contractions from the shoulder, jaw, mouth, head and
face muscles generate strong noise into the EEG signal. The alignment of the sensory cells
on the retina generates a dipole which direction changes when the eyeball moves, strongly
impacting EEG signal. Mechanically, the eyes also tend to move upward when closing the
eyelids, generating blinking artifacts. By placing EOG (for "electrooculographic") electrodes
around the eyes can help detect or cancel such influence on cortical EEG. In BCI setups, it is
therefore recommended to the participants to remain immobile, reduce as much as possible
their muscle activity, especially facial, and to inhibit (or avoid excessive) eye blink reflex
during recordings. Transpiration also produces slow drifting of the EEG baseline that can
easily filtered out using a high pass filter on low frequencies (e.g. most common are 0.1 and
0.5 Hz). Non-bodily artifacts can be elicited by static, and most importantly electromagnetic
noise. The 60 Hz (American continent) or 50 Hz (rest of the world) frequencies in power
lines induces electromagnetic currents during recording. The common applied solution is to
either apply a low pass below the frequency (e.g. below 45 Hz), or to exclude specifically
those frequencies (i.e. a "notch" filter between 48 to 52 Hz).

Signal processing

The raw EEG signal has to follow multiple treatments to be interpreted by machine learning
algorithms; thus, what we call "EEG features" are transformation of the signal that are sent to
the classifier, allowing training and classification. Krusienski et al. (2012) lists 3 phases for
the extraction of features: 1) signal conditioning 2) feature extraction 3) feature conditioning.

Signal conditioning

The raw EEG might contain a certain amount of noise that needs to be removed. Therefore,
frequencies that are not of neuronal origin are usually filtered out. Such frequencies can be
low frequencies such as signal drift or frequencies over 40 Hz, that have low SNR (Krusienski
et al., 2012), are produced by muscular artifacts or relates electromagnetic noise from power
lines (50 or 60 Hz, artifacts are detailed in section 3.4.3). In SMR based BCI, the frequencies
of interest are µ and β SMR (assuming high-γ is not investigated), the filter would therefore
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band pass filter the signal between 0.1 Hz and 40 Hz. A narrower band can be selected (e.g.
8-35 Hz for µ to high-β range), but can still be performed in further stages of the analysis.
Using a wide filter allows the data to remain interpretable when plotted in average or spectrum.

Artifact rejection, which is part of the signal conditioning can be done directly by identify-
ing the source of the artifacts. For example, many EEG studies place electrode next to the eyes
to record eye-movements and eye blink artifacts. Using a threshold on those specific electrode
allows to filter out trials or part of trials that are contaminated with eye artifacts. There are
other sources of artifacts such as movements or head muscles, a common method is to use
a threshold for amplitudes that exceed the neuronal activity (e.g. > 80 uV). Blankertz et al.
(2007) also provide methods based on within and between channels variability during trials.
This part of the design, should not be overlooked, as it reduces for example the contribution
of eye or muscular movents in the EEG, increasing the SNR.

Spatial filtering

Due to the distance and the amount of tissue that separate the source of neuronal activity
and the scalp electrode, each electrode records signals from a broad area around its location.
Many artifacts also tend to apply noise on several electrodes. In certain cases, the SNR can
be increased by using spatial filtering extracting the features from EEG channels.

Historically, the very first EEG measurements were bipolar (two electrodes). With several
electrodes connected to one reference, it is possible to perform simple operations on the
channels to increase the SNR. McFarland et al. (1997) provide a very informative comparison
between a channel referenced to the ear, and multiple spatial filters that are commonly applied.
In the context of a SMR modulation paradigm, a clear increase in signed r2 significance
can be obtained by the use of a common average reference ("CAR", subtracting the mean
of all channels) or a small or large Laplacian (subtracting the mean of the four surrounding
electrodes, small or large referring to the distance separating the electrodes). According to
the authors, the best r2 are obtained (from best to worst): 1) large Laplacian 2) CAR 3) small
Laplacian 4) no spatial filter. Another method for filtering is called "Local average reference"
(LAR; Binias and Palus, 2016) consisting in subtracting the average of all surrounding
channels in a certain radius around the concerned channel.

There is a different way to proceed to spatial filtering, by performing analysis on the data
instead of the electrode location. Those types of filter are called "data-dependent spatial filters".
It includes principal component analysis (PCA) and independent component analysis (ICA).
Both methods rely on statistical methods to transform the EEG channels into new channels
that account for the maximum variance from the original signal, while being uncorrelated to
one another (and also independent for ICA). Common spatial patterns (CSP) design is close to
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the PCA but takes into account the class of the signal (e.g. motor imagery vs rest, left hand vs
right hand), and attempts in each transformed channel to maximize the variance of one class
while reducing the variance of the other class. In other words, while Laplacian spatial filters
attempt to filter EEG signal based on its topographic origin, data-dependent spatial filters
create a set of artificial EEG channels that attempt to isolate the different sources of correlated
signal. Data-dependent filters have the particularity of not specifically labeling the correlated
sources of signal. Yet, those sources can be guessed, and are most likely representing heart
rate, eye blinks or more valuably, localized ERS/ERDs. The advantage of using CSP filter
lies in the supervised fashion of the algorithm, which allows to maximize the variance of one
source in each transformed channel, meaning that it implicitely distinguish the sources on a
class-wise fashion (and therefore tied to the MI classes).

3.4.4 data extraction and classification

Feature extraction

In SMR based BCIs, features depend on the number of channels, on time intervals and
frequency bands. Depending on the type of pre-existing knowledge on the MI classes and the
participants, the features’ frequency bands and time interval can be optimized and selected
before being sent to the classifier for calibration.

The squaring or the envelope transformation of EEG signal is essential for the detection
event-related desychronization or synchronization (ERD/ERS; see section 2.3.2). Unlike
ERPs, they are not defined on a time-locked EEG amplitude at a certain time (i.e. 100ms
after stimulus onset). ERD/ERS are increase or decrease in amplitude of certain wavelengths,
which is progressive and occurs during several seconds. As the obtained signal is oscillating,
it is neither possible to take the amplitude at a certain point, which would return random
values; nor possible to average them on a certain period, which would return a mean amplitude
of zero. To measure the amplitude of a certain frequency, the signal is band-passed to only
retain this particular frequency range. As an example, mu waves range between 9-13 Hz, and
the channels are band-pass filtered in this frequency. To obtain the band power, there are
two methods, an easy method is to square the signal. Another more accurate method is the
calculation of the "signal envelope". The signal envelope uses the Hilbert transform with a
sliding epoc (e.g. 200ms) to average the amplitude maxima (positive) and minima (negative).
The difference between positive and negative envelope provides the frequency amplitude.
The feature is obtained by averaging the resulting value in a predefined period (e.g. 1 second)
and applying a logarithmic transformation is then applied to reduce normalize the values for
machine learning algorithms.
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Features range preselection

Using the mean envelope of a channel for the whole duration of a trial can be problematic,
because both ERD and ERS can both occur at different times in trials, counterbalancing one
another (e.g. ERD followed by an ERS during the same trial). The easy solution is to not do
any pre-selection to force the user to choose one by feedback conditioning . A proper method
can be applied by restricting the time interval used for averaging to the most significant
ERS/ERD. Blankertz et al. (2008) implemented an automatic time interval selection that
starts from the most discriminative single frequency, calculated by classwise r2 calculation,
and broadens the band to both sides as long as there is a substantial gain, thus preventing
ERD and ERS in the same trial to cancel each other.

Classification

There are two types of approach in the BCI classification. The first approach is a manual
classification requiring the experimenter to pick specific features and set a threshold while.
All features are analyzed in single factor regressions of the class (e.g. target vs non-target;
right hand vs left hand, used in e.g. Lafleur et al., 2013). It provides a signed r2 value for
every feature. Plotting those r2 plots in topographic heat maps helps the decision. Using such
a method made sense in neurofeedback protocols but is currently outdated, and outperformed
by algorithm-based or machine learning based methods.

The second approach is to use machine-learning based methods to train a classifier that
enables the prediction of the class of the provided features. Before predicting the class,
the classifier has to be trained using supervised data. Most SMR-based BCIs use a linear
discriminant analysis (LDA) which in many comparisons has been proven to be the most
robust to variance in the data (e.g. back to Farwell and Donchin, 1988). Non-linear classifiers
such as support-vector machines can also be used, but comparative studies show that the gain
in performance and robustness is low for a higher computational cost (for a concise review of
pre-processing and classification methods, see Ilyas et al., 2015). With recent improvements,
LDA classifiers can also be adapted after classification to better fit variability in the signal
using for example pooled mean adaptation Vidaurre et al. (2010). For more than two classes,
more complex algorithms can be used (see for example: Lotte et al., 2010). Yet, only in rare
cases are the participants able to control a 3-class classifier with a sufficient level of control.

Zero-training classification

Due to the lack of subject-specific knowledge about BCI users, the EEG requires an initial
recording of supervized data, otherwise no reliable prediction can be done on the data. Such
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data is required for training the classifier, and in most BCI protocols requiring the user to
initially perform motor imageries without feedback for a certain duration. Training a classifier
in these conditions is not optimal, as it was shown that there was a difference between EEG
acquired with feedback and without feedback (e.g. Elbert et al., 1991). The use of subject
unspecific pre-trained classifiers has been implemented by Blankertz et al. (2007). Since they
collected the data of several participants in similar conditions with the same EEG cap, they
could train a subject-unspecific classifier from aggregated data of those participants. After
a few selections, the real-time adaptation could provide participant with a reliable control
over the BCI. The possibility of retraining the classifiers based only on subject-dependent
signal allowed to make this initial period a transition phase. Yet, the authors did not report
any increase in the performance of the BCI, and that the subject-independent classifiers did
not benefit at all for certain individuals. In principle, allowing the user to have feedback from
the start reduces the lack of focus of the participants during the calibration phase. Another
zero-training classification can be the usef of positively biased feedback. In a study from
Acqualagna et al. (2016), the participants received positively biased feedback during the
calibration runs. The authors did not find any significant improvement in using this method.

3.4.5 Feedback

The feedback a key element of a BCI. It must remain as clear and simple to reduce sources of
confusion or distraction. The initial Wadsworth BCI translated the classifier ouput on the
veritcal position of a ball on the monitor, with the time axis from left to right. In the Graz
BCI, the classifier output was translated in the position of the ball which could either go left
for left hand, right for right hand and up for feet. The main goal of these feedbacks is to
organize 3 to 4 seconds periods of BCI control (after the average duration of ERS/ERD). In a
trial, a BCI participant receives an initial signal that indicates the beginning of a trial, for
about one second. A target cue is provided, indicating the position to reach, or the direction
to follow, but in any case, clearly indicating which motor imagery the participant has to
perform. The feedback lasts about 3 to 4 seconds and stops. During "classical" calibration
trials, no feedback indicating classifier’s prediction is provided. a few seconds mark the end
of a trial and the beginning of the next one. Those trials are time-restricted, but there are
also SMR-BCIs that work based on threshold based methods, in which the ERD or the ERS
crosses a threshold for a predetermined number of seconds. For example the "Hex-o-spell"
from Blankertz et al. (2006); Müller and Blankertz (2006) or the virtual museum walk by
Lotte et al. (2010).

Most BCI interfaces have relied in the visual modality, while it is admitted that Human per-
ception and cognition in the neocortex is essentially multisensory (Ghazanfar and Schroeder,



28 SMR-BCI and its applications

2006). In a review, Wagner et al. (2013) report that the main secondary modality that has been
used is auditory, and more rarely somatosensory. The possibitly to reach other modalities can
be critical for providing the system to people in the locked-in-state. The sonification of the
classifier’s output could be done by changing the pitch of the sound instead of moving a ball
on an horizontal or vertical axis. Nijboer et al. (2008) made a comparison between visual
and auditory BCI, but instead associated ERD with a "bongo sound" and ERS with a "harp
sound". While the accuracy was inferior in the auditory modality in the first session, there was
no difference after three sessions, suggesting that auditory feedback requires more learning.
Cincotti et al. (2007) used vibrotactile "tactors" placed on the neck and shoulders of their
participants, and found that the accuracy in the SMR-BCI was comparable to the auditory
and visual modalities. Chatterjee et al. (2007) placed the tactors on different locations and
found that the accuracy was higher when the tactor was placed on the limb ipsilateral to the
motor imagery, therefore demonstrating an interaction between somatosensory feedback and
motor imagery.

3.5 SMR-BCI Applications

In this section, I present the different applications of BCI systems, with a particular emphasis
on patients with motor disabilities. BCI systems offer additional output channels on our
environment, those additional output channels could have several applications. In an effort to
broadly cover the range of applications of BCIs, Wolpaw and Wolpaw (2012) discriminate
between five applications of a brain computer interface:

• Replace: the BCI can replace a natural output that was lost as the result of injury or
disease

• Restore: the BCI can restore the output in the case of an injury that affected the nerves,
using stimulations electrodes on a non-innervated but functional muscle.

• Enhance: the BCI can enhance a natural output, for example by detecting and providing
a sound to prevent a lapse of attention while driving

• Supplement: adding an additional control output (e.g. a brain switch)

• Improve: Interpreting CNS activity could improve the movement of a partially disabled
limb.

The replace, restore and improve applications draw the most attention of researchers
who attempt to provide solution for people with motor disabilities, while enhancing and
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supplementing the motor output are yet gaining more attention, notably from healthy audience.
Due to the underlying mechanism of BCIs, and despite strenuous efforts to increase the bitrate
of BCIs, the artificial neural channel provided by BCIs has not yet been able to exceed
any muscular output channels of a healthy human body (Wolpaw and Wolpaw, 2012; Hart
et al., 1998). I will further introduce the condition of people with motor impairements
specifically those leading to the locked-in-state. Such people in the LIS can yet truly benefit
from BCI development, I thereafer describe wich BCI applications have been reported for
use as assisitive technology.

3.5.1 Locked-in syndrome (LIS) and motor disabilities

The term "locked-in-syndrome" (LIS) was first introduced by Plum and Posner (1966); Posner
and Plum (2007), which regroup forms of quadriplegia associated with anarthria (inability
to speak), and is due to lesions in the brain stem, in the corticospinal and in corticobulbar
tracts (see figure 2.6). LIS is used to describe people who cannot communicate with the
external world, by moving their limbs or by producing speech. Those people yet retain good
cognitive abilities. The LIS is often precised into stages or level, that better describe the
patient’s situation. Bauer et al. (1979) proposed the following classification:

• Classical LIS: total immobility except for vertical eye movements and blinking; pre-
served consciousness.

• Incomplete LIS: when remnants of voluntary motion (excepted eyes and blinking) are
present.

• Total LIS: Total immobility (including eye movements); with normal EEG during
wake or sleep, assuming that consciousness is preserved, since it is not possible to
interact with the person.

Additionnaly to this classifcation that is a standard in characterizin the level of LIS, Bauer
et al. (1979) also emphasizes their observation that LIS can be either chronic or have a
transient character, in which case motor recovery can occur.

To better understand LIS, I provide an overview of the different causes that lead to LIS,
and their neurological and physiological consequences on the body.

Stroke and trauma

The most common cause LIS is observed as a consequence of an ischemic or hemorrhagic
stroke in the basilar or vertebral arteries, provoking lesions in the ventral pons. A similar
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effect can result from traumatic injuries leading to the dissection of vertebral or basal arteries
(Rae-Grant et al., 1989), or a dissection of the vertebrobasilar axis (Patterson and Grabois,
1986). The consequences of a stroke or trauma are tied to the affected brain area(s). For
example affect the damage in the Wenicke or Broca area can impair the understanding and
the production of language (Aphasia). In the case of strokes, a comatose episode can occur
for several weeks then a recovery to a locked-in state (Laureys et al., 2005).

Motor neuron diseases (MNDs)

The motor neuron disease (MND) subsumes several neurodegenerative disorders of the
motor neurons. The most common is Amyotrophic lateral sclerosis (ALS) named by Charcot
and Joffory in 1869 (Souza et al., 2009; Kiernan et al., 2011; Mitchell et al., 2008), who
reported two cases of lesions in the corticospinal tract associated with muscular palsy. ALS is
marked by the degeneration of upper motor neurons (UMN) and lower motor neurons (LMN;
Salameh et al., 2015). LMN degeneration leads to weakness and atrophy of the muscles while
UMN degeneration leads to stiffness and uncontrolled movements or reflexes of the muscles.
Nevertheless, it is important to note that sensation is preserved in ALS (Laureys et al., 2004).
When diagnosed, ALS is described depending on its onset location (Mitchell and Borasio,
2001) which can be 1) bulbar (as described in progressive bulbar palsy and pseudobulbar
palsy) 2) cervical (upper limbs) 3) lumbar (lower limbs). Modern neuroimagery and genetic
evidence support the overlap between ALS and fronto-parietal degeneration (Goldstein and
Abrahams, 2013). It was reported by Phukan et al. (2012) that frontotemporal dementia
(FTD) is observed in up 14% of a sample of 160 ALS patients, while non-demential cognitive
impairments could be observed on 40% of the sample, although the authors did not use
specifically validated scales for ALS such as the ALS Cognitive Behavioral Scale ("ALS
CBS", Woolley et al., 2010)) or the Edinburgh Cognitive and Behavior ALS Screen (ECAS;
Abrahams et al., 2014. According to statistics conducted for the year 2012-2013, the ALS
prevalence rate (per year) is evaluated to 4.7 per 100,000 (Mehta et al., 2016), but when
combined with a life expectancy in the US of 79.3 years (The Global Health Observatory,
2016), it provides a lifetime expectancy of 1/270 which is superior to Al-Chalabi et al. (2016)’s
estimation of 1/350 for 2013. Additionally, ALS is more common among whites, males (ratio
is 1.5 male to 1 female), and persons aged 60-69 years (Mehta et al., 2016). The median
survival of patients with the classical form of ALS is about 2 to 3 years from symptom
onset (Ohry, 1990; Byrne et al., 2012; Lee et al., 2013), knowing that the diagnosis often
requires several months. In the last stages if ALS, respiratory function cannot autonomously
be ensured and requires the use of mechanical ventilation. It can be non-invasive, extending
life expectancy up to 9 months (Bourke et al., 2006). Later on, invasive ventilation can be
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required, inplying tracheotomy, which was found to extend life expectancy from about two
weeks to 6-17 months (Mustfa et al., 2006; Spataro et al., 2012). Yet, most patients with ALS
die due to respiratory failure (Hardiman, 2011).

Other variants of neuron diseases differ from ALS, such as primary lateral sclerosis (PLS)
affecting upper motor neurons; progressive muscular atrophy (PMA; D’Amico et al., 2011),
affecting lower motor neurons. Two localized variants (sometimes called "bulbar ALS"), that
affect the motricity innervated by the medulla oblongata (IX, X and XII, controlling chewing,
swallowing and gag reflex), are the progressive bulbar palsy (PBP; Collins, 1900), affecting
lower motor neurons, marked by slurring in speech (dysarthria) and difficulty swallowing
(dysphagia), progressively leading to a loss of these functions. The other bulbar variant is
called pseudobulbar palsy, and affect upper motor neurons, marked by emotional lability (i.e.
pathological laughing or crying). Since those MNDs concern only upper or lower motor
neurons, the prognosis is better than for ALS, who concern both.

Several other neurological autoimmune diseases can lead to LIS, such as multiple sclerosis
(MS), affecting neurons in the brain and in the spinal cord (Goldenberg, 2012); and acute
motor axonal neuropathy (AMAN; Mckhann et al., 1993) an acute form a Guillain-Barré
syndrome (GBS).

Muscular dystrophy

Muscular dystrophy (MD; Pearson, 1963) is a group of myopathic diseases that are due to
genetic mutations. The prevalence for all forms of MDs is estimated between 19.8 to 25.1 per
100 000 (Theadom et al., 2014). Duchenne muscular dystrophy is the most common form
with a prevalence of 3.2− 4.6 per 100 000. While MD causes progressive weakness in the
musculoskeletal system, depending on the form of a disease it may be mild and progress over
a lifetime, or can lead to severe weakness and disabilities over a few years, requiring the use
of assistive respiration or pacemaker support.

Cerebral Palsy

Unlike the other conditions evoked, Cerebral palsy (CP) is neither solely accidental nor
neurodegenerative. CP describes group of neuromotor disorders that appear during early
childhood, affecting principally movements, but that do not further worsen (Rosenbaum et al.,
2007); it is marked by abnormal development of the fetal or infant brain, due to prenatal or
post-natal injuries, stroke, infection or exposition to toxic substances. In 2007, the prevalence
or CP was estimated of 2.4/1 000 (Hirtz et al., 2007) and was raised to 11.2/1 000 in case
of a preterm infancy (Himpens et al., 2008). According to Kent (2013), the symptoms of
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CP can be spastic diplegia (muscle stiffness) or spastic tetraplegia (jerking, motor issues);
CP present comorbidities, such as epilepsy (28%), communication issues (58%) and visual
problems (42%) that the author assumes to be underreported. The level of disability vary
from one individual to another, but due to the high prevalence, several patients have strong
motor disabilities, and could benefit from BCI technology.

BCI for LIS

Between the first iteration of the P300 speller (Farwell and Donchin, 1988) and the introduction
of the speller to patients with MND (Sellers and Donchin, 2006; Nijboer et al., 2008; Hoffmann
et al., 2008), its variants enabling virtual painting (Münßinger et al., 2010) or web-browsing
(Mugler et al., 2010), it took about 20 years for BCI paradigm to reach its target population
(Kübler, 2017). We had to wait a few years for the technology to be transfered at the home of
the end-user (Sellers et al., 2010; McCane et al., 2014; Holz et al., 2015; Botrel et al., 2015).
Those few studies in which BCIs were installed at the end-user’s home, have been reported
to increase the quality of life (QoL) of the patient through productivity and with the ability
to communicate with the external world. In parallel, SCP based solutions have also been
implemented for communication with patients with ALS (Kübler et al., 2001) and later on for
web-browsing (Karim et al., 2006; Bensch et al., 2007). As there were already neuroprosthetic
assistive technology (AT) relying on EMG, researchers attempted to transfer this non-BCI
technology to the field of BCI. For example, Pfurtscheller et al. (2003) showed that hand grasp
could be restored based on a combination of SMR-BCI and fonctional electrical stimulation
(FES). It was also shown that communication via SMR-BCI was possible with four patients
with ALS (Kübler et al., 2005), allowing to maintain quality of life. Another solution could be
found via the use of hybrid BCIs. As Rupp et al. (2014) specifies, non-invasive BCI control
of a neuroprosthesis is low compared to their non-BCI counterparts (e.g. Hart et al., 1998),
since activation of the muscles can be controlled with precision. A meta-analysis from Tai
et al. (2008), based on data acquired up to 2006, compares the benefits and limitations of
non-BCI assistive technologies as compared to BCI and iBCI-driven solutions. The authors
posit that the use of simple mechanical switches has been demonstrated for their clinical
relevance, while the use of BCIs as an assistive technology, mostly rely on single-case studies
or uncontrolled experiments. It is nowadays still the case since we haven’t seen a broad
dissemination of the BCI in the hands of it’s end-user base. It could first be explained by
several factors, such as the BCI inefficiency issue, the cost of the EEG devices (that is now
becoming affordable, e.g., OpenEEG1, OpenBCI2), the perpetual evolution of the algorithms

1http://openeeg.sourceforge.net/ - Open source project, Accessed March 2017.
2http://openbci.com/ - Accessed March 2017
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that restrict BCI applications to hightly specific and incrementally developped softwares
that can only be maniputated by BCI experts, and more importantly the lack of user-based
methods (i.e. UCD; Kübler et al., 2014). Yet another factor is that training patients in using
BCI represents a financial and practical efforts from both researchers, patients and families
(Neumann and Kübler, 2003). To cite a few, there are additional costs that already weight
on patient’s families, such as the requirement of caregivers, life-maintaining equipment and
treatment. All those factors prevented such devices to be disseminated out of the lab, but as it
was observed by Kübler (2017), a growing effort is being made to transfer the technology
from the lab to the end-users.

The paradoxal and yet unsatisfying fact for BCI researchers is the fact that BCI efficiency
(>70%) could be reach with classical LIS patients but not with CLIS patients (Birbaumer
(2006)). A meta-analysis by Kübler and Birbaumer (2008), reported a total of 29 patients
who used BCI to ask yes/no questions using SCP, P300 or SMR based BCIs. In the study, 2
out of 7 CLIS patients were over chance level, for a performance of 59% and 62% meaning
that no control can be obtained in regard to the minimum level of control ("criterion level",
Neumann and Kübler, 2003). These results showed that CLIS could not directly benefit
from BCI. As CLIS patients cannot produce voluntary output for days and months, Kübler
and Birbaumer (2008) hypothesize patients may "loose the perception of the contingency
between the required physiological behavior and its consequences", or in other words to
the "extinction of goal directed thinking". This hypothesis has recently been challenged by
Chaudhary et al. (2017), who could find above chance level response of four patients with
CLIS, using fNIRS. Larger studies targeted at CLIS patients, and the dissemination of BCIs to
LIS patients might both provide the possibility, yet unfortunate, to observe the communication
possibilities through the course of ALS, such that we can better identify and design the best
mean of communication for them. SMR-BCIs in particular are investigated for their potential
in rehabilitation after brain stroke or trauma, as it might increase the efficacy of rehabilitation
protocols by fostering neuroplasticity (e.g. Clerc et al., 2016; Cincotti et al., 2012; Daly and
Wolpaw, 2008).





Chapter 4

Variations in SMR BCI performance

After 30 years of constant effort, there have been significant advances in increasing SMR
BCI accuracy. Put in relation to the technologic advances that have been made in the field of
informatics or genetics, the result is perceived as unexpectedly low. Principally, we could not
solve the BCI inefficiency issue, casting applications further away to bringing BCIs to their
target sample – end-users. In this chapter, I list the identified predictors and correlates found
to explain of variation in BCIs based on SMR rhythms.

4.1 BCI inefficiency

Since the introduction of the first SMR BCIs, the detection equipment and algorithms for
non-b constantly refined, but it is estimated that there are a constant percentage of users,
estimated between 15% and 30% , who cannot gain control of the BCI (Allison and Neuper,
2010), even after a long learning process. This issue was initially called "BCI illiteracy"
(Andrea and Müller, 2007; Vidaurre et al., 2010; Blankertz et al., 2010), but a more accurate
expression "BCI inefficiency" was coined (Kübler et al., 2011b) to redirect the cause on the
system rather than on the user.

4.2 Models of BCI control

In an effort to provide a global model of the inter-individual variance in the efficiency of
BCIs, (see Figure 4.1) Kübler et al. (2011b) proposed a general model that enumerate the
four aspects contributing to the control of a BCI:

1. Individual characteristics of the BCI user, which includes all dimensions that range
from anatomical and neurophysiological to psychological and personality aspects. For
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example, it was found that BCI accuracy correlated with strength of resting state µ

activity in the motor cortex (Blankertz et al., 2010), correlated with motivation and
fear of failure (Kleih and Kübler, 2013; Nijboer et al., 2008), or was predicted by
whether persons play a musical instrument (Randolph et al., 2010). Due to the amount
of individual characteristics that have been identified, I provide a state-of-the art list
and description of performance predictors in SMR-BCI in chapter 5.

2. Characteristics of the BCI that encompasses the hardware and the software involved
in the system. Providing a decent level of control depends on the choice of a correct
BCI amplifier and electrodes setup, combined with software and algorithms that extract
relevant information from the acquired EEG signal. The choice of design also weights
on the resulting performance. This is best illustrated by the use of co adaptive learning
designs, that considerably reduced the training duration (Krauledat et al., 2008), includ-
ing the adaptation of the system to the user (i.e. "co-adaptive calibration", Vidaurre
et al., 2011b).

3. Feedback and instructions that are an essential (and often overlooked) part of the
BCI control. Instruction directly impact the user’s understanding of the BCI output. In
combination with a good feedback, it can reduce miscommunication issues. For this
purpose, one can suggest the use of user centered design (UCD: Kübler et al., 2014),
minding the target population which can either be healthy individuals as well as LIS.
The time aspect of the feedback is concerned, whether the feedback is provided in real
time, continuously or periodically depending on the paradigm; but also whether the
interface adapts properly to specific cases such as the detection of errors or responding
to the user’s attention levels.

4. The Application of the BCI-controlled system. In this sections falls several criteria
such as the number of possible outputs. It is obvious that increasing the number of
classes in a SMR paradigm greatly increases the difficulty to control the BCI (i.e. Doud
et al., 2011). Another criteria is the nature of the output commands; Wolpaw and
Wolpaw (2012) accurately formulate an essential problematic in designing applications
for BCIs: "Goal selection or process control? "This question can be developped as
following: should the BCI user control every little step of an action, (e.g. by sending
direction to a robot arm for pressing a button) or should the user only send higher order
commands (such as "press the button") and have those little step automatically covered.

This model indeed attempts to gather all the elements that can explain the inter-individual
variance in the BCI users’ performance. Such characteristics can fall in one of the four aspects.
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Figure 4.1 A model of BCI-control comprised of 4 aspects: individual char-
acteristics, BCI characteristics, feedback and instruction, BCI-controlled
application. Colours serve for distinction of categories only. Boldness of
black arrows indicates possible strength of influence on BCI control (from
Kübler et al., 2011a)



38 Variations in SMR BCI performance

While previous research thoroughly investigated individual or BCI characteristics, there is
less emphasis put on the feedback and instructions and even less on the application. It was yet
shown that in SMR-BCI design, the instructions do matter (e.g. kinesthetic motor imageries
Neuper et al., 2005) and the application (e.g. virtual environments Leeb et al., 2007) are both
related with higher performance.

To refine future or past investigation of the variables explaining the variance in BCI
accuracy, Grosse-Wentrup and Schölkopf (2013) proposed to assess those variables following
four different angles or characterization:

1. The type of explanatory variable. By describing whether the variable is for example
neuroanatomical or psychological, whether they are subject to change or whether they
are stable over time. It is important to attempt to well identify the properties of the
variables, such that it can be known whether they could potentially be modulated in
further experimental setups.

2. Whether it causes or correlates with performance. By this, Grosse-Wentrup and
Schölkopf stresses the importance of not confounding causality and correlation, which
is an important issue when reporting sources of variations of SMR-BCI accuracy.

3. The Inter- or Intra-subject variation, which are two dimensions that, according to
Grosse-Wentrup and Schölkopf (2013) should be both reported, as they lead to different
strategies in respectively approaching paradigms and participants in a BCI. The inter-
subject variation explain variance over all participants globally, implicitly assuming
there are invariant traits associated with SMR-BCI accuracy. The intra-subject variation
focuses on individual changes occurring over time, such as between the BCI sessions
or the BCI trials.

4. Whether the study concerns healthy participants or patients, which present different
conditions, constrains and expectations of the BCI.

By using this approach, the authors firstly suggest that the variables explaining variability
of the BCI should be clearly identified in both their nature, whether they are stable or evolving
over time, which can be short-term or long term. A correct identification of those variables
might therefore help. The second distinction given suggests that researchers should be precise
on whether any newly found variable causes the variability, whether they are a consequence
or that both are related in a more complex relationship. The third distinction between inter-
and intra-individual variability allows for a better design of SMR-BCI learning strategies. For
example, we could hypothesize a variable (e.g. hypothetically: δ band power) that predicts
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intra-individual performance, but that only applies on 10% of the participants. It is likely
that researchers could overlook the importance of this variable if only one of the inter- or
intra-individual analysis is performed. Finally, it is possible to consider the approach from
Grosse-Wentrup and Schölkopf (2013) as guidelines to properly describe different predictors,
as they additionnaly stress the fact that the predictors should mention whether they concern
healthy participants or patients, especially since the physical, mental and environmental
conditions of the target patient population of the BCI strongly differ when compared to our
common sample of healthy undergraduate students. Those guidelines were strictly followed
in elaborating the cross table of SMR Predictors and correlates for SMR BCI accuracy (in
the next chapter).

4.3 How to do we learn to control the BCI?

An important characteristic of both instructions and feedback for SMR-BCI is that they are
carefully designed to allow for the learning of SMR modulation. According to Lacroix and
Gowen (1981); Lacroix (1986), learning comes in a dual-process model, based on feeding
forward a strategies and validating them by feedback, in a co-dependency loop. When the
feedback is negative, the participant must find a new strategy, whereas a positive strategy
motivates to keep the current strategy. This model underlines the importance of the instructions
given to the BCI before starting a session, and may condition the leaning of an effective
strategy. It also supports that participants should have a mindset that foster the elaboration
and testing of accurate strategies. Moreover, in this process, there is a transfer of existing
strategies (e.g. Schmidt and Young, 1986). From those two inferences from the dual-process
model, it could be hypothesized be that individual characteristics of BCI participants, such
as personality traits, level of physical activity or proficiency in certain motor or cognitive
skills might contribute to the learning of a BCI. This questions motivated the conduct of this
dissertation which revolves around individual predictors for SMR-BCI performance.





Chapter 5

Individual Predictors for SMR-BCI
Performance

The goals that foster BCI research comprises the wish to increase the BCI performance to
reduced or prevent BCI inefficiency. I present here the current predictors that have been
found to significantly predict or correlate with SMR-BCI accuracy. There are several other
studies that reported performance predictors of P300-BCI (e.g. Attention; Riccio et al.,
2013) and SCP-BCIs (e.g. Kübler and Birbaumer, 2008). While those studies are of great
interest, it must be stressed that P300 and SCP paradigms are strictly different paradigms,
and that assuming predictors indiscriminately to apply to all paradigms would lead to wrong
assumptions, further damaging the studies attempting to base their experimental on this
knowledge. Therefore, I omitted from this review the predictors that correlated with other
paradigms of BCI.

The studies collected during literature review could be characterized after on the origin
or the reported variables, temporal magnitude, participant sample, and so forth. Similar
characteristics of the predictors could be observed and led me to draw categories based on
the "type of explanatory variable" of the predictors (in bold):

• Psychological or behavioral factors, which should be interpreted in their respective
temporal dimension (transitional/state or durable/trait).

– Task engagement (attention levels)

– Locus of Control

– Motivation and affective variables

• Visual, kinesthetic and spatial characteristics systematically linked with motor func-
tion
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• Neurophysiological factors, complex or simple, principally involving µ, θ, β and γ

oscillations obtained by EEG or by functional MRI.

• Neuroanatomical properties of motor-related or subcortical areas of the cortex, ac-
quired by MRI imagery

• One of the variable was not related to the participant itself but by the voluntary and
reversible effect of external forces (i.e. drug intake), this specific factor was labeled
environmental.

Certain studies, report predictors that fall into several categories. For example, the study of
Jeunet et al. (2015) approached different predictors from different angles (psychology, spatial
abilities and neurophysiology). In this chapter, those studies will thus appear in different
categories represented by the following sections, but will only be fully described once:1) Psy-
chological factors 2) Visual, Kinesthetic and spatial characteristics 3) Neurophysiological
oscillatory patterns 4) Anatomical and functional MRI

5.1 Psychological factors

Pychological variables ranged from the transitional time level to the durable time level. We
might be inclined to attempt to define them as either state or traits. (Chaplin et al., 1988)
provide a very meaningful description of twose two concepts. "Prototypical traits are stable,
long-lasting and internally caused. Prototypical states are temporary, brief and caused by
external circumstances". By "prototypical" Chaplin and colleagues mean that both traits
and states are defined in ideal attribute value. While the boundary between a state and a
trait is fuzzy in practice, the authors note that those concepts are defined to serve a specific
goal: states are behaviors that are linked to the situation and can be manipulated; traits
allows us to predict the behavior from previous knowledge. Providing this definition, it
is not possible to accurately label all transitional-psychological variables as states and all
durable-psychological variables as traits. For example, the "attention level" predictor could
be labeled as a trait; the "locus of control" as a trait; the "fear of incompetence in the BCI"
falls into a grey area in which it is both a trait and a state. Indeed, the "fear of incompetence"
could be both manipulated and used predict the outcome. I thus believed that labelling the
variables as states or traits was not inherently required for the classification of the predictor
variables.
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5.1.1 Task engagement and attention

It is evident that a certain degree of attention is required to operate a SMR BCI, as an
inattentive individual not even paying attention to the interface, or not trying to modulate his
SMR rhythms would naturally dramatically reduce the outcome performance. When in this
section I mention attention levels, it should be naturally assumed that the participants in the
reported studies actively attended to the tasks, meaning that the definition of attention can be
estimated between mildly attentive to very attentive, or from attentive with some disruptions
to attentive without interruption.

The first large scale investigation of psychological predictors was done by Hammer et al.
(2012), measuring total of 83 participants in two locations (Tübingen and Berlin, Germany).
Prior to conducting a SMR-BCI session, all participants filled a number of psychometric tests,
including personality, cognitive, learning and motor performance tests. In two-hands visuo-
motor coordination task (2HAND, Schuhfried; in this dissertation called VMC), participants
used two joystick controllers, then two knob to controllers to steer a ball through narrow two-
dimensional paths. The "mean error duration" refers to the time the ball was outside the path.
The authors found that the "mean error duration" in a two hand visuo-motor coordination task
and the ability to concentrate on a task (AHA) predicted the 11% of the BCI performance.
"Mean error duration", was positively correlated (r = .42) with BCI performance , and
since the variable was standardized by the experimentation software, a positive correlation
indicated that people who made fewer mistakes had higher performance. AHA was also
positively correlated (r = .50) with BCI performance, and also intercorrelated with "mean
error duration" (r = .49). Age was correlated with BCI accuracy (r = −.23). To account for
non-normally distributed age, the authors created two age groups, below or over 40 years old.
In a logistic regression analysis, the authors found that "mean error duration" predicted 11% of
the variance and AHA predicted 19% of the variance (AHA was calculated in a smaller group
n = 40). No correlation was reported for SMR Predictor but including it in the model with
"mean error duration", AHA and age group allowed for a prediction of 64.3% of the variance.
The AHA test measured the "attitudes towards work" (from German "Arbeitshaltungen") can
be interpreted as a "very long and fastidious task" (personal communication with Kleih, S. in
2015). The authors yet noted that the AHA score reflected the ability to concentrate. The study
provided new evidence that attention was positively related with SMR-BCI performance. In a
replication study with N = 32 participants, Hammer et al. (2014) found a moderate (r = .36)
correlation between "mean error duration" (ranked and standardized) and BCI accuracy but
no correlation with AHA. Instead they found a negative correlation (r = −.41) with the
"attentional impulsivity" subscale of the Baratt impulsiveness scale (BIS-15, Spinella, 2007,
German translation from Meule et al., 2011) which did not pass Bonferonni correction and
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was, interrestingly, negatively intercorrelated r = −.39 with the mean error duration. Yet, a
regression model including "mean error duration" and "attentional impulsivity" explained
20% of the variance and 8% of the variance without "attentional impulsivity". While the
study did not replicate the correlation with attentional levels it successfully replicated mean
error duration as a predictor for BCI performance.

In another study directly investigated the attentional levels, Grosse-Wentrup (2011) found
the presence of γ oscillations concurrently activated with µ rhythms in a SMR paradigm.
After demonstrating a casual inference of the γ oscillations on the SMR modulation, the author
suggested that the presence the shift of theta activity from centro parietal to frontal reflects
attentional processes. Further on, Grosse-Wentrup and Sch??lkopf (2012) hypothesized
that the presence of γ power predicted whether a subject is in a state of mind beneficial for
operating the BCI and implemented it into a pilot study (Grosse-Wentrup, 2011), and found
that two out of the 3 participants (the third participant being discarded for muscular artifacts)
were able to learn to modulate their theta activity. A decrease in frontal theta lead to increased
resting µ over the SMR. More than showing that γ can predict SMR BCI performance, it
shows that attention, expressed by frontal theta activity, plays a casual role, yet undefined, in
the modulation of SMR.

The predictor related to meditation practice cannot really placed within a psychological
component and neither in a visual, kinesthetic and spatial characteristics due to the fact that
the meditation methods are heterogenous. For the example of Yoga, there are different forms
that include more or less physical practice and visualization. But such practices are known to
reduce stress and increase attentional abilities (Jensen et al., 2012). Also the authors of the
studies did not report any standardized variables to evaluate the effect of meditation on any
dimension other than SMR-BCI. Mind-body awareness training (MBAT) has been found to
correlate with SMR-BCI accuracy, in a study with N = 36 healthy participants by Cassady et al.
(2014). The authors recruited in locals yoga club n = 12 participants who practiced diverse
forms of MBAT training at least two times per week for at least one year. The forms of MBAT
were various and included different ranging from "as Yoga Nidra and Vinyasa in addition to
Reiki (ed. a visualization healing method), Mindfulness, and Transcendental Meditation".
The other n = 24 participants were healthy controls (CG) who had in their lifetime experienced
less than ten MBAT sessions. The authors found that the MBAT participants achieved higher
performances in the left vs right hand MI-BCI at the end of four BCI sessions (82%), as
compared to the CG (63%). The authors associated this difference to the practice of yoga
and meditative techniques, which is known to alter the resting alpha and beta frequencies
(Hebert et al., 2005; Aftanas and Golocheikine, 2002; Mason et al., 1997). The authors further
suggested that the effect was due to the process of learning particular mental techniques that
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"provide subjects with the experience and practice of modulating their sensorimotor rhythms
prior to even participating in a BCI task" (Cassady et al., 2014). While the relationship
between SMR and meditative practice was not further detailed by the authors, we can see
that meditation practitionners performed dramatically better than the CG. All the MBAT
group (n = 12) could reach the criterion of BCI efficiency, while the mean of CG was
under the criterion. Nevertheless, the study pose a few methodological problems, since the
experimenters did not mention whether the participants were matched for age and sex. The
authors also chose to report t-tests without accounting for the time (for example using an
ANOVA with repeated measures), and therefore, it is not possible to know whether the samples
were significantly different on session 1. Yet, the result showed that MBAT practice offered
a very promising direction of intervention for reducing BCI inefficiency. The conduction
of well controlled studies or the MBAT training of participants might provide additional
evidence for the identification of related predictors.

5.1.2 Locus of control

The locus of control (LOC) ("generalized expectancies of internal versus external control of
reinforcement", Rotter, 1966) is a concept tied to the contingency between a behavior and
the associated reward. If an individual perceives that a reward is contingent with his or her
own behavior, the control is considered as being dependent on self-produced actions; the
locus of control is internal. But if the reward is independent from his or her own actions, then
the individual perceives that the reward is attributed by external forces such as bad luck or
coincidence; the locus of control is external. In the case of a BCI, the perception of the LOC
can be defined on a scale from external to internal depending on the probability of success of
the BCI. The LOC has consequences on reinforcement scenarios, such as the leaning of new
skills (for further details, see Rotter, 1966). The LOC is a concept very close to the concept
of sense of agency. While the LOC is tied to a reward, the sense of agency is the sense of
experiencing self as the agent of our own actions (Gallagher, 2000). A well known experiment
that illustrates the sense of agency is the "alien hand" experiment (Nielsen, 1963), in which
participants had to draw lines while receiving deceitful feedback of their hands using a set of
mirrors. After a practice period, the mirror would be secretely flipped and the participants
instead saw the hand of the experimenter who would produce intentional mistakes by drifting
the hand on the right. While the participants made unconscious appropriate movements with
their own hand to the left to correct the perceived mistakes, they still genuinely believed the
hand they saw to be theirs. This experiment revealed that the visual representation of the hand
dominated its kinesthetic representation. It shows that the sense of agency is a representation
built upon different modalities and that can in this study could be intelligently manipulated
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by the experimenters. As it is typical in cases of schizophrenia to observe disturbances in
the sense of agency with individuals failing to properly attribute themselves as the source
of their actions, Synofzik et al. (2008) investigated the sense of agency based on a model
that would integrate mistakes in attribution. The authors proposed a "comparator model"
of agency, which is built upon a feed forward loop (error monitoring of the expectation)
and feedback (sensory feedback) loop. The comparator model provided by the authors can
also explain the "self despite mismatch argument" which is a recurring pattern in SMR-BCI
training of BCI novices. During the first runs with feedback, the experimenters must convince
the participants that they are in control of the feedback. This truth being more virtual than
actual in many cases, as it can take several sessions for the participant to obtain more than
random control over the BCI; and some never reach significance. The neural substrate for the
sense of agency is widely distributed in the brain, David et al. (2008) reviews areas implied in
the sense of agency, located using fMRI and positron emission tomography (PET), listing the
supplementary motor area (SMA), the ventral premotor cortex, (vPMC; Jeannerod, 2004) the
dorsolateral prefrontal cortex (dPFC), the posterior parietal cortex (PPC; Fink et al., 1999),
the cerebellum (Blakemore et al., 2001; Leube et al., 2003) and the insula (Farrer and Frith,
2002; Farrer et al., 2003). David et al. (2008) suggest a classification of these areas into
two groups: the first group is a network of sensorimotor transformations and motor control
(vPMC, SMA, cerebellum), representing the executive function; the second group containing
the PFC representing the supervisory functions. The LOC can be interpreted as an inference
of the sense of agency associated with the notion of control and projected on a dimension
that ranges between internal and external. Based on the neural substrate of sense of agency,
we can suggest that, similarly, the LOC, in the context of SMR, implies the interaction the
neural substrate of motor control with frontal executive evaluation to adjust whether the LOC
is internal or external.

Burde and Blankertz (2006) evaluated N = 17 participants who filled questionnaire
assessing the LOC using IPC questionnaires (Krampen and Levenson, 1981) for internal and
external LOC. They also filled the KUT ("Kontrollüberzeugungen im Umgang mit Technik",
German for "locus of control in dealing with technology"; Beier, 2004). In the subsequent
SMR BCI session, they found a one-sided correlation (r = .59) between KUT and BCI
accuracy, suggesting that people with self-confidence in technology perform better.

Witte et al. (2013) found another relation with KUT in a study involving neurofeedback
training. The authors asked N = 10 participants to fill the KUT scale, then modulate their µ
power on Cz during six runs of three minutes. A negative correlation of r = −.69 between
KUT and µ band power was found, which led the authors to conclude that participants with
higher confidence might use additional cognitive resources, which then became counter-
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productive in performing better with the BCI. The authors concluded that in SMR-BCI setups,
the participants should be instructed to relax and avoid forcing mastery.

Jeunet et al. (2015) assessed 18 participants in 6 mental imagery (MI) BCI sessions. The
type of BCI was meant to broadly cover the range of possibilities in using MI-BCIs, and
used an unusual combination of three different types of MIs: 1) left hand motor imagery
2) mental rotation 3) mental subtraction. The authors spread the assessement of tests and
scales in between the sessions, in a pseudo-random fashion. Among those test were the 16
Personality Factors ("16-PF-5", Cattell and P. Cattell, 1995), the learning style inventory
("LSI", Kolb, 1999) and a mental rotation test (Vandenberg and Kuse, 1978). They found that
"tension", "abstractedness ability", "self-reliance" (dimensions of the 16-PF), "learning style
(active/reflective learners)" and "mental rotation score" to correlate with SMR-BCI accuracy.
The authors noted that both "self-reliance" and "tension" were predictors of a person’s ability
to acquire new skills Jeunet (2016), while "self-reliance" has been associated with LOC and
mediated with psychological adjustment to life stress (Funch and Marshall, 1984).

Interestingly, the results about the LOC and the self-reliance point in the direction of
learning. It appears that previous beliefs and expectations of performance in the accuracy
of the BCI have an effect on the learning of SMR modulation. No particular hypothesis
can yet be advanced, but further investigations could attempt to explain why people with
higher self-confidence in BCI are better able to perform better in SMR- or MI-BCI (Burde
and Blankertz, 2006; Jeunet et al., 2015) and people with lower self-confidence are better
able to synchronize their µ rhythms (Witte et al., 2013).

5.1.3 Motivation and affective variables

Motivation is what leads our behavior and provide the mental energy to achieve goals (Heck-
hausen, 1977). We can distinguish between an intrinsic form and extrinsic form of motivation.
The first, intrinsic, means that the individual is energized by the interest of doing the activity,
as the reward lies in the activity itself. Extrinsic motivation describes a task for which the
motivation is acquired by external rewards such as money or status. The interesting part of
this distinction is that intrinsically motivated individuals show more interest, confidence and
a higher persistence on the task leading to higher performance (Heckhausen, 1977). In the
case of BCIs, those two forms of motivation can be simply illustrated by evoking the case of
healthy students who have to modulate their SMR modulation in experimental studies that
can last several hours spread over several days. Those are recruited for a monetary reward
and might show different motivation as compared to patient samples with paralysis who
perceive the BCI as a mean to acquire a new control output, or participate to the research
effort by empathy for other patients. Kleih and Kübler (2013) manipulated participants in



48 Individual Predictors for SMR-BCI Performance

their "motivation-to-help", by preceding the P300 BCI session with 1) either a technical
presentation on the BCI or 2) a presentation focused on how important BCI volunteers were
for the development of BCI benefiting for paralyzed end-users. The authors, who then sep-
arated the sample in "highly able to take others’ perspective" (HAPT) aptitude and "less
able to take others’ perspective" (LAPT), found that the high aptitude group also showed
a higher empathetic concern, but not a higher motivation. Partcipants in the LAPT group
had higher P300 amplitude. The authors suggested that the empathetic concern determined
the participants’ emotional involvement and was therefore reducing the allocated attention
on the task. These results did not allow to conclude on motivation, but suggested that a
non-emotional state of mind could be recommended to increase allocated attention to the
BCI task.

To address patient populations with visual impairments or a loss of motor control of the
eyes, Nijboer et al. (2008) compared a visual and an auditory feedback forN = 16 participants
in three sessions of SMR-BCI. Although they did not find an effect of modality on performance,
they found interesting results in the questionnaire for current motivation (Rheinberg et al.,
2001, adapted for BCI). The motivation contained several subscales: 1) "mastery confidence",
indicating whether the session would be successful 2) "fear of incompetence" 3) "interest" in
the training 4) "challenge", whether the participant considered his current experience being
challenging 5) "mood". The authors found through multiple regressions that "mood" and
"mastery confidence" predicted positively the performance in the visual modality of the SMR-
BCI, while "fear of incompetence" predicted it negatively. The results were partially replicated
in a study relying on a bigger sample. Kleih and Kübler (2013) collected an impressing
sample of N = 51 healthy participants and N = 11 stroke which practice SMR-BCI patients
in 4 to 8 sessions. The authors found a positive Spearman correlation between SMR-BCI
performance and "interest" ρ = .53, and a negative correlation for "incompetence fear"
ρ = −.43 in healthy sample. For the patient sample, the authors reported positive correlation
of SMR-BCI performance with "mastery confidence" ρ = .80, and with "challenge" ρ = .83.
Those two studies on motivation indicated that there is an importance of motivational aspects
in the learning of a SMR-BCI, showing that a higher motivation is associated with better
performance and that other components of motivation such as interest, challenge or the fear
of incompetence also relate with performance. Additionaly, it must be noted that "interest"
correlated with SMR-BCI accuray in the healthy sample, showing that intrinsically motivated
participants performed better in the BCI. Nonetheless, it must be stressed that the scales
were systematically filled between runs in both studies, an that no independence between the
predictors and dependent variable (BCI performance) can be assumed from these results.
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Investigating the motivational aspect of feedback characteristics, not in term of modality,
but in term of virtualization, Leeb et al. (2007) trained 10 participants in SMR-BCI sessions.
The participants attended three cue based sessions using smileys on a monitor (CF) and two
sessions in which the BCI allowed the exploration of an apartment either in on a monitor
(TFT) or in a 3D interactive virtual environment (iVE). The performance was higher in
the iVE as compared to TFT, which was marginally higher to CF (p = .050). The authors
concluded that participants were more motivated during the virtual apartment task (+5% TFT
and +10% iVE) and therefore more engaged in the task. It is possible that the participants
were intrinsically motivated in the task, which was engaging, in comparison to a non-engaging
task that reward the participant with smileys.

Jeunet et al. (2015) in their MI-BCI study found among their results (that were previously
introduced in section 5.1.2) that the "active/reflective" dimension of the learning scale (ILS)
predicted the BCI performance. The "active/reflective" was present in the regression models
and showed that active learners were more efficient in controlling the BCI. Jeunet (2016)
mentions Felder and Silverman (1988), according to which "active/reflective" dimensions
are closely related to extravert/introvert according to the Jung-Myers-Briggs model (Briggs
and Myers, 1962). Active learners experiment and practice while reflective learners need to
passively think of their experience. According to this distinction, the lower performance of
"reflective" learners could be explained by the fast pace of the BCI trials, that prevent times
of reflexion (e.g. 4 seconds of SMR modulation control every 10 sec), that may favor practice
oriented "active" learners.

5.2 Visual, kinesthetic and spatial characteristics of the mo-
tor function

In the previous sections we have seen that the SMR rhythms can be found over the motor
cortical areas (see section 2.3.2) and that the SMR-BCI was built on exploiting SMR rhythms
(see section 3.3). As we saw that controlling the BCI requires the use of efficient motor
strategies, as explained in the dual-process model by Lacroix and Gowen, 1981, the iterative
strategies elaborated when attempting to modulate the SMR appear decisive in its learning.
The motor loop (section 2.3.1) shows that the prepartion of a voluntary movement involves
two secondary loops. It was demonstrated (for review, see Andersen et al., 1997) that the
sensory information from different modalities (visual, sensory, auditory) converge in the PPC,
allowing to code the spatial locations that are involved in movement.
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A differentiation between different motor imagery strategies was done by Neuper et al.
(2005) with N = 14 participants. The authors gave different motor imagery strategies
to the participants 1) kinesthetic motor imagery (MIK)1 2) visual motor imagery (MIV)
3) motor execution (ME) and 4) observation of a movement (OOM). Besides the fact that ME
return the best prediction accuracy (80%), the authors found MIK (67%) returned higher
performance as compared to MIV (56%). Due to the low number of runs per class (i.e.
n = 40), the true chance level was high (using Müller-Putz et al., 2008, I estimated the true
chance level as 64.8%)2, meaning that MIV did not perform better than chance. Yet, the
authors recommended to perform kinesthetical motor imageries.

Vuckovic and Osuagwu (2013) attempted to verify the recommendations of Neuper et al.
(2005). To proceed the other compared kinesthetic motor imageries to visual motor imageries
(KVIQ) in the context of an SMR-BCI. The authors gave kinesthetic (KI) and visual (VI)
motor imagery questionnaires before starting a SMR-BCI which alternated simple-imageries
or goal-oriented imageries. The differences between simple imageries and goal oriented
imageries were quite similar (i.e. SI: grasp a mug laterally; GOI: grasp a mug and remove
it from the table) and the difference in the results were minor. The KVIQ (Malouin et al.,
2007) asked the participant to perform a contraction of a group of muscles showed by the
experimenter (e.g. raise the arm vertically), then repeat it mentally, and then rate the vividness
of the imagery on a visual or kinesthetic a scale ranging from 0 to 5. The questionnaire
involved 17 different group of muscle. Vuckovic and Osuagwu (2013) found a moderate-
strong correlation r = .53 between kinesthetic imagery score and the performance in the
simple imagery task, while the correlation was lower for visual imagery r = .17. Moreover,
the authors add that comparatively to using SI, using GOI was detrimental for good performers,
while GOI was beneficial for low performers.

This disctinction between visual and kinesthetic motor imageries can be approached from
a neurophysiological point of view. A recent fMRI study by Guillot et al. (2009) showed
that kinesthetic motor imagery yielded more activity in motor ares and the inferior parietal
lobule, while visual motor imagery recruited occipital and superior parietal lobules. I will
later evoke the functional and anatomic association with motor areas in the context of SMR
(sections 5.3 and 5.4). The association between kinesthetic motor imagery and motor areas
may supports the evidence of Neuper et al. (2005) a MIK on SMR rhythms.

1In this dissertation, the abbreviation MI was used for "mental imagery", and therefore, "motor imagery"
was not abbreviated

2Using α = 0.05, n = 40, p = .5, using "norminv" for Matlab or "qnorm" for R

chance thresholds = p±

√
(p · (1− p))

(n+ 4)
· norminv(1− (α)/2)
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A distinction between visual and kinesthetic can also be found in education for providing
tools to better identify stereotypical learning types. Gardner (1993) proposed a "theory of
multiple intelligence" that initially described seven distinct types of skills that are more or
less expressed by individuals. Among the seven, there was the "bodily-kinesthetic" (learning
though physical interaction) and "spatial" (learning through visualization). While the theory
that was revised multiple times in a decade (Gardner, 2006) and had influence on education
guidelines in the US, found dissonant voices denoting its absolute lack of empirical support
(Waterhouse, 2006), we can nevertheless estimate that kinesthetic and the spatial abilities are
can be considered as different psychological characteristics.

Fitts (1951) noted a difference between interoceptive and exteroceptive feedback, noting
that visual control is important when learning a new "perceptual-motor-task", while later
on, when the skill is integrated, the kinesthetic modality becomes more prevalent. Based on
this statement, Fleishman and Rich (1963) showed a very interresting relationship in a study
with N = 40 participants who performed 10 runs of two-hand coordination (THC), aerial
orientation (Guilford and Lacey (1947)) and kinesthetic sensitivity (estimating the weight of
cylinders while blindfolded). The authors found that on run one, the THC correlated with the
aerial orientation test (r = .36) but was not significant after run 3. In opposition, kinesthetic
sensitivity became positively correlated from run 7, reaching a highest correlation on run 10
(r = .40). Interestingly, this study showed that the association of the THC correlate was
different on different time periods, showing that those characteristics could also apply in
investigating the SMR predictors.

Jeunet et al. (2015), found that mental rotation score and abstractedness (imaginative,
absent minded, impractical opposed to practical and solution oriented) correlated positively
with MI-BCI accuracy. The mental rotation test is a task in which a cue 3 dimensional (3D)
shape and four rotations are displayed on the screen. Out of the four selectable shapes, two
are rotations of the shape (correct answer) and two others are mirror images of rotations of the
shape (distractors). The test is performed using five different sets of four items (Vandenberg
and Kuse, 1978). A link between mental rotation and spatial abilities can clearly be established
when accounting for the involvement of the dorsal premotor cortex (dPM) during mental
rotation task (Lamm et al., 2007). Under the scope of fMRI and PET investigations, the
activations of the dPM can be viewed under two group of hypotheses. The first group is that the
dPM is linked to motor simulation, when hands or other body parts are involved (e.g. Ehrsson,
2003), and that those are triggered by simulation of movements (e.g. Chao and Martin,
2000) following Gibson’s theory of affordance (Gibson, 1979), or by the anticipation of the
consequences of the movement (e.g. Wolpert and Kawato, 1998). The second hypothesis,
is that the dPM activation is simply caused by eye movements (e.g. Carpenter et al., 1999).
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Assuming the hypotheses of the first group, it shows a connection between spatio-motor
imagination abilities and MI based BCI, with the possible involvement of motor simulations
produced by the hands in both the left hand imagery or the mental rotation tasks. Jeunet (2016)
link spatial abilities and mental rotation by first stating that spatial abilities are better when
having experience in playing video games (Subrahmanyam and Greenfield, 1994). Another
study from Randolph (2012, described later in this section) found a moderate correlation
of r = .42 between video game experience and SMR-BCI performance, and Dorval and
Pfipin (1986) found that visuo-spatial abilities could be improved by playing a 3D video
game. Feng et al. (2007) found that mental rotation scores were increased after playing
10 hours of an action first-person shooter video game; the effect was stronger for women such
that it cancelled the gender difference found in baseline. It is important to notice that the
type of game matters, since no increase was found in playing a 3D maze game for the same
duration, and that perhaps the simple exposition to virtual 3D environments does not account
alone for this effect on mental rotation. Mental rotation and spatial abilities appears to be
closely related, and via the example of video game training, they present a real potential to be
evaluated in the context of predicting or training SMR-BCI

For the correlate "abstractedness", Jeunet (2016) describe it as reflecting creativity and
imagination abilities, and cite that "creative people frequently use mental imagery for scientific
and artistic productions" (LeBoutillier and Marks, 2003).

As Jeunet et al. (2015) combined three different motor imageries in the same BCI paradigm:
left hand motor imagery, mental rotation imagery or the mental subtraction task. The BCI
accuracy was calculated from all three task, and was predicted by mental rotation, but it
is not possible to know which MI the mental rotation score predicted. Unfortunately, no
supplementary content was provided by the authors that could selectively compare those
predictors in a (MI-)class wise fashion. Therefore, the predictors cannot be disentangled from
one another. In other words, mental rotation predicted the performance in the MI of left-hand
OR mental rotation OR mental subtraction. Although no evidence gives more weight to any
of MI classes, it should be noted that one of the MI classes was a mental rotation imagery,
and one of the scale was "mental rotation score", therefore adding a degree of confusion in
the interpretation of the results due to the following design: the variable "mental rotation
score" was performed after at least one BCI run. The BCI runs contained "mental rotation"
MI runs with feedback, and there could possibly be a reverse effect from BCI feedback of
performance to the mental rotation scale.

Another study from Randolph et al. (2010) revealed demographic predictors. The authors
asked N = 55 healthy participants about their age, time spent typing per day and the time spent
on full-body activities per day, then performed a 35 min session of actual movement executions
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of the hand and of the feet. The trials were not movement imageries, but performed in a
way that did not produce artifacts on the BCI. I already cited studies that compared executed
movements (Neuper et al., 2005), finding a lower performance in imagined movements. Yet,
it is admitted that imagined movements, although they are strictly required for a SMR-BCI, do
represent an attenuated version of actual movements in its α and β rhythms modulations and
topographies (Fleming et al., 2010). Performed movements can therefore be mentioned along
with other predictors, but it must be noted that proprioception, such as haptic feedback "closes
the sensorimotor loop" (Gomez-Rodriguez et al., 2011) and lead to better decoding of motor
imagery. Randolph et al. (2010) computed two significant predictive models, the first model
showed that age predicted the ability to modulate they µ rhythms, and the second showing
that the interaction between age and the amount of full-body movement in a day predicted
the ability to modulate their µ rhythms. These results imply that the older the participant are,
and the more they practice full body activities, the better the SMR modulation is. In a second
experiment, Randolph (2012) repeated its setup with N = 80 participants, who were yet asked
to produce hand or foot motor imageries vs rest two sessions of Wadsworth-BCI-like feedback
using BCI2000. Unsurprisingly, the number of the session predicted the accuracy, but more
importantly they found that whether the participants played an instrument predicted positively
the performance in modulating SMR rhythms, while the consumption of affective drugs and
age predicted negatively their ability to modulate SMR rhythms, explaining 40.2% of the
variance (note that session number was also included in the model). A model containing
experience in video games alone predicted 17.5% of the variance. In those two studies,
Randolph revealed that the regular practice of activities involving fine movements, including
playing and instrument or performing full-body movements predicts the ability to modulate
the ability to modulate one’s own ability to modulate SMR.

Another source of variance in the BCI can be found in variables that relate to visuo-
motor tasks assessed by psychomotor evaluations. The "mean error duration" in a visuo-
motor coordination task predicted subsequent BCI performance (Hammer et al., 2012, 2014;
introduced in section 5.1.1) the results also suggested a potential link between SMR-BCI
accuracy and two-hand coordination "mean error duration" (representing a standardized
duration of steering error), in the direction that fewer errors in the VMC was associated with a
higher BCI performance. The positive correlation between "VMC error duration" and "ability
to concentrate" and the negative correlation between "VMC error duration" with "attentional
implusivity", although they were not replicated, seem to both refer to attention.

While the association between motor abilities such as VMC error duration, playing an
instrument, playing video games, or performing full-body movements, it might be challenging
or even impossible to put such predictors into practical instructions or interventions for
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patients in need for BCI. First, those predictors or correlates were based on samples of healthy
participants and moreover, if transferred to a LIS patient sample, there is no possible guideline
involving fine, full-bodied and regular motor activity actually possibe.

5.3 Neurophysiological oscillatory patterns

During the conduct of BCI paradigms, the µ and β frequencies are measured within specificly
timed trials in which the important information should be evoked by the participant. Yet,
the neural activity can also be measured outside those specific BCI trials, and can provide
additional information and signals to help explain the variability in the performance. Blankertz
et al. (2010) measured the resting SMR activity of N = 80 participants before the BCI session
for a two minutes recording, during which they alternated for 15 seconds either closing the eyes
("eye closed"), or fixate a shape in the center of computer monitor ("eye open"). The authors
found that the difference between the maximum difference between µ or beta power spectral
density (a measure of power) and the floor noise correlated (r = .61) with subsequent SMR-
BCI accuracy. This effect was only significant in the "Eye-Open" conditions, presumably
due to interferences from occipital α that reduces the SNR. The method used a new method
using the noise floor of the PSD which estimates the shape of the EEG spectrum curve from
1 to 35 Hz. As the spectrum curve usually show frequency increases, using the noise floor
function allowed to simulate a baseline of the EEG spectrum in which resting µ and β waves
are theorically absent. The noise floor also adapted to inter-individual differences; using
this method instead of simply using PSD peaks, the authors increased the correlation with
BCI accuracy from moderate to high. Blankertz et al. (2010) called it the neurophysiological
predictor and is referred to as the "SMR predictor" (e.g. Geronimo et al., 2016). The
SMR predictor could be replicated by Jeunet et al. (2015) with a marginally correlation of
r = .43 (p = .087), or a correlation of r = .29 (Zhang et al., 2015; evoked in this secion).
The important outcomes of Blankertz et al. (2010)’s findings is that a 3 minutes recording
can reveal whether participants’ resting SMR are strongly synchronized, in which case it
can partially predict how they may succeed in using SMR BCI. Even more interestingly, it
allows to suggest certain forms of training for participants with low SMR control, such as
neurofeedback with the aim of increasing resting state SMR synchronization.

To extend the number of frequency bands, Ahn et al. (2013) proposed a factor that
includes both θ, α (µ), β, and γ frequencies. The authors assembled a subset of N = 52

participants who performed a total of 200 to 240 left vs right hand motor imagery trials. They
separated their participants in 3 classes: "illiterate" (true chance level); "in-between" (BCI
inefficient, below 70% criterion but higher than chance level); "literate" BCI efficient (over
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the criterion). By looking at the inter-individual differences of n = 21 BCI efficient and the
n = 16 participants at chance level, they found differences in frequencies 2 seconds before
the directional cue was indicated in each trial. The BCI efficient group had higher θ in the
frontal and posterior-parietal regions, an overall lower α power, and slightly lower β power.
Following these results, they combined the frequencies in the following formula:

PPfactor =
α + β

θ + γ
(5.1)

The PPfactor was significantly correlated with SMR BCI performance r = .59. While the
authors report that their correlate has a superior correlation than the SMR predictor, it must
be noted that their correlate was assessed during the trials while the SMR predictor was
performed before any BCI trial. The authors suggest that the factor represented attention,
motor-related memory load processes and the preparation to receive the cue for the motor
imagery. Yet, correlates measured between BCI trials should be carefully compared to other
predictors, as they can potentially be mediated by effects of attention (e.g. disengagement
from the motor imagery task due to low performance or lack of challenge).

It could be argued that the Ahn et al. (2013) study and the study that follows (Bamdadian
et al., 2014) could be classified into the "task engagement and attention" section (5.1.1)
because the authors claim that their results demonstrate the involvement of attentional levels.
Moreover, as they use pre-trial EEG measurements, one could argue that they are they
display a transitional variation of the BCI performance. However, the authors average the
measurements and do not provide an intra-individual measurement that allows to assess the
short term characteristics of the runs.

Bamdadian et al. (2014) found an involvement of the attentional levels on the SMR-BCI
accuracy on a study based on 17 participants. To proceed, they calculated a ratio from the
EEG in the 2 sec pre-cue duration of motor imagery trials. The normalized power of θ was
divided by the normalized power of α and β, following this formula:

Bambadian Predictor =
θ

α + β
(5.2)

The use of such ratio was inspired from previous findings showing that a θ/β ratio can be
found by children with hyperactivity attention deficit disorder (ADHD; for review see Arns
et al., 2013). The Bambadian predictor correlated with BCI accuracy (r = .53), and it is
worth mentioning that the proportion of α to β could be adjusted, showing a larger statistical
power by using a ratio of α below 0 to 20%. Yet if Bamdadian et al. (2014) had added the γ
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power in their equation, their equation would be the inverse of the PPfactor

Bambadian Predictor =
θ

α + β

1

PPFactor
=

θ + γ

α + β
(5.3)

While they are almost the inverse of each other, both PPfactor and the Bambadian predictors
correlate positively with SMR BCI accuracy, in line by their opposite findings of pre-cue θ

and α in good vs bad performers. From this mixed results, we cannot really interpret the role
of motor attention in pre-cue SMR BCI trials.

The study from Weber et al. (2011) reported the results of a neurofeedback training
of µ SMR. The authors trained N = 27 participants in two similar neurofeedback studies
for a total of 25 training sessions (or days). The goal was to identify a neurophysiological
indicator of the participants’ ability to learn to significantly modulate their µ band power.
They calculated a predictor using the average change in µ power between the three first
days and days 8-11. If the difference showed an increase in µ power, then participants were
identified as non-performers. This could predict whether 26 out of 27 participants were able
to learn to modulate their SMR at the end of the 25 sessions. The result showed that the ability
to increase µ rhythm in a neurofeedback can be quite reliably predicted after 11 sessions of
25 min.

Zhang et al. (2015) measured a total of N = 40 subjects, including n = 26 who came back
for a second SMR-BCI session. Sessions were preceded by two minutes of eyes-open/eyes-
closed EEG baseline sessions (similar to Blankertz et al., 2010). The authors calculated their
own predictor (SE) using spectral entropy. They used the power spectrum density of the EEG
signal of electrodes covering the motor cortex (F3, F4 ,FC3, FC4, C5, C3, Cz, C4, C6, CP3,
CP4, P3, P4, O1, O2), in the range of .5 to 14 Hz. After normalizing the power spectrum
density (PSD) of the frequency spectrum into bins of .5 Hz, they calculated the spectral entropy.
They also computed the Bambadian predictor, and the SMR Predictor for comparison. The
highest reported correlations reported were of SMR-BCI accuracy of SE (r = .65) on C3
(eyes closed); Bambadian predictor (r = .51) on FC3, eyes closed; SMR predictor (r = .29)
eyes open. The SE was found as the best predictor when compared with PPfactor and the
SMR predictor. Although it can be argued that the conditions of calculations were unfit to
compute the SMR predictor (i.e. impossibility in their choice of electrodes to compute a
Laplacian, no mention of the original frequency range of determination of 5 to 35 Hz), the
SE showed a great potential to predict SMR-BCI performance. The authors additionally
found that the SE predictor could reliably high and low BCI performers between two sessions,
although authors note that the number of session to determine whether a participant can
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modulate their SMR was estimated to about 8 sessions (citing Kübler et al., 2011b), while we
previously reported that Weber et al. (2011) required about 11 sessions.

5.4 Anatomical and functional neural properties

Searching for neuroanatomical predictors for SMR BCI, Kasahara et al. (2015) found very
interesting results by making a MRI scan of the brain of N = 30 healthy participants before
proceeding to a SMR-BCI session. During the BCI session, the participants performed left
vs right hand motor imageries. The authors correlated voxel-based-morphometry data and
SMR-BCI accuracy, and used correction for multiple comparisons. They found a significant
correlation between the performance in the SMR-BCI and the volume of the grey matter in the
following areas 1) supplementary motor area (SMA, r = .72) 2) the secondary somatosensory
area (S2, r = .71) 3) the dorsal premotor cortex (PMd, r = .59). The correlated areas were all
linked with the motor function, and lateralized (right: SMA, SSA; left: PMd, all participants
were right-handed).

Halder et al. (2011) compared fMRI assessed data of N = 20 healthy participants who
alternated performing motor imageries, actual motor movements or observing 10 seconds
videos of hands squeezing. Then the participants performed a SMR-BCI session. The authors
separated high and low BCI performers and compared their brain activity. The fMRI revealed
that good performers had a higher activation in the SMA for motor imagery and motor
observation. The number of activated voxels in the SMA was correlated with SMR-BCI
accuracy (r = .53). A stronger correlation was found (r = .65) in the right precentral gyrus
("motor strip") associated with motor imagery. The strongest correlation (r = .72) was found
in the middle frontal gyrus during the observation task, showing the importance the neural
substrate of task monitoring and working memory in the control of a SMR-BCI. Halder
et al. (2013) continued researching the prediction participants using MRI and DTI of the
motor imagery of N = 20 participants. The authors referred to the region wise fractional
anisotropy values according to the ICBM DTI-81 Atlas, while correcting their α level for
multiple comparisons. The authors found high correlations between individual performance
and the Corpus Calossum (r = .54), the right cerebral Peduncule (r = .52), the posterior
Corona Radiata (r = .51), the Cingulum (Hippocampus) (r = .63) and the superior fronto-
occipital Fasciculus (r = .54). The Corpus Calossum is the point of junction between the
hemispheres. Importantly, the correlated cerebral white matter areas identified in this study
could differentiate high to low aptitude users with 93.75% correct prediction.

Another neuroanatomic study conducted by Kasahara et al. (2015) evokes that grey
matter density in specific motor areas (SMA, SSA, dPM) correlates positively with SMR-BCI
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performance, revealing a relation of neuroanatomical nature. We can therefore imagine
trainings that focalizes on increasing the grey matter density on those specific areas. It has
been shown, in rupture with the traditionally held views that anatomical properties of the
brain can be changed via cortical plasticity (Draganski et al., 2004), and that this plasticity is
stronger when learning new tasks (Driemeyer et al., 2008). A very interesting study of motor
training, by Taubert et al. (2011), showed neuroanatomical effects on N = 28 participants.
Half of the participants (n = 14) were trained on a balancing task once a week for 5 weeks.
The other half were used as control. An increased functional connectivity could be observed
on the first session. In the same areas that had increased activity (in fMRI contrast), the
authors observed neuroanatomical changes in the grey matter occuring in the balancing group
from the 3rd week onwards. The concerned areas were the SMA, pre-SMA (bilaterally) and
the right ventral PMC (vPMC). The results also found that intrinsic functional connectivity
was increased between the prefrontal cortex, SMA, pre-SMA and parietal areas that persisted
for more than a week after training, showing different levels of plasticity. As an example of
potential training, such an effect or grey matter alteration was shown by Hölzel et al. (2011)
who trained their participants in mindfulness meditation (MM), increasing grey matter density
in a priori identified areas of the hippocampus, but also in broader cortical areas.

Those interesting prospects of MRI based studies may nevertheless encounter difficulties
when being transferred to patients. In a meta-analysis of DTI screenings by ALS patients,
Li et al. (2012) report serious alterations of the white matter in the Cingular gyrus and the
posterior limb of the internal capsule. Reviewing five studies of N = 81 ALS patients, Chen
and Ma (2010) reported a loss of grey matter in the whole brain by ALS patients, with 25%

presenting an atrophy of the right precentral gyrus (PMC). Those two meta-analyses show
that ALS is often associated with lesions in both the white and grey matter in motor areas.
While it does not specifically overlap with the areas associated with SMR-BCI as found by
Halder et al. (2011, 2013) and Kasahara et al. (2015), it nevertheless limits the prospect of
transferring observations from healthy participants’ samples to patients. Experiments from
patient populations, despite heavy underlying constraints, might provide additional data on
the feasibility.

5.5 Limitations of the predictors

The experimental protocols and the study designs of BCI predictor studies tend to sensibly
vary a lot from one study to the other, and no particular effort is made to replicate previous
findings. Firstly because of the progressive adoption of improved algorithms and methods,
but also due to common practice and the background of the researchers (e.g. psychologists,
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bioinformaticians, neurologists). This situation is similar for P300 BCIs, in for which studies
report isolated designs or predictors for BCI performance, but rarely attempt to use a common
standardized evaluation that would make the comparison easier (Kübler, 2017). With only
a few predictors in the field of SMR-BCI, there is also the difficulty to interpret predictors
of different types (and criteria, as introduced by Grosse-Wentrup and Schölkopf, 2013 in
section 4.2). To include a maximum of predictors and correlates while taking into account
their different nature, and avoid overlooking those who do present limitations, I chose to
integrate them in the list, but then evoke their respective limitations:

I) Firstly, certain studies did not report specifically SMR-BCI. Concerning neurofeed-
back of SMR rhythms, it does not pose any particular problem, since a SMR neurofeed-
back session is a BCI in which participants attempt to control the feedback (e.g. a cursor
or gauge on the monitor) via SMR modulation, implying a strategy to achieve control
over the interface. Yet, to avoid confusion, the quantification of the performance or
efficacy of the NF should be precised, whether it describes "online control" (BCI con-
trol) or the increase in resting SMR oscillations (effect of NF training; e.g. difference
between PRE and POST baselines). Another study from Jeunet et al. (2015) proposed
interesting predictors for a three-class MI-BCI that distinguished between left-hand
motor imagery, mental rotation and mental subtraction. Whatever the implications of
the predictors on BCI performance, particularly mental rotation, we cannot dissociate
those predictors from the motor imagery tasks.

II) Secondly, due to the low amount of predictors, it was convenient to introduce the pre-
dictors that were marginal .10 < α < .05, or that did not pass Bonferonni correction.
Marginal, or alpha-corrected-"discarted" predictors are yet worth being cited to be able
to possibly converge similar patterns of findings (e.g. motivation, attention, LOC). It
was the case for all the predictors of Jeunet et al. (2015). Also, I reported one study
containing one-sided hypothesis but that was not driven by any preliminary knowledge:
"we focus on the [. . .] LOC [. . .] which has so far not been considered in a BCI context"
(Burde and Blankertz, 2006). Importantly, the classification between low aptitude
and high aptitude users provided by Weber et al. (2011) is arbitrary ("Using 8% is
somewhat arbitrary, but was based on [. . .] (unpublished) data of earlier experiments")
and no correction for multiple comparison was provided in detecting that a significant
classification could be established on the 11th neurofeedback session.

III) Thirdly, certain results presented the risk of a two-way causal relationship. In their
experimental design, the independence between the dependent variable and predictor
cannot be ensured, since participants rated their current motivation prior to multiple
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sessions with feedback. Nijboer et al. (2008) and Kleih and Kübler (2013) reported
that "motivation" and "fear of failure" were correlated with the BCI accuracy, but it is
reasonably obvious that those variables could be directly influenced by performance.
Yet, the authors did not claim to have predicted SMR-BCI performance, but instead, the
experimental design was meant to follow the variables (e.g. "fear of incompetence")
along several BCI runs, and study the evolution of those variables over time. These
correlations by the authors lead to encourage a certain approach of motivation during
the training of SMR, which can be source of within-subject variation. Yet, it raises
awareness, as Grosse-Wentrup and Schölkopf (2013) questionned, on whether variation
is causally predicted or not.

In the choice of design adopted by Jeunet et al. (2015), participants completed the
different evaluations in a counterbalanced fashion in-between the 6 BCI runs, which
might also lead to the possibility of reverse-causality. Yet, their predictors were found
on personality trait scales, and therefore should in theory not be subject to such effects.
Nonetheless, the mental rotation predictor could fall into this category, since its perfor-
mance could have been increased by mental imagery practice, and that participants did
practice mental rotation imagery with variable success during the BCI sessions.

Despite their limitations, the contribution of all those predictors is strongly valuable for the
better understanding of the causes of variance and the possible applications in increasing SMR-
BCI accuracy. They should naturally not be overlooked based on those evoked limitations,
and I therefore introduce them along with the other predictors in table 5.1, but labeled with
specific mentions.

5.6 Classification of the predictors

Jeunet et al. (2015); Jeunet (2016) provided a list of predictors for MI-BCI that were classified
in three different categories. Which distinguished individual characteristics between "states"
(i.e. cognitive and emotional states), "traits" (personality and cognitive profile) and other
factors (i.e. demographic data, experience and environment). This distinction was notably
tied to her thesis investigation and distributed in three sub categories depending on their
"type of explanatory variable": a) technology and notion of control b) attention c) and spatial
abilities.

Alternatively, I propose here a classification of all the predictors and other variables
that have been shown to be related with SMR-BCI accuracy, in the following cross-table
5.1. For each major type (i.e. Psychological, Visual-motor-spatial, neurophysiological,
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Neuranatomical, Demographic and environmmental), I identified subtypes that allow to
regroup similar findings (e.g. attention, motivation, control beliefs, affective of cognitive for
psychological characteristics). I provided for each predictor, the type of relation (Correlation
or Regression) and the variables associated with – BCI – accuracy, the sample size (per
group), the statistic and the p-value. To conform with the guidelines of Grosse-Wentrup and
Schölkopf (2013), I specifically indicated whether the sample was healthy individuals or
patients, and I also estimated whether the study design assessed within-participant variability
or between participant variability (coded by "W" or "B"). Importantly, I estimated the causal
independence of the assessed variable from the level of BCI accuracy. This distinction was
based on whether the variable was assessed before or after the measurement of BCI accuracy.
In the case of the PPfactor, (Ahn et al., 2013), the authors claimed they predicted BCI accuracy
from 2 sec pre-trial recording, but I reality this 2 sec pre-trial factor was averaged over several
trials, therefore indicating a possible3 causal relationship of BCI accuracy influencing the
PPfactor. In the table, if the causal independence is positive ("Y" for yes), the variable or
factor could be considered as a predictor that is not influenced by BCI accuracy, otherwise, it
would require – a replication study – to assess its causal independence from BCI accuracy. In
the table, the last column included notes to provide important information about the study
design or the results of the study.

3By possible, I mean that the causal relationship of BCI accuracy on the PPfactor is "not impossible" until
the contrary is proven.
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5.7 Increasing SMR-BCI performance

In the previous section, I discriminated several different types and subtypes of predictors for
BCI performance. The first group revealed psychological variables, notably the modulation
of attention, the LOC and motivation. The second group comprised predictors that are
linked with visuo-motor and spatial abilities. The third and fourth groups predictors that
were neurophysiological and neuroanatomical for which links with psychological or viso-
motor-spatial characteristics were suggested by the authors, but was not established through
experimentation. Additional demographic and environmental predictors were also cited as
fith and sixth groups.

Having listed these predictors, defined their type and causal independance, it is therefore
possible to know which expected direction could be preferential for such predictors. One first
argument that was made by Blankertz et al. (2010) after finding the SMR predictor which
was that, provided a variable that can partially predict BCI accuracy, researchers would be
able to predict whether the participants would be able to acquire good performance with a
SMR-BCI. The idea was that such a procedure implying predictors could identify potential
non-learners. The participant could either be presented with neurofeedback methods (similar
to Witte et al., 2013) to increase the resting SMR power. McCane et al. (2014) proposed
such a screening to determine whether ALS patients could use a visual P300 speller, another
solution, would be to instead direct the user to another alternative such as a P300 based BCI.

There is yet no defined protocol to differentiate potentials BCI learners to non-learners,
and every studies advanced their own predictor, with few or no overlapping between those
variables across studies. It could therefore be beneficial to elaborate such a screening protocol
before starting the training of an SMR-BCI, which can take up to a dozen of sessions.

On the individual level, meaning that if we take apart the improvements on the character-
istics of the BCI, on the feedback and on the instructions, there are yet a very limited number
of studies, to my knowledge, that have been able to experimentally increase the performance
in an SMR-BCI.

Those studies also have the particularity to imply the use of relaxation methods. The first
study which exploited the use of relaxation intervention to improve SMR-BCI was reported
by Mahmoudi and Erfanian (2006). In this study, the authors recorded 14 healthy participants
in three SMR-BCI sessions at day 0, 10 and 20. After the first BCI session, half of the
participants were trained on mindfulness meditation (MM) session while the other half did
nothing (CG). The authors reported that MM participants had higher mean performance
(day1 = 77%, day30 = 77%) as compared to the control group (day1 = 61%, day30 = 56%).
According to the formula proposed by (Müller-Putz et al., 2008), the true chance levels
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thresholds were: low = 36.7%, high = 63.3%, meaning that the accuracy of CG participants
was random from the beginning.

Although the ANOVA with repeated measures returned a significant difference, it must
yet be stressed that the MM participants maintained the same performance, and that the effect
of training comes from the reduction of CG accuarcy. Despite the dubious methods, this
study showed negative results concerning an effect of meditation training, and was the first
attempt to use a relaxation training intervention to increase SMR-BCI accuracy.

Tan et al. (2009) published the results of a pilot study with N = 9 healthy participants.
They were trained during four weeks with either mindfulness meditation training (MM),
musical education training (MS) and a control group (CG). The BCI accuracy was evaluated
pre and post intervention, knowing that the participants had no musical education (more than
school requirements) and neither had previous formal education in relaxation techniques. The
authors found that after four weeks, the participants in the mindfulness meditation group had
better BCI performance. The study could be criticised for its small group and the fact that
they decided to only show the results of N = 9 participants while the sample they possessed
was N = 30, invoking time restrictions.

A few years afterwards, the authors finally published a study (Tan et al., 2014) with
N = 63 participants, and replicated the effect of MM on BCI, for which BCI accuracy after
the training in the MM group was higher than MS and CG, marked with an increase of 10.2 pp
as compared to CG. It is worth repeating that an increase of 10 percent points is considered
as a huge improvement in the field of SMR-BCI. The authors conducted a pre-study in which
they demonstrated that the influence of non-specific effects were mitigated, first because there
was a training group, and second because the expectation of influence on BCI accuracy was
not significantly different between MM and MS. By choosing a musical training group, the
authors addressed the fact that neuroplasticity and cognitive transfer effects occured due to
MM training (e.g. Hölzel et al. (2011), and so did the guitar training (Rabipour and Raz,
2012). The authors suggested that the significantly high increase in BCI accuracy could
have been caused by the beneficial effect of mindfulness meditation on improving selective
attention (Jensen et al., 2012). Tan et al. provided a detailed description of the MM sessions,
including: "Participants were guided by the instructor to sit quietly and focus on the flow of
their breath, with their eyes closed, and to non-judgmentally become aware of their thoughts,
senses, and feelings. They were told to not look for any thought or remain alert waiting for
any thought to come but to notice the content of each thought when it arises, accept it, and
allow it to go. They were also told to gently focus back on the breath when they noticed that
their mind had wandered". In addition, participants were also asked to perform body scans.
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Bishop et al. (2004) proposes a definition of MM, chraracterizing it as a metacognitive
process that require the control of cognitive processes (i.e. attention, self-regulation) and
monitoring of the stream of consciousness. In SMR-BCI, as for neurofeedback, there is
no proprioceptive feedback that can indicate whether the motor imagery is correct or not.
The learning is also complex since the participant has to rely on a feedback that is provided
externally, sensitive to artifacting or noise, and present a certain temporal "lag" (Often,
the sliding windows of the BCI classifier uses features from the previous second). Bishop
et al. (2004) further describes mindfulness as following: "Mindfulness can thus be further
conceptualized as a process of investigative awareness that involves observing the ever-
changing flow of private experience. The term investigative refers to an intentional effort
to observe and gain a greater understanding of the nature of thoughts and feelings". The
hypothesis that mindfulness meditation provides better interoceptive perception has also been
supported by recent studies (e.g. Farb et al., 2013). MM trainings is also known to enhance
attention skills (e.g. (Semple, 2010)), and the sustainability of those skills on a prolonged
period (note: this reflects Hammer’s AHA predictor).

The MM participants of Tan et al. (2014) had to practice 20 min of daily MM for 12 weeks,
including a weekly session, it shows that the training was intense for MM. Apart from
registering the attendance of the participants to the MM and MS trainings, the authors did
not control for the effect of their intervention by any means.

In the perspective of these three studies (Tan et al., 2009, 2014; Mahmoudi and Erfanian,
2006), we can note that the experimenters trained the attentional abilities of the participants
using MM. Interestingly, the musical training did not improve their SMR-BCI accuracy, while
evidence for an association between musical expertise and spatial abilities has been shown
(Brochard et al., 2004). Also, it must be noted that the musical experience was found as a
predictor for SMR-BCI (Randolph, 2012). The authors explained that the duration of the
musical training might have been too short to equal the life-long acquired skill of musicians.

By combining the findings from Tan et al. (2009, 2014); Mahmoudi and Erfanian (2006),
we can see that there is a potential for meditation based studies in increasing SMR-BCI. These
trainings are supported by the MBAT predictor (Mind Body Awareness Training), in which
MBAT predictors perform better in a BCI (Cassady et al., 2014). Nevertheless, the need for
stricter evaluation methods, that check for the effect of meditation based interventions, and
more replications studies are required to fully convince researchers to use for example MM
or MBAT interventions to improve the accuracy of BCI inefficient individuals. The ability to
translate those interventions to patients is not evoked by the researchers, restricting the range
of meditation techniques to those that are non-motor, or non-respiration based in case the
patients receive assisted ventilation.
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The low amount of studies investigating whether interventions can increase SMR-BCI
accuracy, and the lack of studies reporting non-results show that there is the need to conduct
such experiments in well-controlled designs, with more participants, as it is the case in this
thesis.



Chapter 6

Empirical investigation

To recall the aim of this dissertation, the approach was to investigate the individual dimension
of the BCI user in relation with SMR-BCI accuracy. To proceed I collected and identified
variables that explain variation in SMR-based BCI accuracy, supported by empirical evidence.
Having identified these source of variation, the objective was to propose and evaluate trainings
that could increase SMR-BCI accuracy. Those trainings were based on the manipulation of
the identified predictors.

During the course of the investigation work I conducted in the context of this dissertation
(2011 to 2017), the number of predictor variables grew (e.g., Vuckovic and Osuagwu, 2013;
Bamdadian et al., 2014; Cassady et al., 2014; Jeunet et al., 2015; Kasahara et al., 2015)
and several replication of exisiting predictors studies were published (e.g., Randolph, 2012;
Grosse-Wentrup and Schölkopf, 2013; Hammer et al., 2014; Zhang et al., 2015). A study
even concurrently found an effect of mindfulness meditation training on SMR-BCI (Tan et al.,
2014). In the reporting of the studies, I respected the chronological context (i.e. study I
in 2011, Study II in 2015) to evoke the summaries and research questions. A global discussion
is provided in the next chapter (7) to integrate the knowledge into the current state-of-the art
research.

6.1 Study I - Effects of PMR and VMC training on perfor-
mance in an SMR-BCI

6.1.1 Initial summary

At the time study I was designed (i.e. winter 2011), only the effect of meditation training
– specifically mindfulness – had been reported in a preliminary study by (Tan et al., 2009;
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described in section 5.7). The amount of predictors was also scarce, but I had access to
the – accepted but – yet unpublished results of Hammer et al. (2012) that identified the
ability to concentrate and the "mean error duration" in two-hands visuo-motor coordination
task (VMC) as predictors for SMR-BCI performance. Other findings also suggested the
importance of motor and sensorimotor loops in maximizing BCI performance at different
levels. On the instruction level, the Neuper et al. recommended performing kinesthetic motor
imagery instead of visual motor imagery; on the psychological level, Grosse-Wentrup (2011)
evoked the implication of attention networks (γ band oscillations) with the modulation of
SMR rhythms; on the neurophysiological level, where Blankertz et al. reported that resting
SMR µ rhythms over the motor cortex (the SMR predictor) correlated with subsequent BCI
performance. This evidence was also supported by fMRI, showing a higher activation of the
SMA for high aptitude BCI users (Halder et al., 2011).

6.1.2 Research gap

The observations in those studies (see previous paragraph), when compared for similarities,
suggested two generic sources of variation in SMR-BCI performance. The first one was
attention levels, which was positively associated with SMR-BCI performance; the second
one was the activation of motor related areas, also showing a similar positive relation.

When considering that the Wadsworth BCI dates back to Wolpaw et al. (1986), after
25 years of improvement in BCI software and hardware technology, a "performance ceiling"
was reach (McFarland et al., 2011), and it was not possible to overcome the issue of BCI
inefficency. (Kübler et al., 2011a) proposed a model of BCI extending the investigation area
of BCI performance, to other characteritics that had been overlooked, such as instructions,
feedback, applications and user’s individual characteristics.

Hammer et al. (2012) were the first to assess a large number of participants (n = 80) with
an extended panel of standardized and validated psychological questionnaires (including the
KUT of Burde and Blankertz, 2006) and psychometric tests to find predictors for SMR-BCI
performance. Concurrently, Randolph et al. (2010) also found that daily motor activity and
age predicted BCI performance. Both authors then replicated and refined their findings
(Hammer et al., 2014; Randolph, 2012).

The research gap concerned in the scope of this dissertation the individual predictors and
correlates for SMR-BCI performance, that I characterized earlier (see chapter 5) under the
"attentional" or "motor dexterity" subtypes. Empirical investigation could be performed in
two complementary directions. On one hand, there was a need for more replication studies,
most preferably from independent sources, that would allow to better identify those predictors.
On the other hand, there was the need to find a way to implement these predictors to directly
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benefit BCI users. Such implementations of the predictors have been evoked under the
following form:

1. As guidelines in BCI setups, practice and instructions that ensures the best conditions
to obtain the highest BCI performance (e.g. Neuper et al., 2005).

2. As interventions that would allow to increase BCI performance (e.g., Tan et al., 2009).

3. As evaluation instruments that could predict and BCI performance (e.g., SMR predictor,
proposed by Blankertz et al., 2010). This would allow to:

• propose interventions before learning SMR-BCI – as evoked in point 2.

• propose the potentially best BCI paradigm and device needed for the user.

Those three implementations all represent tangible and potential ways to counter BCI ineffi-
ciency, while the third implementation is a diagnostic tool that does not per se increase BCI
accuracy. The guidelines represent a inferential process resulting from empirical finding,
replicating and intepreting predictors for BCI performance.

In this dissertation, I focused on the second implementation, increasing BCI performance.
Secondarily, but essentially for answering this "gap" comes the necessity to further investigate
predictors of SMR-BCI performance by attempting to replicate them.

6.1.3 Research questions

The initial research question of this dissertation is, what are the factors and variables that
can predict SMR-BCI accuracy, and can they be clearly identified? Provided the evidence
showing that BCI performance is positively associated with attention and motor function (see
in summary 6.1.1), a more specific question is refined under the scope of attention levels and
precision in a visuo-motor task, as provided by Hammer et al. (2012). More specifically, the
initial research question be refined as: "Are attention levels and mean error duration in a VMC
task reliable predictors for SMR-BCI accuracy". To answer this second question, experiments
should be conducted attempting to replicate the conditions of the predictor studies.

The third question in this dissertation concerns the implementation of those predictors
into non-BCI interventions or trainings. It can be posited as follows: "By manipulating those
predictors in the direction of their association with SMR-BCI accuracy, can this SMR-BCI
accuracy be consequently improved?". To answer this question, efficacious interventions
should performed prior to a BCI session. By comparing BCI accuracy after interventions,
any causal effect of training on BCI accuracy could be empirically proven.
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6.1.4 Hypotheses

In this study it was hypothesized that prior training (i.e. PMR or VMC) would improve
subsequent BCI accuracy. The hypotheses were formulated as follows:

• Main hypotheses: Interventions increase BCI accuracy.

– (H1) Participants in the PMR group have higher subsequent BCI accuracy as
compared to the CG.

– (H2) Participants in the VMC group display higher subsequent BCI accuracy as
compared to the CG.

• Secondary hypotheses: replicating existing predictors1.

– Relaxation level (an indicator of attention) correlates with BCI accuracy.

– VMC "mean error duration" correlates with BCI accuracy.

– KUT correlates with BCI accuracy.

– BIS correlates with BCI accuracy.

The primary and secondary hypotheses were all tested during the conduct of study I.
The main hypotheses were bound to the assumption that their respective training would be
efficacious. A manipulation check was therefore performed for each training condition to
ensure that the effect could be quantified and validated experimentally:

• manipulation check for (H1): PMR intervention increases relaxation levels (MC1).
• manipulation check for (H2): VMC intervention reduces "mean error duration" (MC2).

6.1.5 Introduction

To implement those hypotheses, the study design was performed in conditions similar to
those of Hammer et al. (2012). As the software develelopment of this study was made by
researchers in Berlin, and that a large sample was needed, the large number of measurements
was distributed in Berlin and Würzburg, which allowed for maximizing the statistical power
and reliability of the findings. While my main motivation was the investigation of predictors
and trainings for SMR-BCI, the implementation of a co-adaptive BCI in the study design was
ensured by the research group in Berlin, and further reported in Acqualagna et al. (2016). For
increasing the attention level, a reliable and proven relaxation technique was chosen, called
progressive muscle relaxation (PMR; Jacobson, 1925). It was shown to foster inhibitory
processes (Jacobson, 1938) and globally reduces tension (for meta-analysis, see Carlson and
Hoyle, 1993); PMR has often been used as an intervention in the field of psychopathology,

1found until winter 2011
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for example in anxiety reduction (e.g. Lolak et al., 2008). Despite the fact that PMR, as
designed by Jacobsen, can be delivered in a program that lasts several days and, according
to its author, involves learning, it can nevertheless display an effect after a single session.
As stated by Friedrich et al. (2014), a relaxed state might be beneficial in any BCI setup:"a
state of positive but not emotionally involved attentive and effortless relaxation might be the
optimal state for both neurofeedback and BCI". Preliminary but direct evidence showed that
a relaxation technique (i.e. mindfulness meditation) was shown to have a positive effect on
BCI performance (Tan et al., 2009). Indirectly, it was shown to increase sustained attention
(Valentine and Sweet, 1999). By performing an intervention right before a subsequent BCI
session, the aim was to induce a more relaxed state for participants in the PMR group. For
increasing the "mean error duration" in the VMC task, a similar VMC training as the one
used by Hammer et al. (2012) was chosen. The VMC was an intervention based on two-hand
visuomotor coordination that implied acquiring fine motor skills via learning and constituted
a challenging task.

6.1.6 Methods

Participants and data collection

In a joint study that took place in two different labs Würzburg (WÜ) and Berlin (BE),N = 168

participants were recruited. Due to a mistake in the VMC intervention in WÜ, n = 28

participants were dropped and n = 22 new participants were again recruited; the reported
sample was therefore different from Acqualagna et al. (2016). In addition to using the same
EEG hardware and BCI software in both labs, protocol and instructions were written down
to ensure the same conditions. From this initial sample were also removed the participants
who did not comply with the instructions (nBE = 3), and those who, during questionnaire
review, were found to be diagnosed with psychological disorders or taking CNS affecting
drugs (depression: nBE = 3, nWÜ = 1; schizophrenia: nBE = 1). The final sample comprised
N = 154 participants (nWÜ = 78, nBE = 76). By accident, = 23 participants in BE did
not rate their relaxation levels. Therefore, analyses that concern the relaxation level were
based on n = 131 participants and all the other were based on the base sample of n = 154.
The participants were recruited either on university campus, or by the means of Internet
ads. The participants were in a vast majority young undergraduate students, aged M = 24.7

(SD = 5.8) and in majority female (n = 99). The study was conducted in accordance with
the declaration of Helsinki, approved by the Ethical Review Board of the Medical Faculty
(University of Tübingen), and written informed consent was obtained prior to experimentation.
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Procedure

In a random fashion, participants were assigned to three different intervention groups (de-
scription of these groups further in section 6.1.6). Those groups were either progressive
muscle relaxation (PMR), visuo-motor coordination training (VMC) or control group (CG).
The timeline of the experiment was as follows:

1) Informed consent and questionnaire for general information

2) Psychological questionnaires during EEG setup

3) Intervention training

4) SMR-BCI session

For visual representation of this timeline, see Figure 6.1.

Figure 6.1 Timeline of the experiments and the variables collected

Questionnaires

The reported relaxation level was measured before intervention and immediately before the
BCI session (i.e. after intervention) using a 10 cm visual analog scale (VAS) ranging from 0



6.1 Study I - Effects of PMR and VMC training on performance in an SMR-BCI 73

(not at all) to 10 (maximally). Participants answered by placing a cross on the scale with a
pen. Other psychological tests were conducted during the EEG setup:

1. Control convictions in dealing with technology ("Kontrollüberzeugungen im Umgang
mit Technik", KUT, German version; Beier, 2004). It assess how difficult the participant
think his interaction with common technological or mechanical devices in daily situa-
tions is. The scale is a measurement of the external locus of control (LOC, introduced
in section 5.1.2). The scale uses a 5 points likert scale rating ranging from 0 ("not at
all") to 10 ("absolutely").

2. General depression scale ("Allgemeine Depressionsskala Lang", ADS-L; Hautzinger
and Bailer, 1993; German version from CES-D Radloff, 1977). A self-reported 20 items
scale in which participants estimate how often situations occurs that are associated
with depression (e.g. crying, loosing appetite, concentration difficulty) on a 4 points
Likert-type scale ranging from 0 ("never or rarely") to 3 ("often or always").

3. Baratt Impulsiveness Scale (BIS-15; Spinella, 2007; German translation by Meule
et al., 2011, described in section 5.1.1). The scale measures the construct of impulsivity
with 15 items comprising three different subscales: non-planning impulsivity (BIS-
np), motor impulsivity (BIS-m), attentional impulsivity (BIS-a). The items present
situations or statements (e.g., "I am inattentive"), an the participants rate how often
they these situation occur on a Likert-type scale from 1 ("never or rarely") to 4 ("always
or almost always").

Since study I was designed to train participants, the "ability to concentrate" questionnaire
(AHA), found as a predictor by Hammer et al. (2012), was not assessed due to the fastidious
task it represents and its variable duration. It must be precised that the duration of the whole
experiment was already very long and tiring. Summing up the prepping of 64 electrodes,
the 23 min interventions and a 320 trials BCI session, the whole experiment cumulated of
about 3 to 3.5 hours.

EEG recording

Participants sat in a comfortable chair, facing a 1280 ∗ 1024 px 17" monitor placed at approx-
imately 1 m. Two loudspeakers were placed on both sides of the monitor. A 63 electrodes
active cap was used (Acticap2) with left mastoid (A1) as reference. Ground was placed on
FPz. It conformed to a standard 32 electrodes setup according following the 10-20 system
(Jasper, 1958). To increase the coverage of the sensorimotor areas, 31 additional electrodes

2Brain Products GmbH, Germany
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were placed following the 5-10 system (Oostenveld and Praamstra, 2001). The signal was
digitized at a sampling rate of 1000Hz and band pass filtered between 0.016Hz and 250Hz,
and impedances were kept under 5 kΩ.

Intervention prior to BCI session

1. In the progressive muscle relaxation group (PMR), a Jacobson PMR audio session
was conducted, following a 23 minutes script (taken from Hinsch and Pfingsten, 2002)
previously recorded by a professional psychotherapist, therefore ensuring the same
instruction was provided to all participants. Participants were asked to follow the
instructions, which first asked them to relax and breathe deeply. Then, in a repetitive
fashion, instructions were to contract distinct groups of muscles (e.g., those of the face,
jaw, neck, arms, hands, legs, feet) for a few seconds, then relax and focus on the bodily
sensations.

2. In the visuo-motor coordination group (VMC), participants were given a two-hand
VMC task, which consisted of steering a virutal ball along narrow paths ("tracks")
dipslayed on the monitor. Each of knobs controllers respectively provided control over
an orthogonal dimension. Spinning the left knob modified the vertical position of the
ball, and spinning the right knob modified the horizontal position of the ball. Sound
stimuli and color of the ball provided a feedback of manipulation errors. As depicted in
Figure 6.2, if the ball was in the path the color of the ball was green; if the ball touched
the edge or was about 1 cm outside of the path, it was considered a steering "error",
an alarm sound (i.e. single beep) was emitted, and the color of the ball turned red; if
the ball was completely out, it was considered "out", another alarm sound (i.e. double
beep) was emitted, and the color of the ball turned to yellow. After a steering "error",
the track could still be continued, but in the "out" condition, the participant had to
start again the track from the beginning. As an indicator of the participant’s precision
(Hammer et al., 2012, 2014), the mean duration of steering errors was used ("mean
error duration", expressed in seconds). Another variable "error percentage difference",
was calculated by subtracting the error percentage in the 5 first VMC tracks (baseline)
and the remaining ones (practice), The "error percentage" was obtained by dividing the
"mean error duration" by the "mean track duration" for the corresponding tracks.

3. In the control group (CG), participants were instructed to read a text in German about
BCI technology (i.e. book chapter from Kübler and Neuper, 2012). To ensure task
compliance, experimenters told the participants that five questions would be asked after
reading.
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BCI trials

During the motor imagery trials, participants were asked to kinesthetically perform motor im-
ageries of either left hand (and limb; e.g. hand grasp of an object, involving arm movements),
right hand or both feet (e.g., tapping both feets on the floor). To reduce sources of noise in
the EEG, participants were asked to reduce movements that generate artifacts (i.e. eye-blinks,
eye-movements, jaw clenching, muscles of the face and neck).

The BCI consisted of 120 trials in the calibration phase and 320 BCI trials, all providing
online feedback. The calibration phase consisted of three runs (1-3) with 40 trials each, using
subject-unspecific classifiers, co-adaptive classification and positively biased feedback (all
described in the next section). At the end of the calibration phase, classifier training occurred,
selecting the participant’s two best motor imageries (i.e. right-left, right-foot or left-foot).
Using subject-specific classifiers, four online runs (4-7) of 80 trials, totalizing 320 trials were
used to calculate participant’s BCI accuracy.

BCI trials were similar to the Graz BCI paradigm. In a trial, a fixation cross appeared for
2 seconds, then a red arrow cue appeared for 1 second, determining which motor imagery
had to be performed (pointing: left for left hand; right for right hand; and top for both feet).
The online feedback appeared 1 second afterwards (i.e. cross changing color and moving
according to the classifiers’ output) and lasted for 3 more seconds. The position of the cross
at the end of the trial determined its success. A 2 seconds break followed every trial. An
additional 15 seconds break was provided every 20 trials (see Figure 6.3).

The feedback provided during online runs consisted of the cross starting from the center of
the monitor and moving in the direction predicted by the classifier. During classification runs,
the feedback was positively biased and the cursor either moved on the direction predicted by
the classifier (i.e. classifier’s output predicting the cued motor imagery) or returned to the
center of the monitor (i.e. classifier’s output not predicting the cued motor imagery). The
positively biased feedback, that was based on a sample of "BCI efficient" participants, was
meant to cue the participants into using successful SMR modulation strategies. It was part of
the co-adaptive calibration design, that only lasted for the first three calibration runs. Then, a
subject-specific classifier was trained to exploit the best features for SMR-BCI control.

Calibration and classification

All signal acquision and processing was done using the Berlin BCI system (BBCI, Blankertz
et al., 2007), and following a co-adaptive classifcation approach (see Figure 6.4). The
calibration runs followed a novel "kickstart calibration" method (fully described in Acqualagna
et al., 2016), with three classifiers (one for each motor imagery) trained on a generic model
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Figure 6.2 Visuo-motor coordination training setup. (a) shows a photograph of the two hands
knob controller. As straight blue arrows indicate, the left knob controlled vertical movement
of the ball while the right knob controlled horizontal movement. A good coordination of
left and right hand on the basis of visual feedback was required to direct the ball along the
track. (b) Description of feedback: the goal was to steer the ball from A to B through the
path without leaving its outline. When on track the ball remained green. When out of track
the ball turned red but was allowed to come back on track. When the basll was too far away
from the track, it turned yellow and needed to be brought back to point A to restart the track
once again. (c,d,e,f,g) show the 5 tracks in the order of presentation. Each track increased
in difficulty, i.e. the easiest to perform was track 1 and track 5 was the most difficult one.
(Source: Botrel et al., 2017)
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Figure 6.3 Trial description during the BCI session. The user could estimate trial success by
comparing the cue direction to the position of the stopped cross. (Source: Botrel et al., 2017)

of participants (i.e. previoulsy recorded participants in the same conditions), and returning
positively biased feedback. The subject-independent classifier was trained using three small
Laplacian derivations at C3, Cz and C4. Individually, α (8−15Hz) and β (16−32Hz) bands
were extracted, resulting in a total of 6 features provided to the LDA classifier. After each
calibration trial, the classifier was adapted with "adaptive mean estimation" and "adaptive
inverse covariance matrix" algorithms allowing to better fit the participant’s individual features
(a description of the algorithms Vidaurre et al., 2011a). The positively biased feedback was
only provided during the first three runs of classification.

At the end of the calibration runs (1-3), the most discriminative pair of motor imagery
classes was selected to train a binary classifier, that was utilized in the runs 4 and 5. This
classifier used subject-specific optimized α and β frequency ranges and subject-specific trial
time ranges (the optimization of frequency and temporal ranges described in section 3.4.4)
for the six laplacian filters and common spatial patterns (CSP) analysis (see Blankertz et al.,
2008) based on 24 EEG channels. Log band power (Hilbert envelope) features were extracted
from Laplacians and CSP derivations and used to train the LDA classifier. After each trial,
the six Laplacian channels were reselected and the LDA classifier was retrained (see Vidaurre
et al., 2011a).

Before run 6 and 7, another LDA classifier was trained using the data from the last
160 online runs (i.e. from runs 4 and 5). After optimization of the frequency and trial
time ranges, a CSP analysis was performed on 47 EEG channels, and this time, Laplacian
derivations were not used. The LDA classifier was trained on the log band power features. To
test a newly developed method, the adaptive classification algorithm ignored the supervized
nature of the data, using adapted pooled mean adaptation of the LDA classifier (PMEAN; see
Vidaurre et al., 2011a).

The final BCI accuracy was calculated by averaging the percentage of correct selections
in the 320 online trials (runs 4-7)).
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Figure 6.4 This diagram describes the co-adaptive calibration design of Study one. [initial
caption:] The EEG processing and adaptation protocol during runs 1–3 with positive biased
feedback are depicted in blue, in yellow the processing and adaptation during runs 4–5 with
real feedback, in green the processing and adaptation during runs 6–7 also with real feedback.
The adaptation applied in runs 1–3 and 4–5 uses supervised methods, the adaptation of
runs 6–7 uses unsupervised methods. In magenta are depicted the phases of subject-specific
features selection (e.g. frequency band, CSP filters, etc) and training of the classifier that
happened two times, i.e. after runs 1–3 and after runs 4–5. (source: Acqualagna et al., 2016.,
http://dx.doi.org/10.1371/journal.pone.0148886.g001, CC BY PLOS One)

http://dx.doi.org/10.1371/journal.pone.0148886.g001
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Neurophysiological data analysis

Due to our joint-study with Berlin, the neurophysiological data analysis was performed in
Berlin, and further published in Acqualagna et al. (2016). This analysis was based on the initial
sample, before n = 28 participants were removed from the VMC group and re-recorded, and
did not take into account the issue of linked electrodes. Nevertheless, this analysis specifically
reported the ERD/ERS time course on C3 and C4 and head topographies of left hand vs right
hand motor imagery classes by intervention and lab, complemented with signed r2 values.

In addition, I followed the methodology from Blankertz et al. (2010) to compute the
SMR predictor from the twenty segments of 15 seconds alternating Eye-Open and Eye-
Closed. A Eye-closed and an Eye-Open SMR Predictor value was computed for every
participant. The preprocessing included artifact rejection based on variance of two-seconds
epochs, the a local average reference filtering of C3 (C4 was excluded from calculation), the
application of a bandpass filter between 2 and 34 Hz. The power spectrum density (PSD)
was computed and smoothed, then the noise floor 1/f was computed. The highest peak of
smoothed PSD− noise floor was retrieved and used as SMR Predictor value. A graphical
representation of the algorithm is demonstrated in Figure 6.5.

Figure 6.5 Power spectrum density plot, representing the determination of the SMR predictor
for participant VPgcj, Eye-Open condition. (Source: Botrel et al., 2017)

Statistical analysis

To check whether the analyzed data was normally distributed, Shapiro-Wilk tests were used,
in determining whether or not non-parametric equivalents of ANOVA had to be used (Kruskal-
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Wallis test), ANOVA with repeated measures (rm-ANOVA with permutation), independent
t-tests (Mann-Whitney-Wilcoxon rank sum test), paired t-tests (Wilcoxon signed rank test),
Pearson correlation (Spearman correlation). Prior to calculating correlations, outliers were
systematically removed, using two standard deviations of the mean as exclusion criterion.
Based on the formula provided by Müller-Putz et al. (2008), the chance level was estimated,
based on N = 320 trials, with α = .05, and a binomial distribution of the motor imagery
classes of 1/2. The calculated chance level considered mean BCI accuracy between 45.44%

and 55.56% to be due to chance with an probability of α = .05.
In correlations analyses with BCI accuracy, variables from scales assessed during the

PRE BCI session were correlated with the BCI accuracy PRE, BCI accuracy POST, the
average BCI accuracy and BCI accuracy POST − PRE, for a correction – applied in the
results – of α = 0.125. When variables were assessed both during the PRE and the POST
BCI sessions, the value assessed during the PRE session was correlated with BCI PRE, and
the value assessed during the POST session with BCI POST, those were used for correlation
of the PRE-POST average and difference POST − PRE, for an α = 0.125. Concerning the
variables acquired during the four training sessions, only the values from the first and the
last BCI session were used, and were calculated in the same way that the variables assessed
during the PRE and POST BCI sessions, for an α = 0.125.

6.1.7 Results

Effect of lab, intervention and BCI runs on accuracy

Firsly, a full factorial type III 2x3x4 ANOVA with repeated measures was computed, using
BCI accuracy as dependent variable, lab and intervention as between subject factors, and BCI
run as within subject factor. An interaction lab∗run was found (F (3, 444) = 3.51, p = .015),
main effects of lab (F (1, 148) = 11.04, p = .001) and run (F (3, 444) = 4.27, p = .005) were
also significant; the effect of intervention was not significant (F (2, 148) = 2.38, p = .096)
and no further significant interaction were found (for averaged and run-wise accuracy plots,
see Figures 6.6 and 6.7).

BCI Accuracy was significantly higher in BE (M = 78.2%, SD = 15%) in comparison
with WÜ (M = 70.6%, SD = 14.1%). Post-hoc pairwise comparisons for the effect of run
(online runs 4 to 7) showed that the BCI accuracy increased between runs 4 and 6 (Mdiff = 2.5,
SD = 10.1, Wilcoxon signed rank W = 3796.5, p = .003, Bonferroni adjusted padj = .019).
Accuracy decreased marginally between runs 6 and 7 (Mdiff = −1.6, SD = 7.1, W = 6240,
padj = .066). Post-hoc pairwise comparisons for the interaction between run and lab showed
that accuracy was higher in BE than in WÜ in run 4 (Mdiff = 9.2, SD = 21.6, W = 2000,



6.1 Study I - Effects of PMR and VMC training on performance in an SMR-BCI 81

Figure 6.6 BCI accuracy boxplots depending on the lab and intervention, representing quartiles,
median (line inside the box) and mean (dot). Dashed lines indicate upper and lower true
chance levels. (Source: Botrel et al., 2017)

Figure 6.7 Mean accuracy per intervention and run for WÜ and BE with standard error bars.
Dashed lines indicate the upper true chance level (with n=80).
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Lab N(*) Group BCI
Accuracy

VAS relax
PRE

VAS relax
POST

Wilcoxon
PRE-POST

M(%) SD M(%) SD M(%) SD W p

WÜ 28 PMR 75.3 15.5 6.3 1.9 8.2 1.7 12 <.001
22 VMC 68.8 16.2 8.0 1.4 7.7 1.4 157.5 .322
28 CG 67.2 12.5 7.2 1.8 7.2 1.8 146.5 .676

BE 27(19) PMR 80.3 13.5 7.6 2.3 8.3 2.0 41 .097
24(17) VMC 77.2 13.8 7.2 2.3 7.0 2.0 59.5 .683
25(17) CG 77.2 15.2 6.9 2.3 6.4 2.3 71.5 .532

*: reduced number of participants with relaxation levels measured with visual analog
scales. The VAS pre-post values are from these reduced sample sizes; BCI accuracy is
from the full samples.

Table 6.1 Number of participants, mean BCI accuracy, Relaxation levels pre and post inter-
vention, and Wilcoxon signed rank test W per group and condition.

padj < .001), run 5 (Mdiff = 9.4, SD = 22, W = 1943.5, padj < .001) and run 6 (Mdiff = 6.4,
SD = 20.4, W = 2249, padj = .039).

Difference between labs

The ANOVA with repeated measures for mean BCI accuracy revealed a difference between
labs. This unexpected difference was further investigated by looking for explanatory variables.
Since a few studies found age to predict and BCI accuracy (e.g. Randolph et al., 2010), this
was investigated. A correlation between BCI performance and age was found (Spearman
ρ = −.167, p = .042, n = 151, noutlier = 3), but the mean age did not differ between labs
(MWÜ = 24.3, SD = 3.5, MBE = 25.1, SD = 7.5, W = 3127.5, p = 0.375), suggesting
there was no effect of age between labs. In further investigations, it was found that n = 55

participants in WÜ, accounting for 70% of the WÜ sample, presented an error internally
linking C4 and T8 at the hardware level. The issue was neither visible during the impedance
check nor during the online BCI runs. As C4 (along with C3 and Cz) was one of the most
important electrodes in the SMR modulation paradigm, further tests were conducted by
assessing the effect of the hardware error on classification results. The negative effect was
expected to be the strongest during classification runs 1 to 3, during which the features were
calculated with Laplacian derivations of electrodes C3 , Cz and C4. During the following
runs 4 to 7, the inclusion of CSP filters may have compensated for the linked electrodes since
the method is based on variance and not on location. All VMC runs were recorded using
the "bad" EEG cap and were not included in the comparison, but PMR and CG groups were
measured with both "good" and "bad", allowing to analyze the difference. The effect of EEG
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cap on accuracy in the PMR and CG groups was assessed using Wilcoxon rank sum test.
No significant difference in accuracy was found (W = 369.5, p = .874, visualization of the
effect in Figure 6.8). Since age, and the use of "bad" or "good" EEG cap could not explain the
difference of accuracy between labs, these were not further investigated. Due to the presence
of a significant difference without explanation, the samples were analyzed separately for WÜ
and for BE.

Figure 6.8 Comparison of BCI accuracy mean (dot) and standard error (bars) between lab,
intervention and cap. The number indicate the number of cases.

Results for the WÜ sample

Effect of intervention There was no effect of intervention on BCI accuracy, as revealed
by Kruskall-Wallis test (H = 4.0749, df = 2, p = 0.130). The manipulation check for PMR
and VMC trainings were then performed. To evaluate the effect of training on relaxation
levels, a type III rm-ANOVA was conducted with relaxation levels as dependent variable,
intervention as between-subject factor and assessment time as within-subject factor. It
returned a significiant interaction intervention ∗ time (F (2, 75) = 22.07, p < .001) and a
main effect of time (F (1, 75) = 11.44, p < .01). Effect of intervention was not significant
(F (1, 75) = 1.31, p = .27). Post-hoc pairwise comparisons revealed that reported relaxation
increased in the PMR group from M = 6.3 to M = 8.2 after intervention (Wilcoxon signed
rank W = 12, padj < .001), while it did not change significantly in the other intervention
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conditions (VMC: from M = 8 to M = 7.7; CG: from M = 7.2 to M = 7.2). To assess the
effect of VMC on "mean error duration", a paired t-test between "error percentage" between
the five first runs and the following runs was computed. The "error percentage" did not differ
significantly over time (Mdiff = −0.35 pp, SD = 1.42, t(21) = −1.17, p = .253) .

Correlations with BCI performance BCI accuracy was not correlated with relaxation
levels before intervention (ρ = .133, p = .257, n = 78, noutlier = 3) or after intervention
(ρ = .094, p = .421, n = 78, noutlier = 3, see Figure 6.9a). The correlation between BCI

Figure 6.9 Correlation plots of relaxation level or VMC variables with BCI accuracy, Blue
lines indicate linear regression. Dotted lines indicate true chance level. Outliers are marked
with crosses. a) BCI accuracy and perceived relaxation level after interventions (obtained
from visual analogue scales). b) BCI accuracy and two-hand coordination mean error duration.
c) BCI accuracy and two-hand coordination error percentage difference expressed in percent
points. (Source: Botrel et al., 2017)

accuracy and VMC "mean error duration" was not significant (ρ = .120, p = .615, n = 22,
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noutlier = 2, see Figure 6.9b). The VMC "error percentage difference" correlated positively
with BCI accuracy (ρ = .677, p < .001, n = 22, noutlier = 1, see Figure 6.9c), showing that
a higher value (i.e. a higher reduction in VMC "error percentage" compared to baseline)
was associated with higher BCI accuracy. The SMR Predictor in the Eye-Open condition
was significantly correlated with BCI accuracy (ρ = .24, p = .0451, n = 72, noutlier = 4)
while the SMR Predictor in the Eye-Closed condition was not correlated with BCI accuracy
(ρ = .04, p = .77, noutlier = 2). BIS scale (comprising subscales) and KUT did not correlate
significantly with BCI accuracy.

Results for the BE sample

Effect of intervention There was no effect of intervention on BCI accuracy, as revealed by
Kruskall-Wallis test (H = 0.8769, df = 2, p = 0.645). The manipulation check for PMR and
VMC trainings were then performed. To evaluate the effect of training on relaxation levels,
a type III repeated measures ANOVA was conducted with relaxation levels as dependent
variable, intervention as between factor and assessment time as within-subject factor. No
interaction or main effect on relaxation were found, intervention ∗ time (F (2, 50) = 1.89,
p = .17), time (F (1, 50) = 0, p = .99), intervention (F (1, 50) = 1.87, p = .16). To assess
the effect of VMC on mean error duration, a paired t-test between error percentage between
the five first runs and the following runs was computed. The error percentage significantly
decreased (Mdiff = 0.53 pp, SD = 1.21, t(23) = 2.16, p = .041).

Correlations with BCI performance Reported relaxation levels assessed before interven-
tion were not correlated with BCI accuracy (ρ = .041, p = .775, n = 53, noutlier = 3). Yet,
relaxation levels after intervention were positively correlated with BCI accuracy (ρ = .311,
p = .026, n = 53, noutlier = 2, see Figure 6.7a). A marginal negative correlation was found
between BCI performance VMC "mean error duration" (ρ = −.366, p = .086, n = 24,
noutlier = 1 see Figure 6.8b). A higher "mean error duration" (in seconds) was related with
lower BCI accuracy. The "error percentage difference" was not correlated with BCI accuracy
(ρ = .349, p = .102, n = 24, noutlier = 1, see Figure 6.8c). The SMR Predictor in the
Eye-Open condition was significantly correlated with BCI accuracy (ρ = .38, p = .002,
n = 65, noutlier = 3), the SMR Predictor in the Eye-Closed condition was also correlated with
BCI accuracy (ρ = .35, p = .004, noutlier = 1). BIS scale (comprising subscales) and KUT
did not correlate significantly with BCI accuracy.
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Neurophysiological ERD/ERS data

Acqualagna et al. (2016) compared the left hand vs right hand classes ERD/ERS patterns
based on the initial sample that I provided them3. According to their results, the PMR
group showed more pronounced class-wise ERD as compared to the two other groups, for
a higher discriminability. Interestingly, the VMC group showed great ERD in both classes.
This symmetrical effect reduced the ability to benefit from those deeper ERDs for higher
classification accuracy. I included in this dissertation tte plots for ERD/ERS and topographical
maps for WÜ (see Figure 6.10) and BE (see Figure 6.11). The evolution of the ERD/ERS is
further discussed in Acqualagna et al. (2016)

6.1.8 Discussion

This study investigated whether short interventions trainings of two predictors of BCI accuracy
would subsequently increase BCI accuracy. Results did not indicate any effect of PMR (H1)
nor VMC (H2) interventions on BCI accruracy. The manipulation checks for the effect
of training on SMR-BCI predictors were not systematically validated. In detail, the PMR
increased relaxation levels only in WÜ and the VMC decreased the "error percentage" only in
BE. Only in those same cases (MC1 and MC2 validated), the variables used for manipulation
check (i.e. relaxation levels and error percentage difference) were not correlated with BCI
accuracy (see Table 6.2). Since that in both labs, all possible outcomes of manipulation check
were displayed (Both MC1 and MC2 validated and invalidated), and that it resulted in all cases
in no effect for SMR-BCI accuarcy, the ability to influence the SMR-BCI accuracy could not
be explained by the success of the PMR and VMC manipulations. This observation suggests

Lab Interv-
ention

Predictor Manipulation
check

validated

Correlated
with BCI
accuracy

Variable for Manipu-
lation check

WÜ PMR Ability to concentrate YES NO Relaxation level
VMC VMC error NO YES Error % diff

BE PMR Ability to concentrate NO YES Relaxation level
VMC VMC error YES NO Error % diff

Table 6.2 When the manipulation check were validated, the variables used for manipulation
check (based on the SMR predictors) were not correlated with BCI accuracy.

that the efficacy of training may have reduced the predictive power of the predictors. This
3The sample used by the authors of this neurophysiological analysis included the n=28 participants of the

VMC that I excluded and replaced (see participants in section 6.1.6).
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Figure 6.10 Grand average ERD/ERS for class combination left-right and intervention
groups in Würzburg. ’N’ is the number of participants of each group. From left to right:
runs 1-3, runs 4-5, runs 6-7. The time plots in the first rows picture the evolution of the
ERD/ERS for about 6000 ms at C3 (thick lines) and C4 (thin lines). At time 0 is the
onset of the cue, at times 1000–4000 the display of the feedback. Magenta lines refer
to left MI trials, green lines to right MI trials. The scalp plots underneath refer to the
shaded areas of the time plots and show the distribution of the ERD/ERS. In the second
rows, the scalp plots of the left MI trials, in the third rows the scalp plots of the right
MI trials and in the fourth the scalp plots of the signr2. From Acqualagna et al. (2016),
http://dx.doi.org/10.1371/journal.pone.0148886.g005, CC BY PLOS One

http://dx.doi.org/10.1371/journal.pone.0148886.g005
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Figure 6.11 Grand average ERD/ERS for class combination. left-right and intervention
groups in Berlin. ’N’ is the number of participants of each group. From left to right: runs 1-3,
runs 4-5, runs 6-7. The time plots in the first rows picture the evolution of the ERD/ERS for
about 6000 ms at C3 (thick lines) and C4 (thin lines). At time 0 is the onset of the cue, at times
1000–4000 the display of the feedback. Magenta lines refer to left MI trials, green lines to
right MI trials. The scalp plots underneath refer to the shaded areas of the time plots and show
the distribution of the ERD/ERS. In the second rows, the scalp plots of the left MI trials, in the
third rows the scalp plots of the right MI trials and in the fourth the scalp plots of the signr2.
From Acqualagna et al. (2016), http://dx.doi.org/10.1371/journal.pone.0148886.g005, CC
BY PLOS One

http://dx.doi.org/10.1371/journal.pone.0148886.g005
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hypothesis would nevertheless require a dedicated experimental design to be determined, as
this observation might just be coincidental.

Two of the investigated predictors were not replicated. No relation was found with the
Locus of Control in dealing with Technology (KUT), and neither for the BIS impulsiveness
scale, even when checking for the "non-planning" subscale (found in Hammer et al. (2014)),
showing a lower reliability of those predictors.

The results confirmed both predictors from Hammer et al. (2012), although none of
the results were found equivocally in both labs. The post-intervention relaxation level was
positively correlated in BE, but not in WÜ. The positive association, although not consistently
found, was in line with previous literature (Grosse-Wentrup et al., 2011) and concurrent
findings (Grosse-Wentrup and Sch??lkopf, 2012; Bamdadian et al., 2014) associating attention
levels with BCI accuracy. The other predictor, "mean error duration" in a VMC task could
explain in Hammer et al. (2012) up to 11% of the variance, but we only found a marginal
correlation in BE. It must be precised that the "mean error duration" obtained in study I was
a "raw" value without standardization. Therefore, the negative correlation reported in results
means that participant with fewer steering errors had higher BCI accuracy. This equated the
positive correlation reported by Hammer et al., which was based on standardized results, and
that was later replicated (Hammer et al., 2014). The significant positive correlation in "error
percentage difference" showed that participants in WÜ who reduced the most their steering
errors during manipulation had higher BCI accuracy.

The failure to increase SMR-BCI indicates that the duration of the intervention training
could matter. Tan et al. (2009) initially performed a pilot investigation of four weeks to
increase BCI accuracy, and then conducted a large scale study on an extended duration of
twelve weeks to reveal the effect of mediation training on BCI accuracy (Tan et al., 2014).
Most studies investigating the effect of relaxation training on attention (e.g., Tang et al.,
2007), anxiety (e.g., Zhao et al., 2012, local brain connectivity (e.g, Luders et al., 2011) or
neuroplasticity (e.g., Davidson and Lutz, 2008) typically expose their participants to much
longer training durations as compared to the one chosen in this study. Accordingly, and
supported by the fact that the assumptions of PMR training success was not always validated,
it might be the case that the duration of the PMR training was insufficient to produce a
consistent increase in the predictors for SMR-BCI accuracy.

The same reflexion can be applied for the VMC training that was also very short. Studies
reporting inter-individual differences mostly compare athletes or highly skilled individuals
with novices. The findings from Zapala et al. (2015) show there is much potential to be
obtained in training novice. The authors showed that a kinesthetic hand training increased
α band power in C3 and C4 measured right after training; and the effect could be observed



90 Empirical investigation

on novice jugglers but not on experts. Babiloni et al. (2009) provided a similar view on the
topic, finding that elite karate practitioners had lower α ERD when watching karate videos in
comparison with non-athletes. While opposite effect has also been observed by dance experts
observing people dancing (Orgs et al., 2008), Del Percio et al. (2010) provided more evidence
of lower ERD by elite fencers. The authors supported the hypothesis of neural efficiency and
expertise, according to which non-skilled individuals display intermediate cortical activity
as compared to skilled individuals who have a higher neural efficiency. In their fMRI based
investigation of motor imagery of sports practitioners, Wei and Luo (2010) posited that this
process of neural efficency resulting from learning, is bound to the motor skills of expertise.
This increased of α ERD/ERS or activation in motor areas associated with novice learning
fine motor skills showed much potential for implementation, as higher amplitude ERD/ERS
are better classified in SMR-BCIS, but it nonetheless does not answer as to whether the α

ERD/ERS can better be modulated in the context of a BCI. Evidence toward this possibility
has been established in the reversed direction, as it was shown by Cheng et al. (2015) that
eight sessions of α neurofeedback training increased the accuracy of golfers (yet skilled) in
using the putter.

Despite the non-consistent correlation of VMC predictors with BCI accuracy, those
were nonetheless replicated in Hammer et al. (2014). The additional evidence (cited above)
showing the motor training of novice to be increase motor related EEG activity allowed to
consider the VMC training as a potential training for increasing BCI accuracy. Finally, the
explanation about the lack of effect of VMC training could be that the duration of the motor
training was too short to produce neurophysiological changes, and it could be speculated that
an effect may arise from an intensified training, extended in duration.

The SMR Predictor was replicated in this study, by a correlation with BCI accuracy.
The results showed, as posited by Blankertz et al. (2010), that the Eyes-Open condition
was more associated with BCI accuracy than the Eyes-Closed condition, particularly by the
non-significant correlation between Eyes-Closed in WÜ and BCI accuracy. The high number
of failure to calculate the SMR Predictor (n = 14 participants) was essentially due to the
missing C4 electrode. It can be pointed that this study did not offer the best conditions to
evaluate the SMR predictors, due to the missing C4 and that motor imagery of the feet that
was based on electrode Cz, not included into the SMR Predictor calculation.

Conclusion Study I

The results indicate a positive association between relaxation and BCI performance. The
VMC ability (mean error duration) could not be replicated as a predictor of BCI accuracy.
The increase in VMC proficiency (reduction of error percentage) was associated with higher
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BCI accuracy, but the increase of the predictor linked with intervention was not followed by a
significant increase in BCI accuracy. While these relations with BCI accuracy show that both
attention levels and VMC coordination ability may be related with SMR-BCI performance, it
could not be clearly established whether a training of these factions would lead to higher BCI
accuracy. This investigated effect could possibly develop by intensifying the training duration,
but yet, the results of this study indicate that a single non-BCI training was insufficient to
increase SMR-BCI accuracy.

6.2 Study II - Effect of four days VMC and PMR trainings
on SMR-BCI

6.2.1 Summary update, revisiting research questions

The second study was designed during summer 2015. Since study I, which did not success
into implementing short PMR or VMC intervention trainings to increase BCI accuracy, new
elements had been reported in the literature. The replication of Hammer et al. (2014) had
been published showing a replication of VMC "mean error duration" in predicting 11% of
the variance in SMR-BCI performance. The other predictor "ability to concentrate" was
not replicated, but instead, Hammer et al. found a correlation between the "non-planning"
subscale of the Baratt Implusiveness Scale (BIS). The predictors described in the literature
review (see chapter 5) providing heterogeneous but empirically supported relation with
SMR-BCI performance that could be globally be classified into three generic classes.

1. Attention levels

2. motivational aspects

3. Visuo-motor and spatial abilities

I chose not to investigate the motivational aspects, firstly because evidence revealed corre-
lations with BCI performance that were very likely to be bidirectional (i.e. Nijboer et al.,
2008; Kleih et al., 2010, and secondly because the motivational aspects have been in several
reports suggested to potentiate attention levels (e.g. Leeb et al., 2007), in particular via the
distinction between intrinsic and extrinsic motivation (see section 5.1.3).

The study from Tan et al. (2014) demonstrated that a twelve week mindfulness meditation
(MM) training could lead to an increase in SMR BCI acccuracy compared to a musical training
and a control group. Additional empirical evidence showed that relaxation and meditation
practice predicted BCI performance. Cassady et al. (2014) showed that weekly mind-body
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awareness practice (i.e. attending courses twice a week in a yoga club) for at least one year
was associated with higher SMR-BCI accuracy. While the authors relate to relaxation or
mindfulness, none of the concerned experiments were accompanied with manipulation checks
that would experimentally support their claims.

Study I was unsuccessful in increasing SMR-BCI accuracy by a single short training.
The neurophysiological and neuroanatomical changes (described in section 5.4) resulting
from relaxation and – motor – skill training, and studies that showed a relation between BCI
accuracy and longer training (i.e. Tan et al., 2014; Cassady et al., 2014) oriented the research
questions of study II to focus on a longer time span. By evoking the extension of the non-BCI
training duration, it must be kept in mind that the SMR-BCI training, which can be apparented
to neurofeedback, has been shown to produce positive changes over at least three weeks (i.e.
Taubert et al., 2011), but in the case of BCI training, increase in ERD/ERS patterns have
been reported in only two BCI sessions (e.g. Kaiser et al., 2014). Therefore, if any potential
non-BCI training fails to provide better or comparable results in terms of training duration,
such a training could only be useful if its effect were shown to be complementary to the BCI
training.

6.2.2 Research questions

The research questions for this study were therefore similar to those of study I, but incorporated
the added information from study I and other sources from empirical scientific literature.
The first question was, provided the evidence (see summary 6.2.1 and study I) showing that
BCI performance has been found to be predicted by several variables, "Are attention levels
and proficiency in a VMC task reliable predictors for SMR-BCI accuracy?" To answer this
question, experiments should be conducted in the perspective of repeating the conditions
of study I, but this time ensuring the effect of training on the predictors. The question that
motivates this implementation could be posited as follows: "By influencing those predictors
in the direction of their association with SMR-BCI accuracy, can this SMR-BCI accuracy
be consequently improved?". To answer this question, specific and efficacious interventions,
notably ensured by a longer training duration, should be investigated and tested for their
relation with SMR-BCI performance. Taking into account the new studies that revealed
new variables associated with increased SMR-BCI accuracy, an additional research question
can be posited: Are kinesthetic motor imagery and mindfulness associated with higher BCI
accuracy? Additional questionnaires for kinesthetic motor imagery and mindfulness could be
assessed in a new design with no particular effort, in an attempt to replicate other researcher’s
findings.
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6.2.3 Hypotheses

In this study, the PMR and VMC interventions were intensified into trainings that were
conducted on several days. It was hypothesized that training (i.e. PMR or VMC) would
improve BCI accuracy. The effect of PMR training on SMR-BCI accuracy was conditioned by
the assumption that PMR training increased relaxation levels. For the effect of VMC training,
the assumption was that VMC training produced an effect of motor learning, reducing the
number of steering errors, and had been associated with higher SMR-BCI performance.

• Main hypotheses: There is a positive effect of training on BCI accuracy

– (H1) PMR training leads to higher BCI accuracy.

– (H2) VMC training leads to higher BCI accuracy.

For assessing the specificity of the trainings in causally increasing BCI accuracy, it was
necessary proceed to manipulation checks:

• (MC1): PMR intervention increases relaxation levels:

– on the short term, before and after each training.

– on the long term, when assessed right before the BCI sessions (PRE and POST).

• (MC2): Skill learning occurs during the VMC training:

– steering errors reduced overall ("mean error duration").

– difference in steering errors reduced during runs ("error percentage difference").

In an effort to contribute to or validate predictors and correlates for SMR-BCI perfor-
mance, previous predictors (i.e. previously mentioned in litterature) were assessed in directed
correlation analyses4. It was therefore assessed whether BCI accuracy correlates:

• positively with reported relaxation VAS (see Hammer et al., 2012; study I in WÜ
sample).

• negatively with VMC "mean error duration" (see Hammer et al., 2012, 2014; study 2
in BE sample).

• positively with VMC "error percentage difference" (see study I in WÜ sample).
• positively with Kinesthetic (and Visual) Imagery Questionnaire (KVIQ; Vuckovic and

Osuagwu, 2013).
• positively with the SMR predictor eyes-open (Blankertz et al., 2010).

An additional explorative correlation analysis was performed, in which correlations between
BCI accuracy and State Mindfulness Scale (SMS), Self-regulation (SR) or Self-efficacy
(SWE) were assessed.

4Two-sided tests were used
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In this study, individual differences in baseline BCI accuracy were controlled by the use
of a PRE-POST design; moreover, the training was prolonged such that the training duration
totalized two hours over four consecutive days.

6.2.4 Methods

Participants

N = 39 healthy participants were recruited by announces on the university campus or via
internet ads. The measurements took place at the University of Würzburg (Germany). A
financial compensation of e50 was offered for the experiment that spread over five days
for a total duration of 6.5 hours. Alternatively, participants could receive hourly credit in
a psychology student participation program. All BCI measurements were performed in an
EEG cabin designed to attenuate sounds from external sources while providing artificial and
indirect lighting conditions. Participants sat on a comfortable armchair, facing a 1024∗768 px,
17" monitor, placed at about 1 m from the monitor. Loudspeakers were placed on both sides
of the monitor. The study was conducted in accordance with the declaration of Helsinki,
approved by the Ethical Review Board of the Medical Faculty (University of Tübingen), and
written informed consent was obtained prior to experimentation.

Questionnaires

Different types of questionnaires were given to the participants before and during the course
of the experiment

1. The kinesthetic and Visual imagery questionnaire (KVIQ; Malouin et al., 2007) was
performed on a chair outside of the EEG cabin to offer enough space for arms and leg
extension. The experimenter sat in front of the participant. The origninal questionnaire
KVIQ-20 comprises 20 items that concerns groups of muscles from the neck and arms
to the feet. We restricted the questionnaire to only consider the four items that included
upper limb movements: shoulder shrugging, forward shoulder extension, elbow flexion,
thumb to finger tips. The items were assessed for the visual modality (KVIQ-V),
then for the kinesthetic modality (KVIQ-K), providing two subscales. For each item,
the experimenter performed every movement once, that were repeated once by the
participant. Then, the participants were instructed to imagine the same movement
without moving. Afterwards, participants were asked to firstly rate the visual vividness
of the movement on a scale from 1 (no image) to 5 (image as clear as seeing); secondly
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to rate the kinesthetic vividness of the movement from 1 (no sensation) to 5 (as intense
as executing the action). The score was averaged for the four items.

2. Visual analog scale (VAS) for relaxation was presented on a respective 10 cm horizontal
line that ranged from 0 (not at all) to 10 (maximally). Participants were asked to estimate
their current level by crossing the line with a pen.

3. the State Mindfulness Scale (SMS; Tanay and Bernstein, 2013) assessed mindfulness
in the present moment, more specifically, in the 15 minutes that preceded the test.
The questionnaire items assessed two different forms of mindfulness: mindfulness of
bodily sensations (e.g., “I changed my body posture and paid attention to the physical
process of moving”) or mindfulness of mental events (e.g., “I was aware of different
emotions that arose in me”). A total of 21 items accompanied with the question "how
well each statements describes your experiences" were answered in a Likert-type scale
ranging from 1 (not at all) to 5 (very well), with higher scores indicating a mindful
experience. The questionnaire was translated from english and backtranslated by
bilingual native german or english and doctor in psychology, but was not methodically
validated using statisitcal methods. The scale was provided to the participants 15 min
after the beginning of the first BCI run, and therefore evaluated mindfulness during a
SMR-BCI control task (i.e. it could not be used to predict BCI accuracy).

4. The self-regulation questionnaire (SR, German version from Lehmann et al., 2014)
evaluated the participant’s "general tendency to uphold an action even if influences
arise that impair their motivation and attention". The 10 items were statements that
were rated on a Likert-type scale from 1 (disagree) to 4 (agree)

5. The self-efficacy questionnaire (SWE, German version from Jerusalem and Schwarzer,
1999) assessed the generalized persuation of self-efficiency and the competence to cope
with unexpected situations. The 10 items were statements rated on a Likert-type scale
that ranged from 1 (disagree) to 4 (agree).

6. The Mindful Attention Awareness Scale (MAAS, Brown and Ryan, 2003; German
version from Michalak et al., 2008) assessed participants’ mindfulness in the form
of attentiveness. The definition of mindfulness provided by the authors was "paying
attention in a certain way: on purpose, in the present and non-judgementally". The
questionnaire comprised 15 items, for which participants answered how often statements
or daily life situations described in the sentences occured in their every day life. The
rating was done in a 6 points Likert-type scale ranging from 1 (almost always) to 6
(almost never). Sentences refered to the ability to pay attention or to mundane events
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or remember about them; they also refered to feelings of being fully aware of "running
on automatic" during those daily experiences.

7. The Locus of Control in dealing with technology (KUT; Beier, 2004; introduced in
5.1.2) assessed the difficulty of the participant to deal with electronic or mechanical
objects in ordinary life situations (e.g., using the microwave, assembling furniture kits).
The questionnaire comprised 8 items, that are statements to be rated on a 5 points
Likert-type scale ranging from 1 (not at all) to 5 (absolutely).

Training

The participants were assigned to one of the three groups in a pseudo-random fashion.
Depending on their assigned group, participants took part in training sessions four times on
four consecutive days (see timeline Figure 6.12). Each training session lasted 23 minutes.

1. a progressive muscle relaxation group (PMR), similar to study 1 (see 6.1.6). The audio
file was played inside the EEG cabin offering better insulation from potential sources
of distraction.

2. a visuo-motor coordination group (VMC), similar to study 1 (see 6.1.6), in which
participants steered a virtual ball through narrow paths using two know controllers.
In addition to the setup from study I, a scoreboard was presented after each track
completion, allowing participants to monitor their individual track performances during
the session. The scoreboard was meant to implicitly motivate participants to improve
their own performance during the four training sessions. As in study one, same variables
"mean error duration" and "percentage error difference" were extracted, for each of the
four training sessions.

3. a control group (CG) in which participants were asked to choose and read a book
from a selection of three German novels while remaining seated in the cabin. The
choice to use a book instead of a BCI book chapter as in study I was meant to provide
non-repetitive and engaging material to read. Although no particular effect pointing in
this direction had been demonstrated in study I, this choice was also meant to reduce
stress and exertion resulting from reading scientific material with subsequent control
questions. In the CG, no control questions were asked to the participants.

Study timeline

Participants took part in two SMR-BCI sessions, separated by five days (day1 and day5).
Between the BCI sessions, participants had four training sessions on four consecutive days.
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The study therefore had two BCI blocks, assessed in a PRE-POST design and four training
blocks. On day 1, the BCI block was followed by a training block. On days 2 to 4, the three
remaining training sessions occured. On day 5 only the POST BCI session occurred (for
timeline see Figure 6.12). The two BCI blocks were identical between the PRE and the POST
condition, at the exception of a few – trait – questionnaires. No subject-specific information
was transmitted between BCI blocks and between training blocks.

Figure 6.12 Timeline of the experiment over five days, comprising two PRE-POST BCI blocks
and the four training blocks (top). A description of PRE and POST sessions, the BCI blocks
and the training blocks with the respective questionnaires (bottom).

BCI block After providing informed consent, participants immediately started with the
KVIQ test outside the EEG cabin. Inside the cabin, during EEG prepping of the 64 electrodes
cap in the PRE session, participants answered trait questionnaires KUT, SWE, SR and MAAS.
In the POST session, only KVIQ was filled prior to EEG prepping. In study I, the effect of
training relaxation levels was evaluated on the short term, by ensuring that the intervention
immediately preceded the BCI session. Similarly in this study, the EEG cap was set on the
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head of the participant before training, therefore preventing the relaxation effect to dissipate.
Following the methodology of the SMR predictor Blankertz et al. (2010), a 2 minutes eye-
open/closed session was recorded for offline anaylysis of the resting SMR rhythms (described
in the following BCI subsection). After reading instructions about BCI trials (i.e. artifacts,
motor imagery and trial organization), participants filled in the VAS for relaxation and
immediately started the "zero-training" calibration runs, which were provided with feedback.
Unlike in study I, the feedback from the subject-unspecific classifier was unbiased. No
subject-specific data was reused in the POST BCI block; thus, participant started calibration
using a subject-unspecific classifier. At the end of the 80 trials of the calibration run (run 1)
that lasted about 15 minutes, the SMS scale was answered by participants, assessing their
mindfulness state. A subject-specific classifier was trained and participants performed three
online SMR blocks (runs 2 to 4) for a total of 240 trials. After BCI runs were completed,
participants performed another 2 minutes eyes-open/closed session.

Training block The first training block occurred after the PRE-BCI block. In-between,
participants were allowed a 5 to 30 min break to rest and remove the EEG gel. During
the training block, participants were placed in the cabin, then filled the VAS for relaxation
immediately before the training started (Relaxt1) and right after it ended (Relaxt2). Depending
on their assigned group, participants performed identical trainings that lasted 23 min, and
were conducted as described in section 6.1.6.

BCI

Setup The EEG acquision setup was identical to study I. The EEG was acquired with
63 active electrodes active (Acticap5) with left mastoid (A1) as reference and the 64th electrode
on the right mastoid (A2) to compute linked mastoids reference. Ground was placed on FPz.
We conformed to a standard 32 electrodes setup according following the 10-20 system (Jasper,
1958). To increase the coverage of the sensorimotor areas, we placed 31 additional electrodes
following the 5-10 system (Oostenveld and Praamstra, 2001). The signal was digitized
at a sampling rate of 1000Hz and band pass filtered between 0.016Hz and 250Hz, and
impedances were kept under 5 kΩ.

BCI Trial Prior to performing BCI trials, participants read a text at the screen (similar to
study I) informing them about the timeline and requirements of the BCI runs and trials. In
this text, participants were also instructed to reduce artifact producing movements, principally
eye, muscle and jaw artifacts, and received specific instructions to produce kinesthetic motor

5Brain Products GmbH, Germany
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imagery of either left or right hand – and arm (as recommended in Neuper et al., 2005) for
four seconds after receiving a directional cue.

A trial, based on Graz BCI design, lasted 8 seconds and was identical with study I, except
that it only comprised left and right hand motor imageries (see trial timeline in Figure 6.13).
The removal of the foot motor imagery was meant to reduce the number of trials required
for the SMR-BCI, therefore reducing the burden for the participants. Also, since the VMC
task did not include feet movements, it would be possible to directly estimate the effect of
two-hand VMC training with two-hand motor imagery.

Figure 6.13 Trial description during the BCI session. The user could estimate trial success by
comparing the cue direction to the position of the stopped cross

In a trial, a fixation cross appeared for 2 seconds, then an arrow cue appeared for 1 second,
determining which motor imagery had to be performed (pointing: left for left hand or right for
right hand). The online feedback started to appear 1 second afterwards (i.e. cross changing
color and moving according to the classifiers’ output) and lasted for 3 more seconds. The
success of the run depended on whether the cross stopped in the cued direction in reference
to the center. A counter on the top was incremented to indicate the number of successful
trials. A 2 seconds break followed every trial. An additional 15 seconds break was provided
every 20 trials.

Eyes-open / eyes-closed baseline The two minutes baseline recording, occuring before
and after each SMR-BCI session was meant to calculate the SMR predicor (Blankertz et al.,
2010). The SMR predictor was calculated by subtracting the maximum peak of the spectrum
between 5Hz and 35Hz, by the noise floor (1/f ) of this power spectrum (see Figure 6.14).
The recording lasted two minutes in which participants had to close the eyes for the entire
duration (Eye-Closed), or fixate an animated geometrical shape on the center of the monitor
for the entire duration (Eye-Open). The beginning of the recording was indicated with an
audio instruction followed by an onset audio beep). Differently to study I, each session was
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a unique Eye-Open or Eye-Closed situation, but the order of presentation was inverted as
follows:

• PRE session: Eye-Open, BCI session, Eye-Closed

• POST session: Eye-Closed, BCI session, Eye-Open

Since the order was inverted, Eye-Open and Eye-Closed recording were merged for analysis.

Figure 6.14 Power spectrum density plot, representing the determination of the SMR predictor
for participant ’VPtgu’ in this study, Eye-Open condition.

Signal processing and classification Signal acquision and processing were done using the
Berlin BCI system (BBCI6, Blankertz et al., 2007), and following a co-adaptive classifcation
approach very close to the setup of study I, but with a different method for calibration runs
called "zero-training" calibration (see Krauledat et al., 2008). Instead of three motor imageries
in study I, participants in this study had to perform either left or right hand – or arm – motor
imagery, reducing the number of classification trials to n = 80 (run 1). A subject-unspecific
binary classifier was trained on two small Laplacian derivations at C3 and C4. The log
band power in α (5− 15Hz) and β (16− 32Hz) bands were extracted, resulting in a total
of 4 features provided to the LDA classifier. After each calibration trial, the classifier was
adapted with "adaptive mean estimation" and "adaptive inverse covariance matrix" algorithms
allowing to better fit the participant’s individual features (a description of the algorithms

6Based on Matlab
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Vidaurre et al., 2010). The feedback indicated (via the cross moving) the predicted motor
imagery without bias.

At the end of the calibration run 1, a classifier was trained based on subject-specific
optimized α and β frequency ranges and subject-specific trial time ranges (identical to study I)
for the four laplacian filters and common spatial patterns (CSP) analysis based on 16 EEG
channels. Log band power features were extracted from Laplacians and CSP derivations and
used to train the LDA classifier. After each trial, the four Laplacian channels were reselected
and the LDA classifier was retrained. This classifier was used for runs 2 and 3, for 160 online
trials.

Before run 4, a new classifier was trained based on the 160 online trials (runs 2 and 3).
After optimized frequency and temporal ranges selection, a CSP analysis was conducted on
47 EEG channels, but no Laplacian derivation was added. Log band power features were
provided to a LDA classifier. During run 4, the classifer was adapted after each trial using
PMEAN adaptation (introduced in section 6.1.6).

The BCI accuracy was the percentage of successful trials in the n=240 online trials
(runs 2,3 and 4). No run-wise accuracy was computed, allowing to better estimate the true
chance level. Based on the formula provided by (Müller-Putz et al., 2008), we estimated
the chance level of n = 240 trials, with α = .05, and a binomial distribution of the motor
imagery classes of 1/2. The calculated chance level considered accuracies between 43.73%

and 56.27% to be due to chance with an probability of α = .05.

Linked electrodes

While the error was not detected while conducting the experiment, it was found during offline
data analysis that all N=39 participants presented an hardware error that internally linked
electrodes C4 and T8. In the analysis of study I, that was also concerned by this issue, the
effect of the hardware issue was not statistically supported by comparing accuracies with
measurements made with fully functional hardware. In the case of this study, the issue
affected all participants in all groups during online BCI trials. The C4 electrode was used
for Laplacian derivations used in the classifier run 1. Due to the introduction of CSP filters,
the effect of the linked electrodes might have been mitigated for runs 2-4. The C4 and T8
electrodes were removed from offline data analysis, comprising averaged ERD/ERS time
plots (see Figure 6.14), head topographies (see Figure 6.23) and the calculation of the SMR
predictor. Due to the C4 electrode malfunction, the SMR Predictor only relied on C3. The
multiple eye-open and eye-close resting state SMR recordings were averaged after analysis,
allowing to avoid non-results observed in Study I, and returning one respective value for
Eye-Closed and Eye-Open.
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Offline analyis In a session, there were 4 runs of 80 trials each. Although feedback was
provided to participants from the beginning using a 0-training classifier, run 1 was used for
subject specific classifier training only, thus, BCI accuracy was calculated base on runs 2 to 4,
for a total of 240 trials.

For calculating averaged online ERD/ERS plots, the data of all N = 39 participants
acquired in the run 4 of the BCI session PRE and POST, respectively and was band-pass
filtered between 8 and 15 Hz, artifacts were removed based a variance criterion. Band power
was calculated using Hibert envelope curve with a moving average of 100 ms was calculated
for each trial. Then the determination coefficient signed r2 for left and right hand motor
imagery classes was calculated. Due to the missing C4 electrode, only maximum signed r2

value at C3 electrode for each participant and each session were extracted. As for the analysis
of behavioral data (i.e. BCI accuracy), this neurophysiological indicator was assessed in an
2x3 ANOVA of C3 max_r2 by session and group.

Statistical Analysis

All ANOVA were based on a full-factorial model and used type III Sum of Squares. To check
whether the analyzed data was normally distributed, the Shapiro-Wilk test was systemati-
cally performed. According to the outcomes of normality tests, non-parametric equivalents
of ANOVA were used (Kruskal-Wallis test), repeated measures anova (rm-ANOVA with
permutation), independent t-tests (Mann-Whitney-Wilcoxon rank sum test), paired t-tests
(Wilcoxon signed range test), Pearson correlation (Spearman correlation). Prior to calculating
correlations, outliers were removed, using two standard deviations of the mean as exclusion
criterion. Regression lines – in figures – were also calculated without outliers.

6.2.5 Results

Mean accuracy in condition was MPRE = 67.8%, SD = 15.9 and MPOST = 71.2%, SD =

16.3. Out of the N = 39 recorded participants, n = 31 (79.5%) were over the true chance
level, and only n = 17 (44%) were BCI efficient by reaching the – 70% by Kübler et al.
(2001) – accuracy criterion (see Figure 6.15).

Effect of training on BCI accuracy (H1,2)

The effect of training on BCI accuracy was evaluated using two-way rm-ANOVA, computed
with BCI accuracy as dependent variable, group as between-subject factor, and BCI session
(time; PRE or POST) as within-subject factor. The ANOVA did not yield an effect of group
(F (2, 36) = 1.73, p = .191) but yielded a significant effect of time (F (1, 36) = 4.34,
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Figure 6.15 Level of control of the participants. Box-plot showing 25% percentiles, and
point representing the mean BCI accuracy (left). Distribution of the ranked by level of
control (right), showing the proportion of users displaying chance level of control (blue), BCI
inefficient (green) and BCI efficient users (red).

p = .044). The interaction group ∗ time was not significant. Due to non-normal distribution
of the BCI accuracy, non-parametric alternative in assessing BCI accuracy. The robust
rm-ANOVA (with nperm = 1000) returned a significant effect of time (p < .05), validating
the results of the ANOVA. Post-hoc comparison using Wilcoxon signed rank test showed an
increase between PRE and POST BCI sessions (MPOST−PRE = 3.3 pp, SD = 10.1, W = 227,
p = .038, see Figure 6.16).

Validating the intervention

Effect of training on relaxation levels (A1)

Short-term effect A three-way rm-ANOVA was used to investigate the short-term effect
of training group on relaxation levels during the training blocks. The rm-ANOVA was com-
puted with relaxation level as dependent variable, intervention was used as between-subject fac-
tor, day (days 1 to 4) and training block completion (relaxation assessed before "t0" or after "t1"
the training block) as within-subject factors. The ANOVA returned an interaction group∗day
(F (6, 108) = 22, 89, p = .012) and an interaction group ∗ training block completion

(F (2, 36) = 17, 28, p < .001). A main effect of training block completion was found
(F (1, 36) = 65.86, p < .001) showing an increase of relaxation between t0 and t1 (Mt1-t0 =

1.02, SD = 1.72.). No further interaction or main effect were significant.
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Figure 6.16 BCI accuracy by training between PRE and POST sessions. Error bars indicate
standard deviation.

Post-hoc pairwise comparisons using paired t-tests yielded an increase in relaxation
between t0 and t1 in the PMR group (t(51) = 9.77, Bonferroni adjusted padj < .001) and
in in the CG (t(51) = 4.31, padj < .001). No difference was found in the VMC group
(t(51) = .624, padj = .535). Another post-hoc pairwise comparison compared the averaged
relaxation difference t1 − t0 between intervention groups. The indepdendent samples t-tests
showed that relaxation levels increased more in the PMR group (Mt1-t0 = 1.95, SD = 1.44)
than CG (Mt1-t0 = .97, SD = 1.61, t(21.9) = 3.27, padj = .010) and VMC (t(23.9) = 5.42,
padj = .010). Relaxation levels increased more in the CG than in the VMC (Mt1-t0 = .14,
SD = 1.64, t(22.5) = 2.85, padj = .027, see Figure 6.17a).

Long-term effect The long-term effect of training on relaxation levels was evaluated
using a two-way rm-ANOVA, computed with relaxation level as dependent variable, group
as between-subject factor, and BCI session (time; PRE or POST) as within-subject factor.
The ANOVA did not return any significant main effect of group (F (2, 36) = 1.98, p = .15),
time (F (1, 36) = .510, p = .47) or interaction group ∗ time (F (2, 36) = .251, p = .77, see
figure 6.17b).

Effect of VMC training on VMC (A2)

VMC mean error duration The effect of VMC training on VMC "mean error duration"
was assessed using a one-way rm-ANOVA, using "mean error duration" as a dependent
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Figure 6.17 Effect of training on relaxation displaying mean and standard error of the mean
for each training group. a) average of VAS for relaxation before and after the four training
blocks. b) VAS for relaxation right before BCI session in the PRE and POST session.

variable and day (time; days 1 to 4) as within-subject factor. The effect of time was significant
(F (3, 36) = 10.17, p < .001). Post-hoc multiple comparisons using paired t-tests showed
that the individual score on day 1 (M1 = 2.01, SD = 1.51) was significantly higher than
on day 2 (M2 = .95, SD = .73, t(12) = 3.19, padj = .046), day 3 (M3 = .81, SD = .78,
t(12) = 3.47, padj = .028) and day 4 (M4 = .84, SD = .76, t(12) = 3.23 padj = .044). No
further difference in "mean error duration" was found between runs 2, 3 and 4. The tendency
showed a decrease of errors during the first VMC training session (see Figure 6.18).

VMC error percentage difference The effect of VMC training on VMC "error percent-
age difference" was assessed using a one-way rm-ANOVA, using "error percentage difference"
as a dependent variable and day (time; days 1 to 4) as within-subject factor. The effect of
time was significant (F (3, 36) = 2.93, p < .046).

Post-hoc pairwise comparison for the main effect of time using Wilcoxon signed rank test
showed that the "error percentage difference" was significantly higher during day 1 (M1 = .27,
SD = 2.11) than day 3 (M3 = 1.64, SD = 1.56, W = 83, padj = .037 ) and marginally
higher than day 4 (M4 = 2.72, SD = 0.36, W = 81, padj = .066, see Figure 6.18).

Directed correlation analysis with BCI accuracy

Relaxation levels Spearman correlations between BCI accuracy and VAS relaxation before
BCI sessions were calculated, but did neither yield significant correlations in the PRE BCI
session (Spearman ρ = −.242, p = .143, noutlier = 1) nor in the POST BCI session (ρ =

−.074, p = .657, noutlier = 1).
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Figure 6.18 Mean VMC performance over the four training sessions. Error bars indicate
standard error of the mean. Mean error duration of the VMC, expressed in seconds (orange).
VMC error percentage difference (in pp).

VMC mean error duration and error percentage difference The VMC "mean error
duration" measured in day 1 did not correlate with BCI accuracy PRE (ρ = .242, p = .449,
noutlier = 1). VMC "mean error duration" on day 4 did neither correlate with BCI accuracy
POST (ρ = .461, p = .134, noutlier = 1). The VMC "error percentage difference" measured
on day 1 did not correlate with BCI accuracy PRE (ρ = .038, p = .901), but VMC "error
percentage difference" on day 4 was significantly correlated with BCI accuracy POST (ρ =

.622, p = .035, noutlier = 1) but was not correlated after correction for multiple comparison
(padj = .14), see Figure 6.19).

KVIQ The KVIQ did not correlate with BCI accuracy, even when specifically comparing
the kinesthetic (KVIQ-K) or at the visual (KVIQ-V) subscales.

SMR Predictor Spearman correlation test between BCI accuracy and "SMR predictor
eyes-open" was marginal (ρ = .386, padj = .066, noutlier = 1), but the correlation between
BCI accuracy and "SMR predictors eyes-closed" was significant (ρ = .459, padj = .019,
noutlier = 2). Merging all eye-closed and eye-open recording (M = 6.75 dB, SD = 3.09)
yielded the highest and most significant correlation (ρ = .534, padj = .003, noutlier = 1, see
Figure 6.20). The SMR predictor computed during the the Eye-Closed condition (MEC =

7.62, SD = 3.19) was significantly higher than during the eye-open condition (MEO = 5.89,
SD = 3.53, paired t-test t(35) = 1.49, p = .012).
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Figure 6.19 Correlation VMC error percentage difference with BCI accuracy. ρ = .622,
p = .035, padj = .14. Outlier were removed using two standard deviation from the mean
criteria.

Figure 6.20 Correlation plot between SMR predictor in both Eye-Open and Eye-Closed
conditions and BCI accuracy(ρ = .534, padj = .003, noutlier = 1).
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Explorative analyses

SMS Spearman correlation analysis between SMS PRE and BCI accuracy PRE was not
significant (ρ = .167, p = .338, noutlier = 3), but there was a significant correlation between
SMS POST and BCI accuracy POST (ρ = .418, p = .011, noutlier = 2). Further analysis of
the SMS subscales revealed that only the "mindful" items (and not the "body" items) of the
SMS correlated with BCI accuracy POST (ρ = .382, padj = .043, noutlier = 2; see Figure
6.21).

Figure 6.21 Correlation plot between State Mindfulness Scale and BCI accuracy, both assessed
during the POST BCI session (ρ = .382, padj = .043, noutlier = 2).

Other correlations The correlations between BCI accuracy and MAAS, SWE or SR did
not reach significance.

6.2.6 Discussion

While 80% of the participants performed better than chance, only 44% were BCI efficient,
even though a co-adaptive calibration BCI system was used. The BCI accuracy increased
between BCI session PRE and POST. The BCI block, and in particular the classifier training
procedures, were identical in both BCI sessions. Since no subject-specific data was transmitted
from PRE session to POST session, this result demonstrated that a learning occured between
the two BCI sessions, which was quantified to an increase of 3.3 pp (percent points), but
yet with a relatively high standard deviation SD = 10.1 pp. This result was consistent with
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litterature showing that SMR-BCI performance globally increases through a learning process
(e.g., Pfurtscheller and Neuper, 2001; Nijboer et al., 2010; Zich et al., 2015).

Both hypotheses H1 and H2 have to be rejected by the results, since no significant effect
of training group on BCI accuracy was found, meaning that neither PMR (H1) nor VMC (H2)
training lead to increased BCI performance based on a sample of n = 13 participants per
group. The success of the PMR training in increasing relaxation levels, which was required
as a Manipulation Check (MC1) was only partially validated. The results showed a significant
increase in relaxation following the PMR training (during training), but yet, the PMR training
did not produce a long-lasting effect, since relaxation did not differ between the PRE and
the POST BCI sessions. Studies that found an effect of training on SMR-BCI accuracy (i.e.
Tan et al., 2014; Cassady et al., 2014) did not report any questionnaire that would allow to
describe or quantify any expected effect. It must yet be noted that the training duration was
at least three times longer that in this study (i.e. 3 months for Tan et al.; 1 year for Cassady
et al.). The preliminar results from Tan et al. (2009) also reported a shorter training of only
four weeks. This duration closely matches with the recent findings of the effect of learning on
neuroplasticity, more precisely evoked in changes in cortical grey matter (GM) or white matter
(WM). Those studies observed GM density increase associated with the 3-week learning of a
balancing task (Taubert et al., 2011), or WM density increase associated with a eight week
mindfulness practice (Hölzel et al., 2011).

The design from study II differed from Study I by the separation between intervention
and BCI blocks, assessed on different days. The effect of the PMR intervention on relaxation
remained significant during the training but could not be sustained until the BCI POST session.
This shows on one hand a success in relaxation training, but on the other hand no measurable
long-term effect of PMR training.

Concerning the studies that showed a relation between relaxation trainings and BCI
accuracy, (Tan et al., 2009, 2014; Cassady et al., 2014), it can be noted that the training of
mindfulness was included; which encouraged me to assess the state mindfulness in Study II
using SMS. The SMR training, despite being efficacious in relaxaing participants, did not
include mindfulness training, as participants focused their attention on bodily sensations. In
opposition, the given instruction of MM is to freely monitor the entire range of perception
(i.e. sensations, thoughts and feelings; see Lutz et al., 2008) and avoid focusing on any of
them in particular. Since MM has been shown to have positive effect on attention (Valentine
and Sweet, 1999), it could be influencing the ability to concentrate. The positive correlation
of SMS with BCI accuracy in the POST session of this study tells that participants who
were mindful during the post BCI session obtained higher classification accuracy. However,
the interpretation of this result is limited because the SMS was evaluated after receiving
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calibration feedback, thus possibly influenced by BCI feedback result. It could also be added
that the MAAS scale trait mindfulness was not related with BCI accuracy. The viability of
using MAAS in this context is limited, since it was criticized for restricting the concept of
mindfulness by opposing it to a mindless “autopilot” attention on our daily activities (van
Dam et al., 2010). For a proper evaluation of SMS, I suggest that future experiments should
ensure to assess mindfulness scales before any performance feedback is provided, such that it
could be confirmed for its potential predictive value.

According to the hypothesis H2, the success of VMC training in increasing BCI accuracy
was tied to the manipulation check stating that the "mean error duration" or the "error per-
centage difference" would decrease. The result yielded toward a better proficiency (reduction
in "mean error difference") and a stabilization in the learning ("error percentage difference"
decreases between run 1 and 2, indicating increased learning, but does not differ in further
sessions). Both variables indicated that the VMC manipulation was successful in establishing
motor learning. In a review of MRI studies investigating the effect of learning, Dayan and
Cohen (2011) compared fast an slow learning and describe the performance increase in both
as an asymptote that either range in a time magnitude of minutes (for fast learning) or in
months (for slow learning). Our results demonstrated a similar asymptotic shape of both
VMC variables (see Figure 6.18) acquirement over the cumulated 92 minutes of training,
therefore associated a "fast" skill acquision. The other "slow" learning, as posited by Dayan
and Cohen, is represented by the music training of Tan et al. (2014), which was neither found
to be associated with an increase in SMR-BCI performance. Despite evidence that year-long
practice in sports, playing instruments, typing and playing video games (Randolph, 2012),
implying slow skill acquision of fine and properly-timed visuo-motor coordination , no effect
of training on BCI accuracy was found to result from a fast visuo-motor learning (this study)
or slow instrument learning (Tan et al., 2009, 2014).

None of the predictor variables (i.e. relaxation level, "mean error duration" and "error
percentage difference") correlated with BCI accuracy. The explorative correlation analysis
did not return any significant correlation of state Mindfulness (MAAS), kinesthetic and
visual motor imageries (KVIQ), self-efficacy (SWE) or self-regulation (SR). The eyes-open
SMR predictor was only marginally correlated with BCI accuracy. Blankertz et al. (2010)
originally suggested that the contribution of occipital alpha during EC baseline deteriorated
the predictive value of the SMR predictor, which substantially relied on peaks in α band power.
But in this study, both the correlation coefficient and the significance were increased in the
Eye-Closed condition. Moreover, it was also found that averaging Eye-Closed and Eye-Open
values returned a stronger and more significant correlate with BCI accuracy. Nevertheless, by
being correlated with BCI accuracy, the SMR predictor was replicated once again.
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While the C4 electrode could not be included in the ERD/ERS plots (see Figure 6.22),
the C3 electrode on one side, and the electrodes near C4 (i.e. CFC4, C2, CCP4) on the
other side, both show distinct ERD contralateral to the side concerned by the motor imagery,
while showing ipsilateral ERS (see head topographies in Figure 6.23). While the analysis of
max_r2 C3 did not yield significant effect of session, the detailed plots in the POST session
indicates (observation not corroborated with statisitcs) higher signed r2 values in electrodes
that are directly adjacent to C3 and C4 as compared to the PRE session (see Figures B.1 and
B.2).
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Figure 6.23 ERD/ERS head topographies representing relative band power between 8Hz and
15Hz from signal envelope in the Left and right hand motor imagery tasks averaged for every
second of online BCI control. Signal was spatially filtered by Local Average Reference. The
plot averages the data from all N = 39 participants in online run 3. The third line represents
the signed r2, computed to illustrate the classwise contrast of ERD/ERS patterns.

6.2.7 Conclusion Study II

Except for an effect of time, there was no significant effect of training on BCI accuracy,
showing that intensifying the intervention trainings was not efficient to increase BCI per-
formance. Particularly in the PMR, the lack of effect on accuracy can be imputed to the
failure to increase relaxation levels on the long term, despite the short term efficiency of PMR.
This study also revealed the instability of the VMC "mean error duration" predictor and the
the "error percentage difference", which were not replicated, and thus reveal both a poor
predictive value, and not potential in increasing SMR-BCI performance. The study failed to
show a relation between relaxation and BCI accuracy but instead revealed state mindfulness
as a positive correlate, reinforcing the evidence about the benefit of mindulness trainings.
Unlike the PMR and the VMC trainings, the effect of BCI practice between was significant,
and marked by a significant increase between the BCI session PRE and POST. Therefore,
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four day long training of PMR and VMC are unlikely to be beneficial for the participants and
thus not good candidates to address the issues of BCI inefficiency.



Chapter 7

General discussion

The global research aim of this doctoral dissertation was to first identify individual predictors
for SMR-BCI performance and then attempt to increase this performance by proposing specific
non-BCI interventions or trainings for the participants. The two generic predictors, identified
in literature, were attention levels and visuo-motor-spatial abilities. In the course of the studies
of this thesis, I attempted to replicate the existing predictors for SMR BCI performance,
specifically those found by Hammer et al. (2012, 2014), which were the relaxation levels and
the proficiency in a VMC task.

The study I concentrated on a single training session right before using SMR-BCI. This
joint-study conducted both in Berlin and Würzburg allowed to acquire a large sample, with
the aim of producing generalizable results. Due to lab differences, the samples had to be
spitted, but nevertheless, both presented decent sample size as compared to other studies
presenting predictors or correlates for SMR-BCI accuracy. Predictors were replicated under
the form of correlation with BCI accuracy. PMR training was correlated with BCI accuracy
in BE, and VMC "error percentage difference" was correlated with BCI accuracy in WÜ.
Those correlations were nevertheless not found equivocally in both labs, and the manipulation
of the predictors did not lead to an improvement in SMR-BCI accuracy in Study I.

The study II was designed with PRE-POST BCI measurements, therefore allowing to
account for inter-individual differences in BCI accuracy presented by the participants. A
global effect of BCI practice could be reported, by a modest increase of 3 percent points in
BCI accuracy between PRE and POST. The physiological ERD/ERS marker max_r2 on C3
did not increase. The aim of Study II was to produce a positive effect on BCI accuracy by the
manipulation of the predictor variables in an intensified training. The training of Study II was
therefore conducted during four sessions on four consecutive days. Manipulation Checks for
VMC and PMR both successfuly validated the effect of training on manipulating the predictor
variables in the correct direction, but none of those variables (Relaxation level, VMC "mean
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error duration" and VMC "error percentage difference") correlated with SMR-BCI accuracy,
either PRE, POST for the difference between PRE and POST. No specific training, either
VMC or PMR was found to influence BCI accuracy as compared to the CG.

The studies that reported such association between relaxation and SMR-BCI accuracy
proposed much longer training durations, for a minimum of twelve weeks (i.e. Tan et al.,
2014). The relaxation trainings that were found to be associated with higher SMR-BCI
accuracy were "mindfulness meditation" (Tan et al., 2009, 2014) or diverse relaxation and
meditative – even healing – methods assembled under the name of mind-body awareness
training (MBAT; Cassady et al. (2014). The fundamental distinction between those techniques
and PMR, is that they are the result of a century old traditions infused with religion and
spirituality, essentially practiced by individuals that embrace the practice of meditation as a
lifestyle. While PMR offers an efficacious and temporary release of muscular (and mental)
tension by the practitioner, the other methods depicted here train the participant to sustain
modified states of consciousness (Tart, 2000) for prolonged durations, and to extend them into
daily life. I described in section 5.4 the neuroanatomical effects of mindfulness meditation,
which, as shown previously, has been associated with higher SMR rhythms. In terms of
meditation techniques, Lutz et al. (2008) discriminate two types of meditation techniques. The
first meditation type named "focused attention", consists in inhibiting completely the range
of awareness of the meditator, which concentrate his attention on one unique target. This was
specifically the case in the PMR training, in which participants were asked to concentrate on
the sensation produced by contractions and release of group of muscles. The authors name the
second type of meditation "online monitoring", for which the instruction is to freely monitor
the entire range of perception (sensations, thoughts and feelings). The authors yet specified
that the "online monitoring" is a difficult state to maintain, and that "mindfulness meditators",
when too attached and distracted by the course of their thoughts must "stabilize" by returning
to a focused attention (e.g, concentrating on respiration, similar to the instructions in Tan
et al., 2014). MM requires time and practice, and MRI based studies have shown that the
neural efficiency was increased in mindfulness meditation experts (i.e. decreased activity in
the prefrontal-cortex associated with lower need for top-down inhibition).

Since mindfulness meditation was found to be associated with accuracy in study II, and
has also been shown to have positive effect on attention (Valentine and Sweet, 1999), it
could be hypothesized that mindful meditation is a good candidate for increasing SMR BCI
accuracy. The state mindulness is yet contradicted with the trait scale (MAAS), which did
not return any correlation with BCI accuracy (for further reading on MAAS scale, see van
Dam et al., 2010; Rapgay and Bystrisky, 2009). It should therefore be evaluated whether
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mindfulness meditation can be integrated into a short training, as it is essential that the use of
a non-BCI training should be superior to the BCI training itself.

In study I, The VMC "mean error duration" variable was only marginally correlated with
BCI accuracy in BE. The effect of VMC intervention on "error percentage difference" was
only found in BE, indicating a reduction of errors during VMC training). This manipulation
check variable, was thereafter tested for its correlation with BCI accuracy, and yielded a
significant association in WÜ. The results were unequivocal in indicating a relation between
VMC proficiency and BCI accuracy, but also in validating the VMC training. This ambiguity
dissipated in study II, were the training in VMC led to improvement in motor proficiency
indicator variables (both "mean error duration" and "error percentage difference"). The
VMC manipulation did nonetheless not affect the BCI performance. The VMC practice,
displayed an asymptotical evoluation of the VMC variables over the four days, conform to the
description of a short skill learning by Dayan and Cohen (2011). This learning was supported
in the literature by neurophysiological effects in the sensorimotor areas (e.g., Halder et al.,
2011) but the studies indicating neuroanatomical effects were based on a longer duration of at
least three weeks (i.e. Taubert et al., 2011), referring instead to an advanced skill acquisition,
as posited by Dayan and Cohen (2011). The VMC learning was not associated with increased
signed r2 values in C3 reported study II.

Yet, concerning Study I, scalps maps of ERD/ERS (by Acqualagna et al., 2016, Figures
6.10 and 6.11) displayed stronger ERDS on both C3 and C4 for participants in the VMC
group. The concurrent ERD/ERS pattern on both hemispheres should theorically make it
harder for the classifier to discriminate between right hand and left hand motor imageries.
This symmetric ERD increased can be compared to the simultaneous use of right and left
hand during the VMC and illustrated that the strength of the ERD/ERS alone may not
systematically lead to higher BCI accuracy, and that participants, for a better classification
might have benefited from more localized ERD/ERS patterns. Such localization of ERD/ERS
patters is pushed forward by Babiloni et al. (2010), and typical from – expert – skill learning
(e.g. Del Percio et al., 2010; Wei and Luo, 2010; Zapala et al., 2015). It could then be
hypothesized that participants may benefit of an motor learning that prevents the simultaneous
execution of right and left hand movements (e.g. right or left but never both at the same
time), but such an experimental design would require to also take into account time-related
constraints to account for the temporal elicitation of ERD/ERS patterns. Apart from this
hypothesis, it could be suggested that expert VMC performers, following a longer training
might obtain more localized ERD/ERS thus leading to higher BCI accuracy.

Secondarily from the predictors that were manipulated, I also contributed to the iden-
tification of SMR-BCI predictors or correlates, by attempting to replicate those reported
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in literature, comprising the non-planning impulsivity or the Baratt Impulsiveness Scale
(BIS-np) found in Hammer et al. (2014), the Locus of Control in dealing with technology
(KUT; Burde and Blankertz, 2006), the kinesthetic imagery vividness (KVIQ-K; Malouin
et al., 2007) and the SMR predictor (Blankertz et al., 2010) (SMS and MAAS were already
reported in this section). The SMR predictor, was replicated in Study I, with similar corre-
lation coefficient, and the suggestion by Blankertz et al. concerning the lesser association
in the Eye-Closed condition due to the contribution of occipital α. In study II, organized
in separate 2 min blocks – instead of alternations 15 sec – of Eye-Open and Eye-Close, the
effect was opposite, showing a stronger correlation coefficient for the Eye-Closed condition.
No explanation could be provided to explain this difference, but results yet indicated that
SMR Prediction during the Eye-Open condition systematically correlated with SMR-BCI
accuracy. Other predictors or suspected correlates (KVIQ,BIS-np,SR and SWE) were not
associated with BCI accuracy.

The growing evidence on different levels that suggest links between motor practice or
meditation and SMR-BCI accuracy might encourage future investigations in implementing
such practice as trainings for increasing SMR-BCI accuracy. Such further investigations
should consider that there is no possibility of transferring motor-based trainings for people
in the LIS. The relaxation/meditation trainings could therefore be preferred for a patient
population. But what appears a the first glance to be easily implementable, displays major
constraints. Meditation methods based on concentrating on respiration might be experienced
completely differently by patients with artificial respiration. All motor-based relaxation,
including PMR, cannot be performed. Thus, in the optic of transferring potential findings
to LIS end-users, I would strongly recommend any further investigation of relaxation or
meditation training for SMR-BCI accuracy to use relaxation trainings that do not integrate
motor execution.

7.1 Limitations

I identified three major limitations that might impact the quality of the findings and the ability
to answer the research questions that were posited prior to formulating the hypotheses of
studies I and II.

Translating predictors into training The first limitation concerns the viability of the
process that translated the identified predictors into training to increase SMR BCI accuracy.
The identified predictors were namely: 1) the "relations towards work", interpreted by Hammer
et al. as the ability to concentrate 2) the "2HAND overall mean error duration", also reported
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by Hammer et al. (2012) and following a standardization process. The meaning of "ability to
concentrate" by Hammer et al., which was not directly replicated, could be contested from its
direct link with the "relaxation levels" variable, that I chose to associate to in the frame of this
dissertation. Despite this distance between the "AHA" predictor and the "relaxation levels"
variable, a pragmatic reflection justified this pairing. By increasing relaxation levels, the
ability to concentrate would be positively influenced. It could be hypothesized that the "ability
to concentrate" translated self-regulation abilities. In such a scenario, increasing relaxation
would also lead to higher self-regulation. Specifically, to investigate any association with self-
regulation, I introduced a Self-Regulation questionnaire during Study II. The impossibility
to replicate the variable AHA was justified by its laborious and exhausting characteristics
(Personal Communication with Hammer et al.’s study co-author), that would lead to unspecific
and uncontrolled efects during the BCI session which were unwanted. The Study I reported
unconclusive results about the relaxation level, and both studies implying PMR training did
not produce an effect on BCI accuracy. Since attention was cited several times in other SMR-
BCI predictor literature, and acknowledging the contribution from cognitive components
such as mindfulness, it might be beneficial to attempt to more precisely define the temporal,
and cognitive characteristics of attention in further investigations.

Concerning the "2HAND overall mean error duration" predictor being translated into
VMC "mean error duration" and "error percentage difference", it must be first noted that the
initial testing by Hammer et al., 2012 included both joystick and knob controller control. The
effect of the predictor was replicated later in Hammer et al., 2014, showing the stability of
the predictor. It must first be noted that those were standardized by the assessment software
(Schuhfried GmBH) against a larger sample. Therefore, it could be that the predictive value of
BCI accuracy would only be significant by proceeding to this specific standardization. Using
the "mean error duration" from knob controllers in both studies I and II was fairly similar to
the initial assessment of the predictor. The use of Spearman correlation, which proceeds to
ranking, was also beneficial in reproducing the initial conditions of the predictor. I attempted
to utilize the "error percentage difference" to better translate the short adaptation of steering
errors in the VMC task, and provide another explanatory variable. This second correlate and
the "mean error duration" both yielded unconclusive significant correlations in Study I, but
were not replicated in Study II. As for the attention levels, the "motor dexterity" characteristic
and motor learning are a redundant subtypes of predictors of SMR-BCI performance, and
replication studies could help refine these predictors.

Causality of the predictors A second limitation to this study, is that causality was not
specifically evoked. Study I was specifically designed to have interventions precede the
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BCI session, therefore reducing the possibility of BCI accuracy influencing predictor values
(and therefore ensuring the independence). The Study II introduced a BCI accuracy session
before assessing the predictor, but this session was used as a baseline in a PRE-POST design.
Participants were not aware of their assigned training during this BCI run. Strictly, it cannot
be rejected that BCI session did not have a causal effect on the predictor, but this effect was
yet equal in all three group. In proving that the predictors were influenced by variations in
BCI accuracy, this to assume a causal independence for the predictive value of the predictors
(yet not significant).

The lack of specific distinction between predictors and correlates of BCI performance
spread confusion in the interpretation of such variables. While these terms respectively refer
to statistical instruments for assessing linear associations, the regression analysis allows to
use one or several independent factors to predict a dependent variable, while the correlation
analysis report whether two sets of variables are linearly related, and in which direction. Yet,
squaring the r-value of a correlation allows to specify the variance explained of a correlate
by the other, and has therefore a predictive value. Yet, the word predictor introduces in its
etymology a notion of time "PRE", and the specific vocabulary of regession uses the word
"independent variable". Yet, a predictor in a regression is not necessarily temporally older and
neither independent. In the scope of specifying interventions to increase SMR-BCI accuracy,
it is essential to discriminate variables that, in terms of causality, predicted BCI accuracy
before it was even measured, and variables that were measured during of after BCI accuracy
was provided, for which independence from SMR-BCI accuracy cannot be proven without
rigorous argumentation (e.g. Grosse-Wentrup, 2011). In my table of SMR-BCI predictors,
I examined for causal independence of every predictor variable from the associated BCI
accuracy. I invite the readers to refer to the updated table of predictors and correlates (Table
A) and check whether the variable is estimated either by a regression or a correlation. In
conclusion for this limitation, the issue of causal independence invites researchers in the field
of neurophysiology and BCI to define a proper terminology to prevent logical fallacies.

Relatively short trainings A third study limitation is the short duration of the training,
which lasted 30 min in Study I, and which totalized 2 h on four consecutive days in Study II.
This short training duration is by no means comparable to the extended trainings of at least
twelve weeks in Tan et al. (2014) and even a year in Cassady et al. (2014). Firstly, the
trainings were based on influencing the predictors, and the duration of Study II was found
to be sufficient to influence both variables representing the PMR and the VMC predictors.
Secondly, the effect of BCI practice itself leads to significant improvement in SMR-BCI
accuracy (e.g. Witte et al., 2013), that is comparable in duration and performance to the



7.2 Conclusion 121

increase obtained by Tan et al. (2014). The keystone to this reflexion is therefore whether
non-BCI trainings can offer and improvement complementary (and not "similar") to BCI
training. Since only few studies support an effect of non-BCI training on BCI learning (i.e
Tan et al., 2009, 2014), it is too early to conclude on the specific effect of training, but it
should be kept in mind when elaborating new study designs.

7.2 Conclusion

The findings of studies I and II showed that the predictors for BCI accuracy could not be
consolidated across replications studies. Moreover, the implementation of short trainings
based on those predictors did not lead to an improvement in BCI accuracy. The most plausible
reason could be the limited duration of the trainings, which could be intensified further than
four days to – for example – twelve weeks, in an attempt to replicate existing literature.

The growing base of evidence of predictors for SMR-BCI would benefit from well-thought
replication studies, methodologically assessing and refining such predictors, and avoiding
the temptation to only push forward "new" or "better" predictors, but rather attempting to
have a comprehensive approach that overall benefit to the field of BCI. Publishing, negative
results is being recognized more globally, and may help provide essential information for
researchers who try to identify predictors for SMR-BCI.

As much as three studies point towards of mindfulness meditation (Tan et al., 2009, 2014;
Cassady et al., 2014), representing a potential and interresting topic to further investigate.
Alternatively the physiological observations from Study I pointed towards elaborating specific
visuo-motor coordination trainings that would exclude simultaneous use of both hands in an
attempt to maximize the contrast in topographical ERD/ERS activations.

7.3 Outlook

This dissertation provided groundwork for further scientific contributions. My project for
further actions is to firstly extend and consolidate the list of predictors for SMR-BCI that is
yet actualized with the results from studies I and II (see Table A). In addition, and due to the
importance of also identifiying variables that do NOT predict performance despite theoretical
links to motor imagery based BCIs, I would like to compile an exhaustive list of variables
predicting SMR-BCI performance, and provide evidence for consolidation or rejection of
such predictors.
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Closely related to the field of SMR-BCI, I would also like to apply the same methodology
to the predictors of P300-BCI, for which Kübler (2017) called for more replication studies
and comprehensive reviews (e.g. Bougrain et al., 2012).

Another aspect worth investigating is the effect of Mindfulness Meditation training on
BCI performance, for which there is the need to replicate the existing and more importantly
properly assess their outcome variables. The potential as stake is tremendous, considering the
10 percent point increase that was reported by respective authors. Importantly, mindfulness
trainings would be available for end-users in the locked-in-state, therefore allowing to transfer
the technology to those who really could benefit from improvements in SMR-BCI accuracy.
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Figure B.3 PRE ERD/ERS head topographies representing relative band power between 8Hz
and 14Hz from signal envelope in the Left and right hand motor imagery tasks averaged for
every second of online BCI control. Signal was spatially filtered by Local Average Reference.
The plot averages the data from all N = 39 participants in online run 2,3 and *4 of the BCI
PRE session. The third line represents the signed r2, computed to illustrate the classwise
contrast of ERD/ERS patterns.
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Figure B.4 POST ERD/ERS head topographies representing relative band power between
8Hz and 14Hz from signal envelope in the Left and right hand motor imagery tasks averaged
for every second of online BCI control. Signal was spatially filtered by Local Average
Reference. The plot averages the data from all N = 39 participants in online run 2,3 and *4
of the BCI POST session. The third line represents the signed r2, computed to illustrate the
classwise contrast of ERD/ERS patterns.




	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Aim of the dissertation
	1.2 Structure of the dissertation

	2 Motor activity in the brain
	2.1 The motor cortex
	2.2 Measuring neuronal activity
	2.2.1 Invasive recordings
	2.2.2 EEG oscillations
	2.2.3 Recording the EEG activity
	2.2.4 Why use EEG?

	2.3 Motor function of the brain
	2.3.1 Neural substrate of voluntary movements
	2.3.2 Rhythms and components in the EEG


	3 SMR-BCI and its applications
	3.1 Neurofeedback
	3.2 BCI paradigms
	3.2.1 Characterizing the BCIs

	3.3 SMR BCI
	3.4 Methods for SMR BCI
	3.4.1 EEG setup
	3.4.2 Acquiring and filtering the EEG
	3.4.3 Artifacts in the EEG
	3.4.4 data extraction and classification
	3.4.5 Feedback

	3.5 SMR-BCI Applications
	3.5.1 Locked-in syndrome (LIS) and motor disabilities


	4 Variations in SMR BCI performance
	4.1 BCI inefficiency
	4.2 Models of BCI control
	4.3 How to do we learn to control the BCI?

	5 Individual Predictors for SMR-BCI Performance
	5.1 Psychological factors
	5.1.1 Task engagement and attention
	5.1.2 Locus of control
	5.1.3 Motivation and affective variables

	5.2 Visual, kinesthetic and spatial characteristics of the motor function
	5.3 Neurophysiological oscillatory patterns
	5.4 Anatomical and functional neural properties
	5.5 Limitations of the predictors
	5.6 Classification of the predictors
	5.7 Increasing SMR-BCI performance

	6 Empirical investigation
	6.1 Study I - Effects of PMR and VMC training on performance in an SMR-BCI
	6.1.1 Initial summary
	6.1.2 Research gap
	6.1.3 Research questions
	6.1.4 Hypotheses
	6.1.5 Introduction
	6.1.6 Methods
	6.1.7 Results
	6.1.8 Discussion

	6.2 Study II - Effect of four days VMC and PMR trainings on SMR-BCI
	6.2.1 Summary update, revisiting research questions
	6.2.2 Research questions
	6.2.3 Hypotheses
	6.2.4 Methods
	6.2.5 Results
	6.2.6 Discussion
	6.2.7 Conclusion Study II


	7 General discussion
	7.1 Limitations
	7.2 Conclusion
	7.3 Outlook

	Bibliography
	Appendix A Updated table of predictors
	Appendix B Additional physiological data

