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Abstract

Poly(A)-binding proteins (PABPs) regulate mRNA fate by controlling stability and translation

through interactions with both the poly(A) tail and eIF4F complex. Many organisms have

several paralogs of PABPs and eIF4F complex components and it is likely that different

eIF4F/PABP complex combinations regulate distinct sets of mRNAs. Trypanosomes have

five eIF4G paralogs, six of eIF4E and two PABPs, PABP1 and PABP2. Under starvation,

polysomes dissociate and the majority of mRNAs, most translation initiation factors and

PABP2 reversibly localise to starvation stress granules. To understand this more broadly we

identified a protein interaction cohort for both T. brucei PABPs by cryo-mill/affinity purifica-

tion-mass spectrometry. PABP1 very specifically interacts with the previously identified

interactors eIF4E4 and eIF4G3 and few others. In contrast PABP2 is promiscuous, with a

larger set of interactors including most translation initiation factors and most prominently

eIF4G1, with its two partners TbG1-IP and TbG1-IP2. Only RBP23 was specific to PABP1,

whilst 14 RNA-binding proteins were exclusively immunoprecipitated with PABP2. Signifi-

cantly, PABP1 and associated proteins are largely excluded from starvation stress granules,

but PABP2 and most interactors translocate to granules on starvation. We suggest that

PABP1 regulates a small subpopulation of mainly small-sized mRNAs, as it interacts with a

small and distinct set of proteins unable to enter the dominant pathway into starvation stress

granules and localises preferentially to a subfraction of small polysomes. By contrast

PABP2 likely regulates bulk mRNA translation, as it interacts with a wide range of proteins,

enters stress granules and distributes over the full range of polysomes.

Author summary

Poly(A)-binding proteins (PABPs) bind to the poly(A) tails of eukaryotic mRNAs and

function in regulating mRNA fate. Many eukaryotes have several PABP paralogs and the

current view is that each PABP binds a specific subset of mRNAs. Trypanosoma brucei has

two PABPs, and to understand the differential functionality of these paralogs we identified

interacting proteins for each. We found unique interactors for both PABPs, and
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significant differences between the two interaction cohorts. Our data indicate that the two

PABP paralogs of trypanosomes have very distinct roles in mediating mRNA fate.

Introduction

Gene expression is regulated by multiple transcriptional and post-transcriptional mechanisms.

At the post-transcriptional level, regulation of protein synthesis by modulation of translation

initiation is a major contributor. The first step in mRNA cap-dependent translation initiation

is assembly of the eIF4F complex at the m7G cap of the mRNA 5’ end [1]. The eIF4F complex

consists of a large (~180kDa) scaffold protein, eIF4G, bound to the cap-binding protein eIF4E

and an RNA helicase, eIF4A. The latter is involved in secondary structure unwinding of the

target mRNA, facilitating 40S subunit scanning, together with a further factor eIF4B. Signifi-

cantly, eIF4G and eIF4B directly interact with the poly(A)-binding protein (PABP) associated

with the poly(A) tail at the 3’ end of the target mRNA, to increase translation efficiency by

mRNA circularisation and ribosome recycling.

Most higher eukaryotes have several paralogs of eIF4F complex subunits [2] and PABP [3];

increasing evidence suggests that these different paralogs can assemble into distinct eIF4F

complexes, facilitating modulation of translation to distinct environmental and developmental

conditions [4]. For example, in metazoa there is one eIF4F complex specialised to mediate

cap-dependent translation under low oxygen conditions [5,6], and specific eIF4F complexes

select distinct sets of mRNAs during development in C. elegans germ cells [7]. The specific

functions of distinct eIF4F complexes are mediated by the properties of the individual sub-

units, for example H. sapiens eIF4E paralogs differ in their ability to localise to P-bodies and

stress granules [8], ribonucleoprotein granules (RNA granules) with important functions in

mRNA storage, regulation and quality control [9].

The presence of multiple PABP paralogs further increases the combinatorial complexity of

this system. Arabidopsis thaliana has eight PABP paralogs [10] that differ in domain structure

and expression patterns, with both overlapping and distinct functions [10–16]. Xenopus laevis
has three paralogs that are all independently essential [17]. Many protozoa also possess several

paralogs of each of the eIF4F complex subunits, but these are the product of lineage-specific

expansions and hence unrelated to the paralogs found in higher eukaryotes. Very little is

known about their specific functions [18,19].

Kinetoplastids, including the animal and human pathogens Leishmania, Trypanosoma cruzi
and T. brucei, rely almost completely on post-transcriptional gene regulation [20]. mRNAs are

transcribed poly-cistronically and processed by trans-splicing of a miniexon to the 5’ end, a

process coupled to polyadenylation of the upstream transcript [21–26]. Furthermore, the

mRNA cap structure is a highly unusual type four, with ribose 2’-O methylations at the first

four transcribed nucleotides (AACU) and additional base methylations at the first (m2
6A) and

fourth (m3U) positions [27,28]. This cap requires a kinetoplastid-specific decapping enzyme

for degradation [29]. Hence, translational control is a major contributor to gene regulation

[30]. As a possible consequence of this kinetoplastids possess a large number of translation ini-

tiation factor paralogs [31]: six for eIF4E (eIF4E1-6), five for eIF4G (eIF4G1-5) and two for

eIF4A (eIF4A1-2), of which only one, eIF4A1, is known to be involved in translation [32]. Try-

panosomes have two PABP paralogs (PABP1, PABP2), while Leishmania has an additional

paralog (PABP3).

Multiple studies have addressed the composition of kinetoplastid translation initiation

complexes, and whilst data are equivocal in some cases, several distinct eIF4F complexes were
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described (recently reviewed in [31]. The best characterised complex comprises eIF4E4,

eIF4G3, eIF4A1 and PABP1 in both Leishmania and trypanosomes [33–37]. Evidence of a

direct physical interaction between eIF4E4 and eIF4G3 was obtained in L. major using yeast

two hybrid [37], but direct binding between LmPABP1 and eIF4G3 was not observed [35,37].

Instead, LmPABP1 interacted directly with eIF4E4, mediated by the non-conserved N-termi-

nal extension of eIF4E4 [35], an interaction critical for the function of eIF4E4 [38]. The cur-

rent assumption that eIF4E4/eIF4G3/PABP1 is the major translation initiation complex is

predicated on the following: i) all proteins are of high abundance, ii) PABP1 has greater speci-

ficity for poly(A) than PABP2 [36,39], iii) eIF4E4 binds the type 4 cap with the highest affinity

of all eIF4E4 paralogs [40–42] and iv) silencing of eIF4E4, eIF4G3 and PABP1 in at least some

T. brucei life cycle stages is lethal [33,34,36] and eIF4E4 cannot be deleted in L. infantum [38].

At least three additional translation initiation complexes are known. The first consists of

eIF4E5 bound to either eIF4G1 or eIF4G2 [41]. Two further proteins specifically interact with

the eIF4G1 version of this complex: TbG1-IP (Tb927.11.6720) and TbG1-IP2 (Tb927.11.350).

TbG1-IP is an mRNA cap guanine-N7 methyltransferase, suggesting involvement in nuclear

mRNA capping [43], but such a function is unlikely, as the protein is cytoplasmic and localises

to starvation stress RNA granules [44], and nuclear cap methylation is known to be performed

by TbCGM1 [45,46]. TbG1-IP2 is an RNA binding protein with unknown function. The sec-

ond complex consists of eIF4G5, which specifically interacts with eIF4E6 and one further pro-

tein TbG5-IP (Tb927.11.14590) [42]. Interestingly, similarly to TbG1-IP1, this protein

contains a nucleoside triphosphate hydrolase and a guanylyltransferase domain in common

with enzymes involved in cap formation. The third complex consists of eIF4G4, eIF4E3 and

eIF4A1 [33]. However, neither PABP was identified in any of these complexes.

Several studies have directly addressed function, substrate specificity and localisation of

kinetoplastid poly(A)-binding proteins. PABP1 and PABP2 are highly abundant and in excess

of the total number of mRNA molecules, at least in the procyclic life cycle stage of T. brucei
[36]. RNAi in T. brucei revealed that both isoforms are essential [36] and both isoforms stimu-

late translation when tethered to the 3’ end of a reporter mRNA [47,48]. Both PABPs are cyto-

plasmic in untreated cells, but differentially localise under stress conditions: PABP2, but not

PABP1, localises to the nucleus under certain conditions [36,49] and only PABP2 localises to

starvation stress granules [49,50], while PABP1 and its interacting partners eIF4E4 and eIF4G3

do not [49]. Both PABPs localise to polysomes [49,51], but PABP1 is mainly located in small

polysomes while PABP2 is more equally distributed across all polysomes [49]. There is some

evidence that PABP2 may have a function unrelated to poly(A) binding. PABP2 binds poly(A)

with lower specificity (in comparison to PABP1) in Leishmania [36,39] and binds to the

CAUAGAAG element present in cell-cycle regulated mRNAs of Crithidia fasiculata [52] and

to the U-rich RNA binding protein UBP1 [53], which mediates instability of the T. cruzi
SMUG mucin mRNA [54].

To probe for distinct roles of PABPs we examined their protein interactomes in T. brucei
procyclic forms. PABP1 co-precipitates eIF4E4 and eIF4G3 and RNA-binding protein RBP23,

but few additional proteins. In contrast, PABP2 co-precipitated a large number of RNA bind-

ing proteins, including all proteins that co-precipitated with PABP1 except RBP23. Most eIF4F

paralogs co-precipitated with PABP2, most significantly the eIF4G1/eIF4E5 complex and its

two interacting partners TbG1-IP and TbG1-IP2. These data, together with analysis of the

localisations of PABP1 and PABP2 complex components challenge the current paradigm that

PABP1 is the major poly(A)-binding protein in trypanosomes and an alternative model is

discussed.
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Results and discussion

Purification of PABP complexes from T. brucei
To isolate PABP complexes we used two previously published cell lines expressing C-terminal

eYFP fusions of each PABP paralog from their endogenous locus; the second allele remained

unaltered [49]. PABP1-eYFP is fully functional as deletion of the wild type allele has no pheno-

type, while RNAi that targets both alleles is lethal. In the cell line expressing PABP2-eYFP, the

second allele could not be deleted, but cells have normal growth rates and localisation of the

protein to various types of RNA granules was indistinguishable from that determined with spe-

cific antiserum against PABP2 [49]. This indicates that most functions of PABP2-eYFP are

essentially identical to the wild type protein. Protein expression and localisation to the cyto-

plasm was demonstrated by fluorescence microscopy (Fig 1A). Wild type cells served as nega-

tive controls.

Cultures of each cell line were snap-frozen and subjected to cryomilling to generate a pow-

der [55]. Aliquots of this powder were used to systematically optimise conditions for isolation

of PABP complexes. Protein complexes were captured with polyclonal anti-GFP antibodies

covalently coupled to magnetic Dynabeads and analysed by SDS-PAGE. In the optimised pro-

tocol, the cell powder was solubilised using CHAPS detergent with two different buffers: a low

salt buffer and a high salt buffer, the latter contained 150 mM KCl but was otherwise identical

to the low salt buffer. Coomassie-stained gels revealed clearly visible PABP bait proteins and

several protein bands specific to one or both PABPs, but absent from the control pull down

(Fig 1B).

For each cell line, protein complexes were isolated in two independent experiments for

each buffer condition and the captured proteins analysed by liquid chromatography tandem

mass spectrometry (LC-MS2) and subjected to label free quantification using MaxQuant [56].

1901 distinct protein groups (peptides assigned to a specific coding sequence, but where these

cannot be assigned to a single gene in the case of close paralogs) were identified (S1 Table);

this list was reduced to 1224 after removing all protein groups with less than three unique pep-

tides (S1B Table). For each protein group from each experiment we determined the enrich-

ment ratio in relation to the wild type control cell line, based on quantification by unique

peptides only. To avoid division by zero, a constant (0.001) was added to each LFQ value; such

‘infinite ratios’ are clearly distinguishable from genuine ratios by being significantly larger,

smaller or exactly 1.0 (S1B Table).

For PABP1, we identified 25 proteins at least two-fold enriched in each of the two low salt

replicates (S1C Table) and 66 proteins at least two-fold enriched in both high salt replicates

(S1D Table). For PABP2, 77 and 170 proteins were enriched in both replicates under low salt

and high salt conditions, respectively (S1E and S1F Table). Ribosomal proteins were exclu-

sively co-precipitated under high salt conditions and not detected under low salt, consistent

with intact ribosomes requiring physiological potassium concentrations and dissociating upon

potassium depletion [57,58]. Interestingly, the number of co-precipitated ribosomal proteins

differed between the PABP1 and PABP2 pull-downs: 43 proteins were co-purified with PABP2

(25% of all precipitated proteins), but only 7 ribosomal proteins with PABP1 (11% of all pre-

cipitated proteins). This could reflect differences in polysomal association between the two

isoforms: PABP2 associates with heavier sucrose fractions than PABP1 on polysome fraction-

ation gradients [49]. Alternatively, these differences could be explained by the RNA-binding

ability of PABP2 being less specific to poly(A) tails in comparison to PABP1, as has been previ-

ously found for Leishmania orthologues [36]: unspecific binding of PABP2 to ribosomal RNA

could cause co-precipitation of intact ribosomes under high salt conditions, resulting in the

presence of ribosomal proteins in the proteomics data. Evidence for the second hypothesis is
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Fig 1. Isolation of PABP complexes. (A) Z-stack projection image of a representative trypanosome cell expressing

PABP1-eYFP or PABP2-eYFP from endogenous loci. (B) Proteins were immunoprecipitated with polyclonal anti-GFP

Trypanosome PABP interactome
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provided by the large number of nucleolus-localised proteins in the PABP2 pull-down with

high salt buffer: 20 of the 127 non-ribosomal proteins purified with PABP2 are known to

entirely or predominantly localise to the nucleolus, in comparison to only 4 of 59 non-ribo-

somal proteins purified with PABP1 [59]. PABP2 does not localise to the nucleolus, at least not

to detectable levels, thus, these interactions are likely non-physiological.

All PABP interacting proteins were judged for their possible function in mRNA metabo-

lism. A protein was classified as having a known role in mRNA metabolism (indicated as ‘yes’

in S1C–S1F Table), if it possesses an RNA-binding domain, or if there is direct experimental

evidence for involvement in RNA metabolism (for example validated localisation to RNA

granules). A protein was classified as having a predicted role in mRNA metabolism (indicated

as ‘(yes)’ in S1C–S1F Table) if it was identified in one out of three large scale experiment that

screened for posttranscriptional activators, repressors and RNA-binding proteins [47,48],

without further experimental validation. The low salt precipitations contained mostly proteins

with a known or predicted function in mRNA metabolism for both PABP1 (19/25 proteins)

and PABP2 (62/77 proteins) and few obvious contaminants. High salt precipitations were still

enriched in mRNA metabolism proteins (PABP1 28/66 and PABP2 54/170) but also contained

a large fraction of likely or obvious contaminants, including mitochondrial, nucleolar and

ribosomal proteins.

A high confidence list of PABP-interacting proteins

To obtain a high confidence list, we filtered for proteins that were at least two-fold enriched in

all four experiments. In a second step, all protein groups with more than one infinite ratio

were removed, and three further proteins were manually removed because they were obvious

contaminations; two mitochondrial RNA-binding proteins (Tb927.7.2570, Tb927.2.3800) and

one glycosomal protein (Tb927.10.5620). Average enrichment ratios were calculated for each

protein, excluding ‘infinite ratios’ (S1G Table, Fig 2A) together with a PAPB1/PABP2 enrich-

ment ratio, to determine the specificity of each interaction (S1G Table, Fig 2B).

All 27 PABP-interacting proteins have a known or predicted function in mRNA metabo-

lism. 12/27 proteins were more than 2-fold enriched in both pull-downs. For 6 of the 27 pro-

teins the interaction with PABP(s) had been independently validated in at least one of the

Kinetoplastids: ALBA1-3 co-precipitate both T. brucei PABPs [60]. Both T. brucei PABPs were

found in a large scale yeast 2-hybrid screen to interact with PBP1 [61]. Several studies have

identified PABP1 as part of the eIF4G3/eIF4E4 complex in Leishmania [34–36], with an

unusual direct interaction between PABP1 and eIF4E4 [35]. For Leishmania eIF4E4, additional

interaction with PABP2 was shown [35]. Moreover, while this manuscript was in revision, a

PABP1 interactome for Leishmania infantum was published [62] and is in agreement with our

data: seven proteins consistently co-precipitated with Leishmania PABP1, of which six corre-

spond to the six most enriched proteins in the T. brucei PABP1 pulldown (eIF4E4, eIF4G3,

PABP1, RBP23, Tb927.7.7460, ZC3H41) and only one protein (Tb927.10.13800) was not iden-

tified with our conditions. As a further control, we performed reverse pull-downs of the pro-

teins mostly enriched in either the PABP1 pull-down (eIF4E4) or the PABP2 pull-down

(G1-IP2) (Fig 2C). For this, eIF4E4 and G1-IP2 were expressed as eYFP fusion proteins from

Llama antibodies coupled to Dynabeads. Representative Coomassie stained polyacrylamide gels loaded with

immunoprecipitate from wild type cells (control), cells expressing PABP1-eYFP and cells expressing PABP2-eYFP are

shown, for isolations performed in high salt and low salt buffers (see methods). The theoretical molecular weights of

the bait proteins, PABP1-eYFP and PABP2-eYFP, are 95.6 and 94.7 kDa, respectively (asterisk). Note that with the low

salt buffer, a nonspecific band migrates at almost identical position to PABP1-eYFP; the PABP1-eYFP band in lane five

is slightly wider, indicating a doublet with the nonspecific protein (top) and PABP1-eYFP (bottom).

https://doi.org/10.1371/journal.pntd.0006679.g001
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their endogenous loci, in cell lines also expressing PABP1 or PABP2 C-terminally fused to a

tandem of four Ty1 epitopes. Precipitations of eIF4E-eYFP and G1-IP2-eYFP were performed

as above, using low salt buffer conditions. Co-precipitated PABP-Ty1 proteins were detected

by western blot probed with anti-Ty1. Both PABP proteins were enriched in these pull-downs

in comparison to the negative control. However, in agreement with the mass spectrometry,

PABP1 had a much higher enrichment ratio than PABP2 in the eIF4E4 pull-down (64-fold/

3-fold on average for PABP1/PABP2, n = 2) while the opposite was found for the G1-IP2 pull-

down (4-fold/19-fold on average for PABP1/PABP2, n = 2).

Proteins specific to either PABP

Two proteins were particularly enriched in the PABP1 pull-down, with a more than 100-fold

enrichment and more than 20-fold enrichment against PABP2. These are the two known

PABP1 interactors eIF4E4 and eIF4G3, confirming the specificity of the pull-down. Only three

further proteins had average enrichment ratios of>10 in comparison to the negative control,

namely the RNA binding protein RBP23, a hypothetical protein Tb927.7.7460 and the CCCH

type zinc finger protein ZC3H41; all experimentally uncharacterised. RBP23 was the only pro-

tein that was solely precipitated with PABP1: all other PABP1 interacting proteins also interact

with PABP2, albeit in most cases with lower enrichment ratios.

In contrast, PABP2 co-precipitated a larger number of proteins than PABP1, but with

much lower enrichment ratios, possibly reflecting greater promiscuity and interactions with a

larger number of heterogenic target mRNAs and hence likely representing isolation of multi-

ple PABP2 complexes. Of the seven proteins most specific to the PABP2 pull-down, three were

members of the previously characterised eIF4G1/eIF4E4 complex [41], namely eIF4G1, the

RNA-binding protein Tb927.11.350 (G1-IP2) and Tb927.11.6720, an mRNA cap guanine-N7

methyltransferase. One of the specific PABP2 targets with high enrichment ratio, CBP110, is

localised to the nucleoplasm [63] (Fig 3B); this could be a true interacting protein given that

PABP2 shuttles between the nucleus and the cytoplasm [36,49]. Among the PABP2 interacting

proteins were 14 proteins that had enrichment rates of<2 in the PABP1 pull-down and thus

appeared specific to PABP2 (Fig 2B).

PABP complexes and RNA granules

As we observed major differences between the two PABPs in localisation to RNA granules, we

analysed the localisation to RNA granules for all 27 proteins that interact with either or both

PABPs (Fig 2B, S1G Table). We used published data that used either DHH1, PABP2 or poly

(A) as stress granule markers [44,49,60,64] or co-expressed several proteins as eYFP fusions

with a mChFP fusion of the stress granule marker protein PABP2 (Fig 3 and S1 Fig). In

Fig 2. Proteins interacting with PABP1 and PABP2. A high confidence list of PABP interacting proteins was obtained

by excluding proteins with an enrichment score less than two-fold in all four replicates; moreover, maximal one infinite

ratio was tolerated. (A) Proteins co-precipitating with PABP1 (blue) or PABP2 (red) are shown sorted according to

their average enrichment rates. Note the differences in scale on the y-axis between the two PABPs. (B) Differences

between the interactomes of PABP paralogs; all 27 proteins that are enriched in either or both PABP pull-downs are

ranked according to enrichment ratio PABP1/PABP2. Bait proteins are shown in yellow. Proteins unique to either

PABP, defined by having an enrichment ratio<2 in the other PABP, are shown as large circles. Localisation to

starvation stress granules is indicated for each protein (see S1G Table for references). Stress granule localisation

information based on experimental data are shown in dark colours, other evidence (from TrypTag data [59]) is in

lighter colours. (C) Reverse immunoprecipitations: eIF4E4 or G1-IP2 was expressed as an eYFP fusion protein together

with either PABP1-4Ty1 or PABP2-4Ty1, all from their endogenous locus. eIF4E4 and G1-IP2 were precipitated from

cryo-milled powders with recombinant anti-GFP Llama antibodies. Co-precipitated PABP proteins were detected with

anti-Ty1 (BB2) monoclonal antibody. Beads without antibody were employed to calculate the enrichment factor. Data

from two replicates (exp1 and exp2) are shown, and one representative blot.

https://doi.org/10.1371/journal.pntd.0006679.g002
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Fig 3. Localisation of PABP-interacting proteins to starvation stress granules. PABP interacting proteins were

expressed as eYFP fusion proteins in a cell line expressing the starvation stress granule marker PABP2 as a C-terminal

mChFP fusion. One representative Z-stack projection image is shown for untreated and starved parasites for proteins

that localise to granules (A) and proteins that are (largely) absent from granules (B). For all PBS treated cells, the

average stress granule enrichment ratio with standard deviation is shown on top of each image: Granules were defined

on the mChFP image (PABP2) by threshold settings using the maximal entropy method of ImageJ (https://imagej.nih.

gov/ij/) and the background corrected fluorescence within the granule divided by the background corrected

fluorescence next to the granule was calculated for the three largest granules of ten cells for all five eYFP fusion

proteins. Broad-field images of all cell lines are available in S1 Fig.

https://doi.org/10.1371/journal.pntd.0006679.g003
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addition, we obtained information from the genome-tagging project TrypTag [59] (http://

www.tryptag.org, with permission). For the TrypTag project, cells are washed in amino acid

free buffer prior to imaging and starvation stress granules are therefore visible. The majority of

proteins (20/27) localised to RNA granules, for one protein the localisation remains unknown

as tagging failed, and only six proteins did not localise to RNA granules. At least four of the

five proteins mostly enriched in the PABP1 pull-down were excluded from granules; these

include the unique PABP1-interacting protein RBP23 (Fig 3A and S1D Fig). In contrast, for

the majority of the PABP2-interactors there is evidence or proof for stress granule localisation.

Only two proteins of the PABP2 interacting proteins are excluded from granules, one is the

nuclear protein CBP110, which is not expected to localise to RNA granules and the other the

zinc finger protein ZC3H28. Thus, the PABP1 complex appears largely excluded from gran-

ules, while most of the PABP2 interacting proteins localise to granules, similar to the majority

of mRNAs [44].

PABPs and translation initiation complexes

The data above confirm the strong association of PABP1 with eIF4G3 and eIF4E4. PABP2 in

contrast interacts with eIF4E4, eIF4G3, eIF4G1 and two further proteins of the eIF4G1/eIF4E4

complex indicating multiple binding abilities to different paralogs of the eIF4F complex. For a

more comprehensive picture, we analysed the enrichment ratios for all members of the transla-

tion initiation complex of the four individual experiments (Fig 4). PABP1 shows strong inter-

actions with eIF4G3, eIF4E4 in all four experiments and, in particular in low salt conditions,

also interaction with eIF4A1. Interactions with other translation initiation factors and with the

two proteins known to interact with eIF4G1 and eIF4E5 [41] are absent or have very small

enrichment factors. In contrast, PABP2 co-precipitated all five isoforms of eIF4G under low

salt conditions and eIF4G1 and eIF4G3 also under high salt conditions. Similarly, all eIF4E

subunits co-precipitated with PABP2 at least under low salt conditions, with the exception of

eIF4E2 that has very low abundance [33]. Interestingly, both PABPs clearly co-precipitate each

other, indicating that there may be complexes containing both PABPs on the same mRNA

protein complex. For Leishmania PABPs such an interdependency has not been observed [36].

Conclusions

Our data contribute towards better understanding of translation initiation control mecha-

nisms in trypanosomes. Demonstration of highly distinct interactomes for the two paralogs of

PABP in African trypanosomes indicates discrete functions.

Specifically, PABP1 has a small interactome, comprising eIF4E4 and eIF4G3, and the hypo-

thetical RNA-binding proteins RBP23 and Tb927.7.7460. PABP1, eIF4E4, eIF4G3 and RBP23

are largely absent from stress granules; the localisation of Tb927.7.7460 remains unknown. In

contrast, PABP2 has a rather more extensive interactome that includes all proteins precipitated

with PABP1, except RBP23, and most subunits of the eIF4F complex. PABP2 and the majority

of its interaction partners localise to starvation stress granules.

The impairment in stress granule localisation of the entire PABP1 complex challenges the

previous assumption that this complex is the major translation initiation complex involved in

bulk mRNA translation. At starvation, polysomes largely dissociate and most mRNAs and pro-

teins involved in mRNA metabolism localise to starvation stress granules [44]. Localisation to

granules is the default pathway, and impairment in stress granule localisation is the exception.

As the PABP1/eIF4E4/eIF4G3 complex does not locate to stress granules, it is unlikely to regu-

late translation of bulk mRNAs. Instead, we propose that the PABP1/eIF4E4/eIF4G3 complex

is specialised for the regulation of a small subgroup of mRNAs. It is tempting to speculate that
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this group of mRNAs could be those encoding ribosomal proteins, because these mRNAs are

the only group of mRNAs that were found to be excluded from starvation stress granules [44]

and these are of small size, consistent with a localisation of PABP1 to lower molecular weight

polysomes [49]. The interaction of PABP2 with most eIF4F subunits and many mRNA metab-

olism proteins indicates a wider substrate specificity for this PABP subunit. The data are con-

sistent with PABP2 being distributed over a range of different translation initiation complexes

and mRNAs and thus being responsible for bulk mRNA translation. The eIF4F complex that

was identified with highest confidence to bind to PABP2 is eIF4G1/eIF4E5 with its previously

identified interactors G1-IP and G1-IP-2. The fact that both PABPs co-precipitate each other

indicates that a separation of the two PABPs to a distinct group of mRNA targets is potentially

not strict. A model of the PABP target mRNAs, consistent with the data, is shown in Fig 5.

One limitation of this study is that only one life cycle stage, the procyclic stage, was examined

and we can not exclude that the PABP interactomes and their localisations are different in

other life cycle stages, for example in blood stream forms.

Notably, the functions of many eIF4F complex subunits (for example eIF4E1, 2, 6), and

their association with the PABPs remains unsolved. The reason could be that all studies to

date, including this one, focus only on the proliferating life cycle stages of the parasites.

Fig 4. Interactions between PABPs and proteins involved in translation initiation. For each paralog of the eIF4F

complex, the two PABPs and the two known interactors of the eIF4G1/eIF4E5 complex [41] the enrichment ratios

from all four individual PABP pull-down experiments (low and high salt buffer) are illustrated by a heat map. No

square is shown if the protein was not detected in the respective PABP pull-down replicate.

https://doi.org/10.1371/journal.pntd.0006679.g004
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Translational control may, however, be particular important in G1-arrested stages or during

differentiation processes and an analysis of these stages, albeit experimentally challenging, may

be highly informative for a more comprehensive picture of the eIF4F/PABP complexes.

Materials and methods

Trypanosome work

T. brucei procyclic Lister 427 cells were cultured in SDM79 medium (containing fetal bovine

serum from Sigma). The generation of transgenic trypanosomes was done using standard

methods [65]. For starvation, parasites were washed once in one volume PBS and stored in

PBS for two hours; the starvation time started at the first contact with PBS.

Expression of fluorescently tagged proteins

Cell lines expressing PABP1-eYFP or PABP2-eYFP from endogenous loci were previously

described [49]. Proteins were expressed as C-terminal (RBP23) or N-terminal (all others)

eYFP fusion proteins by transfecting trypanosomes with PCR products obtained with the tem-

plate plasmid pPOTv7-blast-blast-eYFP (RBP23) with oligonucleotides designed as described

[66]. All transfected cell-lines co-expressed PABP2-mChFP from the endogenous locus [49] as

a marker for starvation stress granules. The plasmid for the expression of a C-terminal 4Ty1

fusion protein was previously described for PABP1 [49]) and made accordingly for PABP2

[67].

Fluorescence microscopy

Cells were washed with serum-free SDM79, fixed with 2.4% paraformaldehyde overnight,

washed once in PBS and stained with 40,6-diamidino-2-phenylindole (DAPI). Z-stacks (100

images, 100-nm spacing) were recorded with a custom-built TILL Photonics iMIC microscope

equipped with a 100×, 1.4 numerical aperture objective (Olympus, Tokyo, Japan) and a

Fig 5. mRNA targets and interacting proteins of PABP1 and PABP2. Presented is a model that is consistent with all available

data. PABP1 preferentially binds to a subset of mRNAs of mainly small size, while PABP2 binds to the larger set of bulk mRNAs.

The basal translation initiation factors eIF4E4 and eIF4G3 associate with all mRNA targets, while eIF4E5 and eIF4G1 are specific

for (a subset of?) PABP2 target mRNAs. All PABP interacting partners are shown with thick lines (>10 fold enrichment) or thin

lines (>2 fold enrichment).

https://doi.org/10.1371/journal.pntd.0006679.g005
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sensicam qe CCD camera (PCO, Kehlheim, Germany) using exposure times of 500 ms for

fluorescent proteins and 50 ms for DAPI. Images were deconvolved using Huygens Essential

software (SVI, Hilversum, The Netherlands) and are presented as Z-projections (method sum

slices) produced by ImageJ [68].

Affinity isolation of PABP complexes

Procyclic trypanosomes were grown to a density of 5–8 x 106 cells/ml. Four litre cultures were

harvested in a F14S-6x 250 Y rotor at 1500g at room temperature in four subsequent centrifu-

gations and washed once with 250 ml serum free SDM-79. Finally, the cells were sedimented

by centrifugation (1500�g) into a capped 20 ml syringe placed in a 50 ml Falcon tube. After dis-

carding all supernatant, inserting the plunger and removing the cap the cells were passed

slowly into liquid nitrogen in order to form small pellets suitable for subsequent cryomilling.

Frozen cells were processed by cryomilling into a fine powder in a planetary ball mill (Retsch)

[55]. For precipitation, aliquots of approximately 50 mg powder (corresponding to ~2 x 108

cells) were mixed with 1 ml ice-cold buffer (low salt buffer: 20 mM HEPES pH 7.4, 50 mM

NaCl, 1 mM MgCl2, 100 μM CaCl2, 0.1% CHAPS; high salt buffer: 20 mM HEPES pH 7.4, 50

mM NaCl, 1 mM MgCl2, 100 μM CaCl2, 150 mM KCl, 0.1% CHAPS) complemented with pro-

tease inhibitors (Complete Protease Inhibitor Cocktail Tablet, EDTA-free, Roche). After soni-

cation with a microtip sonicator (Misonix Utrasonic Processor XL) at setting 4 (~20 W

output) for 2 x 1 second, insoluble material was removed by centrifugation (20,000 g, 10 min,

4˚C). The clear lysate was incubated with 3 μl polyclonal anti-GFP llama antibodies covalently

coupled to surface-activated Epoxy magnetic beads (Dynabeads M270 Epoxy, ThermoFisher)

for two hours on a rotator. Beads were washed three times in the respective buffer (low salt or

high salt buffer) and finally incubated in 15 μl 4 x NuPAGE LDS sample buffer (Thermo-

Fisher), supplemented with 2 mM dithiothreitol, at 72˚C for 15 minutes to elute the proteins.

The precipitates were analysed on an SDS-PAGE gel stained with Coomassie. For subsequent

proteomics analysis six pullout samples were pooled after the final washing step and eluted in

30 μl 4 x NuPAGE LDS Sample buffer, then run 1.5 cm into a NuPAGE Bis-Tris 4–12% gradi-

ent polyacrylamide gel (ThermoFisher) under reducing conditions. The respective gel region

was sliced out and subjected to tryptic digest and reductive alkylation.

Affinity isolation of eIF4E and G1-IP2 complexes

For the precipitation of eIF4E4 and G1-IP2, essentially the same protocol was used starting

from 2 L cultures at a density 8 x 106 cells/ml. The immunoprecipitation was carried out in

low salt buffer using 5 ul recombinant, monoclonal dimeric fusion anti-GFP nanobody

LaG16-LaG2 [69] coupled to magnetic beads. The same beads, where the antibody coupling

step was omitted were used as a control. Eluates were run on a NuPAGE Bis-Tris 4–12% gradi-

ent polyacrylamide gel (ThermoFisher) under reducing conditions, then subjected to western

blotting using standard procedures. 4Ty1 tagged fusion proteins were decorated with mono-

clonal anti-Ty1 antibody clone BB2 (Sigma) at 1:10,000 dilution. Quantitation was performed

on raw images gathered under nonsaturating conditions using ImageJ [68] and enrichment

ratios calculated comparing against uncoupled control beads.

Mass spectrometry

Liquid chromatography tandem mass spectrometry (LC-MS2) was performed on a Dionex

UltiMate 3000 RSLCnano System (Thermo Scientific, Waltham, MA, USA) coupled to an

Orbitrap VelosPro mass spectrometer (Thermo Scientific) at the University of Dundee Finger-

Prints Proteomics facility and mass spectra analysed using MaxQuant version 1.5 [56]

Trypanosome PABP interactome

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006679 July 24, 2018 13 / 18

https://doi.org/10.1371/journal.pntd.0006679


searching the T. brucei brucei 927 annotated protein database (release 8.1) from TriTrypDB

[70]. Minimum peptide length was set at six amino acids, isoleucine and leucine were consid-

ered indistinguishable and false discovery rates (FDR) of 0.01 were calculated at the levels of

peptides, proteins and modification sites based on the number of hits against the reversed

sequence database. Ratios were calculated from label-free quantification intensities using only

peptides that could be uniquely mapped to a given protein. If the identified peptide sequence

set of one protein contained the peptide set of another protein, these two proteins were

assigned to the same protein group. The mass spectrometry proteomics data have been depos-

ited to the ProteomeXchange Consortium via the PRIDE [71]ƒ partner repository with the

dataset identifier PXD008839.

Supporting information

S1 Table. Mass spectrometry data. (A) Raw data: all proteins identified in at least one of the

experiment are shown with all parameters.

(B) List of proteins that were identified by more than two unique peptides in at least one of the

experiments

(C) List of proteins that are at least two-fold enriched in both replicates of the PABP1 pull-

down done in low salt buffer

(D) List of proteins that are at least two-fold enriched in both replicates of the PABP1 pull-

down done in high salt buffer

(E) List of proteins that are at least two-fold enriched in both replicates of the PABP2 pull-

down done in low salt buffer

(F) List of proteins that are at least two-fold enriched in both replicates of the PABP2 pull-

down done in high salt buffer

(G) High confidence list of proteins significantly enriched in either PABP1 or PABP2 pull-

downs or in both. The table contains the average enrichment ratios for the individual PABPs

and the comparison between PABP1 and PABP2 (PABP1/PABP2). All ratios�2 are shown in

bold. Localisation to starvation stress granules indicated with respective reference.

(XLSX)

S1 Fig. Broad-field images of the cells shown in Fig 3. Broad-field images of untreated and

starved (120 min PBS) trypanosomes expressing PABP2-mChFP as a stress granule marker

together with the eYFP fusions of ZC3H41 (A), ZC3H40 (B), Tb927.11.14750 (C), RBP23 (D)

or CBP110 (E). All images are presented as Z-stack projections (method sum slices) and at

least two clonal cell lines gave identical localisations. Note that for RBP23 we observed differ-

ences in expression levels between cells that appeared not to correlate to the cell cycle; this was

the case in all three clonal cell lines analysed.

(PDF)
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