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Summary 

 

Frizzled (FZD) are highly conserved receptors that belong to class F of the G protein-coupled 

receptor (GPCR) superfamily. They are involved in a great variety of processes during 

embryonic development, organogenesis, and adult tissue homeostasis. In particular, FZD5 is an 

important therapeutic target due to its involvement in several pathologies, such as 

tumorigenesis. Nevertheless, little is known regarding the activation of FZD receptors and the 

signal initiation, and their GPCR nature has been debated. In order to investigate the activation 

mechanism of these receptors, FRET (Förster Resonance Energy Transfer)-based biosensors 

for FZD5 have been developed and characterized. A cyan fluorescent protein (CFP) was fused 

to the C-terminus of the receptor and the specific FlAsH-binding sequence (CCPGCC) was 

inserted within the 2nd or the 3rd intracellular loop. Single-cell FRET experiments performed 

using one of these sensors, V5-mFZD5-FlAsH436-CFP, reported structural rearrangements in 

FZD5 upon stimulation with the endogenous ligand WNT-5A. These movements are similar to 

those observed in other GPCRs using the same technique, which suggests an activation 

mechanism for FZD reminiscent of GPCRs. Furthermore, stimulation of the FZD5 FRET-based 

sensor with various recombinant WNT proteins in a microplate FRET reader allowed to obtain 

concentration-response curves for several ligands, being possible to distinguish between full 

and partial agonists. This technology allowed to address the selectivity between WNTs and 

FZD5 using a full-length receptor in living cells. In addition, G protein FRET-based sensors 

revealed that WNT-5A specifically induced Gαq activation mediated by FZD5, but not Gαi 

activation. Other WNT proteins were also able to induce Gαq activation, but with lower efficacy 

than WNT-5A. In addition, a dual DAG/calcium sensor further showed that WNT-5A 

stimulation led to the activation of the Gαq-dependent signaling pathway mediated by FZD5, 

which outcome was the activation of Protein Kinase C (PKC) and the release of intracellular 

calcium. Altogether, these data provide evidence that the activation process of FZD5 resembles 

the general characteristics of class A and B GPCR activation, and this receptor also mediates 

the activation of the heterotrimeric Gαq protein and its downstream signaling pathway. In 

addition, the FZD5 receptor FRET-based sensor provides a valuable tool to characterize the 

pharmacological properties of WNTs and other potential ligands for this receptor. 
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Zusammenfassung 

 

Frizzled (FZD) sind hochkonservierte Rezeptoren welche zur Klasse F der G- Protein-

gekoppelte Rezeptor Superfamilie gehören. Diese haben wichtige Funktionen in verschiedenen 

physiologischen Prozessen wie zum Beispiel Embryonalentwicklung, Organogenese und adulte 

Gewebe-homöostase. FZD5 ist aufgrund seiner Beteiligung an verschiedenen pathologischen 

Prozessen wie der Tumorgenese ein wichtiges therapeutisches Ziel. Jedoch ist über die 

Aktivierung und Signalauslösung der FZD Rezeptoren sehr wenig bekannt und deren GPCR 

Eigenschaften sind umstritten. Um den Aktivierungsmechanismus dieser Rezeptoren zu 

untersuchen, wurden FRET (Förster Resonance Energy Transfer)-basierte FZD5 Biosensoren 

entwickelt und charakterisiert. Ein cyan fluoreszierendes Protein (CFP) wurde an den 

C-Terminus des Rezeptors fusioniert und die FlAsH-bindende Sequenz (CCPGCC) wurde im 

2. oder 3. intrazellulären Loop eingefügt. Einzel-zell FRET Versuche mit dem Sensor V5-

mFZD5-FlAsH436-CFP haben gezeigt, dass Stimulation mit dem endogenen Ligand WNT-5A 

zur FZD5 Konformationsänderungen führt. Diese Konformationsänderungen sind ähnlich wie 

bei anderen GPCRs, was darauf hinweist, dass der FZD Aktivierungsmechanismus 

vergleichbar mit dem von GPCRs ist. Außerdem wurde der FZD5 FRET-basierter Sensor mit 

verschiedenen rekombinierten WNT Proteinen stimuliert und mit einem FRET-Platten Reader 

gemessen, was die Erstellung von Konzentrations - Wirkungskurven und die Unterscheidung 

zwischen Voll- und Partialagonisten ermöglichte. Diese Methode erlaubte es, die Selektivität 

zwischen WNTs und FZD5 mittels des Volllängenrezeptors in lebenden Zellen zu untersuchen. 

Zudem haben G-Protein FRET-basierte Sensoren gezeigt, dass WNT-5A die FZD5 vermittelte 

Gαq Aktivierung jedoch nicht die Gαi Aktivierung spezifisch induziert. Andere WNT Proteine 

können auch die Gαq Aktivierung induzieren aber mit geringerer Effizienz als WNT-5A. Ein 

doppelter DAG/Calcium Sensor hat zudem gezeigt, dass WNT-5A Stimulation zu einer durch 

FZD5 vermittelten Aktivierung der Gαq-abhängigen Signaltransduktionkaskade führt, was zur 

Aktivierung der Protein Kinase C (PKC) und zur Freisetzung intrazellulären Calciums führt. 

Zusammenfassend wurde in der vorliegenden Arbeit die Ähnlichkeit des FZD5 Rezeptors zur 

Klasse A und B der GPCRs bezüglich allgemeinen Eigenschaften und Aktivierung verdeutlicht. 

Zudem vermittelt dieser Rezeptor die Aktivierung der Gαq-abhängigen 

Signaltransduktionkaskade. Ein FZD5 Rezeptor FRET-basierter Sensor stellt ein wertvolles 

Werkzeug zur pharmakologischen Charakterisierung der WNTs und anderer potentiellen FZD5 

Liganden dar.  
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1. Introduction 

 

1.1. Brief history 

 

1.1.1. Discovery of WNTs 

In the second half of 20th century, intensive research in cancer had led to the discovery of several 

viral oncogenes and their precursors, which were called proto-oncogenes (Nusse and Varnus, 

2012). This term refers to any cellular gene that has the potential to cause cancer, which could 

happen, for instance, by mutations or by insertion of oncogenic retroviruses. 

The mouse mammary tumor virus (MMTV) is a murine retrovirus involved in the development 

of breast cancer.  A systematic analysis looking for insertion sites of the MMTV in the genome 

led to the identification of the gene int1, a proto-oncogene that was activated by MMTV in 

many tumors (Nusse and Varnus, 1982). After its discovery, however, it proved to be quite 

difficult to determine the function of the protein and its mechanism of action, as well as 

generating antibodies to detect it or identifying its cellular receptor and components of the 

pathway (Nusse and Varnus, 2012). It was known, however, that int1 was expressed only during 

embryogenesis and that it was highly conserved in evolution. In 1987, a homologue of int1 was 

found in the genome of Drosophila melanogaster and was named Dint1 (Rijsewijk et al., 1987). 

This gene turned out to be identical to Wingless, a segment polarity gene involved in 

development (Cabrera et al., 1987). Wingless had been identified years before for its role in 

pattern specification during gastrulation. Its name derived from the phenotype that results from 

mutations in the gene: the cells responsible of producing an adult wing led to the formation of 

a thoracic notum instead (Swarup and Verheyen, 2012; Cabrera et al., 1987). Wingless (wg) 

was involved in various steps of development in different tissues. Further studies showed that 

int1 was also involved in embryonic axis formation in Xenopus Laevis; therefore it was also 

important in vertebrate development (McMahon and Moon, 1989). 

Later discoveries of other mammalian genes related to int-1, all potential secreted polypeptides, 

led to the characterization of the WNT family (Nusse et al., 1991). The name WNT was 

proposed as an acronym from the combination of wingless and int-1. Subsequently, int-1 was 

renamed as WNT-1. During the following years, many studies identified components of the 

WNT pathway in vertebrates, such as the APC (Adenomatous Polyposis Coli) protein or 
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β-catenin, which was a homologue of Armadillo, another segment polarity gene in Drosophila. 

Gradually, GSK3 (glycogen synthase kinase 3), DVL (Dishevelled) and Axin were identified, 

and the signaling pathway began to develop (Nusse and Varnus, 2012). 

 

1.1.2. Receptors for WNT proteins 

Back in 1944, Calvin Bridges and Katherine Brehme reviewed many different mutants of 

Drosophila melanogaster (Bridges and Brehme, 1944). One particular mutation in a locus 

produced irregular and curly hairs in comparison to the wild-type (wt) fly, and irregular bristles 

on thorax, wings and feet. Consequently, this locus was called Frizzled. Years later, the product 

of the Frizzled locus was found to be an essential protein for polarity patterns in several tissues, 

both transmitting and interpreting the polarity signal (Vinson and Adler, 1987). This gene 

actually led to a seven-transmembrane protein whose extracellular and intracellular domains 

allowed it to achieve both cellular functions (Vinson et al., 1989; Krasnow and Adler, 1994). 

The structure of the protein was also reminiscent of GPCRs (Schulte, 2010). 

The fact that Frizzled could interact with Dishevelled in Drosophila (Krasnow et al., 1995), a 

known member of the Wingless pathway (Perrimon and Mahowald, 1987), finally led to the 

discovery of a Frizzled homologue in the human genome. From that, a family of several 

Frizzled could be identified, and its interaction with WNTs was described. In 1996, Frizzled 

was officially recognized as WNT receptor (Nusse and Varnus, 2012; Bhanot et al., 1996). A 

few years later, the protein Arrow was identified in Drosophila as a co-receptor for WNT. 

Arrow was another segment polarity gene that belonged to the Low density lipoprotein receptor-

Related Protein (LRP) family (Wehrli et al., 2000). In addition, other receptors for WNT include 

the trans-membrane tyrosine kinases of the ROR and RYK families (van Amerongen R et al., 

2008). 

In 2005, the International Union of Pharmacology (IUPHAR) included 10 Frizzled (FZD1-10) 

and one Smoothened (SMO) receptors as a separate class F within the GPCR superfamily 

(Foord et al., 2005). The classification considered the 7-transmembrane (7TM) structure of the 

receptors, with an extracellular N-terminus and an intracellular C-terminus; the sequence 

similarity to the Secretin receptors of class B, including conserved cysteines in the extracellular 

loops; and the fact that coupling to G proteins had been suggested for some of them (Lagerström 

and Schiöth, 2008; Malbon, 2004).  
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1.2. WNT-FZD signaling 

The discovery of WNT proteins and FZD receptors led to the emergence of an extensive and 

complex field of research. Since then, several cellular pathways have been described, which are 

involved in different biological processes during development, tissue homeostasis and stem cell 

maintenance and regulation. In mammals, 19 WNT proteins and 10 FZDs are known, but the 

interaction between ligands and receptors is intricate, and could differ depending on tissue 

localization, or the presence of specific extracellular and intracellular partners, which could 

drive the activation of certain downstream signaling pathways (Fig. 1). In the next sections, an 

overview of the main components of the pathways that will be mentioned throughout this thesis 

(1.2.1) and the most well established signaling cascades (1.2.2) is provided. 

 

Figure 1. Overview of the main WNT signaling components.  
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1.2.1. Main components of the pathways 

 

1.2.1.1. WNT proteins 

WNTs are secreted lipoglycoproteins that act as morphogens. They are highly conserved in 

animals, although they are not present in plants, fungi or unicellular organisms (Holstein, 2012). 

WNTs present two main posttranslational modifications: acylation and glycosylation. During 

their transit through the endoplasmic reticulum, WNTs are acylated by Porcupine, which adds 

palmitoleic acid groups. Then, in the Golgi, WNTs associate with Wls/Evi, which transport 

them to the plasma membrane. They are later released to the extracellular space, where they 

can travel variable distances and exhibit signaling activity to other cells, acting in a paracrine 

or autocrine manner. These modifications make WNTs highly hydrophobic proteins and, in 

fact, detergents are needed for purification and in vitro maintenance (Grainger and Willert, 

2018; Foulquier et al., 2018; Nusse and Clevers, 2017). The first active purified WNT was the 

mouse WNT-3A (Willert et al., 2003), followed by WNT-5A (Schulte et al., 2005). 

Crystallization of Xenopus WNT-8 in complex with the cysteine-rich domain (CRD) of mouse 

FZD8 showed that the structure of WNTs is formed by two distinct domains that are reminiscent 

of a ‘hand’. This assembling allows WNTs to interact with two different binding sites in the 

receptor. The N-terminus of WNT is considered the ‘thumb’ and carries a palmitoleic acid 

group, stablishing lipid-mediated contacts with the CRD; the C-terminal domain, which would 

be the ‘finger’, binds the CRD through protein interactions. Although there is a high degree of 

conservation in the amino acids of the finger region, slight differences may influence so that 

WNTs have preferences for some FZDs-CRDs and interact with the receptors with different 

binding affinities. The fact that WNTs can activate tyrosine receptors, such as ROR2, which 

also has a CRD, and FZD with or without LRP5/6, suggests that the binding between WNT and 

FZD might be enough to induce receptor activation. Moreover, FZD activation may also occur 

due to WNT-induced receptor dimerization (Janda et al., 2012). 

WNTs can be classified by their ability to induce secondary body axis formation in Xenopus. 

WNT-1/-3A/-7A/-7B/-8 are considered to induce that phenotype and, thus, to activate the 

β-catenin signaling pathway. On the contrary, WNT-4/-5A/-5B/-6/-11 have been shown to 

induce PCP (Planar Cell Polarity) signaling, and WNT-5A/-11 also induce intracellular calcium 

(Ca2+) release (Foulquier et al., 2018; De A, 2011; Kohn and Moon, 2005). 
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1.2.1.2. Cellular receptors 

FZDs are the main receptors for the WNT family. Their structure and functions will be 

described in detailed in section 1.3.2. In addition, WNTs can also activate the tyrosine kinase 

receptors RYK and ROR1/2 (Green et al., 2014). These single transmembrane domain receptors 

are generally involved in canonical and non-canonical signaling pathways, respectively. 

LRP5/6 are also single transmembrane domain receptors that act as co-receptors with FZD to 

activate β-catenin signaling pathway (Fig. 1 and 2). In addition, WNTs can bind to components 

of the extracellular matrix (ECM), such as Glypicans. At some level, they act as receptors or 

co-receptors, competing with FZDs. These interactions influence WNT concentration at the cell 

surface, as well as allow the diffusion of the ligand and the creation of WNT gradients (Filmus 

et al., 2015; Capurro et al., 2014; Schulte, 2010). 

 

1.2.1.3. Dishevelled 

Dishevelled is thought to play a central role in all FZD-mediated signaling pathways (Fig. 1). 

It receives, integrates and propagates the information, leading to the activation of one or other 

signaling cascade. In mammals, three isoforms have been described: DVL1, DVL2 and DVL3. 

DVL proteins have three conserved domains: an N-terminal DIX, a central PDZ, and a 

C-terminal DEP domain. The DIX domain mediates polymerization of DVL and interaction 

with Axin, cooperating in signalosome assembling. The PDZ (atypical postsynaptic density 

95/disc-large/zona occludens-1) domain mediates interaction with other proteins which have a 

PDZ-binding domain, like FZD receptors. The DEP (Dishevelled, Egl-10, Pleckstrin) domain 

also allows interaction with other proteins, such as DAAM1 (Dishevelled-associated activator 

of morphogenesis 1). Additionally, DVL presents a basic region located between DIX and PDZ 

that consists of conserved serine and threonine residues, and a proline-rich region situated 

between PDZ and DEP (Sharma et al., 2018). 

DVL can interact with FZD receptors at three different motifs, one located in the C-terminus 

and the other two in the 3rd intracellular loop (ICL-3) of the receptor. The PDZ domain of DVL 

is thought to interact only with the C-terminus of FZD, while the DIX domain does not bind 

directly to the receptor. The DEP domain can interact with the three motifs in the receptor, but 

also with negatively charged lipids in the membrane in order to stabilize the interaction 

(Tauriello et al., 2012).  
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1.2.2. WNT-FZD signaling pathways 

The interaction between WNTs and FZDs can lead to the activation of diverse signaling 

pathways. Traditionally, they have been classified as canonical (β-catenin-dependent) and non-

canonical (β-catenin-independent). This last group is broad and complex, and among others, it 

includes the PCP, calcium, and STOP pathways. 

 

1.2.2.1. β-catenin-dependent signaling pathway 

The WNT/β-catenin-dependent signaling pathway is an evolutionary conserved communication 

system that regulates different aspects during embryonic development and adult tissue 

homeostasis. It is involved in several functions, such as cell fate determination, differentiation, 

stem cell renewal, and tumorigenesis (Steinhart and Angers, 2018; Nusse and Clevers, 2017). 

In the absence of WNTs (Fig. 2, left panel), the levels of β-catenin in the cytoplasm are low 

due to the existence of a ‘destruction complex’, also called ‘Axin degradosome’ (Gammons and 

Bienz, 2018). This complex is constitutively active and it comprises the kinases GSK3α/β and 

CK1α (casein kinase 1α), plus Axin and APC tumor suppressor, both of them acting as 

scaffolding proteins. Axin homo-polymerizes through its DIX domains, generating filaments 

that allow the assembly of the other members of the complex. APC also interacts with Axin and 

itself. Both proteins facilitate the serine/threonine phosphorylation of β-catenin at its 

N-terminus by the kinases, which leads to the release of β-catenin from the complex. 

Subsequently, β-catenin is recruited by the E3 ubiquitin ligase β-Trcp. Ubiquitination of 

β-catenin targets it for proteasomal degradation (Steinhart and Angers, 2018; Foulquier et al., 

2018; Yu and Virshup, 2014; Niehrs, 2012). In the nucleus, Groucho/TLE is associated with 

the nuclear transcription factor LEF/TCF (lymphoid enhancer-binding factor/T cell-specific), 

which represses the expression of target genes (Gammons and Bienz, 2018). 

In addition, in the absence of WNTs, DVL is likely bound to FZD receptor as a monomer 

through its DEP domain and mediates the association of FZD to RNF43/ZNRF3 (Gammons 

and Bienz, 2018). These E3 ubiquitin ligases are target genes of the pathway; therefore, by 

targeting FZD for endocytosis and degradation, they act as negative feedback regulators. 

RNF43 is also a co-receptor of LGR4/5/6 (Fig. 1). Binding of the R-spondin secreted proteins 

(RSPO1-4) to LGR4/5 and RNF43/ZNRF3 decreases the activity of the ligases and thus 

increases the presence of FZD in the membrane (Yu and Virshup, 2014). 
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In the presence of WNT proteins (Fig. 2, right panel), WNT favors the dimerization between 

FZD receptor and the LRP5/6 co-receptor, by binding both and bringing them closer together. 

Consequently, there is an increased concentration of DVL close to the membrane that leads to 

homo-polymerization of DVL through its DIX domains, which also increases its avidity for 

Axin. Therefore, the ‘degradosome’ is recruited to the membrane and Axin stablishes hetero-

polymers with DVL via their DIX domains. At the same time, GSK3 and other kinases 

phosphorylate LRP5/6 at its C-terminus. Later binding of GSK3 to the phosphorylated tail of 

LRP5/6 inhibits the kinase and brings Axin closer to LRP5/6. The fine molecular mechanisms 

of this process are still not fully understood. This series of events leads to the formation of a 

‘WNT signalosome’ (WNT-FZD-LRP5/6-DVL-Axin complex), which inhibits the destruction 

complex and leads to the accumulation of β-catenin in the cytoplasm. Further dimerization of 

DVL through its DEP domain causes the dissociation of DVL from FZD (Steinhart and Angers, 

2018; Gammons and Bienz, 2018; Nusse and Clevers, 2017). 

Increasing levels of β-catenin in the cytoplasm leads to the translocation of the protein to the 

nucleus, where it is captured by the scaffold protein BCL9/Legless. That leads to the 

reorganization of a complex called ‘WNT enhanceosome’ (Gammons and Bienz, 2018), which 

also includes a chromatin-binding protein called Pygo, TCF/LEF, ChiLS and Groucho/TLE. As 

a consequence, LEF/TCF becomes a transcriptional activator of β-catenin target genes. Some 

of these genes include regulators of the pathway, genes involved in cell cycle or in stem cell 

regulation. 

 

 

Figure 2. WNT/FZD-mediated β-catenin-dependent signaling pathway.  

ON OFF 
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1.2.2.2. PCP signaling pathway 

Frizzled was first identified due to a mutation in a Drosophila locus. This protein belonged to 

an evolutionary conserved pathway that controlled cell migration and tissue polarity. In order 

to generate structures and tissues, cells move and organize according to the information that 

they receive, regarding for instance position in an epithelial plane or apical-basal polarity. The 

planar cell polarity refers to the cellular orientation, primarily in epithelial or mesenchymal 

cells, and it regulates many processes during development. It is a β-catenin-independent 

pathway and one of the most studied non-canonical signaling routes (Humphries and Mlodzik, 

2018; Komiya and Habas, 2008; Seifert and Mlodzik, 2007). Dysregulations in the pathway 

have been linked to tumor progression and angiogenesis (Wang, 2009). 

The PCP pathway comprises six essential proteins, organized in two complexes that localize in 

opposite sides of the cell. On one hand, the FZD receptor, Celsr (Flamingo in Drosophila), and 

the cytoplasmic proteins DVL and Inversin/Diversin (Diego in Drosophila). On the other hand, 

the transmembrane proteins Van Gogh-like 1 and 2 (Vangl1/2; Strabismus in Drosophila) and 

Celsr, and the cytoplasmic protein Prickle. Vangl1 is able to interact with a FZD receptor from 

an adjacent cell, stabilizing both complexes. In addition, components of the complexes within 

one cell inhibit each other, contributing to the spatial separation (Foulquier et al., 2018; Seifert 

and Mlodzik, 2007). 

Within the FZD-DVL complex (Fig. 3), the interaction between DVL and DAAM1 leads to the 

activation of the small GTPases Rho and Cdc42, as well as the Rho-associated kinase (ROCK), 

which ultimately induces actin polymerization and cytoskeletal reorganization (Komiya and 

Habas, 2008). In addition, DVL can also interact and activate Rac1, which leads to the 

phosphorylation and activation of the c-JUN-N-terminal kinase (JNK), and the JNK/p38-type 

MAP kinase pathway. Subsequently, transcription factors, such as c-Jun, are activated 

(Foulquier et al., 2018; Yang and Mlodzik, 2015). 

The role of WNTs in PCP signaling is still not fully understood, although they are thought to 

modulate the interaction between FZD and Vangl1 and, therefore, altering the balance between 

the two complexes. Binding of WNT to its receptor would lead to the internalization of the 

complex and the activation of the signaling cascade. 
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FZD3 and FZD6 have been described to participate in PCP signaling. Besides them, other 

receptors for PCP might include ROR1/2, RYK or PTK7. Some of the ligands that have been 

found to activate the pathways are WNT-4, WNT-5A, WNT-5B or WNT-11 (Foulquier et al., 

2018; Komiya and Habas, 2008; Katoh, 2005). Other regulators of the pathway include CK1ε 

or the heterotrimeric Gαo protein (Seifert and Mlodzik, 2007). In addition, protein kinase A 

(PKA) has been shown to act as a negative regulator of the pathway, by interacting and 

inhibiting RhoA. 

 

 

 

Figure 3. WNT/FZD-mediated PCP signaling pathway. 
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1.2.2.3. Calcium signaling pathway 

In 1997, embryogenesis studies in Zebrafish revealed that Xenopus WNT-5A might induce or 

modulate the intracellular calcium signaling pathway (Slusarski et al., 1997a); additionally, 

overexpression of some FZD receptors mediated intracellular calcium release in a G protein-

dependent manner (Slusarski et al., 1997b). A couple of years later, it was shown that certain 

combinations of WNT and FZD, such as co-expression of rat FZD2 and Xenopus WNT-5A, led 

to the translocation of PKC to the plasma membrane; PKC activation was probably dependent 

on G proteins and independent of β-catenin (Sheldahl et al., 1999). In addition, some FZDs and 

WNTs, which had been reported to induce calcium release and PKC activation, were also able 

to activate the calcium/calmodulin-dependent protein kinase II (CaMKII) in Xenopus embryos. 

This activation was pertussis toxin (PTX)-sensitive and occurred several minutes after receptor 

activation (Kühl et al., 2000a). 

Interestingly, WNT proteins that were known to induce the β-catenin-dependent signaling 

pathway did not seem to induce intracellular calcium release, whereas those WNTs that 

activated PKC and CaMKII did not stabilize β-catenin. Both pathways also showed antagonistic 

effects over each other. Moreover, WNTs induced different cellular responses depending on 

the FZD receptor (Kühl et al., 2000a). In view of all of this, the WNT-dependent calcium 

pathway was described as the first non-canonical WNT signaling route in vertebrates (Kühl et 

al., 2000b). At that time, G proteins were suspected to be required, although no direct 

interaction between Frizzled and G proteins had been shown. 

The signaling cascade starts with the binding between WNT and FZD (Fig. 4), although other 

receptors, like ROR1/2, have been described to activate the pathway. The active receptor 

induces the activation of Phospholipase C (PLC), which in many GPCRs occurs upon the 

dissociation of the heterotrimeric Gαq protein. PLC catalyzes the hydrolysis of 

phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers diacylglycerol (DAG) 

and inositol trisphosphate (IP3). While DAG remains in the plasma membrane, IP3 mediates the 

release of calcium from the endoplasmic reticulum. Calcium and DAG collaborate to activate 

PKC, which translocates to the membrane to bind DAG. In addition, calcium and calmodulin 

activate CaMKII. Finally, PKC, CaMKII, and calcium lead to the activation of several nuclear 

transcription factors, such as NFkB, CREB or NFAT (De, 2011; Kohn and Moon, 2005). 
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Figure 4. WNT/FZD-mediated calcium signaling pathway. 

 

 

WNT/Ca2+ signaling regulates cell adhesion and cell movements (Kühl et al., 2000b). 
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1.2.3. WNT-FZD selectivity and specificity 

The selectivity between WNTs and FZDs is one of the main open questions in the field and it 

has not been fully addressed, although it is beginning to be understood (Dijksterhuis et al., 

2014). As previously mentioned, WNTs are hydrophobic proteins, which further complicates 

to investigate WNT-FZD affinity and specificity. While WNT-1/-3/-3A/-7A/-7B/-8A/-8B/-

10A/-10B have been shown to induce β-catenin-dependent signaling in combination with 

certain receptors, WNT-4/-5A/-5B/-6/-11 are traditionally considered non-canonical ligands, as 

detailed in the previous section (1.2.1.1). 

In 2010, for instance, the relative affinity of the interaction between certain WNTs and the CRD 

of FZD5 and FZD10 was measured by using an ELISA-based technique (Carmon et al., 2010). 

Purified WNT-3A was able to interact with CRD-FZD5 (Kd=83.7nM) and induced β-catenin 

activation (EC50=5nM), as measured by the TopFlash assay. WNT-5A was not determined to 

bind CRD-FZD5 nor to activate the β-catenin signaling pathway. 

The binding affinities of several recombinant WNT proteins to various FZDs were further 

investigated by means of using bio-layer interferometry, employing only the CRDs and not the 

complete receptors (Dijksterhuis et al., 2015). These experiments suggested that WNT binds 

FZD with high affinity. Regarding FZD5, WNT-3A and WNT-5A showed strong binding 

(KD<10nM) to the CRD of the receptor, whereas WNT-4 and WNT-5B only exhibited 

intermediate binding (KD: 10-40nM). Steady state was reached for 200nM WNT, the maximal 

measured concentration, in approx. 500 seconds. Focusing on WNT-5A, this ligand only 

showed strong binding to the CRD of FZD5/8. WNT-3A displayed strong or intermediate 

binding to all the tested CRD-FZD, and activated β-catenin-dependent pathway via FZD4/5/7/8.  

Recently, using CRISPR/Cas9 technology and genetic rescue experiments, a map of certain 

WNT-FZD interactions was published (Voloshanenko et al., 2017), and it showed that not all 

the tested WNTs were able to induce β-catenin signaling via all the receptors. Interestingly, the 

apparent selectivity between WNT and FZD might be linked to the phylogenetic relation of the 

receptors. WNT-3 and WNT-3A induced β-catenin-dependent signaling through FZD1/2/7, 

whereas WNT-7A did so only via FZD5, and WNT-7B through FZD5 and FZD8. These two last 

receptors seem to be the most variable, being able to bind more different ligands. In particular, 

WNT-1/-7B/-8A/-8B/-9B/-10A were shown to induce canonical signaling via FZD5 and FZD8, 

and WNT-3A/-7A via FZD5 but not FZD8. WNT-9A was not found to signal through FZD5. 
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1.3. Frizzled as G protein-coupled receptors 

FZDs were recognized as WNT receptors in 1996 and incorporated into the GPCR superfamily 

in 2005, although their GPCR nature has been questioned since then. Over the last years, 

research has also focus on understanding the relation and similarities between FZDs and other 

well-known GPCRs, as well as investigating G protein activation mediated by FZDs, and 

connecting this role with the traditional WNT-mediated signaling pathways. The focus of this 

project is the FZD5 receptor, regarding its activation mechanism and its ability to mediate 

G protein activation and signaling. Therefore, the next sections provide an overview of the 

GPCR family, its signaling mechanisms, and the FZD receptors. 

 

1.3.1. GPCR superfamily 

G protein-coupled receptors constitute the largest family of membrane proteins in the human 

genome, with more than 800 receptors described to date (Lagerström and Schiöth, 2008; 

IUPHAR/BPS Guide to Pharmacology). In 1994, Kolakowski developed a database (GPCRdb) 

in order to collect all the information regarding these receptors and introduced a novel A-F 

classification based on sequence homology. From that, several nomenclature systems have been 

published. One of the most used nowadays is the GRAFS classification system, which organizes 

the GPCRs into five main families: Rhodopsin (class A), Secretin (class B), Glutamate 

(class C), Adhesion, and Frizzled/Taste2 (Fredriksson et al., 2003). 

GPCRs can be found in almost every organ of the body and they respond to a great variety of 

stimuli, modulating various signaling pathways and cellular responses. Consequently, they are 

also involved in a multitude of disorders and thus constitute important pharmaceutical targets. 

Nowadays, almost 40% of FDA approved drugs target GPCRs (Sriram and Insel, 2018; Hauser 

et al., 2017).  

In order to be classified as a GPCR, a receptor should fulfill two conditions. On one hand, to 

have seven membrane-spanning domains. All GPCRs have in common their structure, 

consisting of a single protein, with an extracellular N-terminus, an intracellular C-terminus, 

seven-transmembrane domains, three extracellular (ECL) and three intracellular (ICL) loops. 

On the other hand, the ability to interact with and activate G proteins. Although many of these 

receptors mediate signal transduction through G protein activation, G protein coupling has not 

been described for all of them (Fredriksson et al., 2003). 



 25 

1.3.1.1. GPCR activation mechanism and signaling outcome 

Generally, upon ligand binding, the GPCR undergoes conformational changes that lead to 

rearrangements in the intracellular domains. These movements allow the engagement and 

activation of signaling effectors, which leads to the subsequent activation of downstream 

signaling pathways, whether G protein-dependent or independent (i.e. mediated by β-arrestins 

or by G protein-coupled receptor kinases (GRKs); Hilger et al., 2018; Lohse et al., 2014; 

Kobilka, 2007). Distinct ligands have the ability to stabilize different conformational states in 

the receptor, thus modulating receptor activity. Ligands that are able to induce the maximal 

signaling response are named full agonists, whereas partial agonists only induce a submaximal 

response, and inverse agonists decrease the basal activity (Kauk and Hoffmann, 2018; 

Galandrin et al., 2007). 

Some of the main intracellular effectors of GPCRs are G proteins, which are formed by three 

subunits: Gα, Gβ, and Gγ. Depending on the Gα subunit, four major families have been 

described in humans: Gs, Gq/11, Gi/o, and G12/13. In the inactive state, GDP-bound Gα forms a 

heterotrimer with Gβγ. Receptor activation induces the engagement of the inactive 

heterotrimeric protein, which leads to GDP release. As a consequence, GTP binds to the 

‘empty’ Gα subunit, which undergoes conformational changes that ultimately lead to the 

dissociation of Gα and Gβγ. Separately, both subunits regulate different signaling cascades. 

Last, GTP is hydrolyzed to GDP by Gα, which then re-associates with Gβγ (Hilger et al., 2018; 

Mahoney and Sunahara, 2016; Oldham and Hamm, 2008). 

Regarding the signaling pathways, Gαs activates adenylyl cyclase (AC), which in turn 

stimulates cAMP production, leading to the activation of PKA. Gαi has the opposite effect, by 

inhibiting the production of cAMP. Moreover, Gαi protein is PTX-sensitive; therefore, 

detecting PTX-sensitive G-proteins has become a useful readout to investigate G protein 

activation, as mentioned in section 1.2.2.3 for WNTs/FZDs.  Gαq induces the activation of PLC, 

which ultimately leads to calcium release and PKC activation (Fig. 4). Gα12/13 regulates 

signaling of Rho GTPases. Furthermore, Gβγ subunits can recruit GRKs and modulate other 

signaling effectors, such as AC, PLC, or calcium and potassium channels (Milligan and 

Kostenis, 2006). 
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1.3.1.2. Overview of GPCR subfamilies 

 

 Rhodopsin-like receptors 

The IUPHAR currently includes 719 receptors within the rhodopsin family, which corresponds 

to almost 90% of all human GPCRs (IUPHAR/BPS Guide to Pharmacology). That makes 

class A the largest group within the GPCR superfamily, and it is also highly heterogeneous, 

including receptors involved in olfaction, vision or taste. These receptors have been found not 

only as monomers, but also forming oligomers. Variability can be found in the structure but 

also regarding the ligand, from small molecules to peptides or photons. However, most 

receptors have in common a short N- and C- termini (Lagerström and Schiöth, 2008). For many 

of these receptors, the ligands bind in a cavity between the transmembrane regions and the 

extracellular loops (Fredriksson et al., 2003). Some of these receptors have been associated with 

very fast processes. For instance, the α- and β-adrenergic, A2A-adenosine and muscarinic 

receptors are activated in about 50ms (Lohse et al., 2012). 

A representative member of this family is Rhodopsin, which was also the first crystallized 

GPCR (Palczewski et al., 2000). Following this structure, and subsequent studies, a novel 

mechanism of receptor activation was proposed, by which ligand binding induces the 

rearrangement of the transmembrane helices, especially TM6, allowing the interaction with 

G protein, β-arrestin and GRK (Hilger et al., 2018; Lohse et al., 2014). 

 

 Secretin-like receptors 

Class B, originally considered as family B1, comprises 15 receptors in humans, including the 

Secretin, Glucagon and Glucagon-like, and Parathyroid hormone (PTH) receptors. Due to their 

involvement in a large number of diseases, they are of great pharmaceutical interest. They have 

in common a long N-terminus and a short C-terminus. While the sequence of the N-terminus 

varies between receptors, all of them stablish cysteine bridges between the cysteines in the first 

and second extracellular loops and the N-terminus. Furthermore, family B receptors can be 

found forming homomers and heteromers (de Graaf et al., 2017; Roed et al., 2012; Lagerström 

and Schiöth, 2008). 

All class B receptors respond to peptide hormones, in general short or medium-size peptides, 

through a binding mechanism called ‘two-domain model’. The first step in this model, by which 

the C-terminus of the ligand binds to the N-terminal domain of the receptor, determines the 
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affinity and specificity of the binding. In the second step, the N-terminal region of the ligand 

interacts with the core domain of the receptor, which leads to receptor activation (Roed et al., 

2012; Castro et al., 2005). This binding mechanism, different from many class A receptors, 

results in slower kinetics. For instance, the PTHR was determined to be activated within one 

second (Castro et al., 2005; Vilardaga et al., 2003). 

Interestingly, the PTHR presents a PDZ recognition sequence (KSxxxW) in its C-terminus, 

similar to the one found in FZD receptors (Romero et al., 2010). This motif allows the 

interaction between PTHR and DVL, and the subsequent activation of β-catenin independently 

of WNTs. Therefore, it is important to note that besides FZD, other GPCRs can recruit DVL 

and activate β-catenin-dependent signaling pathway. 

 

 Glutamate receptors 

Class C is formed by 22 receptors, which among others include the metabotropic glutamate, the 

GABAB, the calcium-sensing, and the sweet and umami taste receptors (Roed et al., 2012; 

Lagerström and Schiöth, 2008). Both the metabotropic glutamate and the GABAB receptors are 

found in the central neural system (CNS) and therefore constitute an important therapeutic 

target (Chun et al., 2012). Most members of the family have a large N-terminus, which contains 

a Venus flytrap (VFT) module. It involves two domains, creating a cavity where the ligand 

binds and induces receptor activation. Even though binding occurs only to the N-terminus, 

allosteric ligands are thought to interact with the transmembrane domains of the receptors. 

Additionally, and similarly to FZD receptors, the N-terminal region also contain a CRD, which 

connects the VFT to the transmembrane domains. In contrast to other GPCRs, receptors from 

class C form constitutive dimers and their activation mechanism is unique (Chun et al., 2012; 

Lagerström and Schiöth, 2008; Pin et al., 2004). 

 

 Adhesion receptors 

Originally considered as part of the class B, as B2 subfamily, the adhesion class constitutes the 

second largest family of GPCRs, with 33 members in humans that are organized in nine 

subfamilies. These receptors are evolutionary conserved and most of them have in common a 

long N- and C-termini, and a GAIN domain that includes a proteolytic motif (GPS). The large 

N-terminal tail allows interactions with components of the matrix and with other cells. Although 

they are thought to bind extracellular matrix molecules, the endogenous ligand is unknown for 
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many of them. Similarly to other GPCRs, they have cysteine residues in the extracellular loops 

1 and 2 (Hamann et al., 2015; Langenhan et al., 2013; Lagerström and Schiöth, 2008). Some 

members of this family are implicated in planar cell polarity, such as Celsr1, which is associated 

with FZD receptors and DVL (Langenhan et al., 2013). 

 

 Frizzled/Taste2 

The fifth class of GPCRs can be subdivided into two groups. On one hand, the Taste2 receptors, 

which in humans include 25 bitter taste receptors, although many are still orphans. On the other 

hand, a second group composed of ten Frizzled receptors (FZD1–10) and one SMO (Lagerström 

and Schiöth, 2008). FZD and SMO share the common structure of other GPCRs, consisting of 

7TM domains, as well as one extracellular N-terminal and one intracellular C-terminal domains. 

FZD can be subdivided into four families: FZD1, FZD2 and FZD7; FZD5 and FZD8; FZD4, FZD9 

and FZD10; FZD3 and FZD6 (Schulte, 2010). 

 

1.3.2. FZD receptors 

 

1.3.2.1. Sequence and structure 

FZDs have a large N-terminus, which contains a signal peptide and a CRD similar to the class C 

GPCRs (Fig. 5). This region is considered the orthosteric site of these receptors and is the main 

responsible for ligand binding, although it is still not clear if it is involved in signal transduction. 

Moreover, it is also unknown how the bound ligand leads to receptor activation. Besides the 

CRD, there might be other binding sites in the extracellular loops. The CRD is highly 

conserved, and in fact most of the cysteines are also found in the SMO receptor, which 

underlines the idea that the CRD has other functions besides binding the ligand (Schulte, 2010; 

Lagerström and Schiöth, 2008; Schulte and Bryja, 2007). Additionally, the CRD is also 

involved in receptor dimerization. 

The main interaction partners of FZD are the WNT proteins, although other molecules have 

been described to bind these receptors or their co-receptors (Fig. 1), such as RSPOs, the soluble 

Frizzled-related proteins (sFRPs), and Norrin, which specifically interacts with FZD4 

(Lagerström and Schiöth, 2008; Schulte and Bryja, 2007). 

FZDs share several domains with other GPCRs, for example, cysteines in the 1st and 2nd 

extracellular loops, or charged residues in the 3rd intracellular loop that are important for 
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coupling to G proteins. However, they also lack other relevant motifs for this function. In 

addition, some FZDs may form a helix VIII in the C-terminus, which has been linked to 

G protein coupling. In the C-terminus, the KTxxxW sequence is conserved in all FZDs but not 

in SMO. This motif is a PDZ-binding sequence, which allows the interaction with proteins with 

a PDZ domain, especially DVL (Schulte, 2010; Schulte and Bryja, 2007). As previously 

mentioned, this sequence can be found in other GPCRs, such as the PTH receptor. 

 

 

Figure 5. General FZD5 receptor structure. The protein has 7TM domains. The CRD is highlighted in 

the N-terminus with an orange circle. The three motifs of interaction with DVL in the C-terminus and 

ICL-3 are shown in green. The conserved sequence KTxxxW is found in the C-terminus. 

 

1.3.2.2. FZD receptors oligomerization  

Similarly to other GPCRs, FZDs can form homo- and hetero-dimers (Fig. 1). Several signaling 

pathways require the interaction of FZD with co-receptors, such as LRP5/6 in β-catenin-

dependent signaling (Angers and Moon, 2009). FZDs are thought to dimerize via their 

transmembrane domains or their CRDs. In fact, FZD-FZD interactions are thought to be enough 

to induce activation of β-catenin signaling in the absence of WNTs (Schulte, 2010). 

Currently, the stoichiometry of the ligand-receptor complex is unknown. A widespread 

hypothesis suggests a 1:2 model, where binding of one WNT molecule would promote FZD 

receptor dimerization through their CRDs (Nile et al., 2017). In addition, dimerization of FZD 

might lead to the formation of high-order oligomers. This model was suggested for FZD5, FZD7 

and FZD8. The crystal structure of the CRD of FZD4 supported this 1:2 stoichiometry and 

KTxxxW

Signal 

sequenceCysteine-rich

domain
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revealed higher-order complexes. WNT-5A induced FZD4 dimerization, and subsequent 

oligomerization, by binding two CRDs (DeBruine et al., 2017). FZD6 has been shown to form 

constitutive homodimers in the inactive state, which dissociate upon WNT stimulation 

(Petersen et al., 2017). 

FZD receptor dimerization appears to be important, not only for assembling of components of 

the pathways, but also for signaling. Therefore, it emerges as a potential factor to be considered 

in Frizzled pharmacology (Wang et al., 2018; Zhang et al., 2018; Ferré, 2015). A better 

knowledge of the stoichiometry of the complexes, the association or dissociation of receptors 

upon ligand binding, or the conformational rearrangements that FZDs and CRDs could undergo 

upon dimerization, would contribute to understand the activation process of FZD and the 

selective activation of signaling pathways. 

 

1.3.2.3. Crystal structures: SMO vs FZD4 

The SMO receptor belongs to the Frizzled family and it is an important component of the 

Hedgehog signaling pathway. Similarly to FZD, SMO contains a CRD. Crystallization of the 

SMO receptor revealed a 7TM structure, a short helix VIII located parallel to the membrane, 

and long extracellular loops. In general, although the sequence similarity between SMO and 

class A GPCRs is quite low, the overall 3D structure of SMO is highly conserved. An important 

difference refers to the conserved prolines in helices V, VI and VII of class A, which are 

involved in receptor activation and the movement of helix VI. These prolines are missing in 

SMO, but several glycines in the same helices could provide flexibility and contribute to 

conformational changes upon receptor activation (Wang et al., 2013). Another crystal structure 

of SMO bound to the antagonist Vismodegib revealed that, upon binding of the compound to 

the transmembrane domains (TMD), the receptor undergoes a conformational change that 

involves a movement of helix VI, and leads to a reorganization in the structure of the CRD 

(Byrne et al., 2016). Furthermore, binding of cholesterol induces a movement in the CRD that 

leads to structural rearrangements in the receptor, which includes the extracellular part of helix 

VI and the ECL-3. Overall, the activation mechanism appears to be different from other GPCRs 

(Zhang et al., 2017). However, the recent structure of the sterol-activated SMO shows a 

reorientation of the CRD upon ligand binding that, through allosteric communication, induces 

a conformational change in the TMD reminiscent of class A and B GPCR activation (Huang 

et al., 2018).  
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The structure of the transmembrane domains of FZD4 was solved in a ligand-free state and it 

also lacked the CRD. Similarly to SMO, the structure of FZD4 revealed 7TM helices, as well 

as a short helix VIII packed parallel to the membrane. This helix VIII contains the conserved 

sequence KTxxxW for interaction with PDZ proteins, such as DVL. The extension of the helix 

VI is shorter than the one found in SMO. In addition, this helix VI remains packed and stable 

in a close conformation, which could prevent the conserved movement observed in other 

GPCRs upon activation. In contrast, two bends in helix VII may be involved in receptor 

activation (Yang et al., 2018). 

In addition, the hinge region and the extracellular loops of FZD4 are quite compact, much more 

than in class B and C GPCRs. Moreover, the transmembrane pocked of FZD4 is tight, and no 

cavity exists between helices III, VI and VII, which suggests that FZD4 cannot accommodate 

ligands in the traditional transmembrane binding pocket or allosteric modulators in the said 

cavity. Besides being too narrow, the transmembrane binding pocked is also quite hydrophilic 

due to the presence of polar residues, which would negatively affect the binding affinity of a 

ligand. It is then possible that the nature of the pocket has hindered the design of drug molecules 

so far (Zhang et al., 2018; Yang et al., 2018). 

Altogether, there seem to be some marked differences between SMO, and thus other known 

crystallized GPCRs, and FZD4 regarding ligand binding and activation mechanism. It is still 

unclear how WNT induces FZD activation, whether WNT binds only to the CRD and that leads 

to a conformational change in that region, like in class C GPCRs, or there might be also an 

interaction with the extracellular regions of the receptor, like in class B. Since the FZD4 receptor 

was crystallized in an inactive, ligand-free state, it is possible that WNT-induced activation 

would produce a rearrangement that opens the receptor at its transmembrane regions, and would 

thus facilitate the interaction with intracellular partners. 

  



 32 

1.3.2.4. FZD receptors and G proteins 

G protein activation mediated by FZD receptors was suggested for the first time when WNT-5A 

was found to induce calcium signaling in embryos (Slusarski et al., 1997a), as detailed in section 

1.2.2.3. Evidence of G protein activation linked to FZD has accumulated through the years and 

has been recently reviewed (Wright and Schulte, 2018). Nevertheless, little is known about the 

selectivity between FZD and G proteins, and it is still not clear whether all the receptors of the 

family can in fact couple to G proteins. 

Lately, the use of microscopy techniques have reported activation of G proteins mediated by 

overexpressed FZD receptors in living cells. For instance, FZD6 has been shown to be pre-

coupled to Gαi1 and Gαq, but not Gαo/s/12. Stimulation with the ligand WNT-5A induced the 

dissociation of the complex. Interestingly, the interaction between the receptor and the 

G protein was dependent on the expression levels of DVL. Therefore, DVL is thought to play 

a dual role, regulating the FZD6-G protein interaction at endogenous levels, but inhibiting it at 

high or low concentrations (Kilander et al., 2014). In contrast, FZD4 forms an inactive complex 

with Gα12/13, but not with Gαs/i/o/q, and this process is independent of the intracellular levels of 

DVL. Upon stimulation with WNT-3A/-5A/-7A/-10B, FZD4-Gα12/13 dissociates and regulates 

RhoGEF proteins (Arthofer et al., 2016). Meanwhile, FZD10 is able to form an inactive complex 

with Gα13 but not with Gα12 or Gαs/i/o/q. This process does not require DVL, although high levels 

of this protein negatively affects the interaction. Stimulation with WNT-5A and WNT-7A, but 

not WNT-3A, induces Gα13 activation and YAP/TAZ signaling (Hot et al., 2017). 

 

1.3.2.5. FZD5 receptor 

FZD5 is expressed in several tissues during development and regulates diverse cellular 

functions. For instance, it is involved in synaptogenesis in the hippocampus (Sahores et al., 

2010), in neural development (Slater et al., 2013) and in inflammatory responses (Blumenthal 

et al., 2006). In addition, FZD5 is a potential therapeutic target in tumorigenesis. Up-regulation 

of this receptor has been implicated in several types of cancer, such as breast cancer, renal cell 

carcinoma, or pancreatic ductal adenocarcinoma cells (Zeng et al., 2018; Steinhart et al., 2017). 

Furthermore, the axis WNT-5A/FZD5 is also implicated in Alzheimer’s disease and rheumatoid 

arthritis (Dijksterhuis et al., 2014). Interestingly, WNT-5A exhibits anti-tumor effects mediated 

by FZD5 in prostate cancer (Thiele et al., 2018). 
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FZD5 is a 585 amino acids length receptor that belongs to the same subfamily than FZD8, with 

which shares 70% identity. These two receptors appear to be quite promiscuous, being able to 

interact with many different WNT proteins. Particularly, FZD5 has been described to interact 

with WNT-1/-2/-3/-3A/-5A/-7A/-7B/-8A/-8B/-9B/-10A/-10B/-11 in different contexts, as 

discussed in section 1.2.3 (Voloshanenko et al., 2017; Dijksterhuis et al., 2015). These 

interactions may lead to the activation of various signaling pathways. The two best described 

ligands for FZD5 are WNT-3A and WNT-5A. While the first one is linked to β-catenin 

dependent signaling, WNT-5A has been found to be implicated in both canonical and non-

canonical cascades. WNT-5A/FZD5 induced axis duplication in Xenopus (Ishikawa et al., 2001; 

He X et al., 1997), a phenotype associated with canonical signaling, but also PKC activation 

(Weeraratna et al., 2002) and CaMKII signaling (Chen et al., 2015). Moreover, FZD5 has been 

suggested to induce G protein activation, although direct proof is still missing. 

Generally, in many GPCRs, the interfaces for β-arrestin (Kang et al., 2015) and G protein 

(Carpenten et al., 2016) binding are found in ICL-2, ICL-3 and the C-terminus. To some extent, 

these areas of interaction appear to be conserved in FZD receptors. Moreover, the ICL-3 and 

the C-terminus of FZD5 are described binding sites for DVL (Fig. 5; Tauriello et al., 2012), and 

some residues in ICL-1 and ICL-2 are also thought to contribute to this binding (Gammons et 

al., 2016). Therefore, there appears to be an overlapping between the contact areas of FZD5 

with DVL and G proteins, which suggests that FZD5 could not bind the two proteins 

simultaneously. 

Altogether, FZD5 arises as an interesting pharmacological target. In order to better understand 

its GPCR nature, its selectivity for WNTs and its interaction with G proteins, FRET technology 

will be employed, which has been successfully used before to investigate other GPCRs. 

Therefore, FRET is described in detail in the following section (1.4). 
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1.4. Förster Resonance Energy Transfer 

In living organisms, the spatio-temporal control of protein complexes regulates the activation 

and deactivation of different signaling cascades. In order to investigate protein-protein 

interactions and molecular proximity in living cells, several technologies have been developed, 

which include Fluorescence Correlation Spectroscopy (FCS; Briddon et al., 2018), 

Bioluminescence Resonance Energy Transfer (BRET; Stoddart et al., 2018) or fluorescence 

imaging techniques, such as Förster Resonance Energy Transfer (FRET; Kauk and Hoffmann, 

2018) or Fluorescence Recovery After Photobleaching (FRAP; Veerapathiran and Wohland, 

2018). 

 

1.4.1. FRET microscopy 

FRET is a non-radiative technique that normally involves two fluorescent molecules, a donor 

and an acceptor, that are found relatively close to each other, generally between 1 and 10nm 

(10-100Å). When the donor is in an excited electronic state, it transfers energy to the acceptor 

through long-range dipole-dipole interactions (Fig. 6). Therefore, several requirements must be 

fulfilled in order for FRET to occur: first, the distance between the fluorophores should be less 

than 100Å; second, the dipole moments of both molecules should have a relative orientation 

towards each other, being FRET higher if the orientation is parallel; and third, the donor 

emission spectrum should overlap with the acceptor excitation spectrum (Kremers, Piston, and 

Davidson, 2018; Lohse et al., 2012). 

The existence of energy transfer between the fluorophores can be demonstrated by quenching 

of the acceptor fluorescence, which leads to an increase in the donor fluorescence emission. 

This concept is called FRET efficiency (E), and it can be determined by using the following 

formula:  E = 1/[1 + (r/R0)6], being r the distance between the two fluorophores, and R0 the 

distance where FRET efficiency is 50%. This optimal value R0, also known as ‘Föster distance’, 

can be determined for any pair of fluorophores, although it is normally around 4-6nm. If the 

two fluorophores are relatively far from each other or two close, r would be much higher or 

lower than R0, and thus the FRET efficiency will be low or high. In practice, this may result in 

the absence or existence of FRET between the fluorophores, so exploring optimal positions for 

the two fluorophores and determining the FRET efficiency would be a first step in FRET 

applications (Kremers, Piston, and Davidson, 2018; Stumpf and Hoffmann, 2016; Jares-

Erijman and Jovin, 2003). Therefore, FRET efficiency has been determined for the FZD5 

FRET-based biosensors developed in this project. 
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Figure 6. Fundaments of FRET. An excited donor fluorophore is able to transfer energy to an acceptor 

fluorophore if there is an overlapping between the spectra, and the distance between the fluorophores 

and the orientation of the dipole moments are adequate. 

 

FRET technique can be used in live-cell experiments by using different approaches, such as: 1. 

FLIM, which detects the donor lifetime; 2. acceptor photobleaching, which is also used for 

determining the FRET efficiency, as previously mentioned; 3. spectral imaging, where the 

spectral profile of both molecules is measured; 4. sensitized emission. This last approach 

consists of exciting the donor at its optimal wavelength and collecting the emission fluorescence 

of both fluorophores by using specific filters. Since there is an overlapping between the spectra 

of the fluorophores, it is important to correct the measured FRET signal for bleed-through, cross 

excitation, and leakage of the donor fluorescence into the acceptor detection channel (Kremers, 

Piston and Davidson, 2018; Lohse et al., 2012). 

Nowadays, many different FRET pairs have been described, and the most common involves 

the cyan and yellow fluorescent proteins (ECFP-EYFP). Some variants have been introduced 

along the years, like using TFP or Cerulean instead of CFP, or Venus instead of YFP. In 

addition, other pairs include green or red proteins, such as green fluorescent protein 
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(EGFP)-mCherry, Venus-mCherry or Venus-tdTomato (Kremers, Piston and Davidson, 2018). 

Nevertheless, one disadvantage of the fluorescent proteins is their size, of around 30KDa. 

Insertion of one or two fluorophores in a protein could thus alter its structure or function. An 

alternative is the use of smaller fluorophores (Tian et al., 2017), such as FlAsH (Fluorescein 

Arsenical Hairpin) or ReAsH (Resorufin Arsenical Hairpin). In particular, FlAsH is a 

compound of 700Da that specifically binds the six amino acid sequence CCPGCC. FlAsH 

becomes fluorescent when attached to its binding-motif, exhibiting similar properties to YFP. 

It can be used in combination with CFP or its derivatives to perform dynamic FRET 

experiments (Hoffmann et al., 2005). 

 

1.4.2. FRET-based sensors to investigate GPCR activation and signaling 

FRET microscopy is one of the most used techniques for investigating GPCR activation and 

signaling. It can be used to monitor conformational changes within one protein, by introducing 

a pair of fluorophores in the same molecule (so called biosensor; Fig. 7), or to measure protein-

protein interactions, such as receptor oligomerization, by fusing each fluorophore to a different 

molecule. Therefore, FRET has helped to understand the interactions between ligand-receptor, 

receptor-G protein, and receptor-β-arrestin, as well as to determine the kinetics of receptor and 

G protein activation and deactivation, or to investigate the formation of second messengers, 

such as cAMP (Vilardaga et al., 2013; Lohse et al., 2012; Nikolaev et al., 2004). 

 

Figure 7. FZD5 receptor FRET-based biosensor. CFP was fused at the end of the C-terminus and the 

FlAsH-binding motif was inserted either in ICL-2 or ICL-3. Ligand-induced conformational changes 

would alter the relative distance between the fluorophores and thus lead to a change in FRET. 
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The first GPCR FRET-based sensors were published in 2003 (Vilardaga et al., 2003) for two 

receptors, the α2A-adrenergic receptor and the PTHR. These sensors allowed to monitor for the 

first time activation of these receptors in living cells. The pair of fluorophores CFP and YFP 

were inserted into the C-terminus and the third intracellular loop of each receptor, although 

considerable optimization was needed in order to find the best positions for both fluorophores. 

In 2016, FRET-based sensors for 18 different GPCRs had been published, which belong to class 

A, B and C (Stumpf and Hoffmann, 2016). At that time, no FRET-based sensors for FZD 

receptors had been published. These sensors make possible to monitor dynamic movements of 

a receptor and determine the activation kinetics. In addition, they also provide information 

about full and partial agonists, which stabilize different states when bound to their receptor 

(Kauk and Hoffmann, 2018; Vilardaga et al., 2009). Biosensors that report intramolecular 

conformational changes also exist for β-arrestins (Nuber et al., 2016), and for G proteins, in 

which the fluorophores are tagged to the Gα and Gβγ subunits (Fig. 8; Adjobo-Hermans et al., 

2011; Bünemann et al., 2003). 

 

 

 

 

 

 

 

 

 

Figure 8. G protein FRET-based sensor. Upon activation, the receptor mediates the dissociation between 

Gα and Gβγ subunits, leading to a decrease in the FRET signal. 

 

In order to investigate the activation process of FZD5 receptor, FRET-based biosensors for this 

receptor have been developed within the scope of this project (Fig. 7). In addition, FRET-based 

sensors for G proteins (Fig. 8) have been also used in this project to further investigate G protein 

activation mediated by FZD5.  
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2. Motivation 

 

WNTs and FZDs are part of an evolutionary conserved mechanism that regulates many 

processes involved in embryonic development, regulation of adult stem cells and tissue 

homeostasis. Dysregulations in these signaling pathways are linked to important human 

pathologies, such as tumorigenesis, neurodegenerative diseases or cardiovascular disorders. 

Therefore, it is crucial to understand how cells receive WNT signals and relay this information. 

Furthermore, investigating the pharmacological properties of FZD receptors becomes essential 

in order to improve the development of drugs targeting these receptors. Several questions still 

remain open regarding WNT-FZD specificity, ligand affinity, or FZD-G protein interaction.  

Crystal structures of receptors provide information about the molecular mechanisms implicated 

in ligand binding and receptor activation. Nevertheless, structures do not allow to investigate 

dynamic events, like the conformational movements that the receptor undergoes upon ligand 

binding and how it transmits the information to intracellular partners. Therefore, FRET 

technology will be employed to investigate the mechanisms of FZD receptor and G protein 

activation by various WNT proteins, with focus on FZD5 receptor. 

 

The main goals of this PhD project include: 

 Development and characterization of FZD5 receptor FRET-based biosensors. 

 Investigate the conformational changes that the FZD5 receptor undergoes upon 

activation. 

 Optimize a procedure that allows screening of ligands. 

 Explore ligand-receptor specificity, and ligand- and concentration-dependent changes 

in receptor conformation. 

 Characterize the signaling behavior of WNTs with regard to FZD5 by using FRET-based 

sensors for G proteins. 

 Investigate the specific activation of the Gαq-mediated PLC signaling pathway by 

means of using a dual DAG/calcium sensor. 
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3. Materials and Methods 

 

3.1. Materials 

3.1.1. DNA 

DNA Vector Information Source 
Bacterial 

resistance 

Mouse, V5-mFZD5 pcDNA3.4 V5-tagged at the N-terminus 
Madelon Maurice 

(UMC, Utrecht) 
Ampicillin 

Mouse, V5-mFZD5-CFP pcDNA3 
ECFP fused at the end of the 

C-terminus of the receptor 
This thesis Ampicillin 

Mouse, V5-mFZD5-

FlAsH436-CFP 
pcDNA3 

ECFP at the end of the C-terminus 

of the receptor. FlAsH-binding 

sequence inserted within ICL-3 

between Gly436 and Gly437 

This thesis Ampicillin 

Mouse, V5-mFZD5-
FlAsH439-CFP 

pcDNA3 

ECFP at the end of the C-terminus 

of the receptor. FlAsH-binding 

sequence inserted within ICL-3 

between Lys439 and Thr440 

This thesis Ampicillin 

Mouse, V5-mFZD5-

FlAsH436 
pcDNA3.4 

FlAsH-binding sequence inserted 

within ICL-3 between Gly436 and 

Gly437 

This thesis Ampicillin 

Mouse, V5-mFZD5-

FlAsH439 
pcDNA3.4 

FlAsH-binding sequence inserted 

within ICL-3 between Lys439 and 

Thr440 

This thesis Ampicillin 

Mouse, V5-mFZD5-

FlAsH349-CFP 
pcDNA3 

ECFP at the end of the C-terminus 

of the receptor. FlAsH-binding 

sequence inserted within ICL-2 

between Gly349 and Asn350 

This thesis Ampicillin 

Mouse, V5-mFZD5-

FlAsH354-CFP 
pcDNA3 

ECFP at the end of the C-terminus 

of the receptor. FlAsH-binding 

sequence inserted within ICL-2 

between Ala354 and Gly355 

This thesis Ampicillin 

Mouse, V5-mFZD5-

mCherry 
pmCherry-N1 

mCherry at the end of the 

C-terminus of the receptor 
This thesis Kanamycin 

Mouse, V5-mFZD5-GFP pcDNA3 
EGFP fused at the end of the 

C-terminus of the receptor 
This thesis Ampicillin 

Mouse, V5-mFZD5-YFP pcDNA3 
EYFP fused at the end of the 

C-terminus of the receptor 
This thesis Ampicillin 

pcDNA (control) pcDNA3  
Vítězslav Bryja 

(MU, Brno) 
Ampicillin 

FLAG-DVL1   
Gunnar Schulte 

(KI, Stockholm) 
Ampicillin 

HA-DVL2   
Gunnar Schulte 
(KI, Stockholm) 

Ampicillin 

GFP-DVL2   
Gunnar Schulte 

(KI, Stockholm) 
Kanamycin 

GFP-DVL3 pEGFP  
Vítězslav Bryja 

(MU, Brno) 
Kanamycin 

Downward DAG2 + 

R-GECO 
pUB2.1  Tewson et al., 2012 Ampicillin 
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DNA Vector Information Source 
Bacterial 

resistance 

Human, M3AChR-CFP pcDNA3 
ECFP fused at the end of the 

C-terminus of the receptor 
Hoffmann et al., 

2012 
Ampicillin 

Human, M1AChR-CFP pcDNA3 
ECFP fused at the end of the 

C-terminus of the receptor 
Meserer et al., 2017 Ampicillin 

Human, M1AChR-

FlAsH-CFP 
pcDNA3  Meserer et al., 2017 Ampicillin 

Gαq     Ampicillin 

Gβ1 pcMV    Ampicillin 

Gγ2     Kanamycin 

Gi protein trimers 
(Gαi1, Gαi2 and Gαi3) 

Clontech-
style N1 

pGβ1-2A- cp173Venus -Gγ2-IRES-

Gαi-mTurquoise2-Δ9 
van Unen et al., 

2016 
Kanamycin 

Gαq protein trimer  Gαq-mTq∆6 + Gβ1 + cpVenus-Gγ2 
Adjobo-Hermans 

et al., 2011 
Kanamycin 

 

 

3.1.2. PCR primers 

DNA Description Primers 

V5-mFZD5-CFP 
Deletion of the 

STOP codon TAA 

Forward: 5’- ATC TGG TGG GTC ATC CTG TC-3’ 

Reverse: 5’-CTG ATG TCT AGA TAC GTG CGA CAG 

GGA CAC TTG-3’ 

V5-mFZD5-FlAsH436-CFP 
Insertion of 

FlAsH-binding 

motif in ICL-3 

Forward-1: 5’-TGT TGC CCG GGC TGC TGT GGC ACT 

AAG ACG GAC AAG CTA-3’ 

Forward-2: 5’-AGC GTC ATC AAG CAG GGT TGT TGC 

CCG GGC TGC TGT G-3’ 

Forward-3: 5’-TCA CTC TTC CGC ATC CGG AGC GTC 

ATC AAG CAG GGT TGT-3’ 

Reverse: 5’-CTG ATG TCT AGA TAC GTG CGA CAG 

GGA CAC TTG-3’ 

V5-mFZD5-FlAsH439-CFP 

Insertion of 

FlAsH-binding 

motif in ICL-3 

Forward-1: 5’-TGT TGC CCG GGC TGC TGT ACG GAC 

AAG CTA GAG AAG CTC-3’ 

Forward-2: 5’-AAG CAG GGT GGC ACT AAG TGT 

TGC CCG GGC TGC TGT ACG-3’ 

Forward-3: 5’-CGC ATC CGG AGC GTC ATC AAG 

CAG GGT GGC ACT AAG TGT-3’ 

Reverse: 5’-CTC ACT CTA GAT ACG TGC GAC AG-3’ 

V5‑mFZD5-FlAsH349-CFP 

Insertion of 

FlAsH-binding 

motif in ICL-2 

Forward: 5'‐GGC ATG AAG TGG GGC TGT TGC CCG 

GGC TGC TGT AAT GAA GCC ATC GCA‐3' 

Reverse: 5'-TGC GAT GGC TTC ATT ACA GCA GCC 

CGG GCA ACA GCC CCA CTT CAT GCC-3' 

V5-mFZD5-FlAsH354-CFP 

Insertion of 

FlAsH-binding 
motif in ICL-2 

Forward: 5'-AAT GAA GCC ATC GCA TGT TGC CCG 

GGC TGC TGT GGT TAT GCA CAG TAC-3' 

Reverse: 5'-GTA CTG TGC ATA ACC ACA GCA GCC 
CGG GCA ACA TGC GAT GGC TTC ATT‐3' 

V5-mFZD5-mCherry 

Insertion of a 

BglII site 

Forward: 5'-CAG TAA GCT TAG ATC TAC CAT GGT 

CCC GTG CAC GCT G-3' 

Reverse: 5'-GTG CGC ACC TTG TTG TAG AG-3' 

Insertion of an 

AgeI site 

Forward: 5'-CAG TGT CAA GTC CAT TAC GG-3' 

Reverse: 5'-AGC AGT ACC GGT TGT ACG TGC GAC 

AGG GAC ACT TG-3' 
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Name Description Primers 

GPO Mycoplasma PCR 5'-ACT CCT ACG GGA GGC AGC AGT-3' 

MGSO Mycoplasma PCR 5'-TGC ACC ATC TGT CAC TCT GTT AAC CTC -3' 

 

* Sequencing of DNA and development of primers for cloning were done by Eurofins Genomics. 

 

 

3.1.3. Cell lines 

Cell line Description 

HEK 293  

HEK 293 T  

HEK 293   V5-mFZD5-CFP 
Homogeneous stable cell line expressing the receptor 

construct V5-mFZD5-CFP 

HEK 293   V5-mFZD5-FlAsH436-CFP 
Homogeneous stable cell line expressing the receptor FRET 

sensor V5-mFZD5-FlAsH436-CFP 

HEK 293   V5-mFZD5-FlAsH439-CFP 
Heterogeneous stable cell line expressing the receptor FRET 

sensor V5-mFZD5-FlAsH439-CFP 

HEK 293   Downward DAG2/R‑GECO 
Homogeneous stable cell line expressing the dual 

DAG/calcium sensor 

HEK 293   V5-mFZD5-CFP + Downward 
DAG2/R‑GECO 

Homogeneous stable cell line co-expressing the dual 
DAG/calcium sensor and the receptor V5-mFZD5-CFP 

HEK 293   M3AChR-CFP + Downward 

DAG2/R‑GECO 

Homogeneous stable cell line co-expressing the dual 

DAG/calcium sensor and the receptor M3AChR-CFP 

HEK 293   DVL KO 
Knock-out cell line for all three Dishevelled protein isoforms 

(from Gunnar Schulte, KI, Stockholm) 

 

 

3.1.4. Software 

Software Supplier Version 

Adobe  (Reader / Acrobat / Illustrator) Adobe CS6 

Biovoxxel-ImageJ  (Fiji Windows 64Bit)   

Clampex / Clampfit Molecular Devices, LLC 10.3 

ClustalX2 Clustal 2.1 

Gen5™ Data Analysis BioTek  

GraphPad Prism 7 

Leica AF Leica Leica AF 

Microsoft Office Microsoft 2013 

OriginPro  (64Bit) OriginLab Corporation 9.0.0 

Serial Cloner  2.6.1 

 

 

3.1.5. Consumables 

Bacteria Supplier 

E. coli DH5α Invitrogen 
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Enzymes and related reagents Supplier 

Nucleotides New England Biolabs 

Pfu polymerase and Pfu polymerase buffer Promega 

Restriction enzymes and buffers New England Biolabs 

T4 DNA Ligase and Ligase buffer New England Biolabs 

Taq polymerase and Taq polymerase buffer New England Biolabs 

QuikChange Lightning Site-Directed Mutagenesis Kit Agilent Technologies 

 

Ligands Size Reference Lot 

Recombinant Mouse Wnt-2b Protein 25µg R&D   3900-WN-025 
DCWK0316111 

DCWK0418021 

Recombinant Mouse Wnt-3a Protein 10µg R&D   1324-WN-010 
HTR11316041 

HTR11117111 

Recombinant Human/Mouse Wnt-5a Protein 10µg R&D   645-WN-010 
MCR4916121 
MCR4917121 

Recombinant Mouse Wnt-5b Protein 25µg R&D   3006-WN-025 SCI1416121 

Recombinant Mouse Wnt-8a Protein 10µg R&D   8419-WN-010 DDTZ0515111 

Recombinant Mouse Wnt-9a Protein 25µg R&D   8148-WN-025 DDDM0517081 

Recombinant Mouse Wnt-9b Protein 25µg R&D   3669-WN-025 SKP2914101 

Recombinant Mouse Wnt-10b Protein 10µg R&D   2110-WN-010 TTU2515081 

Recombinant Mouse Wnt-16b Protein 25µg R&D   9148-WN-025 DFPI0316081 

Recombinant Mouse WIF-1 Protein, CF 50µg R&D   135-WF-050 DQJ0515081 

Carbachol  Alfa Aesar  

Control- and WNT-5A-conditioned medium  Vítězslav Bryja (Brno)  
 

 

Expendable materials Supplier Cat. No. / Ref. 

  6-well plates Sarstedt 83.3920 

12-well plates Sarstedt 83.3921 

24-well plates Sarstedt 83.3922 

96-well plates Sarstedt 83.3924 

100mm plates Sarstedt 83.3902 

150mm plates Sarstedt 83.3903 

"Attofluor" Cell chamber  Molecular Probes  

Black 96-well BRAND-plates, flat bottom cellGrade Brand 781968 

Cell culture flask 25cm2   

Cryo-Tubes Nunc/ThermoScientific 375418 / 368632 

Eppendorf Research Plus , 8-channel, variable 

1-10µl / 10-100µl / 30-300µl 
Eppendorf 

3125000010 / 3125000036 

/ 3125000052 

Eppendorf Xplorer plus, 8-channel, variable, 5-100µl Eppendorf 4861 000.783 

Falcon tubes (15ml, 50ml) Becton Dickinson  

Gloves – SensiCare Ice / Peha-soft nitrile Medline / Hartmann 486802 / 942207 

Neubauer chamber   

Parafilm M Bemis PM-996 

PCR tubes (0.5 ml) Eppendorf  

Pipettes (P2.5, P10, P100, P1000) Eppendorf  

Pipettes tips SurPhob biozym VT 0270/0230/0200/0240 

Protein LoBind Tubes 1.5ml Eppendorf 022431081 

Round glass coverslips 13mm   

Round glass coverslips 24mm Hartenstein 0111640 

Safe-Lock Tubes 1.5ml Eppendorf 0030120.086 

Syringe filtration unit Filtropur S0.2 Sarstedt 83.1826.001 

WillCo-dish® 40mm glass bottom dishes WillCo Wells GWST-5040/1.5-0.5 

µ-Slide 8 wells Ibidi  
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Chemicals Supplier Cat. No. / Ref. 

Agar Applichem A0949 

Agarose, peqGOLD Universal peqLAB 35-1020 

Ampicillin Sigma-Aldrich A9518-25g 

Antibody, Cy3 anti-mouse Jackson ImmunoResearch Laboratories  

Antibody, enzyme-conjugated anti-rabbit   

Antibody, mouse anti-FLAG M2 Sigma-Aldrich  

Antibody, rabbit anti-DVL2 Cell Signaling Technology  

BAL  (2,3-dimercapto-1-propanol) Fluka / Sigma-Aldrich 38520 / 54046 

Bromophenol blue Applichem A23310025 

BSA, albumin fraction V (pH 7.0) Applichem A1391 

CaCl2 Merck 102382 

DAPI   

DMSO  (Dimethyl sulfoxide) Sigma  D4540  100mL 

DNA-ladders (100bp/1kbp) New England Biolabs N3231S / N3231L 

Commercial kits Supplier Cat. No. / Ref. 

DNA Gel Extraction Kit Millipore LSKGEL050 

Effectene® Transfection Reagent Qiagen 301427 

Lipofectamine® 2000 Transfection Reagent   

Modified TAE Buffer Concentrate (50X) Millipore CS201628  500mL 

NucleoBond® Xtra Midi Macherey-Nagel 740410.50 

Buffers and reagents Composition 

Gel loading dye 0.1M EDTA, 50% glycerin, 0.1% bromophenol 

Imaging Buffer 
10mM HEPES, 140mM NaCl, 5.4mM KCl, 1mM MgCl2, 2mM CaCl2  

(pH 7.3) 

KCM buffer 5X 500mM KCl, 150mM CaCl2, 250mM MgCl2 

Labeling Buffer 
10mM HEPES, 150mM NaCl, 25mM KCl, 2mM MgCl2, 4mM CaCl2, 

10mM Glucose (pH 7.3) 

LB medium 80g Pepton, 50g yeast extract, 25g NaCl, water up to 5L 

LB medium with antibiotic 0.08 g/L ampicillin or 0.05g/L kanamycin 

LB medium with agar 10g/L agar 

Milk buffer 5% milk powder into TBST buffer 1X 

PBTA PBS, 3% BSA, 0,25% Triton, 0,01 % NaN3 

Running buffer 1X 10% running buffer 10X, 1% SDS (10%),  dH2O 

SOC medium 
2g Tryptone, 0.5g yeast extract, 0.05g NaCl, 1mL MgCl2 (1M), 1mL 

MgSO4 (1M), 1mL Glucose (2M), water up to 100mL 

Transfer buffer 20% transfer buffer 5X (Biorad), 20% ethanol (95%), 60% dH2O 

TBST buffer 10X 60.5g Tris, 200g NaCl, 35ml HCl,  dH2O up to 2.5L (pH 7.6) 

TBST buffer 1X 10% TBST buffer 10X, 0.05% Tween20,  dH2O 

Reagents for cell culture Supplier Cat. No. / Ref. 

Dulbecco’s modified Eagle’s medium (DMEM) 

4.5g/L glucose 

PanBiotech 

Gibco 

P04-03600   500mL 

21969-035   500mL 

Dulbecco's Phosphate Buffered Saline  (DPBS) Gibco 14190-094   500mL 

Fetal Bovine Serum (FBS) Biochrom S0115          500mL 

L-Glutamine  (200mM) PanBiotech P04-80100   100mL 

Penicillin/Streptomycin Gibco 15140-122   100mL 

Poly-D-Lysine  (100mg) MP Biomedicals 150175 

Trypsin/EDTA PanBiotech P10-023100  100mL 
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Chemicals Supplier Cat. No. / Ref. 

ECL, Western Blotting Substrate Bio-Rad  

EDT (1,2-Ethanedithiol) Sigma 02390     25mL 

EDTA Roth X986.2 

Ethanol 100% Sigma-Aldrich 32205-2.5L 

Ethanol 70% T.H. Geyer 2202 

FlAsH Dr. E. Heller (custom synthesis)  

Gel, precast 7.5% acrylamide Bio-Rad  

Geneticin (G-418) Sulphate Gibco – Life Technologies 11811-031 

Glucose Applichem A0883 

Glycerol gelatin Sigma-Aldrich  

H2O2 30% Applichem A0626 

HCl   

HDGreen plus DNA stain Intas science imaging ISII-HDGreen Plus 

HEPES Sigma-Aldrich H3375 

Immersion oil for microscopy Applichem A0699 

Ionomycin calcium salt Sigma-Aldrich I3909 

Isopropanol Sigma-Aldrich 33539 2.5L-M 

Kanamycin Roth T832.3 

KCl Applichem A2939 

LGK‑974 (Porcupine inhibitor) Cayman Chemical 14072 

Methanol Sigma-Aldrich 32213.05L-M 

MgCl2 Applichem 1036 

MgSO4 Applichem A4101 

Midori green DNA staining   

Milk powder   

NaCl Applichem 131659 

NaOH Applichem A1551 

Phorbol 12,13-dibutyrate (PdBU) Sigma-Aldrich P1269 

Peptone Applichem  

PFA   

PVDF membranes   

Running buffer 10X Bio-Rad  

SDS   

Terralin Schulke 23184-A 

Transfer buffer 5X Bio-Rad  

Tris   

Tryptone Applichem A1553 

Tween20 BioRad 170-6531 

Yeast extract Applichem A1552 
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3.2. Methods 

 

3.2.1. Description of plasmids and sensors 

The mouse V5-mFZD5 receptor in pcDNA3.4 was a gift from Madelon Maurice (Utrecht). This 

gene was used as a basis to design four FRET-based biosensors. In addition, the receptor was 

fused to different fluorophores: CFP, GFP, YFP or mCherry. The development of these 

constructs is described in the following section (3.2.2). 

In order to investigate the activation of G proteins mediated by FZD5 in response to WNTs, 

FRET sensors for the Gαi1, Gαi2, Gαi3, and Gαq isoforms were used. Each sensor comprises a 

single plasmid encoding the three subunits of the protein: Gαq or Gαi bound to mTurquoise, 

untagged Gβ1, and Gγ2 fused to cpVenus (van Unen et al., 2016; Adjobo-Hermans et al., 2011). 

Upon ligand stimulation, the activation of the G protein leads to the dissociation between Gα 

and Gβγ subunits, producing a decrease in the FRET signal. 

To evaluate the specific activation of the Gαq-PLC pathway, a dual fluorescence probe 

(downward DAG2/R‑GECO) developed by Montana Molecular was employed (Tewson et al., 

2012), which allows the simultaneous detection of DAG and calcium. This probe is composed 

of two independent sensors cloned on both sides of a 2A peptide sequence. The DAG sensor 

consists of a cpGFP fused to the C1 domain of a PKC; the second sensor is a red-shifted 

fluorescent calcium indicator (R-GECO). Upon receptor activation, binding of calcium induces 

a conformational change in R-GECO, which leads to an increase in the red fluorescence. 

Simultaneously, the DAG sensor is translocated to the membrane to bind diacylglycerol, 

causing a decrease in the green fluorescence. This dual sensor has been successfully employed 

with the M1AChR (Meserer et al., 2017; Agnetta et al., 2017). 

 

3.2.2. Design of FZD5 receptor constructs 

To generate the construct V5-mFZD5-CFP, the STOP codon TAA was deleted from the 

V5-mFZD5 gene by standard Polymerase Chain Reaction (PCR) using the following primers: 

5’- ATC TGG TGG GTC ATC CTG TC-3’ (forward) and 5’-CTG ATG TCT AGA TAC GTG 

CGA CAG GGA CAC TTG-3’ (reverse); the construct was later sub-cloned into a 

CFP‑pcDNA3 vector between HindIII and XbaI sites. 
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In order to create FZD5 FRET-based receptor sensors, the FlAsH-binding sequence 5’-TGT 

TGC CCG GGC TGC TGT-3’ (CCPGCC, one-letter amino acid code) was inserted within the 

3rd intracellular loop of V5-mFZD5-CFP by standard overlapping PCRs. The sequence was 

introduced between the amino acids Gly436 and Gly437 for the sensor V5-mFZD5-FlAsH436-

CFP, using the following forward primers (1-3): 5’-TGT TGC CCG GGC TGC TGT GGC 

ACT AAG ACG GAC AAG CTA-3’, 5’-AGC GTC ATC AAG CAG GGT TGT TGC CCG 

GGC TGC TGT G-3’ and 5’-TCA CTC TTC CGC ATC CGG AGC GTC ATC AAG CAG 

GGT TGT-3’ and the following reverse primer: 5’-CTG ATG TCT AGA TAC GTG CGA 

CAG GGA CAC TTG-3’. For the sensor V5‑mFZD5-FlAsH439-CFP, the following forward 

primers (1-3): 5’-TGT TGC CCG GGC TGC TGT ACG GAC AAG CTA GAG AAG CTC-

3’, 5’-AAG CAG GGT GGC ACT AAG TGT TGC CCG GGC TGC TGT ACG-3’ and 5’-

CGC ATC CGG AGC GTC ATC AAG CAG GGT GGC ACT AAG TGT-3’ and the following 

reverse primer: 5’-CTC ACT CTA GAT ACG TGC GAC AG-3’ were used to introduce the 

motif between Lys439 and Thr440. The region containing the FlAsH-binding motif was 

inserted back into the V5-mFZD5 plasmid between the restriction sites HindIII and BstXI in 

order to generate the constructs without CFP. 

In addition, two more sensors were created by inserting the FlAsH-binding sequence 5’ TGT 

TGC CCG GGC TGC TGT 3’ within the 2nd intracellular loop of V5-mFZD5-CFP by means 

of using the QuikChange Lightning Site-Directed Mutagenesis Kit. The motif was introduced 

between the amino acids Gly349 and Asn350 for the sensor V5‑mFZD5-FlAsH349-CFP using 

the following primers: 5'‐GGC ATG AAG TGG GGC TGT TGC CCG GGC TGC TGT AAT 

GAA GCC ATC GCA‐3' (forward) and  5'-TGC GAT GGC TTC ATT ACA GCA GCC CGG 

GCA ACA GCC CCA CTT CAT GCC-3' (reverse), and between Ala354 and Gly355 to create 

the sensor V5‑mFZD5-FlAsH354-CFP, with the following primers: 5'-AAT GAA GCC ATC 

GCA TGT TGC CCG GGC TGC TGT GGT TAT GCA CAG TAC-3' (forward) and 5'-GTA 

CTG TGC ATA ACC ACA GCA GCC CGG GCA ACA TGC GAT GGC TTC ATT‐3' 

(reverse). 

Additionally, V5-mFZD5 was cloned into YFP-pcDNA3 and GFP-pcDNA3 vectors between 

HindIII and XbaI sites to generate the constructs V5-mFZD5-YFP and V5-mFZD5-GFP, 

respectively. Last, and in order to obtain a receptor with the red fluorophore mCherry, two new 

restriction sites were added in the gene V5-mFZD5-CFP. A BglII site was placed behind the 

HindIII site using the following primers: 5'-CAG TAA GCT TAG ATC TAC CAT GGT CCC 

GTG CAC GCT G-3' (forward) and 5'-GTG CGC ACC TTG TTG TAG AG-3' (reverse). An 
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AgeI site was cloned in front of the XbaI restriction site, at the end of the gene, using the 

following primers: 5'-CAG TGT CAA GTC CAT TAC GG-3' (forward) and 5'-AGC AGT 

ACC GGT TGT ACG TGC GAC AGG GAC ACT TG-3' (reverse). After that, the new 

V5-mFZD5 was sub-cloned into pmCherry‑N1 vector between the restriction sites BglII 

and AgeI. 

 

3.2.3. Methods for cloning and DNA amplification 

3.2.3.1. Polymerase Chain Reaction 

In general, the following procedure was followed for standard PCRs: 

PCR reaction Cycling Parameters 

10µl DNA template (10ng/µl) 

72µl ddH2O 

10µl buffer Pfu (10X) 

2µl dNTPs (10mM) 

2.5µl forward primer (20pmol/µl) 

2.5µl reverse primer (20pmol/µl) 

1µl Pfu polymerase 

Step 1:  94°C   3 minutes 

Step 2:  94°C   30 seconds 

Step 3:  55°C   1 minute 

Step 4:  72°C   2 minutes 

Step 5:  72°C   5 minutes 

Step 6:   4°C 

 

Gel 1% agarose was prepared by dissolving 1g agarose in 100ml of modified TAE Buffer (1X). 

Once the PCR protocols were finished, 2-3μl of DNA loading dye were added to each sample 

and an electrophoresis was performed using 1% agarose gel with 0.01% Midori green or 

HDGreen plus staining. The desired DNA band was extracted from the gel and purified for 

ligation. 

For PCRs performed with the QuikChange Lightning Site-Directed Mutagenesis Kit, the 

following protocol was followed: 

PCR reaction Cycling Parameters 

5µl 10X reaction buffer 

1µl DNA template (50ng) 

1.25µl primer 1 (125ng) 

1.25µl primer 2 (125ng) 

1µl dNTP mix 

1.5µl QuickSolution reagent 

39µl ddH2O 

1µl QuickChange Lightning Enzyme 

Step 1:  95°C   2 minutes 

Step 2:  95°C   20 seconds 

Step 3:  60°C   10 seconds 

Step 4:  68°C   7 minutes 

Step 5:  68°C   5 minutes 

Step 6:   4°C 

 

The manufacturer’s protocol was followed for the subsequent steps.  

30 cycles 

 

68 cycles 
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3.2.3.2. Restriction analysis 

In general, DNA digestion was performed by incubating the following reaction for 1 hour at 

37°C:  1µl DNA (1µg/µl) + 1µl of each enzyme + 1µl buffer + ddH2O (up to 20µl) 

For digestion of PCR products prior to a ligation procedure, or plasmids that were used as 

vectors, the following reactions were incubated for 2 hours at 37°C: 

 DNA (41µl PCR product) + 2µl of each enzyme + 5µl buffer 

 5µg of DNA (plasmid for vector) + 2µl of each enzyme + 5µl buffer + ddH2O (up to 50µl) 

Once the restriction analysis was finished, 3μl of DNA loading dye were added to each sample. 

An electrophoresis was performed using 1% agarose gel with 0.01% staining, as previously 

described. The desired DNA bands were extracted from the gel and purified for ligation. 

 

3.2.3.3. Ligations 

In general, ligations were performed by incubating the following reaction at 16°C overnight. 

The selected insert:vector ratio was 3:1 or 5:1. 

Ligation reaction Control reaction 

20ng DNA vector 

3X or 5X DNA insert 

2µl 10X ligase buffer 

1µl T4 DNA ligase 

ddH2O (up to 20µl) 

20ng DNA vector 

- 

2µl 10X ligase buffer 

1µl T4 DNA ligase 

ddH2O (up to 20µl) 

 

3.2.3.4. DNA amplification and extraction 

DNA was amplified by means of bacterial transformation (E. coli DH5α). For general 

amplification of plasmids, 0.5µg DNA were used as template. For ligation products, 

transformation was done the following day by using the whole volume of the ligation reaction 

as template. 

First, DNA was mixed with 100µl KCM buffer (1X) in a 1.5ml tube and incubated for 10 

minutes on ice. Next, 100µl of competent bacteria were added to the mix, which was incubated 

for 20 additional minutes on ice, followed by 10 minutes at room temperature (RT). After that 

time, 1ml LB medium without antibiotics was added to the tube and the mix was incubated for 

1 hour at 37°C and 400rpm. Tubes were then centrifuged 5 minutes at 4000g and 800µl 

supernatant were discarded. Last, the pellet was re-suspended in the remaining volume, and 
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100µl bacteria were plated in 100mm LB plates containing the adequate antibiotic (ampicillin 

or kanamycin). Plates were incubated overnight at 37°C. The following day, individual 

colonies were picked by using pipette tips. Each selected colony was placed in an Erlenmeyer 

flask containing 200ml LB medium supplemented with the adequate antibiotic. Flasks were 

incubated overnight at 37°C with agitation. 

The following day, bacterial culture medium was centrifuged for 20 minutes at 4°C and 

5000rpm. DNA extraction was done by using the NucleoBond Xtra Midi kit, following the 

manufacturer’s instructions. Briefly, supernatant was first discarded and the pellet was re-

suspended in 8ml Resuspension Buffer (RES), supplemented with RNaseA. Next, 8ml Lysis 

Buffer (LYS) was added to the mix, for 5 minutes at RT. Cell lysis was stopped by addition of 

8ml Neutralization Buffer (NEU). The whole volume was then loaded onto the filter of a 

NucleoBond Xtra Column, which was previously equilibrated by adding 12ml of Equilibration 

Buffer (EQU). Once the column was empty, the filter was washed by adding 5ml of 

Equilibration Buffer (EQU). Next, the filter was removed and the column was washed again 

by adding 8ml Washing Buffer (WASH). Last, the column was placed inside a 50ml Falcon 

tube and 5ml of Elution Buffer (ELU) were applied to elute the plasmid DNA. 

In order to precipitate the DNA, the column was discarded and 3.5ml isopropanol were added 

to the Falcon tube. The mix was centrifuged for 30 minutes at 4°C. Supernatant was then 

removed, 2ml of 70% ethanol were added for washing the DNA and the tube was centrifuged 

again for 10 minutes at 4°C. After that, ethanol was completely removed and the pellet was 

allowed to dry at RT. Last, DNA was reconstituted in 100µl ddH2O. 

 

3.2.3.5. DNA quantification 

DNA concentration was determined by means of using a Nanodrop. Afterward, DNA was 

diluted in the appropriate amount of ddH2O in order to achieve a final concentration of 1µg/µl. 

A DNA aliquot was placed at -20°C for medium- and long-term storage, and another aliquot 

was kept at 4°C for daily experiments. 
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3.2.4. Cell culture 

HEK293 and HEK293T cells were cultured in DMEM, with 4.5g/l glucose and 0.11g/l sodium 

pyruvate, supplemented with 10% FBS, 1% penicillin/streptomycin and 1% L-glutamine in a 

humidified 7% CO2 incubator at 37°C. Cells were normally passaged every 2–3 days. To do 

so, cells were first washed with 2ml DPBS, and 1ml of Trypsin/EDTA was used to detach the 

cells; then, cells were re-suspended in 5ml of fresh medium and the appropriate volume of cells 

was expanded into a new 100mm plate with 10ml of fresh medium. All the previous steps took 

place at a laminar air flow hood, under sterile conditions. 

 

3.2.4.1. Mycoplasma test 

Cells were tested for mycoplasma contamination every 2-3 weeks by means of using specific 

PCR primers. To prepare the sample, 100µl of cell culture supernatant were taken into an 

Eppendorf tube, boiled 5 minutes at 95°C and then centrifuged 1 minute at 13000rpm. After 

that, 2µl of supernatant were used as DNA template in the following PCR reaction: 

PCR reaction Cycling Parameters 

2.5µl 10X buffer 

2.5µl dNTPs (2mM) 

1µl MgCl2 (50mM) 

0.25µl primer GPO (50pM) 

0.25µl primer MGSO (50pM) 

0.2µl Taq polymerase 

25µl ddH2O 

Step 1:  95°C   5 minutes 

Step 2:  95°C   20 seconds 

Step 3:  60°C   30 seconds 

Step 4:  72°C   1 minute 

Step 5:  72°C   5 minutes 

Step 6:   4°C 

Presence of mycoplasma was detected as a 720bp band in 1% agarose gel with 0.01% Midori 

green or HDGreen plus staining. Sequences of the primers GPO and MGSO can be found in 

section 3.1.2. 

 

3.2.4.2. Freezing and thawing cells 

In order to preserve the cells for medium- and long-term, cell culture medium described in 

section 3.2.4 was supplemented with 10% DMSO and 10% FBS to generate a freezing medium. 

Cells at 90-95% confluency in a 100mm plate were washed with 2ml DPBS, detached with 

1ml of Trypsin/EDTA and then re-suspended in 5ml of freezing medium. Cells were placed in 

cryo-tubes and frozen at -20°C. Tubes were moved to -80°C 4-5 hours later. 

30 cycles 
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To thaw cells, cryo-tubes stored at -80°C were placed in a 37°C water bath for a few minutes. 

Cells were then transferred to a 100mm plate with 10ml of regular cell culture medium. 

Medium was replaced 3-4 hours later. 

 

3.2.4.3. Generation of stable cell lines 

In order to create stable cell lines, HEK293 cells were seeded into 100mm plates and 

transfected four hours later using the Effectene reagent, according to the manufacturer’s 

instructions. For cells expressing the FZD5 receptor constructs, cells were transfected with 3µg 

of DNA per plate: V5-mFZD5-CFP, V5-mFZD5-FlAsH436-CFP or V5-mFZD5-FlAsH439-

CFP. For calcium experiments, cells were co-transfected with 4.2µg of the dual DAG/Ca2+ 

sensor and 3µg of the receptor, either V5-mFZD5-CFP or the muscarinic acetylcholine receptor 

3 tagged with CFP (M3AChR-CFP). For control experiments or for those which involved the 

M1AChR, stable cells were generated by transfecting only 4.2µg of the dual DAG/Ca2+ sensor. 

Culture medium was replaced 16-18 hours after transfection. Forty-eight hours after seeding 

and for a period of 2-3 weeks, culture medium was replaced every day with medium 

supplemented with 500µg/ml Geneticin (G-418) in order to select cells transfected with the 

plasmids. After that time, individual colonies were selected and characterized using confocal 

microscopy. Positive homogeneous cells expressing the desired construct were maintained in 

DMEM containing 200µg/ml of G-418. In the case of HEK293 cells expressing V5-mFZD5-

FlAsH439-CFP, after selection for two weeks with G-418, cells were split and maintained in 

medium with 200µg/ml of G-418, to obtain heterogeneous stable cells. 

 

3.2.5. Ligand binding 

Non-transfected HEK293 cells and HEK293 cells stably expressing the receptors V5-mFZD5-

CFP or V5-mFZD5-FlAsH436-CFP were seeded in 25cm2 flasks 72 hours before the 

experiments. Medium was exchange 24h later and empty cells were transfected with 1µg/flask 

of V5-mFZD5 using Lipofectamine 2000, according to the manufacturer’s instructions. The 

day after, cells were immobilized onto pre-activated ConA LNB chips and incubated overnight 

inside the Attana Cell 200 machine. Experiments were performed the next morning using a 

specific peptide provided by the company Pepscan (PEP P2F06) and following the procedure 

optimized by Attana. Data were fit by the Attana software to a 2:1 kinetics, heterogeneous 

ligand model. 
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3.2.6. Immunoblotting 

Empty HEK293 cells and HEK293 cells stably expressing the receptors V5-mFZD5-CFP or 

V5-mFZD5-FlAsH436-CFP were seeded onto 24-well plates, at a density of 100000 cells/well. 

Medium was changed 18h later and cells were stimulated for 2 hours at 37°C with either normal 

DMEM or medium supplemented with WNTs, to achieve a final concentration in the wells of 

300ng/ml. After that time, cells were harvested with lysis buffer, sonicated and boiled at 95°C 

for 5 minutes. Precast gels, 7.5% acrylamide, were assembled into a vertical electrophoresis 

tank, which was next filled with running buffer 1X. For each condition, 10µl of cells were 

loaded into the gel. As control for protein weight, 3.5µl ladder buffer was also loaded in the 

gel. Electrophoresis was done at 250V for 30 minutes. 

PVDF membranes were activated by incubating them with methanol for one minute. After 

washing the membranes with transfer buffer, the proteins were transferred from the gels to the 

membranes by using a semi-dry botting method, in a transfer system from Bio-Rad (‘mixed’ 

program, 7 minutes). After that, the gels were discarded and the membranes were blocked by 

incubation with milk buffer for 30 minutes at RT. Next, membranes were placed in 50ml falcon 

tubes and incubated overnight with primary antibody anti-DVL2 (dilution 1:1000, in milk 

buffer), at 4°C with shaking. The next day, the membranes were taken out of the tubes, washed 

three times with TBST for 10 minutes at RT and then incubated in new 50ml falcons with an 

enzyme-conjugated secondary antibody anti-rabbit (dilution 1:5000, in milk buffer) for 1h at 

RT, with shaking. Last, the membranes were washed three times with TBST for 10 minutes at 

RT and then revealed by incubating them with ECL substrate for 4 minutes. Revelation of the 

membranes was done in the Bio-Rad developing machine. 

 

3.2.7. Immunocytochemistry 

Round 13mm glass coverslips were placed in 24-well plates and coated with 0.1% gelatin 

(400µl/well). After 30 minutes, gelatin was removed and the coverslips were left to dry at RT. 

One hour later, empty HEK293 cells and HEK293 cells stably expressing the receptors 

V5-mFZD5-CFP or V5-mFZD5-FlAsH436-CFP were seeded onto the coverslips, 

100000 cells/well. Cells were transfected 24h later with 100ng/well of DVL1-FLAG using 

Lipofectamine 2000. Additionally, half of the wells containing empty cells were also 

transfected with the V5-mFZD5 receptor. The following day, cells were fixed by incubating 

them with 300µl/well PBS containing 4% paraformaldehyde. After that, cells were washed 
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three times with PBS and then blocked for 40 minutes with 300µl/well PBTA. Cells were 

incubated overnight at 4°C with 200µl/well of primary antibody, mouse anti-FLAG M2 (1:500) 

diluted in PBTA. The next day, cells were washed twice with PBS and then incubated in the 

dark for 40 minutes at RT with the secondary antibody, Cy3 anti-mouse (1:500) diluted in PBS. 

After washing with PBS three times, cells were incubated 5 minutes with DAPI in the dark at 

RT. Last, cells were washed twice with PBS and once with dH2O. Coverslips were mounted 

with glycerol gelatin onto glass slides and stored in the fridge. The fixed samples were analyzed 

using confocal microscopy, as detailed in the next section (3.2.8). 

 

3.2.8. Confocal Microscopy Analysis 

To investigate the cellular expression and localization of the new FZD5 receptor constructs, as 

well as FZD5-induced DVL recruitment to the membrane, and the activation of PLC pathway 

using the dual DAG/Ca2+ sensor, confocal analysis of the cells was performed using a Leica 

SP8 microscope, equipped with four detection channels, with a 63x water objective. 

 

3.2.8.1. Preparation of cells 

Round 24mm glass coverslips were placed in six-well plates and coated with 200μl of poly-D-

lysine (1 mg/ml) for 20 minutes at RT. After that time, coverslips were washed with 1ml DPBS 

and HEK293 cells were seeded onto them. Four to five hours later, cells were transfected using 

Effectene, according to the manufacturer’s instructions. Cell culture medium was replaced 16-

18h later and experiments were performed 24 hours after that. To investigate the cellular 

expression of the constructs, 500ng of each receptor were transfected per well. For FZD5-

mediated DVL recruitment assays, cells were co-transfected with 150ng of GFP-DVL and 

450ng of pcDNA or the corresponding receptor construct.  

For calcium experiments, HEK293 cells stably co-expressing the dual DAG/Ca2+ sensor and 

the desired receptor construct, either V5-mFZD5-CFP or M3AChR-CFP, were seeded onto 

round 24mm cover slips previously placed in 6-well plates and pre-coated with poly-D-lysine. 

Culture medium was replaced 4-5h later and analysis of the cells was done 48h after seeding 

the cells. For experiments involving the V5-mFZD5 receptor, cells were incubated overnight 

with the Porcupine inhibitor LGK-974 prior the experiments, at a final concentration of 0.1µM. 

For control experiments without receptor, stable cells expressing only the dual DAG/Ca2+ 

sensor were seeded onto the coverslips and the same procedure followed. 
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In experiments regarding the M1ACh receptor, the stable cells expressing the DAG/Ca2+ sensor 

were transfected 3-4 hours later with 500ng/well of the construct M1AChR-CFP. Cell culture 

medium was exchanged 16-18 h later and analysis of the cells was done 48h after transfection.  

To reduce the assay volume, calcium experiments were also performed in Ibidi µ-slide 8well 

plates. Wells were coated with 300µl poly-D-lysine for 30 minutes at RT and then washed with 

DPBS. HEK293 cells stably co-expressing the dual DAG/Ca2+ sensor and the desired receptor 

construct, either V5-mFZD5-CFP or M3AChR-CFP, were seeded onto the wells. Analysis of 

the cells was done the following day. If the cells expressed the V5-mFZD5-CFP receptor, cells 

were incubated overnight with the Porcupine inhibitor LGK-974 prior the experiments. 

 

3.2.8.2. Confocal Microscopy: experimental procedure 

The day of the experiments, coverslips with the cells were mounted using an Attofluor holder 

and cells were maintained in imaging buffer. CFP was excited using a diode laser at 442nm 

laser line and fluorescence intensities were detected from 460 to 500 nm. GFP was excited 

using an Argon laser (30% intensity) at 488nm laser line and detected at 510-560nm. R-GECO 

was excited at 562nm laser line and emission was detected from 600 to 700 nm. In general, 

images were acquired using 512×512 resolution, 400Hz, line average 3 and frame 

accumulation 2. 

In calcium experiments, CFP was only used to localize cells expressing the receptor 

V5-mFZD5-CFP, M3AChR-CFP, or M1AChR-CFP, but not for measurements. Images were 

taken as a time series using 512×512 resolution and 400Hz, line average 1 and frame 

accumulation 1, with an acquisition time of 1.29 seconds. For experiments with the FZD5 

receptor, cells were maintained in 200µl of normal cell culture medium (DMEM), then 

stimulated with additional 600µl of WNT-5A- or control-conditioned medium right before the 

measurement started, and monitored for additional 30 minutes. For experiments with the 

muscarinic receptors, cells were maintained in 900µl imaging buffer. After 15 seconds, 100µl 

of the ligand Carbachol were added to the cells, to achieve a final concentration in the holder 

of 100µM. The cellular response was monitored for 5 additional minutes. 

For experiments done using the Ibidi µ-slide 8well plates, cells were maintained in 250µl of 

imaging buffer. 50µl of the ligand were added a few seconds after the recording started and the 

same procedure followed. 
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Confocal analysis of the fixed samples was done using a 63x oil-immersion objective. DAPI 

was excited using a Diode 405 laser at 405nm laser line and fluorescence intensities were 

detected at 431-480nm. Cy3 was excited using a DPSS laser at 561nm laser line and detected 

at 590-679nm. Images were acquired using 1024×1024 resolution, 400Hz, line average 8. 

Data were acquired using the Leica software and then analyzed using the Leica Application 

Suite X (LAS X). For further analysis, Origin software and GraphPad Prism 7 were used. 

 

3.2.9. FlAsH labeling 

The labeling was done following the generalized procedure published in Nature protocols 

(Hoffmann et al., 2010). Fresh labeling buffer was stored at 4°C and glucose was added shortly 

before using, to achieve a final concentration of 1.8 g/l. Transfected or stable cells were washed 

once with labeling buffer and then incubated at 37°C for 1 hour with the same buffer 

supplemented with 1µM FlAsH and 12.5μM 1,2-ethanedithiol (EDT). After that time and in 

order to reduce non-specific labeling, cells were rinsed once with labeling buffer and incubated 

at 37°C for 10 min with this same buffer containing 250µM EDT. Finally, cells were washed 

again twice with labeling buffer and maintained in DMEM prior to measurements. When the 

FlAsH labeling was performed in 96-well plates, cells were instead maintained in 90µl/well 

imaging buffer supplemented with 0.1% BSA. 

FlAsH labeling was performed in 6-well plates, Will-Co dishes and 96-well plates, depending 

on the experiment. A scheme with a detailed protocol is shown in the next page. 
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FlAsH labeling protocol: 

 

 

  

Wash with labeling buffer (1X)

Incubation for 1 hour at 37 C with ‘FlAsH buffer’

Incubation for 10 minutes at 37 C with washing buffer

Wash with labeling buffer (2X)

Maintain cells in DMEM+++

10-15 minutes at 37 C prior experiment

Wash with labeling buffer (1X)

- Buffer 2.1: 1ml DMSO + 2.1µl EDT

- Buffer 42: 1ml DMSO + 42µl EDT 

- FlAsH: (‘n’ x 1µl FlAsH) + (‘n’ x 1µl buffer 2.1)

• Prepare 3 eppendorf tubes (1.5ml):

• Incubate for 5 minutes at RT

 n = 1 + number of wells from a 6-well plate

 1 x 6-well plate (6 wells) ≈ 4 x WillCo-dishes

o Step 1: preparation

• Labeling buffer: add glucose (final concentration 1.8g/l)

• Prepare 2 falcon tubes:

o Step 2: FlAsH labeling, general procedure

 6-well plate: 2ml/well

 WillCo-dish: 3ml/plate

- FlAsH buffer: 2 x ‘n’ ml labeling buffer (+glucose) + FlAsH 

eppendorf

- Washing buffer: 25ml labeling buffer (+glucose) + 12.5µl buffer 42
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3.2.10. FRET Microscopy 

 

3.2.10.1. Microscope set-up for single-cell FRET experiments 

FRET measurements were performed on a Zeiss inverted microscope (Axiovert200), equipped 

with an oil immersion 63x objective lens and a dual-emission photometric system (Till 

Photonics). Cells expressing the desire DNA construct were excited at 436 ± 10 nm using a 

frequency of 10 Hz with 40ms illumination time out of a total of 100ms. Emission of the donor, 

CFP or mTurquoise (480 ± 20 nm), emission of the acceptor, FlAsH or cpVenus (535 ± 15 nm), 

and the FRET ratio (FlAsH/CFP or cpVenus/mTurquoise) were monitored simultaneously over 

time. Fluorescence signals were detected by photodiodes and digitalized using an analogue-

digital converter (Digidata 1440A, Axon Instruments). Fluorescence intensities data were 

acquired using Clampex software. The acceptor emission was corrected for each experiment 

by directly exciting at 490nm with 10ms illumination time out of a total of 100ms. When 

required, the emission ratio was additionally corrected for donor bleed-through and photo-

bleaching. Data were analyzed using Origin software. 

 

3.2.10.2. Determination of FRET efficiency 

Fluorescence imaging of FZD5 FRET sensors was performed as previously described (Jost 

et al., 2008; Hoffmann et al., 2005). HEK293 cells were seeded onto round 24mm coverslips 

previously coated with poly-D-lysine, as described in section 3.2.8.1. Cells were transfected 

4-5h later using Effectene with 500ng of the corresponding receptor sensor per well, or co-

transfected with 300ng of V5-mFZD5-CFP and 300ng of V5‑mFZD5-FlAsH for control 

experiments. Cell culture medium was replaced 16–18h later. Experiments were conducted the 

following day. 

Coverslips with the cells were mounted using an Attofluor holder and the cells were maintained 

in 999µl of imaging buffer. Approx. 20-30 seconds after the recording started, 1µl of 

2,3-dimercapto-1-propanol (BAL) was added to the cells, to achieve a final concentration in 

the holder of 5mM. The compound BAL removes FlAsH from its binding motif in the receptor, 

which results in a dequenching of CFP fluorescence. The CFP recovery, FlAsH fluorescence, 

and FRET ratio (FlAsH/CFP) were monitored over time. To calculate the FRET efficiency, the 

minimum and maximum values of CFP were introduced into the following equation: (CFPmax-

CFPmin)/CFPmax∗100. 
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3.2.10.3. BioPen® microfluidic system 

The BioPen microfluidic system (Fluicell) was employed to deliver the ligands in single-cell 

FRET experiments (Ainla et al., 2012; Ainla et al., 2010). This novel perfusion system allows 

to expose individual cells to the ligand solution without affecting the neighboring cells. The 

pipette can contain up to four different solutions, with an exchange time between them of sub-

seconds. Moreover, a recirculation system inside the pipette allows to collect the applied 

solution, avoiding contamination of the medium with the ligand. Thus, measuring several cells 

per experiment from a single plate is possible using this system. In addition, only 30µl are 

needed per solution. That is an important advantage considering that the recombinant WNT 

proteins are difficult to handle and their commercial cost is high.  

 

3.2.10.4. Receptor activation in single-cells 

In order to investigate the activation of the FZD5 receptor in real time, WillCo-dish® 40mm 

glass bottom dishes were coated with 1ml poly-D-lysine for 30 minutes at RT and then washed 

with DPBS. HEK293 cells stably expressing the receptor sensor V5‑FZD5-FlAsH436-CFP 

were seeded onto these plates. The culture medium was replaced 16‑18 hours later, and cells 

were incubated overnight with the Porcupine inhibitor LGK‑974, at a final concentration in the 

medium of 0.1µM. FlAsH labeling of the receptor sensors was performed the next day, 48h 

after seeding the cells, and the WillCo-dish with the labelled cells was placed on the inverted 

microscope. During measurements, cells were maintained in imaging buffer and the BioPen® 

microfluidic system was used to deliver the ligands. The recombinant protein WNT-5A was 

diluted in imaging buffer containing 0.1% BSA. FRET experiments were performed as 

described in the previous section (3.2.10.1). 

 

3.2.10.5. Activation of Gαq protein in single-cells 

HEK293 cells were seeded onto 40mm WillCo-dishes pre-coated with poly-D-lysine and 

transfected 4 hours later with 600ng of V5-mFZD5 receptor and 200ng of the corresponding 

G protein FRET‑sensor, using Effectene. Culture medium was replaced 16‑18 hours later and 

cells were incubated overnight with the Porcupine inhibitor LGK‑974, at a final concentration 

in the cells of 0.1µM. FRET measurements were performed the following day, 48h after 

seeding the cells, which were maintained in imaging buffer. 



 59 

Recombinant protein WNT-5A was dissolved in imaging buffer containing 0.1% BSA and the 

BioPen® microfluidic system was used to deliver the ligand. FRET experiments were 

performed as previously described (section 3.2.10.1). 

 

3.2.11. Microplate reader 

In order to perform screenings by using different WNTs, FZD5 receptor conformational 

changes and G protein activation were investigated by using a microplate reader from BioTek: 

Synergy™ Neo2 Multi-Mode Microplate Reader. Experiments were done using the Gen5™ 

Data Analysis Software. Cells were excited at 420/50 nm (Biotek CFP/YFP filter, code 

1035013) and emission was detected at 485/20 and 540/25 nm (Biotek CFP/YFP filter, code 

1035043).  

 

3.2.11.1. Receptor activation 

Stable cells expressing the receptor sensor V5‑FZD5‑FlAsH436-CFP or V5‑FZD5‑FlAsH439-

CFP were expanded in 100mm plates and 72h later 40000 cells/well were placed in black 

96-well BRAND-plates. These plates were previously coated with 100µl/well of poly-D-lysine 

for 30 minutes at RT and then washed with 200µl/well of sterile PBS. FlAsH labeling was done 

24h after seeding the cells in the 96-well plates and cells were later maintained at 37°C in 90µl 

imaging buffer containing 0.1% BSA. Analysis of the cells was done using the Synergy Neo2 

microplate reader, as described above. Recombinant WNT proteins (10µl) were added to the 

cells 4-5 minutes after the reading started, to reach the desired final concentration of ligand in 

each well, which is indicated in the concentration-response curves. Changes in fluorescence 

were recorded for additional 10-15 minutes. 

 

3.2.11.2. Activation of Gαq protein 

HEK293 T or HEK293 DVL KO cells were expanded in 100mm plates. Forty-eight hours later, 

when 60-70% confluence was reached, cell culture medium was exchanged and cells were 

transfected with 1.8µg of the V5-mFZD5 receptor or pcDNA3, and 600ng of the corresponding 

G protein-FRET sensor, using Effectene. For DVL over-expression experiments, cells were 

also transfected with 600ng HA-DVL2.  Twenty-four hours after transfection, black 96-well 

plates were coated with 100μl/well of poly-D-lysine for 30 min, washed with 200μl/well of 
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sterile PBS, and 30000 cells were seeded per well. Analysis of the cells was done 24h later 

using the Synergy Neo2 microplate reader, as previously described. During measurements, 

cells were maintained at 37°C in 90µl imaging buffer containing 0.1% BSA. Recombinant 

WNT proteins were diluted in imaging buffer containing 0.1% BSA and 10µl were added to 

the cells five minutes after the reading started, to reach the desired final concentration of ligand 

in each well, which is indicated in the concentration-response curves. Fluorescence changes 

were recorded for additional 15-20 minutes. 

For control experiments of the receptor FRET sensor, HEK293T cells were co-transfected with 

the Gαq FRET-sensor and the receptor with the FlAsH-binding motif, either V5-mFZD5-

FlAsH436 or V5-mFZD5-FlAsH439, in the same ratio as before, and the same procedure 

followed. 

Two schemes with detailed protocols for measuring receptor and G protein activation in a 

microplate FRET reader are shown in the following pages.  
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 Measuring receptor activation in 96-well plates: 

 

 

Washing: 200µl/well labeling buffer (1X)

Incubation for 1 hour at 37 C with 100µl/well ‘FlAsH buffer’

Incubation for 10 minutes at 37 C with 100µl/well washing buffer 

Washing: 200µl/well labeling buffer (2X)

90µl/well imaging buffer 0.1% BSA

10-15 minutes at 37 C prior experiment

Washing: 200µl/well labeling buffer (1X)

96-well plate: 100µl/well poly-D-lysine for 30 minutes at RT

Washing: 200µl/well PBS

Place 40000 cells/well

V5-mFZD5-FlAsH-CFP stable cells.

1x100mm plate, cell confluency 90-100%

24 hours

Place the plate inside the plate reader

Reading protocol. 4 columns per experiment (e.g. A2-H5)

Procedure details:

1. Set temperature: preheat at 37 C

2. Kinetic:

Runtime 0:04:00 (HH:MM:SS), Interval 0:00:30, 9 Reads

3. Plate out: add ligands (10µl/well)

4. Shake: 1 second

5. Set temperature: preheat at 37 C

6. Delay: 1 second

7. Kinetic:

Runtime 0:10:38 (HH:MM:SS), Interval 0:00:13, 50 Reads

• Prepare buffer 2.1 and 42 as indicated in the general procedure.

• For 1 x 96-well plate:

- Eppendorf-FlAsH: 6µl FlAsH + 6µl buffer 2.1

- FlAsH buffer: 12 ml labeling buffer (+glucose) + Eppendorf-FlAsH

- Washing buffer: 12ml labeling buffer (+glucose) + 6µl buffer 42
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 Measuring G protein activation in 96-well plates: 

 

 

 

 

 

96-well plates: 100µl/well poly-D-lysine for 30 minutes at RT

Washing: 200µl/well PBS

Place 30000 cells/well

Expand HEK293T or HEK293 DVL KO 

cells in 100mm plates

24 hours

Place the plate inside the plate reader

Procedure details:

1. Set temperature: preheat at 37 C

2. Kinetic:

Runtime 0:04:00 (HH:MM:SS), Interval 0:00:30, 9 Reads

3. Plate out: add ligands (10µl/well)

4. Shake: 1 second

5. Set temperature: preheat at 37 C

6. Delay: 2 seconds

7. Kinetic:

Runtime 0:12:35 (HH:MM:SS), Interval 0:00:26, 30 Reads

Reading protocol. 9 columns per experiment (e.g. A2-G10)

24 hours

48 hours

Cell confluency: 60-70%

Transfection: G protein FRET sensor + pcDNA / 

receptor construct

90µl/well imaging buffer 0,1% BSA

10-15 minutes at 37 C
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3.2.11.3. Gαq titration 

Stable cells expressing the V5‑FZD5‑FlAsH436-CFP receptor sensor were expanded in 60mm 

plates. Twenty-four hours later, when 60-70% confluency was reached, cells were transfected 

with 100ng of the Gβ1 subunit, 40ng of Gγ2 and increasing concentrations of Gαq: 0, 10, 25, 

50, 100, 150, 300, 400 or 500ng per plate. Variable concentrations of pcDNA were used to 

balance the total amount of DNA per plate. 24h after transfection, 30000 cells/well were seeded 

in black 96-well plates. FlAsH labeling of the cells was performed one day later and cells were 

then maintained in 100µl imaging buffer containing 0.1% BSA. Basal fluorescence of the cells 

was recorded for 5 to 10 minutes by using a Synergy Neo2 microplate reader, as previously 

described. 

 

3.2.11.4. Data analysis 

The Gen5™ Data Analysis Software was employed to design and perform the experiments. 

The reading protocol is detailed in the two previous schemes. Once the procedure was finished, 

data were exported as excel file, which included 3 tables: basal 420/50, 485/20; basal 420/50, 

540/25; and FRET ratio. Data from the third table ‘FRET ratio’ were selected for analysis. 

In the first place, to determine the FRET change produced by each concentration of ligand, the 

averages were calculated for the values before (Fbefore) and right after (Fafter) ligand addition. 

The ratio (Fligand) was then calculated as Fafter/Fbefore. Next, the FRET change was corrected for 

the signal obtained in vehicle-treated cells. In order to do so, the ratio obtained for each 

concentration of the ligand (Fligand) was divided to the one obtained for the buffer (Fbuffer): 

Fligand/Fbuffer. Finally, data were analyzed and fit to a dose-response curve with variable slope 

(four parameters) using the software GraphPad Prism 7. 
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4. Results 

 

4.1. FZD5 receptor undergoes conformational changes upon activation, as detected by 

using FRET-based biosensors. 

 

4.1.1. Design of FZD5 receptor constructs 

A mouse FZD5 receptor containing a V5 tag in the N-terminal tail was used to generate four 

FRET-based biosensors. The constructs were created by inserting the FlAsH-binding motif 

(CCPGCC, 1 letter amino acid code) within the 2nd or the 3rd intracellular loop of the receptor, 

and by fusing a CFP to the C-terminal tail of FZD5. 

The mouse FZD5 protein sequence from Uniprot (code Q9EQD0) was used as reference to 

identify positions of insertion for the FlAsH-binding sequence. Particularly, the positions in 

ICL-3 were selected also considering the motifs of interaction with DVL (Tauriello et al., 

2012). Regarding ICL-2, the six amino acid motif was introduced between Gly349 and Asn350 

for the sensor V5‑FZD5-FlAsH349-CFP and between Ala354 and Gly355 to create the sensor 

V5‑FZD5-FlAsH354-CFP. Regarding ICL-3, the motif was inserted between Gly436 and 

Gly437 to generate the sensor V5-mFZD5-FlAsH436-CFP or between the Lys439 and Thr440 

for the sensor V5-mFZD5-FlAsH439-CFP. A sketch of the receptor structure and the position 

of the fluorophores is depicted in figure 9. 

Additionally, three more constructs were produced by fusing the green or yellow fluorescent 

protein, or the red fluorophore mCherry to the C-terminus of the FZD5 receptor. For the purpose 

of a smoother discussion, the original V5-mFZD5 receptor construct will be considered as 

‘wild-type’ throughout this thesis. 
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Figure 9. Mouse FZD5 receptor sequence. 

Sketch depicting the amino acids sequence of the mouse FZD5 receptor employed in this thesis. 

Information about transmembrane domains, extra- and intra-cellular loops, and N- and C-terminal tails 

was obtained from Uniprot (code Q9EQD0). The predicted helix VIII is not shown as such. In the 

N-terminus of the receptor, the 22 amino acids belonging to the signal peptide appear as grey, the V5 

tag (14 amino acids) is shown as orange circles and in green, the putative cysteine-rich domain (ncbi, 

cd07460). The amino acids illustrated as blue circles in the C-terminus and in the ICL-3 represent the 3 

motifs of interaction with DVL (Tauriello et al., 2012). The sequence KTLESW, highlighted in the 

C-terminus, corresponds to the conserved domain involved in binding to PDZ motif. To generate the 

construct V5-mFZD5-CFP, the STOP codon of the receptor was deleted and CFP was fused at the end 

of the C-terminus. The red arrows indicate the insertion sites of the FlAsH-binding motif (CCPGCC, 1 

letter amino acid code), within ICL-2 or ICL-3: between G349 and N350 for the sensor V5‑mFZD5-

FlAsH349-CFP; between A354 and G355 for the sensor V5‑mFZD5-FlAsH354-CFP; between G436 

and G437 for the sensor V5-mFZD5-FlAsH436-CFP; between K439 and T440 for the sensor V5-

mFZD5-FlAsH439-CFP. 
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4.1.2. Characterization of the FZD5 FRET-based biosensors 

 

4.1.2.1. Cellular localization 

The cellular localization of all FZD5 constructs was analyzed by confocal microscopy. All the 

receptors containing the individual fluorophores CFP, GFP, YFP or mCherry localized to the 

plasma membrane, as well as the two receptor sensors containing the FlAsH-binding motif 

within ICL-3 (Fig. 10A, D-H). On the contrary, the two sensors with the FlAsH-binding 

sequence within ICL-2 were found in the intracellular compartments (Fig. 10B-C), indicating 

that the insertion of the six amino acids in these positions affected the structure of the receptors 

and thus hampered the translocation of the sensors to the plasma membrane. Since a proper 

folding of the receptor and a membrane localization are necessary requirements to perform 

FRET analysis, the sensors V5‑FZD5-FlAsH349-CFP and V5‑FZD5-FlAsH354-CFP were not 

considered for further experiments. 

 

 

 

 

 

 

 

 

Figure 10. Cellular localization of FZD5 constructs. 

Confocal images of representative cells overexpressing the different FZD5 receptor constructs. Scale 

bars represent 10µm. All the receptors tagged with a fluorescent protein at the end of their C-terminal 

tail showed membrane localization: V5-mFZD5-CFP (A), V5-mFZD5-mCherry (F), V5-mFZD5-GFP 

(G) or V5-mFZD5-YFP (H). In contrast, the two receptor sensors with the FlAsH-binding motif inserted 

within ICL-2, V5-mFZD5-FlAsH349-CFP (B) and V5-mFZD5-FlAsH354-CFP (C), were not expressed 

in the plasma membrane, but mostly in the intracellular membranes. On the contrary, the two sensors 

with the FlAsH-binding sequence within ICL-3, V5-mFZD5-FlAsH436-CFP (D) and V5-mFZD5-

FlAsH439-CFP (E), were localized to the plasma membrane. 
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4.1.2.2. Ligand binding 

Ligand binding properties of the receptor constructs were studied by means of using Attana 

Cell™200 Quartz Crystal Microbalance (QCM) technology (Clausen et al., 2016; Aastrup 

et al., 2014). One specific peptide (P2F06) generated by Pepscan, which acted as an antagonist, 

was used at different concentrations to perform kinetic analysis. The resulting data were fitted 

using a 2:1 kinetics model (heterogeneous ligand model) using the Attana software, which 

returned the parameters for each receptor tested (Fig. 11A-C). No difference in the ligand 

binding and affinity was observed between the different analyzed receptors (Fig. 11D), which 

suggests that neither insertion of the CCPGCC motif in ICL-3 nor CFP insertion in the 

C-terminus altered the binding properties of the FZD5 constructs. 

 

 

 

 

Figure 11. Ligand binding. 

Attana Cell™200 QCM technology was used to determine the ligand binding properties of the receptor 

constructs. HEK293 cells transiently overexpressing the receptor V5-mFZD5 (A) or stable cells 

expressing the constructs V5-mFZD5-CFP (B) or V5-mFZD5-FlAsH436-CFP (C) were immobilized 
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onto ConA LNB chips and introduced inside the Attana Cell 200 machine. The ligand, an antagonistic 

peptide (P2F06) developed by Pepscan, was injected into the machine and kinetics of the interaction 

were measured. The first part of the graphics represents the binding of the ligand to the receptor that 

occurred while the peptide was being injected, while the second part of the curves (decrease after 70 

seconds) indicates the dissociation of the complex. Data were corrected for non-transfected HEK293 

cells and fitted by using a 2:1 kinetics model using the Attana software, to determine the kinetic rate 

constants (ka and kd). The affinity (KD) was calculated as a ratio kd/ka. No difference in binding affinities 

was observed for the three receptor constructs (D). 

 

 

 

 

4.1.2.3. Basal energy transfer 

Since both receptor sensors V5-mFZD5-FlAsH436-CFP and V5-mFZD5-FlAsH439-CFP 

localized to the plasma membrane and their ligand-binding site showed similar properties to 

the wild-type receptor, the basal energy transfer between the fluorophores CFP and FlAsH was 

analyzed. In order to do that, the FRET efficiency of the two receptor constructs was 

determined by using the compound ‘British anti-Lewisite’ (BAL: 2,3-dimercapto-1-propanol), 

a molecule with high affinity for arsenicals (Hoffmann et al., 2010; Jost et al., 2008;  Hoffmann 

et al., 2005). Addition of 5mM BAL removes FlAsH from its binding site in the receptor, 

producing a dequenching in CFP fluorescence. HEK293 cells expressing the receptor sensor 

V5-mFZD5-FlAsH436-CFP or V5-mFZD5-FlAsH439-CFP were labeled with FlAsH before 

the measurement, and BAL was added to the cells 20-30 seconds after the measurement started 

(Fig. 12A, C). FRET efficiency was calculated using the following formula: (ECFPmax-

ECFPmin)/ECFPmax∗100, considering CFP minimum and maximum values. No significant 

difference was observed between the two sensors, which both exhibited basal intramolecular 

FRET, with a FRET efficiency of 6.42±0.81% for V5-mFZD5-FlAsH436-CFP and 

6.16±0.97% for V5-mFZD5-FlAsH439-CFP (Fig. 12E). No basal intermolecular FRET was 

observed when the individual constructs V5-mFZD5-FlAsH436 or V5-mFZD5-FlAsH439 were 

co-expressed with V5-mFZD5-CFP in HEK293 cells (Fig. 12B, D), which indicates that the 

aforementioned signals come from within one receptor and there is not energy transfer between 

the fluorophores of adjacent receptors, or from the potential existence of dimers. 
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Figure 12. Determination of basal energy transfer. 

FRET efficiency was determined by adding the compound BAL (2,3-dimercapto-1-propanol) to 

HEK293 cells overexpressing the corresponding receptor FRET sensor, V5-mFZD5-FlAsH436-CFP (A) 

or V5-mFZD5-FlAsH439-CFP (C). BAL displaces FlAsH from its binding site in the receptor, which 

leads to a decrease in the acceptor fluorescence and, consequently, a recovery in CFP emission. This 

increase in CFP fluorescence can be observed for both FRET sensors, which indicates basal 

intramolecular FRET. No basal intermolecular FRET was detected when HEK293 cells co-expressed 

the receptor V5-mFZD5-CFP with the individual constructs V5-mFZD5-FlAsH436 (B) or V5-mFZD5-

FlAsH439 (D). Graphics (A-D) correspond to representative experiments and show raw data for CFP 

and FlAsH emission, being FRET determined as FlAsH/CFP ratio. FRET efficiency was calculated 

using the following equation: (CFPmax-CFPmin)/CFPmax*100. (E) Data from individual experiments 

were determined for V5-mFZD5-FlAsH436-CFP (n=16 cells) and for V5-mFZD5-FlAsH439-CFP (n=9 

cells). Data are shown as a dot scatter plot, represented as mean ± SEM. No significant difference in 

FRET efficiency was detected for the two receptor sensors. ns: non-significant (two-tailed unpaired 

t test).  This material has been published in: Wright and Alonso-Cañizal et al., 2018. 

 

 

 

4.1.2.4. FZD5-induced DVL phosphorylation and recruitment 

DVL is an essential component of the WNT signaling pathways that participates in both, 

canonical and non-canonical signaling. DVL can bind at different positions in the C-terminus 

and in the ICL-3 of the FZD5 receptor (Tauriello et al., 2012), so the question arose if the 

insertion of the fluorophores could affect the interaction between the FZD5 constructs and 

DVL. In order to investigate that possibility, HEK293 cells stably expressing the receptors V5-

mFZD5-CFP or V5-mFZD5-FlAsH436-CFP were stimulated with the recombinant ligand 

WNT-3A or WNT-5A (Fig. 13A). CK1ε has been shown to bind and to phosphorylate DVL 

upon stimulation with WNTs, which leads to the emergence of a new population of 

phosphorylated DVL protein (Bryja et al., 2007; González-Sancho et al., 2004). In the case of 

V5-mFZD5-CFP, upon ligand stimulation, the phosphorylation of DVL resulted in a reduction 

of its electrophoretic mobility that could not be observed for V5-mFZD5-FlAsH436-CFP. This 

suggests that the insertion of the FlAsH-binding sequence within ICL-3 interferes with the 

interaction between FZD5 and DVL. 
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To further evaluate these results, the ability of the different receptor constructs to mediate DVL 

recruitment to the plasma membrane was analyzed (Fig. 13B). DVL can be found in the cell in 

a punctate or even appearance, depending on CK1ε or the WNT protein. However, when a 

FZD receptor is overexpressed in the same cell, DVL relocates to the membrane in the absence 

of ligand (Bernatík et al., 2014; Bryja et al., 2007). Therefore, the distinctive distribution 

patterns allow to investigate the recruitment of DVL induced by FZD5. As expected from the 

previous data, cells expressing either the wild-type FZD5 or the receptor with CFP showed 

FLAG-DVL1 localization to the plasma membrane. On the contrary, V5-mFZD5-FlAsH436-

CFP was not capable of inducing this phenotype. A similar result was observed when cells 

were transfected with GFP-DVL2. Neither V5-mFZD5-FlAsH436-CFP nor V5-mFZD5-

FlAsH439-CFP were able to induce DVL2 recruitment to the plasma membrane. Interestingly, 

when GFP-DVL3 was co-expressed in cells with the different receptors, it was mainly found 

in the intracellular compartments, in punctate appearance. Not even the wild-type receptor 

could induce the recruitment of this protein, which might suggest that DVL3 biology is slightly 

different to DVL1 and DVL2 with regards to FZD5 receptor. However, DVL3 has been shown 

before to be recruited by FZD5 (Bernatík et al., 2014), which would open the possibility that 

the structure or function of the DVL3 protein used for these experiments is disturbed, maybe 

because of the insertion of the GFP. Quantification of the DVL2 distribution is shown in 

figure 13C. No difference was observed for the two FZD5 receptor sensors, being none of them 

able to induce DVL recruitment to the plasma membrane. 

 

Altogether, the characterization of the FZD5 receptor FRET-based sensors indicate that they 

can be used to investigate the conformational movements that occur in the receptor upon ligand 

stimulation. From this point on, all FRET experiments regarding receptor activation have been 

performed in HEK293 cells stably expressing either the probe V5-mFZD5-FlAsH436-CFP or 

V5-mFZD5-FlAsH439-CFP. 
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Figure 13. FZD5-induced DVL phosphorylation and recruitment. 

(A) Non-transfected HEK293 cells or cells stably expressing the receptors V5-mFZD5-CFP or 

V5-mFZD5-FlAsH436-CFP were stimulated with the recombinant protein WNT-3A or WNT-5A. In the 

case of the receptor with CFP, stimulation with WNTs led to the phosphorylation of DVL, which 

translated into a reduction of its electrophoretic mobility. In contrast, the sensor V5-mFZD5-FlAsH436-

CFP was not able to induce DVL phosphorylation. Data correspond to a representative experiment that 

was repeated at least on three independent days. Phosphorylation of DVL was detected with an antibody 

against endogenous DVL2. (B) Representative images of the cellular localization of DVL in the absence 

of WNTs, when the distinct FZD5 receptor constructs were overexpressed. While the original construct 

V5-mFZD5 and the receptor with CFP were both able to mediate the translocation of DVL1 and DVL2 

to the plasma membrane, none of the sensors was capable of inducing that phenotype. When V5-mFZD5-

FlAsH436-CFP or V5-mFZD5-FlAsH439-CFP were overexpressed, DVL appeared in the cells as 

punctate or even conformation, similarly to the phenotype observed in the absence of receptor. In the 

case of GFP-DVL3, no recruitment of the protein to the plasma membrane could be observed in any 

condition. (C) Quantification of GFP-DVL2 distribution in cells. ‘n’ indicates the number of cells 

analyzed for each condition. Part of this material has been published in: Wright and Alonso-Cañizal 

et al., 2018. 
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4.1.3. FZD5 receptor undergoes conformational changes upon activation 

Many studies involving receptor structures have identify a common feature for GPCR 

activation. Upon agonist stimulation, the receptor undergoes a structural rearrangement, 

particularly a relative movement between helix III and VI, which opens the receptor at its 

cytosolic side, allowing the interaction with G proteins and other intracellular partners (Lohse 

et al., 2014; Venkatakrishnan et al., 2013; Kobilka, 2007). Crystallization of the SMO receptor 

(Huang et al., 2018), a distant member of the Frizzled family, confirmed that this movement, 

and thus the activation process, is also conserved in class F of GPCRs. However, the recent 

crystal structure of FZD4 (Yang et al., 2018) showed an unusual architecture of this receptor 

that might suggest a different activation mechanism for Frizzled. 

In order to investigate the conformational changes that the FZD5 receptor undergoes upon 

activation, single HEK293 cells stably expressing the sensor V5-mFZD5-FlAsH436-CFP were 

stimulated with a saturating concentration of the recombinant protein WNT-5A by using the 

BioPen microfluidic system (Ainla et al., 2012; Ainla et al., 2010). This device allows ligand 

perfusion to individual cells with an exchange time between solutions of sub‑seconds. CFP and 

FlAsH fluorescence emissions from single cells were recorded over time, and FRET was 

measured as a FlAsH/CFP ratio. Upon WNT-5A (2000ng/ml) stimulation, FZD5 undergoes 

rapid conformational changes, with a 3-4% decrease in the FRET ratio (Fig. 14A). An example 

of the individual traces of CFP and FlAsH from a single cell is shown in figure 14B. This 

behavior is similar to the ones observed for other class A and B GPCRs using the same 

technique (Ziegler et al., 2011; Vilardaga et al., 2003), which would indicate that the activation 

mechanism of FZD5 resembles the general characteristics of GPCR activation. 

It is noticeable that there is a delay from the moment when the ligand is applied to the observed 

decrease in the FRET signal, which occurred 10-20 seconds after WNT-5A addition, depending 

on the experiment. In addition, once the WNT protein is removed, the FRET signal does not 

comes back rapidly to baseline, as seen in other receptors, which might indicate a high binding 

affinity between FZD5 and WNT-5A. 
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Figure 14. WNT-5A induces FZD5 receptor activation. 

(A) Normalized FRET ratio from a representative experiment, corresponding to a single HEK293 cell 

stably expressing the sensor V5-mFZD5-FlAsH436-CFP. Upon stimulation with WNT-5A (2000ng/ml), 

the receptor underwent a structural rearrangement that translated into a 4% decrease in the FRET signal. 

(B) CFP and FlAsH emission intensities from a different cell. Upon ligand addition, an anti-parallel 

movement of both fluorescence signals was observed, which led to a change in FRET. This material has 

been published in: Wright and Alonso-Cañizal et al., 2018. 
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4.1.4. Measuring FZD5 activation in a microplate reader 

To further analyze the relationship between WNT-5A concentration and the structural 

rearrangements in the receptor, FRET experiments were performed in a 96-well microplate 

FRET reader. HEK293 cells stably expressing either the sensor V5-mFZD5-FlAsH436-CFP or 

V5-mFZD5-FlAsH439-CFP were placed in 96-well plates and stimulated with increasing 

concentrations of the recombinant ligand WNT-5A. FRET signals were monitored over time, 

before and after ligand addition, which allowed to observe a similar concentration-dependent 

FRET change for both sensors. Two representative graphics of these experiments are shown in 

figure 15, for V5-mFZD5-FlAsH436-CFP (A) and V5-mFZD5-FlAsH439-CFP (B), showing 

that both receptor sensors undergo a similar conformational change, with a 4% FRET change 

at saturating concentrations. The effect of different concentrations of ligand on receptor 

activation can be noted in figure 15C-D, where representative FRET signals from individual 

wells are shown. Concentration-response graphics from experiments repeated on independent 

days (n=3-6) are displayed in figure 15E-F.  

The EC50 [95% CI] values obtained for receptor activation are comparable for the two FZD5 

sensors: 704.4 [454.3 - 1092.2] ng/ml for V5-mFZD5-FlAsH436-CFP and 699.3 [518.0 - 944.1] 

ng/ml for V5-mFZD5-FlAsH439-CFP (Table 1). Considering a molecular weight of 38KDa 

for WNT-5A, the calculated EC50 values were transformed to molar concentrations. Therefore, 

WNT-5A ligand activates FZD5 receptor and the EC50 value for this process is found in the 

low nanomolar range, similarly to what has been observed for other GPCRs. No difference in 

activation was observed between the two FZD5 FRET-based sensors (Fig. 15G). 

 

 

 

Table 1. EC50 [95% CI] values for receptor activation determined for both FZD5 sensors. 

Receptor construct 
EC50 

(ng/ml) 

Asymmetric CI 

(95%) 

EC50 

(nM) 

Asymmetric CI 

(95%) 

V5-mFZD5-FlAsH436-CFP  (n=6) 704.4 454.3 - 1092.2 18.5 12.0 - 28.7  

V5-mFZD5-FlAsH439-CFP  (n=3) 699.3 518.0 - 944.1 18.4 13.6 - 24.8 



 79 

 

 



 80 

Figure 15. Both FZD5 receptor sensors show comparable activation properties upon WNT-5A 

stimulation. 

(A-G) FRET experiments performed in a 96-well microplate FRET-reader with cells stably expressing 

the receptor sensors V5-mFZD5-FlAsH436-CFP or V5-mFZD5-FlAsH439-CFP. Both sensors undergo 

conformational changes upon stimulation with WNT-5A, which are concentration-dependent. (A-B) 

Representative experiments, with an EC50 for receptor activation of 556.6ng/ml for V5-mFZD5-

FlAsH436-CFP and 777.1ng/ml for V5-mFZD5-FlAsH439-CFP. (C-D) Normalized, but non-corrected, 

FRET signals from individual wells of a 96-well plate. Graphics are representative experiments showing 

the impact of different concentrations of WNT-5A on FZD5 receptor activation. (E-F) Concentration-

response graphics summarizing experiments performed on independent days: six times for V5-mFZD5-

FlAsH436-CFP and three times for V5-mFZD5-FlAsH439-CFP. FRET change produced upon 

stimulation with distinct concentration of ligand has been normalized to the highest concentration. (G) 

No difference in activation was observed between both receptor sensors upon stimulation with 

WNT-5A. Data were quantify from 3-6 independent experiments performed in quadruplicate, and are 

represented as mean ± SEM. Part of this material has been published in: Wright and Alonso-Cañizal 

et al., 2018. 
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4.1.5. Gαq titration 

G proteins are frequently found close to the plasma membrane, sometimes even pre-assembled 

to receptors in a resting state before ligand stimulation. Therefore, and as a previous step to 

study the downstream signaling pathways, the possibility of FZD5 being pre-coupled to 

G proteins was investigated. FZD5 was found to be pre-coupled to Gαq protein, but not to Gαi1, 

by means of using FRAP microscopy (Wright and Alonso-Cañizal et al., 2018). Thus, the 

presence or absence of the G proteins in the intracellular side of the receptor might affect the 

basal conformation of the FZD5 FRET sensors. To test this possibility, HEK293 cells stably 

expressing the sensor V5-mFZD5-FlAsH436-CFP were transfected with constant 

concentrations of Gβ1 and Gγ2 subunits, and increasing concentrations of the Gαq subunit. 

Basal FRET was measured in 96-well plates without ligand stimulation (Fig. 16). It was not 

possible to observe any difference in the basal FRET detected for the different conditions, 

which might be due to the small size of the FlAsH reagent, whose insertion does not 

significantly alter the structure of the receptor. 

 

 

 

 

 

Figure 16. Gαq titration. 

Representative experiment showing the effect of Gαq protein concentration on receptor conformation in 

the absence of ligand. No effect on the basal FRET observed for the sensor V5-mFZD5-FlAsH436-CFP 

was detected when cells were transfected with the three subunits of the G protein: Gβ1, Gγ2 and 

increasing concentrations of Gαq.  
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4.2. Activation of FZD5-mediated downstream signaling pathways 

 

4.2.1. FZD5 mediates Gαq protein activation upon WNT-5A stimulation 

One characteristic of many GPCRs is their ability to activate heterotrimeric G proteins. A direct 

approach to investigate G protein activity is the use of genetically encoded FRET-based 

sensors. Upon ligand stimulation, the active receptor mediates the dissociation between Gα and 

Gβγ subunits, which translates into the loss of energy transfer between the fluorophores 

attached to the Gα and Gγ. 

As previously mentioned, FZD5 was found to be pre-coupled to Gαq proteins in the absence of 

ligand (Wright and Alonso-Cañizal et al., 2018). In addition, the ligand WNT-5A has been 

previously shown to induce calcium release and signaling mediated by FZD receptors, 

particularly in Xenopus and Zebrafish embryos (Seitz et al., 2014; Kohn and Moon, 2005; 

Slusarski et al., 1997). Many GPCRs are able to induce the activation of the Gαq- and PKC-

dependent signaling pathway, one of whose outcomes is the release of calcium from the 

intracellular stores. To investigate the activation of Gαq protein mediated by FZD5 receptor in 

real-time, FRET-based sensors for Gαq and the three isoforms of Gαi were used (van Unen et 

al., 2016; Adjobo-Hermans et al., 2011). These sensors consist of a Gα subunit fused to the 

fluorophore mTurquoise, a brighter CFP variant that acts as donor, an untagged Gβ subunit, 

and a Gγ subunit tagged with the fluorophore Venus, which acts as acceptor. 

4.2.1.1. Single-cell FRET measurements 

HEK293 cells were co-transfected with V5-mFZD5 receptor and the Gαq sensor, and single 

cells were used for FRET experiments. Upon stimulation with a saturating concentration of 

WNT-5A (1000ng/ml), by means of using the BioPen microfluidic system, the dissociation 

between Gαq and Gβγ subunits led to an antiparallel movement between mTurquoise and 

Venus emission intensities, which translated into a decrease in the FRET ratio (Fig. 17A). 

Consistent with the previous results obtained for FZD5 receptor activation, there was a delay 

of few seconds since the perfusion of the ligand started until the FRET change was detected. 

No activation of Gαq, and thus no change in FRET, was observed when the receptor was not 

overexpressed in the cells (Fig. 17B). Since FZD5 was not found to be pre-coupled to Gαi1 

proteins, as a control, cells were co-transfected with V5-mFZD5 receptor and the Gαi1 sensor 

(Fig. 17C). No response was detected in single-cells upon stimulation with the ligand, which 

suggests that WNT-5A induces FZD5-mediated activation of Gαq but not Gαi1 proteins.  
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Figure 17. WNT-5A induces Gαq activation, but not Gαi1, mediated by FZD5. 

(A-C) Representative graphics showing single-cell FRET experiments. (A) Cells co-transfected with 

the V5-mFZD5 receptor and the Gαq protein FRET sensor. Upon activation by WNT-5A, the dissociation 

of the G protein subunits led to a decrease in the FRET ratio. (B) No activation of Gαq and thus no 

decrease in the FRET ratio was detected in the absence of receptor, when cells co-expressing pcDNA 

and the Gαq protein FRET sensor were stimulated with WNT-5A. (C) Upon stimulation with the ligand, 

no activation was observed in cells co-transfected with the V5-mFZD5 receptor and the Gαi1 FRET 

sensor, which indicates no activation of Gαi1 protein by WNT-5A. This material has been published in: 

Wright and Alonso-Cañizal et al., 2018.  
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4.2.1.2. G protein activation in 96-well plates 

To further investigate the G protein activation process, FRET experiments were performed in 

96-well plates. HEK293T cells were co-transfected with V5-mFZD5 receptor and the Gαq 

sensor, and then stimulated with increasing concentrations of WNT-5A. Similarly to what was 

observed in single-cell FRET experiments, WNT-5A induced Gαq activation mediated by 

FZD5, and the conformational change in the Gαq protein sensor led to a change in FRET of 

2.5%. A representative graphic of these experiments is shown in figure 18A.  

Since previous experiments revealed that the FZD5 receptor FRET sensors were not able to 

induce phosphorylation of DVL nor mediate its recruitment to the plasma membrane, the 

ability of the sensors to activate Gαq proteins was investigated. HEK293T cells were co-

transfected with the Gαq sensor and the receptor construct containing the FlAsH-binding 

sequence but not CFP, either V5-mFZD5-FlAsH436 or V5-mFZD5-FlAsH439. Both receptor 

constructs were still functional and able to mediate Gαq protein activation (Fig. 18B-C). The 

FRET change detected is comparable to the results obtained for the wild-type receptor 

(Fig. 18D), as well as the EC50 [95% CI] values for G protein activation, which are summarized 

in table 2. 

 

 

 

 

Table 2. EC50 [95% CI] values for G protein activation mediated by the three FZD5 receptor constructs. 

A molecular weight of 38KDa for the ligand WNT-5A was considered to transform the data from ng/ml 

to nanomolar concentrations. 

 

 

 

 

Receptor construct 
EC50 

(ng/ml) 

Asymmetric CI 

(95%) 

EC50 

(nM) 

Asymmetric CI 

(95%) 

V5-mFZD5  (n=3) 550.8 327.0 - 927.9 14.5 8.6 - 24.4 

V5-mFZD5-FlAsH436  (n=3) 471.0 295.4 - 750.8 12.4 7.8 - 19.8 

V5-mFZD5-FlAsH439  (n=2) 653.9 170.9 - 2501.5 17.2 4.5 - 65.8 
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The fact that the receptor sensors can activate G proteins but not interact with DVL may suggest 

that, despite being an important component of the downstream signaling pathways, DVL does 

not contribute to the structural changes that occur in the receptor upon activation. Moreover, 

even though the wild-type receptor can interact with DVL, FZD5-mediated G protein activation 

may be independent of that protein. 

To further assess this idea, FRET experiments were performed in 96-well plates by 

co-expressing both, the Gαq sensor and the V5-mFZD5 receptor in HEK293 DVL KO cells 

(Fig. 18E) or in HEK293 cells overexpressing the protein DVL2 (Fig. 18F). In line with 

previous results, FZD5 appears to mediate Gαq activation independently of the intracellular 

levels of DVL. 

Finally, when comparing the results (Fig. 18G) obtained for G protein activation mediated by 

FZD5 (data normalized from 3 independent experiments) and for FZD5 receptor activation 

(curve with normalized data is from figure 15G), it is noticeable that there is a shift between 

the two curves and that the EC50 for G protein activation is lower than for receptor activation. 

That is consistent with an amplification of the signal that generally occurs throughout a 

signaling cascade. 

No activation of Gαi1 could be detected in single-cell FRET experiments when cells co-

expressed the V5-mFZD5 receptor and the Gαi1 protein sensor (Fig. 17C). In order to confirm 

these results, experiments were performed in 96-well plates by employing the three FRET 

sensors available for Gαi proteins. Therefore, HEK293T cells were co-transfected with V5-

mFZD5 receptor and the corresponding G protein sensor, Gαi1, Gαi2 or Gαi3. Upon stimulation 

with increasing concentrations of WNT-5A, no significant change in FRET could be observed 

(Fig. 19A-C), which confirms that the axis WNT-5A/FZD5 does not lead to the activation of 

Gαi proteins. The FRET change detected is comparable for the three isoforms of Gα i 

(Fig. 19D). 
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Figure 18. Gαq protein activation induced by WNT-5A. 

(A-C, E-F) Representative graphics showing FRET experiments performed in 96-well plates. In order 

to investigate the activation of Gαq by FZD5, cells were transfected with the Gαq sensor and with the 

receptor construct V5-mFZD5 (A), V5-mFZD5-FlAsH436 (B), or V5-mFZD5-FlAsH439 (C). Upon 

WNT-5A stimulation, Gα and Gβγ subunits dissociate, producing a change in the FRET signal. The 

EC50 value for Gαq protein activation mediated by FZD5 in these experiments is 461.6ng/ml for 

V5-mFZD5, 448.7ng/ml for V5-mFZD5-FlAsH436, and 610.5ng/ml for V5-mFZD5-FlAsH439. (D) At 

saturating concentrations of the ligand WNT-5A (1000ng/ml), the three receptor constructs induced 

comparable FRET changes in the Gαq protein sensor, which indicates that the receptor sensors are 

functional and able to activate Gαq despite the insertion of the FlAsH-binding motif in ICL-3. Graphic 

summarizes the results from experiments performed in quadruplicate, on independent days: n=3 for V5-

mFZD5, n=3 for V5-mFZD5-FlAsH436, and n=2 for V5-mFZD5-FlAsH439. Mean ± SEM is shown. 

*** P≤0.001; ** P≤0.01 (one-way ANOVA). In order to evaluate if G protein activation was 

independent of the intracellular levels of DVL, Gαq activation mediated by V5-mFZD5 was investigated 

in knock-out cells for the three DVL isoforms (E) and in cells overexpressing DVL2 (F). In both cases, 

the receptor was able to mediate Gαq activation upon WNT-5A stimulation. (G) Comparison between 

FZD5 receptor activation and Gαq protein activation. Curve of normalized data for receptor activation is 

the same than in figure 15G and corresponds to six independent experiments performed with the sensor 

V5-mFZD5-FlAsH436-CFP. Curve of normalized data for Gαq activation mediated by FZD5 

corresponds to three independent experiments performed in quadruplicate. The observed shift in EC50 

between both curves might be explained by signal amplification. Part of this material has been published 

in: Wright and Alonso-Cañizal et al., 2018. 
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Figure 19. Gαi protein activation induced by WNT-5A. 

(A-C) Representative graphics showing FRET experiments performed in 96-well plates. In order to 

investigate the activation of Gαi by FZD5, cells were transfected with the receptor construct V5-mFZD5 

and the corresponding Gαi sensor, either Gαi1 (A), Gαi2 (B), or Gαi3 (C). No activation of Gαi proteins 

could be detected upon WNT-5A stimulation. (D) Comparison of FRET changes induced in the Gαi 

protein sensors at saturating concentrations of the ligand WNT-5A (1000ng/ml). Graphic summarizes 

the results from experiments performed in quadruplicate on independent days: n=4 for Gα i1, n=3 for 

Gαi2, and n=2 for Gαi3. Mean ± SEM is shown. ns: non-significant (two-tailed unpaired t test). Part of 

this material has been published in: Wright and Alonso-Cañizal et al., 2018. 
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4.2.2. Activation of calcium signaling 

The interaction between Frizzled and WNTs can activate many different intracellular routes, 

both β-catenin-dependent and -independent. Within this last group of non-canonical pathways, 

calcium signaling is one of the most studied, due to its role during embryogenesis and 

development (De, 2011). Whereas for many GPCRs, calcium signaling is activated in a 

Gαq-dependent manner, the implication of G proteins in WNT-mediated pathways is still not 

well stablished. 

 

4.2.2.1. M3AChR-mediated signaling pathway 

To further evaluate the specific activation of the PLC signaling pathway mediated by Gαq 

activation, a dual DAG/Ca2+ sensor was employed (Tewson et al., 2012). This sensor 

simultaneously detects the generation of DAG and the release of calcium from the intracellular 

stores: calcium binding to R-GECO induces a conformational change in this protein that leads 

to an increase in red fluorescence, whereas the DAG sensor consists of the C1 domain of PKC 

fused to GFP (Fig. 21A). In order to validate the potential of this probe, the M3ACh receptor 

was employed. The M3AChR is a so-called classical class A GPCR, which couples to the 

heterotrimeric Gαq protein and mediates the activation of its downstream signaling pathway 

(Haga, 2013; Nahorski, 2006). Thus, HEK293 cells stably expressing both the M3AChR tagged 

with CFP at the C-terminus and the dual sensor were seeded in 6-well plates, onto crystal 

coverslips, and analyzed by confocal microscopy (Fig. 20). Upon stimulation with saturating 

concentrations of the ligand Carbachol, a fast increase in red fluorescence intensity was 

observed upon the rise in calcium levels, together with a decrease in the green fluorescence 

produced by the translocation of the PKC-GFP to the cellular membrane upon DAG generation. 

Quantification of these data is shown in figure 21D. 

As a control, each of the sensors can be individually activated. Addition of ionomycin to cells 

expressing the dual sensor induced the release of calcium independently of the receptor, 

without affecting directly the DAG levels (Fig. 21B). On the contrary, stimulation of the cells 

with Phorbol 12,13-dibutyrate (PdBU), an activator of protein kinase C, produced a decrease 

in the green fluorescence but not an increase in red fluorescence intensity (Fig. 21C). 

 

 

https://en.wikipedia.org/wiki/Protein_kinase_C


 90 

 



 91 

Figure 20. Representative images of HEK293 cells stably co-expressing the M3AChR-CFP and the dual 

DAG/Ca2+ sensor. In the absence of ligand, the green fluorescence emitted by the DAG probe is mostly 

localized in the cytoplasm, while the red fluorescence intensity is weak. Upon stimulation with 

Carbachol, the release of calcium leads to an increase in the fluorescence from R-GECO, whereas the 

DAG probe relocates to the plasma membrane. Description of the sensor and quantification of data are 

shown in figure 21. 

 

 

 

 

 

The dual DAG/Ca2+ sensor proves to be a useful tool to investigate the specific activation of 

the M3ACh receptor and its downstream signaling pathway. In addition, the dual probe has 

been used with the M1ACh receptor, another Gαq-coupled muscarinic receptor, in order to 

evaluate its activation by distinct ligands (Agnetta et al., 2017; Meserer et al., 2017).  

Nevertheless, due to the biological properties of the recombinant WNT proteins, it would have 

not been possible to use the same setting with FZD5 as with the muscarinic receptors. 

Therefore, µ-Slide 8-well plates were selected as an alternative to perform the experiments, 

since much less volume of ligand is needed. As a previous step, all the parameters were 

escalated accordingly and validated using the previously described stable cells for the 

M3AChR-CFP and the dual sensor. Similarly to the results obtained before, where cells were 

placed onto glass coverslips, stimulation with saturating concentrations of Carbachol led to a 

simultaneous increase in the calcium signal and a decrease in the green fluorescence. The data 

were comparable when µ-Slide 8-well plates were non-coated (Fig. 21E) or pre-coated with 

poly-D-lysine (Fig. 21F). 

Altogether, data indicate that the dual DAG/Ca2+ sensor is a solid tool to evaluate the activation 

of the Gαq-downstream signaling pathway, which can be used in different settings and with 

various receptors. Hence, it emerges as a method to investigate FZD5-mediated PKC/Ca2+ 

signaling pathway. 
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Figure 21. (A) Sketch depicting the dual DAG/Ca2+ sensor, developed by Montana Molecular (Tewson 

et al., 2012). It consists of two independent probes cloned in phase with a self-cleaved 2A peptide in 

between, thus there is a balance production of both sensors in the cells. The calcium sensor is R-GECO, 

a protein which undergoes a conformational change upon calcium binding that leads to an increase in 

red fluorescence. The DAG probe comprises a GFP fused to the C1 domain of a PKC. When activated, 

translocation of PKC to the membrane to bind DAG produces a decrease of the green fluorescence. (B) 

Cells overexpressing the dual sensor were stimulated with ionomycin, which led to a rise in the 

intracellular levels of calcium that translated into an increase in red fluorescence. No response from the 

DAG probe was detected. (C) Cells overexpressing the dual sensor were stimulated with PdBU, which 

led to PKC activation and produced a decrease in the green fluorescence. No response from the calcium 

probe was detected. (D) Cells overexpressing the dual sensor and M3AChR-CFP were stimulated with 

saturating concentrations of the ligand Carbachol. There was a rapid and simultaneous response, with a 

decrease in the green and an increase in the red fluorescence. (E-F) Experiments were escalated to a 

smaller setting. Cells stably co-expressing the dual sensor and M3AChR-CFP were placed in µ-Slide 8-

well plates non-coated (E) or pre-coated with poly-D-lysine (F), and stimulated with saturating 

concentrations of Carbachol. Results were comparable to what was previously observed (D). Data are 

represented as Mean ± SEM of several cells. ‘n’ is indicated in the graphics. 
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4.2.2.2. FZD5 mediates the activation of PKC-dependent signaling pathway. 

In order to investigate the activation of the PLC pathway mediated by FZD5, a HEK293 stable 

cell line was generated that co-expressed the DAG/Ca2+ sensor and the V5-mFZD5 receptor 

tagged with CFP. In view of the difficulty of using recombinant WNT proteins, experiments 

were performed by using control- or WNT-5A-conditioned medium provided by Dr. Vítězslav 

Bryja (Masaryk University, Brno). 

Stable cells expressing both the dual sensor and the V5-mFZD5-CFP receptor were seeded onto 

glass coverslips placed in 6-well plates, and analyzed by confocal microscopy. Several minutes 

after stimulation with WNT-5A-conditioned medium, a robust increase in the red fluorescence 

produced by the release of calcium could be observed, accompanied by a decrease in the green 

fluorescence (Fig. 22C). The signals were detected around 15-25 minutes after ligand addition, 

depending on the experiment. No response was observed when the stable cells were stimulated 

with control medium (Fig. 22A). As a control, HEK293 cells expressing only the DAG/Ca2+ 

sensor, without receptor overexpression, were stimulated with WNT-5A conditioned medium 

(Fig. 22B). No response could be detected. Quantification of calcium release from several cells 

measured in the different conditions is shown in figure 22D. 
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Figure 22. FZD5 activates Gαq-downstream effectors DAG and calcium flux 

(A) Cells stably co-expressing the V5-mFZD5-CFP receptor and the DAG/Ca2+ sensor were stimulated 

with control medium. No activation of the sensor was detected when the ligand was not present. (B) 

Cells stably expressing the DAG/Ca2+ sensor were stimulated with WNT-5A conditioned medium. No 

activation of the sensor was detected when the receptor was not present. (C) Representative experiment 

of cells stably co-expressing the V5-mFZD5-CFP receptor and the DAG/Ca2+ sensor. Upon stimulation 

with WNT-5A-conditioned medium, a simultaneous DAG-dependent signal and an increase in 

intracellular calcium were detected. The cellular responses were observed 15-25 minutes after ligand 

stimulation, depending on the analyzed cell. (D) Data for calcium release in several cells were 

quantified. A significant difference was observed in comparison to the control conditions. *** P≤0.001; 

** P≤0.01 (unpaired t test).  
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4.3. Characterization of FZD5 activation and signaling by WNT proteins. 

  

4.3.1. FZD5 receptor activation 

The previous results obtained with the endogenous agonist WNT-5A suggest that the FZD5 

receptor FRET sensors could be used as a readout to test the effect of other ligands on receptor 

activation. To further investigate this possibility, several recombinant WNT proteins were 

employed. As it was previously described in section 4.1.4, similar results were obtained 

regarding receptor activation when HEK293 cells stably expressing either the sensor V5-

mFZD5-FlAsH436-CFP or V5-mFZD5-FlAsH439-CFP were stimulated with WNT-5A. While 

the cells expressing the second sensor belong to a heterogeneous cell line, the cells expressing 

the first sensor correspond to a homogenous clone. Therefore, stable cells for the receptor V5-

mFZD5-FlAsH436-CFP were selected to perform further experiments. 

Cells were placed in a microplate FRET reader, and the FRET emission was detected before 

and after stimulation with increasing concentrations of WNTs. Representative graphics of 

receptor activation induced by each of the tested ligands are displayed in figure 23. Upon 

activation by various WNTs, the receptor sensor undergoes structural rearrangements that 

translate into distinct FRET changes. Interestingly, co-stimulation of the corresponding WNT 

with the WNT-inhibitory factor 1 (WIF-1) partially reduces the FRET change detected, which 

underlines the idea that the activation of the sensor is specifically induced by each of the 

proteins. 
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Figure 23. WNTs selectively activate the FZD5 receptor. 

(A-I) Representative graphics of FZD5 receptor activation induced by several WNTs. Cells stably 

expressing the sensor V5-mFZD5-FlAsH436-CFP were used to perform FRET experiments in a 96-well 

microplate reader. When co-stimulation with 5X WIF-1, the FRET signals are partially reduced. Graphic 

of stimulation with WNT-5A (C) is from figure 15A, but data of co-stimulation with WIF-1 have been 

added. Quantification of data is shown in figure 24. The EC50 for receptor activation calculated in these 

particular experiments are the following: 377.4ng/ml WNT-3A (B), 556.6ng/ml WNT5A (C), 

932.8ng/ml WNT-5B (D), 1112ng/ml (estimated) WNT-8A (E), 436.2ng/ml WNT-9A (F), 620.1ng/ml 

WNT-9B (G) and 829.5ng/ml WNT-10B (H). 

 

 

 

 

 

WNT-3A and WNT-5A are the most well-known endogenous ligands for FZD5. Assuming that 

WNT-5A would act as a full agonist of FZD5 receptor, the response induced by this protein has 

been normalized to 100% in figure 24. Consequently, the FRET changes induced in the 

receptor upon activation by saturating concentrations of the different WNT proteins have been 

normalized to the maximal response induced by WNT-5A (Fig. 24A). It is noticeable that both 

WNT-3A and WNT-5A produce a similar FRET change at saturating concentrations, while the 

amplitude of the signal is slightly reduced when WNT-9A, WNT-9B or WNT-10B are used. 

These three ligands induced 60-70% FRET change, while WNT-5B and WNT-8A only led to 

a 40-50% change. In contrast, the signal is drastically reduced in the case of WNT-2B, and no 

FRET change could be measured when cells were stimulated with WNT-16B, suggesting that 

this ligand does not activate the FZD5 receptor under these experimental conditions. 

Differences are also observed when comparing concentration-response curves of several 

ligands (Fig. 24B). Although the EC50 for receptor activation is similar for the ligands 

WNT-5A, WNT-5B and WNT-9B, the responses produced by the different agonists 

widely vary. In addition, when comparing normalized concentration-response curves of 

WNT-5A and WNT-3A, the EC50 of the latter for FZD5 activation is shifted to the left 

(Fig. 24B), which suggests that this ligand is more potent than WNT-5A at the level of receptor 

activation. 
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Regarding the potency of the agonists analyzed, table 3 summarizes the EC50 for FZD5 receptor 

activation. As can be noted from table 3, variability also exits regarding the activity of each 

ligand. Data are compiled in figure 24C-D, where the activity of the different WNTs is 

represented in relation to the structural changes that they induce in the FZD5 receptor sensor 

upon activation. WNT-3A is a more potent agonist than WNT-5A, although both have 

comparable efficacy. WNT-9B and WNT-10B present similar potency to WNT-5A, whereas 

their maximal response is lower. Interestingly, WNT-9A induces a FRET change in the FZD5 

sensor comparable to these two agonists, WNT-9B and WNT-10B, whereas the EC50 for this 

process is more similar to WNT-3A. Otherwise, WNT-5B and WNT-8A appear to have a 

slightly higher EC50 for FZD5 receptor activation.  

 

 

 

 

Table 3. EC50 [95% CI] values for receptor activation induced by various WNTs. For each protein, the 

indicated molecular weight was used to transform ng/ml into nanomolar concentrations. Data were 

calculated from at least 3 independent experiments, for each of the ligands. Data for WNT-5A are from 

table 1. n.d.: not determined. 

Ligand 
EC50 

(ng/ml) 

Asymmetric CI 

(95%) 

Predicted Mw 

(KDa) 

EC50 

(nM) 

Asymmetric CI 

(95%) 

WNT-2B  (n=4) n.d.   38.0  n.d.   

WNT-3A  (n=3) 322.1 192.9 - 537.9 37.0 8.7 5.2 - 14.5 

WNT-5A  (n=6) 704.4 454.3 - 1092.2 38.0 18.5 12.0 - 28.7 

WNT-5B  (n=4) 805.0 423.8 - 1529.1 38.6 20.9 11.0 - 39.6 

WNT-8A  (n=4) 967.2 206.1 - 4538.2 37.0 26.1 5.6 - 122.7 

WNT-9A  (n=4) 484.9 181.5 - 1295.6 37.0 13.1 4.9 - 35.0 

WNT-9B  (n=3) 593.8 413.6 - 852.7 36.8 16.1 11.2 - 23.2 

WNT-10B  (n=3) 674.0 534.9 - 849.3 40.1 16.8 13.0 - 21.2 

WNT-16B  (n=3)  n.d.   38.0  n.d.   
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Figure 24. WNT proteins activate the FZD5 receptor with different efficacy and potency. 

(A-D) FRET measurements were performed in a 96-well microplate reader by using cells stably 

expressing the sensor V5-mFZD5-FlAsH436-CFP. Data were quantified from experiments performed 

in quadruplicate, at least 3 times for each of the ligands. (A) FRET change induced in the FZD5 receptor 

sensor by the different WNTs at saturating concentrations. Data have been normalized to the response 

induced by WNT-5A. (B) Concentration-response curves of several WNTs. Data normalized to the 

FRET signal induced by the highest concentration of WNT-5A. Comparison between the concentration-

response curves of WNT-5A and WNT-3A reveals a shift in receptor activation. (C-D) Activity of the 

tested WNTs in relation to the structural changes that they induce in FZD5 receptor upon activation. No 

activation of FZD5 by WNT-16 could be detected. 
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4.3.2. G protein activation mediated by FZD5 receptor 

Upon stimulation with the recombinant ligand WNT-5A, FZD5 receptor mediates the activation 

of Gαq, but not Gαi heterotrimeric proteins, as mentioned in section 4.2.1. Considering the 

previous results, where WNTs induced distinct responses in the FZD5 receptor sensor, the 

possibility that the same agonists could selectively activate Gαq was investigated. 

HEK293T cells were co-transfected with the Gαq FRET sensor and either the V5-mFZD5 

receptor or pcDNA, and FRET experiments were performed in a microplate FRET reader. 

Thus, mTurquoise and Venus emission and the FRET ratio were detected before and after 

stimulation with increasing concentrations of recombinant WNT proteins. Representative 

graphics of Gαq protein activation induced by each of the tested ligands are presented in 

figure 25. If the specified ligand induces Gαq protein activation, upon stimulation with WNTs, 

the dissociation between Gα and Gβγ subunits would produce a change in the FRET signal. 

This outcome could only be observed for WNT-9B (Fig. 25F) and WNT-10B (Fig. 25G), 

which suggests that only these two ligands activate Gαq mediated by FZD5 receptor.  

 

 

 

 

 

 

 

 

 

 

Figure 25. Gαq protein activation induced by WNT proteins and mediated by FZD5.  

(A-H) Representative graphics of Gαq protein activation induced by WNTs and mediated by FZD5. 

FRET experiments were performed in a 96-well microplate reader. Black dots indicate cells co-

transfected with the V5-mFZD5 receptor and the Gαq protein FRET sensor, while grey dots refer to co-

expression of pcDNA and the Gαq sensor (no overexpression of the receptor). Activation of Gαq could 

only be observed for WNT-9B (F) and WNT-10B (G). The EC50 for Gαq protein activation mediated by 

FZD5 in these particular experiments are: 512.2ng/ml WNT-9B and 659.5ng/ml WNT-10B. 
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Even though no activation of Gαi could be observed upon WNT-5A stimulation (section 4.2.1), 

WNT-3A might be able to induce the activation of these protein subtypes mediated by FZD5. 

Several studies have detected a FZD-dependent Gαi/o activation upon stimulation with 

WNT-3A, and the observed responses were PTX-sensitive (Halleskog and Schulte, 2013; 

Koval and Katanaev, 2011; Nalesso et al., 2011).  

Therefore, HEK293T cells were co-transfected with V5-mFZD5 receptor or pcDNA, and the 

Gαi2 FRET sensor. Upon stimulation with WNT-3A, a strong activation of Gαi2 could be 

observed, although it was not dependent on FZD5 (Fig. 26). 

 

 

 

Figure 26. WNT-3A induces Gαi2 protein activation independently on FZD5. 

Representative graphic of Gαi2 protein activation induced by WNT-3A. The EC50 for Gαi2 protein 

activation in this particular experiment is 342.5ng/ml. 

 

 

 

These results are in agreement with previous studies indicating that the ligand WNT-3A, 

besides being involved in the traditional β-catenin-dependent pathway, is also able to induce 

G protein-dependent signaling. Endogenous levels of FZD in the cells appear to be sufficient 

to induce the activation of Gαi2, and overexpression of FZD5 does not influence the amplitude 

of the observed response.   
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Quantification of data for Gαq protein activation induced by WNTs showed that stimulation 

with the ligands WNT-2B, WNT-8A or WNT-9A only led to a 10-20% FRET change at the 

highest concentration, in comparison to WNT-5A, while WNT-16B did not produce a 

significant response (Fig. 27A). None of these four ligands seemed to induce activation of Gαq. 

In contrast, WNT-3A and WNT-5B were able to induce a bigger change in FRET, of around 

30-40% in comparison to WNT-5A. Nevertheless, the responses produced by the previous six 

ligands were independent of FZD5 overexpression, which suggests that they are mediated by 

endogenous levels of FZD receptors present in HEK293T cells (Fig. 27A-B). 

On the contrary, WNT-9B and WNT-10B were both able to induce Gαq activation, with 60% 

of FRET change in comparison to WNT-5A. In both cases, the amplitude of the signals were 

considerably higher when FZD5 was overexpressed (Fig. 27A-B), which suggests that this 

receptor is mediating the cellular response. The EC50 values for Gαq protein activation are 

shown in table 4. 

 

 

 

 

Table 4. EC50 [95% CI] values for Gαq protein activation mediated by FZD5 and induced by various 

WNTs. For each protein, the indicated molecular weight was used to transform ng/ml into nanomolar 

concentrations. Data for WNT-5A are from table 2. 

Ligand 
EC50 

(ng/ml) 

Asymmetric CI 

(95%) 

Predicted Mw 

(KDa) 

EC50 

(nM) 

Asymmetric CI 

(95%) 

WNT-5A (n=3) 550.8 327.0 - 927.9 38.0 14.5 8.6 - 24.4 

WNT-9B (n=4) 623.0 190.7 – 2035.1 36.8 16.9 5.2 – 55.3 

WNT-10B (n=2) 627.3 284.0 – 1385.8 40.1 15.6 7.1 – 34.6 
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Figure 27. Quantification of Gαq protein activation induced by WNT proteins. 

Comparison between the FRET changes induced by WNTs at their maximal concentration, with and 

without overexpression of FZD5. Experiments were performed in quadruplicate, at least 3 times for each 

of the ligands. (A) Data normalized to the response induced by WNT-5A (1000ng/ml), represented as 

mean ± SEM. Data for WNT-5A from figure 18D were normalized and shown here. Statistical analysis 

was done by using the raw data, not the normalized data. ** P≤0.01; * P≤0.05; ns: non-significant (two-

tailed unpaired t test). (B) Data are the same as in (A) but the FRET change induced when FZD5 was 

overexpressed has been normalized to the response measured in the absence of receptor, for each of the 

ligands. 
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5. Discussion 

 

FZD are highly conserved receptors involved in many different pathologies, which makes them 

valuable pharmacological targets. However, the complexity of the pathways, the limited 

information regarding, for instance, ligand-receptor selectivity or signal initiation, and the few 

number of readouts available, especially with respect to non-canonical signaling, have limited 

the progress in the research field. In this project, FRET-based techniques have been employed 

in order to elucidate the mechanisms of FZD5 receptor activation. Particularly, FZD5 FRET-

based biosensors have been developed and characterized in order to address essential questions 

regarding receptor activation. Furthermore, the activation of G proteins and the Gαq-dependent 

signaling pathway mediated by FZD5 have been investigated. The results of this study show 

that FZD5 exhibits a similar behavior to other well-known GPCRs, not only regarding the 

activation mechanism of the receptor but also the activation of G protein-mediated signaling 

pathways.  

 

5.1. FZD5 receptor activation resembles the general GPCR activation mechanism 

Four FZD5 FRET-based biosensors were created in order to monitor the structural 

rearrangements that the receptor undergoes upon activation. Therefore, CFP was fused to the 

C-terminus of the receptor constructs, whereas the FlAsH-binding motif was inserted in 

different positions within the intracellular loops. The combination CFP-FlAsH has been 

commonly used as a FRET donor-acceptor pair to report ligand-induced conformational 

changes in several GPCRs. Since FRET is a distance-dependent technique, the positions of the 

two fluorophores have been optimized in these receptors. Traditionally, best results have been 

achieved when the donor and acceptor fluorophores where placed in the C-terminus and ICL-3, 

respectively. In general, insertion of the fluorophores did not affect receptor functionality or 

interaction with G proteins. However, FZD receptors have additional intracellular partners, 

such as DVL, which has been described to interact with the receptor at three different motifs, 

two of them located in ICL-3. Therefore, other positions within ICL-2 were considered to place 

the FlAsH-binding sequence in FZD5. 

Characterization of the four sensors revealed that, while insertion of the FlAsH-binding motif 

within ICL-2 altered the overall structure of the receptor sensors, restricting their cellular 

expression to the intracellular membranes, the two sensors with the FlAsH-binding motif 
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inserted within ICL-3 localized to the plasma membrane (Fig. 10). It therefore follows that 

insertion of the two fluorophores, CFP and FlAsH, did not interfere with the folding of the 

proteins, their transport to the plasma membrane or their ability to bind ligands, since the sensor 

V5-mFZD5-FlAsH436-CFP showed comparable binding properties to the wild-type receptor 

(Fig. 11).  

In addition, both receptor sensors, V5-mFZD5-FlAsH436-CFP and V5-mFZD5-FlAsH439-

CFP, exhibited basal intramolecular FRET, with FRET efficiencies of 6.42% and 6.16%, 

respectively (Fig. 12). Since the only difference between both receptor sensors is the 

localization of the FlAsH-binding sequence, which is placed 3 amino acids further in the 

construct V5-mFZD5-FlAsH439-CFP, it appears that this difference in the primary sequence of 

the receptors did not have a significant impact in the relative distance or orientation between 

the fluorophores in the 3D structure. More importantly, no basal energy transfer was detected 

when receptors individually tagged with CFP and FlAsH were co-expressed in the cells. 

Considering that some FZDs have been shown to form dimers and higher order complexes, 

these results excluded the possibility that the FRET signal could be influenced by neighboring 

receptors. Altogether, the characterization of the sensors indicate that they are suitable to 

investigate the ligand-induced activation of FZD5. 

Considering the previous validation, the sensor V5-mFZD5-FlAsH436-CFP was employed to 

investigate receptor activation by means of single-cell FRET experiments. WNT-5A was 

selected as a reference agonist in this project, since it is one of the best-studied endogenous 

ligands for FZD5. In order to reach a maximal activation of all the receptors in the cell surface, 

a saturating concentration of the recombinant protein WNT-5A was employed.  

The results of these experiments revealed an anti-parallel movement of CFP and FlAsH 

emissions upon ligand stimulation, which translated into a 4% decrease in the FRET ratio 

(Fig. 14). These data suggest that, upon binding to WNT-5A, FZD5 undergoes rapid structural 

rearrangements that involve a relative movement of the domains where CFP and FlAsH are 

attached. These conformational changes are similar to those observed in other GPCRs using 

similar FRET sensors, which have been linked to receptor activation. These results would 

support the hypothesis that the general activation mechanism described for GPCRs (section 

1.3.1.1) is also conserved in class F. This is in line with recent evidence, regarding the crystal 

structure of active SMO receptor (Huang P et al., 2018). 
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Figure 28. Superimposed ribbon models 

comparing active and inactive conformations 

of GPCRs. (A-B) Inactive (red) and active 

(blue) SMO receptor. (C-D) Inactive (pink) 

and active (green) rhodopsin receptor. B and D 

show a view from the cytoplasmic side (Huang 

et al., 2018; Fig. 3). 

 

 

 

 

 

 

 

 

 

To date, ten structures of active-state GPCRs forming complexes with heterotrimeric G proteins 

have been published, corresponding to class A and B receptors in complex with Gα i or Gαs. All 

of these structures showed conserved movements upon receptor activation, especially in TM6 

and TM7. Interestingly, it appears that the shift in TM6 partially depends on the G protein 

subunit, and might also be influenced by the length of TM6 and ICL-3 (Glukhova et al., 2018). 

While the inactive, ligand-free structure of FZD4 showed a receptor in a close conformation 

with a packed helix VI that might not be involved in receptor activation, the comparison 

between the active and inactive conformations of SMO showed rearrangements in the 

transmembrane domains of the receptor, with a noticeable shift of TM6 (Fig. 28A-B). This 

movement appears to be more similar to what was observed in Rhodopsin (Fig. 28C-D), and 

not as drastic as for other GPCRs (Fig. 29A-C), but it definitely resembles the conserved 

conformational change that would result in the opening of the receptor at its cytosolic side. 
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Figure 29. Ribbon models comparing active and inactive conformations of class A and B GPCRs. 

(A) Inactive (raspberry) and active (blue) M2AChR. (B) Inactive (red) and active (teal) β2-AR. (C) 

Inactive glucagon receptor (purple) and active (cyan) glucagon-like peptide-1 receptor (Huang et al., 

2018; Fig. S4). 

 

In summary, in this project, CFP and the FlAsH-binding motif were attached to the C-terminus 

and the ICL-3 of FZD5, respectively, which are domains sensitive to conformational changes 

in the receptor. The results obtained are in agreement with a classical activation mechanism that 

involved the TM6 and the C-terminus. While the main activation mechanism appears to be 

conserved, there are few appreciable points that have been observed in FZD5 receptor activation 

(Fig. 14), as well as in G protein activation mediated by FZD5 (Fig. 17). 

First, there appear to be a delay in the response, since the ligand starts to be perfused to the 

moment when the FRET signal decreases. This might be due to the mechanism by which a 

WNT protein binds and activates a FZD receptor. Although prior studies showed that WNT 

interacts with the CRD of FZD at two distinct motifs (Janda et al., 2012), it is still unclear if 

more interactions are established, for instance, between WNT and the extracellular loops of the 

FZD receptor. Moreover, the N-terminus of FZD could undergo conformational changes upon 

WNT binding that allowed those interactions. Nevertheless, there are other factors that may 

have an influence, for instance, the presence of Glypicans in the extracellular surface of the 

cell, as well as other components of the ECM. WNTs have been shown to have affinity and 

bind to these molecules, which would limit or increase the amount of ligand available for FZD 

receptors. It is then possible that certain concentrations of WNT around the receptors have to 

be reached before activation occurs. 

Second, the kinetics of FZD5 activation appear to be slower than those determined for other 

class A or B GPCRs using FRET-based sensors, such as rhodopsin (1ms; Makino et al., 2003), 

α2A-adrenergic receptor (50ms; Vilardaga et al., 2003), muscarinic receptors (60-70ms; Ziegler 
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et al., 2011) or the class B PTHR (1 second; Vilardaga et al., 2003). While these results could 

be also influenced by the binding mechanism between WNT and FZD, it has been previously 

suggested that FZD receptors might behave like classical GPCRs but with altered or slower 

kinetics (Nichols et al., 2013). Considering that the Biopen microfluidic system was employed 

to deliver the WNT proteins in single-cell FRET experiments, and that this perfusion system 

had not been used in the research group until recently, a previous validation was performed in 

order to assure comparable results to the traditional perfusion system. For this reason, the α2A-

adrenergic receptor was used as a control, since it is a well-studied receptor in the group. The 

signal amplitude and kinetics of receptor activation measured upon agonist stimulation were 

comparable for both perfusion systems, and therefore helped to exclude the possibility that the 

different setting might affect the results obtained with the FZD5 receptor sensor. FRET 

experiments were performed by other member of the group and thus they are not part of 

this thesis.  

A third observation is that, upon wash-out of the ligand with buffer, the FRET signal did not 

return immediately to baseline, at least not during the time frame of the experiment. This would 

be compatible with a high binding affinity between WNT-5A and FZD5. Moreover, it might 

also suggest a long ligand residence time. 

 

5.2. FZD5 induces Gαq activation and signaling in response to WNT-5A 

In addition to the conserved receptor movement detected with the FZD5 FRET-based sensor, 

which suggests an activation mechanism for FZD5 similar to classical GPCRs, the direct 

activation of G proteins mediated by FZD5 has also been addressed in this thesis. In order to do 

so, FRET-based sensors for Gαq and Gαi proteins have been employed. 

Single-cell FRET experiments reported activation of Gαq in cells overexpressing the FZD5 

receptor upon stimulation with a saturating concentration of WNT-5A (Fig. 17). The activation 

mechanism of Gαq mediated by FZD5 showed similar characteristics to those for receptor 

activation, which have been previously mentioned (section 5.1), such as the delay in the 

response or the apparent slower kinetics. Interestingly, WNT-5A did not induce activation of 

any of the tested Gαi isoforms mediated by FZD5 in the same conditions. To further investigate 

the axis WNT-5A/FZD5, a dual DAG/Ca2+ sensor was employed. FZD5 mediated the specific 

activation of the PLC pathway (Fig. 22), which involved PKC activation and calcium release, 

similarly to the M3AChR. This provides further evidence of FZD5 as a GPCR. 
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Altogether, WNT-5A has been found to induce Gαq activation mediated by FZD5 by employing 

a FRET sensor for the Gαq protein, as well as calcium release and PKC activation, which was 

determined by means of using a dual sensor for both second messengers, with endogenous 

levels of Gαq in the cells (Fig. 30). These experiments were performed in a cellular system 

where the FZD5 receptor was overexpressed. However, the involvement of WNT-5A in other 

signaling pathways mediated by FZD5, such as PCP signaling, might occur in certain cellular 

contexts, where the endogenous presence of other FZD receptors, co-receptors or intracellular 

proteins could influence the signaling outcome. 

 

 

Figure 30. WNT-5A induces Gαq activation and signaling (modified from figure 1). 

 

 

Regarding the intracellular partners of FZD5, DVL has been shown to interact with this receptor 

in the β-catenin-dependent signaling pathway. Therefore, it could be also involved in the 
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(Kilander et al., 2014). In addition, the ability of this receptor to bind and activate G proteins 

depends on the intracellular levels of DVL. On the contrary, FZD10 and FZD4 coupling to G 

proteins are independent of DVL (Hot et al., 2017; Arthofer et al., 2016). 

Within this project, the construct V5-mFZD5 was found able to mediate DVL recruitment and 

phosphorylation (Fig. 13). In addition, this receptor also mediated the activation of Gαq upon 

WNT-5A stimulation (Fig. 17A and 18A), which suggests that FZD5 can also interact with both 

downstream effectors, DVL and G proteins. However, the inability of the FZD5 receptor FRET 

sensors to induce DVL recruitment to the plasma membrane, added to the fact that the two 

constructs V5-mFZD5-FlAsH436 and V5-mFZD5-FlAsH439 were able to mediate Gαq 

activation (Fig. 18B-D), might indicate that the cytoplasmic levels of DVL do not influence the 

activation of Gαq by WNT-5A mediated by FZD5. In addition, the direct interaction between 

FZD5 and DVL might not be necessary for the activation of the receptor and the associated 

conformational movements upon WNT stimulation. 

 

5.3. WNT proteins selectively induce FZD5 activation and signaling 

In order to perform a fast screening of ligands, FZD5 receptor activation was further 

investigated in a 96-well microplate FRET reader, which involved escalating and further 

optimization of FRET experiments from single cells to a microplate reader format. This 

technology has allowed to examine the WNT-FZD selectivity by employing various 

recombinant WNT proteins and a full-length FZD5, which directly reports receptor activation. 

In general, the tested WNTs selectively activated the FZD5 receptor sensor with different 

efficacy and potency (Fig. 24 and 31). WNT-3A and WNT-5A induced a similar response in 

the receptor, with comparable signal amplitudes at saturating concentrations. Therefore, both 

can be considered full agonists for FZD5. This is consistent with which is known in the 

literature about FZD5 receptor. However, despite exhibiting the same activity at the level of 

receptor activation, WNT-3A and WNT-5A have varying potencies, being the former a more 

potent agonist than the latter. Considering that FZD5 activation mediated by WNT-3A leads to 

the β-catenin-dependent signaling pathway (Fig. 2), which involves the participation of 

LRP5/6 co-receptors, DVL and other proteins that may form complexes with FZD, the 

difference in activity between WNT-3A and WNT-5A might be influenced by the presence of 

other proteins. 
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Regarding the other tested WNT proteins, most of them induced concentration-dependent 

conformational changes in the FZD5 sensor. Two groups of partial agonists could be identified. 

On one hand, WNT-9A, WNT-9B and WNT-10B induce 60-70% of FRET change at saturating 

concentrations; on the other hand, WNT-5B and WNT-8A produce only a 40% FRET change 

in the FZD5 sensor. WNT-16B did not induce FZD5 receptor activation, while WNT-2B might 

cause a slight activation of the sensor at high concentrations. These differences in signal 

amplitude might be due to distinct conformational changes that each ligand induces in the 

receptor. These results are in agreement with previous data showing that WNT-3A and 

WNT-5A exhibited strong binding to the CRD of FZD5, while WNT-5B exhibited intermediate 

binding (Dijksterhuis et al., 2015; section 1.2.3). With regard to the potency of the analyzed 

proteins, WNT-9A showed similar potency to WNT-3A, whereas the EC50 values determined 

for the other four ligands are more similar to WNT-5A (Table 3).  

 

 

 

Figure 31. FZD5 receptor activation induced by full (dark green) and partial (clear green) agonists. 
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Interestingly, a prior study showed that WNT-9A did not signal via FZD5 receptor 

(Voloshanenko et al., 2017). By means of using CRISPR/Cas9 technology, the mapping of 

certain WNT-FZD interactions was done by evaluating which combinations of ligand-receptor 

rescued the activation of β-catenin-dependent signaling. Therefore, while WNT-9A was not 

found to induce β-catenin activation mediated by FZD5 in that study, this ligand could induce 

a different cellular response via FZD5. 

It has been proposed that various agonists can stabilize distinct receptor conformations, which 

can selectively activate the downstream signaling cascade (Galandrin et al., 2007). This 

argument arises the question whether the behavior of certain WNTs with respect to FZD5 

receptor activation could indeed be related to the signaling pathway that they induce. To further 

assess this question, Gαq activation induced by various recombinant WNT proteins was also 

investigated in the microplate FRET reader (Fig. 25 and 27). Surprisingly, only two of the 

tested ligands, besides WNT-5A, induced Gαq activation mediated by FZD5: WNT-9B and 

WNT-10B (Fig. 32). 

Notably, these two proteins behave as partial agonists for FZD5 regarding receptor activation, 

and they also induce lower signal amplitudes than WNT-5A in the Gαq–FRET sensor. The 

EC50 for Gαq activation were comparable for the three WNT proteins (Table 4). Regarding the 

other tested ligands, some of them slightly induced Gαq activation, but this process was not 

mediated by FZD5.  

Evidence exists of β-catenin-dependent activation induced by WNT-9B and mediated by FZD5 

(Voloshanenko et al., 2017), whereas Gαq activation induced by WNT-9B and mediated by 

FZD5 has been observed in this study. The fact that the same combination of ligand and receptor 

could lead to the activation of different downstream cascades underlines the importance of the 

cellular context and the presence of other proteins in discerning the signaling outcome. 
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Figure 32. Gαq protein activation mediated by FZD5 receptor and induced by full (dark green) and 

partial (clear green) agonists.  

 

 

5.4. Final remarks and future directions 
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expression levels of the receptor in different experiments. Moreover, due to the characteristics 

of the recombinant WNT proteins, as well as their ability to bind to the extracellular surface of 

the cell, receptor activation experiments were performed several times in order to assure 

reproducibility of the results. 
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While the differences in signal amplitudes allowed to determine full and partial agonists at the 

level of receptor activation, the calculated EC50 values provided information about the different 

potencies of the WNT proteins with respect to FZD5. In addition, the data obtained were in 

agreement with previous studies (section 1.2.3) that showed a strong binding between WNT 

and FZD, as well as EC50 values in the low nanomolar range for the activation of the 

downstream signaling cascade. 

The setting employed to measure FZD5 receptor activation in the microplate FRET reader 

proved to be a useful and valuable tool to characterize the pharmacological effect of several 

ligands on receptor activation. Considering the limited number of read-outs available to 

investigate FZD-WNT selectivity, this technique opens the possibility to look directly at the 

level of ligand-induced receptor activation. This technology would help to identify molecules 

targeting FZD5, as well as to characterize potential pharmacological compounds. Furthermore, 

G protein-dependent signaling is required in several FZD-mediated processes. Hence, it is 

relevant to understand which combinations of WNTs and FZDs drive the activation of the 

different signaling cascades. 

The knowledge and results of this project could be applied to other FZD receptors in the future. 

The development of FRET-based biosensors for other members of the family would allow to 

compare their activation mechanism to the conformational changes observed for FZD5. 

Furthermore, ligand selectivity could be addressed by means of using the optimized setting in 

the microplate reader. Resonance-energy transfer techniques might be also employed to further 

investigate the kinetics of ligand binding and receptor activation. In addition, and with focus on 

FZD5, it would be interesting to further investigate other aspects of FZD5-dependent signaling 

by employing other technologies, such as BRET. In particular, determining the selective 

activation of other G protein isoforms or β-arrestins induced by various WNT proteins would 

provide a more complete view of the signaling cascades mediated by this receptor. 
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6. Annexes 

 

6.1. Abbreviations 

7TM  Seven Transmembrane 

AC  Adenylyl Cyclase 

APC  Adenomatous Polyposis Coli 

BRET  Bioluminescence Resonance Energy Transfer 

BSA  Bovine Serum Albumin 

Ca2+  Calcium 

CaMKII Calcium/Calmodulin-Dependent Protein Kinase II 

CFP  Cyan Fluorescent Protein 

CK1α/ε Casein Kinase 1 α or ε 

CNS  Central Neural System 

CRD  Cysteine Rich Domain 

DAAM1 Dishevelled-Associated Activator of Morphogenesis 1 

DAG  Diacylglycerol 

DEP  Dishevelled, Egl-10, Pleckstrin 

DMEM Dulbecco's Modified Eagle Medium 

DVL  Dishevelled 

ECL  Extracellular Loop 

ECM  Extracellular Membrane 

EDT  1,2-Ethanedithiol 

FBS  Fetal Bovine Serum 

FCS  Fluorescence Correlation Spectroscopy 

FlAsH  Fluorescein Arsenical Hairpin 

FRAP  Fluorescence Recovery After Photobleaching 

FRET  Förster Resonance Energy Transfer 

FZD  Frizzled 

G-418  Geneticin 

GFP  Green Fluorescent Protein 
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GPCR  G Protein-Coupled Receptor 

GRK  G protein-coupled Receptor Kinases 

GSK3  Glycogen Synthase Kinase 3 

ICL  Intracellular Loop 

IUPHAR International Union of Pharmacology 

IP3  Inositol Trisphosphate 

JNK  c-JUN-N-terminal kinase 

LEF/TCF Lymphoid Enhancer-binding Factor/T cell-specific 

LRP5/6 Low Density Lipoprotein Receptor-Related Protein 5 or 6 

M1AChR Muscarinic Acetylcholine Receptor 1 

M3AChR Muscarinic Acetylcholine Receptor 3 

MMTV Mouse Mammary Tumor Virus 

PBS  Phosphate-Buffered Saline 

PCP  Planar Cell Polarity 

PCR  Polymerase Chain Reaction 

PDZ  Atypical Postsynaptic Density 95/disc-large/zona Occludens-1 

PIP2  Phosphatidylinositol 4,5-Bisphosphate 

PKA  Protein Kinase A 

PKC (a) (atypical) Protein Kinase C 

PLC  Phospholipase C 

PTHR  Parathyroid Hormone Receptor 

PTX  Pertussis Toxin 

QCM  Quartz Crystal Microbalance 

ReAsH  Resorufin Arsenical Hairpin 

ROCK  Rho-associated Kinase 

ROR1/2 Tyrosine-protein Kinase Transmembrane Receptor ROR1 and ROR2 

RSPO  R-spondin Secreted Protein 

RT  Room Temperature 

sFRP  Soluble Frizzled-related Proteins 

SMO  Smoothened Receptor 
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TMD  Transmembrane Domains 

Vangl1/2 Van Gogh-like 1 and 2 

VFT  Venus Flytrap 

WIF-1  WNT Inhibitory Factor 1 

WNT  Wingless-Related Integration Site 

wt  Wild-type 

YFP  Yellow Fluorescent Protein 
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6.2. DNA sequences 

 

- Legend: V5 tag 

Signal peptide 
AAGCTT HindIII site 

TCTAGA XbaI site 

ATG / TAA Start / Stop codon V5-mFZD5 

GTG / TAA First / Stop codon CFP 

ATG / ATG / GTG First codon of mCherry / GFP / YFP 

TGTTGCCCGGGCTGCTGT FlAsH-binding sequence 

 

 

 V5-mFZD5 in pcDNA3.4 

 

AAGCTTGCCACCATGGTCCCGTGCACGCTGCTCCTGCTGTTGGCAGCCGCCCTGGCTCCGACTCAG

ACCCGGGCCGGTACCGGCAAACCGATTCCGAACCCGCTGCTGGGCCTGGATAGCACTGCCTCCAA

GGCCCCGGTGTGCCAGGAAATCACGGTGCCCATGTGCCGAGGCATCGGCTACAACCTGACGCACA

TGCCCAACCAGTTCAACCATGACACGCAGGACGAAGCAGGCCTGGAGGTGCACCAATTCTGGCCG

CTTGTGGAGATCCACTGCTCACCGGACCTGCGCTTCTTCCTGTGCTCTATGTACACGCCCATCTGTT

TGCCTGACTACCACAAGCCGCTACCACCGTGCCGTTCCGTGTGCGAGCGCGCCAAGGCCGGCTGCT

CGCCGCTCATGCGCCAGTACGGCTTCGCCTGGCCCGAGCGCATGAGCTGCGACCGCCTCCCTGTGC

TGGGCGGCGACGCCGAGGTTCTGTGTATGGATTATAACCGAAGCGAAGCCACCACCGCGTCCCCT

AAGTCCTTCCCGGCCAAACCTACACTCCCAGGACCACCAGGGGCGCCATCTTCCGGGGGCGAGTG

CCCCTCGGGAGGCCCATCCGTGTGCACGTGCCGCGAGCCCTTCGTGCCCATCCTGAAGGAGTCACA

CCCACTCTACAACAAGGTGCGCACCGGCCAAGTGCCCAACTGCGCGGTGCCCTGCTACCAGCCGT

CCTTCAGCCCGGACGAGCGCACATTCGCCACCTTCTGGATTGGCCTGTGGTCTGTGCTGTGCTTCAT

CTCCACGTCCACCACCGTTGCCACCTTCCTCATTGACATGGAACGATTCCGCTACCCTGAGCGCCC

CATCATCTTCTTGTCTGCGTGCTACCTGTGTGTGTCACTGGGATTCTTGGTGCGCCTGGTAGTGGGC

CATGCCAGCGTCGCTTGCAGCCGTGAGCACAGCCACATTCACTATGAGACTACCGGCCCTGCGCTG

TGCACGGTTGTCTTCCTCTTAGTCTATTTCTTTGGCATGGCCAGCTCCATCTGGTGGGTCATCCTGT

CGCTCACCTGGTTCTTGGCGGCTGGCATGAAGTGGGGCAATGAAGCCATCGCAGGTTATGCACAG

TACTTCCACCTTGCTGCCTGGCTCATCCCCAGTGTCAAGTCCATTACGGCGCTGGCACTGAGCTCG

GTGGACGGGGACCCAGTGGCTGGCATCTGCTATGTGGGCAACCAAAACCTGAACTCACTACGAGG

CTTTGTCTTGGGCCCACTGGTGCTGTACCTGTTGGTGGGCACGCTCTTCCTTCTGGCAGGCTTCGTG

TCACTCTTCCGCATCCGGAGCGTCATCAAGCAGGGTGGCACTAAGACGGACAAGCTAGAGAAGCT

CATGATCCGCATCGGCATCTTCACCCTGCTCTACACGGTGCCAGCCAGCATCGTGGTGGCCTGCTA

CCTGTATGAGCAGCACTACCGGGAGAGCTGGGAGGCAGCCCTCACCTGCGCGTGTCCGGGACCGG

ACGCTGGCCAGCCACGCGCCAAACCCGAGTACTGGGTGCTCATGCTCAAGTACTTCATGTGCCTGG

TGGTGGGCATCACGTCGGGAGTCTGGATCTGGTCCGGCAAGACTCTGGAGTCTTGGCGGCGGTTCA

CCAGCCGCTGCTGCTGCAGCTCTCGGCGGGGCCACAAGAGCGGTGGCGCTATGGCCGCAGGAGAC

TATGCGGAGGCCAGCGCCGCGCTCACCGGCAGGACCGGGCCGCCTGGCCCCACCGCCGCATACCA

CAAGCAAGTGTCCCTGTCGCACGTATAATCTAGA 

 

 

 

 V5-mFZD5–CFP in pcDNA3 

 

AAGCTTGCCACCATGGTCCCGTGCACGCTGCTCCTGCTGTTGGCAGCCGCCCTGGCTCCGACTCAG

ACCCGGGCCGGTACCGGCAAACCGATTCCGAACCCGCTGCTGGGCCTGGATAGCACTGCCTCCAA

GGCCCCGGTGTGCCAGGAAATCACGGTGCCCATGTGCCGAGGCATCGGCTACAACCTGACGCACA

TGCCCAACCAGTTCAACCATGACACGCAGGACGAAGCAGGCCTGGAGGTGCACCAATTCTGGCCG

CTTGTGGAGATCCACTGCTCACCGGACCTGCGCTTCTTCCTGTGCTCTATGTACACGCCCATCTGTT

TGCCTGACTACCACAAGCCGCTACCACCGTGCCGTTCCGTGTGCGAGCGCGCCAAGGCCGGCTGCT

CGCCGCTCATGCGCCAGTACGGCTTCGCCTGGCCCGAGCGCATGAGCTGCGACCGCCTCCCTGTGC
TGGGCGGCGACGCCGAGGTTCTGTGTATGGATTATAACCGAAGCGAAGCCACCACCGCGTCCCCT

AAGTCCTTCCCGGCCAAACCTACACTCCCAGGACCACCAGGGGCGCCATCTTCCGGGGGCGAGTG

CCCCTCGGGAGGCCCATCCGTGTGCACGTGCCGCGAGCCCTTCGTGCCCATCCTGAAGGAGTCACA
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CCCACTCTACAACAAGGTGCGCACCGGCCAAGTGCCCAACTGCGCGGTGCCCTGCTACCAGCCGT

CCTTCAGCCCGGACGAGCGCACATTCGCCACCTTCTGGATTGGCCTGTGGTCTGTGCTGTGCTTCAT

CTCCACGTCCACCACCGTTGCCACCTTCCTCATTGACATGGAACGATTCCGCTACCCTGAGCGCCC

CATCATCTTCTTGTCTGCGTGCTACCTGTGTGTGTCACTGGGATTCTTGGTGCGCCTGGTAGTGGGC

CATGCCAGCGTCGCTTGCAGCCGTGAGCACAGCCACATTCACTATGAGACTACCGGCCCTGCGCTG
TGCACGGTTGTCTTCCTCTTAGTCTATTTCTTTGGCATGGCCAGCTCCATCTGGTGGGTCATCCTGT

CGCTCACCTGGTTCTTGGCGGCTGGCATGAAGTGGGGCAATGAAGCCATCGCAGGTTATGCACAG

TACTTCCACCTTGCTGCCTGGCTCATCCCCAGTGTCAAGTCCATTACGGCGCTGGCACTGAGCTCG

GTGGACGGGGACCCAGTGGCTGGCATCTGCTATGTGGGCAACCAAAACCTGAACTCACTACGAGG

CTTTGTCTTGGGCCCACTGGTGCTGTACCTGTTGGTGGGCACGCTCTTCCTTCTGGCAGGCTTCGTG

TCACTCTTCCGCATCCGGAGCGTCATCAAGCAGGGTGGCACTAAGACGGACAAGCTAGAGAAGCT

CATGATCCGCATCGGCATCTTCACCCTGCTCTACACGGTGCCAGCCAGCATCGTGGTGGCCTGCTA

CCTGTATGAGCAGCACTACCGGGAGAGCTGGGAGGCAGCCCTCACCTGCGCGTGTCCGGGACCGG
ACGCTGGCCAGCCACGCGCCAAACCCGAGTACTGGGTGCTCATGCTCAAGTACTTCATGTGCCTGG

TGGTGGGCATCACGTCGGGAGTCTGGATCTGGTCCGGCAAGACTCTGGAGTCTTGGCGGCGGTTCA

CCAGCCGCTGCTGCTGCAGCTCTCGGCGGGGCCACAAGAGCGGTGGCGCTATGGCCGCAGGAGAC

TATGCGGAGGCCAGCGCCGCGCTCACCGGCAGGACCGGGCCGCCTGGCCCCACCGCCGCATACCA

CAAGCAAGTGTCCCTGTCGCACGTATCTAGAGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGG

TGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAGGTTCAGCGTGTCCGGCGAGGGC

GAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGT

GCCCTGGCCCACCCTCGTGACCACCCTGACCTGGGGCGTGCAGTGCTTCAGCCGCTACCCCGACCA
CATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGTACCATCTT

CTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA

ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGA

GTACAACTACATCAGCCACAACGTCTATATCACCGCCGACAAGCAGAAGAACGGCATCAAGGCCC

ACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAAC

ACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTG

AGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGAT

CACTCTCGGCATGGACGAGCTGTACAAGTAA 
 

 

 

 V5-mFZD5–FlAsH436-CFP in pcDNA3 

 

AAGCTTGCCACCATGGTCCCGTGCACGCTGCTCCTGCTGTTGGCAGCCGCCCTGGCTCCGACTCAG

ACCCGGGCCGGTACCGGCAAACCGATTCCGAACCCGCTGCTGGGCCTGGATAGCACTGCCTCCAA

GGCCCCGGTGTGCCAGGAAATCACGGTGCCCATGTGCCGAGGCATCGGCTACAACCTGACGCACA

TGCCCAACCAGTTCAACCATGACACGCAGGACGAAGCAGGCCTGGAGGTGCACCAATTCTGGCCG

CTTGTGGAGATCCACTGCTCACCGGACCTGCGCTTCTTCCTGTGCTCTATGTACACGCCCATCTGTT

TGCCTGACTACCACAAGCCGCTACCACCGTGCCGTTCCGTGTGCGAGCGCGCCAAGGCCGGCTGCT

CGCCGCTCATGCGCCAGTACGGCTTCGCCTGGCCCGAGCGCATGAGCTGCGACCGCCTCCCTGTGC

TGGGCGGCGACGCCGAGGTTCTGTGTATGGATTATAACCGAAGCGAAGCCACCACCGCGTCCCCT

AAGTCCTTCCCGGCCAAACCTACACTCCCAGGACCACCAGGGGCGCCATCTTCCGGGGGCGAGTG

CCCCTCGGGAGGCCCATCCGTGTGCACGTGCCGCGAGCCCTTCGTGCCCATCCTGAAGGAGTCACA

CCCACTCTACAACAAGGTGCGCACCGGCCAAGTGCCCAACTGCGCGGTGCCCTGCTACCAGCCGT

CCTTCAGCCCGGACGAGCGCACATTCGCCACCTTCTGGATTGGCCTGTGGTCTGTGCTGTGCTTCAT

CTCCACGTCCACCACCGTTGCCACCTTCCTCATTGACATGGAACGATTCCGCTACCCTGAGCGCCC
CATCATCTTCTTGTCTGCGTGCTACCTGTGTGTGTCACTGGGATTCTTGGTGCGCCTGGTAGTGGGC

CATGCCAGCGTCGCTTGCAGCCGTGAGCACAGCCACATTCACTATGAGACTACCGGCCCTGCGCTG

TGCACGGTTGTCTTCCTCTTAGTCTATTTCTTTGGCATGGCCAGCTCCATCTGGTGGGTCATCCTGT

CGCTCACCTGGTTCTTGGCGGCTGGCATGAAGTGGGGCAATGAAGCCATCGCAGGTTATGCACAG

TACTTCCACCTTGCTGCCTGGCTCATCCCCAGTGTCAAGTCCATTACGGCGCTGGCACTGAGCTCG

GTGGACGGGGACCCAGTGGCTGGCATCTGCTATGTGGGCAACCAAAACCTGAACTCACTACGAGG

CTTTGTCTTGGGCCCACTGGTGCTGTACCTGTTGGTGGGCACGCTCTTCCTTCTGGCAGGCTTCGTG

TCACTCTTCCGCATCCGGAGCGTCATCAAGCAGGGTTGTTGCCCGGGCTGCTGTGGCACTAAGACG

GACAAGCTAGAGAAGCTCATGATCCGCATCGGCATCTTCACCCTGCTCTACACGGTGCCAGCCAGC

ATCGTGGTGGCCTGCTACCTGTATGAGCAGCACTACCGGGAGAGCTGGGAGGCAGCCCTCACCTG

CGCGTGTCCGGGACCGGACGCTGGCCAGCCACGCGCCAAACCCGAGTACTGGGTGCTCATGCTCA

AGTACTTCATGTGCCTGGTGGTGGGCATCACGTCGGGAGTCTGGATCTGGTCCGGCAAGACTCTGG
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AGTCTTGGCGGCGGTTCACCAGCCGCTGCTGCTGCAGCTCTCGGCGGGGCCACAAGAGCGGTGGC

GCTATGGCCGCAGGAGACTATGCGGAGGCCAGCGCCGCGCTCACCGGCAGGACCGGGCCGCCTGG

CCCCACCGCCGCATACCACAAGCAAGTGTCCCTGTCGCACGTATCTAGAGTGAGCAAGGGCGAGG

AGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAGGTTC

AGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCAC
CACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTGGGGCGTGCAGTGCTT

CAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACG

TCCAGGAGCGTACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTC

GAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACA

TCCTGGGGCACAAGCTGGAGTACAACTACATCAGCCACAACGTCTATATCACCGCCGACAAGCAG

AAGAACGGCATCAAGGCCCACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGC

CGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACC

TGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAG
TTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA 

 

 

 

 V5-mFZD5–FlAsH439-CFP in pcDNA3 

 

AAGCTTGCCACCATGGTCCCGTGCACGCTGCTCCTGCTGTTGGCAGCCGCCCTGGCTCCGACTCAG

ACCCGGGCCGGTACCGGCAAACCGATTCCGAACCCGCTGCTGGGCCTGGATAGCACTGCCTCCAAG

GCCCCGGTGTGCCAGGAAATCACGGTGCCCATGTGCCGAGGCATCGGCTACAACCTGACGCACATG

CCCAACCAGTTCAACCATGACACGCAGGACGAAGCAGGCCTGGAGGTGCACCAATTCTGGCCGCTT

GTGGAGATCCACTGCTCACCGGACCTGCGCTTCTTCCTGTGCTCTATGTACACGCCCATCTGTTTGC

CTGACTACCACAAGCCGCTACCACCGTGCCGTTCCGTGTGCGAGCGCGCCAAGGCCGGCTGCTCGC

CGCTCATGCGCCAGTACGGCTTCGCCTGGCCCGAGCGCATGAGCTGCGACCGCCTCCCTGTGCTGG

GCGGCGACGCCGAGGTTCTGTGTATGGATTATAACCGAAGCGAAGCCACCACCGCGTCCCCTAAGT

CCTTCCCGGCCAAACCTACACTCCCAGGACCACCAGGGGCGCCATCTTCCGGGGGCGAGTGCCCCT

CGGGAGGCCCATCCGTGTGCACGTGCCGCGAGCCCTTCGTGCCCATCCTGAAGGAGTCACACCCAC

TCTACAACAAGGTGCGCACCGGCCAAGTGCCCAACTGCGCGGTGCCCTGCTACCAGCCGTCCTTCA

GCCCGGACGAGCGCACATTCGCCACCTTCTGGATTGGCCTGTGGTCTGTGCTGTGCTTCATCTCCAC

GTCCACCACCGTTGCCACCTTCCTCATTGACATGGAACGATTCCGCTACCCTGAGCGCCCCATCATC

TTCTTGTCTGCGTGCTACCTGTGTGTGTCACTGGGATTCTTGGTGCGCCTGGTAGTGGGCCATGCCA

GCGTCGCTTGCAGCCGTGAGCACAGCCACATTCACTATGAGACTACCGGCCCTGCGCTGTGCACGG

TTGTCTTCCTCTTAGTCTATTTCTTTGGCATGGCCAGCTCCATCTGGTGGGTCATCCTGTCGCTCACC

TGGTTCTTGGCGGCTGGCATGAAGTGGGGCAATGAAGCCATCGCAGGTTATGCACAGTACTTCCAC

CTTGCTGCCTGGCTCATCCCCAGTGTCAAGTCCATTACGGCGCTGGCACTGAGCTCGGTGGACGGG

GACCCAGTGGCTGGCATCTGCTATGTGGGCAACCAAAACCTGAACTCACTACGAGGCTTTGTCTTG

GGCCCACTGGTGCTGTACCTGTTGGTGGGCACGCTCTTCCTTCTGGCAGGCTTCGTGTCACTCTTCC

GCATCCGGAGCGTCATCAAGCAGGGTGGCACTAAGTGTTGCCCGGGCTGCTGTACGGACAAGCTA

GAGAAGCTCATGATCCGCATCGGCATCTTCACCCTGCTCTACACGGTGCCAGCCAGCATCGTGGTG

GCCTGCTACCTGTATGAGCAGCACTACCGGGAGAGCTGGGAGGCAGCCCTCACCTGCGCGTGTCCG

GGACCGGACGCTGGCCAGCCACGCGCCAAACCCGAGTACTGGGTGCTCATGCTCAAGTACTTCATG

TGCCTGGTGGTGGGCATCACGTCGGGAGTCTGGATCTGGTCCGGCAAGACTCTGGAGTCTTGGCGG

CGGTTCACCAGCCGCTGCTGCTGCAGCTCTCGGCGGGGCCACAAGAGCGGTGGCGCTATGGCCGCA

GGAGACTATGCGGAGGCCAGCGCCGCGCTCACCGGCAGGACCGGGCCGCCTGGCCCCACCGCCGC

ATACCACAAGCAAGTGTCCCTGTCGCACGTATCTAGAGTGAGCAAGGGCGAGGAGCTGTTCACCG
GGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAGGTTCAGCGTGTCCGGC

GAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCT

GCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTGGGGCGTGCAGTGCTTCAGCCGCTACCC

CGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGTAC

CATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCC

TGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAG

CTGGAGTACAACTACATCAGCCACAACGTCTATATCACCGCCGACAAGCAGAAGAACGGCATCAA

GGCCCACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGC

AGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCG

CCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCC

GGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA 
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 V5-mFZD5–FlAsH436 in pcDNA3.4 

 

AAGCTTGCCACCATGGTCCCGTGCACGCTGCTCCTGCTGTTGGCAGCCGCCCTGGCTCCGACTCAG

ACCCGGGCCGGTACCGGCAAACCGATTCCGAACCCGCTGCTGGGCCTGGATAGCACTGCCTCCAAG

GCCCCGGTGTGCCAGGAAATCACGGTGCCCATGTGCCGAGGCATCGGCTACAACCTGACGCACATG

CCCAACCAGTTCAACCATGACACGCAGGACGAAGCAGGCCTGGAGGTGCACCAATTCTGGCCGCTT

GTGGAGATCCACTGCTCACCGGACCTGCGCTTCTTCCTGTGCTCTATGTACACGCCCATCTGTTTGC

CTGACTACCACAAGCCGCTACCACCGTGCCGTTCCGTGTGCGAGCGCGCCAAGGCCGGCTGCTCGC

CGCTCATGCGCCAGTACGGCTTCGCCTGGCCCGAGCGCATGAGCTGCGACCGCCTCCCTGTGCTGG

GCGGCGACGCCGAGGTTCTGTGTATGGATTATAACCGAAGCGAAGCCACCACCGCGTCCCCTAAGT

CCTTCCCGGCCAAACCTACACTCCCAGGACCACCAGGGGCGCCATCTTCCGGGGGCGAGTGCCCCT

CGGGAGGCCCATCCGTGTGCACGTGCCGCGAGCCCTTCGTGCCCATCCTGAAGGAGTCACACCCAC

TCTACAACAAGGTGCGCACCGGCCAAGTGCCCAACTGCGCGGTGCCCTGCTACCAGCCGTCCTTCA

GCCCGGACGAGCGCACATTCGCCACCTTCTGGATTGGCCTGTGGTCTGTGCTGTGCTTCATCTCCAC

GTCCACCACCGTTGCCACCTTCCTCATTGACATGGAACGATTCCGCTACCCTGAGCGCCCCATCATC

TTCTTGTCTGCGTGCTACCTGTGTGTGTCACTGGGATTCTTGGTGCGCCTGGTAGTGGGCCATGCCA

GCGTCGCTTGCAGCCGTGAGCACAGCCACATTCACTATGAGACTACCGGCCCTGCGCTGTGCACGG

TTGTCTTCCTCTTAGTCTATTTCTTTGGCATGGCCAGCTCCATCTGGTGGGTCATCCTGTCGCTCACC

TGGTTCTTGGCGGCTGGCATGAAGTGGGGCAATGAAGCCATCGCAGGTTATGCACAGTACTTCCAC
CTTGCTGCCTGGCTCATCCCCAGTGTCAAGTCCATTACGGCGCTGGCACTGAGCTCGGTGGACGGG

GACCCAGTGGCTGGCATCTGCTATGTGGGCAACCAAAACCTGAACTCACTACGAGGCTTTGTCTTG

GGCCCACTGGTGCTGTACCTGTTGGTGGGCACGCTCTTCCTTCTGGCAGGCTTCGTGTCACTCTTCC

GCATCCGGAGCGTCATCAAGCAGGGTTGTTGCCCGGGCTGCTGTGGCACTAAGACGGACAAGCTA

GAGAAGCTCATGATCCGCATCGGCATCTTCACCCTGCTCTACACGGTGCCAGCCAGCATCGTGGTG

GCCTGCTACCTGTATGAGCAGCACTACCGGGAGAGCTGGGAGGCAGCCCTCACCTGCGCGTGTCCG

GGACCGGACGCTGGCCAGCCACGCGCCAAACCCGAGTACTGGGTGCTCATGCTCAAGTACTTCATG

TGCCTGGTGGTGGGCATCACGTCGGGAGTCTGGATCTGGTCCGGCAAGACTCTGGAGTCTTGGCGG
CGGTTCACCAGCCGCTGCTGCTGCAGCTCTCGGCGGGGCCACAAGAGCGGTGGCGCTATGGCCGCA

GGAGACTATGCGGAGGCCAGCGCCGCGCTCACCGGCAGGACCGGGCCGCCTGGCCCCACCGCCGC

ATACCACAAGCAAGTGTCCCTGTCGCACGTATAATCTAGA 

 

 

 

 V5-mFZD5–FlAsH439 in pcDNA3.4 

 

AAGCTTGCCACCATGGTCCCGTGCACGCTGCTCCTGCTGTTGGCAGCCGCCCTGGCTCCGACTCAG

ACCCGGGCCGGTACCGGCAAACCGATTCCGAACCCGCTGCTGGGCCTGGATAGCACTGCCTCCAAG

GCCCCGGTGTGCCAGGAAATCACGGTGCCCATGTGCCGAGGCATCGGCTACAACCTGACGCACATG
CCCAACCAGTTCAACCATGACACGCAGGACGAAGCAGGCCTGGAGGTGCACCAATTCTGGCCGCTT

GTGGAGATCCACTGCTCACCGGACCTGCGCTTCTTCCTGTGCTCTATGTACACGCCCATCTGTTTGC

CTGACTACCACAAGCCGCTACCACCGTGCCGTTCCGTGTGCGAGCGCGCCAAGGCCGGCTGCTCGC

CGCTCATGCGCCAGTACGGCTTCGCCTGGCCCGAGCGCATGAGCTGCGACCGCCTCCCTGTGCTGG

GCGGCGACGCCGAGGTTCTGTGTATGGATTATAACCGAAGCGAAGCCACCACCGCGTCCCCTAAGT

CCTTCCCGGCCAAACCTACACTCCCAGGACCACCAGGGGCGCCATCTTCCGGGGGCGAGTGCCCCT

CGGGAGGCCCATCCGTGTGCACGTGCCGCGAGCCCTTCGTGCCCATCCTGAAGGAGTCACACCCAC

TCTACAACAAGGTGCGCACCGGCCAAGTGCCCAACTGCGCGGTGCCCTGCTACCAGCCGTCCTTCA

GCCCGGACGAGCGCACATTCGCCACCTTCTGGATTGGCCTGTGGTCTGTGCTGTGCTTCATCTCCAC

GTCCACCACCGTTGCCACCTTCCTCATTGACATGGAACGATTCCGCTACCCTGAGCGCCCCATCATC

TTCTTGTCTGCGTGCTACCTGTGTGTGTCACTGGGATTCTTGGTGCGCCTGGTAGTGGGCCATGCCA

GCGTCGCTTGCAGCCGTGAGCACAGCCACATTCACTATGAGACTACCGGCCCTGCGCTGTGCACGG

TTGTCTTCCTCTTAGTCTATTTCTTTGGCATGGCCAGCTCCATCTGGTGGGTCATCCTGTCGCTCACC

TGGTTCTTGGCGGCTGGCATGAAGTGGGGCAATGAAGCCATCGCAGGTTATGCACAGTACTTCCAC

CTTGCTGCCTGGCTCATCCCCAGTGTCAAGTCCATTACGGCGCTGGCACTGAGCTCGGTGGACGGG

GACCCAGTGGCTGGCATCTGCTATGTGGGCAACCAAAACCTGAACTCACTACGAGGCTTTGTCTTG

GGCCCACTGGTGCTGTACCTGTTGGTGGGCACGCTCTTCCTTCTGGCAGGCTTCGTGTCACTCTTCC

GCATCCGGAGCGTCATCAAGCAGGGTGGCACTAAGTGTTGCCCGGGCTGCTGTACGGACAAGCTA

GAGAAGCTCATGATCCGCATCGGCATCTTCACCCTGCTCTACACGGTGCCAGCCAGCATCGTGGTG

GCCTGCTACCTGTATGAGCAGCACTACCGGGAGAGCTGGGAGGCAGCCCTCACCTGCGCGTGTCCG

GGACCGGACGCTGGCCAGCCACGCGCCAAACCCGAGTACTGGGTGCTCATGCTCAAGTACTTCATG
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TGCCTGGTGGTGGGCATCACGTCGGGAGTCTGGATCTGGTCCGGCAAGACTCTGGAGTCTTGGCGG

CGGTTCACCAGCCGCTGCTGCTGCAGCTCTCGGCGGGGCCACAAGAGCGGTGGCGCTATGGCCGCA

GGAGACTATGCGGAGGCCAGCGCCGCGCTCACCGGCAGGACCGGGCCGCCTGGCCCCACCGCCGC

ATACCACAAGCAAGTGTCCCTGTCGCACGTATAATCTAGA 

 
 

 

 V5-mFZD5 in pmCherry-N1 

 

AGATCTACCATGGTCCCGTGCACGCTGCTCCTGCTGTTGGCAGCCGCCCTGGCTCCGACTCAGACCC

GGGCCGGTACCGGCAAACCGATTCCGAACCCGCTGCTGGGCCTGGATAGCACTGCCTCCAAGGCCC

CGGTGTGCCAGGAAATCACGGTGCCCATGTGCCGAGGCATCGGCTACAACCTGACGCACATGCCCA

ACCAGTTCAACCATGACACGCAGGACGAAGCAGGCCTGGAGGTGCACCAATTCTGGCCGCTTGTG

GAGATCCACTGCTCACCGGACCTGCGCTTCTTCCTGTGCTCTATGTACACGCCCATCTGTTTGCCTG

ACTACCACAAGCCGCTACCACCGTGCCGTTCCGTGTGCGAGCGCGCCAAGGCCGGCTGCTCGCCGC

TCATGCGCCAGTACGGCTTCGCCTGGCCCGAGCGCATGAGCTGCGACCGCCTCCCTGTGCTGGGCG

GCGACGCCGAGGTTCTGTGTATGGATTATAACCGAAGCGAAGCCACCACCGCGTCCCCTAAGTCCT

TCCCGGCCAAACCTACACTCCCAGGACCACCAGGGGCGCCATCTTCCGGGGGCGAGTGCCCCTCGG

GAGGCCCATCCGTGTGCACGTGCCGCGAGCCCTTCGTGCCCATCCTGAAGGAGTCACACCCACTCT

ACAACAAGGTGCGCACCGGCCAAGTGCCCAACTGCGCGGTGCCCTGCTACCAGCCGTCCTTCAGCC

CGGACGAGCGCACATTCGCCACCTTCTGGATTGGCCTGTGGTCTGTGCTGTGCTTCATCTCCACGTC

CACCACCGTTGCCACCTTCCTCATTGACATGGAACGATTCCGCTACCCTGAGCGCCCCATCATCTTC

TTGTCTGCGTGCTACCTGTGTGTGTCACTGGGATTCTTGGTGCGCCTGGTAGTGGGCCATGCCAGCG

TCGCTTGCAGCCGTGAGCACAGCCACATTCACTATGAGACTACCGGCCCTGCGCTGTGCACGGTTG

TCTTCCTCTTAGTCTATTTCTTTGGCATGGCCAGCTCCATCTGGTGGGTCATCCTGTCGCTCACCTGG

TTCTTGGCGGCTGGCATGAAGTGGGGCAATGAAGCCATCGCAGGTTATGCACAGTACTTCCACCTT

GCTGCCTGGCTCATCCCCAGTGTCAAGTCCATTACGGCGCTGGCACTGAGCTCGGTGGACGGGGAC

CCAGTGGCTGGCATCTGCTATGTGGGCAACCAAAACCTGAACTCACTACGAGGCTTTGTCTTGGGC

CCACTGGTGCTGTACCTGTTGGTGGGCACGCTCTTCCTTCTGGCAGGCTTCGTGTCACTCTTCCGCA

TCCGGAGCGTCATCAAGCAGGGTGGCACTAAGACGGACAAGCTAGAGAAGCTCATGATCCGCATC

GGCATCTTCACCCTGCTCTACACGGTGCCAGCCAGCATCGTGGTGGCCTGCTACCTGTATGAGCAG

CACTACCGGGAGAGCTGGGAGGCAGCCCTCACCTGCGCGTGTCCGGGACCGGACGCTGGCCAGCC

ACGCGCCAAACCCGAGTACTGGGTGCTCATGCTCAAGTACTTCATGTGCCTGGTGGTGGGCATCAC

GTCGGGAGTCTGGATCTGGTCCGGCAAGACTCTGGAGTCTTGGCGGCGGTTCACCAGCCGCTGCTG

CTGCAGCTCTCGGCGGGGCCACAAGAGCGGTGGCGCTATGGCCGCAGGAGACTATGCGGAGGCCA

GCGCCGCGCTCACCGGCAGGACCGGGCCGCCTGGCCCCACCGCCGCATACCACAAGCAAGTGTCC

CTGTCGCACGTACAACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCAT

CAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCG 

 

 

 

 V5-mFZD5–GFP in pcDNA3 

 

AAGCTTGCCACCATGGTCCCGTGCACGCTGCTCCTGCTGTTGGCAGCCGCCCTGGCTCCGACTCAG

ACCCGGGCCGGTACCGGCAAACCGATTCCGAACCCGCTGCTGGGCCTGGATAGCACTGCCTCCAAG

GCCCCGGTGTGCCAGGAAATCACGGTGCCCATGTGCCGAGGCATCGGCTACAACCTGACGCACATG

CCCAACCAGTTCAACCATGACACGCAGGACGAAGCAGGCCTGGAGGTGCACCAATTCTGGCCGCTT
GTGGAGATCCACTGCTCACCGGACCTGCGCTTCTTCCTGTGCTCTATGTACACGCCCATCTGTTTGC

CTGACTACCACAAGCCGCTACCACCGTGCCGTTCCGTGTGCGAGCGCGCCAAGGCCGGCTGCTCGC

CGCTCATGCGCCAGTACGGCTTCGCCTGGCCCGAGCGCATGAGCTGCGACCGCCTCCCTGTGCTGG

GCGGCGACGCCGAGGTTCTGTGTATGGATTATAACCGAAGCGAAGCCACCACCGCGTCCCCTAAGT

CCTTCCCGGCCAAACCTACACTCCCAGGACCACCAGGGGCGCCATCTTCCGGGGGCGAGTGCCCCT

CGGGAGGCCCATCCGTGTGCACGTGCCGCGAGCCCTTCGTGCCCATCCTGAAGGAGTCACACCCAC

TCTACAACAAGGTGCGCACCGGCCAAGTGCCCAACTGCGCGGTGCCCTGCTACCAGCCGTCCTTCA

GCCCGGACGAGCGCACATTCGCCACCTTCTGGATTGGCCTGTGGTCTGTGCTGTGCTTCATCTCCAC
GTCCACCACCGTTGCCACCTTCCTCATTGACATGGAACGATTCCGCTACCCTGAGCGCCCCATCATC

TTCTTGTCTGCGTGCTACCTGTGTGTGTCACTGGGATTCTTGGTGCGCCTGGTAGTGGGCCATGCCA

GCGTCGCTTGCAGCCGTGAGCACAGCCACATTCACTATGAGACTACCGGCCCTGCGCTGTGCACGG
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TTGTCTTCCTCTTAGTCTATTTCTTTGGCATGGCCAGCTCCATCTGGTGGGTCATCCTGTCGCTCACC

TGGTTCTTGGCGGCTGGCATGAAGTGGGGCAATGAAGCCATCGCAGGTTATGCACAGTACTTCCAC

CTTGCTGCCTGGCTCATCCCCAGTGTCAAGTCCATTACGGCGCTGGCACTGAGCTCGGTGGACGGG

GACCCAGTGGCTGGCATCTGCTATGTGGGCAACCAAAACCTGAACTCACTACGAGGCTTTGTCTTG

GGCCCACTGGTGCTGTACCTGTTGGTGGGCACGCTCTTCCTTCTGGCAGGCTTCGTGTCACTCTTCC
GCATCCGGAGCGTCATCAAGCAGGGTGGCACTAAGACGGACAAGCTAGAGAAGCTCATGATCCGC

ATCGGCATCTTCACCCTGCTCTACACGGTGCCAGCCAGCATCGTGGTGGCCTGCTACCTGTATGAGC

AGCACTACCGGGAGAGCTGGGAGGCAGCCCTCACCTGCGCGTGTCCGGGACCGGACGCTGGCCAG

CCACGCGCCAAACCCGAGTACTGGGTGCTCATGCTCAAGTACTTCATGTGCCTGGTGGTGGGCATC

ACGTCGGGAGTCTGGATCTGGTCCGGCAAGACTCTGGAGTCTTGGCGGCGGTTCACCAGCCGCTGC

TGCTGCAGCTCTCGGCGGGGCCACAAGAGCGGTGGCGCTATGGCCGCAGGAGACTATGCGGAGGC

CAGCGCCGCGCTCACCGGCAGGACCGGGCCGCCTGGCCCCACCGCCGCATACCACAAGCAAGTGT

CCCTGTCGCACGTATCTAGAATGAGCAAGGGCGAGGAACTGTTCACTGGCGTGGTCCCAATTCTCG
TGGAACTGGATGGCGATGTGAATGGGCACAAATTTTCTGTCAGCGGAGAGGGTGAAGGTGATGCC

ACATACGGAAAGCTCACCCTGAAATTCATCTGCACCACTGGAAAGCTCCCTGTGCCATGGCCAACA

CTGGTCACTACCTTCACCTATGGCGTGCAGTGCTTTTCCAGATACCCAGACCATATGAAGCAGCAT

GACTTTTTCAAGAGCGCCATGCCCGAGGGCTATGTGCAGGAGAGAACCATCTTTTTCAAAGATGAC

GGGAACTACAAGACCCGCGCTGAAGTCAAGTTCGAAGGTGACACCCTGGTGAATAGAATCGAGCT

GAAGGGCATTGACTTTAAGGAGGATGGAAACATTCTCGGCCACAAGCTGGAATACAACTATAACT

CCCACAATGTGTACATCATGGCCGACAAGCAAAAGAATGGCATCAAGGTCAACTTCAAGATCAGA

CACAACATTGAGGATGGATCCGTGCAGCTGGCCGACCATTATCAACAGAACACTCCAATCGGCGAC
GGCCCTGTGCTCCTCCC 

 

 

 V5-mFZD5–YFP in pcDNA3 

 

AAGCTTGCCACCATGGTCCCGTGCACGCTGCTCCTGCTGTTGGCAGCCGCCCTGGCTCCGACTCAG

ACCCGGGCCGGTACCGGCAAACCGATTCCGAACCCGCTGCTGGGCCTGGATAGCACTGCCTCCAAG

GCCCCGGTGTGCCAGGAAATCACGGTGCCCATGTGCCGAGGCATCGGCTACAACCTGACGCACATG

CCCAACCAGTTCAACCATGACACGCAGGACGAAGCAGGCCTGGAGGTGCACCAATTCTGGCCGCTT

GTGGAGATCCACTGCTCACCGGACCTGCGCTTCTTCCTGTGCTCTATGTACACGCCCATCTGTTTGC

CTGACTACCACAAGCCGCTACCACCGTGCCGTTCCGTGTGCGAGCGCGCCAAGGCCGGCTGCTCGC

CGCTCATGCGCCAGTACGGCTTCGCCTGGCCCGAGCGCATGAGCTGCGACCGCCTCCCTGTGCTGG

GCGGCGACGCCGAGGTTCTGTGTATGGATTATAACCGAAGCGAAGCCACCACCGCGTCCCCTAAGT

CCTTCCCGGCCAAACCTACACTCCCAGGACCACCAGGGGCGCCATCTTCCGGGGGCGAGTGCCCCT

CGGGAGGCCCATCCGTGTGCACGTGCCGCGAGCCCTTCGTGCCCATCCTGAAGGAGTCACACCCAC

TCTACAACAAGGTGCGCACCGGCCAAGTGCCCAACTGCGCGGTGCCCTGCTACCAGCCGTCCTTCA

GCCCGGACGAGCGCACATTCGCCACCTTCTGGATTGGCCTGTGGTCTGTGCTGTGCTTCATCTCCAC

GTCCACCACCGTTGCCACCTTCCTCATTGACATGGAACGATTCCGCTACCCTGAGCGCCCCATCATC

TTCTTGTCTGCGTGCTACCTGTGTGTGTCACTGGGATTCTTGGTGCGCCTGGTAGTGGGCCATGCCA

GCGTCGCTTGCAGCCGTGAGCACAGCCACATTCACTATGAGACTACCGGCCCTGCGCTGTGCACGG

TTGTCTTCCTCTTAGTCTATTTCTTTGGCATGGCCAGCTCCATCTGGTGGGTCATCCTGTCGCTCACC

TGGTTCTTGGCGGCTGGCATGAAGTGGGGCAATGAAGCCATCGCAGGTTATGCACAGTACTTCCAC

CTTGCTGCCTGGCTCATCCCCAGTGTCAAGTCCATTACGGCGCTGGCACTGAGCTCGGTGGACGGG

GACCCAGTGGCTGGCATCTGCTATGTGGGCAACCAAAACCTGAACTCACTACGAGGCTTTGTCTTG

GGCCCACTGGTGCTGTACCTGTTGGTGGGCACGCTCTTCCTTCTGGCAGGCTTCGTGTCACTCTTCC

GCATCCGGAGCGTCATCAAGCAGGGTGGCACTAAGACGGACAAGCTAGAGAAGCTCATGATCCGC
ATCGGCATCTTCACCCTGCTCTACACGGTGCCAGCCAGCATCGTGGTGGCCTGCTACCTGTATGAGC

AGCACTACCGGGAGAGCTGGGAGGCAGCCCTCACCTGCGCGTGTCCGGGACCGGACGCTGGCCAG

CCACGCGCCAAACCCGAGTACTGGGTGCTCATGCTCAAGTACTTCATGTGCCTGGTGGTGGGCATC

ACGTCGGGAGTCTGGATCTGGTCCGGCAAGACTCTGGAGTCTTGGCGGCGGTTCACCAGCCGCTGC

TGCTGCAGCTCTCGGCGGGGCCACAAGAGCGGTGGCGCTATGGCCGCAGGAGACTATGCGGAGGC

CAGCGCCGCGCTCACCGGCAGGACCGGGCCGCCTGGCCCCACCGCCGCATACCACAAGCAAGTGT

CCCTGTCGCACGTATCTAGAGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGG

TCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCC

ACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACC

CTCGTGACCACCTTCGGCTACGGCCTGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCAC

GACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGAC

GGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCT  
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