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The success of semantic systems has been proven over the last years. Nowadays,
Linked Data is the driver for the rapid development of ever new intelligent systems.
Especially in enterprise environments semantic systems successfully support more
and more business processes. This is especially true for after sales service in the
mechanical engineering domain. Here, service technicians need effective access to
relevant technical documentation in order to diagnose and solve problems and defects.
Therefore, the usage of semantic information retrieval systems has become the new
system metaphor. Unlike classical retrieval software Linked Enterprise Data graphs
are exploited to grant targeted and problem-oriented access to relevant documents.
However, huge parts of legacy technical documents have not yet been integrated into
Linked Enterprise Data graphs. Additionally, a plethora of information models for
the semantic representation of technical information exists. The semantic maturity
of these information models can hardly be measured.

This thesis motivates that there is an inherent need for a self-contained seman-
tification approach for technical documents. This work introduces a maturity model
that allows to quickly assess existing documentation. Additionally, the approach com-
prises an abstracting semantic representation for technical documents that is aligned
to all major standard information models. The semantic representation combines
structural and rhetorical aspects to provide access to so called Core Documenta-
tion Entities. A novel and holistic semantification process describes how technical
documents in different legacy formats can be transformed to a semantic and linked
representation.

The practical significance of the semantification approach depends on tools sup-
porting its application. This work presents an accompanying tool chain of semantifica-
tion applications, especially the semantification framework CAPLAN that is a highly
integrated development and runtime environment for semantification processes. The
complete semantification approach is evaluated in four real-life projects: in a spare
part augmentation project, semantification projects for earth moving technology and
harvesting technology, as well as an ontology population project for special purpose
vehicles. Three additional case studies underline the broad applicability of the pre-
sented ideas.
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2 Chapter 1. Introduction

A linked system [is] the next logical
step. [...] In this way, documents on
similar topics are indirectly linked,
through their key concepts. A keyword
search then becomes a search starting
from a small number of named nodes,
and finding nodes which are close to all
of them.

Sir Tim Berners-Lee, 1989

1.1 Research Goal and Context
Now, 30 years later, we perceive a vast amount of technologies that have been evolved
from Berners-Lee’s vision. Under the patronage of the World Wide Web Consortium
(W3C) numerous specifications and standards have been developed and published.
These works are the basis for a large spectrum of semantic technologies that are
ranging from knowledge representations over query languages to automatic reasoning.
Together they enable Linked Data solutions that find more and more application
areas.

One of these application areas is the field of technical service. Recently, the
mechanical engineering domain has been confronted with a dramatical increase of
machine complexity. In the past, machines typically could be simply maintained
and repaired using mechanical tools. Today’s machines, however, are designed as a
combination of mechanical components, electrics, hydraulics, and electronics. Hence,
service technicians need an increased competence for their repair and maintenance
tasks. As a consequence, the technical documentation became a fundamental infor-
mation source for service technicians in their daily work. The documentation for a
single machine, however, easily comprises up to 10,000 pages. Thus, service techni-
cians need fast and focused access methods to handle the massive volumes of technical
documents. In order to provide efficient customer support, the accessibility of infor-
mation has become a critical success factor.[80]

Semantic Search emerged as the new system paradigm for the access of technical
documentation. In contrast to traditional search technologies it operates on semantic
information in Linked (Enterprise) Data graphs. However, the incorporation of these
technologies in enterprise applications has just started and only a small amount of
technical documentation has already been integrated into respective graphs. Thus,
the service staff usually still has to deal with large quantities of rather loosely orga-
nized legacy information. Examples of such information include operation manuals,
installation guides, and repair manuals. In order to make legacy information acces-
sible for semantic technologies, links between the textual content and the Linked
Enterprise Data graph must be created. Creating these instances in a manual step
requires an in-depth analysis of the original content by humans, which is usually
error-prone, time-consuming, and cost-intensive.

In recent years, however, Text Analytics approaches have been adapted in order
to automate the integration of textual content into Linked Data graphs. Well known
examples include Document Structure Recovery, Topic Modeling, and particular In-
formation Extraction tasks for Ontology Learning and Population from text. In every
of these fields established and well-performing approaches exist. However, this the-
sis shows that implementing tailored solutions for technical documents is beneficial.
This is motivated by the fact that most state-of-the-art approaches rely on supervised
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Machine Learning techniques, which usually require a sufficient amount of training
data for decent results. In real-world scenarios such training data is usually not avail-
able and the creation under the cost-benefit ratio not economic. Additionally tailored
solutions can outperform state-of-the-art approaches by exploiting the characteristics
of technical documents. This outperformance can decide about the actual success
and application in the field. Respective characteristics include the structure of the
content or redundancy aspects through multilingualism and large data volumes. How-
ever, such alternative solutions also have to cope with new challenges arising from
technical documents characteristics like highly specialized terminologies that make
standard dictionaries inapplicable.

This work specifies and approaches the problem of integrating technical documents
in Linked Enterprise Data graphs in detail. Therefore, two main research gaps get
addressed:

1. Missing Semantic Representation:
The first research gap approaches the fact that there is no commonly agreed
semantic representation for technical documents. Although a lot of prior work
exists in the field of semantic publishing it does not fit the domain of technical
documents. Existing information models for technical documents, on the other
hand, do not max out the capabilities of semantic representations.

2. Missing Semantification Process:
The second research gap is concerned with the fact that a holistic approach for
the transformation of legacy technical documents to a corresponding semantic
representation does not exist. Existing methods tackle subtasks, but do not
consider special features of technical documents. Additionally, most methods
lack a comprehensive evaluation methodology.

The work results in Linkable Technical Documentation that is fully integrated in
Linked Enterprise Data graphs, compatible with existing W3C standards and allows
for effective access to relevant information.

1.2 Approach
The presented approach tackles a series of existing research gaps. As a fundamen-
tal basis this work presents a novel semantic representation for technical documents.
This representation is founded on thorough analysis of large technical corpora, insights
from semantic representations for other problem domains and existing standards for
writing technical documents. Unfortunately, only small amounts of technical docu-
ments are already available in a format that can be easily transformed to a seman-
tic representation. Therefore, a holistic semantification approach shows how legacy
documents can be transformed to a semantic representation. Both, the semantic rep-
resentation and the semantification process has been successfully applied in a series
of industrial projects. The industrial application has been accompanied by the devel-
opment of tools that support the semantification task. The following sections give a
brief overview of the different aspects of the approach that is described in this thesis.

1.2.1 5-STAR Technical Documentation

Although the insufficient accessibility is an obvious shortcoming of todays technical
documentation the problem has not been formally specified yet. Thus, the thesis
starts with the introduction of a novel assessment schema for technical documents.
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The schema lists a number of objective quality criteria building on each other. For
each matching criterion one star is given; that way the maturity of documentation
data can range from one star (electronic format) to five stars (Linkable Technical Doc-
umentation). This schema is inspired by the idea of evaluating the quality of data in
the linked open data cloud [16, 100], and was adapted to the special needs of technical
documentation. The schema also serves as a central theme for the remainder of the
thesis, as the thesis is structured as a journey that covers the transformation of legacy
data (1 star) to Linkable Technical Documents (5 stars). The destination of the 5-star
journey is a deep semantic representation for technical documents — Linkable Techni-
cal Documents. Thus, the first part of the thesis introduces a novel and deep semantic
representation that covers the characteristics of technical documents and allows for
effective access to relevant information. The representation builds upon established
aspects from the semantic publishing community, i.e. structural (e.g. paragraphs,
sections, sentences) and rhetorical elements (e.g. discourse elements / sections like
Motivation, Problem Statement or Discussion). However, research has shown that ex-
isting work concentrates on scientific articles that can hardly be adapted to the special
features of technical documents. Hence, in the scope of this thesis large corpora of
technical documents have been analyzed in order to derive characteristic structural
(e.g. procedures) and rhetorical (e.g. repair) elements. Following the 5-star idea, the
thesis additionally and particularly considered established (de-facto) standards for
technical documents (e.g. OASIS DocBook, OASIS DITA, ASD S1000D) during this
analysis phase.

The analysis has shown that existing vocabularies often concentrate on either the
structural or the rhetorical elements of documents. However, the combination of both
the rhetorical and the structural elements allows for the logical deduction of relevant
aspects. For instance combining “repair” (rhetorical) and “procedure” (structural)
elements allows for the derivation and hence the direct access to repair procedures.
The thesis gives a comprehensive description of such Core Documentation Entities.
Additionally, the thesis introduces a collection of corresponding logical expressions
that facilitate the derivation of these Core Documentation Entities from structurally
and rhetorically represented technical documents. The availability of these Core
Documentation Entities leverages the capabilities of semantic information systems,
as information can be accessed on a higher detail level (e.g. repair procedure instead
of chapter).

In summary, the first research gap that is tackled by this thesis is the fact that
existing vocabularies for semantic publishing do not fit the domain of technical doc-
uments. Additionally most of these vocabularies do not max out the capabilities of
semantic representations. Therefore, this work adapts the idea of describing structural
and rhetorical document components to the special features of technical documents.
Hereby, the approach carefully considers existing industry standards to facilitate an
easy migration. Besides the easy migration and integration another important aspect
is to enhance the vocabulary with logical expressions that allow the derivation of Core
Documentation Entities from structural and rhetorical descriptions.

1.2.2 5-STAR Semantification

A semantic representation of technical documents (Linkable Technical Documents)
as described before is a fundamental requirement for semantic information retrieval.
However, the incorporation of these technologies in enterprise applications has just
started and thus only a small amount of newly created technical documentation is
already semantically enriched. However, large corpora of legacy technical documents
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without meta-data (1 star data) exist. As corresponding machines often have product
life cycles of several decades these corpora also need to be integrated in new semantic
information systems.

The integration requires the creation of links between the semantic representation
of a technical document and corresponding concepts from the Linked Enterprise Data
graph that describe its topics. Therefore, the legacy documents first need to be
transformed automatically to a semantic representation. Then, for establishing the
link between the semantic representation of the document and concepts in the Linked
Enterprise Data graph, the text needs to be thoroughly analyzed in order to identify
its main topics.

A holistic approach for the described transformation of legacy technical documents
(1 star) to a linked semantic representation (5 stars) does not exist. Existing methods
tackle subtasks, but do not consider special features of technical documents. Addi-
tionally, most methods lack a comprehensive methodology that allows to measure the
respective performance.

Hence, the second part of the thesis concentrates on the transformation of legacy
technical documents (1 star) to Linkable Technical Documents (5 star). The thesis
will outline a journey that describes in detail how each maturity level (star) can be
achieved; what benefits arise and what efforts need to be undertaken (cost-benefit
ratio). As described before the underlying transformation process comprises several
tasks that build upon each other and are closely aligned with the 5-STAR maturity
schema:

1. Document Layout Analysis:
The 5-STAR maturity schema requires 1-STAR technical documents to be avail-
able in an electronic format that gives access to high-level structures like pages,
blocks, texts, and tokens. This requirement is mapped to the more general
problem of Document Layout Analysis.

2. Logical Document Structure Recovery:
The second maturity level requires documents to provide access to typed doc-
ument structures like paragraphs, headlines, lists, and tables. This problem is
mapped to the more general problem of Logical Document Structure Recovery
that also covers additional aspects like the determination of the reading order.

3. Modularization:
The goal of the 3-STAR semantification is the subsequent recovery of a docu-
ment’s chapter structure with the goal of deriving self-contained modules (in-
formation units). The modularization problem is divided into three tasks: (1)
reconstructing the chapter structure of a document on the basis of 2-STAR in-
formation, (2) identifying duplicate content and (3) aligning modules that exist
in multiple languages.

4. Identifiability and Information Types:
The fourth maturity level requires identifiability and information typing from
technical documents. The problem of identifiability is motivated by the desired
integration in an Linked Enterprise Data graph and is approached with persis-
tent uniform resource locators (PURL). The information typing aims on specific
Linked Data applications, e.g. the rhetorical filtering of modules with respect
to an information type. The problem of assigning information types to modules
is mapped to established methods from Automatic Document Classification.
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5. Subject Analysis:
The 5-STAR semantification aims at the identification and annotation of the
main subjects for a given technical document. This is related to the more
general problem of Subject Analysis or Subject Indexing. In the context of
this work, subjects are nodes of a Linked Enterprise Data graph. Annotating
documents with such nodes actually establishes a link between the document
and the Linked Enterprise Data graph and thus fully integrates the document
into the Linked Enterprise Data.

All of these subtasks are covered in detail; existing methods get discussed and evalu-
ated. Novel and tailored solutions that are adapted to the special features of technical
documentation are introduced where necessary. Additionally, practical recommenda-
tions and suitable formats are provided for each semantification step.

1.2.3 Domain Knowledge as the Regulating Screw

The work described in this thesis is in large parts based on knowledge-based meth-
ods. Although a lot of work in the fields of Machine Learning for Natural Language
Processing tasks has been published, it can practically not be applied to the problem
of semantifying technical documents. The main reason is the absence of respective
training data. In real-world projects the creation of training data is usually difficult
to achieve, as (1) required experts are bound in important projects and (2) the result-
ing performance of a Machine Learning system is difficult to estimate. In contrast,
knowledge-based systems usually allow for an iteratively incremental project imple-
mentation. First results are usually available in early project phases and can be cou-
pled to decision-points and milestones. More importantly, technical documentation
often follows strict rules that regard structuring, formatting and other aspects. These
rules can be exploited by knowledge-based methods and leverage their performance.
This makes domain knowledge an important regulating screw for the presented se-
mantification approach.

1.2.4 Unified Pipelines and Integrated Environments

An important success factor for the presented approach is its broad applicability
and scalability. Applicability and scalability concerns human users and the under-
lying data. This aims on providing software tools that are applicable to a lot of
different data sets with minimum adaptation efforts. Thus, this thesis introduces a
semantification architecture that aims on maximum reuse of developed components
by providing a large library of semantification components and unified pipelines for
specific formats. The semantification architecture is accompanied by an integrated
semantification environment that aims on enabling users with different skill levels to
perform semantification tasks. Therefore, a Graphical User Interface provides easy
access to predefined pipelines and allows for easily configuring single processing steps.
Advanced users can extend the functionality of the semantification architecture with
their own plugins that encapsulate tailored semantification steps. Therefore, the se-
mantification architecture is based on a plugin mechanism and a standardized but
extensible data model.

1.3 Results
The presented work describes the semantification of technical documentation for their
integration in Linked Enterprise Data graphs. The semantification comprises both
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the identification of a suitable semantic representation under consideration of exist-
ing semantic publishing approaches and (de-facto) standards for modeling technical
information as well as a holistic approach that transforms existing data into such
a representation. Thus, this work contributes a generally applicable approach for
the integration of legacy technical documentation into state-of-the-art information
systems.

The semantic representation combines structural and rhetorical aspects of tech-
nical documents and provides logical expressions that allow to identify and access
structures that carry strong technical knowledge — Core Documentation Entities.
However, the identification of Core Documentation Entities requires a certain matu-
rity of technical documents, i.e. the availability of structural and rhetorical infor-
mation. The idea of measuring the maturity of technical documents with respect to
accessibility of such knowledge structures has been presented in Furth et al. [64].

The availability of Core Documentation Entities dramatically increases the ac-
cessibility of technical documents. This is beneficial for human users in a couple
of information retrieval scenarios. The increased accessibility, additionally, enables
new application scenarios for legacy technical documents. This comprises the tar-
geted extraction of information from technical documents for Ontology Learning and
Ontology Population purposes. The construction of technical documents from docu-
ment structures (Core Documentation Entities) is described in Furth et al. [63]. An
accompanying methodology for developing ontologies from document structures has
been described in Furth et al. [66]. Resulting ontologies are usually rather large and
may contain inconsistencies. Thus, the resulting ontologies might require manual
post-processing. A delta-debugging algorithm for ontologies that improves this task
is presented in Furth et al. [62].

Although a variety of application scenarios exists for semantically described tech-
nical documents only small portions of existing corpora are actually semantically
prepared. The holistic approach described in this thesis consists of five consecutive
steps that support the transformation of documents in legacy formats (scanned im-
ages or PDFs) to the described semantic representation. The application of an early
and preliminary version of this process to large amounts of technical documents is
described in Furth et al. [65].

The process requires the recovery of document structures on different granularity
levels. Hereby, a fundamental step is the classification of single blocks with respect
to their original type. The knowledge-based recovery of block-level elements like
headlines, paragraphs, lists, and tables is described in Furth et al. [70]. The final
step of the process links the recovered structures to concepts from a Linked Enterprise
Data graph. Therefore, a thorough analysis of the corresponding text is necessary in
order to identify the key subjects. A series of Subject Analysis and Subject Indexing
approaches has been described in prior work [67, 65, 68].

The different steps of the semantification are supported by an integrated seman-
tification architecture. Requirements, architecture, and implementation remarks are
presented in Furth et al. [69]. The architecture also allows to integrate visual review
components. A visualization using the city metaphor is presented in Baumeister et
al. [13].

The semantification process is accompanied by a tool box of semantification ap-
plications. The tools support different steps of the semantification process ranging
from the knowledge acquisition for the classification of document structures over an
integrated semantification architecture that enables the batch processing of large cor-
pora to dedicated review tools. The tools demonstrate the practical applicability of
the semantic representation and the accompanying semantification approach.
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The semantic representation, the semantification process and the accompanying
tools have been successfully applied in a series of industrial projects. This thesis
reports on a series of real-life semantification projects for different customers within
the domains of harvesting technology, earth moving technologies and special purpose
vehicles. All projects aimed on semantifying legacy documents for their subsequent
usage in modern information retrieval systems. The presented approach also supports
the integration of technical documentation in other applications that are in frequent
use in daily maintenance and repair task. Thus, this thesis also reports on the creation
of a unified pipeline that enables the linking of technical documents with electronic
spare parts catalogues.

1.4 Structure of this Work
This work is structured into seven chapters. The first chapter, concluding with this
outline, gave an overview of the research goal, the approach and results. The remain-
der of this work is organized as follows:

• Chapter 2 introduces technical documents as a special knowledge resource and
discusses existing challenges regarding accessing and linking them. Therefore,
a brief overview of relevant semantic technologies is given within the context
of Linked (Enterprise) Data. The chapter also presents basic text analytics
methodologies that are required for the integration of technical documents into
a Linked (Enterprise) Data graph. The chapter concludes with a presentation of
Semantic Information Retrieval, which is one of the most recognized applications
of Linked (Enterprise) Data.

• Chapter 3 starts with the presentation of a novel maturity model that re-
flects the accessibility and linkability of technical documents. Building upon
this maturity model an abstracting semantic meta representation for technical
documents is introduced that gives access to encapsulated fine-grained techni-
cal knowledge in written texts. This meta representation is then mapped to
existing information models for technical documentation.

• Chapter 4 challenges the so called legacy gap, i.e. the fact that large amounts
of technical documents exist in formats that are not semantically prepared.
Therefore, a novel and holistic process for the semantification of technical doc-
umentation is presented. The process consists of five consecutive steps that are
closely aligned with the maturity model. For each step a thorough presentation
of existing and novel approaches as well as practical recommendations are given.

• Chapter 5 gives a brief overview of the reference implementation of the se-
mantification process. Therefore, an extensible semantification architecture is
described. The architecture is accompanied by an integrated semantification
environment.

• Chapter 6 explains the semantification process and the usage of the developed
semantification environment. Therefore, the complete 5-STAR semantification
of an example document is described.

• Chapter 7 presents several practical applications of the holistic semantifica-
tion process. The focus is on several industrial case studies that underline the
practical applicability of the approach.
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• Chapter 8 summarizes the work described in this thesis. Additionally, future
research questions with respect to the semantification of technical documents
are discussed. The chapter also provides an outlook to the applicability of the
approach in other problem domains.
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Accessing Technical Documents
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Lack of documentation is becoming a
problem for acceptance.

Wietse Venema

2.1 Technical Documentation1

Builders of machinery and plants provide technical documentation to support the
service technician to ensure the safe operation and maintenance of their products. In
the past, the documentation was printed on paper. With the increasing complexity of
the machines many vendors switched to electronic versions of the books in recent years
(PDF and HTML). For instance, the documentation for a full-featured harvesting
machine or other special purpose vehicles comprises about 10,000 pages. With the
electronic availability the metaphor of a single ’book’ is not necessary anymore.

2.1.1 Characteristics of Technical Documentation

In this section, the domain of technical documentation is introduced in more detail.
The understanding of the different types and uses of the technical documentation is
helpful to fully understand the motivation of the later introduced semantic technolo-
gies.

Tasks of the Technical Documentation

The main task of technical documentation is the support and training of a service tech-
nician during daily work. Here, the documentation is used to teach entire functional
systems but also to fill knowledge gaps during troubleshooting and maintenance of the
technician on-site. Therefore, technical documentation needs to work as a teaching
textbook but also as a lexicon. The service technician is supported by the documen-
tation during the following tasks:

1. Operation of the machine

2. Maintenance of the machine

3. Diagnosis of problems

4. Repair of damage

2.1.2 Types of Technical Documentation

The described tasks are supported by documentation manuals. The organization of
the manual into one large file or into multiple documents varies from company to
company. For larger and more complex machines companies tend to organize the
technical documentation into multiple documents, each covering a specific aspect.
The main aspects and their corresponding manuals are introduced in the following.

1The contents of this section have already appeared in a slightly different version in the following
published article: Sebastian Furth, and Joachim Baumeister. “Semantification of Large Corpora
of Technical Documentation.” Enterprise Big Data Engineering, Analytics, and Management, IGI
Global, 2016 [65].
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Operation Manual

The operation of each machine function is described in detail for a non-technical user.
For instance, for driving machines the use of the "gear-stick" is described, i.e., how to
select an appropriate gear for the current driving speed. Also, simple and frequent
maintenance tasks accomplishable by end-users are explained.

Repair Manual

The repair manual targets the technical user, typically service technicians, and it de-
scribes the repair of all relevant components of the machines. In such a manual, the
exchange and adjustments of mechanical parts is explained. Following the example,
the repair manual would describe the replacement of a defective "gear-stick". De-
pending on the manufacturer of the machine, different levels of detail are used in the
manual, ranging from the description of the exchange of only larger components to
the repair of elements of detailed sub-components. For electronic parts and software,
the update, and calibration of the particular entities are described.

Diagnosis Book

For the diagnosis of malfunctions, the service technician needs to have a thorough
understanding of the functional dependencies and interrelations of the components.
The diagnosis book describes for each technical function the connections between
components. For instance, for a driving machine the components "gear stick", "CAN
bus", and "transmission" are connected in a functional dependency. Typically, also
the electrics and hydraulics of a machine are documented in such a manual, e.g., by
including circuit diagrams.

Spare Parts Catalog

The spare parts catalogs provide a detailed view of the parts located in particular
components. Service technicians use such catalogs to locate specific parts, but also
to order new parts in exchange for defective ones. Typically, the catalogs are defined
hierarchically, starting from top-level components (e.g., a "cabin") and then navigating
to detailed components contained in the top-level components (e.g., a "gear-stick" in
a "cabin").
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2.2 Semantic Technologies
This chapter describes selected semantic technologies. The Semantic Web and the
underlying semantic technologies have become broad research fields that provide so-
lutions for a plethora of problem scenarios. Therefore, the following sections concen-
trate on methods and technologies that are considered to be relevant for realizing the
vision of linkable and accessible technical documents.

2.2.1 In a Nutshell

Berners-Lee et al. [18, 19] proposed the semantic web as a composed architecture of
standardized technologies. The accompanying Semantic Web Stack (see Figure 2.1)
shows how the different technologies are organized for the realization of semantic
web solutions. Technologies on higher levels can use functions and features of lower
levels. The stack gets continuously updated and is thus intended to reflect the current
implementation progress of semantic technologies. At the time of writing, technologies
up to OWL have been implemented and standardized. The levels above have not yet
been implemented or standardized, though a couple of approaches exist.

Figure 2.1 | “Visualization of the common, layered Semantic Web
technology stack” by jsaiya / CC BY 3.0.

The lowest levels of the semantic web stack describe basic technologies that have
been successfully employed for many years in the traditional web. The Uniform Re-
source Identifier (URI) [17] or its generalized form Internationalized Resource Iden-
tifier (IRI) [55] are prominent examples. They are used to identify resources in the
(semantic) web. Unicode is another fundamental technology that is broadly used for
the representation of texts in different languages.

The next layer is concerned with syntax. Here prominent languages like the
Extensible Markup Language (XML) [26], Turtle [15] or JSON [47]/JSON-LD [186]
reside. These languages support the usage of different namespaces, which allows the
usage and linking of markups from multiple sources. This feature is the basis for

https://smiy.wordpress.com/2011/01/10/the-common-layered-semantic-web-technology-stack/
https://creativecommons.org/licenses/by/3.0/
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the next level of the technology stack, which is concerned with knowledge represen-
tation structures. The Resource Description Framework (RDF) [107] was the first
technology to be standardized by the World Wide Web Consortium especially for the
semantic web. The basic idea is to describe assertioned statements as triples, which
get interconnected in a graph.

Different semantic vocabularies build on top of the RDF language features. The
ontology language RDF Schema (RDFS) [30] is primarily a vocabulary collection
for RDF. The vocabulary provides language features for the definition of class or
property hierarchies. The Web Ontology Language (OWL) [14, 110] can be considered
as an extension of RDFS, which provides more sophisticated language constructs
for the semantic enrichment of RDF data. For the RDFS and OWL vocabularies
reasoning logic exists that can be employed to infer additional triples from given data.
SPARQL [83] is a query language for data in RDF format. The Rule Interchange
Format (RIF) [23] is intended to support the exchange of rules originally defined in
different rule languages. The Semantic Web Rule Language (SWRL) [92] is a rule
language that allows the definition of rules for OWL ontologies. However, SWRL has
not yet been standardized.

2.2.2 Types of Ontologies

Ontologies are intended to describe different types of entities of the real world [88].
This is especially true in the context of the semantic web, where special vocabularies
for the description of ontologies has been standardized, cf. RDF Schema (RDFS) [30]
and OWL [14, 110]. Ontologies fulfill different purposes and there is no commonly
agreed upon classification of respective ontology types. This thesis uses the widely
accepted classification scheme that has been proposed by Heijst et al. [86, 85]. The
classification scheme mainly considers the subject of conceptualization for the defini-
tion of ontology types. Relevant types of ontologies according to this classification
schema are:

• Meta ontologies:
The most common vocabulary that is usually valid for multiple problem do-
mains is defined in meta ontologies. Hence, meta ontologies contain general
classes and properties that are later instantiated for concrete problems. In
the context of technical (document) ontologies a meta ontology might provide
vocabulary for the definition of machines, documents and more fine grained
document structures and components.

• Domain ontologies:
The term of domain ontologies is not defined precisely. In the context of this
work domain ontologies are seen to contain instantiated knowledge on basis
of meta ontology classes. In the context of technical (document) ontologies a
domain ontology might describe concrete machinery or its corresponding corpus
of documents. A special characteristic of technical documents is the usage of
a relatively fixed and sometimes controlled vocabulary that is closely related
to the machinery in focus. This characteristic can be exploited when technical
documents and concepts from technical domain ontologies get interlinked. Then,
the set of concepts that shall serve as document annotations can easily be
derived from the structural description of a machine that is contained in a
technical domain ontology.

• Application ontologies:
Knowledge that is required for specific applications gets modeled in application
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ontologies. Application ontologies usually refer to domain ontologies, some-
times they are closely coupled or even included in domain ontologies. In the
context of linkable technical documentation an application ontology might de-
scribe knowledge that is required for semantic information retrieval. Therefore,
semantic indexing information like chapter titles, page ranges or relevant sub-
jects might be described in a designated application ontology.

2.2.3 Linked Data

In recent years the realization of Linked Data [19] is one of the most recognized
results produced by semantic technologies. Linked Data extends the traditional in-
ternet, which mainly consists of websites, by a net of data. The main goal of the
Linked Data initiative is to connect heterogeneous data from different sources in or-
der to gain new insights. Therefore, data on the web needs to be described using
the aforementioned semantic technologies. The main requirements of such data is its
ability to be referenced and unambiguously linked, i.e. it needs to be reachable via
URIs/IRIs. Additionally, resources usually need to be enhanced with metadata in
order to ensure machine readability.

Linked Data exists in different forms ranging from data published by public ad-
ministrations to data that follows the idea of Linked Open Data (LOD). Linked Open
Data is freely available on the internet, can be identified by URIs or IRIs and links
itself to other public data sets. The World Wide Web Consortium (W3C) described
guidelines for Linked Open Data that aim for the easy usage of such data, especially
regarding machine readability. The combination of different data sets across domains
and organizations usually yields new insights. The technical basis of Linked Open
Data is the Resource Description Framework (RDF) [107]. Existing structured data
sources can usually easily be transformed to the RDF format. The transformation to
RDF is usually challenging for complex unstructured data – like technical documents.

Several large, interconnected and free data sets with billions of facts and connec-
tions have been built in the last years. The Linked Open Data Cloud in Figure 2.2
visualizes the contents of the most popular data sets like DBPedia2, Open Street
Map3, and Linked Geo Data4.

2.2.4 Linked Enterprise Data

Structured and unstructured enterprise data has traditionally been organized in re-
lational databases and document management systems respectively [21]. Structured
company master data is managed and defined according to strictly defined database
and metadata schemes [21]. In contrast, unstructured information like written texts
usually have only little or no explicitly defined schemes but follow the rules of natural
language [21]. In consequence, the interconnection of structured master data and
unstructured texts is often hardly possible in traditional IT landscapes.

The idea of Linked Enterprise Data is to interpret, process, interconnect, and ade-
quately present enterprise data and information from different sources and structures,
such that efforts for information acquisition and retrieval decrease significantly [21].
Therefore, Linked Enterprise Data employs semantic technologies like the Resource
Description Framework (RDF) [107] for building a data integration layer for differ-
ent structured and unstructured information [21]. Therefore, controlled vocabularies

2http://dbpedia.org
3http://www.openstreetmap.org
4http://linkedgeodata.org

http://dbpedia.org
http://www.openstreetmap.org
http://linkedgeodata.org
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Figure 2.2 | “Linking Open Data cloud diagram 2017”, by Andrejs
Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard

Cyganiak. (http://lod-cloud.net).

organized in enterprise knowledge graphs / ontologies are used to map syntax and
semantics of relevant information [21]. Blumauer [21] claims that using semantic
technologies instead of traditional XML based mechanisms yields the following ad-
vantages:

• Linked Data based data models are less abstract then XML schemes or relational
databases. [21]

• Linked Data based data models connect information for human beings and
machines in one model. [21]

• Knowledge Graphs / Ontologies can be developed incrementally and evolve with
new requirements. [21]

• Linked Data allows to semantically represent and interconnect structured and
unstructured data. [21]

• Linked Data has a powerful query language (SPARQL). [21]

• Linked Data Graphs can directly improve user experience. [21]

Based on these advantages Blumauer [21] identifies three main application scenarios
for Linked Enterprise Data.

http://lod-cloud.net
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• Data Integration with Linked Data:
Linked Data principles and semantic technologies are used internally for data
integration purposes and semantic search. This usually supports all business
processes and units that work with complex, heterogeneous and distributed data
as time required for information retrieval usually decreases significantly. [21]

• Integrating Data from the Linked Data Cloud:
Other enterprises also consume data from the Linked Data Cloud in order to
enhance internal applications and databases. Prominent examples are the ad-
dition of geo data to e-mails and tickets or the highlighting of words in written
texts with explanatory semantic links. [21]

• Publishing Data to the Linked Data Cloud:
Some enterprises also publish their own data to the public Linked Data Cloud.
The main goal is usually to develop new markets for distribution. The publish-
ing of data to the Linked Data Cloud is usually accompanied by a combination
of open and closed license models. This is especially true for media companies
and book publishers. [21]
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2.3 Text Analytics for Linked Data Integration

2.3.1 Linked Data Lifecycle

Auer et al. [4] confirm that data is becoming more and more a success factor for ex-
isting enterprises. Therefore, they claim that the lifecycle of data in enterprises must
be comprehensively supported [4]. This is especially true for data that is integrated
in a company’s Linked Enterprise Data graph. They propose the Linked Data Life-
cycle (see Figure 2.3) that describes especially the following phases for Linked Data
in enterprises:

• Storage / Querying:
Linked Enterprise Data is represented as RDF. As RDF statements are es-
sentially expressed as triples they are usually stored in respective triple stores.
Additionally traditional databases with RDF interfaces might be employed. En-
terprises are usually confronted with additional challenges that concern storage
and querying like caching, query optimization or scalability. [4]

• Manual Revision / Authoring:
A vital element of Linked Enterprise Data is the semantic authoring of new data.
Therefore, adequately equipped authoring tools and editors should encourage
the semantic enhancement of all kinds of data. [4]

• Interlinking / Fusion:
The automatic interlinking of single data sets to a complete Linked Enterprise
Data graph is a huge challenge in most companies. This is especially true for
unstructured data where unlike in traditional databases the simple mapping of
keys is usually not possible.

• Classification / Enrichment:
All data that shall be included in a Linked Enterprise Data graph needs to
be mapped to respective taxonomies and vocabularies from enterprise ontolo-
gies. This mapping is especially challenging for unstructured data like written
texts. [4]

• Quality Analysis:
The quality of internal and external data usually varies dramatically. There-
fore, methods for the automatic evaluation of data quality are required. Promi-
nent measurements are based on data provenance, context, coverage, and struc-
ture. [4]

• Evolution / Repair:
Data is typically dynamic and evolves over time. It is critical for Linked Enter-
prise Data that evolving data remain stable and consistent. Therefore, changes
to vocabularies and ontologies must be transparent. Automatic test methods
like continuous integration for ontologies or ontology debugging support the dis-
covery of inconsistencies [9] and their repair. Previous work describes the delta
debugging of ontologies [62] that supports the repair task. [4]

• Search / Browsing / Exploration:
Users do typically not yet have a high affinity to linked data and the interac-
tion with it. Therefore, relations between data should be visible in intranet
and internet applications and search, browsing, exploration and visualization
methods should support the usage. [4]
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Figure 2.3 | “Linked Data Lifecycle”, by Auer et al. [4].

2.3.2 Linked Data Integration in a Nutshell

The Linked Data Lifecycle that has been described in the previous sections is the basis
for the Linked Data Integration task. The Linked Data Integration task is especially
concerned with the Interlinking / Fusion and Classification / Enrichment phases of
the Linked Data Lifecycle. Isele [98] describes Linked Data Integration as a process
with three main steps:

• Data Translation:
The data translation sub task of Linked Data Integration is concerned with the
translation of existing data sets to an RDF schema that fits an enterprises’ needs.
It is usually necessary to distinguish the handling of internal and external data
as well as data that already exists in RDF format and other data. Linked Data
mappings are usually employed for the translation of existing structured data.
The translation of unstructured data, however, is usually more challenging and
will be described for technical documents throughout this thesis. [98]

• Entity Matching:
When all data has been converted to an RDF representation the entities of
all datasets must be mapped to each other. This mapping process is usually
referred to as Entity Matching and tries to identify duplicate entities in differ-
ent data sets. Different methods exists for the entity matching problem rang-
ing from automatic approaches that consider domain-independent background
knowledge to rule-based approaches. Rule-based approaches employ domain-
specific rules that determine the similarity between entities of different sources.
Distance metrics for strings are a vital foundation for these rules that must
compare different textual attributes of the respective entities. Then, automatic
classifiers are employed to compute entity mappings on the basis of the com-
puted similarities of their respective attributes. [98]
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• Data Fusion:
The data fusion step tries to unify already mapped entities, i.e. it determines
an entity representation that reflects the information from all mapped instances.
Important aspects of the fusion are completeness and consistency. While com-
pleteness is usually assured by simply considering all links of an entity consis-
tency is a bigger issue. Ensuring consistency might be challenging when data
sources contain different values for specific attributes of an entity. [98]

2.3.3 Text Analytics as Part of Linked Data Integration

Text Analytics is an established research field and provides a variety of approaches
that can be exploited for the Linked Data Integration task for unstructured infor-
mation in the form of written text. This section gives a brief overview of basic text
analytics techniques that support the data translation step for unstructured textual
information that is part of the Linked Data Integration task.

Preprocessing

In general, the Data Translation (see Section 2.3.2) of textual information into an
RDF representation first requires a series of common preprocessing steps:

1. Tokenization:
The most elementary preprocessing step is the detection of sentence and word
boundaries. This is usually referred to as Tokenization (or sometimes Zon-
ing). Seldomly, tokenization is also considered to be the process of detecting
paragraphs, sections, chapters, and more generally the detection of reasonable
document components. In this thesis tokenization is considered as the process
of detecting words and components. The definition of a graphic word of Kucera
et al. [111] is a good basis for the detection of word boundaries: “a string of con-
tiguous alphanumeric characters with space on either side; may include hyphens
and apostrophes, but no other punctuation marks” [111]. Practical applications,
however, usually include data where the word detection on the basis of the
aforementioned definition fails.
Manning and Schütze [126] thoroughly discuss a series of challenges concerning
the detection of word boundaries. In the following paragraph, a selection of
these challenges is presented. According to the graphic word definition words
can be identified by checking their limitation with whitespace characters. How-
ever, this is especially problematic for abbreviations like “etc.”. Simply ignoring
the dot as last character would at least fail when the abbreviation appears at
the end of sentence, where the dot character then fulfills two functions. This
phenomenon is referred to as haplology. According to Kucera et al. [111] single
quotes are part of a word. In the English language, however, this consideration
is problematic. Cases like “I’ll” or “isn’t” illustrate that considering the single
quote as part of a word would produce an error, as the presented examples
obviously consist of two words. A similar phenomenon arises from the usage of
hyphens in words like ”co-operate”. In this case it is, however, not clear whether
the respective words should be considered separately. The often inconsistent
usage of hyphens must also be considered. In practice, however, whitespace
tokenization approaches are very popular although they have to deal with the
aforementioned challenges. Respective tokenization results are usually good to
very good for English texts. Other languages introduce additional challenges
to the tokenization problem. A popular example from the German language
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is the compound of words like ”Öldruckschalter”. The decomposition of the
word into its compounds would often be beneficial but is a practically unsolved
problem, especially for domain-specific (technical) terms. Other languages like
Chinese or Japanese do not even make use of whitespace characters which makes
the tokenization with the presented approach impossible. Another problem is
the existence of different spellings for a word like “database”, “data-base” or
“data base”. In this case a separation on the whitespace character should be
suppressed. This is also true for strings that follow special patterns like phone
numbers. The detection of sentence boundaries is usually based on characters
like “.”, “?” or “!”. However, the handling of characters like “:” are “;” is often
not clearly defined. Manning and Schütze [126] claim that most of the described
challenges can be handled by using respective heuristics.

2. Morphological and Lexical Analysis:
After sentences and words have been detected through tokenization approaches
a morphological and lexical analysis follows. Amongst others, Feldman et
al. [58] and Manning et al. [126] thoroughly describe these preprocessing steps.
The morphological and lexical analysis usually consists of two main compo-
nents: the Part-of-Speech-Tagging and the Sense Disambiguation. The latter
is concerned with finding the correct lexeme for homographs. An example is
the English word “saw”, which could either be the past tense of the word “to
see” or the noun “tool”. The Part-of-Speech-Tagging on the other hand as-
signs the single words of a sentence tags according to their role. The tags are
not standardized, however usually they refer to the following seven base cat-
egories: articles, nouns, verbs, adjectives, prepositions, numbers, and named
entities. Additional tag sets exist that are more extensive. Examples comprise
the Brown Tag Set5, the C5 Tag Set6 and the Penn Treebank Tag Set7.

3. Syntactic Analysis:
The syntactic analysis is usually concerned with parsing the grammar of sen-
tences. A thorough description of this task is given by Feldman et al. [58] or
Manning et al. [126]. A sentence can, for example, be analyzed according to
a Probabilistic Context Free Grammar (PCFG) [39]. Basically, two grammar
concepts are distinguished. The first and rarely applied form of grammar is
the Dependency Grammar. Here, sentences get parsed in order to identify de-
pendencies between single words. The other concept describes Constituency
Grammars, where a sentence is split into its compounds: noun phrase, verb
phrase, prepositional phrase, adjective phrase and clause. The phrases usually
get roles assigned like subject or object. With respect to their efficiency both
forms of grammars are usually too expensive for practical usage. Therefore,
faster and more robust Shallow Parsing [178] approaches are applied. Shallow
Parsing approaches do not require a full parse of a sentence and instead simply
annotate the simple and unambiguous parts of sentences.

4. Anaphora / Coreference Resolution:
The resolution of anaphoras (coreferences) follows the syntactical analysis and
aims at identifying phrases that refer to the same entity. Anaphoras appear
in different forms. Feldman et al. [58] give a good overview. The most rec-
ognized form of anaphora is the pronominal anaphora, which result from the

5http://www.comp.leeds.ac.uk/ccalas/tagsets/brown.html
6http://www.natcorp.ox.ac.uk/docs/c5spec.html
7http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html

http://www.comp.leeds.ac.uk/ccalas/tagsets/brown.html
http://www.natcorp.ox.ac.uk/docs/c5spec.html
http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html
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usage of pronouns like "he" or "she". Due to its frequent appearance and its
comparably simple handling this form usually is in focus. Approaches are ei-
ther knowledge-based or use machine learning methods. The latter require re-
spective training data, while knowledge-based approaches are usually specially
customized algorithms. Established knowledge-based approaches are the algo-
rithm of Hobbs [90], CogNIAC [6] and the approaches of Kennedy et al. [104]
and Mitkov [141]. An example for a machine learning approach is the method
proposed by Soon et al. [184].

The basic preprocessing of textual information is similar and independent from the
actual use case. However, depending on the application scenario and the respective
target RDF representation, the further processing is different. For the Data Trans-
lation task of the Linked Data Integration, two application scenarios are essential:
Entity Recognition and Document Classification/Subject Analysis. Both application
scenarios aim on translating unstructured textual data into a representation that can
be connected to an existing Linked (Enterprise) Data graph. However, the resulting
links of the different approaches differ significantly. While Entity Recognition typ-
ically results in a bag of entities that can all be used for establishing links to the
Linked (Enterprise) Data graph, the translation using Document Classification/Sub-
ject Analysis approaches aim on significantly reducing the amount of links. Instead of
establishing connections to all discovered entities, a document gets classified accord-
ing to predefined classes/subjects that are chosen from an existing Linked (Enterprise)
Data graph. The next section gives a brief overview of the Entity Recognition prob-
lem and discusses the usage of different technical term sources. Section 2.3.3 shortly
points out some details about document classification for the Linked Data Integration
task.

Entity Recognition

The Entity Recognition task, as described amongst others by Nadeau [143] or Feld-
man et al. [58] is concerned with detecting all proper nouns and units in a text.
In normal texts such entities typically comprise names of persons, locations or or-
ganizations, information about date and time, amounts of money or percent values.
In the context of technical documents, relevant entities typically comprise names
of machines, machine variants, components, functions, measurement values, filling
quantities, and maintenance intervals. Then, having all entities appearing in a text
available they all might be simply linked to the respective concepts of a Linked (Enter-
prise) Data graph. Therefore, Entity Matching approaches (see Section 2.3.2) must
be applied.

Overview

Detecting known entities is usually a rather trivial task under consideration of respec-
tive dictionaries. A more challenging subtask is the detection of unknown entities.
The detection of such unknown entities usually requires specialized methods that
have been mainly based on handcrafted rules in the past. Recently, approaches based
on Machine Learning gain importance. Hence, the currently predominant form of
Named Entity Recognition is based on supervised Machine Learning methods. Re-
spective results are usually promising but require training data. Due to the usually
missing training data with respect to technical documents, the respective approaches
are not discussed in this thesis. Nadeau [143] surveyed the topic, discusses differ-
ent approaches and points to methods that cope with small amounts of training data.
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Nadeau [143] also recommends the usage of combined rule-based and dictionary-based
approaches under absence of respective training data. The required dictionaries can
have different sources and typically comprise different kinds of lists, like lists of enti-
ties or lists of keywords. Then, using the dictionary information, all occurrences of
entities or keywords in texts are identified. Especially on the basis of rules operating
on keywords and patterns, additional entities can be detected. An example for such
an approach was proposed by Sekine et al. [177]. Entity Recognition approaches that
are based on dictionaries and rules are, however, often closely coupled to the respec-
tive domain. The usage of such systems on more general texts typically yields rather
poor outcomes like the evaluation of the approach of Sekine et al. [177] confirms.

Sources of Technical Entities

The fundamental requirement for the application of dictionary-based Entity Recogni-
tion approaches is the availability of terms that represent the respective entities. In
the mechanical engineering domain, typical examples for term sources are stock lists
or technical structure models. Figure 2.4 shows an excerpt of a stock list, that con-
tains terms (highlighted) and a lot of additional information (e.g. identifiers, amounts
etc.) about the parts of a specific machine. Another valuable terminology source is

Figure 2.4 | Excerpt of a stock list showing the contained terms.

the corpus itself. In recent years controlled vocabularies were introduced for the au-
thoring process. However, older documents often use varying vocabularies because of
different writing styles or translation processes. Therefore especially the older tech-
nical documents in the corpus are a promising source for the extraction of terms
in a preceding step. This preceding step uses Automatic Term Extraction (ATE)
methods that can be used to extract term candidates from textual resources auto-
matically. Popular examples are the C-Value/NC-Value method [61], TermEx [175]
and GlossEx [153], that combine linguistic and statistical measures to extract ranked
lists of terms. For further reading at this point please refer to the evaluations of ATE
methods from Pazienza et al. [155] and Zhang et al. [200].

Quality of Technical Terms

The term sources usually vary in term quality. While a high quality extraction of
terms from structured sources can be assumed, the terms extracted using ATE meth-
ods need a dedicated quality measure. Thus the quality of these terms is usually
expressed as a confidence value computed by an ATE method. These confidence val-
ues typically consider the termhood (degree to which a linguistic unit is related to
domain-specific concepts) and unithood (strength and stability of word combinations
or collocations) of a term, as defined by Kageura et al. [102].

A large terminology is crucial for the performance of dictionary-based entity recog-
nition. In general, the more terminology is available, the better the entity recognition
is. However some term sources contribute more to the performance than others, as
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they better reflect the terminology used in the documents. Additionally, low quality
terms might result in bad Linked Data Integration results in form of wrong links.
Hence, a good strategy is to prioritize term sources during the integration process.
Albeit the prioritization of term sources according to their contribution capabilities
is not a trivial task. Usually even technical writers and editors have to guess, when
they are asked to prioritize term sources according to the expected compliance with
a corpus. Objective metrics can support the technical editors in their cognitive selec-
tion process. An example for such a metric is the term coverage, which expresses the
proportion of terms among all tokens in a text.

Therefore, a token is formally defined as follows:

Definition 2.3.1 (Token). Let K be the universal set of all documents (corpus) and
let L be the universal set of all possible literals. Then the function to : K → 2L

extracts the set of all literals for a given document. We call the literal t ∈ to(Di) a
token of document Di, where Di ∈ K.

Additionally, term candidates are defined as follows:

Definition 2.3.2 (Term Candidates). Let L be the universal set of all possible
literals. Then we define the term candidates T ′ of a problem domain as a set of
literals, i.e., T ′ ⊆ L.

Having formal definitions of terms and term candidates available the term coverage
is defined as follows:

Definition 2.3.3 (Term Coverage). Let T ′ ⊆ L be the term candidates of the
problem domain extracted from a term source, and let K = {D1, . . . , Dn} be the
inspected corpus. Then the term coverage tcov is defined as

tcov =
|T ′|

| ∪i=1,...,n to(Di) |
.

Figure 2.5 | Term city showing a term source with high coverage.

A high term coverage implies that the term source fits the document well. The
metrics can be visualized using the city metaphor (See Figures 2.5 and 2.6), where a
document corresponds to a city and the hierarchical chapter structure is represented
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Figure 2.6 | Term city showing a term source with low coverage.

by districts and houses. The houses’ areas are adapted in accordance to the number
of tokens in a segment, while their height and color indicate the respective term
coverage. Tall and green houses represent a good term coverage (see Figure 2.5), red
ones a low coverage respectively (see Figure 2.6).

Document Classification and Subject Analysis

In the scope of Linked Data Integration or more specifically the Data Translation
of written (technical) texts to an RDF representation, Document Classification and
Subject Analysis (Subject Indexing) are additional important Text Analytics method-
ologies. Unlike the Entity Recognition approaches presented in the previous section
these methodologies aim on translating a given text to one or few representative(s). In
the context of Linked Data Integration these representatives are usually concepts from
an existing Linked (Enterprise) Data graph and are intended to represent the main
subject (topic) of the respective document. Different approaches exist for Document
Classification and Subject Analysis, ranging from rather knowledge-based approaches
to methods based on Machine Learning. This thesis describes a semantification ap-
proach for technical documents that ultimately aims on connecting reasonable parts
of a technical document to elements of a Linked Enterprise Data graph. Therefore,
the Document Classification and Subject Analysis problems are not detailed at this
point. The reader might refer directly to Section 4.6 and Section 4.7.
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2.4 Semantic Information Retrieval
In recent years, semantic technologies entered the market of enterprise applications.
In the context of Linked Enterprise Data, Semantic Information Retrieval is con-
sidered to be one of the most valuable applications [21]. This is due to the fact
that Semantic Information Retrieval can support tasks in all business processes that
are regularly concerned with finding important information. Examples for respec-
tive tasks can be found in many divisions ranging from Research and Development
to Marketing and After Sales. Hence, advanced Information Retrieval methods are
emerging for searching relevant resources. This section gives an brief overview of
Semantic Information Retrieval.

A plethora of architectures for Semantic Search Engines have been proposed [80, 5,
43, 117, 191]. Mangold [125] surveyed the topic and proposed a classification scheme
for Semantic Search approaches. According to Mangold, Semantic Search Engines
can be differentiated on the basis of the following characteristics:

• Architecture:
A basic differentiation can be made by considering the architecture type of a
Semantic Search Engine. In general, two main types exist: Stand-alone appli-
cations and meta search engines. While the latter are invoking other search
engines, stand-alone applications are actually operating on semantic informa-
tion. [125]

• Transparency:
Another important aspect of Semantic Search Engines is their degree of trans-
parency. Mangold differentiates different transparency grades that express the
amount of user interaction that is required to clarify a query. Fully transparent
engines appear like ordinary textual search engines and do not require any user-
based clarification. Interactive systems, instead, require user actions in order
to clarify his input. This process is also referred to as interactive alignment [72]
and realized for instance in Semantic Autocompletion components [95]. [125]

• User Context:
The user plays a vital role in all information retrieval systems. Mangold pro-
poses to differentiate Semantic Search Engines according to their handling of
user context information, e.g. a user’s search history, the current location of
the user, and the device he is using. Learning systems dynamically adapt their
search results on basis of the users context. Hard-coded systems, instead, just
follow strict rules. [125]

• Query Modification:
The main benefit of Semantic Search Engines is that they can exploit ontological
information in order to improve a user’s query. The goal of this modification is to
consider additional relevant aspects based on the information manifested in the
respective ontology. Mangold differentiates three types of query modification.
The most basic type requires the user to modify a query manually. More advance
approaches rewrite the query by augmenting, trimming and substituting the
concept set originally defined by the user. Another type of query modification
directly operates on the Linked Data graph (ontology) by traversing with a
spreading-activation algorithm. [125]
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• Ontology Technology:
Mangold also proposes to differentiate systems according to the types of ontolo-
gies they support. He claims that most systems operate on F-Logic, RDF or
OWL ontologies. [125]

• Ontology Structure:
The performance of a Semantic Search Engine often depends heavily on the un-
derlying ontology. Hence, Mangold proposes to differentiate systems according
to the ontology structure they are operating on. Systems that operate on anony-
mous structures are uninformed following all edges in a Linked Data graph. In
contrast, engines that work on properties of standard ontologies like SKOS [139]
can follow edges in a more targeted manner. The best search results are usually
generated by systems that consider domain-specific properties. However, these
systems are then especially tailored for the respective domain and can not easily
be applied to other problem domains.

• Document Coupling:
For this thesis, the most important characteristic of Semantic Search Engines
is their type of coupling to the document corpus. Mangold claims that systems
with loose and tight coupling exist. Tightly coupled systems require documents
to provide metadata that describe their target nodes in a Linked Data graph
(ontology). Loosely coupled systems, instead, just apply Entity Recognition
techniques and must be considered to be a semantic “augmentation” of tradi-
tional, textual search engines.

In the context of this work, stand-alone Semantic Search Engines that work on domain-
specific RDF or OWL ontologies are considered. The respective systems must have
a tight coupling with the document corpus and support ontology-based query modi-
fication. The degree of transparency and the consideration of a user’s context does
not directly affect this work.

Figure 2.7 shows the architecture of a Semantic Search Engine. According to this
architecture a user interacts with a user interface component that essentially provides
a search slot and lists search results. The textual inputs of the user are forwarded to
a clarification component. This component might realize Semantic Autocompletion
as proposed by Hyvonen [95] in order to suggest the user concepts from an ontology
for defining his query. The suggestions are generated on the basis of the textual input
of the user, concepts that have already been included in the query and ontological
information from the Linked Data graph. When the query has been fully defined it
is first used to update the user context in a respective component. Additionally, it is
sent to a retrieval component. The retrieval component then requests the user context
(e.g. the complete search history). The user context and the user defined query are
forwarded to a query modification component that exploits the provided data in order
to generate an augmented version of the query. The augmentation is either based on
query rewrite approaches or on graph traversal with spreading-activation algorithms.
In either scenario, information from the underlying Linked Data graph (ontology)
is considered. When the query has been properly modified, the retrieval component
performs a look-up by exploiting the meta information that is used for tightly coupling
documents to the Linked Data graph. The resulting resources (documents) are ranked
by the retrieval component and finally returned as search result to the user interface
for presentation to the user.

Semantic Assistants [195] are considered to be a logical extension to Semantic
Search Engines. They usually use Speech Recognition methods in order to identify
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Figure 2.7 | Architecture of a Semantic Search Engine.

typical search patterns spoken by the user. When a respective pattern gets matched,
a query is generated automatically and handed over to an underlying Semantic Search
Engine. Depending on the implementation and the granularity and depth of the se-
mantified resources, Semantic Assistants are able to directly answer a user’s question,
cf. Question Answering [121, 145].

Semantic Search Engines and Semantic Assistants are powerful information re-
trieval tools. However, their performance heavily depends on the semantic prepara-
tion of the underlying corpora of documents. In order to integrate documents properly
into Linked (Enterprise) Data graphs, respective semantic representations are neces-
sary. Chapter 3 describes semantic representations for (technical) documents that
facilitate the easy integration into Linked (Enterprise) Data graphs. As large corpora
of legacy documents exist that can not be easily transformed to a semantic representa-
tion, Chapter 4 presents a holistic semantification approach for technical documents.
Chapter 5 gives implementation remarks for realizing the semantification process and
Chapter 7 reports on actual semantification projects.
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3.1 Overview
Today, many proprietary and open formats exist for authoring technical documents.
While in former times the single application scenario of technical documentation was
the paper-based information of service technicians, new usages arise with techno-
logical developments like semantic search applications or smart semantic assistants.
These added application scenarios require technical documents to be accessible and
linkable. However, a standardized assessment of the accessibility and linkability of
technical documents is hardly possible. The plethora of different formats and un-
defined assessment criteria are present obstacles. Section 3.2 introduces a 5-STAR
maturity schema for assessing the accessibility and linkability of technical documents.
The schema clearly states requirements and describes the added values through better
accessibility and linkability for each maturity level.

Decent accessibility and linkability usually goes hand in hand with the usage
of structured information models. However, a commonly accepted standard for the
definition of technical documentation does not yet exist. Instead, a lot of different for-
mats and specifications exist. Their usage is often subject to industry or geographical
location. The benefits and downsides of certain formats or specifications are often
not clear to decision-makers. Section 3.4 presents the most important information
models for the definition of technical documents and discusses their accessibility and
linkability with respect to the 5-STAR maturity schema.

Existing information models have limitations regarding accessibility and linkabil-
ity. Thus, Section 3.3 investigates the absence of an abstracting (meta) ontology for
information models in the field of technical documentation. Additionally, TEKNO
(TEchnical KNowledge Ontology) is proposed as such an abstracting meta ontology.
It is also shown that using TEKNO as an abstraction layer provides additional possi-
bilities for identifying strong technical knowledge that has been inaccessible before.

3.2 5-STAR Technical Documentation1

Technical documentation has been playing a vital role from the very beginning of
mechanical engineering. Although Archimedes and Aristoteles were amongst the first
who published technical writings, the machine books of Renaissance era engineers are
considered to be the early beginnings of serious technical documentation. Leonardo
da Vinci’s historical notes and drawings of his machines are popular examples that
were supposed to support the reproduction and operation of different equipments.
These documents contain structures and elements like exploded view drawings that
are still in use in modern documentation.

Since then, technical documentation evolved enormously and was guided by other
important progresses like the invention of typewriters or personal computers. In
the early 1990s, with the beginning of computer aided authoring of technical doc-
uments, the era of electronic documents has started. Nowadays, complex content
management systems are employed to meet the ever increasing demands on techni-
cal documentation. These requirements arise, for example, due to changes in legal
frameworks but also due to the increasing complexity of the respective machinery.
While in early years a single document was able to fulfill information needs, today

1This section and its subsections are significantly extended and revised versions of the contents of
the following published article: Sebastian Furth, and Joachim Baumeister. “On the Semantification
of 5-Star Technical Documentation.” Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR,
and FGDB, 2015 [64].
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separate documents are necessary for different purposes and target groups. The in-
creasing requirements on technical documentation pose new challenges to authoring
processes. Therefore, content reuse through modularization, metadata annotations
and translation-oriented writing are established methods for the modern authoring
of technical documentation.

However, technical documents written electronically in the past decades must usu-
ally be categorized in different epochs. According to empirical observations, technical
documents can usually be roughly clustered to three main epochs:

• Epoch 1: Single books

• Epoch 2: Books assembled from modules

• Epoch 3: Annotated modules (Dynamic Documentation)

With respect to accessibility, technical documents from these epochs have substan-
tial differences. While dynamic documentation realized as annotated modules provide
high accessibility for service technicians and machines it decreases for unannotated
modules and single books. Besides lacking semantic annotations and modularization
documents from epochs one and two have other shortcomings, for instance different

—partially proprietary— legacy formats or inconsistent formatting guidelines.
It is usually hard to determine the accessibility for a complete corpus. Therefore,

this thesis proposes a maturity schema for assessing the accessibility of technical docu-
mentation data. The schema lists a number of quality criteria building on each other.
For each criterion one star is given; that way, the maturity of documentation data
can range from one star to five stars. The schema is inspired by the idea of evaluating
the quality of data in the linked open data cloud [16, 100], and was adapted to the
needs of technical documentation. The aims of the schemes, however, are identical:
First, users should obtain an intuitive impression about the maturity/accessibility of
their data; second, users should get motivated to increase the number of stars of their
data by adding more semantics.

XML

PDF

XML

EL ST AT IT LD

EL ST AT IT

EL ST AT

EL ST

EL

XML

RDF

5 LINKABLE DOCUMENTATION

Figure 3.1 | The levels of the 5-STARs maturity schema for technical
documentation.
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The schema for 5-STAR Technical Documentation data is depicted in Figure 3.1.
The first star is given, when the documentation is accessible in an electronic format,
for instance, as PDF or Microsoft Word. The documentation gets two stars, when it
is accessible in a structured and non-proprietary format, e.g. XML or SGML. Three
stars are received for documentation that is available in atomic modules and is free
from duplicates. Documentation with four stars provides URIs and information types
for these atomic modules. Five star documentation adds semantics to the relevant
elements by attaching metadata to the elements that refers to concepts of an ontology.
That way, a book itself, particular chapters, and paragraphs can be clearly named and
thus can be linked by external applications. Using an ontology enables the automated
interlinkage of document elements by using the same concepts of the ontology. Also
external ontologies with similar semantics can by aligned to the used ontology. The
following sections describe the different maturity levels in detail and discuss benefits
and costs for realizing them.

3.2.1 1-STAR: Electronic Format

The first level of the maturity scheme requires technical documents to be provided in
an electronic format that is somehow electronically accessible or can be transformed
into such a format easily and reliably. However, the electronic format must at least
allow access to the following basic document structures/elements:

• Pages: a single page of a document.

• Blocks: contiguous text within a single page that can usually be visually sep-
arated from other text elements, e.g. headlines or paragraphs.

• Texts: contiguous tokens that form a self-contained element, e.g. headline text
or sentences.

• Tokens: single words.

Additionally, the electronic format must provide basic formatting and positioning
information for the aforementioned elements, e.g. font, font size, width, height, and
position. Technical documentation provided in the popular PDF format is a typical
example of 1-STAR documentation. Although The content is not always directly
accessible, it can easily be transformed into an electronic format that provides access
to the respective elements (for more details please refer to Section 4.3).

The benefits of technical documentation provided in an electronic format comprise
the ability of mass media reproduction at (almost) no costs or more generally the
easy way of publishing documentation. Additionally, 1-STAR technical documents
are usually easy to exchange, e.g. due to the availability of standard viewers and the
fact that normally no explanation is necessary to enable users to read the documents.

1-STAR technical documents can usually be provided without additional efforts
as the corresponding formats are widely supported and can easily exported by a
wide range of authoring applications. However, the content of technical documen-
tation that is provided in a 1-STAR electronic format is locked-up from a semantic
perspective. Custom parsers are necessary to extract required information from the
corresponding documents. Moreover, the extraction results are usually prone to er-
rors which complicates their subsequent usage. The linkability is also limited. Usually
only the complete document or at most single pages from a document can be refer-
enced. However, resources like pages are usually not uniformly identifiable. Table 3.1
summarizes the characteristics of 1-STAR technical documentation.
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Maturity Level 1-STAR
Accessible Elements – Pages

– Untyped Micro Structures (Blocks, Texts)
– Nano Structures (Tokens)

Benefits – Mass media reproduction
– Easy publishing
– Easy exchange
– No need of explanation

Accessibility low (requires custom parsers with uncertain results)
Linkability low (reference to complete document or pages)

Table 3.1 | 1-STAR: Maturity Fact Sheet

3.2.2 2-STAR: Structured Content

The second level of the maturity scheme requires technical documents to be provided
in a structured format that is easily accessible. In contrast to 1-STAR documenta-
tion it grants access to more fine-grained and basically typed content structures like
headlines on different levels, ordered and unordered lists, tables and others. Addi-
tionally, the underlying format must give detailed information about the formatting
of these structures. Popular examples of formats fulfilling the requirements of the
second levels are arbitrary XML [26] and SGML [76] documents.

The benefits of technical documentation provided in a structured 2-STAR format
comprise the easier processing of information due to structured accessibility. Ad-
ditionally, 2-STAR data can, due to its structured nature, easily be transformed to
other formats for publishing or presentation purposes like PDF (via XSL-FO [154]) or
HTML. The publication process for 2-STAR technical documentation usually remains
simple.

Unlike 1-STAR technical documents the second level requires some additional ef-
fort at authoring time. The aforementioned micro structures (headlines, lists, tables
etc.) need to be defined and used. This usually involves the creation of corporate au-
thoring guidelines or style guides and subsequently the usage of a dedicated authoring
system. Hence, technical documentation fulfilling the requirements of the second level
of the maturity scheme usually exists for newer documents that have been produced
using a technical authoring system or specially tailored XML editors. Although the
second maturity level brings improvements regarding the accessibility huge parts of
the information is still locked-up in the documents. The access to information on a
granular level still requires custom parsers that are able to infer hierarchies of macro
structures like chapters, sections, or subsections. The linkability is usually signif-
icantly improved as structures on all levels can receive unique identifiers. The id
attribute of standard XML is a prominent example for such an identifier on element
level. Table 3.2 summarizes the characteristics of 2-STAR technical documents.
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Maturity Level 2-STAR
Accessible Elements Typed Micro structures like headlines, lists or tables
Benefits – Easier processing / less uncertainty

– Easy transformation
– Still simple publishing

Accessibility medium-low (requires custom parsers)
Linkability medium

Table 3.2 | 2-STAR: Maturity Fact Sheet

3.2.3 3-STAR: Atomic Modules

The third level of the maturity scheme additionally requires technical documents to
be modularized, i.e., split into separate atomic modules describing a self-contained
piece of technical information. Modules must be normalized / deduplicated such that
information does not exist redundantly. Usually such modules are accompanied by
an index file that sequences them in a meaningful order for subsequent publishing or
navigation purposes. This way documents are structurally completely broken down.
On the macro level chapters, sections, subsections etc. are available as modules.
Micro level structures are available from the fine-grained content inside the modules.
Modularized technical documents are usually available in an XML- or SGML-based
format.

The main benefits of technical documentation provided in a modularized 3-STAR
format can be summarized with synergies through content reuse. Such synergies
comprise less maintenance and translation efforts and easier integration of third party
documentation. Additionally, the modularization grants fine grained, granular access
to relevant information on the macro and micro level.

There are additional efforts that are necessary for the authoring of 3-STAR techni-
cal documentation, i.e., the creation of accompanying macro structuring information
(e.g. index file). This task usually requires the employment of an enterprise content
management system that brings support for managing and handling the modular
content (modules). Hence, 3-STAR technical documentation is usually rather new
as the required enterprise content management systems have merely been introduced
during the last decade. Although the availability of 3-STAR technical documents is
accompanied by accessibility improvements it is still hard to filter information for
specific needs. For example, it still is hardly possible to filter modules with respect
to their intended purpose, e.g., distinguish maintenance/repair from descriptive/op-
erational content. The linkability is slightly improved compared to 2-STAR technical
documentation as modules are usually uniformly identifiable and are thus directly
referencable.

Maturity Level 3-STAR
Accessible Elements – Macro structures like chapters or sections

– Typed micro structures like headlines, lists or tables
Benefits – Less maintenance effort

– Less translation effort
– Easier integration of third party contents

Accessibility medium
Linkability medium

Table 3.3 | 3-STAR: Fact Sheet
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3.2.4 4-STAR: Information Typed Modules

The fourth level of the maturity scheme additionally requires technical documents
to be identifiable and information typed. An information type describes the type
of the information, e.g., it allows to distinguish descriptive/operational content from
maintenance/repair texts. Therefore, macro and micro structures need to be marked
with corresponding information types that are able to express the rhetorical aspect of
the respective piece of text. This is usually realized by adding meta tags to respective
elements. Usually the information typing through tagging with metadata does not
happen for fine grained micro structures but for macro structures / modules (e.g.
chapters or sections). Additionally, information typed macro and micro structures
need to be identifiable, i.e. each information typed structure needs to be assigned to
an unique and stable identifier.

The main benefits of 4-STAR technical documentation is an improved accessibility
with respect to rhetorical filtering, i.e. readers are able to constrain the retrieval of
documents to certain information types. The mandatory unique identifier for infor-
mation typed structures leads to a general improvement of linkability and referability.
Hence, users might easily bookmark information for later usage or provenance infor-
mation can easily be added to information extracted from respective structures. The
requirement of a stable identifier guarantees the referability across document versions.

The creation of 4-STAR technical documentation involves additional efforts. First,
the information typing requires an information taxonomy. An information taxonomy
describes the different types of information and how they can be hierarchically struc-
tured, e.g. that assembly and disassembly information are specialized repair informa-
tion. The availability of 4-STAR technical documentation brings large accessibility
improvements as structures on different levels provide information about their type
and can additionally be clearly identified and referred to. However, the technical
documentation is not yet accessible with respect to information about the machinery.
For example, users are not yet able to access all information about specific compo-
nents or functions of a machine. Table 3.4 summarizes the characteristics of 4-STAR
technical documentation.

Maturity Level 4-STAR
Accessible Elements – Information typed macro structures

– Information typed micro structures
Benefits – Rhetorical filtering

– Improved referability
Accessibility medium-high
Linkability high

Table 3.4 | 4-STAR: Fact Sheet

3.2.5 5-STAR: Linked Information Units

The fifth level requires atomic, deduplicated, information typed modules that are
annotated with concepts describing relevant aspects of the corresponding machinery.
The respective components are usually derived from an ontology that describes the un-
derlying machine. Such ontologies are often referred to as digital twins, i.e. semantic
representations of products, systems, and processes [170, 73, 168].

Accessibility benefits are realized by additionally annotating macro and micro
structures with relevant concepts from these ontologies. This guarantees state-of-the-
art accessibility for human users and machines. Employed in a semantic information
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system, problem-oriented, targeted access to document structures becomes possible.
Additionally, 5-STAR technical documentation opens exploration possibilities, e.g.
discovering similar/related content by exploiting the linked concepts. 5-STAR tech-
nical documentation is usually fully integrated in Linked Enterprise Data [93, 4].

The annotation of structures with such concepts usually requires elaborated state-
of-the-art information management systems. Besides the authoring of technical con-
tent it is additionally necessary to maintain the respective ontologies (digital twins),
i.e. ontologies must be updated when the underlying machinery changes. Additionally,
links between document structures and concepts must be established and maintained.

Maturity Level 5-STAR
Accessible Elements – Information typed and annotated macro structures

– Information typed and annotated micro structures
Benefits – problem-oriented filtering

– targeted access
– exploration possibilities

Accessibility high
Linkability high

Table 3.5 | 5-STAR: Fact Sheet
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3.3 The Technical Knowledge Ontology
The 5-STAR maturity scheme described in the previous section shows the gradual
increase of semantics in technical documents. Each maturity level adds additional as-
pects to the semantic descriptions of technical documents. This requires an adequate
ontological vocabulary that provides support for the required representations. The
main requirements of such an ontology are:

• Support the representation of structural components on different levels
(1-STAR, 2-STAR, 3-STAR)

• Support information typing
(4-STAR)

• Support annotating with concepts from an external ontology
(5-STAR)

• Support the integration of existing information models

Additionally, the ontology needs to be able to infer pieces of text that carry strong
technical knowledge. Such an inference must work upon existing structural represen-
tations and assigned information types. Therefore, the following sections introduce
the Technical Knowledge Ontology (TEKNO). This ontology can basically partitioned
into three parts:

1. Structural Components:
Describe structural text components in forms of nano, micro and macro struc-
tures.

2. Information Types:
Describe different types of information that might exist in technical documents.

3. Core Documentation Entities:
Describe information typed structures that carry strong technical knowledge.

Figure 3.2 shows an overview of the base components of the TEKNO ontology:
the classes tekno:NanoStructure, tekno:MicroStructure and tekno:MacroStructure,
tekno:InformationType and tekno:CoreDocumentationEntity as well as the prop-
erties tekno:next, tekno:previos, tekno:broader and tekno:narrower. The depicted

tekno:Structure

tekno:MacroStructure tekno:NanoStructure

tekno:InformationType

subClassOf subClassOf

broader/narrowernext/previous 

tekno:CoreDocumentationEntityDescription Logic subClassOf

tekno:MicroStructure

subClassOf

Figure 3.2 | Overview of the TEKNO ontology.

classes get subclassed to represent particular nano, micro and macro structures like
tekno:Token, tekno:Punctuation and tekno:Headline, tekno:Paragraph, tekno:List
or tekno:Table and tekno:Book, tekno:Chapter, and tekno:Section respectively. A
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document is semantically represented as a hierarchy of nano, micro, and macro struc-
tures assembled of respective instances using tekno:broader and tekno:narrower. The
correct order of nano, micro and macro structures is assured through the proper-
ties tekno:next and tekno:previous. Information types describe the kind of content
a structural component carries, e.g. descriptive content or content that enables a
reader to perform maintenance or repair tasks. With the availability of information
typed micro and macro structure instances, constructs of description logics can be
used to formulate Core Documentation Entities which represent the aforementioned
structures that carry strong technical knowledge.

The remainder of this section is structured as follows: Section 3.3.1 gives an
overview of nano and micro structures that typically occur in technical documents,
how they are used to assemble macro structures and how macro structures build
hierarchies in technical documents. Section 3.3.2 introduces the most important
information types that are necessary to represent rhetorical aspects of technical doc-
uments. Section 3.3.3 describes Core Documentation Entities, i.e. structures that
can be inferred from information typed macro and micro structures carrying strong
technical knowledge.

3.3.1 Structural Representation

Considering only the pure structural composition of a document, the required vocabu-
lary is rather independent of the underlying problem domain. However, the structural
decomposition of a document is three-fold. The first part represents token-level ele-
ments, i.e. single words or punctuations. In the following section these token-level
elements are referred to as nano structures. The second part represents different types
of block elements that are formed from nano structures, e.g. paragraphs consisting
of words. These block-level elements are henceforth called micro structures. Finally,
macro structures are another form of structural components that are either sequences
of micro structures (e.g. sections, see Section 3.3.1) or merely structural elements that
are composed from other macro structures (e.g. chapters, see Section 3.3.1) . Fig-
ure 3.3 shows the different types of structural components. The following sections
describe these types in more detail and introduce them formally.

Nano Structure
e.g. Token

Micro Structure
e.g. Paragraph

Macro Structure
e.g. Section

Figure 3.3 | Overview of the different types of structural components.

Nano Structures

Basically, all texts are assembled from a disjunct set of single words and punctuations.
In the following these elements are referred to as nano structures. These structures
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build the lowest elements in a hierarchical decomposition of a document. Nano struc-
tures are assembled to form sentences or other document components on micro level,
e.g. lists or tables. A nano structure is formally defined as follows:

Definition 3.3.1 (Nano Structure). A nano structure is a token-level element n
from the universal set of all nano structures N such that a document D from the
universal set of all documents (corpus) K can be decomposed into a disjoint set of
nano elements D = ∪n. A nano structure is represented as a triple n = (t, b, e) where
t is the type of the nano structure, b the beginning index of the structure and e the
end index of the structure in the document.

Micro Structures

Considering the micro structure, a document can be decomposed into a disjunct set of
block elements. Micro structures are typically the smallest units in a document that
are able to carry a piece of information. However, micro structures are not required
to be self-contained, i.e. understandable without contextual information. Typical ex-

Paragraph

Headline

Ordered List
Figure

Caption

Figure 3.4 | Examples of micro structures.

amples for micro structures comprise headlines on different levels, paragraphs, tables,
legends, ordered and unordered lists, check lists, figures or captions (see Figure 3.4).
A micro structure is formally defined as follows:

Definition 3.3.2 (Micro Structure). A micro structure is a block-level element b
from the universal set of all micro structures M such that a document D from the
universal set of all documents (corpus) K can be decomposed into a disjoint set of
block elements D = ∪ b. A micro structure is represented as a triple b = (t, b, e)
where t is the type of the micro structure, b the beginning index of the structure and
e the end index of the structure in the document.
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Considering an existing document, micro structures usually need to be sequenced,
i.e. a reading/processing order must be defined for the sequence of block-level ele-
ments. The reconstruction of the originally intended reading order is especially in
unstructured formats (e.g. PDF) a challenging task. The micro structure ordering is
formally defined as follows:

Definition 3.3.3 (Micro Structure Ordering). The order of block-level elements b
from M = {b1, b2, . . . , bn} is defined pairwise using the predicates next(bi, bi+1) and
previous(bi−1, bi).

Macro Structures

Sequences of micro structures form macro structures, i.e., self-contained pieces of
text that are able to fulfill information needs without additional contextual informa-
tion. Typical examples of macro structures in classical publications comprise sections,
chapters or even books. A macro structure is formally defined as follows:

Definition 3.3.4 (Macro Structure). A macro structure si,k from the universal set
of all macro structures S consists of an ordered number of block-level elements b
from micro structures M such that si,k = (bi, bi+1, . . . , bk). A macro structure s is
self-contained, i.e., a human reader is able to understand the textual content of sj,k
without necessarily reading another macro structure sl,m.

Headline Level 1

Headline Level 2

Paragraphs, Lists etc.

Macro
Structure 

Level 1 Macro
Structure 
Level 2

Macro Structure Hierarchy

Figure 3.5 | Examples of macro structures.

The consumption of single macro structures without tool support is in most cases
not reasonable. Therefore, macro structures usually get assembled in sequences or
hierarchies for publishing or navigational purposes. Figure 3.5 shows an example of
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hierarchically assembled macro structures. Macro structure hierarchies are formally
defined as follows:

Definition 3.3.5 (Macro Structure Hierarchies). Macro structures s from the uni-
versal set of all macro structures S can form hierarchies. Given a more general macro
structure si ∈ S and a more specific macro structure sj ∈ S the hierarchy is de-
fined pairwise using the predicates broader(si, sj) for the child-to-parent relation and
narrower(sj , si) for the parent-to-child relation respectively.

Related Work

The Document Ontology schema of the SALT ontology [78], and the pattern ontol-
ogy [53] are popular examples for the structural description of (scientific) publications.
Şah and Wade [171] proposed an ontology that covers a reasonable subset of the Doc-
Book standard. The most important elements of this ontology are docbook:Book,
docbook:Article, docbook:Chapter on the macro level and block elements (micro
level) like docbook:Paragraph, docbook:Procedure, and docbook:Figure.

3.3.2 Information Types

In contrast to the structural organization of a document, information types are used to
model the rhetorical structure of technical documents. Information types are formally
defined as follows:

Definition 3.3.6 (Information Type). An information type t from the universal
set T of all information types is defined as a singleton concept instance that can be
assigned to macro structures i ∈ I and micro structures m ∈M using the predicates
type(t, i) and type(t, m) respectively.

Information types can form taxonomies where successor and ancestor nodes repre-
sent specialized and more general types respectively. An information type hierarchy
is formally defined as follows:

Definition 3.3.7 (Information Type Hierarchies). Information types ti from the
universal set of all information types T can form hierarchies. Given a more general
information type ti ∈ T and a more specific information type tj ∈ T the hierarchy
is defined pairwise using the predicates broader(ti, tj) for the child-to-parent relation
and narrower(tj , ti) for the parent-to-child relation respectively.

The TEKNO ontology defines the following information types to cover the most
common rhetorical aspects of technical documents. The information types are sub-
classed where needed.

• General Information:
General aspects of the document or the machine in focus.

• Index:
Indices like table of contents, subject catalogs, list of abbreviations etc.

• Safety Instructions:
Safety notes to be obtained while working with the machine.

• Description:
Information about specific components or functions.



44 Chapter 3. Deep Semantics for Technical Documents

• Operation:
Information about the usage of the machine, specific components or functions.

• Maintenance:
Information about maintenance works, schedules etc.

• Adjustment:
Information about necessary adjustments in specific situations.

• Repair:
Repair procedures; important subclasses are Assembly and
Disassembly

• Test:
Information about testing the correction functioning of the machine.

• Fault Isolation:
Detailed troubleshooting information.

• Parts:
Spare part information.

The minimum level on which reasonable information type assertions can be made
are micro structures. As macro structures are assembled from micro structures the
rhetorical aspects can change multiple times within a single macro structure. An
example are safety instructions that occur at the beginning of a module that describes
the disassembly of a component. The safety instruction might be represented as a
paragraph that is typed as safety information. The disassembly procedure on the
other side might be represented as a procedure that is typed as repair information.

Information Typed Structural Components

Unlike structural components the beginning and the end of rhetorical aspects can
often not be clearly defined. Hence, it is usually not feasible to define an addi-
tional structure that represents the rhetorical decomposition of the text. Instead, the
TEKNO ontology approximates a complete rhetorical decomposition of a document
by assigning information types to instances of macro and micro structures. TEKNO
exploits the fact, that core information types like safety instructions or maintenance
information can often be linked explicitly to particular structures like chapters, sec-
tions, paragraphs or procedures and thus provide the required base data. Figure 3.6
shows an example for information typing textual content on micro level.

The example shows that micro structures appearing in a single macro structure
might be assigned different information types. Referring to Figure 3.6 a section might
start with some safety instructions, then giving step-wise repair instructions which in
turn refer to a figure that describes certain subcomponents. On the macro level the
information type might be assigned to complete sections, chapters, and books.

Related Work

For the representation of scientific articles the Rhetorical Ontology schema of the
SALT ontology [78] or the Discourse Elements Ontology [46] provide an appropriate
vocabulary. Thus, rhetorical aspects like the motivation, background, methods etc.
can be modeled as instances of respective classes.
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Safety Instruction

Repair
Description

Description

!

Figure 3.6 | Examples of information typed structures.

While the underlying idea also facilitates the rhetorical modeling of technical
documentation the concrete classes do not fit the technical domain. For instance
law requires technical documentation to follow a certain rhetorical organisation, e.g.
safety notes need to preceed actual operation instructions. Thus it would be benefitial
to semantically represent safety notes.

3.3.3 Core Documentation Entities

The main goal of the TEKNO ontology is providing access to pieces of technical doc-
umentation that carry strong technical knowledge. Representing the structural and
rhetorical aspects of technical documentation is a considerable step in this direction.
However, the most important aspects of technical documents are typically interweaved
in these two structures. The entropy of such aspects is typically sufficient to satisfy
an immediate information need. Therefore, the TEKNO ontology introduces a novel
representation for such aspects – Core Documentation Entities. Core Documentation
Entities combine structural and rhetorical aspects in order to make the respective
structures easily accessible. Core Documentation Entities are required to be self-
contained, i.e., they must be consumable without additional contextual information.
A Core Documentation Entity is formally defined as follows.

Definition 3.3.8 (Core Documentation Entity). A Core Documentation Entity e
from the universal set of all Core Documentation Entities E is a self-contained micro
structure m ∈M or macro structure i ∈ I that is assigned an information type t ∈ T
that clearly describes its rhetorical aspect.

Typical examples for Core Documentation Entities comprise (dis-)assembly pro-
cedures or component overviews. The following sections formally introduce the most
important Core Documentation Entities. For better readability the descriptions of
the Core Documentation Entities are grouped by their underlying macro and micro
structures.
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Paragraph-based Core Documentation Entities

Huge parts of technical documents are filled with paragraphs. However, some of
these paragraphs carry specific kinds of information. Direct access to these para-
graphs is beneficial. The following sections formally introduce paragraph-based Core
Documentation Entities and describe their main purposes.

Notes, Warnings, Safety Instructions etc.

Technical documents usually contain elements that point out specific information in
order to avoid harm to humans, machines and the environment. Therefore, ordinary
paragraphs are often marked by dedicated colors, figures, and special words. Typical
examples comprise notes, warnings, safety instructions, environmental regulations or
danger and attention notes. Expressions 3.1 - 3.6 show examples of corresponding
Core Documentation Entities. The main difference between the following expressions
are the different values of the text predicate of the nano structures a. Hence, the
following Core Documentation Entities are micro structures of type tekno:Paragraph
with the information type tekno:SafetyInstruction that contain a keyword (nano
structure) with respective textual content. Such paragraphs usually occur throughout
the complete technical documentation, i.e. in all kinds of technical documents.

{b ∈M | type(′Paragraph′, b)

∧ type(′SafetyInstruction′, b)

∧ ∃a ∈ N : (narrower(a, b) ∧ text(′Note′, a)) }
(3.1)

{b ∈M | type(′Paragraph′, b)

∧ type(′SafetyInstruction′, b)

∧ ∃a ∈ N : (narrower(a, b) ∧ text(′Warning′, a)) }
(3.2)

{b ∈M | type(′Paragraph′, b)

∧ type(′SafetyInstruction′, b)

∧ ∃a ∈ N : (narrower(a, b) ∧ text(′Safety′, a)) }
(3.3)

{b ∈M | type(′Paragraph′, b)

∧ type(′SafetyInstruction′, b)

∧ ∃a ∈ N : (narrower(a, b) ∧ text(′Environment′, a)) }
(3.4)

{b ∈M | type(′Paragraph′, b)

∧ type(′SafetyInstruction′, b)

∧ ∃a ∈ N : (narrower(a, b) ∧ text(′Danger′, a)) }
(3.5)

{b ∈M | type(′Paragraph′, b)

∧ type(′SafetyInstruction′, b)

∧ ∃a ∈ N : (narrower(a, b) ∧ text(′Attention′, a)) }
(3.6)
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Special Tools Description

Special Tool descriptions are an additional kind of paragraph-based Core Documen-
tation Entities. Such descriptions usually occur as tekno:Paragraph with the in-
formation type tekno:Parts or FaultIsolation next to a tekno:Figure that depicts
the respective special tool. Additionally, these special tool descriptions usually oc-
cur within part catalogues or trouble shooting documents as these tools are usually
required during replacement or diagnosis procedures. Expression 3.7 is a formal defi-
nition of a special tool description.

{b ∈M | type(′Paragraph′, b)

∧ (type(′Parts′, b) ∨ type(′FaultIsolation′, b))

∧ ∃a ∈M : (next(b, a) ∧ type(′Figure′, a)) }
(3.7)

List-based Core Documentation Entities

While paragraphs are a rather unstructured kind of micro structure ordered and
unordered lists carry much more semantics. The targeted exploitation of such list-
based structures grants access to information that can serve as an important source
for taxonomy extraction or other information extraction tasks. The following sections
formally introduce list-based Core Documentation Entities and describe their main
purposes.

Component Overviews

Component overviews are used to give a quick and precise description of a certain com-
ponent. They usually occur in description documents like user manuals. Sometimes
they are also depicted in repair manuals in forms of extended technical descriptions.
Component overviews are usually realized as exploded view drawings or annotated
photos followed by an ordered list (legend) describing the component depicted in
the drawing or photo. Thus, the Core Documentation Entity Component Overview
is defined as micro structure of type tekno:OrderedList with the information type
tekno:Description that immediately follows a micro structure of type tekno:Figure.
Expression 7.1 is a formal definition of a component overview.

{b ∈M | type(′OrderedList′, b)

∧ type(′Description′, b)

∧ ∃a ∈M : (next(a, b) ∧ type(′Figure′, a)) }
(3.8)

Repair / Maintenance / Operating Instructions

Different kinds of instructions are another category of list-based Core Documentation
Entities. Such instructions occur in operating manuals, repair manuals, and main-
tenance plans as operating, repair or maintenance instructions respectively. They
give the reader detailed instructions for fulfilling a specific task. List items (nano
structures) usually represent single steps the reader has to perform. Instructions



48 Chapter 3. Deep Semantics for Technical Documents

are usually realized as tekno:OrderedList or tekno:UnorderedList that are informa-
tion typed with tekno:Operation, tekno:Repair or tekno:Maintenance respectively.
Expressions 3.9 - 3.11 are formal definitions of the aforementioned instructions.

{b ∈M | ( type(′OrderedList′, b) ∨ type(′UnorderedList′, b) )

∧ type(′Operation′, b) }
(3.9)

{b ∈M | ( type(′OrderedList′, b) ∨ type(′UnorderedList′, b) )

∧ type(′Repair′, b) }
(3.10)

{b ∈M | ( type(′OrderedList′, b) ∨ type(′UnorderedList′, b) )

∧ type(′Maintenance′, b) }
(3.11)

Table-based Core Documentation Entities

Tables are another kind of micro structure that represent the encapsulated informa-
tion in a structured way. Tables in technical documents usually contain rows (header)
or columns that describe the information in the table cells. Thus, the targeted ex-
ploitation of tables gives access to detailed and precise technical information. The
following sections formally introduce table-based Core Documentation Entities and
describe their main purposes.

Technical Data

Technical Data tables normally describe detailed information about machines, ve-
hicles or specific components. Such tables contain information about the weight,
dimensions, speed or other performance indicators. Tables carrying technical data
usually occur in descriptive technical documents, e.g., the user manual. Hence, the
Core Documentation Entity technical data is a tekno:Table that has the assigned in-
formation type tekno:Description and contains nano structures (tokens in table cells)
that have special types or texts, e.g., type tekno:Unit and text “kg” for weight data.
Expression 3.12 is a formal definition of the Core Documentation Entity technical
data.

{b ∈M | type(′Table′, b)

∧ type(′Description′, b)

∧ ∃a ∈ N : (narrower(a, b) ∧ type(′Unit′, a) ∧ text(′kg′, a)) }
(3.12)

Fuels / Lubricants Table

Two other kinds of tables that often occur in technical documents are fuels and lu-
bricants tables. These tables give detailed information about the amount and types
of fuels needed or components requiring special lubricants. The main difference be-
tween these two table types are their occurrence in technical documents. While the
Core Documentation Entity tekno:FuelsTable usually occurs in operating manuals
instances of tekno:LubricantsTable can usually be found in maintenance documents.
Both Core Documentation Entities are usually realized as tekno:Table with respective
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information types (tekno:Operation or tekno:Maintenance). Additionally, these ta-
bles contain nano structures (tokens in table cells) that can be identified as tekno:Unit
with specific textual content like “ml” or “l”. Expressions 3.13 and 3.14 are formal
definitions of these two Core Documentation Entities.

{b ∈M | type(′Table′, b)

∧ type(′Operation′, b)

∧ ∃a ∈ N : (narrower(a, b) ∧ type(′Unit′, a) ∧ text(′l′, a)) }
(3.13)

{b ∈M | type(′Table′, b)

∧ type(′Maintenance′, b)

∧ ∃a ∈ N : (narrower(a, b) ∧ type(′Unit′, a) ∧ text(′ml′, a)) }
(3.14)

Maintenance Table

Apart from lubrication information, service technicians usually require additional
maintenance information. Such information is normally organized in respective ta-
bles that list the affected components and maintenance actions that are required in
certain periods (daily to yearly). Maintenance tables are usually found in service or
maintenance manuals. Hence, the Core Documentation Entity Maintenance Table is
typically a tekno:Table that has the information type tekno:Maintenance assigned.
Additionally, the Core Documentation Entity requires that certain nano structures
occur. Expression 3.15 shows a formal definition of a maintenance table.

{b ∈M | type(′Table′, b)

∧ type(′Maintenance′, b)

∧ ∃c ∈ N : (narrower(c, b) ∧ text(′Item′, c))

∧ ∃d ∈ N : (narrower(d, b) ∧ text(′Daily′, d)) ∧ next(c, d)

∧ ∃e ∈ N : (narrower(e, b) ∧ text(′Weekly′, e)) ∧ next(d, e)

∧ ∃f ∈ N : (narrower(f , b) ∧ text(′Daily′, f)) ∧ next(e, f)

∧ ∃g ∈ N : (narrower(g, b) ∧ text(′Monthly′, g)) ∧ next(f , g)

∧ ∃h ∈ N : (narrower(h, b) ∧ text(′6−Month′, h)) ∧ next(g, h)

∧ ∃i ∈ N : (narrower(i, b) ∧ text(′Y early′, i)) ∧ next(h, i) }

(3.15)

Troubleshooting Table

Troubleshooting tables typically list problems, their potential causes and actions to
solve them. They usually occur in special troubleshooting chapters or particular
troubleshooting documents. Hence, the Core Documentation Entity Troubleshooting
Table is a tekno:Table having the information type tekno:FaultIsolation assigned
and contains tokens (nano structures) with specific textual content (e.g. “Problem”,
“Cause” and “Action”). Expression 3.16 is a formal definition of a troubleshooting
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table.

{b ∈M | type(′Table′, b)

∧ type(′FaultIsolation′, b)

∧ ∃c ∈ N : (narrower(c, b) ∧ text(′Problem′, c))

∧ ∃d ∈ N : (narrower(d, b) ∧ text(′Cause′, d)) ∧ next(c, d)

∧ ∃e ∈ N : (narrower(e, b) ∧ text(′Action′, e)) ∧ next(d, e)}

(3.16)

Measurement Table

A measurement table usually lists electric, pneumatic, and hydraulic components
and expected measurement values. Usually, such tables appear in troubleshooting
documents, as measurements are a suitable way to identify erroneous items. Often
measurement tables are accompanied by schematics visualizing the connections be-
tween listed components. Hence, the Core Documentation Entity Measurement Table
is a tekno:Table having the information type tekno:FaultIsolation assigned, preceded
by a figure and contains tokens (nano structures) with specific textual content (e.g.
units like “bar” or “mA”). Expression 3.17 is a formal definition of a measurement
table.

{b ∈M | type(′Table′, b)

∧ type(′FaultIsolation′, b)

∧ ∃a ∈ N : (narrower(a, b) ∧ type(′Unit′, a) ∧ (text(′mA′, a) ∨ text(′bar′, a)))

∧ ∃c ∈M : (next(c, b) ∧ type(′Figure′, c)) }
(3.17)

Part List

Part lists usually occur in dedicated documents, i.e. spare part catalogues. These doc-
uments are often highly structured and follow a simple schema. A drawing of a com-
ponent is usually accompanied by a table listing the respective parts. Thus, the Core
Documentation Entity Part List is a table having the information type tekno:Parts
assigned, preceded by a figure and contains tokens (nano structures) indicating the
spare part list, e.g. “Part Number”, “Part Name” or “Quantity”. Expression 3.18 is
a formal definition of a part list.

{b ∈M | type(′Table′, b)

∧ type(′Parts′, b)

∧ ∃c ∈ N : (narrower(c, b) ∧ text(′Part Number′, c))

∧ ∃d ∈ N : (narrower(d, b) ∧ text(′Part Name′, d)) ∧ next(c, d)

∧ ∃e ∈ N : (narrower(e, b) ∧ text(′Quantity′, e)) ∧ next(d, e)

∧ ∃c ∈M : (next(f , b) ∧ type(′Figure′, f)) }

(3.18)
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3.4 Information Models for Technical Documents
The previous section introduced the TEKNO ontology, i.e., a semantic vocabulary
that is able to structurally and rhetorically break down technical documents. Al-
though this vocabulary is able to semantically represent technical documents and
additionally gives access to Core Documentation Entities, it is barely possible to
find documents that are created using this vocabulary. TEKNO usually acts as an
abstracting meta ontology over structural and rhetorical instances from other informa-
tion models. Therefore, the following sections give an overview of existing information
models that support the authoring of technical documents. Additionally, for each in-
formation model a mapping to the TEKNO ontology is presented. This underlines
the intention of TEKNO to serve as an abstracting meta ontology and shows that the
described inference of Core Documentation Entities can also be realized for technical
documents that are written according to existing information models.

3.4.1 PI-Mod

PI-Mod [202, 54] is a free and open standard that has been established by a coopera-
tion of research and industry in 2008. The standard provides a semantic information
structure for technical documentation. Its target is the standardization of informa-
tion modeling in mechanical engineering and construction. The core of the standard
is the PI classification where pieces of information are classified according to product
and information classes. Additionally, the PI-Mod standard focuses on the mod-
ularization of technical documentation and supports the integration of third party
documentation (e.g. OEM documentation). Another target of the standard is the
easy integration in enterprise content management systems.

Information Model

The PI-Mod information model is provided as an XML Doctype Definition (DTD)
that is accompanied by an element reference and XSL-FO stylesheets for the au-
tomatic generation of PDF publications. The information model supports for the
modular creation of information and the reuse of content during the publication pro-
cess.

Element Overview

The core elements of the PI-Mod information are modules with respective module
types. For a more fine-grained creation of semantic content, dedicated XML elements
exist. The usage of some of these XML elements is constrained. All modules are
subsequently classified using the PI-class mechanism, i.e. with at least an information
and a product class. Figure 3.7 depicts an overview of the PI-Mod information model.
The following sections describe the respective elements in more detail.

Structural Elements

The basic units of information in PI-Mod are modules. The PI-Mod information
model contains elements that facilitate the construction of structural representations
in such modules. On a macro level, the structuring of modules is implementation
dependent and therefore out of scope of the information model. On a micro level, ded-
icated XML elements exist. Some of these dedicated XML elements are constrained



52 Chapter 3. Deep Semantics for Technical Documents

PI-Class

Information ClassProduct Class

subClassOf

Module

Element

Element
(generally applicable)

Element
(module type specific)

broader/narrower

subClassOfsubClassOf

Module Type

determines

Figure 3.7 | Overview of the PI-Mod information model.

to different module types while others are more generally applicable. For example,
amongst others the following XML elements can be used in different module types:

• paragraph:
Element for the definition of standard paragraphs.

• table:
Element for the definition of information in tables.

• note:
Element for the definition of notes that shall be obeyed.

• lists:
Element for the definition of lists.

• safetyadvice:
Element for the definition of safety instructions.

Rhetorical Elements

The PI-Mod specification heavily relies on the PI-Class classification scheme. A cen-
tral element of this scheme is the classification according to information classes. These
information classes then can be utilized to introduce rhetorical aspects to the mod-
ules of the technical documentation. A central element of the PI-Class scheme is that
it allows for the definition of multiple, hierarchical levels of information classes, i.e.
information classes are handled like taxonomies. A taxonomy for information classes
might look like this in PI-Class:

• Maintenance

– Safety Instructions
– Maintenance Plan

• Operation

– Decommissioning
– Commissioning

• Description

– Explanation
– Notes
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– Intended Use

• Trouble Shooting

– Fault Description
– Safety Instructions

• . . .

Technically, the information class can be added to modules using dedicated XML
attributes. The XML attributes can be added to a variety of PI-Mod XML elements.

Core Documentation Entities

While some of the aforementioned structural XML elements can appear in different
module types, the usage of others is limited to certain module types. The following
module types exist in PI-Mod:

• descriptive:
Module type for descriptive content

• task:
Module type that is used to express specific tasks

• task-intervals:
Module type that clearly defines intervals of specific tasks

• tools:
Module type that is used for the description of required tools

• lubrication:
Module type for lubrication tasks

• diagnosis:
Module type for diagnosis and trouble shooting task

• glossary:
Module type that is used for glossaries or indices

The module type usually predetermines the information class, e.g. taskand task_body
are often used in conjunction with the information class Maintenance. Thus, some
of the dedicated XML elements comply with the character of Core Documentation
Entities. In the following, this is exemplary shown for the task_body element that
appears in modules with the type task. For a complete list of such elements we
refer to the PI-Mod specification. Elements that are exclusively applicable to the
task_body element are:

• action:
Element for the definition of a specific step/action.

• or-action:
Element for the definition of an alternative step/action.

• result:
Element for the definition of the result of preceding actions.

• troubleshooting:
Element for the definition of trouble shooting information.
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Additional Metadata

The PI-Class classification scheme is a vital part of the PI-Mod specification. It also
aims on classifying modules with respect to product classes. Therefore, the PI-Class
scheme allows for the hierarchical definition of product classes (taxonomies). These
product classes might represent machines and their respective components or other
product related domain elements. The following hierarchy is an excerpt of a typical
PI-Class product taxonomy.

• Drive

– Transmission
∗ Gear
∗ Gear Shaft

• Hydraulics

– Oil Pump

• . . .

Analogous to the information classes, these additional metadata elements are
added to modules using dedicated XML attributes. These XML attributes are appli-
cable to a variety of PI-Mod XML elements.

TEKNO Extension: PI-Mod

In general the PI-Mod information model provides similar classes to the TEKNO
ontology. From a structural perspective a module assembled from XML elements
according to the PI-Mod information model corresponds to a tekno:MacroStructure
instance with tekno:MicroStructure instances respectively. PI-Mod’s information
class is equivalent to the tekno:InformationType. Core Documentation Entities can
either be declared directly using XML elements constrained to certain module types
or can be derived from PI-Mod elements with assigned information classes and the re-
spective expressions in the TEKNO ontology. The latter requires the aforementioned
mapping of the PI-Mod information model to the TEKNO ontology. Figure 3.8 shows
the mapping between the PI-Mod information model and the TEKNO ontology. Bold
arrows between the two models indicate the mapping.

Formats and Delivery

Information modeled according to the PI-Mod specification is typically authored in
enterprise content management systems. As described before the PI-Mod specification
standardizes the micro structuring of modules. Thus, enterprise content management
systems usually use their own persistence and macro structuring formats.

Tool Support

The PI-Mod specification is implemented in a variety of proprietary enterprise content
management systems, especially in the German market, amongst others TIM RS (Fis-
cher Computer Technik AG), COSIMA (Docufy GmbH) or SCHEMA ST4 (SCHEMA
GmbH). Additionally, the specification comprises XSL-FO stylesheets which can be
used to transform PI-Mod XML to PDF.
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Figure 3.8 | Mapping of the PI-Mod information model to the
TEKNO ontology.

Discussion

In general, technical documentation authored according to the PI-Mod information
model fulfills huge parts of the 5-STAR maturity schema. Micro structures as re-
quired for the first two maturity levels are available through XML elements. The
third maturity level requires modularization, which is the fundamental idea of the PI-
Mod information model. Independent from actual implementations the only macro
structure available is the module. Depending on the implementation other macro
structures might be available which enables the definition of macro structure hier-
archies. The fourth star requires information typing and identifiability for modules.
While information typing is available through the information class of the PI-Class
classification, the identifiability of modules is questionable and depends in most cases
on the actual implementation. The requirements of the fifth star are also met through
the product class of the PI-Class classification scheme which enables the annotation
of modules (macro structures) or elements (micro structures) with elements of a pro-
duct/component taxonomy. In summary, the PI-Mod information model enables
the creation of 5-STAR technical documentation. The conjunction of the PI-Mod
information model and the Core Documentation Entity expressions of the TEKNO
ontology facilitates good accessibility. Lacking specifications for the assembling of
macro structure hierarchies might complicate the accessibility of printed documents
and the logic navigation through a document. Table 3.6 summarizes this discussion
according to the a 5-STAR rating schema.
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1-STAR 2-STAR 3-STAR 4-STAR 5-STAR

Table 3.6 | PI-Mod 5-STAR rating.

3.4.2 iiRDS

The iiRDS specification [187] is developed by the Information 4.0 working group
of the German Association for Technical Documentation. Members of the working
group are from science, industry as well as software and consulting companies. The
goal of the specification is to provide a standard that supports the transition from
document-based documentation to dynamic documentation. In contrast to traditional
document-based publications that bundle all contents in one document, dynamic doc-
umentation assembles required information according to available metadata from fine
grained information units. Therefore, in iiRDS documentation is a bulk of topics
that are represented as metadata. Thus, the aim of iiRDS is the standardization
of metadata for technical documentation. A corresponding ontology provides a stan-
dardized vocabulary for the creation of contents for dynamic technical documentation.
Additionally, the iiRDS standard specifies the structure of delivery packages.

Information Model

The iiRDS information model is provided as RDFS [30] ontology and makes use
of other (de facto) standards like the DCMI Metadata Terms (Dublin Core) ontol-
ogy [22]. The information model provides categories for the representation of content
as well as properties for relations to products, technical components, functions, tar-
get audience and the product lifecycle phases. The focus in the iiRDS information
model is on metadata that describes information (information units). Additionally,
the iiRDS ontology provides docking points for the integration of other ontologies, e.g.
domain- or company-specific taxonomies of products or components. The following
sections give a brief overview of the iiRDS information model and its most important
elements.

Element Overview

The iiRDS information model consists of classes, properties and some predefined
constants. Figure 3.9 depicts an overview of the iiRDS information model. Ba-
sically, InformationUnits are used to represent/reference single parts of content.
InformationUnits are then annotated with InformationTypes.

The main elements of the iiRDS ontology and its corresponding purposes are:

• InformationUnit:
Parent class for representing content elements like documents, topics, fragments
or packages.

• Document:
Subclass of InformationUnit that is a collection of information units.

• Topic:
Subclass of InformationUnit that is a self contained chunk of information.
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Figure 3.9 | Overview of the iiRDS information model.

• Fragment:
Subclass of InformationUnit representing a small chunk of information that is
not self contained, i.e. a reader requires additional context information.

• Package:
Subclass of InformationUnit that is a collection of information units together
with metadata and relations.

• InformationType:
Specifies the type of content, e.g. document types, topic types, information
subjects.

• DocumentType:
Subclass of InformationType that defines the type of an information unit, e.g.
repair instruction or assembly information.

• TopicType:
Subclass of InformationType that defines the type of a topic, e.g. task, concept
or learning.

• DirectoryStructure:
Represents relations and hierarchies between information units.

• Documentation-Metadata:
Parent class for all product-related metadata, functional metadata or docking
points for taxonomies of products or components.

• Rendition:
Represent references from information units to physical content/ source files.

• FragmentSelector:
Constrain Renditions to certain fragments of the physical content.

• RangeSelector:
Constrain Renditions to a specific range of the physical content.

The following sections describe the respective elements in more detail.

Structural Elements

The iiRDS information model contains elements that facilitate the construction of
structural representations. Such structures are intended to be used for navigation
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purposes in dynamic documentation or to assemble a printable version of the doc-
umentation. Therefore, the iiRDS specification provides the DirectoryNode class
with corresponding properties (has-next-sibling and has-first-child). DirectoryNode
instances model navigation sequences and additional structures like hierarchies of
InformationUnits. The actual InformationUnit is referenced from DirectoryNode
instances using the references-information-unit property. This facilitates accessing
context information of InformationUnit instances like siblings, predecessors or suc-
cessor information units. Structures that have been assembled using DirectoryNode
instances can be typed using the has-directory-structure-type. This facilitates the
explicit definitions of document structures like tables of contents. An overview of
document structure modeling using the iiRDS vocabulary is depicted in Figure 3.10.

Rhetorical Elements

The iiRDS information model does not explicitly provide rhetorical elements. Instead,
the specification provides a wide range of possibilities to define metadata. These meta-
data facilitates the inclusion of rhetorical aspects into the technical documentation.
All metadata in the iiRDS specification is defined using the DocumentationMetadata
class or respective subclasses for functional (FunctionalMetadata) or product (Pro-
ductMetadata) metadata. The rhetorical aspects are mainly encapsulated by Func-
tionalMetadata. Examples are Event, Supplies, PlanningTime or Qualification.
Dedicated properties exist in the iiRDS specification for the annotation of Information-
Unit instances with such metadata, e.g.:

• relates-to-event:
e.g. error codes.

• has-subject:
e.g. subject of the InformationUnit: Information Subjects: purpose of a chunk
of information.

• requires-supply:
e.g. tools, spare parts.

• requires-qualification:
e.g. professional skills, training certificates, qualifications.

• requires-time:
e.g. duration or interval of tasks.

• relates-to-product-metadata:
e.g. product, component, product life-cycle phase, or product feature.
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Additional Metadata

The iiRDS specification also allows for the definition of additional metadata, e.g.
for defining topics in terms of products, components or other relevant concepts of
the underlying domain. As the specification focuses on technical documentation
it contains some predefined metadata classes and singleton instances for this ap-
plication scenario. The main classes for such metadata are ProductMetadata and
its subclasses Product, ProductVariant, ProductFeature, and Component. The
ProductMetadata class is a subclass of the more general DocumentationMetadata
class and serves as docking point for external ontologies. This way, elements from
external ontologies like company- or industry-specific taxonomies can be used as meta-
data for iiRDS InformationUnit instances. The idea is that products, assemblies and
parts are modeled as stub concepts using the iiRDS vocabulary, i.e. the modeled
elements do not represent actual physical products or components. Hierarchies of
stub concepts can be created using the has-component property. Then, the modeled
stub concepts are aligned/mapped to actual external ontologies using rdfs:seeAlso.

TEKNO Extension: iiRDS

From a structural view, the iiRDS information model does not provide equivalents
to the fine grained nano structures of the TEKNO ontology. However, there are cor-
respondences to tekno:MicroStructure and tekno:MacroStructure, i.e. Fragment
and Topic/Document and their subclasses respectively. The rhetorical aspects of the
TEKNO ontology are covered by the InformationType construct. More precisely,
the TopicType class of the iiRDS information model corresponds to TEKNO’s infor-
mation type. The iiRDS information does not natively support Core Documentation
Entities. However, with the basic information of the information model and the afore-
mentioned mappings to the TEKNO ontology, Core Documentation Entities can be
deduced from technical documents in iiRDS format. Figure 3.11 shows the mapping
between the iiRDS information model and the TEKNO ontology. Bold arrows be-
tween the two models indicate the mapping.

Formats and Delivery

Information modeled according to the iiRDS specification needs to be packaged in a
standardized structure — the iiRDS container. Basically, the iiRDS container is a
directory structure with a single root directory and can be realized as ZIP archive, file
system or code repository. Besides the actual documentation content (physical infor-
mation units) an iiRDS container must contain certain meta information. This meta
information must be defined in a file called metadata.rdf in a META-INF directory.
The metadata.rdf contains all semantic information about the physical information
units, like structural definitions (c.f. DirectoryNode instances), rhetorical informa-
tion (c.f. FunctionalMetadata), and additional metadata (c.f. ProductMetadata).

Tool Support

The iiRDS specification aims on two kinds of applications — iiRDS generators and
iiRDS consumers. While iiRDS generators are intended to facilitate the creation of
iiRDS compliant documentation, iiRDS consumers exploit the standardized format to
deliver the documentation to the end user. Typical examples for iiRDS generators are
content management systems (CMS). Consumers of iiRDS data are typically content
delivery portals or apps.
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Figure 3.11 | Mapping of the iiRDS information model to the TEKNO
ontology.

Discussion

While technical documentation authored according to the iiRDS information model
in general yields a 5-STAR rating in the maturity schema, there are minor short-
comings. Nano structures as required for the first maturity level are generally not
available. Accessing such structures needs additional processing (e.g. custom tok-
enizers). Similarly, micro structures like paragraphs, headlines etc. are not necessar-
ily available as the intended usage of the Fragment aims on isolating special para-
graphs for reuse. The macro structures required from the third maturity level are
given through different subclasses of InformationType and the dedicated structuring
class DirectoryStructure. The third maturity level additionally requires modulariza-
tion, which is perfectly met by the iiRDS information model through the key class
InformationUnit. The fourth star requires information typing and identifiability for
modules. Both requirements are fulfilled, as the InformationType class is a funda-
mental element in the iiRDS information model and iiRDS data is defined in RDF
which requires URIs. The requirements of the fifth star are met through the Docu-
mentMetadata class which enables the annotation of information units with elements
of a product/component taxonomy. In summary, the iiRDS-Mod information model
enables the creation of 5-STAR technical documentation with limitations with respect
to nano (1-STAR) and micro structures (2-STAR). A shortcoming of the whole model
is that Core Documentation Entities are not available. However, the conjunction of
the iiRDS information model and the Core Documentation Entity expressions of the
TEKNO ontology facilitates good accessibility. Table 3.7 summarizes this discussion
according to the a 5-STAR rating schema.
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1-STAR 2-STAR 3-STAR 4-STAR 5-STAR

Table 3.7 | iiRDS 5-STAR rating.

3.4.3 DITA

DITA (Darwin Information Typing Architecture)was first defined in the late 1990s
by IBM [56] . In 2004 IBM handed DITA over to OASIS (Organization for the
Advancement of Structured Information Standards). The current DITA specification
version 1.2 comprises:

• Language Definition:
XML DTDs and XML schemas defining the DITA language

• Documentation:
A specification describing DITA concepts and a reference of all elements and
attributes of the language.

• DITA Open Toolkit:
Scripts and programs for validating and processing DITA source files.

DITA originated as a specification for technical documentation — especially software
documentation. However today, the topic based approach of DITA is also applied in
other areas like marketing, training or product information.

Information Model

The DITA information model is provided as a language definition in XML Doctype
Definitions (DTD) and XML schemas. The information model provides dedicated
XML elements for defining rhetorical aspects (specialized topics) as well as for the
hierarchical structuring of the information (topic maps and content elements for top-
ics). Additionally, the DITA information model allows for the specialization of DITA’s
predefined topics in order to meet domain- or customer-specific requirements. The
following sections give a brief overview of the DITA information model and its most
important elements.

Element Overview

Figure 3.12 depicts an overview of the DITA information model. Basically, Topics
are instantiated in order to represent self-contained content elements. Each Topic
instance is assembled from Elements. Elements are either applicable to all topics or
constrained to certain topic types. Maps are used to sequence/structure single topics
in a collection. In general DITA distinguishes the following categories of elements:

• Topics:
Basic unit for representing content. Must have a title and optionally a body of
content.
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Figure 3.12 | Overview of the DITA information model.

• Maps:
Documents that organize topics into structured collection of information. Spec-
ify hierarchies and relationships among topics.

• Information typing:
Identify the types of topics, e.g. concepts, references, tasks.

• Linking:
Links are used for defining maps, topic-to-topic navigation, cross references and
reuse of content by reference.

• Addressing
Relationships in DITA can either be defined directly (URI-based) or indirectly
(key-based).

• Content Reuse:
Mechanisms for reusing content fragments within topics or maps.

• Conditional Processing:
DITAs form of applicability, i.e. processing is conditioned by attributes.

• Constraints:
Constraints can be used to define allowed vocabulary, element or attribute types
or other language elements.

The aforementioned elements are used to modularly define self-contained topics, in-
terlink them and finally assemble (conditioned) publications using DITA maps, con-
ditional processing, and different addressing mechanisms.

Structural Elements

The basic units of information in DITA are topics. Although there are specializations
of the general DITA topic, all of them have the same basic structure, i.e. a title and
an optional body of content. The optional body of content is the main source for
more fine-grained structural elements in DITA. These more fine-grained structural
elements comprise:

• Basic topic elements,
e.g. title, abstract, shortdescription

• Body elements,
e.g. ordered (ol) and unordered lists (ul), section or definitions (dd, dl, dt).
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• Table elements,
e.g. thead, tbody, row or entry

• Related link elements,
e.g. link, linktext or linkinfo

While the aforementioned language elements allow for a fine grained structural com-
position of contents, DITA maps facilitate the construction of hierarchical structures
above topics. Therefore, DITA maps are used to build up hierarchies where each
element is a referenced topic. Additionally, topic references in DITA maps can be
conditioned/constrained to facilitate the assembly of different outputs/publications
from one DITA map.

Rhetorical Elements

DITA allows to categorize topics according to different reader questions, like "How...?"
or "What is...?". Therefore, DITA supports specializations of the general <topic> ele-
ment. Hence, from a rhetorical perspective the main language elements of the DITA
specification are the specialized topic types. The DITA specification comes with a
small set of predefined and well-established topic types, which are specializations of
the main <topic>: <concept>, <task>, <reference>, and <learningContent>. DITA’s
specialization mechanism can be used to define an unbounded amount of additional
topic types, which either specialize the most general type <topic> or refine the afore-
mentioned subtypes.

Core Documentation Entities

The DITA language specification also contains Core Documentation Entities, i.e. ele-
ments that combine structural and rhetorical aspects to clearly define the semantic of
a certain piece of text. In DITA, these elements are tightly coupled to corresponding
topic types, e.g. <task> topics are accompanied by certain task requirement elements
like <prereq> or <step>. For the <glossary> topic, there type exist specialized glos-
sary elements like <glossentry> or <glossterm>. Other specialized elements exist for
the <reference> and the <bookmap> topic types. Additionally, the DITA language
specification contains specialized elements for certain problem domains. Examples
comprise programming elements, software elements, and user interface elements. A
large amount of specialized elements exist for defining learning and training contents.

Additional Metadata

Through specialized topic types and the availability of corresponding Core Documen-
tation Entities DITA topics inherently contain a lot of semantics. Additionally, the
language specification contains elements for the explicit definition of metadata. In
general, DITA allows for the definition of metadata in topics (<prolog> element) and
maps (<topicmeta> element).

Additionally, DITA provides indexing mechanisms which can also be used for
metadata definitions. The indexing mechanisms are realized through dedicated clas-
sification elements that facilitate the definition of subject metadata. Therefore, DITA
allows for the definition of subject scheme maps where a problem domain can be mod-
eled in terms of subjects. The modeled subjects can then be used to classify topics
with these predefined topics. The subject scheme map also allows for the definition
of relations between single subject instances.
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TEKNO Extension: DITA

The DITA information model does not provide direct equivalents for rhetorical el-
ements of the TEKNO ontology. The tekno:InformationType classes can not be
mapped directly to elements of the DITA information model. Hence, the TEKNO
extension for the DITA information model concentrates on mapping the structural ele-
ments. Basically, DITA topics are similar to tekno:MacroStructures. Some of DITA’s
topic specializations inherently define a tekno:InformationType, e.g. DITA’s topic
specialization Concept induce the information type tekno:Description. On the mi-
cro level DITA’s dedicated XML elements are typical tekno:MicroStructures. XML
elements that are constrained to certain topic specializations have Core Documenta-
tion Entity character. Figure 3.13 shows the mapping between the DITA information
model and the TEKNO ontology. Bold arrows between the two models indicate the
mapping.
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Figure 3.13 | Mapping of the DITA information model to the
TEKNO ontology.

Formats and Delivery

A technical documentation in DITA format basically is a collection of XML files. Each
XML file represents a single topic in DITA. Additionally, a DITA map needs to be
defined in order to combine or sequence the topics in a meaningful manner. Multiple
DITA maps can be defined for different information products. A single DITA map
can be constrained to adapt an information product to different audiences. The DITA
source files (DITA XML files and corresponding DITA maps) are then processed by
a DITA XML processor which exports the information to the desired output format,
e.g. PDF or HTML. The formatting for the output medium can be customized using
cascading or XSL stylesheets.
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Tool Support

DITA topics and maps can be created and edited with standard XML editors. Some
XML editors have built in support for DITA and thus guide the author through
the creation of a documentation. There also exist full fledged management systems
for DITA sources with more elaborate functions for reuse, variables, and variant
control. The content delivery of DITA-based documentation do not require specialized
software. The DITA sources are processed and exported to standard formats like PDF
or HTML content. However, specialized —merely proprietary— content delivery tools
exists that exploit DITA’s language elements to provide better access to information.

Discussion

In general, technical documentation authored according to the DITA information
model fulfills huge parts of the 5-STAR maturity schema. Access to nano and micro
structures as required for the first and second maturity level is available through XML
elements. Depending on the usage of available elements this provides very targeted
access to information pieces. The third maturity level requires modularization, which
is one of the fundamental ideas of the DITA information model. Topics describe self-
contained pieces of information which are intended for multiple use through maps
(which are a possibility in DITA to define macro structure hierarchies). The fourth
star requires information typing and identifiability for modules. While the identifiabil-
ity of modules is ensured through unique identifiers of DITA topics, the information
typing is questionable. Some predefined topic specializations can be mapped back-
wards to information types. An additional way to inject an information type into
topics is to employ the mechanisms for defining additional metadata. The require-
ments of the fifth star are also met through the ability to define metadata in maps
and topics which enables the annotation of macro structures with elements of an ex-
ternal ontology. In summary, the DITA information model enables the creation of
5-STAR technical documentation. The conjunction of the DITA information model
and the Core Documentation Entity expressions of the TEKNO ontology facilitates
good accessibility. An explicit possibility to define information types would further
improve the handling of DITA topics. Table 3.8 summarizes this discussion according
to the a 5-STAR rating schema.

1-STAR 2-STAR 3-STAR 4-STAR 5-STAR

Table 3.8 | DITA 5-STAR rating.

3.4.4 DocBook

DocBook [146] is a semantic markup language that has been developed since the
early 1990s. The first ideas were discussed in respective usenet discussion groups
in 1991. Then, the ideas were manifested and maintained by HaL, O’Reilly, Daven-
port and OASIS. Now, the DocBook Technical Committee at OASIS maintains the
specification. The DocBook language is a structured markup that is mainly intended
for hardware and software documentation. Documentation according to the DocBook
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specification is written in XML (formerly also in SGML) and can be validated against
RELAX NG [42] and XML schema or Doctype Definitions (DTDs). Nowadays, Doc-
Book gets also applied to other fields than technical documentation, although it is
not primarily intended for such additional use cases.

Information Model

The DocBook information model is primarily provided as RELAX NG schema. The
information model also exists as XML schema and Doctype Definition, which both
get derived from the RELAX NG schema. The DocBook Publishers extension allows
for the usage of other (de facto) standards like the DCMI Metadata Terms (Dublin
Core) ontology [22]. The DocBook information model provides a vast amount of
specific XML elements. The focus of the information model is on the semantic rep-
resentation of block and inline elements of (technical) documentation. Additionally,
the DocBook specification allows for the customization of the underlying schemas in
order to represent domain- or customer-specific elements. The following sections give
a brief overview of the DocBook information model and its most important elements.

Element Overview

In general DocBook distinguishes the following three categories of elements (see Fig-
ure 3.14):

• Structural elements:
Used to (hierarchically) structure a document.

• Block-Level elements:
Used to structure the content of a concrete information unit.

• Inline elements:
Used to semantically represent concrete information elements.

Additionally, DocBook provides elements for meta-information, e.g. elements for
representing metadata using the Dublin Core vocabulary.

Structural Elements

Using the three basic element types technical documentation is assembled in a tree
structure in DocBook. The structural elements of the DocBook specification typically
form the upper levels of such a tree structure. Books are divided into divisions,
divisions into components, and components into sections respectively. The most
important structural elements on the respective levels are:
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• set:
Collection of at least one book that is nestable with other sets.

• book:
Collection of chapters, articles, and/or parts.

• part:
Collection of at least one chapters; nestable with other parts.

• article:
Collection of block-level elements or chapters.

• chapter:
Collection of block-level elements.

Below the structural elements either block-level or inline elements form the lower levels
of the DocBook tree structure. Block-level elements usually divide concrete chapters
or sections into smaller portions. Typical examples for block-level elements are the
paragraph or list elements. Inside of these blocks, inline elements can be used to add
fine-grained semantics or elements for highlighting (emph) or navigational purposes
(link) to the content.

Rhetorical Elements

The DocBook specification does not provide dedicated rhetorical elements. However,
the info element that serves as a wrapper for information about a component or block
might be used to add some rhetorical information to blocks or components. Appro-
priate children elements of the info element for this purpose comprise keywordset,
itermset or subjectset.

Core Documentation Entities

Although the DocBook specification does not provide dedicated rhetorical elements it
comes with a large amount of merely structural elements with a predefined semantic.
In fact, the DocBook specification aims to provide a semantic markup language for
technical documentation and thus the element collection contains a lot of fine-grained
elements for representing important aspects of technical documents. These elements
are mainly block or inline elements.

However, as these elements have a merely structural character it is necessary to
augment such content with respective info elements in order to meet the idea of
Core Documentation Entities. Listing 3.1 shows a procedure as a typical example. A
subject element was added to the info section to define the semantics of the procedure
more precisely, i.e., from the example data it can be conducted that it is a repair
sequence.
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1 < a r t i c l e xmlns=’ http :// docbook . org / ns /docbook ’ >
2 < i n f o >
3 < s u b j e c t s e t >
4 < s u b j e c t > Repair </ s u b j e c t >
5 </ s u b j e c t s e t >
6 </ i n f o >
7 < t i t l e >Example procedure </ t i t l e >
8 < procedure >
9 < t i t l e >An Example Procedure </ t i t l e >

10 < step >
11 <para >A Step </ para >
12 </ step >
13 < step >
14 <para >Another Step </ para >
15 < substeps >
16 < step >
17 <para > Substeps can be nested i n d e f i n i t e l y </ para >
18 </ step >
19 </ substeps >
20 </ step >
21 < step >
22 <para >A Fina l Step </ para >
23 </ step >
24 </ procedure >
25 </ a r t i c l e >

Listing 3.1 | DocBook procedure augmented with rhetorical aspects.

Additional Metadata

Basically, the DocBook specification allows for the addition of metadata to most kinds
of elements. Therefore, the aforementioned info element or the dedicated elements
within the DocBook Publishers extension of the Dublin Core can be used directly.
Listing 3.2 shows an updated example where the info element not only describes a
rhetorical aspect (Repair) of the article but also the component in focus (Gear Box
0815).

1 < a r t i c l e xmlns=’ http :// docbook . org / ns /docbook ’ >
2 < i n f o >
3 < s u b j e c t s e t >
4 < s u b j e c t > Repair </ s u b j e c t >
5 < s u b j e c t >Gear Box 0815 </ s u b j e c t >
6 </ s u b j e c t s e t >
7 </ i n f o >
8 . . .
9 </ a r t i c l e >

Listing 3.2 | DocBook info with metadata for components.

TEKNO Extension: DocBook

In general the DocBook information model provides similar elements to the TEKNO
ontology. From a structural perspective, a structural element in DocBook gets as-
sembled from block-level and inline elements. This corresponds to the assembly of a
tekno:MacroStructure according to TEKNO. In TEKNO tekno:MicroStructure and
tekno:NanoStructure instances are used for the assembly respectively. DocBook’s
info element corresponds to the tekno:InformationType in the TEKNO ontology.
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However, unlike TEKNO’s information type its usage is strictly constrained to struc-
tural elements. Core Documentation Entities can be derived from DocBook structural
elements that contain an info element. The derivation of Core Documentation Entities
is however not intended by DocBook und thus requires the aforementioned mapping
of the DocBook information model to the TEKNO ontology. Figure 3.15 shows the
mapping between the DocBook information model and the TEKNO ontology. Bold
arrows between the two models indicate the mapping.

tekno:Structure

tekno:NanoStructuretekno:MacroStructuretekno:InformationType

subClassOfsubClassOf

broader/narrowernext/previous 

tekno:CoreDocumentationEntityDescription Logic subClassOf

tekno:MicroStructure

subClassOf

Structural Element

TEKNO

Block Level Element Inline ElementInfo Element

broader/
narrower

broader/
narrower

broader/
narrower

references

Figure 3.15 | Mapping of the DocBook information model to the
TEKNO ontology.

Formats and Delivery

Technical documentation written according to the DocBook specification must be
serialized in XML format. The content can be separated to different XML files, e.g.
for editing chapters in single files. An include mechanism ensures that the separated
source files can be assembled to a complete publication.

For the DocBook XML language a variety of XSL stylesheets exist. These style-
sheets can be used to transform the DocBook XML source files to a variety of out-
put formats like HTML or XSL-FO (PDF). The transformation comprises the auto-
matic generation of certain document structures like table of contents, glossaries or
other indexes. The XML language can be customized to meet domain- or customer-
specific requirements. However, the customization requires the editing of the standard
RELAX-NG schema which might break tool support relying on the standard.

Tool Support

The creation of a documentation according to the DocBook specification does not
require a dedicated editor. The documentation can be created and edited with a
standard XML editor. Some editors come with a predefined support for DocBook
XML.
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For the transformation of DocBook XML files to the supported output formats
XSL stylesheets can be applied using a standard XSL processor. Standard XML
validators can be used to validate DocBook source files against the RELAX-NG/XML
schema or the Doctype Definition (DTD).

Discussion

The DocBook information model provides —from a structural perspective— almost
perfect mapping abilities to the TEKNO ontology. For the core elements of the
TEKNO ontology, a one to one mapping to DocBook elements is possible. Although,
the definition of rhetorical information is limited and not standardized. Nevertheless,
the DocBook information model fulfills the requirements of the 5-STAR maturity
schema. Access to nano and micro structures as required for the first and second ma-
turity level is available through XML elements. Depending on the usage of available
elements this provides very targeted access to information pieces. The third matu-
rity level requires modularization. While the DocBook information model in general
provides the required functionality it depends on the actual authoring if a modular-
ization happens. A document written according to the DocBook information model
can either be composed from multiple files (modules) or written as a single file. The
fourth star requires information typing and identifiability for modules. All structures
in DocBook documents are identifiable to basic XML features. Information Typing
can be realized through the usage of DocBook’s info element. The requirements of the
fifth star are also met through the ability of defining metadata enables the annotation
of macro structures with elements of an external ontology. In summary, the DocBook
information model enables the creation of 5-STAR technical documentation. The
conjunction of the DocBook information model and the Core Documentation Entity
expressions of the TEKNO ontology facilitates good accessibility. A strict require-
ment to author DocBook contents in a modularized way could further improve the
handling of this information model. A standardized way for the definition of rhetori-
cal aspects would ensure that generated documentation supports rhetorical filtering.
Table 3.9 summarizes this discussion according to the a 5-STAR rating schema.

1-STAR 2-STAR 3-STAR 4-STAR 5-STAR

Table 3.9 | DocBook 5-STAR rating.

3.4.5 S1000D

S1000D is an international specification for authoring and procuring technical doc-
umentation. It was originally developed by the European Association of Aerospace
Industries (AECMA). Nowadays, it is maintained by the S1000D Steering Commit-
tee, which mainly consists of the AeroSpace and Defence Industries Association of
Europe (ASD), the Aerospace Industries Association (AIA) and the Air Transport As-
sociation (ATA). The specification provides a guideline for the standardized creation
of technical documentations and supports the country and organization independent
information exchange through uniform documentation standards. The primary tar-
get groups of the specification are the aerospace industry and military organizations.
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Figure 3.16 | Overview of the S1000D information model.

However, the S1000D specification is also used for the creation of technical docu-
mentation in other (civil) domains like construction or the ship industry. In general,
S1000D is the most recognized international standard for technical publications.

Information Model

The S1000D information model is primarily provided as SGML and XML Document
Type Definitions (DTD). The information model also exists as XML schema. The
information model contains different Document Type Definitions for the various in-
formation types, e.g. specialized DTDs for descriptive or procedural information. A
vital element of the information model is the Standard Number System (SNS) that
is used for the encoding of components and procedures. A key idea of the S1000D in-
formation model is modularization of information. Therefore, S1000D uses so called
data modules, i.e. small pieces of technical information. Data modules as well as
illustrations get alphanumeric codes – the Data Module Code (DMC) or Illustration
Control Number (ICN) respectively. These codes are the basis for the usage of a Com-
mon Source Database (CSDB) as a centralized storage and management medium of
data modules and illustrations. Additionally, the data module codes and illustration
control numbers simplify the information exchange among project members or in-
stitutions. The S1000D information model also contains descriptions of publication
types (e.g. operating instructions, repair manuals or troubleshooting documents) and
output formats (e.g. interactive documentations or printed publications).

Element Overview

Figure 3.16 depicts an overview of the S1000D information model. The main element
of the S1000D specification is the data module. A data module is a small, self-
contained and reusable piece of technical documentation. In S1000D they form the
smallest information unit within a technical publication.

Closely coupled with the data module is the data module code (DMC) that en-
codes the hierarchical breakdown of a system. The data module code is a generic
classification system for the complete documentation that also encodes other data
like location or information codes. The data module code also allows for the de-
termination of relations between documented entities, e.g. sub component/part of
relations.

The data modules can be organized in so called information sets which in turn can
be used to assemble publications (macro level structuring). The S1000D specification
contains descriptions for the different publication types.
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Additionally, the S1000D specification contains comprehensive descriptions of el-
ements that can be used within the data modules (micro level structuring). These
content elements of the S1000D specification facilitate the semantic description of
technical content. For each information type it is clearly defined where specific ele-
ments (e.g. safety notes) have to appear and how additional metadata can be defined,
e.g. required skill-levels or preliminary and subsequent work.

Structural Elements

From a structural view the S1000D information model provides elements that facili-
tate structuring technical information encapsulated in data modules on a micro and
macro level. On the macro level the S1000D information model provides so called
information sets. An information set provides information for a predefined scope in
form of appropriately arranged data modules. The S1000D information model comes
with some predefined information sets, e.g.:

• Crew/Operator information

• Maintenance information

• Wiring data

• Illustrated Parts data

• Service bulletins

• Training

These information sets serve as a basis for the assembly of publications. A publica-
tion can either be assembled from subsets of one information set or as a super set of
different information sets. In some cases it might be necessary to group data modules,
because their contents are similar. An example for such a scenario is a maintenance
action that achieves the same goal but needs different detailed procedures depend-
ing on the product configuration or environment conditions. Therefore, so called
container data modules exist that allow for explicitly stating alternatives.

On the micro level the S1000D information model provides a variety of dedicated
XML elements for different types of data module content sections. These elements
allow for a detailed semantic description of technical information. Some of these
XML elements can be applied to all types of content sections, e.g. references, lists,
tables, figures with hotspots or general text elements and thus have a purely structural
character. The usage of other elements is limited to certain types of content sections
and are highly specialized and thus have Core Documentation Entity character (see
Section 3.4.5).

Rhetorical Elements

The rhetorical elements of the S1000D elements are closely coupled with the afore-
mentioned information sets. For each data module an information code (IC) has to
be defined as part of the data module code (DMC). This information code facilitates
the identification of the rhetorical aspect of a single data module.

Table 3.10 shows the top level elements of the information codes of the S1000D
information model. These top level elements are specialized on the subsequent levels
and thus form a taxonomy of information codes.
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Information Code Description
000 Function, data for plans and description
100 Operation
200 Servicing
300 Examinations, tests and checks
400 Fault reports and isolation procedures
500 Disconnect, remove and disassemble procedures
600 Repairs and locally make procedures and data
700 Assemble, install and connect procedures
800 Package, handling, storage and transportation
900 Miscellaneous
C00 Computer systems, software and data

Table 3.10 | S1000D information codes and descriptions.

Core Documentation Entities

The S1000D information model describes a lot of dedicated XML elements. Some of
them are generally applicable (see Section 3.4.5) whilst others are limited to certain
types of data module content sections. As the type of the data module content
sections is closely coupled with the rhetorical elements (see Section 3.4.5) elements
with a constrained applicability usually have Core Documentation character. The
following list shows some typical examples of data module content types and samples
of respective dedicated XML elements with Core Documentation Entity character:

• Fault information:
faultIsolationProcedure, isolationStep

• Maintenance check list:
checkListProcedure, checkListItem

• Wiring data:
wire, fromEquip, toEquip

Most of these dedicated elements are group elements, i.e. they contain other, usu-
ally generally applicable text elements for the concrete definition of the content. This
limits the machine-interpretability of the content but still simplifies the processing
and the subsequent access of the corresponding information.

Additional Metadata

In the S1000D information model, each data module has a unique data module code.
The data module code encodes a lot of information which in turn can be interpreted
as classifying metadata. Figure 3.17 gives an overview of the elements of the data
module code.

The complete data module code identifies a single data module. When broken
into its parts the data module code allows to deduct a lot of classifying metadata
for the respective data module. The following elements can usually be mapped to
corresponding ontologies/taxonomies.

• Model:
Indicates the complete model/system of the documentation.
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Figure 3.17 | S1000D data module code.

• System Difference Code:
Indicates alternative versions of the model.

• System:
Identifies the system described by the data module.

• Subsystem/Sub-subsystem:
The further breakdown of the system.

• Unit/Assembly Code:
Breakdown beyond System/SubSystem/Sub-Subsystem level.

• Information Code/Variant:
Indicates the type of information.

• Item Location:
The location of the unit.

Additionally, the S1000D information model allows for the addition of metadata like
information in the content part of data modules. Therefore, a dedicated applicabil-
ity element exists which can handle human-readable as well as machine-interpretable
values. Usually the applicability is used to define variants of machines to which the
information described in the data module applies.

TEKNO Extension: S1000D

In general the S1000D information model provides similar elements to the TEKNO
ontology and thus enables an almost complete mapping of both models. From a
structural perspective a data module assembled from content elements according to
the S1000D information model corresponds to a tekno:MacroStructure instance with
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tekno:MicroStructure instances respectively. Instances of S1000D information sets
or publications correspond to higher level macro structures in the TEKNO ontology.
In S1000D the information code and information code variant is encoded in the data
module code. These elements are equivalent to the tekno:InformationType. Core
Documentation Entities can either be declared directly using respective S1000D con-
tent elements constrained to certain content types or can be derived from content ele-
ments, the assigned information code of the enclosing data module and the respective
expressions in the TEKNO ontology. The latter requires the aforementioned mapping
of the S1000D information model to the TEKNO ontology. Figure 3.18 shows the
mapping between the S1000D information model and the TEKNO ontology. Bold
arrows between the two models indicate the mapping.
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Figure 3.18 | Mapping of the S1000D information model to the
TEKNO ontology.

Formats and Delivery

Technical Documentation written according to the S1000D specification must be in
XML/SGML format. The content of the complete technical documentation is spread
over different XML files, where each XML file represents a single data module. Infor-
mation sets and publications get assembled with dedicated XML files which set the
respective data modules in a reasonable sequence. Additionally, the S1000D specifi-
cation requires illustrations to be in CGM (Computer Graphics Metafile) format, 3D
animations can be defined using VRML. The data modules in XML files are usually
not stored as files on the file system but as entries in a Common Source Database.

Tool Support

The S1000D specification is non-proprietary, i.e. it allows for neutral delivery and
management. Hence, a variety of tools exist that support the creation, editing and
management of S1000D data modules and publications. Additionally, the S1000D
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specification provides Document Type Definitions and XML schemas that can be used
to validate the XML content of data modules.

Discussion

In general, technical documentation authored according to the S1000D information
model fulfills huge parts of the 5-STAR maturity schema. Access to nano and micro
structures as required for the first and second maturity level are available through
dedicated XML elements. Depending on the usage of available elements this provides
very targeted access to information pieces. The third maturity level requires modu-
larization, which is one of the fundamental ideas of the S1000D information model.
Each data module describes a self-contained piece of information which is intended
for multiple use through information sets or publications (which are a possibility in
S1000D to define macro structure hierarchies). The fourth star requires information
typing and identifiability for modules. The identifiability of data modules is ensured
through its unique data module code. The data module code also contains an informa-
tion code that defines the information type of the respective data module. Although
S1000D encodes a lot of information in the data module it is hardly possible to define
additional metadata annotations from external ontologies. The S1000D information
model is a fully integrated information management framework and requires relevant
concepts to be defined in a S1000D compatible way, i.e. machine components are
usually encoded using the standard numbering system. The only way to directly
reference concepts from an external ontology is the abuse of content elements like
remarks. Indirect references to concepts from external ontologies can be realized by
mapping them to reasonable parts of data module codes, e.g. the standard number-
ing system. This, however, is not part of the S1000D specification and requires the
support of the consuming information system. Though, the basic requirements of
the fifth star are met, as data modules inherently encode their subject. In summary,
the S1000D information model enables the creation of de-facto 5-STAR technical
documentation. The conjunction of the S1000D information model and the Core
Documentation Entity expressions of the TEKNO ontology facilitates good accessi-
bility. An explicit possibility to reference concepts from external ontologies would
further improve the handling of S1000D-based technical documentation. Table 3.11
summarizes this discussion according to the a 5-STAR rating schema.

1-STAR 2-STAR 3-STAR 4-STAR 5-STAR

Table 3.11 | S1000D 5-STAR rating.
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3.5 Summary and Contributions
The latest developments in the fields of information systems require technical doc-
umentation to be more and more semantically prepared. Section 3.2 discussed the
demand of a possibility to quickly asses the maturity of existing technical documents
and the underlying information models. As there is no standardized and easy to
apply schema a novel 5-STAR maturity schema has been introduced. The matu-
rity schema has five levels and a star is added on each level if documentation meets
the respective requirements. This way structural accessibility on different granular-
ity levels (1-STAR, 2-STAR, 3-STAR), modularization (3-STAR), identifiability and
information typing (4-STAR) and linkability (5-STAR) can quickly be assessed.

Building upon the 5-STAR maturity schema TEKNO as a novel abstracting meta
ontology for technical documents has been introduced in Section 3.3. TEKNO pro-
vides a simple but powerful ontological vocabulary to semantically represent struc-
tural and rhetorical elements of technical documentation. Through its meta charac-
ter it can be easily aligned to existing information models. Such alignments usually
yield considerable improvements regarding accessibility. This is especially emphasized
through a catalog of so called Core Documentation Entities that is part of the TEKNO
ontology. Core Documentation Entities combine existing structural and rhetorical el-
ements to deduct elements that carry strong technical knowledge. Examples for such
Core Documentation Entities are repair instructions, component overviews, and mea-
surement tables.

Level Description PI-
Mod iiRDS DITA Doc-

Book S1000D

1 Nano Structures

2 Micro Structures

3 Macro Structures

4 Information Types

5 Annotations

Table 3.12 | Summary of 5-STAR ratings for the information models
PI-Mod, iiRDS, DITA, DocBook, and S1000D.

Section 3.4 gave an overview of established information models for the authoring
of technical documents, namely: PI-Mod, iiRDS, DITA, DocBook, and S1000D. For
each information model the most important structural and rhetorical elements have
been identified. Additionally, a mapping of the TEKNO ontology to the respective
information model has been described. All information models have been assessed
according to the 5-STAR maturity schema. The results of the single assessments
have been discussed, also with respect to the aligned TEKNO ontology, please refer
to Table 3.12 for an overview. The fact that none of the analyzed information models
receives a 5-STAR rating emphasizes the demand of an abstracting meta ontology
like TEKNO.
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An investment in knowledge pays the
best interest.

Benjamin Franklin

4.1 Overview
The previous chapter discussed different kinds of semantics for technical documents
and gave an overview of existing information models. Although a variety of struc-
tured information models exist large amounts of technical documents still reside in
proprietary or legacy formats. Such formats usually lack accessibility and linkability
and thus inherently limit their usage in state-of-the-art information systems. This
chapter describes a semantification process that is split into five steps that build upon
eachother and transforms legacy documents into an accessible and linkable represen-
tation. The five steps are aligned with the maturity model that was introduced in
Section 3.2:

1. Document Layout Analysis:
The first semantification step is concerned with fundamental document layout
analysis, which aims on recovering pages, contiguous text blocks, sentences, and
single tokens. This is a challenging task especially for scans and documents in
PDF format. For a detailed description please refer to Section 4.3.

2. Logical Document Structure Recovery:
The second semantification step aims on recovering the logical document struc-
ture, which especially affects the classification of contiguous text blocks. For a
detailed description please refer to Section 4.4.

3. Macro Structure Recovery and Deduplication:
The third semantification step exploits classified text blocks like headlines in
order to recover macro structure hierarchies. Macro structure hierarchies corre-
spond to chapters, sections and subsections. This is the basis for the modular-
ization and deduplication of large documents. For a detailed description please
refer to Section 4.5.

4. Automatic Document Classification:
The deduplicated modules of the third semantification step are automatically
classified according to rhetorical classes. These rhetorical classes correspond to
information types like “repair”, “diagnosis” or “description”. The classification
of modules according to information types enables rhetorical filtering in respec-
tive information systems. For a detailed description please refer to Section 4.6.

5. Subject Analysis and Indexing:
The final semantification step aims on enabling problem-oriented and targeted
search. Therefore, modules must be annotated with concepts from a domain
ontology. Assuming that such a domain ontology describes functions and com-
ponents of a machine problem-oriented and targeted access to relevant modules
becomes possible. For a detailed description please refer to Section 4.7.

Each semantification step introduces an information system use case and thus mo-
tivates its realization with respect to an actual application scenario. Building upon
formal problem descriptions relevant approaches from literature and novel techniques
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are thoroughly presented and discussed for each semantification step. The semantifica-
tion steps have already been applied in a series of industrial projects. The experiences
gained in these projects are manifested in practical representations that are given at
the end of each section.

4.2 Preparatory Steps
This section describes preparatory steps that are especially necessary in industrial
projects. Since real-world projects often aim on the semantification of large corpora
of legacy documents with a fixed or limited budget a prioritization might be necessary.
Additionally, a data cleaning step aims on quickly identifying documents that are not
in a processable state.

4.2.1 Data Selection

Basically, the 5-STAR semantification approach allows for the batch processing of
legacy documents. However, in real-world projects tailoring single steps is necessary in
order to yield decent results. As this tailoring is especially based on expert knowledge
it easily gets cost-intensive. Therefore, a prioritization of the legacy documents might
be necessary. In the data selection phase the documents contained in the corpus are
therefore grouped into disjunct priority lists (see Figure 4.1).

Document
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Document
Document

Document
Document
Document

PRIO-0

Document

PRIO-1

Document
Document

Document

PRIO-2

Document
Document

Document
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Figure 4.1 | Prioritization of documents on priority lists.

Definition 4.2.1 (Priority List). Let K be the corpus of technical documents and
let Di ∈ K a document. Then a priority list Pb ⊆ K is defined as a set of documents

Pb = {D1, . . . , Dn}

so that
∀b ∀c Pb ∩ Pc = ∅ with b ̸= c and

∪
b

Pb = K.

The creation of the priority lists is usually a rather manual task as corporate
aspects such as market penetration of the corresponding product or customer satis-
faction needs to be taken into account. Workshops with different stakeholders for the
definition of the priority lists are indispensable. It is not necessary to define priority
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lists on the document level. These lists are typically defined on the machine and
document type level, e.g. including repair manuals of a specific machine type into a
specific priority list.

4.2.2 Data Cleaning

The documents selected for semantification might not be in a processable state, i.e.,
documents may be damaged, encrypted or use unsupported encodings. Therefore,
the semantification process contains an explicit data cleaning step, that checks the
processability of the selected documents.

Definition 4.2.2 (Processable Documents). Let K be the complete corpus of tech-
nical documents and let Di ∈ K be a document. Then the function pcorp : K → Kp

extracts all processable documents from the corpus by examining each document Di

using the function pdoc : D → BOOLEAN , so that Kp ⊆ K.

The function pdoc checks every document for processability, which for instance
can be realized by using heuristics. The documents identified as not processable

Knp = K \ Kp

need manual review before they can be processed. Depending on their importance
the review might also result in an exclusion of the respective documents.



4.3. 1-STAR 83

4.3 1-STAR
This section describes the first of five semantification steps. The 1-STAR semantifi-
cation is the fundamental basis for all succeeding semantification steps. It aims on
providing access to the text of pages, blocks, sentences and single tokens. This is a
challenging task when confronted with scanned texts or documents in PDF format.

4.3.1 Information Systems Use Case

Technical documents fulfilling the first maturity level are usually employed in text-
based information systems. Text-based information systems usually require the full
plain text of documents in order to build a textual index. Therefore, document texts
are extracted from scanned documents or documents in PDF format. The extracted
text then usually gets tokenized. Then, the text is prepared for indexing by removing
stop words and applying stemming techniques to single tokens. Finally, an inverted
index from tokens to document pages gets assembled under consideration of relevance
metrics. This allows text-based information systems to provide page-wise access to
documents even if they are originally provided as scanned images or in PDF format.
The inverted index is the basis for text-based retrieval mechanisms that consume user
keyword queries and determine relevant search results.

4.3.2 Problem Description

The 5-STAR maturity schema requires 1-STAR technical documents to be available
in an electronic format. This electronic format must at least provide access to the
following structures:

• Pages: a single page of a document.

• Blocks: contiguous text within a single page that can usually visually separated
from other text elements, e.g. headlines or paragraphs.

• Texts: contiguous tokens that form a self-contained element, e.g. headline text
or sentences.

• Tokens: single words.

The reconstruction of such structures is part of the more general research topics of
Optical Character Recognition [142] and Document Layout Analysis [150] (also Page
Layout Analysis). Optical Character Recognition is the conversion of images of typed,
handwritten or printed text into machine-encoded text. Document Layout Analysis
approaches usually try to segment content in text and non-text zones. Elaborated
approaches also determine high level classes for text zones like paragraph, heading or
page number and add relationship information to them.

Applications of both the Document Layout Analysis problem and Optical Char-
acter Recognition can be found for instance in historical book recognition where
electronic text is extracted from scanned, ancient books. In the context of technical
documentation, Document Layout Analysis is a topic when source data of documents
is either not available or exists in a highly unstructured or proprietary format. Typ-
ical examples are documents that originally have been written using typewriters or
documents in formats like PDF that basically describe the arrangement of single
glyphs.

Access to the aforementioned document structures requires the transformation
of image- or glyph-based documents to zoned electronic text represented as micro
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(blocks, texts) and nano structures (tokens). Therefore, a document’s content needs
to be segmented into disjunct zones, analyzed, and recovered. The resulting electronic
description of technical documents can then be exploited to either consume the textual
content or to employ more elaborate analysis and recovery tasks.

The remainder of this section is structured as follows: In Section 4.3.3 some basic
information about skew estimation is given, which plays a vital role for image-based
documents. Subsequently Section 4.3.3 introduces zoning mechanisms that separate
homogeneous text and non-text regions. It continues with the explanation of the
recovery of nano structures (tokens) and the subsequent recovery of micro structures
for page segmentation purposes. Established 1-STAR electronic formats for the repre-
sentation of basic document structures are presented in Section 4.3.4. Section 4.3.5
gives practical recommendations for applying Logical Document Structure Recovery
to technical documents.

4.3.3 Document Layout Analysis

The goal of the Document Layout Analysis problem is the estimation of a hierarchical
representation of a document, i.e., the representation of the document on different
levels of detail under consideration of spatial relationships [35]. For instance, a doc-
ument can be represented on a high level by enumerating its pages. Increasing the
level of detail yields access to blocks, lines, and finally tokens. Additionally, Docu-
ment Layout Analysis approaches ensure that elements detected on different levels
are hierarchically connected to each other. The following sections describe in detail
the required steps for reaching these goals.

Skew Estimation

Documents that originally have been written on typewriters are usually only available
as scanned images. Thus, the very first step of Document Layout Analysis is skew
estimation. Skew estimation approaches determine the deviation of the document
orientation angle from the horizontal and vertical direction [35]. Figure 4.2 depicts
the skew estimation process.

Figure 4.2 | Skew estimation for a single page.

Common approaches for skew estimation have been surveyed by Cattoni et al. [35].
The skew estimation problem is well-established research topic. Among others, com-
mon approaches are based on the following techniques:

• Analysis of projection profiles:
Text is assumed to be arranged along parallel straight lines [35]. Then a projec-
tion profile is computed, an objective function over the skew angle defined and
optimized [35].
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• Hough transformation:
A feature extraction technique that uses a certain voting procedure to find
imperfect instances of geometrical objects.

• Nearest neighbor clustering:
Characters are supposed to appear in a line and are aligned close to each
other [35]. Mutual distances and spatial relationships between objects are ex-
ploited to estimate the document skew [35].

• Correlation between lines:
Assumes that deskewed text appears in homogeneous horizontal structures [35].
Hence vertical deviations are used to estimate a document’s skew [35].

Other approaches comprise gradient analysis, analysis of the fourier spectrum, mor-
phological transformations and subspace line detection. For more information please
refer to the survey work of Cattoni et al. [35].

Text/Non-Text Zoning

Documents that are available in PDF or image format first need to undergo a text/non-
text zoning process. This step separates textual from non-textual regions. This is
an important aspect for both PDF and image-based documents. Contents of image-
based documents can be filtered to allow for a targeted employment of subsequent
OCR tasks which usually is beneficial with respect to the expected results. The PDF
format on the other hand does not provide a logical representation for encapsulated
text. However, neither image-based documents nor documents in PDF format give
direct access to separate text and non-text zones.

Considering image-based/scanned documents it is obvious that the separation
of text and non-text zones requires further processing. While documents in PDF
format give the impression that access to textual element is easily possible, the PDF
format in fact aims primarily at the preservation of the intended look of documents.
Hence, documents in PDF format usually do not provide access to a correct logical
representation of textual contents [162]. Instead, it provides all kinds of content in
forms of object streams that need to be separated. Common objects in PDF streams
are: text, path objects for the definition of vectorial elements, and external objects
like raster images. While the stream elements can easily partitioned according to
their type (see Figure 4.3) problems arise when document components are composed
from different types of stream elements. This is especially true for vectorial images
that can be assembled from path and text elements.

This makes the employment of dedicated zoning algorithms necessary for both
image-based documents and documents in PDF format. Established methods for
separating documents into text and non-text zones are based on XY-Cut algorithms.
XY-Cut algorithms [144, 136] usually transform a document into a whitespace density
graph where peaks indicate whitespace lines (horizontal or vertical). The peaks are
then used top-down to cut a document page into smaller blocks. Whitespace infor-
mation is easily available for image-based documents. For documents in PDF format
the information has to be computed from dimensions available for single page and
stream elements of different types.

Nano Structure Reconstruction

Given clearly separated text and non-text zones the subsequent step in Document
Layout Analysis is the recovery of nano structures aka tokens. Tokens are not directly
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Figure 4.3 | Separation of text and non-text zones.

available from the estimated text zones. For image-based documents the recovery of
single tokens is usually covered by a dedicated Optical Character Recognition step
that relies on different approaches for tokenizing character streams. For documents
in PDF format each text zone is represented as a set of textual stream elements. It is
undefined whether a single textual stream element corresponds to a single character,
a partial word, a complete word, a partial line or another arbitrary partition of the
text zone [162].
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Figure 4.4 | Tokenization for Nano Structure Recovery.

In literature different approaches for the tokenization of textual streams from
PDF documents can be found. Dejean et al. [52] proposed an industry proven ap-
proach that combines spatial/geometrical and statistical/dictionary information (see
Figure 4.4). First, an initial tokenization is computed solely based on geometrical/s-
patial information. Using this initial tokenization a weighted dictionary is built where
the weight of each token corresponds to its document frequency. A high frequency
yields a higher weight than a lower weight. Then, for every line all possible tok-
enizations with respect to the generated dictionary are computed. A Viterbi-style
algorithm is then used to select the most appropriate tokenization, i.e., the tokeniza-
tion with the best overall-weighting.
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Micro Structure Segmentation

The results of the text and non-text zoning step do not necessarily correspond to micro
structures like single headlines, paragraphs, and tables. Instead, text zones might also
contain blocks of nested micro structures that need additional segmentation. Thus, in
a particular micro structure segmentation step the text zones undergo an additional
division into smaller pieces (see Figure 4.5). The result is another segmentation of
the document in (potentially more granular) homogeneous regions [35]. While the
goal of this step is to produce homogeneous blocks of maximum size the main feature
under consideration is the spacing among different regions [35].

Image Object

Block Image Object

Block

!

Block

Figure 4.5 | Segmentation for Micro Structure Recovery.

Cattoni et al. [35] surveyed approaches for the Page Decomposition problem,
which is another term for the aforementioned micro structure segmentation. The
surveyed approaches come mainly from two sub disciplines called Text Segmentation
and Page Segmentation. The surveyed approaches rely amongst others on the follow-
ing methods:

• Connected Component Analysis:
Textual stream elements are transformed to vertices of a graph. The vertices
contain additional information (features like spatial or font information) which
is exploited by specialized heuristics that determine connected neighbors (i.e.
similar elements). Ramakrishnan et al. [162] presented an approach that also
considers multi-column layouts.

• Projection Profile Methods:
The projection profile of a document image (see skew estimation) is exploited
to segment the text using recursive XY-Cut algorithms. The basis for the
segmentation are peaks and valleys in the projection profile [35].
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• Smearing-based Techniques:
Operate on sequences of pixels which correspond to rows or columns of an image-
based document. The pixels are binary (0,1) encoded and get transformed by
certain rules. This way, areas of 0’s and 1’s result. These areas are considered
to be a micro structure on threshold basis. Smearing based algorithms are
considered to be fast and easy to implement and are thus popular in respective
systems [35].

• Analysis of the background structure:
An extension of smearing based approaches that do not work on a single se-
quence of pixels but a two-dimensional representation of pixels. Pixels are
replaced by an index value. This is the basis for the computation of a hier-
archical tree structure that is exploited for the computation of the resulting
segmentation [35].

• Texture based or local analysis:
A document image gets processed on pixel-level. For each pixel a probability is
estimated that indicates the pixel to belong to a word block. Using probability
thresholds, connected blocks of words can be detected [35].

4.3.4 Electronic Formats

The Document Layout Analysis described in Section 4.3.3 yields access to basic doc-
ument components. After the analysis steps, document components are available on
different levels of detail. Starting with elements representing complete pages a suc-
cessive increase of detail allows accessing the page content separated in homogeneous
blocks of text. The text within these blocks is then represented in lines consisting
of single tokens. Various export formats exist for the delivery of the recovered struc-
tures. After introducing the basic requirements of such delivery formats, the following
sections will give a non-exhaustive overview of some of these formats.

Requirements

The presented approaches for Document Layout Analysis often have domain-specific
target applications. Therefore, standardized and/or broadly accepted formats for
the delivery of analysis results do not exist [156]. In this work, the Document Lay-
out Analysis problem is embedded in a larger Semantification problem. Hence, the
ongoing process of semantifying technical documents results in some requirements
regarding document representation formats. The requirements affect elements, at-
tributes/features for these elements and possibilities to express the logical layout.

Focusing on elements that must be provided by the electronic format the base-
line comprises regions/blocks, contiguous text (lines) and single words. From the
feature/attribute perspective for all textual elements information about their font,
reading direction, text, and background color as well as applied text decorations (ital-
ics, bold, ...) must be available. Information about the logical layout of the document
must at least provide possibilities to describe linear relations between elements, like
next, previous, broader or narrower relations. Possibilities for grouping and nesting
elements yield additional accessibility benefits.
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lapdf-text

Ramakrishnan et al. [162] developed the open source utility lapdf-text1. While the
tool primarily aims on extracting layout-aware full text from PDFs, it supports the
complete Document Layout Analysis task. It also provides an XML-based represen-
tation of its analysis results. Although the output is not standardized it does meet
the basic requirements for a 1-STAR electronic format.

The lapdf-text XML format provides amongst others the following elements: text
blocks (chunk) and tokens (word). For textual elements the following features are
available: font-name, font-size, height, width, and the position on the page. There is
no explicit way to represent linear logical relationships.

Listing 4.1 shows an example of a lapdf-text XML document. The example docu-
ment contains several blocks which roughly correspond to lines. The content of these
text blocks can be accessed on the token level. For each element detailed information
about its position and style are available.

1 <?xml v e r s i o n ="1 .0" encoding="UTF-8" ?>
2 <Document>
3 <Page x1=" 34 " y1="25 " x2=" 566 " y2="803 "
4 chunkCount=" . . . " pageNumber=" 1 " wordCount=" . . . " >
5 <Chunk x1="56 " y1="25 " x2=" 154 " y2="39 " >
6 <Word x1="56 " y1="25 " x2=" 154 " y2="39 "
7 f ont=" ArialMT " s t y l e=" font - s i z e : 1 2 pt " >
8 S e r v i c e Manual</Word>
9 </Chunk>

10 <Chunk x1=" 183 " y1=" 67 " x2=" 439 " y2=" 84 " >
11 <Word x1=" 183 " y1=" 67 " x2=" 439 " y2=" 84 "
12 f ont=" He lvet i ca - Bold " s t y l e=" font - s i z e : 1 6 pt " >
13 Index </Word>
14 </Chunk>
15 <Chunk x1="56 " y1=" 152 " x2="520 " y2="222 " >
16 <Word x1="56 " y1=" 152 " x2=" 404 " y2=" 166 "
17 f ont=" ArialMT " s t y l e=" font - s i z e : 1 2 pt " >
18 Foo</Word>
19 <Word x1=" 408 " y1=" 152 " x2="520 " y2=" 166 "
20 f ont=" ArialMT " s t y l e=" font - s i z e : 1 2 pt " >
21 Bar</Word>
22 <Word x1="396 " y1=" 166 " x2="520 " y2=" 180 "
23 f ont=" ArialMT " s t y l e=" font - s i z e : 1 2 pt " >
24 Baz</Word>
25 </Chunk>
26 </Page>
27 </Document>

Listing 4.1 | An example of the lapdf-text electronic format.

pdf2xml

Dejean et al. [52] developed the open source and industry-proven utility pdf2xml2
that supports the Document Layout Analysis task. The utility comes with its own
XML-based export format. Although it is not standardized it meets the requirements
for a 1-STAR electronic format.

The pdf2xml XML format provides amongst others the following elements: typed
blocks (text, image, ...), text (lines), and tokens (words). For textual elements the
following features are available: font-name, font-color, font-size, rotation, angle, text

1https://github.com/BMKEG/lapdftext
2https://github.com/kermitt2/pdf2xml

https://github.com/BMKEG/lapdftext
https://github.com/kermitt2/pdf2xml
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decorations, height, width, and the position on the page. There is no explicit way
to represent linear logical relationships. Though, grouping and nesting of elements is
possible.

1 <?xml v e r s i o n ="1 .0" encoding="UTF-8" ?>
2 <DOCUMENT>
3 <METADATA>
4 </METADATA>
5 <PAGE width=" 420 " he ight=" 595 " number=" 1 " id=" p1 " >
6 <BLOCK id=" p1_b1 " >
7 <TEXT width=" 225 .105 " he ight=" 1 7 . 1 7 5 " id=" p1_t1 "
8 x=" 1 2 4 . 1 4 " y=" 52 .4794 " >
9 <TOKEN s i d=" p1_s3 " id="p1_w1 " font - name="IMOGHB+Helvet i ca - Bold "

10 s e r i f=" yes " f ixed - width=" yes " bold=" yes " i t a l i c=" no "
11 font - s i z e=" 15 " font - c o l o r="#000000" r o t a t i o n="0" ang le="0"
12 x=" 1 2 4 . 1 4 " y=" 52 .4794 " base=" 66.3844 " width=" 225 .105 "
13 he ight=" 1 7 . 1 7 5 " >Foo</TOKEN>
14 </TEXT>
15 </BLOCK>
16 <BLOCK id="p1_b2 " >
17 <TEXT width=" 87 .21 " he ight=" 32 .0142 " id=" p1_t2 "
18 x=" 193 .08 " y=" 84 .1455 " >
19 <TOKEN s i d=" p1_s4 " id="p1_w2" font - name=" imoghb+h e l v e t i c a - bold "
20 s e r i f=" yes " f ixed - width=" yes " bold=" yes " i t a l i c=" no "
21 font - s i z e=" 27 .96 " font - c o l o r="#000000" r o t a t i o n="0" ang le="0"
22 x=" 193 .08 " y=" 84 .1455 " base=" 1 10 .064 " width=" 48 .259 "
23 he ight=" 32 .0142 " >Bar</TOKEN>
24 <TOKEN s i d=" p1_s5 " id="p1_w3" font - name=" imoghb+h e l v e t i c a - bold "
25 s e r i f=" yes " f ixed - width=" yes " bold=" yes " i t a l i c=" no "
26 font - s i z e=" 27 .96 " font - c o l o r="#000000" r o t a t i o n="0" ang le="0"
27 x=" 249 . 17 1 " y=" 84 .1455 " base=" 1 10 .064 " width=" 3 1 . 1 1 9 5 "
28 he ight=" 32 .0142 " >Baz</TOKEN>
29 </TEXT>
30 </BLOCK>
31 </PAGE>
32 </DOCUMENT>

Listing 4.2 | An example of the pdf2xml electronic format.

Listing 4.2 shows an example of a pdf2xml XML document. The example document
contains several text blocks. The content of the text block can be accessed on line
(text) and token level. For each element detailed information about its position and
style are available.

hOCR

The hOCR format [28] aims at adapting the HTML/XHTML format together with
CSS. Therefore, HTML and CSS is used for representing typographic markup. Addi-
tional information is embedded using the facilities of standard HTML.

The hOCR format allows all standard HTML and CSS markup elements to provide
a structural description of the document. The authors claim that HTML is —due to
its wide usage— best suited to handle typographic and linguistic phenomena across
a variety of languages [28]. Additionally, the hOCR format provides logical markup
that is able to express logical relations between HTML elements independent of the
actual rendering on the page. This way hOCR, provides constructs to represent blocks
on different levels of detail as well as lines. Additionally, elements for representing
images, formulas, separators, and noise are available.
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1 <?xml v e r s i o n ="1 .0" encoding="UTF-8" ?>
2 <html >
3 <head >
4 < t i t l e >Example</ t i t l e >
5 <meta http - equiv=" content - type " content=" text /html ; c h a r s e t=utf -8 " />
6 </head >
7 <body>
8 < div c l a s s=" ocr_page " t i t l e=" image a l i c e _ 1 . png ; bbox 0 0 2488 3507 " >
9 <h3>

10 <span c l a s s=" oc r_ l ine " t i t l e=" bbox 467 525 1386 588 " >
11 Example
12 </span >
13 </h3>
14 <p c l a s s=" ocr_par " >
15 <span c l a s s=" oc r_ l ine " t i t l e=" bbox 533 888 2077 946 " >
16 Foo , Bar
17 </span >
18 </p>
19 <p c l a s s=" ocr_par " >
20 <span c l a s s=" oc r_ l ine " t i t l e=" bbox 525 2627 2068 2684 " >
21 Baz
22 </span >
23 <span c l a s s=" oc r_ l ine " t i t l e=" bbox 449 2687 2065 2743 " >
24 qux , quux
25 </span >
26 </p>
27 </ div >
28 </body>
29 </html >

Listing 4.3 | An example of the hOCR electronic format.

Listing 4.3 shows an example of a document in hOCR format. The standard
HTML document is enhanced with additional information using class and title at-
tributes. The example document represents a page with three block elements. A
complete description of the hOCR standard is available as living standard3. A variety
of tools for validating and processing documents in hOCR format is freely available4.

METS and ALTO

The Metadata Encoding and Transmission Standard (METS) [48] and the Analyzed
Layout and Text Object (ALTO) are XML-based open standards that are hosted by
the Library of Congress and maintained by respective editorial boards. The basic
standard is ALTO, which aims at representing the content and layout of single pages.
The description contains styles, layout, and block information. In conjunction with
METS, the embedding of different kinds of metadata and the description of the logical
structure becomes possible. However, the two types of information are separated. An
ALTO XML file describes mainly the content of a document while a METS XML file
supplies additional descriptive information.

3http://kba.cloud/hocr-spec/1.2/
4https://github.com/tmbdev/hocr-tools

http://kba.cloud/hocr-spec/1.2/
https://github.com/tmbdev/hocr-tools
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1 <?xml v e r s i o n ="1 .0" encoding="UTF-8" s tanda lone="yes " ?>
2 < a l t o >
3 < S t y l e s >
4 < TextStyle ID=" font0 " FONTFAMILY=" Cour ier New" FONTSIZE="9" >
5 </ S t y l e s >
6 <Layout >
7 <Page ID=" Page1 " PHYSICAL_IMG_NR=" 1 " HEIGHT="6053 " WIDTH=" 4234 " >
8 < PrintSpace HEIGHT=" 5469 " WIDTH="3522 " VPOS="0" HPOS=" -5 " >
9 < I l l u s t r a t i o n ID=" 1_8" HEIGHT=" 344 " WIDTH=" 158 " VPOS="0" HPOS=" -5 " >

10 <Shape >
11 <Polygon POINTS=" 88 ,2 240 ,2 240 ,344 88 ,344 88 ,2 " />
12 </Shape >
13 </ I l l u s t r a t i o n >
14 <TextBlock ID=" 1_9" HEIGHT=" 47 " WIDTH=" 160 " VPOS=" 179 "
15 HPOS=" 3019 " language=" de " STYLEREFS=" font0 " >
16 <Shape >
17 <Polygon POINTS=" 3108 ,228 3268 ,228 3268 ,272 3108 ,272 3108 ,228 " />
18 </Shape >
19 <TextLine HEIGHT=" 37 " WIDTH=" 160 " VPOS=" 186 " HPOS=" 3019 " >
20 < St r i ng STYLE=" bold " WC=" 1 . " CONTENT=" Foo " HEIGHT=" 37 "
21 WIDTH=" 160 " VPOS=" 186 " HPOS=" 3019 " />
22 </ TextLine >
23 </ TextBlock >
24 </ PrintSpace >
25 </Page>
26 </Layout >
27 </ a l t o >

Listing 4.4 | An example of the ALTO electronic format.

The ALTO XML format provides amongst others the following elements: typed blocks
(text, image, ...), lines and words. For textual elements the following features are avail-
able: font, color information, text decorations, height, width, position on the page.
Information about the logical layout must be defined using an accompanying METS
XML document. A METS XML document therefore contains a structmap element
that is able to group and nest references to actual text blocks of an ALTO XML
document.

Listing 4.4 shows an example of an ALTO XML document5. The example doc-
ument contains a graphic and a text block. The content of the text block can be
accessed on line and token (string) level. For each element, detailed information
about its position and style is available.

A variety of software supporting the creation of ALTO and METS files is freely
available6. Additionally XML schema files exist for ALTO XML7 and METS XML8

that allow for the validation of generated files.

PageXML

PageXML [156] is an XML-based document representation format that records image
characteristics, layout structure and page content. Besides its expressiveness it allows
to store intermediate processing results for the different phases of the Document
Layout Analysis task. Hence, intermediate results of the process can be referenced
and evaluated.

5Taken from the official ALTO GitHub repository, available at: https://altoxml.github.io/
6https://github.com/altoxml/documentation/wiki/Software
7http://www.loc.gov/standards/alto/v3/alto-3-1.xsd
8http://www.loc.gov/standards/mets/mets.xsd

https://altoxml.github.io/
https://github.com/altoxml/documentation/wiki/Software
http://www.loc.gov/standards/alto/v3/alto-3-1.xsd
http://www.loc.gov/standards/mets/mets.xsd
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The PageXML format provides the following elements: typed regions (text, im-
age, line drawing, graphic, table, chart, separator, maths, noise and frame), text,
lines, words, and glyphs. For textual elements, the following features are available:
language, script, font, reading direction, text color, background color, text decora-
tions and type. Information about the logical layout can be defined using linear
relations. Additionally, elements can be grouped and nested. PageXML also provides
support for defining layers.

1 <?xml v e r s i o n ="1 .0" encoding="UTF-8" ?>
2 <PcGts>
3 <Metadata >
4 < Creator > Sebas t i an Furth </ Creator >
5 <Created >2018 -02 -22T03 : 1 3 : 3 7 </ Created >
6 <LastChange >2018 -02 -22T03 : 1 3 : 3 7 </LastChange >
7 </Metadata >
8 <Page imageFilename=" SamplePage . png " imageHeight="800 "
9 imageWidth="500 " >

10 <ReadingOrder >
11 <OrderedGroup id=" ro357564684568544579089 " >
12 < RegionRefIndexed reg ionRe f=" r0 " index="0" />
13 < RegionRefIndexed reg ionRe f=" r 1 " index=" 1 " />
14 < RegionRefIndexed reg ionRe f=" r2 " index="2" />
15 </OrderedGroup >
16 </ ReadingOrder >
17 <TextRegion >
18 <TextLine id=" r0 " >
19 <Coords po in t s=" 25 ,30 25 ,55 235 ,55 235 ,30 " />
20 <TextEquiv ><Unicode >Foo</ Unicode ></TextEquiv >
21 </ TextLine >
22 </ TextRegion >
23 <GraphicRegion id=" r2 " >
24 <Coords po in t s=" 430 ,60 430 ,450 765 ,450 765 ,60 " />
25 </ GraphicRegion >
26 <TextRegion >
27 <TextLine id=" r 1 " >
28 <Coords po in t s=" 25 ,310 25 ,430 400 ,430 400 ,310 " />
29 <TextEquiv ><Unicode >Bar</ Unicode ></TextEquiv >
30 </ TextLine >
31 </ TextRegion >
32 </Page>
33 </PcGts>

Listing 4.5 | An example of the PageXML electronic format.

Listing 4.5 shows a PageXML example document9. The example document contains
two text regions and a graphics block. It additionally shows the definition of the
reading order for the defined blocks.

For exporting Document Layout Analysis results to PageXML, libraries for Java
and C++ are freely available10. Additionally, an XML schema11 is available that
allows for the validation of exported documents.

9Adapted from the PageXML example document available under:
http://www.primaresearch.org/schema/PAGE/gts/pagecontent/2017-07-15/Simple%20PAGE%
20XML%20Example.pdf

10http://www.primaresearch.org/tools/PAGELibraries
11http://schema.primaresearch.org/PAGE/gts/pagecontent/2017-07-15/pagecontent.xsd

http://www.primaresearch.org/schema/PAGE/gts/pagecontent/2017-07-15/Simple%20PAGE%20XML%20Example.pdf
http://www.primaresearch.org/schema/PAGE/gts/pagecontent/2017-07-15/Simple%20PAGE%20XML%20Example.pdf
http://www.primaresearch.org/tools/PAGELibraries
http://schema.primaresearch.org/PAGE/gts/pagecontent/2017-07-15/pagecontent.xsd
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4.3.5 Practical Recommendations

Section 4.3.3 explained the theoretical foundations of the 1-STAR semantification
step, which aims on reconstructing basic document structures and giving access to
elements like pages, contiguous blocks of text, and single tokens. Section 4.3.4 pre-
sented some electronic formats that support the representation of the recovery results.
This section gives practical recommendations for 1-STAR semantification tasks.

1. Pre-classify and organize documents:
The theoretical foundations of the Document Layout Analysis Task introduced
in Section 4.3.3 show that vital steps of the analysis process rely on background
knowledge. Hence, the respective approaches yield the best results when they
get tailored/configured appropriately for a set of similar documents. For this
reason, it is highly recommended to pre-classify the document corpus and to
subsequently organize the documents such that a tailored/configured processing
for each sub-corpus becomes possible.

2. Choose appropriate tools:
A variety of tools that support the Document Layout Analysis task or parts
of it exist. However, it is hardly possible to identify a tool that is a general
recommendation. The main reason is that tools have usually been developed
for a certain application scenario. Hence, they normally yield decent results in
the respective scenario while they rather underperform under other conditions.
Therefore, the recommendation is to prefer tools that give different ways of
tailoring, configuration and customizing. Open source utilities that allow for
a knowledge-based tailoring/configuration are usually good candidates for the
shortlist.

3. Check readability of documents:
Practical experience show that although a document has a certain format it
is not necessarily readable. This is especially true for documents in PDF for-
mat. Various versions and profiles exist for the PDF standard that do not have
comparable tool support. Another problem is document encryption that is a
standard feature of PDF documents but not well supported by tools. Hence,
a Document Layout Analysis tool should be able to check the readability of
documents without performing a complete analysis.

4. Carefully consider fail-fast and soft-fail:
Corpora of technical documents often comprise several thousands of files. Hence,
the analysis phase usually takes some time. While processing a big amount of
unstructured data it is obvious that processing can fail for some documents.
It is also possible that the results do not meet the expectations. Therefore,
tools should support soft-fails, i.e. continue the processing of the corpus even
if single documents fail. Additionally, a tool should allow early insights into
single results in order to stop a processing run that obviously does not meet the
expectations.

5. Choose export format:
Plenty of export formats exist and standardization has not become a big topic
in the area of Document Layout Analysis. Hence, tools should be preferred that
support the desired output format. If this is not possible the expressivity of a
tool’s output format should allow for an easy transformation. The consideration
should be primarily based on the subsequent processing, as for example the
following semantification steps need a certain baseline of information.
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4.3.6 Related Work

This chapter presented the 1-STAR semantification process and broke it down to the
Document Layout Analysis problem. Although this chapter focused on processing
steps that are primarily necessary for improving the accessibility of technical docu-
ments, the presented approaches are not limited to this kind of documents. However,
a lot of related approaches exist for similar problems in other domains. Reul et
al. [166] presented LAREX which is an open source tool for Document Layout Anal-
ysis and subsequent region extraction on early printed books. LAREX exports its
results in PageXML format. More general utilities supporting the Document Layout
Analysis task are Tesseract [182], OCRopus [29], SCRIBO [115], and Agora [163].
Additionally, plenty of proprietary tools exist, e.g. Aletheia12, or the products of the
ABBYY family13.

12http://www.primaresearch.org/tools/Aletheia
13https://www.abbyy.com/finereader/

http://www.primaresearch.org/tools/Aletheia
https://www.abbyy.com/finereader/
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4.4 2-STAR14

4.4.1 Information Systems Use Case

1-STAR technical documents can be used to build text-based inverted indexes that are
the fundamental basis for textual information systems. However, 1-STAR documents
do not give access to special micro structures like headlines, headers, or footers. Such
structures, however, can be exploited in order to guide and improve the indexing task,
e.g. by preferring tokens that appear in such special structures. The availability of
such micro structures also enable targeted information extraction. Observations show,
that in technical documents structures like headlines, image captions or image legends
contain valuable knowledge that can be exploited for the population of technical
ontologies. Typical examples are ontologies that describe the structural composition
of machines in forms of assemblies and components.

4.4.2 Problem Description

The 5-STAR maturity schema requires 2-STAR technical documents to provide access
to basic document structures like paragraphs, headlines, lists, or tables. Section 3.3.1
introduced these structures as micro structures. The result of the 1-STAR semantifi-
cation process is a set of unordered and untyped micro structures. The recovered
micro structures correspond to headlines on different levels, paragraphs, tables, and
other homogeneous blocks of text. However, the accessibility of the recovered struc-
tures is not yet optimal as types and reading order remain unknown. Therefore,
approaches from Logical Document Structure Recovery and Analysis (also Logical
Layout Analysis) aim on typing micro structures (see Figure 4.6) and determining
logical relationships among them. The resulting information can then be exploited
for further semantification steps or other application scenarios like reconstructing the
originally intended reading order. The actual relationships between blocks usually
depend on the underlying document model. The structural elements of the TEKNO
ontology (see Section 3.3.1) describe such a document model by providing classes for
the representation of single structures and properties for the interconnection of them.

The recovery of the logical structures of documents is often a rather knowledge-
intensive task. Due to varying document layouts, the involvement of domain- or
project-specific background knowledge usually increases results significantly. Pre-
classifying documents and the subsequent processing with specialized models usually
further increase the result quality [35]. However, due to the knowledge-intensive
character of Logical Document Structure Recovery and Analysis, generally applica-
ble approaches are rather rare [35]. Cattoni et al. [35] surveyed approaches for the
Logical Document Structure Recovery and Analysis problem. The underlying meth-
ods comprise different kinds of knowledge-based systems ranging from classical Expert
Systems to various types of Machine Learning approaches. Cattoni et al. [35] report
that they observe the best results on restricted domains. Typical examples for such
restricted domains are scientific publications or technical documents where document
layouts are usually constant for certain periods of time.

Logical Document Structure Recovery and Analysis is a well-established research
topic in the field of scientific literature analysis. It is mainly concerned with the

14The contents of this section and its subsections are significantly extended and revised versions
of the following published article: Sebastian Furth, Maximilian Schirm, Volker Belli, and Joachim
Baumeister. “TEKNO: Preparing Legacy Technical Documents for Semantic Information Systems.”
Natural Language Processing and Information Systems: 22nd International Conference on Applica-
tions of Natural Language to Information Systems, NLDB 2017.
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detection of hierarchies of logical components, for instance titles, authors, affiliations,
abstracts, or sections; see Mao et al. [127]. Applications can be found in the area
of bioinformatics, where scientific articles are analyzed in order to index them in
meta-data based biomedical information systems like PubMed [131]. In the context
of semantic information systems, document structure recovery is a major topic as it
builds the fundamental basis for the integration of legacy data in these systems. The
integration of such legacy data requires the transformation of existing documents to a
semantic representation of modular information units with clearly defined meanings.
This can only be realized when the underlying documents grant access to required
structures. Therefore, a document’s logical structure needs to be analyzed and re-
covered. The resulting information pertaining the document structures, e.g. sections,
subsections, tables, figures etc. can then be exploited to feed semantic information
systems with corresponding ontological information, cf. Document Components On-
tology [46, 78], and Core Documentation Entities [64].

In the context of technical documentation, Logical Document Structure Recovery
and Analysis is a topic when the source data of documents is either not available or
exists in a highly unstructured or proprietary format. Logical Document Structure
Recovery and Analysis, in this case, subsequently follows the 1-STAR semantification
step described in Section 4.3 and aims on typing and ordering already recovered struc-
tures. In literature, Logical Document Structure Recovery and Analysis is sometimes
subsumed by the Document Layout Analysis task (see Section 4.3).

This section presents a knowledge-based approach for Logical Document Structure
Recovery and Analysis that especially considers the characteristics of technical docu-
ments. The remainder of this section is structured as follows: Section 4.4.3 presents
the methodology of a novel knowledge-based Logical Document Structure Recovery
and Analysis approach. Section 4.4.4 presents a tool for the targeted and interactive
acquisition of the required formal knowledge. Section 4.4.5 reports on some practical
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aspects regarding the knowledge acquisition in real-world projects. In Section 4.4.6
resulting electronic formats are discussed. Section 4.4.7 gives practical recommen-
dations for applying Logical Document Structure Recovery to technical documents.
Section 4.4.8 presents related work.

4.4.3 Logical Document Structure Recovery and Analysis

Most of the work on document structure recovery concentrates on scientific articles.
While the basic methodology of (1) identifying contiguous text blocks, (2) classifying
these text blocks, and (3) post-processing these classified text blocks is similar, the
presented approach introduces novel aspects that especially improve the recovery of
structures in technical documents. The problem of document structure recovery is
defined as follows:

Definition 4.4.1 (Logical Document Structure Recovery). Given a document D,
first find contiguous blocks of text b, such that document D = ∪ b. Then, for each
contiguous block of text b ∈ D find a logical class C that correctly represents its
semantics.

Similar to scientific articles, technical documentation usually follows special (cor-
porate) style guides. Hence, the basic formatting of technical documentation is as-
sumed to be constant for longer periods of time, i.e., larger portions of a legacy
document corpus. In contrast to scholarly works, however, the number of classifica-
tion targets, i.e., structures that shall be recovered, is much higher. For a regular
scientific paper the number of structures is assumed to be around 40 [122]; a typical
technical document can consists of more than 400 structures [194]. Moreover, se-
mantically different structures in technical documents are with respect to formatting
much more similar among themselves as it is the case in scientific articles. A typical
example for this is the differentiation between regular ordered lists and descriptions
of repair procedures with numbered steps. Due to the usually bigger size of techni-
cal documents, formatting must also be assumed to be prone to errors and therefore
inconsistent. Another shortcoming of existing solutions is that they can be hardly
applied by domain experts/technical writers, i.e., the people that know best about
the logical structure of technical documents. These people are usually unfamiliar with
the underlying knowledge representations like business rules or the correct configura-
tion of machine learning algorithms and the definition of the required training data.
Thus, the application of existing approaches for structure recovery is in most cases
not practical for technical documents. Therefore, the presented approach adapts the
idea of exploiting formatting information but operates on a knowledge representa-
tion that (a) appears more natural for domain experts and (b) is more flexible with
respect to inconsistencies and similarities of and between document structures, see
Section 4.4.3.

Figure 4.7 gives an overview of the complete process that is divided in a training
phase and a recovery phase. The training phase starts with a sampling step that
chooses documents from the corpus that are used during the training phase. A mi-
cro structure detection is performed on the sampled documents to identify blocks, cf.
Section 4.3. Then, a feature selection step generates classifier information, i.e., an
alignment of block features to classification targets (document components described
in an ontology). After the training phase, the generated classifier gets applied to the
complete corpus. The classification itself is based on a standard problem-solving algo-
rithm and is accompanied by an ontology-based optimization step, see Section 4.4.3.
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Figure 4.7 | Overview of the recovery and classification phases.

Knowledge Representation

The Logical Document Structure Recovery and Analysis approach presented in this
section heavily relies on background knowledge. First, this is a document structure
ontology (see Section 4.4.3) that provides the classes that shall be used to type
micro structures. This ontology usually also models constraints regarding the usage
of classes. Additionally, a knowledge base is employed that consists of set-covering
models (see Section 4.4.3) providing the classification knowledge that is required to
actually assign type information to specific micro structures.

Document Structure Ontology

The goal of the Logical Document Structure Recovery and Analysis approach pre-
sented in this section is to correctly classify a set of unclassified micro structures.
The required classes are externally provided by a document structure ontology. In
the context of technical documents, such a document structure ontology usually cor-
responds to a formal information model for technical documentation, cf. Section 3.4.
An respective information model must at least describe structural components that
might occur in technical documents and relations that are possible between these
structures. Document structures that shall be recognized during the recovery process
should be available as classes in the information model. These classes are instantiated
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Figure 4.8 | Document Structure Ontology according to the DocBook
information model.
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for concrete text micro structures after the classification process. For the represen-
tation of relations between micro structures respective properties must be provided
by the ontology. Figure 4.8 shows an exemplary ontology structure with classes and
relations derived from the DocBook information model [194]. The example illustrates
that a technical document (book) consists of sections that contain structures like
paragraphs, procedures etc. that again contain structures like steps.

Excursus: Set-Covering Models

In the training phase of the presented approach for Logical Document Structure Re-
covery and Analysis, classification knowledge for micro structures is acquired. In
order to formally represent the gathered syntactic knowledge about document struc-
tures the presented approach relies on Set-Covering Models [165, 11]. In the following
a brief introduction of the key concepts of Set-Covering Models is given, for more
details please refer to the the original works.

In contrast to rules, Set-Covering Models allow for an independent modeling and
the inherent support of uncertainty. This is especially a benefit when working with
(technical) documents that are inconsistent with respect to formatting. While the
usage of rules would require to model all possible inconsistencies, set-covering models
can inherently handle such data-side issues.

The key idea of set-covering models is the definition of set-covering relations of
the following form:

Definition 4.4.2. If a class is assigned, then the parameters (attributes) A1, ..., An

are usually observed with corresponding values v1, ..., vn.

A set covering relation is formally defined as r = C → A : v where A : v denotes
a feature and C a target class. A target class is derived from an ontology describing
document structures (see Section 4.4.3). A single set-covering relation expresses that
a class covers a feature. Figure 4.9 shows a set-covering model R with five set-covering
relations for the two classes C1 and C2. An edge from a class C to a feature A : v
with the label r indicates a set-covering relation r = C → A : v.

The definitions given in the following are required throughout the remainder of this
section. We define ΩC as the universal set of all classes. The universe of all possible
parameters (attributes) is defined as set ΩA where each parameter A has a range of
values dom(A). The universe of all possible values is defined by ΩV = ∪A∈ΩA

dom(A).
From the universe of all parameters and all values we define the set of all features
as ΩF = {A : v |A ∈ ΩA, v ∈ dom(A)}. Then ΩR denotes the universal set of all
set-covering relations. A set-covering model is then defined as R ⊆ ΩR.

C1 C2

A1:v1 A2:v2 A3:v3 A4:v4

r1 r2 r3 r4 r5

Figure 4.9 | Set-Covering model for the classification of the classes
C1 and C2, using the parameters A1, A2, A3 and A4.

An observation is defined as a subset FO ⊂ ΩF of all possible features. A subset
H ⊆ ΩC of classes is defined as hypothesis. A hypothesis H = {C1, ..., Cn} can be
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handled as a conjunction of classes C1 ∧ ...∧Cn which shall explain the given obser-
vation FO. During the classification the goal is to find the best matching hypothesis
H that explains all observed features. A hypothesis H explains all observed features,
if all features are covered by at least one class C ∈ H.

Quality measures are employed for the evaluation of a hypothesis. These quality
measures are functions that compute the difference between the observed features FO
and expected features FH = ∪C∈HFC , where FC corresponds to the features of class
C. Typical quality functions are support and confidence that loosely correspond to
the well-known concepts of recall and precision [158]. The confidence expresses how
many of the observed features FO are contained in the set of expected features FH.
The support in contrast expresses how many of the expected features FH are actually
observed.

Textual Parameters for Set-Covering Models

In the following a specific implementation of set-covering models for the classification
of micro structures is described. The universal set of all classes ΩC corresponds to the
set of structures that shall be recovered from a legacy document, e.g. section headers
on different levels, paragraphs, warnings and notes, tables, ordered and unordered
lists, figures, procedures including steps, and many more.

The universes of all possible parameters ΩA and associated values ΩV correspond
to features of micro structures and their value ranges respectively. These features
can consider different aspects of the structure, e.g. alignment (left, middle, right)
and position in page (top, center, and bottom), font and formatting information
(font name, bold, italics etc.), statistical features (density, frequencies etc.), page
information (page number) and the text itself.

In this context, a set-covering relation is defined as a relation between a micro
structure (e.g. section header) and a textual feature (e.g. alignment) including its
corresponding value (e.g. left). For a micro structure typically multiple set-covering
relations exist. Figure 4.10 shows a (simplified) example of a model that contains
set-covering relations for typical headings on level one and level two.

Heading 1 Heading 2

Font-Size:14 Bold:true Alignment:left Italics:true

r1 r2 r3 r4 r5

Figure 4.10 | Set-covering model for the classification of the classes
Heading 1 and Heading 2, using textual parameters.

Listing 4.6 is an example of the set-covering relations in KnowWE [10] markup.
The grouped set-covering relations for a single document structure look similar to
the well-known Cascading Style Sheets [119] that are used for styling HTML-based
web pages. Hence, in the following these relations are referred to as Classifying Style
Sheets. While the fundamental idea of declaratively describing the style of a piece of
text is identical, the usage is reversed. Cascading Style Sheets get applied to elements
that have been marked with the corresponding class name, i.e., the class name is
matched. In contrast, Classifying Style Sheets require their set-covering relations to
be covered from a micro structure.
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%%Cover ingL i s t
Heading 1 {

Alignment = l e f t ,
Bold = true ,
Font - S i z e = 14

}
@minSupport : 0 .5

%

%%Cover ingL i s t
Heading 2 {

Alignment = l e f t [ 1 . 0 ] ,
I t a l i c s = true [ 1 . 0 ]

}
@minSupport : 0 .5

%

Listing 4.6 | Set Covering models for Heading 1 and Heading 2.

Classification

Set-Covering-based Classification

Once the Classifying Style Sheets have been created, the subsequent classification
of complete documents using set-covering models is rather simple: Given a set of
observed features, i.e., parameter-value pairs, a hypothesize-and-test strategy [174]
is employed. A hypothesize-and-test strategy first picks a hypothesis H (i.e. set of
classes) and then tests the expected features of the hypothesis against the observed
features. A quality measure expresses the covering degree of the hypothesis regarding
the observed features in the testing step. Hypotheses are generated and evaluated
iteratively until a satisfying hypothesis has been found or all hypotheses have been
tested.

Accordingly, text blocks representing micro structures are classified as follows:
First the textual parameters and values (observed features) are extracted from an
unclassified text block. Then, a hypothesis is generated, i.e., a set of possibly matching
classes. Given a set-covering model the covering degree between the observed features
from the text block and the hypothesis is computed. Hypotheses with a covering
degree exceeding a certain threshold are assigned as possible classes to the text block,
i.e., in this phase a text block might have multiple classes assigned. This ensures a
high recall.

In the following we formally define the classification of micro structures using
set-covering models. A single class assignment for an individual micro structure is
defined as triple t = {b,H, q} with the micro structure in focus b, the corresponding
hypothesis H and a quality score q. For each individual micro structure multiple class
assignments can exist, they are grouped in a set gb = {t1, ..., tn}. The grouped class
assignments for all micro structures define the classification result Γ = {gb1 , ..., gbm}.

Class Disambiguation

The previous section described the basic classification step for micro structures using
set-covering models. The resulting classification Γ is assumed to have a high recall but
might contain multiple class assignments for single micro structures, due to the uncer-
tainty considerations that where integrated in the underlying set-covering model. The
goal of the subsequent classification step is the disambiguation of these assignments,
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i.e., improving the precision by choosing exactly one class for each structure. How-
ever, the computed confidence values that express how well the corresponding classes
match certain micro structures are not sufficient. Choosing the class with the highest
confidence value for each text block might lead to an overall classification result with
local optima and probable violations regarding document structure constraints (see
Section 4.4.3).

Considering the ontology describing relations and constraints between different
document structures (see Section 4.4.3) the intermediate classification result Γ is
post-processed in order to disambiguate class assignments. A globally optimized
classification result Γ∗ gets computed. This is a classification result Γ

′ with a single
class assignment t for each micro structure b. The globally optimized classification
result Γ∗ is computed by solving the following equation:

Γ∗ = argmax Γ
′ ∑

gb

[ ϕ(t) + θ(Γ
′
) ]

where ϕ(·) denotes a local optimization function for a class assignment of a text
block and the function θ(·) ensures that the document structure constraints are not
violated for a classification result Γ

′ . The functions ϕ(·) and θ(·) can be freely defined.
Base line implementations might return the classification confidence for function ϕ(·)
and compute a bonus or penalty on the basis of the information contained in the
document structure ontology for function θ(·).

Reading Order Determination

The previous sections described the classification of micro structures. Applying the
described approach to a technical document yields a sequence of typed micro struc-
tures. However, the correct reading order remains unclear. This work concentrates
on the semantification of technical documents for the subsequent use in semantic in-
formation systems. The consuming information systems usually exploit the added
semantics at retrieval time but present the original documents (e.g. scanned images
or documents in PDF format) to the user. Thus, reading order determination is
considered a negligible aspect in this work.

Nevertheless, the type information added to micro structures can be exploited to
support the determination of the originally intended reading order. Therefore, the un-
derlying document model must define reading order constraints for certain types, e.g.,
a “step” structure must either follow a structure representing a “Procedure heading”
or another “step”. These constraints can then be used together with geometrical in-
formation to pair-wise determine reading orders among micro structures. Finally, the
pair-wise reading orderings can be extended to a total order by employing topological
sorting algorithms.

Reading order determination using topological sorting algorithms has been de-
scribed multiple times in literature. For example, Breuel [29, 27] described the read-
ing order determination as follows:

1. Find tall whitespace rectangles and evaluate them as candidates for gutters,
column separators, etc.

2. Find text lines that respect the columnar structure of the document.

3. Identify vertical layout structure (titles, headings, paragraphs) based on the
relationship (indentation, size, spacing, etc.) and content (font-size and style
etc.) of adjacent text lines
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4. Determine reading order using both geometric and linguistic information.

With respect to the 5-STAR semantification approach for technical documents de-
scribed in this work, steps (1) and (2) are covered by the 1-STAR semantification.
Step (3) could be supported by the type information recovered by the 2-STAR micro
structure classification described in the previous sections.

4.4.4 Interactive Knowledge Acquisition

Although Classifying Style Sheets are assumed to have a catchy knowledge repre-
sentation that appears more natural to humans than rules, their creation remains a
cumbersome task when operating without tool support. Especially the proprietary
and difficult to access PDF format makes it hard to extract the information about pos-
sible parameters ΩA and corresponding values ΩV from a document. Therefore, the
visual knowledge acquisition tool “TEKNO Studio” has been proposed, that supports
the interactive development of Classifying Style Sheets.

TEKNO Studio (see Figure 4.11) consists of three fundamental views. A sidebar
(4.11-1) shows thumbnails of all documents within the active corpus. A click on a
thumbnail opens the selected document for knowledge acquisition activities in the
main view (4.11-2). The main view allows for the navigation in the document and
renders the respective pages. Additionally, for each page the detected micro structures
are indicated with yellow rectangles. The model view (4.11-3) allows for the creation,
modification, and deletion of Classifying Style Sheets and associated set-covering
relations. Therefore, the tool supports the user in assigning parameters and values
from manually selected micro structures (possibly from different pages or documents)
in the main view to Classifying Style Sheets in the model view. Target classes of
Classifying Style Sheets shall correspond to the classes of the underlying document
structure ontology. That way, the tool allows the user to interactively choose one of
these classes that get loaded automatically from the underlying ontology.

Micro structures selected by the user contain possibly different parameters or
parameter values. The condensing of this information into a common Classifying
Style Sheet requires an appropriate strategy. In the following this strategy is referred
to as function λ = FO → R that transforms a set of observed features FO to a
set-covering model R .

Trivial implementations of the function λ might simply consider the union R+
O or

intersection R−
O of all features derived from the selected micro structures. However,

choosing the intersection of all features usually results in a less specific set-covering
model that might introduce unintended inaccuracy as possibly other (semantically dif-
ferent) micro structures also match the narrowed set of features. Choosing the union
in contrast makes the model more rigid, because an observed micro structure has to
fulfill more expected features. The optimal model is somewhere between the intersect-
ing and the union sets. Thus, a more sophisticated implementation of the function
λ has been proposed that considers the quality functions introduced in Section 4.4.3.
For the condensing of the micro structures features in a common Classifying Style
Sheet a minimum support is defined that the resulting model has to fulfill with respect
to the selected text blocks. Then the function λ computes a model R−

O ⊆ R ⊆ R+
O

with

R = {Ri|∄j confidence(Rj) ≥ confidence(Ri) ∧ support(Ri) ≥ minSupport}

where Ri corresponds to a concrete model where the features observed from the
selected micro structures have been condensed.
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Figure 4.11 | TEKNO Studio: Tool support for interactive knowledge
acquisition.

Please note that the function λ introduces a user-controlled level of uncertainty.
The reason for intentionally introducing and allowing this kind of uncertainty is that
in practice corporate style guides are not always obeyed during the authoring of
technical documents, i.e., micro structures with the same semantics do not necessarily
have the exact same formatting, e.g. slightly varying font-faces or colors.

4.4.5 Knowledge Acquisition in Practice

The interactive knowledge acquisition tool “TEKNO Studio” that was described in
the previous section supports the creation of classification knowledge for micro struc-
tures. This section states some additional aspects that are relevant for acquiring
classification knowledge in real-world projects.

TEKNO Studio provides the following predefined classes that are considered ap-
plicable to the majority of technical documents: Heading 1, Heading 2, Heading 3,
Heading 4, Title, Table of Contents, Warning, Note, Caution, Caption, Figure, Text,
Procedure, and Step. This set of classes can be extended by the user to meet project-
specific requirements. Alternatively, the required classes can be read directly from an
ontology containing a document model vocabulary.

Although TEKNO Studio provides a set of classes, there is no corresponding pre-
defined classification knowledge. As stated in the previous sections, the respective
classification knowledge mainly considers formatting and layout information. Expe-
riences gained in real-world projects show that the respective information is very
heterogeneous across corpora of technical documents. Even within the corpus of a
single company usually different epochs of documents exist (cf. Section 3.2). Thus,
the predefinition of classification knowledge is in most cases not reasonable. Instead,
the respective classification knowledge needs to be acquired for each document corpus
using the described functionality of TEKNO Studio. Therefore, a document corpus
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should be partitioned, such that each resulting partition represents a collection of
documents that share particular layouts and formatting styles. Then, classification
knowledge needs to be defined for each partition using representative samples. The
acquired classification knowledge can then be used to classify all micro blocks of
documents in the corpus.

4.4.6 Recommended Formats

In general, the formats recommended for 1-STAR technical documents also apply to
2-STAR data. The only requirement regarding the data format is that a type can
be explicitly defined. This requirement is especially fulfilled on the presented for-
mats ALTO (practically limited to composed blocks), METS (through the embedded
usage of Dublin Core’s dc:type element), lapft-text (type attribute), hOCR (class
attribute), and PageXML (type attribute).

Another, more recommended way is to represent the recovered data according to
an information model. The 2-STAR logical document layout analysis is in huge parts
a specialized classification task for micro structures. The micro structure classification
works upon and exploits class information from an information model. Hence, at the
end of the 2-STAR semantification step, an ontology can be populated with micro
structures that are represented as instances of their assigned class assignments.

4.4.7 Practical Recommendations

Section 4.4.3 explained the theoretical foundations of the 2-STAR semantification
step, which aims on classifying micro structures which in turn gives access to elements
like headlines, paragraphs, lists or tables. Section 4.4.6 gave some information about
electronic formats that support the representation of the recovery results. This section
gives practical recommendations for 2-STAR semantification tasks.

1. Choose representative samples:
The described classification is based on set-covering models that are assembled
using an interactive knowledge acquisition tool. Although set-covering models
are a knowledge representation that inherently support uncertainty it is still
important to build up the model from representative examples. Hence, the
choice of a representative sample of the complete corpus is critical.

2. Avoid overfitting set-covering relations:
For each class one or more set-covering models are assembled. These set-
covering models consist of single set-covering relations that correspond to tex-
tual features of the micro structures considered for creation. In general, it is
good practice to not create set-covering models from single micro structure sam-
ples. Multiple micro structures representing the same class should be selected
from different pages and/or documents.

3. Consider regular expressions:
Depending on the underlying data a plethora of features can be considered for
the creation of set-covering relations. Most of these features consider formatting.
However, manually defining regular expressions often boosts the performance
of the set-covering model based classification.

4. Avoid regression of set-covering models:
The continuous addition of set-covering models might lead to a decreasing clas-
sification performance. In order to avoid the slowly regression of the knowledge
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base an automatic testing environment should be defined that ensures a constant
performance for already defined classification knowledge. The development of
knowledge-based systems with continuous integration has been described by
Baumeister et al. [9].

4.4.8 Related Work

Logical document structure recovery and analysis has a long research history with
a perceivable focus on recovering structures in scholarly texts. Multiple prior works
surveyed the topic, for an example see Mao et al. [127]. Therefore, this section fo-
cuses on works that rely on state-of-the-art methods and are closely related to the
presented approach. PDFX [45] uses a two step approach in order to identify 18
typical logical elements in scientific articles. The first step aims on constructing a
geometrical model of an article’s contents. A subsequent step uses discriminative
(statistical) features to identify the different logical units in a predefined prioritised
manner. LAPDFText [162] supports the automated decomposition and conversion of
PDF files of research texts into a simple text format. The approach relies on three
consecutive steps, where text blocks are identified, classified, and finally composed
for text extraction. The classification step is rule-based [7, 33] and thus adaptable
to new styles and formats of scientific articles. SectLabel [122] is another tool for
the structure recovery of scientific articles. In contrast to the knowledge-based tools
PDFX and LAPDFText, it uses conditional random fields [113] that are trained with
hand-crafted sample data. A general purpose tool for rule-based pattern recognition
is UIMA Ruta [106]. The tool consists of an analysis engine that interprets and
executes a rule-based scripting language and an authoring tool that supports the
development of corresponding rules. In the fields of technical documentation, Oev-
ermann [147] claims to reconstruct semantic structures in technical documentation
with vector space classification. However, the text segmentation to micro structures
seems to be not very sophisticated and rather inaccurate. Additionally, the blocks
are not classified according to a structural but to a rhetorical class like maintenance,
transport, or safety.
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4.5 3-STAR
This section describes the third semantification step. From the micro structures
that have been recovered in the 1-STAR and 2-STAR semantification steps macro
structures are deducted. This enables the decomposition of large technical documents
into smaller, self-contained pieces of information, which is an essential step towards
accessible and linkable technical documentation.

4.5.1 Information Systems Use Case

In recent years mobile information systems realized as thin-clients on different devices
became popular. The main difference to classical information systems is that they are
designed for mobile usage. This includes the dynamic retrieval of relevant resources
from a central server. The transfer of a complete technical document from the cen-
tral server to a mobile client is usually not reasonable as the file sizes of technical
documents are often hundreds of megabytes or even gigabytes and transfer rates are
usually limited. In order to provide quick, dynamic, and modular access to relevant
resources, technical documents need to be decomposed into smaller, more fine-grained
pieces. However, 1-STAR or 2-STAR technical documents are not yet decomposed.

4.5.2 Problem Description

The 2-STAR semantification step yields typed micro structures. The goal of the 3-
STAR semantification is the subsequent recovery of a document’s macro structure.
Original technical documents, especially in unstructured formats like PDF, shall be
transitioned into self-contained, modular pieces of information. These self-contained
and modular pieces of information are referred to as information units in the following.

Definition 4.5.1 (Information Unit). Let K be the complete corpus of technical
documents, Di ∈ C. Let I be the universal set of all information units Di,j ∈ I.
Then a sequence of information units Di,j ∈ Di forms a document, such that a
function segment : D → 2I can split the document Di into information units Di,j .

Additionally, information units can reference equivalent content in different lan-
guages. This is especially important for technical documents, as they get usually
translated to a plethora of languages. The ability of information units to reference
equivalent content in different languages facilitates the monolingual application of
subsequent text analytics steps as results can usually be transferred to all languages.
This means, when equal modules in different languages are aligned to an information
unit it is usually sufficient to perform all analytics tasks like information typing or
semantic annotation for only one of the respective languages. In order to yield (mul-
tilingual) information units, a series of semantification steps is necessary. Hence, this
chapter focuses on the presentation of respective semantification steps:

1. Macro Structure Recovery
Complete documents with already recovered typed micro structures need to be
transformed into a macro structure hierarchy. Depending on the source format,
this is a major task. While it is relatively easy for most structured XML-based
formats, it is a quite challenging task for closed formats like PDF. An approach
for splitting technical documents to a macro structure hierarchy is described in
Section 4.5.3.



4.5. 3-STAR 109

2. Deduplication
Especially in technical documents that were originally issued as printed versions
duplicate content is a major challenge. While duplicate content might be helpful
in printed books it is usually unnecessary and rather disturbing in dynamic tech-
nical documentation. Section 4.5.4 describes approaches for detecting duplicate
content in technical documents.

3. Alignment
The recovery of macro structures must be performed for each language vari-
ant of a document. Reasons include that some languages are more expressive
than others and thus lead to different amounts of words and pages per macro
structure. The macro structures recovered for each language variant of a docu-
ment subsequently need to be aligned. Section 4.5.5 describes approaches that
promise reasonable applicability for technical documents.

4.5.3 Macro Structure Recovery

The 2-STAR semantification step yields typed micro structures like headlines, para-
graphs, footers or headers. The basic task in the 3-STAR semantification step is the
recovery of a documents’ macro structures. The Macro Structure Recovery approach
presented in this section transforms an original document Di into information units
Di,j . Technical documents are often structured hierarchically, e.g., a section describ-
ing the replacement of a component typically has subsections for the disassembly
step and the assembly step. Hence, a complete document shall not be decomposed
sequentially into a series of macro structures but into a complete hierarchy of macro
structures on different levels. Such macro structures usually correspond to chapters,
sections and subsections in the original documents.

This section describes a Macro Structure Recovery approach that works upon
the typed micro structures recovered in the 2-STAR semantification step. The most
relevant micro structures for this processing step are those of type headline. Headlines
mark start, end, and level of higher level macro structures like chapters, sections or
subsections in complete documents (see Figure 4.12).

Algorithm 1 shows a Macro Structure Recovery algorithm that takes as input a
document with recovered micro structures and determines a macro structure hier-
archy. The algorithm works top-down starting with a macro structure that repre-
sents the complete document. The core of the algorithm is the recursive function
createMacroStructures. This function takes a broader macro structure (parent) and
a level information as arguments.

The level information represents the deepness of the macro structures to be re-
covered and is initially set to zero for the root macro structure. Then, it requests
all micro structures representing headlines on the current level that are covered by
the parent macro structure. For the first recursion this means that the top level
headlines of the complete document are used. This usually corresponds to the head-
lines of the main chapters of the document. Now, given an ordered list of all these
micro structures (headlines) the algorithm actually creates macro structures. This
is done by first initializing a new macro structure with the basic information of the
corresponding headline (start, level). As the beginning of a new macro structures
inherently marks the end of the previous structure on this level this information is
used to close the previously created structure. The very last structure on the level
needs to be closed using the information of the parent macro structure, i.e., the end
of the parent structures is assumed to be the end of the last child macro structure.
The closing of created macro structures might consider header and footer information
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Figure 4.12 | Macro Structure Recovery from Micro Structures.

to adjust the actual end of the chapter by excluding them if they appear at the very
end of a macro structure. The recursion ends when no more micro structures on the
next level exist for a macro structure.

4.5.4 Deduplication

Section 4.5.3 described an algorithm that is able to recover a document’s macro struc-
ture by exploiting micro structure information. Thus, the basic requirement of the
third maturity level to provide access to macro structures have already been fulfilled.
However, this maturity level also requires macro structures to be available as dedu-
plicated modules in order to provide a single point of truth for a specific subject.
Algorithm 1 is able to perfectly recover a documents macro structure. However, the
resulting macro structure hierarchy —depending on the original document— might
still contain duplicate modules. Hence, this section presents different approaches to
detect duplicate content among the generated macro structures. The main challenge
is that the same content might occur redundantly but not identically at different
places. Essentially, this is a macro structure similarity problem. Considering the
characteristics of technical documents and the already available accessibility different
approaches can be applied to measure the similarity between macro structures. Sec-
tion 4.5.4 briefly introduces approaches for measuring the similarity between macro
structures’ texts. The approach presented in Section 4.5.4 takes the special charac-
teristics of technical documentation into account to determine the similarity between
macro structures. Section 4.5.4 presents a similarity approach that exploits types
and order of contained micro structures for the similarity measurement.
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Algorithm 1 Recursive algorithm for Macro Structure Recovery.
1: // Start recovery: Create root macro structure for complete document
2: root←MacroStructure.new
3: root.begin← document.begin
4: root.end← document.end
5: root.level← 0
6: createMacroStructures(root, 0)
7:
8: // Recursively create macro structures on different levels
9: function createMacroStructures(parent : MacroStructure, level : int)

10: headlines← getCoveredMicroStructures(parent, HEADLINE, level)
11: while hasNext(headlines) do
12: headline← next(headlines)
13: current← createMacroStructure(headline)
14: if previous is not null then
15: previous.end← current.begin− 1
16: createMacroStructures(previous, level + 1)
17: end if
18: if not hasNext(headlines) then
19: current.end← parent.end
20: createMacroStructures(current, level + 1)
21: end if
22: previous← current
23: end while
24: end function
25:
26: // Actually create a single structure
27: function createMacroStructure(headline : MicroStructure)
28: structure←MacroStructure.new
29: structure.begin← headline.begin
30: structure.level← headline.level
31: return structure
32: end function

Text Similarity

The most basic way to compare macro structures regarding their similarity is the
consideration of its texts. Redundant content is usually introduced in different ways:

1. Inclusion:
Especially newer technical documents were originally created using an enterprise
content management system (CMS). A key feature of such systems usually is
content reuse. Hence, recurrent content is often outsourced to respective text
building blocks. Typical examples for such contents are environment notices.
As the respective text building blocks are normally included automatically at
export time this kind of redundancy can usually be detected using simple string
matching techniques.

2. Copy & Paste:
The most common source of redundant content is copy and paste. In the context
of technical documents this especially happens when a basic description of a
section appearing early in the document gets detailed in a later section. This is
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often the case for technical descriptions and operating instructions. While users
are usually satisfied with simple and basic instructions, maintenance personnel
require a more in-depth description of components and functions. This kind of
redundancy is often accompanied by small changes to the copied text and thus
requires a fuzzy comparison.

The text-based similarity of two macro structures can be measured using distance
functions. They usually express how many edit operations are necessary to transform
one text into another. As edit operations typically the insertion, deletion and substi-
tution of single characters get considered. The most recognized distance function for
texts is the Damerau-Levenshtein distance [49]. As the distance is usually expressed
as an integer value, different approaches for the conversion to a similarity value exist.
A popular approach is to compute a normalized distance, i.e. to divide the distance
by the average length of the texts of the considered macro structure sj,k and sl,m:

similarity(sj,k, sl,m) =
distance(sj,k, sl,m)

average( len(sj,k) , len(sl,m ))
.

Determining macro structure similarity based on the corresponding texts usually
works well for texts in the same language that provide a decent level of similarity.
However, this basic approach can not handle higher amounts of textual differences,
which might be introduced by using different technical terms.

Similarity based on Special Characteristics

The characteristics of technical documents allow for another way of determining the
similarity between macro structures, as technical documents contain a lot of infor-
mation pieces that are almost independent from the surrounding content. These
information pieces typically appear on the nano level. Examples comprise numbers
accompanied by units (liter, kilograms, tones etc.) and images. Such nano structures
can usually easily be isolated by employing pattern recognition techniques [106, 96]
that normally work well on text that has been prepared using basic Natural Lan-
guage Processing techniques like tokenization [132], part-of-speech tagging [32, 164],
and shallow parsing [178].

Images usually get transformed to feature vectors. These feature vectors are
based on a specific image descriptor. A basic example of an image descriptor is the
color histogram method [133], i.e., the color of each pixel of an image is used to fill
a histogram. This way, rotations and scalings that might have applied to similar
images get ignored during the estimation of the similarity. More elaborated image
descriptors determine other image features [37, 196, 123]. Rui et al. [169] surveyed
different image descriptors with respect to their usage in image retrieval applications,
which mainly requires a good similarity estimation.

Finally, when relevant nano structures have been extracted and a vector repre-
sentation for images is available the similarity can be determined. However, the
computation of the similarity must be separated for the text-based elements and the
images. An established way to measure the similarity between two sets of textual el-
ements is to first find a reasonable vector representation. Popular examples for such
vector representations comprise bag-of-words, the transformation to TF-IDF [172] val-
ues or the usage of word embeddings [137]. When the text-based elements have been
transformed to the desired vector representation the respective vectors can be com-
pared using established similarity metrics. Huang [94] surveyed different similarity
measures for texts. A popular similarity measure is the cosine similarity:
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simcos(sj,k, sl,m) =
vector(sj,k) · vector(sl,m)

|vector(sj,k)| · |vector(sl,m)|
,

where the function vector transforms the macro structures sj,k and sl,m to vector
representations. For measuring the similarity based on the contained images a basic
approach is to determine the number of similar images in both elements:

simimg,α(sj,k, sl,m) =
|{x|x ∈ images(sj,k) ∧ y ∈ images(sl,m) ∧ sim(x, y) ≥ α}|

|images(sj,k)|+ |images(sl,m)|
,

where the function images extracts the set of images of the macro structures sj,k and
sl,m respectively in a vector representation. Images can be considered to be similar
if the difference between their respective vector representations according to function
sim does not exceed a certain threshold α. The overall similarity between the macro
structures sj,k and sl,m can be determined by computing the harmonic mean:

similarity(sj,k, sl,m) = 2 · simcos(sj,k, sl,m) · simimg,α(sj,k, sl,m)

simcos(sj,k, sl,m) + simimg,α(sj,k, sl,m)
.

Micro Structure Sequence Similarity

Another way of measuring the similarity between macro structures is to compare
the sequences of their contained micro structures. The idea is inspired by the align-
ment of protein or nucleotide sequences in bioinformatics [77]. There the similarity
of sequences is computed in order to identify potential functional, structural, or evo-
lutionary relationships between them. While the goal for technical documents is a
different, the underlying idea and the computation is similar:

1. Create Sequence:
First of all, a macro structure needs to be transformed into a sequence (vector)
of micro structures. This is the fundamental step that allows to employ sequence
alignment algorithms.

2. Create Scoring Function:
Then, a scoring function must be defined. This scoring function must be able
to pairwise determine the similarity of micro structures and to handle gaps
in sequences. Therefore, the scoring function should exploit (1) the textual
information carried by the respective structures and (2) consider the similarity
between micro structure types. The latter can be achieved by predefining a
scoring matrix that compares respective types of micro structures. In the field
of bioinformatics usually proteins get compared with respect to the PAM [50]
and BLOSUM [87] scoring matrices that have been created statistically.

3. Compute Similarity Matrix:
Then, a similarity matrix for two sequences of micro structures gets computed.
The entries in this matrix express the pairwise similarity between two mi-
cro structures according to the scoring function defined in (2). An efficient
implementation for filling the similarity matrix is the Smith-Waterman algo-
rithm [183] .

4. Similarity Score:
The highest value in the matrix expresses the distance between the two se-
quences. This value must finally be transformed to a similarity score.
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The final distance can be computed on the basis of the computed alignment score:

similarity(sj,k, sl,m) =
distance(sj,k, sl,m)

average( len(sj,k) , len(sl,m) )
,

where the function distance retrieves the score from the similarity matrix and the func-
tion len returns the length of the micro structure sequences of the macro structures
sj,k and sl,m. Figure 4.13 depicts the complete micro structure sequence similarity
computation process.
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Figure 4.13 | Micro Structure Sequence Similarity determination.

4.5.5 Alignment

The macro structure recovery presented in Section 4.5.3 yields a macro structure hi-
erarchy for each processed document. This hierarchy of macro structures undergoes a
deduplication process as presented in Section 4.5.4 to eliminate redundante modules.
The remaining hierarchies represent potentially equivalent documents in different lan-
guage versions. In order to achieve the goal of creating multilingual information
units as stated as part of the problem definition of the 3-STAR semantification step
in Section 4.5.2 potentially equivalent modules need to be aligned. The following
sections describe approaches that are able to align hierarchies of macro structures. In
case only single modules need to be aligned the methods presented in Section 4.5.4
might also be applied for this purpose. Figure 4.14 illustrates the alignment problem.
The illustrated example shows three macro structure hierarchies representing tech-
nical documents in language versions for German, English, and Spanish. While the
German and English document are structurally equivalent the Spanish document is
slightly different.
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Figure 4.14 | Macro Structure Hierarchy Alignment.

Chapter Number Alignment

Legacy technical documents have usually been published as printed books. Such
books usually provide a section numbering schema that is used in conjunction with
a section title to identify a specific section. As documents usually get written in one
specific source language and get subsequently translated into the required target lan-
guages this section numbering often stays constant across language versions. Hence,
a naive but in practice successfully applied alignment approach simply aligns modules
on the basis of their chapter numbers.

Although this procedure yields good results in practice it is hard to determine
the actual correctness of the alignment. In order to get a quantitative indicator of
the alignment quality the computation of similarity values according to approaches
as presented in Section 4.5.4 and Section 4.5.4 is highly recommended.

Isomorphic Alignment

In absence of chapter numbering information another way of aligning macro structure
hierarchy is to actually exploit the available hierarchy information. As each macro
structure hierarchy is essentially a graph (in most cases a tree) a check for isomor-
phism can be employed to first prove that the respective hierarchies are equivalent
and then to align the single macro structures. Unlike general isomorphism checks an
actual starting node in the graph of macro structures needs to be selected. This start-
ing node is usually the root macro structure, i.e., the structure that represents the
complete document. Then all macro structure graphs get traversed parallelly. During
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the traversal for each node the number of ingoing and outgoing edges gets checked
which correspond to checking the number of parent and child macro structures respec-
tively. When all graphs has been traversed completely without finding differences in
the number of ingoing or outgoing edges of the nodes the macro structures can be
considered to be isomorphic. Then another parallel traversal of the graphs can create
the actual alignments, i.e. create information unit instances. Algorithm 2 presents
the isomorphism check and subsequent alignment in pseudo code.

Algorithm 2 Macro Structure Isomorphism Check and Alignment.
1: // Start check and alignment
2: source← getHierarchy(sourceRoot)
3: target← getHierarchy(targetRoot)
4: if isomorphic(source, target) then
5: align(source, target)
6: end if
7:
8: // check for isomorphism
9: function isomorphic(source : Hierarchy, target : Hierarchy)

10: sourceIter ← getTraverser(source, source.root)
11: targetIter ← getTraverser(target, target.root)
12: while hasNext(sourceIter) and hasNext(targetIter) do
13: sourceNode← next(sourceIter)
14: targetNode← next(targetIter)
15: if sourceNode.outDegree != targetNode.outDegree then return false
16: end if
17: if sourceNode.inDegree != targetNode.inDegree then
18: return false
19: end if
20: end while
21: return true
22: end function
23:
24: // Actually create alignments
25: function align(source : Hierarchy, target : Hierarchy)
26: sourceIter ← getTraverser(source, source.root)
27: targetIter ← getTraverser(target, target.root)
28: while hasNext(sourceIter) and hasNext(targetIter) do
29: sourceNode← next(sourceIter)
30: targetNode← next(targetIter)
31: createAlignment(sourceNode, targetNode)
32: end while
33: end function

4.5.6 Recommended Formats

The information recovered in the 3-STAR semantification step represents meta infor-
mation. The actual documents remain unchanged but an additional piece of informa-
tion gets created that describes the results of this semantification step. The actual
result of this semantification step is a set of multilingual information units that refer
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to deduplicated macro structure hierarchies. While there are manifold possibilities to
represent this kind of information, there are two best practices:

1. Employ Information Model:
If the target application is compatible with a standardized information model,
the results of this semantification step should be transformed into the respective
representation. Such representations are in most cases XML-based.

2. Standardized and Open:
If no information model is in active usage, the representation should be as stan-
dardized and open as possible. Therefore, the usage of standardized semantic
vocabularies should be considered.

Listing 4.7 shows an RDF [107] excerpt in Turtle [15] syntax that represents an in-
formation unit that references macro structures recovered from a PDF file in two
language variants. The PDF format also supports embedding custom RDF metadata
directly into a document. Therefore, Adobe proposed the extensible metadata plat-
form (XMP) [8] that has been standardized as ISO 16684-1:2012. Consumers of PDF
documents like semantic information systems can then exploit the XMP/RDF data
while indexing resources.

: anIn foUnit r d f : type : In format ionUnit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource

" sample . pdf ? page =3 .2 -4 .7 "@en ,
" b e i s p i e l . pdf ? page =3 .5 -5 .2 "@de ;

: h a s T i t l e
" Example Macro St ruc ture "@en ,
" B e i s p i e l Makrostruktur "@de .

Listing 4.7 | 3-STAR data in RDF format.

4.5.7 Practical Recommendations

Section 4.5.3 explained the basic recovery process for macro structure hierarchies.
Section 4.5.4 presented approaches that aim on eliminating duplicates in these struc-
tures. Finally, Section 4.5.5 described how language variants of macro structures can
be aligned to form information units. This section gives practical recommendations
for the complete 3-STAR semantification tasks.

1. Sample 2-STAR results:
The 3-STAR semantification step heavily relies on the results of the 2-STAR
semantification. If the micro structure typing is inaccurate the 3-STAR se-
mantification is likely to be even more inaccurate. As a complete check of
the 2-STAR results is usually not feasible, the computation of a representative
sample is highly recommended.

2. Exploit PDF bookmarks:
The 3-STAR semantification mainly exploits micro structures of type headline.
As stated before, this is a result of the 2-STAR semantification step and might
be inaccurate. Another possibility to identify headlines is to exploit the PDF
bookmarks. A lot of PDF documents provide their complete structure in forms
of rather accessible bookmarks.

3. Heuristically group language variants:
Without background knowledge the described alignment approach needs to
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check all documents in the corpus for isomorphism. This is computationally
intensive and error-prone. Hence, it is highly recommended to pre-group the
corpus with respect to language variants. Usually, heuristics working upon file
names or folder structures are a good starting point.

4.5.8 Related Work

In literature, the Macro Structure Recovery is usually referred to as Hierarchical Text
Segmentation. Depending on the data quality of the input documents different seg-
mentation methods are used. Established methods are based on lexical or statistical
analysis [167, 84, 40, 129, 24, 103].

Soto et al. [185] evaluated different text similarity methods with respect to their
applicability to text reuse in technical writings. They considered Cosine Similarity,
Longest Commons Subsequence, Google Tri-gram Similarity [99] and Local-Sensitive
Hashing [74]. The evaluation is based on four datasets, each representing a book
that has been assembled from DITA topics. For their dataset they found the Longest
Common Subsequence to be the best performing similarity measure.

The presented alignment of macro structure hierarchies is loosely related to the
Parallel Corpora Alignment problem, i.e. the alignment of text blocks or tokens that
exist in different languages. This problem has been surveyed by Véronis [193] and
Santos [173].
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4.6 4-STAR
This section describes the fourth semantification step. This step adds information
types to the elements of the macro structure hierarchies that have been recovered
during the 3-STAR semantification step. This enables the semantic filtering of macro
structures (information units) according to an information type, i.e. service techni-
cians are then able to isolate information of a certain type (e.g. repair). This is
another remarkable step towards accessible and linkable technical documentation.

4.6.1 Information Systems Use Case

The 3-STAR semantification enables information systems to operate on modules in-
stead of complete documents. This yields benefits especially in mobile environments
where bandwidth is usually limited. However, as the respective information systems
are still based on textual indexes and keyword queries, the filtering of search results
for a specific task is still a rather time consuming task. The classification of mod-
ules according to information types enables information systems to provide filtering
mechanisms. Respective filters usually get realized as facetted search, i.e. a sepa-
rate multiple choice form that provides check boxes for each class. This way, the
search results can be constrained according to rhetorical technical classes like repair,
description, or diagnosis. Introducing rhetorical filtering actually introduces basic
functionality of semantic information systems to text-based information systems.

4.6.2 Problem Description

The 5-STAR maturity schema requires 4-STAR technical documents to be identifiable
and information typed. An information type describes the type of the information,
e.g. it enables to distinguish descriptive/operational content from maintenance/re-
pair texts. Therefore, the 4-STAR semantification aims on marking macro and micro
structures with corresponding information types (see Figure 4.15). These information
types need to express the rhetorical aspect of the respective piece of text, see Sec-
tion 3.3.2. As illustrated in Figure 4.15 information types usually form a taxonomy
(for a commonly agreed upon set of information types see Section 3.3.2). The infor-
mation typing is not limited to but in practice usually applied to macro structures
(e.g. chapters or sections) rather than to fine grained micro structures. The addition
of information types to already recovered macro and micro structures makes them
actual Core Documentation Entities:

Definition 4.6.1 (Core Documentation Entity). A Core Documentation Entity e
from the universal set of all Core Documentation Entities E is a self-contained micro
structure m ∈M or macro structure i ∈ I that is assigned an information type t ∈ T
that clearly describes its rhetorical aspect.

Although all information typed macro and micro structures fulfill this definition
not every combination can be given a label like “repair sequence” or “component
overview”. The main benefits of 4-STAR technical documentation is an improved ac-
cessibility with respect to rhetorical filtering. This is underlined by the availability of
Core Documentation Entities that give access to structures carrying strong technical
knowledge.

Additionally, the fourth maturity level requires information typed macro and mi-
cro structures to be identifiable, i.e. each information typed structure needs to be
assigned an unique and stable identifier. While the uniqueness requirement is easy
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Figure 4.15 | Information Type Classification.

to achieve it is usually hard to maintain the identifier across multiple versions of a
document that might get processed. The availability of a unique and stable identifier,
however, leads to a general improvement of linkability and referability.

Section 4.6.3 maps the information typing of macro and micro structures to the
more general Automatic Document Classification problem. Section 4.6.4 discusses
the possible absence of training data and gives practical alternatives. Section 4.6.5
gives recommendations for 4-STAR formats and especially points out how to realize
unique and stable identifiers.

4.6.3 Automatic Document Classification

The information typing of macro and micro structures is essentially equivalent to the
Automatic Document Classification problem. Sebastiani [176] surveyed the Automatic
Document Classification problem. This section recapitulates the essential statements
of Sebastiani’s [176] work and complements some state-of-the-art Automatic Docu-
ment Classification approaches. For a thorough introduction to Automatic Document
Classification please refer to the original work of Sebastiani [176].

According to Sebastiani [176] Automatic Document Classification aims on finding
a boolean value for pairs ⟨Dj , ci⟩ ∈ K × C where K corresponds to a set of doc-
uments (corpus) and C to a set of classes. The boolean value TRUE for a pair
⟨Dj , ci⟩ ∈ K × C expresses that class ci is assigned to document Dj . The boolean
value FALSE expresses that for a pair ⟨Dj , ci⟩ ∈ K ×C class ci is not assigned to
document Dj . There is a general differentiation between assigning the value TRUE
to exactly one value or multiple values of ci per document Dj . This is referred to
as single- or multi-label problem respectively. Information typing macro- and micro
structures is a single-label problem, as exactly one information type shall be chosen
for a structure. Another differentiation is hard- and ranking categorization. While
the aforementioned assignment of boolean values to pairs ⟨Dj , ci⟩ expresses the hard
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categorization, another way of classifying documents is to rank all categories for each
Dj such that the most/least relevant category is top/last.

In order to find the boolean value for a specific pair ⟨Dj , ci⟩ ∈ K × C a classi-
fier is employed. Classifiers can be defined in different ways ranging from heuristic
or knowledge-based approaches to machine learning techniques. This section con-
centrates on supervised machine learning approaches, i.e. classifiers for Automatic
Document Classification that get learned from labeled training data. The labeled
training data provides documents Dj with pre-assigned classes ci. Supervised Ma-
chine Learning techniques exploit the documents’ texts and the assigned classes in
order to automatically create a classifier.

Machine Learning techniques can usually not operate directly on a document’s
text. Instead, they need a more compact representation that is in most cases a vector
representation. Such a vector representation usually transforms a document’s text
into a vector of terms with assigned term weights. During this transformation step
stop words usually get removed from the text. The terms are then usually represented
as a set or bag of words. A popular way to assign weights to the terms is to employ the
TF-IDF [172] measure in conjunction with cosine normalization. The term weighting
problem for text classification has been comprehensively studied by Lan et al. [114]
and Ko [108]. Oevermann et al. [148] claim that using the TF-IDF-CF measure is
beneficial for technical documents, as in-class characteristics of tokens get considered.

The resulting vector usually has a high dimensionality. Sebastiani [176] refers to
multiple works that state that this is problematic for learning classifiers for Auto-
matic Document Classification. Hence, a commonly agreed upon step is reducing the
dimensionality of documents’ vector representations. According to Sebastiani [176]
this also reduces the danger of overfitting, as observations show that 50-100 train-
ing samples per dimension are required to avoid overfitting. As training samples
are usually rare, especially in the context of technical documents, fewer dimensions
mean less required training data. The dimensionality reduction can achieved either
by building a subset of the existing terms in the vector, which in literature is referred
to as term selection or by finding synthetic terms. An established approach for the
latter is Latent Semantic Indexing (LSI) [91].

Then, having vector representations with a reasonable dimensionality available
for documents Machine Learning approaches can be employed in order to find a clas-
sifier. A plethora of Machine Learning techniques exists for learning such a classifier.
Sabastiani [176] classifies the resulting models to the following categories:

• Probabilistic Classifiers, e.g. based on Naïve Bayes [130, 190]

• Decision Tree Classifiers

• Decision Rule Classifiers [3]

• Regression Methods, e.g. Linear Least Squares Fit [197]

• On-Line Classifiers, e.g. Perceptron, Winnow

• Classifiers using Neural Networks

• Example-based Classifiers, e.g. k-Nearest-Neighbours [82]

• Support Vector Machines (SVM) [124]

Additionally, multiple classifiers can be orchestrated to form a committee [176]. Then,
a document gets classified by multiple different classifiers and a strategy is employed
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in order to find a common decision for a class assignment. At the time of writing
Automatic Document Classification approaches based on Deep Neural Networks also
yield promising results [44, 198, 199, 105]. The usage of Deep Neural Networks for
Automatic Document Classification usually builds upon word embeddings [137, 138]
as vector representation for documents. Goldberg [75] gives a thorough introduction
to the usage of Deep Neural Networks for Natural Language Processing Tasks, which
comprises the Automatic Document Classification problem.

While the aforementioned approaches rely solely on supervised approaches there
also exist unsupervised approaches [128, 181, 135]. These methods usually approach
the Document Clustering problem and finally assign classes to the resulting clusters.
Unsupervised approaches might be beneficial in industrial use cases where training
data for supervised approaches is not necessarily available.

4.6.4 Ground Truth and Practical Alternatives

The previous section summarized existing approaches of Automatic Document Clas-
sification for the determination of information types. Automatic Document Classifi-
cation approaches require a decent amount of training data (Ground Truth) in order
to be able to learn a respective classifier. Companies that have already transitioned
from classical book-based technical documentation to dynamic module-based docu-
mentation (cf. epochs of technical documentation described in Section 3.2) usually
produce respective training data when new content is created. This has also been
observed by Oevermann et al. [148] who use newly created contents to train a SVM
classifier. A classifier that was learned on newly created technical documents can then
be employed to add information types to legacy documents. However, not all compa-
nies have already transitioned to dynamic documentation that is based on modules.
In this case, the following alternatives exists:

• Create Training Data:
The most straight forward way is to manually define respective training data.
Sebastiani [176] claims that 50-100 examples per class are required to avoid the
danger of overfitting. The creation of training data must be evaluated under
the cost-benefit-ratio.

• Train on another Corpus:
As the information type is considered to be independent from concrete com-
ponents, functions or other machine-specific entities a classifier might also be
trained on a completely different corpus of technical documents.

• Use Heuristics:
A practical and in most cases more cost-effective alternative to Automatic Doc-
ument Layout Analysis is the usage of heuristics that exploit information of the
recovered 3-STAR macro structure, i.e., identifying the information type for a
complete chapter and then applying it to all successors (sections and subsec-
tions).
Such heuristics might exploit the fact that most technical documents are highly
structured with respect to their content. For instance, a lot of documents have a
certain logical organization, i.e., first describing technical details of components
in sections and subsections of chapters named “Technical Description” (or sim-
ilar), then describing the operation of functions in sections and subsections of
a “Usage” (or similar) chapter, and so forth.
If a corpus of technical documents follows such content structures, information
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typing can be realized by defining patterns for 3-STAR macro structure hier-
archies that are mapped to information types. Such patterns usually specify a
target level for elements in the 3-STAR macro structure and a text pattern that
needs to be matched.

4.6.5 Recommended Formats

For the representation of 3-STAR semantification results a semantic representation
has already been recommended. The main reason for choosing a meta representation
was the character of the recovered information. This is also true for the results of
the 4-STAR semantification. The determined information type represents additional
metadata that gets added to the semantic representation that has been introduced in
Section 4.5.6.

Another requirement of the 4-STAR semantification is that identifiers need to be
unique and stable. This is a challenging requirement for virtual resources [179], es-
pecially when the information is realized as metadata that only references the actual
resources. The main challenge is that both the actual resource and the describing
metadata might undergo changes that invalidate their resource locations. Possible
reasons comprise moving or renaming the actual resource on file servers or additional
runs of semantification steps that are not necessarily be aware of an already assigned
URL. In literature this problem is referred to as Digital Curation [179]. A commonly
agreed upon solution to the problem is the usage of persistent uniform resource lo-
cators (PURL) [179] instead of standard URLs. PURLs are based on URLs and are
thus compatible with semantic technologies. PURLs are intended for referring to
virtual resources. In contrast to standard URLs that would directly reference the
respective resource, PURLs actually redirect to another URL. While a PURL stays
constant the target of the redirection might change. As external applications are then
always use the PURL of a resource, respective references are unlikely to break which
is an important step towards linkable technical documents. Additionally, PURLs
usually use standard HTTP status codes [60] to indicate the status of the respective
resource, e.g. when it is temporarily (status code 404) or permanently (status code
410) gone. An implementation of the 4-STAR semantification step is responsible for
also maintaining PURLs of processed resources. This means, when an already pro-
cessed document or an updated version of it gets processed, the redirect targets of
existing corresponding PURLs need to be updated. Unlike standard URL definitions
PURLs must be managed by a respective system. Such a PURL management sys-
tem creates new and globally unique PURLs and manages the redirect to the target
resources. A popular system for the definition of PURLs is purl.org15. Listing 4.8
is an extension of Listing 4.7 that shows the addition of metadata for representing
the determined information type and the usage of a PURL as resource identifier.

15https://purl.org
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< http :// pur l . org /company/book/ v e r s i o n / chapter / s e c t i on >
r d f : type : In format ionUnit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource

" sample . pdf ? page =3 .2 -4 .7 "@en ,
" b e i s p i e l . pdf ? page =3 .5 -5 .2 "@de ;

: h a s T i t l e
" Example Macro St ruc ture "@en ,
" B e i s p i e l Makrostruktur "@de ;

: hasInfoType : Repair .

Listing 4.8 | 4-STAR data in RDF format.

4.6.6 Practical Recommendations and Related Work

In practice the key to well-performing automatic document classification is tuning and
optimizing the underlying model. In case of technical documentation this especially
aims at exploiting the special characteristics of this kind of resource. Oevermann et
al. [149] propose several adaptations of established document classification approaches
with respect to technical documents. The adaptations consider the special character-
istics of technical documents, like standardized patterns, specific terminology, the size
of text segments, the availability of training data from Content Management Systems,
and quality assurance. The adaptations comprise feature selection, token weighting,
term frequency adjustment and confidence scoring. Oevermann et al. [148] also eval-
uated their adaptations using a SVM classifier. They showed that the technical doc-
umentation specific adaptations significantly improved the classification performance
on four industrial and thus unpublished datasets.
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4.7 5-STAR16

The 1-STAR, 2-STAR and 3-STAR semantification steps aimed on recovering struc-
tural representations of technical documents. The 4-STAR semantification steps
added rhetorical information in forms of information types to these structural com-
ponents. This yields 4-STAR technical documents. In order to receive the fifth star
technical documents need to have metadata from an ontology attached.

4.7.1 Information Systems Use Case

The results of the 4-STAR semantification enable rhetorical filtering of documents.
Technical documents fulfilling the fourth maturity level are usually still used in tex-
tual information systems. The availability of information types allows for filtering
search results according to a set of information types, which is an important step to-
wards a semantic information system. However, a targeted problem-oriented search is
not yet possible as relevant subjects still get queried in forms of textual keywords. Al-
though modern textual information systems can augment keyword-based queries with
synonyms the search is still prone to errors due to ambiguities in natural language
or inconsistent usage of technical terms. The semantic annotation of structures with
concepts from an ontology is the basis for enabling searching with concepts instead of
textual keywords. The semantic of concepts is clearly defined and unambiguous due
to the availability of additional semantic information, like relations to other concepts,
alternative labels or types. In semantic information systems a semantic autocomple-
tion [95] helps the user to define queries by proposing concepts from an ontology
on basis of its textual entries and additional context information (search history, al-
ready entered concepts, etc.). A semantic search engine then expands the entered
query to determine a set of potentially relevant concepts. Finally, the search results
get determined by looking up the documents that got annotated with the respective
concepts.

4.7.2 Problem Description

The 5-STAR semantification described in this chapter aims at the identification and
annotation of the main subjects for a given technical document. This is related to
the more general problem of Subject Analysis or Subject Indexing. The approaches
for Subject Analysis in technical documents assume that the identifiable subjects
can be derived from a domain ontology and rely on a well-defined terminology, pro-
viding terms for these subjects. The approaches additionally require that technical
documents have been hierarchically structured, i.e. from complete books to macro
structures within documents and finally to micro and nano structures representing to-
kens and terms. Figure 4.16 depicts this hierarchical structure with an example. This
brief overview of the problem definition gets detailed in the following subsections by

16The contents of this section are a slightly extended and reorganized combination of the work
described in the following already published articles:
Sebastian Furth, and Joachim Baumeister. “Towards the Semantification of Technical Documents”.
FGIR’13: Proceedings of German Workshop of Information Retrieval, 2013 [67].
Sebastian Furth, and Joachim Baumeister. “Semantification of Large Corpora of Technical Docu-
mentation.” Enterprise Big Data Engineering, Analytics, and Management, IGI Global, 2016 [65].
Sebastian Furth, Volker Belli, and Joachim Baumeister. “The Revieval of Subject Analysis: A
Knowledge-based Approach facilitating Semantic Search”. Proceedings of the Conference "Lernen,
Wissen, Daten, Analysen", 2016 [68].
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Figure 4.16 | The elements of technical documentation.

introducing the set of identifiable subjects, their relations to controlled vocabularies,
and the subject indexing problem.

Controlled Vocabularies

The fundamental requirement for Subject Analysis and the subsequent Subject Index-
ing is the existence of a controlled vocabulary. Historically, a controlled vocabulary
defined the way how concepts were expressed, provided access to preferred terms,
and contained a term’s relationships to broader, narrower and related terms. Nowa-
days, such information is typically modeled by standardized ontologies [89, 139, 107],
where terms are embedded in complex networks of concepts covering broad fields of
the underlying problem domain. Typical examples are ontologies powering semantic
enterprise information systems. In such systems users interact using concepts that are
known company-wide and valid. An increasing amount of companies maintain corre-
sponding ontologies as they are the key element for the interconnection of enterprise
systems and data [188]. If such ontologies do not exist, the construction is usually
very reasonable under cost-benefit considerations, as they support not only semantic
information systems but are also a vehicle for the introduction of more elaborate
services like Semantic Autocompletions [95] or Semantic Assistants. A controlled
vocabulary is defined as follows:

Definition 4.7.1 (Controlled Vocabulary). A controlled vocabulary is an ontology
O = (T , C, P ) that contains a set of terms T that are connected to a set of concepts
C. Concepts c ∈ C are connected to other concepts using properties p ∈ P .

In the following the existence of a controlled vocabulary for the problem domain
in forms of a domain ontology is assumed. Considering the technical domain such
a domain ontology usually describes the structural decomposition and functions of
a machine. Then, the set of identifiable subjects S can be derived from the domain
ontology in forms of ontological concepts.

Definition 4.7.2 (Identifiable Subjects). Let O = (T , C, P ) be a controlled vocabu-
lary represented as domain ontology, consisting of ontological concepts c ∈ C. Then
the set of identifiable subjects S ⊆ O is defined as a set of ontological concepts
S = {c1, . . . , cn}.
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Entity Recognition

Assuming that such an ontology/controlled vocabulary exists the task is to examine
the subject-rich portions of the item being cataloged to identify key words and con-
cepts. Such subject-rich portions correspond to macro structures (information units)
that have been created using the 3-STAR and 4-STAR semantification techniques.
For each information unit i ∈ I occurrences of terms t ∈ T from the controlled vocab-

Information Unit: Segment 1

The necessary components

for the transmission control 

such as the gear selector 

switch, the electric ..

gear selector switch

components

transmission control

electric

Bag of Terms

...

Entity Recognition

Figure 4.17 | Transformation of an information unit to a bag of terms
using entity recognition methods.

ulary need to be identified, since the semantic annotation algorithms employed for the
subsequent Subject Indexing task operate upon these terms. That way, the domain
terminology T is the basis for an Entity Recognition [143] step. An Entity Recognition
task is defined as the matching of known entities (terms) from a controlled vocabulary
(terminology T ) in a text. Multiple approaches to Entity Recognition exist. Due to
the assumed availability of a controlled vocabulary a dictionary-based entity recog-
nition approach can be employed. The dictionary-based entity recognition method
identifies all occurrences of terms t ∈ T in available 4-STAR information units i. The
identified occurrences are represented in a bag of terms representation ei.

Definition 4.7.3 (Entity Recognition). Let E = {ei} the universal set of bags of
terms, where each ei = ⟨t1, . . . , tn⟩ is a vector representing a bag of terms recognized
in an information unit i ∈ I and each tj is an element of the domain terminology T .
Then the entity recognition is defined as a function er : I → E that transforms an
information unit i ∈ I to a bag of terms ei ∈ E.

Practical observations have shown that technical terms are usually not used in a
consistent way. Therefore, the dictionary-based matching of terms should use fuzzy
techniques. Industrially proven fuzzy matching techniques comprise:

• Matching based on word stems that have been produced by a standard Porter
stemmer [157].

• Allowing order independent matches for multi-word terms, i.e., consider all
(reasonable) token permutations.

• Allowing non-contiguous matches, i.e., ignore non-matching tokens between to-
kens belonging to a term.

Figure 4.17 shows the entity recognition process for an information unit, that is about
the components of the transmission control. The resulting bag of words contains all
terms, known with respect to a controlled vocabulary, that have been identified in the
information unit, e.g. "components", "transmission control", "gear selector switch", or
"electric".
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Subject Indexing

Having information units i ∈ I available, the Subject Indexing task can be defined as
follows:

Definition 4.7.4 (Subject Indexing from information units). For each Information
Unit i ∈ I find a set of concepts Ci ⊆ C from an ontology O that describe the topic
of the corresponding text best.

For each information unit i an associated bag of term matches ei exists, i.e., a
list of terms from a domain ontology/controlled vocabulary that occur in a particular
information unit. Given the bag of term matches, the task can be specialized as
follows:

Definition 4.7.5 (Subject Indexing from bags of terms). Given a bag of term
matches ei determine the underlying topics in the form of a set of concepts Ci ⊆ C
from an Ontology O.

The availability of formalized domain knowledge is usually a valuable support
factor for tasks that cover certain aspects of a problem domain [140, 152, 160]. The
following sections show that this is also true for Subject Indexing where the selection
of topics can profit from formalized background knowledge. Thus, the integration of
domain knowledge in the annotation mechanism (Subject Indexing) becomes a critical
success factor and the task can be further refined as follows:

Definition 4.7.6 (Subject Indexing with background knowledge). Given a bag of
term matches ei determine the underlying topic in the form of a set of concepts
Ci ⊆ C from an Ontology O considering the domain knowledge contained in Ontology
O expressed by properties P between concepts C.

The following sections present two different approaches to Subject Indexing with
background knowledge. Section 4.7.3 introduces Explicit Semantic Analysis that
exploits ontological information to build a semantic interpreter. A probabilistic model
that exploits ontological background knowledge for Subject Analysis and Subject
Indexing is introduced in Section 4.7.4. Section 4.7.5 shows how the results of Subject
Analysis and Subject Indexing can be interactively reviewed.

4.7.3 Explicit Semantic Analysis

The availability of bag of term representations ei = ⟨t1, . . . , tn⟩ for each information
unit i and an accompanying ontology O enables the determination of the main sub-
jects of an information unit. Therefore, the recognized terms ei = ⟨t1, . . . , tn⟩ and
the background knowledge in the ontology O get exploited. The goal is to find a
set of concepts Ci ⊆ C from an ontology O that describe the main subjects of an
information unit.

This section describes an approach that has been derived from Explicit Semantic
Analysis. Explicit Semantic Analysis has originally been proposed by Gabrilovich
et al. [71]. The original Explicit Semantic Analysis was developed for the determi-
nation of semantic relatedness between texts and will be briefly introduced in the
following. The method is based on a semantic interpreter which copes with a fixed
set of concepts, representing each of them as an attribute vector of words. For an
experiment Gabrilovich et al. derived concepts from a subset of Wikipedia articles,
where each concept corresponded to the title of a Wikipedia article. The words have
been extracted from the article text and weights were assigned by using the TFIDF
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Figure 4.18 | Determination of the main subjects on basis of the
discovered terminology.

weighting scheme [172]. The semantic interpreter is realized as an inverted index
that maps each word into a list of concepts in which it appears. When confronted
with an input document, the relevance of the concepts contained in the index can be
computed by using the semantic interpreter. For each word in the input document
the inverted index is asked for the corresponding concepts and their TFIDF weights.
Figure 4.19 shows an excerpt of a semantic interpreter for a gear stick example. Con-
sidering that the semantic interpreter is asked for the concepts related to the term t1
“transmission”, it would return o1 “transmission” and o2 “gear box” and their associ-
ated weights. The relevance of the concepts is simply computed by aggregating the
weights retrieved from the semantic interpreter for all terms tx ∈ ei,j . The result is
a weighted vector of concepts, where the top-ranked concept is most relevant for the
underlying document (See Figure 4.18 for an example in the gear stick context). The
semantic relatedness of texts can then be determined by comparing the computed
weighted concept vectors.

tx 

...

t2: 

gear selector switch

t1: 

transmission o1:  transmission o2: gear box 

o2: gear box o1:  transmission

ok ol

ok

Strength of Semantic Relation: weight kx

Semantic Interpreter

Figure 4.19 | An excerpt of a semantic interpreter showing the gear
stick example.
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Building the Semantic Interpreter

Similarly to the determination of document relatedness for the Subject Analysis and
Subject Indexing task, a semantic interpreter gets employed. However, its purpose
is not the determination of semantic relatedness of texts but the identification of the
main subjects of an information unit. Instead of TFIDF weights the available domain
knowledge in the ontology O gets exploited to specify the weights, e.g. assuming the
set of identifiable subjects S corresponds to a hierarchy of assemblies, then terms
t ∈ T for the direct predecessors and successors of an assembly are weighted higher
than the transitive ones. Besides hierarchies of assemblies other sources for term-
concept relations exist. The availability of a spare parts catalog, for instance, enables
the determination of the weight of parts’ labels (part of the terminology) as a function
of the components they are used in:

• Special parts that are used in only one component of the machine receive the
highest weight.

• In contrast, general parts (e.g., bolts) used in many components receive a very
low weight.

In the following, let ⟨kx⟩ be an inverted index entry for term tz ∈ T , where the weight
kx represents the strength of the association between term tz and concept sx ∈ S.

Using Document Characteristics for Term Weighting

To determine the main subject of a segment, the bag of terms representation ei

of each information unit i gets exploited. The bag of terms is the result of the
dictionary-based entity recognition method as described in Section 4.7.2. In contrast
to [71] the derived approach for Subject Analysis and Subject Indexing also takes
document characteristics into account by weighting the terms accordingly. Therefore,
micro and nano structures that are available from the 1-STAR, 2-STAR, and 3-STAR
semantification get exploited. For instance, the position of a term match in a certain
micro structure (headline) might lead to an increased term weight. In the following
ei = {tz} is the bag of terms representation for the information unit i, and ⟨vz⟩ is its
corresponding weight vector, where vz is the weight of term tz.

Ranking Concepts

The semantic interpreter is then employed to derive a ranked list of concepts for each
information unit. Algorithm 3, given as pseudo code, is used to rank the determined
concepts. The algorithm basically iterates through all terms tz in a bag of terms ei,
asks for the inverted index entry ⟨kx⟩ of all concepts cx related to term tz, and sums
up the product of term weight vi and relation strength kx —this product is referred to
as weighted relatedness. The temporary results are saved in a map which gets sorted
for the final result in descending order on the weighted relatedness score. This score
expresses the relevance of the concepts for the segment, i.e. a higher score means
higher relevance.

Choosing Subjects

The algorithm described in the last section produces a ranking of relevant concepts.
Now the most relevant concepts needs to be identified—these most relevant concepts
are referred to as the sprint group17.

17Corresponding to the sprint group in cycling races that offsets from the peloton.
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Algorithm 3 Algorithm for the term-based ranking of concepts.
1: function getRankedConcepts(ei,j , ⟨vz⟩)
2: ranking ←Map < Concept, Double > .new
3: for tz in ei do
4: ⟨kx⟩ ← SemanticInterpreter.get(tz)
5: for kx do
6: wtdrelatedness← kx ∗ vz

7: ranking.update(sx, wtdrelatedness)
8: end for
9: end for

10: ranking.sort(WeightedRelatedness, DESC)
11: return ranking
12: end function

Two different strategies are proposed for the determination of the sprint group.
The first one simply uses a threshold, the second one is based on statistical outlier
tests. The basic approach for determining the sprint group is taking the score of the
most relevant concept. Based on this score all concepts are added to the sprint group
that are within a specified threshold, e.g. 90% of the highest score. Basically this
yields good results, but there are scenarios where it does not fit. An example for such
a scenario is a result where all concepts have low scores, i.e., no concept is actually
relevant for the segment. Using the basic approach the majority of the concepts
would enter the sprint group. To tackle this issue the usage of statistical outlier
tests is proposed. Using such tests it can be determined whether scores exist that
offset from the rest. A simple test is for example to compute the interquartile range
(IQR = Q75 −Q25) and then to treat all scores that are higher than Q75 + α ∗ IQR
as outliers. In principle, other more sophisticated outlier tests like Grubbs’ test for
outliers [79] can be applied.

4.7.4 Probabilistic Subject Analysis

Using Explicit Semantic Analysis for Subject Analysis and Subject Indexing already
yields good results. A major challenge, however, is comparing the resulting scores.
As the scores are not normalized it is hardly possible to compare the quality of
the determined subjects between multiple information units. Therefore, this section
introduces another approach to Subject Analysis and Subject Indexing that is based
on a probabilistic model.

In the following, first a basic probabilistic model that is based mainly on weighted
semantic relations between terms and concepts will be introduced. The model can
be tailored to integrate expert knowledge for a certain domain specific controlled
vocabulary. The basic model will be extended in order to also consider document
characteristics, like important document structures (e.g. headlines) or formatting in-
formation (e.g. bold text).

Basic Probabilistic Model

The basic probabilistic model is founded on observable text/term matches, relations
between these terms, and potential topics (concepts) as well as a strong independence
assumption between all features. The model connects the features as follows:
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1. Starting from a text match match ∈Mi in an information unit i ∈ I the model
derives potentially corresponding terms t ∈ T .

2. The model optionally weights the term t ∈ T with respect to the covering
document structure of the corresponding text match match ∈ Mi, e.g., term
occurrences in headlines might be more important.

3. Given a term t ∈ T the model looks for concepts c ∈ C that can be described
with this term, i.e. which concepts have this term as label and how specific is
this label.

4. The concepts c ∈ C derived from the model on the basis of the text/term
match m ∈ Mi might have relations to topic concepts topic ∈ Ci with Ci ⊆ C.
The model exploits ontological information for the derivation of topic concepts
topic ∈ Ci from observed (term) concepts c ∈ C resulting in a topic probability
for a text/term match.

5. The derived topic probabilities for each text match match ∈Mi get aggregated
in order to compute the overall topic probabilities for an information unit i ∈ I.

Given a bag of term matches Mi for an information unit i ∈ I, steps (1) to (3) are
realized by computing the topic probabilities for each text/term match match ∈Mi:

P(topic |match) = α ∗ P (topic | c) ∗ P (c | t) ∗ P (t | match).

Therefore, the confidence of a term match P (t | match) is considered, i.e. the
probability of a certain term t given a textual match match. Additionally the speci-
ficity P (c | t) of a term t for a certain concept c is taken into account. Unique
labels have the maximum specificity of 1.0. The relevance of the concept in focus c
for a topic concept topic is P (topic | c). This relevance gets computed on basis of
ontological information between both concepts. The relevance reaches its maximum
if both considered concepts are equal (identity). Finally, the constant prior α is used
to express the linguistic uncertainty that a certain topic is not meant given a certain
term match. This avoids that one perfect term match prevents other topics to get
more important, i.e. it regulates how many related term matches are necessary in
order to outperform one perfectly matching term. Then the topic probabilities for an
information unit i ∈ I (step 4) get computed on the basis of the topic probabilities
for each term match match ∈Mi:

P(topic) = 1−
Mi∏

match

(1− P (topic | match)).

The result is a set of topics topic ∈ Ci with associated probabilities that express
how well a certain topic fits to the terminology observed in the information unit.
This computation assumes independence between the term matches in Mi according
to Bayes’ Theorem. The independence assumption might not perfectly reflect reality
but is a sufficient approximation in this application scenario.

Extended Probabilistic Model

The basic probabilistic model can be extended, such that it also considers distinctive
document characteristics as valuable background knowledge. In many specialized
publications like technical documents or textbooks document structures indicate the
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underlying topic or support at least the discrimination of multiple topic candidates.
Typical examples are headlines or formatted text (italics, bold, underlined).

The basic probabilistic model uses a constant prior α that expresses the linguistic
uncertainty that a topic is not meant by a certain term match. The basic model gets
extended, such that the prior is not constant but depends on the document structure
where the term match was observed. Therefore, document structures get weighted
according to their importance for the deduction of a topic for an information unit.
Assuming that for each document structure a weight w exists (default 1.0) the value
for the prior α is computed as follows:

αadaptive = 1− (1− αconstant)
w.

This procedure also allows to discriminate document structures that are inappro-
priate for the topic deduction, e.g. references/links to other documents.

Knowledge Representations and Derivation of Probabilities

The preceding sections introduced a simple but powerful and intuitive probabilistic
model for Subject Analysis. However, the primary target remains that the Subject
Analysis of large document corpora becomes rather a Knowledge Engineering than
a Natural Language Processing task. Therefore, the proposed probabilistic model
allows for the easy adaptation to characteristics of a domain specific controlled vo-
cabulary and the corresponding corpus of documents that shall be subject indexed.
The following sections describe the knowledge-based adaptation, i.e., the definition
of basic conditions for the derivation of probabilities.

Term Confidence P (t | match)

The term confidence P (t | match) expresses how certain a text match is actually a
term occurrence. The computed confidence depends on the quality of the text match.
A perfect match, i.e. the text match match is equal to the term t results in the
maximum confidence of 1.0. The usage of fuzzy string matching techniques like order
independent matching, stemming etc., might lower the confidence of the term matches.
Therefore, implementations of the presented probabilistic approach should allow for
the configuration of different fuzziness levels and adjust the confidence accordingly.

Term Specificity P (c | t)

Given a term, the model must derive all concepts c ∈ O that can be described by this
term. The model must also express how specific a term is for a concept P (c | t), i.e.,
handle ambiguous terms like “apple” which can be the name of a company or a fruit.
In the context of technical documents, terms like “nut”, “engine” or “screw” might be
encountered that are very ambiguous and thus unspecific. Therefore, the specificity
of a term must be distributed over all potential concepts. In the simplest case the
specificity can be distributed equally over all concepts. Unambiguous terms always
have a specificity of 1.0. However, experts’ knowledge might be used to prefer certain
concepts. This might be useful if some concepts of an ontology are not applicable,
e.g., because components they represent are not included in certain machines.

Concept Relevance P (topic | c)

Then, given a concept, the model must be able to determine how relevant it is for
certain topics P (topic | c). The procedure is always the same and is explained by the
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example of technical documents. In technical documents the occurrence/observation
of a concept describing a component might be relevant for a couple of concept topics:
(1) machine functions relying on this component, (2) parent components or (3) the
component itself.

In general, is is assumed that the relevance of a concept for a topic decreases the
larger the distance between both concepts is in the underlying ontology. However, ex-
perts’ might know that in certain situations (documents) the occurrence of a concept
is much more indicative for specific topics than for others. For example in operator
manuals, component terms might also indicate functions while they typically do not
in repair manuals because usually an operator wants to "operate a function", whereas
a technician usually wants to "repair a component".

For the calculation of the concept relevance distances between concepts and topic
concepts are extracted/queried from the ontology. Expert knowledge can be used
to weight these distances according to the properties p ∈ P involved. This way
background knowledge regarding the relevance of certain concepts under certain cir-
cumstances can be included in the model. Finally the weighted distances between
the concept in focus c and the topic concept topic get transformed to a probability.
The usage of a normalized sigmoid function is proposed to avoid overestimation of
the distance. The parameters β and γ can be used to control the sigmoid function
and thus the overall importance of the concept relevance:

P(topic | c) = 1 + e(−β)∗γ

1 + e(distance−β)∗γ

Linguistic Uncertainty α

In the basic probabilistic model the parameter α is constant. In the extended model
the parameter α can be adjusted, such that it can prefer or discriminate term occur-
rences in certain document structures. Therefore, domain experts can define weights
w for certain document structures (default 1.0). Values for w greater than 1.0 prefer,
values smaller than 1.0 discriminate terms in certain structures respectively. Dur-
ing the computation of the value for the adaptive linguistic uncertainty αadaptive an
implementation has to consider the value accordingly.

4.7.5 Interactive Review

The Subject Analysis approaches in Section 4.7.3 and Section 4.7.4 yield information
units i ∈ I that have one or more topics in forms of concepts from an ontology assigned
as metadata. In real-world projects the data quality of these metadata is critical.
Thus, depending on the requirements on data quality, the manual review of the results
of the subject analysis step by domain experts is recommended. The availability of
domain experts is usually a crucial element in respective projects (c.f. the well known
knowledge acquisition bottleneck). Hence, this section presents an interactive review
tool for Subject Analysis and Subject Indexing results (see Figure 4.20). The goal
of the presented review tool is to substantially decrease the required review time and
thus the availability requirement of a domain expert.

For the review task such a tool needs to fulfill at least the following requirements:
(1) Display the hierarchical segmentation of a specific document, (2) display the main
subjects for each segment, (3) allow the addition and deletion of subjects. It is ad-
ditionally proposed to use a visual component that highlights critical annotations in
order to optimize the review effort. Critical annotations might be determined on the
basis of low confidence values or the semantic similarity of identified subject. The
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Figure 4.20 | A tool for the manual review of semantic annotations,
containing the hierarchical segmentation (left), a visual report (top

right) and a detail view (bottom right).

latter is especially helpful for technical documents, as observations show that the
subject in a sequence of information units is often constant or at least semantically
similar. An example for this claim is a technical document that covers the mounting
and unmounting of assemblies. In such a document, the probability is high that the
corresponding segments of a specific assembly are in a sequence. This results in char-
acteristic patterns that can be visualized using the the visual component. An example
is the semantic staircase as displayed in Figure 4.20. Additionally, information units
without any annotations or with many semantically unrelated annotations should be
automatically detected and highlighted.

There exist various metrics for the computation of semantic similarities. Exam-
ples for approaches based on WordNet [59] were proposed among others by Jiang et
al. [101] or Lin [120]. These metrics might be adapted due to the specificity of the
used terminology.

Figure 4.20 shows a sample implementation of a review tool. On the left side
the title of the current document is displayed and a status for the document (“new”,
“in progress”, “reviewed”) can be specified by the reviewer. Below, the hierarchical
segmentation of the document is displayed in a tree view element. The tree view
can be used for checking and navigating through the segmentation. Clicking on an
element in the tree view loads the information regarding the semantic annotations
for the selected segment. The loaded information is displayed in the right part of the
application. In the upper part a visual component (“Visual Report”) displays the
results based on semantic similarity18. Missing annotations are indicated using a red
placeholder. At the bottom of the right part detailed information (“Details”) about
the semantic annotations are available. They can be accessed by scrolling the view
or by clicking on a data point in the visual component. For a thorough review it may
be necessary to look up the text of a segment. Therefore the presented review tool

18In the example a taxonomy is used for the computation of semantic similarity.
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implementation provides direct access to the text in the original document. The detail
view also provides possibilities for the addition and removal of concepts supported by
semantic typing with autocompletion [95].

4.7.6 Sources of Ontologies

The Subject Analysis and Subject Indexing approaches described in the previous sec-
tions require a Controlled Vocabulary in forms of an ontology that provide concepts
for components, functions, and other entities of the underlying machine (cf. Sec-
tion 4.7.2). In the past, such ontologies or comparable information often did not
exist. Nowadays, an ever-increasing number of enterprises follow the idea of Linked
Enterprise Data (cf. Section 2.2.4) and, thus, have ontologies readily available. Com-
panies that have not yet started the semantic integration of their enterprise data
usually still have multiple data sources that allow the derivation of ontological con-
cepts. The following sections give a brief overview of the most prominent examples
of ontology sources in the enterprise context.

The Digital Twin

Today, a lot of companies are driven by the ideas of Digitalization and Industry 4.0.
A central part of these ideas is the availability of a so called Digital Twin, i.e., data
structures that describe components, functions, etc. of respective machines in detail
and are valid across multiple departments and processes in enterprises. These digital
twins can easily be transformed to an ontological representation. The impact and
level of detail of digital twins is underlined by different applications described in
literature:

• Rosen et al. [168] discuss the importance of digital twins for the future of man-
ufacturing.

• Boschert et al. [25] discuss the idea of digital twins under simulation aspects.

• Tao et al. [189] report on digital twins within product design, manufacturing
and service processes.

Master Data / Enterprise Resource Planning

While the idea of digital twins is relatively new, a lot of enterprises maintain Master
Data. Such master data is usually comparable to the idea of the digital twin, con-
centrates, however, on information that is required in Enterprise Resource Planning
systems. Master data usually describes products that are sold and is often closely
coupled to comprehensive bills of materials (BoM) or spare parts lists. Both, origi-
nal master data and attached materials and parts data can usually be transformed
relatively easy into an ontology. Section 7.7 describes the semantification of a corpus
of technical documents using an ontology that has been derived from master data.
Section 7.4 describes the repeated semantification of corpora of technical documents
with concepts derived from spare parts catalogues.

Ontology Learning and Population from Text

The previous sections showed that different sources for ontologies exist in enterprise
software architectures. However, there are still companies that neither maintain dig-
ital twins nor any kind of master data. In such scenarios, ontologies describing ma-
chines must be created from scratch. A lot of established Ontology Learning and
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Ontology Population [34] approaches exist. These approaches try to learn ontology
structures in forms of classes and properties and corresponding instances (popula-
tion) from text. Although the learning and population of ontologies is not part of
the 5-STAR semantification process, the work described in this thesis supports the
Ontology Population task. The increased accessibility of semantified technical docu-
ments can be used for targeted information extraction that is the fundamental basis
for a subsequent Ontology Population step:

• 2-STAR:
The 2-STAR semantification results in classified micro structures (blocks). Tar-
geted Information Extraction can exploit the textual information contained in
certain types of blocks to populate an ontology with instance data. For instance,
headlines or image captions might be a valuable source for ontology concepts.

• 3-STAR:
The 3-STAR semantification yields a hierarchy of macro structures. In technical
documents parts of these structures often represent the hierarchical break-down
of corresponding machines. Thus, the macro structure hierarchy could be tra-
versed in a targeted manner and considered for populating a technical ontology.

• 4-STAR:
The 4-STAR semantification adds information types to different types of docu-
ment structures. As a result, Core Documentation Entities (cf. Section 3.3) like
component overviews or procedures are available. These Core Documentation
Entities are a valuable sources for the derivation of ontological instance data.
Section 7.6 describes in detail the population of large technical ontologies on
basis of discovered Core Documentation Entities in the course of a real-world
project.

4.7.7 Recommended Formats

The representation of the 5-STAR semantification results builds upon the recommen-
dations for 3-STAR (see Section 4.5.6) and 4-STAR (see Section 4.6.5) represen-
tations. The subjects determined using the presented Subject Analysis and Subject
Indexing approaches represent additional metadata for already semantically described
information units. The Dublin Core [109] ontology provides the dc:subject property
that can be used for the semantic definition of determined subjects. Listing 4.9 is
an extension of Listing 4.8 that shows the addition of metadata for representing the
determined subjects (componentA). This finally represents the information required
for 5-STAR technical documentation. The semantic representation gives access to
structural components on a reasonable level, allows to filter structural components
according to their information type, and provides subject information that enables a
problem-oriented access.
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< http :// pur l . org /company/book/ v e r s i o n / chapter / s e c t i on >
r d f : type : In format ionUnit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource

" sample . pdf ? page =3 .2 -4 .7 "@en ,
" b e i s p i e l . pdf ? page =3 .5 -5 .2 "@de ;

: h a s T i t l e
" Example Macro St ruc ture "@en ,
" B e i s p i e l Makrostruktur "@de ;

: hasInfoType : Repair ;
dc : s u b j e c t : componentA .

Listing 4.9 | 5-STAR data in RDF format.

4.7.8 Practical Recommendations

The presented approaches to Subject Analysis and Subject Indexing as well as the pre-
sented interactive review tool for semantic annotations have been successfully applied
in a series of industrial projects. This sections gives some practical recommendations
for the successful application of the presented approaches. The presented approaches
are intentionally designed to be rather knowledge-intensive. Hence, the key to a
well-performing Subject Analysis and Subject Indexing is the targeted consideration
of available domain knowledge. This includes the consideration of available term
sources, structured information and relations between single data sets. Additionally,
technical writers should be interviewed in order to identify micro structures that
should be preferred during the Subject Analysis.

4.7.9 Related Work

Topic Analysis is a relatively wide field of research and is strongly influenced by
Document Classification and Document Clustering approaches. Notable approaches
exist in particular among latent methods, i.e. topics are not expressed in form of
explicit concepts but as a set of key terms. Prominent examples are Latent Dirichlet
Allocation (LDA)[20] and Latent Semantic Analysis (LSA)[51]. In the presented
approach the goal is the identification of a concrete (or explicit) concept, so the
latent approaches do not fit for the problem. Efforts have been made to make the
topics discovered by the latent approaches more explicit, e.g. Ramage et al. [161]
proposed Labeled LDA that constraints LDA by defining one-to-one correspondence
between LDAs latent topics and user defined tags. Andrzejewski and Zhu [2] proposed
the usage of supervision in form of Topic-in-Set knowledge to improve the recovery
of original topics using LDA. Chemudugunta et al. [38] proposed the combination
of semantic concepts and unsupervised statistical learning to tag web pages with
con-cepts from a known set of concepts without the need for labeled documents.
Regarding the deduction of explicit topics, Explicit Semantic Analysis [71] is a well-
known approach.

Concerning the review of semantic annotations the authors are not aware of a
comparable tool for the review of the 5-STAR semantification results. Ontosophie [36]
is a system for the population of event ontologies and uses supervised machine learning
for learning extraction rules. These rules also compute a confidence value, which is
used to determine whether a human reviewer needs to accept extracted information.
The idea of the presented review tool is to guide a human reviewer through an entire
book and highlight critical annotations for rapid correction.
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4.8 Summary and Contributions
Large corpora of technical documents that are not semantically prepared still exist
in many companies. This limits their usage in state-of-the-art information systems.
This is a severe problem as missing data quickly destroys the acceptance of novel infor-
mation systems. Hence, there is a fundamental need for migrating legacy documents
to formats that are compatible with modern information systems.

This chapter introduced a novel and holistic process that is able to transform doc-
uments in legacy formats like PDF to semantic representations. The holistic process
is based on five consecutive steps that build upon each other. Existing methods that
can be employed to realize the processing steps have been presented. Where necessary
and reasonable novel approaches have been introduced. These novel approaches are
especially tailored to exploit the characteristics of technical documents as presented
in Section 2.1.1.

The 1-STAR semantification (see Section 4.3) presented established approaches
from the fields of Document Layout Analysis and discussed different target formats.
The 2-STAR semantification (see Section 4.4) introduced a novel micro structure clas-
sification approach. This classification approach builds upon the fact that corporate
style guides usually fix the appearance of technical documents for a specified period
of time. Additionally, the approach takes uncertainty into account, which might oc-
cur as formatting can be inaccurate. An interactive knowledge acquisition tool that
guides the creation of required classification knowledge has also been proposed for
the 2-STAR semantification. The 3-STAR semantification (see Section 4.5) intro-
duced approaches for recovering macro structure hierarchies of technical documents
on basis of 2-STAR data. Additionally, similarity metrics have been discussed that
support deduplication and aligning documents in multilingual corpora. The similar-
ity metrics discussed especially consider the characteristics of technical documents.
The 4-STAR semantification (see Section 4.6) presented Automatic Document Classi-
fication approaches which are employed to classify single macro structures (modules)
with respect to information types. Finally, novel Subject Analysis and Subject In-
dexing approaches have been presented for realizing the 5-STAR semantification (see
Section 4.7). The presented approaches aim on adding concepts from an ontology as
topical metadata to single macro structures (modules). This makes the respective
modules usable in state-of-the-art semantic information systems. The approaches are
knowledge-based and exploit domain knowledge concerning both the characteristics of
technical documents in focus and the underlying machines. An interactive review tool
for 5-STAR technical documents has also been proposed, which aims on supporting
optional review processes.

The novel and holistic semantification process has already been employed in sev-
eral industrial projects. The experiences gained have been described in forms of
practical recommendations for each semantification step. Additionally, each seman-
tification step presents reasonable formats for the representation of the semantified
technical documents.
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Knowledge is of no value unless you
put it into practice.

Anton Chekhov

5.1 Overview
In this chapter, a 5-STAR semantification tool box is presented. The tool box sup-
ports the application of semantification knowledge and methods in an integrated
and extensible cloud-based environment called CAPLAN (see Section 5.3). The de-
velopment of required semantification knowledge is aided by an interactive knowl-
edge acquisition tool called TEKNO Studio (see Section 5.4). The results of the
5-STAR semantification process can be reviewed using a dedicated Review Tool (see
Section 5.5).

5.2 Distinction: Existing 1-STAR Semantification Tools
Sections 5.3–5.5 describe tools that have been developed within the scope of this
work. CAPLAN (see Section 5.3) is a cloud-based architecture that supports seman-
tification tasks and provides reference implementations of the described semantifi-
cation approaches. The focus of CAPLAN and its predefined processors is on the
2-STAR, 3-STAR, 4-STAR and 5-STAR semantification steps. TEKNO Studio (see
Section 5.4) is a tool that supports the knowledge acquisition of 2-STAR classification
knowledge. A dedicated review tool (see Section 5.5) guides the (optional) review of
5-STAR technical documentation.

The 1-STAR semantification step is primarily concerned with Document Layout
Analysis tasks (cf. Section 4.3.3). Although it is the fundamental basis for the
subsequent processing, the Document Layout Analysis task is not specific for technical
documents. Additionally, a lot of previous work exists in this field. Therefore, this
work considers and recommends the following existing tools and utilities for the 1-
STAR semantification step:

• OCRmyPDF: For processing scanned images (Optical Character Recognition)
this work refers to OCRmyPDF1 that is based on the tesseract library2.

• pdf2xml: For processing textual PDF documents this work uses the pdf2xml3
utility that converts PDF documents into an XML representation providing
access to pages, blocks and tokens.

The tools developed within the course of this work (especially CAPLAN and TEKNO
Studio) are able to import the results of OCRmyPDF and pdf2xml for the subsequent
semantification steps.

1https://github.com/jbarlow83/OCRmyPDF
2https://github.com/tesseract-ocr/
3https://github.com/kermitt2/pdf2xml
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5.3 Using Semantification Methods: CAPLAN4

CAPLAN is a cloud-based architecture for the design and application of semantifica-
tion methods. It is designed to enable a broad field of users to employ the presented
semantification approach. Additionally, it is based on an extensible software archi-
tecture that allows for the easy extension of additional semantification modules. As
semantification projects usually have to cope with large data-sets scalability is an
important success factor. Thus, CAPLAN is designed to be runnable in high perfor-
mance / big data environments.

Many colleagues and students of denkbares GmbH were involved in this im-
plementation project. The development of CAPLAN was supported by the Bun-
desministerium für Wirtschaft und Energie (BMWi) under the grant ZIM ZF4172701
“APOSTL - Accessible Performant Ontology Supported Text Learning”.

Section 5.3.1 first summarizes the requirements for a cloud-based semantification
architecture. In Section 5.3.2, the underlying software architecture of CAPLAN is
sketched. Section 5.3.3 actually presents the implementation results.

5.3.1 Requirements

The development of CAPLAN began with a formal definition of requirements for a
cloud-based semantification architecture. This section briefly summarizes the defined
requirements by categorizing them into accessibility with respect to non-expert users,
scalability to large-scale data sets and flexibility for new project and semantification
requirements. In the following these requirement categories are broken down.

Accessibility

The increasing amount of semantification projects requires that semantification pro-
cesses are accessible for non-experts (with respect to Text Analytics/Natural Lan-
guage Processing). This requires that the architecture is able to hide the com-
plexity of underlying NLP processes. Users without expert knowledge in Natural
Language Processing should be able to configure the semantification process on an
abstract level without having to know specific details of underlying approaches.

The opening of the semantification process to non-expert users requires that the
architecture provides documentation for each of the underlying process steps. The
documentation for each process step has to state clearly what data in which format
is required as input and which results can then be derived from this data as output.

The generated data should be provided with provenance and versioning in-
formation that states clearly how (which method and parametrization) and when
the data has been produced. The availability of such information facilitates the re-
producibility of results and the comparison of parameter configurations.

The architecture should also provide ways to examine generated results on a
high level. Therefore, data visualization techniques should be a vital element in the
architecture to open the assessment of the results to a wide user range. Additionally,
interactive review tools should allow users to easily correct the generated results.

Another aspect of accessibility affects the representation of the underlying data.
Due to their subsequent usage in semantic applications all (intermediate) results

4The contents of this have already appeared in a preliminary version in the following published
article: Sebastian Furth, Volker Belli, Alexander Legler, Albrecht Striffler, and Joachim Baumeister.
“CAPLAN: An Accessible, Flexible and Scalable Semantification Architecture”. Proceedings of the
Conference "Lernen, Wissen, Daten, Analysen", 2016 [69].
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should have a semantic representation, i.e. all data elements should at least be
identifiable using an URI and provide type information.

Scalability

Scalability has a two-fold meaning in the context of semantification architectures. It
is primarily concerned with the support of large scale data processing (Big Data),
i.e., the architecture should be prepared to be employed in high performance com-
puting environments for high throughputs. This requires that underlying algorithms
are available for Big Data processing frameworks like Apache Spark [134] and the
underlying data model supports distributed data storages like Hadoop’s HDFS [180].

However, scalability in this context is also concerned with the aspect that a wide
range of users should be able to use the semantification architecture. Therefore, the
architecture should be realized as Business Process as a Service. A business
process as a service is typically realized as a cloud service. In the context of a seman-
tification architecture this means that the whole semantification process is available
as web application or API.

Flexibility

A semantification process typically comprises a series of complex operations that suc-
cessively prepare a resource for the usage in a semantic information system. However,
in some cases some of the operations are not necessary, because data is already pre-
pared to a certain extend (cf. 5-STAR maturity schema introduced in Section 3.2).
Therefore, users should be able to enter the semantification process at an arbitrary
process step if they can provide data in the necessary format.

Sometimes the semantification process does not have to be necessarily be com-
pleted, e.g., because intermediate results are sufficient for specific application scenar-
ios. Typical examples include specialized Information Extraction tasks that operate
on semantically represented micro structures. Hence, the architecture should allow
to query and export intermediate results.

Although the single steps of semantification processes are usually similar in vari-
ous application scenarios it might be necessary to parametrize, extend, or adapt the
process to new process requirements. Typical scenarios include the existence of a
previously unknown source format or new approaches/parameter configurations for
specific process steps like segmentation, term matching, or subject indexing. Thus,
the architecture shall be extensible, such that new process steps or variants of exist-
ing process steps can easily be integrated. The extensibility should also be reflected
in the data model.

5.3.2 Architecture

In the following a software architecture facilitating the semantification of resources
under the requirements stated in Section 5.3.1 is presented. Therefore, the key com-
ponents of the architecture are introduced.

Components

Referring to the requirements in Section 5.3.1, a semantification architecture should
be accessible, scalable, and highly flexible. The flexibility mainly demands for a high
extensibility and standardized import, export, and processing functionality in all
process steps while accessibility is concerned with hiding complexity from non-experts,
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providing easy-to-use assessment and reviewing functionalities and standardized data
representations. Thus, the proposed architecture (see Figure 5.1) is composed of
interweaved modules, that are represented as quintuples Q = {D, I, P , A, R}, with:

• Data Nodes D: Contain the data and a data description for the process
step, e.g., a description of document structures and instance data for concrete
documents.

• Importers I: Provide and document import functionalities for data nodes,
i.e., describe possible import formats and handle the import of data nodes from
raw/source data. Also create provenance information for the imported data.

• Processors P : Process data nodes in order to produce new or update existing
data nodes respectively. Also create provenance information for the generat-
ed/updated data.

• Assessments A: Provide possibilities/metrics/visualizations to assess a set of
data nodes.

• Reviews R: Allow manually changing/reviewing existing data nodes.

DI R
A

P

Data Node
Importer

Reviews

Assessments

Processors

JSON-
LD

JSON-
LD

JSON-
LD

DI R
A

P

DI R
A

P

Figure 5.1 | Key components of the Semantification Architecture.

All elements of the quintuple except the data nodes are optional. A semantification
system can be built by combining multiple modules to form a complete process where
each module encapsulates specialized functionality for a certain process step.

The interconnection of the encapsulated functionalities is realized through the
data nodes. All data nodes are stored in a common schema-less data base (NoSQL)
and are from there accessible from all modules. This way, the output of one module
can be used as data source for another module which itself can produce new data
nodes and so on. Additionally the usage of a schema-less NoSQL data base ensures
the extensibility of a system, as new data can be stored without constraints.

The interconnection of semantification modules into a holistic process is explained
by the example of a 5-STAR semantification for PDF documents. Starting with a
module that imports PDF documents, a couple of semantification steps are applied
that finally yield 5-STAR Linkable Technical Documents. The process is realized
using the following semantification modules.

1. PDF Import: An importer processes raw PDF documents and stores them as
data nodes.
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2. PDF Document Layout Analysis: A processor applies Document Layout
Analysis methods to the imported data nodes. The processor stores its results
in the respective data nodes.

3. PDF Logical Document Structure Recovery: An additional processor
exploits externally provided semantification knowledge to perform Logical Doc-
ument Structure Recovery task. This processor creates new data nodes that
represent the recovered document micro structures like headlines or paragraphs.

4. Macro Structure Recovery: A subsequent processor exploits the data nodes
created by the preceding processor. The data nodes representing head lines are
used to recover the macro structure hierarchy of the document. On basis of the
recovered macro structure the processor represents new data nodes, s.t. chapter,
section and subsection is represented by a respective node. The processor is
based on the methods described in Section 4.4.3.

5. Term Matching: A term matching processor configured with a list of relevant
terms scans the data nodes created by the preceding processor for term occur-
rences. Discovered occurrences are stored as complementary data nodes. These
complementary data nodes have a bi-directional connection to the data nodes
representing chapters, sections, or subsections.

6. Subject Indexing: A subject indexing processor accesses the data nodes rep-
resenting chapters, sections, or subsections and the linked term match data
nodes. Based on the information it determines topics for the segments and
stores them as new/complementary data. The processor alternatively uses the
Subject Indexing methods described in Section 4.7.3 and Section 4.7.4.

7. 5-STAR Assessment: An assessment component visualizes the subject index-
ing result, e.g. highlights nodes with many or few subject annotations.

8. Subject Indexing: Based on the assessment, the parametrization of step 5
may be revised and step 5 repeated. With stored provenance information mul-
tiple outcomes can be compared and the most appropriate one selected.

9. 5-STAR Review: A review component allows to manually edit subject anno-
tations, e.g. remove unnecessary or add missing subjects respectively.

The (intermediate) results, namely macro structures (modules), term matches and
annotated subjects can be exported for subsequent usage in other systems. Please
note that only the first three processing steps are specific for documents in PDF
format and aim on producing a format independent data node representation of a PDF
document. The remaining modules are generally applicable to data nodes important
from any source formats.

5.3.3 Implementation

CAPLAN is a web application written in Java using the popular framework Google
Web Toolkit5. The software runs as web application in a servlet container like Apache
Tomcat6 and a Java JRE7 in version 8. The server can be installed on all operating
systems for which the required JRE is available. Users need a web-browser in order

5http://www.gwtproject.org/
6http://tomcat.apache.org/
7http://www.oracle.com/technetwork/java/index.html

http://www.gwtproject.org/
http://tomcat.apache.org/
http://www.oracle.com/technetwork/java/index.html
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to access the web application. The application is currently optimized for usage with
browsers based on WebKit8 like Google Chrome9. The following sections first give
some implementation details regarding the data model and the module mechanism.
Then an overview of the Graphical User Interface illustrates the usage of CAPLAN.

Data Model

The complete architecture builds upon a very flexible schema-less data model. The
data model is implemented on basis of the document-oriented NoSQL data base Mon-
goDB10, where documents are the basic storage entity. In order to abstract from
the concrete NoSQL implementation Eclipse TopLink11 is used for object-relational
mapping on the basis of the Java Persistence API (JPA)12. The data nodes are re-
quired to be compliant with JSON-LD [186] as storage format which is standardized,
light-weight, well-supported in common data base systems, and allows to use explicit
semantics. The availability of JSON-LD also allows to export (intermediate) results
as standardized ontologies [89, 31]. Furthermore, JSON(-LD) is compatible with com-
mon high performance data bases that work upon Apache Hadoop, e.g. MapR-DB.
Importers I and processors P have to enhance the JSON-LD documents by prove-
nance information based on the PROV-O [116] ontology.

Module Mechanism

The architecture is based upon the idea that a semantification system can be com-
posed of modules that encapsulate specialized functionality. Besides a description of
the data nodes (if appropriate as JSON-LD context), a module can define importers
I, processors P , assessments A, and reviews R. For the integration in the frame-
work each of these components must provide specific information. Additionally, each
component might define additional parameters that are necessary for configuration.
Therefore, the Java Plug-In Framwork JPF13, an OSGi-like [151] plugin framework,
is used.

Considering the scalability requirements modules should also be able to report
whether they are capable of running in high performance environments. Therefore,
modules should express their high performance capability in their plugin definitions.
If they claim to be high performance capable, they are required to realize their func-
tionality using methods of a high performance computing framework like Apache
Spark [134] or Apache Flink [1].

Graphical User Interface (GUI)

As one requirement is a high accessibility for non-experts the framework provides a
graphical user interface. The graphical user interface guides users through existing
semantification processes and allow for the creation of new/customized processes.
Therefore, some components of the modules like importers or processors are presented
in a standardized way to allow the configuration by the user. Other components like
assessments or reviews require a specialized user interface. Hence, these components
must also provide user interface definitions as part of a module.

8https://webkit.org/
9https://www.google.de/chrome/

10https://www.mongodb.com/
11http://www.eclipse.org/eclipselink/
12https://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html
13http://jpf.sourceforge.net/

https://webkit.org/
https://www.google.de/chrome/
https://www.mongodb.com/
http://www.eclipse.org/eclipselink/
https://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html
http://jpf.sourceforge.net/
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Data Node Types

A semantification process usually has to cope with different resources ranging from
terms that are concealed in term data bases over concepts from a Linked Enterprise
Data graph to actual documents. In order to structure the semantification process the
graphical user interface of CAPLAN14 separates the semantification tasks according
to the underlying node type. Figure 5.2 gives an overview of the different node types

Figure 5.2 | CAPLAN: Overview of supported data node types.

in CAPLAN. At the time of writing supported node types in CAPLAN are:

• Resources: All kinds of physical resources, normally files in a file system.
Resource nodes are used to handle basic tasks like downloading, moving, or
cleaning files. An example for a resource is a physical PDF file stored in a local
or remote file system.

• Documents: Resources that actually represent documents get imported as
document nodes. Document Nodes already abstract from the actual file format
and instead use a generic representation. This representation gives access to
the underlying text and (hierarchical) relations to other document nodes. This
way hierarchies of macro structures (chapters) can be represented.

• Information Units: Information Units are closely related to document nodes
and usually represent a reasonable combination of multiple document nodes. A
typical application example is a semantification process that needs to combine
all language variants of a chapter to a single information unit.

14The ideas of CAPLAN have been implemented in a commercial product of denkbares GmbH
that is called Mate Studio 4.0. The name is referring to an accompanying semantic information
system called Service Mate.
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• Concepts: Concepts represent nodes from a Linked Enterprise Data graph
or more generally an available ontology. CAPLAN allows to import concepts
from different sources and makes them available to other processing steps (e.g.
Subject Indexing modules).

• Terms: Analogous to concept nodes CAPLAN also supports the representation
of terms. In contrast to concepts they do not necessarily need to be identifi-
able with an URI. Terms can be imported from different sources and are then
available for other processing steps. A typical usage example is an Entity Recog-
nition processor that identifies all occurrences of a term in document nodes.

Pipelines and Summaries

Figure 5.3 | CAPLAN: Modules handling Term Data Nodes.

The views of the node types follow the same basic structure. In the upper part of the
view the pipeline is presented in forms of configured modules. The lower part of the
view provides functionalities to extend the current pipeline with additional modules.
Each semantification module is represented by a respective card. If the pipeline
has already been executed the status of the last processing is indicated. Figure 5.3
shows a pipeline for the import of terms and a subsequent Entity Recognition (term
matching) step based on these terms.
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Figure 5.4 | CAPLAN: Modules handling Document Data Nodes.

Green cards indicate that the module has been executed successfully. Cards that
have a yellow background color indicate that the module has been executed but minor
inconsistencies have been discovered. Figure 5.4 shows a pipeline that is processing
document nodes that originated from PDF documents. The pipeline contains a mod-
ule that tries to determine the language of a document for which an inconsistency
has been detected during the last run.

Figure 5.5 | CAPLAN: Error in Semantification Module.

Red cards indicate that the processing of the respective semantification module
failed. Detailed messages allow the user to examine and evaluate the discovered errors.
Figure 5.5 shows an extended term processing pipeline where an error occurred while
trying to import terms from a TBX file.
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Module Library

Figure 5.6 | CAPLAN: Library of Semantification Modules.

The assembly of semantification pipelines is an important aspect for designing se-
mantification projects. Therefore, CAPLAN exploits the plugin information of each
semantification module on the Java classpath to provide the user an always up-to-date
catalogue of available semantification modules. The catalogue is filtered according
to the current node type. Figure 5.6 shows the catalogue of available modules for
handling term nodes.

Figure 5.7 | CAPLAN: Configuration of a Semantification Module.

The catalogue allows to quickly add a semantification module to the current
pipeline. Therefore, the user has to select the respective add button of a listed
module. Afterwards the module gets automatically added to the current pipeline.
Like all other modules the newly added module can be configured by the user (see
Figure 5.7. Basic configuration functionalities comprise the removal of the respective
module from the pipeline, the duplication of the respective module from the pipeline,
as well as the parametrization of the module.
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Figure 5.8 | CAPLAN: Parametrization of a Semantification Module.

For the parametrization of a module a generic view is available that reads all con-
figuration parameters as well as allowed parameter values from the module definition.
Figure 5.8 shows the configuration dialog for a module that imports terms from TBX
files.

5.4 Developing Semantification Knowledge:
TEKNO Studio

The cloud-based semantification architecture CAPLAN enables users to realize seman-
tification projects. However, for some processing steps domain-specific knowledge is
required. While the knowledge acquisition is trivial for already formalized knowledge
sources like ontologies it is harder for rather unstructured base data. This is espe-
cially true for classification knowledge that is required for the 2-STAR semantification.
The 2-STAR semantification aims on detecting and classifying micro structures. Sec-
tion 4.4.3 proposed a classification approach based on Set-Covering Models as this
(1) exploits the fact that technical documentation is rather constant with respect to
formatting and (2) handles uncertainty which might occur due to inconsistent usage
of formatting rules.

Although Set-Covering Models are a catchy knowledge representation compared to
other forms, it remains hard to define concrete Set-Covering relations. The definition
of Set-Covering relations usually requires to define specific values for features. In
the context of formatting information this might be exact font size or font name or
height and with of text blocks. The PDF format does not give direct access to these
information. Hence, TEKNO Studio, a tool that supports the creation of Set-Covering
Models from PDF documents, has been developed.
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TEKNO Studio is based on several existing libraries. The library d3web15 pro-
vides implementations of strong-problem solving methods, the basic object model for
Set-Covering models, and the corresponding classification mechanism. The library
LA-PDFText16 is able to identify contiguous text blocks in PDF documents and is
employed in TEKNO Studio for blockification purposes. LA-PDFText and the visu-
alization component of TEKNO Studio make usage of functionalities of the JPedal
library17, which supports the handling and visualization of PDF documents in Java.
TEKNO Studio provides a graphical user interface that is based on JavaFX18 and
follows the Model-View-Presenter architectural pattern.

5.4.1 Workflow

TEKNO Studio is a tool that accompanies the CAPLAN semantification environment
for developing required classification knowledge. The combined workflow of CAPLAN
and TEKNO Studio can be sketched as follows:

1. Knowledge Acquisition: The knowledge acquisition, i.e. the definition of Set-
Covering Models for a corpus of technical documents is performed in TEKNO
Studio.

2. Knowledge Export: The acquired knowledge gets exported in form of a com-
piled knowledge base in d3web format.

3. Knowledge Import: CAPLAN contains a resource module that is able to
import d3web knowledge bases. The imported knowledge bases are then repre-
sented as resource nodes in CAPLAN.

4. Blockification: CAPLAN contains a blockification module for documents in
PDF format that use the same blockification mechanism as TEKNO studio.
The blockification mechanism is based on LA-PDFText as stated before. The
discovered blocks are represented as micro structures (document nodes) in CA-
PLAN.

5. Classification: CAPLAN contains a classification module for micro structures.
This classification module loads the classification knowledge from the already
imported d3web knowledge base. Then each block gets classified in a d3web
problem solving session according to the knowledge base. Therefore, CAPLAN’s
classification module creates findings (answers to questions in d3web) in each
problem solving session that represent the formatting features of the micro
structure in focus. Then d3web uses the Set-Covering knowledge to determine
the most appropriate class(es) for the block.

15https://www.d3web.de
16https://github.com/BMKEG/lapdftext
17https://www.idrsolutions.com/jpedal/
18http://www.oracle.com/technetwork/java/javafx/overview/index.html

https://www.d3web.de
https://github.com/BMKEG/lapdftext
https://www.idrsolutions.com/jpedal/
http://www.oracle.com/technetwork/java/javafx/overview/index.html
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5.4.2 Implementation

Figure 5.9 | TEKNO: Blockification and Block Selection.

TEKNO Studio operates with the classification object in focus, i.e. the whole func-
tionality is focused on the technical document. Hence, the main view is filled with a
preview of the currently loaded document. Buttons allow the page-wise navigation in
the document. On the left side a thumbnail view provides quick access to other doc-
uments. TEKNO Studio automatically performs the blockification task for a loaded
document. Discovered blocks on the current page get indicated using yellow boxes
(see Figure 5.9). All blocks can be selected by the user by performing a left click. A
right click on a block deselects it. Selecting multiple blocks is possible and usually
reasonable. Selected blocks are indicated by orange boxes (see Figure 5.9).

TEKNO Studio provides the functionality to automatically create a Set-Covering
Model from the currently selected blocks. Therefore, the user has to choose one of the
project-specific classes from the drop-down menu on the right side of the graphical user
interface (see Figure 5.10). When a class has been selected TEKNO automatically
determines a model with reasonable Set-Covering relations for the selected blocks.
The automatically created Set-Covering Model can be manually edited by the user.
Therefore, existing Set-Covering relations can be adjusted or removed. The addition
of new Set-Covering relations is also possible. Features are predefined and need to
be selected from a drop-down menu. Feature values can be defined by the user. It is
to note that TEKNO Studio automatically performs a consistency check for defined
feature values. For debugging purposes the feature values of the currently selected
blocks get displayed next to each set-covering relation. Each change automatically
results in a recompilation of the underlying knowledge base. Thus, manual saving
operations by the user are not necessary.

TEKNO Studio provides the user the possibility to test the defined classification
knowledge against the currently loaded document. The classification gets started
using a dedicated run button next to the drop-down menu on the right side of the
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graphical user interface. TEKNO Studio then performs the same classification pro-
cedure as the respective CAPLAN processor, i.e. starting a d3web problem solving
session for each block and using the results as class assignment. All blocks that were
classified are indicated by a red surrounding box that is labeled with the respective
class.

Figure 5.10 | TEKNO: Create a Set-Covering Model.

Figure 5.11 | TEKNO: Preview of classification results.
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5.5 Reviewing Semantification Results: Review Tool
The processing of technical documents using CAPLAN and TEKNO finally yields 5-
STAR Linkable Technical Documents. However, the processing results might contain
inconsistent, missing, or wrong links to the Linked Enterprise Data graph. Depending
on the required quality criteria a manual review of the processing results is necessary.
Therefore, a dedicated review tool for 5-STAR semantification results has been devel-
oped (See Figure 5.12).

Figure 5.12 | Review Tool: Overview.

The review tool is able to load 5-STAR semantification results in RDF format,
which is the standard output of CAPLAN. The review tool is designed as web appli-
cation embedded in a desktop application using the servlet container Jetty19. On the
server side Java servlets provide the business logic. The client side code is based on
standard HTML, CSS, and JavaScript.

The review tool is assembled from four views:

1. Status: The Status View provides basic information about the document, the
review status, and the reviewer.

2. Macro Structure Hierarchy: This view displays the recovered macro struc-
ture hierarchy of the currently reviewed document.

3. Visual Report: A visual report allows to quickly identify wrong, inconsistent
or missing links.

4. Details: This view allows the reviewer to make changes to the respective se-
mantification results.

In the following the single views are described in more detail.
19https://www.eclipse.org/jetty/

https://www.eclipse.org/jetty/
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A central element of the 5-STAR review tool is a tree view (see Figure 5.13) that
visualizes the recovered macro structure hierarchy. The user can navigate through
this hierarchy by clicking the respective tree view elements. A selection of an element
of the tree view updates the contents of the visual report and the details view. The
review tool automatically saves the last selection in the review tool. This enables the
user to continue his work after the review tool had been closed.

Figure 5.13 | Review Tool: Macro Structure Hierarchy.

Reviewing every single data entry in the recovered 5-STAR data would require a
massive amount of time. Therefore, the review tool provides a visual report. This
visual report displays the semantic similarity of the annotated concepts from the
underlying Linked Enterprise Data graph. As concept annotations usually follow
characteristic patterns a reviewer can quickly identify outliers.

Figure 5.14 | Review Tool: Visual Report.
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Figure 5.14 shows a visual report that illustrates a characteristic staircase pattern.
The pattern is based on the fact that in technical documents successive chapters have
the same or similar topics, e.g. chapters that describe the disassembly, the repair and
the assembly of a component. Links (concept annotations) that violate the pattern
are candidates that might need manual review and adaption. For the manual adaption
of single entries a details view provides the relevant information. A click on a data
point in the visual report selects the respective entry in the details view.

Figure 5.15 | Review Tool: Editing Macro Structure Titles.

The details view allows to edit all relevant 5-STAR information. Figure 5.15
shows the editing of a macro structure title. Figure 5.16 shows the actual editing of
semantic annotations (links). Existing annotations can be removed. For the addition
of new annotations a Semantic Autocompletion [95] component supports the user by
selecting the correct concept from the Linked Enterprise Data graph. The details
view additionally provides quick access to the original document, i.e. a click on the
document icon opens the document at the position that is described by the macro
structure.

Figure 5.16 | Review Tool: Annotation Editing supported by Seman-
tic Typing.

5.6 Summary and Contributions
This chapter presented a tool box that supports the 5-STAR semantification approach.
The tool box consists of three applications. The most important tool is CAPLAN
which is a cloud-based semantification architecture that aims on enabling the acces-
sible and scalable realization of semantification projects. Therefore, it provides a
clean graphical user interface that is intended to be used by non-expert users. Users
can assemble semantification pipelines from a library of existing modules. A plu-
gin mechanism allows for the easy extension of CAPLAN with new semantificaiton
modules.

The second application is TEKNO Studio. Unlike CAPLAN that tackles the
whole semantification process TEKNO Studio is a tool that is especially designed to
support the knowledge acquisition for the 2-STAR semantification step. Therefore,
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an interactive environment displays PDF documents and allows to create and debug
classification knowledge in forms of Set-Covering Models.

Finally, a dedicated review tool allows to review and edit the results of the 5-
STAR semantification process, i.e. results created by the CAPLAN application. The
review tool is designed to support a targeted review by guiding a human reviewer to
potentially inconsistent data entries. Therefore, the semantic similarity of semantic
annotations is visualized in a report that allows to easily identify outlier concepts.
Elaborated editing features allows the user to quickly edit inconsistent entries.
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Chapter 6

Hands On: Semantification by
Example
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The previous chapters introduced the 5-STAR semantification process (cf. Chap-
ter 4) and its implementation in TEKNO Studio and CAPLAN (cf. Chapter 5). This
chapter covers an extended example that describes details of the particular semantifi-
cation steps and thus serves as a hands on guide for semantification projects. The
detailed description of each semantification step contains source and input data as
well as used tools and required configurations. Additionally, the generated output
will be listed for each processing step.

6.1 Source Data and Semantification Goal
This example operates upon a minimum but representative partition of the S1000D
data set (cf. Section 7.2). Hence, a single chapter (”Steering – Description of how it
is made”) of the S1000D Bike manual is semantified in the course of this chapter. The
respective chapter (see Figure 6.1) is available in PDF format and contains a variety
of micro structures (headlines on different levels, table of contents, etc.) and macro
structures (chapter, sections, and subsections). However, the PDF document does
not contain any semantic information, i.e., the respective structures are not accessible
and not semantically annotated. The goal of this example is to show the successive
transformation of these locked up sections (“Steering”) and subsections (“Handlebar”,
“Headset”, and “Stem”) into information typed and semantically annotated modules
(information units). The resulting improved accessibility is demonstrated using the
state-of-the-art information system “Service Mate”.

Figure 6.1 | Hands On: Source PDF.
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6.2 1-STAR: Document Layout Analysis
The TEKNO ontology describes document structures on different levels of detail
(nano, micro, and macro structures) that successively improve the accessibility of doc-
uments (cf. Section 3.2). These structures are recovered bottom up, beginning with
nano structures. As the PDF format does not provide structured access to any kind of
document components the first step comprises the recovery of nano structures (tokens)
and untyped micro structures (blocks). The recovery is realized using methods from
Document Layout Analysis (cf. Section 4.3.3). As stated in Section 4.3.6 a variety of
utilities for Document Layout Analysis exists. This example uses pdf2xml [52] that
is available for all major operating systems as command line utility. The pdf2xml
utility converts the sample PDF document to an XML representation. Listing 6.1
shows the respective command and the recommended configuration, which exports
the full name of fonts and already clusters single text tokens in blocks.

pdf2xml −fullFontName −b locks <pdf> <xml>

Listing 6.1 | Hands On: Executing pdf2xml.

The command generates a file in pdf2xml XML format (cf. Section 4.3.4). This file
contains information for accessing pages, blocks and tokens (see Listing 6.2). Fig-
ure 6.2 shows an alignment with elements from the original document.

<?xml v e r s i o n ="1 .0" encoding="UTF-8" ?>
<DOCUMENT>

. . .
<PAGE width=" 595 " he ight=" 842 " number=" 105 " id="p2 " >

<BLOCK id=" p105_b18 " >
<TEXT id=" p105_t24 " x=" 70 .87 " y=" 532.698 " >

<TOKEN id="p105_w52" font - name=" h e l v e t i c a - bold "
symbol ic=" yes " f ixed - bold=" yes " i t a l i c=" no "
font - s i z e=" 14 " font - c o l o r="#000000"
x=" 70 .87 " y=" 532.698 " > 1 </TOKEN>

</TEXT>
<TEXT id=" p105_t25 " x=" 127 .56 " y=" 532.698 " >

<TOKEN id="p105_w53" font - name=" h e l v e t i c a - bold "
symbol ic=" yes " f ixed - bold=" yes " i t a l i c=" no "
font - s i z e=" 14 " font - c o l o r="#000000"
x=" 127 .56 " y=" 532.698 " > S t e e r i n g </TOKEN>

</TEXT>
</BLOCK>
<BLOCK id=" p105_b19 " >

<TEXT x=" 127 .56 " y=" 562 .4 " id=" p105_t26 " >
<TOKEN id="p105_w54" font - name=" h e l v e t i c a "
bold=" no " i t a l i c=" no " font - s i z e=" 10 "
font - c o l o r="#000000" x=" 127 .56 "
y=" 562 .4 " >The</TOKEN>
<TOKEN id="p105_w55" font - name=" h e l v e t i c a "
bold=" no " i t a l i c=" no " font - s i z e=" 10 "
font - c o l o r="#000000" x=" 147 .57 "
y=" 562 .4 " > s t e e r i n g </TOKEN>

. . .
</TEXT>

</BLOCK>
. . .

</PAGE>
</DOCUMENT>

Listing 6.2 | Hands On: pdf2xml XML (1-STAR).
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Page

Block
Block

Figure 6.2 | Hands On: 1-STAR results.

6.3 2-STAR: Logical Document Structure Recovery
The 1-STAR semantification described in the previous section resulted in an XML
representation of the source document that already gives access to basic document
structures like pages, untyped blocks and single tokens. However, a targeted access to
certain document structures, that might be used for improving textual search indexes
or information extraction tasks (cf. Section 3.2), is not yet possible. This requires
the typing/classification of yet untyped structures.

This work described a knowledge-based approach for Logical Document Structure
Recovery (cf. Section 4.4.3) that focuses on the classification of document structures
using Set Covering knowledge. The described approach relies on the homogeneity of
technical documents with respect to structuring and formatting, i.e., defining classi-
fication knowledge using a small amount of example structures and then using the
acquired knowledge to classify all structures in a corpus. Thererfore, the interactive
knowledge acquisition tool TEKNO Studio (cf. Section 4.4.4 and Section 5.4) is
used to define classification knowledge for relevant document structures. The follow-
ing paragraphs describe the acquisition of respective classification knowledge using
TEKNO Studio and discuss the resulting Set Covering models in detail.

6.3.1 TEKNO Studio: Knowledge Acquisition

In practice not all document structures need to be classified. Usually it is sufficient
to classify the structures that are required for further processing. As the further
processing aims on the recovery of macro structures, the following structure types are
considered relevant for this example:

• Heading 1, e.g. “Steering”

• Heading 2, e.g. “Description of how it is made”
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• Heading 3, e.g. “Steering”

• Heading 4, e.g. “Handlebar”, “Headset”, and “Stem”

In order to define classification knowledge for the aforementioned types the PDF
source document and the generated XML representation (1-STAR) are used as in-
put for TEKNO Studio. TEKNO Studio displays the loaded document page-wise
and marks untyped micro structures (1-STAR information) with yellow boxes. Then,
the user selects examples of the respective structures and uses TEKNO Studio to
automatically generate a suggestion for a corresponding Set Covering model (cf. Sec-
tion 4.4.3).

TEKNO Studio allows the user to edit and test the resulting classification knowl-
edge. Therefore, the user simply clicks on the “run” button, which triggers the classi-
fication of all blocks in the document. Figure 6.3 and Figure 6.4 show the pages from
the example document with classified blocks (depicted in red). This way, classification
errors can be identified and the classification knowledge adjusted accordingly.

Figure 6.3 | Hands On: Typed Micro Structures (1/2).



166 Chapter 6. Hands On: Semantification by Example

Figure 6.4 | Hands On: Typed Micro Structures (2/2).

6.3.2 Classification Knowledge

The generated Set Covering models consist of multiple Set Covering relations that
use a fixed set of parameters that reflect features of document structures. The Set
Covering classification in TEKNO Studio is powered by d3web1. Listing 6.3 shows a
d3web question tree in KnowWE [10] markup that reflects the available features for
Set Covering relations in TEKNO Studio. Most of these features operate upon for-
matting information, which are available from the recovered 1-STAR representation.
These features are implemented as d3web questions and can be of type one choice
([oc]), yes/no ([yn]), text ([text]), and numeric ([num]). Listings 6.4 – 6.7 show the
resulting Set Covering models for the micro structure types “Heading 1”, “Heading 2”,
“Heading 3”, and “Heading 4” in KnowWE markup.

1https://www.d3web.de
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%%Question
Alignment and P o s i t i o n
- Alignment [ oc ]
- - LEFT
- - RIGHT
- - MIDLINE
- I s Al igned with Column Boundaries ? [ yn ]
- I s Column Centered ? [ yn ]
- I s O u t l i e r ? [ yn ]
- I s in Top Hal f ? [ yn ]
- Number o f Line [num]
- I s Header or Footer [ yn ]
- X- Le f t [num]
- X- Right [num]
- Y- Top [num]
- Y- Bottom [num]
- Height [num]
- Width [num]
Font
- Font Name [ t ext ]
- Most Popular Font S i z e [num]
- I s a l l C a p i t a l s ? [ yn ]
- I s most popular f ont m o d i f i e r bold ? [ yn ]
- I s most popular f ont m o d i f i e r i t a l i c ? [ yn ]
- I s most popular f ont in document? [ yn ]
- I s next most popular f ont in document? [ yn ]
Text in Chunk
- Chunk Text Length [num]
- Density [num]
- Height D i f f e r e n c e between Chunk and Document Word [num]
- Contains f i r s t Line o f Page? [ yn ]
- Contains l a s t Line o f Page? [ yn ]
- Chunk Text [ t ex t ]
Document
- Page Number [num]
C l a s s i f i c a t i o n
- Last C l a s s i f i c a t i o n [ t ex t ]

%

Listing 6.3 | Hands On: Set Covering features.

%%Cover ingL i s t
Heading 1 {

Alignment = MIDLINE [ 1 . 0 ] ,
I s most popular f ont m o d i f i e r bold ? = Yes [ 1 . 0 ] ,
I s most popular f ont m o d i f i e r i t a l i c ? = No [ 1 . 0 ] ,
I s Column Centered ? = Yes [ 1 . 0 ] ,
I s in Top Hal f ? = Yes [ 1 . 0 ] ,
Density [ 0 . 9 1 1 ] [ 1 . 0 ] ,
Most Popular Font S i z e [ 1 2 1 2 ] [ 1 . 0 ] ,
Most Popular Font S i z e [ 1 2 1 2 ] [ 1 . 0 ] ,
Font Name = /HELVETICA-BOLD/ [ ! ] ,
Y- Top [93 98 ] [ ! ]

}
@minSupport : 0 .5

%

Listing 6.4 | Hands On: Set Covering model for Heading 1.
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%%Cover ingL i s t
Heading 2 {

Alignment = MIDLINE [ 1 . 0 ] ,
I s Column Centered ? = Yes [ 1 . 0 ] ,
I s a l l C a p i t a l s ? = No [ 1 . 0 ] ,
I s in Top Hal f ? = Yes [ 1 . 0 ] ,
Density [ 0 . 9 1 1 ] [ 1 . 0 ] ,
Most Popular Font S i z e [ 1 2 1 2 ] [ 1 . 0 ] ,
Y- Top [ 122 126 ] [ ! ] ,
Last C l a s s i f i c a t i o n = /Heading 1/ [ ! ] ,
Font Name = /HELVETICA-BOLDOBLIQUE/ [ ! ]

}
@minSupport : 0 .5

%

Listing 6.5 | Hands On: Set Covering model for Heading 2.

%%Cover ingL i s t
Heading 3 {

I s most popular f ont m o d i f i e r bold ? = Yes [ 1 . 0 ] ,
I s most popular f ont m o d i f i e r i t a l i c ? = No [ 1 . 0 ] ,
I s a l l C a p i t a l s ? = No [ 1 . 0 ] ,
Alignment = LEFT [ 1 . 0 ] ,
Font Name = /HELVETICA-BOLD/ [ ! ] ,
Most Popular Font S i z e [ 1 2 1 2 ] [ ! ] ,
X- Le f t [ 1 2 7 1 2 7 ] [ ! ]

}
@minSupport : 0 .5

%

Listing 6.6 | Hands On: Set Covering model for Heading 3.

%%Cover ingL i s t
Heading 4 {

I s most popular f ont m o d i f i e r bold ? = Yes [ 1 . 0 ] ,
I s most popular f ont m o d i f i e r i t a l i c ? = No [ 1 . 0 ] ,
I s Column Centered ? = No [ 1 . 0 ] ,
I s a l l C a p i t a l s ? = No [ 1 . 0 ] ,
Alignment = LEFT [ 1 . 0 ] ,
Font Name = /HELVETICA-BOLD/ [ ! ] ,
Most Popular Font S i z e [ 1 1 1 1 ] [ ! ] ,
X- Le f t [ 1 2 7 1 2 7 ] [ ! ]

}
@minSupport : 0 .5

%

Listing 6.7 | Hands On: Set Covering model for Heading 4.

6.3.3 Output

The result of the classification based on Set Covering models are typed micro struc-
tures. For further processing a typed micro structure representation of the complete
document needs to be exported. A variety of compatible XML formats exists (cf. Sec-
tion 4.4.6). As TEKNO Studio builds upon the LAPDF-text utility [162] the results
are exported in LAPDF-text XML format. Basically, this XML format gives access to
pages (Pages), nano structures (Word) and micro structures (Chunk). Additionally,
the export to this format benefits from the heuristics for reading order determination
that are included in the LAPDF-text utility. Listing 4.3.4 shows an excerpt of the
resulting XML file. In contrast to the 1-STAR export, the micro structures (Chunk)



6.3. 2-STAR: Logical Document Structure Recovery 169

in this XML export have an attribute type that reflects the type of the block. Fig-
ure 6.5 shows an alignment of the 2-STAR results with elements from the original
document.

<Page x1=" 70 " y1="32 " x2="552 " y2="802 " chunkCount=" 45 "
pageNumber=" 105 " wordCount=" 177 " >
. . .
<Chunk x1="283 " y1="96 " x2="339 " y2=" 108 " type=" Heading 1 " >

<Word x1="283 " y1="96 " x2="339 " y2=" 108 "
f ont=" He lvet i ca - Bold " s t y l e=" Bold " > S t e e r i n g </Word>

</Chunk>
<Chunk x1=" 214 " y1=" 124 " x2=" 408 " y2=" 136 " type=" Heading 2" >

<Word x1=" 214 " y1=" 124 " x2=" 291 " y2=" 136 "
f ont=" He lvet i ca - BoldOblique " s t y l e=" Bold " > D e s c r i p t i o n </Word>

<Word x1=" 295 " y1=" 124 " x2="308 " y2=" 136 "
f ont=" h e l v e t i c a - bo ldob l i que " s t y l e=" Bold " > o f </Word>

<Word x1=" 312 " y1=" 124 " x2=" 340 " y2=" 136 "
f ont=" h e l v e t i c a - bo ldob l i que " s t y l e=" Bold " >how</Word>

<Word x1=" 344 " y1=" 124 " x2="352 " y2=" 136 "
f ont=" h e l v e t i c a - bo ldob l i que " s t y l e=" Bold " > i t </Word>

<Word x1="356 " y1=" 124 " x2=" 367 " y2=" 136 "
f ont=" h e l v e t i c a - bo ldob l i que " s t y l e=" Bold " > i s </Word>

<Word x1=" 372 " y1=" 124 " x2=" 408 " y2=" 136 "
f ont=" h e l v e t i c a - bo ldob l i que " s t y l e=" Bold " >made</Word>

</Chunk>
. . .

</Page>

Listing 6.8 | Hands On: LAPDF-text XML (2-STAR).

Set Covering Model
Heading 1

Set Covering Model
Heading 2

Figure 6.5 | Hands On: 2-STAR results.
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6.4 3-STAR: Macro Structure Recovery
The 2-STAR semantification described in the previous section resulted in an XML
representation of the source document that gives access to document structures on
different levels of detail. In contrast to 1-STAR data, the structures are typed. This
enables the direct access to structures in further processing steps.

The 3-STAR semantification aims on recovering the complete macro structure
of a document, i.e., a hierarchy of chapters, sections, and subsections. As informa-
tion about the macro structure of a document is usually not available from source
documents, this work described a recovery approach (cf. Section 4.5.3) that exploits
classified micro structure information (2-STAR) to algorithmically determine a macro
structure hierarchy. Headlines on different levels usually mark the start and end of
macro structures and are thus primarily considered by the recovery approach.

The previous section described the classification of micro structures using Set
Covering models, which resulted in the availability of typed micro structures that
represent headlines on different levels. These typed micro structures are taken as
input for a CAPLAN processor (cf. Section 5.3) that implements the aforementioned
macro structure recovery approach. The processor creates macro structure instances
according to the underlying data model. Figure 6.6 shows the resulting 3-STAR
macro structure hierarchy and the 2-STAR information (headlines on levels one to
four) taken as input.

Headline Level 1

Headline Level 2 
Level 1

Output: 
Macro Structure Hierarchy

Macro
Structure 
Level 4

Level 2

Level 3

Macro
Structure

Headline Level 3

Headline Level 4

Input: 2-STAR Information

Figure 6.6 | Hands On: 3-STAR results from 2-STAR input.

The created macro structure instances are finally exported using CAPLAN’s RDF
export functionality in a 3-STAR Turtle RDF format (cf. Section 4.5.6). The follow-
ing list shows a human-readable serialization of the recovered macro structure.

• Steering

– Description of how it is made
∗ Steering

· Handlebar
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· Headset
· Stem

Listings 6.9 – 6.14 show the resulting macro structure in the exported 3-STAR Turtle
RDF [15] format. For each macro structure a :InformationUnit instance is defined. A
hierarchy with parent and child relations is assembled using :hasParent and :parentOf
statements respectively. Additionally, a title, a mime type, and the path to the file
resource is defined. The path includes page and area (vertical position) information.

: Segment_TheBIKE2_3Manual_EN_0001_infounit a : In format ionUnit ;
: parentOf : Segment_TheBIKE2_3Manual_EN_0002_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page = 1 . 1 1 -2 "@en ;
: h a s T i t l e " S t e e r i n g "@en .

Listing 6.9 | Hands On: Macro Structure in RDF (1/6).

: Segment_TheBIKE2_3Manual_EN_0002_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0001_infounit ;
: parentOf : Segment_TheBIKE2_3Manual_EN_0003_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page =1 .14 -2 "@en ;
: h a s T i t l e " D e s c r i p t i o n o f how i t i s made"@en .

Listing 6.10 | Hands On: Macro Structure in RDF (2/6).

: Segment_TheBIKE2_3Manual_EN_0003_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0002_infounit ;
: parentOf

: Segment_TheBIKE2_3Manual_EN_0004_infounit ,
: Segment_TheBIKE2_3Manual_EN_0005_infounit ,
: Segment_TheBIKE2_3Manual_EN_0006_infounit ;

: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page =1 .63 -2 "@en ;
: h a s T i t l e " S t e e r i n g "@en .

Listing 6.11 | Hands On: Macro Structure in RDF (3/6).

: Segment_TheBIKE2_3Manual_EN_0004_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0003_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page = 1 .76 -2 . 1 1 "@en ;
: h a s T i t l e " Handlebar "@en .

Listing 6.12 | Hands On: Macro Structure in RDF (4/6).

: Segment_TheBIKE2_3Manual_EN_0005_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0003_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page =2 .11 -2 .20 "@en ;
: h a s T i t l e " Headset "@en .

Listing 6.13 | Hands On: Macro Structure in RDF (5/6).

: Segment_TheBIKE2_3Manual_EN_0006_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0003_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page =2.20 -2 "@en ;
: h a s T i t l e "Stem"@en .

Listing 6.14 | Hands On: Macro Structure in RDF (6/6).
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6.5 4-STAR: Information Typing
The 3-STAR semantification yielded a semantic representation of a macro structure
hierarchy. The hierarchy consists of information units that represent chapters, sec-
tions and subsections. These semantically represented information units can also be
used in semantic systems. However, they are not yet linked to concepts from other
(external) ontologies. Thus, semantic information retrieval or other semantic services
can not yet be realized.

Therefore, the 4-STAR semantification aims on linking information units to infor-
mation types. Rhetorical filtering of information units is a typical use case example
that becomes possible through this linking activity. Section 3.3.2 introduced a com-
monly agreed upon set of information types. Section 4.6.3 described the linking of
information units to these information types using Automatic Document Classifica-
tion approaches. These Automatic Document Classification require a decent amount
of training data. Thus, Section 4.6.4 discussed practical alternatives to Automatic
Document Classification in cases where training data is not available.

The S1000D Bike data set is rather small (cf. Section 7.2.3). Thus, Automatic
Document Classification is not applicable. Instead, the practical alternativ of ex-
ploiting patterns in the macro structure hierarchy was applied. In the S1000D Bike
manual, each section (macro structure) on level 2 belongs to a fixed set of so called
Information Codes. These information codes are defined in the S1000D specification
and have a standardized verbalization. Table 6.1 shows a mapping of S1000D infor-
mation codes used in the S1000D Bike manual to the common set of recommended
information types (cf. Section 3.3.2).

Headline 2 / S1000D Information Code Information Type
Description of how it is made Description
Description of function Operation
Description attributed to crew Operation
Post-operation procedures (crew) Operation
Other procedures to clean Maintenance
Place on test stand Test
Standard repair procedures Repair
Remove and install a new item Repair
Fill with air Maintenance
Check pressure Test
Fault reports and isolation procedures Fault Isolation
Detected Fault Fault Isolation
Remove procedures Repair
Manual test Test
Clean with rubbing alcohol Maintenance
Install procedures Repair
Oil Maintenance
Clean with chain cleaning fluid Maintenance
Clean with degreasing agent Maintenance

Table 6.1 | Hands On: Information Type Mapping.

The information codes can be easily extracted from the S1000D Bike manual
as the encapsulating micro structures (headlines on level 2) were recovered in the



6.5. 4-STAR: Information Typing 173

2-STAR semantification step and are now directly accessible. The actual process of
linking information units to the above information types is then realized as follows:

1. Iterate all macro structures / sections on level 2.

2. Extract all micro structures of type “Heading 2” from each macro structure

3. Extract the S1000D information code from the extracted micro structures.

4. Map the extracted S1000D information code to a common information type.

5. Link the macro structure to this information type.

6. Link all children / successors of the macro structure to this information type.

7. Link all parent / ancestors of the macro structure to this information type.

Figure 6.7 illustrates the described 4-STAR information typing.

Semantified
Macro Structure Hierarchy

Steering

Description of how it is made

Steering

Handlebar

Headset

Stem

Information Types Ontology

Repair

Assembly

Disassembly

Test

Fault Isolation

Description

Lookup Table

Inheritence

1

2

3

Figure 6.7 | Hands On: 4-STAR information typing.

The process has been implemented as a CAPLAN processor, which adds the re-
spective links to the already available macro structure (information unit) instances.
Then, again APOSTL’s integrated RDF export functionality is used to serialize the
results in a 4-STAR Turtle RDF format. In contrast to the exported 3-STAR infor-
mation, the resulting Turtle snippets (see Listing 6.15 – 6.20) contain an additional
hasInfoType statement. This statement refers to the information type “Description”
which was derived from the S1000D information code “Description of how it is made”
found in the section that is titled respectively.

: Segment_TheBIKE2_3Manual_EN_0001_infounit a : In format ionUnit ;
: parentOf : Segment_TheBIKE2_3Manual_EN_0002_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page = 1 . 1 1 -2 "@en ;
: h a s T i t l e " S t e e r i n g "@en ;
: hasInfoType : D e s c r i p t i o n .

Listing 6.15 | Hands On: Information Types in RDF (1/6).
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: Segment_TheBIKE2_3Manual_EN_0002_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0001_infounit ;
: parentOf : Segment_TheBIKE2_3Manual_EN_0003_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page =1 .14 -2 "@en ;
: h a s T i t l e " D e s c r i p t i o n o f how i t i s made"@en ;
: hasInfoType : D e s c r i p t i o n .

Listing 6.16 | Hands On: Information Types in RDF (2/6).

: Segment_TheBIKE2_3Manual_EN_0003_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0002_infounit ;
: parentOf

: Segment_TheBIKE2_3Manual_EN_0004_infounit ,
: Segment_TheBIKE2_3Manual_EN_0005_infounit ,
: Segment_TheBIKE2_3Manual_EN_0006_infounit ;

: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page =1 .63 -2 "@en ;
: h a s T i t l e " S t e e r i n g "@en ;
: hasInfoType : D e s c r i p t i o n .

Listing 6.17 | Hands On: Information Types in RDF (3/6).

: Segment_TheBIKE2_3Manual_EN_0004_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0003_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page = 1 .76 -2 . 1 1 "@en ;
: h a s T i t l e " Handlebar "@en ;
: hasInfoType : D e s c r i p t i o n .

Listing 6.18 | Hands On: Information Types in RDF (4/6).

: Segment_TheBIKE2_3Manual_EN_0005_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0003_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page =2 .11 -2 .20 "@en ;
: h a s T i t l e " Headset "@en ;
: hasInfoType : D e s c r i p t i o n .

Listing 6.19 | Hands On: Information Types in RDF (5/6).

: Segment_TheBIKE2_3Manual_EN_0006_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0003_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page =2.20 -2 "@en ;
: h a s T i t l e "Stem"@en ;
: hasInfoType : D e s c r i p t i o n .

Listing 6.20 | Hands On: Information Types in RDF (6/6).

6.6 5-STAR: Semantic Annotation
The 4-STAR semantification described in the previous section linked single macro
structures (information units) to information type concepts. This was the first step
towards a linked technical documentation and already enables the realization of im-
proved semantic retrieval functionalities like rhetorical filtering. However, the final
goal of linking the technical documents in a way that allows the access in a problem-
oriented way has not yet achieved. Therefore, the information units need to be linked
to concepts from an ontology that describes the corresponding machine.
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6.6.1 Bike Ontology

The following sections describe the final semantification step of the S1000D bike
documentation. In order to achieve a 5-STAR rating for the technical documents,
the manual needs to be linked to an ontology that describes a bike. For this example,
it is considered that such an ontology is externally provided.

Listing 6.21 shows a dash tree in KnowWE [10] markup that reflects the contents of
an ontology describing a bike. Basically, the ontology models the physical breakdown
of a bike, i.e., a hierarchy of components. It can be assumed that parent and child el-
ements in the dash tree are compiled to :subComponentOf and :hasSubComponent
relations respectively. The upper case strings in brackets are used to define the type
of the respective elements and are compiled to rdf:type statements. For instance,
the last four lines of the markup snippet define that the machine “Bike” has a sub-
component called “Gears”, which itself has sub-components called “Mechs”, “Hubs”
and “Shifters”.

%%TSM
Bike [MACHINE]
- Wheel [COMPONENT]
- - Inner Tube [COMPONENT]
- - Rear Wheel [COMPONENT]
- - Front Wheel [COMPONENT]
- Brake System [COMPONENT]
- - Brake Pads [COMPONENT]
- S t e e r i n g [COMPONENT]
- - Stem [COMPONENT]
- - Headset [COMPONENT]
- - Handlebar [COMPONENT]
- Frame [COMPONENT]
- - Horn [COMPONENT]
- D r i v e t r a i n [COMPONENT]
- - Chain [COMPONENT]
- Gears [COMPONENT]
- - Mechs [COMPONENT]
- - Hubs [COMPONENT]
- - S h i f t e r s [COMPONENT]

%

Listing 6.21 | Hands On: S1000D Bike Ontology.

6.6.2 Entity Recognition

The linking of documents to concepts from an ontology is primarily based on term
matches occurring in the respective document texts. The set of terms is derived from
the ontology, where each term refers to a concept label. A concept can have multiple
labels. Having a set of terms available, the first task in the 5-STAR semantification
step is finding all occurrences of terms in the texts of the involved documents. There-
fore, an Entity Recognition approach based on fuzzy string matching techniques is
employed (cf. Section 4.7.2). The Entity Recognition approach is implemented as an
APOSTL processor. Table 6.2 shows the recognized entities for the following text of
an already recovered information unit titled “Handlebar”.

Handlebar
This consists of a horizontal bar attached to the stem with handgrips at
the end. Brake levers and shifters are also attached to this bar although
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they do not have any part in the steering mechanism. The handlebars ma-
noeuvrability is a sideways swivelling action. The handlebars themselves
do not provide this swivelling, the headset (also known as the steering
tube) is the mechanism that enables the handlebars to swivel.

Entity Matched Text Confidence
handlebar Handlebar 1.0000
stem stem 1.0000
shifters shifters 1.0000
steering steering 1.0000
mechs mechanism 0.5333
handlebar handlebars 0.8100
handlebar handlebars 0.8100
headset headset 1.0000
steering steering 1.0000
mechs mechanism 0.5333
handlebar handlebars 0.8100

Table 6.2 | Hands On: Recognized Entities with Confidences.

6.6.3 Probabilistic Subject Analysis

The Entity Recognition yields a set of term matches, i.e., references to entities ac-
companied by the matched text in the document and an associated confidence that
expresses the quality of the term match. Now, the task is to determine the most
relevant subjects on basis of these term matches. Therefore, a Probabilistic Subject
Analysis approach (cf. Section 4.7.4) is employed. This approach uses the following
probabilistic model to first determine a probability for a term match representing a
specific topic:

P(topic |match) = α ∗ P (topic | concept) ∗ P (concept | term) ∗ P (term | match).

Therefore, it considers the quality of the term match P (term | match), the specificity
of the term P (concept | term), and its relevance for a specific topic P (topic | concept).
The quality of the term match P (term | match) expresses the certainty that a given
term match match actually represents a term term and thus corresponds to the
confidence of the preceding Entity Recognition step (see Table 6.2).

The specificity P (concept | term) expresses how specific a term is within the
underlying ontology, i.e., how many concepts in the ontology share the same label.
For instance, the term “brake pad” is the label of two concepts in the ontology,
i.e., concepts representing the brake pads on the front wheel and the back wheel.
The respective information can be derived from the ontology using SPARQL queries
counting the number of concepts with the same label and a function transforming
the count into a probability. Different functions can be employed to transform the
concept count into a probability. In this example the following simple specificity
function is used:

P(concept | term) =
1

frequency
.

This function equally distributes the probability over all concepts, yielding a speci-
ficity of 0.5 for the term “brake pad” and the two associated concepts.
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The relevance P (topic | concept) expresses how relevant a concept is for a certain
topic. While topic also refers to a concept from the ontology it is not necessarily equal
to the concept parameter. Instead, the relevance considers ontological information to
determine the relevance between two concepts. For instance, consider the ontology
described in Listing 6.21 and Table 6.3 for the derived relevances for the concept
“Stem” and related topics “Stem”, “Steering”, “Handlebar” and “Headset”.

Topic Concept Relevance Explaination
Stem Stem 1,0000 Identity
Stem Steering 0,7508 :subComponentOf
Stem Handlebar 0,3546 :subComponentOf/:hasSubComponent (sibling)
Stem Headset 0,3546 :subComponentOf/:hasSubComponent (sibling)

Table 6.3 | Hands On: Recognized Entities with Confidences.

The table shows that the concept “Stem” is most relevant for the topic representing
itself. Then, it is also relevant for the parent component in the bike (the concept
“Stem” is modeled as sub-component of the component “Steering”). Additionally, it
is also considered relevant for concepts that describe sibling concepts like “Handlebar”
and “Headset”, which both are also sub-components of the “Steering” component.

Relevances as listed in Table 6.3 can again be derived from the ontology using
SPARQL queries that count the (weighted) distance between concepts and a function
that transforms the distance into a probability. The distance calculation might weight
distances differently depending on the relation that connects two concepts, e.g. a
sub-component relation might be considered more important than a relation that
connections functions and components. In the example, the following function was
employed to transform the weighted distances to probabilities:

P(topic | concept) = 1 + e−1.5∗1.5

1 + e(distance−1.5)∗1.5 .

Using concrete values for term quality P (term | match), specificity P (concept |
term), and relevance P (topic | concept) the probability for a topic given a term
match P (topic | match) is computed for each term match. For instance, consider
one of the term matches “handlebar” listed in Table 6.2 for the information unit
“Handlebar” and the topic “Stem”. The term quality (’handlebar’|’handlebars’) is
defined as 0.81. The specificity of the term “handlebar” is distributed over one single
concept “Handlebar” and is thus 1.0. The relevance P (Stem|Handlebar) is defined as
0.3546. Thus, the probability for the topic “Stem” given a term match ”handlebars”
is:

P(Stem|′handlebar′) = α ∗ 0.3546 ∗ 1.0 ∗ 0.81 .

The parameter α reflects the linguistic uncertainty and can either be a fixed or an
adaptive value. A dynamic value might consider the type of the micro structure a
term match occurred in to reduce the linguistic uncertainty. In this example the
parameter α was an adaptive value that considered the covering micro structure of a
term match:

α = 1− 0.33weight

The internal parameter weight was set to 4.0 (resulting in 0.9881) for all types of
headings and 1.0 (resulting in 0.67) for all other types of micro structures.

This way, the probabilities for all topics given certain term matches P (topic |
match) are computed. Finally, an overall probability for each topic is computed (cf.
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Section 4.7.4):

P(topic) = 1−
Mi∏

match

(1− P (topic | match)) .

Figure 6.8 summarizes the 5-STAR semantic annotation step. This process does
not necessarily determine one single concept as topic for an information unit but
lists all concepts together with the computed probabilities that are considered highly
relevant.

Machine Ontology
Linked Enterprise Data Cloud Specificity

Relevance

Match Quality

5-STAR Annotation

dc:subject

Semantic Interpreter

Term Matches

Relevances

Figure 6.8 | Hands On: 5-STAR semantic annotation.

The resulting probabilities can be exploited from consuming applications like Se-
mantic Search. For instance, a semantic search engine could exploit the probability
while looking up and ranking search results (information units) according to its infer-
ence result. The most important topic probabilities for the aforementioned informa-
tion unit “Handlebar” are listed in Table 6.4.

Topic Probability
Handlebar 0.9995
Steering 0.9816
Headset 0.9478
Stem 0.9478

Table 6.4 | Hands On: Topic Probabilities.

6.6.4 Output

The complete Subject Analysis task has been implemented as a CAPLAN processor
which adds the respective topic links to the already available macro structure / in-
formation unit instances. The domain-specific background knowledge for relevance
and linguistic uncertainty can be defined by the user. APOSTL’s integrated RDF
export functionality was used to serialize the results in a 5-STAR Turtle RDF format.
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In contrast to the exported 4-STAR information, the resulting Turtle snippets (see
Listing 6.22 – 6.25) contain additional hasAnnotation statements that refers to the
concepts and the computed probabilities.

: Segment_TheBIKE2_3Manual_EN_0003_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0002_infounit ;
: parentOf
: Segment_TheBIKE2_3Manual_EN_0004_infounit ,
: Segment_TheBIKE2_3Manual_EN_0005_infounit ,
: Segment_TheBIKE2_3Manual_EN_0006_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page =1 .63 -2 "@en ;
: h a s T i t l e " S t e e r i n g "@en ;
: hasInfoType : D e s c r i p t i o n ;
: hasAnnotation [ : hasScore " 0 .9997 " ; : hasConcept : S t e e r i n g ] ;
: hasAnnotation [ : hasScore " 0.9932 " ; : hasConcept : Handlebar ] ;
: hasAnnotation [ : hasScore " 0 .9916 " ; : hasConcept : Stem ] ;
: hasAnnotation [ : hasScore " 0.9892 " ; : hasConcept : Headset ] .

Listing 6.22 | Hands On: Semantic Annotations in RDF (3/6).

: Segment_TheBIKE2_3Manual_EN_0004_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0003_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page = 1 .76 -2 . 1 1 "@en ;
: h a s T i t l e " Handlebar "@en ;
: hasInfoType : D e s c r i p t i o n ;
: hasAnnotation [ : hasScore " 0.9995 " ; : hasConcept : Handlebar ] ;
: hasAnnotation [ : hasScore " 0 .9816 " ; : hasConcept : S t e e r i n g ] ;
: hasAnnotation [ : hasScore " 0 .9478 " ; : hasConcept : Headset ] ;
: hasAnnotation [ : hasScore " 0 .9478 " ; : hasConcept : Stem ] .

Listing 6.23 | Hands On: Semantic Annotations in RDF (4/6).

: Segment_TheBIKE2_3Manual_EN_0005_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0003_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page =2 .11 -2 .20 "@en ;
: h a s T i t l e " Headset "@en ;
: hasInfoType : D e s c r i p t i o n ;
: hasAnnotation [ : hasScore " 0.9990 " ; : hasConcept : Headset ] ;
: hasAnnotation [ : hasScore " 0 .9778 " ; : hasConcept : S t e e r i n g ] ;
: hasAnnotation [ : hasScore " 0 .9379 " ; : hasConcept : Stem ] .

Listing 6.24 | Hands On: Semantic Annotations in RDF (5/6).

: Segment_TheBIKE2_3Manual_EN_0006_infounit a : In format ionUnit ;
: hasParent : Segment_TheBIKE2_3Manual_EN_0003_infounit ;
: hasMimeType " a p p l i c a t i o n / pdf " ;
: hasResource "TheBIKE2 .3Manual_EN . pdf#page =2.20 -2 "@en ;
: h a s T i t l e "Stem"@en ;
: hasInfoType : D e s c r i p t i o n ;
: hasAnnotation [ : hasScore " 0.9993 " ; : hasConcept : Stem ] ;
: hasAnnotation [ : hasScore " 0.9886 " ; : hasConcept : S t e e r i n g ] ;
: hasAnnotation [ : hasScore " 0 .9789 " ; : hasConcept : Handlebar ] ;
: hasAnnotation [ : hasScore " 0.9628 " ; : hasConcept : Headset ] .

Listing 6.25 | Hands On: Semantic Annotations in RDF (6/6).
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6.7 A Demonstration of Improved Accessibility
The previous sections demonstrated the 5-STAR semantification process using the
“Steering” chapter of the S1000D Bike manual. The chapter contains one section
which itself has three subsections. The resulting macro structure has first been trans-
formed into information units. Then, they were subsequently annotated with infor-
mation types and components from an external ontology. The resulting 5-STAR
information is available in the standardized Turtle RDF [15] format. State-of-the-
art semantic information systems can exploit the added information in order to im-
prove the retrieval and presentation of technical documents. Figure 6.9 shows the
information unit “Headset” from the semantified “Steering” chapter. The 3-STAR
macro structure information is exploited to limit the document presentation to the
relevant part that represents the respective section. Preceding this improved infor-
mation presentation a semantic search for descriptive information (information type
:Description) and the concept :Headset was executed. In summary, the demonstrated
5-STAR semantification process achieved its target of improving the accessibility of
the S1000D Bike manual. Unlike the raw PDF document that was used as input,
technical information about the S1000D Bike is now accessible in a problem-oriented
and targeted manner.

Figure 6.9 | Hands On: Improved Accessibility in Service Mate.
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The only source of knowledge is
experience.

Albert Einstein

7.1 Overview
This chapter describes a series of case studies of semantification projects for technical
documentation where several of the presented approaches has been employed. The
semantification projects have quite heterogeneous settings considering the underlying
machinery, the size of the corpus and the required semantification steps. For each
project a brief introduction of the scenario and a short summary of the semantification
process is given.

7.2 S1000D Bike
The S1000D Bike is an evaluation data set consisting of technical publications for
a fictional bike. The data set is designed to enable the evaluation of wide-spread
S1000D tools.

7.2.1 Introduction

S1000D is an information model for technical documentation that is widely used in
the aerospace industry and military organizations. The S1000D information model
has been introduced in detail in Section 3.4.5. Basically, a S1000D publication con-
sists of data modules which describe certain topics of interest. Each data module is
self contained and encoded with a data module code. The source format of S1000D
publications is SGML/XML. However, data modules can be compiled to complete
publications in various formats like PDF or HTML. Publications available in S1000D
source format usually receive four to five stars in the 5-STAR maturity schema. How-
ever, the available data set is a perfect source for the evaluation of the presented
semantification process as the data set is available in S1000D XML source format
and as compiled PDF publication.

7.2.2 Goals and Application Scenarios

Technical documentation written according to the S1000D information model is al-
ready modularized. Data modules contain the modularized content and are encoded
with a data module code. The data module code allows to derive the information
type and the subject/topic of the module. Thus, the primary application scenario of
technical documents in S1000D format is the targeted information supply of people
working with the documents.

Goal 1: Ontology Derivation from Core Documentation Entities

The 5-STAR semantification requires on its final stage an ontology that represents the
underlying real-world entities in order to be able to annotate the modularized content
with respective concepts. An ontology describing the S1000D Bike, however, is not
available. As Core Documentation Entities can directly be derived from S1000D XML
source files, the first goal of this case study is to derive a technical ontology. The
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derived ontology contains concepts that represent components of the S1000D Bike.
The automatically generated ontology will be evaluated manually for reasonability
(see Section 7.2.6).

Goal 2: Semantification of PDF documents

The main purpose of this case study, however, is the semantification of the com-
piled PDF documentation, which is not modularized and not semantically annotated.
Hence, the second goal of the case study is to produce a PDF-based data set that
is compatible with a state-of-the-art semantic information system (see Section 7.2.7).
The data set based on PDF resources, therefore, gets semantically prepared equally
to the original S1000D XML sources, i.e. modularized and semantically annotated.
Therefore, the PDF documents are subsequently semantified by running through re-
spective semantification steps. For the fifth step in the semantification process the
extracted ontology (see Goal 1) is used. The semantified PDF-based data set is eval-
uated against the S1000D XML source files (see Section 7.2.6).

7.2.3 Data Set Description

The S1000D Bike data set accompanies the official S1000D specification and is in-
tended for evaluation purposes. The data set comprises a PDF document representing
a technical manual for a fictional bicycle. The PDF document has 188 pages and has
been compiled from S1000D source files. The underlying source files are distributed
over 41 illustrations and 57 data modules in both SGML and XML format.

7.2.4 The Semantification Process

This section describes the semantification architecture used to semantify the de-
scribed data set. Section 7.2.4 describes the two-fold semantification architecture.
Section 7.2.5 describes the involved knowledge resources.

Semantification Architecture

The semantification architecture is spread over two different pipelines. A first pipeline
aims on extracting an ontology from S1000D XML files. A second pipeline is applied
for the complete semantification of the corresponding 1-STAR PDF file, i.e. the trans-
formation into a modularized and semantically prepared 5-STAR documentation.

S1000D Semantification Architecture

The first pipeline (see Figure 7.1) initially reads the S1000D XML source files. The
S1000D source files initially have a 3-STAR rating. Subsequent processing steps
discover Core Documentation Entities in the source files and add metadata in forms
of information types and concept annotations to the S1000D XML source files. Then,
the processed S1000D XML files yield a 5-STAR rating. Although this semantification
process is not required in order to perform the semantification of PDF files it is the
basis for the subsequent evaluation. Additionally, the semantification enables the
derivation of an ontology from the S1000D source files (see Goal 2 described in
Section 7.2.2).

The exploitation of the data module code (DMC) of S1000D XML files gives
access to the information type (B). The Core Documentation Entity discovery (C)
exploits structural components in S1000D XML while considering the information
type of the data module in focus. The ontology export (D) mechanism considers
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Data
Module Data Module Import Information Typing CDE Discovery Ontology

EL ST AT

Ontology Export
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Figure 7.1 | S1000D: Data Module Semantification Architecture.

all concepts that have been derived from the Data Module Code for the annotation
process and additionally puts them in an hierarchical order according to the Standard
Numbering System that is part of the S1000D specification.

PDF Semantification Architecture

The second pipeline (see Figure 7.2) initially reads the PDF file (1-STAR rating).
Subsequent processing steps aim on recovering nano (A), micro (B), and macro (C)
structures. These recovered structures already allow to split the PDF to smaller
modules. Finally, a semantic annotation process (D) determines concepts from an
external ontology for the semantic annotation of the PDF modules. These PDF
modules finally yield 5-STARS in the maturity schema.

PDF Nano Structure 
Recovery

PDF
Module

EL ST AT IT LDEL

(A) (B) (C) (D)

Micro Structure 
Recovery

Macro Structure 
Recovery

Semantic 
Annotation

PDF
Module

EL ST AT

OntologyKnowledge
Base

Figure 7.2 | S1000D: PDF Semantification Architecture.

The nano structure recovery (A) is based on the open source tool pdf2xml that
has been proposed by Dejean et al. [52]. The micro structure recovery (B) uses
the knowledge base described in Section 7.2.5 to estimate micro structures. The
macro structure recovery (C) works upon the recovered micro structures and employs
the macro structure recovery mechanisms described in Section 4.5.3. The semantic
annotation (D) is based on Probabilistic Explicit Semantic Analysis (PESA) described
in Section 4.7.4 and uses the extracted ontology.

The probabilistic model has been parametrized to incorporate existing domain
knowledge. Therefore, the tailoring possibilities described in Section 4.7.4 were used
as follows:

• Term Confidence P (t | match): Order independent lookups without decreas-
ing term confidences were allowed. Matches that had only been possible due to
stemming were discriminated.



7.2. S1000D Bike 185

• Term Specificity P (c | t): The specificity was distributed equally over all
concepts, i.e. if a term is attached to two concepts, the specificity of the term
is 0.5 for both concepts.

• Concept Relevance P (topic | c): For operating manuals the refer property
was slightly preferred, in descriptive manuals the subComponentOf property
respectively1.

• Linguistic Uncertainty αadaptive: Weights w greater than 1.0 were defined for
headlines, i.e. term matches occurring in the heading of sections were preferred.

The respective semantic interpreter works upon 38 terms and 21 concepts using 888
semantic relations. Figure 7.3 shows an excerpt of the serialized semantic interpreter.

Figure 7.3 | S1000D: Serialized Semantic Interpreter.

7.2.5 Knowledge Resources

For this case studies two kinds of knowledge resources are relevant. The following
section first describes the S1000D Bike ontology. Afterwards, the knowledge base
carrying the classification knowledge for the micro structure recovery is explained.

S1000D Ontology

The ontology providing the concepts for the semantic annotation step has been au-
tomatically extracted from S1000D XML source data. The ontology contains infor-
mation about the hierarchical structure of components in the S1000D Bike as well as

1The properties are explained as part of the ontology description in Section 7.2.5
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functional connections between components (see Figure 7.4 for a simplified visualiza-
tion). Labels are attached to all concepts. Figure 7.5 is an excerpt of the extracted
ontology that represents the component hierarchy.

Component Function

Label Concept

skos:prefLabel

rdfs:subClassOf rdfs:subClassOf

subComponentOf
refers

skos:altLabel

Figure 7.4 | S1000D: Structure of the extracted Ontology.

Figure 7.5 | S1000D: Extracted Ontology.
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TEKNO Knowledge Base

The 2-STAR semantification requires a knowledge base that contains classification
knowledge for micro structures. For this case study a respective knowledge base
has been assembled using TEKNO Studio. The knowledge base contains eleven Set-
Covering models for the following micro structure types:

• Title

• Heading 1

• Heading 2

• Heading 3

• Heading 4

• Table of Contents

• Procedure

• Caution

• Caution Text

• Warning

• Caption

Each of the Set-Covering models has on average 6.45 Set-Covering relations that re-
flect formatting features of the respective micro structure type. The Set-Covering
model has first been created fully automatically using the model suggestion function-
ality of TEKNO Studio. After reviewing the results of the automatically generated
model minor adaptations to the Set-Covering relations of one model have been made.
Figure 7.6 shows an example of recovered micro structure in TEKNO Studio.

Figure 7.6 | S1000D: Set-Covering Model in TEKNO Studio.
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7.2.6 Evaluation

This section describes the evaluation of the semantification architecture with respect
to the S1000D Bike data set. First the employed evaluation architecture is presented.
Then, the employed evaluation methods are described. Finally, evaluation results are
listed .

Evaluation Architecture

For the evaluation of the semantification results an evaluation architecture has been
implemented (see Figure 7.7). First, the XML data modules are aligned with the
results of the PDF semantification pipeline. Therefore, an automatic alignment (A)
of the respective S1000D XML and PDF modules is generated on basis of textual
features of both data sources. Then, the results of the different semantification steps
get evaluated separately by respective evaluation components (B – D). The evaluation
mechanisms consider the S1000D XML modules as gold standard. The evaluation
methods employed are described in detail in the next section.

Data
Module

EL ST AT IT LD

Alignment

2-STAR 
Evaluation

3-STAR
Evaluation

5-STAR 
Evaluation

PDF
Module

✔

✔

✔

(A)

(B)

(C)

(D)

EL ST AT IT LD

Figure 7.7 | S1000D Evaluation Architecture.

Evaluation Methods

The evaluation of the S1000D Bike data set comprises different semantification steps.
The evaluation methods are slightly different for the respective results. All evaluations
rely on a correct alignment of the S1000D XML data modules and the PDF modules.

The 2-STAR semantification aims on the recovery of micro structures like head-
lines, paragraphs, or lists. The S1000D XML source files provide respective markup
for these elements, i.e. they are directly accessible. The semantification architecture
for the PDF file determines corresponding micro structures for the PDF modules.
Having micro structures available in both the S1000D XML source files and the PDF
modules, the accuracy of the micro structure recovery processor can be determined.
The accuracy is defined as follows:

Definition 7.2.1 (Micro Structure Recovery Accuracy). The micro structure re-
covery accuracy acc2−ST AR is defined as the number of correctly classified blocks
Mc,pdf ⊆ Mpdf in the PDF modules with regard to all blocks Mxml available from
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S1000D XML data modules:

acc2−ST AR =
|Mc,pdf |
|Mxml|

.

A block p ∈ Mpdf is correctly classified, if there is a block x ∈ Mxml with the same
type and text assigned.

The 3-STAR semantification aims on the recovery of macro structures. In the
context of S1000D data modules this means cutting down the complete PDF to
small self-contained and deduplicated modules. Having modules available as S1000D
XML files and as PDF modules the macro structure recovery can be evaluated by
comparing the text of aligned modules. Therefore, the macro structure recovery cost
gets determined, which is defined as follows:

Definition 7.2.2 (Macro Structure Recovery Cost). The macro structure recovery
cost cost3−ST AR is defined as the minimum number of edit transformations that
transforms the text of a macro structure a ∈ Spdf to the text of an aligned macro
structure b ∈ Sxml. The set of allowed edit operations comprises the insertion of
a single character, the deletion of a single character and the substitution of a single
character. This corresponds to the well established distance function proposed by
Levenshtein [118].

The 5-STAR semantification aims on annotating modules with concepts from an
external ontology. The data module code that identifies a data module in S1000D
XML provides information about the topic of the module, such that an annotation
concept can be derived. The semantification process for the PDF document involves a
semantic annotation step which assigns concept annotations to PDF modules. After
the semantification, both S1000D XML data modules and PDF modules have concept
annotations attached. The annotation of PDF modules was limited to exactly one
annotation per module. Having exactly one annotation available for each S1000D
XML source files and the corresponding PDF module, the accuracy of the semantic
annotation can be determined. The 5-STAR accuracy is defined as follows:

Definition 7.2.3 (Annotation Accuracy). The annotation accuracy acc5−ST AR is
defined as the number of correct annotations Ac,pdf ⊆ Apdf in the PDF modules with
regard to all annotations Axml available from S1000D XML data modules:

acc5−ST AR =
|Ac,pdf |
|Axml|

.

An annotation a ∈ Apdf is correct, if there is an annotation b ∈ Axml with the same
URI.

Evaluation Results

This sections lists the results of the different evaluation methods. The results of the 2-
STAR, 3-STAR, and 5-STAR evaluation are separated over the following paragraphs.

2-STAR Results

In total, 217 micro structures have been automatically classified using the assembled
knowledge base. The classification using the automatically generated knowledge base
has yielded the results listed in Table 7.1. The micro structures were classified with
an average accuracy of 98%, i.e. 211 micro structures were classified correctly. The
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six micro structures instances that were misclassified all belong to the class “Caption”.
The primary reason for the classification error was a bad blockification (1-STAR Nano
Structure Recovery).

Micro Structure Occurrences Correct Accuracy
Title 1 1 100%
Heading 1 36 36 100%
Heading 2 36 36 100%
Heading 3 14 14 100%
Heading 4 16 16 100%
Table of Contents 31 31 100%
Procedure 24 24 100%
Caution 11 11 100%
Caution Text 7 7 100%
Warning 7 7 100%
Caption 34 28 82%
Total 217 211 98%

Table 7.1 | S1000D: Macro Structure Recovery Costs

3-STAR

Following the 5-STAR semantification idea, the classified micro structures have been
used as the basis for the further processing. The 3-STAR semantification aimed
on recovering macro structures (modules) from micro structures. The plain text of
the recovered PDF-based modules has been compared to the text of the XML-based
S1000D data modules. Table 7.2 lists the recovery cost for each module.

As the recovery costs of some modules are rather high the plain text of the modules
have been inspected manually. The manual inspection showed that the recovered PDF
modules contain automatically generated text that is not available in the XML-based
S1000D source data, e.g., table of contents, references, list of tables, and figures at
the beginning of each section. The inspection also showed that despite this additional
text the modules had been correctly recovered.
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Module Title Recovery Cost
Bicycle - Description attributed to crew 207
Bicycle - Description of function 118
Bicycle - Description of how it is made 274
Bicycle - Other procedures to clean 1075
Bicycle - Place on test stand 2166
Bicycle - Standard repair procedures 2985
Brake pads - Clean with rubbing alcohol 2242
Brake system - Description of how it is made 509
Brake system - Manual test 2153
Chain - Clean with chain cleaning fluid 537
Chain - Oil 785
Drivetrain - Description of how it is made 1
Frame - Description of how it is made 144
Front wheel - Fault reports and isolation procedures 2329
Gears - Description of how it is made 28
Handlebar - Install procedures 971
Handlebar - Remove procedures 451
Headset - Description of how it is made 32
Headset - Install procedures 689
Headset - Remove procedures 629
Horn - Remove and install a new item 457
Hubs - Clean with degreasing agent 776
Inner tube - Remove and install a new item 630
Mechs - Description of how it is made 145
Rear wheel - Detected fault 0
Rear wheel - Remove procedures 144
Shifters - Description of how it is made 75
Steering - Description of how it is made 227
Stem - Install procedures 738
Stem - Remove procedures 656
Tire - Check pressure 2266
Tire - Fill with air 2236
Tire - Remove and install a new item 2390
Wheel - Description of how it is made 489

Table 7.2 | S1000D: Macro Structure Recovery Costs

5-STAR

An additional semantification step performed the Subject Analysis task on the re-
covered macro structures. Table 7.3 reports on the results in forms of expected and
retrieved annotations, the confidence of the retrieved annotations and an indicator
whether the annotation is correct.
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Module Title Expected Retrieved Confidence Correct
Bicycle - Description attributed to crew AAA-D00-00-00-00 AAA-000-00-00-00 0.9995 NO
Bicycle - Description of function AAA-D00-00-00-00 AAA-000-00-00-00 0.9999 NO
Bicycle - Description of how it is made AAA-D00-00-00-00 AAA-000-00-00-00 0.9996 NO
Bicycle - Other procedures to clean AAA-D00-00-00-00 AAA-000-00-00-00 0.9990 NO
Bicycle - Place on test stand AAA-D00-00-00-00 AAA-000-00-00-00 0.9960 NO
Bicycle - Standard repair procedures AAA-D00-00-00-00 AAA-000-00-00-00 0.9974 NO
Brake pads - Clean with rubbing alcohol AAA-DA1-10-00-00 AAA-DA1-10-00-00 0.9960 YES
Brake system - Description of how it is made AAA-DA1-00-00-00 AAA-DA1-00-00-00 0.9997 YES
Brake system - Manual test AAA-DA1-00-00-00 AAA-DA1-00-00-00 0.9984 YES
Chain - Clean with chain cleaning fluid AAA-DA4-10-00-00 AAA-DA4-10-00-00 0.9983 YES
Chain - Oil AAA-DA4-10-00-00 AAA-DA4-10-00-00 0.9974 YES
Drivetrain - Description of how it is made AAA-DA4-00-00-00 AAA-DA4-00-00-00 0.9984 YES
Frame - Description of how it is made AAA-DA3-00-00-00 AAA-DA3-00-00-00 0.9992 YES
Front wheel - Fault reports and isolation procedures AAA-DA0-10-20-00 AAA-DA0-10-20-00 0.9971 YES
Gears - Description of how it is made AAA-DA5-00-00-00 AAA-DA5-00-00-00 0.9997 YES
Handlebar - Install procedures AAA-DA2-20-00-00 AAA-DA2-20-00-00 0.9970 YES
Handlebar - Remove procedures AAA-DA2-20-00-00 AAA-DA2-20-00-00 0.9986 YES
Headset - Description of how it is made AAA-DA2-30-00-00 AAA-DA2-30-00-00 0.9996 YES
Headset - Install procedures AAA-DA2-30-00-00 AAA-DA2-30-00-00 0.9986 YES
Headset - Remove procedures AAA-DA2-30-00-00 AAA-DA2-30-00-00 0.9981 YES
Horn - Remove and install a new item AAA-DA3-10-00-00 AAA-DA3-10-00-00 0.9979 YES
Hubs - Clean with degreasing agent AAA-DA5-20-00-00 AAA-DA5-20-00-00 0.9988 YES
Inner tube - Remove and install a new item AAA-DA0-10-10-00 AAA-DA0-10-10-00 0.9979 YES
Mechs - Description of how it is made AAA-DA5-10-00-00 AAA-DA5-10-00-00 0.9989 YES
Rear wheel - Detected fault AAA-DA0-20-00-00 AAA-DA0-20-00-00 0.9964 YES
Rear wheel - Remove procedures AAA-DA0-20-00-00 AAA-DA0-20-00-00 0.9986 YES
Shifters - Description of how it is made AAA-DA5-30-00-00 AAA-DA5-30-00-00 0.9994 YES
Steering - Description of how it is made AAA-DA2-00-00-00 AAA-DA2-00-00-00 0.9996 YES
Stem - Install procedures AAA-DA2-10-00-00 AAA-DA2-10-00-00 0.9985 YES
Stem - Remove procedures AAA-DA2-10-00-00 AAA-DA2-10-00-00 0.9980 YES
Tire - Check pressure AAA-DA0-10-20-00 AAA-DA0-10-20-00 0.9980 YES
Tire - Fill with air AAA-DA0-10-20-00 AAA-DA0-10-20-00 0.9974 YES
Tire - Remove and install a new item AAA-DA0-10-20-00 AAA-DA0-10-20-00 0.9981 YES
Wheel - Description of how it is made AAA-DA0-00-00-00 AAA-DA0-00-00-00 0.9986 YES
Overall - - - 82.3529%

Table 7.3 | S1000D: 5-STAR Accuracy.

In total 34 macro structures have been semantically annotated with concepts
from an ontology. The number of correctly annotated macro structures is 28. Thus,
the 5-STAR accuracy as defined in the previous section is 82.3529%. The six an-
notations that were wrong all concerned macro structures describing the complete
bike. All of these macro structures retrieved the annotation concept “AAA-000-00-
00-00” instead of “AAA-D00-00-00-00”. Actually, “AAA-000-00-00-00” is a more
general concept than “AAA-D00-00-00-00” and can thus be considered as more or
less correct.

7.2.7 System Use

The S1000D Bike data set is not intended for productive usage. As part of the S1000D
specification it serves as data set for evaluation purposes. The semantification process
applied in this case study, however, yields a semantified data set that is runnable in
a state-of-the-art semantic information system. Figure 7.8 shows an excerpt of the
defined semantification pipeline in CAPLAN.
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Figure 7.8 | S1000D: Semantification Pipeline in CAPLAN.

Figure 7.9 | S1000D: Semantification Result in the information sys-
tem “Service Mate”.

Figure 7.9 shows the semantified data set in the semantic information system
“Service Mate”. More precisely the screenshot shows the search results for the se-
mantic query “Inner tube”. The top ranked search result is a module that describes
the remove and install procedures for the inner tube of the S1000D bike. Additional
search results are closely related to the inner tube, e.g. a descriptive module for the
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wheel, fault and isolation procedures for the front wheel and check procedures for the
tire.

7.2.8 Summary

This case study described the complete semantification of a PDF-based documenta-
tion. The semantification comprised several semantification steps. The recovery of
micro and macro structures has been described and evaluated in detail. Additionally,
a Subject Analysis task that was performed on the recovered macro structures has
been evaluated. The micro structure recovery is based on a knowledge base that
was assembled using TEKNO Studio. After minor adaptions to the automatically
generated Set-Covering models the micro structure recovery yields almost perfect re-
sults (98% accuracy). Although the macro structure recovery costs are rather high
from a formal perspective, the actual results are very good. The Subject Analysis
tasks yields an average accuracy of 82%. This, however, is mainly based on the fact
that the gold standard data only provides one single concept annotation per module
and Subject Analysis method chose a more general or specialized topic in some cases.
Manual inspections and the described system usage underline that the performed
Subject Analysis yields very good results.
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7.3 PI-Fan
The PI-Fan is an evaluation data set consisting of technical publications for fictive
table fans. The data set is designed for benchmarking retrieval tools with respect to
the PI-Mod information model.

7.3.1 Introduction

PI-Mod is an information model for technical documentation that is widely imple-
mented in a variety of proprietary enterprise content management systems, especially
in the German market (see Section 3.4.1). The “Pi-Fan” corpus [201] is an evalua-
tion data set for the PI-Mod information model and comprises multilingual technical
documentation for fictive table fans and has been created for benchmarking content
management and content delivery systems. The corpus comprises modularized source
files in Office Open XML (Microsoft Word) and DITA format. Each module is self
contained and describes a certain topic of interest. A complete PDF documentation
can easily be assembled from these source files. This fact makes it a perfect source
for the evaluation of the presented semantification process as the data set is available
in two XML-based source formats and as compiled PDF publication.

7.3.2 Goals and Application Scenarios

Technical documentation written according to the PI-Mod information model is al-
ready modularized. Each module contains textual content and is accompanied by
metadata in forms of product and information classes. Thus, the primary application
scenario of technical documents created according to the PI-Mod information model
is the targeted information supply of people working with the documents, e.g. service
technicians.

This case study, however, works upon the compiled PDF documentation, which is
not modularized, not information typed, and not semantically annotated. This case
study especially focuses on the 2-STAR semantification, i.e. the recovery of micro
structures. Therefore, relevant micro structures get recovered in the PDF document.
The semantified PDF-based data set is evaluated against PI-Fan source files (see
Section 7.3.6).

7.3.3 Data Set Description

The PI-Fan data is intended for benchmarking PI-Mod compatible content manage-
ment and content delivery tools. The data set comprises a technical manual for a
fictive table fan. The technical manual is separated into 29 modules in Office Open
XML (Word) format. The publication additionally contains 49 illustrations.

7.3.4 The Semantification Process

This section describes the semantification architecture used to semantify the described
data set. The pipeline (see Figure 7.2) initially reads the PDF file (1-STAR rating).
Subsequent processing steps aim on recovering nano (A) and micro (B) structures.

The nano structure recovery (A) is based on the open source tool pdf2xml that
has been proposed by Dejean et al. [52]. The micro structure recovery (B) uses the
knowledge base described in Section 7.3.5 to estimate micro structures.
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Figure 7.10 | PI-Fan: PDF Semantification Architecture.

7.3.5 Knowledge Resources

The 2-STAR semantification requires a knowledge base that contains classification
knowledge for micro structures. For this case study a respective knowledge base has
been assembled using TEKNO Studio. The knowledge base contains ten Set-Covering
models for the following micro structure types: Caption, Caution, Heading 1, Heading
2, Heading 3, Note, Procedure, Text, Title and Warning. Each of the Set-Covering
models has on average seven Set-Covering relations that reflect formatting features
of the respective micro structure type.

7.3.6 Evaluation

This section describes the evaluation of the semantification architecture with respect
to the PI-Fan data set. First the employed evaluation procedure is described. The
the employed evaluation methods are detailled. The section closes with describing
respective evaluation results.

Evaluation Procedure

For the evaluation of the semantification results the following evaluation procedure
has been applied. First, the source files in Office Open XML (Word) format have
been aligned with the result of the PDF semantification pipeline. Then, the results
of the 2-STAR semantification have been evaluated. The evaluation mechanisms
considered the source XML files as gold standard. The evaluation methods employed
are described in detail in the next section.

Evaluation Methods

The 2-STAR semantification aims on the recovery of micro structures like headlines,
paragraphs, or lists. The Office Open XML source files provide respective markup
for these elements, i.e. they are directly accessible. The semantification architecture
for the PDF file determines corresponding micro structures for the PDF document.
Having micro structures available in both the source files and the PDF modules the
accuracy of the micro structure recovery processor can be determined. The accuracy
is defined as follows:

Definition 7.3.1 (Micro Structure Recovery Accuracy). The micro structure re-
covery accuracy acc2−ST AR is defined as the number of correctly classified blocks
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Mc,pdf ⊆ Mpdf in the PDF modules with regard to all blocks Mxml available from
source files in Office Open XML format:

acc2−ST AR =
|Mc,pdf |
|Mxml|

.

A block p ∈ Mpdf is correctly classified, if there is a block x ∈ Mxml with the same
type and text assigned.

Evaluation Results

In total, 79 micro structures were automatically classified using the assembled knowl-
edge base. The classification using the automatically generated knowledge base
yielded the following result:

acc2−ST AR =
|Mc,pdf |
|Mxml|

=
70
79

= 0.8861.

The reasons for misclassifications have been inspected manually. Formatting er-
rors and inconsistencies in the PI-Fan documentation were identified as the main
reason.

7.3.7 System Use

The PI-Fan data set is intended for evaluation and benchmarking purposes. Thus,
the documentation is in huge parts incomplete and inconsistent. For this reason, no
further semantification steps have been performed. Hence, there is no real system
usage. Figure 7.11 shows the acquisition of 2-STAR classification knowledge using
TEKNO Studio.

Figure 7.11 | PI-Fan: 2-STAR knowledge acquisition in TEKNO
Studio.
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7.3.8 Summary

This case study reported on the 2-STAR semantification of the PI-Fan data set. The
PI-Fan data set is intended for benchmarking and evaluation purposes and thus in-
complete and inconsistent. The 2-STAR semantification aims on recovering micro
structues. In the course of this case study, classification knowledge in forms of Set-
Covering Models for ten different micro structures have been defined. The classifica-
tion knowledge has then been applied to the PI-Fan documentation in PDF format.
The results have been evaluated against the XML source data. Although the for-
matting of micro structures in the PI-Fan documentation is rather inconsistent an
average accuracy of 88.61% has been achieved.
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7.4 Augmenting Spare Part Catalogues
This case study reports on a semantification architecture that is repeatedly employed.
The intended usage of the semantification architecture is linking electronic spare part
catalogues with technical documents.

7.4.1 Introduction

CATALOGCreator®2 is one of the leading standard software products for electronic
spare parts catalogues. Recently, the makers of CATALOGCreator® decided to fur-
ther develop the software to become an information system for service technicians.
In this development, linking spare part information and corresponding technical in-
formation is one important aspect. A typical usage scenario is the connection of
a spare part catalogue entry with corresponding install and remove procedures. As
CATALOGCreator® has a broad customer base the repeatable application of a unified
semantification pipeline to similar data sets is an important success factor.

7.4.2 Goals and Application Scenario

This case study describes a semantification architecture that is able to link spare
part information with corresponding technical documents. As existing technical doc-
uments are usually not modularized and not semantically annotated the 5-STAR se-
mantification approach gets applied. Hence, the goal of the presented architecture is
to repeatedly produce semantified data sets that are annotated/linked to spare part
information. The underlying corpora of technical documents usually exist in PDF
format. Therefore, the documents are subsequently semantified by running through
respective semantification steps. Unlike other semantification processes the fifth step
in this architecture links the modules to concepts representing entries of the spare
parts catalogue. The respective ontology representing the entries of the spare parts
catalogue is automatically derived from the source data of CATALOGCreator®.

7.4.3 Data Set Description

The semantification architecture for the linking of technical documents and spare
part entries of CATALOGCreator® is intended to be repeatedly applicable to a large
amount of similar data sets from different customers. Thus, a thorough data set de-
scription is not possible for this case study. Usually, a CATALOGCreator® instance
comprises spare part information for a single machine. The spare part information is
persisted in a relational data base and provides hierarchy information. This informa-
tion can be easily transformed to an ontological representation.

7.4.4 The Semantification Process

The semantification process is divided into two separate pipelines (see Figure 7.12).
The first pipeline extracts concepts (1) representing spare parts from CATALOG-
Creator®’s data base and additionally adds hierarchy information (2). The second
pipeline is actually performing the semantification. Therefore, it initially reads PDF
files that are usually provided with 1-STAR rating. Subsequent processing steps aim
on recovering nano (A), micro (B) and macro (C) structures. Finally, a semantic
annotation process (D) determines concepts from the spare parts catalogue for the

2https://www.tid-informatik.de

https://www.tid-informatik.de
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semantic annotation of the PDF modules. The ontology used for the semantic anno-
tation step is the result of the first pipeline that transforms data base entries to an
ontological representation. The resulting PDF modules finally yield 5-STARS on the
maturity schema. Additionally, these PDF modules are automatically linked to the
spare parts available in CATALOGCreator®.
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Figure 7.12 | Parts Catalogue: PDF Semantification Architecture.

The nano structure recovery (A) is based on the open source tool pdf2xml that has
been proposed by Dejean et al. [52]. The micro structure recovery (B) is rather simple
compared to other semantification architectures and concentrates on determining
headlines. This can usually be achieved by exploiting the embedded table of contents
of PDF documents. The macro structure recovery (C) works upon the recovered
micro structures and employs the macro structure recovery mechanisms described
in Section 4.5.3. The semantic annotation (D) is based on Probabilistic Explicit
Semantic Analysis (PESA) described in Section 4.7.4 and uses the extracted ontology.

Figure 7.13 | Parts Catalogue: Semantification KPIs.

The probabilistic model is parametrized to incorporate existing domain knowledge.
A thorough description of the parametrization is not possible for this case study as
it highly depends on the actual customer data. However, the parametrization is usu-
ally an iterative process in this application scenario. Therefore, a report mechanism
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has been implemented for the CAPLAN architecture that is able to provide key per-
formance indicators (KPI) for a specific parametrization and data set. Figure 7.13
shows a sample report with the respective KPIs. In order to provide an indicator of
the semantification quality the report lists how many modules of the documentation
are confidentially mapped to spare parts, how many modules are considered to be
irrelevant, as well as potential mismatches and missing modules.

7.4.5 System Use

The semantification process applied in this case study, yields a data set of technical
documents that is directly linked to spare part instances. The semantic informa-
tion system “Service Mate” has been integrated into the CATALOGCreator® appli-
cation. Service Mate provides a context sensitive semantic search mechanism for
spare parts. This enables CATALOGCreator® to provide the user technical docu-
ments that are relevant for a specific spare part. Figure 7.14 shows a screenshot of
CATALOGCreator®, the integrated Service Mate module and search results for a
spare part called “Hohlwelle”. A search for relevant technical documents is executed
automatically when the user selects a spare part.

7.4.6 Summary

This case study reported on a semantification pipeline that is intended for repeated
integration tasks. The corresponding application scenario described CATALOG-
Creator®, a standard application for electronic spare part catalogues, that has been
extended with a semantic search engine. The goal of the semantic search engine is to
provide relevant technical documents in the context of a specific spare part. There-
fore, a semantification architecture has been implemented that allows to link technical
documents to spare part instances. The semantification comprised several semantifica-
tion steps that aim on recovering nano, micro and macro structures. Then, a Subject
Analysis task is performed on the recovered macro structures in order to actually link
spare parts and modules. A formal evaluation has not been performed on this data
set. However, multiple corpora of technical documents from different customers have
already been connected to the respective electronic spare part catalogues.
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Figure 7.14 | Parts Catalogue: Semantification Result.
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7.5 Earth Moving Technology
This case study reports on an actual semantification project for earth moving technol-
ogy. The project goal required two tasks to be achieved: (1) split a corpus of legacy
technical documents in PDF format to information units, and (2) extract metadata
from these documents.

7.5.1 Introduction

This case study reports on an actual semantification project for a German mechani-
cal engineering company for earth moving technology. The semantification affected a
large corpus of technical documentation (more than 40 GB of PDF documents) cov-
ering different vehicles from the field of earth moving technology. The documentation
not only covers different skill levels of users, configurations and aspects of products,
but also targets different markets and their respective languages, e.g., German, En-
glish, French, and Russian. Hence, documentation exists for each variant of a machine
and different markets. In order to provide efficient customer support, fast and effec-
tive access to relevant information becomes a critical success factor. Therefore, the
respective mechanical engineering company introduces a semantic information sys-
tem.

Amongst other data pools the semantic information system considers the large
corpus of technical documents. However, large fractions of the corpus comprises
legacy documentation, i.e., technical documents that are not prepared for the usage in
semantic systems. A manual modularization and annotation of the legacy documents
requires an in-depth analysis of the original content by humans, which is usually error-
prone, time-consuming, and very cost-intensive for large-scale corpora. Therefore, a
semantification architecture has been applied that successfully transforms 1-STAR
legacy documents to semantically prepared 5-STAR modules.

7.5.2 Goals and Application Scenario

The underlying semantic information system offers service technicians targeted access
to required information. Therefore, the semantic information system provides differ-
ent facets that allow the user to successively detail a search query. However, in order
to provide access to relevant information, the information system requires technical
documents to be semantically prepared. Hence, the goal of the semantification project
was the transformation of a large-scale PDF-based data set into a representation that
is compatible with a semantic information system. The PDF resources, therefore,
have been semantically prepared by first splitting them to reasonable modules which
then have been annotated with metadata that has been extracted from discovered
Core Documentation Entities.

7.5.3 Data Set Description

The technical document corpus in focus contains several thousand documents and
covers different vehicles. The technical documents are either service manuals or main-
tenance manuals. The documents address different target groups and are provided in
PDF format. Source files are either not available or exist in a proprietary format. The
metadata that is necessary for the semantic annotation and indexing of information
units is encapsulated as written text in the respective documents.
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7.5.4 The Semantification Process

This section describes the semantification process used to semantify the described data
set. The section first introduces the semantification architecture and then describes
the involved knowledge resources.

Semantification Architecture

The pipeline (see Figure 7.15) initially reads the PDF file (1-STAR rating). Subse-
quent processing steps aim on recovering nano (A), micro (B) and macro (D) struc-
tures. A Core Documentation Entity discovery is performed on the recovered micro
structures. Discovered Core Documentation Entities are exploited in order to ex-
tract metadata. The extracted metadata is used as input for a semantic annotation
processor (E) that adds the respective information to the PDF modules. These PDF
modules finally yield 5-STARS in the maturity schema and are semantically prepared
for the usage in a semantic information system.
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Figure 7.15 | Earth Moving Technology: Semantification Architec-
ture.

The nano structure recovery (A) was performed using the open source tool pdf2xml [52].
A knowledge-based micro structure recovery was employed that identified different
kinds of micro structures (B) and prepared the Core Documentation Entity discovery
(C). The macro structure recovery (D) works upon the recovered micro structures
and employs the macro structure recovery mechanisms described in Section 4.5.3.
The semantic annotation (E) simply adds the extracted metadata to respective PDF
modules.

The customer required for each module the following meta information:

• Type:
The type of the vehicle; usually an alphanumeric code.

• Model:
Further specification of the vehicle; usually a variant of the vehicle type.

• Drawing Number:
Drawing Numbers are used to differentiate different versions of a model.

• Serial Number:
The unique serial number of a single vehicle.

The meta information was spread over the respective documents. Some of the infor-
mation, like type and drawing number, were defined on the title page, while others,
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like model and serial number, were defined on special index pages. Other metadata,
like the title of the chapter, needed to be extracted from the respective chapters. Fig-
ure 7.16 illustrates the metadata extraction from the different document locations.

Figure 7.16 | Earth Moving Technology: Extraction.

In order to provide the customer insights into the semantification quality CA-
PLAN’s report mechanism was employed. The respective report lists all recovered
modules and the identified metadata. Figure 7.17 shows an excerpt of such a report.

Figure 7.17 | Earth Moving Technology: Semantification Report.

7.5.5 Knowledge Resources

The micro structure recovery and Core Documentation Entity discovery are the key el-
ements of the aforementioned semantification architecture. Therefore, the corpus was
manually pre-classified into disjoint partitions. For each partition a d3web knowledge
base was defined. The knowledge acquisition necessary for the definition of respec-
tive knowledge bases was performed using TEKNO Studio. TEKNO Studio uses
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the blockification mechanism of lapdftext3. As the blockification results varied for
the different partitions of the corpus the blockification engine has been significantly
extended. The respective extension introduced a new blockification mechanism and
allows for the corpus-based configuration of the block detection. In summary, eleven
different block detection configurations have been defined for this project. Each of
these configurations specify the average distance (left, right, top, bottom) between
words. The respective knowledge bases contain Set-Covering models for the following
classes:

• Model (Machine)

• Type

• Drawing Number

• Serial Number

• Chapter Number

• Chapter Title

• (Document) Version

7.5.6 System Use

The semantified technical documentation is used in a semantic information system
for after sales service. The metadata attached by the described semantification archi-
tecture enable a semantic search that works upon different taxonomies that describe
products and components.

Figure 7.18 and Figure 7.19 show the acquisition of 2-STAR classification knowl-
edge using TEKNO Studio. The screenshots show classified document structures that
are spread over different title and index pages. Respective Set-Covering Models are
defined on the right panel.

3https://github.com/BMKEG/lapdftext

https://github.com/BMKEG/lapdftext
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Figure 7.18 | Earth Moving Technology: 2-STAR knowledge acquisi-
tion in TEKNO Studio (1/2).

Figure 7.19 | Earth Moving Technology: 2-STAR knowledge acquisi-
tion in TEKNO Studio (2/2).

7.5.7 Summary

This case study reported on an actual semantification project in the domain of earth
moving technology. In contrast to other case studies, the presented semantification ar-
chitectures focused on the extraction of metadata from Core Documentation Entities.
The extraction results were subsequently used as semantic annotations that enable
semantic search over the respective corpus. The underlying Core Documentation
Entities were recovered using the 2-STAR block classification techniques described
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in Section 4.4.3. The presented semantification architecture allows to process large
corpora of technical documents with reliable results. Reports are used to evaluate the
semantification quality and underline the practical applicability of the presented 5-
STAR semantification approach. The technical documents that have been semantified
using the presented semantification architecture are available in a modern semantic
information system.
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7.6 Special Purpose Vehicles: Ontology Population
This case study reports on an ontology population project in the domain of special
purpose vehicles. The case study presents a novel method to populate technical
ontologies from document structures.

7.6.1 Introduction

Semantic information systems promise a number of advantages, like problem-oriented
access to information, automated combination and aggregation of information re-
sources, and the machine- and equipment-aware selection of appropriate information
resources. These benefits are realized by employing an ontology that describes the
technical breakdown of the machinery and their inter-relations. However, such on-
tologies do not always exist and the manual construction is time-consuming and
cost-intensive. This case study presents an automated ontology population method
that was successfully applied multiple times in the domain of special purpose vehicles.

7.6.2 Goals and Application Scenario

The goal of the presented case study is the population of multiple technical ontologies
that represent special purpose vehicles. The ontologies are intended for a subsequent
usage in a state-of-the-art semantic information system. Therefore, the elements of
the ontologies are connected with information resources of the technical documenta-
tion. This case study, however, describes the exploitation of Core Documentation
Entities in order to populate the initial ontologies. The ontology structure (classes
and properties) was predefined and is the same for all vehicles. Instance data repre-
senting the respective vehicles and its components, however, were missing.

7.6.3 Data Set Description

The technical document corpus in focus contains about 6,000 pages of technical doc-
umentation for each vehicle. The contents are spread over 10 documents per vehicle.
Each document has up to 1,000 pages and is of a certain type, e.g. repair manual, op-
eration manual, spare parts or trouble shooting procedures. The documents address
different target groups ranging from maintenance staff to end users what influences
the structure and the level of detail. The documents are provided in PDF format.
Source files are either not available or exist in proprietary and thus inaccessible for-
mats.

7.6.4 Ontology Population Architecture

For the population of the respective vehicle ontologies an ontology population architec-
ture has been defined. The architecture is similar to the semantification architectures
that had been presented in other case studies. In contrast to the semantification ar-
chitectures the ontology population architecture aims on exporting concept instances
and relations between them. The pipeline depicted in Figure 7.20 initially reads the
PDF file (1-STAR rating). Subsequent processing steps aim on recovering nano (A)
and micro (B) structures. Then, for the whole document an information type gets
determined (C). This is the basis for discovering Core Documentation Entities (D). A
subsequent process assembles a complete concept hierarchy from the discovered Core
Documentation Entities.
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Figure 7.20 | Special Purpose Vehicles: Ontology Population Archi-
tecture.

The nano structure recovery (A) was performed using the open source tool pdf2xml
that has been proposed by Dejean et al. [52]. A basic micro structure recovery (B)
was employed that identified captions of images and corresponding legends. The mi-
cro structure recovery (B) was based on manually assembled annotation rules that
were defined using the Open Source Tool Apache UIMA Ruta4. An information type
was defined manually for each document. The Core Documentation Entity discovery
was based on an Apache UIMA pipeline that consumed the results of the applied
annotation rules.

Core Documentation Entities

Figure 7.21 | Special Purpose Vehicles: Document Components and
Concepts.

Interweaving structural and rhetorical representations gives access to the most im-
portant aspects of technical documents – Core Documentation Entities (see Sec-
tion 3.3.3). For this case study, component overviews were the most important Core

4http://uima.apache.org/ruta.html

http://uima.apache.org/ruta.html
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Documentation type. Component overviews can typically be found in sections describ-
ing the machine and usually consist of an exploded-view drawing and an associated
list of labels, product numbers, etc.:

{b ∈M | type(′OrderedList′, b)

∧ type(′Description′, b)

∧ ∃a ∈M : (next(a, b) ∧ type(′Figure′, a)) }
(7.1)

Figure 7.21 shows an example of a component overviews and an excerpt of the result-
ing technical ontology.

Constraint-based Construction of Technical Knowledge Organizations

For the construction of the respective vehicle ontologies from Core Documentation
Entities (component overviews) the following process was applied:

• Partial hierarchy extraction from document components

• Entity unification

• Constraint problem generation and constraint resolution

Each of these steps will be described in more detail in the following.

Extracting Partial Hierarchies from Document Structures

Figure 7.22 | Partial
hierarchies.

Given a corpus of 4-STAR technical documents the direct ac-
cess to Core Documentation Entities like repair instructions
or component overviews is possible. In order to build up
extensive technical ontologies partial hierarchies need to be
extracted from all relevant document components. The ex-
traction task itself can be realized as a simple query over the
semantically represented corpus of technical documents.

Referring to the example depicted in Figure 7.21 partial
hierarchies would be extracted for the components "Electronic
Assembly A1" and "Power Supply K12". The extracted partial hierarchies (Fig-
ure 7.22) would comprise concept candidates for these two components and "part
of" relations to their respective sub-components (also represented as concept candi-
dates). The partial hierarchy describing the component "Electronic Assembly A1"
here would also include a sub-component denoted "Power Supply K12" that is fur-
ther detailed in another partial hierarchy. However, this further detailing is not yet
semantically represented.

Unification of Concept Candidates

Figure 7.23 | Unified
concepts.

In technical documents it is common practice that descriptions
of components are iteratively detailed or spread over several
paragraphs, e.g., because of different views revealing varying
subsets of sub-components and their function. This typically
results in duplicate occurrences of concept candidates in the ex-
tracted partial hierarchies. These duplicates need to be seman-
tically unified (see Figure 7.23). The unification of duplicate
concept candidate occurrences is a classical ontology match-
ing [97] / ontology mapping [41] / ontology alignment [57]
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task. In this case study, the unification of concept candidates has been realized using
heuristic scoring rules [159] operating upon a set of concept similarity features like
title of the concepts, common children and the occurrence of the corresponding Core
Documentation Entity in the document.

With regard to the example depicted in Figure 7.21 the occurrences of "Power
Supply K12" would be unified in this process step. Figure 7.23 shows three unified
occurrences, i.e. the occurrence of "Power Supply K12" as a sub-component of "Elec-
tronic Assembly A1" (hierarchy on the left), the occurrence describing the rear view
(hierarchy in the middle) and another arbitrary occurrence (hierarchy on the right).

Constraint-based Hierarchy Construction

Figure 7.24 | Concept hi-
erarchy.

Now, given partial hierarchies with unified concept candi-
dates the task is to construct a complete hierarchy. How-
ever, the scenario depicted in Figure 7.23 shows that simply
connecting unconnected nodes (e.g. the root of the reddish
tree) to a unified occurrence in another partial hierarchy
is not possible. In the depicted scenario two possible uni-
fied occurrences exist for the respective node. For this case
study a constraint-based approach for the construction of
a complete technical knowledge organization has been em-
ployed. Therefore, the partial hierarchies including the al-
ready computed unifications are used to formulate a constraint-based planning prob-
lem.

A set of unified concept candidates get formally defined as C = {c1, c2, . . . , cn}.
An identity relation is defined as a tuple i = (parent, child) with parent ∈ C and
child ∈ C and serves as planning entity. The child element in the relation serves as
planning variable, i.e., the element that will be switched while solving the planning
problem. The set of all identity relations I = {i1, i2, . . . , in} defines the potential
search space of the planning problem. A solution of the planning problem is a child
assignment for each identity relation i ∈ I.

In order to construct a complete and consistent technical ontology a set of con-
straints is defined, which a solution has to fulfill. The constraints define the conditions
that the child assignments of all identity relations i ∈ I must not violate. Typical ex-
amples of such constraints comprise the avoidance of cycles or duplicate assignments.
Standard optimization algorithms can be utilized to solve the formulated constraint
satisfaction problem. For this case study, the constraint satisfaction problem has been
formulated and solved using the OptaPlanner5 framework. From all computed assign-
ments the solution which violates the least constraints is chosen. Computed solutions
have been exported to the open source ontology engineering tool KnowWE6 [10].
The remaining violations can there be reviewed and corrected by a human expert /
ontology engineer.

Referring to the example depicted in Figure 7.21 at the end of this process
step the partial tree further detailing the component "Power Supply K12" would
be connected to the occurrence "Power Supply K12" in the partial hierarchy of the
"Electronic Assembly A1". The resulting identity relation would be represented as
i = (”Electronic Assembly A1/Power Supply K12”, ”Power Supply K12”).

5https://www.optaplanner.org
6https://www.d3web.de
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7.6.5 System Use

The ontology population process described in this case study yields technical ontolo-
gies for the respective vehicles. Figure 7.25 shows an excerpt of exported hierarchy
information in KnowWE [12]. The depicted markup is automatically compiled into
an ontology that completely describes the extracted technical knowledge organization.
The resulting vehicle ontologies comprise more than 1,000,000 triples.

Figure 7.25 | Special Purpose Vehicles: Exported ontology informa-
tion in KnowWE.

The ontologies are also the basis for building corresponding semantic information
systems. Figure 7.26 shows a semantified data set for one of the vehicles in the se-
mantic information system “Service Mate”. More precisely the screenshot shows the
search results for the semantic query “Getriebe” (German term for “transmission”).
The search results show different chapters of the corresponding technical documen-
tation that are considered to be relevant for the respective query. The semantic
summary on the left lists hierarchy information (subcomponents) which are stored in
the underlying ontology.



214 Chapter 7. Experiences

Figure 7.26 | Special Purpose Vehicles: Resulting data set in Service
Mate.

7.6.6 Summary

This case study reported on an ontology population project for multiple special pur-
pose vehicles. The ontology population was realized on the basis of semantified docu-
ment structures — Core Documentation Entities. In order to be able to access these
Core Documentation Entities a process comprising several semantification steps has
been applied. In contrast to the other case studies the semantification process did not
aim on semantifying documents but extracting information that might be useful for
populating technical ontologies. Therefore, the contents of Core Documentation En-
tities of type ComponentOverview have been exploited to extract partial component
hierarchies. These partial hierarchies were then assembled to a complete structure.
Therefore, the hierarchy assembly task has been transformed to a planning problem.
Standard tools for constraint-solving problem were used to find a solution which vi-
olates the least constraints. Then, this result has been exported to the semantic
wiki KnowWE for review purposes. The resulting ontologies were the basis for the
assembly of several semantic information systems.
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7.7 Harvesting Technology
This case study reports on an actual semantification project for harvesting machines.
The task was to split a corpus of legacy technical documents to information units
and the subsequent determination of the most important concepts (topics) from an
already existing ontology.

7.7.1 Introduction

This case study reports on an actual semantification project for a German mechanical
engineering company for harvesting technology. The semantification affected a large
corpus of technical documentation (up to 12,000 pages for a single machine). The
documentation not only covers different skill levels of users, configurations and aspects
of a product but also targets different markets and their respective languages. Hence,
documentation exists for each variant of a machine and every relevant market. In
order to provide efficient customer support fast and effective access to the relevant
information becomes a critical success factor.

Amongst other data pools the semantic information system considers the large cor-
pus of technical documents. The machinery of this company has a product-life-cycle
of several decades. Authoring guidelines ensure that newly created documents are
semantically prepared, i.e. they are authored in forms of modules and get annotated
with respective metadata. However, large fractions of the corpora comprise legacy
documentation, i.e. technical documents that are not prepared for the usage in a
state-of-the-art semantic information system. A manual modularization and annota-
tion of the the legacy documents requires an in-depth analysis of the original content
by humans, which is usually error-prone, time-consuming, and very cost-intensive for
such a large scale corpus. Therefore, a semantification architecture has been applied
that successfully transforms 1-STAR legacy documents into semantically prepared
5-STAR modules.

7.7.2 Goals and Application Scenario

The underlying semantic information system offers service technicians targeted access
to the required information. Therefore, the semantic information system supports
users in formulating a search query and subsequently searches for relevant informa-
tion. However, in order to provide access to relevant information, the information
system requires technical documents to be semantically prepared. Hence, the goal of
the semantification project was the transformation of a large-scale PDF-based data
set to a representation that is compatible with a semantic information system (see
Section 7.7.7). The PDF resources, therefore, have been semantically prepared by
first splitting them into reasonable modules which then have been annotated with
concepts from an externally provided ontology.

7.7.3 Data Set Description

The technical document corpus in focus contains about 9,000 documents, covering
different machines. Each document has up to 2,000 pages and is of a certain type,
e.g., repair manual, operation manual, circuit diagram or installation guide. The
documents address different target groups ranging from maintenance staff to end
users, this in turn influences the structure and the level of detail. The documents are
provided in PDF format. Source files are either not available or exist in a proprietary
format.
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7.7.4 The Semantification Process

This section describes the semantification process used to semantify the described data
set. First, the semantification architecture is explained. Then a detailed description
of the involved knowledge resources follows.

Semantification Architecture

The pipeline depicted in Figure 7.27 initially reads the PDF file (1-STAR rating).
Subsequent processing steps aim on recovering nano (A), micro (B), and macro (C)
structures. These recovered structures already allow to split the PDF into smaller
modules. Finally, a semantic annotation processor (D) determines concepts from
an external ontology for the semantic annotation of the PDF modules. These PDF
modules finally yield 5-STARS on the maturity schema and are semantically prepared
for the usage in a semantic information system.
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Figure 7.27 | Harvesting Technology: Semantification Architecture.

Nano structure recovery (A) was performed using the open source tool pdf2xml [52].
A basic micro structure recovery (B) was employed that identified headlines on differ-
ent levels as well as header and footers. The micro structure recovery (B) was based
on heuristics over a statistical distribution of formatting information. The macro
structure recovery (C) works upon the recovered micro structures and employs the
macro structure recovery mechanisms described in Section 4.5.3. The semantic anno-
tation (D) was based on Explicit Semantic Analysis (ESA) described in Section 4.7.3
and uses a manually assembled ontology.

SPARQL [83] queries have been employed to extract concepts (assemblies) and
terms. Then a dictionary-based entity recognition algorithm annotated all occur-
rences of terms extracted from the core and parts ontologies. The Explicit Semantic
Analysis used a semantic interpreter with domain-specific weights to identify the main
subjects of each module. The ⟨kx⟩ values (see Section 4.7.3) indicating the strength
of the association between term tz and concept sx were computed differently for as-
sembly and part terms. For terms extracted from the core ontology the weight was
defined as:

kx =
1

#edges between concepts
,

i.e., the label of the concept in focus will get the maximum weight of 1, which
means that this label indicates the concept best. Predecessors and successors in the
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assembly hierarchy got lower weights, e.g., the parents and children got the weight
0.5, grandparents and grandchildren the weight 0.33.

This approach was not feasible for terms from the parts ontology, because there
are parts that are semantically different but have the same label (e.g. “valve” or
“screw”). The more parts have the same label, the less suitable they are for the
inference of a particular concept, i.e., their weight should be adapted accordingly.
Thus, the weight for terms from the parts ontology were defined as:

kx =
1

concept frequency
,

where concept frequency is the number of concepts that have a part represented by
a particular label. This procedure shifts the focus from concepts to labels for terms
from the parts ontology. The maximum weight of 1 is assigned to parts that have a
unique label and are built in only one assembly. Parts with common labels that are
used in a variety of assemblies get lower weights, e.g. parts with the label “screw” are
built in more than 500 assemblies, so the weight is as low as 0.002.

7.7.5 Knowledge Resources

A domain ontology described in OWL [89] as well as a decent terminology has already
been available in the company and were supplied in forms of two ontologies serialized
in the Turtle [15] format. The first ontology describes relations of assemblies, products,
and machines, e.g., that the cylinder block assembly is part of the engine assembly,
which itself is a part of a certain product or machine – in the following this ontology
is referred to as core ontology. The second ontology describes in detail which parts
are used in a special assembly, e.g., that a certain valve is part of the cylinder head –
the ontology is called parts ontology. Assemblies and parts have had labels attached
as literals using the RDFS property rdfs:label and language attributes.

7.7.6 Evaluation

This section describes the evaluation of the employed semantification architecture
with respect to the corpus of technical documents for harvesting machines. The
description comprises the employed evaluation architecture and evaluation methods
as well as respective evaluation results.

Evaluation Architecture

The evaluation of the presented semantification project covers the performance regard-
ing the semantic annotation (5-STAR) of the information units, i.e. the identification
of the main subject. No explicit evaluation of the modularization (3-STAR) has been
performed. However, samples always confirmed a correct segmentation and the cus-
tomer did not report any problems. As described above no training or test data was
supplied by the customer, so documents that were reviewed by domain experts using
the proposed review tool (cf. Section 4.7.5) were used to perform the evaluation.
This allowed to measure different key performance indicators, ranging from precision,
recall, and f-measure to the number of corrections that needed to be made by domain
experts. Additionally, the time needed for the correction of the automatically gener-
ated results has been measured for a couple of chapters using the proposed review
tool.

For the evaluation an evaluation architecture (see Figure 7.28) was set up. First, a
random sample was generated from the set of processed documents. These documents
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Figure 7.28 | Harvesting Technology: Evaluation Architecture.

covered different machines, document types, and languages. The randomly selected
documents have then been reviewed by a domain expert (B). Finally, the formal
evaluation was performed on basis of the deviations between the processed documents
and the reviewed documents (D). The evaluation methods employed are described in
detail in the next section.

Evaluation Methods

The 5-STAR semantic annotation aims on adding concept references to PDF-based
modules. The automatically assigned annotations of the semantification process have
been reviewed by a domain expert. The annotations of the reviewed modules served
as gold standard, so the quality functions precision, recall, and f-measure can be
determined in order to evaluate the results of the 5-STAR annotation step. The
quality functions precision, recall, and f-measure are defined as follows

Definition 7.7.1 (Annotation Precision). The annotation precision prec5−ST AR is
defined as the number of correctly determined annotations with respect to all found
annotations of a module p ∈ Spdf :

prec5−ST AR =
| expected annotations ∩ retrieved annotations |

| retrieved annotations |
.

An annotation is assumed as correct if it is also contained in the set of annotations
of the corresponding reviewed module.

Definition 7.7.2 (Annotation Recall). The annotation recall rec5−ST AR is defined
as the number of correctly determined annotations with respect to all expected anno-
tations of a module p ∈ Spdf :

rec5−ST AR =
| expected annotations ∩ retrieved annotations |

| expected annotations |
.

The set of expected annotations corresponds to the annotations of the reviewed mod-
ule x ∈ Sxml.
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Definition 7.7.3 (Annotation F-Measure). The annotation f-measure is defined as
the harmonic mean of prec5−ST AR and rec5−ST AR:

f = 2 ∗ prec5−ST AR ∗ rec5−ST AR

prec5−ST AR + rec5−ST AR
.

Evaluation Results

Table 7.4 shows the results, where the first three columns correspond to precision,
recall, and f-measure and the forth and fifth column show the number of corrections
made by a domain expert. The minus sign (–) indicates the removal of an assigned
concept and the plus sign (+) the addition of a missing concept.

Document P R F – +
d1-SYS-de 0.67 1.00 0.80 5 0
d2-RHB-de 0.85 0.87 0.86 16 13
d3-RHB-fr 0.81 0.74 0.77 4 6
d4-RHB-de 1.00 0.92 0.96 0 3
d5-RHB-de 0.77 0.77 0.77 31 30
Overall 0.82 0.83 0.82 56 52

Table 7.4 | Harvesting Technology: Precision, Recall, F-Measure and
Corrections.

Averaged over the evaluated documents the semantification architecture yields an
f-measure of 82%. In these documents 108 corrections needed to be done by the
domain expert. As the availability of a domain expert is critical, time needed for
a correction was also estimated. The correction time was measured for randomly
selected chapters from the documents above7. For each of the selected chapters the
number of corrections have been measured as well as the total time needed for applying
them (see Table 7.5) — an average correction time of 18 seconds per correction has
been measured.

Document # Corrections ∅ Time/Correction
d1-SYS-de (3) 2 22 s
d1-SYS-de (6) 1 20 s
d2-RHB-de (4) 5 8 s
d2-RHB-de (7) 10 16 s
d4-RHB-de (8) 1 28 s
d4-RHB-de (10) 1 16 s
d5-RHB-de (3) 10 20 s
d5-RHB-de (7) 12 14 s
Overall 42 18 s

Table 7.5 | Harvesting Technology: Measuring the correction effort.

7.7.7 System Use

The semantified technical documentation is used in a productive after sales informa-
tion system. The information system is based on a semantic search engine that works

7The French document was left out due to the absence of a French domain expert.
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upon different taxonomies that describe products, components, and functions. For
instance, a search for a specific machine and the component “Upper Discharge Spout”
yields highly specific search results. The search results are grouped by books but refer
to actual chapters like “3.11.4 Raising the upper discharge chute”. This example un-
derlines the power of semantic search over semantified technical documents because
the ambiguous terms “Upper Discharge Spout” and “Upper Discharge Chute” are
automatically aligned. The basis for this alignment is the linking of the respective
chapter with the “Upper Discharge Spout” concept from the domain ontology.

7.7.8 Summary

This case study reported on an actual semantification project in the domain of har-
vesting technology. A semantification architecture for the processing of a large corpus
of technical documents has been presented and evaluated. The evaluation results un-
derline the practical applicability of the presented 5-STAR semantification approach.
The technical documents that got semantified using the presented semantification ar-
chitecture are available in a modern semantic information system that is in productive
usage.
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7.8 VW ILTIS
This case study reports on the semantification of scanned technical documents. The
documents describe the operation and maintenance of the Volkswagen ILTIS vehicle.

7.8.1 Introduction

The semantification of a corpus of scanned documents is subject of this case study.
The corpus contains technical documentation concerning the Volkswagen ILTIS, a
vehicle that was was used by the German Armed Forces back in the 1980s. The com-
plete corpus of technical documents is available in forms of scanned images online.
The documentation covers different skill levels of users and aspects of the vehicle.
The documentation is entirely written in German language. This case study shows
that the 5-STAR semantification approach is able to transform legacy documents to
5-STAR linkable representations that can be employed in a state-of-the-art seman-
tic information system. Therefore, a 5-STAR semantification architecture has been
applied.

7.8.2 Goals and Application Scenario

The purpose of this case study is the semantification of the scanned documentation
which is not accessible, not modularized, and not semantically annotated. Hence, the
goal of the case study is to produce a PDF-based data set that is compatible with a
state-of-the-art semantic information system (see Section 7.8.6). The data set based
on scanned resources, therefore gets semantically prepared. Hereby, the documents
get subsequently semantified by running through respective semantification steps.
This case study comprises an explicit nano structure recovery step that transforms
the scanned images to text. For the fifth step in the semantification process a manually
defined ontology is used.

7.8.3 Data Set Description

The corpus of technical documents for the Volkswagen ILTIS comprises twelve doc-
uments. The documentation has in total about 2,000 pages that are spread over
different kinds of documents, e.g. repair manual, operation manual, spare parts, and
trouble shooting descriptions. The documents address different target groups rang-
ing from maintenance staff to end users what in turn influences the structure and the
level of detail. The documents have been written in the 1980s using not computers
but type writers. They have originally been published as written books and are today
available as ordered collections of scanned images. As the documents have originally
been written using type writers corresponding electronic source files are not available.
Figure 7.29 shows scanned book pages of the VW ILTIS documentation.
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Figure 7.29 | VW ILTIS: Scanned Book Pages.

7.8.4 The Semantification Process

The semantification architecture (see Figure 7.30) initially reads the scanned docu-
ments (0-STAR rating). A subsequent process applies Document Layout Analysis
approaches to the images (A). Then, a subsequent processing step aims on recovering
nano (B) and macro (C) structures. These recovered structures already allow to split
the original document to smaller modules. Finally, a semantic annotation process
(D) determines concepts from an external ontology for the semantic annotation of the
modules. These modules finally yield 5-STARS in the maturity schema.
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Figure 7.30 | VW ILTIS: Semantification Architecture.

For Document Layout Analysis (A), which especially comprises Optical Charac-
ter Recognition, the open source command line application OCRmyPDF8 has been
applied. OCRmyPDF is based on Tesseract9 and is able to add text layers to scanned

8https://github.com/jbarlow83/OCRmyPDF
9https://github.com/tesseract-ocr/

https://github.com/jbarlow83/OCRmyPDF
https://github.com/tesseract-ocr/
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PDF documents. The nano structure recovery (B) is based on the open source tool
pdf2xml [52]. An explicit micro structure recovery step has not been performed as
the recovered text layers did not provide reasonable formatting information. Instead,
the table of contents was manually extracted from the text layered and corresponding
headlines matched on the target pages using fuzzy string matching techniques. The
macro structure recovery (C) works upon these headline matches and employs the
macro structure recovery mechanisms described in Section 4.5.3. The semantic anno-
tation (D) is based on Probabilistic Explicit Semantic Analysis (PESA) described in
Section 4.7.4 and uses a manually defined ontology (see Section 7.8.5).

7.8.5 Knowledge Resources

The ontology providing the concepts for the semantic annotation step has been man-
ually extracted from a document that had already been processed by the Document
Layout Analysis step. More specifically, the spare parts catalogue has been exploited
to assemble an ontology that describes the technical composition of the Volkswagen
ILTIS (see Figure 7.31).

Figure 7.31 | VW ILTIS: Spare Parts Catalogue providing Ontologi-
cal Knowledge.
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Figure 7.32 | VW ILTIS: Extracted Ontology.

The ontology contains information about the hierarchical structure of components
of the VW ILTIS. Figure 7.32 is an excerpt of the extracted and compiled ontology
that represents the component hierarchy.

7.8.6 System Use

The semantification process applied in this case study yields a semantified version
of the VW ILTIS data set that is runnable in a state-of-the-art semantic informa-
tion system. The presented semantification architecture has been implemented using
CAPLAN. Figure 7.33 shows an excerpt of the defined semantification pipeline in
CAPLAN. Figure 7.34 shows the semantified data set in the semantic information
system “Service Mate”. More precisely the screenshot shows the search results for
the semantic query “Fahrwerk” which is the German term for “chassis”. The top
ranked search results represent modules describing different aspects of chassis and
wheels, like technical details, maintenance work or the application of snow chains to
the wheels. Service Mate opens a detail view of the search result when the user clicks
on one of the search result cards.
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Figure 7.33 | VW ILTIS: Semantification Pipeline in CAPLAN.

Figure 7.35 shows Service Mate viewing a module. This demonstrates the fine
grained recovery of modules even from scannned images. Additionally, the results of
the entity recognition step are used to provide semantic links / search suggestions.

Figure 7.34 | VW ILTIS: Semantification Result (1/2).
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Figure 7.35 | VW ILTIS: Semantification Result (2/2).

7.8.7 Summary

This case study reported on the complete semantification of a collection of scanned
technical documentation. The semantification comprised several semantification steps.
In contrast to the other case studies the Document Layout Analysis task was signifi-
cantly extended by Optical Character Recognition techniques that added text layers
to the image based PDF documents. The recovered text was used as basis for sub-
sequent semantification tasks, i.e. Macro Structure Recovery and Subject Analysis.
A formal evaluation has not been performed on this data set. However, the results
of this case study are runnable in the state-of-the-art semantic information system
“Service Mate”. Considering the quality of the source data Macro Structure Recovery
and Subject Analysis yield impressive results (see Section 7.8.6).
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This chapter concludes the presented work. First, a summary of the single chap-
ters is given. Then, a discussion about the role of this work within the landscape
of semantifying (technical) documents is given. The work closes with an outlook of
interesting research questions considering the presented semantification approach.

8.1 Summary

8.1.1 Accessing Technical Documents

With the increasing complexity of machinery technical documentation has become an
indispensable information source for service technicians. However, problem-oriented
and targeted access to the different types of technical documents is not always possible
in a straight-forward manner. Technical documents are special knowledge resources
with manifold challenges arising from their specific characteristics. These characteris-
tics can be exploited by state-of-the-art semantic information retrieval systems which
are based on standardized technologies and make use of semantic information main-
tained in Linked (Enterprise) Data graphs. This work focuses on ontologies embedded
in Linked (Enterprise) Data graphs that model machinery and documents. However,
required semantic links between technical documents and concepts of Linked (Enter-
prise) Data graphs usually do not exist and the manual definition is a time-consuming
and error-prone task. Hence, providing methods that support the process of linking
reasonable parts of a technical document to ontological concepts describing their topic
is the key research goal of this work.

8.1.2 Deep Semantics for Technical Documents

The latest developments in the fields of semantic information retrieval systems re-
quire technical documentation to be semantically prepared. The lack of a possibility
to quickly asses the maturity of existing technical documents and the underlying in-
formation is a major problem in real-world projects. Therefore, this work introduced
a novel 5-STAR maturity schema for technical documents. The maturity schema has
five levels and a star is added on each level if documentation meets the respective re-
quirements. This way structural accessibility on different granularity levels (1-STAR,
2-STAR, 3-STAR), modularization (3-STAR), identifiability and information typing
(4-STAR) and linkability (5-STAR) can quickly be assessed.

Building upon the 5-STAR maturity schema TEKNO as a novel abstracting meta
ontology for technical documents has been introduced. TEKNO provides a simple
but powerful ontological vocabulary to semantically represent structural and rhetori-
cal elements of technical documentation. Through its meta character it can easily be
aligned to existing information models. Such alignments usually yield considerable
improvements regarding accessibility. This is especially emphasized through a cata-
log of so called Core Documentation Entities that is part of the TEKNO ontology.
Core Documentation Entities combine existing structural and rhetorical elements to
deduct elements that carry strong technical knowledge. Examples for such Core Doc-
umentation Entities are repair instructions, component overviews, and measurement
tables.

A plethora of information models supporting the authoring of proprietary and
open technical documents exists, this work discussed the most considered open stan-
dards, namely: PI-Mod, iiRDS, DITA, DocBook and S1000D. For each information
model the most important structural and rhetorical elements have been identified.
Additionally, a mapping of the TEKNO ontology to the respective information model
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has been described. All information models have been assessed according to the
5-STAR maturity schema.

8.1.3 Semantification of Technical Documents

Large corpora of technical documents that are not semantically prepared still exist
in many companies. This limits their usage in state-of-the-art information systems.
This is a severe problem as missing data quickly destroys the acceptance of novel infor-
mation systems. Hence, there is a fundamental need for migrating legacy documents
to formats that are compatible with modern information systems.

This work introduced a novel and holistic process that is able to transform docu-
ments in legacy formats like PDF to semantic representations. The industry-proven
holistic process is based on five consecutive steps that build upon each other. The
process is closely aligned with the 5-STAR maturity schema and assembled from es-
tablished and novel methods. The novel methods are especially tailored to exploit
the characteristics of technical documents.

The 1-STAR semantification aims on recovering basic document structures using
methods from the fields of Document Layout Analysis. The 2-STAR semantifica-
tion uses a novel micro structure classification approach to further detail document
structure information. An interactive knowledge acquisition tool supports the devel-
opment of respective classification knowledge bases. The 3-STAR semantification is
concerned with recovering macro structure hierarchies of technical documents on basis
of 2-STAR data. Additionally, similarity metrics are used to support deduplication
and document alignment in multilingual corpora. The 4-STAR semantification uses
Automatic Document Classification approaches which are employed to classify single
macro structures (modules) with respect to information types. Finally, novel Subject
Analysis and Subject Indexing approaches are used in order to realize the 5-STAR
semantification. The presented approaches aim on adding concepts from an existing
ontology as topical metadata to single macro structures (modules). This makes the
respective modules usable in state-of-the-art semantic information systems. The ap-
proaches are knowledge-based and exploit domain knowledge concerning both, the
characteristics of technical documents in focus and the underlying machines.

8.1.4 Implementation of a Semantification Architecture

The semantification architecture CAPLAN is a reference implementation of the 5-
STAR semantification approach for technical documents. CAPLAN is a cloud-based
semantification architecture that aims on enabling the accessible and scalable realiza-
tion of semantification projects. Therefore, it provides a clean graphical user interface
that is intended to be used by non-expert users. A plugin mechanism allows for the
easy extension of CAPLAN with new semantification modules.

CAPLAN is accompanied by two supporting applications: TEKNO Studio and a
review tool. Unlike CAPLAN that tackles the whole semantification process these ap-
plications are tools that are especially designed to support the knowledge acquisition
for the 2-STAR semantification step and the review of 5-STAR semantification data.
TEKNO Studio provides an interactive environment that displays PDF documents
and allows to create and debug classification knowledge in forms of Set-Covering Mod-
els. The dedicated review tool allows to review and edit the results of the 5-STAR
semantification process, i.e., results created by the CAPLAN application. The re-
view tool is designed to support a targeted review by guiding a human reviewer to
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potentially inconsistent data entries. Therefore, the semantic similarity of semantic
annotations is visualized in a report, that allows to easily identify outlier concepts.

8.1.5 Practical Experiences

In four industrial projects the presented semantification approach or significant parts
of it were used and successful experiences made:

• Augmenting Spare Part Catalogues:
A German software manufacturer for electronic spare part catalogues is cur-
rently transforming their product to an information portal for service techni-
cians. Therefore, a respective semantification architecture integrates technical
documents into the spare part application. As existing technical documents are
usually not modularized and not semantically annotated the 5-STAR semantifi-
cation approach is applied. The generic architecture is applied to data sets of
different end-customers to link their data sets to spare part information. Un-
like other semantification processes the fifth step in this architecture links the
modules to concepts representing entries of the spare parts catalogue.

• Earth Moving Technology:
A German mechanical engineering company for earth moving technology offers
its service technicians a novel information system for targeted access to required
information. However, in order to provide access to relevant information, the
information system requires technical documents to be semantically prepared.
A semantification architecture was employed that transforms a large-scale PDF-
based data set to a representation that is compatible with a semantic informa-
tion system. The PDF resources, therefore, got semantically prepared by first
splitting them into reasonable modules which then have been annotated with
metadata that got extracted from discovered Core Documentation Entities.

• Special Purpose Vehicles:
A German mechanical engineering company for special purpose vehicles is pro-
viding its service technicians a novel semantic logistics and maintenance equip-
ment. The respective software requires ontologies describing the vehicles. As
such ontologies did not exist a semantification architecture was employed to pop-
ulate multiple technical ontologies. Therefore, the semantification architecture
exploited Core Documentation Entities in order to extract data that describe
concepts and their relations.

• Harvesting Technology:
A German mechanical engineering company for harvesting technology has in-
troduced a semantic information system. The underlying semantic information
system offers service technicians targeted access to required information. How-
ever, in order to provide access to relevant information, the information system
requires technical documents to be semantically prepared. Therefore, a 5-STAR
semantification architecture was employed to transform of a large-scale PDF-
based data set to a representation that is compatible with a semantic informa-
tion system. The PDF resources, therefore, have been semantically prepared
by first splitting them to reasonable modules which then have been annotated
with concepts from an externally provided ontology.

In addition to these industrial projects three additional case studies underline the
practical applicability of the approach. The benchmarking data sets of the S1000D



8.1. Summary 231

and the PI-Mod information models has been used to formally evaluate the seman-
tification process. Additionally, a publicly available scanned technical documentation
for the VW ILTIS has been semantified. The respective resources were authored in
the 1980s using typewriters.
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8.2 Discussion
This work presented a novel approach for the semantification of technical documents.
The main contributions of this work are a semantic information model for technical
documents and a holistic semantification process that has been implemented in the
semantification architecture CAPLAN. These main contributions to semantification
research are discussed in the following sections.

8.2.1 Self-Contained Semantification Approach

This work presented a self-contained semantification approach for technical docu-
ments, i.e., all aspects required for semantifying technical documents are considered.
A semantification project typically requires a possibility to assess the semantic ma-
turity of existing resources, a semantic target representation and a semantification
architecture that is able to transform legacy data to the specified target representation.
These aspects are covered in the presented approach as described in the following.

• 5-STAR Maturity Schema:
The 5-STAR Maturity Schema described in this work is considered to be the
fundamental basis for all semantification projects concerning technical docu-
ments. In practice, the early maturity assessment of existing resources is an
important success factor in most projects as it is the basis for the definition
of the project scope. As this requirement originates from sales the respective
aspects are barely covered in scientific research. The presented 5-STAR matu-
rity schema for technical documents, however, has been inspired by the more
general idea of 5-STAR linked data. The assessment of data with respect to five
consecutive maturity levels is one of the key aspects of Tim Berner-Lees vision
of a linked data web [16]. In general, the linked data assessment is based on ac-
cessibility and linkability criteria. Although accessibility and linkability are also
the main requirements for the assessment of technical documents, the general
5-STAR scheme does not consider all aspects of this special knowledge resource
and consuming software applications. Hence, the requirements of the five matu-
rity levels have been adapted to typical source formats of technical documents
and (semantic) information retrieval use cases. The adapted maturity schema
considers three different kinds of document structures: nano structures, micro
structures, and macro structures, with nano structures being the most granular
objects (e.g. tokens). Additionally, the annotation/linking with information
types and additional concepts (topics) from an ontology is taken into account.
These criteria allow to assess the semantic maturity of technical documents in
an objective and standardized way. Consequently, an accurate assessment of
technical documents can be given at an early phase in the project.

• TEKNO Ontology:
The next phase in a semantification project comprises the definition of the target
representation. Nowadays, a lot of enterprise content management systems ex-
ist that have built in support for standardized information models for technical
documents, like Apache DITA, PI-Mod, S1000D, iiRDS and DocBook. Addi-
tionally, a plethora of proprietary XML formats is available that are closely
coupled to respective content management systems. The maturity assessments
of the (de-facto) standard information models for technical documents have
been discussed thoroughly in Chapter 3. In a nutshell, none of the existing
standards received a real 5-STAR assessment, because of lacking granularity of



8.2. Discussion 233

structures or limited linking possibilities. The degree of semantics, thus, must
be considered to be limited for all standardized information models. Therefore,
TEKNO as an abstracting semantic model for technical documents has been
proposed in this work. TEKNO provides ontological elements for the descrip-
tion of structural and rhetorical elements of technical documents. Additionally,
it allows to automatically derive Core Documentation Entities from existing
structural and rhetorical document components. In order to make the TEKNO
ontology broadly applicable and compatible to existing data sets, a mapping
of the TEKNO classes and properties to the standardized information models
Apache DITA, PI-Mod, S1000D, iiRDS, and DocBook has been described. The
idea of such an abstracting ontology is not new. The main alternatives are the
Document Components Ontology (DoCO) [46] and the SALT ontology [78]. Al-
though these ontologies provide equal semantic expressiveness they have been
designed for the representation of scientific articles. Mappings to existing in-
formation models for technicals do not exist. Thus, the usage of TEKNO as
abstracting semantic representation layer is highly recommended for semantifi-
cation projects within the scope of technical documents.

• 5-STAR Semantification:
The final step in a semantification project is the actual preparation of the re-
spective resources. Therefore, a semantification architecture must be defined.
The semantification architecture describes which data (formats) must be im-
ported, which of the 5-STAR semantification steps must be applied, and which
export format(s) are desired. This work introduced a holistic approach that con-
sists of five consecutive steps. The five semantification steps are closely aligned
with the 5-STAR maturity model, i.e. processing data according to this pro-
cess yields an additional star for each successfully performed step. Therefore,
the underlying semantification process combines novel and established methods
from Document Layout Analysis, Logical Document Structure Recovery, Macro
Structure Recovery including Deduplication and Alignment of documents in
multilingual corpora, Automatic Document Classification, and Subject Analy-
sis. The respective approaches have been discussed thoroughly in Chapter 4.
Summarized, this work has made major contributions in the fields of Logical
Document Structure Recovery (2-STAR), Macro Structure Recovery (3-STAR)
and Subject Analysis and Indexing (5-STAR). In these fields, novel, mostly
knowledge-based, approaches have been proposed. All of these approaches ex-
ploit the special characteristics of technical documents and try to consider as
much domain/background knowledge as possible. Unlike existing approaches
found in literature, the presented methods build upon the fact that corporate
style guides usually fix the appearance of technical documents for a specified
period of time. Therefore, the definition of respective background knowledge
yields major result improvements. Additionally, the presented approaches are
designed to take uncertainty into account. This is an important aspect as the
underlying data is often inconsistent and prone to errors. Typical examples
comprise inaccurate formatting or ambiguously used terminology.

Scientific research concerning the problem of semantifying technical documents is
rare. Bader and Oevermann [5] proposed a framework for the automatic classification
and modularization of technical documents. The modularization seems to be rather
loose and yields classified chunk blocks in the end. The detected chunk blocks are
classified according to information types and technical components. In contrast to the
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5-STAR semantification approach presented in this work the resulting modules (chunk
blocks) must be considered to be rather small and potentially not self-contained.
A fine grained hierarchy of nano, micro and macro structures is not available. In
addition, the classification of small pieces of text from technical documents is usually
much easier then determining the topic for a complete section as less terminology is
involved which results in less potential classes/topics.
Gutierrez et al. [81] proposed a semantic framework for textual data enrichment. The
approach tries to link textual resources to instances of WordNet [59]. Other systems
claim to provide frameworks for the semantic integration of documents, but often
consider only partial steps of the semantification problems.

8.2.2 On the Exploitation of Table of Contents

The first three steps of the described 5-STAR semantification approach aim on recov-
ering macro structures (information units) from legacy technical documents. Instead
of employing the 1-STAR, 2-STAR and 3-STAR semantification procedures, parsing
the Table of Contents that is included in many technical documents, seems to be
appealing as it contains many of the required information. However, detecting and
parsing Table of Contents sections includes a lot of challenges, amongst others:

• Detection:
Although the identification of a Table of Contents section is an easy task for
a human reader it is quite challenging for an automated process. Empirical
studies that had preceded the development of the 5-STAR semantification ap-
proach tried to identify such sections using a combination of text patterns, page
ranges (e.g. at the beginning of the document), frequency and distribution of
special characters (e.g. "......"), and key words (e.g. “Index”, “Table of Con-
tents”). Although, this yielded good results for some documents, it did not
work out for others. Thus, it was considered to be not generally applicable due
to the heterogenous manner Table of Contents sections are defined in technical
documents.

• Other Indices:
Additionally, in technical documents usually other indices exist, e.g. list of
figures, and list of tables. Sometimes, technical documents also have redundant
Table of Contents sections, e.g. a big one at the beginning of the book and
smaller ones at the beginning of each chapter. The occurrence of multiple indices
makes the automatic exploitation of included information more difficult.

• Information Quality:
The quality of information contained in Table of Contents sections is considered
to be high. However, empirical studies showed that the quality of the contained
information is not always consistent and useful. For instance, Table of Contents
sections in technical documents might not reference page numbers but chapter
numbers. This might be useful for service technicians but requires additional
efforts for an automatic exploitation mechanism.

• Missing Indices:
Additionally, some types of technical documents do usually not even contain
a Table of Contents section. This is especially true for spare parts catalogues.
Hence, a macro structure recovery based on Table of Contents information is
usually not applicable to a complete corpus of technical documents.
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• Definition of Background Knowledge:
The presented 5-STAR semantification approach includes the definition of for-
malized background knowledge. This especially applies to the 2-STAR and
5-STAR semantification steps. The required knowledge is intended to be in-
tuitive, even for non-technical users. Additionally, tools like TEKNO Studio
support the knowledge acquisition in an interactive manner. The defined back-
ground knowledge is usually applicable for huge partitions of the corpus. In
contrast, it is rather difficult to define background knowledge for the detection
of table of contents sections that is applicable for multiple technical documents.
Reasons are again the heterogeneity of technical documents.

The 5-STAR semantification approach presented in this work does not require the
detection of Table of Contents sections. This makes the 5-STAR semantification ap-
proach applicable to the maturity of technical documents even when Table of Contents
sections are missing or can hardly be detected automatically.

However, Table of Contents sections might be used in combination with the 5-
STAR semantification approach. For instance, a macro structure recovered with the
5-STAR semantification approach might be checked against information extracted
from a Table of Contents sections. This might help to identify errors or missing
elements in the recovered macro structure. Additionally, information from a Table of
Contents section might be used for the 2-STAR micro structure classification. The
Set-Covering models used for the classification of untyped micro structures might be
enhanced with background information about expected textual contents of headings.

8.2.3 Evaluation of the Practicability in Four Real-World Projects

The presented work has been used in the context of four real-life projects, i.e. the
Spare Part Augmentation project, semantification projects for earth moving tech-
nology and harvesting technology as well as an ontology population project for spe-
cial pur- pose vehicles. The respective projects were successfully finished and show
promising results and satisfied customers. In all projects, the 5-STAR semantifica-
tion approach or significant parts of it were easily adopted to the respective domain
and corpora characteristics. The 5-STAR semantification approach and the accom-
panying applications CAPLAN, TEKNO Studio, and the review tool supported the
efficient realization of the respective projects. This is mainly based on the easy to un-
derstand, commonly applicable, and tailorable character of the presented approach.
The provided flexibility through the usage of knowledge-based methods allows to
quickly adapt the process to new corpora and project requirements. This way, seman-
tification projects can be achieved with reduced implementation effort. In essence,
the presented approach transforms a classical task from the fields of Natural Lan-
guage Processing to a Knowledge Engineering problem. This fact combined with the
self-contained character of the approach allowed to quickly introduce colleagues at
denkbares to semantification projects who did not have special knowledge in Natural
Language Processing. In contrast to approaches that are based on Machine Learning
methods the 5-STAR semantification process yields more predictable results which
is an important aspect in real-world projects. Additionally, the general applicabil-
ity of the 5-STAR semantification approach quickly yields first results that then can
be iteratively and incrementally improved by further detailing the domain-specific
background knowledge.
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8.3 Outlook
This work provides a comprehensive introduction to the basics of a novel and holistic
approach of semantifying technical documents. However, considering the plethora
of technical documents that reside unsemantified, there are still interesting research
questions to be explored. Additionally, new requirements and ideas arise from the
broad practical application of the presented approach. This section outlines some of
these ideas for improving and extending the 5-STAR semantification approach.

8.3.1 Fully Integrated Tool Chain

This work presented a tool chain that supports the 5-STAR semantification process.
Namely, CAPLAN, a semantification architecture that allows for batch processing of
technical documents, TEKNO Studio that supports the acquisition of classification
knowledge for the 2-STAR semantification, and a dedicated review tool for 5-STAR
data. The tools already allow to efficiently realize real-world semantification projects.
However, the distribution of functionality over three different tools is not optimal
as workflows get interrupted unnecessarily. For the future it is planned to fully
integrate the complete tool chain in one application. Therefore, the functionality of
TEKNO Studio and the review tool will be integrated in CAPLAN. So, the complete
functionality required for semantification projects is available in a fully integrated
cloud application.

8.3.2 Extending Core Documentation Entity Catalogue

The availability of Core Documentation Entities through the combination of struc-
tural and rhetorical document components is one of the most important aspects of
this work. Core Documentation Entities dramatically increase the accessibility of
technical documents. The current scope of Core Documentation Entities covers mi-
cro structures, which facilitates the targeted information extraction, e.g. for ontology
population purposes (cf. see Case Study described in Section 7.6). This already is
a considerable improvement within the scope of semantification projects. However,
the Core Documentation Entity catalogue will be extended in the future in order
to cover more application scenarios. The extension will mainly focus on increasing
the granularity of Core Documentation Entities, i.e., the basic structural components
will be nano structures. Having Core Documentation Entities available on the nano
structure level applications like Question Answering [121, 145] directly from text will
become possible.

8.3.3 Architecture Definition

The semantification pipelines presented in this work have been defined using CA-
PLAN. At the moment, CAPLAN distinguishes pipeline elements according to af-
fected data node types, e.g. documents, concepts, or terms. The distributed defini-
tion of pipelines is not optimal in some application scenarios, especially when mul-
tiple data node types are involved. Therefore, it is planned to completely overhaul
the pipeline definition functionality in CAPLAN. In the future, the pipeline defini-
tion might be available as a graphical flow chart editor. Then, it would be possible to
define complete semantification architectures aided by a graphical editor. This graph-
ical component would also indicate which results a single processing step produces
and which compatible consuming processors are available. It is expected that this
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will further increase the accessibility of semantification components for non-expert
users.

8.3.4 Automatic Thesaurus Learning

This work presented a holistic semantification process that is able to modularize ex-
isting documentation and link the respective modules to Linked (Enterprise) Data
graphs using concept annotations. The process is designed for batch processing and
thus allows to semantify large corpora of technical documents without human interac-
tion. Although all of the described case studies show promising results in real-world
application scenarios it has been observed that the best results emerge from decent ter-
minologies. However, in practice terminologies providing synonyms, hypernyms etc.
often do not exist. General terminology lists like WordNet [59] or GermaNet [112] do
usually not significantly affect the semantification results. Hence, future directions of
this work comprise the integration of automatic thesaurus learning techniques into the
semantification process. This way, inconsistently used terms can be aligned what in
the end reduces the amount of potential annotation concepts and improves the linking
quality. The evaluation of Automatic Thesaurus Learning methods will also comprise
adaptations of existing methods in order to exploit available Core Documentation
Entities.

8.3.5 Test, Analyze, Check

The semantification process presented in this work relies in large parts on knowledge-
based methods. This is especially true for the 2-STAR semantification and the 5-
STAR concept annotation. Additionally, CAPLAN as the reference implementation
of the presented approach allows to configure different aspects of semantification
architectures. Therefore, it is considered to be beneficial to provide automatic testing
methods. Such methods should support both, unit tests for single aspects of an
architecture and integration tests for the whole process pipeline. These tests should
continuously and automatically check the results in order to prevent regression.

Additionally, TEKNO as abstracting ontology for information models provides
new possibilities for checking already written documents for consistency. The avail-
able structural and rhetorical components as well as the catalogue of Core Docu-
mentation Entities allows to declaratively define consistency criteria, e.g. in forms
of queries over the semantified data set. For the future, it is planned to provide a
standard consistency catalogue for technical documents. This catalogue will then
describe queries that for example check if every repair procedure is preceded by re-
spective safety instructions.

8.3.6 Application to other Domains

Future directions of this work might also comprise the adaption to other domains.
While the presented approach is in large parts designed for the semantification of
technical documents the fundamental ideas might be applicable to other problem
domains. The fundamental requirements for respective domains are the existence of
basic guidelines respecting the appearance/formatting of documents and a certain
degree of rhetorical structure regarding the textual contents. These requirements are
possibly met in disciplines like medicine (e.g. medical reports) or law (e.g. statements
of claim, contracts etc.). Additionally, the full potential of the presented work is
exploited when existing documents get linked to concepts of a Linked Data graph.
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For the medical domain the ICD classification is an important concept provider that
has already been made available in the Linked Open Data cloud [192].
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