
Julius-Maximilians-Universität Würzburg
Institut für Informatik

Lehrstuhl für Kommunikationsnetze
Prof. Dr.-Ing. P. Tran-Gia

On Performance Assessment of Control
Mechanisms and Virtual Components in

SDN-based Networks

Anh Nguyen-Ngoc

Würzburger Beiträge zur
Leistungsbewertung Verteilter Systeme

Bericht 2/18

Würzburger Beiträge zur
Leistungsbewertung Verteilter Systeme

Herausgeber

Prof. Dr.-Ing. P. Tran-Gia

Universität Würzburg

Institut für Informatik

Lehrstuhl für Kommunikationsnetze

Am Hubland

D-97074 Würzburg

Tel.: +49-931-31-86630

Fax.: +49-931-31-86632

email: trangia@informatik.uni-wuerzburg.de

Satz

Reproduktionsfähige Vorlage des Autors.

Gesetzt in LATEX Linux Libertine 10pt.

ISSN 1432-8801

On Performance Assessment of Control
Mechanisms and Virtual Components in

SDN-based Networks

Dissertation zur Erlangung des

naturwissenschaftlichen Doktorgrades

der Julius–Maximilians–Universität Würzburg

vorgelegt von

Anh Nguyen-Ngoc

aus

Würzburg

Würzburg 2018

Eingereicht am: 20.08.2018

bei der Fakultät für Mathematik und Informatik

1. Gutachter: Prof. Dr.-Ing. Phuoc Tran-Gia

2. Gutachter: Prof. Dr. Tobias Hossfeld

Tag der mündlichen Prüfung: 10.10.2018

Acknowledgements

I would like to express my great appreciation to those who have supported me

and contributed to this dissertation as well as encouraged me during the whole

time of my PhD studies and even before that.

First of all, my heartfelt thanks go to Prof. Dr.-Ing. Phuoc Tran-Gia, my super-

visor, for providing me an opportunity that I can say "turn my life in a direction

that I have never imagined", by accepting me as his PhD student. I have been

extremely lucky to become a member of his Chair. Furthermore, he has given me

the opportunity to cooperate with partners from both industrial companies and

academic universities in several projects. I thank him for keeping my motiva-

tion strong to complete my dissertation with great support and kind advice. His

valuable suggestions, constructive comments, and helpful guideline encourage

me to try more day by day. I am genuinely grateful to him for placing his trust

in me and sharing his exceptional scienti�c knowledge as well as his admirable

qualities.

I would also like to extend my thanks to Prof. Dr. Tobias Hoßfeld for his will-

ingness to become the second reviewer of my dissertation. His important sug-

gestions and valuable feedback in very friendly discussions help me immensely

improve the content of this work.

I wish to thank Prof. Dr. Reiner Kolla for his agreement to join the disserta-

tion committee. He created a delightful atmosphere for the disputation. I truly

appreciate his time and assistance.

I also very grateful to Prof. Dr. Harald Wehnes and Mrs. Wehnes for their

kindness and encouragement when I was in Würzburg for the �rst time and

during these last four years.

i

Acknowledgements

Many thanks to Ms. Alison Wichmann for taking care of an enormous number

of my documents and administrative tasks. I have been received support from

her for the enrollment of my study, paperwork related to business trips, and

much helpful advice all the time.

I greatly appreciate the support of Prof. Dr. Thomas Zinner, my former group

leader, for inspiring me to pursue the objectives of this dissertation. Without his

support, inspiration, mentoring, peer pressure, and encouragement, this work

would not have �nished in time. I have learned and grown a lot while working

with him, not only technical knowledge but also other skills.

Special thanks to Stanislav Lange, my group leader, for his enthusiastic sup-

port, availability and excellent suggestions. I really appreciate his willingness to

discuss whenever I need it. I can not thank him enough for everything that he

has done for making this work a possible one.

I have great pleasure of working with Nicholas Gray, Alexej Grigorjew, and

Stefan Geißler in the fantastic NGN team. Thank you all for great support, in-

teresting discussions, and positive feedback during my time here, especially in

the writing phase of my dissertation.

My sincere thanks also go to Lam Dinh-Xuan, who took care of me when

I had an accident with my leg last year. His encouragement and sharing have

inspired me a lot to �nish this work. Thank him also for many precious lessons

from life that I have learned from him.

I very much appreciate the support of Dr. Florian Wamser for invaluable ad-

vice and useful experiences for the presentation of the dissertation. Besides, ev-

ery conversation that related to football with him is absolutely fantastic.

I am hugely appreciative to all of my colleagues in the Chair of Communi-

cation Networks (Lehrstuhl für Informatik III), for giving me a chance to work

in a scienti�c environment with pleasurable and friendly working atmosphere.

Hence, I want to say thank to Dr. Matthias Hirth, Frank Loh, Kathrin Borchert,

Anika Schwind, Susanna Schwarzmann, Christopher Metter, Dr. Florian Met-

zger, and Christian Moldovan for their enthusiasms and support, not only at

work but also in the life outside the o�ce.

ii

Acknowledgements

I also truly thank former colleagues, Dr. David Hock, Dr. Ste�en Gerbert, Dr.

Michael Seufert, Dr. Valentin Burger, and Dr. Christian Schwarz for our sharing

of sports passion, interesting discussions, and very nice time when we work

together at the Chair.

I wish to thank Shpend Berani and Simon Ra�eck for their hard work while

doing their bachelor theses. They contribute a signi�cant part for my research.

Last but not least, I want to especially thank my family, my friends, my pro-

fessors at Hanoi University of Science and technology. Although they are not

here with me in Germany, their encouragement is a tremendous inspiration to

me throughout all my studies.

I could not have completed my research without the support of all these won-

derful people. Thank you all!

iii

Contents

1 Introduction 1
1.1 Scienti�c Contribution . 5

1.2 Outline of Thesis . 8

2 Isolation of Virtual Networks in the context of SDN 11
2.1 Background and Related Work 12

2.1.1 Software De�ned Networking 13

2.1.2 Tra�c Shaping and Tra�c Policing 16

2.1.3 IEEE 802.3X Ethernet Flow Control 17

2.1.4 Related Work . 20

2.2 Method Used . 22

2.3 Evaluation results . 26

2.4 Proof-of-Concept Implementation of Video Control Plane in the

Case of DASH . 35

2.4.1 Implementation of Video Control Plane 36

2.4.2 Performance of Network-assisted in VCP 40

2.5 Lessons Learned . 46

3 Impact of the SDN Control Plane on the Data Plane Performance 49
3.1 Background and Related Work 51

3.1.1 Operation of the SDN Control Plane 51

3.1.2 Methods of Sending FlowMod Messages 57

3.1.3 Performance Evaluation of SDN Components 58

3.2 Proactive Flow Installation Evaluation 61

3.2.1 Experimental Setup . 61

v

Contents

3.2.2 Comparison of Switch Behavior 65

3.2.3 Accuracy Assessment of Measurement Mechanisms . . 67

3.2.4 Correlation Analysis of Measurement Mechanisms . . . 70

3.3 In�uence of Control Plane Delay on Proactive Flow Installation 71

3.3.1 Sensitivity of Switches towards Control Plane Delay . . 73

3.3.2 Impact of Controller Implementation 77

3.4 Lessons Learned . 79

4 Flow Monitoring Approaches in SDN Networks 83
4.1 Background and Related Work 86

4.1.1 Network Monitoring Approaches 86

4.1.2 Monitoring an SDN Network 89

4.1.3 Related Work . 93

4.2 Performance of Adaptive Flow Monitoring in the ONOS Controller 96

4.2.1 Adaptive Flow Monitoring Algorithm 96

4.2.2 Evaluation Results . 98

4.3 Selective Flow Monitoring . 101

4.3.1 Measurement Setup . 102

4.3.2 Selective Flow Monitoring Mechanism 103

4.3.3 Performance Evaluation of SFM 108

4.4 Lessons Learned . 114

5 Conclusion 117

Acronyms 125

Bibliography and References 129

vi

1 Introduction

In recent years, alongside the development of science and technology, computer

networks have gained an important role in human life and changed the ways

that people connect, entertain, or study. Social networks like Facebook or Twitter

connect people globally. We exchange messages by using Over The Top (OTT)

applications much more often than using Short Message Service (SMS) in mo-

bile networks. Smart TVs connected to the Internet provide on-demand media

instead of watching planned television programs and Internet links replace the

transmission over radio waves. eLearning allows everyone everywhere to gain

knowledge in many �elds at any time with e�ective cost. Those are exemplary

illustrations of the signi�cant impact of computer networks on our lives. Also,

this variety of user services and applications creates the diversity of tra�c pat-

terns in the networks and an enormous amount of data. Furthermore, each ap-

plication has speci�c requirements to provide the best quality to the users. To

this end, network infrastructures need to support these requirements promptly

and stably. Consequently, an e�ective management approach and a stable sys-

tem are required to adapt to a sharp rise in the volume of exchanged information

as well as the requirements of applications.

However, the underlying network has su�ered from limited innovation over

the past decades in both management and con�guration aspects. The legacy

networks are mainly implemented in dedicated appliances, most functionalities

within an appliance are implemented in dedicated hardware. This leads to sev-

eral limitations that need to be taken into account. For example, adding a new

device (switch, router, �rewall) is time-consuming and is prone to errors. The

reason is that con�gurational tasks have to be done separately, device-by-device,

1

1 Introduction

with both new and existing devices. This also makes it di�cult to deploy new

features such as routing algorithms, tra�c engineering, or monitoring mecha-

nisms without interrupting the operation of the whole network. Also, a variety

of equipment in the system creates multi-vendor environments. This requires

network administrators to have extensive knowledge of all devices from di�er-

ent vendors. Since each vendor has speci�c commands and syntax to execute the

same function, it makes the scalability of networks more complex when using

more proprietary equipment. Automatic con�guration for �exibility demands

of applications and services also are challenged due to this heterogeneous.

To overcome those issues, virtualization in computer networks has been more

and more important in research. First, compute virtualization was introduced

with simple hypervisors running on traditional servers and sharing resources

such as CPU or RAM. Then, storage virtualization brought the ability to store

data in the Internet without depending on the underlying hardware. On the next

step, network functions were decoupled from proprietary hardware by using

Network Functions Virtualization (NFV). Routers, switches, or load balancers

can be replaced by a software instance on Commercial O�-The-Shelf (COTS)

hardware. Additionally, Software De�ned Networking (SDN) makes networks

programmable and is able to change the behavior of physical devices in net-

works. It can easily adjust the con�guration of devices or apply policies for traf-

�c �ows in the networks based on their characteristics to �exibly adapt chang-

ing needs. To accomplish this, the forwarding plane is separated from the central

control plane, which centrally manages and decides how tra�c passes through

the network. Furthermore, SDN promises the cooperation of di�erent vendors

when using a common protocol to exchange information within a multi-vendor

network. For example, OpenFlow-enabled switches can act as a layer 2 learning

switch, a router or a �rewall, depending on a script which is programmed by

a network engineer. Although the switches are produced by di�erent manufac-

turers, they support a common protocol (OpenFlow) that allows the devices to

be programmable and work together in a network and under a common control

entity.

2

This thesis focuses on SDN architecture and its performance to determine the

in�uence parameters on the operation of an SDN network.

In SDN networks, the separation between the control and data planes is one

of the most important principles and is depicted in Figure 1.1. This �gure pro-

vides a general view of an SDN network including connections between another

SDN network and legacy network via Westbound Application Programming In-
terface (API) and Eastbound API, respectively. While the information between

applications and SDN controller is exchanged through Northbound API, control

and management tasks are implemented from the controller to SDN switches

using Soundbound API. Decision making for packet forwarding is made by a

centralized controller.

Figure 1.1: Standard interfaces in an SDN network [11].

SDN provides several bene�ts in terms of network management, control, and

design. First, it is possible to automatically con�gure all network devices with

more consistency and �exibility than legacy networks. In particular, the central-

ized controller has a global view of the network and secure connections to the

3

1 Introduction

devices, which allows administrators to provision of networks quickly without

manual con�guration. Second, SDN enables the ability to optimize data �ows

in the network [12]. A �ow in SDN networks can be assigned multiple paths to

its destination. Therefore, the tra�c can be split across multiple nodes and has

backup paths in case of failure. As a virtualization approach, SDN programma-

bility brings opportunities to developers and network administrators to deploy

any desired application. Furthermore, new network function or speci�c policy

for packets can be tested in a part of the network, avoid interrupting the cur-

rent operation. Finally, operational costs, as well as hardware expenses can be

cost-e�ective while SDN replaces network function in the software instead of

buying specialized physical hardware. Moreover, SDN is vendor-independent,

hence, a variety of di�erent devices can interoperate without con�ict during

the operation of the network.

Nevertheless, SDN also comes along with challenges including security, con-

troller placement, performance, scalability, and reliability [13]. Before moving to

an SDN-based architecture, network administrators need to make sure that net-

work elements are capable of meeting their requirements with respect to those

criteria. In this thesis, we focus on the performance of SDN networks towards

a guideline for evaluating SDN performance before applying SDN paradigm.

The evaluation covers both hardware and software perspectives, all SDN com-

ponents, and the control mechanism of the SDN controller. First, we present a

deeper understanding of the operation of SDN elements such as the mechanism

of installing forwarding rules in SDN devices or approaches to monitor tra�c

�ows implemented by the SDN controller. Then, in�uence factors on the perfor-

mance of SDN networks including hardware devices and controller applications

are determined. Finally, based on the measurement results of those parameters

we show suggestions for decision making before utilizing SDN paradigm. It sup-

ports network administrators to decide not only appropriate forwarding hard-

ware but also the instance of controller software and applications to obtain an

e�cient and stable system.

4

1.1 Scienti�c Contribution

1.1 Scientific Contribution

This thesis aims at technical approaches to asses the performance of SDN net-

works covering all three layers of its architecture and components. First, cor-

responding in�uence parameters are determined. Second, the methodology for

evaluating those parameters together with the proposed method for manage-

ment and con�guration SDN elements are described. Finally, discussion of eval-

uation results, which are obtained by applying testbed setups or emulation, is

described.

Figure 1.2: Contribution of this work as a classi�cation of the research studies con-
ducted by the author.

Figure 1.2 provides an overview of the contribution of this monograph with

relevant publications. It covers di�erent research areas and methods that have

been focused on and used by the author during the course of this thesis. While

the horizontal axis shows speci�c related areas of research, the implemented

method is displayed on the vertical axis. Furthermore, di�erent colors represent

the contribution of the publication in particular chapter. Details of those areas

are presented as follows.

The �rst part covers the area of network architecture. In this part, design

5

1 Introduction

of network-assisted approaches for video streaming called Video Control Plane

(VCP) is presented. In order to obtain a dynamic adaptation of bandwidth for

corresponding video resolution to optimize Quality of Experience (QoE), the

interaction between video and network is required. This interaction is imple-

mented by applying the SDN paradigm. On the one hand, we developed an API

that allows programming SDN switches to keep track on network state and re-

port to the SDN controller the information of video slices. The API contributes in

threefold. First, using this API, the controller can add, remove, or con�gure dy-

namically virtual queues on network interfaces in a switch. Second, it provides

the communication with both video server and video clients, hence, informa-

tion like video bitrate or adaptation algorithms in the client are collected for

management purposes. Finally, based on this API, the available bandwidth of

speci�c video stream is allocated in an appropriate queue. On the other hand,

we introduced an application that triggers control mechanisms such as quality

adaptation, �ow prioritization or bandwidth reservation for each video slice. It

is shown that VCP strategies provide remarkable improvements in term of video

quality fairness compared to the case in which VCP is disabled.

The second part focuses on ability to manage network resources and to guide

tra�c in the network depending on network state. The VCP mentioned above is

also an example of researches in network management �ied. Besides, we present

the mechanisms that �ows are monitored in SDN controller: adaptive and selec-
tive approaches. Our �ndings reveal that on the one hand, the adaptive approach,

which monitors �ows based on their lifetime, leads to high controller’s resources

usage and requires all �ows to send their information. On the other hand, the se-
lective approach allows querying particular �ows as well as reduces the overload

at the controller. Finally, the installation time of rules in SDN devices is inves-

tigated. To this end, we investigate the impact of delays between the control

and data plane on the processing time of FlowMod messages, which are used

to install forwarding rules. The investigation with di�erent SDN switches with

several measurement tools is performed. It is shown that each switch has its

own behavior with di�erent duration in which the controller and switch are in

6

1.1 Scienti�c Contribution

a synchronized state. Especially, a switch might inform the controller before it

�nishes installing all rules. These �ndings can help administrators either decide

the appropriate device or incorporate the information to increase the reliability

of the information exchange in the network. Further, the evaluation highlights

software modules, which can be deployed in di�erent controllers, gives a simi-

lar accuracy level in comparison with a commercial device when measuring the

processing time. Therefore, such modules can be used as cost-e�ective approach

and easily be obtained by similar measurements to evaluate a switch before ac-

tually deploying it in a network.

In the �nal part, the performance of individual elements in SDN networks is

presented. On the data plane, the in�uence indicators on the isolation between

virtual networks when sharing the same physical resource is identi�ed. The

isolation is typically performed by con�guring bu�ers, rate limits, and queue-

ing disciplines on incoming or outgoing interfaces. This part aims to addresses

the following questions, e.g., how the isolation is implemented in SDN environ-

ment and to which extend the isolation is realized in state-of-the-art forwarding

hardware. Hence, we study the isolation by implementing an investigation with

OpenFlow switches in terms of packet loss in a network when a congestion oc-

curs. Our evaluation highlights that a violation of the isolation between virtual

networks is possible. Besides, the overall load on the outgoing switch port, the

con�gured rate guarantees per virtual network also have a signi�cant impact

on the number of lost packets due to the violation. Nevertheless, with a spe-

ci�c combination of parameters and switch, the isolation is obtained properly.

On the control plane, we con�rm that the implementation details of the SDN

controller also impacts the exchanged messages processing performance due to

sender-side behavior. Furthermore, a benchmarking tool for SDN controller is

deployed to evaluate the performance of an SDN controller in speci�c criteria.

For example, the time that the controller needs to discovery di�erent types of

network topologies, how fast it reacts to a change in the network, or how long it

takes to set a reactive path into switches. These guidelines can be used by either

an administrator to select appropriate devices for his network or a controller

7

1 Introduction

developers to maximize compatibility and reliability of SDN components.

1.2 Outline of Thesis

This thesis consists of 3 main chapters which cover all components on the ver-

tical view of SDN architecture. At the beginning of each chapter, a short intro-

duction posing corresponding research questions is presented. Next, technical

background information and related works regarding the topics are provided.

Then, methodology to address the research question as well as the details of

relevant evaluation are illustrated. Finally, each chapter ends with summarized

lessons learned. These chapters are respectively introduced corresponding to

the bottom-up study of the SDN architecture as visualized in Figure 1.3.

Figure 1.3: Contents of the Thesis.

The next chapter focuses on the data plane with virtual networks in SDN

environment and isolation between them. A general approach is studied to in-

vestigate the bandwidth guarantee while several networks share the same phys-

ical resource. Afterward, an implementation in speci�c SDN hardware is carried

8

1.2 Outline of Thesis

out to probe to which extend the isolation is realized in state-of-the-art hard-

ware as well as whether congestion within one virtual network may a�ect the

throughput performance of another. In addition, a proof-of-concept is given at

the second half of Chapter 2. It leverages the previous investigation method in

order to decide an appropriate OpenFlow switch for exchanging video streams

in Dynamic Adaptive Streaming over HTTP (DASH) without in�uence between

videos. Then, the design of network-assisted approaches, which perform by

adapting network state according to video quality, is drawn.

In Chapter 3 the exchange information between SDN control and data planes

is studied. To this end, an OpenFlow message which is used to install Open-

Flow rule in switches is examined. In particular, the processing times of this

message in di�erent combinations of SDN controller instances and switches

are presented to determine the impact of the SDN control plane on the data

plane performance. The �rst part shows measurements which indicate how fast

a switch installs �ows when directly connects to a controller without network

delay. Then, delays between the controller and the switches are emulated to

provide an insight into the e�ect of control plane delays on the data plane �ow

installation. Moreover, we derive guidelines for choosing OpenFlow switches or

controller instances for network administrator in term of �ow installation time.

The application layer on top an SDN controller is investigated in Chapter 4

by comparisons between di�erent �ow monitoring approaches. First, Adaptive

Flow Monitoring in ONOS controller, which is based on the lifetime of �ows

to decide relevant polling intervals, is implemented and compared to standard

polling method. Then, an approach that relies on characteristics of �ows and

allows for �exible select speci�c �ows to query their information is analyzed.

Furthermore, we consider resources consumption of an SDN controller when

applying the Selective Flow Monitoring as well as determining the in�uence

parameters on �ow monitoring.

Finally, Chapter 5 summarizes the presented work and concludes the major

contributions.

9

2 Isolation of Virtual Networks in

the context of SDN

In computer networks, when tra�c �ows are forwarded across a network,

they simultaneously use network resources, such as link capacity and hardware

equipment. In order to utilize these shared resources more e�ectively, Network

Virtualization (NV) has been developed over the last decade. NV can be de�ned

as "the sharing of network resources through the abstraction and isolation of

network functionalities of the physical hardware" [14]. Since virtual networks

share the same resources, in some circumstances, a network has to avoid the in-

terference from others networks. For example, a speci�c type of tra�c requires

high throughput (video streaming, video conference, gaming); special policies

applying for an individual network to achieve the privacy requirements; or a

guaranteed amount of bandwidth of this network needs to be preserved to en-

sure Quality of Service (QoS). Therefore, it is important to identify virtual net-

works and isolate each network.

In legacy networks, Virtual LAN (VLAN) and Virtual Private Network (VPN)

identify virtual networks through an ID (VLAN ID, VPN ID), then isolate the

tra�c between virtual networks by grouping computers into individual broad-

cast domains. On the other hand, Software De�ned Networking (SDN), which is

a state-of-the-art network technology, de�nes virtual networks based on �ow-

level. For instance, a network can be identi�ed based on particular character-

istics of the tra�c, such as protocols, source/destination IP, MAC addresses, or

application ports. In addition, SDN provides more �exible functions than VLAN

and VPN, i.e., the �exible extensibility of networks and the e�ective programma-

11

2 Isolation of Virtual Networks in the context of SDN

bility of the behavior of network devices through a central controller. However,

it is not clear to which extent virtualized networks are isolated against each

other in the context of SDN. For instance, how can the fairness among tra�c

�ows in virtual networks be implemented and obtained as well as may a virtual

network be a�ected by another due to congestion in one of them? In particular,

the impact of several parameters like the speci�c con�guration, the duration

of the congestion, or the intensity of the overload in one virtual network may

have an impact on the resource isolation and on the throughput of other vir-

tual networks. Hence, this chapter describes a detailed investigation of isolation

capabilities in a scenario while are multiple virtual networks sharing the same

egress port of an SDN switch. This allows for evaluation of degree of the isola-

tion between virtual networks, especially focusing on the granted bandwidth of

a network.

The content of this chapter is based on [1, 2] and is organized as follows.

Section 2.1 introduces an overview of SDN and related work on the isolation

between virtual networks, as well as two popular techniques that are used to

ensure the granted bandwidth of a virtual network. Then, a study regarding

the isolation in SDN environments, which discusses the extent of the isolation

between virtual networks is realized in state-of-the-art hardware, is presented in

Section 2.3. Afterwards, a speci�c use case with regards to the isolation between

video streaming slices for Dynamic Adaptive Streaming over HTTP (DASH), is

provided in Section 2.4. Finally, Section 2.5 describes the lessons learned on this

topic.

2.1 Background and Related Work

This section presents the technical background and highlights the relevant

works with regards to the isolation between virtual networks. Among these,

Section 2.1.1 focuses on the concept of SDN. Then, details of tra�c shaping and

tra�c policing to achieve a bandwidth limitation are presented in Section 2.1.2.

Afterwards, an overview of the IEEE 802.3X �ow control mechanism is described

12

2.1 Background and Related Work

in Section 2.1.3. Finally, Section 2.1.4 introduces previous research regarding the

virtual networks’ isolation issues.

2.1.1 So�ware Defined Networking

In the following, basic principles of Software De�ned Networking (SDN) are

introduced, then an overview of the SDN architecture is given.

(a) Traditional network device architecture. (b) OpenFlow-bases device architecture.

Figure 2.1: Comparison between the architecture of a traditional network device
and an OpenFlow-based device. [15]

SDN Principles. In [11], basic principles of SDN are outlined. The �rst princi-

ple of SDN is the separation of control and data plane, which is a signi�cant dif-

ference in comparison to traditional networks (or non-SDN networks). In tradi-

tional networks, the architecture of a typical forwarding device consists of three

main components as shown in Figure 2.1a. First, the Management Plane provides

methods to access and con�gure the device by using Simple Network Manage-

ment Protocol (SNMP), Terminal Network (Telnet), or Secure Shell (SSH). Sec-

ond, the Data Plane refers to packet forwarding based on information in a for-

warding table or a Forwarding Information Base (FIB). Finally, the Control Plane
determines how packets should be forwarded through routing protocols like

Open Shortest Path First (OSPF) or Routing Information Protocol (RIP). All three

components are located in the same physical hardware, meaning every time a

13

2 Isolation of Virtual Networks in the context of SDN

new rule is added or changed, all participating devices have to be con�gured the

same rule individually.

In contrast, SDN allows an administrator to con�gure the devices more �exi-

bly by decoupling the control plane from the data plane and moving it to an en-

tity called the SDN Controller, as depicted in Figure 3.8b. While the data planes

are still implemented at every switch, the control planes are centralized at a

dedicated machine. It indicates the second principle - logically centralized con-
troller, which provides a more e�ective way to interact and con�gure network

devices. The SDN Controller is a software platform and represents the Control

Plane in the traditional network devices with the similar functions as mentioned

above. The communication between those planes is implemented by using con-

trol protocols like OpenFlow [16]. OpenFlow is an example for the principle open
interfaces of SDN, which implies the �exibility and adaptability development of

software and needs to be public and open to community de�nition. Morover,

this principle provides the ability of equipments from di�erent vendors to in-

teroperate.

Another key principle of SDN is the programmability that allows not only

the behavior of network devices but also the operation of the whole network

can be programmed as desired. For example, depending on what the controller

demands, the device can act as a layer 2 switch, a router applying for layer 3

tra�c, as well as the automatic gathering network statistics via scripts without

the interaction via Command Line Interface (CLI) or SNMP can be implemented.

SDN Architecture. The aforementioned separation between the control and

data plane in SDN creates the 3-layer architecture as Figure 2.2 illustrates. The

lowest layer is the infrastructure layer, or the data plane, which consist of in-

terconnected forwarding devices. Such devices contain Flow Tables, which have

information of matched �elds, counters and instructions for every �ow in order

to forward packets, instead of FIB in legacy switches.

The middle layer is the control layer that communicates with the data plane

layer through a standardized interface, also called the southbound interface. In

14

2.1 Background and Related Work

Figure 2.2: SDN architecture. [17]

order to program and manage the forwarding devices, control protocols like

Open�ow [16] or ForCES [18] are used. In this thesis, OpenFlow, which is stan-

dardized by the Open Networking Foundation (ONF)
1

, is investigate since the

used devices support this protocol. Beside the big amount of open source con-

trollers [19], there are also many commercial controllers, which are developed

by vendors like Cisco, HP, IBM, VMWare in order to optimize the operation of

vendor hardwares and their own controllers.

At the top is the application layer running network applications. This layer

provides network features, i.e. routing strategies, security and manageability.

The northbound interface refers to the interface between software applications

and the control layer. Furthermore, this layer can have a global view of the net-

work and use that information to deploy appropriate instruction to the con-

trol layer. The applications use an API such as Representational State Transfer

(REST) to exchange the information with the control plane. For example, an ap-

plication might use REST APIs to send an HTTP GET/PUT/DELETE message to

1https://www.opennetworking.org/

15

https://www.opennetworking.org/

2 Isolation of Virtual Networks in the context of SDN

the SDN controller, so it can execute management or con�guration tasks, e.g.,

collecting statistics information, �ow insertions or �ow removals, respectively.

2.1.2 Tra�ic Shaping and Tra�ic Policing

When a customer signs a contract with an Internet Service Provider (ISP), there

are several terms that are described in a Service Level Agreement (SLA). Basi-

cally, the SLA is a combination of commitments between service providers and

their customers to satisfy one or several requirements for the services that are

used by the customers. In addition to the utilization of a connection, SLA indi-

cates a bandwidth that the customer desires, e.g., a connection having a max-

imum bandwidth of 100 Mbps and a minimum rate at 30 Mbps. However, the

link from an ISP to the customer’s location is normally a high-speed �ber con-

nection and the capacity might be up to Gigabits per second that can contains

multiple 100 Mps lines. In addition, multiple users can also share the same con-

nection from the ISP with di�erent applications. To use the transmission link

e�ectively, there are two techniques are applied to restrict the bitrate of a phys-

ical connection to or to limit tra�c rate in order to avoid exceeding bandwidth,

tra�c policing and tra�c shaping, respectively.

Figure 2.3 illustrates the main di�erence between these techniques when the

tra�c reaches a bandwidth threshold. On the one hand, Tra�c Policing either

drops or re-marks packets that exceed the committed rate. These tagged packets

can be eliminated if congestion occurs. Hence, the shape of the output band-

width appears as a saw-tooth as shown in Figure 2.3a.

On the other hand, Tra�c Shaping is known as a tra�c conditioning tool that

allows packets to be sent at a con�gured speed. To ensure that the transmis-

sion rate does not exceed the de�ned rate, Tra�c Shaping reduces the speed

by retaining the additional packets in queues and delaying them for later trans-

mission. Consequently, the shape of the output bandwidth is a smooth line, as

shown on the right side of Figure 2.3b.

The other di�erences between Tra�c Policing and Tra�c Shaping are listed

16

2.1 Background and Related Work

(a) Tra�c Policing.

(b) Tra�c Shaping.

Figure 2.3: Tra�c Policing vs. Tra�c Shaping. [20]

in Table 2.1. While Tra�c Policing is usually implemented on the provider side

in order to limit access to resources when using a part of a high-speed link, or

limit the tra�c of certain application. Tra�c Shaping is mostly performed on the

customer side to slow the tra�c rate and avoid exceeding the tra�c which is in

compliance with the SLAs. In this chapter, Tra�c Shaping is evaluated on the

egress interface by means of measurements on di�erent OpenFlow switches in

order to investigate whether a limited rate of a virtual network may be a�ected

by the throughput performance of another virtual network when congestion

occurs.

2.1.3 IEEE 802.3X Ethernet Flow Control

An impact of the IEEE 802.3X Ethernet �ow control [21] on the isolation be-

tween VNs is also taken into account. IEEE 802.3X is a mechanism allowing a

17

2 Isolation of Virtual Networks in the context of SDN

Table 2.1: Comparison between tra�c policing and tra�c shaping [20]
Criteria Tra�c Policing Tra�c Shaping

Objective

Drop (or remark)

excess packets above

the committed rates

Bu�er and queue

excess packets above

the committed rates

Token Refresh Rate

Continuous based on

formula: 1 / committed

information rate

Incremented at the

start of a time interval.

Applicable on

Inbound
Yes No

Applicable on

Outbound
Yes Yes

Bursts
Propagates bursts,

does no smoothing

Controls bursts by

smoothing the output

rate

Advantages

Controls the output

rate through packet

drops. Avoids delays

due to queuing

Typically avoids

retransmissions due to

dropped packets

Disadvantages

Drops excess packets,

throttling TCP window

sizes and reducing the

overall output rate of

a�ected tra�c streams

Can introduce delay

due to queuing,

particularly deep

queues

Optional Packet

Remarking
Yes No

network device to send an Ethernet frame, called Pause frame, to tell its neigh-

bor that it is experiencing overload, e.g., when the device is receiving data faster

than it can handle.

Figure 2.4 depicts an example of the operation of the IEEE 802.3X �ow control,

the details are as follows:

yg1 At the beginning, the transmitter sends data to the receiver, however,

18

2.1 Background and Related Work

Figure 2.4: IEEE 802.3x Flow Control [22].

congestion occurs due to no space left in the receiver bu�er on the in-

terface that connected to the transmitter. This phenomenon usually hap-

pens, when the tra�c is sent from a high-speed interface to a lower speed

interface.yg2 To avoid discarding the arrival frames if the transmitter keeps sending

data, the receiver dispatches a pause frame with a certain waiting time

T to the transmitter to inform the transmitter stops sending frames for a

certain period of time T .yg3 When the Pause frame is received, the sender stops the tra�c �ow for a

certain duration, which is speci�ed in the frame, and bu�ers the packets

until the receiver is ready to accept them again.yg4 If the receiver bu�er is empty before the waiting time is over, it informs

the transmitter by sending another pause frame with a waiting time value

of 0.yg5 Finally, the transmitter restarts the transmission, either due to of receiv-

ing a pause frame with the waiting time of 0 or the waiting time is ex-

19

2 Isolation of Virtual Networks in the context of SDN

pired. The purpose of �ow control is to prevent packet loss by handling

the input bu�er congestion.

2.1.4 Related Work

An important feature of virtual networks is to completely isolate each network,

while they still share the same common physical resources. Therefore, the iso-

lation becomes a very crucial criterion when applying Network Virtualization

paradigm. As consequence, several solutions have been proposed to deal with

the isolation issue. Bhatia et al. introduced Trellis [23] as a scalable platform

which provides isolation between networks on the wide-area Virtual Network

Infrastructure facility (VINI) [24]. Using Trellis, virtual networks are able to cre-

ate their own topologies, routing protocols, and forwarding tables. Thus, inter-

ference between virtual networks can be prevented. Another research [25] uses

Xen-based [26] virtualization to aim at providing variable cloud services on a

physical network. Each virtual network is assigned a speci�c virtualized net-

work ID to ensure the integrity of service content. Also based on the Xen plaft-

form, the authors in [27] propose XNetMon, in which the control mechanism

and data forwarding are decoupled. The XNetMon monitors the use of shared

resources and executes a punishment for the virtual networks which violate the

isolation.

In addition, in term of isolation with reagards to bandwidth allocation be-

tween virtual networks, the isolation is typically realized by con�guring bu�ers,

rate limits, and queueing disciplines on incoming or outgoing interfaces. Hence,

additional delays and jitter may be introduced due to waiting times in bu�ers

at the switching fabric, the incoming, or the outgoing interface [28]. In case of

a First-In-First-Out queueing discipline, bu�ering at the ingress results in head-

of-line blocking and reduced throughput [29]. To overcome this issue, virtual

output queues at the ingress have been proposed and implemented in order to

achieve a high throughput of approximately 100% [30].

Explicit rate limits or guarantees for speci�c virtual networks, however, are

20

2.1 Background and Related Work

typically con�gured at the outgoing queue. Although the crossbar fabric of a

switch meets the Clos condition [31] and is thus non-blocking, congestion may

happen due to several input ports sending to the same output port. Accord-

ingly, the question arises, whether congestion in one virtual network, realized

by rate guarantees on an outgoing interface, may also in�uence the performance

of other virtual networks. Particularly, the impact of several parameters like the

speci�c con�guration, the duration of the congestion, or the intensity of the

overload in one virtual network may have an impact on the resource isolation

and on the throughput of the other virtual networks.

The authors of [32] present a theoretical model of a multi-core router that

supports multiple VNs simultaneously and compare it with a simple store-and-

forward router model that uses a single processor for all incoming tra�c. Due

to isolation as well as VN-speci�c scheduling and processing of packets, the

multi-core model achieves better performance with respect to delay and jitter

when load is increased for all VNs. However, the focus of this work lies on the

resilience aspect of isolation mechanisms, especially in the presence of sudden

bursts that congest the underlying physical queue of the multi-core router.

In [33], the behavior of virtual routers based on commodity hardware is in-

vestigated. For this, competing objectives including performance, isolation, �ex-

ibility, and fairness are taken into account. Problems of software-based tra�c

classi�cation approaches that use a single physical queue are illustrated in an

analysis of their isolation performance. Emulating a system with multiple phys-

ical queues via a switch that is connected upstream of multiple Network Inter-

face Cards (NICs) and comparing it to a system that uses software classi�cation,

shows that with increasing load, the latter fails to maintain isolation. This results

in unexpected behavior on all virtual queues.

The work in [34] investigates bandwidth guarantees for TCP �ows in an SDN

network in combinations with di�erent switches and the Floodlight controller
2

.

Two TCP tra�c �ows share a bottleneck connection after leaving the switch.

Due to the bottleneck, congestion occurs and packets are queued at an interface

2http://www.projectfloodlight.org/

21

http://www.projectfloodlight.org/

2 Isolation of Virtual Networks in the context of SDN

on the switch. The results show that not every switch ensures the con�gured

bandwidth guarantees. While TCP tra�c is the focus of this work, we investigate

the isolation between virtual networks in case the data plane tra�c is exchanged

via the UDP protocol.

2.2 Method Used

The following sessions towards an understanding of the questions raised re-

garding isolation performance by investigating key metrics like the packet loss

per virtual network using measurements in a dedicated testbed. In this section,

the measurement setup, including the used hardware and software is described.

Additionally, an overview of the performed experiments is provided alongside

the notation for adjustable parameters and key performance indicators. Finally,

the various experiment scenarios in terms of parameter values and hardware

con�guration are discussed.

Measurement Setup and Configuration. In order to evaluate the isolation

performance of the outgoing physical queue of a switch that contains multiple

virtual queues, a testbed has been set up according to Figure 4.12.

Its main components are two tra�c generating hosts, h1 and h2, which are

connected to an OpenFlow switch and send Iperf
3

UDP tra�c to a third host,

h3, also connected to the switch. There are three switches with di�erent hard-

ware speci�cations as shown in Table 3.3. Each vendor has its own command

for setting up queues with minimum and maximum rates on the outgoing port

of the switch. For example, Pronto 3290 uses the ovs-vsctl command, HP 2920

applies per-queue rate-limiting, and NEC P5240 implements qos-queue-list.
For its OpenFlow functionality, the switches require a connection to an Open-

Flow controller. In this work, the OpenDaylight controller
4

was chosen. In this

environment, separated virtual queues are established on the switch for each

3http://iperf.sourceforge.net/
4http://www.opendaylight.org/

22

http://iperf.sourceforge.net/
http://www.opendaylight.org/

2.2 Method Used

Figure 2.5: Testbed Setup

Table 2.2: Switches used in this work.
Switch CPU Memory Software

Pronto 3290

MPC8541

825 MHz
512MB

PicOs 2.0.14

(Open vSwitch v1.10.0)

HP 2920

Tri Core ARM1176

825 MHz
512MB WB.15.17.0007

NEC PF5240

PowerPC

667 MHz
1024 MB

OS-F3PA

v5.0.0.1

individual sender. Thus, tra�c originating from a speci�c source is directed to

a speci�c virtual queue on the switch’s output port via statically precon�gured

OpenFlow rules.

Course of Experiments. For the actual evaluation, several in�uence param-

eters and performance indicators have been identi�ed and were integrated into

an experiment scheme. The basic scenario is depicted in Figure 2.6. It consists

of tra�c generator h1 sending UDP packets with a constant rate of β1 over the

switch’s �rst queue and the second tra�c generator sending regular bursts of

23

2 Isolation of Virtual Networks in the context of SDN

Figure 2.6: Experiment scheme for nb = 4

UDP packets with a rate of β2 over the second queue. The two queues are re-

ferred to as q1 and q2, respectively, and have rate limits βl1 and βl2, which are

obtained by applying tra�c shaping. In almost experiments, the sending rate of

h1 is equal to q2’s limit, i.e., β1 = βl1. At the beginning of each run, q2 is idle for

time t0 in order to assure a stable system state. Then, nb bursts of UDP tra�c

are produced at the second tra�c generator via Iperf in regular intervals. These

bursts last tb and are interleaved with pauses of t∆. During the bursts, the rate

limit of q2 is exceeded, i.e., β2 > βl2 holds.

Measured parameters include the relative and absolute packet loss on q1, de-

noted as p1 and pa1 , respectively, as well as the received rates for both queues,

βr1 and βr2 . These values allow statements about the in�uence of q2’s bursts on

the performance of q1, e.g., p1 > 0 implies a violation of the isolation between

queues. Furthermore, changes in the receive rate for the �rst �ow, βr1 , indicate a

performance degradation. Hence, these parameters can be used to quantify the

impact of bursts on the overall system reliability.

24

2.2 Method Used

Table 2.3: Parameter sets used in this work
Name β1 = βl1 β2 βl2 c ρ ρp tb t∆ nb

P1
640

Mbps

465

Mbps

100

Mbps

1

Gbps
1.1

0.75 {1s,2s,5s}
3 5

P2
640

Mbps

465

Mbps

206

Mbps

1

Gbps
1.1

0.85 {1s,2s,5s}
3 5

P3
640

Mbps

465

Mbps

255

Mbps

1

Gbps
1.1

0.90 {1s,2s,5s}
3 5

P4
640

Mbps

640

Mbps

100

Mbps

1

Gbps 1.28 0.75 {1s,2s,5s}
3 5

P5
640

Mbps

640

Mbps

206

Mbps

1

Gbps 1.28 0.85 {1s,2s,5s}
3 5

P6
640

Mbps

640

Mbps

255

Mbps

1

Gbps 1.28 0.90 {1s,2s,5s}
3 5

Investigated Scenarios. Given the total capacity c of the link between switch

and tra�c sink, the total load can be computed as ρ = β1+β2
c

. This is a key in-

�uence factor as in the context of a low total load, the system is more likely to

compensate short or less intense bursts. Furthermore, the amount of resources

allocated by the network operator can have an impact on isolation performance.

Hence, a parameter for the provisioned bandwidth, ρp =
βl
1+βl

2
c

, is introduced.

Table 2.3 provides an overview of parameter combinations discussed in this

work. Additionally, �ow control mechanisms like IEEE 802.3X Ethernet �ow

control [21] can prevent overload by limiting the sending rate of tra�c sources.

However, this behavior can be turned o� by the client in order to produce the

desired amount of tra�c regardless of the system state. In order to quantify the

impact of �ow control, experiments have been conducted for both settings.

25

2 Isolation of Virtual Networks in the context of SDN

2.3 Evaluation results

This section presents results gained during the experiments described in Sec-

tion 2.2. First, results obtained from a single experimental run with di�erent

switches are conducted. Then, the in�uence of parameters like the system load ρ,

the provisioned bandwidth ρp, and the burst duration tb on the resulting packet

loss is investigated in the particular case of using Pronto 3290 switch as well

as relationship between these parameters and the amount of time during which

packet loss occurs is analyzed.

Single Experiment Run

In order to provide an illustrative example of the performed measurements, Fig-

ure 2.7 depicts a single experimental run with �ow control disabled and a set of

parameters as [βl1 = 700 Mbps; βl2 = 300 Mbps; β1 = 670 Mbps; β2 = 755 Mbps].

In those �gures, the x-axis indicates the time while the two y-axes show the

received throughput at the sink on the left hand side as well as the packet loss

experienced by the tra�c originating from the �rst tra�c generator on the right

hand side, which is indicated by the dash-dot line. While the solid dark brown

and the dash light brown lines depict the received bandwidth from the �rst and

the second tra�c generator, respectively.

As displayed in Figure 2.7a and Figure 2.7b, in the �rst 3 seconds, only the

tra�c from the �rst source passes through the switch with the rate β1. Then, at

the 4th second, the second tra�c starts, a congestion occurs. Due to the rate of

the second network exceeds the con�gured maximum rate βl2, the bandwidth of

the �rst network decreases, which indicates that the isolation of this network is

violated. After the second source stops sending packets, from the 8th second on,

the rate of the �rst �ow is back to β1. This phenomenon repeats several times in

an experiment. The bursts from the second tra�c generator initially a�ect the

amount of data received from the �rst source as the total sending rate exceeds

the link’s capacity of 1 Gbps resulting in congestion of the output port.

26

2.3 Evaluation results

0 4 8 12 16 20 24 28 32 36 40 44 48
0

200

400

600

800

1000

R
e
c
e
iv

e
d
 B

a
n
d
w

id
th

 [
M

b
p
s
]

0 4 8 12 16 20 24 28 32 36 40 44 48
0

20

40

60

80

100

P
a
c
k
e
t

L
o
s
s
 R

a
te

 [
%

]

Times (s)

r

1

r

2

p
1

(a) NEC PF5240.

0 4 8 12 16 20 24 28 32 36 40 44 48
0

200

400

600

800

1000

R
e
c
e
iv

e
d
 B

a
n
d
w

id
th

 [
M

b
p
s
]

0 4 8 12 16 20 24 28 32 36 40 44 48
0

20

40

60

80

100

P
a
c
k
e
t

L
o
s
s
 R

a
te

 [
%

]

Time [s]


r

1


r

2

p
1

(b) Pronto 3290.

Figure 2.7: Comparison between switches in a single experiment, IEEE 802.3x �ow
control o� [βl1 = 700 Mbps; βl2 = 300 Mbps; β1 = 670 Mbps; β2 = 755
Mbps].

While this behavior in itself indicates a breach of isolation between VNs, ad-

ditionally packets loss occurs for the tra�c that passes q1. In case of the NEC

27

2 Isolation of Virtual Networks in the context of SDN

switch, Figure 2.7a, the link bandwidth is equally shared among both virtual.

It makes the amount of packet loss on the �rst network is around 25% due to

the reduction of its bandwidth and the packets are lost the whole 5s of the con-

gestion as the dash-dot black bursts show in Figure 2.7a. A signi�cant smaller

bandwidth degradation duration is displayed in Figure 2.7b in case of the Pronto

3290, as indicated by intervals that have black boundaries. They last nearly 60ms,

however, a higher packet loss rate, up to 67% is observed during this interval.

After the short reduction, the received rate βr1 is recovered as at the beginning.

While Figure 2.7 presents the result in case of NEC and Pronto switch, the

data conducted from measurement of HP 2920 is illustrated in Figure 2.8. With

the same parameter set as the previous �gure, however, Figure 2.8a depicts a

di�erent observation, the dash-dot line and the x-axis are identical, meaning

no packet loss from the �rst source. The congestion still arises and makes the

bandwidth of the second network occupy only the rest of link capacity, approxi-

mately 300 Mbps instead of 775 Mbps, which is indicated by the dash light brown

bursts. For this speci�c parameter set, the �rst network is isolated almost en-

tirely. Nevertheless, with other parameter sets, for instance, [βl1 = 700 Mbps;

βl2 = 300 Mbps; β1 = 760 Mbps; β2 = 700 Mbps], a breach of isolation is caused

as demonstrated in Figure 2.8b. Although the guaranteed bandwidth βl1 is en-

sured, the packets are dropped since the rate β1 is decreased from 760 Mbps to

700 Mbps.

Figure 2.7 and 2.8 show that a violation of the isolation between VNs is pos-

sible for all switches. In order to have an insight into in�uence factors on the

isolation, we focus on the experiments with the Pronto 3290 then present the

evaluation results as follows. First of all, the impact of the IEEE 802.3x �ow

control is investigated. Figure 2.9a illustrates the behavior in case of �ow con-

trol enabled. Similar to the previous result, the second tra�c causes packet loss,

however, only less than 1% for the tra�c that passes q1. Then due to �ow control

is enable, it kicks in fast and restricts the sending rate of the second generator,

thus avoiding further congestion and therefore packet loss or bandwidth degra-

dation for the �rst �ow.

28

2.3 Evaluation results

0 4 8 12 16 20 24 28 32 36 40 44 48
0

200

400

600

800

1000

R
e
c
e
iv

e
d
 B

a
n
d
w

id
th

 [
M

b
p
s
]

0 4 8 12 16 20 24 28 32 36 40 44 48
0

20

40

60

80

100

P
a
c
k
e
t

L
o
s
s
 R

a
te

 [
%

]

Times (s)


r

1


r

2

p
1

(a) Parameter set [βl
1 = 700 Mbps; βl

2 = 300 Mbps; β1 = 670 Mbps; β2 =
755 Mbps].

0 4 8 12 16 20 24 28 32 36 40 44 48
0

200

400

600

800

1000

R
e
c
e
iv

e
d
 B

a
n
d
w

id
th

 [
M

b
p
s
]

0 4 8 12 16 20 24 28 32 36 40 44 48
0

20

40

60

80

100

P
a
c
k
e
t

L
o
s
s
 R

a
te

 [
%

]

Times (s)


r

1

r

2

p
1

(b) Parameter set [βl
1 = 700 Mbps; βl

2 = 300 Mbps; β1 = 760 Mbps; β2 =
700 Mbps].

Figure 2.8: Comparison between parameter sets for HP switch in a single experi-
ment, IEEE 802.3x �ow control o�.

29

2 Isolation of Virtual Networks in the context of SDN

0 4 8 12 16 20 24 28 32 36 40 44 48
0

200

400

600

800

1000

R
ec

ei
ve

d
Ba

nd
w

id
th

 [M
bp

s]

0 4 8 12 16 20 24 28 32 36 40 44 48
0

0.3

0.6

0.9

1.2

1.5

Pa
ck

et
 L

os
s

R
at

e
[%

]

Time [s]

r
1

r
2

p1

(a) IEEE 802.3x �ow control on.

0 4 8 12 16 20 24 28 32 36 40 44 48
0

200

400

600

800

1000

R
ec

ei
ve

d
Ba

nd
w

id
th

 [M
bp

s]

0 4 8 12 16 20 24 28 32 36 40 44 48
0

20

40

60

80

100

Pa
ck

et
 L

os
s

R
at

e
[%

]

Time [s]

r
1

r
2

p1

(b) IEEE 802.3x �ow control o�.

Figure 2.9: Single experiment with Pronto 3290 and parameter set P3 and tb = 5s.

In contrast to the outlined scenario, the packet loss experienced in the absence

of the �ow control mechanism is orders of magnitude higher, i.e., at around 20%.

Detailed measurement data is provided in Figure 2.9b. Although �ow control is

30

2.3 Evaluation results

disabled, the receive rate βr2 also drops shortly after the bursts start. Unlike the

�rst case, however, this is not due to an adapted β2, but rather due to the switch

dropping packets for q2 after experiencing an incoming rate β2 that is higher

than the provisioned rate βl2. The plots show that performance degradation in

expectedly isolated virtual networks can occur by overload conditions in a sin-

gle VN. While �ow control does a�ect the intensity of the resulting degradation,

�ow control can not completely avoid it. In addition to the �ow control mech-

anism on the sending side, the switch also behaves in a reactive fashion when

incoming rates exceed the limits agreed-upon for a certain amount of time. In

both cases regarding �ow control con�guration, a further interesting e�ect that

is observed is that the received rate of tra�c from the �rst source, βr1 , is signi�-

cantly reduced during the overload period while the second �ow passes through

at its full sending rate β2.

Impact of Experiment Parameters on Packet Loss

As motivated in Section 2.2, this work aims at identifying the main in�uence

factors of the phenomena observed in the previous measurements with Pronto

3290. For this purpose, experiments with a variety of system con�gurations have

been performed. To achieve statistical signi�cance, each run was repeated ten

times. Figure 2.10 presents the in�uence of the system load ρ, the provisioned

bandwidth ratio ρp, and the burst length tb on pa1 , the absolute number of pack-

ets lost in a single burst event.

The �rst picture shows results gained from con�gurations in which �ow con-

trol was turned on. While the ticks on the x-axis denote ρp, the ratio of provi-

sioned bandwidth and link capacity, the y-axis displays pa1 . In addition to the

bars’ height indicating the mean of measured values, the whiskers show 95%

con�dence intervals that were obtained by repeating each experiment 10 times.

Bar colors represent di�erent values for tb. Results are presented for two di�er-

ent system loads ρ. The �rst observation is that con�dence intervals for each

group of scenarios with identical ρ and ρp overlap, i.e., di�erent values of tb do

not have a statistically signi�cant impact on the amount of lost packets when

31

2 Isolation of Virtual Networks in the context of SDN

0.75 0.85 0.90 0.75 0.85 0.90
0

0.5

1

1.5

2

2.5

3

3.5

N
um

be
r

of
 P

ac
ke

ts
 L

os
t

ρ=1.1 ρ=1.28
ρ

p

t
b
=1s

t
b
=2s

t
b
=5s

(a) IEEE 802.3x �ow control on

0.75 0.85 0.90 0.75 0.85 0.90
0

2000

4000

6000

8000

10000

12000

14000

16000

N
um

be
r

of
 P

ac
ke

ts
 L

os
t

ρ=1.1 ρ=1.28
ρ

p

t
b
=1s

t
b
=2s

t
b
=5s

(b) IEEE 802.3x �ow control o�

Figure 2.10: Single experiment with parameter Pronto 3290 set P3 and tb = 5s

the remaining parameters are �xed. The reason for this is that the �ow control

mechanism reacts fast enough to prevent a large packet loss, but does not a�ect

the amount of time during which the �rst �ow’s received rate βr1 is reduced.

Thus, packet loss acts as indicator while the bandwidth impediment constitutes

32

2.3 Evaluation results

the actual breach in isolation. Furthermore, increasing values of ρp result in a

higher number of lost packets pa1 . A possible explanation for this behavior is that

precon�gured rate guarantees in�uence the duration until the switch reacts to

the overload. Thus, the time frame in which packet loss might occur becomes

longer for increasing ρp. Hence, pa1 , the number of lost packets increases. The

applied system load ρ, however, does not seem to have a high degree of in�u-

ence on the packet loss in case of enabled �ow control. This can be observed by

comparing pairs of groups that have identical values of ρp but di�erent loads

ρ. A likely explanation for this phenomenon is that while a higher value of ρ

implies a higher congestion rate, it also leads to a faster detection of the burst

by the �ow control mechanism. The latter limits the damage done in terms of

packet loss by limiting the sending rate at h2.

Table 2.4: ρp and resulting ti values for di�erent scenarios

Parameter set ρp ti

P1 0.75 0.27

P2 0.85 0.81

P3 0.90 1.2

P4 0.75 0.25

P5 0.85 0.48

P6 0.90 0.68

Figure 2.10b displays the measurements that were obtained with disabled Eth-

ernet �ow control. Like in the previous �gure, an increased number of lost pack-

ets is observed for increasing values of ρp. In contrast to just a few lost packets

when �ow control is enabled, several thousands of packets are lost in the context

of disabled �ow control. Furthermore, ρ also a�ects the number of lost packets.

However, tb does not seem to have an in�uence on pa1 even in the absence of

�ow control. Except in the case of the combination ρ = 1.1 and ρp = 0.90, the

number of lost packets per burst event does not change signi�cantly when tb is

33

2 Isolation of Virtual Networks in the context of SDN

increased.

To shed light on this behavior, the duration in which packet loss for packets

from h1 occurs has been recorded in each experiment. This period is denoted as

ti and values for di�erent parameter sets are shown in Table 2.4. Additionally,

the table presents ρp which quanti�es the total bandwidth provisioned. Only

in the context of parameter set P3, ti exceeds one second which explains the

di�erence in the amount of packets lost observed in Figure 2.10b. As soon as

tb > ti holds, the absolute packet loss pa1 does not change for increasing tb.

Amount and Duration of Packet Loss

Having identi�ed ρp as the main in�uence factor on the packet loss for the tra�c

from h1 to h3 in case of enabled �ow control, Figure 2.11 provides an aggregated

view on the empirical cumulative distribution function of pa1 for di�erent values

of ρp.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

pa
1

F
ra

ct
io

n
 o

f
E

xp
er

im
en

ts

ρ
p
=0.75

ρ
p
=0.85

ρ
p
=0.90

Figure 2.11: Distribution of the absolute packet loss pa1 for di�erent values of ρp
(IEEE 802.3x �ow control is enabled)

The x-axis denotes the number of packets lost during a single burst attempt,

while the y-axis indicates the fraction of experiments for which the observed

value pa1 is less than or equal to this number. The resulting distributions are in

34

2.4 Proof-of-Concept Implementation of Video Control Plane in the Case of DASH

line with the previous observations and exhibit an increasing number of lost

packets for increasing values of ρp. For example, in the context of ρp = 0.75,

pa1 never exceeded 4 packets per burst while it did in 17% and 19% of instances

for ρp = 0.85 and ρp = 0.90, respectively. In contrast to scenarios with en-

abled �ow control, where ρp is the main in�uence factor, multiple parameters

have been identi�ed for con�gurations in which the �ow control mechanism is

disabled. Thus, a distribution of pa1 that solely depends on ρp does not provide

new insights and is therefore omitted.

2.4 Proof-of-Concept Implementation of Video
Control Plane in the Case of DASH

In the scheme of Dynamic Adaptive Streaming over HTTP (DASH), network

resource allocation is managed in a distributed way at the end-points by each

client. On the on hand, the clients are running controllers to autonomously

change the video bitrate to improve the Quality of Experience (QoE). On the

other hand, the resource is fairly shared with respect to the QoS parameters, but

not with respect to the user’s QoE. An interaction between video and network

provider is a solution to overcome this problem. The exchanged information can

be leveraged by a video control plane enforcing network-assisted strategies. In

doing this, a network element can trigger a control mechanism such as quality

adaptation or bandwidth reservation, based on the network condition and client

context. We implement such a scheme using an SDN network and deploy a Net-

work Controller, which runs on top an SDN controller, together with several

network-assisted streaming strategies in a Video Control Plane (VCP).

This section, as a proof-of-concept for the approach towards a joint video and

network control, describes the design and structure of VCP. Then, a comparison

of performance between using VCP with several network-assisted strategies and

the standard case without VCP as well as a result related to bandwidth reserva-

tion are presented.

35

2 Isolation of Virtual Networks in the context of SDN

2.4.1 Implementation of Video Control Plane

Control System Architecture. In order to enforce a video quality manage-

ment policy in the scenario of a single bottleneck link between video clients and

the content server, we implement a control system with the Network Controller
(NC) as shown in Figure 2.12.

Figure 2.12: Control system block diagram.

The NC, which runs on top of an SDN controller, carries out two main func-

tions. First, it creates and manages bandwidth slices implemented through dedi-

cated queues on the network. Second, it handles a bidirectional communication

with the video clients via a REST API. There are three components included in

the NC: the Active Flows Table, the Optimization Module and the Network Actua-
tor. Information of the currently active video sessions, which is provided by each

video client at the beginning of the video session, is stored in the Active Flows

Table. The Optimization Module then uses this information periodically to com-

pute a new bitrate assignment every Ts. Finally, the Network Actuator enforces

the computed bitrates (or bandwidth) to each active video session. Another com-

ponent of the control system is the Video Client, which establishes/tears-down

the video session by sending messages to the NC and downloads the correspond-

ing video segments.

Network-assisted Streaming Approaches. Three categories of network-

assisted approaches are investigated based on the aforementioned architec-

ture. The Bandwidth Reservation (BR) assigns a bandwidth slice to a video �ow

through two nested control loops as depicted in Figure 2.13a. The outer control
loop is executed in the network and con�gures the bandwidth slice, whereas the

36

2.4 Proof-of-Concept Implementation of Video Control Plane in the Case of DASH

inner control loop running at the client, autonomously selects the video bitrate

based on the video client feedback and bandwidth estimates. On the other hand,

the Bitrate Guidance (BG) computes the video bitrate by a centralized algorithm

running in a network element and enforced by the video client, as shown in Fig-

ure 2.13b. Finally, a combination of Bandwidth Reservation and Bitrate Guidance

is taken into account as hybird strategies.

(a) Bandwidth Reservation.

(b) Bitrate Guidance.

Figure 2.13: Network-assisted approaches for adaptive video streaming.

Bandwidth Reservation. The dedicated bandwidth slices are reserved to the

video �ows by the NC in this approach. The adaptation algorithm in the client

computes the video bitrate independently without any information from the

NC. Figure 2.14a visualizes the details of the implementation of the Bandwidth

Reservation: Ê the Optimization Module calculates the bandwidth slice assign-

ment based on the management policy, Ë the computed bandwidth slice is sent

to the Network Actuator, and Ì the dedicated slice for the �ow (or a group of

�ows) is also created or updated. For each video segment download, the Client

thread executes two actions: ¬ the video bitrate is selected according to its adap-

tation algorithm and ­ the segment is retrieved from the Content Provider.

37

2 Isolation of Virtual Networks in the context of SDN

(a) Bandwidth Reservation. (b) Bitrate Guidance.

(c) Bandwidth Reservation and Bitrate Guidance.

Figure 2.14: Network-assisted approaches for adaptive video streaming.

Bitrate Guidance. When using this approach, it is important to notice that all

video �ows share the same bandwidth slice. The download rate is shaped by the

client in order to match the selected bitrate, thus providing service di�erentia-

tion to the �ow in the shared slice. The �rst two actions of the NC thread Ê and

Ë in Figure 2.14b are exactly the ones executed in the BR approach. Instead of

creating bandwidth slices on the network interface, the Network Actuator de-

livers the computed bitrate for the clients to the switch at action Ì . Only action

¬ is executed in the Client in this case, it downloads the next video segment

based on the video bitrate set by the NC. Such a client is labeled as a Thin Client

38

2.4 Proof-of-Concept Implementation of Video Control Plane in the Case of DASH

since it does not send any feedback information to the NC.

Bitrate Guidance and Bandwidth Reservation. The combination of the two

strategies described above is carried out. In particular, the third action of the NC

thread is split into two sub-actions: 1) the bandwidth reservation in the network

and 2) the bitrate guidance. Again, the client only downloads video segments.

In addition, the interactions between the client-side control loop and the

network control loop are investigated with regards to three algorithms. While

Conventional selects the video bandwidth based on bandwidth estimates [35],

PANDA is designed to cope with the fairness issues a�ecting several HTTP-

based Adaptive Streaming (HAS) algorithms [35] by incrementing the bitarte

to probe the available bandwidth [35]. Finally, unlike those two rate-based al-

gorithms, Elastic is a level-based algorithm which allows to control the playout

bu�er length by varying the bitrate [36]. Furthermore, Elastic is able to over-

come fairness issues a�ecting the rate-based algorithms.

Video Session Management. The work�ow of a video session is illustrated

in Figure 2.15. A session is started at the client by retrieving the playlist from the

video server. Each playlist carries the Structual SIMiarity (SSIM) values, which

represent the estimated quality of videos. Then, the client sends the information

needed to compute the optimal bitrate distribution in a set-up message to the NC:

the video contend URL, the video level set and its corresponding SSIM extracted

from the playlist.

As mentioned in the previous paragraph, the NC periodically executes Op-

timization Modudle with a sampling time Ts, the video �ow cannot be served

with di�erentiated service until the next execution. Therefore, in order to avoid

a delayed start-up, the NC assigns the �ow to the Arrival Slice, which is reserved

to newly arrived video session. Afterwards, at most after Ts seconds, the Opti-

mization Module is executed, the video �ow is removed from the Arrival Slice
and served with the di�erentiated service according to the adopted network-

assisted approach. Finally, a tear-down message is sent from the client to the NC

to notify that the client decides to terminate the session.

39

2 Isolation of Virtual Networks in the context of SDN

Figure 2.15: Video session �ow diagram.

The Content Provider stores three videos in the catalog: Big Buck Bunny
5

,

Sintel
6

and Tears of Steel
7

with di�erent resolutions 720p, 1080p, and 2160p cor-

responding to three classes of client devices. All videos are encoded with H.264

codec with a frame rate equal to 30 fps and the segment size is �xed to 4 seconds.

2.4.2 Performance of Network-assisted in VCP

This section provides an evaluation of the performance of the strategies men-

tioned in the �rst section. After testbed setup is introduced, the experiment sce-

nario and measurement metrics are described. Finally, a comparison between

the network-assisted strategies and result related to bandwidth reservation are

presented.

5http://distribution.bbb3d.renderfarming.net/video/mp4/bbb_
sunflower_2160p_30fps_normal.mp4

6https://download.blender.org/durian/movies/Sintel.2010.4k.mkv
7http://ftp.nluug.nl/pub/graphics/blender/demo/movies/ToS/
tearsofsteel_4k.mov

40

http://distribution.bbb3d.renderfarming.net/video/mp4/bbb_sunflower_2160p_30fps_normal.mp4
http://distribution.bbb3d.renderfarming.net/video/mp4/bbb_sunflower_2160p_30fps_normal.mp4
https://download.blender.org/durian/movies/Sintel.2010.4k.mkv
http://ftp.nluug.nl/pub/graphics/blender/demo/movies/ToS/tearsofsteel_4k.mov
http://ftp.nluug.nl/pub/graphics/blender/demo/movies/ToS/tearsofsteel_4k.mov

2.4 Proof-of-Concept Implementation of Video Control Plane in the Case of DASH

Figure 2.16: The Implementation of the VCP.

Tesbed Setup. The Video Control Plane (VCP) is implemented in the testbed

as depicted in Figure 2.16. A computer
8

runs the OpenDayLight Hydrogen Re-

lease and the NC as well as an HTTP server that is responsible for exchanging

information with an OpenFlow switch. By using the methodology in Section 2.2

with di�erent switches, we choose the QUANTA T1048-LB9 as the forwarding

device in our testbed due to its ability to ensure isolation between TCP �ows.

The switch is running PicOS
9

v2.6 and Open vSwitch
10

2.3.0 as software switch-

ing stack. TAPAS (Tool for dApid Prototyping of Adaptive Streaming control

algorithms) [37] is set up in a machine that generates a con�gurable number

of DASH video �ows. The three algorithms in the previous paragraph are im-

plemented using TAPAS as well as the Thin Client in case of Bitrate Guidance.

Another machine acting as video content server, stores video segments with dif-

ferent qualities (resolutions) and runs the Lightpd HTTP server to send those

segments to the clients.

Figure 2.16 visualizes the implementation of the VCP. The NC contains two

Python-based HTTP servers hosted by controller and OpenFlow switch. The

HTTP Server at the controller has three main functions: �rst, it stores the Ac-

8

Intel Core Duo/4GB RAM /Ubuntu 14.04

9

http://www.pica8.com/products/picos

10

http://openvswitch.org

41

2 Isolation of Virtual Networks in the context of SDN

tive Flow Table that has information of all �ows which are currently installed

in the switch. Second, it executes the optimization algorithms in the Optimiza-

tion Module to set the minimum guaranteed rate for the �ows assigned on the

corresponding queue. Finally, the communication pipes with the switch and the

clients are established via JavaScript Object Notation (JSON) APIs in order to

manage the QoS queues in the switch, as well as to send the selected bitrates

to the clients, respectively. On the one hand, the HTTP server running on the

switch holds information of all QoS queues in a Queue Table. On the other hand,

an Open vSwitch API, which is deployed to allow a �exible way to create and

adjust the con�guration of any queue, is also maintained in this server. Tra�c
Shaping is implemented on the Ethernet interface connected to the clients for

individual queues in the total of 8 queues supported by the employed switch.

However, not all of them are dedicated to video slices, as one queue implements

the Arrival Slice. At each execution of the Optimization Module, the size of the

Arrival Slice is dynamically set based on a periodically updated measure of the

video tra�c arrival statistics.

Experiment Scenario and Metrics. An experiment is started through a

workload and lasts 900s. A workload contains the starting time generated by

a Poisson arrival process with parameter λ as well as the selected video from

the video catalog and the device resolution according to a discrete uniform dis-

tribution.

Figure 2.17: Number of concurrent video sessions over time.

42

2.4 Proof-of-Concept Implementation of Video Control Plane in the Case of DASH

Figure 2.17 displays a run which consists of two phases: the �rst phase lasts

D = 300 seconds and has only �ow arrivals. Thus, the number of active sessions

grows with an average pace of λ. Then, during the second phase, the average

arrival rate matches the average departure rate and settles to the average num-

ber of actives sessions N = λD. As a consequence, the average bandwidth fair

share for each �ow is C/(λD) Mbps. The link load for each workload is able

to set di�erent values of λ while keeping C �xed. In our experiment, the link

capacity C is set to 50 Mbps, the minimum guaranteed bandwidth bmin of the

Arrival Slice equals 1000 kbps and the Optimization Module sampling Ts is set

to 30s.

In order to compare the performance of the investigated strategies, we have

evaluated the following metrics in each run.

RMSE. The Root Mean Squared Error is computed as the root of the average

squared error between the optimal SSIM for the n-th user SSIM
?
n, which is set

by the Optimization Module, and the corresponding measured SSIM, SSIMn

RMSE =

√√√√ 1

N

N∑
n=1

(SSIMn − SSIM
?
n)2.

This metric measures the accuracy of the network-assisted approach in en-

forcing the optimal allocation according to management policy. Since we en-

force a video quality fair allocation, the lower RMSE the higher the achieved

fairness.

Switching Frequency. The average number of video bitrate switches in a sec-

ond (measured in Hz). In [38, 39] it is shown that the switching frequency neg-

atively a�ects the QoE only if it is higher than a threshold of 0.1 Hz.

Download Rate.Describes how much data the clients download in a given time

interval.

Performance of Network-assisted Approaches. The comparison of per-

formance between di�erent approaches, including the case in which no Video

43

2 Isolation of Virtual Networks in the context of SDN

Control Plane is involved, which is labeled as baseline when the client-side al-

gorithms Elastic is employed, is presented as follows.

(a) RMSE.

(b) Switching Frequency.

Figure 2.18: Comparison of the performance between considered network-assisted
approaches as the arrival rate λ varies.

Figure 2.18a depicts the measured RMSE for several values of the arrival rate

λ, as displayed on the x-axis. Three color bars represent di�erent network-

assisted approaches and one represents the case in which the VCP is disabled.

In all cases, the network-assisted strategies keep the RMSE below 0.025 and

achieve a lower RMSE compared to the baseline, which results an RMSE higher

than 0.045 for all link loads. Another observation is that Bandwidth Guidance

outperforms the others, however, adding bandwidth reservation to bitrate guid-

ance (BR+BG) does not o�er a clear advantage. In addition, the Switching Fre-

quency as a function of the arrival rate λ is illustrated in Figure 2.18b. The �g-

ure shows that Bandwidth Reservation increases the Switching Frequency up to

44

2.4 Proof-of-Concept Implementation of Video Control Plane in the Case of DASH

twice higher than when using BG or (BR+BG). However, it is important to note

that even the highest measured frequency, i.e. 0.025 Hz does not signi�cantly

a�ect the perceived QoE [38].

(a) 40-th �ow of the workload

(b) 45-th �ow of the workload

Figure 2.19: Video bitrate dynamics of two �ows of the run with λ = 0.1.

In addition to the dynamic bitrate of corresponding video sessions when using

the same workload for all considered approaches, Figure 2.19 illustrates the 40-

th and 45-th video session in the case of λ = 0.1. As shown in both sub-�gures,

while the BR strategy provoke several switches due to the client-side adaptation,

the BG and (BG+BR) provoke less switches since the video bitrate is directly

set by the Optimization Module. Furthermore, the isolation between �ows (or

virtual networks) is not violated.

45

2 Isolation of Virtual Networks in the context of SDN

2.5 Lessons Learned

In the context of Software De�ned Networking, multiple virtual networks share

the same physical resources, such as connectivity, memory, and storage. Hence,

isolation between virtual networks or services is one of the key parameters

when evaluating the performance of a system. This chapter focuses on eval-

uation the isolation in term of guaranteeing a granted bandwidth for a virtual

network.

The combination of maximum and minimum bandwidth for an individual net-

work is set in SDN forwarding devices (OpenFlow switches) via con�guration of

virtual queues on an outgoing port. SDN controller is responsible for assigning

each network into a queue, therefore, tra�c passing through virtual networks

are separated based on features of input �ow, e.g., source IP address, type of

tra�c (UDP/TCP), and destination application port.

The aforementioned methodology applied to several OpenFlow switches in

the presence of tra�c bursts helps to assess violation of the isolation between

VNs as well as to determine the main in�uence parameters on the isolation per-

formance. The results indicate that when congestion occurs, a virtual network

might a�ect the bandwidth of another network in particular con�guration. The

in�uence parameters factors include characteristics of incoming tra�c, con�g-

urations of virtual queues on outgoing port and �ow control mechanism. In

addition, vendor-speci�c hardware also has its own behavior, for example, HP

2920 preserves the isolation in a speci�ed combination of burst tra�c and con-

�gured rate guarantees per virtual network, however, the isolation is violated in

all scenarios with Pronto P3290. In which, even in the presence of Ethernet �ow

control on sending devices, a violation of the isolation between VNs is possible.

The overall load on the outgoing switch port also the con�gured rate guarantees

per virtual network are de�ned as key in�uence parameters on the isolation re-

sulting in the number of lost packets of the network that its isolation is violated.

The presented approach allows an administrator to �nd appropriate con�g-

urations for the involved hardware devices with respect to resource isolation

46

2.5 Lessons Learned

before implementing the hardware into the system. It can also let the admin-

istrator to choose an applicable device for his network or special use case to

guarantee bandwidth isolation.

47

3 Impact of the SDN Control Plane

on the Data Plane Performance

The Software De�ned Networking (SDN) paradigm changes several aspects re-

garding the operation and structure of today’s networks. Instead of accessing

all forwarding devices in the network individually to setup a new routing con-

�guration, SDN allows network engineers and administrators to have a more

�exible and convenient method to update this information. This is implemented

by an application at an SDN controller without having to touch speci�c de-

vices. The key characteristics of the resulting architecture include the separa-

tion of control and data plane as well as a logically centralized control plane.

This is obtained by moving control plane functions from the network devices

to a dedicated controller software running on commercial o�-the-shelf (COTS)

hardware. Communication between this centralized control plane and the data

plane takes place via the southbound API [11], an open interface which is im-

plemented by protocols like OpenFlow [16].

While the data plane carries out forwarding packets, the SDN control plane

is responsible for exchanging signaling tra�c, managing the underlying data

network, and decides routing paths. To achieve these goals, the controller and

OpenFlow switches exchange di�erent types of messages during the whole time

of operation such as device information, �ow statistics, �ow installations or re-

movals, and port status. Such information needs to be received and processed

promptly to ensure a reliable network behavior.

In addition, before moving to an SDN-based network deployment, operators

need to make sure that the resulting network meets their particular require-

49

3 Impact of the SDN Control Plane on the Data Plane Performance

ments with respect to performance. On the one hand, when considering the

data plane, these requirements might be packet forwarding algorithms, the ca-

pacity of an OpenFlow switch, which identi�es the number of �ows the device

can handle, or the throughput that the switch can deliver. On the other hand,

the control plane needs to support a high throughput at both northbound and

southbound interfaces to respond quickly to changes of the network as well as

a rapid response time for each message initialized from the switch [40]. How-

ever, when deploying an SDN approach, the speci�c requirements are use-case

dependent with regards to particular scenarios. For example, in case of using

OpenFlow switches in a network with low tra�c, the focus is on the ability of

the switch to handle small packets, rather than the size of its �ow table since

some devices process large packets well, but perform poorly with small pack-

ets [41]. In addition to the control plane, the performance of installing new �ows

might a�ect the operation of network devices as well as controller applications.

Namely, the switch noti�es the controller that it �nished inserting rules, how-

ever, the rules were only installed in software and not implemented in hard-

ware. This might lead to incorrect behavior of the controller due to inconsistent

states of the network. Hence, the processing time of FlowMod messages, which

indicates how fast an OpenFlow switch handles these messages to install new

�ows, is thoroughly investigated in this chapter concerning the control plane

delay with di�erent FlowMod message installation mechanisms. Furthermore,

combinations of SDN controller and commodity switches are compared while

evaluating the FlowMod processing performance.

The content of this chapter is mainly taken from [8, 10]. In the following,

Section 3.1 summarizes the SDN control plane operation and related work rele-

vant to the performance evaluation of the control plane, after focusing on di�er-

ent types of FlowMod-related communication schemes de�ned in the OpenFlow

speci�cation for adding �ows in SDN networks. Then, details of the performance

evaluation of these mechanisms are discussed in Section 3.2. Section 3.3 presents

the results when facing the control plane delay. Finally, the lessons learned in

this chapter are provided in Section 3.4.

50

3.1 Background and Related Work

3.1 Background and Related Work

In Section 3.1.1 an overview of the operation of the control plane in SDN net-

works is provided. Afterwards, two mechanisms used to proactively install �ows

in an OpenFlow switch as asynchronous and synchronous method are outlined

in Section 3.1.2. Then, related work with regards to performance evaluation of

the SDN control and data plane is discussed in Section 3.1.3.

3.1.1 Operation of the SDN Control Plane

As mentioned in Section 2.1.1, the SDN control plane is the middle layer of the

SDN architecture and is responsible for managing the features of an SDN net-

work. In this section, a particular look on this layer is presented. It includes fun-

damental modules, interfaces and methods to install OpenFlow rules to switches

in order to implement networking features.

SDN Controller Core Modules. Figure 3.1 illustrates a general structure of

an SDN controller, which insist of two communication interfaces and some basic

modules, as well as applications running on top.

To implement routing decisions, manage network devices and �ows, and to

provide essential information like �ow statistics or �ow updates to applications

via a northbound API, every controller needs to perform several core features.

First, both end-user devices such as desktops, printers, laptops, or mobile de-

vices and network devices (OpenFlow switches) need to be discovered. Second,

the information regarding the interconnection between these devices has to be

maintained and updated promptly if there is any change. Finally, a database of

�ows in the network is stored and synchronized timely with the network de-

vices to ensure a reliable behavior of the network. As displayed in the middle

of Figure 3.1, several modules performing these functions. For example, devices

and topology discovery, �ow management, device management, and statistics

tracking. These modules are usually designed as internal elements in the con-

trollers. Nevertheless, to obtain an e�cient operation of the network, additional

51

3 Impact of the SDN Control Plane on the Data Plane Performance

Figure 3.1: SDN controller anatomym (adapted from [42]).

modules are also deployed, e.g., routing module or tra�c engineering module.

SDN Controller Northbound Interface (NBI). Programmability, which is

one of the key principles of SDN, is expressed through the ability to program

the behavior of a network in a �exible way and allows third-party applications

to run across multi-vendor commodity hardware. NBI is known as the main

driver to implement this principle. It supports APIs for accessing the network

device as well as directly provides information about the status of network re-

sources to upper applications. Network functions like path computation, secu-

rity, bandwidth allocation, and routing are realized by exchanging knowledge

of the physical underlying network between the applications and the SDN con-

troller via NBI. Furthermore, NBI also supports orchestration systems such as

OpenStack Neutron
1

or VMWare vCloud Director
2

to manage network services

in a cloud [43].

Figure 3.2 presents how the controller interacts with applications. The NBI

1https://github.com/openstack/neutron
2https://www.vmware.com/support/pubs/vcd_pubs.html/

52

https://github.com/openstack/neutron
https://www.vmware.com/support/pubs/vcd_pubs.html/

3.1 Background and Related Work

Figure 3.2: SDN controller northbound API [42].

is the intermediate component between them and is responsible for forwarding

events that are of interest by the applications. However, not every event is neces-

sary to collect, depending on the function of the application. Depending on the

purpose of an application, it can select concrete events to query. For instance, a

forwarding application needs to know information related to the network topol-

ogy such as link up/down or device on/o�, rather than tra�c statistics. Then,

the applications perform di�erent methods to apply their algorithms or actions

to respond to the received events. Moreover, external inputs from a network

monitoring system or a Network Management System (NSM) can also trigger

an SDN application to control the network. Nevertheless, presently, there is no

common standard for NBI [44], due to the design of the applications varies de-

pending on the requirements, each service might use a speci�c API to exchange

essential information with the controller. Therefore, many types of NBIs are able

to coexist in the same controller instance, e.g., REST API, Python API, and Java

API as shown in Figure 3.2.

SDN Controller Southbound Interface (SBI). The southbound interface of

SDN networks provide the communication between the controller and network

53

3 Impact of the SDN Control Plane on the Data Plane Performance

devices using protocols like OpenFlow, NETCONF [45], or XMPP [46]. Among

them, OpenFlow is the most popularly developed protocol for the SBI. A net-

work device supporting OpenFlow forwards packets based on the information

in a �ow table, which consists of multiple �ow table entries. Each of which con-

tains match �elds, actions, and counter as illustrated in Figure 3.3.

Figure 3.3: OpenFlow 1.0 Table Entry [47].

First, the match �elds describe conditions that a packet has to meet so that a

speci�c rule applies. These �elds cover di�erent protocols, e.g., Ethernet, IP, or

layer 4 application ports. The �elds can either be speci�c values or a wildcard

match. Second, the action determines the way in which the packets should be

processed. OpenFlow 1.0 supports a set of actions such as forwarding the packet

to a given port, dropping the packet or sending it to the controller via a secure

channel, etc. Third, the counter is responsible for collecting statistics about �ows

to keep track of the number of packets and bytes as well as the installation

duration of each �ow.

Figure 3.4 outlines the scheme of processing a packet when it arrives at an

OpenFlow switch. After the packet header is parsed and compared with every

�ow entry in the table, if no entry matches the packet header, the header will be

encapsulated and sent to the controller in a PACKET-IN message to request an

instruction with the packet. Then, the controller based on its information about

the network topology instructs the switch by an appropriate forwarding path

54

3.1 Background and Related Work

Figure 3.4: Packet Processing in an OpenFlow Switch [42].

for the packet, which is installed as a new entry. The next packets that have

the same characteristics will follow this rule as well. Otherwise, if the packet

matches one or several �ow entries, the switch implements the action of the

entry that has the highest priority, e.g., forwards the packet to an output port.

Meanwhile, the counter of this entry is updated to record the statistics of the

�ow and inform the controller once a statistic request is inquired.

Flow Installation Approaches. To install a new rule in an SDN switch, a

controller either acts according to a proactive method, or a reactive approach.

On the one hand, the reactive method is precisely the process mentioned in the

previous paragraph, which requires the controller to react to each new incoming

packet, or in other words, the rules are installed on demand during run time. On

the other hand, in the proactive approach, the �ow tables in all switches are pre-

populated before tra�c arrives. The switches are proactively programmed with

�ow paths or followed a policy de�ned by the controller. Therefore, the tra�c is

forwarded without controller involvement. Both approaches have several pros

and cons as listed in Table 3.1.

55

3 Impact of the SDN Control Plane on the Data Plane Performance

Table 3.1: Proactive vc. Reactive Flow Installation [48–50]

Criteria Proactive Reactive

Method

Controller pre-installs table

entries for all possible tra�c

patterns

First packet of each �ow

triggers rule insertion by the

controller

Setup

time

+© Zero �ow setup time for

each �ow

–© Each �ow incurs �ow

setup time

Flow

Table

–© Requires large �ow table +© E�cient use of �ow table

Connec-

tion

lost

+© Loss of connectivity does

not disturb tra�c in data

plane

–© Loss of connectivity

between controller and switch

limits utility of the switch

Apply

for

+© Good for stateless

forwarding: L3 routing, static

�rewall

+© Good for stateful

forwarding: L2 switching,

dynamic �rewall

Others

–© Requires aggregate rules,

foreknowledge of tra�c

patterns

–© Controller might be a

bottleneck when having so

many request

Nevertheless, the reactive method might lead to a bottleneck at the con-

troller due to an enormous number of PACKET-IN messages in the control plane.

Therefore, in this chapter, the proactive �ow installation is focused on, in which

the controller sends FlowMod messages in advance to set up new rules in the

switch as presented in the next Section.

56

3.1 Background and Related Work

3.1.2 Methods of Sending FlowMod Messages

Information exchange between systems can be performed by means of one of

two paradigms: synchronous and asynchronous messaging. Asynchronous mes-

sages are passed between two entities: the sender emits multiple messages and

does not wait for a response before continuing to send the next messages. In

contrast the synchronous messaging, where the sender does not send a new

message until it receives an acknowledgment of the previous one. In the sce-

nario of sending FlowMod messages, the OpenFlow speci�cation [51] de�nes

the optional Barrier messages which can be used to perform both kinds of mes-

saging. The desired behavior can be achieved by using Barrier messages either

after each FlowMod message or after multiple FlowMod messages. When in-

stalling rules on an OpenFlow switch, an SDN controller o�ers implementations

for those methods as described in detail in Figure 3.5.

Figure 3.5: Asynchronous and synchronous methods for adding �ows to an Open-
Flow switch.

The time sequence diagram when applying the asynchronous method to send

FlowMod messages is presented on the left hand side of Figure 3.5. The con-

57

3 Impact of the SDN Control Plane on the Data Plane Performance

troller sets the rules by sending a batch of FlowMods and terminates the process

with a Barrier Request. Whenever the switch �nishes installing all the rules, it

con�rms this to the controller with a Barrier Reply. In this chapter, this method

is referred to as addFlowAsync and is distinguished from addFlow. In the addFlow
method, the controller always sends messages in a sequence in which a Flow-

Mod message is followed by a Barrier Request message and waits for a Barrier

Reply, before dispatching the next FlowMod. By doing this, the controller en-

sures that each requested rule is actually installed in the table of the switch.

Furthermore, Figure 3.5 illustrates the di�erent components of the FlowMod

processing time that are investigated in this chapter. On the most left, tg repre-

sents the time that the controller needs to generate n FlowMod messages in the

case of addFlowAsync and tb is the duration between BarrierRequest and Barri-

erReply. The time between the �rst FlowMod and the last BarrierReply indicates

how long it takes the switch to �nish setting up n rules and is denoted as ts in

both cases. Finally, tfP denotes the time di�erence between the �rst FlowMod

message and the �rst data plane packet that is forwarded by the switch accord-

ing to the last FlowMod it received as depicted on the right side of Figure 3.5.

This veri�es that the corresponding �ow entry is actually installed in the data

plane of the switch.

These parameters are measured and analyzed in detail in Section 3.2 to de-

�ne the impact of di�erent FlowMod installation mechanisms regarding their

processing time in the SDN control plane. The measurements are implemented

by using several switches with these mechanisms characterized by di�erent de-

grees of accuracy, cost, complexity, and the capability of performing measure-

ments at run time.

3.1.3 Performance Evaluation of SDN Components

This section covers two main areas of related work. On the one hand, approaches

for evaluating the performance of di�erent aspects and components of an SDN

architecture are presented. On the other hand, an overview of mechanisms for

58

3.1 Background and Related Work

identifying and addressing the heterogeneity of switches in the SDN data plane

is provided.

Possibilities for testing the network as a whole in the context of SDN are

discussed in [52]. While integrated tests are a long term goal, it is necessary to

understand the behavior of the individual network elements, i.e., controllers and

switches in case of SDN. In an e�ort to provide means to test the switch behav-

ior with respect to compliance with the OpenFlow protocol speci�cation, the

authors of [53] present the OFTest suite. In contrast to this work, those studies

focus on function tests rather than performance tests.

The study conducted in [54] features a dedicated hardware tra�c generator

in order to test the data plane performance of Linux-based OpenFlow switching.

In a similar setup, the authors of [55] investigate the characteristics of virtual

switches and underlying virtualization techniques. In both works, the main in-

terest lies in the data plane performance of the di�erent switch implementations.

This di�er to this work, on the other hand, investigates di�erent measurement

mechanisms for the control plane performance of OpenFlow-enabled switches

and provides a �rst step towards classifying these mechanisms according to cri-

teria like accuracy and complexity.

In [56] presents comparisons the control plane performance between three

of the most common SDN controllers: Opendaylight Beryllium
3

, ONOS Falcon
4

,

and Floodlight 1.2
5

. The tests setup 100k �ows in Mininet
6

environment, then

restart the network and wait until all �ows are con�rmed being re-programmed.

Instead of using an emulation tool (Mininet) to emulate OpenFlow switches,

our work implements testbeds with physical devices from di�erent vendors, to

probe whether vendors variation has an impact on the investigated times. Fur-

thermore, not only open-source controllers but also a commercial controller are

3https://www.opendaylight.org/what-we-do/current-release/
beryllium

4https://wiki.onosproject.org/display/ONOS/Release+notes+-+
Falcon+1.5.0

5https://floodlight.atlassian.net/wiki/spaces/
floodlightcontroller/pages/24805419/Floodlight+v1.2

6http://mininet.org/

59

https://www.opendaylight.org/what-we-do/current-release/beryllium
https://www.opendaylight.org/what-we-do/current-release/beryllium
https://wiki.onosproject.org/display/ONOS/Release+notes+-+Falcon+1.5.0
https://wiki.onosproject.org/display/ONOS/Release+notes+-+Falcon+1.5.0
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/24805419/Floodlight+v1.2
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/24805419/Floodlight+v1.2
http://mininet.org/

3 Impact of the SDN Control Plane on the Data Plane Performance

considered in our work.

Kuzniar et al. [57] investigated di�erent hardware switches to identify the

characteristics of the interaction between the SDN control and data plane, e.g.,

rule installation latency or the accuracy of installed rules con�rmation. The

work discovers that the switches might send the con�rmation of �ows installa-

tion, even before the �ows have really been applied in the data plane. Similar

interest regarding the �ow updating rate, OFLOPS [58] is a software framework

for testing OpenFlow switch performance in the data plane as well as in the con-

trol plane. Its extension, OFLOPS-Turbo [59] is capable of 10 GbE tra�c gener-

ation and utilizes the open-source NetFPGA-based OSNT [60] tra�c generator

and capture system. Focusing on the processing of FlowMod messages, our work

aims at comparing di�erent mechanisms for switch performance evaluation and

identifying their trade-o�s.

Furthermore, analytical approaches like [61] and [62] investigate the in�u-

ence of various network parameters on the performance of an OpenFlow archi-

tecture. Since such models are often based on measurements, the accuracy of

these measurements also positively a�ects the quality of the resulting models.

Therefore, one key aspect of our analyses is the accuracy of the available mea-

surement mechanisms. A methodology for assessing the accuracy of measure-

ments in the SDN context is presented in [63]. In addition to measurements per-

formed by an SDN controller module, wiretaps installed at both ends of a com-

munication channel serve as a means of providing the ground truth. This tech-

nique is also applied in the experiments that are conducted during the course of

this work.

Several previous works highlight the heterogeneity of SDN switch hardware

in terms of functionality, performance, and OpenFlow protocol compliance [64,

65]. Unexpected or unreliable behavior such as additional delays and inconsis-

tency between control and data plane pose several risks with respect to security

as well as correct forwarding behavior. Hence, this heterogeneity needs to be

taken into account for proper planning and design of real world deployments.

Some aspects of the heterogeneity, e.g., OpenFlow protocol compliance, are

60

3.2 Proactive Flow Installation Evaluation

addressed by approaches such as TableVisor [66] and FlowConvertor [67] that

introduce abstraction layers to translate given OpenFlow messages to device

speci�c directives that take into account the behavior of individual switch hard-

ware. While their focus is on maintaining functional homogeneity, we address

the performance aspect. Finally, methods for data plane veri�cation and con-

sistency checks between data and control plane are proposed in [68]. However,

rather than focusing on the identi�cation of faulty switches, we are interested

in performance prediction.

3.2 Proactive Flow Installation Evaluation

This section focuses on the performance evaluation of the FlowMod process-

ing time when installing OpenFlow rules following proactive method as men-

tioned in Section 3.1.2. Beginning with an overview of testbed setup including

the hardware used, topology, and the course of the experiment is described. Af-

terwards, the evaluation results in the scenario without any additional delay in

the SDN control plane are presented. First, a comparison of the behavior of dif-

ferent switches is presented by analyzing various components of the FlowMod

processing time that are recorded at the wiretaps. Second, an in-depth evalu-

ation of the accuracy levels achieved by the di�erent measurement methods

demonstrates their feasibility in the tested scenarios. Finally, recommendations

regarding the choice of approaches are derived from the aggregated measure-

ment results.

3.2.1 Experimental Setup

There are several options for assessing the FlowMod performance of an Open-

Flow switch in terms of the aforementioned components of the processing time.

Three such approaches are discussed as follows.

First, a purely software-based solution using the OpenDaylight controller is

61

3 Impact of the SDN Control Plane on the Data Plane Performance

analyzed. In this context, the Hydrogen release
7

of the OpenDaylight controller

is installed on a PC
8

which uses the Ubuntu 12.04 operating system. While the

controller is attached to the OpenFlow switch under test and generates control

plane tra�c, i.e., FlowMod and Barrier messages, the Iperf
9

software running

on an additional server is used to send UDP tra�c to the switch’s data plane.

Finally, the tra�c sink waits for the arrival of matched packets. In the context

of the OpenDaylight controller, there are two options for obtaining the desired

components of the FlowMod processing time. On the one hand, tra�c captures

recorded by the tcpdump tool running on the machine that hosts the controller

can be used to calculate tg , tb, and ts. On the other hand, it is possible to im-

plement a Java module for the controller which intercepts the timestamps of

events like sending FlowMods or receiving Barrier messages in order to derive

the aforementioned times. Due to the use of concurrency within the implemen-

tation of these methods, however, not all timestamp-based measurements are as

accurate as the ones obtained via tcpdump.

The second approach utilizes a Spirent C1
10

, an Ethernet testing platform

which allows generating tra�c according to di�erent protocols including Open-

Flow. This device has four 1GbE interfaces, three of which emulate the con-

troller, tra�c source, and tra�c sink, respectively. FlowMod messages are sent

to the management port of the switch. Simultaneously, the tra�c source keeps

sending tra�c to the tra�c sink. The Spirent Test Center software (STC) pro-

vides means to measure tra�c characteristics like packet delay, including values

corresponding to tg , tb, ts, and tfP . In addition to the result database generated

by the STC, the Spirent C1 also allows directly recording packet traces at each

individual port. Using these captures, it is possible to determine the components

of the FlowMod processing time as well.

7https://www.opendaylight.org/software/downloads/
hydrogen-base-10

8

Intel(R) Core(TM)2 Duo CPU E8500/4G RAM

9https://iperf.fr/
10http://www.spirent.com/Test-solutions_datasheets/Broadband/

PAB/Spirent_TestCenter/STC_C1-Appliance_Datasheet

62

https://www.opendaylight.org/software/downloads/hydrogen-base-10
https://www.opendaylight.org/software/downloads/hydrogen-base-10
https://iperf.fr/
http://www.spirent.com/Test-solutions_datasheets/Broadband/PAB/Spirent_TestCenter/STC_C1-Appliance_Datasheet
http://www.spirent.com/Test-solutions_datasheets/Broadband/PAB/Spirent_TestCenter/STC_C1-Appliance_Datasheet

3.2 Proactive Flow Installation Evaluation

As mentioned in Section 3.1.3, the OFLOPS framework provides means for

measuring FlowMod processing times as well. The framework is capable of mea-

suring FlowMod processing times according to [58] which are displayed in Ta-

ble 3.2, together with the two mentioned tools. Additionally, two wiretap devices

are used to accurately capture the processing times which are used as ground

truth.

Table 3.2: Comparison of measurement mechanisms.

Time addFlowAsync addFlow
STC ODLM OFLOPS STC ODLM OFLOPS

tg 3 3 3
N.A.

tb 3 3 3

ts 3 3 3 3 3 3

tfP 3 7 3 3 7 3

In order to evaluate the performance of an OpenFlow switch with respect

to the processing time of FlowMod messages, the following scenario is imple-

mented in a testbed. The testbed is set up according to recommendations for test-

ing OpenFlow performance published by Spirent
11

and is shown in Figure 4.12.

Starting with an empty OpenFlow table in the switch, the controller sends a

FlodMod message that installs a rule with the lowest priority to drop all packets

in order to avoid forwarding unmatched packets to the controller. Afterwards,

the controller starts sending a batch of FlowMods to install these rules according

to one of the two methods that were presented in Section 3.1.2. Simultaneously,

the tra�c source generates data plane tra�c that matches the last rule. Finally,

the results of the experiment are extracted from the reports that are generated

by the OpenDaylight controller or Spirent Test Center, allowing to evaluate how

fast an OpenFlow switch processes FlowMod messages. The results are validated

11http://www.spirent.com/~/media/White%20Papers/Broadband/PAB/
OpenFlow_Performance_Testing_WhitePaper.pdf

63

http://www.spirent.com/~/media/White%20Papers/Broadband/PAB/OpenFlow_Performance_Testing_WhitePaper.pdf
http://www.spirent.com/~/media/White%20Papers/Broadband/PAB/OpenFlow_Performance_Testing_WhitePaper.pdf

3 Impact of the SDN Control Plane on the Data Plane Performance

Wiretap 2

Traffic Source

Traffic Sink

Monitor
Server

Wiretap 1

FlowMod Messages (OF 1.0)

Data Plane Traffic

Captured Packets

Controller

OpenFlow
Switch

Figure 3.6: Logical testbed setup.

by using tap devices to capture transmitted packets and accurately calculate

the latency between the �rst FlowMod and the arrival of the �rst packet which

matched the last rule.

Two Net Optics tap devices
12

are installed before and after the OpenFlow

switch in order to mirror both control plane tra�c to and from the switch as well

as data plane tra�c to the tra�c sink. The monitor server HP Proliant DL32 uses

two Endace DAG 7.5G2 capture cards to capture every incoming packet. Based

on their time stamps, it is possible to calculate all components of the FlowMod

processing time as well as tfP for validating the installation of OpenFlow rules.

On the data plane, the tra�c source sends UDP tra�c with its IP as source IP ad-

dress and the destination IP address corresponding to the tra�c sink. This tra�c

can not reach the tra�c sink until the last FlowMod, which has the matching

�elds regarding source and destination IP addresses, is installed. The experi-

ments are implemented using three OpenFlow switches from di�erent vendors,

focusing on an evaluation of the installation speed of OpenFlow rules. The spec-

12http://www.ixiacom.com/products/ixia-gig-zero-delay-tap/

64

http://www.ixiacom.com/products/ixia-gig-zero-delay-tap/

3.2 Proactive Flow Installation Evaluation

i�cations of the switches under test are summarized in Table 3.3.

Table 3.3: Switches used in this work.
Switch CPU Memory Software

Pronto 3290

MPC8541

825 MHz
512MB

PicOs 2.0.14

(Open vSwitch v1.10.0)

Quanta T1048
MPC8541

825 MHz
1024MB

PicOs 2.6

(Open vSwitch v2.3.0)

NEC PF5240

PowerPC

667 MHz
1024 MB

OS-F3PA

v5.0.0.1

The �ow table of the NEC PF5240 has a limit of 2816 entries and the Quanta

switch often exhibits unexpected behavior in the context of generating more

than 2000 �ow table entries. Hence, the number of FlowMod messages used in

the experiments ranges from 2 to 1800 messages. Each run is repeated 10 times

in order to obtain 90% con�dence intervals.

3.2.2 Comparison of Switch Behavior

Figure 3.7 shows di�erent components of the FlowMod processing time based

on measurements performed at the wiretaps while using di�erent numbers of

FlowMod messages and di�erent switches. In particular, the time between the

�rst FlowMod and the last Barrier Reply, ts, and the time until receiving the

�rst packet on the data plane, tfP , are presented. On the x-axis, the number

of �ows is displayed. According to the limitations of the di�erent switches un-

der test, this number is varied between 10 and 1800. Di�erently colored and

shaped curves denote di�erent switch models and time components, respec-

tively. The y-axis represents the processing time of the corresponding parame-

ter combination. Additionally, error bars provide 90 % con�dence intervals ob-

tained by repeating each experiment 10 times. For the presented measurements,

FlowMod messages were generated with the OpenDaylight controller using the

addFlowAsync method.

65

3 Impact of the SDN Control Plane on the Data Plane Performance

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

Number of Flows

T
im

e
[s

]

t
 s

 − NEC

t
 s

 − PRONTO

t
 s

 − QUANTA

t
 fP

 − NEC

t
 fP

 − PRONTO

t
 fP

 − QUANTA

Figure 3.7: Di�erent switch behavior measured at the wiretaps.

While the NEC switch exhibits the longest processing times of up to almost

5 seconds in case of installing 1800 �ows, it is the only device for which the rela-

tionship ts > tfP holds throughout all experiments. Thus, when the controller

receives the Barrier Reply message, the switch’s �ow table update is already

�nished, resulting in a consistent state between the switch and the controller.

For the Pronto and Quanta switches, on the other hand, this relationship is re-

versed: after receiving the Barrier Reply message, the controller expects the �ow

installation to be completed, although it is still being processed in the switches.

Such an inconsistency could potentially cause unexpected behavior, e.g., when

the controller uses its northbound API to communicate the seemingly �nished

update to an application that starts its transmission immediately. While the ex-

tent of this deviation is in the order of magnitude of 50 ms in case of Pronto, it is

increased to roughly 400 ms in the case of the Quanta switch. On the other hand,

the Quanta switch consistently outperforms the other two models in terms of

ts and tfP by a signi�cant margin as soon as more than 600 �ows are installed.

These results demonstrate that each switch model might have its own char-

acteristic behavior. Hence, network operators need to evaluate the performance

66

3.2 Proactive Flow Installation Evaluation

of hardware devices before deploying them in the network in order to ensure

a reliable network behavior. In the following section, the accuracy of di�erent

approaches for measuring switch characteristics is evaluated.

3.2.3 Accuracy Assessment of Measurement Mechanisms

The setup time ts is an important performance indicator for OpenFlow switches

since it usually constitutes the majority of the FlowMod processing time. Addi-

tionally, in case of the OpenDaylight Java module, it is possible to measure the

value of this parameter during runtime and to integrate it into the controller’s

feedback loop. Therefore, Figure 3.8 displays cumulative distributions of the ac-

curacy of the ts measurements for the two measurement tools OpenDaylight

and Spirent C1. In this context, the accuracy refers to the di�erence between the

value recorded by the measurement tool and the corresponding wiretap which

is considered to be the ground truth. There is also a distinction between the

results achieved from di�erent measurement probes, i.e., Java and tcpdump in

case of OpenDaylight and Spirent Test Center and port-based captures in case

of the Spirent C1.

Figure 3.8a shows the accuracy of the measurement probes available for the

OpenDaylight controller. While the accuracy in microseconds is displayed on

the x-axis, the y-axis denotes the fraction of measurements that are below a

particular accuracy threshold. Di�erent line colors represent di�erent switches

and the line shapes correspond to the measurement probes. In case of OpenDay-

light, curves corresponding to di�erent probes form two groups of which their

values di�er only marginally from switch to switch. The �rst group represents

the tcpdump measurements and features values that are mainly in the range

between 100 and 300µsec. The values reported by the Java module inside the

controller are higher, with values ranging from 400µsec to 1 ms. This behavior

is consistent with the measurement setup: since the Barrier Reply message from

the switch �rst passes the controller’s network interface before arriving in the

user space Java application. Thus, the time measured by the latter is higher than

67

3 Impact of the SDN Control Plane on the Data Plane Performance

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

t
s
 − Deviation from Tap [µsec]

C
D

F

tcpdump − NEC
Java − NEC
tcpdump − PRONTO
Java − PRONTO
tcpdump − QUANTA
Java − QUANTA

(a) OpenDaylight module.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

t
s
 − Deviation from Tap [µsec]

C
D

F

capture − NEC
STC − NEC
capture − PRONTO
STC − PRONTO
capture − QUANTA
STC − QUANTA

(b) Spirent C1.

Figure 3.8: Distribution of the accuracy of the ts measurement when using di�erent
measurement tools and probes.

in case of tcpdump.

Like the previous �gure, the curves in Figure 3.8 form groups according to

the measurement probe. While the port-based capture provides measurements

68

3.2 Proactive Flow Installation Evaluation

that are accurate up to an order of magnitude of roughly 30µsec in most cases,

the reports generated via the Spirent Test Center show a di�erence of around

200µsec as well as signi�cantly more outliers in terms of accuracy. When us-

ing the Spirent C1 in conjunction with the Quanta switch, irregular behavior is

observed regardless of the number of installed �ows. Since the Spirent C1 is a

proprietary closed-source system, this phenomenon can not be investigated in

detail.

−200 −150 −100 −50 0 50
0

0.2

0.4

0.6

0.8

1

Deviation between t
s
 from Tool and t

fP
 from Tap [ms]

C
D

F

tcpdump − NEC
Java − NEC
tcpdump − PRONTO
Java − PRONTO

Figure 3.9: Distribution of δ = ttools − ttapfP .

While Figure 3.7 shows that ts and tfP are almost identical for the majority

of switch models, Figure 3.9 presents a quantitative view on the observed devia-

tion between tool-based measurements of the setup time ttools and the time until

the �rst packet ttapfP as reported by the wiretap. Values on the x-axis represent

the di�erence δ = ttools − ttapfP and the y-axis indicates the fraction of measured

values below each threshold. Due to the irregularities discussed in the previ-

ous paragraphs, measurements regarding the Quanta switch are omitted for the

sake of readability. As reported before, the tcpdump and Java probes provide

very similar data, with tcpdump being slightly more accurate. Additionally, the

�gure allows deriving guidelines for determining the time until a set of Flow-

69

3 Impact of the SDN Control Plane on the Data Plane Performance

Mod messages are actually processed in the data plane of a particular switch

model. For example, δ > 0 in case of the NEC switch implies that the Barrier

Reply is always sent after the rule is installed in the switch. Hence, the controller

receives information that corresponds to the switch’s data plane. In contrast, the

minimum value of δ = −170ms in case of the Pronto switch means that up to

170 ms may pass before the controller and switch are in a synchronized state.

Information regarding these delays can be obtained by performing such mea-

surements before actually deploying the switches in a network, hence allowing

the operator to incorporate them into the northbound and southbound APIs of

the SDN controller and increase the reliability of the information exchange in

the network.

3.2.4 Correlation Analysis of Measurement Mechanisms

In order to provide an aggregated overview of the results, Table 3.4 shows the

correlations between the tool-based measurements and the ground truth accord-

ing to the wiretap devices. Previous results indicate that in case of the Spirent C1,

the port-based captures provide a higher level of accuracy. In the context of the

OpenDaylight controller, the Java module is more relevant in a practical context

due to its capability to perform measurements during/at runtime. Hence, only

these probes are included in the table. The correlation is determined according

to Spearman’s rank correlation coe�cient [69].

In addition to the correlation between measurements of the same component

of the FlowMod processing time, the table also provides information on the re-

lationship between ts measured via the tools and tfP measured via the wiretap.

A high degree of correlation in this context implies that it is possible to reli-

ably predict the time until the requested FlowMod messages are installed in the

switch’s data plane when the ts measurements are given.

For the NEC and Pronto switches, all correlations are above 99 %. This behav-

ior is in line with previous observations which show deviations in the order of

magnitude of less than 1 ms for values that are as high as multiple seconds. In

70

3.3 In�uence of Control Plane Delay on Proactive Flow Installation

Table 3.4: Correlations betweenmeasurements from di�erent tools and the wiretap-
based ground truth.

Mode addFlowAsync addFlow

Tool ODL/Java STC/Capture ODL/Java STC/Capture

PPPPPPSwitch

Pair (ttap
s ,

ttools)

(ttap
fP ,

ttools)

(ttap
b ,

ttoolb)

(ttap
s ,

ttools)

(ttap
fP ,

ttools)

(ttap
fP ,

ttools)

NEC 1.0000 0.9999 0.9983 1.0000 0.9999 0.9988

Pronto 0.9999 0.9980 0.9958 0.9992 0.9994 0.9989

Quanta 0.9999 0.8146 0.8790 0.9984 0.9396 0.3727

case of the Quanta switch, however, there is no signi�cant correlation between

ts and tfP . As observed in Figure 3.7, the time until the �rst data plane packet

is matched in the switch is nearly constant while the setup time increases when

the number of installed �ows is increased.

3.3 Influence of Control Plane Delay on Proactive
Flow Installation

In this section, we present the results of the experiments that is similar to the

setup in Section 3.2.1, however, an additional computer with two 1 Gbps Net-

work Interface Cards (NICs) running Ubuntu 16.04 is inserted between SDN

controller and OpenFlow switch in order to generate delays in the SDN con-

trol plane. It emulates the transmission delay in both directions, i.e., from the

switch to the controller and vice versa. The current testbed is setup as detailed

in Figure 3.10. The red lines indicate links with delay, which is set via the tc com-

mand
13

. One additional controller is investigated in this work - the latest version

13sudo tc qdisc add dev [interface] root netem delay [delayValue]

71

3 Impact of the SDN Control Plane on the Data Plane Performance

of the Python-based Ryu controller
14

v4.18 is used in conjunction with an ad-

ditional module that allows the generation of FlowMod messages according to

the two methods mentioned in Section 3.1.2.

Traffic Source

Traffic Sink

Monitor
Server

Wiretap

FlowMod Messages (OF 1.0)
Data Plane Traffic
Captured Packets

Controller

Netem

N
IC

2

N
IC

1

BarrierReply Messages

Link without Delay
Link has Delay

Figure 3.10: Logical testbed setup when adding the control plane delay.

In the following, �rst, we demonstrate the heterogeneity of the switch hard-

ware. This is achieved by comparing the FlowMod processing times of di�er-

ent switches when installing di�erent numbers of �ows and applying di�erent

amounts of control plane delay. Afterwards, we show that using prior informa-

tion on the hardware speci�c characteristics and controller-based delay mea-

surements, it is possible to achieve a high degree of correlation between the

�ow setup time, ts, and the time until �ow rules are active in the data plane,

tfP . This outcome highlights that reliable estimations of tfP are possible at run

time. Finally, we present results regarding the impact of the controller imple-

mentation on the FlowMod processing time.

14http:https://osrg.github.io/ryu/

72

http:https://osrg.github.io/ryu/

3.3 In�uence of Control Plane Delay on Proactive Flow Installation

3.3.1 Sensitivity of Switches towards Control Plane Delay

The two graphs of Figure 3.11 highlight the individual behavior of the three

switches that are used in this work with respect to their sensitivity to param-

eters such as the amount of control plane delay and the number of �ows that

are installed. Their x-axes represent the control plane delay that is set in each

direction between switch and controller, i.e., a value of 10 ms corresponds to a

round trip time of 20 ms. The y-axes denote the �ow setup times ts and tfP that

are recorded by means of the wiretap devices and are represented by dashed

and solid lines, respectively. Finally, di�erently colored curves correspond to

di�erent switches. For each parameter combination, �ve experiment runs are

performed in order to construct 95 % con�dence intervals that are indicated by

the error bars. The results in the �gures are based on measurements with the

OpenDaylight controller. Experiments with the other two controllers yield qual-

itatively similar results and are discussed in Section 3.3.2.

Figure 3.11a displays results from experiments in which a total of 100 Flow-

Mod messages are sent to the switch via the addFlowAsync mechanism, i.e., 100

FlowMods are followed by one pair of BarrierRequest and BarrierReply mes-

sages. Three observations can be made. First, the three switches operate at dif-

ferent time scales. With processing times that are lower than 500 ms for all delay

values, the Pronto switch consistently outperforms the other two switches in

this scenario. Second, the sensitivity of the switches towards the control plane

delay varies signi�cantly, as indicated by the di�erent slopes of the individual

curves. Consequently, the NEC switch achieves lower values of tfP than the

Quanta in scenarios with a low delay, whereas the Quanta switch is least af-

fected by the increasing delay and gives better results for delays that are larger

than 40 ms. Third, while the NEC and Pronto switch send their barrier replies

after having installed all �ow rules into the data plane, i.e., ts > tfP , the Quanta

switch sends out the con�rmation before the rules are active. Hence, a window

of inconsistency of up to half a second can occur if the controller is unaware of

this behavior.

Increasing the number of installed �ows to 1800 exposes additional dif-

73

3 Impact of the SDN Control Plane on the Data Plane Performance

0.0

0.5

1.0

0 10 20 30 40 50 60 70 80 90 100

Delay per Direction [ms]

T
im

e
[s

]
Switch

NEC
PRONTO
QUANTA

Type
tfP
ts

(a) 100 �ows.

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100

Delay per Direction [ms]

T
im

e
[s

]

Switch
NEC
PRONTO
QUANTA

Type
tfP
ts

(b) 1800 �ows.

Figure 3.11: In�uence of the control plane delay on the FlowMod processing time
when using di�erent switches and di�erent numbers of �ows. Scenario
details: OpenDaylight controller and addFlowAsync mechanism.

ferences between the switches. The corresponding results are shown in Fig-

ure 3.11b. For all switches, the increased number of FlowMod messages that

74

3.3 In�uence of Control Plane Delay on Proactive Flow Installation

need to be processed results in larger setup times. Furthermore, the high delay

sensitivity of the NEC switch is even more pronounced in this scenario, with

setup times ranging from 5 to over 20 seconds. In the case of the Quanta switch,

a signi�cant increase of the installation time is observed for delay values larger

than 60 ms. Combined with the premature barrier reply message, this can be a

major threat to the state of consistency. Only the Pronto switch is able to main-

tain nearly constant ts and tfP values for all delay settings.

While the wiretap-based measurements that are presented in the previous

�gures demonstrate the di�erences between the hardware switches, there is a

high pairwise similarity between ts and tfP values. We use this relationship to

derive a mechanism that can be used to infer tfP from information regarding

the particular switch model that is in use and measurements at the controller.

These measurements include tcpdump on the controller machine to obtain ts

and a simple round trip time measurement like ping to determine the control

plane delay.

For each of the three switches, the graphs in Figure 3.12 show the measure-

ment of the �ow setup time ts at the controller on the x-axis and the actual time

until the �rst data plane packet tfP at the wiretap on the y-axis. Di�erently

colored dots denote di�erent control plane delays.

In Figure 3.12a, results that are obtained when installing 100 �ow rules are

displayed. Although the times that are recorded for the three switches have sig-

ni�cantly di�erent ranges, a high linear correlation between ts and tfP can

be observed. Hence, using switch-speci�c information regarding its sensitivity

towards control plane delay in conjunction with round trip time and ts mea-

surements is su�cient for an accurate estimation of the �ow installation time

in the data plane.

Similar results are obtained in case of the installation of 1800 �ow rules, as

presented in Figure 3.12b. While the NEC switch has the highest setup and pro-

cessing times, it also has the most consistent behavior and an almost perfect lin-

ear correlation. Except for few outliers, the Pronto switch also shows a high de-

gree of correlation, even with the increased number of �ows. Finally, the Quanta

75

3 Impact of the SDN Control Plane on the Data Plane Performance

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

NEC PRONTO QUANTA

0.5 1.0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

0.54

0.57

0.60

0.63

0.1

0.2

0.3

0.25

0.50

0.75

1.00

1.25

ts [s]

t fP
 [s

]

Delay [ms]
●

●

●

●

●

●

●

0
10
20
40
60
80
100

(a) 100 �ows.

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●● ● ● ●

●

●

●● ● ● ●

●

●

● ●● ● ●

●

●

● ●● ● ●

●

●

● ●● ● ●

●

●

NEC PRONTO QUANTA

5 10 15 20 2.6 2.8 3.0 0.25 0.50 0.75
0

3

6

9

2.6

2.8

3.0

5

10

15

20

ts [s]

t fP
 [s

]

Delay [ms]
●

●

●

●

●

●

●

0
10
20
40
60
80
100

(b) 1800 �ows.

Figure 3.12: Flow setup time ts recorded at the controller and time to �rst data plane
packet tfP recorded via the wiretap for the three di�erent switches. Sce-
nario details: OpenDaylight controller and addFlowAsync mechanism.

switch produces outliers for high control plane delays. Nevertheless, this behav-

ior is observed consistently - qualitatively as well as quantitatively - in multiple

repetitions of our experiments, as indicated by clusters of dots in the scatter plot.

Therefore, this switch-speci�c characteristic can also be taken into account by

the controller when making predictions regarding the data plane state.

76

3.3 In�uence of Control Plane Delay on Proactive Flow Installation

Summarizing, our �ndings show that using simple controller-based measure-

ments in combination with switch properties, which can be determined prior to

deployment, can be used for performing an accurate prediction of the FlowMod

installation time in the data plane of OpenFlow switches.

3.3.2 Impact of Controller Implementation

While the previously shown results focus on the peculiarities of di�erent data

plane hardware, this section is devoted to the in�uence of the controller imple-

mentation on the performance. To this end, experiments with the NEC switch

are conducted with three di�erent controllers. These include the Java-based

OpenDaylight controller, the Python-based Ryu controller, as well as the con-

troller implementation that is provided by the OpenFlow Testing Package of the

Spirent C1. In case of the OpenDaylight and Ryu controller, the same host ma-

chine is used to ensure that the results are not a�ected by a heterogeneity of

the underlying hardware. The graphics in Figure 3.13 show ts and tfP values

for di�erent numbers of �ows on the y-axis and the control plane delay on the

x-axis. Di�erently colored lines correspond to the three controllers.

When 100 �ows are installed, the majority of con�dence intervals in Fig-

ure 3.13a overlap. This indicates that for control plane delays that are larger

than 10 ms, no statistically signi�cant di�erence between the three controllers

can be identi�ed. In the case of control plane delays that are lower than 20 ms,

using the OpenDaylight controller leads to setup times of roughly 0.23 seconds

as opposed to setup times of roughly 0.34 seconds that are observed for Ryu and

the Spirent-based controller.

These phenomena are even more pronounced in the case of 1800 �ows.

Figure 3.13b shows that using the OpenDaylight controller leads to consis-

tently faster �ow setup times than Ryu and Spirent. Di�erences between 1 and

2 seconds are observed for setup times that range between 4.7 and 21.6 seconds.

The aforementioned results indicate that the controller is not merely a genera-

tor of FlowMod messages but can also a�ect the performance. In-depth analyses

77

3 Impact of the SDN Control Plane on the Data Plane Performance

0.5

1.0

0 10 20 30 40 50 60 70 80 90 100

Delay per Direction [ms]

T
im

e
[s

]
Controller

ODL
RYU
STC

Type
tfP
ts

(a) 100 �ows.

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100

Delay per Direction [ms]

T
im

e
[s

]

Controller
ODL
RYU
STC

Type
tfP
ts

(b) 1800 �ows.

Figure 3.13: Impact of the controller choice on �ow setup times for di�erent
numbers of installed �ows. Con�guration details: NEC switch and
addFlowAsync mechanism.

of the corresponding packet dumps show that the sending behavior of the Open-

Daylight controller and the corresponding packetization of OpenFlow messages

78

3.4 Lessons Learned

di�ers from the other two controllers. Hence, controller developers should be

aware of such mechanisms in order to adapt to switch capabilities and opportu-

nities to improve the overall performance.

3.4 Lessons Learned

In this chapter the impact of the SDN control plane on the performance of SDN

switches and the operation of SDN controllers is investigated with di�erent

combinations of SDN controllers and switches. The indicator parameters are

several components of the processing time of FlowMod message when installing

rules proactively in OpenFlow switches with di�erent approaches. Also, the ac-

curacy referring to the di�erence between the value recorded by the measure-

ment approaches and the corresponding the ground truth obtained by Wiretap

devices [63] is analyzed. Furthermore, delay in the SDN control plane is also

taken into account and evaluated to infer the reliably of FlowMod processing

times.

To evaluate the performance of OpenFlow switches with respect to the pro-

cessing time FlowMod messages, two approaches are presented. These ap-

proaches are characterized by di�erent degrees of accuracy, cost, complexity

and the capability of performing measurement at run time. The �rst method is

a software-based approach featuring a module for an open-source controller

such as OpenDaylight implemented in Java or Ryu programmed in Python.

The module generates a number of FlowMod messages and sends these to the

switches by performing two mechanisms, i.e., while the asynchronous mech-

anism establishes a batch of FlowMod messages which is followed by a single

Barrier-Request to ask the switches to con�rm �ow installation, the synchronous
mechanism continuously generates pairs of FlowMod and Barrier-Request. The

processing times are calculated by a Java/Python function itself as well as ex-

tracting the relevant data from capture �les recorded inside the controller and

from another external monitoring server. In addition to the bene�ts regarding

costs and ease of use, the software-based controller module provides the capa-

79

3 Impact of the SDN Control Plane on the Data Plane Performance

bility to run during normal operation. This enables features like switch perfor-

mance monitoring at low costs in terms of resource overhead.

The second approach is based on the commercial Spirent C1 dedicated test-

ing platform. Similar to the Java-based approach, OpenFlow rules are installed

proactively in a similar manner as aforementioned mechanisms. The Spirent

Test Center application records multiple parameters related to the performance

of a switch to a database such as the number of active �ows, �ow setup times,

or barrier reply/response times. Furthermore, the application provides several

OpenFlow testing for both OpenFlow controller and OpenFlow switch, e.g., ta-

ble capacity testing, pipeline processing performance, or packet in/out perfor-

mance. However, in this chapter, the focus lies on the FlowMod performance and

its implementation. The results show that this approach has a smaller distinc-

tion between results from this approach and the measurement probe (port-based

captures) than case above (for example Java module and tcpdump).

The two approaches are evaluated with respect to the accuracy of their mea-

surements of several components of the FlowMod processing time. Moreover,

they represent di�erent classes of mechanisms that are available to network

operators who need to make sure that a planned SDN deployment meets the re-

quirements of a particular use case. The aspect of switch performance evaluation

is especially relevant since the measurements show signi�cant di�erences be-

tween di�erent switch models. Results of the experiments with three switches

from three di�erent vendors show that both approaches achieve an accuracy

in the sub-millisecond range when compared to measurements performed with

dedicated capture cards at wiretaps. Except for one switch model - the Quanta

T1048 - with unexpected behavior, the mechanisms achieve similar accuracy

levels independent of the device under test. Furthermore, high correlations be-

tween measurements at the tools and the wiretaps indicate that measured values

can be used to derive performance metrics even more accurately. Especially for

the NEC and Pronto switches, all the correlations are above 99%. Additionally,

during �ow installation time, the NEC switch always inform the controller after

the rules are applied, and packets on the data plane are forwarded. The Pronto

80

3.4 Lessons Learned

switch, however, sends the con�rmation up to 170 ms before the rules are acti-

vated.

Finally, varying control plane delays are considered by inserting a network

emulation to add delays. This includes not only varying processing times but

also di�erent degrees of sensitivity towards the control plane delay between the

controller and the switch. In addition, switch-speci�c characteristics that can be

extracted prior to deployment can be used in conjunction with simple measure-

ments at the controller in order to accurately predict the data plane state and

performance of switches. Such a prediction mechanism can signi�cantly reduce

the window of inconsistency between an SDN controller and the switches it

manages. Consequently, the implementation details of the SDN controller can

also have an impact on the overall FlowMod processing performance due to

sender-side behavior. This leads to optimization potential that can be taken into

account by both, controller developers who want to improve the general perfor-

mance of their controller as well as network operators who want to maximize

compatibility and reliability of the components in their network.

81

4 Flow Monitoring Approaches in

SDN Networks

Network monitoring refers to activities that overseeing the operation of a com-

puter network as well as examining the status of the network. Namely, it can

verify whether network components such as servers, switches, and routers have

any problem or not, as well as observing the performance of networks like band-

width usage or network tra�c. Doing this provides useful information to oper-

ators in several aspects. First, as the knowledge of the system is regularly col-

lected, troubleshooting can be performed quickly to prevent the system from un-

predictable problems. The time needed to diagnose problems might be reduced

signi�cantly because of a better understanding what is going on in the net-

work as well as timely issue alerts. Second, the security and privacy of data and

system can be improved by detecting abnormal behavior based on information

about �le access, user activities, or network intrusion logs. Finally, monitoring

tools collect network performance information like tra�c on speci�c devices,

utilization of individual servers, or response times of services. Such metrics [70]

are exempli�ed as in Figure 4.1, they can be leveraged to analyze network state,

make forecasts of the environment, or become the inputs of a tra�c engineering

tool.

Within a legacy network, tra�c monitoring is utilized either by active or pas-
sive methods or a combination of them. While active monitoring [71] injects

tra�c and tracks these packets, which might impact the performance of the

network, passive monitoring [72] requires additional hardware like TAP (Test

Access Point) device or a speci�c Switch Port Analyzer (SPAN) port on the de-

83

4 Flow Monitoring Approaches in SDN Networks

Figure 4.1: Network Monitoring metrics. [70]

vice. In these cases, data plane tra�c is forwarded to another machine, whole

data when using TAP or a part of the tra�c in case of SPAN. On the one hand,

TAP requires dedicated hardware added into the network. On the other hand,

the performance of the switch might be a�ected due to the exceeded utilization

of the link connected to the SPAN port. In contrast, in an SDN network, the traf-

�c in a network is monitored without mirroring data plane tra�c or tracking

probe packets. Instead, an SDN controller collects the information of the tra�c

by utilizing communication with SDN switches via OpenFlow protocol. In this

way, the monitoring tra�c does not adversely impact the data passing through

underlying hardware as well as does not need any additional sophisticated de-

vice.

Among the aforementioned parameters, the focus in this chapter is tra�c

monitoring at �ow-level. A �ow in the context of SDN is a series of packets

which are de�ned based on common characteristics of those packets, e.g., layer 2

addresses, protocols, or VLAN tags. The tra�c in SDN is an aggregation of multi-

ple �ows, hence, keeping track of the �ows provides the state of exchanged data

between devices. Furthermore, �ow monitoring allows ensuring Quality of Ser-

vice (QoS) for individual applications and services due to its capacity to provide

84

the details of counters for ports, tables, and queues of the �ows in all OpenFlow

switches. This also helps to resolve intermittent network performance problems

regarding bandwidth utilization or tra�c congestion.

Monitoring �ows in SDN mainly relies on the operation of OpenFlow statis-
tics messages, an SDN controller gathers information of every �ow by exchang-

ing FlowStasRequest/FlowStasReply messages with devices in the network. Per-

�ow statistics are regularly requested according to a prede�ned polling interval.

Doing that ensures reliability and timely monitoring information that is rel-

evant to management and con�guration of an SDN-based network. However,

the accuracy of �ow monitoring depends on the frequency of requests from the

controller and also may impact on the performance of an SDN controller. Since

the more the requests, the more the tasks per second that the controller needs

to process. Each SDN controller has a default interval to request the statistic of

all �ows from all devices. When applying this approach to a large scale network

which has an enormous number of switches and its associated �ows, it may lead

to performance degradation issues at the collection time. In fact, the interval is

possible to adjust to a larger number before running an instance of the con-

trollers in order to overcome the performance issue. Nevertheless, the accuracy

of monitoring might be reduced in case of decreasing query frequency. There-

fore, a trade-o� between the performance of controller and the accuracy of �ow

monitoring has to be taken into account. This chapter discusses the trade-o�

alongside the evaluation of two monitoring approaches applied in the ONOS

controller.

The work in this chapter is taken from [6, 8]. After presenting relevant back-

ground and related works in Section 4.1, the evaluation of Adaptive Flow Mon-
itoring approach in the ONOS controller to monitor �ows in SDN networks is

describes in Section 4.2. Then, Section 4.3 introduces another approach called

Selective Flow Monitoring which is developed for more e�ective and more �ex-

ible �ow monitoring. Finally, lessons learned from our studies are provided in

Section 4.4.

85

4 Flow Monitoring Approaches in SDN Networks

4.1 Background and Related Work

In the following, approaches regarding network monitoring are introduced

in 4.1.1. Then, Section 4.1.2 outlines di�erent ways to monitor SDN networks.

After that, Section 4.1.3 highlights the related research done in the �eld of mon-

itoring SDN networks with a focus on �ow statistics.

4.1.1 Network Monitoring Approaches

In the past, computer network administrators might only monitor a few devices

within a small scale of the network. The speed of connections was smaller than

100 Mbps. However, nowadays with the development of communication tech-

nology, internet infrastructure, and hardware con�guration, the administrators

have to deal with higher speed and large-scale networks. The links between de-

vices support rates up to Gigabit per second and the number of devices reach

hundreds to thousand. Network monitoring becomes more and more critical be-

cause of the need to maintain the stability of the system as well as quickly detect

and resolve problems. Whereby, sophisticated monitoring tools and methods are

researched and applied in two main directions: active or passive monitoring as

shown in Figure 4.2.

Active Network Monitoring. This technique is also called "intrusive" mon-

itoring and operates by inserting packets into an existing network [71] as il-

lustrated in Figure 4.2a. The probe tra�c is actively sent and tracked over the

network, then it is analyzed and processed to have relevant metrics. An exem-

plary active monitoring tool is the ping tool, which measures loss of packets

and round trip time between two points in the network based on ICMP Echo

Request/Reply messages. Iperf 1

is another common example of an active mon-

itoring solution, that allows evaluating TCP/UDP bandwidth performance. On

the one hand, such methods allow �exible control of monitoring packets such

1https://iperf.fr/

86

https://iperf.fr/

4.1 Background and Related Work

(a) Active Monitoring. (b) Passive Monitoring.

Figure 4.2: Network Monitoring Approaches. [73]

as the type of packet or the injection time. On the other hand, sending extra

packets might impact the performance of a small and low-speed network.

Passive Network Monitoring. The passive network monitoring approach or

"non-intrusive" [72] is implemented by using devices to capturing tra�c passing

through them. There are several implementations of this approach. First, it can

be done in specialized network sni�er hardware, for example, the Net Optics

wiretap device
2

. The packets cross the device and are mirrored to a monitoring

station as displayed in Figure 4.2b. Here, they are captured and analyzed to ob-

tain a sophisticated investigation, e.g., network topology, applications generat-

ing the packets, or used protocols, etc. The second implementation is a on-device

software, which has the capability to capture packets, and runs as applications

such as Wireshark 3

or tcpdump 4

. Finally, it can be a function assembled into

network devices like switches, routers or hosts. Examples of such built-in tech-

2http://www.ixiacom.com/products/ixia-gig-zero-delay-tap/
3https://www.wireshark.org/
4https://www.tcpdump.org/

87

http://www.ixiacom.com/products/ixia-gig-zero-delay-tap/
https://www.wireshark.org/
https://www.tcpdump.org/

4 Flow Monitoring Approaches in SDN Networks

niques contain Simple Network Monitoring Protocol (SNMP), Remote Monitor-

ing (RMON), and Net�ow [74] capable devices. Performing this approach does

not interfere with the tra�c on the network, however, it might require an addi-

tional hardware besides a monitoring station. In addition, since it might gather

details of the packets, privacy and security issues also need to be taken into

account.

Table 4.1: Comparison between active and passive monitoring [75]
Active Network Monitoring Passive Network Monitoring

Relies on injecting test packets

into network environment

Does not inject any arti�cial

tra�c into existing network

Monitor test tra�c and bases

results on real-time data

Monitor historic tra�c and bases

results on long-term data

Measures tra�c with dedicated

monitoring software only

Requires specialized device to

measure tra�c

Increase load on networking

hardware

Adds very little overhead to

networking hardware

Generates data on particular

aspects of network performance

Provides a holistic overview of

network performance

Collects smaller amounts of data

speci�c to the problem at hand

Collects larger volumes of data

that can be mined for a wide

variety of information

Measures tra�c both inside and

outside network environment

Limited to measuring tra�c on

network devices is connected to

Works as a "controlled

experiment", making it ideal for

measuring a speci�c metric

Works like an "observational

study", making it useful for

analysis of large data volume

Hybrid Network Monitoring. The two methods above have various di�er-

ences which are described in Table 4.1. Each of them has their own pros and cons.

Passive monitoring might be a good choice over active monitoring regarding the

overload of tra�c on the network. Nevertheless, post-processing the captured

88

4.1 Background and Related Work

packet can take a large time. Hence, the combination of two methods is utilized

to leverage the best aspects of both approaches. For example, the schedule of

passive monitoring can be conducted after running the active measurements to

get a speci�c condition (bandwidth, delay) [76]. Zangrilli et. al introduce Watch-

ing Resources from the Edge of the Network (WREN) in [77] in order to combine

active and passive monitoring techniques. Depending on the utilization of the

network, the equivalent method is used. For example, passive monitoring is used

for measuring the load of the network; once the tra�c is low, WREN actively

introduces packets to estimate other parameters.

The approaches, as mentioned earlier, are widely used in both legacy and SDN

networks. For example, while in Chapter 3, Section 3.2.1, passive monitoring is

applied to calculate �ow installation times, in this chapter, the monitoring ap-

proach, which is specially used for SDN network, is introduced. Similar to the

active method, an SDN controller sends packets to the network of OpenFlow

switches. However, instead of tracking those packets, the controller waits for

the respond of those packets in �ow statistics reply messages. Those messages

contain statistic information of �ows in forwarding devices. Details of this ap-

proach is outlined in the next section.

4.1.2 Monitoring an SDN Network

As discussed in Section 3.1.1, SDN networks use the OpenFlow protocol to ex-

change information between an SDN controller and data plane devices. Imple-

menting such protocol allows the controller to retrieve the number of packets

which are processed in the switches. The key element for monitoring tra�c in

the data plane is using �ow statistic request and reply messages, which is de-

scribed in detail as follows.

OpenFlow Counter. It is one of the main components of an OpenFlow table

entry as displayed in Figure 4.3. While the work in the last chapter is performed

with OpenFlow version 1.0, this chapter focuses on version 1.3.0 to have an

89

4 Flow Monitoring Approaches in SDN Networks

up-to-date research. With version 1.3.0 more components in the �ow entry are

added in comparison with the 1.0 version such as Cookies or Timeouts. They are

identi�ers speci�ed by the SDN controller and durations that inform when the

entry is deleted, respectively.

Figure 4.3: OpenFlow v1.3.0 Flow Entry [78].

Figure 4.4: OpenFlow v1.3.0 Counters [78].

OpenFlow 1.3 supports IPv6 that enhances the scalability of the network and

declares the expectation to apply SDN in Internet of Thing (IoT) environments.

Moreover, not only the number of matching �elds is increased, but also multi-

90

4.1 Background and Related Work

ple �ow tables are implemented which allows more �exible matching of packet

headers. This leads to many parameters that the Counter provides since they are

maintained for each �ow entry, �ow table, as well as each port, queue, group,

meter, and meter band [78]. To have an overview of the details of those parame-

ters, Figure 4.4 describes all the counters with the mark * for required counters.

Depending on vendors, an OpenFlow switch might support all the counters

above. Otherwise, it can consist of some required counters, e.g., duration of a

�ow entry, received and transmitted packets per port, or the number of active

entries in a table. This information is regularly queried from the controller to

monitor the state of a network by using OpenFlow statistics messages.

OpenFlow Statistics Messages. Figure 4.5 illustrates a session of an ex-

emplary communication between an SDN controller and a switch. At the

Figure 4.5: OpenFlow v1.3.0 Messages Exchange [79].

beginning, after a TCP connection is initiated from the switch, it sends an

OFPT_HELLO message to the controller with the information of supported

OpenFlow version. If no error occurs, the controller sends back another hello

message to �nish establishing a session. Then, an OFPT_FEATURE_REQUEST

91

4 Flow Monitoring Approaches in SDN Networks

message is dispatched to ask the switch to provide its datapath ID as well

as its capabilities. Next, the controller sends the OFPT_SET_CONFIG to set

the fragmentation properties of later packets or the maximum bytes that

data path should transmit to the controller. The OFPT_PACKET_IN and

OFPT_FLOW_MOD use to inform and install a new �ow, respectively.

The focuses in this section are OFPT_MULTIPART_REQUEST and

OFPT_MULTIPART_REPLY which are used for requesting and providing the

state of the data plane, respectively. The messages provide various statistics as

mentioned in Table 4.4: �ow, table, port, queue, meter, etc. Figure 4.6 shows the

detailed structure of OFPT_MULTIPART_REQUEST message. The �eld Type in

the header of this packet de�ned which concrete parameter is queried. For exam-

ple, a value of "0x0001" corresponding to an individual �ow statistics, "0x0004"

describes a query port statistics, or "0x0005" represents a request for a queue.

Figure 4.6: OpenFlow v1.3.0 Multipart Request [79].

OpenFlow version 1.3 aggregates information regarding these statistics into

multipart messages, which combines many types of counters, in order to reduce

92

4.1 Background and Related Work

the amount of packets that is exchanged during query duration. The switch

response the corresponding message by an OFPT_MULTIPART_REPLY which

contain all information that the controller wants to know. The request can be

sent directly from an application running at the controller or via RESTful API

with the PUT command.

4.1.3 Related Work

This section outlines several studies related to monitoring an SDN network. Net-

Flow [80] is a well-known tool used to collect network tra�c information and

also supports �ow-level monitoring. With the purpose to reuse existing Net-

Flow analyzing application in OpenFlow networks, some proposals discuss a

combination of OpenFlow and NetFlow in the SDN environment [81, 82]. On

the one hand, OF2NF [81] introduces an application built for the Ryu controller,

which allows gathering �ow statistics using OpenFlow protocol capabilities and

exporting this information from the controller over NetFlow protocol to a col-

lector. On the other hand, the authors in [82] proposed two sampling methods

implemented within the OpenDaylight controller towards a NetFlow implemen-

tation for SDN networks. While the �rst method based on the sampling rate

de�ned by the number of bits checked for source and destination IP su�xes,

the other one uses a hash function on �elds of a packet header to decide the

polling interval. SBAR [83] exports �ow-level monitoring reports to an external

analytics tool such as the way NetFlow operates. Besides, it classi�es tra�c by

application protocols in particular for web and encrypted tra�c to identify the

source application (e.g., Net�ix, Facebook) of the tra�c.

PayLess [84] introduces a network monitoring framework for SDN-based net-

works. A network application can create a MonitoringRequest object in JSON

format. Then, the object is registered and through RESTful API Payless inter-

acts with the Floodlight controller to collect the data based on this request, e.g.,

throughput and packet-drop for a particular user. In an e�ort to balance the ac-

curacy of statistics and the overhead at the controller and switches, the authors

93

4 Flow Monitoring Approaches in SDN Networks

propose an approach that dynamically adapts the frequency of the �ow statistics

collection for all �ows. A scheduler is built and adjusts the monitoring frequency

according to network load. Also, monitoring duration to each �ow are added,

hence, �ows that have signi�cant link utilization are assigned high polling fre-

quencies. OpenNetMon [85] implements a POX Controller module that moni-

tors not only the throughput but also per-�ow QoS metrics like path delays on

the network and application layer. Based on these measurements, a �ne-grained

Tra�c Engineering can be performed. Furthermore, a timer is used to increase

the polling interval for new �ows and �ows with high �uctuations w.r.t. their

statistics, while stable �ows are queried less frequently. The study conducted

in [86] features a monitoring scheme that minimizes the communication over-

head by aggregating the request and reply messages. This approach is based on

the assumption that querying only a small number of switches is su�cient to

obtain statistics of the majority of �ows in the network. The polling switches

selection is modeled as a weighted set cover when considering the amount of ex-

changed statistics data as communication cost. The results show that FlowCover

can improve the utilization of communication cost by up to 50%. However, those

works have not measured the resource consumption at the controller. Instead,

our work provides insights into the trade-o�s regarding this aspect of adaptive

and selective �ow monitoring by analyzing the CPU utilization at the ONOS

controller.

SDN-Mon [87] focuses on another aspect when proposing a framework with

its components reside in both controller and switches. Monitoring modules are

installed in controller-side and switch-side. Those modules communicate with

each other by implementing their messages based on the OpenFlow protocol.

Therefore, the monitoring function is separated from the general OpenFlow op-

eration. It facilitates the controller to support more �exible monitoring. How-

ever, this framework requires the capability to install an external module in

switches to exchange SDN-Mon messages with an application at the controller.

That might require the switches are open-source software switches like Open

94

4.1 Background and Related Work

vSwitch
5

or Lagopus
6

, but not proprietary closed-source hardware.

On the direction of developing an independent monitoring application run-

ning on top of an SDN controller, MonSamp is presented in [88] including mon-

itoring and �ow sampling. The Northbound API is used for communication be-

tween the application and the controller. A similar approach is SOFTmon [89],

the application is programmed in Java and has a GUI that displays graphs for

metrics as �ow count per switch, received/transmitted bytes per port, or the

number of packets/bytes per �ow.

FlowSence [90] relies on OpenFlow PacketIn and FlowRemoved messages to

estimate network utilization on each link. Since FlowRemoved contains the du-

ration of an entry and the amount of tra�c matched, this can be used to infer the

utilization contributed by the �ow. The bene�t of this mechanism is that it takes

the state of tra�c in the network rather than query it. Nevertheless, according

to the authors, there are two limitations of this method, which the authors also

mentioned. First, the estimated utilization might be computed only at discrete

points in time with checkpoints determined by arrivals of FlowRemoved. Sec-

ond, if a �ow lasts for a long time, it delays the computation of the network

utilization.

The work in [91] presents OpenTM that is capable of choosing switches based

on the routing information to periodically poll �ow statistics. For example, NOX

controller running OpenTM can query the statistics of switches along a �ow

path. The query is based on di�erent strategies: following a distribution of ran-

dom variables like non-uniform distribution that queries the switch closer to

the destination host, or speci�ng a switch based on its load to request the statis-

tics. ProgME [92] collects �ow information based on the proposed �owset, an

arbitrary set of �ows that depends on the requirements of an application or a

particular tra�c condition.

5https://www.openvswitch.org
6http://www.lagopus.org/

95

https://www.openvswitch.org
http://www.lagopus.org/

4 Flow Monitoring Approaches in SDN Networks

4.2 Performance of Adaptive Flow Monitoring in the
ONOS Controller

The ONOS controller inquiries the statistics of all �ows in the network with a de-

fault setting frequency is 5 seconds. However, this method faces to the fact that

the controller might overload due to an enormous number of requests. In [93] a

�ow monitoring approach is introduced with the goal to minimize the overhead

of an SDN controller when polling OpenFlow statistics. This section aims to

evaluate the approach in terms of resource usage at the controller when applying

Adaptive Flow Monitoring (AFM). First, general information of this mechanism

is described in Section 4.2.1. Next, Section 4.2.2 highlights detailed evaluation

results.

4.2.1 Adaptive Flow Monitoring Algorithm

As shown in Figure 4.4, every �ow entry in an OpenFlow table contains the

duration which is calculated from the time it is inserted until the time this entry

is requested. It is called "Flow Lifetime" in this work. The �ows are classi�ed in

3 groups of FlowLiveType based on their lifetime, e.g., LONG �ows are the �ows

last more than 15 seconds at the query point, this value in case of MID �ows is

10 seconds. Figure 4.7 visualizes the detail of this classi�cation.

Figure 4.7: Classi�cation of FlowLiveType based on their lifetime and their corre-
sponding polling intervals.

96

4.2 Performance of Adaptive Flow Monitoring in the ONOS Controller

The AFM algorithm relies on this lifetime to decide appropriate polling inter-

vals for particular �ows. Figure 4.8 illustrates the algorithm of this approach.

Figure 4.8: Adaptive Flow Monitoring Algorithm.

Flows in a group follow corresponding task which is applied to this group.

For example, the LONG_FLOWS_TASK() is executed for the �ows in the LONG

group only. Meaning, the controller generates FlowStasRequest messages for in-
dividual �ows in this group every 15 seconds. Flow groups are updated every 5

seconds by implementing CAL_AND_SHORT_FLOWS_TASK(). This task cal-

culates and updates lifetimes of current �ows as well as re-arranges the �ows in

each group. An important notice is that the FlowStasRequest message in each

task is assigned for a particular �ow. Hence, the number of FlowStasRequest

messages is exactly the number of �ows in the network. This is di�erent from

Standard Flow Monitoring (STD) where the controller request the statistic of all

�ows by one-single-FlowStasRequest. However, STD supports a �xed polling in-

terval, if this interval so small, more accuracy can be obtained, but the utilization

of the controller also increases. AFM prevents high query frequency by using

these task above as well as after an ENTIRE_POLL_INTERVAL (twice a LONG

polling interval), an exact FlowStasRequest like in case of STD is performed.

97

4 Flow Monitoring Approaches in SDN Networks

4.2.2 Evaluation Results

Experimental Setup. The Adaptive Flow Monitoring is evaluated in a testbed

as depicted in Figure 4.9. A computer
7

runs ONOS Hummingbird (version 1.7.0)

as an SDN controller. Mininet version 2.2.1 is installed in a virtual machine
8

in

an OpenStack Cloud
9

to simulate a network. In the �rst scenario, a tree topology

consisting of 63 OpenFlow switches and 64 hosts is created. Once the topology is

completely loaded, the pingall command in the Mininet environment is executed

and the controller installs around 37,000 in the switches. Doing this ensures con-

nections between hosts in the network. Furthermore, another con�guration at

the controller, which prevents these �ows from being removed during the time

of the experiment, is set before running a test. In this case there is no tra�c on

the data plane. As second scenario, a ring topology was chosen with 4 switches,

Figure 4.9: Experimental Setup.

each switch connected to 4 hosts. Data plane tra�c is replayed from a PCAP

�le
10

which is recorded from the real tra�c of a New Zealand ISP. The �le

is modi�ed to get suitable IP addresses in the simulated network. Pidstat
11

is

used to monitor the ONOS process, and details regarding the average memory

usage and CPU consumption are exported regularly during its runtime. Every

experiment is repeated 10 times to get 95% con�dence intervals for both cases,

Standard Flow Monitoring (STD) and Adaptive Flow Monitoring (AFM).

7

Intel(R) Core(TM) i7-3770 CPU @3.40GHz / 12GB RAM / Ubuntu 14.04 LTS

8

Intel(R) Core(TM) 2 Duo/ 8GB RAM / Ubuntu 14.04 LTS

9

https://www.openstack.org

10https://wand.net.nz/wits/ispdsl/2/
11http://sebastien.godard.pagesperso-orange.fr/man_pidstat.html

98

https://wand.net.nz/wits/ispdsl/2/
http://sebastien.godard.pagesperso-orange.fr/man_pidstat.html

4.2 Performance of Adaptive Flow Monitoring in the ONOS Controller

CPU Utilization in a Single Run. Figure 4.10 shows the CPU consumption

when AFM is enabled and disabled in the �rst scenario mentioned above. While

the runtime of an experiment in seconds is displayed on the x-axis, the y-axis

denotes CPU utilization. Di�erent colors correspond to the two approaches.

Figure 4.10: CPU Utilization in a single experiment.

In this case, the polling intervals of AFM are 10s, 20s, 30s for SHORT, MID-

DLE, LONG �ows, respectively. The ENTIRE_POLL_INTERVAL is set to 60s.

Meanwhile, STD requests statistics of all the �ows every 10 seconds, which is

illustrated by separated peaks 10 seconds apart. Almost values are around 40%,

and the highest is 58%. The duration of the peaks is nearly 2 seconds. As a result,

the time that the controller takes to �nish a round of requesting and processing

requests is quite fast. In contrast to a short processing time when STD is en-

abled, a delay more than 10 seconds is needed in the context of AFM. The query

frequency is less than STD, however, it takes a longer time to �nish a poll. An

explanation is that the number of FlowStasRequest messages sent by AFM is

much larger than STD. While STD generates one messages per switch to query

all �ows in the switch, AFM needs to send each �ow a request. Consequently

the number of request in case of STD equals the number of switches, it is 64.

This value when AFM is enabled in around 37,000 messages. In addition, this

represents the scenario of AFM when every �ow is of type LONG. Hence, only

99

4 Flow Monitoring Approaches in SDN Networks

Long-Polling is carried out. The Entire-Polling every 30 seconds after the Long-
Polling is exactly the polling in case of STD, which is shown by similar shapes

of two lines around 40th second and 100th second.

Comparison of CPU Utilization. In the last evaluation, the controller does

not remove any �ows during the experiment and there is no data plane tra�c.

Besides, the AFM is considered in the case that all �ows are LONG �ows. In order

to evaluate AFM in a more realistic scenario, a captured �le is used to generate

tra�c where the lifetime of �ows varies randomly. This �le is replayed by using

Tcpreplay
12

from a host. That means that the number of �ows is changed from

time to time and the controller removes the �ows that do not contain matched

packets. The average CPU utilization in this scenario is provided in Figure 4.11

with di�erent polling intervals, which are on the x-axis. The∞ symbol implies a

large value that is longer than runtime. In this case, there is no FlowStasRequest

message requested and it is labeled as "Without Monitoring". Three color bars

represent di�erent scenarios, and the whiskers show 95% con�dence intervals.

Figure 4.11: Comparison between approaches in term of CPU Utilization.

As the black bar indicates, the CPU load is around 1% without any polling

12https://tcpreplay.appneta.com/

100

https://tcpreplay.appneta.com/

4.3 Selective Flow Monitoring

activity, since the controller still communicates with the OpenFlow switches

and handles other messages such as LLDP, GetCon�g, or FeatureReq messages.

Another observation is that the smaller the polling interval is, the higher the

CPU usage becomes. In both cases of STD and AFM, 10s polling results in less

CPU load than 5s. However, with the same approach, di�erent values of polling

intervals do not have a signi�cant impact on CPU load as shown as narrow

gaps between corresponding bars. In addition, the performance of AFM does

not outperform the standard. Its results for polling intervals of 5s and 10s are

13% and 15%, respectively. These values are more than three times as high in

comparison with STD. The reason is due to large number of FlowStasReq mes-

sages during AFM polling intervals. Unlike this behavior, STD generates only 4

messages (corresponding to 4 switches) to query all �ows.

Moreover, when generating FlowStasReq, AFM requires exact matching �elds

to distinguish a �ow, hence, the complexity of this message is signi�cantly

higher than the one generated by STD (only a wildcard for retrieving all �ows

in a switch).

The results illustrate the drawback of Adaptive Flow Monitoring with respect

to CPU consumption. Based on the idea of classifying �ows into di�erent groups

and querying each group with a particular polling interval, we deployed another

monitoring approach, called Selective Flow Monitoring (SFM). When applying

AFM, all �ows are requested to send their information to the controller. On the

contrary, SFM method only inquires the �ow, which is speci�cally inquired by

the controller, reply the statistics message. Therefore, SFM reduces CPU usage

compared with STD. The details of the SFM mechanism and evaluation are dis-

cussed in the next section.

4.3 Selective Flow Monitoring

In the following, after presenting a testbed featuring the Open Network Op-

erating System (ONOS) controller, the SFM mechanism is introduced. Then, a

comparison between the performance of the SFM mechanism and the default

101

4 Flow Monitoring Approaches in SDN Networks

monitoring scheme is discussed. In this context, the CPU utilization of the con-

troller is used as performance indicator. After identifying relevant in�uence fac-

tors like the number of �ows and switches in the network, we investigate the

viability of the approaches in di�erent scenarios. Finally, we provide guidelines

regarding their choice.

4.3.1 Measurement Setup

To investigate the performance of the SFM approach, a testbed as shown in Fig-

ure 4.12 is set up. The Ibis release
13

of the ONOS controller is installed on a PC
14

which uses the Ubuntu 16.04 operating system. Another PC with the same spec-

i�cation runs Mininet
15

and is used to create a network of OpenFlow switches.

Figure 4.12: Logical Testbed Setup.

At the beginning of the measurement, after the controller is started, a pre-

de�ned number of �ows is installed in the switches via the REST API by us-

ing cURL
16

. The term �ow represents a �ow entry in an OpenFlow Table of the

switch. Each �ow has a timeout of 5,000 seconds to ensure that it lasts the whole

5 minutes of the experiment. Depending on the scenario, up to 408,000 �ows are

installed. Since this work focuses on the performance of the controller when

dealing with control plane information, there is no data plane tra�c on the net-

work. Each run is repeated 5 times in order to obtain 95% con�dence intervals.

13http://onosproject.org/, version 1.8.0

14

Intel(R) Core(TM) i7-4770 CPU @3.40GHz / 16GB RAM

15http://mininet.org/, version 2.2.1

16https://curl.haxx.se/

102

http://onosproject.org/
http://mininet.org/
https://curl.haxx.se/

4.3 Selective Flow Monitoring

Pidstat
17

is used to monitor the average CPU consumption of the ONOS con-

troller as in the last Section.

In the �rst scenario, one OpenVswitch
18

is created in Mininet, and the �ows in

the network are partitioned into three groups, i.e., all �ows in a group have the

same destination IP address (IP_DST) but di�erent source IP addresses. All IP ad-

dresses are declared with network mask 255.255.225.255, which makes all �ows

unique and avoids the aggregation of rules in the �ow table of the OpenFlow

switch. Once SFM is enabled, the �ows are queried for their statistics according

to three polling intervals: SHORT (5s), MIDDLE (10s), and LONG (15s). At each

polling time, the controller asks the switch for information of the �ows that have

the same combination of output port and destination IP, i.e., (OUTPUT; IP_DST).

The switch replies to this StatsRequest by sending StatsReply messages only for

the �ows that match this condition and aggregates them in aMultipartReplyMes-
sage. When using the standard method, the ONOS controller inquires statistics

of all �ows every 5 seconds and does not require any match condition. The por-

tions of the number of �ows from each group are varied in order to investigate

the impact of these factors on the controller’s CPU utilization.

In the second set of experiments, we evaluate the performance impact of sce-

narios where more than one statistics message is required to fetch information

about each class of �ows. In the following, we refer to this number of messages

as the number of sub-groups since each class of �ows is partitioned based on a

set of �ow rules. In the i-th group, the tuple for matching its statistics becomes

(OUTPUT; IP_DSTi). Additionally, testbeds with multiple switches based on a

tree topology are considered.

4.3.2 Selective Flow Monitoring Mechanism

In this section, we conduct equations calculating the number of messages that

needs to process by the ONOS controller in both Standard Flow Monitor-

17http://sebastien.godard.pagesperso-orange.fr/man_pidstat.html
18http://openvswitch.org/

103

http://sebastien.godard.pagesperso-orange.fr/man_pidstat.html
http://openvswitch.org/

4 Flow Monitoring Approaches in SDN Networks

ing (STD) and Selective Flow Monitoring (SFM) methods. Besides, the operation

of SFM as well as the di�erences between these approaches are described.

Standard Flow Monitoring in the ONOS Controller. As mentioned above,

the ONOS controller regularly sends FlowStatsRequest messages every 5 seconds

to get the information of all �ows in the network. After receiving a FlowStatsRe-
ply message, the controller processes it and gets the details of all �ows.

The number of messages which ONOS needs to handle at every polling point

in case of Standard Flow Monitoring (STD) is denoted as NSTD
p and can be

calculated as follows:

NSTD
p = NSTD

(sent) +NSTD
(recd).

In this equation, NSTD
(sent) and NSTD

(recd) represent the amount of messages

that are generated and sent as well as received and processed by the con-

troller, respectively. The network consists of NSW switches and the total num-

ber of �ows is NF . In case of STD, the controller only generates one single

FlowStatsRequest message corresponding to a switch. Thus, the equation

above becomes:

NSTD
p = NSW +NF .

Considering an experiment duration of Texp with regular polling interval

tpoll, the total amount of messages:

NSTD =
Texp
tpoll

·NSTD
p =

Texp
tpoll

· (NSW +NF). (4.1)

This equation illustrates that the smaller the polling interval, the higher the

number of messages. Hence, increasing polling interval results in a decrease of

CPU consumption since fewer messages need to handle. However, the informa-

tion of some �ows that have lifetimes less than the interval might be missed. To

overcome this issue, SFM approach is introduced and described as follows.

104

4.3 Selective Flow Monitoring

Selective Flow Monitoring Approach. The SFM approach allows adminis-

trators to increase the monitoring accuracy for particular �ows that are of spe-

cial interest, e.g., those with strict application-speci�c QoS demands or SLAs.

Furthermore, SFM introduces several con�gurable types of polling intervals,

which can be set by the operator actively, depending on how often the �ows

are to be monitored.

Figure 4.13: In�uence factors on CPU utilization of the SDN controller when mon-
itoring �ow statistics.

Figure 4.13 illustrates several components that a�ect the CPU utilization of an

SDN controller which are investigated in this work. First, the hardware con�g-

uration of the controller such as its RAM capacity and the particular CPU model

a�ects message processing time as well as the amount of �ow rules that can be

managed. Second, network conditions like the number of connected switches or

the composition of tra�c �ows dictate the amount and the rate of messages that

are exchanged between the switches and the controller. Finally, the used �ow

monitoring mechanism, i.e., SFM or STD, has an e�ect on the message rate, too.

Figure 4.13 also gives an example of how SFM works. The controller classi�es

105

4 Flow Monitoring Approaches in SDN Networks

�ows into three di�erent groups based on a speci�ed condition and each group’s

statistics are queried with the respective polling interval. At the beginning, all

�ows are polled. After that, every 5 seconds the controller asks the state of the

�ows that are marked as SHORT which is indicated by the light brown arrows.

Then, every 10 seconds, the dark brown arrow shows that �ows in the MIDDLE

group are queried, and every 15 seconds, FlowStatReply messages of �ows in the

LONG group are sent to the controller. Finally, an ENTIRE polling happens each

30 seconds to ensure that all �ows are updated. It is worth noting that when an

ENTIRE polling is performed, no other polling takes place. In contrast to this

mechanism, the standard approach in the ONOS controller frequently inquires

information of all �ows every 5 seconds. The di�erences between SFM and STD

are the variation of the number of polling intervals as well as the classi�cation

of �ows into groups. Hence, only the �ows of a particular group are queried

rather than all �ows.

Assume that the amounts of �ows that are requested with the short, middle,

and long polling intervals are Ns, Nm, and Nl, respectively. Hence, in Equa-

tion 4.1, the total number of �ows corresponds toNF = Ns+Nm+Nl. When

SFM is enabled, four types of requests can happen when polling:

a) Only SHORT �ows are queried:

NSFM
1 = NSFM

1(sent) +NSFM
1(recd) = NSW · ngs +Ns.

b) Flows that are either SHORT or MIDDLE are queried:

NSFM
2 = NSW · (ngs + ngm) + (Ns +Nm).

c) Flows that are either SHORT or LONG are queried:

NSFM
3 = NSW · (ngs + ngl) + (Ns +Nl).

106

4.3 Selective Flow Monitoring

d) All �ows are queried (ENTIRE-polling):

NSFM
4 = NSW +NF .

In this context, ng∗ denotes the number of sub-groups within each group and

N∗ refers to the total number of �ows within each group.

During an experiment with duration Texp, ti is the polling interval that cor-

responds to short, middle, long, and entire interval. Hence, the total number of

messages during an experiment can be calculated as follows:

NSFM = Texp ·
4∑
i=1

1

ti
·NSFM

i . (4.2)

Suppose that the polling intervals for the MIDDLE and LONG groups, tm and

tl, are multiples of the polling interval for the SHORT group, ts, i.e., tm = α · ts,
tl = β · ts. In an analogous fashion, the numbers of �ows in each group are

Nm = m ·Ns and Nl = n ·Ns. Hence, from Eq. 4.2, the number of messages

in case of SFM, NSFM
, is calculated as follows:

NSFM =
Texp
ts
·
[
NSW ·

[
2ngs +

2(ngs + ngm)

α
+

1 + 2 ∗ (ngs + ngl)

β

]
+
(
2NSW +

2 + 2m

α
+

3 +m+ 3n

β

)
·Ns

]
. (4.3)

Equations 4.1 and 4.3 present several in�uence factors which impact the num-

ber of �ow statistics messages, such as the number of sub-groups (ngs , ngm, ngl),

the relative size of each group (ρ = Ns :Nm :Nl), the ratios between the corre-

sponding polling intervals (γ = ts : tm : tl), as well as the number of switches in

the network NSW . Details regarding the investigation of those parameters are

presented in Section 4.3.3.

107

4 Flow Monitoring Approaches in SDN Networks

4.3.3 Performance Evaluation of SFM

This section provides a comparison between the SFM and STD approaches in

terms of the controller’s CPU utilization alongside the impact of the size ratios

of �ow groups. Then, the impact of changing the number of sub-groups and the

number of switches in the network is presented.

(a) Fraction of SHORT �ows is constant. (b) Fraction of MIDDLE �ows is constant.

(c) Fraction of LONG �ows is constant.

Figure 4.14: In�uence of relative group size on CPU utilization.

108

4.3 Selective Flow Monitoring

CPU Utilization in Case of a Single Switch. Figure 4.14 displays the impact

of di�erent portions of the number of �ows in each group. For a given total num-

ber of �ows in the network on the x-axis, the y-axis shows the corresponding

mean CPU usage during the controller’s run time. In this experiment, the max-

imum memory that is assigned to the JVM equals 512 MB which is the default

setting of the ONOS controller. As a result, there is a limitation of 54,000 �ows

that the controller can handle without throwing an “overhead limit exceed” ex-

ception. The whiskers show 95% con�dence intervals which are obtained after 5

experiment repetitions. The blue curve represents the results in case of Standard

Flow Monitoring (STD), while the other colors indicate the measurement data

when enabling SFM with di�erent ratios of each �ow type. The three sub�gures

highlight the CPU utilization that results from setting the ratio of one �ow class

to a constant while varying the ratios of the two other classes.

For all scenarios, with the same number of �ows, STD consumes more CPU

resources than SFM. The gap between the blue curve and the others becomes

wider when increasing the number of �ows and achieves a maximum value of

nearly 4%. In case of SFM, the ratio of the SHORT group has the largest impact on

the controller’s CPU usage, which is displayed in Figure 4.14b and Figure 4.14c.

When keeping the portions of MIDDLE and LONG groups constant, the highest

CPU utilization is reached if the SHORT group has the highest ratio (brown

curves). A reasonable explanation is that the �ows in the SHORT group are

queried most frequently among all groups. Therefore, a higher number of �ows

in this group results in more messages and tasks per second that the CPU needs

to carry out and leads to a high CPU load. However, in this worst case of SFM,

the resource consumption at the controller is still less than in the case of STD.

The portion of SHORT �ows is de�ned as a main in�uence factor on the CPU

usage of the controller according to the above discussion. In order to perform a

deeper investigation, measurements with di�erent numbers of sub-groups in the

SHORT group are carried out and the results are presented in Figure 4.15. There

are six dashed lines in di�erent shades of brown that correspond to di�erent

numbers of sub-groups within the SHORT group. These numbers directly a�ect

109

4 Flow Monitoring Approaches in SDN Networks

the number of destination IP addresses in the �ow table, and range from one

to 50 groups. The number of �ows in each group (SHORT, MIDDLE, LONG) is

unchanged and follows the ratio ρ = 1 : 2 : 3. For example, at the �rst point

on the x-axis, the total number of �ows equals 6,000, of which 3,000 �ows are

classi�ed as LONG, 2,000 �ows as MIDDLE, and 1,000 �ows as SHORT. In these

1,000 �ows, the number of destination IP addresses changes from 1 to 50, which

makes the controller generate di�erent numbers of FlowStatsRequest messages

every 5 seconds, coressponding to the number of IP addresses (also known as

the number of sub-groups). However, when the controller request the statistic

of all those SHORT �ows, the quantity of FlowStatsReply messages is constant

and equals 1,000 - the number of SHORT �ows that are installed.

6k 12k 18k 24k 30k 36k 42k 48k 54k
0

5

10

15

20

25

30

35

Number of Flows

C
P

U
 U

til
iz

a
tio

n
 [

%
]

ng

s
=50

ng

s
=40

ng

s
=20

ng

s
=10

ng

s
=5

ng

s
=1

STD

Figure 4.15: Impact of the number of sub-groups in the SHORT group.

The blue line represents the data that is obtained when STD is enabled. A

trade-o� between using the two mechanisms is illustrated. When the number

of sub-groups is smaller than 20, SFM shows a better result, i.e., less CPU usage.

At 20 sub-groups, there is no signi�cant di�erence between STD and SFM un-

less 54,000 �ows are installed, as illustrated by overlapping con�dence intervals

between those two cases. However, if more sub-groups exist, more resources are

110

4.3 Selective Flow Monitoring

required to adapt to the large number of messages that arrive at the controller.

This observation implies that in some cases, SFM results in a higher CPU usage

than the standard method. However, due to its ability to query the information

of particular �ows, SFM provides signi�cant resource savings when the number

of sub-groups is low.

CPU Utilization in Case of Multiple Switches. Equation 4.3 shows that the

number of switches in the network NSW is also a factor that impacts CPU uti-

lization. In order to highlight this e�ect, Figure 4.16 displays cumulative distri-

butions of the controller’s CPU usage in both cases, SFM and STD with di�erent

values of NSW .

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU Utilization [%]

C
D

F

STD - N
SW

=1

STD - N
SW

=20

STD - N
SW

=40

SFM - N
SW

=1

SFM - N
SW

=20

SFM - N
SW

=40

Figure 4.16: Distribution of the CPU utilization for di�erent values of NSW when
using STD and SFM.

In this context, the total number of switches varies between 1, 20, and 40

switches, represented by the line colors, respectively. The resulting distribu-

tions in case of SFM are shown as solid lines, and the dashed lines present mea-

sured data when using STD. For this evaluation, we aggregate measurements

from scenarios that feature between 6,000 and 54,000 �ows in increments of

111

4 Flow Monitoring Approaches in SDN Networks

6,000 �ows. While the CPU load is displayed on the x-axis, the y-axis indicates

the fraction of measurements in which the CPU utilization is below the corre-

sponding threshold. Again, the memory limit for the JVM equals 512 MB, and

the value ρ = 1 : 2 : 3 is considered for the portions of groups. Since the number

of FlowStatsRequest messages is equal to the amount of OpenFlow devices in the

network, more switches in the network lead to more communication from the

controller at each polling event. Consequently, an extra amount of work needs

to be handled by the CPU and its load rises substantially in comparison to the

single switch case. Especially in case of STD with a single switch, the CPU load

never exceeds 9%. In contrast, when using multiple switches, the CPU utilization

exceeds 10% in more than 30% of cases.

Additionally, the maximum observed CPU utilization when using SFM is be-

low 8%, which equals only half the value in the context of the standard method.

This show that the SFM method outperform the standard with respect to con-

troller’s CPU consumption. In both cases, increasing NSW leads to higher CPU

utilization. However, the growth gradually converges when the network con-

tains more than 20 switches, as exhibited by the overlapping lines that corre-

spond to NSW = 20 and NSW = 40. The largest gap between those con�gu-

rations and the one featuring a single switch is signi�cantly smaller in the case

of SFM than when using STD, with the largest di�erence being 2% compared to

nearly 7%.

Impact of Java Virtual Machine Memory. Due to the fact that the ONOS

controller runs as a Java program, it is necessary to take into account the mem-

ory space for the Java Virtual Machine (JVM) when investigating the perfor-

mance of the controller. The amount of memory that is dedicated to the ONOS

controller can be controlled by means of an environment variable
19

.

Figure 4.17 displays the maximum number of �ows that the controller can

handle before throwing exceptions regarding memory issues. While the x-axis

19

To allocate minValue of heap memory at the start and up to a maximum of maxValue, the fol-

lowing command can be used: export JAVA_OPTS="-server -Xms[minValue] -
Xmx[maxValue]"

112

4.3 Selective Flow Monitoring

denotes the number of �ows which ranges between 24,000 and 408,000 in steps

of 24,000, the y-axis represents the mean CPU utilization. Di�erently colored

bars correspond to two con�gurations regarding the maximum assigned mem-

ory for the JVM, i.e., 2 GB and 4 GB, respectively. The whiskers provide con�-

dence intervals that are obtained from 5 runs. The same combination of the �ow

class ratio ρ=1:2:3 (Ns :Nm :Nl) and polling time ratio γ=1:2:3 (ts : tm : tl) as in

previous experiments is used for the SFM scenario.

24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408
0

5

10

15

20

25

30

35

40

45

50

Number of Flows [thousands]

C
P

U
 U

ti
liz

a
ti
o
n
 [
%

]

2GB Memory
4GB Memory

Figure 4.17: In�uence of JVM Memory.

The �rst observation is that doubling the memory for the JVM does not mean

that the controller is able to process two times more �ows. In case of using 2 GB,

the maximum number of �ows in the network is 216,000. The value when in-

creasing the memory limit to 4 GB equals 408,000 �ows and is therefore 1.89

times higher. Additionally, when the controller has more capability for storing

processed information, the CPU consumption decreases. While the reduction

is not signi�cant in the context of less than 120,000 �ows, it is equal to up

to 45% when 216,000 �ows are involved. Since the controller reserves the set

amount of memory regardless of actual usage and number of �ows, it is impor-

113

4 Flow Monitoring Approaches in SDN Networks

tant to determine a value that balances the trade-o� between potentially unused

memory resources and performance bene�ts. Otherwise, the memory might be-

come a performance bottleneck of the controller. This is not only true for the

ONOS controller but also for other Java-based SDN controllers like OpenDay-

light, Floodlight, and Beacon. Given the network state in terms of the number

of active �ows, an administrator can derive viable memory limits.

4.4 Lessons Learned

In this chapter we focus on the control plane with applications that allow moni-

toring a network at �ow-level. Several algorithms regarding �ow monitoring in

SDN networks are introduced. First, Standard Flow Monitoring (STD) operates

based on typical OpenFlow functionality, i.e., information exchange schemes

and counters for ports, tables, queues, and meters. STD regularly requests the in-

formation in pre-de�ned intervals. The accuracy of this method depends on the

frequency of FlowStasRequest. More accurate monitoring can be obtained when

reducing this interval, however, it might also lead to a high resource consump-

tion. In an e�ort to balance these parameters, the second approach is studied -

Adaptive Flow Monitoring (AFM). In this context, �ows are classi�ed according

to their lifetime and the polling intervals are adapted accordingly, resulting in

a high polling frequency for short �ows and a low polling frequency for long

�ows. Finally, Selective Flow Monitoring (SFM) aims at reducing the overhead

at an SDN controller. This method also allows to proactively and �exibly choose

speci�c �ows that network administrators desire to monitor, instead of querying

all �ows in the network.

Next, comparisons between three approaches in terms of the controller’s CPU

utilization and memory usages are implemented. On the one hand, the AFM

mechanism can lead to an increase in control plane tra�c since the controller

queries �ows from each category individually rather than requesting statistics

of all �ow entries in a switch as the STD does. The intensity of this e�ect is pro-

portional to the number of �ows in the network, which in turn is proportional to

114

4.4 Lessons Learned

the number of FlowStatsReply messages that are processed by the controller. In

addition, although the query frequency of AFM is less than STD, though, its du-

ration for processing a polling point is longer than with STD. Both reasons result

in a roughly 3 times higher CPU utilization when comparing AFM and STD. On

the other hand, SFM performs signi�cantly better in terms of CPU usage than

the standard method in most of the experimental cases with the maximum gap

between SFM and STD in term of CPU load is around 4% in the scenario of a

single switch. Once the number of switches increases to more than 20, CPU us-

age consumed by SFM equals only half the value of STD. Moreover, SFM has

the ability to select a particular �ow to query its statistic. Therefore, a detailed

investigation of SFM is conducted by �rst analyzing the total number of control

plane messages that are exchanged between the switches and the controller in

each case. Then, the resulting equations are used to identify the main in�uence

factors on the performance of the SFM approaches. The results show that the

group that has the highest polling frequency is de�ned as a main in�uence fac-

tor on the CPU usage. Accordingly, multiple groups (e.g., from 10 to 40) with the

same such interval lead to a higher CPU utilization than the standard method.

Furthermore, investigations regarding the amount of memory that is allocated

to the Java Virtual Machine indicate that the ONOS controller can not handle

more than 216,000 �ows in request/reply statistics information if the dedicated

memory is 2GB. With the con�guration of 4GB, the maximum number of �ows

is 408,000 �ows.

To summarize, we see that �ow monitoring in SDN networks mainly based

on OpenFlow �ow statistics messages. Several in�uence parameters on �ow

monitoring are determined, such as polling interval, the number of �ows and

switches, as well as the size ratios of �ow classes. In addition, not only the hard-

ware regarding the CPU is relevant, but also the amount of memory also needs

to be taken into account. Within presented approaches, AFM shows drawback

in term of controller CPU utilization as long as the information of each �ow has

to be gathered by a single message. In this context, the proposed approach SFM

is better than AFM and for speci�c scenario with particular combination of men-

115

4 Flow Monitoring Approaches in SDN Networks

tioned parameters, SFM also outperform the standard �ow monitoring method

in the ONOS controller. Given the results presented in this chapter, an operator

can identify appropriate parameter combinations based on the composition of

the network and �ow characteristics.

116

5 Conclusion

The development of information technology in many �elds results in new re-

quirements for underlying network infrastructures in terms of availability, con-

nectivity, and �exibility. Besides, applications are deployed and updated in a

short time. They create a diversity of tra�c patterns and an enormous number

of exchanged data. Therefore, networks need the ability to adaptively recon�g-

ure devices and to control tra�c �ows based on the condition of the network

and requirements from applications. Likewise, saving time and less complexity

when expending the scale of the network are also necessary. In that context, the

advent of Software De�ned Networking (SDN), which was initiated in 2008, is a

promising solution for high demand on resources, unpredictable tra�c patterns,

rapid and automatic network recon�guration.

In this monograph, we aim to determine performance factors for the opera-

tion of SDN-enabled networks, which covers all components of its layered ar-

chitecture. Di�erent methods including software-based approaches and using

commercial dedicated hardware are applied to analyze and evaluate relevant

metrics. Besides, corresponding evaluation results are provided alongside exper-

imental guidelines which allows administrators to assess SDN elements before

applying the SDN paradigm. Both appropriate hardware devices and instances

of software controllers are considered.

To bring to customers a good quality of services, the requirements of net-

work performance for each application/service such as delay, packet loss, or

bandwidth should be met. Also, the isolation between services when sharing the

same physical resources needs to be guaranteed. When applying new network

infrastructure like SDN, it is important that the previous outlined conditions are

117

5 Conclusion

obtained.

Chapter 2 describes local testbeds to investigate how good the isolation be-

tween virtual networks is implemented on SDN forwarding devices. The viola-

tion of the isolation is represented by lost packets in a network when congestion

occurs. Main in�uence parameters on the isolation performance are identi�ed

and investigated with switches of several vendors. It is shown that besides the

overall load on the outgoing switch port also the con�gured rate guarantees per

virtual network have a signi�cant impact on the number of lost packets. The

measurements further show a correlation between the degree of congestion on

the outgoing port, the con�gured rate limits, and the delay until the switch re-

acts to the violation of the resource isolation. In particular, among the exper-

imented switches, the HP 2029 shows that with a speci�c con�guration and

condition, virtual networks do not impact the others when congestion occurs.

Based on these investigations an SDN switch providing proper isolation was

selected for a video streaming scenario. Consequently, the presented method

in this chapter can be used to �nd appropriate con�gurations for the involved

hardware devices with respect to resource isolation.

Another aspect is the impact of speci�c control mechanisms of the control

plane on the data plane performance. SDN controllers are responsible for man-

agement of data plane devices and decision-making for packet forwarding in the

network. To instruct switches to forward tra�c �ows, SDN controller uses spe-

ci�c messages called FlowMod to install �ow table entries in the switches. Since

such operations are handled in the slow path of the switches, the corresponding

processing times constitute an important performance indicator for switches.

Chapter 3 presents and compares two mechanisms for evaluating the perfor-

mance of OpenFlow switches in terms of processing FlowMod messages. On

the one hand, we use a software-based approach featuring a module for the

OpenDaylight and Ryu controllers. On the other hand, the Spirent C1 dedicated

testing platform is utilized. Additionally, we use wiretap devices in order to ob-

tain highly precise measurements. Result of experiments show that both mech-

anisms achieve an accuracy in the sub-millisecond range when compared to

118

measurements performed with dedicated capture cards at wiretaps. In addition

to the bene�ts regarding costs and ease of use, the software-based controller

module also has the capability to run during normal operation. While di�erent

switches have their own behavior, implementation details of the SDN controller

also have an impact on the overall FlowMod processing time performance due

to sender-side behavior. In particular, a tradeo� between fast installation and

precision needs to be taken into account in case of QUANTA switch. In this

case, the con�rmation of installation is sent to the controller before the rules

are actually installed in the switches which might lead to an incorrect action at

the controller. We also con�rm that based on the sensitivity of switches with

regard to delays in conjunction with round trip time (RTT) and setup time at

the controller is su�cient for an accurate estimation of installation time in the

switch. The presented results provide an overview of such delays for a developer

when building an application related to �ow installation time. Besides, it can be

referred by a network operator when selecting suitable data plane hardware for

his network considering �ow installation time as a key criterion.

SDN controllers also manage activated tra�c �ows exchanging in SDN net-

works. The information of such �ows like the number of packets or their life-

time is collected by using the request-response method. This kind of informa-

tion provides the current status of �ows in the network and can be leveraged as

the input of algorithms for tra�c engineering, e.g., load balancing or multipath

routing based on the bandwidth of each �ow. SDN controller regularly requests

network devices to send statistics of all �ows in their OpenFlow tables. The du-

ration between requests called polling interval has a �xed value and pre-de�ned

before running a controller instance. However, using the same polling interval

for all �ows does not take into account the heterogeneity of real world traf-

�c and thus results in an imbalance between monitoring accuracy and control

plane overhead. In particular, high frequent querying results in a high resource

consumption at the controller in large networks due to an enormous number of

requests/responses per second.

We proposed a monitoring method that aims to balance �ow statistics’ ac-

119

5 Conclusion

curacy and performance of SDN controllers in Chapter 4. Especially, network

administrators can use this method to classify �ows according to their individ-

ual requirements in terms of monitoring frequency, e.g., less frequent polling of

elephant �ows and frequent polling of QoS sensitive Voice over IP (VoIP) con-

nections. This provides more �exible and more proactive �ow monitoring than

the default setting in all SDN controllers, which is based on regular and �ow-

independent polling. Then, the developed method is compared with others de-

fault methods in the ONOS controller in terms of controller CPU utilization and

memory consumption. The measurement results show that our proposal signif-

icantly improves resources utilization as compared with the built-in algorithms

in most cases. Additionally, investigations regarding the amount of memory that

is allocated to the Java Virtual Machine indicate that not only the CPU is rele-

vant but that the memory also becomes an important criterion when choosing

an SDN controller. Based on these results and the composition of network and

�ows characteristics, network operators can identify appropriate memory con-

�guration for his controller as well as a suitable method for �ow monitoring.

The work presented in this monograph can be considered as technical guide-

lines for understanding the operation of SDN networks and evaluating the per-

formance of SDN components. Namely, in�uence factors on the performance

of the control and data planes are identi�ed, software-based performance mea-

surement with similar accuracy as dedicated commercial hardware is described,

or methods to choose appropriate hardware and suitable controller instance for

speci�c performance criteria are presented. In addition, based on the results and

proposed algorithms, the optimization potential of an SDN network can be taken

into account by both, controller developers who aim to improve the general per-

formance of their controller as well as network operators who want to maximize

compatibility and reliability of the components in their particular networks. Ap-

plying introduced methods and mechanisms facilitates better network manage-

ment and e�ective operation to enhance network performance and monitor-

ing. This work can be adapted to investigate others implementations of SDN

networks, e.g., distributed architecture with several instances of controllers. In

120

this context, the mechanism to exchanged information between controllers and

switches might be di�erent, however, it is still relying on the operation of Open-

Flow protocols, which is thoroughly examined in this monograph. Besides, the

evaluation related to data plane devices can be applied to inspect packet pro-

cessing time of programmable switches. Finally, further research can extend this

work with new versions/instances of controllers and switches to gain a better

insight into the operation of SDN networks.

121

123

Acronyms

API Application Programming Interface.

CLI Command Line Interface.

COTS Commercial O�-The-Shelf.

DASH Dynamic Adaptive Streaming over HTTP.

FIB Forwarding Information Base.

HAS HTTP-based Adaptive Streaming.

IoT Internet of Thing.

ISP Internet Service Provider.

JSON JavaScript Object Notation.

JVM Java Virtual Machine.

NBI Northbound Interface.

NFV Network Functions Virtualization.

NICs Network Interface Cards.

125

Acronyms

NSM Network Management System.

NV Network Virtualization.

ONF Open Networking Foundation.

OSPF Open Shortest Path First.

OTT Over The Top.

QoE Quality of Experience.

QoS Quality of Service.

REST Representational State Transfer.

RIP Routing Information Protocol.

RMON Remote Monitoring.

SBI Southbound Interface.

SDN Software De�ned Networking.

SLA Service Level Agreement.

SMS Short Message Service.

SNMP Simple Network Management Protocol.

SSH Secure Shell.

SSIM Structual SIMiarity.

Telnet Terminal Network.

126

Acronyms

VCP Video Control Plane.

VLAN Virtual LAN.

VoIP Voice over IP.

VPN Virtual Private Network.

127

Bibliography and References

Bibliography of the Author

Journal Papers

[1] G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and S.

Mascolo, “Design and performance evaluation of network-assisted con-

trol strategies for http adaptive streaming”, ACM Transactions on Multi-
media Computing, Communications, and Applications, 2017.

Conference Papers

[2] A. Nguyen-Ngoc, S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, and M.

Jarschel, “Investigating isolation between virtual networks in case of con-

gestion for a pronto 3290 switch”, in Workshop on Software-De�ned Net-
working and Network Function Virtualization for Flexible Network Man-
agement (SDNFlex 2015), Cottbus, Germany, Mar. 2015.

[3] S. Lange, A. Nguyen-Ngoc, S. Gebert, T. Zinner, M. Jarschel, A. Koepsel,

M. Sune, D. Raumer, S. Gallenmüller, G. Carle, and P. Tran-Gia, “Perfor-

mance benchmarking of a software-based lte sgw”, in 2nd International
Workshop on Management of SDN and NFV Systems, Barcelona, Spain,

Nov. 2015.

129

Bibliography

[4] G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and

S. Mascolo, “Design and experimental evaluation of network-assisted

strategies for http adaptive video streaming”, in Best Student Paper Award,
ACM Multimedia Systems Conference (MMSys), Klagenfurt, Austria, May

2016.

[5] A. Nguyen-Ngoc, S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, and M.

Jarschel, “Performance evaluation mechanisms for �owmod message

processing in open�ow switches”, in IEEE Sixth International Conference
on Communications and Electronics, Ha Long City, Vietnam, Jul. 2016.

[6] A. Nguyen-Ngoc, B. Sphend, S. Gebert, T. Zinner, and P. Tran-Gia, “Eval-

uation of adaptive �ow monitoring in onos”, in ONOS Build 2016, Poster
Session, Paris, France, Nov. 2016.

[7] S. Gebert, S. Geissler, T. Zinner, A. Nguyen-Ngoc, S. Lange, and P. Tran-

Gia, “Zoom: Lightweight sdn-based elephant detection”, in First Interna-
tional Workshop on Programmability for Cloud Networks and Applications
(PROCON), Sep. 2016.

[8] A. Nguyen-Ngoc, S. Lange, T. Zinner, M. Seufert, P. Tran-Gia, N. Aerts,

and D. Hock, “Performance evaluation of selective �ow monitoring in the

onos controller”, in 4th International Workshop on Management of SDN
and NFV Systems (ManSDN/NFV), Tokio, Japan, Nov. 2017.

[9] A. Nguyen-Ngoc, S. Lange, G. Stefan, T. Zinner, and P. Tran-Gia, “Esti-

mating the �ow rule installation time of sdn switches when facing control

plane delay”, in 19th International GI/ITG Conference on "Measurement,
Modelling and Evaluation of Computing Systems" (MMB), Erlangen, Ger-

many, Feb. 2018.

[10] A. Nguyen-Ngoc, R. Simon, S. Lange, G. Stefan, T. Zinner, and P. Tran-Gia,

“Benchmarking the onos controller with ofcprobe”, in 7th International
Conference on Communications and Electronics (ICCE), Hue, Vietnam, Jul.

2018.

130

General References

[11] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer, “Inter-

faces, attributes, and use cases: A compass for sdn”, IEEE Communications
Magazine, vol. 52, pp. 210–217, Jun. 2014.

[12] Traditional vs software de�ned networking, IPknowledge, 2014. [Online].

Available: http://www.ipknowledge.net/wp-content/
uploads/2014/12/SDN.pdf.

[13] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software-de�ned net-

working: State of the art and research challenges”, Computer Networks,
vol. 72, pp. 74–98, 2014.

[14] H. Wen, P. K. Tiwary, and T. Le-Ngoc, “Network virtualization:

Overview”, in Wireless Virtualization. Cham: Springer International Pub-

lishing, 2013, pp. 5–10, isbn: 978-3-319-01291-9. doi: 10.1007/978-
3-319-01291-9_2. [Online]. Available: https://doi.org/
10.1007/978-3-319-01291-9_2.

[15] G. Ferro, What is open�ow, [Online]. Avail-

able at http://content.ipspace.net/get/what%20Is%20OpenFlow.pdf, May

2012.

[16] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Open�ow: Enabling innovation

in campus networks”, SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,

pp. 69–74, Mar. 2008, issn: 0146-4833. doi: 10.1145/1355734.
1355746. [Online]. Available: http://doi.acm.org/10.
1145/1355734.1355746.

[17] Open Networking Foundation, Software-de�ned networking (sdn) def-
inition, [Online]. Available at https://www.opennetworking.org/sdn-

de�nition/, 2017.

131

http://www.ipknowledge.net/wp-content/uploads/2014/12/SDN.pdf
http://www.ipknowledge.net/wp-content/uploads/2014/12/SDN.pdf
https://doi.org/10.1007/978-3-319-01291-9_2
https://doi.org/10.1007/978-3-319-01291-9_2
https://doi.org/10.1007/978-3-319-01291-9_2
https://doi.org/10.1007/978-3-319-01291-9_2
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746

Bibliography

[18] D. A, S. J.H, H. R, K. H, W. W, D. L, G. R, and H. J, Forwarding and con-
trol element separation (forces) protocol speci�cation, [Online]. Available

at https://tools.ietf.org/html/rfc5810, Mar. 2010.

[19] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodol-

molky, and S. Uhlig, “Software-de�ned networking: A comprehensive

survey”, Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015, issn:

0018-9219. doi: 10.1109/JPROC.2014.2371999.

[20] C. T. Support, Comparing tra�c policing and tra�c shaping for bandwidth
limiting, [On-

line]. Available at https://www.cisco.com/c/en/us/support/docs/quality-

of-service-qos/qos-policing/19645-policevsshape.html, May 2014.

[21] IEEE, IEEE802.3x Speci�cation for 802.3 Full Duplex Operation, 1998.

[22] Y. C. Hoong, Flow control on gigabit ethernet interfaces,
[Online]. Available at http://www.itcertnotes.com/2011/06/�ow-control-

on-gigabit-ethernet.html, Jun. 2011.

[23] S. Bhatia, M. Motiwala, W. Muhlbauer, V. Valancius, A. Bavier, N. Feam-

ster, L. Peterson, and J. Rexford, “Hosting virtual networks on commodity

hardware”, vol. GT-CS-07-10, 2008/// 2008.

[24] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In vini ver-

itas: Realistic and controlled network experimentation”, SIGCOMM Com-
put. Commun. Rev., vol. 36, no. 4, pp. 3–14, Aug. 2006, issn: 0146-4833.

doi: 10.1145/1151659.1159916. [Online]. Available: http:
//doi.acm.org/10.1145/1151659.1159916.

[25] S. Ahn, S. Lee, S. Yoo, D. Park, D. Kim, and C. Yoo, “Isolation schemes

of virtual network platform for cloud computing”, KSII Transactions on
Internet and Information Systems, vol. 6, no. 11, pp. 2764–2783, Nov. 2012,

issn: 1976-7277.

132

https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1145/1151659.1159916
http://doi.acm.org/10.1145/1151659.1159916
http://doi.acm.org/10.1145/1151659.1159916

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. War�eld, “Xen and the art of virtualization”, SIGOPS
Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177, Oct. 2003, issn: 0163-5980.

doi: 10.1145/1165389.945462. [Online]. Available: http:
//doi.acm.org/10.1145/1165389.945462.

[27] N. Fernandes, M. D. D. Moreira, I. Moraes, L. H. Ferraz, R. Couto, H.

E. T. Carvalho, M. Campista, L. Costa, and O. C. M. B. Duarte, “Virtual

networks: Isolation, performance, and trends”, vol. 66, pp. 339–355, Jun.

2011.

[28] O. Hohlfeld, “Impact of bu�ering on quality of experience”, PhD thesis,

Technische Universität Berlin, 2013.

[29] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input versus output queue-

ing on a space-division packet switch”, Communications, IEEE Transac-
tions on, vol. 35, no. 12, pp. 1347–1356, 1987.

[30] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achiev-

ing 100% throughput in an input-queued switch”, Communications, IEEE
Transactions on, vol. 47, no. 8, pp. 1260–1267, 1999.

[31] C. Clos, “A study of non-blocking switching networks”, The Bell System
Technical Journal, vol. 32, no. 2, pp. 406–424, Mar. 1953, issn: 0005-8580.

doi: 10.1002/j.1538-7305.1953.tb01433.x.

[32] T. Hoßfeld, K. Leibnitz, and A. Nakao, “Modeling of Modern Router Archi-

tectures Supporting Network Virtualization”, in 2nd International Work-
shop on the Network of the Future (FutureNet II) in conjunction with IEEE
GLOBECOM, 2009.

[33] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,

“Fairness issues in software virtual routers”, in Proceedings of the ACM
workshop on Programmable routers for extensible services of tomorrow,

2008.

133

https://doi.org/10.1145/1165389.945462
http://doi.acm.org/10.1145/1165389.945462
http://doi.acm.org/10.1145/1165389.945462
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x

Bibliography

[34] R. Durner, A. Blenk, and W. Kellerer, “Performance study of dynamic qos

management for open�ow-enabled sdn switches”, in 2015 IEEE 23rd In-
ternational Symposium on Quality of Service (IWQoS), Jun. 2015, pp. 177–

182. doi: 10.1109/IWQoS.2015.7404730.

[35] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran, “Probe and

adapt: Rate adaptation for http video streaming at scale”, IEEE Journal on
Selected Areas in Communications, vol. 32, no. 4, pp. 719–733, Apr. 2014,

issn: 0733-8716. doi: 10.1109/JSAC.2014.140405.

[36] L. D. Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “Elastic: A client-

side controller for dynamic adaptive streaming over http (dash)”, in 2013
20th International Packet Video Workshop, Dec. 2013, pp. 1–8. doi: 10.
1109/PV.2013.6691442.

[37] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “Tapas: A tool

for rapid prototyping of adaptive streaming algorithms”, in Proceedings
of the 2014Workshop on Design, Quality and Deployment of Adaptive Video
Streaming, ser. VideoNext ’14, Sydney, Australia: ACM, 2014, pp. 1–6,

isbn: 978-1-4503-3281-1. doi: 10.1145/2676652.2676654. [On-

line]. Available: http://doi.acm.org/10.1145/2676652.
2676654.

[38] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen, “Flicker e�ects

in adaptive video streaming to handheld devices”, in Proceedings of the
19th ACM International Conference on Multimedia, ser. MM ’11, Scotts-

dale, Arizona, USA: ACM, 2011, pp. 463–472, isbn: 978-1-4503-0616-4.

doi: 10.1145/2072298.2072359. [Online]. Available: http:
//doi.acm.org/10.1145/2072298.2072359.

[39] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner, “Assessing e�ect sizes

of in�uence factors towards a qoe model for http adaptive streaming”,

in 2014 Sixth International Workshop on Quality of Multimedia Experience
(QoMEX), Sep. 2014, pp. 111–116. doi: 10.1109/QoMEX.2014.
6982305.

134

https://doi.org/10.1109/IWQoS.2015.7404730
https://doi.org/10.1109/JSAC.2014.140405
https://doi.org/10.1109/PV.2013.6691442
https://doi.org/10.1109/PV.2013.6691442
https://doi.org/10.1145/2676652.2676654
http://doi.acm.org/10.1145/2676652.2676654
http://doi.acm.org/10.1145/2676652.2676654
https://doi.org/10.1145/2072298.2072359
http://doi.acm.org/10.1145/2072298.2072359
http://doi.acm.org/10.1145/2072298.2072359
https://doi.org/10.1109/QoMEX.2014.6982305
https://doi.org/10.1109/QoMEX.2014.6982305

[40] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-

wood, “On controller performance in software-de�ned networks”, in

Presented as part of the 2nd USENIX Workshop on Hot Topics in Man-
agement of Internet, Cloud, and Enterprise Networks and Services, San

Jose, CA: USENIX, 2012. [Online]. Available: https : / / www .
usenix.org/conference/hot-ice12-0/controller-
performance-software-defined-networks.

[41] Pica8, Sdn system performance, [Online]. Available at

http://www.pica8.com/pica8-deep-dive/sdn-system-performance/.

[42] P. Goransson, C. Black, and T. Culver, Software De�ned Networks, Second
Edition: A Comprehensive Approach, 2nd. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2016, isbn: 0128045558, 9780128045558.

[43] L. Doyle, The role of northbound apis in an sdn environment, [On-

line]. Available at http://searchsdn.techtarget.com/answer/The-role-of-

northbound-APIs-in-an-SDN-environment, 2013.

[44] J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley, and H. L.

Owen, “Advancing software-de�ned networks: A survey”, IEEE Access,
vol. 5, pp. 25 487–25 526, 2017. doi: 10 . 1109 / ACCESS . 2017 .
2762291.

[45] M. Bjorklund, J. Schoenwaelder, and A. Bierman, Network con�guration
pro-
tocol (netconf), [Online]. Available at https://tools.ietf.org/html/rfc6241,

Jun. 2011.

[46] P. Saint-Andre, Extensible messaging and presence protocol (xmpp): Core,
[Online]. Available at https://tools.ietf.org/html/rfc6120, Mar. 2011.

[47] Spirent, Open�ow performance testing white paper, [Online]. Available at

https://www.spirent.com//̃media/White%20Papers/Broadband/PAB/OpenFlow-

Performance-Testing_WhitePaper.pdf, Mar. 2015.

135

https://www.usenix.org/conference/hot-ice12-0/controller-performance-software-defined-networks
https://www.usenix.org/conference/hot-ice12-0/controller-performance-software-defined-networks
https://www.usenix.org/conference/hot-ice12-0/controller-performance-software-defined-networks
https://doi.org/10.1109/ACCESS.2017.2762291
https://doi.org/10.1109/ACCESS.2017.2762291

Bibliography

[48] J. W. King, Software-de�ned networking introduction to open�ow, [On-

line]. Available at https://www.slideshare.net/joelwking/introduction-

to-open�ow-41257742, Nov. 2014.

[49] A. Capone, From dumb to smarter switches in software de�ned networks:
An
overview of data plane evolution, [Online]. Available at http://www.beba-

project.eu/presentations/SDN-tutorial-CAMAD-v2_full.pdf, Dec. 2014.

[50] C. S. Hong, Manageability of future internet, [Online]. Available at

http://slideplayer.com/slide/9802157/, Apr. 2015.

[51] OpenFlow Switch Speci�cation v1.5.0, [Online]. Available at

https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-speci�cations/open�ow/open�ow-switch-

v1.5.0.noipr.pdf, Open Networking Foundation, 2014.

[52] M. Kuzniar, M. Canini, and D. Kostic, “Often testing open�ow networks”,

in 2012 European Workshop on Software De�ned Networking, Oct. 2012,

pp. 54–60. doi: 10.1109/EWSDN.2012.21.

[53] Project�oodlight, [Online]. Available at

http://www.project�oodlight.org/oftest/.

[54] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “Open�ow switching:

Data plane performance”, in 2010 IEEE International Conference on Com-
munications, May 2010, pp. 1–5. doi: 10 . 1109 / ICC . 2010 .
5502016.

[55] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance charac-

teristics of virtual switching”, in 2014 IEEE 3rd International Conference on
Cloud Networking (CloudNet), Oct. 2014, pp. 120–125. doi: 10.1109/
CloudNet.2014.6968979.

[56] OpenDayLight, Open�ow:testing, [Online]. Available at

https://wiki.opendaylight.org/view/Open�ow Testing#Tools, Aug. 2016.

136

https://doi.org/10.1109/EWSDN.2012.21
https://doi.org/10.1109/ICC.2010.5502016
https://doi.org/10.1109/ICC.2010.5502016
https://doi.org/10.1109/CloudNet.2014.6968979
https://doi.org/10.1109/CloudNet.2014.6968979

[57] M. Kuzniar, P. Peresini, and D. Kostic, “What you need to know about sdn

control and data planes”, in EPFL Technical Report EPFL-REPORT-199497,

2014.

[58] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “O�ops:

An open framework for open�ow switch evaluation”, in Proceedings of
the 13th International Conference on Passive and Active Measurement,
ser. PAM’12, Vienna, Austria: Springer-Verlag, 2012, pp. 85–95, isbn: 978-

3-642-28536-3. doi: 10.1007/978-3-642-28537-0_9. [On-

line]. Available: http://dx.doi.org/10.1007/978-3-
642-28537-0_9.

[59] C. Rotsos, G. Antichi, M. Bruyere, P. Owezarski, and A. W. Moore,

“O�ops-turbo: Testing the next-generation open�ow switch”, in 2015
IEEE International Conference on Communications (ICC), Jun. 2015,

pp. 5571–5576. doi: 10.1109/ICC.2015.7249210.

[60] M. Shahbaz, G. Antichi, Y. Geng, N. Zilberman, A. Covington, M. Bruyere,

N. Feamster, N. McKeown, B. Felderman, M. Blott, A. W. Moore, and P.

Owezarski, “Architecture for an open source network tester”, in Archi-
tectures for Networking and Communications Systems, Oct. 2013, pp. 123–

124. doi: 10.1109/ANCS.2013.6665194.

[61] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,

“Modeling and performance evaluation of an open�ow architecture”, in

2011 23rd International Teletra�c Congress (ITC), Sep. 2011, pp. 1–7.

[62] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and

D. Simeonidou, “An analytical model for software de�ned networking: A

network calculus-based approach”, in 2013 IEEE Global Communications
Conference (GLOBECOM), Dec. 2013, pp. 1397–1402. doi: 10.1109/
GLOCOM.2013.6831269.

[63] M. Jarschel, T. Zinner, T. Höhn, and P. Tran-Gia, “On the accuracy of

leveraging sdn for passive network measurements”, in 2013 Australasian

137

https://doi.org/10.1007/978-3-642-28537-0_9
http://dx.doi.org/10.1007/978-3-642-28537-0_9
http://dx.doi.org/10.1007/978-3-642-28537-0_9
https://doi.org/10.1109/ICC.2015.7249210
https://doi.org/10.1109/ANCS.2013.6665194
https://doi.org/10.1109/GLOCOM.2013.6831269
https://doi.org/10.1109/GLOCOM.2013.6831269

Bibliography

Telecommunication Networks and Applications Conference (ATNAC), Nov.

2013, pp. 41–46. doi: 10.1109/ATNAC.2013.6705354.

[64] M. Kuźniar, P. Perešíni, and D. Kostić, “What you need to know about sdn

�ow tables”, in Passive and Active Measurement: 16th International Con-
ference, PAM 2015, New York, NY, USA, March 19-20, 2015, Proceedings, J.

Mirkovic and Y. Liu, Eds. Cham: Springer International Publishing, 2015,

pp. 347–359, isbn: 978-3-319-15509-8. doi: 10.1007/978-3-319-
15509- 8_26. [Online]. Available: https://doi.org/10.
1007/978-3-319-15509-8_26.

[65] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-�delity switch mod-

els for software-de�ned network emulation”, in Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software de�ned networking,

2013.

[66] S. Geissler, S. Herrnleben, R. Bauer, S. Gebert, T. Zinner, and M.

Jarschel, “Tablevisor 2.0: Towards full-featured, scalable and hardware-

independent multi table processing”, in Network Softwarization (NetSoft),
2017 IEEE Conference on, 2017.

[67] H. Pan, G. Xie, Z. Li, P. He, and L. Mathy, “FlowConvertor: Enabling

Portability of SDN Applications”, in INFOCOM 2017-IEEE Conference on
Computer Communications, IEEE, 2017.

[68] P. Zhang, H. Li, C. Hu, L. Hu, L. Xiong, R. Wang, and Y. Zhang, “Mind

the gap: Monitoring the control-data plane consistency in software de-

�ned networks”, in Proceedings of the 12th International on Conference on
emerging Networking EXperiments and Technologies, 2016.

[69] L. Statistics, Spearman’s rank-order correlation, [Online]. Available at

https://statistics.laerd.com/statistical-guides/spearmans-rank-order-

correlation-statistical-guide.php, Mar. 2013.

[70] J. W.-K. Hong, Software de�ned networking: Tra�c monitoring and analy-
sis, [Online]. Available at http://slideplayer.com/slide/7395148/, Jan. 2015.

138

https://doi.org/10.1109/ATNAC.2013.6705354
https://doi.org/10.1007/978-3-319-15509-8_26
https://doi.org/10.1007/978-3-319-15509-8_26
https://doi.org/10.1007/978-3-319-15509-8_26
https://doi.org/10.1007/978-3-319-15509-8_26

[71] B. Landfeldt, P. Sookavatana, and A. Seneviratne, “The case for a hybrid

passive/active network monitoring scheme in the wireless internet”, in

Proceedings IEEE International Conference on Networks 2000 (ICON 2000).
Networking Trends and Challenges in the New Millennium, 2000, pp. 139–

143.

[72] A. Ciu�oletti and M. Polychronakis, “Architecture of a network monitor-

ing element”, in Euro-Par 2006: Parallel Processing, W. Lehner, N. Meyer,

A. Streit, and C. Stewart, Eds., Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2007, pp. 5–14, isbn: 978-3-540-72337-0.

[73] I. ImageStream

Internet Solutions, Network monitoring white paper, [Online]. Available

at http://www.telogic.com.sg/PDF/Monitoring_White_Paper.pdf, Apr.

2003.

[74] Cisco, Net�ow docwiki, [Online]. Available at

http://docwiki.cisco.com/wiki/NetFlow, May 2013.

[75] J. du Toit, Active vs. passive network monitoring: An infographic, [On-

line]. Available at https://www.irisns.com/active-vs-passive-network-

monitoring-an-infographic/, Apr. 2016.

[76] L. Cottrell, Passive vs. active monitoring, [Online].

Available at https://www.slac.stanford.edu/comp/net/wan-mon/passive-

vs-active.html, Mar. 2001.

[77] M. Zangrilli and B. B. Lowekamp, “Using passive traces of application

tra�c in a network monitoring system”, in Proceedings of the 13th IEEE
International Symposium on High Performance Distributed Computing,

ser. HPDC ’04, Washington, DC, USA: IEEE Computer Society, 2004,

pp. 77–86, isbn: 0-7803-2175-4. doi: 10.1109/HPDC.2004.38.

[Online]. Available: http://dx.doi.org/10.1109/HPDC.
2004.38.

139

https://doi.org/10.1109/HPDC.2004.38
http://dx.doi.org/10.1109/HPDC.2004.38
http://dx.doi.org/10.1109/HPDC.2004.38

Bibliography

[78] O. N. Foundation, Open�ow switch speci�cation v1.5.0, [Online]. Available

at https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-speci�cations/open�ow/open�ow-spec-v1.3.0.pdf, 2012.

[79] F. Tean, Open�ow message layer,
[Online]. Available at http://�owgrammable.org/sdn/open�ow/message-

layer/statsrequest/, 2014.

[80] Cisco, Introduction to cisco ios net�ow - a technical overview, [Online].

Available at https://www.cisco.com/c/en/us/products/collateral/ios-nx-

os-software/ios-net�ow/, May 2012.

[81] D. Pajin and P. V. Vuletić, “Of2nf: Flow monitoring in open�ow environ-

ment using net�ow/ip�x”, in Proceedings of the 2015 1st IEEE Conference
on Network Softwarization (NetSoft), Apr. 2015, pp. 1–5. doi: 10.1109/
NETSOFT.2015.7116138.

[82] J. Suárez-Varela and P. Barlet-Ros, “Towards a net�ow implementation

for open�ow software-de�ned networks”, in 2017 29th International Tele-
tra�c Congress (ITC 29), Sep. 2017.

[83] J. Suárez-Varela and P. Barlet-Ros, “Sbar: Sdn �ow-based monitoring and

application recognition”, in 2018 Symposium on SDN Research, Mar. 2018.

[84] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “PayLess: A Low

Cost Netowrk Monitoring Framework for Software De�ned Networks”,

in 14th IEEE/IFIP Network Operations andManagement Symposium (NOMS
2014), 2014. [Online]. Available: http : / / www . bibsonomy .
org/bibtex/26900dadb678b1428ee1078e98fe3cf89/
chesteve.

[85] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon: Net-

work Monitoring in OpenFLow Software-De�ned Networks”, in Network
Operations and Management Symposium (NOMS), 2014.

140

https://doi.org/10.1109/NETSOFT.2015.7116138
https://doi.org/10.1109/NETSOFT.2015.7116138
http://www.bibsonomy.org/bibtex/26900dadb678b1428ee1078e98fe3cf89/chesteve
http://www.bibsonomy.org/bibtex/26900dadb678b1428ee1078e98fe3cf89/chesteve
http://www.bibsonomy.org/bibtex/26900dadb678b1428ee1078e98fe3cf89/chesteve

[86] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “Flowcover: Low-cost �ow moni-

toring scheme in software de�ned networks”, in 2014 IEEE Global Com-
munications Conference, Dec. 2014.

[87] X. Thien Phan and K. Fukuda, “Sdn-mon: Fine-grained tra�c monitoring

framework in software-de�ned networks”, vol. 25, pp. 182–190, Feb. 2017.

[88] D. Raumer, L. Schwaighofer, and G. Carle, “Monsamp: A distributed sdn

application for qos monitoring”, in 2014 Federated Conference on Com-
puter Science and Information Systems, Sep. 2014, pp. 961–968. doi: 10.
15439/2014F175.

[89] M. Hartung and M. Körner, “Softmon - tra�c monitoring for sdn”,

vol. 110, pp. 516–523, Dec. 2017.

[90] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Mad-

hyastha, “Flowsense: Monitoring network utilization with zero measure-

ment cost”, in Passive and Active Measurement, M. Roughan and R. Chang,

Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 31–41,

isbn: 978-3-642-36516-4.

[91] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: Tra�c matrix

estimator for open�ow networks”, in PAM, 2010.

[92] L. Yuan, C. N. Chuah, and P. Mohapatra, “Progme: Towards pro-

grammable network measurement”, IEEE/ACM Transactions on Network-
ing, vol. 19, no. 1, pp. 115–128, Feb. 2011, issn: 1063-6692. doi: 10 .
1109/TNET.2010.2066987.

[93] T. Choi, Adaptive �ow monitoring & selective dpi for onos, [On-

line]. Available at https://wiki.onosproject.org/display/ONOS/OPEN-

TAM%3ATra�cAnalysisandMonitoring, Mar. 2016.

141

https://doi.org/10.15439/2014F175
https://doi.org/10.15439/2014F175
https://doi.org/10.1109/TNET.2010.2066987
https://doi.org/10.1109/TNET.2010.2066987

ISSN 1432-8801

	Introduction
	Scientific Contribution
	Outline of Thesis

	Isolation of Virtual Networks in the context of SDN
	Background and Related Work
	Software Defined Networking
	SDN Principles.
	SDN Architecture.

	Traffic Shaping and Traffic Policing
	IEEE 802.3X Ethernet Flow Control
	Related Work

	Method Used
	Evaluation results
	Single Experiment Run
	Impact of Experiment Parameters on Packet Loss
	Amount and Duration of Packet Loss

	Proof-of-Concept Implementation of Video Control Plane in the Case of DASH
	Implementation of Video Control Plane
	Performance of Network-assisted in VCP

	Lessons Learned

	Impact of the SDN Control Plane on the Data Plane Performance
	Background and Related Work
	Operation of the SDN Control Plane
	SDN Controller Core Modules.
	SDN Controller NBI.
	SDN Controller SBI.
	Flow Installation Approaches.

	Methods of Sending FlowMod Messages
	Performance Evaluation of SDN Components

	Proactive Flow Installation Evaluation
	Experimental Setup
	Comparison of Switch Behavior
	Accuracy Assessment of Measurement Mechanisms
	Correlation Analysis of Measurement Mechanisms

	Influence of Control Plane Delay on Proactive Flow Installation
	Sensitivity of Switches towards Control Plane Delay
	Impact of Controller Implementation

	Lessons Learned

	Flow Monitoring Approaches in SDN Networks
	Background and Related Work
	Network Monitoring Approaches
	Active Network Monitoring.
	Passive Network Monitoring.
	Hybrid Network Monitoring.

	Monitoring an SDN Network
	OpenFlow Counter.
	OpenFlow Statistics Messages.

	Related Work

	Performance of Adaptive Flow Monitoring in the ONOS Controller
	Adaptive Flow Monitoring Algorithm
	Evaluation Results
	Experimental Setup.
	CPU Utilization in a Single Run.
	Comparison of CPU Utilization.

	Selective Flow Monitoring
	Measurement Setup
	Selective Flow Monitoring Mechanism
	Performance Evaluation of SFM

	Lessons Learned

	Conclusion
	Acronyms
	Bibliography and References

