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Matching DMFT calculations with 
photoemission spectra of heavy 
fermion insulators: universal 
properties of the near-gap spectra 
of SmB6
Chul-Hee Min1, F. Goth2, P. Lutz1, H. Bentmann1, B. Y. Kang   3, B. K. Cho3, J. Werner2,  
K.-S. Chen2, F. Assaad2 & F. Reinert1

Paramagnetic heavy fermion insulators consist of fully occupied quasiparticle bands inherent to 
Fermi liquid theory. The gap emergence below a characteristic temperature is the ultimate sign of 
coherence for a many-body system, which in addition can induce a non-trivial band topology. Here, 
we demonstrate a simple and efficient method to compare a model study and an experimental result 
for heavy fermion insulators. The temperature dependence of the gap formation in both local moment 
and mixed valence regimes is captured within the dynamical mean field (DMFT) approximation to the 
periodic Anderson model (PAM). Using the topological coherence temperature as the scaling factor 
and choosing the input parameter set within the mixed valence regime, we can unambiguously link the 
theoretical energy scales to the experimental ones. As a particularly important result, we find improved 
consistency between the scaled DMFT density of states and the photoemission near-gap spectra of 
samarium hexaboride (SmB6).

The interplay of topology and correlation effects has led to generalizations of the concept of topological insula-
tors1,2, namely to symmetry protected topological surface states (TSS)3. Topological Kondo insulators (TKI)4,5 are 
an example of a time reversal symmetry protected TSS. Here, correlation effects are dominant in the formation of 
the low-energy quasiparticle excitations, but the ground state itself is believed to be adiabatically connected to a 
Fermi liquid. In this sense, one can construct a link to a non-interacting fermion system (with heavy mass), and 
take over our understanding of the 2 classification6 to this class of correlated materials7–11. A well-known candi-
date for the TKI is the compound samarium hexaboride (SmB6). It is a paramagnetic bulk insulator12,13 with a 
smooth gap opening consisting of 4f and 5d characters14–16.

The microscopic picture of this particular coherent state has been qualitatively captured with various 
mean-field approximations to the periodic Anderson model (PAM)4,9,14,17–34. However, a quantitative comparison 
between theoretical and experimental density of states (DOS) is hampered by the complexity of the actual mate-
rial and by the experimental processes, e.g. surface reconstructions, multiplet structure, line broadening, infor-
mation depth, etc35–37. Moreover, such quantitative analyses require to identify the validity range of the theoretical 
results applicable to the experimental data. Hence, it is in general necessary to find a proper energy conversion 
between theoretical and experimental energies.

The aim of this paper is to present a new perspective on the comparison of theoretical and experimental DOS 
of heavy fermion (HF) insulators. In particular, we focus on the dynamical emergence of the hybridization gap 
of topological HF insulators in units of the coherence temperature Tcoh. This scaling provides an effective way 
to convert the theoretical to the experimental energy scales. Such scaling approaches have been mainly applied 
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to transport properties of metallic Ce- and Yb-based HF systems38,39. For these metallic cases, there is a certain 
freedom in defining the quantitative Tcoh depending on the respective physical properties40–42. This is due to the 
nature of the crossover in PAM (See also the Sec. I of the Supplementary Information). However, this definition 
is less ambiguous for the insulating phase. The reason is that most physical properties will drastically change with 
the gap opening. Thus, Tcoh can be chosen to mark the temperature at which the gap opens, and can therewith be 
connected to the topological phase by monitoring the emergence of the TSS24,25,28.

Since the emergent topological band structure is nothing else but evidence for coherence, we can use the net 
polarization of the TSS to define Tcoh in the model calculations43. One can define a pseudo-spin Hall conductivity 
that takes the value of unity at zero temperature in the insulating state, thereby defining a topological index N2

24,25.  
The topological coherence temperature TN corresponds to the T scale at which the index N2 takes the value of 
one-half, i.e. the pseudo-spin Hall conductivity of the TSS takes half of its zero temperature quantized value. With 
the definition of TN, a unifying crossover parameter can be defined to describe both the lattice coherence and the 
topological phase. We revisit the physical consequences occurring at the TN values, which are carefully evaluated 
in the refs24,25. considering the index N2 with the same input parameters used in this study. In particular, we ana-
lyzed the gap evolution and occupation numbers to extract the experimental results.

Our choice for the theoretical approach is the dynamical mean field theory (DMFT)24. Since we take a simple 
version of the PAM, our results cannot effectively capture every spectral detail of SmB6

33. Nevertheless, a simpli-
fied model has the advantages of surveying unique and general properties in the wide ranges of input parameters. 
In previous studies, the electron correlation U was tuned from the mixed valent regime to the local moment 
regime, and we identified universal features in the T-dependent N2 index21,24. Experimentally, we investigated the 
near-gap region of SmB6 by photoemission spectroscopy (PES). There are fascinating low-T properties observed 
in SmB6

44–57, which we do not consider in the present study. Note that, as the energy resolution of the PES setup is 
limited, PES results have not detected all degenerate f bands predicted in first-principle calculations7,8,17,27 in the 
energy range of 20 meV below the chemical potential22,58–63. Instead, we focus on the gap opening of SmB6 that is 
observed in the PES experiments and explains various transport properties near 50 K22,62.

We will first show our theoretical results near TN and place emphasis on the temperature dependence of the 
orbital dependent occupation numbers. In the following section, we display the scaled DMFT spectra at different 
U values, and clarify the universal gap features. Adopting the TN scaling, we will show consistent results on the 
gap evolution obtained from theory and experiment. In the discussion section, the importance of the scaling 
with TN is described and the key parameters are discussed. In the supplementary information, we give a detailed 
discussion of the crossover temperature in the Anderson model, additional noteworthy points for the compari-
sons, and illustrate the detailed spectral weight redistribution in the E(k) plot near TN. Although our simplified 
model captures the overall T-dependence of the electronic structure, it fails to properly describe material specific 
aspects, e.g. in present case, the slight slope change in Sm valence at 120 K or the slight increase below 20 K64 are 
not realized in our result.

Results
T-dependence of theoretical DOS and occupation numbers.  Figure 1 shows the T-dependence of 
the f and d density of states (DOS) as a function of energy over hopping parameter for the d states (w/t)24. Here, 
we illustrate the DOS near TN/t = 0.2125 in the mixed valence regime (U/t = 5). In the insets, the occupa-
tion numbers nf and nd of each DOS are depicted as a function of T/t in the colors corresponding DOS lines. 
Figure 1(a) shows the occupied f -DOS near EF, which is related to the Hubbard band lying near the chemical 
potential, and Fig. 1(b) mainly shows the occupied d -DOS, which originates from the 2D conduction band. 
Both f- and d - DOS are only broadened due to the imaginary part of the self-energy. (The wiggling features in 

Figure 1.  As an example of the DMFT results, temperature (T) dependence for density of f and d states, for the 
mixed valence regime (U/t = 5) is shown in (a) and (b), respectively. The coherence temperature for this regime 
is  TN/t = 0.2125, which is evaluated from index N2. The energy is normalized to the hopping parameter t. In 
the same colors used for density of states (DOS) lines, the corresponding occupation numbers for f and d states 
are shown as a function of T/t in the insets. The gap, whose character mainly originates from f states at high T, 
becomes clearer and deeper with decreasing T. Note that at T ≤ TN the spectral weights inside the gap, and the 
occupation numbers of f and d states start to saturate (insets).
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Figure 2.  Universal gap evolution studied for U/t = 5, 6, 7; and 8. Total DOS, which are exactly treated as the 
spectra in Fig. 3(b). The spectral weight in the gap region decreases with decreasing T. The gap region becomes 
clearer. Insets show the T dependence of the occupation numbers of nf and nd for each U values. The occupation 
numbers vary as a function of T strongly in the mixed valence regime (U/t = 5). But, the variation reduces 
continuously from the mixed valence regime to the local moment regime (U/t = 8), which indicates a crossover.

Figure 3.  Comparison of the PES spectra of SmB6 with the theoretical DOS after scaling with the corresponding 
Tcoh. (a) The angle-integrated spectra of SmB6 are divided by the Fermi-Dirac function62. The energy axis is 
reduced by the coherence scale determined from experiments (T exp

coh = 50 K). (b) Reconstructed spectra from 
theoretical calculation, considering Fermi-Dirac distributions and total experimental resolutions (see text), in 
order to compare with the experiment spectra (a). In unit of the respective coherence energies, the f peaks in (a) 
and (b) appear at the energies of the same order of magnitude. Moreover, the gap regions show similar T 
dependence such that the gap minimum (black rectangles) shifts toward high energy with decreasing T.
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Fig. 1(b) are reminiscent of the finite k-mesh used in the DMFT calculations). The spectral weight in the gap 
region (|w/TN| ≤ 1) is mainly of f character, and clearly reduces with decreasing temperature, being qualitatively 
consistent with the PES spectra so far59,62,65–68.

The results in units of t (Fig. 1) do not match with the experimental spectra. For example, if t ∼ 1 eV, U 
becomes 5 eV, TN becomes 0.2125 eV ∼ 2500 K, and the maximum width of the f peak becomes 1 eV. Moreover, 
the total energy resolution (ΔE) of the experimental setup should be considered in the DMFT spectra to fairly 
compare each other, which is not feasible with this energy scale. Hence, it is difficult to compare with experimen-
tal spectra quantitatively. Interestingly, with the assumption of t ∼ 1 eV, both Tcoh and the peak width are about 
two orders of magnitude higher than the PES results of SmB6

62,65. Hence, a proper scaling factor might exist and 
provide the connection between theoretical and experimental energy scales. In order to extract Tcoh in the exper-
iment data (T exp

coh) corresponding to the TN, we first look carefully at the unique T dependence of nf (Fig. 1 (a, 
inset)). Below TN, nf and nd are almost saturated to the maximum and minimum occupations, respectively. 
Secondly, we recognize that the intensity at EF is saturated in both f- and d- DOS (green lines) below TN.

Based on the two signatures around TN, we search for T exp
coh  in SmB6 as determined from experiments. 

According to the saturation point in the T-dependent Sm valence obtained from the XAS result64, the T exp
coh should 

be around 50 K. Recent 4f character-sensitive PES studies show that the gap opening happens below 60 K22,62. 
Furthermore, various other experiments revealed a similar characteristic temperature of ∼50 K12,13,45,47,51,64,69–82. 
Thus, it is reasonable to define a characteristic temperature out of the PES spectra related to the gap formation of 
the HF insulator, and connect the theoretical energy scale to the experimental energy and temperature as follows: 
w/TN = E/(kBT exp

coh), and T/TN = T T/ expexp
coh where kB is the Boltzmann constant. The peak broadening due to the 

experimental resolution can be also implemented in the theoretical spectra. Thus, the theoretical DOS are broad-
ened in energy w by TN ⋅ (7 meV)/(kB ⋅ 50 K).

Universal gap evolution for U/t 5, 6, 7, and 8.  In order to demonstrate the universal property of the 
model applying the TN-scaling, total DOS, which is the sum of f- and d- DOS, near the gap region are shown for 
various U/t = 5, 6, 7 and 8, in Fig. 2. Estimated TN/t, values for U/t = 5, 6, 7 and 8 are 0.2125, 0.155, 0.0795, and 
0.0263, respectively25. With increasing U/t from 5 to 8, TN decreases by an order of magnitude. Note that after 
the scaling with the respective TN, the comparison of the gap openings becomes possible for various U/t. In all 
spectra, the f peak appears in the range of −5 ≤ w/TN ≤ −3, and the spectral weight of the gap region decreases 
with lowering temperature. The gap opening in both mixed valence and local moment regimes is similar to each 
other. This is the unique characteristics of the HF insulator, showing the gap evolution is universal, i.e. mostly 
independent from the actual set of model parameters. The insets of Fig. 2 illustrate the T dependence of nf and nd 
for various U/t values. Normalizing T by TN leads to the universal change in the occupation numbers. Below TN, 
the occupation numbers saturate to a constant value in all cases. The difference in the high and low T values of nf 
and nd decreases when U/t increases. It is recognizable till U/t = 7, where the nf is slightly larger than 1.1.

Four main characteristics are found in the DMFT spectra as a function of U/t, which become obvious after the 
scaling and taking care of the resolution. First, a systematic energy shift in the gap minimum apparently appears 
in the mixed valence regime, i.e. U/t = 5. Second, at higher U/t, the gap deepens more rapidly with respect to the 
scaled temperature. Third, at the converted temperature of T ∼ 2TN (red lines), the gap minimum positions at 
slightly different energies for different U/t. The gap minimum appears below EF at U/t = 5, but it appears at higher 
energy with increasing U/t. Fourth, the f peak intensity at high temperatures is obviously higher in the mixed 
valence regime because of the presence of the atomic multiplet 6H5/2 state. Thus, although the lattice coherence 
has not been developed, it is still possible to observe the peak structure near EF

35,83.

Mixed valence: PES vs. DMFT for U/t = 5.  Figure 3(a) shows the angle-integrated photoemission spectra 
of SmB6 divided by the Fermi-Dirac distribution (FDD)62 on the reduced energy scale of Tcoh

exp. The peak at (E-EF)/
(kBT exp

coh) = −5 is the 4f multiplet excitation (6H5/2) with lowest binding energy. The gap in the PES data is getting 
deeper with decreasing T, comparable to the behavior observed in the theoretical DOS (as shown in the previous 
figures). We compare now the experimental and the theoretical spectra in more detail using their functional rela-
tion to the scaling. If SmB6 has the scaling property, the energy and T in the PES spectra can be rescaled to link 
with the DMFT energy.

To make the calculated DOS directly comparable to the experimental spectrum, we treated the DOS by an 
established numerical procedure already successfully applied to metallic heavy fermion systems84. The total 
DOS was multiplied by the FDD, and convoluted by a Gaussian function regarding the total resolution. Lastly, 
the resulting spectrum was normalized to the FDD as shown in Fig. 3(b) in order to get comparable spectra in 
Fig. 3(a).

As a result, the scaled theoretical and experiment spectra show a surprisingly good agreement in the T 
dependence of both the 4f peak and the gap opening. As already theoretically suggested24,25, the 4f energy posi-
tions, the line widths of the peaks, and the size of the gap are on the scale of the respective Tcoh. In particular, both 
gap developments near Tcoh are very similar. The gap minima in both theory and experiment, marked with black 
rectangles in Fig. 3, shift from below EF toward high energy with elaborating T. Note that when the accuracy of 
our DMFT results is tested, we find that the gap minima are among the most reliable features in the spectra.

Discussion
Heavy fermions are a canonical example of a multi-scale problem. The bare scales such as the Coulomb repul-
sion U and conduction electron band width are of several eV. In contrast, the emergent scales, in particular 
the coherence scale, are measured in units of meV85. A realistic multi-scale calculation is prohibitively difficult 
since it would have to take into account the details of the orbital structure and interactions. Low energy phys-
ics can however show signs of universality in the sense that scaling with the appropriate energy scale allows 
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comparison between different experimental realizations of the phenomena under consideration and with theory. 
Our study follows precisely this idea. A good account of the low energy behavior of the photoemission spectra can 
be obtained by scaling the experimental and theoretical data with the corresponding coherence scale and making 
sure that the theoretical calculations are well in the mixed valence regime21,24.

Our theoretical model is a PAM on a square lattice21,24, which we solve by means of DMFT that maps the 
lattice problem onto a single Anderson impurity model (SIAM). The DMFT approximation captures the salient 
many body physics of the paramagnetic phase of heavy fermions86. Due to the locality of the approximation only 
dynamical fluctuations are relevant for the emergence of the coherence scale41. In this sense we do not expect 
the spacial degrees of freedom to play a dominant role in the analysis of the temperature dependence of the low 
energy DOS. In particular in the SIAM, dimensionality enters only in terms of the bare density of states at the 
Fermi energy and is one of the parameters that determine the Kondo scale.

In our model study we consider a two fold degenerate f band unlike in refs7,8,20. The detailed band structure 
and its symmetry aspects are very interesting issues in the rare-earth hexaborides17, which will help to find alter-
native topological Kondo insulators. Nevertheless, in our model we treat only the lowest-lying two bands, i.e. one f 
band and one d band, in order to capture the general gap evolution. As shown in Fig. 3, the line broadening due to 
the limited experimental resolution makes the theoretical f peak width comparable to the experimental one (See 
also the Sec. II of the Supplementary Information for further discussion). Thus, it again appears that our simple 
model is able to capture the main low-energy features of the DOS.

Hence, this demonstrates that just the universal scales of model calculations are sufficient to reproduce the 
general gap opening appearing in the experiment. In order to obtain further agreement, only few parameters 
should be adjusted to realize, in particular, the T dependence of the gap evolution and the occupation numbers. 
These two features are the most reliable and sensitive characteristics in our theoretical results, which mainly 
depend on the configuration of the input parameter set, i.e. the distinction between local moment and mixed 
valence regimes. Among our survey parameters, the mixed valence configuration gives the best agreement. Hence, 
our investigation demonstrates that the key parameters, namely the coherence temperature and the degree of 
valence mixing, suffice to realize the experiments. Our finding actually proves that the gap nature of SmB6 involves 
the emergence of the coherent renormalized bands in the framework of the Fermi liquid theory. Therefore, the 
topological phase of SmB6 can be classified with the topological indices applicable to non-interacting insulators 
as presumed in various theoretical studies4,10,11.

Methods
Theoretical studies on the T dependence of the electronic structure of heavy fermion insulators (half-filled cases) 
in 2D square lattice were carried out based on the DMFT87, which maps a 2D model onto an auxiliary impurity 
problem. The impurity problem is then solved by the the numerically exact CT-HYB quantum Monte Carlo 
algorithm. For the simple model study, we use tight binding bands with the same input parameters as in the ref.24,  
which are normalized with the conduction hopping parameter t, e.g. 5.0 ≤ U/t ≤ 8.0, εf/t =  −6.0, the hybridi-
zation V/t = 0.4, etc. The high resolution photoelectron spectroscopy (PES) experiments were carried out at the 
UE112-PGM-1b (“13”) beamline of BESSY II using a Scienta R4000 analyzer at 3 K ≤  Texp ≤ 60 K62. The excitation 
photon energy was hν = 70 eV, whose constant energy map at EF covers kz = 6π/a in normal emission, with the 
high energy resolution of 7 meV. Detailed experimental conditions can be found in ref.62.
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