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Abstract

This thesis is concerned with a class of general-purpose algorithms for constrained
minimization problems, variational inequalities, and quasi-variational inequalities in
Banach spaces.

A substantial amount of background material from Banach space theory, convex
analysis, variational analysis, and optimization theory is presented, including some results
which are refinements of those existing in the literature. This basis is used to formulate
an augmented Lagrangian algorithm with multiplier safeguarding for the solution of
constrained optimization problems in Banach spaces. The method is analyzed in terms
of local and global convergence, and many popular problem classes such as nonlinear
programming, semidefinite programming, and function space optimization are shown to
be included as special cases of the general setting.

The algorithmic framework is then extended to variational and quasi-variational
inequalities, which include, by extension, Nash and generalized Nash equilibrium problems.
For these problem classes, the convergence is analyzed in detail. The thesis then presents
a rich collection of application examples for all problem classes, including implementation
details and numerical results.

Zusammenfassung

Die vorliegende Arbeit handelt von einer Klasse allgemein anwendbarer Verfahren zur Lö-
sung restringierter Optimierungsprobleme, Variations- und Quasi-Variationsungleichungen
in Banach-Räumen.

Zur Vorbereitung wird eine erhebliche Menge an Grundmaterial präsentiert. Dies
beinhaltet die Theorie von Banach-Räumen, konvexe und variationelle Analysis sowie
Optimierungstheorie. Manche der angegebenen Resultate sind hierbei Verfeinerungen
der entsprechenden Ergebnisse aus der Literatur. Im Anschluss wird ein Augmented-
Lagrange-Verfahren für restingierte Optimierungsprobleme in Banach-Räumen präsentiert.
Der Algorithmus wird hinsichtlich lokaler und globaler Konvergenz untersucht, und viele
typische Problemklassen wie nichtlineare Programme, semidefinite Programme oder
Optimierungsprobleme in Funktionenräumen werden als Spezialfälle aufgezeigt.

Der Algorithmus wird dann auf Variations- und Quasi-Variationsungleichungen verall-
gemeinert, wodurch implizit auch (verallgemeinerte) Nash-Gleichgewichtsprobleme abge-
handelt werden. Für diese Problemklassen werden eigene Konvergenzanalysen betrieben.
Die Dissertation beinhaltet zudem eine umfangreiche Sammlung von Anwendungsbeispie-
len und zugehörigen numerischen Ergebnissen.
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Chapter 1

Introduction

In the last decades, optimization has emerged as one of the most fruitful branches of
applied mathematics. One of the reasons for this phenomenon is that optimization lies
at the intersection of many practical disciplines such as engineering, economics, and
other applied sciences, and theoretical fields such as convex and variational analysis.
As a result, the stellar development of optimization theory has always been motivated
and driven by application contexts, whereas new theoretical findings have often resulted
in new applications or different perspectives on existing ones. This research spiral is
continuing even today, with new developments such as nonsmooth optimization techniques
posing a variety of challenges but also resulting in an unprecedented amount of practical
applications.

The technique of Lagrange multipliers is probably one of the most influential in the
history of mathematical optimization. It was introduced by Joseph-Louis Lagrange in
the eighteenth century for the determination of maxima and minima of functions subject
to equality constraints [80]. Fast forward over two hundred years, and the Lagrange
multiplier technique is at the heart of modern optimization theory and forms the basis of
many algorithms for the solution of constrained optimization problems. This is epitomized
by the vast amount of literature around this topic, including [24, 32, 112, 119, 163] and
many more. A complete list of references is nearly impossible at this point.

In this thesis, we shall mainly be concerned with a general framework of optimization
problems in Banach spaces and its extension to more sophisticated problem classes such
as variational and quasi-variational inequalities, as well as (generalized) Nash equilibrium
problems. The basic optimization framework we consider is a problem of the form

(P ) minimize
x∈C

f(x) subject to G(x) ∈ K, (1.1)

where f and G are smooth functions defined on suitable Banach spaces, and C and K are
convex sets. One of the aims of the thesis is to develop a class of algorithms for the solution
of such problems. The methods we discuss can be classified rather broadly as safeguarded
augmented Lagrangian methods, and they are applicable not only to optimization problems
but also to variational inequalities and many more (see above). A significant emphasis

1



2 1. Introduction

is placed on a very high level of generality, and this opens up a broad spectrum of
applications which will also be discussed after the theoretical investigations.

This thesis is essentially a summary of the research papers [128–136]. A substantial
effort was undergone to simplify and streamline the theory, remove unnecessary assump-
tions, and present the results in a unified framework. In addition, a significant amount of
background material is presented, including many results from the literature which are
generalized, strengthened, or modified in other ways to suit the subsequent algorithmic
investigations.

The following is an overview of the structure of the thesis. Chapter 2 contains a
collection of fundamental results from various fields of mathematics, structured and
presented in a purposeful manner to pave the way for the discussion of optimization
problems. In Chapter 3, we discuss some basics of optimization theory, including first- and
second-order conditions for constrained minimization problems, constraint qualifications,
and similar concepts for variational inequalities. Although this section is mostly a
collection of results from the literature, it also contains some developments which are new
in their given form, such as the properties of second-order conditions in Section 3.1.3, the
sequential optimality conditions in Section 3.2.3, and the primal-dual sensitivity analysis
in Section 3.2.4.

Starting with Chapter 4, the attention is directed towards augmented Lagrangian
methods for optimization and related problems. This chapter begins with a study of
the algorithm for constrained minimization problems in Banach spaces; it contains a
historical overview, a formal deduction of the algorithm, as well as local and global
convergence analyses. The results in this chapter are largely new, and they are based on
the publications [133,135,136], with a significant amount of improvements.

In Chapter 5, we discuss how the augmented Lagrangian algorithm can be applied to
variational inequalities and generalized Nash equilibrium problems. This chapter is based
on the papers [129, 133] and the preprint [128]. Chapter 6 then contains a discussion
of quasi-variational inequalities, which can be seen as the most general problem class
considered in the thesis. This chapter contains a theoretical investigation of such problems,
a description and analysis of the augmented Lagrangian algorithm, and some additional
considerations in finite dimensions, including an exact penalty method. This chapter is
based on [129,132] and the upcoming preprint [134].

In Chapter 7, we briefly discuss the concept of semismooth Newton methods and
then provide a substantial collection of application examples for the proposed augmented
Lagrangian algorithms, including linear and nonlinear obstacle problems, semilinear
optimal control, and parameter estimation problems. We then discuss some examples
of generalized Nash equilibrium problems (GNEPs), including multiobjective control
problems and economic differential games, and some applications of quasi-variational
inequalities (QVIs) from mechanics and superconductivity. The chapter concludes with
two problem libraries for GNEPs and QVIs, respectively, in finite dimensions.

Chapter 8 contains some additional results on augmented Lagrangian techniques,
including an example which demonstrates the necessity of multiplier safeguarding. Finally,
in Chapter 9, some comments and future research perspectives are discussed.



Chapter 2

Background Material

This preliminary chapter establishes some fundamental notions which are indispensable
for the remainder of the thesis. Most of the material presented here is simply a careful
collection of results from the literature, structured and presented in a way which hopefully
makes the theory as clear as possible.

The following is an outline of the structure of the chapter. In Section 2.1, we will
mainly be concerned with the necessary tools from functional analysis. The results in
this section can be found, for instance, in the books [38, 160, 197, 221–223]. We begin
with some preliminary material on topological spaces in Section 2.1.1, where we give a
brief account on different notions of compactness, and on the convergence of sequences.
This section mainly serves the purpose of providing a formal basis for the topological
treatment of Banach spaces. In Section 2.1.2, we give some basic results on Banach and
Hilbert spaces, weak convergence, various types of continuity, and on their relationship
with differentiability. Section 2.1.3 is then dedicated to the weak topology on a Banach
space, its topological structure, and the resulting notions of compactness. Finally, in
Section 2.1.4, we give some prominent examples of infinite-dimensional spaces, including
the well-known Lebesgue and Sobolev spaces. A more comprehensive description of these
spaces can be found in many textbooks, including [1, 210,211].

In Section 2.2, the second part of the chapter, we then turn our attention to some
basic concepts from convex and variational analysis. In many ways, we only scratch
the surface of these enormous topics. More details on convex analysis can be found, for
instance, in [13, 15], and in the famous book by Rockafellar [186]. For an overview of
variational analysis, we refer the reader to the treatises [34, 163, 191], and to the book
[32]. In the present thesis, we begin in Section 2.2.1 with some fundamental concepts of
variational geometry such as radial, tangent, and normal cones, as well as the notion of
recession cones. In Section 2.2.2, we give a fairly basic treatment of convex functions,
including a variety of important examples, and the convex subdifferential.

The subsequent Sections 2.2.3 and 2.2.4 are more specialized in terms of their scope.
In Section 2.2.3, we discuss a notion of convexity (and concavity) for operators with values
in an arbitrary Banach space. This topic, although well known in the literature, is often
covered only peripherally in textbooks on convex analysis and optimization. The history

3



4 2. Background Material

of such generalized concepts of convexity can be traced back to the doctoral thesis of
J. Borwein [33], and they have since appeared most prominently in the context of vector
optimization [125] and in semidefinite programming [218]. Since the material we require
here is not too involved, Section 2.2.3 is self-contained and includes all the corresponding
proofs (most of which are elementary).

The final part of this chapter, Section 2.2.4, deals with a class of abstract equilibrium
problems and a family of existence results commonly referred to as Ky Fan theorems. The
history of this branch of variational analysis goes back to the seminal paper [73] by Ky
Fan, where he provided a geometric proof of his famous minimax inequality. This paper,
in turn, has its roots in a fixed point approach developed by Knaster, Kuratowski, and
Mazurkiewicz [144]. For the purposes of this thesis, we will use a slightly less well-known
variant of the Ky Fan theorem which is due to Brezis, Nirenberg, and Stampacchia [39].
This result, along with a complete formal proof, will be given in Section 2.2.4, and it forms
the basis of virtually all existence results for variational and quasi-variational inequalities
in the subsequent parts of the thesis.

2.1 Banach Space Theory

This section is the most basic in this chapter since it establishes various notions from
functional analysis. In addition, there is also a brief section on basic topology, with the
aim of fixing the notation and terminology as well as providing a clear and well-founded
basis for the subsequent discussions.

2.1.1 Topologies and Compactness

We begin with a discussion of some fundamental topological notions. This is necessary
for the formal treatment of some aspects of optimization and variational analysis. This
section is not intended as a comprehensive overview of general topology, but rather as a
purposeful discussion of the particular concepts required for the subsequent chapters. A
more in-depth account of general topology can be found, for instance, in [140].

Recall that a topological space is an arbitrary set X together with a collection O of
subsets of X, called the open sets, such that

(i) arbitrary unions of open sets are again open, and

(ii) every finite intersection of open sets is open.

By convention, the trivial intersection equals the whole set X, and the trivial union is
the empty set. Hence, O is necessarily nonempty and ∅, X ∈ O. Prominent examples
of topological spaces include metric spaces and, by extension, normed vector spaces. In
those spaces, the concept of open sets can be defined via open balls, and this induces the
corresponding topology.

Let X be an arbitrary topological space and A ⊆ X a set. We say that A is closed if
X \A is open. We write cl(A) for the closure of A, which is the intersection of all closed
supersets of A, int(A) for the interior of A, which is the union of all open subsets of A,
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and bd(A) := cl(A) \ int(A) for the boundary of A. We call a set V a neighborhood of a
point x ∈ X if there is an open set U ⊆ X such that x ∈ U ⊆ V . The neighborhood V
itself is typically not required to be an open set, but it often suffices to consider open
neighborhoods in proofs or other topological arguments.

Definition 2.1 (Hausdorff space). A topological space X is called a Hausdorff space if,
for all x, y ∈ X with x 6= y, there are disjoint neighborhoods Nx of x and Ny of y.

An important notion in general topology is that of compactness. We say that a
set A ⊆ X is compact if, for every collection {Oi}i∈I of open subsets of X such that
A ⊆

⋃
i∈I Oi, there is a finite index set J ⊆ I such that A ⊆

⋃
i∈J Oi. One of the

fundamental properties of compact sets is the following.

Lemma 2.2 (Finite intersection principle, [32, Prop. 2.4]). Let X be a topological space,
A ⊆ X a compact set, and {Fi}i∈I a family of closed subsets of A such that, for every
finite set J ⊆ I, the intersection

⋂
i∈J Fi is nonempty. Then

⋂
i∈I Fi is nonempty.

In metric spaces, the notions of openness, closedness, and compactness can be fully
characterized through sequences and their convergence properties. This no longer holds
true for an arbitrary topological space, not even for practically relevant topologies such
as the weak topology on a Banach space (see Example 2.26). Nevertheless, it will be
useful to introduce and discuss appropriate notions of sequences and of convergence in
topological spaces. This has two reasons. First, the treatment of sequences and their
induced continuity properties is much more convenient than that of the generic (abstract)
topological notions. This is particularly true when working with optimization algorithms,
for which sequential continuity properties are clearly the most natural framework. The
second reason why the treatment of sequences is useful is that, in some cases, the use
of sequence-based continuity properties over their topological counterparts is actually
necessary, see, for instance, Remark 2.27.

Definition 2.3 (Convergence of sequences). Let X be a topological space and {xk}k∈N
a sequence of points in X. We say that {xk} converges to x ∈ X, and write xk → x, if
every neighborhood of x contains all but finitely many elements of {xk}.

The above definition is obviously consistent with the standard convergence in metric
spaces. If X is a Hausdorff space, then limits of sequences (if existent) are unique.

The definition of sequences and their convergence gives rise to “sequential” notions of
closedness and compactness. We say that a set A ⊆ X is

• sequentially closed if the limit of every convergent sequence from A lies in A,

• sequentially open if, whenever x ∈ A and {xk} ⊆ X, xk → x, then xk ∈ A for
sufficiently large k, and

• sequentially compact if every sequence in A admits a subsequence which converges
to a point in A.

It is easy to verify that every open (closed) subset of X is sequentially open (closed).
Moreover, a set is sequentially open if and only if its complement is sequentially closed.
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Definition 2.4 (Continuity properties). Let X be an arbitrary topological space.

(a) A function f : X → Y , with Y a topological space, is called (sequentially) continuous
if f−1(O) is (sequentially) open in X for every open set O ⊆ Y .

(b) A function f : X → R is called (sequentially) lower semicontinuous if the level sets
{x ∈ X : f(x) ≤ c} are (sequentially) closed in X for every c ∈ R.

(c) A function f : X → R is called (sequentially) upper semicontinuous if the level sets
{x ∈ X : f(x) ≥ c} are (sequentially) closed in X for every c ∈ R.

We will often use the abbreviations lsc and usc for lower and upper semicontinuity,
respectively. Clearly, f is (sequentially) lsc if and only if −f is (sequentially) usc.

Note that, from a high-level perspective, all the above continuity notions can actually
be recovered as special cases of plain continuity. Indeed, the sequential continuity notions
are obtained if X is equipped with a slightly modified topology (see below), and the lower
and upper semicontinuity of f can be recovered by equipping R with a suitable topology,
see [140, Problem 3.F] for more details.

The definition of sequential continuity may seem rather odd at first glance. The
particular definition here was chosen to closely resemble ordinary continuity and to
therefore highlight the differences between the two definitions. The following result states
that our notion of sequential continuity is precisely what one would intuitively expect.

Proposition 2.5. Let X,Y be arbitrary topological spaces and f : X → Y . Then the
following are equivalent:

(i) f is sequentially continuous from X into Y .

(ii) Whenever {xk} ⊆ X and xk → x in X, then f(xk)→ f(x) in Y .

Proof. (i)⇒(ii): Let {xk} ⊆ X be an arbitrary sequence such that xk → x in X. We need
to show that f(xk)→ f(x) in Y . To this end, let U ⊆ Y be an arbitrary neighborhood
of f(x). Without loss of generality, U is open. Then f−1(U) is sequentially open in X,
which implies that xk ∈ f−1(U) for k sufficiently large, and thus f(xk) ∈ U .

(ii)⇒(i): Let U ⊆ Y be an arbitrary open subset of Y . We need to show that f−1(U)
is sequentially open in X. Let {xk} ⊆ X be a sequence such that xk → x for some
x ∈ f−1(U). Then f(xk) → f(x) ∈ U by assumption. Hence, by the definition of
convergence in Y , we obtain f(xk) ∈ U for sufficiently large k, and thus xk ∈ f−1(U).

For sequentially lsc and usc functions, it is also possible to obtain a rather intuitive
characterization. This is achieved by directly using the definition of these concepts. It
follows that a function f : X → R is

• sequentially lsc if and only if, whenever x ∈ X and xk → x in X, then f(x) ≤
lim infk→∞ f(xk), and

• sequentially usc if and only if, whenever x ∈ X and xk → x in X, then f(x) ≥
lim supk→∞ f(xk).
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Hence, these two notions are also equivalent to their conventional versions. In what
follows, we shall occasionally make reference to sequential continuity properties in a single
point x ∈ X. The meaning of this should be fairly obvious; for instance, we say that
f : X → Y , with X,Y topological spaces, is sequentially continuous in x if f(xk)→ f(x)
in Y for every sequence xk → x in X. Sequential lower or upper semicontinuity can be
defined in an analogous manner (with Y = R).

Proposition 2.6 (Minimization principle, [32, Thm. 2.6]). Let X be an arbitrary topo-
logical space, A ⊆ X a (sequentially) compact subset of X, and f : A→ R a (sequentially)
lower semicontinuous function. Then f attains a global minimum on A.

The above is the basic existence result for minimizers of functions on topological
spaces. It is often attributed to K. Weierstrass. If X is a real Banach space endowed
with the weak topology (see Section 2.1.3), then the result is sometimes called the direct
method of the calculus of variations.

We now discuss an approach which allows us to formally interpret the sequential
notions of closedness, openness, and continuity in a topological framework. The main idea
is to define an auxiliary topology with the aim of representing precisely the sequential
structure of X. A natural way of doing this is the following.

Definition 2.7 (Sequential topology). Let X be an arbitrary topological space. Then
the sequential topology on X is the topology given by the sequentially open subsets of X.

It is easy to see that the sequential topology is well-defined (i.e., it is always a
topology). Moreover, since every closed set in a topological space is sequentially closed, it
follows that the sequential topology is always stronger (finer) than the original topology
of X. Finally, it is important to observe that the notion of convergence induced by the
sequential topology on X is identical to the notion of convergence induced by the original
topology. One direction of this equivalence is trivial (since the sequential topology is
stronger than the original one), and the other direction follows from the definition of
sequential openness.

It follows from Proposition 2.5 that a mapping f : X → Y from X, equipped with its
sequential topology, into an arbitrary topological space Y , is continuous if and only if it
maps convergent sequences to convergent sequences. The great benefit of this observation
arises when applying results from general topology (which are often formulated in an
abstract topological framework) to a situation where only sequential properties (such as
continuity) are available. In that case, we can simply apply the desired results in the
sequential topology of X, and the resulting argumentation is completely rigorous.

2.1.2 Banach and Hilbert Spaces

A Banach space is a normed vector space X which is complete. Throughout this thesis,
we will only deal with Banach spaces where the underlying field is the real numbers, and
emphasize this by calling them real Banach spaces.

Given a real Banach space X, we write IdX for the identity mapping on X. For a point
x ∈ X, we denote by Br(x) := {y ∈ X : ‖x− y‖X ≤ r} the closed r-ball around x, and
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we write BX
r for the closed r-ball around 0 ∈ X. Given another real Banach space Y and

a mapping T : X → Y , we say that T is continuous in x0 ∈ X if, for every ε > 0, there
exists δ > 0 such that T (Bδ(x0)) ⊆ Bε(T (x0)). It is easy to verify that T is continuous in
every x ∈ X if and only if it is continuous in the sense of Definition 2.4. We say that T is
Lipschitz-continuous on A ⊆ X, with modulus L ≥ 0, if ‖T (x)− T (y)‖Y ≤ L‖x− y‖X
for all x, y ∈ A, and locally Lipschitz-continuous in x ∈ X if there exists r > 0 such that
T is Lipschitz-continuous on Br(x). If T is Lipschitz-continuous with modulus L = 1,
then we call T nonexpansive. Finally, a mapping T : X → Y is said to be linear if
T (αx+ y) = αT (x) + T (y) for all x, y ∈ X and α ∈ R.

Definition 2.8 (Operator and dual spaces). Let X and Y be real Banach spaces. Then
L(X,Y ) is the space of bounded linear mappings from X into Y , equipped with the norm

‖A‖L(X,Y ) := sup
‖x‖X≤1

‖Ax‖Y . (2.1)

The space L(X,R) is denoted by X∗ and called the dual space of X.

Given φ ∈ X∗ and x ∈ X, we will often use the duality pairing 〈φ, x〉 := φ(x) to
denote the evaluation of φ. Note that 〈·, ·〉 is a bilinear mapping on X∗ × X. Given
a linear operator T ∈ L(X,Y ), we denote by T ∗ ∈ L(Y ∗, X∗), 〈T ∗y, x〉 := 〈y, Tx〉, the
adjoint operator of T . We say that T is an isomorphism if T is bijective and its inverse
lies in L(Y,X). We say that T is isometric if ‖Tx‖Y = ‖x‖X for all x ∈ X. If T satisfies
both these properties, we call T an isometric isomorphism.

If X is not the trivial space X = {0}, then (2.1) can equivalently be written as

‖A‖L(X,Y ) = sup
‖x‖X=1

‖Ax‖Y = sup
x∈X\{0}

‖Ax‖Y
‖x‖X

.

It is well known that L(X,Y ) and X∗ are again Banach spaces. (This even holds if
X is just an arbitrary normed space.) Given a real Banach space X, we denote by
X∗∗ := (X∗)∗ the bidual space of X. Furthermore, we say that X is reflexive if the
canonical embedding

iX : X → X∗∗, (iXx)(f) := f(x),

is surjective. Note that iX is always injective and isometric. Hence, if X is reflexive, then
iX is an isometric isomorphism from X onto X∗∗.

We say that a real Banach space X is a (real) Hilbert space if the norm on X is induced
by a scalar product, i.e., if there exists a symmetric bilinear mapping (·, ·) : X2 → R such
that ‖x‖X =

√
(x, x) for all x ∈ X. One of the most important properties of Hilbert

spaces is the following.

Theorem 2.9 (Riesz representation, [221, Section III.6]). Let X be a real Hilbert space
and f ∈ X∗. Then there exists a uniquely determined xf ∈ X such that f = (xf , ·). The
corresponding mapping x 7→ (x, ·) is an isometric isomorphism from X onto X∗.
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The Riesz representation theorem has several important consequences for the analytical
structure of Hilbert spaces. In particular, it implies that every real Hilbert space is reflexive.
Another consequence is the following result which plays a fundamental role in the analysis
of partial differential equations.

Corollary 2.10 (Lax–Milgram, [221, Section III.7]). Let X be a real Hilbert space and
a : X2 → R a bilinear form with the following properties:

(i) There exists c1 > 0 with |a(x, y)| ≤ c1‖x‖X‖y‖X for all x, y ∈ X.

(ii) There exists c2 > 0 such that a(x, x) ≥ c2‖x‖2X for all x ∈ X.

Then the mapping Ta(x) := a(x, ·) is a continuous isomorphism from X onto X∗ with
‖Ta‖L(X,X∗) ≤ c1 and ‖T−1

a ‖L(X∗,X) ≤ c−1
2 .

Note that the bilinear form a in the above result is not necessarily symmetric. If a is
symmetric, then it is a scalar product on X whose induced norm is equivalent to ‖ · ‖X .
Thus, in this case, the Lax–Milgram theorem is just the Riesz representation theorem.

Another fundamental property of Hilbert spaces is the existence of projections onto
(nonempty) closed convex subsets.

Lemma 2.11 (Projection operator). Let H be a real Hilbert space and C ⊆ H a nonempty
closed convex set. Then, for every x ∈ H, there is a unique point PC(x) ∈ C of minimal
distance to x. The resulting operators PC : H → H and IdH −PC are nonexpansive.

In a general Banach or Hilbert space, many analytical properties of convex sets can
be proved by using separation arguments. We will encounter two separation results in
this thesis: the one below and Proposition 2.19 in Section 2.1.3.

Proposition 2.12 (First separation theorem, [32, Thm. 2.13]). Let X be a real Banach
space and S, T ⊆ X convex sets such that S has nonempty interior and int(S) ∩ T = ∅.
Then there exists φ ∈ X∗ \ {0} such that φ(s) ≥ φ(t) for all s ∈ S, t ∈ T .

If X is finite-dimensional, then the assumption on int(S) can be dropped. This is not
the case in an arbitrary Banach space, even if the sets are closed, see [212].

Recall that the Banach open mapping theorem [197,221] states that a surjective linear
operator A ∈ L(X,Y ) between Banach spaces X and Y is open, in the sense that A(U) is
open in Y whenever U is open in X. Since A is linear, this is equivalent to the existence
of an r > 0 such that BY

r ⊆ A(BX
1 ). Here, we state a slightly more general version of

this theorem which is essentially due to Graves [92].

Theorem 2.13 (Uniform open mapping theorem). Let X,Y be real Banach spaces and
A ∈ L(X,Y ) a surjective linear operator. Then there exists r > 0 such that BY

r ⊆ A(BX
1 )

and, whenever T ∈ L(X,Y ) and δ := ‖T −A‖L(X,Y ) < r, then BY
r−δ ⊆ T (BX

1 ).

Proof. The first assertion is the Banach open mapping theorem. For the proof of the
second assertion, we refer the reader to [58, Thm. 1.2] or [59, Thm. 5D.2].
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We now discuss some notions of convergence on Banach spaces and their induced
continuity properties. Apart from standard (strong, norm) convergence, the following are
the two basic notions of sequential convergence which we will use.

Definition 2.14 (Weak and weak-∗ convergence). Let X be a real Banach space.

(a) We say that {xk} ⊆ X is weakly convergent to x ∈ X, and write xk ⇀ x, if
φ(xk)→ φ(x) for every φ ∈ X∗.

(b) We say that {φk} ⊆ X∗ is weak-∗ convergent to φ ∈ X∗, and write φk ⇀∗ φ, if
φk(x)→ φ(x) for every x ∈ X.

Given a sequence {xk} ⊆ X, we say that x is a weak limit point of {xk} if there is a
subsequence of {xk} which converges weakly to x. Note that this does not necessarily
coincide with the notion of limit points in the topological sense (see Example 2.26).
Weak-∗ limit points are defined in an analogous manner.

Definition 2.15. Let X,Y be real Banach spaces and T : X → Y . We say that T is

(i) weakly sequentially continuous if xk ⇀ x implies T (xk) ⇀ T (x).

(ii) weak-∗ sequentially continuous if Y = W ∗ for some real Banach space W , and
xk ⇀ x implies T (xk) ⇀∗ T (x) in W ∗.

(iii) completely continuous if xk ⇀ x implies T (xk)→ T (x).

Clearly, complete continuity is the strongest notion of (sequential) continuity. In
particular, it implies both ordinary and weak sequential continuity. A related notion
which is frequently used in the literature is that of compact operators. A linear operator
T : X → Y is called compact if it maps bounded sets in X to precompact sets (i.e., sets
with compact closure) in Y . It is well-known and easy to verify that every compact linear
operator is completely continuous, and the converse holds provided that X is reflexive.

Let X,Y be real Banach spaces. Recall that an operator T : X → Y is said to be
(Fréchet-)differentiable in x ∈ X if there is a bounded linear operator T ′(x) ∈ L(X,Y )
such that

T (x+ h) = T (x) + T ′(x)h+ o(‖h‖X)

for all h ∈ X sufficiently small. An important connection between Fréchet-differentiability
and complete continuity is given by the following result.

Proposition 2.16. Let X,Y be real Banach spaces, T : X → Y a completely continuous
operator, and let T be Fréchet-differentiable in some x ∈ X. Then T ′(x) ∈ L(X,Y ) is
completely continuous.

Proof. Assume that T ′(x) is not completely continuous. Then there is a sequence
{wk} ⊆ X such that wk ⇀ w ∈ X, ‖wk‖X ≤ 1 for all k, and ‖T ′(x)wk − T ′(x)w‖Y ≥ ε
for all k and some ε > 0. By Fréchet-differentiability, there exists r > 0 such that

‖T (x+ h)− T (x)− T ′(x)h‖Y ≤
ε

4
‖h‖X for all h ∈ BX

r .
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Observe now that ‖rwk‖X ≤ r for all k. It follows that ‖T (x+rwk)−T (x)−rT ′(x)wk‖Y ≤
(εr)/4, and the same inequality holds with wk replaced by w. Hence,

‖T (x+ rwk)− T (x+ rw)‖Y ≥ ‖T ′(x)(rwk − rw)‖Y
− ‖T (x+ rwk)− T (x)− rT ′(x)wk‖Y
− ‖T (x+ rw)− T (x)− rT ′(x)w‖Y

≥ ‖T ′(x)(rwk − rw)‖Y −
εr

2
≥ εr

2
,

which contradicts the complete continuity of T .

We now give another result which relates the complete continuity of an operator T
to that of the derivative mapping T ′ : X → L(X,Y ). For this, we need the notion of
uniform differentiability. A differentiable operator T : X → Y is said to be uniformly
differentiable on a subset A ⊆ X if

‖T (x+ h)− T (x)− T ′(x)h‖Y
‖h‖X

→ 0 as ‖h‖X ↓ 0,

uniformly for x ∈ A. This means that, for every ε > 0, we can choose δ > 0 such that
‖T (x+ h)− T (x)− T ′(x)h‖Y ≤ ε‖h‖X whenever x ∈ A and ‖h‖X ≤ δ.

The following result was proved in [175]; note the different terminology in that
reference.

Proposition 2.17. Let X,Y be real Banach spaces and assume that X is reflexive. Let
T : X → Y be completely continuous and uniformly differentiable on bounded subsets of
X. Then T ′ : X → L(X,Y ) is completely continuous.

The above result admits a (partial) converse for real-valued functions. Indeed, if X is
a real reflexive Banach space and f : X → R a differentiable mapping, then the complete
continuity of f ′ : X → X∗ actually implies the weak sequential continuity of f . More
details can be found in [222, Section 41.4].

2.1.3 The Weak Topology on a Banach Space

Throughout this section, let X be a real Banach space. A fundamental issue in infinite-
dimensional spaces is the choice of topology. This is particularly critical because, in the
norm topology, very few practically relevant sets are compact. Indeed, the closed unit
ball BX

1 (or any other closed ball) is compact if and only if X is finite-dimensional. This
underlines the necessity of a different topological approach to generic Banach spaces. The
main definition in this context is the following.

Definition 2.18 (Weak topology). The weak topology on a real Banach space X is the
coarsest topology for which all f ∈ X∗ are continuous.
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It is rather easy to verify that the weak topology is well-defined and a Hausdorff
topology. Constructions of the above type are usually referred to as initial topologies.
That is, one takes a family F of functions mapping X into arbitrary topological spaces,
and then defines the initial topology with respect to that family as the coarsest topology
such that all f ∈ F are continuous. The resulting topology is that generated by the
preimages of open sets under the mappings in F . In our case, the weak topology is
precisely the initial topology of X with respect to the family F := X∗.

In accordance with topological terminology, we call a set S ⊆ X weakly open (closed,
compact) if it is open (closed, compact) with respect to the weak topology. Since the
weak topology is coarser than the strong topology, it follows that every weakly closed
(open) set is strongly closed (open), and every strongly compact set is weakly compact.

Like every topology, the weak topology induces a notion of convergence, which is
precisely the weak convergence defined in Definition 2.14. Thus, we call a set weakly
sequentially open (closed, compact) if it is sequentially open (closed, compact) with
respect to weak convergence.

Proposition 2.19 (Second separation theorem, [32, Thm. 2.14]). Let S, T ⊆ X be
disjoint closed convex sets, and let S be weakly compact. Then there are c1, c2 ∈ R and
φ ∈ X∗ such that φ(s) ≤ c1 < c2 ≤ φ(t) for all s ∈ S and t ∈ T .

The above separation theorem has several important consequences. Two particular
corollaries which we need are given below.

Corollary 2.20. Let C ⊆ X be a convex set. Then the following are equivalent: (i) C is
closed, (ii) C is weakly closed, and (iii) C is weakly sequentially closed.

Corollary 2.21. Let X be a real reflexive Banach space and C ⊆ X a nonempty bounded
closed convex set. Then C is weakly compact. Conversely, if the closed unit ball BX

1 in
some real Banach space X is weakly compact, then X is reflexive.

We now discuss the notion of weak compactness for nonconvex subsets of a real Banach
space X. The main result in this direction is the following which goes back to the works
of W. Eberlein and V. Šmulian.

Theorem 2.22 (Eberlein–Šmulian, [160, Thm. 2.8.6]). A subset A ⊆ X of a real Banach
space X is weakly compact if and only if it is weakly sequentially compact.

The following result contains a direct consequence of the Eberlein–Šmulian theorem
as well as a statement which is sometimes called Day’s lemma. A proof of this second
assertion can be found in [160, Cor. 2.8.7].

Proposition 2.23. Let A ⊆ X be a weakly compact set and S ⊆ A. Then (i) S is weakly
closed if and only if it is weakly sequentially closed, and (ii) for every point x in the weak
closure of S, there is a sequence {xk} ⊆ S such that xk ⇀ x.

Another consequence of the Eberlein–Šmulian theorem is that weak and weak sequen-
tial lower semicontinuity coincide for functions on weakly compact sets.
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Corollary 2.24. Let A ⊆ X be a weakly compact set and f : A→ R. Then f is weakly
lower semicontinuous if and only if it is weakly sequentially lower semicontinuous.

Proof. Apply Proposition 2.23 (i) to the lower level sets of f .

We close this section with some remarks and examples.

Remark 2.25. When applying results from the literature which are formulated in
a generic topological setting, it is occasionally useful to consider a slightly different
topology called the weak sequential topology on X. This is the topology induced by weak
convergence; more precisely, we call a set open in the weak sequential topology if its
complement is weakly sequentially closed. This is indeed a topology (see Definition 2.7).
Moreover, since every weakly closed set is weakly sequentially closed, it is stronger (finer)
than the weak topology and therefore also a Hausdorff topology.

Example 2.26. Let X := `2(R) be the space of square-summable real sequences, let
{ek} ⊆ X be the sequence of unit vectors, and consider the set S := {xk}k∈N with
xk :=

√
kek. Since every weakly convergent sequence in S is necessarily bounded, every

such sequence is eventually constant and its weak limit therefore lies in S. It follows
that S is weakly sequentially closed and, similarly, norm closed. However, somewhat
surprisingly, the set S is not weakly closed since 0 lies in the weak closure of S, see
[15, Ex. 3.33].

Remark 2.27. Let X,Y be real Banach spaces and A ∈ L(X,Y ). Then the complete
continuity of A (see Definition 2.15) is nothing but sequential continuity from the weak
into the strong topology, or equivalently, continuity from the weak sequential topology
(see Remark 2.25) into the strong topology. It is interesting to note that, except for trivial
cases, an operator A ∈ L(X,Y ) cannot be (topologically) continuous from the weak into
the strong topology. Indeed, if A has this property, then the range of A is necessarily
finite-dimensional, see [38, Exercise 6.7].

2.1.4 Lebesgue, Sobolev, and Related Spaces

This section is dedicated to some prominent function spaces which will play a key role in
many of our examples and applications, including the ubiquitous Lebesgue and Sobolev
spaces. More details on these and related spaces can be found in many places in the
literature, for instance, in [1, 62, 210,211].

Throughout this section, we assume that d ∈ N is a natural number, Ω ⊆ Rd is a
bounded and sufficiently regular domain (e.g., a Lipschitz domain in the sense of [1]),
and Γ := ∂Ω is the boundary of Ω. We write C(Ω) for the space of continuous functions
u : Ω → R, equipped with the norm ‖u‖C(Ω) := ‖u‖∞ := maxx∈Ω |u(x)|. Moreover, we
write Ck(Ω) for the space of functions u : Ω→ R whose partial derivatives up to order k
exist and can be extended continuously onto Ω. The norm on this space is defined as

‖u‖Ck(Ω) :=
∑
|s|≤k

‖Dsu‖∞,
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where the sum ranges over all multi-indices s := (s1, . . . , sd) with |s| := s1 + · · ·+ sd ≤ n,
and Ds is the derivative operator Ds := Ds1

x1 · · ·D
sd
xd
. It is well-known that C(Ω) and

Ck(Ω) are Banach spaces for all k. Finally, we define C∞(Ω) as the vector space of
infinitely differentiable functions on Ω, and C∞0 (Ω) as the space of functions u ∈ C∞(Ω)
with compact support.

Recall that a function u : Ω→ R is called measurable if the lower level sets {x ∈ Ω :
u(x) ≤ c} are Lebesgue-measurable for all c ∈ R. Given such a function u : Ω→ R, we
denote by

ess supΩ u := inf{M ∈ R : u(x) ≤M a.e. in Ω}

the essential supremum of u over Ω. This allows us to define the Lebesgue norms ‖ ·‖Lp(Ω),
1 ≤ p ≤ +∞, which are given by

‖u‖Lp(Ω) :=

{(∫
Ω |u(x)|p dx

)1/p
, if p <∞,

ess supΩ |u|, if p =∞.

These norms induce the Lebesgue spaces

Lp(Ω) :=
{
u : Ω→ R : u is measurable and ‖u‖Lp(Ω) < +∞

}
.

By a famous theorem of Fischer and Riesz, the spaces Lp(Ω), equipped with their
corresponding norms, are Banach spaces. The space L2(Ω) is a Hilbert space with the
scalar product

(u, v)L2(Ω) :=

∫
Ω
u(x)v(x) dx.

One of the most important inequalities on Lebesgue spaces is the following. Note that we
use the convention 1/∞ := 0.

Lemma 2.28 (Hölder inequality). Let p, q ∈ [1,∞] and p−1 + q−1 = 1. If u ∈ Lp(Ω) and
v ∈ Lq(Ω), then u · v ∈ L1(Ω) and ‖u · v‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

Assume now that u ∈ Lp(Ω) is a given function, and s = (s1, . . . , sd) is a given
multi-index. We say that a function v ∈ Lp(Ω) is a weak derivative of order s of the
function u if∫

Ω
u(x)Dsφ(x) dx = (−1)|s|

∫
Ω
v(x)φ(x) dx for all φ ∈ C∞0 (Ω).

With this definition in place, it is common to define the Sobolev space W k,p(Ω), where
k ∈ N0 and p ∈ [1,∞], as

W k,p(Ω) :=
{
u ∈ Lp(Ω) : Dsu ∈ Lp(Ω) for all s ∈ Nd0 with |s| ≤ k

}
.

These spaces become Banach spaces with the norms

‖u‖Wk,p(Ω) :=


(∑

|s|≤k‖Dsu‖pLp(Ω)

)1/p
, if p <∞,∑

|s|≤k‖Dsu‖L∞(Ω), if p =∞.
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It is easy to verify that, for all k ∈ N0, the space Hk(Ω) := W k,2(Ω) is a real Hilbert
space with the scalar product

(u, v)Hk(Ω) :=
∑
|s|≤k

(
Dsu,Dsv

)
L2(Ω)

=
∑
|s|≤k

∫
Ω
Dsu(x)Dsv(x) dx. (2.2)

For k ∈ N0 and p ∈ [1,∞], we will write W k,p
0 (Ω) to denote the closure of C∞0 (Ω) in

W k,p(Ω). By definition, this is a closed subspace of W k,p(Ω) and therefore a Banach
space in its own right. Similarly to above, we write Hk

0 (Ω) := W k,2
0 (Ω), and this is a

Hilbert space with respect to the scalar product (2.2).
For the sake of convenience, we also define Lp(Ω,Rd) as the space of functions

u : Ω → Rd whose components belong to Lp(Ω). This space becomes a Banach space
with the norm

‖u‖Lp(Ω,Rd) :=

{(∫
Ω ‖u(x)‖p

)1/p
, if p <∞,

ess supΩ ‖u‖, if p =∞,

where the norm on Rd is the Euclidean norm. Similarly, L2(Ω,Rd) becomes a Hilbert
space with the scalar product

(u, v)L2(Ω,Rd) :=

∫
Ω
u(x)>v(x) dx.

Whenever the image space is clear from the context, we will simply write ‖u‖Lp(Ω) =
‖u‖Lp(Ω,Rd) and (u, v)L2(Ω) = (u, v)L2(Ω,Rd).

Theorem 2.29 (Poincaré inequality). Let p ∈ [1,∞). Then there is a constant c > 0,
depending on Ω and p, such that ‖u‖Lp(Ω) ≤ c‖∇u‖Lp(Ω) for all u ∈W 1,p

0 (Ω).

The Poincaré inequality implies, in particular, that the spaceW 1,p
0 (Ω) can equivalently

be equipped with the norm ‖u‖ := ‖∇u‖Lp(Ω) instead of the subspace norm inherited
from W 1,p(Ω). On H1

0 (Ω), this norm is induced by the scalar product

(u, v)H1
0 (Ω) := (∇u,∇v)L2(Ω) =

∫
Ω
∇u(x)>∇v(x) dx. (2.3)

It follows that H1
0 (Ω) is a Hilbert space with respect to this scalar product.

We now define the dual spaces H−k(Ω) := Hk
0 (Ω)∗, where k ∈ N is a natural

number. One of the most fundamental operators on Sobolev spaces is the Laplace operator
∆ : H1

0 (Ω)→ H−1(Ω), which is defined by

〈∆u, v〉 := −(∇u,∇v)L2(Ω) = −
∫

Ω
∇u(x)>∇v(x) dx, u, v ∈ H1

0 (Ω).

Note that −∆ is precisely the Riesz isomorphism (see Theorem 2.9) on H1
0 (Ω) if this

space is equipped with the scalar product (2.3). It follows that ∆ too is a continuous
isomorphism. Moreover, we have 〈−∆u, u〉 = ‖∇u‖2L2(Ω) ≥ 0 for all u ∈ H1

0 (Ω), which
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means that −∆ is a positive operator. (Since ∆ is linear, this also implies that −∆ is
monotone in the sense of Section 3.2.1.)

The Laplace operator occurs prominently in the Poisson equation (with Dirichlet
boundary conditions). Given u ∈ L2(Ω), this equation asks for the existence of y ∈ H1

0 (Ω)
such that

−∆y = u a.e. in Ω. (2.4)

For every u ∈ H−1(Ω), this equation admits a so-called weak solution y ∈ H1
0 (Ω) such

that the equality in (2.4) holds with respect to the space H−1(Ω). This solution is simply
given by y = −∆−1u, and its existence follows from the Riesz representation theorem or,
more generally, the Lax–Milgram theorem (Corollary 2.10).

An important concept on Sobolev-type spaces is the trace operator. This mapping
allows us to define, in a generalized context, the notion of boundary values of Sobolev-type
functions. In this thesis, we will mainly need the trace of H1-functions. Recall that
Γ = ∂Ω denotes the boundary of Ω.

Lemma 2.30 (Trace operator). There is a unique bounded linear operator τ : H1(Ω)→
H1/2(Γ) such that τu = u|Γ for all u ∈ C1(Ω).

The trace operator is usually constructed by taking the restriction operator |Γ :
C1(Ω) → L2(Γ), where Γ is understood as a manifold (see [38]), showing that this
mapping is bounded with respect to the H1(Ω)-norm on C1(Ω), and then extending it
to τ : H1(Ω)→ L2(Γ) by means of the Hahn–Banach theorem. The extension is unique
because C1(Ω) is dense in H1(Ω). One then defines H1/2(Γ) as the image space of τ , and
it can be verified that this is indeed a Banach space, with norm given by

‖v‖H1/2(Γ) := inf
u∈H1(Ω), τu=v

‖u‖H1(Ω).

Note that this is nothing but the canonical norm on H1/2(Γ) induced by the isomorphy
H1(Ω)/ ker(τ) ∼= H1/2(Γ), where the isomorphism is the mapping τ , acting on the cosets
of H1(Ω) with respect to ker(τ), see [221, Section I.11].

Another important concept in the context of Sobolev spaces is that of normal deriva-
tives. The proper definition of these requires some caution and, in particular, a different
domain space. Let H−1/2(Γ) := H1/2(Γ)∗ denote the dual space of H1/2(Γ).

Proposition 2.31 (Normal derivative, [210, Lem. 20.2]). The space X := {u ∈ H1(Ω) :
∆u ∈ L2(Ω)}, with norm ‖u‖X := ‖u‖H1(Ω)+‖∆u‖L2(Ω), is a real Banach space. Moreover,
the normal derivative mapping

∂n : X → H−1/2(Γ), 〈∂nu, v〉 :=

∫
Ω

∆u(x) ṽ(x) +∇u(x)>∇ṽ(x) dx,

where ṽ ∈ H1(Ω) is chosen so that τ ṽ = v, is well-defined and continuous.

We conclude this section by presenting a generalization of the Laplace operator which
occurs in certain application contexts (see Chapter 7).
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Definition 2.32 (p-Laplace operator). Let p ∈ [2,∞). The p-Laplace operator or p-
Laplacian ∆p : W 1,p

0 (Ω)→W 1,p
0 (Ω)∗ is defined by

〈∆pu, v〉 := −
∫

Ω
‖∇u(x)‖p−2∇u(x)>∇v(x) dx, u, v ∈W 1,p

0 (Ω).

It is known that ∆p is well-defined, continuous, and even continuously differentiable
on W 1,p

0 (Ω), see [104]. Moreover, −∆p is monotone (see Section 3.2.1) in the sense that

〈∆pu−∆pv, u− v〉 ≤ 0 for all u, v ∈W 1,p
0 (Ω).

Finally, we note that ∆p can also be seen as the Fréchet-derivative of the function
u 7→ p−1‖∇u‖pLp(Ω). Recall that ‖∇u‖Lp(Ω) is a norm on W 1,p

0 (Ω) which is equivalent to
the subspace norm inherited from W 1,p(Ω), see the discussion after Theorem 2.29.

2.2 Elements of Variational and Convex Analysis

This section contains some basic notions of variational analysis, including various types of
cones to describe the variational geometry of sets. In addition, some concepts of convex
analysis are presented which will be useful in later chapters. Throughout this section,
unless stated otherwise, X is always a real Banach space.

2.2.1 Tangent, Normal, and Recession Cones

This section is dedicated to the study of some basic objects which are useful when
characterizing the geometric structure of sets in Banach spaces. Many aspects of the
geometry of sets can be characterized through so-called cones (see below), and these
play a major role in variational analysis, convex analysis, and optimization theory. The
material discussed here incorporates elements from multiple books, e.g., [15, 32,34].

Let S ⊆ X be a nonempty set. We say that S is a cone if αS ⊆ S for all α > 0. We
call a cone S pointed if S ∩ (−S) = {0}. Given an arbitrary set S ⊆ X, we denote by

S◦ := {φ ∈ X∗ : 〈φ, s〉 ≤ 0 for every s ∈ S}

the polar cone of S. Note that S◦ ⊆ X∗. If X is a real Hilbert space, we treat S◦ as a
subset of X.

Definition 2.33 (Tangent cone). Let C ⊆ X be an arbitrary set and x ∈ X. Then we
define the tangent cone TC(x) as the empty set if x /∈ C, and otherwise as

TC(x) :=
{
d ∈ X : ∃{xk} ⊆ C, tk ↓ 0 such that xk → x and (xk − x)/tk → d

}
.

The tangent cone plays a fundamental role in the formal description of various
variational properties of sets. It is famously used in the derivation of first-order optimality
conditions for constrained optimization problems, see Section 3.1.
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Lemma 2.34 (Product formula). Let X1, . . . , XN be real Banach spaces and Ci ⊆ Xi

closed subsets of Xi for all i. Let C :=
∏N
i=1Ci and x = (xi)

N
i=1 ∈ C. Then

TC(x) ⊆
N∏
i=1

TCi(xi) and TC(x)◦ =
N∏
i=1

TCi(xi)◦. (2.5)

The first inclusion becomes an equality if the sets C1, . . . , CN are convex.

Let us emphasize that the second equality in (2.5) is always satisfied, even if the sets
Ci are nonconvex.

Definition 2.35 (Radial and normal cones). Let C ⊆ X be a convex set. We define

(a) the radial cone RC(x) of C at x ∈ X as RC(x) := ∅ if x /∈ C, and otherwise

RC(x) := {α(c− x) : α ≥ 0, c ∈ C}.

(b) the normal cone NC(x) of C at x ∈ X as NC(x) := ∅ if x /∈ C, and otherwise

NC(x) := {φ ∈ X∗ : 〈φ, y − x〉 ≤ 0 ∀y ∈ C}.

If X is a real Hilbert space, we treat NC(x) as a subset of X instead of X∗. Both
the radial and normal cones are always convex cones, and we have TC(x) = cl(RC(x))
whenever C is convex. Moreover, the normal cone is always a closed set, and it has the
representations

NC(x) = (C − x)◦ = RC(x)◦ = TC(x)◦.

The last of these formulas is sometimes taken as the general definition of the normal cone
for possibly nonconvex sets C. However, it should be noted that there are a variety of
different normal cones for general sets (see, for instance, [163]). Therefore, to avoid any
ambiguity, we will reserve the symbol NC for the case where C is convex.

The normal cone can be used to characterize the metric projection onto the underlying
set (see Lemma 2.11).

Proposition 2.36. Let H be a real Hilbert space and C ⊆ H a nonempty closed convex
set. Then, for x ∈ H, we have y = PC(x) if and only if x− y ∈ NC(y).

Conversely, for every y ∈ C, d ∈ NC(y) if and only if y = PC(y+αd) for some α > 0.
In that case, y = PC(y + αd) for all α > 0.

The following is a famous decomposition theorem involving a closed convex cone in a
Hilbert space and its polar.

Lemma 2.37 (Moreau decomposition, [164]). Let H be a real Hilbert space and K ⊆ H
a nonempty closed convex cone. Then every y ∈ H admits a unique decomposition
y = y1 + y2 with K 3 y1 ⊥ y2 ∈ K◦. Indeed, y1 = PK(y) and y2 = PK◦(y).

We now turn to another object which describes some aspects of the geometric structure
of convex sets.
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Definition 2.38 (Recession cone). Let C ⊆ X be a nonempty convex set. Then the
recession cone of C is the set C∞ := {x ∈ X : x+ C ⊆ C}.

The recession cone is always nonempty (since 0 ∈ C∞) and a convex cone. This can
be shown by first proving the convexity and then using the fact that nx ∈ C∞ whenever
x ∈ C∞ and n ∈ N. Finally, if C is closed, then so is C∞.

If the set C is a convex cone, then it is easy to see that C∞ = C. On the other
hand, if C is not a cone, then the recession cone can often be used as a substitute for
C in situations where a conical structure is necessary. This is the case, for instance, in
the context of (partial) order relations, which closely correspond to convex cones. More
details can be found in Section 2.2.3.

The following result provides some information on the polar cone C◦∞ := (C∞)◦.

Lemma 2.39. Let H be a real Hilbert space and C ⊆ H a nonempty convex set. Then
{y ∈ H : supw∈C(w, y) < +∞} ⊆ C◦∞. In particular, NC(y) ⊆ C◦∞ for all y ∈ C.

Proof. Let y ∈ H be a point with (w, y) ≤ c for some c ∈ R and all w ∈ C. Let x ∈ C∞,
and choose an arbitrary x0 ∈ C. Then x0 + tx ∈ C for all t > 0, and hence (x0 + tx, y) ≤ c.
This cannot hold for all t > 0 if (x, y) > 0. Hence, (x, y) ≤ 0, and y ∈ C◦∞.

The set {y ∈ H : supw∈C(w, y) < +∞} in the statement of Lemma 2.39 is often called
the barrier cone of C. Note that the inclusion stated in the lemma can be strict. In
particular, there are situations where the barrier cone is not closed, and this makes it a
priori impossible for it to equal C◦∞, which is always a closed cone by virtue of polarity.
An example for this phenomenon can be found in [15, Exercise 6.23].

Proposition 2.40. Let X be a real Banach space and C ⊆ X a closed convex set. Let
x ∈ C, φ ∈ X∗, {xk} ⊆ C, {φk} ⊆ X∗ such that φk ∈ NC(xk) for all k, and assume that
either (i) xk ⇀ x and φk → φ, or (ii) xk → x and φk ⇀∗ φ. Then φ ∈ NC(x).

Proof. Let c ∈ C. By assumption, 〈φk, c− xk〉 ≤ 0 for all k. Under either (i) or (ii), it
follows that 〈φ, c− x〉 ≤ 0. Since c was arbitrary, this means that φ ∈ NC(x).

2.2.2 Convex Functions and Subdifferentials

The theory of convex functions is a cornerstone of modern variational analysis and
optimization theory. This point is emphasized by the famous quote

“...the great watershed in optimization isn’t between linearity and nonlinearity,
but between convexity and nonconvexity.”

— R. T. Rockafellar [190]

In that spirit, we shall dedicate the present and the subsequent sections to a discussion
of various forms of convexity as well as their consequences. In the infinite-dimensional
setting, it turns out that the distinction between convexity and nonconvexity is even more
important than in finite dimensions since convex functions are much more amenable when
it comes to certain minimization-related continuity properties (see below).
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Definition 2.41 (Convexity). Let C ⊆ X be a convex set. We say that f : C → R is

(i) convex if, for all x, y ∈ C and α ∈ [0, 1],

f
(
(1− α)x+ αy

)
≤ (1− α)f(x) + αf(y).

(ii) strictly convex if, for all x, y ∈ C, x 6= y, and α ∈ (0, 1),

f
(
(1− α)x+ αy

)
< (1− α)f(x) + αf(y).

(iii) strongly convex with modulus c > 0 if, for all x, y ∈ C and α ∈ [0, 1],

f
(
(1− α)x+ αy

)
≤ (1− α)f(x) + αf(y)− c

2
α(1− α)‖x− y‖2X .

A function f : C → R is called (strictly, strongly) concave if −f is (strictly, strongly)
convex. It goes without saying that much of the theory of convex functions can be carried
out in a similar fashion for concave functions. For the sake of simplicity, we restrict
ourselves to the former class here.

One of the most fundamental examples of convex functions is the distance function
dC : X → R to a convex set C ⊆ X. Note that the following result holds for an arbitrary
Banach space X, not necessarily a Hilbert space.

Lemma 2.42 (Distance function, [15,177]). Let C ⊆ X be a nonempty convex set. Then
the function dC : X → R, dC(x) := infy∈C ‖x− y‖X , is convex and nonexpansive.

It is easy to see that the square of a nonnegative convex function is again convex.
Thus, in the setting of Lemma 2.42, the squared distance function d2

C is also a convex
function. If the space X is a real Hilbert space, then the squared distance function enjoys
a much stronger form of regularity.

Lemma 2.43 ([15, Cor. 12.31]). Let X be a real Hilbert space and C ⊆ X a nonempty
closed convex set. Then the squared distance function d2

C is convex and continuously
differentiable on X with (d2

C)′(x) = 2(x− PC(x)) for all x ∈ X.

We now discuss some continuity properties of a general convex function f : C → R on
a nonempty, closed, convex set C ⊆ X. The continuity properties of f are closely linked
to the so-called epigraph of f , which is the set

epi(f) := {(x, t) ∈ C × R : f(x) ≤ t}.

It is easily verified that epi(f) is a convex set, and that f is (weakly, weakly sequentially)
lower semicontinuous if and only if epi(f) is (weakly, weakly sequentially) closed. The
following is therefore a direct consequence of Corollary 2.20.

Proposition 2.44. Let C ⊆ X be a closed convex set and f : C → R a convex function.
Then the following are equivalent: (i) f is lower semicontinuous, (ii) f is weakly lower
semicontinuous, and (iii) f is weakly sequentially lower semicontinuous.
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Note that a convex function can fail to be lower semicontinuous, even if it is defined
on the whole space X. To see this, let f : X → R be a discontinuous linear functional.
Examples of such functionals are well-known on certain (non-complete) normed spaces
X, and their existence on arbitrary infinite-dimensional spaces follows from the axiom
of choice. Observe that f is convex, but if f were lower semicontinuous at some point
x ∈ X, then a symmetry argument would yield the continuity of f at x and thus, by
linearity, the continuity on X. This is a contradiction.

Let us now turn to the fundamental notion of generalized first-order derivatives for
convex functions, the so-called convex subdifferential.

Definition 2.45 (Convex subdifferential). Let C ⊆ X be a convex set and f : C → R a
convex function. The convex subdifferential of f in x ∈ C is the set

∂f(x) :=
{
d ∈ X∗ : f(y) ≥ f(x) + 〈d, y − x〉 ∀y ∈ C

}
.

The following result gives sufficient conditions for ∂f to be nonempty, and also
describes the relationship between the convex subdifferential and Fréchet-derivatives.
This result is a combination of various statements contained in [177].

Proposition 2.46. Let X be a real Banach space and f : X → R a continuous convex
function. Then ∂f(x) is nonempty at every x ∈ X. Moreover, f is Fréchet-differentiable
in x ∈ X if and only if the following two properties hold:

(i) ∂f(x) is the singleton {f ′(x)}, and

(ii) whenever xk → x in X and dk ∈ ∂f(xk), then dk → f ′(x).

Property (ii) is often called norm-to-norm upper semicontinuity. The above result
implies that a convex function cannot have a discontinuous Fréchet-derivative. Hence, if
f is convex and differentiable, then it is continuously differentiable.

One of the key benefits of the convex subdifferential is the availability of a Fermat-
type stationary result. Indeed, one of the classical assertions related to the convex
subdifferential is that a point x ∈ X minimizes a convex function f : X → R if and only
if 0 ∈ ∂f(x). For later reference, we state this theorem in a more general form which is
essentially a combination of [34, Thm. 4.3.3] and [163, Thm. 1.88].

Theorem 2.47 (Necessary optimality condition). Let f : X → R be a continuously
differentiable mapping, C ⊆ X a nonempty closed convex set, and g : X → R a continuous
convex function. If x̄ is a local minimizer of f + g on C, then

0 ∈ f ′(x̄) + ∂g(x̄) +NC(x̄).

2.2.3 Concave Operators

The theory of convex functions is useful for a wide variety of application problems. There
are, however, certain practical scenarios where convexity properties of nonlinear operators
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G : X → Y are necessary, with X and Y real Banach spaces. More specifically, assume
that we are dealing with an inclusion of the form

G(x) ∈ K, K ⊆ Y a closed convex set. (2.6)

Ideally, we would like to work with a generalized notion of convexity which takes into
account the mapping G and the geometry of the set K. The present section is dedicated
to the analysis of such generalized convexity notions, their consequences, and their
relationship with ordinary convexity.

Assume for the moment that the set K in (2.6) is a closed convex cone. Then K
induces the order relation

a ≤K b :⇐⇒ b− a ∈ K, (2.7)

and K itself can be regarded as the nonnegative cone with respect to ≤K . Thus, (2.6)
can be rewritten as G(x) ≥K 0, which suggests that the appropriate convexity notion in
this case is a generalized type of concavity with respect to the order relation ≤K . This
property takes on the form

G
(
(1− t)x+ ty

)
≥K (1− t)G(x) + tG(y) for all x, y ∈ X, t ∈ [0, 1].

The above property is usually called K-concavity, and it is in fact a special case of the
general concept which we define below. In the case where K is not a cone, the recession
cone K∞ turns out to be a useful substitute to define the order relation (2.7).

Definition 2.48 (Concave operator). Let G : X → Y be an arbitrary mapping and
K ⊆ Y a closed convex set with recession cone K∞. We say that G is K∞-concave if

G
(
(1− t)x+ ty

)
≥K (1− t)G(x) + tG(y) for all x, y ∈ X, t ∈ [0, 1],

where ≤K is the order relation defined by a ≤K b :⇐⇒ b− a ∈ K∞.

Before proving that this property is in fact useful and provides some desirable properties
for the constraint (2.6), we first give two important examples. These show that, for certain
practically relevant cases, the notion of K∞-concavity reduces to the corresponding
“natural” convexity properties.

Example 2.49. (a) Let m, p be nonnegative integers and Y := Rm+p, K := Rm− × {0}p.
This corresponds to the case of nonlinear programming-type constraints, see Section 3.1.4.
In this case, K is a closed convex cone, which implies K∞ = K, and it is easy to see
that G is K∞-concave if and only if the functions Gi (i = 1, . . . ,m) are convex and the
functions Gj (j = m+ 1, . . . ,m+ p) are affine.

(b) Let X and Y be function spaces, K the negative cone in Y , and G an operator of the
form G(u)(t) := G(t, u(t)). Assume that G is sufficiently regular so that G is well-defined,
and that G is convex with respect to the second variable. Then G is K∞-concave.
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Let us now discuss the analytical consequences of generalized convexity in the sense of
Definition 2.48. The resulting properties can be deduced by discussing situations in which
the K∞-concavity of G yields the (ordinary) convexity of a suitable composite mapping
involving G.

We say that a mapping m : Y → R is K∞-decreasing if it is monotonically decreasing
with respect to the order ≤K , i.e., if m(y1) ≤ m(y2) whenever y1 ≥K y2.

Theorem 2.50. Let X,Y be real Banach spaces, K ⊆ Y a nonempty closed convex set,
and G : X → Y a K∞-concave operator. Then:

(a) If m : Y → R is convex and K∞-decreasing, then m ◦G is convex.

(b) The function dK ◦G : X → R is convex.

(c) If λ ∈ K◦∞, then x 7→ 〈λ,G(x)〉 is convex.

(d) The set M := {x ∈ X : G(x) ∈ K} is convex.

Proof. (a): Let x, y ∈ X and xα = αx+ (1− α)y, α ∈ [0, 1]. Then G(xα) ≥K αG(x) +
(1− α)G(y) by the concavity of G. Applying m on both sides yields

m(G(xα)) ≤ m(αG(x) + (1− α)G(y)) ≤ αm(G(x)) + (1− α)m(G(y)),

where we first used the monotonicity and then the convexity of m. Hence, m◦G is convex.
(b): The function dK is convex by Lemma 2.42. We claim that it is alsoK∞-decreasing.

Let y, z ∈ Y , y ≤K z, be arbitrary points. Then z = y + k for some k ∈ K∞. Now, let
ε > 0 and let yε ∈ K be a point with ‖y − yε‖Y ≤ dK(y) + ε. Then

dK(z) = dK(y + k) ≤ ‖y + k − (yε + k)‖Y = ‖y − yε‖Y ≤ dK(y) + ε,

where the inequality in the middle uses the fact that yε + k ∈ K because k ∈ K∞. Since
ε > 0 was arbitrary, it follows that dK(z) ≤ dK(y). Hence, dK is K∞-decreasing, and
thus the function dK ◦G is convex by (a).

(c): The function y 7→ 〈λ, y〉, with λ ∈ K◦∞, is obviously a convex function, and it is
decreasing because 〈λ, k〉 ≤ 0 for all k ∈ K∞. Hence, the result again follows from (a).

(d): Note that M = {x ∈ X : dK(G(x)) ≤ 0}. Hence, M is a lower level set of the
convex function dK ◦G, and therefore a convex set.

For later use, we will also need an analogue of the standard gradient inequality for
convex functions. This result is contained in the following proposition.

Proposition 2.51. Let K ⊆ Y be a nonempty closed convex set and G : X → Y
a differentiable K∞-concave operator. Then G(w) ≤K G(x) + G′(x)(w − x) for all
x,w ∈ X.

Proof. Let x,w ∈ X and d := w − x. For all t ∈ (0, 1), the K∞-concavity of G yields

G(x+ td) = G
(
(1− t)x+ tw

)
∈ (1− t)G(x) + tG(w) +K∞.
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Rearranging this inclusion, dividing by t, and recalling that K∞ is a cone yields

G(x) +
G(x+ td)−G(x)

t
∈ G(w) +K∞.

For t ↓ 0, we obtain G(x) +G′(x)d ≥K G(w). Hence, the result follows.

Let us conclude this section by mentioning an alternative, more abstract motivation for
the definition of K∞-concavity. This motivation is based on the theory of multifunctions
and will play a certain role in the context of constraint qualifications, see Section 3.1.2.

Remark 2.52. Apart from the order relation induced by the recession cone K∞, there
is another way to motivate the notion of operator concavity which is closely related to
the multifunction W : X ⇒ Y , W(x) := G(x)−K. This is usually called the feasibility
mapping of the system G(x) ∈ K, and the K∞-concavity of G is nothing but the convexity
of W in the multifunction sense, i.e., the convexity of the graph gph(W). More details
behind this motivation can be found in Section 3.1.2 and in [32, Section 2.3.5].

2.2.4 Ky Fan’s Minimax Theorem

This section is a first step towards the analysis of generic variational or equilibrium-type
problems. Many such problems can be written in the general framework

find x̂ ∈ A : Ψ(x̂, y) ≤ 0 ∀y ∈ A, (2.8)

where A ⊆ X is a nonempty set and Ψ : A × A → R a scalar-valued function, usually
called a bifunction. Problems in this abstract form are often referred to as equilibrium
problems. More details on this problem class can be found in [30,120,139].

In the present section, we give two general existence theorems for equilibrium problems,
with the idea of applying them to variational inequalities and related problems in later
chapters. For the sake of generality, we will make use of a weakened form of concavity,
called quasiconcavity.

Definition 2.53 (Quasiconcavity). Let S ⊆ X be a convex set. Then a function
f : S → R is called quasiconcave if

f(αx+ (1− α)y) ≥ min{f(x), f(y)} for all x, y ∈ S, α ∈ [0, 1]. (2.9)

Clearly, every concave function is quasiconcave. Moreover, it is easy to verify that
a function is quasiconcave if and only if its upper level sets {x ∈ S : f(x) ≥ c} are
convex for all c ∈ R. This, in turn, implies that the notions of upper semicontinuity, weak
upper semicontinuity, and weak sequential upper semicontinuity coincide for quasiconcave
functions (like they do for concave functions, see Proposition 2.44). In particular, every
continuous quasiconcave function is weakly sequentially upper semicontinuous.

We now turn to the existence theory for the equilibrium problem (2.8). The most
basic existence theorem is due to Ky Fan [73].
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Lemma 2.54 (Ky Fan, [73]). Let A ⊆ X be a nonempty, convex, weakly compact set,
and Ψ : A×A→ R a mapping such that

(i) Ψ(x, x) ≤ 0 for all x ∈ A,
(ii) for every x ∈ A, the function Ψ(x, ·) is quasiconcave, and

(iii) for every y ∈ A, the function Ψ(·, y) is weakly sequentially lsc.

Then there exists x̂ ∈ A such that Ψ(x̂, y) ≤ 0 for all y ∈ A.

Note that the Ky–Fan theorem is often stated in an arbitrary (Hausdorff) topological
vector space, with (iii) replaced by weak lower semicontinuity. In the Banach space
setting, since the set A is weakly compact, it suffices to assume weak sequential lower
semicontinuity, see Corollary 2.24.

While the Ky–Fan theorem has manifold applications in game theory and related
subjects, it turns out to be rather unwieldy when applied to the class of problems known
as variational inequalities. It is in particular the continuity assumption (iii) in Lemma 2.54
which turns out to be quite unnatural in this case, see also Example 3.44 in Chapter 3. As
a consequence of this fact, certain extensions of the Ky–Fan theorem have been developed,
including a rather notable one due to Brezis, Nirenberg, and Stampacchia [39]. Before
giving this result, we first state an auxiliary lemma, mainly for motivational purposes.
Note that we call Ψ monotone if Ψ(x, y) + Ψ(y, x) ≥ 0 for all x, y ∈ A.

Lemma 2.55. Let A ⊆ X be a closed convex set and Ψ : A × A → R a mapping such
that either

(a) Ψ is weakly sequentially lsc with respect to x, or

(b) Ψ is continuous, monotone, concave with respect to y, and Ψ(x, x) ≤ 0 ∀x ∈ A.
Then Ψ has the property that, whenever x, y ∈ A, {xk} ⊆ A converges weakly to x, and
Ψ(xk, (1− t)x+ ty) ≤ 0 for all t ∈ [0, 1] and k ∈ N, then Ψ(x, y) ≤ 0.

Proof. (a) If Ψ(xk, (1 − t)x + ty) ≤ 0 for all t ∈ [0, 1] and k ∈ N, then we obtain, in
particular, Ψ(xk, y) ≤ 0 for all k. Taking k →∞, it follows that Ψ(x, y) ≤ 0.

(b) Let wt := (1−t)x+ty. By concavity, Ψ is weakly sequentially upper semicontinuous
with respect to y. Using the monotonicity of Ψ, it follows that

Ψ(wt, x) ≥ lim sup
k→∞

Ψ(wt, x
k) ≥ lim sup

k→∞

[
−Ψ(xk, wt)

]
≥ 0

for all t ∈ [0, 1]. Using again the concavity of Ψ with respect to y, we obtain

Ψ(wt, x) ≥ 0 ≥ Ψ(wt, wt) ≥ (1− t)Ψ(wt, x) + tΨ(wt, y) ≥ tΨ(wt, y),

where the last inequality uses the first one. It follows that Ψ(wt, y) ≤ 0 for all t > 0, and
letting t→ 0 yields Ψ(x, y) ≤ 0.

Based on the result above, it now seems natural to construct an existence result for
(2.8) by using the assertion of Lemma 2.55 as an abstract continuity assumption. The
resulting theorem covers both the monotone and the nonmonotone case.
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Theorem 2.56 (Brezis–Nirenberg–Stampacchia, [39]). Let X be a real Banach space,
A ⊆ X a nonempty, convex, weakly compact set, and Ψ : A×A→ R a mapping with

(i) Ψ(x, x) ≤ 0 for all x ∈ A,
(ii) for every x ∈ A, the function Ψ(x, ·) is quasiconcave,

(iii) for every y ∈ A and every finite-dimensional subspace L of X, the function Ψ(·, y)
is lower semicontinuous on A ∩ L, and

(iv) whenever x, y ∈ A, {xk} ⊆ A converges weakly to x, and Ψ(xk, (1− t)x+ ty) ≤ 0
for all t ∈ [0, 1] and k ∈ N, then Ψ(x, y) ≤ 0.

Then there exists x̂ ∈ A such that Ψ(x̂, y) ≤ 0 for all y ∈ A.

Proof. Let L be the collection of all finite-dimensional subspaces L of X which intersect
A. For each L ∈ L, Lemma 2.54 implies the existence of an xL ∈ A ∩ L such that
Ψ(xL, y) ≤ 0 for all y ∈ A ∩ L. Now, for L ∈ L, let

SL :=
{
x ∈ A : Ψ(x, y) ≤ 0 for all y ∈ A ∩ L

}
.

Then SL is nonempty for all L ∈ L. Observe furthermore that the family {SL}L∈L has
the following finite intersection property: whenever L1, . . . , Ln ∈ L, then the intersection
SL1 ∩ . . . ∩ SLn is nonempty since it contains the set SL′ corresponding to the linear hull
L′ of L1 ∪ . . . ∪ Ln. This implies that the intersection clw(SL1) ∩ . . . ∩ clw(SLn) is also
nonempty, where clw denotes the weak closure. Since A is weakly compact, it follows
from Lemma 2.2 that there is a point x̂ ∈ A with x̂ ∈ clw(SL) for all L ∈ L.

We claim that x̂ has the desired property. To this end, let y ∈ A be an arbitrary
point, and let L denote the linear hull of x̂ and y. Then L ∈ L and thus x̂ ∈ clw(SL). By
Proposition 2.23, there is a sequence {xk} ⊆ SL such that xk ⇀ x̂. The definition of SL
now implies that

Ψ(xk, w) ≤ 0 for all w ∈ A ∩ L

for all k ∈ N. Since A ∩ L contains the line segment connecting x̂ and y, it follows from
property (iv) that Ψ(x̂, y) ≤ 0, and the proof is complete.

The importance of the above theorem can hardly be overstated. It plays a funda-
mental role in the existence theory for variational inequalities and even quasi-variational
inequalities, see Chapters 3 and 6.

Note that, in their original paper [39], Brezis, Nirenberg, and Stampacchia formulated
the above theorem for an arbitrary Hausdorff topological vector space and used the
continuity property (iii) with respect to nets (or filters) instead of sequences. In the
Banach space setting, we can dispense with these notions due to Proposition 2.23.



Chapter 3

Theory of Optimization and
Variational Problems

This chapter focuses on the theoretical background of constrained optimization and
variational inequalities in general Banach spaces. Most of the theory is inspired by the
book [32], although the results we present are often reformulated, extended, or modified
in other ways to suit the algorithmic applications we will develop later on.

The literature on optimization theory is enormous, especially when finite-dimensional
nonlinear programming is taken into account. For the general theory, we refer the reader
to [13,112,222], and quite notably [32]. These books also include a bibliography of various
milestone publications in optimization theory over the last decades, something which is
outside the scope of this thesis. Some information on Banach space optimization, albeit
in a more specialized context, can also be found in [211]. For nonlinear programming,
much of the state-of-the-art theory can be found in parts of the aforementioned references,
in the monographs [25, 172], in the encyclopedia-style book [80], and of course in the
references therein.

This chapter also deals in some detail with variational inequalities (VIs). Indeed, we
will treat these problems in a slightly more general framework designed to accommodate
nonconvex optimization problems. The resulting problem class will be referred to as
variational problems, but we will often use this term and “variational inequality” inter-
changeably. The theory of variational inequalities is fairly well-known in the literature.
It can be found, for instance, in the monographs [70, 143] and, to a lesser extent, the
book [32], as well as the more application-oriented treatises [12, 88–90]. In this thesis,
we develop the corresponding theory in tandem with constrained optimization, either
by reducing the VI to an optimization problem or by proving the corresponding results
directly for VIs, with optimization to be seen as a special case.

The following is an overview of the structure of this chapter. Section 3.1 is dedicated to
constrained optimization problems in Banach spaces. We discuss the well-known Karush–
Kuhn–Tucker (KKT) conditions in Section 3.1.1, and give some results on constraint
qualifications and their consequences in Section 3.1.2. This section also contains a brief
discussion of multifunctions and metric regularity. More details on these topics can be
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found, for instance, in [11,32,163,191]. Section 3.1.3 is dedicated to second-order sufficient
optimality conditions and their consequences. Finally, in Section 3.1.4, we specialize some
of the concepts and results from the preceding sections for the case of finite-dimensional
nonlinear programming.

In Section 3.2, we deal with variational problems (inequalities) in their full generality.
Section 3.2.1 is dedicated to the notion of pseudomonotonicity, a fundamental concept
of continuity for VIs which can also be seen as a generalization of monotonicity. This
notion can be traced back to the work of Brezis [37], and it is indispensable for the
subsequent chapters since it provides a unified framework for the analysis of monotone
and nonmonotone VIs (and, a fortiori, convex and nonconvex optimization problems). We
continue with a discussion of the Karush–Kuhn–Tucker (KKT) conditions for variational
inequalities in Section 3.2.2, where we essentially demonstrate how these can be extracted
from the corresponding conditions for optimization problems. In Section 3.2.3, we then
deal with an asymptotic analogue of the KKT conditions, designed to facilitate optimality
assertions about limit points of sequences generated by numerical algorithms. The
developments in this section are in the spirit of related works in nonlinear programming
[7,8,28]. Finally, in Section 3.2.4, we provide a quantitative stability analysis for variational
inequalities in terms of so-called error bounds. The theory in this section forms the basis
for the rate-of-convergence analysis of many optimization algorithms, including the
augmented Lagrangian methods discussed in Chapters 4 and 5.

3.1 Constrained Optimization

Throughout this section, we consider a generic nonlinear optimization problem of the
form

(P ) minimize
x∈C

f(x) subject to G(x) ∈ K, (3.1)

where X,Y are real Banach spaces, f : X → R and G : X → Y are continuously
differentiable functions, and K ⊆ Y is a nonempty closed convex set. We say that a point
x ∈ X is feasible if x ∈ C and G(x) ∈ K, and denote by

Φ := C ∩G−1(K) = {x ∈ C : G(x) ∈ K}

the feasible set of (P ). Note that K is assumed to be a convex set, but we have made no
convexity or concavity assumptions on the mapping G. In particular, the feasible set Φ
may not be convex. The idea behind the above formulation is that G models the possible
“nonlinearity” (or nonconvexity) of the problem.

3.1.1 First-Order Optimality Conditions

One of the most fundamental concepts in the study of (differentiable) optimization
problems is that of first-order necessary conditions. These are conditions which involve
the first derivatives of the functions f and G and which have to be satisfied by local
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or global solutions of (P ). The most prominent form of such conditions is the so-called
KKT system which we will define below. Before doing so, it will be useful to first state a
general first-order condition which involves the tangent cone to the feasible set.

Lemma 3.1. If x̄ is a local minimizer of (P ), then f ′(x̄)d ≥ 0 for all d ∈ TΦ(x̄).

The above is always a necessary optimality condition for x̄ to be a local minimizer.
Note that, if Φ is convex, then we can restate the condition as f ′(x̄)(x− x̄) ≥ 0 for all
x ∈ Φ. If, in addition, f is a convex function, then any point x̄ satisfying this inequality
also satisfies

f(x)− f(x̄) ≥ f ′(x̄)(x− x̄) ≥ 0 for all x ∈ Φ.

Hence, in that case, every point x̄ which is stationary in the sense of Lemma 3.1 is a
global minimizer of (P ).

Let us now return to the general case. Note that we can equivalently state the assertion
of Lemma 3.1 as

− f ′(x) ∈ TΦ(x̄)◦, (3.2)

where ◦ is the polar cone from Section 2.2.1. This condition forms the basis of the theory
of KKT conditions. Indeed, under suitable regularity assumptions on the mapping G, the
cone TΦ(x̄)◦ can be represented analytically, and this yields a more concrete and thus
more convenient form of first-order optimality conditions.

A central role will be played by the Lagrange function or Lagrangian of (P ), which is
the function

L : X × Y ∗ → R, L(x, λ) := f(x) + 〈λ,G(x)〉. (3.3)

This allows us to state the so-called Karush–Kuhn–Tucker or KKT conditions of (P ) as
follows. Note that we use the notation L′ for the derivative of L with respect to x (the
primal variable).

Definition 3.2 (KKT point). A pair (x̄, λ̄) ∈ X × Y ∗ is a KKT point of (P ) if

−L′(x̄, λ̄) ∈ NC(x̄) and λ̄ ∈ NK(G(x̄)).

We say that x̄ ∈ X is a stationary point of (P ) if (x̄, λ̄) is a KKT point for some multiplier
λ̄ ∈ Y ∗, and denote by Λ(x̄) the set of such multipliers.

Note that the above inclusions imply that x̄ ∈ C and G(x̄) ∈ K, since otherwise
at least one of the corresponding normal cones would be empty. It follows that every
stationary point of (P ) is necessarily feasible. Let us also remark that we always have
λ̄ ∈ K◦∞, where K∞ is the recession cone of K, see Lemma 2.39. This can be interpreted
as a sign property of the Lagrange multiplier.

Example 3.3 (Cone constraints). Assume that K ⊆ Y is a closed convex cone. Then
the inclusion λ̄ ∈ NK(G(x̄)) in the KKT conditions can equivalently be stated as

G(x̄) ∈ K, λ̄ ∈ K◦, and
〈
λ̄, G(x̄)

〉
= 0.
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These three conditions are often referred to as complementarity conditions. Recalling
that any closed convex cone induces a (partial) order relation, we can interpret these
conditions as G(x̄) being nonnegative, λ̄ being nonpositive (in the dual sense), and their
product being equal to zero.

We have already alluded to the fact that certain regularity properties are needed for
the KKT conditions to be necessary optimality conditions for (P ). Such properties are
usually called constraint qualifications; they ensure that the feasible set is well-behaved
and that, roughly speaking, the reconstruction of its geometry from first-order information
is possible. We will discuss the rich theory behind constraint qualifications and their
consequences in some more detail in Section 3.1.2. For the present section, we focus
on the connection between these conditions and the KKT system. The main constraint
qualification we use is the following.

Definition 3.4 (Robinson constraint qualification). Let x ∈ X be a feasible point for
(P ). We say that the Robinson constraint qualification (RCQ) holds in x if

0 ∈ int
[
G(x) +G′(x)(C − x)−K

]
.

The above condition was introduced by Robinson in [184] in the context of certain
stability properties of nonlinear inclusions. A more detailed study of RCQ, its consequences,
and some related conditions will be conducted in Section 3.1.2.

Theorem 3.5 (KKT conditions under RCQ, [32, Thm. 3.9]). Let x̄ be a local minimizer
of (P ) and assume that RCQ holds in x̄. Then the set of Lagrange multipliers Λ(x̄) is
nonempty, closed, convex, and bounded in Y ∗.

It is possible to show that, under RCQ, the set Λ(x̄) is indeed weak-∗ compact, where
the weak-∗ topology on Y ∗ is defined similarly to the weak topology from Definition 2.18.
The further study of this topology is not necessary for our purposes, and thus we will not
go beyond this parenthetical remark.

Let us now turn to stronger constraint qualification-type conditions. In particular, we
will make use of a strict version of RCQ which guarantees the uniqueness of the Lagrange
multiplier. This condition will also play a certain role in the primal-dual stability analysis
of optimization problems and variational inequalities, see Section 3.2.4.

Definition 3.6 (Strict Robinson condition). Let x̄ ∈ X be a feasible point. We say that
the strict Robinson condition (SRC) holds in x̄ if there exists λ̄ ∈ Λ(x̄) such that

0 ∈ int
[
G(x̄) +G′(x̄)(C0 − x̄)−K0

]
,

where C0 := {x ∈ C : L′(x̄, λ̄)(x− x̄) = 0} and K0 := {y ∈ K : 〈λ̄, y −G(x̄)〉 = 0}.

Clearly, the strict Robinson condition implies RCQ. However, it should be emphasized
that SRC is not a constraint qualification in the conventional sense since it presupposes
the existence of λ̄ and therefore depends not only on the constraint system but rather on
the problem as a whole. Indeed, there may be different objective functions which attain a
local or global minimizer at the same point in Φ, but SRC may only hold for some of
them. A related discussion can be found in Section 3.1.4 and in [215].
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Proposition 3.7 (KKT conditions under SRC). Let x̄ ∈ X be a stationary point such
that SRC holds in x̄. Then the corresponding Lagrange multiplier is unique, i.e., Λ(x̄) is
a singleton.

Proof. Let λ̄ ∈ Λ(x̄) be the multiplier satisfying SRC. By assumption, there exists r > 0
such that BY

r ⊆ G(x̄) + G′(x̄)(C0 − x̄) −K0. Now, let λ ∈ Λ(x̄) be arbitrary, and let
y ∈ BY

r . Then y = G(x̄) +G′(x̄)(c− x̄)− k with c ∈ C0 and k ∈ K0. It follows that

〈λ− λ̄, y〉 =
〈
G′(x̄)∗(λ− λ̄), c− x̄

〉
− 〈λ− λ̄, k −G(x̄)〉

=
〈
f ′(x̄) +G′(x̄)∗λ, c− x̄

〉
− 〈λ, k −G(x̄)〉 ≥ 0,

where the second equality uses the definitions of C0 and K0, and the final inequality uses
the fact that λ ∈ Λ(x̄). Since this holds for all y ∈ BY

r , we conclude that 〈λ− λ̄, y〉 = 0
for all y ∈ BY

r , which is equivalent to λ− λ̄ = 0.

The following remark contains an important sufficient condition for the Robinson
constraint qualification and its strict counterpart.

Remark 3.8. If C = X, then the surjectivity of G′(x̄) implies the Robinson constraint
qualification, and it implies the strict Robinson condition if x̄ is a stationary point.
Therefore, the surjectivity of G′(x̄) can be seen as the strongest constraint qualification. In
finite-dimensional nonlinear programming, it is even stronger than the linear independence
constraint qualification (LICQ, see Section 3.1.4), and it is therefore almost never needed in
this case. However, in the infinite-dimensional case, the distinction and isolation of active
and inactive parts of constraints is not so easy, and the surjectivity of G′(x̄), which does
not depend on these concepts, sometimes allows us to prove stronger optimality-related
statements. An example of this phenomenon can be found in Section 3.2.3.

Assume now that we have a point x̂ which is “almost” a solution of (P ). A popular
definition in this context is that of ε-minimizers: given ε > 0, we say that x̂ ∈ Φ is an
ε-minimizer of (P ) if f(x̂) ≤ f(x) + ε for all x ∈ Φ. For such approximate minimizers, it
is indeed possible to obtain an inexact analogue of the KKT conditions. This result is
usually called Ekeland’s variational principle.

Proposition 3.9 (Ekeland’s variational principle, [32, Thm. 3.23]). Let x̄ ∈ Φ be an
ε-minimizer of (P ), let δ := ε1/2, and assume that RCQ holds at every x ∈ Bδ(x̄) ∩ Φ.
Then there exist another ε-minimizer x̂ of (P ) and λ ∈ Y ∗ such that ‖x̂− x̄‖X ≤ δ,

dist
(
−L′(x̂, λ),NC(x̂)

)
≤ δ, and λ ∈ NK(G(x̂)).

In the case where C = X, it follows that NC(x̂) = {0}, and thus the first condition in
the above equation reduces to ‖L′(x̂, λ)‖X∗ ≤ δ.

Note that, as we shall see later, the Robinson constraint qualification remains invariant
under small perturbations of the constraint system. In particular, if x̄ is a feasible
point satisfying RCQ, then there always exists δ > 0 such that RCQ holds at every
x ∈ Bδ(x̄) ∩ Φ. The assumption made in Ekeland’s variational principle requires that we
can choose δ := ε1/2, where ε > 0 is the constant from the definition of ε-optimality.
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Let us close this section with a general remark on the feasible set Φ. The observation
below is useful and should be kept in mind when dealing with the Robinson constraint
qualification and its strict counterpart.

Remark 3.10. The analytical representation of the feasible set of (P ) is in general not
unique. In particular, we can always re-write the constraint system as (G(x), x) ∈ K ×C,
x ∈ X, which essentially amounts to replacing G by the mapping x 7→ (G(x), x), K by
K × C, and C by X. In this formulation, the KKT conditions take on the form

f ′(x̄) +G′(x̄)∗λ̄+ µ̄ = 0, λ̄ ∈ NK(G(x̄)), µ̄ ∈ NC(x̄),

and they are therefore equivalent to the KKT system given in Definition 3.2. It is also
interesting to note that the Robinson constraint qualification remains invariant under
this transformation of the constraint system, see [32, Lem. 2.100]. The same holds for the
strict Robinson condition, which can be seen as RCQ for the sets C0 and K0.

3.1.2 Constraint Qualifications and Regularity

We have already seen in the previous section that certain regularity properties are necessary
to ensure that the KKT conditions are necessary optimality conditions. Such properties
are usually called constraint qualifications. The present section is now dedicated to a more
detailed study of these conditions, the relationships between them, and their consequences.
The analysis here is based on the theoretical framework established in [32], with some
slight modifications and extensions.

The Robinson constraint qualification is closely linked to stability properties of certain
multifunctions, in particular the so-called feasibility mapping FG : X ⇒ Y , FG(x) :=
G(x)−K. Therefore, it is necessary to first discuss some elements of multifunction theory.
Since this is not the primary subject of this thesis, we will keep the discussion fairly
superficial and only mention the key results. More details can be found in [32].

A multifunctionW : X ⇒ Y is a function mapping each point x ∈ X to a subsetW(x)
of Y . Occasionally, a multifunction of this form is interpreted as an (ordinary) mapping
into the power set of Y , but it will be convenient to treat multifunctions distinctly from
ordinary functions in order to facilitate the use of certain multifunction-tailored notation
and terminology. For instance, we define the graph of W as

gph(W) := {(x, y) ∈ X × Y : y ∈ W(x)}.

Moreover, given arbitrary subsets S1 of X and S2 of Y , we define the image of S1 and
the preimage of S2 under W as

W(S1) :=
⋃
s∈S1

W(s) and W−1(S2) := {x ∈ X :W(x) ∩ S2 6= ∅}.

The set W(X) is sometimes called the range of W, and W−1(Y ) = {x ∈ X :W(x) 6= ∅}
the domain of W. Note that, for the treatment of multifunctions, it is no restriction to
always consider mappings defined on the whole space X. This is because a multifunction
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W : S ⇒ Y defined on a subset S ⊆ X can trivially be extended to X by setting
W(x) := ∅ whenever x /∈ S.

Given a multifunction W : X ⇒ Y , we say that W is closed (resp. convex ) if its graph
gph(W) is a closed (resp. convex) subset of X × Y . One of the most fundamental results
on multifunctions is the following generalized open mapping theorem due to Robinson
and Ursescu.

Theorem 3.11 (Generalized open mapping theorem, [32, Thm. 2.70]). Let W : X ⇒ Y
be a closed convex multifunction and y ∈ intW(X). Then y ∈ intW(Br(x)) for all
x ∈ W−1(y) and all r > 0.

Note that the above result generalizes the ordinary (Banach) open mapping theorem
(see Theorem 2.13). Indeed, if T ∈ L(X,Y ) is a surjective linear operator, then its
graph is closed by continuity, and convex by linearity. Since 0 ∈ intT (X), it follows that
0 ∈ intT (BX

1 ), which means that BY
r ⊆ T (BX

1 ) for some r > 0. Hence, Theorem 3.11
implies (the first part of) Theorem 2.13.

We now turn to a fundamental property of multifunctions which also plays a crucial
role in the analysis of constraint systems for optimization problems. In what follows, we
say that a property holds near a point if it holds in a neighborhood of that point.

Definition 3.12 (Metric regularity). A multifunctionW : X ⇒ Y is said to be metrically
regular at (x̄, ȳ) ∈ gph(W) if there exists c > 0 such that, for all (x, y) near (x̄, ȳ),

dist
(
x,W−1(y)

)
≤ cdist

(
y,W(x)

)
. (3.4)

Note that we did not assume W to be a closed convex multifunction in Definition 3.12.
If these conditions hold, then it is possible to give a full characterization of metric
regularity.

Proposition 3.13 (Robinson–Ursescu, [32, Thm. 2.83]). Let W : X ⇒ Y be a closed
convex multifunction. Then W is metrically regular at (x̄, ȳ) ∈ gph(W) if and only if
ȳ ∈ intW(X).

Let us now discuss how the concept of metric regularity can be applied to the
optimization problem (P ). We first consider the case where C = X. The main approach
is to linearize the mapping G in the neighborhood of a point x, thus obtaining a convex
constraint, and to apply Proposition 3.13. In this context, the interior condition from
Proposition 3.13 becomes precisely the Robinson constraint qualification.

Theorem 3.14 (Stability theorem, [32, Prop. 2.89]). Let C = X and let x̄ ∈ Φ be a
feasible point. Then RCQ holds in x̄ if and only if the multifunction FG : X ⇒ Y ,
FG(x) := G(x)−K, is metrically regular at the point (x̄, 0) ∈ X × Y .

We now give two corollaries of this result. First, we give a consequence of the theorem
in the general case where C 6= X. The main idea here is to use Remark 3.10.

Corollary 3.15. Let RCQ hold in a point x̄ ∈ Φ. Then there exists c > 0 such that
dist(x,Φ) ≤ cdist(G(x),K) for all x ∈ C near x̄.
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Proof. Let G2 : X → X × Y , G2(x) := (x,G(x)), and K2 := C ×K. By Remark 3.10,
RCQ holds for the constraint G2(x) ∈ K2 in x̄. Thus, by Theorem 3.14, the mapping
FG2(x) := G2(x)−K2 is metrically regular at the point (x̄, 0, 0) ∈ X2 × Y . Hence, there
exists c > 0 such that, whenever x ∈ C is sufficiently close to x̄, then

dist(x,Φ) ≤ cdist
(
G2(x),K2

)
= cdist

(
(x,G(x)), C ×K

)
= cdist

(
G(x),K

)
.

The above property is often called metric subregularity, calmness, or simply an error
bound to the feasible set. This should not be confused with error bounds to solution sets,
which also play a prominent role in optimization theory, see Section 3.2.4.

The distance estimate provided by Corollary 3.15 can be used to obtain an analytical
representation of the tangent cone TΦ(x). The following result is precisely the geometric
property which lies at the heart of the KKT conditions.

Corollary 3.16 ([32, Cor. 2.91]). Let x ∈ Φ be a feasible point and assume that RCQ
holds in x. Then TΦ(x) = {d ∈ TC(x) : G′(x)d ∈ TK(G(x))}.

We now discuss multiple conditions which are related to the Robinson constraint
qualification (RCQ). In this context, it will be convenient to define an analogue of RCQ
which is not restricted to feasible points. To keep a clear distinction, we call the resulting
condition the extended Robinson constraint qualification.

Definition 3.17 (Extended Robinson constraint qualification). Let x ∈ X be an arbitrary,
not necessarily feasible point. We say that the extended Robinson constraint qualification
(extended RCQ, ERCQ) holds in x if

0 ∈ int
[
G(x) +G′(x)(C − x)−K

]
.

Note that the condition defining ERCQ is the same as for the standard Robinson
constraint qualification. The only difference is that, for the latter, the point x has to be
feasible, whereas ERCQ is defined for arbitrary points.

An important property of (E)RCQ is its invariance under small perturbations of the
constraint system. Various forms of this statement can be found in the literature, e.g., in
[32, 227]. A particular form of this invariance arises if only the base point x is perturbed.
We then end up with the conclusion that, if RCQ holds in a point x, then it holds in a
neighborhood of x. The following result shows that RCQ actually holds “uniformly” in a
neighborhood of x, where uniformness is understood in the radius of a ball around zero
in Y , and in certain uniform bounds on the sets C and K.

Proposition 3.18 (Local invariance of RCQ). Let RCQ hold in some x̄ ∈ Φ. Then there
are r, δ > 0 such that, for all x ∈ Bδ(x̄), ERCQ holds in x with

BY
r ⊆ G′(x)

[
(C − x) ∩BX

1

]
−
[
(K −G(x)) ∩BY

1

]
. (3.5)

Proof. By the generalized open mapping theorem (Theorem 3.11), RCQ also holds in x̄
with respect to the “localized” sets C` := B1/2(x̄)∩C and K` := B1/2(G(x̄))∩K. Taking
into account Remark 3.10, it follows that

0 ∈ int

[(
G(x̄)
x̄

)
+

(
G′(x̄)
IdX

)
X −K` × C`

]
.
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By [32, Remark 2.88], this implies the existence of δ > 0 such that

0 ∈ int

[(
a
b

)
+

(
A

IdX

)
X −K` × C`

]
for all (a, b) ∈ Y × X and A ∈ L(X,Y ) with ‖(a, b) − (G(x̄), x̄)‖Y×X ≤ δ and ‖A −
G′(x̄)‖L(X,Y ) ≤ δ. Shrinking δ if necessary, this yields the existence of r > 0 such that

BY×X
r ⊆

(
G(x)
x

)
+

(
G′(x)
IdX

)
X −K` × C` (3.6)

for all x ∈ Bδ(x̄). Without loss of generality, let δ < 1/2, and let G(x) ∈ B1/2(G(x̄)) for
all x ∈ Bδ(x̄).

We now claim that (3.5) holds with the given r and δ. To see this, let x ∈ Bδ(x̄), and
let y ∈ BY

r be an arbitrary point. Then (y, 0) ∈ BY×X
r and, by (3.6), there exist d ∈ X,

k ∈ K`, and c ∈ C` such that y = G(x) +G′(x)d− k and 0 = x+ d− c. Observe now that

C` − x ⊆ (C − x) ∩BX
1 and K` −G(x) ⊆ (K −G(x)) ∩BY

1

since ‖x− x̄‖X ≤ 1/2 and ‖G(x)−G(x̄)‖Y ≤ 1/2. This finally yields

y = G(x) +G′(x)(c− x)− k ∈ G(x) +G′(x)(C` − x)−K`

⊆ G′(x)
[
(C − x) ∩BX

1

]
−
[
(K −G(x)) ∩BY

1

]
.

The proof is complete.

We now discuss some conditions which are related or equivalent to the Robinson
constraint qualification.

Proposition 3.19 ([32, Prop. 2.97]). For x ∈ Φ, consider the following assertions:

(a) The Robinson constraint qualification holds in x.

(b) We have G′(x)RC(x)−RK(G(x)) = Y .

(c) We have G′(x)TC(x)− TK(G(x)) = Y .

Then (a)⇔ (b)⇒ (c). If either Y is finite-dimensional or K has nonempty interior, then
(a)-(c) are equivalent.

Condition (b) in the above result is often called the Zowe–Kurcyusz constraint qualifi-
cation. It was introduced in [227] for the study of Lagrange multipliers. As stated by the
result, this condition is equivalent to RCQ.

An important sufficient condition for RCQ and its extended version is the so-called
linearized Slater condition. Indeed, this condition is equivalent to ERCQ under certain
assumptions. The details can be found in the following result which is an adaptation of
[32, Lem. 2.99].

Proposition 3.20. Let x ∈ X be an arbitrary point and assume that there exists x̂ ∈ C
such that G(x) +G′(x)(x̂− x) ∈ int(K). Then ERCQ holds in x. The converse is true
provided that int(K) is nonempty.
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Proof. If G(x)+G′(x)(x̂−x) ∈ int(K), then 0 ∈ int[G(x)+G′(x)(x̂−x)−K], and ERCQ
holds. Conversely, assume that ERCQ holds and that int(K) is nonempty. Assume, by
contradiction, that the convex sets

A1 := G(x) +G′(x)(C − x), A2 := int(K)

have empty intersection. By the first separation theorem (Proposition 2.12), there exists
a nonzero λ ∈ Y ∗ such that 〈λ,G(x) +G′(x)(c− x)〉 ≥ 〈λ, k〉 for all c ∈ C, k ∈ K. Now,
let y ∈ Y be an arbitrary vector such that 〈λ, y〉 < 0. Then, for t > 0, the vector ty does
not belong to G(x) +G′(x)(C − x)−K. It follows that the latter cannot contain a ball
around zero, and this is the desired contradiction.

Let us now assume that the operator G is K∞-concave in the sense of Definition 2.48,
where K∞ the recession cone of K. In this case, it is possible to considerably strengthen
the connection between the Robinson and Slater-type conditions.

Proposition 3.21. Let G : X → Y be K∞-concave and assume that the feasible set
Φ = C ∩G−1(K) is nonempty. Consider the following assertions:

(a) There is a feasible point x such that RCQ holds in x.

(b) For every point x ∈ X, ERCQ holds in x.

(c) We have 0 ∈ int[G(C)−K].

(d) There is a point x̂ ∈ C such that G(x̂) ∈ int(K).

Then (a)⇔ (b)⇔ (c)⇐ (d). If int(K) is nonempty, then (a)-(d) are equivalent.

Proof. (d)⇒ (c) and (b)⇒ (a) are clear. To prove (c)⇒ (b), let x ∈ X be an arbitrary
point. By Proposition 2.51, we have

G(w)−K ⊆ G(x) +G′(x)(w − x)−K

for all w ∈ X. Since the union of the left-hand side over w ∈ C contains a ball around
zero, so does the union of the right-hand side over w ∈ C, and this is precisely ERCQ.

For (a)⇒ (c), let G2(x) := (x,G(x)), K2 := C ×K, and consider the multifunction
W(x) := G2(x)−K2. By Remark 2.52, W is a closed convex multifunction, and by The-
orem 3.14 it is metrically regular at the point (x, 0, 0) ∈ gph(W). From Proposition 3.13,
it follows that (0, 0) lies in the interior of the range of W. Now, let y ∈ Y be sufficiently
close to zero. Then (0, y) lies in the range of W. Hence, there exists x ∈ X such that
(0, y) ∈ W(x) = (x − C) × (G(x) −K). It follows that x ∈ C and thus y ∈ G(C) −K.
We have shown that G(C)−K contains a ball around zero in Y .

Finally, if int(K) is nonempty, then (c)⇔ (d) follows from [32, Prop. 2.106].

An important property of ERCQ is that it guarantees that, whenever x is a stationary
point of a certain measure of infeasibility, then x is actually a feasible point. For the sake
of later reference, we formulate this result in a slightly more general framework.
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Proposition 3.22. Let i : Y ↪→ H densely for some real Hilbert space H, and let K ⊆ H
be a closed convex set with i−1(K) = K. Let x̄ ∈ X be a stationary point of the problem
minx∈C d

2
K(G(x)), and assume that ERCQ holds in x̄ with respect to the constraint system

of (P ). Then G(x̄) ∈ K.

Proof. Let r > 0 be such that BY
r ⊆ G(x̄) +G′(x̄)(C − x̄)−K. Then, for any y ∈ BY

r ,
there are z ∈ C and w ∈ K such that y = G(x̄) +G′(x̄)(z − x̄)− w. Thus, we have

〈G(x̄)− PK(G(x̄)), y〉 =
〈
G′(x̄)∗

[
G(x̄)− PK(G(x̄))

]
, z − x̄

〉
+ 〈G(x̄)− PK(G(x̄)), G(x̄)− w〉.

Observe that G′(x̄)∗[G(x̄)− PK(G(x̄))] is just the derivative of 1
2d

2
K ◦G in x̄. Hence, the

first term above is nonnegative by the minimizing property of x̄, and so is the second
term by standard projection inequalities. Thus, 〈G(x̄)− PK(G(x̄)), y〉 ≥ 0 for all y ∈ BY

r ,
which implies 〈G(x̄) − PK(G(x̄)), y〉 = 0 for all y ∈ BY

r and, since Y is dense in H, it
follows that G(x̄)− PK(G(x̄)) = 0. This completes the proof.

We conclude this section by giving an example for a specific constraint system which
occurs frequently in practical applications. The discussion of this example once again
highlights the fact that the analytical representation of the feasible set can have a
significant impact on the fulfillment of constraint qualifications.

Example 3.23 (Box constraints in Lebesgue spaces). Let Ω ⊆ Rd, d ∈ N, be a bounded
domain, and X := L2(Ω). Let the feasible set be given by box constraints, i.e.,

Φ = {u ∈ X : ua ≤ u ≤ ub almost everywhere in Ω},

where ua, ub ∈ X and ua ≤ ub. In practice, such constraints are considered “simple”, and
they are therefore often included in the set C of implicit constraints. Nevertheless, let us
discuss here how these constraints can be formulated analytically through the mapping
G. There are two canonical possibilities of doing so: on the one hand, we can simply
define G(u) := u and K := Φ (since this is a convex set). This formulation satisfies all
constraint qualifications since G′(u) = IdX is surjective for all u ∈ X. On the other hand,
we can represent the feasible set through the definitions

Ĝ(u) := (u− ua, ub − u), K̂ := {(v, w) ∈ X2 : v, w ≥ 0 almost everywhere}. (3.7)

The latter formulation has the advantage that K̂ is a closed convex cone, whereas K is not.
Despite this, (3.7) has the severe disadvantage that the Robinson constraint qualification
typically does not hold at points u ∈ Φ, see [211] for more details. An intuitive way
to verify this irregularity is to note that if RCQ holds, then it remains stable under
small perturbations of the constraint system (see [32]). However, even if ua and ub are
“well separated”, it is fairly easy to construct small perturbations (in the sense of L2)
which make the lower and upper bounds coincide on some set of positive measure. If
this happens, then the set of Lagrange multipliers corresponding to a stationary point
becomes unbounded, and RCQ is violated.
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3.1.3 Second-Order Sufficient Conditions

In this section, we deal with sufficient optimality conditions based on second-order deriva-
tives. Since we are dealing with a generic Banach space setting, the formulation of such
conditions will be slightly more complicated than in finite-dimensional nonlinear program-
ming. We essentially follow the approach conducted in [32], with some modifications to
allow for slightly more general and practical results.

Let (x̄, λ̄) ∈ X ×Y ∗ be a KKT point of (P ). Throughout this section, we assume that
f and G are continuously differentiable in a neighborhood of x̄, and twice differentiable
in x̄. Consider, for η > 0, the extended critical cone

Cη(x̄) :=

{
d ∈ TC(x̄) :

f ′(x̄)d ≤ η‖d‖X ,
dist

(
G′(x̄)d, TK(G(x̄))

)
≤ η‖d‖X

}
. (3.8)

Note that Cη depends on x̄ only. The following is the general form of second-order
sufficient conditions which we will use throughout this section.

Definition 3.24 (Second-order sufficient condition). We say that the second-order suffi-
cient condition (SOSC) holds in a KKT point (x̄, λ̄) ∈ X × Y ∗ of (P ) if there are η, c > 0
such that

L′′(x̄, λ̄)(d, d) ≥ c‖d‖2X for all d ∈ Cη(x̄).

The above should be considered the “basic” second order condition which can be stated
without any assumptions on the specific structure of (P ). For many problem classes, it
is possible to state more refined second-order conditions which are either equivalent to
Definition 3.24 or turn out to have similar implications.

One of the most important consequences of second-order conditions is the local
quadratic growth of the objective function on the feasible set, i.e., the existence of c > 0
such that f(x) ≥ f(x̄) + c‖x− x̄‖2X for all x ∈ Φ near x̄, see, for instance, [32, Thm. 3.63].
Here, we will prove a slightly stronger version of this statement with the aim of applying
it to the augmented Lagrangian method in Chapter 4. In this context, it will be essential
to discuss the impact of SOSC on sequences of points {xk} which are not necessarily
feasible but satisfy some kind of asymptotic feasibility, e.g., of the form dK(G(xk))→ 0.
It turns out that the quadratic growth condition can be extended to such points.

For the statement of this result, we use the Landau symbol ak = o(bk) for nonnegative
real sequences {ak} and {bk}, which means that ak ≤ zkbk for some null sequence {zk}.
The sequences {ak} and {bk} themselves are not required to converge to zero.

Theorem 3.25 (Extended quadratic growth). Let SOSC hold in a KKT point (x̄, λ̄)
of (P ). Then there are r, c > 0 such that, for every sequence {xk} ⊆ Br(x̄) ∩ C with
dK(G(xk)) = o(‖xk − x̄‖X), we have

lim inf
k→∞

[
f(xk)− f(x̄)− c‖xk − x̄‖2X

]
≥ 0. (3.9)
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Proof. Let η, c̄ > 0 be the constants from SOSC and choose r small enough so that∣∣f(x̄+ d)− f(x̄)− f ′(x̄)d
∣∣ ≤ η

2
‖d‖X , (3.10)∥∥G(x̄+ d)−G(x̄)−G′(x̄)d

∥∥
Y
≤ η

2
‖d‖X , (3.11)

and
∣∣∣∣L(x̄+ d, λ̄)− L(x̄, λ̄)− L′(x̄, λ̄)d− 1

2
L′′(x̄, λ̄)(d, d)

∣∣∣∣ ≤ c̄

4
‖d‖2X (3.12)

for all d ∈ X with ‖d‖X ≤ r. Furthermore, set

c := min
{ η

2r
,
c̄

4

}
. (3.13)

Now, let {xk} ⊆ Br(x̄) ∩ C be a sequence with dK(G(xk)) = o(‖xk − x̄‖X), and set
dk := xk − x̄. Without loss of generality, we assume that {xk} realizes the lim inf in (3.9).
If f ′(x̄)dk > η‖dk‖X for infinitely many k, then by (3.10) and (3.13) we obtain

f(xk)− f(x̄) ≥ f ′(x̄)dk − η

2
‖dk‖X ≥

η

2
‖dk‖X ≥ c‖dk‖2X

for all these k, which implies (3.9). We now consider the case where f ′(x̄)dk ≤ η‖dk‖X
for all but finitely many k. From (3.11), the fact that K − G(x̄) ⊆ TK(G(x̄)), and
dK(G(xk)) = o(‖dk‖X), it is easy to deduce that

dist
(
G′(x̄)dk, TK(G(x̄))

)
≤ dist

(
G(x̄) +G′(x̄)dk,K

)
≤ η

2
‖dk‖X + o(‖dk‖X).

Hence, dk ∈ Cη(x̄) for sufficiently large k. Applying (3.12), (3.13) and SOSC yields

L(xk, λ̄)− L(x̄, λ̄)− L′(x̄, λ̄)dk ≥ c̄

2
‖dk‖2X −

c̄

4
‖dk‖2X ≥ c‖dk‖2X . (3.14)

Observe now that −L′(x̄, λ̄)dk ≤ 0 since (x̄, λ̄) is a KKT point and dk ∈ C − x̄. Moreover,

L(xk, λ̄)− L(x̄, λ̄) = f(xk)− f(x̄) +
〈
λ̄, G(xk)−G(x̄)

〉
,

and the last term is asymptotically nonpositive since λ̄ ∈ NK(G(x̄)). Inserting this into
(3.14), we obtain f(xk)− f(x̄) ≥ c‖dk‖2X + o(1), and the result follows.

The ordinary quadratic growth condition follows easily as a corollary of the above
theorem.

Corollary 3.26 (Quadratic growth). Let (x̄, λ̄) be a KKT point of (P ) satisfying SOSC.
Then there are r, c > 0 such that f(x) ≥ f(x̄) + c‖x − x̄‖2X for all x ∈ Br(x̄) ∩ Φ. In
particular, x̄ is a strict local minimizer of (P ).

Note that a stationary point x̄ satisfying the second-order sufficient condition is
necessarily a strict local minimizer but, in general, not an isolated local minimizer. To
see this, consider the following example, due to Robinson [185]:

minimize
x∈R

x2 subject to x6 sin(1/x) = 0,
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where the constraint function is understood to be zero for x = 0. It is easy to see that
x̄ := 0 is the unique global solution of this minimization problem, and SOSC is satisfied
for any λ̄ ∈ Λ(x̄). However, every point of the form x := (kπ)−1, k ∈ N, is a local
minimizer, and thus x̄ is not an isolated local minimizer.

We now give a second corollary of Theorem 3.25 which will be particularly useful for
later results. The main idea is that we can use the theorem to give a sufficient condition
for a sequence of asymptotically feasible points to converge to x̄.

Corollary 3.27. Let (x̄, λ̄) be a KKT point of (P ) satisfying SOSC. Then there exists
r > 0 such that, whenever {xk} ⊆ Br(x̄) ∩ C is a sequence with dK(G(xk)) → 0 and
lim supk→∞ f(xk) ≤ f(x̄), then xk → x̄ (strongly) in X.

Proof. Let r, c > 0 be as in Theorem 3.25 and {xk} ⊆ Br(x̄) ∩ C a sequence with the
stated properties. Assume that {xk} does not converge to x̄. Passing onto a subsequence
if necessary, we may assume that ‖xk − x̄‖X ≥ ε for all k and some ε > 0. Then
dK(G(xk)) = o(‖xk − x̄‖X) holds trivially; hence, by Theorem 3.25, we obtain

0 ≤ lim inf
k→∞

[
f(xk)− f(x̄)− c‖xk − x̄‖2X

]
≤ −c lim sup

k→∞
‖xk − x̄‖2X ,

where we used the fact that lim supk→∞ f(xk) ≤ f(x̄) by assumption. It follows that
‖xk − x̄‖X → 0, which is the desired contradiction.

Let us close this section by mentioning two general situations in which the second-order
sufficient condition from Definition 3.24 can be simplified.

Remark 3.28. (a) If RCQ holds in x̄, we can make the extended critical cone slightly
smaller by replacing the estimate dist

(
G′(x̄)d, TK(G(x̄))

)
≤ η‖d‖X with the simple

inclusion G′(x̄)d ∈ TK(G(x̄)). The resulting second-order condition is equivalent to
Definition 3.24, see [32, Remark 3.68].

(b) If X is finite-dimensional, then we can replace the extended critical cone by the
(ordinary) critical cone

C(x̄) :=
{
d ∈ TC(x̄) : f ′(x̄)d ≤ 0, G′(x̄)d ∈ TK(G(x̄))

}
.

In that case, SOSC can equivalently be stated as L′′(x̄, λ̄)(d, d) > 0 for all d ∈ C(x̄) \ {0},
see [32, Thm. 3.63] and its proof. We will use this simpler form of second-order conditions
in later sections.

3.1.4 Nonlinear Programming

In this section, we briefly outline how some of the conditions of the preceding sections
can be specialized for the important case of nonlinear programming (NLP). A more
comprehensive treatment of this subject can be found in many textbooks on optimization,
for instance, in the references [16,25,48,172].
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To fix the problem setting, let m, p ∈ N0 be given numbers, and consider the con-
strained minimization problem

minimize
x∈X

f(x) subject to g(x) ≤ 0, e(x) = 0, (3.15)

where f : X → R, g : X → Rm, and e : X → Rp are continuously differentiable. The
inequality constraint g(x) ≤ 0 is understood componentwise. If either m or p is equal to
zero, we treat the corresponding constraint as nonexistent.

Note that we have made no assumptions on the particular structure of the space X.
In traditional NLP, this space is often assumed to be of the form X = Rn, n ∈ N, and
we will indeed use this setting in the context of second-order conditions below. However,
the remaining concepts in this section do not require X to be of this form, or to even be
finite-dimensional, and thus we will work with a general Banach space X.

Clearly, the nonlinear program (3.15) can be cast into the framework of our general
constrained problem (P ) with C := X, Y := Rm+p, G := (g, e), and K := Rm− × {0}p.
Thus, we can readily apply the concepts of the previous sections such as constraint
qualifications or second-order sufficient conditions to (3.15). However, in the NLP setting,
many of these conditions can be reformulated in a much more elementary manner, and they
also often have different names since, from a historical perspective, they were developed
independently (usually much earlier).

We begin by discussing some of the common constraint qualifications. For a point
x ∈ Rn and subsets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , p}, we say that the set of gradients
{∇gi(x)}i∈I∪{∇ej(x)}j∈J is positively linearly dependent if there are nontrivial coefficients
(i.e., not all equal to zero) λi ≥ 0, i ∈ I, and µj ∈ R, j ∈ J , such that∑

i∈I
λi∇gi(x) +

∑
j∈J

µj∇ej(x) = 0.

Note that the coefficients λi corresponding to the inequality constraints are required to
be nonnegative, whereas the remaining coefficients µj are arbitrary real numbers. From
a formal point of view, this is slightly imprecise since we attribute the positive linear
dependence to the union {∇gi(x)}i∈I ∪ {∇ej(x)}j∈J , but impose special conditions on
the coefficients of the gradients {∇gi(x)}i∈I . However, this mild inconsistency should not
introduce any confusion, and it simplifies the terminology in what follows.

If there is no nontrivial linear combination of the above form, i.e., if the vectors
{∇gi(x)}i∈I ∪ {∇ej(x)}j∈J are not positively linearly dependent, then we call them
positively linearly independent.

Definition 3.29 (Constraint qualifications for NLP). Let x̄ ∈ Rn be an arbitrary point
and let I := {i = 1, . . . ,m : gi(x̄) = 0}. We say that

(a) the linear independence constraint qualification (LICQ) holds in x̄ if the set of
gradients {∇gi(x̄)}i∈I ∪ {∇ej(x̄)}pj=1 is linearly independent.

(b) the Mangasarian–Fromovitz constraint qualification (MFCQ) holds in x̄ if the set of
gradients {∇gi(x̄)}i∈I ∪ {∇ej(x̄)}pj=1 is positively linearly independent.
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(c) the extended MFCQ (EMFCQ) holds in x̄ if the gradients {∇gi(x̄)}i∈I′∪{∇ej(x̄)}pj=1

with I ′ := {i = 1, . . . ,m : gi(x̄) ≥ 0} are positively linearly independent.

(d) the constant positive linear dependence condition (CPLD) holds in x̄ if, whenever I ⊆
I and J ⊆ {1, . . . , p} are subsets such that the gradients {∇gi(x)}i∈I ∪{∇ej(x)}j∈J
are positively linearly dependent in x := x̄, then they are linearly dependent for all
x in a neighborhood of x̄.

Note that some of these conditions are usually defined for feasible points only. However,
it will occasionally be convenient to deal with, say, LICQ, for arbitrary points which are
not necessarily feasible (see, for instance, Section 6.3.2).

Clearly, LICQ implies MFCQ, and MFCQ implies CPLD. Moreover, if the point
x is feasible, then MFCQ and EMFCQ coincide. Note also that MFCQ is precisely
the Robinson constraint qualification for the problem (3.15), see [32]. Interestingly, the
connection between EMFCQ and ERCQ is a little more nuanced. Using Proposition 3.20,
it is easy to show that the latter implies the former if only inequality constraints are
present. In the general case, however, the two conditions are not related.

Example 3.30 (EMFCQ versus ERCQ). (a) Consider the constraint function g : R→
R2, g(x) := (x,−x)>, at x̄ := 1. Then g(x̄) = g′(x̄) = (1,−1)>, and thus it is easy to see
that g(x̄) + g′(x̄)X −K cannot contain a ball around zero since every point y in that set
satisfies y1 + y2 ≥ 0. On the other hand, EMFCQ is satisfied since g1 is the only active
or violated constraint at x̄, and ∇g1(x̄) 6= 0.

(b) Let g(x) := 1 + 2x, e(x) := 1 + x, and x̄ := 0. Then g(x̄) = e(x̄) = 1, ∇g(x̄) = 2,
and ∇e(x̄) = 1. Hence, EMFCQ is violated in x̄ since ∇g(x̄)− 2∇e(x̄) = 0. On the other
hand, an easy calculation shows that(

g(x̄)
e(x̄)

)
+

(
g′(x̄)
e′(x̄)

)
X −K =

{(
x
y

)
∈ R2 : 2y ≤ x+ 1

}
.

This set contains a ball around zero, and thus ERCQ is satisfied in x̄.

Assume now that x̄ is a local minimizer of (3.15), and that any of the constraint
qualifications from Definition 3.29 is satisfied in x̄. Then x̄ together with a suitable vector
of Lagrange multipliers satisfies the KKT conditions. In the present setting, the multiplier
vector takes on the form (λ̄, µ̄) ∈ Rm+p, and the KKT conditions can be written as

L′(x̄, λ̄, µ̄) = 0, 0 ≤ λ̄ ⊥ g(x̄) ≤ 0, e(x̄) = 0, (3.16)

where L(x, λ, µ) := f(x) +λ>g(x) +µ>e(x) is the Lagrange function (see also (3.3)), L′ is
its derivative with respect to x, and the condition λ̄ ⊥ g(x̄) is shorthand for λ̄>g(x̄) = 0.
Moreover, the set of Lagrange multipliers Λ(x̄) ⊆ Rm+p is bounded if MFCQ holds in x̄
(see also Theorem 3.5), and it is a singleton if LICQ holds in x̄.

Similarly to ERCQ, the extended MFCQ implies that any stationary point of a certain
measure of infeasibility is a feasible point. This result is contained in the following
proposition.
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Proposition 3.31. Let x̄ ∈ X be a stationary point of the function m(x) := ‖g+(x)‖2 +
‖e(x)‖2, and let EMFCQ hold in x̄. Then x̄ is feasible, i.e., g(x̄) ≤ 0 and e(x̄) = 0.

Proof. By assumption, the derivative of m must vanish in x̄. This implies that

0 = ∇g(x̄)g+(x̄) +∇e(x̄)e(x̄) =
∑

gi(x̄)≥0

gi(x̄)∇gi(x̄) +

p∑
j=1

ej(x̄)∇ej(x̄).

It then follows from EMFCQ that all the coefficients in the above linear combination
must be zero. Hence, x̄ is a feasible point.

We now return to the KKT system of (3.15) and define a strict version of the
Mangasarian–Fromovitz constraint qualification.

Definition 3.32 (Strict Mangasarian–Fromovitz condition). Let (x̄, λ̄, µ̄) be a KKT point
of (3.15), let I := {i = 1, . . . ,m : gi(x̄) = 0}, and I+ := {i ∈ I : λ̄i > 0}. We say that
the strict Mangasarian–Fromovitz condition (SMFC) holds in (x̄, λ̄, µ̄) if

(i) the vectors {∇gi(x̄)}i∈I+ ∪ {∇ej(x̄)}pj=1 are linearly independent, and

(ii) there exists d ∈ Rn such that ∇gi(x̄)>d = 0 for all i ∈ I+, ∇gi(x̄)>d < 0 for all
i ∈ I \ I+, and ∇ej(x̄)>d = 0 for all j = 1, . . . , p.

We say that SMFC holds in x̄ if there exists (λ̄, µ̄) ∈ Λ(x̄) such that SMFC holds in
(x̄, λ̄, µ̄).

The above condition can be seen as a special case of the strict Robinson condition
from Definition 3.6, see [32, Remark 4.49]. Hence, by Proposition 3.7, it follows that
SMFC implies the uniqueness of the Lagrange multiplier (λ̄, µ̄). In fact, these conditions
are equivalent.

Proposition 3.33 ([154]). Let x̄ be a stationary point of (3.15). Then Λ(x̄) is a singleton
if and only if SMFC holds in x̄.

Let us stress that SMFC implicitly assumes the existence of (λ̄, µ̄) and therefore
depends on the whole problem (3.15), not only the constraint functions. In this context,
it is interesting to observe the following: given g and e, if the set Λ(x̄) is a singleton for
every objective function f such that x̄ is a local minimizer of (3.15), then indeed LICQ
must hold in x̄. This was observed in [215] and underlines the fact that SMFC is not a
constraint qualification.

We now turn to a second-order sufficient condition for the nonlinear program (3.15).
For the remainder of this section, we assume that X = Rn for some n ∈ N. In this case,
we can dispense with the extended critical cone from Section 3.1.3 and simply use the
(ordinary) critical cone, which takes on the form

C(x̄) :=
{
d ∈ Rn : f ′(x̄)d ≤ 0, g′I(x̄)d ≤ 0, e′(x̄)d = 0

}
,

where I := {i = 1, . . . ,m : gi(x̄) = 0} is again the set of active indices. The resulting
second-order condition can be stated as follows.
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Definition 3.34 (Second-order sufficient condition for NLP). Let (x̄, λ̄, µ̄) ∈ Rn+m+p

satisfy the KKT conditions (3.16). We say that the second-order sufficient condition
(SOSC) holds in (x̄, λ̄, µ̄) if

d>[∇2
xxL(x̄, λ̄, µ̄)]d > 0 for all d ∈ C(x̄) \ {0}.

This form of the second-order sufficient condition is slightly simpler than Definition 3.24,
but the two conditions are equivalent since X = Rn is finite-dimensional (see Remark 3.28).
In particular, the above condition implies the local quadratic growth of f on Φ, and it
implies that x̄ is a strict local minimizer of (3.15).

3.2 Variational Inequalities

We now turn to a class of variational problems, or variational inequalities (VIs), which can
be seen as a generalization of nonlinear optimization. Let X be a real Banach space, Φ a
nonempty closed subset of X, and F : X → X∗ a (nonlinear) mapping. The variational
inequality corresponding to F and Φ, occasionally denoted by VI(F,Φ), is the problem of
finding x ∈ X such that

(V ) x ∈ Φ, 〈F (x), d〉 ≥ 0 ∀d ∈ TΦ(x). (3.17)

This condition is heavily inspired by the first-order necessary conditions for constrained
minimization problems from Lemma 3.1. Indeed, if F = f ′ for some differentiable function
f : X → R, then (V ) represents a first-order necessary condition for the optimization
problem

minimize
x∈X

f(x) subject to x ∈ Φ.

It should be noted, however, that the scope of VIs far exceeds that of optimization problems.
Indeed, some of the most prominent applications of VIs are (generalized) Nash equilibrium
problems, or (G)NEPs, which are optimization-type problems involving multiple players
and corresponding functions. We will discuss NEPs and GNEPs in some more detail in
Section 5.3. The introduction to Chapter 5 also contains a more comprehensive literature
review of variational inequalities and their applications in economics, mechanics, and
many related fields. In the present section, we shall mainly be concerned with a general
analysis of variational inequalities in the form (3.17), with the understanding that many
more tangible problem classes can be reformulated as VIs and are therefore implicitly
subsumed by our approach.

Observe that, if the feasible set Φ is convex, then (V ) can equivalently be stated as

x ∈ Φ, 〈F (x), y − x〉 ≥ 0 ∀y ∈ Φ. (3.18)

This is because, in the convex case, the polar cone of TΦ(x) coincides with the normal
cone in the sense of convex analysis, see the discussion after Definition 2.35. The above is
often taken to be the canonical form of variational inequalities. For our purposes, however,
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it will be convenient to deal with the more general framework (V ) since this allows us to
implicitly treat nonconvex minimization and related problems.

In many cases, the feasible set Φ has an analytical representation of the form

Φ = {x ∈ C : G(x) ∈ K}, (3.19)

where C ⊆ X and K ⊆ Y are nonempty closed convex sets, Y is a real Banach space,
and G : X → Y a smooth mapping. For the sake of generality, we will begin this section
by working with a general set Φ, without assuming any representation of the above form.
Starting with Section 3.2.2, we will work with a feasible set as in (3.19).

3.2.1 Pseudomonotone Operators

This section is dedicated to a discussion of various continuity and monotonicity properties
for the operator F : X → X∗. The basic definitions related to monotonicity are
summarized below.

Definition 3.35 (Monotonicity properties). Let F : X → X∗. We say that F is

(i) monotone if 〈F (x)− F (y), x− y〉 ≥ 0 for all x, y ∈ X.

(ii) strictly monotone if 〈F (x)− F (y), x− y〉 > 0 for all x, y ∈ X with x 6= y.

(iii) strongly monotone with modulus c > 0 if 〈F (x)− F (y), x− y〉 ≥ c‖x− y‖2X for all
x, y ∈ X.

The monotonicity notions above are closely linked to the convexity concepts from
Section 2.2.2. Indeed, if f : X → R is a differentiable function, then f is (strictly, strongly)
convex if and only if f ′ : X → X∗ is (strictly, strongly) monotone. Moreover, in the case
of strong convexity and monotonicity, the corresponding constants in the definitions can
be chosen equivalently.

The aforementioned notions of monotonicity play a fundamental role in the analysis
of variational inequalities. If the feasible set Φ is convex and the operator F is monotone,
then it follows that the solution set of (V ) is always a convex set (possibly empty). If F
is furthermore strictly monotone, then the solution of (V ), if it exists, is unique.

Despite this, it turns out that monotonicity is too restrictive an assumption for
many practical variational problems. In particular, the restriction of our analysis to
monotone VIs would rule out nonconvex optimization and Nash equilibrium problems.
Therefore, a more general approach is necessary. To this end, we use the following notion
of pseudomonotonicity, due to Brezis [37].

Definition 3.36 (Pseudomonotonicity). We say that an operator F : X → X∗ is
pseudomonotone if, whenever

{xk} ⊆ X, xk ⇀ x, and lim sup
k→∞

〈
F (xk), xk − x

〉
≤ 0,

then
〈F (x), x− y〉 ≤ lim inf

k→∞

〈
F (xk), xk − y

〉
for all y ∈ X.
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Despite its somewhat peculiar appearance, the notion of pseudomonotonicity will
play a fundamental role in the subsequent theory of VIs. Some sufficient conditions for
pseudomonotone operators are summarized in the following lemma.

Lemma 3.37 (Sufficient conditions for pseudomonotonicity). Let X be a real Banach
space and T,U : X → X∗ given operators. Then:

(a) If T is monotone and continuous, then T is pseudomonotone.

(b) If, for every y ∈ X, the mapping x 7→ 〈T (x), x− y〉 is weakly sequentially lsc, then
T is pseudomonotone.

(c) If T is completely continuous, then T is pseudomonotone.

(d) If T is continuous and dim(X) < +∞, then T is pseudomonotone.

(e) If T and U are pseudomonotone, then T + U is pseudomonotone.

Proof. (b) is obvious. The remaining assertions can be found in [223, Prop. 27.6].

It follows from the above observations that the concept of pseudomonotone operators
provides a unified approach to different classes of operators, including monotone and
completely continuous ones. Property (b) in the above lemma is occasionally referred
to as (Ky–)Fan-hemicontinuity as it is closely related to the assumptions of the Ky Fan
theorem (Lemma 2.54). At the end of this section, we will present an example which
shows that this property is strictly stronger than pseudomonotonicity.

Let us now give a simple class of pseudomonotone operators which arises frequently
in practical scenarios.

Example 3.38 (Derivative mappings). In many applications, the operator F is the
derivative mapping of a functional f : X → R. Assume that we are in this scenario, that
X is reflexive, and that f = f1 + f2 with f1 a smooth convex function and f2 nonconvex,
but weakly sequentially continuous and uniformly differentiable on bounded subsets of X.
Then f ′1 is monotone and continuous, and f ′2 is completely continuous by Proposition 2.17.
It follows that F = f ′1 + f ′2 is pseudomonotone by Lemma 3.37.

Recall that an operator is said to be bounded if it maps bounded sets to bounded sets.
The following lemma gives an important property of bounded pseudomonotone operators
and generalizes a result from [223] since we do not assume the space X to be reflexive.

Lemma 3.39. Let F : X → X∗ be a bounded pseudomonotone operator. Then F is
demicontinuous, i.e., it maps strongly convergent sequences to weak-∗ convergent sequences.
In particular, if dim(X) < +∞, then F is continuous.

Proof. Let {xk} ⊆ X be a sequence with xk → x for some x ∈ X. Observe that {F (xk)}
is bounded in X∗ and hence∣∣〈F (xk), xk − x

〉∣∣ ≤ ‖F (xk)‖X∗‖xk − x‖X → 0.
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Thus, by pseudomonotonicity, we obtain

〈F (x), x− y〉 ≤ lim inf
k→∞

〈
F (xk), xk − y

〉
= lim inf

k→∞

〈
F (xk), x− y

〉
(3.20)

for all y ∈ X, where we used the boundedness of {F (xk)} and the fact that xk → x.
Inserting ỹ := 2x− y for an arbitrary y ∈ X, we also obtain

〈F (x), y − x〉 = 〈F (x), x− ỹ〉 ≤ lim inf
k→∞

〈
F (xk), xk − ỹ

〉
= lim inf

k→∞

〈
F (xk), y − x

〉
, (3.21)

where the last equality uses the fact that {F (xk)} is bounded and that xk−ỹ = y−x+o(1).
Putting (3.20) and (3.21) together, it follows that 〈F (xk), x− y〉 → 〈F (x), x− y〉 for all
y ∈ X. This implies F (xk) ⇀∗ F (x), and the proof is done.

It follows from Lemmas 3.37 and 3.39 that, for a finite-dimensional space X (without
loss of generality, a Hilbert space), an operator F : X → X is bounded and pseudomono-
tone if and only if it is continuous.

We now present two existence results for variational inequalities. For the sake of
generality and since we will need this result later, we first prove an existence theorem
for generalized VIs involving, in addition to the mapping F , a lower semicontinuous
convex function ϕ. Such problems are usually called variational inequalities of the second
kind. The main tool in the following proof is the Brezis–Nirenberg–Stampacchia theorem
discussed in Section 2.2.4.

Theorem 3.40. Let Φ ⊆ X be a nonempty, convex, weakly compact set, F : X → X∗

a bounded pseudomonotone operator, and ϕ : X → R a convex, lower semicontinuous
function. Then there exists x̄ ∈ Φ such that

〈F (x̄), x̄− y〉+ ϕ(x̄)− ϕ(y) ≤ 0 for all y ∈ Φ.

Proof. We claim that the mapping Ψ : Φ2 → R, Ψ(x, y) := 〈F (x), x− y〉+ ϕ(x)− ϕ(y),
satisfies the assumption of the Brezis–Nirenberg–Stampacchia theorem (Theorem 2.56).
Clearly, Ψ(x, x) ≤ 0 for every x ∈ Φ, and Ψ is (quasi-)concave with respect to the second
argument. Moreover, by Lemma 3.39, Ψ is lower semicontinuous with respect to the first
argument on Φ ∩ L for any finite-dimensional subspace L of X. Finally, let x, y ∈ Φ, let
{xk} ⊆ Φ be a sequence converging weakly to x, and assume that

Ψ(xk, (1− t)x+ ty) ≤ 0 ∀t ∈ [0, 1], ∀k ∈ N. (3.22)

We need to show that Ψ(x, y) ≤ 0. By (3.22), we have in particular that Ψ(xk, x) ≤ 0
and Ψ(xk, y) ≤ 0 for all k. The first of these conditions implies that

0 ≥ lim sup
k→∞

Ψ(xk, x) ≥ lim sup
k→∞

〈
F (xk), xk − x

〉
+ lim inf

k→∞

[
ϕ(xk)− ϕ(x)

]
≥ lim sup

k→∞

〈
F (xk), xk − x

〉
,
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where we used the weak sequential lower semicontinuity of ϕ. Hence, by the pseudomono-
tonicity of F , we obtain

Ψ(x, y) = 〈F (x), x− y〉+ ϕ(x)− ϕ(y)

≤ lim inf
k→∞

[〈
F (xk), xk − y

〉
+ ϕ(xk)− ϕ(y)

]
= lim inf

k→∞
Ψ(xk, y) ≤ 0.

Therefore, Ψ satisfies all the requirements of Theorem 2.56, and the result follows.

Clearly, we can recover the variational inequality (V ) by setting ϕ ≡ 0. This immedi-
ately yields the following existence result.

Corollary 3.41. Let Φ ⊆ X be a nonempty, convex, weakly compact set, and F : X → X∗

a bounded pseudomonotone operator. Then (V ) admits a solution.

In many situations, the weak compactness of C can be replaced by an appropriate
kind of radial unboundedness.

Remark 3.42 (Coercivity). Assume that X is reflexive and F is coercive in the sense
that, for all y ∈ X,

〈F (x), x− y〉
‖x− y‖X

→ +∞ as ‖x‖X → +∞. (3.23)

Then the weak compactness of Φ in Theorem 3.40 and Corollary 3.41 can be replaced by
closedness, see [39, Thm. 1]. Note that every strongly monotone operator satisfies (3.23).

The importance of pseudomonotonicity for VIs goes beyond the existence theory.
Indeed, a rather important consequence of this property is the stability of solutions and
approximate solutions of the VI under weak convergence.

Proposition 3.43. Let Φ ⊆ X be a nonempty closed convex set and F : X → X∗ a
pseudomonotone operator. Assume that {xk} ⊆ X converges weakly to a point x̄ ∈ Φ and
that there are null sequences {δk}, {εk} ⊆ R (possibly negative) such that〈

F (xk), y − xk
〉
≥ δk + εk‖y − xk‖X ∀y ∈ Φ

for all k. Then x̄ is a solution of the VI.

Proof. Since x̄ ∈ Φ, we obtain in particular that lim infk→∞〈F (xk), x̄ − xk〉 ≥ 0. The
pseudomonotonicity of F therefore implies that

〈F (x̄), y − x̄〉 ≥ lim sup
k→∞

〈
F (xk), y − xk

〉
≥ 0 for all y ∈ Φ.

Hence, x̄ is a solution of the VI.

Under the assumptions of Proposition 3.43, it follows in particular that weak limit
points of a sequence of (exact) solutions of the VI are again solutions of the VI. This
means that the solution set of (V ) is weakly sequentially closed.
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Figure 3.1: The sequence from Example 3.44 for k = 4: uk (left) and ∇uk (right).

We conclude this section by presenting an example of a bounded pseudomonotone
operator which satisfies neither (b) nor (c) from Lemma 3.37. In particular, the example
shows that the continuity from part (b), also called Ky–Fan-hemicontinuity, is strictly
stronger than pseudomonotonicity. This implies that a recent publication claiming the
equivalence of the two properties, see [199], is erroneous.

Example 3.44. Let X := W 1,3
0 (0, 1) be one of the Sobolev spaces from Section 2.1.4,

and let F : X → X∗ be the (negative) p-Laplacian defined by

〈F (u), v〉 :=

∫ 1

0
|∇u(t)|∇u(t)∇v(t) dt.

Then F is monotone and continuous, hence pseudomonotone. Now, for each k ∈ N, let
uk : [0, 1] → R be the piecewise linear function with value 1/k at t = (3i+ 1)/(6k) for
i = 0, . . . , k − 1, and value zero at t = i/(2k) for i = 0, . . . , k, and on [1/2, 1]. Clearly,
uk → 0 in L3(0, 1). Moreover, the weak derivative of uk is (almost everywhere) given by

∇uk(t) =


6, if t ∈

(
i

2k ,
3i+1
6k

)
with i = 0, . . . , k − 1,

−3, if t ∈
(

3i−2
6k , i

2k

)
with i = 1, . . . , k,

0, if t ∈
(

1
2 , 1
)
,

see Figure 3.1. It follows from standard arguments (e.g., [4, Exercise 8.7, p. 254]) that
∇uk ⇀ 0 in L3(0, 1). Hence, uk ⇀ u := 0 in X = W 1,3

0 (0, 1). Now, let v(t) :=
αmin{t, 1 − t} with α � 0, and observe that ‖∇uk‖3L3(0,1) = 45 for all k. Finally, we
have 〈F (u), u− v〉 = 0, but an elementary calculation shows that

〈F (uk), uk − v〉 = ‖∇uk‖3L3(0,1) −
∫ 1

0
|∇uk(t)|∇uk(t)∇v(t) dt = 45− 3α.

Thus, if α is large enough, it follows that 〈F (uk), uk − v〉 is a negative constant for all k,
and thus property (b) from Lemma 3.37 is violated.

3.2.2 KKT-Type Conditions

Throughout the remainder of this chapter, we assume that the feasible set Φ of the VI
has an analytical representation of the form

Φ = {x ∈ C : G(x) ∈ K}, (3.24)
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where C ⊆ X and K ⊆ Y are nonempty closed convex sets, Y is a real Banach space,
and G : X → Y a continuously differentiable mapping. It follows that, if F = f ′ for
some differentiable function f : X → R, then (V ) can be seen as a first-order necessary
condition (in the sense of Lemma 3.1) of the constrained optimization problem

minimize
x∈C

f(x) subject to G(x) ∈ K.

Let us now discuss a general VI of the form (V ), with an arbitrary operator F : X →
X∗, and with the feasible set given by (3.24). It turns out that such VIs admit a
similar theory of first-order necessary (KKT) conditions and Lagrange multipliers as
constrained optimization problems. To see this, let x̄ be a solution of (V ), and assume
that the constraint system of (V ) satisfies the Robinson constraint qualification (RCQ,
see Definition 3.4) in x̄. Then Corollary 3.16 implies that

TΦ(x̄) = {d ∈ TC(x̄) : G′(x̄)d ∈ TK(G(x̄))}.

In particular, the definition of the VI implies that d̄ := 0 is a solution of the constrained
minimization problem

minimize
d∈X

〈F (x̄), d〉 subject to d ∈ TC(x̄), G′(x̄)d ∈ TK(G(x̄)). (3.25)

Observe now that RCQ for this transformed problem in d̄ = 0 takes on the form

0 ∈ int
[
G′(x̄)TC(x̄)− TK(G(x̄))

]
.

Since C − x̄ ⊆ TC(x̄) and K −G(x̄) ⊆ TK(G(x̄)), this condition is implied by RCQ for
the original constraint system of (V ). Thus, we obtain from Theorem 3.5 that there is a
nonempty, bounded, and convex set Λ(x̄) ⊆ Y ∗ of Lagrange multipliers for (3.25). The
KKT conditions of this problem in d̄ = 0 take on the form

− F (x̄)−G′(x̄)∗λ̄ ∈ NC(x̄) and λ̄ ∈ NK(G(x̄)). (3.26)

This prompts us to define the Lagrange function or Lagrangian of (V ), in the variational
inequality sense, as the mapping

L : X × Y ∗ → X∗, L(x, λ) := F (x) +G′(x)∗λ. (3.27)

The KKT system of the VI is then nothing but the KKT system (3.26) of the transformed
problem (3.25).

Definition 3.45 (KKT point). A point (x̄, λ̄) ∈ X × Y ∗ is a KKT point of (V ) if

−L(x̄, λ̄) ∈ NC(x̄) and λ̄ ∈ NK(G(x̄)).

We say that x̄ ∈ X is a stationary point of (V ) if (x̄, λ̄) is a KKT point for some multiplier
λ̄ ∈ Y ∗, and denote by Λ(x̄) the set of such multipliers.
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If the VI originates from a constrained optimization problem, then the Lagrangian
(3.27) in the variational sense is the derivative of the Lagrange function (3.3) of the
underlying optimization problem. In this case, the KKT system from Definition 3.45 is
consistent with its optimization counterpart from Definition 3.2.

The preceding discussion implies that Theorem 3.5 on the necessity of the KKT system
under RCQ can directly be carried over to the VI setting. Interestingly, it turns out that
the converse implication is much stronger in the present case. More precisely, the KKT
conditions are always sufficient for “optimality”, where optimality has to be understood
in the variational sense. The reason why the problem (V ) admits this strong connection
is that its definition uses the tangent cone to Φ and not the set Φ itself.

Proposition 3.46. If (x̄, λ̄) is a KKT point, then x̄ is a solution of (V ). Conversely, if
x̄ is a solution of (V ) and RCQ holds in x̄, then Λ(x̄) is nonempty and bounded in Y ∗.

Proof. The converse part follows from Theorem 3.5 and the arguments preceding Defini-
tion 3.45. To prove that the KKT conditions are always sufficient, let (x̄, λ̄) be a KKT
point of (V ), and let d ∈ TΦ(x̄). Then d = limk→∞(xk − x̄)/tk with {xk} ⊆ Φ, xk → x̄,
and tk ↓ 0. In particular, we have d ∈ TC(x̄), and it follows from the KKT conditions
that 〈L(x̄, λ̄), d〉 ≥ 0. This yields

〈F (x̄), d〉 ≥ 〈−G′(x̄)∗λ̄, d〉 =

〈
−G′(x̄)∗λ̄, lim

k→∞

xk − x̄
tk

〉
= − lim

k→∞

1

tk

〈
λ̄, G′(x̄)(xk − x̄)

〉
.

But G′(x̄)(xk − x̄) = G(xk)−G(x̄) + o(tk) and therefore

〈F (x̄), d〉 ≥ − lim
k→∞

1

tk

〈
λ̄, G(xk)−G(x̄)

〉
≥ 0,

where we used λ̄ ∈ NK(G(x̄)) and G(xk) ∈ K for all k.

It is also possible to extend the strict Robinson condition from constrained optimization
(SRC, Definition 3.6) to variational inequalities. This has to be done explicitly because
SRC is not a constraint qualification, i.e., it cannot be attributed solely to the constraint
system of the underlying problem. In any case, the natural extension of Definition 3.6 is
the following.

Definition 3.47 (Strict Robinson condition). We say that the strict Robinson condition
(SRC) for the VI (V ) holds in x̄ ∈ Φ if there exists λ̄ ∈ Λ(x̄) such that

0 ∈ int
[
G(x̄) +G′(x̄)(C0 − x̄)−K0

]
,

where C0 := {x ∈ C : L(x̄, λ̄)(x− x̄) = 0} and K0 := {y ∈ K : 〈λ̄, y −G(x̄)〉 = 0}.

Arguing as in Proposition 3.7, it follows that the SRC for VIs implies the uniqueness
of the corresponding Lagrange multiplier.

Due to the strong connection between the KKT conditions and the VI, it is not
necessary to formulate second-order sufficient conditions for variational problems. Never-
theless, for theoretical considerations, it will be convenient to define an analogue of the
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second-order sufficient condition from constrained optimization. Let (x̄, λ̄) ∈ X × Y ∗ be
a KKT point of (V ) and define, for η > 0, the extended critical cone

Cη(x̄) :=

{
d ∈ TC(x̄) :

〈F (x̄), d〉 ≤ η‖d‖X ,
dist

(
G′(x̄)d, TK(G(x̄))

)
≤ η‖d‖X

}
. (3.28)

The following is the basic second-order condition for variational inequalities. We assume
that F is continuously differentiable and G twice continuously differentiable near x̄.

Definition 3.48 (Second-order sufficient condition). Let (x̄, λ̄) ∈ X × Y ∗ be a KKT
point of (V ). We say that the second-order sufficient condition (SOSC) holds in (x̄, λ̄) if
there are η, c > 0 such that〈

L′(x̄, λ̄)d, d
〉
≥ c‖d‖2X for all d ∈ Cη(x̄).

Note that we use the terminology “second-order sufficient condition” mainly for the
sake of consistency with the corresponding condition from constrained optimization
(Definition 3.24). For variational problems such as (V ), there is actually no need for
sufficiency conditions to complement the KKT system because of Proposition 3.46.

3.2.3 Sequential KKT Conditions

This section is dedicated to a rather pragmatic concept of asymptotic optimality. Many
practical algorithms for constrained optimization, variational inequalities, etc., iteratively
construct a primal-dual sequence {(xk, λk)} which satisfies the KKT conditions in an
asymptotic sense. Therefore, it makes sense to analyze such “sequential” analogues of the
KKT conditions in more detail. The discussion in this section is also motivated by similar
approaches in finite dimensions, see [7, 8, 28].

Recall that the KKT conditions of (V ) are given by

−L(x̄, λ̄) ∈ NC(x̄) and λ̄ ∈ NK(G(x̄)).

It is particularly the second condition which requires special care when trying to formulate
a sequential analogue of the KKT conditions. The main definition we will use is the
following.

Definition 3.49 (Asymptotic KKT sequence). We say that a sequence {(xk, λk)} ⊆
C × Y ∗ is an asymptotic KKT sequence for (V ) if there exist null sequences {εk} ⊆ X∗
and {rk} ⊆ R such that, for all k,

εk − L(xk, λk) ∈ NC(xk) and
〈
λk, y −G(xk)

〉
≤ rk ∀y ∈ K. (3.29)

Our main aim in this section is to give sufficient conditions which guarantee that,
if {(xk, λk)} is an asymptotic KKT sequence and x̄ is a (possibly weak) limit point of
{xk}, then x̄ is a stationary point of (V ). In this context, it is worth mentioning that
Definition 3.49 imposes no conditions on the attainment of feasibility. This aspect is left
unspecified for the sake of flexibility; indeed, we will mainly be concerned with scenarios
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where x̄ is some kind of limit point of {xk} and we already know from a preliminary
analysis that x̄ is a feasible point.

Note that, while the conditions posed in Definition 3.49 seem reasonably weak, it is
possible to generalize the asymptotic KKT concept even further. In particular, in our
formulation, the second inequality in (3.29) is assumed to hold uniformly on K. If K
is unbounded, then it may be more natural to require some kind of uniformness of the
inequality on bounded subsets of K. In any case, however, the augmented Lagrangian
method which we will discuss in later chapters satisfies the uniform bound from (3.29),
and a more general analysis is therefore not necessary for our purposes.

Before analyzing the optimality properties of limit points, we first give a property
of asymptotic KKT sequences which is interesting in its own right. Indeed, it turns out
that the existence of an asymptotic KKT sequence is a necessary optimality condition for
constrained optimization problems, even in the absence of constraint qualifications. For
the formulation of this result, consider a problem of the form (3.1), that is

minimize
x∈C

f(x) subject to G(x) ∈ K, (3.30)

where f : X → R is a continuously differentiable function. This corresponds to the
variational setting (V ) with F := f ′. The proof of the following result is inspired by
[28, Thm. 3.1].

Proposition 3.50. Let x̄ be a local minimizer of (3.30). Assume that X is reflexive, Y
is a real Hilbert space, and that f and dK ◦G are weakly sequentially lsc in x̄. Then there
is an asymptotic KKT sequence {(xk, λk)} ⊆ C × Y such that xk → x̄.

Proof. Let r > 0 be such that x̄ minimizes f on Br(x̄) ∩ Φ. For k ∈ N, consider the
problem

minimize
x∈X

f(x) + ‖x− x̄‖2X + kd2
K(G(x)) subject to x ∈ Br(x̄) ∩ C. (3.31)

Since X is reflexive and the objective function in the above problem is weakly sequentially
lsc, the problem admits a minimizer xk ∈ Br(x̄)∩C. Passing to a subsequence if necessary,
we may assume that xk ⇀ x̂ for some x̂ ∈ Br(x̄) ∩ C. Observe now that

f(xk) + ‖xk − x̄‖2X + kd2
K(G(xk)) ≤ f(x̄) (3.32)

for all k by the minimizing property of xk. Dividing by k and taking the limit k →∞, it
follows that dK(G(x̂)) = 0, i.e., x̂ is feasible. By (3.32), we also obtain f(x̂) +‖x̂− x̄‖2X ≤
f(x̄). But f(x̄) ≤ f(x̂), hence x̂ = x̄ and (3.32) implies that xk → x̄. In particular, we
have ‖xk − x̄‖X < r for sufficiently large k, and from (3.31) we obtain the existence of a
sequence {εk} ⊆ X∗ such that −εk ∈ ∂‖xk − x̄‖2X and

0 ∈ f ′(xk)− εk + 2kG′(xk)∗
[
G(xk)− PK(G(xk))

]
+NC(xk).

Observe now that ‖·‖2X is Fréchet-differentiable in the point 0 ∈ X with derivative 0 ∈ X∗.
Hence, by Proposition 2.46, we obtain εk → 0 in X∗. Moreover, the sequence λk :=
2k[G(xk)−PK(G(xk))] satisfies 〈λk, y−G(xk)〉 ≤ 0 for all y ∈ K by Proposition 2.36.
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Our subsequent efforts in this section are devoted to the analysis of conditions which
guarantee that, if {(xk, λk)} is an asymptotic KKT sequence and x̄ is a limit point of
{xk}, then there exists λ̄ ∈ Y ∗ such that (x̄, λ̄) is a KKT point. We will mainly be
concerned with the analysis of weak limit points, which implies that, occasionally, we will
need complete continuity properties of the mapping G or its derivative. Of course, if x̄ is
a strong limit point of {xk}, then many of the subsequent assumptions can be simplified
considerably.

Theorem 3.51. Let {(xk, λk)} ⊆ C × Y ∗ be an asymptotic KKT sequence with xk ⇀ x̄
for some x̄ ∈ Φ. Assume that F is bounded and pseudomonotone, that G and G′ are
completely continuous, and that RCQ holds in x̄. Then the sequence {λk} is bounded in
Y ∗, and every weak-∗ limit point of {λk} belongs to Λ(x̄).

Proof. We first prove the boundedness of {λk} in Y ∗. Applying the generalized open
mapping theorem (Theorem 3.11) to the multifunction W(u) := G(x̄) +G′(x̄)u−K on
the domain C − x̄, we obtain the existence of r > 0 such that

BY
r ⊆ G(x̄) +G′(x̄)

[
(C − x̄) ∩BX

1

]
−K.

Now, let {yk} ⊆ Y be a sequence of unit vectors such that 〈λk, yk〉 ≥ 1
2‖λ

k‖Y ∗ . Then

−ryk = G(x̄) +G′(x̄)(vk − x̄)− zk

with {vk} ⊆ C a bounded sequence and {zk} ⊆ K. It follows that ryk = zk −G(xk)−
G′(xk)(vk − xk) + δk with δk → 0 as k →∞. Let k be large enough so that ‖δk‖Y ≤ r/4.
Then, by the asymptotic KKT conditions (3.29), we obtain

r

2
‖λk‖Y ∗ ≤

〈
λk, ryk

〉
≤
〈
λk, zk −G(xk)

〉
−
〈
λk, G′(xk)(vk − xk)

〉
+
r

4
‖λk‖Y ∗

≤
〈
λk, zk −G(xk)

〉
+
〈
F (xk)− εk, vk − xk

〉
+
r

4
‖λk‖Y ∗ .

Now, using again (3.29) and the boundedness of F , it follows that the first two terms are
bounded from above by some constant c > 0. Hence, r4‖λ

k‖Y ∗ ≤ c.
We now show the second assertion. Let I ⊆ N be an (infinite) subset such that

λk ⇀∗I λ̄ in Y ∗. By (3.29) and Proposition 2.40, we have λ̄ ∈ NK(G(x̄)). Now, let y ∈ C
be arbitrary. Then, by (3.29),〈

εk, y − xk
〉
≤
〈
F (xk), y − xk

〉
+
〈
λk, G′(xk)(y − xk)

〉
. (3.33)

By complete continuity, we have G′(xk) → G′(x̄) and G′(x̄)(y − xk) → G′(x̄)(y − x̄),
see Proposition 2.16. Hence, G′(xk)(y − xk) → G′(x̄)(y − x̄). We now argue as in
Proposition 3.43. Inserting y := x̄ into (3.33) yields lim infk→∞〈F (xk), x̄ − xk〉 ≥ 0.
Hence, by pseudomonotonicity, we obtain that, for all y ∈ C,

〈F (x̄), y − x̄〉+ 〈λ̄, G′(x̄)(y − x̄)〉 ≥ lim sup
k→∞

[〈
F (xk), y − xk

〉
+
〈
λk, G′(xk)(y − xk)

〉]
≥ 0.

But this means that −L(x̄, λ̄) ∈ NC(x̄). Hence, (x̄, λ̄) is a KKT point of (V ).



3.2. Variational Inequalities 55

We now consider the case where C = X, the primal sequence {xk} converges weakly
to a point x̄, and the derivative operator G′(x̄) is surjective. This is perhaps the strongest
possible constraint qualification (see Remark 3.8) and it has the great benefit that,
unlike conditions such as RCQ, the surjectivity of G′(x̄) does not depend on the function
value G(x̄). Therefore, it is possible to obtain a convergence result for asymptotic KKT
sequences under only the convergence G′(xk)→ G′(x̄), with no convergence of the values
G(xk). For later reference, we state this result in a slightly more general framework.

Proposition 3.52. Let {xk} ⊆ X, {Tk} ⊆ L(X,Y ), and {λk} ⊆ Y ∗ be sequences such
that F (xk) + T ∗kλ

k ⇀∗ 0. Assume that xk ⇀ x̄ for some x̄ ∈ X, F (xk) ⇀∗ F (x̄), Tk → T
for some T ∈ L(X,Y ), and that T is surjective. Then {λk} converges weak-∗ in Y ∗ to
the unique solution of F (x̄) + T ∗λ = 0.

Proof. We first show that {λk} is weak-∗ convergent. Let ŷ ∈ Y be an arbitrary point.
It suffices to show that 〈λk, ŷ〉 is convergent. Let r > 0 be as in the uniform version
of the Banach open mapping theorem (Theorem 2.13), so that BY

r ⊆ T (BX
1 ). Assume,

without loss of generality, that ŷ ∈ BY
r , and let ŵ ∈ BX

1 be a point such that Tŵ = ŷ. Set
δk := ‖Tk−T‖L(X,Y ), and let k be sufficiently large so that δk < r. Then ‖ŷ−Tkŵ‖Y ≤ δk
and, by Theorem 2.13, there are points dk ∈ X such that Tkdk = ŷ − Tkŵ and

‖dk‖X ≤
‖ŷ − Tkŵ‖Y
r − δk

≤ δk
r − δk

.

Define wk := ŵ + dk. Then wk → ŵ and Tkwk = ŷ by definition. Hence,

0←
〈
F (xk) + T ∗kλ

k, wk
〉

= 〈F (x̄), ŵ〉+ o(1) +
〈
λk, ŷ

〉
.

Thus, we obtain 〈λk, ŷ〉 → −〈F (x̄), ŵ〉. Since ŷ ∈ Y was arbitrary, this implies that {λk}
is weak-∗ convergent in Y ∗.

Let λ̄ denote the weak-∗ limit of {λk}. Using F (xk) + T ∗kλ
k ⇀∗ 0, it follows that

F (x̄) + T ∗λ̄ = 0, and λ̄ is unique since T ∗ is injective.

We now briefly turn to the case of nonlinear programming (NLP) type constraints.
Here, RCQ boils down to the Mangasarian–Fromovitz constraint qualification (MFCQ,
see Definition 3.29), and thus the results of Theorem 3.51 can readily be applied to the
NLP setting. However, a more detailed analysis using the specific structure of NLP
constraints allows us to prove a similar assertion under the CPLD constraint qualification
(see Definition 3.29). For this result, we need the following Carathéodory-type lemma.

Lemma 3.53 (Carathéodory, [28, Lem. 3.1]). Let u ∈ Rn be a vector of the form

u =

m∑
i=1

λiv
i +

p∑
j=1

µjw
j ,

where λi ≥ 0, vi ∈ Rn for i = 1, . . . ,m, and µj ∈ R, wj ∈ Rn for j = 1, . . . , p. Then there
exist subsets I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , p} and coefficients λ′i ≥ 0, i ∈ I, and µ′j ∈ R,
j ∈ J , such that the vectors {vi}i∈I ∪ {wj}j∈J are linearly independent and

u =
∑
i∈I

λ′iv
i +
∑
j∈J

µ′jw
j .
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Let us now consider a variational inequality (or optimization problem) where the
constraints are of nonlinear programming form, i.e.,

Φ = {x ∈ Rn : g(x) ≤ 0, e(x) = 0}, (3.34)

where n ∈ N, g : Rn → Rm, e : Rn → Rp, and m, p ∈ N0. In this case, it is possible to
use a slightly different asymptotic KKT concept, see the theorem below. For the sake of
completeness, we include assertions for all of LICQ, MFCQ, and CPLD.

Theorem 3.54. Let the feasible set of (V ) be given in the form (3.34). Assume that
{(xk, λk, µk)} ⊆ Rn+m+p is a sequence such that xk → x̄ for some x̄ ∈ Φ and

F (xk) +∇g(xk)λk +∇e(xk)µk → 0, min{−g(xk), λk} → 0, as k →∞. (3.35)

Then the following assertions hold:

(a) If CPLD holds in x̄, then x̄ is a stationary point (and a solution) of the VI.

(b) If MFCQ holds in x̄, then {(λk, µk)} is bounded, and its limit points belong to Λ(x̄).

(c) If LICQ holds in x̄, then {(λk, µk)} converges to the unique element in Λ(x̄).

Proof. (a) Since (3.35) remains true if we replace λk by max{λk, 0}, we may assume,
without loss of generality, that λk ≥ 0 for all k. Observe furthermore that λki → 0
whenever gi(x̄) < 0. Thus, we obtain from (3.29) that

F (xk) +
∑

gi(x̄)=0

λki∇gi(xk) +

p∑
j=1

µkj∇ej(xk)→ 0.

By Lemma 3.53, there are subsets Ik ⊆ {i : gi(x̄) = 0} and Jk ⊆ {1, . . . , p} such that, for
all k, the gradients {∇gi(xk)}i∈Ik ∪ {∇ej(xk)}j∈Jk are linearly independent and

F (xk) +
∑
i∈Ik

λ̂ki∇gi(xk) +
∑
j∈Jk

µ̂kj∇ej(xk)→ 0 (3.36)

with suitable coefficients λ̂ki ≥ 0, i ∈ Ik, and µ̂kj ∈ R, j ∈ Jk. Passing onto a subsequence
if necessary, we may assume that Ik = I and Jk = J for all k with some subsets
I ⊆ {i : gi(x̄) = 0} and J ⊆ {1, . . . , p}. To conclude the proof, it suffices to show that
the sequence {(λ̂k, µ̂k)} is bounded. If this were not the case, then we could divide (3.36)
by ‖λ̂k‖+ ‖µ̂k‖, take the limit k →∞ on a suitable subsequence and obtain nontrivial
coefficients αi ≥ 0, i ∈ I, and βj ∈ R, j ∈ J , such that∑

i∈I
αi∇gi(x̄) +

∑
j∈J

βj∇ej(x̄) = 0.

Hence, by CPLD, the gradients {∇gi(x)}i∈I ∪{∇ej(x)}j∈J should be linearly independent
in a neighborhood of x, which is the desired contradiction.



3.2. Variational Inequalities 57

(b) Assume that {(λk, µk)} is unbounded. Arguing as in the proof of (a), we can divide
the first limit in (3.35) by ‖λk‖+ ‖µk‖, take the limit k →∞ on a suitable subsequence,
and obtain the positive linear dependence (in the sense of Section 3.1.4) of the gradients
{∇gi(x̄)}i∈I ∪ {∇ej(x̄)}pj=1, where I = {i : gi(x̄) = 0} is the set of active indices. This
contradicts MFCQ.

(c) It is well-known that LICQ implies MFCQ and the uniqueness of (λ̄, µ̄) ∈ Λ(x̄).
From (b), it follows that {(λk, µk)} is bounded, and its limit points are equal to (λ̄, µ̄).
Thus, (λk, µk)→ (λ̄, µ̄), and the proof is complete.

3.2.4 Error Bounds and Lipschitz Stability

As a second essential ingredient for our algorithmic approach in later chapters, we now
analyze quantitative stability properties of the KKT system of the variational inequality
(V ). By extension, the analysis of course also applies to optimization problems. The
stability theory is closely linked to so-called error bounds, i.e., computable upper bounds
on the distance of certain points to the (primal-dual) solution set of (V ). Such error
bounds are essential for rate-of-convergence analyses of optimization algorithms.

We begin our investigations by considering the special case where C = X (the general
case will then be deduced by arguing as in Remark 3.10). In what follows, we equip the
product of two Banach spaces with the norm induced by the sum of the component norms.
Recall also that Λ(x̄) denotes the set of Lagrange multipliers in a stationary point x̄. The
basic result on the stability of the KKT system of (V ) is the following, which is a slightly
simplified version of [32, Thm. 5.9].

Lemma 3.55. Let C = X and let (x̄, λ̄) ∈ X × Y ∗ be a KKT point of (V ) satisfying
SOSC and SRC. Then there exists c > 0 such that, for all θ = (α, β) ∈ X∗×Y sufficiently
close to (0, 0), if (xθ, λθ) satisfies the perturbed KKT system

L(x, λ) = α, λ ∈ NK(G(x)− β), (3.37)

and xθ is sufficiently close to x̄, then ‖xθ − x̄‖X + ‖λθ − λ̄‖Y ∗ ≤ c‖θ‖X∗×Y .

Perturbations of the form (3.37) are usually called canonical perturbations. If the
parameter β is omitted and only the Lagrange function is perturbed, then one speaks of
tilt perturbations.

We now direct our efforts towards a more convenient form of stability which does not
require us to explicitly specify the perturbation parameters in (3.37), but allows us to
estimate the distance to the primal-dual solution set for arbitrary points (x, λ). Such
estimates are usually called error bounds. For the precise formulation of these, we will
assume that the constraint function G maps into a Hilbert space instead of the Banach
space Y . To emphasize the modified problem setting, let H be a real Hilbert space,
K ⊆ H a nonempty closed convex set, and G : X → H a given mapping. With an obvious
change of notation, the feasible set of (V ) is now

Φ := {x ∈ X : G(x) ∈ K}, (3.38)
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and the KKT system takes on the form of the generalized equations

L(x, λ) = F (x) +G′(x)∗λ = 0 and λ ∈ NK(G(x)). (3.39)

Formally, one can think of H and K as being nothing but placeholders for Y and K.
However, we will later encounter situations where multiple spaces (as well as embeddings)
are involved, in which case it becomes crucial to distinguish Banach and Hilbert spaces.
The present change of notation is chosen to be consistent with these structures which we
will encounter, for instance, in Chapters 4 and 5.

Observe that, due to the Hilbert space setting, the normal cone inclusion in (3.39)
can be reformulated through the projection onto K. Indeed, by Proposition 2.36, we
have λ ∈ NK(G(x)) if and only if G(x) = PK(G(x) + λ). Thus, in order to quantify the
violation of (3.39), it is rather intuitive to define the residual mapping

Θ(x, λ) := ‖L(x, λ)‖X∗ + ‖G(x)− PK(G(x) + λ)‖H . (3.40)

Clearly, the generalized equations (3.39) are equivalent to Θ(x, λ) = 0. Indeed, we shall
now see that, under certain assumptions, the function Θ allows us to quantify not only the
violation of (3.39) but also the distance of (x, λ) to the primal-dual solution set. The main
tool in this direction is a characterization of error bounds in terms of certain Lipschitz-type
properties such as those given in Lemma 3.55. This equivalence has appeared in various
forms in the literature [57, 76, 122], albeit mostly in a finite-dimensional setting. The
following result shows that the equivalence holds for general variational problems of the
form (V ).

Theorem 3.56 (Characterization of local error bounds). Let (x̄, λ̄) ∈ X ×H be a KKT
point of (V ), with the feasible set given by (3.38). Then the following are equivalent:

(a) There are a neighborhood U of x̄ and c > 0 such that, for all θ = (α, β) ∈ X∗ ×H
close to (0, 0), any solution (xθ, λθ) ∈ U ×H of the perturbed KKT system

L(x, λ) = α, λ ∈ NK(G(x)− β) (3.41)

satisfies the estimate ‖xθ − x̄‖X + dist
(
λθ,Λ(x̄)

)
≤ c‖θ‖X∗×H .

(b) There are a neighborhood U of x̄ and c > 0 such that, for all (x, λ) ∈ U ×H with
Θ(x, λ) sufficiently small, we have the error bound

‖x− x̄‖X + dist
(
λ,Λ(x̄)

)
≤ cΘ(x, λ).

Proof. (b) ⇒ (a): Let θ = (α, β) ∈ X∗ ×H. It is an easy consequence of Lemma 2.11
that the mapping y 7→ y − PK(y + λθ) is nonexpansive. Hence, we obtain

‖G(xθ)− PK(G(xθ) + λθ)‖H ≤ ‖β‖H + ‖G(xθ)− β − PK(G(xθ)− β + λθ)‖H .

Since λθ ∈ NK(G(xθ) − β), the last term is equal to zero, and we obtain Θ(xθ, λθ) ≤
‖α‖X∗ + ‖β‖H = ‖θ‖X∗×H . Choosing θ = (α, β) sufficiently close to 0, we see that
Θ(xθ, λθ) becomes arbitrarily small. Hence, we can apply (b) and obtain

‖xθ − x̄‖X + dist
(
λθ,Λ(x̄)

)
≤ cΘ(xθ, λθ) ≤ c‖θ‖X∗×H .
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(a) ⇒ (b): Shrinking U if necessary, we may assume that ‖G′(x)∗‖L(H,X∗) ≤ c1 for all
x ∈ U with some constant c1 ≥ 0. Now, let (x, λ) ∈ U×H. We will use (x, λ) to construct
a solution of the perturbed KKT system (3.41). Set δ := Θ(x, λ) and define

yθ := PK(G(x) + λ), λθ := G(x) + λ− yθ.

Let α := L(x, λθ) and β := G(x) − yθ. Then λθ ∈ NK(yθ) and, hence, (x, λθ) solves
the perturbed KKT system corresponding to θ := (α, β). Moreover, we have ‖β‖H =
‖yθ −G(x)‖H = ‖G(x)− PK(G(x) + λ)‖H ≤ δ and ‖λθ − λ‖H = ‖β‖H ≤ δ. This implies

‖θ‖X∗×H = ‖L(x, λθ)‖X∗ + ‖β‖H ≤ ‖L(x, λ)‖X∗ + (c1 + 1)‖β‖H ≤ (c1 + 2)δ.

Hence, if δ = Θ(x, λ) is small enough, then θ becomes arbitrarily close to 0. We can
therefore apply (a) to (x, λθ) and obtain ‖x−x̄‖X+dist

(
λθ,Λ(x̄)

)
≤ c‖θ‖X∗×H ≤ c(c1+2)δ.

But ‖λθ−λ‖H ≤ δ and, hence, dist
(
λθ,Λ(x̄)

)
≥ dist

(
λ,Λ(x̄)

)
−δ by the nonexpansiveness

of the distance function. This finally yields

‖x− x̄‖X + dist
(
λ,Λ(x̄)

)
≤
[
c(c1 + 2) + 1

]
δ,

and the proof is complete.

Let us stress that the distance estimate provided by the above theorem holds if x is
close to x̄; in particular, no assumption on the proximity of λ to Λ(x̄) is necessary. We
also remark that (a) does not make any assertion about the existence of solutions to the
perturbed KKT conditions (3.41). These may have solutions for some but not all θ.

Before we give some corollaries of the above theorem, let us remark that the function
Θ is locally Lipschitz-continuous with respect to x, and globally so with respect to λ.
Hence, if the error bound from Theorem 3.56 holds, then we actually have the “double”
error bound

c1Θ(x, λ) ≤ ‖x− x̄‖X + dist
(
λ,Λ(x̄)

)
≤ c2Θ(x, λ) (3.42)

with suitable constants c1, c2 > 0. As before, this holds for all (x, λ) ∈ X ×H with x
near x̄ and Θ(x, λ) sufficiently small.

Let us now give a direct corollary of Theorem 3.56 and Lemma 3.55.

Corollary 3.57. Let (x̄, λ̄) be a KKT point of (V ), with the feasible set given by (3.38),
such that SOSC and SRC hold in (x̄, λ̄). Then Λ(x̄) = {λ̄} and there are c1, c2 > 0 such
that, for all (x, λ) ∈ X ×H with x near x̄ and Θ(x, λ) sufficiently small, we have

c1Θ(x, λ) ≤ ‖x− x̄‖X + ‖λ− λ̄‖H ≤ c2Θ(x, λ),

where Θ : X ×H → R is the residual function given by (3.40).

Proof. The uniqueness follows from Proposition 3.7. The error bound follows from
Theorem 3.56, Lemma 3.55, and the arguments before (3.42).
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Let us now turn to the case where the feasible set has the form

Φ := {x ∈ X : x ∈ C, G(x) ∈ K}, (3.43)

with C ⊆ X a nonempty closed convex set. As before, G : X → H, H is a real Hilbert
space, and K ⊆ H a nonempty closed convex set. In this case, the residual function Θ
takes on a slightly more general form which includes (3.40) as a special case.

Corollary 3.58. Let (x̄, λ̄) be a KKT point of (V ), with X a real Hilbert space and the
feasible set given by (3.43), such that SOSC and SRC hold in (x̄, λ̄). Then Λ(x̄) = {λ̄}
and there are c1, c2 > 0 such that, for all (x, λ) ∈ X × H with x near x̄ and Θ(x, λ)
sufficiently small, we have

c1Θ(x, λ) ≤ ‖x− x̄‖X + ‖λ− λ̄‖H ≤ c2Θ(x, λ), (3.44)

where Θ(x, λ) := ‖x− PC(x− L(x, λ))‖X + ‖G(x)− PK(G(x) + λ)‖H .

Proof. Taking into account Remarks 3.10 and 3.28, it follows that SOSC and SRC hold
for the constraint system (G(x), x) ∈ K × C in the point x̄ ∈ X, with the Lagrange
multiplier pair (λ̄, µ̄) ∈ H ×X, where µ̄ := −F (x̄)−G′(x̄)∗λ̄. Thus, by Corollary 3.57,
we obtain an error bound of the form

c1Θ̂(x, λ, µ) ≤ ‖x− x̄‖X + ‖λ− λ̄‖H + ‖µ− µ̄‖X ≤ c2Θ̂(x, λ, µ)

for all (x, λ, µ) ∈ X × H × X with x sufficiently close to x̄ and Θ̂(x, λ, µ) sufficiently
small, where

Θ̂(x, λ, µ) := ‖F (x)+G′(x)∗λ+µ‖X+‖G(x)−PK(G(x)+λ)‖H+‖x−PC(x+µ)‖X . (3.45)

To deduce the desired form of the error bound (3.44), let (x, λ) ∈ X ×H be a point with
x near x̄ and Θ(x, λ) sufficiently small. Define µ := −L(x, λ) ∈ X. Inserting the triple
(x, λ, µ) into (3.45), the first term vanishes, and we are left with Θ̂(x, λ, µ) = Θ(x, λ).
This implies that

c1Θ(x, λ) ≤ ‖x− x̄‖X + ‖λ− λ̄‖H + ‖µ− µ̄‖X ≤ c2Θ(x, λ).

It remains to show that ‖µ− µ̄‖X = O(‖x− x̄‖X + ‖λ− λ̄‖H) if x is close to x̄, where
µ = −L(x, λ). But this follows from the local Lipschitz-continuity of F and G′. Hence,
the proof is complete.

The above is the main practical result of this section and will be instrumental in proving
asymptotic convergence results for the augmented Lagrangian method in Chapters 4
and 5.

We conclude this section by briefly discussing the case where the set K is polyhedral,
i.e., it can be represented by finitely many linear equalities and inequalities.
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Remark 3.59. For certain problem classes, it is possible to establish error bounds under
weaker assumptions than those given above. An important example arises if the set K is
(generalized) polyhedral, e.g., in nonlinear programming. Roughly speaking, one can use
Hoffman’s lemma [32, Thm. 2.200] to get the “dual part” of the error bound for free, while
the primal part again follows from SOSC. As a result, one obtains a primal-dual error
bound under SOSC alone, see [122], with the restriction that the Lagrange multiplier is
not necessarily unique. Unsurprisingly, this result does not extend to the non-polyhedral
case, which shows that additional assumptions such as SRC are inevitable.

Example 3.60. Let X := H := `2(R) be the space of square-summable real sequences.
Consider the variational inequality arising from the optimization problem (P ) with
f(x) := ‖x‖2X/2 and the constraint G(x) ∈ K, where G : X → H, G(x) := (xi/i)

∞
i=1, and

K is the nonnegative cone in X. It is easy to see that (x̄, λ̄) := (0, 0) is the unique KKT
point of this problem, and that SOSC holds. Now, let xk := ek/k and λk := −ek, where
{ek} is the sequence of unit vectors. Then

Θ(xk, λk) = ‖L(xk, λk)‖X∗ + ‖G(xk)− PK(G(xk) + λk)‖H = k−2

for all k, where L is the Lagrangian in the variational inequality sense, see (3.27). Moreover,
xk → x̄, but λk 6→ λ̄. Hence, the local error bound (3.42) does not hold. (In particular,
SRC cannot hold, even though the Lagrange multiplier is actually unique.) A slightly
different example is obtained by setting x̂k := ek/k2 and λ̂k := −ek/k. In this case,
(x̂k, λ̂k)→ (x̄, λ̄), but an easy calculation shows that

Θ(x̂k, λ̂k) = k−3 and ‖x̂k − x̄‖X + ‖λ̂k − λ̄‖H = k−2 + k−1.

In particular, the error bound is violated even if the multiplier is close to λ̄.
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Chapter 4

Augmented Lagrangian Methods in
Constrained Optimization

This chapter is dedicated to a thorough discussion of the augmented Lagrangian method
(ALM) for constrained minimization problems of the form discussed in Chapter 3. More
specifically, we deal with a problem of the form

(P ) minimize
x∈C

f(x) subject to G(x) ∈ K, (4.1)

where, as before, X,Y are real Banach spaces, f : X → R and G : X → Y are continuously
differentiable functions, and C ⊆ X as well as K ⊆ Y are nonempty closed convex sets.
To facilitate the application of the augmented Lagrangian technique, we assume that
i : Y ↪→ H densely for some real Hilbert space H. This implies that we are working in
the Gel’fand triple framework

Y
i
↪→ H ∼= H∗

i∗
↪→ Y ∗. (4.2)

Furthermore, we assume that there is a closed convex set K ⊆ H such that i−1(K) = K.
This allows us to interpret the constraint G(x) ∈ K equivalently as G(x) ∈ K. Note that
we will usually suppress the embedding for the sake of brevity.

It should be stressed that the above framework is extremely general, and the resulting
augmented Lagrangian method therefore covers a very broad spectrum of applications.
Moreover, many prominent problem classes can be recovered as special cases of (P ), and
they are thus implicitly covered by our analysis. For many of these problem classes,
there is existing literature on augmented Lagrangian techniques, and the analysis in this
chapter subsumes and generalizes most of these approaches:

• Nonlinear programming. This is the historical origin of the augmented Lagrangian
technique. Indeed, the algorithm goes back to the seminal works by Hestenes [100] and
Powell [178], and in its early days it was commonly referred to as the method of multipliers.
The technique was further developed by many authors in the later parts of the 20th
century, including Rockafellar [187–189], Bertsekas [24], and Conn, Gould, and Toint
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[45–47], who created the LANCELOT software package. The algorithm was rediscovered
by Andreani, Birgin, Martínez, and co-authors in [5, 6, 26, 27], a series of publications
which culminated in the book [28] and the ALGENCAN software package.

In today’s nonlinear programming landscape, algorithms such as interior point methods
[81,91] or sequential quadratic programming [91,122] are often preferred to methods of
augmented Lagrangian type, mainly due to their fast local convergence characteristics. In
contrast, the augmented Lagrangian method possesses very strong global convergence
properties, and it has been found to work rather well on degenerate problem classes such
as problems with complementarity constraints [124]. A state-of-the-art local convergence
analysis of the ALM for nonlinear programming is given in [74]. More discussion on
nonlinear programming in general, and on the corresponding algorithms, can be found in
[24,25,48,172], and in the encyclopedia [80].

• Function space optimization. One of the main motivations for the generalization of
augmented Lagrangian methods to the level of generality represented by (P ) is the advent
of function space optimization problems. Some early references in this context include
[20, 22, 114–117, 217], and the book [82]. Most of these publications are restricted to
very specific problem settings such as convex optimization problems or finite-dimensional
constraints. In [23, 118], an augmented Lagrangian-type penalty scheme was proposed, in
combination with a semismooth Newton method, for the solution of state-constrained
optimal control problems. The resulting method came to be known as Moreau–Yosida
regularization; it was further developed in [101,103], and it is today considered a standard
approach for state-constrained optimal control [109, 119, 214]. Some other techniques
for such problems include Lavrentiev regularization [108, 161], interior point methods
[151, 200], and the so-called virtual control approach [150], which is related to the
augmented Lagrangian technique [149].

• Semidefinite programming. Another notable problem class which occurs as a
byproduct of the general convergence theory in this chapter is the special case of
semidefinite programming or, more generally, C2-cone reducible programming (see Sec-
tion 4.3.3). Methods of augmented Lagrangian type are quite popular for these problems
[145–147,208,219] and for related problem classes such as second-order cone programming
[156,157]. The theoretical framework in this chapter, in combination with a recent stability
analysis of the aforementioned problem classes [57], allows us to strengthen the known
local convergence results for the augmented Lagrangian method which can be found in
the literature.

The purpose of this chapter is to develop the augmented Lagrangian method for a
general problem of the form (P ), thereby subsuming the above problem classes. The
core of the theory is tailored towards function space optimization, and the prototypical
applications to be kept in mind are state-constrained optimal control, obstacle problems
[192], the Signorini problem [12, 88], and similar examples. More details along with
numerical implementations will be described in Chapter 7. The theory presented below
can also be seen as a precursor to the augmented Lagrangian method for variational and
quasi-variational inequalities, see Chapters 5 and 6.
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The results in this chapter are essentially based on the publications [133,135,136], with
a substantial amount of modifications aimed at making the theory simpler, more general,
and more readily applicable. The structure of the chapter is as follows. In Section 4.1,
we provide some background on the augmented Lagrangian method. Section 4.1.1 is
dedicated the original method of multipliers by Hestenes and Powell. In Section 4.1.2, we
demonstrate how a slack variable approach can be used to formally deduce the augmented
Lagrangian method for a general problem of the form (P ), and in Section 4.1.3 we give
the resulting algorithm along with some basic properties.

Section 4.2 contains a thorough convergence analysis for the ALM from a global point
of view. In Section 4.2.1, we begin by giving some sufficient conditions for the existence
of penalized solutions, and in Section 4.2.2 we establish some rather simple convergence
results under the assumption that the penalized subproblems are solved in an (essentially)
global sense. In Section 4.2.3, we state convergence results in terms of the first-order
necessary (KKT) conditions. The results in Section 4.2 can be seen as generalizations of
various works in the literature, including [103, 114–117, 119]. Some related results can
also be found in [137,138].

Finally, Section 4.3 is dedicated to the local convergence of the augmented Lagrangian
algorithm. In Section 4.3.1, we analyze the existence and behavior of local minimizers of
the augmented Lagrange function, and in Section 4.3.2 we provide a quantitative analysis
which yields primal-dual rate of convergence results as well as the boundedness of the
sequence of penalty parameters. We conclude in Section 4.3.3 by demonstrating how the
results can be specialized for the class of C2-cone reducible optimization problems, which
encompasses semidefinite and second-order cone programming. The results in Section 4.3
can be seen as generalizations of various findings contained in [26,156,157,208]. Some
related results can also be found in [137].

4.1 Motivation and Statement of the Algorithm

This preliminary section provides some background on the augmented Lagrangian method,
including a historical overview and a formal statement of the method for a general problem
of the form (P ).

4.1.1 The Original Method of Multipliers

In its initial form, the method of multipliers is an algorithm for the solution of equality-
constrained minimization problems in finite dimensions. Here, we present this original
method in a slightly more general framework. Consider an equality-constrained optimiza-
tion problem of the form

minimize
x∈C

f(x) subject to h(x) = 0, (4.3)

where f : X → R, C ⊆ X is a closed convex set, and h : X → H. We assume that X
is a real Banach space and H is a real Hilbert space. In the special case of the original
method of multipliers, we have X := Rn, H := Rm with m,n ∈ N, and C := X.



66 4. Augmented Lagrangian Methods in Constrained Optimization

The basic idea is to tackle (4.3) by combining elements of Lagrangian theory with
a penalty-type scheme. Recall that the Lagrangian of the problem takes on the form
L(x, λ) = f(x) +

(
λ, h(x)

)
. By adding a positive multiple of ‖h(x)‖2H , we penalize the

violation of the equality constraint, thus ending up with the augmented Lagrangian

Lρ(x, λ) := f(x) +
(
λ, h(x)

)
+
ρ

2
‖h(x)‖2H . (4.4)

From an algorithmic perspective, we now proceed as follows. Given a penalty parameter
ρk and a current estimate λk of the Lagrange multiplier, we compute xk+1 as a minimizer
(or approximate minimizer) of (4.4) on C so that, ideally, xk+1 is close to feasibility (if
ρk is large) and close to being a minimizer of the Lagrangian L(·, λk). Let us assume, for
the moment, that the functions f and h are continuously differentiable, and that xk+1 is
an exact minimizer of Lρk(·, λk) on C. Then Lemma 3.1 yields the inclusion

NC(xk+1) 3 −L′ρk(xk+1, λk) = −f ′(xk+1)− h′(xk+1)∗(λk + ρkh(xk+1)).

This immediately suggests λk+1 := λk + ρkh(xk+1) as the new estimate of the Lagrange
multiplier, which is often called the Hestenes–Powell multiplier update.

After the above procedure is completed, the penalty parameter is updated based on
a heuristic test. The most common option is to keep ρk if the constraint violation has
decreased sufficiently, and to increase it otherwise. We thus end up with the following
overall algorithm.

Algorithm 4.1 (Original method of multipliers). Let (x0, λ0) ∈ X × H, ρ0 > 0, let
γ > 1, τ ∈ (0, 1), and set k := 0.

Step 1. If (xk, λk) satisfies a suitable termination criterion: STOP.

Step 2. Compute an approximate solution xk+1 of the problem

minimize
x∈X

Lρk(x, λk). (4.5)

Step 3. Update the vector of multipliers to λk+1 := λk + ρkh(xk+1).

Step 4. If ‖h(xk+1)‖H ≤ τ‖h(xk)‖H holds, set ρk+1 := ρk. Otherwise, set ρk+1 := γρk.

Step 5. Set k ← k + 1 and go to Step 1.

4.1.2 Inequality Constraints and Slack Variables

Having established the classical multiplier method for equality-constrained problems, we
now outline how the algorithm can be extended to the inequality-constrained case. To
this end, we consider an optimization problem of the form (P ), that is,

minimize
x∈C

f(x) subject to G(x) ∈ K,

where, as before, f : X → R and G : X → Y are given mappings, and C ⊆ X and K ⊆ Y
nonempty closed convex sets. Moreover, H is a real Hilbert space with i : Y ↪→ H densely,
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and K ⊆ H is a closed convex set with i−1(K) = K. In this setting, we can restate (P )
as the problem

(PH) minimize
x∈C

f(x) subject to G(x) ∈ K. (4.6)

We can transform this problem into an equality-constrained problem by adding an artificial
variable s ∈ K, also called a slack variable. This results in the equality-constrained problem

minimize
(x,s)∈C×K

f(x) subject to G(x)− s = 0.

In the context of the equality-constrained framework (4.3) from the previous section, this
essentially amounts to defining the mapping h : X ×H → H, h(x, s) := G(x)− s. The
new problem is now an equality-constrained optimization problem on the space X ×H,
and its augmented Lagrangian in the sense of (4.4) is given by

Lsρ(x, s, λ) = f(x) +
(
λ, h(x, s)

)
+
ρ

2
‖h(x, s)‖2H .

In order to transform the augmented Lagrangian into a form where s is eliminated, observe
that we can rewrite Lsρ as

Lsρ(x, s, λ) = f(x) +
ρ

2

∥∥∥∥G(x) +
λ

ρ
− s
∥∥∥∥2

H

−
‖λ‖2H

2ρ
. (4.7)

Taking into account the constraint s ∈ K, we can now minimize this formula with respect
to s for each fixed x ∈ X. Since s occurs only in the middle term, the result involves, by
definition, the squared distance function d2

K.

Definition 4.2 (Augmented Lagrange function). For ρ > 0, the augmented Lagrange
function or augmented Lagrangian of (P ) is the function

Lρ : X ×H → R, Lρ(x, λ) := f(x) +
ρ

2
d2
K

(
G(x) +

λ

ρ

)
−
‖λ‖2H

2ρ
. (4.8)

Before discussing some other observations and consequences of the slack variable
approach, we first give some general properties of the augmented Lagrangian.

Proposition 4.3. Let Lρ : X ×H → R be the augmented Lagrangian (4.8). Then:

(a) Lρ is concave and continuously differentiable with respect to λ.

(b) If f is convex and G is K∞-concave, then Lρ is convex with respect to x.

(c) If f and G are continuously differentiable, then Lρ is so with respect to x.

(d) If x ∈ X is a feasible point, then Lρ(x, λ) ≤ f(x) for all x ∈ X and λ ∈ H.

Proof. (a): The concavity follows from the fact that Lρ(x, ·) is an infimum of affine
functions, and the continuous differentiability follows from that of d2

K.
(b): This follows from Theorem 2.50.
(c): This follows again from the continuous differentiability of d2

K.
(d): If G(x) ∈ K, then dK(G(x) + λ/ρ) ≤ ‖λ‖H/ρ by the nonexpansiveness of the

distance function. Hence, Lρ(x, λ) ≤ f(x) + (ρ/2)‖λ‖2H/ρ2 − ‖λ‖2H/(2ρ) = f(x).
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Let us close this section by mentioning some byproducts of the slack variable approach.
For fixed λ and ρ, the minimizing value of s in (4.7) is given by s̄(x) := PK(G(x) + λ/ρ).
It follows that

h(x, s̄(x)) = G(x)− PK
(
G(x) +

λ

ρ

)
. (4.9)

The above expression will play a certain role later on. Recall that, in the original method
of multipliers (Algorithm 4.1), the norm of the equality constraint was used to determine
whether the penalty parameter ρk should be increased after a given iteration. The above
calculations suggest that (4.9) should be used to control ρk in the general case.

Another byproduct of the slack variable technique is a natural candidate for the
Lagrange multiplier update. Assume that λk ∈ H is a given estimate of the Lagrange
multiplier of (PH), that ρk > 0, and xk+1 is the next primal iterate (typically, some kind
of minimizer of Lρk(·, λk)). Taking into account the update rule in Algorithm 4.1, the
next dual iterate is given by

λk+1 = λk + ρkh(xk+1, s̄(xk+1)) = ρk

[
G(xk+1) +

λk

ρk
− PK

(
G(xk+1) +

λk

ρk

)]
.

This formula will play a fundamental role in the subsequent algorithms. Note that the
above updating scheme can also be motivated (in the differentiable case) by looking at
the stationarity condition of Lρk(·, λk), evaluated in xk+1.

4.1.3 The Algorithm and Basic Properties

This section presents the main algorithmic framework for the remainder of the chapter. It is
based on the method of multipliers from Section 4.1.1 and the slack variable transformation
from Section 4.1.2, but it differs from the original multiplier method in one key aspect:
the use of a safeguarded multiplier sequence. This will be the main tool to obtain much
sharper convergence assertions than those which are possible for the traditional algorithm.
A more detailed discussion can be found after the method below, and in Section 8.3,
where we demonstrate the necessity of multiplier safeguarding.

Recall that we are dealing with a problem of the form (P ), that we are working in the
Gel’fand triple framework (4.2), and that K ⊆ H is a nonempty closed convex set with
i−1(K) = K. The algorithm now proceeds by augmenting the constraint G(x) ∈ K in the
space H. This means that, in a sense, we are not really attempting to solve (P ) but the
transformed problem (PH). Nevertheless, we will see that many convergence properties
of the augmented Lagrangian method can be stated accurately in terms of (P ) (using, for
instance, constraint qualifications for that problem).

For the precise specification of the method below, we will need a means of controlling
the penalty parameter ρ. Motivated by (4.9), it is natural to use the function

V (x, λ, ρ) =

∥∥∥∥G(x)− PK
(
G(x) +

λ

ρ

)∥∥∥∥
H

, (4.10)
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which can be seen as a composite measure of feasibility and complementarity at the
current iterates. Using this function, the augmented Lagrangian method can be given as
follows.

Algorithm 4.4 (ALM for constrained optimization). Let (x0, λ0) ∈ X ×H, ρ0 > 0, let
B ⊆ H be a nonempty bounded set, γ > 1, τ ∈ (0, 1), and set k := 0.

Step 1. If (xk, λk) satisfies a suitable termination criterion: STOP.

Step 2. Choose wk ∈ B and compute an approximate solution xk+1 of the problem

minimize
x∈C

Lρk(x,wk). (4.11)

Step 3. Update the vector of multipliers to

λk+1 := ρk

[
G(xk+1) +

wk

ρk
− PK

(
G(xk+1) +

wk

ρk

)]
. (4.12)

Step 4. Let Vk+1 := V (xk+1, wk, ρk) and set

ρk+1 :=

{
ρk, if k = 0 or Vk+1 ≤ τVk,
γρk, otherwise.

(4.13)

Step 5. Set k ← k + 1 and go to Step 1.

Some remarks are in order. First among them is the fact that we have not specified
what constitutes an “approximate solution” in Step 2. There are multiple options in this
regard. For instance, we could require that xk+1 is an (approximate) global minimizer
of Lρk(·, wk). This is probably the simplest assumption from a theoretical point of view,
but it is effectively restricted to problems where some form of convexity is present. On
the other hand, we could also require that xk+1 is some kind of approximate stationary
point of (4.11). This is more realistic in the nonconvex case, but it is also more intricate
to deal with in theoretical terms. We will analyze both these approaches individually in
the subsequent sections.

In practical terms, the augmented subproblems are typically solved by applying an
appropriate generalized Newton method. The necessity for such methods stems from
the fact that the augmented Lagrangian is once but in general not twice continuously
differentiable with respect to x. A more detailed discussion of this problem and of the
resulting Newton-type methods will be given in Chapter 7.

The second remark pertains to the sequence {wk}, which will occasionally be referred
to as the safeguarded (Lagrange) multiplier sequence. The presence of wk can be seen as
the distinctive feature of the algorithm, and it separates the method from traditional
augmented Lagrangian schemes. Indeed, in Algorithm 4.4, we use wk in certain places
where conventional algorithms simply use λk. The main motivation is that wk is always a
bounded sequence (it is specifically required to be so), and this is the main ingredient
to obtain sharper global convergence results. As a consequence, the above algorithm
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has strictly stronger convergence properties than its traditional counterpart. An actual
example demonstrating this fact is somewhat involved and will be given in Section 8.3.
Note that, despite the boundedness of {wk}, the sequence {λk} in Algorithm 4.4 can
still be unbounded. The actual choice of wk allows for a certain degree of freedom. For
instance, we could always choose wk := 0, thus obtaining an algorithm which is essentially
a quadratic penalty method. In practice, it is usually advantageous to keep wk as close
as possible to λk, for instance, by choosing the set B as a simple but large bounded set,
and taking

wk := PB(λk)

for all k. This choice has the advantage that, if the sequence {λk} is indeed bounded and
the set B is large enough, then we can expect to have wk = λk for all k. On the other
hand, if {λk} is unbounded, then the safeguarding scheme will prevent wk from escaping
to infinity.

Finally, let us remark that the penalty updating scheme in (4.13) makes a distinction
between the cases k = 0 and k ≥ 1. This is because the value V0 is formally undefined
since we do not have w−1 and ρ−1. In practice, it is often beneficial to treat this initial
step differently, for instance, by simply setting w−1 := w0, ρ−1 := ρ0, and performing the
penalty update in the same way as for k ≥ 1. In any case, the treatment of this initial
step has no impact on the convergence theory.

We now prove some basic properties for the iterates generated by Algorithm 4.4.
Note that the choice of xk+1 in Step 2 is still unspecified. Despite this, the nature of
the multiplier update (4.12) allows us to prove two assertions which hold completely
independently of xk+1.

Lemma 4.5. We have λk ∈ K◦∞ for all k. Moreover, there is a null sequence {rk} ⊆ R+

such that
(
λk, y −G(xk)

)
≤ rk for all y ∈ K and k ∈ N.

Proof. Let sk+1 := PK(G(xk+1) + wk/ρk). Then λk+1 ∈ NK(sk+1) by Proposition 2.36,
and thus λk+1 ∈ K◦∞ by Lemma 2.39. For the second assertion, observe first that

G(xk+1) =
λk+1 − wk

ρk
+ sk+1. (4.14)

Using the fact that λk+1 ∈ NK(sk+1), we obtain(
λk+1, y −G(xk+1)

)
=

(
λk+1, y − 1

ρk
(λk+1 − wk)− sk+1

)
≤ 1

ρk

[(
λk+1, wk

)
− ‖λk+1‖2H

]
=: rk+1. (4.15)

We claim that this sequence {rk+1} satisfies lim supk→∞ rk+1 ≤ 0. This yields the desired
result (by replacing rk with max{0, rk}). If {ρk} is bounded, then (4.13) and (4.14) imply
‖λk+1 − wk‖H/ρk → 0 and therefore ‖λk+1 − wk‖H → 0. This yields the boundedness of
{λk+1} in H as well as (λk+1, wk)− ‖λk+1‖2H = (λk+1, wk − λk+1)→ 0. Hence, rk → 0.
Assume now that ρk → ∞. Note that (4.15) is a quadratic function in λ. A simple
calculation therefore shows that rk+1 ≤ ‖wk‖2H/(4ρk) and, hence, lim supk→∞ rk ≤ 0.
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The first assertion of the above lemma can be interpreted as a sign property of the
multiplier sequence, and the second assertion can be described roughly as a kind of
“asymptotic normality” between λk and G(xk). Note that, by virtue of the Gel’fand
triple Y ↪→ H ↪→ Y ∗, this inequality also holds if we replace K by K and the scalar
product by the duality pairing on Y ∗ × Y . Recall furthermore that the KKT conditions
of (P ) postulate the existence of a Lagrange multiplier λ̄ ∈ NK(G(x̄)) ⊆ Y ∗. The second
assertion of Lemma 4.5 is essentially an asymptotic analogue of this condition, and it will
prove useful in the convergence analysis later on (see Section 4.2.3).

Example 4.6 (Cone constraints). If the set K is a closed convex cone, then some
parts of Algorithm 4.4 and Lemma 4.5 can be simplified. In this case, we can use
the Moreau decomposition (Lemma 2.39) to restate the multiplier update (4.12) as
λk+1 = PK◦(w

k +ρkG(xk+1)). Moreover, the first assertion of Lemma 4.5 simply becomes
λk ∈ K◦ for all k. This implies that (λk, y) ≤ 0 for all y ∈ K, and it is easy to see that
the second assertion is then equivalent to

lim inf
k→∞

〈
λk, G(xk)

〉
≥ 0.

4.2 Global Convergence Theory

In this section, we analyze the convergence characteristics of Algorithm 4.4 from a global
point of view. The main aim is to impose reasonable assumptions on the sequence {xk}
and to then state results on weak limit points of this sequence. For the sake of generality,
we will conduct dedicated analyses under varying assumptions (mainly pertaining to the
manner in which the augmented subproblems are solved). In addition, many special cases
such as finite-dimensional problems are discussed.

4.2.1 Existence of Penalized Solutions

In most situations, the augmented Lagrangian Lρ(·, w) is bounded from below on C. This
is satisfied, in particular, if f itself is already bounded from below on C, or if, roughly
speaking, the penalty parameter is sufficiently large to make Lρ coercive on the infeasible
set. In any case, if Lρ(·, w) is bounded from below on C, then the augmented subproblems
necessarily admit approximate minimizers. Recall (see Section 3.1.1) that x̂ ∈ C is called
an ε-minimizer of a function L : X → R on C if L(x̂) ≤ L(x) + ε for all x ∈ C.

Proposition 4.7. Let w ∈ H, ρ > 0, and assume that the augmented Lagrangian Lρ(·, w)
is bounded from below on C. Then the following assertions hold:

(a) For any ε > 0, there is an ε-minimizer xε ∈ C of Lρ(·, w) on C.

(b) If the functions f and G are continuously differentiable, then we can choose xε so
that it additionally satisfies dist(−L′ρ(xε, w),NC(xε)) ≤ ε1/2.

Proof. The first assertion follows from the lower boundedness assumption. The second
property is a consequence of Ekeland’s variational principle (Proposition 3.9).
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We now discuss the existence of exact minimizers. The main proof technique is the
direct method of the calculus of variations (see Proposition 2.6). For this, we need an
appropriate kind of lower semicontinuity of the augmented Lagrangian. The following
lemma provides two sufficient conditions for this property.

Lemma 4.8. Assume that f is weakly sequentially lsc and G is either (i) continuous and
K∞-concave, or (ii) weakly sequentially continuous. Then, for each ρ > 0 and w ∈ H, the
augmented Lagrangian Lρ(·, w) is weakly sequentially lsc on X.

Proof. Let w ∈ H and ρ > 0. It suffices to verify the weak sequential lower semicontinuity
of the function h(x) := d2

K(G(x) + w/ρ). Observe that dK is weakly sequentially lsc by
Proposition 2.44. Hence, under (ii), we immediately obtain the same for h.

Consider now (i). In that case, the function h is convex (by Theorem 2.50) and
continuous, thus again weakly sequentially lsc by Proposition 2.44.

The weak sequential lower semicontinuity of the augmented Lagrangian yields the
existence of penalized solutions if we assume either the weak compactness of the set C
or an appropriate growth condition. We say that a function J : X → R is coercive if
J(xk)→ +∞ whenever {xk} ⊆ X and ‖xk‖X → +∞.

Corollary 4.9. Let w ∈ H, ρ > 0, and let one of the conditions in Lemma 4.8 be satisfied.
If either (i) C is weakly compact, or (ii) X is reflexive and Lρ(·, w) is coercive, then the
problem minx∈C Lρ(x,w) admits a global minimizer.

Clearly, a sufficient condition for the coercivity of the augmented Lagrangian is that
of the objective function f . Even if this property does not hold, then it is common for
Lρ(·, w) to be coercive if, roughly speaking, the objective function is coercive on the
feasible set Φ and not too badly behaved outside of it. In that case, the penalty term in
(4.8) yields the coercivity of Lρ(·, w) on the complement of Φ.

4.2.2 Convergence to Global Minimizers

In this section, we analyze the convergence properties of Algorithm 4.4 under the as-
sumption that we can solve the subproblems in an (essentially) global sense. This is
of course a rather restrictive requirement and can, in general, only be expected under
certain convexity assumptions. However, the resulting theory is still appealing due to its
simplicity. Indeed, the results below merely require some rather mild form of continuity
(no differentiability), and can easily be extended to the case where the function f is
extended-valued, i.e., it is allowed to take on the value +∞.

Assumption 4.10 (Global minimization). We assume that f and dK ◦ G are weakly
sequentially lsc on C and that xk ∈ C for all k. Moreover, for every x ∈ C, there is a null
sequence {εk} ⊆ R such that Lρk(xk+1, wk) ≤ Lρk(x,wk) + εk+1 for all k.

Some remarks are due. Recall that, for convex functions, weak sequential lower
semicontinuity is implied by ordinary continuity (see Proposition 2.44). Thus, if f is a
continuous convex function, then f is weakly sequentially lsc.
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A similar comment applies to the weak sequential lower semicontinuity of the function
dK ◦G. Indeed, there are two rather general situations in which this condition is satisfied:
if G is weakly sequentially continuous, then dK ◦G is weakly sequentially lsc since dK is
so by Proposition 2.44. On the other hand, if G is continuous and K∞-concave in the
sense of Definition 2.48, then dK ◦G is a continuous convex function (by Theorem 2.50)
and thus again weakly sequentially lsc. Let us also remark that, if G is continuous and
affine, then both the above cases apply.

Finally, another salient feature of Assumption 4.10 is the dependence of the sequence
{εk} on the comparison point x ∈ C. The motivation behind this is that, if (P ) is
a smooth convex problem and the point xk+1 is “nearly stationary” in the sense that
dist(−L′ρk(xk+1, wk),NC(xk+1)) ≤ δ for some (small) δ > 0, then, by convexity, we obtain
an estimate of the form

Lρk(x,wk) ≥ Lρk(xk+1, wk) + L′ρk(xk+1, wk)(x− xk+1)

≥ Lρk(xk+1, wk)− δ‖xk+1 − x‖X .

This suggests that we should allow the sequence {εk} in Assumption 4.10 to depend on
the point x. In any case, the stated assumption is satisfied automatically if xk+1 is a
global εk+1-minimizer of Lρk(·, wk) for some null sequence {εk}.

We now turn to the convergence analysis of Algorithm 4.4 under Assumption 4.10.
The theory is divided into separate analyses of feasibility and optimality. Since the
augmented Lagrangian method is, at its heart, a penalty-type algorithm, the attainment
of feasibility is particularly important for the success of the algorithm. A closer look at the
definition of the augmented Lagrangian suggests that, if ρ is large, then the minimization
of Lρ essentially reduces to that of the infeasibility measure d2

K(G(x)). Hence, we can
expect (weak) limit points of the sequence {xk} to be minimizers of this auxiliary function,
which means that, roughly speaking, these points are “as feasible as possible.” A precise
statement of this assertion can be found in the following lemma.

Lemma 4.11. Let {xk} be generated by Algorithm 4.4, let Assumption 4.10 hold, and let
x̄ be a weak limit point of {xk}. Then x̄ is a global minimizer of the function dK ◦G on
C. In particular, if the feasible set of (P ) is nonempty, then x̄ is feasible.

Proof. Note that C is weakly sequentially closed by Corollary 2.20, hence x̄ ∈ C. To
show the desired minimization property, we first consider the case where {ρk} remains
bounded. Then (4.13) and the definition of V yield

dK(G(xk+1)) ≤
∥∥∥∥G(xk+1)− PK

(
G(xk+1) +

wk

ρk

)∥∥∥∥
H

→ 0.

The weak sequential lower semicontinuity of dK ◦G therefore implies that dK(G(x̄)) = 0.
Hence, x̄ is feasible and there is nothing to prove.

Assume now that ρk →∞, and let xk+1 ⇀I x̄ for some subset I ⊆ N. Let x ∈ C be
an arbitrary point and let {εk} be the corresponding null sequence from Assumption 4.10.
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Then Lρk(xk+1, wk) ≤ Lρk(x,wk) + εk+1 for all k, which implies

f(xk+1) +
ρk
2
d2
K

(
G(xk+1) +

wk

ρk

)
≤ f(x) +

ρk
2
d2
K

(
G(x) +

wk

ρk

)
+ εk+1. (4.16)

Observe now that {f(xk+1)}k∈I is bounded from below since f is weakly sequentially lsc.
Hence, dividing both sides by ρk and taking the lim inf for k ∈ I, we obtain

lim inf
k∈I

d2
K

(
G(xk+1) +

wk

ρk

)
≤ lim inf

k∈I
d2
K

(
G(x) +

wk

ρk

)
= d2

K(G(x)).

Using the fact that wk/ρk → 0 and that dK ◦G is weakly sequentially lsc, it follows that
the left-hand side is greater than or equal to d2

K(G(x̄)). This completes the proof.

The idea to link the feasibility properties of the iterates {xk} to the minimization
of the infeasibility measure d2

K ◦ G is a recurring theme in the convergence theory of
augmented Lagrangian methods. In fact, we will encounter similar statements in the
context of stationary points and (quasi-)variational inequalities.

Let us now turn to the optimality part.

Theorem 4.12. Let {xk} be generated by Algorithm 4.4, let Assumption 4.10 hold, and
assume that the feasible set of (P ) is nonempty. Then lim supk→∞ f(xk+1) ≤ f(x) for
every x ∈ Φ. Moreover, every weak limit point of {xk} is a global solution of (P ).

Proof. Let x ∈ X be an arbitrary feasible point, and let {εk} be the sequence from
Assumption 4.10. By Proposition 4.3 (d), we have

f(xk+1) +
ρk
2
d2
K

(
G(xk+1) +

wk

ρk

)
−
‖wk‖2H

2ρk
≤ Lρk(x,wk) + εk+1 ≤ f(x) + εk+1. (4.17)

Clearly, if ρk → ∞, then ‖wk‖2H/(2ρk) → 0. In this case, the nonnegativity of dK and
the fact that εk → 0 imply lim supk→∞ f(xk+1) ≤ f(x).

Consider now the case where {ρk} remains bounded. The triangle inequality yields

dK

(
G(xk+1) +

wk

ρk

)
≤
∥∥∥∥wkρk

∥∥∥∥
H

+

∥∥∥∥G(xk+1)− PK
(
G(xk+1) +

wk

ρk

)∥∥∥∥
H

.

The last term converges to zero by the penalty updating scheme (4.13). Using the
boundedness of {wk} and squaring on both sides, it is easy to deduce that

lim sup
k→∞

[
d2
K

(
G(xk+1) +

wk

ρk

)
−
∥∥∥∥wkρk

∥∥∥∥2

H

]
≤ 0.

Since {ρk} is bounded, it follows again from (4.17) that lim supk→∞ f(xk+1) ≤ f(x).
Finally, let xk+1 ⇀I x̄ for some (infinite) subset I ⊆ N. Then x̄ is feasible by

Lemma 4.11, and the weak sequential lower semicontinuity of f implies that f(x̄) ≤
lim infk∈I f(xk+1) ≤ f(x) for every x ∈ Φ. Hence, x̄ is a global solution of (P ).
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If the problem is convex with strongly convex objective, then it is possible to con-
siderably strengthen the results of the previous theorem. Recall that, in this case, the
weak sequential lower semicontinuity of f from Assumption 4.10 is implied by (ordinary)
continuity. Recall also that a sufficient condition for the convexity of the feasible set
Φ is the K∞-concavity of G, see Section 2.2.3. Moreover, if G is K∞-concave, then the
distance function dK ◦G is convex, and thus the weak sequential lower semicontinuity
from Assumption 4.10 is implied by (ordinary) continuity of G.

Corollary 4.13. Let {xk} be generated by Algorithm 4.4 and let Assumption 4.10 hold.
Assume that X is reflexive, f is strongly convex on C, and the feasible set of (P ) is
nonempty and convex. Then {xk} converges strongly to the unique solution of (P ).

Proof. Note that Assumption 4.10 implies that the feasible set Φ is closed. Since f is
strongly convex, the existence and uniqueness of the solution x̄ follows from standard
arguments. Now, denoting by c > 0 the modulus of convexity of f , it follows that

c

8
‖xk+1 − x̄‖2X ≤

f(xk+1) + f(x̄)

2
− f

(
xk+1 + x̄

2

)
(4.18)

for all k. Moreover, by Theorem 4.12, we have lim supk→∞ f(xk+1) ≤ f(x̄). Taking into
account that f is bounded from below, it follows from (4.18) that {xk} is bounded. Since
X is reflexive and every weak limit point of {xk} is a solution of (P ) by Theorem 4.12, it
follows that xk ⇀ x̄. Since f is weakly sequentially lsc and lim supk→∞ f(xk+1) ≤ f(x̄),
we conclude that f(xk+1) → f(x̄). Moreover, since (xk + x̄)/2 ⇀ x̄, we also have
f(x̄) ≤ lim infk→∞ f

(
(xk + x̄)/2

)
. Hence, (4.18) implies that ‖xk+1 − x̄‖X → 0.

4.2.3 Stationarity of Limit Points

The theory on global minimization which we have developed in the preceding section is
certainly appealing from a theoretical point of view. However, the practical relevance
of the corresponding results is essentially limited to problems where some form of con-
vexity is present. It therefore seems natural to conduct a dedicated analysis for the
augmented Lagrangian method which, instead of global minimization, takes into account
the optimality and stationary concepts from Section 3.1.

The present section is dedicated to precisely this approach. To that end, we assume
that the functions defining the optimization problem are continuously differentiable and
that we are able to compute local minimizers or stationary points of the subproblems
(4.11) which occur in the algorithm. Note that the first-order optimality conditions of
these problems (compare with Lemma 3.1) are given by

−L′ρk(x,wk) ∈ NC(x).

Similarly to the previous section, we will allow for certain inexactness terms. A natural
way of doing this is by considering the inexact first-order optimality condition

εk+1 − L′ρk(x,wk) ∈ NC(x),
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where εk+1 ∈ X∗ is an error term. For k →∞, the degree of inexactness should vanish in
the sense that εk → 0. Hence, we arrive at the following assumption.

Assumption 4.14 (Convergence to KKT points). We assume that

(i) f and G are continuously differentiable on X,

(ii) the derivative f ′ is bounded and pseudomonotone,

(iii) G and G′ are completely continuous on C, and

(iv) xk+1 ∈ C and εk+1 − L′ρk(xk+1, wk) ∈ NC(xk+1) for all k, where εk → 0.

Recall that Lρk is continuously differentiable by Proposition 4.3. The derivative L′ρk
(with respect to x) can be calculated by applying the chain rule together with a standard
projection theorem such as Lemma 2.43. One obtains

L′ρk(x,wk) = f ′(x) + ρkG
′(x)∗

[
G(x) +

wk

ρk
− PK

(
G(x) +

wk

ρk

)]
(4.19)

and, in particular, L′ρk(xk+1, wk) = L′(xk+1, λk+1).
As in the previous section, we treat the questions of feasibility and optimality in a

separate manner. For the feasibility part, we relate the augmented Lagrangian to the
infeasibility measure d2

K ◦G.

Lemma 4.15. Let {xk} be generated by Algorithm 4.4 under Assumption 4.14, and let x̄ be
a weak limit point of {xk}. Then x̄ is a stationary point of the problem minx∈C d

2
K(G(x)).

Proof. Let xk+1 ⇀I x̄ for some index set I ⊆ N. Observe that x̄ ∈ C by Corollary 2.20.
If {ρk} is bounded, then we can argue as in Lemma 4.11 to see that x̄ is feasible, and
there is nothing to prove. If ρk →∞, then Assumption 4.14 implies that

εk+1 − f ′(xk+1)−G′(xk+1)∗λk+1 ∈ NC(xk+1)

for all k ∈ N. We now divide this inclusion by ρk, use the definition of λk+1 and the fact
that NC(xk+1) is a cone. It follows that

εk+1 − f ′(xk+1)

ρk
−G′(xk+1)∗

[
G(xk+1) +

wk

ρk
− PK

(
G(xk+1) +

wk

ρk

)]
∈ NC(xk+1).

We now take the limit k →I ∞, use the boundedness of {f ′(xk+1)} (by Assumption 4.14),
and Proposition 2.40. This yields G′(x̄)∗[PK(G(x̄))−G(x̄)] ∈ NC(x̄), which is precisely
the first-order optimality condition of minx∈C d

2
K(G(x)).

The above lemma indicates that weak limit points of the sequence {xk} have a strong
tendency to be feasible points. Apart from the heuristic appeal of the result, there are
several nontrivial cases where Lemma 4.15 automatically implies the feasibility of the
limit point x̄. Here, two cases in particular deserve a special mention: first, let us assume
that the mapping G is K∞-concave in the sense of Definition 2.48 (for instance, G could
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be affine). In this case, the function d2
K ◦G is convex by Theorem 2.50, and it follows that

x̄ is a global minimizer of this function. Hence, if the feasible set Φ is nonempty, then
x̄ ∈ Φ. The second interesting case arises if the point x̄ satisfies the extended Robinson
constraint qualification from Definition 3.17. In this case, the feasibility of x̄ follows from
Proposition 3.22.

We now analyze the optimality properties of limit points. Recall that L′ρk(xk+1, wk) =

L′(xk+1, λk+1) for all k. Hence, combining Assumption 4.14 and Lemma 4.5, we obtain
the asymptotic conditions (for k ≥ 1)

εk − L′(xk, λk) ∈ NC(xk) and
〈
λk, y −G(xk)

〉
≤ rk ∀y ∈ K. (4.20)

Note that the second inequality also holds with K replaced by K. This means that
the primal-dual sequence {(xk, λk)} is an asymptotic KKT sequence in the sense of
Section 3.2.3. Hence, our main approach is to employ the results from that section to
obtain the optimality of weak limit points of {xk}. The main result in this direction is
the following.

Theorem 4.16. Let {(xk, λk)} be generated by Algorithm 4.4 under Assumption 4.14,
let xk+1 ⇀I x̄ for some index set I ⊆ N, and let x̄ satisfy ERCQ with respect to the
constraint system of (P ). Then x̄ is a stationary point of (P ), the sequence {λk+1}k∈I is
bounded in Y ∗, and each of its weak-∗ limit points belongs to Λ(x̄).

Proof. Note that x̄ is feasible by Lemma 4.15 and Proposition 3.22. By (4.20), the
sequence {(xk, λk)} is an asymptotic KKT sequence in the sense of Definition 3.49. The
result now follows by applying Theorem 3.51, with F := f ′.

Observe that the sequence {λk} is only bounded in Y ∗ and not necessarily in H. If
the extended RCQ holds with respect to the transformed constraint G(x) ∈ K (instead
of the original condition G(x) ∈ K), then the result remains true with Y ∗ replaced by
H. However, this assumption is too restrictive for many applications, in particular those
where (P ) is regular (in the constraint qualification sense) with respect to the original
space Y , but not with respect to the larger space H. Some examples demonstrating this
fact can be found in Chapter 7.

In the context of optimality properties, it is worthwhile to briefly discuss the case of
bounded penalty parameters. This is particularly interesting because any assertion made
under this assumption is a necessary condition for the boundedness of {ρk}. It turns
out that no constraint qualifications are needed in the bounded case, and the algorithm
produces a Lagrange multiplier in H.

Corollary 4.17. Let {(xk, λk)} be generated by Algorithm 4.4, let Assumption 4.14 hold,
and let x̄ be a weak limit point of {xk}. If {ρk} remains bounded, then {λk} has a bounded
subsequence in H, and x̄ satisfies the KKT conditions of (P ) with a multiplier in H.

Proof. By (4.20), the sequence {(xk, λk)} is an asymptotic KKT sequence for (P ). Now,
let xk+1 ⇀I x̄ on some subset I ⊆ N, and assume that {ρk} remains bounded. By arguing
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as in the proof of Lemma 4.15, it follows that x̄ ∈ Φ. Moreover, by the definition

λk+1 = ρk

[
G(xk+1) +

wk

ρk
− PK

(
G(xk+1) +

wk

ρk

)]
of λk+1, and the boundedness of all the involved quantities, the sequence {λk+1}k∈I is
bounded in H. Thus, this sequence admits a weak limit point in H, and this point is a
Lagrange multiplier in x̄ by (4.20).

The above result implies that {ρk} can only remain bounded if (P ) admits a multiplier
in H. We will revisit the boundedness of {ρk} at the end of Section 4.3.2.

If the optimization problem in question is a finite-dimensional nonlinear program,
then the assumptions required for convergence can be simplified considerably. In this
case, items (ii) and (iii) from Assumption 4.14 are satisfied trivially, and we can use the
constraint qualifications from Section 3.1.4 instead of the general conditions from Banach
space optimization. In particular, ERCQ can be replaced by EMFCQ, and it is also
possible to prove an analogue of Theorem 4.16 under the assumptions that the limit point
x̄ is feasible and satisfies the CPLD constraint qualification.

Theorem 4.18. Let X := C := Rn, Y := H := Rm, and K := K := Rm− for some
m ∈ N. Let {xk} be generated by Algorithm 4.4 under Assumption 4.14, and x̄ a limit
point of {xk}. Then the following assertions hold:

(a) If x̄ is feasible and CPLD holds in x̄, then x̄ is a stationary point of (P ).

(b) If EMFCQ holds in x̄, then x̄ is feasible and a stationary point of (P ).

Proof. By Lemma 4.15 and Proposition 3.31, the assumptions of (b) imply those of (a).
Hence, we only need to prove (a). Let I ⊆ N be an index set with xk+1 →I x̄. By
Theorem 3.54, it suffices to show that

L′(xk+1, λk+1)→ 0 and min{−G(xk+1), λk+1} → 0 (4.21)

as k →I ∞. The first of these assertions follows from (4.20). For the second, note that
λk+1 ≥ 0 for all k by Lemma 4.5, and that G(xk+1) →I G(x̄) ≤ 0. Hence, we need to
show that λk+1

i → 0 whenever Gi(x̄) < 0 for some i. Let i be an index with Gi(x̄) < 0.
Then Gi(xk+1) < 0 for k ∈ I sufficiently large. We now distinguish two cases. If {ρk}
remains bounded, then min{−Gi(xk+1), wki /ρk} → 0 by (4.13), hence wki → 0, and thus

λk+1
i = max{0, wki + ρkGi(x

k+1)} = 0 (4.22)

for k ∈ I sufficiently large. On the other hand, if ρk →∞, then (4.22) also holds eventually
since {wki } is bounded and Gi(xk+1)→I Gi(x̄) < 0. Thus, in either case, we have λk+1

i = 0
for sufficiently large k whenever Gi(x̄) < 0. This shows that min{−G(xk+1), λk+1} → 0,
and the result follows from (4.21) and Theorem 3.54.
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We now return to the general case and provide two additional results which can be
useful to obtain convergence in certain special cases. First, let us consider the case of
convex constraints. In this case, we can treat (P ) as a variational inequality and apply the
convergence theory for variational inequalities which we will deduce in Chapter 5. The
resulting theorem requires neither the complete continuity of G or G′ nor any constraint
qualification. For the proof, the reader is referred to Theorem 5.8.

Proposition 4.19. Let {xk} be generated by Algorithm 4.4, let Assumption 4.14 (i), (ii),
(iv) hold, let G be K∞-concave on C, and assume that Φ is nonempty. Then every weak
limit point x̄ of {xk} satisfies x̄ ∈ Φ and f ′(x̄)d ≥ 0 for all d ∈ TΦ(x̄).

Another special case arises if C = X and the operator G′(x̄) is surjective, where x̄ is
again a weak limit point of the sequence {xk}. If we already know (e.g., by Proposition 4.19)
that x̄ is a stationary point of (P ), then it is possible to prove the weak-∗ convergence of
a subsequence of {λk} under weaker assumptions than those in Theorem 4.16.

Proposition 4.20. Let {xk} be generated by Algorithm 4.4 and let xk+1 ⇀I x̄ for some
I ⊆ N and x̄ ∈ X. Assume that x̄ is a stationary point of (P ), that C = X, f ′ is weak-∗

sequentially continuous, G′ is completely continuous, and that G′(x̄) is surjective. Then
{λk+1}k∈I converges weak-∗ to the unique element in Λ(x̄).

Proof. By (4.20), the sequence {(xk, λk)} is an asymptotic KKT sequence for (P ). Hence,
the result follows from Proposition 3.52.

Remark 4.21. If we know from the specific problem structure or from some other
convergence result (e.g., Corollary 4.13) that the sequence {xk} or one of its subsequences
is strongly convergent, then we can dispense with the pseudomonotonicity and complete
continuity assumptions. In this case, the assertions of Lemma 4.15 and Theorem 4.16
remain true under Assumption 4.14 (i) and (iv) only.

4.3 Local Convergence Theory

This section is dedicated to a local convergence analysis of Algorithm 4.4. The basic
situation we will consider is that (P ) admits a local solution x̄, and we will analyze
conditions which provide some information on the behavior of the augmented Lagrange
function in a vicinity of x̄. In addition, we will give quantitative results on the rate of
convergence of the iterates.

4.3.1 Existence of Local Minimizers

As a first step in the local convergence analysis, we consider a local minimizer of (P ) and
ask whether the augmented Lagrangian admits local minimizers near this point. As we
shall see, the answer to this question is closely linked to the fulfillment of second-order
sufficient conditions (SOSC) of the form given in Definition 3.24.

When using the second-order condition, special care needs to be taken because the
embedding Y ↪→ H allows us to interpret the constraint in (P ) either in Y or in H.
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We have already seen that this makes a strong difference for constraint qualifications,
and the situation for SOSC is quite similar. The second-order condition in H, for
instance, requires the existence of Lagrange multipliers in H, which in itself is already a
restriction. Nevertheless, this is in a sense the more “natural” second-order condition for
the augmented Lagrangian method since the augmentation is performed in H. Thus, for
the most part of this section (with the exception of Proposition 4.25), we will make the
following assumption.

Assumption 4.22 (Local convergence). There is a KKT point (x̄, λ̄) ∈ X ×H of (P )
which satisfies the SOSC from Definition 3.24 with respect to the space H.

The basic approach to the existence of local minimizers is the following. Let r > 0 be
a sufficiently small radius, B ⊆ H a bounded set, and consider, for ρ > 0 and w ∈ B, the
“localized” problem

minimize
x∈X

Lρ(x,w) subject to x ∈ Br(x̄) ∩ C. (4.23)

Under suitable assumptions, this problem admits minimizers (or approximate minimizers)
in Br(x̄) ∩ C. If we can now show that, for sufficiently large ρ, these minimizers actually
lie in the interior of Br(x̄), then the spherical constraint in (4.23) is superfluous and we
obtain local minimizers of Lρ(·, w) subject to x ∈ C.

The above property can equivalently, and more conveniently, be stated in terms of
sequences. We need to show that, whenever {wk} ⊆ B is an arbitrary (bounded) sequence,
ρk →∞, and, for all k, yk+1 is an (approximate) solution of

minimize
x∈X

Lρk(x,wk) subject to x ∈ Br(x̄) ∩ C, (4.24)

then ‖yk+1 − x̄‖X < r for all k sufficiently large. Indeed, we will show that any such
sequence converges to x̄, and the existence of local minimizers of the augmented Lagrangian
subproblems follows directly by the above arguments.

To prove the convergence of minimizers of (4.24) to x̄, we will make use of Corol-
lary 3.27, which is a consequence of the second-order sufficient condition. This result
guarantees the convergence yk+1 → x̄ if we are able to show that dK(G(yk+1))→ 0 and
lim supk→∞ f(yk+1) ≤ f(x̄) as k →∞.

Lemma 4.23. Let Assumption 4.22 hold. Then there is a radius r > 0 such that the
following holds: whenever {wk} ⊆ H is a bounded sequence, ρk →∞, εk → 0, and, for
all k, yk+1 is an εk+1-minimizer of (4.24), then yk+1 → x̄.

Proof. Let r > 0 be as in Corollary 3.27. Shrinking r if necessary, we may assume that f
is bounded on Br(x̄). In particular, it follows that Lρ(·, w) is bounded from below on
Br(x̄) for all ρ > 0 and w ∈ B.

Now, let {yk+1} be as specified. Then the εk+1-minimality of yk+1 and Proposition 4.3
yield

f(yk+1) +
ρk
2
d2
K

(
G(yk+1) +

wk

ρk

)
−
‖wk‖2H

2ρk
≤ Lρk(x̄, wk) + εk+1 ≤ f(x̄) + εk+1 (4.25)
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for all k. Dividing by ρk and using the boundedness of {wk} and {f(yk+1)}, it follows
that dK(G(yk+1) +wk/ρk)→ 0 and thus dK(G(yk+1))→ 0. Moreover, since ρk →∞, we
also obtain from (4.25) that lim supk→∞ f(yk+1) ≤ f(x̄). Hence, the desired convergence
follows from Corollary 3.27.

The above result implies that the augmented Lagrangian subproblem admits approx-
imate local minimizers in a neighborhood of x̄, provided that ρ is large enough and ε
is sufficiently small. By using Ekeland’s variational principle (Proposition 3.9), we can
extend this statement to additionally obtain some kind of approximate stationarity.

Theorem 4.24. Let Assumption 4.22 hold and let B ⊆ H be a bounded set. Then
there are ρ̄, ε̄, r > 0 such that, for all w ∈ B, ρ ≥ ρ̄, and ε ∈ (0, ε̄), there is a point
x = xρ,ε(w) ∈ C with ‖x− x̄‖X < r and the following properties:

(i) x is an ε-minimizer of Lρ(·, w) on Br(x̄) ∩ C,
(ii) x satisfies dist

(
−L′ρ(x,w),NC(x)

)
≤ ε1/2, and

(iii) x = xρ,ε(w)→ x̄ uniformly on B as ρ→∞ and ε→ 0.

Proof. Let r > 0 be as in Lemma 4.23. For ρ > 0 and w ∈ B, consider the problem

minimize
x∈X

Lρ(x,w) subject to x ∈ Cr := Br(x̄) ∩ C.

Observe that the constraint x ∈ Cr trivially satisfies the Robinson constraint qualification.
Hence, by Ekeland’s variational principle (Proposition 3.9), there are points x = xρ,ε(w)
such that x satisfies (i) and, in addition, dist

(
−L′ρ(x,w),NCr(x)

)
≤ ε1/2. By Lemma 4.23,

it follows that xρ,ε → x̄ uniformly on B as ρ→∞ and ε→ 0. Hence, there are ρ̄, ε̄ > 0
such that ‖xρ,ε(w)− x̄‖X < r for all ρ ≥ ρ̄, ε ∈ (0, ε̄), and w ∈ B. But NCr(x) = NC(x)
whenever x ∈ C and ‖x− x̄‖X < r. Hence, the result follows.

If X is reflexive and the augmented Lagrangian Lρ(·, w) is weakly sequentially lsc,
then the assertions of the above theorem remain valid if we replace the ε-minimizers by
exact minimizers. In this case, we obtain points x = xρ(w) which satisfy (i) and (ii) with
ε := 0 and which converge to x̄ uniformly on B as ρ→∞. Sufficient conditions for the
weak sequential lower semicontinuity of Lρ(·, w) were given in Lemma 4.8.

If the mapping G is completely continuous, then it is possible to prove a similar result
under the second-order sufficient condition with respect to the space Y . This result is a
generalization of a theorem from [137].

Proposition 4.25. Let (x̄, λ̄) ∈ X × Y ∗ be a KKT point of (P ) which satisfies SOSC
with respect to the space Y , and B ⊆ H a bounded set. Assume that

(i) the space X is reflexive,

(ii) f is weakly sequentially lsc on X, and

(iii) G is completely continuous from X into Y .

Then there are ρ̄, r > 0 such that, for every w ∈ B and ρ ≥ ρ̄, the problem minx∈C Lρ(x,w)
admits a local minimizer x = xρ(w) in Br(x̄)∩C, and xρ → x̄ uniformly on B as ρ→∞.
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Proof. We argue similarly to the proof of Lemma 4.23 and Theorem 4.24. Let r > 0 be
small enough so that x̄ is a strict local minimizer of f on Br(x̄) ∩ Φ, and such that the
assertions of Corollary 3.27 hold. Let {wk} ⊆ B and ρk →∞ be arbitrary sequences and,
for each k, let yk+1 ∈ Br(x̄) ∩ C be a minimizer of (4.24). Note that yk+1 exists since
Br(x̄) is weakly compact.

We need to show that yk+1 → x̄ as k →∞. By Theorem 4.12 and the reflexivity of
X, it follows that yk+1 ⇀ x̄ and f(yk+1)→ f(x̄). Since G is completely continuous, we
obtain G(yk+1)→ G(x̄), which implies that dK(G(yk+1))→ 0 (note the K instead of K).
Thus, Corollary 3.27 yields the convergence yk+1 → x̄, and the proof is complete.

We now prove a result which is very similar to Theorem 4.24 but explicitly deals with
the case where X is finite-dimensional. In this case, the assumptions required for the
existence of local minimizers can be simplified considerably. In fact, we only need that x̄
is a strict local minimizer, which is weaker than SOSC. We do not even need the existence
of Lagrange multipliers.

Proposition 4.26. Assume that X is finite-dimensional, that B ⊆ H is a bounded set,
and x̄ is a strict local minimizer of (P ). Then there are ρ̄, r > 0 such that, for every
w ∈ B and ρ ≥ ρ̄, the problem minx∈C Lρ(x,w) admits a local minimizer x = xρ(w)
which lies in Br(x̄) ∩ C. Moreover, xρ → x̄ uniformly on B as ρ→∞.

Proof. We again argue similarly to the proof of Lemma 4.23 and Theorem 4.24. Let r > 0
be small enough so that x̄ is a strict local minimizer of f on Br(x̄) ∩ Φ. Let {wk} ⊆ B
and ρk →∞ be arbitrary sequences and, for each k, let yk+1 ∈ Br(x̄)∩C be a minimizer
of (4.24). Note that yk+1 exists by compactness.

We need to show that yk+1 → x̄ as k →∞. By Theorem 4.12, it follows that every
limit point of {yk} is a (global) minimizer of f on Br(x̄) ∩ Φ. The uniqueness of x̄
therefore implies that yk+1 → x̄, and the proof is complete.

Let us close this section by showing that the local minimizers obtained in the above
results are in general not unique. It is possible to obtain uniqueness under significantly
stronger assumptions, namely the so-called strong regularity of the KKT system. In
finite-dimensional nonlinear programming, this property is equivalent to a stronger version
of SOSC together with the linear independence constraint qualification. More details can
be found in [24,32]. If these assumptions are weakened, then we cannot expect unique
local minimizers of the augmented Lagrangian, as illustrated by the following example.

Example 4.27. Consider the following quadratic program, due to Kyparisis [154]:

minimize
x∈R3

x2
1 −

1

2
x2

2 subject to G(x) :=

x1 − x2

x1 + x2

x1

 ≤ 0.

An easy calculation shows that x̄ := (0, 0) is the unique solution of this problem, and
λ̄ := (0, 0, 0) the unique Lagrange multiplier. In particular, by Proposition 3.33, the strict
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Mangasarian–Fromovitz condition (SMFC) holds in x̄, which in this case is equivalent to
the strict Robinson condition. Moreover, the critical cone at x̄ is given by

C(x̄) = {d ∈ R2 : d1 ≤ 0, d2 ∈ [d1,−d1]}.

This makes it easy to verify that SOSC (in the sense of Definition 3.34) is satisfied. On
the other hand, the linear independence constraint qualification (LICQ) does not hold in
x̄ since ∇G1(x̄) +∇G2(x̄)− 2∇G3(x̄) = 0.

For the analysis of the augmented Lagrangian, assume now that ρ > 1 is arbitrarily
large and ε > 0 arbitrarily small. Define

λ :=

(
ε

ρ
,
ε

ρ
, ε+

ε

ρ

)
.

Then λ is arbitrarily close to λ̄, but the augmented Lagrangian Lρ(·, λ) has the stationary
points

x(1) :=

(
−ε
ρ
,
ε

ρ

)
and x(2) :=

(
−ε
ρ
,
−ε
ρ

)
.

4.3.2 Rate of Convergence Analysis

We are now in a position to discuss the convergence of Algorithm 4.4 from a quantitative
point of view. Throughout this section, we assume that the space X is a real Hilbert
space, that there is a local minimizer x̄ ∈ X of (P ) with a unique Lagrange multiplier
λ̄ ∈ H, and that the local error bound from Section 3.2.4 holds in (x̄, λ̄). In our setting,
this condition takes on the form (compare with Corollary 3.58)

c1Θ(x, λ) ≤ ‖x− x̄‖X + ‖λ− λ̄‖H ≤ c2Θ(x, λ) (4.26)

for all (x, λ) ∈ X×H with x near x̄ and Θ(x, λ) sufficiently small, where Θ is the residual

Θ(x, λ) := ‖x− PC(x− L′(x, λ))‖X + ‖G(x)− PK(G(x) + λ)‖H .

The regularity assumptions mentioned above may seem rather stringent in view of the
Gel’fand triple framework Y ↪→ H ↪→ Y ∗. Indeed, a sufficient condition for the local error
bound is a combination of the second-order sufficient condition (SOSC, see Definition 3.24)
and the strict Robinson condition (SRC, see Definition 3.6), both with respect to the
space H. This effectively rules out certain applications where the embedding Y ↪→ H is
too weak, but the underlying issue is that we simply cannot expect the results in this
section to hold if the constraint system of (P ) is only regular with respect to the space
Y . This is also evidenced by the fact that the rate-of-convergence analysis will enable
us to prove the boundedness of the penalty sequence {ρk}, and this actually implies the
existence of a Lagrange multiplier in H under certain assumptions, see Corollary 4.17
and the discussion after Corollary 4.32 below.

Despite these restrictions, the theory we develop here is still applicable to a fair amount
of nontrivial problems such as control-constrained optimal control, elliptic parameter
estimation problems, and of course optimization in finite dimensions (see also Section 4.3.3).
For more details, we refer the reader to Chapter 7.
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Assumption 4.28 (Rate of convergence). We assume that

(i) X is a real Hilbert space with f and G continuously differentiable on X,

(ii) (x̄, λ̄) ∈ X ×H is a KKT point of (P ) which satisfies the error bound (4.26),

(iii) the primal-dual sequence {(xk, λk)} converges strongly to (x̄, λ̄) in X ×H,

(iv) the safeguarded multiplier sequence satisfies wk := λk for k sufficiently large, and

(v) xk+1 ∈ C and εk+1 − L′ρk(xk+1, wk) ∈ NC(xk+1) for all k, where εk → 0.

Two assumptions which may require some elaboration are (iii) and (iv). Note that
we already know, by Theorem 4.24, that the augmented Lagrangian admits approximate
local minimizers and stationary points in a neighborhood of x̄. We shall now see that,
if the algorithm chooses these local minimizers (or any other points sufficiently close to
x̄), then we automatically obtain the convergence (xk, λk) → (x̄, λ̄) in X ×H. In this
case, the sequence {λk} is necessarily bounded in H, so it is reasonable to assume that
the safeguarded multipliers are eventually chosen as wk = λk. The following result can
therefore be considered as (retrospective) justification for Assumption 4.28.

Proposition 4.29. Let Assumption 4.28 (i), (ii), (v) hold, and let RCQ hold in x̄ with
respect to the space H. Then there exists r > 0 such that, if xk ∈ Br(x̄) for sufficiently
large k, then Θ(xk, λk)→ 0 and (xk, λk)→ (x̄, λ̄) strongly in X ×H.

Proof. Let r > 0 be small enough so that the error bound (4.26) holds for all (x, λ) ∈ X×H
with x ∈ Br(x̄) and Θ(x, λ) sufficiently small. Shrinking r if necessary, we may also
assume that f ′ and G′ are bounded on Br(x̄) and, by Proposition 3.18, that there exists
s > 0 such that

BH
s ⊆ G(x) +G′(x)

[
(C − x) ∩BX

1

]
−K (4.27)

for all x ∈ Br(x̄). Assume now that xk ∈ Br(x̄) for all k sufficiently large. The proof is
divided into multiple steps.

Step 1. We first show that dK(G(xk+1))→ 0 as k →∞. If {ρk} remains bounded,
then this readily follows from the penalty updating scheme (4.13). On the other hand, if
ρk →∞, then we can argue as in the proof of Lemma 4.15 to obtain that

δk+1 −G′(xk+1)∗
[
G(xk+1)− PK(G(xk+1))

]
∈ NC(xk+1) (4.28)

for some null sequence {δk} ⊆ X∗. (Note that this step uses the boundedness of f ′ and
G′ on Br(x̄).) We claim that this implies dK(G(xk+1))→ 0. Let y ∈ BH

s be an arbitrary
vector. By (4.27), there exist sequences {ck} ⊆ C and {zk} ⊆ K such that ck ∈ B1(xk)
and y = G(xk+1) +G′(xk+1)(ck+1 − xk+1)− zk+1 for all k. Hence,(

G(xk+1)− PK(G(xk+1)), y
)

=
〈
G′(xk+1)∗

[
G(xk+1)− PK(G(xk+1))

]
, ck+1 − xk+1

〉
+
(
G(xk+1)− PK(G(xk+1)), G(xk+1)− zk+1

)
≥ 〈δk+1, ck+1 − xk+1〉 ≥ −‖δk+1‖X∗
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for all k, where we used (4.28) and standard projection inequalities. Since this lower bound
is uniform with respect to y ∈ BH

s , it is easy to infer that G(xk+1)− PK(G(xk+1))→ 0
in H, which yields dK(G(xk+1))→ 0. This concludes the proof of Step 1.

Step 2. We now demonstrate that Θ(xk, λk) → 0. Observe that L′(xk+1, λk+1) =
L′ρk(x

k+1, wk) and φk+1 := εk+1 − L′ρk(x
k+1, wk) ∈ NC(xk+1) for all k. Using Proposi-

tion 2.36 and the nonexpansiveness of the projection PC , it follows that the first term in
the definition of Θ(xk+1, λk+1) satisfies

‖xk+1 − PC(xk+1 − L′(xk+1, λk+1))‖X
≤ ‖xk+1 − PC(xk+1 + φk+1)‖X + ‖εk+1‖X = ‖εk+1‖X ,

(4.29)

which converges to zero. Hence, it remains to show thatG(xk+1)−PK(G(xk+1)+λk+1)→ 0
as k →∞. To this end, define the sequence sk+1 := PK(G(xk+1)+wk/ρk). Then sk+1 ∈ K
and λk+1 ∈ NK(sk+1) for all k (by Proposition 2.36 and the definition of λk+1). We now
use the fact that y 7→ y − PK(y + λk+1) is nonexpansive, which is an easy consequence of
Lemma 2.11. Therefore, the inverse triangle inequality yields

‖G(xk+1)− PK(G(xk+1) + λk+1)‖H
≤ ‖G(xk+1)− sk+1‖H + ‖sk+1 − PK(sk+1 + λk+1)‖H .

(4.30)

The last term is equal to zero since λk+1 ∈ NK(sk+1), see again Proposition 2.36. Hence,
to prove the claim, it remains to show that ‖sk+1 −G(xk+1)‖H → 0. The proof of this
assertion is divided into two cases. If {ρk} is bounded, then it readily follows from the
penalty updating scheme (4.13). On the other hand, if ρk →∞, then we see that

‖sk+1 −G(xk+1)‖H ≤ ‖sk+1 − PK(G(xk+1))‖H + dK(G(xk+1))→ 0,

where we used the boundedness of {wk} and Step 1. This concludes the proof of Step 2.
Step 3. We finally deduce that (xk, λk)→ (x̄, λ̄) in X ×H. Recall that xk ∈ Br(x̄)

for all k and that Θ(xk, λk)→ 0 by Step 2. Hence, the claim is an immediate consequence
of the error bound (4.26).

We will now prove convergence rates for the primal-dual sequence {(xk, λk)}. Since
the distance of (xk, λk) to (x̄, λ̄) admits both upper and lower estimates relative to the
residual terms θk := Θ(xk, λk) by (4.26), we will largely base our analysis on the sequence
{θk}, and the results on the primal-dual sequence {(xk, λk)} will follow directly.

Lemma 4.30. Let Assumption 4.28 hold, and let θk := Θ(xk, λk). Then(
1− c2

ρk

)
θk+1 ≤ ‖εk+1‖X +

c2

ρk
θk

for all k ∈ N sufficiently large.
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Proof. Using the definition of θk+1 and (4.29), we have

θk+1 ≤ ‖εk+1‖X + ‖G(xk+1)− PK(G(xk+1) + λk+1)‖H . (4.31)

Now, let k ∈ N be large enough so that wk = λk. Consider again the sequence sk+1 :=
PK(G(xk+1) + λk/ρk). Using (4.30) and the definition of λk+1, we see that

‖G(xk+1)− PK(G(xk+1) + λk+1)‖H ≤ ‖G(xk+1)− sk+1‖H =
‖λk+1 − λk‖H

ρk
. (4.32)

Inserting this into (4.31) and using the triangle inequality yields

θk+1 ≤ ‖εk+1‖X +
1

ρk

(
‖λk+1 − λ̄‖H + ‖λk − λ̄‖H

)
.

Now, by Assumption 4.28 and since xk → x̄, there is a c2 > 0 such that ‖λk− λ̄‖H ≤ c2θk
for all k ∈ N sufficiently large. Hence,

θk+1 ≤ ‖εk+1‖X +
c2

ρk
θk+1 +

c2

ρk
θk,

again for k ∈ N sufficiently large. Reordering gives the desired result.

With the above lemma, it is easy to deduce convergence rates for the primal-dual
sequence {(xk, λk)}.

Theorem 4.31. Let Assumption 4.28 hold and assume that εk+1 = o(θk). Then:

(a) For every q ∈ (0, 1), there exists ρ̄q > 0 such that, if ρk ≥ ρ̄q for sufficiently large k,
then (xk, λk)→ (x̄, λ̄) Q-linearly in X ×H with rate q.

(b) If ρk →∞, then (xk, λk)→ (x̄, λ̄) Q-superlinearly in X ×H.

Proof. Let k ∈ N be large enough so that wk = λk. By Lemma 4.30, if ρk is large enough
so that 1− c2/ρk > 0, then

θk+1

θk
≤ c2

ρk − c2
+ o(1). (4.33)

This implies the desired Q-rates for the sequence {θk}. The corresponding rates for
{(xk, λk)} are then an easy consequence of the error bound (4.26).

The assumption εk+1 = o(θk) in the above theorem says that, roughly speaking, the
degree of inexactness should be small enough to not affect the rate of convergence. Note
that we are comparing εk+1 to the optimality measure θk of the previous iterates (xk, λk).
Hence, it is easy to ensure this condition in practice, for instance, by always computing
the next iterate xk+1 with a precision ‖εk+1‖X ≤ zkθk for some fixed null sequence zk.

Corollary 4.32. Let Assumption 4.28 hold and assume that the subproblems occurring in
Algorithm 4.4 are solved exactly, i.e., that εk = 0 for all k. Then {ρk} remains bounded.
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Proof. Let k ∈ N be sufficiently large so that wk = λk, let sk+1 = PK(G(xk+1) + λk/ρk),
and define Vk+1 := V (xk+1, wk, ρk) = ‖G(xk+1) − sk+1‖H . To prove the boundedness
of {ρk}, we need to show that Vk+1 ≤ τVk for sufficiently large k, where τ ∈ (0, 1) is
the constant from Algorithm 4.4. Using (4.32) and the fact that −L′(xk+1, λk+1) =
−L′ρk(xk+1, wk) ∈ NC(xk+1) for all k, we obtain

Vk+1 ≥ ‖G(xk+1)− PK(G(xk+1) + λk+1)‖H = θk+1

for all k ∈ N. Using again (4.32) and the error bound (4.26), it follows that

Vk+1 =
‖λk+1 − λk‖H

ρk
≤ ‖λ

k+1 − λ̄‖H + ‖λk − λ̄‖H
ρk

≤ c2

ρk
(θk+1 + θk)

for k ∈ N sufficiently large (recall that xk → x̄). Putting these inequalities together yields

Vk+1

Vk
≤ c2

ρk

θk+1 + θk
θk

=
c2

ρk

(
1 +

θk+1

θk

)
.

If we now assume that ρk →∞, then it is easy to deduce from (4.33) that Vk+1/Vk → 0.
Hence, Vk+1/Vk ≤ τ for all k sufficiently large, which contradicts ρk →∞.

The boundedness of {ρk} obviously rules out the Q-superlinear convergence of Theo-
rem 4.31 (b). However, the former is usually considered more significant in practice since
it prevents the subproblems from becoming excessively ill-conditioned.

Remark 4.33. If inexact solutions are allowed for the augmented Lagrangian subproblems,
then the boundedness of {ρk} requires a slightly modified updating rule for the penalty
parameter since the one used in Algorithm 4.4 does not take into account the current
measure of optimality. Indeed, if we replace the function V from (4.10) by

Ṽ (x, λ, ρ) := V (x, λ, ρ) + ‖x− PC(x− L′(x, λ))‖X ,

then it is possible to show that {ρk} remains bounded under the assumptions of Theo-
rem 4.31. A proof for the case C = X can be found in [133], and the extension to the
general case is straightforward (see also [26, 28]). It is furthermore worth noting that the
global and local convergence results from Sections 4.2.3 and 4.3.1 remain valid with this
“modified” penalty updating scheme. This is because the proofs of these results only use
the fact that V (xk+1, wk, ρk) → 0 if {ρk} remains bounded, which clearly still holds if
the penalty updating scheme uses Ṽ instead of V .

Remark 4.34. In the case of finite-dimensional nonlinear programming, it is possible to
obtain similar rate of convergence results to those above under the second-order sufficient
condition only. In this case, one obtains that (xk, λk) → (x̄, λ) Q-linearly for some
λ ∈ Λ(x̄) which is not necessarily equal to λ̄. This result can be found in [74]. The
reason why this is possible is that, for nonlinear programming, the set K is polyhedral
and therefore, as mentioned in Section 3.2.4, the second-order condition implies a local
primal-dual error bound without any constraint qualification. This approach is not
possible if K is not polyhedral, as evidenced by Example 3.60.
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4.3.3 C2-Cone Reducible Programming

In this section, we consider a special case of (P ) which arises if the constraint set has a
certain geometric structure. The prototypical applications we have in mind are semidefinite
programming, second-order cone programming, and related problems. More details will
be given further below. To avoid overburdening the presentation, we leave out some of the
results and proofs in this section and instead make frequent references to the literature.
A more comprehensive exposition of the theory can be found in [57,135,203] and in the
book [32].

Throughout this section, we assume that the spaces X,Y,H defining (P ) are finite-
dimensional. In this case, it is no restriction to assume that all these spaces are Hilbert
spaces; in the finite-dimensional context, these are often referred to as Euclidean spaces.
Moreover, the dense embedding Y ↪→ H is necessarily the identity mapping, and thus we
can simply drop the space Y and directly consider the constrained optimization problem

minimize
x∈X

f(x) subject to G(x) ∈ K, (4.34)

where G : X → H and K ⊆ H is a nonempty closed convex set. Note that we do not
include an additional constraint set C ⊆ X for the sake of simplicity.

We assume throughout that the functions f and G are twice continuously differentiable.
In this situation, we already know that Algorithm 4.4 possesses good local convergence
properties if the problem satisfies a suitable second-order sufficient condition together
with an appropriate constraint qualification, see Section 4.3.2.

The approach we consider here depends on a local reduction property of the set K to
a pointed closed convex cone. This allows us to locally transform the constraint system
into a simpler one, and we can then apply properties such as second-order conditions or
constraint qualifications to the reduced problem, yielding sharper optimality results.

Definition 4.35 (C2-cone reducibility). We say that K is C2-cone reducible at y0 ∈ K if
there exist a pointed closed convex cone D ⊆ Z in some finite-dimensional space Z, a
neighborhood N of y0, and a twice continuously differentiable mapping Ξ : N → Z such
that Ξ(y0) = 0, Ξ′(y0) is onto, and K ∩ N = Ξ−1(D) ∩ N . We say that K is C2-cone
reducible if the above holds at every y0 ∈ K.

Some examples where the set K is C2-cone reducible include nonlinear programming,
semidefinite programming, second-order cone programming, and any combination thereof.
More details will be given further below.

Assume now that x̄ ∈ X is a local minimizer of (4.34), and that the set K is C2-cone
reducible at y0 := G(x̄). This implies that x̄ is also a local minimizer of the reduced
problem

minimize
x∈X

f(x) subject to Ξ(G(x)) ∈ D. (4.35)

This problem possesses a key theoretical advantage over (4.34) in that the new constraint
mapping satisfies z0 := Ξ(G(x̄)) = 0. This implies that, when forming variational objects
such as radial, tangent, or normal cones (see Section 2.2.1), we simply obtain

TD(z0) = RD(z0) = D and ND(z0) = D◦.
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In particular, there is no “gap” between the radial and tangent cones, and the local
geometry of D is completely described by the conical structure of D itself.

We now apply the Robinson constraint qualification (RCQ) and its strict counterpart
(SRC) to the reduced problem (4.35). Taking into account Proposition 3.19 and the fact
that TK(G(x̄)) = TD(z0), RCQ for the reduced problem takes on the form

G′(x̄)X + TK(G(x̄)) = H

and therefore coincides with RCQ for the problem (4.34). For the strict Robinson
condition, the situation is slightly different, and we obtain the following condition.

Definition 4.36 (Reduced SRC). We say that the reduced strict Robinson condition
(reduced SRC, R-SRC) holds in x̄ if there exists λ̄ ∈ Λ(x̄) such that

G′(x̄)X + TK(G(x̄)) ∩ λ̄⊥ = H.

The reduced SRC yields the uniqueness of λ̄, and it is weaker than the ordinary SRC
(Definition 3.6) for the problem (4.34), see [32, p. 299]. At the end of this section, we will
present two examples which show that this implication is strict.

The second-order sufficient condition from Definition 3.24 can also be applied to the
reduced problem (4.35). In fact, this can be done in a slightly more general context by
using a form of SOSC which takes into account the whole multiplier set (see [32]). The
resulting condition can then be reformulated using only the problem primitives f , G, and
K. This process involves the so-called second-order tangent set to K in a point y ∈ K and
a direction h ∈ H, which is given by

T 2
K(y, h) :=

{
w ∈ H : dist(y + th+ 1

2 t
2w,K) = o(t2), t ≥ 0

}
.

Now, let σ(y, S) := supz∈S(y, z) be the support function of a closed convex set S ⊆ H.
Then the second-order condition takes on the following form.

Definition 4.37 (Reduced SOSC). Let (x̄, λ̄) ∈ X ×H be a KKT point of (4.34). We
say that the reduced second-order sufficient condition (reduced SOSC, R-SOSC) holds in
(x̄, λ̄) if the set K is C2-cone reducible at G(x̄) and

sup
λ∈Λ(x̄)

{
L′′(x̄, λ)(d, d)− σ

(
λ, T 2

K(G(x̄), G′(x̄)d)
)}

> 0 (4.36)

for all d ∈ C(x̄) \ {0}, where C(x̄) := {d ∈ X : f ′(x̄)d ≤ 0, G′(x̄)d ∈ TK(G(x̄))}.

Similarly to the general form of SOSC from Definition 3.24, the reduced SOSC implies
the local quadratic growth of the objective function, i.e., the existence of c > 0 such that
f(x) ≥ f(x̄) + c‖x − x̄‖2X for all feasible points x near x̄. In particular, it follows that
x̄ is a strict local minimizer of the problem. What sets R-SOSC apart from the general
SOSC is that, under certain assumptions, it is actually equivalent to the quadratic growth
condition. More details can be found in [32, Theorems 3.86 and 3.137].
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The reduced versions of SOSC and SRC imply a local primal-dual error bound in the
sense of Section 3.2.4, and they are in fact equivalent to the error bound property under
certain assumptions. As in Section 3.2.4, let Θ : X ×H → R be the residual mapping

Θ(x, λ) := ‖L′(x, λ)‖X + ‖G(x)− PK(G(x) + λ)‖H .

The following result is a consequence of the theory in [57,133,135].

Proposition 4.38. Assume that the problem (4.34) admits a KKT point (x̄, λ̄) which
satisfies the reduced SOSC and reduced SRC. Then Λ(x̄) = {λ̄} and there are c1, c2 > 0
such that, for all (x, λ) ∈ X ×H with x near x̄ and Θ(x, λ) sufficiently small,

c1Θ(x, λ) ≤ ‖x− x̄‖X + ‖λ− λ̄‖H ≤ c2Θ(x, λ). (4.37)

Conversely, if Λ(x̄) is a singleton, the error bound (4.37) is satisfied, and RCQ holds in
x̄, then both the reduced SOSC and reduced SRC hold in (x̄, λ̄).

The error bound property implies a local convergence and rate of convergence result
for the augmented Lagrangian method (Algorithm 4.4). For the sake of clarity, we restate
our assumptions in the present setting.

Assumption 4.39 (Local convergence for C2-cone reducible problems). Assume that

(i) (x̄, λ̄) ∈ X ×H is a KKT point of (4.34) which satisfies the error bound (4.37),

(ii) the primal-dual sequence {(xk, λk)} converges to (x̄, λ̄),

(iii) the safeguarded multiplier sequence satisfies wk := λk for k sufficiently large, and

(iv) there is a null sequence {εk} ⊆ R+ such that ‖L′ρk(xk+1, wk)‖X ≤ εk+1 for all k.

Note that the above is basically a reformulation of Assumption 4.28. For the sake of
simplicity, we have replaced the vectorial sequence {εk} ⊆ X in the latter by a scalar null
sequence {εk}. A sufficient condition for assumption (ii) was given in Proposition 4.29,
where it was shown that (xk, λk)→ (x̄, λ̄) if the error bound (4.37) holds, RCQ is satisfied
in x̄, and the primal iterates {xk} eventually lie in a sufficiently small neighborhood of x̄.

Clearly, in the case where (xk, λk) → (x̄, λ̄), it is reasonable to assume that the
safeguarded multipliers are eventually chosen as wk := λk. Thus, the conditions in
Assumption 4.39 are realistic, and we obtain the following result which is essentially a
restatement of Theorem 4.31. Recall that θk := Θ(xk, λk).

Theorem 4.40. Let (x̄, λ̄) be a KKT point of the problem (4.34), and let Assumption 4.39
hold. Then there exists ρ̄ > 0 such that, if ρk ≥ ρ̄ for k sufficiently large and εk+1 = o(θk),
then (xk, λk)→ (x̄, λ̄) Q-linearly with rate proportional to 1/ρk.

This constitutes our main local convergence result for C2-cone reducible programs.
We now turn to two problem classes which are arguably the most prominent applications
of the reduction approach.
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Semidefinite Programming

Semidefinite programming (SDP), linear or nonlinear, revolves around constraints which
impose semidefiniteness of certain matrices. We write Sn for the space of symmetric
n × n-matrices, equipped with the scalar product (A,B) := tr(A>B), Sn+ (Sn−) for the
subsets of positive (negative) semidefinite matrices, and A � 0 (A � 0) for positive
(negative) semidefiniteness. With these definitions, a typical SDP is given by

minimize
x∈X

f(x) subject to g(x) ≤ 0, e(x) = 0, G(x) � 0, (4.38)

where X is a finite-dimensional space and g : X → Rm, e : X → Rp, G : X → Sn are
given mappings. This problem corresponds to the general setting (4.34) with

G(x) := (g(x), e(x),G(x)),
H := Rm × Rp × Sn,
K := Rm− × {0}p × Sn−.

Note that K is C2-cone reducible because it is a Cartesian product of C2-cone reducible
sets. Indeed, given a point (y0, z0, A0) ∈ K, the local reduction of K takes on the form

Ξ(y, z, A) := ((y − y0)I , z,ΞSn−(A)), D := R|I|− × {0}p ×DSn− ,

where I := {i = 1, . . . ,m : (y0)i = 0} is the index set of active inequality constraints in
y0, and ΞSn− and DSn− constitute the reduction of the negative semidefinite cone Sn− at
A0. More details can be found in [203].

For semidefinite programming, the Lagrange multiplier occurring in the KKT condi-
tions can be split as λ̄ = (µ̄, ν̄, Γ̄) with µ̄ ∈ Rm, ν̄ ∈ Rp, and Γ̄ ∈ Sn. With an obvious
change of notation, the Lagrange function now becomes

L(x, µ, ν,Γ) := f(x) + µ>g(x) + ν>e(x) + (Γ,G(x)),

and the KKT system takes on the form

L′(x̄, µ̄, ν̄, Γ̄) = 0, 0 ≤ µ̄ ⊥ g(x̄) ≤ 0, e(x̄) = 0, 0 � Γ̄ ⊥ G(x̄) � 0,

where ⊥ denotes orthogonality with respect to the corresponding scalar products. The
reduced SRC and SOSC conditions can be reformulated more explicitly in the case of SDP.
A characterization of the former can be stated in terms of certain linear independences
and the existence of a Mangasarian–Fromovitz type vector. The resulting condition is
fairly involved and can be found in [202,224]. As for reduced SOSC, the σ-term occurring
in (4.36) can be calculated explicitly by taking into account the geometric structure of
Sn+, and the condition can therefore be rewritten as

sup
(µ,ν,Γ)∈Λ(x̄)

{
L′′(x̄, µ, ν,Γ)(d, d)− 2

(
Γ, (G′(x̄)d)G(x̄)†(G′(x̄)d)

)}
> 0 (4.39)

for all d ∈ C(x̄) \ {0}, where † denotes the Moore–Penrose pseudoinverse, see [32,203,224].
Note that the functions g and e provide no contribution to the σ-term since they represent
constraints for which the corresponding factor in the set K is polyhedral.
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Corollary 4.41. Let (x̄, µ̄, ν̄, Γ̄) be a KKT point of (4.38), and let Assumption 4.39 hold.
Then there exists ρ̄ > 0 such that, if ρk ≥ ρ̄ for k sufficiently large and εk+1 = o(θk), then
(xk, µk, νk,Γk)→ (x̄, µ̄, ν̄, Γ̄) Q-linearly with rate proportional to 1/ρk.

Let us briefly discuss the case of a linear semidefinite program. Given a problem of
the form

minimize
x∈Sn

(c, x) subject to Ax = b, x � 0,

where c ∈ Sn, b ∈ Rm, and A : Sn → Rm is a linear operator, it is customary to apply
the augmented Lagrangian method to the dual problem

maximize
y∈Rm

b>y subject to A∗y − c � 0,

since this yields subproblems which are smooth, unconstrained minimization problems
on Rm. It turns out that R-SOSC and R-SRC for the dual problem are closely related
to the corresponding primal properties. In fact, assuming that the problem admits a
unique primal-dual solution pair, it can be shown that R-SOSC for the primal problem
is equivalent to R-SRC for the dual problem. By duality, this also holds with R-SOSC
and R-SRC interchanged. Hence, if both conditions hold for the primal problem, then
they also hold for the dual problem (primal-dual uniqueness follows automatically in this
case). The corresponding investigations can be found in [226].

Second-Order Cone Programming

For second-order cone programs (SOCP), the theoretical analysis is very similar to
semidefinite programming. Throughout this section, we write w := (w0, w̄) for a generic
element in R1+m. Let K ⊆ R1+m be the second-order (Lorentz, ice-cream) cone

K := {(w0, w̄) ∈ R1+m : w0 ≥ ‖w̄‖2},

where ‖ · ‖2 is the Euclidean norm. The analysis below can easily be extended to the
case where additional inequality, equality, or multiple second-order cone constraints are
present. In any case, the resulting set K is C2-cone reducible [203].

As in the case of semidefinite programming, the reduced SOSC from Definition 4.37
can be reformulated to take into account the particular geometry of the problem. The
resulting condition is given by

sup
λ∈Λ(x̄)

{
L′′(x̄, λ)(d, d) + d>H(x̄, λ)d

}
> 0 (4.40)

for all d ∈ C(x̄) \ {0}, where

H(x̄, λ) := − λ0

G0(x̄)
G′(x̄)>

(
1 0
0 −Im

)
G′(x̄)

if G(x̄) ∈ bd(K) \ {0}, and H(x̄, λ) := 0 otherwise, see [31, 157, 225]. Similar to before,
G0 denotes the first component of G.
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Corollary 4.42. Let (x̄, λ̄) be a KKT point of a nonlinear SOCP, and let Assumption 4.39
hold. Then there exists ρ̄ > 0 such that, if ρk ≥ ρ̄ for k sufficiently large and εk+1 = o(θk),
then (xk, λk)→ (x̄, λ̄) Q-linearly with rate proportional to 1/ρk.

We close this section with two examples which demonstrate that the reduced version
of SRC is, in general, strictly weaker than the ordinary SRC from Definition 3.6.

Example 4.43. (a) Let X := R, H := R2, and consider the optimization problem (4.34)
with f(x) := x, G(x) := (x, 0), and K the closed unit ball in H. Clearly, x̄ := −1
is the global minimizer of this problem, and it is easy to see that λ̄ := (−1, 0) is the
corresponding (unique) Lagrange multiplier. Moreover, the set K is C2-cone reducible in
ȳ := G(x̄) = (−1, 0) to the coneD := [0,+∞) by means of the mapping Ξ(x) := 1−x2

1−x2
2.

A straightforward calculation shows that TK(ȳ)∩ λ̄⊥ = λ̄⊥; on the other hand, the set K0

from Definition 3.6 is given by K0 = {ȳ}, and it follows that TK0(ȳ) = {0}, see Figure 4.1.
We conclude that G′(x̄)X + TK(ȳ) ∩ λ̄⊥ = H and G′(x̄)X + TK0(ȳ) 6= H.

K
ȳ

λ̄ K
ȳ

λ̄

λ̄⊥ TK(ȳ)

K

λ̄⊥

K0
λ̄

Figure 4.1: The setting of Example 4.43 (a), the tangent cone to K, and the set K0.

(b) This example is a second-order cone program. Let X := R, H := R3, f(x) := −2x,
G(x) := (x, 0, 2 − x), and K :=

{
y ∈ R3 : y3 ≥

√
y2

1 + y2
2

}
. An easy calculation shows

that x̄ := 1 is the global minimizer of the problem, and λ̄ := (1, 0,−1) is the corresponding
(unique) Lagrange multiplier. Moreover, with ȳ := G(x̄) = (1, 0, 1), we have

NK(ȳ) = {αλ̄ : α ≥ 0} and TK(ȳ) = NK(ȳ)◦ = {λ̄}◦.

Hence, TK(ȳ) ∩ λ̄⊥ = λ̄⊥. On the other hand, the set K0 is the intersection of K with
the plane λ̄⊥, which is given by K0 = {αȳ : α ≥ 0}. Therefore, TK0(ȳ) = span(ȳ), and it
follows that G′(x̄)X + TK(ȳ) ∩ λ̄⊥ = H but G′(x̄)X + TK0(ȳ) 6= H.
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Chapter 5

Augmented Lagrangian Methods for
Variational Inequalities

In this chapter, we present a generalization of the augmented Lagrangian method (ALM)
to variational inequalities (VIs) or, more generally, variational problems (in the sense of
Section 3.2). The algorithm can be seen as a generalization of the ALM for constrained
optimization, but it should be kept in mind that some arguments from optimization
theory are simply not possible for variational problems. This is because many of these
arguments rely on descent properties of the function f or, more generally, the ability to
compare function values in order to get an indicator of optimality. This is not possible
for general VIs. In turn, the variational framework has the significant advantage that
we are now able to model more general optimization-related problems such as Nash and
generalized Nash equilibrium problems.

The main framework we consider throughout this chapter is a VI of the form

(V ) x ∈ Φ, 〈F (x), d〉 ≥ 0 ∀d ∈ TΦ(x), (5.1)

where X is a real Banach space, Φ ⊆ X a nonempty closed set, and F : X → X∗ a
given mapping. Recall that, if F = f ′ for some differentiable function f : X → R, then
(V ) represents the first-order necessary conditions (in the sense of Lemma 3.1) of the
optimization problem

minimize
x∈X

f(x) subject to x ∈ Φ.

Observe also that, if Φ is a convex set, then (V ) can be restated as

x ∈ Φ, 〈F (x), y − x〉 ≥ 0 ∀y ∈ Φ. (5.2)

The notion of variational inequalities is ubiquitous in modern optimization theory, and
there is a variety of monographs specifically targeting this problem class, including
[12,70,88–90,143]. The VI has also become a standard tool for the modeling of various
problems in the applied sciences [50, 87], in particular mechanics [40, 148, 174, 205]. In
addition, the VI is often treated as part of many textbooks on constrained optimization,
see, for instance, [13,32].

95
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One of the most important special cases (in a sense to be specified later) of the VI
is the (generalized) Nash equilibrium problem, or (G)NEP for short. This is a class
of optimization-type problems where multiple agents are involved, each with their own
objective function and constraint set (see Section 5.3). The history of these problems can
be traced back to the works of Nash [168,169], to Arrow and Debreu [9,53], and to Rosen
[194]. A more detailed account of GNEPs, their history, and the surrounding theory,
can be found in the books [14, 111] and the contemporary survey papers [65, 77]. The
practical scope of GNEPs is enormous, with applications including economics, network
design, electromagnetics, aerodynamics, and many more. In this regard, the reader is
again referred to the survey papers [65,77]. Due to its modeling power, the GNEP is a
particular class of problems which has also enjoyed a substantial amount of applications
involving infinite-dimensional spaces. In this context, a rather popular class of examples
is that of differential games, which are multiobjective problems related to the evolution of
dynamical systems involving ordinary differential equations [83,84,99,181,196]. A related
but different problem class is concerned with the (multiobjective) optimal control of partial
differential equations [35,61,106,107,182]. More applications in the infinite-dimensional
context can be found in [41,54,183,195,209], and in the references of all these publications.

A survey of some standard algorithms for the solution of VIs can be found in [71].
For GNEPs, some notable references include [60, 64, 66, 86] and the survey papers [65, 77].

In this chapter, we present and discuss the augmented Lagrangian method for a
general problem of the form (V ). Similarly to the previous chapter, we assume that the
feasible set Φ has a representation of the form

Φ = {x ∈ C : G(x) ∈ K}, (5.3)

where X,Y are real Banach spaces, C ⊆ X and K ⊆ Y are nonempty closed convex sets,
and G : X → Y is a continuously differentiable mapping. To facilitate the application
of the augmented Lagrangian technique, we again assume that i : Y ↪→ H densely for
some real Hilbert space H, and that K ⊆ H is a closed convex set satisfying i−1(K) = K.
Hence, we are once more working in the Gel’fand triple framework

Y
i
↪→ H ∼= H∗

i∗
↪→ Y ∗.

The problem setting (5.3) is extremely general and encompasses a variety of constraint
mappings (see Chapter 4 for a related discussion). In particular, the augmented Lagrangian
method which we will present below can be seen as a generalization of the algorithm from
[6,121,176] for VIs with nonlinear programming constraints.

The results in this chapter are based on the publications [129, 133], the preprint
[128], and the arguments and proofs from Chapter 4. The following is an outline of
the structure of the chapter. In Section 5.1, we discuss the augmented Lagrangian
method from a general point of view, demonstrate how the algorithm can be motivated,
and analyze its relationship to the corresponding method for constrained optimization
problems (Algorithm 4.4).

Section 5.2 is dedicated to a comprehensive convergence analysis of the augmented
Lagrangian method for VIs, including the existence of penalized solutions in Section 5.2.1,
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the global convergence properties for VIs with convex constraints in Section 5.2.2, the
primal-dual convergence characteristics for nonconvex problems in Section 5.2.3, and the
rate of convergence in Section 5.2.4. Some of the arguments and proofs are straightforward
adaptations of their optimization counterparts, but this chapter also includes many results
which are new or different from those in Chapter 4.

In Section 5.3, we provide a more detailed account of generalized Nash equilibrium
problems. In particular, we show how these problems are related to variational inequalities,
indicating that many of the convergence results from Section 5.2 can readily be applied
to the GNEP setting. In addition, we give a slightly different convergence analysis which
takes into account the specific structure of GNEPs, both in the infinite-dimensional
(Section 5.3.2) and the finite-dimensional case (Section 5.3.3).

5.1 Discussion and Statement of the Algorithm

This section provides a brief discussion of the augmented Lagrangian method from a
motivational point of view. In particular, we analyze how the method is related to its
counterpart from constrained optimization, state the main algorithmic framework for the
chapter, and give some basic properties.

5.1.1 Relationship with Constrained Optimization

We shall now outline how the augmented Lagrangian method for variational inequalities
can be deduced from that for constrained optimization problems (Algorithm 4.4). Since
variational problems of the form (V ) contain minimization problems as a special case, it
is natural to construct the augmented Lagrangian in a manner such that the definitions
for VIs and optimization problems are consistent.

Assume, for the moment, that the VI in question originates from a minimization
problem of the form

minimize
x∈C

f(x) subject to G(x) ∈ K (5.4)

with f : X → R a continuously differentiable function. Thus, we have F := f ′. The
augmented Lagrangian of (5.4) in the optimization sense takes on the form

LOpt
ρ (x, λ) = f(x) +

ρ

2
d2
K

(
G(x) +

λ

ρ

)
−
‖λ‖2H

2ρ
, (5.5)

see Definition 4.2, where the superscript Opt emphasizes the fact that this is the augmented
Lagrangian corresponding to the optimization problem (5.4).

The augmented Lagrangian method for (5.4) now generates a sequence of constrained
minimization problems of the form minx∈C LOpt

ρ (x, λ). Since C is a convex set, these
problems correspond to the variational inequalities

x ∈ C,
〈
DxLOpt

ρ (x, λ), y − x
〉
≥ 0 ∀y ∈ C,
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and the derivative DxLOpt
ρ (x, λ) can be written as

DxLOpt
ρ (x, λ) = f ′(x) + ρG′(x)∗

[
G(x) +

λ

ρ
− PK

(
G(x) +

λ

ρ

)]
.

This immediately suggests an appropriate definition of the augmented Lagrangian for a
general VI of the form (V ).

Definition 5.1 (Augmented Lagrangian). For ρ > 0, the augmented Lagrange function
or augmented Lagrangian of (V ) is the function Lρ : X ×H → X∗,

Lρ(x, λ) := F (x) + ρG′(x)∗
[
G(x) +

λ

ρ
− PK

(
G(x) +

λ

ρ

)]
. (5.6)

In view of the above motivation, this definition is consistent with the corresponding one
for constrained optimization problems (Definition 4.2). Note that, if K is a closed convex
cone, then we can simplify the above formula to Lρ(x, λ) = F (x) +G′(x)∗PK◦(λ+ ρG(x))
by using the Moreau decomposition (Lemma 2.37).

5.1.2 Statement of the Method

We now present the augmented Lagrangian method for the variational inequality (V ).
For the construction of our algorithm, we will need a means of controlling the penalty
parameters. To this end, we define the utility function

V (x, λ, ρ) :=

∥∥∥∥G(x)− PK
(
G(x) +

λ

ρ

)∥∥∥∥
H

. (5.7)

This function is carried over from the augmented Lagrangian method for constrained
optimization problems, where it arises from the slack variable transformation discussed in
Section 4.1.2. The function (5.7) can be seen as a composite measure of feasibility and
complementarity.

Algorithm 5.2 (ALM for variational inequalities). Let (x0, λ0) ∈ X ×H, ρ0 > 0, let
B ⊆ H be a nonempty bounded set, γ > 1, τ ∈ (0, 1), and set k := 0.

Step 1. If (xk, λk) satisfies a suitable termination criterion: STOP.

Step 2. Choose wk ∈ B and compute an approximate solution xk+1 of the VI

x ∈ C,
〈
Lρk(x,wk), y − x

〉
≥ 0 ∀y ∈ C. (5.8)

Step 3. Update the vector of multipliers to

λk+1 := ρk

[
G(xk+1) +

wk

ρk
− PK

(
G(xk+1) +

wk

ρk

)]
. (5.9)

Step 4. Let Vk+1 := V (xk+1, wk, ρk) and set

ρk+1 :=

{
ρk, if k = 0 or Vk+1 ≤ τVk,
γρk, otherwise.

(5.10)
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Step 5. Set k ← k + 1 and go to Step 1.

The above algorithm can be seen as a natural extension of the augmented Lagrangian
method for constrained optimization problems (Algorithm 4.4). Indeed, if F = f ′ for some
differentiable function f : X → R, then (V ) represents a first-order necessary condition of
the minimization of f on Φ, and the augmented subproblems generated by Algorithm 5.2
can be viewed as first-order necessary conditions of the augmented subproblems generated
by Algorithm 4.4. In particular, the KKT systems of these problems are equivalent;
thus, if one decides to apply the augmented Lagrangian scheme solely in terms of the
KKT conditions of the original problem and the augmented subproblems, then the two
algorithms coincide.

Apart from the above remark, we shall not discuss Algorithm 5.2 in too much detail
since the discussion is essentially the same as that of Algorithm 4.4 in Chapter 4. In
particular, the boundedness of wk is crucial to the algorithm, and it is natural to choose
wk as

wk := PB(λk) for all k,

where B is a simple but large bounded subset of H. Another property which deserves to
be highlighted at this point is the following. The definition of the augmented Lagrangian
(in the VI sense) and of λk+1 in Step 3 implies that

Lρk(xk+1, wk) = L(xk+1, λk+1) for all k ∈ N. (5.11)

This property will be crucial in the subsequent discussion since it allows us to analyze the
primal-dual convergence properties of Algorithm 5.2 in terms of asymptotic KKT-type
conditions.

The following result contains some basic properties of the algorithm which hold
regardless of the choice of xk+1 in Step 2. Its proof is identical to that of Lemma 4.5 and
therefore omitted.

Lemma 5.3. We have λk ∈ K◦∞ for all k. Moreover, there is a null sequence {rk} ⊆ R+

such that
(
λk, y −G(xk)

)
≤ rk for all y ∈ K and k ∈ N.

As in the optimization case, the assertions of the above lemma and the formulation of
Algorithm 5.2 can be simplified if K is a closed convex cone (see Example 4.6).

Let us close this section by remarking that the augmented subproblems (5.8) can also
be interpreted as variational inequalities of the second kind. Indeed, let wk ∈ H and
ρk > 0 be given, and consider the variational problem

x ∈ C, 〈F (x), y − x〉+
ρk
2

[
Pρk(y, wk)− Pρk(x,wk)

]
≥ 0 ∀y ∈ C, (5.12)

where Pρ(x,w) := d2
K(G(x) + w/ρ) is the penalization term which forms the basis of

the augmented Lagrangian approach. Observe that (5.12) is well-defined even if G is
nonsmooth. If G is continuously differentiable, then a directional derivative argument
implies that any solution of (5.12) necessarily satisfies the variational inequality of the
first kind given in (5.8). The converse holds provided that Pρ(·, w) is convex, which is
the case if G is K∞-concave in the sense of Section 2.2.3.
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5.2 Convergence Theory

This section provides a systematic convergence analysis of Algorithm 5.2. As we shall
see, it is often possible to adapt the arguments and proof techniques used in constrained
optimization (see Chapter 4) in order to obtain convergence results for VIs. Whenever
the adaptation is straightforward (e.g., it merely amounts to replacing the derivative f ′

from the optimization context by the operator F ), we will either omit or shorten the
corresponding proofs.

On the other hand, there are some scenarios where different arguments are necessary.
This is because variational problems do not admit the use of descent properties or,
more generally, they do not allow us to compare function values in order to get an
indicator of optimality. This is in stark contrast to the optimization case, see, for instance,
Sections 4.2.2 and 4.3.1.

5.2.1 Existence of Penalized Solutions

As a first step in the convergence analysis, we analyze situations in which the augmented
subproblems (5.8) are guaranteed to admit solutions for all k. Since we are not necessarily
dealing with a constrained minimization problem, we cannot invoke the arguments from
Section 4.2.1 to obtain the existence of approximate solutions. Instead, we have to assume
either some form of compactness or coercivity and apply the general existence theorem
for VIs (Theorem 3.40).

Proposition 5.4. Assume that C is weakly compact, F is pseudomonotone, and either

(i) G is K∞-concave on C, or

(ii) G and G′ are completely continuous on C.

Then the augmented Lagrangian subproblems (5.8) admit solutions for all k.

Proof. (i) For k ∈ N, let hk(x) := d2
K(G(x) + wk/ρk). Then hk is convex, continuously

differentiable, and Lρk(x,wk) = F (x) + (ρk/2)h′k(x). Consider the mapping

Ψk(x, y) := 〈F (x), x− y〉+
ρk
2

[
hk(x)− hk(y)

]
.

By Theorem 3.40, there exists a point x̂ ∈ C such that Ψk(x̂, y) ≤ 0 for all y ∈ C. Thus,
the point x̂ is a maximizer of Ψk(x̂, ·), with maximum value equal to zero. By Lemma 3.1,
this implies DyΨk(x̂, x̂)(y − x̂) ≤ 0 for all y ∈ C, and it is easy to check that this is
precisely the desired variational inequality.

(ii) In this case, it follows from Lemma 3.37 that the augmented Lagrangian Lρk(·, wk)
is pseudomonotone for every k. Hence, the claim follows from Corollary 3.41.

In many cases, the weak compactness of C can be substituted by an appropriate form
of coercivity. The basic result in this direction is the following.

Proposition 5.5. Assume that X is reflexive, F is strongly monotone, and G : X → Y
is K∞-concave. Then the augmented subproblems (5.8) admit solutions for all k.
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Proof. Note that the augmented Lagrangian Lρ(·, w) is the sum of F and the derivative
of the convex function x 7→ (ρ/2)d2

K(G(x) + w/ρ). This implies that Lρ(·, w) is strongly
monotone for all ρ > 0 and w ∈ H. The claim is therefore a consequence of Theorem 3.40
and Remark 3.42.

5.2.2 Convergence for Convex Constraints

We now analyze the global convergence characteristics for the augmented Lagrangian
method. In this section, we are mainly concerned with the case of convex constraints. As
discussed in Section 2.2.3, the natural analytic notion of convexity is the K∞-concavity of
the constraint mapping G.

In addition to this property, we will also need a certain assumption on the manner in
which the augmented subproblems (5.8) are solved. Observe that these problems can be
written as −Lρk(x,wk) ∈ NC(x). Thus, a natural assumption is

εk+1 − Lρk(xk+1, wk) ∈ NC(xk+1)

for some null sequence {εk} ⊆ X∗. This is consistent with a similar assumption made in
Section 4.2.3. To obtain the optimality of limit points, we will also need an appropriate
continuity property of the mapping F . The following is a summary of the assumptions
we will use in this section.

Assumption 5.6 (Convex constraints). We assume that

(i) the mapping F is bounded and pseudomonotone,

(ii) G is continuously differentiable on X and K∞-concave on C, and

(iii) xk+1 ∈ C and εk+1 − Lρk(xk+1, wk) ∈ NC(xk+1) for all k, where εk → 0.

Similar to before, our analysis first deals with the attainment of feasibility and then
with optimality. Since we are working in the setting of convex constraints, we can expect
the iterates to be asymptotically feasible. This is indeed the case.

Lemma 5.7. Let Assumption 5.6 hold, and let x̄ be a weak limit point of the sequence
{xk}. Then x̄ is a minimizer of the convex function dK ◦G on C. In particular, if the
feasible set Φ of (V ) is nonempty, then x̄ ∈ Φ.

Proof. Note that the function dK ◦G is convex by Theorem 2.50 and continuous, hence
weakly sequentially lower semicontinuous (by Proposition 2.44). If {ρk} remains bounded,
then the penalty updating scheme (5.10) implies that

dK(G(xk+1)) ≤
∥∥∥∥G(xk+1)− PK

(
G(xk+1) +

wk

ρk

)∥∥∥∥
H

→ 0

and therefore dK(G(x̄)) = 0. We now assume that ρk → ∞ and define the auxiliary
functions hk(x) = d2

K(G(x) + wk/ρk). Note that hk is continuously differentiable by
Lemma 2.43. Let xk+1 ⇀I x̄ for some (infinite) subset I ⊆ N and assume that there is a
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point y ∈ X with dK(G(y)) < dK(G(x̄)). The weak sequential lower semicontinuity of
dK ◦G and the boundedness of {wk} imply that

lim inf
k∈I

hk(x
k+1) = lim inf

k∈I
d2
K

(
G(xk+1) +

wk

ρk

)
≥ d2

K(G(x̄))

and hk(y)→ d2
K(G(y)). Hence, there is a constant c1 > 0 such that hk(xk+1)−hk(y) ≥ c1

for all k ∈ I sufficiently large. Since hk is convex by Theorem 2.50, it follows that〈
h′k(x

k+1), y − xk+1
〉
≤ hk(y)− hk(xk+1) ≤ −c1 (5.13)

for all k ∈ I sufficiently large. Now, let {εk} be the sequence from Assumption 5.6. Using
Lemma 2.43 for the derivative of hk, we obtain〈

εk+1, y − xk+1
〉
≤
〈
Lρk(xk+1, wk), y − xk+1

〉
=
〈
F (xk+1), y − xk+1

〉
+
ρk
2

〈
h′k(x

k+1), y − xk+1
〉
.

Since F is a bounded operator by Assumption 5.6, there is a constant c2 ∈ R such that
〈F (xk+1), y − xk+1〉 ≤ c2 for all k ∈ I. This together with (5.13) implies〈

εk+1, y − xk+1
〉
≤ c2 −

ρkc1

2
→ −∞.

Since {xk+1}k∈I is bounded and εk → 0, this is a contradiction.

The above result guarantees that every weak limit point x̄ automatically minimizes
the constraint violation even if the feasible set Φ is empty. This is not unlike similar
results which we have already discovered for constrained optimization problems, see, for
instance, Lemma 4.11 or Lemma 4.15.

We now turn to the main global convergence result.

Theorem 5.8. Let Assumption 5.6 hold, and let x̄ be a weak limit point of {xk}. If the
feasible set Φ of (V ) is nonempty, then x̄ is feasible and a solution of (V ).

Proof. Let xk+1 ⇀I x̄ for some subset I ⊆ N. The feasibility of x̄ follows from Lemma 5.7.
For the optimality, let y ∈ Φ be any feasible point. Then 〈Lρk(xk+1, wk), y − xk+1〉 ≥
〈εk+1, y − xk+1〉 by Assumption 5.6 and, using (5.11), we get〈

εk+1, y − xk+1
〉
≤
〈
F (xk+1) +G′(xk+1)∗λk+1, y − xk+1

〉
=
〈
F (xk+1), y − xk+1

〉
+
(
λk+1, G′(xk+1)(y − xk+1)

)
≤
〈
F (xk+1), y − xk+1

〉
+
(
λk+1, G(y)−G(xk+1)

)
,

where we used the fact that x 7→ (λk+1, G(x)) is convex by Theorem 2.50 and Lemma 5.3.
Using again Lemma 5.3, we now obtain 〈F (xk+1), y − xk+1〉 ≥ 〈εk+1, y − xk+1〉 + rk+1

with a null sequence {rk} ⊆ R. Since y is arbitrary and F is pseudomonotone, it follows
from Proposition 3.43 that 〈F (x̄), y− x̄〉 ≥ 0 for all y ∈ Φ, and the proof is complete.
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If we assume the strong monotonicity of F , then (V ) admits a unique solution x̄ ∈ Φ,
and the iterates generated by Algorithm 5.2 converge strongly to x̄.

Corollary 5.9. Let Assumption 5.6 hold, let X be reflexive, and F strongly monotone
on C. Then {xk} converges strongly to the unique solution of (V ).

Proof. Existence and uniqueness of the solution follow from standard arguments, see
Section 3.2.1. Let x̄ ∈ C be the solution. For the proof of convergence, observe that

c‖xk+1 − x̄‖2X ≤ 〈F (xk+1)− F (x̄), xk+1 − x̄〉 (5.14)

for all k and some c > 0. We first show that {xk} is bounded. The proof of Theorem 5.8
shows that 〈F (xk+1), y − xk+1〉 ≥ 〈εk+1, y − xk+1〉+ rk+1 for all y ∈ Φ and k ∈ N, where
{εk} ⊆ X∗ and {rk} ⊆ R are the null sequences from Assumption 5.6 and Lemma 5.3,
respectively. Inserting y := x̄ and applying this inequality to (5.14), it follows that

c‖xk+1 − x̄‖2X ≤
〈
εk+1 − F (x̄), xk+1 − x̄

〉
− rk+1. (5.15)

This implies the existence of anM > 0 such that c‖xk+1−x̄‖2X ≤M‖xk+1−x̄‖X−rk+1 for
all k, which yields the boundedness of {xk}. SinceX is reflexive and x̄ is the unique solution
of (V ), it now follows from Theorem 5.8 that xk+1 ⇀ x̄. Thus, 〈F (x̄), xk+1 − x̄〉 → 0,
and (5.15) finally yields ‖xk+1 − x̄‖X → 0.

5.2.3 Primal-Dual Convergence

We now state convergence theorems based on the KKT conditions of (V ). The results
and proofs in this section are basically identical to those from Section 4.2.3, the only
modification being that we now deal with a general mapping F : X → X∗ instead of the
derivative f ′ which occurs in the optimization context. As a consequence, we omit the
proofs of the subsequent results. More details can be found in Section 4.2.3.

Assumption 5.10 (Convergence to KKT points). We assume that

(i) F is bounded and pseudomonotone,

(ii) G is continuously differentiable on X,

(iii) G and G′ are completely continuous on C, and

(iv) xk+1 ∈ C and εk+1 − Lρk(xk+1, wk) ∈ NC(xk+1) for all k, where εk → 0.

The above is essentially an adaptation of Assumption 4.14. Note that (iv) is an inexact
version of the VI subproblem (5.8). Indeed, this problem can be written as

−Lρk(x,wk) ∈ NC(x),

and condition (iv) in Assumption 5.10 states that xk+1 satisfies this condition up to an
error term εk+1 ∈ X∗ which vanishes asymptotically.

We now turn to the convergence analysis of Algorithm 5.2 under Assumption 5.10.
As always, we begin by considering the asymptotic feasibility of the iterates. The proof
of the following result is identical to that of Lemma 4.15.
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Lemma 5.11. Let {xk} be generated by Algorithm 5.2 under Assumption 5.10, and let x̄ be
a weak limit point of {xk}. Then x̄ is a stationary point of the problem minx∈C d

2
K(G(x)).

As in the optimization case, there are multiple special cases where Lemma 5.11
guarantees the actual feasibility of the point x̄. First, if the mapping G is K∞-concave
(see Section 2.2.3), then d2

K ◦G is a convex function. Hence, in this case, it follows that
x̄ is a global minimizer of this function, and if the feasible set is nonempty, then x̄ is a
feasible point. The second special case arises if the extended RCQ is satisfied in x̄. In
that case, the feasibility of x̄ follows from Proposition 3.22.

We now turn to the optimality of limit points. As in the setting of constrained
optimization, the main tool is the asymptotic KKT property of the primal-dual sequence
{(xk, λk)}, which in this case takes on the form (for k ≥ 1)

εk − L′(xk, λk) ∈ NC(xk) and
〈
λk, y −G(xk)

〉
≤ rk ∀y ∈ K (5.16)

with a null sequence {rk} ⊆ R. Note that (5.16) follows from Assumption 5.10 (iv), the
fact that Lρk(xk+1, wk) = L(xk+1, λk+1) for all k, and Lemma 5.3.

Theorem 5.12. Let {(xk, λk)} be generated by Algorithm 5.2 under Assumption 5.10,
let xk+1 ⇀I x̄ for some index set I ⊆ N, and let x̄ satisfy ERCQ with respect to the
constraint system of (V ). Then x̄ is a stationary point (and a solution) of (V ), the
sequence {λk+1}k∈I is bounded in Y ∗, and its weak-∗ limit points belong to Λ(x̄).

We now turn to the special case of nonlinear programming-type VIs. Recall that,
if X is finite-dimensional, then property (i) from Assumption 5.10 is equivalent to the
continuity of F . Moreover, due to the special structure of the constraints, we can use the
CPLD constraint qualification to obtain the optimality of limit points.

Theorem 5.13. Let X := C := Rn, Y := H := Rm, and K := K := Rm− for some
m,n ∈ N. Let {xk} be generated by Algorithm 5.2 under Assumption 5.10, and x̄ a limit
point of {xk}. If x̄ is feasible and CPLD holds in x̄, then x̄ is a stationary point and a
solution of (V ).

As in the optimization case, it is possible to prove a stronger assertion for the dual
sequence under the assumption that x̄ is a solution of (V ) and G′(x̄) is surjective. The
proof of this result is identical to that of Proposition 4.20.

Proposition 5.14. Let {xk} be generated by Algorithm 5.2 and let xk+1 ⇀I x̄ for some
I ⊆ N and x̄ ∈ X. Assume that x̄ is a solution of (V ), that C = X, F is weak-∗

sequentially continuous, G′ is completely continuous, and that G′(x̄) is surjective. Then
{λk+1}k∈I converges weak-∗ to the unique element in Λ(x̄).

5.2.4 Rate of Convergence

We now analyze the convergence of the augmented Lagrangian method from a quantitative
point of view. The theory below is essentially identical to that of Section 4.3.2 for



5.2. Convergence Theory 105

optimization problems, and it crucially depends on the primal-dual error bound from
Section 3.2.4, which in the present case takes on the form

c1Θ(x, λ) ≤ ‖x− x̄‖X + ‖λ− λ̄‖H ≤ c2Θ(x, λ) (5.17)

for all (x, λ) ∈ X×H with x near x̄ and Θ(x, λ) sufficiently small, where Θ is the residual

Θ(x, λ) := ‖x− PC(x− L(x, λ))‖X + ‖G(x)− PK(G(x) + λ)‖H .

Here, L stands for the Lagrangian in the variational inequality sense (see Section 3.2).
This assumption along with some other properties are collected below.

Assumption 5.15 (Rate of convergence). We assume that

(i) X is a real Hilbert space, F is continuous, and G continuously differentiable on X,

(ii) (x̄, λ̄) ∈ X ×H is a KKT point of (V ) which satisfies the error bound (5.17),

(iii) the primal-dual sequence {(xk, λk)} converges strongly to (x̄, λ̄) in X ×H,

(iv) the safeguarded multiplier sequence satisfies wk := λk for k sufficiently large, and

(v) xk+1 ∈ C and εk+1 − Lρk(xk+1, wk) ∈ NC(xk+1) for all k, where εk → 0.

One assumption which might merit some discussion is the convergence (xk, λk)→ (x̄, λ̄)
inX×H. This assumption was also used for optimization problems in Chapter 4. Sufficient
conditions for the convergence xk → x̄ can be found in that chapter (for constrained
optimization), and in Corollary 5.9 for the VI case. In addition, the following result
provides some useful information in this regard and also shows that the primal convergence
xk → x̄ implies the convergence of {λk} to λ̄ in H. The proof of this result is identical to
that of Proposition 4.29.

Proposition 5.16. Let Assumption 5.15 (i), (ii), (v) hold, and let RCQ hold in x̄ with
respect to the space H. Then there exists r > 0 such that, if xk ∈ Br(x̄) for sufficiently
large k, then Θ(xk, λk)→ 0 and (xk, λk)→ (x̄, λ̄) strongly in X ×H.

The basic approach to deduce convergence rates is to first consider the sequence
θk := Θ(xk, λk) which, due to the error bound (5.17), converges to zero with the same
order as the distance of (xk, λk) to (x̄, λ̄). The main convergence result is the following,
which is a simple adaptation of Theorem 4.31.

Theorem 5.17. Let Assumption 5.15 hold and assume that εk+1 = o(θk). Then:

(a) For every q ∈ (0, 1), there exists ρ̄q > 0 such that, if ρk ≥ ρ̄q for sufficiently large k,
then (xk, λk)→ (x̄, λ̄) Q-linearly in X ×H with rate q.

(b) If ρk →∞, then (xk, λk)→ (x̄, λ̄) Q-superlinearly in X ×H.

The assumption εk+1 = o(θk) in the above theorem says that, roughly speaking, the
degree of inexactness should be small enough to not affect the rate of convergence. Note
that we are comparing εk+1 to the optimality measure θk of the previous iterates (xk, λk).
Hence, it is easy to ensure this condition in practice, for instance, by always computing
the next iterate xk+1 with a precision ‖εk+1‖X ≤ zkθk for some fixed null sequence zk.

The following result can be shown in the same manner as Corollary 4.32.
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Corollary 5.18. Let Assumption 5.15 hold and assume that the subproblems occurring in
Algorithm 5.2 are solved exactly, i.e., that εk = 0 for all k. Then {ρk} remains bounded.

The boundedness of {ρk} obviously rules out the Q-superlinear convergence of Theo-
rem 4.31 (b). However, the former is usually considered more significant in practice since
it prevents the subproblems from becoming excessively ill-conditioned.

If inexact solutions are allowed for the augmented Lagrangian subproblems, then it
is possible to guarantee the boundedness of {ρk} by using the same modified penalty
updating scheme as in Remark 4.33, see [133] for more details.

5.3 Generalized Nash Equilibrium Problems

We now turn our attention to an important class of variational inequalities, the so-called
generalized Nash equilibrium problems (GNEPs). Let N ∈ N be a natural number (the
number of players), let each player ν = 1, . . . , N be given a real Banach space Xν , and
let X := X1 × · · · ×XN . We write x = (x1, . . . , xN ) for a generic element in X, and will
often use the notation x = (xν , x−ν) to emphasize the role of player ν’s variable in the
vector x. In this notation, we have

xν ∈ Xν and x−ν ∈ X−ν :=
∏

µ 6=ν
Xµ.

Note that this is merely a matter of notational convenience and clarity. In particular,
it does not entail any kind of reordering of the spaces Xν or the components xν which
constitute x.

Assume now that each player ν is given a continuously differentiable objective function
fν : X → R, and that Φ ⊆ X is a nonempty closed set. The GNEP we consider takes on
the form

minimize
xν∈Xν

fν(xν , x−ν) subject to (xν , x−ν) ∈ Φ. (5.18)

Observe that fν depends on the whole variable x, but player ν attempts to minimize fν
with respect to xν only. The constraint x = (xν , x−ν) ∈ Φ is often called a joint or shared
constraint since it is the same for every player. If Φ is a convex set and the functions fν
are convex with respect to xν for all ν, then we call the GNEP jointly convex.

Note that, if the set Φ has a product representation of the form Φ = Φ1 × · · · × ΦN ,
with Φν ⊆ Xν for all ν, then we can rewrite the GNEP (5.18) as

minimize
xν∈Xν

fν(xν , x−ν) subject to xν ∈ Φν , (5.19)

which is called a (standard) Nash equilibrium problem (NEP).
For the most part of this section, we assume that the feasible set has an analytical

representation of the form
Φ = {x ∈ C : G(x) ∈ K}, (5.20)

where Y is a real Banach space, G : X → Y a continuously differentiable mapping, and
K ⊆ Y a nonempty closed convex set. For the sake of simplicity, the set C is assumed to
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be of the form C :=
∏N
ν=1Cν with nonempty closed convex sets Cν ⊆ Xν . We will use

this representation to derive KKT-type conditions for GNEPs and to apply the augmented
Lagrangian method for their solution.

This section is divided into three parts. We begin by establishing the theoretical
foundations of GNEPs in Banach spaces and the relationship between jointly constrained
GNEPs and variational inequalities. After that, we present the augmented Lagrangian
method in a general Banach space setting and give a brief convergence analysis. Special
emphasis will be placed on a comparison to the corresponding algorithm for variational
inequalities (Algorithm 5.2). Finally, in Section 5.3.3, we specialize some of the results and
assumptions for finite-dimensional problems, thus paving the way for practical applications
in a finite-dimensional framework.

5.3.1 Theoretical Background

We begin with some general discussions and definitions for the GNEP (5.18). The concepts
below do not depend on the specific form (5.20) of the feasible set but hold if Φ is an
arbitrary nonempty subset of X.

For a given player ν and a point x−ν ∈ X−ν , let

Φν(x−ν) := {xν ∈ Xν : (xν , x−ν) ∈ Φ}

be the set of feasible points for player ν (with respect to x−ν). Note that, if the GNEP is
a NEP, then Φν is independent of x−ν for all ν.

Definition 5.19. Let x̄ ∈ Φ be a feasible point. We say that x̄ is a

(a) generalized Nash equilibrium or simply a solution of the GNEP if, for every ν,

fν(x̄ν , x̄−ν) ≤ fν(yν , x̄−ν) for all yν ∈ Φν(x̄−ν). (5.21)

(b) normalized (Nash) equilibrium of the GNEP if

N∑
ν=1

fν(x̄ν , x̄−ν) ≤
N∑
ν=1

fν(yν , x̄−ν) for all y ∈ Φ. (5.22)

Note that every normalized equilibrium is also a generalized Nash equilibrium, which
can be seen by inserting points of the form y := (yν , x̄−ν) into (5.22). The converse
however is not true in general. For NEPs, it is easy to see that both concepts are
equivalent.

The notion of normalized equilibria is closely linked to the Nikaido–Isoda function

Ψ(x, y) :=
N∑
ν=1

[
fν(xν , x−ν)− fν(yν , x−ν)

]
. (5.23)

It is evident that a point x̄ ∈ Φ is a normalized equilibrium if and only if

Ψ(x̄, y) ≤ 0 ∀y ∈ Φ. (5.24)
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This is an equilibrium problem in the sense of Section 2.2.4. Observe that Ψ(x, x) = 0 for
all x ∈ X. Hence, if x̄ satisfies (5.24), then it is a maximizer of Ψ(x̄, ·) on Φ, with optimal
value equal to zero. It therefore follows from standard first-order necessary conditions
(e.g., Lemma 3.1) that DyΨ(x̄, x̄)d ≤ 0 for all d ∈ TΦ(x̄). This condition can be rewritten
as the variational inequality (VI)

x̄ ∈ Φ, 〈F (x̄), d〉 ≥ 0 ∀d ∈ TΦ(x̄), (5.25)

where F (x) := (Dxνfν(x))Nν=1. It follows that we can tackle the GNEP (5.18) by solving
the VI (5.25) instead. Note that, by the preceding arguments, we have that (5.25) is
always a necessary condition for x̄ to be a normalized equilibrium of the GNEP. Moreover,
it is a sufficient condition if the GNEP is jointly convex, i.e., if Φ is a convex set and the
functions fν are convex with respect to xν for all ν.

Let us now discuss the existence of solutions to the GNEP (5.18). Taking into
account the above arguments, it seems natural to construct an existence result by
analyzing the variational inequality (5.25) and applying the basic existence result for
VIs from Section 3.2.1. Assume that the GNEP is jointly convex, so that the VI (5.25)
is sufficient for x̄ to be a normalized equilibrium of the GNEP. We are then faced with
the following problem: the existence result for VIs (Corollary 3.41) requires that F is a
pseudomonotone operator, and it is not immediately clear how this property relates to the
structure of the GNEP and the objective functions fν . Recall that sufficient conditions
for pseudomonotonicity include either complete continuity or ordinary continuity together
with monotonicity. Clearly, the former is a very restrictive property since it would require
the complete continuity of all the derivatives Dxνfν .

On the other hand, the monotonicity of F is also a somewhat restrictive property for
general GNEPs. Note that the convexity of fν with respect to xν does not imply the
monotonicity of F , since the latter property would require some knowledge about the
dependence of Dxνfν on the whole vector x. Indeed, assuming for the moment that the
functions fν are twice continuously differentiable, the derivative F ′ takes on the form

F ′(x) =

 D2
x1x1f1(x) · · · D2

xNx1
f1(x)

...
. . .

...
D2
x1xN

fN (x) · · · D2
xNxN

fN (x)

 , (5.26)

and the monotonicity of F would be equivalent to the positivity of this block operator for
all x. The convexity of fν with respect to xν yields the positivity of the diagonal blocks
D2
xνxνfν(x) for all x, but it does not entail any information on the off-diagonal parts of

F ′(x). Vaguely speaking, one could expect (5.26) to be positive if, in addition to the
positivity of the diagonal blocks, the operator exhibits some form of “diagonal dominance”.
Returning to the GNEP, this could be interpreted as the fact that player ν has more
influence on his own objective than the other players do. This appears reasonable and
can be expected to hold in certain applications, but the above arguments are still very
vague and do not cover the GNEP in its full generality.

It follows that caution must be exercised when applying existence results for variational
inequalities to the GNEP setting. A notable exception is the finite-dimensional case,
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where the (bounded) pseudomonotonicity of F is equivalent to simple continuity, and thus
we can expect this property to hold regardless of whether F is monotone or not. In any
case, we shall now present a more general existence result which covers both the finite-
and infinite-dimensional case. The main idea is to directly apply the Ky–Fan minimax
theorem (Lemma 2.54) to the characterization (5.24) of normalized equilibria, without
appealing to the variational inequality (5.25).

Proposition 5.20. Let Φ ⊆ X be nonempty, convex, weakly compact, and let Ψ be weakly
sequentially lsc with respect to x. Then the GNEP admits a normalized equilibrium.

The assumption that Ψ is weakly sequentially lsc with respect to x arises naturally
from the Ky–Fan theorem. However, unless X is finite-dimensional (in which case it is
implied by ordinary continuity), this is a nontrivial requirement due to the minus sign in
the Nikaido–Isoda function (5.23). Clearly, a sufficient condition is the weak sequential
lower semicontinuity of the functions

x 7→ fν(xν , x−ν)− fν(yν , x−ν)

for all ν and fixed yν , which can be expected to hold in certain applications. In fact,
a rather common situation is fν(x) = f1

ν (x) + f2
ν (xν), where f1

ν is weakly sequentially
continuous (e.g., if it involves operators which are compact or completely continuous), and
f2
ν is weakly sequentially lsc (e.g., it is convex and continuous). This setting encompasses

various potential-type games as well as multiobjective optimal control problems (see
Section 7.3).

We now discuss KKT-type optimality conditions for the GNEP (5.18). To that end,
we assume that the constraint set Φ has an analytical representation of the form (5.20),
i.e., we have

Φ = {x ∈ C : G(x) ∈ K},

where C :=
∏N
ν=1Cν is a set of player-specific constraints, Cν ⊆ Xν and K ⊆ Y are

nonempty closed convex sets, Y is a real Banach space, and G : X → Y a continuously
differentiable mapping. Moreover, we define the Lagrangian of player ν as

Lν : X × Y ∗ → R, Lν(x, λ) := fν(x) + 〈λ,G(x)〉. (5.27)

Given a Nash equilibrium x̄ ∈ Φ, a rather natural way to construct first-order necessary
conditions is to form the KKT system for every player ν and to then concatenate these
systems for all ν. This results in the following overall system which we call the KKT
system of the GNEP.

Definition 5.21 (KKT point). A tuple (x̄, λ̄1, . . . , λ̄N ) ∈ X × (Y ∗)N is a KKT point of
the GNEP if

−DxνLν(x̄, λ̄ν) ∈ NCν (x̄ν) and λ̄ν ∈ NK(G(x̄)) for all ν.

We call x̄ ∈ Φ a stationary point of the GNEP if there exist λ̄1, . . . , λ̄N ∈ Y ∗ such that
(x̄, λ̄1, . . . , λ̄N ) is a KKT point of the GNEP.
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Since the above is just the collection of the KKT systems of all players, it follows
that the relationship between the GNEP and its KKT conditions is essentially the
same as for constrained optimization problems (see Section 3.1.1). In particular, if x̄
is a generalized Nash equilibrium and a suitable constraint qualification holds for each
player’s optimization problem, then there exist multipliers λ̄1, . . . , λ̄N ∈ Y ∗ such that
(x̄, λ̄1, . . . , λ̄N ) is a KKT point of the GNEP. Conversely, if x̄ is a stationary point of the
GNEP, the functions fν are convex with respect to xν for all ν, and the feasible sets
Φν(x̄−ν) ⊆ Xν are convex, then x̄ is a solution of the GNEP.

When dealing with normalized equilibria, it is possible to give a more refined KKT
system which takes advantage of the joint structure of the constraint set. Indeed, if x̄ is a
normalized equilibrium, then it is necessarily a solution of the variational inequality (5.25),
and the KKT conditions of this problem take on the form (compare with Definition 3.45)

−F (x̄)−G′(x̄)∗λ̄ ∈ NC(x̄) and λ̄ ∈ NK(G(x̄)).

By Lemma 2.34, we have NC(x̄) = NC1(x̄1) × · · · × NCN (x̄N ). Thus, we arrive at the
following condition.

Definition 5.22 (Normalized KKT point). A point (x̄, λ̄) ∈ X × Y ∗ is a normalized
KKT point of the GNEP if

−DxνLν(x̄, λ̄) ∈ NCν (x̄ν) and λ̄ ∈ NK(G(x̄)) for all ν. (5.28)

The distinctive feature of normalized KKT points is the fact that the multiplier λ̄ is
the same for every player. It follows that every normalized KKT point of the GNEP is
an (ordinary) KKT point of the GNEP with λ̄ν := λ̄ for all ν.

The connection between normalized KKT points and normalized equilibria follows
from the connection between the latter and the corresponding variational inequality (5.25).
Indeed, if x̄ ∈ Φ is a normalized equilibrium of the GNEP and the constraint G(x) ∈ K
satisfies a suitable constraint qualification in x̄, then x̄ is a normalized stationary point.
The converse holds provided that Φ is a convex set and the functions fν are convex with
respect to xν for all ν.

5.3.2 Problems in Banach Spaces

This subsection is dedicated to the augmented Lagrangian method (ALM) for a jointly
convex GNEP of the form (5.18). On the following pages, we work with a problem whose
feasible set Φ has the form (5.20), i.e.,

Φ = {x ∈ C : G(x) ∈ K},

where C :=
∏N
ν=1Cν is a set of player-specific constraints, Cν ⊆ Xν and K ⊆ Y are

nonempty closed convex sets, Y is a real Banach space, and G : X → Y a continuously
differentiable mapping. The algorithm is constructed similarly to that in Section 5.1.2: we
assume that there is a real Hilbert space H together with a dense embedding i : Y ↪→ H,
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and that K ⊆ H is a closed convex set with i−1(K) = K. Thus, given ρ > 0, we can
define the augmented Lagrangian of player ν as the function (compare with Definition 4.2)

Lνρ : X ×H → R, Lνρ(x, λ) := fν(x) +
ρ

2
d2
K

(
G(x) +

λ

ρ

)
−
‖λ‖2H

2ρ
.

As in the optimization case, we note that the last term can be omitted since it plays no
role in the minimization of Lνρ with respect to xν .

For the definition of our penalty updating scheme, we also define the auxiliary function

V (x, λ, ρ) =

∥∥∥∥G(x)− PK
(
G(x) +

λ

ρ

)∥∥∥∥
H

. (5.29)

This enables us to formulate our algorithm as follows.

Algorithm 5.23 (ALM for jointly convex GNEPs). Let (x0, λ0) ∈ X ×H, ρ0 > 0, let
B ⊆ H be a nonempty bounded set, γ > 1, τ ∈ (0, 1), and set k := 0.

Step 1. If (xk, λk) satisfies a suitable termination criterion: STOP.

Step 2. Choose wk ∈ B and compute an approximate solution xk+1 of the NEP consisting
of the minimization problems

minimize
xν∈Cν

Lνρk(xν , x−ν , wk). (5.30)

Step 3. Update the vector of multipliers to

λk+1 := ρk

[
G(xk+1) +

wk

ρk
− PK

(
G(xk+1) +

wk

ρk

)]
. (5.31)

Step 4. Let Vk+1 := V (xk+1, wk, ρk) and set

ρk+1 :=

{
ρk, if k = 0 or Vk+1 ≤ τVk,
γρk, otherwise.

(5.32)

Step 5. Set k ← k + 1 and go to Step 1.

Let us stress that, for all intents and purposes, Algorithm 5.23 can be seen as a special
case of Algorithm 5.2. The only difference is that the augmented subproblems now take on
the form of Nash equilibrium problems. These can be rewritten as variational inequalities,
in which case they take on the form (5.8), but the Nash equilibrium framework may
facilitate the use of subproblem solution methods which take into account the specific
Nash structure.

The convergence of Algorithm 5.23 can be shown in different ways, in particular
by simply appealing to the results in Section 5.2. Here, we present a slightly different
analysis which takes into account the Nikaido–Isoda function (5.23) and can therefore be
considered GNEP-specific. The following are the assumptions which we use. For the sake
of brevity, we write

Lνk(x) := Lνρk(x,wk). (5.33)
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Assumption 5.24 (Global convergence for GNEPs). We assume that

(i) for every x ∈ X, the functions fν(·, x−ν) are convex and differentiable,

(ii) the operator G is K∞-concave and differentiable,

(iii) the Nikaido–Isoda function Ψ is weakly sequentially lsc with respect to x, and

(iv) there is a null sequence {εk} ⊆ X∗ = X∗1 × · · · ×X∗N such that, for all ν and k,

xν,k+1 ∈ Cν and εν,k+1 −DxνLνk(xk+1) ∈ NCν (xν,k+1).

In many ways, the above assumptions are similar to those used in Section 5.2.2.
The main difference is that we use the weak sequential lower semicontinuity of the
Nikaido–Isoda function instead of the pseudomonotonicity of the mapping F from (5.25).

Before diving into the convergence analysis, let us present a simple result which
guarantees the existence of penalized solutions if the set C is weakly compact.

Lemma 5.25. Let Assumption 5.24 (i)-(iii) be satisfied and let C be weakly compact.
Then the augmented NEPs (5.30) admit solutions for all k.

Proof. Let k ∈ N and hk(x) := d2
K(G(x) + wk/ρk). Observe that hk is convex and

continuous, hence weakly sequentially lsc by Proposition 2.44. Now, let

Ψk(x, y) := Ψ(x, y) +
ρk
2

[
hk(x)− hk(y)

]
.

Then Ψk is weakly sequentially lsc with respect to x. Hence, by the Ky–Fan theorem
(Lemma 2.54), there exists x̂ ∈ C such that Ψk(x̂, y) ≤ 0 for all y ∈ C. We claim that x̂
solves the augmented NEP (5.30). To this end, let µ be an arbitrary player index and let
yµ ∈ Cµ. With y := (yµ, x̂−µ) ∈ C we obtain

0 ≥ Ψk(x̂, y) =
N∑
ν=1

[
fν(x̂ν , x̂−ν)− fν(yν , x̂−ν)

]
+
ρk
2

[
hk(x̂)− hk(y)

]
= fµ(x̂µ, x̂−µ)− fµ(yµ, x̂−µ) +

ρk
2

[
hk(x̂)− hk(y)

]
= Lµk(x̂)− Lµk(y).

This shows that x̂ is a Nash equilibrium of (5.30).

We note in passing that the existence of penalized solutions can also be shown by
rewriting the augmented subproblems as variational inequalities. Indeed, these problems
then take on the form

x ∈ C, 〈LVρk(x,wk), y − x〉 ≥ 0 ∀y ∈ C,

where LVρ is the augmented Lagrangian in the variational inequality sense, see (5.6). More
details on these subproblems can be found in Section 5.2.1.

We now turn to the convergence analysis of Algorithm 5.23 and begin by discussing
the attainment of feasibility.
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Lemma 5.26. Let Assumption 5.24 hold, and let x̄ be a weak limit point of the sequence
{xk}. Then x̄ is a minimizer of the convex function dK ◦G on C. In particular, if the
feasible set Φ of the GNEP is nonempty, then x̄ ∈ Φ.

Proof. Note that dK ◦ G is convex by Theorem 2.50 and continuous, hence weakly
sequentially lsc. Let us first consider the case where {ρk} remains bounded. Then the
penalty updating scheme (5.32) together with τ ∈ (0, 1) yields

dK(G(xk+1)) ≤
∥∥∥∥G(xk+1)− PK

(
G(xk+1) +

wk

ρk

)∥∥∥∥
H

→ 0.

Hence, dK(G(x̄)) = 0, and the claim follows. We now assume that ρk →∞, and define
again the functions hk(x) := d2

K(G(x) + wk/ρk). As in the previous proof, the functions
hk are convex and continuous, thus weakly sequentially lsc. Now, let xk+1 ⇀I x̄ for some
index set I, and assume that there exists y ∈ C with dK(G(y)) < dK(G(x̄)). Then

lim inf
k∈I

[
hk(x

k+1)− hk(y)
]
= lim inf

k∈I

[
d2
K(G(xk+1))− d2

K(G(y))
]
> 0.

Hence, there is a constant c1 > 0 such that hk(xk+1)−hk(y) ≥ c1 for all k ∈ I sufficiently
large. Since hk is continuously differentiable by Lemma 2.43, it follows that

h′k(x
k+1)(y − xk+1) ≤ hk(y)− hk(xk+1) ≤ −c1 (5.34)

for all k ∈ I sufficiently large. Now, let {εk} be as in Assumption 5.24. Then

〈
εk+1, y − xk+1

〉
≤

N∑
ν=1

〈
DxνLνk(xk+1), yν − xν,k+1

〉
=

N∑
ν=1

[
Dxνfν(xk+1)(yν − xν,k+1)

]
+
ρk
2
h′k(x

k+1)(y − xk+1)

≤
N∑
ν=1

[
fν(yν , x−ν,k+1)− fν(xk+1)

]
+
ρk
2
h′k(x

k+1)(y − xk+1)

=
ρk
2
h′k(x

k+1)(y − xk+1)−Ψ(xk+1, y),

where Ψ is the Nikaido–Isoda function from (5.23). By Assumption 5.24, Ψ is weakly
sequentially lsc with respect to the first argument; hence, there is a constant c2 ∈ R such
that Ψ(xk+1, y) ≥ c2 for all k ∈ I. This together with (5.34) implies〈

εk+1, y − xk+1
〉
≤ −ρkc1

2
− c2 → −∞

and therefore contradicts εk → 0.

Having established the feasibility of weak limit points, we now turn to the optimality
part. Since we augmented the constraint G(x) ∈ K in a joint manner, we can expect
convergence to normalized Nash equilibria, and this is precisely the assertion of the
following theorem.
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Theorem 5.27. Let Assumption 5.24 hold, and let the feasible set of (5.18) be nonempty.
Then every weak limit point of {xk} is a normalized equilibrium of the GNEP.

Proof. Let xk+1 ⇀I x̄ for some I ⊆ N. Note that x̄ is feasible by Lemma 5.26. Let y ∈ Φ
be an arbitrary point. An easy calculation shows that DxνLνk(xk+1) = DxνLν(xk+1, λk+1)
for all k. Since yν ∈ Cν for all ν, Assumption 5.24 implies that〈
εν,k+1, yν − xν,k+1

〉
≤ DxνLνk(xk+1)(yν − xν,k+1)

≤ fν(yν , x−ν,k+1)− fν(xk+1) +
〈
λk+1, DxνG(xk+1)(yν − xν,k+1)

〉
,

where we used the convexity of fν with respect to xν in the last estimate. Summing
this inequality over all ν and using the convexity of x 7→ 〈λk+1, G(x)〉 (by Theorem 2.50)
yields 〈

εk+1, y − xk+1
〉
≤ −Ψ(xk+1, y) +

〈
λk+1, G′(xk+1)(y − xk+1)

〉
≤ −Ψ(xk+1, y) +

〈
λk+1, G(y)−G(xk+1)

〉
.

Taking the limit k →I ∞ on both sides, using Lemma 5.3, εk → 0, and the weak sequential
lower semicontinuity of Ψ with respect to x, we obtain Ψ(x̄, y) ≤ 0. Since y ∈ Φ was
arbitrary, it follows that x̄ is a normalized equilibrium.

5.3.3 The Finite-Dimensional Case

We now present a variant of the augmented Lagrangian method for the solution of jointly
convex GNEPs in finite dimensions. Some parts of the algorithm and its convergence
analysis are essentially special cases of the general algorithmic framework from the
preceding section (or from Section 5.1.2). However, the finite-dimensional case allows
for a more concrete discussion of certain algorithmic aspects, such as the solution of the
augmented subproblems, and allows us to simplify many assumptions such as constraint
qualifications. The study of the finite-dimensional algorithm is also motivated by the fact
that many applications are naturally given in this setting. For more details, we refer the
reader to the references [65, 66], and to the examples in Section 7.5. Thus, it makes sense
to formulate the corresponding algorithm explicitly instead of treating it as a special
instance of the abstract high-level methods from the previous sections.

The general framework we consider throughout this section is a jointly constrained
GNEP with N ∈ N players, where player ν attempts to solve the problem

minimize
xν∈Rnν

fν(x) subject to g(x) ≤ 0, h(x) ≤ 0, (5.35)

with smooth functions fν : Rn → R, g : Rn → Rm, and h : Rn → Rp. For the sake of
simplicity, we assume that the functions fν are convex with respect to xν , and that g and
h are convex with respect to x. Hence, the GNEP is again jointly convex. Much of the
theory below can be carried out in a similar fashion for nonconvex problems.

The purpose of the two constraint functions g and h in (5.35) is to account for the
possibility of partial penalization: the constraints defined by g will be penalized, whereas h
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is an (optional) constraint which will remain in the penalized subproblems. This approach
allows for a certain degree of flexibility: for p = 0, we obtain the case of full penalization,
where the subproblems become unconstrained. On the other hand, one might use h to
model only the player-specific (non-coupling) constraints of the problems, so that the
penalized subproblems become standard NEPs.

Our aim will be to compute a normalized KKT point of (5.35), that is, a triple
(x̄, λ̄, µ̄) ∈ Rn+m+p such that

DxνLν(x̄, λ̄, µ̄) = 0, 0 ≤ λ̄ ⊥ g(x̄) ≤ 0, 0 ≤ µ̄ ⊥ h(x̄) ≤ 0, (5.36)

for all ν, where Lν(x, λ, µ) := fν(x) +λ>g(x) +µ>h(x) is the Lagrange function of player
ν. Note that we can rewrite the last two conditions in (5.36) as min{−g(x̄), λ̄} = 0 and
min{−h(x̄), µ̄} = 0, where min is understood componentwise.

We have already observed in the preceding section that a (smooth) jointly convex
GNEP can be rewritten as a variational inequality. To this end, let

F (x) := (∇xνfν(x))Nν=1, Φ := {x ∈ Rn : g(x) ≤ 0, h(x) ≤ 0}.

Note that Φ is just the feasible set of the GNEP, and that Φ is convex. As in the previous
section, it follows that a point x̄ is a normalized equilibrium of (5.35) if and only if it
satisfies the variational inequality

x̄ ∈ Φ, F (x̄)>(y − x̄) ≥ 0 ∀y ∈ Φ. (5.37)

The KKT conditions of this VI are given by

LV (x̄, λ̄, µ̄) = 0, min{−g(x̄), λ̄} = 0, min{−h(x̄), µ̄} = 0, (5.38)

where LV (x, λ, µ) := F (x)+∇g(x)λ+∇h(x)µ is the Lagrangian of (5.37) in the variational
inequality sense. Note that (5.38) is just a condensed version of (5.36).

We now apply an augmented Lagrangian scheme to the GNEP. Note that we could
equivalently construct the algorithm for a general VI of the form (5.37) which need not
originate from a jointly constrained GNEP. The two constructions are equivalent, but for
the sake of later applications we focus on the GNEP setting. It should also be remarked
that, for the GNEP case, the augmented Lagrangian method can be interpreted a little
more naturally since we can consider it as a penalization scheme applied to each player’s
objective function.

Let λ ∈ Rm, ρ > 0, and consider the (partially) augmented Lagrangian of player ν,
that is,

Lνρ(x, λ) := fν(x) +
ρ

2

∥∥∥∥(g(x) +
λ

ρ

)
+

∥∥∥∥2

− ‖λ‖
2

2ρ
. (5.39)

The following is the basic algorithm which we consider throughout this section.

Algorithm 5.28 (ALM for jointly convex GNEPs in Rn). Let (x0, λ0, µ0) ∈ Rn+m+p,
ρ0 > 0, wmax ≥ 0, γ > 1, τ ∈ (0, 1), and set k := 0.
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Step 1. If (xk, λk, µk) satisfies a suitable termination criterion: STOP.

Step 2. Choose wk ∈ [0, wmax]m and compute an approximate KKT point (xk+1, µk+1)
of the NEP consisting of the minimization problems

minimize
xν∈Rnν

Lνρk(x,wk) subject to h(x) ≤ 0. (5.40)

Step 3. Update the vector of multipliers to λk+1 := max{0, wk + ρkg(xk+1)}.
Step 4. If ∥∥min{−g(xk+1), λk+1}

∥∥ ≤ τ∥∥min{−g(xk), λk}
∥∥, (5.41)

then set ρk+1 := ρk. Otherwise, set ρk+1 := γρk.

Step 5. Set k ← k + 1 and go to Step 1.

The above algorithm is fundamentally similar to Algorithm 5.23, with three minor
differences. First, the boundedness of wk is now specified more explicitly through a thresh-
old parameter wmax, and secondly, the nonpenalized constraints are given analytically
through the function h. Finally, Algorithm 5.28 uses a slightly different updating rule
for the penalty parameter, where the quantity

∥∥min{−g(xk), λk}
∥∥ is used as an indicator

of feasibility and complementarity at the current iterates. This differs slightly from the
update suggested by the slack variable approach (see Section 4.1.2), but the two updating
schemes can be used in a similar manner when proving convergence to KKT points. As a
side effect, the updating rule (5.41) has the advantage that it is naturally defined even
for k = 0, which is not the case for the previously used one.

The definition of λk+1 in Step 3 implies that, for all k, we have

∇xνLνk(xk+1) = ∇xνfν(xk+1) +∇xνg(xk+1)λk+1 (5.42)

where, similarly to before, we use the notation Lνk(x) := Lνρk(x,wk). The above equality
can be seen as the main motivation for the definition of λk+1.

Assumption 5.29 (Convergence to KKT points). We assume that

(i) the functions fν are differentiable and convex with respect to xν , and the partial
derivatives ∇xνfν are continuous with respect to the whole vector x,

(ii) the mappings g and h are convex (i.e., they have convex component functions) and
continuously differentiable, and

(iii) at Step 2 of Algorithm 5.28, we choose (xk+1, µk+1) such that, for all ν,

∇xνLνk(xk+1) +∇xνh(xk+1)µk+1 → 0 and min{−h(xk+1), µk+1} → 0.

In the present situation, the above assumptions are natural and do not need much
motivation. One detail which may warrant some discussion is the solution criterion
of the augmented subproblems. Note that, in our framework (5.35), the nonpenalized
constraints are given through the analytical representation h(x) ≤ 0 instead of the abstract
set C ⊆ X which we used in the previous section. This makes it more natural to state
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the (approximate) optimality conditions of the augmented problems in terms of Lagrange
multipliers instead of using the normal cone to the set C. This is precisely what we did
in Assumption 5.29.

Let us now begin the convergence analysis. As usual, we start by addressing the
feasibility of limit points. The main result in this direction is the following.

Lemma 5.30. Let {xk} be generated by Algorithm 5.28 under Assumption 5.29, let x̄ be
a limit point of {xk}, and assume that the function h satisfies CPLD in x̄. Then x̄ is a
global solution of

minimize
x∈Rn

‖g+(x)‖2 subject to h(x) ≤ 0. (5.43)

In particular, if there are feasible points, then x̄ is feasible.

Proof. Let xk+1 →I x̄ for some I ⊆ N. If the sequence {ρk} remains bounded, then (5.41)
implies min{−g(xk+1), λk+1} → 0, which yields g(x̄) ≤ 0. Hence, x̄ is feasible and there
is nothing to prove. Assume now that ρk →∞. By Assumption 5.29, we have

∇xνfν(xk+1) +∇xνg(xk+1)(wk + ρkg(xk+1))+ +∇xνh(xk+1)µk+1 → 0

for all ν. Dividing this equation by ρk and omitting some vanishing terms, we obtain

∇xνg(xk+1)g+(xk+1) +∇xνh(xk+1)µ̂k+1 →I 0 (5.44)

for all ν, where µ̂k+1 := µk+1/ρk. We now claim that min{−h(xk+1), µ̂k+1} →I 0
as k → ∞. To see this, note that min{−h(xk+1), µk+1} → 0 by Assumption 5.29;
hence, lim infk→∞ µ

k+1
j ≥ 0 for all j, which implies lim infk→∞ µ̂

k+1
j ≥ 0. Moreover,

h(xk+1) →I h(x̄) ≤ 0 and, if hj(x̄) < 0 for some j = 1, . . . , p, then µk+1
j → 0 and thus

also µ̂k+1
j → 0. This shows that min{−h(xk+1), µ̂k+1} →I 0.

Collecting the equations (5.44) for all ν and using the fact that ∇g(x)g+(x) =
∇1

2‖g+(x)‖2, we therefore have

∇1

2
‖g+(xk+1)‖2 +∇h(xk+1)µ̂k+1 →I 0 and min{−h(xk+1), µ̂k+1} →I 0

as k → ∞. It then follows from CPLD (see Theorem 3.54) that the limit point x̄ is a
stationary point of the optimization problem (5.43). Since this is a convex problem, x̄ is
a global minimizer, and the proof is complete.

The above result shows that the augmented Lagrangian method has no trouble
achieving feasibility for jointly convex GNEPs in finite dimensions. This is not surprising
due to the convex structure of the constraints.

We now prove the optimality of limit points. This result is again based on the CPLD
constraint qualification, this time applied to the pair (g, h) : Rn → Rm+p.

Theorem 5.31. Let {xk} be generated by Algorithm 5.28 under Assumption 5.29, and let
x̄ be a limit point of {xk}. If the feasible set is nonempty and the function (g, h) satisfies
CPLD in x̄, then x̄ is feasible and a normalized equilibrium of the GNEP.
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Proof. Under the given assumptions, the function h itself also satisfies CPLD. Hence, the
feasibility of x̄ follows from Lemma 5.30. To obtain the optimality, let xk →I x̄ for some
I ⊆ N, and observe that g(xk)→I g(x̄) ≤ 0. We first claim that min{−g(xk), λk} → 0 as
k →I ∞. This is clear if {ρk} is bounded, see (5.41). If ρk →∞ and gi(x̄) < 0 for some
i, then λki = max{0, wk−1

i + ρk−1gi(x
k)} = 0 for sufficiently large k ∈ I. Hence, in either

case, we have min{−g(xk), λk} →I 0. Now, define the mappings

F (x) := (∇xνfν(x))Nν=1 and LV (x, λ, µ) := F (x) +∇g(x)λ+∇h(x)µ.

Taking into account (5.42) and Assumption 5.29, an elementary calculation shows that

LV (xk, λk, µk)→ 0, min{−g(xk), λk} → 0, and min{−h(xk), µk} → 0,

as k →I ∞. The result now follows from Theorem 3.54.

The above constitutes our main global convergence result for GNEPs of the form
(5.35). Note that, due to the structure of the algorithm, we always obtain a normalized
equilibrium.

Let us close this section with a remark. It is worth observing that the study of jointly
constrained GNEPs does not require any analytical tools which exceed the theory of
optimization problems or variational inequalities. The reason for this is that normalized
equilibria correspond to VIs, which implies that we can use many of the same arguments
and constraint qualifications from optimization theory. This is in stark contrast to the
case of a “fully” generalized Nash equilibrium problem, i.e., a GNEP where the constraints
are different for each player but still depend on the whole vector x. Indeed, we will see in
Section 6.3.3 that the GNEP in its full generality requires the study of GNEP-tailored
constraint qualifications, and these add an extra layer of complexity to the problem and
the discussion of practical algorithms.



Chapter 6

Quasi-Variational Inequalities

This chapter is dedicated to the study of variational inequalities (VIs) with implicit
constraints, usually called quasi-variational inequalities (QVIs). More specifically, let X
be a real Banach space, Φ : X ⇒ X a set-valued mapping, and F : X → X∗ a nonlinear
operator. The problem we consider consists of finding x ∈ X such that

(Q) x ∈ Φ(x), 〈F (x), d〉 ≥ 0 ∀d ∈ TΦ(x)(x). (6.1)

The above problem is obviously inspired by the variational inequality framework from
Chapter 5. Indeed, if the set-valued mapping Φ is constant, i.e., Φ(x) is independent of
x, then (Q) reduces to the variational inequality (5.1). Let us furthermore observe that,
if Φ is convex-valued, i.e., if Φ(x) is a convex set for all x, then (Q) can equivalently be
stated as

x ∈ Φ(x), 〈F (x), y − x〉 ≥ 0 ∀y ∈ Φ(x), (6.2)

which is a generalization of the variational inequality (5.2).
We say that a point x ∈ X is feasible for the QVI if x ∈ Φ(x). Note that, in the QVI

context, we do not use the symbol Φ to denote the set of feasible points. Instead, Φ is
the parametric set from the definition of (Q).

The notion of QVIs was introduced by Bensoussan and Lions [17] in the context
of impulse control problems. The QVI has since emerged as a universal tool for the
modeling of various equilibrium-type scenarios in the natural sciences. Its applications
include game theory [95], solid and continuum mechanics [19, 98, 148, 174], economics
[111,126], probability theory [141], transportation [29,52,201], biology [94], and stationary
problems in superconductivity, thermoplasticity, or electrostatics [3, 104, 105, 153, 193].
For further information, we refer the reader to the corresponding papers, the monographs
[12,18,148,167], and the references therein. An important feature of QVIs is that they can
be used to model generalized Nash equilibrium problems (GNEPs) in their full generality
(whereas ordinary VIs correspond to jointly constrained problems, see Section 5.3). This
opens up a broad spectrum of further applications in economics and game theory, see
[14,53,65,77,95,111] and the references therein.

In comparison to ordinary variational inequalities, the treatment of QVIs turns out to
be substantially more difficult. This is because many pathological situations can occur: for
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instance, the set Φ(x) can be empty or nonconvex for certain x. Moreover, it is clear that
some kind of continuous dependence of Φ on x will be necessary for a tractable analysis
of the problem. The most prominent notion in this regard is that of Mosco-convergence
(see [166,167] and Section 6.1.1), and this property will play a fundamental role for the
theory in this chapter.

The literature on algorithms for the solution of QVIs is quite diverse, and many
methods are designed for specific problem classes. For GNEPs, penalty methods are
some of the most successful techniques [66, 69, 86], along with interior point [60] and
Newton-type methods [64, 123]. Another popular class of QVIs is the moving set case,
which arises if Φ(x) = c(x) + Φ0 for some fixed set Φ0 ⊆ X and a single-valued mapping
c : X → X. For these problems, there is a large amount of literature revolving around
fixed point approaches [42,171,173,198]. Another algorithmic technique for QVIs is based
on gap functions [85,96,97]. Finally, in [127,176], an augmented Lagrangian algorithm
was proposed for the solution of QVIs in finite dimensions. This method can be seen as a
special case of the algorithm we will present below.

In the present thesis, we will mainly be concerned with QVIs where the feasible set
mapping Φ has an analytical representation of the form

Φ(x) = {y ∈ C : G(x, y) ∈ K}, (6.3)

where X,Y are real Banach spaces, C ⊆ X and K ⊆ Y are nonempty closed convex
sets, and G : X2 → Y is a possibly nonlinear mapping. Note that C is independent of x.
Hence, the parametric part of the constraints is completely modeled by the mapping G.
This framework allows for a very high degree of flexibility and encompasses many of the
aforementioned application cases. More details will be given in Chapter 7.

This chapter is based on the theory in [129,132] and the upcoming preprint [134]. The
material is structured as follows. In Section 6.1, we begin by analyzing in some detail
the theoretical background of QVIs. Section 6.1.1 in particular deals with the important
notion of Mosco-convergence, and also contains a prototypical existence result for general
quasi-variational inequalities. In Section 6.1.2, we analyze constraint qualifications and
Karush–Kuhn–Tucker (KKT) conditions for QVIs. Finally, in Section 6.1.3, we specialize
some of these concepts for QVIs with nonlinear programming constraints.

Starting with Section 6.2, we turn our attention to the augmented Lagrangian method
for a general QVI of the form (Q). In Section 6.2.1, we discuss and state the corresponding
algorithm, and in Section 6.2.2 we give some sufficient conditions for the existence of
penalized solutions. Section 6.2.3 then deals with convergence results for QVIs where the
feasible set mapping is convex-valued, and in Section 6.2.4 we analyze the convergence
for general QVIs using a primal-dual approach.

In Section 6.3, we show how some of the results surrounding the augmented Lagrangian
method can be specialized for QVIs in finite dimensions. In Sections 6.3.1 and 6.3.3, we
give some improved convergence results for QVIs and GNEPs, respectively. Finally, in
Section 6.3.2, we demonstrate how the augmented Lagrangian technique can be used to
construct an exact penalty method for finite-dimensional QVIs. The resulting algorithm
can be seen as a generalization of the methods from [51,55,56,78].
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6.1 Theory of Quasi-Variational Inequalities

This section contains a discussion of various theoretical properties of QVIs. At this
point, it is also appropriate to state one of the most important special cases of QVIs, the
generalized Nash equilibrium problems (GNEPs).

Example 6.1 (Generalized Nash equilibrium problems). Let N ∈ N be a natural number
and Xν , ν = 1, . . . , N , a collection of Banach spaces. We define X :=

∏N
ν=1Xν and write

x = (xν , x−ν) for a generic element in X, where xν ∈ Xν and x−ν ∈ X−ν :=
∏
µ6=ν Xµ.

Consider the GNEP where player ν attempts to solve

minimize
xν∈Xν

fν(x) subject to xν ∈ Φν(x−ν). (6.4)

Here, fν : X → R is a continuously differentiable function and Φν : X−ν ⇒ Xν a
set-valued mapping. A point x̄ is said to be a solution of the GNEP if, for all ν, x̄ν is a
solution of (6.4) for fixed x̄−ν . Combining Lemmas 2.34 and 3.1, it is easy to see that
any solution x̄ of the GNEP is necessarily a solution of the QVI (Q) corresponding to the
mappings

F (x) :=
(
Dxνfν(x)

)N
ν=1

and Φ(x) :=
N∏
ν=1

Φν(x−ν).

The converse holds whenever the first-order conditions given in Lemma 3.1 are sufficient
for optimality in the players’ optimization problems. This is the case, for instance, if fν
is convex with respect to xν and Φν(x−ν) is convex for all x−ν ∈ X−ν .

6.1.1 Mosco-Convergence and Existence Results

This section is dedicated to one of the most fundamental properties of QVIs, the Mosco-
convergence of sets, and the resulting continuity property of the feasible set mapping
Φ. In what follows, we will define and analyze these properties and their consequences.
In particular, the Mosco-continuity of Φ can be used to state an existence theorem for
solutions of QVIs which generalizes some related results from [2,79,95,165,176].

Definition 6.2 (Mosco-convergence). Let S and Sk, k ∈ N, be subsets of X. We say
that {Sk} Mosco-converges to S, and write Sk M−→S, if

(i) for every y ∈ S, there is a sequence yk ∈ Sk such that yk → y, and

(ii) whenever yk ∈ Sk for all k and y is a weak limit point of {yk}, then y ∈ S.

The concept of Mosco-convergence plays a key role in multiple aspects of the analysis
of QVIs such as existence [153,167], approximation [155], or the convergence of algorithms
[104]. It is typically used as part of a continuity property of the mapping Φ.

Definition 6.3 (Weak Mosco-continuity). Let Φ : X ⇒ X be a set-valued mapping and
x ∈ X. We say that Φ is weakly Mosco-continuous in x if xk ⇀ x implies Φ(xk) M−→Φ(x).
If this holds for every x ∈ X, we simply say that Φ is weakly Mosco-continuous.
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The two conditions defining weak Mosco-continuity are often referred to as complete
(or strong) inner and weak outer semicontinuity. Observe moreover that, if Φ is weakly
Mosco-continuous, then Φ(x) is weakly closed for all x ∈ X.

In many practical application examples, the weak Mosco-continuity can be verified
by using the specific structure of the underlying feasible set mapping. Moreover, we will
later give a generic sufficient condition for the weak Mosco-continuity in terms of certain
constraint qualifications, see Section 6.1.2.

One of the most important consequences of the Mosco-continuity of Φ is that, under a
suitable assumption on the mapping F , every weak limit point of a sequence of approximate
solutions of the QVI is an exact solution. This result is a generalization of Proposition 3.43
for the variational inequality case.

Proposition 6.4. Let F be a bounded pseudomonotone operator and let Φ be weakly
Mosco-continuous. Assume that {xk} ⊆ X converges weakly to x̄, that x̄ ∈ Φ(x̄), and that
there are null sequences {δk}, {εk} ⊆ R (possibly negative) such that〈

F (xk), y − xk
〉
≥ δk + εk‖y − xk‖X ∀y ∈ Φ(xk) (6.5)

for all k. Then x̄ is a solution of the QVI.

Proof. By Mosco-continuity, there is a sequence x̄k ∈ Φ(xk) such that x̄k → x̄. Inserting
x̄k into (6.5) yields lim infk→∞〈F (xk), x̄k − xk〉 ≥ 0 and, since {F (xk)} is bounded,
lim infk→∞〈F (xk), x̄− xk〉 ≥ 0. The pseudomonotonicity of F therefore implies that

〈F (x̄), y − x̄〉 ≥ lim sup
k→∞

〈
F (xk), y − xk

〉
for all y ∈ X. (6.6)

To show that x̄ solves the QVI, let y ∈ Φ(x̄). Using the Mosco-continuity of Φ, we obtain a
sequence yk ∈ Φ(xk) such that yk → y. By (6.5), we have lim infk→∞〈F (xk), yk−xk〉 ≥ 0,
hence lim infk→∞〈F (xk), y − xk〉 ≥ 0, and (6.6) implies that 〈F (x̄), y − x̄〉 ≥ 0.

Note that Proposition 6.4 implies, in particular, that the solution set of (Q) is weakly
sequentially closed (under the given assumptions).

The existence of solutions to QVIs is a rather delicate topic. One of the reasons for
this is the rather involved nature of the problem, especially the mapping Φ. Indeed, even
the task of finding a feasible point, i.e., a point satisfying x ∈ Φ(x), is a nonlinear fixed
point problem which needs to be solvable in order to even have a chance of solving the
QVI. As a result, QVIs are seldom tackled in their full generality, but often in the context
of specific problem settings or under rather strong structural assumptions, see [2, 153].
The few “generic” existence results which do exist often work with a substantial amount
of technical assumptions, see [12, 79, 142, 167, 204], or pertain to the finite-dimensional
case only [176].

In what follows, we shall develop a prototypical existence theorem which is relatively
simple and which can be seen as a natural extension of the basic results for VIs (see
Section 3.2.1), and of the finite-dimensional existence result from [176].

A rather intuitive approach to the existence of solutions is given by Proposition 6.4.
This result suggests that we can tackle the QVI by solving a sequence of approximating
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problems and then using a limiting argument to obtain a solution of (Q). For the precise
implementation of this idea, we need two auxiliary results. The first is a consequence of
the Brezis–Nirenberg–Stampacchia theorem (Theorem 2.56) and guarantees the existence
of solutions for the approximating problems. This result will also be useful later on.

Lemma 6.5. Let A ⊆ X be a nonempty, convex, weakly compact set, F : X → X∗ a
bounded pseudomonotone operator, and ϕ : A2 → R a mapping such that

(i) ϕ(x, x) = 0 for all x ∈ A,
(ii) ϕ is concave with respect to y, and

(iii) ϕ is weakly sequentially lsc with respect to x.

Then there exists x̂ ∈ A such that 〈F (x̂), x̂− y〉+ ϕ(x̂, y) ≤ 0 for all y ∈ A.

Proof. The proof is similar to that of Theorem 3.40. We claim that the mapping
Ψ : A2 → R, Ψ(x, y) := 〈F (x), x − y〉+ ϕ(x, y), satisfies the assumption of the Brezis–
Nirenberg–Stampacchia theorem (Theorem 2.56). Clearly, Ψ(x, x) ≤ 0 for every x ∈ A,
and Ψ is (quasi-)concave with respect to the second argument. Moreover, by the properties
of pseudomonotone operators (Lemma 3.39), Ψ is lower semicontinuous with respect to
the first argument on A ∩ L for any finite-dimensional subspace L of X. Finally, let
x, y ∈ A, let {xk} ⊆ A be a sequence converging weakly to x, and assume that

Ψ(xk, (1− t)x+ ty) ≤ 0 ∀t ∈ [0, 1], ∀k ∈ N. (6.7)

We need to show that Ψ(x, y) ≤ 0. By (6.7), we have in particular that Ψ(xk, x) ≤ 0 and
Ψ(xk, y) ≤ 0 for all k. The first of these conditions implies that

0 ≥ lim sup
k→∞

Ψ(xk, x) ≥ lim sup
k→∞

〈
F (xk), xk − x

〉
+ lim inf

k→∞
ϕ(xk, x)

≥ lim sup
k→∞

〈
F (xk), xk − x

〉
,

where we used the weak sequential lower semicontinuity of ϕ with respect to x and the
fact that ϕ(x, x) = 0. Hence, by the pseudomonotonicity of F , we obtain

Ψ(x, y) = 〈F (x), x− y〉+ ϕ(x, y)

≤ lim inf
k→∞

[〈
F (xk), xk − y

〉
+ ϕ(xk, y)

]
= lim inf

k→∞
Ψ(xk, y) ≤ 0.

Therefore, Ψ satisfies all the requirements of Theorem 2.56, and the result follows.

Apart from the above result, we will also need some information on the behavior of
the “parametric” distance function (x, y) 7→ dΦ(x)(y). Here, the weak Mosco-continuity of
Φ plays a key role and allows us to prove the following lemma.

Lemma 6.6. Let Φ : X ⇒ X be weakly Mosco-continuous. Then, for every y ∈ X, the
distance function x 7→ dΦ(x)(y) is weakly sequentially upper semicontinuous on X.

If, in addition, there are nonempty subsets A,B ⊆ X such that Φ(A) ⊆ B and B is
weakly compact, then the function x 7→ dΦ(x)(x) is weakly sequentially lsc on A.
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Proof. Let y ∈ X be a fixed point and let {xk} ⊆ X, xk ⇀ x ∈ X. If w ∈ Φ(x) is an
arbitrary point, then there is a sequence wk ∈ Φ(xk) such that wk → w. It follows that

‖y − w‖X = lim
k→∞

‖y − wk‖X ≥ lim sup
k→∞

dΦ(xk)(y).

Since w ∈ Φ(x) was arbitrary, this implies that dΦ(x)(y) ≥ lim supk→∞ dΦ(xk)(y).
We now prove the second assertion. Let {xk} ⊆ A be a sequence with xk ⇀ x ∈ A.

Without loss of generality, let dΦ(xk)(x
k) → lim infk→∞ dΦ(xk)(x

k), and let Φ(xk) be
nonempty for all k. Choose points wk ∈ Φ(xk) such that ‖xk −wk‖X ≤ dΦ(xk)(x

k) + 1/k.
By assumption, the sequence {wk} is contained in the weakly compact set B, and thus
there is an index set I ⊆ N such that wk ⇀I w for some w ∈ B. Since wk ∈ Φ(xk) for all
k, the weak Mosco-continuity of Φ implies w ∈ Φ(x). It follows that

dΦ(x)(x) ≤ ‖x− w‖X ≤ lim inf
k∈I

‖xk − wk‖X = lim inf
k→∞

dΦ(xk)(x
k).

This completes the proof.

We now turn to the main existence result for QVIs.

Theorem 6.7. Consider a QVI of the form (Q). Assume that (i) F is bounded and
pseudomonotone, (ii) Φ is weakly Mosco-continuous, and (iii) there is a nonempty, convex,
weakly compact set A ⊆ X such that, for all x ∈ A, Φ(x) is nonempty, closed, convex,
and contained in A. Then the QVI admits a solution x̄ ∈ A.

Proof. For k ∈ N, let Ψk : A2 → R be the bifunction

Ψk(x, y) := 〈F (x), x− y〉+ k
[
dΦ(x)(x)− dΦ(x)(y)

]
.

By Lemmas 6.5 and 6.6, there exist points xk ∈ A such that Ψk(x
k, y) ≤ 0 for all y ∈ A.

Since A is weakly compact, the sequence {xk} admits a weak limit point x̄ ∈ A. Moreover,
by assumption, there are points yk ∈ Φ(xk) ⊆ A for all k. For these points, we obtain

0 ≥ Ψk(x
k, yk) =

〈
F (xk), xk − yk

〉
+ kdΦ(xk)(x

k).

By the boundedness of A and F , the first term is bounded. Hence, dividing by k, we
obtain dΦ(xk)(x

k)→ 0, thus dΦ(x̄)(x̄) = 0 by Lemma 6.6, and hence x̄ ∈ Φ(x̄).
Finally, we claim that x̄ solves the QVI. Observe that, for all k and y ∈ Φ(xk),

0 ≥ Ψk(x
k, y) =

〈
F (xk), xk − y

〉
+ kdΦ(xk)(x

k) ≥
〈
F (xk), xk − y

〉
.

Thus, by Proposition 6.4, it follows that x̄ is a solution of the QVI.

The applicability of the above theorem depends most crucially on the weak Mosco-
continuity of Φ and the existence of the weakly compact set A. It is possible to modify
the theorem by requiring some form of coercivity instead.



6.1. Theory of Quasi-Variational Inequalities 125

Example 6.8. This example is based on [153]. Let Ω ⊆ Rd, d ≥ 2, be a bounded domain,
let X := H1

0 (Ω), and consider the QVI given by the functions

F (u) := −∆u− f, Φ(u) := {v ∈ H1
0 (Ω) : ‖∇v‖ ≤ ψ(u)},

where ‖ · ‖ is the Euclidean norm, f ∈ H−1(Ω), and ψ : H1
0 (Ω)→ L∞(Ω) is completely

continuous. Observe that F is monotone and continuous, hence pseudomonotone by
Lemma 3.37. Assume now that c1 ≤ ψ(u) ≤ c2 for all u and some c1, c2 > 0. Then Φ is
weakly Mosco-continuous by [153, Lem. 1]. Moreover, 0 ∈ Φ(u) for all u ∈ H1

0 (Ω), and the
Poincaré inequality (Theorem 2.29) implies the existence of R > 0 such that Φ(u) ⊆ BX

R

for all u ∈ H1
0 (Ω). We conclude that all the requirements of Theorem 6.7 are satisfied;

hence, the QVI admits a solution.

6.1.2 KKT Conditions and Constraint Qualifications

The purpose of this section is to discuss first-order optimality conditions involving Lagrange
multipliers for the QVI (Q). To that end, we assume that the feasible set mapping Φ has
the analytical representation

Φ(x) := {y ∈ C : G(x, y) ∈ K}, (6.8)

where C ⊆ X and K ⊆ Y are nonempty closed convex sets, Y is a real Banach space,
and G : X2 → Y . A rather intuitive approach to such conditions is to observe that, if x̄
is a solution of (Q), then it is also a solution of the (ordinary) VI

x ∈ A, 〈F (x), d〉 ≥ 0 ∀d ∈ TA(x), (6.9)

where A := Φ(x̄) is considered fixed. The constraint set of this problem can be written as

A = {y ∈ C : G(x̄, y) ∈ K}. (6.10)

In other words, the parametric nature of the problem is resolved, and the constraint
system can be written in such a manner that it is consistent with the theory of variational
inequalities (Section 3.2).

The above observation implies two things. First, leaving some technical details aside,
it is reasonable to expect that the KKT conditions of QVIs are not substantially more
difficult than those for standard VIs. Secondly, when defining constraint qualifications for
QVIs, these should only depend on the partial derivative of G with respect to y and not
on the behavior of G with respect to the parametric variable x.

Concerning the first of the above remarks, it is natural to define the Lagrange function
or Lagrangian of (Q) as the mapping

L : X × Y ∗ → X∗, L(x, λ) := F (x) +DyG(x, x)∗λ. (6.11)

The corresponding first-order optimality conditions are given as follows.
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Definition 6.9 (KKT point). A tuple (x̄, λ̄) ∈ X × Y ∗ is a KKT point of (Q) if

−L(x̄, λ̄) ∈ NC(x̄) and λ̄ ∈ NK(G(x̄, x̄)).

We call x̄ a stationary point if (x̄, λ̄) is a KKT point for some multiplier λ̄ ∈ Y ∗, and
denote by Λ(x̄) the set of such multipliers.

The specific form of the constraint set (6.10) immediately suggests an appropriate
way to define constraint qualifications for QVIs. The most notable one is the Robinson
constraint qualification, which is contained in the following definition. For the sake of
completeness, we also define an extended version of this condition.

Definition 6.10 (Robinson constraint qualification for QVIs). Let x ∈ X be an arbitrary
point. We say that x satisfies

(i) the extended Robinson constraint qualification for QVIs (QVI-ERCQ) if

0 ∈ int
[
G(x, x) +DyG(x, x)(C − x)−K

]
. (6.12)

(ii) the Robinson constraint qualification for QVIs (QVI-RCQ) if x is feasible and
satisfies QVI-ERCQ, i.e., equation (6.12).

It follows from the definition that QVI-RCQ is nothing but RCQ for the constraint
system y ∈ C, G(x, y) ∈ K, with respect to y, applied in the point y := x. This is
consistent with the observations before Definition 6.9.

The following result is an immediate consequence of Proposition 3.46.

Proposition 6.11. If (x̄, λ̄) is a KKT point, then x̄ is a solution of (Q). Conversely, if
x̄ is a solution of (Q) and QVI-RCQ holds in x̄, then the set of Lagrange multipliers Λ(x̄)
is nonempty and bounded in Y ∗.

We now turn to another consequence of QVI-RCQ which is a certain metric regularity
of the feasible set(s). This property can also be used to deduce the weak Mosco-continuity
of Φ (see Corollary 6.13). The main idea is that, given some reference point x̄, we can view
the parameter x in the feasible set mapping Φ(x) as a perturbation parameter and apply
the sensitivity framework from [32] and Section 3.1.2. Recall that metric regularity is
defined as a distance estimate to the set Φ(x) for all x in a neighborhood of the reference
point x̄, see Definition 3.12. An important observation in this context is that, given
suitable continuity properties of the mappings G and DyG, we can actually take the
neighborhood around x̄ with respect to the weak (sequential) topology of X. A precise
statement of this fact can be found in the following lemma. For the sake of clarity, we
state this result in a slightly different setting and assume that G is defined on U ×X,
where U is an arbitrary topological space (e.g., the space X endowed with the weak or
weak sequential topology).

Lemma 6.12. Let x̄ ∈ X and ȳ ∈ Φ(x̄). Assume that G and DyG are continuous on
U ×X, where U is an arbitrary topological space, and that

0 ∈ int
[
G(x̄, ȳ) +DyG(x̄, ȳ)(C − ȳ)−K

]
.
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Then there are c > 0 and a neighborhood N of (x̄, ȳ) in U ×X such that dist(y,Φ(x)) ≤
cdist(G(x, y),K) for all (x, y) ∈ N with y ∈ C.

Proof. Let G2 : U ×X → X × Y be the mapping G2(x, y) := (y,G(x, y)), and define the
set K2 := C ×K. Observe that G2 is Fréchet-differentiable with respect to y, that both
G2 and DyG2 are continuous on U ×X, and that Φ(x) = {y ∈ X : G2(x, y) ∈ K2}. By
Remark 3.10, we have 0 ∈ int[G2(x̄, ȳ) +DyG2(x̄, ȳ)X −K2]. Hence, by [32, Thm. 2.87],
there are c > 0 and a neighborhood N of (x̄, ȳ) in U ×X such that

dist
(
y,Φ(x)

)
≤ cdist

(
G2(x, y),K2

)
for all (x, y) ∈ N . Clearly, if y ∈ C, then dist(G2(x, y),K2) = dist(G(x, y),K).

As mentioned before, we can use Lemma 6.12 to prove the weak Mosco-continuity of
Φ. To this end, we only need to apply the lemma in the special case where U is the space
X equipped with the weak sequential topology (see Definition 2.7 and Remark 2.25).

Corollary 6.13 (Sufficient condition for weak Mosco-continuity). Let x̄ be a feasible
point for (Q). Assume that G is K∞-concave with respect to y, that QVI-RCQ holds in
x̄, and that G satisfies the continuity property

xk ⇀ x, yk → y =⇒ G(xk, yk)→ G(x, y),
DyG(xk, yk)→ DyG(x, y)

(6.13)

for all x, y ∈ X. Then Φ is weakly Mosco-continuous in x̄.

Proof. We first show the weak outer semicontinuity of Φ. Let xk ⇀ x̄ and yk ∈ Φ(xk),
yk ⇀ ȳ. Then {yk} ⊆ C, which implies ȳ ∈ C. Furthermore, Proposition 2.51 yields

G(xk, ȳ) +DyG(xk, ȳ)(yk − ȳ) ∈ G(xk, yk) +K∞ ⊆ K

for all k. Taking the limit k → ∞ and using (6.13), it follows that the left-hand side
converges weakly to G(x̄, ȳ). Hence, G(x̄, ȳ) ∈ K, and ȳ ∈ Φ(x̄).

For the inner semicontinuity, let xk ⇀ x̄ and ȳ ∈ Φ(x̄). By assumption, the constraint
system y ∈ C, G(x̄, y) ∈ K, satisfies the Robinson constraint qualification in x̄; thus, by
Proposition 3.21, it satisfies RCQ in every y ∈ Φ(x̄), in particular for y := ȳ. Now, let U
denote the space X equipped with the weak sequential topology (see Remark 2.25), so
that G and DyG are continuous on U ×X. By Lemma 6.12, there exists c > 0 such that

dist
(
ȳ,Φ(xk)

)
≤ cdist

(
G(xk, ȳ),K

)
for k ∈ N sufficiently large. Since the right-hand side converges to zero as k →∞, we can
choose points yk ∈ Φ(xk) with ‖yk − ȳ‖X → 0. This completes the proof.
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6.1.3 Nonlinear Programming Constraints

In this section, we briefly touch upon the case of a QVI in finite dimensions where the
feasible set has the form

Φ(x) :=
{
y ∈ Rn : g(x, y) ≤ 0, e(x, y) = 0

}
(6.14)

for continuously differentiable mappings g : R2n → Rm, e : R2n → Rp, and m, p ∈ N0.
This problem can obviously be cast into the Banach space framework of the previous
sections by setting Y := Rm+p and defining the mapping G := (g, e). However, as in the
case of constrained optimization, it is possible to give more refined constraint qualifications
for QVIs by taking into account the specific structure of (6.14). The resulting conditions
can be seen as natural extensions of those from Section 3.1.4.

As in the optimization case, a key concept for the following definition is that of positive
linear independence. Given a point x ∈ Rn and subsets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , p},
we say that the set of gradients {∇ygi(x, x)}i∈I ∪ {∇yej(x, x)}j∈J is positively linearly
dependent if there are nontrivial coefficients λi ≥ 0, i ∈ I, and µj ∈ R, j ∈ J , such that∑

i∈I
λi∇ygi(x, x) +

∑
j∈J

µj∇yej(x, x) = 0.

Note that the coefficients λi corresponding to the inequality constraints are required
to be nonnegative, whereas the remaining coefficients µj are arbitrary real numbers. If
such a vanishing linear combination does not exist, we call the vectors positively linearly
independent.

The constraint qualifications defined below are adaptations of the conditions from
Section 3.1.4 for nonlinear programming. These include, in particular, the linear indepen-
dence constraint qualification (LICQ), the Mangasarian–Fromovitz constraint qualification
(MFCQ), the extended MFCQ (EMFCQ), and the constant positive linear dependence
condition (CPLD), see Definition 3.29.

Definition 6.14 (Constraint qualifications for QVIs). Let x̄ ∈ X be an arbitrary point
and let I := {i = 1, . . . ,m : gi(x̄, x̄) = 0}. We say that

(a) QVI-LICQ holds in x̄ if the set of gradients {∇ygi(x̄, x̄)}i∈I ∪ {∇yej(x̄, x̄)}pj=1 is
linearly independent.

(b) QVI-MFCQ holds in x̄ if the set of gradients {∇ygi(x̄, x̄)}i∈I ∪ {∇yej(x̄, x̄)}pj=1 is
positively linearly independent.

(c) QVI-EMFCQ holds in x̄ if the gradients {∇ygi(x̄, x̄)}i∈I′ ∪ {∇yej(x̄, x̄)}pj=1 with
I ′ := {i = 1, . . . ,m : gi(x̄, x̄) ≥ 0} are positively linearly independent.

(d) QVI-CPLD holds in x̄ if, whenever I ⊆ I and J ⊆ {1, . . . , p} are subsets such that
the gradients {∇ygi(x, x)}i∈I ∪ {∇yej(x, x)}j∈J are positively linearly dependent
in x := x̄, then they are linearly dependent for all x in a neighborhood of x̄.

As in the optimization case, QVI-MFCQ can be seen as a special case of the Robinson
constraint qualification for QVIs, applied to the constraint system (6.14). This follows
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from the derivation of the first-order optimality conditions in Section 6.1.2. In particular,
QVI-MFCQ and QVI-RCQ are equivalent to (standard) MFCQ and RCQ, respectively,
for the reduced problem (6.9). Hence, they are mutually equivalent by the discussion in
Section 3.1.4.

With an obvious change of notation, we denote by L(x, λ, µ) := F (x) +∇yg(x, x)λ+
∇ye(x, x)µ the Lagrange function of (Q) with the constraint set (6.14), where λ ∈ Rm
and µ ∈ Rp. Then the KKT conditions of (Q) can be written as

L(x̄, λ̄, µ̄) = 0, 0 ≤ λ̄ ⊥ g(x̄, x̄) ≤ 0, e(x̄, x̄) = 0.

The following result can be shown using the same arguments as in Theorem 3.54.

Proposition 6.15. Let {(xk, λk, µk)} ⊆ Rn+m+p be a sequence such that xk → x̄ for
some x̄ ∈ Φ(x̄), L(xk, λk, µk) → 0, and min{−g(xk, xk), λk} → 0 as k → ∞. Then the
following assertions hold.

(a) If QVI-CPLD holds in x̄, then x̄ is a stationary point (and a solution) of the QVI.

(b) If QVI-MFCQ holds in x̄, then {(λk, µk)} is bounded and its limit points lie in Λ(x̄).

(c) If QVI-LICQ holds in x̄, then {(λk, µk)} converges to the unique element in Λ(x̄).

6.2 The Augmented Lagrangian Method

We now formulate and discuss the augmented Lagrangian method for a QVI of the form
(Q). Throughout this section, we again assume that the feasible set mapping has the
representation

Φ(x) := {y ∈ C : G(x, y) ∈ K}, (6.15)

where X,Y are real Banach spaces, C ⊆ X and K ⊆ Y are nonempty closed convex sets,
and G : X2 → Y is a continuously differentiable mapping.

6.2.1 Discussion and Statement of the Algorithm

We now present the augmented Lagrangian method for the QVI (Q). The main approach
is to penalize the function G and therefore reduce the QVI to a sequence of standard VIs.
Throughout the remainder of this section, we assume that i : Y ↪→ H densely for some
real Hilbert space H, and that K is a closed convex subset of H with i−1(K) = K.

For ρ > 0, consider the augmented Lagrangian Lρ : X ×H → X∗ given by

Lρ(x, λ) := F (x) + ρDyG(x, x)∗
[
G(x, x) +

λ

ρ
− PK

(
G(x, x) +

λ

ρ

)]
. (6.16)

Note that, if K is a cone, then we can simplify the above formula to Lρ(x, λ) = F (x) +
DyG(x, x)∗PK◦(λ+ ρG(x, x)) by using Moreau’s decomposition (Lemma 2.37).

For the construction of our algorithm, we will need a means of controlling the penalty
parameters. To this end, we define the utility function

V (x, λ, ρ) :=

∥∥∥∥G(x, x)− PK
(
G(x, x) +

λ

ρ

)∥∥∥∥
H

. (6.17)
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The function V is a composite measure of feasibility and complementarity; it arises from
an inherent slack variable transformation which is often used to define the augmented
Lagrangian for inequality or cone constraints.

Algorithm 6.16 (ALM for quasi-variational inequalities). Let (x0, λ0) ∈ X ×H, ρ0 > 0,
let B ⊆ H be a nonempty bounded set, γ > 1, τ ∈ (0, 1), and set k := 0.

Step 1. If (xk, λk) satisfies a suitable termination criterion: STOP.

Step 2. Choose wk ∈ B and compute an approximate solution xk+1 of the VI

x ∈ C,
〈
Lρk(x,wk), y − x

〉
≥ 0 ∀y ∈ C. (6.18)

Step 3. Update the vector of multipliers to

λk+1 := ρk

[
G(xk+1, xk+1) +

wk

ρk
− PK

(
G(xk+1, xk+1) +

wk

ρk

)]
. (6.19)

Step 4. If k = 0 or
V (xk+1, wk, ρk) ≤ τV (xk, wk−1, ρk−1) (6.20)

holds, set ρk+1 := ρk; otherwise, set ρk+1 := γρk.

Step 5. Set k ← k + 1 and go to Step 1.

Let us make some simple observations. As in the previous chapters, one of the central
features of the above algorithm is the use of the bounded sequence {wk} in certain places
where traditional algorithms might use the sequence {λk}. This boundedness property is
crucial for the subsequent convergence analysis. In practice, one usually tries to keep wk

as “close” as possible to λk, e.g., by defining wk := PB(λk), where B (the bounded set
from the algorithm) is chosen suitably to allow cheap projections.

The definition of λk+1 implies that, regardless of the manner in which xk+1 is computed
(exactly or inexactly), we always have the equality

Lρk(xk+1, wk) = L(xk+1, λk+1) for all k ∈ N, (6.21)

which follows directly from the definition of Lρ and the multiplier updating scheme (6.19).
This equality is the main motivation for the definition of λk+1.

Lemma 6.17. We have λk ∈ K◦∞ for all k. Moreover, there is a null sequence {rk} ⊆ R+

such that
(
λk, y −G(xk, xk)

)
≤ rk for all y ∈ K and k ∈ N.

Proof. The proof is analogous to that of Lemma 4.5. Let sk+1 := PK(G(xk+1, xk+1) +
wk/ρk). Then λk+1 ∈ NK(sk+1) by Proposition 2.36, and thus λk+1 ∈ K◦∞ by Lemma 2.39.
For the second assertion, observe that

G(xk+1, xk+1) =
λk+1 − wk

ρk
+ sk+1. (6.22)
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Using the fact that λk+1 ∈ NK(sk+1), we obtain(
λk+1, y −G(xk+1, xk+1)

)
=

(
λk+1, y − 1

ρk
(λk+1 − wk)− sk+1

)
≤ 1

ρk

[(
λk+1, wk

)
− ‖λk+1‖2H

]
=: rk+1. (6.23)

We claim that this sequence {rk+1} satisfies lim supk→∞ rk+1 ≤ 0. This yields the desired
result (by replacing rk with max{0, rk}). If {ρk} is bounded, then (6.20) and (6.22) imply
‖λk+1 − wk‖H/ρk → 0 and therefore ‖λk+1 − wk‖H → 0. This yields the boundedness of
{λk+1} in H as well as (λk+1, wk)− ‖λk+1‖2H = (λk+1, wk − λk+1)→ 0. Hence, rk → 0.
Assume now that ρk → ∞. Note that (6.23) is a quadratic function in λ. A simple
calculation therefore shows that rk+1 ≤ ‖wk‖2H/(4ρk) and, hence, lim supk→∞ rk ≤ 0.

As in the optimization case, we note that the assertion of Lemma 6.17 can be simplified
if K is a closed convex cone. In this case, the first assertion becomes λk ∈ K◦ for all k,
and the second assertion is equivalent to

lim inf
k→∞

〈
λk, G(xk, xk)

〉
≥ 0.

6.2.2 Existence of Penalized Solutions

We first discuss some sufficient conditions for the existence of solutions to the augmented
subproblems (6.18). In the quasi-variational context, this question turns out to be sub-
stantially more complicated than for constrained optimization or variational inequalities,
mainly due to the additional dependence of the constraint mapping G on the point x.
As a result, only parts of the arguments from Proposition 5.4 (for the VI case) can be
carried over to the present situation.

Proposition 6.18. Assume that C is weakly compact, F is bounded and pseudomonotone,
and one of the following conditions is satisfied:

(a) G is completely continuous with respect to x, weakly sequentially continuous with
respect to (x, y), and K∞-concave with respect to y, or

(b) G and DyG are completely continuous with respect to (x, y).

Then the augmented Lagrangian subproblems (6.18) admit solutions for all k.

Proof. (a) For k ∈ N, let hk(x, y) := d2
K(G(x, y) + wk/ρk). Observe that hk is convex

and continuously differentiable with respect to y, weakly sequentially continuous with
respect to x, and weakly sequentially lsc with respect to (x, y). Moreover, we have
Lρk(x,wk) = F (x) + (ρk/2)Dyhk(x, x) for all k. Consider the mapping

Ψk(x, y) := 〈F (x), x− y〉+
ρk
2

[
hk(x, x)− hk(x, y)

]
.

By Lemma 6.5, there exists a point x̂ ∈ C such that Ψk(x̂, y) ≤ 0 for all y ∈ C. Thus, the
point x̂ is a maximizer of Ψk(x̂, ·), with maximum value equal to zero. By Lemma 3.1,
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this implies DyΨk(x̂, x̂)(y − x̂) ≤ 0 for all y ∈ C, and it is easy to check that this is
precisely the desired variational inequality.

(b) In this case, it follows from Lemma 3.37 that the augmented Lagrangian Lρk(·, wk)
is pseudomonotone for every k. Hence, the claim follows from Corollary 3.41.

6.2.3 Convergence for Convex Constraints

In this section, we analyze the global convergence properties of Algorithm 6.16 for QVIs
where the set Φ(x) is convex for all x. In the situation where Φ(x) = {y ∈ C : G(x, y) ∈ K}
as in (6.15), the natural analytic notion of convexity is the K∞-concavity of G with respect
to y, see Section 2.2.3. To obtain the stationarity of weak limit points, we will employ
Proposition 6.4. Thus, we will need the pseudomonotonicity of F and the weak Mosco-
continuity of Φ.

The above discussion is reflected in the following set of assumptions.

Assumption 6.19 (Primal convergence for QVIs). We assume that

(i) the mapping F is bounded and pseudomonotone,

(ii) the multifunction Φ is weakly Mosco-continuous,

(iii) the operator G is K∞-concave with respect to y,

(iv) dK ◦G is weakly sequentially lower semicontinuous, and

(v) xk+1 ∈ C and εk+1 − Lρk(xk+1, wk) ∈ NC(xk+1) for all k, where εk → 0.

Note that (i) and (ii) were also used in Theorem 6.7 on the existence of solutions.
The weak sequential lower semicontinuity of dK ◦ G holds, for instance, if G is weakly
sequentially continuous with respect to (x, y). Finally, the assumption (v) on the sequence
{xk} is just an inexact version of the VI subproblem (6.18).

Similarly to before, the convergence analysis is split into separate discussions of
feasibility and optimality. We begin with the feasibility part.

Lemma 6.20. Let Assumption 6.19 hold and let x̄ be a weak limit point of {xk}. If Φ(x̄)
is nonempty, then x̄ is feasible.

Proof. Let I ⊆ N be an index set such that xk+1 ⇀I x̄. Observe first that x̄ ∈ C since C
is closed and convex, hence weakly sequentially closed. It therefore remains to show that
G(x̄, x̄) ∈ K. If {ρk} remains bounded, then the penalty updating scheme (6.20) implies

dK(G(xk+1, xk+1)) ≤
∥∥∥∥G(xk+1, xk+1)− PK

(
G(xk+1, xk+1) +

wk

ρk

)∥∥∥∥
H

→ 0.

Since dK ◦G is weakly sequentially lsc, we obtain dK(G(x̄, x̄)) = 0 and thus G(x̄, x̄) ∈ K.
Assume now that ρk →∞ and that G(x̄, x̄) /∈ K, or equivalently d2

K(G(x̄, x̄)) > 0. Since
Φ(x̄) is nonempty, we can choose an y ∈ Φ(x̄), and by inner semicontinuity there exists a
sequence yk+1 ∈ Φ(xk+1) such that yk+1 →I y. Now, let hk(x, y) := dK(G(x, y) +wk/ρk).
Observe that hk is convex with respect to y by Theorem 2.50, and that h2

k is continuously
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differentiable with respect to y by Lemma 2.43. Moreover, since the distance function is
nonexpansive, it follows that hk(xk+1, yk+1) ≤ ‖wk‖H/ρk for all k, and thus

lim inf
k→∞

[
hk(x

k+1, xk+1)− hk(xk+1, yk+1)
]

= lim inf
k→∞

hk(x
k+1, xk+1) ≥ dK(G(x̄, x̄)) > 0.

Hence, there is a constant c1 > 0 such that h2
k(x

k+1, xk+1)− h2
k(x

k+1, yk+1) ≥ c1 for all
k ∈ I sufficiently large. The convexity of hk (and of h2

k) now yields〈
Dy(h

2
k)(x

k+1, xk+1), yk+1 − xk+1
〉
≤ h2

k(x
k+1, yk+1)− h2

k(x
k+1, xk+1) ≤ −c1.

By the boundedness of F , there is a constant c2 ∈ R such that 〈F (xk+1), yk+1−xk+1〉 ≤ c2

for all k ∈ I. Now, let {εk} be the sequence from Assumption 6.19. Observe that
Lρk(xk+1, wk) = F (xk+1) + (ρk/2)Dy(h

2
k)(x

k+1, xk+1) for all k. Therefore,〈
εk+1, yk+1 − xk+1

〉
≤
〈
Lρk(xk+1, wk), yk+1 − xk+1

〉
≤ c2 −

ρkc1

2
→ −∞,

which contradicts εk+1 → 0.

The above lemma guarantees that the weak limit point x̄ is “as feasible as possible” in
the sense that it is feasible if (and only if) the set Φ(x̄) is nonempty. In many particular
examples of QVIs (e.g., for moving-set problems, see below), we know a priori that Φ(x)
is nonempty for all x ∈ X, and this directly yields the feasibility of x̄.

Theorem 6.21. Let Assumption 6.19 hold and let x̄ be a weak limit point of {xk}. If
Φ(x̄) is nonempty, then x̄ is feasible and a solution of the QVI.

Proof. The feasibility follows from Lemma 6.20. For the optimality part, we apply
Proposition 6.4. To this end, let yk ∈ Φ(xk) be arbitrary, let {εk} be the sequence from
Assumption 6.19, and recall that Lρk(xk+1, wk) = L(xk+1, λk+1) by (6.21). Thus,〈
εk+1, yk+1 − xk+1

〉
≤
〈
F (xk+1) +DyG(xk+1, xk+1)∗λk+1, yk+1 − xk+1

〉
=
〈
F (xk+1), yk+1 − xk+1

〉
+
(
λk+1, DyG(xk+1, xk+1)(yk+1 − xk+1)

)
≤
〈
F (xk+1), yk+1 − xk+1

〉
+
(
λk+1, G(xk+1, yk+1)−G(xk+1, xk+1)

)
for all k, where we used the convexity of y 7→ (λk+1, G(xk+1, y)), see Theorem 2.50. Since
G(xk+1, yk+1) ∈ K, the last term is bounded from above by rk+1, where {rk} is the null
sequence from Lemma 6.17. Taking into account that εk → 0 by Assumption 6.19, the
result is now a consequence of Proposition 6.4.

The above theorem guarantees the optimality of any weak limit point of the sequence
generated by Algorithm 6.16. Despite this, it should be pointed out that the result is
purely “primal” in the sense that no assertions are made for the multiplier sequence. We
will investigate the dual (or, more precisely, primal-dual) behavior of the augmented
Lagrangian method in more detail in Section 6.2.4.

If the mapping F is strongly monotone, then it is possible to obtain strong convergence
of the iterates.
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Corollary 6.22. Let Assumption 6.19 hold and let F be strongly monotone on C. If
xk ⇀I x̄ for some subset I ⊆ N and x̄ is a solution of the QVI, then xk →I x̄.

Proof. By the weak Mosco-continuity of Φ, there is a sequence x̄k ∈ Φ(xk) such that
x̄k → x̄. By the proof of Theorem 6.21, we have lim infk∈I〈F (xk), x̄k − xk〉 ≥ 0 and
therefore lim infk∈I〈F (xk), x̄− xk〉 ≥ 0. The strong monotonicity of F yields

c‖xk − x̄‖2X ≤
〈
F (xk)− F (x̄), xk − x̄

〉
=
〈
F (xk), xk − x̄

〉
−
〈
F (x̄), xk − x̄

〉
.

But the lim sup of the first term is less than or equal to zero, and the second term
converges to zero since xk ⇀I x̄. Hence, ‖xk − x̄‖X → 0, and the proof is complete.

The following is one of the most prominent classes of QVIs, see the discussion at the
beginning of the chapter.

Example 6.23 (Moving set case). A common class of QVIs arises if the feasible set is
given by Φ(x) = c(x) + Φ0 for some mapping c : X → X and a nonempty closed convex
set Φ0 ⊆ X. This is usually called the moving set case, and it can be modeled by defining

G(x, y) := y − c(x) and K := Φ0.

(If the set Φ0 is given through analytical constraints, these may also be incorporated
into the function G.) In the above formulation, the mapping G is linear and thus
K∞-concave with respect to y (for any choice of K). Assume now that F is bounded
and pseudomonotone, and c is completely continuous. Then it is easy to see that Φ is
weakly Mosco-continuous and dK ◦ G is weakly sequentially lsc. Thus, it follows from
Theorem 6.21 that every weak limit point of the sequence {xk} is a solution of the QVI.

6.2.4 Primal-Dual Convergence Analysis

The purpose of this section is to consider the behavior of the augmented Lagrangian
method in the absence of convexity. The analysis below is based on the KKT system of
the QVI and can therefore be characterized as primal-dual. In particular, we will present
results which guarantee the boundedness or convergence of the dual sequence {λk}. These
results are also useful in the case of convex constraints. Hence, the present section is not
intended to supersede the preceding one but rather to complement it.

Assumption 6.24 (Primal-dual convergence). We assume that

(i) the operator F is bounded and pseudomonotone,

(ii) the mappings G and DyG are completely continuous, and

(iii) xk+1 ∈ C and εk+1 − Lρk(xk+1, wk) ∈ NC(xk+1) for all k, where εk → 0.

As in Chapters 4 and 5, one of the main ingredients in the primal-dual convergence
analysis is an asymptotic analogue of the KKT conditions. In the present context, this
condition takes on the form

εk − L(xk, λk) ∈ NC(xk) and
〈
λk, y −G(xk, xk)

〉
≤ rk ∀y ∈ K (6.24)
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for all k ≥ 1, where εk → 0 in X∗ and rk → 0 in R. The above conditions can be
verified by using Lemma 6.17 and observing that L(xk+1, λk+1) = Lρk(xk+1, wk) for all
k, see (6.21). This suggests that we can obtain the stationarity of limit points by using a
suitable constraint qualification. Before doing so, however, we first have to deal with the
attainment of feasibility.

Lemma 6.25. Let Assumption 6.24 hold and let x̄ be a weak limit point of {xk}. Then
x̄ ∈ C and −Dy(d

2
K ◦G)(x̄, x̄) ∈ NC(x̄). If x̄ satisfies QVI-ERCQ, then x̄ is feasible.

Proof. Note that x̄ ∈ C since C is weakly sequentially closed. If {ρk} is bounded, then
(6.20) implies that dK(G(xk+1, xk+1)) → 0, which yields G(x̄, x̄) ∈ K. Hence, there is
nothing to prove. Now, let ρk → ∞, let xk+1 ⇀I x̄ on some subset I ⊆ N, and let
{εk} ⊆ X∗ be the sequence from Assumption 6.24. Then

εk+1 − F (xk+1)−DyG(xk+1, xk+1)∗λk+1 ∈ NC(xk+1)

for all k ∈ N. We now divide this inclusion by ρk, use the definition of λk+1, and the fact
that NC(xk+1) is a cone. It follows that

−DyG(xk+1, xk+1)∗
[
G(xk+1, xk+1) +

wk

ρk
− PK

(
G(xk+1, xk+1) +

wk

ρk

)]
+
εk+1 − F (xk+1)

ρk
∈ NC(xk+1).

Taking the limit k →I ∞ and using Proposition 2.40 yields

−DyG(x̄, x̄)∗[G(x̄, x̄)− PK(G(x̄, x̄))] ∈ NC(x̄), (6.25)

which is the first claim. Assume now that ERCQ holds in x̄, and let r > 0 be such that
BY
r ⊆ G(x̄, x̄) + DyG(x̄, x̄)(C − x̄) − K. Then, for any y ∈ BY

r , there are z ∈ C and
w ∈ K such that y = G(x̄, x̄) +DyG(x̄, x̄)(z − x̄)− w. In particular, we have

〈G(x̄, x̄)− PK(G(x̄, x̄)), y〉 =
〈
DyG(x̄, x̄)∗

[
G(x̄, x̄)− PK(G(x̄, x̄))

]
, z − x̄

〉
+ 〈G(x̄, x̄)− PK(G(x̄, x̄)), G(x̄, x̄)− w〉.

The first term is nonnegative by (6.25), and so is the second term by standard projection
inequalities. Hence, 〈G(x̄, x̄) − PK(G(x̄, x̄)), y〉 ≥ 0 for all y ∈ BY

r , which implies
〈G(x̄, x̄)− PK(G(x̄, x̄)), y〉 = 0 for all y ∈ BY

r and, since Y is dense in H, it follows that
G(x̄, x̄)− PK(G(x̄, x̄)) = 0. This completes the proof.

The above is our main feasibility result for this section. Note that the assertion
−Dy(d

2
K ◦G)(x̄, x̄) ∈ NC(x̄) has a rather natural interpretation: the function d2

K ◦G is a
measure of infeasibility, and the lemma above states that any weak limit point x̄ of {xk}
has a (partial) minimization property for this function on the set C. The observation
that an extended form of RCQ yields the actual feasibility of the point x̄ is motivated by
similar arguments from optimization theory (see Section 3.1.2).

Having dealt with feasibility, we now turn to the main primal-dual convergence result.
Recall that Λ(x̄) ⊆ Y ∗ denotes the set of Lagrange multipliers in a given point x̄.
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Theorem 6.26. Let Assumption 6.24 hold, let xk ⇀I x̄ on some subset I ⊆ N, and
assume that x̄ satisfies QVI-ERCQ. Then x̄ is feasible, the sequence {λk}k∈I is bounded
in Y ∗, and each of its weak-∗ accumulation points belongs to Λ(x̄).

Proof. The feasibility of x̄ follows from Lemma 6.25. Observe that G(xk, xk)→I G(x̄, x̄)
and DyG(xk, xk)→I DyG(x̄, x̄). Using the sequences {rk} and {εk} Lemma 6.17 and As-
sumption 6.24, respectively, we have

εk − L(xk, λk) ∈ NC(xk) and
〈
λk, y −G(xk, xk)

〉
≤ rk ∀y ∈ K (6.26)

for all k ≥ 1. To prove the boundedness of {λk}k∈I , we now proceed as in Theorem 3.51.
Applying the generalized open mapping theorem (Theorem 3.11) to the multifunction
W(u) := G(x̄, x̄) +DyG(x̄, x̄)u−K on the domain C − x̄, we obtain r > 0 such that

BY
r ⊆ G(x̄, x̄) +DyG(x̄, x̄)

[
(C − x̄) ∩BX

1

]
−K.

By the definition of the dual norm, we can choose a sequence {yk} ⊆ Y of unit vectors
such that 〈λk, yk〉 ≥ 1

2‖λ
k‖Y ∗ . For every k, we can write

−ryk = G(x̄, x̄) +DyG(x̄, x̄)(vk − x̄)− zk

with {vk} ⊆ C a bounded sequence and {zk} ⊆ K. Since DyG(x̄, x̄) is completely
continuous (by Proposition 2.16), it follows that ryk = zk−G(xk, xk)−DyG(xk, xk)(vk−
xk)+δk with δk → 0 as k →I ∞. Assume now that k is large enough so that ‖δk‖Y ≤ r/4.
Then, by (6.26),
r

2
‖λk‖Y ∗ ≤

〈
λk, ryk

〉
≤
〈
λk, zk −G(xk, xk)

〉
−
〈
λk, DyG(xk, xk)(vk − xk)

〉
+
r

4
‖λk‖Y ∗

≤
〈
λk, zk −G(xk, xk)

〉
+
〈
F (xk)− εk, vk − xk

〉
+
r

4
‖λk‖Y ∗ .

By (6.26), the first two terms on the right-hand side are bounded from above by some
c > 0. Reordering the inequality yields r

4‖λ
k‖Y ∗ ≤ c, and the result follows.

Finally, let us show that every weak-∗ limit point of {λk} is a Lagrange multiplier.
Without loss of generality, we assume that λk ⇀∗I λ̄ for some λ̄ ∈ Y ∗ on the same
subset I ⊆ N where {xk} converges. By the second inequality in (6.26) and the fact that
G(xk, xk)→I G(x̄, x̄), we obtain λ̄ ∈ NK(G(x̄, x̄)). Now, let y ∈ C. Then, by (6.26),〈

εk, y − xk
〉
≤
〈
F (xk), y − xk

〉
+
〈
λk, DyG(xk, xk)(y − xk)

〉
.

By complete continuity, we have DyG(xk, xk)→I DyG(x̄, x̄) and DyG(x̄, x̄)(y − xk)→I

DyG(x̄, x̄)(y− x̄), see Proposition 2.16. Hence, DyG(xk, xk)(y−xk)→I DyG(x̄, x̄)(y− x̄).
The result now follows by arguing as in Theorem 3.51.

Similarly to the optimization case, we now give a final result under the assumption that
the derivative DyG(x̄, x̄) ∈ L(X,Y ) is a surjective operator. In this case, it is possible to
obtain the weak-∗ convergence of the corresponding dual sequence to the unique Lagrange
multiplier in x̄. The proof is essentially identical to that of Proposition 4.20 and therefore
an application of Proposition 3.52.
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Proposition 6.27. Let {xk} be generated by Algorithm 5.2 and let xk ⇀I x̄ for some
I ⊆ N and x̄ ∈ X. Assume that x̄ is a solution of (Q), that C = X, F is weak-∗

sequentially continuous, DyG is completely continuous, and that DyG(x̄, x̄) is surjective.
Then {λk}k∈I converges weak-∗ to the unique element in Λ(x̄).

It follows that a QVI of the moving set type, if modeled as above, will always satisfy
the surjectivity assumption from Proposition 6.27, and it satisfies QVI-RCQ in any feasible
point. This has strong consequences for the convergence properties of the augmented
Lagrangian method for such problems. We collect these observations in the following
example.

Example 6.28 (Moving set case, continued). Assume that we are in the moving set case
from Example 6.23, i.e., that Φ(x) = c(x) + Φ0 with c : X → X and Φ0 ⊆ X a nonempty
closed convex set. Let G(x, y) := y − c(x) and K := Φ0. Assume that F is bounded and
pseudomonotone, and that c is completely continuous. Then we know from Example 6.23
that every weak limit point x̄ of {xk} is a solution of the QVI. Since DyG(x, x) is the
identity mapping on X for all x ∈ X, we then obtain from Proposition 6.27 that the
corresponding subsequence of {λk} converges weak-∗ to the unique element in Λ(x̄).

6.3 The Algorithm in Finite Dimensions

Having established the basic theory of the augmented Lagrangian method, we now
specialize some of the preceding results for the finite-dimensional case. In addition, this
section also contains an overview of the algorithm for finite-dimensional generalized Nash
equilibrium problems, and an exact penalty scheme based on the augmented Lagrangian
technique. The findings in this section are essentially a summary of the papers [127,132].

6.3.1 Quasi-Variational Inequalities

Throughout this section, we consider a QVI where the feasible set mapping has the form

Φ(x) =
{
y ∈ Rn : g(x, y) ≤ 0, h(x, y) ≤ 0

}
(6.27)

with two continuously differentiable functions g : R2n → Rm and h : R2n → Rp. The
purpose of this approach is to account for the possibility of partial penalization: the
constraints defined by g will be penalized, whereas h is an (optional) constraint function
which will stay as a constraint in the penalized subproblems. We stress that this framework
is very general and gives us some flexibility to deal with different situations. The most
natural choices are probably the following ones:

1. Penalize all contraints. This full penalization approach is the simplest and most
straightforward approach where, formally, we set p = 0. The resulting subproblems
are unconstrained and therefore become nonlinear equations.

2. Another natural splitting is the case where h covers the non-parametric constraints
(i.e., those which do not depend on x), whereas g subsumes the remaining constraints.
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The resulting penalized problems then become standard VIs and are therefore easier
to solve than the original QVI since the (presumably) difficult constraints are moved
into the objective function.

3. Finally, for certain problems, it might make sense to include some of the parametric
constraints into h. In this case, the subproblems themselves are QVIs, but might
still be easier to solve than the original QVI, e.g., if they belong to a particular
subclass of QVIs or the remaining constraints satisfy a certain structure.

In the present setting, the Lagrange function of the QVI takes on the form L(x, λ, µ) =
F (x) +∇yg(x, x)λ+∇yh(x, x)µ, where λ ∈ Rm and µ ∈ Rp. The corresponding KKT
conditions are given by

L(x̄, λ̄, µ̄) = 0, min{−g(x̄, x̄), λ̄} = 0, and min{−h(x̄, x̄), µ̄} = 0.

If p = 0, then we can simply discard µ and state the above system with λ alone.
In order to formally describe the partial penalization scheme, we now consider the

set-valued mapping Φh : Rn ⇒ Rn given by

Φh(x) = {y ∈ Rn : h(x, y) ≤ 0}, (6.28)

and the (partial) augmented Lagrangian

Lρ(x, λ) = F (x) +∇yg(x, x)(λ+ ρg(x, x))+, (6.29)

where ρ > 0 and λ ∈ Rm. The following is the algorithmic framework we consider in this
section.

Algorithm 6.29 (ALM for quasi-variational inequalities in Rn). Let (x0, λ0, µ0) ∈
Rn+m+p, ρ0 > 0, wmax ≥ 0, γ > 1, τ ∈ (0, 1), and set k := 0.

Step 1. If (xk, λk, µk) satisfies a suitable termination criterion: STOP.

Step 2. Choose wk ∈ [0, wmax]m and compute an approximate KKT point (xk+1, µk+1)
of the penalized QVI

x ∈ Φh(x), Lρk(x,wk)>d ≥ 0 ∀d ∈ TΦh(x)(x). (6.30)

Step 3. Update the vector of multipliers to λk+1 := max{0, wk + ρkg(xk+1, xk+1)}.
Step 4. If ∥∥min{−g(xk+1, xk+1), λk+1}

∥∥ ≤ τ∥∥min{−g(xk, xk), λk}
∥∥, (6.31)

then set ρk+1 := ρk. Otherwise, set ρk+1 := γρk.

Step 5. Set k ← k + 1 and go to Step 1.

The above method is similar to Algorithm 6.16 but differs in the level of generality
which is allowed for the nonpenalized constraints h(x, y) ≤ 0. In the present case, these
constraints are allowed to be nonconvex and parametric, whereas in Section 6.2 the
nonpenalized constraints were assumed to be of a simpler form. Moreover, the penalty
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parameter is increased using a slightly different updating rule, compare (6.31) and (6.20).
Both schemes can be used in a similar manner when proving convergence to stationary
points. Note also that a similarly modified updating scheme was already employed in
Algorithm 5.28 for finite-dimensional GNEPs.

As in the general case, let us stress once again that the above method uses a bounded
sequence {wk} as a partial replacement for the multiplier sequence {λk}. In the above
algorithm, the boundedness is enforced by confining wk to the m-dimensional hypercube
[0, wmax]m, and it is indeed common to simply define wk as the projection onto this set,
i.e., wk := min{λk, wmax}, where the minimum is understood componentwise.

Assumption 6.30 (Global convergence). At Step 2 of Algorithm 6.29, we obtain xk+1

and µk+1 such that, for k →∞, we have

Lρk(xk+1, wk) +∇yh(xk+1, xk+1)µk+1 → 0,

min{−h(xk+1, xk+1), µk+1} → 0.

This is a very natural assumption which asserts that the pair (xk+1, µk+1) satisfies an
approximate KKT condition for the augmented subproblems, and the degree of inexactness
converges to zero for k →∞. The actual solvability of the subproblems obviously depends
on the structure of the underlying QVI; for certain classes of QVIs, this topic is discussed
in more detail in [127].

The definition of λk+1 implies that

Lρk(xk+1, wk) = F (xk+1) +∇yg(xk+1, xk+1)λk+1 (6.32)

for all k. This equality will be useful in the convergence analysis.
Let us now turn to a convergence analysis of Algorithm 6.29 under Assumption 6.30.

As usual, we begin by considering the feasibility properties of the iterates {xk}. In this
context, the following observation is helpful: if ρ is large, then the augmented Lagrangian
(6.29) is dominated by the term ∇y 1

2‖g+(x, x)‖2 = ∇yg(x, x)g+(x, x). This means that
we can expect the iterates to exhibit some kind of asymptotic stationarity of the function
‖g+(x, y)‖2 with respect to the second variable. One has to take into account that the
additional h-constraints may be of parametric nature as well. Thus, it is intuitive to
model the feasibility properties by considering the auxiliary QVI

x ∈ Φh(x), (∇y‖g+(x, x)‖2)>d ≥ 0 ∀d ∈ TΦh(x)(x). (6.33)

We will call this problem the Feasibility QVI. Note that (6.33) represents the first-order
necessary conditions (in the tangent cone sense) of the minimization of y 7→ ‖g+(x, y)‖2
subject to y ∈ Φh(x), stated in the point y := x. Thus, the Feasibility QVI encodes the
intuitive minimization property, discussed above, in a quasi-variational framework. We
can therefore expect the iterates {xk} to eventually become approximate solutions of
(6.33). A precise statement of this assertion is contained in the following lemma.

Lemma 6.31. Let Assumption 6.30 hold, and let x̄ be a limit point of {xk}. Then:
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(a) If h satisfies QVI-CPLD in x̄, then x̄ is a stationary point of the Feasibility QVI.

(b) If the function (g, h) satisfies QVI-EMFCQ in x̄, then x̄ is feasible.

Proof. (a): Let xk+1 →I x̄ for some subset I ⊆ N. If {ρk} is bounded, then x̄ is feasible
by (6.31), and there is nothing to prove. Assume now that ρk →∞. By Assumption 6.30
and the definition of Lρ, we have

F (xk+1) +∇yg(xk+1, xk+1)
(
wk + ρkg(xk+1, xk+1)

)
+

+∇yh(xk+1, xk+1)µk+1 → 0

and min{−h(xk+1, xk+1), µk+1} → 0 as k → ∞. Dividing by ρk and omitting some
vanishing terms, we obtain

∇yg(xk+1, xk+1)g+(xk+1, xk+1) +∇yh(xk+1, xk+1)µ̂k+1 →I 0,

where µ̂k+1 := µk+1/ρk. It is easy to verify that min{−g(xk+1, xk+1), µ̂k+1} →I 0 (see
the proof of Lemma 5.30). The result therefore follows from Proposition 6.15.

(b): By (a), there exists µ̂ ∈ Rp such that

∇y‖g+(x̄, x̄)‖2 +∇yh(x̄, x̄)µ̂ = 0 and min{−h(x̄, x̄), µ̂} = 0.

Expanding the sums and omitting some vanishing terms, we obtain

2
∑

gi(x̄,x̄)>0

∇ygi(x̄, x̄)gi(x̄, x̄) +
∑

hj(x̄,x̄)=0

∇yhj(x̄, x̄)µ̂j = 0.

By QVI-EMFCQ, it follows that the first sum must be empty, and x̄ is feasible.

One of the advantages of the Feasibility QVI is that it lends itself to a problem-specific
analysis which often guarantees the feasibility of x̄ without any additional assumptions.
To see this, observe the following: if the functions g and h are convex with respect to y,
then every solution x̄ of the Feasibility QVI is necessarily a global solution of

minimize
y∈Rn

‖g+(x̄, y)‖2 subject to h(x̄, y) ≤ 0. (6.34)

That is, x̄ is a (partial) minimizer of the infeasibility measure ‖g+(x, y)‖2. This argument
has an important consequence: if, in addition to the convexity of g and h, the feasible
set mapping Φ is nonempty-valued, then the minimal value in (6.34) is necessarily zero
(attained at any y ∈ Φ(x̄)), and thus we obtain from the minimality of x̄ that x̄ is a
feasible point.

Using the above argument, we obtain the feasibility of limit points of Algorithm 6.29
for large classes of QVIs, including the ubiquitous moving-set case (see the introduction
of Section 6.3). Interestingly, the Feasibility QVI admits even more practical applications
and interpretations. For instance, it yields a very intuitive feasibility framework for
generalized Nash equilibrium problems (see Section 6.3.3), and it can also be used to
guarantee the feasibility of limit points for QVIs with bilinear constraints. For more
details, we refer the reader to [132].
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We now turn to the optimality of limit points. As usual, the main approach is to
state an asymptotic KKT-type condition for the sequence {(xk, λk, µk)}, and then use
Proposition 6.15 to obtain the optimality of limit points of {xk}. Observe that, by
Assumption 6.30 and (6.32), we have

L(xk, λk, µk)→ 0 and min{−h(xk, xk), µk} → 0. (6.35)

Thus, the only missing condition for Proposition 6.15 is min{−g(xk, xk), λk} → 0. If this
condition is verified, then Proposition 6.15 together with a suitable constraint qualification
yields the optimality of limit points.

Theorem 6.32. Let Assumption 6.30 hold and let x̄ be a limit point of {xk}. Then x̄ is
a stationary point of the QVI provided that one of the following holds:

(a) x̄ is feasible and the function (g, h) satisfies QVI-CPLD in x̄.

(b) The function (g, h) satisfies QVI-EMFCQ in x̄.

Proof. Note that QVI-CPLD for the function (g, h) implies QVI-CPLD for the function h.
Hence, by Lemma 6.31, the assumptions of (b) imply those of (a), and it therefore suffices
to prove (a). Let xk+1 →I x̄ for some subset I ⊆ N. By (6.35) and Proposition 6.15, the
claim follows if we are able to prove that

min{−g(xk+1, xk+1), λk+1} →I 0. (6.36)

By (6.31), this holds if {ρk} is bounded. Now, let ρk →∞. Observe that λk+1 ≥ 0 for all
k and g(xk+1, xk+1)→I g(x̄, x̄) ≤ 0. Hence, we need to show that λk+1

i →I 0 whenever
gi(x̄, x̄) < 0 for some i. If i is such an index, then gi(xk+1, xk+1) < 0 for k ∈ I sufficiently
large. Since {wki } is bounded and gi(xk+1, xk+1)→I gi(x̄, x̄) < 0, it follows that

λk+1
i = max{0, wki + ρkgi(x

k+1, xk+1)} = 0 (6.37)

for k ∈ I sufficiently large. This shows that (6.36) holds in either case, and the result
follows from Proposition 6.15.

Part (b) of the above theorem is more convenient to state since QVI-EMFCQ directly
implies the feasibility of x̄. However, in many practical scenarios, assertion (a) is actually
the sharper one. This is because, for many problem classes, the fulfillment of the
Feasibility QVI (6.33) yields the feasibility of x̄. In these cases, we obtain the feasibility
from Lemma 6.31, without QVI-EMFCQ.

6.3.2 An Exact Penalty Method

We now consider a modification of the augmented Lagrangian method for QVIs (Algo-
rithm 6.40) which, under suitable conditions, is an exact penalty method. Throughout
this section, we assume that the constraint system of (Q) is given by

Φ(x) := {y ∈ Rn : g(x, y) ≤ 0},
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and that F : Rn → Rn is at least continuously differentiable and g twice continuously dif-
ferentiable. The exact penalty approach only works if we are performing a full penalization
of the constraints. Hence, we omit the function h from Section 6.3.1.

The basic approach is to remove the explicit multipliers in the augmented Lagrangian
and replace them by a multiplier function which is dependent on x. More precisely, for a
given x, we compute λ as a solution of the minimization problem

minimize
λ∈Rm

‖F (x) +∇yg(x, x)λ‖2 + ‖Dg(x)λ‖2, (6.38)

where Dg(x) := diag(g1(x, x), . . . , gm(x, x)). This is a linear least-squares problem, and
the following lemma states precisely when it has a unique solution.

Lemma 6.33 ([55, Prop. 2]). The multiplier problem (6.38) has a unique solution when-
ever g satisfies QVI-LICQ in x. In this case, the solution vector λ(x) is given by

λ(x) = −M∗(x)−1∇yg(x, x)>F (x), (6.39)

where M∗(x) is the positive definite matrix M∗(x) = ∇yg(x, x)>∇yg(x, x) +Dg(x)2.

As a logical consequence of the above lemma, we make the blanket assumption that
g satisfies QVI-LICQ at every point x ∈ Rn. This implies that λ : Rn → Rm is a
well-defined and continuously differentiable function. Note that one might ask whether,
in the absence of QVI-LICQ, a particular solution of (6.38) could be used as a substitute,
e.g., the minimum-norm solution. However, as fairly simple examples show, the resulting
function λ(x) might fail to even be continuous.

With QVI-LICQ and the smoothness of the multiplier function in mind, we consider
the following basic algorithm for the realization of the exact penalty approach. Here and
below, Lρ is the augmented Lagrange function

Lρ(x, λ) = F (x) +∇yg(x, x)(λ+ ρg(x, x))+.

Algorithm 6.34 (Exact penalty method for QVIs in Rn). Choose x0 ∈ Rn, ρ0 > 0,
γ > 1, and set k := 0.

Step 1. Compute λk := λ(xk) as a solution to (6.38).

Step 2. If (xk, λk) is a KKT point of the QVI: STOP.

Step 3. Compute xk+1 as an (exact) zero of the function x 7→ Lρk(x, λ(x)).

Step 4. Set ρk+1 := γρk, set k ← k + 1, and go to Step 1.

Note that the exact penalty concept requires that we solve both the least-squares
problem (6.38) and the nonlinear subproblem in Step 3 exactly. The latter always
possesses solutions; for instance, it is easy to see that Lρ(x, λ(x)) = 0 for all ρ > 0 if x is
a KKT point of the QVI, since in this case the least-squares problem (6.38) yields the
corresponding (unique) Lagrange multiplier.

In general, the function x 7→ Lρ(x, λ(x)) is not continuously differentiable, although
it is semismooth in a sense to be specified later (see Chapter 7). If (x̄, λ̄) is a KKT point
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of the QVI and the strict complementarity condition holds, i.e., if λ̄i > 0 for all i with
gi(x̄, x̄) = 0, then it is easy to see that the function x 7→ Lρ(x, λ(x)) is continuously
differentiable in a neighborhood of x̄.

It turns out that the exact penalty method is theoretically very similar to the aug-
mented Lagrangian method for QVIs (Algorithm 6.29). To see this, note that, if xk+1 is
a zero of Lρk(x, λ(x)), then it is also a zero of the function

Lρk(x,wk), with wk := λ(xk+1).

Furthermore, if {xk+1} converges to x̄ on some subsequence I ⊆ N, then {wk}k∈I is
bounded. This implies that Algorithm 6.34 inherits many convergence properties from
Algorithm 6.29, although it is, strictly speaking, not a special case of the latter, since the
penalty parameter is handled differently and λ(x) is not necessarily positive. In any case,
the following result can be shown similarly to Lemma 6.31.

Lemma 6.35. Assume that Algorithm 6.34 does not terminate finitely, and let x̄ be a
limit point of the sequence {xk}. Then

∇y‖g+(x̄, x̄)‖2 = 0. (6.40)

It should be noted that (6.40) is nothing but the Feasibility QVI from Section 6.3.1,
which takes on the above form in the case of full penalization.

We now turn to the central property of Algorithm 6.34, which is the exactness property.
To this end, we first prove a technical lemma.

Lemma 6.36. Let x be a zero of Lρ(x, λ(x)), and let

s := min

{
−g(x, x),

λ(x)

ρ

}
, t := max

{
−g(x, x),

λ(x)

ρ

}
.

Then Ms = 0, where M := ∇yg(x, x)>∇yg(x, x)−G(x) diag(t). Furthermore, if s = 0,
then (x, λ(x)) is a KKT point of the QVI.

Proof. By definition, λ(x) is a solution of the least-squares problem (6.38). The first-order
necessary conditions of this problem can be written as

∇yg(x, x)>L(x, λ(x)) = −Dg(x)2λ(x).

The definition of s and t implies that ρsiti = −gi(x, x)λi(x) for all i = 1, . . . ,m, and
hence ∇yg(x, x)>L(x, λ(x)) = ρDg(x) diag(t)s. Observe now that

0 = Lρ(x, λ(x)) = L(x, λ(x))− ρ∇yg(x, x)s. (6.41)

We therefore obtain

0 = ∇yg(x, x)>Lρ(x, λ(x)) = ρ
[
Dg(x) diag(t)−∇yg(x, x)>∇yg(x, x)

]
s.

This proves the first part. If s = 0, then min{−g(x, x), λ(x)/ρ} = 0, which implies
g(x, x) ≤ 0, λ(x) ≥ 0, and λ(x)>g(x, x) = 0. It then follows from (6.41) that (x, λ(x)) is
a KKT point of the QVI.



144 6. Quasi-Variational Inequalities

The following is the central result of this section. It shows that Algorithm 6.34
terminates after finitely many outer iterations, and the corresponding iterates xk and λk

constitute a KKT point of the underlying QVI.

Theorem 6.37. Assume that the iterates {xk} generated by Algorithm 6.34 remain
bounded and that every solution of (6.40) is a feasible point. Then the algorithm terminates
finitely and produces a KKT point of the QVI.

Proof. Assume that the method does not terminate finitely, i.e., we obtain sequences
{xk} and {ρk} with ρk →∞. Since {xk} remains bounded, we can choose a subset I ⊂ N
such that xk+1 →I x̄. By Lemma 6.35 and our assumptions, it follows that x̄ is feasible.
Using the notation from Lemma 6.36 and the fact that xk+1 is a zero of Lρk(x, λ(x)) for
all k, we now obtain a sequence of matrices Mk with Mks

k = 0, where

Mk = ∇yg(xk+1, xk+1)>∇yg(xk+1, xk+1)−Dg(xk+1) diag(tk).

But tk = max{−g(xk+1, xk+1), λ(xk+1)/ρk} →I −g(x̄, x̄) and, hence, Mk →I M∗(x̄) with
M∗ from Lemma 6.33. It follows that Mk is nonsingular for sufficiently large k ∈ I. This
implies sk = 0 and the result follows from Lemma 6.36.

Note that the above theorem uses two central assumptions: first, we need the sequence
{xk} to remain bounded. This is a rather standard condition in the context of similar
exact penalty methods [51, 55]. Secondly, we require that every solution of the Feasibility
QVI (which, in this case, takes on the form (6.40)) is a feasible point. This is a similar
condition to those discussed in Section 6.3.1 (see also [132]). Furthermore, it is essentially
equivalent to Assumption B from [55].

We close this section by noting that, for the special case of generalized Nash equilibrium
problems, there already exist exact penalty methods, see [66,69,86]. In the terminology
of optimization problems, however, these methods correspond to the nonsmooth exact `1
penalty function, whereas the approach here is motivated by the differentiable exact penalty
function from [55]. Consequently, even in the context of generalized Nash equilibrium
problems, the present approach has better smoothness properties than existing (exact)
penalty schemes which implies that the resulting subproblems are usually easier to solve.

Remark 6.38. Similar to the approach presented here, it is also possible to construct
exact penalty methods for constrained optimization problems. This can be achieved by
applying the above framework to the VI reformulation of the problem, but it can also
be achieved by directly using the augmented Lagrange function LOpt

ρ from constrained
optimization (see Chapter 4) and inserting the multiplier function λ(x), see [55]. Recall
that Lρ(x, λ) = ∇xLOpt

ρ (x, λ). However, despite this, the two exact penalty approaches
are not identical, since the optimization variant results in a derivative of the form

∇
[
LOpt
ρ (x, λ(x))

]
= ∇xLOpt

ρ (x, λ(x)) +∇λ(x)∇λLOpt
ρ (x, λ(x)),

whereas the exact penalty function Lρ(x, λ(x)) (in the VI sense) does not depend on the
derivative ∇λ(x). This has the implication that, if one wishes to use second-order methods
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for the minimization of LOpt
ρ (x, λ(x)), one actually needs the second-order differentiability

of λ(x), which in turn requires the three times differentiability of the functions defining
the optimization problem, as opposed to the (Q)VI technique which would only require
twice differentiability. For more details, the reader is referred to [51,55].

6.3.3 Generalized Nash Equilibrium Problems

We conclude this chapter by showing how the augmented Lagrangian method can be
specialized for generalized Nash equilibrium problems (GNEPs) in finite dimensions. The
resulting algorithm is essentially equivalent to Algorithm 6.29, but it can be stated more
naturally in the GNEP setting and some of the theoretical aspects have a more natural
interpretation.

The basic framework we consider throughout this section is a GNEP with N ∈ N
players, each in control of a variable xν ∈ Rnν . As in Section 5.3, we write x = (xν , x−ν) ∈
Rn, and consider the GNEP where player ν attempts to solve the problem

minimize
xν∈Rnν

fν(x) subject to gν(x) ≤ 0, hν(x) ≤ 0. (6.42)

Here, fν : Rn → R, gν : Rn → Rmν , hν : Rn → Rpν are continuously differentiable
functions, and

n :=
N∑
ν=1

nν , m :=
N∑
ν=1

mν , p :=
N∑
ν=1

pν , with nν ∈ N and mν , pν ∈ N0.

Here and throughout, we assume that the functions fν , gν , hν are convex with respect
to xν , so that (6.42) is a convex minimization problem for all ν. In this situation, the
GNEP is typically called player-convex.

Similarly to Section 6.3.1, the purpose of the above splitting scheme is to account
for the possibility of partial penalization: the constraints gν will be penalized by the
augmented Lagrangian approach, whereas the functions hν stay as constraints in the
corresponding subproblems. This is also the reason why pν is allowed to be zero, since
this corresponds to the case where no additional (nonpenalized) constraints are given for
player ν. We also allow some of the numbers mν to vanish, although m should be strictly
positive since otherwise there would be no constraints to penalize.

The notions of generalized Nash equilibrium and of KKT points can be defined
similarly to Section 5.3.2. For the sake of brevity, let Gν := (gν , hν) denote the full
constraint function of player ν. We say that x̄ ∈ Rn is a generalized Nash equilibrium or
simply a solution of (6.42) if, for all ν, we have Gν(x̄) ≤ 0 and

fν(x̄ν , x̄−ν) ≤ fν(xν , x̄−ν) ∀xν ∈ Rnν : Gν(xν , x̄−ν) ≤ 0.

Moreover, a tuple (x̄, λ̄, µ̄) ∈ Rn×Rm×Rp is a KKT point of (6.42) if, for all ν, we have

∇xνfν(x̄) +∇xνgν(x̄)λ̄ν +∇xνhν(x̄)µ̄ν = 0,

min{−gν(x̄), λ̄ν} = 0, and min{−hν(x̄), µ̄ν} = 0.

For the subsequent analysis, we will also need certain constraint qualifications for GNEPs.
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Definition 6.39 (Constraint qualifications for GNEPs). Let x̄ ∈ Rn be an arbitrary
point and let Iν := {i = 1, . . . ,mν + pν : Gνi (x̄) = 0} for all ν. We say that

(a) GNEP-LICQ holds in x̄ if, for all ν, the set of gradients {∇xνGνi (x̄)}i∈Iν is linearly
independent.

(b) GNEP-MFCQ holds in x̄ if, for all ν, the set of gradients {∇xνGνi (x̄)}i∈Iν is
positively linearly independent.

(c) GNEP-EMFCQ holds in x̄ if, for all ν, the set of gradients {∇xνGνi (x̄)}i∈I′ν with
I ′ν := {i = 1, . . . ,mν + pν : Gνi (x̄) ≥ 0} is positively linearly independent.

(d) GNEP-CPLD holds in x̄ if, for all ν, whenever Iν ⊆ Iν is a subset such that the
gradients {∇xνGνi (x)}i∈Iν are positively linearly dependent in x := x̄, then they are
linearly dependent for all x in a neighborhood of x̄.

The GNEP (6.42) is strongly connected to a quasi-variational inequality of the form
discussed in Section 6.3.1. Indeed, assume that x̄ is a solution of the GNEP, and define
the functions

F (x) := (∇xνfν(x))Nν=1,
g(x, y) := (gν(yν , x−ν))Nν=1,

h(x, y) := (hν(yν , x−ν))Nν=1.

Using Lemma 3.1, it is easy to see that x̄ is then a solution of the QVI defined by the
operator F and the feasible set (6.27). Moreover, we have

∇yg(x, x) =

∇x1g
1(x)

. . .
∇xN gN (x)

 ,

where unspecified blocks are understood to be zero, and similarly for h. This implies
that the GNEP constraint qualifications above coincide with their QVI counterparts from
Definition 6.14.

The following is a description of the algorithm we will use throughout this section.
Given ρν > 0, the (partial) augmented Lagrangian of player ν takes on the form

Lνρν (x, λν) := fν(x) +
ρν
2

∥∥∥∥(gν(x) +
λν

ρν

)
+

∥∥∥∥2

− ‖λ
ν‖2

2ρν
, (6.43)

where λν ∈ Rmν .

Algorithm 6.40 (Augmented Lagrangian method for GNEPs in Rn). Let (x0, λ0, µ0) ∈
Rn+m+p. Let wmax ≥ 0, ρν,0 > 0, γν > 1, τν ∈ (0, 1) for all ν, and set k := 0.

Step 1. If (xk, λk, µk) satisfies a suitable termination criterion: STOP.

Step 2. Choose wk ∈ [0, wmax]m and compute an approximate KKT point (xk+1, µk+1)
of the GNEP where player ν attempts to solve

minimize
xν∈Rnν

Lνρν,k(x,wν,k) subject to hν(x) ≤ 0. (6.44)
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Step 3. For every ν = 1, . . . , N , update the multiplier vector to

λν,k+1 := max{0, wν,k + ρν,kg
ν(xk+1)}. (6.45)

Step 4. For all ν = 1, . . . , N , if∥∥min{−gν(xk+1), λν,k+1}
∥∥ ≤ τν∥∥min{−gν(xk), λν,k}

∥∥, (6.46)

then set ρν,k+1 := ρν,k. Otherwise, set ρν,k+1 := γνρν,k.

Step 5. Set k ← k + 1 and go to Step 1.

Up to some minor technical details, Algorithm 6.40 is essentially a special case of
Algorithm 6.29. One difference lies in the formulation of the subproblems, which in
the present case are given as GNEPs, whereas in Section 6.3.1 they are formulated as
quasi-variational inequalities. This distinction plays no role if the subproblems are solved
in a KKT sense. Another technical difference between the two algorithms is that, in
Algorithm 6.40, we allow distinct sequences {ρν,k} for every player, and they are updated
with possibly different parameters γν and τν .

It follows that the convergence theory for Algorithm 6.40 can be carried out in a
similar fashion to the previous section. We therefore skip many of the proofs in this
section, instead pointing out and discussing the different interpretations and consequences
of some of the results in the GNEP framework. A more detailed account of the proofs
can also be found in [129].

The following is the basic convergence assumption for Algorithm 6.40. As in Section 5.3,
we write Lνk(x) := Lνρν,k(x,wν,k) for the augmented Lagrangian of player ν at iteration k.

Assumption 6.41 (Global convergence for GNEPs in Rn). At Step 2 of Algorithm 6.40,
we obtain (xk+1, µk+1) such that, for all ν, we have

∇xνLνk(xk+1) +∇xνhν(xk+1)µν,k+1 → 0 and min{−hν(xk+1), µν,k+1} → 0

We once again begin by addressing the feasibility of limit points of {xk}. We have
seen in the previous section that the feasibility properties can be modeled by considering
an auxiliary problem. In the present setting, this can be motivated as follows. Due to
the structure of the augmented Lagrangian (6.43) and since we solve the subproblems
(6.44) in a Nash sense, we can expect some kind of stationarity of the function ‖gν+(x)‖2
for all ν, but with respect to xν only. Taking into account the additional h-constraints,
this leads to the GNEP where player ν attempts to solve

minimize
xν∈Rnν

‖gν+(x)‖2 subject to hν(x) ≤ 0. (6.47)

We will refer to this problem as the game of infeasibility or Feasibility GNEP since it
describes the best we can expect regarding the feasibility of the limit points: player ν
minimizes the violation of the constraint gν with respect to his own variable xν , subject
to the nonpenalized constraints described by hν .
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Note that the Feasibility GNEP is a special case of the Feasibility QVI from Sec-
tion 6.3.1. However, the former has a more tangible interpretation and therefore merits a
dedicated discussion. As in the QVI case, it turns out that limit points of Algorithm 6.40
are stationary points of the Feasibility GNEP. The proof of this result is basically identical
to Lemma 6.31.

Lemma 6.42. Let Assumption 6.41 hold and let x̄ be a limit point of {xk}. Then:
(a) If the functions hν satisfy GNEP-CPLD in x̄, then x̄ is a stationary point of the

Feasibility GNEP (6.47).

(b) If the functions (gν , hν) satisfy GNEP-EMFCQ in x̄, then x̄ is feasible.

As indicated by the above theorem, the Feasibility GNEP plays a fundamental role
in the analysis of penalty-type algorithms such as the augmented Lagrangian method.
An interesting case in which the Feasibility GNEP has some structural properties is
the following, which covers, as a special case, the jointly convex GNEP. Assume that
the functions gν describe a shared constraint (which we denote by g) and that hν is a
function of xν only. Furthermore, assume that both g and hν are convex. Hence, player
ν’s optimization problem takes the form

minimize
xν∈Rnν

fν(x) subject to g(x) ≤ 0, hν(xν) ≤ 0. (6.48)

For such GNEPs, we can prove the following theorem which makes the same assertion as
Lemma 6.42 (b). Note, however, that we do not require any constraint qualification for
the function g.

Corollary 6.43. Consider a GNEP of the form (6.48), with g, hν convex functions, and
assume that the feasible set of the problem is nonempty. Then every KKT point of the
corresponding Feasibility GNEP (6.47) is a feasible point for (6.48).

Proof. By assumption, there are multipliers µ̂ν ∈ Rpν such that

∇xν‖g+(x̄)‖2 +∇hν(x̄ν)µ̂ν = 0 and min{−hν(x̄ν), µ̂ν} = 0

for all ν. Hence, x̄ together with µ̂ := (µ̂1, . . . , µ̂N ) is a KKT point of the problem

minimize
x∈Rn

‖g+(x)‖2 subject to hν(xν) ≤ 0 for all ν. (6.49)

Since this is a convex optimization problem, it follows that x̄ is a global minimizer. By
assumption, the optimal value of (6.49) is zero, and thus x̄ is feasible.

We now prove the optimality of limit points of Algorithm 6.40. The definition of
λν,k+1 in the algorithm implies that

∇xνLνk(xk+1) = ∇xνfν(xk+1) +∇xνgν(xk+1)λν,k+1

for all k. Together with Assumption 6.41, this suggests that (xk, λk, µk) is some kind of
asymptotic KKT sequence for the GNEP (6.42). (This concept was formally defined in
Section 3.2.3, but only for variational inequalities.) This property implies the following
result whose proof is basically identical to that of Theorem 6.32.
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Theorem 6.44. Let Assumption 6.41 hold and let x̄ be a limit point of {xk}. Then x̄ is
a stationary point of the GNEP provided that one of the following holds:

(a) x̄ is feasible and the functions (gν , hν) satisfies GNEP-CPLD in x̄.

(b) The functions (gν , hν) satisfies GNEP-EMFCQ in x̄.

We close this section with a remark on the relationship between Algorithm 6.40 and
Algorithm 5.28 for jointly convex GNEPs.

Remark 6.45. The method discussed in this section can also be seen as a generalization
of Algorithm 5.28 for jointly convex GNEPs in finite dimensions. Indeed, that algorithm
can be recovered as a special case of the present one by simply choosing the parameters
λν,0, µν,0, ρν,0, γν , and τν from Algorithm 6.40 in a manner which is independent of ν.
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Chapter 7

Applications

This chapter presents a variety of applications of the theoretical framework from Chapters 4
to 6. In addition, we discuss a general type of semismooth Newton methods which can be
used to solve the subproblems occurring in the augmented Lagrangian method.

Recall that the optimization framework from Chapter 4 encompasses multiple problem
types such as nonlinear programming, semidefinite and second-order cone programming,
and function space optimization. For nonlinear programming, there exists a plethora of
literature on the numerical behavior of augmented Lagrangian methods, see, for instance,
[5, 26, 124]. For semidefinite programming, many implementation details and applications
can be found in the works of Kočvara and Stingl [145–147]. As a result, the main focus
in this chapter will be on function space optimization problems.

One of the most fundamental ingredients for a practical application of the augmented
Lagrangian scheme is a suitable generalized Newton method for the solution of the
augmented subproblems. Speaking in the optimization case, the distinctive feature of
these problems is that they are once but not twice continuously differentiable. Hence, an
indispensable tool for their solution is a sufficiently general theory of semismooth functions
and corresponding Newton-type methods. Historically, the concept of semismoothness
was introduced by Mifflin [162], and the semismooth Newton method goes back to the
works of Qi and Sun [180] and Kummer [152] in finite dimensions, see also [179]. The
method was extended to the general Banach space setting in [43,213]; for more details,
see [109, 214]. For certain problem types, the semismooth Newton algorithm coincides
with a primal-dual active set strategy, see [21,23,102].

This chapter is structured as follows. Section 7.1 contains some preliminary thoughts
and considerations for the practical application of the augmented Lagrangian scheme.
In particular, this section contains a brief discussion of semismooth functions and the
resulting generalized Newton methods which play a fundamental role in the solution of the
augmented subproblems. In Section 7.1.2, we present a semismooth Levenberg–Marquardt
type algorithm which can be seen as a globalization or regularization of the semismooth
Newton method. Section 7.1.3 then contains some remarks and a discussion of the
discretization techniques employed in the numerical experiments.

The subsequent sections then deal with various types of problem classes and cor-
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responding applications. Most of the examples can be found in similar forms in the
publications [129, 132, 133, 136] or the preprints [128, 134]. Section 7.2 is dedicated to
constrained optimization problems in function spaces, including convex and nonconvex
obstacle-type problems as well as state-constrained optimal control. Section 7.3 contains
generalized Nash equilibrium problems (GNEPs) in a Banach space setting, including
environmental differential games and multiobjective control problems involving partial
differential equations. In Section 7.4, we present some applications of the quasi-variational
inequality (QVI) framework from Chapter 6. This section contains an implicit version of
the well-known Signorini problem [18,167] and a QVI involving parametric gradient con-
straints which arises, for instance, in superconductivity [104, 193]. Finally, in Sections 7.5
and 7.6, we give some applications of GNEPs and QVIs, respectively, in finite dimensions.

7.1 Preliminary Considerations

This section contains some preliminary discussion for the implementation of the augmented
Lagrangian method. In particular, we will analyze the concept of semismoothness and
present two algorithms for the solution of the augmented subproblems.

7.1.1 Semismooth Newton-type Methods

The practical implementation of the augmented Lagrangian technique crucially depends on
the fulfillment of generalized smoothness properties. Recall that the augmented Lagrange
function Lρ (in the optimization sense) is once but not twice continuously differentiable
with respect to x since the derivative L′ρ with respect to x involves the projection operator
PK, see the discussion in Section 4.1.3. If K is not a subspace of H, then this projection
is in general a nonsmooth function.

The present section is therefore dedicated to a brief description of generalized smooth-
ness concepts, in particular the so-called semismoothness. In many applications, it is
possible to show that the projection operator PK is indeed semismooth, and this facilitates
the application of Newton-type methods for the solution of the augmented subproblems.

For the sake of generality, we conduct the subsequent analysis in the framework of a
general nonlinear operator

T : X → Y, where X and Y are real Banach spaces.

The main concept of generalized smoothness we will consider is the following.

Definition 7.1 (Semismooth mapping). Let X,Y be real Banach spaces and T : X → Y
a continuous mapping. We say that T is semismooth on X if there exists a set-valued
mapping ∂T : X ⇒ L(X,Y ) with nonempty images such that, for all x ∈ X,

sup
M∈∂T (x+s)

‖T (x+ s)− T (x)−Ms‖Y = o(‖s‖X) as ‖s‖X → 0. (7.1)

In this case, we also say that T is ∂T -semismooth.
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It is possible to restrict the definition of semismoothness to subsets of X. This
modification is fairly straightforward and not necessary for our purposes.

The notion of semismoothness is a fundamental concept of generalized smoothness
which will allow us to formulate Newton-type algorithms with fast local convergence
properties. Clearly, if T is continuously differentiable, then it is also semismooth, and we
can choose ∂T (x) := {T ′(x)} for all x. However, it is interesting to note that, even in the
differentiable case, the generalized derivative ∂T is not unique. Indeed, given any finite
set S ⊆ X, we can always change the values ∂T (x), x ∈ S, in an essentially arbitrary
manner, and the resulting set-valued mapping will still be a generalized derivative of
T . This is because, for any x ∈ X, we have x + s /∈ S for all s 6= 0 sufficiently small,
regardless of whether x ∈ S or not.

If the spaces X,Y are finite-dimensional and the function T is locally Lipschitz-
continuous, then there are two common candidates for generalized derivatives. In this
case, a famous theorem of Rademacher [191] asserts that T is Fréchet-differentiable on a
dense subset DT ⊆ X, and this motivates the Bouligand subdifferential

∂BT (x) :=
{
M ∈ L(X,Y ) : ∃xk → x, {xk} ⊆ DT , such that T ′(xk)→M

}
,

as well as the Clarke subdifferential ∂ClT (x), which is the convex hull of ∂BT (x). Many
common nonsmooth functions T on finite-dimensional spaces can be shown to be semi-
smooth with respect to ∂B or ∂Cl; indeed, a common definition in the finite-dimensional
context is to say that T is semismooth if it is ∂ClT -semismooth in the sense of Def-
inition 7.1. Some examples of ∂ClT -semismooth functions include the absolute value
function, the positive (negative) part mapping on Rn (see below), and the projection onto
the cone of positive semidefinite matrices [207].

An important property of semismoothness is its propagation under various mathemat-
ical operations. Note that we call a set-valued mapping W : X ⇒ Y locally bounded if,
for every x ∈ X, there exists r > 0 such that W(Br(x)) is bounded in Y .

Proposition 7.2 ([109, Thm. 2.10]). Let X,Y, Z,Xi, Yi be real Banach spaces.

(a) If the operators Ti : X → Yi are ∂Ti-semismooth for i = 1, 2, then (T1, T2) is
(∂T1 × ∂T2)-semismooth.

(b) If the operators Ti : X → Y are ∂Ti-semismooth for i = 1, 2, then T1 + T2 is
(∂T1 + ∂T2)-semismooth.

(c) If T1 : Y → Z and T2 : X → Y are ∂Ti-semismooth, the mapping ∂T1 is locally
bounded, and T2 is locally Lipschitz-continuous, then T1 ◦ T2 is semismooth with

∂(T1 ◦ T2)(x) = {M1M2 : M1 ∈ ∂T1(T2(x)), M2 ∈ ∂T2(x)}.

We now present the basic semismooth Newton algorithm for the solution of the
nonlinear equation

T (x) = 0, (7.2)

where T : X → Y is a semismooth operator and X,Y are real Banach spaces.



154 7. Applications

Algorithm 7.3 (Basic semismooth Newton method). Let x0 ∈ X and k := 0.

Step 1. If xk is a sufficiently accurate zero of T : STOP.

Step 2. Choose Mk ∈ ∂T (xk) and compute dk as a solution of the Newton equation

Mkd
k = −T (xk). (7.3)

Step 3. Set xk+1 := xk + dk, set k ← k + 1, and go to Step 1.

Note that the choice of Mk in Step 2 is essentially arbitrary. Furthermore, the Newton
equation (7.3) may have none or multiple solutions depending onMk. In an ideal scenario,
the operators Mk are invertible, and thus this equation admits a unique solution dk.

Theorem 7.4 ([109, Thm. 2.12]). Let T : X → Y be a semismooth operator, x̄ ∈ X
a point with T (x̄) = 0, and assume that there exist r, c > 0 such that all elements
M ∈ ∂T (x), x ∈ Br(x̄), admit bounded inverses M−1 : Y → X with

‖M−1‖L(Y,X) ≤ c for all M ∈ ∂T (x), x ∈ Br(x̄).

Then, if x0 is chosen sufficiently close to x̄, the sequence generated by Algorithm 7.3
converges Q-superlinearly to x̄.

Let us now discuss how the above algorithm and convergence result can be applied
in practice. To this end, assume that the nonlinear mapping T is the derivative of the
augmented Lagrangian Lρ from Chapter 4, which takes on the form

L′ρ(x,w) = f ′(x) + ρG′(x)∗
[
G(x) +

w

ρ
− PK

(
G(x) +

w

ρ

)]
. (7.4)

For the sake of simplicity, we assume that no additional constraints are present, so that
the augmented subproblems arising in Algorithm 4.4 can be solved by means of the
nonlinear equation L′ρ(x,w) = 0.

To make the discussion more focused and more concrete, we restrict ourselves to two
typical examples. We first begin by considering the case where Y is finite-dimensional.
This simple base case will allow us to highlight the key ideas and concepts of generalized
smoothness. Assume that Y := H := Rm and K := K := Rm− for some m ∈ N, i.e., we
are dealing with the nonlinear program

minimize
x∈X

f(x) subject to G(x) ≤ 0. (7.5)

In this case, the projection PK takes on the simple form PK(y) = min{y, 0}, where the
minimum is understood componentwise. Moreover, passing to the gradient mappings,
(7.4) can be rewritten as

∇Lρ(x,w) = ∇f(x) +∇G(x) max{w + ρG(x), 0},

where ∇ is understood with respect to x. Thus, the question of semismoothness reduces to
that of the maximum function on Rm. It turns out that this function is indeed semismooth,
and its generalized derivatives can be constructed by means of suitable diagonal matrices.
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Lemma 7.5. The mapping m : Rm → Rm, m(x) := max{x, 0}, is semismooth with
generalized derivatives given by

V ∈ ∂m(x) ⇐⇒ V = diag(v), vi


= 1, if xi > 0,

∈ [0, 1], if xi = 0,

= 0, if xi < 0.

The proof of this lemma is elementary and therefore omitted. It follows from the above
result and Proposition 7.2 that the gradient of Lρ is semismooth, and thus Algorithm 7.3
can be employed for the solution of the subproblems arising in the augmented Lagrangian
method.

Let us now consider a more general framework which is prototypical for function space
problems. Let Y be a suitable function space densely embedded into H := L2(Ω), where
Ω ⊆ Rd is a bounded Lipschitz domain. This covers many spaces of practical interest
such as H1(Ω), H1

0 (Ω), or C(Ω). Assume furthermore that K = Y− and K = H−, so that
we are dealing with an inequality constraint of the form

G(u) ≤ 0 a.e. in Ω.

In this case, the derivative of the augmented Lagrangian (7.4) takes on the form

L′ρ(u,w) = f ′(u) +G′(u)∗max{w + ρG(u), 0}, (7.6)

where we write u instead of x to emphasize the function space setting. Thus, the
semismoothness of L′ρ once again depends on that of the maximum function.

Assume now that Y ↪→ Lp(Ω) for some p > 2. It is well-known that max{·, 0} :
Lp(Ω) → L2(Ω) is semismooth in this case, see, for instance, [214]. In the present
situation, one further has to take into account that, according to the specification of the
augmented Lagrangian method, the “shift” vector w is in general an element of L2(Ω).
Thus, the maximum function in (7.6) cannot be interpreted as a mapping from Lp(Ω)
to L2(Ω), but it is easy to see that the semismoothness of the mapping max{·, 0} can
be extended to mappings of the form max{·, w}, where w ∈ L2(Ω). The generalized
derivatives of these mappings can be constructed by considering suitable elements in
L(Lp(Ω), L2(Ω)) induced by pointwise multiplication with a function in Ls(Ω), where
s ∈ [2,∞) is chosen so that 1/2 = 1/s+ 1/p.

Proposition 7.6. Let Ω ⊆ Rd be a bounded domain, 1 ≤ q < p ≤ +∞ given numbers,
and w ∈ Lq(Ω). Then the mapping m(u) := max{u,w} is semismooth from Lp(Ω) into
Lq(Ω) with generalized derivatives almost everywhere given by

z ∈ ∂m(u) ⇐⇒ z ∈ Ls(Ω), z(x)


= 1, if u(x) > w(x),

∈ [0, 1], if u(x) = w(x),

= 0, if u(x) < w(x),

(7.7)

where s ∈ [1,∞) is chosen so that 1/q = 1/s+ 1/p.
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Proof. The proof is an adaptation of [119, Example 8.12]. We need to show that (7.7) is
a generalized derivative of m in the sense of Definition 7.1. Let u ∈ Lp(Ω) be an arbitrary
point, {sk} ⊆ Lp(Ω) a (strong) null sequence, uk := u+ sk, and dk ∈ ∂m(uk) for all k.
Then there is a subsequence {sk}k∈I of {sk} such that sk(t)→I 0 for almost every t ∈ Ω.
Writing v := m(u), vk := m(uk), and using the semismoothness of max{·, w(t)} in u(t)
for all t ∈ Ω, we obtain

sk(t)
−1
∣∣vk(t)− v(t)− dk(t)sk(t)

∣∣→I 0 for a.e. t ∈ Ω,

where the quotient on the left is understood to be zero whenever sk(t) = 0. Observe
now that |vk(t) − v(t) − dk(t)sk(t)| ≤ 2|sk(t)| for almost all t by the nonexpansiveness
of the max function. Thus, we can apply Lebesgue’s dominated convergence theorem
and deduce that s−1

k (vk − v − dksk)→I 0 in Lr(Ω) for all r ∈ [1,∞). We can then apply
Hölder’s inequality to conclude that

‖vk − v − dksk‖Lq(Ω)

‖sk‖Lp(Ω)
≤ ‖s−1

k (vk − v − dksk)‖Ls(Ω) →I 0. (7.8)

Since the above argument can be repeated for any subsequence of {sk}, it follows that
the limit in (7.8) holds with I replaced by N, and the proof is complete.

We now state a practical corollary of the above result in terms of the function
u 7→ ‖(u + w)+‖2L2(Ω), where w ∈ L

2(Ω). This mapping arises naturally as part of the
augmented Lagrangian approach, and Proposition 7.6 yields a generalized second-order
derivative of this function. Moreover, it is interesting to note that we can choose the
generalized derivatives to be nonnegative, where a bilinear mapping a : X2 → R is called
nonnegative if a(x, x) ≥ 0 for all x ∈ X. If a is given through an operator M : X → X∗,
then this can equivalently be stated as 〈Mx, x〉 ≥ 0 for all x ∈ X.

Corollary 7.7. Let p > 2 and w ∈ L2(Ω). Then the function P : Lp(Ω)→ R, P (u) :=
‖(u+w)+‖2L2(Ω), is continuously differentiable on Lp(Ω). Its derivative P ′ is semismooth,
and ∂P ′ can be chosen such that all elements M ∈ ∂P ′(u), u ∈ Lp(Ω), are nonnegative.

Proof. By Lemma 2.43, the function P is even continuously differentiable on L2(Ω). Its
derivative is given by P ′(u) = 2(u+ w)+ for all u ∈ Lp(Ω). By Proposition 7.6, this is a
semismooth function with generalized derivatives almost everywhere given by

z ∈ ∂P ′(u) ⇐⇒ z ∈ Ls(Ω), z(x)


= 1, if u(x) + w(x) > 0,

∈ [0, 1], if u(x) + w(x) = 0,

= 0, if u(x) + w(x) < 0,

where s is chosen so that 1/p+1/s = 1/2. It remains to show that all elements z ∈ ∂P ′(u)
are nonnegative operators, in the sense that 〈v, zv〉 ≥ 0 for all v ∈ Lp(Ω). But this is
clear from the definition of z.
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The above results imply that the semismooth Newton method can be used to compute
stationary points of the augmented Lagrange function, provided that Y ↪→ Lp(Ω) for
some p > 2.

Let us close this section by noting that, while the semismooth Newton method provides
a powerful framework for the solution of nonlinear equations in Banach spaces, it has
a definite drawback in that it is a local method only. For Theorem 7.4, we need the
starting point x0 to be sufficiently close to the solution x̄, and the method may fail to
converge if x0 is far from x̄ unless extremely strong assumptions are made. Indeed, a
rather pathological example in this direction is the function

T : R→ R, T (x) :=


x− 2, if x < −1,

3x, if x ∈ [−1, 1],

x+ 2, if x > 1.

This function is strongly monotone and semismooth but, for any starting point x0 /∈ [−1, 1],
the semismooth Newton method eventually oscillates between the points −2 and 2. Note
that the example is nonsmooth, but it is easy to construct a smooth example where
Newton’s method exhibits the same pathological behavior.

7.1.2 A Levenberg–Marquardt Algorithm

We now present a more sophisticated algorithm, one of Levenberg–Marquardt type, which
is based on the semismooth Newton method but aims to overcome some of its drawbacks.
In particular, the algorithm has significantly better global convergence characteristics,
and it can achieve fast local convergence even for nonisolated solutions. The analysis of
Levenberg–Marquardt methods has been an active research subject in the past decades,
see [63,72,220]. The algorithm and results below will be presented in a finite-dimensional
framework, although there is no apparent reason why the method could not be extended
to a suitable infinite-dimensional setting. A vaguely related algorithm using trust-region
techniques can be found in [214].

Throughout this section, we consider the nonlinear equation

T (x) = 0, (7.9)

where T : Rn → Rm is a locally Lipschitz-continuous semismooth mapping. Here and
throughout, since the involved spaces are finite-dimensional, semismoothness is understood
in terms of the Clarke subdifferential ∂Cl.

Algorithm 7.8 (Semismooth Levenberg–Marquardt algorithm). Let x0 ∈ Rn and k := 0.

Step 1. If xk is a sufficiently accurate zero of T : STOP.

Step 2. Choose Mk ∈ ∂T (xk), αk ≥ 0, and compute dk as a solution of the equation

(M>k Mk + αkIn)dk = −T (xk). (7.10)

Step 3. Set xk+1 := xk + dk, set k ← k + 1, and go to Step 1.
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The equation (7.10) is also called damped Newton equation. In practice, it is seldom
solved by forming the product M>k Mk. Instead, one solves the equivalent linear least
squares problem

minimize
d∈Rn

‖T (xk) +Mkd‖2 + αk‖d‖2. (7.11)

Observe that this is just the least squares problem corresponding to the overdetermined
linear equation (

Mk√
αkIn

)
d

!
=

(
−T (xk)

0

)
. (7.12)

This equation reduces to the standard Newton equation (7.3) if m = n and αk = 0.
On the other hand, if αk > 0, then the matrix in (7.11) has full column rank and the
corresponding least squares problem admits a unique solution. This solution can be
determined efficiently by computing, for instance, a QR decomposition of the matrix
(with column pivoting).

In practice, the damping factor αk is often used to provide some kind of globalization.
Indeed, if αk > 0 is large, then the minimization problem (7.11) will eventually force
dk to become small. Assuming for the moment that T is continuously differentiable, it
follows that dk will eventually lie in a region where the first-order approximation

T (xk + d) ≈ T (xk) + T ′(xk)d = T (xk) +Mkd

is sufficiently accurate. Hence, given the nature of the minimization problem (7.11), it
is reasonable to expect that ‖T (xk + dk)‖ < ‖T (xk)‖. This observation can be used to
construct a heuristic globalization scheme which is often sufficient in practice: given αk,
we compute dk as a solution of (7.10). If ‖T (xk + dk)‖ < ‖T (xk)‖, then we proceed as
in Algorithm 7.8 and choose the next regularization parameter as αk+1 := c1αk with
c1 ∈ (0, 1). Otherwise, we repeatedly multiply αk by some factor c2 > 1 and recompute
dk until the descent condition ‖T (xk + dk)‖ < ‖T (xk)‖ is satisfied.

We now discuss the local convergence characteristics of Algorithm 7.8. To this end,
let S := T−1(0) denote the solution set of (7.9), and let x̄ ∈ S be a fixed point. Note that
S is not assumed to consist of isolated points. In the nonisolated case, the role of the
regularity assumption from Theorem 7.4 is taken on by a so-called error bound condition,
which postulates the existence of constants r, c > 0 such that

dist(x,S) ≤ c‖T (x)‖ for all x ∈ Br(x̄). (7.13)

Under this and a few other technical assumptions, it is possible to show that, given x0

sufficiently close to x̄, and choosing αk := ‖T (xk)‖2 for all k, the Levenberg–Marquardt
algorithm converges Q-superlinearly (or even Q-quadratically) to a point in S, see [63].
We will not state this result here explicitly due to the overhead induced by the required
technical assumptions. We will however state the following related result from [72] on the
differentiable case.

Theorem 7.9. Let T be continuously differentiable with locally Lipschitz-continuous
derivative on Rn, let S := T−1(0) denote the solution set of (7.9), and let x̄ ∈ S. Assume



7.2. Constrained Optimization in Banach Spaces 159

that there exist r, c > 0 such that the error bound (7.13) holds. Then, if x0 is sufficiently
close to x̄ and αk = ‖T (xk)‖δ for all k with δ ∈ [1, 2], it follows that {xk} converges
Q-quadratically to an element in S.

Let us close this section by noting that Levenberg–Marquardt type regularization
schemes can also be applied in a slightly different manner when dealing with minimization
problems. Consider, for the sake of simplicity, an unconstrained problem of the form

minimize
x∈Rn

f(x),

where f : Rn → R is continuously differentiable with semismooth derivative (also called
an SC1-function). Given a current iterate xk ∈ Rn and Mk ∈ ∂(∇f)(xk), a natural
regularization technique is to choose αk ≥ 0 and solve the modified Newton equation

(Mk + αkIn)dk = −∇f(xk),

the vague idea being that αk dampens the impact of negative eigenvalues of Mk on the
search direction. Note that dk becomes approximately parallel to the negative gradient
direction −∇f(xk) if αk is large. The above regularization scheme is closely related to
trust-region methods [48].

7.1.3 Some Remarks on Discretization

In the subsequent sections, a significant emphasis will be placed on problems in infinite
dimensions (function spaces). In practice, these problems are then solved by using a
suitable discretization scheme and solving the resulting finite-dimensional discretized
problems. A common procedure is to solve the problems with increasingly fine levels
of discretization and to use the resulting observations as an indicator of how well the
theoretical background of the numerical algorithm works on the continuous (infinite-
dimensional) level.

In what follows, we will mainly employ simple discretization schemes using finite
differences. This has the advantage that the resulting discretized problems are fairly
simple and closely resemble the original problem in their structure. Moreover, the use of
simple discretization techniques allows us to focus on the theoretical properties of the
augmented Lagrangian method, their consequences, and their verification in practice,
without becoming too distracted by implementation details.

It is also possible to solve many of the problems below by using a finite element type
discretization (see, e.g., [36]). We will implicitly use this approach for some selected
examples which we solve by using the FEniCS software package [158,159]. In this case,
however, the finite element discretization is not performed explicitly on the problem level
but implicitly by the program.

7.2 Constrained Optimization in Banach Spaces

We now turn to an array of practical applications for the augmented Lagrangian methods
presented in Chapters 4 to 6. The present section deals with constrained optimization
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problems in a function-space setting. The basic framework we consider is that of Chapter 4,
i.e., an optimization problem of the form

(P ) minimize
x∈C

f(x) subject to G(x) ∈ K, (7.14)

where X,Y are real Banach spaces, f : X → R and G : X → Y are sufficiently smooth
functions, and C ⊆ X as well as K ⊆ Y are nonempty closed convex sets. Moreover, H
is a real Hilbert space, i : Y → H a dense embedding, and K ⊆ H a closed convex set
with i−1(K) = K.

Since the examples below will be in a function space context, we will often write u
instead of x to denote the optimization variable, whereas x will occasionally denote the
underlying function parameter, i.e., x lies in some finite-dimensional domain. This change
of notation should be rather clear from the context and hopefully does not cause any
confusion. Moreover, for a function space Y , we will denote by Y− (Y+) the nonpositive
(nonnegative) cone in Y .

In the subsequent discussion, a significant emphasis will be placed on the applicability
of the theoretical convergence results in practice. These include, in particular, the
global convergence properties from Sections 4.2.2 and 4.2.3, and the local results from
Sections 4.3.1 and 4.3.2. As discussed in Section 7.1.3, the practical solution of the
problems requires a suitable discretization approach, and the algorithm is therefore
formally applied at the discrete level. The apparent change in behavior of the algorithm
with increasingly fine levels of discretization is then taken as an indicator of the validity
of the theory on the infinite-dimensional level.

In practice, due to the discretization, the augmented Lagrangian method (Algo-
rithm 4.4) is applied to a finite-dimensional approximation of the corresponding problem.
The implementation was done in MATLAB and uses the algorithmic parameters

λ0 := 0, ρ0 := 1, B := [−106, 106] γ := 10, τ := 0.1

(where B is understood in a suitable function space, usually an L2-space), together with
a problem-dependent starting point u0. The sequence {wk} is chosen as wk := PB(λk),
i.e., it is a safeguarded analogue of the multiplier sequence.

Recall that our algorithmic framework contains the quadratic penalty or Moreau–
Yosida regularization technique as a special case (for wk ≡ 0). Since this method is rather
popular for function space problems (see the discussion at the beginning of Chapter 4),
the present section also contains a numerical comparison of that method to the augmented
Lagrangian scheme. In order to make the comparison fair, two modifications were
incorporated into the methods. For the Moreau–Yosida scheme, it does not make sense to
update the penalty parameter conditionally, and it is therefore increased in every iteration.
On the other hand, for the augmented Lagrangian method, the penalty updating scheme
was modified slightly in order to be well-defined for k = 0. This is achieved by formally
setting w−1 := w0 and ρ−1 := ρ0, see the discussion in Section 4.1.3.
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7.2.1 The Obstacle Problem

The obstacle problem is one of the basic and most prominent examples of optimization
problems in Banach spaces, with many applications in the engineering sciences and in
mathematical physics [192].

For the formal description of the problem, let Ω ⊆ Rd be a bounded domain, and
consider the minimization problem

minimize
u∈H1

0 (Ω)
J(u) subject to u ≥ ψ, (7.15)

where J(u) := ‖∇u‖2L2(Ω) and ψ ∈ H
1
0 (Ω) is a fixed obstacle. In the context of our general

framework (P ), we have

X := Y := H1
0 (Ω), C := X, G(u) := u− ψ, K := Y+,

H := L2(Ω), K := H+.

Note that the objective function J is strongly convex by the Poincaré inequality (The-
orem 2.29), and that the feasible set Φ is closed and convex. It follows from standard
arguments that the obstacle problem admits a unique solution ū ∈ X. Moreover, the
derivative G′(ū) = IdX is surjective from X onto Y , and thus there exists a uniquely
determined Lagrange multiplier λ̄ ∈ Y ∗ = H−1(Ω), see Section 3.1.1. The KKT system
takes on the form

J ′(ū) + λ̄ = 0 and 0 ≤ ū− ψ ⊥ λ̄ ≤ 0,

where the negativity of λ̄ is understood in the sense of H−1(Ω), i.e., 〈λ̄, u〉 ≤ 0 for all
u ∈ H1

0 (Ω) with u ≥ 0.
We now apply the augmented Lagrangian method to the problem. The subproblems

are solved by computing stationary points (which, due to convexity, are also global
minimizers). Note that these problems always admit solutions since J is strongly convex
and G is linear, which implies that the augmented Lagrangian Lρ(·, w) is also strongly
convex for all ρ > 0 and w ∈ H. In fact, by Corollary 7.7, the generalized second order
derivatives of the augmented Lagrangian are uniformly positive, and this implies that the
semismooth Newton method converges superlinearly by Theorem 7.4.

Due to the strong convexity of J and the surjectivity of G′(u), it follows that the
augmented Lagrangian method enjoys powerful global convergence properties. Indeed, the
primal sequence {uk} converges strongly to ū in X by Corollary 4.13 (or Corollary 5.9),
and the dual sequence {λk} converges weak-∗ by Proposition 4.20. Actually, we have
from the definition of the augmented Lagrangian and λk+1 that

J ′(uk+1) + λk+1 = L′ρk(uk+1, wk)→ 0 as k →∞,

which implies λk → −J ′(ū) = λ̄ strongly in Y ∗.
We now present some numerical results for Ω := (0, 1)2 and the obstacle

ψ(x, y) := max

{
0.1− 0.5

∥∥∥∥(x− 0.5
y − 0.5

)∥∥∥∥ , 0} ,
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see Figure 7.1. For the solution process, we choose n ∈ N and discretize Ω by means of
a standard grid which consists of n (interior) points per row or column, i.e., n2 interior
points in total. Furthermore, we use

J(u) = ‖∇u‖2L2(Ω) = −〈∆u, u〉X for all u ∈ X

and approximate the Laplace operator by a standard five-point finite difference scheme.
The subproblems occurring in the algorithm are unconstrained minimization problems
which we solve by applying the semismooth Newton method from Section 7.1.1.

Augmented Lagrangian Moreau–Yosida
n outer inner final ρk outer inner final ρk
16 6 9 104 7 11 107

32 7 13 105 7 15 107

64 7 17 105 7 18 107

128 7 22 106 8 22 108

256 8 25 107 8 27 108

Table 7.1: Numerical results for the obstacle problem from Section 7.2.1.

Table 7.1 contains the inner and outer iteration numbers together with the final penalty
parameters for different values of the discretization parameter n. Both the augmented
Lagrangian and Moreau–Yosida methods scale rather well with increasing dimension; in
particular, the outer iteration numbers remain nearly constant. Performance-wise, the
two methods perform very similarly, with the augmented Lagrangian method holding a
slight advantage in terms of iteration numbers and penalty parameters.

The fact that the outer iteration numbers of the augmented Lagrangian method
remain nearly constant with increasing n is a good indicator that the theory behind the
algorithm works in this case, and that the method achieves convergence on the continuous
(infinite-dimensional) level.

Remark 7.10. The obstacle problem always admits a unique Lagrange multiplier λ̄ ∈
H−1(Ω). Under suitable regularity assumptions on the obstacle ψ, it is possible to show
that actually λ̄ ∈ L2(Ω). In that case, the solution ū satisfies the second-order sufficient
condition with respect to the space H = L2(Ω). However, in any case, one cannot expect
the problem to be regular (in the constraint qualification sense) with respect to H since
the range of the constraint mapping is completely contained in H1

0 (Ω).

7.2.2 Bratu’s Obstacle Problem

This section contains a nonlinear variation of the obstacle problem which can be used
to model nonlinear diffusion phenomena occurring, for instance, in combustion and in
semiconductors. More details on this problem can be found in [70,110].

The minimization problem presented here is a non-quadratic and nonconvex problem
which differs from that of the previous section in the choice of objective function. To this
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(a) Constraint function ψ (b) Solution ū

Figure 7.1: Numerical results for the obstacle problem with n = 64.

end, let

J(u) := ‖∇u‖2L2(Ω) − α
∫

Ω
e−u(x) dx (7.16)

for some fixed α > 0. Similarly to before, we consider the minimization problem

minimize
u∈H1

0 (Ω)
J(u) subject to u ≥ ψ (7.17)

with a fixed obstacle ψ ∈ X. In the context of our general framework (P ), we have

X := Y := H1
0 (Ω), C := X, G(u) := u− ψ, K := Y+,

H := L2(Ω), K := H+.

To ensure well-definedness of the objective J , we require that Ω ⊆ R2. This allows us to
prove the following result.

Lemma 7.11. If Ω ⊆ R2, then the functional J given by (7.16) is well-defined, continu-
ously Fréchet-differentiable, and weakly sequentially lsc from H1

0 (Ω) into R. Moreover,
the derivative J ′ : H1

0 (Ω)→ H−1(Ω) is bounded and pseudomonotone.

Proof. By [136, Lem. 7.1], the function J is continuously differentiable and weakly
sequentially lsc on H1

0 (Ω). The proof in that reference also shows that the integral
term J2 in the definition of J is weakly sequentially continuous, uniformly differentiable
on bounded subsets of H1

0 (Ω), and J ′2 is bounded on bounded subsets of H1
0 (Ω). It

follows that J ′ is also a bounded operator. Moreover, J ′2 is completely continuous by
Proposition 2.17, and J ′ is pseudomonotone by Example 3.38.

Due to the constraint u ≥ ψ, the functional J is coercive on the feasible set of (7.17).
The above lemma therefore yields the existence of a solution ū ∈ X. As with the standard
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obstacle problem, the derivative G′(ū) is surjective and therefore we obtain the existence
of a unique Lagrange multiplier λ̄ ∈ Y ∗ = H−1(Ω).

Let us now discuss the convergence properties of the augmented Lagrangian method
applied to the Bratu problem. Note that, as opposed to the obstacle problem, the objective
function (7.16) is no longer convex. Hence, we can only expect to compute stationary
points of the augmented subproblems which are not necessarily local or global minimizers.
In this scenario, it follows from Propositions 4.19 and 4.20 that every weak limit point û
of the primal sequence {uk} is a stationary point of the problem, and the corresponding
subsequence of {λk} converges weak-∗ in H−1(Ω) to the unique Lagrange multiplier in û.

To analyze how the method behaves in practice, we again considered Ω := (0, 1)2 and
implemented the Bratu problem using the same obstacle and a similar implementation
as for the standard obstacle problem. The resulting images are given in Figure 7.2, and
some iteration numbers are given in Table 7.2. As with the obstacle problem, we observe

Augmented Lagrangian Moreau–Yosida
n outer inner final ρk outer inner final ρk
16 6 13 104 7 15 107

32 7 17 105 7 17 107

64 7 19 105 7 19 107

128 8 24 106 8 23 108

256 8 24 106 8 28 108

Table 7.2: Numerical results for the Bratu problem from Section 7.2.2.

that both the augmented Lagrangian and Moreau–Yosida regularization methods scale
well with increasing dimension, and the augmented Lagrangian method once again holds
a certain advantage in terms of iteration numbers and penalty parameters. In fact, the
gap between the two methods is slightly bigger than for the standard obstacle problem.

7.2.3 State-Constrained Optimal Control Problems

We now turn to a rather prominent class of optimization problems with partial differential
equation (PDE) constraints. Let Ω ⊆ Rd, d ∈ {2, 3}, be a bounded Lipschitz domain. We
consider the optimal control problem given by the functional

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω), (7.18)

where y ∈ H1
0 (Ω) ∩ C(Ω) and u ∈ L2(Ω), together with the PDE and state constraints

−∆y + d(y) = u in H−1(Ω), and y ≥ ψ in Ω. (7.19)

Here, ∆ : H1
0 (Ω)→ H−1(Ω) is the Laplace operator, α > 0 is a regularization parameter,

and yd ∈ L2(Ω), ψ ∈ C(Ω), ψ ≤ 0 on ∂Ω, are given functions. The nonlinearity d in the
elliptic equation is induced by a function d : R→ R, which is assumed to be sufficiently
regular and monotonically increasing.
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(a) Constraint function ψ (b) Solution ū

Figure 7.2: Numerical results for the Bratu problem with α = 1 and n = 64.

We now present a standard technique in PDE-constrained optimization which consists
of eliminating the variable y. By elliptic regularity results, the PDE in (7.19) admits, for
any given u ∈ L2(Ω), a unique solution y = S(u) ∈ H1

0 (Ω)∩C(Ω). The resulting mapping
S : L2(Ω)→ H1

0 (Ω) ∩ C(Ω) is completely continuous and continuously differentiable, see
[211], and thus we can restate (7.16) as the smooth minimization problem

minimize
u∈L2(Ω)

J̄(u) := J(S(u), u) subject to S(u) ≥ ψ. (7.20)

This is usually called the reduced form of the problem. In the context of our general
framework (7.14), we have the data

X := L2(Ω), C := X, Y := C(Ω), G(u) := S(u)− ψ, K := Y+,

H := L2(Ω), K := H+.

We can now apply the augmented Lagrangian method to eliminate the constraint S(u) ≥ ψ,
thus obtaining a sequence of penalized problems. For efficiency reasons, we tackle these
problems by reintroducing the state variable y and writing the problems as

minimize
y,u

J(y, u) +
ρk
2

∥∥∥∥(y − ψ +
wk

ρk

)
−

∥∥∥∥2

H

−
‖wk‖2H

2ρk

subject to −∆y + d(y) = u in H−1(Ω).

(7.21)

We now discuss the applicability of the convergence results from Chapter 4. Due to the
nonconvexity of the problem, we can only expect to compute stationary points of the
augmented subproblems. This makes the theory from Section 4.2.3 a natural candidate
for the present situation. To apply the main results from that section, we need to verify
the following properties:
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Augmented Lagrangian Moreau–Yosida
n outer inner final ρk outer inner final ρk
16 6 16 104 6 19 106

32 7 21 105 7 22 107

64 7 23 106 7 25 107

128 7 26 106 8 30 108

256 8 31 107 9 37 109

Table 7.3: Numerical results for the optimal control problem from Section 7.2.3.

• The mapping G′ : X → L(X,Y ) is completely continuous. In the present setting,
since X = L2(Ω) is reflexive and G′(u) ∈ L(X,Y ) is completely continuous for
all u (by Proposition 2.16), this is equivalent to the following property: whenever
uk ⇀ u and hk ⇀ h in X, then G′(uk)hk → G′(u)h strongly in Y . A proof of this
statement (for the Neumann case) can be found in [137, Lem. 4.7].

• The mapping J̄ ′ : X → X∗ is bounded and pseudomonotone. Note that J̄ ′(u) =
S′(u)∗(S(u) − yd) + αu for all u ∈ X. As seen above, S and S′ are completely
continuous, hence bounded (since X is reflexive). This implies the boundedness
of J̄ ′. The pseudomonotonicity follows from the fact that the first term in J̄ ′ is
completely continuous and the second term is monotone (see Lemma 3.37).

Moreover, we need the Robinson constraint qualification (RCQ) to hold at feasible points
of (7.20). For this, the following observation is helpful. Since the set K has a nonempty
interior, RCQ is equivalent to the linearized Slater condition

∃û ∈ X : G(u) +G′(u)(û− u) ∈ int(K),

which is a standard assumption in the optimal control context. If the linearized Slater
condition holds, then we obtain RCQ (and its extended version from Section 3.1.2). This
implies that the main results from Section 4.2.3 are applicable. In particular, we obtain
from Theorem 4.16 that every weak limit point ū of the sequence {uk} is a stationary
point of (7.20), the corresponding subsequence of {λk} is bounded in C(Ω)∗, and its
weak-∗ limit points are Lagrange multipliers in ū.

We now turn to numerical results. The following test problem is similar to the example
presented in [170]. Let Ω := (0, 1)2, d(y) := y3, α := 10−3, and

ψ(x) := −2

3
+

1

2
min{x1 + x2, 1 + x1 − x2, 1− x1 + x2, 2− x1 − x2}.

Clearly, in this setting, (7.18) and its reformulation (7.20) are nonconvex problems. The
augmented subproblems are solved by applying the MATLAB function fmincon, where
the Hessian of the objective is approximated by a generalized second-order derivative in
the sense of Section 7.1.1. Table 7.3 contains the resulting iteration numbers and final
penalty parameters for both the augmented Lagrangian and Moreau–Yosida regularization
methods. As with the previous examples, both methods scale well with increasing
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dimension, and the augmented Lagrangian method is more efficient in terms of iteration
numbers and penalty parameters.

(a) Constraint function ψ (b) Optimal state ȳ

(c) Optimal control ū (d) Lagrange multiplier λ̄ (negative)

Figure 7.3: Numerical results for the optimal control problem from Section 7.2.3 (n = 64).

The state constraint ψ and the results of our method are given in Figure 7.3. It is
interesting to note that the multiplier λ̄ appears to be much less regular than the optimal
control ū and state ȳ. This is not surprising because, due to our construction, we have

ū ∈ L2(Ω), ȳ ∈ C(Ω), and λ̄ ∈ C(Ω)∗.

The latter is well-known to be the space of Radon measures on Ω, which is a superset
of L2(Ω). In fact, the convergence data shows that the (discrete) L2-norm of λ̄ grows
approximately linearly as n increases, possibly even diverging to +∞, which suggests
that the underlying (infinite-dimensional) problem (7.20) does not admit a multiplier in
L2(Ω) but only in C(Ω)∗.
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Figure 7.4: Computed solutions q of the parameter estimation problem from Section 7.2.4,
with n = 256 (left) and n = 1024 (right).

7.2.4 Parameter Estimation in Elliptic Systems

The example presented here is a constrained optimization problem, based on [113,115],
which aims at estimating an unknown (functional) parameter in an elliptic differential
system. For more details, we refer the reader to [113,115,119].

The problem presented here is interesting because it involves function spaces but
allows for an application of the augmented Lagrangian method without resorting to
embedding techniques (as in the previous examples). This yields linear convergence of
the algorithm and boundedness of the sequence of penalty parameters, both of which are
confirmed by numerical experiments.

For the sake of simplicity, we restrict ourselves to the one-dimensional case. Let Ω ⊆ R
be a bounded interval and consider the elliptic differential equation

−∇(q∇u) = f, u ∈ H1
0 (Ω), (7.22)

where q ∈ H1(Ω) and f ∈ H−1(Ω). The parameter estimation problem now consists of
minimizing the tracking-type functional

J(q, u) :=
1

2
‖u− z‖2H1

0 (Ω) +
β

2
‖q‖2H1(Ω) (7.23)

subject to (7.22) and q ≥ α, where z ∈ H1
0 (Ω) and α, β > 0. To formulate this problem

in our framework, let

X := H1(Ω)×H1
0 (Ω), C := {(q, u) ∈ X : q ≥ α}, Y := H := H1

0 (Ω),

K := K := {0}, G(q, u) := −∆−1
(
∇(q∇u) + f

)
.

Note that G is essentially the differential equation (7.22), but premultiplied with −∆−1

to map the result back into H1
0 (Ω).
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n = 256, β = 1 n = 256, β = 0.01 n = 1024, β = 1 n = 1024, β = 0.01
k ρk θk ρk θk ρk θk ρk θk
0 1 2.54e+04 1 2.54e+04 1 2.05e+05 1 2.05e+05
1 1 4.64e-01 1 1.21e-01 1 4.44e-01 1 6.59e-02
2 10 7.48e-02 10 5.01e-02 10 5.83e-02 10 2.52e-02
3 10 4.35e-03 10 4.71e-03 10 2.99e-03 10 2.07e-03
4 10 2.86e-04 10 4.68e-04 10 1.90e-04 10 1.83e-04
5 10 1.95e-05 10 4.68e-05 10 1.72e-05 10 2.15e-05

Table 7.4: Iteration progress for the parameter estimation problem from Section 7.2.4.

The existence of minimizers of (7.23) can be shown by eliminating u in (7.22) and
using the coercivity of J (see [115] for more details). Let (q̄, ū) be a solution of the
problem. Observe that we can rewrite the constraints as G̃(q, u) := (q,G(q, u)) ∈ C ×K
(see Remark 3.10), and the derivative of this constraint takes on the form

G̃′(q̄, ū) =

(
IdH1(Ω) 0

Tū Tq̄

)
, where Tū(q) := −∆−1(∇(q∇ū)),

Tq̄(u) := −∆−1(∇(q̄∇u)).

Observe now that Tq̄ : H1
0 (Ω) → H1

0 (Ω) is surjective. This follows from the fact that
∆ : H1

0 (Ω)→ H−1(Ω) is an isomorphism and that u 7→ ∇(q̄∇u) is surjective onto H−1(Ω)
by the Lax–Milgram theorem (since q̄ ≥ α > 0). It therefore follows that the whole
operator G̃′(q̄, ū) is surjective, which implies the existence and uniqueness of Lagrange
multipliers λ̄ ∈ H−1(Ω), corresponding to the constraint G(q, u) ∈ K, and µ̄ ∈ H1(Ω)∗,
corresponding to the constraint q ≥ α.

Let us furthermore assume that the second-order sufficient condition holds in (q̄, ū).
The precise verification of this condition would require the knowledge of the solution, but
the second-order condition is very plausible since the objective in (7.23) is strongly convex
(by virtue of the H1-regularization term). Under the present assumptions, the problem
admits the local primal-dual error bound from Corollary 3.58. The corresponding residual
function Θ : X ×H → R takes on the form

Θ(q, u, λ) = ‖(q, u)− PC((q, u)− L′(q, u, λ))‖X + ‖G(q, u)‖H .

It follows that we can expect strong convergence of the primal-dual iterates generated by
the augmented Lagrangian method, with linear rate of convergence proportional to the
inverse penalty parameter (see Section 4.3.2).

The example we present is [113, Ex. 6]. The domain Ω := (0, 1) is discretized by
means of n ∈ N points, including boundary points, and the derivative operators are
approximated by forward differences. The problem is constructed by setting

q0(x) := 1 + x, z(x) := u0(x) := sin(πx), f(x) := (1 + x)π2 sin(πx)− π cos(πx),

so that −∇(q0∇u0) = f . Since z = u0, an exact solution of (7.23) for β = 0 is simply
given by (q0, u0). For β > 0, which is the preferable case from a numerical perspective,
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the solutions are different in general. The initial values for the algorithm are chosen as
(q0, u0, λ0) := (1, 0, 0), together with wk := PB(λk) and B the closed ball with radius
106 around zero in H1

0 (Ω). The termination criteria for the outer and inner iterations
are Θ(q, u, λ) ≤ 10−4 and ‖L′ρk(q, u, w

k) + (µk, 0)‖X∗ ≤ 10−6, respectively, where µk is
the Lagrange multiplier corresponding to the constraint q ≥ α. Finally, the augmented
subproblems were solved by the MATLAB routine fmincon which takes into account the
lower bound constraint.

Table 7.4 contains the corresponding iteration numbers for different values of n and
β, as well as the optimality measures θk := Θ(qk, uk, λk). As suggested by the theory, we
observe linear convergence of θk, with rate proportional to 1/ρk, and the sequences of
penalty parameters remain bounded. Finally, Figure 7.4 compares the computed solutions
q for different n and β to the exact solution q0 for β = 0.

7.3 Generalized Nash Equilibrium Problems in Banach
Spaces

This section is dedicated to various examples of Nash and generalized Nash equilibrium
problems (NEPs and GNEPs, respectively) in a Banach space setting. The basic framework
we consider is that of Section 5.3, i.e., we have N ∈ N players, and each player attempts
to solve the optimization problem

minimize
xν∈Cν

fν(xν , x−ν) subject to G(xν , x−ν) ∈ K, (7.24)

where X := X1 × · · · ×XN and Y are real Banach spaces, fν : X → R and G : X → Y
are continuously differentiable functions, and Cν ⊆ Xν and K ⊆ Y are nonempty closed
convex sets. We define C := C1 × · · · × CN and denote by Φ := C ∩G−1(K) the feasible
set of (7.24). Moreover, there is a real Hilbert space H together with a dense embedding
i : Y → H such that

i−1(K) = K, with K ⊆ H a nonempty closed convex set.

The applications below will all have the property that G is a linear operator and fν is
convex with respect to xν for all ν. Hence, in the terminology of Section 5.3, the resulting
GNEPs are jointly convex. Some applications of the augmented Lagrangian method to
more general problems will be given in Section 7.5, albeit in a finite-dimensional context.

In the present section, we will mainly be concerned with function space related
problems. The notation we adopt is similar to that of the previous sections, i.e., we write
u = (uν , u−ν) for the optimization variable, whereas x will occasionally denote a point
from some finite-dimensional domain Ω. Moreover, for a given function space Y , we
denote by Y− (Y+) the nonpositive (nonnegative) cone in Y .

Recall that a jointly convex GNEP can be rewritten as the equivalent variational
inequality (VI)

u ∈ Φ, 〈F (u), v − u〉 ≥ 0 ∀v ∈ Φ,
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where Φ is the feasible set of (7.24) and F (u) := (Duνfν(u))Nν=1, see the discussion
in Section 5.3.1. It follows that the GNEP is covered by a wide range of convergence
theorems from Chapter 5, in particular those pertaining to VIs (Sections 5.2.2 to 5.2.4)
and those specifically tailored to GNEPs (Section 5.3.2).

As in the optimization case, a significant emphasis will be placed on the verification
of the theoretical requirements of the convergence theorems in practice. For the solution
process, the problems are then discretized by means of finite differences or finite elements.
The implementation details are different for each problem and will therefore be explained
directly in the corresponding sections.

7.3.1 Multiobjective Optimal Control

We begin with a basic optimal control problem with multiple objectives, based on [35,61].
Some of the corresponding theory is similar to the single-objective case discussed in
Section 7.2.3. The analysis below will also form the basis for the state-constrained
multiobjective problems we will consider in Section 7.3.2.

Let Ω ⊆ Rd, d ∈ {2, 3}, be a bounded Lipschitz domain, and N ∈ N a natural number.
The problem we consider here is a standard Nash equilibrium problem (NEP) with N
players, where each player ν attempts to minimize the objective function

Jν(y, uν) :=
1

2
‖y − yνd‖2L2(Ω) +

αν
2
‖uν‖2L2(Ω) (7.25)

with respect to uν ∈ L2(Ω), subject to the partial differential equation and pointwise
control constraints

−∆y =

N∑
ν=1

uν + f and uν ∈ Uνad, (7.26)

where
Uνad := {uν ∈ L2(Ω) : uνa ≤ uν ≤ uνb a.e. in Ω}

and uνa, u
ν
b ∈ L2(Ω), uνa ≤ uνb . The remaining problem parameters satisfy αν > 0 and

yνd ∈ L2(Ω) for all ν. Similarly to Section 7.2.3, we can use the fact that the PDE in
(7.26) admits a unique solution for each right-hand side. The resulting solution operator
S : L2(Ω)→ H1

0 (Ω) ∩ C(Ω) is linear and compact. Defining the control-to-state mapping

y(u) := S

(
N∑
ν=1

uν + f

)
,

we can now restate player ν’s optimization problem as

minimize
uν∈L2(Ω)

J̄ν(u) := Jν(y(u), uν) subject to uν ∈ Uνad. (7.27)

We now discuss how the augmented Lagrangian method can be applied to this problem.
Recall that Nash equilibrium problems can be reformulated as variational inequalities
(VIs), see Section 5.3. Hence, we can tackle (7.27) by either treating it as a NEP and
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applying Algorithm 5.23, or by treating it as a VI and using Algorithm 5.2. These
approaches are essentially equivalent, which means that we can choose which convergence
results to apply to this scenario. Observe that the VI reformulation of (7.27) takes on
the form

u ∈ Uad, 〈F (u), v − u〉 ≥ 0 ∀v ∈ Uad,

where Uad := U1
ad × · · · × UNad and F (u) := (Duν J̄ν(u))Nν=1. An elementary calculation

shows that derivative F ′(u) can be written as the block operator

F ′(u) =

S
∗S + α1 IdL2(Ω) · · · S∗S

...
. . .

...
S∗S · · · S∗S + αN IdL2(Ω)

 ,

where all off-diagonal blocks are equal to S∗S. This implies that F is strongly monotone,
in the sense that 〈F (u)−F (v), u− v〉 ≥ c‖u− v‖2X for all u, v ∈ X, where the constant c
can be chosen as c := min{α1, . . . , αN}. We now set

X := Y := L2(Ω)N , C := X, G(u) := u, K := Uad,

H := L2(Ω)N , K := Uad.

Note that G′(u) is the identity mapping for all u, and therefore surjective. It follows from
Corollary 5.9 that {uk} converges strongly to the unique solution of the NEP. Indeed, by
Theorem 5.17, the primal-dual sequence {(uk, λk)} is strongly convergent, with Q-rate
proportional to 1/ρk.

We now present a numerical example which is based on [35]. The Nash equilibrium
problem has N = 2 players and is constructed in such a way that the optimal solution is
known analytically. Let Ω := (0, 1)2 be the unit square and define αν := 1, uνa := −0.5,
and uνb := 0.5 for all ν. Consider the functions

ȳ(x) := sin(πx1) sin(πx2),
p̄1(x) := − sin(2πx1) sin(2πx2),

p̄2(x) := − sin(3πx1) sin(3πx2),

as well as yνd := ȳ+∆p̄ν and ūν := P[uνa,u
ν
b ](−p̄ν/αν) for all ν, and finally f := −∆ȳ−ū1−ū2.

Then it is easy to see that ū is a Nash equilibrium. The corresponding state is given
by ȳ, the variables p̄ν are the so-called adjoint states of the players, and the Lagrange
multiplier is given by λ̄ := (−p̄1 − α1ū

1,−p̄2 − α2ū
2).

The implementation of the augmented Lagrangian method for the above problem is
done in MATLAB and uses the algorithmic parameters

λ0 := 0, ρ0 := 1, B := [−106, 106]N ⊆ L2(Ω)N , γ := 10, τ := 0.5.

The augmented subproblems are solved by applying the semismooth Newton algorithm
from Section 7.1.1. (Strictly speaking, the derivative of Lρ is only semismooth on Lp(Ω)
for p > 2 in this case, but the Newton method turns out to work rather well nonetheless.)
The corresponding numerical results are given in Table 7.5, where each line contains the
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n = 64 n = 256 n = 1024
k ρk θk distk ρk θk distk ρk θk distk
0 1 5.08e-01 5.43e-01 1 5.02e-01 5.37e-01 1 5.01e-01 5.35e-01
1 1 8.59e-02 1.71e-01 1 8.47e-02 1.69e-01 1 8.44e-02 1.69e-01
2 1 4.30e-02 8.54e-02 1 4.23e-02 8.46e-02 1 4.22e-02 8.44e-02
3 10 2.15e-02 4.24e-02 10 2.12e-02 4.23e-02 10 2.11e-02 4.22e-02
4 10 1.95e-03 3.41e-03 10 1.92e-03 3.81e-03 10 1.92e-03 3.83e-03
5 10 1.78e-04 8.13e-04 10 1.75e-04 3.17e-04 10 1.74e-04 3.47e-04
6 10 1.61e-05 8.95e-04 10 1.59e-05 5.08e-05 10 1.59e-05 2.96e-05
7 10 1.47e-06 9.08e-04 10 1.45e-06 5.63e-05 10 1.44e-06 3.23e-06
8 10 1.33e-07 9.09e-04 10 1.31e-07 5.74e-05 10 1.31e-07 3.50e-06
9 10 1.21e-08 9.09e-04 10 1.20e-08 5.75e-05 10 1.19e-08 3.59e-06
10 10 1.10e-09 9.09e-04 10 1.09e-09 5.75e-05 10 1.08e-09 3.60e-06

Table 7.5: Numerical results for the optimal control Nash equilibrium problem from
Section 7.3.1.

values of the penalty parameter ρk, the optimality measure θk, and the distance distk of
(uk, λk) to (ū, λ̄). We observe good consistency of the results with our established theory;
in particular, the rate of convergence is roughly proportional to 1/ρk. Note that the
distances distk stop decreasing after a certain point because of the inexactness induced
by the discretization; in particular, if we discretize the (known) optimal solution pair
(ū, λ̄), we do not obtain an exact solution of the discretized problem. This phenomenon
is also evidenced by the fact that the “limit” value of distk decreases as n increases.

Remark 7.12. It is extremely important that we define the constraint system with G and
K as above. Indeed, if we rewrite the inclusion uν ∈ Uνad as the two constraints uν ≥ uνa
and uν ≤ uνb , then we cannot apply the local convergence analysis from Section 5.2.4
since the strict Robinson condition is violated. Indeed, even the Robinson constraint
qualification is violated, see Example 3.23.

7.3.2 Multiobjective Optimal Control with State Constraints

This section is dedicated to a multiobjective optimal control problem which is similar to
the framework of the previous section but includes additional state constraints. Problems
of this type arise, for instance, in the optimization of aerodynamic designs if multiple
(conflicting) objectives are taken into account [182,209], or in spot-market models [106].
For further reading about this problem class, the reader is referred to [61,106].

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded Lipschitz domain, and N ∈ N a natural
number. As in the previous section, we consider a problem where each player ν attempts
to minimize

Jν(y, uν) :=
1

2
‖y − yνd‖2L2(Ω) +

αν
2
‖uν‖2L2(Ω) (7.28)

over all uν ∈ L2(Ω), subject to the partial differential equation and pointwise control and
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state constraints

−∆y =
N∑
ν=1

XΩνu
ν + f, uν ∈ Uνad, and y ≥ ψ a.e. in Ω, (7.29)

where yνd ∈ L2(Ω), αν > 0, f ∈ L2(Ω), and ψ ∈ C(Ω). Moreover, XΩν : Rd → {0, 1}
denotes the characteristic function of a suitable player-specific domain Ων ⊆ Ω. Similarly
to before, the admissible control sets Uνad are given by

Uνad = {uν ∈ L2(Ω) : uνa ≤ uν ≤ uνb a.e. in Ω}

with uνa, uνb ∈ L2(Ω) and uνa ≤ uνb . The set Uad := U1
ad × · · · × UNad is the set of admissible

controls for all players. We once again use the fact that the PDE in (7.29) admits
a unique solution y for any right-hand side in L2(Ω). The resulting solution operator
S : L2(Ω)→ H1

0 (Ω)∩C(Ω) is linear and compact. Thus, we can define the control-to-state
mapping via

y(u) := S

(
N∑
ν=1

XΩνu
ν + f

)
.

This allows us to state the reduced form of player ν’s optimization problem as

minimize
uν∈L2(Ω)

J̄ν(u) :=
1

2
‖y(u)− yνd‖2L2(Ω) +

αν
2
‖uν‖2L2(Ω)

subject to uν ∈ Uνad, y(u) ≥ ψ a.e. in Ω.

(7.30)

In the notation of our abstract setting (7.24), we have

X := L2(Ω)N , C := Uad, G(u) := y(u)− ψ, Y := C(Ω), K := Y+,

H := L2(Ω), K := H+.

The Nikaido–Isoda function of the GNEP is given by

Ψ(u, v) =
N∑
ν=1

[
J̄ν(uν , u−ν)− J̄ν(vν , u−ν)

]
, (7.31)

where v = (vν , v−ν) and u, v ∈ L2(Ω)N . Observe that, for all ν, the objective function J̄ν
is weakly sequentially lsc with respect to uν , and weakly sequentially continuous with
respect to u−ν (since u 7→ y(u) is completely continuous). Thus, it is easy to see that
the Nikaido–Isoda function Ψ is weakly sequentially lsc with respect to u. It follows that
we can apply the theoretical framework of Section 5.3.2. In particular, due to the weak
compactness of the set Uad, the GNEP admits a normalized equilibrium, and every weak
limit point of the sequence {uk} generated by the augmented Lagrangian method is such
a normalized solution.

In fact, due to the analytical structure of the problem, it is possible to obtain much
sharper convergence results. To this end, we once again use the fact that the GNEP can



7.3. Generalized Nash Equilibrium Problems in Banach Spaces 175

be rewritten as a variational inequality. Using the arguments in the previous section, the
resulting mapping F (u) := (Duν J̄ν(u))Nν=1 is strongly monotone on X. Since the feasible
set Φ is a convex set, we obtain that the GNEP admits a unique normalized equilibrium
ū, and the sequence {uk} generated by the algorithm converges strongly to ū.

Remark 7.13. In practical applications, one often needs to restrict the observation
of the state y. In this scenario, the first part of the cost functional could take on the
form J1

ν (u) := 1
2‖Tνy(u)− yνd‖2Wν

with real Hilbert spaces Wν , continuously differentiable
(possibly nonlinear) operators Tν : H1

0 (Ω) ∩ C(Ω)→Wν , and desired states yνd ∈Wν . In
this setting, the Nikaido–Isoda function is still weakly sequentially lsc with respect to u,
but the mapping F will in general not be strongly monotone.

We now discuss the convergence properties of the dual variables. Let ū be the unique
solution of the problem, and ȳ := y(ū) the corresponding optimal state. A standard
regularity assumption in the state-constrained context is the existence of a Slater point,
i.e., of a point û ∈ Uad and σ > 0 such that

y(û) ≥ ψ + σ in Ω. (7.32)

This means that G(û) = y(û)−ψ lies in the interior of K = C+(Ω). Hence, this condition
is a special case of the Slater condition discussed in Section 3.1.2, applied in the space
Y = C(Ω). Moreover, in the present situation, it is equivalent to the Robinson constraint
qualification by Proposition 3.21.

If the Slater condition (7.32) is satisfied, then it follows that the problem admits a
Lagrange multiplier in ū. The resulting first-order (KKT) system can be stated as〈

Duν J̄ν(ū) + X ∗ΩνS
∗λ̄, u− ū

〉
≥ 0 for all u ∈ Uad,

λ̄ ≤ 0, ȳ ≥ ψ, and 〈λ̄, ȳ − ψ〉 = 0,

where the last three conditions are equivalent to λ̄ ∈ NK(ȳ−ψ). Note that the inequality
λ̄ ≤ 0 has to be understood in the dual sense, i.e., 〈λ̄, ϕ〉Y ≤ 0 for all ϕ ∈ K. In other
words, λ̄ belongs to the polar cone K◦ of K.

The second implication of the Slater condition is that the multiplier sequence {λk}
generated by the augmented Lagrangian method is bounded in C(Ω)∗, and each of its
weak-∗ limit points is a Lagrange multiplier in ū. This is a consequence of Theorem 5.12.

Now, let us briefly consider the augmented subproblems which occur in every iteration
of the algorithm. Since the set C = Uad is weakly compact, the existence of solutions to
these problems can be argued as for the original problem itself. Introducing adjoint state
variables pν ∈ L2(Ω) for every player, we can characterize the subproblems by means of
the first-order systems

−∆y =

N∑
ν=1

XΩνu
ν + f, (7.33a)

−∆pν = y − yνd +
(
wk + ρk(y − ψ)

)
−, (7.33b)

(XΩνp
ν + ανu

ν , v − uν) ≥ 0 ∀v ∈ Uνad (7.33c)
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for all ν.
We now discuss a numerical example based on a four-player game from [106], where

f ≡ 1, uνa := −12, uνb := 12 for all ν, and α := (2.8859, 4.3374, 2.5921, 3.9481). The state
constraint ψ is given by

ψ(x1, x2) := cos
(
5
√

(x1 − 0.5)2 + (x2 − 0.5)2
)

+ 0.1,

and the desired states yνd are defined as yνd := ξν − ξ5−ν , where

ξν(x1, x2) = 103 max
{

0, 1− 4 max{|x1 − z1
ν |, |x2 − z2

ν |}
}

and z1 := (0.25, 0.75, 0.25, 0.75) as well as z2 := (0.25, 0.25, 0.75, 0.75).
The subproblems arising within the computation are solved exactly by applying an

active set method [21,23] to the corresponding KKT conditions (7.33). The algorithm
was stopped as soon as the quantities ‖(ψ − yk)+‖C(Ω) and |(λk, yk − ψ)| drop below
10−6. Since the NEPs in the inner iterations are solved exactly, these values represent the
residual of the first-order system (the stationarity part is always zero.) The algorithmic
parameters are given by

λ0 := 0, ρ0 := 1, B := [−106, 106] ⊆ L2(Ω), γ := 10, τ := 0.1.

The table below displays some outer iteration numbers, accumulated inner iteration
numbers, and final penalty parameters ρmax for different levels of discretization.

n 16 32 64 128 256

outer it. 12 12 13 14 14
inner it. 24 28 34 43 50

ρmax 107 109 1010 1012 1012

It is worth noting that the outer iteration numbers remain nearly constant as n increases,
and the penalty parameters increase only moderately. This suggests that the algorithm
works quite well for the multiobjective optimal control problem.

To improve the computational efficiency and reduce the number of iterations on the
finest mesh, a common technique is to apply a nested grid strategy. The approach here is
adapted from [106]; the mesh is refined whenever ρ ≥ 1000n2 is satisfied, with n = 512
the final sample size. The next table displays the outer and inner iteration numbers with
the corresponding maximum of the penalty parameter using this nested grid approach.

n 4 8 16 32 64 128 256 512 Σ

outer it. 6 1 1 1 1 1 1 4 16
inner it. 8 2 4 4 5 5 5 14 47

ρmax 105 106 107 108 109 1010 1011 1015

Figures 7.5 to 7.7 depict the numerical solutions of the problem, computed on a triangular
mesh with n = 128 grid points.
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Figure 7.5: Computed solutions for the multiobjective control problem from Section 7.3.2.
Left: optimal state y (top) and state constraint ψ, Right: Lagrange multiplier λ.

Figure 7.6: Computed solutions for the multiobjective control problem from Section 7.3.2.
Control variables ū = (ū1, ū2, ū3, ū4).

Figure 7.7: Computed solutions for the multiobjective control problem from Section 7.3.2.
Adjoint state variables p̄ = (p̄1, p̄2, p̄3, p̄4).
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7.3.3 Differential Economic Games

We end with a problem from the class of N -person differential games. Problems of this
type are rather popular in the literature [83,84,181]. They arise, for instance, in economic
simulations if the underlying model is not limited to a fixed point in time but takes into
account a whole time interval. In such cases, infinite-dimensional spaces arise naturally,
and the problems can therefore be tackled by our algorithmic framework.

The particular example we present here is an environmental management problem
based on the framework in [99]. The N players are given by N companies that compete
on a common market. Let the strategy space of all players be given by X := L2(0, T )N .
Let uν(t) ∈ R denote the investment (control) of company ν at time t and yν(t) ∈ R the
production capacity. Then uν and yν are coupled through the differential equation

ẏν(t) + bνy
ν(t) = uν(t), yν(0) = yν0 , (7.34)

where bν ∈ R. Further, at each time, the investments uν(t) are bounded in the sense that

uν ∈ Uνad := {u ∈ L2(0, T ) : 0 ≤ u ≤ umax a.e. in (0, T )}, (7.35)

with umax ∈ L2
+(0, T ). We set Uad := U1

ad × · · · × UNad. The production yν induces a
certain environmental pollution. For the sake of pollution control, the companies have to
comply with legal requirements. A global constraint of pollution is given by

(Ey)(t) ≤ ψ(t) for all t ∈ [0, T ], (7.36)

where ψ ∈ C[0, T ], y := (y1, . . . , yN ), and E : C[0, T ]N → C[0, T ] is a bounded linear
operator modeling the emission rate in terms of the installed capacity. Each company’s
production and adjustment costs are given by the function qν(yν(t), uν(t)). The market
price rν(y(t)) of the observed product is associated with the total supply

∑N
ν=1 y

ν(t).
Hence, the revenue of the ν-th company can be modeled via rν(y(t)) · yν(t). Since each
company aims for maximal profit, the resulting problem is a GNEP where each player
attempts to minimize the objective function

Jν(y, uν) :=

∫ T

0
qν(yν(t), uν(t))− rν(y(t))yν(t) dt

subject to the constraints imposed by Equations (7.34) to (7.36). Here and below, we
tacitly assume that qν and rν are sufficiently regular so that Jν is well-defined on the
space C[0, T ]N × L2(0, T ).

By a well-known theorem of Carathéodory, the differential equation (7.34) admits, for
each uν ∈ L2(0, T ), a unique solution which can be written explicitly as

yν(t) = etyν0 +

∫ t

0
et−suν(s) ds, (7.37)

see [93, p. 30] and [206, p. 488]. Using this expression and the fact that H1(0, T ) is
compactly embedded in C[0, T ], one can easily infer that yν ∈ H1(0, T ) and that the
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control-to-state mappings yν(·) : L2(0, T )→ C[0, T ] are completely continuous (compact).
Similarly to the previous examples, we can now pass to the reduced form by inserting
y := y(u) = (yν(uν))Nν=1 into the objective functions Jν . This results in the GNEP where
player ν attempts to solve

minimize
uν∈L2(0,T )

J̄ν(u) := Jν(y(u), uν)

subject to uν ∈ Uνad, E(y(u)) ≤ ψ in [0, T ].
(7.38)

Let us now assume that qν and rν are sufficiently well behaved so that, for all ν, the
functional J̄ν is both convex and continuously differentiable with respect to uν . Arguing
as in Section 7.3.2, it is easy to see that the Nikaido–Isoda function of the reduced GNEP
is weakly sequentially lsc with respect to the first variable. By Proposition 5.20, it follows
that the GNEP admits a normalized equilibrium ū ∈ X. Despite this, the problem is
more complex than those in the previous sections since the operator F := (Duν J̄ν)

N
ν=1

may fail to be strongly monotone (depending on the functions qν and rν).
We now discuss how the augmented Lagrangian method (Algorithm 5.23) can be

applied to problem (7.38). In the notation of our general framework (7.24), we have

X := L2(0, T )N , C := Uad, G(u) := E(y(u))− ψ, Y := C[0, T ], K := Y−,

H := L2(0, T ), K := H−.

It follows from the theory in Section 5.3.2 that, provided the feasible set of (7.38) is
nonempty, then every weak limit point of the sequence {uk} is a normalized equilibrium
of the problem. For the convergence of the dual iterates, we again assume the existence
of a Slater point, i.e., of a point û ∈ Uad and σ > 0 such that

E(y(û))(t) ≤ ψ(t)− σ for all t ∈ [0, T ].

This is equivalent to G(û) being an interior point of K. Since the interior of K is
nonempty, the above assumption is equivalent to the Robinson constraint qualification
(see Proposition 3.21). Hence, the Slater condition implies the existence of a Lagrange
multiplier λ̄ ∈ C[0, T ]∗ corresponding to the pollution constraint (7.36).

Numerical Results

The following is a practical example which models the development of a market involving
two companies, with one holding a monopoly in the beginning. We set N := 2, T := 3,
and use the functions

qν(yν(t), uν(t)) :=
a1

2
yν(t)2 +

a2

2
uν(t)2, rν(y(t)) :=

c

ε+
∑N

ν=1 y
ν(t)

,

(Ey)(t) := e1y
1(t) + e2y

2(t),

where ε > 0. The implementation for this example was done in MATLAB. We discretize
the appearing time derivative by finite differences and solve the augmented subproblems
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Figure 7.8: (Example 3) From top to bottom, from left to right: Computed states y1
h, y

2
h,

controls u1
h, u

2
h, state constraint ψ (gray) and E(yh) (dotted black), multiplier λh.

by applying a semismooth Newton method with a desired accuracy of 10−6. The overall
algorithm is stopped as soon as the residual of the corresponding KKT system drops
below 10−6. The algorithmic parameters are chosen as

λ0 := 0, ρ0 := 1, B := [−100, 100] ⊆ L2(0, T ), γ := 10, τ := 0.1.

The parameters of the model are given by umax := 0.5, a1 := 0.7, a2 := 0.2, b1 = 0.2,
b2 := 0.35, c := 1, e1 := 2, e2 := 1, and ε = 10−9. The initial values of the state are given
by y1(0) := 0, y2(0) := 1. The state constraint is defined by

ψ(t) =


1.1, for t ∈ [0, 1],

0.99, for t ∈ (1, 2],

0.891, for t ∈ (2, 3]

which is a decrease of ten percent after every third of the time interval. The following
table shows some iteration numbers for the given parameters, and Figure 7.8 depicts the
computed solutions for n = 103 grid points.
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n 16 32 64 128 256 512 1024

outer it. 8 8 9 9 9 10 10
inner it. 100 146 175 128 108 109 113

ρmax 102 103 104 105 105 105 106

7.4 Quasi-Variational Inequalities in Banach Spaces

This section now deals with applications of the augmented Lagrangian technique in the
quasi-variational inequality (QVI) context. The basic framework we consider is that of
Chapter 6, i.e., the problem of finding x ∈ X such that

(Q) x ∈ Φ(x), 〈F (x), d〉 ≥ 0 ∀d ∈ TΦ(x)(x), (7.39)

where X is a real Banach space, F : X → X∗ a suitable operator, and Φ : X ⇒ X a
set-valued mapping of the form

Φ(x) = {y ∈ C : G(x, y) ∈ K},

with Y another real Banach space, G : X2 → Y a continuously differentiable mapping,
and C ⊆ X and K ⊆ Y nonempty closed convex sets, respectively. As per usual, the
space Y is assumed to be densely embedded into a real Hilbert space H via a mapping
i : Y → H, and there is a closed convex set K ⊆ H such that i−1(K) = K.

The above is a fairly general framework (see the discussion at the beginning of
Chapter 6), and the resulting applications cover a broad spectrum of special cases.
In particular, the above framework can be used to model QVIs or generalized Nash
equilibrium problems (GNEPs) in finite dimensions. These two important application
cases will be discussed in Sections 7.5 and 7.6. Here, we will mainly focus on applications in
the function space context, and demonstrate how these can be solved with the augmented
Lagrangian method. Similarly to before, the underlying problems are analyzed on the
continuous (infinite-dimensional) level, with a special emphasis on the discussion of the
assumptions used in the convergence theory (Sections 6.2.3 and 6.2.4). The problems are
then solved numerically using a suitable discretization approach. The implementation
was done in MATLAB and uses the algorithmic parameters

λ0 := 0, ρ0 := 1, B := [−106, 106] γ := 10, τ := 0.1

(where B is understood in a suitable function space, usually an L2-space), together with
a problem-dependent starting point u0. The sequence {wk} is chosen as wk := PB(λk),
i.e., it is a safeguarded analogue of the multiplier sequence.

Let us also remark that there is a certain overlap between the QVI setting considered
here and the GNEP setting from Section 7.3. In particular, the augmented Lagrangian
method for QVIs could also be used to compute generalized Nash equilibria, including non-
normalized equilibria of, for instance, the multiobjective control problem in Section 7.3.2.
To avoid redundancy, this application is not included in the presentation here again. More
details can be found in [134].
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Since our examples are defined in function spaces, we will typically use the notation
(u, v) instead of (x, y) for the variable pairs in the space X2. This should be rather clear
from the context and hopefully does not introduce any confusion. Moreover, similarly to
before, Y+ (Y−) denotes the nonnegative (nonpositive) cone in some function space Y .

7.4.1 An Implicit Signorini Problem

The application presented here is an implicit version of the celebrated Signorini problem
[12,70,88]. In comparison to the traditional problem, which can be seen as a variational
inequality, the implicit problem involves a compliant (i.e., deformable) obstacle on the
boundary of the domain, which makes the problem a quasi-variational inequality. More
details on the implicit Signorini problem can be found in [18,167].

Let Ω ⊆ R2 be a bounded domain with sufficiently smooth boundary Γ, and let X
denote the space

X := {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}, with ‖u‖X := ‖u‖H1(Ω) + ‖∆u‖L2(Ω).

Recall that the trace operator τ maps H1(Ω) into H1/2(Γ), that H1/2(Γ)∗ =: H−1/2(Γ),
and that the normal derivative ∂n : X → H−1/2(Γ) is well-defined and continuous. For
fixed elements h0, φ ∈ H1/2(Γ) with φ ≥ 0, consider the set-valued mapping

Φ(u) := {v ∈ X : τv ≥ h(u) on Γ}, h(u) := h0 − 〈φ, ∂nu〉,

where h : H1(Ω)→ H1/2(Γ) and the duality pairing is understood between H1/2(Γ) and
H−1/2(Γ). The problem in question now is the QVI

u ∈ Φ(u), 〈Au− f, v − u〉 ≥ 0 ∀v ∈ Φ(u),

where A : X → X∗ is a monotone differential operator and f ∈ H−1(Ω). This problem
can be cast into our general framework by choosing

X = {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}, C := X, F (u) := Au− f,
Y := H1/2(Γ), G(u, v) := τv − h(u), K := Y+, H := L2(Γ), K := H+.

Observe now that the Signorini problem satisfies the assumptions of Section 6.2.3. The
mapping F is bounded (since it is affine) and pseudomonotone (since it is monotone
and continuous, see Lemma 3.37). Note also that G is linear (hence K-concave) with
respect to v. Moreover, G is weakly sequentially continuous, which implies that dK ◦G
is weakly sequentially lsc. The final property which remains to be verified is the weak
Mosco-continuity of Φ. But this property is immediate from the fact that u 7→ 〈φ, ∂nu〉
maps into a one-dimensional subspace of Y .

It follows from the theory in Section 6.2.3 that every weak limit point of the sequence
{uk} generated by the augmented Lagrangian method (Algorithm 6.16) is a solution of
the QVI. (Note that Φ(u) is nonempty for all u ∈ X, as was assumed in Lemma 6.20.)
For the convergence of the dual sequence, the following observation is helpful: since
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(a) Solution ū (b) Constraint value G(ū, ū)

Figure 7.9: Numerical solution of the implicit Signorini problem from Section 7.4.1
(n = 64).

C = X, the sequences {uk} and {λk} generated by the algorithm satisfy L(uk+1, λk+1) =
Lρk(uk+1, wk)→ 0 as k →∞ (see (6.21)). This implies that

0←
〈
F (uk), h

〉
+
〈
τ∗λk, h

〉
=
〈
F (uk), h

〉
+
〈
λk, τh

〉
for all h ∈ X. Since the range of the trace operator contains the fractional Sobolev space
H3/2(Γ), see [1], it follows that a subsequence of {λk} converges weak-∗ in H3/2(Γ)∗.

We now present some numerical results for the domain Ω := (0, 1)2 and the differential
operator Au := u − ∆u. For the implementation of the method, we set H := L2(Γ),
K := H+, and discretize the domain Ω by means of a uniform grid with n ∈ N points
per row or column (including boundary points), i.e., n2 points in total. The remaining
problem parameters are given by f ≡ −1 and φ = h0 ≡ 1.

n 16 32 64 128 256

outer it. 9 9 9 10 10
inner it. 42 41 42 47 52

ρmax 104 104 105 105 105

We observe that the method scales rather well with increasing dimension n. In particular,
the outer iteration numbers and final penalty parameters remain nearly constant, and
the increase in terms of inner iteration numbers is very moderate.

7.4.2 Parametric Gradient Constraints

The example in this section is a QVI with pointwise constraints on the gradients of the
involved function. Such problems arise, for instance, in the magnetization of supercon-
ductors, in certain elastoplastic torsion problems, and in electrostatics. More details can
be found in [104,153].
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Let d, p ≥ 2 and X := W 1,p
0 (Ω) for some bounded domain Ω ⊆ Rd. Consider the

set-valued mapping
Φ(u) := {v ∈ X : ‖∇v‖ ≤ ψ(u)}, (7.40)

where ‖ · ‖ is the Euclidean norm in Rd and ψ : X → L∞(Ω), as well as the resulting QVI

u ∈ Φ(u), 〈−∆pu− f, v − u〉 ≥ 0 ∀v ∈ Φ(u),

where f ∈ X∗ and ∆p : X → X∗ is the p-Laplacian defined by

〈∆pu, v〉 := −
∫

Ω
‖∇u(x)‖p−2∇u(x)>∇v(x) dx.

This problem can be cast into our general framework (Q) by defining

X = W 1,p
0 (Ω), C := X, F (u) := −∆pu− f, Y := L2(Ω),

G(u, v) := ‖∇v‖ − ψ(u), K := Y−.

Observe that F is monotone, bounded, and continuous (see Section 2.1.4 and [104]),
hence pseudomonotone by Lemma 3.37. Assume now that ψ is completely continuous
and satisfies ψ(u) ≥ c1 for all u and some c1 > 0. Then Φ can be shown to be weakly
Mosco-continuous, see [153, Lem. 1].

When applying the augmented Lagrangian method to the above problem, a significant
challenge lies in the analytical formulation of the feasible set. Observe that the original
formulation in (7.40) is nonsmooth. This issue is probably not critical since the non-
smoothness is a rather “mild” one, but nevertheless an alternative formulation is necessary
to formally apply our algorithmic framework. To this end, we first discretize the problem
and then reformulate the (finite-dimensional) gradient constraint as G(u, v) ≤ 0 with
G(u, v) = ‖∇v‖2 − ψ(u)2.

For the discretized problems, all the continuity assumptions on F and G from Sec-
tions 6.2.3 and 6.2.4 are satisfied trivially. Moreover, the feasible sets Φ(u) are nonempty
for all u ∈ X, and QVI-ERCQ (or QVI-EMFCQ) holds everywhere since the point
zero is a Slater point of the mapping v 7→ G(u, v) for all u ∈ X (see the discussions in
Sections 3.1.2 and 3.1.4). It follows from Theorem 6.26 (or Theorem 6.32) that every
limit point ū of {uk} is a solution of the QVI, the corresponding dual subsequence is
bounded, and its limit points are (discretized) Lagrange multipliers in ū.

As a numerical application, we consider a slightly modified version of [104, Example 3]
on the unit square Ω := (0, 1)2. Note that the original example in that reference is actually
solved by the solution of the p-Laplace equation −∆pu− f = 0, u ∈W 1,p

0 (Ω). Hence, we
have modified the example to use the same function f as in [104] but with the constraint
function replaced by Ψ(u) := 0.01 + 2|

∫
Ω u(x) dx|. We discretize the problem with n ∈ N

interior points per row or column, and use backward differences to approximate the
gradient and p-Laplace operators.

n 16 32 64 128 256

outer it. 8 7 7 7 7
inner it. 63 52 63 73 103

ρmax 104 104 104 104 105
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(a) Solution ū (b) Constraint value G(ū, ū)

Figure 7.10: Numerical results for the gradient-constrained QVI with n = 64.

As before, the method scales rather well with increasing dimension n, and the outer
iteration numbers and final penalty parameters remain nearly constant.

7.5 Generalized Nash Equilibrium Problems in Rn

The present section is the penultimate of this chapter and contains applications of
the augmented Lagrangian method for finite-dimensional generalized Nash equilibrium
problems (GNEPs). Our main objective is to apply the algorithmic framework to the
problem collection used in [66], see also the preprint version of that paper. The problems
in this collection are GNEPs consisting of player problems of the form

minimize
x∈Rn

fν(x) subject to gν(x) ≤ 0.

Here and throughout, fν : Rn → R and gν : Rn → Rmν are convex with respect to
xν and continuously differentiable. The problems are tackled by using the augmented
Lagrangian method from Section 6.3.3 or, in the case of joint convexity, Algorithm 5.28
from Section 5.3.3. (For the set of parameters we will choose below, the algorithms
coincide in the jointly convex case.) For the sake of simplicity, all the problems are tackled
by full penalization (i.e., all constraints are penalized and the resulting subproblems are
unconstrained). The implementation was done in MATLAB and uses the parameters

ρν,0 := 1, wmax := 106, and

{
τν := 0.1, γν := 10, if n ≤ 100,

τν := 0.5, γν := 2, if n > 100.

This represents a quite aggressive penalization scheme for small problems and a more
cautious scheme for large problems. This distinction has turned out to be very efficient



186 7. Applications

for our problem set. For the computation of the initial multipliers λν,0, we consider the
KKT conditions of player ν in x0, which can be stated as

∇xνfν(x0) +∇xνgν(x0)λν,0 = 0 and min{−gν(x0), λν,0} = 0. (7.41)

We now choose λν,0 in a least-squares sense by setting λν,0i := 0 for every i with gνi (x0) < 0
and using the MATLAB function lsqnonneg to compute the remaining components of
λν,0i as approximate solutions of the first equality in (7.41).

The augmented subproblems are solved by reformulating them as the semismooth
equations

Fk(x) :=

 ∇x1L
1
ρ1,k

(x,w1,k)
...

∇xNLNρN,k(x,wN,k)

 !
= 0

and then applying a semismooth Levenberg–Marquardt algorithm similar to that presented
in Section 7.1.2 (see [129] for more details). These equations are solved up to a residual
of ε > 0 in the infinity norm. Finally, the overall stopping criterion we use is

‖∇xνθν(x) +∇xνgν(x)λν‖∞ ≤ ε, ‖gν+(x)‖∞ ≤ ε, and |gν(x)>λν | ≤ ε

for every ν. Here, ε is some prescribed stopping tolerance which we set to 10−8.
The results are presented in Table 7.6. For a given problem, N denotes the number of

players, n is the total number of variables, and x0 is the initial point. If only a number
is reported here, this means that all variables were initiated with that value. Moreover,
k is the number of outer iterations, itotal is the accumulated number of inner iterations,
and “F” denotes a failure. We also include certain values which measure the feasibility,
optimality and complementarity at the computed solution. These are denoted Rf , Ro
and Rc, respectively. The values are calculated as follows:

Rf := max
ν=1,...,N

‖gν+(x)‖∞,

Ro := max
ν=1,...,N

‖∇xνfν(x) +∇xνgν(x)λν‖∞,

Rc := max
ν=1,...,N

|gν(x)>λν |.

Clearly, some remarks are in order:

1. With the exception of problem A.8, the augmented Lagrangian method was able to
solve every problem quite efficiently. It is particularly noteworthy that the method
achieves a very high accuracy, typically in the region of 10−10.

2. The algorithm was also tested with different choices of wmax. Recall that, for
wmax = 0, the algorithm is essentially a quadratic penalty method. The following
table lists some values for wmax and corresponding failure numbers.

wmax 0 10 102 104 106

failures 29 18 10 1 1
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Example N n x0 k itotal Rf Ro Rc ρmax

A.1 10 10 0.01 7 20 1.5e-10 8.9e-16 4.2e-11 100
0.1 6 13 8e-09 5.9e-13 2.1e-09 100
1 7 19 1.5e-10 2.9e-16 4.2e-11 100

A.2 10 10 0.01 9 108 4.7e-09 2.3e-09 1.4e-09 1000
0.1 8 70 2.9e-09 4.1e-14 2.9e-11 100
1 10 192 4.9e-10 5.6e-14 1.5e-10 1e+05

A.3 3 7 0 1 4 0 1e-09 0 1
1 1 5 0 3.6e-15 0 1
10 1 5 0 1.7e-10 0 1

A.4 3 7 0 12 63 2.6e-11 1.5e-09 2.6e-09 1e+04
1 0 0 0 0 0 1
10 11 202 2.5e-12 4.6e-10 7.4e-10 1e+04

A.5 3 7 0 8 20 2e-10 1.7e-13 4.8e-10 1000
1 8 20 3.5e-10 4.9e-13 8.3e-10 1000
10 10 27 6.9e-09 1e-13 6.2e-09 1000

A.6 3 7 0 14 68 1.9e-11 6.6e-10 4.2e-09 1e+04
1 11 92 9.8e-12 4.5e-09 5.1e-09 1e+04
10 14 82 1.9e-11 6.6e-10 4.2e-09 1e+04

A.7 4 20 0 13 35 6.6e-12 1.7e-11 2.3e-09 1e+04
1 12 39 1.1e-11 1.4e-11 3.8e-09 1e+04
10 12 52 4.1e-12 1.2e-11 1.7e-09 1e+05

A.8 3 3 0 F
1 1 4 4.9e-11 4.9e-11 4.9e-11 1
10 3 14 4.5e-12 4.9e-12 4.5e-12 10

A.9a 7 56 0 9 46 2.3e-09 8e-15 7.6e-09 10
A.9b 7 112 0 26 75 2.8e-10 1e-14 2.7e-09 16
A.10a 8 24 see [66] 11 243 9.8e-13 4.5e-11 4.5e-12 1e+05
A.10b 25 125 see [66] 19 2519 6.7e-10 1.8e-11 4.9e-09 64
A.10c 37 222 see [66] 40 3658 7.2e-13 9.3e-12 1.6e-09 5e+05
A.10d 37 370 see [66] 19 2527 2.9e-11 2.3e-12 3.1e-10 256
A.10e 48 576 see [66] 18 4048 1.2e-10 7.1e-12 1.5e-09 256
A.11 2 2 0 9 17 6.4e-09 2.9e-15 3.2e-09 10
A.12 2 2 (2,0) 1 5 0 8.9e-16 0 1
A.13 3 3 0 4 20 3.3e-09 7.6e-12 1.9e-09 1
A.14 10 10 0.01 1 8 0 8.2e-14 0 1
A.15 3 6 0 1 7 0 2.8e-14 0 1
A.16a 5 5 10 10 26 1.3e-10 6e-14 3.7e-09 10
A.16b 5 5 10 9 26 6.1e-11 3.6e-15 1.1e-09 10
A.16c 5 5 10 7 23 9e-10 1.5e-13 6.4e-09 10
A.16d 5 5 10 9 24 4e-09 2.1e-14 1.9e-09 1
A.17 2 3 0 8 20 4.5e-11 3.4e-13 1.1e-10 100
A.18 2 12 0 9 34 1.3e-11 1.1e-11 2.4e-10 1000

1 9 34 1.3e-11 1.2e-11 2.4e-10 1000
10 9 32 1.3e-11 1.8e-11 2.4e-10 1000

Table 7.6: Numerical results of the augmented Lagrangian method, applied to a collection
of finite-dimensional generalized Nash equilibrium problems.
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3. Clearly, the overall speed of the algorithm crucially depends on how quickly the
subproblems are solved. In this regard, the semismooth Levenberg–Marquardt
algorithm seems to be a very strong choice. Some of the problems were investigated
on a sample basis, and the Levenberg–Marquardt method appears to be superlinearly
convergent for all of them.

4. Another factor which greatly affects the performance of the algorithm is the choice of
algorithmic parameters. The presented values are quite simple and straightforward.
However, for some problems, fine-tuning the parameters can yield a significant speed
improvement.

5. For problem A.8 with the starting point x0 = 0, the subproblem algorithm is unable
to compute a solution and, hence, the overall iteration breaks down. Another
peculiarity of problem A.8 is that, for a suitable choice of parameters, one can
get the algorithm to converge to the infeasible point x̄ = (1.5, 0, 2)>. This point
(together with its corresponding multipliers) satisfies the stationarity part of the
KKT conditions, but (due to the infeasibility) is not a solution of the GNEP.
Furthermore, one can easily verify that x̄ is a solution of the “Feasibility GNEP”
from Section 6.3.3, as suggested by Lemma 6.42, but the GNEP-EMFCQ does not
hold in x̄. This corroborates the assertion of that result.

7.6 Quasi-Variational Inequalities in Rn

The purpose of this section is to give detailed practical results on the augmented La-
grangian method for QVIs with nonlinear programming constraints. The results are
obtained for both the basic method (Algorithm 6.29) and its exact penalty modification
(Algorithm 6.34). A suitable collection of test problems is the QVILIB library [68]. The
QVIs in this collection follow a simple structure: for each problem, the constraint set
Φ(x) is given by

Φ(x) = {y ∈ Rn : gI(y) ≤ 0 and gP (x, y) ≤ 0},

where gI and gP describe the independent and parametrized constraints, respectively.
This structure lends itself to both partial and full penalization (recall that the exact
penalty method always uses full penalization). The resulting subproblems then become
either standard VIs or, in the latter case, nonlinear equations. For the solution of these
problems, we decided to employ a semismooth Levenberg–Marquardt type method (see
Section 7.1.2) together with the well-known Fischer–Burmeister complementarity function

φFB(a, b) :=
√
a2 + b2 − a− b,

see [67, 75], which allows us to transform a VI into a nonlinear equation.
After the above discussion, we are left with four methods:

• the semismooth Levenberg–Marquardt method, applied directly to the KKT system
of the QVI by use of the Fischer–Burmeister function. This method will be denoted
by Semi.
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Figure 7.11: Performance profiles (based on CPU times) of the four algorithms from
Section 7.6.

• the augmented Lagrangian method (Algorithm 6.29) using partial penalization and
the formula wk = min{λk, wmax}. This method will be denoted by ALMP.

• the augmented Lagrangian method like above, but with full penalization, denoted
ALMF.

• the exact penalty method (Algorithm 6.34), denoted Exact.

We now describe some implementation details for our methods, using the notation of
Section 6.3.1. The starting points x0 are given by the test library, and the subproblems
occurring within the penalty methods are solved with the termination criterion∥∥∥∥(Lρk(x,wk) +∇yh(x, x)µ

φFB(−h(x, x), µ)

)∥∥∥∥
∞
≤ 10−8,

where φFB is the (vectorized) Fischer–Burmeister function, see above. For the outer
algorithm, we use the stopping criterion∥∥∥∥∥∥

F (x) +∇yg(x, x)λ+∇yh(x, x)µ
min{−g(x, x), λ}
min{−h(x, x), µ}

∥∥∥∥∥∥
∞

≤ ε := 10−4.

Both these inequalities can, of course, be written more tersely for the methods which
do not use h. Finally, we use the initial Lagrange multipliers (λ0, µ0) := (0, 0) and the
algorithmic parameters

ρ0 := 1, wmax := 1010, γ := 5, and τ := 0.9,

which are chosen to favor robustness over efficiency. Note that some algorithms, such as
the exact penalty method, only use a subset of the above parameters.

The results are presented in Table 7.7, which contains problem data and iteration
numbers, and Figure 7.11, which contains the performance profiles of the four methods
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Name n m p Semi ALMP ALMF Exact
BiLin1A 5 3 10 57 23 22 2
BiLin1B 5 3 10 27 49 49 1
Box1A 5 10 0 6 38 38 1
Box1B 5 10 0 – – – 1
Box2A 500 1000 0 146 13 13 1
Box2B 500 1000 0 74 16 16 1
Box3A 500 1000 0 177 12 12 1
Box3B 500 1000 0 774 38 38 2
KunR11 2500 2500 0 504 12 12 ∗
KunR12 4900 4900 0 – 11 11 ∗
KunR21 2500 2500 0 277 1 1 ∗
KunR22 4900 4900 0 269 1 1 ∗
KunR31 2500 2500 0 340 29 29 ∗
KunR32 4900 4900 0 621 35 35 ∗
MovSet1A 5 1 0 8 36 36 1
MovSet1B 5 1 0 – – – 2
MovSet2A 5 1 0 9 42 42 1
MovSet2B 5 1 0 – 44 44 1
MovSet3A1 1000 1 0 45 3 3 1
MovSet3A2 2000 1 0 96 3 3 1
MovSet3B1 1000 1 0 42 3 3 4
OutKZ31 62 62 62 7 16 19 –
OutKZ41 82 82 82 12 22 10 –
OutZ40 2 2 4 5 1 1 1
OutZ41 2 2 4 6 1 1 1
OutZ42 4 4 4 14 6 6 1
OutZ43 4 4 0 5 8 8 1
OutZ44 4 4 0 5 7 7 1
RHS1A1 200 199 0 110 1 1 1
RHS1B1 200 199 0 388 1 1 1
RHS2A1 200 199 0 116 1 1 1
RHS2B1 200 199 0 114 1 1 1
Scrim21 2400 2400 2400 846 28 30 ∗
Scrim22 4800 4800 4800 – 28 30 ∗

Table 7.7: Numerical results of four algorithms for a library of quasi-variational inequality
problems. Note: ∗ denotes a problem where QVI-LICQ is violated.
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(using CPU time as the underlying metric). The table is structured as follows: each row
represents a problem from the QVILIB library. The name of the problem is given in
the first column, followed by the dimensions n, m and p. The final four columns list the
iteration numbers for each of our four methods, where “–” denotes a failure. In view of
the results, some remarks are in order:

1. The augmented Lagrangian methods (ALMP and ALMF) are able to solve most
problems, the only exceptions being Box1B and MovSet1B. A quick analysis shows
that the failure for these problems is due to the inability of the Newton method to
solve the subproblems at certain iterations. This possibly could have been avoided
with a different choice of sub-algorithm.

2. The Newton method has 5 failures, which shows that the implementation (although
fairly simple) is quite robust (in particular, more robust than the standard se-
mismooth Newton method from [67, 127]), but not as robust as the augmented
Lagrangian methods.

3. The exact penalty method is able to solve most of the smaller problems extremely
quickly, usually requiring only 1 or 2 iterations (recall that 1 iteration means that
the penalty parameter ρ0 = 1 is already exact). However, the algorithm exhibits
failures for some of the larger problems. A quick analysis shows that, in particular,
the Kun* and Scrim* examples seem to violate QVI-LICQ (at least numerically),
which makes the exact penalty method entirely unsuited for these problems.

4. Regarding the actual performance of the methods, note that the iteration numbers
in Table 7.7 do not show the whole picture since the cost of a single step differs
greatly between the methods (for instance, the Newton method only solves a linear
equation per step). A more realistic performance comparison is given by the
performance profiles in Figure 7.11. We observe that the augmented Lagrangian
method performs significantly better when using full penalization, even rivaling
the semismooth Newton method in terms of overall efficiency. The exact penalty
method is extremely efficient but suffers from a lack of robustness due to the strong
theoretical requirements of the method.

5. All four algorithms were also tested with a desired accuracy of ε = 10−8. For most
problems, this did not cause any difficulties. The failure numbers in this setting are
given by 7 (Semi), 4 (ALMP and ALMF), and 3 (Exact, excluding the examples
where LICQ is violated).

6. For some problem classes, the algorithms exhibit completely different behaviour.
For instance, the RHS* examples turn out to be extremely easy for the augmented
Lagrangian methods and quite hard for the semismooth Newton method.

7. The two problems Box1B and MovSet1B appear to be very hard for the first three
methods, which agrees with the numerical results from [127]. Interestingly, though,
the exact penalty method is able to solve these problems very easily, requiring only
1 and 2 iterations, respectively.

To conclude, the augmented Lagrangian approach appears to be a very robust and
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efficient solver for QVIs under fairly mild assumptions. On the other hand, the exact
penalty method, which is basically just a by-product of our analysis, requires stronger
assumptions (i.e., QVI-LICQ) to even be well-defined, but seems to work extremely well
if these assumptions are satisfied. In addition, it is able to solve certain problems which
pose difficulties to both the augmented Lagrangian and semismooth Newton methods.



Chapter 8

Additional Results

This chapter collects some supplementary results whose purpose is to enrich the theoretical
framework of the augmented Lagrangian technique. For the sake of simplicity and clarity,
the results in this section will be restricted to the case of a constrained minimization
problem of the form

(P ) minimize
x∈X

f(x) subject to G(x) ∈ K, (8.1)

where X and H respectively denote real Banach and Hilbert spaces, f : X → R and
G : X → H are suitable mappings, and K ⊆ H is a nonempty closed convex set. Note
that, in comparison to the framework from Chapter 4, we do not use an intermediate
space Y together with an embedding Y ↪→ H. The reason is that the results below can
be stated most accurately in terms of the space H itself.

For w ∈ H and ρ > 0, the augmented Lagrangian of (P ) takes on the form

Lρ : X ×H → R, Lρ(x, λ) := f(x) +
ρ

2
d2
K

(
G(x) +

λ

ρ

)
−
‖λ‖2H

2ρ
. (8.2)

This chapter is organized as follows. In Section 8.1, we give a general result characterizing
the KKT points of (P ) as primal-dual saddle points of the function Lρ. This property was
observed by Rockafellar in [187] for convex minimization problems. Here, we show that it
is valid for arbitrary optimization problems. This allows us to interpret the augmented
Lagrangian algorithm as a gradient ascent method for the dual variable.

In Section 8.2, we demonstrate a connection between the augmented Lagrangian and
the concept of epigraphical convergence (also called Γ-convergence). This is a notion of
functional convergence designed to facilitate limit processes in minimization problems,
see [10, 49,191] for more details.

Section 8.3 is based on the publication [130] and contains an explicit example demon-
strating the necessity of multiplier safeguarding in augmented Lagrangian methods. The
existence of such examples can be seen as the most tangible practical motivation for the
use of safeguarded algorithms such as those in Chapters 4 to 6.

Finally, Section 8.4 is based on the paper [131]. Here, we show how the augmented
Lagrangian method is related to the famous proximal point algorithm from convex analysis

193
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(see [15]). This connection also goes back to the work of Rockafellar [187,189] for nonlinear
programming, and in the present chapter we show that the connection can be extended to
a general problem of the form (P ). This provides another perspective on the convergence
properties of the augmented Lagrangian algorithm.

8.1 Saddle Points of the Augmented Lagrangian

In this section, we shall see that KKT points of constrained optimization problems can
always be characterized by means of primal-dual stationary points of the augmented
Lagrange function. We consider a problem of the form (P ), where f and G are assumed
to be continuously differentiable. Recall that the KKT conditions of the problem take on
the form

L′(x̄, λ̄) = 0 and λ̄ ∈ NK(G(x̄)),

and that the augmented Lagrangian of (P ), for ρ > 0, is given by

Lρ(x, λ) = f(x) +
ρ

2
d2
K

(
G(x) +

λ

ρ

)
−
‖λ‖2H

2ρ
. (8.3)

The main definition we will use below is the following.

Definition 8.1 (Primal-dual stationary point). We say that a pair (x̄, λ̄) ∈ X ×H is a
primal-dual stationary point of Lρ if DxLρ(x̄, λ̄) = 0 and DλLρ(x̄, λ̄) = 0.

Note that we write DxLρ instead of L′ρ for the sake of clarity. The following is the
main result of this section.

Theorem 8.2. Let (x̄, λ̄) ∈ X ×H be an arbitrary point. The following are equivalent:

(i) x̄ is feasible and (x̄, λ̄) is a KKT point of the problem (P ).

(ii) (x̄, λ̄) is a primal-dual stationary point of Lρ for some ρ > 0.

(iii) (x̄, λ̄) is a primal-dual stationary point of Lρ for all ρ > 0.

Proof. The partial derivatives of the augmented Lagrangian take on the form

DxLρ(x, λ) = f ′(x) + ρG′(x)∗
[
G(x) +

λ

ρ
− PK

(
G(x) +

λ

ρ

)]
, (8.4)

DλLρ(x, λ) = G(x)− PK
(
G(x) +

λ

ρ

)
. (8.5)

We now prove the desired equivalences. Note that (iii)⇒(ii) is clear.
(ii)⇒(i): If (x̄, λ̄) is a primal-dual stationary point for some ρ > 0, then (8.5) implies

G(x̄) ∈ K and λ̄/ρ ∈ NK(G(x̄)), which yields λ̄ ∈ NK(G(x̄)). Moreover, inserting
(8.5) into (8.4), we obtain f ′(x̄) + G′(x̄)∗λ̄ = 0, and thus (x̄, λ̄) is a KKT point of the
optimization problem.

(i)⇒(iii): Let ρ > 0 be arbitrary. Then λ̄/ρ ∈ NK(G(x̄)) since the latter is a
cone. Hence, (8.5) implies that DλLρ(x̄, λ̄) = 0. Inserting this into (8.4), we see that
DxLρ(x̄, λ̄) = DxL(x̄, λ̄) = 0. Thus, (x̄, λ̄) is a primal-dual stationary point of Lρ.
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The above result provides a different perspective on the augmented Lagrangian method.
To this end, assume that we are in the notation of Algorithm 4.4, so that xk+1 is an
approximate minimizer of Lρk(·, wk) for certain ρk > 0 and wk ∈ H. This can be viewed
as the “primal” step of the algorithm. An elementary calculation shows that the next
dual iterate λk+1 is given by

λk+1 = wk + ρkDλLρk(xk+1, wk). (8.6)

It follows that we can interpret the multiplier update in the augmented Lagrangian
method as a gradient ascent step for the dual variable, with step size equal to ρk. The
overall algorithm can therefore be viewed as repeatedly

(i) minimizing Lρk(·, wk) to obtain xk+1, and then

(ii) performing a gradient ascent step for Lρk(xk+1, ·) to obtain λk+1 from wk.

Observe also that the derivative DλLρk is globally Lipschitz-continuous with respect to λ,
with Lipschitz constant given by 1/ρk, see (8.5). Hence, the step size in (8.6) is equal to
the inverse Lipschitz constant of DλLρk , which is a standard step size in the context of
gradient-type descent (or ascent) schemes [16].

8.2 Epigraphical Convergence

The purpose of this section is to analyze the augmented Lagrange function in the context
of a certain notion of functional convergence, the so-called epigraphical convergence (also
known as Γ-convergence). This property is related to the behavior of approximate or
asymptotic minimizers of the augmented Lagrangian (see Section 4.2.2), but it may also
be of independent theoretical interest and could lead to subsequent developments. The
main definition is the following. Note that R = R ∪ {±∞} denotes the extended real line.

Definition 8.3 (Epigraphical convergence). Let X be a real Banach space and fk, f :
X → R given functions. We say that {fk} converges epigraphically or epiconverges to f
if the following two conditions are satisfied:

(i) whenever {xk} ⊆ X and xk → x ∈ X, then f(x) ≤ lim infk→∞ fk(x
k).

(ii) for every x ∈ X, there is a sequence {xk} ⊆ X such that xk → x and f(x) ≥
lim supk→∞ fk(x

k).

The main result in this section is the following. Note that we write δΦ for the indicator
function of the feasible set Φ = G−1(K), i.e., for the function defined as zero on Φ and
+∞ elsewhere. (This is the indicator function from convex analysis, but in the present
case, the set Φ is not assumed to be convex.)

Theorem 8.4. Let {wk} ⊆ H be a bounded sequence, ρk → ∞, and Lk : X → R,
Lk(x) := Lρk(x,wk). If f and dK ◦G are lower semicontinuous, then the sequence {Lk}
converges epigraphically to f + δΦ.
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Proof. To prove property (i) from Definition 8.3, let xk → x for some x ∈ X. We
distinguish two cases. if x /∈ Φ, then dK(G(x)) > 0, and it is easy to infer that
dK(G(xk) + wk/ρk) is asymptotically positive. Moreover, the lower semicontinuity of f
implies that {f(xk)} is bounded from below. Hence, in this case, it follows that

Lk(xk) = f(xk) +
ρk
2
d2
K

(
G(xk) +

wk

ρk

)
−
‖wk‖2H

2ρk

→ +∞ = (f + δΦ)(x),

which implies the claim. Assume now that x ∈ Φ. From the definition of Lρ, we have that

lim inf
k→∞

Lk(xk) ≥ lim inf
k→∞

[
f(xk)−

‖wk‖2H
2ρk

]
≥ f(x) = (f + δΦ)(x).

Hence, the claim also follows in this case.
We now prove property (ii) from Definition 8.3. Let x ∈ X be an arbitrary point

and set xk := x for all k. If x is infeasible, then we can argue as above to see that
Lk(xk)→ +∞ = (f + δΦ)(x), so that the property is satisfied. If x is feasible, then we
have from Proposition 4.3 that Lk(xk) ≤ f(x) for all k, and this immediately implies

(f + δΦ)(x) = f(x) ≥ lim sup
k→∞

Lk(xk).

The proof is complete.

The above proof technique can also be used to deduce a property which is stronger
than epiconvergence. Indeed, if the functions f and dK ◦G are weakly sequentially lsc,
then we obtain that {Lk} converges epigraphically to f + δΦ, and property (i) from
Definition 8.3 actually holds for all weakly convergent sequences {xk}. This type of
convergence is often called Mosco-convergence, see [49]. (It corresponds to its namesake
set convergence from Section 6.1.1, applied to the epigraphs of the functions.)

The epiconvergence (and Mosco-convergence) of the augmented Lagrangians can be
used to obtain certain results on approximate or asymptotic minimizers which closely
resemble those in Section 4.2.2, see [49] for more details. However, the results in that
section are actually somewhat stronger and simpler than those which follows from the
general epiconvergence theory, and the proofs in Section 4.2.2 are much more elementary
than an application of this abstract theoretical framework.

8.3 The Necessity of Multiplier Safeguarding

This section contains an explicit example which demonstrates the necessity of multiplier
safeguarding in augmented Lagrangian methods. This can be regarded as the most
tangible motivation for the use of safeguarded multiplier sequences. Throughout this
section, we will deal with a nonlinear programming problem of the form

minimize
x∈Rn

f(x) subject to g(x) ≤ 0,
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where f : Rn → R and g : Rn → Rm, m,n ∈ N, are continuously differentiable mappings.
For the sake of clarity, the following is essentially a restatement of the augmented
Lagrangian method (Algorithm 4.4) for such problems. Here and throughout, we write
x+ := max{0, x} for a vector in Rn, where max is understood componentwise.

Algorithm 8.5 (ALM for nonlinear programming). Let (x0, λ0) ∈ Rn+m, ρ0 > 0, let
wmax ≥ 0, γ > 1, τ ∈ (0, 1), and set k := 0.

Step 1. If (xk, λk) satisfies a suitable termination criterion: STOP.

Step 2. Let wk := min{λk, wmax} and compute an approximate solution xk+1 of the
problem

minimize
x∈Rn

Lρk(x,wk). (8.7)

Step 3. Update the vector of multipliers to λk+1 := (wk + ρkg(xk+1))+.

Step 4. Let Vk+1 :=
∥∥min{−g(xk+1), wk/ρk}

∥∥ and set

ρk+1 :=

{
ρk, if k = 0 or Vk+1 ≤ τVk,
γρk, otherwise.

(8.8)

Step 5. Set k ← k + 1 and go to Step 1.

We will refer to the above algorithm as the safeguarded augmented Lagrangian method
(ALM). Throughout this section, we will also make reference to the traditional or classical
ALM, which is understood to be the same method as Algorithm 8.5, with the exception
that wk is always chosen as λk in Step 2 (regardless of boundedness).

We have already seen that the safeguarded ALM allows for a very rich global con-
vergence theory, and we shall now see that a similar theory is not possible for the
classical ALM. Indeed, we will construct an example where both the traditional and
modified ALMs generate sequences of stationary points (in fact, local minimizers) of
the corresponding augmented subproblems in such a way that the sequences each have
two accumulation points, one of which is infeasible and violates basically any constraint
qualification, whereas the other accumulation point is feasible (though different for both
methods) and satisfies essentially all constraint qualifications, and is therefore necessarily
a KKT point of (8.9) for the safeguarded ALM (in view of Section 4.2.3), whereas it does
not correspond to a stationary point for the classical ALM.

The problem we consider is the simple nonlinear programming problem

minimize
x∈R

f(x) := x subject to g(x) := 1− x3 ≤ 0. (8.9)

Note that x̄ := 1 is the unique solution of this problem; moreover, an easy calculation
shows that (x̄, λ̄) := (1, 1/3) is the only KKT point. A key issue in our subsequent
analysis is the fact that g has a stationary point at x = 0, and that this point is not
feasible. Observe that (8.9) is easy in the sense that both the objective function and the
feasible set are convex, although the representation of the feasible set is nonconvex.
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The Classical Method

Let us consider the traditional augmented Lagrangian method applied to problem (8.9).
The subsequent analysis is fairly general and only assumes (mainly for the sake of
convenience) that ρ0 > 1/3 and λ0 ≤ 1/3.

It is easily seen that, for all λ ≥ 0 and ρ > 0, the function Lρ(·, λ) is coercive on R.
Moreover, using the formula

L′ρ(x, λ) = f ′(x) + g′(x)
(
λ+ ρg(x)

)
+

for the derivative of Lρ, we obtain L′ρ(0, λ) = 1 and L′ρ(1, λ) = 1 − 3λ. It follows that
Lρ always attains a local minimum in (−∞, 0) and, if λ > 1/3, it attains another local
minimum in (1,+∞). Let {xk}k≥1 be a sequence of such local minimizers such that

• for k odd, xk is the largest local minimizer in (−∞, 0),

• for k even, xk is the smallest local minimizer in (1,+∞).

If k is odd, then we have xk < 0 and g(xk) > 1. It follows that

λk =
(
λk−1 + ρk−1g(xk)

)
+
≥ ρk−1. (8.10)

Since ρk−1 > 1/3, we conclude that xk+1 is well-defined. Another property of the sequence
{xk} is boundedness.

Lemma 8.6. For the classical ALM, we have xk ∈ [−1, 2] for all k ≥ 1.

Proof. If k is odd, then xk < 0. Moreover, L′ρk−1
(−1, λk−1) = 1− 3(λk−1 + 2ρk−1)+ < 0,

which implies xk > −1 since xk is defined as the largest local minimizer in (−∞, 0).
Before showing that xk ≤ 2 for k even, we need some information about the multiplier

sequence {λk}. First, if k > 1 is even, then 0 = L′ρk−1
(xk, λk−1) = 1− 3(xk)2λk, which

implies λk = 1/(3(xk)2) ≤ 1/3. By our assumption on λ0, this assertion also holds for
k = 0. Hence, using ρ0 > 1/3 and xk ≥ −1 for k odd, it follows that

λk =
(
λk−1 + ρk−1g(xk)

)
+
≤ 1

3
+ 2ρk−1 ≤ 3ρk,

again for k odd. We now use this inequality to prove xk ≤ 2 for k even. To this end, let
k > 1 be even, and note that

L′ρk−1
(2, λk−1) = 1− 12(λk−1 − 7ρk−1)+ = 1,

since k − 1 is odd. Hence, the definition of xk as the smallest local minimizer in (1,+∞)
implies xk < 2.

The boundedness of {xk} implies that the sequence has at least one limit point in
[−1, 0] and one in [1, 2]. In particular, we have ρk →∞, for otherwise every limit point
of {xk} would have to be feasible (because of the penalty updating scheme).
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On the other hand, (8.10) implies that λk/ρk ≥ γ−1 for odd k (where γ is defined in
Algorithm 8.5). Let

x̂ :=

(
1 +

1

2γ

)1/3

,

so that g(x̂) = −1/(2γ). It follows that, for all x ∈ [1, x̂] and k even,

L′ρk−1
(x, λk−1) = 1− 3ρk−1x

2

(
g(x) +

λk−1

ρk−1

)
+

≤ 1− 3ρk−1

(
1

γ
− 1

2γ

)
+

= 1− 3

2γ
ρk−1 < 0

for sufficiently large values of ρk−1. Since ρk →∞, we conclude that xk > x̂ for sufficiently
large (even) k. In particular, any accumulation point of {xk} in [1, 2] is strictly greater
than 1. But none of these points correspond to a KKT point of the problem (8.9).

The Safeguarded Method

We now consider the modified method applied to problem (8.9). For the sake of conve-
nience, we will again make certain assumptions on the algorithmic parameters. That is,
we assume ρ0 > 1/3, λ0 ≤ 1/3, and wmax > 1/3.

These assumptions allow us to compare the algorithm fairly easily to the classical
ALM. In particular, we can choose {xk} as before, and the proof of Lemma 8.6 can be
carried over as well.

Lemma 8.7. For the safeguarded ALM, we have xk ∈ [−1, 2] for all k ≥ 1.

Proof. The proof is virtually identical to that of Lemma 8.6. Note that wk ≤ λk for all k;
hence, any upper bound for λk automatically translates to one for wk.

As with the classical ALM, it follows that the sequence generated by the modified
ALM has at least two limit points, one in [−1, 0] and one in [1, 2]. Using standard
convergence theorems (e.g., Lemma 4.15 and Theorem 4.18), we know that

• every limit point of {xk} is a stationary point of ‖g+(x)‖2, and

• every feasible limit point of {xk} where g satisfies CPLD is a KKT point.

Clearly, the interval [−1, 0] consists only of infeasible points. However, the point x = 0 is
the only point in this interval which is a stationary point of ‖g+‖2. Hence, the subsequence
of {xk} consisting of odd k must converge to x = 0. On the other hand, the interval [1, 2]
consists entirely of feasible points, and CPLD (in fact, LICQ) holds at every one of these
points. Hence, the subsequence of {xk} consisting of even k converges to x = 1 which is
the solution (and only stationary point) of the optimization problem (8.9).
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Numerical Results

This part contains some numerical results illustrating the practical behavior of the two
methods. The algorithmic parameters were chosen as

x0 := −1, λ0 := 0, ρ0 := 1, τ := 0.1, γ := 2, wmax = 104.

The subproblems are solved with the MATLAB function fminunc and a tolerance of
10−12. The overall stopping criterion is

|f ′(x) + λg′(x)| ≤ 10−4 and |min{−g(x), λ}| ≤ 10−4.

Table 8.1 shows the iterates generated by both algorithms.

Classical algorithm Safeguarded algorithm
k xk λk ρk xk λk ρk
0 -1.000000 0.0000e+00 20 -1.000000 0.0000e+00 20

1 -0.537207 1.1550e+00 20 -0.537207 1.1550e+00 20

2 1.247365 2.1424e-01 20 1.247365 2.1424e-01 20

...
...

...
...

...
...

...
15 -0.009021 4.0963e+03 213 -0.009021 4.0963e+03 213

16 1.144714 2.5438e-01 214 1.144714 2.5438e-01 214

17 -0.004511 1.6384e+04 215 -0.004511 1.6384e+04 215

18 1.144714 2.5438e-01 216 1.092837 2.7910e-01 216

19 -0.002255 6.5536e+04 217 -0.002255 6.5536e+04 217

20 1.144714 2.5438e-01 218 1.024810 3.1739e-01 217

21 -0.001128 2.6214e+05 219 -0.001595 1.3107e+05 218

...
...

...
...

...
...

...
37 -0.000002 1.7180e+10 235 -0.000100 3.3554e+07 226

38 1.144714 2.5438e-01 236 1.000050 3.3330e-01 226

39 0.000000 6.8719e+10 237 -0.000084 6.7109e+07 227

40 1.144714 2.5438e-01 238 1.000025 3.3332e-01 227

Table 8.1: Comparison of the classical and safeguarded augmented Lagrangian methods.

As suggested by the theory, both algorithms generate sequences with two accumulation
points. Up to iteration 17, the methods perform identically. This is because the bound
wmax = 104 only becomes active when |λk| > wmax, which first occurs for k = 17. Starting
with k = 18, the classical ALM essentially alternates between 1.144714 and (almost) zero.
Recall that the latter is a stationary point of the constraint function g(x) = 1− x3, which
is one of the key reasons for this behavior. However, the former limit point is strictly
feasible and perfectly regular (it satisfies LICQ), but is neither a stationary point of the
optimization problem nor of the constraint. Note that the classical ALM keeps exhibiting
this pathological behavior as k increases, but Table 8.1 stops at k = 40 for which the
safeguarded ALM terminates successfully.
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As with the standard method, the safeguarded ALM generates a sequence {xk} with
two accumulation points, one of which is again the (irregular) point zero. Moreover, up
to k = 17, the iterates are identical to those generated by the classical ALM, but as soon
as the safeguarding becomes active (at k = 18), the subsequence of {xk} with even k
starts to converge to the point x̄ = 1, which is the unique solution and stationary point of
the problem. As a result, the method terminates successfully at k = 40. It is also worth
noting that the penalty parameter remains much smaller for the modified method since
the algorithm is “making progress” during the iterations 18–40.

The table also shows that both methods generate multiplier sequences which are
unbounded (at least on a subsequence). A closer look at the ratio wk/ρk shows that
this sequence converges to zero for the safeguarded ALM (which is clear since {wk} is
bounded), whereas the corresponding sequence λk/ρk (for k odd) from the classical ALM
appears to converge to 1/2. This agrees with our theoretical analysis.

8.4 Relationship with Proximal Point Methods

We now turn to a brief discussion of proximal point methods and their relationship to
the augmented Lagrangian algorithm. Consider an optimization problem of the form (P )
where, for the sake of simplicity, the set K is a closed convex cone. Assume furthermore
that f is convex and that G is K∞-concave and continuously differentiable. Let

q(λ) := inf
x∈X
L(x, λ).

Then the dual problem of (P ) is given by

maximize
λ∈K◦

q(λ). (8.11)

Note that q is a concave function since it is an infimum of affine functions. Since K◦ is a
convex set, it follows that the above is a concave maximization problem. For c > 0, let

proxcq(w) := argmax
λ∈K◦

{
q(λ)− 1

2c
‖λ− w‖2H

}
denote the proximal mapping corresponding to (8.11). Note that the function occurring
inside the argmax above is strongly concave. Since H is a Hilbert space, this function
admits a unique maximizer, and thus the proximal mapping is well-defined.

The famous proximal point algorithm [15] is defined by the recursion

ck > 0, λk+1 := proxckq(λ
k), k ∈ N0.

We will now see that this iterative procedure is strongly related to the augmented
Lagrangian method (Algorithm 4.4). Note that, since K is assumed to be a cone, the
latter algorithm consists of the basic iteration

xk+1 ∈ argmin
x∈X

Lρk(x,wk) and λk+1 := PK◦(w
k + ρkG(xk+1)).

The main result in this section is the following.
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Theorem 8.8. Let w ∈ H and ρ > 0. Let x̂ be a minimizer of Lρ(·, w) on X, let
λ̂ := PK◦(w + ρG(x̂)), and µ̂ = proxρq(w). Then µ̂ = λ̂, and x̂ is a point where the
infimum in q(λ̂) is attained.

Proof. We first claim that (x̂, λ̂) is a saddle point of the convex-concave function

h : X ×K◦ → R, h(x, λ) = L(x, λ)− 1

2ρ
‖λ− w‖2H .

To verify this saddle-point property, note that the definition of x̂ implies that

0 ∈ ∂xLρ(x̂, w) = ∂f(x̂) +G′(x̂)∗λ̂ = ∂xh(x̂, λ̂).

Hence, x̂ is a minimizer of the convex function h(·, λ̂). On the other hand, h(x̂, ·) is a
quadratic function of the form

h(x̂, λ) = 〈λ,G(x̂)〉 − 1

2ρ
‖λ− w‖2H + c = − 1

2ρ
‖λ− w − ρG(x̂)‖2H + c̃,

where c, c̃ are constants independent of λ. Therefore, the (unique) maximizer of h(x̂, ·)
on K◦ is λ̂ = PK◦(w + ρG(x̂)). This proves the saddle-point property of (x̂, λ̂).

A standard saddle point theorem (e.g., [13, Prop. 2.105]) now implies that (x̂, λ̂)
satisfies

h(x̂, λ̂) = max
λ∈K◦

h(x̂, λ) = max
λ∈K◦

min
x∈X

h(x, λ). (8.12)

On the other hand, µ̂ is characterized by

µ̂ = proxρq(w) = argmax
λ∈K◦

{
q(λ)− 1

2ρ
‖λ− w‖2H

}
= argmax

λ∈K◦

{
inf
x∈X
L(x, λ)− 1

2ρ
‖λ− w‖2H

}
= argmax

λ∈K◦

{
inf
x∈X

h(x, λ)

}
.

Using (8.12), the uniqueness of µ̂ implies µ̂ = λ̂, and the statement follows.

It follows from the above theorem that the safeguarded augmented Lagrangian method
can be viewed as a proximal-point type algorithm, applied to the dual problem (8.11),
where λk+1 = proxρkq(w

k) for all k. This is actually a slightly modified proximal point
method (with wk instead of λk). For more details, the reader is referred to [131].



Chapter 9

Comments and Outlook

The results in the preceding chapters provide a fairly comprehensive picture of augmented
Lagrangian methods for constrained optimization, variational inequalities, generalized
Nash equilibrium problems, and quasi-variational inequalities in Banach spaces. In this
chapter, we conclude the thesis by summarizing the main results, highlighting some
essential assumptions, and discussing possible topics of future research.

Constrained Optimization

The formal study of constrained optimization problems began in Chapter 3, where a
substantial amount of background material was presented. Two aspects which deserve a
special mention are the consequences of second-order sufficient conditions in Section 3.1.3
and the analysis of asymptotic KKT-type conditions in Section 3.2.3. The discussions in
these sections are clearly motivated by the augmented Lagrangian method, but they may
be applicable to other optimization algorithms as well.

In Chapter 4, a significant effort was dedicated to a thorough description of augmented
Lagrangian methods for constrained minimization problems in Banach spaces. This
chapter contains a formal deduction of the algorithm (Section 4.1) as well as global
(Section 4.2) and local (Section 4.3) convergence analyses. The main results in this
chapter are probably Theorem 4.12 on global optimality, Theorem 4.16 on stationary
points under the Robinson constraint qualification, Theorem 4.24 on the existence of local
minimizers of the augmented problems, and Theorem 4.31 on the rate of convergence of
the algorithm. A special mention should go to the analysis of C2-cone reducible programs
in Section 4.3.3, which has led to strengthened local convergence results as compared to
those in the literature.

There are multiple aspects of the above theory which could lead to interesting develop-
ments or future research topics. One of the most obvious ideas would be an extension of the
algorithmic framework to nonsmooth problems. The field of nonsmooth optimization has
experienced a steady growth in the last decades, mainly due to the fact that nonsmooth
structures arise naturally in many application contexts. These include, for instance,
optimal control problems with nonsmooth differential equations [44]. Another class of ex-
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amples arises in mathematical programming with complementarity constraints (MPCC) if
the constraints are reformulated through the use of nonsmooth complementarity functions
(see [70,75,214]). This problem class includes, by extension, bilevel optimization problems
if the lower level problem is reformulated through first-order optimality (KKT) conditions.
For such applications and for nonsmooth optimization in general, the availability of a
general-purpose algorithm seems like a worthwhile goal which might be the subject of
future research.

The aforementioned MPCCs can also be considered as a possible research avenue in
their own right. It has already been found that augmented Lagrangian methods possess
certain properties for these problems in finite dimensions [124]. It could be interesting to
analyze the applicability of the algorithm for MPCCs in function spaces (see [216]), or for
other problems with disjunctive constraints such as vanishing or switching constraints.
This can also be motivated by the fact that some results in this thesis may be directly
applicable to such problems, e.g., the results on global minimization in Section 4.2.2 and
those using second-order conditions in Section 4.3.1.

Finally, another possible research topic are composite minimization problems with an
objective of the form f(x) +ϕ(G(x)), where ϕ is a convex but nonsmooth function which
is then regularized by an augmented Lagrangian-type approach, see [117,119]. Problems
of this form occur quite frequently in sparse optimization and image processing.

Variational Inequalities

The theory of variational inequalities was presented in tandem with constrained optimiza-
tion in Chapter 3. Many concepts and properties presented there are either well-known or
simple extensions of those from constrained optimization. Two aspects which should be
mentioned specifically are the asymptotic KKT concepts from Section 3.2.3, which may
lead to interesting developments for other optimization algorithms, and the primal-dual
stability analysis from Section 3.2.4. For the latter, there are in particular the error bound
equivalence (Theorem 3.56) and the resulting primal-dual error bounds (Corollaries 3.57
and 3.58) which are probably new in their given form.

A fairly comprehensive analysis of augmented Lagrangian methods for variational
inequalities was conducted in Chapter 5. Many findings in this chapter are extensions of
those for constrained optimization, but there are also some approaches tailored specifically
to VIs. The main results are Theorem 5.8 for VIs with convex constraints, Theorem 5.12
on stationary points, and Theorem 5.17 on the rate of convergence. Moreover, the chapter
also contains a section on generalized Nash equilibrium problems, their connection to VIs,
and the optimality properties of augmented Lagrangian algorithms for these problems.
The main results in this direction are Theorem 5.27 for Banach space problems and
Theorem 5.31 for GNEPs in finite dimensions.

Two possible research topics in this context are variational inequalities of the second
kind or, even more generally, equilibrium problems in the sense of Section 2.2.4. These
problem types are strongly related to nonsmooth optimization (see above) since, in the
smooth case, VIs of the second kind and equilibrium problems can be reformulated as
ordinary VIs. It follows that an analysis of these problems would be useful, in particular,
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for nondifferentiable (generalized) Nash equilibrium problems.

Quasi-Variational Inequalities

A detailed study of quasi-variational inequalities was conducted in Chapter 6. Due to the
parametric nature of the constraint set, the theory of QVIs is substantially more difficult
than for standard VIs, and a continuity property involving Mosco-convergence was shown
to be of fundamental importance for the existence of solutions and their stability under
weak convergence. In addition, a formal approach to the first-order optimality (KKT)
conditions of QVIs was presented.

The augmented Lagrangian method for QVIs was discussed in Section 6.2, with
convergence results similar to those for standard VIs (albeit under different assumptions).
The main results for QVIs in Banach spaces are Theorem 6.21 for QVIs with convex
constraints and Theorem 6.26 on the primal-dual convergence to stationary points. In the
finite-dimensional case, several refined results were presented in Section 6.3, in particular
Theorem 6.32 for QVIs, Theorem 6.44 for GNEPs, and Theorem 6.37 on an exact penalty
modification of the augmented Lagrangian technique.

Some natural research topics for QVIs are given by the numerous extensions of this
problem class which exist in the literature, including set-valued mappings F : X ⇒ X∗

(see [204]), QVIs of the second kind, or quasi-equilibrium problems (see [79, 155]). As
hinted in the previous discussion of VIs, these classes are intimately related to nonsmooth
optimization or Nash equilibrium problems, which is why they occur quite frequently in
practical applications and corresponding models.

Final Comments

The study of practical algorithms for optimization-related problems is intimately related
to the study of their theoretical properties. This fact is widely acknowledged in the
optimization community, and it was one of the driving factors which eventually led to the
development of this thesis. The material in the preceding chapters underlines the fact that
the interplay between theory and practice is particularly important when dealing with
optimization problems (variational inequalities, etc.) in general Banach spaces, and shows
that a sound development of functional analysis and optimization theory is indispensable
for a tractable approach to many practical problems. In particular, in order to attain
the achieved level of generality, the combination of various ingredients from different
branches of convex, functional, and variational analysis was necessary. With this in mind,
it is the author’s hope that the theory, practical results, and the numerous remarks and
observations presented throughout this thesis will prove useful to other researchers.
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