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Abstract
Abstract

Statistical Procedures for modelling a random phenomenon heavily depend on
the choice of a certain family of probability distributions. Frequently, this choice
is governed by a good mathematical feasibility, but disregards that some distri-
bution properties may contradict reality. At most, the choosen distribution may
be considered as an approximation. The present thesis starts with a construction
of distributions, which uses solely available information and yields distributions
having greatest uncertainty in the sense of the maximum entropy principle. One
of such distributions is the monotonic distribution, which is solely determined by
its support and the mean. Although classical frequentist statistics provides esti-
mation procedures which may incorporate prior information, such procedures are
rarely considered. A general frequentist scheme for the construction of shortest
confidence intervals for distribution parameters under prior information is pre-
sented. In particular, the scheme is used for establishing confidence intervals for
the mean of the monotonic distribution and compared to classical procedures.
Additionally, an approximative procedure for the upper bound of the support of
the monotonic distribution is proposed. A core purpose of auditing sampling is
the determination of confidence intervals for the mean of zero-inflated popula-
tions. The monotonic distribution is used for modelling such a population and is
utilised for the procedure of a confidence interval under prior information for the
mean. The results are compared to two-sided intervals of Stringer-type. Bayesian
statistics feature the ability of incorporating prior information. Bayesian proce-
dures and the here presented frequentist procedure for shortest confidence inter-
vals share some similarities. A comparison with respect to the interval estimation
of the mean of the exponential distribution is carried out.
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Zusammenfassung

Statistische Verfahren zur Modellierung eines zufälligen Phänomens hängen stark
von der Wahl einer bestimmter Familie von Wahrscheinlichkeitsverteilungen ab.
Oft wird die Auswahl der Verteilung durch das Vorliegen guter mathematischer
Handhabbarkeit bestimmt, dabei aber außer Acht gelassen, dass einige Verteilung-
seigenschaften gegen die Realität verstoßen können und bestenfalls als Näherung
aufgefasst werden können. Die vorgelegte Arbeit beginnt mit einer Konstruktion
von Verteilungen, die ausschließlich verfügbare Informationen verwenden und im
Sinne des Prinzips der maximalen Entropie die größte Unsicherheit beinhalten.
Eine dieser Verteilungen ist die monotone Verteilung, die alleine durch ihren
Träger und den Mittelwert festgelegt ist. In der klassischen, frequentistischen
Statistik existieren zwar Verfahren zur Schätzung von Verteilungsparametern, die
Vorinformationen verarbeiten können, sie finden aber kaum Beachtung. Es wird
ein allgemeines frequentistisches Verfahren zur Konstruktion kürzester Konfidenz-
intervalle für Verteilungsparameter unter Vorinformation vorgestellt. Dieses Ver-
fahren wird zur Herleitung von Konfidenzintervallen für das erste Moment der
monotonen Verteilung angewendet, und diese mit klassischen Bereichsschätzern
verglichen. Außerdem wird ein approximatives Schätzverfahren für die obere
Grenze des Trägers der Monotonen Verteilung vorgeschlagen. Ein Hauptziel der
Wirtschaftsprüfung ist die Bestimmung von Konfidenzintervalle für Mittelwerte
von Grundgesamtheiten zu bestimmen, die viele Nullen enthalten. Die mono-
tone Verteilung geht in die Modellierung einer solchen Grundgesamtheit und in
das Verfahren für ein Konfidenzintervall unter Vorinformation zur Schätzung des
Mittelwerts ein. Die Ergebnisse werden mit zweiseitigen Intervallen vom Stringer-
Typ verglichen. Die bayessche Statistik zeichnet sich dadurch aus, dass Vorinfor-
mationen berücksichtigt werden können. Die bayesschen Verfahren haben eine
gewisse Ähnlichkeit zu dem frequentistischen Verfahren der kürzesten Konfiden-
zintervalle. Ein Vergleich wird bezüglich der Intervallschätzung des Mittelwerts
der Exponentialverteilung angestellt.
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1. Introduction

We demand rigidly defined areas of doubt
and uncertainty!

Douglas Adams
“The Hitchhiker’s Guide to the Galaxy”

The world’s evolution is anything but deterministic – it is subject to randomness.
Randomness means that any repetition of a given process results in one of a set
of different values. In other words, the future development of any process is al-
ways uncertain, even if the initial conditions would be exactly known. However,
for man, the initial conditions are never known exactly and the resulting igno-
rance increases the human uncertainty generated by randomness. Thus, human
uncertainty about the future has two sources: one is the ignorance about facts
from the past, i.e., apart from a certain set of possibilities they are unknown, and
the other is the randomness of the future’s development, i.e., again apart from
a set of possibilities and some knowledge about the structure of randomness the
development does not follow deterministic laws.

To be successful, man must make decisions taking into account future develop-
ments and, therefore, predictions about the future are necessary. Since humanity
exists the art of making predictions was one of the most important issues and
many different techniques were developed and applied in the history of mankind.
Modern science, which was developed during the last 500 years, represents one
of the latest solutions for making predictions. However, modern science is essen-
tially based on the assumption of a deterministic future development and as a
consequence scientific predictions never come true and thus may lead to wrong
decisions.

To overcome this pure deterministic description of future development, statistics
has been developed aiming at describing randomness for making statements about
the initial conditions.

A strictly stochastic framework for science has been developed by Jakob Bernuolli

1



1. Introduction

in Ars conjectandi [3]1. Bernoulli’s approach was taken up by von Collani in [19]
and [20], who derived a stochastic model which describes the uncertain future
taking into account both the ignorance about the past and the (structured) ran-
domness of the future. This type of stochastic model enables to deduce prediction
procedures yielding in a given situation reliable and accurate predictions based
on a unique conceptual framework. Any prediction consists of a future event, i.e.,
a set of possible outcomes, and its most important properties are the probability,
i.e., the degree of certainty, that it actually will occur, and its accuracy, i.e., the
size of the predicted event.

Having prediction procedures at hand, von Collani [19, 20] derived measurement,
i.e., estimation procedures to reduce the ignorance about initial conditions. Sim-
ilar to prediction procedures, measurement procedures should meet requirements
with respect to reliability, i.e., the probability of yielding correct results, and
accuracy, that is, the amount of ignorance reduction.

The aim of this dissertation is twofold: First, the statistical approach with re-
spect to prediction and, especially, measurement procedures is investigated. It
is shown, that not all conventional statistical models and the corresponding sta-
tistical procedures are suitable to derive reliable and accurate prediction and,
consequently, measurement procedures. Second, a stochastic model of uncer-
tainty named Bernoulli-Space is presented which enables reliable and accurate
prediction procedures and measurement procedures. One integral part of the
Bernoulli-Space is named ignorance, which would be named prior information
in conventional statistics. That is, the derived measurement procedures from
the Bernoulli-Space take prior information into account. The Bernoulli-Space is
developed and applied in the case of monotonic probability distributions.

Monotonic probability distributions defined by a monotonic probability density
function2 (PDF) play in form of the exponential distribution an important role in

1A short overview of Bernoulli‘s life and the Ars conjectandi can be found in [21].
2Usually, the term probability density function (PDF) is used for a continuous probability

distribution, whereas in the discrete case, the term probability mass function (PMF) is
established. Since both, PDF and PMF, are densities in the mathematical sense, one with
respect to the Borel or Lebesgue measure, the other to a counting measure, we use the term
PDF. Only if it is necessary, we will distinguish between those terms.
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many fields of applications related to the concept of “lifetime” (see [39], pp. 494
et seqq.). The exponential distribution belongs to a continuous random random
variable and is characterized by a constant failure rate, i.e., the probability of
an instantaneous failure does not change during the entire lifetime. The use
of the exponential distribution is especially popular in the following areas of
applications:

• In engineering, in particular in reliability engineering as a lifetime distri-
bution of technical devices and systems: Although, almost all technical
devices do not have a constant failure rate over their whole span of life,
especially not at the beginning and at the end of their operation time, the
exponential distribution is assumed as an approximation for a certain time
period between start and end of the lifetime.

• In queuing theory as the distributions of the inter-arrival time and the
processing time: In this case the exponential distribution is selected because
of its simplicity. Examples may be found in the field of planning the capacity
of computer servers, call-centers etc.

• In physics as the distribution of the time of radioactive decay.

• In economics as the time until a default of a mortgage or a debt (this is
similar to modelling a lifetime in reliability engineering).

• In technical simulations, e.g. simulations of train schedules as the distribu-
tion of delay times.

There are two closely connected aspects of the exponential distribution, which
obviously conflict with reality, i.e., its infinite support and the so-called memory-
less property. The memory-less property may be met approximately in reality.
However, an infinite support can in no case be considered as an approximation
of a finite one. These unrealistic assumptions are avoided here by admitting a
bounded support of the distribution which also excludes the memory-less prop-
erty.

As in the above exemplary fields of applications, monotonic distributions occur
for simple, i.e., not compound processes. A simple process is characterised by the
fact that it cannot be divided into two or more different processes. In this sense,

3



1. Introduction

a simple process cannot be split up into a sequence of sub-processes, where the
distribution of each later process depends on the outcomes of the preceding pro-
cesses. Randomness of simple processes may be modelled by uniform probability
distributions, by monotonic probability distributions or uni-modal probability
distributions.

The dissertation is organized in three parts:

• The first part consists of two chapters and is devoted to the introduction
of some general concepts of stochastic theory and the specific properties of
monotonic distributions. In Chapter 2 we introduce a general concept of
choosing probability distributions according to some qualitative properties.
We identify properties which enable us to derive quantitative properties
with which the probability distributions may be calculated: the moment
equations. Since the same equations may be found in the theory of max-
imum entropy distributions, we sketch its basic idea which was firstly in-
troduced by Shannon [70]. In Chapter 3 we give an extensive character-
isation of the continuous monotonic probability distribution, which helps
us to derive measurement and prediction procedures in the following chap-
ters. Some of the presented results were published in the Economic Quality
Control journal 2003 [67].

• The second part describes in Chapter 4 the classical methods of inference
used in statistics. The most commonly used point and set estimators are
given together with the corresponding evaluation criterions. A majority of
this chapter was published in the Economic Quality Control journal 2013
[69]. In Chapter 5 we apply the methods of Chapter 4 to the monotonic
probability distribution. It is shown that especially when the support is
subject to inference, most of those methods are not suitable at all.

• The third part is devoted to a new way of scientific modelling. In Chapter 6
the concept of the Bernoulli-Space is presented. The Bernoulli-Space fully
describes the uncertainty aspect of a real world phenomenon by taking into
account the always existant ignorance about the past as well as the random-
ness with respect to the future. Though, ignorance always exists, it does

4



not mean that we know nothing at all. The Bernoulli-Space incorporates
the existing knowledge and makes it utilisable in stochastic procedures.
The derived stochastic measurement and prediction procedures are exem-
plified by the monotonic probability distribution. The chapter concludes
with the possible application of the Bernoulli-Space to statistical distribu-
tions. Chapter 7 fully derives the measurement procedure for the expecta-
tion E[X] of a random variable X distributed according to the monotonic
probability distribution. The procedure is compared with statistical ones
when the approximation with the exponential distribution is considered.
The chapter ends with an approximative measurement procedure for the
upper bound of the range of variability of X. Chapter 8 presents an ap-
plication of the afore derived measurement procedure for E[X] in the field
of audit sampling. Since the Bernoulli-Space and the derived procedures
seems to have similarities to the Bayesian approach, a comparison appeared
to be necessary. Therefore, Chapter 9 compares both concepts by deriving
measurement procedures for the expectation of an exponential distributed
random variable.

Besides the introduction of the Bernoulli-Space as the model of uncertainty, the
dissertation also aims at showing the importance to select a realistic, i.e., bounded
support of a probability distribution. Actually, in many applications, particularly
when safety is involved, the bounds of the support are of primary interest. As-
suming in these cases an infinite support lets the problem to determine a safety
bound become more or less insolvable.

All calculations were performed with Mathematica [79].
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2. Selection of an Univariate
Probability Distribution

An appropriate selection of a probability distribution constitutes a major prob-
lem. Often a distribution function is selected which fits well to the observed
data. In other cases the availability of statistical methods determines the model.
Finally, in many fields of application there are certain traditional practices con-
cerning the selection of probability distributions. Sometimes, more than one of
those reasons governs the selection.
This chapter starts with an application of the Weierstrass Approximation Theo-
rem to formulate an approximation theorem for exponential functions ep(x), where
p(x) is a polynomial. As those functions are strictly positive, they may serve –
after a normalisation – as probability density functions (PDF). It is outlined that
the real world’s present state d governs an actual probability distribution (ran-
dom law). Shown by Hausdorff, every univariate PDF on a bounded support is
determined by its sequence of moments. This establishes the connection of the
present state d and the distribution’s moments. Finally, the available qualitative
properties of a PDF are translated into quantitative properties in the form of a
minimal necessary sequence of moments. This leads to the definition of PDFs
denoted as Minimum Information Representatives (MIR). Since MIR shares the
same form as distributions derived from the Maximum Entropy Principle, the
latter is outlined. The three most basic types of PDFs are derived from their
respective qualitative properties.

2.1. A Unique Representation

The Weierstrass Approximation Theorem [76] states for every real-valued contin-
uous function f(x) on [a, b] that a polynomial p(x) exists such that

|f(x) − p(x)| < ε (2.1)

7



2. Selection of a Probability Distribution

for all x ∈ [a, b] and for any given ε > 0. Applied to a probability density
function fX(x) for a random variable X with a bounded and closed range of
variability X ⊂ R this means that it can be approximated by a polynomial p(x)
to any degree of accuracy. Especially in the discrete case with a finite range of
variability it is even possible to give explicitly a polynomial, which exactly fits
fX(x) at the elements of X .

Univariate probability density functions are by definition nonnegative functions
on the real line. For every element of the range of variability X of a random
variable X they are strictly positive and zero for any other element1. The range
of variability X of X is equal to the support of the related probability density
function. Approximating a probability density function with a polynomial may
lead to a polynomial with negative values even though the approximation achieves
a required accuracy. This problem is solved by using exponential functions for
approximation with a polynomial p̃(x) as exponent:

ep̃(x) (2.2)

The following theorem is formulated for a continuous function but can be easily
applied to a discrete function, as mentioned above.

Theorem 2.1 (Approximating PDF) Let f be a continuous, positive and bound-
ed function on [a, b] and ε > 0 given, then there exists a polynomial p on [a, b]
such that

|f(x) − ep(x)| < ε (2.3)

holds for all x ∈ [a, b].

Proof of 2.1: As f is a bounded function there exists a M > 0 such that
M ≥ f(x) for all x ∈ [a, b]. Let ε > 0 and ε̃ := ε

M+ε
> 0. Define the function f̃

as

f̃(x) = ln f(x) for all x ∈ [a, b] . (2.4)

1Concerning the bounds of X it may serve useful to include them in X . Since discrete points
have zero Borel or Lebesgue measure, this states no problem.

8



2.1. A Unique Representation

f̃ is a continuous function on the bounded interval [a, b]. The Weierstrass Ap-
proximation Theorem implies that for ε̃ there exists a polynomial q on [a, b] such
that

|f̃(x) − q(x)| < ε̃ (2.5)

for all x ∈ [a, b].
Inequation (2.5) can be written as

f̃(x) − ε̃ < q(x) < f̃(x) + ε̃ (2.6)

⇔ ef̃(x)︸︷︷︸
=f(x)

e−ε̃ < eq(x) < ef̃(x)︸︷︷︸
=f(x)

eε̃ (2.7)

⇔ e−ε̃ <
eq(x)

f(x)
< eε̃ (2.8)

• Left side of inequation (2.8).
The following relation for the exponential function is well known:

ex > 1 + x for all x ∈ R . (2.9)

Applied to e−ε̃ it follows
1 − ε̃ < e−ε̃ (2.10)

and therefore
1 − ε̃ <

eq(x)

f(x)
(2.11)

This can be transformed to

f(x) − eq(x) < ε̃f(x) ≤ ε̃M = ε
M

M + ε
< ε (2.12)

• Right side of inequation (2.8).
ε > 0 and M > 0 yield that ε̃ = ε

M+ε
< 1 and with the relation

ex <
1

1 − x
for x < 1 (2.13)

we get
eq(x)

f(x)
< eε̃ <

1
1 − ε̃

(2.14)

⇔ eq(x) − f(x) < ε̃eq(x) (2.6)
< ε̃ef̃(x)+ε̃ = ε̃eε̃f(x) < ε̃eε̃M (2.15)

eq(x) − f(x) < ε̃eε̃M <
ε̃

1 − ε̃
M = ε (2.16)

=⇒ −ε < f(x) − eq(x) (2.17)

9



2. Selection of a Probability Distribution

Relations (2.12) and (2.17) together and with p(x) ≡ q(x) it follows

|f(x) − ep(x)| < ε . (2.18)

•

2.1.1. Continuous Approximations

Those values of a random variable representing an aspect of a real random phe-
nomenon, which may actually be observed, form necessarily a finite, that is,
discrete set of numbers. This set is called range of variability of X denoted by
X . With respect to the probability mass function fX , the range of variability X
is equal to the support of fX .

The probability PX({x}) of each possible outcome x is trivially bounded by 1.
The case that a singleton {x} has probability 1 represents the degenerated or
deterministic case and, therefore, can be excluded from stochastic analysis. For
this reason we require that the range of variability X of a random variable has
more than one element.

As every range of variability X of a random variable X is discrete, any contin-
uous mathematical description constitutes an approximation, notwithstanding
that continuous models are generally assumed because they offer mathematical
benefits. The question arises how to derive a continuous approximation starting
from a discrete model.

The discrete and bounded range of variability X is a basic property of a random
variable X representing a real world aspect. The first step, therefore, is to ap-
proximate the discrete range of variability X by a continuous one denoted by X̃ .
In the univariate case a natural continuous approximation is given by

X̃ = {x| min X ≤ x ≤ max X } (2.19)

Next the probability distribution function FX has to be approximated by an
absolutely continuous function FX̃ , which should meet some criteria, for instance

for ε > 0 : lim
ε→0

FX̃(min X − ε) = 0 , lim
ε→0

FX̃(max X + ε) = 1

for δ > 0 : max
x∈X

∣∣FX(x) − FX̃(x)
∣∣ < δ

(2.20)
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2.1. A Unique Representation

As FX̃ is absolutely continuous its derivative exists and we obtain

FX̃(x) =
∫ x

min X̃
fX̃(y)dy for x ∈ X̃ (2.21)

Of course, a continuous approximation only makes sense, if the original discrete
support consists of a sufficiently large number of elements.

In statistics the actual discrete case is not approximated in the way described
above, but a continuous model is selected generally without considering the real
situation. For instance, the discrete range of variability is replaced often by the
set of real numbers R, and the probability distribution selected is the normal
distribution.

2.1.2. Moment Equations

Theorem (2.1) implies that every PDF with bounded support of a random variable
X can be expressed as an exponential function

fX(x) = eβ0+β1x+β2x2+β3x3+... (2.22)

The actual probability distribution of a random variable X is determined by
initial conditions, which describe the present state and situation, respectively, of
a real world phenomenon, of which X represents an aspect. For instance, initial
conditions may be current temperature, atmospheric pressure, force of gravitation,
motivation and education of workers in a production process etc. The list of initial
conditions could be continued ad infinitum, because no real world phenomenon
could be considered to be independent from the rest of the world. Of course, some
initial conditions have a bigger impact on the phenomenon of interest than others.
Initial conditions describing the state and situation, respectively, of a real world
phenomenon are given by situation based deterministic variables, denoted with
D. One actual situation (i.e., an infinite number of actual aspects) is denoted by
d, and D stands for a set of actual situations.

As X and the PDF fX of X are completely determined by the actual situation d

we will write X ({d}) and fX|{d} in the following to express this dependency:

fX|{d}(x) = eβ0(d)+β1(d)x+β2(d)x2+β3(d)x3+... (2.23)

11



2. Selection of a Probability Distribution

In the following we call (β0(d), β1(d), β2(d), . . .) sequence of exponential coeffi-
cients and write β(d):

β(d) = (β0(d), β1(d), β2(d), . . .) (2.24)

As shown in [34, 35] in the univariate case a PDF fX|{d} with bounded support
X ({d}) of a random variable X|{d} is completely determined by the sequence of
values of its moments E

[
Xk|{d}

]
, k = 0, 1, 2, . . . :

(μ0(d), μ1(d), μ2(d), . . .)

with PX(X ({d})) = μ0(d) = 1
(2.25)

The moment μ0(d) can be interpreted as the necessary condition on a proper
PDF. Since both, the sequence of moments (μ0(d), μ1(d), μ2(d), . . .) together with
X ({d}) and the actual situation d completely determine fX|{d}, we may conclude,
that there is an invertible mapping g between them

g(d) = (μ0(d), μ1(d), μ2(d), . . .)

d = g−1(μ0(d), μ1(d), μ2(d), . . .)
(2.26)

In the way that the initial conditions are values of a situation based deterministic
variable, we call the sequence of moments distribution based deterministic variable
and write d(m):

d(m) = (μ0(d), μ1(d), μ2(d), . . .) (2.27)

The exponential coefficients βi(d) in (2.23) are obtained as unique solutions of
the following system of equations:

μi(d) =
∫

X ({d})
xie

∑∞
k=0 βk(d)xk

dx for i = 0, 1, 2, . . . (2.28)

with μ0(d) = 1 (2.29)

The system of equations (2.29) provides a mapping h between the sequences of
moments d(m) = (μ0(d), μ1(d), μ2(d), . . .) of a random variable X|{d} and the
sequences of exponential coefficients β(d) = (β0(d), β1(d), β2(d), . . .) of its PDF:

h(d(m)) = h(g(d)) = β(g−1(d(m))) = β(d)

has for every value β(d) exactly one solution d(m) (2.30)
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2.2. Minimum Information Representative

Although the exponential coefficients βi(d) are determined by the sequence of
moments d(m), which are more or less easy accessible, their meanings are not as
clear as the meaning of location, shape or scale parameters of many distributions
used in classical statistics. Nevertheless, the sequence of exponential coefficients
β(d) = (β0(d), β1(d), β2(d), . . .) together with X ({d}) also completely determines
a probability distribution and, therefore, is a deterministic variable as well, which
we call exponential coefficient based deterministic variable.

When confusions can be excluded, for the sake of simplicity we will just write βi

and μi instead of βi(d) and μi(d), respectively.

2.2. Minimum Information Representative

The range of variability X ({d}) and the sequence of values (μ0, μ1, μ2, . . .) of
the moments completely determine the probability distribution (see 2.1.2). Of
course, it is generally not possible to get full knowledge of the values of an infinite
number of moments. But rather than to try to get knowledge of as many as
possible values of the moments, it seems to be more economic to determine the
number of moments of which the values should be necessarily known in order to
describe the essential – and therefore qualitative – properties of the probability
distribution sufficiently well. Also worth mentioning is the fact, that almost all
known probability distributions are uniquely determined by a finite number of
moments.

To this end the essential properties of a probability distribution have to be identi-
fied. In [19] the essential properties are given by the number and type of extremes
of the PDF. Besides this, other properties like the range of variability, monotony
or symmetry are essential properties, too. The probability distributions which
meet the same essential properties E form a family of distributions P(E).

In this manner ‘sufficiently well’ means to find a probability distribution of form
(2.23) with an exponent of finite degree which meets the essential properties
E and is as simple as possible, i.e., the degree of the polynomial should be as
small as possible. We name these simplest probability distributions Minimum
Information Representatives (MIR). Therefore, a MIR is the simplest member of

13



2. Selection of a Probability Distribution

a family of distributions P(E). The information refers to the essential properties
and minimum refers to the minimal degree of the exponent with which it is
possible to meet the essential properties and, therefore, to the number of necessary
moments to obtain the exponential coefficients.

Remark: Consider two different probability distributions f and g. Both satisfy
some essential properties E. Thus, both are members of P(E). Let f be the MIR
of P(E), k be the polynomial degree of the exponent of f , and m be the polynomial
degree of the exponent of g. Then, m > k has to hold, since g cannot be the
MIR of P(E) as well. That is, the determination of the exponential coefficient of
g would need more moment equations.

Example 2.2 For illustration consider a continuous random variable X|{d} with
a bounded range of variability X ({d}) = {x | x1 ≤ x ≤ xN }. Assume that it is
known, that for the given initial conditions d the PDF fX|{d} has exactly one
maximum value in xM ∈ X|{d} and for other values x ∈ X ({d}) the PDF fX|{d}
decreases with increasing distance to xM :

∀ x ∈ X ({d}), x 
= xM : fX|{d}(xM ) > fX|{d}(x) (2.31)

∀y, z ∈ X ({d}), x1 ≤ y < z < xM : fX|{d}(y) ≤ fX|{d}(z) < fX|{d}(xM) (2.32)

∀y, z ∈ X ({d}), xM < y < z ≤ xN : fX|{d}(xM ) > fX|{d}(y) ≥ fX|{d}(z) (2.33)

The simplest density function of form (2.23) which reflects the known property
has as exponent a polynomial exactly of degree two:

fX(x) = eβ0+β1x+β2x2 (2.34)

with
β2 
= 0 and

∫
X ({d})

fX(x)dx = 1 (2.35)

A possible way to determine the three exponential coefficients β0, β1 and β2 in
(2.34) is to solve three moment equations of (2.28) and (2.29). To know which
three equations to be solved we have to note that the impact of the moments on
the probability distribution becomes smaller the higher the order of the moments
is. Moreover, moments of lower order may be determined much easily and more
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2.2. Minimum Information Representative

accurately than those of higher order. Thus, it is reasonable to use the first and
second moment for determining the values of βi, i = 0, 1, 2:

μi =
∫

X ({d})
xieβ0(μ0,μ1,μ2)+β1(μ0,μ1,μ2)x+β2(μ0,μ1,μ2)x2 dx for i = 1, 2(2.36)

and 1 =
∫

X ({d})
eβ0(μ0,μ1,μ2)+β1(μ0,μ1,μ2)x+β2(μ0,μ1,μ2)x2 dx (2.37)

Notation: In the following we will write μ(k) to express the sequence of the first
k + 1 consecutive moments starting with μ0, i.e., μ(k) = (μ0, μ1, μ2, . . . , μk). In
the same way β(k) stands for (β0, β1, β2, . . . , βk).

Still, the sequence of values of moments and the range of variability of the random
variable X|{d}, represented by

d(m) = (μ0(d), μ1(d), μ2(d), μ3(d), . . .) = (μ(2)(d), μ3(d), . . .) ,

determine uniquely the PDF. But the Minimum Information Representative (2.34)
is only an approximation of the true PDF, therefore, βi(μ(2)), i = 0, 1, 2, are
different from βi(d), i = 0, 1, 2, the first three components of the sequence of
exponential coefficients β(d) = (β0(d), β1(d), β2(d), . . .) of the true PDF.

Figure 2.1 shows the different deterministc variables d, d(m) and β, the neces-
sary moments μ(k) and exponential coefficients β(k) of the Minimum Information
Representative and the mappings which exist between them.

For instance, with the Minimum Information Representative fX derived with μ(k),
i.e., the range of variability and the first k moments, it is possible to calculate
E[Xk+1]:

E[Xk+1] =
∫

X ({d})
xk+1fX(x) dx , (2.38)

which in general is different from the true probability distribution’s (k + 1)-th
moment.

As the necessary μi’s, and therefore μ(k) completely determine the approximation,
we write

fX|{μ(k)} (2.39)

in the following.
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2. Selection of a Probability Distribution
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Figure 2.1.: Relations between the different deterministic variables d, d(m) and β,
and the necessary moments μ(k) and exponential coefficients β(k) of
the Minimum Information Representative.
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2.2. Minimum Information Representative

Example 2.3 Consider a continuous random variable X|{d} with the range of
variability X ({d}) = {x | 0 ≤ x ≤ 1}. Let the true PDF be given by

fX|{d}(x) = e1.0896748−1.5089485x−2.8528670x2 (2.40)

and, therefore, the value of the first moment μ1(d) = 0.25.

We can easily check that (2.40) is a monotonic decreasing function on its support
X ({d}) = {x | 0 ≤ x ≤ 1}:

∀y,z∈X ({d}) y < z : fX|{d}(y) > fX|{d}(z) (2.41)

If the true probability density function is not known, and only the qualitative prop-
erty of monotonic decrease is available, we would opt in favour of the monotone
distribution family and its simplest Minimum Information Representative

fX|{μ(1)}(x) = eβ0(μ(1))+β1(μ(1))x (2.42)

with X|{μ(1)} indicating the approximation and μ(1) = (μ0, μ1).

With X ({d}) = {x | 0 ≤ x ≤ 1}, the value μ1 = 0.25 of the first moment and the
two moment equations

1 =
1∫

0

eβ0(μ(1))+β1(μ(1))xdx (2.43)

0.25 =
1∫

0

xeβ0(μ(1))+β1(μ(1))xdx (2.44)

we obtain the values of the exponential coefficients β0(μ(1)) and β1(μ(1)):

β0(μ(1)) = 1.3070168 (2.45)

β1(μ(1)) = −3.5935120 (2.46)

and hence
fX|{μ(1)}(x) = e1.3070168−3.5935120x (2.47)

Figure 2.2 illustrates the difference between the (true but unknown) probability
density function fX|{d} and the approximating probabilty density function fX|{μ(1)}.
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2. Selection of a Probability Distribution
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fX|{d}/fX|{μ(1)}

Figure 2.2.: Illustration of the (true but unknown) probability density function
fX|{d} (solid line) and the approximating probability density function
fX|{μ(1)} (dashed line).

Other ways to illustrate the difference between true and approximating probabil-
ity distribution are, for instance, the probability distribution functions FX|{d} and
FX|{μ(1)} and the upper quantile functions Q

(u)
X|{d}(β) and Q

(u)
X|{μ(1)}(β), 0 < β < 1,

as shown in figure 2.3.
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x

FX|{d}/FX|{μ(1)}

(a) Probability distribution functions

0 0.2 0.4 0.6 0.8 1

0.2
0.4
0.6
0.8

1

β

Q
(u)
X|{d}/Q

(u)
X|{μ(1)}

(b) Upper quantile functions

Figure 2.3.: The true functions are represented with the solid lines, the approxi-
mating functions with the dashed lines.
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2.3. MIR and Maximum Entropy Distributions

2.3. MIR and Maximum Entropy Distributions

In information theory and statistical mechanics, the use of available knowledge,
i.e., information, and dealing with uncertainty is closely connected to the prin-
ciple of maximum entropy. In this section this principle is shortly derived. Fol-
lowing this concept, probability distributions arise, which are very similar to the
minimum information representatives.

2.3.1. Shannon’s Entropy

In 1948 Shannon quantified “uncertainty” generated by randomness by introduc-
ing the concept of entropy, initiating the field of information theory [70]. For
the discrete case, i.e., for a set of n possible events with occurence probabilities
p1, p2, . . . , pn Shannon derived a measure H(p1, . . . , pn) from three very intuitive
requirements, i.e. (see [70], pp. 392-393):

1. H should be continuous in the pi.

2. If all the pi are equal, pi = 1
n
, then H should be a monotonic

increasing function of n.[...]

3. If a choice be broken down into two successive choices, the orig-
inal H should be the weighted sum of the individual values of
H .

Shannon showed that the only measure satisfying these three requirements is of
form:

H = −K
n∑

i=1
pi log pi (2.48)

with a positive constant K.
Shannon called H = −

∑n
i=1 pi log pi “the entropy of the set of probabilities

p1, . . . , pn” (ibid.), since the same form appears for the entropy in statistical
mechanics2.

2Soon after, Jaynes [37] argued, that Shannon‘s concept and interpretation has so much gen-
erality, that it should be re-adopted to statistical mechanics.

19



2. Selection of a Probability Distribution

2.3.2. Maximum Entropy Principle

Shannon’s entropy gave rise to formulate the Maximum Entropy Principle (MEP)
for selecting approximative probability distribution:

Select that probability distribution as approximation that meets all
known properties of the unknown probability distribution and has
maximal entropy.

The entropy function H (2.48) is only well defined for discrete probability distri-
bution, i.e., meets only in this case all requirements. Nevertheless, by

H̃ = −
+∞∫

−∞

f(x) log f(x) dx (2.49)

a formal extension for continuous distributions was already defined by Shannon
[70] and is often called differential entropy (see for example [46]). We have to
note, that H̃ (2.49) does not always meet the requirements, but may be negative
or infinite. The derivation of maximum entropy distributions may be done by
variational calculus, which we illustrate by the following two simple examples.

Example 2.4 Let X ({d}) = {x | a ≤ x ≤ b} = [a, b] be the only known property
of the unknown PDF f(x). To derive the distribution with maximum entropy
under the constraint

∫ +∞
−∞ f(x) dx =

∫ b

a
f(x) dx = 1 we define the Lagrangian

function Lλ0:

L =
b∫

a

f(x) log f(x) dx − λ0

⎛⎝1 −
b∫

a

f(x) dx

⎞⎠ (2.50)

If f(x) maximises the entropy, some small variation Δf(x) will yield a variation
ΔL = 0 for L :

0 = ΔL =
b∫

a

Δf(x)
(

log f(x) + 1 + λ0
)

dx . (2.51)

Since the equation has to hold for every small variation Δf(x) we get

log f(x) + 1 + λ0 = 0 (2.52)

f(x) = e−λ0−1 (2.53)
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2.3. MIR and Maximum Entropy Distributions

and utilising the constraint yields:∫ b

a

f(x) dx =
∫ b

a

e−λ0−1 dx = 1 (2.54)

e−λ0−1(b − a) = 1 (2.55)

e−λ0−1 = 1
b − a

= f(x) , (2.56)

which is a constant PDF, i.e., the uniform distribution on [a, b].
Note, that for b − a < 1, i.e., f(x) > 1 on [a, b], we have a negative entropy
H̃(f) = − log 1

b−a
< 0.

Example 2.5 Let X ({d}) = {x | 0 ≤ x < +∞} = [0, +∞) and E[X|{d}] =
μ1 > 0 be the two known properties of the unknown probability distribution with
density f(x). That is, we have to derive the maximum entropy distribution under
the two constraints

∫ +∞
−∞ f(x) dx =

∫ +∞
0 f(x) dx = 1 and

∫ +∞
−∞ xf(x) dx =∫ +∞

0 xf(x) dx = μ1. After some small calculation we get for x ≥ 0

f(x) = e−λ1x−λ0−1 (2.57)

with the two Lagrangian mutlipliers λ0 and λ1. Utilising the constraints yields

e−λ0−1 = λ1 (2.58)

λ1 = 1
μ1

(2.59)

f(x) = 1
μ1

e−x/μ1 (2.60)

which is the exponential distribution with value μ1 of its expectation.

We note, that the maximum entropy principle uniquely determines probability
distributions from a number of constraints, usually on moments, by maximising
their entropy. Further examples may be found in [25] where the first and second
moments are given. There are various areas of application, in particular: metrol-
ogy, see [78], [48], [63]; in biology where an overview is provided by [50]; and in
survey sampling, see [27].

The difference between a MIR and a MEP distribution refers to the essential
properties which are assumed to be known in the case of a MIR distribution.
If in the above example the underlying unknown distribution is unimodal, the
exponential distribution as the result of a blind application of the maximum
entropy principle is clearly misleading.
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2. Selection of a Probability Distribution

2.4. Basic Types of Probability Distributions

One main task of modelling a random phenomenon is to derive an appropriate
probability distribution. By now we have derived a general representation (2.23)
and we have seen how to exploit the qualitative knowledge about a random
phenomenon. In this part three basic types of probability distributions will be
presented and the knowledge is derived which is at least necessary for selecting
an appropriate approximation for each type.

One common (and realistic) property for all types is their bounded support
X ({d}), which is determined by the initial conditions d. For any realistic sit-
uation X ({d}) contains a finite number of elements:

X ({d}) = {x1, x2, . . . , xN } (2.61)

If a continuous approximation of the range of variability is reasonable we set:

X ({d}) = {x | x1 ≤ x ≤ xN } (2.62)

2.4.1. Constant Distribution

We consider any outcome x ∈ X ({d}) = {x1, . . . , xN} to be equally probable,
that is, the Minimum Information Representative coincides with the exact one
and has the following probability mass function:

fX|{μ(0)}(x) ≡ fX|{d}(x) = 1
|X ({d})|1X ({d})(x) = 1

N
1X ({d})(x) (2.63)

where 1 is the indicator function. Since the probability for every element of
X ({d}) is the same, we talk of a constant probability distribution. If the con-
tinuous approximation is reasonable, the resulting density function on X ({d}) =
{x | x1 ≤ x ≤ xN } is

fX|{μ(0)}(x) = 1
xN − x1

1X ({d})(x) (2.64)

We should note that in the continuous approximation, the density function can-
not be taken as an approximation of the probability mass function. The approx-
imation always refers to the probability distribution function FX|{d}. Figure 2.4
illustrates this fact for the constant distribution.
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Figure 2.4.: Approximating the true probability mass function fX by letting the
number N of elements in X ({d}) converging to infinity would result
in fX̂ , a function which equals zero and is not a probability den-
sity function. The only way for continuous approximation leads via
the probability distribution function FX|{d} to FX̃|{d} and then to its
density function fX̃|{d} (which does not represent probabilities).

Remark: The constant probability distribution is better known as uniform distri-
bution, in the continuous case on the interval [x1, xN ] denoted by U(x1, xN) and
in the discrete case on the set X ({d}) with N elements denoted by U(X ({d})).

Example 2.6 A very popular example for the constant probability distribution
is obtained in the case of games of chance, e.g. throwing a dice. The side being
on top is represented by the random variable X. Assume the dice has six sides
consecutively numbered from 1 to 6, then the range of variability is

X ({d0}) = {1, 2, 3, 4, 5, 6} (2.65)
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2. Selection of a Probability Distribution

Furthermore, assume the dice being totally symmetric, which is described quanti-
tatively by the value d0 of a suitable deterministic variable D, then the probability
is 1

6 for every side to be on top.

1 2 3 4 5 6

1
6

x

fX|{d0}

Figure 2.5.: Probability mass function fX|{d0} for throwing a six-sided, symmetric
dice.

Example 2.7 Assume a person wanting to catch a bus at a bus stop, knowing
only that there is a bus every 20 minutes but not knowing the exact timetable.
The bus timetable d0 can be described by the time of earliest arrival t0 and the
inter-arrival time Δ. Assume Δ = 20 minutes:

d0 = {t | t = t0 + ν20 , ν = 0, 1, 2, . . .} (2.66)

In this way, d0 represents a part of the initial conditions.

The person’s arrival time at the bus stop is assumed to be independent of the
arrival time of the bus, and is described by the random variable Y |{d0}, which
can be considered as a continuous approximation of the discrete observable time.
As only the arrival time within a 20 minutes interval between two arriving buses
is of interest, we can define a random variable X|{d0} with

X|{d0} = (Y |{d0}) − t0 mod 20 (2.67)
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2.4. Basic Types of Probability Distributions

Then, the range of variability X ({d0}) of X|{d0} is

X ({d0}) = [0, 20] (2.68)

and the density function is the constant one (see also Figure 2.6):

fX|{d0}(x) =

{
1
20 for 0 ≤ x ≤ 20
0 else

(2.69)

0 20

1
20

y

fX|{d0}

Figure 2.6.: Density function fX|{d0} for the time of arriving at a bus stop in a
period of 20 minutes whithout having any preference with respect to
a special time.

2.4.2. Monotonic Distribution

Next consider the case of two extrema in the bounds of X ({d}) and no inner ex-
tremum. This results in the monotonic distribution family, that is, the probability
density function fX|{d} is

• either monotonous increasing:

fX|{d}(x) ≤ fX|{d}(y) for x, y ∈ X ({d}) : x < y (2.70)

• or monotonous decreasing:

fX|{d}(x) ≥ fX|{d}(y) for x, y ∈ X ({d}) : x < y (2.71)
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2. Selection of a Probability Distribution

The resulting Minimum Information Representative is given by:

fX|{μ(1)}(x) =

{
eβ0+β1x for x ∈ X ({d})
0 else

(2.72)

For determining the coefficients β0 and β1 the value of the first moment is neces-
sary. Hence, we have to solve the following equations:

• In the discrete case:
1 =

N∑
i=1

eβ0+β1xi

μ1 =
N∑

i=1
xie

β0+β1xi

(2.73)

• In the continuous case:

1 =
xN∫
x1

eβ0+β1xdx

μ1 =
xN∫
x1

xeβ0+β1xdx
(2.74)

Chapter 3 treats in very detail the continuous monotonic distribution, thus, we
only note here that for special values of μ1 equations 2.73 and 2.74, respectively,
yield β1 = 0. Then the monotonic distribution falls back to the constant distri-
bution.

Example 2.8 Assume a device for measuring the diameter of steel balls. As
the measuring results vary even in the case that the same steel ball is examined
several times, the measuring process is represented by a random variable Y |{d},
where d = (d1, d2, d3, . . .) with d1 being the actual value of the diameter. For
describing the quality of the measurement device consider the absolute deviation
of the measurement from d1 and define the random variable

X|{d} =
∣∣Y |{d} − d1

∣∣ (2.75)

For a reasonable measuring device it should hold that large deviations from the
actual value should occur with smaller probability than small deviations. This
implies that for the approximating density function of X|{d} it should hold

fX|{d}(x) > fX|{d}(y) for x < y (2.76)
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2.4. Basic Types of Probability Distributions

with x, y ∈ X ({d}). Thus, the density function describes a monotone distribution.

Assume that only one steel ball is examined with a diameter of 1 cm and that the
first moment of the absolute deviation takes the value μ1 = 0.05 cm. The range
of variability is known to be X ({d}) = [0, 0.2]. Solving the moment equations
(2.74) we get β0 = 2.916455 and β1 = −17.96756. Figure 2.7 shows the resulting
density function fX|{μ(1)}(x) = e2.916455−17.96756x.

0 0.05 0.10 0.15 0.20

5

10

15

20

x

fX|{μ(1)}

Figure 2.7.: Density function fX|{μ(1)} for the absolute measurement deviation
with X ({d}) = [0, 0.2] and μ1 = 0.05.

2.4.3. Unimodal Distribution

Next, assume a probability density function which is monotone increasing until
some xM ∈ X , and decreasing from this on. This case defines the unimodal
distribution family. In the discrete case that means that one outcome xM , x1 <

xM < xN , is most probable and the probability of the others decreases with
increasing distance to xM :

∀ x ∈ X ({d}), x 
= xM : fX|{d}(xM) > fX|{d}(x) (2.77)

∀y,z∈X ({d}) y < z < xM : fX|{d}(y) ≤ fX|{d}(z) < fX|{d}(xM) (2.78)

∀y,z∈X ({d}) xM < y < z : fX|{d}(xM) > fX|{d}(y) ≥ fX|{d}(z) (2.79)

27



2. Selection of a Probability Distribution

In both, the discrete case and in the case of the continuous approximation we get
the resulting Minimum Information Representative:

fX|{μ(2)}(x) =

⎧⎨⎩ eβ0+β1x+β2x2 for x ∈ X ({d})

0 else
(2.80)

To obtain a relative maximum, β1 and β2 have to meet some conditions. For the
continuous approximation, i.e., the density function fX|{μ(2)} we have3:

For a maximum xM the first derivative of fX|{μ(2)} has to be 0 and the
second derivative has to be negative at this point:

f ′
X|{μ(2)}(xM) = (β1 + 2β2xM )eβ0+β1xM +β2x2

M = 0 (2.81)

⇔ xM = − β1

2β2
(2.82)

and

f ′′
X|{μ(2)}(xM) =

(
(β1 + 2β2xM)2 + 2β2

)
eβ0+β1xM +β2x2

M < 0 (2.83)

⇔ β2 < 0 (2.84)

As the maximum has to be an inner point of X ({d}) we have the
condition

• in the discrete case:
As − β1

2β2
need not to be an element of X ({d}), the condition

(2.82) may not be fulfilled for any element of X ({d}). But since
we are seeking an inner maximum, the following condition is
necessary

x1 < − β1

2β2
< xN (2.85)

Even if condition (2.85) is met, the maximum may result to be
a boundary maximum. To prevent this the next two conditions

3As the discrete probability mass function is in fact a real function defined only at discrete
points, it can be treated as a continuous function when determining maxima, minima,
monotonicity etc.
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2.4. Basic Types of Probability Distributions

have to be fulfilled:

fX|{μ(2)}(x1) < fX|{μ(2)}(x2) β2<0⇐⇒ − β1
2β2

> x1+x2
2 (2.86)

fX|{μ(2)}(xN−1) > fX|{μ(2)}(xN) β2<0⇐⇒ − β1
2β2

< xN−1+xN

2 (2.87)

• in the continuous case:

x1 < − β1

2β2
< xN (2.88)

The coefficients β0, β1 and β2 can be obtained as solutions of the following three
moment equations:

• In the discrete case:

1 =
N∑

i=1
eβ0+β1xi+β2x2

i

μ1 =
N∑

i=1
xie

β0+β1xi+β2x2
i

μ2 =
N∑

i=1
x2

i eβ0+β1xi+β2x2
i

(2.89)

• In the continuous case:

1 =
xN∫
x1

eβ0+β1x+β2x2
dx

μ1 =
xN∫
x1

xeβ0+β1x+β2x2
dx

μ2 =
xN∫
x1

x2eβ0+β1x+β2x2
dx

(2.90)

Other knowledge can concern the location of the maximum for example which
could be exploited instead.

Remark: In the discrete case it is possible that two neighbouring elements xm

and xm+1 of X ({d}) have both the same maximum value of the probability mass
function. Nevertheless, we treat this case as an unimodal distribution.

The unimodal type is divided into two distinguishable types:
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2. Selection of a Probability Distribution

• Symmetric unimodal distribution
Obviously, in the case of a symmetric probability density function, the
maximum xM coincides with the midpoint of X ({d}):

xM = x1 + xN

2
(2.91)

Furthermore, the value μ1 of the first moment also coincides with xM , and
hence the midpoint of X ({d}):

μ1 = x1 + xN

2
(2.92)

– In the discrete case:
Symmetry refers both to X ({d}) and the values of the probability mass
function:

xi+1 − xi = xN−(i−1) − xN−i (2.93)

fX|{μ(2)}(xi) = fX|{μ(2)}(xN−(i−1)) (2.94)

for i =

⎧⎨⎩ 1, 2, . . . , N−1
2 if N is odd

1, 2, . . . , N
2 if N is even

(2.95)

Equation (2.94) may easily be transformed into

(xM = ) − β1

2β2
=

xN−(i−1) − xi

2
(2.96)

In fact, equation (2.93) is equivalent to (2.96) and, therefore, actually
redundant.

Remark: If N is even, we always get a probability mass function with
two maxima, xN

2
and xN+2

2
, which both have the same probability.

– In the continuous case:
The equation

− β1

2β2
= xM = x1 + xN

2
(2.97)

is sufficient for a symmetric density function.
This equation already yields another representation which is more
common when defining a symmetric property of a function:

∀ δ, 0 ≤ δ ≤ x1 + xN

2
: fX|{μ(2)}(xM − δ) = fX|{μ(2)}(xM + δ) (2.98)
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2.4. Basic Types of Probability Distributions

From equations (2.96) and (2.97) we see how the range of variability X ({d})
is closely connected with the exponential coefficients β1 and β2. Due to the
knowledge about the qualitative property of symmetry the effort to obtain
the necessary quantitative knowledge, i.e., β1 and β2, becomes smaller.

• Asymmetric unimodal distribution
For an asymmetric unimodal distribution the maximum xM does not coin-
cide with the midpoint of X ({d}), and, therefore, also not with the value
μ1 of the first moment:

xM 
= x1 + xN

2
(2.99)

μ1 
= x1 + xN

2
(2.100)

If symmetry can be excluded as a qualitative property of a probability
distribution, then it is reasonable that it is known whether the maximum
is smaller or bigger then the midpoint of X ({d}):

xM <
x1 + xN

2
(2.101)

or

xM >
x1 + xN

2
(2.102)

With equation (2.82), which still holds, this leads to

− β1

2β2
<

x1 + xN

2
(2.103)

or

− β1

2β2
>

x1 + xN

2
(2.104)

The effort to obtain β1 and β2 is also reduced, but not as much as in the
symmetric case.

Remark: If asymmetry shall be taken into account not only by the condition
μ1 
= xM one has to select at least a cubic polynomial as exponent or
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2. Selection of a Probability Distribution

even change to a different class of functions for representing the probability
density function. One often assumed class is given by the density function

γ

α

(
x − μ

α

)γ−1

e(x−μ
α )γ

1[μ,+∞)(x) with γ, α > 0 ,

which defines the general Weibull distribution. In classical statistics the
Weibull distribution is often used as a lifetime distribution. To determine
the parameters the most common way is to fit the curve to the data -
no qualitative properties of the random phenomenon are considered afore.
Besides this its unbounded range of variability also conflicts with reality.

Example 2.9 Assume the production of steel balls for bearings. One important
feature to decide whether a ball is conforming or not is its diameter. For being
conforming the actual diameter has to lie in a range given by the specification
interval. The process of production can only be adjusted to a target value d1,
which itself lies in the specification interval. This target value d1 is one component
of the initial conditions d = (d1, d2, d3, . . .). Let X|{d} be the discrete random
variable representing the observable diameter.

Assume that from theoretical considerations about the process it is known that the
probability mass function is unimodal and, therefore we choose as MIR (2.80).

For obtaining the values of β0, β1 and β2 we solve the three moment equations:

1 =
N∑

i=1
eβ0+β1xi+β2x2

i (2.105)

μ1 =
N∑

i=1
xie

β0+β1xi+β2x2
i (2.106)

μ2 =
N∑

i=1
x2

i eβ0+β1xi+β2x2
i (2.107)

Assume that the measurement device has a resolution of 0.01 and that the discrete
range of variability is given by

X ({d}) = {0.92, 0.93, . . . , 1.04} , N = 13 (2.108)
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2.4. Basic Types of Probability Distributions

Let the target value d1 = 1.00 coincide with the value μ1 of the first moment of
X|{d}. The variance σ2 of the production process can be considered to be d2, then
the second moment μ2 can be directly calculated via μ2 = σ2 +μ2

1. Given the value
σ2 = 0.0004 we get μ2 = 1.0004. With this, the values of β0, β1 and β2 can be
calculated:

β0 = −1134.36002 (2.109)

β1 = 2263.35674 (2.110)

β2 = −1130.64260 (2.111)

Figure 2.8 shows the probability mass function (PMF)

fX|{μ(2)}(x) = e−1134.36002+2263.35674x−1130.64260x2 (2.112)

0.92 0.94 0.96 0.98 1.00 1.02 1.04

0.05

0.10

0.15

0.20

x

fX|{μ(2)}

Figure 2.8.: PMF fX|{μ(2)}(x) = e−1134.36002+2263.35674x−1130.64260x2 for the random
diameter of steel balls for the discrete range of variability X ({d}) =
{0.92, 0.93, . . . , 1.04}, d1 = μ1 = 1.00 and d2 = σ2 = 0.0004.
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3. Monotonic Probability
Distributions of Continuous
Univariate Random Variables

In [67] the importance of monotonic probability distributions is outlined. Further-
more some properties of the corresponding moments and the n-fold convolution
are derived. Finally the goodness of an approximation with the normal distribu-
tion is analysed.
In the first two sections of this chapter those results are presented and a far more
detailed characterisation is given.

3.1. Characterisations

Let X be a random variable of continuous type with the following essential prop-
erties:

• Range of variability: X ({d}) = {x | a ≤ x ≤ b} = [a, b].

• The density function fX|{d} has two boundary extremes and no relative
extreme.

According to section 2.4.2 in Chapter 2 the resulting Minimum Information Rep-
resentative is a member of the monotonic distribution family:

fX|{μ(1)}(x) = eβ0+β1x1[a,b](x) =

⎧⎨⎩ eβ0+β1x for x ∈ X ({d}) = [a, b]

0 else
(3.1)
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3. Monotonic Probability Distributions

with coefficients β0 and β1 being solutions of the two equations:

1 =
b∫

a

eβ0+β1x dx (3.2a)

μ1 =
b∫

a

xeβ0+β1x dx (3.2b)

Equation (3.2a) may be rewritten in the following way:

eβ0 =
1

b∫
a

eβ1x dx

(3.3)

With this, we may reformulate equation (3.2b) to

μ1 =
b∫

a

xeβ0+β1x dx = eβ0

b∫
a

xeβ1x dx =

b∫
a

xeβ1x dx

b∫
a

eβ1t dt

(3.4)

And finally, the probability density function fX|{μ(1)}:

fX|{μ(1)}(x) = eβ1x

b∫
a

eβ1t dt

1[a,b](x) =

⎧⎪⎨⎪⎩
eβ1x

b∫
a

eβ1t dt

for x ∈ X ({d}) = [a, b]

0 else
(3.5)

Since β1 is the only distribution parameter besides the support’s boundary points
a and b we will follow the notation in [67] and obtain:

λ = λ(a, b, μ1) = β1 (3.6a)

μ1 =

b∫
a

xeλx dx

b∫
a

eλx dx

=

b∫
a

xeλ(a,b,μ1)x dx

b∫
a

eλ(a,b,μ1)x dx

(3.6b)

fX|{(a,b,μ1)}(x) = eλx

b∫
a

eλt dt

1[a,b](x) = eλ(a,b,μ1)x

b∫
a

eλ(a,b,μ1)t dt

1[a,b](x) = fX|{μ(1)}(x) (3.6c)
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3.1. Characterisations

Though possible, we have not explicitly solved the appearing integrals throughout
the last equations. The cause for this is quite simple: The distribution parameter
λ may adopt every value in R, and for λ = 0 equation (3.6b) yields

μ1 =

b∫
a

x dx

b∫
a

dx

=
1
2(b2 − a2)

b − a
=

a + b

2
(3.7a)

with density function

fX|{(a,b, a+b
2 )}(x) = 1

b∫
a

dt

1[a,b](x) = 1
b − a

1[a,b](x) (3.7b)

representing the constant (uniform) distribution on the interval [a, b].

Definition 3.1 (Monotonic Distribution) A random variable X is called mono-
tonic distributed, written X|{(a, b, μ1)} ∼ Mon(a, b, μ1), with range of variability
X = {x | a ≤ x ≤ b}, a, b ∈ R, if its density function equals (3.6c).

Without proof we can state the following obvious proposition:

Proposition 3.2 (Sign of λ) Let X be a random variable with range of vari-
ability X = {x | a ≤ x ≤ b}, and with density function (3.6c). Then for λ, μ1

and fX|{(a,b,μ1)} one of the following three conditions holds:

(a) λ < 0 ⇐⇒ μ1 <
a + b

2
, i.e., fX|{(a,b,μ1)} is strictly decreasing on X ,

(b) λ > 0 ⇐⇒ μ1 >
a + b

2
, i.e., fX|{(a,b,μ1)} is strictly increasing on X ,

(c) λ = 0 ⇐⇒ μ1 = a + b

2
, i.e., fX|{(a,b,μ1)} is constant on X .
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3. Monotonic Probability Distributions

In the two cases (a) and (b) respectively of the above proposition 3.2 we solve
the appearing integrals in (3.6b) and (3.6c) and get with λ = λ(a, b, μ1):

μ1 =

b∫
a

xeλx dx

b∫
a

eλx dx

= beλb − aeλa

eλb − eλa
− 1

λ
(3.8a)

fX|{(a,b,μ1)}(x) =
eλx

b∫
a

eλt dt

1[a,b](x) =
λeλx

eλb − eλa
1[a,b](x) (3.8b)

Depending on the problem on hand, we will use the implicit terms with the
integrals or the explicit terms, whichever suits best.
The distribution function FX|{(a,b,μ1)}(x) = PX|{(a,b,μ1)}({y | y ≤ x}) for λ 
= 0, i.e.
μ1 
= a+b

2 , is

FX|{(a,b,μ1)}(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, x < a ,

eλx−eλa

eλb−eλa , a ≤ x ≤ b ,

1, x > b .

(3.9)

For a = 0 and b = 1, i.e., X = {x | 0 ≤ x ≤ 1}, Figure 3.1 displays the dependency
between μ1 and λ and Figure 3.2 shows some density functions for different values
of λ. In the next section a proposition states how the general case X = {x | a ≤
x ≤ b} can be traced back to X = {x | 0 ≤ x ≤ 1}.
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Figure 3.1.: The first moment μ1 as function of the distribution parameter λ for
X = {x | 0 ≤ x ≤ 1}.
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Figure 3.2.: Density function fX|{(0,1,μ1)}(x) for different values of λ(0, 1, μ1)
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3. Monotonic Probability Distributions

3.2. Properties

In this section properties of the distribution parameter λ, the corresponding mo-
ments and the n-fold convolution are listed. Some of them were already derived
in [67].

3.2.1. Properties concerning λ

Even though Figure 3.1 indicates the uniqueness of λ(a, b, μ1) for fixed a, b and
μ1, a small proof is necessary.

Proposition 3.3 (Uniqueness of λ) Let X = X|{(a, b, μ1)} ∼ Mon(a, b, μ1).
For fixed a, b and μ1 with −∞ < a < μ1 < b < +∞ the distribution parameter
λ = λ(a, b, μ1) is the unique solution of (3.6b) and (3.8a) respectively

μ1 =

b∫
a

xeλx dx

b∫
a

eλx dx

= beλb − aeλa

eλb − eλa
− 1

λ
. (3.10)

Proof of 3.3: First we will show, that for all μ1, a < μ1 < b there is a λ ∈ R

which fulfils (3.10). Since μ1 is continuous in λ it is sufficient to calculate the
limits of μ1 for λ to ±∞:

• λ → +∞:

lim
λ→+∞

μ1 = lim
λ→+∞

(
beλb − aeλa

eλb − eλa
− 1

λ

)
= (3.11)

= lim
λ→+∞

(
b − ae−λ(b−a)

1 − e−λ(b−a)

)
− 0 = (3.12)

= b − a · 0
1 − 0

= b, (3.13)

since b > a and the limit of e−λ(b−a) is 0.
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3.2. Properties

• λ → −∞:

lim
λ→−∞

μ1 = lim
λ→−∞

(
beλb − aeλa

eλb − eλa
− 1

λ

)
= (3.14)

= lim
λ→−∞

(
beλ(b−a) − a

eλ(b−a) − 1

)
− 0 = (3.15)

= b · 0 − a

0 − 1
= a, (3.16)

since b > a and the limit of eλ(b−a) is 0.

Thus we can conclude, that for every μ1, a < μ1 < b, there is a λ ∈ R which fulfils
(3.10). For the uniqueness it is now sufficient that the right hand side of (3.6b) is
strictly increasing in λ. To proof this we differentiate (3.6b) with respect to λ1:

d
dλ

⎛⎜⎜⎜⎝
b∫

a

xeλx dx

b∫
a

eλx dx

⎞⎟⎟⎟⎠ =

(
b∫

a

eλx dx

)
d

dλ

(
b∫

a

xeλx dx

)
−
(

b∫
a

xeλx dx

)
d

dλ

(
b∫

a

eλx dx

)
(

b∫
a

eλx dx

)2

(3.17)

with d
dλ

(
b∫

a

xeλx dx

)
=

b∫
a

d
dλ

(
xeλx

)
dx and d

dλ

(
b∫

a

eλx dx

)
=

b∫
a

d
dλ

(
eλx

)
dx we

obtain:

=

(
b∫

a

eλx dx

)(
b∫

a

x2eλx dx

)
−
(

b∫
a

xeλx dx

)(
b∫

a

xeλx dx

)
(

b∫
a

eλx dx

)2

(3.18)

=

b∫
a

x2eλx dx

b∫
a

eλx dx

−

⎛⎜⎜⎜⎝
b∫

a

xeλx dx

b∫
a

eλx dx

⎞⎟⎟⎟⎠
2

(3.19)

= μ2 − (μ1)2, (3.20)

since the first term equals the second moment μ2 of X and the second term equals
μ1.

1Obviously eλx and xeλx are continuous and their derivatives with respect to λ exist and are
continuous as well.
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3. Monotonic Probability Distributions

The derived expression is nothing else than the variance σ2 of X. We know, that
σ2 > 0 for all random variables, which have no one-point-distribution, and thus,
we conclude that μ1 is unique. Moreover μ1 is strictly increasing in λ.

•

Proposition 3.4 (λ transformations) Let X = X|{(a, b, μ1)} ∼ Mon(a, b, μ1).
For the distribution parameter λ(a, b, μ1) the following equations holds:

(a) λ(a, b, μ1) = λ(0, b − a, μ1 − a).

(b) λ(0, b, μ1) = λ(0, 1,
μ1

b
) · 1

b
.

(c) λ(a, b, μ1) = λ(0, 1,
μ1 − a

b − a
) · 1

b − a
.

Proof of 3.4: Proposition 3.3 ensures for fixed a and b the uniqueness of λ for
given μ1 (and vice versa). The proofs of (a) to (b) are straight forward by some
simple transformations.

(a) Let λ = λ(a, b, μ1) and μ̃1 = μ1 − a.

μ̃1 = μ1 − a = beλb − aeλa

eλb − eλa
− 1

λ
− a (3.21)

=
beλb − aeλa

eλb − eλa
− a(eλb − eλa)

eλb − eλa
− 1

λ
(3.22)

= (b − a)eλb

eλb − eλa
− 1

λ
(3.23)

= (b − a)eλ(b−a)

eλ(b−a) − 1
− 1

λ
(3.24)

And this shows λ(a, b, μ1) = λ(0, b − a, μ1 − a) .

(b) Let μ̌1 = μ1
b

and λ̌ = λ(0, 1, μ̌1).

μ̌1 = eλ̌

eλ̌ − 1
− 1

λ̌
(3.25)

=
b
b
eλ̌b/b

eλ̌b/b − 1
− 1

λ̌ b
b

(3.26)

=

(
be

λ̌
b

b

e
λ̌
b

b − 1
− 1

λ̌
b

)
· 1

b
(3.27)

= μ1

b
(3.28)

And this shows λ(0, b, μ1) = λ(0, 1, μ1
b

) · 1
b

.
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3.2. Properties

(c) Follows directly from (a) and (b).

•

Notations

The above propositions show, how the general case X = {x | a ≤ x ≤ b} may be
traced back to the special cases X = {x | 0 ≤ x ≤ b} and X = {x | 0 ≤ x ≤ 1}
respectively. To reduce some effort in these cases, we will introduce some new
notations.
For the range of variability we write

Xb := {x | 0 ≤ x ≤ b}, in particular X1 = {x | 0 ≤ x ≤ 1}. (3.29)

For λ as function of X and μ1 we write

λ(b, μ1) := λ(0, b, μ1) (3.30)

λ(μ1) := λ(1, μ1) = λ(0, 1, μ1) (3.31)

Because λ is a function of μ1 and X , we may conversely consider μ1 as a function
of λ and X :

μ1(a, b, λ) :=

⎧⎪⎨⎪⎩
beλb−aeλa

eλb−eλa − 1
λ

for λ 
= 0

a+b
2 for λ = 0

. (3.32)

In analogy to the shorter notations (3.30) and (3.31), we introduce for μ1

μ1(b, λ) := μ1(0, b, λ) (3.33)

μ1(λ) := μ1(1, λ) = μ1(0, 1, λ) (3.34)

To indicate, that a random variable X has a monotonic probability distribution
in these special cases we define

X|{(b, μ1)} ∼ Mon(b, μ1) :⇔ X|{(0, b, μ1)} ∼ Mon(0, b, μ1) (3.35)

X|{μ1} ∼ Mon(μ1) :⇔ X|{(0, 1, μ1)} ∼ Mon(0, 1, μ1) (3.36)
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3. Monotonic Probability Distributions

Proposition 3.5 (lower bound of λ) Let X = X|{μ1} ∼ Mon(μ1). Then the
distribution parameter λ(μ1) meets the following inequality:

λ(μ1) > − 1
μ1

for all μ1, 0 < μ1 < 0.5 (3.37)

Proof of 3.5: Since μ1 < 0.5 we know from proposition 3.2, that λ(μ1) < 0.
Then 0 < 1 − eλ(μ1) < 1 and eλ(μ1)

1−eλ(μ1) > 0 implying

− 1
λ(μ1)

> − 1
λ(μ1)

− eλ(μ1)

1 − eλ(μ1) = μ1 (3.38)

or rearranged (3.37)
λ(μ1) > − 1

μ1
. (3.39)

•

Proposition 3.6 (mirror inverted λ) Let X = X|{(a, b, μ1)} ∼ Mon(a, b, μ1).
For the distribution parameter λ(a, b, μ1) the following equation holds:

λ(a, b, μ1) = −λ(a, b, (b + a) − μ1) (3.40)

Proof of 3.6: The given statement becomes quite obvious by some consid-
erations about the symmetry of the density functions of X ∼ Mon(a, b, μ1) and
Y ∼ Mon(a, b, (b + a) − μ1), which are just mirror-inverted to the midpoint a+b

2

of X . Nevertheless, the equation may be proved by a simple calculation: Let
λ = λ(a, b, μ1) and μ̃1 = (b + a) − μ1 then

μ̃1 = (b + a) − μ1 = (b + a) − beλb − aeλa

eλb − eλa
+ 1

λ
(3.41)

=
e−λa−λb

e−λa−λb
· aeλb − beλa

eλb − eλa
− 1

−λ
(3.42)

= ae−λa − be−λb

e−λa − e−λb
− 1

−λ
(3.43)

=
be−λb − ae−λa

e−λb − e−λa
− 1

−λ
(3.44)

Again, with the uniqueness of λ the statement’s correctness results immediatly.
•
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Proposition 3.7 (limits of λ) Let X = X|{(a, b, μ1)} ∼ Mon(a, b, μ1). For
μ1 and λ(a, b, μ1) the following holds:

(a) lim
μ1→a

λ(a, b, μ1) · (μ1 − a) = −1.

(b) lim
μ1→b

λ(a, b, μ1) · (b − μ1) = 1.

Proof of 3.7: With propositions 3.4 and 3.6 we are able to reduce the above
two cases to the single case

lim
μ1→0

λ(μ1) · μ1 = −1 , (3.45)

which is shown by a short calculation:

lim
μ1→0

λ(μ1) · μ1 = lim
μ1→0

λ(μ1) ·
(

eλ(μ1)

eλ(μ1) − 1
− 1

λ(μ1)

)
=

= lim
μ1→0

(
λ(μ1)eλ(μ1)

eλ(μ1) − 1︸ ︷︷ ︸
→ 0, since

lim
μ1→0

λ(μ1) = −∞

− 1
)

= −1 . (3.46)

•

In proposition 3.5 we have given a lower bound for λ(μ1). Now with 3.7 we are
able to extend (3.37) with an upper bound.

Proposition 3.8 (lower and upper bounds of λ) Let X = X|{μ1} ∼ Mon(μ1).
Then the distribution parameter λ(μ1) meets the following inequalities

− 1
μ1

+ 2 > λ(μ1) > − 1
μ1

for all 0 < μ1 < 0.5 (3.47)

Proof of 3.8: First, μ1 → 1
2 implies λ(μ1) → 0 = − 1

1
2

+ 2. To proof the
left hand side, we differentiate λ(μ1) with respect to μ1 and have to show that
the derivative is larger than the derivative of − 1

μ1
+ 2 for all μ1 ∈ (0, 0.5). As

aforementioned, μ1 can be considered as a function of λ, and therefore μ1(λ) may
be differentiated with respect to λ. This was already exercised in the proof of
proposition 3.3 where we found2

dμ1(λ)
dλ

= μ2(λ) − (μ1(λ))2 . (3.48)

2For μ2 see (3.108).
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3. Monotonic Probability Distributions

Since λ(μ1) is the inverse function of μ1(λ) we get
dλ(μ1)

dμ1
= 1

μ2 − μ2
1

with μ2 = μ2(λ(μ1)) . (3.49)

Together with d
dμ1

(− 1
μ1

+ 2) = 1
μ2

1
, we note that the following equivalence holds:

1
μ2

1
<

1
μ2 − μ2

1
⇐⇒ 2μ2

1 − μ2 > 0 . (3.50)

In fact, we would need to analyse 2μ2
1 − μ2 with respect to μ1, but since λ(μ1) is

strictly monotone increasing in μ1, we analyse 2μ2
1(λ) − μ2(λ) with respect to λ:

2μ2
1 − μ2 = 2

(
eλ − λeλ − 1

λ(1 − eλ)

)2

− −2eλ + 2λeλ − λ2eλ + 2
λ2(1 − eλ)

=

=
−2λe2λ + 2λeλ + λ2e2λ + λ2eλ

λ2(1 − eλ)2 =
−λeλ(2(eλ − 1) − λ(eλ + 1))

λ2(1 − eλ)2 (3.51)

For 0 < μ1 < 0.5 we have −∞ < λ(μ1) < 0 implying −λeλ > 0 and we continue
with analysing h(λ) := 2(eλ − 1) − λ(eλ + 1). The limits of h(λ) for λ → 0 and
λ → −∞, respectively, are

lim
λ→0

h(λ) = 0 , (3.52)

lim
λ→−∞

h(λ) = +∞ . (3.53)

The first two derivatives of h(λ) are:
d

dλ
h(λ) = h′(λ) = eλ − 1 − λeλ (3.54)

lim
λ→0

h′(λ) = 0 (3.55)

lim
λ→−∞

h′(λ) = −1 (3.56)

d
dλ

h′(λ) = −λeλ > 0 for all λ < 0 (3.57)

Thus, we conclude, that −1 < h′(λ) < 0 and h′(λ) is strictly monotone increasing
in λ. With this it follows, that 0 < h(λ) < +∞ is strictly monotone decreasing
in λ. Finally, 2μ2

1 − μ2 > 0, i.e., 0 < 1
μ2

1
< 1

μ2−μ2
1
, and thus, − 1

μ1
+ 2 > λ(μ1).

•

Proposition 3.4 implies that λ(b, μ1) = λ(μ1
b

)1
b
, which we can utilise to extend the

above proposition 3.8 to the case X|{(b, μ1)} ∼ Mon(b, μ1) where μ1 ∈
(
0, b

2
)
.
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Corollary 3.9 (lower and upper bounds of λ) Let X = X|{(b, μ1)} ∼ Mon(b, μ1).
Then the distribution parameter λ(b, μ1) meets the following inequaltities

− 1
μ1

+
2
b

> λ(b, μ1) > − 1
μ1

for all b ∈ (0, +∞), μ1 ∈
(

0,
b

2

)
(3.58)

Proposition 3.10 (limits of λ) Let X = X|{(a, b, μ1)} ∼ Mon(a, b, μ1) with
fixed μ1. For λ(a, b, μ1) the following holds:

(a) lim
b→+∞

λ(a, b, μ1) · (b − a) = −∞.

(b) lim
b→+∞

λ(a, b, μ1) = − 1
μ1 − a

.

Proof of 3.10: Again, utilising propositions 3.4 and 3.6 we will show (b) at
first:

lim
b→+∞

λ(a, b, μ1) = lim
b→+∞

λ(0, b − a, μ1 − a) =

= lim
b→+∞

λ(0, 1,
μ1 − a

b − a
)μ1 − a

b − a
· 1

μ1 − a
= −1 · 1

μ1 − a
= − 1

μ1 − a
. (3.59)

Since μ1 ∈ (a; b) is fixed (a) follows immediatly.
•

3.2.2. Properties concerning the distribution

Proposition 3.11 (distribution of standardisation) Let X ∼ Mon(a, b, μ1),
then for the random variable Y := X−a

b−a
it holds Y ∼ Mon(0, 1, μ1−a

b−a
).

Proof of 3.11: Let fX and fY be the density functions of X and Y respectively,
then it is known, that under the proposed linear transformation it holds fY (y) =
(b − a)fX((b − a)y + a), which is

fY (y) = (b − a)fX((b − a)y + a) (3.60)

= (b − a)
λ(a, b, μ1)eλ(a,b,μ1)((b−a)y+a)

eλ(a,b,μ1)b − eλ(a,b,μ1)a · 1[a,b]((b − a)y + a) (3.61)

= λ(a, b, μ1)(b − a)eλ(a,b,μ1)(b−a)y

eλ(a,b,μ1)(b−a) − 1
· 1[0,1](y) (3.62)

=
λ(μ1−a

b−a
)eλ( μ1−a

b−a
)y

eλ( μ1−a

b−a
) − 1

· 1[0,1](y) (3.63)
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3. Monotonic Probability Distributions

with the last transformation obtained by using proposition 3.4. This already
shows, that Y ∼ Mon(0, 1, μ1−a

b−a
).

•

A kind of inversion of the above proposition is the following corollary.

Corollary 3.12 (distribution of affine transformation) Let X ∼ Mon(a, b, μ1),
then for the random variable Z := cX + d with c 
= 0, d ∈ R, it holds

(a) for c > 0: Z ∼ Mon(ca + d, cb + d, cμ1 + d),

(b) for c < 0: Z ∼ Mon(cb + d, ca + d, cμ1 + d).

According to corollary 3.9 and proposition 3.10, λ(b, μ1) approaches − 1
μ1

. Thus,
in the case of X ∼ Mon(b, μ1) with large b and μ1 very small compared to b,
λ(b, μ1) almost equals − 1

μ1
, and the similarity to the exponential distribution

becomes evident. A random variable Y is said to be exponentially distributed
with parameters a ∈ R and ϑ > a, Y ∼ EXP (a, ϑ), if its density function is

fY (y) =

⎧⎪⎨⎪⎩
0 for y < a,

ϑe−ϑ(y−a) for y ≥ a.

(3.64)

Then the distribution function FY of Y is

FY (y) =

⎧⎪⎨⎪⎩
0 for y < a,

1 − e−ϑ(y−a) for y ≥ a,

(3.65)

and the first moment of Y is

E[Y ] = a + 1
ϑ

. (3.66)

Proposition 3.13 (convergence to the exponential distribution) Let a <

b0 ≤ b, a < μ1 < a+b0
2 , X = X|{(a, b, μ1)} ∼ Mon(a, b, μ1) and Y ∼ EXP (a, ϑ)

with ϑ = 1
μ1−a

. For constant a and μ1, X converges in distribution to Y for
b → +∞.
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Proof of 3.13: Because of proposition 3.4 we may set a = 0 without loss of
generality. Let FX and FY be the distribution functions of X and Y , respectively.
We have to show that for every ε > 0 and all x ∈ R there exists a B > b0 so that
|FX(x) − FY (x)| < ε holds for all b > B.
For x < 0 the distribution functions of both, the monotonic and the exponential
distribution are 0, i.e., they are identical in this case.
For x ≥ 0 and since b → +∞ we only have to deal with the case x ≤ b. We get

|FX(x) − FY (x)| =
∣∣∣∣eλ(b,μ1)x − 1
eλ(b,μ1)b − 1

− (1 − e−ϑx)
∣∣∣∣ (3.67)

=
∣∣∣∣1 − eλ(b,μ1)x − (1 − e−ϑx)(1 − eλ(b,μ1)b)

1 − eλ(b,μ1)b

∣∣∣∣ (3.68)

= |e−ϑx + eλ(b,μ1)b − eλ(b,μ1)x − e−ϑx+λ(b,μ1)b|
|1 − eλ(b,μ1)b| (3.69)

≤ |e−ϑx − eλ(b,μ1)x| + |eλ(b,μ1)b(1 − e−ϑx)|
|1 − eλ(b,μ1)b| (3.70)

Let ε > 0 be arbitrary. From 3.10(a) we know λ(b, μ1)b → −∞ for b → +∞, i.e.,
there exists a b1, so that eλ(b,μ1)b < ε

2+ε
and 1 − eλ(b,μ1)b > 1 − ε

2+ε
for all b > b1.

According to 3.10(b) λ(b, μ1) converges to − 1
μ1

= −ϑ, thus there is a b2, so that
|e−ϑx − eλ(b,μ1)x| < ε

2+ε
for all b > b2. Together with (1 − e−ϑx) < 1 we get for all

b > max{b1, b2}

|FX(x) − FY (x)| ≤ |e−ϑx − eλ(b,μ1)x| + |eλ(b,μ1)b(1 − e−ϑx)|
|1 − eλ(b,μ1)b| <

ε
2+ε

+ ε
2+ε

1 − ε
2+ε

= ε .

(3.71)
And this shows the convergence in distribution of X to Y .

•

Characteristic Function

Another important feature of a probability distribution is its characteristic func-
tion, which is defined as follows (see e.g. [29], pp. 44).

Definition 3.14 (characteristic function) Let X be a continuous random vari-
able with distribution function FX and density function fX. Then the charac-
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3. Monotonic Probability Distributions

teristic function ϕX of X is defined for all t ∈ R by

ϕX(t) = E[eitX ] =
+∞∫

−∞

eitx dFX(x) =
+∞∫

−∞

eitxfX(x) dx . (3.72)

Proposition 3.15 (characteristic function) Let X ∼ Mon(a, b, μ1) and λ =
λ(a, b, μ1). Then the characteristic function ϕX is

ϕX(t) = eita λ(
eλ·(b−a) − 1

) 1
it + λ

(
e(it+λ)(b−a) − 1

)
. (3.73)

Proof of 3.15: We will use a known property of the characteristic function under
linear transformation of the random variable:

Let Y and Z be random variables with Z = α + βY . Then for their
characteristic functions it holds

ϕZ(t) = eiαtϕY (βt) . (3.74)

With this and since the general case X ∼ Mon(a, b, μ1) may be traced back to
Y ∼ Mon(0, 1, μ1−a

b−a
) by proposition 3.11 via the transformation Y = X−a

b−a
, we at

first derive ϕY (t) for Y ∼ Mon(0, 1, μ1). With λY = λ(0, 1, μ1) we calculate

ϕY (t) =
∫ +∞

−∞
eitxfX(x) dx =

∫ 1

0
eitx λY eλY x

eλY − 1
dx (3.75)

= λY

eλY − 1

∫ 1

0
e(it+λY )x dx (3.76)

= λY

eλY − 1
1

it + λY

[
e(it+λY )x

]1

0
(3.77)

= λY

eλY − 1
1

it + λY

(
eit+λY − 1

)
(3.78)
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For the general case we remind that λX = λ(a, b, μ1) = λ(μ1−a
b−a

) 1
b−a

= λY
1

b−a
(see

3.4). Then we finally get ϕX(t) for X ∼ Mon(a, b, μ1)

ϕX(t) = eiatϕY ((b − a)t) (3.79)

= eiat λY

eλY − 1
1

i(b − a)t + λY

(
ei(b−a)t+λY − 1

)
(3.80)

= eiat λX(b − a)
eλX (b−a) − 1

1
i(b − a)t + λX(b − a)

(
ei(b−a)t+λX (b−a) − 1

)
(3.81)

= eiat λX

eλX (b−a) − 1
1

it + λX

(
e(it+λX )(b−a) − 1

)
. (3.82)

•

From the properties of the characteristic function it is known, that the con-
vergence in distribution is equivalent to the convergence of the corresponding
characteristic functions. According to (3.7b), for [a, b] = [0, 1] and λ → 0 or
equivalent μ1 → 1

2 the monotonic distribution Mon(0, 1, μ1) converges to the con-
stant distribution U(0, 1), the same holds for the characteristic function. With
X ∼ Mon(0, 1, μ1) we get

lim
λ→0

ϕX(t) = lim
λ→0

λ

eλ − 1
1

it + λ

(
eit+λ − 1

)
(3.83)

=
1
it

(
eit − 1

)
, (3.84)

since lim
λ→0

λ
eλ−1 = 1. And this is just the characteristic function ϕY of a constant

distributed random variable Y on the closed unit interval [0, 1], i.e., Y ∼ U(0, 1).
In 3.13 we have shown the convergence in distribution of a monotonic distributed
random variable X ∼ Mon(a, b, μ1) for μ1 constant to an exponentially dis-
tributed random variable Y ∼ EXP (a, ϑ) as the upper bound of X converges to
+∞. Transferred to the corresponding characteristic functions ϕX and ϕY (t) =
eiat ϑ

ϑ−it
that means that

|ϕX(t) − ϕY (t)| b→+∞−−−−→ 0 (3.85)

for every t ∈ R. Since ϕX(t) and ϕY (t) respectively are complex functions, the
direct proof of this convergence needs some laborious calculations. As in 3.13 we
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set a = 0 without loss of generality, then we get

|ϕX(t) − ϕY (t)| =
t2(ϑ + λ(μ1

b
))2 + A + B + C + D(

ebλ( μ1
b

) − 1
)2

(t2 + ϑ2)
(
t2 + λ2(μ1

b
)
) (3.86)

with

A = −2ebλ( μ1
b

)t2(ϑ2 + ϑλ(
μ1

b
)) , (3.87)

B = e2bλ( μ1
b

)(t2ϑ2 + t2λ2(
μ1

b
) + 2ϑ2λ2(

μ1

b
)) , (3.88)

C = −2ebλ( μ1
b

)λ(μ1

b
)
((

ϑ − ebλ( μ1
b

)ϑ + λ(μ1

b
)
)

t2 + ebλ( μ1
b

)ϑ2λ(μ1

b
)
)

cos(bt) ,

(3.89)

D = −2ebλ( μ1
b

)tϑλ(μ1

b
)
(

ebλ( μ1
b

) − 1
)

(ϑ + λ(μ1

b
)) sin(bt) . (3.90)

Since bλ(μ1
b

) → −∞ for b → +∞ in all four terms A, B, C and D the factor
ebλ( μ1

b
) and e2bλ( μ1

b
), respectively, converges to 0. Simultaneous, the other factors

remain bounded. Because ϑ = 1
μ1

and λ(μ1
b

) → − 1
μ1

for b → +∞ we get (ϑ +
λ(μ1

b
)) → 0 as well. Finally, since the denominator obviously does not converge

to 0, convergence in distribution of X to Y follows again.

Quantile Functions

First we give a very general definition of quantiles and quantile functions.

Definition 3.16 (upper and lower quantile function) Let X be a univari-
ate random variable with distribution function FX : R → R. For γ ∈ [0, 1] any
x ∈ R solving simultaneously the two inequalities

P(X ≤ x) ≥ γ , P(X ≥ x) ≥ 1 − γ

⇐⇒
lim
t↗x

FX(t) =: F (x−) ≤ γ ≤ FX(x)
(3.91)

is called γ-quantile.
The lower quantile function z

(L)
X : (0, 1) → R is defined by

z
(L)
X (γ) = inf{x | F (x−) ≤ γ ≤ F (x)} . (3.92)
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The upper quantile function z
(U)
X : (0, 1) → R is defined by

z
(U)
X (γ) = sup{x | F (x−) ≤ γ ≤ F (x)} . (3.93)

It is known, that for a continuous and strictly increasing distribution function FX

we have z
(L)
X (γ) = z

(U)
X (γ) for all γ ∈ (0, 1), i.e., the γ-quantile zX(γ) is unique

and defined by FX(zX(γ)) = γ.
Since the distribution function of X|{(a, b, μ1)} ∼ Mon(a, b, μ1) is continuous
and strictly increasing on the compact interval [a, b] with FX|{(a,b,μ1)}(a) = 0 and
FX|{(a,b,μ1)}(b) = 1 we get the quantile function zX|{(a,b,μ1)}(γ) for all γ ∈ [0, 1] as
follows

zX|{(a,b,μ1)}(γ) = F −1
X|{(a,b,μ1)}(γ) =

= 1
λ(a, b, μ1)

ln
(

γ
(
eλ(a,b,μ1)b − eλ(a,b,μ1)a) + eλ(a,b,μ1)a

)
. (3.94)

To get an impression of the dependency of the quantile function on b let a = 0
and μ1 = 1 be fixed while b > 2μ1 = 2, i.e., we have a monotonously de-
creasing density function for X|{(0, b, μ1)}. Figure 3.3 displays its courses for
γ = 0.1, 0.3, 0.5, 0.7, 0.85, 0.95. The limiting values to the left, i.e., for b ↘ 2μ1,
and to the right, i.e., for b → +∞, are explained by the convergence of the
montone distribution. For b ↘ 2μ1 the monotonic distribution converges to the
uniform distribution U(0, 2μ1) and, thus, the quantile zX|{(0,b,μ1)}(γ) converges to
γ · 2μ1. For b → +∞ the monotonic distribution converges to the exponential
distribution EXP (1/μ1) and the quantile zX|{(0,b,μ1)}(γ) converges to the quantile
of the exponential distribution −μ1 ln(1−γ). Not only, that the relation between
the limiting values changes3, but also the course of zX|{(0,b,μ1)}(γ) is neither mono-
toneously decreasing nor increasing in b for some values γ. It seems, that values
γ ≥ 0.95 lead to a monotonously increasing quantile function in b with limiting
value −μ1 ln(1 − γ) for b → +∞.

Exponential Family

If a family of distributions is an exponential family with respect to a distribution
parameter ϑ ∈ Θ ⊆ R

d, some useful properties result for statistical inference.
3γ · 2μ1 is larger than −μ1 ln(1 − γ) for approximatly γ < 0.796812.
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Figure 3.3.: The quantile function zX|{(0,b,1)}(γ) in dependency of b for different
values γ.
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A family of distributions is said to be a k-parameter exponential family if the
density functions can be written as

fX|{ϑ}(x) = h(x)c(ϑ) exp
( k∑

i=1
wi(ϑ)ti(x)

)
, (3.95)

with functions

h : X → R, h(x) ≥ 0 for all x ∈ X ,

ti : X → R for all i = 1, . . . , k ,

c : Θ → R, c(ϑ) ≥ 0 for all ϑ ∈ Θ ,

wi : Θ → R for all i = 1, . . . , k .

(3.96)

We should note, that h and all ti do not depend on ϑ, and c and all wi do not
depend on x.

The density functions fX|{(a,b,μ1)} of the monotonic distribution Mon(a, b, μ) gen-
erate an exponential family in μ1 ∈ (a, b) and λ ∈ R, since for all μ1 ∈ (a, b) and
λ ∈ R, respectively, the density functions can be written as (3.95) with

h(x) = 1[a,b](x) ,

t(x) = x ,

c(λ(a, b, μ1)) =
1∫ b

a
eλ(a,b,μ1)t dt

,

w(λ(a, b, μ1)) = λ(a, b, μ1) .

(3.97)

Function c(λ(a, b, μ1)) is written with the integral in the denominator, since in
this way we do not have to treat the case μ1 = a+b

2 (⇔ λ = 0) separately.

It is worth mentioning, that the monotonic distribution Mon(a, b, μ) does not
generate an exponential family neither in a, nor in b, nor in X = [a, b]. This
results from function h(x) = 1[a,b](x), which cannot be separated into a function
depending on x alone and functions depending alone on a, b and [a, b], respec-
tively.
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3. Monotonic Probability Distributions

3.2.3. Moments of X|(a, b, μ1)

In this section we want to analyse some properties of the moments of X ∼
Mon(a, b, μ1).

All moments E[Xk] of any random variable X – in case of existence – may be
calculated from the first k moments E[Y i], 1 ≤ i ≤ k, of a linear transformation
Y = X−a

b−a
of X by the well known formulas:

E[Y k] = E

[(
X − a

b − a

)k
]

= 1
(b − a)k

k∑
i=0

(
k

i

)
aiE[Xk−i] (3.98a)

E[Xk] = E
[
((b − a)Y + a)k

]
=

k∑
i=0

(
k

i

)
ai(b − a)k−iE[Y k−i] (3.98b)

Therefore, we firstly examine the case X ∼ Mon(0, 1, μ1) and write λ = λ(μ1).

The k-th moment of X is then calculated in the usual way by the integral

E[Xk] =

1∫
0

xkeλx dx

1∫
0

eλx dx

=
1∫

0

λxk

eλ − 1
eλx dx . (3.99)

By successive integration by parts the above integral can be explicitly solved and
we immediately get the following proposition 3.17:

Proposition 3.17 (moments) Let X ∼ Mon(0, 1, μ1). Then for k ∈ N the
k-th moment of X is

E[Xk] = μk =

(
1 −

∑k
�=1

(−λ)�

�!
e−λ − 1

)
k!

(−λ)k
. (3.100)

With the above equation (3.100) the moments are at hand. But for the sake of
completeness we also give the moment generating function MX(t) := E[etX ] of
X. The calculation of MX would be straight forward and utilises the analogue to
the property of characteristic function under linear transformation of the random
variable:
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3.2. Properties

Let Y and Z be random variables with Z = α + βY . Then for their
moment generating functions it holds

MZ(t) = eαtMY (βt) . (3.101)

Proposition 3.18 (moment generating function) Let X ∼ Mon(a, b, μ1).
The moment generating function MX of X is

MX(t) =
λ

eλb − eλa

e(t+λ)b − e(t+λ)a

t + λ
. (3.102)

Remark In [13] (p. 137) a formula of the moment generating function in case
of an exponential family of distributions is referenced:

According to Brown (1986, Section 1.1)4, to define an exponential
family of distributions we start with a nonnegative function ν(x) and
define the set N by

N =
{

θ :
∫

X
eθxν(x) dx < ∞

}
. (3.103)

If we let λ(θ) =
∫

X eθxν(x) dx, the set of probability densities defined
by

f(x|θ) = eθxν(x)
λ(θ)

, x ∈ X , θ ∈ N , (3.104)

is an exponential family. The moment-generating function of f(x|θ)
is

MX(t) =
∫

X
etxf(x|θ) dx = λ(t + θ)

λ(θ)
(3.105)

and hence exists by construction.

Adapting the notation to ours and with function c(λ) = λ
eλb−eλa from (3.97), we

may rewrite (3.102) as

MX(t) = c(λ)
c(t + λ)

. (3.106)

4Brown, L.D. (1986). Fundamentals of Statistical Exponential Families with Applications in
Statistical Decision Theory. Institute of Mathematical Statistics Lecture Notes – Monograph
Series. IMS, Hayward, CA.
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3. Monotonic Probability Distributions

In addition we provide the first four moments of Y ∼ Mon(μ1) with λ = λ(μ1):

E[Y ] = μ1 =
(

1 − −λ

e−λ − 1

)
1

−λ
=

1 − λ − e−λ

λ(e−λ − 1)
(3.107)

E[Y 2] = μ2 =

(
1 −

−λ + λ2

2
e−λ − 1

)
2
λ2 = −2 + 2λ − λ2 + 2e−λ

λ2(e−λ − 1)
(3.108)

E[Y 3] = μ3 =

(
1 −

−λ + λ2

2 − λ3

6
e−λ − 1

)
6

−λ3 =
6 − 6λ + 3λ2 − λ3 − 6e−λ

λ3(e−λ − 1)
(3.109)

E[Y 4] = μ4 =

(
1 −

−λ + λ2

2 − λ3

6 + λ4

24
e−λ − 1

)
24
λ4 =

=
−24 + 24λ − 12λ2 + 4λ3 − λ4 + 24e−λ

λ4(e−λ − 1)
(3.110)

The obvious pattern in the sequence of moments for Y ∼ Mon(μ1) can be easily
deduced by successive partial integration:

E[Y k] = (−1)k k!
λk

(
e−λ − 1 −

∑k
l=1(−1)l λl

l!
e−λ − 1

)
(3.111)

And with (3.98b) we get for the corresponding first four moments of X ∼
Mon(a, b, μ1) with λ = λ(a, b, μ1):

E[X] = μ1 =
(−1 + λb)eλb − (−1 + λa)eλa

λ(eλb − eλa)
(3.112)

E[X2] = μ2 = (2 − 2λb + λ2b2)eλb − (2 − 2λa + λ2a2)eλa

λ2(eλb − eλa)
(3.113)

E[X3] = μ3 =
(−6 + 6λb − 3λ2b2 + λ3b3)eλb − (−6 + 6λa − 3λ2a2 + λ3a3)eλa

λ3(eλb − eλa)
(3.114)

E[X4] = μ4 = 1
λ4(eλb − eλa)

(
(24 − 24λb + 12λ2b2 − 4λ3b3 + λ4b4)eλb−

− (24 − 24λa + 12λ2a2 − 4λ3a3 + λ4a4)eλa
)

(3.115)

The central moments μ̃k := E[(X − μ1)k] are related to the moments μk = E[Xk]
by the well known transformation

E[(X − μ1)k] = μ̃k =
k∑

i=0

(
k

i

)
(−1)k−iμiμ

k−i
1 (3.116)
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3.2. Properties

With the above stated formulas it is quite easy to derive the expression for the
variance Var[X] = μ̃2 = σ2 of X ∼ Mon(μ1):

Var[X] = μ̃2 = σ2 = 1 − e−λ(2 + λ2) + e−2λ

λ2(e−λ − 1)2 . (3.117)

Higher central moments, together with the skewness γ1 = E[(X−μ1)3]
σ3 = μ̃3

μ̃
3/2
2

and

kurtosis δ = E[(X−μ1)4]
σ4 = μ̃4

μ̃2
2

and kurtosis excess γ2 = δX − 3 respectively, lack
of a intuitionally comprehensive (clearly arranged) form and are omitted here –
but their dependency on μ1 is illustrated in figure 3.4 for X ∼ Mon(μ1) and
μ1 ∈ (0, 1). We may note, that the kurtosis excess converges to 6 for μ1 → 0 and
μ1 → 1 respectively. The former expresses the convergence in distribution to the
exponential distribution whose kurtosis excess equals exactly 6.

0.0 0.2 0.4 0.6 0.8 1.0
-15
-10
-5
0

5

10

15

λ

γ1

γ2

μ1

Figure 3.4.: Plot of distribution parameter λ, skewness γ1 and kurtosis excess γ2

as functions of μ1 for X ∼ Mon(μ1) and μ1 ∈ (0, 1).
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3. Monotonic Probability Distributions

3.3. Sample Distributions

If nothing else is stated, X1, X2, . . . , Xn should be an i.i.d. sample for X ∼
Mon(a, b, μ1), abbreviated with X = (X1, X2, . . . , Xn). Troughout this section
we want to derive the distributions of functions T : Rn → R

q, q ∈ N, of X, i.e.,
statistics of X.

3.3.1. Joint Distribution of X1, . . . , Xn

Since X1, . . . , Xn are independent their joint probability density function equals
the product of the individual densities:

fX|{(a,b,μ1)}(x) =
n∏

i=1
fXi|{(a,b,μ1)}(xi)

=
eλ(a,b,μ1)

∑n
i=1 xi(

b∫
a

eλ(a,b,μ1)t dt

)n1[a,b]n(x)
(3.118)

We note, that for all x ∈ {(x1, . . . , xn) | a ≤ xi ≤ b} the value of the joint density
function depends only on the sum

n∑
i=1

xi.

3.3.2. Sum of X1, . . . , Xn

Let T (X) =
∑n

i=1 Xi =: Kn. Since the general case X = [a, b] again may be
traced back to the special case X = [0, 1] we assume Xi ∼ Mon(μ1).
Firstly let n = 2. To derive the density function of K2 we calculate the convolu-
tion of fX1|{μ1} and fX2|{μ1}:

fK2|{μ1}(x) = f(X1+X2)|{μ1}(x) =
∫

fX1|{μ1}(y)fX2|{μ1}(x − y) dy

=
∫

λ

eλ − 1
eλy1[0,1](y) · λ

eλ − 1
eλ(x−y)1[0,1](x − y) dy

=
(

λ

eλ − 1

)2

eλx

∫
1[0,1](y)1[0,1](x − y) dy︸ ︷︷ ︸

(∗)

(3.119)
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3.3. Sample Distributions

Where (∗) is the convolution operator of two independent random variables uni-
formly distributed on [0, 1]. The resulting density function may be found in many
textbooks, e.g. [66, 67]:

Let U1, U2, . . . , Un be independent random variables uniformly distributed on
[0, 1], i.e.,

Ui ∼ U(0, 1) , i = 1, . . . , n

Then the density function of
n∑

i=1
Ui is:

f n∑
i=1

Ui

(x) =
1

(n − 1)!

�x	∑
i=0

(−1)i

(
n

i

)
(x − i)n−11[0,n](x) (3.120)

with �x� = max{q ∈ Z|q ≤ x}

With this on hand we are able to derive the density function of Kn, provided by
the subsequent proposition 3.19.

Proposition 3.19 (sum of i.i.d. monotonic distributed random variables)
Let X1, X2, . . . , Xn be i.i.d. random variables with Xi ∼ Mon(μ1), U1, U2, . . . , Un

be i.i.d. random variables with Ui ∼ U(0, 1), and f n∑
i=1

Ui

(x) the density function of

n∑
i=1

Ui. Then the following holds for the density function of Kn =
n∑

i=1
Xi

fKn|{μ1}(x) =
(

λ

eλ − 1

)n

eλxf n∑
i=1

Ui

(x) (3.121)

Proof of 3.19: The proof will be performed by induction with respect to n. For
n = 2 the proposition holds as shown by (3.119). Next assume that (3.121) is
true for any m ≤ n. The density function fKn+1|{μ1} of Kn+1 is obtained by the
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3. Monotonic Probability Distributions

convolution of fKn|{μ1} and fXn+1|{μ1} yielding:

fKn+1|{μ1}(x) =
∫

fKn|{μ1}(y)fXn+1|{μ1}(x − y) dy

=
∫ (

λ

eλ − 1

)n

eλyf n∑
i=1

Ui

(y)
(

λ

eλ − 1

)
eλ(x−y)fUn+1(x − y) dy

=
(

λ

eλ − 1

)n+1

eλx

∫
f n∑

i=1
Ui

(y)fUn+1(x − y) dy

=
(

λ

eλ − 1

)n+1

eλxf n∑
i=1

Ui+Un+1
(x)

=
(

λ

eλ − 1

)n+1

eλxfn+1∑
i=1

Ui

(x)

•

To summarise, the probability density function of Kn =
∑n

i=1 Xi with Xi ∼
Mon(μ1) is

fKn|{μ1}(x) =
(

λ

eλ − 1

)n

eλx 1
(n − 1)!

�x	∑
i=0

(−1)i

(
n

i

)
(x − i)n−11[0,n](x) (3.122)

With (3.122) the density function of the mean X := 1
n
Kn is obtained:

fX|{μ1}(x) = nfKn|{μ1}(nx) = n

(
λ

eλ − 1

)n

eλnxf n∑
i=1

Ui

(nx) (3.123)

Furthermore the distribution function FKn|{μ1} of Kn for x ∈ [0, n] is given by:

FKn|{μ1}(x) =
(

1
eλ − 1

)n

·

·

⎧⎨⎩eλx

⎡⎣ �x	∑
i=0

(−1)i

(
n

i

)(
n−2∑
k=0

(−1)k(x − i)n−1−k λn−1−k

(n − 1 − k)!

)⎤⎦+

+

⎡⎣ �x	∑
i=0

(−1)n+1+i

(
n

i

)
(eλx − eλi)

⎤⎦⎫⎬⎭ (3.124)

If Xi ∼ Mon(a, b, μ1), then according to proposition 3.11 Yi := Xi−a
b−a

∼ Mon(0, 1, μ1−a
b−a

).

Let Pn :=
n∑

i=1
Yi and Kn :=

n∑
i=1

Xi, then

Pn =
n∑

i=1
Yi =

n∑
i=1

Xi − a

b − a
=

(
∑n

i=1 Xi) − na

b − a
= Kn − na

b − a
. (3.125)
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3.3. Sample Distributions

Writing μ̃1 = μ1−a
b−a

, the density function fKn|{(a,b,μ1)} of Kn again results from
(3.122) using proposition 3.4

fKn|{(a,b,μ1)}(x) =
1

b − a
fPn|{μ̃1}(

x − na

b − a
)

= 1
b − a

(
λ(μ̃1)

eλ(μ̃1) − 1

)n

eλ(μ̃1) x−na
b−a

1
(n − 1)!

·

·
�x−na

b−a �∑
i=0

(−1)i

(
n

i

)
(x−na

b−a
− i)n−11[0,n](x−na

b−a
) (3.126)

=
(

(b − a)λ(a, b, μ1)
e(b−a)λ(a,b,μ1) − 1

)n

eλ(a,b,μ1)(x−na) 1
(n − 1)!(b − a)n

·

·
�x−na

b−a �∑
i=0

(−1)i

(
n

i

)
(x − na − i(b − a))n−11[na,nb](x)

=
(

λ(a, b, μ1)
eλ(a,b,μ1)b − eλ(a,b,μ1)a

)n

eλ(a,b,μ1)x 1
(n − 1)!

·

·
�x−na

b−a �∑
i=0

(−1)i

(
n

i

)
(x − na − i(b − a))n−11[na,nb](x) (3.127)

and the distribution function fKn|{(a,b,μ1)} of Kn for x ∈ [na, nb] is

FKn|{(a,b,μ1)}(x) =
(

1
e(b−a)λ(a,b,μ1) − 1

)n
{

eλ(a,b,μ1)(x−na)·

·

⎡⎣� x−na
b−a

	∑
i=0

(−1)i

(
n

i

)(
n−2∑
k=0

(−1)k(x − na − i(b − a))n−1−k (λ(a, b, μ1))n−1−k

(n − 1 − k)!

)⎤⎦+

+

⎡⎣� x−na
b−a

	∑
i=0

(−1)n+1+i

(
n

i

)
(eλ(a,b,μ1)(x−na) − e(b−a)λ(a,b,μ1)i)

⎤⎦⎫⎬⎭ (3.128)

No simplification arises for the respective terms of the density and distribution
function of the mean X = 1

n
Kn, thus we only give the generally known formulas

FX |{(a,b,μ1)}(x) = FKn|{(a,b,μ1)}(nx) , (3.129)

fX |{(a,b,μ1)}(x) = nfKn|{(a,b,μ1)}(nx) . (3.130)
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3. Monotonic Probability Distributions

3.3.3. Order Statistics

Arranging the random variables X1, . . . , Xn in ascending order yields the order
statistics X(1), X(2), . . . , X(n), i.e., X(1) ≤ X(2) ≤ · · · ≤ X(n). Therefore, for exam-
ple, X(1) = min{X1, . . . , Xn} is the sample minimum and X(n) = max{X1, . . . , Xn}
is the sample maximum, respectively. Since the general formulas of the (joint)
distributions of order statistics are known, e.g. see [39], some of them are explic-
itly derived here.

3.3.3.1. Distributions concerning X(1) and X(n)

In general, the distribution function FX(n) of X(n) given an i.i.d. sample of a
random variable X is

FX(n)(x) = (FX(x))n (3.131)

with distribution function FX of X. The density function fX(n) of X(n) is

fX(n)(x) = n(FX(x))n−1fX(x) (3.132)

with density function fX of X.
Consequently, for X ∼ Mon(a, b, μ1) we get for x ∈ X

FX(n)|{(a,b,μ1)}(x) =
(

eλx − eλa

eλb − eλa

)n

, (3.133)

and

fX(n)|{(a,b,μ1)}(x) = n

(
eλx − eλa

eλb − eλa

)n−1
λeλx

eλb − eλa
. (3.134)

Similar, the distribution function FX(1) of X(1) is

FX(1)(x) = 1 − (1 − FX(x))n (3.135)

and the density function fX(1) of X(1) is

fX(1)(x) = n(1 − FX(x))n−1fX(x) . (3.136)

This yields for X ∼ Mon(a, b, μ1) for x ∈ X

FX(1)|{(a,b,μ1)}(x) = 1 −
(

eλb − eλx

eλb − eλa

)n

, (3.137)
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3.3. Sample Distributions

and

fX(1)|{(a,b,μ1)}(x) = n

(
eλb − eλx

eλb − eλa

)n−1
λeλx

eλb − eλa
. (3.138)

The joint distribution function of X(1) and X(n) for x1 < xn is

FX(1),X(n)(x1, xn) = (FX(xn))n − (FX(xn) − FX(x1))n (3.139)

and the joint density function for x1 < xn is

fX(1),X(n)(x1, xn) = n(n − 1)fX(x1)fX(xn)(FX(xn) − FX(x1))n−2 . (3.140)

For X ∼ Mon(a, b, μ1) and x1, xn ∈ X , x1 < xn, we get

F(X(1) ,X(n))|{(a,b,μ1)}(x1, xn) = (eλxn − eλa)n − (eλxn − eλx1)n

(eλb − eλa)n
(3.141)

and

f(X(1),X(n))|{(a,b,μ1)}(x1, xn) = n(n − 1)λ2eλ(x1+xn)(eλxn − eλx1)n−2

(eλb − eλa)n
. (3.142)

For the random variable R = X(n) − X(1), i.e., the range of the sample, the
densitiy function fR is

fR(r) =
∫ +∞

−∞
n(n − 1)fX(t + r)fX(t)(FX(t + r) − FX(t))n−2 dt (3.143)

and the distribution function FR is

FR(r) =
∫ +∞

−∞
nfX(t)(FX(t + r) − FX(t))n−1 dt . (3.144)

The density function fR|{(a,b,μ1)} of the range R of the sample is obtained as

fR|{(a,b,μ1)}(r) = (n − 1)λeλr(eλr − 1)n−2(enλ(b−r) − enλa)
(eλb − eλa)n

1[0,b−a](r) . (3.145)

Consequently, the distribution function FR|{(a,b,μ1)} for r ∈ [0; b − a] is given by

FR|{(a,b,μ1)}(r) = (eλr − 1)n−1(eλrenλ(b−r) − enλa)
(eλb − eλa)n

. (3.146)
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3. Monotonic Probability Distributions

3.3.3.2. Distributions concerning X(n) = max Xi and Kn =
∑

Xi

Here we assume Xi ∼ Mon(b, μ1) and first derive the joint distribution of

(X(n), Kn)|{(b, μ1)} = (X(n)|{(b, μ1)}, Kn|{(b, μ1)})

= ( max
1≤i≤n

Xi|{(b, μ1)},
n∑

i=0
Xi|{(b, μ1)}) . (3.147)

In [62] we find a derivation of the joint density for the case of n i.i.d. exponential
random variables. There, the following notations are used: E1, . . . , En i.i.d. with
Ei ∼ EXP (β), X =

∑
Ei, Y = max Ei. The authors call the joint distribution of

X and Y bivariate distribution with gamma and generalized exponential marginals
(BGGE distribution). This leads to the following proposition 3.20.

Proposition 3.20 (joint distribution of sum and maximum
of i.i.d. exponential random variables) For n ≥ 2, let fn be
the PDF of (X, Y ) ∼ BGGE(β, n). Then for k = 1, 2, . . . , n − 1 we
have

fn(x, y) = βne−βx

k∑
s=1

n(n − 1)
(s − 1)!(n − s)!

(x−sy)n−2(−1)s+1 , (x, y) ∈ Sk ,

where Sk is the kth sector defined in (2.20) [which are similar to those
in figure 3.5].

Incorporating the boundedness of the range of variability X of X|{(b, μ1)} ∼
Mon(b, μ1), and adapting proposition 3.20 to our notations leads to the desired
joint density of (X(n), Kn)|{(b, μ1)}.

Corollary 3.21 (joint distribution of of sample maximum and sample sum)
Let X1|{(b, μ1)}, X2|{(b, μ1)}, . . . , Xn|{(b, μ1)} be i.i.d. with Xi|{(b, μ1)} ∼ Mon(b, μ1),
b > 0, 0 < μ1 < b. Then for n ≥ 2 the joint density f(X(n),Kn)|{(b,μ1)}(t, s) of the
maximum X(n)|{(b, μ1)} := max1≤i≤n Xi|{(b, μ1)} and the sum Kn|{(b, μ1)} :=
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3.3. Sample Distributions

n∑
i=1

Xi|{(b, μ1)} is given by

f(X(n),Kn)|{(b,μ1)}(t, s) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
λ(b,μ1)

eλ(b,μ1)b−1

)n

eλ(b,μ1)s ∑k
m=1

n(n−1)
(m−1)!(n−m)! (s − mt)n−2(−1)m+1

for

1
1+k

s ≤ t ≤ 1
k
s,

0 ≤ t ≤ b,

0 ≤ s ≤ nb,

k = 1, . . . , n − 1,

0 else.

(3.148)

Figure 3.5 displays the regions 1
1+k

s ≤ t ≤ 1
k
s which define the value of k in

(3.148).
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Figure 3.5.: The different regions 1
1+k

s ≤ t ≤ 1
k
s defining k in the definition

(3.148) of the joint density function f(X(n),Kn)|{(b,μ1)}(t, s). Note the
different scaling of the axes.
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3. Monotonic Probability Distributions

The marginal densities, i.e., fX(n)|{(b,μ1)} and fKn|{(b,μ1)}, may be obtained by in-
tegration over the respective other variable – of course, we would get the already
derived expressions (3.134) for fX(n)|{(b,μ1)} and (3.127) for fKn|{(b,μ1)}, respec-
tively:

fX(n)|{(b,μ1)}(t) = n
λ(b, μ1)eλ(b,μ1)t

eλ(b,μ1)b − 1

(
eλ(b,μ1)t − 1
eλ(b,μ1)b − 1

)n

(3.149)

fKn|{(b,μ1)}(s) =
(

λ(b, μ1)
eλ(b,μ1)b − 1

)n

eλ(b,μ1)s 1
(n − 1)!

·

·
� s

b �∑
i=0

(−1)i

(
n

i

)
(s − ib)n−11[0,nb](s) (3.150)

In figures 3.6 and 3.7 we display the joint density f(X(n),Kn)|{(b,μ1)} together with
the marginal densities fKn|{(b,μ1)} and fX(n)|{(b,μ1)} for b = 2, n = 8 and μ1 = 9

10 ,
4
10 .
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Figure 3.6.: The joint density f(X(8),K8)|{(2, 9
10 )} displayed at the lower right in form

of a contour plot (darker regions indicate higher values of the den-
sity). The marginal densities are to the left (fK8|{(2, 9

10 )}) and on top

(fX(8)|{(2, 9
10 )}).
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Figure 3.7.: The joint density f(X(8),K8)|{(2, 2
10 )} displayed at the lower right in form

of a contour plot (darker regions indicate higher values of the den-
sity). The marginal densities are to the left (fK8|{(2, 2

10 )}) and on top

(fX(8)|{(2, 2
10 )}).
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3.3. Sample Distributions

Next we will derive the distribution of the ratio of X(n) to Kn, the so-called peak
to sum ratio. Defining the transformed random variable (U, V ) := (X(n)/Kn, Kn),
i.e., the mapping g(t, s) = ( t

s
, s), the joint density of (U, V ) is known to be

f(U,V )|{(b,μ1)}(u, v) = f(X(n),Kn)|{(b,μ1)}(v,
v

u
) |v|
u2 . (3.151)

That is, for 0 ≤ v ≤ b, 1
k+1 ≤ u ≤ 1

k
, k = 1, 2, . . . , n − 1 we get with cn(b, μ1) :=(

λ(b,μ1)
eλ(b,μ1)b−1

)n

f(U,V )|{(b,μ1)}(u, v) = (3.152)

= cn(b, μ1)eλ(b,μ1)v/u

(
k∑

m=1

n(n − 1)
(m − 1)!(n − m)!

(
v

u
− mv)n−2(−1)m+1

)
v

u2

(3.153)

= cn(b, μ1)eλ(b,μ1)v/u vn−1

un

(
k∑

m=1

n(n − 1)
(m − 1)!(n − m)!

(1 − mu)n−2(−1)m+1

)
(3.154)

Integrating with respect to v with the substitution z = −λ(b,μ1)v
u

yields the density
fU |{(b,μ1)}(u) for 1

k+1 ≤ u ≤ 1
k
, k = 1, 2, . . . , n − 1:

fU |{(b,μ1)}(u) =
b∫

0

f(U,V )|{(b,μ1)}(u, v) dv (3.155)

= cn(b, μ1)

(
k∑

m=1

n(n − 1)
(m − 1)!(n − m)!

(1 − mu)n−2(−1)m+1

)
1
un

b∫
0

vn−1eλ(b,μ1)v/u dv

(3.156)

= cn(b, μ1)

(
k∑

m=1

n(n − 1)
(m − 1)!(n − m)!

(1 − mu)n−2(−1)m+1

)
·

· 1
un

(
− u

λ(b, μ1)

)n
− λ(b,μ1)b

u∫
0

zn−1e−z dz (3.157)

= cn(b, μ1)

(
k∑

m=1

n(n − 1)
(m − 1)!(n − m)!

(1 − mu)n−2(−1)m+1

)
γ(n, −λ(b,μ1)b

u
)

(−λ(b, μ1))n

(3.158)
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3. Monotonic Probability Distributions

where γ(n, −λ(b,μ1)b
u

) is the lower incomplete gamma function. Replacing cn(b, μ1)
again and noting, that λ(b, μ1)b = λ(μ1

b
), finally yields 1

k+1 ≤ u ≤ 1
k
, k =

1, 2, . . . , n − 1:

fU |{(b,μ1)}(u) =
γ(n, −λ( μ1

b
)

u
)

(1 − eλ( μ1
b

))n

(
k∑

m=1

n(n − 1)
(m − 1)!(n − m)!

(1 − mu)n−2(−1)m+1

)
,

(3.159)
and fU |{(b,μ1)}(u) = 0 for u < 1

n
and u > 1, respectively. Figure 3.8 shows

fU |{(b,μ1)}(u) for b = 2, n = 8 and μ1 = 0.9, 0.7, 0.55, 0.4, 0.2.
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Figure 3.8.: Density fU |{(b,μ1)} of U = X(n)/Kn for b = 2, n = 8 and μ1 =
0.9, 0.7, 0.55, 0.4, 0.2.

Conclusion

In this chapter we gave an extensive characterisation of the monotonic probability
distribution Mon(a, b, μ1) and derived several of its properties. Some of them will
help us in the following chapters to derive estimation procedures for one of its
parameters. Further analysis with respect to the dependency of μ1, λ and b from
each other is presented in Appendix A.
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4. General Concepts of Inference

4.1. Metrology – The Science of Measurement

Statistical estimation deals with the determination of unknown, but fixed values
of deterministic variables involved in a random phenomenon. Therefore, the
methods applied in estimation may be understood as measurement procedures
and, consequently, should meet the same requirements as technical measurement
devices. The science of measurement is called metrology. Short introductions
to metrology were given for example by the Bureau International des Poids et
Mesures BIPM (International Bureau of Weights and Measures) [8] or by the
European Association of National Metrology Institutes EURAMET [26]. The
last one starts with a historical note:

“The death penalty faced those who forgot or neglected their duty to
calibrate the standard unit of length at each full moon. Such was the
peril courted by the royal site architects responsible for building the
temples and pyramids of the Pharaohs in ancient Egypt, 3000 years
BC. The first royal cubit was defined as the length of the forearm from
elbow to tip of the extended middle finger of the ruling Pharaoh, plus
the width of his hand. The original measurement was transferred to
and carved in black granite. The workers at the building sites were
given copies in granite or wood and it was the responsibility of the
architects to maintain them.” ([26], p. 8)

Even though the example stems from long ago, the main tasks in nowadays’
metrology remained almost unchanged (cf. [26], p. 9): defining standard units
(royal cubit) which are internationally accepted (by the pharaoh’s authority),
realising these standard units by scientific methods (measuring the length of
the pharaoh’s forearm and the width of his hand), and finally, establishing “of
traceability chains by determining and documenting the value and accuracy of a
measurement” (transferring to and carving in black granite and making copies in
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4. General Concepts of Inference

granite or wood). Today, the international standard unit of length is the metre
(settled by the Convention du Métre on 20 May 1875), whose unit of measurement
is realised by the use of lasers (since 1983 in fact by the length of the path traveled
by light in vacuum during the time interval of 1/299 792 458 of a second). The
traceability chain is realised by documented relationships between manufactures
of products of which one characteristic is length and some accredited laboratories
for optical length metrology.
One branch of metrology is industrial metrology, which “has to ensure the ad-
equate functioning of measurement instruments used in industry, in production
and testing processes, for ensuring quality of life for citizens and for academic re-
search” ([26], p. 10). The functioning of measurement instruments (or in general
any measurement device) is ensured by calibration. In [26], p. 17, we find four
main aims of calibration:

1. To establish and demonstrate traceability. [By providing a calibration cer-
tificate.]

2. To ensure readings from the instrument are consistent with other measure-
ments.

3. To determine the accuracy of the instrument readings.

4. To establish the reliability of the instrument i.e. that it can be trusted.

The above list of aims contains two terms, which have great importance for the
characterisation of measurement procedures: accuracy and reliability. Accuracy
means that the measurement result, which in metrology is always given by one
single value, is in a certain sense close to the unknown value of the quantity
to be measured (measurand). Reliability refers to repeated measurements and
means repeatability or consistency of measurements, i.e., a measurement proce-
dure is called reliable, if it yields when repeated similar results. Closely related
to accuracy and reliability are two other terms: precision and uncertainty. A
measurement procedure is called precise, if repeated measurements of the same
quantity under the same conditions yield results which are close to each other.
Uncertainty is widely understood as a quality criterion of a measurement result,
in the sense that it enables the comparison of different results (cf. [26], p. 21).
Uncertainty is a “non-negative parameter” (cf [12], 2.26), which together with
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4.1. Metrology – The Science of Measurement

the measurement result determines a set of values that should contain the true
but unknown one. In connection with accuracy and reliability, uncertainty may
be regarded as a combination of both: If the accuracy and/or reliability are low,
measurement uncertainty is large. Conversely, if both accuracy and reliability
are high, measurement uncertainty is small. Therefore, stating a measurement
result by a single value alone is useless, but it should always be given together
with its uncertainty. The Guide to the expression of uncertainty in measurement
(GUM) [9] states, that “In general, the result of a measurement (...) is complete
only when accompanied by a statement of the uncertainty of that estimate [of
the value of the measurand].” ([9], 3.1.2) while the GUM defines “uncertainty (of
measurement) [as a] parameter, associated with the result of a measurement, that
characterizes the dispersion of the values that could reasonably be attributed to
the measurand” ([9], 2.2.3). As the GUM may be considered as the de facto stan-
dard for expressing uncertainty in all fields of measurement we want to review
shortly its underlying concepts, definitions and recommended guidelines.

4.1.1. Review of the Guide to the expression of uncertainty in
measurement (GUM)

The GUM [9] was published for the first time 1995 by the member organisations
of the Joint Committee for Guides in Metrology (JCGM)1. Even though the
most recent edition of the GUM was published 2008, its subtitle ‘GUM 1995 with
minor corrections’ indicates that it is almost identical to the first edition. A good
overview of the GUM’s evolution and related documents like the supplements 1
and 2 [10, 11] gives [4]. With respect to the “fundamental concepts and principles”
([4], p. S162) it summarises ([4], p. S162-S163):

• Measurement model relating functionally one or more output
1JCGM member organisations are: International Bureau of Weights and Measures (BIPM), In-

ternational Electrotechnical Commission (IEC), International Federation of Clinical Chem-
istry and Laboratory Medicine (IFCC), International Laboratory Accreditation Cooperation
(ILAC), International Organization for Standardization (ISO), International Union of Pure
and Applied Chemistry (IUPAC), International Union of Pure and Applied Physics (IU-
PAP), International Organization of Legal Metrology (OIML).

75



4. General Concepts of Inference

quantities, about which information is required, to input quan-
tities, about which information is available.

• Modelling of measurement knowledge about a quantity in terms
of a probability distribution.

• Expectation (estimate) and standard deviation (standard uncer-
tainty) of a quantity characterized by a probability distribution.

• Use of new information to update an input probability density
function: Bayes’ theorem.

• Assignment of a probability density function to a quantity using
the Principle of Maximum (Information) Entropy.

• Determination of the distribution for an output quantity (or the
joint distribution for more than one output quantity) using the
propagation of distributions.

The measurement equation
An output quantity Y is a measurand which is subject to measurement (since the
GUM “treats the measurand as a scalar” ([9], 3.1.7), we adopt this for simplifica-
tion of notation). The “measurand Y is (...) determined from N other quantities
X1, X2, . . . , XN through a functional relationship f : Y = f(X1, X2, . . . , XN)”
([9], 4.1.1). The function f is often denoted as the measurement function (e.g.
in [41]). The input quantities themselves may be measurands and, therefore,
depend on further quantities, thus, the measurement function may be at least
very complicated or even cannot be stated explicitly ([9], 4.1.2). A result of the
measurement, i.e., an estimate y of the measurand Y , is obtained by substitution
of the input quantities X1, X, . . . , XN with their input estimates x1, x2, . . . , xN in
f : y = f(x1, x2, . . . , xN ) ([9], 4.1.4).

Example 4.1 This example stems from Annex H of the GUM and treats the
calibration of an end gauge ([9], H.1). The task is to determine the “length of a
nominally 50 mm end gauge [...] by comparing it with a known standard of the
same nominal length.” The set-up of the measurement function yields a linear
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approximation ([9], (H.3)):

l = f(lS, d, αS, θ, δα, δθ) = lS + d − lS (δα · θ + αS · δθ) (4.1)

where (compare [9], H.1.1 and H.1.2)

l is the measurand, that is, the length at 20 ◦C of the end
gauge being calibrated;

lS is the length of the standard at 20 ◦C as given in its
calibration certificate;

d is the difference in their lengths;
α, αS and δα are the coefficients of thermal expansion, respectively, of

the gauge being calibrated and the standard, and δα =
α − αS;

θ, θS and δθ are the deviations in temperature from the 20 ◦C ref-
erence temperature, respectively, of the gauge and the
standard, and δθ = θ − θS.

“The differences δθ and δα [...] are estimated to be zero; [...] It thus follows
[...] that the estimate of the value of the measurand l may be obtained from the
expression lS + d, where lS is the length of the standard at 20 ◦C as given in
the calibration certificate and d is estimated by d, the arithmetic mean of [...]
independent repeated observations.” ([9], H.1.2)

Law of propagation of uncertainty
The uncertainty of the result of the measurement then is determined by the
uncertainties of the input estimates. The GUM defines standard uncertainty
with the “uncertainty of the result of a measurement expressed as a standard
deviation”, noted as u(y). Since each input estimate xi carries some uncertainty,
expressed as a standard uncertainty u(xi), which contributes to the uncertainty
of the result of the measurement y, the standard uncertainty of y is calculated as
a combined standard uncertainty, denoted by uc(y), “equal to the positive square
root of a sum of terms, the terms being the variances or covariances of these other
quantities weighted according to how the measurement result varies with changes
in these quantities” ([9], 2.3.4). This is a verbal translation of “a first-order Taylor
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series approximation of Y = f(X1, X2, . . . , XN)” given by

uc(y) =

(
N∑

i=1

(
∂f

∂xi

)2

u2(xi) + 2
N−1∑
i=1

N∑
j=i+1

∂f

∂xi

∂f

∂xj

u(xi, xj)

)1/2

, (4.2)

where “u(xi, xj) is the estimated covariance associated with xi and xj” ([9], 5.1.2
and 5.2.2) and “the partial derivatives ∂f/∂xi = ∂f/∂Xi evaluated at Xi = xi”
([9], 5.1.3). If the input quantities are all uncorrelated, the second sum in (4.2)
equals 0. Through this linear approximation (4.2) the uncertainities u(xi) of the
input quantities Xi are propagated and determine the uncertainty of the result of
the measurement. The GUM terms this as the law of propagation of uncertainty
([9], 5.1.2).

Example 4.2 (Continuation of example 4.1) The involved quantities in the mea-
surement equation (4.1) are assumed to be uncorrelated ([9], H.1.2), thus, apply-
ing equation (4.2) to the measurement function (4.1) yields ([9], equation (H.4)):

u2
c(l) = c2

Su2(lS) + c2
du2(d) + c2

αS
u2(αS) + c2

θu2(θ) + c2
δαu2(δα) + c2

δθu2(δθ) (4.3)

with coefficients ci equal the partial derivatives of the measurement function (and
taking into account that δθ and δα are estimated to be zero) (compare [9], H.1.3):

cS =
∂f

∂lS
= 1 − (δα · θ + αS · δθ) = 1

cd =
∂f

∂d
= 1

cαS =
∂f

∂αS
= −lSδθ = 0

cθ =
∂f

∂θ
= −lSδα = 0

cδα = ∂f

∂δα
= −lSθ

cδθ = ∂f

∂δθ
= −lSαS

It thus follows the combined standard uncertainty

u2
c(l) = u2(lS) + u2(d) + l2

Sθ2u2(δα) + l2
Sα2

Su2(δθ) . (4.4)
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The expanded uncertainty U is the “quantity defining an interval about the result
of a measurement that may be expected to encompass a large fraction of the
distribution of values that could reasonably be attributed to the measurand”
([9], 2.3.1 and 2.3.5). This expanded uncertainty is in general a certain multiple
k of the combined standard uncertainty, i.e., U = kuc(y), where k is called
coverage factor. Together with “the best estimate of the value attributable to the
measurand Y is y, and that y − U to y + U is an interval (...) that encompasses
a large fraction p of the probability distribution characterized by the result and
its combined standard uncertainty, and p is the coverage probability or level of
confidence2 of the interval” ([9], 6.2.1 and 6.2.2).

Determining the appropriate coverage factor for some desired coverage probability
is a difficult task. Section 6 and Annex G of the GUM present the interpretation
of the expanded uncertainty, and give an answer to the question of how the
coverage factor k should be determined (we come to this point later). These
recommendations are closely related to the GUM ‘s concept and evaluation of
uncertainty.

Types of evaluation of uncertainty
The GUM indicates two types of evaluation of uncertainty. If uncertainties of
input quantities are calculated according to a “method of evaluation (...) by the
statistical analysis of series of observations”, this evaluation is called Type A eval-
uation, whereas a Type B evaluation of uncertainties is a “method of evaluation
(...) by means other than the statistical analysis of series of observations” ([9],
2.3.2 and 2.3.3). More specific is 4.1.6 of [9]:

Each input estimate xi and its associated standard uncertainty u(xi)
are obtained from a distribution of possible values of the input quan-
tity Xi. This probability distribution may be frequency based, that
is, based on a series of observations Xi,k of Xi, or it may be an a priori
distribution. Type A evaluations of standard uncertainty components
are founded on frequency distributions while Type B evaluations are

2Section 6.2.2 of [9] stresses that level of confidence must not be mistaken as confidence level,
and, consequently, the interval defined by y and U not as a confidence interval.
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founded on a priori distributions. It must be recognized that in both
cases the distributions are models that are used to represent the state
of our knowledge.

Section 4.3 of the GUM gives some description of Type B evaluations and in
which situations they are applied ([9], 4.3.1):

For an estimate xi of an input quantity Xi that has not been obtained
from repeated observations, the associated estimated variance u2(xi)
or the standard uncertainty u(xi) [i.e., the standard deviation] is eval-
uated by scientific judgement based on all of the available information
on the possible variability of Xi. The pool of information may include

• previous measurement data;

• experience with or general knowledge of the behaviour and prop-
erties of relevant materials and instruments;

• manufacturer‘s specifications;

• data provided in calibration and other certificates;

• uncertainties assigned to reference data taken from handbooks.

The subsequent paragraphs to section 4.3 of [9] discuss cases of available informa-
tion and the resulting evaluation of standard uncertainties. The stated cases and
examples describe the translation of the available information about the input
quantity Xi into some probability distribution of Xi. For example, in 4.3.5 we
find:

Consider the case where, based on the available information, one can
state that “there is a fifty-fifty chance that the value of the input
quantity Xi lies in the interval a− to a+” (in other words, the proba-
bility that Xi lies within this interval is 0,5 or 50 percent). If it can
be assumed that the distribution of possible values of Xi is approx-
imately normal, then the best estimate xi of Xi can be taken to be
the midpoint of the interval. Further, if the half-width of the interval
is denoted by a = (a+ − a−)/2, one can take u(xi) = 1, 48a, because
for a normal distribution with expectation μ and standard deviation
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σ the interval μ ± σ/1, 48 encompasses approximately 50 percent of
the distribution.

In addition to section 4 annex F of [9] provides a “practical guidance on evaluating
uncertainty components”.
Section F.1 treats Type A evaluations: In section F.1.1 with respect to the two
questions “To what extent are the repeated observations completely independent
repetitions of the measurement procedure?” (F.1.1.2) and “it must be asked
whether all of the influences that are assumed to be random really are random”
(F.1.1.3), and section F.1.2 discusses cases where the correlation of two input
quantities has to be taken into account.
Type B evaluations are treated in section F.2 which starts with F.2.1 “The need
for Type B evaluations”:

If a measurement laboratory had limitless time and resources, it could
conduct an exhaustive statistical investigation of every conceivable
cause of uncertainty, for example, by using many different makes and
kinds of instruments, different methods of measurement, different ap-
plications of the method, and different approximations in its theoret-
ical models of the measurement. The uncertainties associated with
all of these causes could then be evaluated by the statistical analy-
sis of series of observations and the uncertainty of each cause would
be characterized by a statistically evaluated standard deviation. In
other words, all of the uncertainty components would be obtained
from Type A evaluations. Since such an investigation is not an eco-
nomic practicality, many uncertainty components must be evaluated
by whatever other means is practical.

The subsequent subsections to F.2.1 discuss several cases where a Type B evalu-
ation of uncertainties becomes necessary.

Example 4.3 (Continuation of example 4.2) Representative for the different
components of the combined standard uncertainty u2

c(l) (4.4) of the length of the
end gauge, we illustrate the determination of the “uncertainty of the measured
difference in lengths, u(d)” ([9], H.1.3.2), where both Type A and Type B evalu-
ations are utilised.
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Several sources of uncertainty contribute to the uncertainty u(d): the uncertainty
of the arithmetic mean of the readings of difference of lengths u(d) and the un-
certainty of the length carried by the comparator (i.e., the test bed where the
standard end gauge and the to be calibrated end gauge are compared), which it-
self consists of two components, that are the uncertainty “due to random errors”
yielding the standard uncertainty u(d1), and the uncertainty “due to systematic
errors” yielding the standard uncertainty u(d2). Therefore,

u2(d) = u2(d) + u2(d1) + u2(d2).

The uncertainty component u(d) is determined by repeated measurements of the
difference d of lengths l and lS. Since a pooled experimental standard deviation
(see [9], 4.2.4) sp is available which is 13 nm = 13 × 10−9 m, the standard
uncertainty of the arithmetic mean of the readings of difference of lengths based
on 5 observations is

u(d) = sp√
5

≈ 5.8nm.

The calibration certificate of the comparator states, that the uncertainty “due to
random errors” is based on 6 replicate measurements and is reported to be ±0.01
μm at a level of confidence of 95 %, that is, with the t-factor t0.95(5) = 2.57 for
5 = 6-1 degrees of freedom (see [9], Annex G, Table G.2) we get (see [9], 4.3, in
particular 4.3.4)

u(d1) =
0.01μm

2.57
≈ 3.9nm.

The uncertainty “due to systematic errors” is also given by the comparator’s
calibration certificate as 0.02 μm at the “three sigma level”, which means that the
standard uncertainty of this component results to be

u(d2) = 0.02μm

3
≈ 6.7nm.

All three components together yield the uncertainty u(d):

u(d) =
√

u2(d) + u2(d1) + u2(d2) ≈
√

93nm2 ≈ 9.7nm.

We may categorise the evaluations of the three uncertainty components into Type
A and Type B the following way. The uncertainty component u(d) is determined

82



4.1. Metrology – The Science of Measurement

by repeated measurements and is, therefore, based on a Type A evaluation. The
components u(d1) and u(d2) which are contributed by the calibration certificate
(no matter whether they are originally based on repeated measurements) are con-
sidered to be based on Type B evaluations.

In fact, the differentiation of Type A and Type B evaluations is not necessary,
since the GUM treats them essentially in the same way (see [9], Annex E) with
respect to the calculation of the combined standard uncertainty uc(y). Almost
the only important impact appears, when the expanded uncertainty U = kuc(y)
and the coverage factor k in particular is calculated. The latter is connected to
the degrees of freedom νi for each component ui(y) = ciu(xi) and the effective
degrees of freedom νeff for uc(y). Their derivations are discussed in section G
and “a summary of the preferred method” is given in G.6.4 of [9].

Reporting uncertainty
When the combined standard uncertainty uc(y) is calculated the GUM gives some
concrete suggestions in section 7 how a measurement result should be reported
([9], 7.2.1):

a) give a full description of how the measurand Y is defined;

b) give the estimate y of the measurand Y and its combined stan-
dard uncertainty uc(y); the units of y and uc(y) should always
be given;

c) include the relative combined standard uncertainty uc(y)/y, y 
=
0, when appropriate;

d) give the information outlined in 7.2.7 or refer to a published
document that contains it.

Additionally, it is stated, that it may be useful, to include (ibid.)

– the estimated effective degrees of freedom νeff (see G.4);

– the Type A and Type B combined standard uncertainties ucA(y)
and ucB(y) and their estimated effective degrees of freedom νeffA

and νeffB (see G.4.1, Note 3).
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Similar, the GUM gives guidances in other cases, i.e., when the expanded uncer-
tainty U = kuc(y) should be the measure of uncertainty (7.2.3), or more than
one measurand is determined simultaneously (7.2.5).

4.1.2. Metrological Requirements for Statistical Estimation

Statistical estimation deals with the task to determine the unknown value of a
deterministic variable D involved in a random phenomenon. Similar as in the
case of technical measurements, the deterministic variable D cannot be observed
directly, but only through its impact on a random variable representing the con-
sidered random phenomenon. In statistics two methods of estimation are usually
distinguished: the point estimation and the set estimation. We will see, that
there are sometimes connections between these two methods.

Usually, the deterministic variable D represents a distribution parameter with
unknown value ϑ of the probability distribution PX|{ϑ} of the random variable
X|{ϑ}. Then, based on a random experiment, the value (x1, . . . , xn) of a ran-
dom sample (X1|{ϑ}, . . . , Xn|{ϑ}) is observed. Note, that the random sample in
estimation is equivalent to the measurement process for technical measurements.
But there is a second difference between statistical estimation and technical mea-
surement: For estimation the sample size n is in general larger than one, while
for measurement it is in general equal to one.

The point estimation method (point estimator) maps the observed value (x1, . . . , xn)
onto one value ϑ̂, the estimate of D. This mapping may be regarded as a measure-
ment procedure, i.e., a point estimator is a function W from the set of possible
values of the sample (the range of variability) into a set which (at least) contains
the true value ϑ of D. In which sense does a point estimator meet the measure-
ment requirements of metrology? Accuracy for a point estimator W is interpreted
as its so-called bias, i.e. the difference between the true value ϑ and the first mo-
ment E[W ] of the estimator. Maximum accuracy means that the bias is zero,
in statistics this property of a point estimator is called unbiasedness. To call a
point estimator reliable makes not much sense since it is almost in all situation
impossible that an estimate ϑ̂ equals the true value ϑ of D. Therefore, the term
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reliability is not used in the context of point estimators. If the reliability would
be interpreted as the probability, that the point estimation procedure yields the
true value of the parameter then one would get in general zero3. Even though
there are numerous methods to rate the quality of point estimators, this fact
disqualifies the concept of point estimators. Their use becomes only justified by
the fact that some set estimation methods are based on point estimators, again.

Analogous to point estimators, set estimation methods (set estimators) are based
on a random sample. A set estimator maps the observed value (x1, . . . , xn) of
the sample not onto one single value, but onto a set C({x1, . . . , xn}), i.e., a
set estimator is a function C from the range of variability of the sample into a
system of subsets of the set of values ϑ of D which cannot be excluded. Again, the
question is in which manner a set estimator meets the measurement requirements
of metrology.

Pretty much obvious is the interpretation of accuracy: The sizes of the resulting
sets obtained by a set estimator may be regarded as a measure of its accuracy.
Since the size might depend on the observed value of the random sample, i.e., the
sets might not have some constant size, some more detailed definition would be
necessary. The reliability of a set estimator should indicate how often we might
expect to get a correct result. A result is regarded as correct if the true value ϑ

of D is covered by the set estimate C({x1, . . . , xn}). The expectation of getting
a correct result when applying a set estimator is appropriately quantified by the
corresponding probability. Thus, the metrologistic terms accuracy and reliability
have meaningful correspondents in the field of set estimators. The analogue of
uncertainty would be the value of accuracy multiplied by 0.5. We will see, that
as long as the sample size is not increased, accuracy and reliability are connected
to each other in some reciprocal way, i.e., if the accuracy should be increased we
have to accept a decrease in reliability and vice versa.

In the following sections we present point and set estimation methods in a general
way as we may find them in many standard textbooks on statistical inference,

3A Situation may be constructed where the parameter space Θ consists of a finite number k

of discrete values ϑi, i = 1, . . . , k, and the variability spaces Xi of X |{ϑi} are depending
on the respective ϑi in a way, that (Xi)i=1,...,k is a disjoint family. Then, realisations may
match to exactly one value ϑi.
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e.g. [13] and [6]. A nice basic introduction is also provided by [75].

Examples will be given to illustrate the manageability and potential shortcom-
ings of the presented methods. The probability distributions used for illustration
are the exponential distributions EXP (a, ϑ) and EXP (ϑ) when a = 0, respec-
tively, the uniform distribution U(a, b) and the normal distribution N(μ, σ2). The
monotonic distribution Mon(a, b, μ1) will not be used for illustration since this
is exclusively discussed in the following chapter. The distributional parameter
for all considered probability distributions is denoted D. However, to prevent
misunderstandings the values of D are denoted as shown above differently.

4.2. Point Estimation

In [13] we find a very short and utmost general definition of point estimators:

Definition 4.4 (point estimator) A point estimator is any function W (X1, . . . , Xn)
of a sample; that is, any statistic4 is a point estimator.

Following the definition, it is outlined, that it “makes no mention of any cor-
respondence between the estimator and the parameter it is to estimate”([13],
p. 311). Assume D is the parameter to be estimated with parameter space
Θ, i.e., the set of possible values ϑ of D, the range of variability of the sample
X|{ϑ} = (X1|{ϑ}, . . . , Xn|{ϑ}) is denoted X n = {(x1, . . . , xn)|xi ∈ Xi}, and the
range of variability of W (X|{ϑ}) is denoted W = {W (x1, . . . , xn)|xi ∈ Xi}. We
note, that the equality W = Θ is not required.
As a function of random variables a point estimator itself is a random variable.
After the value x = (x1, . . . , xn), i.e., the realisation of the sample X|{ϑ}, is
available, the value W (x) is called (point) estimate.

4.2.1. Method of Moments

The simplest and most intuitional approach to derive point estimators of param-
eters of probability distributions is the so-called method of moments.

4A “statistic” is also just any function of a sample.
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Definition 4.5 (moment estimator) Let X|{ϑ} be a random variable with
values ϑ of the distribution parameter D and parameter space Θ ⊂ R

d. Let g

be a function of moments μt1 , μt2 , . . . , μts, 1 ≤ t1 < t2 < · · · < ts, of X|{ϑ}, so
that

g(μt1, μt2 , . . . , μts) = ϑ . (4.5)

Let Mn,j be the empirical moment of order j for an i.i.d. sample of X|{ϑ}, i.e.,

Mn,j :=
1
n

n∑
i=1

Xj
i . (4.6)

Then g(Mn,t1, Mn,t2 , . . . , Mn,ts) is called a moment estimator for D, and for real-
isations mn,j of Mn,j the value g(mn,t1, mn,t2 , . . . , mn,ts) is called the estimate of
the unknown value ϑ of D.

Setting s = 1, m1 = m and g = id yields g(μm) = μm and

g(Mn,m) = Mn,m = 1
n

n∑
i=1

Xm
i . (4.7)

This means, that the empirical moment Mn,m is a moment estimator of μm.
Especially X = Mn,1 is a moment estimator of μ1.
Since there may be another function g̃ of a different number and sort of moments
μm̃1 , μm̃2, . . . , μm̃t whith g̃(μm̃1 , μm̃2, . . . , μm̃t) = ϑ, we note that in general the
moment estimator for D is not unique. The question which of the competing
moment estimators should be choosen is subject of the next section, where quality
characteristics of estimators are presented.

Example 4.6 Let X|{ϑ} be an i.i.d. sample for X|{ϑ} ∼ EXP (ϑ). Since
E[X|{ϑ}] = 1

ϑ
= μ1, we have ϑ = g(μ1) = 1

μ1
. Thus, g(X) = 1

X
is a moment

estimator of ϑ. But since E[X2|{ϑ}] = 2
ϑ2 = μ2, and hence ϑ = g̃(μ2) =

√
2

μ2
, we

get with g̃(Mn,2) =
√

2
Mn,2

another moment estimator of ϑ.

Example 4.7 Let X|{(μ, σ2)} be an i.i.d. sample for X|{(μ, σ2)} ∼ N(μ, σ2)
and ϑ = (μ, σ2). Since E[X|{(μ, σ2)}] = μ = μ1 and E[X2|{(μ, σ2)}] = σ2 + μ2 =
μ2, we have (μ, σ2) = g(μ1, μ2) = (μ1, μ2 − μ2

1). Thus, g(X, Mn,2) = (X, Mn,2 −
X

2) is a moment estimator of (μ, σ2).
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Especially in cases of a restricted parameter space Θ, the moment estimate may
not be element of Θ, i.e., the moment estimator may yield a value which is
inconsistent with the parameter space. Furthermore, the estimate may even
contradict the observations.

Example 4.8 Let X ||{b} be an i.i.d. sample for X|{b} ∼ U(0, b) and ϑ = b.
Since E[X|{b}] = b

2 = μ1, we have b = g(μ1) = 2μ1. Thus, g(X) = 2X is a
moment estimator of b. Now, suppose that the values

(x1, x2, x3, x4, x5) = (4.3, 1.7, 2.6, 0.9, 1.1)

are the realisation of the i.i.d. sample X1, . . . , X5. Then 2x = 4.24 is the estimate
of b. But the maximum of the sample’s realisation is 4.3. Thus, the unknown
value b has to be at least 4.3, otherwise 4.3 could not have been observed.

4.2.2. Maximum Likelihood Principle

Probably the most often applied method to derive point estimators is the so-called
Maximum Likelihood Principle and the derived point estimators are consequently
called the Maximum Likelihood Estimators. We note, that for the following def-
inition we assume that the random variable X has a absolute continuous distri-
bution.

Definition 4.9 (maximum likelihood estimator) Let fX|{ϑ} be the density
function of the random variable X|{ϑ} = (X1|{ϑ}, . . . , Xn|{ϑ}), ϑ ∈ Θ ⊂ R

d.
For each realisation x = (x1, . . . , xn) of X|{ϑ} define the function

L(ϑ; x) := fX|{ϑ}(x) (4.8)

for ϑ ∈ Θ and given x ∈ X . Then L(ϑ; x) : Θ → R is called Likelihood Function
w.r.t. the realisation x. Each value ϑ∗ ∈ Θ where L(ϑ; x) attains its maximum
is called Maximum Likelihood Estimate (MLE) of ϑ w.r.t. x, i.e.,

ϑ∗ ∈ Θ is MLE w.r.t. x ⇐⇒ L(ϑ∗; x) = sup
ϑ∈Θ

L(ϑ; x) . (4.9)
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A function ϑ̂(X) is called Maximum Likelihood Estimator (also MLE) for D if
ϑ̂(x) is a maximum likelihood estimate of ϑ for all x ∈ X \ N , with

PX|{ϑ}({x|x ∈ N}) =
∫

N

fX|{ϑ}(x) dx = 0 for all ϑ ∈ Θ . (4.10)

The random variable X|{ϑ} = (X1|{ϑ}, . . . , Xn|{ϑ}) in the definition is not
assumed to be a sample for X|{ϑ}, but only to be a n-dimensional random
variable. In the case when X |{ϑ} is an i.i.d. sample for a random variable
X|{ϑ} with density function fX|{ϑ}, the likelihood function L(ϑ; x) simplifies to:

L(ϑ; x) =
n∏

i=1
fX|{ϑ}(xi) . (4.11)

Remarks: In contrast to the moment estimator the MLE only yields values
which are elements of Θ by construction. Finding the global maximum of L(ϑ; x)
is more or less a problem of differential calculus, i.e., finding the zeros of the
(partial) derivative(s) of L(ϑ; x) (solving the likelihood equations) and checking
whether they are really global maxima. Difficulties arise when no explicit solu-
tions may be given and numerical algorithms have to be utilised. Besides finding
maxima in the inner of Θ, one has also to check the existence of boundary max-
ima. The latter case often appears when the parameter space is restricted.

Since the logarithm function is monotone the log-likelihood function

l(ϑ; x) := log L(ϑ; x) (4.12)

is analysed instead of L(ϑ; x). Maxima of l(ϑ; x) are maxima of L(ϑ; x) and vice
versa, but the derivatives of l(ϑ; x) are often simpler.

Example 4.10 Let X|{ϑ} be an i.i.d. sample for X|{ϑ} ∼ EXP (ϑ) with ϑ ∈
Θ = (0, +∞). Then the likelihood function is

L(ϑ; x) =
n∏

i=1
fX|{ϑ}(xi) = ϑne

−ϑ
n∑

i=1
xi

1[0,+∞)n(x) (4.13)
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with log-likelihood function

l(ϑ; x) = n log ϑ − ϑ

n∑
i=1

xi . (4.14)

We first note, that PX|{ϑ}({x | xi ≤ 0, i = 1, . . . , n}) = 0 for all ϑ > 0 and hence
we do not have to take the case

∑
xi = 0 into consideration. Differentiating

l(ϑ; x) with respect to ϑ yields

∂

∂ϑ
l(ϑ; x) = n

ϑ
−

n∑
i=1

xi . (4.15)

Equation ∂
∂ϑ

l(ϑ; x) = 0 has obviously exactly one solution which is a global max-
imum and hence the maximum likelihood estimate of ϑ is

ϑ∗ = n
n∑

i=1
xi

= 1
x

, (4.16)

and the maximum likelihood estimator ϑ̂ : (0, +∞)n → Θ for D is

ϑ̂(X) =
1
X

1(0,+∞)n(X) . (4.17)

Now suppose, that ϑ ≥ c > 0, then Θ = [c, +∞). A realisation of the sample with
x > 1

c
implies ϑ̂(x) = 1

x
< c, i.e., the estimate of ϑ is not an element of Θ. For

ϑ > 1
x

we have ∂
∂ϑ

l(ϑ; x) < 0, i.e., l(ϑ; x) is decreasing, therefore l(ϑ; x) attains
its maximum at ϑ̂ = c. Consequently the maximum likelihood estimator for D is
given by:

ϑ̂(X) = 1
X

1(0,1/c](X) + c1(1/c,+∞)(X) . (4.18)

Example 4.11 Let X|{(μ, σ2)} be an i.i.d. sample for X|{(μ, σ2)} ∼ N(μ, σ2)
and ϑ = (μ, σ2) with Θ = R × (0, +∞). Then the likelihood function for any
x ∈ R

n is

L(μ, σ2; x) =
n∏

i=1
fX|{(μ,σ2)}(xi) = 1

(2πσ2)n/2 e
−(1/2σ2)(

n∑
i=1

(xi−μ)2)
(4.19)

and the log-likelihood function is

l(μ, σ2; x) = −n

2
log 2π − n

2
log σ2 − 1

2σ2

n∑
i=1

(xi − μ)2 . (4.20)
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The system of likelihood equations is

∂

∂μ
l(μ, σ2; x) = 1

σ2

n∑
i=1

(xi − μ)2 = 0

∂

∂σ2 l(μ, σ2; x) = −n

2
1
σ2 +

1
2σ4

n∑
i=1

(xi − μ)2 = 0
(4.21)

which has the unique solution

ϑ∗ =
(
μ∗, (σ2)∗) =

(
x,

1
n

n∑
i=1

(xi − x)2) (4.22)

as long as (σ2)∗ > 0 ⇔ x /∈ N := {x | x1 = x2 = . . . = xn}. But since

PX |{(μ,σ2)}({x | x ∈ N}) = 0 for all (μ, σ2) ∈ R × (0, +∞) , (4.23)

this case needs not to be considered. With this, the maximum likelihood estimator
ϑ̂ : Rn → Θ for D is given by:

ϑ̂(X) =
(
μ̂(X), σ̂2(X)

)
=
(
X,

1
n

n∑
i=1

(Xi − X)2) . (4.24)

Example 4.12 Let X|{b} be an i.i.d. sample for X|{b} ∼ U(0, b) with b ∈ Θ =
(0, +∞). Then the likelihood function is

L(b; x) =
n∏

i=1

1
b
1[0,b](xi)

=
1
bn
1[max{x1,...,xn},+∞)(b) . (4.25)

Obviously, L(b; x) attains its maximum in b∗ = max{x1, . . . , xn} and, therefore,
b̂(X) = max{X1, . . . , Xn} is the maximum likelihood estimator of b.

An important property of the MLEs is the so-called invariance property:

Proposition 4.13 (invariance of MLE) Let ϑ̂ be the maximum likelihood es-
timator of ϑ and h : Θ → R

k an abritrary function. Then the maximum likelihood
estimator of h(ϑ) is h(ϑ̂).

A proof may be found in many standard textbooks like [13, 2].
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Example 4.14 Let X|{ϑ} be an i.i.d. sample for X|{ϑ} ∼ EXP (ϑ). If not the
value ϑ of D but μ1 = E[X|{ϑ}] shall be estimated, then from example 4.10 and
with proposition 4.13 we readily conclude, that the maximum likelihood estimator
of μ1 is

μ̂1(X) = X . (4.26)

Example 4.15 Let X |{σ} be an i.i.d. sample for X|{σ} ∼ N(0, σ2) and σ ∈
Θ = (0, +∞). From example 4.11 we have that the maximum likelihood estima-
tor of σ2 is n−1 ∑n

i=1 X2
i . With proposition 4.13 it follows, that the maximum

likelihood estimator of σ =
√

σ2 is

σ̂(X) =

√√√√ 1
n

n∑
i=1

X2
i . (4.27)

Maximum Likelihood in Exponential Families
In section 3.2.2 we have shortly introduced the concept of an exponential family.
The density functions of distributions generating an exponential family are of
form (3.95):

fX|{ϑ}(x) = h(x)c(ϑ) exp
( k∑

j=1
wj(ϑ)tj(x)

)
(4.28)

with functions h, c, wi, ti defined in (3.96). Often the reparameterisation ηj =
wj(ϑ), j = 1, . . . , k, is performed5 and (4.28) written in the form

fX|{η}(x) = h(x) exp
( k∑

j=1
ηjtj(x) − A(η)

)
(4.29)

which is called natural parameterisation or canonical form. In fact, the set of
possible values η = (η1, . . . , ηk) need not arise from the reparameterisation, but
is defined by ([13], p.114)

H = {η = (η1, . . . , ηk) |
∫
R

h(x) exp
( k∑

j=1
ηjtj(x)

)
dx < ∞} (4.30)

5In some cases wj(ϑ) = ϑj for all j = 1, . . . , k with the dimension d of ϑ equals the dimension
k of η, i.e., k = d.
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which is called the natural parameter space. Additionally, the term

A(η) = ln
∫
R

h(x) exp
( k∑

j=1
ηjtj(x)

)
dx (4.31)

plays not only the role of a normalisation factor, but has also some interesting
connection to the moment-generating function M(t1(X),...,tk(X)) (see [6], p.59).

Example 4.16 Let X|{(μ, σ2)} ∼ N(μ, σ2). The density function of X|{(μ, σ2)}
may be written in the form

fX|{(μ,σ2)}(x) =
1√

2πσ2
exp

(
− μ2

2σ2

)
exp

(
− x2

2σ2 +
μx

σ2

)
. (4.32)

Defining

h(x) = 1 for all x ∈ R, (4.33)

c(μ, σ2) =
1√

2πσ2
exp

(
− μ2

2σ2

)
for μ ∈ R, σ > 0, (4.34)

w1(μ, σ2) = − 1
2σ2 for σ2 > 0, w2(μ, σ2) =

μ

σ2 for σ2 > 0, (4.35)

t1(x) = x2 and t2(x) = x , (4.36)

yields

fX|{(μ,σ2)}(x) = h(x)c(μ, σ2) exp
(
w1(μ, σ2)t1(x) + w2(μ, σ2)t2(x)

)
, (4.37)

implying that the density functions of the normal distribution form an exponential
family with k = 2. Identifying ηj with wj(μ, σ2), j = 1, 2, we easily get the natural
parameterisation form

fX|{(η1,η2)}(x) =
1√
π

exp
(

η1x
2 + η2x −

(
− η2

2
4η1

+
1
2

ln(−η1)
))

(4.38)

with η1 < 0 and η2 ∈ R.

Example 4.17 Let X|{(a, ϑ)} ∼ EXP (a, ϑ). The density function of X|{(a, ϑ)}
is

fX|{(a,ϑ)}(x) = ϑ exp
(
−ϑ(x − a)

)
1[a,+∞)(x) =

= 1[a,+∞)(x) exp
(
−ϑx − (−ϑa − ln ϑ)

)
. (4.39)
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Obviously, the density functions generate an exponential family in ϑ, but not in
a, since 1[a,+∞)(x) cannot be seperated into a function solely of x and a function
solely of a. With η = −ϑ < 0, we get the natural parameterisation form

f
(a)
X|{η}(x) = 1[a,+∞)(x) exp

(
ηx − (ηa − ln(−η)

)
, (4.40)

i.e., h(x) = 1[a,+∞)(x), t(x) = x and A(η) = ηa − ln(−η).

Let X|{η}, η = (η1, . . . , ηk), be an i.i.d. sample for X|{η}, then the joint den-
sity function in the natural parameterisation form and the likelihood function,
respectively, is

n∏
i=1

fX|{η}(xi) =
( n∏

i=1
h(xi)

)
exp

( k∑
j=1

ηjTnj(x) − nA(η)
)

(4.41)

with

Tnj(x) =
n∑

i=1
tj(xi) . (4.42)

First, we note, that the joint densities (4.41) form again an exponential family.
Calculating the log-likelihood function l(η; x) and partially differentiating it with
respect to ηs yields

∂l

∂ηs

(η; x) = Tns(x) − n
∂A(η)

∂ηs

, s = 1, . . . , k. (4.43)

Then, from the theory of exponential families it is known, that

E[ts(X)|{η}] =
∂A(η)

∂ηs
, s = 1, . . . , k, (4.44)

and, thus, ∂l
∂ηs

(η; x) = 0 yields the system of equations

1
n

Tns(x) = E[ts(X)|{η}] , s = 1, . . . , k. (4.45)

Then, under some often met conditions (e.g. see [6], pp.121), the maximum
likelihood estimator η̂ exists, is unique and is a solution of (4.45).

Example 4.18 (Continuation of example 4.16) Let n > 1 and X|{(η1, η2)} be
an i.i.d. sample for X|{(η1, η2)} ∼ N(− η2

2η1
, − 1

2η1
). The system of equations
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(4.45) yields

1
n

n∑
i=1

x2
i = η2

2
4η2

1
− 1

2η1
, (4.46)

1
n

n∑
i=1

xi = x = − η2

2η1
, (4.47)

which has as unique solution the maximum likelihood estimate η∗ and, since
PX|{(η1,η2)}({x | x1 = x2 = · · · = xn}) = 0, i.e., for S2 = 1

n

∑n
i=1(Xi − X)2

PS2|{(η1,η2)}({0}) = 0 (4.48)

holds, the MLE η̂(X):

η̂(X) =
(

− 1
2S2 ,

X

S2

)
. (4.49)

Not surprisingly, η̂ would also be obtained by applying the one-to-one-mapping
between the original parameter values (μ, σ2) of the normal distribution and η

onto the MLE (μ̂, σ̂2), see example 4.11.

Example 4.19 (Continuation of example 4.17) Let n > 1 and X|{a, ϑ} be an
i.i.d. sample for X|{ϑ} ∼ EXP (a, ϑ) with known value a. Without loss of
generality we may set a = 0, then the parameter value η is one-dimensional, and
(4.45) yields only one single equation:

1
n

n∑
i=1

xi = −1
η

. (4.50)

Since PX||{η}({x|x > 0}) = 1 this yields the MLE of η to be

η̂(X|{η}) = − 1
X

. (4.51)

Again, η̂ is also obtained from the mapping ϑ �→ η = −ϑ.

4.2.3. Bayes Estimator

The previous two methods require that the probability distribution PX of the
i.i.d. sample X = (X1, . . . , Xn) is a member of a family of probability distribu-
tions parameterised by the values ϑ ∈ Θ of the distribution parameter D, i.e.,
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PX = PX|{ϑ}. Because the true value ϑ of D is unknown but fixed it is subject to
estimation. The Bayesian approach differs in this point by assuming D itself as a
random variable. To stress this crucial point, we will change our notation slightly
and denote the random parameter with the capital letter Y (also in bold, because
Y may be multi-dimensional), whose values y are the values of the distribution
parameter of X.
The probability distribution of Y is called a-priori-distribution or just prior dis-
tribution, and we will denote it by πY (y)6. Then, given the realisation x of X,
the a-posteriori-distribution or simply posterior distribution is

πY (y|x) =
fX|{Y =y}(x)πY (y)∫

fX|{Y =y}(x)πY (y) dy
. (4.52)

We note, that the denominator in (4.52) is the marginal distribution of X, often
denoted by m(x)

m(x) =
∫

fX|{Y =y}(x)πY (y) dy (4.53)

Point estimates Ŷ for Y may now be derived from the posterior distribution, e.g.
the mean of πY (y|x), or if Y = Y is one-dimensional also the mode and median
may be considered as point estimates.

Example 4.20 Let Xi|{Y = y} ∼ EXP (y) and the prior distribution of Y is
the gamma distribution, i.e.,

πY (y) = βα

Γ(α)
yα−1e−yβ (4.54)

for y ≥ 0 and with known parameters α, β > 0. Then, for all x ∈ [0, +∞)n the
posterior distribution results to be

πY (y|x) = (nx + β)α+n

Γ(α + n)
y(α+n)−1e−y(nx+β) . (4.55)

We see, that πY (y|x) is again a gamma distribution with parameters α + n and
nx + β. Assume, we have α = 1, β = 0.5, n = 10 and x = 0.3. Figure 4.1
displays both πY (y) (dashed line) and πY (y|x) (solid line). Now, point estimates

6In a more general way, the prior distribution πY |{η}(y) is also parameterised by a so-called
hyperparameter η. We will only introduce the Bayesian method in the case where η is
known, thus, we may omit it in the notation.
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Figure 4.1.: Prior distribution πY (y) (dashed line) and resulting posterior distri-
bution πY (y|x) (solid line) for α = 1, β = 0.5, n = 10 and x = 0.3.

Ŷ for Y may be the mean of πY (y|x), which is

E[Y |x] = α + n

nx + β
, (4.56)

or the mode M of πY (y|x), which is

M = α + n − 1
nx + β

. (4.57)

4.3. Evaluating Point Estimators

The methods in the previous section describe ways of deriving point estimators.
Sometimes, with different methods the same estimator of the value ϑ of a pa-
rameter D is obtained, but many times this is not the case. In the latter, the
question arises which of the competing point estimators is more favourable. To
answer this we need some methods of evaluation – the basic ones we want to
present here following again [13].

4.3.1. Mean Squared Error MSE, Bias

Definition 4.21 (mean squared error) Let W |{ϑ} = W (X|{ϑ}) be a point
estimator of the value ϑ of a parameter D. Then the mean squared error MSE
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as a function of ϑ ∈ Θ is defined by

MSE[W |{ϑ}] = E[(W |{ϑ} − ϑ)2] . (4.58)

Equation (4.58) may be easily rewritten into

MSE[W |{ϑ}] = Var[W |{ϑ}] + (E[W |{ϑ}] − ϑ)2 , (4.59)

where the second term is called the bias of the estimator W |{ϑ}:

Definition 4.22 (bias) Let W |{ϑ} be a point estimator of the value ϑ of a pa-
rameter D. Then the bias of W |{ϑ} is defined by

bias[W |{ϑ}] = E[W |{ϑ}] − ϑ . (4.60)

If the bias of an estimator W |{ϑ} equals 0 for all ϑ, i.e., E[W |{ϑ}] = ϑ for all
ϑ ∈ Θ, then the estimator is called unbiased.

If an estimator W |{ϑ} is unbiased, we easily see, that its MSE equals the variance,
i.e., MSE[W |{ϑ}] = Var[W |{ϑ}].
Although, unbiased estimators are most commonly preferred, their MSE may be
larger than that of a biased estimator:

Example 4.23 Let X|{(μ, σ2)} be an i.i.d. sample for X|{(μ, σ2)} ∼ N(μ, σ2).
The method of moments and the ML method yield both the same estimator σ̂2(X) =
1
n

∑n
i=1(Xi − X)2 of σ2 (see examples 4.7 and 4.11). Since

E[σ̂2(X)|{(μ, σ2)}] = n − 1
n

σ2 , (4.61)

σ̂2(X) is a biased estimator of σ2. From this, it is equally easy to derive the
well-known unbiased estimator S2(X) = n

n−1 σ̂2(X) of σ2. Then, the MSEs of
the two estimators are given as follows:

MSE[σ̂2(X)|{(μ, σ2)}] = Var[σ̂2(X)|{(μ, σ2)}] + bias[σ̂2(X)|{(μ, σ2)}]

= 2n − 1
n2 σ4 , (4.62)

MSE[S2(X)|{(μ, σ2)}] = Var[S2(X)|{(μ, σ2)}] =
2

n − 1
σ4 , (4.63)

implying MSE[σ̂2(X)|{(μ, σ2)}] < MSE[S2(X)|{(μ, σ2)}].
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For some further discussion of the usefullness of the MSE as a criterion for choos-
ing between competing estimators see [13], p. 332.

Example 4.24 Let X|{b} be an i.i.d sample for X|{b} ∼ U(0, b). Example
4.8 yields the moment estimator 2X of b and example 4.12 the ML estimator
b̂MLE(X) = max{X1, . . . , Xn}. Since

E[2X|{b}] = b , (4.64)

E[̂bMLE(X)|{b}] = n

n + 1
b , (4.65)

we see that the moment estimator is unbiased, while the ML estimator is biased.
Multiplying the latter with n+1

n
yields an unbiased estimator n+1

n
b̂MLE(X) of b.

For the MSEs we have

MSE[2X|{b}] = Var[2X|{b}] = b2

3n
, (4.66)

MSE[n + 1
n

b̂MLE(X)|{b}] = Var[n + 1
n

b̂MLE(X)|{b}] = b2

n(n + 2)
(4.67)

MSE[̂bMLE(X)|{b}] = 2b2

(n + 1)(n + 2)
. (4.68)

For n ≥ 2 the MSE of 2X is always at least as large as that of b̂MLE(X), which
itself is always larger than that of n+1

n
b̂MLE(X). Thus, basing our choice on the

MSE we would select n+1
n

max{X1|{b}, . . . , Xn|{b}} as an estimator of b.

Example 4.25 Let X|{ϑ} be an i.i.d. sample for X|{ϑ} ∼ EXP (ϑ). From
example 4.10 we have the MLE ϑ̂(X) = 1

X
of ϑ, which is also a moment estima-

tor. It is then known, that nX =
∑n

i=1 Xi is distributed acccording to the gamma
distribution GAM(ϑ, n) with density function given by

f n∑
i=1

Xi|{ϑ}
(t) = ϑntn−1e−ϑt

Γ(n)
1[0,+∞)(t) , (4.69)

and thus X|{(n, ϑ)} ∼ GAM(nϑ, n). With this, we obtain for n > 1 the expected
value of 1

X
as

E
[

1
X

|{(n, ϑ)}
]

=
n

n − 1
ϑ (4.70)
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which shows that 1
X

is a biased estimator of ϑ. Multiplying it with n−1
n

yields the
unbiased estimator n−1

n
1
X

of ϑ. For the variance we get for n > 2

Var
[

n − 1
n

1
X

|{(n, ϑ)}
]

=

=
(

n − 1
n

)2

Var
[

1
X

|{(n, ϑ)}
]

=
(

n − 1
n

)2
n2

(n − 1)2(n − 2)
ϑ2 =

1
n − 2

ϑ2 .

(4.71)

Comparing the MSE of 1
X

with that of n−1
n

1
X

shows that we should favour n−1
n

1
X

as an estimator of ϑ.

4.3.2. Uniformly Minimum Variance Unbiased Estimator
UMVUE

In traditional statistics, almost only unbiased estimators are further analysed.
This fact arise from the interpretation of unbiasedness: If we could draw infinitely
often a sample under the same conditions, i.e., the samples themselves are i.i.d.
too, the mean of the resulting point estimates would converge to the true, but
unknown value ϑ of the distribution parameter D. From this perception, choosing
the variance as selection criterion among competing unbiased estimators seems
to be reasonable, because an unbiased estimator with small variance would yield
more often estimates which are close to the unknown value of the parameter than
an unbiased estimator with larger variance.

Definition 4.26 (UMVUE) Let W1|{ϑ} and W2|{ϑ} be two unbiased estima-
tors of a function γ(ϑ) of the values ϑ ∈ Θ of a distribution parameter D. Then
W1|{ϑ} is called uniformly better than W2|{ϑ} if

Var[W1|{ϑ}] ≤ Var[W2|{ϑ}] for all ϑ ∈ Θ . (4.72)

If inequality (4.72) holds for any other unbiased estimator W2|{ϑ} of γ(ϑ), than
W1|{ϑ} is called uniformly minimum variance unbiased estimator (UMVUE) of
γ(ϑ).
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Example 4.27 In example 4.24 we have already seen that the variance of the
unbiased estimator 2X of b is larger than that of the likewise unbiased estimator
n+1

n
max{X1, . . . , Xn}. Hence, n+1

n
max{X1, . . . , Xn} is uniformly better than 2X.

The well-known Cramér-Roa inequality establishes a lower bound of the variance
of unbiased estimators (see [13], pp. 335).

Theorem 4.28 (Cramér-Roa inequality) Let X|{ϑ} = (X1|{ϑ}, . . . , Xn|{ϑ})
be a sample with joint density function fX|{ϑ}(x), and let W |{ϑ} = W (X|{ϑ})
be an estimator satisfying

d
dϑ

E[W |{ϑ}] =
∫

X n

∂

∂ϑ

(
W (x)fX|{ϑ}(x)

)
dx and Var[W |{ϑ}] < +∞ .

(4.73)
Then

Var[W |{ϑ}] ≥
d

dϑ
E[W |{ϑ}]

E
[(

∂
∂ϑ

log fX|{ϑ}(X)
)2|{ϑ}

] . (4.74)

If X|{ϑ} is an i.i.d. sample for X|{ϑ} with density fX|{ϑ}(x), then the inequality
(4.74) simplifies to

Var[W |{ϑ}] ≥
d

dϑ
E[W |{ϑ}]

nE
[(

∂
∂ϑ

log fX|{ϑ}(X)
)2|{ϑ}

] . (4.75)

The denominator in (4.74) and (4.75), respectively, is called Fisher information
I(ϑ):

I(ϑ) := E
[( ∂

∂ϑ
log fX|{ϑ}(X)

)2|{ϑ}
]

(4.76)

Furthermore it is known, that if the density function fX|{ϑ}(x) satisfies

d
dϑ

E
[ ∂

∂ϑ
log fX|{ϑ}(X)|{ϑ}

]
=
∫

∂

∂ϑ

[
∂

∂ϑ
log fX|{ϑ}(x)

]
fX|{ϑ}(x) dx (4.77)

then the Fisher information meets the following relation:

E
[( ∂

∂ϑ
log fX |{ϑ}(X)

)2|{ϑ}
]

= −E
[ ∂2

∂ϑ2 log fX|{ϑ}(X)|{ϑ}
]

. (4.78)

The condition is especially met for exponential families7.
The following proposition may represent a constructive method to find an UMVUE.

7See [13], p. 338.
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Proposition 4.29 (Cramér-Rao lower bound) Let X|{ϑ} be an i.i.d. sam-
ple for X|{ϑ} with density fX|{ϑ}(x), where fX|{ϑ}(x) satisfies condition (4.73).
Let L(ϑ; x) =

∏n
i=1 fX|{ϑ}(xi) denote the likelihood function of x = (x1, . . . , xn).

If W |{ϑ} is any unbiased estimator of γ(ϑ), then W |{ϑ} attains the Cramér-Rao
Lower Bound if and only if

a(ϑ)
[
W (x) − γ(ϑ)

]
=

∂

∂ϑ
log L(ϑ; x) (4.79)

for some function a(ϑ).

4.3.2.1. Sufficient, minimal sufficient and complete statistics

In the search for uniformly minimum variance unbiased estimators, sufficiency
und completeness of a statistic T (X|{ϑ}), i.e., any function of a sample X|{ϑ},
play some important role. That is, if we are able to find a sufficient and complete
statistic T (X|{ϑ}), the following propositions show a way, to find a uniformly
minimum variance unbiased estimator. We confine ourself by only presenting
the definition and some basic propositions. We illustrate the statements by the
uniform distribution U(0, b), b > 0. As usual let X n be the range of variability of
the sample X|{ϑ} and T be the codomain of T (X|{ϑ}).

Definition 4.30 (sufficient statistic) Let T : X n → T be a statistic, then
T (X|{ϑ}) is called a sufficient statistic for ϑ if the conditional distribution of
X|{ϑ} for given value of T (X|{ϑ}) does not depend on ϑ.

Proposition 4.31 (sufficient statistic) Let T : X n → T be a statistic, fX|{ϑ}(x)
be the density function of X|{ϑ} and gT (X|{ϑ})(t) the density function of T (X|{ϑ}).
Then T (X|{ϑ}) is a sufficient statistic for ϑ if and only if

fX|{ϑ}(x)
gT (X|{ϑ})(T (x))

= c(x) for every x ∈ X n , (4.80)

i.e., is only a function of x but not of ϑ.

Proposition 4.32 (sufficient statistic, factorisation) Let fX|{ϑ} be the den-
sity function of X|{ϑ} and T : X n → T be a statistic. Then T (X|{ϑ}) is a
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sufficient statistic for ϑ if and only if there exist functions qϑ(t) and h(x) such
that

fX|{ϑ}(x) = qϑ(T (x))h(x) (4.81)

for all x ∈ X and all ϑ ∈ Θ.

Example 4.33 Let X|{b} be an i.i.d. sample for X|{b} ∼ U(0, b) and T (X|{b}) =
max1≤i≤n Xi|{b}. With

qb(t) =
1

ϑn
1[0,b](t) , h(x) = 1[0,+∞)n(x) (4.82)

we may factorise fX |{b}(x) according to proposition 4.32 into

fX|{b}(x) = qb(T (x))h(x) = 1
bn
1[0,b]( max

1≤i≤n
xi)1[0,+∞)n(x) . (4.83)

This shows the sufficiency of T (X|{b}).

Definition 4.34 (minimal sufficient statistic) Let T (X|{ϑ}) be a sufficient
statistic for ϑ. Then T (X|{ϑ}) is called a minimal sufficient statistic if T (X|{ϑ})
is a function of any other sufficient statistic U(X |{ϑ}) for ϑ.

Proposition 4.35 (minimal sufficient statistic) Let fX |{ϑ} be the density func-
tion of X|{ϑ} and T (X|{ϑ}) be a statistic. Then T (X|{ϑ}) is a minimal suffi-
cient statistic for ϑ if

fX|{ϑ}(x)
fX|{ϑ}(y)

= c(x, y) ⇔ T (x) = T (y) for all x, y ∈ X n . (4.84)

Example 4.36 In continuation of example 4.33 we now show, that T (X|{b}) =
max1≤i≤n Xi|{b} is also a minimal sufficient statistic for b. For x, y ∈ X n the
ratio in proposition 4.35 is

fX|{b}(x)
fX|{b}(y)

=
1

bn1[0,b](max1≤i≤n xi)1[0,+∞)n(x)
1

bn1[0,b](max1≤i≤n yi)1[0,+∞)n(y)
. (4.85)

If max1≤i≤n xi = max1≤i≤n yi the equality of nominator and denominator is ob-
vious, thus, the ratio equals 1, that is, it is constant. Conversely, if the ratio is
not a function of b, then 1[0,b](max1≤i≤n xi) = 1[0,b](max1≤i≤n yi) needs to hold.
Since, 1[0,b](z) = 1[z,+∞)(b), the equality 1[max1≤i≤n xi,+∞)(b) = 1[max1≤i≤n yi,+∞)(b)
only holds, if max1≤i≤n xi = max1≤i≤n yi. Together, it follows that T (X|{b}) =
max1≤i≤n Xi|{b} is minimal sufficient.
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The Rao-Blackwell theorem states how to find an uniformly better unbiased es-
timator when an unbiased estimator and a sufficient statistic are already known:

Proposition 4.37 (Rao-Blackwell) Let T (X|{ϑ}) be a sufficient statistic for
ϑ, V (X|{ϑ}) be an unbiased estimator of η = η(ϑ) ∈ R. Then E[V |T ] is an
unbiased estimator of η and is uniformly better than V .

Definition 4.38 (complete statistic) Let T (X|{ϑ}) be a statistic. Then T (X|{ϑ})
is called a complete statistic for ϑ if for any function r and all ϑ ∈ Θ

E[r(T (X|{ϑ}))] = 0 ⇒ Pr(T (X|{ϑ}))({0}) = 1 . (4.86)

Example 4.39 In continuation of example 4.36 we will show, that T (X|{b}) =
max1≤i≤n Xi|{b} is also a complete statistic for b. For this, let r be a func-
tion with E[r(T (X|{b}))] = 0 for all b > 0. Since the density of T (X|{b}) =
max1≤i≤n Xi|{b} is n

bn tn−11[0,b](t) we have

E[r(T (X|{b}))] =
n

bn

∫ b

0
r(t)tn−1 dt = 0 for all b > 0 . (4.87)

Defining R(b) =
∫ b

0 r(t)tn−1 dt and differentiating R(b) w.r.t. b we get almost
everywhere

d
db

R(b) = r(b)bn−1 . (4.88)

Since R(b) = 0 for all b > 0, we conclude r(b)bn−1 = 0 almost everywhere.
Therefore, r(t) = 0 almost everywhere, that is, Pr(T (X |{b}))({0}) = 1 for all b > 0.
And this shows the completeness of T (X|{b}) = max1≤i≤n Xi|{b} for b.

Finally, the Lehmann-Scheffé theorem states how an UMVUE may be derived
from a sufficient and complete statistic:

Proposition 4.40 (Lehmann-Scheffé) Let T (X|{ϑ}) be a sufficient and com-
plete statistic for ϑ, V (X|{ϑ}) = r(T (X|{ϑ})) be an unbiased estimator of
η = η(ϑ) ∈ R. Then V (X|{ϑ}) is a uniformly minimum variance unbiased
estimators (UMVUE) of η.
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Example 4.41 Continuation of example 4.39. T (X|{b}) = max1≤i≤n Xi|{b} is
a sufficient and complete statistic for b. In example 4.24 it is shown, that

E[ max
1≤i≤n

Xi|{b}] = n

n + 1
b (4.89)

Therefore,
V (X|{b}) = r(T (X|{b})) =

n + 1
n

max
1≤i≤n

Xi (4.90)

is an unbiased estimator of b and from proposition 4.40 it follows, that it is the
UMVUE.

4.4. Set Estimation

A very general definition for set estimators may be given similar to that of point
estimators 4.48:

Definition 4.42 (set estimator, set estimate) A set estimator of the value
ϑ ∈ R

q of a distribution parameter D is a function C(X|{ϑ}) of a sample X|{ϑ}
with C(X|{ϑ}) ∈ B, where B is the Borel σ-algebra over R

q. The random set
C(X|{ϑ}) is called set estimator of ϑ. If x is observed, the set C(x) is called set
estimate of ϑ.

Note, that no constraints are made to the set estimators for example with respect
to their geometric design. Actually, set estimators are often defined as rectangular
sets and, in the case of ϑ ∈ R, as intervals, respectively. For the latter we find a
definition in [13], p. 417:

Definition 4.43 (interval estimator, interval estimate) An interval estimate
of ϑ ∈ R is any pair of functions, L(x) and U(x), of a sample that satisfy
L(x) ≤ U(x) for all x ∈ X n. If x is observed, than the interval

C(x) = {ϑ | L(x) ≤ ϑ ≤ U(x)} = [L(x), U(x)] (4.91)

8We follow the definition of interval estimators given by [13]
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is called interval estimate of ϑ. The random interval

C(X|{ϑ}) = [L(X|{ϑ}), U(X|{ϑ})] (4.92)

is called interval estimator of ϑ.

The terms coverage probability, confidence coefficient, confidence level or reliabil-
ity are used as quality criterions for set estimators. The coverage probability is
defined in [13], p. 418, as follows:

Definition 4.44 (coverage probability) For a set estimator C(X|{ϑ}) of ϑ,
the coverage probability of C(X|{ϑ}) is defined by

PX|{ϑ}(ϑ ∈ C(X|{ϑ})) , (4.93)

that is the probability that the random set estimator C(X|{ϑ}) covers the true
value ϑ of the distribution parameter D.

We note, that the coverage probability is a function of ϑ, i.e., it varies with ϑ.

Definition 4.45 (confidence level) For a set estimator C(X|{ϑ}) of ϑ, the
infimum of the coverage probability over all ϑ ∈ Θ defines the confidence level β:

β = inf
ϑ∈Θ

PX|{ϑ}(ϑ ∈ C(X|{ϑ})) (4.94)

A set estimator with a specified confidence level β is then called confidence set
estimator or in the one-dimensional case confidence interval estimator.

Example 4.46 Let X|{b} be an i.i.d. sample for X|{b} ∼ U(0, b). The MLE
of b is b̂(X) = max1≤i≤n Xi|{b}. It is reasonable, that a confidence interval
estimator C(X|{b}) of b contains the point estimator b̂(X) and, since the true
value b is at least as large as b̂(X), it should mark the left bound of C(X|{b}),
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e.g. the interval
[
b̂(X), ab̂(X)

]
with a > 1 some constant represents a confidence

interval estimator. The coverage probability then is calculated to be

PX|{b} (b ∈ C(X|{b})) = PX|{b}
(

b ∈
[
b̂(X), ab̂(X)

])
= PX|{b}

(
b̂(X) ≤ b ≤ ab̂(X)

)
= PX|{b}

(
1
a

b ≤ b̂(X) ≤ b

)
= 1 − PX|{b}

(
b̂(X) ≤ 1

a
b

)
= 1 −

( 1
a
b

b

)n

= 1 −
(

1
a

)n

(4.95)

Remarkably is that PX|{b}(b ∈ C (X|{b})) does not depend on b, but is constant
for any fixed sample size n, i.e., the coverage probability already equals the confi-
dence level. Given a certain value β ∈ (0, 1) as confidence level, it is then possible
to solve (4.95) for a:

aβ =
(

n
√

1 − β
)−1

(4.96)

4.4.1. Approximative Confidence Interval Estimator

If the sample size n is sufficiently large, the central limit theorem provides a way to
derive an approximative confidence interval estimator. The following proposition
states in a very general way the asymptotic of the distribution of the empirical
moments Mn,j as defined in 4.5.

Proposition 4.47 (asymptotic of empirical moments) Let X be an i.i.d.
sample for X with μj = E[Xj], j = 1, 2, . . ., and t1, t2, . . . , ts ∈ N. Let

M n = (Mn,t1 , Mn,t2, . . . , Mn,ts)� and μ = (μt1 , μt2 , . . . , μts)� . (4.97)

Then
√

n(Mn − μ) converges in distribution to a random variable with the s-
dimensional normal distribution N(0, Ξ) with covariance matrix Ξ, for which
holds

Ξ =
(

μti+tj
− μti

μtj

)
1≤i,j≤s

= nCov[Mn] . (4.98)
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Applying the delta method gives the asymptotic distribution of moment estima-
tors. We give this method for the case of estimating an one-dimensional distri-
bution parameter:

Proposition 4.48 (asymptotic of moment estimator) Let M n and μ as de-
fined in (4.97), let g(Mn) be a moment estimator as defined in 4.5 of the value
ϑ = g(μ) of a distribution parameter D with g : Rs → R differentiable in μ. Then
√

n(g(Mn) − g(μ)) converges in distribution to a random variable with normal
distribution N(0, gradg(μ)Ξ(gradg(μ))�), where gradg is the gradient of g.

Now, for a large sample size n, the distribution of
√

n(g(Mn) − g(μ)) is approxi-
mately the normal distribution N(0, gradg(μ)Ξ(gradg(μ))�). Transformation to
the standard normal distribution and utilising the empirical moments as moment
estimators of all involved moments μi, finally leads to a construction of an ap-
proximative confidence interval estimator. We illustrate this with two examples:

Example 4.49 Let s = 1 and t = t1 = 1, then
√

n(Mn,1 − μ1) converges in
distribution to a random variable Y with Y ∼ N(0, μ2 − μ2

1). Since Mn,1 =
X and μ2 − μ2

1 = σ2, this is just a variation of the central limit theoreme as
it may be found in many introductiory books on statistics. We are interested
in an approximative confidence interval estimator of μ1. For n large we have
approximately √

n(X − μ1)
σ

∼ N(0, 1) . (4.99)

With z(p) the p-quantile of the standard normal distribution we have

z(α1) ≤
√

n(X − μ1)
σ

≤ z(1 − α2) , (4.100)

where the coverage probability is approximated by 1 − (α1 + α2) = β. Solving the
inequality for μ1 yields the approximative confidence interval estimator of μ1

Cα1,α2(X) =
{

μ1

∣∣∣∣X − z(1 − α2)
σ√
n

≤ μ1 ≤ X − z(α1)
σ√
n

}
. (4.101)

If σ2 is not known, it is common usage to substitute σ by

S =

√√√√ 1
n − 1

n∑
i=1

(Xi − X)2 . (4.102)
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In the case that the sample elements are all normal distributed, it is commonly
known that the ratio √

n(X − μ1)
S

(4.103)

has Student’s t-distribution with n − 1 degrees of freedom. Then the p-quantiles
tn−1(p) of the t-distribution have to be used instead of the normal quantiles z(p).
The resulting confidence interval estimator then is not an approximation, but is
exact with confidence level 1 − (α1 + α2). Applying this also in the approximative
case, an approximative confidence interval estimator then is

Cα1,α2(X) =
{

μ1

∣∣∣∣X − tn−1(1 − α2)
S√
n

≤ μ1 ≤ X − tn−1(α1)
S√
n

}
. (4.104)

Since both the standard normal and the t-distribution are symmetric with respect
to 0, choosing α1 = α2 = 1−β

2 yields shortest (approximative) confidence interval
estimates.

Example 4.50 Let s = 1 and t = t1 = 2, then
√

n(Mn,2 − μ2) converges in
distribution to a random variable Y with Y ∼ N(0, μ4 − μ2

2). Now, let ϑ = μ2,
i.e., g = id, then for n large we have approximately

√
n(Mn,2 − μ2)√

μ4 − μ2
2

∼ N(0, 1) . (4.105)

With z(p) the p-quantile of the standard normal distribution we first have

z(α1) ≤
√

n(Mn,2 − μ2)√
μ4 − μ2

2
≤ z(1 − α2) , (4.106)

which has a probability approximately 1 − (α1 + α2) = β, or equivalent

Mn,2 − z(1 − α2)
√

μ4 − μ2
2√

n
≤ μ2 ≤ Mn,2 − z(α1)

√
μ4 − μ2

2√
n

. (4.107)

Now, substituting μ4 and μ2 (of course, only on the left and right side of the
inequality) by Mn,4 and Mn,2 yields

Cα1,α2(X) =

=

⎧⎨⎩μ2

∣∣∣∣∣∣Mn,2 − z(1 − α2)

√
Mn,4 − M2

n,2
√

n
≤ μ2 ≤ Mn,2 − z(α1)

√
Mn,4 − M2

n,2
√

n

⎫⎬⎭ ,

(4.108)
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which is an approximative confidence interval estimator of μ2. Symmetry and,
thus, minimal length of the interval with respect to the moment estimator Mn,2

may be achieved by choosing α1 = α2 = 1−β
2 .

Very analogue arguments are used in the case where a maximum likelihood esti-
mator ϑ̂(X) is utilised to estimate the value ϑ of D. Then under some regularity
conditions ([13], p. 516) we know, that

√
nI(ϑ)(ϑ̂(X) − ϑ) converges for n → ∞

to a random variable Y which is standard normal distributed. I(ϑ) is the Fisher
information defined by (4.76). That is, we can procede as in the case of the
moment estimators. For n large,

√
nI(ϑ)(ϑ̂(X) − ϑ) is approximately standard

normal distributed, then the probability for

z(α1) ≤
√

nI(ϑ)(ϑ̂(X) − ϑ) ≤ z(1 − α2) (4.109)

is approximately 1 − (α1 + α2) = β. Solving the inequality for ϑ and substituting
ϑ in the Fisher information I(ϑ) by ϑ̂(X) yields a confidence interval estimator
of ϑ

C(X|{ϑ}) =

⎡⎣ϑ̂(X) − z(1 − α2)√
nI(ϑ̂(X))

, ϑ̂(X) − z(α1)√
nI(ϑ̂(X))

⎤⎦ (4.110)

with an approximate confidence level 1− (α1 +α2) = β. Choosing α1 = α2 = 1−β
2

results into confidence interval estimates with minimal lengths.

Example 4.51 Let X|{ϑ} be an i.i.d. sample for X|{ϑ} ∼ EXP (ϑ). From
example 4.10 we know the MLE of ϑ to be ϑ̂(X) = 1

X
. The Fisher information

then is

I(ϑ) =
n

ϑ2 (4.111)

and, thus, the confidence interval estimator of ϑ with approximate confidence level
β is given by:

C(X|{ϑ}) =
[

1
X

− z((1 + β)/2)
nX

,
1
X

+
z((1 + β)/2)

nX

]
(4.112)

110



4.4. Set Estimation

4.4.2. Pivotal Variables

Example 4.46 already illustrates, that for some probability distributions it might
be not too difficult to construct confidence set estimators, if we are able to find
a random variable with a distribution independent of ϑ. In the example the
random variable independent of ϑ = b is b̂(X)

b
. These variables are called pivotal

variables:

Definition 4.52 (pivotal variable) Let Q be a function of the range of vari-
ability X n of a sample X|{ϑ} and the parameter space Θ into a set Q. Then the
random variable Q(X|{ϑ}, ϑ) is called pivotal variable or pivot if

PX|{ϑ} (Q(X |{ϑ}, ϑ) ∈ B) = P(B) for each B ⊆ Q , (4.113)

that is, the probability of B does not depend on ϑ.

Given a certain confidence level β, then the task is to find a set B with P(B) = β,
from which the confidence set estimator C(X|{ϑ}) of ϑ with confidence level β

easily arises through

C(X|{ϑ}) = {ϑ|Q(X|{ϑ}, ϑ) ∈ B} . (4.114)

If the pivot Q(X|{ϑ}, ϑ) is real-valued and has a continuous distribution, say
FQ, a reasonable set B would be an interval. That is, we have to determine two
quantiles c(�) and c(u) of FQ, with c(�) < c(u) for which FQ(c(u)) − FQ(c(�)) = β

holds. Defining the quantile function q(�) for � ∈ (0, 1) we get a confidence
interval estimator of ϑ with confidence level β for each t ∈ (0, 1):

Cβ(X|{ϑ}) = {ϑ | q ((1 − t)(1 − β)) ≤ Q(X|{ϑ}, ϑ) ≤ q (1 − t(1 − β))} (4.115)

The question, in which cases it is possible to find a pivotal variable is answered for
example in [13] where it is shown, that it is always possible to determine pivots
for location-scale families of distributions. On page 427 of [13] we find table 4.1
with the different cases of the corresponding pivotal quantities.

The prime example for the location-scale case is the normal distribution N(μ, σ2),
where μ is called the location parameter and σ is called the scale parameter. The
most interesting case is, when both μ and σ =

√
σ2 should be estimated:
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Form of pdf Type of pdf Pivotal quantity

f(x − μ) Location X − μ

1
σ
f(x

σ
) Scale X

σ

1
σ
f(x−μ

σ
) Location-scale X−μ

σ

Table 4.1.: Location-scale pivots

Example 4.53 Let X|{(μ, σ2)} be an i.i.d. sample for X|{(μ, σ2)} ∼ N(μ, σ2)
with μ and σ2 unknown. Each of the following pivotal variables alone lead already
to confidence set estimators of (μ, σ):

• The random variable

V =
∑n

i=1(Xi − X)2

σ2 =
(n − 1)S2

σ2 (4.116)

has chi-square distribution with n − 1 degrees of freedom, V ∼ χ2
n−1. Then

a confidence set estimator CV,β(X) of (μ, σ2) with confidence level 1−(α1 +
α2) = β is derived as follows:

CV,β(X) =
{

(μ, σ2)
∣∣∣∣ (n − 1)S2

χ2
n−1(1 − α2)

≤ σ2 ≤ (n − 1)S2

χ2
n−1(α1)

}
(4.117)

where χ2
n−1(p) is the p-quantile of the χ2

n−1 distribution. We note, that this
confidence set estimator CV,β(X) actually does not yield any information
about μ, but only delivers a confidence interval of σ2. Taking the square
root on both sides gives a confidence set estimator C̃V,β(X) of (μ, σ):

C̃V,β(X) =

{
(μ, σ)

∣∣∣∣∣
√

(n − 1)S2

χ2
n−1(1 − α2)

≤ σ ≤
√

(n − 1)S2

χ2
n−1(α1)

}
(4.118)

• The random variable
Z =

X − μ

σ/n
(4.119)

has standard normal distribution, Z ∼ N(0, 1). A confidence set estimator
CZ,β(X) of (μ, σ2) with confidence level 1 − (α1 + α2) = β then is

CZ,β(X) =
{

(μ, σ2)
∣∣∣∣X − z(1 − α2)

σ√
n

≤ μ ≤ X − z(α1)
σ√
n

}
(4.120)
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σ

μ

√
(n−1)S2

χ2
n−1(1−α2)

S

√
(n−1)S2

χ2
n−1(α1)

√
(n−1)S2

χ2
n−1(1−α2)

S

√
(n−1)S2

χ2
n−1(α1)

Figure 4.2.: Confidence set estimator C̃V,β(X) of (μ, σ) based on the pivotal vari-
able V = (n−1)S2

σ2 .

where z(p) is the p-quantile of the N(0, 1)-distribution. Here we note, that
CZ,β(X) does yield some information about both parameters.

0

σ

μ
X

Figure 4.3.: Confidence set estimator CZ,β(X) of (μ, σ) based on the pivotal vari-
able Z = X−μ

σ/n
.

• The random variable

T = X − μ

S/
√

n
(4.121)

has Student’s t-distribution with n − 1 degrees of freedom, T ∼ tn−1. This
yields as a confidence set estimator CT,β(X) of (μ, σ) with confidence level
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1 − (α1 + α2) = β

CT,β(X) =
{

(μ, σ2)
∣∣∣∣X − tn−1(1 − α2)

S√
n

≤ μ ≤ X − tn−1(α1)
S√
n

}
(4.122)

where tn−1(p) is the p-quantile of the tn−1 distribution. Now, CT,β(X) does
not give any information about σ, but only gives a confidence interval esti-
mator of μ.

σ

μ
X−tn−1(1−α2) S√

n X X−tn−1(α1) S√
n

0

Figure 4.4.: Confidence set estimator CT,β(X) of (μ, σ) based on the pivotal vari-
able T = X−μ

S/
√

n
.

Intersection of CZ,β1(X) and C̃V,β2(X) yields a confidence set estimator C(Z,V ),β(X)
with trapeziodal shape. Since X and S2 are independent for normal i.i.d. sam-
ples, we get a confidence level β of C(Z,V ),β(X) with β = β1 · β2.
Intersection of CT,β1(X) and C̃V,β2(X) yields a confidence set estimator C(T,V ),β(X)
with rectangular shape. Now, using Bonferroni’s rule we get for the confidence
level β of C(T,V ),β(X) only a lower bound β ≥ 1 − (1 − β1)(1 − β2).

The exponential distribution yields another prominent example.

Example 4.54 Let X|{ϑ} be an i.i.d. sample for X|{ϑ} ∼ EXP (ϑ). Then with
the sufficient statistic T (X|{ϑ}) =

∑n
i=1 Xi we define the statistic

Q(X|{ϑ}, ϑ) = 2T (X|{ϑ})ϑ . (4.123)
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Q(X|{ϑ}, ϑ) has chi-square distribution with 2n degrees of freedom, Q(X|{ϑ}, ϑ) ∼
χ2

2n, and, thus, is a pivotal variable. Now, given α1 and α2 with 1− (α1 +α2) = β

and χ2
2n(p) the p-quantile of the chi-square distribution as in example 4.53 we

have
P
(
χ2

2n(α1) ≤ Q(X|{ϑ}, ϑ) ≤ χ2
2n(1 − α2)

)
= β . (4.124)

Solving the inequality in Q for ϑ yields a confidence interval estimator of ϑ with
confidence level 1 − (α1 + α2) = β:

CT,β(X |{ϑ}) =
{

ϑ

∣∣∣∣ χ2
2n(α1)

2T (X|{ϑ})
≤ ϑ ≤ χ2

2n(1 − α2)
2T (X|{ϑ})

}
(4.125)

In both examples 4.53 and 4.54 the resulting confidence set estimators with confi-
dence level β are not unique, since the involved quantiles, or better, the quantiles’
orders α1 and α2 are almost arbitrary, as long as 1 − (α1 + α2) = β holds. Since
the volume of a confidence set estimate may be understood as the accuracy of the
estimation, α1 and α2 should be choosen in such way, that the accuracy becomes
maximal, i.e., the volume minimal. For confidence interval estimates that means
that we are seeking minimal lengths. If the distribution of the pivotal variable
has a symmetric density with respect to 0, the solution α1 = α2 = 1−β

2 follows
immediately. We also note, that in this case the symmetry leads to equation
q(�) = −q(1 − �) for the quantiles. Therefore, in example 4.53 we get confidence
interval estimators yielding estimates with minimal lengths as follows:

CZ,β(X) =
{

(μ, σ)
∣∣∣∣X − z(1 + β

2
) σ√

n
< μ < X + z(1 + β

2
) σ√

n

}
, (4.126)

CT,β(X) =
{

(μ, σ)
∣∣∣∣X − tn−1(1 + β

2
) S√

n
< μ < X + tn−1(

1 + β

2
) S√

n

}
.

(4.127)

Since the chi-square distribution is not symmetric, the task is to find optimal α1

and α2 for CV,β in example 4.53 and for CT,β in example 4.54:

• For minimising the length of the confidence interval estimator CV,β in ex-
ample 4.53, we have to minimise

1
χ2

n−1(α1)
− 1

χ2
n−1(1 − α2)

. (4.128)
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E.g. for n = 21 and β = 0.9 we would get minimal length for α1 = 0.085874
and α2 = 0.014126.

• For minimising the length of the confidence interval estimator CT,β in ex-
ample 4.54, we have to minimise

χ2
2n(1 − α2) − χ2

2n(α1) . (4.129)

E.g. for n = 10 and β = 0.9 we would get minimal length for α1 = 0.028110
and α2 = 0.071890.

4.4.3. Inverting Acceptance Regions

The following method to construct confidence set estimators was originally devel-
oped J. Neyman [57]. It is based on so-called acceptance regions A, i.e., subsets
of the variability space X n. For every possible value ϑ of the distribution pa-
rameter D an acceptance region AX |{ϑ}(ϑ) is constructed, which has at least a
probability of β, i.e., PX|{ϑ}

(
X|{ϑ} ∈ AX |{ϑ}(ϑ)

)
≥ β. In fact, these acceptance

regions may also be called predictions. The following theorem states the relation
between acceptance regions and confidence set estimates.

Theorem 4.55 (duality of acceptance regions and set estimates) For ev-
ery ϑ ∈ Θ, let AX|{ϑ}(ϑ) be an acceptance region with probability of at least β.
For every realisation x of X|{ϑ} define the set C(x) by

C(x) = {ϑ ∈ Θ | x ∈ AX|{ϑ}(ϑ)} . (4.130)

Then C(X|{ϑ}) is a confidence set estimator of ϑ with confidence level β.

Since β ≤ PX|{ϑ}(X|{ϑ} ∈ AX|{ϑ}(ϑ)) = PX|{ϑ}(ϑ ∈ C(X|{ϑ})) the proof is
already achieved.

Although, the idea appears to be quite simple, the major problems arise in the
construction of the acceptance regions. We present two ways of construction:
based on highest probability regions and based on the likelihood ratio test statis-
tic.
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4.4.3.1. Highest Probability Region

As we have discussed subsequent to examples 4.53 and 4.54, the volume of a
confidence set estimate may be interpreted as its accuracy. In this sense, we
might get the idea to construct acceptance regions with lowest volume. For
discrete distributions that would be achieved for each ϑ ∈ Θ by selecting those
elements x of the range of variability X n of X|{ϑ} with highest probability till
some given probability is reached. For continuous distributions we would select
those elements x ∈ X n with highest value of the density function fX|{ϑ}. Thus,
in the continuous case we define the acceptance regions by the largest r so that

AX|{ϑ}(ϑ) = {x | fX|{ϑ}(x) ≥ r} (4.131)

with∫
AX|{ϑ}(ϑ)

fX|{ϑ}(x) dx ≥ β . (4.132)

Therefore, those regions are named highest probability regions (HPR).
Acceptance regions constructed for the original random sample vector X|{ϑ} ∈
R

n are n-dimensional as well. It is comprehensible, that is not very manageable
in many cases. That is, one may wish to construct acceptance regions for a real-
valued (one-dimensional) function T |{ϑ} = T (X|{ϑ}) of X|{ϑ}, i.e., T : X n →
T ⊆ R. Then equations (4.131) and (4.132) become

AT |{ϑ}(ϑ) = {t | fT |{ϑ}(t) ≥ r} (4.133)

with∫
AT |{ϑ}(ϑ)

fT |{ϑ}(t) dt ≥ β . (4.134)

Obviously, this is often much more easier to treat, but we have to note that the
resulting acceptance regions may not be equivalent to the original ones.

Remark: In general, the inequalities (4.132) and (4.134) cannot be refined to
equalities. For a discrete distribution this is quite obviuous: by the selection
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criterion (4.131), the probability of the acceptance region is regularly larger than
the demanded β. But even for continuous distributions it may happen, that
the density function is constant for a whole set of values x which has non-zero
probability. If those values have to be included in the acceptance region, i.e., the
whole set is a subset of the acceptance region, the demanded probability may be
exceeded. The next example illustrates this case.

Example 4.56 Let X|{b} be an i.i.d. sample for X|{b} ∼ U(0, b) with b > 0.
The joint density of X|{b} is

fX|{b}(x) = 1
bn
1[0,b]n(x) . (4.135)

That is, for all x ∈ X n = [0, b]n the value of the density function is constant
with 1

bn . Thus, the selection criterion in equation (4.131) yields for the largest
r the value 1

bn and for the acceptance region the whole range of variability, i.e.,
AX|{b}(b) = X n = [0, b]n for each b.

This defect may be avoided by requiring some minimality property of the ac-
ceptance regions. Thus, we add to equations (4.131) and (4.132) an additional
requirement:

AX|{ϑ}(ϑ) = {x | fX|{ϑ}(x) ≥ r} (4.136)

with∫
AX|{ϑ}(ϑ)

fX|{ϑ}(x) dx ≥ β (4.137)

and

AX|{ϑ}(ϑ) minimal size (4.138)

If the density function fT |{ϑ} of a real-valued random variable T |{ϑ} is unimodal,
we find in [13] (p. 441), that the resulting acceptance region is in fact an interval,
which has minimal length:

Proposition 4.57 (unimodal PDF, minimal interval) Let f be an unimodal
density function. If the interval [�, u] satisfies
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(i)
∫ u

�
f(x) dx = β ,

(ii) f(�) = f(u) > 0, and

(iii) � ≤ x∗ ≤ u, where x∗ is a mode of f(x),

then [�, u] is the shortest among all intervals that satisfy (i).

Example 4.58 Let X|{ϑ} = (X1|{ϑ}, X2|{ϑ}) be an i.i.d. sample for X|{ϑ} ∼
EXP (ϑ) with ϑ ∈ Θ = (0, +∞). The joint density function of X|{ϑ} is

fX|{ϑ}(x1, x2) = fX1|{ϑ}(x1)fX2|{ϑ}(x2)

= ϑ2e−ϑ(x1+x2)1[0,+∞)2(x1, x2) . (4.139)

Firstly, the value of fX|{ϑ} only depends on the sum x1 + x2, i.e., given two
pairs (x1, x2), (y1, y2) ∈ [0, +∞)2 with x1 + x2 = y1 + y2, then fX|{ϑ}(x1, x2) =
fX|{ϑ}(y1, y2). Secondly, the smaller x1+x2 the larger fX|{ϑ}(x1, x2), with absolute
maximum in (x1, x2) = (0, 0). Thus, the acceptance regions AX|{ϑ}(ϑ) are filled
with pairs (x1, x2) with x1 + x2 = c starting with c = 0, i.e., (x1, x2) = (0, 0), till
some c∗ = c∗(ϑ) for which holds

PX|{ϑ}(X|{ϑ} ∈ AX |{ϑ}(ϑ)) =

=
∫ c∗

0

∫ c∗−t2

0
ϑ2e−ϑ(t1+t2) dt1 dt2 = 1 − e−c∗ϑ(1 + c∗ϑ) = β . (4.140)

Summarised, the acceptance region for ϑ for some β ∈ (0, 1) may be represented
as follows

AX|{ϑ}(ϑ) =

=
{

(x1, x2)
∣∣ x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ c∗ with 1 − e−c∗ϑ(1 + c∗ϑ) = β

}
.

(4.141)

We note, that the determination of c∗ = c∗(ϑ) need not be done for every value
ϑ, since we may easily derive the equation c∗(ϑ) = c∗(1)

ϑ
.

Figure 4.5 illustrates the acceptance regions AX|{ϑ}(ϑ) for ϑ = 1, 2, 3, 4 and β =
0.9. Each has the form of an isosceles triangle with an area of

|AX|{ϑ}(ϑ)| = 1
2

(c∗(1))2

ϑ2 . (4.142)
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0 1 2 3 4
0

1
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Figure 4.5.: Acceptance regions AX |{ϑ}(ϑ) for ϑ = 1, 2, 3, 4 and β = 0.9. The
largest one corresponds to ϑ = 1, the second largest to ϑ = 2 etc.

We realise, that for increasing ϑ the acceptance regions become smaller and are
included in all acceptance regions for smaller ϑ. That is, given one pair (x1, x2)
which meets x1 + x2 = c∗(ϑ) for some ϑ, it is included in AX|{ϑ′}(ϑ′) for all
ϑ′ ≤ ϑ, but not in AX|{ϑ′′}(ϑ′′) for all ϑ′′ > ϑ.
By inversion of the acceptance regions we get confidence interval estimates as
follows

C(x1, x2) =

=
{

ϑ
∣∣ 0 ≤ ϑ ≤ ϑ0 with 1 − e−(x1+x2)ϑ0(1 + (x1 + x2)ϑ0) = β

}
. (4.143)

In fact, these confidence interval estimates yield only information about the upper
bound for the values ϑ of D since the lower bound 0 is the natural lower bound
for ϑ. This is not due to the sample size n = 2. For general n, the selection cri-
terion tells us to fill the acceptance regions with all values x = (x1, x2, . . . , xn) ∈
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[0, +∞)n with x1 + x2 + · · · + xn ≤ c∗(ϑ), where c∗(ϑ) is determined by∫
x1+x2+···+xn≤c∗

ϑne−ϑ(x1+x2+···+xn) dx = β (4.144)

⇔ 1 − e−c∗ϑ

(
1 + (c∗ϑ)1

1!
+ (c∗ϑ)2

2!
+ · · · + (c∗ϑ)n−1

(n − 1)!

)
= β . (4.145)

That is, the filling of the acceptance regions always starts at x = (0, 0, . . . , 0) ∈
R

n. We realise, that the integral in (4.144) represents the distribution function
Gϑ,n of the gamma distribution GAM(ϑ, n) in c∗. It is nearby to use this fact to
solve for c∗(ϑ) numerically. Finally, the confidence interval estimates are always
as follows

C(x) =
{

ϑ
∣∣∣ 0 ≤ ϑ ≤ ϑ0 with

1 − e−ϑ0
∑

xi

(
1 + (ϑ0

∑
xi)1

1!
+ (ϑ0

∑
xi)2

2!
+ · · · + (ϑ0

∑
xi)n−1

(n − 1)!

)
= β

}
.

(4.146)

And again, the connection to the gamma distribution function, that is, Gϑ0,n(
∑

xi) =
β, should be used to solve numerically for ϑ0.

According to equation (4.139) the joint density fX|{ϑ}(x1, x2) is constant for all
(x1, x2) with x1 + x2 = t. Therefore, one might have the idea to move from the
random variable X|{ϑ} = (X1|{ϑ}, X2|{ϑ}) to the random variable X1|{ϑ} +
X2|{ϑ}. We will discuss this in the next example.

Example 4.59 Equation (4.139) in the previous example 4.58 suggests that it
might be better to construct the acceptance regions for ϑ not based on the joint
density fX|{ϑ} of X|{ϑ} but based on the density fT |{ϑ} of the sum T |{ϑ} =
(X1 + X2)|{ϑ} = X1|{ϑ} + X2|{ϑ}. The random variable T |{ϑ} is distributed
according to the gamma distribution GAM(ϑ, 2) with density function given by

fT |{ϑ}(t) = ϑ2te−ϑt1[0,+∞)(t) . (4.147)

It is already known from example 4.54, that by the transformation

Q(T |{ϑ}, ϑ) = 2T |{ϑ}ϑ (4.148)
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we get a pivotal random variable Q which has chi-square distribution with 4 de-
grees of freedom. Therefore, we have to find only one acceptance interval AQ

for Q for some β ∈ (0, 1) which then yields by retransformation the acceptance
interval AT |{ϑ}(ϑ) for each value ϑ of D:

AQ =
{

q | χ2
4(α1) ≤ q ≤ χ2

4(1 − α2)
}

with 1 − (α1 + α2) = β (4.149)

⇐⇒

AT |{ϑ}(ϑ) =
{

t

∣∣∣∣ χ2
4(α1)
2ϑ

≤ t ≤ χ2
4(1 − α2)

2ϑ

}
(4.150)

By inversion we get confidence interval estimates of ϑ with confidence level β =
1 − (α1 + α2):

C(t) =
{

ϑ

∣∣∣∣ χ2
4(1 − α2)

2t
≤ ϑ ≤ χ2

4(α1)
2t

}
(4.151)

This is the same result as in example 4.54 for n = 2. We note, that minimising
the lengths of the acceptance intervals, i.e., minimising

χ2
4(1 − α2) − χ2

4(α1) , (4.152)

yields also confidence interval estimates of minimal lengths. For example for
β = 0.9 we get α1 = 0.003322 and α2 = 0.096678.

By this change from X|{ϑ} to T |{ϑ} we expect also a change of the area of the
acceptance regions in example 4.59 compared to those in example 4.58. The ac-
ceptance intervals AT |{ϑ}(ϑ) from example 4.59 may be transformed to acceptance
regions ÃX|{ϑ}(ϑ) similar to those in example 4.58:

AT |{ϑ}(ϑ) =
{

t

∣∣∣∣ χ2
4(α1)
2ϑ

≤ t ≤ χ2
4(1 − α2)

2ϑ

}
(4.153)

⇒ ÃX|{ϑ}(ϑ) =
{

(x1, x2)
∣∣∣∣ x1 ≥ 0, x2 ≥ 0,

χ2
4(α1)
2ϑ

≤ x1 + x2 ≤ χ2
4(1 − α2)

2ϑ

}
(4.154)

The acceptance regions ÃX|{ϑ}(ϑ) now have the form of an isosceles trapezium
with an area of

|ÃX|{ϑ}(ϑ)| = 1
8ϑ2

(
(χ2

4(1 − α2))2 − (χ2
4(α1))2) (4.155)
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Figure 4.6.: Both areas |AX|{ϑ}(ϑ)| (dashed line) and |ÃX|{ϑ}(ϑ)| (solid line) for
ϑ ∈ [1, 4]. Only by reducing the plotting range to ϑ ∈ [1, 1.5] the
difference becomes visible.

Figure 4.6 displays both areas |AX|{ϑ}(ϑ)| and |ÃX|{ϑ}(ϑ)| for ϑ ∈ [1, 4] and
β = 0.9. We see, that the area of AX|{ϑ}(ϑ) is always smaller than that of
ÃX|{ϑ}(ϑ), but the difference is rather small.

Once the sample value x, and thus, t = T (x) is observed, it is a bit easier to
get the confidence interval estimate C(t) given by equation (4.151), then the
confidence interval estimate C(x) given by equation (4.146).

The next example illustrates that the minimisation of the lengths of the ac-
ceptance intervals does not always result into confidence intervals with minimal
lengths.

Example 4.60 Let X|{(μ, σ2)} be an i.i.d. sample for X|{(μ, σ2)} ∼ N(μ, σ2),
where the value μ of the first moment of X|{(μ, σ2)} is known. Thus, w.l.o.g. we
may set μ = 0 and write X|{σ2} = X|{(0, σ2)}. The value σ2 > 0 of the variance
of X|{σ2} should be estimated. Without considering the joint distribution of
X|{σ2}, we directly move to the random variable V defined by (cf. example
4.53)

V =
∑n

i=1(Xi − X)2

σ2 = (n − 1)S2

σ2 (4.156)

which has chi-square distribution with n − 1 degrees of freedom. Then the ac-
ceptance interval AV for V for some β ∈ (0, 1) and by retransformation the
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acceptance intervals AS2|{σ2}(σ2) for each value σ2 > 0 are as follows

AV =
{

v
∣∣χ2

n−1(α1) ≤ v ≤ χ2
n−1(1 − α2)

}
with 1 − (α1 + α2) = β (4.157)

⇐⇒

AS2|{σ2}(σ2) =
{

s2
∣∣∣∣ χ2

n−1(α1)
n − 1

σ2 ≤ s2 ≤ χ2
n−1(1 − α2)

n − 1
σ2
}

(4.158)

By inversion we get confidence interval estimates of σ2 with confidence level β =
1 − (α1 + α2):

C(s2) =
{

σ2
∣∣∣∣ n − 1

χ2
n−1(1 − α2)

s2 ≤ σ2 ≤ n − 1
χ2

n−1(α1)
s2
}

(4.159)

which is the same result as in example 4.53, equation (4.118). In contrast to the
previous example 4.59 we note, that minimisation of the length of the acceptance
intervals does not yield confidence interval estimates of σ2 of minimal lengths:
For example for n = 21 and β = 0.9 minimising the lengths of AS2|{σ2}(σ2) yields
α1 = 0.028110 and α2 = 0.071890 and, thus, lengths of 1.004499σ2. Taking
these values for the confidence interval estimates C(s2) would yield lengths of
1.374320s2. But minimising the lengths of the confidence interval estimates C(s2)
yields α1 = 0.085874 and α2 = 0.014126 and, thus, lengths of 1.108131s2, which
are vastly shorter.

4.4.3.2. Likelihood Ratio Test Statistic

From the theory of hypothesis tests, a very common way is to utilise the likelihood
ratio test statistic

L(ϑ0; x)
supϑ∈Θ L(ϑ; x)

(4.160)

where L(ϑ; x) is the usual likelihood function. The acceptance regions are then
defined by the largest r so that

A(ϑ0) =
{

x

∣∣∣∣ L(ϑ0; x)
supϑ∈Θ L(ϑ; x)

≥ r

}
(4.161)

with

PX|{ϑ0}(X|{ϑ0} ∈ A(ϑ0)) ≥ β (4.162)
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In general, the side condition PX|{ϑ0}(X|{ϑ0} ∈ A(ϑ0)) ≥ β cannot be refined to
PX|{ϑ0}(X|{ϑ0} ∈ A(ϑ0)) = β, especially not in the case of discrete distributions.
We also see the close relation to the maximum likelihood estimator: suppose ϑ̂

is maximising L(ϑ; x) for given x, then supϑ∈Θ L(ϑ; x) = L(ϑ̂; x).
At last, we want to illustrate this method by an example concerning the uniform
distribution U(0, b).

Example 4.61 Let X|{b} be an i.i.d. sample for X|{b} ∼ U(0, b) and the value
b > 0 of the distribution parameter D should be estimated. Since the MLE of b

is max
1≤i≤n

Xi, the likelihood ratio test statistic becomes

1
bn

0
1[0,b0]n(x)

sup
b>0

L(b; x)
=

(
max
1≤i≤n

xi

)n

bn
0

1[0,b0]

(
max
1≤i≤n

xi

)
. (4.163)

Then the acceptance region A(b0) is

A(b0) =

⎧⎪⎪⎨⎪⎪⎩x ∈ [0, b0]n

∣∣∣∣∣∣∣∣
(

max
1≤i≤n

xi

)n

bn
0

≥ r∗

⎫⎪⎪⎬⎪⎪⎭ , (4.164)

with a certain value r∗ for which PX|{b0}(X|{b0} ∈ A(b0)) = β is satified. The
inequaltiy defining A(b0) is only fixing the maximum max

1≤i≤n
xi. Since max

1≤i≤n
xi ≤ b0,

we conclude that A(b0) may be expressed as an interval for max
1≤i≤n

xi

A(b0) = { max
1≤i≤n

xi| n
√

r∗b0 ≤ max
1≤i≤n

xi ≤ b0} (4.165)

Incorporating the side condition we get

PX|{b0}(X|{b0} ∈ A(b0)) = PX|{b0}

(
n
√

r∗b0 ≤ max
1≤i≤n

Xi ≤ b0

)
=

= 1 −
(

FX|{b0}( n
√

r∗b0)
)n

= 1 − r∗bn
0

bn
0

= 1 − r∗ = β , (4.166)

which yields r∗ = 1 − β and the acceptance regions with probability β are

A(b0) =
{

max
1≤i≤n

xi

∣∣∣∣ n
√

1 − βb0 ≤ max
1≤i≤n

xi ≤ b0

}
. (4.167)
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Then by inversion of the acceptance region we get a confidence set estimator
C( max

1≤i≤n
Xi) of b with confidence level β

C( max
1≤i≤n

Xi) =

{
b

∣∣∣∣∣ max
1≤i≤n

Xi ≤ b ≤
max
1≤i≤n

Xi

n
√

1 − β

}
. (4.168)

We note, that this is the same result as in example 4.46.

4.4.4. Bayesian Set Estimation

Assume the posterior distribution πY (y|x) of Y for a given realisation x of X.
For any subset B of the parameter space Θ, the credible probability is defined as
follows

PY (Y ∈ B|x) =
∫

B

πY (y|x) dy . (4.169)

The set B is called credible set for Y .

Example 4.62 Let X|{y} be an i.i.d. sample for X|{y} ∼ EXP (y) where the
prior distribution of Y is the gamma distribution GAM(α, β) with known α, β >

0. In example 4.20 we have shown, that the density πY (y|x) of the posterior
distribution then is the gamma distribution GAM(α + n, nx + β). We exploit
the unimodality of πY (y|x) with maximum in α+n−1

nx+β
, then the shortest credible

interval B with credible probability � is defined by (cf. proposition 4.57)

B(x) = {y | � ≤ y ≤ u with
∫ u

�

πY (y|x) dy = � and πY (�|x) = πY (u|x)} .

(4.170)
With the values α = 1, β = 0.5, n = 10 and an observed x which yields x = 0.3
we get for a credible probability � = 0.9 the credible interval

B(x = 0.3) = {y | 1.60837 ≤ y ≤ 4.62826} . (4.171)

Figure 4.7 illustrates the concrete derivation of (4.170).
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Figure 4.7.: Posterior distribution πY (y|x) for α = 1, β = 0.5, n = 10 and
x = 0.3. The shadowed area marks the credible probability of 0.9
which is covered by the credible interval B(x = 0.3) = {y|1.60837 ≤
y ≤ 4.62826}.

4.4.5. Confidence Intervals vs. Credible Intervals

In this section we want to illustrate the difference between confidence inter-
vals and credible intervals. We will do this by continuing example 4.62. First
we derive the confidence interval, therefore, let X|{ϑ} be an i.i.d. sample for
X|{ϑ} ∼ EXP (ϑ) with sample size n = 10. According to example 4.54 we get
the confidence interval estimator of ϑ for a confidence level of 0.9 with shortest
length as follows

C(X|{ϑ}) =
{

ϑ

∣∣∣∣ χ2
20(0.028110)

20X
≤ ϑ ≤ χ2

20(0.928110)
20X

}
(4.172)

=
{

ϑ

∣∣∣∣ 0.489295
X

≤ ϑ ≤ 1.493794
X

}
. (4.173)

Figure 4.8 displays the confidence interval estimates (4.173) and the credibel
interval defined by (4.170) in dependency of the observed value x. We note, that

127



4. General Concepts of Inference

the confidence interval and the credible interval vastly differ for small values of x,
while in the displayed region from x = 0.5 to x = 0.7 they are almost identical.
Now, we want to consider the confidence interval (4.173) as a credible set, i.e.,

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ϑ

xx

y

Figure 4.8.: The area between the dashed lines indicates the set of the credible
intervals, the area between the solid lines indicates the set of the
confidence intervals. Both depend on the observed value x. The
confidence level and the credible probability, respectively, is 0.9. The
intersection of the regions with the horizontal line at x = 0.15 marks
the resulting confidence and credible interval estimate, respectively.

with the adjusted notation and for the observed value x of X|{ϑ} as

{
y

∣∣∣∣ 0.489295
x

≤ y ≤ 1.493794
x

}
(4.174)

where y are the values of Y which has gamma distribution GAM(α + n, nx +
β) = GAM(11, 11x + 0.5) (cf. example 4.62). For the credible probability in
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dependency of x we get:

�(x) := PY |x

({
y

∣∣∣∣ 0.489295
x

≤ y ≤ 1.493794
x

})

=

1.493794
x∫

0.489295
x

πY (y|x) dy =

1.493794
x∫

0.489295
x

(10x + 0.5)11

Γ(11)
y10e−y(10x+0.5) dy (4.175)

For x → 0 both bounds tend to +∞ while the integrand tends to 0.511

Γ(11)y
10e−0.5y

and, thus, the integral to 0. For x → +∞ the analysis is more difficult and we
confine ourselves by illustrating the credibel probability �(x) in dependency of x

with figure 4.9. Only for a small region of values of x the credible probability
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Figure 4.9.: The credible probability �(x) = PY |x({y|0.489295
x

≤ y ≤ 1.493794
x

}) in
dependency of x of the confidence interval estimate {ϑ|0.489295

x
≤ ϑ ≤

1.493794
x

} considered as a credible interval.

surpasses the 0.9, while for the rest it falls below 0.9.
On the other hand, considering the credible intervals as confidence intervals we
may calculate their coverage probability. That is, the probability of (4.170) in
dependency of ϑ. The lower and the upper bound, �(X) and u(X), of the credible
interval are now considered as random variables which depend on X|{ϑ}, thus,
we get

PX|{ϑ}
(
�(X) ≤ ϑ ≤ u(X)

)
= 1 −

(
PX|{ϑ}

(
�(X) > ϑ

)
+ PX |{ϑ}

(
u(X) < ϑ

))
(4.176)
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Since, both bounds �(x) and u(x) are decreasing with x, we need to determine
the values x� and xu for which

�(x�) = ϑ and u(xu) = ϑ (4.177)

hold. Then the coverage probability becomes

PX|{ϑ}(�(X) ≤ ϑ ≤ u(X)) = 1 −
(

PX|{ϑ}(X < x�) + PX |{ϑ}(X > xu)
)

. (4.178)

Figure 4.10 illustrates the procedure.
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Figure 4.10.: The area between the dashed lines indicates the set of credible inter-
vals. Considered as a confidence interval, the coverage probability
of a credibel interval for a certain value ϑ0 is the probability for ob-
serving values x of X|{ϑ} outside the intersection of the area with
the vertical line at ϑ0.

Since, X|{ϑ} is distributed according to the gamma distribution GAM(nϑ, n) (cf.
example 4.14), the only problem lies in the necessary numerical determination
of x� and xu for each ϑ. Figure 4.11 displays the coverage probability of the
credible set as function of ϑ. Till some certain value of ϑ the coverage probability
is at least the credible probability of 0.9, but from there on it falls below. An
explanation lies in the prior distribution of Y , which was the gamma distribution
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GAM(α, β) with α = 1 and β = 0.5. As illustrated in figure 4.1, the prior
distribution is monotonously decreasing, i.e., it reflects the (subjective) belief,
that small values y (which are ϑ in the sense of confidence intervals) of Y are
more probable than large ones. This leads to the effect, that the credible intervals
are somehow towed to smaller values of y and ϑ, respectively.
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Figure 4.11.: The coverage probability (4.178) as function of ϑ. It never falls
below the credible probability of 0.9 for small values of ϑ, but from
some value on it underruns 0.9 and steadily decreases.

We end this consideration by realising, that the Bayesian concept of estimation
by credible intervals is totally different to that of confidence intervals and it is
hardly possible to compare them. In particular, the choice of the prior distribu-
tion plays a crucial role and significantly governs the posterior distribution and
the credible interval, respectively. Due to similarities of the proposed Neyman
measurement procedure in Chapter 6 with the Bayesian approach we will draw
some comparisons between them in Chapter 9.
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4.4.6. Evaluating confidence intervals

In the above examples, we already derived confidence interval estimators with
a given confidence level optimal in the sense of yielding confidence interval es-
timates of minimal lengths. In the introduction to this chapter we have drawn
parallels of technical measurement procedures to statistical estimation. The ac-
curacy and the reliability of a measurement procedure are two of its important
features. Accuracy in the sense of statistical estimation might be interpreted
as the lengths of the resulting interval estimates. Therefore, the length of the
confidence interval estimates (or the volumes of a confidence set estimates for a
multidimensional parameter) is for sure an important criterion to judge compet-
itive confidence interval estimators. If the length itself depends somehow on the
random sample X and, thus, is also a random variable, it may be better to take
the expected length, i.e., the mean length into account. In metrology, a mea-
surement procedure is called reliable, if it yields similar results when repeated.
The corresponding term in statistical estimation is the confidence level, thus, we
recall what the confidence level means: If the random sample could be realised
infinitely often, the relative frequency a confidence interval estimator with a con-
fidence level of β ∈ (0, 1) yields interval estimates which cover the true value ϑ

of the parameter D would equal β. In (traditional) statistical estimation, set
estimators are not evaluated by their (mean) volume in first place, but via their
false coverage probability. For the sake of completeness, we give here the relevant
definitions. Since we introduce in Chapter 6 an alternative way to evaluate set
estimators, we do not further work out details nor give examples.

Definition 4.63 (false coverage) For a set estimator C(X|{ϑ}) of ϑ with a
confidence level of β ∈ (0, 1), the probability of false coverage is definded by

PX|{ϑ}(ϑ′ ∈ C(X|{ϑ})) for all ϑ′ ∈ Θ \ {ϑ} . (4.179)

Definition 4.64 (uniformly accurate) Let C1(X|{ϑ}) and C2(X|{ϑ}) be two
set estimators of ϑ both with a confidence level of β ∈ (0, 1). Then C1(X |{ϑ}) is
called uniformly more accurate than C2(X|{ϑ}) if

PX|{ϑ}(ϑ′ ∈ C1(X |{ϑ})) ≤ PX|{ϑ}(ϑ′ ∈ C2(X |{ϑ})) for all ϑ ∈ Θ \ {ϑ} .

(4.180)
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If inequality (4.180) holds for any other set estimator C2(X|{ϑ}) of ϑ with con-
fidence level β ∈ (0, 1), then C1(X|{ϑ}) is called uniformly most accurate confi-
dence set estimator.

Definition 4.65 (unbiased set estimator) A set estimator C(X|{ϑ}) of ϑ

with a confidence level of β ∈ (0, 1) is called unbiased if

PX|{ϑ}(ϑ′ ∈ C(X|{ϑ})) ≤ β for all ϑ′ ∈ Θ \ {ϑ} . (4.181)

4.5. Concluding Thoughts on Classical Point and
Set Estimation

At the beginning the two relevant features for evaluating the methods used in
metrology have been specified, namely reliability and accuracy. Reliability of
a method refers to how often correct results are obtained when applying the
method, while accuracy refers to the usability of correct results. In this paper
two statistical approaches for solving the related problems in quality control are
described and briefly analyzed namely point estimators and set estimators.

As already mentioned, neither reliability nor accuracy is clearly introduced in the
theory of statistical point estimators. Any point estimator yields one value called
estimate. The only founded statement about any obtained estimate is that it is
almost certainly not equal with the true value. Consequently, point estimators
have a zero reliability and relying on achieved results may lead to wrong decisions
and provisions. The situation is even worse with regard to accuracy. In classical
statistics unbiasedness of the point estimator is generally required, although it
may be counterproductive and lead to estimates with larger mean squared error
particular in the more realistic cases of a restricted parameter space. By the way,
the same arguments produced against point estimators are also valid in view of
technical measurement procedures in metrology and metrology can therefore not
be used in order to improve statistical point estimators.

The situation with respect to set estimators is better. The reliability of a set
estimator is appropriately given by the coverage probability, i.e., the probability
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4. General Concepts of Inference

that an application of the method will yield an estimate which covers the true but
unknown value. The confidence level, on the other hand, represents a reliability
requirement or specification for the method to be applied. The inaccuracy of an
obtained set estimate is given in a natural way by its size (by the length in case
of an interval estimate). The smaller the size, the more accurate and thus the
more usable is the set estimate. Maximum accuracy is obtained by set estimates
being singletons. Note, however, that the larger the confidence level and hence
the reliability requirement, the larger is the size and hence the inaccuracy of the
resulting estimates. Therefore it is reasonable to define an optimal set estimator
by the solution of an optimization problem with respect to accuracy with a side
condition concerning the required reliability. The problem then is to determine a
set estimator with minimum size of the estimates meeting the side condition given
by the confidence level. However, there are also some drawbacks with respect to
set estimators:

• Classical statistics does not provide a measure of accuracy for the estimator,
but only for estimates.

• The uncontrolled use of asymptotic models may lead to misleading set es-
timators and thus to wrong decisions.

• Set estimators in classical statistics are often based on unbiased estimators
representing an unnecessary restriction.

Finally, there are Bayesian set estimators which actually become more and more
popular, because the resulting Bayesian set estimates exhibit a larger accuracy
then the competing non-Bayesian set estimators. However, in the Bayesian con-
text the concept of probability is not used as an objective property of a future
event, but as a measure of a subjective opinion or belief. Consequently, there is
no objective statement possible about the actually achieved reliability.
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5. Inference Applied

The monotonic probability distribution Mon(a, b, μ1) is fully determined by the
range of variability X = {x | a ≤ x ≤ b} and the value of the first moment μ1.
Consequently, the distribution parameter consists of the three components a, b

and μ1. Each and all combinations of them could be subject of inference.

The main scope of this chapter is to derive a measurement procedure for the
expectation E[X], i.e., the first moment of X ∼ Mon(a, b, μ1). Thus, the afore
presented methods should be mainly applied with respect to E[X], but we will
also shortly discuss the measurement of the upper bound b.

5.1. Point Estimation

The essential properties leading to the monotonic probability distribution in-
clude the knowledge about the monotonic behaviour of the density function, i.e.,
whether it is monotonic increasing or decreasing. These essential properties result
into quantitave properties in the way, that only certain values for the components
of the distribution parameter (a, b, μ1) are possible. Besides the trivial restriction
−∞ < a < b < +∞, i.e., the range of variability is neither unbounded nor a
degenerated interval, the monotonicity results into a restriction of the possible
value of μ1. If the density function of X is monotone decreasing it follows, that
μ1 ∈ {m | a < m < a+b

2 }, and conversely, if the density function of X is mono-
tone increasing we have μ1 ∈ {m | a+b

2 < m < b}. These conditions together
only determine the maximal possible parameter space. Other essential prop-
erties and quantitative knowledge respectively may lead to further restrictions,
e.g. the random variable may only adopt non-negative values, which results into
0 ≤ a < b < +∞. Similar to proposition 3.2 we have:

Corollary 5.1 (maximum parameter space) The parameter space Θ for a
monotonic distributed random variable X ∼ Mon(a, b, μ1) is atmost either
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(a) Θ = {(a, b, μ1) ∈ R
3 | − ∞ < a < μ1 < a+b

2 < b < +∞}, if the densitiy
function of X is strictly decreasing, or

(b) Θ = {(a, b, μ1) ∈ R
3 | − ∞ < a < a+b

2 < μ1 < b < +∞}, if the densitiy
function of X is strictly increasing.

With the alternative parameterisation (a, b, λ) we have:

Corollary 5.2 (maximum parameter space) The parameter space Θ for a
monotonic distributed random variable X ∼ Mon(a, b, λ) is atmost either

(a) Θ = {(a, b, λ) ∈ R
3 | − ∞ < a < b < +∞, −∞ < λ < 0}, if the densitiy

function of X is strictly decreasing, or

(b) Θ = {(a, b, λ) ∈ R
3 | − ∞ < a < b < +∞, 0 < λ < +∞}, if the densitiy

function of X is strictly increasing.

5.1.1. Method of Moments

Moment estimators for up to three parameters could be of interest. Thus, for
estimating all three parameters we need a function g = (g1, g2, g3, . . .) with at
least three component functions gi, i = 1, 2, . . ., which describe the relations
between (a, b, μ1) (or (a, b, λ)) and the moments μ1, μ2, . . .. (3.112), (3.113) and
(3.114) yield the system of equations

E[X] = μ1 =
(−1 + λb)eλb − (−1 + λa)eλa

λ(eλb − eλa)

E[X2] = μ2 =
(2 − 2λb + λ2b2)eλb − (2 − 2λa + λ2a2)eλa

λ2(eλb − eλa)

E[X3] = μ3 =
(−6 + 6λb − 3λ2b2 + λ3b3)eλb − (−6 + 6λa − 3λ2a2 + λ3a3)eλa

λ3(eλb − eλa)

According to definition 4.5 we actually need a function g, which maps (μ1, μ2, μ3)
on (a, b, μ1). Since the equation for μ1 cannot be explicity solved for one of the
other parameters a, b, numerical calculations become necessary.

In the following we derive moment estimators for μ1 and b under different as-
sumptions of existing knowledge about the parameters.
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5.1. Point Estimation

5.1.1.1. Estimation of μ1

Assuming that X is known, we may set X = [0, 1] without loss of generality.
Then the first empirical moment Mn,1 = X = 1

n

∑n
i=1 Xi is already the desired

moment estimator of μ1. Although X is an unbiased estimator, it does not always
yield reasonable results. Since it is assumed that the monotonicity of the density
function fX|{μ1} of X is known, the estimate x may nevertheless be not element
of Θ: Albeit fX|{μ1} being monotone decreasing, i.e., the upper bound of Θ is 1

2 ,
x may be larger than 1

2 .

5.1.1.2. Estimation of the upper bound b of X

Assuming that μ1 and the lower bound a of X are known, we may set a = 0
without loss of generality. The upper bound b of X should be unknown.

Since b is the only parameter to be estimated, the first idea is, that similar to the
estimation of μ1, only one empirical moment is necessary. The first moment μ1

of X is assumed to be known and one may consider the first empirical moment
not suitable and necessary to find the moment estimator of b. Thus, we consider
the second moment μ2 of X estimated by the second empirical moment:

E[X2] = μ2(b, λ) = (2 − 2λb + λ2b2)eλb − 2
λ2(eλb − 1)

with λ = λ(b, μ1) (5.1)

Mn,2 =
1
n

n∑
i=1

X2
i (5.2)

We note, that μ2 depends on b and on λ, where the latter itself is a function of
b and μ1. Equating the realisation mn,2 of Mn,2 with μ2(b, λ) and solving for b is
not possible, since we may only find a set of possible values of (b, λ), which all
solve

mn,2 =
1
n

n∑
i=1

x2
i =

(2 − 2λb + λ2b2)eλb − 2
λ2(eλb − 1)

. (5.3)

Of course, this holds for μ2(b, λ) as well - different pairs of (b, λ) yield the same
value of μ2:

Example 5.3 For (b, λ) = (4, −1) we have μ2(4, −1) = 1.55222, but the same
value results for (b, λ) = (5, −1.082987).
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Analogue to μ2, μ1 is considered as a function of b and λ, and thus, a concrete
value of μ1 determines a set of possible values of (b, λ):

Example 5.4 For (b, λ) = (4, −1) we have μ1(4, −1) = 0.92537, which is the
same value of μ1 as for (b, λ) = (5, −1.050820).

Therefore, the known value of μ1 determines a set S
(1)
μ1 := {(b, λ) | μ1(b, λ) = μ1}.

Then, the task is, to find that element of S
(1)
μ1 for which equation (5.3) holds.

Example 5.5 Let μ1 = 0.9 and we assume, that the density function is strictly
monotone decreasing, which yields b ≥ 2μ1 = 1.8 and λ < 0. It follows, that
S

(1)
μ1=0.9 = {(b, λ) | μ1(b, λ) = 0.9} ⊂ {(b, λ) | b > 1.8, λ < 0}. Assume, the

sample results into mn,2 = 1.53411, then a small numerical calculation yields
λ = −1.07606 and as estimate of b the value 4.73003.

Two questions arise at this point. First, whether it is always possible to find a
solution, i.e., an estimate for b for all combinations of values of μ1 and mn,2, and,
second, whether a feasible solution is also unique.

We realise, that the derivation of point estimates for b by means of the (ele-
mentary) method of moments becomes a laborious task. Therefore, it is hardly
applicable and we will not pursue this method further.

5.1.2. Maximum Likelihood

5.1.2.1. MLE of μ1 and λ, respectively

With (3.97) we have already seen, that the density functions fX|{(a,b,μ1} of X ∼
Mon(a, b, μ1) generate an exponential family in μ1 ∈ (a, b) and λ ∈ R, respec-
tively. Although, μ1 is only implictly expressed via λ, we utilise the one-to-one
relation between them and may apply the invariance property 4.13 on the MLE
for λ, which we want to derive for the case of a monotone decreasing density of
X, i.e., λ ≤ 0. Without loss of generality we set X = [0, 1].
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5.1. Point Estimation

The density function written in the natural parameterisation form with η = λ

then is

fX|{λ}(x) =
λ

eλ − 1
1[0,1](x)eλx = 1[0,1](x) exp(λx − (ln(1 − eλ) − ln(−λ))) , (5.4)

yielding A(λ) = ln(1 − eλ) − ln(−λ). Therefore, the equation to be solved for the
MLE λ̂ is given by

1
n

n∑
i=1

xi = x =
λeλ − eλ + 1

λ(eλ − 1)
. (5.5)

Equation (5.5) is nothing else, then equation (3.8a) which determines λ given μ1,
but now with x instead of μ1. Since we presume λ ≤ 0, values of x > 0.5 would
lead to λ(x) > 0 which would be incompatible to the parameter space. Thus, we
examine the log-likelihood function l(λ; x) for x > 0.5 with respect to λ:

l(λ; x) = λnx + n ln λ

eλ − 1
(5.6)

and the derivative with respect to λ yields

∂l(λ; x)
∂λ

= nx − n
λeλ − eλ + 1

λ(eλ − 1)
. (5.7)

For λ ↗ 0 we have λeλ−eλ+1
λ(eλ−1) ↗ 0.5, i.e., ∂l(λ;x)

∂λ
> 0 for x > 0.5. That means, that

l(λ; x) for x > 0.5 attains its maximum at λ = 0. Together we get the MLE for
λ:

λ̂(X) =

⎧⎨⎩λ with λeλ−eλ+1
λ(eλ−1) = x for x < 0.5,

0 for x ≥ 0.5.
(5.8)

Now, from the invariance property of the MLE 4.13, we easily get the MLE for
μ1:

μ̂1(X) =

⎧⎨⎩x for x < 0.5,

0.5 for x ≥ 0.5.
(5.9)

If we restrict the parameter space even further, e.g. λ ∈ [λ�, λu] ⊂ (−∞, 0] ⇔
μ1 ∈ [μ1(λ�), μ1(λu)] =: [μ�

1, μu
1 ] ⊂ (0, 0.5], we note that ∂l(λ;x)

∂λ
< 0 for x < μ�

1,
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and ∂l(λ;x)
∂λ

> 0 for x > μu
1 . Therefore, the MLE for λ results to be

λ̂(X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ� for x ≤ μ�

1,

λ with λeλ−eλ+1
λ(eλ−1) = x for μ�

1 < x < μu
1 ,

λu for x ≥ μu
1 ,

(5.10)

and so, the MLE for μ1 is

μ̂1(X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ�

1 for x ≤ μ�
1,

x for μ�
1 < x < μu

1 ,

μu
1 for x ≥ μu

1 .

(5.11)

Evaluating the MLE of μ1

The least knowledge about the distribution is about its monotonic behaviour.
That is, we first want to deal with the in this sense unrestricted parameter space
μ1 ∈ (0, 0.5] where we get (5.9) for the MLE μ̂1(X) of μ1. The expected value of
μ̂1(X) may be assessed in the following way:

Eμ1 [μ̂1(X)] = E[X|X < 0.5] + E[0.5|X ≥ 0.5] (5.12)

=
∫ 0.5

0
X dP + 0.5

∫ 1

0.5
dP (5.13)

= μ1 −
(∫ 1

0.5
X dP − 0.5

∫ 1

0.5
dP

)
(5.14)

= μ1 −
(∫ 1

0.5
(X − 0.5) dP

)
(5.15)

Since X ≥ 0.5 under the integral, the integrand and so the integral are positive
and, thus, Eμ1 [μ̂1(X)] < μ1. That is, the MLE of μ1 is not unbiased. Therefore,
the discussion of all other evaluation criterions for unbiased estimators becomes
redundant.

5.1.2.2. MLE of b

We want to derive the MLE of b, assuming that the first moment μ1 of X ∼
Mon(b, μ1) is known and that the density function is monotone decreasing. From
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5.1. Point Estimation

the latter, we already get a restriction of possible values of b: μ1 ≤ b
2 , i. e., b ≥ 2μ1.

Again, without loss of generality we may assume a = 0. The likelihood function
given a realisation x = (x1, . . . , xn) for b ≥ 2μ1 is

L(b; x) =
(

λ(b, μ1)
eλ(b,μ1) − 1

)n

eλ(b,μ1)
∑n

i=1 xi1[0,b]n(x) (5.16)

=
(

λ(b, μ1)
eλ(b,μ1) − 1

)n

eλ(b,μ1)
∑n

i=1 xi1[max{2μ1,max xi},+∞)(b) . (5.17)

Note, that the term 1[max{2μ1,max xi},+∞)(b) contains the condition b ≥ 2μ1 which
is incorporated besides a possible further restriction of potential values of b max-
imising the likelihood function: Since all Xi ∼ Mon(b, μ1), we have xi ≤ b for
all i = 1, . . . , n, i. e., b ≥ max xi. Before analysing the likelihood function with
respect to b, we want to give some numerical examples, which already indicate
possible occurring situations. Throughout the examples, we let μ1 = 0.5, n = 10
and give no further restrictions with respect to b, and vary the values of

∑10
i=1 xi

and max xi.

Example 5.6 Let
∑10

i=1 xi = 4.2 and max xi = 0.9. Then the values of b are
only restricted by μ1 = 0.5, i.e., b ≥ 1. Figure 5.1(a) shows, that the likelihood

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1.0

L
(b;x)

b

(a) b ∈ [1, 10]

3 4 5 6 7 8
0.22995
0.23000
0.23005
0.23010
0.23015
0.23020
0.23025
0.23030

L
(b;x)

b

(b) b ∈ [3, 8]

Figure 5.1.: Likelihood function L(b; x) for b ∈ [1, 10] and b ∈ [3, 8], respectively,
with μ1 = 0.5,

∑10
i=1 xi = 4.2 and max xi = 0.9.

function attains its maximum in b = 1, i.e., b̂ = 1 is the MLE for b. The maximal
value then is L(1; x) = 1. Taking a closer look onto the course of the function
for b ∈ [3, 8] in figure 5.1(b), a minimum around 3.5 becomes visible. Right from
this minimum L(b; x) appears to be monotone increasing against an upper limit.
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Example 5.7 Let
∑10

i=1 xi = 3.4 and max xi = 0.9. Then the values of b are only
restricted by μ1 = 0.5, i.e., b ≥ 1. Figure 5.2 shows, that L(b; x) attains again a

2 4 6 8 10
0.95

1.00

1.05

1.10

1.15

L
(b;x)

b

Figure 5.2.: Likelihood function L(b; x) for b ∈ [1, 10] with μ1 = 0.5,
∑10

i=1 xi =
3.4 and max xi = 0.9.

maximum in b = 1 with L(1; x) = 1. But now it is only a local maximum, since
L(b; x) appears to be approaching an upper limit for b → +∞ which is larger than
1. This leads to the MLE b̂ = +∞ for b.

Example 5.8 Let
∑10

i=1 xi = 3.2 and max xi = 0.9. Then the values of b are
only restricted by μ1 = 0.5, i.e., b ≥ 1. In figure 5.3 L(b; x) seems to have no

2 4 6 8 10
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1.1
1.2
1.3
1.4
1.5
1.6
1.7

L
(b;x)

b

Figure 5.3.: Likelihood function L(b; x) for b ∈ [1, 10] with μ1 = 0.5,
∑10

i=1 xi =
3.2 and max xi = 0.9.

local maximum in b = 1 anymore, but approaches an upper limit for b → +∞.
Again, this leads to the MLE b̂ = +∞ for b.
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Figure 5.4.: Likelihood function L(b; x) for b ∈ [1, 6] with μ1 = 0.5,
∑10

i=1 xi = 5.2
and max xi = 0.9.

Example 5.9 Let
∑10

i=1 xi = 5.2 and max xi = 0.9. Then the values of b are
only restricted by μ1 = 0.5, i.e., b ≥ 1. In figure 5.4 L(b; x) appears to have its
global maximum in b = 1, again. Thus, the MLE for b is b̂ = 1. The course of
the function now seems to be decreasing against some lower bound for b → +∞
– at least a local minimum like in example 5.6 cannot be detected.

Example 5.10 Let
∑10

i=1 xi = 4.2 and max xi = 1.8. Then the latter restricts
the values of b to b ≥ 1.8. Similar to example 5.6 figure 5.5(a) indicates, that

1 2 3 4 56
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60188
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(a) b ∈ [1.8, 10]

3 4 5 6 7 8
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0.23020
0.23025
0.23030

L
(b;x)

b

(b) b ∈ [3, 8]

Figure 5.5.: Likelihood function L(b; x) for b ∈ [1.8, 10] and b ∈ [3, 10], respec-
tively, with μ1 = 0.5,

∑10
i=1 xi = 4.2 and max xi = 1.8.

L(b; x) attains its global maximum in the smallest of the potential values of b,
i.e., the MLE is b̂ = 1.8. There is a local minimum around 3.5 as well, from
which on L(b; x) appears to be increasing against an upper bound for b → +∞.
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Example 5.11 Let
∑10

i=1 xi = 6.7 and max xi = 1.8, and again, the latter re-
stricts the values of b to b ≥ 1.8. As in example 5.9, the course of L(b; x) (see

2 3 4 5 6
0.0015

0.0020

0.0025

0.0030

0.0035

L
(b;x)

b

Figure 5.6.: Likelihood function L(b; x) for b ∈ [1.8, 6] with μ1 = 0.5,
∑10

i=1 xi =
6.7 and max xi = 1.8.

figure 5.6) seems to attain its global maximum in the smallest of the potential
values of b, i.e., the MLE is b̂ = 1.8. Furthermore it appears to be monotone
decreasing.

The above examples indicate that there are only two possibilities for the MLE
of b: either the likelihood function attains its maximum in the smallest of the
potential values of b, determined by 2μ1 or max xi, or in +∞. We want to
structure our analyse by the values of max xi in comparison to 2μ1. And again,
we assume no upper bound for the potential values of b.

max xi < 2μ1

No further restriction on the potential values of b arise in this case. Then the
limiting values of L(b; x) for b = 2μ1 and b → +∞, respectively, are easily derived
via the convergence behaviour of Mon(b, μ1):

a. The distribution Mon(b, μ1) coincides with the uniform distribution U(0, 2μ1)
for b = 2μ1.

b. The distribution Mon(b, μ1) converges to the exponential distribution EXP (μ1)
for b → +∞.

Thus, this yields for the likelihood function:

a. L(b; x) b=2μ1=
(

1
2μ1

)n
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b. L(b; x) b→+∞→
(

1
μ1

)n

e
− 1

μ1

∑n
i=1 xi

Comparing both values, leads to(
1

2μ1

)n

>

(
1
μ1

)n

e
− 1

μ1

∑n
i=1 xi ⇔

n∑
i=1

xi > nμ1 · ln 2 . (5.18)

This comparison is sufficient, if we can show, that there is no global maximum
between 2μ1 and +∞. Therefore, we analyse the monotone behaviour of L(b; x)
by differentiation with respect to b:

∂

∂b
L(b; x) =

=
(

λ(b, μ1)
eλ(b,μ1)b − 1

)n

eλ(b,μ1)
∑

xi

[
∂λ(b, μ1)

∂b
(
∑

xi − nμ1) − n
λ(b, μ1)eλ(b,μ1)b

eλ(b,μ1)b − 1

]
(5.19)

Since

λ(b, μ1)eλ(b,μ1)b

eλ(b,μ1)b − 1
= fX|{(b,μ1)}(b) > 0 ,

∂λ(b, μ1)
∂b

< 0 ( since λ(b, μ1) = λ(μ1/b) ),

and
(

λ(b, μ1)
eλ(b,μ1)b − 1

)n

eλ(b,μ1)
∑

xi > 0 ,

the sign of ∂
∂b

L(b; x) for a certain value of b depends only on
∑

xi. Let
∑

xi ≥
nμ1, then ∂

∂b
L(b; x) < 0 for all b ≥ 2μ1, i.e., L(b; x) is monotone decreasing.

Thus, the MLE is given by b̂ = 2μ1.
If only equation (5.18), i.e.,

∑
xi > nμ1 · ln 2, holds, we have

∂λ(b, μ1)
∂b

b=2μ1= −3
2

1
μ2

1
(5.20)

and with fX|{(2μ1,μ1)}(2μ1) = 1
2μ1

we get

[
∂λ(b, μ1)

∂b

(∑
xi − nμ1

)
− n

λ(b, μ1)eλ(b,μ1)b

eλ(b,μ1)b − 1

]
=

b=2μ1= −3
2

∑
xi

μ2
1

+ n
1
μ1

< −3
2

nμ1 ln 2
μ2

1
+ n

1
μ1

=
n

μ1
(1 − ln

√
8) < 0 , (5.21)
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that is, L(b; x) is monotone decreasing in b = 2μ1. Like in example 5.7, if
nμ1 >

∑
xi > nμ1 · ln 2 holds, i.e.,

L(2μ1; x) =
(

1
2μ1

)n

<

(
1
μ1

)n

e
− 1

μ1

∑
xi = lim

b→+∞
L(b; x) , (5.22)

then there is a local minimum. Examples 5.6 and 5.7 suggest, that this is also
a global minimum and that there are no other local minima. This would lead
to the conclusion, that in these cases, the comparison of the values of L(b; x) in
b = 2μ1 and for b → +∞ is sufficient for identifying the MLE b̂: it is either 2μ1

or +∞.

On the other hand, L(b; x) is monotone increasing for b = 2μ1, if

− 3
2

∑
xi

μ2
1

+ n
1
μ1

> 0 ⇔
∑

xi <
2
3

nμ1 . (5.23)

Then,
∑

xi − nμ1 <
∑

xi − 2
3nμ1 < 0 and example 5.8 indicates, that L(b; x) is

monotone increasing for all b ≥ 2μ1.
Finally, it is in fact only important, which of the two values L(2μ1; x) and
limb→+∞ L(b; x) is the largest one, yielding the MLE either b̂ = 2μ1 or b̂ = +∞.

max xi ≥ 2μ1

Here, we have a further restriction on the potential values of b by b ≥ max xi.
But since, max xi has no influence on the value of L(b; x) if only b ≥ max xi

holds, the analysis is almost identical to the preceding paragraph 5.1.2.2. We
have to compare the values L(max xi; x) and limb→+∞ L(b; x), yielding for the
MLE either b̂ = max xi or b̂ = +∞.

Further restrictions on the potential values of b

Next assume that there is more knowledge about the potential values of b given
by b ∈ [b�, bu] ⊂ [2μ1, +∞). Then for the analysis of L(b; x) the same holds
again as in paragraph 5.1.2.2. The course of L(b; x) is not affected by the further
restriction if only max{max xi, b�} ≤ b ≤ bu, i.e., only the values of L(b; x) in the
boundary points determine the MLE:

• Either L(max{max xi, b�}; x) > L(bu; x) ⇒ b̂ = max{max xi, b�}
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5.1. Point Estimation

• or L(max{max xi, b�}; x) < L(bu; x) ⇒ b̂ = bu.

We have seen, that the MLE for b behaves in a not very welcomed way. By some
small variation of max xi, the MLE jumps from max xi directly to +∞. Thus, we
conclude, that the Maximum Likelihood Method is not really suitable to derive
a point estimator for the upper bound b of X .

5.1.2.3. max Xi a Natural Point Estimator of b?

Although the MLE for b is not suitable, we may get the idea just to take max Xi

as an estimator for b. Of course, this would be a very natural estimator for an
upper bound of the range of variability.

Its expected value is

Eb[max Xi] = b −
∫ b

0

(
eλ(0,b,μ1)x − 1
eλ(0,b,μ1)b − 1

)n

dx (5.24)

= b

(
1 −

∫ 1

0

(
eλ(0,1,μ1/b)y − 1
eλ(0,1,μ1/b) − 1

)n

dy

)
< b (5.25)

Unsurprisingly, max Xi is not an unbiased estimator for b. As generally known,
max Xi always underestimates the upper bound b of the range of variability (see
example 4.24 in the case of an uniform distribution U(0, b)), but the bias

biasb[max Xi] = b

∫ 1

0

(
eλ(0,1,μ1/b)y − 1
eλ(0,1,μ1/b) − 1

)n

dy (5.26)

decreases with increasing sample size n. The relative bias of Eb[max Xi] from b

is given by ∫ 1

0

(
eλ(0,1,μ1/b)y − 1
eλ(0,1,μ1/b) − 1

)n

dy (5.27)

which depends on the ratio μ1
b

and on n. In table 5.1 we illustrate this dependency
by some numerical examples. For b = 2μ1 we have in fact the uniform distribution
U(0, b), i.e., as known from example 4.24, the bias of max Xi is n

n+1b and the
relative bias is 1

n+1 , respectively. Although, the relative bias is decreasing with
increasing n, the estimator max Xi will often yield bad estimates if b is large
compared to μ1. The explanation is that the probability

Pmax Xi|{(0,b,μ1)}(max Xi > y) = 1 − (FX|{(0,b,μ1)}(y))n (5.28)
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μ1
b

n 1
2

1
4

1
10

1
20

1
50

10 0.090909 0.339591 0.707338 0.853552 0.941421
20 0.047619 0.233904 0.640737 0.820113 0.928045
50 0.019608 0.128774 0.551358 0.77504 0.910016
100 0.009901 0.0760034 0.483682 0.740631 0.896252
500 0.001996 0.0184201 0.330119 0.66036 0.864144

Table 5.1.: Relative bias of Eb[max Xi] from b for different values of n and μ1
b

.

y

b 0.8b 0.9b 0.95b 0.99b

4 0.77903 0.459449 0.243526 0.0504449
10 0.0144514 0.00390817 0.00147746 0.000239696
20 < 10−5 < 10−6 < 10−6 < 10−7

50 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 5.2.: Probability that max Xi exceeds the value y, i.e.,
Pmax Xi|{(0,b,μ1)}(max Xi > y), in dependency of b with n = 50
and μ1 = 1.

rapidly decreases with y, which is illustrated in table 5.2 with n = 50 and μ1 = 1.
That is, even with considerable large sample size n it happens very seldom, that
we observe a sample with maximal value somewhere near the unknown upper
bound b.

5.2. Set Estimation

The traditional point estimators for μ1 and the upper bound b, respectively,
reveal some poor characteristics like biasedness or an abrupt change of its value.
Therefore, the traditional set estimators which are based on point estimators
would surely inherit this poorness, and we will not work out any further analysis.
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5.2. Set Estimation

Those set estimators based on the inversion of acceptance regions would be worth
analysing, but this task should be postponed to Chapter 7, where they serve as
comparisons to the next presented Neyman measurement procedure. A Bayesian
set estimator will be discussed in Chapter 9.
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6. Neyman Measurement
Procedures

In the previous chapters we gave an overview over the most common approaches in
classical statistics to estimate the unknown value ϑ of a distribution parameter D.
We have seen, that for the monotonic distribution, which is based on qualitative
knowledge about its monotonicity and quantitative knowledge about its range of
variability and its first moment, these traditional approaches may yield useless
results.

In this chapter we want to present the approach developed by von Collani and
Dumitrescu (2001) [16] and von Collani et al. (2001) [17]. In contrast to the
classical statistics, the authors embed their approach to estimation in the metro-
logical framework and, therefore, denote them as measurement procedures. This
embedding is derived in more details in [22]. Since we have already drawn some
parallels between statistics and metrology, this approach seems to be reasonable.

6.1. The Bernoulli-Space

In [19] and [20] the fundamental ideas to this approach are developed in detail.
Some of the following explanations may seem to be dispensable, since they may
be considered to describe well-established ideas. However, a full comprehension
can only be achieved, if we present them here in an appropriate coverage.

6.1.1. The Model

The variables involved in a random phenomenon are the random variable X and
the deterministic variable D. The random variable X describes the quantity of
interest, where X may be multi-dimensional, i.e., the quantity of interest may
have several components. The values x the random variable X may adopt form
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6. Neyman Measurement Procedures

the range of variability X . From a realistic point of view, X has to be a bounded
set. Every random, i.e., future development is influenced by some past devel-
opment, i.e., by fixed initial conditions. The determinstic variable D (one- or
multi-dimensional) describes these aspects which have influence on the random
variable X. The values d of D form the range of D denoted by D. If we have
complete knowledge about the past development, the actual value d = d0 of D is
known and the range D is a singleton, i.e., D = {d0}. If ignorance exists about
the initial conditions, i.e., we have only partial knowledge about the past, then D
consists of all values d of D which cannot be excluded with certainty. Typically,
D contains a series or interval (hypercube) of values d. Since D specifies the
amount of ignorance, it is called the ignorance space.

To indicate that the actual value d of the deterministic variable D influences upon
the random variable X and to distinguish different initial conditions yielding
different random variables we write X|{d} with range of variability X ({d}). For
the sake of simplicity we consider X ({d}) as a subset of Rk, k ≥ 1. Then, the
variability function X describes the relation between the initial conditions and
the future’s variability:

X : BD → BRk (6.1)

where BD and BRk are the Borel σ-fields over the respective set.

Not only the range of variability X ({d}) of X|{d} is influenced by the initial
conditions, but also the structure of randomness, i.e., the probabilities of events
E ∈ BRk . Denoting the set of all probability measures with P, we may define the
random structure function P which maps each value d ∈ D onto the probability
measure of X|{d}:

P : D → P (6.2)

with P(d) = PX|{d} and PX|{d} the probability measure, i.e., the probability
distribution of X|{d}. The set of all probability distribution of X|{d} for d ∈ D
is denoted PX,D:

PX,D = {PX|{d} | d ∈ D} (6.3)

With the ignorance space D, the variability function X and the random structure
function P, the Bernoulli-Space BX,D for the pair of variables (X, D) is defined
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6.1. The Bernoulli-Space

as follows:
BX,D = (D, X , P) (6.4)

Example 6.1 Consider the pair of variables (X, D) where the determinsitic vari-
able D consists of three components D = (A, B, E[X]) with

• A specifying the lower bound of the range of variability,

• B specifying the upper bound of the range of variability and

• E[X] specifying the expectation of the random variable X.

The value of D is denoted d = (a, b, μ1). The ignorance space D should be

D =
{

(a, b, μ1)
∣∣∣∣ 0 ≤ a < b ≤ u, a < μ1 <

a + b

2

}
(6.5)

with some value u > 0. The variability function X is specified by its images

X ({(a, b, μ1)}) = {x | a ≤ x ≤ b} . (6.6)

The determinstic variable D also specifies the probability distribution of X through
the random structure function P and its images, respectively,

P(a, b, μ1) = Mon(a, b, μ1) . (6.7)

That is, the random variable X|{(a, b, μ1)} is distributed according to the mono-
tonic distribution Mon(a, b, μ1). Since a < μ1 < a+b

2 , the density functions
fX|{(a,b,μ1)} are monotonously decreasing on X ({(a, b, μ1)}).

6.1.2. The Sources of Uncertainty

Humans are permanently concerned on the one hand with lack of complete knowl-
edge, i.e., ignorance about already terminated developments, e. g. physical mea-
sures like the weight of some amount of corn. And on the other hand with the
not deterministic, i.e., random behaviour of future developments, e. g. world’s
climate development or the next day’s weather. That is, ignorance and ran-
domness are the sources of uncertainty about future developments, and both are
contained in the Bernoulli-Space: ignorance refers to D and is represented by D,
randomness refers to X|{d} and is represented by X in connection with P.
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6.1.2.1. No Ignorance – Complete Knowledge

In the case of no ignorance or equivalent complete knowledge, the ignorance
space D contains only the known actual value d0 of D, i.e., D = {d0}. Then for
the Bernoulli-Space for the pair of variables (X, D) we may omit its functional
components and represent it by the triple

(
{d0}, X ({d0}), PX|{d0}

)
(6.8)

where

• X ({d0}) is the range of variability of X|{d0} and

• PX|{d0} is the probability distribution of X|{d0}.

Although there is no ignorance, uncertainty stills exists through randomness de-
scribed by X ({d0}) and PX|{d0}.

6.1.2.2. No randomness

In the case of no randomness, we would have a deterministic cause-effect relation
between the initial conditions and the future development. For each d ∈ D the
range of variability X ({d}) would contain only one element, say x({d}), and the
probability distribution PX|{d} would degenerate to a one-point distribution, i.e.,
PX|{d}(E) = 1E(x({d})) for every event E with respect to X|{d}. Uncertainty
in this case only arises through ignorance about the value of D.

6.1.2.3. Ignorance and Randomness

Ignorance refers in the first instance to the deterministic variable D in the way
that its actual value d0 is not known, thus, the ignorance space D contains more
than one element. Consequently, the image sets of the variability function X ,
i.e., {X ({d}) | d ∈ D}, and of the random structure function P, i.e., PX,D, may
also contain more than one element. The size of D, i.e., number of elements
or volume, may be interpreted as the degree of ignorance. But it seems to be
reasonable to assume that in all real world scenarios the ignorance is somehow
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6.1. The Bernoulli-Space

bounded, i.e., that some knowledge about the possible values of D exists – in this
sense ignorance may be understood as incomplete knowledge.

But ignorance also refers to the variability function X , which assigns to each value
d ∈ D a range of variability X ({d}) of the X|{d}. Only in very rare situations,
the range of variability and the variability function X , respectively, are known
exactly. In the more frequent situations this is not the case, thus, the image
X ({d}) of the variability function X for each d ∈ D should at least cover the true
range of variability.

Given the ignorance space D, the overall range of variability X (D) for X is given
by

X (D) =
⋃
d∈D

X ({d}) . (6.9)

Since every future event is a subset of X (D), it is called prediction space.

Both, the ranges of variability X ({d}) for each d ∈ D and the ignorance space
D represent the range of uncertainty and together build up the uncertainty space
UX,D as follows

UX,D =
⋃
d∈D

{d} × X ({d}) = {(d, x) | d ∈ D, x ∈ X ({d})} . (6.10)

Example 6.2 Consider the following Bernoulli-Space BX,D = (D, X , P) for the
pair of variables (X, D) with

• D = {(a, b, μ1) | a = 0, b = 1, 0 < m� ≤ μ1 ≤ mu < 0.5}

• X ({(0, 1, μ1)}) = {x | 0 ≤ x ≤ 1} = [0, 1], i.e., independent of the value μ1

of E[X]

• P(0, 1, μ1) = Mon(0, 1, μ1)

That is, we have ignorance only about the value μ1 of E[X]. About the other com-
ponents of D, i.e., the range of variability, we have complete knowledge. There-
fore, we consider E[X] as the determinstic variable. Thus, the ignorance space
D is the set of values of E[X]: D = {μ1 | 0 < m� ≤ μ1 ≤ mu < 0.5}. The
uncertainty space then is

UX,E[X] =
⋃

μ1∈D
{μ1} × X ({μ1}) = [m�, mu] × [0, 1] , (6.11)
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0

1

X

m� muE[X]

UX,E[X]

Figure 6.1.: Uncertainty space UX,E[X], where X|{μ1} ∼ Mon(0, 1, μ1) and μ1 ∈
D = {μ1 | 0 < m� ≤ μ1 ≤ mu < 0.5}. Because there is only ig-
norance about the expectation E[X] of X, we consider E[X] as the
deterministic variable.

that is, a rectangle in the E[X]-X-plane displayed in figure 6.1.

Example 6.3 Next consider the pair of variables (X, D) and the corresponding
Bernoulli-Space BX,D = (D, X , P) for the case that there is ignorance only about
the upper bound B of the range of variability and complete knowledge about the
lower bound A with value a = 0 and the expectation E[X] with value μ1 = m.
Thus, we consider B as the deterministic variable. We get

• D = {b | 0 < b� ≤ b ≤ bu} with b� > 2m

• X ({(0, b, m)}) = {x | 0 ≤ x ≤ b} = [0, b]

• P(0, b, m) = Mon(0, b, m)

The uncertainty space displayed in figure 6.2 then is

UX,B =
⋃
b∈D

{b} × X ({b}) . (6.12)

Figure 6.3 displays the uncertainty space together with some density functions
fX|{b}.

In both examples 6.2 and 6.3 the random structure function P maps the values
of the respective determinstic variable on a member of the family of monotonic
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b�

bu

X

b� buB

UX,B

Figure 6.2.: Uncertainty space UX,B, where X|{b} ∼ Mon(0, b, m), b ∈ D =
{b | 0 < b� ≤ b ≤ bu} with b� > 2m. Because there is only ignorance
about the upper bound B of the range of variability, we consider B

as the deterministic variable.

Figure 6.3.: Uncertainty space UX,B from figure 6.2 with some density functions
fX|{b} for different values b of B.
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distributions Mon(a, b, μ1). This is due to the fact, that ignorance has to be
incorporated also into the structure of randomness. In Chapter 2 we have pre-
sented a general concept of the derivation of probability distributions based on
available qualitative knowledge. This qualitative knowledge constitutes which
quantitative knowledge about the range of variability and the number of mo-
ments is necessary to determine the probability distribution. That is, a generic
deterministic variable consists of the range of variability (in fact, its bounds) and
a certain number of moments. Having the range of variability and the number of
moments at hand, the random structure function maps each value on a member
of the corresponding family of minimum information representatives. In the case
of the aboves examples 6.2 and 6.3, available knowledge refers to the monotone
behaviour of the density function and, thus, that the random structure function
maps each value of the deterministic variable on a monotonic distribution.

In contrast to models used in classical statistics, the choice of probability distri-
bution and random structure function, respectively, is only based on the available
knowledge. In particular, it is not governed by some implicit considerations about
the (analytic) feasibility of the problem at hand. In cases where the choice of a
statistical distribution is justified as a sufficiently good approximation, the de-
terministic variable would consist of the distribution parameters. But since for
many statistical distributions, their parameters may be substituted by a certain
number of moments, we also might keep the moments as components of a generic
determinstic variable.

6.2. Reliable Stochastic Procedures

Stochastic procedures aim at reducing uncertainty given by the uncertainty space
(6.10). Since uncertainty has two sources we distinguish between prediction pro-
cedures and measurement procedures:

• Prediction procedures aim at predicting the future outcome of X in form of
a subset of X (D) based on the knowledge or ignorance given by D.

• Measurement procedures aim at measuring the unknown actual value d0 of
D in form of a subset of D based on an observed value of X.
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Formally, prediction and measurement procedures define mappings between BD
and BX (D):

• Prediction procedure:

AX : BD → BX (D) (6.13)

• Measurement procedure:

CD : BX (D) → BD (6.14)

The main requirement a stochastic procedure should meet is the predefined relia-
bility. As introduced at the beginning of Chapter 4, the reliability of a procedure
stands for its ability to yield correct results. For a prediction procedure a pre-
diction, i.e., a subset AX(D0) of X (D) should be considered as correct if the
outcome x of X is element of AX(D0), where D0 is a subset of D. The measure-
ment CD(X0) ⊂ D of a measurement procedure should be considered as correct if
the actual value d0 of D is element of CD(X0), where X0 is a subset of X (D), i.e.,
an event. The reliability of a procedure is then defined as the probability that it
will yield a correct result when applied. The lower bound of this probability is
called reliability level and denoted by β1. To derive a stochastic procedure with
a certain realibility level β it is necessary to take the random structure, i.e., the
probability distributions PX,D into account.

6.2.1. β-Prediction and β-Measurement

The derivation of β-measurement procedures introduced in [20] has been orig-
inally inspired by J. Neyman [57], since the idea is very similar to that of the
inversion of acceptance regions in section 4.4.3. The start of this derivation is to
define β-predictions. Since the final aim is to develop β-measurement procedures,
we concentrate on introducing β-prediction procedures only for the subsystem of
sets

{
{d} | d ∈ D

}
of BD.

1In classical statistics this would be the confidence level of an estimation procedure.
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6.2.1.1. β-Prediction Procedure

Definition 6.4 (β-prediction procedure, β-uncertainty space of X) Let I =
{{d} | d ∈ D}. A mapping

A
(β)
X : I → BX (D) (6.15)

with A
(β)
X ({d}) ⊂ X ({d}) for d ∈ D

is called β-prediction procedure for X if

PX|{d}(A(β)
X ({d}) ≥ β for d ∈ D . (6.16)

The set
U (β)

X = {(d, x) | d ∈ D, x ∈ A
(β)
X ({d})} (6.17)

is called β-uncertainty space of X.

Obviously, for all β-uncertainty spaces we have U (β)
X ⊂ UX,D.

We note, that for β-prediction procedures (6.15) the reliability requirement is met
by condition (6.16). But besides this we also note, that the definition does not
uniquely define a β-prediction procedure, since the selection of the predictions
A

(β)
X ({d}) for each d ∈ D is not further specified.

Example 6.5 Consider a Bernoulli-Space for the pair of variables (X, D). Again,
X is distributed according to the monotonic distribution Mon(a, b, μ1). Assuming
a = 0 and b = 1, i.e., there is no ignorance about the range of variability, and
only ignorance about E[X] of X, say 0.05 ≤ μ1 ≤ 0.45. Thus, the ignorance space
is given by D = {μ1 | 0.05 ≤ μ1 ≤ 0.45}. Then, the set of probability distributions
PX,E[X] contains only monotonic distributions Mon(μ1) with decreasing density
functions fX|{μ1}(x) for x ∈ X ({mu1}) = [0, 1]. The uncertainty space UX,E[X] is
a rectangle in the E[X]-X-plane:

UX,E[X] = [0.05, 0.45] × [0, 1] (6.18)

To illustrate that the predictions A
(β)
X ({μ1}) for μ1 ∈ D are not unique, we display

three different possibilities. Each yielding a different β-uncertainty space U (β)
X for
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0.05 0.45

0.0

0.2

0.4

0.6

0.8

1.0

X

E[X]

UX,E[X]

U (0.9)
X

zμ1(0.9)

Figure 6.4.: Uncertainty space UX,E[X] as in example 6.2 with μ1 ∈ D =
[0.05, 0.45]. For β = 0.9 and for each value μ1 of E[X] the predictions
are defined by A

(0.9)
X ({μ1}) = [0, zμ1(0.9)].

X. The upper quantile function zμ1(γ) for X|{μ1} ∼ Mon(0, 1, μ1) is defined as
usual:

zμ1(γ) = F −1
X|{μ1}(γ) for γ ∈ (0, 1) (6.19)

zμ1(0) = 0 (6.20)

zμ1(1) = 1 (6.21)

Note that we have to consider zμ1(γ) also as a function of μ1. Figures 6.4, 6.5
and 6.6 display three reasonable β-uncertainty spaces U (β)

X .

6.2.1.2. β-Measurement Procedure

We start with the general definition of a β-measurement procedure. It is similiar
to definition 4.42 of confidence set estimators but with the newly introduced
terminology and notation.

Definition 6.6 (β-measurement procedure, β-uncertainty space of D) Let
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0.05 0.45

0.0

0.2

0.4

0.6

0.8

1.0

X

E[X]

UX,E[X]

U (0.9)
X

zμ1(0.1)

Figure 6.5.: Uncertainty space UX,E[X] as in example 6.2 with μ1 ∈ D =
[0.05, 0.45]. For β = 0.9 and for each value μ1 of E[X] the predictions
are defined by A

(0.9)
X ({μ1}) = [zμ1(0.1), 1].

0.05 0.45

0.0

0.2

0.4

0.6

0.8

1.0

X

E[X]

UX,E[X]

U (0.9)
X

zμ1(0.95)

zμ1(0.05)

Figure 6.6.: Uncertainty space UX,D as in example 6.2 with μ1 ∈ D = [0.05, 0.45].
For β = 0.9 and for each value μ1 of E[X] the predictions are defined
by A

(0.9)
X ({μ1}) = [zμ1(0.05), zμ1(0.95)].
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E = {{x} | x ∈ X (D)}. A mapping

C
(β)
D : E → BD (6.22)

with C
(β)
D ({x}) ⊂ D for x ∈ X (D)

is called β-measurement procedure for D if

PX|{d}({x | d ∈ C
(β)
D ({x})}) ≥ β for d ∈ D . (6.23)

The set
U (β)

D = {(d, x) | x ∈ X (D), d ∈ C
(β)
D ({x})} (6.24)

is called β-uncertainty space of D.

As in section 4.4.3 a β-measurement procedure based on a β-prediction procedure
is derived as follows:

Theorem 6.7 (duality of β-prediction procedure and β-measurement procedure)
Let A

(β)
X be a β-prediction procedure according to definition 6.4 and

{A
(β)
X ({d}) | d ∈ D} (6.25)

the resulting set of β-predictions. If⋃
d∈D

A
(β)
X ({d}) = X (D) (6.26)

then for each x ∈ X (D) the sets

{d ∈ D | x ∈ A
(β)
X ({d})} (6.27)

are non-empty subsets of D and are the images of a β-measurement procedure
C

(β)
D , i.e.,

C
(β)
D ({x}) = {d ∈ D | x ∈ A

(β)
X ({d})} . (6.28)

Non-emptiness of C
(β)
D ({x}) for all x ∈ X (D) arises directly through condition

(6.26). The reliability requirement is also met through

β ≤ PX|{d}(A(β)
X|{d}({d})) = PX|{d}({x | d ∈ C(β)({x})}) . (6.29)
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0.8
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A
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X ({0.45}) = [0, 1]

Figure 6.7.: The adjusted β-uncertainty space U (β)
X for X yields a β-measurement

procedure C
(β)
E[X] which assigns to all x ∈ X (D) = [0, 1] a non-empty

subset C
(β)
E[X]({x}) of D.

Example 6.8 None of the β-uncertainty spaces U (β)
X for X in example 6.5 yields

a β-measurement procedure which assures non-emptiness of C
(β)
E[X]({x}) for all

x ∈ X (D). A nearby idea is to assign for all x where C
(β)
E[X]({x}) = ∅ a certain

fixed value m0 ∈ D (see the remarks to theorem 6.11). In the case of U (β)
X in fig-

ure 6.4 this occurs for values x > z0.45(0.9). It makes sense to assign to all such
values x the value 0.45 of E[X] as the measurement result: C

(β)
E[X]({x}) = {0.45}

for all x > z0.45(0.9). With regard to the prediction procedure, this can be achieved
by adding the set {0.45} × [0, 1] to the former β-uncertainty space which is dis-
played in figure 6.7. The result is a β-measurement procedure C

(β)
E[X] which yields

non-empty subsets of D for all x ∈ X (D). For the β-uncertainty spaces displayed
in figures 6.5 and 6.6 a completion may be done very similar.
Figure 6.8 displays a β-uncertainty space U (β)

X based on predictions A
(β)
X ({μ1})

whose union equals X (D). Thus, no further adjustments are necessary to ob-
tain a β-measurement procedure C

(β)
E[X] which yields non-empty meaurement sets

C
(β)
E[X]({x}) for all x ∈ X (D). The predictions are derived as follows: for β ∈

(0, 1) define a function γ(μ1) depending on μ1 ∈ D = [m�, mu] by

γ(μ1) = 1 − β

mu − m�
(μ1 − m�) + β . (6.30)
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0.05 0.45

0.0

0.2

0.4

0.6

0.8

1.0

X

E[X]

UX,E[X]

U (0.9)
X

zμ1(γ(μ1))

zμ1(γ(μ1) − 0.9)

Figure 6.8.: The β-uncertainty space U (β)
X for X needs no further adjustment to

yield a β-measurement procedure, since
⋃

μ1∈D A
(β)
X ({μ1}) = X (D).

That is, γ(μ1) is a linear increasing function in μ1 with γ(m�) = β and γ(mu) = 1.
With the upper quantile function zμ1(γ) from example 6.5 we get predictions
A

(0.9)
X ({μ1}) = [zμ1(γ(μ1) − 0.9), zμ1(γ(μ1))] for μ1 ∈ D whose union equals

X (D) = [0, 1].

Point β-Measurement: As outlined in the introduction to Chapter 4 point
measurement procedures, i.e., point estimators, have in general a reliability of
zero. In [20] this fact is also stressed and it is concluded that “point measurement
should be used only in conjunction with a β-measurement procedure and the
value TD(x) should necessarily be an element of the corresponding β-measurement
C

(β)
D ({x}). If these two conditions are met, the measurement is called a point β-

measurement, and is represented as T
(β)
D (x).” That is, a point measurement is in

general a pointwise mapping

TD : X (D) → D (6.31)

while a point β-measurement additionaly meets the condition that T
(β)
D (x) ∈

C
(β)
D ({x}) for each x ∈ X (D).

Since the use of point measurement is at least disputable, we will not follow up
further analysis.

165



6. Neyman Measurement Procedures

6.3. Neyman Measurement Procedure

Up to now, besides condition (6.26) in theorem 6.7, we have no further guidelines
how to construct a suitable β-prediction procedure which leads to a meaningful
β-measurement procedure. In [17] a construction is developed by taking the
procedure’s precision into account. That is, by demanding that a procedure
should yield minimal measurement sets in the sense of their volume while meeting
a given reliability level.

6.3.1. Measures on UX,D

Since β-measurement sets C
(β)
D ({x}) and β-prediction sets A

(β)
X ({d}) are subsets

in UX,D, it is necessary to derive suitable measures on the measurable space

(UX,D,BUX,D
) . (6.32)

The start might be to find a suitable measure on (D,BD). Two arguments yield
that it should be based on the Lebesgue measure or the counting measure:

• A measurement procedure should yield reliable and precise measurement
sets. Precision of a set is defined by its volume, which is measured by the
Lebesgue measure in case of continuous sets and by the counting measure
in case of discrete sets.

• A measurement procedure should be equally suitable for any d ∈ D, that
is, no value of D is preferred to another. For a continuous set, only the
Lebesgue measure is appropriate in this way, while for a discrete set the
counting measure is appropiate.

For convience, in the following only the continuous case is analysed, i.e., only
continuous sets and absolute continuous measures are considered.

With
|D| =

∫
D

dd , (6.33)

i.e., the Lebesgue measure of D, let

λD(d) = 1
|D|1D(d) . (6.34)
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6.3. Neyman Measurement Procedure

Then a normed geometrical measure denoted by ΛD on (D,BD) is given by:

ΛD(Δ) =
∫
Δ

λD(d) dd for any Δ ∈ BD . (6.35)

ΛD may be interpreted as the marginal measure of D of the pair of variables
(X, D). Note that ΛD is not at all a probability measure, but only the inverse of
a measure of size.

The set of probability distributions PX,D provides the connection between the
measurable sets (D,BD) and (X (D),BX (D)). If PX|{d}(E) as a function of d ∈ D
is measurable for any fixed E ∈ BX (D), then PX|{d} is the conditional probability
measure of X under the condition that the value of D is d. This case is denoted
by X|{d}.

Then, the product measure ΛD ⊗ PX|{d} on (UX,D,BUX,D
) is the joint measure of

the pair of variables (X, D). Now, let U ∈ BUX,D
and its projection into X (D)

with respect to d ∈ D
Ud := {x | (d, x) ∈ U} . (6.36)

Therefore, the product measure ΛD ⊗ PX|{d} of U is

(ΛD ⊗ PX|{d})(U) =
∫
D

⎛⎝ ∫
Ud

fX|{d}(d) dx

⎞⎠λD(d) dd . (6.37)

The second possibility is to start with the marginal probability measure of X.
The marginal density denoted by qX (D)(x) of X is

qX (D)(x) =
∫
D

fX|{d}(x)λD(d) dd =

∫
D

fX|{d}(x) dd

|D| for any x ∈ X (D) . (6.38)

Then, the marginal probability measure QX (D) on (X (D),BX (D)) is

QX (D)(B) =
∫
B

qX (D)(x) dx for any B ∈ BX (D) . (6.39)

Defining the weight function w(x) of x by

w(x) =
∫
D

fX|{d}(x) dd (6.40)
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6. Neyman Measurement Procedures

we may express qX (D)(x) by

qX (D)(x) = w(x)
|D| . (6.41)

With the marginal measure of X at hand, we obtain a conditional measure of D

under the condition that X has the value x, denoted by D|{x}. The density2 of
D|{x} is given for any fixed x ∈ X (D) by

gD|{x}(d) =
fX|{d}(x)λD(d)

qX (D)(x)
=

fX|{d}(x)
w(x)

for any d ∈ D , (6.42)

which yields the measure of D|{x} on (D,BD):

GD|{x}(Δ) =
∫
Δ

gD|{x}(d) dd for any Δ ∈ BD . (6.43)

The product measure QX (D) ⊗ GD|{x} is a second joint measure on (UX,D,BUX,D
)

and equal to ΛD ⊗ PX|{d}. Again, let U ∈ BUX,D
and its projection into D with

respect to x ∈ X (D)

Ux := {d | (d, x) ∈ U} . (6.44)

Then, the product measure QX (D) ⊗ GD|{x} of U is

(QX (D) ⊗ GD|{x})(U) =
∫

X (D)

⎛⎝ ∫
Ux

gD|{x}(d) dd

⎞⎠ qX (D)(x) dx . (6.45)

For any U ∈ BUX,D
it follows

(ΛD ⊗ PX|{d})(U) = (QX (D) ⊗ GD|{x})(U) (6.46)

and

(ΛD ⊗ PX|{d})(UX,D) = (QX (D) ⊗ GD|{x})(UX,D) = 1 (6.47)

2Density should be understood here in the broad sense of Measurement Theory and not in
the narrow sense of Probability Theory.
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6.3. Neyman Measurement Procedure

6.3.2. Evaluating a β-Measurement Procedure

The quality of a measurement procedure is assessed by its reliability and its
precision. The reliability is a predefined requirement leading to β-measurement
procedures, while the precision allows to choose among competing β-measurement
procedures. The precision of the result of a β-measurement procedure C

(β)
D , i.e.,

the measurement set C
(β)
D ({x}) given the observed value x of X, is naturally

quantified by the Lebesgue measure, or the normed geometric volume:

V ({x}) =
∫

C
(β)
D ({x})

λD(d) dd (6.48)

Since the the volume of C
(β)
D ({x}) may vary with the observed value x ∈ X (D)

it is just as natural to consider the expectation of the random volume V ({X}),
i.e., E[V ({X})], with respect to the marginal distribution measure QX (D). The
expectation E[V ({X})] is denoted by Vw(C(β)

D ) and called weighted volume of
the β-measurement procedure. The term volume is justified because, Vw(C(β)

D )
represents in fact a weighted volume of the corresponding β-uncertainty space
U (β)

D . Noting, that the β-uncertainty space U (β)
D of D may be represented in

different ways:

U (β)
D =

⋃
x∈X (D)

C
(β)
D ({x}) × {x} =

⋃
d∈D

{d} × A
(β)
X ({d}) (6.49)

where A
(β)
X ({d} are prediction sets from a suitable β-prediction procedure. Then,

with the measures derived in section 6.3.1 we have several ways to represent
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6. Neyman Measurement Procedures

Vw(C(β)
D ):

Vw(C(β)
D ) =

∫
X (D)

⎛⎜⎜⎝ ∫
C

(β)
D ({x})

λD(d) dd

⎞⎟⎟⎠ qX (D)(x) dx (6.50)

=
∫

U(β)
D

qX (D)(x)λD(d) dx dd (6.51)

=
∫
D

⎛⎜⎜⎝ ∫
A

(β)
X ({d})

qX (D)(x) dx

⎞⎟⎟⎠λD(d) dd (6.52)

From the order of calculation in (6.52) it becomes obvious that the (marginal)
probability of the prediction sets A

(β)
X ({d}) is weighted by the geometrical size of

d, given by λD(d).

Remark: In [77] the derivation of Vw(C(β)
D ) is generalised by introducing an

almost arbitrary weight function w(x) ≥ 0. While V ({x}) is called singular
precision,

Vw(C(β)
D ) =

∫
X (D)

V ({x})w(x) dx , (6.53)

Vw(C(β)
D ) is called global weighted precision of the measurement procedure C

(β)
D .

With
w(x) =

∫
D

fX|{d}(x)
1

|D| dd (6.54)

the weighted volume of [20] follows. Other suitable weight functions are intro-
duced and discussed in [77].

The weighted volume now gives rise to the possibility to compare different β-
uncertainy spaces of D.

Definition 6.9 (optimal β-measurement procedure) Let C
(β)
D and C

(β)
D be

two β-measurement procedures for D. Then C
(β)
D is called more precise than C

(β)
D

if Vw(C(β)
D ) < Vw(C(β)

D ). A β-measurement procedure ∗C(β)
D for D is called optimal

if Vw(∗C(β)
D ) ≤ Vw(C(β)

D ) for any other β-measurement procedure C
(β)
D of D.
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6.3. Neyman Measurement Procedure

In commemoration and to emphasize that the underlying ideas go back to Jerzy
Neyman [57], the authors of [17] name an optimal β-measurement procedure ∗C(β)

D

Neyman β-measurement procedure.

Example 6.10 We want to calculate the weighted volume Vw(C(β)
E[X]) of the β-

measurement procedures derived in example 6.8. First, we recall the components
of the Bernoulli-space BX,E[X]

D = {μ1 | 0.05 ≤ μ1 ≤ 0.45} ,

X ({μ1}) = {x | 0 ≤ x ≤ 1} ,

P(μ1) = Mon(0, 1, μ1) = Mon(μ1) .

The calculation should be performed according to equation (6.52). The involved
functions are

• the density functions fX|{μ1} of X|{μ1}:

fX|{μ1}(x) = λ(μ1)
eλ(μ1) − 1

eλ(μ1)x1[0,1](x) (6.55)

• the density λD of the marginal measure ΛD of E[X]:

λD(μ1) = 1
|D|1D(μ1) = 1

0.45 − 0.05
1[0.05,0.45](μ1) = 2.5 · 1[0.05,0.45](μ1)

(6.56)

• the weight function w(x):

w(x) =
∫
D

fX|{μ1}(x) dμ1 =
0.45∫

0.05

λ(μ1)
eλ(μ1) − 1

eλ(μ1)x1[0,1](x) dμ1 (6.57)

• the marginal density qX (D)(x) of X:

qX (D)(x) =
w(x)
|D| = 2.5 ·

0.45∫
0.05

λ(μ1)
eλ(μ1) − 1

eλ(μ1)x1[0,1](x) dμ1 (6.58)

Obviously, the integrations cannot be done analytically, but only by numerical
methods. Recalling, that we have a functional form of μ1(λ) and, therefore, its
derivative with respect to λ is given by (see proof to proposition 3.3)

dμ1

dλ
= 1 + e2λ − eλ(2 + λ2)

(eλ − 1)2λ2 (6.59)
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6. Neyman Measurement Procedures

Now, by substitution of dμ1 in (6.57) and adjustment of the integration limits
we obtain for the weight function

w(x) =
λ(0.45)∫

λ(0.05)

λ

eλ − 1
eλx · 1 + e2λ − eλ(2 + λ2)

(eλ − 1)2λ2 1[0,1](x) dλ (6.60)

Even though, the integral still cannot be calculated analytically, the amount for
the numerical calculation is reduced through a reduced number of evaluations of
λ(μ1) in (6.60). Then, we get for the weighted volume Vw(C(β)

E[X]) the following

Vw(C(β)
E[X]) = 1

0.42

0.45∫
0.05

( ∫
A

(β)
X ({μ1})

( λ(0.45)∫
λ(0.05)

λ

eλ − 1
eλx·

· 1 + e2λ − eλ(2 + λ2)
(eλ − 1)2λ2 1[0,1](x) dλ

)
dx

)
dμ1 (6.61)

The 0.9-measurement procedure C
(0.9)
E[X] based on predictions A

(0.9)
X ({μ1}) = [0, zμ1(0.9)]

for μ1 ∈ [0.05, 0.45) and A
(0.9)
X ({0.45}) = [0, 1] for μ1 = 0.45 as displayed in figure

6.7 has a weighted volume of

Vw(C(0.9)
E[X]) = 0.819061 . (6.62)

For the 0.9-measurement procedure Ĉ
(0.9)
E[X] based on predictions A

(0.9)
X ({μ1}) =

[zμ1(γ(μ1) − 0.9), zμ1(γ(μ1))] (see figure 6.8) we get a weighted volume of

Vw(Ĉ(0.9)
E[X]) = 0.761537 . (6.63)

That is, Ĉ
(0.9)
E[X] is more precise than C

(0.9)
E[X]. A comparison of the (normed) geo-

metrical sizes of the 0.9-uncertainty spaces in figures 6.7 and 6.8, would mislead
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to just the opposite conclusion:

|C(0.9)
E[X]| = 1

0.4

0.45∫
0.05

( zμ1 (0.9)∫
0

1 dx

)
dμ1

= 2.5 ·
0.45∫

0.05

zμ1(0.9) dμ1 (6.64)

= 0.548241

|Ĉ(0.9)
E[X]| =

1
0.4

0.45∫
0.05

( zμ1 (γ(μ1))∫
zμ1 (γ(μ1)−0.9)

1 dx

)
dμ1

= 2.5 ·
0.45∫

0.05

zμ1(γ(μ1)) − zμ1(γ(μ1) − 0.9) dμ1 (6.65)

= 0.631260

6.3.3. Determination of a Neyman β-Measurement Procedure

Again, from (6.52) it becomes clear, that finding an Neyman β-measurement pro-
cedure is traced back to finding a β-prediction procedure which yields prediction
sets A

(β)
X ({d}) meeting three requirements:

• probability PX|{d}(A(β)
X ({d})) = β (reliability requirement)

• the union over all d ∈ D equals X (D) (completeness requirement)

• minimal marginal probability QX (D)(A(β)
X ({d})) (precision requirement)

In [77] we find a generalised theorem to this problem, which we adapt to our case:

Theorem 6.11 (construction of a Neyman β-measurement procedure)
Let ∗A(β)

X be a β-prediction procedure with the following properties: For each d ∈ D
there is a constant r∗(d) with

PX|{d}(∗A
(β)
X ({d})) = β , (6.66)

x ∈ ∗A(β)
X ({d}) =⇒ fX|{d}(x) ≥ r∗(d) · w(x) , (6.67)

x ∈ ∗A(β)
X ({d}) ⇐= fX|{d}(x) > r∗(d) · w(x) . (6.68)
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Then, the β-measurement procedure based on ∗A(β)
X is a Neyman β-measurement

procedure, i.e.,

∗C(β)
D ({x}) = {d | x ∈ ∗A

(β)
X ({d})} for any x ∈ X (D) . (6.69)

Proof of 6.11: The proof in [77] works for any weight function w(x) and is given
here in a slightly adapted way. It will be shown, that Vw(∗C(β)

D ) ≤ Vw(C(β)
D ) for

any β-measurement procedure C
(β)
D . Since every β-measurement procedure C

(β)
D

also defines a β-prediction procedure A
(β)
X , with (6.52) it is sufficient to show that

for all d ∈ D the inequality∫
∗A

(β)
X ({d})

qX (D)(x) dx ≤
∫

A
(β)
X ({d})

qX (D)(x) dx (6.70)

holds. With qX (D)(x) = w(x)
|D| , we show the equivalent inequality∫

∗A
(β)
X ({d})

w(x) dx ≤
∫

A
(β)
X ({d})

w(x) dx . (6.71)

Since we only consider the absolute continuous case, we have the following two
equations

β =
∫

∗A
(β)
X ({d})

fX|{d}(x) dx

=
∫

∗A
(β)
X ({d})∩A

(β)
X ({d})

fX|{d}(x) dx +
∫

∗A
(β)
X ({d})\A

(β)
X ({d})

fX|{d}(x) dx (6.72)

and

β =
∫

A
(β)
X ({d})

fX|{d}(x) dx

=
∫

A
(β)
X ({d})∩∗A

(β)
X ({d})

fX|{d}(x) dx +
∫

A
(β)
X ({d})\∗A

(β)
X ({d})

fX|{d}(x) dx (6.73)

which together imply∫
∗A

(β)
X ({d})\A

(β)
X ({d})

fX|{d}(x) dx =
∫

A
(β)
X ({d})\∗A

(β)
X ({d})

fX|{d}(x) dx . (6.74)
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We get

r∗(d)
∫

∗A
(β)
X ({d})

w(x) dx = r∗(d)
∫

∗A
(β)
X ({d})∩A

(β)
X ({d})

w(x) dx + r∗(d)
∫

∗A
(β)
X ({d})\A

(β)
X ({d})

w(x) dx (6.75)

(6.67)
≤ r∗(d)

∫
∗A

(β)
X ({d})∩A

(β)
X ({d})

w(x) dx +
∫

∗A
(β)
X ({d})\A

(β)
X ({d})

fX|{d}(x) dx (6.76)

(6.74)= r∗(d)
∫

∗A
(β)
X ({d})∩A

(β)
X ({d})

w(x) dx +
∫

A
(β)
X ({d})\∗A

(β)
X ({d})

fX|{d}(x) dx (6.77)

(6.68)
≤ r∗(d)

∫
∗A

(β)
X ({d})∩A

(β)
X ({d})

w(x) dx + r∗(d)
∫

A
(β)
X ({d})\∗A

(β)
X ({d})

w(x) dx (6.78)

= r∗(d)
∫

A
(β)
X ({d})

w(x) dx (6.79)

and thus, inequality (6.71) follows.

Remarks: In contrast to the properties (6.66)–(6.68) which the prediction pro-
cedure and its prediction sets, respectively, have to meet according to theorem
6.11, it is concluded in [17] that the prediction sets are obtained by the rule:

∗A
(β)
X ({d}) =

{
x ∈ X (D)

∣∣∣∣ fX|{d}(x)
w(x)

≥ r∗(d)
}

(6.80)

with r∗(d) defined by ∫
{

x∈X (D)
∣∣∣∣ fX|{d}(x)

w(x) ≥r∗(d)
}fX|{d}(x) dx = β . (6.81)

If (6.81) does always yield a solution r∗(d), relations (6.67) and (6.68) might be
combined into one equivalence relation. But this is not true in general. Consider
the case that for some d ∈ D we have

0 < PX|{d}

({
x

∣∣∣∣ fX|{d}(x)
w(x)

> r∗(d)
})

= γ < β (6.82)
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and a set E({d}) =
{

x
∣∣∣ fX|{d}(x)

w(x) = r∗(d)
}

with

PX|{d}(E({d})) > β − γ . (6.83)

Then it would follow

PX|{d}

({
x

∣∣∣∣ fX|{d}(x)
w(x)

≥ r∗(d)
})

=

= PX|{d}

({
x

∣∣∣∣ fX|{d}(x)
w(x)

> r∗(d)
}

∪ E({d})
)

=

= PX|{d}

({
x

∣∣∣∣ fX|{d}(x)
w(x)

> r∗(d)
})

+ PX|{d}(E({d})) > β . (6.84)

To get a probability equal to β it would be necessary to choose some subset
E ′({d}) ⊂ E({d}) with PX|{d}(E ′({d})) = β−γ. In fact, this ambiguity is avoided
in theorem 6.11 by the required properties (6.66)–(6.68) for the predicition sets.

As stated in [77], it might happen that the measurement procedure ∗C(β)
D con-

structed according to theorem 6.11 violates the completeness requirement. It is
suggested to proceed in the following way (see [77], p. 17, with adapted nota-
tions):

Map for all x with ∗C(β)
D ({x}) = ∅ some fixed value d0 ∈ D. Then the

reliability requirement is still fulfilled, because the prediction region
[set] AX({d0}) is not smaller than before. As the Lebegue-measure of
∗C(β)

D ({x}) = {d0} equals zero the global precision [weighted volume]
Vw remains unchanged, i.e. optimal.

6.3.4. Example

In this section we develop the Neyman β-measurement procedure ∗C(β)
E[X] for the

Bernoulli-Space BX,E[X]. Since the general case will be discussed in detail in
Chapter 7, proofs with respect to the courses of the involved functions are omit-
ted.

We choose the same setting as in example 6.10 where we have already derived the
necessary functions qX (D) and w(x), respectively, to determine the β-prediction

176



6.3. Neyman Measurement Procedure

procedure ∗A(β)
X which yields the Neyman β-measurement procedure ∗C(β)

E[X]. That
is, for each value μ1 of E[X] we have to identify a constant r∗(μ1), so that (6.66)–
(6.68) are met. In fact, for the monotonic distribution, relations (6.67) and (6.68)
can be replaced by the equivalence relation yielding (6.80).

First, we illustrate the behaviour of the ratio fX|{μ1}(x)
w(x) for some values μ1 in

figure 6.9. For the smallest value μ1 = 0.05 of E[X] the ratio is monotonously
decreasing in x, i.e., we get the prediction ∗A(β)

X ({0.05}) = [0, z0.05(β)], where
zμ1(β) denotes the upper quantile function of X|{μ1}. For larger values μ1 the
ratio becomes unimodal, and monotonously increasing in x from a certain value
μ1 on. For the largest value μ1 = 0.45 of E[X] this course yields a prediction
∗A(β)

X ({0.45}) = [z0.45(1 − β), 1]. The change of the ratio’s course indicates, that
both, the upper and lower bound of the predictions are monotonously increasing.
The lower bound keeps to be 0 at the beginning and then increases to the final
value z0.45(1 − β), while the upper bound increases from z0.05(β) on till it reaches
1:

• ∗A(β)
X ({μ1}) = [0, zμ1(β)] for all μ1 where

fX|{μ1}(0)
w(0)

≥ fX|{μ1}(zμ1(β))
w(zμ1(β))

(6.85)

• ∗A(β)
X ({μ1}) = [zμ1(1 − β), 1] for all μ1 where

fX|{μ1}(zμ1(1 − β))
w(zμ1(1 − β))

≤ fX|{μ1}(1)
w(1)

(6.86)

• ∗A(β)
X ({μ1}) = [�X(μ1), uX(μ1)] for all μ1 where

fX|{μ1}(�X(μ1))
w(�X(μ1))

=
fX|{μ1}(uX(μ1))

w(uX(μ1))
(6.87)

fX|{μ1}(0)
w(0)

<
fX|{μ1}(�X(μ1))

w(�X(μ1))
(6.88)

fX|{μ1}(1)
w(1)

<
fX|{μ1}(uX(μ1))

w(uX(μ1))
(6.89)

The difficult part in the determination of the predictions ∗A(β)
X ({μ1}) is repre-

sented by the last case ∗A
(β)
X ({μ1}) = [�X(μ1), uX(μ1)]. Obviously, �X(μ1) and
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Figure 6.9.: The course of the ratio fX|{μ1}(x)
w(x) for different values μ1.
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(b) Detail of 6.10(a) for μ1 ∈
[0.18, 0.24]

Figure 6.10.: Comparison of the ratios in relation (6.85). For all μ1 ≤ 0.21094
the ratio’s value for x = 0 is at least as large as for zμ1(0.9).

uX(μ1) cannot be determined analytically and, thus, numerical methods have to
be applied. But we can already conclude, that for �X(μ1) and uX(μ1), respec-
tively, the following two relations hold

0 < �X(μ1) < zμ1(1 − β) (6.90)

zμ1(β) < uX(μ1) < 1 (6.91)

which help to set up the necessary numerical methods.
For β = 0.9 figures 6.10 and 6.11 illustrate the respective ratios in relations (6.85)
and (6.86), respectively.

Numerical analysis yields:

• For all 0.05 ≤ μ1 ≤ 0.21094 we have (see figure 6.10)
fX|{μ1}(0)

w(0)
≥ fX|{μ1}(zμ1(0.9))

w(zμ1(0.9))
(6.92)

and, thus,
∗A

(0.9)
X ({μ1}) = [0, zμ1(0.9)] (6.93)

• For all 0.27316 ≤ μ1 ≤ 0.45 we have (see figure 6.11)
fX|{μ1}(zμ1(0.1))

w(zμ1(0.1))
≤ fX|{μ1}(1)

w(1)
(6.94)

and, thus,
∗A

(0.9)
X ({μ1}) = [zμ1(0.1), 1] (6.95)
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Figure 6.11.: Comparison of the ratios in relation (6.86). For all μ1 ≥ 0.27316
the ratio’s value for x = 1 is at least as large as for zμ1(0.1).

• For 0.21094 < μ1 < 0.27316 we cannot give a somehow analytic expression
of the predictions ∗A

(0.9)
X ({μ1}). In table 6.1 we find predictions for some

values of μ1.

Finally, we get an optimal 0.9-uncertainty space U (0.9)
X for X illustrated in figure

6.12 which yields the Neyman 0.9-measurement procedure ∗C(0.9)
E[X]. Calculating

the weighted volume yields

Vw(∗C(0.9)
E[X]) = 0.747112 (6.96)

which is, of course, smaller than Vw(Ĉ(0.9)
E[X]) = 0.761537 in example 6.10. It is

remarkable, that the geometric volume is 0.651072 – which is even larger than
the values for both procedures in example 6.10. To end this example we give
measurements ∗C(0.9)

E[X]({x}) = [�E[X](x), uE[X](x)] = {μ1 | x ∈ ∗A
(0.9)
X ({μ1})} for

some values x in table 6.2.
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6.3. Neyman Measurement Procedure

∗A(0.9)
X ({μ1}) = [�X(μ1), uX(μ1)]

μ1 �X(μ1) uX(μ1)

0.215 0.001767 0.516281
0.225 0.006198 0.583591
0.235 0.010815 0.656465
0.245 0.015712 0.735626
0.255 0.020998 0.821901
0.265 0.026799 0.916254
0.270 0.029937 0.966807

Table 6.1.: ∗A
(0.9)
X ({μ1}) = [�(μ1), u(μ1)] for some values μ1.

0.05 0.45

0.0

0.2

0.4

0.6

0.8

1.0

X

E[X]

UX,E[X]

U (0.9)
X

Figure 6.12.: Optimal β-uncertainty space U (0.9)
X for X with respect to the

weighted volume Vw. The corresponding 0.9-measurement proce-
dure ∗C(0.9)

E[X] is the Neyman 0.9-measurement procedure.
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6. Neyman Measurement Procedures

∗C
(0.9)
E[X]({x}) = [�E[X](x), uE[X](x)]

x �E[X](x) uE[X](x)

0.025 0.05 0.262
0.05 0.05 0.364
0.1 0.05 0.45
0.2 0.086 0.45
0.4 0.172 0.45
0.6 0.227 0.45
0.8 0.252 0.45

Table 6.2.: Measurements ∗C
(0.9)
E[X]({x}) = [�E[X](x), uE[X](x)] for some values x.
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6.4. Bernoulli-Spaces for Statistical Distributions

In Chapter 4 we have presented the common methods of statistical estimation
theory. The main part in traditional estimation is represented by the asssumed
probability distribution. The choice is in general not backed by realistic con-
siderations about the random phenomenon, but by the feasibility of the applied
methods. The parts which are often not considered are the bounded range of
variability and a bounded ignorance space, i.e., available knowledge about the
random phenomenon. Additionally, not taking a bounded range of variability
into account prevent the derivation of measurement procedures with respect to
these bounds.

Nevertheless, the choice of a statistical distribution and an unbounded range of
variability might be reasonable in cases where two conditions are fulfilled:

• the statistical distribution is a sufficiently good approximation, and

• the distribution parameter to be measured is almost independent of the
range of variability.

In these cases, we may establish a Bernoulli-Space and derive suitable measure-
ment procedures, which also incorporate knowledge about the values of the dis-
tribution parameters, i.e., a bounded ignorance space might be considered.

Examples of measurement procedures based on a normal random variable are
given in [17] and [77] for measuring the expectation and in [18] for measuring
the variance. Throughout Chapter 4 we have illustrated the traditional methods
of estimation mostly with the one-parametric exponential distribution EXP (ϑ).
While we have derived methods for estimation of the value ϑ, we want to derive
a Neyman measurement procedure for the expectation E[X] of an exponential
distributed random variable X in the remainder.

Let X be a random variable distributed according to the exponential distribution
∼ EXP (ϑ) where ϑ is the reciprocal of the value μ1 of the expectation of X,
i.e., E[X] = μ1 = 1

ϑ
. We have the pair of variables (X, E[X]) together with the

conditional density function

fX|{μ1}(x) =
1
μ1

e−x/μ11[0,+∞)(x) (6.97)
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6. Neyman Measurement Procedures

The range of variability of X|{μ1} is given by

X ({μ1}) = {x | 0 ≤ x < +∞} = [0, +∞) , (6.98)

which is independent of the value μ1. Unboundedness of X ({μ1}) is in fact an
extreme violation to reality, but should be considered to be acceptable for deriving
a measurement procedure for E[X].

The deterministic variable is the expectation E[X] with ignorance space given by

D = {μ1 | 0 < m� ≤ μ1 ≤ mu < +∞} = [m�, mu] . (6.99)

Then the uncertainty space is

UX,E[X] = [m�, mu] × [0, +∞) . (6.100)

The weight function w(x) and, thus, the ratio fX|{μ1}(x)
w(x) cannot be given in an

explicit form. For x ≥ 0 we have:

w(x) =
mu∫

m�

fX|{μ1}(x) dμ1 =
x/m�∫

x/mu

1
t
e−t dt (6.101)

fX|{μ1}(x)
w(x)

=
1

μ1
e−x/μ1

x/m�∫
x/mu

1
t
e−t dt

(6.102)

For a graphical illustration we choose the same ignorance space as in section
6.3.4, i.e., m� = 0.05 and mu = 0.45. The graphics of the ratio fX|{μ1}(x)

w(x) in figure
6.13 for different values μ1 are very similar to those in figure 6.9 for the mono-
tonic distribution. However, we have to note the different displayed x-ranges.
Determination of the respective predictions works also similar as in section 6.3.4.
For D = {μ1 | 0.05 ≤ μ1 ≤ 0.45} and β = 0.9 we have:

• For all values 0.05 ≤ μ1 ≤ 0.195246 the ratio’s value fX|{μ1}(x)
w(x) is for x = 0

at least as large as for x = zμ1(0.9), where zμ1(γ) is the upper quantile
function. Thus, the predictions are

A
(0.9)
X ({μ1}) = [0, zμ1(0.9)] (6.103)
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Figure 6.13.: The course of the ratio fX|{μ1}(x)
w(x) for different values μ1.
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∗A(0.9)
X ({μ1}) = [�X(μ1), uX(μ1)]

μ1 �X(μ1) uX(μ1)

0.2 0.002367 0.485559
0.25 0.021784 1.025323
0.3 0.031340 2.137088
0.35 0.036876 4.828779
0.375 0.039510 7.893876
0.39 0.041091 11.211820
0.4 0.042144 > 12
0.45 0.047412 +∞

Table 6.3.: ∗A
(0.9)
X ({μ1}) = [�(μ1), u(μ1)] for some values μ1.

• For all values 0.195246 < μ1 < 0.45 the predictions are of form

A
(0.9)
X ({μ1}) = [�(μ1), u(μ1)] (6.104)

with 0 < �(μ1) < zμ1(0.1) and zμ1(0.9) < u(μ1) < +∞ and, of course,
PX|{μ1}({x|�(μ1) ≤ x ≤ u(μ1)}) = 0.9.

• For μ1 = mu = 0.45 the ratio fX|{0.45}(x)
w(x) is monotonously increasing in

x. That is, the corresponding prediction A
(β)
X ({0.45}) is unbounded to the

right:
A

(0.9)
X ({0.45}) = [z0.45(0.1), +∞) (6.105)

In table 6.3 some predictions ∗A
(0.9)
X ({μ1}) for certain values μ1 are displayed.

Figure 6.14 shows the resulting β-uncertainty space U (0.9)
X for X. For a com-

parison the β-uncertainty space from section 6.3.4 where X ∼ Mon(μ1) is also
plotted. To complete this example, we present measurements ∗C(0.9)

E[X]({x}) =
[�E[X](x), uE[X](x)] for some values x in table 6.4. In fact, since the exponential
distribution serves as an approximation to the monotonic distribution, values
x > 1 are impossible to appear.
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Figure 6.14.: Optimal β-uncertainty space U (0.9)
X for X ∼ EXP (1/μ1) with

respect to the weighted volume Vw. The corresponding 0.9-
measurement procedure ∗C(0.9)

E[X] is the Neyman 0.9-measurement pro-
cedure. The light grey area and the dashed lines indicate the un-
certainty space and the optimal β-uncertainty space, respectively,
for X ∼ Mon(μ1).
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6. Neyman Measurement Procedures

A comparison to the measurements in table 6.2 shows that the measurements
here are larger. That is, if the exponential distribution EXP (1/μ1) is considered
as an approximation for the monotonic distribution Mon(μ1), a measurement
procedure based on this approximation yields larger measurements.

∗C
(0.9)
E[X]({x}) = [�E[X](x), uE[X](x)]

x �E[X](x) uE[X](x)

0.01 0.05 0.217
0.025 0.05 0.263
0.05 0.05 0.45
0.1 0.05 0.45
0.2 0.086 0.45
0.4 0.173 0.45
0.8 0.239 0.45
2 0.295 0.45
4 0.339 0.45

Table 6.4.: Measurements ∗C
(0.9)
E[X]({x}) = [�E[X](x), uE[X](x)] for some values x.
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7. Neyman Measurement
Procedures for Mon(a, b, μ1)

In section 6.3.4 the Neyman β-measurement procedure for the expectation E[X]
for X ∼ Mon(0, 1, μ1) and ignorance space D = {μ1 | 0.05 ≤ μ1 ≤ 0.45} is
derived. The measurements are based on one realisation x of X, i.e., on a sample
of size one. Even though statistical estimation based on small sample sizes is
of great importance, the considered sample size is commonly larger than one.
Thus, the derivation of Neyman β-measurement procedures ∗C(β)

E[X] for E[X] are
extended to the case of an arbitrary sample size n ≥ 1. For this, we will assume
complete knowledge about the range of variability of X, i.e., lower and upper
bound are both known. The results of the Neyman β-measurement procedures
are compared with those based on the exponential distribution – which could
be understood as an approximation of the monotonic distribution. Additionally,
we compare the Neyman β-measurement procedures with interval estimations 1)
based on the likelihood ratio test statistic (where the knowledge about the values
of E[X] may be incorporated), and 2) based on the normal approximation. Also,
both could be understood as approximations.

The chapter concludes with a proposal of an approximative measurement pro-
cedure for the upper bound B of the range of variability, where both, the lower
bound A and the expectation E[X] are assumed to be known. In classical statis-
tics, methods for estimating the bounds of a range of variability are on the one
hand often unnecessary due to its unboundedness, and on the other hand con-
centrate on the derivation of point estimators1. Therefore, no comparison is at
hand and consequently omitted.

1For example for the beta distribution, [40] gives an extensive overview of point estimators.
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7.1. General Assumptions and Notations

Let X = (X1, . . . , Xn) be an i.i.d. sample for X ∼ Mon(a, b, μ1). Ignorance
about the value d = (a, b, μ1) of the deterministic variable D = (A, B, E[X])
can refer to all three, two or only one of its components. Since we also have
qualitative knowledge about the monotonicity of the density function, i.e., we
know whether it is increasing or decreasing, the values of (A, B, E[X]) are subject
to some restrictions. From corollary 3.12 we know, that if X ∼ Mon(a, b, μ1) then
−X ∼ Mon(−b, −a, −μ1). That is, without loss of generality we may only discuss
the case of a monotonously decreasing density function. For each component of
the deterministic variable we could assume an individual range:

• The component of the deterministic variable denoted by A stands for the
lower bound of the range of variability, the values are denoted by a with
a ∈ [a�, au] =: DA.

• The component of the deterministic variable denoted by B stands for the
upper bound of the range of variability, the values are denoted by b with
b ∈ [b�, bu] =: DB.

• The component of the deterministic variable denoted by E[X] is, of course,
the expectation of X, the values are denoted by μ1 with μ1 ∈ [m�, mu] =:
DE[X].

The ignorance space D for D then is not just the cross-product of the individual
ranges, but is restricted by two inequalities:

• Trivially, the value a of the lower bound of the range of variability is smaller
than the value b of the upper bound: a < b

• Since the density function is assumed to be decreasing, we have: a < μ1 <
a+b

2

Therefore, we get as ignorance space

D =
{

(a, b, μ1) | a� ≤ a ≤ au, b� ≤ b ≤ bu, m� ≤ μ1 ≤ mu,

a < μ1 <
a + b

2
< b

}
(7.1)

In the following sections we derive measurement procedures for E[X] and B,
respectively, while the values of the others are assumed to be known.
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7.2. Measurement Procedures for E[X]

7.2.1. Neyman Measurement Procedures for E[X]

In this case the value a of the lower bound A and the value b of the upper bound
B of the range of variability are known and there is only ignorance about the
value μ1 of the expectation E[X] of X. Then the deterministic variable can be
identified with the expectation, i.e., D = E[X], with ignorance space:

D =
{

μ1

∣∣∣∣ a < m� ≤ μ1 ≤ mu <
a + b

2

}
. (7.2)

Later, it will be shown, that we may assume a = 0 and b = 1 without loss of
generality, that is, we may assume X ∼ Mon(μ1). Then we have:

D =
{

0 < μ1

∣∣∣∣m� ≤ μ1 ≤ mu <
1
2

}
. (7.3)

According to proposition 6.11 we need the following functions for determining
β-prediction procedures ∗A(β)

X :

• The density functions fX|{μ1} and fX|{μ1} of X|{μ1} and X|{μ1}, respec-
tively:

fX|{μ1}(x) = λ(μ1)
eλ(μ1) − 1

eλ(μ1)x1[0,1](x) , (7.4)

fX|{μ1}(x) =
(

λ(μ1)
eλ(μ1) − 1

)n

e
λ(μ1)(

n∑
i=1

xi)
1[0,1]n(x) (7.5)

• The weight function w (according to example 6.10):

w(x) =
mu∫

m�

(
λ(μ1)

eλ(μ1) − 1

)n

e
λ(μ1)(

n∑
i=1

xi)
1[0,1]n(x) dμ1 (7.6)

=
λ(mu)∫

λ(m�)

(
λ

eλ − 1

)n

e
λ(

n∑
i=1

xi) · 1 + e2λ − eλ(2 + λ2)
(eλ − 1)2λ2 1[0,1]n(x) dλ (7.7)

We note, that both functions fX|{μ1}(x) and w(x) only depend on the sum
n∑

i=1
xi

of the components xi of x ∈ [0, 1]n. Consequently, for x, y ∈ [0, 1]n with
n∑

i=1
xi =
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n∑
i=1

yi we have:

fX |{μ1}(x) = fX |{μ1}(y) , (7.8)

w(x) = w(y) (7.9)

and, thus:

fX|{μ1}(x)
w(x)

=
fX|{μ1}(y)

w(y)
(7.10)

Since the monotonic distribution is absolute continuous on the range of variability,
we do not have to take into account the case discussed in the remarks to section
6.3.3, and the prediction sets are obtained by the rule (6.80). Defining t :=

n∑
i=1

xi,

we conclude, that if one x ∈ ∗A(β)
X ({μ1}) ⊆ [0, 1]n then the whole set:

{
y ∈ [0, 1]n

∣∣ n∑
i=1

yi = t)
}

(7.11)

is part of ∗A(β)
X ({μ1}). In the following, we take X := 1

n

∑n
i=1 Xi instead of∑n

i=1 Xi. This choice enables us to better illustrate the change of the derived
procedures with respect to the sample size n, since the range of variability of
X remains unchanged, i.e., [0, 1]. The respective prediction sets for X may be
transformed to prediction sets for X. Firstly, we have:

∗A(β)
X ({μ1}) =

{
x

∣∣∣∣ fX |{μ1}(x)
w(x)

≥ r∗(μ1)

}
(7.12)

=

{
x

∣∣∣∣
(

λ(μ1)
eλ(μ1)−1

)n

e
λ(μ1)(

n∑
i=1

xi)

mu∫
m�

(
λ(μ1)

eλ(μ1)−1

)n

e
λ(μ1)(

n∑
i=1

xi)
dμ1

≥ r∗(μ1)

}
(7.13)

=

{
x

∣∣∣∣
(

λ(μ1)
eλ(μ1)−1

)n

eλ(μ1)nx

mu∫
m�

(
λ(μ1)

eλ(μ1)−1

)n

eλ(μ1)nx dμ1

≥ r∗(μ1)

}
. (7.14)
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With the density of X given by (3.123) following proposition 3.19 we get with
the corresponding weight function:

w(x) =
mu∫

m�

n

(
λ(μ1)

eλ(μ1) − 1

)n

eλ(μ1)nxf n∑
i=1

Ui

(nx) dμ1 (7.15)

= nf n∑
i=1

Ui

(x)
mu∫

m�

(
λ(μ1)

eλ(μ1) − 1

)n

eλ(μ1)nx dμ1 , (7.16)

yielding the ratio for x ∈ [0, 1]:

fX |{μ1}(x)
w(x)

=
n
(

λ(μ1)
eλ(μ1)−1

)n

eλ(μ1)nxf n∑
i=1

Ui

(nx)

nf n∑
i=1

Ui

(nx)
mu∫
m�

(
λ(μ1)

eλ(μ1)−1

)n

eλ(μ1)nx dμ1

(7.17)

=

(
λ(μ1)

eλ(μ1)−1

)n

eλ(μ1)nx

mu∫
m�

(
λ(μ1)

eλ(μ1)−1

)n

eλ(μ1)nx dμ1

(7.18)

=
fX|{μ1}(x)

w(x)
. (7.19)

Thus, the prediction sets for X are obtained as follows:

∗A(β)
X

({μ1}) =

{
x

∣∣∣∣ fX|{μ1}(x)
w(x)

≥ r∗(μ1)

}
(7.20)

=

{
x

∣∣∣∣
(

λ(μ1)
eλ(μ1)−1

)n

eλ(μ1)nx

mu∫
m�

(
λ(μ1)

eλ(μ1)−1

)n

eλ(μ1)nx dμ1

≥ r∗(μ1)

}
(7.21)

=

{
x

∣∣∣∣
(

λ(μ1)
eλ(μ1)−1

)n

e
λ(μ1)

n∑
i=1

xi

mu∫
m�

(
λ(μ1)

eλ(μ1)−1

)n

e
λ(μ1)

n∑
i=1

xi

dμ1

≥ r∗(μ1)

}
. (7.22)

Consequently, the determination of prediction sets for X is equivalent to the de-
termination of prediction sets for X. But since, X is an one-dimensional random
variable, it is much easier to determine the respective prediction set ∗A(β)

X
({μ1})
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7. Neyman Measurement Procedures for Mon(a, b, μ1)

meeting the reliability requirement:

PX|{μ1}
(

∗A(β)
X

({μ1})
)

= β . (7.23)

At first, we want to get an impression about the course of the ratio
f

X|{μ1}(x)
w(x) by

an example. The proposed settings in the example will be used throughout this
chapter.

Example 7.1 Let (X1, . . . , Xn) be an i.i.d. sample for X ∼ Mon(μ1), where μ1

is the value of the deterministic variable D = E[X] with ignorance space given
by:

D = {μ1 | 0.05 ≤ μ1 ≤ 0.25} . (7.24)

Since X1, . . . , Xn are i.i.d., the ignorance space for E[X] = E[X] is the same.
The range of variability of X is

X ({μ1}) = [0, 1] , (7.25)

i.e., independent of μ1. Thus, the uncertainty space UX,E[X] for the pair of vari-
ables (X, E[X]) forms an rectangle in the E[X]-X-plane:

UX,E[X] = [0.05, 0.25] × [0, 1] . (7.26)

Up to now, the situation displayed in figure 7.1 is quite the same as in examples
6.2 and 6.5. [!htbp] To display the ratio

f
X|{μ1}(x)

w(x) for some values of E[X], we
choose n = 8 as fixed sample size.

The ratio’s course depending on the value of x may be described as follows: For
μ1 = m� = 0.05 the ratio is monotonously decreasing in x (figure 7.2(a)). For
some m1 and m2 with m� < m1 ≤ μ1 ≤ m2 < mu, the course is unimodal in the
inner of X , i.e., on (0, 1) (figures 7.2(b) - 7.2(h)). For m2 < μ1 the course is
monotonously increasing in x (figure 7.2(i)).

First, the change from monotonously decreasing to unimodality to monotonously
increasing of the ratio’s course shall be investigated. Defining

g(λ, x) :=
(

λ

eλ − 1

)n

eλnx , (7.27)
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0

1

X

m� = 0.05 mu = 0.25E[X]

UX,E[X]

Figure 7.1.: Uncertainty space UX,E[X], where X|{μ1} ∼ Mon(0, 1, μ1) and μ1 ∈
D = {μ1|m� = 0.05 ≤ μ1 ≤ 0.25 = mu}. Because there is only igno-
rance about the expectation E[X] = E[X] of X and X, respectively,
we consider E[X] as the deterministic variable D.

we obtain:
fX|{μ1}(x)

w(x)
=

g(λ, x)
w(x)

. (7.28)

With λ0 = λ(μ1) for μ1 ∈ D ⊂ (0, 0.5), i.e., λ0 < 0, and

c(λ) :=
1 + e2λ − eλ(2 + λ2)

(eλ − 1)2λ2 , (7.29)

we get

d
dx

g(λ0, x)
w(x)

=
w(x)λ0ng(λ0, x) − g(λ0, x)

λ(mu)∫
λ(m�)

λng(λ, x)c(λ) dλ

(w(x))2 . (7.30)

Since g(λ0, x) > 0 and w(x) > 0 for all x ∈ [0, 1], setting d
dx

g(λ0, x)
w(x)

= 0 we

immediately get:

λ0w(x) −
λ(mu)∫

λ(m�)

λg(λ, x)c(λ) dλ = 0 . (7.31)

Solving for λ0 yields:

λ0 =

λ(mu)∫
λ(m�)

λg(λ, x)c(λ) dλ

w(x)
. (7.32)
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Figure 7.2.: The course of the ratio
f

X|{μ1}(x)
w(x) for fixed sample size n = 8 and

different values μ1.
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7.2. Measurement Procedures for E[X]

If there is a value x ∈ (0, 1) which satisfies (7.32), the ratio
f

X|{μ1}(x)
w(x) would have

a maximum in x. But, if:

λ0 ≤

λ(mu)∫
λ(m�)

λg(λ, 0)c(λ) dλ

w(0)
=: λ01 (7.33)

and

λ0 ≥

λ(mu)∫
λ(m�)

λg(λ, 1)c(λ) dλ

w(1)
=: λ11 , (7.34)

respectively, the ratio would have no maximum on (0, 1), i.e., it is monotonously
decreasing or increasing. In these cases the respective optimal prediction sets
∗A(β)

X
({μ1}) are as follows:

∗A(β)
X

({μ1}) = [0, zμ1(β)] if λ(μ1) ≤ λ01 (7.35)

and
∗A(β)

X
({μ1}) = [zμ1(1 − β), 1] if λ(μ1) ≥ λ11 , (7.36)

where zμ1 is the quantile function of X. Equality in the right hand sides of (7.35)
and (7.36) means that the maximum of the ratio is adopted in x = 0 and x = 1,
respectively, which yields the same respective optimal prediction sets.

Example 7.2 For D = {μ1 | 0.05 ≤ μ1 ≤ 0.25} and n = 8 we get

λ01 = −17.501662 (7.37)

and
λ11 = −3.750343 (7.38)

That is, for λ0 < −17.501662 ⇔ μ1 < 0.0571374 we have for the prediction sets
∗A(β)

X
({μ1}) = [0, zμ1(β)], and for λ0 > −3.750343 ⇔ μ1 > 0.242567 we have

∗A(β)
X

({μ1}) = [zμ1(1 − β), 1]

For λ01 < λ(μ1) < λ11, i.e., for μ1,01 = μ1(λ01) < μ1 < μ1,11 = μ1(λ11), the ratio
f

X|{μ1}(x)
w(x) has a maximum on (0, 1).

Nevertheless, even if the ratio is unimodal on (0, 1), it is advantageous to compare
beforehand the ratio’s value in x = 0 with that in x = zμ1(β) and the ratio’s value
in x = 1 with that in x = zμ1(1 − β). To make it more precise:
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7. Neyman Measurement Procedures for Mon(a, b, μ1)

• If
fX|{μ1}(0)

w(0)
≥

fX |{μ1}(zμ1(β))
w(zμ1(β))

(7.39)

then the optimal prediction set is:

∗A(β)
X

({μ1}) = [0, zμ1(β)] . (7.40)

• If
fX|{μ1}(1)

w(1)
≥

fX|{μ1}(zμ1(1 − β))
w(zμ1(1 − β))

(7.41)

then the optimal prediction set is:

∗A
(β)
X

({μ1}) = [zμ1(1 − β), 1] . (7.42)

We note, that both cases include the situations given in (7.35) and (7.36), but
more evaluations of the ratio and additionally of the quantile function are neces-
sary, and thus, the determination of λ01 and λ11 in general pays.

Through (7.39) and (7.41) two values λ02 and λ12 for λ (and thus, for μ1 = μ1(λ))
are determined so that

fX|{μ1(λ02)}(0)
w(0)

=
fX|{μ1(λ02)}(zμ1(λ02)(β))

w(zμ1(λ02)(β))
, (7.43)

fX|{μ1(λ12)}(1)
w(1)

=
fX|{μ1(λ12)}(zμ1(λ12)(1 − β))

w(zμ1(λ12)(1 − β))
. (7.44)

Example 7.3 Additionally, let β = 0.9. Then we have for λ0 ≤ λ02 = −13.142659
⇔ μ1 ≤ 0.0760861 the predictions ∗A(0.9)

X
({μ1}) = [0, zμ1(0.9)], and for λ0 ≥

λ12 = −4.195361 ⇔ μ1 ≥ 0.223063 the predictions ∗A
(0.9)
X

({μ1}) = [zμ1(0.1), 1].

Analogously to example 6.3.4, for λ02 < λ0 < λ12 and μ1(λ02) < μ1 < μ1(λ12),
respectively, we have the case where the prediction sets are of form ∗A

(β)
X

({μ1}) =
[�X(μ1), uX(μ1)] with bounds �X(μ1), uX(μ1) satisfying:

fX|{μ1}(�X(μ1))
w(�X(μ1))

=
fX|{μ1}(uX(μ1))

w(uX(μ1))
(7.45)

fX |{μ1}(0)
w(0)

<
fX|{μ1}(�X(μ1))

w(�X(μ1))
(7.46)

fX |{μ1}(1)
w(1)

<
fX|{μ1}(uX(μ1))

w(uX(μ1))
(7.47)
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7.2. Measurement Procedures for E[X]

∗A(0.9)
X

({μ1})

μ1 �X(μ1) uX(μ1)

0.0775 0.003726 0.114031
0.08 0.009590 0.117711
0.10 0.037668 0.150456
0.12 0.054381 0.187777
0.14 0.069967 0.228423
0.16 0.086672 0.277276
0.18 0.104272 0.350345
0.20 0.119293 0.498156
0.22 0.132697 0.883714
0.2225 0.134402 0.976479

Table 7.1.: ∗A(0.9)
X

({μ1}) = [�X(μ1), uX(μ1)] for some values μ1.

Numerical methods have to be applied for the determination of �X(μ1) and
uX(μ1).

Example 7.4 For some values 0.0760861 < μ1 < 0.223063 of E[X] the respective
predictions ∗A(0.9)

X
({μ1}) = [�X(μ1), uX(μ1)] are given in table 7.1. Figure 7.3

displays the resulting β-uncertainty space U (0.9)
X

for X. Table 7.2 contains the
measurements ∗C(0.9)

E[X]({x}) for some values x. For the following comparisons, we
calculate the weighted volume to be Vw(∗C(0.9)

E[X]) = 0.539789.

At the beginning of this section we claimed, that we may assume without loss
of generality X ∼ Mon(μ1) when the range of variability is known. Thus, let
Y ∼ Mon(a, b, μ1) and Y be an i.i.d. sample for Y , then from proposition 3.11
we know that the transformed random variable X := X−a

b−a
∼ Mon(0, 1, μ1−a

b−a
).

The corresponding density functions are given by:

f
X|{ μ1−a

b−a
}(x) = (b − a)fY |{μ1}((b − a)x + a) , (7.48)

fY |{μ1}(y) =
1

b − a
fX|{ μ1−a

b−a
}

(
y − a

b − a

)
. (7.49)
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U (0.9)
X

Figure 7.3.: Optimal β-uncertainty space U (0.9)
X

for X. The corresponding 0.9-
measurement procedure ∗C(0.9)

E[X] is the Neyman 0.9-measurement
procedure.

∗C(0.9)
E[X]({x})

x �E[X](x) uE[X](x)

0.025 0.05 0.088810
0.05 0.05 0.114415
0.075 0.050973 0.146223
0.1 0.067964 0.175065
0.125 0.084874 0.208572
0.15 0.099746 0.244846
0.175 0.113307 0.25
0.2 0.126246 0.25
0.4 0.188651 0.25
0.6 0.207734 0.25
0.8 0.217264 0.25
0.9 0.220474 0.25

Table 7.2.: Measurements ∗C
(0.9)
E[X]({x}) = [�E[X](x), uE[X](x)] for some values x.
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7.2. Measurement Procedures for E[X]

Denoting the weight function with respect to X by wX and to Y by wY , and
defining:

μ′
1 = μ1 − a

b − a
(7.50)

λX = λ

(
μ1 − a

b − a

)
(7.51)

xi =
yi − a

b − a
, i = 1, . . . , n (7.52)

x = (x1, x2, . . . , xn) (7.53)

m′
� =

m� − a

b − a
(7.54)

m′
u = mu − a

b − a
(7.55)

we obtain:

wY (y) =
mu∫

m�

n∏
i=1

fY |{μ1}(yi) dμ1

=
mu∫

m�

n∏
i=1

1
b − a

fX|{μ′
1}(xi) dμ1

=
m′

u∫
m′

�

1
(b − a)n

(
λX

eλX − 1

)n

e
∑n

i=1 xi(b − a) dμ′
1

=
1

(b − a)n−1

m′
u∫

m′
�

(
λX

eλX − 1

)n

e
∑n

i=1 xi dμ′
1

=
1

(b − a)n−1 wX(x) . (7.56)

Thus, we get for the ratio fY |{μ1}(y)
wY (y) the following expression:

fY |{μ1}(y)
wY (y)

=
1

(b−a)n fX|{μ′
1}(x)

1
(b−a)n−1 wX(x)

= 1
b − a

fX|{μ′
1}(x)

wX(x)
. (7.57)
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Figure 7.4.: Optimal β-uncertainty spaces U (0.9)
X

for X and different values of the
sample size n = 2, 4, 8, 12, 16.

That is, the value of the ratio with respect to Y equals the value of the ratio
with respect to X scaled with 1

b−a
. With the same arguments which justify the

change from X to X, we conclude that the optimal prediction sets for Y are
affine transformations of those for X.

Improving U (β)
X

by increasing n

Commonly known is the fact, that measurement for the unknown value of a deter-
ministic variable may be improved by increasing the sample size n while keeping
the reliability β constant. Figure 7.4 shows how the respective β-uncertainty
spaces UX,E[X] = [0, 1] × D for n = 2, 4, 8, 12, 16 become successively smaller, i.e.,
the corresponding β-measurement procedures yield smaller measurements. The
calculations were performed for the ignorance space D = {μ1 | 0.05 ≤ μ1 ≤ 0.25}
and β = 0.9 as in example 7.4.
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7.2. Measurement Procedures for E[X]

7.2.2. Approximative Measurement Procedures for E[X]

Approximations for measuring the unknown value μ1 of E[X] where X is dis-
tributed according to the monotonic distribution Mon(μ1) can be understood in
different ways. That is, we have four possibilities

(a) approximate the monotonic distribution Mon(μ1) by the exponential distri-
bution EXP (1/μ1) and derive a Neyman β-measurement procedure ∗aC

(β)
E[Y ]

(b) approximate Mon(μ1) by EXP (1/μ1) and derive a measurement procedure
HP RC

(β)
E[Y ] based on highest probability regions (HPR)

(c) approximate Mon(μ1) by EXP (1/μ1) and derive a measurement procedure
LRC

(β)
E[Y ] based on the likelihood ratio test statistic (LR)

(d) approximate the distribution of X by the normal distribution and derive
approximative confidence intervals NCE[X] (normal approximation)

Since all measurement procedures, whether based on predictions or not, define re-
spective prediction procedures, we are able to evaluate them by calculating their
respective achieved reliabilities – under the condition of the monotonic distribu-
tion, i.e., the true distribution. Throughout the following examples we choose
the identical settings as in the examples of section 7.2.1, that is,

D = {μ1 | 0.05 ≤ μ1 ≤ 0.25} , (7.58)

β = 0.9 , (7.59)

n = 8 . (7.60)

To distinguish between the true random variable X|{μ1} ∼ Mon(μ1), we denote
the approximation Y |{μ1}. And thus, the measurement procedure based on the
approximation will yield in fact measurements for E[Y ] for every realisation x

of X|{μ1}, i.e., C
(β)
E[Y ]({x}). Since the true range of variability is X = [0, 1], i.e.,

X may only adopt values 0 ≤ x ≤ 1, we only give measurements C
(β)
E[Y ]({x}) for

some values x ∈ [0, 1].

If the reliability of a procedure is at least β, the weighted volumes Vw of the respec-
tive measurement procedures C

(β)
E[Y ] will be a second criterion for evaluation the

procedure. We will also directly compare lengths of the respective measurements

203



7. Neyman Measurement Procedures for Mon(a, b, μ1)

– which we will realise to be rather misleading, since they should be weighted by
the marginal distribution of X. To overcome this wrong perception, we introduce
a new graphical illustration which incorporates the marginal distribution.

To the end of this section, we give some more numerical results for different values
n of the sample size and some other ingnorance spaces D.

7.2.2.1. Neyman Measurement Procedures for E[Y ], X|{μ1} ∼ Mon(μ1)
approximated by Y |{μ1} ∼ EXP (1/μ1)

We approximate the monotonic distribution Mon(μ1) of X|{μ1} by the exponen-
tial distribution EXP (1/μ1). That is, we have a random variable Y |{μ1} with
density function

fY |{μ1}(y) = 1
μ1

e−y/μ11[0,+∞)(y) (7.61)

and the range of variability

Y({μ1}) = {y | 0 ≤ y < +∞} = [0, +∞) . (7.62)

The joint density function for an i.i.d. sample Y |{μ1} of size n for Y |{μ1} is

fY |{μ1}(y) =
(

1
μ1

)n

e−∑n
i=1 yi/μ11[0,+∞)n(y) (7.63)

which yields the weight function wY :

wY (y) =
mu∫

m�

(
1
μ1

)n

e−∑n
i=1 yi/μ11[0,+∞)n(y) dμ1 . (7.64)

In analogy to (7.5) and (7.7), we note that both the joint density function and the
weight function in fact only depend on

∑n
i=1 yi. Since T |{μ1} :=

∑n
i=1 Yi|{μ1} ∼

GAM(1/μ1, n) and, thus,

fY |{μ1}(y) = nfT |{μ1}(ny) = n

(
1

μ1

)n

Γ(n)
(ny)n−1e−ny/μ11[0,+∞)(y) , (7.65)

we get the corresponding weight function

wY (y) =
mu∫

m�

n

(
1

μ1

)n

Γ(n)
(ny)n−1e−ny/μ11[0,+∞)(y) dμ1 . (7.66)

204



7.2. Measurement Procedures for E[X]

Again, for all y with
∑n

i=1 yi = ny we get equality of the corresponding ratios:

fY |{μ1}(y)
wY (y)

=
fY |{μ1}(y)

wY (y)
(7.67)

Consequently, we do not derive optimal prediction sets for Y |{μ1} but for Y |{μ1} =
1
n

∑n
i=1 Yi|{μ1}.

Example 7.5 Since the range of variability Y({μ1}) = {y | 0 ≤ y < +∞} =
[0, +∞) of Y is unbounded we get also an unbounded uncertainty space UY ,E[Y ]

for the pair of variables (Y , E[Y ]):

UY ,E[Y ] = [0.05, 0.25] × [0, +∞) . (7.68)

The resulting β-uncertainty space U (β)
Y

for Y and, thus, the β-uncertainty space
U (β)

E[Y ] for E[Y ] are subsets of UY ,E[Y ]. The completeness requirement (see section
6.3.3) indicates, that both are unbounded, too. Figure 7.5 displays the course of
the ratio

f
Y |{μ1}(y)

w(y) for different values μ1. The changes in its courses are very
similar to those in example 7.1 and, again, we might identify some value m, so
that for all 0.05 = m� ≤ μ1 ≤ m the corresponding optimal predictions have the
form

∗aA
(β)
Y

({μ1}) = [0, zμ1(β)] . (7.69)

But we note, that for μ1 = mu = 0.25 we get the unbounded prediction

∗aA
(β)
Y

({0.25}) = [z0.25(1 − β), +∞) . (7.70)

As a side-effect, this guarantees the completeness requirement. Calculating the
respective predictions ∗aA

(0.9)
Y

({μ1}) yields the 0.9-uncertainty spaces U (0.9)
Y

for
Y and U (0.9)

E[Y ] for E[Y ], respectively, displayed in figure 7.6. As mentioned, the
first criterion to evaluate the usefulness of the approximation and the resulting
measurement procedure, respectively, is to calculate the achieved reliability under
the true distribution, i.e., the monotonic distribution. Since we already have
derived predictions ∗aA

(0.9)
Y

({μ1}), we can directly calculate their probability, i.e.,

PX|{μ1}(∗aA
(0.9)
Y

({μ1})) (7.71)

In figure 7.7 the probability is displayed as function of the value μ1 of E[X].
We note, that it never falls below the required reliability of 0.9 but exceeds it in
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Figure 7.5.: The course of the ratio
f

Y |{μ1}(y)
w(y) for sample size n = 8 and different

values μ1.
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Figure 7.6.: Optimal β-uncertainty space U (0.9)
Y

for Y . The corresponding 0.9-
measurement procedure ∗aC

(0.9)
E[Y ] is the Neyman 0.9-measurement

procedure.

particular for large values μ1 ∈ [0.05, 0.25]. That is, the Neyman measurement
procedure based on the exponential distribution as approximation for the mono-
tonic disribution meets the required reliability and, thus, would be a reasonable
measurement procedure.

The second criterion is the weighted volume. Its value is given by Vw(∗aC
(0.9)
E[Y ] ) =

0.550061, which is slightly larger than that of the Neyman measurement procedure
for the monotonic distribution Vw(∗C(0.9)

E[X]) = 0.539789. Additionally, table 7.3
lists some measurements ∗aC

(0.9)
E[Y ] ({x}) for some values 0 ≤ x ≤ 1, since for the

true random variable X|{μ1} and, thus, X|{μ1}, only those values are observed.

We also added the respective measurements ∗C
(0.9)
E[X]({x}) resulting from the 0.9-

Neyman measurement procedure for the monotonic distribution Mon(μ1) (see
table 7.2) and calculated the relative difference in their lengths:

Δ(x) :=
|∗aC

(0.9)
E[Y ] ({x})| − |∗C(0.9)

E[X]({x})|
|∗C(0.9)

E[X]({x})|
. (7.72)

In most of the here considered values x the resulting measurements ∗aC
(0.9)
E[Y ] ({x})

based on the approximation with the exponential distribution are longer then the
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Figure 7.7.: The true probability of the prediction sets ∗aA
(0.9)
Y

({μ1}) based on
the exponential distribution EXP (1/μ1) as approximation for the
monotonic distribution Mon(μ1).

∗aC
(0.9)
E[Y ] ({x}) ∗C

(0.9)
E[X]({x})

x a�E[Y ](x) auE[Y ](x) �E[X](x) uE[X](x) Δ· 100 %

0.025 0.05 0.089168 0.05 0.088810 +0.922
0.05 0.05 0.114446 0.05 0.114415 +0.048
0.075 0.050973 0.146028 0.050973 0.146223 -0.205
0.1 0.067964 0.176208 0.067964 0.175065 +1.067
0.125 0.084888 0.214773 0.084874 0.208572 +5.002
0.15 0.099800 0.25 0.099746 0.244846 +3.515
0.175 0.113212 0.25 0.113307 0.25 +0.069
0.2 0.125765 0.25 0.126246 0.25 +0.389
0.4 0.184178 0.25 0.188651 0.25 +7.291
0.6 0.203079 0.25 0.207734 0.25 +11.014
0.8 0.212879 0.25 0.217264 0.25 +13.395
0.9 0.216275 0.25 0.220474 0.25 +14.221

Table 7.3.: Measurements ∗aC
(0.9)
E[Y ] ({x}) = [a�E[Y ](x), auE[Y ](x)] for some values x.

For comparison the measurements ∗C(0.9)
E[X]({x}) = [�E[X](x), uE[X](x)]

are added based on the monotonic distribution together with the rel-
ative difference Δ(x) (7.72).
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7.2. Measurement Procedures for E[X]

measurements ∗C(0.9)
E[X]({x}) based on the true monotonic distribution.

Since the required reliability is met, we may conclude that the measurement pro-
cedure based on the approximation is reasonable, but will yield unnecessary large
measurements, because of the greater value of the weighted volume Vw.

7.2.2.2. HPR Measurement Procedures for E[X], X|{μ1} ∼ Mon(μ1)
approximated by Y |{μ1} ∼ Exp(1/μ1)

This method to derive prediction regions was introduced in section 4.4.3.1, and
in example 4.58 we already have discussed this for the exponential distribution
EXP (ϑ) where the value ϑ of the distribution parameter, i.e., the deterministic
variable equals 1

μ1
. Since we want to analyse the reparameterised exponential

distribution EXP (1/μ1), we give a short collection of the previously derived
results. The joint density function fY |{μ1} of Y |{μ1} is given by (7.63):

fY |{μ1}(y) =
(

1
μ1

)n

e−∑n
i=1 yi/μ11[0,+∞)n(y) ,

whose value only depends on
∑n

i=1 yi if y ∈ [0, +∞)n. The smaller
∑n

i=1 yi the
larger fY |{μ1}(y), i.e., the β-acceptance regions are of form

HP RA
(β)
Y ({μ1}) =

{
y ∈ [0, +∞)n

∣∣∣
n∑

i=1
yi ≤ c∗ with

∫
∑n

i=1 yi≤c∗

(
1
μ1

)n

e−∑n
i=1 yi/μ1 dy = β

}
. (7.73)

The integral ∫
∑n

i=1 yi≤c∗

(
1
μ1

)n

e−∑n
i=1 yi/μ1 dy (7.74)

equals the distribution function G1/μ1,n(c∗) of the gamma distribution GAM(1/μ1, n)2.
And since c∗

β(μ1) = c∗
β(1) · μ1, we only need to numerically solve G1,n(c∗) = β

for c∗ = c∗
β(1), which is in fact the β-quantile of GAM(1, n)3. The determina-

tion of all β-acceptance regions is already completed with the determination of
2This follows from

∑n
i=1 Yi|{μ1} ∼ GAM(1/μ1, n)

3If Z|{μ1} ∼ GAM(1/μ1, n), then (2Z|{μ1})/μ1 ∼ χ2n, i.e., the chi-square distribution with
2n degrees of freedom. This may also be utilised for the determination of c∗.
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HP RA
(β)
Y ({1}), since all other HP RA

(β)
Y ({μ1}) for μ1 
= 1 are scaled versions of

HP RA
(β)
Y ({1}):

HP RA
(β)
Y ({μ1}) =

{
y ∈ [0, +∞)n

∣∣∣
n∑

i=1
yi ≤ c∗

β(1) · μ1 with
∫

∑n
i=1 yi≤c∗

β(1)

e−∑n
i=1 yi dy = β

}
(7.75)

Obviously, for n > 3, it is impossible to give graphical illustrations of the resulting
β-uncertainty spaces HP RU (β)

Y . But since the condition on y only refers to the sum∑n
i=1 yi, we may map each HP RA

(β)
Y ({μ1}) onto the respective interval [0, c∗

β(μ1)].
That is, with the scaling property we have

S : HP RU (β)
Y → R , (7.76)

HP RA
(β)
Y ({μ1}) �→ S

(
HP RA

(β)
Y ({μ1})

)
= [0, c∗

β(μ1)] = [0, c∗
β(1) · μ1] . (7.77)

Additionally, we define the image of HP RU (β)
Y under S:

S
(

HP RU (β)
Y

)
:=

⋃
μ1∈D

{μ1} × S
(

HP RA
(β)
Y ({μ1})

)
=

⋃
μ1∈D

{μ1} × [0, c∗
β(1) · μ1] (7.78)

Given a bounded ignorance space D = {μ1 | 0 < m� ≤ μ1 ≤ mu < +∞} for E[Y ],
it is also obvious, that the union of all β-acceptance regions, i.e.,⋃

μ1∈D

HP RA
(β)
Y ({μ1}) = HP RA

(β)
Y (D) (7.79)

does not equal the range of variability Y = [0, +∞)n of Y and, therefore, the com-
pleteness requirement is violated. Since Y is an approximation for X, this does
not need to be a problem, as long as, HP RA

(β)
Y (D) covers the true range of vari-

ability X = [0, 1]n of X. If this is also not the case, we replace HP RA
(β)
Y ({mu}),

which covers HP RA
(β)
Y ({μ1}) for all other values μ1 ∈ D, by [0, 1]n. For the above

described mapping S (7.77) this is equivalent to replacing [0, c∗
β(μ1)] with [0, n].

To make β-uncertainty spaces HP RU (β)
Y and in particular S(HP RU (β)

Y ) comparable
for different values n of the sample size, we scale [0, c∗

β(μ1)] with 1
n
. That is, the
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Figure 7.8.: Mapped β-uncertainty space S(HP RU (0.9)
Y ) for Y and scaled with 1

8 .
Note, the prediction region for μ1 = 0.25 is [0, 1].

mapped prediction regions [0, c∗
β(μ1)] for

∑n
i=1 Yi become prediction regions for

1
n

∑n
i=1 Yi = Y .

Example 7.6 Let D = {μ1 | 0.05 ≤ μ1 ≤ 0.25}, n = 8 and β = 0.9. Since
c∗

0.9(1) = 11.770914, we get c∗
0.9(0.25) = 2.942786, which is less than n = 8

and, thus, we need to replace [0, c∗
0.9(0.25)] with [0, 8]. The β-uncertainty space

HP RU (0.9)
Y under the mapping S (7.77) then is:

S
(

HP RU (0.9)
Y

)
= ({0.25} × [0, 8]) ∪

⋃
0.05≤μ1<0.25

{μ1} × [0, 11.770914 · μ1] . (7.80)

Figure 7.8 displays the β-uncertainty space S
(

HP RU (0.9)
Y

)
scaled with 1

8 . Figure

7.9 displays the true probability of the prediction regions HP RA
(0.9)
Y ({μ1}) and the

mapped and scaled prediction regions 1
8S

(
HP RA

(0.9)
Y ({μ1})

)
, respectively, under

the monotonic distribution Mon(μ1).

To determine the respective measurements HP RC
(β)
E[Y ]({x}) based on the original

prediction regions HP RA
(β)
Y ({μ1}) we would need to solve∫

∑n
i=1 ti≤∑n

i=1 xi

(
1
μ1

)
e
∑n

i=1 ti/μ1 dt = β (7.81)
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Figure 7.9.: The true probability of the prediction sets HP RA
(0.9)
Y ({μ1}) based on

the exponential distribution EXP (1/μ1) as approximation for the
monotonic distribution Mon(μ1). Since the prediction region for
μ1 = 0.25 is [0, 1], its probability equals 1 and is omitted in the
graphic.

for μ1. Again, the integral equals the distribution function G1/μ1,n(
∑n

i=1 yi) of
the gamma distribution GAM(1/μ1, n). Equivalent, is to solve

n∑
i=1

yi = c∗
β(1) · μ1 (7.82)

for μ1 – obviously a lot easier, which results in

μ1 =
∑n

i=1 yi

c∗
β(1)

. (7.83)

Then, we get for the measurement HP RC
(β)
E[Y ]({x}) the following

HP RC
(β)
E[Y ]({x}) =

{
μ1

∣∣∣∣∣μ1 ≥
∑n

i=1 xi

c∗
β(1)

}
(7.84)

We note, that all x with the same value of
∑n

i=1 xi yield the same measurement.
That is, we are able to write HP RC

(β)
E[Y ]({x}), again.

In case of a bounded ignorance space D = {μ1 | 0 < m� ≤ μ1 ≤ mu < +∞}
problems arises, when

∑n
i=1 xi > mu

c∗
β(1) and x > mu

nc∗
β(1) . Through the completion of

the β-uncertainty space, the resulting measurement for all x with
∑n

i=1 xi > mu

c∗
β(1)

then is given by HP RC
(β)
E[Y ]({x}) = {mu}.
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7.2. Measurement Procedures for E[X]

HP RC
(0.9)
E[Y ] ({x}) ∗C(0.9)

E[X]({x})

x HP R�E[Y ](x) HP RuE[Y ](x) �E[X](x) uE[X](x) Δ· 100 %

0.025 0.05 0.25 0.05 0.088810 +415.331
0.05 0.05 0.25 0.05 0.114415 +210.487
0.075 0.050973 0.25 0.050973 0.146223 +108.952
0.1 0.067964 0.25 0.067964 0.175065 +69.967
0.125 0.084955 0.25 0.084874 0.208572 +33.426
0.15 0.101946 0.25 0.099746 0.244846 +2.036
0.175 0.118937 0.25 0.113307 0.25 -4.119
0.2 0.135928 0.25 0.126246 0.25 -7.824
0.4 0.25 0.25 0.188651 0.25 -100
0.6 0.25 0.25 0.207734 0.25 -100
0.8 0.25 0.25 0.217264 0.25 -100
0.9 0.25 0.25 0.220474 0.25 -100

Table 7.4.: Measurements HP RC
(0.9)
E[Y ] ({x}) = [HP R�E[Y ](x), HP RuE[Y ](x)] for some

values x. For comparison the measurements ∗C(0.9)
E[X]({x}) =

[�E[X](x), uE[X](x)] are added based on the monotonic distribution to-
gether with the relative difference Δ(x) (7.85).

Example 7.7 The value of the weighted volume is Vw(HP RC
(0.9)
E[Y ] ) = 0.730506,

which is considerably larger than Vw(∗C
(0.9)
E[X]) = 0.539789. Nevertheless, we present

analogue to table 7.3, in table 7.4 some measurements HP RC
(β)
E[Y ]({x}) for some

values of x. The relative difference Δ(x) is again calculated, now by

Δ(x) :=
|HP RC

(0.9)
E[Y ] ({x})| − |∗C

(0.9)
E[X]({x})|

|∗C(0.9)
E[X]({x})|

. (7.85)

Measurement Procedures for E[X], X|{μ1} ∼ Mon(μ1) approximated by
Y ∼ EXP (1/μ1), based on 2

∑
Yi/μ1: In example 4.59 we already dis-

cussed an alternative set-estimation procedure for μ1, where Y |{μ1} ∼ EXP (1/μ1),
based on highest probability acceptance regions. There, the acceptance regions,
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7. Neyman Measurement Procedures for Mon(a, b, μ1)

i.e., the predictions, are not derived on the basis of the joint density of Y |{μ1},
but of the density of 2(

∑n
i=1 Yi|{μ1})/μ1 =: Q|{μ1}. A slight advantage of con-

sidering Q|{μ1} is, that it is distributed according to the chi-square distribution
with 2n degrees of freedom, i.e., Q|{μ1} ∼ χ2

2n. Since it is in fact independent
of μ1, it is a pivotal variable. Therefore, we need to find exactly one prediction
region P A

(β)
Q :

P A
(β)
Q = {q | χ2

2n(α1) ≤ q ≤ χ2
2n(1 − α2)} with 1 − (α1 + α2) = β (7.86)

By retransformation, we get prediction regions of Y for each value μ1 of E[Y ]:

P A
(β)
Y

({μ1}) =
{

y

∣∣∣∣ χ2
2n(α1)μ1

2n
≤ y ≤ χ2

2n(1 − α2)μ1

2n

}
(7.87)

By inversion we get measurements of μ1:

P C
(β)
E[Y ]({y}) =

{
μ1

∣∣∣∣ 2ny

χ2
2n(1 − α2)

≤ μ1 ≤ 2ny

χ2
2n(α1)

}
∩ D (7.88)

If the measurements (7.88) equal the empty set, then we set P C
(β)
E[Y ]({y}) to be

{m�} and {mu}, respectively.

The way highest probability regions are constructed, leads to minimising the
length of the prediction regions4, that is, minimising χ2

2n(1 − α2) − χ2
2n(α1) with

respect to α1 and α2 under the condition 1 − (α1 + α2) = β. But in classical
estimation theory, an important aim is to minimise the volume (length) of the
confidence regions (intervals), i.e., the measurements. Here, it would be actually
neccessary to minimise P C

(β)
E[Y ]({y}), but since we understand this procedure as

an approximation, we minimise 1
χ2

2n(α1) − 1
χ2

2n(1−α2) at first and then make the
intersection with D. To distinguish, we denote the in this way minimised mea-
surements P C̃

(β)
E[Y ]({y}) and, thus, by inversion, the respective prediction regions

P Ã
(β)
Y

({μ1}). The unchanged notation P C
(β)
E[Y ]({y}) should stand for the measure-

ments based on minimised prediction regions.

Example 7.8 Let D = {μ1 | 0.05 ≤ μ1 ≤ 0.25}, n = 8 and β = 0.9. Minimising
the length of P A

(0.9)
Q yields α1 = 0.025502 and α2 = 0.074498 and, therefore,

4The density of the chi-square distribution is unimodal and, thus, the resulting highest prob-
ability region is in fact an interval.
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χ2
16(α1) = 6.934767 and χ2

16(1 − α2) = 24.742360. The prediction regions of Y

for each value μ1 follow to be

P A
(0.9)
Y

({μ1}) =
{

y

∣∣∣∣ 6.934767μ1

16
≤ y ≤ 24.742360μ1

16

}
. (7.89)

Since
P A

(0.9)
Y

({m�}) = {y | 0.021671 ≤ y ≤ 0.077320} (7.90)

and
P A

(0.9)
Y

({mu}) = {y | 0.108356 ≤ y ≤ 0.386599} (7.91)

we note, that the completeness requirement is not met. Therefore, we replace
P A

(0.9)
Y

({m�}) with {y | 0 ≤ y ≤ 0.077320} and P A
(0.9)
Y

({mu}) with {y | 0.108356 ≤
y ≤ 1}, respectively. Finally, the measurements result to be

P C
(0.9)
E[Y ] ({y}) =

{
μ1

∣∣∣∣ 16y

24.742360
≤ μ1 ≤ 16y

6.934767

}
∩ D . (7.92)

The weighted volume of the measurement procedure P C
(0.9)
E[Y ] has a value of

Vw(P C
(0.9)
E[Y ] ) = 0.608841 . (7.93)

Now, minimising
1

χ2
2n(α1)

− 1
χ2

2n(1 − α2)
(7.94)

yields α1 = 0.088435 and α2 = 0.011565 and measurements

P C̃
(β)
E[Y ]({y}) =

{
μ1

∣∣∣∣ 16y

31.512560
≤ μ1 ≤ 16y

9.044611

}
∩ D . (7.95)

The prediction regions then are

P Ã
(0.9)
Y

({μ1}) =
{

y

∣∣∣∣ 9.044611μ1

16
≤ y ≤ 31.512560μ1

16

}
, (7.96)

which again do not meet the completeness requirement and we need to replace
P Ã

(0.9)
Y

({m�}) with {y | 0 ≤ y ≤ 0.098477} and P Ã
(0.9)
Y

({mu}) with {y | 0.141322 ≤
y ≤ 1}. The value of the weighted volume now is

Vw(P C̃
(0.9)
E[Y ] ) = 0.606730 (7.97)

– smaller than that of the procedure based on minimised prediction regions.
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7. Neyman Measurement Procedures for Mon(a, b, μ1)

Some small calculations show that both meet the requested reliability of 0.9, but
both procedures have a value of the weighted volume larger (+12.8 % and +12.4
%, respectively) than that of the Neyman measurement procedure ∗C(0.9)

E[X] based on
the true monotonic distribution, which is Vw(∗C(0.9)

E[X]) = 0.539789, i.e., they will
yield unnecessary large measurements.

7.2.2.3. LR Measurement Procedures for E[Y ], X|{μ1} ∼ Mon(μ1)
approximated by Y ∼ Exp(1/μ1)

In section 4.4.3.2 we have introduced one method of inverting acceptance regions,
i.e., prediction regions LRA

(β)
X (ϑ0) which are derived according to the likelihood

ratio test statistic

LRA
(β)
X (ϑ0) =

{
x

∣∣∣∣ Lx(ϑ0)
supϑ∈Θ Lx(ϑ)

≥ r

}
(7.98)

with

PX|{ϑ0}
(

X|{ϑ0} ∈ LRA
(β)
X (ϑ0)

)
≥ β (7.99)

where Lx(ϑ) is the likelihood function and Θ the parameter space, i.e., the igno-
rance space D = Θ.
With Y |{μ1} ∼ EXP (1/μ1) we get for the likelihood ratio test statistic

Ly(μ1,0)
supμ1∈D Ly(μ1)

=

(
1

μ1,0

)n

e−∑n
i=1 yi/μ1,0

supμ1∈D
(

1
μ1

)n

e−∑n
i=1 yi/μ1

. (7.100)

The supremum of the likelihood function Ly(μ1) is achieved if the value μ1 equals
the maximum likelihood estimation μ̂1(y). Assuming a bounded ignorance space
D = {μ1 | m� ≤ μ1 ≤ mu} we get

μ̂1(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m� , y < m�

y , m� ≤ y ≤ mu

mu , y > mu

. (7.101)
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and, thus,

Ly(μ1,0)
supμ1∈D Ly(μ1)

= Ly(μ1,0)
Ly(μ̂1(y))

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
m�

μ1,0

)n

e−∑n
i=1 yi((1/μ1,0)−(1/m�)) , y < m�( 1

n

∑n
i=1 yi

μ1,0

)n

ene−∑n
i=1 yi/μ1,0 , m� ≤ y ≤ mu(

mu

μ1,0

)n

e−∑n
i=1 yi((1/μ1,0)−(1/mu)) , y > mu

(7.102)

As in the previously discussed approximated measurement procedures, for fixed
value μ1,0 the value of the likelihood ratio test statistic depends on y only via∑n

i=1 yi or y, respectively. That is, we actually determine prediction regions for∑n
i=1 Yi and Y :

LRA
(β)
Y

({μ1,0}) = {y | �Y (μ1,0) ≤ y ≤ uY (μ1,0)} (7.103)

with

PY |{μ1,0}
(

Y |{μ1,0} ∈ LRA
(β)
Y

(μ1,0)
)

=

= PY |{μ1,0}
(
�Y (μ1,0) ≤ Y |{μ1,0} ≤ uY (μ1,0)

)
= β (7.104)

Since n · Y =
∑n

i=1 Yi ∼ GAM(1/μ1, n), the determination of the prediction
regions consists of the determination of quantiles of the gamma distribution.

Two values μ1,0 in (7.102) should be examined more closely, that are μ1,0 = m�

and μ1,0 = mu. If μ1,0 = m�, the likelihood ratio test statistic equals 1 for all
y < m�, and is decreasing for y ≥ m�. If μ1,0 = mu, the likelihood ratio test
statistic is increasing for y ≤ mu and equals 1 for all y > mu.

Example 7.9 Let D = {μ1 | 0.05 ≤ μ1 ≤ 0.25}, n = 8 and β = 0.9. Figure 7.10
displays the course of the likelihood ratio test statistic for different values μ1,0.
The resulting β-uncertainty space LRU (0.9)

Y
is displayed in figure 7.11. Figure

7.12 displays the true probability of the prediction regions LRA
(0.9)
Y ({μ1}) and

LRA
(0.9)
Y

({μ1}), respectively, under the monotonic distribution Mon(μ1). Again,
the achieved reliability is at least the requested one of 0.9, which makes the result-
ing measurement procedure reasonable. The value of the weighted volume now is
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Figure 7.10.: The course of the likelihood ratio test statistic for sample size n = 8
and different values μ1,0.
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Figure 7.12.: The true probability of the prediction sets LRA
(0.9)
Y

({μ1}) based on
the exponential distribution EXP (1/μ1) as approximation for the
monotonic distribution Mon(μ1).
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7. Neyman Measurement Procedures for Mon(a, b, μ1)

LRC
(0.9)
E[Y ] ({y}) ∗C

(0.9)
E[X]({y})

y LR�E[Y ](y) LRuE[Y ](y) �E[X](y) uE[X](y) Δ· 100 %

0.025 0.05 0.060552 0.05 0.088810 -72.811
0.05 0.05 0.095893 0.05 0.114415 -28.754
0.075 0.050973 0.143838 0.050973 0.146223 -2.504
0.1 0.063754 0.185909 0.067964 0.175065 +14.056
0.125 0.075243 0.218120 0.084874 0.208572 +15.505
0.15 0.088106 0.25 0.099746 0.244846 +11.574
0.175 0.102467 0.25 0.113307 0.25 +7.930
0.2 0.117105 0.25 0.126246 0.25 +7.386
0.4 0.208026 0.25 0.188651 0.25 -31.582
0.6 0.230238 0.25 0.207734 0.25 -53.244
0.8 0.236909 0.25 0.217264 0.25 -60.010
0.9 0.238844 0.25 0.220474 0.25 -62.216

Table 7.5.: Measurements LRC
(0.9)
E[Y ] ({y}) = [LR�E[Y ](y), LRuE[Y ](y)] for some

values y. For comparison the measurements ∗C(0.9)
E[X]({y}) =

[�E[X](y), uE[X](y)] are added based on the monotonic distribution to-
gether with the relative difference Δ(y) (7.85).

Vw(LRC
(0.9)
E[Y ] ) = 0.566800, which is only slightly larger than Vw(∗C(0.9)

E[X]) = 0.539789.
For some values y the measurements LRC

(0.9)
E[Y ] ({y}) are calculated as are the rela-

tive differences Δ(y) (with the same definition (7.85)) and presented in table 7.5.
We note, that the majority of the here presented measurements are smaller than
the ones based on the Neyman measurement procedure for the true monotonic
distribution. But since the weighted volume is larger, we have to realise that any
comparison of single measurement lengths may be misleading.
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7.2. Measurement Procedures for E[X]

7.2.2.4. Normal Approximation

In the sense of section 4.4.1, we derive an approximative measurement procedure
based on the convergence in distribution of√

nI(ϑ)(ϑ̂(X) − ϑ) (7.105)

to the standard normal distribution, where I(ϑ) is the Fisher information defined
by (4.76) and ϑ̂(X) is the MLE of ϑ. For n large the probability

P
(

−z(1 + β

2
) ≤

√
nI(ϑ)(ϑ̂(X) − ϑ) ≤ z(1 + β

2
)
)

, (7.106)

where z(α) is the quantile of the standard normal distribution, is approximately
β. Substituting I(ϑ) with its estimator I(ϑ̂) and solving for ϑ yields a confidence
interval, i.e., a measurement procedure of ϑ

C(X|{ϑ}) =

⎡⎣ϑ̂(X) −
z(1+β

2 )√
nI(ϑ̂(X))

, ϑ̂(X) +
z(1+β

2 )√
nI(ϑ̂(X))

⎤⎦ (7.107)

with approximative confidence level, i.e., reliability of β.

For X ∼ Mon(μ1) we already have derived the MLE for E[X] in section 5.1.2.1.
If we assume an ignorance space D = {μ1 | 0 ≤ m� < μ1 < mu ≤ 0.5}, i.e., we
have complete knowledge about the range of variability to be X = {x | 0 ≤ x ≤ 1}
and, thus, that the density function is monotone decreasing on X . Then we have
for the MLE

μ̂1(X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m� for x ≤ m�,

x for m� < x < mu,

mu for x ≥ mu.

(7.108)

Even though, this MLE does not really match to the ignorance space, we have to
choose D as an open set to meet the regularity conditions ([13], p. 516), where
one condition is, that the true value of E[X] has to be an inner point of D.

Since the density functions fX|{μ1} form an exponential family in μ1, we have the
following equation for the Fisher information

I(μ1) = E

[(
∂

∂μ1
ln fX|{μ1}(X)

)2
]

= −E
[

∂2

∂μ2
1

ln fX|{μ1}(X)
]

(7.109)
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7. Neyman Measurement Procedures for Mon(a, b, μ1)

We have
∂2

∂μ2
1

ln fX|{μ1}(x) = ∂2λ(μ1)
∂μ2

1
(x − μ1) − ∂λ(μ1)

∂μ1
(7.110)

which yields

− E[
∂2

∂μ2
1

ln fX|{μ1}(X)] =
∂λ(μ1)

∂μ1
=

1
μ2 − μ2

1
. (7.111)

Estimating E[X] with μ̂1(X) and E[X2] with μ2(λ(μ̂1(X))), we immediatly get
an approximative confidence interval estimator (see section 4.4.1) for E[X]:

C(X|{μ1}) =

[
μ̂1(X) − z(

1 + β

2
)
√

μ2(λ(μ̂1(X))) − μ̂1(X)2
√

n
,

μ̂1(X) + z(
1 + β

2
)
√

μ2(λ(μ̂1(X))) − μ̂1(X)2
√

n

]

Obviously, the resulting confidence interval estimates C(x) may not be subset of
D, but the left bound may be smaller than m� and/or the right bound may be
larger than mu. That is, to get a reasonable measurement, we have to take the
intersection C(x) ∩ D, which finally results into an approximative measurement
procedure NCE[X] for E[X]:

NCE[X](X) =

[
μ̂1(X) − z

(
1 + β

2

) √
μ2(λ(μ̂1(X))) − μ̂1(X)2

√
n

, (7.112)

μ̂1(X) + z

(
1 + β

2

) √
μ2(λ(μ̂1(X))) − μ̂1(X)2

√
n

]
∩ (m�, mu)

(7.113)

Since μ̂1(x) does in fact depend on x, the measurements may be equivalently
noted as NCE[X](x). The corresponding uncertainty space U results as the union
over all measurements NCE[X](x):

U =
⋃
x∈X

N CE[X](x) × {x} (7.114)

Intentionally, we have omitted the prefix β for the measurement procedure and
the uncertainty space as it is quite unclear whether the demanded reliability is
really achieved. At least, the completeness requirement does not pose a problem
here, since a measurement exists for each x ∈ X = [0, 1]. We end this section
again with an example.
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7.2. Measurement Procedures for E[X]

NCE[X]({x}) ∗C
(0.9)
E[X]({x})

x N�E[X](x) N uE[X](x) �E[X](x) uE[X](x) Δ· 100 %

0.025 0.05 0.079077 0.05 0.088810 -25.079
0.05 0.05 0.079077 0.05 0.114415 -54.860
0.075 0.05 0.118611 0.050973 0.146223 -27.969
0.1 0.05 0.158048 0.067964 0.175065 +0.884
0.125 0.052908 0.197092 0.084874 0.208572 +16.561
0.15 0.064623 0.235377 0.099746 0.244846 +17.680
0.175 0.077341 0.25 0.113307 0.25 +26.312
0.2 0.091162 0.25 0.126246 0.25 +28.350
0.4 0.122113 0.25 0.188651 0.25 +108.458
0.6 0.122113 0.25 0.207734 0.25 +202.577
0.8 0.122113 0.25 0.217264 0.25 +290.662
0.9 0.122113 0.25 0.220474 0.25 +333.134

Table 7.6.: Measurements NCE[X]({x}) = [N�E[X](x), NuE[X](x)] for some
values x. For comparison the measurements ∗C(0.9)

E[X]({x}) =
[�E[X](x), uE[X](x)] are added based on the monotonic distribution to-
gether with the relative difference Δ(x) (7.85).

Example 7.10 Since D needs to be an open set, let D = {μ1 | 0.05 < μ1 < 0.25},
and let n = 8 and β = 0.9. We start the numerical analysis by giving the table 7.6
of measurement results NCE[X](x) for different values of x – compared to those of
the Neyman measurement procedure ∗C(0.9)

E[X]. Figure 7.13 displays the uncertainty
space UX resulting by inverting the approximative measurements N CE[X]({x}),
i.e., we may call UX approximative uncertainty space. The essential question is
whether the demanded reliability is achieved or not. Figure 7.14 displays the true
probability of the prediction regions A

(0.9)
X

({μ1}), i.e., the vertical cross-section of
UX at μ1, under the monotonic distribution Mon(μ1). For a majority of values
μ1 of E[X] the probability falls below the demanded reliability of 0.9, which fi-
nally disqualifies this procedure. Nevertheless, for the sake of completeness, the
weighted volume Vw has an value of Vw(NCE[X]) = 0.606581, also far larger than
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Figure 7.13.: The approximative uncertainty space UX for X.

Vw(∗C
(0.9)
E[X]) = 0.539789.
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Figure 7.14.: The true probability of the prediction regions A
(0.9)
X

({μ1}) based on
the approximative measurements NCE[X]({x}).
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7.2. Measurement Procedures for E[X]

7.2.3. An Alternative Illustration of U (β)
X

We have already realised, that the comparison of single measurements and of
their lengths, respectively, may be misleading – see for instance table 7.4 for
measurements based on highest probability regions. Loosley speaking, we may
state that values x ≥ 0.4 yield singletons as measurements, which are unbeatable
short, while for other values x ≤ 0.15, the resulting measurements are larger. And
for values x ≤ 0.05 the measurements even do not reduce the ignorance space D.
Nevertheless, the weighted volume for the measurement procedure based on the
highest probability regions is Vw

(
HP RC

(0.9)
E[Y ]

)
= 0.730506 and, thus, by far larger

than Vw

(
∗C(0.9)

E[X]

)
= 0.539789. The situation when comparing measurements

based on the likelihood ratio test statistic is even more misleading, since for the
majority of values x the measurements LRC

(0.9)
E[Y ] ({x}) are shorter than those from

the optimal procedure, and only for some values x the measurements are a bit
larger. Figure 7.15 shows the respective β-uncertainty spaces LRU (0.9)

Y
and U (0.9)

X
.

The procedure based on the likelihood ratio test statistic LRC
(0.9)
E[Y ] appears to be

superior to ∗C
(0.9)
E[X] – but only in a geometric sense.
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Y

; U (0.9)
X

Figure 7.15.: The β-uncertainty space LRU (0.9)
Y

for Y and Y |{μ1} ∼ EXP (1/μ1)
for n = 8 based on the likelihood ration test statistic and the optimal
one U (0.9)

X
(dashed shape).

Of course, the key to a correct interpretation is to take the marginal distribution
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7. Neyman Measurement Procedures for Mon(a, b, μ1)

of X into account, i.e., the marginal density (see (6.38))

qX (D)(x) = 1
|D|

∫
D

fX|{μ1}(x) dμ1 (7.115)

and the marginal distribution function (see (6.39)), respectively,

QX (D)(x) := QX (D) ({y | 0 ≤ y ≤ x}) (7.116)

=
x∫

0

qX (D)(y) dy . (7.117)

Exactly this is done for calculating the weighted volume Vw of a measurement
procedure C

(β)
D in (6.50):

Vw(C(β)
D ) =

∫
X (D)

⎛⎜⎜⎝ ∫
C

(β)
D ({x})

λD(d) dd

⎞⎟⎟⎠ qX (D)(x) dx (7.118)

For a graphical illustration, this is done by a rescaling of the x-axis with the
marginal distribution function of X, which results into a dilation of those parts of
the x-axis with high probability while less probable parts are shrinked. Applying
this transformation to figure 7.15 results into figure 7.16. The former seeming
superiority of LRC

(0.9)
E[Y ] to ∗C(0.9)

E[X] is now corrected and reflects the right proportion

of the weighted volume’s values Vw

(
LRC

(0.9)
E[Y ]

)
= 0.566800 and Vw

(
∗C

(0.9)
E[X]

)
=

0.539789. In contrast to the unscaled plots of β-uncertainty spaces, it is not
possible to compare the probability scaled plots of uncertainty spaces for different
values of n, since the marginal probability distribution changes with n.

7.2.4. Numerical Comparisons with respect to n and D
In this section we present some more examples,to illustrate the dependency of the
different derived procedures with respect to the sample size n and the ignorance
space D. Common to all approximative procedures is that X|{μ1} ∼ Mon(μ1)
is approximated by Y |{μ1} ∼ EXP (1/μ1). The procedures which should be
compared to the Neyman measurement procedure for E[X] are

• the Neyman measurement procedure for E[Y ],
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Figure 7.16.: The β-uncertainty space LRU (0.9)
Y

for Y and Y |{μ1} ∼ EXP (1/μ1)
for n = 8 based on the likelihood ration test statistic and the optimal
one U (0.9)

X
(dashed shape). The x-axis is rescaled by the marginal

probability distribution of X.

• the LR measurement procedure for E[Y ] and

• the HPR measurement procedure for E[Y ] based on 2
∑

Yi/μ1.

The examples are organised in the way, that we assume a certain ignorance
space D ⊂ {μ1 | 0 < μ1 < 0.5}, display the different β-ignorance spaces for
different sample sizes n ∈ {2, 4, 8, 12, 16} and give graphical comparisons of the
approximative ones with the optimal. Throughout the examples we choose the
reliability β = 0.9.

The first focus lies on the question whether the reliability is achieved. As we have
seen in the previous sections, single measurements and the relative difference
of their lengths give a somehow misleading impression and, thus, are omitted
here. Instead, the weighted volume Vw will be calculated and illustrated by the
probability scaled β-uncertainty spaces according to section 7.2.3. Of course,
the Neyman measurement procedures will have minimum weighted volume by
construction, but for the others it may serve as the second criterion for choosing
between competing ones.
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7. Neyman Measurement Procedures for Mon(a, b, μ1)

Since we have seen already numerous graphs showing (one or more) β-uncertainty
spaces, we will ommit extensive labellings within the graphics in the following
and give necessary descriptions in the figures captions.

7.2.4.1. D = {μ1 | 0.01 ≤ μ1 ≤ 0.05}

In relation to the range of variability X = {x | 0 ≤ x ≤ 1} the possible values
μ1 of E[X] are very near to the lower bound. We will see, that the boundedness
of the range of variability plays a minor role and, thus, that the approximative
procedures yield quite good results. Since this observation is already clearly
visible for sample sizes of n = 2, 4, we will restrict attention to these values.

Neyman measurement procedure for E[X], X|{μ1} ∼ Mon(μ1)
The Neyman measurement procedure ∗C

(0.9)
E[X] for E[X] is an optimal measurement

procedure in the sense that it has smallest value of the weighted volume Vw.
Figure 7.17 displays the two β-uncertainty spaces U (0.9)

X
for X for n = 2 and

n = 4. As we have seen before, the geometric size of U (0.9)
X

becomes smaller with
larger value of n, i.e., resulting measurements will become shorter intervals. The
weighted volume Vw(∗C(0.9)

E[X]) has a value of 0.746186 for n = 2 and of 0.655538
for n = 4.
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Figure 7.17.: The optimal β-uncertainty spaces U (0.9)
X

for X and X|{μ1} ∼
Mon(μ1) for n = 2 and n = 4.
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Figure 7.18.: The optimal β-uncertainty spaces U (0.9)
Y

for Y and Y |{μ1} ∼
EXP (1/μ1) for n = 2 and n = 4. In both cases compared to
the optimal ones U (0.9)

X
whose shapes are indicated by the (hardly

visible) dashed lines.

Neyman measurement procedure for E[Y ], Y |{μ1} ∼ EXP (1/μ1)
In figure 7.18 the optimal β-uncertainty spaces U (0.9)

Y
for Y are displayed for n = 2

and n = 4 directly in comparison to the optimal ones U (0.9)
X

. There are almost no
visible differences, and in fact, the reliability is perfectly met and the values of
the weighted volume are identical with respect to the numerical accuracy of the
calculations. Thus, we may conclude, that both Neyman measurement procedures
∗C(0.9)

E[X] and ∗C(0.9)
E[Y ] are equal – why we also omit to display the probability scaled

plots of the respective β-uncertainty spaces.

LR measurement procedure for E[Y ], Y |{μ1} ∼ EXP (1/μ1)
Figure 7.19 displays the β-uncertainty spaces LRU (0.9)

Y
for n = 2 and n = 4

in comparision to the optimal ones. The differences are pretty obvious in the
upper right part of the graphics, where the optimal uncertainty space is a lot
larger. The consequence is, that for relatively large realisations of X we would
get longer measurements from the Neyman measurement procedure than from the
approximative LR measurement procedure. In the lower left part of the graphics,
the differences are well visible only in the detailed views. For small realisations
the Neyman measurement procedure results into measurements shorter than the
ones obtained from the approximative LR measurement procedure. Hardly visible
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Figure 7.19.: The β-uncertainty space LRU (0.9)
Y

for Y and Y |{μ1} ∼ EXP (1/μ1)
for n = 2 and n = 4, respectively, based on the likelihood ratio test
statistic and the optimal one U (0.9)

X
(dashed shape).

also in the detailed views is the difference at the bottom of the graphics. For
very small realisations the Neyman measurement procedure would yield longer
measurements than the approximative LR measurement procedure.

The analysis of the actually reached reliability, that is the true probability of the
prediction sets LRA

(0.9)
Y ({μ1}), shows no visible difference (see figure 7.20).

But calculating the values of the weighted volume yields Vw

(
LRC

(0.9)
E[Y ]

)
= 0.755936

for n = 2 and Vw

(
LRC

(0.9)
E[Y ]

)
= 0.672171 for n = 4, which are a little larger than

0.746186 and 0.655538, respectively. Here, it is worthwhile to take a look at the
probability scaled plots of the β-uncertainty spaces in figure 7.21.

We realise again how misleading it would be to only compare the length of the
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Figure 7.20.: The true probability of the prediction sets LRA
(0.9)
Y ({μ1}) from the

LR measurement procedure for n = 2 and n = 4.
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Figure 7.21.: The probability scaled plots of the β-uncertainty space LRU (0.9)
Y

for
Y and Y |{μ1} ∼ EXP (1/μ1) for n = 2 and n = 4, respectively,
based on the likelihood ration test statistic and the optimal one
U (0.9)

X
(dashed shape).

resulting measurements without taking the underlying probability structure into
account, which is done in the calculation of the weighted volume and the proba-
bility scaled plots.

HPR measurement procedure for E[Y ], Y |{μ1} ∼ EXP (1/μ1) based on
2
∑

Yi/μ1

The comparison of the β-uncertainty spaces HP RU (0.9)
Y

with the optimal ones
shows really huge differences (figure 7.22). The misleading character of the
pure analysis of the geometric sizes of measurements becomes even more evi-

231



7. Neyman Measurement Procedures for Mon(a, b, μ1)

dent: While the measurements resulting from the HPR measurement procedure
would be singletons for the vast majority of realisations of X, i.e., either {m�}
or (mainly) {mu}, its weighted volume has a value of 0.827792 for n = 2 and
0.732585 for n = 4, respectively, both considerably larger than 0.746186 and
0.655538, respectively. Figure 7.23 displays this in the probability scaled plot of
the respective β-uncertainty spaces. Interesting is the fact, that the demanded
reliability is still met (figure 7.24).
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Figure 7.22.: The β-uncertainty space HP RU (0.9)
Y

for Y and Y |{μ1} ∼ EXP (1/μ1)
for n = 2 and n = 4, respectively, based on the likelihood ratio test
statistic and the optimal one U (0.9)

X
(dashed shape).
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Figure 7.23.: The probability scaled plots of the β-uncertainty space HP RU (0.9)
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for Y and Y |{μ1} ∼ EXP (1/μ1) for n = 2 and n = 4, respectively,
based on the likelihood ratio test statistic and the optimal one U (0.9)

X

(dashed shape).

0.01 0.02 0.03 0.04 0.05

0.896

0.898

0.900

0.902

0.904

P X
|{μ

1}
(H

P
R

A
(0

.9
)

Y
({

μ
1}

))

E[X]
(a) n = 2

0.01 0.02 0.03 0.04 0.05

0.896

0.898

0.900

0.902

0.904

P X
|{μ

1}
(H

P
R

A
(0

.9
)

Y
({

μ
1}

))

E[X]
(b) n = 4

Figure 7.24.: The true probability of the prediction sets HP RA
(0.9)
Y ({μ1}) from the

HPR measurement procedure for n = 2 and n = 4.
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7.2.4.2. D = {μ1 | 0.05 ≤ μ1 ≤ 0.25}

Since the Neyman measurement procedure for E[X] and the considered approxi-
mations are already fully explained, we present subsequently only the respective
coverage probabilities and weighted volumes. The uncertainty spaces in the un-
scaled and scaled form are displayed in the appendix B. The calculations here
are performed for sample sizes n = 2, 4, 8, 12, 16.

Coverage Probabilities The graphical illustrations in figures 7.25, 7.26 and
7.27 of the respective coverage probabilities of the approximation procedures all
show, that the required reliability β = 0.9 is met. We note that in all cases the
exceedance is increasing with the true value μ1 approaching the upper bound
mu = 0.25 and with greater sample sizes n. We conclude that all are reasonable
approximations, but, at the same time, they will yield some larger measurements,
i.e., longer measurement intervals.
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Figure 7.25.: The true probability of the prediction sets ∗A(0.9)
Y ({μ1}) from

the corresponding optimal measurement procedures for E[Y ] with
Y |{μ1} ∼ EXP (1/μ1) for n = 2, 4, 8, 12, 16.
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Figure 7.26.: The true probability of the prediction sets LRA
(0.9)
Y ({μ1}) from the

corresponding measurement procedures for E[Y ] with Y |{μ1} ∼
EXP (1/μ1) based on the likelihhod ratio test statistic for n =
2, 4, 8, 12, 16.
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Figure 7.27.: The true probability of the prediction sets HP RA
(0.9)
Y ({μ1}) from the

corresponding measurement procedures for E[Y ] with Y |{μ1} ∼
EXP (1/μ1) based on highest probability regions for n =
2, 4, 8, 12, 16.

235



7. Neyman Measurement Procedures for Mon(a, b, μ1)

Weighted Volumes Table 7.7 contains the respective weighted volumes Vw in
comparison to the optimal Neyman measurement procedure: 1) For all proce-
dures, the weighted volume decreases with increasing sample size, i.e., the accu-
racy increases. 2) Compared to the optimal Neyman procedure, the exceedance
of Vw for the Neyman procedure w.r.t. Y |{μ1} ∼ EXP (1/μ1) is considerably
small, but increases with greater sample size. The LRT procedure shows some
more exceedance, whilst the HPR procedure has the largest one. In the latter
two cases, the exceedances increase at first, but then decrease with increasing
sample size.

n 2 4 8 12 16

Vw(∗C(0.9)
E[X]) 0.73956 0.64674 0.53979 0.47650 0.43258

Vw(∗C(0.9)
E[Y ] ) 0.74533 0.65546 0.55007 0.48698 0.44293

+0.78% +1.35% +1.90% +2.20% +2.39%

Vw(LRC
(0.9)
E[Y ] ) 0.75623 0.67323 0.56685 0.50011 0.45355

+2.25% +4.10% +5.01% +4.95% +4.85%

Vw(HP RC
(0.9)
E[Y ] ) 0.83054 0.73553 0.60673 0.52869 0.47568

+12.30% +13.73% +12.40% +10.95% +9.96%

Table 7.7.: Values of the weighted volume Vw(∗C(0.9)
E[X]) of the optimal measurement

procedure compared to those of the approximations for sample sizes
n = 2, 4, 8, 12, 16.
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7.2.4.3. D = {μ1 | 0.40 ≤ μ1 ≤ 0.45}

As in the previous section, we present only the coverage probabilites and the
weighted volumes of the respective approximations and compare them to the
optimal Neyman procedure. Further graphics can again be found in the appendix
B.

Coverage Probabilities As can be seen in figures 7.28, 7.29 and 7.30, the ap-
proximating procedures all meet the required reliability β = 0.9, but exceed it by
far. That is, we could expect, that the procedure yields a correct measurement
result. Actually, this is achieved more often than demanded and – presumably –
by longer measurement results.
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Figure 7.28.: The true probability of the prediction sets ∗A(0.9)
Y ({μ1}) from

the corresponding optimal measurement procedures for E[Y ] with
Y |{μ1} ∼ EXP (1/μ1) for n = 2, 4, 8, 12, 16.
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Figure 7.29.: The true probability of the prediction sets LRA
(0.9)
Y ({μ1}) from the

corresponding measurement procedures for E[Y ] with Y |{μ1} ∼
EXP (1/μ1) based on the likelihhod ratio test statistic for n =
2, 4, 8, 12, 16.
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Figure 7.30.: The true probability of the prediction sets HP RA
(0.9)
Y ({μ1}) from the

corresponding measurement procedures for E[Y ] with Y |{μ1} ∼
EXP (1/μ1) based on highest probability regions for n =
2, 4, 8, 12, 16.

238



7.2. Measurement Procedures for E[X]

Weighted Volumes Consistent with the exceedance in the coverage probabil-
ity, the weighted volumes of the approximating procedures all exceed by similar
amounts the one of the optimal Neyman procedure. Furthermore, this exceedance
increases with increasing sample size n.

n 2 4 8 12 16

Vw(∗C
(0.9)
E[X]) 0.88808 0.88218 0.87324 0.86581 0.85916

Vw(∗C
(0.9)
E[Y ] ) 0.95357 0.95961 0.95932 0.95707 0.95453

+7.37% +8.78% +9.86% +10.54% +11.10%

Vw(LRC
(0.9)
E[Y ] ) 0.95945 0.96369 0.96308 0.96084 0.95841

+8.04% +9.24% +10.29% +10.98% +11.55%

Vw(HP RC
(0.9)
E[Y ] ) 0.94854 0.96176 0.97002 0.97297 0.97426

+6.81% +9.02% +11.08% 12.38% +13.40%

Table 7.8.: Values of the weighted volume Vw(∗C(0.9)
E[X]) of the optimal measurement

procedure compared to those of the approximations for sample sizes
n = 2, 4, 8, 12, 16.

7.2.4.4. Concluding notes on the Measurement of E[X]

We have discussed three different cases of ignorance spaces D with respect to
E[X]. We have compared the optimal Neyman measurement procedure to possi-
ble approximations.

For D = {μ1 | 0.01 ≤ μ1 ≤ 0.05}, we notice almost no difference in the respective
results: 1) The reliability is perfectly met and 2) the weighted volumes only
exceed the one of the optimal procedure only by small amounts. These results
were expectable: Since the ignorance space D contains only small values, the
vast amount of the probability is concentrated on the left side of the range of
variability X = [0, 1]. That is, the boundedness to the right plays a very minor
role.

The situation changes for D = {μ1 | 0.05 ≤ μ1 ≤ 0.25}: 1) The coverage proba-
bilities now exceed the required reliability and even increase when the true value
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μ1 approaches the right bound of D, and 2) the weighted volumes exceeds the
optimal one more distinctly. This is due to an ignorance space which causes that
a certain amount of probability is allocated near the right bound of the range of
variability X = [0, 1] – but not above as in the approximations.

The greatest impact can be observed for the ignorance space D = {μ1 | 0.40 ≤
μ1 ≤ 0.45}. The assumed possible values of E[X] cause the respective density
functions still to be monotone decreasing, but, at the same time, a considerable
large amount of probability is allocated in the right half of X = [0, 1]. The
weighted volume of the optimal Neyman measurement procedure, which is the
only one incorporating the boundedness of X = [0, 1], is by far the smallest.
We also note, that the relative differences in the weighted volumes increase with
increasing sample size n. Nevertheless, the approximations still meet the required
reliability.
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7.3. Measurement Procedures for B

We assume that there is only ignorance about the value b of the upper bound B

of the range of variability X of X|{(a, b, μ1)} ∼ Mon(a, b, μ1), while the value μ1

of the expectation E[X] and the value a of the lower bound A of X are known.
Without loss of generality we may then assume a = 0, since by proposition 3.11 we
get for X|{(a, b, μ1)} ∼ Mon(a, b, μ1) that X|{(a, b, μ1)} − a = Y |{(0, b − a, μ1 −
a)} ∼ Mon(0, b − a, μ1 − a). Furthermore, we want to assume that the density
function fX|{(0,b,μ1)} is monotonously decreasing, i.e., μ1 < b

2 . The deterministic
variable then can be identified by the upper bound of the range of variability,
that is D = B with ignorance space:

D = {b | 2μ1 < b� ≤ b ≤ bu} (7.119)

Even though, the deterministic variable consists only of the one component B

while A and E[X] have fixed values a = 0 and μ1, we keep the notation X|{(b, μ1)}
to omit confusions.

As in section 7.2.1 and according to proposition 6.11 we collect the functions
necessary for determining the β-prediction procedures ∗A(β)

X :

• The density functions fX|{(b,μ1)} and fX|{(b,μ1)} of X|{(b, μ1)} and X|{(b, μ1)},
respectively:

fX|{(b,μ1)}(x) =
λ(b, μ1)

eλ(b,μ1) − 1
eλ(b,μ1)x1[0,b](x) , (7.120)

fX |{(b,μ1)}(x) =
(

λ(b, μ1)
eλ(b,μ1) − 1

)n

e
λ(b,μ1)(

n∑
i=1

xi)
n∏

i=1
1[0,b](xi) (7.121)

• The weight function w:

w(x) =
bu∫

b�

(
λ(b, μ1)

eλ(b,μ1) − 1

)n

e
λ(b,μ1)(

n∑
i=1

xi)
n∏

i=1
1[0,b](xi) db (7.122)

The density functions are the same as in the aforementioned section 7.2.1, and
thus, we note the dependency on the sum

∑n
i=1 xi. Since the aim is to de-

rive a measurement procedure for B we rewrite the indicator function part of
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fX|{(b,μ1)}(x) to get a function in b:

n∏
i=1

1[0,b](xi) = 1[max xi,+∞)(b) · 1(−∞,min xi](0) (7.123)

While the factor 1(−∞,min xi](0) yields always 1 and may be neglected, the factor
1[max xi,+∞)(b) reflects the connection between max xi and b. Thus, inserting this
into the weight function (7.122) yields

w(x) =
bu∫

b�

(
λ(b, μ1)

eλ(b,μ1) − 1

)n

e
λ(b,μ1)(

n∑
i=1

xi)
1[max xi,+∞)(b) db (7.124)

=
bu∫

max{max xi,b�}

(
λ(b, μ1)

eλ(b,μ1) − 1

)n

e
λ(b,μ1)(

n∑
i=1

xi)
db (7.125)

Given x, y ∈ [0, b]n for some b ∈ D with
∑n

i=1 xi =
∑n

i=1 yi and max xi = max yi

yields

fX|{(b,μ1)}(x) = fX|{(b,μ1)}(y) (7.126)

w(x) = w(y) (7.127)

and, thus:
fX|{(b,μ1)}(x)

w(x)
=

fX|{(b,μ1)}(y)
w(y)

(7.128)

Consequently, if one x ∈ ∗A
(β)
X ({b}) ⊆ [0, b]n with s :=

∑n
i=1 xi and t := max xi,

then {
y ∈ [0, b]n|

n∑
i=1

yi = s and max xi = t
}

⊂ ∗A(β)
X ({b}) . (7.129)

Now, it is very nearby to conjecture that a prediction procedure for X is equiv-
alent to a prediction procedure for

(X(n), Kn)|{(b, μ1)} := (max Xi|{(b, μ1)},

n∑
i=1

Xi|{(b, μ1)}) .
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In corollary 3.21 we have derived the joint density of (X(n), Kn)|{(b, μ1)}:

f(X(n),Kn)|{(b,μ1)}(t, s) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
λ(b,μ1)

eλ(b,μ1)b−1

)n

eλ(b,μ1)s ∑k
m=1

n(n−1)
(m−1)!(n−m)! (s − mt)n−2(−1)m+1

for

1
1+k

s ≤ t ≤ 1
k
s,

0 ≤ t ≤ b,

0 ≤ s ≤ nb,

k = 1, . . . , n − 1,

0 else.

(7.130)

The summation part in (7.130) is independent of b and, thus, is cancelled in the
ratio

f(X(n),Kn)|{(b,μ1)}(t, s)
w(t, s)

=

(
λ(b,μ1)

eλ(b,μ1)b−1

)n

eλ(b,μ1)s

bu∫
max{t,b�}

(
λ(b,μ1)

eλ(b,μ1)−1

)n

eλ(b,μ1)s db

. (7.131)

Since for all x with t = max xi and s =
∑n

i=1 xi we get the same ratio

fX|{(b,μ1)}(x)
w(x)

=

(
λ(b,μ1)

eλ(b,μ1)b−1

)n

eλ(b,μ1)s

bu∫
max{t,b�}

(
λ(b,μ1)

eλ(b,μ1)−1

)n

eλ(b,μ1)s db

, (7.132)

we may conclude that both prediction procedures for X |{(b, μ1)} and for
(X(n), Kn)|{(b, μ1)}, respectively, yield equivalent prediction sets.

We first want to get an impression of the uncertainty space U(X(n) ,Kn), of which
the β-predictions ∗A

(β)
(X(n),Kn)({b}) are subsets. Of course, U(X(n),Kn) ⊂ R

3 and for
some fixed b ∈ D we have two inequalities defining the range of variability of
(X(n), Kn)|{(b, μ1)}:

0 ≤ max xi ≤ b (7.133)

max xi ≤
∑

xi ≤ n max xi (7.134)

Writing t = max xi and s =
∑

xi for the realisations of (X(n), Kn)|{(b, μ1)} we
get

U(X(n) ,Kn) =
{

(t, s, b) | b ∈ D, 0 ≤ t ≤ b, t ≤ s ≤ nt
}

(7.135)
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Figure 7.31.: Uncertainty space U(X(4),K4) of (X(4), K4) = (max Xi,
∑4

i=1 Xi) with
D = {b | b� = 2 ≤ b ≤ 4 = bu}. The intersections for certain values
b show the respective ranges of variability of (X(4), K4)|{(b, μ1)}.

Assuming n = 4 and b ∈ D = {b | 2 ≤ b ≤ 4}, figure 7.31 displays U(X(n),Kn) to-
gether with some intersections for certain values b. The joint density f(X(n),Kn)|{(b,μ1)}
for n = 4 is displayed in figures 7.32 and 7.33 for μ1 = 0.4 and μ1 = 0.9, respec-
tively, and values b = 2, 3, 4. The value μ1 = 0.4 has the effect, that most of the
probability of X|{(b, 0.4)} is concentrated to the left of X ({(b, 0.4)}) = [0, b] for
all values b (the course of the density is rather steeply decreasing), which trans-
lates into the range of variability of (X(n), Kn)|{(b, μ1)} in the way, that most of
the probability is concentrated in the lower left corner. The value b has almost
no effect on the course of the density function.

For μ1 = 0.9, the probability of X|{(b, 0.9)} is more evenly distributed on
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X ({(b, 0.9)}) = [0, b] for small values b ∈ D (the density is rather weakly de-
creasing) and, thus, the probability is mostly concentrated in the center of the
range of variability of (X(n), Kn)|{(b, μ1)}. To make the graphics more compara-
ble, the displayed underlying range of variability is always the one for b = 4 (in
blue), i.e., the maximal value of B. We have to keep in mind that the actual ones
are cut to the right by the actual value b.

Again, for each value b ∈ D the prediction sets for (X(n), Kn)|{(b, μ1)} are ob-
tained as follows:

∗A(β)
(X(n),Kn)({b}) =

{
(t, s)

∣∣∣∣ f(X(n),Kn)|{(b,μ1)}(t, s)
w(t, s)

≥ r∗(b)
}

(7.136)

=

{
(t, s)

∣∣∣∣
(

λ(b,μ1)
eλ(b,μ1)b−1

)n

eλ(b,μ1)s

bu∫
max{t,b�}

(
λ(b,μ1)

eλ(b,μ1)−1

)n

eλ(b,μ1)s db

≥ r∗(b)

}
(7.137)

with P(X(n),Kn)|{(b,μ1)}(∗A(β)
(X(n),Kn)({b})) = β (7.138)

Therefore, we should take some closer looks onto the ratio

r
(μ1,n)
b (t, s) :=

f(X(n),Kn)|{(b,μ1)}(t, s)
w(t, s)

. (7.139)

With the afore assumed sample size n = 4, D = {b | b� = 2 ≤ b ≤ 4 = bu}
for the ignorance space of B and the two values μ1 = 0.4 and μ1 = 0.9 for the
expectation, figure 7.34 displays the ratio’s course arranged in the same way as
figures 7.32 and 7.33.

Obviously, we need to distinguish the two cases t ≤ b� and t > b�.
For all t ≤ b� we have max{t, b�} = b� and the ratio’s value only depends on s:

r
(μ1,n)
b (t, s) =

f(X(n) ,Kn)|{(b,μ1)}(t, s)
w(t, s)

=

(
λ(b,μ1)

eλ(b,μ1)b−1

)n

eλ(b,μ1)s

bu∫
max{t,b�}

(
λ(b,μ1)

eλ(b,μ1)−1

)n

eλ(b,μ1)s db

(7.140)

=

(
λ(b,μ1)

eλ(b,μ1)b−1

)n

eλ(b,μ1)s

bu∫
b�

(
λ(b,μ1)

eλ(b,μ1)−1

)n

eλ(b,μ1)s db

(7.141)
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(a) μ1 = 0.4, b = 2

(b) μ1 = 0.4, b = 3

(c) μ1 = 0.4, b = 4

Figure 7.32.: 3-dimensional and contour plots of the joint density of
(X(4), K4)|{(b, μ1)} for μ1 = 0.4 and values b = 2, 3, 4 for the upper
bound B. The blue region in all graphics shows the maximal range
of variability for b = 4.246
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(a) μ1 = 0.9, b = 2

(b) μ1 = 0.9, b = 3

(c) μ1 = 0.9, b = 4

Figure 7.33.: 3-dimensional and contour plots of the joint density of
(X(4), K4)|{(b, μ1)} for μ1 = 0.9 and values b = 2, 3, 4 for the upper
bound B. The blue region in all graphics shows the maximal range
of variability for b = 4. 247
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(b) μ1 = 0.9, b = 2
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(c) μ1 = 0.4, b = 3
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(d) μ1 = 0.9, b = 3
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(e) μ1 = 0.4, b = 4
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(f) μ1 = 0.9, b = 4

Figure 7.34.: Contour plots of the ratio
f(X(4),K4)|{(b,μ1)}(t,s)

w(t,s) for μ1 = 0.4 (left col-
umn) and μ1 = 0.9 (right) and values b = 2, 3, 4 for the upper bound
B.248
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That is, keeping s fixed the ratio adopts the same value for all t with s
n

≤ t ≤
min{s, b�}. In figure 7.34 this behaviour is clearly visible in the graphics 7.34(d)
and 7.34(f) for μ1 = 0.9 and b = 3, 4, respectively, i.e., the contour lines are
parallel to the t-axis. For t > b�, i.e., the lower integration limit is max{t, b�} = t.
Then, with some fixed s, the ratio r

(μ1,n)
b (t, s) is strictly increasing in t, since the

denominator, i.e., the integral, is getting smaller with increasing t.

On the other hand, keeping t fixed the course of the ratio r
(μ1,n)
b (t, s) changes

from strictly decreasing to unimodal to strictly increasing in s depending on t

illustrated in figure 7.35. Since the ratio r
(μ1,n)
b (t, s) cannot be expressed explicitly
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(b) r

(0.9,4)
3 (t, s), t = 2, 2.4, 2.8

Figure 7.35.: Contour plot of the ratio r
(0.9,4)
3 (t, s) and the course for some fixed

values t.

and the course eludes some clear rules, it seems to be unpromising to tighten the
characterisation of r

(μ1,n)
b (t, s). Instead, we propose an approximation for the

prediction sets ∗A
(β)
(X(n),Kn)({b}):

• Let U((X(n),Kn),b0) be the uncertainty space of (X(n), Kn)|{(μ1, b0)} for b = b0.

• Partionate U((X(n) ,Kn),b0) into polygons P olyi.

• Calculate rb0(t, s) for each corner point of each P olyi. The maximum of the
values for each polygon P olyi defines ri.
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• Define the approximative β-prediction set P A
(β)
(X(n),Kn)({b0}) as follows:

P A
(β)
(X(n),Kn)({b0}) =

⋃
{i|ri≥r∗}

P olyi (7.142)

with

P(P A
(β)
(X(n),Kn)({b0})) = P(

⋃
{i|ri≥r∗}

P olyi) =
∑

{i|ri≥r∗}
P(P olyi) = β (7.143)

Figure 7.36 displays the resulting approximative β-prediction set P A
(β)
(X(n),Kn)({b0})

for b0 = 2.75 ∈ D = {b | 2 ≤ b ≤ 4} with β = 0.9 and n = 4. Calculating approx-
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Figure 7.36.: Approximative β-prediction set P A
(0.9)
(X(4) ,K4)({2.75}) with D =

{b | 2 ≤ b ≤ 4}.

imative β-prediction sets P A
(β)
(X(n),Kn)({b0}) for a considerable number of b0 ∈ D

yields an approximative β-uncertainty space P U (β)
B and, thus, an approximative

β-measurement procedure P C
(β)
B for B, respectively.
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7.3.1. Proposal of an approximative measurement for B

To achieve an approximative measurement P C
(β)
B (t, s) for a realisation (t, s) of

(X(n), Kn):

• The inversion of the approximative β-prediction sets P A
(β)
(X(n),Kn)({b0}) yields

a discrete set H := {b0 | (t, s) ∈ P A
(β)
(X(n),Kn)({b0})}. Define h� := min H and

hu := max H . Obviously, it holds that h� ≥ b� and hu ≤ bu.

• Those b0 for which (t, s) /∈ P A
(β)
(X(n),Kn)({b0})} may be excluded to be part

of the desired measurement. In the most general case, these values b0

may be devided into to distinguishable subsets: into one, say E�, which
consists of b0 smaller than h� and one, say Eu, which consists of b0 larger
than hu. If h� = b�, then E� would be empty and will not be part of
further considerations. Analogue, if hu = bu, then Eu would be empty
and is excluded from further considerations. It may happen that both
h� = b� and hu = bu, then the preliminary measurement would be D, i.e.,
no improvement by reducing D may be achieved.

• Define e� = max E� and eu = min Eu.

• For all b0 ≤ e� we have (t, s) /∈ P A
(β)
(X(n),Kn)({b0})} and (t, s) ∈ P A

(β)
(X(n),Kn)({h�})}.

• For all b0 ≥ eu we have (t, s) /∈ P A
(β)
(X(n),Kn)({b0})} and (t, s) ∈ P A

(β)
(X(n),Kn)({hu})}.

• A realised maximum t of the sample indicates that the real value b of B

equals at least t, i.e., a lower bound of P C
(β)
B (t, s) is at least t if t > b�.

Putting these considerations together we get an approximative measurement
P C

(β)
B (t, s) = [c�, cu] by:

• the lower bound c� equals

– b� if t ≤ b� and h� = b�

– e� if t ≤ e� and h� > b�

– t if t > e�

• the upper bound cu equals

– bu if hu = bu

– eu if hu < bu
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At least, two open question appear: On the one hand whether the set H :=
{b0|(t, s) ∈ P A

(β)
(X(n),Kn)({b0})} is always non-empty and, on the other hand, con-

sists of successive values b0 in the choosen division. All calculated examples
suggest that both may be answered with ‘yes’.

For b0 = 2, 2.2, . . . , 3.8, 4 with β = 0.9 and n = 4 figure 7.37 displays the approx-
imative β-uncertainty space P U (β)

B together with the realisation (t, s) = (2.1, 5).
For values b0 ∈ {2.2, 2.4, . . . , 3.2} we have (2.1, 5) ∈ P A

(0.9)
(X(4),K4)({b0}). Since t =

2.1 > b� = 2, we get an approximative measurement P C
(0.9)
B (2.1, 5) = [2.1, 3.4).

Having identified e�, h� and eu, hu, respectively, we may do a kind of step-wise
refinement to get a more accurate measurement.

7.3.2. Conclusion and Outlook

We have derived an approximate but nevertheless reliable measurement procedure
for the upper bound B under prior knowledge for the monotonic distribution.
In contrast to classical statistics the measurement procedure does without the
derivation of a point estimator at first and developing from this an approximative
set estimator. We admit, that the concrete implementation would be an laborious
work and, thus, more research with respect to the occuring functions and the
numerical issues should be done.
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Figure 7.37.: Approximative β-uncertainty space P U (β)
B with D = {b | 2 ≤ b ≤ 4}

for β = 0.9 and n = 4. The realisation (t, s) = (2.1, 5) is element of
P A

(β)
(X(n),Kn)({b0})} for some values b0 (marked by the balls).
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8. Two-sided Confidence Intervals
for the Mean of Zero-Inflated
Populations under Prior
Information

This Chapter is based on a submitted article Göb & Sans (2018) [31].

8.1. Introduction

The study of zero-inflated populations has substantially been influenced by the
statistical theory of industrial auditing.

Industrial auditing tests the conformance of monetary book values U kept in
lists and databases on items like accounts, articles in an inventory, transactions,
with the corresponding de facto values or audit values W of the items in reality.
The degree of misstatement of U on W can be measured by the tainting ratio
Y = (U − W )/U , i.e., the deviation of the book value U from the de facto value
W relative to the stipulated book value U . In many contexts, misstatements
tend to be overstatements where 0 ≤ W < U . Misstatement by overstatement is
the dominant error mode particularly in asset accounts, accounts receivable and
revenue accounts, see the empirical studies by Ramage et al. (1979) [64], Johnson
et al. (1981) [38], Ham et al. (1985) [33], Icerman & Hillison (1990) [36].

Under the error mode overstatement, the tainting ratio ranges on the support
[0, 1], where Y = 0 represents a correct statement, and Y = 1 represents the case
that a de facto value W = 0 is erroneously stated by a positive account entry
U > 0.

In regular business practice, most book entries are correct, and small deviations
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8. Two-sided Confidence Intervals for the Mean of Zero-Inflated Populations

are more frequent than large deviations. Hence a common type of the distribu-
tion of the tainting ratio Y under overstatement has three properties: i) highly
right skewed, ii) zero inflation, i.e., large probability point mass at 0, iii) PDF
decreasing on [0, 1]. This pattern is often addressed as an “inverse J-shape”, see
Commission on Physical Sciences, Mathematics, and Applications (1988) [23].
The same pattern occurs in many other areas, e. g., accident costs in insurance,
contamination, seismic analysis. In particular, zero inflation can be a consequence
of measurement imprecision where small signals are cumulated on zero.

Confidence intervals for the mean μY are of major interest in the analysis of
zero-inflated random variables Y . Various authors, e. g., Kaplan (1973) [42, 43],
Teitlebaum & Robinson (1975) [72], Neter & Loebbecke (1977) [55], have demon-
strated that the familiar confidence limits based on Gauss or t statistics cannot
guarantee the prescribed confidence level when sampling from zero-inflated dis-
tributions. The first approach to confidence limits specifically appropriate for in-
verse J-shaped distributions was suggested by Stringer (1963) [71] in the context
of audit sampling. The formal development of the bound nowadays associated
with Stringer’s name is mainly due to studies of Meikle (1972) [53], Anderson &
Teitlebaum (1973) [1], and Goodfellow et al. (1974) [32]. The intuitive basis of
Stringer’s approach in a multinomial error model is nicely described by Pap &
van Zuijlen (1996) [59].

Various authors have studied the actual coverage of Stringer type intervals under
prescribed nominal confidence levels. Throughout, simulation studies show that
the Sringer bound is overconservative under reasonable nominal levels 0.5 ≤ γ <

1, see Burdick & Reneau (1978) [7], Reneau (1978) [65], Leitch et al. (1982) [47],
Plante et al. (1985) [61], Tsui et al. (1985) [73]. Bickel (1992) [5] initiated the
study of the asymptotic behaviour of the bound for large sample size n. Pap &
vanZuijlen (1996) [59] showed that the bound is asymptotically conservative for
confidence levels 0.5 ≤ γ < 1.

The conservatism of the Stringer bound has motivated various attempts to con-
struct tighter limits for μY by exploiting prior information on the distribution
of Y , particularly in auditing, where sources of prior knowledge are historical
auditing records and auditing procedures which precede sampling inspection in
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the test of details context, namely risk assessment procedures, test of controls,
substantive analytical procedures. Bayesian approaches to limits for the mean
of zero-inflated random variables Y can be classified according to the respective
ways of exploiting prior information, see Godfrey & Neter (1984) [30] into four
categories: i) prior information only on the error rate P(Y > 0), see Vanecek
(1978) [74]; ii) prior information only on the conditional distribution P(·|Y > 0)
of Y under Y > 0, e. g., Garstka (1977) [28]; iii) prior information on the com-
pound distribution of Y , e. g., McCray (1984) [52]; iv) prior information both on
the error rate P(Y > 0) and on the conditional distribution of Y under Y > 0, e.
g., Cox & Snell (1979) [24], Godfrey & Neter (1984) [30], Neter & Godfrey (1985)
[54].

The majority of studies on confidence intervals for zero-inflated populations has
been concentrating on the one-sided intervals with upper bounds. However, two-
sided bounds are important in many fields of application, particularly in auditing.
In view of financial, administrative, and legal consequences, the auditor’s primary
interest is to restrict the type 1 risk of incorrectly not detecting an excessive mean
tainting in the accounts. This interest has lead research to focus on upper con-
fidence bounds for the mean tainting. However, the type 2 risk of incorrectly
assuming an excessive mean tainting also has considerable impact on the audi-
tor and the auditee. In particular, the supposition of misstatements will increase
subsequent audit efforts, to the disadvantage of both the auditor and the auditee.
Accordingly, the Commission on Physical Sciences, Mathematics, and Applica-
tions (1988) [23] considered lower confidence bounds as “an area of considerable
importance where research is needed”. In spite of this encouraging suggestion,
lower confidence limits haven’t received much attention. A lower Stringer bound
can simply be obtained by applying the Stringer method to the observations
1 − Y , but these intervals use to be wide. Plante, Neter, and Leitch (1984) [60]
developed a lower bound by the multinomial method. Tsui et al. (1985) [73] take
a Bayes approach by assuming a Dirichlet prior for the multinomial probability
parameters. The simulation study by Matsumura et al. (1991) [51] shows that for
both methods the actual confidence level is reasonably close to the prespecified
nominal level.

257



8. Two-sided Confidence Intervals for the Mean of Zero-Inflated Populations

Relative to the relevant literature, the present study has three distinctive features:

1) The intervals obtained are frequentist confidence intervals under prior in-
formation, not Bayesian credible intervals.

2) We use prior information on the conditional distribution P(·|Y > 0) ex-
pressed via the monotonic distribution Mon(μX) with support [0, 1], which
reverts the choice of the conditional distribution to a substantiated princi-
ple instead of the convenience of mathematical analysis. At the same time,
an extremely simple and convenient specification of the prior information
is enabled, since the conditional distributions are uniquely determined by
the support and the first moment.

3) We consider two-sided confidence intervals for the mean μY .

The chapter is organised in the following way: After introducing a stochastic
model for zero-inflated distributions on [0, 1] in section 8.2, we define two two-
sided confidence intervals for the tainting mean μY in section 8.3. The first is
a two-sided interval of Stringer type, the other a composition of a confidence
interval for the proportion of overstatement and a confidence interval for the
conditional mean under overstatement. It is shown, that the proposed composed
interval meets a nominal confidence level γ. Section 8.4 introduces a stochastic
model for the conditional distribution of overstatement by means of the principle
of minimum information and maximum entropy, respectively, by exploiting only
information about the support, i.e., the unit interval, and the conditional mean
under overstatement. The monotonic distributions Mon(μX) meets all these
requested properties. Consequently, the Neyman β-measurement procedure for
E[X] of X ∼ Mon(μX) derived in Chapter 7 is used to measure the conditional
mean by means of confidence intervals under prior information. A simulation
study and its results are outlined in the following sections 8.5 and 8.6: The results
for the proposed two-sided confidence interval are compared to those from the
two-sided Stringer interval. Finally, two sensitivity examinations are conducted in
sections 8.7 and 8.8: one with respect to a near misstatement of prior information
about the conditional mean, the other with respect to a misstatement of the
conditional distribution under overstatement.
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8.2. Zero inflated Distributions on the Unit Interval

A random variable Y with a potentially zero-inflated distribution on [0, 1] can be
modelled as

Y = ZX, with Z, X independent, Z ∼ Bi(1, p), P(0 ≤ X ≤ 1) = 1 (8.1)

where X is an absolutely continuous random variable with support [0, 1]. The
distribution of Y is strictly zero-inflated iff 1 − p = P(Y = 0) > 0. By (8.1), the
mean μY and the CDF FY can be decomposed as

μY = E[Y ] = E[ZX] = E[Z]E[X] = pμX , (8.2)

FY (y) =

⎧⎪⎨⎪⎩
1 − p, for y = 0,

1 − p + pFX(X ≤ y) = 1 − p + p
y∫
0

fX(x) dx, for y > 0.
(8.3)

In the auditing context, Y is the tainting ratio Y = (U − W )/U where U is
the book value and W is the associated de facto value. The tainting ratio Y

satisfies the model (8.1) in an overstatement framework where 0 ≤ W ≤ U with
probability one.

8.3. Two-sided confidence intervals for μY

In this section we will 1) recapitulate a two-sided version of the Stringer bounds to
derive confidence intervals for μY , and 2) introduce a procedure based on model
(8.1) which utilises the decomposition (8.3).

Let Y1, . . . , Yn be an i.i.d. sample of variables of type Yi = ZiXi as decomposed
by (8.1), arranged in the sample vector Y = (Y1, ..., Yn)�. Let 0 ≤ Y(1,n) ≤ . . . ≤
Y(n,n) be the corresponding ordered sample. Let K =

∑n
i=1 1(0,1](Yi) =

∑n
i=1 Zi

be the number of non-zero Yi = Xi in the sample, and let

XK =

⎧⎨⎩ (Y(n−K+1,n), . . . , Y(n,n))� if K > 0,

∅ if K = 0
(8.4)

be the vector of the corresponding non-zero sample components. K is distributed
by the binomial distribution Bi(n, p).
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Both types of intervals for μY considered subsequently are based on the two-sided
Clopper & Pearson [14] confidence bounds 0 ≤ pL,β(m) < pU,β(m) ≤ 1 for some
success probability p in a series of Bernoulli trials of size n if 0 ≤ m ≤ n successes
are observed. Under nominal level 0 < β < 1 the Clopper-Pearson bounds are
defined as the solutions of the equations

n∑
j=m

(
n

j

)
pL,β(m)j [1 − pL,β(m)]n−j != 1 − β

2
!=

m∑
j=0

(
n

j

)
pU,β(m)j[1 − pU,β(m)]n−j .

(8.5)

Stringer’s method can easily be adapted to obtain two-sided intervals for μY , see
Lurz (2015) [49].

Definition 8.1 (two-sided interval of Stringer type) Let the nominal con-
fidence level β ∈ (0; 1) be prescribed. Then the two-sided confidence interval
CSt

μY
(Y ) := [μSt

Y,L, μSt
Y,U ] of Stringer type for μY at nominal level β is defined by

μSt
Y,L = pL,β(0) +

∑n
m=1 (pL,β(m) − pL,β(m − 1)) Y(n−m+1,n) ,

μSt
Y,U = pU,β(0) +

∑n
m=1 (pU,β(m) − pU,β(m − 1)) Y(n−m+1,n) .

(8.6)

In an alternative approach, we establish separately a Clopper-Pearson confidence
interval Cp for the probability p = P(Y > 0) = P(Z = 1) and a confidence
interval CμX

for the conditional mean μX = μY |Y >0, and combine these intervals
using the decomposition (8.2). The following proposition 8.2 states the coverage
properties of the combined interval.

Proposition 8.2 (combined confidence interval) Let 0 < β1, β2 < 1. Let
pL,β1(K) < pU,β1(K) be the Clopper-Pearson bounds defined by (8.5) at the nomi-
nal level β1, and let CμX

(XK) = [μX,L(XK), μX,U(XK)] be a level β2 confidence
interval for μX. Then

Cde
μY

(Y ) = [pL(K) · μX,L(XK), pU(K) · μX,U(XK)] (8.7)

is a confidence interval for μY at the actual level β1 + β2 − 1, i.e., PμY
(μY ∈

Cde
μY

(Y )) ≥ β1 + β2 − 1.
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Proof of 8.2: The proof is a simple application of the Bonferroni inequality.
Although we assume independence of Z and X in model (8.1), the number
K =

∑n
i=1 Zi of non-zeros and XK are clearly not independent and, thus, the

respective confidence intervals also not. But by Bonferroni inequality we get

PμY
(μY ∈ Cde

μY
(Y )) =

= PpμX
(pμX ∈ [pL(K) · μX,L(XK), pU(K) · μX,U(XK)])

≥ PpμX
(p ∈ [pL(K), pU(K)], μX ∈ [μX,L(XK), μX,U(XK)])

≥ Pp(p ∈ [pL(K), pU(K)]) + PμX
(μX ∈ CμX

(XK)) − 1 = β1 + β2 − 1 .

•

Any combination β1 + β2 − 1 = β provides a confidence interval of level β for μY ,
in particular, the standard choice β1 = (1 + β)/2 = β2.

Subsequently, we use the decomposition interval established by proposition 8.2
with the prior information based interval

CμX
(XK) =

⎧⎨⎩ D if K = 0,

C�
μX

( 1
K

∑n
�=n−K+1 Y�

)
if K > 0

(8.8)

for μX = μY |Y >0 where prior information on μX is expressed by a subinterval
D ⊂ (0.0, 0.5) which contains μX with certainty. The interval C�

μX
is established

in the subsequent section 8.4.

8.4. Prior information model

The proposition 8.2 decomposes the confidence interval μY into a confidence
interval Cp for p = P(Y > 0) and a confidence interval CμX

for the conditional
mean μX = μY |Y >0. In many applications, particularly in auditing, at least
some vague prior knowldege on the range of μX is available. The present section
expresses such prior information in a stochastic model for the PDF fX = fY |Y >0.

We focus on the case of a decreasing PDF fX . The latter assumption is particu-
larly warranted in the auditing context where inverse J-shaped tainting distribu-
tions widely occur. For the choice of a class of model densities with support [0, 1],
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two requirements are paramount: 1) A sparse parametrisation with an explicit
link to the mean μ = μX = E[X] as a parameter so as to enhance acceptance
and understanding by the user community. 2) Substantiating the choice of the
model class by transparent principles so as to avoid arbitrariness of the model
approach.

As discussed in Chapter 2, both requests 1) and 2) are guaranteed by the class
of minimum information representatives, or, equivalently maximum entropy dis-
tributions (see section 2.3.2). In particular, the monotonic distribution Mon(μ)
meets these requirements. That is, the PDF fX|{μ} of X|{μ} is

fX|{μ}(x) =

⎧⎨⎩
eλ(μ)x∫ 1

0 eλ(μ)x dx
= λ(μ)

eλ(μ)−1eλ(μ)x for x ∈ [0, 1]

0 else
(8.9)

where λ(μ) is the solution of

μ = E[X|{μ}] != 1 − λ − e−λ

λ(e−λ − 1)
. (8.10)

The class of monotonic distributions (fX|{μ})0<μ<1 satisfies the request of a sparse
parametrisation with an explicit link to the mean μ = μ1 = μX as a parameter.
The requirement of a decreasing PDF is equivalent to restricting to μ ∈ (0, 0.5]
where μ = 0.5 amounts to the uniform distribution on [0, 1]. A more precise
prior knowledge can be expressed by a prior information interval D = [μ

X
, μX ] ⊂

(0, 0.5).

A confidence interval for μX of the monotonic distribution Mon(μX) was already
derived in section 7.2.1 by the Neyman β-measurement procedure ∗C(β)

E[X]. It was
shown, that the procedure need not be based on the whole sample vector XK ,
but on X. Since the number K of non-zero Yi = Xi in the sample is random, we
write XK := 1

K

∑n
�=n−K+1 Y� and get

CμX
(XK) =

⎧⎨⎩ D if K = 0,

∗C(β)
E[X]

(
XK

)
if K > 0

(8.11)
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8.5. Objectives, Design, and Numerics of
Simulation Study

Analytical finite sample results are difficult to obtain both for the two-sided
Stringer intervals introduced by definition 8.1 and for the decomposition interval
established by proposition 8.2. We use simulation to study two crucial issues:
a) Comparing the two approaches with respect to the expected length and the
actual pointwise coverage of the intervals. b) Analyse the sensitivity of the de-
composition interval with respect to the assumed prior information.

Consider a sample size n, N independent simulation runs resulting into N i.i.d.
simulation vectors (Y i)i=1,...,N where the components Yi1, ..., Yin of the vectors Y i

are of type Yij = ZijXij as decomposed by (8.1) with fixed p = P(Yij > 0) =
P(Zij = 1).

We study the expectation of two statistics T = T (C(Y )) of the confidence inter-
vals C(Y ) = [μY,L, μY,U ] for μY :

1) the empirical coverage

Q = 1C(Y )(μY ) (8.12)

pointwise in the true value μY .

2) the interval length

H = μY,U − μY,L. (8.13)

The expectation μQ|μY
= PμY

(μY ∈ C(Y )) is the coverage probability of the
confidence interval pointwise as a function of μY . The expectation μH|μY

is the
expected length of the confidence interval pointwise as a function of μY . A
precise direct estimation of the means μT of these statistics is difficult for small
values p = P(Y > 0) where there are few samples only with a relatively large
number k of non-zeros. For instance, under p = 0.05 and n = 100 we get
P(k > 15) ≈ 3.7 × 10−5, and even for N = 106 we would have on the average
only 37 samples with a number of non-zeros greater than 15. To account for the
variability under larger values k requires enormous simulation sizes N . Instead,
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we base the estimation of the mean μT via simulation on the decomposition

μT =
n∑

k=0
μT |K=kP(K = k) =

n∑
k=0

μT |K=k

(
n

k

)
pk(1 − p)n−k (8.14)

relative to the values K = 0, ..., n of the random number K of nonzero components
in the sample vector Y . For prescribed probability p = P(Y > 0) = P(Z = 1)
and μ = μX = μY |Y >0, the estimation algorithm proceeds in the following steps:

i) For each K = k > 0:

i.1) simulate N vectors X1, . . . , XN of k i.i.d. components from Mon(μ);

i.2) form the total sample vectors Y i by joining n − k zeroes to X i;

i.3) estimate μT |K=k by the average μ̂T |K=k =
∑N

i=1 Ti/N over the obser-
vations under K = k.

ii) adopting the decomposition (8.14), estimate μT by

μ̂T =
n∑

k=0
μ̂T |K=k

(
n

k

)
pk(1 − p)n−k . (8.15)

We choose the following parameters for the simulation study:

• The probability p ranges over {0.025, 0.050, 0.075, 0.100}.

• The mean μX adopts the values 0.1 and 0.2

• The sample size n ranges over {25, 50, 75, 100, 150, 200, 250}

• N = 500 simulation runs for each value K = k ∈ {1, . . . , 250} (k = 0 needs
no simulation).

• Nominal confidence levels β1 = β2 = 0.975 for the decomposition interval
introduced by proposition 8.2. The corresponding total confidence level
β = 2 · 0.975 − 1 = 0.95 is used for the two-sided Stringer intervals as
introduced by definition 8.1.

• For simulation data with μX = 0.1 the prior information intervals are DIa =
[0.01, 0.49], DIb = [0.01, 0.30], DIc = [0.05, 0.20].

• For simulation data with μX = 0.2 the prior information intervals are
DIIa = [0.01, 0.49], DIIb = [0.05, 0.35], DIIc = [0.10, 0.25]
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8.6. Findings from Simulation Study

For μX = 0.1, the considered range of expected values μY = 0.1p is 0.0025, 0.005,
0.0075, 0.01. For μX = 0.2, the considered range of expected values μY = 0.2p is
0.005, 0.01, 0.015, 0.02.

Determining an optimal β-uncertainty space U (β)
Xk

for each k = 1, . . . , n is a prereq-
uisite for obtaining the optimum β-measurement procedure ∗C

(β)
E[X]. For large k,

obtaining U (β1)
Xk

is laborious. To save time we calculate β-uncertainty spaces only
for k in the range 1, 2, . . . , 50, 60, 70, . . . , 240. For k outside the latter range we
choose the largest element k′ ∈ {1, 2, . . . , 50, 60, 70, . . . , 240} smaller than k and
use in the decomposition interval by proposition 8.2 the optimum β-measurement
∗C(β)

E[X](Xk′) calculated from a vector Xk′ of length k′ where the mean Xk′ should
be the mean Xk of Xk. For instance, for k = 77 we use the β-uncertainty space
U (β)

X
′
k

for k′ = 70. To indicate the potential difference between ∗C(β)
E[X](Xk) (nomi-

nal sample size k equals the length of Xk) and ∗C
(β)
E[X](Xk′), we write ∗C̃

(β)
E[X](Xk′).

The effects of the numerical policy on k are checked by a supplementary simu-
lation study. For k ∈ {20, . . . , 50} we calculate β-uncertainty spaces U (β)

Xk
with

β = 0.975 and prior information D = [0.01, 0.49]. For X ∼ Mon(0.2) we simulate
2000 sample vectors Xk,i for each k and obtain the optimum intervals ∗C(β)

E[X](Xk,i)
based on the corresponding β-uncertainty space. For the samples of size 50 we
consider the intervals ∗C̃(β)

E[X](Xk′,i) from β-uncertainty spaces based on smaller
nominal sample sizes k′ ∈ {50, 49, . . . , 20}. From the simulation data, we esti-
mate the coverage relative to the true value μX = 0.2 and the expected interval
length. Figure 8.1 displays the estimators. The coverage increases if intervals
∗C̃(β)

E[X](Xk′,i) are obtained from a β-uncertainty space of smaller nominal sample
size k′, i.e., the latter intervals comply with the prescribed level β = 0.975. The
mean length of ∗C̃

(β)
E[X](Xk′,i) only slightly increases.

8.6. Findings from Simulation Study

The estimators of the actual pointwise coverage and of the expected interval
length obtained from the simulation study outlined in the preceding section 8.5
are displayed by figures 8.2 and 8.3. Subsequently we review the results in detail.
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Same Sample Sizes
Sample Size 50
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Same Sample Sizes
Sample Size 50
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0.16

0.18

CI-Procedure`s Sample Size

Mean Length of CIs

Figure 8.1.: Coverage and expected length of confidence intervals ∗C
(β)
E[X](Xk) for

samples of size k ∈ {50, 49, . . . , 20} derived from corresponding β-
uncertainty spaces (green), and for intervals ∗C̃(β)

E[X](Xk′) for samples
of size 50 derived from β-uncertainty spaces with β = 0.975 based
on smaller nominal sample sizes k′ (red).

8.6.1. Actual coverage

In both cases μX = 0.1 and μX = 0.2 and for all prior information intervals D,
all p and all sample sizes n, the mean coverage exceeds the requested confidence
level of 0.95 by far. In particular, the combined confidence intervals Cde

μY
even

more than the two-sided Stringer intervals Cst
μY

. That is, the combined confidence
interval seems to be conservative with respect to the coverage probability.

8.6.2. Expected interval length

For both intervals the expected length is decreasing with increasing sample size.

The expected interval length of the decomposition interval
In both cases μX = 0.1 and μX = 0.2 the (absolute) reduction of the mean
length of Cde

μY
due to the prior knowledge becomes smaller with increasing sample

size. Consider μX = 0.1, p = 0.1 and n = 25: starting from a mean length
of 0.11268 for DIa = [0.01, 0.49], more prior knowledge leads to 0.082884 for
DIb = [0.01, 0.30] and 0.058809 for DIc = [0.05, 0.20]. The latter amounts to a
relative reduction of 26.4% and 47.8%, respectively. For n = 250 the mean length
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Figure 8.2.: Mean lengths and mean coverages of confidence intervals Cde
μY

and
Cst

μY
. True values of E[Y ] are μY = p · μX = p · 0.1 with p ∈

{0.1, 0.075, 0.05, 0.025}.
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Figure 8.3.: Mean lengths and mean coverages of confidence intervals Cde
μY

and
Cst

μY
. True values of E[Y ] are μY = p · μX = p · 0.2 with p ∈

{0.1, 0.075, 0.05, 0.025}.
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8.6. Findings from Simulation Study

for DIa is 0.020950 and reduces to 0.020499 (−2.2%) and 0.018939 (−9.6%).
Smaller values of p lead to larger relative reductions when more precise prior
knowledge is available1: for n = 25 we have 0.092817, 0.059072 (−36.4%) and
0.39877 (−57.0%), and for n = 250 the respective lengths are 0.014683, 0.012684
(−13.6%) and 0.010028 (−31.7%).
For μX = 0.2, p = 0.1 and n = 25 the mean length reduces from 0.13565 for
DIIa = [0.01, 0.49] to 0.10340 (−23.8%) for DIIb = [0.05, 0.35] and 0.074569
(−45.0%) for DIIc = [0.10, 0.25]. For n = 250 the reduction is less severely: from
0.037038 to 0.034909 (−5.7%) and 0.028172 (−23.9%), respectively.

Comparison of the expected interval length of the decomposition interval
and the Stringer interval
In the case μX = 0.1, the Stringer intervals have a larger expected length for all
considered values of p and n and all prior information intervals, even though, the
differences diminish with greater n. For example, for n = 25 the mean length of
Cst

μY
is 0.15131 which is underrun by 0.11268, i.e., by −25.5%, for the combined

confidence interval Cde
μY

under the weak prior information DIa = [0.01, 0.49]. For
n = 250 the effect for the same prior information is less pronounced, but still
yields a reduction from 0.024235 to 0.020950 (−13.6%). More accurate prior
information, i.e., narrower D, leads to stronger reductions. The effect of smaller
considered values of p with respect to the mean length lies in a general reduction
of all combined confidence and two-sided Stringer intervals, respectively. The
situation changes for μX = 0.2 and depends on the values of both p and n. For
p = 0.1 the length of Cst

μY
is greater for small n but underruns the length of Cde

μY

from n = 75 on for DIIa = [0.01, 0.49]; for n = 250 only Cde
μY

for DIIc = [0.10, 0.25]
is still smaller than Cst

μY
. Smaller values of p delays this effect to greater sample

sizes n, and only for p = 0.025 all Cde
μY

shows a smaller mean length than Cst
μY

.

Sample size comparison
Under prescribed expected interval length, the decomposition interval enables

1This effect is expectable, since a small value of p leads to high probabilities of small numbers
of tainting ratios > 0, even for large sample sizes n. Thus, the effect of prior information
becomes considerable.
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considerable reductions in sample size in comparison with the Stringer interval.
Consider μX = 0.1 and p = 0.1 and DIb = [0.01, 0.30]. For n = 25 we have a
mean length of 0.082884 of Cde

μY
which is comparable to the length 0.084698 of

Cst
μY

for n = 50, that is, the necessary sample size is twice as large. For p = 0.025
the effect is more distinct: for the same prior information and n = 25 we have
0.059072 of Cde

μY
, whilst Cst

μY
adopts a mean length of 0.052030 for n = 75, thus,

we would need a sample size almost three times as large. Almost the same may
be observed for μX = 0.2: Consider p = 0.1 and DIIb = [0.05, 0.35] yielding a
mean length of 0.10340 of Cde

μY
for n = 25, whereas the length 0.091919 of Cst

μY
is

achieved for n = 50. For more prior information DIIc = [0.10, 0.25] and n = 100
we have 0.040562 of Cde

μY
, whilst the length 0.041852 of Cst

μY
would need a sample

size n = 200. Again, smaller values of p lead to an increase of the described
savings in n.

Remark on the validity of the simulation We made two additional simulation
runs each of size N = 500 as described above. For p = 0.1, D = [0.01, 0.30] table
8.1 displays for each run the mean lengths of Cst

μY
and of Cde

muY
, respectively.

We note, that there are only minor variations, and conclude, that the choosen
simulation size N = 500 is large enough to make valid statements.

8.7. Sensitivity in the Prior Information Interval

From the construction of the decomposition interval Cde
μY

(Y ) in proposition 8.2
and from the definition (8.11) of the underlying confidence interval ∗C(β)

E[X](Xk)
it is clear that under a totally misspecified prior information interval D with
μX /∈ D, the coverage at the true value μY = pμX is zero. In practice, D
should be chosen in a very conservative way. The prior information interval
D = [0.01, 0.49] considered in the simulation study outlined in section 8.5 reflects
almost no prior knowledge about μX , but still enables a shorter length than the
one of the Stringer interval for small to medium sample sizes.

To study the effect of nearly misspecified prior information we consider two ex-
emplary cases, both with p = 0.1, where the true value of μX equals one of the
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∣∣Cst
μY

∣∣ ∣∣Cde
μY

∣∣
n Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

25 0.15131 0.15126 0.15124 0.082884 0.082965 0.082867

50 0.084698 0.084810 0.084661 0.055275 0.055462 0.055221

75 0.060779 0.060936 0.060768 0.042917 0.043109 0.042877

100 0.048365 0.048452 0.048333 0.035797 0.035895 0.035704

150 0.035404 0.035381 0.035331 0.027855 0.027816 0.027713

200 0.028552 0.028517 0.028542 0.023430 0.023369 0.023409

250 0.024235 0.024228 0.024282 0.020499 0.020465 0.020557

Table 8.1.: Mean length of confidence intervals Cde
μY

and Cst
μY

for 3 simulation
runs. Considered values are p = 0.1, μX = 0.1 and D = [0.01, 0.30].

bounds of of a prior information interval more restrictive than D = [0.01, 0.49].
Figure 8.4 displays the case μX = 0.2 and D = [0.05, 0.20]. The mean length of
Cde

μY
is always smaller than that of Cst

μY
, e. g., for n = 25 it is 0.059891 compared to

0.16531 – less than half of the two-sided Stringer interval. For n = 75 the lengths
are 0.036596 and 0.073264, again less than half. The requested confidence level
of 0.95 is also met by Cde

μY
.

Similar observations are made for μX = 0.1 and D = [0.10, 0.25]: the two-sided
Stringer intervals Cst

μY
are larger than Cde

μY
for all sample sizes n, and Cde

μY
meets

the requested confidence level 0.95 (see figure 8.5).
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Figure 8.4.: Mean lengths and mean coverages of confidence intervals Cde
μY

and
Cst

μY
. Considered values are p = 0.1 and μX = 0.2. The prior infor-

mation interval is D = [0.05, 0.20]. That is, the true value μX = 0.2
lies on the right edge of D.
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Figure 8.5.: Mean lengths and mean coverages of confidence intervals Cde
μY

and
Cst

μY
. Considered values are p = 0.1 and μX = 0.1. The prior infor-

mation interval is D = [0.10, 0.25]. That is, the true value μX = 0.1
lies on the left edge of D.
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Figure 8.6.: Simulation distributions for tainting ratios Y > 0. Beta distribution
Beta(1, b) compared to Mon(μX), where b is choosen in the way, that
the beta distribution has the same expectation μX ∈ {0.1, 0.2, 0.45}.

8.8. Sensitivity in the Class of Prior Information
Distributions

How does the decomposition interval compare to the two-sided Stringer intervals
if the underlying PDF of X = Y |Y > 0 is still decreasing on (0, 1], but not from
the class Mon(μX)?

We consider a beta distribution Beta(a, b) with a = 1, i.e., the PDF f1,b(x):

f1,b(x) =

⎧⎪⎨⎪⎩
(1−x)b−1

B(1,b) for x ∈ [0; 1]

0 else
(8.16)

The parameter b is defined by the considered value of the expectation μX , that
is, μX = 1

1+b
⇔ b = 1

μX
− 1. Figure 8.6 displays three beta distributions in

comparison to a monotonic distribution with the same expectation μX .

Each simulation for μX ∈ {0.10, 0.20, 0.45} has a size of N = 2000. In each case
we consider the prior information D = [0.01, 0.49], i.e., the least amount of prior
information which reflects the monotone decreasing behaviour. Finally, for the
calculations of the mean lengths and coverages we consider p = 0.1.

Figure 8.7 displays the respective results. In all cases, the coverage excels the
requested confidence level of 0.95. For μX = 0.1 the mean lengths of the two-
sided Stringer intervals Cst

μY
are larger than those of Cde

μY
: for n = 25 we have

0.15113 compared to 0.11369 (−24.8%), while the difference reduces to 0.023954
compared to 0.020975 (−12.4%) for n = 250. For μX = 0.2 the situation changes
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Stringer= [0.01;0.49]

25 50 75 100 150 200 250
0.00

0.05

0.10

0.15

Sample Size

Mean Length of CIs, p=0.1,
X
=0.1 (Beta[1,9])

Stringer= [0.05;0.27]
19 90 89 500 590 100 190

0.744

0.770

0.771

0.772

0.776

0.774

5.000

Sample Size

Mean Coverage of CIs, p=0.1,
X
=0.1 (Beta[1,9])

Stringer= [0.01;0.49]

25 50 75 100 150 200 250
0.00

0.05

0.10

0.15

Sample Size

Mean Length of CIs, p=0.1,
X
=0.2 (Beta[1,4])

Stringer= [0.05;0.27]
19 90 89 500 590 100 190

0.744

0.770

0.771

0.772

0.776

0.774

5.000

Sample Size

Mean Coverage of CIs, p=0.1,
X
=0.2 (Beta[1,4])

Stringer= [0.01;0.49]

25 50 75 100 150 200 250
0.00

0.05

0.10

0.15

0.20

Sample Size

Mean Length of CIs, p=0.1,
X
=0.45 (Beta[1,11/9])

Stringer= [0.05;0.27]

19 90 89 500 590 100 190

0.744

0.770

0.771

0.772

0.776

0.774

5.000

Sample Size

Mean Coverage of CIs, p=0.1,
X
=0.45 (Beta[1,11/9])

Figure 8.7.: Mean lengths and mean coverages of confidence intervals CμY
and

Cst
μY

. Simulation Distributions are Beta distributions with expected
values μX = 0.1, 0.2, 0.45.
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8.9. Illustrative examples

Cst
μY

Cde
μY

n D [0.01, 0.49] [0.01, 0.30] [0.05, 0.20]

25 [0, 0.137185] [0, 0.078788] [0, 0.048234] [0, 0.032156]

50 [0, 0.071122] [0, 0.041116] [0, 0.025173] [0, 0.016782]

Table 8.2.: Two-sided Stringer intervals Cst
μY

and decomposition confidence inter-
vals Cde

μY
when no overstatement is observed, nominal confidence level

γ = 0.95.

in the way, that for n = 25 Cde
μY

is smaller than Cst
μY

, but for n = 50, 75, 100
we have comparable lengths, and for greater n Cde

μY
is longer than Cst

μY
. The

maximum difference is reached for n = 250 with 0.032632 compared to 0.037157
(+13.9%). For μX = 0.45 the situation is as follows: Cde

μY
is shorter than Cst

μY

from n = 25 to n = 100, where the difference reduces from −25.9% to −7.5%.
For sample sizes n = 150, 200, 250 we observe comparable lengths for both Cde

μY

and Cst
μY

.

8.9. Illustrative examples

In the previous sections, we have compared the coverage and the expected lengths
of two-sided Stringer intervals Cst

μY
and decomposition confidence intervals Cde

μY
,

respectively. Here, we present some individual confidence intervals for some re-
alisations of Y with sample sizes n = 25, 50.

The special case of no item having overstatement in the sample yields for the
two-sided Stringer intervals Cst

μY
always the same interval, which is the Clopper-

Pearson confidence interval for p. The same is true for the decomposition confi-
dence intervals Cde

μY
, but it combines the slightly longer Clopper-Pearson CI for

p (due to a larger confidence level, see 8.2) with the actual prior information
interval D. Table 8.2 shows the respective intervals.

Consider the probability for overstatement p = 0.1, then for a sample size of 25
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and 50 we would expect a mean number of 2.5 and 5 overstatements, respectively.
Tables 8.3 and 8.4 show some individual samples and resulting CIs.

Cst
μY

Cde
μY

D [0.01, 0.49] [0.01, 0.30] [0.05, 0.20]

k = 2: y = {0.058345, 0.135846, 0, . . . , 0}

0.000653 0.000237 0.000237 0.000340

0.149509 0.135764 0.086260 0.057507

k = 3: y = {0.008413, 0.138172, 0.169193, 0, . . . , 0}

0.001522 0.000855 0.000855 0.000979

0.156691 0.130818 0.102061 0.068041

k = 4: y = {0.113103, 0.170762, 0.319875, 0.930446, 0, . . . , 0}

0.008686 0.006395 0.005715 0.004921

0.231430 0.190738 0.116779 0.077852

Table 8.3.: n = 25: Two-sided Stringer intervals Cst
μY

and decomposition con-
fidence intervals Cde

μY
when k overstatements are observed, nominal

confidence level γ = 0.95.

8.10. Conclusion and Outlook

We have introduced a decomposition model for the tainting ratio, which enabled
us to model the conditional distribution under overstatement seperatly. This is
done in a rather simple, but nevertheless highly intuitive way by the monotonic
distribution Mon(μX) which is solely based on its decreasing nature, the support
and the conditional mean. Using an interval for the prior information about the
conditional mean is also nearby. This prior information is incorporated into a
procedure yielding confidence intervals for the conditional mean. The simulation
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Cst
μY

Cde
μY

D [0.01, 0.49] [0.01, 0.30] [0.05, 0.20]

k = 4: y = {0.113103, 0.170762, 0.319875, 0.930446, 0, . . . , 0}

0.004275 0.003125 0.002793 0.002405

0.121699 0.102727 0.062894 0.041930

k = 5: y = {0.030344, 0.067421, 0.098682, 0.290637, 0.318480, 0 . . . , 0}

0.003177 0.002133 0.002122 0.002188

0.096683 0.091229 0.070810 0.047207

k = 6: y = {0.028034, 0.086625, 0.104616, 0.201071, 0.227915, 0.467075, 0 . . . , 0}

0.005083 0.003597 0.003572 0.003707

0.106065 0.103497 0.078448 0.052299

Table 8.4.: n = 50: Two-sided Stringer intervals Cst
μY

and decomposition con-
fidence intervals Cde

μY
when k overstatements are observed, nominal

confidence level γ = 0.95.

study illustrated, that both, the proposed composed confidence interval and the
two-sided interval of Stringer type meet the nominal confidence level, whereas the
composed confidence interval is superior to the one of Stringer type with respect
to the expected length – particularly for small sample sizes. If the prior informa-
tion interval for the conditional mean is nearly misspecified, the nominal level is
still met, and the composed interval is also shorter. Even if the true conditional
distribution is a beta distribution (which shares same support, monotonicity, and
mean of the considered monotonic distribution), and under weak prior informa-
tion, the composed confidence interval meets the required confidence level, and
yields intervals comparable to those of Stringer type.

Expansions to the here proposed approach could incoporate prior information
about the proportion of overstatement, like proposed by Lurz (2015) [49] who
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generalised an approach of von Collani & Dräger (2001) [15]. Additionally, the
prior information about the conditional mean may also be considered as a distri-
bution over a certain range of possible values and incorporated into the confidence
interval procedure. Some motivation to, and interpretations of the latter can be
found in Weigand (2009) [77].

Besides these expansions, further studies could be conducted with respect to the
sensitivity in the class of prior information distributions.

278



9. Comparing Neyman
Measurement Procedure with
Bayes Measurement Procedure
for E[X] for X ∼ EXP (1/μ1)

The Neyman measurement procedure seems to have some similarities with the
Bayes procedures, that are

• pre-available knowledge about the parameter to be measured is taken into
account by a set of possible values D,

• functional terms involved in the calculations looks identical at first sight.

This chapter is organised in the way, that we firstly sum up the Neyman mea-
surement procedure for E[X] for X ∼ EXP (1/μ1) together with an example.
Second, we derive the respective Bayes measurement procedure and, at last, work
out the parallels and compare both procedures. Not surprisingly, we will realise,
that both procedures are based on totally different (philosophical) principles and,
therefore, are in fact not comparable.

To exemplify the respective procedures we choose throughout this chapter the
following settings:

• X|{μ1} ∼ EXP (1/μ1)

• μ1 ∈ D = {m | 0.05 ≤ m ≤ 0.25}

• X|{μ1} = (X1|{μ1}, X2|{μ1}, . . . , X8|{μ1}) be an i.i.d. sample for X|{μ1}
of size n = 8

• reliability β = 0.9
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9. Comparing Neyman and Bayes Measurement Procedure

9.1. Recap of Neyman Measurement Procedure for
E[X] for X ∼ EXP (1/μ1)

The pre-available knowledge about E[X] is represented by D = {μ1 | 0 < m� ≤
μ1 ≤ mu}. Its interpretation is, that all other values μ1 except those in D can be
excluded from consideration. Since no value in D is favoured over another, they
are all equitable. This is formulated by the measure on D given by its density1

λD(μ1) =
1[m�,mu](μ1)

mu − m�
. (9.1)

The Neyman measurement procedure ∗C
(β)
E[X] for E[X] was already derived in

section 7.2.2.1. In general, the aim is to get a β-measurement procedure ∗C(β)
E[X]

for E[X] with minimal weighted volume Vw, calculated by

Vw(∗C
(β)
E[X]) =

∫
X (D)

⎛⎜⎜⎝ 1
|D|

∫
∗C

(β)
E[X]({x})

dμ1

⎞⎟⎟⎠
∫

D fX |{μ1}(x) dμ1

|D| dx (9.2)

=
∫
D

1
|D|

⎛⎜⎜⎝ ∫
∗A

(β)
X ({μ1})

w(x)
|D| dx

⎞⎟⎟⎠ dμ1 . (9.3)

Then, the optimal prediction sets ∗A(β)
X

({μ1}) have to be constructed according
to

∗A
(β)
X ({μ1}) =

{
x

∣∣∣∣ fX|{μ1}(x)∫
D fX|{μ̃1}(x) dμ̃1

≥ r∗(μ1)
}

(9.4)

with r∗(μ1) defined by

β =
∫

{
x

∣∣∣ fX|{μ1}(x)
∫

D fX|{μ̃1}(x) dμ̃1
≥r∗(μ1)

}fX|{μ1}(x) dx . (9.5)

1“Density” here should be understood in terms of measurement theory.
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We have also seen, that the ratio in x can be transformed into one in x:
fX |{μ1}(x)

wX(x)
=

fX|{μ1}(x)
mu∫
m�

fX|{μ̃1}(x) dμ̃1

(9.6)

=

(
1

μ1

)n

e−∑n
i=1 xi/μ11[0,+∞)n(x)

mu∫
m�

(
1

μ̃1

)n

e−∑n
i=1 xi/μ̃11[0,+∞)n(y) dμ̃1

(9.7)

=
n (nx)n−1

Γ(n)

(
1

μ1

)n

e−nx/μ11[0,+∞)(x)
mu∫
m�

n (nx)n−1

Γ(n)

(
1

μ̃1

)n

e−nx/μ̃11[0,+∞)(x) dμ̃1

(9.8)

=
fX |{μ1}(x)

mu∫
m�

fX|{μ̃1}(x) dμ̃1

(9.9)

=
fX |{μ1}(x)

wX(x)
(9.10)

That is, we may base the Neyman measurement procedure ∗C
(β)
E[X] for E[X] on

prediction sets for X|{μ1} = 1
n

n∑
i=1

Xi|{μ1}. As an side-effect this yields the

possibility of graphical illustrations.

Example 9.1 Under the given numerical settings we calculate the prediction sets
∗A(0.9)

X
({μ1}), μ1 ∈ D, and, thus, the 0.9-uncertainty space U (0.9)

E[X] for E[X]. By
construction, the weighted volume is minimal and has a value of Vw(∗C(0.9)

E[X]) =
0.549124. Figure 9.1 displays U (0.9)

E[X]. Again, we realise how advantageous it is
to scale the graphic with the marginal distribution of X: in this way the part of
X = [0, +∞) where it is most likely to observe a realisation of X is dilated while
the other parts which are unlikely are shrinked.

Since we aim at the comparison with a Bayes measurement procedure, it is note-
worthy to recall the interpretation of the result of a classical measurement proce-
dure in general and a Neyman measurement procedure in particular. A measure-
ment procedure C for the unknown but fixed value d of a parameter D meeting
the reliability βrepresents a random set C(X) which covers d with a probability
of at least β, i.e., PX|{d}(d ∈ C(X)) ≥ β for all values d ∈ D.
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Figure 9.1.: Optimal 0.9-uncertainty space U (0.9)
E[X] for E[X] in the unscaled version

on the left and scaled with the marginal distribution of X on the
right. Note that the unscaled uncertainty space is in fact unbounded
and only cut at x = 3 while the scaled version really covers the whole
range of variability X = [0, +∞).

9.2. Bayes Measurement Procedure for E[X] for
X ∼ EXP (1/μ1)

At first, we want shortly describe in general the Bayesian measurement procedure,
denoted B

(β)
D , for a parameter D with values d ∈ D ⊆ R

k. Therefore, let X|{d}
be a random variable with density function fX|{d}(x). d is assumed to be a value
of the random variable D with some prior distribution πD(d) on D. Given a
realisation x ∈ R

n of X|{d}, the posterior distribution πD(d|x) is given by

πD(d|x) =
fX|{d}(x)πD(d)∫

D fX|{d̃}(x)πD(d̃) dd̃
. (9.11)

The posterior distribution πD(d|x) at hand, a credible set for D is then defined
as any set B ⊆ D with a posterior probability (also called credible probability or
(rarely) credibility) given by

PD(D ∈ B|x) =
∫

B

πD(d|x) dd . (9.12)
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9.2. Bayes Measurement Procedure for E[X] for X ∼ EXP (1/μ1)

For a prespecified posterior probability level β, β-credible sets B
(β)
D (x) are often

constructed as highest posterior density sets2, i.e.,

B
(β)
D (x) = {d ∈ D | πD(d|x) ≥ p∗(x)} , (9.13)

where p∗(x) is defined by

β =
∫

{d|πD(d | x)≥p∗(x)}

πD(d|x) dd . (9.14)

The interpretation of β-credible sets is quite different to the one of confidence
sets: Under the given knowledge represented by the prior distribution of D on D
and after the observation x, a posterior probability of β is the probability that
the parameter D, which is still a random variable, is element of the β-credible
set B

(β)
D (x).

Now, let X|{μ1} be an i.i.d. sample for X|{μ1} ∼ EXP (1/μ1), i.e., the density
function is

fX|{μ1}(x) =
(

1
μ1

)n

exp(−
∑

xi/μ1)1[0,+∞)n(x) . (9.15)

Since our aim is to compare the Neyman procedure with the Bayes one, it is
reasonable to choose as prior distribution πE[X](μ1) the uniform distribution on
D = {μ1 | 0 < m� ≤ μ1 ≤ mu}, i.e.,

πE[X](μ1) =
1[m�,mu](μ1)

mu − m�
. (9.16)

Given the realisation x, the posterior distribution πE[X](μ1|x) is as follows:

πE[X](μ1|x) =

(
1

μ1

)n

exp(−
∑

xi/μ1)1[m�,mu](μ1)
mu∫
m�

(
1

μ̃1

)n

exp(−
∑

xi/μ̃1) dμ̃1

. (9.17)

Obviously, the dependence of πE[X](μ1|x) on x is only via
∑

xi = nx and, thus,
we may base the Bayes measurement procedure on X|{μ1}. In fact, we may have
directly started with X|{μ1} and its distribution and eventually would got the
same result3, i.e., πE[X](μ1|x) = πE[X](μ1|x).

2In the case that D is univariate and πD(d|x) is unimodal or strictly in- or decreasing, a
β-credible set (9.13) results to be an interval.

3Analogue to the equality fX|{μ1}(x)/wX(x) = fX|{μ1}(x)/wX(x)
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Figure 9.2.: Posterior distribution πE[X](μ1|x) for x = 0.15 and resulting 0.9-
credible set B

(0.9)
E[X](0.15).

To analyse the course of πE[X](μ1|x) we only have to look onto the nominator,
since the denominator is independent of μ1. That is, we take the derivative of(

1
μ1

)n

exp(−nx/μ1) with respect to μ1 and get

d
dμ1

(
1
μ1

)n

exp(−nx/μ1) = n

(
1
μ1

)n+1 (
x

μ1
− 1

)
exp(−nx/μ1) . (9.18)

Consequently, we get for μ1 ∈ D

• πE[X](μ1|x) is strictly decreasing in μ1 if x ≤ m�,

• πE[X](μ1|x) is unimodal with maximum at μ1 = x if m� < x < mu, and

• πE[X](μ1|x) is strictly increasing in μ1 if x ≥ mu.

Example 9.2 With the numerical assumptions and x = 0.15 the posterior dis-
tribution πE[X](μ1|0.15) is unimodal. Calculating the 0.9-credible sets B

(0.9)
E[X](0.15)

according to 9.13 yields

B
(0.9)
E[X](0.15) = [0.1003, 0.2388] . (9.19)

Figure 9.2 illustrates the procedure.

Finally, we define a “Bayes β-Uncertainty Space” B(β)
D by

B(β)
D :=

⋃
x∈X

B
(β)
D (x) × {x} . (9.20)
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Figure 9.3.: Bayes 0.9-uncertainty space B(0.9)
E[X] for E[X] in the unscaled version on

the left and scaled with the marginal distribution of X on the right.

For the exponential distribution we then have B(β)
E[X] =

⋃
x≥0 B

(β)
E[X](x) × {x}.

Example 9.3 In figure 9.3 the Bayes 0.9-uncertainty space B(0.9)
E[X] for E[X] is

displayed. Since it is possible, we also use the scaling with the marginal dis-
tribution of X – which proofs again to be benefiting for the perception. Table
9.1 displays some 0.9-credible sets B

(0.9)
E[X](x) for some values x. E. g. with the

assumed knowledge represented by the uniform prior distribution πE[X](μ1) on
D = {μ1 | 0.05 ≤ μ1 ≤ 0.25} and an observed value x = 0.2, the value of E[X] is
element of the interval [0.1368, 0.25] with a posterior probability of 0.9.

9.3. Comparing Neyman and Bayes Measurement
Procedure

If possible, a comparison of two measurement procedures should include the re-
spective (mean) length of resulting measurements. For some values x this is done
in table 9.1. For the majority of the given values x the Bayes measurements are
shorter than the Neyman measurements. But since we have realised in chapter
7 that the comparison of the pure length for some values x is misleading, we
have to take the marginal distribution of X into account. That consideration
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x B
(0.9)
E[X](x) ∗C(0.9)

E[X]({x}) shorter

0.025 [0.05, 0.08408] [0.05, 0.08915] B
0.075 [0.05, 0.1518] [0.05097, 0.1460] N
0.1 [0.05834, 0.1928] [0.06796, 0.1762] N
0.15 [0.1003, 0.2388] [0.09980, 0.25] B
0.175 [0.1239, 0.25] [0.1132, 0.25] B
0.2 [0.1368, 0.25] [0.1258, 0.25] B
1.5 [0.2371, 0.25] [0.2283, 0.25] B

Table 9.1.: 0.9-credible sets B
(0.9)
E[X](x) (Bayes measurements) and 0.9-Neyman

measurement sets ∗C(0.9)
E[X]({x}) for some values x. The last column

indicates which measurement set (interval) is shorter.

eventually led to the weighted volume Vw and, as a graphical representation, to
the scaled β-uncertainty space. Defining Bayes β-prediction sets as the inversion
of the β-credible sets

BA
(β)
X ({d}) := {x | d ∈ B

(β)
D (x)} (9.21)

the weighted volume of the Bayes measurement procedure B
(β)
D given an uniform

prior on D then is

Vw(B(β)
D ) =

∫
X (D)

⎛⎜⎜⎝ 1
|D|

∫
B

(β)
D ({x})

dd

⎞⎟⎟⎠
∫

D fX|{d}(x) dd

|D| dx (9.22)

=
∫
D

1
|D|

⎛⎜⎜⎝ ∫
BA

(β)
X ({d})

∫
D fX|{d}(x) dd

|D| dx

⎞⎟⎟⎠ dd . (9.23)

Example 9.4 Calculating the weighted volume Vw for the Bayes 0.9-measurement
procedure B

(0.9)
E[X] yields Vw(B(0.9)

E[X]) = 0.553454 which is slighlty larger than the
weighted volume of the 0.9-Neyman measurement procedure with value Vw(∗C

(0.9)
E[X]) =

0.549124. That is, in the mean the measurements yielding the Neyman procedure
are in fact shorter than the ones yielding the Bayes procedure. Figure 9.4 displays
the respective scaled 0.9-uncertainty spaces U (0.9)

E[X] and B(0.9)
E[X].
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Figure 9.4.: The scaled 0.9-uncertainty spaces U (0.9)
E[X] (dashed) and B(0.9)

E[X] (solid).

From the frequentist point of view, one of the most important features of a
measurement procedure is whether it meets the demanded reliability in the sense
of coverage probability. On the other hand, the Bayesians ask that the demanded
reliability in the sense of credible probability is met. Answering this question,
we realise what the real difference between the Neyman approach and the Bayes
approach is. Nevertheless, we calculate the posterior probability of the β-Neyman
measurements ∗C

(0.9)
E[X]({x}) and the coverage probability of Bayes β-prediction sets

BA
(0.9)
X

({μ1}):

• posterior probability of the β-Neyman measurements:

PD(∗C(β)
D ({x})|x) (9.24)

• coverage probability of Bayes β-prediction sets:

PX|{d}(BA
(β)
X ({d})) (9.25)

Example 9.5 Calculating the posterior probability PE[X](∗C(0.9)
E[X]({x})|x) for x ∈

[0, 1] and the coverage propability PX|{μ1}(BA
(0.9)
X

({μ1})) for μ1 ∈ D yields figure
9.5. We realise, that both procedures violate the demanded reliability β = 0.9 if
interpreted in the sense of each other.

Conclusion The Neyman (classical or frequentist) approach and the Bayes ap-
proach represent two different concepts of statistical set estimation theory! Inter-
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Figure 9.5.: Neyman and Bayes procedures interpreted in the sense of each other.

preting the results of the one in the sense of the other is – at least – disputable,
if not meaningless.

Similarities of these two concepts arise through the commonality of utilising pre-
available knowledge about the possible values d of the to be estimated parameter
D. Assuming the uniform prior on D in the Bayes approach yields for the obser-
vation x the posterior distribution

πD(d|x) =
fX|{d}(x)1D(d)∫

D
fX|{d̃}(x)1D(d̃) dd̃

. (9.26)

The posterior distribution πD(d|x) is a function in d given a value x ∈ X , which
serves as both, the construction criterion when highest posterior probability β-
credible sets are seeked, and as the side-condition for the demanded reliability β.
The same ratio also appears in the Neyman approach as

fX|{d}(x)1D(d)∫
D

fX|{d̃}(x)1D(d̃) dd̃
=

fX|{d}(x)1D(d)
w(x)

(9.27)

but now this is a function in x given a value d ∈ D. The ratio serves only as the
construction criterion for the β-prediction sets, while the side-condition for the
demanded reliability β is provided through the probability distribution PX |{d}.
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10. Summary and Outlook

This thesis discussed various approaches to deal with uncertainty due to ran-
domness and ignorance when prior information is available. To reduce ignorance
measurement procedures were derived.

The first part of this thesis dealt with the question how a reasonable probability
distribution should be choosen in order to meet requested qualitative properties.
Those qualitative properties constitute a first form of prior information, and were
translated into quantitative properties. Under the minimum information princi-
ple, a universal form of PDFs was proposed which was defined by the support
and a sequence of moments – which was named Minimum Information Represen-
tative (MIR). The main feature of the proposed probability distributions was the
boundedness of their support (range of variability). The latter feature, though
very realistic, is rarely adequately considered in stochastic modelling. One of
such MIR is the Monotonic Distribution, uniquely defined by a bounded inter-
val as the support and the first moment. An extensive characterisation of the
monotonic distribution was presented and many of its properties were derived.

The second part of this thesis was dedicated to the reduction of ignorance through
measurement procedures. From the metrological view, such procedures should
meet two requirements, namely accuracy and reliability. Concepts of estimation
in classical statistics were outlined and discussed with respect to those require-
ments. It was argued that point estimators do not meet these requirements, and
therefore should be considered as unsuitable in the metrological framework.

Set estimators conform to the metrological requirements. The reliability require-
ment is represented by the confidence level, and accuracy by the size of the
resulting estimates. However, it was outlined that classical statistics only pro-
vides a point-wise measure of accuracy for the set estimates, but not an overall
measure for the set estimator. The duality of acceptance (prediction) regions and
measurement (confidence) regions, is well-known in classical statistic. This con-
cept was formulated by Neyman (1935, 1937) [56, 57], and enables the derivation
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of confidence regions by inverting acceptance regions. It is remarkable, that this
concept attracted so little interest, altough it would make it possible to take prior
information into consideration.

The classical concepts of inference were applied for the monotonic distribution.
When the first moment is subject to measurement, point estimation by means of
moment estimators, and ML estimators were feasible. Since the latter proved to
be biased, further evaluations became needless. Measuring the upper bound of
the range of variability posed many difficulties, and particularly the ML estimator
revealed some unwelcome behaviour.

von Collani [19, 20] set up a framework called Bernoulli-Space. Embedded
into this framework are the Neyman measurement procedures (earlier defined
in [16, 17]) which constitute a different approach to estimation. Based as well on
the duality of prediction and measurement regions, the procedures incorporate
prior information and aim at minimising an weighted volume of the measurement
regions from the beginning. In the metrological context, the weighted volume
could be interpreted as the accuracy. The minimisation is eventually achieved
by prediction regions consisting of points with maximum likelihood ratio1. Prior
information is incorporated in a rather simple but appealing way by consider-
ing every possible value of the parameter likewise. That is, for a one-dimensional
parameter a reasonable form of prior information would be an interval. In its gen-
erality, the approach can be applied to every statistical distribution. Weigand
(2009) [77] has derived some generalisation of the Neyman measurement proce-
dures by considering other definitions of accuracy, and weight functions. In this
way, he justified to define a prior distribution on the set of possible values of
the parameter to be measured as a form of prior information. At the same time
he stressed that this distribution must not be confused with a probability dis-
tribution, as it would be interpreted in Bayesian statistic. With respect to the
parameter p of the binomial distribution Bi(n, p), Lurz (2015) [49] has derived
Neyman measurement procedures under different prior distributions of p, mainly
Beta distributions.

With respect to the monotonic distribution, Neyman measurement procedures
1Not to be confused with the maximum likelihood test statistic!
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were derived for the first moment E[X] of X ∼ Mon(μ1) under prior informa-
tion in form of intervals. Comparisons with classical procedures were performed.
These comparisons include the approximation of the monotonic distribution by
the exponential distribution. The approximations yielded comparable results
with respect to the coverage probability and the weighted volume, when the ig-
norance space D contained only small values μ1. That is, the actual boundedness
of the range of variability played only a minor role. The situation changed, when
larger values μ1 constituted D. The approximations exceeded the requested re-
liability level and yielded larger weighted volumes. That is, approximations of
the monotonic distribution were indeed reasonable, but only if the boundedness
was insignificant. Noteworthy was the observation, that the differences in the
weighted volumes even increased with increasing sample size n in the example
for D = {μ1 | 0.40 ≤ μ1 ≤ 0.45}.

Deriving a Neyman measurement procedure for the upper bound B of the range of
variability of the monotonic distribution constitutes a complex task. Mainly this
is due to the necessity to take both the sample sum and the sample maximum into
account, which amounted to two-dimensional prediction regions. By a proposed
discretisation of the uncertainty space, an approximation was achieved. The
approximation turned out to be rather rough and the calculations were rather
straightforward than elaborated, and thus further work should be invested with
respect to faster algorithms and smoother prediction regions.

The monotonic distribution on the unit interval was used to set up a decompo-
sition model for the tainting ratio in audit sampling under overstatement and
zero-inflation. This model gave rise to a combined confidence interval, for which
the Neyman measurement procedure contributed the confidence interval for the
conditional mean tainting ratio under overstatement. Comparisons with a two-
sided interval of Stringer type were performed by a simulation study. Even if
the amount of prior information is considerably weak in the sense that it almost
only expresses the monotonic decreasing nature of the considered monotonic dis-
tribution, reductions in the mean length were observed. In particular, this was
the case for small sample sizes. Considering stronger prior information led to
further reductions in the mean lengths on the one hand, and on the other hand,
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10. Summary and Outlook

the possibility of reducing the sample size to achieve similar mean lengths of
the combined confidence interval as of the two-sided Stringer interval. In most
cases, these reductions were up to 50%, but even greater ones were observed.
Prior information was taken into account only for the conditional mean, thus,
it would be reasonable to also consider prior information for the proportion of
overstatements. The latter was solely considered in the aforementioned work of
Lurz (2015) [49]. Since the decomposition model enables separate measurements,
it will be straightforward to combine both procedures in a future study.
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A. More about the Monotonic
Distribution

A.1. Relations between μ1, λ and b

Proposition 3.3 together with proposition 3.4 in section 3.2.1 shows that λ is the
unique solution of

μ1 = (−1 + λb)eλb − (−1 + λa)eλa

λ(eλb − eλa)
(A.1)

Therefore, we might have considered λ as a function of (a, b, μ1), i.e., λ(a, b, μ1).
Now, let a be fixed, thus with proposition 3.4 we may assume without loss of
generality a = 0. Then, for given μ1 and b, λ(b, μ1) is the unique solution of

μ1 = (−1 + λb)eλb + 1
λ(eλb − 1)

. (A.2)

Furthermore we restrict our analysis to the case of strictly monotone decreas-
ing propability density function on the range of variability X = [0, b], which is
equivalent to λ < 0 and b > 2μ1 > 0, respectively.

In general, equation (A.2) provides a unique solution for one of the three pa-
rameters μ1, b and λ, when the other two are given, i.e., one parameter may be
considered as a function of the other two parameters.

A.1.1. μ1(b, λ)

Only for μ1(b, λ) we are able to give an explicit function – which is just (A.2).
Besides λ < 0 and b > 0, there are no further restrictions, i.e., (b, λ) ∈ (0, +∞) ×
(−∞, 0). In the proof of proposition 3.3 it is shown, that μ1(b, λ) for arbitrary
but fixed b > 0 is increasing in λ ∈ (−∞, 0). On the other hand, for arbitrary
but fixed λ < 0, μ1(b, λ) is increasing in b ∈ (0, +∞), since eλb ≥ λb + 1:

∂

∂b
μ1(b, λ) =

eλb
(
eλb − (λb + 1)

)(
eλb − 1

)2 > 0 . (A.3)
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Figure A.1.: μ1(b, λ) as function of b and λ, respectively, with upper bound
min{ b

2 , − 1
λ
} (dot-dashed line) and lower bound b

−λb+2 (dashed line).

Although the function μ1(b, λ) is explicitly known, we want to give a lower and
an upper bound for it. With corollary 3.9 and μ1 < b

2 we have:

b

−λb + 2
< μ1(b, λ) < min{ b

2
, −1

λ
} . (A.4)

The limits of μ1(b, λ) and the corresponding limiting distributions are as follows:

lim
b→0

μ1(b, λ) = 0 (one-point distribution P(X = 0) = 1) (A.5)

lim
b→+∞

μ1(b, λ) = −1
λ

(exponential distribution EXP (1/μ1)) (A.6)

lim
λ→0

μ1(b, λ) =
b

2
(uniform distribution U(0, b)) (A.7)

lim
λ→−∞

μ1(b, λ) = 0 (one-point distribution P(X = 0) = 1) (A.8)

Figure A.1 illustrates the dependency of μ1(b, λ) on b and λ, respectively, together
with the upper bound min{ b

2 , − 1
λ
} and lower bound b

−λb+2 . We note in figure
A.1(a) how μ1(4, λ) approaches − 1

λ
for decreasing λ, and that μ1(b, −1) in figure

A.1(b) fastly approaches 1 = − 1
−1 for increasing b.

Proposition 3.4 shows, that λ(b, μ1)b = λ(μ1
b

) holds. Equivalent is the following
transformation formula for the function μ1(b, λ):

μ1(b, λ) = (−1 + λb)eλb + 1
λ(eλb − 1)

= b
(−1 + λb)eλb + 1

λb(eλb − 1)
= bμ1(1, λb) (A.9)
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A.1.2. λ(b, μ1)

As derived in section 3.2.1, λ(b, μ1) is uniquely defined by (A.2). We have shown
with proposition 3.3 and (A.3), that μ1(b, λ) is increasing in both b and λ. Thus,
increasing b while μ1 is kept constant results into a decrease of λ, i.e., λ(b, μ1)
is decreasing in b > 2μ1 for arbitrary μ1. Conversely, increasing μ1 < b

2 with
arbitrary b yields an increase of λ, i.e., λ(b, μ1) is increasing in μ1 < b

2 for arbitrary
b.
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(b) λ(b, μ1) for μ1 = 0.8 and 2μ1 < b ≤ 6.

Figure A.2.: λ(b, μ1) as function of b and μ1, respectively, with upper bound − 1
μ1

+
2
b

(dot-dashed line) and lower bound − 1
μ1

(dashed line).

Figure A.2 illustrates the dependency of λ(b, μ1) on b and μ1, respectively, to-
gether with the upper bound − 1

μ1
+ 2

b
and lower bound − 1

μ1
derived in corollary

3.9. We also note that λ(4, μ1) in figure A.2(a) fastly approaches − 1
μ1

for decreas-
ing μ1, and in figure A.2(b) how λ(b, 0.8) approaches −1.25 = − 1

0.8 for increasing
b.
Additionally we explicitly calculate the derivative of λ(b, μ1) with respect to b for
an arbitrary μ1 < b

2 . With bλ(b, μ1) = λ(μ1
b

) we first get

∂

∂b
λ(b, μ1) = ∂

∂b

(
λ
(μ1

b

) 1
b

)
=
(

∂λ(m)
∂m

)∣∣∣∣
m= μ1

b

·
∂ μ1

b

∂b
· 1
b

+λ
(μ1

b

)
·
∂ 1

b

∂b
. (A.10)

The derivative of λ(μ1) = λ(1, μ1) with respect to μ1 is already known from the
proof to proposition 3.8. Considering the second moment μ2 also as a function
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of λ(μ1) we get(
∂λ(m)

∂m

)∣∣∣∣
m= μ1

b

=
(

1
μ2(λ(m)) − (μ1(λ(m)))2

)∣∣∣∣
m= μ1

b

(A.11)

= 1
μ2(λ(μ1

b
)) −

(
μ1
b

)2 (A.12)

=
b2

μ2(b, λ(b, μ1)) − μ2
1

(A.13)

For equation (A.13) we have used the following transformation of μ2(b, λ(b, μ1)):

μ2
(
b, λ(b, μ1)

)
=

(
2 − 2λ(b, μ1)b +

(
λ(b, μ1)

)2
b2
)

eλ(b,μ1)b − 2(
λ(b, μ1)

)2(
eλ(b,μ1)b − 1

) (A.14)

= b2

(
2 − 2

(
λ(b, μ1)b

)
+
(
λ(b, μ1)b

)2
)

eλ(b,μ1)b − 2(
λ(b, μ1)b

)2(
eλ(b,μ1)b − 1

) (A.15)

= b2μ2
(
1, λ(b, μ1)b

)
=: b2μ2

(
λ(b, μ1)b

)
(A.16)

Then, for (A.10) we get

∂

∂b
λ(b, μ1) = −μ1

b3 · b2

μ2
(
b, λ(b, μ1)

)
− μ2

1
− λ(b, μ1)

1
b

(A.17)

= 1
b

(
−μ1

1
μ2
(
b, λ(b, μ1)

)
− μ2

1
− λ(b, μ1)

)
. (A.18)

At the beginning of this paragraph we derived that for arbitrary μ1, λ(b, μ1) is
decreasing in b > 2μ1, i.e., ∂

∂b
λ(b, μ1) < 0, and so

− μ1
1

μ2(b, λ(b, μ1)) − μ2
1

− λ(b, μ1) < 0 . (A.19)

A.1.3. b(λ, μ1)

Although, the dependency of b on λ and μ1 is entirely obtained by μ1(b, λ) and
λ(b, μ1), we want to take a closer look for which combinations of values of λ

and μ1 the function b(λ, μ1) is defined, so that the three values determine the
monotonic probability distribution Mon(b, μ1).
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Solving the inequality in corollary 3.9 for b and considering the case of a monotone
decreasing density yields

2μ1 < b(λ, μ1) <
2μ1

λμ1 + 1
. (A.20)

A condition which is implicitly part of inequality (A.20) implies λμ1 > −1. It
follows, that given some arbitrary μ1 > 0, the admissible values of λ have to meet
− 1

μ1
< λ < 0. Then, b(λ, μ1) is decreasing in λ < 0 and converges towards 2μ1

for λ → 0 and tends to +∞ for λ → − 1
μ1

, respectively. On the other hand, given
some arbitrary λ < 0, only values of μ1 which meet 0 < μ1 < − 1

λ
are allowed,

and b(λ, μ1) is increasing in μ1 and converges to 0 for μ1 → 0 and tends to +∞
for μ1 → − 1

λ
. Figure A.3 is illustrating this dependency together with the upper

and lower bound functions.

-2.5 -2 -1.5 -1 -0.5 0

1

2

3

4

5

6

7

8

λ

b

(a) b(λ, μ1) for μ1 = 0.4 and − 1
μ1

< λ ≤
0.

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

μ1

b

(b) b(λ, μ1) for λ = −1 and 0 < μ1 < − 1
λ .

Figure A.3.: b(λ, μ1) as function of λ and μ1, respectively, with upper bound 2μ1
λμ1+1

(dot-dashed line) and lower bound 2μ1 (dashed line).
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B. Uncertainty Spaces of Neyman
Procedures and Approximations

B.1. Uncertainty spaces for
D = {μ1 | 0.05 ≤ μ1 ≤ 0.25}
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Figure B.1.: Optimal β-uncertainty spaces U (0.9)
X

for X and different values of the
sample size n = 2, 4, 8, 12, 16.
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Figure B.2.: Optimal β-uncertainty spaces U (0.9)
Y

for Y and Y |{μ1} ∼ EXP (1/μ1)
and different values of the sample size n = 2, 4, 8, 12, 16.
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B.1. Uncertainty spaces for D = {μ1 | 0.05 ≤ μ1 ≤ 0.25}
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Figure B.3.: The probability scaled plots of the optimal β-uncertainty spaces
U (0.9)

Y
for Y with Y |{μ1} ∼ EXP (1/μ1) and the optimal ones U (0.9)

X

(dashed shape).
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Figure B.4.: β-uncertainty spaces LRU (0.9)
Y

for Y and Y |{μ1} ∼ EXP (1/μ1) based
on the likelihood ratio test statistic and different values of the sample
size n = 2, 4, 8, 12, 16.
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Figure B.5.: The probability scaled plots of the β-uncertainty spaces LRU (0.9)
Y

for
Y with Y |{μ1} ∼ EXP (1/μ1) based on the likelihood test statistic
and the optimal ones U (0.9)

X
(dashed shape).
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Figure B.6.: β-uncertainty spaces HP RU (0.9)
Y

for Y and Y |{μ1} ∼ EXP (1/μ1)
based on highest probability regions and different values of the sam-
ple size n = 2, 4, 8, 12, 16.
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Figure B.7.: The probability scaled plots of the β-uncertainty spaces HP RU (0.9)
Y

for
Y with Y |{μ1} ∼ EXP (1/μ1) based on highest probability regions
and the optimal ones U (0.9)

X
(dashed shape).
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Figure B.8.: The true probability of the prediction sets HP RA
(0.9)
Y ({μ1}) from

the corresponding measurement procedures for E[Y ] with Y |{μ1} ∼
EXP (1/μ1) based on highest probability regions for n =
2, 4, 8, 12, 16.
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B.2. Uncertainty spaces for
D = {μ1 | 0.40 ≤ μ1 ≤ 0.45}
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Figure B.9.: Optimal β-uncertainty spaces U (0.9)
X

for X and different values of the
sample size n = 2, 4, 8, 12, 16.
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Figure B.10.: Optimal β-uncertainty spaces U (0.9)
Y

for Y and Y |{μ1} ∼
EXP (1/μ1) and different values of the sample size n =
2, 4, 8, 12, 16.
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Figure B.11.: The probability scaled plots of the optimal β-uncertainty spaces
U (0.9)

Y
for Y with Y |{μ1} ∼ EXP (1/μ1) and the optimal ones U (0.9)

X

(dashed shape).
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Figure B.12.: β-uncertainty spaces LRU (0.9)
Y

for Y and Y |{μ1} ∼ EXP (1/μ1)
based on the likelihood ratio test statistic and different values of
the sample size n = 2, 4, 8, 12, 16.
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Figure B.13.: The probability scaled plots of the β-uncertainty spaces LRU (0.9)
Y

for
Y with Y |{μ1} ∼ EXP (1/μ1) based on the likelihood test statistic
and the optimal ones U (0.9)

X
(dashed shape).
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for Y and Y |{μ1} ∼ EXP (1/μ1)
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B.2. Uncertainty spaces for D = {μ1 | 0.40 ≤ μ1 ≤ 0.45}
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Figure B.15.: The probability scaled plots of the β-uncertainty spaces HP RU (0.9)
Y

for Y with Y |{μ1} ∼ EXP (1/μ1) based on highest probability
regions and the optimal ones U (0.9)

X
(dashed shape).
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