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Abstract 
A mathematical optimal-control tumor therapy framework consisting of ra-
dio- and anti-angiogenesis control strategies that are included in a tumor 
growth model is investigated. The governing system, resulting from the com-
bination of two well established models, represents the differential constraint 
of a non-smooth optimal control problem that aims at reducing the volume 
of the tumor while keeping the radio- and anti-angiogenesis chemical dosage 
to a minimum. Existence of optimal solutions is proved and necessary condi-
tions are formulated in terms of the Pontryagin maximum principle. Based 
on this principle, a so-called sequential quadratic Hamiltonian (SQH) me-
thod is discussed and benchmarked with an “interior point optimizer—a 
mathematical programming language” (IPOPT-AMPL) algorithm. Results of 
numerical experiments are presented that successfully validate the SQH solu-
tion scheme. Further, it is shown how to choose the optimisation weights in 
order to obtain treatment functions that successfully reduce the tumor vo-
lume to zero. 
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1. Introduction 

Cancer has a growing impact on our society, because it is among the main causes 
of illness and death worldwide. On account of this, there exist many treatment 
options as surgery, chemotherapy, radiation therapy, hormonal therapy, immu-
notherapy and anti-angiogenic treatment. For all these therapies, it is important 
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to balance the benefits of each treatment with its negative side effects. Therefore 
a natural mathematical approach to cancer therapy is to consider a mathematical 
model of the time evolution of tumor that includes the action of the therapy as a 
control mechanism with the purpose to minimize the tumor volume, while 
keeping at a minimum the negative side effects on the healthy cells. In order to 
find an optimal therapy, we formulate an optimal control problem that requires 
to minimize the tumor volume in a given time horizon and to maximize the 
health-related quality of life of the patient. 

Concerning previous works on optimal control in drug therapy, we refer to, 
e.g., [1] [2] [3]. However, while these references discuss models for immunothe-
rapy, the combination of radiation therapy and anti-angiogenic treatment as in 
[4] and in our work is not considered. Another new aspect of our cancer therapy 
model is the combination of two tumor growth systems, one proposed by Hahn-
feld et al. [5] and the other one by Ergun et al. [6]. We discuss our model in Sec-
tion 2, where we illustrate the inclusion of control mechanisms and provide val-
ues of the model’s parameters that result from real data. 

The typical optimization objective used in cancer therapy models that are 
considered in the literature is to minimize the tumor volume at the terminal 
time; see [3] and [4]. In this paper, we investigate a more general cost functional 
that corresponds to minimizing the tumor volume along the entire time horizon 
and including L1- and L2-costs of the treatment modelled by the control func-
tions. In Section 2.3, we discuss this new cost functional and formulate our op-
timal control problem. In Section 3, we provide a detailed analysis of our tumor 
development and treatment model and discuss equilibrium points of this dy-
namical system and the positivity of solutions. In Section 4, we prove existence 
of optimal solutions to our optimal control problem and their characterization 
by the optimality conditions in the framework of the Pontryagin maximum 
principle (PMP). In Section 5, we illustrate the sequential quadratic Hamiltonian 
(SQH) method. Also in this section, we consider the operating mode of the “in-
terior point optimizer—a mathematical programming language” (IPOPT-AMPL) 
solver that we use as a benchmark for our optimization method, before we focus 
on our SQH scheme. In Section 6, we present results of numerical experiments 
that successfully validate the effectiveness of our numerical optimization proce-
dure that computes the same results as the IPOPT-AMPL scheme, while requir-
ing considerably less time. Further, we use our SQH solution scheme to show 
that it is possible to set the optimisation weights in such a way to obtain treat-
ment functions that successfully reduce the tumor volume to zero. A section of 
conclusion completes this work. 

2. Mathematical Modeling of Cancer Development and 
Treatment 

We investigate a new mathematical model for cancer development and treatment 
resulting from a combination of two complementary mathematical models. Both 
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models consider the dynamics between the tumor volume p and the carrying 
capacity q. One of the most commonly used models for tumor growth is based 
on the Gompertzian growth law as follows 

( )( )ln , 0.p p a p aξ ξ= − > >  

While the proliferation rate a of the cells is constant, the death rate ( )ln pξ  
increases with a growing tumor volume p. The value q, where the proliferation 
rate equals the death rate, is called the carrying capacity given by 

exp .aq
ξ
 

=  
 

 

Using this normalized carrying capacity, we obtain 

( ) ( )ln ln exp ln ln .a a pp p p p p p
q

ξ ξ ξ
ξ ξ

       
= − = − = −       

        
     (1) 

For p q<  the tumor grows ( 0p > ) until p q= . For p q>  the tumor 
shrinks ( 0p < ) again until p q=  is reached. 

Next, we consider a time-varying carrying capacity q. The basic idea is a com-
bination of stimulatory (S) and inhibitory (I) effects as follows 

( ) ( ), , .q S p q I p q= −  

A modelling issue is the choice of S and I, and for this reason we consider the 
model proposed by Hahnfeldt et al. [5] as follows 

2
3 ,q bp dp q= −                          (2) 

with the birth rate 0b >  and the death rate 0d > . This is a well-recognized 
mathematical model for time-varying carrying capacity. However, it couples the 
tumor volume variable to the carrying capacity. 

On the other hand, a model of time-varying carrying capacity that does not 
involve the tumor volume explicitly is due to Ergun et al. [6]. This model is 
computationally convenient since p does not appear in the equation. We have 

2 4
3 3 .q bq dq= −                         (3) 

Based on validation with real data [5] [6], both models appear promising in 
the quest of an accurate description of tumor growth. For this reason, we con-
sider a combination of the two models (2) and (3) as follows 

( )
2 4 2
3 3 31 ,q bq dq bp dp qκ κ

   
= − + − −      

   
  

where [ ]0,1κ ∈ . Together with the equation for the tumor growth (1), we ob-
tain the following differential system that models the evolution of the tumor vo-
lume and of the carrying capacity of the vasculature. We have 

( )
2 4 2
3 3 3ln , 1 .pp p q bq dq bp dp q

q
ξ κ κ

    
= − = − + − −             
          (4) 
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In Figure 1, we show the evolution of this system for initial values with 
( ) ( )0 0p q<  and for different κ . We see that the dynamics obtained with 

0κ = , that is with (2), dominates the evolution of our model given by (4). The 
model (4) exhibits a steep increase at the initial time for the variable q for 
0 0.5κ≤ ≤  and, choosing κ  close to one a slower increase of q can be ob-
served. From this result, it appears that 0.5κ =  and 1κ =  are representative 
of two different dynamical behaviour and we shall consider these choices in the 
numerical experiments. 

In the next two sections, we introduce two control mechanisms in (4) that 
represent the treatment of cancer by anti-angiogenesis and radiotherapy, respec-
tively [3]. 

2.1. Anti-Angiogenesis 

The angiogenesis is a process where a growing tumor develops its own blood 
vessels, which provide the tumor with oxygen and nutrients. The anti-angiogenesis 
 

 
Figure 1. Solutions to (4) for different κ. 
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therapy is an indirect treatment since it does not fight the tumor cells directly 
but influences the tumor’s micro-environment, in particular the vasculature. The 
lack of oxygen and nutrients will force the tumor to shrink. 

To model this treatment, we introduce a control u that takes its values in 
[ ]max0,u  and represents the dose of the anti-angiogenic medicine. With the an-
ti-angiogenic elimination parameter 0γ > , we can augment the equation for q 
in (4) as follows 

( )
2 4 2
3 3 31 .q bq dq bp dp q quκ κ γ

   
= − + − − −      

   
  

Hence, our model for an anti-angiogenetic mono-therapy is given by 

( )
2 4 2
3 3 3ln , 1 .pp p q bq dq bp dp q qu

q
ξ κ κ γ

    
= − = − + − − −             
     (5) 

The anti-angiogenic treatment influences the carrying capacity of the vascu-
larity q, but as q appears in the equation for p, it also influences the tumor vo-
lume p. 

2.2. Radiotherapy 

Radiotherapy is a treatment that uses ionizing radiation to kill cancer cells. For 
this purpose and to minimize damage on healthy tissues the tumor should be 
well localized. 

To model this treatment, we introduce the control w, which represents the 
dose of radiation and takes its values in [ ]max0, w . Following a model from Wein 
et al. [7], the damage that is done to the tumor by radiation is modelled as fol-
lows 

( ) ( ) ( )( ) ( )
0

e d ,
t t sp t w s s w tρα β − −− + ∫  

with the radiosensitive parameters , 0α β >  depending on the treated tissue 
and the tissue repair rate 0ρ > . To simplify the expression above, we introduce 
the function 

( ) ( ) ( )
0

: e d .
t t sr t w s sρ− −= ∫  

This is the solution to a linear ODE given by 

( ),   0 0.r r w rρ= − + =  

Hence, the term that quantifies the damage done to the tumor can be written 
as follows 

( ) .r pwα β− +  

Now, we have to take into account that the radiation has also a damaging ef-
fect on the healthy tissues. Specifically, the damage on the carrying capacity of 
the vascularity q is given by 

( ) .r qwη δ− +  
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Notice that the radiosensitive parameters , 0η δ >  have different values, be-
cause malignant and healthy tissues have different characteristics. 

Summarizing, our controlled model of cancer’s development and treatment is 
given by 

( )

( ) ( )
2 4 2
3 3 3

ln ,

1 ,

.

pp p r pw
q

q bq dq bp dp q qu r qw

r r w

ξ α β

κ κ γ η δ

ρ

 
= − − + 

 
   

= − + − − − − +      
   

= − +







     (6) 

This model is completely specified by giving the values of the parameters ap-
pearing in it. These values are specified in Table 1; see [6] and [8]. 

2.3. The Optimal Control-Treatment Problem 

Usually, in the context of optimal control of cancer development models, the 
objective of the control is to minimize the volume of the tumor at final time, i.e. 
( )p T . See Schättler and Ledzewicz [3] for a detailed discussion of this setting. 
Now, while we keep this objective, we introduce additional terms that include 

a reduction of the tumor volume p along the time evolution, and L2- and L1-norms 
of the controls u and w. With respect to the side effects of anti-angiogenetic medi-
cine and radiotherapy, it is reasonable to have penalty terms for the corres-
ponding controls. 

We define our optimal control problem with anti-angiogenesis and radiothe-
rapy as follows 

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )2 1 2 1
2 22 2

0, 0, 0, 0,0

min , , , ,

:  d
2 2 2 2

T u w
u wL T L T L T L T

J p q r u w

p t t p T u u w w
ν νσ ϑ µ µ= + + + + +∫

 

(7) 
 
Table 1. Model parameters. 

Description Value Unit 

ξ Parameter for tumor growth 0.084 [day−1] 

b Tumor-induced stimulation parameter 5.85 [day−1] 

d Tumor-induced inhibition parameter 0.00873 [mm−2∙day−1] 

γ Anti-angiogenic elimination parameter 0.15 
( )

1kg day
mg does

−
 

⋅ 
  

 

α Radiosensitive parameter for tumor 0.7 [Gy−1] 

β Radiosensitive parameter for tumor 0.14 [Gy−2] 

η Radiosensitive parameter for healthy tissue 0.136 [Gy−1] 

δ Radiosensitive parameter for healthy tissue 0.086 [Gy−2] 

θ Healthy tissue parameter 0.5 [day−1] 

ρ Tumor repair rate ( )ln 2
0.02

 [day−1] 
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subject to 

( )

( ) ( )
2 4 2
3 3 3

ln ,

1 ,

,

pp p r pw
q

q bq dq bp dp q qu r qw

r r w

ξ α β

κ κ γ η δ

ρ

 
= − − + 

 
   

= − + − − − − +      
   

= − +







   (OCAR3) 

with the initial conditions 

( ) ( ) ( )0 00 ,  0 ,  0 0,p p q q r= = =  

and the Lebesgue measurable functions ( )u ⋅  and ( )w ⋅  take their values in 
[ ]max0,u  and [ ]max0, w , respectively. 

The parameters , , , , , 0u u w wσ ϑ ν µ ν µ ≥  can be chosen differently to obtain 
different settings. We refer to this optimal control problem as the (OCAR3) 
control problem. Notice that in [9] a similar model is considered where only the 
tumor volume at the final time enters in the controls’ objective. 

3. Analysis of the Anti-Angiogenesis and Radio-Therapy 
Model 

In this section, we analyse our cancer development and treatment differential 
system in (OCAR3). We have the following lemma. 

Lemma 1 The model (6) with [ ]0,1κ ∈  and 0u w= =  has the equilibrium  

points ( ) ( )1 1 1, , 0,0,0p q r =  and ( ) ( )2 2 2, , , ,0p q r p q=  with 
3
2bp q

d
 = =  
 

. 

Proof. Consider 

ln 0     0  pp p p q
q

ξ
 

− = ⇒ = ∨ = 
 

 

( )
2 4 2
3 3 31 0bq dq bp dp qκ κ

   
− + − − =      

   
 

0     0r rρ− = ⇒ =  

From the second equation with q p= , we obtain 
2 2 2 2
3 3 3 30  0    0  0.p b dp p b dp p q b dp
     

− = ∨ − = ⇒ = = ∨ − =          
     

 

Altogether, we have 

3
2

0  bp q p q
d

 = = ∨ = =  
 

 and 0r = .              □ 

To show that the equilibrium point ( ), ,0p q  is locally asymptotically stable, 
we set : lnz p= , : lny q=  and obtain 

( ) ( )

( ) ( )

1

2

: , ,

2exp exp : , .
3

z z y f z y

zy b z y d f z y

ξ= − − =

 = − − = 
 





            (8) 

For this system, we denote the equilibrium point with ( ),z y  where 
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lnz p=  and lny q= . We do not consider the third equation for r, because r is 
not relevant for our analysis since it neither appears in the p or the q equations, 
nor does p or q appear in the equation for r. Notice that the r-equation is 
asymptotically stable. 

Using Taylor expansion, we obtain the following Jacobi matrix 

( ) ( )
1 1

2
3

2 2

, , .2e e e
3

z
f z y z y

f f
z y

A z y z y
f f b d b
z y

ξ ξ

− −

∂ ∂ 
−  ∂ ∂   = =   ∂ ∂ − −    ∂ ∂ 

 

At the equilibrium point ( ),z y , we obtain 

( ) 2
3

, .2 e e
3

z
f z y

A z y
b d b

ξ ξ

−

− 
 =  − − 
 

 

We have that the trace is ( )tr , 0fA z y bξ= − − <  and the determinant is  

( )
2
32det , e 0

3

z

fA z y d= > . Since the trace is the sum of the eigenvalues and the  

determinant is the product of the eigenvalues of fA , we conclude 1 2 0λ λ+ <  
and 1 2 0λ λ > . That implies 1 2, 0λ λ < , hence the equilibrium point ( ),z y  is 
locally asymptotically stable. 

Next, we show that the solution to (6) with 0u w= =  is always non-negative, 
if the initial values are non-negative. From a medical point of view this is rea-
sonable, because it makes no sense to have negative volumes and capacities. Also 
values for p and q that are larger than the equilibrium point ( ),p q  cannot be 
reached according to the stability discussion above. On this account, we restrict 
our examination to the following domain 

( ){ } ( )
3
22 2, | 0 , 0 , | 0 , .bp q p p q q p q p q

a

 
  = ∈ < < < < = ∈ < <  

   

    (9) 

Next, we consider the uncontrolled case with 1κ =  and neglect the equation 
for r since in this case r is not coupled to the ( ),p q -system. We have 

ln pp p
q

ξ
 

= −  
 

  

2
2 4 2 2 2 3
3 3 3 3 31 1 .d qq bq dq bq q bq

b q

     = − = − = −           

  

The equation for q does not depend on p, hence q grows (independently of p) 
until q q=  (equilibrium point) is reached. As we start with initial values 
( )0 0,p q ∈  with 0 0p q< , the tumor volume initially grows until p q= , but 
since q is growing (independently of p), we will again have p q<  and the tu-
mor continues to grow until p p q q= = =  (equilibrium point) is reached. 
Hence in this case a solution that starts in   will never leave  . 

Now, we show the same solution properties for the controlled case with 
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0κ = . Consider the following problem 

( )

( )
2
3

ln ,

,
.

pp p r pw
q

q bp dp q qu r qw
r r w

ξ α β

γ η δ
ρ

 
= − − + 

 

= − − − +

= − +







                 (10) 

Theorem 1 The set   is positively invariant for the system (10). 
Proof. We show that if ( )0 0,p q ∈  and ,u w  are arbitrary admissible con-

trols defined on some interval [ ]0,T , then the solution ( ) ( )( ),p q⋅ ⋅  with the 
initial condition ( ) ( )( ) ( )0 00 , 0 ,p q p q=  exists for all [ ]0,t T∈  and 

( ) ( )( ),p t q t ∈ . 
Consider ( ), 0 0r r w rρ= − + = . Because of [ ]max0,w w∈ , the unique solution 

exists and is given by 

( ) ( ) ( )
0

e d 0.
t t sr t w s sρ− −= ≥∫  

On the boundary set ( ){ }, : , 0p q p p q q∈ = < < , we have 





( )
0

1

ln 0,pp p r pw
q

ξ α β
>

>

 
 = − − + < 
 
 

  

thus the vector field points into  . 
Now, we look at the boundary set ( ){ }, : 0 , p q p p q q∈ < < = . Note that 

the nullclines for 0q =  are given by 

( )
( )

2
3

, : ,bpq E p r
dp r

νω

γν η δ ω
= =

+ + +
 

for the constant controls u ν=  and w ω= . We rewrite the q-equation as fol-
lows 

( )

( )( ) ( )

2
3

2
3

0

, .

q bp dp q uq r qw

E p r q dp dp q q r qνω

γ η δ

γν η δ ω

>

= − − − +

 
= − − − − +  

 




 

We obtain that 0q >  for ( ),q E p rνω<  and 0q <  for ( ),q E p rνω> . 
Eνω  is strictly increasing for fixed r with ( )0, 0E rνω =  and 

( ) ( )
, .bE p r p p

b rνω γν η δ ω
= ≤

+ + +
 

Therefore, for all p with 0 p p< < , all constant controls [ ]max0,uν ∈ , 
[ ]max0, wω∈  and for every 0r ≥ , we have 

( ) ( ), , .E p r E p r p qνω νω< ≤ =  

Hence 0q <  for trajectories starting in points ( ),p q  with 0 p p< <  and 
q q= . 
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On the coordinates axes for 0p =  and 0q =  the dynamics has singularities,  

in the sense that ln pp
q

ξ
 

−  
 

 is not defined. Therefore, we consider the lines  

p xq=  for 0x = . Now, it is sufficient to show that x  is positive for small 
0x >  as follows 

( ) ( )

( )( )

2
3d ln

d

ln 0

px x x x bx dp u r w
t q

x x bx

ξ γ η δ

ξ

  
= = − − − − − +       
> − − >



 

for x small enough. On the other hand, x  is negative for large x 

[ ]

[ ]

2
3

max max0,

0,
max max

max

max
1 0

r T

r T

x x bx dp u r w

r
bx u w x

b b

γ η δ

η δγ

∈

∈

  < − + + + +     
+ 

 = + + − <
 
 



 

for 

[ ]0,
max max

max
1 .r T

r
x u w

b b

η δγ ∈
+

> + +  

Notice that [ ]0,maxr T r∈  exists, because as we discuss below, our differential 
equation has an absolutely continuous solution. Hence, the region   is posi-
tively invariant for system (10).                                       □ 

Now, let us again look at the system (6) with , 0u w = . We take a closer look 
at the q-equation given by 

( )
2 4 2
3 3 31 .q bq dq bp dp qκ κ

   
= − + − −      

   
  

For initial values in   the solutions to this equation with 0κ =  or 1κ =  
are positive and tend to zero as the equilibrium point ( ), ,0p q  is reached (see 
Lemma 1). Since q  is the linear combination for 0 1κ< < , it is also positive 
and tends to zero as the equilibrium is reached. The p- and r-equations do not 
depend on κ  and therefore we can deduce that for initial values 
( ) { }0 0 0, , 0p q r ∈ ×  the solution cannot be negative for an arbitrary [ ]0,1κ ∈ . 

The model is well defined and by applying Caratheodory’s Theorem (see for 
example [10], Theorem 54 Proposition C.3.6) one can show existence and uni-
queness of a solution to (6). 

4. Optimal Solutions and the Pontryagin Maximum Principle 

In this section, we discuss existence of optimal controls and their characteriza-
tion by optimality conditions. 

The existence of an optimal solution to the (OCAR3) control problem can be 
shown as follows. We know that all solutions ( ), ,x p q r=  to (6) are in  

( )2 max0, : 0 , 0 , 0
wX x L T p p q q r
ρ

 
= ∈ ≤ ≤ ≤ ≤ ≤ ≤ 
 

 for all controls  
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( ) ( ) [ ]{ }2
max: 0, : 0,adu U u L T u t u∈ = ∈ ∈  and  

( ) ( ) [ ]{ }2
max: 0, : 0,adw W w L T w t w∈ = ∈ ∈ . The set ad adX U W× ×  is weakly sequen-

tially compact (see [11] Theorem 2.11). As our objective : ad adJ X U W× × → , 

( ) ( ), , , ,x u w J x u w  is convex and continuous (see [12] Theorem 2.14) and 
thus weakly lower semicontinuous (see [11] Theorem 2.12). Therefore we apply 
the direct method in calculus of variation and obtain the existence of an optimal 
solution to our problem (OCAR3). 

Next, we discuss the characterization of optimal solutions in the framework of 
the Pontryagin maximum principle (PMP). For this purpose and for ease of ex-
position, we consider a general controlled differential model and control setting 
with the following properties. We have 

1) An open and connected state space nM ⊆  . 
2) A control set mU ⊆  . 
3) The controlled dynamical system 

( ), , ,x f t x u=                        (11) 

is given by the function [ ]: 0, nf T M U× × → , ( ) ( ), , , ,t x u f t x u . We assume  

that the partial derivative ( ), ,f t x u
x
∂
∂

 is continuous as a function of all variables. 

4) The class   of admissible controls is taken to be a set of piecewise conti-
nuous functions u defined on a compact interval [ ]0,T ⊆   with values in the 
control set U. 

Definition 1 The pair ( ) ( )( ),x u⋅ ⋅  is called admissible if it is a solution to the 
differential Equation (11) and if ( )u t U∈  for all [ ]0,t T∈ . 

The objective of the control u∈  is to minimize the following functional  

( ) ( ) ( )( ) ( )( )0
, : , , d .

T
J x u L s x s u s s g x T= +∫  

Where : ng →   is continuously differentiable and [ ]: 0,L T M U× × →  
is continuous in ( ), ,t x u , differentiable in x for fixed ( ),t u U∈ × , and the de-
rivative with respect to x is continuous. 

Our optimal control problem is now given as follows 

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )

( ) [ ]

0

0

min , , , d

s.t. , , , 0 ,

        0, .

T
J x u L s x s u s s g x T

x f t x t u t x x

u t U t T

= +

= =

∈ ∀ ∈

∫
          (12) 

Notice that the optimal control problem (OCAR3) that was introduced in Sec-
tion 1 is of this form. 

Definition 2 The Hamiltonian function : n n mH × × × →      for the 
optimal control problem (12) is defined as follows 

( ) ( ) ( )T
0, , , , , , , ,H t x u L t x u f t x uλ λ λ= +  

with 0λ ∈  and nλ∈ . 
In our case we have 0 0λ >  and we can assume 0 1λ =  without loss of gene-
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rality. This situation is called normal extremal lift; see [13]. 
Theorem 2 (Pontryagin’s maximum principle) Let ( ) ( )( )* *,x u⋅ ⋅  be admiss-

ible for the optimal control problem (12). If ( ) ( )( )* *,x u⋅ ⋅  is optimal, then in 
every point [ ]0,t T∈  in which ( )*u ⋅  is continuous, we have 

( ) ( ) ( )( ) ( ) ( )( )* * * * *, , , min , , , ,
u U

H t x t t u t H t x t t uλ λ
∈

=           (13) 

where ( )*λ ⋅  is the solution to the adjoint equation 

( ) ( ) ( )( )* * * *, , , .xH t x t t u tλ λ= −  

For a proof see ([14], 2.4.2). 
By applying PMP to our optimal control problem (OCAR3), we obtain the 

following necessary conditions for an optimal solution. 
Proposition 3 Let ( ) ( )( )* * * * *, , , ,p q r u w  be an optimal solution to (OCAR3). 

Then in every point [ ]0,t T∈  in which ( ) ( )( )* *,u w⋅ ⋅  is continuous, we have 
that the Hamiltonian  

( ) ( )( )

( )

( ) ( ) ( )( ) ( )( ) ( )

2 2 2
1

2 1 2 2 3

, , , , , ,

ln
2 2 2

1 ,

u w
u w

H t p q r u w

pp u w u w p r pw
q

M q M p q qu r qw r w

λ

ν νσ
µ µ λ ξ α β

λ κ κ λ γ η δ λ ρ

  
= + + + + − + +  

  
+ + − − + + + − +

 

at ( )* * * *, , , ,t p q r λ  is minimized by ( )* *,u w  in [ ] [ ]max max0, 0,u w× , where 
( )*λ ⋅  is the solution to the adjoint equation 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1*
* * * * * * * *3
1 1 2*

1 1*
* * * * *3 3
2 1 2*

2
* * * *3

* * * * * * * *
3 1 2 3

2ln 1
3

2 4
3 3

    1

pp r w b d p q
q

p b q d q
q

d p u r w

p w q w

λ σ λ ξ ξ α β λ κ

λ λ ξ λ κ

κ γ η δ

λ λ β λ δ λ ρ

−

−

    
= − + + + + − − −         

  
= − − −  

  
 

+ − − − − +  
  

= + +







(14) 

with the terminal conditions  

( ) ( )* *
1 T p Tλ ϑ=  

( )*
2 0Tλ =  

( )*
3 0.Tλ =  

5. Numerical Optimization 

In this section, we deal with the numerical implementation of our control 
framework that belongs to the class of optimize-before-discretize methods. 
However, in the case of a discretize-before-optimize approach, one could con-
sider the method proposed in [15]. In the first part of this section, we introduce 
our optimization scheme. In the second part, we refer to the operating mode of 
the IPOPT solver that we use together with the programming language AMPL 
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for benchmarking our SQH scheme. 
The main idea of the SQH scheme is the straightforward pointwise minimiza-

tion of the Hamiltonian function in a way that has been first proposed in [16] 
[17]. Notice that, in this approach, the pointwise update of the control is per-
formed on all grid points and only thereafter the corresponding state is com-
puted. However, this pointwise update of the control may result in large changes 
of the value of the state variable that makes the proposed approach less robust. 
This problem is also discussed in [16] where this issue is left open. On the other 
hand, we have the quadratic regularisation method proposed in [18], where the 
Hamiltonian function is augmented with a weighted quadratic term that pena-
lizes deviations from the previous control value to keep the updates of the con-
trol sufficiently small. Further, in [18] every pointwise update of the control is 
followed by a global update of the state variable, which makes this approach very 
time consuming. In the SQH scheme, we combine the advantages of the two 
schemes performing a pointwise update of the augmented Hamiltonian on all 
grid points and recalculating the state variable after the control update. The 
augmented Hamiltonian is given by 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )2 2

ˆ ˆ, , , , , , , ,

ˆ ˆ: , , , , , , ,

K t p q r u w u w

H t p q r u w u t u t w t w t

λ

λ= + − + −




 

where 0>  and 3 3
0:K U U+ × × × × →     with [ ] [ ]max max0, 0,U u w= × . 

We remark that by increasing   a sufficient descent of the cost functional in 
each iteration can be achieved, see ([19], Lemma 4.1). 

While we refer to [19] for a detailed analysis of convergence of the SQH 
scheme, in the following algorithm we present the implementation of this me-
thod. For this purpose, we denote ( ): , ,x p q r=  and ( ),v u w= . 

Algorithm 1 (SQH method) 
1) Choose 0> , ˆ 0κ > , ˆ 1σ > , ( )ˆ 0,1ζ ∈ , ( )ˆ 0,η∈ ∞ , 0v , compute 0x  

from (10) corresponding to 0v  and 0λ  from (14) corresponding to 0x  and 
0v , set 0k ← . 
2) Minimise K  pointwise 

( )arg min , , , , .k k k

v U
v K t x v vλ

∈
=   

3) Calculate x  from (10) corresponding to v  and calculate 

( ) ( )2 2

2 2

0, 0,
ˆ : k k

L T L T
u u w wτ = − + −  . 

4) If 
( ) ( ) ˆ ˆ, , >k kJ x v J x v ητ− −  : Choose σ̂←   

Else if 
( ) ( ) ˆ ˆ, ,k kJ x v J x v ητ− ≤ −  : Choose ζ̂←  , 1kx x+ ←  , 1kv v+ ←  , calculate 

1kλ +  from (14) corresponding to 1kx +  and 1kv +  and 1k k← + . 
5) If ˆτ̂ κ< : STOP and return kv . 
Else go to 2). 
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We remark that the update of ( ),v u w=    is given by 

( ) ( ) ( ) ( )2
max

2
min ,max 0, ,

2
u

u

t q t u t
u t u

µ λ γ
ν

 − + +  =   
+   






 

( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 3

max

2
min ,max 0, .

2
w

w

t r t p t t r t q t t w t
w t w

µ λ α β λ η δ λ

ν

  − + + + + − +  =   
+    






 

To benchmark our novel method with a well-known solution scheme, we re-
mark that the numerical approximation of an optimal control problem as (OCAR3) 
can interpreted as a nonlinear optimization problem that can be solved by using a 
nonlinear programming approach; see, e.g., [20]. The way we choose to perform 
this task is by using the modeling language AMPL [21] and the solver IPOPT [22]. 
We refer to the resulting optimization framework as the IPOPT-AMPL solver. 

6. Numerical Experiments 

This section is devoted to the investigation of the effectiveness of our numerical 
optimization procedure. We present results of experiments with the (OCAR3) 
optimization problem solved by the SQH method given by Algorithm 1. Further, 
to assess the computational efficiency of our scheme, we compare results of si-
mulation with those obtained with the IPOPT-AMPL solver. 

For all numerical experiments of this section, we consider 10T =  (unless other-
wise stated) and set 1000N = . The two-dimensional control, denoted by ( ),u w , 
takes values in the set [ ] [ ]max max0, 0,U u w= ×  with max 15u =  and max 1w = . For 
the discretization of U we choose 50u = , 10w = . As initial guess for the 
controls, we take the zero function. Further, we initialize our state variables with 

0 8000p = , 0 10000q =  and 0 0r = . The parameters in Algorithm 1 are chosen 
as 7ˆ 10κ −= , ˆ 50σ = , ˆ 0.15ζ = , 7ˆ 10η −=  and the initial guess 0.1= . 

For the first experiment setting, we choose additionally 0.5κ =  and the L1- 
and L2-penalty parameters are given by 0u wµ µ= =  and 1u wν ν= = , respectively. 
By using Algorithm 1 with this setting, we obtain the optimal solution showed in 
Figure 2. An almost identical solution is obtained with the IPOPT-AMPL solver. 
The tumor volume reduces to ( ) 22.2847p T = , that is, a reduction of more 
than two orders of magnitude of the initial volume. However, as the carrying 
capacity of the vasculature with ( ) 325.253q T =  is larger than ( )p T  the tu-
mor will grow again after the treatment. 

In Table 2, we further compare the results obtained with the SQH and 
IPOPT-AMPL schemes showing that the resulting values of the objective and the 
states at the terminal time T are similar. In both cases, the control w is a constant 
function taking the maximum value max 1w =  in the entire interval [ ]0,T . 
However, the SQH method only needs a 1/50 of the CPU time needed by the 
IPOPT-AMPL scheme. 

In Table 3, we consider a setting, where the parameters uµ  and wµ  are va-
rying while the other parameters are kept fixed. We choose 0.01u wν ν= = , the  
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Figure 2. Optimal solution obtained with the IPOPT-AMPL and SQH schemes for the first experimental setting. 

 
Table 2. Comparison of the results of the SQH and IPOPT-AMPL methods for the first 
experimental setting. 

SQH IPOPT-AMPL 

J 424.6 430.1 

( )p T  22.2847 22.4486 

( )q T  325.253 325.235 

time 0.128 6.514 

 
Table 3. Results for increasing L1 penalty parameters. 

u wµ µ=  ( )p T  ( )q T  J time 

0.01 10.82 35.32 70.59 0.053 

0.1 10.83 39.17 77.73 0.044 

1 11.03 33.54 149.72 0.105 

10 22.89 276.51 596.03 0.313 

100 57.45 4075.2 2187.57 0.083 

 
rest of the setting remains as in our first example. We see, that the increase of the 
penalty parameters uµ  and wµ  results in higher values for p, q and J. This is 
reasonable since the increase of uµ  and wµ  describes higher costs for the 
controls. 

In the second numerical experiment, we consider 1κ =  and the L1-penalty 
parameters 0.01u wµ µ= = . The L2-penalty parameters and the other parame-
ters are the same as for the first experimental setting. With this setting and using 
Algorithm 1, we obtain the solution displayed in Figure 3. 

Since the value of the control u at the beginning is bigger than in the first ex-
perimental setting, the states p and q are initially decreasing faster than before. 
The tumor volume reduces to ( ) 15.1133p T = , which is smaller than in the first  
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Figure 3. Optimal solution obtained by the IPOPT-AMPL and SQH schemes for the second experimental setting. 

 
setting, but now the carrying capacity of the vasculature is larger with 
( ) 518.716q T = , so again the tumor will grow after the treatment. As above, 

IPOPT-AMPL provides a comparable solution and the results presented in Ta-
ble 4 also confirm this fact. Again the computation time for the SQH method is 
less than the one needed by IPOPT. 

In the experiments above, our focus was the comparison of the SQH method 
with the IPOPT-AMPL scheme. For this reason, less attention has been put on 
the ability of our optimal control formulation to deliver effective treatment. In 
the following experiments, we would like to show that it is indeed possible to 
find an optimisation setting that results in control functions that are able to re-
duce the volume and carrying capacity to zero at final time. In particular, we 
show the importance of the L1-cost towards this task. 

Indeed, control costs of L1-type are considered in the literature for their ability 
to promote sparsity of controls. However, this feature is usually validated with a 
single control function, whereas in our case two control functions are considered 
that act on a nonlinear coupled system. In fact, as results of our experiment 
show, the choice of the weights of the costs of the control is a delicate issue. 

For our experiments, we choose a time horizon 7T =  (7 days), and the fol-
lowing control bounds max 10u = , max 8w = . The other parameters are chosen as 
follows: 1σ = , 1ϑ = , 0.5κ = . We focus on the L1 weights while choosing 

0.01u wν ν= =  for the L2 costs of the controls. This is our third experimental 
setting that is organised as follows. 

In our first experiment of this series, we set 0.1uµ =  and 1wµ = . The results 
of the SQH scheme with this setting are depicted in Figure 4. Notice that the 
volume and the carrying capacity become quickly zero. We also see that the 
control w (radiotherapy) is acting only in the first period of the treatment, while 
the anti-angiogenesis dose is u remains non-zero for the whole treatment. 
Therefore it seems natural to increase the weight uµ  with the purpose to force 
it become “sparse”, that is, to become zero for some interval of time. For this  
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Table 4. Comparison of results with the SQH and the IPOPT-AMPL schemes for the 
second experimental setting. 

SQH IPOPT-AMPL 

J 263.798 267.089 

( )p T  15.1133 15.2045 

( )q T  518.716 514.441 

time 0.097 5.917 

 

 
Figure 4. Third experimental setting: optimal solution with 0.1uµ =  and 1wµ = . 

 
reason, we keep all weights equal but slightly increase 0.3uµ = . The results of 
this experiment are shown in Figure 5. As expected, we can see a reduction of 
the control function u towards zero. However, it remains non-zero, and it has 
the effect that the control w is less sparse. Even more important, with this setting 
the carrying capacity remains non-zero. This result may suggest that we should 
increase both uµ  and wµ , as we do in a third experiment, choosing 1uµ =  
and 6wµ = . The corresponding results are depicted in Figure 6. Notice that 
this result is qualitatively similar to the first one with 0.1uµ =  and 1wµ = : we 
do not get a striking better result. Finally, we choose 2uµ =  and 10wµ = . In 
this case, the L1 weights are large enough to get sparse control functions, but this 
is achieved at the cost of a non-zero and increasing carrying capacity; see Figure 
7. Therefore our control framework allows to make the appropriate tuning of the 
optimisation weights in order to obtain promising successful treatments as with 
the first and third experiments. 

7. Conclusions 

A mathematical cancer therapy model was presented and investigated. This 
model resulted from the combination of two existing models for the simulation 
of cancer development and included two therapy mechanisms representing rad-
iation and anti-angiogenesis inhibitors. 
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Figure 5. Third experimental setting: optimal solution with 0.3uµ =  and 1wµ = . 

 

 
Figure 6. Third experimental setting: optimal solution with 1uµ =  and 6wµ = . 

 

 
Figure 7. Third experimental setting: optimal solution with 2uµ =  and 10wµ = . 
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To determine these therapies, an optimal control problem was formulated 
considering a cost functional including the tumor volume and L1- and L2-penalty 
terms for the controls. After the proof of existence of minimizers, the necessary 
optimality conditions that characterize these minimizers were deduced in the 
framework of the Pontryagin maximum principle. Based on this PMP frame-
work, the SQH method was used for numerical solution. This algorithm was 
used to solve the optimal cancer therapy problem with different experimental 
settings. Furthermore, optimal solutions obtained by the SQH algorithm were 
compared with the optimal solution obtained by the IPOPT solver together with 
the programming language AMPL. This comparison showed that the SQH me-
thod is faster by a factor 10 than IPOPT. In a final series of experiments it was 
shown that it is actually possible to choose the optimisation parameters in such a 
way to reduce the volume of the tumor and the related carrying capacity to zero. 
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