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Even as medical data sets become more publicly accessible, most are restricted to specific medical condi-
tions. Thus, data collection for machine learning approaches remains challenging, and synthetic data aug-
mentation, such as generative adversarial networks (GAN), may overcome this hurdle. In the present quality
control study, deep convolutional GAN (DCGAN)–based human brain magnetic resonance (MR) images
were validated by blinded radiologists. In total, 96 T1-weighted brain images from 30 healthy individuals
and 33 patients with cerebrovascular accident were included. A training data set was generated from the
T1-weighted images and DCGAN was applied to generate additional artificial brain images. The likelihood
that images were DCGAN-created versus acquired was evaluated by 5 radiologists (2 neuroradiologists
[NRs], vs 3 non-neuroradiologists [NNRs]) in a binary fashion to identify real vs created images. Images
were selected randomly from the data set (variation of created images, 40%–60%). None of the investi-
gated images was rated as unknown. Of the created images, the NRs rated 45% and 71% as real magnetic
resonance imaging images (NNRs, 24%, 40%, and 44%). In contradistinction, 44% and 70% of the real
images were rated as generated images by NRs (NNRs, 10%, 17%, and 27%). The accuracy for the NRs
was 0.55 and 0.30 (NNRs, 0.83, 0.72, and 0.64). DCGAN-created brain MR images are similar enough
to acquired MR images so as to be indistinguishable in some cases. Such an artificial intelligence algorithm
may contribute to synthetic data augmentation for “data-hungry” technologies, such as supervised machine
learning approaches, in various clinical applications.

INTRODUCTION
In recent years, the use of artificial intelligence (AI) has
attracted interest for medical imaging tasks. However, small
data sets are major obstacles, in particular for supervised
machine learning and for rare conditions for which only a
small number of cases may exist even in large databases
(1-3). Even as medical data sets become more publicly acces-
sible, most of those data sets are restricted to specific medical
conditions, and data collection for machine learning ap-
proaches remains challenging (2).

To overcome this hurdle, some efforts have turned to the
augmentation of existing data. In this regard, several methods

for data augmentation have been suggested, but minor altera-
tions such as overfitting in learning processes or geometric
transformations have not met the urgent need to provide data
sets on a larger basis (4, 5). However, considerable progress has
been made by the introduction of synthetic data augmentation
to enlarge training sets. By generating synthetic data, novel
created images can be added to existing data sets. Such an
approach may provide a larger number of images to enhance the
variety within a data set and, ultimately, to improve machine
learning algorithms (2).

Generative adversarial networks (GANs) may contribute to-
ward meeting the need for synthetic data augmentation. In
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principle, GANs are based on an adversarial process where one
network is creating artificial images, while the other network
continuously learns to differentiate between real and generated
images (Figure 1A) (6, 7). Several studies have applied the
concept of GAN to medical imaging, for example, by producing
new retinal images from a data set of pairs of retinal vessel trees
(8). Apart from ophthalmologic applications, GANs have also
found applicability in the field of molecular oncology imaging
to test the detection rate of malignant liver lesions by using
computed tomography and generated positron emission tomog-
raphy (PET) images (9). However, although current applications
within radiology aim to assist in diagnosis, the quality of GAN-
generated data has not yet been validated by human perception
in this context. Thus, in the present feasibility study, we aimed
to test the capability of a GAN to create brain magnetic reso-
nance (MR) images and to perform quality assessment of GAN-
generated artificial images by a visual assessment conducted by
blinded radiologists.

METHODOLOGY
Patient Population and Imaging Acquisition
This retrospective study was approved by the local medical
ethics committee (National Cardiovascular and Cerebral Re-
search Center, Suita, Japan) and conducted in strict accordance
with the World Medical Association Declaration of Helsinki and
Ethical Principles for Medical Research Involving Human Sub-
jects. All subjects signed written informed consent. In total, 96
T1-weighted (T1W) brain images of 30 healthy volunteers and
33 patients with a history of cerebrovascular accident (women,
26; mean age, 69 � 10) were enrolled, while the latter group
underwent MR scans both at acute and chronic phases (9 � 6
and 101 � 13 days after disease onset, respectively). MR images
were acquired by 3-T whole-body scanner (Signa Excite HD
V12M4; GE Healthcare, Milwaukee, WI) with an 8-channel
phased-array brain coil and a spoiled gradient-recalled se-
quence (repetition time � 8.6 milliseconds, echo time � 1.8
milliseconds, flip angle � 8°) in the sagittal planes, recon-

Figure 1. Work flow chart (A): generative adversarial networks (GANs) are based on an adversarial process where
one network is creating artificial images, while the other network continuously learns to differentiate between real and
generated images. Interactive quiz (B): mixed data set of real and created brain magnetic resonance (MR) images as
provided to both human observers. Artificial magnetic resonance (MR) images have been created using deep convolu-
tional generative adversarial networks (DCGAN). Created images are b, c, d, f, and h (B).
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structed matrix size, 256 � 256 � 124; voxel size, 0.94 �
0.94 � 1.5 mm3.

Training Data Set
Training data of 2-dimensional (2D) images were generated
from the T1W images using the following procedures: the orig-
inal T1W image was reoriented perpendicular to the anterior–
posterior commissure line and the transaxial section at the basal
ganglia level was located manually at the center of the image
domain. Thereafter, the image was rotated in the right / left
direction with angles from �10 to �10°, up / right direction
with angles from �10 to �10° and cephalad / caudal direction
with angles from �5 to �5° with step size of 1°. In the rotated
image, 5 transaxial sections were sampled as 2D images at
distances of �4, �2, 0, 2, 4 mm from the central transaxial
section. Furthermore, the 2D images were flipped in the right/
left direction. The total number of 2D images was 2 328 480 (48
510 images / original T1W image).

Generation of Artificial Brain Images Using Deep
Convolutional GAN
We applied deep convolutional GAN (DCGAN) to generate arti-
ficial brain images on the basis of a previously described pro-
cedure with minor modifications (7). The DCGAN generator
consisted of a fully connected layer projecting input of a 100-
dimensional uniform distribution to the following layers of 4
fractionally strided convolutions with filter sizes of 256, 128, 64,
and 32 and a kernel size of 5 � 5. The rectified linear unit
activation functions were used except for the output layer,
which used the tanh function. Batch normalization was per-
formed in each layer. As discriminators, leaky rectified linear
unit functions were used in all layers with a slope of leak of 0.2.
Batch normalization was performed except for the output layer.
Training and testing were implemented using NVIDIA (R) CUDA
9.0, Google (R) TensorFlow 1.7.0, and Python 3.6, and performed
with 35 epochs on a personal computer with CPU, Intel (R) Core
i7-2600 CPU 3.4 GHz; memory, 8 Gbytes; GPU, NVIDIA (R)
GeForce GTX 1080; OS, CentOS 7.4.

Human Visual Assessment
The likelihood of images having been created by the DCGAN
was evaluated visually by 5 radiologists: 2 neuroradiologists
(NRs, board-certified NRs with �15 years of experience in read-
ing MR scans) and 3 non-NRs (NNRs, including 2 body radiol-
ogists (�10 years of experience) and 1 resident (�4 years of
experience in reading MR scans). A visual evaluation of the

images (single 2D axial T1W images) was performed indepen-
dently, and the readers were blinded to the diagnosis and any
further clinical information (other than knowing that the pa-
tients had undergone imaging because of a history of cerebro-
vascular accident and that healthy volunteers had been in-
cluded). Before the investigation, the readers gained familiarity
with the software tool by reading a training set of 10 cases. In
total, 50 real and created images were randomly selected from
the data set. The number of created images in the provided data
set randomly varied from 40% to 60%, and thus, the readers did
not necessarily read the exact same MR images. To evaluate the
entire data set, 1 session per reader was performed and the
authors had 10 seconds to judge each image. The conditions did
not change for any of the readers throughout the assessment.
After the images had been displayed, binary reporting (real vs.
created image) was performed visually by both interpreters.

Statistical Analysis
Most of the observations described in this feasibility study are of
a descriptive nature. Quantitative values were expressed as per-
centages, as appropriate. The true-positive (TP), false-negative
(FN), false-positive (FP), and true-negative (TN) rates were re-
corded, and the accuracy was computed as follows: (TP � TN) /
(TP � FN � FP � TN).

RESULTS
None of the investigated images was selected by an interpreter
as unknown. Of the created images, the NRs rated 45% and 71%
as real magnetic resonance imaging (MRI) images (NNRs, 24%,
40%, and 44%). In contradistinction, 44% and 70% of the real
images were rated as generated images by the NRs (NNRs, 10%,
17%, and 27%). Figure 1B displays selected artificial and ac-
quired brain MR images, which were included in the evaluations
by both interpreters. This figure is provided as an interactive
quiz, that is, figure panels identifying artificial MR images are
given in the figure legend, which enables the reader to rate the
images based on her or his own impression before viewing
the answer key.

The accuracy for all observers was as follows: NR1, 0.55;
NR2, 0.30; NNR1, 0.83; NNR2, 0.72, and NNR3, 0.64. Table 1
gives an overview about all obtained results (including TP, FN,
FP, and TN).

DISCUSSION
In the present feasibility study, we generated artificial brain MR
images using a neural network–based algorithm (DCGAN) and

Table 1. Overview of Obtained Results from All 5 Readers (2 NRs and 3 NNRs)

Reader TP FN FP TN Accuracy

NR1 56 44 45 55 0.55

NR2 30 70 71 29 0.30

NNR1 90 10 24 76 0.83

NNR2 83 17 40 60 0.72

NNR3 73 27 44 56 0.64

True-positive (TP), false-negative (FN), false-positive (FP), and true-negative (TN) rates for each reader are displayed.
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further validated the created images in a visual assessment by
readers with different levels of experience.

As technological advances or novel concepts are introduced
in the field of radiology (10-12), reader studies (eg, interobserver
agreement studies or comparison with human visual assessment
as a gold standard) are indispensable before testing a potential
clinical benefit in a real-world scenario (13, 14). Hence, if
DCGAN for the improvement of machine learning should be
applied more broadly (eg, to assist the radiologist in diagnosis by
identifying target lesions) (9), quality control studies to validate
the integrity of DCGAN-derived images should be performed. Of
note, after creating brain MR images using DCGAN, the herein
presented results show that the created artificial images may
even convince an experienced NR that he or she is looking at
real brain MR images. As shown in the created images, the GAN
technique reproduced characteristic features of brain MR im-
ages, such as distribution of gray and white matter regions and
the configuration of lateral ventricles, which appeared to mimic
real human anatomy (Figure 1B (b)). In addition, high-intensity
regions around the basal ganglia such as hemorrhage or edema
were delineated in the training images including patients status
post cerebrovascular accidents (Figure 1B (f)). Although the
structure of the neural networks used in the present study was
based on a previously reported technique with minor modifica-
tions for the matrix size of the output images (7), NRs rated 45%
and 71% of the created images as real. Some of the created
images were more obviously artificial owing to reasons that
included, but were not limited to, distortion (Figure 1B (d)),
inappropriate small spaces of the ventricles (Figure 1B (c)), or
blurring of boundaries between gray and white matter regions
(Figure 1B (h)). Nonetheless, as human assessment served as gold
standard in the present study, the GAN technique may be appli-
cable to generate artificial MR images to imitate real brain
images. As machine-based learning is seen as a “data-hungry”
technology, novel advances are needed to provide large data
sets that would otherwise be difficult to obtain through tradi-
tional collation in a database (15). In this regard, the present
quality control study shows that DCGAN can help meet the need
to generate large data sets of MR images in a high-quality
manner, such that even experienced NRs may be misled. Inter-
estingly, the NRs did not perform better than the NNRs (range of
accuracy, NRs, 0.30–0.55 vs. NNRs, 0.64–0.83). This may be
caused by the realness of the created images, by the small
sample size, or the low number of included readers. Thus, future
studies addressing this issue, preferably by indicating reasons
for the radiologist’s decisions, are definitely warranted.

Nonetheless, GAN-derived brain MR images can be made
readily applicable to be implemented to augment existing data,
which in turn may improve machine learning algorithms. Cur-
rent medical applications include simple differentiation of be-
nign vs. malignant lesions (9), but DCGAN could also potentially
be applied to more complex evaluations of multiple target le-
sions. In recent years, several reporting and data systems (RADS)
have been described for imaging of the breast (BI-RADS), thy-
roid (TI-RADS), prostate (PI-RADS, PSMA-RADS), lung (LUNG-
RADS), neuroendocrine tumors (SSTR-RADS), or liver (LI-
RADS) (10, 11, 16-21). Those in-depth RADS-based evaluations
can communicate important information to treating clinicians,
provide a framework for understanding indeterminate findings,
and allow for standardized data to be collected from large
clinical trials. However, many types of lesions that might be
classifiable by such a system are rare and would not be encoun-
tered to the extent that an effective machine learning algorithm
could be trained from real images (10-12, 14, 21), indicating the
need for effective data augmentation to automate RADS report-
ing. Other applications include augmentation of brain MRI for
extremely rare pediatric genetic disorders, for example, the
Hutchinson–Gilford progeria syndrome (prevalence, 1 in 18
million) or the Aicardi syndrome (1 in 557,000), which may
provide both radiologists and machine learning algorithms with
brain MR images for training purposes (22-25).

This feasibility study has several limitations: future studies
generating 3-dimensional MR brain images, which include a
larger data set with more interpreting radiologists with different
levels of experience, are needed. Additionally, obvious limita-
tions in the created images (eg, distortion) have to be addressed.
Moreover, the feasibility of this technique should be tested in
different imaging modalities, such as PET, or even hybrid tech-
niques such as PET/MRI. In addition, the reader’s confidence,
preferably on a 5-point Likert scale, and reasons for false neg-
atives and false positives should be assessed in future studies
(26). Moreover, the number of created images in the provided
data set randomly varied from 40% to 60%, and thus, the readers
may have read cases with slightly different levels of difficulty.
Future studies may also always provide the same data set for
every reader.

In the present quality control study, DCGAN-created brain
MR images were able to convince NRs that they were viewing
true images instead of artificial brain MR images. Thus, DCGAN
may be nearing readiness to be implemented for synthetic data
augmentation for data-hungry technologies, such as supervised
machine learning, which, in turn, can pave the way to incorpo-
rate AI in even highly complex medical imaging cases.
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