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Abstract

Seasonal timing is assumed to involve the circadian clock, an endogenous mechanism to track time and meas-

ure day length. Some debate persists, however, and aphids were among the first organisms for which circadian

clock involvement was questioned. Inferences about links to phenology are problematic, as the clock itself is lit-

tle investigated in aphids. For instance, it is unknown whether aphids possess diurnal rhythms at all. Possibly,

the close interaction with host plants prevents independent measurements of rhythmicity. We reared the pea

aphid Acyrthosiphon pisum (Harris) on an artificial diet, and recorded survival, moulting, and honeydew excre-

tion. Despite their plant-dependent life style, aphids were independently rhythmic under light–dark conditions.

This first demonstration of diurnal aphid rhythms shows that aphids do not simply track the host plant’s

rhythmicity.
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Throughout latitudes and altitudes, day- and night-time tempera-

tures and their respective durations vary, and species are adapted to

make best use of the temporal niches via diurnal or nocturnal activ-

ity (Bennie et al. 2014). Diurnal rhythms can dictate whether species

meet, and can contribute to presence or absence of biotic inter-

actions (Stich and Lampert 1981, Fleury et al. 2000). Due to the

relevance of a correct timing, nearly all organisms examined so far

possess an endogenous mechanism called circadian clock (Moore-

Ede et al. 1982, but see Lu et al. 2010), and the circadian clock af-

fects all major physiological processes (Moore-Ede et al. 1982).

One remaining question is whether the clock is involved in sea-

sonal timing (phenology) via day length (photoperiod) measure-

ments (Bunning 1936). Supporters of clock involvement have

proposed two models, which describe how phase relations of clock

and environment (external coincidence, Pittendrigh and Minis

1964), or of multiple clocks (internal coincidence, Pittendrigh and

Minis 1972) could govern photoperiodism. Numerous studies in-

deed correlated clock gene expression with photoperiodism (Schultz

and Kay 2003), including in hemipterans (Ikeno et al. 2010), but

this correlation can be at least partially attributed to research bias in

favor of clock genes (Bradshaw and Holzapfel 2010). Hence, despite

accumulating correlative evidence, the debate is still not fully settled

(Danks 2005).

An alternative to clock involvement in photoperiodism is the

hour glass model (Garner and Allard 1920). In this model, steady,

clock-independent accumulation of a molecule triggers a response

upon reaching a threshold. Aphids played a prominent role in the

discussion of clock involvement in photoperiodism, as they were

seen as first evidence for such an hour glass model (Lees 1973).

Careful re-evaluation contradicted this view, and suggested that

aphid photoperiodism depends on the circadian clock (Hardie and

Vaz Nunes 2001). The clock was proposed to damp quickly, i.e.,

disappear within few cycles. However, very little empirical data are

available about damping or other properties of the aphid clock itself,

let alone studies on how the clock affects aphid behavior. Before set-

tling the argument on circadian clock involvement in photoperiod-

ism, the first logical question is whether aphids have a diurnal

rhythm driven by an endogenous clock.

The lack of research on diurnal rhythms of aphids may in part be

explained by the high degree of food specialization, which compli-

cates studies of an independent rhythm. Aphids are known for their

remarkable phenotypic plasticity, and asexual forms (morphs) can

bear sexual offspring if induced by a short photoperiod (Lees 1973).

Because the sexual offspring is less dependent on host plants, experi-

ments with various aphid species have been conducted on such sex-

ual morphs (Eisenbach and Mittler 1980, Thieme and Dixon 1996).

However, if the ultimate aim is the link of circadian clock and

photoperiodism, tests on long-day (asexual) aphids are needed.

While some experiments have been also conducted on asexual

morphs, the aphids were always held on living plants (Gomez et al.
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2006, Cortes et al. 2010, Taylor et al. 2012), so the changing C:N

ratio of the plant might have entrained the aphid, i.e., food has reset

the circadian clock. Only one study has elegantly disentangled plant

and aphid clocks by subjecting both to different light–dark rhythms

(Hodgson and Lane 1981), but such a protocol cannot be extended

to constant darkness. Instead of relying on different morphs or on

plants, we chose to raise aphids independent of their host plants.

Even though artificial diets have been developed for the pea aphid

(Febvay et al. 1988), they have never been used to resolve this prob-

lem. We thus asked whether aphids have a diurnal rhythm by meas-

uring honeydew excretion and moult on an artificial diet, as these

phenomena likely represent clock output.

Materials and Methods

Aphids are relatively immobile, so monitoring locomotor activity is

currently not possible. We therefore decided to quantify feeding and

moulting. To do so, we counted exuviae and honeydew drops,

which are the excess sugar excreted after feeding from the plant sap.

Although artificial diets are well-suited to monitor activity

uncoupled of the host, there is also a considerable limitation:

Artificial diets deteriorate within 2–3 d (van Emden and Harrington

2007), so the diet has to be renewed within <2 d. Furthermore, even

with regularly renewed diet, food intake is reduced on artificial diets

(van Emden and Harrington 2007), and we noticed a relatively low

amount of honeydew production of about 1 drop per aphid and day,

requiring large sampling intervals.

These problems prompted us to design an admittedly complex

experiment (see also Fig. 1). Aphids were held continuously under a

photoperiod of 16:8 (L:D) h to avoid induction of sexual morphs.

We renewed the diet every 1.5 d, either shortly after lights-on, or

shortly before lights-off, and counted accumulated honeydew and

exuviae. Thus, the aphids experienced either one night (16 h light-

þ8 h darknessþ12 h light¼28:8 L:D, treatment “L”) or two nights

(4 Lþ8Dþ16 Lþ8D¼20:16 L:D, treatment “D”) between meas-

urements. This feeding protocol also avoided entrainment (syn-

chronization of the clock) with the feeding rhythm, as food was

provided in the morning or evening in an alternating manner. To re-

duce the influence of any diurnal disturbance, we replicated the ex-

periment in another chamber, which was phase-shifted by 12 h. We

hence expected subsequent increases and decreases in activity with

opposing patterns in the two chambers (see also Fig. 1).

The ratio of the treatments L
D depends on the amount of honey-

dew produced during lights-on (x) and during lights-off (y):

L

D
¼ 28xþ 8y

20xþ 16y
(1)

Therefore, we expected the ratio of the two treatments to range

between 0.5 (x¼0, night active) and 1.4 (y¼0, day active), and to

be 1 if aphids prefer neither day nor night (x¼ y). We repeated the

measurements four times. We provided a holidic diet with 20% w/v

sucrose and defined amounts of amino acids, vitamins, and trace

metals. The diet is based on diet A0 by Febvay et al. (1988), but uses

10 mM nicotinic acid instead of nicotine amide; a full recipe can be

found in Supp. Table 1 (online only). We fed it to clone LL01, an

asexual green alfalfa biotype originally from the Lusignan area,

kindly provided by G. Febvay (INRA Lyon, France). Following a

technique by Mittler and Dadd (1963), aphids were held in 35- by

10-mm Petri dishes, which were covered with two stretched parafilm

M membranes with 250ml diet in between. Per chamber we placed

14 replicates of 30 newly born nymphs in Petri dishes. The parents

of the nymphs were light-entrained under a photoperiod of 16:8

(L:D) h (i.e., the circadian clock was synchronized with the light–

dark cycle), but reared on plants. We started the first measurement

period at 4 d age. Every 1.5 d (during lights-on in both chambers),

we placed surviving nymphs into new Petri dishes with new food

and counted the accumulated honeydew and exuviae. We counted

the number of honeydew drops but did not estimate the volumes

due to the low visibility and the small sizes; we noticed, however, no

trend in drop diameters, and variability in drop volumes can be con-

sidered low (Auclair 1958). The two climate chambers (Sanyo

MLR-H series) provided 18.1 6 0.9�C and 81.3 6 2.8 humidity and

a photoperiod of 16:8 (L:D) h at 19.7 6 0.7 klux.

Statistics were performed with R 3.1.1 (R Core Team 2014). We

applied a mixed-effects model including chamber, time, and their

interaction as factors, and Petri dish as random term. As we ex-

pected alternating slopes (Fig. 1), a significant interaction term with

reversing slopes would evidence rhythmicity. We corrected honey-

dew excretion for the number of surviving aphids. We additionally

corrected honeydew excretion for moulting aphids, which are not

expected to produce honeydew. This yielded the combined activity

estimate Drops
Survivors�Exuviae.

Results

Honeydew excretion was overall low, with one to three drops per

aphid per 1.5 d, but the nutrient uptake was sufficient for experi-

mental animals to develop into adults and to survive for 2 wk.

Survival declined over time (65–89% survival rates between meas-

urements), leaving on average 38% (11.4 6 0.4 aphids) at the fourth

measurement (see Supp. Fig. 1 [online only]). Under a photoperiod

of 16:8 (L:D) h, survival, moulting, and honeydew excretion indi-

vidually did not significantly alternate with changing treatments,

but the slopes of the combined activity estimate crossed significantly

(i.e., significant statistical interaction, Tables 1 and 2; Fig. 2). This

interaction conforms to our prediction of diurnal rhythmicity. In the

L treatments (with 28 h light in 36 h), the median of observed activ-

ity (drops per nonmoulting survivor) was 1.80 drops, 31% higher

than in the D treatments (with 20 h light in 36 h, 1.37 drops). The

ratio of L/D¼1.31 allows estimates on how active aphids were dur-

ing lights-on and during lights-off (x and y in eq. 1). For instance, if

aphids were purely day-active (x¼1, y¼0), one would expect activ-

ity for 28 h in the L treatment and for 20 h in the D treatment, so

that the ratio L/D between the treatments would be 28/20¼1.4, or

40% higher in the L treatment. Solving eq. (1) with L/D¼1.31

yields 1 y¼7.2 x. We conclude that aphids are seven times more ac-

tive during day than during night.

Discussion

The experiment is to our knowledge the first to measure aphid diur-

nal rhythms independent of host plants by feeding artificial diets.

Although independent diurnal rhythms have been observed in sexual

morphs, after photoperiodic induction (Eisenbach and Mittler 1980,

Thieme and Dixon 1996), in all studies on asexual morphs aphids

were reared on living plants (Gomez et al. 2006, Cortes et al. 2010,

Taylor et al. 2012). Aphids can be described as plant parasites (The

International Aphid Genomics Consortium 2010), so aphids might

well hitch-hike the plant rhythm instead of using the light–dark

cycle (LD). The present study indicates that this is not the case (evi-

denced by the statistical significant interaction term), and that

aphids have diurnal rhythms even on constant food sources.
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Common to all studies in various species is an activity peak dur-

ing day time, and our results show that this is generally also true for

the pea aphid. However, further experiments are needed to deter-

mine how the activity distributes over the course of the day.

Knowledge of the activity pattern of aphids has implications for pest

control, because it assists more specific treatment with insecticide in

circadian manner (Hooven et al. 2009). Furthermore, it is interesting

to know whether the plant modulates the aphid rhythmicity, be-

cause exploitation of diurnal changes in host receptivity and quality

can lead to coevolution among the circadian clocks (Goodspeed

et al. 2012, Martinez-Bakker and Helm 2015). Changes in diurnal

timing are also accompanied by changes in the abiotic conditions,

which aphid experience. For example, day-activity might be an

explanation of fitness constraints under short days (Joschinski

et al. 2015). Overall, our study lays the foundation for future

studies on aphid diurnal rhythms and the interaction with their

host plants.

We are well aware that the rhythm in diurnal behavior is no evi-

dence for circadian clock involvement yet, as it needs also continu-

ation (“free-runs”) under constant conditions (Moore-Ede et al.

1982). Future experiments need to test aphid rhythmicity under con-

stant darkness, and in particular need to quantify how the

Fig.1. Experimental setup. The experiments were conducted in parallel in two climate chambers. Both chambers were set to a continuous photoperiod of 16:8

(L:D) h but differ in phase. Over the first 36 h after start of the experiment (first dashed line, “feeding”) one chamber received 28 h of light (16Lþ 8Dþ 12 L, treat-

ment “L”), whereas the other received 20 h of light (4Lþ 8Dþ16Lþ 8D, treatment “D”). Accumulated honeydew and exuviae were counted at the end of the 36-h

period (dashed line). Measurements were repeated four times, so that the aphids in each chamber received alternating amounts of night time (8–16–8–16 in the

upper chamber). Accumulated honeydew and exuviae (activity) of the two chambers (circles and triangles) were expected to depend on treatment (bright vs.

dark), and hence to be in opposing directions in the two chambers.

Fig. 2. Honeydew excretion per nonmoulting aphid in changing day:night

ratios (see also Fig. 1). Colour coding is the same as in Fig. 1, i.e., aphids from

the two chambers (circles and triangles) that received the L treatment (28 h

light, 8 h darkness) are presented in yellow, whereas aphids in the D treat-

ment (20 h light, 16 h darkness) are presented in grey. Error bars indicate

SEM.

Table 1. ANOVA results

Response Factor df F P Significance

levela

Survival Chamber 1,26 1.40 0.25

Time 3,77 85.70 <0.0001 ***

Chamber:time 3,77 1.59 0.20

Moulting Chamber 1,26 1.19 0.29

Time 3,77 3.24 0.03 *

Chamber:time 3,77 1.77 0.16

Honeydew Chamber 1,26 0.08 0.78

Time 3,69 5.37 <0.01 **

Chamber:time 3,69 2.43 0.07 ‘

Activity Chamber 1,26 0.99 0.33

Time 1,69 1.27 0.29

Chamber:time 1,69 3.02 0.04 *

The three responses aphid survival, moulting, and honeydew excretion

were combined to one estimate that expresses activity as honeydew excretion

per nonmoulting survivor. We expected a significant interaction of chamber

and time (see main text).
a Significance levels: ***p< 0.001; **p< 0.01; *p< 0.05; ‘p< 0.1.
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oscillation of the clock damps out. On the one hand, studies suggest

an hour glass mechanism, i.e., no clock involvement, in aphids (Lees

1973); on the other hand, correlative evidence from other species

suggests that this clock mechanism is not the norm (e.g., Ikeno et al.

2010). These apparent differences could be united by a quickly

damping clock (Hardie and Vaz Nunes 2001), and a damped clock

might be exemplified by damping activity under constant darkness.

The molecular mechanism of the aphid clock has been investigated,

and some parts of the core clockwork (CRY and the PER/TIM feed-

back loop) are indeed undergoing accelerated changes (Cortes et al.

2010). Our current protocol, which requires feeding every 36 h to

maintain high honeydew excretion rates, does not yet allow working

under constant darkness, because feeding in darkness proved impos-

sible. Hopefully further advances in rearing methods will allow

studying aphid clock properties in depth. Yet, the demonstration of

independent diurnal behavior is a crucial first step in understanding

aphid clocks.

In conclusion, we showed that pea aphids produce honeydew

and moult during daytime, and maintain the rhythm independently

of host plants. We think that pea aphids are worth investigating for

the involvement of clock and photoperiodism in aphid physiology,

and our study with artificial diets are a first step in understanding its

mechanisms.

Supplementary Data

Supplementary data are available at Journal of Insect Science online.

Acknowledgments

We thank Gerard Febvay for information on diet preparation and providing

their aphid clone, and Barbara Helm for advice on the manuscript. Funding

was provided by the German Research Foundation (DFG), collaborative re-

search center SFB 1047 “Insect timing,” Projects A1 and C3. The funders had

no role in study design, data collection and analysis, decision to publish, or

preparation of the manuscript.

References Cited

Auclair, J. L. 1958. Honeydew excretion in the pea aphid, Acyrthosiphon

pisum (Harr.) (Homoptera: Aphididae). J. Insect Physiol. 2: 330–337.

Bennie, J. J., J. P. Duffy, R. Inger, and K. J. Gaston. 2014. Biogeography of

time partitioning in mammals. Proc. Natl. Acad. Sci. USA 111:

13727–13732.

Bradshaw, W. E., and C. M. Holzapfel. 2010. What season is it anyway?

Circadian tracking vs. photoperiodic anticipation in insects. J. Biol.

Rhythms 25: 155–165.

Bunning, E. 1936. Die endogene Tagesrhythmik als Grundlage der photoper-

iodischen Reaktion. Berichte der Deutschen Botanischen Gesellschaft 54:

590–607.

Cortes, T., B. Ortiz-Rivas, and D. Martinez-Torres. 2010. Identification and

characterization of circadian clock genes in the pea aphid Acyrthosiphon

pisum. Insect Mol. Biol. 19: 123–139.

Danks, H. V. 2005. How similar are daily and seasonal biological clocks? J.

Insect Physiol. 51: 609–619.

Eisenbach, J., and T. E. Mittler. 1980. An aphid circadian rhythm: Factors af-

fecting the release of sex pheromone by oviparae of the greenbug,

Schizaphis graminum. J. Insect Physiol. 26: 511–515.

Febvay, G., B. Delobel, and Y. Rahb�e. 1988. Influence of the amino acid bal-

ance on the improvement of an artificial diet for a biotype of Acyrthosiphon

pisum (Homoptera: Aphididae). Can. J. Zool. 66: 2449–2453.

Fleury, F., R. Allemand, F. Vavre, P. Fouillet, and M. Boul�etreau. 2000.

Adaptive significance of a circadian clock: Temporal segregation of activ-

ities reduces intrinsic competitive inferiority in Drosophila parasitoids.

Proc. R. Soc. Lond., Ser. B: Biol. Sci. 267: 1005–1010.

Garner, W. W., and H. A. Allard. 1920. Effect of the relative length of day and

night and other factors of the environment on growth and reproduction in

plants. J. Agric. Res. 18: 553–606.

Gomez, S. K., D. M. Oosterhuis, D. L. Hendrix, D. R. Johnson, and D. C.

Steinkraus. 2006. Diurnal pattern of aphid feeding and its effect on cotton

leaf physiology. Environ. Exp. Bot. 55: 77–86.

Goodspeed, D., E. W. Chehab, A. Min-Venditti, J. Braam, and M. F.

Covington. 2012. Arabidopsis synchronizes jasmonate-mediated defense

with insect circadian behavior. Proc. Natl. Acad. Sci. 109: 4674–4677.

Hardie, J., and M. Vaz Nunes. 2001. Aphid photoperiodic clocks. J. Insect

Physiol. 47: 821–832.

Hodgson, C. J., and I. R. Lane. 1981. Some effects of photoperiod on larvi-

position and fresh weight-gain in Myzus persicae. Physiol. Entomol. 6:

21–25.

Hooven, L. A., K. A. Sherman, S. Butcher, and J. M. Giebultowicz. 2009.

Does the clock make the poison? Circadian variation in response to pesti-

cides. PLoS ONE 4: e6469.

Ikeno, T., S. Tanaka, H. Numata, and S. Goto. 2010. Photoperiodic dia-

pause under the control of circadian clock genes in an insect. BMC Biol. 8:

116.

Joschinski, J., T. Hovestadt, and J. Krauss. 2015. Coping with shorter days:

Do phenology shifts constrain aphid fitness? PeerJ 3: e1103.

Lees, A. D. 1973. Photoperiodic time measurement in the aphid Megoura

viciae. J. Insect Physiol. 19: 2279–2316.

Lu, W. Q., Q. J. Meng, N. J. C. Tyler, K. A. Stokkan, and A. S. I. Loudon.

2010. A circadian clock is not required in an arctic mammal. Curr. Biol. 20:

533–537.

Martinez-Bakker, M., and B. Helm. 2015. The influence of biological rhythms

on host–parasite interactions. Trends Ecol. Evol. 30: 314–326.

Mittler, T. E., and R. H. Dadd. 1963. Studies on the artificial feeding of the

aphid Myzus persicae (Sulzer)—I. Relative uptake of water and sucrose solu-

tions. J. Insect Physiol. 9: 623–645.

Table 2. Means (6SEM) of estimates for diurnal rhythms

Response Treatment First measurement Second measurement Third measurement Fourth measurement

Survival L 25.79 (61.45) 21.57 (61.56) 12.93 (60.90) 12.64 (60.95)

D 26.85 (61.51) 19.86 (61.06) 18.07 (61.26) 10.14 (60.93)

Moulting L 11.93 (61.08) 6.57 (60.79) 6.00 (60.59) 5.79 (60.68)

D 10.31 (61.21) 5.79 (60.52) 6.57 (60.64) 3.64 (60.37)

Honeydew L 28.46 (63.91) 37.86 (62.95) 16.07 (62.95) 12.00 (61.57)

D 24.46 (63.02) 23.09 (61.73) 14.46 (61.51) 8.00 (61.23)

Activity L 2.44 (60.50) 2.69 (60.17) 2.77 (60.52) 1.68 (60.20)

D 1.50 (60.14) 1.84 (60.15) 1.39 (60.15) 1.39 (60.22)

Activity is the combined estimate of honeydew excretion per nonmoulting survivor. The four measurements were taken after 1.5, 3, 4.5, and 6 d, and corres-

pond to the dashed lines in Fig. 1. Treatment L corresponds to 28 h light and 8 h darkness, Treatment D corresponds to 20 h light and 16 h darkness as described

in Fig. 1 and in the main text.

4 Journal of Insect Science, 2016, Vol. 16, No. 1

Deleted Text: ours
Deleted Text: u
Deleted Text: We 
http://jinsectscience.oxfordjournals.org/lookup/suppl/doi:10.1093/jisesa/iew013/-/DC1


Moore-Ede, M. C., F. M. Sulzman, and C. A. Fuller. 1982. The clocks that

time us. Harvard University Press, Cambridge, MA.

Pittendrigh, C. S., and D. H. Minis. 1964. The entrainment of circadian oscil-

lations by light and their role as photoperiodic clocks. Am. Nat. 98:

261–294.

Pittendrigh, C. S., and D. H. Minis. 1972. Circadian systems: longevity as a

function of circadian resonance in Drosophila melanogaster. Proc. Natl.

Acad. Sci. USA 69: 1537–1539.

R Core Team. 2014. R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria.

Schultz, T. F., and S. A. Kay. 2003. Circadian clocks in daily and seasonal con-

trol of development. Science 301: 326–328.

Stich, H.-B., and W. Lampert. 1981. Predator evasion as an explanation of di-

urnal vertical migration by zooplankton. Nature 293: 396–398.

Taylor, S. H., W. E. Parker, and A. E. Douglas. 2012. Patterns in aphid honey-

dew production parallel diurnal shifts in phloem sap composition. Entomol.

Exp. Appl. 142: 121–129.

The International Aphid Genomics Consortium. 2010. Genome sequence of

the pea aphid Acyrthosiphon pisum. PLoS Biol. 8: e1000313.

Thieme, T., and A. F. G. Dixon. 1996. Mate recognition in the Aphis fabae

complex: Daily rhythm of release and specificity of sex pheromones.

Entomol. Exp. Appl. 79: 85–89.

Van Emden, H. F., and R. Harrington. 2007. Aphids as Crop Pests, Cabi,

Wallingford, United Kingdom.

Journal of Insect Science, 2016, Vol. 16, No. 1 5


	iew013-TF1
	iew013-TF2
	iew013-TF3

