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Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit dem Management von RFID Implementierungen
im Einzelhandel. Dabei leistet die Arbeit einen Beitrag, indem wichtige aber bisher in der
wissenschaftlichen Fachliteratur nur wenig beachtete Aspekte beleuchtet werden. Hierfür
werden drei Studien zu drei relevanten Managementaspekten durchgeführt. Zunächst
wird die Kundenakzeptanz im Bezug auf pervasive Retail Applikationen betrachtet und
mithilfe der Privacy Calculus Theorie ermittelt, welche Aspekte für die Kundenakzeptanz
pervasiver Systeme besonders relevant sind. In Studie zwei wird eine RFID-gestützte
Roboterinvnetur anhand einer Simulationsstudie evaluiert. Die Studie zeigt, dass eine
durch Roboter durchgeführte Inventur für einen Einzelhändler zu empfehlen ist, falls die
Roboter tatsächlich mit den von den Herstellern beworbenen Erkennungsraten arbeiten.
In der dritten und letzten Studie werden die Potenziale von RFID-Daten zur Entschei-
dungsunterstützung des Managements evaluiert. Es werden drei Methoden vorgestellt um
aus RFID-Daten nützliche Informationen zu gewinnen. Abschließend wird ein generisches
Vorgehensmodell zur Informationsextraktion entwickelt. Die Arbeit ist sowohl an Praktiker
gerichtet, die ihre RFID-basierten Prozesse verbessern möchten, als auch an Wissenschaftler
die RFID-basierte Forschung betreiben.

Schlagwörter: RFID, Management, Akzeptanz, Privatsphäre, Bestandsmanagement,
Roboter, Inventur, Simulation, Data Analytics



Abstract

The present dissertation investigates the management of RFID implementations in retail
trade. Our work contributes to this by investigating important aspects that have so far
received little attention in scientific literature. We therefore perform three studies about
three important aspects of managing RFID implementations. We evaluate in our first
study customer acceptance of pervasive retail systems using privacy calculus theory. The
results of our study reveal the most important aspects a retailer has to consider when
implementing pervasive retail systems. In our second study we analyze RFID-enabled
robotic inventory taking with the help of a simulation model. The results show that
retailers should implement robotic inventory taking if the accuracy rates of the robots
are as high as the robots’ manufacturers claim. In our third and last study we evaluate
the potentials of RFID data for supporting managerial decision making. We propose
three novel methods in order to extract useful information from RFID data and propose a
generic information extraction process. Our work is geared towards practitioners who want
to improve their RFID-enabled processes and towards scientists conducting RFID-based
research.

Key words: RFID, management, acceptance, privacy, inventory management, robot,
inventory, simulation, data analytics
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CHAPTER 1

Introduction

Automatic identification (Auto-ID) systems have been supposed to revolutionize the
identification of products and objects in several industries (Bose et al., 2005). Radio
Frequency Identification (RFID), one of the Auto-ID approaches, recently started to slowly
replace its predecessor the barcode. More and more retailers, foremost in the fashion
industry, have started to implement RFID into their supply chains. One example is the
fashion company Zara, a subsidiary of Inditex. Zara uses RFID technology in more than
1400 of its 2000 stores in over 64 countries and plans to equip the remaining stores as well
(Bach, 2016). Another example is the German fashion retailer Adler Modemärkte AG
which is also pushing forward RFID technology and already implemented RFID hardware
in 170 stores (RFID im Blick, 2014).

Although RFID is on the rise, there seems to be little research on how managers and
companies can leverage the potentials of novel RFID applications such as RFID-enabled
robotic inventory taking or RFID-enabled smart fitting rooms. Consequently, the only
way for companies to gain experience with such applications seems to be through trial
and error. Managers are therefore faced with the decision to implement novel RFID-based
applications without actually knowing whether they will really benefit their business and
how they can actually use the data generated by these applications. Our goal is therefore
to provide managers, particularly in the retail industry, with contemporary scientific
advice on how to leverage RFID implementations. Concretely, we show how to assess
customer acceptance, how to evaluate novel applications with the help of simulations and
how to use the data generated by an RFID infrastructure to support managerial decision
making.

1.1 Auto-ID systems

Auto-ID has the purpose of supplying information about goods, persons and objects in
general. Most well known is the barcode, a binary code encoded in parallel bars, a system

1



Chapter 1 Introduction

that has revolutionized the retail industry. Even though the barcode is very cheap to
implement, it has many drawbacks like the dependability on a direct line of sight. Most
well known examples for the barcode are the European Article Number (EAN) and the
Universal Product Code (UPC) (Finkenzeller, 2015).

Auto‐ID

Barcode 
systems

1D 
barcodes

2D codes
(QR, Data 
Matrix)

Optical 
character
recognition

(OCR)

Smart card RFID

Biometric
procedures

Fingerprint

Speech 
recognition

Figure 1.1: Overview of Auto-ID systems (Finkenzeller, 2015)

Besides the barcode, there exist other methods for automatic identification. Figure 1.1
gives an overview of the most important approaches. In addition to the classic 1D barcode
there exist 2D codes such as the QR code. Also, optical character recognition and biometric
identification approaches like fingerprinting or speech recognition can be attributed to
Auto-ID (Finkenzeller, 2015).

1.2 Radio Frequency Identification

RFID is one of the most promising representations of Auto-ID. RFID systems store data
on an electronic data carrier, the so called RFID tag. The tag is also called transponder,
which is the abbreviation for transceiver and responder. With the help of electromagnetic
fields the transponder is supplied with energy in order to transfer data between a receiver
and a reading device (Lampe et al., 2005). One of the most common pieces of information
that is saved on an RFID chip is the Electronic Product Code (EPC) which is a code that
is assigned to objects in business applications in order to uniquely identify them (GS1,
2015).

Figure 1.2 illustrates the parts which are common for almost every RFID system. Usually,
there exists at least a transponder which communicates with an RFID reader. The
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1.2 Radio Frequency Identification

transponder is intended to be attached to the object which shall be identified. The RFID
reader, which is usually connected to an application that stores and processes the received
information, supplies the transponder with energy and communicates with it in different
cycles. The reader can have the ability to receive data from the transponder but also to write
on the transponder’s data storage (Finkenzeller, 2015).

RFID Reader

RFID
Energy

Cycle

Data

Application

Transponder

Figure 1.2: Structure of an RFID system (Finkenzeller, 2015)

A so called passive transponder (see figure 1.3) usually consists out of an antenna (coil) and
a microchip. Passive transponders are only active within the reading range of a reading
device that supplies them with energy via induction. There exist also active transponders
which have their own battery and are not dependent upon energy from an induction process
(Lampe et al., 2005).

Chip

Housing

Antenna

Figure 1.3: Structure of an RFID tag (based on Finkenzeller (2015))

Within this dissertation we focus on RFID devices that were present at a large German
fashion retailer with whom we cooperated for our research. The readers include RFID-
enabled points of sales (used for an efficient checkout process), mobile handheld reading
devices (usually used by employees to perform cycle counts) and transition gates. Transition
gates are used to distinguish between different positions of an RFID tag. This means
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Chapter 1 Introduction

in most cases to distinguish if a tag and consequently the item to which it is attached
is on the sales floor or in the stockroom. However, RFID is also used as an anti theft
technology in which case the gates are positioned at the entrance of a retail store and used
for electronic article surveillance. In these cases the position of a tag can be either inside
the store or outside. Besides the before mentioned "standard" reading devices we also
incorporate novel RFID-enabled applications. The more advanced applications we consider
in our research encompass RFID-enabled inventory robots and RFID-enabled smart fitting
rooms.

Not only the hardware but also the software plays an important role for the successful
deployment of RFID within a company. The software which coordinates all readers and com-
municates with the enterprise systems is called middleware.

Energy, Data

Energy, Data

Energy, Data

Enterprise 
Systems

ERP
CRM
WMS
Etc.

MiddlewareAntennas and ReadersTags

RFID

RFID

RFID

RFID
Reader

RFID
Reader

Figure 1.4: Components of an RFID infrastructure (based on Smiley (2016))

Figure 1.4 gives an overview of the components of an RFID infrastructure and shows
where the middleware is positioned. The middleware allows a company to manage the
RFID-enabled devices, e.g., to control and change the settings of individual readers. It
also has the task to collect, filter, structure and integrate the data. There exist also
software specifications that were released by EPCglobal (EPCglobal is a GS1 initiative for
developing industry-driven standards) in order to help users to create useful data structures
for their own data. The middleware also tracks the tag ID assignment, i.e., the middleware
tracks which ID numbers have already been assigned in a system and can assign new ones.
Finally the middleware is able to send the data to different enterprise systems which use
the data further (Smiley, 2016). EPCglobal specified standard interfaces between RFID
tags, readers and enterprise systems. These include

• a low level reader protocol (LLRP),

• a discovery configuration and initialization (DCI),

• a reader management (RM) and

• an application level event standard (ALE) (GS1, 2009; GS1, 2010; GS1, 2007).
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LLRP defines a protocol between a reader and software. With over 100 standard commands
it allows to control a single reader. Many vendors of RFID readers support LLRP in
addition to their proprietary commands (GS1, 2010). The DCI standard defines an
interface between RFID readers, so called access controllers and the network. It has the
purpose to allow the readers and clients to use the network to which they are connected
(GS1, 2009). The RM is a "wire protocol used by management software to monitor the
operating status and health of EPCglobal compliant RFID Readers" (GS1, 2007). In order
to obtain filtered and consolidated event data, the ALE standard specifies an interface for
delivering decoded data (i.e., it does not deliver raw binary data but high level data like
the EPC of an item) (GS1, 2007).

1.3 Scope and structure of the dissertation

Although there are technical standards and RFID is more widespread than a few years ago,
little scientific work has been published on how to actually leverage RFID implementations.
In concrete terms, there is little research on how to evaluate novel RFID-based applications
and how to use RFID data for managerial decision making. We therefore aim at contributing
to the following three areas that are relevant for a manager, particularly in the retail
sector:

• Analyzing customer acceptance and privacy concerns with regard to novel RFID
applications

• Evaluating novel RFID infrastructure components and their influence on a retail
store with simulation modeling

• Utilizing RFID data in order to support managerial decision making

First, we investigate how customers perceive the implementation of a novel RFID-based
customer application - in our case, a smart fitting room - and provide a model that enables
retailers to evaluate novel customer-centric RFID applications with a particular focus on the
privacy perspective. Second, we show how a retail manager can use simulation models to as-
sess whether new RFID infrastructure components should be implemented and illustrate this
with the example of an RFID-enabled inventory robot. We therefore provide a simulation
model and evaluate under which circumstances the implementation of an inventory robot
outperforms traditional RFID-based inventory taking methods. Third, we investigate how
RFID data can be used in order to generate management-relevant information and insights.
We therefore propose three methods for RFID data-based analyses and propose a generic
process for the information extraction from RFID data.
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CHAPTER 2

Explaining adoption of pervasive retail systems with a model based on
the UTAUT2 and the Extended Privacy Calculus

2.1 Introduction

The advent of e-commerce has changed the retail landscape dramatically and puts traditional
retail companies under a lot of pressure. Although customers still visit retail stores to see,
touch and feel products, they often end up purchasing products online (MacKenzie et al.,
2013; PwC, 2015). According to a recent customer survey (PwC, 2015), most customers
prefer shopping online because of lower prices and the possibility to shop 24 hours a day, 7
days a week without the need to go to a physical store. The survey, however, also reveals
that many customers decide against offline retail because the online counterpart provides
better services (e.g., product reviews and product recommendations). In consequence,
Vend (2016) expects so-called offline pure plays (i.e., retailers that only sell their products
offline) to disappear. This, however, does not imply that retail stores are expected to
disappear completely in the near future. In contrast, recent studies suggest that companies
with an online shop and physical retail stores have competitive advantage against pure
online and offline players as long as they integrate their online and offline businesses
(Herhausen et al., 2015).

Pervasive computing systems (also referred to as ubiquitous computing systems) offer great
opportunities for the integration of online and offline businesses (Gregory, 2015; Manyika
et al., 2015). The idea of pervasive computing is best explained with the famous words of
Mark Weiser, former chief technology officer of Xerox: “The most profound technologies
are those that disappear. They weave themselves into the fabric of everyday life until
they are indistinguishable from it” (Weiser, 1991). The objective of pervasive computing
is to make “our lives simpler through digital environments that are sensitive, adaptive,
and responsive to human needs” (Saha et al., 2003). We focus on pervasive computing
systems in retail environments which we in accordance with P. E. Kourouthanassis
et al. (2007) in the following refer to as pervasive retail systems. Examples of such
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systems in retail environments are for example checkout systems that automatically detect
products (Hauser et al., 2017; Smith, 2005), shopping carts that navigate customers
through shopping isles (P. Kourouthanassis et al., 2003) shelves that provide additional
information on items (Parada et al., 2015) and fitting rooms that offer for example
product recommendations based on the garments brought into them (Hauser et al., 2017;
Thiesse, Al-Kassab, et al., 2009). Such systems allow retailers to provide services from
their online shops on the retail sales floor which promises enhanced customer experience
(e.g., detailed product information, product recommendations, no waiting at the checkout
desk). In addition, the applications generate valuable customer data such as customer
walking paths through the store which a retailer could, for example, use to improve store
layouts (Gregory, 2015).

The collection of customer data, however, does not only offer new opportunities for retailers
but also bears the risk of being perceived as a privacy threat by customers. Introductions
of new technology in retail environments in the past have shown that not sufficiently
considering privacy concerns can have severe consequences for retailers. When retailers
in North America and Europe started to roll out Radio Frequency Identification (RFID)
technology in the early 2000s a public debate started on the potential misuse of the data
that could be collected with that technology (Thiesse, 2007). The Metro Group, for
example, had to face a demonstration in front of its Metro Future Store and was given the
infamous Big Brother Award after introducing an RFID-based loyalty card (Albrecht
et al., 2005). As a consequence, legislative bodies had to cope with the fears of the public
and introduced new legislation to mitigate potential privacy threats through pervasive
technology (Lockton et al., 2005). Also, a recent survey on smart applications shows, for
example, that only 22% of respondents felt that the benefits of these applications outweigh
any privacy concerns (TRUSTe, 2014).

Against this backdrop, we investigate the trade-off between customers’ perceived benefits
and their perceived privacy concerns towards pervasive retail systems. To this end, we
propose a model that integrates the Unified Theory of Acceptance and Use of Technology 2
(UTAUT2) from Venkatesh, Thong, et al. (2012) with the Extended Privacy Calcu-
lus Theory from Dinev et al. (2006). The purpose of our study is to gain a better
understanding of retail customers’ usage intentions towards pervasive retail systems and
their underlying privacy disclosure behavior. To achieve this, we first determine the
antecedents of people’s usage intentions towards pervasive retail systems. Here, we par-
ticularly focus on people’s willingness to provide personal information, which reflects the
trade-off between the costs of disclosing private information and the perceived benefits of
using a pervasive retail system. In a second step, we determine the antecedents of people’s
information disclosure behavior. We validate the applicability of our research model consid-
ering an RFID-based smart fitting room. This application detects garments within cabins
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and uses privacy-related data (e.g., customer identity, purchase history) to offer additional
personalized services such as product recommendations.

2.2 Related literature

Research on the adoption of pervasive systems that incorporates privacy aspects can be
roughly categorized into (i) studies that investigate people’s information disclosure behavior
and its influence on the adoption of pervasive systems and (ii) studies that use technology
acceptance models in combination with privacy constructs.

The first group of studies uses privacy calculus models to identify privacy related de-
terminants of people’s adoption behaviors towards pervasive systems. Xu et al. (2009)
investigate people’s privacy concerns towards location based services. Their model ex-
plains 40.2% of the variance of people’s intentions to disclose personal information but
does not investigate the intention to use the service. In contrast, H. Li et al. (2016)
focus on the intention to use pervasive systems. The authors investigate the adoption of
wearable healthcare devices and develop a model that explains 15% of the variance in the
intention to use them. Because of the low explanatory power of their model, H. Li et al.
(2016) propose to use additional constructs from technology acceptance models in further
research.

The second group of studies uses classical technology acceptance models and extends them
with privacy constructs. Cazier et al. (2008), Müller-Seitz et al. (2009), and Kowatsch
et al. (2012) extend the Technology Acceptance Model (TAM) from Davis (1989). The
first two studies investigate the adoption intention towards the Auto-ID technology RFID.
The first study introduces the constructs privacy risk likelihood and privacy risk harm; the
second study the construct security concerns. The results of both studies indicate that
the privacy constructs have an influence on people’s adoption intentions towards RFID
technology. To the best of our knowledge, Kowatsch et al. (2012) are the only group of
authors that not only add additional constructs but combine the TAM with the Extended
Privacy Calculus Theory. They consider people’s usage intentions towards four IoT-based
services (e.g., navigation or healthcare monitoring services). Although the idea of the study
is very interesting, the results are questionable because they test each of their hypotheses
with only 23 completed questionnaires.

Similar to the studies that extend the TAM, Gao et al. (2015), Nysveen et al. (2016), and
Zhou (2012) extend the more recent technology acceptance models UTAUT and UTAUT2.
In contrast to the studies that extend the TAM, none of the studies fully integrates the
privacy calculus theory. Instead they all consider additional privacy constructs from
different sources. Gao et al. (2015) refer to the privacy calculus theory; they do, however,
only consider the construct privacy risk. Nysveen et al. (2016) use the construct privacy
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risk harm, and finally Zhou (2012) the constructs privacy concerns, trust and perceived
risk. Gao et al. (2015) investigate users’ adoption behaviors towards wearable healthcare
devices and show that the construct is one of the most important predictors of the
model. Nysveen et al. (2016) consider people’s adoption behavior towards RFID-enabled
services. In contrast to Gao et al. (2015), however, they are not able to show any effect
of their privacy construct on the intention to use. Zhou (2012) investigates the adoption
of location based services. Similar to Gao et al. (2015), the author finds an effect of
privacy risk on the usage intention. In addition, she is able to show an effect of the
construct trust, but no relationship between the construct privacy concerns and the usage
intention.

Similar to Kowatsch et al. (2012), our study integrates the privacy calculus theory (see
first group of studies) with technology acceptance models (see second group of studies). We
use the Extended Privacy Calculus from Dinev et al. (2006) because it is a well-accepted
theory and covers many important nuances of people’s privacy disclosure behavior. In
contrast to Kowatsch et al. (2012), however, we consider the UTAUT2 instead of the
TAM. We choose the UTAUT2, because the model was developed to explain the adoption of
consumer applications (Venkatesh, Thong, et al., 2012). As pervasive retail systems fall
into the category of consumer applications (P. Kourouthanassis et al., 2003), we expect
a better explanation of people’s adoption intention towards these systems by integrating
the UTAUT2 with the Extended Privacy Calculus.

2.3 Research model

Figure 2.1 depicts our proposed research model. As mentioned in the last section, we
combine the UTAUT2 from Venkatesh, Thong, et al. (2012) with the Extended Privacy
Calculus introduced by Dinev et al. (2006). We propose to substitute the construct
price value from the UTAUT2 - which captures the trade-off between the perceived
costs and the perceived benefits of using a technology - with the Extended Privacy
Calculus. The Extended Privacy Calculus captures the trade-off between the perceived
value of using a technology and the perceived costs of disclosing private information.
Thus, we think that it is a well-suited substitute for the price value construct from the
UTAUT2.

2.3.1 UTAUT2 constructs and hypothesized relationships

Venkatesh and other researchers validated the applicability of the UTAUT2 across many
disciplines and showed that the model is able to explain more than 70% of the variance in
a person’s behavioral intention to use a technology. We use five of the UTAUT2’s nine
constructs in our model, namely performance expectancy (PE), effort expectancy (EE),
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social influence (SI), hedonic motivation (HM) and behavioral intention (BI). We explain
our reasoning in the following.

Besides the price value construct, which we substitute with the Extended Privacy Calculus,
we exclude three more of UTAUT2’s original constructs. We first do not consider the actual
use of pervasive retail systems because the implementation of such systems is still at the very
beginning. Following Salinas Segura et al. (2015), we furthermore exclude the construct
habit, because it would require customers to already have experience with pervasive retail
systems. In addition, we exclude the construct facilitating conditions because some of the
underlying questions are not suited for pervasive retail systems. Customers do, for example,
not need particular resources to use them because such systems are implemented in retail
stores and can be used without purchasing them first (see question FC1 in Venkatesh,
Thong, et al. (2012)). In addition, the technology is novel and it is thus not obvious
for customers how it is compatible with other technologies they use (see question FC3 in
Venkatesh, Thong, et al. (2012)).

H1 (+)

Hedonic 
Motivation 

(HM)

Effort 
Expectancy 

(EE)

Social 
Influence (SI)

Behavioral 
Intention to use 

(BI)

Performance 
Expectancy 

(PE)

Willingness to 
Provide 
personal 

Information 
(WTPI)

Trust (TR)

Privacy 
Concerns 

(PC)

Personal 
Interest (PI)

Privacy Risk 
(PR)

UTAUT2 Constructs

Extended Privacy Calculus Constructs

H3 (+)

H4 (+)

H5 (+)
H6 (-)

H7 (+)

H9 (+)

H8a (+)

H8b (-)

H8c (-)

H2 (+)

Figure 2.1: Research model and hypothesized relationships between the constructs

The first construct we incorporate is performance expectancy, which describes how much
a technology user expects to improve the performance of a process through the use of
a technology (Venkatesh, Morris, et al., 2003). The idea of pervasive retail systems
is to provide customers with features that aim at improving their shopping experience.
In a smart fitting room, for example, users automatically receive personalized recom-
mendations based on their current garment selection and their purchase history, which
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enables them to make better decisions in less time. We thus formulate the following
hypothesis:

H1: PE has a positive effect on the behavioral intention to use a pervasive retail sys-
tem.

Effort expectancy is “the degree of ease associated with consumers’ use of technology”
(Venkatesh, Thong, et al., 2012) and is thus positively related to BI. Obviously, if
customers perceive the usage of pervasive technologies as intuitive they will be more likely
to use them. Thus, we hypothesize:

H2: EE has a positive effect on the behavioral intention to use a pervasive retail sys-
tem.

Social influence describes to what extent others influence one’s decision to use a technology
(Venkatesh, Morris, et al., 2003). Others are in our case people who are important to
a retail customer (e.g., friends and family). Various studies examine the impact of the
variable social influence on a person’s behavioral intention to use a technology. Studies
validated this relationship empirically for the adoption of smart kiosks (Chiu et al.,
2010), mobile payment solutions (Oliveira et al., 2016), and RFID-based applications
in the healthcare sector (Chong et al., 2015). Consequently, we formulate the following
hypothesis:

H3: SI has a positive effect on the behavioral intention to use a pervasive retail sys-
tem.

Hedonic motivation denotes the pleasure of using a novel technology. According to
Venkatesh, Thong, et al. (2012), it is one of the most important factors in predicting
a consumer’s intention to use a technology. Consequently, we assume that people who
generally enjoy using novel technologies will be more likely to use a pervasive system and
formulate our hypothesis as follows:

H4: HM has a positive effect on the behavioral intention to use a pervasive retail sys-
tem.

2.3.2 Extended Privacy Calculus constructs and hypothesized relationships

As mentioned before, the use of pervasive retail systems is free of monetary charge. We
thus exclude the price value construct from the UTAUT2. However, we argue that even
though customers will not have to pay money for using the systems, they will be “charged”
by having to disclose private information. Venkatesh, Thong, et al. (2012) define the
term price value as “consumers’ cognitive trade-off between the perceived benefits of the
applications and the monetary cost for using them”. In order to capture the “costs of
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privacy”, i.e., the trade-off between the perceived benefits and the perceived potential
drawbacks of private information disclosure, we propose to replace the price value with
the Extended Privacy Calculus Model. We therefore redefine the term price value as the
cognitive trade-off between the perceived benefits of using a pervasive retail system and
the privacy related costs. To this end, we carefully adapted the proposed constructs of
the Extended Privacy Calculus from Dinev et al. (2006) and also considered the study
of Kowatsch et al. (2012) who adapted Dinev and Hart’s questions to the realm of
IoT.

The first construct we include in our model is the willingness to provide personal information
(WTPI) which refers to a person’s willingness to disclose private information to use all
functionality of a pervasive application (Kowatsch and Maass 2012). As we assume that
people would only be willing to disclose information if they intend to use the system, we
hypothesize:

H5: WTPI has a positive effect on the behavioral intention to use a pervasive retail
system.

The construct privacy concerns against a pervasive retail system (PC) reflects the concern
of an opportunistic behavior related to the provided information by the user (Kowatsch
et al., 2012). According to Dinev et al. (2006), privacy concerns are in accordance with the
expectancy theory from Vroom (1964). As a consequence, people should try to minimize
negative consequences of their information disclosure behavior. We formulate the following
hypothesis:

H6: PC has a negative effect on a person’s willingness to provide personal informa-
tion.

The construct trust (TR) towards the party that provides a pervasive application de-
notes people’s belief that their private information will be handled secure, safe and in
a competent way. Even though trust perception can be seen as the opposite of risk
perception – which we also included in our model – this construct captures a different
notion (Kowatsch et al., 2012). For example, a customer can trust a retailer that
provides a smart fitting room application and – at the same time – be aware that pro-
viding private information to use the application can bear some risks. Consequently, we
hypothesize:

H7: TR has a positive effect on a person’s willingness to provide personal informa-
tion.

Perceived privacy risk (PR) describes the general perceived risk related to the disclosure of
personal information (Kowatsch et al., 2012). According to Dinev et al. (2006) such risk
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includes the sale of private information to third parties or sharing of private information
with third parties. This construct also reflects the misuse of personal information such as
unauthorized access to the data or data theft. We consequently formulate the following
three hypothesis:

H8a: PR has a positive effect on the perceived privacy concerns against using a pervasive
retail system.

H8b: PR has a negative effect on a person’s willingness to provide personal informa-
tion.

H8c: PR has a negative effect on the trust in the party providing the pervasive retail
system.

The construct personal interest in a pervasive retail application (PI) reflects a person’s
degree of intrinsic motivation which overrides privacy concerns in order to use such an
application (Kowatsch et al., 2012). In contrast to the construct hedonic motivation
from the UTAUT2, this construct measures the degree to which the cognitive attraction
to a pervasive retail system overrides privacy concerns. Consequently, we formulate the
following hypothesis:

H9: PI has a positive effect on a person’s willingness to provide personal informa-
tion.

2.4 Research method

To validate our model we consider a smart fitting room application. The system recognizes
the customers’ garment selections based on RFID technology and provides suitable recom-
mendations if customers identify themselves and allow the system to access their purchase
history. In addition, the application offers the option of home delivery of chosen garments
if the customer provides address and financial data to the system. The application that we
consider in our study is based on a prototype that was implemented during a research project
on the retail sales floor at a leading German fashion retailer.

2.4.1 Instrument development and data collection

We conducted an online survey with students from a German university. We chose to target
students because young people are the target group that the retailer in our study wants
to attract to its stores with the pervasive retail system. As an incentive to participate,
students had the chance to win one out of five book vouchers worth 20€ each. In the
survey, we described the use case and its functionalities with pictures depicting the real
world prototype (e.g., the user interface). We also informed the survey participants that
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they would have to identify themselves and share address as well as financial data in order
to use the described fitting room functionalities. We carefully adapted the questions for
the constructs described above (see appendix A) and used a seven point Likert scale for the
questionnaire. In total, 280 students participated in the survey. Our sample consists of 151
female and 129 male students with an average age of 23.2 years. The standard deviation is
3.5 years.

2.4.2 Data preparation

As online surveys yield higher risks of careless responding due to unmotivated or inattentive
respondents than pen and paper based versions (Huang et al., 2012), we conducted a
structured data screening process.

We use the methods (i) screening for unusually short response times and (ii) screening for
patterns to identify inattentive respondents. The first method assumes that participants
who carelessly fill out a questionnaire are more likely to rush through it (Meade et al.,
2012). Based on preliminary tests, we assume that respondents who are familiar with
pervasive systems and are fast readers would need at least four and a half minutes for
completing the questionnaire. The second method searches for unusual patterns in the
data by using the long string method proposed by Johnson (2005). The author proposes
to eliminate answers with an unusual number of consecutive repetitions of the same kind
of answer (e.g., ten times the answer "very likely" in a row). We computed the long strings
for each participant and removed completed questionnaires of participants with ten or
more consecutive answers of the same type. Four of the participants that we identified
with this method also fell under the previously defined response time cut-off. The times
that it took the rest of the suspicious respondents to answer the questionnaires were also
very close to this predefined cut-off.

Overall, the data cleaning process lead to a removal of 28 respondents, which were suspect
to inattentive and unmotivated answering. These are exactly 10% of the respondents which
is in correspondence with reports from other studies with student samples (see, e.g., Kurtz
et al. (2001)).

2.5 Results

Henseler, Ringle, and Sinkovics (2009) state that partial least squares (PLS) “path
modeling is recommended in an early stage of theoretical development to test and validate
exploratory models”. We aim at introducing a new theory and thus use PLS for the
analysis of our theoretical model. Following Chin (2010), we present our results by first
reporting the reliability and validity of the used item measures and then present the
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evaluation results of the structural model. We used SmartPLS Version 3.2.6. to conduct
the analysis.

2.5.1 Model reliability and validity

In a first step, we evaluated the outer loadings of our model (A full overview of all
outer loadings of all items of the model can be found in appendix B). Except from
questionnaire item HM3, all items have outer loadings above the proposed value of 0.708
(Henseler, Ringle, and Sinkovics, 2009). Item HM3 asks the participants the question
if they perceive the usage of the smart fitting room as entertaining. With an outer
loading of 0.674, however, item HM3 is only slightly below 0.708 and we thus did not
exclude it from our analysis. Consequently the latent variables of the model show a good
reliability.

Table 2.1: Construct reliability and validity

Cronbach’s Alpha Composite Reliability AVE
BI 0.919 0.948 0.860
EE 0.882 0.915 0.731
HM 0.820 0.889 0.732
PC 0.916 0.941 0.800
PE 0.720 0.843 0.642
PI 0.807 0.886 0.721
PR 0.874 0.909 0.669
SI 0.878 0.925 0.803
TR 0.755 0.859 0.670
WTPI 0.859 0.914 0.781

Table 2.1 reports the Cronbach’s Alpha, Composite Reliability and Average Variance
Extracted (AVE) of each construct and shows the internal consistency of our model. All
constructs have a Cronbach’s Alpha value higher than 0.7 and thus display convergent
validity (Garson, 2016). Furthermore, all constructs show a composite reliability greater
than the cut-off of 0.8 which is considered good for confirmatory research (Daskalakis
et al., 2008) and well above the proposed threshold of 0.7 that literature considers good for
explanatory purposes (J. F. Hair et al., 2012). In addition, the AVE of all constructs is
higher than the proposed threshold of 0.5 (Chin, 1998) which means that the error variance
does not exceed the explained variance (Garson, 2016).

We use the Heterotrait-Monotrait (HTMT) ratio for analyzing the discriminant validity of
our model (see table 2.2) because Henseler, Ringle, and Sarstedt (2015) lately showed
its superiority over the Fornell and Larcker criterion (Fornell et al., 1981). Table 2.2
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shows that all HTMT ratios are below the strict cut-off value of 0.85 proposed by Kline
(2015) which indicates good discriminant validity.

The overall model fit is estimated with the Standardized Root Mean Square Residual
(SRMR) which measures the difference between the observed correlation matrix and the
model-implied correlation matrix. Our model shows an SRMR of 0.096 which indicates a
good fit according to Garson (2016).

Table 2.2: Heterotrait-Monotrait Ratio

BI EE HM PC PE PI PR SI TR WTPI
BI 1
EE 0.286 1
HM 0.774 0.302 1
PC 0.301 0.127 0.154 1
PE 0.796 0.382 0.845 0.104 1
PI 0.722 0.242 0.633 0.209 0.570 1
PR 0.332 0.115 0.199 0.828 0.133 0.220 1
SI 0.570 0.204 0.557 0.072 0.691 0.406 0.126 1
TR 0.558 0.184 0.437 0.279 0.387 0.559 0.376 0.400 1
WTPI 0.711 0.180 0.507 0.358 0.502 0.692 0.309 0.367 0.614 1

2.5.2 Structural model

We determine the effect size f-squared of each variable with the following formula (J. Hair
et al., 2014):

f2 =
R2

included − R2
excluded

1 − R2
included

(2.1)

In order to calculate 𝑓2 for each construct, we first calculate the 𝑅2 of the full model
(R2

included). In a second step, we calculate R2
excluded for each construct, which is the 𝑅2 of

the model without the construct currently under consideration. Effect sizes are considered
small if they are above 0.02, medium if they are above 0.15 and large if they are above
0.35 (Cohen, 1988). Furthermore, “if an exogenous construct strongly contributes to
explaining an endogenous construct, the difference between R2

included and R2
excluded will be

high, leading to a high f2 value” (J. Hair et al., 2014).

Table 2.3 shows the effect sizes of the variables. It reveals that WTPI and HM have the
highest influence on BI and that PI has the highest influence on WTPI. TR, PC and PR,
on the other hand, have only small effects on WTPI. In addition, the table indicates a
large influence of PR on PC.
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The results of the structural model are presented in table 2.4 (see appendix C for a visual
representation). We use bootstrapping with 5000 samples to determine whether the relations
between the constructs are significant and support the stated hypotheses. The table shows
that all hypotheses except H2 and H8b are supported.

Table 2.3: Effect sizes

Construct Dependent Variable f2 Effect
WTPI BI 0.310 medium
HM BI 0.202 medium
PE BI 0.053 small
SI BI 0.022 small
EE BI 0.002 none
PR PC 1.251 large
PR TR 0.105 small
PI WTPI 0.264 medium
TR WTPI 0.102 small
PC WTPI 0.039 small
PR WTPI 0.003 small

In a next step we also calculate the indirect effects of PR on WTPI, considering again
bootstrapping and 5000 samples. This calculation results in a path coefficient of -0.251.
When we add this value to the direct path coefficient of 0.067, this results in a total effect
of -0.184 with a p-value of 0.001.

Table 2.4: Summary of results

Hypothesis Path Coefficient T Statistics P Values Supported
H1 PE ->BI 0.192 3.392 0.001 Yes
H2 EE ->BI 0.027 0.691 0.490 No
H3 SI ->BI 0.104 2.335 0.020 Yes
H4 HM ->BI 0.368 6.374 <0.001 Yes
H5 WTPI ->BI 0.358 8.633 <0.001 Yes
H6 PC ->WTPI -0.223 3.222 0.001 Yes
H7 TR ->WTPI 0.275 4.626 <0.001 Yes
H8a PR ->PC 0.745 23.952 <0.001 Yes
H8b PR ->WTPI 0.067 0.837 0.402 No
H8c PR ->TR -0.309 4.748 <0.001 Yes
H9 PI ->WTPI 0.430 7.647 <0.001 Yes

We analyze the proportion of variance explained by our model. Table 2.5 shows that the
constructs of BI explain 67.1% of its variance. As stated before, WTPI and therefore the
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result of the privacy calculus is the most important predictor for people’s intention to use
a pervasive retail system. 43.1% of the variance of WTPI is explained by its predictors,
whereby the constructs personal interest and trust account for the biggest portion of
people’s intention to use a pervasive retail system.

Table 2.5: Explanatory power

Adjusted- R2 P Values
BI 0.671 <0.001
WTPI 0.431 <0.001
PC 0.554 <0.001
TR 0.092 0.025

2.6 Conclusion

The present study investigates customers’ adoption intentions towards pervasive retail
systems. In contrast to consumer products, customers do not have to purchase the
systems to use them. The systems, however, heavily depend on privacy-related data, which
customers could perceive as a potential privacy threat. To address this issue, we propose a
model that combines the UTAUT2 and the Extended Privacy Calculus. Our investigation
shows that our model is able to explain 67.1% of the variance in people’s intention to use a
pervasive retail system. We show that people’s willingness to provide personal information
and the hedonic motivation from the UTAUT2 are the most important determinants of
people’s usage intention. WTPI accounts for more variance in the behavioral intention than
hedonic motivation from the UTAUT2 (𝑓2 = 0.310 against 𝑓2 = 0.202). This indicates that
people weigh the perceived benefits against the perceived drawbacks of providing personal
information before they decide whether they want to use a pervasive retail system. We
are thus able to demonstrate with our empirical investigation that the Extended Privacy
Calculus is a valid substitute for the construct price value of the UTAUT2 if the usage of a
system does not come with monetary costs but requires disclosing privacy-related data.
This implies that providers of such applications have to carefully consider people’s privacy
perceptions. If people are not willing to disclose necessary privacy-related data, they will not
end up using the application even if it offers valuable benefits.

We did not only investigate the predictors of people’s usage intention but also the predictors
of people’s willingness to provide personal information for using a pervasive retail system.
Our investigation shows that our model is able to explain 43.1% of their willingness to
provide such information. The most important variables for explaining the willingness
to provide personal information are personal interest (𝑓2 = 0.264) and trust towards the
institution that provides the application (𝑓2 = 0.102). This result is in accordance with
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Dinev and Hart’s (2006) study, which also found that “the three factors most strongly
related to the willingness to provide personal information were [. . . ] privacy concerns,
[. . . ] trust, and personal [. . . ] interest” (Dinev et al., 2006). We show that the perceived
benefits of pervasive retail systems must outweigh the perceived privacy costs so that people
are willing to “forget” their privacy concerns (captured by the variable personal interest).
If retailers are not able to achieve this, they might risk losing their customers and investing
in an application that customers might not use at all. In addition, as trust towards the
provider of pervasive retail systems is the second strongest predictor of the willingness
to provide personal information, retailers should strive to preserve a good reputation for
carefully handling customer data.

Our model, however, does not support the relationship between effort expectancy and the
behavioral intention to use a pervasive retail system. One explanation could be that people
perceive the smart fitting room as a fun application and do thus not perceive the process
of learning to use the application as an effort. In consequence, effort does not play a role
on their usage intention. Another explanation could be, that our sample comprises only
students, which are digital natives and are thus familiar with pervasive systems (e.g., smart
phones and smart watches). The data revealed that most of them chose high values on the
Likert scale for the questions of the construct effort expectancy regardless of their usage
intention towards the smart fitting room. Nevertheless, we decided to keep the construct
because we think that a survey with a different sample population (i.e., a sample not only
comprising digital natives) could show a relationship between effort expectancy and the
behavioral intention to use a pervasive retail system. We furthermore did not find support
for the direct relationship between perceived privacy risk and the willingness to provide
personal information. The model, however, revealed that privacy risk has a significant
indirect effect on the willingness to provide personal information, which is in accordance
with our expectations.

There are also some limitations to our research. First, although the student sample is
suitable for this study because young people are the target group of the retailer with whom
we conducted this study, the sample characteristics limit the generalizability of our results.
Second, we conducted an online experiment and even though we carefully described the
application and illustrated its use with meaningful pictures, there is still the possibility
that a study with a real prototype would yield differing results. Third, with the smart
fitting room application we only considered one pervasive retail system to validate our
research model.

We see opportunities for further research in various directions. We encourage researchers to
use our model for the investigation of people’s adoption intention and disclosure behavior
towards other privacy related pervasive retail applications. In addition, future research
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should not only consider usage intention but also actual usage behavior of pervasive
applications. Not least, we believe that our proposed model could be used to explain
adoption intention and privacy disclosure behavior of applications beyond pervasive retail
systems.
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CHAPTER 3

Evaluating RFID-enabled robotic inventory taking

3.1 Introduction

Radio Frequency Identification (RFID) can generally lead to a number of benefits for
retailers, like for example more efficient processes and more time for store staff to serve
customers (Marco et al., 2012). One of the most important advantages, however, is
the improved accuracy of a company’s inventory data. Stock-out situations are still an
important issue for retail companies today, because it does not matter how efficient the
downstream supply chain could be in supplying a store if an inefficient shelf replenishment
process - caused by incorrect inventory data - leads to empty shelves and unsatisfied
customers (Rekik, Sahin, et al., 2008).

Accurate inventory information is crucial for the success of a retail company. However, out
of stock rates between 10% and 15% are not unusual for European companies (Berger,
2003). The inaccuracy of the inventory is referred to as the discrepancy between the
actual inventory and the recorded inventory (usually in a computer system). Studies
have shown that this is a major problem and have found that discrepancies of up to
65% of the data sets of the companies examined were inaccurate (DeHoratius et al.,
2008).

When there is a deviation between the actual and the recorded stock level, situations of
overstock and understock can occur (Ernst et al., 1993). Overstock means that the actual
stock level is higher than the recorded stock level. This can lead to higher inventory holding
costs than a company originally planned. Understock denotes the opposite of the former.
This means, that the actual stock level is lower than the recorded stock level which leads to a
higher risk of out of stock situations (Ernst et al., 1993). Kang et al. (2005) show in their
study that even the best performing companies had only 70 - 75% of the inventory records
match the inventory on hand. Consequently, the discrepancy between actual stock levels
and recorded stock levels is a major problem for companies.
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One way to deal with inventory inaccuracy is the use of novel technologies. Since Wal-Mart
tested the use of RFID along its supply chain as part of a pilot project in 2003, the so far
little used technology has gained more and more attention and has fundamentally changed
logistical processes in retail (Delen, Hardgrave, et al., 2007). One of the benefits of
RFID is that it can lead to a higher product availability at lower costs (McEachern et al.,
2005). Before RFID was available, a "[c]omplete inspection of the inventory [was] very
expensive"(Ernst et al., 1993). Because of RFID’s huge potential, the barcode technology
is becoming less important and academic research has shifted its focus towards RFID (Kok
et al., 2008).

One claim of RFID is, that it enables a firm to enhance its inventory data quality. However,
through multiple negative effects like for example, theft, misplacement or imperfect read
rates of the fixed RFID hardware itself (usually RFID gates), the quality of RFID-based
inventory data is often not as reliable as a retailer might assume. Low data quality can
lead to stock-outs and replenishment freezes and therefore cause high costs for the retailer
(Thiesse and Buckel, 2015). In order to diminish the influence of these negative effects,
additional data quality measures are often undertaken. Most common is the usage of
RFID-based handheld readers, which enable retailers to conduct cycle counts without
the need to hold and scan individual items. Consequently this approach is much faster
and costs less than traditional cycle counts (Buckel et al., 2013). Although the use of
RFID-based handheld scanners for inventory taking is faster than traditional inventory
taking, it is still a manual process.

In order to further automate inventory correction, some retailers experiment with inventory
robots equipped with RFID reading devices. These robots are able to make a full inventory
every day without human intervention, thus eliminating manual labor completely from
the inventory taking process (Swedberg, 2016). However, it is unclear whether the
introduction of an inventory robot actually improves the quality of inventory data compared
to the approach with RFID-based handheld readers. In addition, robotic inventory may
not be error-free, and the introduction and implementation of an inventory robot in a retail
store is an investment that should be carefully considered. It is therefore unclear, if retailers
will not do better with the use of a ’traditional’ RFID handheld-based cycle counting policy.
Our study therefore has the following objectives: We first want to determine the influence of
handheld-based RFID-enabled cycle counting and RFID-enabled robotic inventory taking
on the economic performance of a retail store. Second, we want to compare both approaches
and evaluate when either of the approaches is superior over the other. Third, we want
to determine if robotic inventory taking renders an RFID-enabled replenishment gate
obsolete.

To address our research questions, we conduct computer based simulations to examine
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the influence of RFID-enabled cycle counting and RFID-enabled robotic inventory taking
on the economic efficiency of a retail store. We simulate different control parameters on
an RFID equipped inventory management system that operates on a threshold based
replenishment policy using the stock information generated by RFID. In order to use
realistic assumptions, we base our simulation model on information made available by a
large German fashion retailer which has already implemented RFID on a large scale. Our
research aims to help practitioners decide which RFID-based inventory taking strategy to
choose.

The chapter is organized as follows. In the next section we provide a review of prior
research on imperfect inventory data as well as RFID-based inventory control and outline
the research gap that is addressed by our study. Finally, we describe the model which we
developed for this study and perform several analyses in order to compare RFID-enabled
robotic inventory taking with RFID-enabled cycle counting.

3.2 Related literature

In the following we analyze the relevant streams of literature about (i) inventory record
inaccuracy and non-technological countermeasures, (ii) inventory record inaccuracy and
perfect RFID systems, (iii) inventory record inaccuracy and imperfect RFID systems and
(iv) RFID-enabled robotic inventory taking.

3.2.1 Inventory record inaccuracy and non-technological countermeasures

Many researchers have investigated inventory record inaccuracy from different perspectives.
One of the first researchers who identified inventory record inaccuracy as a major problem
for supply chain operations was Rinehart (1960). He reports insights from a case study of
a government agency that performs yearly inventories at its supply centers. He noticed that
the discrepancy rates for so called secondary items ranged from 20% to 50% leading to high
costs and to less performance of the supply centers of the government agency. By further
analyzing the problem the author found out that "the discrepancies were caused by the
discrepancy correcting procedures themselves" (Rinehart, 1960). Based on these findings
he finally gives suggestions on how to improve the situation.

The first study that mathematically investigates the impact of counter measures against
inventory record inaccuracy was conducted by Iglehart et al. (1972). The authors analyt-
ically determine the optimal combination of buffer stock and inventory counts for inventory
systems with imperfect asset information (i.e., a discrepancy between the recorded inventory
and the on hand inventory) in order to minimize the occurrence of inventory shortages.
In contrast to Iglehart et al. (1972), Morey (1985) investigates, from a managerial
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point of view, how buffer stock, physical inventories and corrective actions (i.e., eliminating
the causes of inventory discrepancy) can be used in order to enable managers to have a
cost-effective means of reducing inventory discrepancies. The author therefore provides
practical and conservative guidelines that can be used by managers in order to choose effec-
tive counter measures against inventory record inaccuracy.

In their paper Ernst et al. (1993) propose an approach for controlling and monitoring
stock levels. They use the average absolute relative difference as a practical measure for
the accuracy of the inventory data and visualize it in a control chart. Because of the high
costs of inventory taking, the authors furthermore discuss the applicability of sampling
strategies.

Fleisch et al. (2005) investigate how inventory inaccuracy influences the performance of
a retail supply chain. They use a simulation model in order to show that the alignment
between physical inventory and system inventory reduces the costs that occur in a supply
chain and the stock-out quota. They furthermore briefly discuss possible methods in
order to improve inventory accuracy and suggest that RFID technology could prove very
promising for this purpose.

Gumrukcu, English, et al. (2007) investigate with a simulation of a two-echelon supply
chain with multiple items how different cycle counting strategies (i.e., how often the
counting is performed and what percentage of items is counted) impact the costs and the
data quality of the supply chain. In a second study Gumrukcu, Rossetti, et al. (2008)
elaborate their analyses further by trying out different cycle counting configurations in
order to find the best cycle counting intervals for high-demand-low-cost and low-demand-
high-cost items. They are able to show that a suitable cycle counting strategy leads to
cost savings for the entire supply chain.

Thiel et al. (2010) analyze the behavior of a continuous-review policy (Q,R) with the help
of an analytical model and a simulation model for the scenario of small and medium-sized
enterprises. They investigate the relationship between safety stock, inventory inaccuracy
and service level for varying demands.

In summary, the inaccuracy of inventory records was investigated from several angles, taking
into account the effect of non-technological countermeasures such as optimizing buffer stock
and using manual inventory counts. The next chapter examines how technology - in our
case RFID - helps to alleviate inventory record inaccuracy.

3.2.2 Inventory record inaccuracy and perfect RFID systems

Several papers have investigated the impact of RFID on inventory record inaccuracy,
assuming RFID to be a perfect technology. Kang et al. (2005) investigate automated
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inventory management processes that rely on an information system. They evaluate the
inventory accuracy at a global retailer and demonstrate with an analytical and a simulation
model that even a small undetected loss of stock can lead to a replenishment freeze and
high subsequent costs. A replenishment freeze refers to a situation in which the information
system assumes that there is inventory present even though it is not the case and fails to
trigger a replenishment. Besides other methods for compensating for the inaccuracy in the
inventory records, the authors also briefly investigate the impact of RFID. They, assume
RFID to be a perfect technology and conclude that it allows for the lowest inventory
level while simultaneously having the lowest rate of stock-outs in comparison to the other
inventory correction methods.

Lee et al. (2004) investigate the impact of implementing RFID into a supply chain with
the help of a simulation model. They investigate a manufacturer-retailer supply chain and
show that RFID positively influences the overall service level and reduces the inventory
levels. However, they propose for further research, that RFID should be expected to work
with less than 100% accuracy.

Atali et al. (2009) propose an analytical model for investigating how companies should
manage their inventory when inventory records are faulty. They show the value of inventory
visibility and try to quantify the value of tracking technologies like RFID. The authors
perform a numerical study and compare modern tracking technologies to traditional
inventory management methods. The study shows, that even small discrepancies between
the recorded and the on hand inventory can lead to lost sales due to stock-outs. The
authors conclude that RFID can help to "reduce stock-out rates without carrying excessive
and costly inventory" (Atali et al., 2009).

With the help of an analytical model Kök et al. (2007) develop an inspection and replen-
ishment policy that minimizes the total costs of the model for a finite time horizon. In a
second step, the authors also attempt to assess the value of accurate inventory information
that could be delivered by RFID. The authors conclude that although RFID can have
great benefits for the correct management of inventory, correction strategies such as those
proposed can also deliver good inventory accuracy results if a company cannot afford to
invest in RFID.

By modeling a retail supply chain with one manufacturer and one retailer Gaukler et al.
(2007) investigate the influence of implementing item-level RFID. The authors focus their
attention on the sharing of costs between the supply chain partners. Their study has
the objective to evaluate for different scenarios how the costs of item-level RFID should
be distributed between the partners in order to optimize the overall profit of the supply
chain.
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Saygin (2007) investigate RFID-enabled inventory management of time-sensitive materials.
The authors use a simulation, in order to compare different inventory management models
based on costs, service level as well as inventory and waste reduction. They show that a dy-
namic, forecast-integrated inventory model is best suited for using the data offered by RFID.
Overall the authors conclude, that RFID in combination with the dynamic inventory model
leads to reduced inventory levels and lower levels of waste.

Rekik, Jemai, et al. (2007) and Rekik, Sahin, et al. (2008) investigate the influence of
misplacement type execution errors in a retail store facing the classical Newsvendor Problem.
They propose an analytical inventory model in which a retail store is supplied by one
manufacturer. The model incorporates execution errors at the retailer leading to missing
items on the shelves of the retailer. The authors investigate what happens to the supply
chain if RFID is deployed in order to eliminate the execution errors and mathematically
prove the validity of their model. In a further paper Rekik, Sahin, et al. (2009) investigate
the impact of theft on the inventory management of a retail store. For their analysis they
compare three scenarios. In the first scenario the manager of the retail store ignores theft,
in the second scenario, the manager of the retail store is aware of the theft and uses this
knowledge in order to construct a better inventory policy and in the third scenario a perfect
RFID system is introduced and eliminates theft completely.

With a mathematical model Szmerekovsky et al. (2008) investigate the applicability of
RFID for a vendor managed inventory. They compare a scenario with continuous review
and RFID to a scenario with periodic review that does not include RFID. They show
under which circumstances RFID is beneficial for a centralized system and demonstrate
how the tag price of RFID tags can be used in order to coordinate a decentralized supply
chain.

Kok et al. (2008) perform a break-even analysis on when to introduce RFID and calculate
break-even prices for RFID tags. They discuss that the break-even prices are highly
dependent upon the costs of the products under consideration and the shrinkage that can
be eliminated with RFID.

Ustundag et al. (2009) use a simulation model of a three-echelon supply chain in order
evaluate the expected benefits of an integrated RFID solution. The model takes into
account factors such as theft, lost sales, ordering costs and labor costs. The authors show,
that the benefits from RFID are highly dependent upon the costs of the product and the
uncertainty of its demand. They also show that not all members of the supply chain benefit
equally from the implementation of RFID.

In order to perform a return-on-investment analysis for the implementation of RFID Sarac
et al. (2008) create a simulation model of a three-echelon supply chain. The authors study
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the influence of different types of RFID implementations (case-level tagging, item-level
tagging and item-level tagging in combination with smart shelves). However, they merely
conclude that the economic impact depends upon the product under consideration (fast
selling, expensive, cheap, etc.), the chosen RFID technology (e.g., smart shelves) and the
level of tagging (item-level or case-level).

In their study Wang et al. (2008) investigate the influence of RFID on a simulated
TFT-LCD supply chain. Their simulation shows that RFID leads to a decrease in the
inventory holding costs and to an increase in the rate of turnover in comparison to a
non-RFID supply chain.

Taking a look onto pharmaceutical inventory, Çakici et al. (2011) analyze the impact of
RFID on the inventory policy and the reduction of shrinkage with an analytical model.
The authors compare RFID to the barcode and perform a cost-benefit analysis for using
RFID in a radiology practice. The study concludes that RFID generates high benefits for
the investigated use case.

To summarize, all of the before mentioned studies do consider RFID to be a perfect
technology which, in our opinion, leads to an oversimplification of the technology itself and
an overestimation of the potential benefits of implementing RFID. However, there exist
some studies which take the potential problems of RFID into account. We discuss these
studies in the next section.

3.2.3 Inventory record inaccuracy and imperfect RFID systems

In contrast to the previously discussed papers, the following studies consider the problems
of RFID technology. The first paper to mention was written by Thiesse and Fleisch
(2007). The authors conduct a simulation study in order to compare shelf replenishment
policies based on manual inventories to a scenario with RFID. In contrast to the stud-
ies mentioned above, however, they consider scenarios where RFID is less than 100%
accurate. They demonstrate that the RFID-enabled process, depending on the reading
rate and hardware costs, exceeds the traditional process in terms of item availability and
cost-efficiency.

Buyurgan et al. (2010) also assume in their study that RFID is not a perfect technology.
The authors investigate how the imperfect inventory information from RFID impacts a
multi-echelon retail supply chain with the help of a simulation model. In order to counter
the imperfect read rate of the RFID hardware the authors investigate the influence of
cycle counting as a data quality measure on the supply chain. They consider scheduled
cycle counting (in ranges from weekly cycle counting over to yearly cycle counting) and
system triggered cycle counting on the inventory accuracy of the supply chain. The authors
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conclude that RFID is a valuable technology even if it does not deliver perfect inventory
information.

Condea et al. (2012) investigate RFID-enabled shelf replenishment decisions in a retail
store with case-level tagging. They use a simulation model that incorporates stochastic
demand and shrinkage. In contrast to other research their model also incorporates
bidirectional movements of inventory between the stockroom and the sales floor under
consideration. They furthermore propose and evaluate a heuristic in order to improve the
replenishment decisions. The authors conclude that choosing a suitable replenishment
policy is highly dependent upon the cost factors and the read rate of the implemented
RFID devices.

Metzger et al. (2013) mathematically analyze the influence of so called false negative
reads on the performance of RFID-based shelf replenishment policies. However, in contrast
to Condea et al. (2012) the authors consider item-level tagging and develop an inventory
control policy that copes with the problem of false negative reads by optimizing an analytical
model for an RFID-enabled infrastructure that is based on smart shelves. According to
their model, the negative impact of false negative reads is moderate for medium to high
read rates of the RFID hardware.

Similar to Condea et al. (2012) and Metzger et al. (2013), Thiesse and Buckel (2015)
investigate RFID-enabled replenishment policies on the retail sales floor. They use a
simulation model and analyze case-level tagging and item-level tagging. The authors first
evaluate a scenario with smart shelves and compare it to the traditional periodic review.
In a second step, they extend their model to evaluate backroom monitoring with an RFID
gate, as done by Condea et al. (2012). The study shows that the read rate of the RFID
hardware is not negligible and has a strong impact on the performance of the proposed
replenishment policy.

In summary, the authors of the studies we consider within this chapter are aware that RFID
is not a perfect technology and although it is intended to reduce incorrect inventory, it can
produce errors itself. Therefore, these studies suggest that the accuracy of the RFID reading
hardware must be taken into account in further research.

3.2.4 RFID-enabled robotic inventory taking

Using RFID technology helps a company streamline its inventory process, but does
not eliminate the need for manual work. As the studies in the previous sections show,
it is still necessary to carry out additional manual checks, e.g., with RFID handheld
readers, to compensate for the errors caused by an imperfect RFID system. Therefore
it would be a logical step for companies that already use RFID to automate this last

30



3.2 Related literature

step of the inventory. Robotics in particular seems to be particularly suitable for this
task.

The use of robots in the industry, especially the producing industry like automobiles is not
new. However, with recent developments also non-producing companies try to improve
their processes with the help of robots. Amazon for example acquired Kiva Systems (a
manufacturer of mobile robots) for $775 million in 2012 in order to improve inventory
management in its warehouses. In late 2015 Amazon used over 30,000 Kiva robots in
its warehouses. The robots not only helped Amazon to reduce the time for the "click
to ship" process from 75 minutes to 15 minutes, but also allowed the company to hold
more inventory in its warehouses because the robots need less space than human workers
(Bhattachaya, 2016).

Some retailers are currently experimenting with robot-based inventory. Lowe’s, an American
retailer, has developed in collaboration with Silicon Valley company Fellow Robots, a retail
robot that is able to navigate through a store’s shopping aisles, identify customers with a
3D scanner and scan the inventory on the shelves on a daily basis. The robot not only
increases the overall accuracy of stock levels, but also offers customers the service of guiding
them to the items they are looking for (McSweeney, 2016).

The RFID industry has also recently recognized the potential of robotic inventory taking
and is thus combining robotics and RFID technology. According to our knowledge, there
are currently three solutions from three different manufacturers on the market that use
RFID in combination with robotics for inventory taking. Table 3.1 gives an overview of
the available systems.

Table 3.1: Overview of RFID-based inventory robots (sources: Keonn (2016), MetraLabs
(2016), and PAL-Robotics (2016b))

Manufacturer Name Antennas Positioning Runtime Accuracy
MetraLabs Tory n.a. 3D 14h >99%
PAL Robotics StockBot 8 3D 12h n.a.
Keonn Technologies AvanRobot 12 3D 12h >99%

The German company MetraLabs offers the Tory, PAL Robotics offers the StockBot
and Keonn Technologies offers the AvanRobot. All these systems have in common that
they use RFID for item detection and for locating the items’ positions on the shop floor.
According to the manufacturers, the inventories are performed with an detection accuracy
of over 99% (Keonn, 2016; MetraLabs, 2016). Two of the systems are currently being
tested by several companies, the Tory is in use at Adler Modemärkte Ag in Germany
(MetraLabs, 2016), the StockBot from PAL Robotics is tested at Media Markt in
Barcelona, Spain as well as at the fashion company Roberto Verino (PAL-Robotics,
2016a).
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The previous research about the influence of RFID on the overall inventory accuracy we
discussed so far (see sections 3.2.2 and 3.2.3) considers several RFID hardware configurations,
ranging from, smart shelves to RFID gates, but none of the studies considers robotic
inventory taking as a data quality measure. There exist, however, a few studies that
investigate the quality of RFID-enabled robotic inventory taking. The earliest paper to
find was written by Ehrenberg et al. (2007) who perform a feasibility study within a
library. The researchers develop a robot that has the purpose to automatically scan the
shelves and to find misplaced books. The researchers demonstrate that the robot is able to
reliably detect the books on a shelf and to localize each book with an accuracy of a few
centimeters. In a similar study, R. Li et al. (2015) show that a robot is able to find books
with an accuracy of 98.5%.

Miller et al. (2010) perform a proof-of-concept for an automated asset locating system
and show that their system is able to detect and map all 143 assets that it has to map for
their experiment with a mean position error of about 80 cm.

Other researchers focus on robotic inventory in retail stores. Morenza-Cinos et al. (2017),
the developers of the AvanBot from PAL Robotics, published a study on the development
of their system. They report the results from their experiments and compare the inventory
accuracy of the AvanBot to the accuracy of a handheld-based RFID-enabled inventory.
After selecting certain areas of the store for the experiment, the AvanBot beats the handheld
inventory in all of them with regard to the inventory accuracy. The authors reason, that
the low accuracy of the RFID-enabled handheld inventory must be explainable by human
errors. While the robot always achieved an accuracy of 99.4% and higher, the accuracy of
the handheld inventory ranged from 44.1% for the women’s wear to 99.51% in the jeans
section of the store.

However, there are also studies that investigate RFID-enabled robotic inventory taking, but
show a different picture. Schairer et al. (2008) propose a system for an RFID-enabled
inventory robot and test it in a simulated supermarket. However, the tests show that
the robot only achieves a detection accuracy of 60% and therefore has to drive along the
shelves several times in order to achieve a higher accuracy.

Zhang et al. (2016) develop a mobile robot for inventory taking in retail stores. The
experimental results show, that the robot works efficiently but only achieves an average
overall inventory accuracy of 87.72% (ranging from 84.05% to 100% for different item
categories). The researchers conclude, that the structure of the store areas heavily influences
the results, leading to the obtained accuracies.

At a first glance, the advantages of robotic inventories seem obvious. Instead of just
performing periodic cycle counts, a robot can scan a whole sales floor every day without
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needing to be paid. Furthermore, robots do not have the problem of motivation and
need no incentives in order to perform their work properly. However, the studies on the
effectiveness of robotic inventory taking are mixed. While the manufacturers and some
researchers claim detection accuracies of 98% and more (Ehrenberg et al., 2007; R. Li
et al., 2015; Miller et al., 2010; Morenza-Cinos et al., 2017) other studies show much
worse results (Schairer et al., 2008; Zhang et al., 2016).

If we summarize the research on RFID-enabled robotic inventory taking, it still unclear
if the benefits of using robots for inventory taking really outweigh the associated costs
and risks. Even though studies like Morenza-Cinos et al. (2017) suggest that robotic
inventory taking might be beneficial in some cases we do not have much evidence that it will
always outperform traditional RFID-enabled cycle counting with handheld readers. More
- especially manufacturer-independent - research is necessary to clarify whether robotic
inventory taking is really superior to other approaches. In order to contribute to this
stream of research, we perform a simulation study to better understand the pros and cons
of using RFID-enabled robotic inventory taking and compare it to the traditional approach
with RFID-enabled handheld devices. We therefore evaluate its economic impact on a retail
store and discuss the results from a managerial perspective.

3.3 Model building and evaluation

The following sections first describe the general assumptions of our model and its technical
implementation. We then describe and evaluate the various relevant scenarios and compare
them with each other.

3.3.1 General model assumptions

We consider a retailer who uses RFID with item-level tagging. Overall, the retailer’s main
objective in our model world is to limit costs while simultaneously reaching a reasonable
service level (i.e., fulfilling as much customer demand as possible). We do not take
monetary costs into account, but rather evaluate cost factors such as the number of
replenishments required to achieve a certain service level. Our hypothesis is that a good
in-store replenishment process can only be carried out on the basis of high quality inventory
data from the retailer’s inventory monitoring system.

Table 3.2 shows the most important model parameters. The available shelf space on the
sales floor (𝑆) is the maximum number of items which can be physically on the shelves.
The current physical inventory is given by 𝐼p while the virtual inventory - which denotes
the inventory of the RFID-system - is given by 𝐼v. The virtual inventory is influenced by
the RFID-enabled replenishment gate which works with the read rate 𝜑. The accuracy of
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the inventory taking process using handheld readers or the inventory robot is denoted as
𝛷. A replenishment is triggered as soon as 𝐼v reaches the replenishment threshold 𝑠. The
demand is generated according to the demand rate 𝜆 and the rate of shrinkage is given by
the parameter 𝜀. Furthermore, we keep track of the number of demanded items 𝑦c, the
number of sold items 𝑦u, lost sales 𝑦L and the number of stock-outs 𝑦S during the time
horizon T of a simulation run.

Table 3.2: Model parameters

Parameter Description
𝑠 Replenishment threshold
𝑆 Shelf space
𝐼v Virtual inventory level of the sales floor
𝐼p Physical inventory level of the sales floor
𝑦c Number of demanded items
𝑦u Number of sold items
𝑦L Number of lost sales
𝑦S Number of stock-outs
𝑇 Simulation horizon
𝜆 Demand rate per day
𝜀 Shrinkage rate
𝜑 RFID read rate of the replenishment gate
𝛷 Inventory taking accuracy of the robot / handheld
𝛽 Beta service level
𝑅 Review cycle

One performance measure of the retailer is the service level 𝛽 which we define as the
fraction of filled customer demand:

𝛽 = 𝑦c − 𝑦L
𝑦c

(3.1)

In order to evaluate the RFID-enabled robotic inventory and to compare it with RFID-enabled
cycle counting with handhelds, we define the following model scenarios:

• Scenario 1: Traditional RFID infrastructure - no additional data quality measures

• Scenario 2: RFID-enabled cycle counting with handhelds

• Scenario 3a: Perfect RFID-enabled robotic inventory taking

• Scenario 3b: Perfect RFID-enabled robotic inventory taking (no replenishment gate)

• Scenario 4: Imperfect RFID-enabled robotic inventory taking (no replenishment gate)

Scenario 1, which serves as a benchmark, describes a traditional RFID infrastructure where
the store manager is not aware of the flaws of RFID technology and does not perform any
additional data quality measures. In scenario 2 the same infrastructure is present, but

34



3.3 Model building and evaluation

the store manager is aware of the imperfect read rate of the RFID hardware and advises
the employees to perform cycle counts with RFID-enabled handheld readers every four
weeks. Scenario 3 and 4 evaluate a retail store where the inventory is controlled by an
RFID-enabled inventory robot.

While scenario 1 serves as a starting point and enables us to illustrate how additional data
quality measures generally influence an RFID-enabled process, our main goal is to compare
scenario 2 with scenario 3 and 4 and to evaluate the benefits of an RFID-enabled robotic in-
ventory in general. First, we take a look at each scenario and perform an exploratory analysis
for each case. We then compare the scenarios with each other.

3.3.2 Technical implementation

In order to develop the model as a software program we used the programming language
Python and the package SimPy which was developed for discrete event simulation. SimPy
uses Python’s generator functions in order to simulate discrete events with simulated
objects, like customers or vehicles. Furthermore, it can be used in order to model different
types of shared resources like for example gas stations, production facilities or checkout
counters (SimPy, 2017).
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Parameter Settings

Model Scenarios

Model Preparation Model Run

Evaluation

Visualization

SQL
DB Queries

Key figures and
metrics for each
simulation run.

Standard Tools

Figure 3.1: Simulation workflow
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Figure 3.1 gives an overview of our simulation and evaluation approach. We first define
certain model scenarios and define for each scenario a set of parameters which are used
in order to configure our simulation. Via the parameters, we can, e.g., configure, if
there is a replenishment gate between stockroom and sales floor, the read rate of the
replenishment gate and if there are any data quality measures performed like for example
cycle counting.

Each set of parameters is then used to run our simulation several times. We save the results
into an SQLite database. The results of the simulation runs can then be evaluated using
standard tools such as SQL or the statistical programming language R. In the following, we
use 100 repetitions for our analyses for each set of parameters.

3.3.3 Scenario 1: Traditional RFID infrastructure - no additional data quality measures

The first scenario under consideration serves as a benchmark. To built upon the existing
work from Condea et al. (2012) and Thiesse and Buckel (2015) the model comprises
uncertain demand, shrinkage, item-level tagging and imperfect RFID hardware. Item-level
tagging means, that each individual item is equipped with an RFID tag and can be
identified with the help of a unique identifier. The retailer of our model world does not
carry out any further data quality measures other than the use of an RFID infrastructure
(i.e., no cycle counting and no robotic inventory). This scenario serves as a baseline in order
to estimate the effects of additional data quality measures on the economic performance of
our model store.
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Returned Items
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RFID Gate

Sales Floor Stockroom
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Sales
Theft

 Replenishment 
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Figure 3.2: Scenario 1: Traditional RFID infrastructure - no additional data quality measures
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Figure 3.2 illustrates the considered retail store with all installed RFID readers. Our model
store has similarities to the models which were used by Thiesse and Buckel (2015) and
Condea et al. (2012). The store is composed out of a sales floor and a stockroom. In
order to distinguish the recorded sales floor inventory level from the stockroom inventory
level, an RFID-enabled replenishment gate is positioned between these two areas. We
assume, that the store immediately receives a shipment from the distribution center after an
employee takes items from the stockroom. Consequently, the stockroom behaves as if it had
unlimited inventory and was always able to replenish the sales floor. Also we assume the
sales floor to have a maximum capacity 𝑆 for holding garments which cannot be extended.
This means if the inventory system triggers a replenishment request with more items than
the sales floor is able to hold, then an employee has to bring the excess items back to the
stockroom (after noticing this fact on the sales floor). The items are then returned to
the inventory of the stockroom. We furthermore assume that the replenishments received
from the distribution center are detected with an accuracy of 100%. We decided for this
simplification, because the replenishment process between the distribution center and the
stockroom is not in scope of our analysis.

It is possible that there is on hand inventory in the stockroom while there is no inventory
on the shelves of the sales floor. We refer to such a situation as an in store but out of
shelf situation. We do not include an RFID-enabled electronic article surveillance gate
because its influence lies out of scope of our analyses. Finally, our analyses underly the
assumption, that the RFID system is in full control of the replenishment process without
human interference (e.g., employees do not replenish articles themselves that are obviously
out of stock because they notice that a shelf is empty).

To make our research more comparable with the works of other researchers, we base our
analysis on a medium selling article with an average demand of 𝜆 = 10 as it was used by
Condea et al. (2012) and Thiesse and Buckel (2015). Similar, to the previous works on
RFID-enabled replenishment policies we assume Poisson distributed demand 𝜆 and lost
sales 𝑌𝐿. The shelf space for the sales floor inventory 𝑆 is set to 24. In order to analyze
different performances of the RFID-enabled replenishment gate, the read rate is varied
between 10% and 100% of detection accuracy.

The National Retail Federation estimates that shrinkage makes up for 1.38% of total retail
sales. The largest shares are attributed to shoplifting with 38% and to internal theft with
34.5% (Allen, 2015). For the item under consideration, we assume a shrinkage rate 𝜀 of
2% of the total expected demand during our simulation horizon which is slightly above
the average percentage reported by the National Retail Federation but still a realistic
value for certain items. It is furthermore in alignment with Thiesse and Buckel (2015)
and Condea et al. (2012) and thus makes our research more comparable to previous
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research. Also, taking more extreme values is more likely to clearly show the effects of
RFID-enabled data quality measures on the in-store replenishment process. Furthermore,
it may be interesting to evaluate how different data quality measures influence out of stock
situations and the effectiveness of the replenishment policy of an item that is stolen quite
often.

The time horizon of the simulation T is set to 300 days which roughly corresponds
to the opening times of a fashion retail store in Germany for a whole year (including
Saturdays). We decided against a longer time horizon because we assume that once a year
a traditional full inventory takes place in every retail company. This manual inventory
should theoretically set the difference between on hand inventory and system inventory
to zero and thus restore the start conditions of a simulation scenario at the end of each
year.

3.3.3.1 Exploratory analysis

Our first objective is it to analyze how the RFID-enabled in-store replenishment process
behaves for different parameter settings of the replenishment threshold 𝑠 and the read rate
of the gate 𝜑 if a store manager does not perform any additional data quality measures.
The retail manager uses an 𝑠/𝑆 policy. This means that as soon as the inventory reaches
or drops below the threshold 𝑠, the sales floor is replenished up to the maximum shelf
space 𝑆. We conduct the first exploratory analysis based on the observation of lost sales
and the corresponding service levels. We therefore consider in the following the service
level 𝛽, the total number of triggered replenishments, the lost sales, the number of excess
items, the number of return transports to the stockroom as well as the occurrence and
duration of replenishment freezes.
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Figure 3.3 shows how the physical inventory (on hand inventory) and the virtual inventory
(system inventory) may behave over a simulation run. In this particular example, the
physical inventory and the virtual inventory first move in sync but start to deviate from
each other over time. This difference is caused by the detection error of the replenishment
gate and by theft. Between day seven and day eight the physical inventory drops below the
replenishment threshold of six items and drops further to zero between day eight and day
nine. The virtual inventory, however, does not follow in the same pace and consequently
stays above the replenishment threshold. This event causes a so called replenishment freeze.
We define a replenishment freeze as a situation in which no further replenishments are
triggered by the inventory system because the system inventory is above the replenishment
threshold and the on hand inventory is at zero. The situation cannot be resolved without
additional means like for example cycle counting in order to align the system inventory
with the on hand inventory.

There is also a second, less obvious irregularity. Even though, according to our replenishment
policy, shelves should be refilled to reach the maximum capacity of 𝑆, this hardly ever
happens. This is because the replenishment amount is calculated as the difference between
the system stock and the available shelf space. As in the example of the figure 3.3 the virtual
inventory always remains above the physical inventory, which leads to a replenishment of
too few articles.

We first analyze for scenario 1 how much sales are lost for different levels of the replenishment
threshold 𝑠. In reality it is a non-trivial task for a retailer to determine the optimal
replenishment threshold because the demand is most often not known for many types
of articles and the costs for not having certain articles on the sales floor are hard to
estimate. For example, customers may decide to just buy a related article, thus there
may not occur any lost sales, on the contrary a customer could however also visit a
rivaling store. In the latter case the lost sales amount would be equal to the article’s sales
price.

We simulated read rates of the gate in steps of 10%-units, where 10% denotes the lowest
detection accuracy we evaluated and 100% the highest (𝜑 ∈ [10%, 20% ... 100%]). A read
rate of 10% means that the replenishment gate will on average be able to detect 10% of all
items transported through it. A read rate of 100% resembles a perfect gate that works
without any flaws and consequently does not miss any items.

Figure 3.4 illustrates the lost demand for the simulation of scenario 1 for all possible
replenishment thresholds. For each threshold we repeated the simulation 100 times and
averaged the lost demand. The figure reveals a fact that may seem surprising at a first
glance. The worse the accuracy of the replenishment gate, the less demand is lost in the
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simulation. This is also reflected in the average achieved service levels for each of the
different read rates of the gate (see figure 3.5).
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Figure 3.4: Lost demand per replenishment threshold 𝑠

Visualizing the average number of triggered replenishments for each read rate of the gate
(see figure 3.6) we can observe, that in the cases with lower read rates (i.e., 10% to 50%)
much more replenishments are triggered than in the cases with higher read rates (i.e., 60%
and more). As in our model a replenishment of the sales floor inventory can be performed
once a day, a maximum of 300 replenishments is possible over the time horizon 𝑇 if the
retailer replenishes every day.
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Figure 3.5: Service level 𝛽 per replenishment threshold 𝑠

We can conclude from the observation of the triggered replenishments and the service level
𝛽, that the better service levels, in cases with low read rates of the replenishment gate,
are related to a high number of replenishments. However, in reality it is not feasible to
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replenish everything every day. In the cases with low read rates, many replenishments
are probably triggered falsely by the system because of a divergence between the system
inventory and the on hand inventory. We therefore take a look at the excess items, i.e., the
items that were transported to the sales floor but had to be taken back to the stockroom
due to the limited sales floor capacity.
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Figure 3.6: Number of replenishments per replenishment threshold 𝑠

Figure 3.7 shows that low read rates lead to high numbers of excess items - i.e., items that
were replenished due to faulty inventory records. Because we assume in our model that
it is not possible to overstock the sales floor, employees have to use their labor time to
bring the excess items back to the stockroom where they have to put them on the intended
places.
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Figure 3.7: Excess items per replenishment threshold 𝑠

The numbers of the return transports to the stockroom are reported in figure 3.8. Similar
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to the number of excess items, the number of return transports is higher in those simulation
runs in which the read rate of the replenishment gate is low. This is caused by the RFID
system which systematically underestimates the inventory on the sales floor if the read
rate of the replenishment gate is low.
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Figure 3.8: Return transports per replenishment threshold 𝑠

In order to find out if the low service levels and low number of replenishments for high
read rates of the replenishment gate may be caused by replenishment freezes, we compare
the days with replenishment freezes that occurred during the simulation runs for each read
rate and each replenishment threshold (see figure 3.9).
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Figure 3.9: Replenishment freeze duration per replenishment threshold 𝑠

Our results show, that a high replenishment threshold and a low read rate of the replen-
ishment gate lower the duration of replenishment freezes during a simulation run. This
stems mainly from the fact, that in the cases with low read rates, the RFID system does
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not recognize that a replenishment of a particular item was performed and thus triggers
several replenishments after another. For example in the case of an average read rate of
10%, only one out of ten items is recognized during a replenishment and thus the system
will very likely trigger another replenishment the next day.

If the replenishment gate works with a high read rate it notices most of the items which
travel to the sales floor and back. However, the items that are lost through shrinkage are
not recognized by the system. Also when articles have to be taken back to the stockroom,
the gate has another opportunity to miss them (eventually leading to a high sales floor
overstock according to the virtual inventory). While scenario 1 only serves as a benchmark
for the other scenarios it demonstrates that additional data quality measures are necessary
for an RFID-equipped retailer in order to be able to trust the inventory data of its RFID
system.

3.3.3.2 Conclusions for scenario 1

Not surprisingly, the benchmark scenario is not satisfactory from the perspective of a
manager. As table 3.3 shows, a good working RFID-enabled replenishment gate does not
by itself lead to a high service level. In the case of a perfect gate (i.e., with a read rate
of 100%) the maximum achievable service level 𝛽 was just 63%, meaning that 37% of all
customer demand was lost in the best case. This mainly stems from the occurrence of long
replenishment freezes which are not resolved till the end of the simulation. In the cases
with a better service level, many return transports have to be performed by the store staff
in order to transport the excess items back to the stockroom.

Table 3.3: Overview statistics of scenario 1

𝜑 min. 𝛽 max. 𝛽 Avg. days with freeze Std. freeze
10% 1% 100% 93.49 120.71
20% 1% 100% 110.31 120.87
30% 1% 100% 122.65 112.27
40% 1% 100% 139.27 101.29
50% 1% 99% 156.86 93.74
60% 1% 95% 172.71 88.01
70% 1% 87% 185.66 83.04
80% 1% 78% 196.13 78.51
90% 1% 77% 204.45 73.51
100% 1% 63% 213.20 70.17

If the retailer does not undertake any additional data quality measures in order to account
for the effects of shrinkage and the imperfectness of RFID, the economic performance
of the retail store may not comply with the high expectations that are put into RFID
technology. Consequently, additional measures are necessary in order to better align the
virtual inventory with the physical inventory of a retail store.
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3.3.4 Scenario 2: RFID-enabled cycle counting with handhelds

In scenario 2 we investigate the influence of RFID-enabled cycle counting on the simulated
retail store. Besides, this additional data quality measure the scenario is similar to
scenario 1. RFID-enabled cycle counting is performed in predefined intervals on the sales
floor by the store staff with handheld readers in order to align the system inventory with
the actual on hand inventory.

In order to be able to use realistic intervals for the RFID-enabled cycle count (i.e., counting
cycles that are actually feasible in a large retail store) a large German fashion retailer
supplied us with its RFID cycle counting plan for the year 2017 for all of its planning
groups. We use these intervals as the basis for simulating the RFID-enabled cycle counts.
The intervals for the RFID-enabled cycle counts for different product groups range from
four weeks for some groups to eight weeks for the majority of groups for the store under
consideration. Since we assume a six day week from Monday to Saturday, we translate
these intervals for our simulation into cycle counts every 24 days or every 48 days. To be
better able to compare RFID-enabled cycle counting against a robotic inventory we decided
to simulate an RFID count that is performed every 24 days.
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RFID Gate
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Figure 3.10: Scenario 2: RFID-enabled cycle counting with handhelds

In order to simplify the model for our first analysis, we assume that the RFID-enabled
cycle counting is carried out by well-trained employees who are able to capture all articles
perfectly. This assumption allows us to better compare the cycle counting against the
robotic inventory without having to consider different levels of accuracy for the respective
inventory taking methods.
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3.3.4.1 Exploratory analysis

We simulate RFID-enabled cycle counting with intervals of four weeks (assuming six
day weeks). Figure 3.11 illustrates the average service level that is reached for each
replenishment threshold during 100 simulation repetitions.
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Figure 3.11: Service level 𝛽 per replenishment threshold 𝑠 for 𝑅 = 24 days

As expected, the cycle counting aligns the system inventory to the on hand inventory
every 24 days, leading to closer service levels between the different simulated read rates
of the replenishment gate. Consequently, the RFID cycle count makes choosing the right
replenishment threshold easier for a retailer because the read rate of the replenishment
gate is less relevant and can thus be neglected when choosing a threshold in order to reach
a satisfactory service level.
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Figure 3.12: Replenishments per replenishment threshold 𝑠 for 𝑅 = 24 days

With regard to the replenishments per respective threshold, high read rates of the gate
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lead to fewer replenishments than low read rates (see figure 3.12). In comparison to
scenario 1 (see figure 3.6), the RFID inventory system performs at least as many or more
replenishments.
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Figure 3.13: Excess items per replenishment threshold 𝑠 for 𝑅 = 24 days

The number of excess items (i.e., items falsely transported to the sales floor) is reported
in figure 3.13. Surprisingly, the number of excess items is higher than in comparison to
the figures reported in scenario 1, especially for the low read rates of the replenishment
gate.
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Figure 3.14: Return transports per replenishment threshold 𝑠 for 𝑅 = 24 days

The overall number of return transports the employees had to perform (see figure 3.14) also
increased in comparison to scenario 1. These numbers are influenced by several factors,
such as the difference between the physical and virtual inventory, the influence of theft
and the difference between the physical stock situation and the available shelf space 𝑆
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at a certain point in time during a simulation run. Even though it might seem that
RFID-enabled cycle counting leads to unnecessary work, one major reason for the rise
of excess items and return transports is quite logical. Scenario 1 had large timeframes
with replenishment freezes in which no further replenishments were triggered and in which
consequently no return transports were performed. Less replenishments lead to less excess
items and to less return transports. In order to verify our conclusion we take a look at the
actual number of days on which replenishment freezes occurred during the simulation of
scenario 2. Figure 3.15 shows the average number of days with replenishment freezes for
each read rate of the replenishment gate. Comparing figure 3.14 with figure 3.15 we can
see that a decrease of the duration of replenishment freezes comes with an increase in the
number of return transports.

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Replenishment Threshold

D
ay

s 
w

ith
 R

ep
le

ni
sh

m
en

t F
re

ez
e

Gate: Read Rate

● 10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 3.15: Replenishment freeze duration per replenishment threshold 𝑠 for 𝑅 = 24 days

If we set the replenishment threshold high enough, there happen almost no replenishment
freezes. In our case the threshold for all read rates of the replenishment gate that prevents
freezes is roughly a threshold of ten articles. Furthermore, the total duration of the
replenishment freezes is capped at a maximum of four weeks (assuming a six day week)
regardless of the read rate of the gate, because every four weeks the system inventory is
corrected by an RFID-enabled cycle count. Consequently, RFID-enabled cycle counting
reduces the duration of replenishment freezes and the likelihood of a replenishment freeze
to occur when compared to scenario 1 in which no additional data quality measures were
performed by the store manager.

3.3.4.2 Conclusions for scenario 2

All in all, the four-weekly RFID-enabled cycle counting in our simulation enables the
retailer to achieve a maximum service level 𝛽 of 100% regardless of the read rates of the
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RFID-enabled replenishment gate (see table 3.4). This means for each read rate exists a
replenishment threshold that leads to a service level of 100% which was not the case in
scenario 1. Also, the minimum service level 𝛽 regardless of the read rate of the replenishment
gate is at least 10 percentage points higher than in scenario 1.

Table 3.4: Overview statistics of scenario 2

𝜑 min. 𝛽 max. 𝛽 Avg. days with freeze Std. freeze
10% 22% 100% 26.75 56.31
20% 25% 100% 26.15 50.92
30% 21% 100% 21.80 43.48
40% 21% 100% 16.86 38.64
50% 22% 100% 14.63 38.24
60% 18% 100% 14.78 40.23
70% 14% 100% 15.58 42.07
80% 18% 100% 17.26 44.94
90% 13% 100% 19.79 48.64
100% 17% 100% 21.04 49.94

Comparing the results further to scenario 1, the average number of days with replenishment
freezes decreased. Due to the cycle counting intervals, replenishment freezes cannot last
longer than 24 days. Thus we conclude that RFID-enabled cycle counting in our model not
only mitigates the problem of replenishment freezes but also helps to effectively utilize the
replenishment gate because it reduces the negative effects of shrinkage on the inventory
data. Thus high read rates of the replenishment gate, in contrast to low read rates, lead to
high service levels with less replenishments, less excess items and less return transports.
However, with RFID-enabled cycle counting the service levels that can be reached with
the respective replenishment thresholds are closer to each other independently of the read
rate of the replenishment gate (see figure 3.11) which means that the overall importance of
the gate is weakened compared to scenario 1.

3.3.5 Scenarios 3a and 3b: Perfect RFID-enabled robotic inventory taking

In scenario 3, we investigate RFID-enabled robotic inventory taking. Scenario 3a in-
vestigates a daily robotic inventory of all items in a store with an RFID gate in place
while scenario 3b investigates what happens when the replenishment gate between the
stockroom and the sales floor is removed. For Scenario 3a and b, we assume that the
manufacturers’ claims are correct and that RFID-enabled inventory robots can actually
achieve an inventory accuracy of more than 99%. We therefore assume that the robot of
our model is able to reconcile the system inventory with the existing inventory without
errors.

In scenario 3a, a robot drives every night through the hallways of the store and scans
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the surrounding articles, aligning the on hand inventory with the system inventory. It
differentiates to the RFID-enabled cycle count through the frequency of counts, because a
daily handheld based inventory of a large retail store would not be economically reasonable.
However, we assume that the robotic inventory can be performed daily because it does not
cause additional costs (the consideration of acquisition costs are out of the scope of our
analysis).
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Figure 3.16: Scenarios 3a and 3b: Perfect RFID-enabled robotic inventory taking

Figure 3.16 illustrates scenario 3 in which the store manager substitutes the employee
with the handheld reader with an autonomous RFID-enabled inventory robot. This
substitution allows a much higher frequency of the inventories than in the human dependent
case. In scenario 3b the manager of the retail store has decided to not implement a
replenishment gate but to only use the robot for determining the number of articles on the
sales floor.

3.3.5.1 Exploratory analysis

We start our analysis with an evaluation of the service level for each read rate of the
replenishment gate and for each replenishment threshold. Taking a look at the achieved
service levels of scenarios 3a and b it can be seen, that a daily robotic inventory lessens
the influence of the replenishment gate.

Figure 3.17 illustrates the relationship between the replenishment threshold 𝑠 and the
service level 𝛽 for the RFID-enabled robotic inventory. As the figure shows, the service
level is almost identical for all read rates of the replenishment gate, including the case
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without an RFID gate. The higher the threshold for the replenishment, the higher is the
average achieved service level for all simulated read rates of the replenishment gate. The
daily robotic inventory seems to render the replenishment gate almost irrelevant. It is even
more remarkable that the minimum service level never drops below 79% regardless of the
selected threshold, while in scenario 2 the service level is in some cases below 40%. This
could be due to the fact that during the time horizon of the simulation, no replenishment
freezes occurred.
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Figure 3.17: Robotic inventory - Service level 𝛽 per replenishment threshold 𝑠

Taking a look at the average number of replenishments that are triggered for each threshold
(see figure 3.18) it is notable that the number of replenishments is only dependent on the
chosen threshold but not on the read rate of the gate.
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Figure 3.18: Robotic inventory - Replenishments per replenishment threshold 𝑠

Considering, that the return transports and the number of excess items were a larger
problem in the previous scenarios, the daily robotic inventory eliminates them com-
pletely.

50



3.3 Model building and evaluation

3.3.5.2 Conclusions for scenarios 3a and 3b

Table 3.5 shows that, no replenishment freezes occurred during any of the simulations
with daily robotic inventory. This is because the robot aligns the system inventory with
the on hand inventory over night, before the RFID system checks the inventory level and
triggers the replenishment. Consequently, the situation necessary for a replenishment
freeze (i.e., the system inventory is above the replenishment threshold and the physical
inventory is at zero) cannot occur. The maximum achievable service level 𝛽 is 100% for
each scenario under consideration. Furthermore, the minimum achievable service level is
79%, independent of the read rate of the replenishment gate. As we have seen in figure 3.18
the average number of replenishments per scenario is almost equal for each read rate of
the replenishment gate and even for the case without a replenishment gate (𝜑 = 0%).
Consequently, if a retailer performs a daily (perfect) robotic inventory, a replenishment
gate seems irrelevant.

Table 3.5: Overview statistics of scenario 3a and 3b

𝜑 Min. 𝛽 Max 𝛽 Avg. days with freeze Std. freeze
0% 80% 100% 0.0 0.0
10% 80% 100% 0.0 0.0
20% 79% 100% 0.0 0.0
30% 79% 100% 0.0 0.0
40% 80% 100% 0.0 0.0
50% 80% 100% 0.0 0.0
60% 80% 100% 0.0 0.0
70% 79% 100% 0.0 0.0
80% 80% 100% 0.0 0.0
90% 79% 100% 0.0 0.0
100% 79% 100% 0.0 0.0

To conclude, the daily robotic inventory makes the replenishment process very exact, as it
eliminates falsely triggered replenishments and excess items. This indirectly reduces the
workload of store staff by improving the overall quality of inventory data.

3.3.6 Comparison of scenarios 1, 2 and 3b

We compare scenario 1 (no data quality measures) with scenario 2 (RFID-enabled cycle
counting) and scenario 3b (robotic inventory without replenishment gate). We excluded
scenario 3a from the comparison, because its results were almost similar to scenario 3b.
For our comparison we focus on the read rates between 80% and 100% of accuracy of the
replenishment gate, since this range appears realistic when looking at the literature (see
section 3.2.4) and based on the talks with the retailer that provided us its cycle counting
plan. Figure 3.19 illustrates the achieved service levels for all scenarios under consideration.
If we solely compare the scenarios with regard to their beta service levels it is clear, that the

51



Chapter 3 Evaluating RFID-enabled robotic inventory taking

benchmark scenario always performs worse than the scenario with the RFID-enabled cycle
count which in turn always performs worse or at least equal to the scenarios with daily
robotic inventory taking. This means, that if a retailer chooses to use robotic inventory
taking, the retail store will always achieve a higher service level for its products than with
handheld based cycle counting. Also the retailer will have a higher margin for error when
deciding to choose a certain replenishment threshold because even in the worst case the
robotic inventory leads to a service level of 79% while the other scenarios have a minimum
of 25% (scenario 2) or 1% (scenario 1).
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Figure 3.19: All scenarios - Service level 𝛽 per replenishment threshold 𝑠

Another aspect of the scenarios is the occurrence of replenishment freezes. Figure 3.20
depicts that the days with replenishment freezes are much more frequent in scenario 1
than in scenario 2. Consequently, we can state that (a perfectly performed) RFID-enabled
cycle count is a good means in order to reduce this problem. However, there are still
circumstances in which this method can lead to replenishment freezes. In contrast, a daily
robotic inventory - assuming the robot detects all items on the sales floor - eliminates
the replenishment freezes completely. We can consequently state, that with regard to
preventing replenishment freezes, doing nothing (scenario 1) is inferior to performing
an RFID-enabled cycle count every four weeks (scenario 2) which is clearly inferior to
performing a robotic inventory every day (scenario 3).

Another aspect to compare between the respective scenarios is the occurrence of falsely
transported items and the connected problems of return transports to the stockroom.
Figure 3.21 shows the number of excess items transported to the sales floor. We can see
from the figure that the perfect robotic inventory always reaches zero excess items and is
in this aspect comparable to the scenarios with a replenishment gate working with a read
rate of 100%. Also, lower read rates of the gate lead to higher amounts of excess items
in the scenarios under investigation (except for scenario 3). It thus might appear that
scenario 1 is superior to scenario 2, as the number of excess items is always smaller than in
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scenario 2, for example, in the case of a replenishment gate with a read rate of 80%. In
scenario 2, the number of excess items is about four times higher than in scenario 1, but
the lower number of excess items for scenario 1 is mainly caused by the higher number of
replenishment freezes and without replenishments, no excess items can occur. However,
the figure shows us that a higher read rate of the gate leads to fewer excess items and
furthermore, that a perfect daily robotic inventory eliminates the occurrence of excess
items independently of a replenishment gate.
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Figure 3.20: All scenarios - Replenishment freeze duration per replenishment threshold 𝑠

Based on our first analysis a daily robotic inventory, assuming the robot reaches a detection
accuracy of 100%, is superior to other data quality measures. If we assume that the promises
of the manufacturers of more than 99% of detection accuracy are true, then retailers should
definitely go for robotic inventory taking. However, we also have to consider the case that
RFID-enabled robotic inventory taking could be erroneous and be aware of the consequences.
We therefore take a more skeptical perspective in scenario 4 and evaluate what happens if
RFID-enabled robotic inventory taking becomes imperfect.
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Figure 3.21: All scenarios - Excess items per replenishment threshold 𝑠
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3.3.7 Scenario 4: Imperfect RFID-enabled robotic inventory taking

We could show in section 3.3.6 that a perfectly performed daily robotic inventory without an
additional replenishment gate is superior to a perfectly performed four weekly RFID-enabled
cycle counting strategy in combination with an RFID gate working with 100% detection
accuracy. However, as we report in our literature review (see section 3.2.4) robotic inventory
taking does not always work perfectly. We therefore evaluate the influence of an imperfect
RFID-enabled robotic inventory on the economic performance of our model store. In order
to better understand the influences of an imperfect robotic inventory, we first have to
remind ourselves on what an inventory actually does: An inventory aligns the system
inventory with the on hand inventory. More concretely the "old inventory" in the system
is "set obsolete" and the new inventory becomes the actual system inventory. Out of
this reason the inventory robot (assuming daily inventories) renders an RFID gate less
important because it basically "overwrites" the data generated from the gate with the data
from its next inventory. We therefore conduct several simulation runs with an imperfect
inventory robot. As we know from the literature and the data from the manufacturers, the
reported accuracies range from 60% to 99%. To get a comprehensive picture we decided to
evaluate the following accuracies 𝛷 of the inventory robot:

𝛷 ∈ [10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97%, 99%] (3.2)
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Figure 3.22: Service level 𝛽 per replenishment threshold 𝑠

We also simulate worse detection rates for the inventory robot than the literature indicates
to see how the model behaves in the worst case. Assuming the same set up as in scenario 3b
we first evaluate the reached service level for each simulated replenishment threshold. We
do not consider a replenishment gate because we have already shown in section 3.3.5.2 that
the daily robotic inventory renders its influence to almost zero. As figure 3.22 shows, the
service levels do not drop below 79% (for 𝑠 = 0).
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Lower levels of accuracy lead to higher service levels. For example a detection accuracy
of 10% leads to a higher or equal service level as an accuracy of 20% (dependent on the
chosen replenishment threshold). This is due to the fact that more replenishments are
triggered in these cases, as figure 3.23 shows. However, the better service levels are bought
expensively with more excess items (see figure 3.24) and more return transports to the
stockroom (see figure 3.25).
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Figure 3.23: Replenishments per replenishment threshold 𝑠

Our analysis also reveals a problem of robotic inventory taking. A slight deterioration of
the robot’s detection accuracy, i.e., loosing a few percentage points of accuracy, doubles
and triples the number excess items and return transports. A retailer has to be aware
of this fact as it influences the reliability of the RFID system. This leads to indirect
costs because employees will perform unnecessary replenishments and have to take care
of the items which have to be taken back to the stockroom. Consequently, a higher
accuracy of the inventory robot leads to less triggered replenishments per respective
threshold.
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The most surprising fact about the RFID-enabled robotic inventory taking is, that replen-
ishment freezes are completely eliminated independently of the accuracy of the inventory
robot. What might seem surprising at the first glance has a reasonable explanation which
we illustrate in figure 3.26. The reason for the elimination of replenishment freezes simply
is, that the robot checks the inventory daily thus eliminating any situations in which a
replenishment freeze may occur.
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Figure 3.25: Return transports per replenishment threshold 𝑠

As the example in figure 3.26 shows, the virtual inventory is at the level of 10 units before
the inventory of the robot and the physical inventory already dropped to zero. This is
according to our definition a replenishment freeze if it is not resolved before the next
replenishment control check by the inventory system. However, as soon as the inventory
robot performs its inventory, the virtual inventory is set to zero and is thus below the
threshold of 5 units of our example. Consequently, the requirements for a replenishment
freeze are resolved.

Before inventory After inventory

Virtual: 10

Physical: 0

Threshold: 5

Virtual: 0

Physical: 0

Threshold: 5

RFID

The robot performs
its inventory with an 
accuracy between 
0 to 100%.

This constellation will lead to 
a replenishment freeze if not 

resolved.

Independent of the robot’s 
accuracy, the robot will set 

the virtual inventory to zero!

A complete 
replenishment of the 
sales floor will be 
performed.

Figure 3.26: Explanation of why no replenishment freezes can occur when using robotic
inventory
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Interestingly, the accuracy of the inventory robot is irrelevant for resolving replenishment
freezes. We know that the robot reads the articles with an accuracy that is between 0% and
100%. If we assume an accuracy of 100% it is clear that the robot will scan the sales floor
correctly and thus does not find any items, which leads to a system inventory of zero. In
the case of an accuracy of 0% the robot always finds zero items. A case that is in between,
for example an accuracy of 50% would translate to the following outcomes: The inventory
robot will have a 50% chance to correctly "find" the zero items and a 50% chance of "missing"
the zero items. So either case will lead to the same outcome.

3.4 Conclusion

The results of our simulation study reveal several key takeaways. We are able to show within
section 3.3 that a a simple RFID infrastructure just consisting out of a replenishment gate
and an RFID-enabled point of sale is not able to achieve appropriate service levels because
replenishment freezes eventually occur. The freezes are caused by undetected shrinkage
and false replenishment orders by the RFID system itself. This means that the system
does not replenish when it is supposed to and replenishes when it should not. Furthermore,
it orders wrong quantities of items from the stockroom.

Additional data quality measures are necessary to mitigate the before mentioned problems.
We show in section 3.3.4 that RFID-enabled cycle counting with a handheld device
is an effective counter measure against data inaccuracy. Using a four weekly count
resolved the replenishment freezes, leading to higher service levels. However, RFID-enabled
cycle counting is still a manual process that draws upon the labor time of the store
staff, it is also not able to completely eliminate replenishment freezes and according to
reports (e.g., Morenza-Cinos et al. (2017)) it may not work with the high accuracy
we assume for our simulation. We therefore evaluate the improvement through a robotic
inventory.

While RFID-enabled cycle counting can only be performed in longer time intervals (i.e.,
a certain product group in intervals of several weeks) the robotic inventory can be per-
formed in much shorter time intervals. Evaluating a daily robotic inventory against a
four weekly handheld count, the robotic inventory (assuming also a perfect read rate)
proved superior even when the RFID-enabled replenishment gate was removed from the
model.

However, the reviewed literature shows that an RFID-enabled robotic inventory may not
always work as flawless as we assume in our first evaluation. We thus consider in a second
evaluation the effects of an imperfect robotic inventory on our model. The results show that
robotic inventory taking is still effective, e.g., it completely prevents replenishment freezes
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to occur independently of the robot’s accuracy. However, it has the same disadvantage as
the non-robotic scenarios (see section 3.3.7). A low accuracy of the robot leads to many
falsely replenished items which have to be brought back to the stockroom. Already small
deteriorations of the detection accuracy double and triple the number of excess items and
the connected return transports.

If the robotic inventory fails, then the RFID system orders the employees to replenish many
articles which have not to be replenished at all. We assume this would lead the employees to
lose trust in the RFID system and may cause them to just ignore it. Consequently, robotic
inventory should only be used if it works very reliably.

Based on our simulation model, RFID-enabled robotic inventory is clearly in favor against
"traditional" RFID-enabled cycle counting if it works as promised by the manufacturers
(i.e., with accuracies of 99% and more). The improved data quality that can be achieved
by a robot-based inventory allows retailers to execute their replenishment strategy as
originally intended. Also a daily robotic inventory prevents replenishment freezes from
occurring. One very important point is that a replenishment gate seems not necessary for
our evaluated case. However, in reality a gate could nevertheless prove beneficial because
it could be used to crosscheck the results of the robotic inventory (see section 4.3.5.2 for
a proposal of such a method). In addition a replenishment gate might be necessary if
products have a very short shelf life and have to be replenished several times a day. In
that case a daily robotic inventory at night may not be enough in order to control the
sales floor inventory. However, this could also be compensated with a continuous robotic
inventory check of the sales floor.

Our research also has some limitations. As we use the means of simulation modeling our
research also inherits its weaknesses. This means that our model is only a simplification of
reality and does not cover all influences on the inventory accuracy of the retail store. We
do for example not evaluate how a robotic inventory of the stockroom would influence our
model world. Also, we do not consider overstocking and also neglect errors that might be
caused through the replenishment process by the distribution center of the retailer under
consideration.

There are several reasons for a retailer to implement robotic inventory that go beyond the
scope of our simulation study. First, robotic inventory seems to be cheaper than manual
cycle counting if we neglect the costs of acquisition. While an employee has to be paid at
least 8.84€ per hour in Germany (DGB, 2017), a robot just costs electricity. Also it is
thinkable that the robots can perform additional tasks like it is already done at Lowe’s,
thus improving the overall customer experience (McSweeney, 2016). Furthermore, the
collected data can be used for analytical purposes (see chapter 4). However, in small
stores a robot might not pay off and a retailer could be better off with just using manual
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RFID-enabled cycle counts. We therefore believe that a retailer should invest in robotic
inventory when owning a large retail store. When the replenishments happen more than
once a day, like for example in the food industry, then a replenishment gate should be used in
addition, because a daily robotic inventory would be too slow to recognize the missing items.
Furthermore, a replenishment gate is an additional data source for checking the reliability
of the inventory data generated by a robot. In the case of a malfunction additional data
from the replenishment gate may allow to perform some kind of a sanity check and allow a
retailer to react to changes in the robot’s performance.

To conclude, if robotic inventory works as promised by the manufacturers it will outmatch
all other data quality strategies by a wide margin and prove as a valuable tool in the
hands of a store manager. If robotic inventory, however, works with significantly less
accuracy than promised, it could worsen the inventory data and lead to high costs.
Consequently, researchers should use the insights from our simulation study and perform
manufacturer-independent field studies in order to prove if robotic inventory taking can
meet the high expectations that are put into it. Our study also demonstrates that simulation
modeling can be a cost-effective tool for managers who need to evaluate novel RFID-based
applications.
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CHAPTER 4

RFID data-based in-store analytics

4.1 Introduction

Companies most often implement Radio Frequency Identification (RFID) technology in
order to streamline their processes and to obtain more accurate and timely inventory data
(Ngai et al., 2009). However, besides improving operative processes and the accuracy
of the inventory data, RFID has the potential to support managerial decision making
(Al-Kassab et al., 2013). Analysts can combine the data from several RFID readers and
other data sources in order to uncover hidden insights. There are only few reports from
industry and research that evaluate how to actually perform RFID data-based analytics
and only few researchers have proposed approaches for using RFID data in order to aid
managerial decision making (e.g., Chongwatpol (2015)). Based on this observation,
RFID data still seems to be an untapped source for business insights and strategic decision
making. We therefore want to contribute to this stream of research and focus our study on
the following three objectives:

• Summarize the scientific literature on RFID data-based analytics

• Propose methods for extracting management-relevant information from RFID data

• Propose a generic process model for the extraction of management-relevant informa-
tion from RFID data

In the first part of our study we summarize and evaluate the scientific literature that
covers RFID data-based analytics. In the second part of our study we develop novel
approaches and ideas for extracting management-relevant information from RFID data.
We base our research on a dataset that we obtained from a large German fashion re-
tailer. Our work extends and goes beyond of what has already been done by other
researchers. We also illustrate how our analyses can be practically used by integrating
them into a prototypical in-store analytics dashboard prototype for the apparel and fashion
industry.
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We finally use the insights from our work and the literature in order to derive a generic
process model for the extraction of management-relevant information out of RFID data.
Our proposed model shall help practitioners and researchers to develop useful management
support tools and to harness the potential of their RFID data.

4.2 Related literature

Our literature review encompasses papers which discuss how RFID may aid managerial deci-
sion making. We are particularly interested in contributions that suggest how RFID data can
actually be used to generate management-relevant information. This can include calculating
performance indicators, visualizing data, or applying data mining methods. The results of
our review can be divided into the following two categories:

1. Papers that discuss the impact of RFID on standard measurement systems (e.g., the
balanced scorecard or the SCOR model)

2. Papers that investigate, with an actual dataset, how relevant information can be
extracted out of RFID data

Under the first stream of research fall papers like Bendavid et al. (2009). The authors inves-
tigate the impact of RFID technology on a supply chain in a B-to-B setting. They perform
a perennial field study with a duration of two and a half years and determine the impact
of the introduction of RFID on certain key performance indicators of the Supply Chain
Operation Reference Model (SCOR). The supply chain under consideration ranges from a
first-tier supplier for components for electricity power grids to a public utility company at
the end of the supply chain. The authors define horizontal key performance indicators and
vertical performance indicators for their setting. While horizontal indicators are high level
indicators like the quality of deliveries which is measured at all levels of the supply chain
and interesting for all its members, vertical performance indicators are only important
for one specific member of the supply chain. All in all, the authors conclude that real
time RFID data is a valuable source for better performance measurement in supply chains.
Consequently in the authors’ opinions the introduction of RFID enhances the possibilities
to measure traditional performance indicators from the SCOR model. However, they do
not propose any novel RFID-enabled performance indicators.

Another study we categorize into research stream one was performed by Pigni et al. (2009)
who investigate how the benefits of an RFID implementation can be measured in the
supply chain context. The authors therefore, similarly to Bendavid et al. (2009) identify
all supply chain indicators from the SCOR model that are potentially impacted by an
RFID system. However they do not propose how to extract novel management information
out of RFID datasets.
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Another paper that falls into research stream one was published by Kasiri et al. (2012).
The authors focus their study on operations in retail stores and propose an item-level
balanced scorecard model for RFID. They determine cause and effect relationships between
different performance measures by employing system dynamics methods. The main goal of
the study is to develop a balanced scorecard framework in order to investigate the financial
impact of item-level RFID in retail operations. By conducting a Delphi study with ten
experts, the authors attempt to validate the performance indicators and causal relationships
between the respective indicators in the dimensions of the balanced scorecard model. At
the theoretical level, they show that it is possible and sensible to link RFID-enabled
performance indicators with the balanced scorecard. As in the papers discussed above,
however, they do not show how the performance indicators can actually be generated from
RFID data.

Consequently, in research stream one the usage of RFID for managerial decision making is
only discussed hypothetically, but there are no concrete approaches or proposals on how
to perform RFID data-based analytics on actual datasets. We therefore take a look at
research stream two.

The first paper that falls under research stream two was written by Delen, Hardgrave,
et al. (2007) who explore the business case for RFID by analyzing the RFID readings
that were tracked during the shipping process between a supplier and a retailer. The
authors identify and compute several performance metrics out of the collected data. The
metrics are basically the average times between product movements at different locations
which allow inferences on the underlying processes. The authors then discuss how these
metrics can be used in order to improve the processes between the distribution center of
the supplier and the stores of the retailer.

A very interesting study was performed by Chongwatpol (2015). The author developed
"an RFID-enabled track and traceability framework" in order to leverage the information
visibility at trade shows. During a field experiment which lasted three days, 140 of the trade
show visitors were equipped with RFID-badges. The experiment had the goal to capture
their movement patterns. The author tracked which exhibition booths the attendees visited
and how often. Furthermore, he kept track of the order of visits and the duration of an
attendee staying at a particular exhibition booth. The author then combined these data
with existing enterprise data like for example demographics and credit card information.
In a next step, he applied several machine learning methods on the dataset. The data were
then used in order to derive useful information for the generation of marketing strategies
for tradeshow exhibitions.

Two promising papers of research stream two are the two related studies by Thiesse,
Al-Kassab, et al. (2009) and Al-Kassab et al. (2013). Both studies are based on an
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RFID project that was performed at Galeria Kaufhof, which was a subsidiary of the Metro
Group and sold in 2015 to the Canadian Hudson’s Bay Company (Metro, 2015). While
the main goal of the paper from Thiesse, Al-Kassab, et al. (2009) was to (i) describe
the trial, (ii) theorize about the effects of RFID on the business processes and (iii) to
compare the trial to a previous one that was conducted five years earlier, Al-Kassab et al.
(2013) focused on generating RFID-enabled reports and performance indicators out of the
collected RFID data. The proposed reports encompass amongst others, the analysis of
out of stock data, smart fitting room data and the usage of inventory data from smart
shelves.

In summary, it can be said that in the second research stream there exist a few interesting
papers, that discuss how to extract management-relevant information from RFID data.
While Delen, Hardgrave, et al. (2007) show some very basic approaches for calculating
the average times for product movements, Al-Kassab et al. (2013) and Chongwatpol
(2015) perform more sophisticated analyses. While Al-Kassab et al. (2013) evaluate
the usefulness of RFID data analytics in a retail setting with different reading devices,
Chongwatpol (2015) investigates how to combine RFID data gathered at tradeshow
exhibitions with other data and how to apply data mining methods in order to obtain
management insights. The results of the above mentioned work show the relevance of the
second research stream.

In order to contribute to the second stream of research, the present study aims at proposing
novel approaches for utilizing RFID data in order to develop novel RFID-enabled perfor-
mance indicators and reports. In a second step we want to add to the existing literature
with the proposal of a generic process model for RFID data analytics. Our research is
based on RFID data that were collected at a large German fashion retailer which made us
these data available.

4.3 Extracting management-relevant information from RFID data

Within the scope of this chapter, various methods for extracting management-relevant
information from RFID data are evaluated. The data, that we use for our research, come
from the RFID middleware of a major German fashion retailer. Our study is structured as
follows: We start with an overview of the business case and the involved RFID devices.
First of all, we show how statistical methods can be used to derive information about the
queuing process at an RFID-enabled point of sale. Second, we show how to use visualization
techniques to carry out sales floor analyses. Third, we show how to derive estimates of
the quality of RFID data generated by the RFID infrastructure by combining the data
from multiple RFID readers with knowledge of the environment and the RFID-enabled
processes.
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4.3.1 Business understanding

The retail store from which we obtained the data and which serves to illustrate our approach
is one of the flagship stores of the retailer in question. The shop consists of two floors, with
the ground floor containing the ladies’ clothing and the first floor containing the men’s
clothing. The retailer is interested in selling its products, optimizing the location of the
products, providing good customer service and making better use of its employees. Nearly
all products are equipped with RFID tags and the retailer has installed the following RFID
hardware:

• One replenishment gate between the stockroom and the sales floor area

• One EAS gate at the entrance of the store

• Two point of sale systems

• Four smart fitting rooms (Three in the ladies’ department and one in the men’s
department)

• Handheld readers for the store staff

• One inventory robot

The retailer uses a similar setting to the one we describe in section 3.3.3. In addition
an RFID-enabled electronic article surveillance (EAS) gate was introduced in order to
substitute the traditional EAS. Furthermore, the retailer decided to perform a robotic
RFID-enabled inventory similar to simulation scenario 3a which we describe in section 3.3.5.
Furthermore, there exists a replenishment gate between the stockroom and the sales floor.
The retailer has also implemented four smart fitting rooms within the store in order to offer
a better customer service. The smart fitting rooms are able to track the items that are
brought into the cabins and to offer recommendations on a screen which is placed inside
the cabins. In addition, customers can also browse through the garments of the store and
of the eshop.

4.3.2 Data understanding

In the following we describe the data provided by the retailer and use them as the basis
for the following analyses. The retailer delivered two different sets of RFID data from its
middleware, namely RFID log data (see table 4.1) and RFID bookings data (see table 4.2).
Both datasets are pre-filtered by the middleware which means that they do not contain
all readings of an RFID tag but only the "relevant" ones. For example, if an item travels
through an RFID gate, the middleware only keeps one reading instead of all (e.g., a tag
could be read twenty times when passing a gate). This is enough in order to suffice the
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retailer’s information needs without bloating the database with redundant events. However,
while the log data contain the readings of an RFID tag in combination with its SGTIN, a
timestamp and the corresponding RFID reading device that read the tag, the bookings
dataset contains the related bookings. This means the bookings dataset contains the
bookings from the middleware system that were performed in conjunction with the reading
of the respective RFID tags. For example if an item was read at the point of sale, the RFID
log would contain one reading and the RFID bookings data would contain the booking
that the item was sold.

As the example of the RFID log dataset in table 4.1 shows, an entry contains

• a timestamp (column Date),

• the serialized global trade item number (SGTIN),

• the device that read the RFID tag (e.g., point of sale or inventory robot),

• a movement direction (column Direction),

• X, Y and Z coordinates and

• the respective floor (column Area).

The timestamp denotes the time a tag was actually read and is accurate down to seconds
(see column Date). The SGTIN serves as unique identifier of an item. The devices in the
Device column can either be one of the two point of sale readers, the replenishment gate,
the EAS gate, one of the smart fitting rooms, one of the handheld devices or the inventory
robot. The column Direction gives information about the movement of the articles. It
either denotes if an item travels to the sales floor, to the stockroom or if it enters or
leaves a certain smart fitting room. This information is only important if the device is the
replenishment gate or a smart fitting room - in all other cases it serves no purpose and has
a value of NULL. Furthermore, the X, Y, and Z coordinates are only tracked if a tag is
read by the inventory robot. The column Area is also only relevant in conjunction with
the inventory robot and denotes on which floor the robot performed its inventory when it
read a certain RFID tag.

Table 4.1: Example of the RFID log data

Date SGTIN Device Direction X Y Z Area
2017-01-09 06:54:38 (01)040576558... Replenishment 2 NULL NULL NULL NULL
2017-01-09 08:41:52 (01)040576557... SFR_DOB IN NULL NULL NULL NULL
2017-01-09 08:45:06 (01)040576555... SFR_HK OUT NULL NULL NULL NULL
2017-01-09 08:42:46 (01)040581146... POSREADER1 0 NULL NULL NULL NULL
2017-01-09 08:45:07 (01)040581146... WA01 0 NULL NULL NULL NULL
2017-01-09 19:09:02 (01)040179939... Robot 0 850 11674 890 OG
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Table 4.2 gives an example of the RFID bookings that may be performed in connection
with a reading in the RFID log table. First, the column Date in this table denotes the
timestamp of the booking from the middleware. In addition to the data fields from the
RFID log table, the table contains the booking type, a textual short description of an article,
the planning group (column PG), as well as the columns From and To. The column From
denotes the last known position of an article. It can either be stockroom (2), sales floor
(1), outside the store (3) or unknown (4). The column To denotes the area in which a
tag was actually read and can take the same values as the From column. Consequently,
the values in these two fields can be used in order to recognize a position change of an
article.

Table 4.2: Example of the RFID bookings data

Date Booking Type Description PG From To SGTIN Device
. . . 425 MKG Shirt 57 1 2 (01)04058114546736(21)400122 MLVF01
. . . 360 Leichtsteppe 26 1 1 (01)04059182110904(21)400190 POSREADER1
. . . 425 KB Jeans 57 2 1 (01)04057655845131(21)400540 Transition
. . . 360 Triumph BH 9 1 1 (01)07611358891313(21)400166 HANDHELD

Furthermore, one reading in the RFID log table usually corresponds to several bookings in
the RFID bookings table. For example if an article is sold and there is one entry in the
RFID log table, then three corresponding bookings are created in the RFID bookings table.
First the article is booked as sold, second the EAS alarm for this article is deactivated, and
third the article is removed from the store’s inventory. Also, the timestamp of the reading
event in the RFID log differs from the timestamp in the bookings table. This means, that
the booking is performed slightly later than the actual reading (e.g., the reading in the log at
the POS denotes the start of a customer transaction, while the booking denotes the end of
a transaction). In the following subchapters we either use the RFID log, the bookings table
or a combination of both in order to perform our analyses.

The data we use for our experiments have a volume of 838409 readings in the log file and
184844 corresponding bookings. There are more readings than bookings because not all
readings lead to a booking in the middleware. For example, a reading of the robot has no
corresponding entry in the bookings table (except if an item changes its position) but is
just used to verify the inventory. In addition to the RFID data, we also received the floor
plan of the shop in question, which we use for visual analyses of the sales areas. We also
visited the relevant store to verify our analyses.

4.3.3 Method one: Estimation of queue metrics from data from an RFID-enabled POS

The purpose of this section is to illustrate the applicability of statistical algorithms
for deriving information about an RFID-enabled process. We therefore take a look at
the RFID-enabled checkout process and the problem of deriving information about its
performance from its data.
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4.3.3.1 Motivation

Queues at the point of sale can be annoying to customers. Especially during rush hours,
customers may have to wait several minutes in line - a fact that can drastically diminish
customer satisfaction. In a recent study Lu et al. (2013) investigate in a retail store
how queues at the point of sale influence customer purchase decisions. They use video
recognition for their analysis and find that customers’ purchase decisions are much more
influenced by the length of the line at the POS rather than the actual waiting time. They
also find that the perceived queue length can reduce the chance of a customer joining the
line in order to buy a product and that an increase of a line from 10 to 15 customers leads
to an average drop in sales of about 10%. Consequently, it is important for retailers to
mitigate this problem as good as possible. Managers therefore have to investigate if the
checkout process in their retail stores poses a bottleneck and if they may have to open
more cashiers and to allocate more personnel to certain times of the day or days of the
week.

Technology can help to reduce the length of queues and customer waiting time. One of
the major claims of RFID is to reduce customer waiting time and queue length through
the reduction of the time needed for scanning items at the point of sale (Roussos, 2006).
However, the checkout process consists out of many parts and scanning items is only one
of them. It is therefore unclear what impact RFID actually has on this process. In order
to be able to verify the claims of RFID, it is necessary for a retailer to have performance
indicators about the checkout process. More knowledge about the performance of the
checkout process not only helps to verify the impact of RFID but also to better allocate
resources to this bottleneck. Better information about the performance of the checkout
can thus be a useful asset in the hands of a manager. However, in order to obtain this
information retailers have to rely on manual counting of queues or the aforementioned
video recognition systems.

In contrast to the above-mentioned costly approaches we propose to use a statistical and
more cost efficient method that uses the transactional data generated by the RFID-enabled
POS. We combine a data aggregation method for RFID data with the work of Larson
(1990) who developed a statistical approach for estimating performance indicators about
queues from transactional data. The work of Larson (1990) lead to an algorithm called "the
queue inference engine". We integrate this algorithm with our aggregation procedure and
use it to infer queue information from RFID data of the RFID-enabled POS. The inference
engine enables us to estimate important performance indicators, namely the average number
of customers in line and the expected waiting time for a random customer. In a final step we
show how the generated information can be aggregated further in order to derive managerial
insights about the RFID-enabled checkout process.
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4.3.3.2 Problem description

We investigate the queuing process at the RFID-enabled points of sale. Figure 4.1 shows
a simple example of how a queue develops at the checkout. In our example there ex-
ists only one cash desk equipped with an RFID reader with one employee who serves
customers.

Customer enters 
the queue

Customer leaves 
the queue

Customer is 
being served

C1
C2 C3 C4

Cn…

RFID

Figure 4.1: Customers queuing at an RFID-enaled point of sale

In our example, customers denoted by C1, C2, C3, C4 up to Cn enter and leave the queue
according to the FIFO (first in first out) principle. This means that the customer who
enters the queue first also leaves the queue first. A queue starts to build if a customer
wants to step in front of the cash desk but the cash desk is already occupied by another
customer. In the example, customer 1 leaves the queue and customer 2 is served at the cash
desk. Customers 3 and 4 queue up and have to wait. This also applies to all customers
who join the line after them.

Figure 4.2: Customer arrivals, checkout process and waiting times

Figure 4.2 gives an example on how the the waiting and arrival times of customers can be
distributed. For each customer there exist two events namely the scanning of products
with the RFID reader and a payment. At t0 customer 1 steps to the cash desk and the
process starts. Because customer 1 is served immediately, (s)he does not have to wait. The
cashier scans the items of customer 1 and customer 1 pays afterwards. While customer 1
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is being served customer 2 steps into the line at t1. Customer 2 has to wait till customer 1
leaves the cash desk. In the example from figure 4.2 a third customer enters the queue at
t3 exactly when customer 1 leaves the queue. At t3 the checkout process for customer 2
starts. Consequently, customer 3 has to wait until the scanning process and the payment
process of customer 2 have been completed.

Even though, the queuing process seems simple at a first glance, inferring queue information
out of transactional data is a non-trivial task because the arrival times of the customers
are not available. This is due to the fact that the data from the cash desks only tell when
the items of a customer were scanned with the RFID reader and when the payment process
of a customer was completed. To be more precise, each of the customers’ purchases at
the RFID-enabled cash desk produces transaction data. The RFID middleware tracks
for the RFID-enabled POS for each article, when it was scanned on the desk and when
corresponding bookings were performed in the middleware.

In our real world dataset, the first scan of a sales transaction is found in the RFID log and
the completion time of the transaction can be found in the RFID bookings. This information
gives us a decent estimate for the start of the checkout process for a customer and the
completion of the process (this means the time (s)he leaves the queue). We furthermore
know from the data, the sequence in which the customers must have stepped into the
line (assumed customers do not change their positions while waiting). Consequently, the
data only tell us when a customer was served and when (s)he left the cash desk. However,
the data do not tell us the time a customer stepped into the line which makes estimating
customer waiting times and the length of a queue at a certain point in time difficult. We
demonstrate this issue with two extreme scenarios.

All customers arrive 
almost instantly at t0 !

t0 t1 t2 t3 t4 t5 t6 t7

customer 1 is serverd

time

customer 1

t8

customer 2 customer 3

Legend

Waiting time 
customer 2

Waiting time 

customer 3

customer 2 is served

Figure 4.3: Example for the worst case arrival times for customers 1, 2 and 3 if the checkout
process takes exactly three time units

In the worst case scenario (i.e., the scenario in which the waiting time for all customers is
longest), all customers arrive almost instantly at the same point in time. The scenario is
illustrated in figure 4.3. Let us assume, that the payment process takes exactly three time
units for each customer. This means that if customer 1, 2 and 3 arrive almost instantly at
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t0, (note: the sequence is always C1 < C2 < C3) customer 2 has to wait three time units
until customer 1 leaves the cash desk and customer 3 has to wait for six time units until
customer 1 and customer 2 leave the queue. Consequently, the overall waiting time within
the queue is zero time units for customer 1 plus three time units for customer 2 plus six
time units for customer 3 which totals nine time units.

All customers 
arrive just in 

time!

t0 t1 t2 t3 t4 t5 t6 t7 time

customer 1

t8

customer 2 customer 3

customer 1 is serverd customer 2 is served

Figure 4.4: Example for the best case arrival times for customers 1, 2 and 3 if the checkout
process takes exactly three time units

In contrast to the previous example we can also imagine a best case scenario for the
arrival times of customers 1, 2 and 3. This is illustrated in figure 4.4. In this example all
customers arrive just in time. This means that customer 1 arrives at t0 and is immediately
served, customer 2 arrives just when customer 1 leaves the cash desk at t3 and is also
immediately served. Then customer 3 arrives at t6 and is also immediately served. In this
example, which reflects the best case scenario, customers 1, 2 and 3 do not have to wait at
all.

t0 t1 t2 t3 t4 t5 t6 t7 time

customer 1

t8

customer 2 customer 3

Possible arrival times of customer 2 (always after customer 1)

Possible arrival times of customer 3 (always after customer 1 and customer 2)

Figure 4.5: Possible arrival times for customers 1, 2 and 3 if the checkout process takes
exactly three time units

Unfortunately, the data from the RFID-enabled POS do not tell us when exactly a customer
arrives. If we take a closer look at the possible distribution of arrival times (see figure 4.5)
this becomes a combinatorial problem. The arrival of a customer is always dependent upon
the arrival of the previous customers, leading to an infinite number of possible combinations
of arrival times (assuming time units can be split indefinitely). To solve this problem
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statistically we draw upon the work of Larson (1990) who proposes a method based on
order statistics and a Poisson assumption in order to derive queue metrics from transaction
data.

4.3.3.3 Inferring queue metrics and aggregated performance indicators

Within this chapter we detail our approach of deriving queue metrics out of RFID-based
POS data. We base our approach for the inference of economic queue metrics from RFID
data on the work of Larson (1990) who proposed an approach for deducing queue statistics
out of transaction data from automatic teller machines (ATMs) in order to help bank
managers to decide if customer waiting times in a bank are too long and if a bank needs
more or less ATMs. We transfer Larsons’s method to our use case and integrate it into
our approach, in order to obtain meaningful aggregated indicators about the checkout
process of an RFID-equipped retail store. Our proposed general approach is depicted in
figure 4.6.

RFID reads from
POS

Timestamp
SGTIN

Customer 
transactions

Start of transaction
End of transaction

aggregate

Potential queues

Cut-off value 
approach

Cut-off value 
approach

extract

POS performance 
indicators

Avg. customers in line
Expected waiting time

Queue inference 
engine & 
aggregationRFID-related 

bookings from 
POS

Timestamp
SGTIN

Data from RFID middleware

aggregate Start of queue
End of queue

Figure 4.6: Process of queue inference based on RFID-enabled POS data

We start our process by aggregating RFID readings and corresponding bookings to customer
transactions and customer transactions to potential periods of congestion at the point
of sale (i.e., potential queues). These data are then used as the basis for the queue
inference algorithm of Larson (1990). In a final step we use the metrics which we derive
with Larson’s algorithm and aggregate them further in order to obtain aggregated POS
performance indicators. The data from our real world dataset were generated by the RFID
readers at the points of sale. We demonstrate our approach on an excerpt of the data
which is shown in table 4.3.

Table 4.3 shows only the relevant columns which are needed in order to perform the analysis
as we describe it within this chapter. In our example, there are six readings of different
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SGTINs in the RFID log table. These readings belong to three customer transactions at the
RFID-enabled POS reader (POSREADER1). All items were read at April the 4th 2017. As
it can be seen by the timestamps in the RFID bookings, there are certain bookings which
happen within a few seconds. We know that these consequently must belong to the same
customer transaction. This holds for the first row in the table with the first reading in the
log at 13:23:25, indicating the start of a customer transaction and the according booking at
13:24:09 indicating the end of the customer transaction (Note: all transactions are ordered
by date and time). The second customer transaction, which constitutes out of two SGTINs,
starts at 13:24:29 (see table 4.3 row 2) and ends at 13:25:56 (see table 4.3 row 3). The
bookings for each SGTIN that belong to the same customer transaction happen slightly
after one another within a timeframe of two to three seconds.

Table 4.3: Connected database entries in the RFID log and the RFID bookings from
transactions at the RFID-enabled POS reader

RFID log RFID bookings
SGTIN StartDate SGTIN EndDate
(01)04056905197129(21)24 01.04.2017 13:23:25 »» (01)04056905197129(21)24 01.04.2017 13:24:09
(01)04059182050989(21)232 01.04.2017 13:24:29 »» (01)04059182050989(21)232 01.04.2017 13:25:53
(01)04059182024256(21)366 01.04.2017 13:24:29 »» (01)04059182024256(21)366 01.04.2017 13:25:56
(01)04059491090188(21)400027 01.04.2017 13:31:05 »» (01)04059491090188(21)400027 01.04.2017 13:32:36
(01)04059182116302(21)286 01.04.2017 13:31:05 »» (01)04059182116302(21)286 01.04.2017 13:32:38
(01)04059182115671(21)370 01.04.2017 13:31:12 »» (01)04059182115671(21)370 01.04.2017 13:32:40

We use the timestamps of the respective bookings for identifying customer transactions,
because the readings in the RFID log data can have larger time ranges than the corre-
sponding bookings. The larger time ranges in the log can occur due to human errors or
process variations. For example if a customer brings so many items that not all of them fit
on the desk at once, the items have to be scanned in batches. However, the bookings of
the articles are always performed at the end of a customer transaction, one after the other,
and are thus preferably used for our approach.

The first step of our approach is to identify a customer transaction and its duration. This
information can either be obtained by using certain timestamps and a customer id from the
ERP if such an information is available or as it is in our case, to aggregate the respective
scanning and booking events in the database tables based on their timestamps and the
reading device.

We used the programming language R (R-Foundation, 2017) in combination with the
package dplyr (CRAN, 2017) for the practical data analysis and data aggregation. This
allowed us to combine the functionality of a programming language with SQL-like data
manipulation abilities. However, in order to describe our approaches in a more general
way without having to consider the peculiarities of the programming language R and its
package dplyr and because we assume most readers to be familiar with SQL, we illustrate
our approaches in pseudocode and SQL.
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In a first step we determine all relevant RFID reading events from the POS. This can be
achieved with an SQL statement as given in algorithm 1.

Algorithm 1 Select RFID POS readings from RFID log
Require: Table: RFID_log {RFID reading events from the RFID middleware}

1: SELECT SGTIN, Timestamp AS Startdate, Device FROM RFID_log
2: WHERE Device = "POSREADER" {POSREADER denotes the cash desk}
3: return Table: RFID_POS_Log

In a second step we determine the relevant bookings from all RFID bookings from the
middleware which are connected to sales events at the POS. This can be achieved with the
SQL statement given in algorithm 2.

Algorithm 2 Select relevant bookings from RFID-enabled POS
Require: Table: RFID_bookings {Bookings from the POS}

1: SELECT SGTIN, Timestamp AS EndDate, Device FROM RFID_bookings
WHERE Device = "POSREADER" AND Type = "SALES" AS RFID_POS

2: return Table: RFID_POS_Bookings

After having selected the POS events from the table RFID_bookings and the table
RFID_log we use an INNER JOIN in order to create a combined table based on the
SGTINs (see algorithm 3).

Algorithm 3 Combine bookings with reading events
Require: Tables: RFID_POS_Log; RFID_POS_Bookings

1: SELECT * FROM RFID_POS_Log INNER JOIN RFID_POS_Bookings ON
RFID_POS_Log.SGTIN = RFID_POS_Bookings.SGTIN

2: return Table: RFID_POS_Events

We now identify customer transactions based on a time based cut-off value of 15 seconds. As
already mentioned before, the bookings of the SGTINs occur within a short timeframe one
after another. We therefore use a cut-off value approach in order to aggregate the database
entries based on their SGTINs and timestamps. This means we look at the booking
transactions for each SGTIN that was read at the POS. If the next booking happens within
15 seconds we assume it belongs to the same customer transaction. Even though most of
the bookings occur within 2-3 seconds after one another, there are times when the system
of the retailer under investigation seems to have a high workload and the bookings are
performed in slightly larger time intervals. We decided out of this reason to use a 15 second
timeframe in order to not mistakenly aggregate booking events from different transactions.
Based on our analysis of the RFID data, a time window of 15 seconds is large enough
to not accidentally miss a booking event but still small enough to differentiate between
different customer transactions. After having identified the relevant bookings, we use the
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timestamps and SGTINS in the RFID log in order to find the corresponding readings that
mark the start of the checkout process. The approach for actually identifying the customer
transactions is given by algorithm 4.

Algorithm 4 Identify customer transactions
Require: Table: RFID_POS_Events {The result of algorithm 3}

1: Add COLUMN "Time_To_Next_Booking" to TABLE RFID_POS_Events
2: Add COLUMN "Customer_Id" to TABLE RFID_POS_Events
3: Time_To_Next_Booking = [TIMESTAMP[-1], NULL] - TIMESTAMP

{The time to the next booking is calculated by shifting the vector of column TIMES-
TAMP by 1 and subtracting the vector of column TIMESTAMP from it. Furthermore,
assume NULL - something = NULL}

4: row_number = 1
5: id = 1
6: for each time in Time_To_Next_Booking do
7: set Customer_Id[row_number] = id
8: if !isNull(time) and time > 15 then
9: id = id + 1 {If time > 15, the next transaction belongs to another customer}

10: end if
11: end for
12: return Table: RFID_POS_Events

The final grouping is then performed with the following SQL-like statement given by
algorithm 5. The algorithm takes the first timestamp in the RFID log as the beginning of
the customer transaction and the first timestamp in the bookings data as the end of the
particular customer transaction.

Algorithm 5 Identify customer transactions
Require: Table: RFID_POS_Events {The result from algorithm 4}

1: SELECT Customer_Id, MIN(Start_Date) AS Start_Date, MIN(End_Date) AS
End_Date, Time_To_Next_Booking FROM RFID_POS_Events GROUP BY
Customer_Id

2: return Table: Customer_Transactions

We take the first timestamp from the bookings, because this is the time when the cash
desk reports the finalization of the checkout process and thus roughly marks the actual
end of a customer transaction. Using algorithm 1 to 5 on the example data from table 4.3
will result in a dataset as shown in table 4.4.

Table 4.4: Aggregation of RFID data to customer transactions

Customer_Id Start_Date End_Date
1 01.04.2017 13:23:25 01.04.2017 13:24:09
2 01.04.2017 13:24:29 01.04.2017 13:25:53
3 01.04.2017 13:31:05 01.04.2017 13:32:36
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In the second step of our framework, we use the same algorithmic approach as described in
algorithm 4 in order to identify potential queues. We follow Larson (1990) who defines
the pattern for a potential queue as "a service completion time followed immediately by a
service initiation time" (Larson, 1990). We thus assume that a customer likely waited in
line if (s)he was served immediately after the customer transaction of the customer before
ended. As there is nevertheless a little time between customer transactions, we conducted
a thorough analysis of the data and chose a cut-off value of 20 seconds. Therefore, we
assign all customer transactions that are no more than 20 seconds apart to the same queue.
We use algorithm 6 in order to identify potential queues.

Algorithm 6 Identify potential queues
Require: Table: Customer_Transactions {The result of algorithm 5}

1: Add COLUMN "Time_Next_Cust" to Customer_Transactions
2: Add COLUMN "Queue_Nr" to Customer_Transactions
3: Time_Next_Cust = [Start_Date[-1], NULL] - End_Date

{The time to the next customer is calculated by shifting the Vector of column Start_-
Date by 1 and subtracting the respective value of End_Date from it. Furthermore,
assume NULL - something = NULL}

4: row_number = 1
5: id = 1
6: for each time in Time_Next_Cust do
7: set Queue_Nr[row_number] = id
8: if !isNull(time) and time > 20 then
9: id = id + 1 {If time > 20, the next customer will be attributed to the next queue.}

10: end if
11: end for
12: return Table: Potential_Queues

After this aggregation step each customer transaction is assigned to a queue number (see
table 4.5). The customers with the ids 1 and 2 were assigned to queue number 1 because
they were exactly 20 seconds apart (see column Time_Next_Cust). The customer with id
3 was assigned to queue number 2 because (s)he is 312 seconds apart from the customer
with the id 2. It is however to note that a queue with just one person is actually not
a real queue because it has a length of zero and the waiting time is also zero because
there is only one person which is served immediately. However, as we are interested in the
performance of the RFID-enabled checkout process when there are potentially customers
standing in line, we only consider instances with two or more potential customers for
further analysis.

Table 4.5: Aggregation to queues

Customer_Id Start_Date End_Date Time_Next_Cust Queue_Nr
1 01.04.2017 13:23:25 01.04.2017 13:24:09 20 1
2 01.04.2017 13:24:29 01.04.2017 13:25:53 312 1
3 01.04.2017 13:31:05 01.04.2017 13:32:36 NULL 2
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With the result of algorithm 6 we are able to utilize the ideas of Larson (1990) which
we briefly outline within the next few paragraphs. Larson’s main idea is to deduce
queuing behavior from transactional data only by using a Poisson assumption. He
bases his work on the theory of order statistics from which he uses the following equa-
tions:
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Where 𝑁 denotes the number of Poisson events that occur and 𝑁(𝑡) denotes the number
of arrivals over a time interval of 0 ≤ 𝑡 ≤ 𝑇 . Larson then uses these assumptions in
order to derive the following recursive algorithm to compute the "[f]undamental A Priori
Conditional Probability of the event that the transactional data indicate has occurred"
(Larson, 1990):

𝛼𝑘𝑖(𝑡) =
𝑘−𝑖+1∑︁

𝑗=0

(︂
𝑘

𝑗

)︂
𝛼(𝑘−𝑗)(𝑖−1)(𝑡)

(︂
𝑡𝑖 − 𝑡𝑖−1

𝑡𝑁

)︂𝑗

, 𝑘 ≤ 𝑖. (4.4)

He then uses the a priori probability in order to compute the cumulative probabilities of
arrival times, i.e., the probability that the kth arrival precedes the ith departure, where
𝛽𝑘𝑖(𝑡) = 1 for 𝑘 ≤ 𝑖 (Hall et al., 1991):

𝛽𝑁𝑖(𝑡) = 𝛼𝑁𝑖(𝑡)
𝛼𝑁𝑁 (𝑡) , 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑁 (4.5)

𝛽𝑘𝑖(𝑡) = 𝛽(𝑘+1),𝑖(𝑡) +
(︀

𝑁
𝑘

)︀
𝛼𝑘𝑖(𝑡)

𝛼𝑁𝑁 (𝑡) , 1 ≤ 𝑖 < 𝑘 < 𝑁 (4.6)

The mean cumulative number of arrivals at time t is calculated via:

𝑁𝑎(𝑡𝑗) =
𝑁∑︁

𝑘=1
𝛽𝑘𝑖(𝑡) for all 𝑗 = 1, 2, ..., 𝑁. (4.7)

Also if defined 𝑡0 := 0 then for 𝑡𝑗−1 < 𝑡 ≤ 𝑡𝑗 , 𝑗 = 1, 2, ..., 𝑁,

𝑁𝑎(𝑡) = 𝑡𝑗 − 𝑡

𝑡𝑗 − 𝑡𝑗−1
𝑁𝑎(𝑡𝑗−1) + 𝑡 − 𝑡𝑗−1

𝑡𝑗 − 𝑡𝑗−1
𝑁𝑎(𝑡𝑗) (4.8)

Larson uses the recursive algorithm (equation 4.4 to equation 4.8) in order to calculate
economic indicators namely (i) the time average queue length for a potential period of
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congestion 𝑁𝑄 (see equation 4.9) and the mean delay in a queue which is the expected
total number of time units spent in queue by customers during a congestion period 𝑊 𝑄

(see equation 4.10):

𝑁𝑄 = 1
2𝑇

𝑁∑︁
𝑖=1

(𝑡𝑖 − 𝑡𝑖−1)[𝑁𝑄(𝑡𝑖−) + 𝑁𝑄(𝑡𝑖−1+)] (4.9)

𝑊 𝑄 =
(︂

𝑇

𝑁

)︂
𝑁𝑄 (4.10)

Using our aggregation approach and the recursive algorithm of Larson on our real world
dataset we obtain information about each potential queue. An excerpt of the output from
the algorithm on some example data is given in table 4.6. Table 4.6 shows the determined
queue number, the start time of the queue, the end time of the queue, the number of people
that were assigned to the queue (column Size), the average number of customers (column
Avg_Cust) and the mean waiting time for a given queue under the Poisson assumption
(column Mean_Delay).

Table 4.6: Queue data for queues with size > 1

Queue_Nr Start_Time End_Time Size Avg_Cust Mean_Delay
1187 04.02.2017 12:34:48 04.02.2017 12:36:55 2 0.50 63.50
1188 04.02.2017 12:37:38 04.02.2017 12:39:29 3 0.69 38.26
1189 04.02.2017 12:41:01 04.02.2017 12:44:25 2 0.50 102.00
1190 04.02.2017 12:46:15 04.02.2017 12:49:50 4 0.77 55.25
1191 04.02.2017 12:50:46 04.02.2017 12:51:52 2 0.50 33.00
1195 04.02.2017 13:01:22 04.02.2017 13:05:38 5 0.82 52.16
1200 04.02.2017 13:14:58 04.02.2017 13:19:31 4 0.87 78.84
1202 04.02.2017 13:23:11 04.02.2017 13:29:47 7 1.42 93.94
1203 04.02.2017 13:32:23 04.02.2017 13:33:28 2 0.50 32.50

We not only want to know statistics about a single queue, but also about the overall
performance of our POS process. This means we want to know the expected waiting time
and the number of customers a customer probably has to face during busy times at the
POS. In order to achieve this objective, we have to further aggregate the metrics that were
delivered by the queue inference engine. We therefore propose to calculate the averages
out of the individual queue metrics. This gives us the average queue size and the average
customer waiting time. We believe that this can be a very useful information for a retailer.
We also propose to further aggregate the performance information about the cash desks
over longer time periods in order to obtain more robust indicators. This can be achieved
by using a simple average over the timeframe of interest. The timeframe could be a week,
a month or any other wished time period. We therefore propose to calculate the mean
waiting time during periods of congestion, which we denote as 𝑊 𝜏 , as the sum of the
average waiting times of all queues during that period divided by the number of queues
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during that period denoted as 𝑚𝑄 (see equation 4.11):

𝑊 𝜏 :=
∑︀𝑚𝑄

𝑖=1 𝑊 𝑄𝑖

𝑚𝑄
, ∀ queues 𝑖 to 𝑚𝑄 under consideration during time period 𝜏 (4.11)

Similarly we define the average number of customers in queue during a certain time interval
of interest 𝑁 𝜏 as:

𝑁 𝜏 :=
∑︀𝑚𝑄

𝑖=1 𝑁𝑄𝑖

𝑚𝑄
, ∀ queues 𝑖 to 𝑚𝑄 under consideration during time period 𝜏 (4.12)

We can use the information in order to create visualizations that are easily interpretable
by a store manager. For example figure 4.7 shows the average waiting time for customers,
in times when there were queues before the checkout, over the course of the day. For
this illustration the averages have to be calculated for the respective timeframes. A store
manager could interpret from the illustration that a customer, if there are queues at the
POS, has to wait about 40 to 45 seconds in line before being served, and that this value
remains relatively constant throughout the day.

35

40

45

50

55

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
Time of the day

A
ve

ra
ge

 w
ai

tin
g 

tim
e 

in
 s

ec
on

ds

Average waiting time at the POS till service commencement

Figure 4.7: Visualization of average waiting time in a queue for times of the day.

Aggregating RFID data and using queue inference techniques is a cost efficient way to
evaluate the performance of the RFID-enabled checkout process. This allows retailers to
compare the performance of the checkout process in general and between different retail
stores. Visualizations based on aggregated data like shown in figure 4.7 can further aid
to detect time periods which show a performance drop of the RFID-enabled checkout
process.
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4.3.4 Method two: Visual sales floor analysis with RFID-enabled positioning data

In the following sections, we examine the possibilities of using the RFID-enabled positioning
data of an inventory robot to gain useful insights for the management of a fashion and ap-
parel retailer by means of visual analyses. The use of visualization is advantageous because
people receive 80% of all information from the visual cortex (Dahm, 2006). We therefore de-
scribe the available data in a first step and then show how we combine the inventory robot’s
positioning data with the data from other RFID devices to create a series of visualizations of
the sales floor, each providing different management insights.

4.3.4.1 Problem description

We know from the description of the retail store under investigation, that the inventory robot
performs its inventory every second day on the specified sales floor area during the night,
when the store is closed. This means, it performs the inventory one day on the ground floor
and the next day on the first floor. Furthermore, this means that the data of a specific area
are in the worst case one day old. While the robot drives through the hallways it not only
recognizes all items lying or hanging on the shopping aisles, but also determines their relative
positions with their respective X, Y and Z coordinates.

Table 4.7: Excerpt of RFID data from the inventory robot

SGTIN Device Timestamp X Y Z Area
(01)04017993911639(21)2095 Inventory_Robot 2017-01-09 22:34:38 1504 11472 1393 OG
(01)04017993911639(21)2109 Inventory_Robot 2017-01-09 22:34:38 1933 12810 1990 OG
(01)04017993911738(21)2178 Inventory_Robot 2017-01-09 22:34:38 850 11674 890 OG
(01)04021642144323(21)726100 Inventory_Robot 2017-01-09 22:34:38 1230 12223 1246 OG
(01)04021642144392(21)400135 Inventory_Robot 2017-01-09 22:34:39 794 12371 646 OG
(01)04021642170674(21)726100 Inventory_Robot 2017-01-09 22:34:39 1497 12742 1496 OG
(01)04021642170704(21)726100 Inventory_Robot 2017-01-09 22:34:39 1763 12148 1175 OG

Table 4.7 illustrates the output we receive from the robot. Similar to all the other
RFID-enabled devices the inventory robot reads the SGTIN and creates a timestamp.
However, in addition it also determines the X, Y and Z coordinates of the respective RFID
tags. Consequently, the collected data allow us to recognize changes in article positions on
the sales floor area. Furthermore, these data allow us to find the last known position of a
garment. Besides the data from the inventory robot, the retail company which owns the
store provided us with a layout plan. By combining the reading events of the robot with
the store layout, we can carry out a visual analysis of the sales area. In concrete terms,
the following sections show how to use heatmap visualizations to find interesting areas on
the sales floor. Specifically, we show how to use a heatmap as a means of identifying areas
with high sales volumes and areas from which customers transport their garments to the
fitting rooms.
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4.3.4.2 Mapping of X and Y coordinates to the sales floor area

In a first step, before performing any analysis we have to map the X and Y coordinates
to the store layout. As we only perform a two dimensional analysis we do not use the Z
coordinate. Because the owner of the store could not provide us with the mapping of the X
and Y coordinates to the layout plan, we had to manually map the data to the sales floor
area. The inventory robot delivers the coordinates relative to its position from its starting
point in the stockroom of the shop. It always starts from the same place, so the coordinates
can be compared with each other. In order to map the coordinates to the layout of the
sales floor area, we decided to map the article positions onto the layout and to use striking
structures from the layout in order to find a good estimate.

Figure 4.8: Mapping the articles onto the sales floor map

Figure 4.8 illustrates the structures of the store we used. The black dots mark the articles,
the green areas mark the cashiers area, the fitting room areas and the area for the employees.
The blue lines mark the biggest hallways of the sales floor area. We chose these areas
because they usually do not contain many articles. We used several iterations of visual
control and coordinate matching to visually map the items onto the map to match the
visible structures on the sales floor. The determined coordinates were then used as a basis
for the following analyses.
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4.3.4.3 Heatmap visualization

In order to visualize areas with a high article density, we first determine the last known
position (i.e., the last reading of an article by the inventory robot) for each article. We use
algorithm 7 for this task.

Algorithm 7 Determine the last known position of an article
Require: Table: Data_Inventory_Robot {Data from inventory robot: see table 4.7}

1: SELECT SGTIN, X, Y, MAX(Timestamp) FROM Data_Inventory_Robot
GROUP BY SGTIN

2: return Table: Last_known_Positions {Last known article position determined by
the inventory robot}

We then use a visualization library from a modern programming language in order to
create visualizations. We demonstrate our approach with the statistical programming
language R and its visual library ggplot2. The library ggplot2 provides the stat_density2d
function which enabled us to perform a density estimation for two dimensional space
(Whickham, 2013). This enables us to use the polygon parameter and pass it to ggplot2
in order to create a visualization of areas with high article density. Figure 4.9 shows
how stat_density2d lays the polygons over the sales floor area based on the article
density.

Figure 4.9: Laying polygons over the sales floor area based on the article density
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In a second step we lay a green to red color scheme over the polygons in order to create
a heatmap (see figure 4.11). Areas with high article density are marked red, areas with
medium article density are marked orange to yellow and areas with a low article density
are marked green. Furthermore, we use a transparency parameter in order to make
the colored polygon areas transparent so that the underlying sales floor layout is still
visible.

4.3.4.4 Visualization of areas with high sales volumes

In order to find areas with high sales volumes, we combine the sales data generated by
the RFID-enabled POS with the data from the inventory robot. As the Venn diagram in
figure 4.10 shows, we are interested in the intersection of sales data and data from the
inventory robot. More concretely we want to know the last known position from each
article that was sold during a certain timeframe, visualize its position on the sales floor
area and calculate a heatmap based on the density of sold articles. So in a first step we
query all sales from the POS and use the SGTINs of the sales transactions as the basis
for algorithm 7 to find the last known position of each sold garment. We then use a
visualization library like ggplot2 in order to create the actual visualization, in our case a
heatmap.

Inventory
Robot

‐
Last known

article position

Cash
Desk
‐

SGTIN of sold
articles

Figure 4.10: Venn diagram for analysis of areas with high turnover

Figure 4.11 illustrates the result of this operation. As it can be seen, there are several
zones with a high article density (red) on the sales floor. Interestingly most of these areas
are next to fitting rooms. Over a certain period of time, a manager can now evaluate how
moving items from high sales areas to areas where sales are currently low would affect sales.
Consequently, it could be evaluated whether a new arrangement of articles shifts the areas
of interest to the new positions or whether the areas with the highest turnover remain
largely unchanged despite the articles contained therein. For example, customers may not
like to walk away much from the fitting rooms and thus choose more products within a
certain radius around them. In addition, the effects of adjustments to certain parts of the
sales area, such as changing the presentation of articles or adding seats to a certain area
on the sales floor, can be visually evaluated.
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Figure 4.11: Heatmap of areas with high sales volumes

4.3.4.5 Smart fitting room catchment area

Besides combining the positioning data of the inventory robot with the sales data as we
show in section 4.3.4.4, the RFID infrastructure offers more possibilities for combining the
data of different devices for visualization purposes. In the following analysis, our goal is
to find out from which areas of the shop customers bring garments to the smart fitting
rooms.

Inventory
Robot

‐
Last known

article position

Smart Fitting
Room

‐
Read 
SGTINs

Figure 4.12: Venn diagram of smart fitting room catchment analysis

Determining the catchment areas of fitting rooms for managerial insights was first proposed
by Al-Kassab et al. (2013) who used fixed smart shelves in order to find out where
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the catchment areas of the fitting rooms were located at Galeria Kaufhof. AlKassab’s
approach, however, relies on fixed installations and is consequently restricted to areas that
are equipped with smart shelves. Our approach does not need any fixed infrastructure
components besides the smart fitting rooms but uses the inventory robot’s positioning
capabilities for all garments on the sales floor and is thus more comprehensive and flexible.
We use the intersection of readings from the smart fitting rooms and the inventory robot
as the basis for our analysis (see figure 4.12).

Similar to what we do for the analysis of areas with high sales volumes, we first determine
which articles were brought to a smart fitting room and then find their last known positions
on the map of the sales floor area with the help of algorithm 7. These data then serve again
as the basis for using a visualization library like ggplot2. Figure 4.13 shows an analysis
that was performed for the smart fitting rooms in the ladies’ department of the retailer
under consideration.

The heatmap from our example provides a plethora of information. On the one hand, the
heatmap provides visual feedback on the actual catchment area of the respective fitting
rooms, and on the other hand, it provides information not only about where the articles
come from, but also about the areas of the store that are most relevant for a particular
cluster of changing rooms.

Figure 4.13: Smart fitting room catchment area in the ladies’ department
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Figure 4.13 also shows, that articles are brought to the smart fitting rooms (the fitting
rooms are placed in the lower right corner of the store) from all over the sales floor. This
analysis can be used to reposition certain valuable articles nearer to the fitting rooms
in order to make it easier for the customers to reach them. A manager can also think
about placing certain promotions on the pathways from which customers have to go to the
changing rooms to attract the customers’ attention.

4.3.5 Method three: Inferring data quality metrics with knowledge about the environment

In this section, we propose a method that enables a retailer to evaluate the quality of data
generated by a retail store’s RFID infrastructure by using knowledge of the environment
and internal processes.

Postraum

Sales

Store Replenishment

Phantom Stock

Robotic 
Inventory

Information System

Information Flow

Sales Floor Stockroom

RFID - Point of Sale Stockroom Inventory

Information Flow

RFID

Information Flow

Information Flow

Replenishment

EAS

Figure 4.14: Scenario for data quality inference

Before we describe our procedure further, we take a look at the store under investigation.
As figure 4.14 shows the store is equipped with a replenishment gate, an EAS gate, an
RFID-enabled point of sale and an RFID-enabled inventory robot. Theoretically, all
readers are prone to errors and consequently false positive and false negative readings
can occur. This means, that items can be missed by a reader even if they should have
been read or that items are read mistakenly by a reader when they should not have been
read. This can lead to problems like that the RFID system assumes items to be in the
stockroom which are actually on the sales floor. We refer to such articles as phantom
stock. This can have a negative impact on the RFID-enabled replenishment process. The
system could, for example, order an employee to bring items from the stockroom to the
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sales floor. However, since the corresponding articles are already on the sales floor, the
employee loses time searching in the stockroom. Vice versa, items that are thought to
be on the sales floor but that are actually in the stockroom can lead to replenishment
freezes. We discuss replenishment freezes and their consequences in our simulation study
in chapter 3.

Because of the problems mentioned above, a manager needs to know how reliable the data
captured by the RFID infrastructure actually are. We therefore propose to make inferences
about the missed readings by using knowledge about the environment of the retail store
(e.g., position of readers) in order to give managers cost efficient means to estimate the
reliability of the readers and the connected processes (e.g., the replenishment process). In
the following, we discuss how to infer data quality metrics, namely the false negative rate of
the replenishment gate between the sales floor and the stockroom and how to use different
readers in order to estimate the recall of an inventory robot.

4.3.5.1 Inferring the data quality of a replenishment gate

In our first analysis we show how to infer the false negative rate of a replenishment gate.
This indicator, which is also called miss rate is defined as the fraction of false negatives
over the sum of true positives and false negatives (see equation 4.13) (Delen and Olson,
2008). This means we want to estimate the percentage of items, the gate misses. These
errors originate for example from process errors like employees who carry a batch of items
very close to their bodies when passing the gate or RFID tags lying over one another and
thus shielding each other against the radio waves of the replenishment gate. Figure 4.14
illustrates this fact with the blue colored shirts. These shirts were not read by the gate,
although they were transported through the gate. This makes the RFID system believe
that the shirts are still at their last known position, namely in the stockroom. If the
inventory system triggers a replenishment request based on these data, employees cannot
find the garments when they are requested to pick them up from the stockroom, which is a
waste of working time.

Table 4.8: RFID bookings data that reveal missed readings by the gate

Description PG From To SGTIN Device
MKG Shirt 57 2 1 (01)04058114546736(21)400122 MLVF01
MKG Shirt 57 1 2 (01)04058114546736(21)400122 MLVF01
BlzLeichtsteppeM0166 kitt 26 1 1 (01)04059182110904(21)400190 POSREADER1
KB Accessoires DTT 10black 57 2 1 (01)04057655845131(21)400540 POSREADER1
Triumph BH 1PW59 LILA 9 2 1 (01)07611358891313(21)400166 HANDHELD

We propose to use the data we receive from other readers besides the gate in order to
obtain an estimate on the replenishment gate’s ability to detect items correctly. We know
for example that if an item is read at the point of sale, but its last known position is not
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the sales floor but the stockroom (i.e., one of the phantom items was uncovered) then the
gate must have missed this particular item. Similarly, if an article is read at the EAS or
from the inventory robot on the sales floor, but its last known position stored in the system
is the stockroom, we can be reasonably confident that this article has been missed by the
replenishment gate and must therefore be a false negative.

The basic idea of our approach is to use the position information stored by the RFID
system. We therefore propose to use the bookings of the articles that indicate a change of
position. We are interested in all position changes that represent a relocation of an article
to the sales floor or to the stockroom. If the stockroom has position 2 and the sales floor
has position 1, we are interested in all bookings that represent a movement from position 2
(stockroom) to position 1 (sales floor) and vice versa. Table 4.8 gives an example. In line
one the replenishment gate, denoted as MLVF01, recognizes that the item MKG Shirt is
relocated from position 2 to position 1. In line two the item is moved back to position 2
from position 1. Row three illustrates a usual transaction at the point of sale. An item
is scanned and no position change happens. In row four POSREADER1 (i.e., one of the
cash desks on the sales floor) recognizes that the item that was scanned was previously
on position 2 and changes the item’s position to position 1 - which is the event we are
looking for. Because we know that the replenishment gate is the only way the item can
travel from the stockroom to the sales floor (and vice versa), we can be confident that the
replenishment gate must have missed this particular item.

We know that position changes should ideally only be performed by the replenishment
gate, because all articles have to pass it when being transported to the sales floor or back
to the stockroom. But when such a change is performed by another device (e.g., cash
desk, handheld or smart fitting room), we can almost be certain that the gate must have
missed an item that was transported through it. This knowledge enables us to detect false
negative readings by the replenishment gate and to estimate the false negative and the
true positive rate for a given timeframe. For our case we define false negatives as items
that were mistakenly not read by the gate even though they should have been read while
we define true positives as the number of items that were transported through the gate
and that were also recognized by it. The false negative rate is then given by equation 4.13
(Delen and Olson, 2008):

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(4.13)

We can also calculate the true positive rate also called recall (i.e., the probability with
which the gate detects an item) (Delen and Olson, 2008):

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
= 1 − 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (4.14)
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In our use case the false negative rate tells a manager the percentage of articles which is
falsely missed by the gate and the recall (true positive rate) gives information about the per-
centage of articles which is correctly recognized by the gate. To calculate the number of false
negatives of a certain timeframe of data we can use algorithm 8.

Algorithm 8 Determine the number of false negatives of the replenishment gate
Require: Table: RFID_bookings

1: Number_False_Negatives :=
2: SELECT COUNT(*) FROM RFID_bookings
3: WHERE NOT Device = "Replenishment Gate"
4: AND (("From" = 2 AND "To" = 1)
5: OR ("From" = 1 AND "To" = 2))
6: return Number_False_Negatives

The true positives, i.e., the items that were transported to the sales floor or the stockroom
and that were actually recognized by the gate can be computed with algorithm 9 (using
the same timeframe of data we took for the false negatives).

Algorithm 9 Determine the number of true positives of the replenishment gate
Require: Table: RFID_bookings

1: Number_True_Positives :=
2: SELECT COUNT(*) FROM RFID_bookings
3: WHERE Device = "Replenishment Gate"
4: AND (("From" = 2 AND "To" = 1)
5: OR ("From" = 1 AND "To" = 2))
6: return Number_True_Positives

The longer the timeframe we use for this calculation (i.e., more RFID event data), the
better will be our estimate of the actual detection accuracy of the gate. Assuming there
are handheld counts on the sales floor and in the stockroom or that there is an inventory
robot performing daily inventories, this estimation would be quite accurate and give a
manager a good idea of the detection capability of the replenishment gate. Using the
obtained information in order to support a data quality control plan can help a retailer
in determining if the detection accuracy of the replenishment gate is reliable enough in
order to be used for replenishment purposes. If the timeframe of analysis is long enough
and multiple readers are used for recognizing missed items, the estimate of the actual
false negative rate and the recall of the replenishment gate should become quite solid.
This means that using smart fitting rooms, handheld scanners, inventory robots and the
RFID-enabled cash desks will enhance the likelihood of finding items that were missed by
the gate.

However, our approach also has some limitations. First, it only works if there is only one
replenishment gate leading to the sales floor. If there are multiple gates (e.g., in the case
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of multiple stockrooms) we can only infer the accumulated detection capability of all gates,
because we cannot distinguish which gate actually missed a particular item. Second, we
neglect false positive readings, because the retailer with whom we cooperated shielded the
replenishment gates against unintentional readings and installed light barriers in order to
verify if actually someone walked through a gate and to determine the walking direction.
The walking direction is then used by the RFID middleware in order to detect readings of
items that did not pass the gate. The aforementioned measures lessen the probability of
false positive readings to occur. Third, our approach is only able to identify missed readings
caused by process errors (e.g., taking too many items through the gate at once so that they
shield each other). Consequently, we are not able to detect missed readings due to defective
RFID tags as we rely on RFID readers for our approach.

4.3.5.2 Inferring the data quality of an inventory robot

Besides the replenishment gate, we can also infer the detection capability of other parts
of the RFID infrastructure. In this section we show how to estimate the data quality of
the inventory of an inventory robot that drives through the aisles of a fashion store every
night to identify and count the items of clothing on the sales floor. On its duty it tries
to find all items that are on the sales floor and adjusts differences to the inventory in the
inventory management system.

Robotic inventory taking is an automated process, however there can still occur errors.
Some RFID tags may be shielded from each other or placed in shielded places and therefore
cannot be detected by the robot’s scanners. But now a store manager faces the problem of
what to do with the inventory data received from the robot. For example, assuming that
there is a 2% difference for some articles after an inventory, should the manager trust the
robot and simply accept that 2% of the articles have disappeared, or should (s)he assign
employees to look for those articles, or should (s)he run the inventory robot through the
store for another round, hoping that the problem will resolve itself? A wrong decision in
these cases can reduce the overall data quality with all consequences or lead to unnecessary
workload for the employees. We therefore believe that a manager needs a timely indicator
to assess whether the inventory robot’s detection accuracy is good and trustworthy, or
whether there is something wrong with the system.

To give a manager a quick and cost efficient means to assess the reliability of the robotic
inventory, we propose to calculate the recall of the robot with the help of the RFID data
generated by the RFID infrastructure of the store. The main idea is to consider all items
which were transported to the sales floor on a particular day and which were detected
by the replenishment gate. If the inventory robot works with 100% accuracy, it should
find all of them in the subsequent inventory after the store has been closed. We only
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consider articles that were detected by the replenishment gate immediately before the next
inventory as the basis for our procedure and not all articles that are supposed to be on the
sales floor according to the inventory management system, because the stock of the sales
floor is influenced daily by the inventory robot itself. We therefore use the data of the
replenishment gate which gives us an independent group of articles of which we know with
a relatively high certainty that it must actually be on the sales floor. In addition, we only
consider the data from one day, because this allows us to timely detect changes in the quality
of the robotic inventory taking process from day to day.

Inventory Robot

Sales Floor Stockroom

RFID - Point of Sale

RFID

RFID Gate

Items tacken back

Replenished Items

Stolen Items

Replenished 
Items to find

Sold Items

EAS

Figure 4.15: Article flows to be taken into account when estimating the inventory taking
quality of an inventory robot

Figure 4.15 shows which items we consider for the process. The main idea is to count all
items that are replenished on a specific day and recognized by the replenishment gate.
The inventory robot must find all items during the nightly inventory. If articles are not
found, we can assume that it did not recognize them during its round over the sales floor.
First of all, we determine which articles need to be found. To do this, we need to consider
which of the items that have recently been transported to the sales floor have been sold,
stolen or returned to the stockroom before the inventory robot begins its inventory. This
is necessary because the robot can no longer find these items as they have already left the
sales floor (see figure 4.15).

Table 4.9: Terms used for calculating the recall

Term Symbol
Items replenished from the stockroom: 𝐼replenished
Items to find during inventory: 𝐼find
Items actually found: 𝐼 found
Items sold after being replenished: 𝐼sold
Items transported back to the stockroom: 𝐼back
Items stolen after replenishment: 𝐼stolen
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In order to calculate the recall (i.e., the fraction of relevant items that could be found), we
first define the necessary terms as shown in table 4.9. Then we define the set of items the
robot has to find during its next inventory as follows:

𝐼find = 𝐼replenished − 𝐼sold − 𝐼back − 𝐼stolen (4.15)

If we define 𝐼find as the number of all relevant items to find and 𝐼 found as the number of all
relevant items that were actually found, we can compute the recall of the inventory robot
with equation 4.16:

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝐼 found
𝐼find

(4.16)

In order to calculate the respective variables, we first have to filter our RFID dataset
for the data of one particular day that we want to investigate. In order to simplify the
following algorithmic approaches, we assume that the filtering has been done beforehand
on the RFID bookings dataset and the RFID log dataset, so that both datasets contain
only the data of one day, including the relevant replenishments and the subsequent robotic
inventory. Based on this assumption we can then use algorithm 10 in order to determine
the replenished items of one particular day.

Algorithm 10 Determine the replenished items
Require: Table: RFID_bookings

1: SELECT SGTIN FROM RFID_bookings
2: WHERE Device = "Replenishment Gate"
3: AND ("From" = 2 AND "To" = 1)
4: return Table: Items_replenished

Algorithm 10 uses the position information from the columns From and To of the RFID
bookings dataset. We first determine all items which traveled from position stock-
room (2) to position sales floor (1). Then the resulting dataset, which we denote as
table Items_replenished, contains only the SGTINs of the items that were actually brought
to the sales floor.

Algorithm 11 Determine the items that were taken back to the stockroom
Require: Table: RFID_bookings

1: SELECT SGTIN FROM RFID_bookings
2: WHERE Device = "Replenishment Gate"
3: AND ("From" = 1 AND "To" = 2)
4: return Table: Items_taken_back

We can determine the items that were taken back to the stockroom by determining all items
which made a position change from position 1 to position 2. Algorithm 11 shows how this
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can be achieved. The items that were sold (i.e., read at the point of sale) or stolen (i.e., read
at the EAS gate) can be determined with algorithm 12. It is to note that it does not matter
that the aforementioned operations may contain more SGTINs than there are in the set of
Items_replenished, because these SGTINs will be filtered out by joining the previously
determined datasets within the subsequent operations.

Algorithm 12 Determine the items that were sold or stolen
Require: Table: RFID_bookings

1: SELECT SGTIN FROM RFID_bookings
2: WHERE Device = "EAS" OR Device = "POSREADER"
3: return Table: Items_sold_or_stolen

The results of algorithms 10 to 12 can then be used in order to determine the items which
the inventory robot has to find during its inventory. We use algorithm 13 for this task.
Here we filter out all items (i.e., their respective SGTINS) which were taken back to the
stockroom and all items which were sold or stolen.

Algorithm 13 Determine the items to find
Require: Tables: Items_replenished; Items_taken_back; Items_sold_or_stolen

1: SELECT Items_replenished.SGTIN FROM Items_replenished
2: LEFT JOIN Items_taken_back
3: ON Items_replenished.SGTIN = Items_taken_back.SGTIN
4: LEFT JOIN Items_sold_or_stolen
5: ON Items_replenished.SGTIN = Items_sold_or_stolen.SGTIN
6: WHERE Items_taken_back.SGTIN IS NULL
7: AND Items_sold_or_stolen.SGTIN IS NULL
8: return Table: Items_to_find

Algorithm 14 shows our approach for determining the items the robot actually found during
its inventory. We use the intersection of the RFID log and the table Items_to_find in
order to determine the number of items the robot has actually found for the timeframe
under consideration. We use the RFID log, because only this dataset contains all readings
of the inventory robot from its last inventory. We can then calculate 𝐼 found with a simple
SELECT COUNT statement (see algorithm 14).

Algorithm 14 Determine 𝐼 found
Require: Tables: RFID_log; Items_to_find

1: 𝐼 found :=
2: SELECT COUNT (*) FROM RFID_log
3: LEFT JOIN Items_to_find ON RFID_log.SGTIN = Items_to_find.SGTIN
4: WHERE Device = "Inventory Robot" AND NOT Items_to_find.SGTIN IS NULL
5: return 𝐼 found

Finally, we can calculate 𝐼find with algorithm 15 by performing a SELECT COUNT
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statement on the table Items_to_find. After having performed the algorithms 10 to 15,
we are able to calculate the recall. In our case, the recall indicates the percentage of items
found by the inventory robot, taking into account all replenished items that were on the
sales floor during the inventory. The recall gives a manager a timely indication of how
well the inventory robot has performed its last inventory. A bad recall can either indicate
process errors or a malfunction of the inventory robot itself. If a large percentage of items
cannot be found after replenishment, the inventory robot has either encountered problems
on its route through the store (maybe it never passes a certain area) or the staff made some
operational mistakes before the inventory. This could happen, if the employees do not
position the articles at the designated locations on the sales floor, but rather at shielded
intermediate storage locations, such as behind the cash registers, where the articles cannot
be found. This can lead to an unwanted deviation between the actual stock on the sales floor
and the stock the inventory management system believes to be there. We are convinced
that our analysis can help to detect such errors in time.

Algorithm 15 Determine 𝐼find
Require: Table: Items_to_find

1: 𝐼find :=
2: SELECT COUNT (*) FROM Items_to_find
3: return 𝐼find

There are some limitations to our approach. First, we assume that the other RFID-enabled
devices such as the replenishment gate work properly, which is necessary in order to obtain
reliable results. Second, we assume that the RFID-enabled inventory robot only performs
its inventory on the sales floor. If the robot would also scan the stockroom, we would need a
different approach in order to measure its inventory accuracy.

Our approach can also be adapted to different circumstances, e.g., when an inventory robot
carries out the inventory on one day on the ground floor and the next day on the second
floor. Also in this case we can still use our approach. We only have to extend the period
under consideration by considering the article readings of two days. This also includes
replenishments, sales, thefts and return transports to the stockroom, which are recorded
by the RFID infrastructure. In order to not only rely on the recall of the inventory robot,
we propose to use it as one out of many indicators and controls to assess the data quality
of the robotic inventory taking process.

4.4 A generic extraction process for RFID data-based management information

We construct a generic process for generating management-relevant information out of
actual RFID data based on the findings of our work and the relevant literature (i.e.,
Delen, Hardgrave, et al. (2007), Al-Kassab et al. (2013) and Chongwatpol (2015)).
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We therefore first give an overview of the analyses that were reported in the scientific
literature and within this dissertation and then construct a generic process for management
information extraction.

Table 4.10 shows all performance indicators, analyses and models reported in the scientific
literature, including this dissertation (denoted as Weinhard 2018). We only consider those
performance indicators and reports that actually rely on data generated by RFID-enabled
readers. We do not consider indicators or reports that merely measure some attributes
related to RFID, such as the number of unlabeled goods in a store or the performance
of a process before and after the introduction of RFID. In this way, we focus only on
management information that can actually be extracted from RFID data. If the literature
mentions performance indicators, models or reports several times, we have only included
these indicators, reports or models once in general terms. An example of this would be an
indicator that refers to the group-level and another indicator of the same type that refers
to the item-level. Here we have included the corresponding indicator once, but mention
both cases.

As table 4.10 shows most of the indicators and reports have an economic background.
They either measure the performance of a process, like for example, the checkout process
or they give more information about the behavior of the customers (e.g., the heatmap of
catchment areas or the correlation of try-ons vs. sales). All reported analyses are aimed at
informing operational or strategic management. In our view, the possibilities for reports,
performance indicators and predictive models that can be generated using RFID data are
almost unlimited. Adding a new reader to an RFID infrastructure can add new information
that can lead to a variety of different reports or insights. The combination of RFID data
with other types of data, such as customer profiles or position data, enables even more
sophisticated analyses.

Considering, our work and the literature, we are able to structure the process of management
information extraction from RFID data in a general way. The result is depicted in figure 4.16.
In our work and in other studies (e.g., Al-Kassab et al. (2013), Chongwatpol (2015))
there are some basic RFID data coming either directly from the readers or from the
middleware. These data usually contain the position of an item or a person and the time
at which the reading occurred. In the case of a retail store the position can be for example
the sales floor or the stockroom.

The basic data are then often enriched and combined with other sources of data, for
example customer data, spatial information (e.g., X, Y and Z coordinates) or temperature
in the case of a cold chain. The possible analyses are highly dependent upon the context
and the additional data that are gathered by the RFID hardware. For example, the X and
Y coordinates that we obtained through the inventory robot in section 4.3.5.2 refine the
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Table 4.10: Overview of RFID data-enabled analyses, performance indicators and models for
management reporting based on Chongwatpol (2015), Delen, Hardgrave, et al. (2007),
and Al-Kassab et al. (2013) and Weinhard (2018) (Note: This dissertation is referred to as
Weinhard 2018)

Name Type Area Source

Average waiting time at the POS Indicator; Report Economic Weinhard 2018

Average number of customers in a
queue

Indicator; Report Economic Weinhard 2018

Heatmap of areas with high sales
volumes

Report Economic Weinhard 2018

Heatmap of catchment areas Report Economic Weinhard 2018
(Al-Kassab 2013
with smart
shelves)

Customer classification Predictive model Economic Chongwatpol
2015

False negative rate of a
replenishment gate

Indicator Data
quality

Weinhard 2018

Recall of an inventory robot Indicator Data
quality

Weinhard 2018

Error ratio of bulk reading at POS Indicator Data
quality

Al-Kassab 2013

Fitting room usage distribution
analysis of the number of try-ons
on fitting room and cluster level

Report Economic Al-Kassab 2013

Time-dependent visits of fitting
room

Report Economic Al-Kassab 2013

Correlation of try-ons and sales Report Economic Al-Kassab 2013

Shelf maintenance – misplaced
merchandise

Report Economic Al-Kassab 2013

Out of stock – store replenishment
situations.

Report Economic Al-Kassab 2013

Front store / back store movements
analysis of the occurrence of loops
between front and back store

Report Data
quality

Al-Kassab 2013

Lead time analysis – identification
of process inefficiencies

Indicator; Report Economic Delen 2007;
Al-Kassab 2013
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actual position of an article. With this information, we not only know that an item is on
the sales floor, but also its exact X and Y position.

In the next step of our process model, the data are then usually aggregated or filtered in
order to feed the method that shall be used afterwards. This means that several readings
of an item at different points in time may be merged to one piece of information or that
all readings but the most recent one are filtered out in order to perform an analysis. These
aggregations can also serve as features for machine learning models (see Chongwatpol
(2015)).

Basic RFID log data
Position Time

Enrichment with context data, e.g.,  
customer data, product temperature,  
spatial information etc.

Method

Performance 
indicator Report Prediction

Formula, visualization, 
machine learning model

Aggregated data

Aggregation based on
time, RFID readers etc.

Figure 4.16: Generic process for generating management information out of RFID data

Finally, a method for generating a specific output is being applied on the aggregated and
filtered data in order to (i) calculate a performance indicator, (ii) create a report or to (iii)
make a prediction with a machine learning model. Managers can then use the resulting
information in order to make better operative and strategic decisions. We believe that
our process model can help managers to better understand how to generate value from
RFID data and to better assess the potentials of their RFID data for managerial decision
making.

4.5 An RFID data-enabled management dashboard for fashion retail

In order to illustrate how our work could be used for managerial decision support we created
an RFID data-enabled management dashboard prototype which utilizes analyses from our
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work and from the literature. The programming language R and the Shiny framework
(SHINY, 2017) serve as the technical basis for the dashboard.

Figure 4.17: Overview screen

Figure 4.17 illustrates how an RFID data-based management dashboard could look like. We
propose an overview page that contains aggregated high level indicators, like the number of
try-ons in certain fitting room clusters or performance indicators about the RFID-enabled
checkout process. Subpages of the dashboard could allow a manager to explore the aspects
of the retail store on a more fine-granular level.

Figure 4.18: Interactive heatmap
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Besides just offering certain performance indicators and just visualizing data, we believe
that created reports should be made interactive, thus allowing management to explore a
store or even an entire supply chain from different and novel angles. Figure 4.18 shows an
interactive heatmap using the visualization of areas with high sales volumes we propose
in section 4.3.4.4. A manager can display certain areas with high sales figures in a store,
filter them for a certain period of time and explore the articles in the respective areas by
simply hovering over them with the mouse pointer.

Keeping track of the reliability of the data generated by the RFID infrastructure should also
be supported with RFID data-based reports. Figure 4.19 illustrates how a possible data
quality overview could look like. The figure shows the estimates for the recall of the replenish-
ment gate (MLFV01) and the inventory robot (TORY). These key figures, can give a quick
estimate of the current performance of the RFID devices.

Figure 4.19: RFID data quality overview

Additional information like the last inventories of the robot and their respective areas (e.g.,
ground floor, first floor) can help a manager to find irregularities in the processes. As
we can see in figure 4.19, the robot does not change the floors with every inventory, but
executes them several times on the same floor. This indicates a process error, e.g., that the
employees do not move the robot to the planned floor the next day and therefore the robot
does not scan the area to be scanned. This could have a negative effect on data quality
and should be addressed by the store manager.

4.6 Conclusion

RFID data-based analytics is useful to support managerial decision making. The information
gathered from certain RFID readers enables new types of analyses. For example, the
overview of which articles are frequently tried on and which areas of the sales floor are most
frequently visited can be used to support the traditional analysis of sales data. The analysis
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of retail space can help to improve store layout while the analysis of try-ons can help to
make better assortment decisions. From our point of view, RFID data-based analyses and
reports will not replace traditional reporting, but will improve and support it and thus
create added value. Table 4.11 gives an overview of the opportunities and risks of using
RFID data analytics for management reporting.

Table 4.11: Opportunities and risks of using RFID data analytics for management reporting

Opportunities Risks

RFID data can add additional value to
existing reports

RFID data may contain errors and may
thus not be reliable

RFID data are inexpensive and available
in high volumes

Many data may not be useful for
management reporting

RFID data may help uncover insights that
cannot be found with traditional methods

Many analyses can be carried out that do
not add value to a company

The use of RFID data for management reporting appears promising. The data are
available at low cost and are generated continuously and automatically by the RFID
infrastructure. Information distilled from RFID data can add value to existing business
reports or provide new insights that could not be found using traditional methods. However,
there are also some risks associated with the use of RFID data for supporting management
decisions. The data may contain errors. The abundance of data can cause analysts to
create reports that do not really add value to the company, but are created because it is
possible to do so. We therefore recommend using RFID data carefully for management
reporting.

It should be noted that our approaches have some limitations. First of all, our approaches
are based on the assumption of a certain minimum data quality in order to achieve
reliable results (i.e., we assume that at least parts of the RFID infrastructure work
reliably). On the other hand, our approaches were only tested on a dataset from one
retail store equipped with RFID. Other environments could produce different results. We
therefore believe that further research in this area is necessary to further validate our
results.

In summary, RFID should be combined with other technologies (e.g., photoelectric barriers
in changing rooms) to exploit its full potential. Different RFID reading hardware offers new
insights into the flow of goods and persons within a company. Each reader added offers
new analysis options. However, there are no universally valid reports and analyses that fit
every company. Different companies can have different readers and processes and therefore
require different analyses and performance indicators. There are only a few studies that
scratch the surface of what is possible and give companies suggestions on what they can
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actually do with their RFID data. Ultimately, however, it is important that an analyst or
data scientist creatively merges the various data sources and extracts management-relevant
information from them.
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CHAPTER 5

Summary and outlook

This dissertation examines how RFID implementations can be managed and used ef-
ficiently. For this reason, we conduct three studies, each of which deals with a topic
relevant to management and focuses in particular on the use of novel RFID applica-
tions.

We investigate in our first study retail customers’ acceptance towards a pervasive retail
application, namely an RFID-enabled smart fitting room. We investigate the antecedents
of customers’ usage intention towards the particular system and focus on the privacy
related aspects. By utilizing the privacy calculus theory we evaluate customers’ trade-off
between the perceived benefits and the perceived privacy costs of using such an application.
We therefore propose a model based on the Unified Theory of Acceptance and Use of
Technology 2 (UTAUT2) from Venkatesh, Thong, et al. (2012) and the Extended Privacy
Calculus Theory from Dinev et al. (2006). We validate our model and show that it explains
67.1% of the variance in the behavioral intention to use the system. Furthermore, we are
able to explain 43.1% of the variance in a person’s willingness to disclose private information.
Practitioners and researchers can use our results in order to design valuable pervasive
systems that are not perceived as privacy threatening.

Our second study evaluates the possibilities of RFID-enabled robotic inventory taking
in a retail setting. We perform a simulation study and evaluate how an RFID-enabled
inventory robot performs in comparison to RFID-enabled cycle counting with handheld
devices. Since the manufacturers promise accuracy rates of 99% and more for the robotic
inventory, we assume in our first evaluation that the robotic inventory works without errors.
The results suggest that robotic inventory taking outperforms RFID-enabled cycle counting
with handhelds and even eliminates the need to install a replenishment gate between
stockroom and sales floor. However, if we take a more pessimistic view (assuming less
accuracy) as suggested by a few studies, the robotic inventory quickly loses its advantages.
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From this we conclude that the robotic inventory can be a good data quality measure, but
only if the robots work with an almost perfect accuracy.

In the third study, we examine how valuable RFID data-based analyses are for supporting
management decisions. For this reason, we first summarize the relevant literature and carry
out analyses on an RFID data set. In order to illustrate the benefits of RFID data analytics,
we propose three different analyses, namely the inference of performance indicators from
data of an RFID-enabled POS, the visual analysis of the sales area and the inference of
data quality indicators from RFID data. We then show how the proposed reports and
indicators can be integrated into an interactive management dashboard and propose a
generic approach to extract management-relevant information from RFID data. Our results
show that RFID data analytics is useful to support managerial decision making, but will
not replace traditional management reporting.

Even if the studies in this dissertation provide managers with a little guidance, they
are nevertheless subject to certain restrictions. The results of our studies can only be
generalized to a limited extent because they are tailored to the RFID-enabled applica-
tions examined. Our study on customer acceptance and thus our proposed acceptance
model was only empirically tested with one application, namely the smart fitting room.
Consequently, more work is needed to further validate the model and to validate its
generalizability for other RFID-enabled applications. However, since the model is a com-
bination of two already validated models, we assume that their combination will also be
generalizable.

The results of our simulation study show that in our assumed case robotic inventory taking
is superior to other methods of inventory taking. However, since simulation modeling can
only contribute to a better understanding of a system and not to fully evaluate all possible
configurations, we can only be sure that the results are true under our assumptions within
the boundaries of our model world. In addition, other unforeseen problems can disrupt the
process and reduce the benefits of robotic inventory taking. For example, it is conceivable
that thieves could simply tear the RFID tags off and leave them behind in the store. In
this case, a robot will not be able to detect stolen garments via RFID - a problem that is
outside of our analysis (but could be eliminated by sewn-in RFID tags). Nevertheless, we
show that simulation modeling is a useful tool for decision support in the evaluation of
RFID-enabled applications.

The results of our study on in-store analytics show that RFID data can be used to support
management decisions. However, all analyses are linked to the specific configuration of the
RFID hardware and software present in the retail store under investigation. Therefore,
a different configuration of hardware and software may require changes to our proposed
algorithms in order to obtain the same results as we do. Nevertheless, the generic process we
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propose to extract management-relevant information from RFID data will be valid despite
such technical configurations and can serve as a guide for researchers and practitioners.
All in all, RFID technology is advancing fast, and managers will have to deal with various
issues such as customer acceptance, privacy, data quality and the extraction of real value
from the generated RFID data. We are therefore convinced that our work will prove useful
in the hands of a researcher or manager.
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A Questionnaire

Table A.1: Questionnaire with items

Item Statement
PE1 I would find the smart fitting room useful when I would go shopping.

PE2 Using the smart fitting room would help me to do my apparel shopping more
quickly.

PE3 Using the smart fitting room would help me to choose garments more easily.

EE1 Learning to use the smart fitting room would be easy for me.

EE2 My interaction with the smart fitting room would be clear and understandable.

EE3 I would find the smart fitting room easy to use.

EE4 It is easy for me to become skillful at using the smart fitting room.

SI1 People who are important to me would think that I should use the smart
fitting room.

SI2 People who influence my behavior would think that I should use the smart
fitting room.

SI3 People whose opinions that I value would prefer that I use the smart fitting
room.

HM1 Using the smart fitting room would be fun.

HM2 Using the smart fitting room would be enjoyable.

HM3 Using the smart fitting room would be very entertaining.

BI1 I intend to use the smart fitting room in the future.

BI2 I will always try to use the smart fitting room when I go shopping.

BI3 I plan to use the smart fitting room frequently.

PR1 What do you believe is the risk that personal information that is collected by
the smart fitting room could be sold to third parties?

PR2 What do you believe is the risk that personal information that is collected by
the smart fitting room could be misused?

PR3 What do you believe is the risk that personal information that is collected
by the smart fitting room could be made available to unknown individuals or
companies without your knowledge?
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A Questionnaire

PR4 What do you believe is the risk that personal information that is collected by
the smart fitting room could be made available to government agencies?

PR5 What do you believe is the risk that personal information that is collected by
the smart fitting room could be jeopardized by hacking activities?

PC1 I am concerned that personal information that is collected by the smart fitting
room could be misused.

PC2 I am concerned that a person or an agency can find private information about
me when I would use the smart fitting room.

PC3 I am concerned about the information that is collected by the smart fitting
room because of what others might do with it.

PC4 I am concerned about the information that is collected by the smart fitting
room because it could be used in a way I did not foresee.

TR1 Retailers would provide the smart fitting room in a safe way such that infor-
mation can be exchanged electronically

TR2 Retailers would provide the smart fitting room in a reliable way such that
transactions can be conducted

TR3 Retailers which provide the smart fitting room, would handle personal infor-
mation in a competent fashion.

PI1 I find that my personal interest in the smart fitting room would override my
privacy concerns.

PI2 The greater my interest in the smart fitting room would be, the more I would
tend to suppress my privacy concerns.

PI3 In general, my need for the smart fitting room would be greater than my
concern about privacy.

WTPI1 I would provide accurate and identifiable personal information for ordering
products with the smart fitting room.

WTPI2 I would identify myself with a customer id card in order to receive personal
product recommendations.

WTPI3 I would provide accurate information about myself in order to use all func-
tionality of the smart fitting room.
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B Outer loadings of the model

Table B.1: Outer loadings of the model

Construct BI EE HM PC PE PI PR SI TR WTPI

BI1 0.931
BI2 0.904
BI3 0.946
EE1 0.822
EE2 0.934
EE3 0.924
EE4 0.722
HM1 0.933
HM2 0.934
HM3 0.674
PC1 0.916
PC2 0.913
PC3 0.912
PC4 0.835
PE1 0.86
PE2 0.777
PE3 0.764
PI1 0.859
PI2 0.806
PI3 0.88
PR1 0.868
PR2 0.89
PR3 0.856
PR4 0.724
PR5 0.736
SI1 0.906
SI2 0.896
SI3 0.887
TR1 0.807
TR2 0.826
TR3 0.823
WTPI1 0.857
WTPI2 0.897
WTPI3 0.896
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C Structural model with significant path coefficients
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Figure C.1: Structural model with significant path coefficients
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