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1 Introduction

Since the discovery of a Higgs boson at the Large Hadron Collider (LHC) [1, 2] the com-

munity is moving forward focusing on precision. Precision is the key to probe the Standard

Model (SM) and Beyond Standard Model (BSM) physics and potentially allows, together

with automation, to disprove the SM or even to single out new models. State of the

art predictions involve typically two-loop and occasionally three-loop QCD and one-loop

electroweak (EW) corrections for many processes of interest at the LHC. As the aim is

to cover all accessible processes at the LHC and future colliders, a lot of effort has gone

into the full automation of one-loop amplitudes. With one-loop QCD amplitudes being

available since a long time, more recently much effort has been spent on the automation

of EW one-loop corrections, which are more important than ever in view of the recent

progress in multi-loop QCD calculations. SM EW corrections are nowadays available in

various approaches, e.g. OpenLoops [3], MadGraph5 aMC@NLO [4], GoSam [5, 6],

FeynArts/FormCalc [7, 8], and in our fully recursive approach RECOLA [9, 10]. For

BSM physics precision is important, and especially EW corrections should not be under-

estimated as they can be comparable to QCD corrections in certain BSM scenarios.

The automation for one-loop BSM physics requires three ingredients: first, new models

need to be defined, typically in form of a Lagrangian and followed by the computation of

the Feynman rules. For this kind of task Feynrules [11] and SARAH [12] are established

tools. Then, a systematic and yet flexible approach to the renormalization and computation

of further ingredients is required to deal with generic models. Finally, the renormalized

model file needs to be interfaced to a generic one-loop matrix-element generator. As for

the automation of renormalization, there has been progress in the Feynrules/FeynArts

approach [13]. In this paper we present an alternative and fully automated procedure to

the renormalization and computation of amplitudes in general models, thus, combining the

second and third step. Our approach makes use of tree-level Universal FeynRules Output

(UFO) model files [14] and results in renormalized one-loop model files for RECOLA2,

a generalized version of RECOLA, allowing for the computation of any process in the

underlying theory at the one-loop level, with limitations only due to available memory or

CPU workload.

As an application of the system, we focus on two BSM Higgs-production processes at

the LHC, namely Higgs production in association with a vector boson, usually referred to as

Higgs strahlung, and Higgs production in association with two jets, known as vector-boson

fusion (VBF), in the Two-Higgs-Doublet Model (2HDM) and the Higgs-Singlet extension

of the SM (HSESM). Those processes are particularly interesting for an extended Higgs

sector, as they represent the next-to-most-dominant Higgs-production mechanisms at the

LHC. There has been enormous progress in higher-order calculations to Higgs strahlung and

VBF in the SM and BSM. For Higgs strahlung the QCD corrections are known up to NNLO

for inclusive [15–17] and differential [18, 19] cross sections. On-shell EW corrections were

computed in ref. [20] and followed by the off-shell calculation in ref. [21]. Higgs strahlung

has also been investigated in the 2HDM for QCD [22] and EW [23] corrections. NLO

QCD corrections matched to parton shower have been presented in ref. [24] in an effective
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field theory framework. For VBF, the first one-loop QCD corrections were obtained in a

structure function approach [25] followed by the first two-loop prediction [26, 27] in the

same framework. As for differential results, the first one-loop QCD and EW corrections

were calculated in ref. [28] and refs. [29, 30], respectively. Since recently also the differential

two-loop [31] and three-loop [32] QCD corrections are available. VBF has been interfaced to

parton showers [33, 34] and has been subject to studies for a 100 TeV collider [35]. In view

of BSM, VBF has been studied in the MSSM [36]. Higgs strahlung and VBF are nowadays

available in public codes, such as V2HV [37], MCFM [38], HAWK2.0 [39] and vh@nnlo [40].

This paper is organized as follows. In section 2 the computer program RECOLA2

is presented as a systematic approach towards the automated generation of one-loop pro-

cesses. RECOLA2 relies on one-loop renormalized model files which are automatically

generated with the new tool REPT1L from nothing but Feynman rules. The computation

steps are explained in different subsections, where we discuss the translation from UFO to

RECOLA2 model files (section 2.1), the counterterm expansion and renormalization, and

the computation of rational terms of type R2 (section 2.2). In section 3 we give details on

the HAWK 2.0 interface with RECOLA2, which has been used for the phenomenology.

In section 4 we list our conventions for the 2HDM and the HSESM, focusing on the physical

input parameters. In section 5 we discuss the application of the Background-Field Method

(BFM) in RECOLA2. We present the renormalization for extended Higgs sectors in the

BFM and give details on the implementation in REPT1L. In section 6 we fix the calcula-

tional setup and define the benchmark points, which were mainly taken from the Higgs cross

section working group (HXSWG). For the numerical analysis we use different renormaliza-

tion conditions for the mixing angles, which we introduce in section 6.3. In section 7 we

present the numerical results, discussing total cross sections in view of different renormal-

ization schemes and distributions for heavy Higgs-boson production. After the conclusions

in section 8, we illustrate in appendix A how the colour flow is derived and provide addi-

tional information on the derivation of a minimal basis for off-shell currents in appendix B.

Finally, in appendix C we discuss the application of on-shell renormalization schemes com-

bined with different tadpole counterterm schemes focusing on the gauge dependence.

2 RECOLA2: RECOLA for general models

RECOLA2 is a tree-level and one-loop matrix-element provider for general models involv-

ing scalars, fermions and vector particles. It is based on its predecessor RECOLA [9, 10],

which uses Dyson-Schwinger equations [41–43] to compute matrix elements in a fully nu-

merical and recursive approach. The implementation at tree level follows the strategy

developed in ref. [44], supplemented by a special treatment of the colour algebra. The one-

loop extension, inspired by ref. [45], relies on the decomposition of one-loop amplitudes

as linear combination of tensor integrals and tensor coefficients. The former are evaluated

by means of the library COLLIER [46], while the latter can be computed by making use

of similar recursion relations as for tree amplitudes. The key point is the construction

of the proper tensor structure of the coefficients at each step of the recursive procedure,

which has been implemented in RECOLA relying on the fact that in the Standard Model
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in the ’t Hooft-Feynman gauge the combination (vertex)×(propagator) is at most linear

in the momenta. RECOLA2 circumvents these and other limitations of RECOLA. In

the following we give an introduction to RECOLA2 and its capabilities, focusing on the

generalization with respect to RECOLA and on the applications presented in section 7.

The generalization of RECOLA has required to remove all SM-based pieces of code,

replacing them with generic structures which are able to retrieve any necessary information

from the model file. Furthermore, the process-generation algorithm makes use of recursive

functions dealing with different cases on equal footing. This has produced a more compact

code as no model-dependent information has been hard-coded. Finally, RECOLA2 just

needs the Feynman rules to be provided by model files in a specific format to directly eval-

uate NLO amplitudes in the model under consideration by using similar recursion relations

to those of the SM. As for RECOLA, the key ingredients are the so-called off-shell currents

wi(P, {n}) = n
P

(2.1)

defined as the sum of all Feynman graphs which generate the off-shell particle P combining

n external particles.1 The generic index i is related to the spin. For example, in the case

of a vector field i is a Lorentz index or in the case of a fermionic field i is a spinor index.

Other indices are suppressed and not relevant for the following discussions.

The off-shell currents (2.1) are build recursively according to the Berends-Giele recur-

sion relations (BGR) [47]

=
∑ λ3

+
∑ λ4

+
∑ λ5

+ . . . , (2.2)

which constitute a generalization of eq. (2.2) of ref. [9] for general models where elementary

couplings with more than four fields are present. Note that in RECOLA [10] the terms

with λi, i > 4 are absent as only 2-, 3-, and 4-point interaction vertices are supported.

Practically, each term on the right-hand side of the BGR equation (2.2) combines off-

shell currents, referred to as incoming currents, and contributes to the construction of the

current on the left-hand side, referred to as outgoing current. An outgoing off-shell current

with n external particles is calculated using the vertices of the theory connecting incoming

off-shell currents with less than n external particles, which, when combined, add up to n

external particles. This can be realized for tri-linear, quadri-linear, quinti-linear, or even

higher n-point vertices if present in the theory. The contribution to the outgoing current

1The n external particles of the sub-graph are on-shell (their wave functions are included, but not their

propagator). Particle P is off-shell, its wave function is not included and, for n > 1, replaced by its

propagator.
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generated in each term of equation (2.2) can be formally seen as the result of the action of

the BGR operator defined by

wIn,1

wIn,N

=: BGR (wIn,1, . . . wIn,N) ⇒ wOut =
∑

BGR (wIn,1, . . . wIn,N) ,

(2.3)

with the sum running over all contributions in (2.2).

The equations (2.2) and (2.3) can be written in a model-independent way as a linear

combination of Lorentz structures from which the couplings, colour structures and other

relevant information that needs to be propagated from the left to the right is factorized.

RECOLA2 is fully relying on the model file to provide those rules, in addition to recursive

rules for the colour-flow and helicity-state propagation. One could argue, that not too

many different operators are required, at least for the renormalizable theories, which could

have been hard-coded. However, in view of different conventions, different gauges and

non-renormalizable theories, we decided for a flexible system by moving this dependence

to the model file. As now the model file provides the rules for computing off-shell currents,

we can easily incorporate the BFM and Rξ-gauge for the SM and BSM models for NLO

computations which is discussed in section 5. In addition, RECOLA2 has been generalized

to deal with arbitrary n-point vertices,2 and, thus, can compute processes with elementary

interactions between more than four fields. Dealing with higher n-point vertices required

to improve, among other parts of the code, the generation of the tree graphs of the process.

The generation of those graphs is a combinatorial problem which is practically solved

in the binary representation as introduced in ref. [48] (see also ref. [44]). For elementary

interactions involving an arbitrary number of fields the method requires to compute distinct

ordered integer partitions of arbitrary size with no bitwise overlap between elements.

Further, RECOLA2 allows for arbitrary powers of momenta3 in Feynman rules, which

is crucial for EFTs and the Rξ-gauge at one-loop level. In order to implement this im-

portant generalization, we had to generalize the construction of the tensor structure of

loop currents (i.e. of the coefficients of the tensor integrals), allowing the combination

(vertex)×(propagator) to contain any power of momenta.

New theories may involve new fundamental couplings, and RECOLA2 can deal with

an arbitrary number of them.4 The computation of matrix elements is ordered according

to powers of fundamental couplings, and RECOLA2 provides methods to automatically

compute amplitudes and interferences for all possible orders of these couplings. For in-

2For reasons of optimization n is restricted to n ≤ 8.
3RECOLA2 has been tested with Feynman rules involving momentum powers up to the power of 3.

Note that at one-loop order significant increase in the rank may cause limitations due to available internal

memory and CPU power.
4This feature has been tested with 8 different fundamental couplings in Φ8 theory. Note that a large

number of fundamental couplings could worsen the performance in the process-generation and computation

phase.
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stance, this feature can be used to control the number of insertions of a higher dimensional

operator in a given amplitude.

Finally, RECOLA2 comes with almost all features and optimizations as provided by

RECOLA. It is designed to be backward compatible in the sense that a program which

successfully runs with RECOLA can be linked to RECOLA2 and a SM (or SM BFM)

model file and is guaranteed to run without any code adaptation. This is realized by

a dedicated SM interface which has been developed on top of the general interface to

model files. The most notable optimizations concern partial factorization in colour-flow

representation, the use of helicity conservation and the identification of fermion loops for

different fermions with equal masses.

2.1 RECOLA2 model-file generation

RECOLA2 model files are generated with the tool REPT1L (Recola’s rEnormalization

Procedure Tool at 1 Loop) which is a multi-purpose tool for analytic computations at

the one-loop order. REPT1L is written in Python 2.75 and depends on other tools,

most notably RECOLA2 for the model-independent current generation, which is used in

combination with FORM [49] to construct analytic vertex functions or S-matrix elements,

and SymPy [50], which is a computer-algebra system (CAS) for Python.

REPT1L requires the Feynman rules in the UFO format [14] which can be derived via

Feynrules [11] or SARAH [12]. As there has been progress for an automated renormal-

ization in the Feynrules framework [13], we stress that we do not require any results for

counterterms or rational terms. Those terms are automatically derived from the tree-level

Feynman rules in a self-contained fashion as explained in section 2.2.

The RECOLA2 model-file generation consists of two phases. In the first phase

REPT1L loops over all vertices in the UFO model file, disassembling each into the vertex

particles, Lorentz and colour structures, and couplings. The colour structure is transformed

to the colour-flow basis possibly rearranging Lorentz structures and couplings. This is dis-

cussed in more detail in appendix A. The resulting Lorentz structures are used to derive

the BGR operators in a model-independent way. For every Feynman rule REPT1L tries

to map the encountered Lorentz structure onto one of those operators. If a new structure

cannot be mapped onto an existing operator a new operator is added. In an optional second

pass, the existing base of operators is minimized (see appendix B for more details).

In the second phase of the model-file generation the information is exported as For-

tran95 code in form of a model-file library as depicted in figure 1. Particle configurations

are linked to the individual contributions on the right-hand side of (2.2), which differ in

the underlying BGR (2.3), colour flow, colour factors, couplings, coupling orders or other

information, via a Fortran95 hash table, allowing for a flexible and efficient access. The

actual BGR are computed and exported as Fortran95 subroutines in different forms. For

the numerical evaluation tree and loop BGR are used to construct tree-level and one-loop

amplitudes as it is done in RECOLA. The tree BGR are a special case of the loop BGR,

with no loop-momentum dependence. As a new feature in RECOLA2, an analytic ver-

5There is ongoing work for Python 3.x compatibility.
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UFO
model file

UFO Vertex

UFO Particles
UFO Parameters

BGR basis

CT expansion

R2
(pre-computed)

Phase I

BGR
(Subroutines)

Vertices
(hash table)

Couplings
CT Couplings
R2 Couplings

(Modules)

Particles
Parameters

CT Parameters
(Modules)

Phase II

Recola2 model file

Figure 1. The RECOLA2 model-file generation. UFO vertices are taken as input and each vertex

is permuted and mapped to a suited BGR operator. Given a counterterm expansion (2.4), REPT1L

can generate all counterterm vertices and include them in the BGR. Once the renormalization is

done and the R2-terms are computed, the model file is derived once again, including solutions to

counterterm parameters and R2 terms.

sion of the BGR allows to generate amplitudes as FORM code.6 In this way the analytic

expressions for the amplitudes needed in the renormalization conditions are derived in the

same framework as the loop amplitudes of the computed processes, ensuring that prop-

erly defined renormalization schemes automatically imply UV-finite results in numerical

computations. In general, the UV finiteness of the theory can (and should) be verified

numerically in RECOLA2 process by process by varying the scale µUV related to the

dimensional regularization of UV singularities [10]. This check also works in combina-

tion with MS subtraction schemes, even though in this case amplitudes have an intrinsic

scale dependence. To this end, we separate the scale dependence originating from the MS

subtraction from the one of regularization.

Finally, RECOLA2 requires particle information such as the mass, spin, and colour

of particles. This information is directly obtained from UFO particle instances and is

translated to Fortran95 code. These steps conclude the tree-level model-file generation.

In the next section we discuss the counterterm generation and renormalization and the

computation of rational terms of type R2.

2.2 Counterterm expansion, renormalization and computation of R2 terms

REPT1L supports an automated renormalization of model files following the standard

procedure (see e.g. ref. [51]). Here we give a short summary of all the steps, followed by

details on the counterterm expansion, the renormalization conditions, and the computation

of rational terms of type R2.

The starting point is a tree-level UFO model file. In the first step an independent set

of parameters is identified, followed by a counterterm expansion. The RECOLA2 model

file is derived, enabling the formal counterterm expansion in REPT1L and leaving the

values for counterterm parameters unspecified. Renormalization conditions are used to

6REPT1L is exporting Fortran95 subroutines which are able to write the analytic expression for the

BGR in FORM.
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fix the counterterm parameters. REPT1L allows to renormalize counterterm parameters

in various schemes, and specific schemes are selected at run-time in RECOLA2. The

rational terms of type R2 are constructed from vertex functions of the underlying theory.

The model file is derived once again, including the counterterm expansion, solutions to

counterterm parameters and R2 terms. The result is the desired renormalized model file,

ready for computation of processes supported by the underlying theory.

Counterterm expansion. In the default setup, REPT1L defines the counterterm ex-

pansion rules of the masses MV , MS , mf , associated to scalars (S), vector bosons (V ) and

fermions (f), of the not necessarily physical bosonic (φ) and fermionic fields (ψ), and of a

set of external couplings gk, according to7

M2
V →M2

V + δM2
V , M2

S →M2
S + δM2

S , mf → mf + δmf ,

φj →
∑

l

(
δjl +

1

2
δZjl

)
φl, ψL

i →
(

1 +
1

2
δZL,i

)
ψL,i, ψR

i →
(

1 +
1

2
δZR,i

)
ψR,i,

gk → gk + δgk, (2.4)

with δZjl being, in general, a non-diagonal matrix and L, R denoting the left-and right-

handed components of fermionic fields, which, by default, are assumed to be diagonal.

REPT1L automatically deals with counterterm dependencies if the parameters, being as-

signed a counterterm expansion, are declared as external parameters in the UFO format.

Here, an external parameter is an independent parameter, whereas internal parameters

depend on external ones and their counterterm expansion can be determined by the chain

rule. Once all parameters have a counterterm expansion, the most efficient way to generate

counterterm vertices of the theory is through an expansion of the bare vertices via (2.4).

It is possible to add counterterm vertices by hand, or, as a third alternative, to induce

counterterm vertices from bare ones, which are not included in the model, via countert-

erm expansion rules. The latter is used to handle 2-point counterterms and counterterms

originating from the gauge-fixing function since both of these types have no corresponding

tree-level Feynman rules.

Renormalization conditions. A standard set of renormalization conditions is imple-

mented in Python as conditions, rather than solutions to conditions, which are solved

upon request. As an advantage of solving equations, the form of vertex functions or con-

ventions can change without breaking the system. REPT1L supports on-shell, MS, and

momentum-subtraction conditions for general (mixing-)two-point functions. MS subtrac-

tion is implemented generically for n-point functions. We assume standard renormalization

of the physical fields and masses from the complex poles of Dyson-resummed propagators

and their residues, while we allow for several choices of renormalization conditions for the

gauge-fixing function and for unphysical fields. In addition, we provide standard renor-

malization conditions for the SM couplings, e.g. the definition of α in the Thomson limit

7We follow the conventions for the mass and field counterterms as in ref. [51].
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REPT1L
(Python2.7)

Renormalization R2

FORM
Sympy
(CAS)

Off-shell currents

FORM Amplitudes

Numerical Amplitudes

Analytics

RECOLA2
(Fortran95)

Model file
(Fortran95)

Numerics

Model file generation

Figure 2. The REPT1L-RECOLA2 tool chain. REPT1L can generate tree-level model files

which can then be used in combination with the RECOLA2 library to generate building blocks

required in the renormalization process. The process generation is done via the same off-shell

currents also used in numerical computations. The currents are evaluated analytically with FORM

and further processed with SymPy. The results are then available to REPT1L and are used in

the renormalized model file derivation. The red box indicates the analytic computations which

uses the tool chain combining RECOLA2, FORM and SymPy. After the renormalized model-file

derivation, this tool chain and REPT1L are no longer needed. The blue box, i.e. RECOLA2 and

model files, can be used as stand-alone versions (pure Fortran95) for numerical computations.

(TL) and in the GF scheme, which are implemented via self-energies,8 and the Nf -flavour

scheme for αs in QCD,9 which is implemented as a combined MS/momentum subtraction

on vertex functions. All conditions are implemented in a model-independent way. Instead

of the standard set of renormalization conditions already implemented, REPT1L can also

handle alternative conditions properly set by the user.

Setting up renormalization conditions requires a RECOLA2 model file including coun-

terterms. The derivation of model files is done as discussed in the previous section with

enabled vertex counterterm expansion (see figure 1) and leaving the counterterm parame-

ter unspecified. The renormalization conditions are derived analytically as FORM code.

REPT1L uses RECOLA2 to generate the skeletons for processes. The result is written to

a FORM file and evaluated, yielding vertex functions which are parsed to Python and pro-

cessed with SymPy solving the conditions for the counterterm parameters. The procedure

is visualized in figure 2. Multiple schemes for the very same counterterm parameters can be

implemented by imposing different renormalization conditions. All schemes are exported

to the RECOLA2 model file and, for a given parameter, a specific scheme can be selected

before the process generation phase. For instance, this system can be used to allow the

user to choose between different QCD and EW renormalization schemes within the same

model file. The same system is used for dealing with singularities from light fermions.

In general, particles can be tagged as light particles, which, when a particle is subject to

on-shell renormalization, makes REPT1L to regularize the associated diagonal two-point

8The (gauge-dependent) vertex and box contributions of the muon decay are taken from the SM. In

general, they depend on the model under consideration and need to be computed explicitly, but for extended

Higgs sectors they are well approximated by the SM ones for small muon Yukawa couplings.
9For theories with the SM-QCD particle content a running dynamical-flavour scheme is supported.
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function in three different setups, namely dimensional regularization, mass regularization,

and keeping the full mass dependence. In a RECOLA2 session a suited regularization

scheme for light particles is set automatically, depending on the choice of the mass value,

unless the regularization for a particle is explicitly required in a specific scheme. In the

case of unstable particles, i.e. massive particles with finite widths, REPT1L applies, by

default, the Complex-Mass Scheme (CMS) as discussed in more detail in section 5.2.

Computation of R2 terms. The computation of R2 uses the methods developed in

refs. [52–54] and follows the same computation flow as solving renormalization conditions

which is depicted in figure 2. For renormalizable theories all existing R2 terms can be

computed. To this end, REPT1L can generate the skeletons at NLO for all vertex functions

in the theory which are potentially UV divergent by power counting. FORM is used to

construct each vertex function, replace tensor integrals by their pole parts and take the limit

D → 4. The finite parts are identified as Feynman rules associated to the original vertices,

which are precisely the R2 terms. These steps are done in Python with the help of SymPy.

The computation of tensor coefficients is done in conventional dimensional regulariza-

tion. Different regularizations will be supported in the future by exchanging the responsible

FORM-procedure files. In view of EFTs, the power counting can be disabled, and spe-

cific vertex functions can be selected. Further, the R2 extraction rules [52–54] have been

extended to higher n-point functions and higher rank.10

3 HAWK 2.0 interface to RECOLA2

In this section we describe the interface between HAWK 2.0 and RECOLA2 which allows

for an automated computation of NLO EW and QCD corrections to observables in asso-

ciated Higgs production with a vector boson or two jets. We start with the LO partonic

channels and virtual corrections and conclude with the computation of the real corrections.

The implementation has been realized in a model-independent way, allowing in the future,

apart from the two presented BSM models, for predictions in alternative models.

3.1 Process definitions at LO and NLO with RECOLA2

In the case of associated Higgs production with a vector boson, also known as Higgs

strahlung, we consider processes with an intermediate vector boson decaying leptonically as

pp→ HV→ Hl+l−/Hl±ν/Hνν. (3.1)

Depending on the initial-state partons, the intermediate vector boson can be a Z or a W

boson. For example for the signature pp→ HZ→ Hl+l−, neglecting bottom contributions

in the PDFs, there are four different initial-state parton combinations:

ūu, d̄d, c̄c, s̄s. (3.2)

Whenever possible, we optimize computations involving different quark generations. For

instance, in (3.2) the processes involving the second generation are not computed explicitly,

103-and 4-point functions up to rank 6, 5- point functions up to rank 7, and 6-point functions up to rank 8.
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but the results for the first generation are employed instead. For the first generation of

quarks the RECOLA2 library is used to generate the processes at tree and one-loop level.

The second process class under consideration is Higgs production in association with

two hard jets

pp→ Hjj, (3.3)

also known as VBF. There are plenty of partonic channels and, again, we exploit optimiza-

tions with respect to the different quark generations. For the LO, virtual NLO EW, virtual

NLO QCD, real emission EW, and real emission QCD contributions RECOLA2 generates

32 partonic channels each, with the real kinematic channels corresponding to the Born

kinematic ones, with an additional gluon or photon. For the gluon- and photon-induced

channels RECOLA2 generates 20 channels each.

At the stage of the process definition the Higgs boson entering in (3.1) or (3.3) can be

chosen freely11 as long as it is supported by the RECOLA2 model file currently in use. For

instance, in the case of the 2HDM the Higgs flavour can be set to Hl, Hh or Ha (see sec-

tion 4), which is done in the HAWK 2.0 input file. In HAWK 2.0 the relevant parameters

for process generation and computation are set by input files. This information is forwarded

to RECOLA2, allowing to choose specific contributions. The selection works for individ-

ual corrections such as QCD or EW either virtual or real. For the results presented in this

work we selected the pure electroweak corrections, including photon-induced corrections.

3.2 Infrared divergences

RECOLA2 provides the amplitudes for the partonic processes under consideration as well

as the colour-correlated squared matrix elements needed for the Catani-Seymour dipole

subtraction. In order to deal with IR singularities, an IR subtraction scheme needs to

be employed. We adhere to the Catani-Seymour dipole subtraction [55] which is used

in HAWK 2.0 and employ mass regularization for soft and collinear divergences, i.e. a

small photon mass and small fermion masses are used wherever needed. From the point

of view of the interface, dealing with EW dipoles is a matter of replacing certain Born

amplitudes with the ones computed by RECOLA2. As for the QCD dipoles one needs in

general colour-correlated matrix elements. For processes with only two partons, as it is the

case for Higgs strahlung, the colour correlation is diagonal owing to colour conservation

(see eq. A1 in ref. [55]) and again no colour-correlated matrix elements are required. For

VBF we compute the colour-correlated matrix elements directly with RECOLA2, and use

colour conservation to minimize the number of required computations. The dipoles are

used as implemented in HAWK 2.0 and are not part of RECOLA2. For the QCD dipoles

consider refs. [55, 56] and for EW dipoles see refs. [57, 58].

4 2HDM and HSESM model description

In this section, we sketch the definition of the scalar potential of the 2HDM and the HSESM.

In both cases we restrict ourselves to a CP-conserving Z2-symmetric scalar potential, which

11Charged Higgs bosons are not supported by the HAWK 2.0 Monte Carlo. Pseudo-scalar Higgs-boson

production is possible, but suppressed in the considered CP-conserving 2HDM.
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in the case of the 2HDM is allowed to be softly broken. For a comprehensive introduction

to the 2HDM we refer to refs. [59, 60] and for the HSESM to the original literature [61–63]

and applications to LHC phenomenology in refs. [64–67]. For the kinetic terms we refer to

the conventions used in ref. [64].

4.1 Fields and potential definition

Both models are simple extensions of the SM, only affecting the form and fields entering

the scalar potential and for the 2HDM also the Yukawa interactions. In the case of the

2HDM we have two Higgs doublets, generically denoted as Φi with i = 1, 2 and defined

component-wise by

Φi =


 φ+

i

1√
2

(vi + ρi + iηi)


 , (4.1)

with vi denoting the vevs. Under the constraint of CP conservation plus the Z2 symmetry

(Φ1 → −Φ1,Φ2 → Φ2), the most general, renormalizable potential reads [59]

V2HDM = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 −m2
12

(
Φ†1Φ2 + Φ†2Φ1

)

+
λ1

2

(
Φ†1Φ1

)2
+
λ2

2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)

+
λ5

2

[(
Φ†1Φ2

)2
+
(

Φ†2Φ1

)2
]
, (4.2)

with five real couplings λ1 . . . λ5, two real mass parameters m2
1 and m2

2, and the soft Z2-

breaking parameter m2
12.

The HSESM scalar potential involves one Higgs doublet Φ and a singlet field S defined

as

Φ =


 φ+

1√
2

(v + ρ1 + iη)


 , S =

vs + ρ2√
2

. (4.3)

Under the same constraints, the most general, renormalizable potential reads

VHSESM = m2
1Φ†Φ +m2

2S
2 +

λ1

2

(
Φ†Φ

)2
+
λ2

2
S4 + λ3Φ†ΦS2, (4.4)

with all parameters being real.

4.2 Parameters in the physical basis

Both potentials are subject to spontaneous symmetry breaking which requires a rotation

of fields to the mass eigenstates in order to identify the physical degrees of freedom. For

the 2HDM there are five physical Higgs bosons Hl, Hh, Ha, H
± and in the HSESM there

are two neutral Higgs bosons Hl and Hh, intentionally identified with the same symbols as

in the 2HDM. Besides the physical Higgs bosons, there are the three would-be Goldstone

bosons G0 and G± in the ’t Hooft-Feynman gauge. The mass eigenstates for the neutral

Higgs-boson fields are obtained in both models by the transformation
(
ρ1

ρ2

)
= R(α)

(
Hh

Hl

)
, with R(α) =

(
cosα − sinα

sinα cosα

)
, (4.5)
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and α being fixed such that the mass matrix

Mij :=
∂2V

∂ρi∂ρj

∣∣∣∣
ϕ=0

, (4.6)

is diagonalized via R(−α)MR(α), with the potential V being either (4.2) or (4.4). The

solution to (4.6) for symmetric 2× 2 matrices is generically given by (see ref. [59])

sin 2α =
2M12√

(M11 −M22)2 + 4M2
12

. (4.7)

In the 2HDM there are additional mixings between charged and pseudo-scalar bosons and

Goldstone bosons, which are diagonalized as follows

(
φ±1

φ±2

)
= R(β)

(
G±

H±

)
,

(
η1

η2

)
= R(β)

(
G0

Ha

)
, with R(β) =

(
cosβ − sinβ

sinβ cosβ

)
.

(4.8)

The angle β is related to the vevs according to tβ ≡ tanβ = v2/v1 in the 2HDM. For the

HSESM we define tβ ≡ tanβ = vs/v. The Higgs sector is minimally coupled to the gauge

bosons. Collecting quadratic terms and identifying the masses one obtains the well-known

tree-level relations

MW =
1

2
gv, MZ =

1

2

√
g2 + g′2 v, (4.9)

where g and g′ denote the weak isospin and hypercharge gauge couplings, and MW and MZ

the W- and Z-boson masses, respectively. For the 2HDM we identify v =
√
v2

1 + v2
2. Finally

one employs the minimum conditions for the scalar potential which, in both models, read

〈ρi〉 = 0. (4.10)

Then, one substitutes the potential parameters with physical parameters obtained after

spontaneous symmetry breaking and after diagonalizing the Higgs sector. For the 2HDM

we choose the Higgs-boson masses MHl
(light Higgs boson), MHh

(heavy Higgs boson),

MHa (pseudoscalar Higgs boson), MH± (charged Higgs boson), the soft-Z2-breaking scale

Msb defined via

M2
sb =

m2
12

cosβ sinβ
, (4.11)

and the two mixing angles as cαβ := cos(α−β) (sαβ := sin(α−β)) and tβ := tan(β), which

is a natural choice for studying (almost) aligned scenarios. For the HSESM we use the

neutral Higgs-boson masses MHl
(light Higgs boson), MHh

(heavy Higgs boson) and the

angles sα := sin(α) and tβ := tan(β). To summarize, we transform the parameters from

the generic basis to the physical one by choosing the following parameters as external ones

2HDM: λ1, λ2, λ3, λ4, λ5,m1,m2,m12 → MHl
,MHh

,MHa ,MH± ,Msb, cαβ , tβ , v (g,MW) ,

HSESM: λ1, λ2, λ3,m1,m2 → MHl
,MHh

, sα, tβ , v (g,MW) ,

where we have indicated that the vev is traded for gauge couplings and masses according

to (4.9).
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4.3 Yukawa interactions

The fermionic sector in the HSESM is the same as in the SM, whereas the 2HDM allows

for a richer structure. In the general case of the 2HDM, fermions can couple to both Φ1

and Φ2, leading to flavour-changing neutral currents (FCNC) already at tree level. Since

FCNC processes are extremely rare in nature they highly constrain BSM models. In order

to prevent tree-level FCNC, one imposes the Z2 symmetry

Z2 : Φ1 → −Φ1, Φ2 → Φ2, (4.12)

as already introduced in the Higgs potential in section 4.2. This Z2 symmetry is moti-

vated by the Glashow-Weinberg-Paschos theorem in refs. [68, 69], which states that for an

arbitrary number of Higgs doublets, if all right-handed fermions couple to exactly one of

the Higgs doublets, FCNCs are absent at tree level. This can be realized by imposing, in

addition to (4.12), a parity for right-handed fermions under Z2 symmetry. One obtains four

distinct 2HDM Yukawa terms, the so-called natural flavour-conserving models canonically

described in the literature.

Type I: by requiring for all fermions an even parity under Z2, all have to couple to the

second Higgs doublet Φ2. The corresponding Yukawa Lagrangian reads

LY = −ΓdQLΦ2dR − ΓuQLΦ̃2uR − ΓlLLΦ2lR + h.c., (4.13)

where Φ̃2 is the charge-conjugated Higgs doublet of Φ2. Neglecting flavour mixing,

the coefficients are directly expressed by the fermion masses md, mu and ml, and the

mixing angle β,

Γd =
gmd√

2MW sinβ
, Γu =

gmu√
2MW sinβ

, Γl =
gml√

2MW sinβ
. (4.14)

Again, the vev v has been substituted using eq. (4.9).

Type II: this is the MSSM-like scenario obtained by requiring odd parity for down-type

quarks and leptons: dR → −dR, lR → −lR and even parity for up-type quarks. It

follows that the down-type quarks and leptons couple to Φ1, while up-type quarks

couple to Φ2. The corresponding Yukawa Lagrangian reads

LY = −ΓdQLΦ1dR − ΓuQLΦ̃2uR − ΓlLLΦ1lR + h.c.. (4.15)

Neglecting flavour mixing, the coefficients are expressed by the fermion masses md,

mu and ml, and the mixing angle β,

Γd =
gmd√

2MW cosβ
, Γu =

gmu√
2MW sinβ

, Γl =
gml√

2MW cosβ
. (4.16)

Type Y: this type, also referred to as lepton-specific 2HDM, is obtained by requiring odd

parity only for leptons: lR → −lR.

Type X: this type, also referred to as flipped 2HDM, is obtained by requiring odd parity

only for down-type quarks: dR → −dR.
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In the analysis of this paper we focus on Type II, which is equivalent to Type I for massless

leptons and quarks, except for the top quark. We remark that exactly one RECOLA2

model file can handle all Yukawa types, and switching between different Yukawa types is

done by a simple function call.

5 Background-field method for extended Higgs sectors

The BFM is a powerful formulation for gauge theories which renders analytic calculations

easier due to a simple structure of the Feynman rules and additional symmetry relations.

The method was originally derived by DeWitt in refs. [70, 71]12 and has since then been

used in many applications. The additional symmetry relations emerge for gauge theories

in combination with a suited gauge-fixing term and encode the invariance of the theory

under so-called Background-Field gauge invariance. This property is particularly useful for

the calculations of β functions [73] in higher orders and is also of interest in beyond flat

space-time quantum field theory. The BFM can be used to calculate S-matrix elements,

as constructed in ref. [74], which, despite having to deal with many more Feynman rules,

is in our implementation as efficient as the conventional formalism. Further, the BFM,

which can be viewed as a different choice of gauge, allows for an alternative way of com-

puting S-matrix elements and, thus, provides a powerful check of the consistency of the

REPT1L/RECOLA2 tool chain. This is particularly useful for the validation of R2 terms

where mistakes are difficult to spot. In addition, we checked a few Background-Field Ward

identities. We stress that the BFM can be used as a complementary method in RECOLA2

besides the usual formulation. Even though the use of the BFM in practical calculations

is steered in precisely the same way as for model files in the conventional formulation,

the internal machinery is different. In particular, the derivation of the Feynman rules and

renormalization procedure requires special attention which is discussed in the following.

5.1 BFM action for extended Higgs sector

The results presented here are a simple generalization of ref. [75], which deals with the BFM

applied to the SM at one-loop order. The BFM splits fields in background and quantum

fields and combines the new action with a special choice for the gauge-fixing function result-

ing in a manifest background-field gauge invariance for the effective action at the quantum

level. This splitting separates the classical solutions of the field equations, represented by

background fields, from the quantum excitation modes, represented by quantum fields. The

Feynman rules are derived as usual, treating background and quantum fields on equal foot-

ing, which we have done with Feynrules. In principle, the splitting can be done for every

field in the theory, however, as we are only interested in a background-field gauge-invariant

action, it is sufficient to shift fields which enter the gauge-fixing function. Thus, we perform

W a,µ →W a,µ := W a,µ + Ŵ a,µ, Bµ → Bµ := Bµ + B̂µ,

Φi → Φi := Φi + Φ̂i, S → S := S + Ŝ, (5.1)

12See ref. [72] for a pedagogical introduction.
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where W a (Ŵ a) and B (B̂) are the SM quantum (background) gauge fields in the gauge

eigenbasis with a = 1, 2, 3. The index i runs over all Higgs doublets Φi in the theory under

consideration, and S is a singlet field, absent in the 2HDM or SM. While the singlet field

S does not appear explicitly in the gauge-fixing function [see (5.3)], the inclusion of S in

the splitting (5.1) is necessary due to the mixing with the neutral component of a Higgs

doublet. The components for the background- and quantum-field doublets are defined as

Φi =


 φ+

i

1√
2

(ρi + iηi)


 , Φ̂i =


 φ̂+

i

1√
2

(vi + ρ̂i + iη̂i)


 . (5.2)

By convention, we keep the original vev of the Higgs doublet in the Higgs background-field

doublet. The quantum gauge-fixing term has the traditional form. In the gauge eigenbasis

it reads

LGF = −1

2

3∑

a=1

(F aW )2 − 1

2
F 2
B, (5.3)

with generalized gauge-fixing functions

F aW = D̂µW a
µ − i

g

2

∑

i

[
Φ̂†iσ

aΦi − Φ†iσ
aΦ̂i

]
,

FB = ∂µBµ + i
g′

2

∑

i

[
Φ̂†iΦi − Φ†i Φ̂i

]
, (5.4)

and i running over all Higgs doublets. The covariant derivative D̂ is similar to the usual

one, but with a background-field gauge connection instead of a quantum-field one. For a

field αj in the adjoint representation it acts in the following way

D̂µα
a = ∂µα

a + gεabcŴ b
µα

c, (5.5)

with εabc being the structure constants of SU(2). The form (5.3), (5.4) is invariant under

background-field gauge transformations, which can be shown using the techniques presented

in ref. [72], but suitably generalized in the presence of spontaneous symmetry breaking.

The construction of the ghost term follows the standard BRST quantization procedure.

Once the symmetry transformations are defined on the fields, a valid ghost Lagrangian,

leading to a BRST invariant action, is given by

Lghost = −
3∑

a=1

ūaW δBF
a
W − ūBδBFB. (5.6)

The fields in the gauge eigenbasis are rotated to the physical basis in the following way

W 1
µ =

W−µ +W+
µ√

2
, W 2

µ =
W−µ −W+

µ

i
√

2
, W 3

µ = cwZµ − swAµ, Bµ = swZµ + cwAµ,

u1
W =

u−W + u+
W√

2
, u2

W =
u−W − u+

W

i
√

2
, u3

W = cwuZ − swuA, uB = swuZ + cwuA.

(5.7)
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The BRST transformations on the gauge eigenbasis, expressed in terms of physical fields

via (5.7), read

δBW
1
µ = Dµu

1
W = (5.8)

=
1√
2
∂µ
(
u−W + u+

W

)
− ie√

2

[(
u−W − u+

W

)(
Aµ −

cw

sw
Zµ

)
+

(
uA −

cw

sw
uZ

)(
W+

µ −W−µ
)]
,

δBW
2
µ = Dµu

2
W = (5.9)

=
i√
2
∂µ
(
u+
W − u−W

)
− e√

2

[(
u−W + u+

W

)(
Aµ −

cw

sw
Zµ

)
−
(
uA −

cw

sw
uZ

)(
W+

µ +W−µ
)]
,

δBW
3
µ = Dµu

3
W = ∂µ (cwuZ − swuA)− ie

sw

(
u−WW

+ − u+
WW

−) , (5.10)

δBBµ = DµuB = ∂µ (cwuA + swuZ) . (5.11)

Note that in contrast to the conventional formalism, the covariant derivatives entering the

BRST transformations use the shifted gauge fields (5.1). For the Higgs doublets the BRST

transformation rules can be defined at the level of components as follows

δBΦi :=


 δBφ

+
i

1√
2

(δBρi + iδBηi)


 , (5.12)

with

δBφ
+
i =

ie

2sw
(iη

i
+ ρ

i
+ vi)u

+
W +

ie
(
c2

w − s2
w

)

2cwsw
φ+
i
uZ − ieφ+

i
uA (5.13)

δBρi =
e

2cwsw
η
i
uZ +

ie

2sw

(
φ+
i
u−W − φ−i u

+
W

)
(5.14)

δBηi = − e

2cwsw

(
ρ
i
+ vi

)
uZ +

e

2sw

(
φ+
i
u−W + φ−

i
u+
W

)
(5.15)

The transformations for δBρi and δBηi are fixed by taking the real and imaginary part of

the BRST transformation of the lower doublet component, respectively. In this way, if

the ghost term is formulated directly in the physical basis, as it is done in ref. [75], the

Lagrangian is guaranteed to be hermitian.

5.2 Renormalization in the BFM

The renormalization in the BFM is performed in the same fashion as in the conventional

formulation, except that only background fields need to be renormalized. REPT1L can

distinguish between both types of fields by checking the field-type attribute. A field can

be assigned to be a background and/or quantum field. In the conventional formalism, all

fields play both roles and can thus appear in tree and loop amplitudes. In the presence of

pure quantum fields, as it is the case in the BFM, the only contributing Feynman rules to

tree and one-loop amplitudes are the ones with exactly none or two quantum fields.

Since we aim at the computation of S-matrix elements, an on-shell renormalization

of physical fields is suited. However, fixing the field renormalization constants via on-

shell conditions breaks background-field gauge invariance and, as a consequence, some
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Ward identities are not fulfilled. The reason is that demanding background-field gauge

invariance requires, in particular, a uniform renormalization of all covariant derivatives in

the theory which is only possible if the field renormalization constants of gauge fields are

not independent parameters but chosen accordingly [75]. Since the theory is governed by

BRST invariance, the breaking of the background-field Ward identities does not pose a

problem, especially not for the renormalizability of the theory and the gauge independence

of observables. Yet, we do not break the QED background-field Ward identity, which

relates the fermion-fermion-photon vertex to fermionic self-energies [75]

kµΓγf̄fµ (k, p, p′) = −eQf
[
Γf̄f (p)− Γf̄f

(
p′
)]
, (5.16)

and can be used to fix the photon field renormalization constant or the counterterm δZe.

Requiring (5.16) for renormalized vertex functions yields the well-known one-loop relation

in the BFM

δZe = −δZA
2
, (5.17)

which is consistent with the renormalization of α in the TL and the photon renormalized

on-shell. For LHC phenomenology the TL does not provide an appropriate renormalization

due to the difference of the scale in the underlying processes. A popular choice is the GF

scheme [76–78] which can be defined via the muon decay. To this end, the renormalized

electric charge is related to the experimentally measured value for the Fermi constant GF.

At one-loop order, neglecting pure QED corrections, finite corrections to the renormaliza-

tion in the TL are defined by ∆r

δZGF
e = δZTL

e − ∆r

2
, (5.18)

where in the SM [51]

∆r =
Σ1PI,T
WW (0)− Σ1PI,T

WW

(
µ2

W

)

µ2
W

+
2

cwsw

Σ1PI,T
AZ (0)

µ2
Z

+
2δg

g

+
g2

16π2

[
log
(
c2

w

)

s2
w

(
7

2
− 2s2

w

)
+ 6

]
, (5.19)

and Σ1PI,T being an unrenormalized transverse 1PI mixing or self-energy. Note that all

terms, except for the W self-energy, originate from vertex and box corrections, in partic-

ular, the term Σ1PI,T
AZ has just been introduced to match the divergence structure. Equa-

tion (5.19) is valid for the conventional formulation in the ’t Hooft-Feynman gauge, but

not in the BFM since mixing and self-energies, or, in general, vertex functions differ by

gauge-dependent terms in both formulations. Since the parameter ∆r connects physical

quantities it is necessarily gauge independent, which implies that both formulations differ

merely by a reshuffling of gauge-dependent terms between the self-energy and vertex parts.

We have determined the difference in the vertex corrections between the BFM and con-

ventional formulation in the ’t Hooft-Feynman gauge, and, as expected, it cancels against
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the difference in the W self-energy. For a model-independent evaluation in the BFM, the

result can be expressed in the same form as (5.19), but with a modified vertex correction13

∆r =
Σ1PI,BFM,T
WW (0)− Σ1PI,BFM,T

WW

(
µ2

W

)

µ2
W

+
2

cwsw

Σ1PI,BFM,T
AZ (0)

µ2
Z

+
2δg

g

+
g2

16π2

[
log
(
c2

w

)

s2
w

(
−1

2
+ 2s2

w

)
+ 2

]
, (5.20)

which is valid only in the ’t Hooft-Feynman gauge in the BFM.

Another subtlety concerns the renormalization within the CMS. REPT1L automat-

ically renormalizes unstable particles in the CMS following the general prescription of

refs. [79–81]. The corresponding on-shell renormalization conditions require scalar integrals

to be analytically continued to complex squared momenta. This can be avoided by using an

expansion around real momentum arguments,14 which gives rise to gauge-dependent terms

of higher perturbative orders. Thus, comparing the BFM to the conventional formalism

leads to somewhat different results for finite widths. The effect can be traced back to the

difference of full self-energies in both formulations, e.g. the difference in the W self-energy

is given by

Σµν,BFM
WW (p)− Σµν

WW (p) =
g2

4π2

(
µ2

W − p2
)
gµν

[
c2

wB0

(
p2, µZ, µW

)
+ s2

wB0

(
p2, 0, µW

)]
,

(5.21)

with the conventions for scalar integrals as in ref. [51]. The gauge dependence drops

out in the mass renormalization constant, i.e. δµ2
W

BFM
= δµ2

W in the CMS, because the

self-energy is evaluated on the complex pole, i.e. for p2 = µ2
W. However, performing an

expansion of the self-energy around the real mass M2
W results in differences of the order of

O
(
α3
)
. For a comparison of both formulations it is useful to modify the expanded (exp)

mass counterterm to match the conventional formalism in the following way

δµ2
W

BFM
,exp → δµ2

W,exp = (5.22)

= δµ2
W

BFM
,exp −

g2

4π2

(
M2

W − µ2
W

)2 [
c2

wB
′
0

(
M2

W, µZ, µW

)
+ s2

wB
′
0

(
M2

W, 0, µW

)]
,

with B′0 being defined as the derivative of B0 with respect to p2. Note that the difference

is of order O(α3) and phenomenologically irrelevant.

The renormalization of the tadpoles in the BFM is performed analogously to the con-

ventional formulation. From a theoretical point of view the renormalization of tadpoles

is not necessary, and the theory is well-defined just by including tadpole graphs every-

where. However, in practical calculations it is desirable to avoid unnecessary computations

of graphs with explicit tadpoles if their contribution can be included indirectly by other

means, e.g. via a suited renormalization. The renormalization of the tadpoles has to be

done with care because a naive treatment of the tadpole counterterms can lead to spurious

13Note that Σ1PI,BFM,T
AZ (0) is zero in the BFM due to a Ward identity.

14The expansion breaks down for IR-singular contributions resulting from virtual gluons or photons. This

can be corrected by including additional terms (see ref. [80]) which is automatically handled in REPT1L.
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dependencies on the gauge-fixing procedure which ultimately spoil the gauge independence

of the one-loop part of S-matrix elements. From the point of view of applicability, automa-

tion and gauge independence, we strongly recommend the FJ Tadpole Scheme,15 which has

been automated for arbitrary theories [23]. In contrast to other schemes, the FJ Tadpole

Scheme is purely based on the field reparametrization invariance of quantum field theory

(see ref. [23]), which can be shown to be equivalent to not renormalizing the tadpoles at

all, but with the benefit of not having to compute graphs with explicit tadpoles. Under the

general assumption that the theory under consideration is expressed in the physical basis

without tree-level mixings and restricting to the one-loop case, the FJ Tadpole Scheme is

equivalent to the field redefinition

Ĥi → Ĥi −
δtĤi
m2
Ĥi

, (5.23)

for every physical (background-)field Ĥi that develops a vev and with δtĤi being the asso-

ciated tadpole counterterm. By fixing δtĤi to the tadpole graphs TĤi via

δtĤi = −TĤi , (5.24)

explicit tadpoles are cancelled and only tadpole counterterms to 1PI graphs remain.

REPT1L can automatically derive all tadpole counterterms in the FJ Tadpole Scheme.

In the FJ Tadpole Scheme the value of each counterterm needs to be independent of δtĤi
which can be verified analytically.16 Additional checks concerning the tadpole renormal-

ization can be performed on a process-by-process basis by including the tadpole graphs

explicitly instead of renormalizing them. Finally, we note that RECOLA2 is able to use

any tadpole counterterm scheme, but only the FJ Tadpole Scheme is fully automated.

6 Setup and benchmark points

6.1 Input parameters

For the numerical analysis in the two Higgs-boson production processes we use the following

values for the SM input parameters [84]:

GF = 1.16638 · 10−5 GeV−2, mt = 173.21 GeV, Mh = 125.09 GeV,

MW = 80.385 GeV, ΓW = 2.085 GeV, MZ = 91.1876 GeV, ΓZ = 2.4952 GeV. (6.1)

For the 2HDM we present updated and new results for the benchmark points in tables 1

and 3 as proposed by the HXSWG [85]. The corresponding Higgs self-couplings λi are

given for convenience in tables 2 and 4. For the HSESM we compiled a list of benchmark

points in table 5 featuring different hierarchies and being compatible with the limits given

in refs. [65, 66].17 The results include the SM-like and heavy Higgs-boson production for

15See original SM formulation in ref. [82] and explicit formulas for the 2HDM in refs. [23, 83].
16The invariance follows from eq. (2.26) in ref. [23].
17Our conventions differ from those of ref. [65]. We identify cα, tβ in ref. [65] with −sα, 1/tβ in our

conventions.
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both models. The computations were carried out in the ’t Hooft-Feynman gauge both in

the conventional formalism and in the BFM. In case of the 2HDM the matrix elements

have undergone additional tests. Most notably, we have compared results obtained with

RECOLA2 for Higgs decays into four fermions, which is closely related to the considered

processes, to an independent calculation [86] based on FeynArts/FormCalc [7, 8] for

various channels. We found agreement to more than 7 digits for 3348 out of 3500 phase-

space points in the virtual amplitude, none differing by more than 5 digits. We compared

off-shell two-point functions for all distinct external states, i.e. scalars, fermions, and vector

bosons, against an independent approach in QGRAF [87] and QGS, which is an extension of

GraphShot [88]. Against the same setup we compared Higgs decays into scalars, fermions

and vector bosons on amplitude level. In addition, we verified (on-shell) Slavnov-Taylor

identities for two-point functions (see eq. (4.16) and the following in ref. [86]).

6.2 Cut setup

For the analysis of Higgs strahlung we consider the case of two charged muons in the final

state, pp → Hµ+µ− +X. The muons are not recombined with collinear photons, and are

assumed to be perfectly isolated, treated as bare muons as described in ref. [21]. We use

the cuts given in ref. [89], i.e. we demand the muons to

• have transverse momentum pT,l > 20 GeV for l = µ+, µ−,

• be central with rapidity |yl| < 2.4 for l = µ+, µ−,

• have a pair invariant mass mµµ of 75 GeV < mµµ < 105 GeV.

Further, we select boosted events with a

• transverse momentum pT,µµ > 160 GeV.

For VBF we employ the cuts as suggested by the HXSWG in ref. [85], i.e. we require two

hard jets ji, i = 1, 2, emerging from partons i with

• pseudo-rapidity |ηi| < 5.

The recombination is done in the anti-kT algorithm [90] with jet size D = 0.4. Further,

events pass the cuts if the two hard jets have

• a transverse momentum pT,ji > 19 GeV each,

• a rapidity |yji | < 5 each,

• a rapidity difference |yj1 − yj2 | > 3,

• an invariant mass Mj1j2 > 130 GeV.

We present the results for hadronic cross sections at the centre-of-mass energy of 13 TeV

using the NLO PDF set NNPDF2.3 with QED corrections [91].
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MHh
MHa MH± m12 tβ Msb

BP21A 200 GeV 500 GeV 200 GeV 135 GeV 1.5 198.7 GeV

BP21B 200 GeV 500 GeV 500 GeV 135 GeV 1.5 198.7 GeV

BP21C 400 GeV 225 GeV 225 GeV 0 GeV 1.5 0 GeV

BP21D 400 GeV 100 GeV 400 GeV 0 GeV 1.5 0 GeV

BP3A1 180 GeV 420 GeV 420 GeV 70.71 GeV 3 129.1 GeV

Table 1. 2HDM benchmark points in the alignment limit, i.e. sαβ → −1, cαβ → 0, taken from

ref. [92]. The parameter Msb depends on the other parameters and is given for convenience.

λ1 λ2 λ3 λ4 λ5

BP21A 0.28 0.26 0.27 3.45 −3.47

BP21B 0.28 0.26 7.19 −3.47 −3.47

BP21C 6.19 1.43 −0.71 −0.83 −0.83

BP21D 6.19 1.43 2.89 −5.11 −0.16

BP3A1 2.59 0.29 5.26 −2.63 −2.63

Table 2. Higgs self-couplings for the 2HDM benchmark points in the alignment limit. We omit

the imaginary parts appearing in the CMS.

MHh
MHa MH± m12 tβ cαβ Msb

a-1 700 GeV 700 GeV 670 GeV 424.3 GeV 1.5 −0.0910 624.5 GeV

b-1 200 GeV 383 GeV 383 GeV 100 GeV 2.52 −0.0346 204.2 GeV

BP22A 500 GeV 500 GeV 500 GeV 187.08 GeV 7 0.28 500 GeV

BP3B1 200 GeV 420 GeV 420 GeV 77.78 GeV 3 0.3 142.0 GeV

BP3B2 200 GeV 420 GeV 420 GeV 77.78 GeV 3 0.5 142.0 GeV

BP43 263.7 GeV 6.3 GeV 308.3 GeV 52.32 GeV 1.9 0.14107 81.5 GeV

BP44 227.1 GeV 24.7 GeV 226.8 GeV 58.37 GeV 1.8 0.14107 89.6 GeV

BP45 210.2 GeV 63.06 GeV 333.5 GeV 69.2 GeV 2.4 0.71414 116.2 GeV

Table 3. 2HDM benchmark points outside the alignment limit taken from ref. [93] (a-1, b-1) and

ref. [92]. The parameter Msb depends on the other parameters and is given for convenience.
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λ1 λ2 λ3 λ4 λ5

a-1 1.76 1.97 0.09 −0.29 −1.65

b-1 0.01 0.26 3.72 −1.73 −1.73

BP22A 0.26 0.26 7.98 0. 0.

BP3B1 3.60 0.25 5.46 −2.57 −2.57

BP3B2 3.44 0.27 5.74 −2.57 −2.57

BP43 4.42 0.43 2.34 −3.02 0.11

BP44 2.85 0.40 1.10 −1.55 0.12

BP45 3.16 0.35 3.92 −3.38 0.16

Table 4. Higgs self-couplings for the 2HDM benchmark points outside the alignment limit. We

omit the imaginary parts appearing in the CMS.

MHh
/GeV tβ sα λ1 λ2 λ3

BP1 500 2.2 −0.979796 0.41 0.82 −0.34

BP2 400 1.7 −0.96286 0.43 0.85 −0.36

BP3 300 1.3 −0.950737 0.38 0.81 −0.28

BP4 200 0.85 −0.932952 0.31 0.84 −0.16

MHl
/GeV tβ sα λ1 λ2 λ3

BP5 100 0.35 −0.35 0.25 1.44 −0.09

BP6 50 0.2 −0.06 0.26 1.05 −0.06

Table 5. HSESM benchmark points compiled from ref. [94]. In the upper table typical scenarios

are depicted with a heavy additional scalar Higgs boson. In the lower table inverted scenarios

are listed with Hh identified as the SM Higgs boson and mass MHh
= 125.09 GeV. The Higgs

self-couplings λi depend on the other parameters and their real parts are given for convenience.

6.3 Mixing angles at one-loop order

The prime vertices of interest in the processes studied in section 7 are the HlVV and

HhVV vertices. Thus, the relevant one-loop corrections require to renormalize α and β in

the 2HDM and α, but not β, in the HSESM. We present the counterterms for the mixing

angles in an MS scheme and two different on-shell schemes in the following:

MS: the mixing angles α, β are renormalized using MS subtraction [23] for the vertices

Hl → τ+τ−, Ha → τ+τ−, respectively, with β only being renormalized in the 2HDM.

This is equivalent to using the identities

δα =
δZMS

HhHl
− δZMS

HlHh

4
=

Σ1PI,MS
HhHl

(
M2
Hh

)
+ Σ1PI,MS

HhHl

(
M2
Hl

)
+ 2tMS

HlHh

2
(
M2
Hh
−M2

Hl

) ,
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δβ =
δZMS

G0Ha
− δZMS

HaG0

4
= −

Σ1PI,MS
HaG0

(0) + Σ1PI,MS
HaG0

(
M2
Ha

)
+ 2tMS

HaG0

2M2
Ha

(6.2)

with the relation for δα being valid in the 2HDM and the HSESM and the one for δβ

only in the 2HDM. The origin of these relations can be traced back to the renormal-

izability of models in a minimal (symmetric) renormalization scheme. See ref. [86] for

the derivation of these and other UV-pole-part identities. The tadpole counterterms

in (6.2) are treated in the FJ Tadpole Scheme (see appendices A and B in ref. [23])

and using the renormalization condition (5.24) for tadpoles. Estimating the size of

higher-order contributions via the usual scale variations has been improved via a par-

tial resummation including the renormalization-group (RG) running of parameters.18

For the 2HDM this requires to solve a coupled system of differential equations,

∂

∂ log µ2
α(µ) = fα(α(µ), β(µ),Msb(µ)),

∂

∂ log µ2
β(µ) = fβ(α(µ), β(µ),Msb(µ)),

∂

∂ log µ2
Msb(µ) = fMsb

(α(µ), β(µ),Msb(µ)). (6.3)

The functions fα, fβ and fMsb
can be directly read off the pole parts of the correspond-

ing counterterms. The counterterm δMsb was fixed from the vertex Hh → H+H−

in the MS scheme. Note that δMsb does not enter the considered processes at fixed

one-loop order. For the HSESM we keep β fixed, assuming no scale dependence,

resulting in a simple differential equation for α,

∂

∂ log µ2
α(µ) = fα(α(µ)). (6.4)

The (coupled) system has been solved to run the parameters from the reference scale

µ0 to µ = µ0/2 and µ = 2µ0. The results are presented in tables 6 and 7 for the

benchmark points of tables 1, 3, and 5 being defined at the typical scale of the process,

µ0 = 2MHl
if not stated otherwise.19 The cross sections are evaluated at the scales

µ0/2, µ0, 2µ0, using the running parameters of cαβ , tβ , Msb (sα) at the corresponding

scale as input parameters in the 2HDM (HSESM). The three different predictions

for σEW
NLO normalized to the leading-order cross section σLO(µ0) at the central scale

µ0 and scale-dependent relative EW corrections are defined as

δEW (µ, µ0) :=
σEW

NLO (µ)− σLO (µ0)

σLO(µ0)
, (6.5)

such that

σNLO(µ) =
(

1 + δEW (µ, µ0)
)
σLO (µ0) . (6.6)

18In ref. [86] the running of the mixing angles is investigated within various MS and tadpole counterterm

schemes in the 2HDM.
19Note that the running of parameters is independent of the scale at which they are defined.
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BP tβ(µ0/2) cαβ(µ0/2) Msb(µ0/2)/GeV tβ(2µ0) cαβ(2µ0) Msb(2µ0)/GeV

BP21A 1.41 −0.1166 192.3 1.54 0.0504 197.7

BP21B 1.16 −0.4163 199.7 1.51 0.0293 191.2

BP21C 1.40 −0.0029 0.0 1.64 0.0067 0.0

BP21D 1.37 −0.0017 0.0 1.68 −0.0119 0.0

BP3A1 2.34 −0.0681 121.6 3.53 0.1701 133.8

a1 0.86 −0.3801 614.1 1.78 −0.0202 638.5

b1 2.36 −0.1542 203.6 2.59 0.0116 203.3

BP22A − − − 1.52 0.6538 274.5

BP3B1 3.15 0.1292 149.3 2.24 0.5972 123.8

BP3B2 4.17 0.2992 167.9 1.99 0.7809 119.3

BP43 1.76 0.0997 80.7 2.08 0.1906 82.8

BP44 1.66 0.1313 88.1 1.97 0.1511 91.5

BP45 2.29 0.6504 115.1 2.53 0.7666 117.5

Table 6. Running values for tβ , cαβ and Msb in the 2HDM at the scales µ0/2 and 2µ0. The

benchmark points are defined at the central scale µ0 in tables 1 and 3. The results for the alignment-

limit scenarios are in the upper part of the table whereas the non-alignment scenarios are in the lower

part. For BP22A the running β reaches π/2 for a scale greater than µ0/2, thus, tβ becomes singular.

In this particular scenario the steep running is caused by the Higgs self-coupling λ3 ≈ 8 (see table 4)

and can be stabilized by reducing its value. The running becomes stable only for values smaller

than λ3 . 0.5. Changing λ3 to 0.5 and keeping the values for all other λi fixed has a small effect on

MHl
and MHh

of the order O (5 GeV), but brings the scenario close to the alignment limit cαβ ≈ 0.

BP sα(µ0/2) sα(2µ0)

BP1 −0.9802 −0.9794

BP2 −0.9646 −0.9612

BP3 −0.9557 −0.9455

BP4 −0.9367 −0.9293

BP5 −0.2780 −0.4463

BP6 −0.04647 −0.08194

Table 7. Running values for sα in the HSESM at the scales µ0/2 and 2µ0. The benchmark points

are defined at the central scale µ0 in table 5.
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Note that the tree-level matrix elements only depend on the scale through the running

of parameters, whereas the one-loop matrix elements have an explicit scale depen-

dence. As a shorthand notation for the relative corrections in the MS scheme we use

δMS
EW := δEW(µ0, µ0)ud ,

u := δEW(2µ0, µ0)− δEW(µ0, µ0),

d := δEW

(µ0

2
, µ0

)
− δEW(µ0, µ0) (6.7)

with u and d being the upper and lower edges of the scale variation (see e.g. table 8).

p∗: the renormalized mixing angles α and β are defined to diagonalize radiatively

corrected mass matrices which implies a scale and momentum dependence for the

mixing angles. The scale dependence can be eliminated by a special choice for

the momentum p2 = (p∗)2 at which the mixing two-point functions, and thus the

running mixing angles, are evaluated. The original idea goes back to ref. [95] (see

also ref. [96]) and has been applied to the HSESM in ref. [94] and the 2HDM in

ref. [83]. In our conventions, the counterterms are defined as

δα =

Σ1PI,BFM
HhHl

(
M2
Hh

+M2
Hl

2

)
+ tHlHh

M2
Hh
−M2

Hl

, δβ = −
Σ1PI,BFM
HaG0

(
M2
Ha
2

)
+ tHaG0

M2
Ha

. (6.8)

Note that for δβ alternatively the mixing energy with the charged Higgs and

Goldstone boson can be used. As the mixing energies are gauge-dependent an

additional intrinsic prescription is required to fix the gauge-independent parts. We

choose the BFM with quantum gauge parameter ξQ = 1, which corresponds to the

gauge-fixing functions (5.3), (5.4). We remark that this is equivalent [97, 98] to

the self-energy in the pinch technique [99, 100] and allows to extract a well-defined

gauge-parameter-independent contribution to self-energies or, in general, vertex

functions and hence counterterms in this scheme.

BFM: as an on-shell alternative to the p∗ scheme, the authors of ref. [83] propose to use

the on-shell scalar mixing energies defined within the pinch technique which has also

been investigated in ref. [101]. In our framework, this corresponds to

δα =
δZBFM

HhHl
− δZBFM

HlHh

4
=

Σ1PI,BFM
HhHl

(
M2
Hh

)
+ Σ1PI,BFM

HlHh

(
M2
Hl

)
+ 2tHlHh

2
(
M2
Hh
−M2

Hl

) , (6.9)

δβ =
δZBFM

G0Ha
− δZBFM

HaG0

4
= −

Σ1PI,BFM
HaG0

(0) + Σ1PI,BFM
HaG0

(
M2
Ha

)
+ 2tHaG0

2M2
Ha

, (6.10)

with the mixing energies evaluated in the BFM with quantum gauge parameter

ξQ = 1.

In ref. [83] it is argued that the use of the FJ Tadpole Scheme is essential for the consis-

tency of on-shell schemes in combination with (5.24). There are, however, other options. A
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different tadpole counterterm scheme, such as the one of ref. [51], yields different values and

pole parts for counterterms, e.g. δα and δβ absorb tadpoles and become gauge dependent.

Yet, the absorbed tadpoles drop out in momentum subtraction schemes [23] and do not

spoil the gauge independence of the S-matrix. In tadpole counterterm schemes other than

the FJ Tadpole Scheme special care has to be devoted to the formulation of renormalization

conditions as they are necessarily gauge dependent. This situation is encountered in stan-

dard SM and MSSM on-shell renormalization schemes, where certain tadpole contributions

to self-energies are left out, rendering the counterterms gauge dependent, but the S-matrix

remains gauge independent. When employing gauge-fixing prescriptions in renormalization

conditions, tadpoles can be handled naively in a favoured tadpole counterterm scheme if

the same gauge is used in the renormalization and in the matrix-element evaluation. This

is illustrated in appendix C using the example of δα in the p∗ scheme. There, we also dis-

cuss the general case with arbitrary gauge-fixing functions, which is less trivial and cannot

be done in the naive way due to the mismatch of the gauge prescription and the actual

gauge-parameter choice. From a practical point of view the latter is only relevant if one

is interested in verifying the gauge independence of the S-matrix in tadpole counterterm

schemes other than the FJ Tadpole Scheme. We note that the use of MS schemes for the

mixing angles in combination with alternative tadpole counterterm schemes can be made

gauge independent by including finite tadpole terms20 which is equivalent to the use of the

FJ Tadpole Scheme.

The results for total cross sections in the BFM renormalization scheme in section 7

were not computed directly, but were obtained from the results in the p∗ scheme using

the following formulas, depending on the model (2HDM or HSESM) and on the produced

Higgs flavour (Hl or Hh) as follows

2HDM Hl: δBFM
EW = δp

∗

EW − 2
cαβ
sαβ

(
δαp

∗ − δβp∗ − δαBFM + δβBFM
)

2HDM Hh: δBFM
EW = δp

∗

EW + 2
sαβ
cαβ

(
δαp

∗ − δβp∗ − δαBFM + δβBFM
)

HSESM Hl: δ
BFM
EW = δp

∗

EW − 2 cαsα
(
δαp

∗ − δαBFM
)

HSESM Hh: δBFM
EW = δp

∗

EW + 2 sαcα
(
δαp

∗ − δαBFM
)

Note that the formulas can be applied uniquely to the observables under consideration as

these rely on the mixing-angle dependencies of the respective leading-order couplings.

7 Numerical results for total cross sections

In table 8 we present updated results for the production of a SM-like Higgs boson in

Higgs strahlung in the 2HDM in alignment scenarios. Non-alignment scenarios are given

in table 9. The corresponding SM correction is −12.4%. In table 10 we provide the

corresponding results for heavy Higgs-boson production in non-alignment scenarios. For

the HSESM all considered scenarios are non-aligned. The results for light Higgs-boson

20See eq. (4.43) and the following ones in ref. [86], eq. (43) in ref. [102], and eq. (5.24) in ref. [23].
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BP σHl
LO/ pb δMS

EW δp
∗

EW

BP21A 1.65 −11.8+0.7
+2.3% −11.8%

BP21B 1.65 −13.0+1.2
−48 % −13.0%

BP21C 1.65 −13.2−0.1
+0.1% −13.2%

BP21D 1.65 −13.6−0.2
+0.1% −13.6%

BP3A1 1.65 −13.3−6.4
+0.4% −13.3%

Table 8. Relative NLO corrections δEW to SM-like Higgs-boson production in Higgs strahlung

pp→ Hlµ
−µ+ in alignment scenarios in the 2HDM. The results in the MS scheme are given at the

central scale µ0 = 2Mh = 250.18 GeV with scale uncertainties estimated including the RG running

of parameters as given by (6.7). Both on-shell schemes agree within the integration error, and only

results in the p∗ scheme are given. The SM EW correction is δEW = −12.4%.

BP σHl
LO/ pb δMS

EW δp
∗

EW δBFM
EW

a-1 1.63 −10.4−1.6
+40.0% −12.6% −12.6%

b-1 1.64 −12.9+0.5
+2.5% −12.6% −12.6%

BP22A 1.52 −40.5−−% −15.9% −15.9%

BP3B1 1.50 −35.1−16.3
+29.7% −13.4% −13.4%

BP3B2 1.23 −66.6−−% −13.6% −13.6%

BP43 1.61 −15.0−0.67
+1.2 % −12.6% −12.6%

BP44 1.61 −11.2−−3.4% −12.6% −12.6%

BP45 0.806 −31.3+4.3
−6.7% −13.0% −13.0%

Table 9. Relative NLO corrections δEW to SM-like Higgs-boson production in Higgs strahlung

pp → Hlµ
−µ+ in non-alignment scenarios in the 2HDM. The results in the MS scheme are given

at the central scale µ0 = 2Mh = 250.18 GeV with scale uncertainties estimated including the RG

running of parameters as given by (6.7). The scale uncertainties are large, and for some points

(BP22A, BP3B2, BP44) the running is unstable and yields corrections beyond 100%, which is

indicated as “−”.

production are given in table 11, and the ones for heavy Higgs-boson production in table 12.

Note that for the benchmark points BP5 and BP6 with inverted hierarchy the heavy Higgs

boson is SM-like with MHh
= 125.09 GeV. For the benchmark points in the 2HDM the

light Higgs boson is always identified as the SM Higgs boson. Finally, in table 13 results

for SM-like and heavy Higgs-boson production in VBF are presented for the 2HDM. The

HSESM predictions for VBF are given in table 14. The corresponding SM correction for

SM-like Higgs-boson production in VBF amounts to −5.5%.

7.1 Discussion of the numerical results

In the following, we compare cross sections in different renormalization schemes and models

for Higgs-boson production in Higgs strahlung. For VBF the picture is similar and not dis-
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BP σHh
LO/ fb δp

∗

EW δBFM
EW

BP22A 6.43 −12.5% −12.9%

BP3B1 79.4 −17.5% −17.4%

BP3B2 220.4 −16.2% −16.1%

BP43 10.1 −2.67% −2.74%

BP44 13.9 −8.35% −8.39%

BP45 411.6 −13.8% −13.8%

Table 10. Relative NLO corrections δEW to heavy Higgs-boson Hh production in Higgs strahlung

pp → Hhµ
−µ+ in the 2HDM. No results for the MS scheme are presented due to large scale

uncertainties exceeding 100%.

BP σHl
LO/ fb δMS

EW δp
∗

EW δBFM
EW

BP1 1580 −11.1% −12.3% −12.4%

BP2 1526 −10.5% −12.2% −12.3%

BP3 1486 −10.2% −12.3% −12.3%

BP4 1432 −9.2+0.1
−0.3% −12.4% −12.4%

BP5 242.0 − −11.7% −11.7%

BP6 9.4 +1.65−11.1
−48.1% −8.86% −10.4%

Table 11. Relative NLO corrections δEW to light Higgs-boson Hl production in Higgs strahlung

pp→ Hlµ
−µ+ in the HSESM. The scale uncertainties in the MS scheme are estimated including the

RG running of parameters as given by (6.7). The central scale for BP1–4 is µ0 = 2Mh = 250.18 GeV.

For BP6 we set the scale to µ0 = 130 GeV. For BP5 the MS scheme is unstable. The scale

uncertainties for BP1–3 are smaller than the given accuracy.

BP σHh
LO/ fb δMS

EW δp
∗

EW δBFM
EW

BP1 3.28 −53.7−0.7
+1.0% −20.3% −20.5%

BP2 12.3 −47.4−1.5
+1.7% −20.0% −20.3%

BP3 36.0 −40.8−0.4
+0.5% −16.8% −16.9%

BP4 114.0 −36.8−1.2
+1.3% −16.0% −15.1%

BP5 1444 −12.6+4.7
+0.0% −12.5% −12.5%

BP6 1640 −12.3+0.4
−0.1% −12.5% −12.6%

Table 12. Relative NLO corrections δEW to heavy Higgs-boson Hh production in Higgs strahlung

pp → Hhµ
−µ+ in the HSESM. The scale uncertainties in the MS scheme are estimated in-

cluding the RG running of parameters as given by (6.7). For the BP1–4 the central scales are

580 GeV, 480 GeV, 380 GeV, and 280 GeV, respectively. For BP5 and BP6 the central scale is

µ0 = 2Mh = 250.18 GeV.
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BP σHl
LO/ pb δp

∗

EW δBFM
EW

BP21A 2.20 −5.3% −5.3%

a1 2.18 −5.9% −5.9%

b1 2.19 −6.0% −6.0%

BP22A 2.02 −9.6% −9.6%

BP3B1 2.00 −7.3% −7.3%

BP3B2 1.65 −7.8% −7.8%

BP43 2.15 −6.1% −6.1%

BP44 2.15 −6.0% −6.0%

BP45 1.08 −6.4% −6.4%

BP σHh
LO/ fb δp

∗

EW δBFM
EW

BP22A 26.3 +1.5% +1.1%

BP3B1 126.2 −6.1% −6.0%

BP3B2 350.5 −5.6% −5.5%

BP43 19.7 −8.4% −8.5%

BP44 23.0 −3.5% −4.6%

BP45 637.1 −5.6% −5.6%

Table 13. Relative NLO corrections δEW to Higgs-boson production in VBF pp→ Hl/Hhjj in the

2HDM. The SM-like Higgs production is in the upper table, indicated as σHl

LO whereas the heavy

one is the lower table, indicated as σHh

LO. The SM EW correction to σHl

LO is δEW = −5.5%.

cussed in detail. In particular, for the MS scheme we collect some observations concerning

large corrections. An analysis of the exact origin of these contributions would go beyond

the scope of this paper.

MS scheme. We start with the MS scheme and SM-like Higgs production in the align-

ment limit of the 2HDM in table 8. In a fixed-order calculation no scale dependence appears

in the MS scheme, because the relevant counterterms δZHhHl
, δα and δβ entering the ver-

tices HlZZ and HlWW are screened by the factor cαβ/sαβ = 0 in the alignment limit.

For the same reason, the on-shell schemes agree with the MS scheme at the central value.

Yet, with the running of parameters, a small scale dependence is visible. For BP21B the

correction is unstable for smaller scales, signalling a potential problem with the benchmark

point (in fact, this scenario is close to the non-perturbative limit, see table 2.) or with

the MS scheme. In non-alignment scenarios the MS results for the 2HDM in table 9 are

almost all unstable and suffer from large scale dependencies,21 which are reflected in the

running parameters cαβ and tβ in table 6. For heavy Higgs-boson production in the 2HDM

21The Higgs self-couplings are all within the conventional tree-level perturbativity band, i.e. λi ≤ 4π, but

typically one or two are of the order λi = O (5) (see tables 2 and 4).
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BP σHl
LO/ fb δp

∗

EW δBFM
EW

BP1 2108 −5.6% −5.6%

BP2 2035 −5.6% −5.7%

BP3 1984 −5.5% −5.6%

BP4 1911 −5.6% −5.6%

BP5 315.6 −5.7% −5.7%

BP6 12.8 −3.8% −5.3%

BP σHh
LO/ fb δp

∗

EW δBFM
EW

BP3 79.2 −4.6% −4.7%

BP4 181.7 −4.4% −4.5%

BP5 1927 −5.6% −5.6%

BP6 2188 −5.5% −5.6%

Table 14. Relative NLO corrections δEW to Higgs-boson production in VBF pp→ Hl/Hhjj in the

HSESM. The light Higgs production is in the upper table, indicated as σHl

LO whereas the heavy one

is in the lower table, indicated as σHh

LO.

(table 10) no predictions in the MS scheme are presented as these scale uncertainties are

even more enhanced due to ratios sαβ/cαβ entering the predictions.

The situation for the MS renormalization in the HSESM for light (table 11) and heavy

(table 12) Higgs-boson production is clearly more stable for the considered benchmark

scenarios (see table 5 for the λi values). This is reflected in a reasonable running of the

parameter sα in table 7, except for BP5 and arguably for BP6. Due to the smaller running,

we obtain results in the expected ballpark, with no artificially large corrections, even for the

heavy Higgs-boson production near the alignment limit, where potential problems coming

from the mixing energy would be enhanced by uncancelled finite parts. In the HSESM

large scale uncertainties are observed in the MS scheme for light Higgs-boson production

in BP6 and in particular for almost degenerate neutral Higgs bosons in BP5. Further, one

observes that the MS scheme leads to larger deviations from the SM corrections, which,

however, do not come with large scale uncertainties for the well-behaved benchmark points.

In the HSESM the main source for large corrections are the top-quark contributions to

the neutral scalar mixing energy, which is not subtracted in the MS scheme. This particular

effect is enhanced for degenerate neutral Higgs bosons owing to the denominator structure

in (6.2) which is not cancelled against the one coming from the on-shell off-diagonal field

renormalization constants. Besides the top-quark contributions it is possible to induce

moderate contributions coming from the Higgs potential by tuning λ3. This requires,

however, large M2
Hh
−M2

Hl
with not too small sα, and it is not straightforward to tune the

parameters in order to exceed the top-quark contribution without getting close to the non-

perturbative limit |λi| ∼ 4π. In the 2HDM, the reason for the large corrections in the MS

scheme is more difficult to grasp, especially because in view of our observables we have to
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deal with the renormalization of β which is known to cause difficulties in the MSSM [102].22

The problem with β can be traced back to large contributions in the tadpoles. For α, the

largest contributions cannot be explained by tadpoles nor by the top-quark contribution

in the neutral scalar mixing energy. Here, we observe that the large contributions to the

neutral scalar mixing energy are mediated through the charged and pseudo-scalar Higgs

boson, which, eventually, exceed all other contributions. Since these large contributions

are only found in the off-diagonal LSZ-factors they remain uncancelled in the MS scheme.

On-shell schemes. For the considered on-shell schemes none of the observed problems

of the MS scheme is encountered because the large contributions in the mixing energy and

the tadpoles are subtracted via δα and δβ, i.e. all terms involving the poles 1/(M2
Hh
−M2

Hl
)

and 1/M2
Ha

cancel in S-matrix elements. Further, in view of the size of the corrections the

on-shell methods perform much better in the sense that the SM-like Higgs-boson production

processes (see tables 8, 9 for the 2HDM and tables 11, 12 for the HSESM) yield corrections

which are close to the SM correction. In heavy Higgs-boson production (see table 10 for the

2HDM and table 12 for the HSESM) the results for on-shell renormalization schemes remain

stable even for aligned23 or degenerate scenarios. The difference between the p∗ and BFM

schemes is tiny. It seems to us that the schemes are too similar for their difference to provide

a qualitative estimate of higher orders. The difference between these schemes just results

from the momentum dependence of the neutral scalar mixing energy, which turns out to

be small and starts at the order O(M2
Hl
−M2

Hh
). Note also, that the large contributions in

the neutral scalar mixing energy were observed to have almost no momentum dependence.

For VBF the computation has only been carried out in the on-shell schemes. For the

2HDM (table 13) and HSESM (table 14) the SM-like scenarios almost coincide with the

SM predictions.

7.2 Distributions

We present distributions for the transverse momentum pT,Hh
and rapidity yHh

of heavy

Higgs bosons in Higgs strahlung and VBF. In addition, we show distributions in the rapidity

yµ− of the muon µ− in Higgs strahlung and in the rapidity yj1 of the hardest jet j1 in

VBF. We selected a typical subset of all benchmark points, namely the benchmark points

BP3B1, BP43 and BP45 in the 2HDM and BP3 in the HSESM. All results are given in

the p∗ renormalization scheme for α and β. We do not show any SM-like Higgs-production

scenarios in the 2HDM or HSESM as no shape distortions are observed compared to the

SM and basically only the normalization of the distributions is affected. Our results are

thus consistent with the observation made in SM EFT matched to the full model for the

22Note that β in the HSESM suffers the same problems, but does not enter our fixed-order calculations

and the observables we consider. For this reason β has been decoupled from the running of α in the HSESM

in order to avoid problems related to its renormalization.
23For heavy-Higgs production one expects large one-loop corrections in almost aligned scenarios (e.g.

benchmark point b1) because in the exact alignment the LO vanishes. In that case the cross section should

be computed including squared one-loop amplitudes, making the one-loop computation effectively a LO

approximation.
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BP σhLO/ fb δEW

BP3B1 877 −13.7%

BP45 802 −13.7%

BP43 501 −13.5%

BP3 366 −13.7%

BP σhLO/ fb δEW

BP3B1 1402 −4.0%

BP45 1324 −4.1%

BP43 991 −4.7%

BP3 823 −4.8%

Table 15. Relative NLO corrections δEW to Higgs-boson production in Higgs strahlung pp →
Hlµ

−µ+ in the upper table and VBF pp→ Hl/Hhjj in the lower table in the SM. The Higgs-boson

mass Mh is set to the heavy Higgs-boson mass MHh
in the corresponding benchmark point.

HSESM and 2HDM in ref. [103], where it is stated that for small mixing angles, near the

alignment, new operators do not play a significant role.

The results for pT,Hh
distributions in Higgs strahlung and VBF are shown in figure 3

and figure 4, respectively, the ones for yHh
in Higgs strahlung and VBF in figure 5 and

figure 6, and those for yµ− and yj1 in figure 7 and figure 8.24 In the upper plots we show the

LO and NLO EW differential cross section. In the lower plots the relative EW corrections

δEW are depicted. In order to isolate the genuine effects of the underlying model from

the kinematic ones, we have computed the pure SM corrections with the SM Higgs-boson

mass set to the heavy Higgs-boson mass MHh
denoted as “SM” in the lower panels. The

corresponding SM total EW cross sections are listed in table 15.

In the following we focus on shape-distortion effects relative to the SM results. Start-

ing with the distributions in Higgs strahlung, we observe quite large effects in the pT,Hh

distribution in figure 3 for BP3B1 and BP43 in the 2HDM, small effects for BP3 in the

HSESM, and no effect in BP45 in the 2HDM, which perfectly reproduces the SM result.

The situation changes for the distributions in the rapidities yHh
and yµ− in figures 5 and 7.

Here, the largest deviations from the SM are observed for BP43, where the relative EW

corrections to the yHh
distribution in the 2HDM are flatter than in the SM. For the yµ−

curve the opposite tendency is observed, i.e. the SM correction is flatter. For BP3B1,

BP45, and BP3 shape distortions relative to the SM appear at large rapidities, which are

less important due to low statistics in those regions. Switching to the distributions for VBF

in figures 4, 6, and 8, we observe a stronger trend towards SM-like results. The largest

differences are observed for BP43 in the pT,Hh
and yj1 distributions. For BP3B1 the effects

for the same distributions are smaller but significant. For BP3 the shape distortion in the

pT,Hh
distribution for VBF is not larger than the one for Higgs strahlung. In general in

24All rapidity distributions were symmetrized.
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Figure 3. Distributions in the transverse momentum of the Higgs boson pT,Hh
for heavy Higgs

production in Higgs strahlung for the benchmark points BP3B1 in (a), BP45 in (b) and BP43 in

(c) in the 2HDM, and BP3 in (d) in the HSESM.
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Figure 4. Distributions in the transverse momentum of the Higgs boson pT,Hh
for heavy Higgs

production in VBF for the benchmark points BP3B1 in (a), BP45 in (b) and BP43 in (c) in the

2HDM, and BP3 in (d) in the HSESM.

– 35 –



J
H
E
P
0
7
(
2
0
1
7
)
0
8
7

0

5

10

15

20

25

LO

NLO EW

−3 −2 −1 0 1 2 3
yHh

−20

−16

−12

δNLO
EW [%]

dσ/dyHh
[fb]

Hh SM

(a) BP3B1 (2HDM).

0

40

80

120

LO

NLO EW

−3 −2 −1 0 1 2 3
yHh

−20

−16

−12

δNLO
EW [%]

dσ/dyHh
[fb]

Hh SM

(b) BP45 (2HDM).

0

1

2

3

LO

NLO EW

−3 −2 −1 0 1 2 3
yHh

−12

−8

−4

δNLO
EW [%]

dσ/dyHh
[fb]

Hh SM

(c) BP43 (2HDM).

0

2

4

6

8

10

12

LO

NLO EW

−3 −2 −1 0 1 2 3
yHh

−20

−16

−12

δNLO
EW [%]

dσ/dyHh
[fb]

Hh SM

(d) BP3 (HSESM).

Figure 5. Distributions in the rapidity of the Higgs boson yHh
for heavy Higgs production in Higgs

strahlung for the benchmark points BP3B1 in (a), BP45 in (b) and BP43 in (c) in the 2HDM, and

BP3 in (d) in the HSESM.

– 36 –



J
H
E
P
0
7
(
2
0
1
7
)
0
8
7

0

10

20

30

40

LO

NLO EW

−3 −2 −1 0 1 2 3
yHh

−6

−4

−2

δNLO
EW [%]

dσ/dyHh
[fb]

Hh SM

(a) BP3B1 (2HDM).

0

50

100

150

200

LO

NLO EW

−3 −2 −1 0 1 2 3
yHh

−6

−4

−2

δNLO
EW [%]

dσ/dyHh
[fb]

Hh SM

(b) BP45 (2HDM).

0

2

4

6

LO

NLO EW

−3 −2 −1 0 1 2 3
yHh

−12

−8

−4

0
δNLO

EW [%]

dσ/dyHh
[fb]

Hh SM

(c) BP43 (2HDM).

0

10

20

30

LO

NLO EW

−3 −2 −1 0 1 2 3
yHh

−12

−8

−4

0
δNLO

EW [%]

dσ/dyHh
[fb]

Hh SM

(d) BP3 (HSESM).

Figure 6. Distributions in the rapidity of the Higgs boson yHh
for heavy Higgs production in VBF

for the benchmark points BP3B1 in (a), BP45 in (b) and BP43 in (c) in the 2HDM, and BP3 in

(d) in the HSESM.
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Figure 7. Distributions in the rapidity of the muon yµ− for heavy Higgs production in Higgs

strahlung for the benchmark points BP3B1 in (a), BP45 in (b) and BP43 in (c) in the 2HDM, and

BP3 in (d) in the HSESM.
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Figure 8. Distributions in the rapidity of hardest jet yj1 for heavy Higgs production in VBF for

the benchmark points BP3B1 in (a), BP45 in (b) and BP43 in (c) in the 2HDM, and BP3 in (d) in

the HSESM.
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the considered benchmark points for the HSESM the effects in VBF, but also in Higgs

strahlung, are tiny compared to the ones observed in the 2HDM.

The reason for the rather mild effects in the HSESM is due to the similiarity of the

HVV vertices to the SM ones. In particular, in the HSESM all couplings of the light and

heavy Higgs boson to gauge bosons or fermions are SM-like, but modulated with (−sα)

and cα, respectively. In the relative corrections these factors drop out, and the only dif-

ference due to the presence of an additional light Higgs boson and modified Higgs-boson

couplings is small in the benchmark points under consideration (all λi . 1). Remarkably,

even the corrections to the HVV vertices involving Higgs self-couplings (and thus all cor-

rections) scale as the corresponding tree level with either (−sα) or cα, respectively, in the

(anti-)alignment limit. Furthermore, all mixing effects between Hl and Hh vanish in this

limit. For these reasons the corrections cannot become enhanced with respect to the LO

unless tree-level perturbativity is violated. In fact, in the HSESM the one-loop corrected

HhVV vertices are exactly zero in the alignment limit. Note that these arguments apply

to the whole phase-space region, thus, no significant shape-distortion effects are expected

for the processes under consideration in the HSESM.

The 2HDM, on the other hand, exhibits non-decoupling effects in the alignment limit

cαβ → 0, where the underlying vertices for heavy Higgs-boson production become loop

induced. The largest corrections in BP43 are due to the non-decoupling term in the top

Yukawa coupling25 proportional to sαβ . In this case the Yukawa coupling is of the same

size as the corresponding SM one, but with a different sign and further enhanced with

respect to the LO by a factor of 1/cαβ , leading to a non-SM-like bosonic-fermionic in-

terplay. Furthermore, the corrections in the 2HDM are very sensitive to the presence of

new particles, especially the pseudo-scalar Higgs boson in the case of BP43. In general,

the contributions involving Higgs self-couplings can be large since non-decoupling terms

remain in the alignment limit giving rise to enhanced corrections with respect to the LO.

8 Conclusion

We reported progress towards fully automated one-loop computations in BSM models.

The presented code RECOLA2 allows one to compute QCD and EW corrections for ex-

tensions of the SM for arbitrary processes. RECOLA2 can produce NLO corrections in

general models, which requires the model file for each BSM model built in a specific format

containing the ordinary, counterterm and R2 Feynman rules. The model-file generation

and the renormalization of general quantum-field-theoretic models is performed with the

new tool REPT1L in a fully automated way, relying on nothing but the Feynman rules

of the model in the UFO format. Once the renormalization conditions for the model are

established, REPT1L performs the renormalization, computes the R2 rational terms and

builds the one-loop renormalized model files in the RECOLA2 format. We introduced the

Background-Field Method as a complementary method in RECOLA2, which is useful for

practical calculations and serves as a powerful validation method. We described the renor-

25The effect of the top contribution has been studied for on-shell heavy Higgs-boson decay.
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malization procedure in the Background-Field Method which is handled in RECOLA2 on

equal footing with the usual formulation.

In summary, we realized the following generalizations with respect to RECOLA:

• We developed a true model-independent amplitude provider, featuring a dynamic

process generation in memory without the need for intermediate compilation.

• A generic interface has been developed supporting all methods available in RECOLA,

but generalized to fit in the model-file approach. This includes the computation of

amplitudes and squared amplitudes, the selection of specific polarizations and reso-

nances, and the computation of interferences with different powers in new fundamen-

tal couplings. Furthermore, we provide spin- and colour-correlated squared matrix

elements required in the Catani-Seymour dipole formalism. The latter methods are

restricted to singlet, triplet and octet states of SU(3).

• RECOLA2 is limited to scalars, Dirac fermions and vector bosons. In the near

future we will allow for Majorana fermions.

• We support Feynman rules with a general polynomial momentum dependence and

allow for elementary interactions between more than four fields. Due to internal op-

timizations the number of fields per elementary interaction is restricted to at most 8.

• We generalized RECOLA2 to support the BFM as a complementary method.

Furthermore, the Rξ-gauge can be used for massive vector bosons or, alternatively,

non-linear gauges can be implemented.

• With REPT1L we have formed the basis for a fully automated generation of

renormalized model files for RECOLA2. We provide a simple framework for the

implementation of custom renormalization conditions. Presently available model files

for RECOLA2 include the Z2-symmetric Two-Higgs-Doublet Model with all types

of Yukawa interactions and the Higgs-Singlet extension of the Standard Model as well

as models files with anomalous triple vector-boson and Higgs-vector-boson couplings.

The considered simple models do by far not exhaust the range of applicability of

RECOLA2 and REPT1L, and further models will be implemented in the future.

As an application of the new tools we present first results for NLO electroweak cor-

rections to vector-boson fusion and updated results for Higgs strahlung in the Two-Higgs-

Doublet Model and the Higgs-Singlet extension of the Standard Model. We compared

Higgs-production cross sections for different renormalization schemes in both models. We

analysed the scale dependence in an MS renormalization scheme for the mixing angles,

which has been improved including the renormalization-group running of parameters. We

found unnaturally large corrections and scale uncertainties at one-loop order for the MS

scheme, while the considered on-shell schemes remain well-behaved. These enhanced con-

tributions can be related to uncancelled finite parts in the MS scheme and should be

investigated in more detail in the future, since a proper estimation of higher-order uncer-

tainties, as it can be done based on scale variation in MS schemes, is highly desirable. For
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the on-shell schemes, our results for the electroweak corrections to SM-like Higgs-boson

production are almost not distinguishable from the corresponding SM corrections for all

considered benchmark points. Finally, we presented distributions for the production of

heavy Higgs bosons. Here, interesting shape-distortion effects for the electroweak correc-

tions at the level of several percent are observed in the 2HDM.
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A Colour-flow vertices

In RECOLA2 the colour flow is constructed recursively. For a given off-shell current the

outgoing colour configuration is determined from the incoming ones and the possible colour

flows associated to the interaction vertex. As the UFO format does not incorporate the

colour flow, we need to translate between the two representations. We implemented a dy-

namical system for computing the colour flow from the generators and structure constants,

rather than substituting for known results. In the conventions of ref. [10] the colour flow

associated to a given colour structure

Ca1,...,
i1,...
j1,...

(A.1)

is obtained by multiplying (A.1) with the normalized generator (∆ap)
ip
jp

for each index ap
corresponding to an open index in adjoint representation. The indices ip and jp refer to the

colour and anti-colour indices, respectively. The generators (∆a)
i
j and structure constants

fabc define the SU(3) Lie algebra26

[∆a,∆b] = i
√

2fabc∆c, Tr {∆a∆b} = δab, ∆a =
λa√

2
, (A.2)

with λa being the Gell-Mann matrices. The computation then consists of eliminating the

structure constants and the generators by solving (A.2) for the structure constants and

using the (Fierz) completeness relation for the generators as follows

fabc = − 1√
2

iTr {∆a [∆b,∆c]} ,
∑

a

(∆a)
i1
j1

(∆a)
i2
j2

= δi1j2δ
i2
j1
− 1

3
δi1j1δ

i2
j2
. (A.3)

26The ∆a generators are related to the conventional ones Ta, as used e.g. in Feynrules, via (∆a)ij =√
2(Ta)ij with Tr {TaTb} = δab/2 and [Ta, Tb] = ifabcTc. Note that the structure constants f̃abc in ref. [10]

are related to the ones in this paper via f̃abc =
√

2fabc.
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Performing all contractions yields a sum of Kronecker deltas which represent the individual

colour flows. For instance, the quartic gluon vertex of the SM reads

g2
s

∑

k

(fka1a2fka3a4L
µ1µ2µ3µ4
1 + fka1a3fka2a4L

µ1µ2µ3µ4
2 + fka1a4fka2a3L

µ1µ2µ3µ4
3 ) , (A.4)

with L1, L2, L3 being Lorentz structures which, for the following discussion, are left un-

specified. Focusing on the colour structure δi1j2δ
i2
j3
δi3j4δ

i4
j1

, we obtain for the two relevant

contributions

∑

k,a1,a2,a3,a4

(∆a1)i1j1(∆a2)i2j2(∆a3)i3j3(∆a4)i4j4fka1a2fka3a4 =
1

2

(
−δi1j2δ

i2
j3
δi3j4δ

i4
j1

+ . . .
)
,

∑

k,a1,a2,a3,a4

(∆a1)i1j1(∆a2)i2j2(∆a3)i3j3(∆a4)i4j4fka1a4fka2a3 =
1

2

(
+δi1j2δ

i2
j3
δi3j4δ

i4
j1

+ . . .
)
.

(A.5)

Combining this result with (A.4), results in the contribution

δi1j2δ
i2
j3
δi3j4δ

i4
j1
× g2

s

2
(L3 − L1) . (A.6)

Thus, diagonalizing the vertex in colour-flow basis requires, in general, to redefine Lorentz

structures and couplings.

B Off-shell currents

For a given Lorentz structure and a definite colour-flow state the BGR is derived from

the Feynman rules by selecting one of the particles as the outgoing one, multiplying with

the corresponding propagator and the incoming currents of the other particles. Since the

structure of currents depends on the outgoing particle, one needs to derive the BGR for

all distinct outgoing particles. Consider for instance the QED vertex e+e−γ. REPT1L

constructs three different recursion relations

wα = ie
∑

β,δ,µ

De−
αβ (γµ)βδ × wµ × wδ,

w̄β = ie
∑

α,δ,µ

De+

αβ (γµ)δα × wµ × w̄δ,

wµ = ie
∑

α,β,ν

Dγ
µν (γν)αβ × w̄α × wβ , (B.1)

with wi, w̄j , wµ being either incoming or outgoing off-shell currents, depending on whether

they are on the right- or left-hand side of (B.1). For many Feynman rules, the underlying

BGR are formally the same if the couplings or masses of the particles are not further

specified. Assuming that the colour flow has been factorized as explained in appendix A,

all fermion-fermion-vector rules, e.g. Ze → e or γe → e, can be mapped onto the same

– 43 –



J
H
E
P
0
7
(
2
0
1
7
)
0
8
7

structures realizing that γµω+ and γµω− form a suitable basis,

wα =
∑

β,δ,µ

Df
αβ

(
c1γ

µω+ + c2γ
µω−

)
βδ
× wµ × wδ,

w̄β =
∑

α,δ,µ

Df̄
αβ

(
c1γ

µω+ + c2γ
µω−

)
δα
× wµ × w̄δ,

wµ =
∑

α,β,ν

DV
µν

(
c1γ

νω+ + c2γ
νω−

)
αβ
× w̄α × wβ , (B.2)

with Df
αβ , D

f̄
αβ , D

V
µν denoting generic propagators for fermions, anti-fermions and vector

bosons, respectively. REPT1L has the ability to derive a minimal basis, dynamically, i.e.

depending on the operators of the theory, without relying on the Lorentz basis in the UFO

format. This is done in two steps. In the first step, all distinct BGR in the underlying

theory are registered. In the next step the BGR are merged recursively until a minimal basis

is obtained. The size of the BGR can be controlled by a parameter for the maximal number

of allowed distinct generic couplings, and it is possible to allow for vanishing couplings to

improve the merging. If a merge yields a BGR size larger than allowed, the merging is not

accepted. Finally, all vertices are mapped to the minimal basis.

C Translation of δα to other tadpole schemes

In this section we discuss the translation of on-shell renormalization conditions from one

tadpole counterterm scheme to others using the example of δα renormalized in the p∗

scheme (6.8). Once, we treat the tadpole counterterms in the FJ Tadpole Scheme, with the

tadpole renormalization (5.24). As an alternative tadpole counterterm scheme, we consider

the one of ref. [51], denoted as scheme S1, which is commonly used in the SM.27 In S1 the

tadpole counterterm to the neutral scalar mixing energy is zero. Then, δαS1 in the p∗

scheme is consistently defined by absorbing all tadpole contributions as

δαS1 = δα− tHlHh

M2
Hh
−M2

Hl

(C.1)

with δα and tHlHh
being evaluated in the FJ Tadpole Scheme together with the tadpole

renormalization (5.24). Note that (C.1) holds in any gauge, but only the tadpole tHlHh
is

affected by the gauge choice, as δα is defined as gauge-parameter independent. For the ’t

Hooft-Feynman gauge (C.1) reduces to

δαS1 =

Σ1PI,BFM
HhHl

(
M2
Hh

+M2
Hl

2

)

M2
Hh
−M2

Hl

. (C.2)

In order to verify the gauge independence of the S-matrix one has to use the gauge depen-

dence originating exclusively from the absorbed tadpoles. Equation (C.1) implies for the

gauge-parameter dependence of δαS1

∂δαS1

∂ξ
= − 1

M2
Hh
−M2

Hl

∂tHlHh

∂ξ
, (C.3)

27For the corresponding tadpole counterterms in the 2HDM see “Scheme I” in ref. [23].
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with ξ generically denoting a parametrization of a gauge choice, not necessarily Rξ gauge.

We stress that the gauge dependence of (C.3) is not equivalent to the gauge dependence

of the mixing energy (C.2). Finally, when studying the gauge dependence of S-matrix

elements, the gauge dependence (C.3) necessarily cancels against the tadpole countert-

erm gauge dependence absorbed in other on-shell renormalized counterterms, e.g. mass

counterterms and δtβ (and δM2
sb in the 2HDM).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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