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Abstract

This thesis is concerned with a class of general-purpose algorithms for constrained
minimization problems, variational inequalities, and quasi-variational inequalities in
Banach spaces.

A substantial amount of background material from Banach space theory, convex
analysis, variational analysis, and optimization theory is presented, including some results
which are refinements of those existing in the literature. This basis is used to formulate
an augmented Lagrangian algorithm with multiplier safeguarding for the solution of
constrained optimization problems in Banach spaces. The method is analyzed in terms
of local and global convergence, and many popular problem classes such as nonlinear
programming, semidefinite programming, and function space optimization are shown to
be included as special cases of the general setting.

The algorithmic framework is then extended to variational and quasi-variational
inequalities, which include, by extension, Nash and generalized Nash equilibrium problems.
For these problem classes, the convergence is analyzed in detail. The thesis then presents
a rich collection of application examples for all problem classes, including implementation
details and numerical results.

Zusammenfassung

Die vorliegende Arbeit handelt von einer Klasse allgemein anwendbarer Verfahren zur Lo-
sung restringierter Optimierungsprobleme, Variations- und Quasi-Variationsungleichungen
in Banach-R&umen.

Zur Vorbereitung wird eine erhebliche Menge an Grundmaterial prasentiert. Dies
beinhaltet die Theorie von Banach-Raumen, konvexe und variationelle Analysis sowie
Optimierungstheorie. Manche der angegebenen Resultate sind hierbei Verfeinerungen
der entsprechenden Ergebnisse aus der Literatur. Im Anschluss wird ein Augmented-
Lagrange-Verfahren fiir restingierte Optimierungsprobleme in Banach-Rdumen présentiert.
Der Algorithmus wird hinsichtlich lokaler und globaler Konvergenz untersucht, und viele
typische Problemklassen wie nichtlineare Programme, semidefinite Programme oder
Optimierungsprobleme in Funktionenrdumen werden als Spezialfille aufgezeigt.

Der Algorithmus wird dann auf Variations- und Quasi-Variationsungleichungen verall-
gemeinert, wodurch implizit auch (verallgemeinerte) Nash-Gleichgewichtsprobleme abge-
handelt werden. Fiir diese Problemklassen werden eigene Konvergenzanalysen betrieben.
Die Dissertation beinhaltet zudem eine umfangreiche Sammlung von Anwendungsbeispie-
len und zugehorigen numerischen Ergebnissen.
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Chapter 1

Introduction

In the last decades, optimization has emerged as one of the most fruitful branches of
applied mathematics. One of the reasons for this phenomenon is that optimization lies
at the intersection of many practical disciplines such as engineering, economics, and
other applied sciences, and theoretical fields such as convex and variational analysis.
As a result, the stellar development of optimization theory has always been motivated
and driven by application contexts, whereas new theoretical findings have often resulted
in new applications or different perspectives on existing ones. This research spiral is
continuing even today, with new developments such as nonsmooth optimization techniques
posing a variety of challenges but also resulting in an unprecedented amount of practical
applications.

The technique of Lagrange multipliers is probably one of the most influential in the
history of mathematical optimization. It was introduced by Joseph-Louis Lagrange in
the eighteenth century for the determination of maxima and minima of functions subject
to equality constraints [80]. Fast forward over two hundred years, and the Lagrange
multiplier technique is at the heart of modern optimization theory and forms the basis of
many algorithms for the solution of constrained optimization problems. This is epitomized
by the vast amount of literature around this topic, including [24,32,112,119,163] and
many more. A complete list of references is nearly impossible at this point.

In this thesis, we shall mainly be concerned with a general framework of optimization
problems in Banach spaces and its extension to more sophisticated problem classes such
as variational and quasi-variational inequalities, as well as (generalized) Nash equilibrium
problems. The basic optimization framework we consider is a problem of the form

(P) minirgize f(z) subject to G(z) € K, (1.1)
Tre

where f and G are smooth functions defined on suitable Banach spaces, and C and K are
convex sets. One of the aims of the thesis is to develop a class of algorithms for the solution
of such problems. The methods we discuss can be classified rather broadly as safequarded
augmented Lagrangian methods, and they are applicable not only to optimization problems
but also to variational inequalities and many more (see above). A significant emphasis

1



2 1. Introduction

is placed on a very high level of generality, and this opens up a broad spectrum of
applications which will also be discussed after the theoretical investigations.

This thesis is essentially a summary of the research papers [128-136]. A substantial
effort was undergone to simplify and streamline the theory, remove unnecessary assump-
tions, and present the results in a unified framework. In addition, a significant amount of
background material is presented, including many results from the literature which are
generalized, strengthened, or modified in other ways to suit the subsequent algorithmic
investigations.

The following is an overview of the structure of the thesis. Chapter 2 contains a
collection of fundamental results from various fields of mathematics, structured and
presented in a purposeful manner to pave the way for the discussion of optimization
problems. In Chapter 3, we discuss some basics of optimization theory, including first- and
second-order conditions for constrained minimization problems, constraint qualifications,
and similar concepts for variational inequalities. Although this section is mostly a
collection of results from the literature, it also contains some developments which are new
in their given form, such as the properties of second-order conditions in Section 3.1.3, the
sequential optimality conditions in Section 3.2.3, and the primal-dual sensitivity analysis
in Section 3.2.4.

Starting with Chapter 4, the attention is directed towards augmented Lagrangian
methods for optimization and related problems. This chapter begins with a study of
the algorithm for constrained minimization problems in Banach spaces; it contains a
historical overview, a formal deduction of the algorithm, as well as local and global
convergence analyses. The results in this chapter are largely new, and they are based on
the publications [133,135,136], with a significant amount of improvements.

In Chapter 5, we discuss how the augmented Lagrangian algorithm can be applied to
variational inequalities and generalized Nash equilibrium problems. This chapter is based
on the papers [129,133] and the preprint [128]. Chapter 6 then contains a discussion
of quasi-variational inequalities, which can be seen as the most general problem class
considered in the thesis. This chapter contains a theoretical investigation of such problems,
a description and analysis of the augmented Lagrangian algorithm, and some additional
considerations in finite dimensions, including an exact penalty method. This chapter is
based on [129,132] and the upcoming preprint [134].

In Chapter 7, we briefly discuss the concept of semismooth Newton methods and
then provide a substantial collection of application examples for the proposed augmented
Lagrangian algorithms, including linear and nonlinear obstacle problems, semilinear
optimal control, and parameter estimation problems. We then discuss some examples
of generalized Nash equilibrium problems (GNEPs), including multiobjective control
problems and economic differential games, and some applications of quasi-variational
inequalities (QVIs) from mechanics and superconductivity. The chapter concludes with
two problem libraries for GNEPs and QVIs, respectively, in finite dimensions.

Chapter 8 contains some additional results on augmented Lagrangian techniques,
including an example which demonstrates the necessity of multiplier safeguarding. Finally,
in Chapter 9, some comments and future research perspectives are discussed.



Chapter 2

Background Material

This preliminary chapter establishes some fundamental notions which are indispensable
for the remainder of the thesis. Most of the material presented here is simply a careful
collection of results from the literature, structured and presented in a way which hopefully
makes the theory as clear as possible.

The following is an outline of the structure of the chapter. In Section 2.1, we will
mainly be concerned with the necessary tools from functional analysis. The results in
this section can be found, for instance, in the books [38,160,197,221-223|. We begin
with some preliminary material on topological spaces in Section 2.1.1, where we give a
brief account on different notions of compactness, and on the convergence of sequences.
This section mainly serves the purpose of providing a formal basis for the topological
treatment of Banach spaces. In Section 2.1.2, we give some basic results on Banach and
Hilbert spaces, weak convergence, various types of continuity, and on their relationship
with differentiability. Section 2.1.3 is then dedicated to the weak topology on a Banach
space, its topological structure, and the resulting notions of compactness. Finally, in
Section 2.1.4, we give some prominent examples of infinite-dimensional spaces, including
the well-known Lebesgue and Sobolev spaces. A more comprehensive description of these
spaces can be found in many textbooks, including [1,210,211].

In Section 2.2, the second part of the chapter, we then turn our attention to some
basic concepts from convex and variational analysis. In many ways, we only scratch
the surface of these enormous topics. More details on convex analysis can be found, for
instance, in [13,15], and in the famous book by Rockafellar [186]. For an overview of
variational analysis, we refer the reader to the treatises [34,163,191]|, and to the book
[32]. In the present thesis, we begin in Section 2.2.1 with some fundamental concepts of
variational geometry such as radial, tangent, and normal cones, as well as the notion of
recession cones. In Section 2.2.2, we give a fairly basic treatment of convex functions,
including a variety of important examples, and the convex subdifferential.

The subsequent Sections 2.2.3 and 2.2.4 are more specialized in terms of their scope.
In Section 2.2.3, we discuss a notion of convexity (and concavity) for operators with values
in an arbitrary Banach space. This topic, although well known in the literature, is often
covered only peripherally in textbooks on convex analysis and optimization. The history

3



4 2. Background Material

of such generalized concepts of convexity can be traced back to the doctoral thesis of
J. Borwein [33], and they have since appeared most prominently in the context of vector
optimization [125] and in semidefinite programming [218]. Since the material we require
here is not too involved, Section 2.2.3 is self-contained and includes all the corresponding
proofs (most of which are elementary).

The final part of this chapter, Section 2.2.4, deals with a class of abstract equilibrium
problems and a family of existence results commonly referred to as Ky Fan theorems. The
history of this branch of variational analysis goes back to the seminal paper [73] by Ky
Fan, where he provided a geometric proof of his famous minimax inequality. This paper,
in turn, has its roots in a fixed point approach developed by Knaster, Kuratowski, and
Mazurkiewicz [144]. For the purposes of this thesis, we will use a slightly less well-known
variant of the Ky Fan theorem which is due to Brezis, Nirenberg, and Stampacchia [39].
This result, along with a complete formal proof, will be given in Section 2.2.4, and it forms
the basis of virtually all existence results for variational and quasi-variational inequalities
in the subsequent parts of the thesis.

2.1 Banach Space Theory

This section is the most basic in this chapter since it establishes various notions from
functional analysis. In addition, there is also a brief section on basic topology, with the
aim of fixing the notation and terminology as well as providing a clear and well-founded
basis for the subsequent discussions.

2.1.1 Topologies and Compactness

We begin with a discussion of some fundamental topological notions. This is necessary
for the formal treatment of some aspects of optimization and variational analysis. This
section is not intended as a comprehensive overview of general topology, but rather as a
purposeful discussion of the particular concepts required for the subsequent chapters. A
more in-depth account of general topology can be found, for instance, in [140].

Recall that a topological space is an arbitrary set X together with a collection O of
subsets of X, called the open sets, such that

(i) arbitrary unions of open sets are again open, and
(ii) every finite intersection of open sets is open.

By convention, the trivial intersection equals the whole set X, and the trivial union is
the empty set. Hence, O is necessarily nonempty and (), X € O. Prominent examples
of topological spaces include metric spaces and, by extension, normed vector spaces. In
those spaces, the concept of open sets can be defined via open balls, and this induces the
corresponding topology.

Let X be an arbitrary topological space and A C X a set. We say that A is closed if
X \ A is open. We write cl(A) for the closure of A, which is the intersection of all closed
supersets of A, int(A) for the interior of A, which is the union of all open subsets of A,



2.1. Banach Space Theory 5

and bd(A) :=cl(A) \ int(A) for the boundary of A. We call a set V' a neighborhood of a
point & € X if there is an open set U C X such that z € U C V. The neighborhood V
itself is typically not required to be an open set, but it often suffices to consider open
neighborhoods in proofs or other topological arguments.

Definition 2.1 (Hausdorff space). A topological space X is called a Hausdorff space if,
for all z,y € X with z # y, there are disjoint neighborhoods NNV, of x and N, of y.

An important notion in general topology is that of compactness. We say that a
set A C X is compact if, for every collection {O;}ier of open subsets of X such that
A C U,;cr Os, there is a finite index set J C I such that A C (J,c;O;. One of the
fundamental properties of compact sets is the following.

ieJ

Lemma 2.2 (Finite intersection principle, [32, Prop. 2.4]). Let X be a topological space,
A C X a compact set, and {F;}icr a family of closed subsets of A such that, for every
finite set J C I, the intersection (\,c; F; is nonempty. Then (;c; F; is nonempty.

In metric spaces, the notions of openness, closedness, and compactness can be fully
characterized through sequences and their convergence properties. This no longer holds
true for an arbitrary topological space, not even for practically relevant topologies such
as the weak topology on a Banach space (see Example 2.26). Nevertheless, it will be
useful to introduce and discuss appropriate notions of sequences and of convergence in
topological spaces. This has two reasons. First, the treatment of sequences and their
induced continuity properties is much more convenient than that of the generic (abstract)
topological notions. This is particularly true when working with optimization algorithms,
for which sequential continuity properties are clearly the most natural framework. The
second reason why the treatment of sequences is useful is that, in some cases, the use
of sequence-based continuity properties over their topological counterparts is actually
necessary, see, for instance, Remark 2.27.

Definition 2.3 (Convergence of sequences). Let X be a topological space and {z*}1en
a sequence of points in X. We say that {mk} converges to x € X, and write z* — x, if
every neighborhood of 2 contains all but finitely many elements of {z*}.

The above definition is obviously consistent with the standard convergence in metric
spaces. If X is a Hausdorff space, then limits of sequences (if existent) are unique.

The definition of sequences and their convergence gives rise to “sequential” notions of
closedness and compactness. We say that a set A C X is

o sequentially closed if the limit of every convergent sequence from A lies in A,

o sequentially open if, whenever z € A and {zF} C X, zF — z, then 2F € A for
sufficiently large k, and

e sequentially compact if every sequence in A admits a subsequence which converges
to a point in A.

It is easy to verify that every open (closed) subset of X is sequentially open (closed).
Moreover, a set is sequentially open if and only if its complement is sequentially closed.
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Definition 2.4 (Continuity properties). Let X be an arbitrary topological space.

(a) A function f: X — Y, with Y a topological space, is called (sequentially) continuous
if f=1(0) is (sequentially) open in X for every open set O C Y.

(b) A function f: X — R is called (sequentially) lower semicontinuous if the level sets
{z € X : f(z) < c} are (sequentially) closed in X for every ¢ € R.

(¢) A function f: X — R is called (sequentially) upper semicontinuous if the level sets
{z € X : f(x) > c} are (sequentially) closed in X for every c € R.

We will often use the abbreviations lsc and usc for lower and upper semicontinuity,
respectively. Clearly, f is (sequentially) Isc if and only if —f is (sequentially) usc.

Note that, from a high-level perspective, all the above continuity notions can actually
be recovered as special cases of plain continuity. Indeed, the sequential continuity notions
are obtained if X is equipped with a slightly modified topology (see below), and the lower
and upper semicontinuity of f can be recovered by equipping R with a suitable topology,
see [140, Problem 3.F| for more details.

The definition of sequential continuity may seem rather odd at first glance. The
particular definition here was chosen to closely resemble ordinary continuity and to
therefore highlight the differences between the two definitions. The following result states
that our notion of sequential continuity is precisely what one would intuitively expect.

Proposition 2.5. Let X, Y be arbitrary topological spaces and f : X — Y. Then the
following are equivalent:

(i) f is sequentially continuous from X into Y.

(ii) Whenever {2} C X and 2% — z in X, then f(z¥) — f(x) in Y.

Proof. (1)=(ii): Let {¥} C X be an arbitrary sequence such that ¥ — x in X. We need
to show that f(z*) — f(z) in Y. To this end, let U C Y be an arbitrary neighborhood
of f(x). Without loss of generality, U is open. Then f~!(U) is sequentially open in X,
which implies that 2% € f=1(U) for k sufficiently large, and thus f(z*) € U.

(ii)=(i): Let U C Y be an arbitrary open subset of Y. We need to show that f=(U)
is sequentially open in X. Let {$k} C X be a sequence such that z*¥ — z for some
x € f~Y(U). Then f(z*) — f(x) € U by assumption. Hence, by the definition of
convergence in Y, we obtain f(z*) € U for sufficiently large k, and thus z* € f~(U). O

For sequentially lsc and usc functions, it is also possible to obtain a rather intuitive
characterization. This is achieved by directly using the definition of these concepts. It
follows that a function f: X — R is

e sequentially Isc if and only if, whenever z € X and zF — z in X, then f(z) <
lim infy, o0 f(2¥), and

e sequentially usc if and only if, whenever € X and ¥ — z in X, then f(z) >
lim supy,_, o, f(2").
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Hence, these two notions are also equivalent to their conventional versions. In what
follows, we shall occasionally make reference to sequential continuity properties in a single
point x € X. The meaning of this should be fairly obvious; for instance, we say that
f:X =Y, with X, Y topological spaces, is sequentially continuous in x if f(z*) — f(x)
in Y for every sequence z*¥ — z in X. Sequential lower or upper semicontinuity can be
defined in an analogous manner (with ¥ = R).

Proposition 2.6 (Minimization principle, [32, Thm. 2.6]). Let X be an arbitrary topo-
logical space, A C X a (sequentially) compact subset of X, and f : A — R a (sequentially)
lower semicontinuous function. Then f attains a global minimum on A.

The above is the basic existence result for minimizers of functions on topological
spaces. It is often attributed to K. Weierstrass. If X is a real Banach space endowed
with the weak topology (see Section 2.1.3), then the result is sometimes called the direct
method of the calculus of variations.

We now discuss an approach which allows us to formally interpret the sequential
notions of closedness, openness, and continuity in a topological framework. The main idea
is to define an auxiliary topology with the aim of representing precisely the sequential
structure of X. A natural way of doing this is the following.

Definition 2.7 (Sequential topology). Let X be an arbitrary topological space. Then
the sequential topology on X is the topology given by the sequentially open subsets of X.

It is easy to see that the sequential topology is well-defined (i.e., it is always a
topology). Moreover, since every closed set in a topological space is sequentially closed, it
follows that the sequential topology is always stronger (finer) than the original topology
of X. Finally, it is important to observe that the notion of convergence induced by the
sequential topology on X is identical to the notion of convergence induced by the original
topology. One direction of this equivalence is trivial (since the sequential topology is
stronger than the original one), and the other direction follows from the definition of
sequential openness.

It follows from Proposition 2.5 that a mapping f : X — Y from X, equipped with its
sequential topology, into an arbitrary topological space Y, is continuous if and only if it
maps convergent sequences to convergent sequences. The great benefit of this observation
arises when applying results from general topology (which are often formulated in an
abstract topological framework) to a situation where only sequential properties (such as
continuity) are available. In that case, we can simply apply the desired results in the
sequential topology of X, and the resulting argumentation is completely rigorous.

2.1.2 Banach and Hilbert Spaces

A Banach space is a normed vector space X which is complete. Throughout this thesis,
we will only deal with Banach spaces where the underlying field is the real numbers, and
emphasize this by calling them real Banach spaces.

Given a real Banach space X, we write Id x for the identity mapping on X. For a point
x € X, we denote by B,(z) :={y € X : ||z — y||x < r} the closed r-ball around z, and
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we write B;X for the closed r-ball around 0 € X. Given another real Banach space Y and
a mapping T : X — Y, we say that T is continuous in xy € X if, for every € > 0, there
exists 0 > 0 such that T'(Bs(zg)) C B:(T(x0)). It is easy to verify that T is continuous in
every x € X if and only if it is continuous in the sense of Definition 2.4. We say that T is
Lipschitz-continuous on A C X, with modulus L > 0, if | T(z) — T(y)|ly < Lljz — y|x
for all z,y € A, and locally Lipschitz-continuous in x € X if there exists » > 0 such that
T is Lipschitz-continuous on B, (x). If T is Lipschitz-continuous with modulus L = 1,
then we call T nonezpansive. Finally, a mapping T : X — Y is said to be linear if
T(ax+y) =aT(x)+T(y) for all z,y € X and a € R.

Definition 2.8 (Operator and dual spaces). Let X and Y be real Banach spaces. Then
L(X,Y) is the space of bounded linear mappings from X into Y, equipped with the norm

1Al Lexyy == sup [[Az]ly. (2.1)
lellx<1

The space L(X,R) is denoted by X* and called the dual space of X.

Given ¢ € X* and = € X, we will often use the duality pairing (¢,z) := ¢(z) to
denote the evaluation of ¢. Note that (-,-) is a bilinear mapping on X* x X. Given
a linear operator T' € L(X,Y), we denote by T* € L(Y*, X*), (I""y,x) := (y, Tz), the
adjoint operator of T. We say that T is an isomorphism if T is bijective and its inverse
lies in L(Y, X). We say that T is isometric if ||Tz||y = ||z||x for all z € X. If T satisfies
both these properties, we call T' an isometric isomorphism.

If X is not the trivial space X = {0}, then (2.1) can equivalently be written as

Az
[AllLxy)= sup [Az|y = sup Az ]y
||| x =1 zeX\{0} Hl‘”X

It is well known that L(X,Y) and X* are again Banach spaces. (This even holds if
X is just an arbitrary normed space.) Given a real Banach space X, we denote by
X** = (X*)* the bidual space of X. Furthermore, we say that X is reflexive if the
canonical embedding

ix : X = X7 (ixx)(f) = fl=),

is surjective. Note that iy is always injective and isometric. Hence, if X is reflexive, then
ix is an isometric isomorphism from X onto X**.

We say that a real Banach space X is a (real) Hilbert space if the norm on X is induced
by a scalar product, i.e., if there exists a symmetric bilinear mapping (-,-) : X2 — R such
that ||z||x = /(z,z) for all z € X. One of the most important properties of Hilbert
spaces is the following.

Theorem 2.9 (Riesz representation, [221, Section II1.6]). Let X be a real Hilbert space
and f € X*. Then there exists a uniquely determined xy € X such that f = (xf,-). The
corresponding mapping x — (x,-) is an isometric isomorphism from X onto X*.
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The Riesz representation theorem has several important consequences for the analytical
structure of Hilbert spaces. In particular, it implies that every real Hilbert space is reflexive.
Another consequence is the following result which plays a fundamental role in the analysis
of partial differential equations.

Corollary 2.10 (Lax—Milgram, [221, Section II1.7|). Let X be a real Hilbert space and
a:X? = R a bilinear form with the following properties:

(1) There ezists c1 > 0 with |a(z,y)| < c1l|z|| x||yl|x for all x,y € X.
(ii) There exists cy > 0 such that a(z,z) > cal|z||% for all x € X.

Then the mapping Te(z) := a(x,-) is a continuous isomorphism from X onto X* with
ITallnix,x+) < 1 and | T i x) < 5

Note that the bilinear form a in the above result is not necessarily symmetric. If a is
symmetric, then it is a scalar product on X whose induced norm is equivalent to || - ||x.
Thus, in this case, the Lax—Milgram theorem is just the Riesz representation theorem.

Another fundamental property of Hilbert spaces is the existence of projections onto
(nonempty) closed convex subsets.

Lemma 2.11 (Projection operator). Let H be a real Hilbert space and C' C H a nonempty
closed convex set. Then, for every x € H, there is a unique point Po(xz) € C' of minimal
distance to x. The resulting operators Po : H — H and Idg —Pgo are nonexpansive.

In a general Banach or Hilbert space, many analytical properties of convex sets can
be proved by using separation arguments. We will encounter two separation results in
this thesis: the one below and Proposition 2.19 in Section 2.1.3.

Proposition 2.12 (First separation theorem, [32, Thm. 2.13]). Let X be a real Banach
space and S, T C X convex sets such that S has nonempty interior and int(S)NT = ().
Then there exists ¢ € X*\ {0} such that ¢(s) > ¢(t) for alls€ S, t € T.

If X is finite-dimensional, then the assumption on int(S) can be dropped. This is not
the case in an arbitrary Banach space, even if the sets are closed, see [212].

Recall that the Banach open mapping theorem [197,221] states that a surjective linear
operator A € L(X,Y’) between Banach spaces X and Y is open, in the sense that A(U) is
open in Y whenever U is open in X. Since A is linear, this is equivalent to the existence
of an r > 0 such that BY C A(BjX). Here, we state a slightly more general version of
this theorem which is essentially due to Graves [92].

Theorem 2.13 (Uniform open mapping theorem). Let X, Y be real Banach spaces and
A€ L(X,Y) a surjective linear operator. Then there exists r > 0 such that BY C A(B;i¥)
and, whenever T € L(X,Y) and 6 := |T — Al (x,y) <7, then BY 5 C T(B{).

Proof. The first assertion is the Banach open mapping theorem. For the proof of the
second assertion, we refer the reader to [58, Thm. 1.2| or [59, Thm. 5D.2]. O
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We now discuss some notions of convergence on Banach spaces and their induced
continuity properties. Apart from standard (strong, norm) convergence, the following are
the two basic notions of sequential convergence which we will use.

Definition 2.14 (Weak and weak-* convergence). Let X be a real Banach space.

(a) We say that {z*} C X is weakly convergent to x € X, and write z¥ — x, if
(zF) = ¢(x) for every ¢ € X*.

(b) We say that {¢¥} C X* is weak-* convergent to ¢ € X*, and write ¢¥ —* @, if
o (x) — ¢(x) for every z € X.

Given a sequence {z¥} C X, we say that z is a weak limit point of {z*} if there is a
subsequence of {2*} which converges weakly to z. Note that this does not necessarily
coincide with the notion of limit points in the topological sense (see Example 2.26).
Weak-* limit points are defined in an analogous manner.

Definition 2.15. Let X, Y be real Banach spaces and T : X — Y. We say that T is
(i) weakly sequentially continuous if x* — x implies T'(z*) — T'(x).

(i1) weak-* sequentially continuous if Y = W™* for some real Banach space W, and
oF — 2 implies T'(z*) —* T(z) in W*.

(iii) completely continuous if ¥ — 2 implies T'(2*) — T(x).

Clearly, complete continuity is the strongest notion of (sequential) continuity. In
particular, it implies both ordinary and weak sequential continuity. A related notion
which is frequently used in the literature is that of compact operators. A linear operator
T:X —Y is called compact if it maps bounded sets in X to precompact sets (i.e., sets
with compact closure) in Y. It is well-known and easy to verify that every compact linear
operator is completely continuous, and the converse holds provided that X is reflexive.

Let X,Y be real Banach spaces. Recall that an operator T': X — Y is said to be
(Fréchet-)differentiable in x € X if there is a bounded linear operator 7"(z) € L(X,Y)
such that

T(x+h)=T(z)+ T (x)h+ o(||h]|x)
for all h € X sufficiently small. An important connection between Fréchet-differentiability

and complete continuity is given by the following result.

Proposition 2.16. Let X,Y be real Banach spaces, T : X — Y a completely continuous
operator, and let T be Fréchet-differentiable in some x € X. Then T'(z) € L(X,Y) is
completely continuous.

Proof. Assume that T"(x) is not completely continuous. Then there is a sequence
{w*} C X such that w* — w € X, |w*||x <1 for all k, and ||T"(z)w* — T'(z)w|ly > ¢
for all k£ and some € > 0. By Fréchet-differentiability, there exists > 0 such that

IT(z + h) — T(z) — T'(@)h|ly < S|h||x for all h € BX.
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Observe now that |rw*||x < r for all k. It follows that ||T(z+rw®)—T(z)—rT'(z)w*|y <
(e7)/4, and the same inequality holds with w® replaced by w. Hence,

IT(x + rw®) = T(z +rw)lly > |T'(z)(rv” - rw)|ly
— T (z + rw®) = T(z) — 7T’ (z)w"||y
— T (x + rw) — T(x) — rT' (z)w|y
> | T (z) (ruw” — rw)||y — % > 627“
which contradicts the complete continuity of 7. O

We now give another result which relates the complete continuity of an operator T’
to that of the derivative mapping 7" : X — L(X,Y’). For this, we need the notion of
uniform differentiability. A differentiable operator T : X — Y is said to be uniformly
differentiable on a subset A C X if

1T (2 + h) — T(x) = T'(x)hlly
1 x

— 0 as|h|x {0,

uniformly for x € A. This means that, for every € > 0, we can choose § > 0 such that
|T(x+ h) —T(x) — T'(z)h|ly <cel|lh|x whenever z € A and ||h||x < 4.

The following result was proved in [175]; note the different terminology in that
reference.

Proposition 2.17. Let X,Y be real Banach spaces and assume that X is reflexive. Let
T:X =Y be completely continuous and uniformly differentiable on bounded subsets of
X. Then T": X — L(X,Y) is completely continuous.

The above result admits a (partial) converse for real-valued functions. Indeed, if X is
a real reflexive Banach space and f : X — R a differentiable mapping, then the complete
continuity of f': X — X* actually implies the weak sequential continuity of f. More
details can be found in [222, Section 41.4].

2.1.3 The Weak Topology on a Banach Space

Throughout this section, let X be a real Banach space. A fundamental issue in infinite-
dimensional spaces is the choice of topology. This is particularly critical because, in the
norm topology, very few practically relevant sets are compact. Indeed, the closed unit
ball Bi* (or any other closed ball) is compact if and only if X is finite-dimensional. This
underlines the necessity of a different topological approach to generic Banach spaces. The
main definition in this context is the following.

Definition 2.18 (Weak topology). The weak topology on a real Banach space X is the
coarsest topology for which all f € X* are continuous.
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It is rather easy to verify that the weak topology is well-defined and a Hausdorff
topology. Constructions of the above type are usually referred to as initial topologies.
That is, one takes a family F of functions mapping X into arbitrary topological spaces,
and then defines the initial topology with respect to that family as the coarsest topology
such that all f € F are continuous. The resulting topology is that generated by the
preimages of open sets under the mappings in F. In our case, the weak topology is
precisely the initial topology of X with respect to the family F := X*.

In accordance with topological terminology, we call a set S C X weakly open (closed,
compact) if it is open (closed, compact) with respect to the weak topology. Since the
weak topology is coarser than the strong topology, it follows that every weakly closed
(open) set is strongly closed (open), and every strongly compact set is weakly compact.

Like every topology, the weak topology induces a notion of convergence, which is
precisely the weak convergence defined in Definition 2.14. Thus, we call a set weakly
sequentially open (closed, compact) if it is sequentially open (closed, compact) with
respect to weak convergence.

Proposition 2.19 (Second separation theorem, [32, Thm. 2.14|). Let S,T C X be
disjoint closed convex sets, and let S be weakly compact. Then there are c1,co € R and
» € X* such that ¢(s) < c1 <ca < ¢(t) forallse S andt €T.

The above separation theorem has several important consequences. Two particular
corollaries which we need are given below.

Corollary 2.20. Let C C X be a convex set. Then the following are equivalent: (i) C is
closed, (ii) C is weakly closed, and (iii) C' is weakly sequentially closed.

Corollary 2.21. Let X be a real reflexive Banach space and C C X a nonempty bounded
closed convex set. Then C is weakly compact. Conversely, if the closed unit ball B;X in
some real Banach space X is weakly compact, then X is reflexive.

We now discuss the notion of weak compactness for nonconvex subsets of a real Banach
space X. The main result in this direction is the following which goes back to the works
of W. Eberlein and V. Smulian.

Theorem 2.22 (Eberlein-Smulian, [160, Thm. 2.8.6]). A subset A C X of a real Banach
space X is weakly compact if and only if it is weakly sequentially compact.

The following result contains a direct consequence of the Eberlein-Smulian theorem
as well as a statement which is sometimes called Day’s lemma. A proof of this second
assertion can be found in [160, Cor. 2.8.7|.

Proposition 2.23. Let A C X be a weakly compact set and S C A. Then (i) S is weakly
closed if and only if it is weakly sequentially closed, and (ii) for every point x in the weak
closure of S, there is a sequence {x*} C S such that 2% — x.

Another consequence of the Eberlein-Smulian theorem is that weak and weak sequen-
tial lower semicontinuity coincide for functions on weakly compact sets.
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Corollary 2.24. Let A C X be a weakly compact set and f: A — R. Then [ is weakly
lower semicontinuous if and only if it is weakly sequentially lower semicontinuous.

Proof. Apply Proposition 2.23 (i) to the lower level sets of f. O
We close this section with some remarks and examples.

Remark 2.25. When applying results from the literature which are formulated in
a generic topological setting, it is occasionally useful to consider a slightly different
topology called the weak sequential topology on X . This is the topology induced by weak
convergence; more precisely, we call a set open in the weak sequential topology if its
complement is weakly sequentially closed. This is indeed a topology (see Definition 2.7).
Moreover, since every weakly closed set is weakly sequentially closed, it is stronger (finer)
than the weak topology and therefore also a Hausdorff topology.

Example 2.26. Let X := ¢?(R) be the space of square-summable real sequences, let
{eF} C X be the sequence of unit vectors, and consider the set S := {z¥}ren with
z¥ := VkeF. Since every weakly convergent sequence in S is necessarily bounded, every
such sequence is eventually constant and its weak limit therefore lies in S. It follows
that S is weakly sequentially closed and, similarly, norm closed. However, somewhat
surprisingly, the set S is not weakly closed since 0 lies in the weak closure of S, see
[15, Ex. 3.33).

Remark 2.27. Let X,Y be real Banach spaces and A € L(X,Y). Then the complete
continuity of A (see Definition 2.15) is nothing but sequential continuity from the weak
into the strong topology, or equivalently, continuity from the weak sequential topology
(see Remark 2.25) into the strong topology. It is interesting to note that, except for trivial
cases, an operator A € L(X,Y’) cannot be (topologically) continuous from the weak into
the strong topology. Indeed, if A has this property, then the range of A is necessarily
finite-dimensional, see [38, Exercise 6.7].

2.1.4 Lebesgue, Sobolev, and Related Spaces

This section is dedicated to some prominent function spaces which will play a key role in
many of our examples and applications, including the ubiquitous Lebesgue and Sobolev
spaces. More details on these and related spaces can be found in many places in the
literature, for instance, in [1,62,210,211].

Throughout this section, we assume that d € N is a natural number, Q C R% is a
bounded and sufficiently regular domain (e.g., a Lipschitz domain in the sense of [1]),
and I' := 99 is the boundary of Q. We write C'(Q) for the space of continuous functions
u: Q — R, equipped with the norm lullc@) = lulloo := max, g |u(x)|. Moreover, we
write C*(Q) for the space of functions u : @ — R whose partial derivatives up to order k
exist and can be extended continuously onto €. The norm on this space is defined as

lullery = D I1D%ulloos
|s|<k
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where the sum ranges over all multi-indices s := (s1,...,sq) with |s| :=s1 + -+ + 54 < n,

and D is the derivative operator D® := D! --- D3d. It is well-known that C(§2) and
C*(Q)) are Banach spaces for all k. Finally, we define C*°(Q) as the vector space of
infinitely differentiable functions on €, and C§°(2) as the space of functions u € C*°(Q)
with compact support.

Recall that a function u :  — R is called measurable if the lower level sets {z € Q :
u(z) < ¢} are Lebesgue-measurable for all ¢ € R. Given such a function v : Q@ — R, we
denote by

esssupq u = inf{M € R:u(zx) < M a.e. in Q}

the essential supremum of u over Q. This allows us to define the Lebesgue norms || -|| 1r (0,
1 < p < +o0, which are given by

(Jq lu(z)P dx)l/p, if p < oo,
lull e () =
ess supq |ul, if p= 0.
These norms induce the Lebesgue spaces
LP(Q) := {u: Q = R : u is measurable and ||ul|1»(q) < +00}.

By a famous theorem of Fischer and Riesz, the spaces LP({2), equipped with their
corresponding norms, are Banach spaces. The space L2(Q) is a Hilbert space with the
scalar product

(u,v)r2(q) ::/Qu(:c)v(:c) dz.

One of the most important inequalities on Lebesgue spaces is the following. Note that we
use the convention 1/00 := 0.

Lemma 2.28 (Hoélder inequality). Let p,q € [1,00] and p~t4q~ ' = 1. Ifu € LP(Q) and
v € LIQ), then u-v € LY(Q) and ||u - 'U”LI(Q) < lullzo@llvll a(e)-

Assume now that v € LP(Q) is a given function, and s = (s1,...,54) is a given
multi-index. We say that a function v € LP(Q) is a weak derivative of order s of the
function w if

/ u(z)D*¢(x) dz = (—1)°! / v(z)p(z)de  for all ¢ € C(Q).
Q Q

With this definition in place, it is common to define the Sobolev space W¥*P(Q), where
k € Ng and p € [1, 0], as

WHP(Q) == {u € LP(Q) : D*u € LP(Q) for all s € N{ with [s| < k}.
These spaces become Banach spaces with the norms

1/p
S ||P .
||u||Wk»P(Q) = <Z|3|§k”D uHLp(Q)) s lfp < 00,
> sj<klD*ull Lo o if p = oo.
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It is easy to verify that, for all k € Ny, the space H*(Q) := W*?2(Q) is a real Hilbert
space with the scalar product

(u, ) () = Z (D*u, D*v) L2(9) = / Déu(x) Dv(z) dz. (2.2)
|s|<k |s|<k

For k € Ny and p € [1,00], we will write Wéc’p(Q) to denote the closure of C3°(2) in
WHP(Q)). By definition, this is a closed subspace of W*P?(Q) and therefore a Banach
space in its own right. Similarly to above, we write HE(Q) := Wg’Q(Q), and this is a
Hilbert space with respect to the scalar product (2.2).

For the sake of convenience, we also define LP(Q2,R?%) as the space of functions
u : Q — R? whose components belong to LP(€Q). This space becomes a Banach space

with the norm
||l Lp (2 re (fﬂ [[u(z Hp) , if p < oo,
(Q,R?) - esssupq ||u/l, if p = o0,

where the norm on R? is the Euclidean norm. Similarly, L?(©, R?) becomes a Hilbert
space with the scalar product

(U, v) 20,4 ::/Qu(x)Tv(:r) dz.

Whenever the image space is clear from the context, we will simply write ||ul|zr(q) =
[ull o (orey and (u,v)p2(q) = (U, V) L2(0 Rd)-

Theorem 2.29 (Poincaré inequality). Let p € [1,00). Then there is a constant ¢ > 0,
depending on §) and p, such that ||uprq) < cl|Vul|Leq) for allu € Wol’p(Q).

The Poincaré inequality implies, in particular, that the space VVO1 P(Q) can equivalently
be equipped with the norm |ul| := ||[Vul|zr(q) instead of the subspace norm inherited
from W1P(Q2). On Hg(Q), this norm is induced by the scalar product

(u, v) 1) = (Vu, Vo) 20 /Vu )T Vo(z) d. (2.3)

It follows that Hol(Q) is a Hilbert space with respect to this scalar product.

We now define the dual spaces H=%(Q) := H}(Q)*, where k € N is a natural
number. One of the most fundamental operators on Sobolev spaces is the Laplace operator
A HH Q) — H=Y(Q), which is defined by

(Au,v) = —(Vu, V)21 /Vu "Vo(z)dz, wu,ve HHQ).
Note that —A is precisely the Riesz isomorphism (see Theorem 2.9) on Hg(Q) if this

space is equipped with the scalar product (2.3). It follows that A too is a continuous
isomorphism. Moreover, we have (—Au,u) = HVUHL2 > 0 for all u € H}(2), which
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means that —A is a positive operator. (Since A is linear, this also implies that —A is
monotone in the sense of Section 3.2.1.)

The Laplace operator occurs prominently in the Poisson equation (with Dirichlet
boundary conditions). Given u € L?(€2), this equation asks for the existence of y € H (1)
such that

—Ay=wu a.e. in Q. (2.4)

For every u € H~1(€), this equation admits a so-called weak solution y € H}(£2) such
that the equality in (2.4) holds with respect to the space H~1(£2). This solution is simply
given by y = —A~lu, and its existence follows from the Riesz representation theorem or,
more generally, the Lax-Milgram theorem (Corollary 2.10).

An important concept on Sobolev-type spaces is the trace operator. This mapping
allows us to define, in a generalized context, the notion of boundary values of Sobolev-type
functions. In this thesis, we will mainly need the trace of H'-functions. Recall that
I' = 092 denotes the boundary of 2.

Lemma 2.30 (Trace operator). There is a unique bounded linear operator T : H*(Q) —
HY2(T) such that Tu = u|r for all u € C1(Q).

The trace operator is usually constructed by taking the restriction operator |p :
CY(Q) — L2(T'), where T' is understood as a manifold (see [38]), showing that this
mapping is bounded with respect to the H'(€2)-norm on C'(2), and then extending it
to 7: H(2) — L?(T") by means of the Hahn-Banach theorem. The extension is unique
because C*(Q) is dense in H'(Q). One then defines H'/?(T) as the image space of 7, and
it can be verified that this is indeed a Banach space, with norm given by

v = inf U .
[vllmvaey = _pin e
Note that this is nothing but the canonical norm on H'/?(T) induced by the isomorphy
H'(Q)/ker(r) = HY?(I'), where the isomorphism is the mapping 7, acting on the cosets
of H(£2) with respect to ker(7), see [221, Section 1.11].
Another important concept in the context of Sobolev spaces is that of normal deriva-

tives. The proper definition of these requires some caution and, in particular, a different
domain space. Let H'/2(T") := HY?(I")* denote the dual space of HY/?(I").

Proposition 2.31 (Normal derivative, [210, Lem. 20.2]). The space X := {u € H() :
Au e L*(Q)}, with norm ||ul| x := [Jul| g1 o)+ ]| Aull 12(q), is a real Banach space. Moreover,
the normal derivative mapping

Op: X = H V2, (Onu,v) = /QAU(JJ) o(z) + Vu(z) " Vi(z) dz,

where © € H*(Q) is chosen so that 70 = v, is well-defined and continuous.

We conclude this section by presenting a generalization of the Laplace operator which
occurs in certain application contexts (see Chapter 7).
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Definition 2.32 (p-Laplace operator). Let p € [2,00). The p-Laplace operator or p-
Laplacian A, : Wol’p(Q) — Wol’p(Q)* is defined by

(Apu, v) := —/Q IVu(z)|P~2 Vu(z) " Vo(z) dz, u,ve WyP(Q).

It is known that A, is well-defined, continuous, and even continuously differentiable
on WyP(Q), see [104]. Moreover, —A,, is monotone (see Section 3.2.1) in the sense that

(Apu — Apv,u—v) <0 for all u,v € Wol’p(Q).

Finally, we note that A, can also be seen as the Fréchet-derivative of the function
u p‘lHVuH]Zp(Q). Recall that || Vul|s(q) is a norm on W, ?(€2) which is equivalent to

the subspace norm inherited from W1P(€2), see the discussion after Theorem 2.29.

2.2 Elements of Variational and Convex Analysis

This section contains some basic notions of variational analysis, including various types of
cones to describe the variational geometry of sets. In addition, some concepts of convex
analysis are presented which will be useful in later chapters. Throughout this section,
unless stated otherwise, X is always a real Banach space.

2.2.1 Tangent, Normal, and Recession Cones

This section is dedicated to the study of some basic objects which are useful when
characterizing the geometric structure of sets in Banach spaces. Many aspects of the
geometry of sets can be characterized through so-called cones (see below), and these
play a major role in variational analysis, convex analysis, and optimization theory. The
material discussed here incorporates elements from multiple books, e.g., [15,32,34].

Let S C X be a nonempty set. We say that S is a cone if S C S for all a > 0. We
call a cone S pointed if SN (—S) = {0}. Given an arbitrary set S C X, we denote by

S°:={pe X*:(p,s) <0 for every s € S}

the polar cone of S. Note that S° C X*. If X is a real Hilbert space, we treat S° as a
subset of X.

Definition 2.33 (Tangent cone). Let C' C X be an arbitrary set and =z € X. Then we
define the tangent cone To(x) as the empty set if x ¢ C, and otherwise as

To(z) :={de X : 3{z*} C C, tx | 0 such that 2% — z and (2% — z)/t), — d}.

The tangent cone plays a fundamental role in the formal description of various
variational properties of sets. It is famously used in the derivation of first-order optimality
conditions for constrained optimization problems, see Section 3.1.
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Lemma 2.34 (Product formula). Let Xi,..., Xy be real Banach spaces and C; C X;
closed subsets of X; for alli. Let C := HfL Ci and x = (z;)X, € C. Then

N N
To(x) C [[ 7o, () and To(x)® =] 7o, (x:)°. (2.5)
i=1 i=1
The first inclusion becomes an equality if the sets C1,...,Cn are conver.

Let us emphasize that the second equality in (2.5) is always satisfied, even if the sets
C; are nonconvex.

Definition 2.35 (Radial and normal cones). Let C' C X be a convex set. We define
(a) the radial cone Ro(z) of C at x € X as Re(z) := 0 if z ¢ C, and otherwise

Reo(x) =={alc—z) :a>0,ce C}.
(b) the normal cone No(z) of C at x € X as No(z) :=0 if = ¢ C, and otherwise
Ne(z) ={p € X" : (p,y—z) <0VyeC}L

If X is a real Hilbert space, we treat No(x) as a subset of X instead of X*. Both
the radial and normal cones are always convex cones, and we have To(x) = cl(Re(z))
whenever C' is convex. Moreover, the normal cone is always a closed set, and it has the
representations

Ne(z) = (C —2)° = Re(2)® = Te(z)°.

The last of these formulas is sometimes taken as the general definition of the normal cone
for possibly nonconvex sets C'. However, it should be noted that there are a variety of
different normal cones for general sets (see, for instance, [163]). Therefore, to avoid any
ambiguity, we will reserve the symbol N¢ for the case where C is convex.

The normal cone can be used to characterize the metric projection onto the underlying
set (see Lemma 2.11).

Proposition 2.36. Let H be a real Hilbert space and C C H a nonempty closed convex
set. Then, for x € H, we have y = Po(x) if and only if v —y € Ne(y).

Conversely, for everyy € C, d € No(y) if and only if y = Po(y + ad) for some a > 0.
In that case, y = Po(y + ad) for all o > 0.

The following is a famous decomposition theorem involving a closed convex cone in a
Hilbert space and its polar.

Lemma 2.37 (Moreau decomposition, [164]). Let H be a real Hilbert space and K C H
a nonempty closed convex cone. Then every y € H admits a unique decomposition
y =1y +y2 with K >y L ys € K° Indeed, yy = Px(y) and y2 = Pro(y).

We now turn to another object which describes some aspects of the geometric structure
of convex sets.



2.2. Elements of Variational and Convex Analysis 19

Definition 2.38 (Recession cone). Let C' C X be a nonempty convex set. Then the
recession cone of C' is the set Coo :={x € X : 2+ C C C}.

The recession cone is always nonempty (since 0 € Cy) and a convex cone. This can
be shown by first proving the convexity and then using the fact that nz € Co whenever
x € Cy and n € N. Finally, if C is closed, then so is Cw.

If the set C is a convex cone, then it is easy to see that C,, = C. On the other
hand, if C' is not a cone, then the recession cone can often be used as a substitute for
C in situations where a conical structure is necessary. This is the case, for instance, in
the context of (partial) order relations, which closely correspond to convex cones. More
details can be found in Section 2.2.3.

The following result provides some information on the polar cone C3, := (Cu)°.

Lemma 2.39. Let H be a real Hilbert space and C C H a nonempty convex set. Then
{y € H : supec(w,y) < 400} C C. In particular, No(y) C€ C, for ally € C.

Proof. Let y € H be a point with (w,y) < ¢ for some ¢ € R and all w € C. Let x € Cw,
and choose an arbitrary zp € C. Then z¢+txz € C for all t > 0, and hence (xo+tx,y) < c.
This cannot hold for all ¢ > 0 if (x,y) > 0. Hence, (z,y) <0, and y € C%,. O

The set {y € H : sup,cc(w,y) < +00} in the statement of Lemma 2.39 is often called
the barrier cone of C'. Note that the inclusion stated in the lemma can be strict. In
particular, there are situations where the barrier cone is not closed, and this makes it a
priori impossible for it to equal C3 , which is always a closed cone by virtue of polarity.
An example for this phenomenon can be found in [15, Exercise 6.23|.

Proposition 2.40. Let X be a real Banach space and C' C X a closed convex set. Let
reC, pc X*, {2 C O, {¢*} C X* such that ¢ € No(2F) for all k, and assume that
either (i) 2% — 2 and ¢F — ¢, or (ii) z¥ — x and ¢¥ —* ¢. Then ¢ € Ng(x).

Proof. Let ¢ € C. By assumption, (¢*, c — 2*) < 0 for all k. Under either (i) or (ii), it
follows that (¢, ¢ — x) < 0. Since ¢ was arbitrary, this means that ¢ € Neo(z). O

2.2.2 Convex Functions and Subdifferentials

The theory of convex functions is a cornerstone of modern variational analysis and
optimization theory. This point is emphasized by the famous quote

“..the great watershed in optimization isn’t between linearity and nonlinearity,
but between convexity and nonconvexity.”
— R. T. Rockafellar [190]

In that spirit, we shall dedicate the present and the subsequent sections to a discussion
of various forms of convexity as well as their consequences. In the infinite-dimensional
setting, it turns out that the distinction between convexity and nonconvexity is even more
important than in finite dimensions since convex functions are much more amenable when
it comes to certain minimization-related continuity properties (see below).
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Definition 2.41 (Convexity). Let C' C X be a convex set. We say that f:C — R is
(i) convez if, for all z,y € C and a € [0, 1],

F(A1=a)z+ay) < (1-a)f(2)+af(y)
(ii) strictly convez if, for all z,y € C, x # y, and o € (0, 1),
f((1—a)z+ay) < (1—a)f(z) +af(y).

(iii) strongly conver with modulus ¢ > 0 if, for all z,y € C and « € [0, 1],
c
F((1=a)z+ay) < (1= a)f(2) +afy) - 5ol - allz -yl

A function f: C' — R is called (strictly, strongly) concave if —f is (strictly, strongly)
convex. It goes without saying that much of the theory of convex functions can be carried
out in a similar fashion for concave functions. For the sake of simplicity, we restrict
ourselves to the former class here.

One of the most fundamental examples of convex functions is the distance function
dco : X — R to a convex set C C X. Note that the following result holds for an arbitrary
Banach space X, not necessarily a Hilbert space.

Lemma 2.42 (Distance function, [15,177]). Let C C X be a nonempty convex set. Then
the function do : X — R, do(z) == infycc ||z — y||x, is convex and nonexpansive.

It is easy to see that the square of a nonnegative convex function is again convex.
Thus, in the setting of Lemma 2.42, the squared distance function d% is also a convex
function. If the space X is a real Hilbert space, then the squared distance function enjoys
a much stronger form of regularity.

Lemma 2.43 ([15, Cor. 12.31]). Let X be a real Hilbert space and C C X a nonempty
closed convex set. Then the squared distance function d% 1§ convex and continuously
differentiable on X with (d%)(z) = 2(x — Po(x)) for all x € X.

We now discuss some continuity properties of a general convex function f: C' — R on
a nonempty, closed, convex set C C X. The continuity properties of f are closely linked
to the so-called epigraph of f, which is the set

epi(f) :=={(z,t) e C xR : f(x) < t}.

It is easily verified that epi(f) is a convex set, and that f is (weakly, weakly sequentially)
lower semicontinuous if and only if epi(f) is (weakly, weakly sequentially) closed. The
following is therefore a direct consequence of Corollary 2.20.

Proposition 2.44. Let C' C X be a closed convex set and f: C' — R a convez function.
Then the following are equivalent: (i) f is lower semicontinuous, (ii) f is weakly lower
semicontinuous, and (iii) f is weakly sequentially lower semicontinuous.
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Note that a convex function can fail to be lower semicontinuous, even if it is defined
on the whole space X. To see this, let f : X — R be a discontinuous linear functional.
Examples of such functionals are well-known on certain (non-complete) normed spaces
X, and their existence on arbitrary infinite-dimensional spaces follows from the axiom
of choice. Observe that f is convex, but if f were lower semicontinuous at some point
x € X, then a symmetry argument would yield the continuity of f at z and thus, by
linearity, the continuity on X. This is a contradiction.

Let us now turn to the fundamental notion of generalized first-order derivatives for
convex functions, the so-called convex subdifferential.

Definition 2.45 (Convex subdifferential). Let C' C X be a convex set and f: C — R a
convex function. The convexr subdifferential of f in x € C' is the set

of (z) := {d eX*: fly) > flx)+ (d,y —x) Vy € C}.

The following result gives sufficient conditions for df to be nonempty, and also
describes the relationship between the convex subdifferential and Fréchet-derivatives.
This result is a combination of various statements contained in [177].

Proposition 2.46. Let X be a real Banach space and f: X — R a continuous convex
function. Then Of(x) is nonempty at every x € X. Moreover, f is Fréchet-differentiable
i x € X if and only if the following two properties hold:

(i) Of(x) is the singleton {f'(x)}, and

(ii) whenever z¥ — x in X and d* € of (%), then d* — f'(x).

Property (ii) is often called norm-to-norm upper semicontinuity. The above result
implies that a convex function cannot have a discontinuous Fréchet-derivative. Hence, if
f is convex and differentiable, then it is continuously differentiable.

One of the key benefits of the convex subdifferential is the availability of a Fermat-
type stationary result. Indeed, one of the classical assertions related to the convex
subdifferential is that a point x € X minimizes a convex function f : X — R if and only
if 0 € 9f(z). For later reference, we state this theorem in a more general form which is
essentially a combination of [34, Thm. 4.3.3] and [163, Thm. 1.88].

Theorem 2.47 (Necessary optimality condition). Let f : X — R be a continuously
differentiable mapping, C C X a nonempty closed convex set, and g : X — R a continuous
conver function. If T is a local minimizer of f + g on C, then

0 € f'(z) + 0g9(Z) + Ne ().

2.2.3 Concave Operators

The theory of convex functions is useful for a wide variety of application problems. There
are, however, certain practical scenarios where convexity properties of nonlinear operators
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G : X — Y are necessary, with X and Y real Banach spaces. More specifically, assume
that we are dealing with an inclusion of the form

G(z) e K, K CY aclosed convex set. (2.6)

Ideally, we would like to work with a generalized notion of convexity which takes into
account the mapping G and the geometry of the set K. The present section is dedicated
to the analysis of such generalized convexity notions, their consequences, and their
relationship with ordinary convexity.

Assume for the moment that the set K in (2.6) is a closed convex cone. Then K
induces the order relation

a<gb < b—ackK, (2.7)

and K itself can be regarded as the nonnegative cone with respect to <g. Thus, (2.6)
can be rewritten as G(x) >k 0, which suggests that the appropriate convexity notion in
this case is a generalized type of concavity with respect to the order relation <g. This
property takes on the form

G((1-t)z+ty) >k (1 —t)G(z) +tG(y) forall z,y € X, t €[0,1].

The above property is usually called K -concavity, and it is in fact a special case of the
general concept which we define below. In the case where K is not a cone, the recession
cone K, turns out to be a useful substitute to define the order relation (2.7).

Definition 2.48 (Concave operator). Let G : X — Y be an arbitrary mapping and
K CY a closed convex set with recession cone K,,. We say that G is K,-concave if

G((1—t)z+ty) >k (1 —1)G(z) +tG(y) forallz,y € X, t€[0,1],
where <p is the order relation defined by a <g b :<=b—a € K.

Before proving that this property is in fact useful and provides some desirable properties
for the constraint (2.6), we first give two important examples. These show that, for certain
practically relevant cases, the notion of K,-concavity reduces to the corresponding
“natural” convexity properties.

Example 2.49. (a) Let m,p be nonnegative integers and Y := R™? K := R™ x {0}".
This corresponds to the case of nonlinear programming-type constraints, see Section 3.1.4.
In this case, K is a closed convex cone, which implies K, = K, and it is easy to see
that G is Ks-concave if and only if the functions G; (i = 1,...,m) are convex and the
functions G (j =m+1,...,m + p) are affine.

(b) Let X and Y be function spaces, K the negative cone in Y, and G an operator of the
form G(u)(t) := G(t,u(t)). Assume that G is sufficiently regular so that G is well-defined,
and that G is convex with respect to the second variable. Then G is K,.-concave.
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Let us now discuss the analytical consequences of generalized convexity in the sense of
Definition 2.48. The resulting properties can be deduced by discussing situations in which
the K-concavity of G yields the (ordinary) convexity of a suitable composite mapping
involving G.

We say that a mapping m : Y — R is K.-decreasing if it is monotonically decreasing
with respect to the order <y, i.e., if m(y1) < m(yz) whenever y; >x yo.

Theorem 2.50. Let X,Y be real Banach spaces, K C'Y a nonempty closed conver set,
and G : X =Y a Ky -concave operator. Then:
(a) If m:Y — R is conver and Ko-decreasing, then m o G is convex.
(b
(c
(d

The function dg o G : X — R is convex.
If A€ K3, then x — (\,G(x)) is convex.

)
)
)
) The set M :={x € X : G(x) € K} is convex.

Proof. (a): Let z,y € X and 24 = ax + (1 — @)y, a € [0,1]. Then G(z,) >k aG(x) +
(1 — a)G(y) by the concavity of G. Applying m on both sides yields

m(G(za)) < m(aG(z) + (1 - a)G(y)) < am(G(z)) + (1 — a)m(G(y)),

where we first used the monotonicity and then the convexity of m. Hence, mo G is convex.

(b): The function df is convex by Lemma 2.42. We claim that it is also K-decreasing.
Let y,z € Y, y <k z, be arbitrary points. Then z = y + k for some k € K,,. Now, let
e >0 and let y. € K be a point with ||y — ye|ly < dx(y) +¢&. Then

di(2) =di(y+k) <|ly+k— (e +E)lly = lly — velly <dr(y) +e,

where the inequality in the middle uses the fact that y. + k € K because k € K. Since
e > 0 was arbitrary, it follows that dx(2) < di(y). Hence, di is Ko-decreasing, and
thus the function dg o G is convex by (a).
(c): The function y — (A, y), with A € K2, is obviously a convex function, and it is
decreasing because (A, k) <0 for all k¥ € K. Hence, the result again follows from (a).
(d): Note that M = {x € X : dx(G(z)) < 0}. Hence, M is a lower level set of the
convex function dg o G, and therefore a convex set. ]

For later use, we will also need an analogue of the standard gradient inequality for
convex functions. This result is contained in the following proposition.

Proposition 2.51. Let K C Y be a nonempty closed conver set and G : X — Y
a differentiable Koo-concave operator. Then G(w) <i G(z) + G'(z)(w — x) for all
r,we X.

Proof. Let x,w € X and d :=w — z. For all t € (0,1), the K-concavity of G yields

Gz +td) =G((1 —t)z +tw) € (1 —t)G(z) + tG(w) + Koo.



24 2. Background Material

Rearranging this inclusion, dividing by ¢, and recalling that K., is a cone yields

G(z +td) — G(z)
t

C(x) + € G(w) + Ko,

For t | 0, we obtain G(z) + G'(z)d >k G(w). Hence, the result follows. O

Let us conclude this section by mentioning an alternative, more abstract motivation for
the definition of K-concavity. This motivation is based on the theory of multifunctions
and will play a certain role in the context of constraint qualifications, see Section 3.1.2.

Remark 2.52. Apart from the order relation induced by the recession cone K., there
is another way to motivate the notion of operator concavity which is closely related to
the multifunction W: X =Y, W(z) := G(z) — K. This is usually called the feasibility
mapping of the system G(z) € K, and the K -concavity of G is nothing but the convexity
of W in the multifunction sense, i.e., the convexity of the graph gph(W). More details
behind this motivation can be found in Section 3.1.2 and in |32, Section 2.3.5]|.

2.2.4 Ky Fan’s Minimax Theorem

This section is a first step towards the analysis of generic variational or equilibrium-type
problems. Many such problems can be written in the general framework

findze A: ¥(z,y) <0 VyeA, (2.8)

where A C X is a nonempty set and ¥ : A x A — R a scalar-valued function, usually
called a bifunction. Problems in this abstract form are often referred to as equilibrium
problems. More details on this problem class can be found in [30, 120, 139].

In the present section, we give two general existence theorems for equilibrium problems,
with the idea of applying them to variational inequalities and related problems in later
chapters. For the sake of generality, we will make use of a weakened form of concavity,
called quasiconcavity.

Definition 2.53 (Quasiconcavity). Let S C X be a convex set. Then a function
f 8 — Ris called quasiconcave if

flax+ (1 — a)y) > min{f(z), f(y)} forall z,y €S, a €]0,1]. (2.9)

Clearly, every concave function is quasiconcave. Moreover, it is easy to verify that
a function is quasiconcave if and only if its upper level sets {z € S : f(z) > ¢} are
convex for all ¢ € R. This, in turn, implies that the notions of upper semicontinuity, weak
upper semicontinuity, and weak sequential upper semicontinuity coincide for quasiconcave
functions (like they do for concave functions, see Proposition 2.44). In particular, every
continuous quasiconcave function is weakly sequentially upper semicontinuous.

We now turn to the existence theory for the equilibrium problem (2.8). The most
basic existence theorem is due to Ky Fan [73].
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Lemma 2.54 (Ky Fan, [73|). Let A C X be a nonempty, convex, weakly compact set,
and ¥ : Ax A— R a mapping such that

(i) U(z,z) <0 forallx € A,
(ii) for every x € A, the function V(z,-) is quasiconcave, and
(iii) for every y € A, the function V(-,y) is weakly sequentially lsc.
Then there exists & € A such that U (z,y) <0 for ally € A.

Note that the Ky—Fan theorem is often stated in an arbitrary (Hausdorff) topological
vector space, with (iii) replaced by weak lower semicontinuity. In the Banach space
setting, since the set A is weakly compact, it suffices to assume weak sequential lower
semicontinuity, see Corollary 2.24.

While the Ky—Fan theorem has manifold applications in game theory and related
subjects, it turns out to be rather unwieldy when applied to the class of problems known
as variational inequalities. It is in particular the continuity assumption (iii) in Lemma 2.54
which turns out to be quite unnatural in this case, see also Example 3.44 in Chapter 3. As
a consequence of this fact, certain extensions of the Ky—Fan theorem have been developed,
including a rather notable one due to Brezis, Nirenberg, and Stampacchia [39]. Before
giving this result, we first state an auxiliary lemma, mainly for motivational purposes.
Note that we call ¥ monotone if U(z,y) + ¥(y,z) > 0 for all z,y € A.

Lemma 2.55. Let A C X be a closed convex set and ¥ : A x A — R a mapping such
that either

(a) U is weakly sequentially lsc with respect to x, or

(b) W is continuous, monotone, concave with respect to y, and ¥(x,z) <0 Vz € A.
Then U has the property that, whenever x,y € A, {x*} C A converges weakly to x, and
U(xk, (1 —t)z +ty) <0 for allt €[0,1] and k € N, then ¥(z,y) < 0.

Proof. (a) If U(z*, (1 —t)x +ty) < 0 for all ¢+ € [0,1] and k € N, then we obtain, in
particular, (¥, y) < 0 for all k. Taking k — oo, it follows that ¥ (z,y) < 0.

(b) Let wy := (1—t)x+ty. By concavity, ¥ is weakly sequentially upper semicontinuous
with respect to y. Using the monotonicity of W, it follows that

W (wy, z) > limsup ¥(wy, z¥) > lim sup[f\IJ(xk,wt)] >0
k—o0 k—o0

for all t € [0, 1]. Using again the concavity of ¥ with respect to y, we obtain
\I](UJt,.’E) Z 0 2 \Ij(wtu wt) Z (]- - t)\l’(wt,l‘) + tq](why) Z tq](wtay)7

where the last inequality uses the first one. It follows that W(wy,y) < 0 for all £ > 0, and
letting ¢t — 0 yields ¥(z,y) < 0. O

Based on the result above, it now seems natural to construct an existence result for
(2.8) by using the assertion of Lemma 2.55 as an abstract continuity assumption. The
resulting theorem covers both the monotone and the nonmonotone case.
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Theorem 2.56 (Brezis—Nirenberg—Stampacchia, [39]). Let X be a real Banach space,
A C X a nonempty, convex, weakly compact set, and ¥ : A x A — R a mapping with

(i) (x,z) <0 forallx € A,
(i) for every x € A, the function U(x,-) is quasiconcave,

(iii) for every y € A and every finite-dimensional subspace L of X, the function ¥(-,y)
1s lower semicontinuous on AN L, and

(iv) whenever x,y € A, {xF} C A converges weakly to x, and ¥ (z*, (1 —t)x +ty) <0
for allt € [0,1] and k € N, then ¥(z,y) < 0.

Then there exists & € A such that V(z,y) <0 for all y € A.

Proof. Let L be the collection of all finite-dimensional subspaces L of X which intersect
A. For each L € £, Lemma 2.54 implies the existence of an z; € A N L such that
U(zp,y) <0 forallye AN L. Now, for L € L, let

Sp={xeA:V(z,y) <O0forallyec ANL}.

Then Sy, is nonempty for all L € £. Observe furthermore that the family {S7.} e, has
the following finite intersection property: whenever Lq,..., L, € L, then the intersection
Sr, N...NSg, is nonempty since it contains the set Sy, corresponding to the linear hull
L' of Ly U...UL,. This implies that the intersection cl,,(Sz,) N...Ncly(SL,) is also
nonempty, where cl,, denotes the weak closure. Since A is weakly compact, it follows
from Lemma 2.2 that there is a point € A with & € cl,,(S) for all L € L.

We claim that & has the desired property. To this end, let y € A be an arbitrary
point, and let L denote the linear hull of £ and y. Then L € £ and thus 2 € cl,,(S1). By
Proposition 2.23, there is a sequence {2¥} C Sy, such that ¥ — &. The definition of Sy,
now implies that

U(z* w) <0 forallwe ANL

for all k € N. Since AN L contains the line segment connecting & and y, it follows from
property (iv) that ¥(z,y) < 0, and the proof is complete. O

The importance of the above theorem can hardly be overstated. It plays a funda-
mental role in the existence theory for variational inequalities and even quasi-variational
inequalities, see Chapters 3 and 6.

Note that, in their original paper [39], Brezis, Nirenberg, and Stampacchia formulated
the above theorem for an arbitrary Hausdorff topological vector space and used the
continuity property (iii) with respect to nets (or filters) instead of sequences. In the
Banach space setting, we can dispense with these notions due to Proposition 2.23.



Chapter 3

Theory of Optimization and
Variational Problems

This chapter focuses on the theoretical background of constrained optimization and
variational inequalities in general Banach spaces. Most of the theory is inspired by the
book [32], although the results we present are often reformulated, extended, or modified
in other ways to suit the algorithmic applications we will develop later on.

The literature on optimization theory is enormous, especially when finite-dimensional
nonlinear programming is taken into account. For the general theory, we refer the reader
to [13,112,222], and quite notably [32]. These books also include a bibliography of various
milestone publications in optimization theory over the last decades, something which is
outside the scope of this thesis. Some information on Banach space optimization, albeit
in a more specialized context, can also be found in [211]. For nonlinear programming,
much of the state-of-the-art theory can be found in parts of the aforementioned references,
in the monographs [25,172], in the encyclopedia-style book [80], and of course in the
references therein.

This chapter also deals in some detail with variational inequalities (VIs). Indeed, we
will treat these problems in a slightly more general framework designed to accommodate
nonconvex optimization problems. The resulting problem class will be referred to as
variational problems, but we will often use this term and “variational inequality” inter-
changeably. The theory of variational inequalities is fairly well-known in the literature.
It can be found, for instance, in the monographs |70, 143| and, to a lesser extent, the
book [32], as well as the more application-oriented treatises [12,88-90]. In this thesis,
we develop the corresponding theory in tandem with constrained optimization, either
by reducing the VI to an optimization problem or by proving the corresponding results
directly for VIs, with optimization to be seen as a special case.

The following is an overview of the structure of this chapter. Section 3.1 is dedicated to
constrained optimization problems in Banach spaces. We discuss the well-known Karush—
Kuhn-Tucker (KKT) conditions in Section 3.1.1, and give some results on constraint
qualifications and their consequences in Section 3.1.2. This section also contains a brief
discussion of multifunctions and metric regularity. More details on these topics can be
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found, for instance, in [11,32,163,191|. Section 3.1.3 is dedicated to second-order sufficient
optimality conditions and their consequences. Finally, in Section 3.1.4, we specialize some
of the concepts and results from the preceding sections for the case of finite-dimensional
nonlinear programming.

In Section 3.2, we deal with variational problems (inequalities) in their full generality.
Section 3.2.1 is dedicated to the notion of pseudomonotonicity, a fundamental concept
of continuity for VIs which can also be seen as a generalization of monotonicity. This
notion can be traced back to the work of Brezis [37], and it is indispensable for the
subsequent chapters since it provides a unified framework for the analysis of monotone
and nonmonotone VIs (and, a fortiori, convex and nonconvex optimization problems). We
continue with a discussion of the Karush-Kuhn-Tucker (KKT) conditions for variational
inequalities in Section 3.2.2, where we essentially demonstrate how these can be extracted
from the corresponding conditions for optimization problems. In Section 3.2.3, we then
deal with an asymptotic analogue of the KK'T conditions, designed to facilitate optimality
assertions about limit points of sequences generated by numerical algorithms. The
developments in this section are in the spirit of related works in nonlinear programming
[7,8,28]. Finally, in Section 3.2.4, we provide a quantitative stability analysis for variational
inequalities in terms of so-called error bounds. The theory in this section forms the basis
for the rate-of-convergence analysis of many optimization algorithms, including the
augmented Lagrangian methods discussed in Chapters 4 and 5.

3.1 Constrained Optimization

Throughout this section, we consider a generic nonlinear optimization problem of the
form

(P) minirgize f(z) subject to G(x) € K, (3.1)
xe
where X,Y are real Banach spaces, f : X — R and G : X — Y are continuously

differentiable functions, and K C Y is a nonempty closed convex set. We say that a point
x € X is feasible if x € C and G(x) € K, and denote by

d:=CNGYK)={zeC:Gx)c K}

the feasible set of (P). Note that K is assumed to be a convex set, but we have made no
convexity or concavity assumptions on the mapping G. In particular, the feasible set ®
may not be convex. The idea behind the above formulation is that G models the possible
“nonlinearity” (or nonconvexity) of the problem.

3.1.1 First-Order Optimality Conditions

One of the most fundamental concepts in the study of (differentiable) optimization
problems is that of first-order necessary conditions. These are conditions which involve
the first derivatives of the functions f and G and which have to be satisfied by local
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or global solutions of (P). The most prominent form of such conditions is the so-called
KKT system which we will define below. Before doing so, it will be useful to first state a
general first-order condition which involves the tangent cone to the feasible set.

Lemma 3.1. If T is a local minimizer of (P), then f'(Z)d >0 for all d € T3 (Z).

The above is always a necessary optimality condition for Z to be a local minimizer.
Note that, if ® is convex, then we can restate the condition as f'(Z)(z — ) > 0 for all
x € ®. If, in addition, f is a convex function, then any point z satisfying this inequality
also satisfies

flx)—f@) > f'(Z)(x—2) >0 foralzed.

Hence, in that case, every point Z which is stationary in the sense of Lemma 3.1 is a
global minimizer of (P).

Let us now return to the general case. Note that we can equivalently state the assertion
of Lemma 3.1 as

— f'(z) € To(2)°, (3.2)

where © is the polar cone from Section 2.2.1. This condition forms the basis of the theory
of KKT conditions. Indeed, under suitable regularity assumptions on the mapping G, the
cone T3(Z)° can be represented analytically, and this yields a more concrete and thus
more convenient form of first-order optimality conditions.
A central role will be played by the Lagrange function or Lagrangian of (P), which is
the function
L:XxY"=R, Lz, N):=f(z)+ (N G(x)). (3.3)

This allows us to state the so-called Karush—-Kuhn—Tucker or KKT conditions of (P) as
follows. Note that we use the notation £’ for the derivative of £ with respect to x (the
primal variable).

Definition 3.2 (KKT point). A pair (z,\) € X x Y* is a KKT point of (P) if
—E/(i,j\) € No(Z) and )€ Nk (G(Z)).

We say that z € X is a stationary point of (P) if (z, ) is a KKT point for some multiplier
A € Y* and denote by A(Z) the set of such multipliers.

Note that the above inclusions imply that z € C' and G(z) € K, since otherwise
at least one of the corresponding normal cones would be empty. It follows that every
stationary point of (P) is necessarily feasible. Let us also remark that we always have
A € K2, where K, is the recession cone of K, see Lemma 2.39. This can be interpreted
as a sign property of the Lagrange multiplier.

Example 3.3 (Cone constraints). Assume that K CY is a closed convex cone. Then
the inclusion A € N (G(Z)) in the KKT conditions can equivalently be stated as

G(z) e K, AeK° and ()\G(z))=0.
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These three conditions are often referred to as complementarity conditions. Recalling
that any closed convex cone induces a (partial) order relation, we can interpret these
conditions as G(Z) being nonnegative, A being nonpositive (in the dual sense), and their
product being equal to zero.

We have already alluded to the fact that certain regularity properties are needed for
the KKT conditions to be necessary optimality conditions for (P). Such properties are
usually called constraint qualifications; they ensure that the feasible set is well-behaved
and that, roughly speaking, the reconstruction of its geometry from first-order information
is possible. We will discuss the rich theory behind constraint qualifications and their
consequences in some more detail in Section 3.1.2. For the present section, we focus
on the connection between these conditions and the KKT system. The main constraint
qualification we use is the following.

Definition 3.4 (Robinson constraint qualification). Let x € X be a feasible point for
(P). We say that the Robinson constraint qualification (RC(Q)) holds in z if

0 € int[G(z) + G'(2)(C — ) — K].

The above condition was introduced by Robinson in [184] in the context of certain
stability properties of nonlinear inclusions. A more detailed study of RCQ), its consequences,
and some related conditions will be conducted in Section 3.1.2.

Theorem 3.5 (KKT conditions under RCQ, [32, Thm. 3.9]). Let Z be a local minimizer
of (P) and assume that RCQ holds in T. Then the set of Lagrange multipliers A(T) is
nonempty, closed, convex, and bounded in Y*.

It is possible to show that, under RCQ, the set A(Z) is indeed weak-* compact, where
the weak-* topology on Y* is defined similarly to the weak topology from Definition 2.18.
The further study of this topology is not necessary for our purposes, and thus we will not
go beyond this parenthetical remark.

Let us now turn to stronger constraint qualification-type conditions. In particular, we
will make use of a strict version of RCQ which guarantees the uniqueness of the Lagrange
multiplier. This condition will also play a certain role in the primal-dual stability analysis
of optimization problems and variational inequalities, see Section 3.2.4.

Definition 3.6 (Strict Robinson condition). Let Z € X be a feasible point. We say that
the strict Robinson condition (SRC) holds in Z if there exists A € A(Z) such that

0 € int[G(Z) + G'(z)(Co — ) — Ko,
where Cy := {z € C: L'(Z,\)(z — %) =0} and Ko :={y € K : (\,y — G(2)) = 0}.

Clearly, the strict Robinson condition implies RCQ. However, it should be emphasized
that SRC is not a constraint qualification in the conventional sense since it presupposes
the existence of A and therefore depends not only on the constraint system but rather on
the problem as a whole. Indeed, there may be different objective functions which attain a
local or global minimizer at the same point in ®, but SRC may only hold for some of
them. A related discussion can be found in Section 3.1.4 and in [215].
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Proposition 3.7 (KKT conditions under SRC). Let = € X be a stationary point such
that SRC holds in . Then the corresponding Lagrange multiplier is unique, i.e., A(Z) is
a singleton.

Proof. Let A\ € A(Z) be the multiplier satisfying SRC. By assumption, there exists r > 0
such that BY C G(z) + G'(z)(Cy — 7) — Ko. Now, let A\ € A(Z) be arbitrary, and let
y € BY. Then y = G(Z) + G'(Z)(c — Z) — k with ¢ € Cy and k € K. It follows that

A=Ay =(G@)'AN=XN),c—T) — (A= X\ k—G(z))
=(f'(@)+ G (x)' N\ c—T) — (\ k- G(z))

where the second equality uses the definitions of Cp and Ky, and the final inequality uses
the fact that A € A(Z). Since this holds for all y € BY , we conclude that (A — \,y) =0
for all y € BY, which is equivalent to A — A = 0. O

The following remark contains an important sufficient condition for the Robinson
constraint qualification and its strict counterpart.

Remark 3.8. If C' = X, then the surjectivity of G'(Z) implies the Robinson constraint
qualification, and it implies the strict Robinson condition if Z is a stationary point.
Therefore, the surjectivity of G'(Z) can be seen as the strongest constraint qualification. In
finite-dimensional nonlinear programming, it is even stronger than the linear independence
constraint qualification (LICQ), see Section 3.1.4), and it is therefore almost never needed in
this case. However, in the infinite-dimensional case, the distinction and isolation of active
and inactive parts of constraints is not so easy, and the surjectivity of G'(Z), which does
not depend on these concepts, sometimes allows us to prove stronger optimality-related
statements. An example of this phenomenon can be found in Section 3.2.3.

Assume now that we have a point Z which is “almost” a solution of (P). A popular
definition in this context is that of e-minimizers: given € > 0, we say that & € ® is an
e-minimizer of (P) if f(z) < f(x) + ¢ for all x € ®. For such approximate minimizers, it
is indeed possible to obtain an inexact analogue of the KKT conditions. This result is
usually called Ekeland’s variational principle.

Proposition 3.9 (Ekeland’s variational principle, [32, Thm. 3.23]). Let £ € ® be an
e-minimizer of (P), let § := €'/2, and assume that RCQ holds at every x € Bs(Z) N ®.
Then there exist another e-minimizer & of (P) and A € Y* such that || — Z||x < 0,

dist(—ﬁ/(a?, /\),Nc(i“)) <4, and X € Nkg(G(2)).

In the case where C' = X, it follows that N () = {0}, and thus the first condition in
the above equation reduces to ||£'(Z, \)||x+ < 4.

Note that, as we shall see later, the Robinson constraint qualification remains invariant
under small perturbations of the constraint system. In particular, if z is a feasible
point satisfying RCQ, then there always exists § > 0 such that RCQ holds at every
x € Bs(Z) N ®. The assumption made in Ekeland’s variational principle requires that we
can choose § := /2, where ¢ > 0 is the constant from the definition of e-optimality.
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Let us close this section with a general remark on the feasible set ®. The observation
below is useful and should be kept in mind when dealing with the Robinson constraint
qualification and its strict counterpart.

Remark 3.10. The analytical representation of the feasible set of (P) is in general not
unique. In particular, we can always re-write the constraint system as (G(z),z) € K x C,
x € X, which essentially amounts to replacing G by the mapping = — (G(z),x), K by
K x C, and C by X. In this formulation, the KKT conditions take on the form

(@) +G @) N+a=0, \NENgk(Gx), @eN(T),

and they are therefore equivalent to the KKT system given in Definition 3.2. It is also
interesting to note that the Robinson constraint qualification remains invariant under
this transformation of the constraint system, see [32, Lem. 2.100]. The same holds for the
strict Robinson condition, which can be seen as RCQ for the sets Cy and K.

3.1.2 Constraint Qualifications and Regularity

We have already seen in the previous section that certain regularity properties are necessary
to ensure that the KKT conditions are necessary optimality conditions. Such properties
are usually called constraint qualifications. The present section is now dedicated to a more
detailed study of these conditions, the relationships between them, and their consequences.
The analysis here is based on the theoretical framework established in [32], with some
slight modifications and extensions.

The Robinson constraint qualification is closely linked to stability properties of certain
multifunctions, in particular the so-called feasibility mapping Fo : X =Y, Fa(z) =
G(x) — K. Therefore, it is necessary to first discuss some elements of multifunction theory.
Since this is not the primary subject of this thesis, we will keep the discussion fairly
superficial and only mention the key results. More details can be found in [32].

A multifunction W : X =2 Y is a function mapping each point € X to a subset W(z)
of Y. Occasionally, a multifunction of this form is interpreted as an (ordinary) mapping
into the power set of Y, but it will be convenient to treat multifunctions distinctly from
ordinary functions in order to facilitate the use of certain multifunction-tailored notation
and terminology. For instance, we define the graph of W as

gph(W) :={(z,y) e X XY 1y € W(z)}.

Moreover, given arbitrary subsets S; of X and Sy of Y, we define the image of S and
the preimage of Sy under W as

W(S1) = [ J W(s) and W (Sp) := {w € X : W(z) N S, # 0}

sEST

The set W(X) is sometimes called the range of W, and W=L(Y) = {z € X : W(z) # 0}
the domain of WW. Note that, for the treatment of multifunctions, it is no restriction to
always consider mappings defined on the whole space X. This is because a multifunction
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W : S =2 Y defined on a subset S C X can trivially be extended to X by setting
W(zx) := () whenever x ¢ S.

Given a multifunction W : X =2 Y, we say that W is closed (resp. convex) if its graph
gph(W) is a closed (resp. convex) subset of X x Y. One of the most fundamental results
on multifunctions is the following generalized open mapping theorem due to Robinson
and Ursescu.

Theorem 3.11 (Generalized open mapping theorem, [32, Thm. 2.70]). Let W : X =Y
be a closed conver multifunction and y € int W(X). Then y € int W(B,(z)) for all
r € Wl(y) and all r > 0.

Note that the above result generalizes the ordinary (Banach) open mapping theorem
(see Theorem 2.13). Indeed, if T € L(X,Y) is a surjective linear operator, then its
graph is closed by continuity, and convex by linearity. Since 0 € int T'(X), it follows that
0 € int T'(B;X), which means that BY C T(B;X) for some 7 > 0. Hence, Theorem 3.11
implies (the first part of) Theorem 2.13.

We now turn to a fundamental property of multifunctions which also plays a crucial
role in the analysis of constraint systems for optimization problems. In what follows, we
say that a property holds near a point if it holds in a neighborhood of that point.

Definition 3.12 (Metric regularity). A multifunction W : X =2 Y is said to be metrically
reqular at (z,y) € gph(W) if there exists ¢ > 0 such that, for all (z,y) near (z,7),

dist (z, W™ 1(y)) < cdist(y, W(x)). (3.4)

Note that we did not assume W to be a closed convex multifunction in Definition 3.12.
If these conditions hold, then it is possible to give a full characterization of metric
regularity.

Proposition 3.13 (Robinson—Ursescu, [32, Thm. 2.83]). Let W : X = Y be a closed
convex multifunction. Then W is metrically reqular at (Z,y) € gph(W) if and only if
g € int W(X).

Let us now discuss how the concept of metric regularity can be applied to the
optimization problem (P). We first consider the case where C' = X. The main approach
is to linearize the mapping G in the neighborhood of a point z, thus obtaining a convex
constraint, and to apply Proposition 3.13. In this context, the interior condition from
Proposition 3.13 becomes precisely the Robinson constraint qualification.

Theorem 3.14 (Stability theorem, [32, Prop. 2.89]). Let C = X and let & € ® be a
feasible point. Then RCQ holds in T if and only if the multifunction Fg : X =3 Y,
Fa(z) := G(z) — K, is metrically regular at the point (z,0) € X x Y.

We now give two corollaries of this result. First, we give a consequence of the theorem
in the general case where C' # X. The main idea here is to use Remark 3.10.

Corollary 3.15. Let RCQ hold in a point T € ®. Then there exists ¢ > 0 such that
dist(z, @) < cdist(G(z), K) for all z € C near .
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Proof. Let G3 : X — X x Y, Ga(x) := (x,G(x)), and Ky := C x K. By Remark 3.10,
RCQ holds for the constraint Go(z) € Ko in Z. Thus, by Theorem 3.14, the mapping
Fa,(x) := Ga(x) — Ko is metrically regular at the point (z,0,0) € X? x Y. Hence, there
exists ¢ > 0 such that, whenever x € C' is sufficiently close to Z, then

dist(z, ®) < edist(Ga(z), K2) = cdist((z,G(2)),C x K) = cdist(G(z),K). O

The above property is often called metric subreqularity, calmness, or simply an error
bound to the feasible set. This should not be confused with error bounds to solution sets,
which also play a prominent role in optimization theory, see Section 3.2.4.

The distance estimate provided by Corollary 3.15 can be used to obtain an analytical
representation of the tangent cone 7g(x). The following result is precisely the geometric
property which lies at the heart of the KKT conditions.

Corollary 3.16 ([32, Cor. 2.91|). Let x € ® be a feasible point and assume that RCQ
holds in x. Then To(x) = {d € To(z) : G'(x)d € Tk (G(x))}.

We now discuss multiple conditions which are related to the Robinson constraint
qualification (RCQ). In this context, it will be convenient to define an analogue of RCQ
which is not restricted to feasible points. To keep a clear distinction, we call the resulting
condition the eztended Robinson constraint qualification.

Definition 3.17 (Extended Robinson constraint qualification). Let x € X be an arbitrary,
not necessarily feasible point. We say that the extended Robinson constraint qualification
(extended RCQ), ERCQ) holds in z if

0 € int[G(z) + G'(z)(C — z) — K.

Note that the condition defining ERCQ is the same as for the standard Robinson
constraint qualification. The only difference is that, for the latter, the point x has to be
feasible, whereas ERCQ is defined for arbitrary points.

An important property of (E)RCQ is its invariance under small perturbations of the
constraint system. Various forms of this statement can be found in the literature, e.g., in
[32,227]. A particular form of this invariance arises if only the base point x is perturbed.
We then end up with the conclusion that, if RCQ holds in a point z, then it holds in a
neighborhood of . The following result shows that RCQ actually holds “uniformly” in a
neighborhood of x, where uniformness is understood in the radius of a ball around zero
in Y, and in certain uniform bounds on the sets C' and K.

Proposition 3.18 (Local invariance of RCQ). Let RCQ hold in some T € ®. Then there
are r,6 > 0 such that, for all x € Bs(z), ERCQ holds in x with

BY € G/(x)[(C— )N BY] - [(K - G(z))n BY]. (3.5)

Proof. By the generalized open mapping theorem (Theorem 3.11), RCQ also holds in z
with respect to the “localized” sets Cy := By /5(Z) N C and Ky := By 5(G(7)) N K. Taking
into account Remark 3.10, it follows that

0 € int [(GS”)> + <C§§§)> X — K Cg].
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By [32, Remark 2.88], this implies the existence of 4 > 0 such that

. a A
oem(4)+ () x-rnc]

for all (a,b) € Y x X and A € L(X,Y) with ||(a,b) — (G(Z),Z)|lyxx < J and [|A —
G'(z)| L(x,y) < 0. Shrinking ¢ if necessary, this yields the existence of r > 0 such that

BPXng§+<ist—mx@ (3.6)

for all x € Bs(z). Without loss of generality, let 6 < 1/2, and let G(x) € By /5(G(%)) for
all = € B;(7).

We now claim that (3.5) holds with the given r and §. To see this, let € Bs(z), and
let y € BY be an arbitrary point. Then (y,0) € BY *X and, by (3.6), there exist d € X,
k € Ky, and ¢ € Cy such that y = G(z) + G'(x)d — k and 0 =  + d — ¢. Observe now that

Co—xC(C—z)NBY and K;,-G(z)C (K- G(z))nBY
since ||z — Z||x <1/2 and ||G(z) — G(Z)|ly < 1/2. This finally yields

y=G(x)+ G (z)(c—z)—keG)+Gx)(Cr—x)— Ky
CG'(2)[(C—2)nB] - [(K - G(z))n By ].

The proof is complete. O

We now discuss some conditions which are related or equivalent to the Robinson
constraint qualification.

Proposition 3.19 ([32, Prop. 2.97]). For x € ®, consider the following assertions:
(a) The Robinson constraint qualification holds in x.
(b) We have G'(x)Rc(z) — Rr(G(z)) =Y.
(c) We have G'(z)Tc(z) — T (G(z)) =Y.

Then (a) < (b) = (c). If either Y is finite-dimensional or K has nonempty interior, then
(a)-(c) are equivalent.

Condition (b) in the above result is often called the Zowe—Kurcyusz constraint qualifi-
cation. It was introduced in [227] for the study of Lagrange multipliers. As stated by the
result, this condition is equivalent to RCQ.

An important sufficient condition for RCQ and its extended version is the so-called
linearized Slater condition. Indeed, this condition is equivalent to ERCQ under certain
assumptions. The details can be found in the following result which is an adaptation of
[32, Lem. 2.99].

Proposition 3.20. Let x € X be an arbitrary point and assume that there exists & € C
such that G(z) + G'(2)(& — z) € int(K). Then ERCQ holds in x. The converse is true
provided that int(K) is nonempty.
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Proof. If G(x)+G'(x)(Z —x) € int(K), then 0 € int[G(z) +G'(z)(2 —z) — K], and ERCQ
holds. Conversely, assume that ERCQ holds and that int(K) is nonempty. Assume, by
contradiction, that the convex sets

Ay :=G(x) + G'(2)(C —z), Ay:=int(K)

have empty intersection. By the first separation theorem (Proposition 2.12), there exists
a nonzero A € Y* such that (\,G(z) + G'(z)(c — z)) > (\, k) for all c € C, k € K. Now,
let y € Y be an arbitrary vector such that (\,y) < 0. Then, for ¢ > 0, the vector ty does
not belong to G(z) + G'(z)(C — z) — K. It follows that the latter cannot contain a ball
around zero, and this is the desired contradiction. O

Let us now assume that the operator GG is K,.-concave in the sense of Definition 2.48,
where K the recession cone of K. In this case, it is possible to considerably strengthen
the connection between the Robinson and Slater-type conditions.

Proposition 3.21. Let G : X — Y be Ko-concave and assume that the feasible set
® = C NG YHK) is nonempty. Consider the following assertions:

(a) There is a feasible point x such that RCQ holds in x.
(b) For every point x € X, ERCQ holds in x.
(c) We have 0 € int[G(C) — K].

(d) There is a point & € C such that G(&) € int(K).
Then (a) < (b) & (c) <= (d). Ifint(K) is nonempty, then (a)-(d) are equivalent.

Proof. (d) = (c) and (b) = (a) are clear. To prove (c¢) = (b), let z € X be an arbitrary
point. By Proposition 2.51, we have

Gw)— K CGx)+ G (z)(w—1x)— K

for all w € X. Since the union of the left-hand side over w € C contains a ball around
zero, so does the union of the right-hand side over w € C', and this is precisely ERCQ.

For (a) = (¢), let Ga(x) := (z,G(x)), Ky := C x K, and consider the multifunction
W(z) := Ga(z) — K3. By Remark 2.52, W is a closed convex multifunction, and by The-
orem 3.14 it is metrically regular at the point (z,0,0) € gph(W). From Proposition 3.13,
it follows that (0,0) lies in the interior of the range of W. Now, let y € Y be sufficiently
close to zero. Then (0,y) lies in the range of W. Hence, there exists x € X such that
(0,y) e W(x) = (x — C) x (G(x) — K). It follows that € C' and thus y € G(C) — K.
We have shown that G(C) — K contains a ball around zero in Y.

Finally, if int(K) is nonempty, then (c) < (d) follows from [32, Prop. 2.106]. O

An important property of ERCQ is that it guarantees that, whenever x is a stationary
point of a certain measure of infeasibility, then « is actually a feasible point. For the sake
of later reference, we formulate this result in a slightly more general framework.
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Proposition 3.22. Let::Y — H densely for some real Hilbert space H, and let I C H
be a closed convex set with i 1(K) = K. Let # € X be a stationary point of the problem

mingec di(G(z)), and assume that ERCQ holds in T with respect to the constraint system
of (P). Then G(Z) € K

Proof. Let r > 0 be such that BY C G(z) + G'(z)(C — z) — K. Then, for any y € BY,
there are z € C and w € K such that y = G(Z) + G'(Z)(z — &) — w. Thus, we have

(G(z) = Pe(G(@)),y) = (G'(2)"[G(x) - Pe(G(2))], 2 — )
+(G(T) - Pc(G(2)), G(T) — w).

Observe that G'(Z)*[G(z) — Pc(G(z))] is just the derivative of d% o G in z. Hence, the
first term above is nonnegative by the minimizing property of Z, and so is the second
term by standard projection inequalities. Thus, (G(Z) — P (G(z)),y) > 0 for all y € B,
which implies (G(z) — Pc(G(%)),y) = 0 for all y € B) and, since Y is dense in H, it
follows that G(z) — Px(G(Z)) = 0. This completes the proof. O

We conclude this section by giving an example for a specific constraint system which
occurs frequently in practical applications. The discussion of this example once again
highlights the fact that the analytical representation of the feasible set can have a
significant impact on the fulfillment of constraint qualifications.

Example 3.23 (Box constraints in Lebesgue spaces). Let Q C R?, d € N, be a bounded
domain, and X := L?(€). Let the feasible set be given by box constraints, i.e.,

¢ ={ue X :u, <u<u, almost everywhere in 2},

where uq, up € X and u, < up. In practice, such constraints are considered “simple”, and
they are therefore often included in the set C' of implicit constraints. Nevertheless, let us
discuss here how these constraints can be formulated analytically through the mapping
G. There are two canonical possibilities of doing so: on the one hand, we can simply
define G(u) := v and K := & (since this is a convex set). This formulation satisfies all
constraint qualifications since G'(u) = Idx is surjective for all u € X. On the other hand,
we can represent the feasible set through the definitions

G(u) == (u— ug,up —u), K :={(v,w) e X?:v,w>0 almost everywhere}. (3.7)

The latter formulation has the advantage that K is a closed convex cone, whereas K is not.
Despite this, (3.7) has the severe disadvantage that the Robinson constraint qualification
typically does not hold at points u € ®, see [211] for more details. An intuitive way
to verify this irregularity is to note that if RCQ holds, then it remains stable under
small perturbations of the constraint system (see [32]). However, even if u, and u; are
“well separated”, it is fairly easy to construct small perturbations (in the sense of L?)
which make the lower and upper bounds coincide on some set of positive measure. If
this happens, then the set of Lagrange multipliers corresponding to a stationary point
becomes unbounded, and RCQ is violated.
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3.1.3 Second-Order Sufficient Conditions

In this section, we deal with sufficient optimality conditions based on second-order deriva-
tives. Since we are dealing with a generic Banach space setting, the formulation of such
conditions will be slightly more complicated than in finite-dimensional nonlinear program-
ming. We essentially follow the approach conducted in [32], with some modifications to
allow for slightly more general and practical results.

Let (Z,)) € X x Y* be a KKT point of (P). Throughout this section, we assume that
f and G are continuously differentiable in a neighborhood of Z, and twice differentiable
in z. Consider, for n > 0, the extended critical cone

b fae s T @<l
o= {ae e (LG Tiow) <aar - 69

Note that C, depends on Z only. The following is the general form of second-order
sufficient conditions which we will use throughout this section.

Definition 3.24 (Second-order sufficient Conditiqn). We say that the second-order suffi-
cient condition (SOSC) holds in a KKT point (z,\) € X x Y* of (P) if there are n,¢ > 0
such that

L' (z,\)(d,d) > c|d|% for all d € C;(Z).

The above should be considered the “basic” second order condition which can be stated
without any assumptions on the specific structure of (P). For many problem classes, it
is possible to state more refined second-order conditions which are either equivalent to
Definition 3.24 or turn out to have similar implications.

One of the most important consequences of second-order conditions is the local
quadratic growth of the objective function on the feasible set, i.e., the existence of ¢ > 0
such that f(z) > f(Z) +c|lz — Z||% for all x € ® near Z, see, for instance, [32, Thm. 3.63).
Here, we will prove a slightly stronger version of this statement with the aim of applying
it to the augmented Lagrangian method in Chapter 4. In this context, it will be essential
to discuss the impact of SOSC on sequences of points {z*} which are not necessarily
feasible but satisfy some kind of asymptotic feasibility, e.g., of the form d (G(z*)) — 0.
It turns out that the quadratic growth condition can be extended to such points.

For the statement of this result, we use the Landau symbol a; = o(by) for nonnegative
real sequences {ax} and {by}, which means that aj < zxby for some null sequence {z}.
The sequences {ax} and {b;} themselves are not required to converge to zero.

Theorem 3.25 (Extended quadratic growth). Let SOSC hold in a KKT point (Z,))
of (P). Then there are r,c > 0 such that, for every sequence {z*} C B,(z) N C with
di (G(a")) = o([la* — Z[|x), we have

liminf [f(z¥) — f(2) — c|2* — z[%] > 0. (3.9)

k—o0
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Proof. Let n,¢ > 0 be the constants from SOSC and choose r small enough so that

(@ +d) — f(z) - f’(i’)d\ < ﬁndux, (3.10)
|G(z+d) — G(z) — G'(z)d|, < Ide, (3.11)
and |L(Z+d,\) — L(z,\) — L' (Z,\)d — 55"(92, M) (d, d)‘ < Endu_%( (3.12)

for all d € X with ||d||x < r. Furthermore, set

c —mm{;7 Z} (3.13)

Now, let {2¥} C B,(Z) N C be a sequence with di (G(z*)) = o(||z* — Z||x), and set
d* := 2 — z. Without loss of generality, we assume that {z*} realizes the liminf in (3.9).
If f/(z)d* > n||d*||x for infinitely many k, then by (3.10) and (3.13) we obtain

F@*) = @) 2 £@)d" = Dl x = Datx 2 elldl%

for all these k, which implies (3.9). We now consider the case where f'(z)d* < n||d*||x
for all but finitely many k. From (3.11), the fact that K — G(z) C T (G ( )), and
dr (G(z%)) = o(||d¥||x), it is easy to deduce that

dist (€ (2)d", T (G()) < dist(G(&) + G (@)d", K) < J[[d"|x + of[|d"] x).

Hence, d* € C,(z) for sufficiently large k. Applying (3.12), (3.13) and SOSC yields

L(z"X) = L(z, ) — L'(z, N)d* glldkllx k% > elld % (3.14)

Observe now that —£'(Z, \)d* < 0 since (7, \) is a KKT point and d* € C' — z. Moreover,

and the last term is asymptotically nonpositive since A € N (G(Z)). Inserting this into
(3.14), we obtain f(z*) — f(z) > ¢||d*||% + o(1), and the result follows. O

The ordinary quadratic growth condition follows easily as a corollary of the above
theorem.

Corollary 3.26 (Quadratic growth). Let (Z,)) be a KKT point of (P) satisfying SOSC.
Then there are r,c > 0 such that f(z) > f(z) +c|lz — z||% for allx € B.(z)N®. In
particular, T is a strict local minimizer of (P).

Note that a stationary point T satisfying the second-order sufficient condition is
necessarily a strict local minimizer but, in general, not an isolated local minimizer. To
see this, consider the following example, due to Robinson [185]:

minirﬁize 2% subject to x%sin(1/x) =0,
TE
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where the constraint function is understood to be zero for x = 0. It is easy to see that
Z := 0 is the unique global solution of this minimization problem, and SOSC is satisfied
for any A € A(Z). However, every point of the form z := (km)~!, k € N, is a local
minimizer, and thus Z is not an isolated local minimizer.

We now give a second corollary of Theorem 3.25 which will be particularly useful for
later results. The main idea is that we can use the theorem to give a sufficient condition
for a sequence of asymptotically feasible points to converge to .

Corollary 3.27. Let (z,)) be a KKT point of (P) satisfying SOSC. Then there exists
r > 0 such that, whenever {x*} C B,.(Z) N C is a sequence with dr(G(z*)) — 0 and
limsupy_,o, f(z%) < f(Z), then 2% — T (strongly) in X.

Proof. Let r,c > 0 be as in Theorem 3.25 and {z*} C B,(%) N C a sequence with the
stated properties. Assume that {z¥} does not converge to Z. Passing onto a subsequence
if necessary, we may assume that ||z*¥ — Z||x > ¢ for all k and some ¢ > 0. Then
di (G(z*)) = o(||z* — Z||x) holds trivially; hence, by Theorem 3.25, we obtain

0 < limint [£(s*) — £(@) — clla® — 7] < —climsup " 7]k,
k—oo k—o0

where we used the fact that limsup,_,., f(z¥) < f(Z) by assumption. It follows that
|lz* — Z||x — 0, which is the desired contradiction. O

Let us close this section by mentioning two general situations in which the second-order
sufficient condition from Definition 3.24 can be simplified.

Remark 3.28. (a) If RCQ holds in Z, we can make the extended critical cone slightly
smaller by replacing the estimate dist(G'(z)d, Tk (G(z))) < n|/d||x with the simple
inclusion G'(z)d € Tix(G(Z)). The resulting second-order condition is equivalent to
Definition 3.24, see [32, Remark 3.68].

(b) If X is finite-dimensional, then we can replace the extended critical cone by the
(ordinary) critical cone

C(z)={deTe(@): f(z)d <0, G'(T)d € Tk(G(Z))}.

In that case, SOSC can equivalently be stated as £”(Z, \)(d,d) > 0 for all d € C(z) \ {0},
see [32, Thm. 3.63] and its proof. We will use this simpler form of second-order conditions
in later sections.

3.1.4 Nonlinear Programming

In this section, we briefly outline how some of the conditions of the preceding sections
can be specialized for the important case of nonlinear programming (NLP). A more
comprehensive treatment of this subject can be found in many textbooks on optimization,
for instance, in the references [16,25,48,172].
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To fix the problem setting, let m,p € Ny be given numbers, and consider the con-
strained minimization problem

mi;lier)r(lize f(z) subject to g¢(z) <0, e(x) =0, (3.15)
where f: X - R, g: X = R™ and e : X — RP are continuously differentiable. The
inequality constraint g(z) < 0 is understood componentwise. If either m or p is equal to
zero, we treat the corresponding constraint as nonexistent.

Note that we have made no assumptions on the particular structure of the space X.
In traditional NLP, this space is often assumed to be of the form X = R™, n € N, and
we will indeed use this setting in the context of second-order conditions below. However,
the remaining concepts in this section do not require X to be of this form, or to even be
finite-dimensional, and thus we will work with a general Banach space X.

Clearly, the nonlinear program (3.15) can be cast into the framework of our general
constrained problem (P) with C := X, Y := R"™*? G := (g,e), and K := R™ x {0}?.
Thus, we can readily apply the concepts of the previous sections such as constraint
qualifications or second-order sufficient conditions to (3.15). However, in the NLP setting,
many of these conditions can be reformulated in a much more elementary manner, and they
also often have different names since, from a historical perspective, they were developed
independently (usually much earlier).

We begin by discussing some of the common constraint qualifications. For a point
x € R™ and subsets I C {1,...,m} and J C {1,...,p}, we say that the set of gradients
{Vgi(z)}icrU{Ve;(x)}jes is positively linearly dependent if there are nontrivial coefficients
(i.e., not all equal to zero) A\; > 0,4 € I, and p; € R, j € J, such that

Z A\iVyi(z) + Z piVej(xz) = 0.

icl jeJ

Note that the coefficients \; corresponding to the inequality constraints are required to
be nonnegative, whereas the remaining coefficients p; are arbitrary real numbers. From
a formal point of view, this is slightly imprecise since we attribute the positive linear
dependence to the union {Vg;(x)}icr U {Ve;(z)};jes, but impose special conditions on
the coefficients of the gradients {Vg;(z)}ic;. However, this mild inconsistency should not
introduce any confusion, and it simplifies the terminology in what follows.

If there is no nontrivial linear combination of the above form, i.e., if the vectors
{Vgi(z)}ier U{Vej(x)}jcs are not positively linearly dependent, then we call them
positively linearly independent.

Definition 3.29 (Constraint qualifications for NLP). Let & € R™ be an arbitrary point
and let Z:={i=1,...,m:¢;(%) = 0}. We say that
(a) the linear independence constraint qualification (LIC(Q)) holds in z if the set of
gradients {Vg;(Z)}iez U {Vej(a_c)}gzl is linearly independent.

(b) the Mangasarian—Fromovitz constraint qualification (MFCQ) holds in Z if the set of
gradients {Vg;(z)}ier U{Ve;(2)}_, is positively linearly independent.
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(c) the estended MFCQ (EMFCQ) holds in & if the gradients {Vg;(Z) }ier U{ Ve;(2) Y,
with Z:={i =1,...,m: g;(T) > 0} are positively linearly independent.

(d) the constant positive linear dependence condition (CPLD) holds in Z if, whenever I C
Z and J C {1,...,p} are subsets such that the gradients {Vg;(x)}ic; U{Ve;(x)};cs
are positively linearly dependent in x := Z, then they are linearly dependent for all
x in a neighborhood of Z.

Note that some of these conditions are usually defined for feasible points only. However,
it will occasionally be convenient to deal with, say, LICQ, for arbitrary points which are
not necessarily feasible (see, for instance, Section 6.3.2).

Clearly, LICQ implies MFCQ, and MFCQ implies CPLD. Moreover, if the point
x is feasible, then MFC(Q and EMFCQ coincide. Note also that MFCQ is precisely
the Robinson constraint qualification for the problem (3.15), see [32]. Interestingly, the
connection between EMFCQ and ERCQ is a little more nuanced. Using Proposition 3.20,
it is easy to show that the latter implies the former if only inequality constraints are
present. In the general case, however, the two conditions are not related.

Example 3.30 (EMFCQ versus ERCQ). (a) Consider the constraint function g : R —
R2, g(z) := (z,—2)", at Z:= 1. Then ¢g(Z) = ¢'(z) = (1,—1) ", and thus it is easy to see
that g(Z) + ¢'(z) X — K cannot contain a ball around zero since every point y in that set
satisfies y1 + y2 > 0. On the other hand, EMFCQ is satisfied since g1 is the only active
or violated constraint at z, and Vg;(z) # 0.

(b) Let g(z) := 142z, e(x) := 1+, and 7 := 0. Then ¢g(z) = e(z) =1, Vg(z) = 2,
and Ve(z) = 1. Hence, EMFCQ is violated in Z since Vg(z) —2Ve(z) = 0. On the other
hand, an easy calculation shows that

<i§g> + <Z§§§> XK= {<‘;> ER:2y<az+ 1}.

This set contains a ball around zero, and thus ERCQ is satisfied in Z.

Assume now that Z is a local minimizer of (3.15), and that any of the constraint
qualifications from Definition 3.29 is satisfied in Z. Then Z together with a suitable vector
of Lagrange multipliers satisfies the KKT conditions. In the present setting, the multiplier
vector takes on the form (), 1) € R™*P and the KKT conditions can be written as

Lz, \p)=0, 0<XLg(x) <0, e =0, (3.16)

where L(x, A\, 1) := f(z)+ AT g(x) +u"e(z) is the Lagrange function (see also (3.3)), £’ is
its derivative with respect to x, and the condition A\ L g(Z) is shorthand for AT g(z) = 0.
Moreover, the set of Lagrange multipliers A(Z) C R™*? is bounded if MFCQ holds in
(see also Theorem 3.5), and it is a singleton if LICQ holds in Z.

Similarly to ERCQ, the extended MFCQ implies that any stationary point of a certain
measure of infeasibility is a feasible point. This result is contained in the following
proposition.
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Proposition 3.31. Let Z € X be a stationary point of the function m(z) := ||g+(x)||? +
le(z)||?, and let EMFCQ hold in &. Then T is feasible, i.e., g(Z) < 0 and e(Z) = 0.

Proof. By assumption, the derivative of m must vanish in Z. This implies that

0= Vg(2)g(z) + Ve@)e(@) = > ¢:i(®)Vg:(®) + > e;(7)Ve;(z
7j=1

9:(£)=0

It then follows from EMFCQ that all the coefficients in the above linear combination
must be zero. Hence, T is a feasible point. O

We now return to the KKT system of (3.15) and define a strict version of the
Mangasarian—Fromovitz constraint qualification.

Definition 3.32 (Strict Mangasarian—Fromovitz condition). Let (:E,}\, i) be a KKT point
of (3.15),let T:={i=1,...,m:g;(z) =0}, and Z := {i € Z: \; > 0}. We say that
the strict Mangasarian—Fromovitz condition (SMFC) holds in (z, A, 1) if

(i) the vectors {Vg;(Z)}ier, U{Ve;(Z)}},_; are linearly independent, and

(ii) there exists d € R™ such that Vg;(Z)'d = 0 for all i € T,, Vg;(7)'d < 0 for all
i €T\ Z;, and Vej(z)Td=0forall j=1,...,p

We say that SMFC holds in Z if there exists (A, i) € A(Z) such that SMFC holds in
(Z, A, ).

The above condition can be seen as a special case of the strict Robinson condition
from Definition 3.6, see |32, Remark 4.49|. Hence, by Proposition 3.7, it follows that
SMFC implies the uniqueness of the Lagrange multiplier (X, /). In fact, these conditions
are equivalent.

Proposition 3.33 ([154]). Let & be a stationary point of (3.15). Then A(Z) is a singleton
if and only if SMFC holds in .

Let us stress that SMFC implicitly assumes the existence of (X, /i) and therefore
depends on the whole problem (3.15), not only the constraint functions. In this context,
it is interesting to observe the following: given g and e, if the set A(Z) is a singleton for
every objective function f such that Z is a local minimizer of (3.15), then indeed LICQ
must hold in Z. This was observed in [215] and underlines the fact that SMFC is not a
constraint qualification.

We now turn to a second-order sufficient condition for the nonlinear program (3.15).
For the remainder of this section, we assume that X = R" for some n € N. In this case,
we can dispense with the extended critical cone from Section 3.1.3 and simply use the
(ordinary) critical cone, which takes on the form

C(z):={deR": f'(z)d <0, ¢7(x)d <0, ¢'(z)d =0},

where Z := {i = 1,...,m : g;(Z) = 0} is again the set of active indices. The resulting
second-order condition can be stated as follows.
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Definition 3.34 (Second-order sufficient condition for NLP). Let (z,\, 1) € R*m+P
satisfy the KKT conditions (3.16). We say that the second-order sufficient condition
(SOSC) holds in (z, A, 1) if

d'[V2, L(Z, N a)d >0 foralldeC(z))\{0}.

This form of the second-order sufficient condition is slightly simpler than Definition 3.24,
but the two conditions are equivalent since X = R" is finite-dimensional (see Remark 3.28).
In particular, the above condition implies the local quadratic growth of f on ®, and it
implies that Z is a strict local minimizer of (3.15).

3.2 Variational Inequalities

We now turn to a class of variational problems, or variational inequalities (VIs), which can
be seen as a generalization of nonlinear optimization. Let X be a real Banach space, ® a
nonempty closed subset of X, and F' : X — X* a (nonlinear) mapping. The variational
inequality corresponding to F' and ®, occasionally denoted by VI(F, ®), is the problem of
finding x € X such that

(V) ze€®, (F(z),d)>0 Vde To(z). (3.17)

This condition is heavily inspired by the first-order necessary conditions for constrained
minimization problems from Lemma 3.1. Indeed, if F' = f’ for some differentiable function
f:+ X — R, then (V) represents a first-order necessary condition for the optimization
problem

minimize f(x) subject to x € ®.
reX

It should be noted, however, that the scope of VIs far exceeds that of optimization problems.
Indeed, some of the most prominent applications of VIs are (generalized) Nash equilibrium
problems, or (G)NEPs, which are optimization-type problems involving multiple players
and corresponding functions. We will discuss NEPs and GNEPs in some more detail in
Section 5.3. The introduction to Chapter 5 also contains a more comprehensive literature
review of variational inequalities and their applications in economics, mechanics, and
many related fields. In the present section, we shall mainly be concerned with a general
analysis of variational inequalities in the form (3.17), with the understanding that many
more tangible problem classes can be reformulated as VIs and are therefore implicitly
subsumed by our approach.
Observe that, if the feasible set ® is convex, then (V') can equivalently be stated as

red, (F(z),y—z)>0 Vyeo. (3.18)

This is because, in the convex case, the polar cone of 7g(x) coincides with the normal
cone in the sense of convex analysis, see the discussion after Definition 2.35. The above is
often taken to be the canonical form of variational inequalities. For our purposes, however,
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it will be convenient to deal with the more general framework (V') since this allows us to
implicitly treat nonconvex minimization and related problems.
In many cases, the feasible set ® has an analytical representation of the form

®={reC:G(z) e K}, (3.19)

where C' C X and K C Y are nonempty closed convex sets, Y is a real Banach space,
and G : X — Y a smooth mapping. For the sake of generality, we will begin this section
by working with a general set ®, without assuming any representation of the above form.
Starting with Section 3.2.2, we will work with a feasible set as in (3.19).

3.2.1 Pseudomonotone Operators

This section is dedicated to a discussion of various continuity and monotonicity properties
for the operator F' : X — X*. The basic definitions related to monotonicity are
summarized below.

Definition 3.35 (Monotonicity properties). Let F': X — X*. We say that F' is
(i) monotone if (F(z) — F(y),x —y) >0 for all x,y € X.
(ii) strictly monotone if (F(x) — F(y),z —y) > 0 for all z,y € X with = # y.

(iii) strongly monotone with modulus ¢ > 0 if (F(z) — F(y),x — y) > c||z — y||% for all
z,y € X.

The monotonicity notions above are closely linked to the convexity concepts from
Section 2.2.2. Indeed, if f : X — R is a differentiable function, then f is (strictly, strongly)
convex if and only if f: X — X* is (strictly, strongly) monotone. Moreover, in the case
of strong convexity and monotonicity, the corresponding constants in the definitions can
be chosen equivalently.

The aforementioned notions of monotonicity play a fundamental role in the analysis
of variational inequalities. If the feasible set ® is convex and the operator F' is monotone,
then it follows that the solution set of (V') is always a convex set (possibly empty). If F
is furthermore strictly monotone, then the solution of (V), if it exists, is unique.

Despite this, it turns out that monotonicity is too restrictive an assumption for
many practical variational problems. In particular, the restriction of our analysis to
monotone VIs would rule out nonconvex optimization and Nash equilibrium problems.
Therefore, a more general approach is necessary. To this end, we use the following notion
of pseudomonotonicity, due to Brezis [37].

Definition 3.36 (Pseudomonotonicity). We say that an operator F' : X — X* is
pseudomonotone if, whenever

{Jrk} CX, 2=z and limsup <F(mk),xk - x> <0,
k—o00
then
(F(x),z —y) < liminf <F(ajk),xk —y) forallye X.

k—oo
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Despite its somewhat peculiar appearance, the notion of pseudomonotonicity will
play a fundamental role in the subsequent theory of VIs. Some sufficient conditions for
pseudomonotone operators are summarized in the following lemma.

Lemma 3.37 (Sufficient conditions for pseudomonotonicity). Let X be a real Banach
space and T U : X — X* given operators. Then:

(a) If T is monotone and continuous, then T is pseudomonotone.

(b) If, for every y € X, the mapping x — (T'(z),x — y) is weakly sequentially Isc, then
T is pseudomonotone.

(c) If T is completely continuous, then T is pseudomonotone.
(d) If T is continuous and dim(X) < 400, then T is pseudomonotone.

(e) If T and U are pseudomonotone, then T + U is pseudomonotone.

Proof. (b) is obvious. The remaining assertions can be found in [223, Prop. 27.6]. O

It follows from the above observations that the concept of pseudomonotone operators
provides a unified approach to different classes of operators, including monotone and
completely continuous ones. Property (b) in the above lemma is occasionally referred
to as (Ky—)Fan-hemicontinuity as it is closely related to the assumptions of the Ky Fan
theorem (Lemma 2.54). At the end of this section, we will present an example which
shows that this property is strictly stronger than pseudomonotonicity.

Let us now give a simple class of pseudomonotone operators which arises frequently
in practical scenarios.

Example 3.38 (Derivative mappings). In many applications, the operator F' is the
derivative mapping of a functional f : X — R. Assume that we are in this scenario, that
X is reflexive, and that f = f; + fo with fi a smooth convex function and fs nonconvex,
but weakly sequentially continuous and uniformly differentiable on bounded subsets of X.
Then f{ is monotone and continuous, and f} is completely continuous by Proposition 2.17.
It follows that F' = f{ + f4 is pseudomonotone by Lemma 3.37.

Recall that an operator is said to be bounded if it maps bounded sets to bounded sets.
The following lemma gives an important property of bounded pseudomonotone operators
and generalizes a result from [223] since we do not assume the space X to be reflexive.

Lemma 3.39. Let F': X — X* be a bounded pseudomonotone operator. Then F is
demicontinuous, i.e., it maps strongly convergent sequences to weak-* convergent sequences.
In particular, if dim(X) < 400, then F is continuous.

Proof. Let {z*} C X be a sequence with ¥ — z for some z € X. Observe that {F(z*)}
is bounded in X™* and hence

[(F(a),a* = a)] < |F(@®)|xell2* - 2] x — 0.
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Thus, by pseudomonotonicity, we obtain

(F(z),r —y) < h,?;{},}f (F(a¥),2% —y) = ligior()lf (F(z"),2 —y) (3.20)

for all y € X, where we used the boundedness of {F(2*)} and the fact that z* — x.
Inserting ¢ := 2z — y for an arbitrary y € X, we also obtain

(F(x),y—z) = (F(z),z —g) < ligninf (F(a¥),2" —§) = likminf (F(a¥),y —x), (3.21)
—00 —00

where the last equality uses the fact that {F(2*)} is bounded and that z* —§ = y—z+o(1).

Putting (3.20) and (3.21) together, it follows that (F(z*),z —y) — (F(x),z — y) for all

y € X. This implies F(2*) —* F(x), and the proof is done. O

It follows from Lemmas 3.37 and 3.39 that, for a finite-dimensional space X (without
loss of generality, a Hilbert space), an operator F' : X — X is bounded and pseudomono-
tone if and only if it is continuous.

We now present two existence results for variational inequalities. For the sake of
generality and since we will need this result later, we first prove an existence theorem
for generalized VIs involving, in addition to the mapping F', a lower semicontinuous
convex function ¢. Such problems are usually called variational inequalities of the second
kind. The main tool in the following proof is the Brezis—Nirenberg—Stampacchia theorem
discussed in Section 2.2.4.

Theorem 3.40. Let ® C X be a nonempty, convex, weakly compact set, F : X — X*
a bounded pseudomonotone operator, and ¢ : X — R a convez, lower semicontinuous
function. Then there exists T € ® such that

(F(2),Z —y) +¢(T) —p(y) <0 forally € D.

Proof. We claim that the mapping ¥ : ®2 — R, U(x,y) := (F(x),z — y) + p(x) — o(y),
satisfies the assumption of the Brezis—Nirenberg—Stampacchia theorem (Theorem 2.56).
Clearly, U(z,x) <0 for every x € ®, and VU is (quasi-)concave with respect to the second
argument. Moreover, by Lemma 3.39, ¥ is lower semicontinuous with respect to the first
argument on ® N L for any finite-dimensional subspace L of X. Finally, let z,y € ®, let
{z*} C ® be a sequence converging weakly to x, and assume that

U(z® (1 —t)z+ty) <0 Vtelo,1], VkeN. (3.22)

We need to show that W(z,y) < 0. By (3.22), we have in particular that ¥(z*,z) < 0
and W(z* y) <0 for all k. The first of these conditions implies that

0 > limsup ¥(z*, 2) > lim sup <F($k), L z) + liminf [gp($k) — ()]
k—o0 k—o0 k—o0
> lim sup <F(a:k), zk — a:>,

k—o0
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where we used the weak sequential lower semicontinuity of ¢. Hence, by the pseudomono-
tonicity of F', we obtain

V(z,y) = (F(x),x —y) + ¢(x) = ¢(y)
< liminf [{F(2"),2" — y) + p(2*) — ¢(y)] = liminf U(z"*,y) < 0.

k—o0 k—o0

Therefore, ¥ satisfies all the requirements of Theorem 2.56, and the result follows. [

Clearly, we can recover the variational inequality (V') by setting ¢ = 0. This immedi-
ately yields the following existence result.

Corollary 3.41. Let ® C X be a nonempty, convex, weakly compact set, and F': X — X*
a bounded pseudomonotone operator. Then (V') admits a solution.

In many situations, the weak compactness of C' can be replaced by an appropriate
kind of radial unboundedness.

Remark 3.42 (Coercivity). Assume that X is reflexive and F' is coercive in the sense
that, for all y € X,
(Fl@),z—y)
lz —yllx
Then the weak compactness of ® in Theorem 3.40 and Corollary 3.41 can be replaced by
closedness, see [39, Thm. 1]. Note that every strongly monotone operator satisfies (3.23).

— 400 as |z||x — +oc. (3.23)

The importance of pseudomonotonicity for VIs goes beyond the existence theory.
Indeed, a rather important consequence of this property is the stability of solutions and
approximate solutions of the VI under weak convergence.

Proposition 3.43. Let ® C X be a nonempty closed conver set and F' : X — X* a
pseudomonotone operator. Assume that {x*} C X converges weakly to a point Z € ® and
that there are null sequences {0r},{er} C R (possibly negative) such that

(F(a"),y —2F) > 0p + eplly —2¥|x VYye@

for all k. Then T is a solution of the VI.

Proof. Since € ®, we obtain in particular that liminfy_,. (F'(2*),Z — 2¥) > 0. The
pseudomonotonicity of F' therefore implies that

(F(Z),y — x) > limsup <F(:ck),y - xk> >0 forallye®.

k—o0

Hence, ¥ is a solution of the VI. ]

Under the assumptions of Proposition 3.43, it follows in particular that weak limit
points of a sequence of (exact) solutions of the VI are again solutions of the VI. This
means that the solution set of (V') is weakly sequentially closed.
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Figure 3.1: The sequence from Example 3.44 for k = 4: wuy (left) and Vuy (right).

We conclude this section by presenting an example of a bounded pseudomonotone
operator which satisfies neither (b) nor (c¢) from Lemma 3.37. In particular, the example
shows that the continuity from part (b), also called Ky—Fan-hemicontinuity, is strictly
stronger than pseudomonotonicity. This implies that a recent publication claiming the
equivalence of the two properties, see [199], is erroneous.

Example 3.44. Let X := W01’3((), 1) be one of the Sobolev spaces from Section 2.1.4,
and let F': X — X* be the (negative) p-Laplacian defined by

(F(u),0) = /0 IVu(t)|Vu(t) Vot dt.

Then F' is monotone and continuous, hence pseudomonotone. Now, for each k € N, let
ug : [0,1] — R be the piecewise linear function with value 1/k at ¢t = (3i + 1)/(6k) for
i=0,...,k—1, and value zero at t = ¢/(2k) for i = 0,...,k, and on [1/2,1]. Clearly,
ur — 0 in L3(0,1). Moreover, the weak derivative of uy is (almost everywhere) given by

6, ifte (55 %) withi=0,... . k=1,
Vug(t) = =3, ifte (32, 5;) withi=1,...,k,

0, ifte(z1),

see Figure 3.1. It follows from standard arguments (e.g., [4, Exercise 8.7, p.254]) that
Vu, — 0 in L3(0,1). Hence, u, — u := 0 in X = W0173(0,1). Now, let v(t) :=
amin{t,1 — ¢t} with a > 0, and observe that ||Vuk||%3(071) = 45 for all k. Finally, we
have (F'(u),u —v) = 0, but an elementary calculation shows that

1
(F(ug),up —v)y = ”VUk”iii(oJ) - / |Vug(t)| Vug(t) Vo(t) dt = 45 — 3a.
0

Thus, if « is large enough, it follows that (F'(ug),ur — v) is a negative constant for all k,
and thus property (b) from Lemma 3.37 is violated.

3.2.2 KKT-Type Conditions

Throughout the remainder of this chapter, we assume that the feasible set ® of the VI
has an analytical representation of the form

®={reC:G(x) e K}, (3.24)
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where C' C X and K C Y are nonempty closed convex sets, Y is a real Banach space,
and G : X — Y a continuously differentiable mapping. It follows that, if ' = f’ for
some differentiable function f : X — R, then (V') can be seen as a first-order necessary
condition (in the sense of Lemma 3.1) of the constrained optimization problem

minimize f(x) subject to G(z) € K.
zeC

Let us now discuss a general VI of the form (V'), with an arbitrary operator F': X —
X*, and with the feasible set given by (3.24). It turns out that such VIs admit a
similar theory of first-order necessary (KKT) conditions and Lagrange multipliers as
constrained optimization problems. To see this, let Z be a solution of (V'), and assume
that the constraint system of (V') satisfies the Robinson constraint qualification (RCQ),
see Definition 3.4) in Z. Then Corollary 3.16 implies that

To(z) ={d € To(z) : G'(z)d € T (G(T))}.

In particular, the definition of the VI implies that d := 0 is a solution of the constrained
minimization problem

mi&lér)r{lize (F(z),d) subject to de€ To(x), G'(z)d € T (G(T)). (3.25)

Observe now that RCQ for this transformed problem in d = 0 takes on the form
0 € int [G,(E)T(j(i‘) — TK(G(E))]

Since C — & C To(z) and K — G(Z) C T (G(Z)), this condition is implied by RCQ for
the original constraint system of (V7). Thus, we obtain from Theorem 3.5 that there is a
nonempty, bounded, and convex set A(Z) C Y* of Lagrange multipliers for (3.25). The
KKT conditions of this problem in d = 0 take on the form

—F(z) -G (@)*A € Ne(z) and X € Ng(G(z)). (3.26)

This prompts us to define the Lagrange function or Lagrangian of (V'), in the variational
inequality sense, as the mapping

L:XxY* = X" L(z,\):=F(x)+ G (z)*\. (3.27)

The KKT system of the VI is then nothing but the KKT system (3.26) of the transformed
problem (3.25).

Definition 3.45 (KKT point). A point (Z,)) € X x Y* is a KKT point of (V) if
—L(z,)\) € No(z) and X € Ng(G(%)).

We say that z € X is a stationary point of (V) if (2, \) is a KKT point for some multiplier
A € Y*, and denote by A(Z) the set of such multipliers.
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If the VI originates from a constrained optimization problem, then the Lagrangian
(3.27) in the variational sense is the derivative of the Lagrange function (3.3) of the
underlying optimization problem. In this case, the KKT system from Definition 3.45 is
consistent with its optimization counterpart from Definition 3.2.

The preceding discussion implies that Theorem 3.5 on the necessity of the KKT system
under RCQ can directly be carried over to the VI setting. Interestingly, it turns out that
the converse implication is much stronger in the present case. More precisely, the KKT
conditions are always sufficient for “optimality”, where optimality has to be understood
in the variational sense. The reason why the problem (V') admits this strong connection
is that its definition uses the tangent cone to ® and not the set ® itself.

Proposition 3.46. If (z,)\) is a KKT point, then T is a solution of (V). Conversely, if
Z is a solution of (V') and RCQ holds in T, then A(Z) is nonempty and bounded in Y*.

Proof. The converse part follows from Theorem 3.5 and the arguments preceding Defini-
tion 3.45. To prove that the KKT conditions are always sufficient, let (Z,\) be a KKT
point of (V), and let d € T3(Z). Then d = limy_,o (2% — )/t with {2F} C @, 2F — 7,
and t; | 0. In particular, we have d € To(Z), and it follows from the KKT conditions
that (£(z,\),d) > 0. This yields

(F(z),d) > (—G'(z)*\,d) = <—G'(f)*5\, lim —— £> = — lim l<5\,G’(:T:)(:Bk —)).
But G'(z) (2% — 2) = G(2*¥) — G(z) + o(t) and therefore

(F(z).d) > ~ lim ;(X,G(xk) — @) >0,

where we used \ € N (G(z)) and G(2*) € K for all k. O

It is also possible to extend the strict Robinson condition from constrained optimization
(SRC, Definition 3.6) to variational inequalities. This has to be done explicitly because
SRC is not a constraint qualification, i.e., it cannot be attributed solely to the constraint
system of the underlying problem. In any case, the natural extension of Definition 3.6 is
the following.

Definition 3.47 (Strict Robinson condition). We say that the strict Robinson condition
(SRC) for the VI (V) holds in Z € ® if there exists A € A(Z) such that

0 € int[G(Z) + G'(z)(Co — &) — Ko,
where Cy :={z € C: L(Z,\)(x — %) =0} and Ko :={y € K : (\,y — G(z)) = 0}.

Arguing as in Proposition 3.7, it follows that the SRC for VIs implies the uniqueness
of the corresponding Lagrange multiplier.

Due to the strong connection between the KKT conditions and the VI, it is not
necessary to formulate second-order sufficient conditions for variational problems. Never-
theless, for theoretical considerations, it will be convenient to define an analogue of the
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second-order sufficient condition from constrained optimization. Let (Z,\) € X x Y* be
a KKT point of (V) and define, for n > 0, the extended critical cone

oo Lae o s F@La <aldlx,
o) = {4 o) (lGhia Tion) <t - 0%

The following is the basic second-order condition for variational inequalities. We assume
that F' is continuously differentiable and G twice continuously differentiable near z.

Definition 3.48 (Second-order sufficient condition). Let (z,A) € X x Y* be a KKT
point of (V). We say that the second-order sufficient condition (SOSC) holds in (z, ) if
there are 1, c > 0 such that

(L'(z,N)d,d) > c||d||% for all d € C;().

Note that we use the terminology “second-order sufficient condition” mainly for the
sake of consistency with the corresponding condition from constrained optimization
(Definition 3.24). For variational problems such as (V), there is actually no need for
sufficiency conditions to complement the KKT system because of Proposition 3.46.

3.2.3 Sequential KKT Conditions

This section is dedicated to a rather pragmatic concept of asymptotic optimality. Many
practical algorithms for constrained optimization, variational inequalities, etc., iteratively
construct a primal-dual sequence {(z*, \¥)} which satisfies the KKT conditions in an
asymptotic sense. Therefore, it makes sense to analyze such “sequential” analogues of the
KKT conditions in more detail. The discussion in this section is also motivated by similar
approaches in finite dimensions, see [7,8, 28].

Recall that the KKT conditions of (V') are given by

Lz € No(@) and A € Nx(G(z)).

It is particularly the second condition which requires special care when trying to formulate
a sequential analogue of the KKT conditions. The main definition we will use is the
following.

Definition 3.49 (Asymptotic KKT sequence). We say that a sequence {(z*, \F)} C
C x Y* is an asymptotic KKT sequence for (V) if there exist null sequences {e#} C X*
and {rx} C R such that, for all k,

e" — L(a" \F) e No(2F) and  (\F,y — G(2F)) <y Wy € K. (3.29)

Our main aim in this section is to give sufficient conditions which guarantee that,
if {(2%, \¥)} is an asymptotic KKT sequence and 7 is a (possibly weak) limit point of
{z*¥}, then Z is a stationary point of (V). In this context, it is worth mentioning that
Definition 3.49 imposes no conditions on the attainment of feasibility. This aspect is left
unspecified for the sake of flexibility; indeed, we will mainly be concerned with scenarios



3.2. Variational Inequalities 53

where Z is some kind of limit point of {2*} and we already know from a preliminary
analysis that Z is a feasible point.

Note that, while the conditions posed in Definition 3.49 seem reasonably weak, it is
possible to generalize the asymptotic KKT concept even further. In particular, in our
formulation, the second inequality in (3.29) is assumed to hold uniformly on K. If K
is unbounded, then it may be more natural to require some kind of uniformness of the
inequality on bounded subsets of K. In any case, however, the augmented Lagrangian
method which we will discuss in later chapters satisfies the uniform bound from (3.29),
and a more general analysis is therefore not necessary for our purposes.

Before analyzing the optimality properties of limit points, we first give a property
of asymptotic KK'T sequences which is interesting in its own right. Indeed, it turns out
that the existence of an asymptotic KKT sequence is a necessary optimality condition for
constrained optimization problems, even in the absence of constraint qualifications. For
the formulation of this result, consider a problem of the form (3.1), that is

miniergize f(z) subject to G(x) € K, (3.30)
x
where f : X — R is a continuously differentiable function. This corresponds to the
variational setting (V') with F' := f’. The proof of the following result is inspired by
[28, Thm. 3.1].

Proposition 3.50. Let & be a local minimizer of (3.30). Assume that X is reflexive, Y
is a real Hilbert space, and that f and dg o G are weakly sequentially Isc in . Then there
is an asymptotic KKT sequence {(z¥ \F)} C C x Y such that 2% — 7.

Proof. Let » > 0 be such that Z minimizes f on B,(Z) N ®. For k € N, consider the
problem

minir§ize f(@) + ||z — z||% + kd%(G(x)) subject to z € B,.(z)NC. (3.31)
TEe

Since X is reflexive and the objective function in the above problem is weakly sequentially
Isc, the problem admits a minimizer 2* € B,.(Z)NC. Passing to a subsequence if necessary,
we may assume that z* — & for some & € B,(Z) N C. Observe now that

F@®) + |2F — 2|5 + kdi (G(2¥)) < f(z) (3.32)

for all k£ by the minimizing property of z*. Dividing by k and taking the limit k& — oo, it
follows that dx (G(2)) = 0, i.e., 2 is feasible. By (3.32), we also obtain f(2) + ||# —Z[% <
f(z). But f(z) < f(#), hence # = & and (3.32) implies that ¥ — Z. In particular, we
have ||z¥ — Z||x < r for sufficiently large k, and from (3.31) we obtain the existence of a
sequence {e¥} C X* such that —¢* € 9||z* — 7||% and

0 € f/(a*) — e + 2kG' (2%)*[G(2*) — Pr(G(2))] + Ne(2).

Observe now that || -||% is Fréchet-differentiable in the point 0 € X with derivative 0 € X*.
Hence, by Proposition 2.46, we obtain e — 0 in X*. Moreover, the sequence \F :=
2k[G(2%) — Py (G(2*))] satisfies (A, y — G (2*)) < 0 for all y € K by Proposition 2.36. [
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Our subsequent efforts in this section are devoted to the analysis of conditions which
guarantee that, if {(z*, \¥)} is an asymptotic KKT sequence and Z is a limit point of
{x*}, then there exists A € Y* such that (7, ) is a KKT point. We will mainly be
concerned with the analysis of weak limit points, which implies that, occasionally, we will
need complete continuity properties of the mapping G or its derivative. Of course, if T is
a strong limit point of {z*}, then many of the subsequent assumptions can be simplified
considerably.

Theorem 3.51. Let {(z*,\¥)} C C x Y* be an asymptotic KKT sequence with z¥ — &
for some T € ®. Assume that F is bounded and pseudomonotone, that G and G’ are
completely continuous, and that RCQ holds in Z. Then the sequence {\*} is bounded in
Y*, and every weak-* limit point of {\*} belongs to A(Z).

Proof. We first prove the boundedness of {\¥} in Y*. Applying the generalized open
mapping theorem (Theorem 3.11) to the multifunction W(u) := G(z) + G'(Z)u — K on
the domain C — Z, we obtain the existence of » > 0 such that

BY CG(z)+G'(@)[(C-z)nB] - K.

Now, let {y*} C Y be a sequence of unit vectors such that (A\*¥ y*) > L[| \¥||y~. Then

1
2
—ryf = G(z) + &' (z)(v* — 7) — 2F

with {v*} C C a bounded sequence and {z*} C K. It follows that ry* = z¥ — G(2*) —
G’ (2*)(v* — %) + 6 with 6¥ — 0 as k — oco. Let k be large enough so that ||6%|y < r/4.
Then, by the asymptotic KKT conditions (3.29), we obtain

Il < (X rgk) < (OF, 25 = Glab)) = (8, G (@h) (08 — %)) + TN

T
— Y*
2

< (M 28— Qb)) + (F(aF) — &8 ok — ak) + £||>\’“| .
Now, using again (3.29) and the boundedness of F, it follows that the first two terms are
bounded from above by some constant ¢ > 0. Hence, 4|[A\¥|ly~ < c.

We now show the second assertion. Let I C N be an (infinite) subset such that
AP —* Xin Y*. By (3.29) and Proposition 2.40, we have A € Nk (G(z)). Now, let y € C
be arbitrary. Then, by (3.29),

<£k, Yy — a;k> < <F(azk), Yy — a:k> + <)\k, G’(xk)(y — xk)> (3.33)

By complete continuity, we have G’(z¥) — G'(z) and G'(z)(y — 2*) — G'(z)(y — %),
see Proposition 2.16. Hence, G'(z*)(y — 2*) — G'(z)(y — Z). We now argue as in
Proposition 3.43. Inserting y := Z into (3.33) yields liminfy_,o (F(2*),z — 2¥) > 0.
Hence, by pseudomonotonicity, we obtain that, for all y € C,

(F(@),y— ) + (G () (y — ) > lmsup[(F(e*),y — &) + (X, G () (y — )] > 0.

k—o00

But this means that —£(Z, \) € Ng(Z). Hence, (Z,\) is a KKT point of (V). O
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We now consider the case where C = X, the primal sequence {xk } converges weakly
to a point Z, and the derivative operator G'(Z) is surjective. This is perhaps the strongest
possible constraint qualification (see Remark 3.8) and it has the great benefit that,
unlike conditions such as RCQ), the surjectivity of G’(Z) does not depend on the function
value G(z). Therefore, it is possible to obtain a convergence result for asymptotic KKT
sequences under only the convergence G’(z*) — G’(Z), with no convergence of the values
G(2%). For later reference, we state this result in a slightly more general framework.

Proposition 3.52. Let {2F} C X, {T}} C L(X,Y), and {\*} C Y* be sequences such
that F(x%) + Ty AP —* 0. Assume that 2% — 7 for some z € X, F(2*) —=* F(z), T, = T
for some T € L(X,Y), and that T is surjective. Then {\F} converges weak-* in Y* to
the unique solution of F(z)+T*\ = 0.
Proof. We first show that {\*} is weak-* convergent. Let § € Y be an arbitrary point.
It suffices to show that (\¥,) is convergent. Let r > 0 be as in the uniform version
of the Banach open mapping theorem (Theorem 2.13), so that BY C T(B:X). Assume,
without loss of generality, that § € BY, and let w € Bf( be a point such that Tw = g. Set
Ok = [Tk —T||(x,v), and let k be sufficiently large so that 6, < r. Then ||§—Tpw|y < 0
and, by Theorem 2.13, there are points d¥ € X such that Tpd* = § — Tjw and
19— Tedlly Ok

— 0k —r—0g
:= 10 4 d*. Then w* — @ and Tpw"* = ¢ by definition. Hence,

0+ (F(2%) + TpAF, 0y = (F(2),0) + o(1) + (AF, 9).

Thus, we obtain (\*, ) — —(F(Z),w). Since § € Y was arbitrary, this implies that {\*}
is weak-" convergent in Y.

Let A denote the weak-* limit of {A\F}. Using F(2*) + TyAF —* 0, it follows that
F(z)+T*\ =0, and A is unique since T* is injective. O

ld*]lx <

Define wF

We now briefly turn to the case of nonlinear programming (NLP) type constraints.
Here, RCQ boils down to the Mangasarian—Fromovitz constraint qualification (MFCQ),
see Definition 3.29), and thus the results of Theorem 3.51 can readily be applied to the
NLP setting. However, a more detailed analysis using the specific structure of NLP
constraints allows us to prove a similar assertion under the CPLD constraint qualification
(see Definition 3.29). For this result, we need the following Carathéodory-type lemma.

Lemma 3.53 (Carathéodory, |28, Lem. 3.1]). Let u € R™ be a vector of the form
U= Z)\w’ —i—Zujw],
i=1 j=1

where \; >0, v' €R" fori=1,...,m, and p; € R, wl € R™ for j =1,...,p. Then there
evist subsets I C {1,...,m}, J C{1,...,p} and coefficients \; > 0, i € I, and p’; € R,
j € J, such that the vectors {v'}icr U{w’} ey are linearly independent and

u:Z)\gvi+Zu;wj.

iel jeJ
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Let us now consider a variational inequality (or optimization problem) where the
constraints are of nonlinear programming form, i.e.,

& ={zecR":g(x) <0, e(x) =0}, (3.34)

where n € N, g : R" - R™, e : R” — RP, and m,p € Ny. In this case, it is possible to
use a slightly different asymptotic KKT concept, see the theorem below. For the sake of
completeness, we include assertions for all of LICQ, MFCQ, and CPLD.

Theorem 3.54. Let the feasible set of (V') be given in the form (3.34). Assume that
{(zF, \F, F)} C RM™HP s g sequence such that o — % for some T € ® and

F(a*) + Vg(a")\F + Ve(aF)pb — 0, min{—g(z*),\*} -0, ask—oco. (3.35)

Then the following assertions hold:
(a) If CPLD holds in &, then T is a stationary point (and a solution) of the VI.
(b) If MFCQ holds in Z, then {(\F, u¥)} is bounded, and its limit points belong to A(Z).
(c) If LICQ holds in %, then {(\*, u*)} converges to the unique element in A(Z).

Proof. (a) Since (3.35) remains true if we replace A* by max{\*,0}, we may assume,
without loss of generality, that \¥* > 0 for all k. Observe furthermore that )\f —- 0
whenever g;(Z) < 0. Thus, we obtain from (3.29) that

P
F(z*) + Z MoV gi () + Z/L;?Vej(xk) — 0.
0:(2)=0 =1

By Lemma 3.53, there are subsets I}, C {i : ¢;(Z) = 0} and Ji C {1,...,p} such that, for
all k, the gradients {Vg;(z*)}ier, U {Ve;(2*)};ey, are linearly independent and

F(a™) + ) " ANVgi(a®) + ) Ve (a¥) — 0 (3.36)
i€}, JjeJk

with suitable coefficients j\f >0, € I, and ﬂ;‘; € R, j € Ji. Passing onto a subsequence
if necessary, we may assume that I, = I and J; = J for all & with some subsets
I C{i:gi(x) =0} and J C{1,...,p}. To conclude the proof, it suffices to show that
the sequence {(\¥, iF)} is bounded. If this were not the case, then we could divide (3.36)
by || A¥]| + [|i* ]|, take the limit k — oo on a suitable subsequence and obtain nontrivial
coefficients a; > 0, ¢ € I, and 8; € R, j € J, such that

Z ang,-(:E) + Z B]Vej(f) =0.
il jer

Hence, by CPLD, the gradients {Vg;(z) }ierU{Ve;j(x)};jcs should be linearly independent
in a neighborhood of z, which is the desired contradiction.
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(b) Assume that {(A\*, z*)} is unbounded. Arguing as in the proof of (a), we can divide
the first limit in (3.35) by ||A*|| + ||*||, take the limit k& — co on a suitable subsequence,
and obtain the positive linear dependence (in the sense of Section 3.1.4) of the gradients
{Vi(2)}iez U{Ve;(Z)};_,, where T = {i : g;(Z) = 0} is the set of active indices. This
contradicts MFCQ.

(c) It is well-known that LICQ implies MFCQ and the uniqueness of (\, i) € A(%).
From (b), it follows that {(\*, 4*)} is bounded, and its limit points are equal to (X, fi).
Thus, (A\*, u*) — (A, i), and the proof is complete. O

3.2.4 Error Bounds and Lipschitz Stability

As a second essential ingredient for our algorithmic approach in later chapters, we now
analyze quantitative stability properties of the KKT system of the variational inequality
(V). By extension, the analysis of course also applies to optimization problems. The
stability theory is closely linked to so-called error bounds, i.e., computable upper bounds
on the distance of certain points to the (primal-dual) solution set of (V). Such error
bounds are essential for rate-of-convergence analyses of optimization algorithms.

We begin our investigations by considering the special case where C' = X (the general
case will then be deduced by arguing as in Remark 3.10). In what follows, we equip the
product of two Banach spaces with the norm induced by the sum of the component norms.
Recall also that A(Z) denotes the set of Lagrange multipliers in a stationary point z. The
basic result on the stability of the KKT system of (V') is the following, which is a slightly
simplified version of [32, Thm. 5.9].

Lemma 3.55. Let C = X and let (z,)\) € X x Y* be a KKT point of (V) satisfying
SOSC and SRC. Then there exists ¢ > 0 such that, for all = (v, B) € X* XY sufficiently
close to (0,0), if (zg, Ng) satisfies the perturbed KKT system

Lz \) =a, \eNg(G(z)—f), (3.37)

and xq is sufficiently close to T, then ||xg — Z||x + [|[Ng — M|y < ¢|€]|x*xy -

Perturbations of the form (3.37) are usually called canonical perturbations. If the
parameter 3 is omitted and only the Lagrange function is perturbed, then one speaks of
tilt perturbations.

We now direct our efforts towards a more convenient form of stability which does not
require us to explicitly specify the perturbation parameters in (3.37), but allows us to
estimate the distance to the primal-dual solution set for arbitrary points (z,A). Such
estimates are usually called error bounds. For the precise formulation of these, we will
assume that the constraint function G' maps into a Hilbert space instead of the Banach
space Y. To emphasize the modified problem setting, let H be a real Hilbert space,
K C H anonempty closed convex set, and G : X — H a given mapping. With an obvious
change of notation, the feasible set of (V') is now

¢ :={reX:G(x)eK}, (3.38)
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and the KKT system takes on the form of the generalized equations
L(x,\)=F(z)+G'(z)* A =0 and X € Ni(G(z)). (3.39)

Formally, one can think of H and K as being nothing but placeholders for Y and K.
However, we will later encounter situations where multiple spaces (as well as embeddings)
are involved, in which case it becomes crucial to distinguish Banach and Hilbert spaces.
The present change of notation is chosen to be consistent with these structures which we
will encounter, for instance, in Chapters 4 and 5.

Observe that, due to the Hilbert space setting, the normal cone inclusion in (3.39)
can be reformulated through the projection onto K. Indeed, by Proposition 2.36, we
have A € Ni(G(z)) if and only if G(z) = Pc(G(x) + A). Thus, in order to quantify the
violation of (3.39), it is rather intuitive to define the residual mapping

Oz, A) := [[L£(x, )| x- + |G(x) — Pe(G(x) + A (3.40)

Clearly, the generalized equations (3.39) are equivalent to ©(x, A\) = 0. Indeed, we shall
now see that, under certain assumptions, the function © allows us to quantify not only the
violation of (3.39) but also the distance of (x, A) to the primal-dual solution set. The main
tool in this direction is a characterization of error bounds in terms of certain Lipschitz-type
properties such as those given in Lemma 3.55. This equivalence has appeared in various
forms in the literature [57,76,122], albeit mostly in a finite-dimensional setting. The
following result shows that the equivalence holds for general variational problems of the
form (V).

Theorem 3.56 (Characterization of local error bounds). Let (Z,A) € X x H be a KKT
point of (V'), with the feasible set given by (3.38). Then the following are equivalent:

(a) There are a neighborhood U of T and ¢ > 0 such that, for all = (o, B) € X* x H
close to (0,0), any solution (zg,\g) € U x H of the perturbed KKT system

L(z,\)=a, XeNg(G(z)-—p) (3.41)

satisfies the estimate ||xg — Z|| x + dist(Ng, A(Z)) < c[|6]| x+xm-

(b) There are a neighborhood U of & and ¢ > 0 such that, for all (x,\) € U x H with
O(z, \) sufficiently small, we have the error bound

|z — Z|| x + dist(A, A(Z)) < cO(z, \).

Proof. (b) = (a): Let = (o, ) € X* x H. It is an easy consequence of Lemma 2.11
that the mapping y — y — Pxc(y + \g) is nonexpansive. Hence, we obtain

1G(x0) = Pic(G(x) + Ao)llm < [1Bllm + |G (o) — 5 — Pc(G(29) = 5+ Xo)ll -

Since \g € Ni(G(zg) — ), the last term is equal to zero, and we obtain O(xg, \g) <
llellx= + |18lz = 110]|x*xr- Choosing 6 = («, 3) sufficiently close to 0, we see that
O(zp, Ag) becomes arbitrarily small. Hence, we can apply (b) and obtain

|zo — Z||x + dist(Ag, A(Z)) < cO(za, Xg) < ||0]| x+xH-
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(a) = (b): Shrinking U if necessary, we may assume that ||G'(x)*||1(q,x+) < c1 for all
x € U with some constant ¢; > 0. Now, let (z,\) € U x H. We will use (z, A) to construct
a solution of the perturbed KKT system (3.41). Set § := ©(z, A) and define

yg := Pc(G(z) +N), g :=G(x)+ X —ys.

Let o := L(x,N\g) and 8 := G(x) — yp. Then \g € Ni(yg) and, hence, (z, \g) solves
the perturbed KKT system corresponding to 6 := («, 3). Moreover, we have ||| g =
lyg — G(z)||g = ||G(x) — Pc(G(x) + N)||g < 6 and ||[Ng — M|z = ||B]|g < 0. This implies

10l xxar = [1£(z; M)l x= + 1Bl < [1£02, Al + (er + DBl < (1 +2)6.

Hence, if § = O(z, A) is small enough, then 6 becomes arbitrarily close to 0. We can
therefore apply (a) to (z, Ag) and obtain ||z—Z|| x+dist (Ag, A(Z)) < ¢[|0]|x+xnm < c(c1+2)d.
But ||[A\g—Allz < & and, hence, dist (Ag, A(Z)) > dist(A, A(Z)) — & by the nonexpansiveness
of the distance function. This finally yields

|z — z||x + dist(\, A(Z)) < [e(er +2) +1]6,
and the proof is complete. O

Let us stress that the distance estimate provided by the above theorem holds if z is
close to Z; in particular, no assumption on the proximity of A to A(Z) is necessary. We
also remark that (a) does not make any assertion about the existence of solutions to the
perturbed KKT conditions (3.41). These may have solutions for some but not all .

Before we give some corollaries of the above theorem, let us remark that the function
© is locally Lipschitz-continuous with respect to x, and globally so with respect to .
Hence, if the error bound from Theorem 3.56 holds, then we actually have the “double”
error bound

10(z, A) < |lz — & x + dist (A, A(Z)) < 20(z, \) (3.42)

with suitable constants ¢, co > 0. As before, this holds for all (z,\) € X x H with =
near T and O(x, \) sufficiently small.
Let us now give a direct corollary of Theorem 3.56 and Lemma 3.55.

Corollary 3.57. Let (z,)) be a KKT point of (V'), with the feasible set given by (3.38),
such that SOSC and SRC hold in (z,\). Then A(z) = {\} and there are c1,ca > 0 such
that, for all (x,\) € X x H with x near T and ©(z, \) sufficiently small, we have

c10(z, ) < ||z — Z||x + [N = Alg < 20(z, ),
where © : X x H — R is the residual function given by (3.40).

Proof. The uniqueness follows from Proposition 3.7. The error bound follows from
Theorem 3.56, Lemma 3.55, and the arguments before (3.42). O
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Let us now turn to the case where the feasible set has the form
o:={reX:zeC, Gx)eK}, (3.43)

with C' C X a nonempty closed convex set. As before, G : X — H, H is a real Hilbert
space, and K C H a nonempty closed convex set. In this case, the residual function ©
takes on a slightly more general form which includes (3.40) as a special case.

Corollary 3.58. Let (z,)) be a KKT point of (V), with X a real Hilbert space and the
feasible set given by (3.43), such that SOSC and SRC hold in (z,\). Then A(z) = {\}
and there are c1,co > 0 such that, for all (x,\) € X x H with x near T and O(z, \)
sufficiently small, we have

c19(x,\) < ||z — Z||x + [|A = Mg < c2O(z, N), (3.44)
where O(z, A) := ||z — Po(x — L(x,\)||x + ||G(z) — Pc(G(z) + Nz

Proof. Taking into account Remarks 3.10 and 3.28, it follows that SOSC and SRC hold
for the constraint system (G(z),z) € K x C in the point z € X, with the Lagrange
multiplier pair (\, 1) € H x X, where i := —F(z) — G'(z)*\. Thus, by Corollary 3.57,
we obtain an error bound of the form

a0, A\, 1) < llz =l x + A = Al + |u = Allx < c20(x, A, )

for all (z,\, p) € X x H x X with z sufficiently close to Z and ©(xz, \, u) sufficiently
small, where

Oz, A, ) := | F(2)+G" (@) Mpl| x +| G (2) — Pe(G (@) +0) | r+l|lz—Pe(z+p)llx. (3.45)

To deduce the desired form of the error bound (3.44), let (z,A) € X x H be a point with
x near T and O(x, \) sufficiently small. Define p:= —L(x,\) € X. Inserting the triple
(z,\, 1) into (3.45), the first term vanishes, and we are left with ©(z, A, n) = O(x, \).
This implies that

0@, A) < [lz = zllx + A = Mla + [ln = Allx < e20(, ).

It remains to show that ||u — fillx = O(||x — Z||x + ||A — A||g) if = is close to Z, where
pu = —L(z,\). But this follows from the local Lipschitz-continuity of F' and G’. Hence,
the proof is complete. O

The above is the main practical result of this section and will be instrumental in proving
asymptotic convergence results for the augmented Lagrangian method in Chapters 4
and 5.

We conclude this section by briefly discussing the case where the set K is polyhedral,
i.e., it can be represented by finitely many linear equalities and inequalities.
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Remark 3.59. For certain problem classes, it is possible to establish error bounds under
weaker assumptions than those given above. An important example arises if the set K is
(generalized) polyhedral, e.g., in nonlinear programming. Roughly speaking, one can use
Hoffman’s lemma [32, Thm. 2.200] to get the “dual part” of the error bound for free, while
the primal part again follows from SOSC. As a result, one obtains a primal-dual error
bound under SOSC alone, see [122], with the restriction that the Lagrange multiplier is
not necessarily unique. Unsurprisingly, this result does not extend to the non-polyhedral
case, which shows that additional assumptions such as SRC are inevitable.

Example 3.60. Let X := H := (?(R) be the space of square-summable real sequences.
Consider the variational inequality arising from the optimization problem (P) with
f(z) :=||z||%/2 and the constraint G(z) € K, where G : X = H, G(z) == (2;/i)72, and
K is the nonnegative cone in X. It is easy to see that (z, A) := (0,0) is the unique KKT
point of this problem, and that SOSC holds. Now, let z* := €¥/k and \¥ := —e*, where
{eF} is the sequence of unit vectors. Then

O@* A) = [ L(a*, A + [ G(a) = Pe(Ga®) + )|y = k72

for all k£, where L is the Lagrangian in the variational inequality sense, see (3.27). Moreover,
zF — Z, but \¥ 4 X. Hence, the local error bound (3.42) does not hold. (In particular,
SRC cannot hold, even though the Lagrange multiplier is actually unique.) A slightly
different example is obtained by setting #* := e¥/k? and M= ek /k. In this case,
(2%, AF) = (z, A), but an easy calculation shows that

O, M) = k3 and &5 — Zl|x + [N = Nz =k 2+ kL.

In particular, the error bound is violated even if the multiplier is close to .
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Chapter 4

Augmented Lagrangian Methods in
Constrained Optimization

This chapter is dedicated to a thorough discussion of the augmented Lagrangian method
(ALM) for constrained minimization problems of the form discussed in Chapter 3. More
specifically, we deal with a problem of the form

(P) mir;iergize f(z) subject to G(z) € K, (4.1)
where, as before, X, Y are real Banach spaces, f : X — Rand G : X — Y are continuously
differentiable functions, and C' C X as well as K C Y are nonempty closed convex sets.
To facilitate the application of the augmented Lagrangian technique, we assume that
1:Y — H densely for some real Hilbert space H. This implies that we are working in
the Gel’fand triple framework

Yy He g Sy (4.2)

Furthermore, we assume that there is a closed convex set X C H such that i~ }(K) = K.
This allows us to interpret the constraint G(z) € K equivalently as G(x) € K. Note that
we will usually suppress the embedding for the sake of brevity.

It should be stressed that the above framework is extremely general, and the resulting
augmented Lagrangian method therefore covers a very broad spectrum of applications.
Moreover, many prominent problem classes can be recovered as special cases of (P), and
they are thus implicitly covered by our analysis. For many of these problem classes,
there is existing literature on augmented Lagrangian techniques, and the analysis in this
chapter subsumes and generalizes most of these approaches:

e Nonlinear programming. This is the historical origin of the augmented Lagrangian
technique. Indeed, the algorithm goes back to the seminal works by Hestenes [100] and
Powell [178], and in its early days it was commonly referred to as the method of multipliers.
The technique was further developed by many authors in the later parts of the 20th
century, including Rockafellar [187-189], Bertsekas [24], and Conn, Gould, and Toint

63
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[45-47], who created the LANCELOT software package. The algorithm was rediscovered
by Andreani, Birgin, Martinez, and co-authors in [5,6,26,27|, a series of publications
which culminated in the book [28] and the ALGENCAN software package.

In today’s nonlinear programming landscape, algorithms such as interior point methods
[81,91] or sequential quadratic programming [91,122] are often preferred to methods of
augmented Lagrangian type, mainly due to their fast local convergence characteristics. In
contrast, the augmented Lagrangian method possesses very strong global convergence
properties, and it has been found to work rather well on degenerate problem classes such
as problems with complementarity constraints [124]. A state-of-the-art local convergence
analysis of the ALM for nonlinear programming is given in [74]. More discussion on
nonlinear programming in general, and on the corresponding algorithms, can be found in

[24,25,48,172], and in the encyclopedia [80)].

e Function space optimization. One of the main motivations for the generalization of
augmented Lagrangian methods to the level of generality represented by (P) is the advent
of function space optimization problems. Some early references in this context include
[20,22,114-117,217], and the book [82]. Most of these publications are restricted to
very specific problem settings such as convex optimization problems or finite-dimensional
constraints. In [23,118], an augmented Lagrangian-type penalty scheme was proposed, in
combination with a semismooth Newton method, for the solution of state-constrained
optimal control problems. The resulting method came to be known as Moreau—Yosida
reqularization; it was further developed in [101,103|, and it is today considered a standard
approach for state-constrained optimal control [109,119,214|. Some other techniques
for such problems include Lavrentiev regularization [108,161], interior point methods
[151,200], and the so-called virtual control approach [150], which is related to the
augmented Lagrangian technique [149].

e Semidefinite programming. Another notable problem class which occurs as a
byproduct of the general convergence theory in this chapter is the special case of
semidefinite programming or, more generally, C?-cone reducible programming (see Sec-
tion 4.3.3). Methods of augmented Lagrangian type are quite popular for these problems
[145-147,208,219] and for related problem classes such as second-order cone programming
[156,157]. The theoretical framework in this chapter, in combination with a recent stability
analysis of the aforementioned problem classes [57], allows us to strengthen the known
local convergence results for the augmented Lagrangian method which can be found in
the literature.

The purpose of this chapter is to develop the augmented Lagrangian method for a
general problem of the form (P), thereby subsuming the above problem classes. The
core of the theory is tailored towards function space optimization, and the prototypical
applications to be kept in mind are state-constrained optimal control, obstacle problems
[192], the Signorini problem [12, 88|, and similar examples. More details along with
numerical implementations will be described in Chapter 7. The theory presented below
can also be seen as a precursor to the augmented Lagrangian method for variational and
quasi-variational inequalities, see Chapters 5 and 6.
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The results in this chapter are essentially based on the publications [133,135,136], with
a substantial amount of modifications aimed at making the theory simpler, more general,
and more readily applicable. The structure of the chapter is as follows. In Section 4.1,
we provide some background on the augmented Lagrangian method. Section 4.1.1 is
dedicated the original method of multipliers by Hestenes and Powell. In Section 4.1.2, we
demonstrate how a slack variable approach can be used to formally deduce the augmented
Lagrangian method for a general problem of the form (P), and in Section 4.1.3 we give
the resulting algorithm along with some basic properties.

Section 4.2 contains a thorough convergence analysis for the ALM from a global point
of view. In Section 4.2.1, we begin by giving some sufficient conditions for the existence
of penalized solutions, and in Section 4.2.2 we establish some rather simple convergence
results under the assumption that the penalized subproblems are solved in an (essentially)
global sense. In Section 4.2.3, we state convergence results in terms of the first-order
necessary (KKT) conditions. The results in Section 4.2 can be seen as generalizations of
various works in the literature, including [103,114-117,119]. Some related results can
also be found in [137,138].

Finally, Section 4.3 is dedicated to the local convergence of the augmented Lagrangian
algorithm. In Section 4.3.1, we analyze the existence and behavior of local minimizers of
the augmented Lagrange function, and in Section 4.3.2 we provide a quantitative analysis
which yields primal-dual rate of convergence results as well as the boundedness of the
sequence of penalty parameters. We conclude in Section 4.3.3 by demonstrating how the
results can be specialized for the class of C?-cone reducible optimization problems, which
encompasses semidefinite and second-order cone programming. The results in Section 4.3
can be seen as generalizations of various findings contained in [26,156,157,208|. Some
related results can also be found in [137].

4.1 Motivation and Statement of the Algorithm

This preliminary section provides some background on the augmented Lagrangian method,
including a historical overview and a formal statement of the method for a general problem
of the form (P).

4.1.1 The Original Method of Multipliers

In its initial form, the method of multipliers is an algorithm for the solution of equality-
constrained minimization problems in finite dimensions. Here, we present this original
method in a slightly more general framework. Consider an equality-constrained optimiza-
tion problem of the form
mini%lize f(z) subject to h(x) =0, (4.3)
BAS
where f: X - R, C C X is a closed convex set, and h : X — H. We assume that X

is a real Banach space and H is a real Hilbert space. In the special case of the original
method of multipliers, we have X := R", H := R™ with m,n € N, and C := X.
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The basic idea is to tackle (4.3) by combining elements of Lagrangian theory with
a penalty-type scheme. Recall that the Lagrangian of the problem takes on the form
L(z,\) = f(z) + (X h(z)). By adding a positive multiple of ||h(z)||3;, we penalize the
violation of the equality constraint, thus ending up with the augmented Lagrangian

Lo, X) = J(@) + (A h(@)) + Sln()]F. (4.4)

From an algorithmic perspective, we now proceed as follows. Given a penalty parameter

k+1 a5 a minimizer

pr and a current estimate A\F of the Lagrange multiplier, we compute
(or approximate minimizer) of (4.4) on C so that, ideally, 2"+ is close to feasibility (if
pr is large) and close to being a minimizer of the Lagrangian £(-, \¥). Let us assume, for
the moment, that the functions f and h are continuously differentiable, and that z**1 is

an exact minimizer of £,, (-, \¥) on C. Then Lemma 3.1 yields the inclusion
No(@ht1) 5 —£), (2571, 3) = () — @A) O 4 pih(a).

This immediately suggests A*+1 := \¥ 4+ pph(2zF1) as the new estimate of the Lagrange
multiplier, which is often called the Hestenes—Powell multiplier update.

After the above procedure is completed, the penalty parameter is updated based on
a heuristic test. The most common option is to keep pi if the constraint violation has
decreased sufficiently, and to increase it otherwise. We thus end up with the following
overall algorithm.

Algorithm 4.1 (Original method of multipliers). Let (z°,A°) € X x H, pg > 0, let
v>1,7€(0,1), and set k :=0.
Step 1. If (z¥, \F) satisfies a suitable termination criterion: STOP.

Step 2. Compute an approximate solution z**! of the problem

migiergize L, (2, AF). (4.5)

Step 3. Update the vector of multipliers to ¥+ := \F + pph(aF+1).
Step 4. If |h(z*+1)|| g < 7||h(2)|| g holds, set pri1 := pr. Otherwise, set pry1 = Yp.
Step 5. Set k <+ k+ 1 and go to Step 1.

4.1.2 Inequality Constraints and Slack Variables

Having established the classical multiplier method for equality-constrained problems, we
now outline how the algorithm can be extended to the inequality-constrained case. To
this end, we consider an optimization problem of the form (P), that is,
minirgize f(z) subject to G(z) € K,
xe

where, as before, f : X — R and G: X — Y are given mappings, and C C X and K C Y
nonempty closed convex sets. Moreover, H is a real Hilbert space with ¢ : Y < H densely,
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and C C H is a closed convex set with i~}(K) = K. In this setting, we can restate (P)
as the problem

(Py) minirgize f(z) subject to G(z) € K. (4.6)
S

We can transform this problem into an equality-constrained problem by adding an artificial
variable s € IC, also called a slack variable. This results in the equality-constrained problem
minimize f(x) subject to G(z)—s=0.

(z,s)€CXK
In the context of the equality-constrained framework (4.3) from the previous section, this
essentially amounts to defining the mapping h: X x H — H, h(z,s) := G(x) — s. The
new problem is now an equality-constrained optimization problem on the space X x H,
and its augmented Lagrangian in the sense of (4.4) is given by

L3z, 5,0) = f(2) + (A bz, 8)) + gIIh(x, $)II2.

In order to transform the augmented Lagrangian into a form where s is eliminated, observe
that we can rewrite £ as

AP I
H 2p
Taking into account the constraint s € IC, we can now minimize this formula with respect
to s for each fixed x € X. Since s occurs only in the middle term, the result involves, by
definition, the squared distance function d,2c.

L3(x,5,A) = f(z) + g HG(:E) n (4.7)

Definition 4.2 (Augmented Lagrange function). For p > 0, the augmented Lagrange
function or augmented Lagrangian of (P) is the function

A A2
Ly:XxH—=R, Ly(z,\):=f(z)+ gd,QC (G(x) + ) — H2HH (4.8)
p p
Before discussing some other observations and consequences of the slack variable
approach, we first give some general properties of the augmented Lagrangian.
Proposition 4.3. Let L,: X x H — R be the augmented Lagrangian (4.8). Then:
(a) L, is concave and continuously differentiable with respect to .
(b) If f is convex and G is Koo-concave, then L, is convex with respect to x.
(c) If f and G are continuously differentiable, then L, is so with respect to x.
(d) If x € X is a feasible point, then L,(x,\) < f(x) for allz € X and X\ € H.
Proof. (a): The concavity follows from the fact that L£,(z,-) is an infimum of affine
functions, and the continuous differentiability follows from that of dQ,C.
(b): This follows from Theorem 2.50.
(c): This follows again from the continuous differentiability of d-.

(d): If G(z) € K, then di(G(x) + A/p) < ||\||z/p by the nonexpansiveness of the
distance function. Hence, £,(x, ) < f(z) + (p/2)|M%/0? — 1A%/ (20) = f(z). O
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Let us close this section by mentioning some byproducts of the slack variable approach.
For fixed A and p, the minimizing value of s in (4.7) is given by §(x) := Pc(G(z) + \/p).
It follows that

h(z,3(x)) = G(z) — P (G(ZL‘) + 2) (4.9)
The above expression will play a certain role later on. Recall that, in the original method
of multipliers (Algorithm 4.1), the norm of the equality constraint was used to determine
whether the penalty parameter pg should be increased after a given iteration. The above
calculations suggest that (4.9) should be used to control pi in the general case.

Another byproduct of the slack variable technique is a natural candidate for the
Lagrange multiplier update. Assume that \¥ € H is a given estimate of the Lagrange
multiplier of (Pfr), that py > 0, and z**! is the next primal iterate (typically, some kind
of minimizer of £, (-, AF)). Taking into account the update rule in Algorithm 4.1, the
next dual iterate is given by

k k
)\k+1 — )\k +pkh($k+1,.§(a¢k+1)) = pi G($k+1) + 2 o PIC (G($k+1) + 2>:|
k k

This formula will play a fundamental role in the subsequent algorithms. Note that the
above updating scheme can also be motivated (in the differentiable case) by looking at
the stationarity condition of £,, (-, \F), evaluated in z**1.

4.1.3 The Algorithm and Basic Properties

This section presents the main algorithmic framework for the remainder of the chapter. It is
based on the method of multipliers from Section 4.1.1 and the slack variable transformation
from Section 4.1.2, but it differs from the original multiplier method in one key aspect:
the use of a safeguarded multiplier sequence. This will be the main tool to obtain much
sharper convergence assertions than those which are possible for the traditional algorithm.
A more detailed discussion can be found after the method below, and in Section 8.3,
where we demonstrate the necessity of multiplier safeguarding.

Recall that we are dealing with a problem of the form (P), that we are working in the
Gel’fand triple framework (4.2), and that K C H is a nonempty closed convex set with
i~'(K) = K. The algorithm now proceeds by augmenting the constraint G(x) € K in the
space H. This means that, in a sense, we are not really attempting to solve (P) but the
transformed problem (Pp). Nevertheless, we will see that many convergence properties
of the augmented Lagrangian method can be stated accurately in terms of (P) (using, for
instance, constraint qualifications for that problem).

For the precise specification of the method below, we will need a means of controlling
the penalty parameter p. Motivated by (4.9), it is natural to use the function

V(x,\, p) = Ha(x) e <G(w) + 2) (4.10)

H
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which can be seen as a composite measure of feasibility and complementarity at the
current iterates. Using this function, the augmented Lagrangian method can be given as
follows.

Algorithm 4.4 (ALM for constrained optimization). Let (2% A\%) € X x H, pg > 0, let
B C H be a nonempty bounded set, v > 1, 7 € (0,1), and set k := 0.

Step 1. If (z¥, \F) satisfies a suitable termination criterion: STOP.

Step 2. Choose w* € B and compute an approximate solution z**1 of the problem

minimize £, (z,w"). (4.11)
zeC

Step 3. Update the vector of multipliers to

k
N [G<xk+1) L
Pk

— Px (G(ka) + wk)] : (4.12)

Pk

Step 4. Let Vi, := V(2" w”, pp) and set

(4.13)

{pk, it k=0 or Viyr <7Vi,
Pk+1 = .
Ypr, Otherwise.

Step 5. Set k < k+ 1 and go to Step 1.

Some remarks are in order. First among them is the fact that we have not specified
what constitutes an “approximate solution” in Step 2. There are multiple options in this
regard. For instance, we could require that z**! is an (approximate) global minimizer
of L,, (- w”). This is probably the simplest assumption from a theoretical point of view,
but it is effectively restricted to problems where some form of convexity is present. On
the other hand, we could also require that z**! is some kind of approximate stationary
point of (4.11). This is more realistic in the nonconvex case, but it is also more intricate
to deal with in theoretical terms. We will analyze both these approaches individually in
the subsequent sections.

In practical terms, the augmented subproblems are typically solved by applying an
appropriate generalized Newton method. The necessity for such methods stems from
the fact that the augmented Lagrangian is once but in general not twice continuously
differentiable with respect to x. A more detailed discussion of this problem and of the
resulting Newton-type methods will be given in Chapter 7.

The second remark pertains to the sequence {w"}, which will occasionally be referred
to as the safequarded (Lagrange) multiplier sequence. The presence of w* can be seen as
the distinctive feature of the algorithm, and it separates the method from traditional
augmented Lagrangian schemes. Indeed, in Algorithm 4.4, we use w* in certain places
where conventional algorithms simply use A*. The main motivation is that w” is always a
bounded sequence (it is specifically required to be so), and this is the main ingredient
to obtain sharper global convergence results. As a consequence, the above algorithm
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has strictly stronger convergence properties than its traditional counterpart. An actual
example demonstrating this fact is somewhat involved and will be given in Section 8.3.
Note that, despite the boundedness of {w*}, the sequence {\¥} in Algorithm 4.4 can
still be unbounded. The actual choice of w”* allows for a certain degree of freedom. For
instance, we could always choose w* := 0, thus obtaining an algorithm which is essentially
a quadratic penalty method. In practice, it is usually advantageous to keep w* as close
as possible to A¥, for instance, by choosing the set B as a simple but large bounded set,
and taking
wh = Pg(\F)

for all k. This choice has the advantage that, if the sequence {\¥} is indeed bounded and
the set B is large enough, then we can expect to have w* = ¥ for all k. On the other
hand, if {\*} is unbounded, then the safeguarding scheme will prevent w* from escaping
to infinity.

Finally, let us remark that the penalty updating scheme in (4.13) makes a distinction
between the cases k = 0 and k£ > 1. This is because the value Vj is formally undefined
since we do not have w™! and p_;. In practice, it is often beneficial to treat this initial
step differently, for instance, by simply setting w™! := w?, p_; := po, and performing the
penalty update in the same way as for k > 1. In any case, the treatment of this initial
step has no impact on the convergence theory.

We now prove some basic properties for the iterates generated by Algorithm 4.4.
Note that the choice of zF*! in Step 2 is still unspecified. Despite this, the nature of
the multiplier update (4.12) allows us to prove two assertions which hold completely
independently of z**1.

Lemma 4.5. We have \* € K2 for all k. Moreover, there is a null sequence {ry} C Ry
such that ()\k,y — G(azk)) <rg forally € K and k € N.

Proof. Let s*71 := Pc(G(2"1) 4+ w”/pi.). Then N1 € Nic(s*+1) by Proposition 2.36,
and thus \**! € K3, by Lemma 2.39. For the second assertion, observe first that

e+ gk

G(zFth) = + sPTL (4.14)

Pk
Using the fact that A*1 € Njc(s**1), we obtain

(WFHy — GaH) = (/\k-i-l’y_ pl(/\k—i-l — k) - 8k+1>
k
L1k
< 2 TOE k) — E2] = ' .
< O h) I = (4.15)

We claim that this sequence {ry1} satisfies limsupj,_, ., 7x+1 < 0. This yields the desired
result (by replacing r, with max{0,7x}). If {px} is bounded, then (4.13) and (4.14) imply
NS+ — w¥|| 57/ px — 0 and therefore |\¥*1 — w*||z — 0. This yields the boundedness of
{NHY in H as well as (AWML wk) — || ARHL|2, = (AR wb — ML) — 0. Hence, 1y, — 0.
Assume now that pp — oco. Note that (4.15) is a quadratic function in A\. A simple
calculation therefore shows that r.1 < ||w”||%/(4px) and, hence, limsupj_, oo 75 < 0. O
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The first assertion of the above lemma can be interpreted as a sign property of the
multiplier sequence, and the second assertion can be described roughly as a kind of
“asymptotic normality” between A* and G(z*). Note that, by virtue of the Gel’fand
triple Y < H — Y* this inequality also holds if we replace K by K and the scalar
product by the duality pairing on Y* x Y. Recall furthermore that the KKT conditions
of (P) postulate the existence of a Lagrange multiplier A € N (G(Z)) C Y*. The second
assertion of Lemma 4.5 is essentially an asymptotic analogue of this condition, and it will
prove useful in the convergence analysis later on (see Section 4.2.3).

Example 4.6 (Cone constraints). If the set K is a closed convex cone, then some
parts of Algorithm 4.4 and Lemma 4.5 can be simplified. In this case, we can use
the Moreau decomposition (Lemma 2.39) to restate the multiplier update (4.12) as
MAL = Pro (w¥ + ppG(2FT1)). Moreover, the first assertion of Lemma 4.5 simply becomes
M\¢ € K° for all k. This implies that (A¥,y) < 0 for all y € K, and it is easy to see that
the second assertion is then equivalent to

o k k
hkrgloréf (A", G(z")) > 0.

4.2 Global Convergence Theory

In this section, we analyze the convergence characteristics of Algorithm 4.4 from a global
point of view. The main aim is to impose reasonable assumptions on the sequence {xk }
and to then state results on weak limit points of this sequence. For the sake of generality,
we will conduct dedicated analyses under varying assumptions (mainly pertaining to the
manner in which the augmented subproblems are solved). In addition, many special cases
such as finite-dimensional problems are discussed.

4.2.1 Existence of Penalized Solutions

In most situations, the augmented Lagrangian £, (-, w) is bounded from below on C. This
is satisfied, in particular, if f itself is already bounded from below on C|, or if, roughly
speaking, the penalty parameter is sufficiently large to make £, coercive on the infeasible
set. In any case, if £,(-, w) is bounded from below on C, then the augmented subproblems
necessarily admit approximate minimizers. Recall (see Section 3.1.1) that & € C is called
an e-minimizer of a function L : X — R on C if L(2) < L(z) + ¢ for all x € C.

Proposition 4.7. Let w € H, p > 0, and assume that the augmented Lagrangian L,(-,w)
is bounded from below on C. Then the following assertions hold:

(a) For any e > 0, there is an e-minimizer x. € C of L,(-,w) on C.

(b) If the functions f and G are continuously differentiable, then we can choose . so

that it additionally satisfies dist(—L,(x<, w), No(z:)) < gl/2,

Proof. The first assertion follows from the lower boundedness assumption. The second
property is a consequence of Ekeland’s variational principle (Proposition 3.9). O
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We now discuss the existence of exact minimizers. The main proof technique is the
direct method of the calculus of variations (see Proposition 2.6). For this, we need an
appropriate kind of lower semicontinuity of the augmented Lagrangian. The following
lemma provides two sufficient conditions for this property.

Lemma 4.8. Assume that f is weakly sequentially lsc and G is either (i) continuous and
Koo-concave, or (ii) weakly sequentially continuous. Then, for each p > 0 and w € H, the
augmented Lagrangian L,(-,w) is weakly sequentially lsc on X.

Proof. Let w € H and p > 0. It suffices to verify the weak sequential lower semicontinuity
of the function h(z) := d3(G(z) +w/p). Observe that di is weakly sequentially lsc by
Proposition 2.44. Hence, under (ii), we immediately obtain the same for h.

Consider now (i). In that case, the function h is convex (by Theorem 2.50) and
continuous, thus again weakly sequentially lsc by Proposition 2.44. O

The weak sequential lower semicontinuity of the augmented Lagrangian yields the
existence of penalized solutions if we assume either the weak compactness of the set C'
or an appropriate growth condition. We say that a function J : X — R is coercive if
J(x*) = 400 whenever {z¥} C X and ||z*|x — +oo.

Corollary 4.9. Letw € H, p > 0, and let one of the conditions in Lemma 4.8 be satisfied.
If either (i) C is weakly compact, or (ii) X is reflexive and L,(-,w) is coercive, then the
problem mingec L,(x, w) admits a global minimizer.

Clearly, a sufficient condition for the coercivity of the augmented Lagrangian is that
of the objective function f. Even if this property does not hold, then it is common for
L,(-,w) to be coercive if, roughly speaking, the objective function is coercive on the
feasible set ® and not too badly behaved outside of it. In that case, the penalty term in
(4.8) yields the coercivity of £,(-,w) on the complement of ®.

4.2.2 Convergence to Global Minimizers

In this section, we analyze the convergence properties of Algorithm 4.4 under the as-
sumption that we can solve the subproblems in an (essentially) global sense. This is
of course a rather restrictive requirement and can, in general, only be expected under
certain convexity assumptions. However, the resulting theory is still appealing due to its
simplicity. Indeed, the results below merely require some rather mild form of continuity
(no differentiability), and can easily be extended to the case where the function f is
extended-valued, i.e., it is allowed to take on the value +oc.

Assumption 4.10 (Global minimization). We assume that f and dx o G are weakly
sequentially Isc on C and that z*¥ € C for all k. Moreover, for every z € C, there is a null
sequence {ex} C R such that £, (zF1 w*) < £, (z,w") + g1 for all k.

Some remarks are due. Recall that, for convex functions, weak sequential lower
semicontinuity is implied by ordinary continuity (see Proposition 2.44). Thus, if f is a
continuous convex function, then f is weakly sequentially lsc.
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A similar comment applies to the weak sequential lower semicontinuity of the function
di o G. Indeed, there are two rather general situations in which this condition is satisfied:
if G is weakly sequentially continuous, then dx o G is weakly sequentially Isc since di is
so by Proposition 2.44. On the other hand, if G is continuous and Ks.-concave in the
sense of Definition 2.48, then di o G is a continuous convex function (by Theorem 2.50)
and thus again weakly sequentially Isc. Let us also remark that, if G is continuous and
affine, then both the above cases apply.

Finally, another salient feature of Assumption 4.10 is the dependence of the sequence
{exr} on the comparison point x € C. The motivation behind this is that, if (P) is
a smooth convex problem and the point z*t! is “nearly stationary” in the sense that
dist(—L], (zFT1, wk), No(2¥+1)) < 6 for some (small) § > 0, then, by convexity, we obtain
an estimate of the form

L, (z,wF) > L, (" wh) + /Jfok (P W) (z — 2Pt

2 ‘Cpk (karl?wk) - 5ka+1 - fl?HX

This suggests that we should allow the sequence {e} in Assumption 4.10 to depend on
the point z. In any case, the stated assumption is satisfied automatically if z**!
global e 41-minimizer of £,, (-, w*) for some null sequence {e}.

We now turn to the convergence analysis of Algorithm 4.4 under Assumption 4.10.
The theory is divided into separate analyses of feasibility and optimality. Since the
augmented Lagrangian method is, at its heart, a penalty-type algorithm, the attainment
of feasibility is particularly important for the success of the algorithm. A closer look at the
definition of the augmented Lagrangian suggests that, if p is large, then the minimization
of £, essentially reduces to that of the infeasibility measure ds(G(z)). Hence, we can
expect (weak) limit points of the sequence {x*} to be minimizers of this auxiliary function,
which means that, roughly speaking, these points are “as feasible as possible.” A precise
statement of this assertion can be found in the following lemma.

is a

Lemma 4.11. Let {z*} be generated by Algorithm 4.4, let Assumption 4.10 hold, and let
T be a weak limit point of {x*}. Then T is a global minimizer of the function dx o G on
C. In particular, if the feasible set of (P) is nonempty, then T is feasible.

Proof. Note that C is weakly sequentially closed by Corollary 2.20, hence z € C'. To
show the desired minimization property, we first consider the case where {px} remains
bounded. Then (4.13) and the definition of V' yield

k
dic(G(z*1)) < HG(wkH) — Py (G(wkH) + w) H — 0.
Pk H
The weak sequential lower semicontinuity of dx o G therefore implies that di(G(z)) = 0.
Hence,  is feasible and there is nothing to prove.
Assume now that p, — oo, and let 2*+t1 —; Z for some subset I C N. Let 2 € C be
an arbitrary point and let {} be the corresponding null sequence from Assumption 4.10.
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Then L, ("1, w*) < £, (z,w*) + g1 for all k, which implies

k

k
#0) < g+ B (G + ) b (110)

f($k+1) + @d’% (G($k+1)
2 Pk

Observe now that {f(z**1)}res is bounded from below since f is weakly sequentially lsc.
Hence, dividing both sides by pr and taking the liminf for k € I, we obtain

k k
liminf d% ( G@*) + 2= ) <liminfd ( G(z) + — ) = d&(G(x)).
mint a2 (G + ) <timint (G0 + ) = B(G(0)
Using the fact that w”*/p, — 0 and that dx o G is weakly sequentially lsc, it follows that
the left-hand side is greater than or equal to ds-(G(Z)). This completes the proof.  [J

The idea to link the feasibility properties of the iterates {:ck} to the minimization
of the infeasibility measure d12C o (G is a recurring theme in the convergence theory of
augmented Lagrangian methods. In fact, we will encounter similar statements in the
context of stationary points and (quasi-)variational inequalities.

Let us now turn to the optimality part.

Theorem 4.12. Let {zF} be generated by Algorithm 4.4, let Assumption 4.10 hold, and
assume that the feasible set of (P) is nonempty. Then limsup,_, ., f(zFT1) < f(z) for
every x € ®. Moreover, every weak limit point of {x*} is a global solution of (P).

Proof. Let x € X be an arbitrary feasible point, and let {g;} be the sequence from
Assumption 4.10. By Proposition 4.3 (d), we have

k+1y , Pk 2 k+1 wk ||wk||%{ k
f(.%‘ )+?dlc G(l‘ )—|—p7 —T S,Cpk(;v,w )+€k+1 < f(l‘)+5k+1. (417)
k k
Clearly, if py — oo, then ||w*||%/(2px) — 0. In this case, the nonnegativity of di and
the fact that e, — 0 imply limsup,,_, ., f(z**1) < f(z).
Consider now the case where {p;} remains bounded. The triangle inequality yields

dic (G(x’f“) - Zf) < '

wk

Pk

wk
+ HG(xkz-i-l) _PIC <G($k+1) + p )
k

H HH

The last term converges to zero by the penalty updating scheme (4.13). Using the
boundedness of {w*} and squaring on both sides, it is easy to deduce that

2
<0.
H

Since {py} is bounded, it follows again from (4.17) that limsup,,_,. f(z**1) < f(z).
Finally, let z**!1 —; Z for some (infinite) subset I C N. Then Z is feasible by

Lemma 4.11, and the weak sequential lower semicontinuity of f implies that f(z) <

liminfre; f(2FT1) < f(z) for every = € ®. Hence, 7 is a global solution of (P). O

lim sup
k—o0

k k
a2 <G s +w>_Hw
R\ G+ Pk
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If the problem is convex with strongly convex objective, then it is possible to con-
siderably strengthen the results of the previous theorem. Recall that, in this case, the
weak sequential lower semicontinuity of f from Assumption 4.10 is implied by (ordinary)
continuity. Recall also that a sufficient condition for the convexity of the feasible set
® is the Ko-concavity of G, see Section 2.2.3. Moreover, if G is Ky.-concave, then the
distance function dg o G is convex, and thus the weak sequential lower semicontinuity
from Assumption 4.10 is implied by (ordinary) continuity of G.

Corollary 4.13. Let {2*} be generated by Algorithm 4.4 and let Assumption 4.10 hold.
Assume that X is reflexive, f is strongly convex on C, and the feasible set of (P) is
nonempty and convex. Then {x*} converges strongly to the unique solution of (P).

Proof. Note that Assumption 4.10 implies that the feasible set ® is closed. Since f is
strongly convex, the existence and uniqueness of the solution z follows from standard
arguments. Now, denoting by ¢ > 0 the modulus of convexity of f, it follows that

f(xk“>2+ f@) f<a:’“+1+x>

Ch k41
® .

g (4.18)

—z|% <

for all k. Moreover, by Theorem 4.12, we have lim supj,_, ., f(z**1) < f(z). Taking into
account that f is bounded from below, it follows from (4.18) that {2*} is bounded. Since
X is reflexive and every weak limit point of {z*} is a solution of (P) by Theorem 4.12, it
follows that 2% — Z. Since f is weakly sequentially lsc and lim supy_, ., f(z*T!) < f(z),
we conclude that f(2z*+1) — f(Z). Moreover, since (zF 4+ Z)/2 — Z, we also have
f(#) <liminfy o f((z* + Z)/2). Hence, (4.18) implies that ||z*t1 — z||x — 0. O

4.2.3 Stationarity of Limit Points

The theory on global minimization which we have developed in the preceding section is
certainly appealing from a theoretical point of view. However, the practical relevance
of the corresponding results is essentially limited to problems where some form of con-
vexity is present. It therefore seems natural to conduct a dedicated analysis for the
augmented Lagrangian method which, instead of global minimization, takes into account
the optimality and stationary concepts from Section 3.1.

The present section is dedicated to precisely this approach. To that end, we assume
that the functions defining the optimization problem are continuously differentiable and
that we are able to compute local minimizers or stationary points of the subproblems
(4.11) which occur in the algorithm. Note that the first-order optimality conditions of
these problems (compare with Lemma 3.1) are given by

L, (z,w®) € No(z).

Similarly to the previous section, we will allow for certain inexactness terms. A natural
way of doing this is by considering the inexact first-order optimality condition

et — 2 (x,w") € No(x),
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where e¥*1 € X* is an error term. For k — 0o, the degree of inexactness should vanish in
the sense that e — 0. Hence, we arrive at the following assumption.
Assumption 4.14 (Convergence to KKT points). We assume that
(i) f and G are continuously differentiable on X,

(i) the derivative f’ is bounded and pseudomonotone,

(i) G and G’ are completely continuous on C, and

(iv) z¥1 € C and F*t — £, (2FH1 wk) € N (2t for all k, where ¥ — 0.

Recall that £,, is continuously differentiable by Proposition 4.3. The derivative E;k

(with respect to x) can be calculated by applying the chain rule together with a standard
projection theorem such as Lemma 2.43. One obtains

k k
£y (ot) = ) + G |00 + 4= G+ )| )
and, in particular, £, (z**!, wk) = £/ (2FH1 ML),
As in the previous section, we treat the questions of feasibility and optimality in a
separate manner. For the feasibility part, we relate the augmented Lagrangian to the
infeasibility measure d,2C o(G.

Lemma 4.15. Let {z*} be generated by Algorithm 4.4 under Assumption 4.14, and let T be
a weak limit point of {x*}. Then Z is a stationary point of the problem mingec dz-(G(z)).

Proof. Let zFt1 —; z for some index set I C N. Observe that z € C' by Corollary 2.20.
If {pr} is bounded, then we can argue as in Lemma 4.11 to see that z is feasible, and
there is nothing to prove. If py — oo, then Assumption 4.14 implies that

€k+1 o f/(ZL‘k—H) - G/(l'k+1)*)\k+1 c Nc(xk—i-l)

for all & € N. We now divide this inclusion by py, use the definition of A**1 and the fact
that No(2**1) is a cone. It follows that

k+1 _ pr(k+1 k k
€ f (.’IJ ) _ G,(l'k+l)* G(ZL‘k+1) + w- — P¢ <G(l’k+l) + w>:| c Nc(l'k+1).
Pk Pk Pk

We now take the limit k& —; oo, use the boundedness of {f/(z**1)} (by Assumption 4.14),
and Proposition 2.40. This yields G'(Z)*[Pc(G(Z)) — G(z)] € N¢ (), which is precisely
the first-order optimality condition of mingec d2-(G(x)). O

The above lemma indicates that weak limit points of the sequence {z*} have a strong
tendency to be feasible points. Apart from the heuristic appeal of the result, there are
several nontrivial cases where Lemma 4.15 automatically implies the feasibility of the
limit point Z. Here, two cases in particular deserve a special mention: first, let us assume
that the mapping G is Koo-concave in the sense of Definition 2.48 (for instance, G' could
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be affine). In this case, the function d,2C o G is convex by Theorem 2.50, and it follows that
Z is a global minimizer of this function. Hence, if the feasible set ® is nonempty, then
Z € ®. The second interesting case arises if the point Z satisfies the extended Robinson
constraint qualification from Definition 3.17. In this case, the feasibility of T follows from
Proposition 3.22.

We now analyze the optimality properties of limit points. Recall that £, (2P wh) =
L/ (x*+1 \F+1) for all k. Hence, combining Assumption 4.14 and Lemma 4.5, we obtain
the asymptotic conditions (for k > 1)

e¥ — L(a*,\F) € No(2®) and  (W\F,y — G(z%)) <, Wy € K. (4.20)

Note that the second inequality also holds with K replaced by K. This means that
the primal-dual sequence {(z¥, \¥)} is an asymptotic KKT sequence in the sense of
Section 3.2.3. Hence, our main approach is to employ the results from that section to
obtain the optimality of weak limit points of {2*}. The main result in this direction is
the following.

Theorem 4.16. Let {(2*,\F)} be generated by Algorithm 4.4 under Assumption 4.14,
let 251 —; Z for some index set I C N, and let T satisfy ERCQ with respect to the
constraint system of (P). Then T is a stationary point of (P), the sequence {\F1} ey is
bounded in Y*, and each of its weak-* limit points belongs to A(Z).

Proof. Note that Z is feasible by Lemma 4.15 and Proposition 3.22. By (4.20), the
sequence {(z¥, \¥)} is an asymptotic KKT sequence in the sense of Definition 3.49. The
result now follows by applying Theorem 3.51, with F := f’. O

Observe that the sequence {\*} is only bounded in Y* and not necessarily in H. If
the extended RCQ holds with respect to the transformed constraint G(x) € K (instead
of the original condition G(z) € K), then the result remains true with Y* replaced by
H. However, this assumption is too restrictive for many applications, in particular those
where (P) is regular (in the constraint qualification sense) with respect to the original
space Y, but not with respect to the larger space H. Some examples demonstrating this
fact can be found in Chapter 7.

In the context of optimality properties, it is worthwhile to briefly discuss the case of
bounded penalty parameters. This is particularly interesting because any assertion made
under this assumption is a necessary condition for the boundedness of {pi}. It turns
out that no constraint qualifications are needed in the bounded case, and the algorithm
produces a Lagrange multiplier in H.

Corollary 4.17. Let {(wk, )\k)} be generated by Algorithm 4.4, let Assumption 4.1/ hold,
and let T be a weak limit point of {x*}. If {pr} remains bounded, then {\*} has a bounded
subsequence in H, and T satisfies the KKT conditions of (P) with a multiplier in H.

Proof. By (4.20), the sequence {(z*, \¥)} is an asymptotic KKT sequence for (P). Now,
let 2¥+1 —; Z on some subset I C N, and assume that {p;} remains bounded. By arguing
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as in the proof of Lemma 4.15, it follows that £ € ®. Moreover, by the definition

k k
AL = o |G+ + 2= — P (G(xkﬂ) e )]
Pk Pk

of A**1 and the boundedness of all the involved quantities, the sequence {)\k+1}k€ 1 is
bounded in H. Thus, this sequence admits a weak limit point in H, and this point is a
Lagrange multiplier in Z by (4.20). O

The above result implies that {pg} can only remain bounded if (P) admits a multiplier
in H. We will revisit the boundedness of {p;} at the end of Section 4.3.2.

If the optimization problem in question is a finite-dimensional nonlinear program,
then the assumptions required for convergence can be simplified considerably. In this
case, items (ii) and (iii) from Assumption 4.14 are satisfied trivially, and we can use the
constraint qualifications from Section 3.1.4 instead of the general conditions from Banach
space optimization. In particular, ERCQ can be replaced by EMFCQ, and it is also
possible to prove an analogue of Theorem 4.16 under the assumptions that the limit point
T is feasible and satisfies the CPLD constraint qualification.

Theorem 4.18. Let X :=C :=R", Y := H :=R™, and K := K := R"™ for some
m € N. Let {z*} be generated by Algorithm 4.4 under Assumption .14, and T a limit
point of {x*}. Then the following assertions hold:

(a) If & is feasible and CPLD holds in T, then T is a stationary point of (P).
(b) If EMFCQ holds in T, then T is feasible and a stationary point of (P).

Proof. By Lemma 4.15 and Proposition 3.31, the assumptions of (b) imply those of (a).
Hence, we only need to prove (a). Let I C N be an index set with z**! —; z. By
Theorem 3.54, it suffices to show that

L' (zFL A 50 and  min{—G(zF), AFF} =0 (4.21)

as k — co. The first of these assertions follows from (4.20). For the second, note that
M+ >0 for all k by Lemma 4.5, and that G(z**!) —; G(Z) < 0. Hence, we need to
show that A¥™! — 0 whenever G;(Z) < 0 for some i. Let i be an index with G;(z) < 0.
Then G;(x**1) < 0 for k € I sufficiently large. We now distinguish two cases. If {p;}
remains bounded, then min{—G;(z**1), w¥/pr} — 0 by (4.13), hence w¥ — 0, and thus

A1 = max{0, wk + ppGi(a"t1)} = 0 (4.22)

for k € I sufficiently large. On the other hand, if pr — oo, then (4.22) also holds eventually
since {w!} is bounded and G;(z*+1) =1 G4(Z) < 0. Thus, in either case, we have A\F™ = 0
for sufficiently large & whenever G;(Z) < 0. This shows that min{—G (z**1), \¥*1} — 0,
and the result follows from (4.21) and Theorem 3.54. O
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We now return to the general case and provide two additional results which can be
useful to obtain convergence in certain special cases. First, let us consider the case of
convex constraints. In this case, we can treat (P) as a variational inequality and apply the
convergence theory for variational inequalities which we will deduce in Chapter 5. The
resulting theorem requires neither the complete continuity of G or G’ nor any constraint
qualification. For the proof, the reader is referred to Theorem 5.8.

Proposition 4.19. Let {z*} be generated by Algorithm 4.4, let Assumption 4.14 (i), (ii),
(iv) hold, let G be Koo-concave on C, and assume that ® is nonempty. Then every weak
limit point T of {x*} satisfies T € ® and f'(z)d > 0 for all d € To(Z).

Another special case arises if C' = X and the operator G'(Z) is surjective, where T is
again a weak limit point of the sequence {x*}. If we already know (e.g., by Proposition 4.19)
that Z is a stationary point of (P), then it is possible to prove the weak-* convergence of
a subsequence of {\*} under weaker assumptions than those in Theorem 4.16.

Proposition 4.20. Let {2*} be generated by Algorithm 4.4 and let x5t —; & for some
I CNand T € X. Assume that T is a stationary point of (P), that C = X, f’ is weak-*
sequentially continuous, G' is completely continuous, and that G'(Z) is surjective. Then
{\F1Y,c1 converges weak-* to the unique element in A(T).

Proof. By (4.20), the sequence {(x*, \¥)} is an asymptotic KKT sequence for (P). Hence,
the result follows from Proposition 3.52. O

Remark 4.21. If we know from the specific problem structure or from some other
convergence result (e.g., Corollary 4.13) that the sequence {z*} or one of its subsequences
is strongly convergent, then we can dispense with the pseudomonotonicity and complete
continuity assumptions. In this case, the assertions of Lemma 4.15 and Theorem 4.16
remain true under Assumption 4.14 (i) and (iv) only.

4.3 Local Convergence Theory

This section is dedicated to a local convergence analysis of Algorithm 4.4. The basic
situation we will consider is that (P) admits a local solution Z, and we will analyze
conditions which provide some information on the behavior of the augmented Lagrange
function in a vicinity of z. In addition, we will give quantitative results on the rate of
convergence of the iterates.

4.3.1 Existence of Local Minimizers

As a first step in the local convergence analysis, we consider a local minimizer of (P) and
ask whether the augmented Lagrangian admits local minimizers near this point. As we
shall see, the answer to this question is closely linked to the fulfillment of second-order
sufficient conditions (SOSC) of the form given in Definition 3.24.

When using the second-order condition, special care needs to be taken because the
embedding Y — H allows us to interpret the constraint in (P) either in Y or in H.
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We have already seen that this makes a strong difference for constraint qualifications,
and the situation for SOSC is quite similar. The second-order condition in H, for
instance, requires the existence of Lagrange multipliers in H, which in itself is already a
restriction. Nevertheless, this is in a sense the more “natural” second-order condition for
the augmented Lagrangian method since the augmentation is performed in H. Thus, for
the most part of this section (with the exception of Proposition 4.25), we will make the
following assumption.

Assumption 4.22 (Local convergence). There is a KKT point (Z,)\) € X x H of (P)
which satisfies the SOSC from Definition 3.24 with respect to the space H.

The basic approach to the existence of local minimizers is the following. Let r > 0 be
a sufficiently small radius, B C H a bounded set, and consider, for p > 0 and w € B, the
“localized” problem
mi?i€r§ize L,(z,w) subject to x € B,(z)NC. (4.23)
Under suitable assumptions, this problem admits minimizers (or approximate minimizers)
in B,(z) N C. If we can now show that, for sufficiently large p, these minimizers actually
lie in the interior of B,(Z), then the spherical constraint in (4.23) is superfluous and we
obtain local minimizers of £,(-,w) subject to x € C.
The above property can equivalently, and more conveniently, be stated in terms of
sequences. We need to show that, whenever {w*} C B is an arbitrary (bounded) sequence,

pr — 00, and, for all k, y**! is an (approximate) solution of
minir;{lize L, (z,w") subject to z € B,(z)NC, (4.24)
TE
then ||y**! — Z||x < r for all k sufficiently large. Indeed, we will show that any such

sequence converges to Z, and the existence of local minimizers of the augmented Lagrangian
subproblems follows directly by the above arguments.

To prove the convergence of minimizers of (4.24) to &, we will make use of Corol-
lary 3.27, which is a consequence of the second-order sufficient condition. This result
guarantees the convergence y*+1 — 7 if we are able to show that di(G(y**1)) — 0 and
lim supy,_, o, f(¥*!) < £(7) as k — oo.

Lemma 4.23. Let Assumption 4.22 hold. Then there is a radius r > 0 such that the
following holds: whenever {w*} C H is a bounded sequence, py — oo, e, — 0, and, for
all k, y**1 is an epq1-minimizer of (4.24), then y**+' — z.

Proof. Let r > 0 be as in Corollary 3.27. Shrinking r if necessary, we may assume that f
is bounded on B, (z). In particular, it follows that £,(-,w) is bounded from below on
B, (z) for all p >0 and w € B.

Now, let {**1} be as specified. Then the ;4 1-minimality of y
yield

k+1 and Proposition 4.3

k+1 Pk k+1 wk ||wk||%{ _ ok _
fly )+?dK Gy )+E T o < Ly (W) + 41 < f(T) + g1 (4.25)
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for all k. Dividing by pj and using the boundedness of {w*} and {f(y**1)}, it follows
that dic(G(y*1) +w”/pr) — 0 and thus dic(G(y**1)) — 0. Moreover, since pj, — oo, we
also obtain from (4.25) that limsupy_,, f(¥*T!) < f(Z). Hence, the desired convergence
follows from Corollary 3.27. O

The above result implies that the augmented Lagrangian subproblem admits approx-
imate local minimizers in a neighborhood of Z, provided that p is large enough and ¢
is sufficiently small. By using Ekeland’s variational principle (Proposition 3.9), we can
extend this statement to additionally obtain some kind of approximate stationarity.

Theorem 4.24. Let Assumption 4.22 hold and let B C H be a bounded set. Then
there are p,&,r > 0 such that, for allw € B, p > p, and € € (0,£), there is a point
r=2z,.(w) € C with ||x — Z||x <1 and the following properties:

(i) x is an e-minimizer of L,(-,w) on B.(T) N C,

(ii) 2 satisfies dist(—L),(z,w), No(z)) < e/? and

iil) x = x,.(w) = T uniformly on B as p — oo and € — 0.
P

Proof. Let r > 0 be as in Lemma 4.23. For p > 0 and w € B, consider the problem

mi;rEliEIQize L,(z,w) subject to x € C,:=B.(z)NC.
Observe that the constraint « € C,. trivially satisfies the Robinson constraint qualification.
Hence, by Ekeland’s variational principle (Proposition 3.9), there are points x = x, . (w)
such that x satisfies (i) and, in addition, dist(—L/,(z, w), Ng, (z)) < /2. By Lemma 4.23,
it follows that z,. — Z uniformly on B as p — oo and € — 0. Hence, there are p,& > 0
such that ||z,.(w) — Z||x <r for all p > p, e € (0,¢), and w € B. But N¢,(z) = Nc(x)
whenever z € C' and ||z — Z||x < r. Hence, the result follows. O

If X is reflexive and the augmented Lagrangian £,(-,w) is weakly sequentially lsc,
then the assertions of the above theorem remain valid if we replace the e-minimizers by
exact minimizers. In this case, we obtain points # = x,(w) which satisfy (i) and (ii) with
¢ := 0 and which converge to Z uniformly on B as p — co. Sufficient conditions for the
weak sequential lower semicontinuity of £,(-,w) were given in Lemma 4.8.

If the mapping G is completely continuous, then it is possible to prove a similar result
under the second-order sufficient condition with respect to the space Y. This result is a
generalization of a theorem from [137].

Proposition 4.25. Let (z,)\) € X x Y* be a KKT point of (P) which satisfies SOSC
with respect to the space Y, and B C H a bounded set. Assume that

(i) the space X is reflexive,
(i) f is weakly sequentially lsc on X, and
(iii) G is completely continuous from X into Y.

Then there are p,r > 0 such that, for every w € B and p > p, the problem mingec L,(z, w)
admits a local minimizer x = x,(w) in B,.(Z)NC, and x, — T uniformly on B as p — oco.
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Proof. We argue similarly to the proof of Lemma 4.23 and Theorem 4.24. Let r > 0 be
small enough so that z is a strict local minimizer of f on B,(z) N ®, and such that the
assertions of Corollary 3.27 hold. Let {w*} C B and py — oo be arbitrary sequences and,
for each k, let y**! € B,(Z) N C be a minimizer of (4.24). Note that y**! exists since
B, (z) is weakly compact.

We need to show that y*+t! — Z as k — co. By Theorem 4.12 and the reflexivity of
X, it follows that y*** — Z and f(y**') — f(Z). Since G is completely continuous, we
obtain G(y**1) — G(Z), which implies that dx (G(y**1)) — 0 (note the K instead of ).
Thus, Corollary 3.27 yields the convergence y*t1 — Z, and the proof is complete. O

We now prove a result which is very similar to Theorem 4.24 but explicitly deals with
the case where X is finite-dimensional. In this case, the assumptions required for the
existence of local minimizers can be simplified considerably. In fact, we only need that z
is a strict local minimizer, which is weaker than SOSC. We do not even need the existence
of Lagrange multipliers.

Proposition 4.26. Assume that X is finite-dimensional, that B C H is a bounded set,
and T is a strict local minimizer of (P). Then there are p,r > 0 such that, for every
w € B and p > p, the problem mingec Ly(z,w) admits a local minimizer x = x,(w)
which lies in B (Z) N C. Moreover, x, — & uniformly on B as p — o00.

Proof. We again argue similarly to the proof of Lemma 4.23 and Theorem 4.24. Let r > 0
be small enough so that 7 is a strict local minimizer of f on B,(z) N ®. Let {w*} C B
and p — oo be arbitrary sequences and, for each k, let y**1 € B,(z) N C be a minimizer
of (4.24). Note that y**! exists by compactness.

We need to show that y**' — Z as k — co. By Theorem 4.12, it follows that every
limit point of {y*} is a (global) minimizer of f on B,(Z) N ®. The uniqueness of &
therefore implies that y**' — Z, and the proof is complete. ]

Let us close this section by showing that the local minimizers obtained in the above
results are in general not unique. It is possible to obtain uniqueness under significantly
stronger assumptions, namely the so-called strong regularity of the KKT system. In
finite-dimensional nonlinear programming, this property is equivalent to a stronger version
of SOSC together with the linear independence constraint qualification. More details can
be found in [24,32]. If these assumptions are weakened, then we cannot expect unique
local minimizers of the augmented Lagrangian, as illustrated by the following example.

Example 4.27. Consider the following quadratic program, due to Kyparisis [154]:

1 1 — X2
minimize z? — —23 subject to G(z):= |z + 22 | <0.
z€ER3 2
z1
An easy calculation shows that z := (0,0) is the unique solution of this problem, and

A :=(0,0,0) the unique Lagrange multiplier. In particular, by Proposition 3.33, the strict
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Mangasarian-Fromovitz condition (SMFC) holds in Z, which in this case is equivalent to
the strict Robinson condition. Moreover, the critical cone at T is given by

C(z)={decR?:d; <0, dy € [dy,—di]}.

This makes it easy to verify that SOSC (in the sense of Definition 3.34) is satisfied. On
the other hand, the linear independence constraint qualification (LICQ) does not hold in
z since VG1(Z) + VGa2(z) — 2VG3(z) = 0.

For the analysis of the augmented Lagrangian, assume now that p > 1 is arbitrarily
large and € > 0 arbitrarily small. Define

Then \ is arbitrarily close to A, but the augmented Lagrangian L,(-, A) has the stationary

points
L (‘5,5> and 2@ — <—57—5>.
pp PP

4.3.2 Rate of Convergence Analysis

We are now in a position to discuss the convergence of Algorithm 4.4 from a quantitative
point of view. Throughout this section, we assume that the space X is a real Hilbert
space, that there is a local minimizer € X of (P) with a unique Lagrange multiplier
A € H, and that the local error bound from Section 3.2.4 holds in (Z, ). In our setting,
this condition takes on the form (compare with Corollary 3.58)

c10(z,\) < ||z — Z|x + ||N = Mg < c20(z, \) (4.26)
for all (z,\) € X x H with z near  and O(x, \) sufficiently small, where © is the residual
O(z, ) := ||z — Po(z — L'(z, )| x + |G(z) — Pe(G(@) + M)la-

The regularity assumptions mentioned above may seem rather stringent in view of the
Gel’fand triple framework Y < H < Y*. Indeed, a sufficient condition for the local error
bound is a combination of the second-order sufficient condition (SOSC, see Definition 3.24)
and the strict Robinson condition (SRC, see Definition 3.6), both with respect to the
space H. This effectively rules out certain applications where the embedding Y — H is
too weak, but the underlying issue is that we simply cannot expect the results in this
section to hold if the constraint system of (P) is only regular with respect to the space
Y. This is also evidenced by the fact that the rate-of-convergence analysis will enable
us to prove the boundedness of the penalty sequence {pr}, and this actually implies the
existence of a Lagrange multiplier in H under certain assumptions, see Corollary 4.17
and the discussion after Corollary 4.32 below.

Despite these restrictions, the theory we develop here is still applicable to a fair amount
of nontrivial problems such as control-constrained optimal control, elliptic parameter
estimation problems, and of course optimization in finite dimensions (see also Section 4.3.3).
For more details, we refer the reader to Chapter 7.
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Assumption 4.28 (Rate of convergence). We assume that
(i) X is a real Hilbert space with f and G continuously differentiable on X,
(ii) (Z,)) € X x H is a KKT point of (P) which satisfies the error bound (4.26),

)
(iii) the primal-dual sequence {(z*, AF)} converges strongly to (z,)) in X x H,
(iv) the safeguarded multiplier sequence satisfies w* := A¥ for k sufficiently large, and
)

(v) zFt e C and eFtt — L) (aF T wF) € No(a* 1) for all k, where eF — 0.

Two assumptions which may require some elaboration are (iii) and (iv). Note that
we already know, by Theorem 4.24, that the augmented Lagrangian admits approximate
local minimizers and stationary points in a neighborhood of . We shall now see that,
if the algorithm chooses these local minimizers (or any other points sufficiently close to
T), then we automatically obtain the convergence (z*, \F) — (z,\) in X x H. In this
case, the sequence {)\k } is necessarily bounded in H, so it is reasonable to assume that
the safeguarded multipliers are eventually chosen as w* = A\¥. The following result can
therefore be considered as (retrospective) justification for Assumption 4.28.

Proposition 4.29. Let Assumption 4.28 (i), (ii), (v) hold, and let RCQ hold in T with
respect to the space H. Then there exists v > 0 such that, if 2* € B.(Z) for sufficiently
large k, then ©(z*, \¥) — 0 and (z¥, \¥) — (z,\) strongly in X x H.

Proof. Let r > 0 be small enough so that the error bound (4.26) holds for all (z, \) € X xH
with z € B,(z) and O(x, \) sufficiently small. Shrinking r if necessary, we may also
assume that f’ and G’ are bounded on B, (Z) and, by Proposition 3.18, that there exists
s > 0 such that

BI C G(z) + G'(2)[(C —2)nB] - K (4.27)
for all € B,(Z). Assume now that 2* € B,(z) for all k sufficiently large. The proof is
divided into multiple steps.

Step 1. We first show that di(G(z**1)) — 0 as k — oo. If {px} remains bounded,

then this readily follows from the penalty updating scheme (4.13). On the other hand, if
pPr — 00, then we can argue as in the proof of Lemma 4.15 to obtain that

L G (2P [G () — Pe(G(ab )] € No(ah ) (4.28)

for some null sequence {6*} C X*. (Note that this step uses the boundedness of f’ and
G’ on B,(z).) We claim that this implies dic(G(z*T!)) — 0. Let y € B be an arbitrary
vector. By (4.27), there exist sequences {c*} C C and {z¥} C K such that ¢* € B;(a")
and y = G(2F 1) + G/ (2P 1) (1 — k1) — 2+ for all k. Hence,

(G(karl) _ PK(G((L'kJrl)),y) — <G/(2Uk+1)* [G(karl) _ P;C(G((L'kJrl))],CkJrl _ xk+1>
+ (G(:Uk—H) o PK(G(ZEk—H)), G(IL‘k+1) o zk+1)
> <5k+17ck+1 o xk-&-l) > _H5k+1HX*
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for all k, where we used (4.28) and standard projection inequalities. Since this lower bound
is uniform with respect to y € B it is easy to infer that G(2FT!) — Pc(G(2**1)) — 0
in H, which yields di(G(z**')) — 0. This concludes the proof of Step 1.

Step 2. We now demonstrate that ©(z* A¥) — 0. Observe that £'(zF+1, \+1) =
L, (M wk) and gFH = bt — £ (2P wh) € Np(aM ) for all k. Using Proposi-
tion 2.36 and the nonexpansiveness of the projection Pg, it follows that the first term in
the definition of ©(z*+1, \F¥1) satisfies

Hl,k:+1 . Pc(karl o E/(Ik+1, Ak+1))”X

< 16441~ Po(@*1 + 6 )x + 541 = | x, 2
which converges to zero. Hence, it remains to show that G(z*T1)— P (G(zF 1)+ 1) — 0
as k — oo. To this end, define the sequence s**! := Pic(G(2**1)+w¥/py). Then s¥1 € K
and M+ € Nic(s¥*1) for all k& (by Proposition 2.36 and the definition of A¥*1). We now
use the fact that y — y — Pxc(y + A1) is nonexpansive, which is an easy consequence of
Lemma 2.11. Therefore, the inverse triangle inequality yields

Gt ) = Pe(GH) + X | w0,
<G = 4 i 4185 = P N |

The last term is equal to zero since \ft! e N;C(skﬂ), see again Proposition 2.36. Hence,
to prove the claim, it remains to show that ||s**! — G(2**1)||g — 0. The proof of this
assertion is divided into two cases. If {pr} is bounded, then it readily follows from the
penalty updating scheme (4.13). On the other hand, if py — oo, then we see that

1" = G D)l < |55 = Pe(GE™ ) i + die(G(21) =0,

where we used the boundedness of {w*} and Step 1. This concludes the proof of Step 2.

Step 3. We finally deduce that (z*, \¥) — (Z,\) in X x H. Recall that z* € B,(z)
for all k£ and that ©(z*, \¥) — 0 by Step 2. Hence, the claim is an immediate consequence
of the error bound (4.26). O

We will now prove convergence rates for the primal-dual sequence {(z*, \¥)}. Since
the distance of (2¥, \F) to (Z,\) admits both upper and lower estimates relative to the
residual terms 6, := O(z*, \¥) by (4.26), we will largely base our analysis on the sequence
{6;}, and the results on the primal-dual sequence {(z*, \*)} will follow directly.

Lemma 4.30. Let Assumption 4.28 hold, and let 0y, := O(xF, \F). Then

c2 Cc2
<1 - > Opi1 < [l | x + =0k
Pk Pk

for all k € N sufficiently large.



86 4. Augmented Lagrangian Methods in Constrained Optimization

Proof. Using the definition of 654, and (4.29), we have

Or1 < 5 Ix + G (@) = Pe(G) + A )4 (4.31)

Now, let k& € N be large enough so that w* = \¥. Consider again the sequence s*+1 :=

Pic(G(z*+1) 4+ M\ /pp.). Using (4.30) and the definition of A**! we see that
_ I = A

G = Pe(G™) + Mg < |GEM) = 8" n p
k

(4.32)
Inserting this into (4.31) and using the triangle inequality yields
1 - _
Opir < [l x + [jk(!\/\'“rl = Mla A+ IAF = Xl ar).

Now, by Assumption 4.28 and since 2* — Z, there is a co > 0 such that [|\* — ||z < co0y,
for all k € N sufficiently large. Hence,

C2 C2
Opr1 < I8 x + —=0ps1 + — 6y,
Pk Pk

again for k € N sufficiently large. Reordering gives the desired result. O

With the above lemma, it is easy to deduce convergence rates for the primal-dual
sequence {(zF, \F)}.

Theorem 4.31. Let Assumption 4.28 hold and assume that e**1 = o(0y). Then:

(a) For every q € (0,1), there exists py; > 0 such that, if py. > pq for sufficiently large k,
then (2%, \F) = (2, \) Q-linearly in X x H with rate q.

(b) If pr. — oo, then (z¥, \F) — (Z,\) Q-superlinearly in X x H.

Proof. Let k € N be large enough so that w* = \¥. By Lemma 4.30, if p;, is large enough
so that 1 — ca/pg > 0, then
Ok+1 < C2
O Pk — C2

+o(1). (4.33)

This implies the desired Q-rates for the sequence {0;}. The corresponding rates for
{(z*, \¥)} are then an easy consequence of the error bound (4.26). O

The assumption e¥*1 = 0(6;) in the above theorem says that, roughly speaking, the
degree of inexactness should be small enough to not affect the rate of convergence. Note
that we are comparing e¥*1 to the optimality measure 6}, of the previous iterates (z¥, \¥).
Hence, it is easy to ensure this condition in practice, for instance, by always computing
the next iterate z¥*! with a precision ||e**!||x < 20 for some fixed null sequence z.

Corollary 4.32. Let Assumption 4.28 hold and assume that the subproblems occurring in
Algorithm 4.4 are solved exactly, i.e., that € = 0 for all k. Then {py} remains bounded.
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Proof. Let k € N be sufficiently large so that w* = \¥, let s"*1 = Pc(G(z*+1) + N /),
and define Vi1 := V(2*1 wk, p) = ||G(zFT1) — s¥*1||z. To prove the boundedness
of {pr}, we need to show that V1 < 7V} for sufficiently large k, where 7 € (0,1) is
the constant from Algorithm 4.4. Using (4.32) and the fact that —£'(zF+1 AFH1) =
—L), (a"*1 wk) € No(aMF) for all k, we obtain

Visr 2 G = Pe(G™) + X i = 01

for all k € N. Using again (4.32) and the error bound (4.26), it follows that

)\k}+1 . )\k )\k-i—l - 5\ + )\k o 5\ c
S i IV = Al 3 =3l 2y
Pk Pk Pk
for k € N sufficiently large (recall that z¥ — ). Putting these inequalities together yields
Vit1 < €2 Op1 + 0k 02<1+ 91~c+1>'
Vi mope o bk Pk O

If we now assume that pp — oo, then it is easy to deduce from (4.33) that Vj11/Vi — 0.
Hence, Viy1/Vi < 7 for all k sufficiently large, which contradicts px — 0. O

The boundedness of {p} obviously rules out the @-superlinear convergence of Theo-
rem 4.31 (b). However, the former is usually considered more significant in practice since
it prevents the subproblems from becoming excessively ill-conditioned.

Remark 4.33. If inexact solutions are allowed for the augmented Lagrangian subproblems,
then the boundedness of {pi} requires a slightly modified updating rule for the penalty
parameter since the one used in Algorithm 4.4 does not take into account the current
measure of optimality. Indeed, if we replace the function V' from (4.10) by

V(@A p) = V(a, X p) + llo = Po(r = L'(z,1)]x,

then it is possible to show that {py} remains bounded under the assumptions of Theo-
rem 4.31. A proof for the case C' = X can be found in [133], and the extension to the
general case is straightforward (see also [26,28]). It is furthermore worth noting that the
global and local convergence results from Sections 4.2.3 and 4.3.1 remain valid with this
“modified” penalty updating scheme. This is because the proofs of these results only use
the fact that V(2% w”, pr) — 0 if {px} remains bounded, which clearly still holds if
the penalty updating scheme uses V instead of V.

Remark 4.34. In the case of finite-dimensional nonlinear programming, it is possible to
obtain similar rate of convergence results to those above under the second-order sufficient
condition only. In this case, one obtains that (z¥, \¥) — (Z,\) Q-linearly for some
A € A(z) which is not necessarily equal to A. This result can be found in [74]. The
reason why this is possible is that, for nonlinear programming, the set C is polyhedral
and therefore, as mentioned in Section 3.2.4, the second-order condition implies a local
primal-dual error bound without any constraint qualification. This approach is not
possible if I is not polyhedral, as evidenced by Example 3.60.
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4.3.3 C?-Cone Reducible Programming

In this section, we consider a special case of (P) which arises if the constraint set has a
certain geometric structure. The prototypical applications we have in mind are semidefinite
programming, second-order cone programming, and related problems. More details will
be given further below. To avoid overburdening the presentation, we leave out some of the
results and proofs in this section and instead make frequent references to the literature.
A more comprehensive exposition of the theory can be found in [57,135,203] and in the
book [32].

Throughout this section, we assume that the spaces X,Y, H defining (P) are finite-
dimensional. In this case, it is no restriction to assume that all these spaces are Hilbert
spaces; in the finite-dimensional context, these are often referred to as Fuclidean spaces.
Moreover, the dense embedding Y < H is necessarily the identity mapping, and thus we
can simply drop the space Y and directly consider the constrained optimization problem

minigize f(z) subject to G(x) € K, (4.34)
re

where G : X — H and K C H is a nonempty closed convex set. Note that we do not
include an additional constraint set C' C X for the sake of simplicity.

We assume throughout that the functions f and G are twice continuously differentiable.
In this situation, we already know that Algorithm 4.4 possesses good local convergence
properties if the problem satisfies a suitable second-order sufficient condition together
with an appropriate constraint qualification, see Section 4.3.2.

The approach we consider here depends on a local reduction property of the set IC to
a pointed closed convex cone. This allows us to locally transform the constraint system
into a simpler one, and we can then apply properties such as second-order conditions or
constraint qualifications to the reduced problem, yielding sharper optimality results.

Definition 4.35 (C2-cone reducibility). We say that K is C2-cone reducible at yo € K if
there exist a pointed closed convex cone D C Z in some finite-dimensional space Z, a
neighborhood N of yg, and a twice continuously differentiable mapping = : N — Z such
that Z(yg) = 0, Z'(yo) is onto, and X NN = =~1(D) N N. We say that K is C?-cone
reducible if the above holds at every yy € K.

Some examples where the set K is C?-cone reducible include nonlinear programming,
semidefinite programming, second-order cone programming, and any combination thereof.
More details will be given further below.

Assume now that Z € X is a local minimizer of (4.34), and that the set K is C-cone

reducible at yo := G(Z). This implies that z is also a local minimizer of the reduced
problem
mini%ize f(z) subject to Z(G(x)) € D. (4.35)
xre

This problem possesses a key theoretical advantage over (4.34) in that the new constraint
mapping satisfies zp := Z(G(z)) = 0. This implies that, when forming variational objects
such as radial, tangent, or normal cones (see Section 2.2.1), we simply obtain

To(z0) = Rp(z0) = D and Np(z9) = D°.
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In particular, there is no “gap” between the radial and tangent cones, and the local
geometry of D is completely described by the conical structure of D itself.

We now apply the Robinson constraint qualification (RCQ) and its strict counterpart
(SRC) to the reduced problem (4.35). Taking into account Proposition 3.19 and the fact
that T (G(z)) = Tp(20), RCQ for the reduced problem takes on the form

G'(1)X + Tc(G(z) = H

and therefore coincides with RCQ for the problem (4.34). For the strict Robinson
condition, the situation is slightly different, and we obtain the following condition.

Definition 4.36 (Reduced SRC). We say that the reduced strict Robinson condition
(reduced SRC, R-SRC) holds in 7 if there exists A € A(Z) such that

G'(7)X + Te(G(2)) N\t = H.

The reduced SRC yields the uniqueness of A, and it is weaker than the ordinary SRC
(Definition 3.6) for the problem (4.34), see [32, p.299|. At the end of this section, we will
present two examples which show that this implication is strict.

The second-order sufficient condition from Definition 3.24 can also be applied to the
reduced problem (4.35). In fact, this can be done in a slightly more general context by
using a form of SOSC which takes into account the whole multiplier set (see [32]). The
resulting condition can then be reformulated using only the problem primitives f, GG, and
K. This process involves the so-called second-order tangent set to K in a point y € K and
a direction h € H, which is given by

Té(y,h) == {we H :dist(y + th + %t2w,/C) =o(t?), t > 0}.

Now, let o(y,S) := sup,cg(y, z) be the support function of a closed convex set S C H.
Then the second-order condition takes on the following form.

Definition 4.37 (Reduced SOSC). Let (z,)\) € X x H be a KKT point of (4.34). We
say that the reduced second-order sufficient condition (reduced SOSC, R-SOSC) holds in
(z, ) if the set K is C-cone reducible at G(z) and

Ag}()ﬁ){ﬁ”(az, AN(d,d) — o (N, TE(G(z), G (2)d))} >0 (4.36)

for all d € C(z) \ {0}, where C(Z) :={d e X : f'(z)d <0, G'(T)d € Te(G(Z))}.

Similarly to the general form of SOSC from Definition 3.24, the reduced SOSC implies
the local quadratic growth of the objective function, i.e., the existence of ¢ > 0 such that
f(z) > f(z) + cl|lz — z||% for all feasible points = near Z. In particular, it follows that
Z is a strict local minimizer of the problem. What sets R-SOSC apart from the general
SOSC is that, under certain assumptions, it is actually equivalent to the quadratic growth

condition. More details can be found in |32, Theorems 3.86 and 3.137].
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The reduced versions of SOSC and SRC imply a local primal-dual error bound in the
sense of Section 3.2.4, and they are in fact equivalent to the error bound property under
certain assumptions. As in Section 3.2.4, let © : X x H — R be the residual mapping

O(z, ) = [|£'(z, Vlx + [|G(z) — Pc(G(z) + N1
The following result is a consequence of the theory in [57,133,135].

Proposition 4.38. Assume that the problem (4.34) admits a KKT point (z,\) which
satisfies the reduced SOSC and reduced SRC. Then A(Z) = {\} and there are c1,c2 >0
such that, for all (x,\) € X x H with x near T and O(x, \) sufficiently small,

c10(z, \) < ||z — Z|x + |N = Mg < c2O(z, ). (4.37)

Conversely, if A(Z) is a singleton, the error bound (4.37) is satisfied, and RCQ holds in
z, then both the reduced SOSC and reduced SRC hold in (Z,\).

The error bound property implies a local convergence and rate of convergence result
for the augmented Lagrangian method (Algorithm 4.4). For the sake of clarity, we restate
our assumptions in the present setting.

Assumption 4.39 (Local convergence for C?-cone reducible problems). Assume that
(i) (z,)\) € X x H is a KKT point of (4.34) which satisfies the error bound (4.37),
(ii) the primal-dual sequence {(z*, \¥)} converges to (z, \),

(iii) the safeguarded multiplier sequence satisfies w* := A* for k sufficiently large, and
)

(iv) there is a null sequence {e;} C R such that ||£], (z¥H1, wF)|x < epyq for all k.

Note that the above is basically a reformulation of Assumption 4.28. For the sake of
simplicity, we have replaced the vectorial sequence {Ek} C X in the latter by a scalar null
sequence {eg}. A sufficient condition for assumption (ii) was given in Proposition 4.29,
where it was shown that (¥, \¥) — (Z, \) if the error bound (4.37) holds, RCQ is satisfied
in Z, and the primal iterates {*} eventually lie in a sufficiently small neighborhood of z.

Clearly, in the case where (z¥, AF) — (Z,)), it is reasonable to assume that the
safeguarded multipliers are eventually chosen as w* := A¢. Thus, the conditions in
Assumption 4.39 are realistic, and we obtain the following result which is essentially a
restatement of Theorem 4.31. Recall that 6, := ©(z%, \¥).

Theorem 4.40. Let (Z,\) be a KKT point of the problem (4.34), and let Assumption 4.39
hold.  Then there exists p > 0 such that, if px > p for k sufficiently large and €41 = o(0r),
then (2%, \F) — (Z,\) Q-linearly with rate proportional to 1/py.

This constitutes our main local convergence result for C?-cone reducible programs.
We now turn to two problem classes which are arguably the most prominent applications
of the reduction approach.
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Semidefinite Programming

Semidefinite programming (SDP), linear or nonlinear, revolves around constraints which
impose semidefiniteness of certain matrices. We write S™ for the space of symmetric
n x n-matrices, equipped with the scalar product (4, B) := tr(AT B), S} (S™) for the
subsets of positive (negative) semidefinite matrices, and A > 0 (A =< 0) for positive
(negative) semidefiniteness. With these definitions, a typical SDP is given by

minir)r(lize f(z) subject to g¢(z) <0, e(x) =0, G(x) =0, (4.38)

re

where X is a finite-dimensional space and g : X - R™, e: X - RP, G: X — 8™ are
given mappings. This problem corresponds to the general setting (4.34) with

G(o) 1= (9(a).e@). 9D & " (o105 50,

Note that K is C?-cone reducible because it is a Cartesian product of C?-cone reducible
sets. Indeed, given a point (yo, 20, Ao) € K, the local reduction of K takes on the form

E(y, 2z, A) = ((y — yo)z,2,Esn(A)), D:= R x {037 x Dgn,

where Z:={i=1,...,m: (yo); = 0} is the index set of active inequality constraints in
Yo, and Zgsn» and Dgn constitute the reduction of the negative semidefinite cone S” at
Ap. More details can be found in [203].

For semidefinite programming, the Lagrange multiplier occurring in the KKT condi-
tions can be split as A = (1,7, ') with 1 € R™, 7 € RP, and T' € 8”. With an obvious
change of notation, the Lagrange function now becomes

Lz, p,v,T) = f(x) + p' g(x) + v e(z) + (T,6(x)),
and the KKT system takes on the form
L'(z,i5,0,T)=0, 0<jiLgx) <0, e =0 0=<TL1LGx) =0,

where | denotes orthogonality with respect to the corresponding scalar products. The
reduced SRC and SOSC conditions can be reformulated more explicitly in the case of SDP.
A characterization of the former can be stated in terms of certain linear independences
and the existence of a Mangasarian—Fromovitz type vector. The resulting condition is
fairly involved and can be found in [202,224]. As for reduced SOSC, the o-term occurring
in (4.36) can be calculated explicitly by taking into account the geometric structure of
S, and the condition can therefore be rewritten as

swp (L@ 0, T)(dd) — 2D, (@ @DI@ (@ @)} >0 (4.39)
(nv,D)EA(T)
for all d € C(¥)\ {0}, where T denotes the Moore-Penrose pseudoinverse, see [32,203,224].

Note that the functions g and e provide no contribution to the o-term since they represent
constraints for which the corresponding factor in the set I is polyhedral.
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Corollary 4.41. Let (Z,fi,7,T) be a KKT point of (4.38), and let Assumption 4.39 hold.
Then there exists p > 0 such that, if p, > p for k sufficiently large and eg41 = o(0y), then
(zF, k', V% T*) = (z, 0,0, T) Q-linearly with rate proportional to 1/py.

Let us briefly discuss the case of a linear semidefinite program. Given a problem of
the form

minignize (c,z) subject to Ax =b, x =0,
TES™

where c € §", b € R™, and A : 8™ — R™ is a linear operator, it is customary to apply
the augmented Lagrangian method to the dual problem
maximize b'y subject to A*y —c¢ = 0,
yeER™

since this yields subproblems which are smooth, unconstrained minimization problems
on R™. It turns out that R-SOSC and R-SRC for the dual problem are closely related
to the corresponding primal properties. In fact, assuming that the problem admits a
unique primal-dual solution pair, it can be shown that R-SOSC for the primal problem
is equivalent to R-SRC for the dual problem. By duality, this also holds with R-SOSC
and R-SRC interchanged. Hence, if both conditions hold for the primal problem, then
they also hold for the dual problem (primal-dual uniqueness follows automatically in this
case). The corresponding investigations can be found in [226].

Second-Order Cone Programming

For second-order cone programs (SOCP), the theoretical analysis is very similar to
semidefinite programming. Throughout this section, we write w := (wp,w) for a generic
element in R1*™. Let L C R be the second-order (Lorentz, ice-cream) cone

K = {(wo, w) € R™*™ : wy > |2},

where || - ||2 is the Euclidean norm. The analysis below can easily be extended to the
case where additional inequality, equality, or multiple second-order cone constraints are
present. In any case, the resulting set K is C?-cone reducible [203].

As in the case of semidefinite programming, the reduced SOSC from Definition 4.37
can be reformulated to take into account the particular geometry of the problem. The
resulting condition is given by

sup {L"(z,\)(d,d) +d H(z,\)d} >0 (4.40)
AEA(Z)

for all d € C(z) \ {0}, where

Mz, \) = — Gj(oj)a/(xf <(1) _‘}m) ¢'(z)

if G(z) € bd(K) \ {0}, and H(z, \) := 0 otherwise, see [31,157,225|. Similar to before,
Gy denotes the first component of G.
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Corollary 4.42. Let (z,\) be a KKT point of a nonlinear SOCP, and let Assumption 4.39
hold. Then there exists p > 0 such that, if pr, > p for k sufficiently large and €11 = o(0k),
then (2%, \F) — (Z,\) Q-linearly with rate proportional to 1/py.

We close this section with two examples which demonstrate that the reduced version
of SRC is, in general, strictly weaker than the ordinary SRC from Definition 3.6.

Example 4.43. (a) Let X := R, H := R?, and consider the optimization problem (4.34)
with f(z) = z, G(z) := (z,0), and K the closed unit ball in H. Clearly, z := —1
is the global minimizer of this problem, and it is easy to see that A := (—1,0) is the
corresponding (unique) Lagrange multiplier. Moreover, the set K is C?-cone reducible in
y := G(Z) = (—1,0) to the cone D := [0, +-00) by means of the mapping Z(x) := 1—x% —x3.
A straightforward calculation shows that Tic(7) N M = AL on the other hand, the set Ko
from Definition 3.6 is given by Ky = {g}, and it follows that Ti,(y) = {0}, see Figure 4.1.

We conclude that G'(Z)X + Ti(y) N A = H and G'(2) X + T, (§) # H.

S\J_

>l

Figure 4.1: The setting of Example 4.43 (a), the tangent cone to K, and the set Ky.

(b) This example is a second-order cone program. Let X := R, H := R3, f(z) := —2ux,
G(z) := (z,0,2 — z), and K := {y ER3:y; > 2 + y%} An easy calculation shows
that Z := 1 is the global minimizer of the problem, and A := (1,0, —1) is the corresponding
(unique) Lagrange multiplier. Moreover, with g := G(Z) = (1,0,1), we have

Ni(@) ={ar:a >0} and Ti(y) = Ne () = {A}".

Hence, 77@_(3]) N A+ = AL, On the other hand, the set Ky is the intersection of K with
the plane A\, which is given by Ko = {ay : a > 0}. Therefore, Tk, (y) = span(y), and it
follows that G'(Z)X + T (§) N A+ = H but G'(2)X + Ti,(y) # H.
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Chapter 5

Augmented Lagrangian Methods for
Variational Inequalities

In this chapter, we present a generalization of the augmented Lagrangian method (ALM)
to variational inequalities (VIs) or, more generally, variational problems (in the sense of
Section 3.2). The algorithm can be seen as a generalization of the ALM for constrained
optimization, but it should be kept in mind that some arguments from optimization
theory are simply not possible for variational problems. This is because many of these
arguments rely on descent properties of the function f or, more generally, the ability to
compare function values in order to get an indicator of optimality. This is not possible
for general VIs. In turn, the variational framework has the significant advantage that
we are now able to model more general optimization-related problems such as Nash and
generalized Nash equilibrium problems.
The main framework we consider throughout this chapter is a VI of the form

(V) ze®, (F(x),d)>0 Vde Ts(x), (5.1)

where X is a real Banach space, ® C X a nonempty closed set, and F : X — X* a
given mapping. Recall that, if F' = f’ for some differentiable function f : X — R, then
(V') represents the first-order necessary conditions (in the sense of Lemma 3.1) of the
optimization problem

minimize f(xz) subject to x € ®.
rzeX

Observe also that, if ® is a convex set, then (V') can be restated as
red, (F(z),y—z)>0 Vyeo. (5.2)

The notion of variational inequalities is ubiquitous in modern optimization theory, and
there is a variety of monographs specifically targeting this problem class, including
[12,70,88-90,143|. The VI has also become a standard tool for the modeling of various
problems in the applied sciences [50, 87|, in particular mechanics [40, 148,174, 205]. In
addition, the VI is often treated as part of many textbooks on constrained optimization,
see, for instance, [13,32].

95
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One of the most important special cases (in a sense to be specified later) of the VI
is the (generalized) Nash equilibrium problem, or (G)NEP for short. This is a class
of optimization-type problems where multiple agents are involved, each with their own
objective function and constraint set (see Section 5.3). The history of these problems can
be traced back to the works of Nash [168,169], to Arrow and Debreu [9,53], and to Rosen
[194]. A more detailed account of GNEPs, their history, and the surrounding theory,
can be found in the books [14,111] and the contemporary survey papers [65,77|. The
practical scope of GNEPs is enormous, with applications including economics, network
design, electromagnetics, aerodynamics, and many more. In this regard, the reader is
again referred to the survey papers [65,77]. Due to its modeling power, the GNEP is a
particular class of problems which has also enjoyed a substantial amount of applications
involving infinite-dimensional spaces. In this context, a rather popular class of examples
is that of differential games, which are multiobjective problems related to the evolution of
dynamical systems involving ordinary differential equations [83,84,99,181,196]. A related
but different problem class is concerned with the (multiobjective) optimal control of partial
differential equations [35,61,106,107,182|. More applications in the infinite-dimensional
context can be found in [41,54,183,195,209], and in the references of all these publications.

A survey of some standard algorithms for the solution of VIs can be found in [71].
For GNEPs, some notable references include [60,64,66,86] and the survey papers [65,77].

In this chapter, we present and discuss the augmented Lagrangian method for a
general problem of the form (V). Similarly to the previous chapter, we assume that the
feasible set ® has a representation of the form

®={recC:G(z) e K}, (5.3)

where X,Y are real Banach spaces, C' C X and K C Y are nonempty closed convex sets,
and G : X — Y is a continuously differentiable mapping. To facilitate the application
of the augmented Lagrangian technique, we again assume that i : Y < H densely for
some real Hilbert space H, and that I C H is a closed convex set satisfying i ~}(K) = K.
Hence, we are once more working in the Gel’fand triple framework

v g gy

The problem setting (5.3) is extremely general and encompasses a variety of constraint
mappings (see Chapter 4 for a related discussion). In particular, the augmented Lagrangian
method which we will present below can be seen as a generalization of the algorithm from
[6,121,176| for VIs with nonlinear programming constraints.

The results in this chapter are based on the publications [129, 133], the preprint
[128], and the arguments and proofs from Chapter 4. The following is an outline of
the structure of the chapter. In Section 5.1, we discuss the augmented Lagrangian
method from a general point of view, demonstrate how the algorithm can be motivated,
and analyze its relationship to the corresponding method for constrained optimization
problems (Algorithm 4.4).

Section 5.2 is dedicated to a comprehensive convergence analysis of the augmented
Lagrangian method for VIs, including the existence of penalized solutions in Section 5.2.1,
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the global convergence properties for VIs with convex constraints in Section 5.2.2, the
primal-dual convergence characteristics for nonconvex problems in Section 5.2.3, and the
rate of convergence in Section 5.2.4. Some of the arguments and proofs are straightforward
adaptations of their optimization counterparts, but this chapter also includes many results
which are new or different from those in Chapter 4.

In Section 5.3, we provide a more detailed account of generalized Nash equilibrium
problems. In particular, we show how these problems are related to variational inequalities,
indicating that many of the convergence results from Section 5.2 can readily be applied
to the GNEP setting. In addition, we give a slightly different convergence analysis which
takes into account the specific structure of GNEPs, both in the infinite-dimensional
(Section 5.3.2) and the finite-dimensional case (Section 5.3.3).

5.1 Discussion and Statement of the Algorithm

This section provides a brief discussion of the augmented Lagrangian method from a
motivational point of view. In particular, we analyze how the method is related to its
counterpart from constrained optimization, state the main algorithmic framework for the
chapter, and give some basic properties.

5.1.1 Relationship with Constrained Optimization

We shall now outline how the augmented Lagrangian method for variational inequalities
can be deduced from that for constrained optimization problems (Algorithm 4.4). Since
variational problems of the form (V') contain minimization problems as a special case, it
is natural to construct the augmented Lagrangian in a manner such that the definitions
for VIs and optimization problems are consistent.

Assume, for the moment, that the VI in question originates from a minimization
problem of the form

minirgize f(z) subject to G(x) € K (5.4)
xe

with f : X — R a continuously differentiable function. Thus, we have F' := f’. The
augmented Lagrangian of (5.4) in the optimization sense takes on the form

2
LOP(x, ) = f(z) + gd,% <G(w) + 2) - ”;&H, (5.5)

see Definition 4.2, where the superscript ©P* emphasizes the fact that this is the augmented

Lagrangian corresponding to the optimization problem (5.4).

The augmented Lagrangian method for (5.4) now generates a sequence of constrained
minimization problems of the form mingec £, Pt (z,A). Since C is a convex set, these
problems correspond to the variational inequalities

xzeC, <Dmﬁgpt(aﬁ,/\),y — a;> >0 VYyed,
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and the derivative D, L5 (, ) can be written as

Do L (x,A) = f'(x) + pG' (x)* [G(x) + 2 — P¢ (G(a:) + 2)} .

This immediately suggests an appropriate definition of the augmented Lagrangian for a
general VI of the form (V).

Definition 5.1 (Augmented Lagrangian). For p > 0, the augmented Lagrange function
or augmented Lagrangian of (V') is the function £, : X x H — X*,

P

In view of the above motivation, this definition is consistent with the corresponding one
for constrained optimization problems (Definition 4.2). Note that, if K is a closed convex
cone, then we can simplify the above formula to £,(z, \) = F(z) + G'(x)* Pico (A + pG(z))
by using the Moreau decomposition (Lemma 2.37).

L@ A) i= F(z) + p& (x)" [G(w) + 2 e (G(x) + A)] . (5.6)

5.1.2 Statement of the Method

We now present the augmented Lagrangian method for the variational inequality (V).
For the construction of our algorithm, we will need a means of controlling the penalty
parameters. To this end, we define the utility function

Viw\, p) = HG(@«) e (G(m) + 2) HH . (5.7)

This function is carried over from the augmented Lagrangian method for constrained
optimization problems, where it arises from the slack variable transformation discussed in
Section 4.1.2. The function (5.7) can be seen as a composite measure of feasibility and
complementarity.

Algorithm 5.2 (ALM for variational inequalities). Let (2 A\°) € X x H, py > 0, let
B C H be a nonempty bounded set, v > 1, 7 € (0,1), and set k := 0.

Step 1. If (z*, \¥) satisfies a suitable termination criterion: STOP.

Step 2. Choose w* € B and compute an approximate solution z**! of the VI

zeC, (L, (z,w"),y — ) >0 VyeC. (5.8)
Step 3. Update the vector of multipliers to
k k
AL = [G(xk“) + % pe <G(:ck+1) n w)] . (5.9)
Pk Pk

Step 4. Let Vi := V(2FT1 w¥, pr) and set

, ifk=0or Vi1 <71V,
it = {sz k41 k (5.10)

Ypr, otherwise.
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Step 5. Set k + k+ 1 and go to Step 1.

The above algorithm can be seen as a natural extension of the augmented Lagrangian
method for constrained optimization problems (Algorithm 4.4). Indeed, if F' = f’ for some
differentiable function f: X — R, then (V') represents a first-order necessary condition of
the minimization of f on ®, and the augmented subproblems generated by Algorithm 5.2
can be viewed as first-order necessary conditions of the augmented subproblems generated
by Algorithm 4.4. In particular, the KKT systems of these problems are equivalent;
thus, if one decides to apply the augmented Lagrangian scheme solely in terms of the
KKT conditions of the original problem and the augmented subproblems, then the two
algorithms coincide.

Apart from the above remark, we shall not discuss Algorithm 5.2 in too much detail
since the discussion is essentially the same as that of Algorithm 4.4 in Chapter 4. In
particular, the boundedness of w” is crucial to the algorithm, and it is natural to choose
wh as

w := Pg(\F)  for all k,

where B is a simple but large bounded subset of H. Another property which deserves to
be highlighted at this point is the following. The definition of the augmented Lagrangian
(in the VI sense) and of A**! in Step 3 implies that

Ly (2FT k) = £(aMT A for all k € N. (5.11)

This property will be crucial in the subsequent discussion since it allows us to analyze the
primal-dual convergence properties of Algorithm 5.2 in terms of asymptotic KKT-type
conditions.

The following result contains some basic properties of the algorithm which hold
regardless of the choice of 2**! in Step 2. Its proof is identical to that of Lemma 4.5 and
therefore omitted.

Lemma 5.3. We have \F € K, for all k. Moreover, there is a null sequence {ri} C R4
such that (\¥,y — G(z*)) <y, for ally € K and k € N.

As in the optimization case, the assertions of the above lemma and the formulation of
Algorithm 5.2 can be simplified if K is a closed convex cone (see Example 4.6).

Let us close this section by remarking that the augmented subproblems (5.8) can also
be interpreted as variational inequalities of the second kind. Indeed, let w* € H and
pr. > 0 be given, and consider the variational problem

zeC, (F(z),y—z)+ %’“ [Py, (5, w*) — P (z,0*)] >0 Wy eC, (5.12)
where P,(z,w) := d-(G(x) + w/p) is the penalization term which forms the basis of
the augmented Lagrangian approach. Observe that (5.12) is well-defined even if G is
nonsmooth. If GG is continuously differentiable, then a directional derivative argument
implies that any solution of (5.12) necessarily satisfies the variational inequality of the
first kind given in (5.8). The converse holds provided that P,(-,w) is convex, which is
the case if G is Ky -concave in the sense of Section 2.2.3.
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5.2 Convergence Theory

This section provides a systematic convergence analysis of Algorithm 5.2. As we shall
see, it is often possible to adapt the arguments and proof techniques used in constrained
optimization (see Chapter 4) in order to obtain convergence results for VIs. Whenever
the adaptation is straightforward (e.g., it merely amounts to replacing the derivative f’
from the optimization context by the operator F'), we will either omit or shorten the
corresponding proofs.

On the other hand, there are some scenarios where different arguments are necessary.
This is because variational problems do not admit the use of descent properties or,
more generally, they do not allow us to compare function values in order to get an
indicator of optimality. This is in stark contrast to the optimization case, see, for instance,
Sections 4.2.2 and 4.3.1.

5.2.1 Existence of Penalized Solutions

As a first step in the convergence analysis, we analyze situations in which the augmented
subproblems (5.8) are guaranteed to admit solutions for all k. Since we are not necessarily
dealing with a constrained minimization problem, we cannot invoke the arguments from
Section 4.2.1 to obtain the existence of approximate solutions. Instead, we have to assume
either some form of compactness or coercivity and apply the general existence theorem

for VIs (Theorem 3.40).

Proposition 5.4. Assume that C' is weakly compact, F is pseudomonotone, and either
(i) G is Koo-concave on C, or
(ii) G and G' are completely continuous on C.

Then the augmented Lagrangian subproblems (5.8) admit solutions for all k.

Proof. (i) For k € N, let hy(x) := d%(G(z) +w*/py). Then hy, is convex, continuously
differentiable, and L, (z,w*) = F(z) + (px/2)h,(x). Consider the mapping

Ui(a,y) = (F(2),2 =) + 5 [hu(a) = hely)-

By Theorem 3.40, there exists a point & € C such that Uy(Z,y) <0 for all y € C. Thus,
the point Z is a maximizer of ¥y (z, -), with maximum value equal to zero. By Lemma 3.1,
this implies Dy Wy (&, 2)(y — &) < 0 for all y € C, and it is easy to check that this is
precisely the desired variational inequality.

(ii) In this case, it follows from Lemma 3.37 that the augmented Lagrangian £, (-, wh)
is pseudomonotone for every k. Hence, the claim follows from Corollary 3.41. O

In many cases, the weak compactness of C' can be substituted by an appropriate form
of coercivity. The basic result in this direction is the following.

Proposition 5.5. Assume that X is reflexive, F' is strongly monotone, and G : X —'Y
is Koo-concave. Then the augmented subproblems (5.8) admit solutions for all k.
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Proof. Note that the augmented Lagrangian £,(-,w) is the sum of F' and the derivative
of the convex function x — (p/2)d2-(G(x) + w/p). This implies that £,(-,w) is strongly
monotone for all p > 0 and w € H. The claim is therefore a consequence of Theorem 3.40
and Remark 3.42. ]

5.2.2 Convergence for Convex Constraints

We now analyze the global convergence characteristics for the augmented Lagrangian
method. In this section, we are mainly concerned with the case of convex constraints. As
discussed in Section 2.2.3, the natural analytic notion of convexity is the Kso-concavity of
the constraint mapping G.

In addition to this property, we will also need a certain assumption on the manner in
which the augmented subproblems (5.8) are solved. Observe that these problems can be
written as —L,, (z,w") € N (x). Thus, a natural assumption is

Ml — £, (P wh) € No(2F )

for some null sequence {¥} C X*. This is consistent with a similar assumption made in
Section 4.2.3. To obtain the optimality of limit points, we will also need an appropriate
continuity property of the mapping F'. The following is a summary of the assumptions
we will use in this section.

Assumption 5.6 (Convex constraints). We assume that
(i) the mapping F' is bounded and pseudomonotone,
(ii) G is continuously differentiable on X and Ks-concave on C, and

(iii) 2! € C and bt — £, (a1 wk) € N (a*+h) for all k, where eF — 0.

Similar to before, our analysis first deals with the attainment of feasibility and then
with optimality. Since we are working in the setting of convex constraints, we can expect
the iterates to be asymptotically feasible. This is indeed the case.

Lemma 5.7. Let Assumption 5.6 hold, and let T be a weak limit point of the sequence
{2F}. Then T is a minimizer of the convex function di o G on C. In particular, if the
feasible set ® of (V') is nonempty, then & € ®.

Proof. Note that the function dx o G is convex by Theorem 2.50 and continuous, hence
weakly sequentially lower semicontinuous (by Proposition 2.44). If {py} remains bounded,
then the penalty updating scheme (5.10) implies that

k

dic(G(F ) < HG(xk“) — P¢ <G(zk+1) + w) H —0
Pk /) |lg

and therefore di(G(z)) = 0. We now assume that py — oo and define the auxiliary

functions hi(z) = dz(G(z) + w*/p). Note that hy is continuously differentiable by

Lemma 2.43. Let 2**1 —; & for some (infinite) subset I C N and assume that there is a
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point y € X with di(G(y)) < di(G(z)). The weak sequential lower semicontinuity of
dic o G and the boundedness of {w*} imply that

k
- k+1y _ qis 2 k+1 w > 2 -
hr]glellnf hy (") hrl?ellnf dy- (G(m )+ o ) > di-(G(7))

and hg(y) — d%(G(y)). Hence, there is a constant ¢; > 0 such that hy(z51) — hy(y) > ;1
for all k € I sufficiently large. Since hj is convex by Theorem 2.50, it follows that

(W (™YY, y — 240 < () — he(a™HY) < —e (5.13)

for all k € I sufficiently large. Now, let {¢¥} be the sequence from Assumption 5.6. Using
Lemma 2.43 for the derivative of hi, we obtain

<€k+17y _ $k+1> < <[’pk($k+1’wk)’y _ $k+1>
_ <F(xk+1)’y B xk+1> + %C<h;€($k+1),y o xk+1>‘

Since F' is a bounded operator by Assumption 5.6, there is a constant co € R such that
(F(2M1),y — 2**1) < ¢, for all k € I. This together with (5.13) implies

<6k+1,y . xk+1> <y — PEC1

Since {z**1}cr is bounded and e* — 0, this is a contradiction. O

The above result guarantees that every weak limit point & automatically minimizes
the constraint violation even if the feasible set ® is empty. This is not unlike similar
results which we have already discovered for constrained optimization problems, see, for
instance, Lemma 4.11 or Lemma 4.15.

We now turn to the main global convergence result.

Theorem 5.8. Let Assumption 5.6 hold, and let T be a weak limit point of {x*}. If the
feasible set ® of (V') is nonempty, then T is feasible and a solution of (V).

Proof. Let 2kt ;7 for some subset I € N. The feasibility of Z follows from Lemma 5.7.
For the optimality, let y € ® be any feasible point. Then (L,, (zF+1, w¥),y — z**+1) >
(eb+1 9y — 2F+1) by Assumption 5.6 and, using (5.11), we get

<€k+17y _ $k+1> < <F(l‘k+1) + G’(:ckJrl)*)\kH,y . :L,k+1>
_ <F(l‘k+1), Y — ."L‘k+1> + ()\Ic—f—l7 G'(azk+1)(y _ :L,k—f—l))
< (F(™),y — M) + (W G(y) - Gt),
where we used the fact that z — (A\**1, G(z)) is convex by Theorem 2.50 and Lemma 5.3.
Using again Lemma 5.3, we now obtain (F(zFt1),y — zF1) > (h+1 y — b 1) 4y

with a null sequence {r;} C R. Since y is arbitrary and F' is pseudomonotone, it follows
from Proposition 3.43 that (F\(z),y —z) > 0 for all y € ®, and the proof is complete. [
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If we assume the strong monotonicity of F', then (V') admits a unique solution z € ®,
and the iterates generated by Algorithm 5.2 converge strongly to Z.

Corollary 5.9. Let Assumption 5.6 hold, let X be reflexive, and F strongly monotone
on C. Then {x*} converges strongly to the unique solution of (V).

Proof. Existence and uniqueness of the solution follow from standard arguments, see
Section 3.2.1. Let T € C be the solution. For the proof of convergence, observe that

el — |k < (F(=") — F(2),2""! — ) (5.14)

for all k and some ¢ > 0. We first show that {z*} is bounded. The proof of Theorem 5.8
shows that (F(z**1),y — k1) > (1 y — ¥ 4y, for all y € @ and k € N, where
{e¥} € X* and {r;} C R are the null sequences from Assumption 5.6 and Lemma 5.3,
respectively. Inserting y := Z and applying this inequality to (5.14), it follows that

cl|zftt — z||% < <5k+1 — F(z), 2" — T) — Tt (5.15)

This implies the existence of an M > 0 such that c[|z*T! —Z||% < M|z*+1 —Z|| x — gy for
all k, which yields the boundedness of {z*}. Since X is reflexive and Z is the unique solution
of (V), it now follows from Theorem 5.8 that 2**' — z. Thus, (F(z),2**! — z) — 0,
and (5.15) finally yields ||z**! — Z||x — 0. O

5.2.3 Primal-Dual Convergence

We now state convergence theorems based on the KKT conditions of (V). The results
and proofs in this section are basically identical to those from Section 4.2.3, the only
modification being that we now deal with a general mapping F': X — X* instead of the
derivative f’ which occurs in the optimization context. As a consequence, we omit the
proofs of the subsequent results. More details can be found in Section 4.2.3.

Assumption 5.10 (Convergence to KKT points). We assume that
(i) F is bounded and pseudomonotone,
(ii) G is continuously differentiable on X,
(i) G and G’ are completely continuous on C', and

(iv) ¥+l € C and ¥t — £, (a1 wh) € No(zF+) for all k, where e* — 0.

The above is essentially an adaptation of Assumption 4.14. Note that (iv) is an inexact
version of the VI subproblem (5.8). Indeed, this problem can be written as

L (w,ut) € No (o),

and condition (iv) in Assumption 5.10 states that z*+!

error term €1 € X* which vanishes asymptotically.

We now turn to the convergence analysis of Algorithm 5.2 under Assumption 5.10.
As always, we begin by considering the asymptotic feasibility of the iterates. The proof
of the following result is identical to that of Lemma 4.15.

satisfies this condition up to an
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Lemma 5.11. Let {z*} be generated by Algorithm 5.2 under Assumption 5.10, and let T be
a weak limit point of {x*}. Then Z is a stationary point of the problem ming,cc d2.(G(x)).

As in the optimization case, there are multiple special cases where Lemma 5.11
guarantees the actual feasibility of the point z. First, if the mapping G is Ky-concave
(see Section 2.2.3), then d2- o G is a convex function. Hence, in this case, it follows that
Z is a global minimizer of this function, and if the feasible set is nonempty, then T is a
feasible point. The second special case arises if the extended RCQ is satisfied in Z. In
that case, the feasibility of z follows from Proposition 3.22.

We now turn to the optimality of limit points. As in the setting of constrained
optimization, the main tool is the asymptotic KKT property of the primal-dual sequence
{(z*, A*)}, which in this case takes on the form (for k > 1)

e¥ — L'(a*,\%) € No(2F) and  (W\F,y — G(z%)) <rp Wy € K (5.16)

with a null sequence {r;p} C R. Note that (5.16) follows from Assumption 5.10 (iv), the
fact that £, (zF+1, w*) = L(x¥+1, \E+1) for all k, and Lemma 5.3.

Theorem 5.12. Let {(2%,\F)} be generated by Algorithm 5.2 under Assumption 5.10,
let ¥t —; Z for some index set I C N, and let T satisfy ERCQ with respect to the
constraint system of (V). Then T is a stationary point (and a solution) of (V'), the
sequence { Nt} ey is bounded in Y*, and its weak-* limit points belong to A(Z).

We now turn to the special case of nonlinear programming-type VIs. Recall that,
if X is finite-dimensional, then property (i) from Assumption 5.10 is equivalent to the
continuity of F'. Moreover, due to the special structure of the constraints, we can use the
CPLD constraint qualification to obtain the optimality of limit points.

Theorem 5.13. Let X := C :=R", Y := H .= R™, and K := K := R™ for some
m,n € N. Let {zF} be generated by Algorithm 5.2 under Assumption 5.10, and & a limit
point of {x*}. If T is feasible and CPLD holds in T, then T is a stationary point and a
solution of (V).

As in the optimization case, it is possible to prove a stronger assertion for the dual
sequence under the assumption that Z is a solution of (V') and G'(Z) is surjective. The
proof of this result is identical to that of Proposition 4.20.

Proposition 5.14. Let {*} be generated by Algorithm 5.2 and let 2"t —; & for some
I C Nandz e X. Assume that T is a solution of (V), that C = X, F is weak-*
sequentially continuous, G' is completely continuous, and that G'(z) is surjective. Then
{\F1Y e converges weak-* to the unique element in A(Z).

5.2.4 Rate of Convergence

We now analyze the convergence of the augmented Lagrangian method from a quantitative
point of view. The theory below is essentially identical to that of Section 4.3.2 for
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optimization problems, and it crucially depends on the primal-dual error bound from
Section 3.2.4, which in the present case takes on the form

10z, \) < |z — 2| x + |A = Mg < c2O(z, ) (5.17)
for all (x,\) € X x H with x near z and ©(x, A) sufficiently small, where © is the residual
Oz, ) := ||z = Po(z = L(z,N))|[x + 1G(x) = Pe(G(2) + A)||#-

Here, £ stands for the Lagrangian in the variational inequality sense (see Section 3.2).
This assumption along with some other properties are collected below.

Assumption 5.15 (Rate of convergence). We assume that

(i) X is a real Hilbert space, F' is continuous, and G continuously differentiable on X,
(ii) (z,)\) € X x H is a KKT point of (V) which satisfies the error bound (5.17),

)
)
)
)

(v) #F+l € C and M — £, (2FFL, wh) € N (2FF1) for all k, where ¥ — 0.

(iii) the primal-dual sequence {(x*, \¥)} converges strongly to (Z, ) in X x H,

(iv) the safeguarded multiplier sequence satisfies w* := \¥ for k sufficiently large, and

One assumption which might merit some discussion is the convergence (z*, \¥) — (z, \)
in X x H. This assumption was also used for optimization problems in Chapter 4. Sufficient
conditions for the convergence z¥ — Z can be found in that chapter (for constrained
optimization), and in Corollary 5.9 for the VI case. In addition, the following result
provides some useful information in this regard and also shows that the primal convergence
x¥ — T implies the convergence of {\¥} to X in H. The proof of this result is identical to
that of Proposition 4.29.

Proposition 5.16. Let Assumption 5.15 (i), (ii), (v) hold, and let RCQ hold in T with
respect to the space H. Then there exists r > 0 such that, if z*F € B.(Z) for sufficiently
large k, then ©(z* \F) — 0 and (xF, \¥) — (Z,\) strongly in X x H.

The basic approach to deduce convergence rates is to first consider the sequence
0 := O(z*, \¥) which, due to the error bound (5.17), converges to zero with the same
order as the distance of (2*, \¥) to (Z, ). The main convergence result is the following,
which is a simple adaptation of Theorem 4.31.

Theorem 5.17. Let Assumption 5.15 hold and assume that e**t1 = o(0)). Then:

(a) For every q € (0,1), there exists p; > 0 such that, if pr. > pq for sufficiently large k,
then (2%, \F) = (Z,\) Q-linearly in X x H with rate q.

(b) If px — 00, then (¥, \F) — (Z,\) Q-superlinearly in X x H.

The assumption e¥T! = 0(6}) in the above theorem says that, roughly speaking, the
degree of inexactness should be small enough to not affect the rate of convergence. Note
that we are comparing ¢**! to the optimality measure 6, of the previous iterates (¥, A¥).
Hence, it is easy to ensure this condition in practice, for instance, by always computing
the next iterate %! with a precision ||e**!||x < 21,0 for some fixed null sequence 2.

The following result can be shown in the same manner as Corollary 4.32.
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Corollary 5.18. Let Assumption 5.15 hold and assume that the subproblems occurring in
Algorithm 5.2 are solved exactly, i.e., that € = 0 for all k. Then {pi} remains bounded.

The boundedness of {p} obviously rules out the @Q-superlinear convergence of Theo-
rem 4.31 (b). However, the former is usually considered more significant in practice since
it prevents the subproblems from becoming excessively ill-conditioned.

If inexact solutions are allowed for the augmented Lagrangian subproblems, then it
is possible to guarantee the boundedness of {p;} by using the same modified penalty
updating scheme as in Remark 4.33, see [133| for more details.

5.3 Generalized Nash Equilibrium Problems

We now turn our attention to an important class of variational inequalities, the so-called
generalized Nash equilibrium problems (GNEPs). Let N € N be a natural number (the
number of players), let each player v = 1,..., N be given a real Banach space X,, and
let X := X x--- x Xy. We write z = (2!,...,2") for a generic element in X, and will
often use the notation x = (z”,2~") to emphasize the role of player v’s variable in the
vector z. In this notation, we have

e X, and Ve X_, = Xy
wH#V

Note that this is merely a matter of notational convenience and clarity. In particular,
it does not entail any kind of reordering of the spaces X, or the components ¥ which
constitute x.

Assume now that each player v is given a continuously differentiable objective function
fu: X — R, and that ® C X is a nonempty closed set. The GNEP we consider takes on
the form

minirgl(ize fu(z”,2™") subject to (x¥,27") € . (5.18)
veXy

Observe that f, depends on the whole variable x, but player v attempts to minimize f,
with respect to ¥ only. The constraint z = (z¥,27") € ® is often called a joint or shared
constraint since it is the same for every player. If ® is a convex set and the functions f,
are convex with respect to x¥ for all v, then we call the GNEP jointly convex.

Note that, if the set ® has a product representation of the form ® = &1 x --- x ®y,
with &, C X, for all v, then we can rewrite the GNEP (5.18) as

minimize f,(z",27") subject to z" € ®,, (5.19)
v eX,
which is called a (standard) Nash equilibrium problem (NEP).
For the most part of this section, we assume that the feasible set has an analytical

representation of the form
d={xeC:Gx) e K}, (5.20)

where Y is a real Banach space, G : X — Y a continuously differentiable mapping, and
K CY anonempty closed convex set. For the sake of simplicity, the set C' is assumed to
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be of the form C := HIJ/VZI C}, with nonempty closed convex sets C, C X,,. We will use
this representation to derive KKT-type conditions for GNEPs and to apply the augmented
Lagrangian method for their solution.

This section is divided into three parts. We begin by establishing the theoretical
foundations of GNEPs in Banach spaces and the relationship between jointly constrained
GNEPs and variational inequalities. After that, we present the augmented Lagrangian
method in a general Banach space setting and give a brief convergence analysis. Special
emphasis will be placed on a comparison to the corresponding algorithm for variational
inequalities (Algorithm 5.2). Finally, in Section 5.3.3, we specialize some of the results and
assumptions for finite-dimensional problems, thus paving the way for practical applications
in a finite-dimensional framework.

5.3.1 Theoretical Background

We begin with some general discussions and definitions for the GNEP (5.18). The concepts
below do not depend on the specific form (5.20) of the feasible set but hold if ® is an
arbitrary nonempty subset of X.

For a given player v and a point 7% € X_,, let

O, (x7")={a" € X, : (2", 27") € D}

be the set of feasible points for player v (with respect to 7). Note that, if the GNEP is
a NEP, then &, is independent of =% for all v.

Definition 5.19. Let T € ® be a feasible point. We say that T is a
(a) generalized Nash equilibrium or simply a solution of the GNEP if, for every v,
(@, z7") < fuly”,z7") forall y” € &, (z7"). (5.21)

(b) normalized (Nash) equilibrium of the GNEP if

N N
Zf,,(:i‘”,a_c_”) < Zfl,(y”,;ﬁ_”) for all y € ®. (5.22)
v=1 v=1

Note that every normalized equilibrium is also a generalized Nash equilibrium, which
can be seen by inserting points of the form y := (y”,z7") into (5.22). The converse
however is not true in general. For NEPs, it is easy to see that both concepts are
equivalent.

The notion of normalized equilibria is closely linked to the Nikaido—Isoda function

N
U(z,y) =Y [fla”a™) = fy",27)]. (5.23)
v=1

It is evident that a point T € ® is a normalized equilibrium if and only if

U(z,y) <0 Vyed. (5.24)
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This is an equilibrium problem in the sense of Section 2.2.4. Observe that ¥ (z,x) = 0 for
all z € X. Hence, if 7 satisfies (5.24), then it is a maximizer of U(z,-) on @, with optimal
value equal to zero. It therefore follows from standard first-order necessary conditions
(e.g., Lemma 3.1) that D,V (z,z)d < 0 for all d € T3(Z). This condition can be rewritten
as the variational inequality (VI)

zed, (F@),d) >0 Vde To(@), (5.25)

where F(x) := (Dgv f,(z))Y_,. Tt follows that we can tackle the GNEP (5.18) by solving
the VI (5.25) instead. Note that, by the preceding arguments, we have that (5.25) is
always a necessary condition for Z to be a normalized equilibrium of the GNEP. Moreover,
it is a sufficient condition if the GNEP is jointly convex, i.e., if ® is a convex set and the
functions f,, are convex with respect to x¥ for all v.

Let us now discuss the existence of solutions to the GNEP (5.18). Taking into
account the above arguments, it seems natural to construct an existence result by
analyzing the variational inequality (5.25) and applying the basic existence result for
VIs from Section 3.2.1. Assume that the GNEP is jointly convex, so that the VI (5.25)
is sufficient for Z to be a normalized equilibrium of the GNEP. We are then faced with
the following problem: the existence result for VIs (Corollary 3.41) requires that F' is a
pseudomonotone operator, and it is not immediately clear how this property relates to the
structure of the GNEP and the objective functions f,,. Recall that sufficient conditions
for pseudomonotonicity include either complete continuity or ordinary continuity together
with monotonicity. Clearly, the former is a very restrictive property since it would require
the complete continuity of all the derivatives D,v f,,.

On the other hand, the monotonicity of F' is also a somewhat restrictive property for
general GNEPs. Note that the convexity of f, with respect to ¥ does not imply the
monotonicity of F', since the latter property would require some knowledge about the
dependence of D,v f,, on the whole vector x. Indeed, assuming for the moment that the
functions f, are twice continuously differentiable, the derivative F” takes on the form

D?gla;lfl(x) D?gNa:lfl(x)
chlfoN(w) DiNfoN(w)

and the monotonicity of F would be equivalent to the positivity of this block operator for
all . The convexity of f, with respect to x¥ yields the positivity of the diagonal blocks
D2, .. f,(z) for all z, but it does not entail any information on the off-diagonal parts of
F'(x). Vaguely speaking, one could expect (5.26) to be positive if, in addition to the
positivity of the diagonal blocks, the operator exhibits some form of “diagonal dominance”.
Returning to the GNEP, this could be interpreted as the fact that player v has more
influence on his own objective than the other players do. This appears reasonable and
can be expected to hold in certain applications, but the above arguments are still very
vague and do not cover the GNEP in its full generality.

It follows that caution must be exercised when applying existence results for variational
inequalities to the GNEP setting. A notable exception is the finite-dimensional case,
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where the (bounded) pseudomonotonicity of F' is equivalent to simple continuity, and thus
we can expect this property to hold regardless of whether F' is monotone or not. In any
case, we shall now present a more general existence result which covers both the finite-
and infinite-dimensional case. The main idea is to directly apply the Ky—Fan minimax
theorem (Lemma 2.54) to the characterization (5.24) of normalized equilibria, without
appealing to the variational inequality (5.25).

Proposition 5.20. Let ® C X be nonempty, convex, weakly compact, and let U be weakly
sequentially lsc with respect to x. Then the GNEP admits a normalized equilibrium.

The assumption that W is weakly sequentially lsc with respect to x arises naturally
from the Ky—Fan theorem. However, unless X is finite-dimensional (in which case it is
implied by ordinary continuity), this is a nontrivial requirement due to the minus sign in
the Nikaido-Isoda function (5.23). Clearly, a sufficient condition is the weak sequential
lower semicontinuity of the functions

= fu(z¥,27") = fu(y”,27")

for all v and fixed y”, which can be expected to hold in certain applications. In fact,
a rather common situation is f,(z) = fl(z) + f2(z¥), where f! is weakly sequentially
continuous (e.g., if it involves operators which are compact or completely continuous), and
f? is weakly sequentially Isc (e.g., it is convex and continuous). This setting encompasses
various potential-type games as well as multiobjective optimal control problems (see
Section 7.3).

We now discuss KKT-type optimality conditions for the GNEP (5.18). To that end,
we assume that the constraint set ® has an analytical representation of the form (5.20),
i.e., we have

®={reC:G(x) e K},

where C := Hfjvzl C,, is a set of player-specific constraints, C,, C X, and K C Y are
nonempty closed convex sets, Y is a real Banach space, and G : X — Y a continuously
differentiable mapping. Moreover, we define the Lagrangian of player v as

LV X XYY SR, LY, == fi(z) + (\Gla)). (5.27)

Given a Nash equilibrium z € ®, a rather natural way to construct first-order necessary
conditions is to form the KKT system for every player v and to then concatenate these
systems for all v. This results in the following overall system which we call the KKT
system of the GNEP.

Definition 5.21 (KKT point). A tuple (z,A!,...,AY) € X x (Y*)V is a KKT point of
the GNEP if

—Dw LY (2, \") € Ng, (%) and N € Ng(G(z)) for all v.

We call z € © a stationary point of the GNEP if there exist A, AN € Y* such that
(z, A, ..., AV) is a KKT point of the GNEP.



110 5. Augmented Lagrangian Methods for Variational Inequalities

Since the above is just the collection of the KKT systems of all players, it follows
that the relationship between the GNEP and its KKT conditions is essentially the
same as for constrained optimization problems (see Section 3.1.1). In particular, if
is a generalized Nash equilibrium and a suitable constraint qualification holds for each
player’s optimization problem, then there exist multipliers A',..., AN € Y* such that
(z, A, ..., AN) is a KKT point of the GNEP. Conversely, if Z is a stationary point of the
GNEP, the functions f, are convex with respect to x¥ for all v, and the feasible sets
¢, (z77) C X, are convex, then 7 is a solution of the GNEP.

When dealing with normalized equilibria, it is possible to give a more refined KKT
system which takes advantage of the joint structure of the constraint set. Indeed, if Z is a
normalized equilibrium, then it is necessarily a solution of the variational inequality (5.25),
and the KKT conditions of this problem take on the form (compare with Definition 3.45)

—F(Z) -G (@)*N e Ne(z) and X € Ng(G(2)).

By Lemma 2.34, we have N (Z) = Ng, (Z1) x -+ x Ny (YY), Thus, we arrive at the
following condition.

Definition 5.22 (Normalized KKT point). A point (Z,)\) € X x Y* is a normalized
KKT point of the GNEP if

— Dy LY (2,\) € Ng, (%) and X € Ng(G(z)) for all v. (5.28)

The distinctive feature of normalized KKT points is the fact that the multiplier \ is
the same for every player. It follows that every normalized KKT point of the GNEP is
an (ordinary) KKT point of the GNEP with \* := X for all v.

The connection between normalized KKT points and normalized equilibria follows
from the connection between the latter and the corresponding variational inequality (5.25).
Indeed, if z € @ is a normalized equilibrium of the GNEP and the constraint G(x) € K
satisfies a suitable constraint qualification in Z, then Z is a normalized stationary point.
The converse holds provided that ® is a convex set and the functions f, are convex with
respect to z¥ for all v.

5.3.2 Problems in Banach Spaces

This subsection is dedicated to the augmented Lagrangian method (ALM) for a jointly
convex GNEP of the form (5.18). On the following pages, we work with a problem whose
feasible set ® has the form (5.20), i.e.,

d={reC:G(x) e K},

where C := ijvzl C, is a set of player-specific constraints, ¢\, C X, and K C Y are
nonempty closed convex sets, Y is a real Banach space, and G : X — Y a continuously
differentiable mapping. The algorithm is constructed similarly to that in Section 5.1.2: we
assume that there is a real Hilbert space H together with a dense embedding i : Y — H,
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and that K C H is a closed convex set with i~1(K) = K. Thus, given p > 0, we can
define the augmented Lagrangian of player v as the function (compare with Definition 4.2)

v . v L P 2 A ||)‘||%{

As in the optimization case, we note that the last term can be omitted since it plays no
role in the minimization of £ with respect to z".

For the definition of our penalty updating scheme, we also define the auxiliary function

Viz,\ p) = Ha(x) — P (G(a:) + 2) HH . (5.29)

This enables us to formulate our algorithm as follows.

Algorithm 5.23 (ALM for jointly convex GNEPs). Let (2%, \%) € X x H, py > 0, let
B C H be a nonempty bounded set, v > 1, 7 € (0,1), and set k := 0.

Step 1. If (z¥, \F) satisfies a suitable termination criterion: STOP.
Step 2. Choose w* € B and compute an approximate solution z¥*1 of the NEP consisting
of the minimization problems

mgiﬁrylie%lize Ly (z7, 27, wh). (5.30)

Step 3. Update the vector of multipliers to

k+1 . _ k+1 wsz
A = Pk G(QZ ) +

P Px <G(xk+1) + wk>] . (5.31)

Pk
Step 4. Let Vi1 := V(2F*1 w* pp) and set

, ifk=0or Vipy <71V,
Pril = {Pk 1 or Vi+1 = TVk (5.32)

vpr, otherwise.

Step 5. Set k < k+ 1 and go to Step 1.

Let us stress that, for all intents and purposes, Algorithm 5.23 can be seen as a special
case of Algorithm 5.2. The only difference is that the augmented subproblems now take on
the form of Nash equilibrium problems. These can be rewritten as variational inequalities,
in which case they take on the form (5.8), but the Nash equilibrium framework may
facilitate the use of subproblem solution methods which take into account the specific
Nash structure.

The convergence of Algorithm 5.23 can be shown in different ways, in particular
by simply appealing to the results in Section 5.2. Here, we present a slightly different
analysis which takes into account the Nikaido—Isoda function (5.23) and can therefore be
considered GNEP-specific. The following are the assumptions which we use. For the sake
of brevity, we write

Ly(z) =Ly, (z,w"). (5.33)
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Assumption 5.24 (Global convergence for GNEPs). We assume that
(i) for every x € X, the functions f,(-,z7") are convex and differentiable,
(i) the operator G is Kso-concave and differentiable,
(iii) the Nikaido—Isoda function W is weakly sequentially lsc with respect to z, and
)

(iv) there is a null sequence {e¥} C X* = X} x --- x X} such that, for all v and k,
el e ¢, and &Pt — D LY (M) e Ng, (27F D).

In many ways, the above assumptions are similar to those used in Section 5.2.2.
The main difference is that we use the weak sequential lower semicontinuity of the
Nikaido—-Isoda function instead of the pseudomonotonicity of the mapping F' from (5.25).

Before diving into the convergence analysis, let us present a simple result which
guarantees the existence of penalized solutions if the set C' is weakly compact.

Lemma 5.25. Let Assumption 5.24 (i)-(iii) be satisfied and let C' be weakly compact.
Then the augmented NEPs (5.30) admit solutions for all k.

Proof. Let k € N and hy(x) = d%(G(z) + w¥/p;). Observe that hy is convex and
continuous, hence weakly sequentially Isc by Proposition 2.44. Now, let

i(a,y) = Wla,y) + 5 o) — hay)|.

Then Wy is weakly sequentially lsc with respect to . Hence, by the Ky—Fan theorem
(Lemma 2.54), there exists & € C such that Wi (2,y) <0 for all y € C. We claim that z
solves the augmented NEP (5.30). To this end, let u be an arbitrary player index and let
y* € Cy. With y := (y*,27#) € C we obtain

0> W) =) £@57) = fuly” )| + B [ e(@) = )]

This shows that Z is a Nash equilibrium of (5.30). O

We note in passing that the existence of penalized solutions can also be shown by
rewriting the augmented subproblems as variational inequalities. Indeed, these problems
then take on the form

x € C, <£},/k(a;,wk),y—m> >0 VYyeC,

where E;)/ is the augmented Lagrangian in the variational inequality sense, see (5.6). More
details on these subproblems can be found in Section 5.2.1.

We now turn to the convergence analysis of Algorithm 5.23 and begin by discussing
the attainment of feasibility.
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Lemma 5.26. Let Assumption 5.24 hold, and let T be a weak limit point of the sequence
{xFY. Then T is a minimizer of the convex function di o G on C. In particular, if the
feasible set ® of the GNEP is nonempty, then T € ®.

Proof. Note that dx o G is convex by Theorem 2.50 and continuous, hence weakly
sequentially lsc. Let us first consider the case where {p;} remains bounded. Then the
penalty updating scheme (5.32) together with 7 € (0,1) yields

dic(G(z*1)) < HG(xk‘H) — Px (G(ka) + l,i) HH — 0.

Hence, dic(G(Z)) = 0, and the claim follows. We now assume that pp — oo, and define
again the functions hy(z) := d2(G(z) +w"/py). As in the previous proof, the functions
hy, are convex and continuous, thus weakly sequentially lsc. Now, let ¢+ —; Z for some
index set I, and assume that there exists y € C with di(G(y)) < di(G(Z)). Then

lim inf [hk(xk“) - hk(y)} = liminf [d?,C(G(x’Hl)) —d2(G(y)| > o.

Hence, there is a constant ¢; > 0 such that hy,(x*+1) — hi(y) > c; for all k € I sufficiently
large. Since hy is continuously differentiable by Lemma 2.43, it follows that

R (2 (y — 1) < hy(y) — he(aF ) < —eq (5.34)

for all k € I sufficiently large. Now, let {e*} be as in Assumption 5.24. Then

N
<€k+1,y - $k+1> < Z<Dx”£Z($kH>vyV o xu,k+1>
=1

Il
M= ]

[Dz’/fy(karl)(yV _ xu,k+1)] + %h2($k+1)(y o $k+1)

N
Il
—

WE

= [f’/(?/ya zm k) — fu(x“l)} + %khZ@kH)(y — gkt

20
U

k
= S hE Ty — ™) - w(ty),

where ¥ is the Nikaido—Isoda function from (5.23). By Assumption 5.24, ¥ is weakly
sequentially lsc with respect to the first argument; hence, there is a constant co € R such
that W(zF*1 y) > ¢y for all k € I. This together with (5.34) implies

<€k+1’y_$k;+1> < _%

and therefore contradicts ¥ — 0. O]

Having established the feasibility of weak limit points, we now turn to the optimality
part. Since we augmented the constraint G(z) € K in a joint manner, we can expect
convergence to normalized Nash equilibria, and this is precisely the assertion of the
following theorem.
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Theorem 5.27. Let Assumption 5.24 hold, and let the feasible set of (5.18) be nonempty.
Then every weak limit point of {x*} is a normalized equilibrium of the GNEP.

Proof. Let x**1 —; z for some I C N. Note that Z is feasible by Lemma 5.26. Let y € ®
be an arbitrary point. An easy calculation shows that Dyw £Y(xF+1) = Dy £V (aFF1 A
for all k. Since y” € C), for all v, Assumption 5.24 implies that

<€u,k+1’ yy _ xu,k+1> < Dxuﬁz(xk—l—l)(yy _ xl/,k—i-l)

< fu(y'/,x_”’kﬂ) — fl,(xk'H) —+ <)\k+1’ DmVG((L‘k—H)(yV . $V’k+1)>,

where we used the convexity of f, with respect to #” in the last estimate. Summing
this inequality over all v and using the convexity of x — (\¥T1, G(x)) (by Theorem 2.50)
yields

(5 = ) < Bt ) + (LG )y - )
< —U(F T y) + ML Gy) — Gt ).

Taking the limit & —; oo on both sides, using Lemma 5.3, ¢¥ — 0, and the weak sequential
lower semicontinuity of ¥ with respect to z, we obtain ¥(z,y) < 0. Since y € ® was
arbitrary, it follows that Z is a normalized equilibrium. O

5.3.3 The Finite-Dimensional Case

We now present a variant of the augmented Lagrangian method for the solution of jointly
convex GNEPs in finite dimensions. Some parts of the algorithm and its convergence
analysis are essentially special cases of the general algorithmic framework from the
preceding section (or from Section 5.1.2). However, the finite-dimensional case allows
for a more concrete discussion of certain algorithmic aspects, such as the solution of the
augmented subproblems, and allows us to simplify many assumptions such as constraint
qualifications. The study of the finite-dimensional algorithm is also motivated by the fact
that many applications are naturally given in this setting. For more details, we refer the
reader to the references [65,66], and to the examples in Section 7.5. Thus, it makes sense
to formulate the corresponding algorithm explicitly instead of treating it as a special
instance of the abstract high-level methods from the previous sections.

The general framework we consider throughout this section is a jointly constrained
GNEP with N € N players, where player v attempts to solve the problem

H;Ciuneig}liuze fu(z) subject to g(x) <0, h(z) <0, (5.35)
with smooth functions f, : R* - R, g : R® — R™, and h : R® — RP. For the sake of
simplicity, we assume that the functions f, are convex with respect to 2, and that g and
h are convex with respect to x. Hence, the GNEP is again jointly convex. Much of the
theory below can be carried out in a similar fashion for nonconvex problems.

The purpose of the two constraint functions g and h in (5.35) is to account for the
possibility of partial penalization: the constraints defined by g will be penalized, whereas h



5.3. Generalized Nash Equilibrium Problems 115

is an (optional) constraint which will remain in the penalized subproblems. This approach
allows for a certain degree of flexibility: for p = 0, we obtain the case of full penalization,
where the subproblems become unconstrained. On the other hand, one might use h to
model only the player-specific (non-coupling) constraints of the problems, so that the
penalized subproblems become standard NEPs.

Our aim will be to compute a normalized KKT point of (5.35), that is, a triple
(z, N\, i) € R"™™FP such that

Dy LY(Z, N, 1) =0, 0<A1Lg(z)<0, 0<pulh(z) <0, (5.36)

for all v, where £V (x, A\, ) := f,(2) + AT g(x) + p" h(x) is the Lagrange function of player
v. Note that we can rewrite the last two conditions in (5.36) as min{—g(z), A\} = 0 and
min{—h(z), p} = 0, where min is understood componentwise.

We have already observed in the preceding section that a (smooth) jointly convex
GNEP can be rewritten as a variational inequality. To this end, let

F(z) = (Vo fy(@))y, @ = {x € R": g(a) <0, hx) < 0}.

Note that & is just the feasible set of the GNEP, and that ® is convex. As in the previous
section, it follows that a point Z is a normalized equilibrium of (5.35) if and only if it
satisfies the variational inequality

Ted, F@)'(y—z)>0 Yyecod. (5.37)
The KKT conditions of this VI are given by
L£Y(z,\ ) =0, min{—g(z),A\} =0, min{-h(z),a} =0, (5.38)

where LY (2, A\, i) := F(x)+Vg(x)A\+Vh(z)uis the Lagrangian of (5.37) in the variational
inequality sense. Note that (5.38) is just a condensed version of (5.36).

We now apply an augmented Lagrangian scheme to the GNEP. Note that we could
equivalently construct the algorithm for a general VI of the form (5.37) which need not
originate from a jointly constrained GNEP. The two constructions are equivalent, but for
the sake of later applications we focus on the GNEP setting. It should also be remarked
that, for the GNEP case, the augmented Lagrangian method can be interpreted a little
more naturally since we can consider it as a penalization scheme applied to each player’s
objective function.

Let A € R™, p > 0, and consider the (partially) augmented Lagrangian of player v,
that is,

2p

The following is the basic algorithm which we consider throughout this section.

£33 = ) + 5 (9042 ) (5.39

Algorithm 5.28 (ALM for jointly convex GNEPs in R"?). Let (2%, \%, u0) € Rr+m+p,
po >0, w™™* >0,v>1,7€(0,1), and set k := 0.
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Step 1. If (2*, \¥, u*) satisfies a suitable termination criterion: STOP.

Step 2. Choose w* € [0, w™*¥]™ and compute an approximate KKT point (zht ,ukH)
of the NEP consisting of the minimization problems
minimize £ (z,w") subject to h(zx) < 0. (5.40)
v eR™v k
Step 3. Update the vector of multipliers to A**1 := max{0, w* + prg(z**t1)}.
Step 4. If
Hmin{—g(xk+l),)\k+1}H < THmin{—g(xk),)\k}H, (5.41)

then set ppi1 := pg. Otherwise, set pgr1 := vpi.
Step 5. Set k < k+ 1 and go to Step 1.

The above algorithm is fundamentally similar to Algorithm 5.23, with three minor
differences. First, the boundedness of w is now specified more explicitly through a thresh-
old parameter w™#*, and secondly, the nonpenalized constraints are given analytically
through the function h. Finally, Algorithm 5.28 uses a slightly different updating rule
for the penalty parameter, where the quantity Hmin{fg(zk), )\k}H is used as an indicator
of feasibility and complementarity at the current iterates. This differs slightly from the
update suggested by the slack variable approach (see Section 4.1.2), but the two updating
schemes can be used in a similar manner when proving convergence to KKT points. As a
side effect, the updating rule (5.41) has the advantage that it is naturally defined even
for k = 0, which is not the case for the previously used one.

The definition of A**! in Step 3 implies that, for all k, we have

Var LY (2FTY) = Vo £, (2T + Vo g(aF AL (5.42)

where, similarly to before, we use the notation £ (z) := L} (=, w”). The above equality
can be seen as the main motivation for the definition of \+1,

Assumption 5.29 (Convergence to KKT points). We assume that

(i) the functions f, are differentiable and convex with respect to ¥, and the partial
derivatives Vv f,, are continuous with respect to the whole vector z,

(ii) the mappings g and h are convex (i.e., they have convex component functions) and
continuously differentiable, and

(iii) at Step 2 of Algorithm 5.28, we choose (z*+1, **1) such that, for all v,
Vor LY (2T + Vo h(2P ) pF™ = 0 and  min{—h(z*1), uF 1} — 0.

In the present situation, the above assumptions are natural and do not need much
motivation. One detail which may warrant some discussion is the solution criterion
of the augmented subproblems. Note that, in our framework (5.35), the nonpenalized
constraints are given through the analytical representation h(z) < 0 instead of the abstract
set C C X which we used in the previous section. This makes it more natural to state
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the (approximate) optimality conditions of the augmented problems in terms of Lagrange
multipliers instead of using the normal cone to the set C. This is precisely what we did
in Assumption 5.29.

Let us now begin the convergence analysis. As usual, we start by addressing the
feasibility of limit points. The main result in this direction is the following.

Lemma 5.30. Let {z*} be generated by Algorithm 5.28 under Assumption 5.29, let T be
a limit point of {x*}, and assume that the function h satisfies CPLD in Z. Then T is a
global solution of

mi;leiﬂré}bize g+ (x)||* subject to h(z) <O0. (5.43)

In particular, if there are feasible points, then T is feasible.

Proof. Let 2%t — & for some I C N. If the sequence {p;} remains bounded, then (5.41)
implies min{—g(z**1), \**1} — 0, which yields g(Z) < 0. Hence, 7 is feasible and there
is nothing to prove. Assume now that pp — co. By Assumption 5.29, we have

Vo fu (@) + Vo g (@) (w* + prg(@®)) 1 + Vaw h(a* )bt — 0

for all v. Dividing this equation by p; and omitting some vanishing terms, we obtain

Varg(@™ ) g (@) + Vo (@M =10 (5.44)
for all v, where Ft! := p**1/pr. We now claim that min{—h(z**1), g**1} —; 0
as k — oo. To see this, note that min{—h(z**!), u**1} — 0 by Assumption 5.29;

hence, liminfy_, .o M;?H > 0 for all j, which implies liminfg_, ﬂ?“ > 0. Moreover,

h(xF*t1) —; h(Z) < 0 and, if h;(Z) < O for some j = 1,...,p, then p?“ — 0 and thus
also ﬂ?“ — 0. This shows that min{—h(z**+1), gk¥1} —; 0.

Collecting the equations (5.44) for all v and using the fact that Vg(z)g4+(z) =
Villgs(z)]?, we therefore have

1
Vo lgr @ D7 + VAEH DA =70 and - min{=h(z*1), 451 =10

as k — oo. It then follows from CPLD (see Theorem 3.54) that the limit point Z is a
stationary point of the optimization problem (5.43). Since this is a convex problem, Z is
a global minimizer, and the proof is complete. ]

The above result shows that the augmented Lagrangian method has no trouble
achieving feasibility for jointly convex GNEPs in finite dimensions. This is not surprising
due to the convex structure of the constraints.

We now prove the optimality of limit points. This result is again based on the CPLD
constraint qualification, this time applied to the pair (g, h) : R" — R™*P,

Theorem 5.31. Let {z*} be generated by Algorithm 5.28 under Assumption 5.29, and let
T be a limit point of {x*}. If the feasible set is nonempty and the function (g, h) satisfies
CPLD in Z, then T is feasible and a normalized equilibrium of the GNEP.
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Proof. Under the given assumptions, the function h itself also satisfies CPLD. Hence, the
feasibility of Z follows from Lemma 5.30. To obtain the optimality, let ¥ —; Z for some
I C N, and observe that g(z*) —7 g(Z) < 0. We first claim that min{—g(z*), \*} — 0 as
k —1 oo. This is clear if {py} is bounded, see (5.41). If pr, — oo and g;(Z) < 0 for some
i, then \¥ = max{0, wF™' + pr_19i(z%)} = 0 for sufficiently large k € I. Hence, in either
case, we have min{—g(z*), \*} —; 0. Now, define the mappings

F(z):= (Vo fu(@)Y, and LY (2, A\ p) = F(z) + Vg(2)\ + Vh(z)p.
Taking into account (5.42) and Assumption 5.29, an elementary calculation shows that
LV (zE NF pF) =0, min{—g(z*),\*} =0, and min{—h(z*),F} =0,
as k —1 0o. The result now follows from Theorem 3.54. O

The above constitutes our main global convergence result for GNEPs of the form
(5.35). Note that, due to the structure of the algorithm, we always obtain a normalized
equilibrium.

Let us close this section with a remark. It is worth observing that the study of jointly
constrained GNEPs does not require any analytical tools which exceed the theory of
optimization problems or variational inequalities. The reason for this is that normalized
equilibria correspond to VIs, which implies that we can use many of the same arguments
and constraint qualifications from optimization theory. This is in stark contrast to the
case of a “fully” generalized Nash equilibrium problem, i.e., a GNEP where the constraints
are different for each player but still depend on the whole vector z. Indeed, we will see in
Section 6.3.3 that the GNEP in its full generality requires the study of GNEP-tailored
constraint qualifications, and these add an extra layer of complexity to the problem and
the discussion of practical algorithms.



Chapter 6

(Quasi-Variational Inequalities

This chapter is dedicated to the study of variational inequalities (VIs) with implicit
constraints, usually called quasi-variational inequalities (QQVIs). More specifically, let X
be a real Banach space, ® : X = X a set-valued mapping, and F': X — X* a nonlinear
operator. The problem we consider consists of finding x € X such that

(Q) r € ®(x), (F(r),d)>0 Vde Tpu)(r). (6.1)

The above problem is obviously inspired by the variational inequality framework from
Chapter 5. Indeed, if the set-valued mapping ® is constant, i.e., ®(z) is independent of
x, then (Q) reduces to the variational inequality (5.1). Let us furthermore observe that,
if @ is convez-valued, i.e., if ®(x) is a convex set for all x, then (Q) can equivalently be
stated as

r € d(x), (Flx),y—x)>0 Yyecd(z), (6.2)

which is a generalization of the variational inequality (5.2).

We say that a point = € X is feasible for the QVI if x € ®(x). Note that, in the QVI
context, we do not use the symbol ® to denote the set of feasible points. Instead, ® is
the parametric set from the definition of (Q).

The notion of QVIs was introduced by Bensoussan and Lions [17] in the context
of impulse control problems. The QVI has since emerged as a universal tool for the
modeling of various equilibrium-type scenarios in the natural sciences. Its applications
include game theory [95], solid and continuum mechanics [19, 98, 148, 174|, economics
[111,126], probability theory [141], transportation [29,52,201], biology [94], and stationary
problems in superconductivity, thermoplasticity, or electrostatics 3,104,105, 153,193|.
For further information, we refer the reader to the corresponding papers, the monographs
[12,18,148,167|, and the references therein. An important feature of QVIs is that they can
be used to model generalized Nash equilibrium problems (GNEPs) in their full generality
(whereas ordinary VIs correspond to jointly constrained problems, see Section 5.3). This
opens up a broad spectrum of further applications in economics and game theory, see
[14,53,65,77,95,111] and the references therein.

In comparison to ordinary variational inequalities, the treatment of QVIs turns out to
be substantially more difficult. This is because many pathological situations can occur: for
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instance, the set ®(x) can be empty or nonconvex for certain x. Moreover, it is clear that
some kind of continuous dependence of ® on z will be necessary for a tractable analysis
of the problem. The most prominent notion in this regard is that of Mosco-convergence
(see |166,167] and Section 6.1.1), and this property will play a fundamental role for the
theory in this chapter.

The literature on algorithms for the solution of QVIs is quite diverse, and many
methods are designed for specific problem classes. For GNEPs, penalty methods are
some of the most successful techniques [66,69, 86|, along with interior point [60] and
Newton-type methods [64,123]. Another popular class of QVIs is the moving set case,
which arises if ®(x) = ¢(z) + ®¢ for some fixed set Py C X and a single-valued mapping
c: X — X. For these problems, there is a large amount of literature revolving around
fixed point approaches [42,171,173,198]. Another algorithmic technique for QVIs is based
on gap functions [85,96,97]. Finally, in [127,176], an augmented Lagrangian algorithm
was proposed for the solution of QVIs in finite dimensions. This method can be seen as a
special case of the algorithm we will present below.

In the present thesis, we will mainly be concerned with QVIs where the feasible set
mapping ® has an analytical representation of the form

O(x)={yeC:G(z,y) € K}, (6.3)

where X, Y are real Banach spaces, C C X and K C Y are nonempty closed convex
sets, and G : X2 — Y is a possibly nonlinear mapping. Note that C is independent of .
Hence, the parametric part of the constraints is completely modeled by the mapping G.
This framework allows for a very high degree of flexibility and encompasses many of the
aforementioned application cases. More details will be given in Chapter 7.

This chapter is based on the theory in [129,132] and the upcoming preprint [134]. The
material is structured as follows. In Section 6.1, we begin by analyzing in some detail
the theoretical background of QVIs. Section 6.1.1 in particular deals with the important
notion of Mosco-convergence, and also contains a prototypical existence result for general
quasi-variational inequalities. In Section 6.1.2, we analyze constraint qualifications and
Karush-Kuhn-Tucker (KKT) conditions for QVIs. Finally, in Section 6.1.3, we specialize
some of these concepts for QVIs with nonlinear programming constraints.

Starting with Section 6.2, we turn our attention to the augmented Lagrangian method
for a general QVI of the form (Q). In Section 6.2.1, we discuss and state the corresponding
algorithm, and in Section 6.2.2 we give some sufficient conditions for the existence of
penalized solutions. Section 6.2.3 then deals with convergence results for QVIs where the
feasible set mapping is convex-valued, and in Section 6.2.4 we analyze the convergence
for general QVIs using a primal-dual approach.

In Section 6.3, we show how some of the results surrounding the augmented Lagrangian
method can be specialized for QVIs in finite dimensions. In Sections 6.3.1 and 6.3.3, we
give some improved convergence results for QVIs and GNEPs, respectively. Finally, in
Section 6.3.2, we demonstrate how the augmented Lagrangian technique can be used to
construct an exact penalty method for finite-dimensional QVIs. The resulting algorithm
can be seen as a generalization of the methods from [51, 55,56, 78|.
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6.1 Theory of Quasi-Variational Inequalities

This section contains a discussion of various theoretical properties of QVIs. At this
point, it is also appropriate to state one of the most important special cases of QVIs, the
generalized Nash equilibrium problems (GNEPs).

Example 6.1 (Generalized Nash equilibrium problems). Let N € N be a natural number
and X, v=1,..., N, a collection of Banach spaces. We define X := HJVV:1 X, and write
z = (2¥,27") for a generic element in X, where 2" € X, and 27" € X_, =[], Xs.
Consider the GNEP where player v attempts to solve

mirylier)r}ize fu(x) subject to z¥ € ®,(z7"). (6.4)
Here, f, : X — R is a continuously differentiable function and ®