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SUMMARY

The CCHC-type zinc finger nucleic acid-binding pro-
tein (CNBP/ZNF9) is conserved in eukaryotes and is
essential for embryonic development in mammals.
It has been implicated in transcriptional, as well
as post-transcriptional, gene regulation; however,
its nucleic acid ligands and molecular function
remain elusive. Here, we use multiple systems-wide
approaches to identify CNBP targets and function.
We used photoactivatable ribonucleoside-enhanced
crosslinking and immunoprecipitation (PAR-CLIP) to
identify 8,420 CNBP binding sites on 4,178 mRNAs.
CNBP preferentially bound G-rich elements in the
target mRNA coding sequences, most of which
were previously found to form G-quadruplex and
other stable structures in vitro. Functional ana-
lyses, including RNA sequencing, ribosome profiling,
and quantitative mass spectrometry, revealed that
CNBP binding did not influence target mRNA abun-
dance but rather increased their translational effi-
ciency. Considering that CNBP binding prevented
G-quadruplex structure formation in vitro, we hy-
pothesize that CNBP is supporting translation by
resolving stable structures on mRNAs.
INTRODUCTION

Gene regulation involves recognition of cis-acting sequence

elements on both DNA and RNA by transcription factors and

RNA-binding proteins (RBPs), respectively (Vaquerizas et al.,

2009; Gerstberger et al., 2014). Nucleic acid recognition is medi-

ated by a limited set of protein domains that are highly conserved
This is an open access article under the CC BY-N
throughout evolution (Wilson et al., 2008; Gerstberger et al.,

2014; Lunde et al., 2007; Finn et al., 2010). One of the canonical

nucleic acid-recognizing domains found in both DNA-binding

proteins and RBPs is the zinc finger (ZnF) domain. ZnF domains

can be broadly subdivided into six distinct folds, of which CCCH

and CCHC ZnFs are most common in eukaryotes (Klug and

Rhodes 1987). A common feature of nucleic acid-binding do-

mains in general, and ZnF domains in particular, is their frequent

occurrence in homo- or heterotypic arrays of multiple nucleic

acid-binding domains (Gerstberger et al., 2014). As an example,

human ZFP100 contains up to 18 ZnF domains of four different

types (Gerstberger et al., 2014). Given that most nucleic

acid-binding domains recognize short and degenerate 4- to

6-nt-long segments, it is thought that such a modular design in-

creases affinity and sequence specificity of the protein-nucleic

acid interaction (Ascano et al., 2012a; Lunde et al., 2007).

The cellular nucleic acid-binding protein (CNBP/ZNF9) is

among the proteins with the highest number of repeats of the

same nucleic acid-binding domain. It is evolutionary conserved

in eukaryotes and harbors seven CCHC-type ZnF domains in

addition to one arginine-glycine (RG/RGG)-rich motif (Figure 1A).

CNBP is ubiquitously expressed at high levels in adult tissues

(Figure S1A) (Gerstberger et al., 2014), and gene knockout in

mice is embryonically lethal, presumably due to impaired embry-

onic forebrain development (Chen et al., 2003; Shimizu et al.,

2003). In humans, a CCTG expansion in intron 1 of CNBP causes

myotonic dystrophy type 2 (Liquori et al., 2001). Nevertheless,

little is known about the function of CNBP, its targets, and its

molecular mechanism.

CNBP was first described as a DNA-binding protein and

potential regulator for the sterol regulatory element (SRE) (Raja-

vashisth et al., 1989). It scored high in an in vitro screen for

binders of single-stranded DNA (ssDNA) with the defined

sequence GTGCGGTG. A role for CNBP in transcriptional regu-

lation was further suggested by its ability to bind the CT element

in the promotor of the c-myc gene in vitro and activate it after
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Figure 1. Overview of CNBP Protein

(A) ClustalW multiple sequence alignment of CNBP isoform 1 from various eukaryotes. CCHC domains are indicated by light gray boxes, and the RGG domain is

indicated by a dark gray box. Signature C and H amino-acid positions are highlighted (red).

(B) Clone count distribution across the six CNBP isoforms (iso) from 22 sequenced full-length clones from HEK293 cDNA.

(C) Comparison and protein length (amino acids, Aa) of the six different CNBP isoforms.

(D) Analysis of the nucleocytoplasmic distribution of wild-type CNBP and FH-CNBP isoform 1–6 HEK293 cell lines, as indicated. Cytoplasmic (C) and nuclear (N)

fractions were probed with anti-CNBP, anti-FLAG (FH-CNBP), anti-Histone H3 (nuclear marker), anti-GAPDH (cytoplasmic marker), and anti-Calnexin (endo-

plasmic reticulum marker) antibodies.
overexpression in cultured murine teratocarcinoma cells (P19)

(Michelotti et al., 1995; Shimizu et al., 2003). In contrast,

pull-down of polyadenylated RNA after in vivo UV crosslinking

identified CNBP as an RBP in amphibian oocytes and human

cell lines (Pellizzoni et al., 1997; Calcaterra et al., 1999; Baltz

et al., 2012; Castello et al., 2012). Other studies suggested that

human CNBP interacts with G-rich single-stranded RNA (ssRNA)

in vitro (Armas et al., 2008) and associates with the terminal 50

oligopyrimidine (TOP) sequence of specific mRNAs (Iadevaia

et al., 2008) to promote their translation (Huichalaf et al., 2009).

CNBP was also found to enhance the cap-independent transla-

tion of reporter constructs containing an ornithine decarboxylase

(ODC) internal ribosome entry site (IRES), suggesting a function

as a IRES trans-acting factor (ITAF) (Gerbasi and Link 2007). The

yeast homolog of CNBP, Gis2, associates with PABPC1 and the

translational machinery and localizes to stress-induced cyto-

plasmic granules, which further supports a potential function

for CNBP in translational regulation (Rojas et al., 2012).

Here, we aimed to consolidate these seemingly conflicting hy-

potheses about CNBP’s regulatory function using biochemical

and systems-wide approaches. We identified CNBP as a cyto-

plasmic RBP and profiled its RNA targets on a transcriptome-

wide scale at nucleotide-level resolution using photoactivatable

ribonucleoside-enhanced crosslinking and immunoprecipitation

(PAR-CLIP) (Hafner et al., 2010b). CNBP bound 4,178 mRNAs at

7,545 distinct sites, distributing mainly to G-rich regions in the

first 50 nt downstream of the AUG start codon. CNBP binding

sites were preferentially found in regions that were recently re-

ported to form G-quadruplex (G4) and other stable structures
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(Guo and Bartel, 2016). Interestingly, Guo and Bartel noted that,

in eukaryotes, these structures are not detectable in vivo and

likely require a dedicated machinery to resolve them and relieve

their inhibitory effect on translation. Using a host of genome-

wide approaches, including RNA sequencing (RNA-seq), ribo-

some profiling (Ribo-seq), and quantitative mass spectrometry,

we found that CNBP is an example of a sequence-specific RBP

promoting the translation of its mRNA targets on a global scale.

Considering that CNBP binding prevented G4 structure forma-

tion in vitro, we hypothesize that CNBP is supporting translation

by resolving stable structures on mRNAs.

RESULTS

CNBP Is a Cytoplasmic Protein Consisting of Multiple
Simultaneously Expressed Isoforms
Human CNBP is predicted to encode multiple splice isoforms

that change the composition of its nucleic acid-binding domains

and potentially modify target specificity (Chen et al., 2013).

In HEK293 cells, we detected the expression of six distinct

isoforms by sequencing of cDNA (Figure 1B). CNBP isoform 3,

which harbors a deletion in the third CCHC domain, and isoform

6, which contains deletions in the third CCHC domain and at

the C terminus of the RG-rich domain, were the most abundant,

representing more than 60% of the sequenced CNBP clones

(Figures 1B and 1C).

RG-rich domains are often targets of arginine methylation

(McBride et al., 2009), which could influence CNBP function in

two ways: methylated arginine residues can be recognized by



A

C

E

D

B Figure 2. CNBP PAR-CLIP

(A) Autoradiograph showing in vivo cross-

linked CNBP-RNA RNPs from stably expressing

FH-CNBP isoform 1–6 cell lines (arrow indicates

crosslinked CNBP-RNPs). Cells not irradiated with

UV served as control (lane 1). Western blot analysis

of immunoprecipitated CNBP isoforms 1–6 probed

with anti-FLAG antibody is shown in the lower

panel.

(B) Analysis of target transcript preferences for

CNBP. The number of exonic binding sites anno-

tated as derived from the 50 UTR, CDS, or 30 UTR of

a target transcript is shown (orange bars). Gray

bars show the expected location distribution of

clusters if CNBP bound without regional prefer-

ence to the set of target transcripts.

(C) Density of CNBP binding sites (red line) down-

stream of the mRNA start codon, compared to

1,000 mismatched randomized controls (gray

lines).

(D) Weblogo of representative RREs from CNBP

PAR-CLIP binding sites generated by HOMER

(Heinz et al., 2010). Percentage of CNBP binding

sites containing the respective RRE is indicated.

(E) Alignment of top 19 PAR-CLIP clusters with

G-rich RREs indicated in red. The number of total

(Total) and crosslinked (XL) reads for each cluster

is shown. Crosslinking sites determined by the

diagnostic T-to-C mutation are underlined.
adaptor proteins shuttling between cytoplasm and nucleus, re-

sulting in changes of subcellular localization (Lee et al., 2012).

Alternatively, arginine methylation could influence the nucleic

acid-binding properties of the RG-rich domain and/or the neigh-

boring ZnFs (Wei et al., 2014). Because previous reports

suggested nuclear as well as cytoplasmic functions for CNBP,

we investigated whether differences in the RG-rich domain could

influence subcellular localization. We generated stable HEK293

cell lines expressing FLAG/HA (hemagglutinin)-tagged CNBP

(FH-CNBP) isoforms 1–6 under control of a tetracycline-induc-
Cell Re
ible promoter (Spitzer et al., 2013).

Subcellular fractionation from these six

cell lines, as well as from the parental

HEK293 cells, revealed that all CNBP iso-

forms mainly localize to the cytoplasm

(Figure 1D). This result favors a predomi-

nantly posttranscriptional—rather than

transcriptional—gene regulatory function

for CNBP.

CNBP Interacts with MaturemRNAs
in G-Rich Regions
Next, we investigated the RNA-binding

properties of the six CNBP isoforms in

living cells. We used 4-thiouridine (4SU)

PAR-CLIP to irreversibly crosslink RNA

and interacting proteins (Hafner et al.,

2010b). Autoradiography of the cross-

linked, ribonuclease-treated, immuno-

precipitated, and radiolabeled FH-CNBP
isoform 1–6 ribonucleoprotein (RNP) complexes revealed one

major band at the expected size of �20 kDa molecular mass

(Figure 2A). This indicated that all CNBP isoforms maintain the

ability to interact with RNA ligands in vivo.

We chose to characterize the targeting profile of one of the

two most abundant CNBP isoforms in HEK293, isoform 3 (Fig-

ure 1B). We recovered the interacting RNA from the cross-

linked FH-CNBP isoform 3 RNP and generated cDNA libraries

for next-generation sequencing. Using PARalyzer software (Cor-

coran et al., 2011), we identified 8,420 high-confidence clusters
ports 18, 2979–2990, March 21, 2017 2981
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Figure 3. CNBP Interacts with G-Rich Sequence Elements In Vitro

(A) Binding curves and dissociation constants (KDs) obtained from filter-binding assay using recombinant CNBP with synthetic RNA targets containing no GGAG

(black), one GGAG (red), and two GGAG (blue) sequence elements. Sequences are given below.

(B) Sequences of CNBP binding sites used for filter-binding assays. Nucleotides highlighted in red correspond to the predicted CNBP RREs. Mutations of the

putative RRE are underlined.

(C) Binding curves and dissociation constants (KDs) obtained from filter-binding assays using recombinant CNBP and sequences from (B).
(binding sites), of which 7,545 distributed over 4,178 mRNAs

(Figure S1B; Table S1). Consistent with its cytoplasmic localiza-

tion, CNBP binding sites were predominantly mapping to mature

mRNAs, with 54% of the clusters in coding sequences (CDSs)

and 27% in the 30 UTR (Figure 2B). A metagene analysis across

different mRNA features revealed an enrichment of CNBP bind-

ing sites within the first 50 nt of the start codon (Figures 2C and

S1C–S1G).

We used HOMER (Heinz et al., 2010) to computationally

define the preferred RNA recognition element (RRE) on the

complete set of PAR-CLIP-defined CNBP binding sites/clusters.

This approach identified UGGAGNW as the most common RRE

(> 40%of all binding sites). Other G-richmotifs containing aGGA

or GGG core also showed strong enrichment in the computa-

tional analysis and often occurred multiple times in a single

CNBP binding site (Figures 2D and 2E).

CNBP Recognizes G-Rich Sequences In Vitro
We first used electrophoretic mobility shift assays (EMSAs) with

recombinant, purified CNBP isoform 3 to evaluate the impact of

the putative GGAG containing RRE on the binding affinity. We

designed synthetic 20-nt-long ssRNAs with adenosines flanking

a centered UUUU, GGAG, or 2xGGAG element (sequences are

shown in Figure 3A). The UUUU-containing RNA did not show

any appreciable interaction with CNBP. The addition of one
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GGAG resulted in a weak shift at high protein concentrations,

and the addition of a second GGAG resulted in a complete shift

of oligoribonucleotide at CNBP concentrations >0.5 mM (Fig-

ure S2A). Accordingly, based on filter-binding assays, CNBP

binding constants (dissociation constant, KD) of UUUU, GGAG,

and 2xGGAG oligoribonucleotides were >10 mM, 330 nM, or

120 nM, respectively, confirming that a GGAG motif confers

binding to CNBP (Figure 3A). Hill coefficients for these RNA sub-

strates varied around 1, indicating that CNBP binding was non-

cooperative (Figure S2C).

Next, we validated the binding of CNBP to PAR-CLIP binding

sites in vitro. We generated ssRNAs representing four different

binding sites (Figure 3B) and quantified their affinity to CNBP

by filter binding. The obtained KD varied between 30 and

160 nM, and mutations in the core G-rich binding motif resulted

in loss of CNBP binding (Figure 3C). Finally, we attempted to

dissect the contribution of the RG-rich domain and individual

CCHC domains using three recombinantly expressed CNBP

constructs either lacking the RG-rich domain, the N-terminal

CCHC domain, or the two C-terminal CCHC domains. These

constructs all had severely reduced binding affinities compared

to full-length CNBP, and we concluded that, in addition to the

ZnF domains, CNBP also requires the RG-rich domain for

high-affinity RNA binding (Figures S2C–S2G). In summary, our

in vitro studies validated the PAR-CLIP-derived CNBP binding



sites and emphasized the requirement of G-rich sequences for

high-affinity binding.

CNBP Presence Slightly Reduces Target mRNA
Abundance
To determine the effect of CNBP on its mRNA targets and to

perform loss-of-function studies, we generated CNBP knockout

(KO) HEK293 cell lines using Cas9-mediated gene editing.

Genomic sequencing of the CNBP locus, as well as RNA-seq of

three different CNBP KO clones revealed that all contained

frameshift mutations in exon 4, which resulted in loss of detect-

able protein by western blot (Figures S3A–S3C). CNBP KO did

not significantly reduce the growth rate of HEK293 cells. How-

ever, when grown in continuous (unpassaged) culture, CNBP

KO cells started collapsing after 8–10 days of growth and were

completely dead after 15 days, while parental HEK293 readily

survived (Figures S3D–S3F). This suggests that CNBP supports

cell survival under limiting conditions.

We used these CNBP KO cells to determine whether CNBP

is involved in cytoplasmic posttranscriptional gene regulatory

processes. We first investigated CNBP target mRNA abundance

by RNA-seq (Figure S4A; Table S2). Loss of CNBP led to a

marginal, albeit statistically significant increase of target mRNA

levels compared to parental HEK293 cells. CNBP PAR-CLIP

top targets, binned according to the number of crosslinked

reads, increased in abundance by �2% (Figure 4A). These re-

sults indicate that CNBP is most likely not influencing cyto-

plasmic mRNA turnover.

CNBP Promotes Translation of Its Targets
Given the almost negligible effect on mRNA abundance, we next

investigated whether CNBP controls other cytoplasmic post-

transcriptional gene regulatory processes beyond mRNA stabil-

ity. We showed, as described earlier, that CNBP binding was

enriched in mRNA CDSs, particularly within 50 nt downstream

of the start codon (Figures 2B and 2C). We also demonstrated

that CNBP co-sediments quantitatively with the 40S, 80S, and

polysomal fractions in polysome profiling experiments (Fig-

ure 4B). Taken together, these data pointed to a role for CNBP

in translation, and we hypothesized that CNBP might influence

translational elongation across G-rich regions.

To directly measure the impact of CNBP on the ribosome

occupancy of its mRNA targets, we performed ribosome foot-

printing (Ribo-seq) and quantified ribosome-protected frag-

ments (RPFs) (Ingolia et al., 2009) in CNBP KO cells and parental

HEK293 cells (Table S3). CNBP loss resulted in a robust

decrease in RPF numbers on target mRNAs, and this effect

depended on the number of crosslinked reads or the number

of CNBP binding sites (Figures 4C and S4B), both of which we

previously found to correlate well with the occupancy of the

RBP on the RNA (Hafner et al., 2010b; Ascano et al., 2012b).

We found an �30% decrease (p < 2.2 3 10�16) in RPFs on the

243 target mRNAs with more than 500 crosslinked reads,

compared to mRNAs showing no interaction with CNBP (Fig-

ure 4C). Even for the 1,761 targets with only a single CNBP

site, RPFs decreased by �9% (p = 13 3 10�10).

We further investigated the effect of the CNBP binding site

location on ribosome density and first focused on mRNAs that
were targeted by CNBP in the 30UTR. CNBP KO affected neither

the RPFs on these mRNAs nor their abundance, suggesting that

30UTR binding did not contribute to CNBP mediated gene regu-

lation (Figures S4C–S4E). In contrast, CNBP binding anywhere in

the CDS was sufficient to increase RPF density, with no prefer-

ence detectable for sites close to the translational start, despite

the enrichment of CNBP binding sites in that region (Figure S4F).

We calculated the density of ribosomes on each mRNA in

CNBP KO and control cells by normalizing the number of RPFs

with the mRNA abundance. This score, known as the transla-

tional efficiency (TE), removes effects of mRNA abundance and

approximates the translational output for each mRNA molecule

of a given gene (Ingolia et al., 2009; Guo et al., 2010; Bazzini

et al., 2012). CNBP KO strongly correlated with decreased TE

on CNBP targets (�33% decrease for the 243 top CNBP targets

binned by intensity of crosslinking; Figure 4D; p < 2.2 3 10�16).

G-rich sequences are capable of forming G4 and other sec-

ondary structures, which act as roadblocks for efficient trans-

lation (Rhodes and Lipps, 2015; Guo and Bartel, 2016). We

thus reasoned that CNBP possibly facilitated translation by

relieving restrictive mRNA structures; elongation rates of ribo-

somes around CNBP binding sites would, in this case, decrease

upon CNBP loss. To test this hypothesis, we plotted RPF density

around CNBP binding sites (Figure 4E). Ribosome density

around the G-rich CNBP sites was increased in control cells,

suggesting reduced elongation rates, even in the presence of

CNBP. Upon CNBP loss, we observed a further 60% increase

in ribosome density followed by a sharp drop in occupancy

>200 nt downstream of the binding sites. Thus, our data suggest

that CNBP loss resulted in increased stalling of elongating

ribosomes around its G-rich binding sites. The local increase of

ribosome density upstream of the CNBP binding sites was

compatible with the overall decrease of ribosome footprints on

CNBP target mRNAs, considering that CNBP binding sites

were predominantly localized 50 nt of the start codon (Figure 2C).

CNBP Increases Protein Levels of Target Transcript
CNBP KO cells showed a �20% decrease in protein content

per cell, supporting a role in promoting target mRNA translation

(Figure 5A). Nevertheless, such a decreasemay also be the result

of indirect regulatory effects. To directly test the effect of CNBP

binding on the target mRNA translational output, we designed

reporter assays using representative PAR-CLIP binding sites

from the TMPO, LUC7L3, and DDX42 mRNAs, which showed

a reduction in the TE of 40%, 40%, and 50%, respectively.

Each of these binding sites was documented to bind CNBP

in vitro and was located within less than 50 nt from the start

codon in the CDS (Figures 3B and 3C). The sequences were

cloned in frame with the firefly luciferase mRNA directly down-

stream of the AUG codon in the psiCHECK-2 dual luciferase

reporter assay system (Figure S5A). Transfection of these re-

porter plasmids into CNBP KO cells resulted in an approximately

10-fold decrease in both renilla control and firefly luciferase,

compared to wild-type cells, while luciferase RNA levels stayed

constant (Figure S5B). This reduction in luciferase protein levels

was likely due to a concentration of G-rich sequence elements in

the CDS of the luciferase genes, making them sensitive to com-

plete loss of CNBP (Figure S5C). We argued that reduction of
Cell Reports 18, 2979–2990, March 21, 2017 2983
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Figure 4. CNBP Increases the Ribosome Density on Its Targets

(A) Cumulative distribution analysis of change in average mRNA expression comparing CNBP KO cell lines (n = 3) with parental HEK293 cells (n = 3). Target

mRNAs are binned based on the number of crosslinked reads. Significance was determined using a two-sided Kolmogorov-Smirnov (KS) test. Bin size is

indicated.

(B) Sucrose gradient separation profile of HEK293 cell extract. The western blot below shows co-sedimentation of CNBP with free ribosomal subunits (fractions

5–8), monoribosomes (fractions 9–12), and polysomes (fractions 13–19). RPS6 from the 40S ribosomal subunit served as a control protein.

(C) Cumulative distribution analysis of change in ribosome-protected fragments (RPFs) upon CNBP knockout, as determined by ribosome profiling. Target

mRNAs are binned based on the number of crosslinked reads. Significance was determined using a two-sided KS test. Bin size is indicated.

(D) Same as in (C), except the cumulative distribution of the translation efficiency (TE, calculated as log2[RPF/RNA abundance]) ratio is plotted.

(E) Distribution of RPF around CNBP binding sites in control (blue) and CNBP KO (red) cells. Curves were fitted using LOESS regression, and the envelope

indicates a 95% confidence interval.
CNBP levels, rather than knockout,would preferentially affect the

strongest CNBP targets, and we used a siRNA (small interfering

RNA)-mediated gene knockdown for our luciferase experiments.

Upon knockdown of CNBP, we observed a highly significant
2984 Cell Reports 18, 2979–2990, March 21, 2017
(20%–40%) decrease in firefly luciferase levels for all reporters

(Figures 5B and S5D). This decrease was rescued by mutations

within the G-rich CNBP binding sites that we had previously

shown to abrogate CNBP binding in vitro (Figure 3C).
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To systematically measure the impact of CNBP on target

protein levels we performed pulsed stable isotope labeling by

amino acids in cell culture (pSILAC) coupled with quantitative

proteomics (Ong et al., 2003). We compared the protein expres-

sion profile of FH-CNBP expressing HEK293 cells with that of

HEK293 cells after CNBP knockdown and could quantify 4,887

proteins (Table S5). Knockdown of CNBP resulted in a small

but significant decrease in the abundance of proteins encoded

by the top 509 CNBP target mRNAs (Figure 5C). We further

normalized the observed changes in protein levels according

to changes in mRNA levels (obtained by RNA-seq) for each

gene upon CNBP knockdown and overexpression. Consistent

with our reporter assays and ribosome-profiling data, we found

that CNBP expression directly correlated with increased transla-

tional efficiency on CNBP targets (14% increase for the top 509

CNBP targets, p = 2 3 10�5; Figure 5D).

CNBP Binds Sites Close to G4 and Other Stable RNA
Structures
Finally, we asked whether a plausible mechanism for CNBP

function would be to promote translation across G-rich elements

in the target mRNA CDSs that have the potential to form stable

secondary RNA structures. We used SHAPE chemistry to

probe for structure in the CNBP PAR-CLIP sites from TMPO

and HNRNPH3 and found that the G-rich elements in that oli-

goribonucleotide were protected from modification in vitro, indi-

cating that they were paired (Figures S5E and S5F). We next

examined whether CNBP binding could disrupt formation of

RNA secondary structures and performed circular dichroism

measurements using a well-characterized G4-forming oligonu-

cleotide (Paeschke et al., 2013) in the presence and absence

of recombinant CNBP. The presence of CNBP prevented the

formation of the G4 in a concentration-dependent manner (Fig-

ure 5E), suggesting that, indeed, it was capable of resolving sta-

ble secondary structure. We extended these analyses on a tran-

scriptome-wide scale using data from a recent report, which

identified regions in HEK293 cells forming stable structures

in vitro (Guo and Bartel, 2016). Guo and Bartel exploited the abil-

ity of G4-forming and other structured regions in RNA to stall

reverse transcription during cDNA library preparation. Interest-

ingly, 75% of CNBP binding sites overlapped with sequences

that stalled reverse transcription (Figure 5F). The localization of

CNBP binding sites at and near regions capable of stalling

reverse transcription was highly significant in comparison to

a set of length-matched sites randomly selected from CDSs
Figure 5. CNBP Promotes Translation of mRNA Targets

(A) Absolute protein abundance per cell in control (WT) and CNBP KO (KO) cells

(B) Effect of CNBP knockdown on luciferase reporter gene expression. Firefly luc

and set to 1 for the control knockdown. Results of paired t test are indicated (***

(C) Cumulative distribution analysis of protein level changes upon CNBP knockdo

KS test. Bin size is indicated.

(D) Same as in (C), except the cumulative distribution of a protein (derived by p

abundance]) ratio is plotted.

(E) CD measurement of a G4 structure without CNBP and with increasing conce

(F) Number of CNBP binding sites overlapping RT-stop reads from Guo and Ba

sequences for each CNBP binding site were randomly selected from the same m

(G) Distribution of RT-stop reads 100 nt up- and downstream of CNBP PAR-CLI

reads relative to the background sequence set from (F) (black line).
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of mRNAs expressed in HEK293 (Figure 5G). In summary, our

data are consistent with a role for CNBP in preventing the forma-

tion of stable secondary structures in G-rich regions within the

mRNA CDS and, thus, promoting translation.

DISCUSSION

Here, we present a comprehensive characterization of the CNBP

protein. We identified target RNA-binding sites transcriptome-

wide, delineated a consensus binding motif, and defined the ef-

fect of CNBP binding on mRNA abundance and translation.

CNBP was described as a multifunctional protein similar to

other ZnF-containing proteins (Pace and Weerapana 2014; Hall

2005). It was suggested to interact with both DNA and RNA,

leading to conflicting reports claiming a function as a transcrip-

tional aswell as post-transcriptional gene regulator (Borgognone

et al., 2010; Calcaterra et al., 1999; Sammons et al., 2011; Shi-

mizu et al., 2003; Michelotti et al., 1995). In human cell lines,

CNBP encodes at least six protein isoforms, which contain dif-

ferences in the third CCHC domain as well as in the RG-rich

domain conceivably involved in nucleocytoplasmic shuttling.

However, our biochemical analyses showed that CNBP could

only be detected in the cytoplasm, similar to its homolog in

Xenopus laevis (Calcaterra et al., 1999). Combined with our

finding that PAR-CLIP binding sites mainly localized to exonic

mRNA regions and that all six isoforms interacted with RNA

in vivo, these data suggest that CNBP is involved in cytoplasmic

post-transcriptional gene regulatory processes rather than

acting as a transcription factor.

ZnF proteins show diverse binding sequence specificity.

Recent structural work for the CCCH-type ZnF of the yeast

Nab2 and the Drosophila melanogaster Unkempt proteins

showed their strong preference for adenine and uridine bases,

respectively (Kuhlmann et al., 2014;Murn et al., 2016). In contrast,

the twoCCHC domains of the LIN28 protein family, which are ho-

mologous to CNBP’s seven CCHC ZnFs, interact in vitro and

in vivo with a GGAG motif (Nam et al., 2011; Wilbert et al., 2012;

Piskounova et al., 2008; Graf et al., 2013). This motif is mirrored

by the RREs of CNBP found by in vitro selection (Ray et al.,

2016), as well as by PAR-CLIP in this study. RNA-protein cross-

linking in 4SU-PAR-CLIP, HiTS-CLIP, and other CLIP-seq pro-

cedures occurs predominantly at uridines (Kramer et al., 2014;

Sharma et al., 2015) and, therefore, requires the presence of uri-

dine bases within a few nucleotides of the binding site. Our unbi-

ased motif enrichment analysis revealed CNBP’s G-rich RRE,
.

iferase (FLuc) expression is normalized to Renilla luciferase (RLuc) expression

p < 0.0006; ****p < 0.0001).

wn as determined by pSILAC. Significance was determined using a two-sided

SILAC) per mRNA (derived by RNA-seq) metric (log2[protein abundance/RNA

ntrations of CNBP.

rtel (2016) compared to a set of background sequence clusters. Background

RNA and the same annotation category (CDS, UTR).

P sites (red line, anchored at cluster start coordinate). Distribution of RT-stop



mitigating concerns that results fromUV-crosslinking-based pro-

tocols are disproportionately skewed toward U-rich RREs.

While CNBP loss leads to a marginal accumulation of target

mRNAs, their translation and protein output—as measured by

Ribo-seq and mass spectrometry—is strongly reduced. The TE

of the 243 top target mRNAs dropped, on average, by 30%,

and that of all �4,000 targeted mRNAs dropped by 10%, on

average, upon CNBP loss. Interestingly, cells from myotonic

dystrophy type 2 (DM2) patients with CCTG expansion in the

first intron of CNBP have reduced CNBP expression and also

show an overall reduced rate of translation, similar to our

CNBP KO cells (Huichalaf et al., 2009). Taken together, this

represents a massive shift in gene regulation of the large group

of target mRNAs, which can explain the embryonic lethality

of CNBP knockouts (Chen et al., 2003; Shimizu et al., 2003).

Previously, only a handful of RBPs with otherwise well-charac-

terized roles in mRNA processing were implicated as ITAFs,

possibly aiding the proper folding of individual IRES elements

and thereby promoting translation (Holcik and Sonenberg

2005). In contrast, CNBP represents an RBP enhancing the

translation of its targetmRNAs on a global scale.We hypothesize

that CNBP acts by relieving secondary structures on target

mRNAs that exhibit G-rich sequence stretches. Secondary

structures are often required for RNA function (Mortimer et al.,

2014; Wan et al., 2011), and among them, the G4 structure ex-

hibits particular stability in vitro (Bochman et al., 2012; Millevoi

et al., 2012; Kwok et al., 2016). A few proteins, including the

ATP-dependent helicases eIF4A and DHX36 in the Aven com-

plex were found to be necessary for the efficient translation of

a subset of RNAs with potential G4 structures in the oncogenic

gene expression program (Wolfe et al., 2014; Thandapani

et al., 2015). A recent survey that mapped G4 and other stable

structures on a transcriptome-wide scale found that they are

widespread and stable in vitro (Guo and Bartel, 2016). However,

they remain unfolded in vivo in eukaryotic cells, suggesting the

existence of a specialized machinery supporting resolution of

such RNA structures in eukaryotes (Guo and Bartel, 2016).

Guo and Bartel excluded the involvement of DHX36 and, using

ATP depletion experiments, demonstrated that this machinery

likely operates in an ATP-independent manner, precluding

helicases altogether. They hypothesized that tight binding

by RNA-binding proteins may help to prevent formation of struc-

tures. Considering the deep conservation of CNBP in eukary-

otes, its absence in prokaryotes, and the inability for G4 struc-

tures to form in the presence of CNBP in vitro, we hypothesize

that CNBP may represent one of these factors, helping to over-

come the deleterious effects of G-rich structures on translation.

Our work provides a starting point for the study of CNBP in trans-

lational regulation and represents a comprehensive resource for

the study of individual target RNAs regulated by CNBP.

EXPERIMENTAL PROCEDURES

A detailed description of the experimental procedures can be found in the

Supplemental Information.

Stable Cell Lines and Their Culture

Stable Flp-In T-RExHEK293 cell lines inducibly expressing FH-CNBP isoforms

1–6were generated using the Gateway Recombination Cloning technology, as
described previously (Spitzer et al., 2013; Walhout et al., 2000), and using the

pFRT/TO/FLAG/HA-Dest plasmid (Landthaler et al., 2008).

siRNAs were transfected at a concentration of 50 nM using Lipofectamine

RNAiMAX Reagent (Life Technologies);

CNBP siRNA-1: GCAAGGAGCCCAAGAGAGAUU, and

CNBP siRNA-2: CAAGAGAGAGCGAGAGCAAUU.

Cell Fractionation

Subcellular fractionation of FH-CNBP isoform 1–6 HEK293 cells was per-

formed as described by Gagnon et al. (2014) unless otherwise stated.

PAR-CLIP

PAR-CLIP was performed as previously described (Hafner et al., 2010a,

2010b, 2012a), with minor modifications (see Supplemental Experimental

Procedures for the complete procedure). PAR-CLIP cDNA libraries were

sequenced on an Illumina HiSeq 2500 platform. Clusters of overlapping

sequence reads mapped against the human genome version hg19 were

generated using the PARalyzer software (Corcoran et al., 2011) incorporated

into a pipeline (PARpipe; https://ohlerlab.mdc-berlin.de/software/PARpipe_

119/) with default settings. Binding sites were categorized using the Gencode

GRCh37.p13 GTF annotation (gencode.v19.chr_patch_hapl_scaff.annotation.

gtf; http://www.gencodegenes.org/releases/19.html).

Dimethyl sulfate sequencing (DMS-seq) data for reverse transcription

(RT)-stop profiling in HEK293 cells were downloaded from the dataset by

Guo and Bartel (2016) (GEO: GSE83617). Reads from a K+ sample were taken

for the downstream analysis, as they represent the strongest RT-stops.

RT-stop site distribution around CNBP binding clusters was created using

SAMtools mpileup. As background clusters for each CNBP cluster, a 40-nt-

long sequence was randomly selected within the same transcript and at the

same functional region (50 UTR, CDS, or 30 UTR).

Recombinant Protein Expression, EMSAs, and Filter-Binding Assays

For the expression of recombinant protein, CNBP isoform 3 was cloned into

pET-M11 and was transformed into E. coli BL21 DE3 (pLysS). CNBP was pu-

rified using standard His-tag affinity purification using nickel-nitrilotriacetic

acid (Ni-NTA) agarose beads (QIAGEN), and CNBP was eluted from the beads

with 250 mM imidazole.

For EMSAs, 5 nM radioactively labeled oligoribonucleotides (for sequences,

see Figure 3B) were incubated with recombinant CNBP in binding buffer (see

Supplemental Experimental Procedures) and fractionated on a native 0.4%

agarose gel.

For filter-binding assays, radiolabeled oligoribonucleotides were incubated

with recombinant CNBP, as described earlier and applied to a dot blot appa-

ratus (BioRad). Unbound RNA was retained by nylon membrane, whereas the

RNA-protein complex was retained on a nitrocellulose membrane. The bound

and unbound spots were quantified using ImageQuant (GE Healthcare), and

their relative KDs were calculated using Prism software (GraphPad).

CRISPR/Cas9 Gene Editing

Flp-In T-REx HEK293 cells were generated using CNBP CRISPR (clustered

regularly interspaced palindromic repeat)/Cas9 KO plasmids (sc-404090).

KO clones were screened by immunoblotting with anti-CNBP antibody (Sigma

SAB2100453). Knockout was confirmed by RNA-seq analysis.

RNA-Seq

RNA from three different clones ofCNBPKOcells and three biological replicates

of theparentalFlp-InT-RExHEK293was isolatedusingTRIzol reagentaccording

to themanufacturer’s instructions. rRNAwas removedusing theRibo-Zero rRNA

Removal Kit (Illumina), followed by directional cDNA library preparation (New

England Biolabs). Sequenced reads were aligned to the human genome version

hg19 using TopHat (Trapnell et al., 2012). Cufflinks and Cuffdiff were used to

quantify transcripts and determine differential expression (Trapnell et al., 2012).

Ribo-Seq

Ribo-seq was performed as described in Ingolia et al. (2012), from single

10-cm plates of Flp-In T-REx HEK293 (either wild-type [WT] or CNBP KO).
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Small RNA cDNA libraries from ribosome footprints were constructed as in

Hafner et al. (2012b) and sequenced on an Illumina HiSeq 2500 platform.

Sequenced reads were aligned to the human genome version hg19 using

TopHat (Trapnell et al., 2012). RNAcounter was used to quantify transcript-

mapped footprints. Overlaps of CNBP cluster and different genomic regions

were calculated with BEDTools (Quinlan and Hall, 2010). Data extraction,

formatting, subgrouping, and preparation for analysis were all facilitated with

customized scripts for Bash, Python, Java, and R.

Statistical Methods

Equality of distributions in the empirical cumulative distribution functions for

changes in transcript abundance (Figure 4A) and changes in translational

efficiency (Figures 4C, 4D, 5C, and 5D) was tested using the two-sample

Kolmogorov-Smirnov test (ks.test command in the R statistical software pack-

age). Statistical significance of differences in luciferase reporter gene expres-

sion upon CNBP knockdowns (Figure 5B) was assessed using a two-tailed

t test using the GraphPad Prism software.

Luciferase Reporter Assay

HEK293 cells were cultured at a density of 60%–80% in 12-well plates

and transfected with CNBP or control siRNA using Lipofectamine RNAiMax

(Life Technologies). 72 hr post-transfection, cells were transfected with a

dual-luciferase plasmid (psiCHECK-2) containing WT or mutant binding se-

quences (Figures S7A and S7B) using Lipofectamine 2000 (Life Technologies).

6 hr later, cell lysates were generated using Promega Passive Lysis Buffer, and

luciferase activity was measured using the Dual-Luciferase Reporter Assay

System (Promega) on a TriStar LB941 luminometer (Berthold Technologies).

Selective 20-Hydroxyl Acetylation Analyzed by Primer Extension

Selective 20-hydroxyl acetylation analyzed by primer extension (SHAPE) was

performed as previously described (Wilkinson et al., 2006), with minor modifi-

cations as described in the Supplemental Experimental Procedures.

CD Measurement

Oligonucleotides forming G4 structures were incubated with increasing

concentrations of recombinant CNBP isoform 3, and CD measurement was

performed using a Jasco J-815 spectropolarimeter with readings that were

recorded over a wavelength range of 200–350 nm. As control, a mutant

sequence incapable of forming G4 structure was used (G4: AAAAAAAAAAGG

GGGAGCTGGGGTAGATGGGAATGTGAGGG; control: AAAAAAAAAAGCGC

GAGCTGCGCTAGATGCGAATGTGAGCG).
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