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Although many genes have been identified using high throughput technologies in
endometriosis (ES), only a small number of individual genes have been analyzed
functionally. This is due to the complexity of the disease that has different stages and is
affected by various genetic and environmental factors. Many genes are upregulated
or downregulated at each stage of the disease, thus making it difficult to identify
key genes. In addition, little is known about the differences between the different
stages of the disease. We assumed that the study of the identified genes in ES at a
system-level can help to better understand the molecular mechanism of the disease
at different stages of the development. We used publicly available microarray data
containing archived endometrial samples from women with minimal/mild endometriosis
(MMES), mild/severe endometriosis (MSES) and without endometriosis. Using weighted
gene co-expression analysis (WGCNA), functional modules were derived from normal
endometrium (NEM) as the reference sample. Subsequently, we tested whether the
topology or connectivity pattern of the modules was preserved in MMES and/or
MSES. Common and specific hub genes were identified in non-preserved modules.
Accordingly, hub genes were detected in the non-preserved modules at each stage.
We identified sixteen co-expression modules. Of the 16 modules, nine were non-
preserved in both MMES and MSES whereas five were preserved in NEM, MMES,
and MSES. Importantly, two non-preserved modules were found in either MMES or
MSES, highlighting differences between the two stages of the disease. Analyzing the
hub genes in the non-preserved modules showed that they mostly lost or gained
their centrality in NEM after developing the disease into MMES and MSES. The same
scenario was observed, when the severeness of the disease switched from MMES
to MSES. Interestingly, the expression analysis of the new selected gene candidates
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including CC2D2A, AEBP1, HOXB6, IER3, and STX18 as well as IGF-1, CYP11A1 and
MMP-2 could validate such shifts between different stages. The overrepresented gene
ontology (GO) terms were enriched in specific modules, such as genetic disposition,
estrogen dependence, progesterone resistance and inflammation, which are known as
endometriosis hallmarks. Some modules uncovered novel co-expressed gene clusters
that were not previously discovered.

Keywords: endometriosis, module, weighted gene co-expression network, hub genes, expression

INTRODUCTION

During the menstrual cycle, a cycle of changes occurs in both
the uterus and ovary. During this cycle, the cyclical changes
in normal endometrium (NEM) are divided into three phases:
(i) menstrual phase, (ii) proliferative phase, and (iii) secretory
phase. Normally, endometrial glandular and stromal tissues grow
inside the uterus but in some condition, they grow outside the
uterus, which is known as the endometriosis (ES) disease. This
extrauterine growth (ectopic endometrium) induces a chronic,
inflammatory reaction. While some women with ES show painful
symptoms and/or infertility, others experience no pain at all. It is
a chronic estrogen-dependent gynecological disease and affects
6–10% of reproductive-age women but its frequency in women
with pain and/or infertility is as high as 35–50% (Meuleman
et al., 2009). Using laparoscopy, ES is diagnosed and staged into
four classes based on the level of severity and progression of the
disease: stage I (minimal), stage II (mild), stage III (moderate),
and stage IV (severe). On average, it takes about 11 years from
symptom onset to diagnosis. Thus, there is still an urgent need
for minimally invasive diagnostic tests (Fassbender et al., 2015),
which requires deeper views on molecular mechanism of the
disease development. Although many researchers attempt to find
key regulators of the disease, a few numbers of genes have been
functionally analyzed. This is mainly due to the complexity of
the disease, which makes it difficult for researchers to study its
underlying molecular mechanism.

Endometriosis is characterized by a series of molecular
hallmarks that include genetic predisposition, estrogen
dependence, progesterone resistance and inflammation.
Many previous studies provided molecular evidence for these
hallmarks (Burney and Giudice, 2012) and focused on identifying
key genes controlling these characteristics. Several large-scale
gene expression studies investigated differentially expressed
genes between NEM and ES across the menstrual cycle of women
with mild/moderate severe ES (Kao et al., 2003; Matsuzaki et al.,
2005; Sherwin et al., 2008; Tamaresis et al., 2014). Kao et al.
(2003) and Matsuzaki et al. (2005) identified a large number of
genes in the early and mid-secretory phases of the menstrual
cycle, whose endometrial expression differed between controls
and patients with ES. Sherwin et al. (2008) identified a few
differentially expressed transcripts, in the late secretory eutopic
endometrium, between women with and without ES. Moreover,
they found that no transcripts were differentially expressed
between minimal/mild and moderate/severe ES. A number of
genes implicated in ES were identified including BCL-2 (Jones

et al., 1998), NF- κB (González-Ramos et al., 2010), TGF-β
(Oosterlynck et al., 1994), TNF-α (Eisermann et al., 1988),
CYP19 (Noble et al., 1996), IL-6 (Harada et al., 1997), 17βHSD-2
(Zeitoun et al., 1998), MMP3,7 (Bruner-Tran et al., 2002), KRAS
(Dinulescu et al., 2005), PTEN (Dinulescu et al., 2005), and PGE2
(Badawy et al., 1984).

Since ES is affected by a series of molecular hallmarks,
classification and attribution of the identified genes only based
on gene expression analyses are impossible. In addition, different
stages of the disease were classified using the visible symptoms;
however, little is known about the molecular mechanisms
underlying each stage of the disease. Thus, we hypothesized that
the study of the differentially expressed genes in ES at a system
level may give novel information about the contribution of the
genes to the ES development.

Gene co-expression network analysis has been used to extract
new information using differentially expressed genes. The aim
of this analysis is to analyze gene co-expression network to
classify sets of coordinately expressed genes into a number of
modules. These modules rely on the assumption that strongly
correlated expression levels of a group of genes are likely to be
functionally associated. Weighted gene co-expression network
analysis (WGCNA) is one of the most widely used methods
(Horvath, 2011), which is particularly well suited for constructing
gene co-expression networks in this study.

In WGCNA, the direct and indirect relationships between
the genes are measured and interpreted as connectivity. Highly
correlated genes are grouped into large modules (or co-
expression modules) based on similarities in their expression
profiles. Modules are often enriched for genes that share similar
biological functions. Therefore, different modules are often
involved in specific biological functions. This method not only
considers the co-expression patterns between genes, but also
allows the identification of highly connected genes (Zhang
and Horvath, 2005; Langfelder and Horvath, 2008). WGCNA
measures intramodular gene connectivity and, highly connected
genes are defined as hub genes. These hub genes are centrally
located in their respective modules and may thus be playing
critical roles in the clinic trait.

We can also determine whether the modular structure is
reproducible and preserved in another dataset. For instance, by
this approach, it is possible to determine whether a module found
in one dataset (normal samples) can also be found in another
dataset (disease samples) (Horvath, 2011). Thus, some modules
and their hub genes that are not preserved between samples
(normal vs. disease) may be involved in pathological processes.
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This hypothesis was successfully applied in previous studies
(Mukund and Subramaniam, 2015; Medina and Lubovac-Pilav,
2016).

Weighted gene co-expression analysis has been successfully
used to identify highly connected hub genes and significant
modules in various cancer types (Udyavar et al., 2013; Yang
et al., 2014), murine embryonic stem cells (Mason et al., 2009),
coronary artery disease (Liu et al., 2016) and major depressive
disorder (Malki et al., 2013). Using WGCNA, Yang et al.
constructed gene co-expression networks for multiple cancer
types and found that some prognostic modules were conserved
across different cancer types (Yang et al., 2014). They also
predicted that prognostic genes significantly tended not to be
hub genes. Instead, predicted hub genes were highly specific
for each cancer and showed a little overlap. Xu et al. (2016)
performed WGCNA to predict significant modules and hub
genes in hepatocellular carcinoma and identified eight distinct
modules and several potential biomarkers.

Our main assumption in this study was to discover and
analyze non-preserved modules between NEM, MMES, and
MSES to improve our understanding of the ES regulatory
mechanism. This can potentially lead to novel insight into drug
target discovery with future clinical implications in addition to
exploring new potential diagnostic and prognostic biomarkers.
Based on this assumption, we aimed to answer a number of
questions: (1) what are significant modules at different stages
of ES? (2) which genes tend to be hubs in significant modules?
(3) what are common hub genes in NEM and ES? (4) what
are specific hub genes in NEM and ES? (5) which significant
modules are topologically preserved at each stage of the disease?
(6) which GO terms are enriched in each module? and (7) which
of the previously identified genes are rediscovered as hubs in the
modules, and where are they in the network?

MATERIALS AND METHODS

Datasets
Raw CEL files of GSE51981 (Tamaresis et al., 2014) were
obtained from the Gene Expression Omnibus (GEO) database
at the National Center for Biotechnology Information (NCBI),
which were based on the platform of GPL570 Affymetrix
Human Genome U133 Plus 2.0 Array. The data contained
archived endometrial samples from women with minimal/mild
ES (n = 27), mild/severe ES (n = 48) and without ES (n = 34).
Women were 20–50 years old without hormonal treatment
within previous 3 months and presence of malignancy or major
systemic diseases.

Microarray Data Analysis and
Preprocessing
A total of 109 raw samples were simultaneously normalized
using R package for GCRMA. Expression values were log2-
transformed before being further processed. Empirical Bayes
moderated t-statistics from the Bioconductor package limma
(linear model for microarray data) was used to identify DEGs
between NEM vs. MMES and NEM vs. MSES. Using limma,

a linear model was fitted to expression data for each gene
(Smyth, 2005). Probe sets with fold change (FC) ≥ 1.5 and false
discovery rate < 0.05 were determined as DEGs and selected
for further analysis. Then, only common DEGs between the two
comparisons (NEM vs. MMES and NEM vs. MSES) were used for
gene co-expression network analysis.

In the next step, the probe sets were mapped to respective
gene symbols using the array annotation data hgu133plus2.db.
The expression of a given gene is usually measured by multiple
probes; therefore, the probe sets mapped to multiple genes were
discarded. The collapseRows function of the WGCNA package
was applied to collapse the multiple probes corresponding to the
same gene. The effectiveness of this method was reported in a
previous study (Miller et al., 2011).

Gene co-expression analyses are very sensitive to the presence
of outliers It was demonstrated that distance-based networks
(or sample networks) were useful for detecting outlying samples
or observations (Horvath, 2011). Thus, the adjacency function
in the WGCNA package was applied to calculate distance-
based adjacency matrices for identifying outlying samples.
Samples with a standardized connectivity score of less than
−2.5 were removed (Horvath, 2011). Then, we used the
goodSamplesGenes function of the WGCNA package to iteratively
remove samples and genes with too many missing entries
(default = more than 50% missing entries) and genes with zero
variance.

Construction of a Signed Weighted Gene
Co-expression Network
Based on the assumption that non-preserved modules between
NEM and ES are important, normal samples were considered as
the reference set for module derivation and the other two datasets
(MMES and MSES) were used for module reproducibility.
Using WGCNA, we created a signed weighted gene co-
expression network based on normal gene expression data.
In unsigned correlations, positively and negatively correlated
genes (activation or repression effects of genes) are grouped
into the same cluster and cannot be discriminated (Mason
et al., 2009). In contrast, the advantage of applying a signed
network is that it considers the sign of the underlying
correlation coefficient. Moreover, it has been shown that
signed networks can identify modules with more significant
enrichment of functional groups (Horvath, 2011). Briefly, an
adjacency matrix was created from the pairwise biweight
midcorrelation coefficients between all genes, as this correlation
method is often more powerful than Spearman correlation
and more robust than Pearson correlation (Song et al.,
2012).

Approximate scale free topology is a fundamental property
of biological gene networks, in which some genes are more
connected than others (hub genes). Therefore, the adjacency
matrix was replaced with the weighted adjacency matrix by
raising the correlations to the power of 13, which was chosen
using the scale-free topology criterion (Horvath, 2011). We
selected the power for which scale-free topology fitting index (R2)
was ≥0.8 by plotting the R2 against soft thresholds (power β).
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Supplementary Figure S1 presents the relationship between
the β and R2. Subsequently, the weighted adjacency matrix
was transformed into a topological overlap matrix (TOM) and
the corresponding dissimilarity was calculated to minimize
effects of noise and spurious associations. The TOM measures
connectivity of a pair of genes in relation to all other genes in
the network (network interconnectedness). Higher TOM values
show that a pair of genes is more likely to be connected to
each other and to a shared set of genes. The TOM measure,
therefore, allows to identify gene modules whose members
share strong interconnectivity patterns as we are able to create
more robust co-expression relationships (Horvath, 2011). Each
TOM was then used as input for average linkage hierarchical
clustering (by defining a dissimilarity matrix, 1-TOM) and
the modules were identified in the resulting dendrogram
through a dynamic hybrid tree cutting algorithm. Finally, the
modules with highly correlated eigengenes were merged, as the
minimum height for merging modules was set to 0.25 (Horvath,
2011).

Preservation Analysis
To assess the preservation levels of normal network modules
in the ES datasets, the modulePreservation function in the
WGCNA package was applied using two network based
composite preservation statistics (Zsummary and medianRank).
We applied Zsummary to investigate significance of module
preservation and medianRank to detect module preservation
using permutation testing (200 permutations). Zsummary
combines different preservation statistics into a single overall
measure of preservation, which are equally important for
judging the preservation of a network module. Zsummary
also investigates whether modules identified in the normal
dataset remain highly connected in the ES datasets (density)
and whether node connections between the genes are similar
between the normal and ES datasets (connectivity). The higher
the value of a Zsummary, the stronger the evidence that the
module is preserved in a certain condition/treatment. However,
Zsummary shows a strong dependence on module size (as
tends to increase with increase in module size). Therefore, it
is more significant to observe that the connectivity patterns
among hundreds of nodes are preserved than to observe the
same among say only six nodes. However, sometimes, we need
to compare preservation statistics of modules of different sizes.
In this case, medianRank can be used. The medianRank is
based on the observed preservation statistics and shows no
dependence on module size. In contrast with Zsummary, a
module with a lower medianRank is more preserved than
a module with a high medianRank (Horvath, 2011). In this
study, by combining Zsummary and medianRank and based
on the empirical thresholds proposed in previous studies
(Langfelder et al., 2011), a module was considered as non-
preserved if it had Zsummary < 5 or medianRank ≥ 8 (Horvath,
2011).

Detection of Hub Genes
To identify highly connected genes or hub genes, the WGCNA
package was used for calculating Eigengene-based module

connectivity or module membership (kME) measures for a
particular gene within a given non-preserved module. The
module membership can be determined by the correlation
between the expression profile of a gene and the module
eigengene (or first principal component) of a module. This
measure quantifies how close a gene is to a given module.
Therefore, it can be applied to detect module hub genes, as
genes with high module membership are labeled as intramodular
hub genes. Hub genes are representative of the module’s overall
function and have a high likelihood to be critical components
within the module. This measure was used to identify hub
genes of non-preserved modules associated with different states
(NEM, MMES, and MSES), as genes whose | kME| was ≥0.7
were considered as hub genes to the respective module (Horvath,
2011).

Functional Enrichment Analysis
Using GO analysis, the biological process ontology of the
modules as well as their hub genes were investigated using the
Enrichr tool (Chen et al., 2013). Co-expressed genes in some
modules may be co-regulated by common TF(s) (Mason et al.,
2009; Bakhtiarizadeh et al., 2014). Hereby, to identify potential
common transcription factors that may control transcription of
module genes, the “TRANSFAC_and_JASPAR_PWMs” section
of the Enrichr tool (Chen et al., 2013) was applied. The corrected
p-value (false discovery rate, FDR) < 0.05 was chosen to identify
significant outcome.

Using GO analysis, the biological process ontology of the
modules as well as their hub genes were investigated using the
Enrichr tool.

The R script used in this study is available as Supplementary
File S1.

Patients and Tissue Specimens
This study was approved by the Institutional Ethics Committee of
the Royan Institute, and written informed consents were obtained
before the collection of tissue samples. Endometrial biopsy
specimens were collected from 16 ES patients. All the patients
were 20–45 years old, consulting for infertility and/or pelvic
pain, and found to have no endometrial hyperplasia or neoplasia.
Eutopic biopsies were obtained with the use of Pipelle. Moderate
to severe ES (the stages III–IV of the disease) was determined
according to the revised classification of the American Fertility
Society (Andrews et al., 1985).

Of the 16 participants, 8 had mild ES and 8 had severe ES.
Eight normal endometrium samples during the menstrual cycle
were tested as control group in this study. Participants in the
control group taking part in this investigation were 20–40 years
old with regular cycles, showed no evidence of any pathologic
uterine disorder, and had not used oral contraception or an
intrauterine device in the previous 3 months. Moreover, none
of the participants in the control group had visible endometrial
hyperplasia or neoplasia, inflammatory disease, or ES at the
time of clinical examination or laparoscopy. The cycle day was
determined according to the cycle history and histologic criteria.
Each of the control women had at least one child by natural
conception.
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FIGURE 1 | Biweight midcorrelation (bicor) between gene expression levels in normal endometrium and ES disease stages. Each dot corresponds to a gene and the
red line represents to the best-fit regression line. Correlation coefficients are reported in respective graph. Gene expression patterns were strongly correlated
between normal endometrium and ES stages (A,B) as well as between ES stages (C).

Real-Time Reverse-Transcription Polymerase Chain
Reaction (Real-Time RT-PCR)
Total RNA was extracted separately from each group with
the use of TRI reagent (Sigma) and treated with DNase I
(Fermentas). First-strand cDNA synthesis was performed with
the use of random hexamer primers and the superscript II
reverse transcriptase system (Fermentas). For ensuring cDNA
synthesis, the products were checked with the use of human
β-actin as a housekeeping gene (Metabion) and platinum Blue
PCR Super Mix (Invitrogen). Primer sequences used in this study
are presented in Supplementary File S2.

Quantitative polymerase chain reaction (PCR) was performed
on the prepared cDNA samples with the use of primers designed
for matrix metallopeptidase 2 (MMP2), Homeobox B6 (HOXB6),
cytochrome P450 family 11 subfamily A member 1 (CYP11A1),
coiled-coil and C2 domain containing 2A (CC2D2A), immediate
early response 3 (IER3), Syntaxin 18 (STX18), AE binding protein
1 (AEBP1), and insulin like growth factor 1 (IGF-1). Real-
time PCR was performed under standard conditions, and all
experiments were run in triplicate.

RESULTS

Data Processing and DEGs Screening
In total, 109 arrays of GSE51981 (containing 34 NEM, 27
MMES, and 48 MSES) were used for identifying DGEs analysis.
A total of 25,198 and 20,409 probe sets was found to be
differentially expressed between NEM vs. MMES and NEM vs.

MSES, respectively. Overall, 18,293 common probe sets were
identified and mapped to 10,139 genes. After screening the
outlier samples, four samples were discarded including two
samples from MMES (GSM1256685 and GSM1256686) and two
samples from MSES (GSM1256678 and GSM1256679). Finally,
after other processing steps (removing the genes with missing
values), 10,128 DEGs and 105 samples remained and served for
network construction (Supplementary File S3).

Identification of Modules Related to ES
Development Using Signed WGCNA
To investigate the global differences in gene expression
architecture, we compared mean expression and connectivity
patterns between the NEM and ES samples using biweight
midcorrelation. Gene expression patterns were strongly
correlated between NEM and ES stages (MMES and MSES) as
well as between MMES and MSES stages (Figure 1). However,
connectivity pattern between the NEM and ES stages had lower
density compared to the connectivity pattern between MMES
and MSES stages (Figure 2).

The discrepancy between gene expression profile and weaker
connectivity indicated that gene expression profile was similar
in both conditions (NEM vs. ES), but the mode by which genes
were interconnected was not so preserved. It is worth noting
that connectivity pattern was similar in MMES vs. MSES. It
suggests that ES development can be due to altered connectivity
among genes instead of gene expression profiles. Therefore, it is
valuable to use connectivity network as a complementary method
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FIGURE 2 | Biweight midcorrelation (bicor) between connectivity patterns in normal endometrium and ES disease stages; x- and y- axes denote the average number
of connectivity of a gene and the red line represents to the best-fit regression line. Connectivity pattern was less preserved between NEM and ES stages (A,B)
compared to MMES vs. MSES (C).

to differential expression gene analysis for discriminating NEM
from ES samples.

By using the steps described in the Section “Materials and
Method,” a network was generated using the genes expressed
in NEM and then, DEGs with similar expression pattern were
grouped into modules. A total of 16 co-expression modules was
identified via hierarchical clustering, which were displayed by
different colors according to the WGCNA package function.
Resulting gene dendrogram and respective module colors are
shown in Figure 3. The number of genes per module (module
size) ranged from 44 (lightcyan) to 3,858 (turquoise) genes with
an average size of 571 genes. Moreover, there were 991 genes
that did not share similar co-expression with the other genes
in the network and were assigned to gray module. Therefore,
gray module was excluded from further analysis (Supplementary
File S4).

Network Preservation Analysis
After constructing the gene co-expression modules based on the
normal samples, we evaluated whether the characteristics of these
modules were preserved in the ES stages. Since the connectivity
patterns of the non-preserved modules were altered between the
normal and ES stages, they may be related to the development
of ES. Figure 4 shows the preservation statistics of modules in
MMES and MSES, respectively. Interestingly, all the modules
(except two modules, green and blue) had the same preservation
patterns in MMES and MSES compared to NEM. Preservation
analysis revealed preservation of five modules, including black,
cyan, midnight blue, red and tan, between the NEM and ES stages

(MMES and MSES) with Zsummary > 5 and medianRank ≤ 8.
The green module showed preservation in MSES but not in
MMES whereas the blue module showed preservation in MMES
but not in MSES.

Non-preserved Modules and Functional
Enrichment Analysis
In order to understand the potential molecular mechanisms
responsible for NEM to ES transition, we focused on non-
preserved modules. According to the determined thresholds
(Zsummary < 5 or medianRank ≥ 8), nine modules were
non-preserved in both MMES and MSES including brown,
greenyellow, lightcyan, magenta, pink, purple, salmon, turquoise,
and yellow modules. Non-preservation suggests that the
expression patterns and network characteristics of the genes
in these modules vary across NEM and ES. Therefore, the
results indicated that gene co-regulatory patterns in NEM were
disrupted by the ES disease. All genes of each module and their
module membership values are represented in Supplementary
File S4.

After assessing the global properties of the non-preserved
modules, we investigated the details of these modules. Since hub
genes have the highest degree of within-module connectivity,
they may play important roles in ES. The potential of hub genes as
possible disease associated markers has been reported previously
(Horvath, 2011). Therefore, in order to identify hub genes that
well represent the non-preserved modules, we analyzed some of
these modules in further detail. Here, hub genes were identified
in the non-preserved modules by relying on kME values. Genes
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FIGURE 3 | Identification of gene co-expression modules in normal endometrium data (reference data) using average hierarchical linkage clustering; the y-axis
denotes the co-expression distance and the x-axis corresponds to genes. Dynamic tree cutting was applied to identify modules by dividing the dendrogram at
significant branch points. Modules are displayed with different colors in the horizontal bar immediately below the dendrogram, with gray representing unassigned
genes.

with kME ≥ 0.7 were considered as hub genes in each module
(Supplementary File S4). According to Supplementary File S5,
the highest number of hub genes was found in turquoise, brown
and yellow modules, respectively. The lightcyan had the least
number of hub genes. However, when the number of specific hubs
were expressed in percentage for each module, it was found that
magenta and salmon modules contained the highest percentages
of specific hubs (Figure 5).

In the turquoise module, 1750, 2184, and 1652 hub genes
were identified in NEM, MMES, and MSES, respectively
(Supplementary File S4). In NEM, 427 genes within the
turquoise module showed kME ≥ 0.7, while these genes had
kME < 0.7 in MMES and MSES. Thus, these genes were identified
as specific hub genes of NEM (Supplementary File S4). This
result implies that the disease disturbed the centrality of these
genes. Moreover, 330 and 73 specific hub genes were found
in MMES and MSES, respectively (Supplementary File S5).
Module membership analysis identified 354 common hub genes
between NEM and MMES. Further, 863 genes were predicted
as common hubs in NEM, MMES, and MSES. Additionally,
70 common hub genes were found between NEM and MSES
while 643 common hub genes were found between MMES and
MSES. Compared to its large module size (3858 members), the
turquoise had a small number of specific and common hub
genes in NEM, MMES and MSES. GO analysis of turquoise
members showed interesting results. GO terms such as non-
coding RNA (ncRNA) metabolic process, gene transcription and
ncRNA processing were among the statistically overrepresented
GO terms (Supplementary File S6 and Table 1).

In the brown module, 600, 428, and 383 hub genes
were identified in NEM, MMES, and MSES, respectively
(Supplementary File S4). Moreover, 262 specific hub genes
were found in NEM (Supplementary File S5). Also, 35 and
21 hub genes were specific to MMES and MSES, respectively.
Furthermore, 241 hub genes were common between NEM,
MMES, and MSES whereas 88 hub genes were common between
MMES and MSES. In addition, 64 genes were common hub genes
between NEM and MMES while 33 genes were common hubs
between NEM and MSES. Compared to the size of the brown
module (1085 genes), a lot of these genes were found as hub
genes in NEM, MMES, and MSES. This feature is comparable
to the turquoise module (Supplementary File S5). Most of the
significantly overrepresented GO terms were related to cell cycles
such as mitotic cell cycle, nuclear division and cell cycle phase
transition (Table 1 and Supplementary File S6).

In the yellow module, membership analysis led to the
identification of 223, 209, and 214 hub genes in NEM, MMES,
and MSES, respectively (Supplementary File S3). Moreover, 102,
12, and 28 specific hub genes were found in NEM, MMES,
and MSES, respectively (Supplementary File S5). Also, 24 hub
genes were found between NEM and MMES. In addition, 13
common hubs were found between NEM and MMES while 89
common hub genes were detected between MMES and MSES.
Further, 84 genes were common hubs in NEM, MMES, and
MSES (Supplementary File S5). GO analysis showed that the hub
genes of the yellow module were enriched in cellular response
to hormone stimulus, response to steroid hormone, cellular
response to transforming growth factor beta (TGF-β) stimulus,
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FIGURE 4 | Composite preservation statistics of reference modules after assignment in minimal/mild (MMES) and mild/severe (MSES) ES data (as test data): (A,B)
the composite statistic medianRank (y-axis) as a function of the module size; each point represents a module, labeled by color. The dashed red line indicates the
threshold medianRank = 10; (C,D) the summary statistic Z (y-axis), as a function of the module size; each point represents a module, labeled by color as in (A). The
dashed red line indicates the threshold Z = 5. A module was considered as non-preserved if it had medianRank ≥ 8 or Zsummary < 5.

TGF-β receptor signaling pathway, apoptotic signaling pathway,
regulation of inflammatory response and regulation of response
to cytokine stimulus (Table 1 and Supplementary File S6).

Gene ontology and pathway enrichment analyses of the other
non-preserved modules were performed to assess whether they
were significantly enriched for genes belonging to specific GO
terms or pathways (Table 1 and Supplementary File S6). The
only salmon module did not have significant GO term. Genes in
the lightcyan as the smallest module were enriched in negative
regulation of adaptive immune response, positive regulation of
apoptotic signaling pathway and response to interleukins. In
the magenta module, GO terms related to the nerve system
were overrepresented such as positive regulation of dendrite
development, regulation of synapse structural plasticity and

positive regulation of neuron projection development. Genes
in the purple module were enriched in I-kappaB kinase/NF-
kappaB signaling regulation, extracellular matrix organization,
immune response activation and immune response-activating
signal transduction.

We further hypothesized that hub genes within a non-
preserved module were co-regulated by common TFs. To test
this hypothesis, the hub genes in each module were analyzed.
The results showed that all the groups had at least one significant
TFBS except the salmon, pink and lightcyan modules, which
indicated that the hub genes in each non-preserved module were
co-regulated. Although the turquoise and brown modules had
a large number of hub genes, only 12 and 2 common TFBSs
were found at promoters of their hub genes, respectively. The
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FIGURE 5 | The percentage of hub genes in normal endometrium (NEM), minimal/mild endometriosis (MMES), and mild/severe endometriosis (MSES) in each
non-preserved module. The percentages of specific hub genes for each condition, and common hub genes between them were calculated. The total number of hub
genes and other details for each module can be found in Supplementary File S5.

highest number of common TFBSs was found at promoters of the
hub genes of the yellow module (35 TFBSs). The E2F1 binding
site was detected at promoters of the hub genes of the brown
module. The MYB, GATA6, and ATF4 binding sites were detected
only in the turquoise module. The SMAD4 binding site was
detected at promoters of the hub genes of both the turquoise
and purple modules. The ZNF148, KLF11, and KLF4 binding
sites were found at promoters of the hub genes of the yellow and
greenyellow modules. Further, the NFKB1, TEAD4, and TEAD2
binding sites were only found at promoters of the hub genes of
the yellow module. All the results of this section are presented in
Supplementary File S6.

Preserved Modules and Functional
Enrichment Analysis
Functional enrichment analysis showed that all the preserved
modules except the midnight blue were significantly enriched
with genes in different significant GO terms and KEGG pathways,
which provided evidence of functional role for each module
as a whole. Some of the most highly significantly GO terms
and KEGG pathways in each of the preserved modules were
as follows: endosomal transport and regulation of translation

(black), proline metabolic process and regulation of translation
(cyan), metabolic pathways and glycosaminoglycan biosynthesis
(red), GTP metabolic process (tan), alanine, aspartate and
glutamate metabolism (tan). In addition, the analysis of the
conserved TFBSs revealed that 45 significant TFBSs were over-
represented in all the preserved modules except the tan module
ranging from one (the black module) to 32 (the red module)
TFBSs. These findings indicated that signed WGCNA could
effectively classify co-regulated and biologically related genes
into separate modules. The complete results of the functional
enrichment and promoter analysis for the preserved modules are
presented in Supplementary File S7.

Validation by Real-Time RT-PCR
To learn whether the expression patterns of the hub genes could
be recapitulated using other independent samples, we selected
eight genes which gained or lost their hubness in NEM, MMES,
or MSES, and checked their expression in healthy women and
women with MMES and MSES using real-time RT-PCR. Five new
genes including CC2D2A, AEBP1, HOXB6, IER3, and STX18
along with three previously known genes including MMP-2,
CYP11A1, and IGF-1 were selected for the test. Interestingly, the
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expression analysis showed significant changes in expression level
of the genes in different stages (Figure 6). For example, IER3
gained kME more than 0.7 in the MMES and MSES stages (0.8
and 0.77, respectively, and 0.54 in NEM). In accordance with
the results, expression of IER3 strongly decreased in the MMES
stage, but then increased in the MSES stage. Note that IER3 was
a hub gene in MMES due to its dramatic downregulation. This
may suggest important role for this gene during the development
of the disease. Among the genes, we selected some previously
known genes such as MMP-2. In our analysis, MMP-2 was
defined as a hub gene in both NEM and MMES. Its expression
also increased from the NEM to MMES stage. Although its
expression decreased in MSES, it seemed that MMP-2 was highly
affected in MMES rather than in MSES.

CYP11A1 was also a hub gene in MSES but not in MMES, and
according to our results, its expression dramatically decreased
in MSES. This may suggest that CYP11A1 has important role
in progress of the disease into the MSES stage. CC2D2A was
upregulated in MMES and then, decreased in MSES to its level of
expression in NEM. In accordance with our results, it was a hub

TABLE 1 | Some of the enriched GO terms in non-preserved modules.

Module Significant GO terms

Turquoise ncRNA metabolic process; gene expression; ncRNA processing;
translation; tRNA metabolic process; RNA splicing;

Brown Mitotic cell cycle; nuclear division; cell cycle phase transition;
organelle fission; DNA repair; chromosome segregation

Yellow Response to alcohol; response to steroid hormone; response to
reactive oxygen species; cellular response to transforming growth
factor beta stimulus; response to transforming growth factor beta;
transforming growth factor beta receptor signaling pathway;
regulation of inflammatory response; JAK-STAT cascade involved
in growth hormone signaling pathway; regulation of response to
cytokine stimulus

Magenta Mitotic nuclear envelope disassembly; membrane disassembly;
nuclear envelope disassembly; positive regulation of neuron
projection development; regulation of synapse structural plasticity

Lightcyan Leukocyte cell-cell adhesion; negative regulation of adaptive
immune response; positive regulation of cell migration; response
to interleukin-15; cellular response to interleukin-4; negative
regulation of cytokine production involved in immune response

Pink mRNA processing

Purple Actin filament-based process; activation of immune response;
regulation of I-kappaB kinase/NF-kappaB signaling; extracellular
matrix organization; extracellular structure organization; regulation
of cytokine secretion

Greenyellow Regulation of leukocyte differentiation; antigen processing and
presentation of exogenous peptide antigen via MHC class I,
TAP-independent; positive regulation of T cell mediated
cytotoxicity; cellular response to interferon-gamma; CD4-positive,
alpha-beta T cell differentiation; cytokine-mediated signaling
pathway; regulation of cytokine production; positive regulation of
cytokine production

Blue Extracellular matrix organization; extracellular structure
organization; positive regulation of kinase activity; regulation of
neurotransmitter secretion; activation of JUN kinase activity

Green ncRNA metabolic process; mitochondrial electron transport,
NADH to ubiquinone; respiratory electron transport chain; ncRNA
processing

FIGURE 6 | The results of RT-PCR analysis of eight gene candidates in NEM,
MMES, and MSES; ∗ and ∗∗ means are significantly different at 0.05 and 0.01
probability level, respectively.

gene in MMES and MSES. More interestingly, STX18 showed
a small increase in MMES and then, an increase in the MSES
stage compared to NEM. It was defined as a hub gene in MMES
and MSES. AEBP1 gradually decreased from NEM to MSES but
obtained a high score in MSES, highlighting its important role
in the MSES stage. HOXB6 increased in MMES and decreased in
MSES, but according to the results, it was a hub gene in MMES.
To our knowledge, this is the first report of CC2D2A, AEBP1,
HOXB6, IER3, and STX18 in different stages of ES. The same
result was found for IGF-1, which showed a high expression in
MMES compared to NEM and MSES. This gene was a hub gene
in MMES.

DISCUSSION

Our analysis revealed insights into the molecular mechanisms
underlying the ES disease that are consistent with previously
published studies. Still, the detailed network analyses provided
an increased understanding of the role of specific and common
key regulators associated with NEM and ES stages. Weighted
gene co-expression networks enabled us to predict group(s) of
genes whose expressions were highly correlated in a specific
tissue/condition. In these networks, highly connected nodes can
represent essential genes that may contribute to a disease or
phenotype.

In contrast to focusing on DEGs, the construction of gene
co-expression modules led us to the identification of candidate
genes that were highly associated with the disease. Differentially
expressed genes in NEM were selected and a number of modules
were constructed using WGCNA. These modules were tested
with data from MMES and MSES patients to investigate whether
they are preserved in these two disease states. If the modules were
not preserved, we looked for the hub genes which responsible
for the perturbation of the network. In WGCNA, there are two
types of the connectivity measure: one measure is based on
the connectivity of a gene in respect to whole network, and the
other measures the connectivity of a gene with respect to the
other genes within a particular module which is called intra-
modular connectivity. Previous studies showed that the second
measure is more effective for selection of biologically important
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hub genes (Ghazalpour et al., 2006). Therefore, this method has
been used to identify the respective hub genes in the different
disease states.

Our results implied that the normal expression and
connectivity of the genes within the modules were disturbed by
the ES disease. One important finding was that the preservation
pattern of the 14 modules was similar between MMES vs.
NEM and MSES vs. NEM. The consistency of the module
preservation in both comparisons indicated the robustness and
reproducibility of the changes in the gene co-expression patterns.
Genetic susceptibility, estrogen dependence, progesterone
resistance and inflammation are the hallmarks of the ES
disease and in our study, GO terms related to these biological
processes were significantly overrepresented in the non-
preserved modules, but not in the preserved modules (Table 1).
Interestingly, two modules (green and blue) were also not
preserved between MMES and MSES. Little is known about
different molecular mechanisms between MMES and MSES.
The gene members of these two modules can yield important
information about the progression of the disease from mild to
severe stage.

Previous studies have identified several genes involved in
the ES disease (Table 2). These genes were also predicted
by WGCNA in this study. Furthermore, we could identify
genes that are co-expressed with these candidate genes and
predict, if these genes are in the same or different modules.
Three genes, MMP-2, CYP11A1, and IGF-1, were validated
in our analysis. MMP-2, MMP-16, and MMP-19 are matrix
metallopeptidases, where MMP-16, and MMP-19 are predicted
as hub genes only in NEM in the different modules, MMP-
2 was predicted as hub gene in both NEM and MMES. In
accordance with our results, higher MMP-2 level was found in
sera and peritoneal fluids of patients with ES (Huang et al.,
2004). It was demonstrated that MMP-2 concentration was
associated with steroid hormones in these patients and its
expression increased in eutopic endometrium from patients with
ES (Chung et al., 2002). CYP11A1 is a steroidogenic gene and
is highly expressed in endometriotic tissue. (Attar et al., 2009).
Another member of the cytochrome 540 family, CYP19A1, was

TABLE 2 | A number of previously identified genes which were predicted in
non-preserved modules; most of the genes built hub in the modules.

Gene name Hubness Found in module Reference

TGF-β1 Hub Yellow Oosterlynck et al., 1994

ILs No hub Brown, turquoise Andreoli et al., 2011

BCL-2 Hub Yellow Jones et al., 1998

17β-HSD Hub Turquoise Zeitoun et al., 1998

PGR Hub Brown Attia et al., 2000

ESR1 Hub Brown Jeong et al., 2005

CLDNs Hub Yellow, greenyellow,
turquoise

Jeong et al., 2005

HOXA10 Hub Brown Taylor et al., 1999

COL1A1 Hub Magenta Hull et al., 2008

PTEN Hub Brown Sato et al., 2000

MMP-2 Hub Greenyellow Huang et al., 2004

identified in a module(blue), which differed between MSES and
MMES. It has been previously reported that levels of IGF-
I in the peritoneal fluid are significantly higher in patients
with ES compared with those in normal women (Kim et al.,
2000).

Moreover, the inflammatory condition of ES has been reported
previously. In our results, we also found traces of genes involved
in inflammation such as interleukins (IL) and TGF-β1. TGF-
β1 was a hub gene in all NEM, MMES, and MSES networks
in t in one module (yellow). A previous study demonstrated
that TGF-β1 activity was highly elevated in peritoneal fluid in
women with ES (Oosterlynck et al., 1994). Other interleukins,
namely IL7, IL18, and IL32, were found in the turquoise and
brown modules but were not defined as hub genes. Instead,
some IL receptors were found as hub genes such as IL17RB (in
NEM), IL13RA1 (in both MMES and MSES), IL12RB1 (in NEM
and MMES) and IL2RB1 (in NEM, MMES, and MSES). IL10RB
was also a member of the turquoise module. The levels of IL-
10, IL-12, and IL-17 proteins were comparable between infertile
controls and ES patients with infertility (Andreoli et al., 2011).
These findings highlight the importance of IL signaling for the
disease.

A member of the B-cell lymphoma/leukaemia2 genes (BCL-2),
BCL2L1, was found in the yellow modules a hub gene in MMES
and MSES but not in NEM. The B-cell lymphoma/leukaemia2
genes are anti-apoptotic and proto-oncogene. It was also reported
that BCL-2 was upregulated in eutopic and ectopic ES compared
to NEM (Jones et al., 1998). In addition, apoptotic cells were
rarely found in ES (either eutopic or ectopic endometrium) and
NEM (Jones et al., 1998). These results are in line with our finding
and demonstrate the central role of BCL-2 in ES.

Endometriosis is an estrogen dependent disease and its
molecular evidence is the low expression of 17β-HSD in ES vs.
NEM (Zeitoun et al., 1998). Interestingly, 17β-HSD was one
of the hub genes in our analysis. 17β-HSD inactivates estradiol
to estrone and is expressed in the luteal eutopic endometrium
in response to progesterone but not in simultaneously biopsied
peritoneal endometriotic tissue (Attia et al., 2000). Progesterone
receptor (PGR or PR) was found as a hub gene in NEM, MMES,
and MSES. Attia et al. (2000) reported that the total level of
PGR was reduced in ES in contrast to eutopic endometrium. In
addition, estrogen receptor α (ESR1) and Claudins (CLDNs) as
progesterone-responsive genes (Jeong et al., 2005) were identified
as hub genes in ES rather than in NEM. In the healthy
endometrium, both ESR1 and ESR2 are expressed, although ESR1
predominates over ESR2, and their expression differs during
the menstrual cycle (Matsuzaki et al., 2001). Estrogen-mediated
proliferation in endometrium is promoted mainly through the
activation of ESR1 (Shang, 2006). Previous studies have shown
down-regulation of ESR1 in different types of endometriosis
lesions (Matsuzaki et al., 2001).

HOXA10 is a homeobox gene (estrogen progesterone
responsive gene), the expression of which alters in response
to sex steroids during the menstrual cycle, with dramatic up-
regulation in the mid-secretory phase, the time of implantation.
However, it is dramatically downregulated in patients with ES
(Taylor et al., 1999). Interestingly, in our analysis, this gene was
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TABLE 3 | Number of miRNA target genes found in non-preserved modules; all members of each module were compared with 3851 target genes predicted as the
targets of 22 differentially expressed miRNAs in ES tissue by Ohlsson Teague et al. (2009).

Module name Turquoise Brown Yellow Greenyellow Lightcyan Pink Magenta Purple Salmon

Number of
miRNA targets

535 (13.87%) 167 (15.4%) 91 (16.85%) 22 (12.02%) 7 (15.91%) 36 (14.17%) 28 (12.23%) 48 (21.24%) 17 (12.32%)

a specific hub gene in MMES. HOXA10 regulates expression
of various downstream genes including those encoding cell
adhesion molecules, signal transduction factors, transcription
factors, and metabolic mediators (Zanatta et al., 2010).

Because, a GO term related to ncRNAs was significantly
enriched in the turquoise module we were interested to compare
all members of the non-preserved modules with miRNA targets
in ES identified by Ohlsson Teague et al. (2009). This study
identified 22 differentially expressed miRNAs and their predicted
targets (3851 different mRNAs) in ES (Ohlsson Teague et al.,
2009). Interestingly, as shown in Table 3, 535 genes in the
turquoise module were predicted as the targets of differentially
expressed miRNAs in ES. This module had the highest number
of target genes compared to other modules and as shown by
GO analysis, ncRNA metabolic process was the most significant
GO term in the turquoise module. Moreover, 49 of these target
genes were found as specific hubs in NEM in the turquoise
module. Based on our WGCNA analysis, the hubness and
centrality of these genes were lost by the ES disease in either
MMES or MSES stages. These results nicely show the power
of network analyses with WGCNA. The list of miRNA target
genes found in each module is represented in Supplementary
File S8.

Collagen, COL1A1, was another specific hub in NEM; but
not in MMES and MSES. It is demonstrated that transcription
factor KLF11 recruits SIN3A to repress COL1A1 and therefore,
its inhibition results in increased fibrosis (Zheng et al., 2016).
A previous study also reported that the expression of COL1A1
increased in human ectopic endometrial lesions (Hull et al.,
2008). It is worth noting that KLF11 and SIN3A were members
of the turquoise module in this study and their expressions
significantly decreased in MMES and MSES vs. NEM. Also,
COL1A1 as a member of the magenta module was significantly
over-expressed in MMES and MSES vs. NEM. We detected
significant over-representation of the binding site of KLF11 on
magenta module genes (p-value = 0.01).

K-RAS was another hub in NEM in the turquoise module.
K-RAS is an oncogene and its mutation induces ES (Dinulescu
et al., 2005). In our WGCNA analysis, K-RAS lost its hubness
in MMES. Endometrium is vulnerable to errors of genetic
recombination (Wu et al., 2006). PTEN, a tumor suppressor gene,
is an evidence for genomic alteration in ES. Loss of heterozygosity
and frequent somatic mutations in PTEN were found in 56 and
21% of solitary endometrial cysts of the ovary, respectively (Sato
et al., 2000). Importantly, in our results, PTEN was a common
hub in MMES and MSES but not in NEM. Moreover, a mutation
in both K-RAS and PTEN leads to invasive and metastatic ovarian
cancer (Dinulescu et al., 2005). Thus, it is suggested that WGCNA
can help to find common or discrete pathways between ES and
ovarian cancer.

We also validated the expression of several new genes in
ES, including CC2D2A, AEBP1, HOXB6, IER3, and STX18.
CC2D2A is a Meckel syndrome gene and its mutation causes
embryonic lethality (Tallila et al., 2008). AEBP1 is potent
modulator of NF-kappaB and involved in inflammatory
processes (Majdalawieh and Ro, 2010). HOXB6 is a homo-
box DNA binding protein and predicted as a miRNA
target in ovarian ES (Filigheddu et al., 2010). IER3 is a
stress-inducible protein and regulates cell proliferation
and apoptosis. IER3 expression is downregulated in
ovarian carcinoma (Han et al., 2011). STX18 is a target-
soluble N-ethylmaleimide-sensitive factor-attachment
protein receptor and may function in transport between
endoplasmic reticulum and Golgi apparatus (Harada et al.,
1997).

To summarize these findings, many candidate genes where
found to be important for different disease states. Although many
of these genes have been described previously in relation to ES,
our analysis reveals novel networks and a specificity of mild and
severe disease states.

CONCLUSION

In this study, the comparison between memberships of
the genes in different modules demonstrated that many
previously studied genes were present within the non-
preserved modules. The relationships of these genes with
each other or with other unknown genes were not identified
previously. As discussed, some of these genes were found
in different modules. Many known genes in the non-
preserved modules changed their position and centrality
in the different networks between NEM or ES. Apart from
confirming known genes, many new genes that have not been
studied previously have been identified in different modules.
Our use of signed WGCNA shed light on the importance
of unknown genes and their co-expressed partners. These
genes may play significant roles in the pathophysiology of ES.
For example, nuclear import of NF-κB essential modulator
(NEMO) is necessary for DNA damage-dependent NF-
κB signaling. Importins (IPOs) promote NEMO’s nuclear
import (Hwang et al., 2015). In the brown module, IPO9
could build a common hub in MMES and MSES. Another
interesting gene was protein tyrosine phosphatase localized
to the Mitochondrion 1 (PTPMT1), which was a specific
hub in MMES in the turquoise module. PTPMT1 is localized
in mitochondria and its downregulation is sufficient to
promote cancer cell death (Mukund and Subramaniam, 2015).
Although ES and cancer are similar in some aspects such as
development of new blood vessels and decrease in the number
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of cells undergoing apoptosis, ES is not a malignant disorder
(Swiersz, 2002). The results of the present study could help to
better understand similarities and differences between ES and
cancer as well as the differences in the progression of ES.

Prostaglandin D2 synthase (PTGDS) was also a specific hub
in NEM in the salmon module, which was downregulated
in NEM compared to ES. PTDGS is stimulated by
estrogen and catalyzes prostaglandin H2 to prostaglandin
D2 that exhibits functions including regulation of the
central nervous system, contraction/relaxation of smooth
muscle and inhibition of platelet aggregation (Lim et al.,
2015).

We used available microarray datasets for WGCNA. But
our framework easily handles high throughput sequencing data
as well. The incorporation of these data will further extend
the gene co-expression network. In contrast to microarray
technique, next generation sequencing can identify a number
of new differentially expressed genes, thus incorporating such
data might help to extend small modules or to break down
the large modules into distinct smaller modules. Considering
the disease is complicated and affected by a number of
internal and external factors such as the physiological status
of the patients, age, the time of sampling, population structure
and etc., deep sequencing with high number of biological
replications is recommended. Further expression analysis at
protein level or functional analysis of the genes is suggested
in the future to incorporate this system-level understanding
of the gene into the practice of building effective prognostic
models.
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