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Abstract
In order to understand the regulation of gene expression in organisms, precise

genome annotation is essential. In recent years, RNA-Seq has become a potent

method for generating and improving genome annotations. However, this approach

is time consuming and often inconsistently performed when done manually. In

particular, the discovery of non-coding RNAs benefits strongly from the applica-

tion of RNA-Seq data but requires significant amounts of expert knowledge and

is labor-intensive. As a part of my doctoral study, I developed a modular tool

called ANNOgesic that can detect numerous transcribed genomic features, including

non-coding RNAs, based on RNA-Seq data in a precise and automatic fashion with

a focus on bacterial and achaeal species. The software performs numerous analyses

and generates several visualizations. It can generate annotations of high-resolution

that are hard to produce using traditional annotation tools that are based only

on genome sequences. ANNOgesic can detect numerous novel genomic features

like UTR-derived small non-coding RNAs for which no other tool has been de-

veloped before. ANNOgesic is available under an open source license (ISCL) at

https://github.com/Sung-Huan/ANNOgesic.

My doctoral work not only includes the development of ANNOgesic but also

its application to annotate the transcriptome of Staphylococcus aureus HG003 - a

strain which has been a insightful model in infection biology. Despite its potential

as a model, a complete genome sequence and annotations have been lacking for

HG003. In order to fill this gap, the annotations of this strain, including sRNAs and

their functions, were generated using ANNOgesic by analyzing differential RNA-Seq
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data from 14 different samples (two media conditions with seven time points), as

well as RNA-Seq data generated after transcript fragmentation. ANNOgesic was

also applied to annotate several bacterial and archaeal genomes, and as part of this

its high performance was demonstrated. In summary, ANNOgesic is a powerful

computational tool for RNA-Seq based annotations and has been successfully applied

to several species.
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Zusammenfassung
Exakte Genomannotationen sind essentiell für das Verständnis Genexpressionsreg-

ulation in verschiedenen Organismen. In den letzten Jahren entwickelte sich RNA-Seq

zu einer äußerst wirksamen Methode, um solche Genomannotationen zu erstellen und

zu verbessern. Allerdings ist das Erstellen von Genomannotationen bei manueller

Durchführung noch immer ein zeitaufwändiger und inkonsistenter Prozess. Die

Verwendung von RNA-Seq-Daten begünstigt besonders die Identifizierung von nicht-

kodierenden RNAs, was allerdings arbeitsintensiv ist und fundiertes Expertenwissen

erfordert. Ein Teil meiner Promotion bestand aus der Entwicklung eines modularen

Tools namens ANNOgesic, das basierend auf RNA-Seq-Daten in der Lage ist, eine

Vielzahl von Genombestandteilen, einschließlich nicht-kodierender RNAs, automa-

tisch und präzise zu ermitteln. Das Hauptaugenmerk lag dabei auf der Anwendbarkeit

für bakterielle und archaeale Genome. Die Software führt eine Vielzahl von Analysen

durch und stellt die verschiedenen Ergebnisse grafisch dar. Sie generiert hochpräzise

Annotationen, die nicht unter Verwendung herkömmlicher Annotations-Tools auf

Basis von Genomsequenzen erzeugt werden könnten. Es kann eine Vielzahl neuer

Genombestandteile, wie kleine nicht-kodierende RNAs in UTRs, ermitteln, welche

von bisherigen Programme nicht vorhergesagt werden können. ANNOgesic ist unter

einer Open-Source-Lizenz (ISCL) auf https://github.com/Sung-Huan/ANNOgesic

verfügbar.

Meine Forschungsarbeit beinhaltet nicht nur die Entwicklung von ANNOgesic,

sondern auch dessen Anwendung um das Transkriptom des Staphylococcus aureus-

Stamms HG003 zu annotieren. Dieser ist einem Derivat von S. aureus NCTC8325 - ein
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Stamm, Dear ein bedeutendes Modell in der Infektionsbiologie darstellt. Zum Beispiel

wurde er für die Untersuchung von Antibiotikaresistenzen genutzt, da er anfällig für

alle bekannten Antibiotika ist. Der Elternstamm NCTC8325 besitzt zwei Mutationen

im regulatorischen Genen (rsbU und tcaR), die Veränderungen der Virulenz zur

Folge haben und die in Stamm HG003 auf die Wildtypsequenz zurückmutiert wurden.

Dadurch besitzt S. aureus HG003 das vollständige, ursprüngliche Regulationsnetzwerk

und stellt deshalb ein besseres Modell zur Untersuchung von sowohl Virulenz als auch

Antibiotikaresistenz dar. Trotz seines Modellcharakters fehlten für HG003 bisher eine

vollständige Genomsequenz und deren Annotationen. Um diese Lücke zu schließen

habe ich als Teil meiner Promotion mit Hilfe von ANNOgesic Annotationen fÃĳr

diesen Stamm, einschlieÃ§lich sRNAs und ihrer Funktionen, generiert. Dafür habe ich

Differential RNA-Seq-Daten von 14 verschiedenen Proben (zwei Mediumsbedingungen

mit sieben Zeitpunkten) sowie RNA-Seq-Daten, die von fragmentierten Transkripten

generiert wurden, analysiert. Neben S. aureus HG003 wurde ANNOgesic auf eine

Vielzahl von Bakterien- und Archaeengenome angewendet und dabei wurde eine hohe

Performanz demonstriert. Zusammenfassend kann gesagt werden, dass ANNOgesic

ein mächtiges bioinformatisches Werkzeug für die RNA-Seq-basierte Annotationen

ist und für verschiedene Spezies erfolgreich angewandt wurde.
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Abbreviations and symbols

5’-P 5’ monophosphate
5’-PPP 5’ triphosphate
API Application programming interface
cDNA Complementary DNA
CDS Protein-coding sequence
CircRNA Circular RNA
CLIP-Seq Cross-linking immunoprecipitation sequencing
CRISPR Clustered regularly interspaced short palindromic repeat
dRNA-Seq Differenial RNA sequencing
FP False positive
FPR False positive rate
GO Gene ontology
Grad-Seq Gradient sequencing
KEGG Kyoto Encyclopedia of Genes and Genomes
OD600 Optical density of a sample measured at a wavelength of 600 nm
ORF Open reading frame
PPI Protein-protein interaction
ROC curve receiver operating characteristic curve
PS Processing site
QC Quality control
RBS Ribosome binding site
RIP-Seq RNA Immunoprecipitation sequencing

v



RNA-Seq RNA sequencing
RNAT RNA thermometer
rRNA Ribosomal RNA
SaPI Staphylococcus aureus pathogenicity islands
SD Shine-Dalgarno Sequence
Spr Small pathogenicity island RNAs
SigB Transcription factor sigma B
SNP Single Nucleotide Polymorphism
sPEP Small peptide
sORF Small open reading frame
sRNA Small non-coding RNA
TEX Terminator exonuclease
TP True positive
TPR True positive rate
tRNA Transfer RNA
TSS transcriptional start site
UTR untranslated region
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Chapter 1

Introduction

RNA-Sequencing

RNA-Sequencing (RNA-Seq) is a powerful and precise approach to analyze transcrip-

tomes in order to detect genes, and quantify their expression levels [1]. It is widely

used to study bacterial, archaeal and eukaryotic species. The currently dominating

mode is high-throughput sequencing of complementary DNA (cDNA), for example

with platforms provided by Illumina or Ion Torrent. The resulting reads have lengths

around 50-400 bp depending on the used platforms. They are used for either a

mapping to a reference genome [2–5] or a de novo transcriptome assembly [6,7] in

case the reference genome is not available (Figure 1.1).

Before analyzing RNA-Seq data, two initial steps need to be done - adapter

clipping and quality trimming. Adapters which have to be ligated to DNA sequences

during library preparation contain barcoding sequences, primers, and binding se-

quences for connecting short reads to the flow cell. Those adapter sequences have to
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CHAPTER 1. INTRODUCTION S.H. YU

Figure 1.1: The general procedure of RNA-Seq. [8]

be removed in order to guarantee an optimal alignment of the reads. Furthermore,

regions with low sequencing quality are trimmed of.

For mapping the RNA-Seq reads to reference genomes, numerous mapping tools

like BWA [2], BWA-MEN [2], Bowtie2 [3], Segemehl [4], and STAR [5] were developed.

Several pipelines like READemption [9] which integrates the aligners and other

analysis software, such as DESeq2 [10] were also implemented.

Various RNA-Seq protocols were developed for detecting different genomic features

and quantifying gene expression levels. The two protocols which were used for my

doctoral work are differential RNA-Seq (dRNA-Seq) and RNA-Seq after transcript

fragmentation. For the construction of dRNA-Seq libraries, the original sample is split

into two different aliquots: one of them is treated by terminator exonuclease (in the

following abbreviated as TEX+ library) which specifically degrades RNA molecules
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with 5’- monophosphate (5’-P), while the other remains untreated (written as TEX-

library in the following). Due to this procedure, primary transcripts are enriched

in the TEX+ libraries, in comparison to the TEX- libraries. By the application

of dRNA-Seq protocol, transcription starting sites (TSSs) can be detected through

comparing the read coverage between TEX+ and TEX- libraries [11,12] (Figure 1.2).

Read quality usually decreases towards the 3’ end of reads and the bases of 3’

end need to be removed in order to improve mappability. Due to this, the whole

transcripts, especially the 3’ end may not be able to be detected by using dRNA-Seq.

RNA-Seq generated after transcript fragmentation was applied for solving this issue.

The reads generated with this approach covers the whole expressed regions and help

to identify transcript boundary without losing the information of the 3’ end (Figure

1.3) [1].

Besides the two protocols mentioned above, some useful RNA-Seq based protocols

for detecting specific genomic features were developed as well, such as Term-Seq [13]

for detecting terminators and riboswitches, ribosome profiling for identifying open

reading frames [14], RIL-Seq for identifying sRNA regulatory targets [15], CLIP-

Seq [16] and RIP-Seq [17] for searching RNA-protein interaction, and Grad-Seq [18]

for capturing RNA complexes. In order to translate these data into valuable insights,

computational tools which can analyze these data with high quality performance

need to be created.

3
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Figure 1.2: Workflow of dRNA-Seq.
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mapping

mapping

RNA molecules
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Gene
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Figure 1.3: The workflow of RNA-Seq generated after transcript fragmented.

An overview of the available tools for genome an-

notations

A high resolution of genome annotation is essential for understanding the regulatory

mechanisms of organisms. Due to the development of sequencing methods and

the number of available genome sequences is increasing expeditiously, numerous

tools purely based on genome sequences for detecting genomic features have been

constructed. The representative tools are Glimmer for detecting open reading

frames (ORFs) [19], tRNAscan-SE [20] for searching tRNAs, and RNAmmer [21]

for predicting rRNAs [21]. In order to detect different genomic features, several

genome annotation pipelines were created. Prominent examples are Prokka [22] and

5
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ConsPred [23] which integrate several tools to identify multiple features in bacterial

genomes. However, the predictions based only on the genome sequences are unreliable

for certain features like TSSs which can only be predicted precisely by applying

dRNA-Seq.

Since using RNA-Seq can significantly improve the predictions of genomic features,

several methods were created in order to generate genome annotations based on

RNA-Seq data, such as the computational tools for detecting TSSs [24–26] and

transcripts [27–29]. EuGene-PP is a comprehensive pipeline which can generate

multiple genome annotations based on genome sequence information or RNA-Seq

data [30]. However, RNA-Seq data is only applied for the TSS prediction of EuGene-

PP but not for other predictions like sRNA detection. Thus, the automatic integration

and translation of the data from different RNA-Seq based protocols into high-quality

genome annotations is still an unsolved issue.

Small non-coding RNAs

RNA-Seq is also widely used for the detection of small non-coding RNAs (sRNAs).

Several thousands bacterial sRNAs have been identified by different methods. Mem-

bers of non-coding bacterial RNAs are normally between 50 and 500 nucleotides long,

are highly structured and usually contain several stem-loops. sRNAs can either pair

with target mRNAs to regulate their translation, stability or bind to target proteins

in order to modify their functions [31, 32]. Nearly all of the sRNAs are expressed

under specific growth conditions like iron limitation, shear stress, nutrition starvation,

oxidative stress etc [33, 34]. Based on the locations, sRNAs can be roughly split into

6
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two classes: cis-encode RNAs (antisense sRNAs) which are transcribed opposite of

the annotated genes, and trans-encode RNAs including intergenic and UTR-derived

sRNAs (sRNAs that share a transcript with CDSs) [18,34,35].

In order to detect sRNAs, numerous sRNA prediction tools were built based on

different methods which can be roughly divided to three types. The first class is

based on sequence conservation of intergenic region such as QRNA [36] and Intergenic

Sequence Inspector [37]. The second one is based on the information of secondary

structure like RNAz [38] and sRNAPredict [39, 40]. The core methods of these tools

rely on either the thermo-stability of secondary structures of conserved intergenic

sequences, or the information of promoters and terminators. The final one is based on

machine learning approaches, such as CoRAL [41] which using fragment length and

cleavage specificity as input features to predict sRNAs. Additionally, several tools

integrate more than one type of information to predict sRNAs like sRNAscanner [42]

which uses both the information of sequence and structure. However, none of these

tools use RNA-Seq data for their predictions.

Numerous sRNAs were recently identified by applying RNA-Seq In order to

understand their functions, several sRNA target prediction tools or RNA-RNA

interaction tools were constructed. Several studies compared such tools were published

in the recent two years [43,44]. In these studies, the performances of CopraRNA [45],

IntaRNA [46], RNAplex [47, 48], and RNAup [48, 49] were shown to be better

than their competitors. Still, these tools have several shortages. CopraRNA needs

manually selected homologs from different species of an sRNA, it is no able to generate

the results automatically. Usually, CopraRNA, IntaRNA and RNAup require long

7
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computational time to search mRNA targets for one sRNA. Although executing time

of RNAplex is the lowest, its performance is also the worst within these four tools.

Based on the results of these analyses, the current sRNA target prediction tools still

need to be improved.

Approaches for detecting the functions of genes

In order to understand the mechanisms of RNA-RNA interactions, the information

of RNA secondary structures are essential requirements. For example, CsrA-binding

sRNAs contain a highly conserved GGA triplet nucleotides located on the loop part

of hairpin [50, 51]. Due to the importance of the secondary structure information,

variant tools for predicting secondary structures of RNAs were developed such as

RNAfold [48, 52], CMfinder [53], and UNAFold [54]. These tools not only predict

secondary structures of RNAs precisely, but also provide visualization.

For understanding the functions and regulatory networks of genes, two representa-

tive databases were built – Kyoto Encyclopedia of Genes and Genomes (KEGG) [55]

and Gene Ontology (GO) [56, 57]. KEGG contains systems information, genomic

information, chemical information and health information. By applying the infor-

mation stored in KEGG, the homologs of query genes and their possible regulation

networks can be found. GO is another system which is widely used by numerous

annotation tools for characterizing the functions of genes across all species. GO

provides numerous controlled vocabularies which can be divided into three groups

(biological processes, cellular components and molecular functions) to classify the

functions and locations of genes. Moreover, the GO terms can be constructed to a

8
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hierarchy tree for revealing the functions and relative amount of genes for a whole

genome (Figure 1.4).

Figure 1.4: An example of the hierarchy tree for GO term. The functions and relative
amount of genes for S. aureus HG003 can be shown in the tree.

Actually, RNA-Seq information is also a valuable resource for detecting the

functions and regulation network of genes. Gene co-expression analysis is one of

the commonly used method for exploring the functions of newly discovered genes

by clustering the genes which show a similar expression pattern across samples or

9
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conditions [58, 59].

Previous studies of genome annotations based on

RNA-Seq

Since RNA-Seq has become a powerful tool to improve genome annotations for

many organisms, numerous studies provide genome annotations in bacterial [60, 61],

archaeal [62] and eukaryotic [63] genomes based on RNA-Seq.

For example, many useful genomic features, especially sRNAs were detected based

on RNA-Seq data for S. aureus in recent years. In 2010, Bohn et al. successfully

applied sequencing approach to identify 30 sRNAs including 14 newly discovered ones

[61]. In 2015, SRD (a Staphylococcus regulatory RNA database) was constructed for

providing sRNAs reported from literatures or detected by computational methods [64].

Moreover, a global sRNA identification of three strains of S. aureus was performed

based on RNA-Seq data in 2016 [65].

However, the useful RNA-Seq protocols which can precisely detect transcript

boundary were not used to these study, such as dRNA-Seq [11, 12] for TSSs and

Term-Seq [13] for terminators. In addition, nearly all of the genomic features detected

in these studies were manually curated, it is a time consuming and inconsistent

process. Thus, developing an automatic tool which can detect sRNAs based on

RNA-Seq data by experimental validation might be more consistent and reliable.

10
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ANNOgesic: A tool for generating genome annota-

tions

In order to fill the gap of lacking computational tools for predicting genomic features

based on RNA-Seq data, I constructed ANNOgesic which can process RNA-Seq data

from different protocols to automatically generate high-quality genome annotations

for bacterial and archaeal genomes. It is a modular tool that is able to predict multiple

genomic features via different modules. Many modules were newly developed for

detecting the genomic features which cannot be detected by using the currently

available tools. If the the genomic features can be predicted by the third-party

tools, while others were created by integrating third-party tools with significant

improvements like parameters optimization and removing false positives.

ANNOgesic was also successfully applied for many RNA-Seq data sets of bacteria

and archaea, and high performance was shown. ANNOgesic can identify genes,

protein-coding sequences (CDSs), tRNAs, rRNAs, TSSs, processing sites (PSs),

transcripts, terminators, untranslated regions (UTRs), operons as well as sub- oper-

ons, promoter motifs, sRNAs, small open reading frames (sORFs), circular RNAs

(circRNAs), CRISPRs, riboswitches, and RNA thermometers. Furthermore, it can

predict RNA-RNA and protein-protein interaction as well. Additionally, ANNOgesic

can allocate Gene Ontology (GO) terms and subcellular localizations to proteins.

In order to help the user to analyze the genomic features, numerous statistics and

visualizations are also provided. All modules of ANNOgesic are presented in Figure

1.5.
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Figure 1.5: The modules of ANNOgesic

Applying ANNOgesic to Staphylococcus aureus

HG003

As a part of my doctoral work, I not only created ANNOgesic, but also applied

it to an important bacterial pathogen – S. aureus. S. aureus is a gram-positive

bacterium and an intensively studied pathogen for bacterial infection. It leads to

skin infections, respiratory disease, food poisoning, and septic arthritis as well as

meningitis in infants [66,67].

S. aureus produces various virulence factors such as Panton-Valentine leuko-

cidin (PVL) which can cause leukocyte destruction and necrotizing pneumonia [67].

Moreover, the pathogenicity island of S. aureus (SaPI), which can be transferred

by plasmids, phages, or conjugative transposons, contains virulence and antibiotic

resistance genes and can promote the pathogenesis of infection [68]. SaPI is a 15-20

kb molecule occupied at constant chromosomal sites, and carries numerous genes
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for superantigen toxins. SaPIs have similar attributes as bacteriophage such as

genes coding for integrases, helicases and terminases, and flanking direct repeats [69].

Furthermore, the Spr (small pathogenicity island RNAs) family, which may play an

important role in staphylococcal virulence, is expressed from SaPI [70].

S. aureus HG003 is a derivative strain of S. aureus NCTC8325 which is a relevant

model strain for the studies of antibiotic resistance transfer and carriage by plasmids,

as it is sensitive to all known antibiotics. However, S. aureus NCTC8325 is defective

in two regulators, rsbU (deletion) which is an activator of SigB, and tcaR (point

mutation) which is an activator of protein A transcription. In S. aureus HG003,

these two genes are repaired and the original regulation network is preserved. Strain

HG003 has further interesting characteristics including weak hemolysis, high spa

transcript levels, strong biofilm formation and high virulence, all of which make

it an useful strain for infection studies [66]. Henceforth, generating a complete

genome sequence and annotations of this strain is a foundation for understanding

the infection and gene regulation networks of S. aureus.

However, a complete genome sequence and genome annotations of S. aureus

HG003 are not available currently. Although the annotations of some closely related

strains like S. aureus NCTC8325 can be found, several important genomic features are

still missing like sRNAs, TSSs, terminators, etc. In order to fill this gap, ANNOgesic

was used to generate a genome sequence and annotations for S. aureus HG003 based

on the data of dRNA-Seq and RNA-Seq generated after transcript fragmentation in

this study. Furthermore, allocation of the potential functions for sRNAs were done

by using gene co-expression analysis.

13
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Data-driven research v.s. hypothesis-driven research

The massive quantities of data is an accompaniment of the application of RNA-Seq.

As in many other fields of research, a paradigm shift has happened: Instead of the

classical hypothesis-driven approach in which hypotheses are made and then testing

it by experimentation, a data-driven research mode is performed [71,72]. Data-driven

research uses the scientific methods, algorithms and tools to extract knowledge and

insights from data in various forms. My doctoral work, which follows the data-driven

path, is to create a tool for detecting and analyzing genomic features for bacterial or

archaeal genomes based on RNA-Seq data.

14



Chapter 2

Methods and Materials

Used RNA-Seq data sets

The RNA-Seq data of S. aureus HG003 comprises 14 dRNA-Seq data sets and 1

RNA-Seq data set generated after transcript fragmentation. The samples of the

14 dRNA-Seq data were gained from two media (rich media and poor media) with

seven time points (three time points are in exponential phase, another three time

points are in stationary phase, and the last one is for overnight) (Table 2.1). All the

samples are without replicates.

ANNOgesic has been widely applied to numerous RNA-Seq data sets including

bacterial genomes (Helicobacter pylori 26695 [60], Campylobacter jejuni 81116 [24],

Pseudomonas aeruginosa [73] and Rhodobacter sphaeroides [74], archaeal genomes

(Methanosarcina mazei (Lutz et al., unpublished)), and eukaryotic genomes which

have no introns (Trypanosoma brucei (Müller et al., unpublished)) (Table 2.2). In

order to test several predictions of ANNOgesic like parameter optimization of TSS
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Table 2.1: The time points of dRNA-Seq data for S. aureus HG003

Phase Time point

Exponential phase
OD600 = 0.2 (OD 0.2)
OD600 = 0.5 (OD 0.5)
OD600 = 1 (OD 1)

Stationary phase

0 hour (t0)
2 hour (t1)
4 hour (t2)
Overnight (ON)

prediction, sRNA detection, and CRISPR identification, RNA-Seq data sets of

H. pylori 26695 [12, 60] and C. jejuni 81116 [24] were also retrieved from NCBI

GEO where they are stored under the accession numbers GSE67564 and GSE38883,

respectively.

Moreover, dRNA-Seq data and conventional RNA-Seq data sets of Escherichia

coli K12 MG1655 were also retrieved from NCBI GEO (accession number: GSE55199

and GSE45443 (only the data of wild type was retrieved)) in order to assess the per-

formances of ANNOgesic’s predictions [27,75]. The predicted features of ANNOgesic

were compared to published databases like RegulonDB, EcoCyc and DOOR2 [76–81].

Read mapping, mutation detecting and genome se-

quence update for S. aureus HG003

In general, detecting SNPs or mutations is based on DNA sequencing data. However,

RNA-Seq reads can also be re-used to detect the SNPs or the differences of nucleotides
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Table 2.2: The strains which annotations were generated by using ANNOgesic

Strains Annotations
Staphylococcus aureus HG003 All features
Helicobacter pylori 26695 All features
Campylobacter jejuni 81116 All features
Pseudomonas aeruginosa CF PA9 Transcript, sRNA
Rhodobacter sphaeroides 2.4.1 TSS with optimization
Staphylococcus aureus HPV107 PS with optimization,

TSS with optimization, transcript, sRNA
Sinorhizobium fredii NGR234 PS, TSS, transcript, terminator
Methanosarcina mazei Goe1 Transcript, sRNA, sORF
Staphylococcus epidermidis PS2 TSS, PS, transcript,

CDS, terminator, UTR
Salmonella Typhimurium SL1344 TSS, Transcript
Escherichia coli K-12 TSS, Transcript, terminator, sRNA
Trypanosoma brucei 427 and 927 Transcript

in transcribed regions. Two drawbacks of using RNA-Seq data to identify SNPs are

that only the expressed regions can be analyzed and the nucleotide change may be

only exists in RNA not in DNA level due to RNA-editing. However, some studies

have shown that the majority of SNPs are found in the expressed transcripts in

eukaryotic genomes [82, 83]. Thus, RNA-Seq data may also be used for detecting

SNPs and mutations if DNA-Seq data is not available.

Since the complete genome sequence of S. aureus HG003 is still unknown, The

reads of S. aureus HG003 were mapped on S. aureus NCTC8325 by using READemp-

tion [9] which is a full RNA-Seq analysis pipeline. Afterward, the differences of

nucleotides between these two strains were detected manually for modifying the
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genome sequence of NCTC8325 in order to generate the genome sequence of S.

aureus HG003. As long as the genome sequence of S. aureus HG003 is available,

re-mapping the reads, generating alignment and coverage files, as well as computing

gene quantification for S. aureus HG003 can be done by using READemption.

ANNOgesic

Implementation and installation

ANNOgesic is constructed in Python 3 and requires Biopython [84], numpy [85],

matplotlib [86], and networkx [87]. All the source codes can be downloaded from a

git repository [88], and a comprehensive documentation and tutorials are hosted at

the site of "Read the Doc" [89]. ANNOgesic can be easily installed by using pip3 [90].

For installation of third-party software, a Docker image [91,92] is provided as well.

Modules and input data of ANNOgesic

ANNOgesic is composed of the following twenty modules: Sequence modification,

Annotation transfer, SNP/Mutation, Transcript, TSS, Terminator, UTR, PS, Pro-

moter, Operon, sRNA, sRNA target, sORF, GO term, Protein-protein interaction

network, Subcellular localization, Riboswitch, RNA thermometer, Circular RNA,

and CRISPR. The workflows of connecting these modules are presented in Figure

2.1.
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F

Figure 2.1: The workflows of the modules in ANNOgesic. The blue blocks represent
the feature detection integrated in ANNOgesic. The red blocks represent the detection
done by third-party tools. The yellow parallelograms and the green parallelograms
indicate inputs and outputs, respectively. (A) Reference genome improvement, (B)
Transcript boundary, (C) sRNA and sORF, (D) Functional labeling system, (E)
Promoter and operon and (F) Other features.

Each module of ANNOgesic requires different input data like RNA-Seq coverage

information in wiggle format, alignment data in BAM format, genome sequence

in FASTA format, and annotations in GFF3 format. Wiggle files and BAM files

can be generated by mapping tools such as BWA [2], STAR [5], segemehl [4], or a
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full RNA-Seq analysis pipeline like READemption [9]. In case the queried genome

sequences and annotations are not available, ANNOgesic can generate them from

closely related strains.

Around half of the modules in ANNOgesic were newly developed for detecting the

genomic features which can not be identified or not precisely detected by the currently

available tools. The other modules not only integrated the third-party software

for detecting the genomic features but also added improvements such as parameter

optimization and removing false positives. The novelties and improvements of the

available tools in ANNOgesic are listed in Table 2.3.

Detection of RNA-Seq coverage-based transcripts

Transcript detection is one of the core modules of ANNOgesic. Numerous predictions

are based on the information of transcripts like the detections of sRNAs, sORFs,

operons, and UTRs. Although many tools for detecting transcripts based on RNA-

Seq data were created, most of the tools are optimized for the detection of eukaryotic

transcripts, and only few of them can be used to bacterial species.

For the accurate detection of transcripts for bacterial genomes, a new method

was created and integrated into ANNOgesic. The approach starts from searching

gene expressed regions based on coverage values. Afterward, comparison between

the expressed regions and gene annotations is performed in order to merge multiple

transcripts located in the same gene. Additionally, several parameters can be assigned

by the users to fine-tune the detection (Figure 2.2).
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Figure 2.2: The method of RNA-Seq coverage-based transcript detection. If the
coverage (blue curve- blocks) is higher than a given threshold of coverage (dash
line), a transcript is defined. A tolerance value (i.e. The number of nucleotides
with a coverage value below the tolerance) is set by the user for merging the gapped
transcripts or keeping separated. Gene positions are applied to merge transcripts
that overlap with the same gene.

Optimization of TSSpredator’s parameters

Several tools influenced by the selection of parameters were integrated into ANNO-

gesic, such as TSSpredator [24] which requires an experienced fine-tuning for the

parameters (namely height, height reduction, factor, factor reduction, enrichment

factor, processing factor and base height). In order to avoid the time-consuming

manual parameter selection, ANNOgesic can search the optimized parameters by

applying a genetic algorithm, a machine learning approach [93]. A small manually

detected set of TSSs is used as a training set. In order to define the minimum num-

ber TSS in this set, a comparison for different number of benchmarking TSSs was
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performed. The results shows that when the size of benchmarking set is larger than

50, the performance have no significant improvement (Figure 2.3). The approach

of optimization is composed of three steps: a global change, a large change, and a

small change that represent a random selection of values to all parameters, a random

selection of values to two parameters, and adding or subtracting a small fraction to

or from a parameter value, respectively (Figure 2.4). After each step of modifying

the parameters, the results will be evaluated by a decision statement (Equation 2.1),

and only the best parameters will be kept for the next step. In general, the optimized

parameters can be obtained within 4,000 runs.

For the parameter optimization of TSSs in S. aureus HG003, 1,123 TSSs of

the whole reference genome were detected manually. For PS, 58 PSs in the first

200 kb of the genome were identified manually. Based on the manually curated

sets, the optimization of the TSS and PS predictions can be performed. After the

optimization, manually detected set and computational-predicted set are merged by

ANNOgesic to generate the final candidates of TSSs and PSs. The performance of

the optimization are shown in the next chapter.
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A

B

Figure 2.3: [The comparison for the number of manual TSSs in S. aureus HG003
parameter optimization.(A) shows the results of the comparison for the true postive
rate and false positive rate. (B) is for the comparison between the number of true
positives and false positives. The false positive rate is low because the amount of
TSSs is relatively fewer than the number of genome nucleotides. The blue dots
represent the number of benchmarking TSSs (the numbers shown near the dots) for
the training.
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Table 2.3: The new developed methods of the modules in ANNOgesic

Feature Tools New developed methods of ANNOgesic

SNP SAMtools [94] and Filter of QUAL and read depth
BCFtools [94]

CDS/tRNA/rRNA RATT [95] Genbank (input) and GFF3 (output)
format are acceptable

TSS and TSSpredator [24] Parameter optimization
PS

Transcript New approach* Detecting expressed region and modifying
transcripts based on genome annotation

Terminator TranstermHP [96] and Coverage drop detection and checking
a New approach structures of the intergenic region

between convergent genes

UTR New approach Comparison of TSSs, transcripts, CDSs,
and terminators

Promoter MEME [97] and Extraction of sequences automatically
GLAM2 [98] and TSS comparison

Operon New approach Comparison of TSSs, transcripts, CDSs,
and terminators

sRNA New approach Detecting different types of sRNAs

sRNA target RNAplex [47,48] and Merging RNAup and RNAplex
RNAup [48,49]

sORF New approach Searching ORFs in transcripts with a RBS

GO term Uniprot [99,100] Comparison of transcripts

PPI network STRING [101] Network and Visualization with literature
support by using PIE [102]

Subcellular localization Psortb [103,104] Comparison of transcripts

Circrna Segamehl [105] Comparison of genome annotation

Riboswitch and New approach Extracting sequences with a RBS in UTRs
RNA thermometer for a infernal [106] search in Rfam [107]

CRISPR CRT [108] Comparison of genome annotation

*"New approach" means that the approach was newly created in this work.
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Figure 2.4: A genetic algorithm was applied for optimizing the parameters of
TSSpredator. It starts from default parameters. Each iteration of this approach
is composed of three steps - global change (change every parameter randomly),
large change (change two of the parameters randomly), and then small change
(adds/subtracts a small fraction to/from one parameter). The best parameters of
each step will be selected for the next modification. Usually, ANNOgesic can achieve
the optimized parameters within 4000 runs.
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TPRc − TPRb ≥ 0.1
(TPRc > TPRb) ∧ (FPRc < FPRb)
(TPb − TPc > 0) ∧ (FPb − FPc ≥ 5× (TPb − TPc))
(TPb − TPc < 0) ∧ (FPc − FPb ≤ 5× (TPc − TPb))
(TPm ≥ 100) ∧ (TPRc − TPRb ≥ 0.01) ∧ (FPRc − FPRb ≤ 5× 10−5)
(TPm ≥ 100) ∧ (TPRb − TPRc ≤ 0.01) ∧ (FPRb − FPRc ≥ 5× 10−5)

Equation 2.1: TPm is the number of manually detected TSSs. TPc/TPRc represents
the true positives/true positive rate of the current parameters. TPb/TPRb represents
the true positives/true positive rate of the best parameters. FPc/FPRc represents
the false positives/false positive rate of the current parameters. FPb/FPRb represents
the false positives/false positive rate of the best parameters. If one of these six
statements is true, the best parameters will be replaced by the current parameters.

Allocating functions of sRNAs by using gene co-

expression analysis

Although sRNAs can be detected by applying ANNOgesic, the functions of the

newly discovered sRNAs are still unknown and hard to predict. Based on the data

of the 14 RNA-Seq samples of S. aureus HG003 with different time points, the

functions of sRNAs can be allocated by using gene co-expression analysis. First, gene

quantification of CDSs and sRNAs was performed by READemption [9]. Afterward,

tRNAs and rRNAs were removed due to their high expression which might influence

the normalization. Hypothetical proteins and the non-expressed proteins (coverage

< 10 reads) were excluded as well in order to avoid noise. When the selection of

genes and gene quantification were done, DESeq2 [10] was applied to compute log2
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fold changes which were then used for expression kinetics and Spearman correlation

coefficient calculation. In order to define the genes co-expressed and inversely

expressed with the queried sRNAs, cutoffs of Spearman correlation coefficient are

required. For S. aureus HG003, the cutoffs are 0.77 which is the 97.5 percentile

of all-against-all correlation coefficients for positive correlation, and -0.77 which is

the 2.5 percentile of all-against-all correlation coefficients for negative correlation

were used (Figure 2.5). Moreover, GOATOOLS [109] was applied for extracting

the enriched GO terms. Since the genes (including sRNAs and the known genes)

which have a similar pattern of kinetic curves were clustered together, the potential

functions of sRNAs may be related to the genes located in the same cluster (Figure

2.6).

Figure 2.5: Spearman correlation coefficient of all-against-all of expression vaiues
based on genes for S. aureus HG003. The cutoffs of correlation coefficients for
correlation and anti-correlation are 0.77 (97.5 percentile) and -0.77 (2.5 percentile),
respectively.
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Figure 2.6: A schema of the gene co-expression analysis. The gray lines represent
the kinetic curves of genes, x axis represents different conditions, and y axis shows
expression values of log2 fold changes. The kinetic curve can be grouped based on the
similarity of gene expression values. The example presents a group that all members
are pur family genes.

30



Chapter 3

Results

An overview of the genomic features for S. aureus

HG003

By applying ANNOgesic to S. aureus HG003, numerous high quality genome sequence

and genomic annotations were generated. The genome sequence of S. aureus HG003

is composed of 2,821,354 base pairs, and the genome features include 2,872 genes,

2,778 proteins, 2,658 operons, 2,659 transcripts, 1,688 TSSs, 1,041 5’ UTRs, 869

3’ UTRs, 1,766 PSs, 1,359 terminators, 21 riboswitches, 11 RNA thermometers, 2

CRISPRs, 257 sRNAs and 143 sORFs (Table 3.1). Moreover, GO term, subcellular

localization and promoter predictions were performed as well. Function related

features such as protein- protein and RNA-RNA interactions were also predicted by

ANNOgesic.
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Table 3.1: Number of all detected genomic features

Genomic features Classes Numbers
Transcript 2,659

TSS

Total 1,688
Intergenic 1,047
Antisense 232
Secondary 178
Internal 338
Orphan 134

Gene Total 2,872
Expressed 2,529

CDS Total 2,778
Expressed 2,433

PS 1,766

UTR 5’ UTR 1,041
3’ UTR 869

Terminator 1,359
Operon 1,498
Promoter 1,547

sRNA

Total 257
Intergenic 75
Antisense 25
5’ UTR-derived 54
3’ UTR-derived 64
InterCDS-derived 38

sORF 143
Riboswitch 15
RNA thermometer 7
CRISPR 1
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Reference genome improvement

Reference sequence

The reference genome sequence of S. aureus HG003 was generated from S. aureus

NCTC8325 which is the most closely related strain (the procedures are described in

Chapter 2 - Methods and Materials). The genome sequence is composed of 2,821,354

base pairs which are 33.2% Adenines, 33.9% Thymines, 16.5% Cytosines, and 16.4%

Guanines. In 2014, 19 sequence scaffolds of S. aureus HG003 were generated by using

de novo transcript assembly [110]. In order to validate the genome sequence of S.

aureus HG003 generated by ANNOgesic, a pairwise sequence alignment between the

complete genome sequence and the 19 previously published scaffolds was performed.

The result shows no significant difference between these two sequences (Appendix

table A.1). Moreover, both sequences are repaired versions of the two mutations -

rsbU and tcaR of S. aureus NCTC8325. Since the 19 previously published scaffolds

contain some unknown base pairs and are not a complete genome sequence, the

sequence generated by ANNOgesic is more reliable and contain more information.

SNP / mutation calling

For detecting SNPs and mutations, ANNOgesic integrates SAMtools [94] and

BCFtools [94] which can identify the nucleotide differences between the high-

throughput sequencing reads and the reference genome. If the genome sequence of

the queried strain is not available, the module for detecting of SNPs and mutations
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in ANNOgesic can also be used for generating the genome sequence. Since SNP

detection is influenced by numerous factors like read depth and quality, ANNOgesic

offers many parameters helping the users to remove false positives. The default

settings for the comparison between the genome sequences of S. aureus HG003 and

NCTC8325 are as follows: a minimum read depth is 140 (which means 10 reads per

sample), minimum 140 mapped reads on variants are 140, a ratio between the reads

mapped on variants and reference higher than 0.8, and minimum QUAL score of

40. Additionally, insertion and deletion need a ratio between total reads and the

reads of insertion or deletion higher than 0.8. 32 nucleotide differences between S.

aureus HG003 and NCTC832 were detected by applying ANNOgesic with those

parameters (Figure 3.1). They were also confirmed by manual curation, and were

used to generate the genome sequence of S. aureus HG003 (Figure 3.2).

Annotation transfer

ANNOgesic integrates RATT [95], which can transfer genome annotations from

an annotated genome to an unannotated one by comparing the similarity of the

genomes. Since the genome sequence and annotations of S. aureus NCTC8325 are

available and the sequence identity between these two strains is higher than 99%,

annotation transfer from strain NCTC8325 to HG003 can be precisely performed.

In addition, rsbU and tcaR (two mutations of S. aureus NCTC8325) were added

to the genome annotations of S. aureus HG003 manually. The genome annotations

of S. aureus HG003 generated by ANNOgesic contain 2,872 genes, 2,778 proteins

(1,534 hypothetical proteins), 61 tRNAs, and 16 rRNAs. 2,529 (88%) genes and
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2,433 (88%) proteins are expressed (coverage ≥ 10).

Figure 3.1: The distribution of SNPs and mutations between S. aureus HG003 and
NCTC8325 based on QUAL scores. The minimum QUAL score is 40.
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C

Figure 3.2: Examples of the nucleotide differences between S. aureus HG003 and
NCTC 8325. The RNA-Seq reads are from S. aureus HG003, and the reference
genome is S. aureus NCTC 8325. (A): a insertion (shown by purple lines) at 143581
bp, (B): a substution which represented by a read block (C to T) at 644172 bp, and
(C): a deletion (black lines) at 1283784 bp.

Transcripts

For the comprehensive understanding of the functions of transcripts, detecting the

exact boundaries and sequences of the transcripts is crucial. For instance, UTRs may

be the target of sRNAs or small molecules to perform post-transcriptional regulation

or regulate the translation [32,111], and numerous sRNAs may be found in UTRs as

well [18, 35,112,113]. Without the information of transcript boundaries, UTRs may

not be able to be detected. However, most of the available bacterial annotations only

contain CDSs while information about TSSs, terminators and UTRs is not provided.

In order to fill this gap, ANNOgesic provides the reliable information of transcript

boundary based on RNA-Seq coverages and the predictions of TSSs, terminators,
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and UTRs (Figure 3.3).

A

B

Figure 3.3: A schema and an example of transcript boundary. (A) ANNOgesic
combines the information of TSSs, CDSs, terminators and UTRs to define transcript
boundaries. (B) An example of transcript boundaries. The pink coverage, the blue
coverages, and the green coverages represent fragmented library, TEX+ libraries of
dRNA-Seq, and TEX- libraries of dRNA- Seq, respectively. Transcript, TSS, termi-
nator, and CDS are represented by pink, blue, orange, and green bars, respectively.
The transcript is from 800,959 to 801,322 bp at the forward strand.

RNA-Seq coverage-based transcript detection

In order to detect transcripts, numerous computational approaches have been devel-

oped. These tools can be classified by two types - de nove transcriptome assembly [6,7]
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which can detect transcripts without genome sequences, and reference dependent

transcriptome assembly [7, 29] which enables assembly of RNA-Seq reads based

on genome sequence [28]. By applying the new method which was created and

integrated into ANNOgesic, 2,659 transcripts were identified in S. aureus HG003.

These transcripts cover 2,529 genes that show expression in at least one condition

(Figure 3.3B).

TSS and PS predictions based on dRNA-Seq data

For the detection of transcripts and their boundaries, TSS is a crucial feature which

may influence UTR, operon and promoter predictions. Differential RNA-Seq (dRNA-

Seq) is a powerful RNA-Seq protocol which can detect TSSs in single nucleotide

resolution [11]. Due to this, several tools for TSS prediction based on dRNA-Seq

data were published such as TSSpredator [24], TSSer [26] and TSSAR [25]. In order

to integrate the best tool for detecting TSSs into ANNOgesic, a comparison between

these tools with default parameters was performed. The manually detected TSSs of

whole genome (S. aureus HG003) were used as a benchmarking set for computing true

positives and false positives. The result of the comparison shows that TSSpredator,

which was integrated into ANNOgesic, is the most outstanding one (Table 3.2 and

Figure 3.4).
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Table 3.2: The comparison of TSS prediction tools

Methods TP FP Missing
TSSpredator 1,032 2,460 92
TSSer 514 5,011 610
TSSAR 878 3,264 246
TP, FP and Missing represent true positives, false positives and TSSs not detected by the TSS
prediction tool, respectively.

Figure 3.4: Venn diagram of comparing TSS prediction tools.
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TSSpredator contains several parameters influencing the results of predictions

significantly. In order to produce the precise annotations of TSSs, a parameter

optimization method built on a subset of manually curated TSSs was created

and integrated into ANNOgesic (details are described in chapter 2 - Methods and

Materials). By using the optimized parameters to perform TSS prediction, a precise

TSS sets were generated. For testing the optimization, three dRNA-Seq datasets

from S. aureus HG003, H. pylori 26695 and C. jejuni 81116 were used. For S.

aureus HG003. a manually curated TSS set of whole genome was available for

the comparison. For the other two genomes, only small sets of manually curated

TSSs (first 200 kb of genome sequence) were used. Moreover, the TSSs manually

detected within first 200 to 400 kb were used as test sets. As displayed in Table 3.3,

the optimization slightly improved the sensitivity for H. pylori 26695 (from 96.8%

to 99.6%) and S. aureus HG003 (from 91.8% to 93.8%), while significantly raised

the sensitivity for C. jejuni 81116 (from 67.1% to 98.7%) with similar specificity.

Moreover, a comparison between TSSs and transcripts was performed. The amount

of TSSs predicted by optimized parameters and located within transcripts was nearly

the same as the TSSs detected by default parameters for H. pylori 26695 (83% for

optimized parameters and 82% for default parameters), but slightly increased for S.

aureus HG003 (99.6% for optimized parameters from 92.1% for default parameters)

and even significantly raised for C. jejuni 81116 (96% for optimized parameters and

81% for default parameters).

Besides PSs represent the borders of transcripts, some transcripts undergo pro-

cessing, which influences their biological activity. In addition, 3’ UTR-derived sRNAs
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Table 3.3: The comparison of the TSS predictions with optimized and default
parameters

Strains Parameters Sensitivity Specificity Missing
(TP) (FP)

S. aureus HG003 Default 91.8% (1,032) 99.91% (2,460) 92
Optimization 93.8% (1,054) 99.98% (564) 70

H. pylori 26695 Default 96.8% (244) 99.98% (32) 8
Optimization 99.6% (251) 99.98% (32) 1

C. jejuni 81116 Default 67.1% (104) 99.98% (31) 51
Optimization 98.7% (153) 99.99% (7) 2

The percentages are of the sensitivity or specificity. The numbers in brackets indicate true positives
or false positives. The optimization was tested for whole genome in S. aureus HG003, and for 200kb
in H. pylori 26695 and C. jejuni 81116.

may be generated by internal processing [34,35]. Actually, TSSpredator can not only

be used for detecting TSSs, but also for identifying PSs by searching for the reverse

enrichment pattern (relative enrichment in TEX- libraries). In order to improve

the prediction, parameter optimization was performed as well. As done for the

optimization of TSS prediction, the manually annotated PSs in the first 200 kb of

the genomes were used as a training set, and the manually curated PSs from the

first 200 to 400 kb were used as a test set. The performances of the predictions

with default and optimized parameters were similar in H. pylori 26695, but had a

significant improvement in C. jejuni 81116. In S. aureus HG003, around 100 false

positives were removed via optimization (Table 3.4).

42



CHAPTER 3. RESULTS S.H. YU

Table 3.4: The comparison of the optimized and default parameters of TSSpredator
for PS prediction

Strains Parameters Sensitivity Specificity Missing
(TP) (FP)

S. aureus HG003 Default 100% (82) 99.96% (143) 0
Optimization 100% (82) 99.99% (11) 0

H. pylori 26695 Default 92.9% (26) 99.99% (7) 2
Optimization 92.9% (26) 99.99% (7) 2

C. jejuni 81116 Default 61.3% (19) 99.99% (2) 12
Optimization 93.5% (29) 99.99% (6) 2

The percentages are of the sensitivity or specificity. The numbers in brackets indicate true positives
or false positives.

Based on TSS and PS predictions with optimized parameters, the candidates

of TSSs and PSs may be annotated globally and precisely. For S. aureus HG003,

1,766 PSs and 1,688 TSSs consisting of 1,047 primary, 178 secondary, 338 internal,

232 antisense and 134 orphan TSSs were detected. Additionally, a Venn diagram of

different TSS classes was generated by ANNOgesic automatically (Figure 3.5).

Figure 3.5: The distribution of TSS classes of S. aureus HG003.
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Terminators

For the detection of transcript boundaries, TSS is an important feature for identifying

the transcript border in the 5’ end. However, the 3’ end of a transcript is usually not

so clear and sharp. Due to this, the data from RNA-Seq generated after transcript

fragmentation and the information of terminators which are clear landmarks of the

transcript borders in the 3’ ends are required.

Terminators can be separated into two types based on the dependence of Rho

factor involved in the termination of transcription. Rho factor is a hexameric-ring-

shaped protein that binds to the pause site of the terminator (C-rich/G-poor region

after ORF) to terminate the transcription [114]. In Escherichia coli strains, Rho

factor is an essential protein to regulate the transcription. However, it is non-essential

in certain bacteria, like the main target species of this study, S. aureus [115]. A

Rho-independent terminator is normally composed of a stable CG-rich stem-loop

(7-20 base pairs). The stem-loop can bind tightly to NusA, which is bound to an

RNA polymerase to stall the transcription [116,117]. Numerous Rho-independent

terminator prediction tools are built based on the specific secondary structures

[96,118].

TransTermHP [96] and RNIE [118] are two representative tools for the prediction

of Rho-independent terminators based on genome sequences. In order to integrate

the best tool into ANNOgesic, the comparison between TransTermHP and RNIE

was performed for the genome sequence of S. aureus HG003. As shown in Figure

3.6, TransTermHP detected more candidates than RNIE which only identified 137
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Rho-independent terminators of which 80% were also found by TransTermHP. In

order to put these number into perspective, one has to consider that in principle each

operon should be associated with a terminator and 1,498 operons were found in S.

aureus HG003 (see the section – Operon). This indicates that RNIE contains many

false negatives. Thus, TransTermHP was integrated into ANNOgesic. However, the

candidates of terminators generated from TransTermHP are not always supported by

RNA-Seq data because several terminators may only function in specific conditions

(Figure 3.7E and F). In order to improve the prediction, two further novel approaches

based on RNA-Seq data and the given genome annotations were developed and

integrated into ANNOgesic.

Figure 3.6: The comparison of Rho-independent terminator prediction tools by RNIE
and TransTermHP based on S. aureus HG003 genome.
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A B

C D

E F

Figure 3.7: The method and an example for detecting coverage decrease of terminators.
(A) and (B) represent a high-confidence terminator which shows a significant drop
of coverage. (C) and (D) show a terminator which has no a significant decrease
of coverage. A terminator without showing expression is shown in (E) and (F). In
(B), (D), (F), the coverage of RNA-Seq generated after transcript fragmentation,
TEX+ and TEX- of dRNA-Seq are represented as pink, blue and green coverages,
respectively. In the annotation track, terminators, TSSs, CDSs and transcripts are
showed as pink, blue, green, and red bars, respectively.
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The first new approach is for increasing the sensitivity of terminator prediction.

Since secondary structure of Rho-independent terminator is an important feature,

RNAfold was applied to check the secondary structure of the intergenic region

between the two converging genes in order to find the potential terminators [48, 52]

(Figure 3.8). In case the region forms a stem-loop and the tails of stem-loop are

A/T rich region, it is considered as a Rho-independent terminator. In the prediction

default setting, the maximum nucleotides of the potential terminator region are 80,

T rich tail of the 3’ end contains more than 5 Thymines, the stem-loop contains 4 to

20 nucleotides (75% nucleotides is able to make pairs), and the length of the loop is

between 3 to 10 nucleotides.

Figure 3.8: Detecting Rho-independent terminator based on convergent gene pairs.
The blue curve-blocks, green arrows and red stem-loop represent the read coverages,
two convergent genes, and a potential Rho-independent terminator, respectively.

A general observation was that regions of terminators show a sharp decrease of

coverage. Based on this, a second approach for the detection of terminators was

developed. For that location with a significant decrease of coverage in the 3’end of a

feature is searched in order to find high-confidence candidates for terminators (Figure
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3.7A and B). On the other hands, if the terminator candidates lack expression or

express without the drop of coverage, they might be false positives or not functional

terminators for the selected conditions (Figure 3.7C - F). By default setting, the

sharp coverage drops are located within the region of the terminator candidate,

or within 30 nucleotides upstream and downstream from the potential terminator.

Moreover, the minimum ratio of the lowest and highest read coverage value must be

0.5 or more.

In S. aureus HG003, the number of Rho-independent terminators detected by

TransTermHP is 1,525, and by the approach of checking secondary structures of

the intergenic regions between convergent genes is 524. However only 1,031 (68%)

terminators from TransTermHP and 421 (80%) terminators from convergent gene

based approach contain a significant coverage decrease. 270 terminators were detected

by using both methods, and 248 of them contain significant coverage drops. Overall,

1,779 Rho-independent terminators were identified in S. aureus HG003, and 1,181 of

them are high-confidence terminators (with a significant coverage decrease).

UTRs

UTR is considered as an essential feature for understanding the RNA-RNA interaction

and the regulation of genes since numerous important sequences are located in UTRs

such as riboswitches, RNA thermometers and ribosome binding sites [119, 120].

Additionally, UTR-derived sRNAs are discovered recently [18,34,35]. Despite this

high importance, the available tools for detecting UTRs are still few, and all of the

current tools are only based on genome sequences [121].
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Since transcript boundaries and CDSs can be identified by using ANNOgesic,

a comparison of the positions of CDSs, TSSs, terminators, and transcripts was

performed for detecting 5’ UTRs and 3’ UTRs. The region between a TSS and

the following downstream CDS is a 5’ UTR; in addition, the sequence between a

terminator or the 3’ end of a transcript and the last upstream CDS is a 3’ UTR.

ANNOgesic detected 1,041 5’ UTRs and 869 3’ UTR in S. aureus HG003. The

distribution for UTRs was shown in Figure 3.9.

A B

Figure 3.9: The distribution of UTR lengths for S. aureus HG003 was generated by
ANNOgesic. (A) is 5’ UTRs and (B) is 3’ UTRs.

Promoters

Promoters are located upstream of genes and can be bound by transcription factors

and RNA polymerases. In bacteria, the most common promoters are two short

consensus sequences located around 10 (Pribnow Box) and 35 nucleotides upstream

from TSSs (Figure 3.10). These promoters can specifically interact with RNA
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polymerase via sigma factor (σ70) which is a transcription initiation factor [122,

123]. Therefore, the detection of promoters is an important step to understand the

mechanism of transcription factor interaction and the regulation of transcription.

Figure 3.10: The probability for occurrence of nucleotides in promoter sequences
in E. coli. 10 and 35 nucleotides upstream from TSS are two consensus promoter
sequences [123].

For detecting promoter motifs, ANNOgesic integrates MEME [97] (which can

identify ungapped motifs) and GLAM2 [98] (which is able to discover gapped motifs).

These two tools not only detect the promoter candidates with the information of the

corresponding sequences, but also generate the figures of the sequence motifs. In the

default setting, 50 nucleotides upstream from TSS were used for searching promoter

motifs, and the length of the promoter is set by 45, 50 and 2-10 nucleotides. In S.
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aureus HG003, 1,547 Pribnow Boxes were found from 45 nucleotides upstream of

TSSs (Figure 3.11).

Figure 3.11: The Pribnow Box detected in the upstream sequences of 1,547 TSSs
(92%) in Staphylococcus aureus HG003.

Operons

An operon is a functional unit containing the genes regulated by the same transcription

factor and promoter. The cluster of genes are transcribed together and might

have related functions. However, only few computational tools are available for

detecting such feature. ProOpDB [124] is a representative tool that integrates data

from KEGG [55], COG [125], Pfam [126], and STRING [127] to store and detect

prokaryotic operons via machine learning approaches (neural network). An operon

prediction tool based on RNA-Seq data was not existed so far.

Since all requirements underlying features – TSSs, CDSs, and transcripts can be

predicted by ANNOgesic, operons as well as sub-operons associated with different

TSSs in the same operon can be detected by it as well (Figure 3.12A). As part of

that, ANNOgesic classified the operons to monocistronic operons (operons contain

only single genes) and polycistronic operons (operons consist of multiple genes).

For S. aureus HG003, 2,659 transcripts composed of 1,027 monocistronic operons,
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472 polycistronic operons, and 1,160 transcripts which are not associated with

genes were detected. Additionally, within these operons, only 47 of them contain

sub-operons (Figure 3.12B).

A

B

Figure 3.12: A schema and an example of operon and sub-operon detection. (A)
Sub-operons were detected by searching for multiple TSSs located in the intergenic
region of an operon. (B) An example of an operon with sub-operons in S. aureus
HG003. The operon is from 1,874,426 to 1,876,261 at the forward strand. The pink,
green, and blue coverage represent transcript fragmented library, TEX- and TEX+
libraries of dRNA-seq. In the annotation track, the blue spots, orange bar, pink bars
and green bars represent TSSs, terminator, operon/transcript, and CDSs. The two
CDSs are located in the same operon, but in different sub-operons (two hollow light
blue squares).
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sRNAs

Detection of sRNAs

In order to detect these sRNAs based on the genome sequence, numerous tools were

developed. ANNOgesic offers a novel RNA-Seq-based method which is different from

most of the available tools that use only genome sequence to detect and classify

different types of sRNAs [36–42].

For detecting sRNAs, ANNOgesic extracts short expressed non-annotated tran-

scripts (the default setting: 30 - 500 nucleotides long) as the potential sRNAs. If the

length of a non-annotated transcript is longer than the length threshold (given by the

users), the information of the read coverage is used for checking a significant drop of

coverage in order to define the border of 3’ end (similar to Figure 3.7A). If a potential

sRNA does not overlap with any CDSs in both the forward and reverse strands, it

is considered as an intergenic sRNA. However, if CDSs exist in the complementary

strand of the potential sRNA, it is marked as an antisense sRNA. For the detection

of UTR-derived sRNAs, a novel method based on the information of transcripts,

TSSs, and PSs was developed. A 5’ UTR-derived sRNA should start with a TSS or a

PS as well as show a PS or a point containing significant coverage decrease in the 3’

end. The detection sRNAs located in interCDS (the region between two consecutive

CDSs within the same transcript) is based on searching a TSS or a PS in the 5’ end

and a sharp coverage drop or a PS in the 3’ end. For 3’ UTR- derived sRNAs, they

must start either with a TSS or a PS and end with the transcript or at a PS. The
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identification and classification of sRNAs are illustrated in Figure 3.13.

A B C

Figure 3.13: Detection of intergenic, antisense, and UTR-derived sRNAs. (A)
Detection of intergenic and antisense sRNAs. The upper panel shows a normal case,
a non-annotated transcript starts with a TSS, and is within the normal length of
sRNA. The middle panel shows a TSS-associated transcript which is longer than the
length threshold. In this case, the coverage (blue region) is used for searching the
significant coverage drops. The bottom panel shows a similar case to the middle panel,
but a PS is detected in the 3’ end of the sRNA. (B) Identification of UTR-derived
sRNAs. For 3’ UTR-derived sRNA, if the transcript starts either with a TSS or a PS,
it is marked as a 3’ UTR-derived sRNA. For 5’ UTR-derived sRNA, if the transcript
starts with a TSS and shows a coverage which significant drops or a PS in the 3’
end, it is considered as a 5’ UTR-derived sRNA. (C) Detection of interCDS-derived
sRNAs. It is similar to the detection of 5’ UTR-derived sRNA, but the transcript
can start with a PS as well.
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In order to remove the false positives, several filters were applied and integrated

into ANNOgesic. First of all, if homologous sequences of a sRNA candidate were

found in sRNA databases based on a BLAST+ search [128], it is marked as a known

sRNA. In S. aureus HG003, two sRNA databases were used - i) BSRD [129] which

stores experimentally confirmed sRNAs of all bacterial species and ii) experimentally

validated sRNAs in SRD [64] which only stores sRNAs of S. aureus from both

experimental and computational identifications. If a sRNA candidate does not have

homologous sequences in sRNA databases, it needs to pass the following filters,

otherwise it is considered as a false positive. For excluding the potential protein-

coding sequences, a BLAST+ [128] search in the NCBI non-redundant protein

database was performed. If a potential sRNA got a hit, it is tagged as a potential

protein-coding sequence, and removed from the list of sRNA candidates. After

excluding potential protein-coding sequences, the remaining sRNA candidates which

start with a TSS and form a stable secondary structure (folding free energy change

normalized by length should be smaller than 0.05 ~∆G/nt) are included in the final

sRNA set. By using ANNOgesic and applying all the filters, 256 sRNAs which

consist of 75 intergenic sRNAs, 25 antisense sRNAs, 54 5’ UTR-derived sRNAs, 64

3’ UTR-derived sRNAs and 38 interCDS-derived sRNAs were identified in S. aureus

HG003 (Figure 3.14). Moreover, this set of sRNAs is composed of 62 known sRNAs

and 194 novel sRNAs (Table 3.5).
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Table 3.5: Previously published sRNAs which were detected in S. aureus HG003

sRNA name Amount sRNA name Amount sRNA name Amount
RsaOT 1 SsrA 2 Teg45 1
SbrC/RsaC/RsaOW2 2 RsaOB 1 RsaA 2
SprA2/RsaJ 1 RsaOW2 2 Sau-6053 1
RsaOR/SprX 2 RsaG 1 RsaE 1
RsaOI/Sau-6477 1 SprG2 1 RsaOU 1
RsaD 1 RsaOM 1 RsaX25 1
RsaOL 1 Sau-5949 2 RsaOC 1
Sau-19 1 SprD 1 Sau-02/SprF2 1
RsaOQ 1 SprB 1 RNAIII 1
SbrC/RsaC 1 SprA2 4 SprC 1
SprA/SprA1 2 SprF2 1 SbrC 1
RNaseP-bact-a 1 SbrB 1 RsaK 1
Teg1 1 RsaOR 2 RsaH 2
SprF4 1 Teg70 1 Teg76 1
Teg35 1 Sau-63 1 RsaOG 1
Sau-5971 1 SprF3/SprG3 1 RsaOV 1
RsaOE 1
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E F

Figure 3.14: Examples of sRNAs S. aureus HG003. Red, blue, and green coverages
represent the library of fragmented transcripts from RNA-Seq, TEX+ and TEX-
libraries from dRNA-Seq, respectively. In the annotation tracks, red, blue, green,
and orange bars represent transcripts, TSSs, CDSs and a sRNA, respectively. (A)
and (B) are for intergenic sRNAs. (A) A known sRNA at the region between
2,377,278 to 2,377,456 at the reverse strand, and (B) a novel sRNA located from
1,801,971 to 1,802,267 at the reverse strand. (C) An example of 5’ UTR-derived
sRNA located from 1,791,238 to 1,791,456 at the reverse strand. (D) A 3’ UTR-
derived sRNA found at the location from 911,380 to 911,494 at the forward strand.
(E) An interCDS-derived sRNA detected from 931,870 to 932,058 at the forward
strand of the genome. An example of antisense sRNA shown in (F) was discovered
between 2,211,957 to 2,212,213 at the forward strand.
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ANNOgesic also provides numerous functions and visualizations for analyzing the

predicted sRNAs, such as comparing sRNAs with terminators, sORFs, and promoters

as well as generating secondary structural figures, dot plots, and mountain plots by

using Vienna RNA package [48] (Figure 3.15).

A B

Figure 3.15: An example (RsaOG) of sRNA secondary structure analysis. (A) The
potential secondary structure of RsaOG (upper panel), and the plot of the secondary
structure (bottom panel). (B) The mountain plot (upper panel) and the entropy
plot (bottom panel) of RsaOG. The folding stability and the possibility were revealed
in the these figures generated by using RNAfold of Vienna RNA package [48].

Ranking of sRNA candidates

In order to analyze the performance of ANNOgesic capability for prediction of sRNA,

it was applied to four bacterial genomes - Helicobacter pylori 26695, Campylobacter

jejuni 81116, Staphylococcus aureus HG003, and Escherichia coli K-12. The previ-

ously described sRNA sets of these four genomes were selected as benchmarking sets.
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Those sets were taken from two dRNA-Seq based publications for Helicobacter pylori

26695 and Campylobacter jejuni 81116 [24, 60], from a RefSeq annotation file for Es-

cherichia coli K-12 in RefSeq, and from a microarray based study for Staphylococcus

aureus HG001 which has only one gene difference to S. aureus HG003 [130]. Some of

sRNAs of the benchmarking sets were removed since they overlap with CDSs or are

not expressed in the chosen conditions. Based on the comparison of the predicted

sRNA sets and the benchmarking sets, around 80% to 90% of previously reported

sRNAs in these four bacterial genomes were detected by applying ANNOgesic (Table

3.6).

Table 3.6: The sensitivity of the sRNA detection in ANNOgesic

Strains Sensitivity (TP) Total sRNAs
H. pylori 26695* 90% (53) 59
C. jejuni 81116 84% (26) 31
S. aureus HG003** 80% (28) 35
E. coli K-12 86% (50) 58

*The RNA-Seq data of H. pylori 26695 did not include 454 Sequencing
data which was used for several conditions in the publication from
Sharma et al. [60]. Thus, some of the described sRNAs were not
considered in this study.
**The benchmarking set of S. aureus HG003 is from S. aureus HG001

In order to check the resolution of the sRNA detection in ANNOgesic, the

comparison between the locations of benchmarking sets and predicted sRNA sets was

performed. As displayed in Figure 3.16, almost all of the differences of the positions

in the 5’ end of sRNAs are less than 10 nts because TSSs are precisely detected by

using dRNA-Seq data. However, the resolution of the 3’ end in the strains except

E. coli K-12 is low since no RNA-Seq protocol was applied for specifically detecting
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terminators in this study. Although the resolution of sRNA detection in the 3’

end is not such high as the resolution in the 5’ end, the majority of sRNA location

differences are still less than 50 nts. The results of S. aureus HG003 are worst because

the benchmarking sRNAs are from S. aureus HG001 which is not exactly the same as

S. aureus HG003 and underlying data is from microarray which has lower resolution.

For improving the resolution of sRNA detection, the data from a RNA-Seq protocol

which can identify terminators in high-resolution like Term-Seq [13] is required.

Although ANNOgesic provides potential sRNAs, the selection of the reliable

sRNA candidates for experimental validation is still an issue. In order to address this,

a ranking system based on the average of the read coverages of sRNA candidates and

the promoter information was developed. Equation 3.1 shows the scoring function

of the ranking system. In case the assigned promoters (default is Pribnow box)

are found upstream of the sRNA, the score of the sRNA is the average of the read

coverages multiplied by 2 (default setting). Otherwise, the score is the average

coverage value. In Figure 3.17, the previously published sRNAs show higher scores

(ranking in the front). The p-values of the t-test between the previously published

sRNAs and the rest predicted ones are 1.631e-09, 4.629e-04, 6.606e-07 and 2.528e-13

for H. pylori 26695, C. jejuni 81116, S. aureus HG003 and E. coli K-12, respectively

(Figure 3.17). The results of these analyses showed that the ranking system is a good

indicator for the reliability of the sRNA prediction.
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A B

C D

Figure 3.16: The resolution of sRNA detection in ANNOgesic. The figures show the
results of the comparison between the positions of the benchmarking sets and the
predicted set. The differences of the sRNA positions between the benchmarking sets
in the 5’ end is presented in each upper panel, and the comparison of the sRNA
positions for the 3’ end is shown in each bottom panel. (A), (B), (C) and (D)
present the resolution of sRNA detection for H. pylori 26695, C. jejuni 81116, S.
aureus HG003, and E. coli K-12, respectively. All of them show high-resolution in
the 5’ end, but only E. coli K-12 shows high resolution in the 3’ end.
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C D

Figure 3.17: Distribution of the ranking of benchmarking sRNAs. The red dash
lines show the average ranking numbers of previously reported sRNAs (57.25, 13.19,
63.32 and 61.76 for H. pylori 26695, C. jejuni 81116, S. aureus HG003, and E. coli
K-12, respectively), and the black dash lines represent the average ranking numbers
of the rest sRNA populations (106.17, 25.05, 136.25 and 147.41 for H. pylori 26695,
C. jejuni 81116, S. aureus HG003, and E. coli K-12, respectively). The p-values
of the t-test show that the ranking scores between the benchmarking sets and rest
populations are significantly different. (A) is the histogram of H. pylori 26695, (B)
presents the histogram of C. jejuni 81116, the histogram of S. aureus HG003 is
shown in (C), and the histogram presented in (D) is for E. coli K-12.
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if sRNA is associated with a promoter :
S = C × P

else :
S = C

Equation. 3.1: S is the score for sRNA ranking. If no promoter is found upstream of
the sRNA, S is the average coverage of the sRNA (presented by C). If the sRNA is
associated with a promoter, S is assigned by P (defined by the users) times of the
average coverage of the sRNA.

A sRNA candidate for regulation of fluid shear stress

ANNOgesic was also applied to Pseudomonas aeruginosa CF PA39 in order to predict

the sRNA candidates which may be regulated by the fluid shear stress. A newly

detected sRNA candidate (sRNA10) which was significantly down-regulated under

low fluid shear conditions compared to high fluid shear conditions was discovered by

applying ANNOgesic [73] (Table 3.7). Thus, the sRNA detection of ANNOgesic not

only identifies the known sRNAs but also provides the reliably potential sRNAs for

experimental validation.

A long non-coding RNA - SRR42

Until recently long non-coding RNAs only be described in eukaryotic genomes.

However, a highly expressed long non-coding RNA (SSR42) which can regulate

virulence factors was found in S. aureus in 2012 by Morrison J. M. et al. [131]. It is

also detected in S. aureus HG003 (1,249 nucleotides long) based on RNA-Seq data

(Figure 3.18). Furthermore, the result of the multiple sequence alignment shows
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Table 3.7: The sRNAs which are significantly down-regulated under low fluid shear
conditions compared to high fluid shear conditions in P. aeruginosa CF PA39

sRNA Length Position in Experimental Fold change
(BP) the genome validation (RNA-Seq)

sRNA10 202 Intergenic region: No -2.35
PA3964-PA3965

SPA0117 201 Intergenic region: Yes -1.94
PA3049 (rmf)-PA3050 (pyrD)*

P8 78 Intergenic region: Yes -1.85
PA1030-PA1031

SPA0003 137 Intergenic region: Yes -1.58
PA2729-PA2730

The data is from the study of Dingemans et al. [73] , and only the sRNAs down-regulated ≥
1.50-fold were included.
*The SPA0117 sRNA overlaps the both genes.

that SRR42 widely exists in all strains of S. aureus, but does not exist in other

Staphylococcus members.

Figure 3.18: A SSR42 is located at the reverse strand from 2,446,903 to 2,448,151 in
S. aureus HG003. The red coverage region, blue coverage regions and green coverage
regions are for the library of fragmented transcripts from RNA-Seq, TEX+ and TEX-
libraries from dRNA-Seq, respectively. The pink bar represents a SSR42 and the
blue spot shows a TSS.
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Targets of sRNAs

A module of sRNA target prediction was generated and integrated into ANNOgesic

in order to understand the functions of sRNAs. Based on a resent review study of

sRNA target prediction tools, CopraRNA [45], IntaRNA [46], RNAplex [47,48], and

RNAup [48,49] are the four most outstanding tools [43,44] for predicting the targets

of sRNAs. ANNOgesic integrates RNAup, RNAplex and IntaRNA for the target

prediction since CopraRNA needs manually selected homologs from different species

of an sRNA and due to this, it cannot be used for constructing an automatic tool.

For numerous sRNAs, it has been proven that they can regulate the translation

of bacterial mRNAs by masking the Shine-Dalgarno (SD) or the start codon in the

5’ end of mRNA coding region [111]. Thus, 200 nucleotides upstream of CDSs and

100 nucleotides downstream of the start codons of CDSs were extracted as potential

binding sequences of sRNAs to use IntaRNA [46], RNAplex [47, 48], and RNAup

[48, 49]). ANNOgesic selects the mRNA targets predicted as top 20 interactions

(default setting) in all of the three methods to provide the reliable candidates based

on the information of binding energy. Moreover, some important information are

provided as well, such as the interacting regions, the nucleotides of the base pairing,

and the binding energy. The results of applying ANNOgesic to S. aureus HG003

shows that only 23.5% sRNA-mRNA interactions were detected in all of these three

methods. Moreover, an interesting discovery reported in previously publications is

also revealed in the result - most of the sRNAs can bind to multiple targets (average

interacted targets is 4.9) for regulating various pathways, but the majority of the
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targets tend to only interact with a specific sRNA (a target is regulated by 1.3

sRNAs) [132,133] (Figure 3.19).

A B

Figure 3.19: Number of interacting partners for sRNAs show that almost all of the
sRNAs can bind to multiple mRNAs. However, most of the sRNA targets are only
regulated by a specific sRNA. (A) The histogram of the number of interacting targets
per sRNA. (B) The histogram of the number of interacting sRNAs per mRNA. Only
the top 20 sRNA-mRNA interactions of RNAup, RNAplex, and IntaRNA predictions
were considered.

Functions of sRNAs

Besides using sRNA target prediction tools, applying gene co-expression analysis

was another option to detect the functions of sRNAs. For example, by appliying

co-expression analysis for dual RNA-Seq data in Salmonella, a sRNA (PinT) and

its functions were detected and validated by experiments [134]. Thus, in this study,

gene co-expression analysis (using Spearman correlation coefficient) was also applied

to allocate the functions of sRNAs for S. aureus HG003 based on the data of the 14

RNA-Seq samples (seven time points of bacterial populations growing in two different
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conditions, a rich medium and a poor medium). Moreover, GO enrichment analysis

was used for extracting the genes which contain enriched GO terms. Since the

expression kinetics of the genes which are in the same group are similar, the functions

of sRNAs can be detected by retrieving the functions of the genes co-expressed and

inversely expressed with the sRNAs.

In the gene co-expression analysis of S. aureus HG003, many examples with

previously published sRNAs show that their functions are closely related to the genes

located in the same cluster. RNAIII, which is a widely studied sRNA, acts as the

effector of the agr quorum-sensing system for regulating virulence genes [135,136].

RNAIII regulates the expression of the repressor of toxins (rot), which is a global

regulator of virulence gene expression in S. aureus, by occluding the Shine-Dalgarno

sequence and blocking the translation [137,138]. Some genes like coa, lytM and spa

are also repressed by RNAIII [139,140]. Moreover, RNAIII transcript also contains

delta-haemolysin gene (hld) and activates translation of hla mRNA [136]. In our

results of co-expression analysis, RNAIII (from 2,093,091 to 2,093,248 at the reverse

strand in S. aureus HG003) was co-expressed with the genes of agr family, hla, and

some virulence factors (Figure 3.20A, Appendix Table A.2). Furthermore, Dunman

et. al provided a list of genes which are up-regulated and down-regulated with

agr [140]. The list contains many genes of the hut family which are also shown in our

co-expression results. Moreover, most of the inversely expressed genes of RNAIII also

match to the list of agr-down-regulated genes which are provided by Dunman et. al

like the coa and lyt family [140] (Figure 3.20B, Appendix Table A.2). The Spr sRNA

family is another largely studied sRNA. Members of the family associated group
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includes phage proteins and virulence proteins. The Spr sRNA family is expressed

from pathogenicity islands which contain virulence and antibiotic resistance genes.

Moreover, pathogenicity islands can be transferred through horizontal gene transfer

like phages, plasmids and transposons [70, 141]. Thus, the Spr sRNA family is

mainly co-expressed with phage proteins and virulence proteins like leukocidin and

capsular polysaccharide biosynthesis protein. In addition, the Spr sRNA family is also

inversely expressed with numerous tRNA-synthetases. It might be due to that the

pathogenicity island usually uses tRNA loci for integration and recombination [142].

The kinetic curves of SprG4 [143] (from 942,430 to 942,482 at the forward strand)

and its correlated proteins are shown in Figure 3.20C and D as an example (Appendix

Table A.3).

Besides the functions of the known sRNAs, numerous potential functions of

newly detected sRNAs can be characterized based on the application of gene co-

expression analysis as well. For examples, a novel sRNA (from 90,947 to 91,092

at the forward strand) is mainly inversely expressed with the proteins involved in

the conversion of lactate to pyruvate like L-lactate dehydrogenase, and co-expressed

with some members of bio family which can regulate the biotin metabolism (Figure

3.20E and F, Appendix table A.4). Furthermore, biotin is a cofactor responsible

for carbon dioxide transfer in pyruvate carboxylase used for converting pyruvate

to oxaloacetate [144]. Thus, this sRNA may be able to decrease the storage level

of pyruvates by repressing the conversion of lactate to pyruvate and enhancing the

carboxylation of pyruvate. Moreover, a newly discovered sRNA (from 641,099 to

641,200 at the forward strand) is highly co-expressed with several iron transportation
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related proteins such as ferrichrome transport permease, and inversely expressed with

a ferritin, which is a storage of irons, as well as with two proteins down-regulated at

iron-depleted conditions (glpK and glmS) [145, 146] (Figure 3.20G and H, Appendix

table A. 5). Based on the analysis, this newly detected sRNA may be a regulator

which can activate the iron transportation and inhibit storage of irons. Furthermore,

a novel sRNA (from 2,485,411 to 2,485,628 at reverse strand) may be involved in

the regulation of the purine metabolism because its expression values are highly

correlated with the expression values of the pur family (Figure 3.20I, Appendix table

A.6). In addition, two of the three genes inversely expressed with this sRNA are

transporters (the last one is a phage integrase) (Figure 3.20J, Appendix table A.6).

These predictions provide valuable information for the experimental validation.

sORFs

Small open reading frames (sORFs) are short sequences (normally ≤ 100 residues)

with a start codon and a stop codon which form a potential protein-coding regions.

The product of sORF is a short peptide (sPEP) which is usually lost in the process of

protein extraction and purification. Therefore, sPEP may not be able to be detected

in typical proteomic screens because of its small size and rapid degradation [147].

Due to these experimental difficulties, using computational approaches for detecting

sORFs becomes an important method.
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Figure 3.20: Examples of allocating sRNA functions by using gene co-expression
analysis. X-axis represents the 14 conditions of RNA-Seq data. The rich media
and poor media are presented as TSB and pMEM, respectively. For the time
points, OD 0.2, OD 0.5, and OD 1 mean OD600 = 0.2, OD600 = 0.5, OD600 = 1,
respectively. t0, t1, and t2 indicate 0 hour, 1 hour, and 2 hours after entering
stationary phase, respectively. ON represents overnight. Y-axis shows log2 fold
change of gene quantification values. The red line and the gray lines represent the
queried sRNA and the other genes, respectively. (A), (C), (E), (G) and (I) show
the co-expressed genes with the queried sRNA, and the others present the genes
inversely expressed with the queried sRNA. (A) and (B) are for a known sRNA -
RNAIII, (C) and (D) show the cluster for another known sRNA - SprG4 the others
are for newly discovered sRNAs.

However, the currently available tools and databases for detecting sORFs are
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few. CodonW is one of the widely used tools [148]. It was developed based on the

assumption that the codon usages of true ORFs are not random. All of the true

sORFs should contain the optimal codon pattern. Therefore, CodonW can detect

sORFs by searching the specific codon patterns. Another commonly used sORF

detection tool is sORF finder which can detect sORFs by calculating nucleotide

composition frequency and coding potential score [149]. However, sORF finder can

only detect sORFs with less than 100 codons. Moreover, a review study reported

that these two tools may not be the solution of sORF detection due to their low

accuracy. For detecting sORFs with less than 100 residues, the sensitivities of these

two tools are only 35% to 65% at 20% false positive rate, and 25% to 50% at 5%

false positive rate. In addition, for identifying sORFs with 100-150 residues, the true

positive rates are not higher than 70% either at 5% false positive rate or 20% false

positive rate in both of the methods [150].

In order to develop an approach with higher precision for detecting sORFs, a

new method based on RNA-Seq data was created and integrated into ANNOgesic.

This approach searches for the short expressed non-annoated transcripts (default

setting is within 30 to 150 base-pairs) containing start and stop codons which can

form potential sORFs. Moreover, a ribosome binding site (RBS) must be detected

between a TSS and 3 to 15 nucleotides upstream of the start codon (Figure 3.21).

The sequence length of the sORF as well as the sequence patterns of the start codon,

the stop codon, and the RBS can be assigned by the users to satisfy some special

requests like using non-canonical start codons.

For S. aureus HG003, 181 sORFs which comprise 10 antisense sORFs, 34 intergenic
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sORFs, 42 3’ UTR-derived sORFs, 33 interCDS-derived sORFs, and 62 5’ UTR-

derived sORFs were detected by ANNOgesic.

A

B

Figure 3.21: The method and an example of sORF detection. (A) The approach of
sORF detection. A short non-annotated transcript (default 30 - 150 nts) containing
start and stop codons which can form an ORF is considered as a sORF candidate.
Moreover, a RBS must be discovered between a TSS and the start codon otherwise
the candidates are excluded. (B) An example of a sORF from S. aureus HG003.
The pink, blue and green coverages represent the library of RNA-Seq generated after
transcript fragmented, TEX+ and TEX- libraries of dRNA-Seq, respectively. The
TSS, transcript, and sORF are presented as blue, pink and green bars, respectively.
A start codon, stop codon, and Shine-Dalgarno Sequence were detected. The location
of this sORF is from 2,111,563 to 2,111,646 bp at the forward strand.
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Circular RNAs

Circular RNAs (circRNAs) are recently discovered genomic features [151,152]. Unlike

conventional linear RNAs, they are a special type of non- coding RNA and forms

a closed continuous loop (the 3’ and 5’ ends are joined together). Due to the

low expression of circRNAs, the detection of circRNAs is still a challenge for both

experimental and computational approaches. Since the first genome-wide detection of

circRNAs based on RNA-Seq data was published in 2012 [152], RNA-Seq has become

a potent method for the detection of circRNAs. The RNA-Seq-based methods for

identifying circRNAs mainly focus on searching for the splice sites located at the two

terminals of a RNA-Seq read (Figure 3.22). Currently, almost all of the previously

reported circRNAs were found in eukaryotic genomes because the splicing events

rarely occur in bacterial and archaeal organisms. However, a study published in 2012

reported a transcriptome-wide discovery of circRNAs in archaea [153].

In 2014, the functions of Segemehl were extended in order to predict circRNAs

by searching and classifying different types of splice sites. The recall and precision

of Segemehl for detecting circRNAs are 85% and 98%, respectively [105]. Based on

the outstanding performance, ANNOgesic integrates it for its detection of circRNAs.

Moreover, ANNOgesic compares circRNA candidates with genome annotations in

order to exclude the false positives which are marked as CDSs, tRNAs, or rRNAs.

Furthermore, the circRNA candidates with low ratio between supporting reads and

total reads were removed as well. For S. aureus HG003, no candidate can be detected

after removing the false positives.
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Figure 3.22: Detection of circRNA is based on searching the splice sites located at
the two ends within a RNA-Seq read. (A) The splice sites of a circRNA. (B) The
splice sites of a normal linear RNA.

Riboswitches and RNA thermometers

Riboswitches and RNA thermometers (RNATs) are two structured regulatory RNAs

located in the 5’ UTRs of bacterial genomes. Riboswitches can regulate downstream

gene at the level of the transcription termination, translation initiation or RNA

stability by interacting with small molecules (Figure 3.23A). The previous studies

reported that RNATs can influence translation initiation based on the change of

temperature (Figure 3.23B) [154]. For the prediction of these two important reg-
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ulators, ANNOgesic extracts the potential sequences that are between TSSs (or

the starting point of the transcript if no TSS is detected) and downstream CDSs,

and associated with ribosome binding site to search for the homologs in the Rfam

database by running Infernal [106,107]. For S. aureus HG003, 22 riboswitches and

11 RNA thermometers were found (Table 3.8).

A

B

Figure 3.23: Mechanisms of riboswitches and RNA thermometers. (A) Riboswitch.
(B) RNA thermometer.
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Table 3.8: Riboswitches and RNA thermometers in S. aureus HG003

Riboswitch RNA thermometer
Name Number Name Number
drz-agam-2-2 1 FourU 1
Purine 1 Phe leader 5
FMN 2 ROSE 3 1
yybP-ykoY 1 PrfA 2
glmS 1 hsp17 2
SAM-SAH 2
Glycine 1
Lysine 1
SAM V 1
PreQ1 3
SAM 3
speF 1
TPP 2
preQ1-II 1

CRISPRs

Clustered regularly interspaced palindromic repeat (CRISPR) plays a vital role in

a bacterial immunological system to resist phage invasion. It consists of several

repeated sequences, and each repeated sequence is followed by a spacer from the

foreign DNA, such as viruses or plasmids [155]. Based on the specific sequence

pattern of CRISPRs, numerous CRISPR prediction tools were constructed. One

of the widely used tools is CRISPR recognition tool (CRT) requiring only within

2 seconds to detect the CRISPR candidates of a 2 million bp genome with 90%

recall and 100% precision [108]. Thus, CRT was integrated into ANNOgesic for the

detection of CRISPRs. Moreover, ANNOgesic makes comparisons between CRISPR
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candidates and genome annotations in order to remove the false positives which are

reported as CDSs, tRNA, rRNA, etc.

In this study, the CRISPR detection of ANNOgesic was applied to S. aureus

HG003, H. pylori 26695, and C. jejuni 81116. A CRISPR with 5 repeated sequences

and a CRISPR with 8 repeated sequences were found in S. aureus HG003 and C.

jejuni 81116, respectively (Figure 3.24). However, in H. pylori 26695, no CRIPSR

was detected.

Figure 3.24: An example of CRISPRs in C. jejuni 81116. The transcript fragmented
RNA-Seq library, TEX+ library and TEX- libraries of dRNA-Seq are presented
as the pink, blue, and green coverages mean , respectively. The whole region of
CRISPR, repeat units, and TSSs are represented by the orange bar, red bars, and
blue spots, respectively. The CRISPR is from 1,440,718 to 1,441,215 bp.
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Functional labeling system

GO terms

Since vast amount of genomic features were identified based on RNA-Seq data

in recent years, understanding the metabolisms and regulations of these genomic

features becomes an urgent need. Thus, a sophisticated method for addressing the

functions of genes and classifying them is required. Gene Ontology (GO) is a major

bioinformatic resource for annotating and cataloguing functions and locations of

gene products. It provides numerous structured and controlled vocabularies for

describing biological processes, molecular functions, and cellular components of gene

products [56, 57]. Moreover, GO slim, which is a simplified version of the Gene

Ontologies for generating a broad overview of the GO terms, was developed as

well [57]. Since GO slim contains only a subs of GO terms without the details of

the species-specific, fine-grained terms, it is a useful resource and widely applied for

generating a summary of the GO terms of a genome or a gene population.

In order to identify the functions of genes, ANNOgesic allocates GO and GO

slim terms to CDSs by searching for protein IDs in Universal Protein Resource

(Uniprot) [99,100]. Uniprot provides a ID mapping list used for converting different

IDs to GO terms. Moreover, ANNOgesic can also retrieve the GO terms only

for expressed CDSs based on the information of the transcripts. Therefore, the

comparison between the GO terms of expressed CDSs and the GO terms of all CDSs

can be performed. In addition, the variation of the GO terms of expressed CDSs
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between different conditions can be detected as well.

In S. aureus HG003, the GO terms of 2,073 CDSs (75% of all CDSs) were found

in Uniprot mapping list. Around 46% of the CDSs belong to molecular function

domain, 35% of the CDSs are involved in biological process domain and the rest

CDSs are located in cellular component domain (Figure 3.25A). In the domain of

molecular function, the majority is ion binding (24%), following up by DNA binding

(9.8%), oxidoreductase activity (8.8%), and transmembrane transporter activity

(7.9%) (Figure 3.25B). In the domain of biological process, the proteins related to

biosynthetic process (12.7%), transport (9.3%), and cellular nitrogen compound

metabolic process (9.1%) are more than others (Figure 3.25C). Cytoplasm (35%),

plasma membrane (23%) and cytosol (11%) occupy around 70% of cellular component

domain (Figure 3.25D).

A
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D

Figure 3.25: Distribution of GO terms in S. aureus HG003. (A), (B), (C), and (D)
are for the three root domains, molecular function, biological process, and cellular
component, respectively.

Subcellular localizations

The bacterial proteins usually carry out their unique functions in specific locations

of the cell. Therefore, the functions and the regulation networks may be related

to the subcellular localizations of the proteins. For example, most of the proteins

located at the cell membrane are involved in transportation, toxin secretion, or signal

exportation such as ABC type transporters and the proteins of the Sec secretion

system. Moreover, identification of subcellular localizations is also widely applied for

searching drug and vaccine targets. For identifying the subcellular localizations, a

lot of novel tools and studies were developed and published.

However, most of the subcellular localization prediction tools are built based on
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eukaryotic genomes, and may not be able to apply to bacterial species. A study

for comparing the available subcellular localization prediction tools for bacterial

genomes was published [156]. Eight computational prediction tools (PSORT I [157],

PSORTb [103,104], Proteome Analyst [158], SubLoc [159], CELLO [160], PSLpred

[161], LOCtree [162], and P-CLASSIFIER [163]) were included in this comparison.

For general prediction of the subcellular localization, the precision scores of PSORTb

(97%) and Proteome Analyst (95%) are the two highest ones, and the recalls of

SubLoc (85%) and LOCtree (87%) are the best. However, some of these tools may

be specialized in the predictions of several specific locations. Thus, an analysis of

the feature-based predictions (exported proteins, cytoplasmic membrane proteins,

and outer-membrane proteins) was done as well. The performance of PSORTb and

Proteome Analyst are the best performing tools in these feature-based predictions.

Moreover, the first study of comparing the computational and laboratory methods

for the detection of subcellular localization in bacteria was published in 2005 [164].

The results of this study show that the precision of the computational approach

(PSORTb) exceeds the precision from the high-throughput laboratory approach. The

error rate of the high-throughput laboratory approach is 14.3% across 10 strains, but

the error rate of PSORTb is only 0.7%. Therefore, the computational prediction is a

crucial and non- ignorable step for detecting the subcellular localizations.

Based on the results of the previous assessments, PSORTb shows high accuracy to

all the tests and can predict all locations. Hence, it was integrated into ANNOgesic

in order to construct a module for identifying subcellular localization. For S. aureus

HG003, the subcellular localizations of 2,211 CDSs (567 unknown) were detected.
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Around 73% proteins are located at cytoplasm (47%) and cytoplasmic membrane

(26%). The proteins that are located extracellular and in cell wall only occupy 4.2%

and 1.5% of all proteins (Figure 3.26).

Figure 3.26: Distribution of subcellular localizations in S. aureus HG003. (A)
excludes the proteins which can not be predicted by PSORTb, and (B) includes all
proteins.

Protein-protein interactions

Detecting protein-protein interaction (PPI) is essential for understanding the protein

functions and pathways. Thus, PPI is considered as an important key for drug design.

However, the experimental detection of PPI is a difficult task because of the high

false positives and false negative rate [165]. Hence, computational approaches have

become a huge benefit for providing high-confidence candidates for experimental
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validation. Due to the importance of the computational PPI predictions, numerous

tools were created based on different methods and resources, such as machine learning

approaches, homology searches, and sequence or structure based algorithms [166].

Furthermore, a lot of PPI databases storing, searching as well as exchanging the

information of PPIs were constructed.

In the available PPI databases, STRING [101] is one of the most powerful

databases updated regularly. It provides a crucial assessment for the reliability of the

PPIs including physical and functional associations. In addition, GO term analysis

and protein clustering were applied in STRING as well. Currently, STRING not

only stores the information of PPIs for over 2,000 organisms, but also provides clear

visualizations and variant types of interaction information (Figure 3.27). Therefore,

STRING is a helpful resource for the selection of PPIs to perform experimental

validation.

STRING integrated a text-mining system which can search publications in

Pubmed for helping the selection of the reliable and interesting PPIs. However, the

text-mining system of STRING searches the articles only based on the protein names,

not based on the keywords like interaction, binding, activate, etc (Figure 3.27E).

Hence, several false positive hits are still found in this database. In order to solve

this issue, PIE, which is a text-mining tool for detecting PPIs based on the protein

names and the keywords of PPIs in publications, was developed [102]. PIE also

provides a score system for evaluating the precision of PPIs, and a Pubmed ID list

for retrieving the articles. By the application of PIE, the reliability of PPI detection

is improved significantly.
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Figure 3.27: An example of a STRING search – searching dnaA of S. aureus
NCTC8325. (A) The visualization of PPI network. (B) The legends of the PPI
network. (C) The options for visualization. (D) The GO term analysis in STRING.
(E) The text-mining for searching publications of PPI in Pubmed. The figures were
retrieved from the version 10.5 of STRING website [101] (http://string-db.org).
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For PPI detection, ANNOgesic retrieves the data from STRING and apply PIE

for selecting high-confidence PPIs (high PIE scores). Moreover, all the results can

be viewed by applying a clear visualization method. As displayed in Figure 3.27, the

visualization of STRING cannot show the information of the supporting literature,

and the text-mining method in STRING is also not an ideal one. On the contrary,

ANNOgesic can generate clear figures of PPIs with the information of supporting

literature and the PIE scores (Figure 3.28). Figure 3.28A shows that although the

amount of publications which support the interaction between gyrA and grlB are more

than the interaction between dnaA and dnaD, the reliability of the former is higher

than the latter. In addition, several interesting points are revealed by comparing

the Pubmed searches with or without assigning strain names. For example, the

interaction between dnaA and dnaI has not beed reported in S. aureus (Figure

3.28B), but it was fully studied in other organisms (Figure 3.28A).
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A B

Figure 3.28: An example of new visualization of PPI by using ANNOgesic (dnaA of S.
aureus NCTC8325). The yellow circles show the queried protein (dnaA) in S. aureus
NCTC8325. The other proteins related to the queried one are presented as green
circles. The dotted lines represent the interactions without supporting literature, the
dashdot lines represent the interactions with supporting literature though their PIE
scores are below 0, and the solid lines mean that the interactions are supported in the
literature with high PIE scores (higher than 0). The thickness of the lines indicate
the amount of the articles which support the interaction. Moreover, the color of the
connections indicates the PIE scores. (A) The result of the Pubmed search with
the specific word – "Staphyloccocus aureus". (B) The result of the Pubmed search
without the strain name.

Assessment of ANNOgesic predictions

In order to assess the performance of ANNOgesic, the predictions of ANNOgesic

based on dRNA-Seq and conventional RNA-Seq data sets of Escherichia coli K12

MG1655 by Thomason et al. (dRNA-Seq) [75] and McClure et al. [27] (conventional
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RNA-Seq) are compared with the previously reported genomic features in several

databases [76–81]. The results show that most of the predictions can achieve a high

sensitivity of 80% (Table 3.9). However, TSS prediction represent an exception

with low detection rate may mainly because the dRNA-Seq method may achieve

higher sensitivity in detecting TSSs than the other protocols. In order to test our

hypothesis and investigate the quality of the previously reported TSSs in RegulonDB,

a comparison between three deposited TSS datasets (Salgado et al. generated with

Illumina RNA-Seq [167], and Mendoza- Vargaset al. generated with Roche 454

high-throughput pyrosequencing [168], and Roche 5’RACE [168]) was used and an

extremely low overlap was found (Figure 3.29). Moreover, the 50 nucleotides at the

upstream TSSs were extracted for searching the common promoter motifs. Based

on the results of using MEME [97], the promoter motifs were only found in 0% to

7% of the deposited TSSs while 80% of TSSs detected by ANNOgesic are associated

with promoters (Table 3.10). Due to this result, the previously reported TSS sets

(including the TSS information of promoter set in RegulonDB) may not be able to

represent a benchmarking set for evaluating the accuracy of the TSS predictions of

ANNOgesic.
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Table 3.9: The comparison between ANNOgesic predictions and several databases

Feature Database Sensitivity of Sensitivity of Sensitivity of Sensitivity of
E. coli from E. coli from H. pylori [60] C. Jejuni [24]
dRNA-Seq [75] conventional

RNA-Seq [27]

Transcript EcoCyc [76] 86% 90% -i -

Operon DOOR2 [77] 72% 70% 74% 80%
RegulonDB [78] a 90% 89% - -

sRNAb RefSeq [79] 90% 70% -j -
RegulonDB 80% 55% - -
Others - - 90% k 84% l

TSSc RegulonDB ∼6% - - -
(3 datasets)

Terminatord RegulonDB 72% 70% - -
EcoCyc 86% 84% - -

UTRe RegulonDB 5’ UTR 86% - - -
3’ UTR 63%f - - -

Promoterg RegulonDB 39% - - -

sORFh Hemm et. al [80] 74% - - -

Riboswitch EcoCyc 83% - - -

CRISPR CRISPRdb [81] 100% 100% 100% 100%

aThe features marked as "weak evidence" confidence level by RegulonDB were excluded.
bThe non expressed sRNAs in published datasets were removed.
cThe overlapped TSSs of three datasets are few. Moreover, most of the published TSSs (< 8%) are
not associated with promoters.
dThe terminators which do not contain coverage significant drop were removed.
eThe non expressed UTRs in published datasets were excluded.
fThe information of 3’ end is usually lost in dRNA-Seq data.
gBased on TSSs information in the promoter set, only 22% promoters can be detected [97].
hThe non expressed sORFs in published datasets were removed.
i"-" represents the feature of the strain has no proper dataset from the database or can not be
generated.
jThe sRNA comparison for H. pylori and C. Jejuni are done by other literature which shown in
manuscript. ksRNAs of H. pylori is from Sharma et al. [60].
lsRNAs of C. Jejuni is from Dugar et al. [24].
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Figure 3.29: The overlap of three previously published TSS datasets in RegulonDB
[167,168].

Table 3.10: Number of TSSs and their associated promoter motifs in RegulonDB [78]

Dataset Total TSSs Number of promoters
Salgado et al. 5,197 374 (7%)
Illumina RNA-Seq [167]
Mendoza-Vargas et al. 1,213 23 (2%)
Roche 454 high-throughput pyrosequencing [168]
Mendoza-Vargas et al. 216 0 (0%)
Roche 5’RACE [168]
Using the TSSs from the promoter set in 6,478 1,450 (22%)
RegulonDB for running MEME [97]
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Generation of coverage plots via the IGV API

ANNOgesic also contains several modules helping the users to review the annotations.

In order to compare the different genomic features, ANNOgesic offers an user friendly

module which can merge all the given genomic features to generate an annotation file

in GFF3 format. Moreover, the parental transcripts can be detected and assigned to

each genomic feature.

If the number of the libraries of dRNA-Seq is large, checking TSSs or PSs becomes

a difficult task because the TEX+ and TEX- libraries of dRNA-Seq need to be

distinguished laboriously. Because of this, A module of ANNOgesic was developed for

generating screenshots by using IGV application programming interfaces (API) which

is a set of commands, functions, protocols, and objects provided for developers to

build applications easily [169]. Afterward, the tracks of screenshots can be colorized

automatically (Figure 3.30). By using this approach, the users just need to check

the screenshots without the manual manipulation of genome browser.
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A B

Figure 3.30: ANNOgesic can generate and colorize screenshots via IGV API auto-
matically. This case has 28 libraries of S. aureus HG003. (A) The TEX+ and TEX-
libraries of dRNA-Seq are distinguished with difficulty due to the vast number of
libraries. (B) This figure is generated from ANNOgesic for providing an easy way to
view the data.

An interactive interface for browsing and searching

generated annotations and interactions

In order to search and analyze the data of annotations, an interactive table and

figure were generated based on the Python libraries Bokeh [170] and Biocircos [171],

respectively (Figure 3.31, 3.32). The interactive table provides a simple way for

sorting, browsing, and comparing the data. It also links to several public databases

for obtaining more information of the genomic features like Gene in NCBI, Rfam,

and CRISPRdb [81,107,172]. Additionally, the associated transcripts, TSSs, and PSs

can be found in the table as well. Moreover, the results of co-expression analysis for

sRNAs, including the interactive plots and all the details of the genes co-expressed
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and inversely expressed with the queried sRNA, can be provided in this interactive

table. Besides the interactive table, an interactive figure was generated for an

overview of all the annotations for Staphylococcus aureus HG003.

Figure 3.31: Screenshots of the interactive figure for an overview of the annotations
of Staphylococcus aureus HG003. The interactive figure can show the detailed
information of all functional genes and sRNA target interactions.
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Figure 3.32: Screenshots of the interactive table of S. aureus HG003. (A) The
interactive table allow one to browse the detailed information of functional genes,
compare the annotations, sort the RPKM values, link to public databases, and show
the results of co-expression analysis for sRNAs. (B) The RPKM values can be sorted
by clicking the headers of RPKM values. The information of the functions of CDSs,
riboswitches, RNA thermometers, and CRISPRs can be checked by connecting to
public database (presented by (C)). Moreover, the results of co-expression analysis
of sRNAs can be viewed like (D).
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Discussion

The achivements of ANNOgesic

ANNOgesic is the first tool developed for the detection of multiple bacterial and

archaeal genomic features based on RNA-Seq data. It can predict all genomic features

for a strain systematically. The biasses and shortages of identifying the genomic

features by using different tools separately can be significantly reduced. It integrates

a number of novel methods developed for detecting the genomic features which

cannot be detected by previously available tools, and improved third-party tools

by removing false positives and parameter optimization. ANNOgesic does not only

generate precise genome annotations, but also provides numerous useful statistic

analyses and visualizations. Furthermore, ANNOgesic is a flexible modular tool with

a consistent and user friendly interface. It has been widely and successfully applied

to many bacterial and archaeal genomes. Based on the application of ANNOgesic,

numerous gene candidates as well as their potential functions can be found, and
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many hypotheses can be made for experimental testing based on them.

sRNAs missed by using ANNOgesic

One of the core modules of ANNOgesic is the sRNA detection which has a high

accuracy and sensitivity as shown in benchmarking with published sRNA sets. For

examples, ANNOgesic can detect 80% to 90% of previously reported sRNAs in S.

aureus HG003, E. coli K-12, H. pylori 26695, and C. jejuni 81116. Although the

majority of the previously published sRNAs can be found by using ANNOgesic, several

known sRNAs were still missed in the ANNOgesic analysis. The missing sRNAs can

be classified into two classes. The first class is the set of the lowly expressed sRNAs

(Figure 4.1A). Although these sRNAs can be detected by decreasing the cutoff of

read coverage, the number of false positives would also be increased. Moreover, some

of these low expressed published sRNAs are only detected by RNA-Seq but not

by Northern blot or RT-PCR. The final class, the sRNAs are not associated with

any TSSs (Figure 4.1B). Although ANNOgesic can detect sRNAs without using

dRNA-Seq data, false positive rate would be also increased. These three classes

reveal a trade between false-positive and false-negative rates. Without experimental

validations, it is difficult to set proper thresholds. Thus, in order to provide a reliable

sRNA set for the selection of experimental validations, ANNOgesic generates two

lists of sRNA candidates - one list contains the sRNAs that passed all the filters like

having a TSS associated with it. The other list covers all sRNAs without filtering.

These two lists can be beneficial for the priority of sRNAs experimental validations.
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A B

Figure 4.1: The published sRNAs missed by using ANNOgesic. The library of
RNA-Seq generated after transcript fragmentation, TEX+ and TEX- libraries of
dRNA-Seq are presented as the pink, blue and green coverages, respectively. The
orange rectangles indicate the region of the previously reported sRNAs. (A) The
previously reported sRNAs show low expression. (B) The published sRNAs are not
associated with any TSSs. Although a transcript (red bar) can be detected, the
sRNA can not be identified by ANNOgesic analysis. These cases are from S. aureus
HG003.

Requirement for an automatic function detection

in a gene co-expression analysis

Since the potential functions of sRNAs may be related to their co-expressed or

inversely expressed genes detected by applying gene co-expression analysis, inves-

tigation of the functions of these co-expressed and inversely expressed genes is a

fruitful approach. However, a time-consuming manual detection for characterizing

gene functions still needs to be performed. Although GO terms of the genes in a gene

clusters can be detected in an automatic way, numerous gene clusters possess diverse

GO terms. For the cases without inconsistent GO terms allocation, ANNOgesic is

an useful tool for automatically annotating the functions for gene clusters.
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Comparison between sRNA target prediction and

gene co-expression analysis

Since sRNA target prediction and gene co-expression analysis are both methods for

characterizing and understanding the functions of sRNAs, a comparison between

these two analyses was performed in this study. However, only 3% sRNA targets

were detected by the both methods (Figure 4.2). It may be result from the low

accuracy of sRNA target prediction tools since their recall is lower than 80% (some

tools are even lower than 60%) [43]. Although numerous filters were applied to

sRNA target prediction of ANNOgesic for removing false positives, their occurrences

cannot be excluded completely. Furthermore, a biological pathway can be directly

and indirectly controlled by multiple regulators. On the other hands, a regulator

can regulate numerous interactions. Due to these reasons, the results between sRNA

target prediction and gene co-expression analysis are inconsistent. Thus, applying

and comparing these two methods is necessary to understanding and characterizing

functions of sRNAs.
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Figure 4.2: Overlapping of sRNA target prediction and gene co-expression analysis.

Advantages of using RNA-Seq data generated with

multiple protocols

Although ANNOgesic can process RNA-Seq data from multiple protocols to generate

precise annotations, for the majority of species, only data sets from a single RNA-Seq

protocol are available. Due to this, ANNOgesic can also generate genome annotations

with such limited single method. Since several genomic features can be detected much

more precisely by applying the specific RNA-Seq protocols, applying ANNOgesic

to the RNA-Seq data from a single protocol will negative influence the results. For

examples, the 3’ end of transcript boundary may not be identified precisely without

the data from RNA- Seq generated after transcript fragmentation (Figure 4.3A). In

addition, TSSs, especially internal TSSs, can not be predicted without dRNA-Seq

data (Figure 4.3B).
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A

B

Figure 4.3: Examples of the comparison between the data from dRNA-Seq and
RNA-Seq generated after transcript fragmentation in S. aureus HG003. The pink,
blue and green coverages represent the library of RNA-Seq generated after transcript
fragmentation, TEX+ libraries and TEX- libraries of dRNA-Seq, respectively. The
red bars, green bars and blue spots represent transcripts, CDSs (SAOUHSC 00253:
271580 to 273103 at the reverse strand, SAOUHSC 02369: 2192012 to 2192542 at
the reverse strand,) and TSSs (A) Fragmented libraries are a benefit for detecting
the 3’ end of the transcript. However, the length of transcript will be underestimated
if only dRNA-Seq data was used. (B) dRNA-Seq data is used to identify TSSs with
high resolution, especially internal TSSs which cannot be detected based on only
fragmented libraries.
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Choice of parameters

Setting proper cutoffs is an important step for detecting genomic features by using

ANNOgesic such as transcript detection, sRNA detection, etc. On the one hand,

using the cutoff makes ANNOgesic more flexible to meet users’ requirements; on

the other hand, an inappropriate setting may influence the predictions and generate

misleading annotations. As displayed in Figure 4.4A, the annotations of transcripts

depend on different read coverage cutoffs. Moreover, the result of gene co-expression

analysis is significantly influenced by the cutoff of Spearman correlation coefficient.

Using a loose cutoff may generate numerous false positives increasing the difficulty

for characterizing the potential functions. However, applying a strict cutoff to gene

co-expression analysis may give rise to misleading results or even hinder the discovery

of the functions of the queried sRNAs due to a lack of associated genes. In principle,

applying ROC curve (receiver operating characteristic curve) is the ideal way to set

cutoffs by plotting true positive rate (TPR) against the false positive rate (FPR).

However, plotting ROC curve can not be performed since no golden standard exists

currently. Thus, the cutoffs still need to be adjusted for specific genomes or sRNAs

by the user. For example, the default setting 0.77 (97.5 percentile) and -0.77 (2.5

percentile) as the cutoff of positive and negative correlation coefficients for gene

co-expression analysis, respectively. Based on this setting, an iron-transportation

related group (Figure 4.4B and C) contains a 30S ribosome protein S7 (rpsG) which

is neither related to iron-transportation nor co-expressed with the members of the

group perfectly. If the cutoff were set as 0.79 for positive correlation coefficient, rpsG
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would be removed from the group (Figure 3.22H).

A

B C

Figure 4.4: Examples for cutoff settings of ANNOgesic. (A) Based on the cutoffs
of read coverages, the results of transcript detections can be different. The library
of RNA-Seq generated after transcript fragmentation, TEX+ libraries and TEX-
libraries of dRNA-Seq are presented as the pink, blue and green coverages, respectively.
The transcripts from the upper track to the bottom track were detected by setting
cutoff of minimum read coverages as 10, 30 and 50. The last track of annotation is
for TSSs. (B) and (C) The kinetic curves of the genes anti-correlated with a novel
sRNA which may regulate iron-transportation. The cutoffs of Spearman correlation
coefficient of (B) and (C) are set as -0.77 and -0.79, respectively. The red, gray
and blue lines represent the queried novel sRNA, the genes revealed anti-correlated
expression with the queried sRNA, and 30S ribosome protein S7 ( rpsG), respectively.
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Pitfalls and limitations of ANNOgesic

Although ANNOgesic was successfully applied to many bacterial and achaeal genomes

for generating high-quality genome annotations, a few pitfalls and limitations still

exist. Until now, only few of the sRNAs newly predicted by ANNOgesic have been

experimentally being validated. Therefore, the number of false postives may be

underestimated. Moreover, some of the ANNOgesic’s predictions are based on the

genome annotations which can be retrieved from public database. Since the naming

system of genome annotations is not well defined, diverse names of the same genomic

feature and misannotations sometimes happen. The accuracy of the predictions may

be influenced by the incorrect genome annotations.

An obvious shortage is that ANNOgesic integrates more than 20 third-party tools

which need to be installed one after another. This large number of dependencies

come with certain effort during the setup. For examples, the paths of the executive

files, environment variable settings, and the versions of the tools need to be managed.

In order to overcome this shortcoming, a Docker image [92] that contains all software

dependencies is provided. By the application of Docker image, ANNOgesic can be

installed and executed in any machine that supports Docker.

Although ANNOgesic can detect numerous genomic features in high resolution,

the running time of several modules of ANNOgesic are relative long such as sRNA

target prediction and PPI network detection. In fact, most of these modules spend a

lot of time on running the third-party software like RNAup [48,49] for sRNA target

prediction. Excluding the time for running the third-party software, all genomic
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features of S. aureus HG003 (2,821,354 base pairs) with 29 RNA-Seq libraries (around

5 million reads per library) can be detected within one day on a mid-sized server.

Since some genomic feature detections rely strongly on the information of other

genomic features like sRNA detection which requires TSS or PS information, the

accuracy of a genomic feature detection may be influenced by other features’ predic-

tions. Although ANNOgesic improved the performances of the previously available

tools, several genomic features still cannot be detected precisely without applying

some specific RNA-Seq protocols such as using Term-Seq [13] for terminator and

riboswitch detections and ribosome profiling [14] for sORF prediction. Therefore,

integrating more results from RNA-Seq based protocols into ANNOgesic may raise

the accuracy of the specific genomic feature detections significantly.

Perspectives

In previous publications have shown that Term-Seq [13] and ribosome profiling [14]

can be applied to detect several genomic features and improve genome annotations.

Using Term-Seq, not only the annotations of Rho-independent terminators and

riboswitches in high resolution, but also the novel ones that cannot be found by

applying ANNOgesic, can be identified. Ribosome profiling, which can be applied

for detecting the transcripts undergoing translation based on the short mRNA

sequences bound to ribosomes, can be beneficial for improving the identification

of sORFs. These two protocols can also improve a lot of detections which depend

on the information of terminators and sORFs, such as operons, UTRs, and sRNAs.

Therefore, these two protocol can be used to extend ANNOgesic in the future.
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Based on the application of ANNOgesic, numerous novel sRNAs have been

detected in this study. In order to validate these novel sRNAs, RT-PCR or North-

ern plot need to be done. Moreover, to understand the functions of sRNAs, gene

co-expression analysis was used and many potential functions of sRNAs were char-

acterized. Based on those predictions, knock-out experiments can be performed to

validate the functions of sRNAs. This will be one of the most important follow-up

tasks.

Third generation sequencing technologies can generate sequencing reads with

a different approach from second generation platforms. It can produce sequencing

reads in unprecedented lengths which can strongly increase the quality of genome

assemblies. Since the importance of the applications of third generation sequencing

platforms like Nanopore and PacBio raise quickly, adapting ANNOgesic to be able

to handle long read data and may improve the quality of its predictions [173].

Conclusion

In my doctoral study, a tool of generating RNA-Seq-based annotations for bacterial

and archaeal genomes, ANNOgesic, was developed. Numerous comparisons between

the predictions of ANNOgesic and published datasets were done, and high perfor-

mance of the tools was shown in this study. The genome sequence and an extensive

annotations of S. aureus HG003, which is a potential model strain for studying both

virulence and antibiotic resistance, were generated by applying ANNOgesic. Both

ANNOgesic and the information of genomic features of S. aureus HG003 may help

for the community of microbiology.
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Table A.1: Comparison between the published scaffolds of Staphylococcus aureus
HG003 and the complete sequence generated by applying ANNOgesic

Scaffold IDs Length of Start* End* Start End Identity
Scaffold (Scaffold) (Scaffold) (Complete) (Complete)

JPPU01000001 392186 97756 391821 1 294073 99.00%
JPPU01000001 392186 1 97755 2723598 2821354 83.00%

JPPU01000002 158759 1912 158759 292038 448884 96.00%
JPPU01000002 158759 1412 1903 289423 289914 95.00%
JPPU01000002 158759 888 1387 294081 294580 92.00%
JPPU01000002 158759 1 432 290492 290923 87.00%
JPPU01000002 158759 433 674 291453 291695 77.00%

JPPU01000003 109412 1 109412 2237297** 2127886** 98.00%

JPPU01000004 49454 1 49454 2122817 2073364 99.00%

JPPU01000005 166029 1 166029 2072430 1906402 98.00%

JPPU01000006 82030 1 82030 1897331 1815302 96.00%

JPPU01000007 107453 53470 107453 1760733 1706751 99.00%
JPPU01000007 107453 1 53908 1814362 1760455 97.00%

JPPU01000008 198693 1 198693 1705793 1507101 84.00%

JPPU01000009 711094 1 711094 1506304 795209 84.00%
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Scaffold IDs Length of Start* End* Start End Identity
Scaffold (Scaffold) (Scaffold) (Complete) (Complete)

JPPU01000010 243280 36464 170019 757478 623923 99.00%
JPPU01000010 243280 169563 239154 624246 554649 99.00%
JPPU01000010 243280 1 26834 795082 768251 99.00%
JPPU01000010 243280 26495 36467 768646 758674 99.00%
JPPU01000010 243280 238837 243280 554798 550349 84.00%

JPPU01000011 52090 1 52090 550092 498003 85.00%

JPPU01000012 39162 1 39162 493164 454003 97.00%

JPPU01000013 20707 1 20707 2244284 2264991 95.00%

JPPU01000014 455511 1 305732 2265943 2571675 99.00%
JPPU01000014 455511 304653 455510 2572516 2723373 96.00%

JPPU01000015 2945 1 2945 1901470 1898526 97.00%

JPPU01000016 1448 1 1448 1897205 1898652 100.00%
JPPU01000016 1448 1 1448 2237171 2238618 100.00%
JPPU01000016 1448 1 1448 1423793 2238618 97.00%

JPPU01000017 1206 1 1206 2266069 2264865 98.00%
JPPU01000017 1206 1 1206 1815428 1814236 98.00%
JPPU01000017 1206 1 1206 1705667 1706877 97.00%

JPPU01000018 1049 1 1049 2072443 2073490 99.00%
JPPU01000018 1049 1 1049 1506178 1507227 99.00%

JPPU01000019 5390 1 3122 453849 450729 100.00%
JPPU01000019 5390 3716 5390 1904854 1906528 100.00%
JPPU01000019 5390 1 3122 2122739 2125860 99.00%
JPPU01000019 5390 1 3122 498129 495008 99.00%
JPPU01000019 5390 1 3122 1901344 1904464 99.00%
JPPU01000019 5390 3716 5390 494727 493053 99.00%
JPPU01000019 5390 3716 5390 2126323 2127997 99.00%
JPPU01000019 5390 3716 5390 2242734 2244410 99.00%
JPPU01000019 5390 3716 5390 450448 448773 99.00%
*"Start" and "End" indicate the aligned region. "Scaffold" in the bracket means the position is for
the published scaffolds, and "Complete" means the position is for the genome generated in this
study.
**If the value of "Start" is larger than the value of "End", it means the scaffold was aligned on the
reverse strand of the complete genome.
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Table A.2: The co-expressed and inversely expressed genes of RNAIII

Co-expressed genes of RNAIII (from 2,093,091 to 2,093,248 at the reverse strand)

Location Strand1 Product2 Gene C.C.4
name 3

10893-12407 + histidine ammonia-lyase hutH 0.89011
119492-120160 + capsular polysaccharide biosynthesis capA 0.77143

protein
171258-172712 + PTS system transporter murP 0.82418
254123-254566 + murein hydrolase regulator LrgA lrgA 0.78022
259909-260823 - ribokinase rbsK 0.79780
314327-316399 + lipase geh 0.77582
369730-371253 - alkyl hydroperoxide reductase ahpF 0.93407

subunit F
547752-550739 + fibrinogen-binding protein SdrC sdrC 0.77582
684182-685555 + deoxyribodipyrimidine photolyase phrB 0.80659
758680-759654 + excinuclease ABC subunit B - 0.85055
819904-821154 + aminotransferase nifS 0.78462
1022387-1023214 + inositol monophosphatase family suhB2 0.89451

protein
1062563-1064344 + excinuclease ABC subunit C uvrC 0.80220
1071233-1071634 - formyl peptide receptor-like 1 flr 0.80659

inhibitory protein
1076411-1077370 - alpha-hemolysin hla 0.84176
1275056-1275679 - LexA repressor lexA 0.82418
1287158-1289863 + aconitate hydratase citB 0.78022
1340719-1341438 + 2,3,4,5-tetrahydropyridine-2,6- dapD 0.77582

dicarboxylate N-acetyltransferase
1355915-1357183 - dihydrolipoamide succinyltransferase odhB 0.78022
1357197-1359995 - 2-oxoglutarate dehydrogenase sucA 0.85934

E1 component
1553447-1554793 - glycine dehydrogenase subunit 1 gcvPA 0.84176
1554813-1555904 - glycine cleavage system gcvT 0.85934

aminomethyltransferase T
1556063-1556587 - shikimate kinase aroK 0.85055
1615283-1616035 - LamB/YcsF family protein lamB 0.88132
1617410-1617859 - acetyl-CoA carboxylase biotin accB 0.82418

carboxyl carrier protein subunit
1691103-1692128 - glyceraldehyde 3-phosphate gapB 0.80659

dehydrogenase 2
1819130-1820722 + phosphoenolpyruvate carboxykinase pckA 0.82418
1857741-1857884 - gallidermin superfamily epiA protein epiA 0.78462
1953330-1953689 - phi PVL orf 50-like protein - 0.77143
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Co-expressed genes of RNAIII (from 2,093,091 to 2,093,248 at the reverse strand)

Location Strand1 Product2 Gene name3 C.C.4

2078217-2079440 + succinyl-diaminopimelate dapE 0.79341
desuccinylase

2093500-2093634 - delta-hemolysin hld 0.98242
2094649-2095893 + accessory gene regulator argC2 0.94725

protein C
2371786-2374740 - formate dehydrogenase fdhA 0.79341

subunit alpha
2395160-2396398 - imidazolonepropionase hutI 0.92967
2396398-2398059 - urocanate hydratase hutU 0.85495
2400200-2401135 - formimidoylglutamase hutG 0.77143
2484745-2485431 - 2,3-bisphosphoglycerate- gpmA 0.79341

dependent phosphoglycerate mutase
2523000-2524226 - amino acid ABC transporter opuCA 0.82418

ATP-binding protein
2584900-2586258 - gluconate permease gntP 0.79341
2779030-2781072 - lipase lip 0.82857
2796251-2797222 - lactonase Drp35 drp35 0.81099
15795-16101 + Teg1 Teg1 0.79780
384151-384256 - Sau-63 Sau-63 0.78462
466471-466566 + sRNA 00042 sRNA 00042 0.82857
623331-623668 - SbrC SbrC 0.89890
639706-639869 - RsaD RsaD 0.86374
774252-774423 - RsaH RsaH 0.78462
803886-803995 - sRNA 00103 sRNA 00103 0.82418
812909-813098 + RsaOM RsaOM 0.79780
817532-817631 + sRNA 00107 sRNA 00107 0.78901
1077604-1077702 - sRNA 00132 sRNA 00132 0.82418
1194046-1194121 + sRNA 00142 sRNA 00142 0.81978
1248023-1248136 - sRNA 00151 sRNA 00151 0.91648
1355805-1355897 - sRNA 00165 sRNA 00165 0.81538
1463875-1464375 - RsaOR/SprX RsaOR/SprX 0.84176
1731924-1732006 - sRNA 00195 sRNA 00195 0.78022
1848996-1849113 - SprB SprB 0.89451
1863777-1863901 - sRNA 00216 sRNA 00216 0.77582
1922182-1922252 - sRNA 00228 sRNA 00228 0.85934
2111497-2111738 + sRNA 00256 sRNA 00256 0.86813
2211957-2212213 + SprF3/SprG3 SprF3/SprG3 0.83297
2377278-2377456 - RsaOG RsaOG 0.78022
2447792-2448151 - sRNA 00302 sRNA 00302 0.93846
2505368-2505471 + sRNA 00309 sRNA 00309 0.87253
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Co-expressed genes of RNAIII (from 2,093,091 to 2,093,248 at the reverse strand)

Location Strand1 Product2 Gene name3 C.C.4

2555734-2555921 - RsaOT RsaOT 0.82418
2556328-2556416 + Sau-19 Sau-19 0.84176
2622999-2623103 - RsaOU RsaOU 0.77582
2778594-2778873 - SprA2 SprA2 0.81538
2795435-2795528 + sRNA 00336 sRNA 00336 0.81978

Inversely expressed genes of RNAIII (from 2,093,091 to 2,093,248 at the reverse strand)

Location Strand1 Product2 Gene name3 C.C.4

211733-213643 + staphylocoagulase coa -0.79341
243806-244975 + teichoic acid biosynthesis protein F tagF -0.90769
465209-466102 + dimethyladenosine transferase ksgA -0.78901
473154-473726 + peptidyl-tRNA hydrolase pth -0.78901
482597-483136 + hypoxanthine hpt -0.81978

phosphoribosyltransferase
570077-570907 - phosphomethylpyrimidine kinase thiD1 -0.79780
634530-635825 - penicillin-binding protein 4 pbp4 -0.79341
766954-767889 + thioredoxin reductase trxB -0.94286
892098-893342 + 3-oxoacyl- synthase fab -0.80220
926875-928050 - diacylglycerol glucosyltransferase ypfP -0.77582
1006693-1007244 - peptide deformylase def -0.77582
1014431-1015525 + ABC transporter potA -0.81538
1055512-1056450 - ribonuclease HIII rnhC -0.81978
1068963-1069550 + nucleoside-triphosphatase rdgB -0.80220
1107128-1109881 + isoleucyl-tRNA synthetase ileS -0.77582
1126849-1127472 + guanylate kinase gmk -0.78462
1175047-1176354 + tRNA (uracil-5-)- gid -0.81538

methyltransferase Gid
1187555-1189258 + prolyl-tRNA synthetase proS -0.78022
1430639-1431610 - bifunctional biotin operon birA -0.86374

repressor/biotin–[acetyl-CoA-
carboxylase] synthetase BirA

1431597-1432799 - tRNA CCA-pyrophosphorylase papS -0.77582
1468673-1470583 - SLT orf 636-like protein - -0.86374
1534633-1535907 - 2-oxoisovalerate dehydrogenase, bmfBB -0.82418

E2 component, dihydrolipoamide
acetyltransferase

1589638-1590390 - 16S rRNA (uracil(1498)-N(3))- rsmE -0.82857
methyltransferase

1596246-1597370 - coproporphyrinogen III oxidase hemN -0.81538
1607427-1608233 - shikimate 5-dehydrogenase aroE -0.84615
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Inversely expressed genes of RNAIII (from 2,093,091 to 2,093,248 at the reverse strand)

Location Strand1 Product2 Gene name3 C.C.4

1620425-1621048 - uridine kinase udk -0.78022
1652611-1653750 - queuine tRNA-ribosyltransferase tgt -0.85934
1677870-1679132 - ATP-dependent protease clpX -0.77582

ATP-binding subunit ClpX
1778125-1779786 - polysaccharide biosynthesis - -0.79780

protein
1866399-1867799 - protoporphyrinogen oxidase hemY -0.80659
1886616-1887437 + ribosomal large subunit yhcT -0.89011

pseudouridine synthase D
2007644-2008720 + nitric oxide synthase oxygenase nos -0.89890

subunit
2029594-2031348 - MHC class II analog protein truncated -0.77582

mapW
2034686-2034982 - peptidoglycan hydrolase lytA -0.84615
2336051-2337073 - molybdenum cofactor moaA -0.82418

biosynthesis protein A
2682290-2682661 - aspartate alpha-decarboxylase panD -0.87692
2684410-2685270 + 2-dehydropantoate 2-reductase panE -0.80659
2820529-2820882 - ribonuclease P rnpA -0.87692
298695-298804 - sRNA 00018 sRNA 00018 -0.82857
357753-357861 + sRNA 00023 sRNA 00023 -0.77143
483201-483370 + sRNA 00043 sRNA 00043 -0.84176
686630-686743 - sRNA 00077 sRNA 00077 -0.85495
993614-993798 - sRNA 00125 sRNA 00125 -0.81099
1123759-1123970 - sRNA 00138 sRNA 00138 -0.79341
1325685-1325800 - sRNA 00160 sRNA 00160 -0.82418
1545833-1545942 + sRNA 00179 sRNA 00179 -0.82857
1619706-1619848 + Sau-5949 Sau-5949 -0.80220
1745968-1746232 - sRNA 00196 sRNA 00196 -0.77143
1771226-1771318 + sRNA 00198 sRNA 00198 -0.77582
1865076-1865185 - sRNA 00217 sRNA 00217 -0.80220
2244481-2244535 - sRNA 00273 sRNA 00273 -0.83736
2254308-2254399 - sRNA 00276 sRNA 00276 -0.87692
2595206-2595316 + sRNA 00320 sRNA 00320 -0.87253
1 "+" in this column means the gene is at the forward, "-" meanns the gene is at the reverse strand.
2 the sRNAs which were newly detected in this study are presented by "novel sRNA".
3 If no gene name can be found, "-" would be shown in this column.
4 C.C. means Spearman correlation coefficient
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Table A.3: The co-expressed and inversely expressed genes of SprG4

Co-expressed genes of SprG4 (from 942,430 to 942,474 at the forward strand)

Location Strand1 Product2 Gene C.C.4
name 3

10893-12407 + histidine ammonia-lyase hutH 0.79341
119492-120160 + capsular polysaccharide biosynthesis capA 0.84450

protein
314327-316399 + lipase geh 0.77143
388295-388975 + superantigen-like protein ssl1 0.78901
758680-759654 + excinuclease ABC subunit B - 0.90330
759662-762508 + excinuclease ABC subunit A uvrA 0.77143
1064668-1065282 + succinate dehydrogenase cytochrome sdhC 0.83736

b-558 subunit
1076411-1077370 - alpha-hemolysin hla 0.77582
1275056-1275679 - LexA repressor lexA 0.77582
1355915-1357183 - dihydrolipoamide succinyltransferase odhB 0.92967
1357197-1359995 - 2-oxoglutarate dehydrogenase E1 sucA 0.90330

component
1473305-1479505 - phage tail tape meausure protein - 0.87253
1857741-1857884 - gallidermin superfamily epiA protein epiA 0.77143
1931076-1932899 - phiETA ORF57-like protein - 0.78022
1932899-1934809 - phi ETA orf 56-like protein 0.77582
1934824-1936725 - phi ETA orf 55-like protein - 0.79780
1941979-1942560 - phage structural protein - 0.78901
1942974-1943321 - HK97 family phage protein - 0.86813
1944270-1945244 - phage head protein - 0.79341
1947232-1948767 - SPP1 family phage portal protein - 0.77143
1950669-1951091 - int gene activator RinA - 0.78022
1951262-1951450 - transcriptional activator rinb-like protein - 0.80220
1952821-1953066 - phi PVL orf 52-like protein - 0.80659
1953081-1953329 - phi PVL orf 51-like protein - 0.86813
1953330-1953689 - phi PVL orf 50-like protein - 0.81978
1953960-1954145 - PV83 orf 23-like protein - 0.87692
1956596-1957402 - phi PV83 orf 20-like protein - 0.83736
1957374-1958066 - phi PV83 orf 19-like protein - 0.85495
1959992-1960312 - phi PVL orf 39-like protein - 0.84176
2078217-2079440 + succinyl-diaminopimelate desuccinylase dapE 0.77582
2266102-2266611 - alkaline shock protein 23 asp23 0.80220
2400200-2401135 - formimidoylglutamase hutG 0.79780
2431146-2432624 - malate:quinone oxidoreductase mqo1 0.79780
2489222-2490151 + gamma-hemolysin h-gamma-II subunit hlgA 0.79341
2491668-2492645 + leukocidin f subunit hlgB 0.78022
2586375-2587928 - gluconate kinase gntK 0.86813
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Co-expressed genes of SprG4 (from 942,430 to 942,474 at the forward strand)

Location Strand1 Product2 Gene name3 C.C.4

2650759-2652267 - squalene synthase crtN 0.81978
2652279-2653142 - squalene desaturase crtM 0.80659
2779030-2781072 - lipase lip 0.81099
201742-201995 + RsaG RsaG 0.79341
384153-384256 - Sau-63 Sau-63 0.89890
386295-386383 + sRNA 00030 sRNA 00030 0.81099
454093-454131 + sRNA 00040 sRNA 00040 0.81978
454348-454384 + sRNA 00041 sRNA 00041 0.81538
466471-466566 + sRNA 00044 sRNA 00044 0.86374
624446-624539 + SbrC/RsaC SbrC/RsaC 0.78901
639706-639869 - RsaD RsaD 0.81538
721370-721484 - sRNA 00086 sRNA 00086 0.79341
788253-788698 + SsrA SsrA 0.80659
801482-801578 - RsaOL RsaOL 0.84176
803886-803995 - sRNA 00108 sRNA 00108 0.81978
833764-833849 + sRNA 00113 sRNA 00113 0.83736
1194046-1194121 + sRNA 00148 sRNA 00148 0.89011
1248030-1248136 - sRNA 00158 sRNA 00158 0.79780
1349498-1349815 + RsaOW2 RsaOW2 0.83297
1418742-1419051 - RNaseP bact a RNaseP bact a 0.92088
1462718-1462934 - sRNA 00184 sRNA 00184 0.82418
1463876-1464375 - RsaOR/SprX RsaOR/SprX 0.81099
1638992-1639233 - sRNA 00195 sRNA 00195 0.91648
1771659-1771725 + Sau-5949 Sau-5949 0.89451
1818838-1818983 - sRNA 00217 sRNA 00217 0.81099
1832869-1832985 - SprA/SprA1 SprA/SprA1 0.93407
1848999-1849113 - SprB SprB 0.84615
1897234-1897324 - SbrC/RsaC/RsaOW2 SbrC/RsaC/RsaOW2 0.88132
1922186-1922252 - sRNA 00238 sRNA 00238 0.82418
1923575-1923871 - sRNA 00239 sRNA 00239 0.89011
1962568-1962663 - sRNA 00245 sRNA 00245 0.79780
2027313-2027386 + sRNA 00254 sRNA 00254 0.87692
2237200-2237290 - SbrC/RsaC/RsaOW2 SbrC/RsaC/RsaOW2 0.88132
2252765-2252898 + sRNA 00290 sRNA 00290 0.85055
2363055-2363204 - sRNA 00306 sRNA 00306 0.84615
2377298-2377456 - RsaOG RsaOG 0.82418
2498328-2498395 + SprA2/RsaJ SprA2/RsaJ 0.82418
2502526-2502622 + SprA2 SprA2 0.96044
2505368-2505458 + sRNA 00328 sRNA 00328 0.82857
2530723-2530817 + sRNA 00331 sRNA 00331 0.78462
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Co-expressed genes of SprG4 (from 942,430 to 942,474 at the forward strand)

Location Strand1 Product2 Gene name3 C.C.4

2551638-2551722 - sRNA 00333 sRNA 00333 0.88132
2552154-2552329 - sRNA 00334 sRNA 00334 0.77143
2778594-2778873 - SprA2 SprA2 0.84615

Inversely expressed genes of SprG4 (from 942,430 to 942,474 at the forward strand)

Location Strand1 Product2 Gene name3 C.C.4

211733-213643 + staphylocoagulase coa -0.80659
253270-254010 + two-component response regulator lytR -0.87253
359013-360110 + GTP-dependent nucleic ychF -0.88132

acid-binding protein EngD
367374-367955 + phosphoglycerate mutase family - -0.79780

protein
381705-383246 + GMP synthase guaA -0.78901
445285-446958 + DNA polymerase III subunits dnaX -0.78901

gamma and tau
465209-466102 + dimethyladenosine transferase ksgA -0.80659
482597-483136 + hypoxanthine hpt -0.82418

phosphoribosyltransferase
517929-518477 + transcription antitermination nusG -0.78901

protein
519288-519980 + 50S ribosomal protein L1 rplA -0.82857
634530-635825 - penicillin-binding protein 4 pbp4 -0.78901
674809-675684 - undecaprenyl pyrophosphate uppP -0.87692

phosphatase
753021-753896 + peptide chain release factor 2 prfB -0.80220
785349-787721 + ribonuclease R rnr -0.78022
809038-809358 - thioredoxin - -0.79341
834275-835732 + D-alanine–poly(phosphoribitol) dltA -0.84176

ligase subunit 1
1023661-1025508 + GTP-binding protein TypA typA -0.85934
1051881-1052939 + phenylalanyl-tRNA synthetase pheS -0.86374

subunit alpha
1107128-1109881 + isoleucyl-tRNA synthetase ileS -0.83736
1124877-1126574 - fibrinogen-binding protein A-like fbpA -0.96484

protein
1151543-1151776 + acyl carrier protein acpP -0.88132
1157931-1159298 + signal recognition particle protein ffh -0.86813
1181767-1182648 + elongation factor Ts tsf -0.87253
1182785-1183507 + uridylate kinase pyrH -0.77582
1187555-1189258 + prolyl-tRNA synthetase proS -0.78901
1198912-1199262 + ribosome-binding factor A rbfA -0.89011
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Inversely expressed genes of SprG4 (from 942,430 to 942,474 at the forward strand)

Location Strand1 Product2 Gene C.C.4
name 3

1259354-1259887 + thermonuclease nucI -0.89890
1318354-1319613 + methicillin resistance factor femB -0.85934
1345915-1346115 - cold shock protein cspA -0.85934
1431597-1432799 - tRNA CCA-pyrophosphorylase papS -0.79780
1447060-1448370 - GTP-binding protein EngA engA -0.78462
1450479-1451138 - cytidylate kinase cmk -0.79341
1514320-1515057 - ribosomal large subunit rluB -0.80659

pseudouridine synthase B
1546679-1547143 - acetyl-CoA carboxylase biotin accB -0.88571

carboxyl carrier protein subunit
1597933-1599756 - GTP-binding protein LepA lepA -0.79341
1600398-1601372 - DNA polymerase III subunit delta holA -0.78022
1608247-1609347 - GTP-binding protein YqeH yqeH -0.80659
1620425-1621048 - uridine kinase udk -0.79780
1639304-1641070 - aspartyl-tRNA synthetase aspS -0.89890
1641086-1642348 - histidyl-tRNA synthetase hisS -0.84615
1646762-1647280 - adenine phosphoribosyltransferase apt -0.87253
1652611-1653750 - queuine tRNA-ribosyltransferase tgt -0.91209
1653773-1654798 - S-adenosylmethionine:tRNA queA -0.79780

ribosyltransferase-isomerase
1679283-1680584 - trigger factor tig -0.89451
1711922-1712779 - acetyl-CoA carboxylase accD -0.80659

carboxyltransferase subunit beta
1729300-1730523 - thiamine biosynthesis protein ThiI thiI -0.89011
1744663-1745925 - tyrosyl-tRNA synthetase tyrS -0.87253
1994708-1996711 - NAD-dependent DNA ligase lig -0.79780
2148174-2149694 - DEAD-box ATP dependent DNA cshA -0.87253

helicase
2180586-2181662 - peptide chain release factor 1 prfA -0.85934
2330439-2331704 - peptidoglycan pentaglycine fmhB -0.89451

interpeptide biosynthesis protein FmhB
2336051-2337073 - molybdenum cofactor biosynthesis moaA -0.80220

protein A
705004-705162 - RsaOC RsaOC -0.80659
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Inversely expressed genes of SprG4 (from 942,430 to 942,474 at the forward strand)

Location Strand1 Product2 Gene name3 C.C.4

993614-993798 - sRNA 00130 sRNA 00130 -0.81538
1180702-1180838 + sRNA 00145 sRNA 00145 -0.85934
1551723-1551821 + sRNA 00190 sRNA 00190 -0.78462
1623931-1624057 - sRNA 00193 sRNA 00193 -0.89451
1884625-1884760 + sRNA 00229 sRNA 00229 -0.83297
1904523-1904649 - sRNA 00236 sRNA 00236 -0.78901
1 "+" in this column means the gene is at the forward, "-" meanns the gene is at the reverse strand.
2 the sRNAs which were newly detected in this study are presented by "novel sRNA".
3 If no gene name can be found, "-" would be shown in this column.
4 C.C. means Spearman correlation coefficient
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Table A.4: The co-expressed and inversely expressed genes of a novel sRNA – sRNA
00008

co-expressed genes of sRNA 00008 (from 90,947 to 91,086 at the forward strand)

Location Strand1 Product2 Gene C.C.4
name 3

447372-447968 + recombination protein RecR recR 0.78462
729365-730336 + ribonucleotide-diphosphate reductase nrdF 0.80220

subunit beta
2131925-2132695 - RNA polymerase sigma factor SigB sigB 0.77143
2493175-2493867 - 6-carboxyhexanoate–CoA ligase bioW 0.91648
2495980-2497338 - adenosylmethionine–8-amino- bioA 0.80220

7-oxononanoate aminotransferase BioA
2497316-2498002 - dethiobiotin synthase bioD 0.81978

Inversely expressed genes of sRNA 00008 (from 90,947 to 91,086 at the forward strand)

Location Strand1 Product2 Gene C.C.4
name 3

205909-208158 + formate acetyltransferase pflB -0.83297
228483-229292 + L-lactate dehydrogenase lctE -0.80220
500139-501026 + pyridoxal biosynthesis lyase PdxS pdxS -0.82418
691003-691923 + 1-phosphofructokinase fruB -0.89011
1234933-1236606 + aerobic glycerol-3-phosphate glpD -0.85934

dehydrogenase
1594510-1595136 - heat shock protein GrpE grpE -0.79780
2276133-2276303 - PTS system lactose-specific transporter lacE -0.89011

subunit IIBC
2433005-2434603 - L-lactate permease lctP -0.81099
1 "+" in this column means the gene is at the forward, "-" meanns the gene is at the reverse strand.
2 the sRNAs which were newly detected in this study are presented by "novel sRNA".
3 If no gene name can be found, "-" would be shown in this column.
4 C.C. means Spearman correlation coefficient
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Table A.5: The co-expressed and inversely expressed genes of a novel sRNA – sRNA
00076

co-expressed genes of sRNA 00076 (from 641,099 to 641,200 at the forward strand)

Location Strand1 Product2 Gene C.C.4
name 3

78527-79519 - periplasmic binding protein sirA 0.77143
80727-81737 + 2,3-diaminopropionate biosynthesis sbnB 0.89890

protein SbnB
264826-266202 - drug transporter - 0.83297
642034-643038 + ferrichrome transport permease FhuB fhuB 0.89011
643035-644051 + ferrichrome ABC transporter permease fhuG 0.84615
727082-729247 + ribonucleotide-diphosphate reductase nrdE 0.78901

subunit alpha
729365-730336 + ribonucleotide-diphosphate reductase nrdF 0.77143

subunit beta
1048274-1049050 + iron compound ABC transporter isdF 0.82857

permease
1050053-1050376 + heme-degrading monooxygenase IsdG isdG 0.84176
2139879-2140439 - potassium-transporting ATPase kdpC 0.78901

subunit C
2340202-2340696 + molybdenum cofactor biosynthesis moaC 0.79341

protein MoaC
2541036-2541905 - nickel ABC transporter permease opp-1C 0.80659

Inversely expressed genes of sRNA 00076 (from 641,099 to 641,200 at the forward strand)

Location Strand1 Product2 Gene C.C.4
name 3

530440-530910 + 30S ribosomal protein S7 rpsG -0.78022
1233279-1234775 + glycerol kinase glpK -0.91648
1981615-1982115 + ferritin ftn -0.83297
2172989-2173201 - F0F1 ATP synthase subunit C atpE -0.79341
2217068-2218873 - glucosamine–fructose-6-phosphate glmS -0.79341

aminotransferase
1 "+" in this column means the gene is at the forward, "-" meanns the gene is at the reverse strand.
2 the sRNAs which were newly detected in this study are presented by "novel sRNA".
3 If no gene name can be found, "-" would be shown in this column.
4 C.C. means Spearman correlation coefficient
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Table A.6: The co-expressed and inversely expressed genes of a novel sRNA – sRNA
00324

co-expressed genes of sRNA 00324 (from 2,485,411 to 2,485,628 at the reverse strand)

Location Strand1 Product2 Gene C.C.4
name 3

979384-979803 + 5-(carboxyamino)imidazole purE 0.81538
ribonucleotide mutase

982551-984740 + phosphoribosylformylglycinamidine purL 0.77582
synthase II

984719-986203 + amidophosphoribosyltransferase purF 0.81978
986196-987224 + phosphoribosylaminoimidazole purM 0.83297

synthetase
987808-989286 + bifunctional phosphoribosylamino- purH 0.78901

imidazolecarboxamide
formyltransferase/IMP cyclohydrolase

989308-990555 + phosphoribosylamine–glycine ligase purD 0.88571

Inversely expressed genes of sRNA 00324 (from 2,485,411 to 2,485,628 at the reverse strand)

Location Strand1 Product2 Gene C.C.4
name 3

1965879-1966925 + phage family integrase int -0.81978
2071481-2072251 + repressor - -0.78901
2274590-2276128 - PTS system lactose-specific lacE -0.81099

transporter subunit IIBC
2714829-2716829 - permease domain-containing protein - -0.85934
1 "+" in this column means the gene is at the forward, "-" meanns the gene is at the reverse strand.
2 the sRNAs which were newly detected in this study are presented by "novel sRNA".
3 If no gene name can be found, "-" would be shown in this column.
4 C.C. means Spearman correlation coefficient
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