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Chapter 1

Introduction

Femtosecond laser technology has enabled us to follow atomic motion in real time [1, 2]
and to control molecular processes [3–9] with tailored femtosecond laser pulses [3, 10–13],
leading to the development of femtochemistry. The vibrational periods of atoms in molecules,
which reflect the intramolecular atomic dynamics, lie in the range of tens to hundreds of
femtoseconds. Laser pulses with durations of this order of magnitude can therefore efficiently
measure and control molecular dynamics.

However, the natural time scale of electrons falls into the sub-femtosecond or attosecond
regime. Important electronic processes include charge transfer after excitation or atomic
inner-shell transitions. In order to explore electronic motion in real time as well as to con-
trol electronic dynamics, it is therefore desirable to develop new light sources with energies
in the XUV region and pulse durations of the order of attoseconds to be able to directly access
core-level electrons easily with one-photon transitions and with laboratory-scale experimental
setups.

State-of-the-art femtosecond laser systems are usually based on Ti:sapphire technology, im-
plying an operational laser wavelength of 800 nm in the near infrared, limiting the shortest
attainable laser pulse duration to about 2.6 fs (one complete oscillation cycle), almost reached
by recent experiments [14]. For shorter pulse durations in the sub-femtosecond regime, shorter
wavelengths have to be used. The energetic scale of core electronic transitions also necessitate
photons in the XUV.

Several techniques can be used to reach this wavelength range. Laser-produced plasmas (LPP)
[15–17] are created by the interaction of a high-intensity laser pulse with high-density mate-
rials, leading to the emission of both bremsstrahlung and characteristic line radiation. This
radiation has durations on the sub-picosecond to femtosecond scale and is intrinsically syn-
chronized to the external laser source that generated the plasma. As a drawback, the radiation
is incoherent and is emitted into a 4π solid angle, so that only a small fraction of the generated
light can be used.

This problem is resolved in undulator-based free-electron lasers (FEL) [18], where the build-
up of the x-ray pulses is coherent, leading to much higher fluxes in the forward direction.
Photons at 12.7 eV from the TTF-FEL at DESY have already been used to examine the multiple
ionization of atom clusters [19]. Recently, the operation of the free-electron laser at 32 nm has
been demonstrated [20].

To perform the far-reaching step towards attosecond laser pulse production and application
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(labeled ”the transition from femtochemistry to attophysics” by Silberberg [21]), a different ap-
proach is needed. Based on highly nonlinear effects accessible with high-power femtosecond
laser systems, this can be realized by the generation of high-order harmonics of the driving
laser [22–24], leading to coherent emission in the soft-x-ray range.

Since the invention of the laser in 1960 by Theodore Maiman [25], attainable laser pulse du-
rations have decreased from several hundreds of microseconds in this Ruby laser down to
less than ten femtoseconds at very high peak powers and intensities in modern femtosecond
Ti:Sapphire laser systems [26]. This allows the use of nonlinear optical techniques to convert
existing laser light frequencies to different frequencies where standard light sources with the
desired properties (e.g. wavelength, pulse duration, intensity) do not exist. The first applica-
tion of the red Ruby laser at 694.3 nm successfully produced blue 347.2 nm radiation through
the process of second-harmonic generation [27]. When a strong electric field (as from this
pulsed laser) is applied to a medium, the polarization in the medium exhibits contributions
not only at the original frequency (linear response) but terms of second, third, or higher order
in the driving electric field appear, resulting in the generation of light at the corresponding
integer multiples of the frequency of the incident light.

Further advances in femtosecond laser technology do not only allow for these low-order non-
linear processes (second-harmonic generation, third-harmonic generation (THG), optical para-
metric amplification (OPA), stimulated Raman scattering (SRS)), but they make it possible to
exploit the highly nonlinear response of atoms and other media in high-intensity laser fields
to generate very-high-order harmonics of the fundamental laser frequency (high-harmonic
generation). This new electromagnetic radiation at much shorter wavelengths than the orig-
inal optical pulse (at visible and short infrared wavelengths) was found inadvertently over
a decade ago when researchers used intense femtosecond laser pulses to ionize rare gases
[22–24].

High-harmonic generation provides a powerful source of ultrashort coherent radiation in the
XUV and soft-x-ray range and has the inherent advantage to be realizable on a laboratory
scale (so-called table-top systems) as opposed to large free-electron-laser facilities. Recent
experiments have proven the existence of high-harmonic-based attosecond laser pulses by
characterizing the temporal structure of the high-order harmonics [28–34]. Several groups [35–
39] have already exploited the unique temporal properties of this new radiation to examine
electronic dynamics, for example the Auger decay of inner-shell electrons. The attosecond
time domain had not been directly accessible before due to the lack of such extremely short
light pulses. It is now up to the researchers to make further use of this novel light source
which has the potential for a large number of seminal discoveries. Since the exploration
and observation of processes in turn are accompanied with the desire to control them, it is
the scope of this work to demonstrate ways to manipulate the properties of these soft-x-ray
pulses.

In general, for multi-cycle linearly polarized femtosecond laser pulses in a centrosymmetric
medium conventionally used, high harmonics are produced at each half-cycle of the electric
field of a laser pulse and are therefore emitted as light bursts with a periodicity of half a laser
period. Combined analysis of the reciprocity properties of the Fourier transform and of the
observation of the sign flip between consecutive bursts shows that the full harmonic spectrum
usually consists of the odd harmonics of the fundamental laser frequency [40, 41] (this fact
and possible exceptions will be discussed later in this work). For spectroscopic applications,
it is desirable to use a single harmonic to facilitate the interpretation of the acquired data. The
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selection of single harmonics with a grating is accompanied with a loss of time resolution due
to dispersion and with a substantial intensity reduction due to low reflectivities. As a superior
alternative, existing laser pulse shaping techniques can be used to control the high-harmonic
spectrum and engineer harmonics as needed. A number of experiments have already been
performed with the goal to influence the harmonic spectra, which will be summarized in this
work in order to cover the field of the control of high-harmonic radiation to a certain level of
completeness.

Our own results demonstrate the comprehensive control of high harmonics [42–44], including
both the enhancement and suppression of single or multiple selected harmonic orders by
temporal pulse shaping. These tunable quasi-monochromatic high-harmonic spectra allow
for time-resolved spectroscopy in the soft-x-ray region and are therefore of great importance
to a broad field of scientific disciplines. Arbitrarily shaped soft-x-ray spectra will also allow
for major modifications of the resulting harmonic pulses in the temporal domain which paves
the way towards direct attosecond pulse shaping and optimal control in the soft-x-ray domain.

In addition to the temporal shaping of the electric field of the driving laser pulse, the influ-
ence of spatial properties such as propagation effects is examined using a feedback-controlled
adaptive two-dimensional spatial light modulator. High-harmonic generation in a hollow-core
fiber can be enhanced by coupling into a single fiber mode. These results resolve the long-
standing issue about the limited controllability of high-harmonic generation in free-focusing
geometries such as gas jets [45–47] as compared to geometries where the laser is guided
[48, 49]. Complete control over the shape of the soft-x-ray spectrum has a major impact on
ultrafast energy-resolved spectroscopy and on the temporal structure of high harmonics.

This work is organized as follows: Chapter 2 lays the physical and mathematical founda-
tions of ultrashort laser pulses. Ultrashort laser pulses provide the high intensities required
for nonlinear optics. Nonlinear frequency conversion, including low-order processes (such as
second-harmonic generation), phase matching, and high-harmonic generation, is discussed in
Chapter 3. Emphasis is put on the different aspects of high harmonics, such as their unique
generation mechanism, the atomic phase, the harmonic spectrum and attosecond pulse gen-
eration, coherence, and high-harmonic phase matching. The following Chapter (Chapter 4)
summarizes our experimental progress on the control of high harmonic radiation. (Adaptive)
temporal shaping of the driving laser field allows engineering of harmonic spectra, while
our results on spatial pulse front shaping confirm the influence of propagation effects on
the emerging harmonic spectra. The contents of this Chapter is also partly contained in a
recent review article [50]. Chapter 5 describes the zoo of available techniques for the charac-
terization of both optical laser pulses and high-harmonic femtosecond and attosecond laser
pulses. It also summarizes our results towards the temporal characterization of our shaped
high harmonics using two-photon two-color ionization of noble gases. A summary of this
work including an outlook is given in Chapter 6. The Appendix contains supplementary
material such as details on the generation of high harmonics from water micro-droplets and
information on the computer program used to record the photoelectron spectra, completing
the presentation of the achievements and progress made in this dissertation.
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Chapter 2

Ultrashort light pulses: femtoseconds
and attoseconds

Contents
2.1 Chirped-pulse amplification laser system . . . . . . . . . . . . . . . . . . . . . 5

2.2 Mode locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Gaussian laser beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Mathematical description of ultrashort laser pulses . . . . . . . . . . . . . . . 15

2.5 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

High-intensity lasers emit their radiation in ultrashort pulses, that is very short bunches of a
high number of photons. When a laser runs in continuous-wave (cw) mode, the power is more
or less evenly distributed over the whole time, making the instantaneous number of available
photons very low. Bunching the photons in shorter and shorter pulses leads to the necessary
increase in intensity (Fig. 2.1). We therefore need to understand the basic properties of ultra-
short light pulses, both in the femtosecond and the attosecond regime. After a short overview
over state-of-the-art chirped-pulse amplification systems including the laser system used for
the present work, the fundamentals of mode-locking and the mathematical description of ul-
trashort laser pulses and dispersion will follow. These introductory remarks form the basis
for nonlinear processes, including low-order processes such as second-harmonic generation
(SHG) as well as high-harmonic generation (HHG).

2.1 Chirped-pulse amplification laser system

The generation of high-intensity ultrashort laser pulses [51] is based on a mode-locked laser
oscillator [52]. Pulses from this oscillator are very weak and are therefore amplified in a
regenerative or multi-pass amplifier to obtain the desired intensities. A schematic view of the
laser system used for the experiments presented in this work is displayed in Fig. 2.2. In both
the oscillator and the amplifier it relies on a titanium-doped sapphire crystal as the laser gain
medium. The maximum of the gain curve is located in the near-infrared at 800 nm, while
the absorption band is centered around 490 nm. Therefore both laser rods are pumped by
frequency-doubled pump lasers with neodymium-doped laser crystals. These crystals allow
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nanoseconds
picoseconds

femtoseconds

10 ns 10 ps 10 fs

Figure 2.1 – Schematical view (not to scale) of the high potential of ultrashort laser pulses.
For nanosecond lasers, the peak intensity is moderate. Compressing the number of available
photons into shorter bunches (picoseconds) increases the peak intensity considerably. Going
down to 10 femtoseconds which are relatively easy to achieve in state-of-the-art laser systems,
highest peak intensities can be obtained, enabling the study of high-order nonlinear processes
and of relativistic effects. In addition, the ultrashort time duration allows for the examination
of ultrafast dynamics using pump-probe techniques.

for laser operation in the infrared around 1064 nm/1054 nm so that the frequency-doubled
green photons have enough energy to be absorbed in the higher-energy absorption band.

In detail (Fig. 2.2), the Ti:sapphire oscillator (Spectra-Physics Tsunami) is pumped by a contin-
uous-wave (cw) frequency-doubled Nd:YVO4 laser (Spectra-Physics Millennia). This oscillator
emits a pulse train of short 60-fs laser pulses with a spacing given by the round-trip time in the
oscillator. This corresponds to a repetition rate of ≈ 80 MHz. The ultrashort light pulses are
generated by phase-locking a large number of longitudinal cavity modes of the laser within
the gain bandwidth of the laser medium (see Sec. 2.2). However, these pulses only have nJ
energies. While this is sufficient for a number of low-order processes, usually much higher
energies of at least hundreds of microjoules up to millijoules are required to obtain very
high intensities such as needed for high-order processes. However, direct amplification of the
pulses up to this level would result in nonlinear processes in the amplifier optics and could
cause damage. A way to circumvent this problem was proposed by Strickland and Mourou
[53] and has become a quasi-standard: Chirped-pulse amplification (CPA). The amplification of
the pulses is accomplished by using chirped pulses instead of bandwidth-limited pulses from
an oscillator.

The ultrashort pulses are first stretched in time by using some type of dispersive delay line
[54]. In our system this is realized with a grating stretcher [55]. The difference in optical
path lengths for the red and blue components due to the different diffraction angles of dif-
ferent wavelengths causes a chirp of the pulse, reducing its peak intensity considerably. The
pulses are temporally stretched while they are spatially unchirped after the complete passage
through the stretcher. Other devices for the purposes of stretching the pulse include optical
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cw pump laser
4W Nd:YVO4 532 nm

Nd:YLF Laser
1kHz, 10 W, 527 nm

Ti:sapphire oscillator
80 MHz, 300 mW, 800 nm

60 fs pulse duration

stretcher amplifier compressor

0.8 mJ, 80 fs
800 nm, 1 kHz

250 ps 1.5 mJ

amplifier damage
threshold

Figure 2.2 – Block diagram of our chirped-pulse amplification laser system. The Ti:sapphire
oscillator, pumped by a cw Nd:YVO4 pump laser at 4 W at 532 nm, produces ultrashort fem-
tosecond laser pulses at 800 nm with a repetition rate of ≈ 80 MHz given by the cavity round-
trip time. Before the amplification in a regenerative amplifier, these pulses are stretched in
time to several picoseconds to avoid nonlinear effects and damage. The Ti:sapphire crystal in
the amplifier is pumped by a green Q-switched Nd:YLF laser with a repetition rate of 1 kHz.
The seed pulses from the oscillator are coupled into the cavity with a Pockels cell locked to the
repetition rate of the pump laser. The amplified pulses are coupled out using a Pockels cell
after saturation has been reached. They are subsequently compressed back to 80 fs to yield
high-intensity ultrashort pulses.

fibers (both positive and negative chirp depending on the sign of the material dispersion,
∂2n/∂ω2), diffraction grating pairs [55], prism pairs [56, 57], and chirped mirrors [58, 59]. As
mentioned above, temporal stretching is the decisive first step in the chirped-pulse amplifi-
cation scheme and is necessary to reduce the peak intensity for the successive amplifier to
prevent damage and nonlinear responses by the optical components.

The stretched pulses are injected as seed pulses into the amplifier, in our case a Ti:sapphire
laser cavity pumped by a Q-switched intra-cavity doubled Nd:YLF laser at 527 nm (Spectra-
Physics Merlin). The pump pulse builds up a population inversion in the crystal which is then
used for the amplification of the seed pulses by stimulated emission. After ≈ 12 round-trips,
the highly amplified pulses are released from the cavity. Seed pulse injection and release of
the amplified pulse (cavity dumping) are controlled by Pockels cells [60]. The frequency of
the Q-switched pump laser and of the Pockels cells is 1 kHz, leading to a repetition rate of
1 kHz for the amplified pulses.

The highly amplified long laser pulses (about 1 ps) are then recompressed using a dispersive
delay line of the opposite sign, which in our laser is a grating compressor. The energy of
our pulses after the compressor is about 0.8 mJ which is higher by a factor of about 105 as
compared to the seed pulses from the oscillator.

We are using a so-called regenerative amplifier which consists of a real laser cavity that can be
operated in a free-running mode without being seeded by the oscillator pulses. When seeded
at a level above amplified spontaneous emission (ASE), well-defined pulses are amplified at
each pass through the laser crystal until they are coupled out.
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The use of a laser cavity has the advantage of high stability (also pointing stability) and a
good beam profile. However, for the amplification of large-bandwidth pulses such as needed
for 30 fs laser systems, a multipass amplifier with typically less than ten passes must be used
due to gain-narrowing issues.

Our amplifier system consisting of stretcher, regenerative amplifier, and compressor is a com-
mercial Spectra-Physics Spitfire Chirped Pulse Amplifier [61]. State-of-the-art laser systems
are all-solid-state systems. All laser media are solid materials, gas lasers such as the Ar+ laser
used in the past are no longer incorporated. If the pump lasers themselves are pumped by
laser diodes instead of flash lamps, we speak of a DPSS (diode-pumped solid state) system.
This very stable combination of lasers is nearly realized in our setup, only the Q-switched
pump laser for the amplifier is based on flash lamp technology.

In order to increase the attainable pulse energy and thereby the maximum peak intensities,
a home-made multipass amplifier [62] is incorporated into the housing of the regenerative
amplifier. The amplifier is set up in a 4-pass bow-tie configuration [63, 64]. The uncom-
pressed beam from the regenerative amplifier is sent through the bow-tie amplifier and is
recompressed afterwards using the original compressor. However, the pump laser for the
bow-tie amplifier (Coherent Infinity) had a repetition rate of only 100 Hz as opposed to 1 kHz
of the regenerative amplifier in order to be able to deliver the necessary pump pulse energy
of 100 mJ. This low repetition rate makes it necessary to increase integration times for experi-
mental signals (high-harmonic optical spectra, electron spectra etc.) by a factor of ten.

We therefore used the theory developed by Lowdermilk and Murray [62, Eqs. (14) and (15)]
in order to determine the pump fluence that would be needed if an available 15-mJ 1-kHz
pump laser was used. The equations calculate the total gain depending on the number of
round-trips and the small-signal gain. The small-signal gain is a function of parameters such
as the saturation fluence of the crystal, the wavelength ratio between the pump laser and the
seed laser, and of course the pump fluence. However, for seed energies of 1.3 mJ and pump
energies of 15 mJ the required pump fluence is about 2 J/cm2 which exceeds the damage
threshold of the mirrors in the bow-tie amplifier. In this case curved mirrors would have to be
used in order to create the required fluences in the laser crystal while keeping the beam radius
on the mirrors themselves at a safe level. Therefore the bow-tie amplifier was not used for the
present experiments but can be redesigned in the future to deliver higher-energy pulses.

It is, of course, desirable to obtain high peak powers directly from passively mode-locked
femtosecond oscillators to avoid external amplification stages. However, as stated above, the
major challenge in scaling these oscillators to ever-higher peak powers is to prevent nonlinear
effects in the system itself. Chirped-pulse oscillators with small net intracavity group-delay
dispersion [65] present a possible way towards reaching this goal.

2.2 Mode locking

Ti:Sapphire laser oscillators are today being used as sources for ultrashort femtosecond pulses
and as seed for high-energy chirped pulse amplification (CPA) laser systems. Ti:Sapphire has
a very broad fluorescence spectrum [66, 67], thus being capable of delivering femtosecond
pulses in mode-locked operation. At the same time the sapphire host crystal serves as the
nonlinear Kerr medium required for passive mode-locking without any additional nonlinear
elements.
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L

mirrormirror

Figure 2.3 – Longitudinal modes (standing
waves) in a cavity. The end mirrors are sepa-
rated by the distance L, determining the longest
wavelength from the condition λ/2 = L. The
frequency spacing between the possible resonator
modes is given by ∆ν = c/2nL.

Mode-locking [54, 68] works as the basic mechanism to provide femtosecond laser pulses.
Based on this idea, an early consideration by Farkas and Tóth [69] shows that, similar to mode-
locking in a femtosecond oscillator, high harmonics can be superimposed to yield attosecond
pulses. This will be discussed later in the course of this work.

In order to better understand the physics behind mode-locking [66, 67], we briefly recap the
concept of longitudinal resonator modes.

In an optical resonator such as a laser cavity electromagnetic fields can exist whose distri-
butions of amplitudes and phases reproduce themselves upon repeated reflections between
the mirrors. These electromagnetic field distributions are called resonator modes and can be
divided into transverse modes (see Sec. 2.3) and longitudinal modes.

Fig. 2.3 schematically shows these longitudinal modes in a cavity. Since the electric field must
be zero on the two mirrors we have to meet the condition

m
λ

2
= L (2.1)

where m = 1, 2, . . ., λ is the wavelength and L the length of the cavity. From Eq. (2.1) we get
the resonant frequencies of our laser:

ν = m · c
2L

(2.2)

where c is the speed of light. The frequencies given by Eq. (2.2) are the allowed frequencies
of a free-running laser when there are no wavelength-selective elements like prisms, gratings
or etalons. The difference in frequency ∆ν between two consecutive resonator modes simply
is ∆ν = ν(m + 1)− ν(m) and we get:

∆ν =
c

2L
(2.3)

In the general case when the refractive index is not equal to unity one has, of course, to
replace the cavity length L with the optical path length nL. This is, of course, the case in a
semiconductor laser.

Now assume that the laser is lasing at a large number of different frequencies simultaneously.
The electric field of a single mode l at frequency ωl can be written as

El(t) = El0 exp[iωlt + φl ] (2.4)

where El0 is its amplitude and φl is its phase. The resulting electric field is a linear superposi-
tion of these single modes. However, since the phases are totally random, the output (which
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Figure 2.4 – Output of a free-running laser in
multi-mode operation with random phases. If
the phases of the single modes are stable, the
pattern is repeated after τp but shows no dis-
tinct peaks. Pulse formation is random and has
a low contrast. 0 π 2ππ/2 3π/2
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is proportional to the square of the electric field) is a random pattern as shown in Fig. 2.4.
This is the continuous-wave (cw) output of a free-running laser with a large number of active
laser modes.

The technique of mode-locking locks all the phases such that the phase difference between two
consecutive modes has a constant value. This enables us to achieve pulses with a duration of
the order of femtoseconds.

In order to understand the mathematics behind mode-locking, consider 2n + 1 longitudinal
modes which all have the same amplitude E0 and are separated in frequency by ∆ω = 2π∆ν
(Eq. (2.3)). This is a simplification as the amplitudes of the modes normally follow a Gaussian
distribution according to the gain profile of the laser. The results of our approximation, how-
ever, are very similar to the real case and clearly show the emergence of light pulses. Let now
the phases of the longitudinal modes have a fixed relationship as mentioned above, that is

φl − φl−1 = φ (2.5)

where φ is a constant. The resulting electric field E(t) then takes the form

E(t) =
+n

∑
l=−n

E0 exp[i(ω0 + l∆ω)t + lφ]. (2.6)

This can be rewritten as
E(t) = A(t) exp(iω0t), (2.7)

where

A(t) =
+n

∑
l=−n

E0 exp[il(∆ωt + φ)]. (2.8)

If we now switch to a new time reference ∆ωt′ = ∆ωt + φ we have

A(t) =
+n

∑
l=−n

E0 exp(il∆ωt′), (2.9)

which is a geometric progression and yields

A(t′) = E0
sin[(2n + 1)∆ωt′/2]

sin(∆ωt′/2)
. (2.10)

The time-dependence of the output according to Eq. (2.10) can be seen in Fig. 2.5.
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Figure 2.5 – Output of a mode-locked laser.
The spacing τp between two pulses is given by
the round-trip time in the laser cavity. The
pulse duration ∆τp is determined by the in-
verse of the available bandwidth.

The pulse maxima occur when the denominator vanishes (as well as numerator). This is the
case for t′ = 0, ∆ωt′/2 = π etc. So the time τp between two pulses is τp = 2π/∆ω or

τp =
1

∆ν
. (2.11)

To calculate the pulse width ∆τp we have to find the first zero of A2(t′) (for t′ > 0) which is at
t′p determined by

[(2n + 1)∆ωt′p/2] = π. (2.12)

Since the pulse width ∆τp (FWHM) of A2(t′) ≈ t′p we obtain the following expression for the
pulse width of our mode-locked laser:

∆τp ≈
2π

(2n + 1)∆ω
=

1
∆νL

, (2.13)

where ∆νL = (2n + 1)∆ν is the total laser bandwidth. The frequency difference and the total
bandwidth of the laser therefore determine the separation and width of the pulses, respec-
tively.

As we will see later, the high-harmonic spectrum also consists of discrete ”modes” (harmonic
peaks) that are phase-locked [31]. The coherent superposition can be treated similarly to
mode-locking in the oscillator and creates an attosecond pulse train, which is, in first approx-
imation, a train of regularly spaced ultrashort pulses with durations on the attosecond time
scale. This was first proposed by Farkas and Tóth [69] who considered the coherent sum of
high harmonics 5 to 21 from a Nd laser (Fig. 2.6). The attosecond pulse train in Fig. 2.6 is
essentially the same result as for the locking of the longitudinal modes in the laser oscillator
in Fig. 2.5.

In order to drive the laser oscillator into mode-locking (instead of cw output) several ap-
proaches and techniques can be used. The main distinction is made between active mode-
locking, where the mode-locking element is driven by an external source (AM mode-locking,
FM mode-locking, synchronous pumping), and passive mode-locking, where the element that
induces mode-locking is not driven externally but instead exploits some nonlinear optical ef-
fects, such as the saturation of a saturable absorber or a nonlinear refractive index change in
a suitable material (fast saturable absorber, slow saturable absorber, Kerr-lens mode-locking
(KLM), additive pulse mode-locking).

Let us now review amplitude modulation (AM) mode-locking which can be achieved with
a modulator such as an acousto-optic modulator or electro-optic modulator which is placed
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Figure 2.6 – Proposal for attosecond light pulse
generation using laser induced multiple-harmonic
conversion processes in rare gases. The high har-
monics 5 to 21 of a Nd laser are coherently sum-
marized. Panel a) shows the resulting electric field
while panel b) displays the intensity of the short at-
tosecond bursts (Figure adapted from Farkas and
Tóth [69]).

E(t)

E2(t)

inside the cavity of a conventional laser or by modulating the driving current of a semicon-
ductor laser. Both methods introduce a time-varying loss at the frequency ωm. The amplitude
of the electric field of the l-th mode therefore has to be modified by a modulation factor:

El(t) = E0{1− (δ/2)[1− cos(ωmt)]} cos(ωlt + φl). (2.14)

The field amplitude is modulated from E0 to E0(1− δ). If we note that

E0(δ/2) cos(ωmt) cos(ωlt + φl) = (2.15)
= (E0δ/4){cos[(ωl + ωm)t + φl ] + cos[(ωl −ωm)t + φl ]}

we see that we obtain modulation sidebands at the frequencies ωl ± ωm. If the frequency
of the modulation is equal to the difference in frequency between two consecutive modes,
ωm = ∆ω, these sidebands coincide with the adjacent mode frequencies of the modes l + 1
and l− 1. The electric field of one mode contributes to the electric fields of the adjacent modes
and thus gives a contribution to the field equations which become coupled.

Passive mode-locking techniques can be realized by introducing an optical element with an
intensity-dependent transmission into the laser cavity. The transmission must be higher for
higher intensities (such as provided e. g. by a saturable absorber). Taking into account Fig. 2.4
we see that the time-dependent output of a free-running laser consists of a random sequence
of some sort of pulses with higher and lower intensities. Low peaks now experience higher
losses while passing through the special element with intensity-dependent transmission so
that they fall below the lasing threshold and thus do not lase any more. The peak with the
highest intensity, however, experiences the least losses and therefore the highest net gain. It
will be amplified and thus be even higher upon return after one round-trip through the cavity
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2.3 Gaussian laser beams 13

than it was. Gradually, an ultrashort pulse is shaped and gains more and more intensity until
eventually a pulse train as in Fig. 2.5 results.

Kerr-lens mode-locking as an example for passive mode-locking will be covered in Sec. 3.3.2
after the introduction of Gaussian laser beams and nonlinear optics.

2.3 Gaussian laser beams

In addition to the longitudinal resonator modes described in Sec. 2.2, the resonator modes
inside an optical resonator can be described based on the transverse distribution of the elec-
tromagnetic field. The lowest-order transverse electromagnetic mode is the fundamental mode
or TEM00 mode, with no nodes of intensity transverse to the beam axis in the vertical and hor-
izontal directions [66] and the lowest losses compared to higher-order modes. The intensity
profile has a Gaussian spatial shape with its maximum on the beam axis [70]:

I(r) ∝ I0e−
2r2

w2 (2.16)

where r is the radial coordinate and w is the radial distance at which the field amplitude
drops to 1/e of its value on the axis. The intensity accordingly drops to 1/e2 at this point. The
quantity w is therefore called the beam radius or spot size of the laser beam. The TEM00 is the
most common and most desirable mode of a laser since all the power is contained in one small
spot. Also, it can be well focused, yielding a Gaussian intensity distribution in the focus since
the profile at focus is determined through a Fourier transform of the far-field distribution.

As this Gaussian beam propagates, the width of the intensity profile changes along the axis,
although it remains Gaussian. The Gaussian beam contracts to a minimum spot size w0 at
the beam waist where the phase front is planar. The spot size w in Eq. (2.16) depends on the
propagation coordinate z in the following way [66–68, 71]:

w2(z) = w2
0

[
1 +

z2

z2
R

]
(2.17)

where z = 0 at the position of the beam waist.

The Rayleigh range zR is defined by

zR =
πw2

0n
λ

, (2.18)

where w0 is again the minimum spot size or beam waist, n is the index of refraction of the
medium, and λ is the wavelength of the beam in vacuum. Eq. (2.18) denotes the distance after
which the spot size of a beam has increased by a factor of

√
2 from the original beam waist w0.

In the literature, the Rayleigh range is sometimes replaced by the confocal parameter b given by

b =
2πw2

0n
λ

= 2zR, (2.19)

which is simply twice the Rayleigh range.

For a laser beam containing higher-order modes, the spot size w0 in Eq. (2.17) must be cor-
rected by the so-called M2 value:

wcorrected = M2 w0,TEM00. (2.20)
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14 Ultrashort light pulses: femtoseconds and attoseconds

The wave front of a Gaussian beam is spherical, which is linked to the evolution of the spotsize
w(z) (Eq. (2.17)) as a function of the distance z. The radius of curvature of this spherical
wavefront at a distance z from the waist is given by a similar expression [66, 71]:

R(z) = z
[

1 +
z2

R
z2

]
. (2.21)

As can be seen from this Equation, radius of curvature becomes infinite at the position of the
beam waist, which simply constitutes a planar wave front at focus.

The full form of the electric field of a Gaussian TEM00 mode can be derived mathematically
using Maxwell’s equations in an isotropic charge-free medium [71]. The result is

E(x, y, z) = E0
w0

w(z)
exp

{
−i[kz− η(z)]− i

kr2

2q(z)

}
=

= E0
w0

w(z)
exp

{
−i[kz− η(z)]− r2

[
1

w2(z)
+

ik
2R(z)

]} (2.22)

where

η(z) = arctan
(

z
zR

)
, (2.23)

1
q(z)

=
1

R(z)
− i

λ

πnw2(z)
. (2.24)

The parameter η(z) describes the spatial phase of a laser beam. It can be clearly seen that it
changes sign (acquires a value of π) along the propagation direction across a laser focus. This
phase is called the Gouy phase and can be measured using the phase-selective detection of
few-cycle-pulse-generated photoelectrons in a stereo-TOF arrangement [72].

The quantity q(z) is also called the Gaussian beam parameter and is a very useful quantity
to determine the propagation of Gaussian beams along their paths through media like lenses
with the help of the matrices known from the matrix formulation of geometrical optics [67, 68].

The brief summary on this matrix formulation method given in Winterfeldt [70] shall be re-
peated here since it will be used later to determine the optimal focusing conditions for the
probe beam in the high-harmonic cross-correlation experiments (Sec. 5.3). The matrix formu-
lation of geometrical optics, within the paraxial-ray approximation, is a very convenient and
powerful tool to describe the propagation of light rays through an optical system including
lenses and curved mirrors. It allows to calculate the influence of an arbitrary number of opti-
cal elements, including free space, on an input light ray by just multiplying the characteristic
matrices describing the optical elements so that a single total matrix is obtained.

A ray vector r1 at a given input plane z = z1 of an optical element can be characterized
by two parameters, namely, its radial displacement r(z1) from the z axis and its angular
displacement θ1 [67]. The output ray r2 can be described accordingly. Within the paraxial-
ray approximation angular displacements θ are assumed to be small enough to allow the
following approximation: sin θ ≈ tan θ ≈ θ. Input and output variables are then related by a
linear transformation. Setting θi ≈ (dri/dz)zi = r′i , we can write [67]

r2 = Ar1 + Br′1, (2.25a)
r′2 = Cr1 + Dr′1, (2.25b)
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where A, B, C, and D are characteristic constants of the given optical element. Eqs. (2.25) can
be recast in a matrix formulation as: [

r2
r′2

]
=
[

A B
C D

] [
r1
r′1

]
(2.26)

where the ABCD matrix completely characterizes the given optical element within the paraxial-
ray approximation.

The matrices that we will need later are the representations of a thin lens with focal length f ,[
A B
C D

]
=
[

1 0
−1/ f 1

]
, (2.27)

and the matrix for propagation of the beam through a medium of length L with an index of
refraction n, [

A B
C D

]
=
[

1 L/n
0 1

]
. (2.28)

A derivation of these matrices can be found in Svelto [67] and Siegman [68]. Eq. (2.27) of
course also holds for a concave mirror of curvature R. The value for f in Eq. (2.27) simply
has to be replaced by the well-known relation f = R/2. When several optical components are
passed all matrices have to be multiplied according to the rules of matrix multiplication.

The power of this matrix formulation lies in the fact that it is not only valid for geometrical
optics but can also be used to describe the propagation of Gaussian laser beams. By solving the
wave equation for the Gaussian beam and by comparing the solution to the transformation of
the radius of curvature by an ABCD optical system, we find that the Gaussian beam parameter
q in Eq. (2.24) transforms according to [67, 71]

qout =
qin A + B
qin C + D

(2.29)

where the parameters A, B, C, and D are just the entries of the corresponding ABCD matrix
in ray optics. Eq. (2.29) is referred to as the ABCD law of Gaussian beam optics. With it, the
propagation of a Gaussian beam through a general medium can be described completely.
Using Eq. (2.24), the input Gaussian beam parameter qin is constructed from the experimental
values win(z) and Rin(z) and is propagated with the help of Eq. (2.29). The output parameter
qout can then be decomposed into the radius of curvature R(z) and the spot size w(z) using
the real and imaginary part of q.

2.4 Mathematical description of ultrashort laser pulses

In order to understand the behavior of ultrashort light pulses in the temporal and spectral
domain, it is necessary to formulate the relation between the two domains mathematically.
They are linked through a Fourier transform, and so the modification of a laser pulse in one
of the two domains either by propagation due to dispersion or actively by pulse shaping
implies a modification of its properties in the conjugate domain as well. It is important
to introduce the concept of the amplitude and the phase of the electric field because the
generation, measurement, and shaping of ultrashort laser pulses is based on measuring and
influencing these properties.
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16 Ultrashort light pulses: femtoseconds and attoseconds

This mathematical description of ultrashort laser pulses largely follows the treatment pre-
sented in Winterfeldt [73]. The time behavior of a laser pulse at a fixed point in space includ-
ing the envelope, the oscillations and the phase can be fully described by the real electric field
E(t). The electric field in the time-domain is invariably connected with its counterpart E(ω)
in the frequency-domain via a Fourier transform:

E(ω) =
1√
2π

+∞∫
−∞

E(t) e−iωt dt. (2.30)

The inverse Fourier transform yields the original electric field in the time-domain:

E(t) =
1√
2π

+∞∫
−∞

E(ω) eiωt dω. (2.31)

These two ways of describing a laser pulse are completely equivalent. Which description to
use depends on the special problem to solve or the best accessible property in an experiment.
Note: Changing a feature in one domain affects the other domain as well.

Since E(t) is real, the following relation holds for the Fourier coefficients:

E(ω) = E∗(−ω). (2.32)

The electric field is therefore fully determined by the contributions of the positive frequencies.
We can decompose the complex quantity E(ω) into the spectral amplitude |E(ω)| and the
spectral phase Φ(ω):

E(ω) = |E(ω)| e−iΦ(ω). (2.33)

In most cases the spectral amplitude is centered about a center frequency ω0. We can expand
the phase into a Taylor series about ω0:

Φ(ω) =
∞

∑
j=0

bj

j!
(ω −ω0)j. (2.34)

The coefficient

bj =
djΦ(ω)

dω j

∣∣∣∣∣
ω=ω0

(2.35)

is denoted spectral phase coefficient of j-th order.

The zero-order coefficient b0 = Φ0 determines the location of the carrier peaks with respect to
the pulse envelope. It is therefore called absolute phase or carrier-envelope phase (CEP) [74, 75].
Usually it can be neglected for laser pulses that contain more than a few cycles since in
this case the electric field amplitude does not vary much from one cycle to the next1. At
800 nm this corresponds to pulses longer than about 10 fs. The CEP, however, has far-reaching
consequences for pulses approaching the single-cycle limit [77, 78]. In general, this phase is
not constant from pulse to pulse because the group and phase velocities differ inside the laser
cavity. The absolute phase can be stabilized using a f − 2 f interferometric setup [74, 75, 79],

1For high-harmonic generation, however, which is very sensitive to the actual value of the electric field, carrier-
envelope-phase phenomena have been observed for the long quantum path even in the multi-optical-cycle regime
[76].
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which, however, does not allow to determine its actual value. The measurement of the CEP
can be performed using photoelectron emission in gases [80] or from solid surfaces [81].

The first-order coefficient b1 = Φ′ describes a temporal shift of the laser pulse and therefore
does not give physically relevant contributions. The so-called chirp, a true phase modulation,
is obtained from the higher orders. For spectrally unchirped pulses we have bj = 0 for all j ≥ 2.

Similarly, E(t) can be expressed in terms of amplitude or temporal envelope A(t) and tempo-
ral phase Φ(t):

E(t) = A(t) eiΦ(t) (2.36)

We can now make a Taylor series expansion of the phase around t = 0,

Φ(t) =
∞

∑
j=0

aj

j!
tj (2.37)

where we have the following relations for the temporal phase coefficient:

aj =
djΦ(t)

dtj

∣∣∣∣∣
t=0

. (2.38)

The coefficient of zeroth order, a0, again describes the carrier-envelope phase (CEP) Φ0. The
first order coefficient, a1, determines the center frequency ω0. Changing this coefficient will
shift the pulse in frequency. Therefore we can write the phase as the oscillatory part of the
carrier or center frequency ω0 plus the remaining modulation ϕ(t):

Φ(t) = ω0t + ϕ(t). (2.39)

Hence we introduce the instantaneous frequency, which is given by the derivative of the phase
with respect to time:

ω(t) =
dΦ(t)

dt
= ω0 +

dϕ(t)
dt

. (2.40)

This is often expressed as
ω(t) = ω0 + δω(t) (2.41)

where

δω(t) =
d
dt

ϕ(t) (2.42)

denotes the variation of the instantaneous frequency. The instantaneous frequency is a well-
defined concept and is given by Eqs. (2.41) and (2.42) whenever the amplitude A(t) varies
slowly compared to an optical cycle. If aj = 0 for all j ≥ 2, one speaks of temporally unchirped
pulses, in analogy to the frequency domain. In this case we have ω(t) = const. The angular
frequency of a laser pulse does not change during this pulse. For dω(t)/dt = d2ϕ(t)/dt2 > 0
the instantaneous frequency increases with time, which yields an up-chirp (positive chirp, red
comes before blue) in contrast to the down-chirp (negative chirp, blue comes before red) where
we have d2 ϕ(t)/dt2 < 0. If the instantaneous frequency ω(t) changes linearly with time,

a2 6= 0 and aj = 0 ∀j > 2 (2.43)

we obtain the important special case of a linear chirp.
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In the Gaussian system of units, the intensity associated with an electric field of the form

E(t) = Ee−iω0t + c.c. (2.44)

is [60]
I(ω) =

nc
2π

|E|2 (2.45)

where n is the refractive index of the medium and c is the speed of light. I and E are measured
in the corresponding CGS units erg/cm2 and statvolts/cm, respectively. In the MKS or SI
system of units, Eq. (2.45) transforms to

I(ω) = 2ncε0|E|2 (2.46)

where ε0 is permeability of free space, and n and c are defined as above. I and E are now
measured in W/m2 and V/m, respectively.

In analogy, the intensity of ultrashort laser pulses in the time domain is usually given as the
cycle-averaged squared modulus of the electric field:

I(t) = ε0cn
1
T

∫ t+T/2

t−T/2
dt′ |E(t′)|2, (2.47)

where ε0 is the permeability of free space, c is the speed of light in vacuum, n is the index
of refraction of the material under consideration, and T is the period of the oscillation of the
carrier wave. This definition is applicable as long as the temporal variation of the envelope of
the electric field A(t) is slow compared to the carrier frequency ω (slowly-varying-envelope
approximation, SVEA). In this case, the temporal intensity is proportional to the squared
modulus of the envelope. For laser pulses approaching the single-cycle limit, this approxi-
mation breaks down as the envelope changes practically as fast as the underlying oscillations
themselves. In this regime, many processes such as laser-dressed photoionization by high-
harmonic photons (Sec. 5.1.2.5) are governed by the actual value of the electric field instead of
the (slow) evolution of the envelope.

With “simple” pulse shapes such as a Gaussian pulse or a hyperbolic secant it is reasonable to
introduce the pulse duration τp as the full width at half-maximum (FWHM) of the temporal
intensity I(t). In the same way we define the bandwidth ∆ω = 2π∆ν as full width at half-
maximum of the spectral intensity distribution I(ω). However, with pulse shapes being more
complex, a unique description can only be given by the complete relations E(t) or E(ω).

The bandwidth product is defined as τp∆ν. From the properties of the Fourier transform it
follows that the minimum value of the bandwidth product is limited by

τp∆ν ≥ cB (2.48)

with the constant cB being of an order of magnitude of 1 and depending upon pulse shape
and definition of pulse widths. The equality sign in Eq. (2.48) holds for bandwidth-limited
pulses.

To illustrate this, we provide a brief example. Consider an optical pulse with a carrier fre-
quency ω0 and a complex Gaussian envelope in the form [68]

E(t) = e−at2
ei(ω0t+bt2) = e−Γt2

eiω0t. (2.49)

Carsten Winterfeldt: Generation and control of high-harmonic radiation (Diss. Univ. of Würzburg, 2006)



2.5 Dispersion 19

The pulsewidth τp of this pulse is

τp =

√
2 ln 2

a
. (2.50)

Using the instantenous frequency in Eq. (2.40),

ω(t) =
d
dt

(ω0t + bt2) = ω0 + 2bt, (2.51)

we see that our pulse is linearly chirped, with the parameter b being a measure of the chirp.
It corresponds to a2 in Eqs. (2.38) and (2.43).

The spectrum E(ω) of the pulse (2.49) can be found using the Fourier transform (Eq. (2.30)).
The bandwidth then is

∆ν =
√

2a ln 2
π

√
1 +

(
b
a

)2

, (2.52)

yielding a time-bandwidth product of

τp∆ν =
(

2 ln 2
π

) √
1 +

(
b
a

)2

≈ 0.441×

√
1 +

(
b
a

)2

. (2.53)

Thus we see that in the case of an unchirped pulse with Gaussian pulse envelope, e.g. b = 0,
the pulse is bandwidth-limited with cB ≈ 0.441. The presence of chirp increases this time-
bandwidth product correspondingly.

Analogously, if we have a transform-limited pulse and send it through a medium to acquire
some quadratic phase due to material dispersion, the coefficient b2 will be different from zero
(the pulse is now chirped), and the pulse duration in this linearly chirped case is extended by
the factor √

1 + (4 ln 2 · b2/τ2
0 )2 (2.54)

compared to the original pulsewidth τ0 [68, 82]. Note: The pulse still displays the same
spectral width as before.

The meaning of the other components bj will be made clear in the following Section on dis-
persion.

2.5 Dispersion

The behavior of an ultrashort laser pulse when it propagates through a linear non-absorbing
dispersive medium is determined by the influence of the frequency-dependent refractive in-
dex n(ω) on the spectral phase components bj (Eq. (2.35)). The electric field given by Eq. (2.33),
propagating along the z axis, acquires an additional phase term Φdisp(ω) caused by disper-
sion:

E(ω, z) = |E(ω)| e−i[Φ(ω)+Φdisp(ω)], (2.55)

where the dispersive phase term is determined through the dependence of the wave vector
k(ω) on the refractive index [60]:

Φdisp(ω) = kdisp(ω)z = n(ω)
ω

c
z. (2.56)

Carsten Winterfeldt: Generation and control of high-harmonic radiation (Diss. Univ. of Würzburg, 2006)



20 Ultrashort light pulses: femtoseconds and attoseconds

Note: c is the speed of light in vacuum. For a non-absorbing medium, the effective speed of
light is given by the group velocity vgr(ω0) at the center frequency ω0:

vgr(ω0) =
(

dω(k)
dk

)
k=k(ω0)

=
(

dk(ω)
dω

)−1

ω=ω0

=
c[

n(ω) + ω dn(ω)
dω

]
ω=ω0

=
c

ngr(ω0)
. (2.57)

Here we have defined the sum of the refractive index plus the derivate term as the group
index ngr(ω0).

It is often adequate to describe the dependence of the dispersive phase on frequency in terms
of a truncated power series expansion. We calculate the expansion Eq. (2.35) for the acquired
phase term Φdisp(ω) around ω0:

b0 = Φdisp(ω0) = n(ω0)
ω0

c
z, (2.58a)

b1 =
dΦdisp(ω)

dω

∣∣∣∣
ω=ω0

=
z
c

[
n(ω) + ω

dn(ω)
dω

]
ω=ω0

=
z

vgr(ω0)
= τgr(ω0), (2.58b)

b2 =
d2Φdisp(ω)

dω2

∣∣∣∣
ω=ω0

=
z
c

[
2

dn(ω)
dω

+ ω
d2n(ω)

dω2

]
ω=ω0

=

=
[
− z

vgr

dvgr

dω

]
ω=ω0

=
[

dτgr

dω

]
ω=ω0

. (2.58c)

The zero-order coefficient b0 in the first equation (2.58a) does not contain any derivatives of the
refractive index and therefore does not depend on the dispersion. It describes the additional
phase acquired during the propagation through the medium, which changes the value of the
absolute phase. The first-order coefficient b1 is the reciprocal of the group velocity times the
propagation distance z and can therefore be identified as travel time through the medium
or group delay τgr. Since the envelope travels with the group velocity vgr determined by b1
whereas the phase velocity is determined by b0, this effect can be used to shift the carrier-
envelope phase of few-cycle laser pulses [80].

The second-order coefficient b2 is a measure of the dispersion of the group delay τgr as a
function of frequency and is usually referred to as group-delay dispersion (GDD). It is closely
related to the group-velocity dispersion (GVD). Higher-order terms (omitted here) are normally
kept only up to the fourth order and are called third-order dispersion (TOD) and fourth-order
dispersion (FOD), respectively. Numerical values for the group delay, the cubic, quartic, and
quintic dispersions for several common optical materials such as fused silica, BK7, sapphire,
quartz, KD∗P, or air (N2) can be found in Fittinghoff et al. [83].

Now we see that by sending an ultrashort laser pulse through a piece of glass it will – as a
first approximation – acquire a linear chirp determined by b2 = Φ′′. For optical frequencies
this material dispersion is usually positive so that red frequencies travel faster than blue ones,
resulting in an up-chirp of the laser pulse. The behavior is not desired e.g. for beamsplitters
where both the reflected and transmitted beam should remain unaffected. It is also necessary
to zero or at least minimize each order for ultrafast CPA systems. It can, however, be exploited
for our benefit, for instance, to generate long chirped pulses as required for the SPIDER
measurement (see Sec. 5.1.1.5).

A comprehensive review on the role of dispersion in ultrafast optics has been compiled by
Walmsley et al. [84].
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Nonlinear frequency conversion
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3.1 Low-order processes

The following Section provides a short introduction into the field of nonlinear optics. Al-
though parts of this have already been published in a previous work [70], the relevant sec-
tions shall briefly be presented here again to offer a somewhat self-contained theoretical back-
ground for nonlinear frequency conversion. Outlooks to high-harmonic generation have been
added where relevant. Gaussian units [60] are used for this Section.
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22 Nonlinear frequency conversion

As we have seen in the previous Chapter, ultrashort laser pulses can create very high light
intensities inside a medium. In this case, the usual assumption of a linear dependence of the
polarization P on the electric field E, P = χE with the linear electric susceptibility χ, is no
longer valid. Instead we have to expand the polarization into higher orders of the electric field
[60, 68, 85] to account for nonlinear effects:

P(E) = χ(1)E + χ(2)E2 + χ(3)E3 + . . .︸ ︷︷ ︸
PNL

, (3.1)

where PNL is the nonlinear part of the polarization P. The coefficients χ(n) of the powers in E
are called the higher-order nonlinear susceptibilities and are in general tensors of appropriate
rank. The linear susceptibility χ has been renamed χ(1) for clarity and consistency. The
polarization is no longer linear but increasingly nonlinear with higher electric fields. This
expansion can be derived using perturbation theory. Therefore it is valid only as long as the
electric field strength is small compared to the inner-atomic electric field. This is true for low-
order processes as considered in this Section. However, in the case of high-order harmonic
generation, this expression breaks down for higher orders (see Sec. 3.4).

To examine the influence of the nonlinear polarization PNL on the resulting electric field inside
a medium, we have to substitute it as the source term into the nonlinear wave equation. Based
on Maxwell’s equations (in Gaussian units) [60, 71, 86] for the displacement D, the magnetic
induction B, the electric field E, and the magnetic field H,

∇ · D = 4πρ, [Coulomb’s Law] (3.2a)
∇ · B = 0, [Absence of free magnetic poles] (3.2b)

∇× E = −1
c

∂B
∂t

, [Faraday’s Law] (3.2c)

∇× H =
4π

c
j +

1
c

∂D
∂t

, [Ampère’s Law] (3.2d)

the optical wave equation for a non-magnetic material (B = H) with no free charges (ρ = 0)
and no free currents (j = 0) can be derived by applying the curl to Eq. (3.2c), interchanging
the order of space and time derivatives on the right-hand side of the resulting equation, and
using the above side conditions [70]. By substituting the displacement D by the usual relation

D = E + 4πP, (3.3)

where the full nonlinear response is contained in P, we arrive at the optical wave equation
only in terms of the electric field E and the polarization P:

∇×∇× E +
1
c2

∂2E
∂t2 =

−4π

c2
∂2P
∂t2 . (3.4)

Decomposing both D and P in Eq. (3.3) into their linear and nonlinear parts and inserting
them into Eq. (3.4) yields the nonlinear wave equation of nonlinear optics,

∇×∇× E +
ε(1)(ω)

c2
∂2E
∂t2 =

−4π

c2
∂2PNL

∂t2 . (3.5)

where ε(1) is the generally complex and frequency-dependent linear dielectic tensor and PNL

is the nonlinear polarization containing only higher orders of the electric field (see Eq. (3.1)).
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The nonlinear polarization is thus the source term in the nonlinear wave equation and is
therefore responsible for the generation of new frequencies through its dependence on the
higher orders of the electric field.

Let us consider the simple but important case of a second-order susceptibility χ(2) only. As-
suming an electric field E = E0e−iωt we see that by substituting this expression into Eq. (3.1)
we obtain contributions to the nonlinear polarization at twice the fundamental frequency ω:

P(2)(E) = χ(2)E2 = χ(2)
(

E0e−iωt
)2

= χ(2)E2
0e−i(2ω)t. (3.6)

This process is therefore called second-harmonic generation (SHG) and was demonstrated exper-
imentally [27] shortly after the invention of the laser by Maiman [25]. Several important pieces
of information can be retrieved from Eq. (3.6). First, it shows that by exploiting the nonlinear
susceptibility of a nonlinear medium, we can indeed frequency-double the light of an intense
laser. Second, since the intensity is the square of the electric field, the second-harmonic yield
depends quadratically on the intensity of the pump beam to be frequency-doubled. Increas-
ing the fundamental intensity by a factor of two results in an increase of the second-harmonic
light by a factor of four. Finally, the second-harmonic yield of course depends on the value
of the second-order susceptibility χ(2). However, in centrosymmetric materials (i.e. crystals
having an inversion center of isotropic gases), the second-order susceptibility χ(2) vanishes:
χ(2) ≡ 0. This can be easily seen by substituting −E into Eq. (3.6) instead of E: This cor-
responds to a symmetry operation of inversion. Hence the nonlinear polarization P(2)(E)
should also change sign. However, the right-hand side of Eq. (3.6) is still equal to P(2)(E) due
to the power of two. Therefore it follows that the second-order polarization must be zero and
therefore χ(2) ≡ 0. The same is true for all even higher-order susceptibilities. This is one way
to understand why only odd harmonics are usually emitted during high-harmonic generation
in gases.

For non-vanishing even-order susceptibilities the inversion symmetry must be broken, either
by using appropriate nonlinear crystals displaying an optic axis (choice of the medium) or by
breaking the symmetry between subsequent oscillations of the electric field by using few-cycle
laser pulses. The second case will be considered later for the production of single attosecond
pulses.

Materials that display second-order susceptibility include barium titanate (BaTiO3), crystal
quartz, potassium dihydrogen phosphate (KDP), lithium niobate (LiNbO3), beta-barium bo-
rate (BBO) and lithium triborate (LBO) [85].

Essentially all optical materials (solids, liquids and gases), however, have a third-order sus-
ceptibility term:

P(3)(E) = χ(3)E3. (3.7)

The total displacement D can thus be written as

D = (1 + 4πχ(1))E + 4πχ(3)E3

= (1 + 4πχ(1) + 4πχ(3)E2)E.
(3.8)

Hence the dielectric constant ε̃ according to D = ε̃E is

ε̃ = ε1 + ε2E2 (3.9)
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and the index of refraction n =
√

ε̃ becomes intensity-dependent,

n(I(r, t)) = n0 + n2 I(r, t) (n2 > 0), (3.10)

where we have expanded the square root in terms of the electric field and retained only the
first non-constant term. n0 is the linear refractive index for low intensities, n2 is the expansion
coefficient for the linear term with respect to the intensity I and is proportional to the third-
order nonlinear susceptibility χ(3) [60]. From the expansion it follows that n2 is always greater
than zero, thus increasing the refractive index with increasing electric field. The phenomenon
is known as the Optical Kerr Effect. In the femtosecond regime it originates mainly from a
distortion of the electron cloud and therefore has a time response of the order of an electronic
orbital period (≈ 10−16 s) [87]. As this is much shorter than the pulse duration, the Kerr effect
can be regarded as instantaneous.

Since the intensity depends on both spatial and temporal coordinates, I = I(r, t), a high-
intensity laser pulse experiences a spatially and temporally modulated index of refraction.
The dependence on the radial coordinate leads to a lensing effect and can be exploited for
Kerr-lens mode locking in femtosecond oscillators. This has already been discussed in Sec. 2.2.
The temporal modulation is responsible for self-phase modulation (see Sec. 3.3).

As stated above, in general, the susceptibilities introduced in Eq. (3.1) must be written as
tensors where χ(1) becomes a second-rank tensor, χ(2) becomes a third-rank tensor, χ(3) a
fourth-rank tensor, etc. We assume that the electric field vector of the light wave can be
written as the discrete sum of a number of frequency components:

E(r, t) = ∑
n

Ene−iωnt (3.11)

where
En = E(ωn) (3.12)

and the condition
E(−ωn) = E(ωn)∗ (3.13)

holds to ensure that the electric field E(r, t) in Eq. (3.11) will be real (see Eq. (2.32)). The
summation in Eq. (3.11) is taken over both positive and negative frequencies.

Similarly, the nonlinear polarization can be written as

P(r, t) = ∑
n

P(ωn)e−iωnt. (3.14)

According to [60], we now define the components of the second-order susceptibility tensor
χ

(2)
ijk (ωn + ωm, ωn, ωm) as the constants of proportionality relating the amplitudes of the non-

linear polarization to the product of field amplitudes according to

P(2)
i (ωn + ωm) = ∑

jk
∑
nm

χ
(2)
ijk (ωn + ωm, ωn, ωm)Ej(ωn)Ek(ωm), (3.15)

where the indices ijk denote the Cartesian components of the fields. The third-order suscepti-
bility is defined in an analogous manner as

P(3)
i (ωo + ωn + ωm) = ∑

jkl
∑
mno

χ
(3)
ijkl(ωo + ωn + ωm, ωn, ωm)Ej(ωo)Ek(ωn)El(ωm). (3.16)
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Since Pi(r, t) is a physically measurable quantity just as the electric field, we have a relationship
similar to Eq. (3.13) for the positive- and negative-frequency components of the polarization
vector:

Pi(−ωn −ωm) = Pi(ωn + ωm)∗. (3.17)

The electric fields and the polarization are related through the second-order susceptibility
(Eq. (3.15)) which requires that

χ
(2)
ijk (−ωn −ωm,−ωn,−ωm) = χ

(2)
ijk (ωn + ωm, ωn, ωm)∗. (3.18)

For a detailed description of symmetry relations for the second-order nonlinear susceptibility
tensor the reader shall be referred to the book by Boyd [60]. A brief summary can be found in
Winterfeldt [70].

In practice the tensor dijk is used instead of tensor χ
(2)
ijk , the two tensors being interrelated by

the equation

dijk =
1
2

χ
(2)
ijk (3.19)

where the frequency arguments have been suppressed for simplicity. The nonlinear polariza-
tion is then given by

P(2)
i (ωn + ωm) = ∑

jk
∑
nm

2d(2)
ijk Ej(ωn)Ek(ωm). (3.20)

Depending on the configuration of the incident light fields, several low-order nonlinear fre-
quency conversion processes can be realized:

sum-frequency
generation (SFG)

χ(2) ωs = ω1 + ω2 Two frequencies ω1 and ω2 can be
added to yield the signal at ωs.

difference-frequency
generation (DFG)

χ(2) ωs = ω1 −ω2 The frequency ω2 is subtracted
from ω1 to yield the signal at ωs.

second-harmonic gen-
eration (SHG)

χ(2) ωs = 2ω1 Frequency-doubling of ω1 yields
the signal at ωs.

third-harmonic genera-
tion (THG)

χ(3) ωs = 3ω1 Frequency-tripling of ω1 yields the
signal at ωs.

third-harmonic genera-
tion through SHG +
SFG

χ(2) ωs = 2ω1 + ω1 Frequency-tripling of ω1 realized
by SHG of ω1 plus SFG with ω1.

optical parametric gen-
eration/amplification
(OPG/OPA)

χ(2) ωs = ωp −ωi The signal field at ωs is ampli-
fied from the pump photons at ωp,
leaving the idler at ωi due to en-
ergy conservation.

self-phase modulation
(SPM)

χ(3) ωs = ω1 ± (ω2 −ω3) New frequencies are generated on
either side of the spectrum as a
combination of available frequen-
cies within the original spectrum.

Since the first four processes are more or less straight forward, we will briefly discuss the last
three items. For self-phase modulation (SPM) the reader shall directy be referred to Sec. 3.3.1.
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In principle, the third-harmonic can be directly generated using a χ(3) process. It is, however,
more efficient to use two cascaded χ(2) processes since usually the second-order susceptibili-
ties are higher and the residual fundamental laser from the first SHG process that frequency-
doubles the laser can be reused for the sum-frequency process to yield the third-harmonic
signal.

Optical parametric generation (OPG) is, roughly speaking, just the opposite of sum-frequency
generation. An intense pump wave at ωp generates two new waves, the signal at ωs and the
idler at ωi, with the following relationship:

ωp = ωs + ωi or
1

λp
=

1
λs

+
1
λi

. (3.21)

The signal is initially generated from quantum fluctuations, which are also the trigger for
spontaneous emission in a laser resonator. However, since the gain curve in a laser medium
is limited to a finite bandwidth, only certain frequencies are accessible. For a lossless nonlin-
ear medium, the second-order susceptibility χ(2) is essentially independent of the frequency
[60]. Therefore we can, in principle, work with frequencies all over the transparency range
of the nonlinear medium. This is one of the reasons why optical parametric chirped-pulse
amplification (OPCPA, Dubeitis et al. [88], Ross et al. [89]) is an appropriate method to am-
plify sub-10-fs laser pulses since they have a huge bandwidth. In addition OPCPA offers a
large single-pass parametric gain, a reduced B integral, low thermal load (no energy storage),
and phase and phase-front preservation. Therefore it can be used for the phase-stable ampli-
fication of ultrashort pulses from a carrier-envelope phase-stabilized mode-locked oscillator
[90].

The signal photon created from quantum fluctuation is then amplified from the pump photons
according to Eq. (3.21), which states nothing than energy conservation. Therefore an idler at
the difference frequency arises. The amplification process continues, and the strong signal at
ωs can be extracted. Since all frequency pairs fullfilling Eq. (3.21) can be generated, the desired
wavelength must be selected by phase matching (see Sec. 3.2). By adjusted the phase-matching
conditions, the tuning can be controlled.

If a weak seed wave at ω1 or ω2 is present in addition to the strong pump at ω3 the process is
called optical parametric amplification (OPA) and can be described as

ωp,pump + ωs,weak seed → ωp,residual pump + ωs,amplified signal + ωi,idler . (3.22)

In this case, the need for quantum fluctuations is eliminiated, the conversion process becomes
more stable. The seed wave is amplified, increasing the overall output of the OPA. Another
advantage is the preservation of the spectral phase of the seed pulse, so that phase-stable
amplification of few-cycle laser pulses is possible using OPCPA (see above).

The performance of an OPA and the conversion efficiency can be calculated by solving the
coupled nonlinear wave equations for the signal field at ω1. Starting from a weak seed wave
at ω1 with intensity I1(0), the intensity of the signal after the wave has traversed a distance z
in the crystal is given by [91]:

I1(z) = I1(0) cosh2(geffz) (3.23)

where geff is the effective parametric gain coefficient. In the presence of phase mismatch (see
also Sec. 3.2)

∆k = k3 − k2 − k1 (3.24)
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the effective gain coefficient is given by [66, 91]

geff =

[
g2 −

(
1
2

∆k
)2
]1/2

(3.25)

where

g = 2
√

2π deff

√
I3(0)

λ1λ2n1n2n3ε0c
. (3.26)

Eq. (3.26) is expressed in SI/MKS units, with nj being the refractive indices at the wavelengths
λj, the permeability ε0 and the speed of light c. I3 is the intensity of the pump wave. The
quantity deff describes the effective nonlinear coefficient [60, 85]. It is a scalar quantity and
takes a simple form for the different types of interactions (oee, eoe, etc.). It comprises all the
summation operations along the polarization directions of the interacting waves. More details
can be found in the work on the optical parametric amplifier described in Winterfeldt [70].
A review on the recent progress in the development of ultrafast optical parametric amplifiers
has been compiled by Cerullo and De Silvestri [92], including the basic design principles for
different frequency ranges.

More details about the interactions between light waves in a nonlinear dielectric can in gen-
eral be found in the homonymous seminal work by Armstrong, Bloembergen, Ducuing, and
Pershan [93].

So far, only the immediate generation of frequency-converted light on a single-atom basis has
been considered. For the macroscopic build-up along the interaction path in the nonlinear
medium, however, we have to ensure that the fundamental and the generated light remain in
phase. This will be the subject of the following section.

3.2 Phase matching

In the previous Sections we have considered the origin of the nonlinear polarization based on
the nonlinear electric susceptibilities. This single-particle response represents the microscopic
source for nonlinear light frequency conversion processes. The energies of the newly gener-
ated light were simply determined by the conservation of the photon energy. However, for
a macroscopic build-up of the desired signal (conversion efficiency) and for the determina-
tion of the generated wavelength in optical parametric generation, the propagation along the
nonlinear medium is important.

3.2.1 Birefringence and phase-matching angle

Let us start with a three-wave mixing process where a frequency ω3 is generated as the sum
of two frequencies ω1 and ω2. In order for this process to be effective, the so-called phase-
matching condition has to be fulfilled:

k3 = k1 + k2 (3.27)

where the ki are the wave vectors of the respective waves. The important case of scalar
(collinear) phase matching

k3 = k1 + k2, or ω3n3 = ω2n2 + ω1n1 (3.28)
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shows that in order to satisfy the phase-matching condition we have to find a medium with a
suitable dispersion relation. The refractive indices are frequency-dependent: ni = n(ωi). As
an example consider again sum-frequency generation where we have

ω3 = 2ω1 and ω3n3 = 2ω1n1 (3.29)

where n3 = n(ω3) and n1 = n(ω1). Eq. (3.29) therefore implies that

n(ω3) = n(ω1). (3.30)

This, however, cannot be fulfilled as for the case of normal dispersion we have dn/dω > 0
and therefore n(ω3) > n(ω1). Anomalous dispersion on the other side is connected with too
many losses.

This problem can be solved using birefringent crystals. Let us consider here only uniaxial
crystals which display a special direction, the optic axis or Z axis. The plane containing the
Z axis and the wave vector k is called principal plane. A beam whose polarization is normal
to the principal plane is an ordinary beam (o-beam) whereas the polarization of an extraordinary
beam (e-beam) lies in the principal plane. The index of refraction for an ordinary wave, no,
is independent of the propagation direction. For an extraordinary wave it depends on the
propagation direction and is given by [85]

ne(θ) = no

√
1 + tan2 θ

1 + (no/ne)2 tan2 θ)
(3.31)

where θ is the polar angle between the propagation direction and the Z axis and no and ne =
ne(90◦) are the principal values of the refractive indices for the ordinary and the extraordinary
wave, respectively. They can be calculated using the Sellmeier equations [94–96]. If the wave
propagates along the Z axis, no and ne have the same value. If ne is smaller than no for
propagation directions other than the Z axis the crystal is called optically negative, otherwise
positive. Fig. 3.1 shows the dependence of the refractive index on light propagation direction z
and polarization in a negative uniaxial crystal (such as BBO). For material parameters of BBO
see e.g. Winterfeldt [70, Appendix B]. Therefore, when ordering a nonlinear optical crystal,
crystal orientation (or crystal cut) and size have to be known. The crystal cut is given by
the cut angle which is the polar angle between the optical axis and the surface normal of the
entrance surface.

When a plane light wave propagates in a uniaxial crystal, the direction of propagation of the
wave phase (wave vector k) generally does not coincide with that of the wave energy (Poynting
vector s, see [86]). The direction of s can be defined as the normal to the tangent drawn at the
point of intersection of the wave vector k with the n(θ) curve in Fig. 3.1. For an ordinary wave
the two vectors k and s are still parallel, but for an extraordinary wave the Poynting vector s
is rotated from the direction of k by the “birefringence” or “walk-off angle” ρ [85, 91] since
the extraordinary index is represented by an index ellipsoid [97]:

ρ(θ) = ± arctan

[(
no

ne

)2

tan θ

]
∓ θ, (3.32)

where the upper (lower) sign stands for a negative (positive) crystal.

Let us now return to our example of second-harmonic generation. If we use a negative crystal
and let ω3 be an extraordinary wave and ω1 an ordinary wave, Eq. (3.30) can be fulfilled. Due
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Figure 3.1 – Dependence of the refractive index on light propagation direction z and polariza-
tion in a negative uniaxial crystal.

to normal dispersion n(ω3) is greater than n(ω1) but our choice of extraordinary and ordinary
wave in the negative crystal together with the appropriate phase-matching angle makes the
two indices of refraction the same:

ne(2ω, θ) = no(ω). (3.33)

One refers to type-I phase matching when the polarization directions of the two waves with
lower frequencies ω1 and ω2 are equal and to type-II phase matching in the opposite case.

Therefore in an optical parametric amplifier the actual wavelength pair fulfilling Eq. (3.21) is
determined by the phase-matching condition. The OPA can be tuned by turning the crystal
which changes the extraordinary index of refraction according to Eq. (3.31). Usually a BBO
nonlinear crystal is used which is angle-tuned. An example of such a tuning curve which
shows the dependence of the signal and idler wavelengths upon the phase-matching angle
is displayed in Fig. 3.2. For comparison, LBO (lithium tri-borate) is temperature-tuned due
to the high temperature sensitivity of its birefringence [94]. When the pump wavelength is
fixed at λp (see Eq. (3.21)), small changes of the refractive index due to the rotation of the
crystal will change signal and idler wavelengths such that a new phase-matching condition
is achieved. In addition to pure phase-velocity matching during frequency doubling, match-
ing group velocities [98] by suitably predispersing the fundamental pulses prior to harmonic
generation allows for the use of longer nonlinear crystal, thus increasing the overall yield.

For efficient amplification of the seed wave, the phase-matching condition Eq. (3.27) has to be
fulfilled for all wavelengths present in the input spectrum. This is a demanding constraint
for very-broadband ultrashort pulses. The situation of collinear phase matching Eq. (3.28)
considered so far in principle allows only for phase matching of the central frequency (and a
small set of neighboring frequencies). However, we see from Eq. (3.27) that the wave-vector
mismatch is expressed by considering the full vectorial nature of the wave vectors. Broadband
phase matching can therefore be achieved also in a non-collinear geometry, where pump and
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Figure 3.2 – Theoretical phase-matching curve for a BBO-based type-II OPA with a 800 nm
pump. The wavelengths of the signal (solid line) and the idler (dashed line) vary as a function
of the phase-matching angle θ, while for any angle the sum of the two corresponding photon
energies is given by the pump photon energy (Figure taken from Winterfeldt [70]).

signal photons propagate along different directions at an angle Ψ. The angle Ψ introduces
an additional degree of freedom for fulfilling the phase-matching condition. Choosing the
correct angle effectively makes the projection of the group velocity of the idler the same as
that of the signal, ensuring copropagating wave fronts along the conversion medium, thus
allowing for broadband phase matching in a noncollinear optical parametric amplifier (NOPA).
More information about the NOPA present in our laboratory can be found in the work by
Sokollik [99].

The angular dispersion can also be exploited for broadband frequency doubling of few-cycle
laser pulses. In general, it is very difficult to perform second-harmonic generation for the large
bandwidths accompanied with few-cycle laser pulses. Kanai et al. [100] use the wavelength-
dependent dispersion dβ/dλ of the angle of diffraction β when such an ultrashort laser pulse
is diffracted by a grating. By matching the focusing conditions for this divergent ray bundle
into the nonlinear crystal to the dispersion of the phase-matching angle dθ/dλ, the phase-
matching condition can be fulfilled simultaneously for a large range of wavelengths, thus
enabling broadband frequency doubling.

3.2.2 Phase mismatch and coherence length

In general, the phase mismatch ∆k is defined as the difference between the wave vectors of all
input waves kin and the wave vector of the signal wave kout:

∆k = kout −∑ kin. (3.34)

This can also be viewed as momentum conservation, in addition to energy conservation dictat-
ing the frequencies of the generated new photons. Whereas the nonlinear polarizability is
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Figure 3.3 – Original plot of the intensity of second-
harmonic blue light from a pulsed red ruby laser as
function of the angle of a quartz plate [101]. The
rotation changes the optical thickness and thus the
term ∆k L. The so-called Maker fringes are clearly
visible.

only determined by the single atom response, phase matching is based on the propagation
properties of the waves.

The physical process responsible for the mismatch is the following: The dispersion in the
generating medium and of the generating geometry (refractive indices, dispersion of a hollow
fiber, Gouy phase shift across a focus in a gas jet) causes the input light field and the generated
signal radiation to propagate at different phase velocities. After a certain coherence length,

Lc =
π

∆k
, (3.35)

the accumulated phase slip is π, leading to destructive interference between the two fields.
This effect has already been observed in second-harmonic generation in crystals [101]: In this
experiment a pulsed red ruby laser was focused into a single crystal of quartz and the intensity
of the blue second-harmonic signal measured as the crystal was rotated, which corresponds
to a change in the effective path length L. The signal amplitude can be seen to oscillate as a
function of the quantity ∆kL which includes the phase mismatch ∆k and the effective length
L of the nonlinear medium (Fig. 3.3).

The effect of the so-called Maker fringes can be quantized by solving the coupled nonlinear
wave equations for the electric field of the signal Es(L) after transversing the medium of
length l which contains a term describing the contribution of the phase mismatch ∆k [60]:

Es(L) ∝
ei ∆k L − 1

i ∆k
. (3.36)

Since the intensity of the signal Is(L) is proportional to the squared modulus of the electric
field, it can be written as

Is(L) ∝ |Es(L)|2 ∝
∣∣∣ ei ∆k L − 1

∆k

∣∣∣2 =

= L2
(

ei ∆k L − 1
∆k

)(
e−i ∆k L − 1

∆k

)
= L2

sin2
(

∆k L
2

)
∆k L

2

≡ L2sinc2
(

∆k L
2

)
.

(3.37)

Note that the effect of wave vector mismatch is included entirely in this factor, accomodating
propagation effects during the nonlinear interaction along the extended medium of length L.
The single-particle response incorporating the nonlinear polarizability is contained in a pre-
factor to Eq. (3.36). As the wave-vector mismatch ∆k increases, the efficiency of the nonlinear
conversion process drops quickly as determined by the sinc function in Eq. (3.37) and reaches
zero at ∆kL/2 = π. Coherent growth of the signal is thus only given as long as the argument
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Figure 3.4 – Visualization of second-harmonic generation in a non-phase-matched (a) and
in a quasi-phase matched (b) setup. The nonlinear polarization generates a second-harmonic
signal which becomes out of phase by π after a coherence length Lc and therefore cancels with
the newly generated signal. In periodically poled crystals, the crystal orientation is switched
after one coherence length so that the nonlinear polarization changes sign and generates a
new second-harmonic signal in phase with the old signal. The new and the old signal can
now interfere constructively.

of the sinc function ∆kL/2 is smaller than π/2 which yields the condition for the coherence
length Lc as already defined in Eq. (3.35).

As shown above, this problem can be circumvented by using different polarization directions
for the two beams in a birefringent crystal [60] such that pump and signal travel at the same
speed through the ordinary and extraordinary index of refraction.

3.2.3 Quasi-phase matching

In cases where conventional phase matching is not possible, quasi-phase matching (QPM,
[93]) has proven extremely useful. A technique very often used is second-harmonic gener-
ation in periodically poled nonlinear crystals. The QPM scheme is summarized in Fig. 3.4.
The nonlinear polarization (top parts of Figs. 3.4a,b) causes the second-harmonic light field
(bottom parts) to grow. After the coherence length, however, the second-harmonic field that is
just being generated is out of phase by π with respect to the second-harmonic field generated
first due to the phase velocity walk-off in the non-phase matched case (Fig. 3.4a). The idea of
quasi-phase matching is to interrupt frequency conversion in these regions or to correct the
phase relation by replacing the crystal by its inversion image [93]. In so-called periodically
poled crystals (Fig. 3.4b) the crystal orientation is switched just after one coherence length
so that the nonlinear susceptibility χ(2) and therefore the nonlinear polarization change signs
as well. The linear optical properties remain the same, and the new second-harmonic signal
can now interfere constructively with the old signal, thereby contributing to the build-up in-
stead of canceling the old field. A periodic repetition of this switching then leads to a steady
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Figure 3.5 – Scheme for quasi-phase matching. The nonlinear process takes place in the
regions labeled “generate” while there is no nonlinear interaction in the “wait” regions (or
of course generation of a "‘negative"’ signal). Signal generation always takes place along one
coherence length Lc, so by introducing the “wait” regions we avoid destructive interference
between the “new” and the “old” signal (see text). The modulations periods for QPM with
different orders (m) are denoted by Λ.

build-up of the signal.

In general, to obtain quasi-phase matching, we can introduce some modulation

Λ =
2π m

∆k
= 2m Lc (3.38)

where m is the order of QPM as shown in Fig. 3.5. The signal is generated over the first
coherence length. Instead of generating a signal of opposite sign in the second coherence
length, we just wait, suspending signal generation. This process can be repeated periodically,
leading to a stepwise build-up over the whole interaction region. If a modulation with a
period of two coherence lengths is not possible, neither actively by periodically poling the
material or passively by just waiting, a modulation with an elongated period of Λ = 2m Lc
(where m is an odd integer) is also possible (Eq. (3.38)). In this case, during the distance
labeled “generate” in Fig. 3.5, the signal is generated twice and destroyed once, leaving a
net gain. Applications of quasi-phase matching schemes in the spatial and in the temporal
domain for high-harmonic generation will be discussed in Secs.4.3.4 and 4.4.

3.2.4 Phase matching in gases for harmonic generation

However, the solutions to achieve phase matching presented so far cannot be realized in gas
media traditionally used for high-harmonic generation. Due to their isotropy, there is no dis-
tinction between ordinary and extraordinary waves; the index of refraction is a scalar quantity
(as long as effects such as alignment are neglected). Conventional quasi-phase matching based
on switching the orientation of the nonlinear medium is therefore not possible either.

The phase mismatch for harmonic generation in gases consists of several contributions which
will be described at the appropriate place for high-harmonic generation in Sec. 3.4.4.
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3.3 Kerr and plasma effects

3.3.1 Self-phase modulation (SPM)

Another process that relies on the intensity-dependent nonlinear index of refraction n2 (Eq. (3.10))
and thereby on the third-order nonlinear susceptibility χ(3) is self-phase modulation. It can be
exploited to broaden the spectrum of an incoming laser pulse. Compression of this spectrum
allows for the shortening of the original input pulses (see Sec. 4.2.2.2).

Self-phase modulation (SPM) arises from the temporal distribution of the nonlinear phase. Let
a laser pulse with on-axis intensity distribution I(z, τ) propagate over a distance L through
a nonlinear medium whose refractive index is determined by Eq. (3.10). The accumulated
on-axis nonlinear phase distribution is then given by [60, 87]

φNL(t) = −
L∫

0

n2 I(z, t)
ω0

c
dz (3.39)

where c is the speed of light. The contribution by n0 is constant for all intensities and is
therefore omitted. Eq. (3.39) is referred to as the B integral in the description of self-focusing
[102, 103]. Assuming that the nonlinear medium is sufficiently short so that no re-shaping of
the optical pulse occurs within the medium, Eq. (3.39) reduces to

φNL(t) = −n2 I(t)
ω0

c
L. (3.40)

If we consider an incoming laser pulse of the form

E(z, t) = A(z, t)ei(k0z−ω0t) + c.c. , (3.41)

we can calculate its temporal intensity so as to obtain the nonlinear phase that the laser pulse
acquires during the propagation through the nonlinear medium. By adding the nonlinear
phase term to the exponential in Eq. (3.41), we can determine the spectral content of the
transmitted pulse by calculating its energy spectrum [60] through a Fourier transform,

S(ω) =
∣∣∣∣∫ +∞

−∞
A(t)e−iω0t−iφNL(t)eiωtdt

∣∣∣∣2 . (3.42)

Using the concept of the instantaneous frequency introduced in Section 2.4 with Eqs. (2.41)
and (2.42), we can express the consequences of SPM in terms of the frequency shifts occurring
at the leading and trailing edges of the pulse. These shifts range from the maximum Stokes
extent at the leading edge

∆ω− =
(

dφNL(t)
dt

)
min

(3.43)

to the maximum anti-Stokes extent at the trailing edge

∆ω+ =
(

dφNL(t)
dt

)
max

. (3.44)

This shows that the front of the pulse is redshifted towards lower frequencies whereas the back
is blueshifted towards higher frequencies. Thus the anti-Stokes components lag temporally
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Figure 3.6 – Self-phase modulation. Time dependence of
the intensity I(t) of an incident pulse (solid line) and the
variation in the instantaneous frequency δω(t) of the trans-
mitted pulse (dotted line) after the propagation through a
nonlinear medium with a positive nonlinear index of re-
fraction, n2.

the Stokes components. For the commonly considered pulses shapes in the form of a Gaussian
or a hyperbolic secant, Eqs. (3.43) and (3.44) yield a symmetric pulse reshaping to first order.
When the amount of broadening is small compared to the laser frequency, any distortion of
the intensity envelope in the time domain can be neglected [104].

Fig. 3.6 shows the time dependence of the incident pulse (hyperbolic secant) and the variation
in the instantaneous frequency (Eq. (2.42)) of the transmitted pulse after the propagation
through a nonlinear medium with a positive nonlinear index of refraction, n2. The spectrum
of such a self-phase-modulated laser pulse shows a pattern with periodic structures. For a
simple intensity envelope the condition ∆ω = dφNL(t)/dt for the instantaneous frequency
shift is satisfied at two points t1 and t2 [104]. The two same frequencies generated at different
times give rise to an interference pattern with a period that is determined by the difference
between t1 and t2. Therefore the spectrum is no longer smooth but displays a modulated
structure. A perfectly modulated spectrum arises only in the case of zero dispersion. If
dispersion is present, the modulation is smoothened to a certain extent.

input pulse
80 fs, 0.8 mJ

self-phase modulation
in argon

compressed output pulse

prism compressor plain end mirror

Figure 3.7 – Setup for self-phase mod-
ulation in a gas-filled hollow fiber. Ul-
trashort laser pulses from the amplifier
are focused into the argon-filled hol-
low fiber. The guiding structure allows
for maintaining a high intensity over
a long interaction length. This maxi-
mizes the product IL appearing in the
nonlinear phase term (Eq. (3.39)). The
broadened spectrum can then be re-
compressed to shorter time durations
in a prism compressor.

In our experiments, self-phase modulation is performed in a long gas-filled hollow fiber
(length 60 cm, inner diameter 250 µm). The setup is displayed in Fig. 3.7 and has several
advantages over SPM in solids or gas jets. The use of a gas as the nonlinear medium al-
lows for higher intensities because there is virtually no damage threshold. The plasma that
is created can be detrimental due to the plasma phase and defocusing but the gas medium
is not destroyed. The guiding structure allows for maintaining a high intensity over a long
interaction length. This maximizes the product IL appearing in the nonlinear phase term
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(Eq. (3.39)). In a free focus there is a trade-off between the intensity I and the effective inter-
action length determined by the confocal parameter b (Eq. (2.19)) because stronger focusing
increases the divergence of the beam, thereby limiting the interaction length. In addition, the
dispersion of the long gas column in the hollow fiber plays a decisive role for the compress-
ibility of the broadened spectrum. The prism compressor usually can compensate only for a
quadratic phase which corresponds to a linear chirp (the center part of δω(t) in Fig. 3.6). The
outer wings of δω(t) cannot be compressed. However, if dispersion is present, the pulse is
temporally stretched in time, thereby stretching the linear center part of δω(t) while leaving
the wings at approximately the same value. The prism compressor can now compensate for
the linear chirp introduced during SPM over almost the whole duration of the pulse, thereby
almost reaching the Fourier limit. The degree of insertion of the first prism into the beam path
(movement perpendicular to the prism base) determines the quadratic phase compensation of
the compressor.

The rigorous theory of strong SPM developed by Yang and Shen [105] shows an asymmetrical
broadening that is stronger on the anti-Stokes side than on the Stokes side. Asymmetrical
broadening towards the short-wavelength side also results from the spectral blueshifting [106–
108]. However, if the group-velocity dispersion in the medium is negative, the spectrum can
become narrower since the new frequencies interfere destructively in this case.

Figure 3.8 – White-light-continuum
generation and conical emission. The
white spectrum is generated in a cu-
veete of water by 800 nm, 750 µJ, 100 fs,
1 kHz repetition rate laser pulses.
The inset demonstrates the conical
emission accompanying white-light-
continuum generation in sapphire (fig-
ures taken from Winterfeldt [70]).

The spectral broadening caused by self-phase modulation can be used for white-light continuum
generation (WLC) from a laser, which in turn can be used to seed an optical parametric ampli-
fier [70]. The first observation of supercontinuum generation in glass was made by Alfano and
Shapiro [109]. As seen above, the spectral width of the white-light continuum depends on the
medium in which it is generated and on the intensity of the incident laser pulse. Moreover, the
polarization points into the same direction. The actual white-light continuum on axis is often
surrounded by a distinct concentric rainbow-like pattern, which appears red to the eye in most
cases. This phenomenon is called conical emission [110]. The emission wavelength decreases
with increasing distance from the center, a trend opposite to that expected from normal beam
diffraction. The appearance of the conical emission is attributed to contributions from several
effects, ranging from a Cerenkov-based effect [111, 112] caused by moving focal spots [113] to
the diffraction from the central plasma column [114, 115] due to the nonlinear ionization of
the medium. Fig. 3.8 shows the white spectrum from white-light-continuum generation in a
cuvette of water and the conical emission accompanying white-light-continuum generation in
sapphire (inset) from an earlier work of the author [70]. Filamentation is exploited for super-
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Figure 3.9 – Self-focussing of a Gaussian laser beam
in a Kerr medium. A low-power beam experiences
high losses from apertures present in the system.
High-power beams (ultrashort pulses) are favored
since they can pass apertures without attenuation
and survive.

continuum generation for atmospheric applications [116–118] and as a replacement for pulse
broadening and compression in hollow fibers [119–121].

3.3.2 Self-focusing

The dependence of the nonlinear refractive index on the radial coordinate (Eq. (3.10)) causes a
lensing effect for a laser beam with a Gaussian radial intensity profile (Eq. (2.16)). This effect
is therefore called self-focusing.

Let us consider Kerr-lens mode-locking, which is a passive mode-locking technique (see
Sec. 2.2) to illustrate the self-focusing effect. An intense laser beam with a Gaussian trans-
verse intensity profile (Eq. (2.16)) acquires a nonlinear phase shift upon propagating through
the Kerr medium because the refractive index is no longer a constant according to Eq. (3.10):

∆φ = k∆nL = kn2 IpL exp[−2(r/w)2]. (3.45)

This phase can be expanded into a power series

∆φ ≈ kn2 IpL[1− 2(r/w)2] (3.46)

from which we see that the Kerr medium is equivalent to a spherical lens, induced by the laser
beam itself, hence the term self-focussing. In the case of a Ti:Sapphire laser the sapphire, the
host medium for the titanium dopant atoms, serves as the Kerr medium whereas the titanium
represents the gain medium for the laser action.

Fig. 3.9 shows how this effect is exploited in practice in a Ti:Sapphire oscillator to achieve
mode-locking. The laser beam is impinging from the left on the Kerr medium. For low
intensities the phase shift acquired is constant over the width of the Kerr medium as the
refractive index is a constant. A part of the beam therefore hits the edges of a following
aperture (which includes hard apertures, mirrors, lenses etc.) and thus experiences losses. A
high-intensity beam, however, is focussed and passes the aperture without any remarkable
losses. The Kerr effect therefore favors high intensities and thus represents a suitable optical
element with an intensity-dependent transmission as required for passive mode-locking (see
Sec. 2.2).

Strong self-focusing can lead to the formation of leading to the formation of a filament (see
Sec. 3.3.1). Self-focusing is usually balanced by diffraction and defocusing due to free electrons
(plasma defocusing) created by avalanche ionization [122]. If self-focusing is not stopped,
catastrophic self-focusing occurs at powers exceeding the critical power Pcrit, leading to the
collapse of the beam in a single point [87]:

Pcrit =
3.77λ2

0
8πn0n2

, (3.47)
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where λ0 is the laser wavelength. For a wavelength of 800 nm and the material parameters for
sapphire [123],

n0 = 1.76, (3.48a)

n2 = 3.2× 10−16cm2/W, (3.48b)

the critical power is Pcrit = 1.7 MW. The reason for the appearance of a critical power instead of
a critical intensity is that the critical point is calculated as the ratio between the actual focusing
force determined by n2 I and the counter-acting mechanism of diffraction determined by the
beam cross-section. This way, the area cancels out, leaving a value for the critical power. In
practice, since strong self-focusing leads to rapid ionization of the medium, which depends
on intensity rather than on power, the actual intensity of the laser power still plays a role.
Self-focusing is only mentioned for completeness and shall therefore not be covered further.

3.3.3 Blueshift

Due to the high laser intensity, the neutral gas along the propagation path becomes rapidly
ionized. The rising density of free electrons causes the index of refraction to decrease [106,
108]:

n(z, t) =

√
1− ne(z, t)

nc
, (3.49)

where nc = mω2/4πe2 is the critical density at which the plasma frequency equals the laser
frequency so that the plasma becomes completely absorbing for electromagnetic frequencies
ω, and ne(z, t) is the momentary free-electron density. In SI units, the critical density is given
by

nc = ε0
mω2

e2 . (3.50)

According to the definition of the instantaneous frequency in Eq. (2.40), the rapidly ionized
gas experiences a frequency blueshift caused by the creation of the free-electron plasma and
the resulting decreasing index of refraction:

∆ω = −ω0

c

∫ L

0

∂n(z, t)
∂t

dz. (3.51)

Since the plasma is generated on the timescale of the femtosecond laser pulse, the decreasing
refractive index shifts the spectrum towards the blue. A rising index, caused by a decrease of
the free-electron density, would conversely result in a redshift. However, plasma recombina-
tion occurs on much longer timescales when the ultrashort laser pulse has passed.

3.3.4 Plasma defocusing

The contribution of free electrons in a plasma to the refractive index according to Eq. (3.49) is
also responsible fo plasma defocusing. For a Gaussian spatial shape of the fundamental laser
pulse this means that the lowest refractive index can be found on axis where the laser intensity
is highest, gradually increasing towards the wings in the radial profile. Such a progression of
the refractive index directly corresponds to a defocusing lens.
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3.4 High-harmonic generation

As opposed to low-order nonlinear frequency conversion processes such as second-harmonic
generation where moderate laser intensities are sufficient, high-order harmonics result from
the highly nonlinear interaction of high-intensity laser pulses with typically a gaseous medium.
The laser radiation is converted into large integer multiples of the original laser frequency
(∼ 300 [124]), which reaches down to the XUV (extreme ultraviolet) and soft-x-ray range. In
the following we will describe the high harmonics in detail, including their generation mech-
anism, their spectrum and phase, propagation properties, attosecond pulse generation and
coherence.

3.4.1 Single-atom response (three-step model)

3.4.1.1 Overview

The basic generation mechanism for high-order harmonics can be explained very successfully
using the semi-classical so-called simple-man model or three-step model by Corkum [125] and
Kulander et al. [126] as summarized in Fig. 3.10. In the strong field of ultrashort high-intensity
laser pulses, bound electrons from atoms or molecules are field-ionized close to the maximum
of the laser field (tunnel ionization [127, 128]) and set free with zero initial velocity. They are
then accelerated away from their parents ions by the same electric field and move on classical
electron trajectories in a laser field. The potential of the nucleus is neglected in the strong-field
approximation (SFA).

The average quiver energy of the electron in the laser field is called the ponderomotive energy
Up and is directly proportional to the intensity I of the driving laser and the square of the
fundamental wavelength λ:

Up =
e2 E2

L
4meω2

L
∝ Iλ2, (3.52)

where e and me are the charge and the mass of the electron, EL is the electric field strength of
the laser with the angular frequency ωL (or wavelength λ).

In the three-step model, as soon as the electric field reverses, the electrons are first decelerated
and then accelerated back towards their parents ions, depending on the instant of birth into
the continuum by ionization. Several processes can be realized when the electron returns to
the core:

High-harmonic generation (HHG) The electron can recombine with its parent ion with a
certain probability, leading to the emission of a broadband extreme-ultraviolet (XUV)
photon. One photon per electron is emitted carrying the sum of the electron’s kinetic
energy plus the ionization potential Ip.

Above-threshold ionization (ATI) Above-threshold ionization (ATI) originates from the elas-
tic scattering of the electron with the atom. The electron gains energy in excess of
its initial energy in integer multiples of the fundamental laser frequency [129–131]. A
typical photo-electron spectrum then shows a characteristic plateau of electron peaks,
separated by one fundamental photon energy and rolling off at a cut-off of 10Up [131–
133]. The position of the ATI peaks can be shifted by the ponderomotive potential or
even be suppressed, depending on the pulse duration of the driving laser [130].
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Figure 3.10 – Illustration of the three-step model for high-harmonic generation: 1. tunnel
ionization of the electron, 2. acceleration in the laser electric field, 3. recombination and emis-
sion of a high-energy photon. The energy of the emitted photon depends on the ionization
potential of the atom and on the kinetic energy of the electron upon its return to its parent
ion.

Non-sequential double ionization (NSDI) When an inelastic collision of the electron with its
parents ion occurs, another electron can be ionized so that in the end the atom is doubly
ionized (non-sequential double ionization, NSDI [134, 135]). The intensity dependence
of doubly ionized atoms follows the intensity dependence of single ionization, featuring
a characteristic knee at the saturation intensity for single ionization.

Here we are only interested in high-harmonic generation and the control of their spectral
and temporal properties. The energy of the photon that is emitted upon recollision of the
accelerated electron with the ion core is determined by the sum of the ionization potential Ip
and the momentary kinetic energy Wkin of the electron:

h̄ω = Ip + Wkin(ϕ). (3.53)

The kinetic energy depends on the phase of the electric field at the moment of ionization.
The maximum photon energy (cut-off energy) that can be achieved in this process can be
calculated using classical [125] or quantum mechanics [136] and is given by

Ecut−off = h̄ωmax = Ip + 3.17 Up (3.54)

where ω is the (angular) frequency of this photon and h̄ is Planck’s constant. The right-hand
side of Eq. (3.54) is composed of the ionization potential Ip of the atom (the binding energy
of the electron) and the maximum kinetic energy of the electron upon its return to the core:
3.17 Up. This happens for a phase of ϕ ≈ 17◦ close to the maximum of the electric field where
also the ionization rate is highest.

To visualize the laser intensities needed for a sizable ponderomotive potential Up, Eq. (3.52)
can be reformulated:

Up[eV] = 0.93× 10−13 I[Wcm−2] λ2[µm2]. (3.55)

The corresponding laser intensities of 1014 − 1015Wcm−2 are equivalent to an electric field
amplitude of EL ≈ 109Vcm−1, which is a typical value of the inner-atomic electric field.

Lower harmonic orders (long wavelenghts) can therefore still be described using perturbation
theory, predicting a decrease of harmonic intensities towards higher orders following an Iq

power law. The exponential of this power law is given by the number of the corresponding
harmonic order q. For higher orders, perturbation theory breaks down since the electric field
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of the laser approaches the inner-atomic electric field. The effective exponential p in the
modified power law Ip is smaller than q [137]. Intermediate harmonic orders show a plateau
in intensity [138] which ends at the cut-off energy for the highest harmonic orders (Fig. 3.10,
upper panel).

According to Eq. (3.52), the cut-off can be extended to higher energies by using a longer-
wavelength driving field [139]. On the other hand, the efficiency of high-harmonic generation
is increased for shorter-wavelength pulses due to the reduced wave packet spreading of the
electron during its excursion time [140]. Also, since the oscillation amplitude of the electron
in the laser field scales as λ2, the electron spends more time in the vicinity of the atom for
the shorter-wavelength driver and, therefore, has a larger probability of emitting a harmonic
photon per unit time [141].

An extension of the position of the cut-off is also possible by using a higher intensity of
the driving laser pulse, provided that the plasma effects are properly controlled. The effect
of plasma defocusing can be minimized and the plasma dispersion can be compensated for
if a guiding geometry in a hollow-core fiber is used. Such a setup has been successfully
demonstrated for high-harmonic generation [142].

However, at the same time an increased intensity poses some limits on high-harmonic gen-
eration even in the single-atom limit. In high-intensity laser fields the electrons may gain
velocities of the order of the velocity of light. In this regime magnetic-field forces become
comparable to electric-field forces. The electron follows a figure-of-eight trajectories due to
the contribution of the v × B terms induced by the strong magnetic field components which
leads to a significant motion of the electron in the propagation direction of the laser field. As
a consequence, there is less interaction with the nucleus and very few harmonics can be found
in the radiation spectrum [143]. Also, relativistic mass effects have to be taken into account,
preventing the acceleration of the electron to even higher energies necessary for the extension
of the cut-off.

3.4.1.2 Ionization

When an atom is subject to a high-intensity laser field, it can be ionized even if the energy of
the photons is smaller than the ionization potential. Multi-photon ionization (MPI) can occur
where more than one photon is used to bridge the energy gap of the ionization potential and
to free the electron. If no resonances take part in this step, the intensity dependence of the
multi-photon ionization process follows a power law where the exponential is given by the
number of photons needed.

However, when the electric field of the laser becomes comparable to the inner-atomic electric
field, the atomic Coulomb potential VC(r, t) = −e2/4πε0r is heavily deformed (Fig. 3.10,
step 1) by the potential of the strong laser field, VL(r, t) = eE(t)r, and a finite barrier is
established by the combined field through which the electron can tunnel. This is called tunnel
ionization or optical field ionization. Keldysh [127] introduced the parameter γ,

γ =

√
Ip

2Up
, (3.56)

which divides two regimes for ionization depending on the ionization potential Ip and the
ponderomotive potential Up defined in Eq. (3.52): For γ � 1, multi-photon ionization prevails
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whereas for γ � 1 tunnel ionization is the dominant process. This important parameter γ is
now called Keldysh parameter. It can also be expressed in terms of the tunneling time τtunnel in
relation to the optical laser frequency ωL or laser period TL = 2π/ωL [144]:

γ = 2τtunnelωL = 4π
τtunnel

TL
. (3.57)

The tunneling time τtunnel is the time taken for the electron to pass through the barrier and
must be short compared to the cycle TL, so that the oscillating field is effectively a static field
while tunneling occurs [145]. For very high frequencies (photon energies), if ωL is larger than
the atomic-orbital frequency ωat, there is no tunneling regime since γ does not decrease below
unity until the electric field exceeds the critical electric field for above-barrier ionization [146].
The barrier established by the combined Coulomb potential and the laser potential changes its
direction so fast that the electron does not have enough time for tunneling through this barrier
within one optical cycle. The so-called quasi-static limit for low frequencies breaks down. The
parameter γ becomes greater than unity, and tunnel ionization is suppressed. If we increase
the intensity, γ will decrease until the ionization rate reaches a maximum at γ ≈ 1, and as
the intensity increases further, the rate falls toward zero, provided that there are no strong
intermediate resonances.

In his work, Keldysh calculated an expression for the ionization rate w of a hydrogen atom in
an intense laser field of strength E which is valid in the quasi-static limit [127, Eq. (20)]:

wKeldysh =
√

6π

4
Ip

h̄

 eEh̄

m
1
2 I

3
2
p

 1
2

exp

−4
3

√
2mI

3
2
p

eEh̄

(
1−

mω2 Ip

5e2E2

) , (3.58)

where Ip is again the ionization potential, E and ω are the strength and the frequency of the
electric field, e and m are the electronic charge and mass.

A generalized extended formula (called ADK ionization rate) which is valid for arbitrary
atoms in arbitrary initial electronic configuration was later found by Ammosov, Delone, and
Krainov [128] and is given (in atomic units) by

wADK(t) = C2
n∗ l∗ flm

(
3E

π(2Ip)
3
2

) 1
2

Ip

(
2(2Ip)

3
2

E

)2n∗−|m|−1

exp

[
−

2(2Ip)
3
2

3E

]
(3.59)

with the ionization potential Ip, the electric field E(t), the quantum number of angular mo-
mentum l, and the magnetic quantum number m. The effective principal quantum number
n∗ = Z(2Ip)−1/2 and the effective orbital quantum number l∗ include the degree of ionization
Z. The parameters Cn∗ l∗ (on the order of two) and flm take into account the atomic species
and the initial electronic configuration via the mentioned quantum numbers:

Cn∗ l∗ =
22n∗

n∗Γ(n∗ + l∗ + 1)Γ(n∗ − l∗)
, (3.60)

flm =
(2l + 1)(l + |m|)!

2|m|(|m|)!(l − |m|)!
. (3.61)

Using Eq. (3.59) the density of free electrons ne(t) can be calculated as a function of time t for
an initial gas density n0:

ne(t) = n0

(
1− exp

[
−
∫ t

−∞
dt′w(E(t′))

])
. (3.62)
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A rising density of free electrons is responsible for effects such as spectral blueshifting as
already discussed in Sec. 3.3.

When the electric field strength is increased more and more, the height of the tunnel barrier
decreases until it disappears. A transition occurs from the tunnel-ionization regime to barrier-
suppressed ionization (BSI, Augst et al. [147]). The electron can escape from the nucleus. This
work by Augst et al. [147] also discusses the validity of the ADK model in more detail for a
range of intensities.

3.4.1.3 Propagation

Let us now consider the evolution of an electron wave packet after it has been created by
ionization of an atom in more detail, using classical mechanics as has first been analyzed
by Corkum [125] and Kulander et al. [126]. Only the electric field of the laser is considered,
neglecting the potential of the ion core. Based on an early study on above-threshold ionization
by Corkum et al. [148] we can assume the initial position and velocity of the electron to be
zero at the time of ionization. The quasi-free electron is accelerated in the electric field E(t) of
the laser,

ma(t) = eE(t) = E0 cos(ωt + ϕ)ex + αE0 sin(ωt + ϕ)ey, (3.63)

where m and e are the mass and the charge of the electron, a is the acceleration, E0 is the
amplitude of the electric field, ω its (angular) frequency, and ϕ the phase of the oscillation.
The prefactor α allows for arbitrary polarization. The electron motion is then given by

vx(t) =
∫ t

0

eEx(τ)
m

dτ =
eE0

mω
[sin(ωt + ϕ)− sin ϕ] =

=
eE0

mω
sin(ωt + ϕ) + vd,x, (3.64a)

x(t) =
∫ t

0
vx(τ)dτ = − eE0

mω2 cos(ωt + ϕ) + vd,xt + x0, (3.64b)

and

vy(t) = = −α
eE0

mω
cos(ωt + ϕ) + vd,y, (3.65a)

y(t) = α
eE0

mω2 sin(ωt + ϕ) + vd,yt + y0. (3.65b)

The constant velocity vd is the drift velocity of the electron, depending on the phase of the
electric field at the instant of ionization. The electron oscillates about the position determined
by the drift velocity. The average quiver energy of this oscillation is given by the ponderomo-
tive potential Up (Eq. 3.52). Depending on the initial phase ωtb + ϕ (where tb is the instant of
birth), the electron periodically reencounters its parent ion at the origin, where it can recom-
bine and emit high-harmonic radiation. For circularly polarized light, however, the electron
trajectory never returns to the vicinity of the ion. For linearly polarized light, several trajec-
tories are possible. However, only the first two contribute significantly to harmonic radiation
since the dipole moment responsible for harmonic emission also depends on the transverse
spread of the wave function. According to Corkum [125], for a constant rate of increase of this
spread, the strength of the single atom response varies quadratically with the inverse of the
laser period. Therefore most efficient high-harmonic generation is possible with the shortest
pulses and the shortest wavelengths.
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Figure 3.11 – Different classes of electron trajectories during the propagation phase of high-
harmonic generation, plotted in the position-velocity plane: The trajectories start at the atom
located at (0, 0). Depending on the phase Φ of the electric field at the instant of ionization,
they can return to the core at position 0 with different kinetic energies, visualized by the
intersection with the velocity axis. The traces a(Φ = 45◦) and c(Φ = 3◦) correspond to the
short and long trajectory, respectively, leading to the same final energy. Class b(Φ = 17◦) is
a cut-off trajectory with the highest kinetic energy (3.17Up), d(Φ = 0◦) starts at the peak of
the electric field where most electrons are produced but returns to the core with zero kinetic
energy. Trajectory e(Φ = −45◦) never returns to its parent atom.

Fig. 3.11 shows a plot of different classes of electron trajectories during the propagation in
the electric field of the driving laser. The electrons start from the nucleus located at (0, 0).
Depending on the phase Φ of the electric field at the instant of ionization, they can return
to the core at position 0. The intersection with the velocity axis determines their final kinetic
energies at the moment of recombination. The electron along the cut-off trajectory b was ion-
ized at a phase of Φ = 17◦ and has the highest kinetic energy of 3.17Up upon its return to
the core. Electrons are most likely produced at the peak of the electric field (Φ = 0◦) but
they return to the core with zero kinetic energy (d). Most electrons, however, are produced at
unfavorable phases of the electric field and never return to the core (e). In the plateau region
of high-harmonic spectra, there are typically two electron trajectories that give dominant con-
tributions to high-harmonic emission, which interfere with each other [149]. The first short
trajectory corresponds to a short return time (a), the second long trajectory (c) has a return
time close to one period, which causes a strong intensity dependence of the phase. This can
result in strong spectral broadening, leading to an overlap of neighboring peaks [40].
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3.4.1.4 Recombination

Upon its return to the ion core, the accelerated electron can recombine to the ground state.
In the process of high-harmonic generation, the corresponding energy is released as a high-
energy photon. If the electron was at rest, this energy would just be the ionization potential Ip.
However, an additional contribution comes from the kinetic energy Wkin(ϕ) that the electron
gained in the laser field which depends on the phase ϕ of the driving electric field at the
moment of the ionization of the electron (Eq. (3.53)). The kinetic energy of the returning
electron can be calculated as a function of the phase by solving Eq. (3.64b) for x(t) = 0. The
maximum kinetic energy is obtained for a phase of ≈ 17◦. This phase value is very close
to the peak of the electric field where tunnel ionization is most efficient. This means that
most electrons are indeed born into the continuum at that time of ionization that permits the
highest photon energies. Tunnel ionization is locked to the phase of the laser pulse through
its dependence on the momentary value of the electric field (Eq. (3.59)) whereas multi-photon
ionization depends only on the cycle-average laser intensity. The kinetic energy at that phase
takes the known value of 3.17Up so that the harmonic cut-off is located at

Ecut−off = h̄ωmax = Ip + 3.17 Up (3.66)

and therefore describes the highest harmonic photon energies that can be obtained (Fig. 3.12).
This value had already been found in a numerical approximation by Krause and Kenneth
J. Schafer [150].

The semi-classical approach presented so far mixes classical and quantum arguments: first
quantum tunneling, then classical motion in the laser field, then quantum recombination.
Many important quantum effects such as quantum diffusion of wave packets or quantum in-
terferences are not taken into account. Refraining from solving the time-dependent Schrödinger
equation we will present in the following an intermediate approximate solution to the prob-
lem of harmonic generation as published by Lewenstein et al. [136]. This model allows, for
instance, to find the harmonic phase.

3.4.2 Intra-atomic phase

The phase of the harmonic emission can be determined using a quantum-mechanical formu-
lation, the so-called Lewenstein model [136, 149]. This theory rephrases the classical models by
Corkum [125] and Kulander et al. [126] in a fully quantum theory. It is valid in the single-
active-electron approximation (SAE) in a low-frequency, high-intensity limit (Up ≥ Ip), and
for high harmonics with energies greater than the ionization potential.

In atomic units, the Schrödinger equation takes the form

i
∂

∂t
|Ψ(x, t)〉 =

[
−1

2
∇2 + V(x)− E(t) · x

]
|Ψ(x, t)〉. (3.67)

The first step is the ionization from the ground state |0〉 to continuum states, labeled by the
kinetic momentum of the outgoing electron, |v〉. The expression

d(v) = 〈v|x|0〉 (3.68)

denotes the corresponding atomic dipole matrix element for this bound–free transition. The
recombination step as the inverse process is given as the complex conjugate to describe the
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transition from the continuum to the ground state:

d∗(v) = 〈0|x|v〉. (3.69)

For the following treatment, some assumptions can be made: Bound states (except the ground
state) and intermediate resonances are unimportant and can be neglected as well as the de-
pletion of the ground state. In the continuum, the electron can be treated as a free particle
moving in the electric field with no effect of the atomic potential (strong-field approximation,
SFA). Generally these asssumption are valid for a Keldysh parameter γ =

√
Ip/2Up of less

than one, that is in the tunneling regime.

The time-dependent wave function can then be expanded as

|Ψ(t)〉 = eiIpt
(

a(t)|0〉+
∫

d3v b(v, t)|v〉
)

, (3.70)

where a(t) u 1 describes the ground-state amplitude, and b(v, t) the amplitudes of the con-
tinuum states. After solving the Schrödinger equation (Eq. 3.67) for the amplitudes b(v, t), we
can calculate the time-dependent dipole moment µ(t):

µ(t) = 〈Ψ(t)|x|Ψ(t)〉. (3.71)

Neglecting the contributions from continuum-continuum transitions and neglecting the de-
pletion of the ground state by setting a(t) = 1, we get the final expression for the dipole
moment along an arbitrary direction n,

µn(t) = i
∫ t

0
dt′
∫

d3 p× (3.72)

× [n · d∗(p− A(t))]︸ ︷︷ ︸
recombination

× [E(t′) · d(p− A(t′))]︸ ︷︷ ︸
ionization

× exp[−iS(p, t, t′)]︸ ︷︷ ︸
propagation

+c.c.,

where the quantity S denotes the quasi-classical action that the electron experiences during
its excursion:

S(p, t, t′) =
∫ t

t′
dt′′
(

1
2
[p− A(t′′)]2 + Ip

)
. (3.73)

In the above equations we have introduced the canonical momentum

p = v + A(t), (3.74)

where A(t) is the vector potential of the electric field:

E(t) = −∂A
∂t

. (3.75)

Thus the electronic wave function acquires a phase factor equal to exp[−iS(p, t, t′)] during
propagation. This is a very important and far-reaching result of the Lewenstein model not
gained from the classical model. However, the three steps of the classical model can be clearly
seen in Eq. (3.72): ionization of the electron from the ground state at time t′, propagation
in the continuum during the time intervall t − t′, and transition from the continuum to the
ground state (recombination) at time t.
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Since the quasi-classical action (Eq. (3.73)) varies much faster than the other factors in Eq. (3.72),
it is not necessary to solve the four-dimensional integral for the dipole moment but we can
limit the evaluation of the integral over p to the stationary points of the classical action,

∇pS(p, t, t′) = 0. (3.76)

Applying the same technique to evaluate the temporal integrals, we arrive at the following
saddle-point equations:

∇pS(p, t, t′) = x(t)− x(t′) = 0, (3.77a)
∂S(p, t, t′)

∂t′
=

1
2
[p− A(t′)]2 + Ip = 0, (3.77b)

∂S(p, t, t′)
∂t

=
1
2
[p− A(t)]2︸ ︷︷ ︸

Ekin

− 1
2
[p− A(t′)]2︸ ︷︷ ︸

Ip

= 2q + 1, (3.77c)

where all energies are expressed in terms of the photon energy, and the right-hand side of
Eq. (3.77c) denotes the energy of the (2q + 1)-th harmonic. Eq. (3.77a) indicates that the
only relevant electron trajectories are those where the electron leaves the atom at time t′ and
returns at time t. Eq. (3.77b) describes energy conservation in the process of tunneling, where
the electron must have a negative kinetic energy at t′, leading to a complex value of t′. Its
imaginary part can then be assigned the tunneling time. Eq. (3.77c) finally is the energy
conservation law at the moment of recombination.

The solution of these equations yields the cut-off energy of the harmonic spectra at

h̄ωcut−off = 3.17Up + Ip · f
(

Ip

Up

)
. (3.78)

The factor f
(

Ip
Up

)
accounts for the fact that the electron cannot appear at the origin at tun-

neling and gains an additional kinetic energy on its way towards the origin. However, the
electron diffusion limits this additional effect. The value of f (x) is 1.32 for small x and de-
creases slowly for larger x.

Referring to Feynman’s path integral formalism, Salières et al. [151] expressed the probabil-
ity amplitude for high-harmonic generation as coherent superposition of contributions of all
possible spatio-temporal paths that connect the initial and the final state of the system, the so-
called quantum orbits. The weight of each path is a complex number whose phase is equal to
the classical action S along this path. In general, only the first two quantum orbits with travel
times of less than one ore two periods of the laser field contribute noticably. For harmonics
in the cut-off region, there is only one relevant trajectory whereas for plateau harmonics two
trajectories are needed for an accurate description. The implications of the spatio-temporal
separation of high harmonic radiation into two quantum path components will be discussed
in Sec. 3.4.6 on the coherence properties of high harmonics. A more detailed analysis of the
frequency chirp of harmonic (femtosecond) pulses and attosecond pulses will be presented in
Chap. 5.

Coherent control of harmonic generation is thus possible by the laser control over classical
electron trajectories.
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Figure 3.12 – Typical high-harmonic spectrum. The temporal periodicity of high-harmonic
emission with half the laser oscillation period leads to a harmonic spacing of twice the fun-
damental frequency. The spectrum can be divided into three parts: the perturbative regime at
low orders, the plateau for intermediate orders, and the cut-off at the highest orders.
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Figure 3.13 – Experimental high-harmonic spectrum obtained in a neon gas jet with a 80-fs
laser pulse. Notice the existence of odd harmonics only and the decay of the intensity towards
the cut-off at short wavelength. The decrease at longer wavelenghts is due to the zirconium
filter used to block the fundamental radiation as well as low harmonics.

3.4.3 Harmonic spectrum

Since the generation of high-harmonic radiation is repeated every half-cycle of the electric
field of the laser pulse, their spectrum consists of the odd harmonics of the fundamental laser
frequency (Fig. 3.12 (schematical view) and Fig. 3.13 (experiment)). Each half-cycle of the
driving laser pulse gives rise to a short burst of XUV radiation, leading to the emission of
a sub-femtosecond XUV pulse (see Sec. 5). Therefore a driving pulse consisting of multiple
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cycles produces a train of sub-femtosecond (attosecond) pulses, separated in time by half the
oscillation period of the driving laser (attosecond pulse train, APT [28, 31, 152]). This period-
icity of T/2 (where T is the laser period) is responsible for the observation of the harmonic
spacing of 2ω. This behavior can simply be understood from the reciprocity of the Fourier
transform, through which the electric field in the time domain and the spectral amplitudes are
linked. Also, since consecutive bursts result from consecutive collisions from alternating di-
rections, the corresponding spectral components have the same spectral amplitude but differ
in sign. This results in destructive spectral interference for even-order harmonics (ω = 2mωL),
while constructive interference occurs for odd harmonics (ω = (2m + 1)ωL).

However, if the symmetry is broken, even-order harmonics can be generated. The symmetry
can be broken both on the level of the laser pulses and on the level of the medium properties.
For laser pulse durations approaching the single-cycle regime [51], even-order harmonics can
be generated near the cut-off until the high-energy part of the harmonic spectrum merges into
a continuum [124, 153]. This results from a loss of the strict periodicity of the electric field
oscillations within a laser pulse for pulse durations of less than 10 fs. In this case, the pulses
consist of only a few optical cycles, breaking the symmetry between consecutive oscillations.

The inversion symmetry between the upper and lower half-cycle, which yields the spectrum
of odd harmonics only, can also be broken by adding the second harmonic of the driving
laser pulse [41]. In this case, the shape and strength of the electric field in consecutive half-
cycles differ beyond the simple sign change that occurs in a one color field, allowing for
the production of attosecond pulse trains with only one pulse per infrared cycle with stable
carrier-envelope phase. For a one-color driver, there is a π phase flip from pulse to pulse in
the harmonic attosecond pulse train. The addition of a weak second-harmonic field can also
be exploited to generate single attosecond pulse in the multicycle-driver regime where usually
multiple attosecond pulses are produced [154].

The same effect of creating a difference between consecutive half-cycles can be realized by
using oriented asymmetric molecules [155, 156]. The anisotropy of such a medium makes the
contributions from the upper and the lower half-cycle of the laser oscillations different (even
for multi-cycle laser pulses), thus allowing the generation of even-order harmonics. Alignment
[157] alone is not sufficient because the symmetry is not broken.

A major step towards the realization of time-resolved soft-x-ray spectroscopy of biological
samples was the extension of the harmonic cut-off into the so-called water window (4.4 −
2.3 nm) where water absorbs less than carbon [124, 158–160]. This breakthrough was only
possible by the use of these ultrashort driver pulses.

Due to the dependence of the harmonic phases on intensity, a blue shift of the harmonic peaks
can occur. Since this effect is more pronounced for the longer trajectories because they spend
more time in the electric field the different amounts of blue shift between the different electron
trajectories can even lead to a harmonic line splitting [161].

3.4.4 Propagation and phase matching

The three-step model describes high-harmonic generation in the single-atom response by cal-
culating atomic dipole moments from the electron dynamics, leading to the emission of a
high-energy photon. It does not completely describe the harmonic-generation process in a
medium. The discrete nature of the spectrum as presented in Sec. 3.4.3 is a result of the peri-
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odicity of the laser electric field. The final height and shape of the spectrum, however, are also
determined by phase matching. General phase-matching considerations and phase-matching
for low-order processes such as second-harmonic generation in solids can be found in Sec. 3.2.

Let us now consider the various contributions to the phase mismatch in gases where con-
ventional phase-matching techniques do not apply or are very hard to implement. The wave
vector k for a light wave transversing a gaseous medium can be written as follows [142]

k =

2π

λ
+

2πNa n(λ)
λ

−Nereλ,

↑ ↑ ↑
vacuum term neutral gas plasma dispersion

(3.79)

where Na is the density of neutral atoms in the medium (taking into account ionization losses),
n(λ) is the linear refractive index per unit neutral atom density (minus unity) at the wave-
length λ, Ne is the density of free electrons, and re is the classical electron radius. The terms
on the right-hand side in Eq. (3.79) represent the dispersion of the vacuum, the material, and
the plasma. Note that the contribution from the free electrons in the plasma is negative.

As we will see later, it is very advantageous to generate high-order harmonics in a gas-filled
hollow fiber. Inside a hollow capillary, a superposition of fiber modes [162] is excited, making
the pressure dependence of high-harmonic generation and the spatial beam profile of the
generated radiation more complex. In general, the phase-mismatch ∆k between the generating
laser field and the field of the high harmonics includes a dependence of the phase-mismatch
∆k = ∆k(P, unm) on the pressure P of the medium (the gas density) and the excited fiber
modes unm.

In hollow fibers, we have another negative contribution given by the waveguide geometry,
and the total wave vector can be written as

k =
2π

λ
+

2πNa n(λ)
λ

− Nereλ −u2
nm λ

4πa2︸ ︷︷ ︸
fiber dispersion

, (3.80)

where (in addition to the quantities defined above) unm is the mth root of the Bessel function
Jn−1(z) for the waveguide (for the lowest order, u11 = 2.405), and a is the inner radius of the
hollow fiber.

In a phase-matched high-harmonic-generation process where the phase velocities of funda-
mental and harmonic beam are equal the phase mismatch for the qth harmonic order

∆kq = qklaser − kxray
!= 0 (3.81)

has to be equal to zero.

Substituting Eq. (3.80) in Eq. (3.81) and using λxray = λ/q (where λ is the laser wavelength)
we have

∆kq =
2πq

λ
(1− η) P ∆n− P η Natm re λ

[
q2 − 1

q

]
− u2

nmλ

4πa2

[
q2 − 1

q

]
, (3.82)

where we have introduced the pressure P (in atm), the ionization fraction η, the atomic num-
ber density at atmospheric pressure, Natm, and the difference between the refractive indices of
the neutral gas at atmospheric pressure, ∆n = natm

laser − natm
xray. Since the highest harmonic con-

version efficiency is obstand for ∆k = 0 (phase matching), it is directly evident from Eq. (3.82)
that there are several ’control knobs’ available:
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Figure 3.14 – Pressure and mode dependence of high-harmonic generation in hollow fibers.
a) The excitation of one fiber mode shows the shift in maximum harmonic emission towards
higher energies for increasing pressure. b) If two fiber modes are excited, two distinct local
maxima can be seen, corresponding to phase-matching of the EH11 and EH12 fiber mode,
respectively.

1. If we consider the case where only one fiber mode contributes to high-harmonic gener-
ation, there is still the possibility to adjust the remaining parameters to achieve phase-
matching. It has been shown [142, 163] that the high-harmonic yield displays a max-
imum at a certain gas pressure P (neutral atom density), which corresponds to the
phase-matched case ∆k = 0 based on the pressure dependence of ∆k. If we plot our
experimental harmonic spectra versus the gas pressure in the capillary (Fig. 3.14a), we
clearly see a shift of maximum harmonic emission towards higher frequencies for in-
creasing pressure. Thus for a suitably chosen pressure, a certain range of harmonics is
preferred.

2. Since the highest harmonic conversion efficiency is obtained for ∆k = 0 (phase-matching),
it is directly evident from Eq. (3.82) that there are several solutions of ∆k = 0, one for
each of the different fiber modes, i. e. different values of unm. Phase-matching can there-
fore be achieved by exciting a suitable fiber mode which determines the value of unm.
Experimentally, if more than one fiber mode is excited, we should see several local max-
ima in the pressure dependence of phase-matching since the fiber-mode parameter unm
assumes discrete values for different fiber modes. Fig. 3.14b was recorded in a regime in
which two fiber modes were excited by the fundamental laser pulses. In this Figure one
can clearly distinguish two separate local maxima of the harmonic yield as a function of
the pressure. This experimental result matches very well with a theoretical calculation
[43] based on Eq. (3.85).

Sometimes it is convenient to express Eq. (3.82) in terms of frequencies, the fundamental laser
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frequency ω and the plasma frequency ωp, defined as

ωp =

√
Nee2

mε0
, (3.83)

where Ne is again the electron density, e and m are the electron charge and mass, respectively,
and ε0 is the permeability of free space. The classical electron radius is given as

re =
1

4πε0

e2

mc2 , (3.84)

so that we arrive at

∆k = Na[n(ω)− n(qω)]
ω

c︸ ︷︷ ︸
material dispersion

+
ω2

p

2cω

[
1− q2

q

]
︸ ︷︷ ︸
plasma dispersion

+
u2

nm c
2a2ω

[
1− q2

q

]
︸ ︷︷ ︸

waveguide dispersion

, (3.85)

where Na is the density of neutral atoms in the medium, n(ω) and n(qω) are the refractive
indices per unit neutral atom density at the (angular) fundamental frequency ω and at the
harmonic frequency qω, respectively, q is the harmonic order, c is the vacuum speed of light,
ωp is the plasma frequency, unl is the lth root of the Bessel function Jn−1(z), and a is the inner
radius of the hollow fiber. Real and imaginary parts of the refractive index in the (soft-)x-ray
region are compiled in Henke et al. [164].

Another (yet technically sophisticated) ’knob’ for dispersion control in a hollow-core fiber
was proposed by Christov et al. [165]. By introducing thin glass plates with holes for the
x-ray beam to pass into the waveguide, a periodic phase delay can be established for the
fundamental, resulting in better phase matching.

If not a fiber is used for high-harmonic generation, but instead the driving laser is focused
into the conversion medium, the Gouy phase η(z) as defined by Eq. (2.23) has to be taken into
account. The geometric contribution to the wavevector by the hollow fiber has to be replaced
by the contribution caused by the Gouy phase which depends on the Rayleigh range zR (or
equally on the confocal parameter b):

kGouy =
dη(z)

dz
=

d
dz

arctan
(

z
zR

)
≈ 1

zR

(
=

2
b

)
, (3.86)

where the last approximation is valid close to the focus (z � zR). The additional phase
mismatch originating from the Gouy phase shift undergone by a Gaussian beam across the
focus is thus given as [22]

∆kGouy = (q− 1)
2
b

. (3.87)

For very low gas densities, this term is actually the prevailing contribution to the total phase
mismatch ∆k [166]. However, in the presence of strong ionization, the phase relationship is
strongly perturbed [167].

The contribution from the Gouy phase can be controlled by placing the focus at different po-
sitions with respect to the gas jet. This change in the phase-matching conditions allows the
selection of the short or long electron quantum path in high-harmonic generation, influenc-
ing the spectral features of the emitted harmonic radiation [168]. The axial variation of the
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laser intensity leads to different phase-matching conditions for the contributions from differ-
ent quantum paths. Depending on the geometry, ionization, and pressure conditions, phase
matching can enhance one class of the contributing trajectories at the expense of the others:
When the laser is focused before the generating medium, phase matching on the optical axis
is efficient and the spatial and spectral harmonics are regular. For a focus at the center of
the nonlinear medium, the harmonic yield is low due to poor phase matching. When the
laser focus is positioned after the medium, efficient phase matching is only ensured for off-
axis emission, leading to a high conversion efficiency but to distorted spatial and temporal
profiles.

3.4.5 Attosecond pulse generation

One of the most promising aspects of high-harmonic generation is the ability to produce sin-
gle pulses or pulse trains on the attosecond time scale. An early consideration by Farkas
and Tóth [69] shows that, similar to mode-locking in a femtosecond oscillator [54, 68], high
harmonics can be superimposed to yield attosecond pulses (Fig. 2.6), provided a proper se-
lection and phase relationship of the harmonics. The regular spacing of the harmonics in
the spectral domain leads to the formation of attosecond pulse trains [28]. Phase-locking be-
tween five consecutive harmonics generated in argon was demonstrated by Paul et al. [31].
Isolated attosecond pulses with durations of 650 as could be generated by spectrally filtering
the continuous cut-off region of few-cycle laser pulses [32].

Consecutive experimental results have examined the existence of high-harmonic-based at-
tosecond pulses and pulse trains in more detail [33, 152, 169] and have described successful
first experiments where the unique properties of this new radiation can be exploited to fol-
low electronic dynamics in real time [36–38]. Recent review on attosecond physics have been
compiled by Agostini and DiMauro [34] and Scrinzi et al. [39].

The time-structure of single attosecond pulses and attosecond pulse trains depends on the
so-called femto chirp and atto chirp and will be discussed in more detail in Sec. 5.2.

3.4.6 Coherence

The first direct measurements of the temporal coherence of high-order harmonics were re-
ported by Bellini et al. [170] and complemented by Lyngå et al. [171]. In the reported work,
the authors measured the fringe visibility of the interference pattern in the far field of two
spatially separated sources of harmonic radiation that were delayed in time with respect to
each other. Whereas in general the coherence times are comparable to the expected pulse du-
rations, the interference pattern exhibits two well separated spatial regions (concentric rings)
with significantly different coherence times for some of the harmonics: the intense inner part
has a long coherence time while the outer region displays a much shorter coherence time.
From the semiclassical interpretation of high-harmonic generation (Section 3.4.1) there are ac-
tually two main trajectories that the electron can follow during the excursion time between
ionization and recombination. The first (short) trajectory has a phase that does not vary much
with laser intensity [149]. Consequently, the emitted radiation has a long coherence time and
is very collimated. The dipole phase of the second (long) trajectory, however, varies rapidly
with laser intensity [172], leading to a strong curvature of the phase front (due to the depen-
dence of the intensity on the radial coordinate) and therefore to a strongly divergent angular
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emission [168]. This radiation has a very short coherence time and a broad bandwidth since
the harmonic pulse is strongly chirped because of the time-dependence of the intensity [173].
Due to the spatially differing behavior of the radiation originating from the two trajectories,
it is possible to select only the short quantum path by placing an appropriate aperture in the
harmonic beam, resulting in spatially and temporally highly coherent radiation.

The spatial coherence of the high-harmonic light can be measured through the double-pinhole
(or double-slit) interference technique. The depth of modulation of the interference fringes af-
ter passing a beam through a pinhole pair is a direct measure for the degree of coherence
across the spatial wavefront phase profile. If the phase difference between the two sampled
points is constant, the fringe visibility will be unity whereas it is less than one if random
phase variations exist. Bartels et al. [174] used such a two-pinhole setup to verify full spatial
coherence of high-harmonic radiation generated in a phase-matched hollow-fiber geometry
[142]. From a classical viewpoint, high-harmonic generation driven by coherent light is an
inherently coherent process. However, the degree of coherence is degraded by mechanisms
such as plasma refraction and the time-varying index of refraction. Also, as mentioned above,
at least two trajectories with different phase behavior contribute to high-harmonic generation.
However, the quasi-plane wave interaction in a hollow fiber and the long propagation dis-
tance select a single trajectory, which improves both the temporal and the spatial coherence
including the beam mode quality.

Measurements by Lee et al. [175] confirmed the excellent spatial coherence of high-order
harmonics from a gas-filled hollow fiber and used point-diffraction interferometry to show
that the wave-front phase of a harmonic beam can be considered as a spherical wave within a
phase error of less than λ/15.

The first measurement of the spatial coherence of high-order harmonic radiation in the soft-
x-ray region was performed by Ditmire et al. [176]. They executed a series of Young’s two-
slit experiments to find that the harmonics (generated in a gas plume) exhibit good fringe
visibility and high spatial coherence. At high intensities the coherence is degraded due to the
rapid production of free electrons, which imparts a rapidly varying phase on the harmonic,
lowering the degree of coherence.

Based on the experiments by Bellini et al. [170], Gaarde et al. [172] presented a spatio-temporal
analysis of high harmonic radiation, demonstrating the separation into two quantum path
components. Based on the numerical integration of the time-dependent Schrödinger equation,
they determined the dipole moment µq(I) of the qth harmonic as a function of the intensity I
of the laser field:

µq(I) = A(I) exp[iΦ(I)]. (3.88)

The dipole moment consists of several contributions with phases of the form

Φk(r, z, t) = −αk I(r, z, t), (3.89)

representing the different quantum paths, labeled by the index k. I(r, z, t) is the space- and
time-dependent intensity of the driving laser field, and αk is the corresponding proportional-
ity constant or slope of the phase function. By performing the equivalent of a time-frequency
analysis using a window function for a range of intensities, the authors determined the ”spec-
trum” of αk. The result showed that the separation into different quantum path components
is indeed justified. As representative values, they found the following numbers for the αk for
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the 15th harmonic in argon:

α1 ≈ 1
cm2

W
, α2 ≈ 27

cm2

W
. (3.90)

The value for the long trajectory is much larger than for the short trajectory. Similar values are
found in a study by Balcou et al. [177]. Gaarde [178] calculated time-frequency representations
of high-order harmonics for a more detailed analysis of the different chirps present.

The variation in time of the intensity, I(t), causes a frequency chirp ∆ωk(t) = −∂Φk(t)/∂t,
leading to spectral broadening. In the same way, the radial variation of the intensity, I(r),
introduces a curvature of the phase front, causing the beam to diverge, depending on the
values of α and I. We can estimate the influence on both the curvature of the phase front and
the chirp for both components. Using the values for αk from Eq. (3.90) we find the ratios of the
spectral widths ∆ωk and of the divergence angles θk (in a geometrical-optics approximation)
as

∆ω2

∆ω1
≈ θ2

θ1
≈ 27. (3.91)

Since the spectrum of the long trajectory is dominated by the dipole chirp whereas the spectral
width of the short trajectory is determined by its Fourier-transform-limited broadening, this
ratio reduces to values between 10 and 20 but is still very large for the two quantum paths. As
stated above, macroscopic separation of the two fields with a suitable aperture or introducing
proper phase-matching conditions allows for the selection of one or the other contribution.

As we will see in Chapter 5, the atomic dipole phase (Eq. (3.89)) also depends on the harmonic
order q. The α coefficients are closely related to the time the electrons spend in the contin-
uum before recombination (return time or emission time, see Fig. 5.11). Differently from the
determination of the atomic dipole phase based on the analysis of the harmonic frequency
chirp (which is discussed in detail in Ch. 5), Corsi et al. [179] very recently employed the first
direct interferometric measurement and observed the shift of the xuv interference fringes as a
function of the intensity difference between two time-delayed fundamental pulses driving the
harmonic generation process. By recording the phase shift between the fringes from the short
and the long quantum path (spatially distinct emission zones), they were able to recover the
different phase behavior of these two quantum paths as a function of harmonic order.

3.4.7 Challenges and goals

The goal of femtosecond or attosecond time-resolved XUV or soft-x-ray spectroscopy poses
several challenges as summarized in Fig. 3.15: For instance, in order to be able to investigate
the time-dependent shifts of absorption edges [180] the harmonic cut-off, which determines
the highest energies possible, must be extended to shorter wavelengths [181–184]; for any kind
of nonlinear optics in the XUV range [32, 152, 185–189] a large number of harmonic photons
is desirable, therefore the efficiency of HHG should still be increased [190] to make the whole
range of methods of pump-probe technology available to the XUV domain; moreover, for
both spectroscopic applications and the optimization of attosecond pulse durations [33, 191]
the selection of single harmonics or ranges of consecutive harmonics is necessary.

In order to increase the count rates in photoelectron spectroscopy with high-harmonic radia-
tion, a higher repetition rate of the harmonics is desirable. While it is very hard to increase the
repetition rate of the driving laser due to limitations in the pump energies of the pump lasers
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Figure 3.15 – Designed high-harmonic spectra with the challenges for further HHG experi-
ments: extension of the cut-off energy, increase in the efficiency of the high-harmonic conver-
sion process, and selection of single harmonics or range of harmonics.

in amplification stages, two groups [192, 193] have recently demonstrated high-harmonic gen-
eration directly from the oscillator. They succeeded in converting the frequency comb gen-
erated in a femtosecond oscillator cavity into the Extreme Ultraviolet (XUV) with intracavity
high-harmonic generation at the full oscillator repetition rate by using an external build-up
cavity with a xenon gas jet included in this cavity.

In this work we concentrate on the generation of engineered coherent soft-x-ray spectra where
harmonics can be selected or suppressed, based on adaptive temporal and spatial shaping of
the driving fundamental laser pulses. We first discuss several recent experiments treated in the
literature on this topic. Examples from our own research are then used to illustrate progress
and possibilities in this field.
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Controlling high-harmonic generation
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4.1 Adaptive control

In order to shape high harmonics according to user-defined targets, it is very convenient
and effective to employ adaptive control schemes. This provides a powerful method to steer
quantum-mechanical processes by applying an optimal light field [194]. Numerous imple-
mentations in different areas have been reported in recent years, among others the control
of chemical reactions [5, 6], molecular population transfer [4, 7–9], atomic multiphoton ab-
sorption [195], and high-harmonic generation [48]. The main experimental tool for achieving
these goals is spectral phase shaping of femtosecond laser pulses [11], in combination with
evolutionary-algorithm-based experimental feedback loops [3, 12, 13].

Likewise, we expect soft-x-ray pulse shaping to be a very efficient tool in our efforts towards
the control of electronic motion. However, a direct transfer of pulse-shaping techniques devel-
oped in the optical wavelength range to the soft-x-ray regime is not feasible. Existing devices
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require either spectral dispersion (e.g. liquid-crystal [10] or acousto-optical [196] spatial light
modulators or deformable mirrors [197]) or extensive passage through material (the acousto-
optical programmable dispersive filter ”Dazzler” [198]), which precludes their applicability
in the soft-x-ray spectral range due to small diffraction efficiencies for spectral dispersion and
high absorption coefficients. It appears more desirable to directly generate a shaped soft-x-
ray pulse, for instance by shaping the fundamental laser pulse prior to the conversion process
than after its production. By shaping the ultra-short driving laser pulse it is possible to control
the high-harmonic spectrum in a comprehensive way, far beyond earlier results on the control
of particular spectral properties such as conversion efficiency and line width [48, 49] or the
blueshift of harmonics [45].

Due to the temporally coherent nature of the soft-x-ray light generated by high-harmonic
generation, spectral shaping and engineering on the other hand means the ability to shape the
emerging trains of attosecond pulses or single attosecond pulses. These results open the road
towards adaptive control in the soft-x-ray spectral range.

4.1.1 Working principle of adaptive control

Based on the complete Hamiltonian, the energy landscape and the dynamics of a quantum
system can be calculated theoretically. In principle, the control of this quantum system is
possible by applying the correct electric field (e. g. of a laser). The great difficulty is to deter-
mine the exact electric field that is needed to steer a quantum-mechanical reaction towards
the desired output. Derived from simple resonance problems, researchers tried to selectively
break a chemical bond by tuning the incident light field to the vibrational frequency of the
selected bond. However, other than was expected, in most cases the weakest bond broke due
to intramolecular vibrational redistribution (IVR). The vibrational energy coupled into the
system by the light field quickly redistributes over the whole system through the coupling of
the single oscillators given by the chemical bonds. A more complex electric field is therefore
required to exactly cleave a desired chemical bond.

The problem of finding this electric field can be solved by applying different pulse shapes in a
closed-loop optimization setup as proposed by Judson and Rabitz [3], which we also used for
the adaptive control of high-harmonic generation in this work. Laser pulses are automatically
tailored in a temporal or spatial pulse shaper according to user-defined optimization goals.

The basic working principle is depicted in Fig. 4.1. It relies on an evolutionary algorithm [12]
that selects the optimal electric field. In brief, the incoming laser pulses are shaped in some
sort of pulse shaper. The modulated laser pulses (in Fig. 4.1 a temporally shaped laser pulse
is shown) are then used to perform the experiment in the quantum system. The experimental
signal is analyzed and a fitness is assigned to the corresponding laser pulse. Utilizing this
ranking, the evolutionary algorithm can automatically find the optimum laser pulse. The
first experimental implementations by Yelin et al. [13] and Baumert et al. [12] automatically
compressed chirped femtosecond laser pulses, without first characterizing the pulses.

In our setups to shape the high-harmonic spectra, the closed-loop optimization iteratively
shapes the laser pulse either temporally with a deformable mirror (Section 4.2) or spatially
using a two-dimensional liquid-crystal-display-based spatial light modulator (Section 4.3).
The obtained spectrum is measured with a CCD camera. The applied algorithm is based on
the evolutionary principle of ‘survival of the fittest’ as described elsewhere [12]. A fitness
measure for each shaped laser pulse is derived from the high-harmonic spectrum. This mea-
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Figure 4.1 – Working principle of adaptive control. The incoming laser pulse is first shaped
in a laser pulse shaper and is then used to perform the experiment in the quantum system.
The experimental signal is analyzed and a fitness is assigned to the corresponding laser pulse.
Utilizing this ranking, the evolutionary algorithm can automatically and iteratively find the
optimum laser pulse shape.

sure, also termed fitness function, maps the shape of the complete high-harmonic spectrum
onto a single number. In this way it is easily possible to rank the performance of different
laser pulse shapes. Each pulse shape termed an individual is characterized by a number of
genes, e.g. the nineteen high-voltage levels applied to the deformable mirror electrodes. These
voltage parameters defining the pulse shape can therefore be regarded as the genetic elements
of an individual laser pulse. Fifty different individuals represent a generation. The first gen-
eration consists of individuals each possessing randomly chosen genes (voltages) with values
throughout the suitable voltage range. After applying those pulses in the harmonic gener-
ation experiment, their fitness is determined and the selection of the fittest is carried out.
These best-performing individuals are kept for the next generation. Other members of the
next generation are produced by cross-over (two individuals of the old generation each pass
on a part of their genetic elements to their ‘offspring’) or mutation (some genetic elements
are randomly changed) until a population size of fifty is reached again. This procedure is
repeated for a number of generations, until the fitness of the fittest individual has converged.
To obtain the desired result, the definition of an appropriate fitness function is crucial.

The application of evolutionary algorithms is not limited to the adaptive control of ultra-
short large-bandwidth laser pulses. We successfully implemented this idea in a time-of-flight
electron spectrometer [199]. Photoelectrons generated in the interaction region of the laser
or high-harmonic pulses with a medium fly through a drift tube onto a multi-channel-plate-
based detector. In order to increase the resolution and the throughput of the spectrometer, six
electrostatic lens plates are built in before the drift tube. The voltages applied to the lens plate
for focusing can be adjusted manually or fully automatically using an evolutionary algorithm
that uses the total number of electron in a region of interest as feedback signal.
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4.1.2 Control schemes

Laser pulses optimized by adaptive control are usually difficult to interpret since contributions
may appear that turn out to be useless but which complicate the pulse shape. If analysis is
possible, it turns out that the control achieved is related to one of the following basic ideas or
mechanisms of single-parameter control:

pump–dump control This idea was developed by Tannor, Kosloff, and Rice [200] based on a
first proposal by Tannor and Rice [201] and considers the temporal evolution of molecu-
lar wave packets. This wave packet is formed on an excited-state potential energy surface
by a multiphoton process from the ground-state potential energy surface |0〉. The wave
packet born at time t0 will start to evolve on the excited-state potential energy surface.
If a second ultrashort laser pulse is applied after the time t1 so that the wave packet can
be dumped through the Franck–Condon window onto the desired target state surface,
the reaction can be steered into target state |1〉. For a different time t2, target state |2〉
will be reached. Controlling the delay

∆t = t1,2 − t0 (4.1)

between two ultrashort laser pulses thus allows to selectively generate different chemical
products. Since the wave-packet evolution on potential-energy surfaces is controlled, at
least two dimensions are needed as provided by tri-atomic molecules.

ω–3ω scheme This technique proposed by Brumer and Shapiro [202] directly exploits the
concept of wave packet interference. A resonant laser at the frequency ω resonantly
couples some initial state |0〉 to a final state |1〉 in a one-photon transition. If a second
phase-locked laser is incident at 3ω, the wave packets in the final state created by the
two lasers can interfere constructively or destructively, depending on the relative phase

∆Φ = Φω −Φ3ω (4.2)

between the two light fields. Selective population transfer can thus be achieved by using
the coherence properties of lasers.

These single-parameter control schemes form the basis for the understanding of the possibility
of quantum control, although in many cases a more complex shape of the electric field is
required.

Since a two-photon process is the minimum for interfering pathways and since the control of
the appropriate time delay effectively corresponds to choosing the right relative phase between
the different pathways, each of the above schemes can be reformulated in the other domain
since they are essentially equivalent [203].

In some cases open-loop control based on analytical calculations is still possible, wonderfully
demonstrated by the group of Silberberg [195].

Another control scheme is based on the stimulated rapid adiabatic passage (STIRAP) and was
pioneered by the group of Bergmann [204, 205]. It relies on the coupling of energy levels in
a so-called Λ scheme to completely transfer population from the lowest level to the second-
lowest level without population the third (higher) level.
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Although the effective control mechanisms for high-harmonic spectral engineering remain
unclear, it can be derived from the laser-phase controlled electron quantum paths in Fig. 3.11

and the research on the coherence properties of high harmonics summarized in Sec. 3.4.6 that
it must be possible to influence high-harmonic generation by using coherent-control setups.
Therefore the following Section focuses on the control of high-harmonic generation by mod-
ifying the temporal properties of the driving laser pulses. As we will describe later in this
work, temporal pulse shaping only is not sufficient for high-level harmonic spectral control
but is a major ingredient.

4.2 Control of high-harmonic generation through temporal laser pulse
shaping

Control of high-harmonic radiation should be possible in two fundamental ways, either by
controlling the temporal evolution of the driving electric field or by controlling spatial proper-
ties in the broadest sense, including medium engineering and geometric effects. The temporal
aspect will be described in this Section while spatial aspects can be found in Sec. 4.3.

The temporal evolution of the electric field E(t) of an ultrashort laser pulse can be summarized
as

E(t) = Eenv(t)p(t)ei(ωt+ϕ(t)+ϕ0) (4.3)

where Eenv(t) is the envelope of the pulse effectively determining the pulse duration and pulse
intensity, p(t) is the polarization axis which can vary during the duration of the pulse, ω is the
central frequency and can be modified e.g. in multicolor experiments, ϕ(t) is the time-varying
phase and determines the chirp of the laser pulse, and ϕ0 is the carrier-envelope phase which
we have written here explicitly since it plays an important role for few-cycle laser pulses and
the generation of single attosecond pulses.

Here we describe a number of experiments that systematically adjusted one of these param-
eters manually in order to control high-harmonic radiation. This is also called open-loop
control since no feedback from the experiment is used to close the optimization loop. As the
number of possible configurations is extremely high, it is very convenient to use an evolution-
ary algorithm as presented in Sec. 4.1 to quickly find an optimum setting.

4.2.1 Open-loop control

Several attempts have been made to influence harmonic spectra and the corresponding har-
monic light pulses. As explained in Section 3.4, the same intense laser field is responsible for
the ionization of the medium and the subsequent acceleration of the electrons so that they
can gain kinetic energy. In order to replace the initial effective multi-photon ionization by a
linear single-photon step and to have control over the initial phase of the electron with re-
spect to the accelerating laser field, it was first proposed and calculated by Schafer et al. [206]
and experimentally verified by the group of Ursula Keller [207] to separate these two steps.
First, a regularly spaced attosecond pulse train (APT) consisting of high-photon-energy har-
monic pulses is generated in a hollow fiber filled with xenon gas. This attosecond pulse train
is then directed into a helium gas jet, together with a strong fundamental laser pulse. The
high-energy photon from the APT can now ionize the gas efficiently in a direct one-photon
transition while the second fundamental laser field is responsible for the acceleration of the
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electron. The timing between these two fields can be controlled, allowing for quantum-path
selection on the single-atom level, decoupling the ionization step from the strong-field dynam-
ics. The linear ionization removes the randomness and inefficiency of tunnel ionization. Also,
the strong laser field now contributes wherever harmonic photons from the APT are present,
thereby exploiting this volume effect for high-harmonic generation to increase the harmonic
yield.

Another implication of the fact that usually the same laser field is employed for the ionization
and acceleration of the electrons is the limit that is placed on the highest obtainable photon
energy (cut-off energy). The actual laser intensity I in Eq. (3.52) has to be substituted by the
saturation intensity Is [158, 159], which the atoms can be exposed to before the ground state
is depleted, i. e. the ensemble is fully ionized. For high-intensity pulses with longer pulse
durations, the medium is depleted before the high peak intensity could be reached. This
limit can be circumvented for the shortest driving pulses since the rise time of such pulses is
so fast that ionization is effectively suppressed. The laser field can now exceed the barrier-
suppression limit well before the ground state is depleted. Therefore electrons are born into
a very strong electric field and can acquire higher kinetic energies than before, which extends
the cut-off to shorter wavelengths. The cut-off energy no longer depends on the intensity of
the laser pulse alone, but on the pulse duration as well [158, Eq. 2]. This dependence was
used by Chang et al. [158, 26 fs pulses] and Schnürer et al. [159, sub-10-fs pulses] to extend
high-harmonic generation into the water window.

Lee et al. [208] have shown that the high-harmonic generation process can be controlled coher-
ently using chirped femtosecond laser pulses to produce sharp and strong harmonic spectra.
For an efficient coherent control, a proper laser chirp condition must be chosen to suppress
the harmonic chirp that broadens high harmonics and reduces their peak intensities. This
chirp depends on the current laser intensity used. Chang et al. [209] have demonstrated theo-
retically and experimentally that for positively chirped pump pulses, the individual harmonic
peaks are well defined and discrete, while for negatively chirped pump pulses, the harmonic
output spectra merge into a continuum. Adjusting the laser chirp and/or energy also allows
for continuous wavelength tuning of the high-order harmonics, covering the entire spectral
region between two consecutive harmonics [210, 211].

A detailed analysis [212] including a cross correlation of the generated harmonics and a the-
oretical calculation [213] showed that a chirp on the pump pulse generating the harmonics is
transferred to the qth harmonic as q times the fundamental chirp, verifying an earlier analysis
by Chang et al. [209]. For bandwidth-limited pulses, the harmonics are negatively chirped due
to the atomic dipole phase, so by adding a positive chirp on the pump pulse, the harmonic
chirp can be compensated.

Brandi et al. [214] have reported the generation of tunable high-harmonic lines of very high
spectral purity, using spectrally narrow, long laser pulses with durations of 300 ps.

Work done by a French-Swedish collaboration [215] demonstrates amplitude and phase con-
trol of attosecond light pulses by introducing a thin aluminum filter in the beam path of
the harmonic pulses. High-harmonic pulses are intrinsically chirped due to the intensity de-
pendence of the atomic phase (phase accumulated during excursion on the quantum paths
[149, 151]). For the short quantum path which can be selected by placing a hard aperture in
the fundamental laser beam prior to harmonic generation this chirp is positive. This results
in temporally long harmonic pulses. This phase can be compensated by the negative mate-
rial dispersion introduced by the aluminum filter in the XUV wavelength range. A train of
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almost Fourier-transform-limited pulses with pulse durations of 170 attoseconds can be ob-
tained, characterized with RABBITT [33, 216, 217] (see also Section 5.1). The same group [33]
proposed to use a ’plasma compressor’ for the synchronization of high harmonic since the
free electrons in a plasma also induce the required negative group velocity dispersion. The
use of material dispersion was suggested by the group of Nam [218] to obtain single sub-50-
attosecond pulses. The use of extreme-ultraviolet chirped mirrors has also been proposed as
a way to compres attosecond harmonic pulses [219].

Another way to control high-harmonic generation is offered by controlling the time-dependent
polarization state of the electric field during the driving laser pulse duration. The process of
high-harmonic generation is very sensitive to the ellipticity of the driving light field [220, 221].
Only for linear polarization can the electron come back to its parent ion to recombine and
emit harmonic photons. A time-varying polarization can be realized by combining two short
perpendicularly polarized pulses with slightly different center frequencies [222, 223], by po-
larization gating using two waveplates or other birefringent optics [224–226] or by direct po-
larization pulse shaping of the fundamental driving laser field [227] using a polarization pulse
shaper. Polarization pulse shaping has recently been introduced by Brixner and Gerber [228]
and has already been demonstrated e.g. for the two-photon ionization of potassium dimers
[229]. Calculations [230] have shown that the chirp of a single attosecond pulse generated
by polarization-gating is positive and its value is almost the same as that when a linearly
polarized laser is used. Cross correlation measurements [231] have indicated that the dura-
tion of the xuv emission is indeed limited by the ellipticity gate, rather than by the harmonic
generation process.

The wavelengths of harmonics generated in a gas-filled hollow capillary can be tuned by
changing the average laser pulse intensity or by varying the quadratic spectral phase of the
laser pulse [232]. This can be attributed to an ionization-induced blueshift inside the capillary.

4.2.2 Tailoring high-harmonic spectra by adaptive temporal pulse shaping (closed-
loop control)

In addition to the open-loop results reported above, the implementation of a closed-loop
scheme represents a very powerful method to comprehensively shape high-harmonic spectra,
beyond the extent possible by simply modeling the high-harmonic generation process.

4.2.2.1 Adaptive optimizations in gas jets

There are two main geometries that can be employed to generate high harmonics in a gas
target: generation in a gas jet or in a hollow gas-filled capillary (Fig. 4.2). A simple setup
consists of the intense laser pulses being focused into a gas jet as shown in Fig. 4.2a. The
XUV radiation produced in the gas jet by the highly nonlinear interaction of the laser pulses
with the gas atoms is separated from the fundamental field by a suitable filter, e. g. by a thin
300 nm aluminum filter for harmonics in the energy range from 20-70 eV and is subsequently
detected by a soft-x-ray spectrometer.

Earlier experiments performed in gas jets successfully tuned the harmonic wavelengths via
blue-shift [45]. The 27th harmonic at 30 nm could be shifted to 31.16 nm (Fig. 4.3). The authors
attribute this shift to ionization effects. They also attempted to enhance single harmonics
relative to adjacent peaks. However, the selective control of single harmonics using such a
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Figure 4.2 – Geometries for high-harmonic generation in atomic or molecular gaseous media.
a) Generation in a free-focusing geometry (gas jet), selectivity of single harmonics is not possi-
ble. b) Generation inside a gas-filled hollow capillary, selectivity of different single harmonics
can be achieved with a high contrast with respect to neighboring orders.

Figure 4.3 – Tuning of harmonic wavelenghts in a
gas jet. The harmonic orders can be wavelength-
shifted in an adaptive optimization. However, the
selective control of single harmonics is not possible
(figure taken from Reitze et al. [45]).
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free-focusing geometry has not been achieved so far. Also our result in Fig. 4.4a shows the
negative outcome of an optimization of a single harmonic in a gas jet (yield in region A
compared to the yield in regions B).

On the other hand it is possible to extend the cut-off in a free-focusing geometry (Fig. 4.4b),
using the deformable mirror as described in Sec. 4.2. The optimization of the cut-off position
in HHG is due to the clean-up of higher-order phase distortions by the deformable mirror, thus
increasing the laser peak intensity, leading to higher cut-off photon energies. An enhanced
level of control including the selectivity of selected harmonic orders can only be achieved in a
waveguide geometry such as a hollow fiber.

There has also been a theoretical study of the optimization of several features of high-harmonic
generation in noble gases using a genetic algorithm [233]. Harmonic radiation could be tai-
lored to different applications such as optimization of the pulse energy of one harmonic,
minimization of the pulse duration, and the optimization of the temporal coherence of har-
monics. This was done by adaptively adjusting the intensity of the laser, the gas pressure, the
interaction length in the nonlinear medium, and the position of the focus relative to the gas
jet.

Another theoretical investigation [234] used an efficient genetic algorithm to optimize short
intense excitation laser pulses in order to generate high-order harmonics from which single
attosecond pulses can be synthesized. Whereas the high-harmonic field generated by an un-
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Figure 4.4 – Optimizations of harmonics performed in a free-focusing geometry. a) Negative
outcome of a selective optimization of harmonics in region A compared to region B. No selec-
tivity could be achieved. b) Cut-off extension in a free-focusing geometry. The optimization
of the high-harmonic cut-off position is due to the clean-up of higher-order phase distortions
by the deformable mirror, thus increasing the laser peak intensity, leading to higher cut-off
photon energies.

optimized laser pulse exhibits the well-known train structure [28] with a number of satellites,
single attosecond pulses appear after the optimization.

4.2.2.2 Enhanced control in hollow fibers

A capillary setup where the laser is focused into a hollow fiber filled with a noble gas
(Fig. 4.2b) indeed allows for selective enhancement [42, 48, 49]. Earlier work [48] demon-
strated the optimization of a single harmonic generated in an argon-filled hollow fiber. This
was achieved using spectral-phase shaping with a micromachined deformable mirror. Addi-
tional work by the same group [49] showed the enhancement of different harmonic orders in
different noble gases, although the contrast ratio between the selected harmonic and neigh-
boring harmonics is lower.

Going far beyond these earlier results we demonstrate the complete control over the XUV
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Figure 4.5 – Experimental setup for temporal pulse shaping. Ultrashort laser pulses from a
regenerative amplifier undergo further spectral broadening and compression using self-phase
modulation in an argon-filled hollow capillary and a prism compressor. A deformable mirror
as the symmetry plane of the prism compressor allows temporal pulse shaping.
The shaped pulses generate high-harmonic radiation in a second argon-filled hollow fiber.
The resulting spectrum is recorded by a CCD-camera equipped soft-x-ray spectrometer and
analyzed by the computer which runs a closed-loop evolutionary algorithm to optimize the
spectral shape. The upper inset depicts the modification of the optical paths of the different
frequency components as introduced by the deformable mirror. The inset on the right shows
a typical optimization run for the selection of a single harmonic. The fitness value increases
as a function of the number of generations.

spectrum of high harmonics. We achieve both the enhancement and suppression of high-
harmonic emission in a selected wavelength region as well as the enhancement of coherent
soft-x-ray radiation over a selectable extended range of harmonics. In order to find the laser
pulse shapes that are needed to exert this level of control we employ an evolutionary algo-
rithm.

The experimental setup used for these experiments is displayed in Fig. 4.5: Ultrashort laser
pulses from a regeneratively amplified Ti:sapphire laser system (80-fs pulse duration, 800-nm
center wavelength, 0.8-mJ pulse energy, 1-kHz repetition rate) are spectrally broadened in
an argon-filled hollow fiber (250-µm inner diameter, 0.6-m length, 0.6-bar pressure) by the
process of self-phase modulation (SPM1) [235]. Using a prism compressor with a deformable
mirror as symmetry mirror [236], we are able to obtain 20-fs pulses that can be phase-shaped
by controlling the surface of the deformable mirror. The shaped pulses are focused into a
second argon-filled fiber with an inner diameter of 140 µm and a length of 0.1 m. This fiber

1For more details on self-phase modulation in a gas-filled hollow fiber see Fig. 3.7 and the descriptive text in
Sec. 3.3.1.
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Figure 4.6 – Photographic image of the setup of the three-part hollow fiber in its cage. The
outer segments serve as seals towards the vacuum while a constant pressure prevails in the
center piece. The stray light comes from the scattering of the fundamental laser from the gas
atoms and from the plasma in the hollow fiber core.

is split into three parts which are aligned on a v-groove mount with tiny gaps between them
to ensure a constant pressure in the center segment where high-harmonic generation takes
place. In the photographic image in Fig. 4.6, the stray light from the fiber can be seen. The
outer segments serve as a seal towards the vacuum before and after the fiber. The laser
intensity inside the capillary can be estimated as 2 × 1014 W/cm2 from the cut-off scaling
law. After a 0.3 µm-thick aluminum filter which blocks the fundamental and lower orders
the harmonic radiation is detected with a soft-x-ray CCD camera mounted behind a grazing-
incidence XUV spectrometer. Rundquist et al. [142] used a similar setup to demonstrate phase-
matched generation of high harmonics in a hollow capillary for the first time. They were able
to increase the harmonic output by two to three orders of magnitude compared to the non-
phase-matched case. Similar values were reported by the group of Midorikawa [237]. Spatial
effect inside a fiber such as phase-matching are discussed in more detail in Section 4.3.

Control over the high-harmonic spectrum is achieved by employing an evolutionary algorithm
[12]. This algorithm drives the gold membrane of the deformable mirror (inset of Fig. 4.5) to
shape the laser pulses by sending specific voltage values to electrodes behind the gold mem-
brane. The gold membrane is deformed depending on the applied voltage and thus changes
the optical path of the individual wavelength components of the laser pulse that are spa-
tially dispersed in a prism compressor. The high-harmonic spectra generated by these shaped
pulses are recorded by the CCD camera that evaluates them according to a given fitness func-
tion. The fitness function assigns a rank to each shaped laser pulse according to how well
it produced the desired harmonic spectrum or spectral feature. The evolutionary algorithm
itself is based on the principle of the ’survival of the fittest’ and uses the ranking made by the
fitness function to keep the best-performing laser pulses for the next generation. The rest is
dismissed or transferred to the next generation by mutation or cross-over. The members of the
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Figure 4.7 – Optimizations of different single harmonic orders in a hollow fiber. Harmonics
can be selected with a high contrast ratio with respect to neighboring orders.

new generation are now tested for their performance in order to build the following genera-
tion, and the closed-loop optimization iteratively converges towards a maximum fitness value
by gradually improving the laser pulse shapes from one generation to the next.

We can now follow our goals defined above and try to selectively generate single harmonics
or a range of harmonics. We are able to enhance a particular harmonic order while simultane-
ously keeping neighboring orders at low intensity (Fig. 4.7). The fitness function in this case
was defined as the spectrally integrated yield of the target harmonic divided by the integrated
yield of the other harmonic orders. Compared to previous measurements [48, 49] our results
show an unprecedented contrast ratio between the selected harmonic and the suppressed
neighboring orders. Direct neighbors of the optimized harmonic order are relatively weak
while there is a negligible contribution from all others. These tunable quasi-monochromatic
high-harmonic spectra allow for time-resolved spectroscopy in the soft-x-ray region.

According to Milošević and Becker [238], the enhancement of particular harmonics is possible
by a small variation of the laser-field intensity due to a resonance-like enhancement in the
low-energy part of the plateau. This can be related to channel-closing effects. In a strong
laser field, the ionization potential Ip is upshifted by the ponderomotive energy Up, so that
n > (Ip + Up)/h̄ω photons are needed for ionization. Channel closing (of the nth channel)
occurs when with increasing field intensity and thus increasing Up an n-photon ionization
is no longer possible, and n + 1 photons are required. At the exact threshold laser intensity
the electron is released into the continuum with zero drift momentum so that it can revisit
its parent ion many times during the oscillations of the laser field. These long orbits have
very long travel times, and their cut-off converges towards Ip + 2Up. In this energy region the
effects of the very long orbits are most pronounced. Resonance enhancement effects have also
been reported by Toma et al. [239].
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Figure 4.8 – Selection of extended frequency ranges of high-harmonic orders. a) Reference
spectrum obtained with an unmodulated laser pulse. b) Optimization of the long-wavelength
spectral part while simultaneously reducing the short-wavelength region and vice versa (c).

A comparison between the two experiments on the optimization of high harmonics in a gas
jet and in a capillary (Fig. 4.4a and Fig. 4.7) reveals that an enhancement of single harmonics
in a free-focusing geometry such as a gas jet is not possible. The results by Reitze et al. [45]
confirm this finding. This contradicts the explanation given by Bartels et al. [48, 49, 240]
which is based on the single-atom response only and does not include propagation effects.
Instead, the comparison shows that a spatial contribution arising from the mode distribution
in a hollow fiber is essential to the optimization. The results of our investigation of spatial
effects in a capillary are summarized in Section 4.3.

We also succeeded at the selection of a certain range of consecutive harmonic orders. Fig. 4.8b
shows the optimization of the long-wavelength spectral part while simultaneously reducing
the short-wavelength region and vice versa (Fig. 4.8c). Considering the reduced peak intensity
in a temporally shaped and thus chirped generating laser pulse, the selective generation of
the lower-orders can be readily understood since the cut-off is shifted towards lower energies.
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Figure 4.9 – Suppression of harmonics. Starting with a typical harmonic spectrum in the
plateau region (a), we can suppress one (b) or two (c) harmonic orders. These modifications
of the spectra imply major modulations of the harmonic time structure on an attosecond time
scale.

However, it remains unclear what is responsible for the enhancement of higher orders while
at the same time the lower orders are suppressed almost completely.

The controlled selection of range of harmonic orders is essential to the optimization of attosec-
ond pulses. According to the work by Mairesse et al. [33], selecting a larger and larger region
of harmonics does not necessarily lead to shorter (attosecond) pulses. More harmonics result
in more spectral width, but since the harmonics are intrinsically chirped the harmonic pulse
duration may effectively increase in spite of the broadened spectrum. The chirp results from
the different excursion times of the electrons generating the different harmonic orders. In oder
to produce the shortest attosecond pulse possible, the appropriate number of harmonics with
suitable relative phases has to be chosen, which can now be done using our pulse shaping
technique. This circumvents the problem to find a suitable filter that can select the desired
range. Also, the conventional selection with a grating is accompanied with a loss of time res-
olution due to dispersion and with a substantial reduction in photon number and is thus not
desirable. Besides providing a superior way of selecting specific high-harmonic frequencies
our approach also allows for shifting the range of harmonics and consequently for tuning the
wavelength of the resulting attosecond pulses or attosecond pulse trains.

Another example of our ability to control the generated harmonic spectra is displayed in
Fig. 4.9. The upper part shows a typical harmonic spectrum in the plateau region while the
lower part demonstrates the suppression of one and two harmonics, respectively. The shape
of the unshaped spectrum reveals a maximum due to phase-matching inside the capillary.
However, the harmonics are nearly equally intense, implying that the displayed range indeed
lies in the plateau region. To our knowledge this is the first demonstration of the suppression
of single plateau harmonics. Complete control over the shape of the soft-x-ray spectrum has a

Carsten Winterfeldt: Generation and control of high-harmonic radiation (Diss. Univ. of Würzburg, 2006)



4.3 Control of high-harmonic generation through spatial engineering 71

Figure 4.10 – Cut-off extension by spatial wavefront
shaping. The phase front of the laser is controlled
by a two-dimensional deformable mirror. The pro-
files before and after the optimization are shown in
the inset on the right. The effect of the spatial shap-
ing is the cleaning of higher-order spatial phase dis-
tortions (figure taken from Villoresi et al. [47]).

major impact on ultrafast energy-resolved spectroscopy and on the temporal structure of high
harmonics. Section 5 discusses some of the implications on the attosecond time structure of the
generated radiation. The following Section examines the spatial properties of high-harmonic
generation in a hollow fiber and considers propagation effects such as phase-matching.

4.3 Control of high-harmonic generation through spatial engineer-
ing

Up to now only the temporal shaping of high-harmonic radiation in a hollow fiber has been
considered. However, Figs. 4.4 and 4.7 imply that spatial effects determined by the waveguide
geometry have to be taken into account in order to obtain the high level of control over the
harmonics as demonstrated above. Control of the spatially coherent nature of the process has
largely been ignored, for instance, by emphasizing the perfect phase-matching inside hollow
fibers [142, 163].

4.3.1 Free-focusing geometry

Work done on controlling the spatial shape of the generating laser pulses by use of a two-
dimensional deformable mirror has been able to enhance only the overall conversion efficiency
in a jet geometry by cleaning up higher-order spatial phase distortions [46, 47]. Fig. 4.10

shows the original result by Villoresi et al. [47]. The graph closely resembles our own result
in Fig. 4.4, which shows a similar effect. Note, however, that the cut-off extension in our
experiments was mainly achieved by cleaning up the temporal profile of the laser pulse while
higher-order spatial phase distortions are corrected in the work by Villoresi et al. [47].

Kazamias et al. [241] and Sutherland et al. [242] report marked enhancements in high-harmonic
generation in a gas cell filled with noble gases when a partially closed aperture is placed in
the path of the laser beam before the focusing lens (truncation). They attribute this effect
to the effective f -number, the laser beam spatial quality, and the interplay between the laser
phase and the intrinsic phase of the harmonics. Apparently, the aperture introduces phase
variations on the laser wave front that minimize the phase mismatch. Here we demonstrate
the importance of spatial effects in achieving full control over the process of high-harmonic
generation.
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Figure 4.11 – Experimental setup (on the left) for spatial pulse shaping and selective excitation
of different fiber modes. a) Setup for the optimization of fiber modes using a helium-neon
laser. The pictures on the right show the controlled generation of different fiber modes using
an evolutionary algorithm. b) Setup used to optimize high-harmonic generation in a hollow
fiber using spatial pulse shaping.

4.3.2 Fiber-mode excitation

As we have seen in Sec. 3.4.4, several fiber modes can contribute to high-harmonic generation
in a hollow fiber, opening different phase-matching windows (Fig. 3.14).

Which fiber modes are excited after the driving laser has been coupled into the fiber can be
adjusted by modifying the spatial amplitude and phase profile of the driving laser pulse at the
entrance of the fiber. However, the systematic selection of specific fiber modes is impossible
due to mode-coupling effect. Near the critical power of self-focussing inside the fiber different
fiber modes do no longer travel independently as linearly independent modes but start to
mix [243, 244]. This effect is responsible for a changing mode distribution as a function
of propagation along the fiber. Therefore we need an optimization algorithm that is able
to manipulate the spatial properties of the driving laser pulse to fulfill the phase matching
condition inside the fiber exactly at the harmonic generation point.

To examine the influence of the excitation of different fiber modes on the process of high-
harmonic generation more thoroughly, a two-dimensional spatial pulse shaper for the funda-
mental laser pulses was set up in order to modify the spatial phase of the laser pulses before
they are coupled into the fiber. By shaping the spatial phase of the laser pulse before focusing,
we are able to control the amplitude and phase profile of the pulse in its Fourier plane located
at the entrance of the capillary.

This pulse shaper is based on a computer-controlled electrically-addressable phase-only spa-
tial light modulator by Hamamatsu Photonics (programmable phase modulator PPM X8267).
An adjustable phase between 0 and 2π can be added to the local spatial phase of the laser
pulse separately for each pixel [245, 246]. The shaped laser pulses excite different modes in
the fiber used for high-harmonic generation. The harmonic spectra are recorded by a CCD
camera, an evolutionary algorithm is used to run the closed-loop optimization of certain opti-
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Figure 4.12 – Optimization of high-harmonic emission in a hollow fiber using spatial laser
pulse shaping. a) Optimization of the total yield results in an increase by a factor of five. b)
Selective enhancement of the 23rd harmonic (gray-shaded area) as optimization goal results
in an increase by two orders of magnitude. However, no selectivity is achieved.

mization goals.

In order to test the abilities of this setup to excite arbitrary fiber modes as needed for the
spatial optimization of high-harmonic generation we used a helium-neon laser focused into a
similar fiber (length 10 cm, inner diameter 140 µm). The fiber output is recorded by a CCD
camera to evaluate the excited fiber modes (Fig. 4.11a). The fitness function is defined as the
integral overlap between the recorded picture and a predefined bitmap mask representing the
desired fiber modes. The first target mask was the fundamental mode (not shown), followed
by a double (Fig. 4.11, inset top-left) and a triple mode (Fig. 4.11, inset top-right). The pictures
show the bitmap masks together with some snapsnots of the fiber modes during the run of the
optimization. The bottom part of Fig. 4.11 (inset) depicts the optimization to a more complex
ring mode. In addition to the target mask and the snapshots the evolution of the fitness during
the optimization can be seen. It rises in the beginning until it saturates for later generations.
We were thus able to selectively excite the fundamental mode, double and triple modes as well
as ring modes or random patterns, demonstrating the capability of our setup for the adaptive
spatial control of fiber modes and their excitation for high-harmonic generation [246].

4.3.3 Optimizations in a hollow-core fiber

The optimization of the high harmonics based on selective fiber mode excitation should now
be possible, using the setup shown in Fig. 4.11b. Our first approach is to enhance the total
harmonic yield beyond the value that can be achieved by manually optimizing the coupling
of the laser into the fiber. After the adaptive optimization, the total yield increases by approx-
imately a factor of five (Fig. 4.12a). We also tried to selectively enhance a single harmonic
order as was done in the case of temporal pulse shaping (Section 4.2). The result is shown in
Fig. 4.12b where the shaded area marks the wavelength range over which the yield of the se-
lected harmonic is integrated, squared, and divided by the integrated yield of the neighboring
orders to define the fitness function (gas pressure in the capillary: 170 mbars). As can be seen,
the yield in the selected cut-off harmonic increases by more than two orders of magnitude.
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Figure 4.13 – Spatially resolved HHG spectra: a) and b) high pressure, c) and d) low pressure.
Two fiber modes contribute to the signal in a) before the optimization while the optimized
pulse (b) results in an overall increase in intensity of about ten. The excitation of a single
mode is clearly visible. At low pressures the change in excited fiber modes from c) before the
optimization to d) after the optimization becomes more evident.

Obviously spatial optimization of high-harmonic radiation is possible. However, the contrast
ratio between the selected single harmonic and the neighboring orders is not nearly as high
as in the case of temporal phase shaping (Fig. 4.7). This implies the necessity to use temporal
and spatial pulse shaping in order to selectively enhance single harmonics.

The calculation of the expected harmonic mode profiles based on the initial spatial phase of the
laser pulse is very difficult. Due to the high intensities that are present in the fiber, ionization
of the conversion medium occurs and leads to significant distortions of the propagating laser
pulse inside the fiber. The initially excited fiber mode distribution changes constantly due
to this nonlinear mode coupling [247]. It is therefore important to excite a single fiber mode
at the point inside the capillary where the harmonics are predominantly generated (center
piece in our setup). Not only is it very difficult to calculate the initial spatial intensity and
phase profile needed, but it is almost impossible to reproduce exactly the calculated profile
experimentally. This again explains why a closed-loop optimization based on an evolutionary
algorithm is of great value.

The excitation of different fiber modes can be made visible by spatially resolving the harmonic
beam along the spectrometer slit (Figs. 4.13a and 4.13b). Before optimization (Fig. 4.13a),
each harmonic is split up into two contributions at two distinct center wavelengths. The
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two contributions originate from two fiber modes. Since the transverse intensity distribution
within the fiber and thus the degree of ionization varies for different fiber modes, this results
in different amounts of blueshift. After the optimization (Fig. 4.13b) with the goal to enhance
the 23rd harmonic order the bimodal structure inherent to Fig. 4.13a disappears, leaving a
clear single-mode harmonic spectrum.

The enhancement of the selected harmonic order could be due to better phase-matching based
on the selection of suitable fiber mode that can fulfill Eq. (3.85). An increased intensity inside
the fiber due to an improvement of the coupling into the fiber as a reason for the observed
enhancement can be ruled out. In this case, the amount of blueshift should have increased
whereas in our measurement there is less blueshift after the optimization. Furthermore, if
the single-atom response was responsible for the enhancement, an increased intensity would
have led to the production of higher harmonic orders, which is not the case. By decreasing
the pressure in the fiber from 170 mbars to 20 mbars we are no longer in the phase-matching
regime, thereby switching off the effective mode filter caused by phase matching. Nonlinear
mode-coupling effects also become negligible with the consequence that spatial changes in
the generating pulse directly carry over to the harmonic beam. Figs. 4.13c and 4.13d show
substantial differences in the beam shape between neighboring harmonic orders for the unop-
timized as well as for the optimized case. This clearly indicates the contribution from different
fiber modes during the generation of high harmonics.

Future work on the control of high-harmonic generation and on the mechanisms of controlla-
bility will include a combination of temporal and spatial pulse shaping to investigate the phys-
ical background in more detail. To this end, the two-dimensional LCD-based pulse shaper can
be modified for simultaneous spatial and temporal shaping by spatially dispersing frequency
components along the horizontal direction and spatial (or wavevector) components in the ver-
tical direction [248]. However, this only allows for a one-dimensional control of the wavefront
of the laser beam. Two-dimensional wavefront shaping together with temporal shaping can
be achieved either by combining two separate pulse shapers, a two-dimensional spatial and
a one-dimensional temporal pulse shaper, or by dividing the area of our two-dimensional
liquid-crystal display into two regions where the laser pulses are shaped consecutively first
temporally (with a spectrally dispersed beam) and then spatially (with the direct laser beam)
[249].

4.3.4 Optimizing the geometry: Quasi-phase-matched generation

Using a modulated hollow-core waveguide [250] instead of a hollow capillary with flat walls in
order to periodically vary the intensity of the laser light driving the conversion, high harmon-
ics can be generated at significantly higher photon energies, even in the presence of substantial
ionization. Higher levels of ionization, caused by the higher intensity of the driving laser to
extend the cut-off, normally cause the phase velocity of the pump beam to be too fast to be
phase matched.

Fig. 4.14 shows a schematical and a microscopical view of two different modulated fibers
used in the experiments performed in the group of Kapteyn and Murnane [182, 250]. In these
works, the walls of the waveguide are sinusoidally modulated, alternatingly creating regions
with high intensity (leading to HHG) and low intensity (no HHG due to the highly nonlinear
dependence on intensity), which realizes the ’generate’–’wait’ quasi-phase-matching scheme
depicted in Fig. 3.5.
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Figure 4.14 – Quasi-phase matching in a modulated
waveguide (figures taken from Paul et al. [250] and
Gibson et al. [182]). The intensity of the driving
laser light is varied periodically, allowing for ef-
ficient EUV light generation even in the presence
of substantial ionization due to the quasi-phase-
matched configuration.

Quasi-phase matching (QPM), originally proposed by Armstrong et al. [93], introduces an
additional term K = 2π/Λ into the phase-matching expression Eq. (3.85), where Λ is the
modulation period. A periodicity corresponding to twice the coherence length corrects the
phase mismatch and allows for more efficient nonlinear frequency conversion. In the mod-
ulated waveguide the intensity of the laser is reduced in regions where the harmonic light
is out of phase by 180◦ with the driving laser (after one coherence length) by expanding the
diameter of the waveguide so that no new harmonics are generated. This pattern is repeated
periodically for a full quasi-phase-matching scheme. Decreasing the modulation period of the
walls of the waveguide [182], coherent light can even be generated in the water window using
gas-filled hollow fibers.

Since these modulations must be introduced into the waveguide by sophisticated glassblowing
techniques, we present the proposal for a new quasi-phase-matching scheme for the genera-
tion of high harmonics in an unmodulated waveguide in Sec. 4.4. This scheme works in the
temporal domain and is therefore called temporal quasi-phase matching (TQPM).

A different method to achieve a periodically varying generation efficiency for nonlinear fre-
quency upconversion can be realized by density modulations of the medium to modulate the
nonlinear susceptibility [251].

4.3.5 Optimizing the medium

Since harmonic generation is a coherent process, the resulting harmonic electric field scales
linearly with the particles density of the interacting medium, leading to a quadratic depen-
dence of the intensity. However, for the cut-off harmonics, a maximum density is given by the
ionization-induced defocusing of the laser pulse [252]. Instead of using gas targets, we made
the transition from gaseous to liquid targets and investigated water micro-droplets as a source
of high-harmonic radiation [253].

We studied the emission of XUV radiation from water microdroplets under excitation with
either a single or a pair of intense femtosecond laser pulses (Ti:Sa, 80 fs, ∼ 1014 W/cm2,
800 nm, 1 kHz). Varying the delay between the two pulses we observed a transition from
pure incoherent plasma emission to coherent high-harmonic generation. Under optimized
conditions we obtained high-harmonic radiation up to the 27th order. For a more detailed
description of the experimental results please refer to Appendix A.

High-harmonic generation in a dense medium such as water microdroplet also was the subject
of a theoretical study by Strelkov et al. [254]. The three-dimensional Schrödinger equation was
solved for a single-electron atom in the combined fields of the neighboring particles and the
laser and the results were averaged using a Monte-Carlo method. Since the long and the
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short trajectory are affected differently by the random variation of the harmonic phase in the
presence of the medium, sharper harmonic lines and shorter attosecond pulses can appear due
to the suppression of the long path. At very high densities, harmonic lines are compressed
completely. Also, electrons can possibly be captured by neighboring ions. However, due to
the random distribution of the particles in the medium no coherent emission occurs for these
electrons. Hence there is no extension of the single-atom cut-off.

A different approach to overcome low particle densities is to increase the interaction length.
This can be done by focusing the intense laser pulses into a gas-filled hollow capillary [162,
255] instead of a short gas jet. In combination with the negative dispersion of the hollow fiber
the variation of the gas pressure inside the fiber provides an additional control parameter to
compensate the phase mismatch between the fundamental wave and the generated harmonic.
This results in a notable increase of the conversion efficiency [142, 163, 250]. The use of hollow
fibers has already been discussed in the previous Sections of this work.

Proper phase-matching can also be ensured in a gas cell [256, 257] where the laser is loosely
focused, provided the correct placement of the focus with respect to the entrance of the gas
cell. Kazamias et al. [258, 259] used the analysis of the coherence length for constructive
harmonic build-up based on Maker fringes [101] to optimize the conversion efficiency.

In addition to controlling the electric field that drives high-harmonic generation, the nonlinear
medium itself can be engineered. Apart from atomic gases, high harmonics can be generated
in simple [260] and complex molecules [261], clusters [262], or solid surfaces [263] (although
the generation mechanism is different for the latter).

If a molecule is stretched out well beyond its equilibrium distance by preparing a highly ex-
cited vibrational state, harmonic peaks of much higher energies in units of the ponderomotive
energy than those predicted for a single atom or ground-state molecule can be detected [264].
According to this numerical simulation, the large internuclear separation allows the electron
to be detached from one of the cores, but recombine with the partner core. A similar behavior
with kinetic energies reaching 8Up has been found by Lein [265]. By using a two-color exci-
tation in extended molecular systems, harmonics at energies of 6Up to 10Up can be generated
[266]. A high-frequency prepulse ensures sufficient ionized electrons, while a second lower-
frequency pulse accelerates them towards the other atom in the stretched molecule. Also,
controlling the ground state wave function of the electron in a stretched molecule can increase
the efficiency of high-harmonic generation [267]. Since the electronic wave function is more
delocalized for a stretched molecule as compared to a ground-state molecule, it experiences
less spreading during continuum propagation, increasing the probability of recombination of
the returning electron with the parent ion.

4.4 Temporal quasi-phase matching

Based on the spatial quasi-phase matching in a modulated waveguide by the group of Kapteyn
and Murnane as reported in Sec. 4.3.4, we propose a completely new quasi-phase-matching
scheme for the generation of high harmonics in an unmodulated waveguide with uniform
gas density. It relies neither on a modulated waveguide, which is hard to fabricate, nor on
density modulations of the generating gas. Since the new scheme works in the time domain,
it is called temporal quasi-phase matching (TQPM).

The basic idea is to transfer the spatial modulations of the waveguide into the time domain,
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Figure 4.15 – Temporally modulated
laser pulse and the corresponding ADK
ionization rate and harmonic yield.
The distance between the peaks (peak
FWHM 15 fs) of the modulated laser
pulse (a) is 30 fs. The corresponding
ionization rate w (b) is based on the
ADK model (see text). A peak inten-
sity of 1014 W/cm2 was used for the cal-
culation. Since the harmonic produc-
tion rate is proportional to the square of
the ionization rate w2 (shown in c), har-
monics are only generated at the points
determined by the modulation period
of the fundamental laser pulse. This
enables ’generate’ and ’wait’ regions
for the temporal quasi-phase match-
ing (TQPM) scheme. Although the
modulation depth of the driving laser
pulse is weak, the harmonic production
rate in the wait regions in completely
suppressed.
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resulting in a periodically modulated envelope of an ultrashort laser pulse. Fig. 4.15a presents
the realization of such a temporally modulated laser pulse (possibly created by pulse shap-
ing), which bears marked similarities to the spatially modulated waveguide in Fig. 4.14. A
weak modulation of the pulse envelope as present in Fig. 4.15a is sufficient to realize the
’generate’–’wait’ quasi-phase matching scheme, which was introduced in Fig. 3.5. To under-
stand this statement, we have to take a look at Fig. 4.15b which shows the ADK ionization
rate w calculated using Eq. (3.59) for xenon as the gas medium and a laser peak intensity of
1014 W/cm2. Due to the highly nonlinear dependence of the ionization rate w on the current
value of the electric field, the modulation depth of the driving laser pulse is greatly enhanced
for the ionization rate. This effect is even more pronounced in the square of the ionization
rate w2 (shown in Fig. 4.15c), which is a measure for the high-harmonic production rate since
harmonic generation is a coherent process.

The pulse is virtually split into a kind of pulse train with a number of little pulselets with
a certain spacing. The key mechanism is the difference in the phase and group velocities of
these pulses due to dispersion. This difference causes a walk-off between the peak of the little
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pulselets and the underlying phase. The peak structure given by the envelope then gradu-
ally slides over the phase of the electric field, creating regions with high and low intensity,
respectively, alternating in time. The little pulses in this pulse train generate high harmonics.
During propagation, when the harmonic and the fundamental phase fall out of phase, the
group moves away from the original point of the phase. After a coherence length, when nor-
mally newly generated harmonics would interfere destructively with the previously generated
harmonics, there is no intensity to produce new harmonics since the peak has moved away
and the ionization rate is practically zero. Consequently, no destructive interference occurs,
and harmonic generation is suspended, which corresponds to the “wait” region in Fig. 3.5.
After another coherence length, by the time the harmonic phase and fundamental phase show
no phase slip, the next group has moved into place and generates new harmonics, in phase
with the already existing harmonics. Those two fields can now interfere constructively, adding
positively to the harmonic intensity.

In order to deal with this problem more quantitatively, we considered the difference between
phase and group velocity, vph and vgr, of the fundamental laser at the frequency ω. With
k(ω) = n(ω) ·ω/c we can write (cf. Sec. 2.5)

vph =
ω

k
=

c
n(ω)

, (4.4)

vgr =
dω

dk
=
(

dk
dω

)−1

=
c

ngr(ω)
, (4.5)

ngr(ω) = n(ω) + ω
dn
dω

= n + ωn′, (4.6)

where ngr is the group refractive index. The derivative of the (phase) refractive index n with
respect to frequency (ω), causing dispersion, is responsible for the difference between group
and phase velocity, which causes the walk-off between the peaks of the little pulselets and
the underlying phase. Dispersion was also exploited to shift the carrier-envelope phase of
few-cycle laser pulses by inserting variable amounts of fused silica into the beam [80].

A first approach yielded a solution for the derivative of the refractive index n′(ω) that was
directly proportional to the phase mismatch ∆k. This is a reasonable result since a higher
phase mismatch (accompanied with a shorter coherence length) requires a stronger delay of
the group with respect to the phase. In the phase-matched situation, ∆k = 0, of course no
difference between phase and group is needed. Refractive index data for the calculation of ∆k
can be found in Korff and Breit [268] and CXRO at Lawrence Berkeley National Laboratory
[269]. In our case, we would need group velocities on the order of 97 % of the speed of light
in vacuum.

Unfortunately, this first approach turned out to be wrong. A second approach is visualized in
Fig. 4.16. The red pulse train depicts the modulated infrared pulse, or more specifically, the
sharply modulated resultant ADK ionization rate (cf. Fig. 4.15c). Let us consider harmonic
generation by the first pulselet at time t0 = 0 and at position z = 0 (along the propagation
direction z). Both the harmonic pulse and the infrared pulses propagate until they fall out of
phase by π after the coherence length at z = Lc at the time t1 = Lc/vHHG, where vHHG is the
group velocity of the high-harmonic pulse (which is practically identical to its phase velocity).
New harmonic generation must be quelled at this point to avoid destructive interference. This
can be achieved if the infrared pulselet in the modulated pulse has only traveled half the
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Figure 4.16 – Visualization of temporal
quasi-phase matching. At time t0 har-
monic are generated at the position z =
0. Due to the difference in group ve-
locities, harmonic generation is quelled
at time t1 at the position z = Lc where
new harmonics would interference de-
structively. At z = 2Lc and t = t2
harmonic generation is resumed by the
second pulselet for coherent adding of
the new harmonics to the old harmon-
ics generated by the first pulselet. For a
more detailed description see text.
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where vgr,IR is the group velocity of the modulated infrared pulse. At the position z = 2Lc
harmonic pulse and infrared pulse are in phase again, allowing constructive interference for
the new harmonics. If the modulation of the infrared pulse has a period of ∆t = Lc/vHHG
harmonics are now generated constructively by the second pulselet at the position of the
harmonics from the first pulselet. This mechanism is repeated until the end of modulated
infrared pulse is reached.

As can be seen from Fig. 4.16, the period ∆t can be chosen differently provided that the
ionization rate is zero at the time t1. Therefore an even number of additional pulses can be
placed between the pulses already present in Fig. 4.16, which divides the period by 3, 5, . . .,
which corresponds to higher-order phase matching (see Sec. 3.2.3).

However, the condition Eq. (4.7) cannot be fulfilled in common media, especially in gas media,
where the group velocity of the infrared pulse almost equals the phase velocity due to the
extremely small value of n′. In our case, the quantity ωn′ in Eq. (4.6) must be equal to unity
to satisfy Eq. (4.7).

To solve this discrepancy between the real n′ and the required one we propose to exploit the
technique of electromagnetically induced transparency (EIT, Harris et al. [270], Lukin [271])
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in order to tailor the group index as needed. In EIT, we consider a so-called lambda system
where the signal field couples the ground state and some excited state, whereas a control field
is in resonance with some other state than the ground state and the same excited state as the
signal field. Since both the signal and the control field couple to the excited state, there can be
destructive interference between these two possible excitation pathways. As a consequence,
the atoms are decoupled from the light field in ideal EIT: At resonance, the susceptibility
vanishes and the refractive index becomes unity. The medium becomes transparent to the
signal field, which would be absorbed at the resonance without the control field. Since this
resonant absorption is accompanied by a steep variation of the refractive index with frequency,
we still have a large n′, even in the presence of the control field. The large group index
(Eq. (4.6)) caused by the large value of n′ is now responsible for a greatly reduced group
velocity. Group velocities as slow as 17 m/s have been obtained in an ultracold atomic gas
[272], demonstrating the power of EIT. Very low group velocities on the order of 90 m/s have
also been reported in hot gases [273]. McCullough et al. [274] described coherent control of
the real and imaginary parts of the refractive index both off resonance and near resonance.
This might be another possibility to modify the group index in our system as desired.

In conclusion, by transferring the spatial modulation into the time domain, we describe the-
oretically the novel scheme of temporal quasi-phase matching for high-harmonic generation
in an unmodulated waveguide through the use of a temporally periodically modulated laser
pulse. This scheme allows for the use of higher laser intensities to extend the photon energy
range of high-harmonic generation in a hollow fiber and for the use of higher densities of
the generating medium beyond the pressure phase-matched range to increase the conversion
efficiency of high-harmonic generation.

4.5 Applications of tailored harmonic radiation

Tailored harmonic spectra are of immediate interest and importance for the field of stationary
or time-resolved spectroscopy in the XUV and soft-x-ray regions of the light spectrum [275]. A
number of applications have already demonstrated the use of this laboratory-scale light source
for probing matter properties both in the spectral and in the temporal domain, in an energy
range and with a time resolution previously inaccessible. These applications include: EUV
scanning microscopy and submicron XUV imaging at 13 nm [276, 277], high-harmonic wave
packet interferometry [278], time-resolved photoemission spectroscopy of surface chemistry
[279–282], ultrafast pump-probe studies on molecules in the gas phase [35], time-resolved
measurements on the Auger decay and inner-shell lifetimes in gases [36, 38] and solids [283].
Also, during the recombination process of the three-step model of high-harmonic generation,
quantum interference can take place in molecules [284, 285]. Kanai et al. [286] observed
such characteristic modulation patterns of the harmonic signals measured as a function of the
pump–probe delay.

The possibility to shape high harmonics greatly extends the field of applications and broadens
the level of information retrieved from such measurements. For instance, a recent study [287]
on absorptions edges of transitions metals using high-harmonic and syncrotron radiation in
comparison revealed the competitiveness of this new light source with existing large-scale
facilities. However, the authors stress the sampling of the measured spectra at the harmonic
spacing of twice the fundamental frequency. Tuning and shaping of high-harmonic spectra
can now close this last remaining gap.
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Using tailored high-harmonic spectra, we have already been able to control the branching ratio
of the photodissociaton reaction of sulfur hexafluoride (SF6, Pfeifer [288], Pfeifer et al. [289]).
An evolutionary algorithm is used to maximize and minimize the SF+

5 /SF+
3 product ratio. The

stability of our light source of shaped high harmonics is high enough to allow the algorithm to
reach the optimization goal. Although the branching ratio can only be slightly changed, this
experiment is a first demonstration of the applicability of high-harmonic spectral engineering
to soft-x-ray optimal control.

Prospective applications of tailored high harmonics include, but are not limited to, time-
resolved photoelectron spectroscopy in the solid phase, e. g. for the examination of surfaces
and interfaces. One of the open question is, for instance, the mechanism of laser-induced
damage in SiO2 whether it occurs due to multi-photon ionization or avalance ionization. In
such a typical pump–probe experiment a strong pulse pump is used to induce dynamics in
the sample, which can then be investigated with a probe pulse. If an infrared probe pulse
is employed, the high number of low-energy photoelectrons generated by the strong pump
pulse easily obscures the real photoelectrons by the probe pulse. Due to the higher photon
energies of high-harmonic radiation, these electrons can now be easily discriminated based
on the kinetic energies. Moreover, while an infrared or visible can ionized valence electrons,
high-harmonic photoelectron are element-specific through their excitation from deep-lying
core levels. This is especially useful for the examination of interfaces to distinguish between
photoeletrons from different constituents. Other possibilities include time-resolved measure-
ments of the extended x-ray absorption fine structure (EXAFS) of Si [290].

The modifications of the high-harmonic spectrum have direct implications for the time struc-
ture of the harmonic radiation, including the possibility for temporal pulse shaping on an
attosecond time scale. These issues will be discussed and elaborated in the following Chapter.
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High-harmonic time structure
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5.1 Temporal characterization methods

5.1.1 Characterization of optical laser pulses

To evaluate experimental data, it is important to know the input parameters. In the case of
(time-resolved) laser spectroscopy, this of course includes the complete characterization of the
ultrashort laser pulses used for the experiment. As seen in Sec. 2.4, the knowledge of both
the spectral amplitude and the phase is needed for a full reconstruction of the laser pulse
in the time domain by Fourier transformation. Whereas a spectrum can be easily measured
with a spectrometer, the phase is not accessible using conventional methods. In order to
determine the temporal evolution of an ultrashort laser pulse, an event is needed that is
equally short or even shorter. Electronic circuits as implemented in streak-camera setups have
a lower limit of picoseconds, precluding their application in femtosecond measurement. Very
recently, an optical streak camera incorporating high-harmonic-based attosecond pulses has
been demonstrated [291] which indeed allows for the direct measurement of the oscillations
of the electric field of the laser. However, this setup is very complex and not convenient to
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Figure 5.1 – Interferometric autocorrelation
trace (figure taken from Diels et al. [292]).
The peak-to-background ratio is 8 to 1 where
the peak height is given by the coherent su-
perposition of the two pulse replicas and the
limit for long delays is simply the incoherent
sum of the two fields.

use and has only been shown recently. Therefore in the past other methods were employed
where the laser pulses themselves were used to retrieve the pulse duration or the phase of the
laser pulse, and they will of course still be used in the future. In the following we will present
the basic principles of the most common techniques because they also form the basis for
the temporal characterization of high-order harmonics and high-harmonic-based attosecond
pulses and pulse trains.

5.1.1.1 Autocorrelation

As stated above, usually an ultrashort laser pulse is the shortest available event for the char-
acterization of ultrashort laser pulses. This laser pulse can either be the same as the one to
be characterized; in this case the method is called self-referencing (it requires no other optical
pulse except itself). Or the second pulse can be a different pulse, which is then described as a
cross-correlation.

The simplest way is to take a replica of the pulse and to use it as a gate which is scanned
temporally as a function of the delay τ across the pulse to be characterized. A signal is then
recorded depending on the temporal overlap between the two replicas, allowing to obtain
some information about the temporal properties of the unknown pulse.

Mathematically let us consider the superposition of two time-delayed copies of the laser pulse
E(t) = E(t) exp[i(ωt) + φ] where E(t) is its envelope (amplitude), ω is its center frequency,
and φ is its phase. The resulting total electric field is then

Etot(t, τ) = E(t) + E(t− τ), (5.1)

where τ is the variable delay. If we measure the intensity of this signal with a time-integrating
detector (virtually any detector is time integrating on the femtosecond time scale), we will
obtain the typical trace of a Michelson interferometer (first-order autocorrelation), display-
ing fringes over a range of τ determined by the width of the spectrum of the laser pulses.
However, this trace does not contain any information in addition to the spectrum.
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In order to obtain a real gate as a function of τ, the total electric field measured must contain
a product of E(t) and E(t− τ) so that a signal is only detected when the gate pulse opens a
window. By comparison with Eq. (3.1) we see that the easiest way to achieve this is a second-
order nonlinear mixing process (higher-order processes can, of course, be used as well). In
this case the second-order total electric field can be written as

E(2)
tot (t, τ) ∝ [E(t) + E(t− τ)]2 = E(t)2 + E(t− τ)2 + 2E(t)E(t− τ). (5.2)

The intensity recorded by the time-integrating detector is proportional to the temporal integral
over the square of the electric field and is a function of the delay τ [292]:

I(τ) ∝
∫ +∞

−∞
dt |E(2)

tot (t, τ)|2 =
∫ +∞

−∞
dt
∣∣∣∣ [E(t)ei(ωt+φ) + E(t− τ)ei[ω(t−τ)+φ(t−τ)]

]2
∣∣∣∣2, (5.3)

where E(t) = E(t)ei(ωt+φ). This trace is called interferometric autocorrelation. A sketch from
one of the original publications [292] is displayed in Fig. 5.1. At zero delay the signal, being a
coherent superposition of the field E(t) from each of the two replicas, is

I(τ = 0) ∝
∫

dt [E(t) + E(t)]4 = 24
∫

dt E(t)4 (5.4)

whereas for a long delay when the pulses are no longer overlapped temporally we have

I(τ → ∞) ∝
∫

dt
[
E(t)4 + E(t)4

]
= 2

∫
dt E(t)4. (5.5)

The interferometric autocorrelation function therefore has a peak-to-background ratio of 8 to 1.

Starting again at zero time delay, we see that for a delay increment of one-half light period the
two electric fields add with opposite phase resulting in a near-zero signal (Fig. 5.1). Therefore
counting the fringes at half-maximum and multiplying by the light period quickly yields the
duration of the pulse provided that there is no chirp.

[292] also describes the retrieval of information about the pulse chirp if some assumptions
are made because various types of chirps have characteristic signatures. For a chirp caused
by self-phase modulation (Sec. 3.3) the upper and lower envelopes are narrowed because the
frequency chirp induced by SPM is largest in the center of the pulse where the intensity is
highest. However, since the pulse tail and front remain coherent with each other, the fringe
pattern of the interferometric autocorrelation will extend to delays as large as those for an
unchirped pulse of the same duration. Therefore this narrowing can be used as a sensitive
indicator of phase modulation in cases where the spectral broadening is small.

If the pulse possesses a linear chirp, the maxima of the lower envelope recede toward zero
delay along a curve close to the collinear intensity autocorrelation as the chirp parameter is
increased. The extraction of information about the chirp of the laser pulse requires knowledge
about the type of chirp. In general, we do not have such knowledge but want to characterize
completely unknown pulses. In principle, successive optical correlations of increasing or-
der (2, 3 . . . n) would provide the answer [292]. However, low pulse energies and bandwidth
requirements make it impractical to use higher-order processes.

Full phase information can be retrieved by extending the autocorrelation technique by addi-
tionally resolving the signal I(τ) spectrally which leads us to the FROG technique [293, 294].
Other methods such as spectral interferometry or SPIDER will also be described in the fol-
lowing Sections.
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Figure 5.2 – Phase-matching setup for background-free au-
tocorrelation. Due to phase-matching, the second-harmonic
signal 2ω1,2 of either of the two incident pulses ω1,2 is gen-
erated into the propagation direction k1,2 of the individual
pulses. The sum-frequency signal ω1 + ω2 goes into the di-
rection of the sum of the two wave vectors k1 + k2 and is
therefore emitted into the direction of the bisector between
the two incident waves.

nonlinear
crystal

ω1, k1

ω2, k2 2ω1, 2k1

2ω2, 2k2

k1+k2

ω1+ω2

The experimental realization of an autocorrelation measurement consists of a beamsplitter
which splits the pulse to be characterized into two replicas. They are then recombined after
having passed through an adjustable optical delay to introduce the time delay τ. This can
be realized in a Michelson interferometer setup. The recombined beam then impinges onto a
second-order nonlinear crystal (such as BBO or KDP) which provides the nonlinear process
required for Eq. (5.2). The average power of the second harmonic is recorded with a time-
integrating detector as a function of the variable delay. If the measurement is performed with
interferometric accuracy, we obtain the interferometric autocorrelation trace. If the interference
fringes in the recombined beam are smeared out by averaging over the fringes or by sweeping
the delay τ sufficiently fast, it can be shown [292] that the recorded signal is proportional to

I(τ) = 1 +
2
∫

dt I(t)I(t− τ)∫
dt I(t)2 , (5.6)

where I is the intensity of the light pulse. The fringes have disappeared, and the trace is
called intensity autocorrelation. The peak-to-background ratio of this function is 3 to 1 as can
be readily seen from Eq. (5.6). In order to get rid of this background, a modified experimental
setup is possible. Since the background arises from the second-harmonic signal of the two
pulses with themselves (first two terms on the right-hand side of Eq. (5.2)), we can recombine
the two pulses non-collinearly on the second-order crystal after the delay stage (Fig. 5.2).
In this case, due to phase-matching (Sec. 3.2), the second-harmonic signal of either of the
two pulses is generated into the propagation direction of the individual pulses. The sum-
frequency signal (last term on the right-hand side of Eq. (5.2)) goes into the direction of the
sum of the two wave vectors and is therefore emitted into the direction of the bisector between
the two incident waves. Proper spatial filtering selects only this contribution and allows for
the so-called background-free intensity autocorrelation given by

Ibackground−free autocorr(τ) ∝
∫

dt I(t)I(t− τ). (5.7)

The intensity autocorrelation trace does not carry any phase information and therefore cannot
be used to determine the chirp of a laser pulse reliably. However, under the assumption of a
certain shape of the pulse envelope, a relatively accurate estimate of the pulse duration can
be made. For a gaussian-shaped and a sech2-shaped laser pulse, the deconvolution factors
τAC/τp are given by [

τAC

τp

]
gauss

=
√

2 = 1.414,
[

τAC

τp

]
sech2

= 1.543, (5.8)

where τAC is the FWHM of the intensity autocorrelation trace, and τp is the FWHM of the
corresponding laser pulse [295]. Since the values for the different pulse shapes are close to
each other, the exact knowledge of the pulse envelope is not required for an estimate.
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In our laboratory we use a commercial autocorrelator (APE GmbH, Berlin) to control the
pulse duration of the compressed self-phase-modulated laser pulses after the hollow fiber and
the prism compressor (Fig. 4.5). A quick-and-dirty optimization of the laser pulse duration
can also be performed by maximizing the brightness and loudness of the breakdown spark
induced by the high-intensity laser pulses being focused in air by a high-speed lens. The air
is ionized at the repetition rate of the laser pulses, resulting in an audible sound produced by
the sound waves created by the electron leaving and returning to the core periodically and
emitting a colorful spectrum through the recombination of the plasma.

5.1.1.2 Cross-correlation

Since the autocorrelation signal (Eq. (5.7)) involves the electric field to the fourth power (also
see Eq. (5.4)), it is very difficult to detect very weak signals as e. g. present for high harmonics
where in addition the nonlinear susceptibilities are extremely small. In the autocorrelation
method Eq. (5.7) a copy of the unknown pulse is used as a gate that is scanned across the
original pulse. Since the autocorrelation signal contains the product of these two pulses, we
can replace the gate made up of the pulse to be characterized by a strong reference pulse. This
is called cross-correlation with a trace given by

Icross−corr(τ) ∝
∫

dt I(t)Iref(t− τ), (5.9)

where Iref is the intensity of the reference pulse. We can see that the correlation signal is
virtually ”amplified” by using a strong reference pulse. In addition no spectral overlap is
needed between the test pulse and the fully characterized strong reference pulse. This enables
us to measure the time duration of harmonics by using the high-intensity fundamental pulse
as the reference pulse. More details about the characterization of high-order harmonics using
cross-correlation will be given in Sec. 5.1.2.1. The drawback of cross-correlation is that the
reference pulse must be characterized using another technique in order to be able to extract
information about the unknown pulse from the cross-correlation trace. This technique is
therefore not self-referencing any more.

Since a different pulse is used as a gate pulse for the cross-correlation, the basic mixing mech-
anism for the nonlinear signal is now sum-frequency generation instead of second-harmonic
generation. Therefore it is also used e. g. to characterize blue 400 nm laser pulses with a
800 nm fundamental pulse since the second-harmonic of the blue pulse at 200 nm would be
absorbed in all common nonlinear crystals. The sum-frequency signal at 266 nm, however,
still lies in the transparency window. Other mixing processes such as difference-frequency
mixing can also be used for cross-correlations. This is useful for the characterization of UV
pulse at 266 nm (third harmonic) where the difference-frequency mixing with a fundamental
photon at 800 nm yields a detectable signal at 400 nm.

5.1.1.3 Frequency-resolved optical gating (FROG)

FROG is an acronym for frequency-resolved optical gating and was developed by Kane and
Trebino [293]. For a detailed review see Trebino et al. [294]. It is a member of the zoo of
”animal diagnostics” (FROG, SPIDER, TADPOLE, CRAB) and can retrieve the full amplitude
and phase information of an ultrashort laser pulse as opposed to a simple autocorrelation.
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With FROG, it is possible to measure pulses over a wide range of wavelengths, pulse lengths,
and complexities, and to do so in a manner that is general, robust, accurate, and rigorous.
Complex apparatus is not necessary; FROG simply involves spectrally resolving the signal
beam of an autocorrelation measurement. It therefore not only operates in the frequency
domain or time domain but in the “time-frequency” domain. Measurements in the time-
frequency domain involve both temporal and spectral resolution simultaneously and thus
represent a two-dimensional description of the pulse. The so-called FROG trace contains all
information without any approximations. Since the trace contains N × N data points, there is
a significant overdetermination that can be used to get rid even of systematic errors.

Of the multitude of possible FROG configurations such as polarization-gate (PG) FROG, self-
diffraction (SD) FROG or transient-grating (TG) FROG, second-harmonic-generation (SHG)
FROG is most common since it is very sensitive and has a relatively simple setup. In SHG
FROG, the two-dimensional FROG trace is given by the following mathematical form [294]:

ISHG
FROG(ω, τ) =

∣∣∣∣∫ +∞

−∞
E(t)E(t− τ)e−iωtdt

∣∣∣∣2 (5.10)

where E(t) is the electric field of the pulse to be measured, and the same electric field (delayed
by τ) E(t− τ) acts as a gate function in the spectrogram [294]. By adding the factor e−iωt to the
expression in Eq. (5.10) as compared to the autocorrelation integral we obtain the spectrum
of the second-harmonic signal as recorded by a spectrometer. This can easily be understood
by reconsidering Eq. (2.30): The additional factor e−iωt changes the expression Eq. (5.10) to
the Fourier transform from the time domain into the frequency domain. Therefore in FROG
a number of spectra are recorded as a function of the delay τ, leading to the two-dimensional
FROG trace. Note: The time integration in the case of the autocorrelation is caused by the
slow detector whereas it is part of the Fourier transform for the FROG signal here. For the full
FROG trace a number of measurements of the spectra as a function of the delay τ is needed.

Via one or more of several iterative and evolutionary phase retrieval algorithms, one can then
reconstruct the full electric field and phase information from the measured FROG trace. The
iterative procedure works by starting with an initial guess for an electric field, calculating
its FROG trace and comparing it to the experimental data. Based on general projections
corrections to the electric field are made. These steps are repeated until the error between the
reconstructed and the original data is sufficiently small.

The setup of the SHG FROG involves an autocorrelator whose two output beams (at an angle)
are focused into a nonlinear crystal with a cylindrical lens. The resulting background-free
second-harmonic signal (the bisector between the two original beams) is then spectrally re-
solved using a regular spectrometer with an array detector.

When the second electric field in Eq. (5.10) is replaced by a different fully characterized electric
field the configuration is called XFROG [296], which stands for cross-correlation frequency-
resolved optical gating. The arguments for the use of XFROG such as the applicability of
strong reference pulses and the relaxed constraint of spectral overlap are the same as given
for ordinary cross-correlation in Sec. 5.1.1.2. XFROG as well as cross-correlation are non-
interferometric. Applications of the XFROG method in the field of the characterization of
high-harmonic pulses will be discussed in the corresponding Section.

A modification of the FROG setup that involves no moving parts, has no sensitive alignment
parameters and a significantly greater sensitivity was demonstrated by [297] and is called
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GRENOUILLE1. A Fresnel biprism [298] replaces the beam splitter, delay line, and beam-
combining optics with a single fixed element. The biprism divides the incident beam into two
parts which leave the biprism at an angle. The left portion of the wavefront is refracted to the
right, and the right segment is refracted to the left. The two beams overlap in a thick SHG
crystal. This way the relative beam delay is automatically mapped onto horizontal position at
the crystal which is imaged onto a CCD camera. The crystal itself is a thick crystal as opposed
to ordinary FROG. For FROG, a thin crystal must be used because the whole spectrum of the
pulse must be phase matched. By choosing a thick crystal for GRENOUILLE, only one specific
wavelength is phase matched for a specific angle of incidence, thereby acting as a spectrometer.
A first cylindrical lens in GRENOUILLE must focus the beam into the thick crystal tightly
enough to yield a range of crystal incidence (and hence exit) angles large enough to include
the entire spectrum of the pulse. The wavelength is then mapped as a nearly linear function
of vertical position onto the CCD camera. The resulting two-dimensional signal is then a SHG
FROG trace which can be evaluated as usual. No moving parts are required, making the
device very stable and easy to align. Moreover, since a thick crystal is used, it has a higher
sensitivity because the conversion efficiency in the nonlinear crystal scales as the squares of
the crystal length, so a higher signal is generated.

5.1.1.4 Spectral interferometry

If a fully characterized reference pulse (including both amplitude and phase) in the same
frequency range as the unknown pulse is available, spectral interferometry (SI, Lepetit et al.
[299]) can be applied. It relies on the linear superposition of these two pulses and allows for
the retrieval of the phase of the unknown pulse by evaluating the resulting interferogramm.

Let us first consider two identical pulses E(t) separated by a time delay τ. The superposition
of these two pulses is the temporal analogon to the interference at a double slit. Time- and
frequency domain are linked to each other by a Fourier transform similar to position and
momentum space. As in the case of a Michelson interferometer, a certain delay leads to
constructive interference for a certain wavelength. A change of the delay gradually results in
destructive interference. For a fixed delay, a broad spectrum then shows maxima and minima
at certain wavelengths, the so-called interference fringes. If the delay is increased, the fringe
separation decreases and vice versa.

Mathematically speaking, the temporal intensity of two identical pulses E(t) and delay τ is
given by

I(t) ∝ |E(t) + E(t + τ)|2. (5.11)

The spectrum can be obtained via Fourier transform and yields

ISI(ω) = |E(ω) + E(ω)e−iωτ|2 =

= 2|E(ω)|2 + E∗(ω)E(ω)
(

e−iωτ + eiωτ
)

=

= 2|E(ω)|2(1 + cos(ωτ)) =
= 2I(ω)(1 + cos(ωτ)), (5.12)

where I(ω) = |E(ω)|2 is the spectral intensity (spectrum). This shows the regular modulation
of the fringe spacing by 2π/τ.

1GRENOUILLE is the French word for FROG, but here it stands for grating-eliminated no-nonsense observation
of ultrafast incident laser light e-fields [297].
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For the combined field of the unknown pulse E(t) (E(ω) = |E(ω)| exp(iφ(ω))) and a known
reference pulse E0(t) (E0(ω) = |E0(ω)| exp(iφ0(ω))), Eq. (5.11) must be modified:

I(t) ∝ |E0(t) + E(t + τ)|2. (5.13)

The spectrum can then be written as

ISI(ω) = |E0(ω) + E(ω)e−iωτ|2 =

= I0(ω) + I(ω) + 2
√

I0(ω)I(ω) cos(φ(ω)− φ0(ω)−ωτ). (5.14)

We still have a fringe spacing of 2π/τ on average, with, however, slight variations depending
on the phase difference ∆φ(ω) = φ(ω)− φ0(ω) between the known and the unknown pulse.
By measuring the spectral intensities I0(ω) and I(ω) it is theoretically possible to retrieve the
phase by inverting the cosine function. Experimentally, however, noise does not allow the full
elimination of the spectral intensities from Eq. (5.14) so that values greater than unity would
appear as the argument of the inverse cosine. A reliable phase retrieval can be obtained by
a Fourier transform and filter technique. We first Fourier-transform Eq. (5.14) into the time
domain. The transformed signal SSI(t) then consists of three contributions:

ISI(t) = Sdc(t) + Sac(t− τ) + Sac(t + τ). (5.15)

The signal Sdc(t) at t = 0 represents the Fourier transforms of the spectral intensities I0(ω)
and I(ω) and is not important here. The contributions Sac(t− τ) and Sac(t + τ) at t = τ and
t = −τ result from the cosine term and contain all of the phase information. The two ac terms
and the dc term do not overlap if the time delay τ is sufficiently large so that two input pulses
do not overlap in the time domain. The positive ac term at t = τ can now be selected using
a suitable window function, e.g. a higher-order super Gaussian. The phase term can then be
isolated by taking the argument of the inverse Fourier transform (F−1) back to the frequency
domain since, by taking only the one ac term, the cosine term is converted into an exponential:

φ(ω)− φ0(ω)−ωτ = arg[F−1{Sac(t− τ)}] = arg
[
F−1

{√
I0(ω)I(ω)eφ(ω)−φ0(ω)−ωτ

}]
.

(5.16)
After subtracting the linear phase contribution ωτ the phase of the unknown pulse can be
determined by adding the retrieved phase difference to the phase φ0(ω) of the known pulse.

Constraints applying to the time delay τ and the spectrometer, respectively, will be discussed
in the following Section.

If FROG is combined with spectral interferometry to accurately characterize the reference
pulse, this technique is called TADPOLE (temporal analysis by dispersing a pair of light e
fields, Fittinghoff et al. [300]).

5.1.1.5 Spectral phase interferometry for direct electric-field reconstruction (SPIDER)

The autocorrelation method presented above requires the assumption of a certain pulse shaper
in order to deduce the approximate duration of the laser pulse. Statements about its phase
are nearly impossible. Spectral interferometry allows for the determination of the phase of an
unknown laser pulse. However, a known reference pulse in the same frequency range must
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be available. A method that allows for the full retrieval of the phase and is self-referencing is
called Spectral Phase Interferometry for Direct Electric Field Reconstruction (SPIDER, Iaconis
and Walmsley [301, 302]). Two replica of the input pulse are sheared in frequency with respect
to each other by a nonlinear mixing process. Their interferogramm then allows for the retrieval
of the phase through the same series of windowed Fourier transforms as conventional spectral
interferometry. Therefore, just as spetral interferometry itself, it does not require any iterations
as opposed to FROG.

For SPIDER, all measurements are made exclusively in the frequency domain. A spectral in-
terferogram is generated by the interference of two replicas of the pulse to be characterized. If
the pulses were completely identical, the relative phase between them as retrieved by spectral
interferometry would be zero, and no information on the actual phase of the input pulse could
be gained. Therefore a shear Ω is imparted on the two replicas so that the frequency ω of one
pulse can interfere with the frequency of the other originally located at ω + Ω.

The procedure is as follows: A pair of replicas of the pulse is separated in time by a fixed delay
τ (e.g. by using a Michelson interferometer). SPIDER therefore requires no moving parts. The
two replicas are mixed with a stretched pulse (highly chirped, e.g. in a grating compressor or
by sending the original pulse through a highly dispersive glass rod) in a nonlinear medium.
As the pulses in the test pair are delayed with respect to each other by τ, each is mixed
with a different temporal, and hence spectral, slice of the stretched pulse. The result is a
pair of replicas of the pulse to be characterized that have been frequency shifted and are
spectrally sheared by some amount Ω (Fig. 5.3). The resulting interferogram can then be
written similarly to Eq. (5.14):

ISPIDER(ω) = |E(ω) + E(ω + Ω)e−iωτ|2 =

= I(ω) + I(ω + Ω) + 2
√

I(ω)I(ω + Ω) cos(φ(ω)− φ(ω + Ω)−ωτ). (5.17)

The retrieval of the phase term through windowed Fourier transform then yields the phase
difference between the spectral components at ω and ω + Ω for the same input spectrum:

∆φSPIDER(ω) = φ(ω)− φ(ω + Ω) = ωτ + arg[F−1{Sac(t− τ)}] =

= ωτ + arg
[
F−1

{√
I(ω)I(ω + Ω)eφ(ω)−φ(ω+Ω)−ωτ

}]
. (5.18)

The technique is therefore self-referencing because no reference phase in relation to which
the phase difference is evaluated is needed. The last step of the SPIDER procedure is then
to reconstruct the complete spectral phase φ(ω). This can be done by concatenation of the
spectral phase differences ∆φSPIDER(ω) for a discrete set of frequencies separated by Ω or
integration, using all data points.

Attention has to be paid to several constraints:

1. Since for the reconstruction of the spectral phase the phase differences ∆φSPIDER(ω) are
summed up (or integrated), a careful calibration of the linear phase term ωτ is crucial
to avoid large errors. The easiest and most precise way is to directly measure the time
delay τ by spectral interferometry of the two identical pulses without imparting any
shear.

2. Since SI and SPIDER rely on the analysis of the fringes in the interferogram, the oscilla-
tions in the spectrum must be clearly resolvable. The Nyquist limit requires at least two
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sampling points per oscillations. Since the fringes are approximately spaced by 2π/τ ,
this requires a spectrometer resolution better than δω = π/τ. However, τ must not be
so small that the data inversion routine cannot separate the ac terms from the dc term.
Usually τ can be taken on the order of ten times the original pulse duration.

3. According to the Whittaker-Shannon sampling theorem of information theory, any elec-
tric field pulse whose temporal support is included in the interval [−π/Ω, π/Ω] can be
accurately reconstructed [303]. This requires π/Ω � τ or δω � Ω. In practice, the
ratio of these two quantities is of the order of ten [304]. However, the shear that is too
small will likely lead to errors in the reconstruction in the presence of noise due to the
concatenation of the phase at points sampled by Ω.

4. The chirp Φ′′ introduced by the stretcher or by material dispersion must be sufficiently
large to ensure that each pulse of the time-delayed pulses is upconverted with a quasi-
cw slice of the stretched pulse. Ω is about 5 to 10 percent of the average width of the
input spectrum. The chirped pulse would usually have a duration of several ps.

5. The offset frequency imparted to the time-delayed double pulses in the shearing process
must be taken into account (see below).

Since SPIDER is quite insensitive to the crystal phase-matching bandwidth and to unknown
detector spectral responsitivity, it is well suited to the measurements of ultrabroadband pulses.

+ χ(2)

τ

Ω = −τ/Φ''

Figure 5.3 – Schematical SPIDER working principle: Two time-delayed replicas of the input
pulse are sum-frequency mixed with a strongly chirped pulse in a nonlinear crystal. As a
result, the two pulses are frequency-sheared with respect to each other, creating the SPIDER
interferogram in the spectrometer.

The current principle setup of the SPIDER in our group is displayed in Fig. 5.4. An older setup
was modified by Hofmann [305] and Mark [306]. The input pulse to be characterized is split
into a weak and a strong pulse. The strong pulse is then sent through a highly dispersive glass
rod to cause a strong chirp on this pulse. The pulse is considerably lengthened in time (tens
of picoseconds). This chirp must be so large that the color content during the duration of the
original input pulse is constant with time. The weak pulse is split into two replicas by using
a Michelson interferometer. The interferometer replaced a thin glass plate that was originally
installed in the SPIDER setup to generate the two replicas by using the back-reflection from
the front and back surfaces of the glass plate. The transmitted pulse was used for the stretched
pulse. In principle this works. The disadvantage, however, is that the time delay τ between
the two weak pulses cannot be adjusted but is given by the thickness of the plate. Moreover,
additional reflection at multiples of τ appear in the case of a glass plate. The shear Ω on the
other side is directly related to the time delay τ through the relation Ω = −τ/Φ′′ where Φ′′
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is the quadratic phase of the stretched pulse. Therefore a variable time delay τ proves useful
to control the shear. The interferometer has several other advantages over the glass plate: In
addition to be able to adjust the time delay, the two replicas generated by the interferometer
are completely identical, both in intensity and phase. Moreover, each arm of the interferometer
can be blocked independently, making the determination of the spectral shear a lot easier.

The two weak time-delayed replicas and the long stretched pulse are then temporally and
spatially overlapped in a second-order nonlinear crystal (BBO). The temporal overlap can be
found using a fast photodiode for coarse alignment, and then by controlling the fringe spac-
ing in spectral interferometry between one of the weak pulses and the long pulse. Through
sum-frequency mixing the shear Ω between the two replicas is generated (Fig. 5.3). Since the
two weak pulses are separated in time by τ, they mix with different frequency Ω1 and Ω2
within the long chirped pulse. The pulse pair overlaps temporally with a different section of
the stretched pulse allowing differential frequency shifting. The shear Ω is simply determined
by the frequency difference between these two portions: Ω = Ω1 −Ω2. Note: Given a central
frequency ω0 of the input pulses and therefore also of the long chirped pulse, the mixing
with Ω1 and Ω2 actually transfers the original pulse to approximately twice their original fre-
quency. Therefore, in our case of red 800 nm laser pulses, the SPIDER signal can be found in
the blue region at around 400 nm. This offset frequency must be taken into account when re-
constructing the phase. In fact, E(ω) and E(ω + Ω) in Eq. (5.17) and the subsequent equations
must be replaced by E(ω + Ω1) and E(ω + Ω2), respectively. However, the precise knowledge
of Ω1 and Ω2 is not required [302], only the shear Ω = Ω1 −Ω2 must be determined precisely.

glas block

variable
delay

interferometer

spectrometer

nonlinear
crystal

focusing lens
or mirror

long stretched pulse

original delayed pulses

input pulse

Figure 5.4 – Optical setup for a SPIDER measurement. The original input pulse to be charac-
terized is split into a strong pulse that is temporally stretched in a glass block and into a weak
pulse. The weak pulse is used to create two time-delayed replicas of the input pulse in an
interferometer. By sum-frequency mixing in a nonlinear crystal, a spectral shear is imparted
on the two time-delayed copies as required for SPIDER. The interferogram of these pulses is
recorded in a spectrometer (Figure adapted from [305]).
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Figure 5.5 – SPIDER measurement for our self-phase-modulated laser pulses from the hollow
fiber (see Fig. 4.5). a) Temporal intensity reconstructed from the SPIDER spectrum shown in
the inset. The pulse duration is approximately 21 fs. b) Measured spectrum (left axis) and
retrieved spectral phase (right axis).

Note that the nonlinear sum-frequency mixing is done in a non-collinear fashion in Fig. 5.4.
This way, the second-harmonic signals of each of the pulse pair and the stretched pulse that
propagate along their original paths can be blocked using a hard aperture. The sum-frequency
signals at ω + Ω1,2 are generated along the bisector k + k1,2 due to momentum conservation
and can thus be recorded background-free.

Fig. 5.5 shows a SPIDER measurement of the spectrally broadened and recompressed laser
pulses from the self-phase-modulation fiber of our setup in Fig. 4.5. Fig. 5.5a displays the
temporal intensity reconstructed from the experimentally recorded SPIDER spectrum shown
in the inset. The pulse duration is approximately 21 fs, in accordance with an estimate from
an autocorrelation measurement. The measured spectrum of the laser pulse and the spectral
phase as retrieved by the SPIDER algorithm are depicted in Fig. 5.5b.

Other modifications of SPIDER demonstrated in the literature include zero-additional-phase
SPIDER (ZAP SPIDER, Baum et al. [307]) or a SPIDER setup with a spatially encoded arrange-
ment (SEA-SPIDER, Wyatt et al. [308]).

Since the SPIDER reconstruction algorithm does not allow for the determination of the ab-
solute phase since concatenation is carried out from an arbitrary starting phase, the absolute
phase of few-cycle laser pulses must be measured independently if needed. This can be done
using the stereo-TOF setup by [80]. The few-cycle laser pulse generates photoelectrons in a
gas which are subsequently detected with two time-of-flight electron spectrometers on either
side of the gas jet in the plane of the laser polarization axis. By determining the number of
electrons emitted to the left or to the right in this direction-sensitive setup, the carrier-envelope
phase can be evaluated. A related idea based on the attosecond cross-correlation between an
infrared femtosecond and an UV attosecond pulse was proposed by Bandrauk et al. [309].
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Figure 5.6 – Sideband at (q + 1)ω origi-
nating from the two-photon two-color
ionization of noble gases: absorption
of one harmonic photon at qω plus
one fundamental photon, and the ab-
sorption of one harmonic photon at
(q + 2)ω minus the emission of one
laser photon. This mechanism forms
the physical basis for the determination
of the high-harmonic time structure by
XFROG or RABBITT.

5.1.2 Characterization of high-harmonic pulses

The results on temporal and spatial shaping presented in Ch. 4 demonstrate our capabilities
to generate arbitrary high-harmonic spectra. However, the question of the time structure of
our shaped harmonics as generated in a hollow capillary remains open.

Proper selection of harmonics generated in a gas jet enables pulse durations in the attosec-
ond regime [31–33]. Isolated attosecond pulses [38], generated by phase-controlled few-cycle
light pulses, can be generated when the high-energy continuum part of a harmonic spectrum
is selected using suitable filters. These single attosecond pulses can be characterized using
the attosecond-streak camera method [310] where the vector potential of the fundamental
near-infrared laser pulse is used to deflect the photoelectrons ionized by the high-harmonic
attosecond light pulse. In turn, single attosecond pulses allow for the direct measurement of
light waves of the driving laser [291]. Single harmonics within the discrete harmonic comb,
however, have pulse durations on the order of the fundamental laser pulses, that is in the
femtosecond range [212].

Conventional techniques for the characterization of optical pulses such as FROG [293, 294]
or SPIDER [301, 302] are very hard to implement in the soft-x-ray regime due to the small
photon flux and the vanishing nonlinear susceptibilities. Although implementations such as
XUV SPIDER exist [311–313], most measurements of the duration of harmonic pulses are
based on the investigation of the sidebands [314–318] that arise from the cross-correlation
between the harmonic pulse and a known fundamental infrared laser pulse.

The cross-correlation is based on the photoionization of a noble gas by harmonic photons. The
generated photoelectrons are usually detected with a time-of-flight electron spectrometer. The
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photoelectrons directly map the harmonic spectrum onto the photoelectron spectrum so that
peaks separated by twice the photon energy of the fundamental laser pulse (the spacing of
the harmonics) appear. When an intense fundamental laser pulse used as a probe is scanned
(temporally) over the harmonic pulse, sidebands between the harmonic electron peaks appear
in the photoelectron spectrum stemming from harmonic photoelectrons that absorb or emit
another fundamental photon (Fig. 5.6). From the measured duration of these sidebands the
harmonic duration can be deduced [212, 217].

In order to measure the phase difference between different harmonics for the reconstruc-
tion of the resulting attosecond pulses or attosecond pulse trains, techniques like RABBITT
(reconstruction of attosecond harmonic beating by interference of two-photon transitions
[33, 216, 217]) or FROG CRAB (frequency-resolved optical gating for complete reconstruc-
tion of attosecond bursts [319, 320]) are needed. Since RABBITT does not give access to the
influence of the carrier-envelope phase (CEP) of the driving pulse on high-harmonic genera-
tion because it cancels out, additional schemes involving the beating between two consecutive
spectrally broadened harmonics have been developed [321]. FROG CRAB can even retrieve
the phase of non-identical attosecond pulses. All these schemes rely on two-color two-photon
ionization since two different laser pulse wavelengths (harmonic and fundamental) are used.
Other experiments have demonstrated the feasibility of performing an autocorrelation of the
harmonic pulse, based either on the multi-photon ionization of a noble gas [152, 185] or on
above-threshold ionization using two harmonic photons [188]. Another method relies on the
sampling measurement of soft-x-ray-pulse shapes by femtosecond sequential ionization of
Kr+ in an intense laser field [322].

5.1.2.1 Cross-correlation techniques

Autocorrelation of high-order harmonics is an extremely daunting task. The cross section
for a two-photon-induced transition from an inner-shell bound state to a free state scales
approximately as λ4 [190] and is therefore very small in the XUV region. Since the two-photon
signal depends on the square of the electric field (Eq. (3.6)), this limitation could be overcome
if a sufficiently strong harmonic field was used. However, harmonic photon numbers are still
very limited.

Therefore, historically, cross-correlation schemes with a strong reference pulse (Sec. 5.1.1.2
and 5.1.2.1) were employed first to determine the time structure of high-order harmonics. In
this two-color detection scheme noble gas atoms are first ionized by the radiation to be char-
acterized. Direct photoelectron peaks map the photon spectrum onto the electron spectrum if
secondary processes such as Auger decay are not considered. If another photon from the ref-
erence pulse is absorbed or emitted in the continuum state, sidebands appear on either side
of the original photoelectron peak (Fig. 5.6). They are, in first approximation, proportional
to the product of both beam intensities and therefore supply a cross-correlation signal from
which the harmonic duration can be obtained. In a full quantum-mechanical treatment the
absorption or emission of photons by an electron in the continuum can be described as stimu-
lated inverse bremsstrahlung [323]. The sidebands are only present during the time period of
temporal overlap between the two pulses. Temporally scanning the reference pulse across the
unknown pulse allows for the retrieval of the approximate original pulse duration according
to Eq. (5.9), provided that the fundamental signal is known.

For the cross-correlation, relatively moderate intensities are needed for the reference pulse

Carsten Winterfeldt: Generation and control of high-harmonic radiation (Diss. Univ. of Würzburg, 2006)



5.1 Temporal characterization methods 97

Figure 5.7 – Photoelectron spectra of helium in the
presence (solid line) and absence (dashed line) of
the dressing laser pulse. The appearance of side-
bands and the ponderomotive shift (inset) is clearly
visible (Figure from Glover et al. [315]).

as compared to above-threshold ionization (ATI). This can be understood from the classcial
simple man’s model: The average kinetic energy U of an electron with initial kinetic energy
Ui introduced into the external optical field E0 cos(ωt) at the time t0 is determined by [314]

U ≈ Ui −
√

8UiUp sin(ωt0) cos θ + Up[1 + 2 sin2(ωt0)], (5.19)

where the intensity-dependent ponderomotive energy Up is given by Eq. (3.52) and θ is the
angle between the light polarization and the velocity vector of the electron. The last term
in Eq. (5.19) can be neglected if Ui � Up. Since according to the rule-of-thumb (Eq. (3.55))
the ponderomotive energy Up is smaller than 1 eV even for intensities in the range of 1012 −
1013 W/cm2, this condition is generally true for photoelectrons generated by high-order har-
monics. Depending on the release time t0 and the angle θ, the initial energy Ui can be shifted
by a maximum amount of

∆U =
√

8UiUp. (5.20)

For reference pulse durations above the few-cycle limit, this energy change will be quantized
as a multiple of the photon energy h̄ω, resulting in the appearance of a number of sidebands
on either side of the zero-field peak which can be calculated from

N =
∆U
h̄ω

=
√

8UiUp

h̄ω
. (5.21)

Eq. (5.21) clearly shows that even for very modest values of Up sidebands can be observed
since Ui is typically much larger than Up. Schins et al. [314] used this dependency in the ob-
servation of laser-assisted Auger decay in argon to determine the time duration of x-ray pulses
from a laser-generated gallium plasma. The laser intensity was always less than 1 TW/cm2

which is sufficient to observe sidebands but is smaller than what is needed for the generation
of photoelectrons from argon by this dressing beam.

The first observation of laser-induced free-free transitions in the primary photoelectron spec-
tra of gaseous helium ionized by ultrashort soft-x-ray pulses and the first direct measurements
on the temporal duration of femtosecond high-order harmonics was reported by Glover et al.
[315]. Fig. 5.7 shows the corresponding photoelectron spectra of helium obtained by the pho-
toionization of helium by high-harmonic radiation in the presence (solid line) and absence

Carsten Winterfeldt: Generation and control of high-harmonic radiation (Diss. Univ. of Würzburg, 2006)



98 High-harmonic time structure

Figure 5.8 – Original sketch of the setup used to
generate a doughnut-shaped (annular) laser beam.
A central beam stop allows for the creation of an
annular laser beam. Harmonics are mainly gener-
ated on axis and can easily be separated from the
fundamental laser beam with suitable optics (Fig-
ure from Peatross et al. [328]).

(dashed line) of the dressing near-infrared 800 nm laser pulse. Transient sidebands appear
in integral units of the photon energy from which the pulse duration can be deduced. Fur-
thermore, the peaks are shifted to lower energies compared to the field-free case. This shift is
not due to space-charge effects but is caused by the ponderomotive shift [324–327]. It varies
linearly with the intensity of the dressing pulse and can be used to calibrate their intensity.
The ponderomotive potential effectively increases the binding energy of an atom in a high-
intensity laser field. This can be understood either in terms of an ac Stark shift of continuum
states or, equivalently, by the fact that the photoelectron must acquire sufficient energy at the
moment of ionization in order to exist as a positive energy electron oscillating in the laser
field [130, 315]. This energy is subtracted from the initial energy Ui of the photoelectron ion-
ized by the soft-x-ray pulses. The energy of the electrons exposed to both frequencies can
correspondingly be written as

Eq,n = ωXUV ± nωIR − Ip −Up, (5.22)

where ωXUV = qωIR (harmonic order q) and ωIR are the photon energies, n is an integer num-
ber specifying the number of absorbed or emitted IR photons, Ip is the field-free ionization
potential, and Up is the ponderomotive potential [317].

Schins et al. [316] simultaneously performed similar experiments for the 21st harmonic of a
800 nm laser. The advantage of using free-free transitions in this mixed-color two-photon
process in the perturbative regime is that no lifetime effects due to bound states are involved.
If only one photon is absorbed or emitted by the XUV photoelectron, the sideband is linear in
both field intensities and can be written as

I(q+1)ω(τ) =
∫

dt Iqω(t− τ)Iω(t), (5.23)

which is the same as Eq. (5.9) with the appropriate fields inserted. If more than one harmonic
is present in the radiation spectrum, a sideband may result from two possibly interfering
contributions, which are, however, still linear in intensity. Higher-order processes such as a
1 + 3 photon two-color ATI process would destroy this linearity. This scenario can be avoided
if the intensity of the dressing laser is kept sufficiently low. In each of the two experiments,
the harmonics were focused using a MoSi (molybdenum-silicon) multilayer mirror.

The lower limit of the measurable pulse width is imposed by the pulse width of the reference
pulse for a usual cross-correlation measurement, while it is limited by the optical period for
FROG or SPIDER [187].

At this point it is useful to introduce the concept of employing annular laser beams for har-
monic generation. Since the harmonics created in a laser focus are emitted in the same di-
rection as the propagating laser, they must be separated from the driving laser before they
can be utilized. This can be done with a grating or a suitable filter. However, care must be
taken with regard to the damage threshold of these two optics, and in addition both methods
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are accompanied by a substantial reduction in photon number. Peatross et al. [328] demon-
strated an alternative approach for eliminating the laser light from the path of the harmonic
light. An annular profile is impressed onto the laser beam that generates harmonics simply
by placing a central block into the beam of an axially peaked laser (Fig. 5.8). In the focus this
laser beam will be axially peaked provided that its phase profile before focusing is uniphase.
A non-uniphase annular beam such as a TM01 mode does not have an axially peaked focus.
Since harmonic generation is a highly nonlinear process and since the harmonic wavelength is
considerably shorter than the fundamental wavelength, the divergence of the harmonic beam
is very small. Harmonics are mainly emitted close to the beam axis so that by placing a suit-
able beam stop after the focus the laser light can be blocked while the harmonics propagate
unperturbed. The fundamental laser can be refocused using an appropriate optical element
and be used as a probe pulse for high-harmonic cross-correlation measurements.

A more detailed study of the chirp of high-order harmonics on femtosecond and attosecond
time scales as obtained from two-photon cross-correlation experiments will be presented in
Sec. 5.2.

5.1.2.2 High-harmonic autocorrelation and frequency-resolved gating

Due to the extremely small susceptibilities in the XUV region and the low photon flux of
high harmonics, autocorrelation techniques for the temporal characterization of this radiation
pose a daunting task since the signal involves a nonlinear process of at least second order.
Another problem is given by the lack of suitable beam splitters in the XUV region which makes
it difficult to produce two replicas of the unknown pulse2. However, several groups have
managed to overcome these obstacles and to record autocorrelation traces of high harmonics,
which will be briefly summarized in the following.

Autocorrelation measurements in the XUV region were demonstrated for the first time by
Kobayashi et al. [332]. A pulse duration of 27 fs was obtained by two-photon ionization of he-
lium for the ninth harmonic generated by a Ti:sapphire laser in xenon. Two time-delayed repli-
cas of the fundamental pulses were produced prior to high-harmonic generation. This exper-
iment showed the feasibility of performing nonlinear optics at XUV wavelengths. Kobayashi
et al. [185] also exploited the three-photon ionization of helium for the determination of the
pulse width of the seventh harmonic by autocorrelation.

The first direct determination of the temporal characteristics of harmonic pulses in the subfem-
tosecond regime by measuring the second-order autocorrelation trace of a train of attosecond
pulses was demonstrated by Tzallas et al. [152]. The group recorded the nonlinear volume
autocorrelation trace (spatial redistribution of energy as a function of delay due to the shift
of the foci in the gas plume) of the harmonics 7 to 15 from a xenon gas jet, which showed
evidence for attosecond light bunching. Wavefront splitting by a spherical mirror cut into two
halves was used to replace the beamsplitter unavailable in this wavelength region. The two
parts were then brought to a common focus in a helium gas jet where the two-photon nonres-
onant ionization process served as an appropriate nonlinear detector with a sufficiently flat
response [186, 333]. The choice of the filter material and the nonlinear medium allowed only
two-photon ionization, either by two photon of the same energy or by any combination of the
transmitted harmonics. The average duration of one pulse within the pulse train was found

2Transmission gratings were demonstrated as high-harmonic beamsplitters in Michelson interferometers [329–
331].
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to be 780 as. However, no information regarding individual pulse durations or spacings can
be inferred. A more detailed analysis of these results is given in Nikolopoulos et al. [334].

In the experiments on autocorrelation mentioned so far, two-photon ionization was exploited
as the required nonlinear process. However, this method is limited to relatively low-order
harmonics because higher orders can already induce one-photon ionization. Miyamoto et al.
[187] reported the first experimental observation of single-color two-photon above-threshold
ionization in argon, xenon, and helium in the XUV range at 25 eV photon energy in spite of
the small cross-sections for this process. Sekikawa et al. [188] then used the technology of
single-color two-photon ATI to demonstrate for the first time an autocorrelation measurement
of XUV pulses with photon energies larger than the ionization energy of helium. They gen-
erated the ninth harmonic of blue 400 nm laser at 27.9 eV with an extremely large bandwidth
[100] that supported the production of isolated sub-femtosecond laser pulses from a single
harmonic. Two optically delayed replicas of the driving pulse were again used to avoid the
XUV beamsplitter. An 8-fs driving pulse yielded harmonic pulse durations of 950 as.

A mode-resolved autocorrelation technique also relying on the analysis of two-photon above-
threshold ionization spectra of electrons allowed the first determination of the chirp in the
attosecond pulse train with an autocorrelation technique [335], labeled PANTHER (photoelec-
tron analysis with nonresonant two-photon-ionization for harmonic electric-field reconstruc-
tion) by the authors.

Very recently, the interferometric autocorrelation of an attosecond pulse train was demon-
strated for the first time by Okino et al. [336]. The detected signal of N+ ions with two-photon
absorption of the harmonic fields exhibits interferometric fringes on the correlation trace of
the envelope. The contributions of the 9th, 11th, and 13th harmonic field are clearly visible
in the Fourier transform of the autocorrelation trace, in perfect agreement with a calculated
trace.

The first extension of high-harmonic autocorrelation towards high-harmonic FROG was ac-
complished by Sekikawa et al. [337] who characterized the temporal profile and phase of the
fifth harmonic of a Ti:sapphire laser. The FROG setup was based on two-photon ionization
and can be analyzed in the same way as SHG FROG. The first XFROG measurements in the
XUV region utilizing laser-assisted two-photon ionization were demonstrated by Norin et al.
[338] and Sekikawa et al. [318].

As an extension of their previous experiment [188, see above], Kosuge et al. [339] very recently
performed the first frequency-resolved optical gating measurement of an isolated attosecond
harmonic pulse. From the FROG trace based on two-photon ATI, the shape and phase of
the 860 as pulse could be determined simultaneously. This is the first full characterization of
isolated attosecond pulses in the XUV region.

5.1.2.3 XUV-SPIDER

For the characterization of ultrashort pulses at XUV wavelenghts, the technique of spectral
phase interferometry for direct electric field reconstruction (SPIDER, see Sec. 5.1.1.5) can be
adapted to this wavelength region. The difficulty is to generate two time-delayed replicas of
the XUV pulse and to impart a spectral shear on them.

SPIDER cannot be directly applied to attosecond soft-x-ray pulses because no optical nonlinear
process is available in this spectral range to induce the required frequency shift. Apart from
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the all-optical setup by Mairesse et al. [313] where the shear is imparted on the driving laser
pulses prior to harmonic generation, several works [311, 312] therefore proposed to apply
SPIDER to photoelectron wave packets produced by the ionization of atoms by high-harmonic
photons. The two key questions to be solved for the application to SPIDER are whether such
electron wave packets interfere so that the interference pattern can be evaluated for spectral-
interferometry-type measurements and whether it is possible to impart the required shear
between these wave packets.

It has been shown by Wollenhaupt et al. [340] that a pair of two ultrashort laser pulses can be
used to generate free electron wave packets in the ionization continuum. These electron wave
packets can interfere in an electron spectrometer, creating an interferogram. Interference of
electron wave packets has also been demonstrated by Remetter et al. [278], Weinacht et al. [341]
for the characterization of (Rydberg) wave packets. This technique can in principle be used to
perform spectral interferometry of XUV harmonic pulses. However, pulse characterization by
spectral interferometry requires knowledge of the amplitude and phase of the reference pulse
(see Sec. 5.1.1.4).

As for the required shear, Mauritsson et al. [311] proposed to have a strong IR pulse interacting
with the gas at the same time as the second replica of the XUV pulse. The ponderomotive
potential of the strong laser shifts the ionization potential of the gas and hence the energies of
the photoelectrons produced by the second pulse, thereby introducing the required shear. In
order for the ponderomotive shift to be well defined, the IR pulse must be long enough to shift
the photoelectron spectrum without changing its shape (the ponderomotive potential must be
approximately constant) but short enough to only influence the second pulse. Moreover, the
duration of the XUV pulse must be longer than the period of the electric field. This proposal
therefore applies to longer pulses, e. g. to characterize single harmonics.

A method incorporating attosecond spectral shearing interferometry that allows to fully char-
acterize pulses shorter than ∼ 400 as was proposed by Quéré et al. [312]. Two time-delayed
replicas of the XUV pulse produce wave packets through photoionization of atoms in the pres-
ence of a strong laser field, which provides the required energy shift. This is accomplished by
the so-called streaking method (see Sec. 5.1.2.5). The laser field induces a change of the electron
energy through a change of the velocity vector (see Eq. (5.24)), depending on the laser electric
field strength, on the time of ionization t0, and on the observation angle θ, measured from
the laser polarization direction. At θ = π/2, the energy shift is independent of the original
energies of the photoelectrons, allowing an exact mapping of the XUV SPIDER onto optical
SPIDER. The x-ray pulse can then be reconstructed with the algorithm developed for optical
pulses.

The first complete temporal characterization of high-harmonic XUV pulses by spectral phase
interferometry with an all-optical setup was demonstrated by Mairesse et al. [313]. In this
work, the authors used a Dazzler [342], which works on the principle of diffraction of the
incident optical wave from an acoustic wave, to produce time-delayed replicas of the driving
laser pulses prior to harmonic generation. The Dazzler can be programmed to automatically
introduce a shear δω during the generation of two time-delayed pulses. The high-harmonic
pulses generated by such a pair of driving laser pulses will consequently be automatically
frequency-shifted by Ω = q δω and time-delayed, allowing to record a SPIDER interferogram
with a micro-channel-plate-coupled CCD camera, without the intermediate steps of photo-
electron wave packets created by high harmonics. A dazzler was also used by Kornelis et al.
[343] who produced frequency-sheared time-delayed extreme-ultraviolet pulses by a strongly
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chirped (third order) driving laser pulse.

5.1.2.4 Spectral interferometry between consecutive harmonics

A different method to retrieve the phase differences between consecutive harmonics was ex-
perimentally demonstrated by Sansone et al. [321]. It relies on the spectral interferometry
pattern that arises from the interference between overlapping spectral regions of two consec-
utive harmonics. In general two harmonics do not overlap. However, a spectral overlap is
necessary to apply spectral interferometry (Sec. 5.1.1.4). Therefore the first step is the use of
a physical mechanism that leads to sepctral broadening of the harmonic peaks. As shown
in Sec. 3.4.6 the temporal variation of the harmonic phase as a function of the intensity of
the driving laser pulse leads to a variation of the instantaneous frequency, broadening the
spectrum of each individual harmonic. This phase dependence is much larger for the long
quantum path, which can be selected by positioning the gas jet at the laser focus. When the in-
tensity is increased high enough, the harmonic peaks eventually overlap in the spectral region
between consecutive odd harmonics, where distinct spectral peaks are formed, provided that
the carrier-envelope phase (CEP) is stabilized. This beat pattern resulting from the spectral
superposition of the temporally delayed components can be experimentally measured and
evaluated using the algorithm of Fourier-transform spectral interferometry.

5.1.2.5 Attosecond streaking

The idea of the attosecond streak camera [310] is that an electron generated by x-ray pho-
toionization can be deflected by a strong laser field, whose phase at ionization determines
the energy and angle distribution of the electron. The ionization of atoms by x-rays in the
presence of laser fields also forms the basis for the cross-correlation measurement presented
above. However, in those cases, the duration of the XUV pulses was longer than the optical
period of the laser field. Here we consider XUV pulses with durations shorter than the opti-
cal cycle of the dressing field (subcycle pulses). The sidebands broaden and merge (causing
interference), and the ponderomotive shift is no longer observable [310]. By appropriately
choosing the laser phase, the interferences can either lead to spectral distortions that are sub-
sequently used in the attosecond streak camera or can shift the whole photoelectron spectrum
without distortion, making attosecond SPIDER as presented above possible.

In the limit where the ponderomotive potential Up is much larger than the laser frequency ω
and the x-ray photon energy is much larger than the ionization potential, the time-dependent
velocity v(t) of the electrons in the laser electric field with the vector potential A(t) is ex-
pressed as [310]

v(t) = − e
m

A(t)︸ ︷︷ ︸
quiver motion

+ v(t0) +
e
m

A(t0)︸ ︷︷ ︸
final drift velocity

, (5.24)

where t0 is the moment of ionization. In Eq. (5.24), the term describing the quiver motion
of the electron vanishes as the laser pulse ends. The term labeled ”final drift velocity” is
the drift velocity of the electron after the laser pulse is over. The additional contribution of
A(t0) to the final drift velocity represents gain or loss of energy from the laser field due to
energy conservation [324] and can be interpreted as the absorption, emission, and scattering
of laser photons by the photoelectron. Therefore the velocity distribution is translated by an
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Figure 5.9 – Photoelectron spectra from the atomic
transient recorder [38]. The photoelectrons gener-
ated by a single attosecond pulse in the presence of
a phase-stabilized few-cycle laser field allow for a
direct probing of the vector potential of this laser
pulse. The light field oscillations are clearly visible.
The inset shows the doubled periodicity when the
carrier-envelope phase is left unstabilized (Figure
from Kienberger et al. [38]).

amount δv = e
m A(t0) in the presence of the laser field. The direction of δv depends on the

laser field polarization. The final velocity (and thus the energy distribution) of the electrons
will also depend on the time of ionization t0. This allows a mapping of the momenta of the
electrons on the phase of the laser field, which can then be used to characterize the initial XUV
pulses. The resulting photoelectron spectra (kinetic energies of the electrons) depend on the
ponderomotive potential Up(t0) at the time of ionization (through the vector potential A(t0)),
the observation angle θ, and the laser polarization. Depending on the chosen configuration,
the photoelectron spectra are broadened in energy or angle. Itatani et al. [310] also present a
quantum-mechanical calculation with expressions for the amplitude of populating a state |v〉
with kinetic momentum v, which of course also depends on the vector potential A(t). Since
this is not important for understanding the principle of streaking measurements, the reader
shall be referred to this publication for more details.

The phase dependence of the shifts and broadening of the electron spectra was used to charac-
terize single harmonic pulses on the sub-femtosecond time scale. Hentschel et al. [32] demon-
strated the first experimental verification of the existence of isolated attosecond pulse in an
extension of a previous experiment [30]. Harmonic radiation near the cut-off around 90 eV
was selected and the momentum transfer from the infrared laser field to the harmonic photo-
electrons exploited to observe a shift and a broadening of the spectra. A modulation of this
signal at twice the fundamental frequency could be seen although the carrier-envelope phase
of the laser was not stabilized. In this case, we would expect the momentum shift caused
by the laser to be smeared out due to the fluctuations of the absolute phase. The fact that
the modulation is still visible is attributed to the inherent phase stabilization in the cut-off
region. The highest harmonic orders can only be generated for a ± cos laser pulse, which
is also required for the apparition of single attosecond pulses. This way, the photoelectron
signal is only visible for a cos-like laser pulse, even without active phase stabililization. The
ambiguity of the sign of the cosine function is responsible for the observed doubled modu-
lation frequency. A fit to a theoretical model of two-color x-ray photoionization allowed the
extraction of a pulse duration of 650± 150 as for the harmonic pulse.

Fig. 5.9 shows the original image from the work of Kienberger et al. [38] in an enhanced
version of the experiment with a phase-stabilized few-cycle laser pulse. The photoelectrons
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generated by a single attosecond pulse in the presence of a phase-stabilized few-cycle laser
field allow for a direct probing of the vector potential of this laser pulse. The light field
oscillations are clearly visible. The inset shows the doubled periodicity when the carrier-
envelope phase is left unstabilized. The retrieved XUV pulse duration is 250 as. The direct
measurement of light waves is now possible using the new tool of attosecond high-harmonic
pulses [291].

In the attosecond streaking measurements presented above, the time-dependent vector poten-
tial of the dressing infrared pulse (and thus the electric field) was used to modify the electron
energies. Ponderomotive streaking, where the change of the ponderomotive potential Up (de-
termined by the envelope of the electric field) at the rising edge of a dressing laser pulse [344]
was to used transiently shift the ionization potential Ip [345], was performed by Toma et al.
[327].

5.2 Frequency chirp of harmonic (femtosecond) pulses and attosec-
ond pulses

As it was shown in Sec. 2.4, the temporal structure of ultrashort light pulses is not simply
determined by the spectral content of the radiation. A broad spectrum is a necessary condition
for the generation of femtosecond and attosecond pulses, but it is not sufficient. A suitable
relationship must exist between the different spectral components. In most cases a flat phase
is desirable for the generation of bandwidth-limited pulses.

In order to determine the time structure of high-order harmonics and to use their potential
to generate attosecond pulse trains and even isolated attosecond pulses, knowledge of the
phase is crucial. Let us therefore rewrite Eqs. (3.88) and (3.89) in more detail to include the
various contributions to the harmonic phase. The dipole moment µq of the qth harmonic can
be written as a sum over all contributing quantum paths [346]:

µq = ∑
j

Aq
j exp

[
iΦq

j ([rj(ti, tr, p)])
]

, (5.25)

where each path rj(ti, tr, p) with the amplitude Aq
j is labeled by the index j. The important

term in Eq. (5.25) is the phase term:

Φq
j ([rj(ti, tr, p)]) = qωtr −

∫ tr

ti

(
1
2
[p− A(t)]2 + Ip

)
dt. (5.26)

The quantities determining the value of the phase are the frequency ω and the vector potential
A of the driving laser, and the electron ionization and recombination times, ti and tr. Ip is
again the ionization potential, and p is the drift momentum of the electron. The parameter α

q
j

already mentioned in Eq. (3.89) describes the intensity dependence of the phase [346]:

α
q
j = −

∂Φq
j

∂I
. (5.27)

The corresponding values for the first (short) and second (long) trajectory can be found using
a modified time-frequency analysis (see Eq. (3.90)). The dependence of the short quantum
orbit on the intensity of the generating laser pulse is much weaker, but the fast variation
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of this intensity during the driving laser pulse nonetheless induces a frequency chirp on
the harmonic pulse by the temporal modulation of the harmonic phase Φq

j . According to
Eq. (2.40), the instantaneous frequency can be calculated with the first derivative of the phase,
so that the frequency chirp bq

j is given by the second time derivative [346]:

bq
j = −

∂2Φq
j

∂t2 = −
∂Φq

j

∂I
∂2 I
∂t2 −

∂2Φq
j

∂I2

(
∂I
∂t

)2

≈ 8 ln 2
I0

τ2
0

∂Φq
j

∂I
, (5.28)

where the last approximation is valid for a Gaussian fundamental laser pulse of duration τ0.
The harmonic chirp is negative: ”blue” frequencies are located at the leading edge of the
harmonic pulse and are therefore ahead of the ”red” frequencies which travel at the falling
edge of the pulse. The magnitude of the chirp depends on the the laser peak intensity I0 and
on the derivate ∂Φq

j /∂I. It is therefore inversely proportional to the square of the fundamental
pulse duration and depends on the order q. This shows that electrons with different return
energies travel along different trajectories.

If the fundamental pulse possesses a chirp of the form Φfund = −ωt− bfundt2/2, this phase is
added as q times the fundamental chirp to the chirp of the emitted harmonics:

bq
j = −

∂2Φq
j

∂t2 + qbfund. (5.29)

XFROG measurements based on the two-color two-photon ionization of rare gas atoms [347]
allows us to determine the frequency chirp rate bq

j in addition to the pulse duration of the
harmonics. The sideband spectrum caused by the ionization of electrons by the harmonic
photons and subsequent absorption or emission of a fundamental photon can be written as:

S(ω, τ) =
∣∣∣ ∫ +∞

−∞
dt eiωtEXUV(t)EIR(t− τ)

∣∣∣2. (5.30)

The duration of the XUV pulses τXUV can be obtained from the duration of the sideband τSB
according to [212]

τXUV =
√

τ2
SB − τ2

IR − τ2
geo (5.31)

if the duration τIR of the infrared probe pulse is known (e. g. from a SPIDER measurement).
The geometrical factor τgeo accounts for the slightly noncollinear geometry of the experiment.
The chirp rate bXUV is proportional to the sideband chirp rate bSB:

bXUV = bSB

[
1 +

τ2
IR + τ2

geo

τ2
XUV

]
. (5.32)

Mauritsson et al. [212] examined the influence of transform-limited and both positively and
negatively chirped fundamental pulses on the frequency chirp of the harmonics. Fig. 5.10

(upper panel) shows the corresponding photoelectron spectra obtained from sideband 18 as
a function of time. The lower panel presents the solution of the time-dependent Schrödinger
equation in slowly varying envelope, paraxial, and single-active-electron approximations. The
chirp of a given sideband q is the average chirp of harmonics q− 1 and q + 1. However, since
the slope of the sidebands does not vary rapidly with order, this is sufficient to extract the
desired information. Harmonics were generated with a 35-fs transform-limited 815 nm laser
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Figure 5.10 – Measured (top panel) and simulated (bottom panel) photoelectron spectra cor-
responding to sideband 18 as a function of time. For (c) the fundamental pulse is transform
limited while the fundamental chirp increases towards higher negative values to the left (b,a)
and towards higher positive values (d,e) to the right. The harmonics are negatively chirped
in the case of a transform-limited fundamental pulse (Figure adapted from Mauritsson et al.
[212]).

pulse, a 12-fs transform-limited probe pulse was used to generate the sidebands. The chirp of
the pump pulse could be adjusted by introducing glass plates in either beam and adjusting the
compressor to always obtain transform-limited probe pulses. For a flat phase on the pump
beam, harmonics are clearly negatively chirped (Fig. 5.10c). The harmonic negative chirp
increases if also the pump pulses are negatively chirped (Fig. 5.10b,a). A positive chirp on
the fundamental pulses (Fig. 5.10d,e) can compensate for the negative harmonic chirp. Note
that in addition to the single-atom response given by Eq. (5.26) macroscopic time-dependent
effects such as ionization must be taken into account. These can be neglected if the ionization
is low.

Since the chirp considered so far determines the temporal structure of single harmonics on
the femtosecond time scale, it is called femto chirp. The harmonic chirp is a direct consequence
of the temporal variation of the driving laser intensity and vanishes for a constant laser in-
tensity. Effectively, the harmonic chirp is always present because laser pulses are used for
high-harmonic generation. Since the driving laser intensity changes from cycle to cycle, the
contributing electron trajectories are also changed in time to keep the same return kinetic en-
ergy for the generation of the same harmonics, thereby temporally modulating the harmonic
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Figure 5.11 – Emission times tq
e,j of the short and

long trajectories calculated as a function of har-
monic order for two different intensities. The emis-
sion times vary approximately linearly with order,
increasing for the short trajectory and decreasing
for the long trajectory, until they coincide for har-
monics in the cut-off region (Figure adapted from
Mairesse et al. [33]).

phase. Therefore the time scale of the harmonic chirp or femto chirp is determined by the
laser pulse envelope.

As opposed to the femto chirp, the time scale of the so-called atto chirp is the laser cycle. Dif-
ferent harmonic orders originate from different return kinetic energies and thus from different
electron trajectories, leading to different emission times within an optical cycle. The atto chirp
is always present, even at fixed laser intensity. It describes the phase relationship from one
(monochromatic) harmonic peak to the next and is therefore important for the generation of
attosecond light pulses. The complete phase of high-order harmonic is composed of a slow
variation of the central phase of the single harmonic peaks (atto chirp) and an additional
variation around each harmonic frequency (femto chirp).

Although the harmonic chirp lives on a femtosecond time scale governed by the laser pulse
envelope, it controls the spacing of the attosecond pulses within an attosecond pulse train due
to its order dependence [212, 346]. For the short trajectory, the spacing between the attosecond
light bursts increases throughout the train. Since the harmonic chirp is negative, the variable
spacing can be compensated with a positively chirped driving laser pulse.

Mathematically, let us consider the electric field of the coherent sum of harmonic orders from
qi to q f at a fixed laser intensity. A fixed laser intensity essentially means a monochromatic
laser field, and the harmonics are now discrete spikes. The atto chirp is the phase difference
between those spikes. The complete electric field can be written as [346]

E(t) =
q f

∑
q=qi

µqe−iqωt = ∑
j

q f

∑
q=qi

Aq
j e−i(qωt−Φq

j ). (5.33)

The derivatives of the spectral phase Φq
j with respect to harmonic frequency (or equivalently,

harmonic order) are responsible for the temporal characteristics of this attosecond pulse train.
The first derivative is the group delay (cf. Eq. (2.58b)) and can be identified as the real part of
the recombination time tr of the trajectory leading to the emission of the considered harmonic.
It is also called emission time [33, 346]:

tq
e,j =

1
ω

∂Φq
j

∂q
. (5.34)

The emission times vary approximately linearly with order for harmonics in the plateau re-
gion, increasing for the short trajectory and decreasing for the long trajectory, until they
coincide for harmonics in the cut-off region (Fig. 5.11) where the harmonics are perfectly
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Figure 5.12 – Photoelectron spectrum from the
two-photon two-color ionization of argon by har-
monic and fundamental photons (RABBITT mea-
surement). The oscillations of the sidebands due to
the interference term are clearly visible. The shift of
the emission time for different harmonic orders can
be seen from the tilt of the thick white line along the
location of the sideband maxima. The thin white
line is vertical (Figure adapted from Mairesse et al.
[33]).

phase-locked [191]. The linear increase (decrease) leads to an approximately constant positive
(negative) group delay dispersion given by the second-order spectral phase ∂2Φq

j /∂q2, which
becomes zero in the cut-off region. If both the short and the long trajectories contribute to
the harmonic radiation, the temporal profile will be severely distorted due to the considerable
variations of the phase over the available bandwidth. The selection of one class of quantum
paths (preferably the short one) through phase matching or spatial filtering (see Sec. 3.4.6) is
therefore desirable to obtain clean attosecond pulses.

The measurement of the relative phase between harmonics was first demonstrated by Paul
et al. [31] with a technique called RABBITT (Reconstruction of Attosecond Beating By Inter-
ference of Two-photon Transitions) as proposed by Muller [216]. By the evaluation of all phase
changes experienced by the harmonics and the probe during the propagation from the gen-
eration to the ionization points (due to dispersion, geometrical effects, or other processes), an
extended version [348] of the first RABBITT experiment [31] yielded the absolute timing of
the high-harmonic attosecond pulse train with respect to the generating IR pump cycle at the
generation point.

RABBITT is essentially based on the two-photon two-color ionization of rare gases such as
the XFROG measurement of high harmonics presented above. Three main differences exist,
though: first, the two beams must necessarily propagate collinearly (this can be realized with
an annular laser beam, see above), a nonlinear setup is not possible; second, the IR probe
pulse duration need not be ultrashort as required by XFROG; third, the relative delay between
the two pulses must be stable and be controlled on the time scale of one laser cycle. If these
conditions are met, we can see oscillations of the sideband spectrum as a function of delay
(Fig. 5.12) due to the interference of the two multi-photon processes that lead to the same final
continuum state at q + 1 in the sideband: absorption of one harmonic photon at q plus one
fundamental photon, and the absorption of one harmonic photon at q + 2 minus the emission
of one laser photon (Fig. 5.6).

The corresponding two-photon sideband spectrum can be written similarly to Eq. (5.30) as
[217]

S(ω, τ) =

∣∣∣∣∣
∫ +∞

−∞
dt eiωt|EXUV(t)||EIR(t− τ)|

[
e−iΦq

j eiωIRτ + e−iΦq+2
j e−iωIRτ

] ∣∣∣∣∣
2

. (5.35)

where we have explicitly shown all contributing phase terms. |EXUV(t)| and |EIR(t − τ)| are
the envelopes of the XUV and IR electric fields, while Φq

j and Φq+2
j are the harmonic absolute
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Figure 5.13 – Time structure of harmonic emission
in neon. The yellow filled curve corresponds to
the full bandwidth from H25 to H69 and shows
the strong distortion and broadening of the pulse.
The selection of five consecutive harmonics in dif-
ferent spectral range (red: H25–H33, green: H35–
H43, blue: H45–H53, purple: H55–H63) allows for
shorter pulses and shows the shift of the emission
times with respect to the laser field envelope (dot-
ted line). Low orders are emitted close to the peak
while the highest orders are emitted at the zero-
crossing of the laser field (Figure adapted from
Mairesse et al. [33]).

phases of the harmonics q and q + 2, respectively, that contribute to the sideband at q +
1. Factorization of the phase term leads to an oscillatory term in the sideband spectrum
proportional to

cos(2ωIRτ + ∆Φq+1) (∆Φq+1 = Φq+2
j −Φq

j ), (5.36)

where ∆Φq+1 is the relative phase difference between consecutive harmonics at qωIR and
(q + 2)ωIR from which the emission time 2ωIRtq+1

e,j ≈ ∆Φq+1 at the frequency (q + 1)ωIR can
be calculated [33].

For the case of the characterization of single attosecond pulses or very short trains of such
pulses where the photoelectrons produced by single- and two-color multiphoton ionization
have overlapping energy distributions, Aseyev et al. [349] proposed to exploit their angular
distribution to distinguish single-photon and two-photon events.

Fig. 5.12 [33] shows a RABBITT measurement of harmonics 13 through 23 in argon. In the
photoelectron spectrum from the two-photon two-color ionization of argon the oscillations of
the sidebands resulting from the interference of the two contributions according to Eq. (5.36)
are clearly visible. The shift of the emission time for different harmonic orders (Eq. (5.34)) can
be seen from the tilt of the thick white line along the location of the sideband maxima. The
thin white line is vertical. The dephasing of the sideband oscillations as a function of order is
a direct indication of the lack of synchronization, leading to order-dependent emission times.

The reconstruction of the temporal profile of harmonic emission in neon from the measured
data is shown in Fig. 5.13 (from Mairesse et al. [33]). The yellow filled curve corresponds to
the full bandwidth from H25 to H69 and shows the strong distortion and broadening of the
pulse. The selection of five consecutive harmonics in different spectral ranges (red: H25–H33,
green: H35–H43, blue: H45–H53, purple: H55–H63) allows for shorter pulses and shows the
shift of the emission times with respect to the laser field envelope (dotted line). Low orders are
emitted close to the peak while the highest orders are emitted at the zero-crossing of the laser
field (Figure adapted from Mairesse et al. [33]). This temporal drift in the emission process for
different orders directly mirrors the dynamics of the electrons responsible for high-harmonic
generation and sets a limit on the minimum pulse duration that can be achieved by increasing
the bandwidth without external phase control.

Experimentally, it is difficult to achieve a selection of a range of harmonics. For conventional
filtering, a material with the specific transmission and absorption characteristics must be avail-
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able. Even if there is one for a certain range, tuning of this range is not possible due to the
lack of ”neighboring” filter materials. The use of gratings is excluded since either the time
resolution is lost in the case of one grating or too many photons are lost in a compensated
two-grating configuration. The selection of ranges of harmonics by adaptive pulse shaping as
demonstrated in Sec. 4.2.2.2 provides a superior way to solve this problem and even includes
the possibility for easy wavelength tuning of the emerging attosecond pulses.

For the full reconstruction of attosecond pulse trains, the narrowband data for the chirp of
single harmonics obtained from XFROG measurements and the broadband data for the phase
variation between consecutive harmonics as retrieved from RABBITT measurements must be
combined to yield the complete phase information [217]. To this end, both measurements
must be performed on harmonics generated under the exact same conditions. Varjú et al.
[350] proposed a new method to reconstruct the electric field of attosecond pulse trains. Their
proposal is based on the Taylor expansion of the harmonic phase around the maximum of the
laser pulse envelope in the time domain and around the central harmonic in the frequency
domain, thereby giving access the (mixed) partial derivatives of the phase with respect to
intensity and harmonic order.

A new method called FROG CRAB (frequency-resolved optical gating for complete recon-
struction of attosecond bursts, also called CRAB) was proposed by Mairesse and Quéré [319].
An electron wave packet is generated in the continuum through the photoionization by the un-
known attosecond XUV pulse, and a low-frequency dressing laser pulse acts as a pure phase
gate similar to conventional FROG. The advantage of CRAB is that it is valid for arbitrarily
shaped XUV fields and therefore allows even for the reconstruction of non-identical attopulses
in an attosecond pulse train. In the limit of single XUV pulses that extend over many laser
cycles, the CRAB trace displays sidebands as in the cross-correlation or FROG measurements
presented above. In the other limit of attosecond pulses that are significantly shorter than the
period of the dressing optical field, it is equivalent to streaking-type or attosecond-spectral-
shearing-interferometry-type measurements. CRAB also covers the intermediate regime of
XUV pulse durations and imposes no assumptions on the XUV fields to be characterized. A
number of examples for the different limiting cases are illustrated in a more detailed publi-
cation on CRAB [320]. The full temporal reconstruction of an attosecond pulse train using
CRAB for the first time has been recently demonstrated Kim et al. [351].

In a method related to RABBITT and based on the ω–3ω control scheme presented in Sec. 4.1.2,
Papalazarou et al. [352] were able to reconstruct the full temporal intensity distribution of the
third harmonic from its spectral phase and amplitude distributions.

To summarize, different phase modulation regimes exist depending on the duration of the
XUV pulse with respect to the optical period of the dressing probe laser beam: For an XUV
pulse much shorter than the optical period, the photoelectron spectrum produced by the XUV
pulse alone is shifted depending on the intensity and phase of the optical field; for an XUV
pulse comparable to the optical period, the photoelectron energy spectrum experiences a time-
dependent phase modulation, and for an XUV pulse much longer than one optical cycle (such
as single harmonics) the photoelectron spectrum displays sidebands between the harmonic
peaks [353].

Carsten Winterfeldt: Generation and control of high-harmonic radiation (Diss. Univ. of Würzburg, 2006)



5.3 Experimental progress towards the temporal characterization of shaped harmonics 111

5.3 Experimental progress towards the temporal characterization of
shaped harmonics

As shown in the previous Sections, several characterization techniques allow for the determi-
nation of the temporal and spectral properties of high-harmonic radiation. Single harmonics
or groups of harmonics within the harmonic comb have beeen characterized as well as single
attosecond pulses generated in the harmonic continuum. In general, harmonics within the
harmonic comb generated in a gas jet have pulse durations on the order of the driving laser
pulse, which can be readily understood from the three-step model.

However, these results cannot be transferred to shaped harmonic spectra. We demonstrated
the ability to tailor harmonic spectra in a hollow fiber according to various user-defined op-
timization goals, achieved by spectral-phase shaping of the fundamental laser pulses. The
pulse modifies the spectral phase of the driving laser pulses, thus influencing also the har-
monic phase. Several groups have found that the chirp of the driver is transferred to the
harmonic as q times the fundamental chirp, where q is the harmonic order [212]. But: As
we have already discussed for the case of fiber-mode excitation in Sec. 4.3.2, the fundamental
laser pulse undergoes substantial reshaping during the propagation through the hollow fiber.
It is therefore not possible to make predictions for the influence of the fundamental chirp on
the generated harmonics.

That means that knowledge about the temporal structure of our shaped harmonics from the
hollow fiber can only be gained by performing a measurement. The easiest way to get a rough
estimate is to use a cross-correlation technique (Sec. 5.1.2.1) since the use of a strong infrared
probe pulse allows the characterization of weak harmonic fields. In brief, photoelectrons are
generated by the harmonic radiation through a one-photon ionization step. The resulting
photoelectron spectrum directly maps the optical harmonic spectrum, provided a flat spec-
tral response of the transition dipole matrix elements. Peaks in the photoelectron spectrum
appear, separated by twice the fundamental frequency as in the photon spectrum. Through
the absorption or emission of probe photons, sidebands between the harmonic peaks appear
when the two pulses are temporally and spatially overlapped. Scanning the relative delay
allows the determination of the duration of the harmonic pulses.

5.3.1 Experimental setup

We have realized several setups that provide different probe pulse szenarios:

NOPA probe Using the same fundamental laser as pump and probe, the sideband photoelec-
tron energy is the same for the qth harmonic plus a fundamental photon (absorption)
and for the harmonic at (q + 2) minus a fundamental photon (emission) (see Fig. 5.6).
The harmonic duration retrieved from the sideband therefore constitutes an average
value for the two neighboring harmonics. Since the phase between successive harmonic
orders is not expected to vary much, this is in general not a concern. However, since
we have a noncollinear optical parametric amplifier (NOPA) at our disposal (which is
driven by the same laser system and thus synchronized to it), we are able to choose
a different wavelength for the probe pulse. In this case, sidebands from neighboring
harmonic orders no longer overlap, allowing for the unambigious retrieval of the pulse
duration of a specific harmonic [217]. We used the NOPA set in the green range around
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Figure 5.14 – Experimental setup for the determination of the duration of single harmonics
selected by adaptive shaping of the driving laser pulse. Spectrally shaped ultrashort laser
pulses (see Fig. 4.5) from a deformable-mirror-based pulse shaper generate high harmonics
of user-defined shape in a hollow gas-filled capillary. The high-harmonic photons produce
photoelectrons in a gas jet that can be detected with a time-of-flight electron spectrometer. A
fraction of the pump laser is split off to be used as a probe pulse in a cross-correlation two-
photon two-color ionization experiment. The absorption or emission of probe photons by the
high-harmonic photoelectron should lead to the appearance of sidebands between harmonic
photoelectron peaks, from which the duration of single harmonics can be deduced.

532 nm for a cross-correlation experiment. No sidebands were visible which we attribute
to the low pulse energies (< 10 µJ) available from the NOPA.

Laser probe In order to obtain higher pulse energies for the probe, the fraction of the laser
beam from the amplifier system that was split off before the self-phase-modulation fiber
to pump the NOPA was used directly as a probe. This, of course, limits us to the funda-
mental wavelength again, but a higher pulse energy of 120 µJ is available. However, these
pulses are relatively long (≈ 80 fs as opposed to ≈ 20fs for the self-phase-modulated
pump pulses), thereby precluding a high temporal resolution in the deconvolution ac-
cording to Eq. (5.31).

SPM-pulse probe A higher temporal resolution can be gained if the compressed self-phase-
modulated pulse after the prism compressor is used (Fig. 5.14). This allows for probe
pulses with shorter time durations and, provided the same pulse energies, higher in-
tensities. An 84/16 beamsplitter was used to divide the pump and the probe pulses
after the prism compressor, so in reality the energies of the probe pulse are smaller than
before (≈ 30− 40 µJ). However, since the pulse duration is only a fourth of the previous
value, the final probe intensity is roughly maintained.

Fig. 5.14 shows the complete current experimental setup for the determination of the duration
of single harmonics selected by adaptive shaping of the driving laser pulse. Spectrally shaped
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ultrashort laser pulses (see Fig. 4.5) from a deformable-mirror-based pulse shaper generate
high harmonics of user-defined shape in a hollow gas-filled capillary. The high-harmonic
photons produce photoelectrons in a gas jet that can be detected with a time-of-flight elec-
tron spectrometer [199]. A fraction of the pump laser is split off to be used as a probe pulse
in a cross-correlation two-photon two-color ionization experiment (see Sec. 5.1.2.1). The ab-
sorption or emission of probe photons by the high-harmonic photoelectron should lead to the
appearance of sidebands between harmonic photoelectron peaks, from which the duration of
single harmonics can be deduced.

5.3.2 Time-of-flight electron spectrometer

A new time-of-flight electron spectrometer was developed [199, 354] for the detection of the
harmonic photoelectrons. The kinetic energy of electrons is determined by measuring the
time it takes for the electrons to drift from the interaction region at their time of generation
to a detector at the end of a drift tube. Usually there is an electrostatic lens system at the
entrance to the time-of-flight spectrometer for focussing and collimation of the electrons. The
detector counts the electrons as a function of their flight time. To obtain the energy spectrum,
the flight time must be converted to energy by using the simple formula for the kinetic energy
E = 1/2mev2 = 1/2me(l/t)2 where me is the electron mass and v is their velocity given by the
length of the drift tube l and the flight time t. However, attention must be paid to include the
Jacobi transform |∂E/∂t| when converting the count rate on the ordinate axis. The inclusion of
this nonlinear factor is necessary due to the changed and nonlinear bin widths on the abscissa
as a result of the nonlinear relation between kinetic energy and flight time.

The low number of electron requires an electrostatic lens design with a very high transmission
over a broad energy range. The spectrometer should be able to measure photoelectrons within
a range up to 100 eV with a resolution of better than 0.5 eV. The transmission window should
be flat and cover a range of 10 eV in order to detect several harmonics simultaneously.

The newly designed spectrometer of the time-of-flight (TOF) type consists of two electrostatic
lenses, a straight drift tube, and a microchannel plate as detector. The major advantage of a
TOF analyzer as compared to hemispherical analyzers is that wide range of electron energies
can be measured at the same time without scanning.

The optimal lens configuration was found by starting with a numerical modeling of the spec-
trometer. For the simulation of the electron trajectories through the electrostatic lens system
and the drift tube we employed the commercial software simion [355], leading to an asymmet-
ric electrostatic lens design (Fig. 5.15). Six plates of stainless steel with varying hole diameters
define the electrostatic field to collimate and focus the electron beam while the electrons are
decelerated. In both Einzel lenses the central plate is substantially longer than the two outer
ones. Such an asymmetric configuration reduces the chromatic aberration of the lens system
as compared to plates with equal thickness and diameter. Admittedly the smaller chromatic
aberration results in a smaller focusing ability for one specific photoelectron energy but places
us in a position to observe a wide energy window at once.

We tested the spectrometer with laser-generated ATI photoelectrons (Fig. 5.15). The ATI elec-
tron spectrum was measured without (Fig. 5.15a) and with (Fig. 5.15b) retardation voltage.
Applying a retardation voltage to the drift tube without adjusting the lens voltages at the
same time resulted in a total loss of the signal. Therefore the lens voltages were controlled
manually to follow the shift of the electron spectrum (Fig. 5.15c) as the retardation voltage was
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Figure 5.15 – Asymmetric electrostatic lens design of the new time-of-flight electron spec-
trometer. Six plates of stainless steel with varying hole diameters define the electrostatic field
to collimate and focus the electron beam while the electrons are decelerated. In both Einzel
lenses the central plate is substantially longer than the two outer ones. On the right: ATI
electron spectrum of xenon measured (a) without and (b) with retardation voltage. (a) This
curve was measured without any voltages applied to the lenses and the drift tube. (b) This
spectrum was obtained with a retardation voltage of 20 V and the optimum voltages applied
to the lenses. Using either simulated or experimental data we were able to reliably assign
the shifted peaks to the original ones. The peak marked with an X in the original spectrum
shifted to the position X’ with activated lens system. (c) These graphics were created from
experimental data and show some of the steps used to reassign the decelerated peaks to the
original peaks (figure adapted from Paulus et al. [199]).

increased in small steps. The peaks in the final spectrum are narrower than in the original
spectrum. Moreover, the increased point density and an improved signal-to-noise ratio allow
to discern spectral features more easily. Fig. 5.15c also demonstrates that the calculated band-
pass characteristic of the lens system is well reproduced. The transmission in the center has a
maximum and is constant as it can be clearly seen by the equal peak heights. Only electrons
having initial energies in the range of 30-40 eV are detected.

However, adjusting the potential of the lens plates to maximize the throughput is very so-
phisticated. One possibility to solve this problem and to speed up this process considerably
is employ a closed-loop optimization with an evolutionary algorithm as described in the first
chapters of this work. The algorithm varies the voltages applied to the six lens plates adap-
tively (Fig. 5.16a). The results for the deceleration and the focusing of electrons in a small
energy region as found by the evolutionary algorithm are summarized in Fig. 5.16b.

The count rates of the decelerated electrons were even higher than the one for the unaffected
electrons. The number of counts increased by a factor of 3 in the observed energy region.
Also, the signal-to-noise ratio got better by 25% in average during the optimization process.
The higher signal together with an increased point density and an improved signal-to-noise
ratio result in an improvement of the effective resolution. Applying a retardation voltage
alone would allow for a better resolution of the electron kinetic energies due to the nonlinear
relation between flight time and energy but the evolutionary algorithm provides a practical
and qualified technique to maintain acceptable count rates.

More experimental and technical details on this electron spectrometer can be found in Paulus
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Figure 5.16 – The closed-loop optimization of the electron time-of-flight spectrometer was
accomplished with ATI electrons from xenon. The spectrally integrated count rate is mea-
sured and represents the fitness. (a) Experimental setup. The voltages applied to the six lens
plates are adaptively adjusted by the evolutionary algorithm. (b) ATI spectrum without re-
tardation voltage (upper spectrum) and with retarded electrons and the adaptively optimized
lens system. A higher effective resolution is obtained from an increased point density and an
improved signal-to-noise ratio (figure adapted from Paulus et al. [199]).

[354] and Paulus et al. [199].

5.3.3 Temporal and spatial overlap

Before the relative delay between the harmonic pulse and the dressing probe pulse can be
scanned, temporal and spatial overlap of the two beams in the interaction region must be
ensured. To this end, we first searched for the overlap of the two red (harmonic-generating
pump and fundamental probe) beams since both beams are visible. The determination of the
correct setting of the delay for the probe pulse proceeded in several steps:

1. Measurement of the different propagation paths for pump and probe using a ruler: Since
as a rule of thumb light travels at a speed of 1 ft/ns, a determination of the optical path
length with a precision of 1 cm allows for a setting of the delay within ≈ 30 ps.

2. The range setting of the delay stage can then be verified using a fast photodiode. Ob-
serving the peaks of the two pulses delivered by the photodiode alternately on an oscil-
loscope triggered on the laser synchronization output makes it possible to determine the
delay with a precision of tens of picoseconds (several millimeters). However, since the
housing of the photodiode is too big to be placed at the exact position of the interaction
region for the cross-correlation experiment, supplementary and more reliable methods
are necessary.

3. A more precise determination of the pulse separation is possible using spectral interfer-
ometry (SI, see Chap. 5.1.1.4). However, a mirror setup must be used for this purpose.
A fiber-coupled spectrometer cannot be used unless it is a single-mode fiber. Also, both
pulses must overlap in some spectral region in order for spectral interferometry to work.

4. If there is no spectral overlap between the two pulses (e. g. for fundamental pulses and
pulses from our NOPA), a measurement method based on the transient diffraction from
a laser-produced plasma can be used. The strong 800 nm laser pulse is focused in air
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using a high-speed lens so that a plasma spark is created. The co-propagating green
NOPA pulse at 532 nm is also focused to this spot, and the beam is observed at some
distance after the focus. If the strong plasma-generating red pulse comes after the green
pulse, nothing happens. However, if it comes before, the green beam will be diffracted
from the free electrons in the plasma, making the observed image downstream look
unstable and blotchy. The onset of this behavior can be used as a measure of temporal
overlap.

5. Based on background-free optical cross-correlation, we placed a lithium triborate (LBO)
crystal at the interaction point. Since the pump and probe beams propagate non-
collinearly in the vacuum chamber, the blue second-harmonic signal from each of the
two red beams can be seen separated in space on a white card behind the crystal. When
the two pulses overlap temporally and spatially inside the crystal, a blue sum-frequency
signal can be seen along the bisector. This method is quite accurate for the temporal
overlap but since a big crystal (2× 2× 2 mm3) was used, the condition of spatial overlap
cannot be verified precisely.

6. When the delay has been determined using the above methods with an accuracy such
that the point of temporal overlap is guaranteed to fall within the scan range of the
delay stage, we used a thin gold wire that was mounted exactly at the interaction point
to find the exact temporal and spatial overlap. This will be described in the following
in more detail. On a daily basis, only the last step using the gold wire is needed. This
is another advantage of this last method since it can be performed in vacuum and the
vacuum chamber need not be opened.

When either of the two red 800 nm beams of pump or probe hits the gold wire, it can generate
electrons through a multiphoton ionization step which can be detected using our time-of-flight
electron spectrometer. If this is indeed a nonlinear step requiring the absorption of more than
one photon, we can use the cross-correlation signal of both beams to find the temporal overlap.
The spatial overlap is then given automatically due to the dimensions of the gold wire and
the probe beam.

As a first step we verified the nonlinearity of this process as we expected it since the work
function of gold falls into the 4 − 5 eV range. Using fundamental photons at 800 nm with
photon energies of 1.55 eV, this requires ≈ 3 photons. The exact value of the work function
of gold can be modified due to surface adsorbates but is not important as long as we can
use it as a nonlinear process, i. e. the work function must be larger than the photon energy.
Therefore as a first step we did an intensity scan to verify the nonlinearity. The total number
of electrons is recorded as a function of the intensity of the probe pulse. The result of a quick
check is shown in the inset of Fig. 5.17. The slope of the curve in this log-log plot is well above
unity and therefore displays the nonlinearity required to find the temporal overlap (the zero)
between the two red beams in a cross-correlation-type experiment.

Fig. 5.17 shows a representative of a typical delay scan to find the temporal overlap between
the pump and probe pulses. Both the fundamental red (800 nm) harmonic-driving laser beam
as well as the red probe beam at the same wavelength were directed onto a thin gold wire
(∅ = 0.125 mm). The total photoelectron signal was recorded as a function of delay time. The
nonlinear enhancement at the position of temporal overlap is clearly visible. This procedure
can easily be carried out on a daily basis to ensure the correct setting of the delay.
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Figure 5.17 – Scan of the temporal delay between the harmonic-generating strong pump
pulse and the red probe pulse. The total photoelectron signal from a thin gold wire clearly
shows the nonlinear enhancement at the position of the temporal overlap. Inset: Intensity
scan for the number of photoelectrons from a gold wire. The number of electrons is recorded
as a function of the intensity of the probe pulse. The slope is larger than unity and therefore
displays the required nonlinearity.

If the temporal overlap has been found using the gold wire, the spatial overlap between
the two pulses is automatically guaranteed due to the small dimensions of the gold wire.
However, this procedure was done for the two red (800 nm) beams3. Although the harmonics
are expected to propagate collinearly with the driving laser from the hollow fiber, it is safer
to directly determine the spatial overlap between the harmonic beam and the probe beam.
To this end, we use a pinhole (∅ = 0.1 mm) that can be mounted at the interaction point
in the harmonic beam path. The lateral position of the pinhole is adjusted by observing the
harmonic beam on our two-dimensional soft-x-ray CCD camera after the pinhole. The probe
beam can then be steered through the same pinhole and checked with an infrared viewer on
a card. This procedure ensures the spatial overlap between the harmonic beam itself and the
probe beam.

5.3.4 Harmonic photoelectron spectra

The next step is to verify whether we can record a photoelectron spectrum, generated by
the one-photon ionization of noble gases by high-harmonic photons. The harmonic radiation
emerges from the hollow fiber in which it was generated with a divergence of 1–2 mrad. This
translates into a spot size of ≈ 0.5 mm at the interaction region (Fig. 5.14). A continuous-
flow gas nozzle effuses the selected noble gas close to the entrance hole in the front cap of

3In addition, the diverging pump beam from the fiber has already increased considerably when it reaches the
gold wire.
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Figure 5.18 – Experimental photoelectron spectrum of high harmonics in xenon, showing
a double-peak structure spaced by the typical harmonic spacing of twice the fundamental
frequency ω. In addition, the spin-orbit splitting between the 2P1/2 (Ip = 13.44 eV) and 2P3/2
(Ip = 12.13 eV) orbitals of 1.3 eV is clearly visible.

the time-of-flight electron spectrometer. The pressure in the vacuum chamber was kept at
about 1× 10−3 mbar. The photoelectrons can be analyzed using a multiscaler card (National
Instruments) with 4 GHz sample rate. Their kinetic energies should reflect the typical high-
harmonic spectral structure.

A photoelectron spectrum of the high harmonics from the fiber recorded in a xenon gas jet is
displayed in Fig. 5.18. The line doublet spaced by the typical harmonic spacing of twice the
fundamental frequency ω is caused by the spin-orbit splitting of 1.3 eV between the 5 2P1/2
and 5 2P3/2 valence orbitals in xenon [187, 338]. From the 2P3/2 level, the ionization potential
is 12.13 eV whereas it amounts to 13.44 eV for the 2P1/2 level. Nugent-Glandorf et al. [356]
reported the observation of additional line doublets (e. g. 4 d3/2 and 4 d5/2) for higher-order
harmonics with higher photon energies. The ionization potentials for the valence electrons of
different noble gases used in our experiments are compiled in Table 5.1. Attention has to be
paid to the photoionization cross sections which decay drastically with higher photon ener-
gies. For instance, the total photoionization cross section of xenon near threshold for 13 eV-
photon is 66 Mb, while it is 22 Mb for 23 eV photons and only 3.8 Mb for 34 eV [357]. Therefore
for high-order harmonics, lighter noble gases with higher ionization potentials should be
considered, so that ionization occurs closer to the ionization threshold. On the other hand,
heavier noble gases in general exhibit higher polarizabilities and therefore higher transition
dipole matrix elements, allowing for a higher ionization probability.

For krypton, the spin-orbit splitting in the 4p level is 0.67 eV [358, 359] (Ip[Kr I 2P3/2] =
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Figure 5.19 – Experimental photoelectron spectrum of high harmonics in krypton, showing
a double-peak structure spaced by the typical harmonic spacing of twice the fundamental
frequency ω. In addition, the spin-orbit splitting between the 2P1/2 (Ip = 14.67, eV) and 2P3/2
(Ip = 14.00 eV) orbitals of 0.67 eV is clearly visible.

14.00 eV, Ip[Kr I 2P1/2] = 14.67 eV). This is clearly reproduced in the photoelectron spectra
displayed in Fig. 5.19.

The peak splitting for argon is still smaller as can be seen from Table 5.1. Therefore we do
not observe a double-peak structure for photoelectrons in argon (Fig. 5.20). In this spectrum
a large number of harmonics spaced by 3.1 eV can be seen, reaching out to a well-resolved
25th order. Sporadic photoelectrons emerge for harmonic orders 27 and 29. Very weak side-
bands might indeed be visible but they are not reliably reproducible. The inset in Fig. 5.20

displays the corresponding high-harmonic photon spectrum, recorded with an x-ray CCD
camera equipped grazing-incidence spectrometer.

5.3.5 The quest for sidebands

We are now able to generate photoelectrons from the ionization of a noble gas by the harmonic
photons and simultaneously focus the probe beam into the interaction region of the harmonics
and the gas jet. A typical scan for krypton is shown in Fig. 5.21. The kinetic energies of
the photoelectrons resulting from the ionization by one harmonic photon are recorded as a
function of the delay. These electrons are always present, independent of the delay. Sidebands
due to the absorption or emission of a fundamental photon from the probe pulse (see Fig. 5.6)
should appear and disappear as a function of delay and in between the harmonic bands.
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Figure 5.20 – Experimental photoelectron spectrum of high harmonics in argon. Distinct
photoelectron peaks of high harmonics up to the 25th order are observable. Sporadic electron
counts emerge near 25 eV and 28 eV, corresponding to harmonics 27 and 29, respectively. Very
weak sidebands might indeed be visible but they are not reliably reproducible. The inset
shows the associated high-harmonic photon spectrum, recorded with an x-ray CCD camera
equipped grazing-incidence spectrometer.

first ionization potential/eV
element reaction 2P3/2

2P1/2
2S1/2

He He 1s2 + hν → He+ 1s1 + e− 24.59

Ne Ne 2s22p6 + hν → Ne+ 2s22p5 + e− 21.56 21.70

Ar Ar 3s23p6 + hν → Ar+ 3s23p5 + e− 15.76 15.94

Kr Kr 4s24p6 + hν → Kr+ 4s24p5 + e− 14.00 14.67

Xe Xe 5s25p6 + hν → Xe+ 5s25p5 + e− 12.13 13.44

Table 5.1 – Ionization potentials for different noble gases (data compiled from Miyamoto et al.
[187], Norin et al. [338], Sugar and Musgrove [358], NIST [359], Derevianko et al. [360]).

Unfortunately, no sidebands could be detected so far.

Several critical points were investigated that could possibly be responsible for the absence
of sidebands. Although the integration time for each time step in Fig. 5.21 is only 30 s, the
spin-orbit splitting for krypton (cf. Fig. 5.19) can be resolved in the two-dimensional contour
plot, and enough free space is present between the harmonic peaks. The resolution of the
electron spectrometer is therefore not the limiting factor. Further points will be discussed in
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Figure 5.21 – Photoelectron spectrum of krypton versus pump–probe delay. The photoelec-
trons resulting from the ionization by one harmonic photon are independent of the delay.
Sidebands due to the absorption or emission of a fundamental photon from the probe pulse
should appear and disappear as a function of delay and in between the harmonic bands.
Unfortunately, no sidebands could be detected.

the following.

Historically, we started the search for the sidebands by using green NOPA pulses at 532 nm
as probe pulses as mentioned above. Due to the different wavelengths of harmonic-pump
and probe pulses, this approach prevents overlapping sidebands from neighboring harmonic
orders. The appropriate focusing conditions for the probe pulse can be determined by first
calculating the required spot size wprobe for a certain intensity I from the input parameters
such as power P, repetition rate of the laser f , and pulse duration τ:

wprobe =

√
P

Iπτ f
. (5.37)

The required focusing lens can then be evaluated using the plain-wave approximation [68]

w = f #λ, (5.38)

where the f -number or ’speed’ f # of the lens is given by f # = f /D with the focal length f and
the beam diameter D, and λ is the wavelength of the radiation used. Since the finite radius of
curvature of the laser beam and diffraction are not included in this formula, it is only valid for
moderately focused laser beams which are collimated prior to focusing. For a more rigorous
calculation, the Gaussian ABCD matrix methods have to be employed (see Sec. 2.3).

Note that the harmonics emerge from the hollow fiber unfocused, resulting at a spot size of
≈ 0.5 mm at the interaction region. This issue will be addressed later in this work.

In determining the appropriate focusing conditions for the probe beam, we have to deal with
a trade-off between the probe intensity and a volume effect. A higher intensity of the probe
pulse provides a higher ’density’ of photons, thereby increasing the probability of absorption
by a harmonic photoelectron. This can also be stated from Eq. (5.19) which shows that a
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higher kinetic energy is transferred to the harmonic photoelectron for a higher ponderomotive
potential Up of the probe pulse. However, the high intensity or density is limited to the
small region determined by the size of the focal spot. Since in our case the harmonic beam
is relatively large at the interaction region, photoelectrons are generated over an extended
volume which are then recorded by the electron spectrometer. If now only in a tiny fraction
of this region sideband electrons are produced by the small probe focus, their small number
is obscured by the majority of primary photoelectrons. This disproportion can be mitigated
if a larger focal spot size is used for the probe pulse. This way, the volumes covered by both
beams in the interaction regions can be matched, at the cost of probe intensity. Another way is
to reduce the volume covered by the harmonic beam. To this end, apertures of different sizes
can be moved into the harmonic beam to crop the angular divergence. A different possibility
is to focus the harmonic beam, which will be addressed below.

Proceeding with the measurement, we first have to find the temporal overlap between pump
and probe. The overlap must first be found between the 800 nm fundamental pulse and the
NOPA also set to 800 nm. The utilization of sum-frequency mixing in a nonlinear crystal
between the red fundamental pulse and the green NOPA would yield a signal in the UV
range invisible to the eye. The use of a two-photon photodiode is also precluded at these
wavelengths since the bandgap of our two-photon photodiode allows a one-photon transition
for the green NOPA. However, using 800 nm for both beams, both methods can be employed.
After finding the red–red overlap inside the vacuum chamber, the zero between the green
NOPA and the red fundamental can be found on the optical table using the plasma method
described above. This ensures the temporal overlap between the two colors also in the vacuum
chamber. However, no sidebands could be found using the NOPA set at 532 nm. Therefore
we adjusted the NOPA for output at 800 nm (degeneracy point) to be used as probe. Since
these pulses turned out to be much too long (> 300 fs), we decided to set up a new delay
line in which the 800 nm fraction that pumped the NOPA could be used directly as a probe
(≈ 35− 40 mW as opposed to < 10 mW).

The starting experiments were done in argon for two reasons: first, the photoelectrons from
argons show a simple structureless spectrum (see Fig. 5.20) without additional peaks such
as caused by the spin–orbit splitting, and second, since high-harmonic generation is done in
argon, gas leaking from the fiber does not disturb the measurement. Since we tried looking for
sidebands to no avail, we switched to the heavier noble gases, krypton and xenon. The higher
polarizabilities of these gases infer higher transition dipole matrix elements, providing us with
more electrons. In spite of the increased number of photoelectron counts, no sidebands could
be seen.

The highly nonlinear process inherently present in high-harmonic generation poses further
difficulties: Since a very high intensity is required, it can easily damage the entrance of
the fibers for self-phase modulation and high-harmonic generation. These fibers have to be
cleaved, rotated, or even be replaced from time to time. Moreover, the laser must always
be adjusted for maximum power output since even a slight power reduction is accompanied
with a slump of harmonic yield and photoelectron counts. Also, the laser has to be tempo-
rally and spatially stable, with no beam-pointing variations (fiber entrances must be hit) and
power fluctutations. A changing intensity is always associated with a changing blueshift (see
Sec. 3.3), shifting the photoelectron spectra accordingly. For good focusing, the beam profile
should be smooth and Gaussian, and should not display any spatial chirp. The favorable con-
ditions have to be maintained for hours to record a two-dimensional XFROG trace. The total
recording time for Fig. 5.21 was about one hour and shows an excellent stability of the posi-
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Figure 5.22 – Electron spectra resulting from the above-threshold ionization (ATI) of noble
gases. The large spectrum results from the probe laser after it has been split off from the main
laser after the SPM fiber and prism compressor. From the approximate position of the cut-off,
a probe intensity of 1–2× 1013 W/cm2 can be estimated. The inset shows an ATI spectrum of
krypton by using the full laser. For the continuous background that is present in both spectra
see text.

tions of the harmonic photoelectron peaks. Often, longer measurement times were needed to
increase the integration time per time step for an improved signal-to-noise ratio, which could
extend recording times up to 5–8 hours.

Sometimes we were indeed able to observe sidebands in the photoelectron spectrum. How-
ever, these sidebands were independent of the pump–probe delay and did not disappear as a
function of delay or when the probe beam was blocked. It turned out that these ’permanent
sidebands’ were caused by the residual red fundamental beam that emerges from the hollow
fiber together with the harmonic radiation. Based on the geometry of our experiment, we
estimate the remaining pump beam intensity at the gas jet for photoelectron generation to be
in the range of 109–1010 W/cm2 which is sufficient to produce sidebands. Another proof was
given by the fact that these permanent sidebands could be made to disappear by placing a
thin aluminum filter behind the fiber exit and before the interaction region. This way, the fun-
damental beam responsible for the sidebands is blocked while the harmonics are transmitted
(though attenuated) through the thin metal foil. The emergence of the permanent sidebands
complicated the search for the proper sidebands because peaks at the expected positions of
the sidebands are always present. It is not advisable to use the aluminum filter for the cross-
correlation run due to the substantial reduction of available harmonic photons.

Another increase in probe intensity can be gained if the probe beam is split off from the main
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beam after the SPM fiber and prism compressor (a 84/16 beamsplitter is used). The full laser
is sent through the pulse-compression setup. The power of the probe pulses is approximately
the same as before. However, since the pulses are much shorter (20–30 fs as opposed to 80–90 fs
from the laser), a higher intensity is possible. The probe intensity can be estimated from the
position of the cut-off at 10 Up in above-threshold-ionization (ATI) spectra (Fig. 5.22). In the
cross-correlation experiment no sidebands were visible, although the probe intensity in the
range of 1–2 × 1013 W/cm2 should be sufficient to observe the two-color ionization process
according to Eq. (5.21) since it is even high enough to generate ATI electrons. For comparison,
an ATI spectrum generated by the full laser in krypton is shown in the inset of Fig. 5.22. Apart
from the discrete ATI peaks, a continuous part is visible in those spectra. These contributions
have been observed by other groups as well as and can probably be attributed to a background
of electrons freed by multi-photon ionization (MPI) which do not recollide with their parent
ions and therefore do not take part in the ATI process [361]. Classically, the maximum kinetic
energy for such electrons is 2Up with an exponential decrease [148]. This distribution must
be convolved with the transmission curve of the electron spectrometer, which has a low value
for slow electrons.

A new way to match the volumina covered by harmonic and probe pulses is to focus the har-
monics in order to keep the probe focus small. The main problem here arises from the poor
reflectivities of materials in the soft-x-ray region. Multilayer mirrors can provide reflectivities
of more than 30% in the spectral region from 10 to 60 nm. However, their bandwidth is limited
to typically 2-3 nm, which allows for the selection of single harmonics only. Broadening the
bandwidth by a factor of two is usually accompanied with a loss of reflectivity by a factor of
two. However, a very recent publication [362] employed a three-material multilayer approach
to achieve reflectivities of about 20% and to be able to control dispersion over a bandwidth
between 35 and 50 eV. Standard multilayer mirrors in this wavelength region consist of peri-
odic stacks of only two materials, such as Mo/Si or B4C/Si. An alternative for broadband
reflection is the use of metal-coated grazing-incidence mirrors. Mashiko et al. [363] examined
the focusing properties of a platinum-coated ellipsoidal mirror, which is basically free from
spherical aberrations and astigmatism.

For gold at normal incidence the reflectivity is less than 9% for 30 eV photons [269]. Ap-
proaching grazing incidence, reflectivities can reach values of close to unity. However, for
angles different from normal incidence, astigmatism arises, creating two distinct foci [68, 295],
the sagittal focus fs and the tangential (meridional) focus ft at

fs =
f

cos Θ
, (5.39a)

ft = f cos Θ (5.39b)

for a spherical mirror of focal length f (normal incidence) where Θ is the angle of incidence
measured from the mirror normal (not the glazing angle). These formulae allow us to assess
the usability of available spherical gold mirrors. The appropriate focal length was found
using geometrical optics and Gaussian ABCD matrices for the divergent harmonic beam (see
Sec. 2.3). The mirror with radius of curvature R = 0.50 m was installed into a mirror mount
in a small vacuum chamber downstream behind the interaction region, creating a harmonic
focus at an image distance of b = 38 cm in front of the electron spectrometer. The probe beam
is focused to the same point with the same mirror. This requires the angle between the two
incident rays to be the same as the divergence of each of the rays. Those three quantities have
to be matched to ensure a common focus, which we could indeed solve in spite of geometrical
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Figure 5.23 – Photoelectron spectrum of argon. The harmonic beam from the hollow fiber is
focused into an argon gas jet with a curved gold mirror (see text). Very high kinetic energies
can be observed for the photoelectrons from the ionization by harmonic photons. This infers
the presence of very-high-order harmonics. The suppression of lower-order harmonics (as
compared to Fig. 5.20) might be due to the higher divergence of the lower orders, resulting in
higher losses on the path to the curved mirror and back. Another reason might be changed
experimental conditions. The final explanation remains unclear.

constraints.

In consequence of experimental rebuildings and repairs, very high harmonic orders could now
be observed at low pressures in the region around 25 mbar. A corresponding photoelectron
spectrum in argon is shown in Fig. 5.23, which was recorded by focusing the harmonic from
the fiber with the above-mentioned curved gold mirror. Another ’window’ for harmonic gen-
eration (weaker signal and lower orders) was found around 130 mbar and around 450 mbar.
At this highest pressure, however, strong plasma emission could be seen from the gas inside
the hollow fiber. The appearance of different generation windows is due to phase matching
in different pressure and fiber-mode regimes. Sidebands were still missing, so we measured
the reflectivity of the gold mirror under 45◦ angle of incidence in a new setup directly from
the harmonic photon flux on our x-ray CCD camera. Values of 1–5% were derived, which is
too low for the desired cross-correlation measurement. In principle, this loss is balanced by
the expected gain in intensity by about a factor of 100 due to the focusing. However, in this
geometry the search for the spatial overlap equals that of a needle in a haystack.

In our quest for sidebands, several issues could still prevent us from seeing the two-photon-
ionization electrons. First, space-charge effects can limit the energy resolution of the electron
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Figure 5.24 – High-harmonic photoelectron spectrum of neon. Some counts can be detected
at the interpeak positions between the harmonic photoelectrons where the sidebands should
appear. These peaks are very weak and unstable and cannot be reproduced reliably due to
the low signal and bad signal-to-noise ratio. Neither longer integration times nor a delay scan
across time zero could verify these counts to result from sideband electrons. As discussed in
the text, it was not possible to observe sidebands.

spectrometer and the total number of counts by accelerating, decelerating, and deflecting the
electrons. To eliminate this possibility, we used gases with higher ionization potentials such
as neon or helium (Table 5.1) to reduce the number of electrons produced by ionization. For
the lower-Ip gases (Ar, Kr, Xe) we observed the photoelectron spectrum while increasing the
gas pressure in the interaction region. No shifts or other changes were visible, ruling out
space-charge effects. Second, the volume effect mentioned above can keep us from seeing
the sideband electron that might actually be produced. Therefore we exchanged the cap of
our electron spectrometer for one with a smaller entrance hole (∅ = 1 mm instead of 3 mm)
to confine the solid angle seen by the spectrometer. This should enhance the contribution
from the sideband electrons to the overall electrons reaching the detector. The modification
reduced the number of counts to about 10% (as expected from geometrical arguments), but
did not produce sidebands. Third, to increase the throughput of the electron spectrometer,
an evolutionary algorithm can be applied to the six-element electrostatic lens system of the
spectrometer [199]. A region of interest in the photoelectron spectrum can be selected as opti-
mization goal for the evolutionary algorithm to increase the overall count rate. A gain factor
of approximately three could be achieved for a central harmonic order, however, neighboring
harmonic fell off very quickly. This optimized energy window is therefore too small to reliably
detect sideband electrons.
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In summary the biggest problem that we face in determining the time structure of our shaped
harmonics is the low energy available in the laser pulses from our laser system. Higher
laser intensities would at the same time allow for a higher harmonic flux and for a more-
intense probe pulse, making it possible to either use focusing optics for the harmonic beam
or to expand the probe beam in the interaction region. On several occasions, photoelectrons
were observed at the interpeak positions in the harmonic photoelectron spectrum. A very
promising result in neon is shown in Fig. 5.24. However, the overall photoelectron signal is
very weak, in spite of a long integration time of almost six minutes. Usually, the small number
of photoelectrons at interpeak positions is still much lower, making the possible sidebands
practically indiscernible. Moreoever, for the presentation in Fig. 5.24, the spectrum has been
smoothed by a binning method to reduce at least some of the noise. A scan of the delay is
almost impossible. In addition, tentative sidebands were sometimes present, sometimes not.
Scanning the delay sometimes showed sideband peaks for several disjunct positions of the
delay, demonstrating the highly instable nature of such an experiment. High photoelectron
yields would allow for short integration times, fast scans, and good signal-to-noise ratios. In
an effort to reach this goal, the three-part split fiber for harmonic generation was replaced by
an identical fiber with the exception that the fiber is not broken completely into three pieces,
but two cuts are made at the respective positions that just touch the inner hollow capillary
to allow the gas to flow in. This way, a smoother transition from one piece to the next could
possibly ensure a higher laser intensity along the fiber and a higher harmonic yield. Such a
cut fiber was used later in our experiments, but to no avail. No higher harmonic fluxes were
obtained. Maybe a more comprehensive modification of the experimental setup will finally
allow the observation of sidebands from shaped harmonics: an upgrade of the whole laser
system to higher intensities, including the deployment of another amplification stage such as
a bow-tie amplifier.

5.4 Attosecond pulse shaping

The experiments cited in Secs. 5.1 and 5.2 used bandwidth-limited laser pulses or laser pulses
with a controlled linear chirp and high-harmonic generation was done in a gas jet. On the
other hand, during our optimization of harmonic generation in a gas-filled hollow fiber, the
spectral phase of the driving laser pulses is adapted continuously according to the fitness in
order to reach the predefined optimization goal. This in turn modifies the harmonic phase. In
addition, there are propagation effects inside the relatively long fiber compared to the focus in
a gas jet or gas cell. Therefore the pulse duration of such a single adaptively selected harmonic
order is completely unknown. The knowledge is crucial for spectroscopic applications since
conventional filtering using gratings is accompanied with a loss in time resolution due to dis-
persion and a significant decrease in photon number. Therefore work is in progress (Sec. 5.3)
to determine the time structure of our adaptively shaped harmonics using a cross-correlation
setup. Nevertheless, some statements regarding the time structure of shaped harmonic spec-
tra as demonstrated in this work can be made, showing the implications for attosecond pulse
shaping.

Currently there is huge interest in the generation of attosecond pulses. In addition to char-
acterization experiments cited above there are efforts to actively control the phase of high
harmonics in order to get rid of its inherent wavelength dependence to produce bandwidth-
limited attosecond pulses. This can be achieved using aluminum filters that have a negative
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Figure 5.25 – High-harmonic spectra and their corresponding Fourier transform assuming
a flat spectral phase. This assumption is reasonable since for a phase behavior that deviates
too far from a well-behaved case, the duration of the generating laser pulses would increase
significantly, quickly inhibiting high-harmonic generation due to the corresponding intensity
decrease of the long driving laser pulses. a) The unshaped spectrum shows the periodicity of
T/2 for the harmonic pulses in the time domain as expected. One (b) or two (c) suppressed
harmonic result in an increased effective spacing of frequency components and thus in a
sub-half-cycle modulation of the harmonic time structure.

dispersion in the desired energy range [215] or by designing XUV chirped mirrors [219].

A recent theoretical study [364] showed that by optimizing the chirp and initial phase of the
driving laser pulses with the help of a genetic algorithm, the peak intensity of single attosec-
ond pulses can be enhanced by one or two orders of magnitude. In addition the pulse duration
is automatically greatly compressed and the optimal propagation distance determined.

Our ability to shape the spectrum of high-harmonic pulses as demonstrated in Sections 4.2
and 4.3 enables us to modify the time structure of high harmonics on an attosecond time scale.
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Fig. 5.25 (left column) displays shaped harmonic spectra where one or two orders have been
suppressed. The right column of Fig. 5.25 represents the corresponding Fourier transforms of
these spectra, assuming a flat phase. Of course, the assumption is not valid since harmonics
are known to have a remaining linear chirp. In addition, our shaped harmonics must have
additional contributions from the chirp of the driving laser pulse since at least part of it is
transferred to the harmonics in the fiber. However, the assumption of a flat phase as a first
approximation is reasonable since for a phase behavior that deviates too far from the well-
behaved case, the duration of the generating laser pulses would increase significantly, quickly
inhibiting high-harmonic generation due to the corresponding intensity decrease of the long
driving laser pulses.

The calculation shows interesting features caused by the suppression of one or two harmonics.
Since in addition to the harmonic spacing of 2ω there is another spacing of more than 2ω
between the harmonic contributions on the left and on the right of the suppressed orders,
there must be a modulation in the time domain of less than half a laser period. The dotted
line in Fig. 5.25 shows the envelope of the electric field with a period of T so that harmonics
are generated with a period of T/2. This results in the harmonic spacing of 2π

T/2 = 2ω. Since
the spacing in the frequency domain is effectively larger in the presence of the suppressed
orders, the period of the harmonics in the time domain is smaller than T/2, which means
that there is a sub-half-cycle or attosecond modulation. Even though the assumption of a
flat spectral phase is not true, these results are qualitatively valid and show the attosecond
modifications of the harmonic pulses caused by adaptively shaping them using the pulse
shaper. This consideration demonstrates the potential of our technique for extending pulse
shaping into the attosecond regime.
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Chapter 6

Summary

6.1 Summary (English version)

High-harmonic generation provides a powerful source of ultrashort coherent radiation in the
XUV and soft-x-ray range, which also allows for the production of attosecond light pulses, a
regime that had not been accessible before. Based on the unique properties of this new radi-
ation it is now possible to perform time-resolved spectroscopy at high excitation energies (for
example for the real-time investigation of the dynamics of inner-shell electrons), from which
a wide field of seminal discoveries can be expected. Since the exploration and observation of
the corresponding processes in turn are accompanied by the desire to control them, this work
deals with new ways to manipulate and characterize the properties of these high-harmonic-
based soft-x-ray pulses.

After introductory remarks on femtosecond laser science, nonlinear optics, and nonlinear fre-
quency conversion including many aspects of the high-harmonic generation process and the
properties of the high-harmonic radiation, this work first presents a comprehensive overview
over recent developments and achievements on the field of the control of high-harmonic radi-
ation in order to classify the experimental results obtained in this work.

The experimental progress achieved in this work includes the control of high-harmonic radi-
ation both by temporally shaping and by manipulating the spatial properties of the funda-
mental laser pulses. In addition, the influence of the conversion medium and of the setup
geometry (gas jet, gas-filled hollow fiber) was investigated.

Using adaptive temporal pulse shaping of the driving 800 nm laser pulse by a deformable
mirror, this work demonstrates the complete control over the XUV spectrum of high harmon-
ics. Based on a closed-loop optimization setup incorporating an evolutionary algorithm, it is
possible to generate arbitrarily shaped spectra of coherent soft-x-ray radiation in a gas-filled
hollow fiber. Both the enhancement and suppression of narrowband high-harmonic emission
in a selected wavelength region as well as the enhancement of coherent soft-x-ray radiation
over a selectable extended range of harmonics (multiple harmonics) can be achieved.

Since simulations that do not take into account spatial properties such as propagation effects
that arise in a hollow-fiber-based setup cannot reproduce the experimentally observed high
contrast ratios between adjacent harmonics, a feedback-controlled adaptive two-dimensional
spatial pulse shaper was set up to examine selective fiber mode excitation and the optimization
of high-harmonic radiation in such a geometry. It is demonstrated that different fiber modes
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contribute to harmonic generation and make the high extent of control possible.

These results resolve the long-standing issue about the controllability of high-harmonic gen-
eration in free-focusing geometries such as gas jets as compared to geometries where the laser
is guided. Temporal pulse shaping alone is not sufficient to exert the high level of control. It
was possible to extend the cutoff position of harmonics generated in a gas jet, however, selec-
tivity cannot be achieved. Therefore future work on the control of high-harmonic generation
should include a combination of temporal and spatial pulse shaping in order to investigate
the physical background in more detail.

As another way to increase the harmonic conversion efficiency, a novel phase-matching scheme
called Temporal Quasi-Phase Matching (TQPM) was proposed in this work. The spatial mod-
ulation present in conventional quasi-phase matching schemes is transferred into the time
domain by periodically modulating the envelope of an ultrashort laser pulse. The difference
in phase and group velocities due to dispersion causes a walk-off between the modulated en-
velope and the underlying phase of the electric field. This creates temporally variable regions
with high and low intensity, respectively, at the corresponding positions where normally only
destructive interference would occur, resulting in phase-matched high-harmonic generation
in an unmodulated waveguide.

The modifications of the high-harmonic spectrum demonstrated experimentally by temporal
and spatial laser pulse shaping have direct implications for the time structure of the har-
monic radiation, including the possibility for temporal pulse shaping on an attosecond time
scale. To this end, known methods for the temporal characterization of optical pulses and
high-harmonic pulses (determination of the harmonic chirp on femtosecond and attosecond
time scales) were introduced. Some of these methods were subsequently employed. The ex-
perimental progress in this work comprises the demonstration of different setups that are in
principle suitable to determine the time structure of shaped harmonic pulses based on two-
photon two-color ionization cross-correlation techniques. Photoelectron spectra of different
noble gases generated by photoionization with high-harmonic radiation reproduce the spin-
orbit splitting of the valence electrons and prove the satisfactory resolution of our electron
time-of-flight spectrometer for the temporal characterization of high harmonics. Unfortu-
nately no positive results for this part could be achieved so far, which can probably be at-
tributed mainly to the lack of the focusability of the high harmonics and to the low available
power of our laser system.

However, we have shown that shaping the high-harmonic radiation in the spectral domain
must result in modifications of the time structure on an attosecond time scale. Therefore
this constitutes the first steps towards building an attosecond pulse shaper in the soft-x-ray
domain.

With engineered harmonic radiation we now have a versatile tool at hand that can be adapted
to experimental needs. Prospective applications of tailored high harmonics include, but are
not limited to, time-resolved (pump–probe) photoelectron spectroscopy in the solid phase,
e. g. for the examination of surfaces and interfaces. One of the open questions is, for instance,
whether laser-induced damage in SiO2 occurs due to multi-photon ionization or avalance ion-
ization. Due to the high photon energies of high-harmonic radiation, photoelectrons generated
by infrared and soft-x-ray photons, respectively, can be easily discriminated in such experi-
ments. Moreover, high-harmonic photoelectrons from inner-shell levels are element-specific
and are thus useful to distinguish between different elements at interfaces.

Together with the ultrashort time resolution, high harmonics open great possibilities in the
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field of time-resolved soft-x-ray spectroscopy, for example of inner-shell transitions. Tailored
high-harmonic spectra as generated in this work and shaped attosecond pulses will represent
a multifunctional toolbox for this kind of research.

6.2 Zusammenfassung (deutsche Version)

Note: This Chapter constitutes the German translation of the summary presented in Sec. 6.1 as required by the
examination regulations for dissertations in physics at the Bayerische Julius-Maximilians-Universität Würzburg.

Die Erzeugung von Hohen Harmonischen stellt eine leistungsfähige Quelle ultrakurzer und
kohärenter Strahlung im extremen Ultraviolett- und weichen Röntgenbereich dar, die auch
die Erzeugung von Attosekundenlichtimpulsen erlaubt, ein Bereich, der bisher nicht zugäng-
lich war. Durch die einzigartigen Eigenschaften dieser neuen Strahlung ist es nun möglich,
zeitaufgelöste Spektroskopie mit hohen Anregungsenergien (beispielsweise für die Echtzeit-
Untersuchung der Dynamik von Innerschalen-Elektronen) durchzuführen, was eine Vielzahl
bahnbrechender Entdeckungen erwarten lässt. Da die Erforschung und Beobachtung entspre-
chender Prozesse gekoppelt sind mit dem Wunsch, diese zu kontrollieren, beschäftigt sich die
vorliegende Arbeit mit Wegen, die Eigenschaften dieser Röntgenpulse aus Hohen Harmoni-
schen zu manipulieren und zu charakterisieren.

Nach einleitenden Bemerkungen über Femtosekunden-Lasertechnologie, Nichtlineare Optik
und nichtlineare Frequenzkonversion, einschließlich vieler Aspekte des Prozesses der Erzeu-
gung von Hohen Harmonischen und der Eigenschaften dieser Strahlung, gibt diese Arbeit
zunächst einen umfassenden Überblick über neueste Entwicklungen und Ergebnisse auf dem
Gebiet der Kontrolle von Hohen Harmonischen, um die in dieser Arbeit erreichten experi-
mentellen Ergebnisse einordnen zu können.

Der experimentelle Fortschritt, der im Rahmen dieser Arbeit erzielt werden konnte, beinhaltet
die Kontrolle der Strahlung von Hohen Harmonischen sowohl durch die zeitliche Formung
als auch durch die Manipulation der räumlichen Eigenschaften der fundamentalen Laserpul-
se. Untersucht wurde auch der Einfluss des Konversionsmediums und der Geometrie des
Aufbaus (Gasstrahl, gasgefüllte Hohlfaser).

Durch adaptive zeitliche Pulsformung der erzeugenden Laserpulse bei 800 nm mit Hilfe eines
deformierbaren Spiegels zeigt die vorliegende Arbeit die komplette Kontrolle über das XUV-
Spektrum von Hohen Harmonischen. Basierend auf einem Optimierungsexperiment mit ei-
ner Rückkopplungsschleife und einem evolutionären Algorithmus ist es möglich, willkürlich
geformte Spektren von kohärenter Strahlung im weichen Röntgenbereich in einer gasgefüll-
ten Hohlfaser zu erzeugen. Sowohl die Steigerung und Unterdrückung von schmalbandiger
Hohen-Harmonischen-Strahlung über einen ausgewählten Wellenlängenbereich als auch die
Verstärkung von kohärenter weicher Röntgenstrahlung über einen wählbaren ausgedehnten
Bereich von Harmonischen können erreicht werden.

Da Simulationen ohne die Berücksichtigung von räumlichen Eigenschaften wie zum Beispiel
Propagationseffekten, wie sie in einem Hohlfaser-basierten Aufbau auftreten, die experimen-
tell beobachteten hohen Kontrastverhältnisse zwischen benachbarten Harmonischen nicht
reproduzieren konnten, wurde ein rückkopplungsgesteuerter adaptiver zweidimensionaler
räumlicher Pulsformer in Betrieb genommen, um die gezielte Anregung von Fasermoden
und die Optimierung von Hohen Harmonischen in einer solchen Geometrie zu untersuchen.
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Es wird gezeigt, dass verschiedene Fasermoden zur Erzeugung von Harmonischen beitragen
und erst das hohe Maß an Kontrolle ermöglichen.

Diese Ergebnisse lösen eine lang bestehende Frage nach der Kontrollierbarkeit der Erzeugung
von Hohen Harmonischen in Geometrien mit einem freien Fokus wie zum Beispiel in Gas-
strahlen im Vergleich zu Geometrien, in denen der Laser geführt wird. Zeitliche Pulsformung
allein reicht nicht aus, um das hohe Niveau an Kontrolle auszuüben. In einem Gasstrahl konn-
ten zwar beispielsweise die höchsten erzeugten Harmonischen zu kürzeren Wellenlängen hin
verschoben werden, eine Selektivität ist jedoch nicht möglich. Daher soll in zukünftigen Ar-
beiten zur Kontrolle der Erzeugung von Hohen Harmonischen auch eine Kombination von
zeitlicher und räumlicher Pulsformung aufgebaut werden, um die physikalischen Hintergrün-
de genauer zu untersuchen.

Als eine weitere Möglichkeit zur Steigerung der Konversionseffizienz von Harmonischen
wurde ein neuartiges Phasenanpassungsschema mit dem Namen Zeitliche Quasi-Phasen-
anpassung (Temporal Quasi-Phase Matching, TQPM) in dieser Arbeit vorgeschlagen. Die
räumliche Modulation von konventionellen Quasi-Phasenanpassungsschemata wird in den
Zeitbereich übertragen, indem die Einhüllende eines ultrakurzen Laserpulses periodisch mo-
duliert wird. Der Unterschied zwischen Phasen- und Gruppengeschwindigkeit aufgrund der
Dispersion bewirkt ein Auseinanderlaufen der modulierten Einhüllenden und der darunter-
liegenden Phase des elektrischen Feldes. Dadurch werden zeitlich veränderliche Gebiete mit
hoher bzw. niedriger Intensität an den Stellen erzeugt, an denen normalerweise nur destruk-
tive Interferenz auftritt, so dass insgesamt eine phasenangepasste Erzeugung von Hohen Har-
monischen in einem unmodulierten Wellenleiter möglich ist.

Die Modifizierungen des Spektrums von Hohen Harmonischen, die experimentell durch die
zeitliche und räumliche Laserpulsformung gezeigt werden konnten, haben direkte Auswir-
kungen auf die Zeitstruktur der Harmonischen-Strahlung, einschließlich der Möglichkeit für
zeitliche Pulsformung im Attosekundenbereich. Dazu wurden bekannte Methoden zur zeit-
lichen Charakterisierung von optischen Pulsen und Hohen-Harmonischen-Pulsen (Bestim-
mung des harmonischen Chirps auf Femtosekunden- und Attosekundenzeitskalen) vorge-
stellt, die dann teilweise angewendet werden konnten. Der experimentelle Fortschritt in dieser
Arbeit beinhaltet die Demonstration von verschiedenen Aufbauten, die im Prinzip geeignet
sind, die Zeitstruktur von geformten Harmonischen-Pulsen mit Kreuzkorrelationsmethoden
durch Zwei-Photonen-zwei-Farben-Ionisation zu bestimmen. Photoelektronenspektren ver-
schiedener Edelgase, die durch Photoionisation mit der Hohen-Harmonischen-Strahlung er-
zeugt wurden, können die Spin-Bahn-Aufspaltung der Valenzelektronen reproduzieren und
belegen die ausreichende Auflösung unseres Elektronen-Flugzeit-Spektrometers zur zeitlichen
Charakterisierung von Hohen Harmonischen. Leider konnten bislang keine positiven Ergeb-
nisse zu diesem Teil erzielt werden, was sich wohl hauptsächlich auf die fehlende Fokus-
sierbarkeit der Harmonischen und die zu niedrige zur Verfügung stehende Leistung unseres
Lasersystems zurückführen lässt.

Allerdings haben wir gezeigt, dass die Formung der Hohen-Harmonischen-Strahlung im
Spektralbereich Veränderungen der Zeitstruktur auf Attosekundenzeitskalen nach sich ziehen
muss. Dies stellt daher erste Schritte in Richtung des Baus eines Attosekundenpulsformers im
weichen Röntgenbereich dar.

Mit der formbaren Harmonischen-Strahlung haben wir nun ein vielseitiges Werkzeug zur
Verfügung, das an experimentelle Bedürfnisse angepasst werden kann. Mögliche Anwendun-
gen dieser maßgeschneiderten Hohen Harmonischen beinhalten unter anderem die zeitaufge-
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löste (Anrege–Abfrage-)Photoelektronen-Spektroskopie von Festkörpern, beispielsweise zur
Untersuchung von Oberflächen und Grenzflächen. Eine der offenen Fragen ist zum Bei-
spiel, ob laserinduzierte Schäden in Siliziumdioxid durch Multiphotonenionisation oder La-
winenstoßionisation verursacht werden. Aufgrund der hohen Photonenenergien der Hohen-
Harmonischen-Strahlung können in solchen Experimenten Photoelektronen, die durch infra-
rote Laserstrahlung bzw. durch weiche Röntgenstrahlung erzeugt wurden, leicht auseinan-
dergehalten werden. Darüberhinaus sind die Photoelektronen von Hohen Harmonischen aus
inneren Schalen elementspezifisch und sind dadurch nützlich, um zwischen den verschiede-
nen Elementen an Grenzflächen zu unterscheiden.

Zusammen mit der ultrakurzen Zeitauflösung eröffnen Hohe Harmonische daher viele Mög-
lichkeiten auf dem Gebiet der zeitaufgelösten Spektroskopie im weichen Röntgenbereich, bei-
spielsweise bei Innenschalen-Übergängen. Maßgeschneiderte Spektren von Hohen Harmoni-
schen, wie sie in dieser Arbeit erzeugt werden konnten, und geformte Attosekundenpulse
werden dabei vielseitige Werkzeuge darstellen.
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Appendix A

High-harmonic generation and plasma
radiation from water microdroplets

We studied the emission of XUV radiation from water microdroplets under excitation with
either a single or a pair of intense femtosecond laser pulses (Ti:Sa, 80 fs, ∼ 1014 W/cm2,
800 nm, 1 kHz). Varying the delay between the two pulses we observed a transition from
pure incoherent plasma emission to coherent high-harmonic generation. Under optimized
conditions we obtained high-harmonic radiation up to the 27th order.

The following presentation is directly based on our publication in Flettner et al. [253], with
some additional remarks added.

A.1 Introduction

Generation of ultrashort pulses of extreme ultraviolet (XUV) light has proven able to spawn
new areas of research, e. g. the rapidly growing field of ultrafast (femtosecond and attosecond
time-resolved) x-ray optics [36, 37, 365] and microscopy [276]. Laser to XUV frequency con-
version can also be employed for commercial applications such as nanoscale lithography and
quality inspection purposes. Conversion efficiencies are on the order of one percent [366, 367].

Microdroplets turned out to be very efficient media to convert visible laser radiation into the
XUV and soft x-ray spectral region [366, 367]. So far, however, they have only been used as
sources of incoherent XUV light being emitted into a solid angle of 4π [366]. To collect a large
amount of this radiation sophisticated optics have to be employed. A much more desirable
light source for many applications would feature a fully coherent directional emission, which
is provided by high-order harmonic generation (HHG). In this process, laser radiation is con-
verted into integer multiples of its fundamental wavelength up to very high orders (∼300

[124]). This phenomenon occurs when intense ultrashort (femtosecond) laser pulses interact
with a dielectric medium. Classically speaking, initially bound electrons are field-ionized at
particular phases of the laser electric field (close to its maximum) and are driven away from
their parent ion. As soon as the electric field of the laser reverses, the electrons decelerate
on their outward bound path, stop and accelerate back towards their parent ions. Some of
the ionized electrons finally return to the ion core they left and recombine. At the time of re-
combination the electrons generally possess nonzero kinetic energy. One photon per electron
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is emitted carrying the sum of the electron’s kinetic energy plus the ionization potential Ip.
Classical and quantum calculations show that the maximum photon energy to be emitted in
this process scales as h̄ω = Ip + 3.17Up, where Up represents the ponderomotive potential, i.e.
the average quiver energy of the electron in the laser field [125, 136].

Harmonic generation has become a vivid field of research during the last decade and our
understanding of the processes has indeed reached a considerable extent for atomic systems.
HHG in molecular and cluster media has not been widely studied so far and even less do we
really understand about the mechanisms in these more extended systems. From recent exper-
iments we know that molecular HHG is sensitive to the alignment of the molecules [368, 369].
Experiments recently performed in our group show that molecular media are relatively more
efficient than atoms in HHG when the driving field is elliptically polarized in a sense that the
harmonic conversion efficiency in molecules drops more slowly for higher ellipticities [370].
An interpretation of this finding is based upon the larger spatial extent of the molecule [221].
A recent theoretical study sheds some light on the process of harmonic generation in extended
systems [371]. There it is shown that already simple diatomic molecular systems can easily be
manipulated to increase the harmonic yield by large amounts, exceeding the nonlinear single
atom response by far. Other considerations based on symmetry properties of molecules show
that in systems possessing discrete rotational symmetry only particular harmonic orders are
produced [372], which is desirable for wavelength selection. HHG on solid state systems is
under investigation [263, 373], however restricted to the surface of the solid material. Coherent
frequency conversion in bulk solid-state systems could finally promise very high efficiency,
due to the large nonlinear susceptibilities present in high-density media.

In this sense, HHG on water droplets can be regarded as a pioneering experiment in this
direction. In contrast to liquid jets having infinite extent on the scale of the laser focus,
water droplets provide mass-limited targets. Due to their spherical symmetry and their small
dimensions, their expansion dynamics after plasma formation are readily tractable for models
and can thus be understood more easily.

In this study we show that a strong interdependence of HHG and plasma radiation exists. Our
observation points to the fact that both radiation processes cannot happen simultaneously.

The droplets start to expand after the interaction of a strong prepulse (from here on referred to
as pump pulse). Thus, we can directly assess different density regimes ranging continuously
from liquid down to gaseous by employing a second (driver) pulse which generates the high-
harmonic radiation. Using this pump-drive scheme we gain insight up to which densities
HHG is possible, which is an important issue for efficiency considerations.

Another interesting feature about microdroplets is their breaking up into nanometer-sized
fragments upon irradiation by a strong pulse. Such clusters are extensively studied with
respect to their unique frequency conversion properties [17, 262, 374]. In some of these studies
it has been shown that clusters can be used to reach conversion efficiencies for incoherent
plasma radiation comparable to those obtained in solid state systems. HHG in clustered media
turned out to occur at smaller intensities, to have a higher photon energy cutoff and to saturate
at higher laser intensities as compared to mono-atomic targets. The effects of a prepulse on
the laser-induced EUV radiation conversion efficiency from water droplets based on direct
line transitions (e. g. 13 nm corresponds to the strong O5+(4d) → (2p) transition) has been
investigated by Düsterer et al. [375]. Other studies of the EUV yield have been performed by
Rajyaguru et al. [376]. Microdroplets plasmas are also exploited for the generation of energetic
electrons and protons [377, 378].
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Figure A.1 – Schematic setup. The
glass capillary is mounted inside a vac-
uum chamber. The water droplet jet
is produced vertically downwards. A
piezo element can be used to control
the droplet repetition rate. Droplets
not used in the experiment are removed
by direct pumping with a roots pump.
Laser pulses interact with the water
droplet jet ∼5 mm below the capillary
exit to induce plasma luminescence or
HHG.

Here we present experimental results on high-order harmonic generation from water-droplets,
with harmonic orders up to the 27th. To our knowledge, this is the highest harmonic order
ever observed from water. So far, harmonic generation from water only up to the seventh
order has been reported [379].

A.2 Setup and Droplet Characterization

The water microdroplets are produced by a glass capillary of 10 µm inner diameter backed
with liquid water (see Fig. A.1). With a controlled fluid pump the pressure can be kept
constant in a range of 2 to 5 MPa. The capillary and the fluid pump are commercial products
of ‘Microjet Components’ (Sweden). The capillary is mounted vertically such that the water
leaves at the lowermost end. A continuous water jet streams out of the capillary. After a certain
propagation distance droplets are formed due to the Rayleigh-Taylor instability. To ensure
reproducible droplet sizes, the capillary is equipped with a piezo transducer to modulate
the capillary diameter. Applying a high-frequency voltage of 15 V results in a fixed droplet
repetition rate. The frequency has to be close to the ‘natural’ repetition rate given by the
Rayleigh-Taylor instability. In our case, these frequencies are between 0.9 and 1.1 MHz. In
Fig. A.2 we show photographs of the droplet jet taken with a microscope objective and a CCD
camera. The jet was illuminated by laser pulses incident on a screen placed behind the jet.
When the backing pressure is increased, larger droplet diameters are obtained. On the other
hand, increasing the piezo-frequency results in smaller droplets.

For the XUV emission experiments, the capillary is mounted inside a vacuum chamber to
avoid reabsorption of the generated radiation by air or the water vapor. With a 880 l/s turbo
pump we achieved a background pressure of ∼2·10−3 mbar. Differential pumping stages
along the way to the spectrometer lowered the pressure further until it reached ∼10−5 mbar
at the spectrometer. At a distance of ∼5 mm below the exit of the capillary, the laser beam
interacts with the droplet jet (see Fig. A.1). Further down, after ∼40 mm, the jet enters
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Figure A.2 – Droplet size characteriza-
tion. Increasing the backing pressure
results in larger droplets. An increase
of the piezo AC frequency decreases
the droplet diameter.
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through a small diameter aperture (0.5 mm) into a separate “catcher” compartment, which
is kept evacuated directly by a roots pump. In order not to damage the pumps, a liquid
nitrogen cooled cold trap is installed between the chamber and the pump. As liquid water at
room temperature brought into vacuum tends to freeze and grow stalagmites where it hits an
obstacle, it is important to keep the catcher at an elevated temperature of about 350 K. If the
temperature is too low, ice stalagmites will grow all the way up to the exit of the capillary,
preventing stable operation of the jet.

The laser is a regeneratively amplified Ti:sapphire system from ‘Spectra Physics’ (Millennia-
Tsunami, Merlin-Spitfire) delivering pulses of 80 fs pulse duration, 0.8 mJ energy per pulse,
800 nm central wavelength at a repetition rate of 1 kHz. Focusing with a 20 cm focal length
lens provides laser intensities on the order of 5·1014 W/cm2.

We detect the emitted XUV radiation with different monochromators for two different photon
energy ranges. The low energy radiation is characterized by a home-built Seya-Namioka
monochromator (referred to as MC1) with a spherical concave grating. The full scanning range
provides access to harmonic orders three (H3) to nineteen (H19). A scintillator (Na-salicylate)
behind the exit slit is used to convert the XUV radiation into the visible. A photomultiplier
is then used to acquire the spectrum as the grating rotates. The signal is DC-converted by a
boxcar-averager which is read by a computer. The other monochromator (MC2) consists of a
toroidal concave grating illuminated under grazing incidence. The accessible photon energy
range extends from ∼20 eV (H13) to around 80 eV corresponding to H51. The spectrum is
acquired with a back-side illuminated thinned X-ray CCD camera (‘Roper Scientific’). With
plasma emission lines, we were able to estimate the resolution of the spectrometer to be better
than 0.3 nm in a wavelength range of 17 to 25 nm. Fig. A.1 displays a schematic view of
the droplet system. The system is aligned in such a way that the laser beam propagates
directly into the spectrometer. For detecting harmonic orders greater than H17, we inserted
two aluminum filters (thicknesses 0.3 and 0.8 µm) in order to block the fundamental light.
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Figure A.3 – Photographic images of water droplets
for irradiation with different laser intensities. Laser
pulses arrive from the right hand side as indicated.
Intensity increases from top to bottom. The top
picture shows the unperturbed droplet. The cen-
ter and bottom picture were taken through a BG40

filter to remove contributions of the fundamental
laser radiation. An increasing amount of light is
emitted from the laser input side of the droplet.

A.3 Experiments

For the experiments presented in this work, the droplet-generating system was operated at a
backing pressure of 5 MPa. The piezo driver was not used, i.e. the jet was operated in the
free-running Rayleigh-Taylor instability regime. Under this conditions water droplets with a
diameters of about 20 µm were produced.

Fig. A.3 is a photographic picture of a water droplet illuminated by different laser intensities.
For the medium (center picture) and high intensities (lower picture) a BG40 filter was used to
suppress the fundamental laser light. For very low intensity, only the unperturbed spherical
droplet is visible, while at increasingly higher intensities we observe bright light from the
front face (towards the laser) of the droplet. Two possible explanations for this finding are: (1)
Optical breakdown and plasma mirroring of the fundamental laser radiation close to the front
face of the droplet or (2) plasma emission [380] from a backward directed emission plume of
the droplet similar to the one reported by Eickmans et al. [381].

Regarding emission spectra, we first of all show results for single laser pulses interacting with
the microdroplets. Employing the spectrometer MC2, we detect strong plasma recombination
light emitted from the droplets. Comparison with literature values [382, 383] shows that the
lines can be attributed to highly ionized oxygen (up to O5+). We can observe the spectrum
only for wavelengths longer than 17 nm, which is the L edge of Al.

No high-harmonic emission for orders H17 and higher could be observed using a single laser
pulse. Switching to spectrometer MC1 without Al filters third harmonic emission can faintly
be observed. We measure single photon events of the fifth harmonic on the photomultiplier
about each 5000 laser shots. No harmonic signal for higher orders is detected. This situation
changes dramatically when we distribute our pulse energy between two pulses. In a first ap-
proach, we used the Pockels cell of the regenerative amplifier to release two pulses spaced by
the round-trip time of the laser cavity, which is 10 ns. The material dispersion corresponding
to an additional round-trip of the second pulse results in an increase of its pulse duration to
∼300 fs and a frequency upchirp. However, by switching from single pulse to this double
pulse operation mode a large increase (by about three orders of magnitude) in harmonic gen-
eration efficiency could be observed for the third and the fifth harmonic. In Fig. A.5 we show
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Figure A.4 – Typical plasma emission spectrum observed in our experiments for short pump-
drive pulse delays. Literature values for emission lines of highly ionized oxygen (O4+, O5+)
are plotted underneath. The cutoff for frequencies below 17 nm is due to the absorption edge
of the aluminum filter. Signal at longer wavelengths is partly caused by the second diffraction
order of the spectrometer grating. For better visibility, the detected first order signal has been
manually converted to second order (dotted line).

harmonic emission spectra for lower orders (H3-H11) acquired using MC1.

In order to obtain a deeper insight into the droplet dynamics, we set up a delay stage to control
the time delay between pump and driver pulse. For these pump-drive experiments, we use
a noncollinear excitation geometry. The pump laser pulse does not enter the spectrometer
directly, while the driver one does. XUV emission characteristics from the water droplets
change qualitatively at a certain delay time (∼650 ps), which is shown in Fig. A.6. At early
times, only plasma emission can be observed (in second diffraction order) while at later times
HHG is present almost exclusively. At a time delay of ∼650 ps, a rapid transition occurs
leading to inhibition of plasma emission and promotion of HHG. This observed behavior can
be explained as follows: I) The first pulse ionizes the water molecules creating a hot and
dense plasma [384, 385] with nearly solid state density. Dense plasmas are well known as
efficient emitters of line radiation. If the delay between the two pulses is small both pulses
contribute evenly to the heating of the plasma. II) The hot and dense plasma starts to expand
immediately. The second pulse interacts with a less dense plasma resulting in a reduced
conversion efficiency. Similar behavior has also been observed using Ar and Kr microdroplets.
McNaught et al. [367] have measured a decay time of the plasma emission of a few hundreds
of ps, which is in agreement with our observations. III) After 600 ps we have estimated a
density where the average distance between atoms is greater than the classically calculated
excursion length of the electron during HHG. This gives the electrons the chance to return to
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Figure A.5 – Lower-order harmonic emission spectra detected for droplets interacting with a
double pulse (see text). Harmonics from order H3 up to H11 can be detected with decreasing
emission strengths. The signal close to the sixth harmonic can be attributed to a strong plasma
line.
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Figure A.6 – Transient XUV-emission spectrum for the pump-drive setup. A transition occurs
at ∼650 ps from a regime where only plasma luminescence is detected (in second diffraction
order) into a different one with high-harmonic generation being the dominant contribution to
the spectrum.

their parent ion without colliding with other molecules which would impair the generation
of spatially and temporally coherent high-harmonic radiation. Besides the single particle
response propagation effects play a major role in HHG. Therefore we have to consider a
significant spatial and temporal distortion by the existing and newly generated plasma. After
∼1 ns the plasma generated by the combined action of the two pulses is subcritical. This
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Figure A.7 – High harmonics in the cutoff region of the spectrum acquired at a time delay of
∼1 ns.

explains why the increase in high-harmonic signal at a particular time delay coincides with the
decline of plasma line emission, since effective plasma heating by the second pulse rules out its
undisturbed propagation through the medium. Additionally, as long as the electron density
is too high, phase-matching between the high-harmonic radiation and the fundamental is not
possible over significant length scales.

We show the highest harmonic orders observed to date in our experiments in Fig. A.7. They
were recorded for a time delay of ∼1 ns with the MC2 spectrometer using the Al filters men-
tioned above. Within the three-step model of HHG introduced by Corkum [125] and Kulander
et al. [126] applying our driving pulse intensities of ∼ 2 · 1014W/cm2 yields a harmonic cut-
off frequency (Ip(H2O)=12.6 eV) around the 33rd harmonic. This can be regarded to be in
accordance with the experimental position of the cutoff (∼27th harmonic), in particular since
the laser intensity corresponds to the value obtained when focusing into vacuum. In our
experiment however, we expect defocusing of the incoming laser due to plasma build-up.

A.4 Conclusion

We report the observation of HHG up to the 27th order in water microdroplets for the first
time to our knowledge. This can be achieved only for slightly expanded droplets, whereas
it is absent for laser interaction with unperturbed droplet targets. In the latter case, only
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plasma luminescence from highly charged states of oxygen (up to O5+) can be observed.
Depending on the delay of the driver pulse (generating harmonics) with respect to a pump
pulse (expanding the droplet) we can observe a sharp transition from a regime (for short time
delays) where only plasma recombination light is emitted into another region (at longer time
delays) where HHG takes place with negligible contribution from plasma emission.

By means of our pump-drive setup, using water droplets as providers of high density ma-
terial, it becomes possible to study HHG in media of particle densities spanning the entire
range from liquid state down to gaseous density. In order to push HHG conversion efficiency
to the maximum, we must acquire knowledge about which are the maximum tolerable par-
ticle densities. On the other hand, once limitations to maximum density are encountered,
our experimental environment will serve as a versatile tool and testbed in finding ways to
overcome these problems. These studies will be the subject of future work in our group.

This work is carried out in an effort to spur further research on the subject of HHG in ex-
tended systems i.e. other than monoatomic ones which are the ones currently routinely used.
The latter can be regarded as very well understood and almost optimally exploited. On the
other hand, large improvements in coherent XUV generation efficiency are to be expected by
switching to molecular [371] or even more complex media.
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Appendix B

TOF computer program

In order to facilitate the evaluation of the time-of-flight data recorded by the multiscaler card
for the multichannel-plate detector in the time-of-flight spectrometer, a LabView programm
called

p7887_eTOF-master.llb\p7887_eTOF-master.vi

was written and constantly extended according to our needs. This program can read the
electron time-of-flight from the multiscaler card and transform the spectra into the energy
domain to make it easy to evaluate the peak positions. A screenshot of the program in offline-
mode is displayed in Fig. B.1. In this offline-mode, the program allows to view saved spectra
sequentially and randomly. All experimental parameters such as the actual delay position or
the integration time are saved in addition to the raw bins from the multiscaler card. Recording
the raw bins allows to recalibrate the electron spectra at any later time. By selecting the online
mode in the ’mode of operation’ box the program directly reads the electron spectra from the
multiscaler card and allows to make an automatic delay scan for pump–probe measurements
by controlling the delay stage. Several other features such as the use of a shutter or sending
a trigger signal for the acquisition of a harmonic photon spectrum with the soft-x-ray CCD
camera are also implemented.

For the analysis of the two-dimensional data as recorded for the delay scans (spectrum vs.
time), a complementary LabView program

p7887_eTOF-viewer2.llb\p7887_eTOF-view-calibrated-2D.vi

was developed. In addition to displaying a full two-dimensional XFROG trace (cf. Fig. 5.21)
on-the-fly by simply selecting the appropriate data folder in an automatically generated list of
saved measurements, it also allows to view single spectra where regions of interest (e. g. the
expected positions of the sidebands) can be selected with cursors and be energy-integrated in
order to spot the appearance of sidebands for easily. This viewer program can be used during
a running measurement because it watches the data folder for new measurements and add
the most recent photoelectron spectra automatically to the two-dimensional view.
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Figure B.1 – Screenshot of the eTOF master program written with LabView (offline mode).
This program can read the electron time-of-flight from the multiscaler card and transform
the spectra into the energy domain. It also allows to view saved spectra sequentially and
randomly, and to make an automatic delay scan for pump–probe measurements. Several
other features such as the use of a shutter are also implemented.
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Useful formulae and rules-of-thumb

The following paragraphs present a compilation of useful general formulae and rules-of-
thumb for the daily lab use and quick estimates. These are not formulae such as the harmonic
cut-off law (Eq. (3.54)) but mostly equations for the conversion of several different units. The
quantities used should be self-explanatory.

Wavelength–to–energy conversion:

E[eV] =
1240

λ[nm]
, (C.1a)

λ[nm] =
1240
E[eV]

. (C.1b)

Ponderomotive potential:

Up[eV] = 0.93× 10−13 I[Wcm−2] λ2[µm2]. (C.2)

Time–bandwidth product for bandwidth-limited ultrashort laser pulses:

∆τ[fs] ∆λ[nm] ≈ 1000. (C.3)

Optical cycle T and angular frequency ω at 800 nm:

T ≈ 2.67 fs, (C.4a)
ω ≈ 2.36 fs−1. (C.4b)

Electric field E, intensity I:

E[V/cm] = 27.4
√

I[W/cm2]. (C.5)
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